

LITERATURE
To order Intel Literature or obtain literature pricing information in the U.S. and Canada call or write Intel
Literature Sales. In Europe and other international locations, please contact your local sales office or
distributor.

INTEL LITERATURE SALES
P.O. BOX 58130
SANTA CLARA, CA 95052-8130

CURRENT HANDBOOKS

In the U.S. and Canada
call toll free
(800) 548-4725

Product line handbooks contain data sheets, application notes, article reprints and other design information.

TITLE

COMPLETE SET OF HANDBOOKS
(Available in U.S. and Canada only)

AUTOMOTIVE PRODUCTS HANDBOOK
(Not included in handbook set)

COMPONENTS QUALITY IRELIABILITY HANDBOOK

EMBEDDED CONTROL APPLICATIONS HANDBOOK

8-BIT EMBEDDED CONTROLLER HANDBOOK

16-BIT EMBEDDED CONTROLLER HANDBOOK

32-BIT EMBEDDED CONTROLLER HANDBOOK

MEMORY COMPONENTS HANDBOOK

MICROCOMMUNICATIONS HANDBOOK

MICROCOMPUTER PROGRAMMABLE LOGIC HANDBOOK

MICROPROCESSOR AND PERIPHERAL HANDBOOK
(2 volume set)

MILITARY PRODUCTS HANDBOOK
(2 volume set. Not included in handbook set)

OEM BOARDS AND SYSTEMS HANDBOOK

PRODUCT GUIDE
(Overview of Intel's complete product lines)

SYSTEMS QUALITY IRELIABILITY HANDBOOK

INTEL PACKAGING OUTLINES AND DIMENSIONS
(Packaging types, number of leads, etc.)

LITERATURE PRICE LIST (U.S. and Canada)
(Comprehensive list of current Intel Literature)

INTERNATIONAL LITERATURE GUIDE

CG/LIT /100188

LITERATURE
ORDER NUMBER

231003

231792

210997

270648

270645

270646

270647

210830

231658

296083

230843

210461

280407

210846

231762

231369

210620

E00029

About Our Cover:

The microprocessor has been the integral device in translating unlimited ideas into solid reality. Our
microprocessors work in close conjunction with our family of peripherals to form complete microcomputer

chip set solutions that will help you develop and build tomorrow's electronic systems.

inter
Intel the Microcomputer Company:

When Intel invented the microprocessor in 1971, it Cf8llted the era of
mit;rocomputBrs. Whether used as microcontrollBfS in automobiles or microwave

ovens, or as personal computers or supercomputers, Intel's microcomputers
- have always offBrBd leading-edge technology. In the second half of the 1980s, Intel

architectures have held at l8Sst a 75% market share of microprocessors at 16 bits and above.
Intel continues to strive tor the highest standards in memory, miCrocomputer components,

modules, and systems to give its customers the best poss/ble competitive advantaf}8s.

MICROPROCESSOR AND
PERIPHERAL HANDBOOK

VOLUME I
M.ICROPROCESSOR . .

1989

I
Ii ~

, .:.,.

InfeP'do~orati()~'Il1a:ke~ no~a:~anty lJr thelJs~ ~f its products and assumes no responsibility for any errors
which may appear in this,c!ocumeQtnor'r:!oes it ',make a oornmitment to update the information contained
hEirein. " ' ",," ," ,', "" ': '" ." ,

Intel, retains the,ri,ght to make changes to these specifications at any time, without notice.

~n~ac,t"youri9cal ,sal~~ offi~,e t9 ol:!~in ,the latest specifications before placing your order.
l' -'., ,- t

The followi~g are trademarks bf'lntel Corporation and may only be used to identify Intel Products:

Above, BITBUS, COMMputer, CREDIT, Data Pipeline, ETOX,
FASTPATH, Genius, i, I, ICE, iCEL, ies, iDBP, iDIS, 121CE, iLBX,
im, iMDDX, iMMX, Inboard, Insite, Intel, intel, Inte1376, InteI3,86, Inte1486,
intelBOS, Intel Certified, Intelevision, intaligent Identifier, intaligent
Programming, Intellec, Intellink, iOSP, iPDS, iPSC, iRMK, iRMX, iSBC,
iSBX,iSDM, iSXM, KEPROM, Ubrary Manager, ,MAPNET, Mes,
Megachassis, MICROMAINFRAME, MUl., TIBUS, MULTICHANNEL,
MUL TIMODULE, ONCE, OpenNET, OTP, PC BUBBLE, Plug·A-Bubble,
PROMPT, Promware, QUEST, QueX, Quick-Erase, Quick-Pulse
Programming, Ripplemode, RMX/80, RUPI, Seamless, SLD, SugarCube,
UPI, and VLSiCEL, and the combination of ICE, ieS, iRMX, iSBC, iSBX,

'iSXM, Mes, or UPI and a numerical suffix, 4-SITE, 376, 386, 486.

MDS is an ordering code ,only and is not used as a product name or trademark. MDS® is a registered
trademark of MohaWk Data Sciences Corporation.

°MUL TIBUS is a patented Intel bus.

Additional copies of this manual or other Intel literature may be obtained from:

Intel Corporation
Literature Sales
P.O. Box 58130
Santa Clara. CA 95052-8130

@) INTEL CORPORATION ,1988

CUSTOMER SUPPORT

INTEL'S COMPLETE SUPPORT SOLUTION WORLDWIDE

Customer Support is Intel's complete support service that provides Intel customers with hardware support, software
support, customer training, consulting services and network management services. For detailed information contact
your local sales offices.

After a customer purchases any system hardware or software product, service and support become major factors in
determining whether that produ~t will continue to meet a customer's expectations. Such support requires an inter­
national support organization and a breadth of programs to meet a variety of customer needs. As you might expect,
Intel's customer support is quite extensive. It can start with assistance during your development effort to network
management. 100 Intel sales and service offices are located worldwide - in the U.S., Canada, Europe and the Far
East. So wherever you're using Intel technology, our professional staff is within close reach.

HARDW ARE SUPPORT SERVICES

Intel's hardware maintenance service, starting with complete on-site installation will boost your productivity from
the start and keep you running at maximum efficiency. Support for system or board level products can be tailored
to match your needs, from complete on-site repair and maintenance support economical carry-in or mail-in factory
service.

Intel can provide support service for not only Intel systems and emulators, but also support for equipment in your
development lab or provide service on your pTOduct to your end-user! customer.

SOFTW ARE SUPPORT SERVICES

Software products are supported by our Technical Information Phone Service (TIPS) that has a special toll free
number to provide you with direct, ready information on known, documented problems and deficiencies, as well as
work-arounds, patches and other solutions. .

Intel's software support consists of two levels of contracts. Standard support includes TIPS (Technical Information
Phone Service), updates and subscription service (product-specific troubleshooting guides and; COMMENTS
Magazine). Basic support consists of updates and the subscription service. Contracts are sold in environments which
represent product groupings (e.g., iRMX® environment). .

CONSULTING SERVICES

Intel provides field system engineering consulting servic.es for any phase of your development or application effort.
You can use our system engineers in a variety of ways ranging from assistance in using a new product, developing
an application, personalizing training and customizing an Intel product to providing technical and management
conSUlting. Systems Engineers are well versed in technical areas such as microcommunications, real-time applica­
tions, embedded microcontrollers, and network services. You know your application need~; we know our products.
Working together we can help you get a successful product to market in the least possible time.

CUSTOMER TRAINING

Intel offers a wide range of instructional programs covering various aspects of system design and implementation.
In just three to ten days a limited number of individuals learn more in a single workshop than in weeks of self-study.
For optimum convenience, workshops are scheduled regularly at Training Centers worldwide or wecan take our
workshops to you for on-site instruction. Covering a wide variety of topics, Intel's major course categories include:
architecture and assembly language, programming and operating systems, BITBUS™and LAN applications.

NETWORK MANAGEMENT SERVICES

Today's networking products are powerful and extremely flexible. The return they can provide on your investment
via increased productivity and reduced costs can be very substantial.

Intel offers complete network support, from definition of your network's physical and functional design, to imple­
mentation, installation and maintenance. Whether installing your first network or adding to an existing one, Intel's
Networking Specialists can optimize network performance for you.

CG/CUST/100188

Iii
Iii
I

Table of Contents

Alphanumeric Index • x

CHAPTER 1
- Overview

Introduction•........ ; -. 1-1

CHAPTER 2
8086 Microprocessor Family

DATA SHEETS
8086 16-Bit HMOS Microprocessor ; 2-1
8OC86A 16-Bit CHMOS Microprocessor ; 2-31
80C86AL 16-Bit CHMOS Microprocessor .•.............................. ~. . . . 2-60
8088 8-Bit HMOS Microprocessor " 2-89
80C88A8-Bit CHMOS Microprocessor " . • 2-119
80C88AL 8-Bit CHMOS Microprocessor. 2-151
8087/8087-2/8087-1 Numeric Data Coprocessor•........................ 2-183
82C84A CHMOS Clock Generator and Driver for 80C86, 80C88 Processors 2-205
82C88 CHMOS Bus Controller. • .. 2-214
8237 A High Performance Programmable DMA Controller

(8237 A, 8237A-4, 8237 A-5) ~ " 2-222
82C37A-5 CHMOSHigh Performance Programmable DMA Controller............ 2-241
8259A18259A-2/8259A-8 Programmable Interrupt Controller 2-~59
82C59A-2 CHMOS Programmable Interrupt Controller 2-283

CHAPTER 3
80286 Microprocessor Family

DATA SHEETS
80286 High Performance Microprocessor with Memory Managementand

Protection. • 3-1
80287 80-Bit HMOS Numeric Processor Extention ; 3"56
82258 Advanced Direct Memory Access Coprocessor 3-82
82288 Bus Controller for 80286 Processor -

(82288-12,82288-10,82288-8) ... 3-141
82C288 Bus Controller for 80286 Processors ,

(82C288-12, 82C288-10, 82C288-8) 3-161
82C284 Clock Generator and Ready Interface for 80286 Processors

(82C284-12, 82C2f;J4" 10, 82C284-8) 3-182

CHAPTER 4
-INTEL386TM Family

DATA SHEETS
386TM High Performance Microprocessor with Integrated Memory Management. . . 4-1
80387 80-Bit CHMOS III Numeric Processor Extension .. -. .. 4-133
82380 High Performance 32-Bit DMA Controller wllntegrated System

Support Peripherals ~ 4-171
82385 High Performance 32-Bit Cache Controller 4-292
a86SXTM Microprocessor 4-354
80387SX 80-Bit Numeric Processor Extension 4-450
82310/82311 Micro Channel Compatible Peripheral Family..•. 4-488
82303 1/0 Support Chip. • . • • • • 4-509
823041/0 Support Chip .. 4-519
82306 Local Channel Support Chip. _4-534
82307 DMAIMicroChannel Arbitration Controller. .. 4-545
82308 Micro Channel Bus Controller (BC)• 4-557
82309 Address Bus Controller (ABC) .. 4-588
82077 Floppy Disk Controller • • • 4-617

Table of Contents (Continued)

82706 Intel Video Graphics Array. .• 4-618
82335 High Integration Interface Device for 386SX™ Microprocessor Based

PC-AT System. 4-636
82230/82231 High Integration AT*-Compatible Chip Set....................... 4-667
376TM High Performance 32-Bit Embedded Processor. •. .. 4-705
82370 Integrated System Peripheral. 4-796

CHAPTER 5
Memory Controllers

DATA SHEETS
8203 64K Dynamic RAM Controller .. , . 5-1
8206 Error Detection and Correction Unit..................................... 5-17
8207 Dual-Port Dynamic RAM Controller • . 5-39
82C08 CHMOS Dynamic RAM Controller. 5-86

APPLICATION NOTES
Interfacing the 8207 Dynamic RAM Controller to the 80186 AP-167 5-115
Interfacing the 8207 Advanced Dynamic RAM Controller to the 80286 AP-168 5-121

CHAPTER 6
Support Peripherals

DATA SHEETS
8231 A Arithmetic Processing Unit. 6-1
8253/8253-5 Programmable Interval Timer................................... 6-14
8254 Programmable Interval Timer . '. • 6-25
82C54 CHMOS Programmable Interval Timer , . 6-46
8255A18255A-5 Programmable Peripheral Interface . 6-63
82C55A CHMOS Programmable Peripheral Interface 6-87
8256AH Multifunction Microprocessor Support Controller. .. 6-110
8279/8279-5 Programmable Keyboard/Display Interface. .. 6-134
82389 Message Passing Coprocessor, A MULTIBUSTM II Bus Interface Controller. 6-150

CHAPTER 7
Floppy Disk Controllers

DATA SHEETS
8272A Single/Double Density Floppy Disk Controller. 7-1
82077 Single Chip Floppy Disk Controller " 7-32

APPLICATION NOTES
An Intelligent Data Base System Using the 8272 AP-116 :.............. 7-87
Software Design and Implementation of Floppy Disk Systems AP-121 7-128

CHAPTER 8
Hard Disk Controllers

DATA SHEET
82064 CHMOS Winchester Disk Controller with On-Chip Error D.etectionand

Correction. •. 8-1
APPLICATION NOTE '

Multimode™ Winchester Controller Using the CHMOS 82064AP-402............ 8-33

CHAPTER 9
Universal Peripheral Interface Slave Microcontrollers

DATA SHEETS .
UPITM-452 CHMOS Programmable I/O Processor (80/83/87452) 9-1
UPITM-41, 42: 8041AH/8042AH/8741AH/8742AH Universal Peripheral Interface

8-Bit Slave Microcontroller ... 9-54

Table of Contents (Continued)

8243 MCS®-48 Input/Output Expander , 9-73
APPLICATION NOTES

Applications Using the 8042 UPITM Microcontroller•... ; . ~ : . 9-79
Complex Peripheral Control with the UPITM-42 AP-161 9-83
An 8741AH/8041A Digital Cassette Controller AP-90•.....•.. .•. 9-138
UPITM-452 Accelerates iAPX 286 Bus Performance AP-28L.................... 9-145

SYSTEM SUPPORT
ICETM-42 8042 In-Circuit Emulator. 9-165
iUP,200AliUP-201A Universal PROM Programmers , ;... 9-173

CHAPTER 10
Graphics Coprocessor Family

DATA SHEETS
82706 Intel Video Graphics Array. • . 10-1
82716IVSDD Video Storage and Display Device ; ;.;.;... 10-2
82786 CHMOS Graphics Coprocessor ; 10-4

APPLICATION NOTES
A Low Cost and High Integration Graphics System Using 82716 AP-268 .. :. ; 10-49
82786 Hardware Configuration AP-270 10-101
An Introduction to Programming the 82786 Graphics Coprocessor AP-408 . , 10-162
82786 Design Example Interfacing to the IBM PC/ AT Computer AP-409•..... 10-222

CHAPTER 11
Development Tools for the 8051, 8096, 8086/186/188, 80286, and 80386

LANGUAGES AND SOFTWARE DEVELOPMENT TOOLS
8051 Software Packages Fact Sheet :............. 11-1
8096 Software Development Packages Fact Sheet ; ; . . .•. 11-4
VAXIVMS Resident Software Development Packages Data. Sheet ; . . 11-7
8086/80186 Software Development Packages Fact Sheet " 11-15
8087 Support Library Data Sheet ;•..•........ " ; ... ; 11-19
PSCOPE-86 for DOS High-Level Application Program Debugger Data Sheet ; ... " 11-23
iC-86 C Compiler Fact Sheet. ; ., • 11-30
286 Software Development Packages Data Sheet • . .11-33
Ada-386 Cross Development for the 386TM Fact Sheet " 11-51
Intel386TM Development Support Family Fact Sheet. 11-55
AEDIT Source Code and Text Editor Fact Sheet ; ...•..... , ., . " 11-59
iPATTM Performance Analysis Tool Fact Sheet................................ 11-61

IN-CIRCUIT EMULATORS
ICETM 5100/452 In-Circuit Emula.tor Fact Sheet. .. 11-65
ICETM 51 00/044 In-Circuit Emulator Fact Sheet. 11-69
ICETM 51 00/252 In-Circuit Emulator Fact Sheet , ... ,. ; . " .. , ... ;.; 11-73
ICETM 5100/451 In-Circuit Emulator Fact Sheet ;.. 11-77
VLSiCETM-96 In-Circuit Emulator Fact Sheet•.......... '" ... ; . ;.. 11-81
Real·Time Tran~parent 80C196 In-Circuit Emulator Fact Sheet.................. 11-84
iCETM-196KBixX in-Circuit Emulators Fact Sheet 11-86
ICETM-186 In-Circuit Emulator Fact Sheet 11-90
ICETM-188 In-Circuit Emulator Fact Sheet " 11-94
121CETM In-Circuit Emulation System Fact Sheet. 11-98
ICETM-286In·Circuit Emulator Fact Sheet 11-101
Intel386TM Family Development Support Fact Sheet ; 11-104

Alphanumeric Index

286 Software Development Packages Data Sheet.
376TM High Performance 32-Bit Embedded Processor
386SXTM Microprocessor .. .
386TM High Performance Microprocessor with Integrated Memory Management
80286 High Performance Microprocessor with Memory Management and Protection
80287 80-Bit HMOS Numeric Processor Extention
80387 80-Bit CHMOS III Numeric Processor Extension
80387SX 80-Bit Numeric Processor Extension
8051 Software Packages Fact Sheet .. .
8086 16-Bit HMOS Microprocessor .. .
8086/80186 Software Development Packages Fact Sheet
8087 Support Library Data Sheet
8087/8087-2/8087-1 Numeric Data Coprocessor
8088 8-Bit HMOS Microprocessor•.............
8096 Software Development Packages Fact Sheet.
80C86A 16-Bit CHMOS Microprocessor ... :
80C86AL 16-Bit CHMOS Microprocessor
80C88A 8-Bit CHMOS Microprocessor
80C88AL 8-Bit CHMOS Microprocessor
8203 64K Dynamic RAM Controller .. .
8206 Error Detection and Correction Unit .. .
82064 CHMOS Winchester Disk Controller with On-Chip Error Detection and Correction ..
8207 Dual-Port Dynamic RAM Controller
82077 Floppy Disk Controller
82077 Single Chip Floppy Disk Controller .. .
82230/82231 High Integration AT*-Compatible ChipSet
82258 Advanced Direct Memory Access Coprocessor
82288 Bus Controller for 80286 Processor (82288-12, 82288-10, 82288-8)
82303 I/O Support Chip
82304 I/O Support Chip
82306 Local Channel Support Chip .. .
82307 DMAlMicro Channel Arbitration Controller
82308 Micro Channel Bus Controller (BC) .. .
82309 Address Bus Controller (ABC) .. .
82310/82311 Micro Channel Compatible Peripheral Family
8231A Arithmetic Processing Unit. .. .
82335 High Integration Interface Device for 386SXTM Microprocessor Based PC-AT

System .. .
82370 Integrated System Peripheral. ... ' ..
8237 A High Performance Programmable DMA Controller (8237 A, 8237 A-4, 8237 A-5)
82380 High Performance 32-Bit DMA Controller w/lntegrated System

Support Peripherals
82385 High Performance 32-Bit Cache Controller
82389 Message Passing Coprocessor, A MUL TIBUSTM II Bus Interface Controller
8243 MCS@-48 Input/Output Expander .. .
8253/8253-5 Programmable Interval Timer
8254 Programmable Interval Timer .. .
8255A18255A-5 Programmable Peripheral Interface
8256AH Multifunction Microprocessor Support Controller•.......................
8259A18259A-2/8259A-8 Programmable Interrupt Controller
82706 Intel Video Graphics Array
82706 IntelVideo Graphics Array
82716IVSDD Video Storage and Display Device
8272A Single/Double Density Floppy Disk Controller

11-33
4-705
4-354

4-1
3-1

3-56
4-133
4-450

11-1
2-1

11-15
11-19
2-183

2-89
11-4
2-31
2-60

2-119
2-151

5-1
5-17

8-1
5-39

4-617
7-32

4-667
3-82

3-141
4-509
4-519
4-534
4-545
4-557
4-588
4-488

6-1

4-636
4-796
2-222

4-171
4-292
6-150

9-73
6-14
6-25
6-63

6-110
2-259
4-618

10-1
10-2

7-1

Alphanumeric Index(continued)

82786 CHMOS Graphics Coprocessor , 10·4
82786 Design Example Interfacing to the IBM PC/AT Computer AP·409 10·222
82786 Hardware Configuration AP·270 ... 10·101
8279/8279·5 Programmable Keyboard/Display Interface ;............ 6·134
82C08 CHMOS Dynamic RAM Controller • •. 5~86
82C284 Clock Generator and Ready Interface for 80286 Processors

(82C284·12, 82C284·10, 82C284·8) ,.......... 3·182
82C288 Bus Controller for 80286 PrOcessors (82C288·12, 82C288·10, 82C288·8) • 3·.161
82C37A·5 CHMOS High Performance Programmable DMA Controller• 2·241·
82C54 CHMOS Programmable Interval Timer. • 6·46
82C55A CHMOS Programmable Peripheral Interface 6·87
82C59A·2 CHMOS Programmable Interrupt Controller .. 2·283
82C84A CHMOS Clock Generator and Driver for 80G86, 80C88 Processors 2·205
82C88 CHMOS Bus Contro"er... 2·214
A Low Cost and High Integration Graphics System Using 82716 Ap·268. 10·49
Ada·386 Cross Development for the 386™ Fact Sheet. 11·51
AEDIT Source Code and Text Editor Fact Sheet 11·59
An 8741AH/8041A Digital Cassette Controller Ap·90................................. 9·138
An Inte"igent Data Base System Using the 8272 Ap·116 . 7·87
An Introduction to Programming the 82786 Graphics Coprocessor AP·408 10·162
Applications Using the 8042 UPITM Microcontro"er •. 9·79
Complex Peripheral Control with the UPITM·42 AP-161•..... 9-83
iC-86 C Compiler Fact Sheet .. 11·30
ICETM 5100/044 In-Circuit Emulator Fact Sheet. , 11-69
ICETM 5100/252 In-Circuit Emulator Fact Sheet. : 11-73
ICETM 5100/451 In-Circuit Emulator Fact Sheet. ... ; 11-77
ICETM 5100/452 In·Circuit Emulator Fact Sheet. .. 11·65
ICETM-186 In·Circuit Emulator Fact Sheet. 11-90
ICETM·188 In-Circuit Emulator Fact Sheet. 11-94
ICETM-196KB/xX In-Circuit Emulators Fact Sheet.. .. 11·86
ICETM-286 In-Circuit Emulator Fact Sheet ... 11-101
ICETM-42 8042ln·Circuit Emulator... 9-165
Intel386™ Development Support Family Fact Sheet. 11 ~55
Intel386™ Family Development Support Fact Sheet. : 11-104
I nterfacing the 8207 Advanced Dynamic RAM Controller to the 80286 AP-168 .;......... 5·121
Interfacing the 8207 Dynamic RAM Controller to the 80186 AP-167. 5-115
iPATTM Performance Analysis Tool Fact Sheet...................................... 11-61
iUP·200AliUP·201A Universal PROM Programmers.................................. 9·173
121CETM In·Circuit Emulation System Fact Sheet 11·98
Multimode™ Winchester Controller Using the CHMOS 82064 Ap·402 8-33
PSCOPE-86 for DOS High-Level Application Program Debugger Data Sheet. 11·23
Real· Time Transparent 80C196 In·Circuit Emulator Fact Sheet•....... 11·84
Software Design and Implementation of Floppy Disk Systems AP-121 , ... ,',',......... 7-128
UPITM-41, 42: 8041 AH/8042AH/8741 AH/8742AH Universal Peripheral Interface 8-Bit

Stave Microcontro"er . • • • 9·54
UPITM_452 Accelerates iAPX 286 Bus Performance AP-281 9-145
UPITM-452 CHMOS Programmable I/O Processor (80/83/87452) 9-1
VAXIVMS Resident Software Development Packages Data Sheet•. 11-7
VLSiCETM-96 In-Circuit Emulator Fact Sheet '" . • 11-81

Any of the following products may appear in this publication. If so, it must be noted that
such products have counterparts manufactured by Intel Puerto Rico, Inc., Intel Puerto
Rico II, Inc., and/or Intel Singapore, Ltd. The product codes/part numbers of these
counterpart products are listed below next to the corresponding Intel Corporation product
codes/part numbers.

1.te1 Corporation Intel Puerto RIco, I.c. lalel SI pore. Ltd. Intel CorporatloD latel Puerto RIco. Inc. Intel Slnppore, Ltd. Intel Puerto RIco II, Inc. lalel Puerto RIco II, I.c.
Product Coda' Product Coda, Product Coda' Product Coda' Product Coda, Product Coda'
Part Numbers Part Numbers

Part Numbers Part Numbers
Part Numbers

Part Numbers

316SKIT p316SKIT KM2 pKM2
903 p903 KM4 pKM4
904 p904 KM8 pKM8
913 p913 KNLAN pKNLAN
914 p914 KT60 pKT60
923 p923 KWI40 pKWI40
924 p924 KW40 pKW40
952 p952 KW80 pKW80
953 p953 MI pMI
954 p954 M2 pM2
ADAICE pADAICE M4 pM4
B386MI pB386MI M8 pM8
B386M2 pB386M2 MDS610 pMDS610
B386M4 pB386M4 MDX3015 pMDX3015
B386M8 pB386M8 MDX3015 pMDX3015
C044KIT pC044KIT MDX3016 pMDX3016
C252KIT pC252KIT MDX3016 pMDX3016
C2K pC28 MDX451 pMDX451
C32 pC32 MDX451 pMDX451.
C452KIT pC452KIT MDX458 pMDX458
D86ASM pD86ASM MDX458 pMDX458
D86C86 pD86C86 MSA96 pMSA96
D86EDI pD86EDI NLAN pNLAN
DCM9111 pDCM9111 PCLlNK .PCLlNK
DOSNET pDOSNET PCX344A pPCX344A
Fl pFI R286ASM pR286ASM
GUPILOGICIID pGUPILOGICIID R286EDI pR286EDI
H4 pH4 R286PLM pR286PLM
1044 pl044 R286SSC pR286SSC
1252KIT pl252KIT R86FOR pR86FOR
1452KIT pl452KIT RCB4410 sRCB4410
186ASM pl86ASM RCX920 pRCX920
ICE386 plCE386 RMX286 pRMX286
111010 plllOIO RMXNET pRMXNET
111086 plll086 S301 pS301
1II086 TIII086 S386 pS386
111111 pIlI 1 11 SBCOIO pSBCOIO
1II186 pIlI I 86 SBC012 pSBCOl2 sSBCOl2
111186 TIII186 SBC020 pSBC020
1II198 plII198 SBC028 pSBC028
1II212 plII212 SBC040 pSBC040
111286 plII286 SBC056 pSBC056
1II286 TIII286 SBCI08 pSBCI08
111515 plll515 SBCII6 pSBCII6
111520 TIII520 SBCI8603 pSBC I 8603 .SBC18603
1II520 plII520 SBCI86410 pSBC\8641O
1II531 plII53 I SBCI8651 pSBCI8651 sSBCI8651
1II532 plII532 SBCI86530 pSBCI86530
1II533 plII533 SBCI8618 pSBCI8618
1II621 plII621 SBCI8848 pSBCI8848 .SBC18848
1II101 plII101 SBCI8856 pSBCI8856 sSBCI8856
1II101 TIII101 SBC208 pSBC208 sSBC208
111815 plll815 SBC214 pSBC214
INA961 plNA961 SBC215 pSBC215
IPAT86 plPAT86 SBC220 pSBC220 sSBC220
KAS pKAS SBC221 pSBC221
KC pKC SBC28610 pSBC28610 sSBC28610
KH pKH SBC28612 pSBC28612
KMI pKMI SBC28614 pSBC28614

I ' -ntel°

IIItdCOr ticID Intel ,Puerto RI I"". .. tel S1appore, Ltd. , Intel Corporation
Inlei ~'~~.', " Intel, SIappOre, Ltd.

Product CoUI/ &teJPuerto Rico II, I~ •• Product Cod,../ Product, Cod,../ Intel PMrt9 Rico 'n. Ine. ' Pnidaet, Cod,..!
l'artNwnhers ,Product Cod,../ l'artNWilherii PeriN_he",' Product Cod./ " PeriN_hers

PnrtN~hers Pert Nwnhers

SBC28616 pSBC28616 SBCMEM3\0 pSBCMEM3JO
SBC300 pSBC300 SBCMEM312 pSBCMEM312
SBC301 pSBC301 SBCMEM320 pSBCMEM320
SBC302 pSBC302 ' ' SBCMEM340 pSBCMEM340
SBC304 pSBC304 SBE96 pSBE96
SBC307 pSBC307 SBX217 pSBX217
SBC314 pSBC314 . SBX218 pSBX218
SBC322, pSBC322 SBX270 pSBX270
SBC324 pSBC324 SBX311 pSBX311
SBC337 pSBC337 SBX328 pSBX328
SBC341 pSBC341 SBX331 pSBX33 I
SBC386 pSBC386 sSBC386 SBX344 pSBX344
SBC386116, pSBC386116 SBX3S0 pSBX3S0
SBC386120 pSBC386120 • SBX3S1 pSBX3S1
SBC38621 pSBC38621 SBX3S4 pSBX3S4

, SBC38622 pSBC38622 SBX488 pSBX488
SBC38624 pSBC38624 SBXS86 sSBXS86
SBC38628 pSBC38628 SCHEMAIIPLD pSCHEMAIIPLD
SBC3863I pSBC38631 SCOM pSCOM
SBC38632 pSBC38632 SDKSI pSDKSI
SBC38634 pSBC38634 SDK8S pSDK8S
SBC38638 pSBC38638 SDK86 pSDK86
SBC428 pSBC428 .SBC428 SXM217 pSXM217
SBC464 pSBC464 SXM2861Z pSXM28612
SBCSI7 pSBCSI7 SXM386 pSXM386

; SBCSI9 pSBCSI9 sSBCSI9 SXMS44 ~XMS44
SBCS34 pSBCS34 sSBCS34 SXMSS2 pSXMSS2
SBC548 pSBC548 SXM95 I pSXM9S1

. SBC550 TSBC5S0 SXM955 pSXM9S5
SBCS50 pSBCS50 ' SYPI20 pSYP120
SBC550 pSBC550 SYP301 pSYP301
SBC552 pSBC552 SYP302 pSVP302
SBC556 pSBC556 sSBC5S6 SYP31090 pSYP31090
SBC569 pSBC569 SYP311 pSYP311
SBC589 pSBC589 SYP3847 pSYP3847
SBC604 pSBC604 SYR286 pSYR286
SBC608 pSBC608 SYR86 pSYR86
SBC614 pSBC614 SYSI20 pSYSI20

, SBC618 pSBC618 SYS3JO pSYS310
SBC6S5 pSBC655 SYS311 pSYS311
SBC66 II pSBC66 II T60 pT60
SBC8010 pSBC80JO TA096 pTA096
SBC80204 pSBC80204 TA252 pTA252
SBC8024 pSBC8024, sSBC8024 TA452 pTA452
SBC8030 pSBC8030 WI40 pW\40

, SBC8605 pSBC8605 , sSBC8605 W280 ' pW280
SBC8612 pSBC8612 W40 pW40
SBC8614 pSBC8614 W80 pW80
SBC8630 pSBC8630 sSBC8630 ' XNX286DOC pXNX286DOC

, SBC8635 pSBC8635 sSBC863S XNX286DOCB pXNX286DOCB
SBC86C38 SsBC86C38 XNXIBASE pXNXIBASE
SBC8825 pSBC8825 sSBC8825 " XNXIDB pXNXIDB

, SBC8840 pSBC8840
"

XNXIDESK pXNXIDESK
SBC884S " pSBC884S sSBC8845 XNXIPLAN pXNXIPLAN
SBC90S ' jiSBC90S XNXIWORD pXNXIWORD
SBCLNKOOI pSBCLNKOOl

CGjPCPN/l02488

Overview 1

OVERVIEW

INTRODUCTION

Intel microprocessors and peripherals provide. a complete
solution in increasingly complex application environ­
ments. Quite often, asihgle peripheral device will replace
anY';V,here from 20 to 100 TTL devices (and the associated
design time that goes with them).

Built-in functions and standard Intel microprocessor /
peripheral interface deliver very. real time and perfor­
mance advantages to the designer of microprocessor­
based systems.

REDUCED TIME TO MARKET

When you can purchase an off-the-shelf solution that
replaces a number of discrete devices, you're also replac­
ing all the design; testing, and debug time that goes with
them.

INCREASED RELIABILITY

At Intel, the rate offailure for devices is carefully tracked.
Highest reliability is a tangible goal that translates to
higher reliability for your product, reduced downtime,
and reduced. repair costs. And as more and more
functions are intergrated on a single VLSI device, the
resulting system requires less power, produces less heat,
and requires fewer mechanical connections-again re­
sulting in greater system reliability.

LOWER PRODUCTION COST

By minimizing design time, increasing reliability, and

replacing numerous parts, microprocessor and peripheral
solutions can contribute dramatically to lower product
costs.

HIGHER SYSTEM PERFORMANCE

Intel microprocessors and peripherals provide the highest
system performance for the demands of today's (and
tomorrow's) microprocessor-based applications. For exam­
ple, the 80386 32 bit offers the highest performance fOT
multitasking, multiuser systems. Intel's peripheral pro­
ducts have been designed with the future in mind. They
support all of Intel's 8. 16 and 32 bit processors.

HOW TO USE THE GUIDE

The following application guide illustrates the range of
microprocessors and peripherals that can be. used for the
applictions in the vertical column of the left. The
peripherals are grouped by the I/O function they control.
CRT datacommunication. universal (user programmable),
mass storage dynamic RAM controllers, and CPU/bus
support.

An "X" in a horizontal application row indicates a
potential peripheral or CPU, depending upon the features
desired. For example, a conversational terminal could
use either of the three display controllers, depending
upon features like the number of characters per row or
font capability. A "Y" indicates a likely candidate, for
example, the 8272A Floppy Disk Controller in a small
business computer.

The Intel microprocessor and peripherals family provides
a broad range of time-saving, high performance solutions.

inter Get Your Kit ,Together!
Intel's Microsvstem Cdiliponents Kit Solution:

MICRO-
>')"';

PROCESSOR
8088/8OC88 '
8086/80C86 ••... ~ 80186 HARD, COPY _ ,·i
80188 COI\ITROL", . ' . . . ,

80286
UFlI,'" 8042/87:42 ' ", " . " ..

',386~J.L
386SX'"J.L ' " \ ,

SUPER CHIPSET KEYBOARD

,'82310/11 - ,CONTROL

8223,0/31 8279-5

82335 UPlm 8042/8742

8235q

NUMERIC FLOPPY DISK -El PROCESSORS' CONTROL
8087 • 8272A
80287 82077
80387
80387SX

: HARD DISK

CPU SUPPORT CONTROL'

8231A 82064'
8253

"

8254/82C54 • 8255A/82C~5A
8256AH GLOBAL
8279 COMMUNICATIONS
82389

8251A 82370
82050
82510
8273

,DMA 8274
8253

*
8291 A/92/9,4

8237 82530' '
82285 8044/8344/8744
82380
82560

LOCAL AREA
NETWORKING'

CACHE CACHE CONTROL • 82C501
MEMORY 82385 ,,82586

82588
82560
82590/92

MEMORY iMCC

- SUPPORT.

DYNAMIC RAM 8203 -8206 INSTRUMENTATION 8207 BUS (GPIB) 82C08
8291
8292

CRT
CONTROL

*
'TELE~ .. 82706

.11)1 82716 COMMUNICATIONS

82786 2910/11/12
29C13/C14/C16/C17
29C48,
29C53AA

SPECIAL ISP 188 • '. PERIPHERAL

'*
89024

CONTROL 89C024XE
,9f'1:-,804,l,AI~741A

< - -"January 11 UPI'" 804218742
© Inlel1989 UPI'" 80/83/87C452 Order Number: 230664·,

8086 Microprocessor
Family

2

:'1

I

inter
8086

•
•

•
•
•
•

16-BIT HMOS MICROPROCESSOR
8086/8086-2/8086-1 *

Direct Addressing Capability 1 MByte • Range of Clock Rates:
of Memory 5 MHz for 8086,

Architecture Designed for Powerful 8 MHz for 8086-2,

Assembly Language and Efficient High 10 MHz for 8086-1

Level Languages • MULTI BUS. System Compatible

1.4 Word, by 16-Blt Register Set with Interface

Symmetrical Operations • Available In EXPRESS

24 Operand Addressing Modes - Standard Temperature Range
- Extended Temperature Range

Bit, Byte, Word, and Block Operations
Available In 40-Lead Cerdlp and Plastic • 8 and 16-Blt Signed and Unsigned Package

Arithmetic in Binary or Decimal (See Packaging Spec. Order # 231369)
Including Multiply and Divide

The Intel 8086 high performance 16·bit CPU is available in three clock rates: 5, 8 and 10 MHz. The CPU is
implemented in N·Channel, depletion load, silicon gate technology (HMOS), and packaged In a 4O·pin CERDIP
or plastic package. The 8086 operates in both Single processor and multiple processor configurations to
achieve high performance levels.
·Changes frem the 1985 handbook specification have been mada for the 8086·1. See A.C. Characteristics TGVCH and TCLGL.

EXf.CUTION UNIT

REGISTER FlU

'DATA.
POINTER. AND

INDEX REGS
.1 WORDS,

BUS INTERFACE UNIT

I RELOCATION I
REGISTER FILE

SEGMENT
REGISTERS

AND
INSTRUCTION

POINTER
IS WORDSI

"'-"';::"~""'L_._ miS,

FLAGS

6· • .,T£
INSTRUCTION

QUEUE

R5T--_~------~~------~
INT_
NM,-_

liOIiIl'ii:; 2

HOLD-­
HLD.---,. __ ""T"" __ ...-__ ..,.---".,..J

eLK RESEt READY GND
Vee

AirS,·
A,~SI

3 OT/R.m.ALE

Figure 1.,8086 CPU Block Diagram

2·1

231455-1

GND 1

AD14

AD13

AOl2 .. At71S4

A111S5

iiblmIHOLD)

JO AbJGilIHLDA)

IWiit
lM/iO)

51 CDTlA)

iO IDiii)

(ALE)

liNTi)

231455-2

40 Lead

Figure 2. 8086 Pin
Configuration

september 1888
Order Number: 231465-003

inter 8086

Table .1. Pin De~cription

The following pin function descriptions are foteOQ6 systems in either minimum or maximum mode. The "Local
Bus" in these descriptions is the direct multiplexed bus interface connection to the 8086 (without regard to
additional bus buffers).

Symbol Pin No. Type Name and Function
..

AD15-ADo 2-16; 39 I/O . ADDRESS DATA BUS: These lines constitute the time multiplexed
memory/IO address (Tl), and data (T2' Ta,Tw, T4) bus. Ao is
analogous to SHE for the lower byte of the data bu~, pins 07-000 It is
LOW during T 1 when a byte is to be transferred on the lower portion
of the bus in memory or I/O operations: Eight-bit oriented.devices tied
to the lower half would normally use Ao to condition chip select
functions. (See SHE.) These lines are active HIGH .and float to 3·state
OFF during interrupt acknowledge and local bus "hold acknowledge".

A19/Sa, 35,..38 0 ADDRESS/STATUS: During Tl these are the four most significant
A18/S5, address lines for memory operations. During I/O operations these

A17/S4, lines are LOW. During memory and I/O operations, status information

A16/Sa is available on these lines during T2, Ta, Tw, T4. The. status of the
interrupt enable FLAG bit (S5) is updated at the beginning of each
CL~ cycle. A17/S4 and A16/Saare encoded as shown.
This information indicates which relocation.register is presently being
used for data accessing.
These lines float to 3-state OFF during local bus "hold acknowledge."

A17/S4 A16/S3 Characteristics .

o (LOW) 0 Alternate Data
0 1 Stack
1 (HIGH) 0 Code or None
1 1 Data
S6 isO
(LOW)

SHE/S7 34 0 BUS HIGH ENABLE/STATUS: During Tl the bus high enable signal
(SHE) should be used to enable data onto the most significant half of
the data bus, pins 015-08. Eight-bit oriented devices tied to the upper
half of the bus would. normally use SHE to condition chip select
functions. SHE is LOW during T 1 for read, write, and interrupt

I· acknowledge cycles when a byte is to be transferred on the high
portion of the bus. The S7 status information is available during T 2,
T a, and T 4. The Signal is active LOW, and floats to 3-state OFF in
"hold". It is LOW during T 1 for the first interrupt acknowledge cycle.

BHE Ao Characteristics

0 0 Whole word
0 1 Upper byte from/to odd address
1 0 Lower byte from/to even address
1 1 ~one

RD 32 0 READ: Read strobe,indicates that the processor is performing a
memory of I/O read cycle, depending on the state of the S2 pin. This
signal is used to read deliices which reside on the 8086 local bus. RD
is active LOW during T 2, T a and T w of any read cycle, and is
guaranteed to remain HIGH in T 2 until the 8086 local bus has floated.
This signal floats to 3-state OFF in "hold acknowledge" .

2-2

intJ 8086

Table 1. Pin Description (Continued)

Symbol Pin No. Type Name and Function

READY 22 I READY: is the acknowledgement from the addressed memory or 1/0
device that it will complete the data transfer. The READY signal from
memoryllO is synchronized by the 8284A Clock Generator to form
READY. This signal is active HIGH. The 8086 READY input is not
synchronized. Correct operation is not guaranteed if the setup and hold
times are not met.

INTR 18 I INTERRUPT REQUEST: is a level triggered input which is sampled
during the last clock cycle of each instruction to determine if the
processor should enter into an interrupt acknowledge operation. A
subroutine is vectored to via an interrupt vector lookup table located in
system memory. It can be internally masked by software resetting the
interrupt enable bit. INTR is internally synchronized. This signal is
active HIGH.

TEST 23 I TEST: input is examined by the "Wait" instruction. If the TEST input is
LOW execution continues, otherwise the processor waits in an "Idle"
state. This input is synchronized internally during each clock cycle on
the leading edge of CLK.

NMI 17 I NON-MASKABLE INTERRUPT: an edge triggered input which causes
a type 2 interrupt. A subroutine is vectored to via an interrupt vector
lookuptable located in system memory. NMI is not maskable internally
by software. A transition from LOWto HIGH initiates the interrupt at the
end of. the current instruction. This input is internally synchronized.

RESET 21 I RESET: causes the processor to immediately terminate its present
activity. The signal must be active HIGH for at least four clock cycles. It
restarts execution, as described in the Instruction Set description, when
RESET returns LOW. RESET is internally synchronized.

CLK 19 I CLOCK: pre>vides the basic timing for the processor and bus controller.
It is asymrnetricwith a 33% duty cycle to provide optimized internal
timing. ,

Vee 40 Vee: + 5V power supply pin.

GND 1,20 GROUND

MN/MX 33 I MINIMUM/MAXIMUM:indicates what mode the processor is to
operate in. The two modes' are discussed in the following sections.

The fol/owing pin function descriptions are for the 8086/8288 system in maximum mode (le., MN/MX = VssJ.
Only the pin functions which are unique to maximum mode, are described; aI/ other pin functions are as
described above. ' '

52,51,50 26-28 0 STATUS: active during T 4, T 1, and T 2 and is returned to the passive state
(1, 1, 1) during T 3 or during T w when READY is HIGH. This status is used
by the 8288 Bus ,Controller to generate all memory and 1/0 access control
signals. Any change by 52, 510 or So during T 4 is used to indicate the
beginning of a bus cycle, and the r~turn to the passive state in T 3 or T w is
used to indicate the end of a bus cycle.

2-3

i~ 8086

Table 1. Pin Description (Continued)

Symbol Pin No. Type , Name and Function

S2, S1, So 26-28 0 These signals float to 3-state OFF in "hold acknowledge". These status
(Continued) lines are encoded as shown.

S2 S1 So Characteristics

o (lOW) 0 0 Interrupt Acknowledge
0 0 1 Read I/O Port
0 1 0 Write I/O Port
0 1 1 Halt
1 (HIGH) 0 0 Code Access
1 0 1 Read Memory
1 1 0 Write Memory
1 1 1 Passive

RQ/GTo. 30,31 I/O REQUEST/GRANT: pins are used by other local bus masters to force
RQ/GT1 the processor to release the local bus at the end of the processor's

current bus ~e.:.E..ac~~ft J!. bidirectional with RQ/GT 0 having higher
priority than /GT 1. /GT pins have internal pull-up resistors and
may be left unconnected. The request/grant sequence is as follows
(see Figure 9):
1. A pulse of 1 ClK wide from another local bus master indicates a local
bus request ("hold") to the 8086 (pulse 1).
2. During a T 4 or T 1 clock cycle, a pulse 1 ClK wide from the 8086 to
the requesting master (pulse 2), indicates that the 8086 has allowed the
local bus to float and that it will enter the "hold acknowledge" state at
the next ClK. The CPU's bus interface unit is disconnected logically
from the .Iocal bus during "hold acknowledge".
3, A pulse 1 ClK wide from the requesting master indicates to the 8086
(pulse 3) that the "hold" request is about to end and that the 8086 can
reclaim the local bus at the next ClK.
Each master-master exchange of the local bus is a sequence of 3
pulses. There must be one dead ClK cycle after each bus exchange.
Pulses are active lOW.
If the request is made while the CPU is performing a memory cycle, it
will release the local bus during T 4 of the cycle when all the following
conditions are met:
1. Request occurs on or before T 2.
2. Current cycle is not the low byte of a word (on an odd address).
3. Current cycle is not the first acknowledge of an interrupt acknowledge
sequence.
4. A locked instruction is not currently executing.

If the local bus is idle when the request is made the two possible events
will follow:
1. local bus will be released during the next clock.
2. A memory cycle will start within 3 clocks. Now the four rules for a
currently active memory cycle apply with condition number 1 already
satisfied.

LOCK 29 0 LOCK: output indicates that other (3jstem bus masters are not to gain
control of the system bus while lO K is active lOW. The lOCK signal
is activated by the "lOCK" prefix instruction and remains active until the
completion ofthe next instryction. This signal is active LOW, and floats
to 3-state OFF in "hold acknowledge".

2-4

inter 8086

Table 1. Pin Description (Continued)

Symbol Pin No. Type Name and Function

051, 050 24,25 0 QUEUE STATUS: The queue status is valid during the ClK cycle after
which the queue operation is performed.
051 and 050 provide status to allow external tracking of the internal
8086 instruction queue.

QS1 QSo Characteristics

o (lOW) 0 No Operation
0 1 First Byte of Op Code from Oueue
1 (HIGH) 0 Empty the Oueue
1 1 Subsequent Byte from Oueue

The fol/owing pin function descriptions are for the 8086 in minimum mode (i.e., MNIMX= VecJ. Only the pin
functions which are unique to minimum mode are described; aI/ other pin functions are as described above.

M/iO 28 0 STATUS LINE: logically equivalent to 52 in the maximum mode. It is used to
distinguish a memory access from an 110 access. M/iO becomes valid in
the T 4 preceding a bus cycle and remains valid until the final T 4 of the cycle
(M = HIGH, 10 = lOW). MilO floats to 3-state OFF in local bus "hold'
acknowledge" .

WR 29 0 WRITE: indicates that the processor is performing a write memory or write
110 cycle, depending on the state of the M/iO signal. WR is active for T 2, T 3
and T w of any write cycle. It is active lOW, and floats to 3-state OFF in
local bus "hold acknowledge".

TNfA 24 0 INTA: is used as a read strobe for h,terrupt acknowledge cycles. It is active
lOW during T 2, T 3 and T w of each interrupt acknowledge cycle.

ALE 25 0 ADDRESS LATCH ENABLE: provided by the processor to latch the
address into the 8282/8283 address latch. It is a HIGH pulse active during
T 10f any bus cycle. Note that ALE is never floated.

DT/R 27 0 DATA TRANSMIT IRECEIVE: needed in minimum system that desires to
use an 8286/8287 data bus transceiver. It is used to control the direction of
data flow through the transceiver. logically DT /R' is ~uivalent to 51 in the
maximum mode, and its timing is the same as for MilO. (T = HIGH, R =
LOW.) This signal floats to 3-state OFF in local, bus "hold acknowledge".

DEN 26 0 DATA ENABLE: provided as an output enable for the. 8286/8287 in a
minimum system which uses the transceiver. DEN is active LOW during
each memory and 110 access and for INTA cycles. For a read or INTA cycle
it is active from the middle of T 2 until the middle of T4, while for a write cycle
it is active from the beginning of T 2 until the middle of T 4' DEN floats to 3-
state OFF in local bus "hold acknowledge".

HOLD, 31,30 110 HOLD: indicates that another master is requesting a local bus "hOld." To be
HLDA acknowledged, HOLD must be active HIGH. The proces80rreceiving the'

"hold" request will issue HlDA (HIGH) as an acknowledgement in the
middle of a T 4 or Tj clock cycle. Simultaneous with the issuance of HLDA
the processor will float the local bus and control lines. After HOLD is
detected as being LOW, the processor will LOWer the HLDA, and when the
processor needs to run another cycle, it will again drive the local bus and
control lines.
The same rules as for l1Q/GT apply regarding when the local bus will be
released.
HOLD is not asynchronous input. External synchronization should be
provided if the system cannot otherwise guarantee the setup time.

, 2-5

Ii , ..

intJ 8086 ;1'

FUNCTIONAL DESCRIPTION

General.,Opera~lor:J,

The internal functions of the 8086 processor' are
partitioii$d logically into two processing units. The
first is the !=Ius Interface Unit(BIU) and the second is
the Execution Unit (EU) as shown in the block dia­
gram of Figure 1.

These units 'can interact directly but for the most
part perform as separate asynchronous operational
processors. The bus interface unit provides the func­
tions related to instruction fetching and queuing, op­
e~and fetch and store, and address relocation. This ,
unitiilso provides the basic bus control. The overlap ,
of instruction' pre-fetching provided by this unit
serves to increase processor performance through
impro~ed bus bandwidth utilization. Up to 6 bytes of
the instruction stream can be queued while waiting
for decOding and.execution. .

The instruction stream queuing mechanism allows
theBIU to keep the memory utilized very efficiently.
Whenever there is space for at least 2 bytes in the
queue, the BIU will attempt a word fetch memory
cycle. This greatly reduces "dead time" on the
memory bus. The queue acts as a First-ln~First-Out
(FIFO) buffer, from Which the EU extracts instruction
bytes as required. If the queue is empty (following a
branch instruction, for example), the first byte. irito
the queue immediately becomes. available to the'EU;

The execution unit receives pre-fetched instructions
from theBIU queue andprovidesun"relocated oPer­
and addresses to the BIU. Memory operands are
passed through the BIU 'for processing by the EU,
which passes results to the BIU for storage. See the
Instruction Set description for further register . set
and architectural descriptiol'ls.

MEMORY pRGANI~TION

The processor provides a 20-bit address t6 memory'
which locates the byte being refereF)ced .. The memo­
ry is organized ass linear array of up to 1 milli,on

. ,

Memory: Segment Register
Reference Need Used,

bytes, addressed as 00060(H) to FFFFF(H). The
memory is logically divided into code, data, extra
data, and stack segments of up to 64K bytes. each,
with each segment falling on 16-byte boundaries.
(See Figure 3a.) ,

All memory references are made relative to base ad­
dresses 'c.ontainedin high speed segment registers.
The segment types were chosen based on the ad­
dressing needs of programs. The segment register

. to be selected. is automatically chosen according to
the rules of the following table. All information in one
segment type share the same logical attributes (e.g.
code or data). By structuring memory into relocat­
able areas of similar characteristics and by automati­
cally selecting segment registers, programs are
shorter, faster, and more structured ..

Word (16-bit) operands can be located on even or
odd address boundaries and are thus not con-.
strained to even boundaries as is the case in many
16-bit computers. For address and data operands,
the least significant byte of the word is stored in the

, lower valued address location and the most signifi­
cant byte in the next higher address location. The
BIU automatically performs the proper number of
memory accesses, . one if the word operand is on an
even byte boundary and two if it is on an odd byte
boundarY. ,Except for the performance penalty, this
double access is transparent to the software. This
peifofmance penalty does not occur for instruction
fetches, only word operands. '

Physically, the memory is organized as' a high bank
(015-oS) and a low bank (07-00) of 512K 8-bit
bytes addressed in parallel by the processor's ad­
dress lines AI9:-A1. Byte data with even addresses
is transferred on the 07-00 b4S lines while odd ad­
dressed byt!il data (Ao HIGH) is transferred on the
015"':08 bus lines. The processor provides two en­

. able signals, "SHE andAo, to selectiv~1y allow re.ad­
ing. from or writing into either an odd byte location,
even, byte location, Or both. The instruction stream is
fetched from memory as words and is addressed

, internally by the processor to the byte lever as nec­
essary.

Segment
Selection Rule

,Instructions. CODE (dS) Automatic with all instruction prefetch.

Stack STACK (SS) All stack pushes and pops. Memory references relative to BP
base register except data references.

Local bata
.. . .' ,

Data referenCes when: relative to stack, destination of string DATA (OS)

: operation,or explicitly .overridden.

External (Global) Dllta EXTRA (ES) ~stinaticin ofStringoperations: explicitly selected using a
segment override.

2-6

inter 8086

~FFFFFH

fD} CODE SEGMENT

~_-L._ XXXXOH

I--

I F== } STACK SEGMENT

+O:rSET

SEGMENT tIl
ERE~G3'S:I~~R ~Fll~E~I=~~=l:- J DATA SEGMENT

r--
} EXTRA DATA SEGMENT

'--+---1
~OOOOOH

231455-3

Figure 3a. Memory Organization

In referencing word data the BIU requires one or two
memory cycles depending on whether or not the
starting byte of the word is on an even or odd ad­
dress. respectively. Consequently. in referencing
word operands performance can be optimized by lo­
cating data on even address boundaries. This is an
especially useful technique for using the stack. since
odd address references to the stack may adversely
affect the context switching time for interrupt pro­
cessing or task multiplexing.

RESET BOOTSTRAP
PROGRAM JUMP

INTERRUPT POINTER
FOR TYPE 255 . .

INTERRUPT POINTER
FOR TYPE 1

INTERRUPT POINTER
FOR TYPE 0

r

FFFFFH

FFFFOH

3FFH

3FCH

7H

4H
3H

0 H

231455-4

Figure 3b. Reserved Memory Locations

Certain locations in memory are reserved for specific
CPU operations (see Figure 3b). locations from

2-7

address FFFFOH through FFFFFH are reserved for
operations including a jump to the initial program
loading routine. Following RESET. the CPU will al­
ways begin execution at location FFFFOH where the
jump must be. locations OOOOOH through 003FFH
are reserved for interrupt operations. Each of the
256 possible interrupt types has its service routine
pointed to by a 4-byte pointer element conSisting of
a 16-bit segment address and a 16-bit offset ad­
dress. The pointer elements are assumed to have
been stored at the respective places in reserved
memory prior to occurrence of interrupts.

MINIMUM AND MAXIMUM MODES

The requirements for supporting minimum and maxi­
mum 8086 systems are sufficiently different that
they cannot be done efficiently with 40 uniquely de­
~ined pins. Cons~ently. the 8086 is equipped with
a strap pin (MN/MX) which defines the system con­
figuration. The definition of a certain subset of the
pins .. changes dependent on the condition of the
strap pin. When MN/MX pin is strapped to GND. the
8086 treats pins 24 through 31 in maximum mode.
An 8288 bus controller interprets status information
coded into So. 52. 52 to generate bus timing and
control signals compatible with the MUl TIBU5® ar­
chitecture. When the MN/MX pin is strapped to Vee.
the 8086 generates bus control signals itself on pins
24 through 31. as shown in parentheses in Figure 2.
Examples of minimum mode and maximum mode
systems are shown in Figure 4.

BUS OPERATION

The 8086 has a combined address and data bus
commonly referred to as a time multiplexed bus.
This technique provides the most efficient use of
pins on the processor while permitting the use of a
standard 40-lead package. This "local bus" can be
buffered directly and used throughout the system
with address latching provided on memory and 1/0
modules. In addition. the bus can also be demulti­
plexed at the processor with a single set of address
latches if a standard non-multiplexed bus is desired
for the system.

Each processor bus cycle consists of at least four
ClK cycles. These are referred to as T 1. T 2. T 3 and
T 4 (see Figure 5). The address is emitted from the
processor during T 1 and data transfer occurs on the
bus during T 3 and T 4. T 2 is used primarily for chang­
ing the direction of the bus during read operations. In
the event that a "NOT READY" indication is given
by the addressed device. "Wait" states (T w) are in­
serted between T 3 and T 4. Each inserted "Wait"
state is of the same duration as a ClK cycle. Periods

inter 8086

V'ce o rUl
IDIACLO(:K MNIMJ(-Vee
Cll!NIAATOA r- ClK MIll!

r- m '- READY ~

r- RESET 1m r ROY WII I

NO r,-l--, I
DTIR r-----, I

,0

I WAIT I lim r--" I I
I STATE I I I r-----, I
I GENERATOR I 8086 CPU

II I I
L ___ ..J ALE ClK I

I GND~1I I
I I

AOo·ADn ~DD~
LATCH.

~
AODR 20R3

Ale-A" I BHE r--~
I I I

I I rr.---:l I
I I L _ DIR - - -, I
I

L----'1I II I ~ TRANSCEIVER I DATA
I (2,' 11_ nll l! 11 l I I BHE

L ___ ...r
OPTIONAL CSOH CSOL WE·DD CE DE

FOR INCREASED
OAT'A BUS DRIVE 2142 RAM (4) 2716·2 PROM (~)

(2) (2)
1K'K8 I lKd 2K/lC8~ 2KlII8

Figure 4a. Minimum Mode 8086 Typical Configuration

o Vee rUl
I2I4A I MNIMX _GND ClK MliDC

CLOCK ~ ClK SO SO MWTC GENERATOR

r- m _ READY S; S; AMWC r--N.C.

I .RDY

_ REsET So So 8.88 -IORC

Q
NO r-l--,.·

I WAIT I
I STATE ,I
I GENEMTOR I
L ___ ..J

~ DEN C~~~R IOWC

8p88 ~ OTIA AIOWC I--N.C,
c

CPU
INTA ALE

~ -N,C. r---:l
I

ClK
I

GND 11
I

,~,;:~ 9'7rF lATCH
(20R3) ~DDR

II
II I .r~ I

)

I ~;" l TRANSCEIVER DO A
, (2,

~'lr 1 ~ 1f ~ BHE

CSOH ,CSOl WE 00 CE oe
2142 RAM (4) 2716·2 PROM (2)

(2)

I
121

2Kx81,'2K'it8 lKII8 lKx8

Figure 4b. Maximum Mode 8086 Typical Configuration

2-8

II
CS RDWR

MCS·80
PERIPHERAL

231455-5

I I I I

11
fS ImWII

MCS-80
PERIPHERAL

231455-6

inter 8086

can occur between 8086 bus cycles. These are re­
ferred to as "Idle" states (TI) or inactive eLK cycles.
The processor uses these cycles for internal house­
keeping.

During T 1 of any bus cycle the ALE (Address Latch
Enable) signal is emitted (by either the processor or
the 8288 bus controller, depending on the MN/MX
strap). At the trailing edge of this pulse, a valid ad­
dress and certain status information for the cycle
may be latched.

Status bits So, Sl, and 52 are used, in maximum
mode, by the bus controller to identify the type of
bus transaction according to the following table:

52
o (LOW)

0

0

0

1 (HIGH)

1

1

1

Sl

0

'0

1

1

0

0

1

1

So Characteristics

0 Interrupt Acknowledge

1 Read 1/0

0 Write 1/0

1 Halt

0 Instruction Fetch

1 Read Data from Memory

0 Write Data to Memory

1 Passive (no bus cycle)

"

T,
14 + Mw,,"I"" TCY -----.t'------- lot + NwAiTI '" TCY ",

T2 T3 TWAIT I T.. TI T2' I T3 I TwAIT I T4

CLK

t/lJ///P! ~ ?iiiul:';,-
\

---~ -S ___ D_AT_A_DUT_'D_ .. _.D_,'_ >-~

RI!ADY

RIADY

WAIT WAIT

DTiIr

MlMOIIY ACe ... TIMI-

''-------If
231455-8

Figure 5. Basic System Timing

2-9

.. ~
,~
',i'

8086

Status bits S3 through S7 are multiplexed with high­
order address bits .and the SHE signal, and are
therefore valid during T2 through T4. S3 andS4indi­
cate which segment register (see Instruction Set de­
scription) was used for this bus cycle informing the
address, according to the following table:

S4 S3 Characteristics

o (LOW) 0 Alternate Data (extra segment)

0 1 Stack

1 (HIGH) 0 Codeo/" None

1 1 Data

85 is a reflection of the PSW interrupt enable bit.
S6 = 0 and $7 is a spare status bit.

1/0 ADDRESSING

In the 8086, I/O operations can address up to a
maximum of 64K I/O byte registers or 32K I/O word
registers. The 1/0 address appears in the same for­
matas the memory address on bus lines A15-AO.
The address lines A19-A16 are zero in I/O opera-

. tions. The variable I/O instructions which use regis­
ter OX as a pointer have full address capability while
the direct I/O instructions. directly address one or
two of the 256 I/O byte locations in page 0 of the
I/O address space.

110 ports are addressed in the same manner as
memory locations .. Even addressed bytes are trans­
ferred on the 07-00 bus lines and odd addressed
bytes on 015-08. Care must be taken to assure that
each register within an8-bit peripheral located on
the lower portion of the bus be addressed as even.

External Interface

PROCESSOR RESET AND INITIALIZATION

Processor initialization or start up is accomplished
with activation (HIGH) of the RESET pin. The 8086
RESET is required to be HIGH for greater than 4
ClK cycles. The 8086 will terminate operations on
the high-going edge of RESET and will remain dor­
mant as long as RESET is HIGH. The low-going
transition· of RESET triggers an internal reset se"
quence for approximately 10 ClK cycles. After this
interval the 8086 operates normally beginning with
the instruction in absolute location FFFFOH (see Fig­
ure 3b). The details of this operation are specified in
the Instruction Set description of the MeS-86 Family
User's Manual. The RESET inpuf is internally syn­
chronized .. to the. processor clock. At initialization the
HIGH-to-lOW transition of RESET must ocCur no
sooner than 50 f.Ls after power-up, to allow complete
initialization of the 8086.

2-10

NMI. asserted prior to the 2nd clock after.theend·of
RESET will not be honored, If NMI is asserted after
that point and during the internal reset sequence,
the processor may execute one instruction before
responding to the interrupt. A hold request active
immediately after RESET will be honored before the
first instruction fetch.

All 3-state . outputs float to 3-state OFF during
RESET. Status is active in the idle state for the first
clock after RESET becomes active and then floats
to 3-state OFF. ALE and HlOA are driven low.

INTERRUPT OPERATIONS

Interrupt operations fall into two classes; software or
hardware initiated. The software initiated interrupts
and software aspects of hardware interrupts are
specified in the Instruction Set description. Hard­
ware interrupts can be classified as non-maskable or
maskable.

Interrupts result in a transfer of control to a new pro­
gram location. A 256-element table containing ad­
dress pointers to the interrupt service program locac
tions resides in absolute locations 0 through 3FFH
(see Figure 3b), which are reserved for this purpose.
Each element in the table is 4 bytes in size and
corresponds to an interrupt "type". An interrupting
device supplies an 8-bit type number, during the in­
terrupt acknowledge sequence, which is used to
"vector" through the appropriate element to the new
interrupt service program location.

NON~MASKABLE INTERRUPT (NMI)

The processor provides a single non-maskable inter­
rupt pin (NMI)· which has higher priority than the
maskable interrupt request pin (INTR). A typical use
would be to activate a power failure routine. The
NMI is edge-triggered on a lOW-to-HIGH transition.
The activation of this pin causes a type 2 interrupt.
(See Instruction Set description.)

NMI is required to have a duration in the HIGH state
of greater than two ClK cycles, but is not required to
be synchronized io ine. ciock.Any high-going tran­
sition of NMI is latched on-chip and will be serviced
at the end of the current instruction or between
whole moves of a block-type instruction. Worst caSe
response to NMlwould be for multiply, divide, and
variable shift instructions.· There is no specification
on the occurrence of the low-going edge; it may oc­
cur before, during, or after the servicing of NMI. An­
other high-going edge triggers another response if it
occurs after the start of the NMI procedure. The sig­
nal must be free of logical spikes in general and be
free of bOl.lnces on the low-going edge to avoid trig­
gering extraneous responses.

inter 8086

MASKABLE NTERRUPT (INTR)

The 8086 provides a single interrupt request input
(INTR) which can be masked internally by software
with the resetting of the interrupt enable FLAG
status bit. The interrupt request signal is level trig­
gered. It is internally synchronized during each clock
cycle on the high-going edge of CLK. To be re­
sponded to, INTR must be present (HIGH) during
the clock period preceding the end of the current
instruction or the end ofa whole move for a block­
type instruction. During the interrupt response se­
quence further interrupts are disabled. The enable
bit is reset as part of the response to. any interrupt·
(INTR,NMI, software interrupt or single-step), al­
though the FLAGS register which is automatically
pushed onto the stack reflects the state of the proc­
essor prior to the interrupt. Until the old FLAGS reg­
ister is restored the enable bit will be zero unless
specifically set by an instruction.

During the response sequence (Figure 6) the proc­
essor executes two successive (back-to-back) inter­
rupt acknowledge cycles. The 8086 emits the LOCK
signal from T 2 of the first bus cycle until T 2 of the
second. A local bus "hold" request will not be hon­
ored until the end of the second bus cycle. In the
second bus cycle a byte is fetched from the external
interrupt system (e.g., 8259A PIC) which identifies
the source (type) of the interrupt. This byte is multi­
plied by four and used as a pointer into the interrupt
vector lookup table. An INTR signal left HIGH will be
continually responded to within the limitations of the
enable bit and sample period. The INTERRUPT RE­
TURN instruction includes a FLAGS pop which re­
turns the status of the original interrupt· enable bit
when it restores the FLAGS.

HALT

When a software "HALT" instruction is executed the
processor indicates that it is entering the "HAL T"
state in one of two ways depending upon which
mode is strapped. In minimum mode, the processor
issues one ALE with no qualifying bus control sig­
nals. In maximum mode, the processor issues ap~
propriate HALT status on 52, 51, and 50; and the
8288 bus controller issues one ALE. The 8086 will
not leave the "HALT" state when a local bus "hold"
is entered while in "HALT". In this case, the proces­
sor reissues the HALT indicator. An interrupt request
or RESET will force the 8086 out Of the "HALT"
state.

READ/MODIFY/WRITE (SEMAPHORE)
OPERATIONS VIA LOCK

The LOCK status information is provided by the
processor when directly consecutive bus cycles are
required during the execution of an instruc­
tion. This provides the processor with the capability
of performing read/modify/write operations on
memory (via the Exchange Register With Memory
instruction, for example) without the possibility of an~
other system bus master receiving intervening mem­
ory cycles. This is useful in multi-processor system
configurations to accomplish "test and set lock" op­
erations. The LOCK signal is activated (forced LOW)
in the clock cycle following the one in which the soft­
ware "LOCK" prefix instruction is decoded by the
EU. It is deactivated at the end of the last bus cycle
of the instruction following the "LOCK" prefix in­
struction. While LOCK is active a request on a RQ/
GT pin will be recorded and then honored at the end
of the LOCK.

I T, T2 T3 I T4 Il. I T1 T'] T,

AlEJ_~(n,---_

\) l /
((

INTA \ r i ~
J I
i I

\ FLOAT
AOo~A.O'5 ~)-~~~~---------f \

Figure 6. Interrupt Acknowledge Sequence

2-11

\
TYPE VECTOR >-

231455-9

8086

EXTERNAL SYNCHRONIZATION VIA TEST

As an alternative to the interrupts and general 1/0
capabilities. the 8086 provides a single software­
testable input known as the irn signal. At any time
the program i=Wstxecute a WAIT instruction. If at
that time the signal is inactive (HIGH). pro­
gram execution becomes suspended while the proc­
essor waits for TEST to become active. It must
remain active for at least 5 elK cycles. The WAIT
instruction is re-executed repeatedly until that time.
This activity does not consume bus cycles. The
processor remains in an idle state while waiting. All
8086 drivers go to 3-state OFF if bus "Hold" is en­
tered. If interrupts are enabled. they may occur while
the processor is waiting. When this occurs the proc­
essor fetches the WAIT instruction one extra time.
processes the interrupt. and then re-fetches and re­
executes the WAIT instruction upon returning from
the interrupt.

Basic System Timing
Typical system configurations for the processor op­
erating in minimum mode and in maximum mode are
shown in Figures 4a and 4b. respectively. In mini­
mum mode. the MN/MX pin is strapped to Vee and
the processor emits bus control signals in a manner
similar to the 8085. In maximum mode. the MN/MX
pin is strapped to Vss and the processor emits cod­
ed status information which the 8288 bus controller
uses to generate MUl TISUS compatible bus control
signals. Figure 5 illustrates the signal timing relation­
ships.

AX AH AL ACCUMULATOR

BX BH BL BASE

CX CH CL COUNT

DX DH DL ' DATA

rm STACK POINTER

BASE POINtER

SOURCE INDEX

DESTINATION INDEX

I IP I INSTRUCTION POINTER

FLAGSH I FLAGSL STATUS FLAGS

CS CODE SEGMENT

DS DATA SEGMENT

'---- SS STACK SEGMENT

ES EXTRA SEGMENT

231455-10

Figure 7. 8086 Register Model

SYSTEM TIMING-MINIMUM SYSTEM

The read cycle begins in T 1 with the assertion of the
Address latch Enable (ALE) signal. The trailing (Iow­
going) edge of this signal is used to latch the ad­
dress information. which is valid on the local bus at
this time. into the address latch. The SHE and Ao
signals address the low. high. or both bytes. From T 1
to T 4 the MIlO signal indicates a memory or 110
operation. At T 2 the address is removed from the
local bus and the bus goes to a high impedance
state. The read control signal is also asserted at T 2.
The read (RD) signal causes the addressed device
to enable its data bus drivers to the local bus. Some
time later valid data will be available on the bus and
the addressed device will drive the READY line
HIGH. When the processor returns the read Signal to
a HIGH level. the addressed device will again 3-
state its bus drivers. If a transceiver is required to
buffer the 8086 local bus. Signals DT IA and DEN
are provided by the 8086.

A write cycle also begins with the assertion of ALE
and the emission of the address. The M/iO signal is
again asserted to indicate a memory or 1/0 write
operation. In the T 2 immediately following the ad­
dress emission the processor emits the data to be
written into the addressed location. This data re­
mains valid until the middle of T 4. During T 2. T 3. and
T w the processor asserts the write control signal.
The write (WR) signal becomes active at the begin­
ning of T 2 as opposed to the read which is delayed
somewhat into T 2 to provide time for the bus to float.

2-12

The BRE and Ao Signals are used to select the prop­
er byte(s) of the memory/lO word to be read or writ­
ten according to the following table:

BHE AO Characteristics

0 0 Whole word
0 1 Upper byte from/to

odd address
1 0 lower byte from/to

even address
1 1 None

1/0 ports are addressed in the same manner as
memory location. Even addressed bytes are trans­
ferred on the 07-00 bus lines and odd addressed
bytes on 015-08.

The basic difference between the interrupt acknowl­
edge cycle and a read cycle is that the interrupt ac­
knowl~e signal (INTA) is asserted in place of the
read (RD) signal and the address bus is floated.
(See Figure 6.) 1r'1 the second of two successive
INTA cycles. a byte of information is read from bus

8086

lines 07-00 as supplied by the inerrupt system logic
(Le.,' 8259A Priority Interrupt Controller). This byte
identifies the source (type) of the interrupt. .It is multi­
plied by four and used asa pointer into an interrupt
vector lookup table, as described .earlier.

BUS TIMING-MEDIUM SIZE SYSTEMS

For medium size systems the MNlMX pin is con­
nected to Vss and the 8288 Bus Controller is added
to the system as well as a latch for latching the sys­
tem address, and a transceiver to allow for bus load­
ing greater than the 8086 is capable of handling.
Signals ALE, DEN, and DT IA are generated by the
8288 instead of the processor in this configuration
although their timing remains relatively the same.
The 8086 status outputs (S2, 51, and So) provide
type-of-cycle information and become 8288 inputs.
This bus cycle information specifies read (code,
data, or 1/0), write (data or 1/0), interrupt

2-13

acknowledge, or software halt. The 8288 thus issues
control signals specifying memory read or write, 1/0
read or write, or interrupt acknowledge. The 8288
provides two types of write strobes, normal and ad­
vanced, to be applied as required. The normal write
strobes have data valid at the leading edge of write.
The advanced write strobes have the same timing
as read strobes, and hence data isn't valid at the
leading edge of write. The transceiver receives the
usual DIR and G inputs from the 8288's DT IA and
DEN.

The pOinter into the interrupt vector table, which is
passed during the second INTA cycle, can derive
from an 8259A located on either the local bus or the
system bus. If the master 8259A Priority Interrupt
Controller is positioned on the local bus, a TTL gate
is required to disable the transceiver when reading
from the master 8259A during the interrupt acknowl­
edge sequence and software "poll".

11086
!

ABSOLUTE MAXIMUM RATINGS·

Ambient Temperature Under Bias .. , O·C to 70·C

Storage Temperature - 6S·C to + 1S0·C

Voltage on Any Pin with ,'.
Respect to Ground -1,.OV to + ZV

Power Dissipation•........... , .. ' 2.5W

• Notice: Stresses above, those listed.under ',:Abso­
lute MaximumRatings~' may cause permanent dam­
age to the device: This is a stress rating only and
functional operation of the device at these or any
other conditions above those indicated in the opera­
tional sections of this specification is not implied. Ex­
posure to absolute maximqm rating conditions for
extended periods may affect diMce reliability.

D.C. CHARACTERISTICS (8086: TA = 0·Ct070·C. Vee =5V±10%)
(8086-1:TA = O·Cto 70·C. Vee = 5V±5%)
(8086-2:, TA = O·C to 70·C. Vee = 5V ±5%)

Symbol Parameter Min Max Units Test Conditions,

Vil Input Low Voltage -0.5 +0.8 V

VIH Input High Voltage 2.0 Vee + 0.5 V

VOL Output Low Voltage 0.45 V IOl= 2.5mA

VOH Output High Voltage 2.4 V IOH = - 400 p.A

Icc Power Supply Current: 8086 340
8086-1 360 mA TA = 25·C
8086-2 350

III Input Leakage Current ±10 p.A OV:'; VIN:'; Vee

IlO Output Leakage Current ±10 p.A 0.45V :,; VOUT :,; Vee

Vel Clock Input Low Voltage -0.5 ,+0.6 V

VeH Clock Input High Voltage 3.9 Vee + 1.0 V

CIN Capacitance of Input Buffer 15 pF fc = 1 MHz
(All input except
ADo-AD15. RQ/GT)

CIO Capacitance of 1/0 Buffer 15 pF fc = 1 MHz
(ADo-AD15. RQ/GT)

NOTES:
1. VIL tested with MN/MX Pin = OV.
2. VIH tested with MN/MX Pin = 5V.

MN/MX Pin is a Strap Pin.

2-14

8088

A.C. CHARACTERISTICS (8086: TA = O·C to 700C, Vee = 5V ± 10%)
(8086-1:TA = OOCt0700C, Vee = 5V ± 5%)
(8086-2: T A = O·C to 70·C, Vee = 5V ± 5%)

MINIMUM COMPLEXITY SYSTEM TIMING REQUIREMENTS

Symbol Parameter 80H 8086-1 8086-2

Min Max Min Max Min Max

TCLCl ClK Cycle Period 200 500 100 500 125 500

TClCH ClKlowTime 118 53 68

TCHCl ClK High Time ,69 39 44

TCH1CH2 ClK Rise Time 10 10 10

TCl2Cl1 ClKFaliTime 10 10 10

TDVCl Data in Setup Time 30 5 20

TClDX Data in Hold Time 10 10 10

TR1VCl ROY Setup Time 35 35 35
into 82~A (See
Notes 1, 2)

, TClR1X ROY Hold Time 0 0 0
into 8284A (See
Notes 1, 2)

TRYHCH READY Setup 118 53 68
Time into 8086

TCHRYX READY Hold Time 30 20 20·
into 8086

TRYlCl READY Inactive to -8 -10 -8
ClK (See Note 3) -

THVCH HOLD Setup Time 35 20 20

TINVCH INTR, NMl,iEST 30 15 15
Setup Time (See
Note 2)

TILIH hiput Rise Time 20 20 20
(Except ClK)

TIHll Input Fall Time 12 12 12 '
(Except ClK)

2-15

Units

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

Test Conditions

From 1.0V to 3.5V

From 3.5V to 1.0V

From 0.8V t02.0V

From 2.0V to 0.8V

I.~.
Ij
I~
,~

i~

inter 8086

A.C. CHARACTERISTICS (Continued)

TIMING RESPONSES

Symbol Parameter
8086 8086·1 80815·2

Units Test

Min Max Min Max Min Max Conditions

TCLAV Address Valid Delay 10 110 10 50 10 60 ns

TCLAX Address Hold Time 10 10 10 ns

TCLAZ Address Float TCLAX 80 10 40 TCLAX 50 ns
Delay

TLHLL ALE Width TCLCH-20 TCLCH-10 TCLCH-10 ns

TCLLH ALE Active Delay 80 40 50 ns

TCHLL ALE Inactive Delay 85 45 55 ns

TLLAX Address Hold Time TCHCL-10 TCHCL-10 TCHCL-10 ns

TCLDV Data Valid Delay 10 110 10 50 10 60 ns 'CL = 20-100 pF

TCHDX Data Hold Time 10 10 10 ns
for all 8086
Outputs (In

TWHDX Data Hold Time TCLCH-30 TCLCH-25 TCLCH-30 ns addition to 8086
AfterWR selfload)

TCVCTV Control Active 10 110 10 50 10 70 ns
Delay 1

TCHCTV Control Active 10 110 10 45 10 60 ns
Delay 2

TCVCTX Control Inactive 10 110 10 50 10 70 ns
Delay

TAZRL Address Float to 0 0 0 ns
READ Active

TCLRL RD Active Delay 10 165 10 70 10 100 ns

TCLRH RD Inactive Delay 10 150 10 60 10 80 ns

TRHAV RDlnactive to Next TCLCL-45 TCLCL-35 TCLCL-40 ns
Address Active

TCLHAV HLDA Valid Delay 10 160 10 60 10 100 ns

TRLRH RDWidth 2TCLCL-75 2TCLCL-40 2TCLCL-50 ns

TWLWH WRWidth 2TCLCL-60 2TCLCL-35 2TCLCL-40 ns

TAVAL Address Valid to TCLCH·60 TCLCH·35 TCLCH·40 ns
ALE Low

TOLOH Output Rise Time 20 20 20 ns From 0.8V to 2.0V

TOHOL Output Fall Time 12 12 12 ns From 2.0V to 0.8V

NOTES:
1. Signal at 8284A shown for reference only.
2. Setup requirement for asynchronous signal only to guarantee recognition at next eLK.
3. Applies only to T2 state. (8 ns into T3).

~ 8086

A.C. TESTING INPUT, OUTPUT WAVEFORM A.C. TESTING LOAD CIRCUIT

231455-11

A.C. Tesling: Inputs are driven at 2.4V for a Logic "1 "and 0,45V
for a Logic "0". Timing measurements are made at 1.5V for both
a Logic "1" and "0".

WAVEFORMS

MINIMUM MODE

T, T2

DEVICE
UNDER

!JCL=I00PF
TEST

-=
231455-12

Cl Includes Jig Capacitance

T3 Tw T.

VCH r--\ I---TClCl_:JH I- TCl2Cl1 I
r--\ , r", ~

. vi,. 1'----1 '----' 1'-----'
ClK (121M" Output)

ALE

ROY (I_Input)
SEE NOTE 4

READY (1018 Input)

"D,.."Oo

I
1

---- TCHCTV

TClAY-

TCLLH

TCLAV-

IX=- - TCHCl , ~ TClCH ~

I- - TCLOV - TCHDX -TClAX· -
iHE;, A11-A18 57-53

P TLH~L-::: -TllAX

TAtl - :::

1: TCHlL-1 -TR1VCl

V'H-

'\ V,,-
- I--rCLR1X

TRVLCL- -- h

- -rHRYX

~ TAVAl I- ~ -TRY~H
TLLAX_ to-

-TClDX-I I- - ~~t!~ TDVCl~

"=,,

A15-ADo DATA IN

;:{ TAZRl- TCLRH- 1-1

r-----
READ CYCLE

(NOTE I)

(WlI,IRfl.VOH) oTtR
-=~TCHCTV TClRl TRlRH

I
TCVCTV- { TCVCTX- j

2·17

{-
r--

I

FLO~:J-
TRHAV

-TCHCTV

231455-:13

, N
,~

:1 I"", I'
I,
I
i\,.,

intJ 8086

WAVEFORMS (Continued)

MINIMUM MODE (Continued)

ClK (~OulpuQ

M1115

ALE

."m"~ I "'.~. -+---+----""\1

WR

~~:~~ I iiEt.i _+-__ +-_____ -+, i--c--i-

~~ ____________ ~-J

INTA CYCLE

(NOTES I & 3)

1i'6. WlI-VOH
IRE-vou

SOFTWARE HALT-

DT/A

RD, WR, INTA = VOH
DT/R = INDETERMINATE

NOTES:

TCVCTV,~

INVAlID'ADORESS

TCLAV

1. All signals switchbetween VOH and VOL unless otherwise specified.

TCVCTX-

SOFTWARE HALT

2. RDY is sampled near the end of T 2. T 3. T w to determine if T w machines states are to be inserted.

231455-14

3. Two INTA cycles run back-to-back. The, 8086 LOCAL ADDR/DATA BUS is floating during both INTA cycles. Control
signals shown for second INTA cycle.
4. Signals at 8284A are shown for reference only.
5. All timing measurements are made at 1.5V unless otherwise noted.

2-18

intJ 8086

A.C. CHARACTERISTICS

MAX MODE SYSTEM (USING 8288 BUS CONTROLLER)
TIMING REQUIREMENTS

Symbol Parameter
8086 8086-1

Min Max Min Max

TClCl ClK Cycle Period 200 500 100 500

TClCH ClKlowTime 118 53

TCHCl ClK High Time 69 39

TCH1CH2 ClK Rise Time 10 10

TCl2Cl1 ClK Fall Time 10 10

TDVCl Data in Setup Time 30 5

TClDX Data in Hold Time 10 10

TR1VCl ROY Setup Time 35 35
into 8284A
(Notes 1,2)

TClR1X ROY Hold Time 0 0
into 8284A
(Notes 1, 2)

TRYHCH READY Setup 118 53
Time into 8086

TCHRYX READY Hold Time 30 20
/ into 8086

TRYlCl READY Inactive to -8 -10
ClK (Note 4)

TINVCH Setup Time for 30 15
Recognition (INTR,
NMI, TEST)
(Note 2)

TGVCH RQ/GT Setup Time 30 15
(Note 5)

TCHGX RQ Hold Time into 40 20
8086

TILIH Input RiseTime 20 20
(Except ClK)

TIHll Input Fall Time 12 12
(Except ClK)

2-19

8086-2

Min Max

125 500

68

44

10

10

20

10

35

0

68

20

-8

15

15

30

20

12

Units

ns

ns

ns

ns

ns

ns

ns

ns

ns '

ns

ns

ns

ns

ns

ns

ns

ns

Test
Conditions

From 1.0V to 3.5V

From 3.5V to 1.0V

From 0.8V to 2.0V

From 2.0V to 0.8V

I' !
I"

8086

A.C.CHARACTERISTICS (Continued)

TIMING RESPONSES

Symbol Parameter 8086 8086-1 8086-2 Units Test
Min Max Min Max Min Max Conditions

TCLML Command Active 10 35 10 35 10 35 ns
Delay (See Note 1)

TCLMH Command Inactive 10 35 10 35 10 35 ns
Delay (See Note 1)

TRYHSH READY Active to 110 45 65 ns
Status Passive (See
Note 3)

TCHSV Status Active Delay 10 110 10 45 10 60 ns

TCLSH Status Inactive 10 130 10 55 10 70 ns
Delay

TCLAV Address Valid Delay 10 110 10 50 10 60 ns

TCLAX Address Hold Time 10 10 10 ns

TCLAZ Address Float Delay TCLAX 80 10 40 TCLAX 50 ns

TSVLH Status Valid to ALE 15 15 15 ns
High (See Note 1) .

TSVMCH Status Valip to 15 15 15 ' ns
MCE High (See
Note 1)

TCLLH CLK Low to ALE 15 15 15 ns CL = 20-100pF
Valid (See Note 1) for all 8086

TCLMCH CLK Low to MCE 15 15 15
. Outputs (In

ns addition to 8086
High (See Note 1) self-load)

TCHLL ALE Inactive Delay 15 15 15 ns
(See Note 1)

TCLMCL MCE Inactive Delay 15 15 15 ns
(See Note 1)

TCLDV Data Valid Delay 10 110 10 50 10 60 ns

TCHDX Data Hold Time 10 10 10 ns

TCVNV Control Active 5 45 5 45 5 45 ns
Delay (See Note ,1)·

TCVNX COritrollnactive 10 45 10 45 10 45 ns
Delay (See Note 1)

TAZRL Address Float to 0 0 0 ns
READ Active -

TCLRL RD Active Delay 10 165 10 70 10 100 ns

TCLRH RD Inactive Delay 10 150 10 60 . 10 80 ns

2-20

inter 8086

A.C. CHARACTERISTICS (Continued)

TIMING RESPONSES (Continued)

Symbol Parameter 8086 8086·1 8086·2 Units Test
Min Max Min Max Min Max Conditions

TRHAV RD Inactive to Next TCLCL-45 TCLCL-35 TCLCL-40 ns
Address Active

TCHDTL Direction Control 50 50 50 ns Cl = 20-100 pF
Active Delay for all 8086
(Note 1) Outputs (In

addition to 8086
TCHDTH Direction Control 30 30 30 ns self-load)

Inactive Delay
(Note 1)

TCLGL GT Active Delay 0 85 0 38 0 50 ns
(Note 5)

TCLGH GT Inactive Delay 0 85 0 45 0 50 ns

TRLRH RDWidth 2TCLCL-75 2TCLCL-40 2TCLCL-50 ns

TOLOH Output Rise Time 20 20 20 ns From 0.8V to 2.0V

TOHOL Output Fall Time 12 12 12 ns From 2.0V to 0.8V

NOTES:
1. Signal at 8284A or 8288 shown for reference only.
2. Setup requirement for asynchronous signal only to guarantee recognition at next ClK.
3. Applies only to T3. and wait states.
4. Applies only to T2 state (8 ns into T3).
5. Change from 1985 Handbook. I

I

2-21

inter 8086

WAVEFORMS

MAXIMUM MODE

T, , 1

TCH1CH2--j r -j I- TCUCLI Tw

CLK YCHI"""'~TCLCJ==\ r r" r--\..
·YCL...I - 1- - I-""""""'! ~

TCLAY· t ~ TCHCL t-TCLrC~H~-___

OSo,OS,

li,lfi,SO (EXCEPT HALT)

1
ALE (8288 OUTPUT)

SEE NOTES

ROY (I2MA INPUT)

-_.-m!
READ CYCLE

DTIII

8288 OUTPUTS ll.illlre OR ~
SEE NOTES 5,8

DEN

I-----' TCHSY j+TCLSH

WJ0f:%1"(SEE NOTE 8} \ --~~~~
~~-+----r-~~~--~~~~~ ~~~~--

- ,t:5~Xx _~r-T-IClI-D_Y_-+_I-_+-_-i_TC_H_O_X_.-+-,. 'VI t.
X ~A1, ... A~~ 5"S3 A

---=TS=Y~L~H-#~~~ .r
TCLLH~ - TCHlL

r--
________ ~l.· ,~----~~__r~----~----f----I

l;L_l-llYCL ----

~~~1~~~ 
TRYLCL 

TRYH~H_ _-
rTCHRYX 

- TCLAXI-lj-

_T_C_LA_V-~""\r 
TAYHCH- -

-TCLAZ 1--1 !:=.TDYCL--'--- ~TCLDX-........ r~ M" '" At'-:;F~LO;::~A;';TT~'1 1'--
TAZRL- t- TCLRH-j.--t---t TRHAY--,j 

---~---r~---"VI~~==WAA===F~~ 
______ T_C_H_D_TL_L -_--... _ i"'--ITcLAL TRLRH /; TCHOTH 

~--1+--------i--~~f 
__________ T_C_L_M_L_-_~~ 

'TCLMH-. .Fjr--'"'t'-----
TCVNV- -

-----------________ -J J 
TCVNX- --

231455-15 

2·22 



WAVEFORMS (Continued) 

MAXIMUM MODE (Continued) 

CLK 

1i.1i." (EXCEPT HALT) 

WRITE CYCLE 

ADn-ADo 

DEN 

82. ounvrs --"1 iiiWc OR .iii5WC 

INTACYCLE 

ID11-4Oo 
(lEE NOTES 3' 4) 

".0UTl'U11I 
SEE NOTES s,e 

MCEI 
IImI 
DT/Iii 

INTA 

DEN 

8086 

T, T. 

TSYMCH 

INVALID ADDRESS 

TCLAV 

T. 

FLOAT 

TC DX 

FLOAT 

~ jr------------------T\-------
. '-------' \_-----

231455-16 

NOTES: 
1. All signals switch between VOH and VOL unless otherwise specified. 
2. RDY is sampled near the end of T 2. T 3, T W to determine if T w machines states are to be inserted. 
3. Cascade address is valid between first and second INTA cycle. 
4. Two INTA cycles run back-to-back. The 8086 LOCAL ADDR/DATA BUS is floating during both INTA cycles. Control for 
pOinter address is shown for second INTA cycle. 
5. Signals at 8284A or 8288 are shown for reference only. . 

. 6. The issuance of the .8288 command and control signals (MRDC,. MWTC, AMWC, IORC, IOWC, AIOWC, INTA and DEN) 
lags the active high 8288 CEN. 
7. All timing measurements are made at 1.5V unless otherwise noted. 
8. Status inactive in state just prior to T 4. 

2-23 

I: 



8086 

WAVEFORMS (Continued) 

ASYNCHRONOUS SIGNAL RECOGNITION 

ClK 

231455-17 

NMI 

i .,~: lNTA 

iiSi 

NOTE: 
1. Setup requirements for asynchronous signals only to guarantee recognition at next elK. 

BUS LOCK SIGNAL TIMING (MAXIMUM MODE 
ONLY) RESET TIMING 

I. ~50ItHC----.j 

Vce 
eLk 

_~I-
lOCK '\ 

'----------' 

ClK 

RESET 

231455-18 

231455-19 

REQUEST/GRANT SEQUENCE TIMING (MAXIMUM MODE ONLY) 

231455-20 

NOTE: 
The coprocessor may not drive the buses outside the region shown without risking contention. 

2-24 



inter 8086 

WAVEFORMS (Continued) 

HOLD/HOLD ACKNOWLEDGE TIMING (MINIMUM MODE ONLY) 

-'-~ , CLK CYCLE-
. ~' OR 2 CYCLES 

e~-----+------I 

CLK 

-I~ 
HOLOJ 

TClHAV 

HLOA 

-l~"w ~ __________ MH ____ ~::,~ ____ ~)\_ COPRO~~ES_S_OR _____ -, 

231455-21 

I 

2-25 



inter 

Mnemonic and 
Description 

DATA TRANSFE;fI 

MOV = Move: 

Register/Memory to/from Register 

Immediate to Register/Memory 

Immediate to Register 

Memory to Accumulator 

Accumulator to Memory 

Register/Memory to Segment Register 

Segment Register to Register/Memory 

PUSH = Push: 

Register/Memory 

Register 

Segment Register 

POP = Pop: 

Register/Memory 

Register 

Segment Register 

XCHG = Exchange: 

Register/Memory with Register 

Register with Accumulator 

IN = Input from: 

Fixed Port 

Variable Port 

OUT = Output to: 

Fixed Port 

Variable Port 

XLAT = Translate Byte to AL 

lEA = Load E;A to Register ' 

LOS = Load Pointer to OS 

LE;S = Load Pointer to ES 

LAHF = Load AH with Flags 

SAHF = Store AH into Flags 

PUSHF = Push Flags 

POPF = Pop Flags 

Mnemonics @ Intel, 1978 

8086 

Table 2. Instruction Set Summary 

I. Instruction Code 
, 

76543210 76543210 76543210 76543210 

100010dw mod reg rIm 

1100011w modOOOr/m data data if w = 1 

1011wreg data data ifw = 1 

1010000w addr-Iow addr-high 

1010001w addr-Iow addr-high 

10001110 mod 0 reg rIm 

10001100 mod 0 reg rIm 

1 1 1 1 1 1 1 1 mod 11 0 rIm 

01010reg 

000regll0 

10001111 modOOOr/m 

01011reg 

000regll1 

1000011w mod regr/m 

10010reg 

1110010w port 

1110110w 

1110011w port 

1110illw 

1 10101 1 1 

10001101 mod reg r/m 

11000101 mod reg rIm 

11000100 mod reg rIm 

10011111 

10011110 

10011100 

10011101 

2·26 



inter 
II'! 

8086 f " '! 
I,~ 

Table 2. Instruction Set Summary (Continued) 
I~ 

Mnemonic and I Instruction Code 
~ ,i 

Description 'I 
ARITHMETIC 76543210 76543210 76543210 76543210 ~ 
ADD = Add: I::;' 

Reg./Memory with Register to Either OOOOOOdw I mod reg rIm 

Immediate to Register IMemory 100000sw I modOOOr/m data data if s: w = 01 

I " Immediate to Accumulator OOOOOIOw data dataifw=1 i 

ADC = Add with Carry: i Reg./Memory with Register to Either OOOIOOdw mod reg rIm i', 

Immadiate to Register/Memory 10000,Osw modOIOr/m data data if s: w =01 il 
I" 

Immediate to Accumulator OOOIOIOw data data ifw = I 

INC = Increment: 

Register/Memory 1111111w modOOOr/m 

Register OIOOOreg 

AAA = ASCII Adjustfor Add 00110111 

BAA = Decimal Adjust for Add 00100111 

SUB = Subtract: 

Reg'/Memory and Register to Either OOIOIOdw mod reg rIm 

Immediate from Register/Memory 100000sw mod 10 I rIm data dataifsw = 01 

Immediate from Accumulator OOIOllOw data data ifw = I 

SSB = Subtract with Borrow 

Reg./Memory and Register to Either OOOllOdw mod reg rIm 

Immediate from Register/Memory 100000sw modOl1 rIm data dataifsw = 01 

Immediate from Accumulator OOOlllw data dataifw = I 

DEC = Decrement: 

Register/memory 1111111w modOOI rIm 

Register 01001 reg 

NEG = Change sign 1111011w modOl1 rIm 

CMP = Compare: 

Register/Memory and Register OOlllOdw mod reg rIm 

Immediate with Register/Memory 100000sw mod III rIm data data ifs w = 01 

Immediate with Accumulator 0011110w data ' dataifw = I 

AAS = ASCII Adjust for Subtract 00111111 

DAS = Decimal Adjust for Subtract 00101111 

MUL = Multiply (UnSigned) 1111011w modlOOr/m 

IMUL = Integer Multiply (Signed) 1111011w mod I 0 I rIm 

AAM = ASCII Adjust for Multiply 11010100 00001010 

DIY = Divide (UnSigned) 1111011w mod I to rIm 

IDlY = Integer Divide (Signed) 1111011w mod III rIm 

AAD = ASCII Adjust for Divide 1101,0101 00001010 

CBW = Convert Byte to Word 10011000 

CWO = Convert Word to Double Word 10011001 

Mnemonics @ Intel, 1978 

2-27 



inter 8086 

Table 2. Instruction Set Summary (Continued) 

Mnemonic and I InstructIOn Coda 
, 

Description 

LOGIC 78543210 785432,10 78543210 78543210 

NOT = Invert 1111011w medOl0r/m 

SHLISAL = Shift Logical! Arithmetic Left 110100vw med 1 OOr/m 

SHR = Shift Logical Right 110100vw med 101 rIm 

SAR = Shift Arithmetic Right 110100vw med 111 rIm 

ROL = Rotate Left 110100vw medOOOr/m 

ROR = Rotate Right 110100vw modOOl rIm 

RCL = Rotate Through Carry Flag Left 110100vw medOl0r/m 

RCR = Rotate Through Carry Right 110100vw modOll r/m 

AND = And: 

Reg.lMemory and Register to Either 001000dw mod regr/m 

Immediate to Register/Memory 1000000w mod 100r/m data data ifw = 1 

Immediate to Accumulator 0010010w data dataifw = 1 

TEST = And Function to Flags, No Result: 

Register/Memory and Register 1000010w mod regr/m 

Immediate Data and Register/Memory 1111011w modOOOr/m data data ifw = 1 

Immediate Data and Accumulator 1010100w data dataifw = 1 

OR = Or: 

Reg.lMemory and Register to Either 000010dw med reg rIm 

Immediate to Register/Memory 1000000w medOO! rIm data dataifw = 1 

Immediate to Accumulator 0000110w data dataifw=1 

XOR = Exclusive or: 

Reg'/Memory and Register to Either 001100dw med regr/m 

Immediate to Register/Memory 1000000w medll0r/m data dataifw = 1 

Immediate to Accumulator 0011010w data dataifw = 1 

STRING MANIPULATION 

REP = Repeat 1111001z 

MOVS = Move Byte/Word 1010010w 

CMPS = Compare Byte/Word 1010011w 

SCAS = Scan Byte/Word 1010111w 

LODS = Load Byte/Wd to ALI AX 1010110w 

STOS =: Stor Byte/Wd from AL/ A 1010101w 

CONTROL TRANSFER 

CALL = Call: 

Direct within Segment 11101000 disp-Iow disp-high 

I ndirect within Segment 1 1 1 1 1 1 11 medOl0r/m 

Direct Intersegment 10011010 offset-low offset-high 

seg-Iow seg-high 

Indirecllntersegment 11111111 mod 0 11 rIm 

Mnemonics @ Intel, 1978 

2-28 



inter 8086 

Table 2. Instruction Set Summary (Continued) 

Mnemonic and 
Description 

JMP = Unconditional Jump: 

Direct within Segment 

Direct within Segment-Short 

Indirect within Segment 

Direct Intersegment 

Indirect Intersegment 

RET = Return from CALL: 

Within Segment 

Within Seg Adding Immed to SP 

Intersegment 

Intersegment Adding Immediate to SP 

JE/JZ = Jump on Equal/Zero 

JL/JNGE = Jump on Less/Not Greater 
or Equal 

JLE/JNG = Jump on Less or Equal/ 
Not Greater 

JB/JNAE = Jump on Below/Not Above 
or Equal 

JBElJNA = Jump-on Below or Equal/ 
Not Above 

JP/JPE = Jump on Parity/Parity Even 

JO = Jump on Overflow 

JS = Jump on Sign 

JNE/JNZ. = Jump on Not EquallNot Zero 

JNLlJGE '" Jump on Not Less/Greater 
or Equal 

JNLEI JG = Jump on Not Less or Equal! 
Greater 

JNB/JAE = Jump on Not Below/ Above 
or Equal 

JNBE/JA = Jump on Not Below or 
Equal/Above 

JNP/JPO = Jump on Not Par/Par Odd 

JNO = Jump on Not Overflow 

JNS = Jump on Not Sign 

LOOP = Loop ex TImes 

LOOPZ/LOOPE = Loop While Zero/Equal 

LOOPNZ/LOOPNE = Loop While Not 
Zero/Equal 

JCXZ = Jump on ex Zero 

INT = Interrupt 

Type Specified 

Type 3 

INTO = Interrupt on Overflow 

IRET = Interrupt Return 

I Instruction Code 

78543210 78543210 78543210 

111.01.0.01 disp-Iow disp-high 

111.01.011 disp 

11111111 modl.o.or/m 

111.01.01.0 - offset-low offset-high 

seg-Iow seg-high 

11111111 mod 1.0 1 rIm 

11.0.0.0.011 

11.0.0.0.01.0 data-low data-high 

11.0.01.011 

11.0.01.01.0 data-low data-high 

.0111.01.0.0 disp 

.011111.0.0 disp 

I .0111111.0 disp 

1.0111.0.01.0 disp 

.0111.011.0 disp 

.0111'1.01.0 disp 

.0111.0.0.0.0 disp 

.01111.0.0.0 disp 

.0 11 1 .0 1 .0 1 disp 

.011111.01 disp 

0111~111 disp 

.0111.0.011 disp 

.0111.0111 disp 

.01111.011 disp 

.0111.0.0.01 disp 

.01111.0.01 disp 

111.0.0.01.0 disp 

111.0.0.0.01 disp 

111.0.0.0.0.0 disp 

111.0.0.011 disp 

11.0.011.01 type 

11.0.011.0.0 

11.0.0111.0 

11.0.01111 

I!' 
I,', 

, 
" 



8086 

Table 2. Instruction Set Summary (Continued) 

Mnemonic and 
Description 

PROCESSOR CONTROL 

CLC = Clear Carry 

CMC = Complement Carry 

STC = Set Carry 

CLD = Clear Direction 

STD = Set Direction 

CLI = Clear Interrupt 

STI = Set Interrupt 

HLT = Halt 

WAIT = Wa~ 

ESC = Escape (to External Device) 

LOCK = Bus Lock Prefix 

NOTES: 
Al = a-bit accumulator 
AX = 16-bit accumulator 
ex = Count register 
OS = Data segment 
ES' = Extra segment 
Above/below refers to unsigned value 
Greater = more positive; 

I 
76543210 

l1tll000 

11110101 

11111001 

11111100 

11111101 

11111010 

11111011 

11110100 

10011011 

11011xxx 

11110000 

Less = less positive (more negative) signed values 
if d = 1 then "to" reg; if d = 0 then "from" reg 
if w = 1 then word instruction; if w = 0 then byte instruc, 

tion 
W mod = 11 then rIm is treated as a REG field 
if mod = 00 then DISP= 0·, disp-Iow and disp-high are 

absent 
if mod = 01 then DISP = disp-Iow sign-extended to 

16 bits, disp-high is absent 
if mod = 10 then DISP = disp-high; disp-Iow 
if rIm = 000 then EA = (SX) + (SI) + DISP 
if rIm = 001 then EA = (SX) + (01) + DISP 
if rIm = 010 then EA = (SP) + (SI) + DISP 
if rIm = 011 then EA = (SP) + (01) + DisP 
if rIm = 100 then EA = (SI) + DISP 
if rIm = 101 then EA = (DI) + DISP 
if rim = 110 then EA = (SP) + DISp· 
if rIm = 111 then EA = (SX) + DISP 
DISP follows 2nd byte of instruction (before data· if re­

quired) 
"except if mod = 00 and rIm = 110 then EA = disp-high; 

disp-Iow. 

Mnemonics @ Intel, 1978 

DATA SHEET REVISION REVIEW 

Instruction Code 

76543210 

modxxxr/m 

if s w = 01 then 16 bits of immediate data form the oper­
and 

if sw =11 then an immediate.data byte is sign extended 
to form the 16-bit operand 

if v == 0 thEIn "count" = 1 ;'if v = 1 then "count" in (Cl) 
x= don't care 
z is used for string primitives for comparison with ZFFlAG 

SEGMENT OVERRIDE PREFIX 

. 001 reg 1 1 0 

REG is aSSigned according to the following table' 

16·Blt (w = 1) a·Blt(w = 0) Segment 

000 AX 000 AL 00 ES 
001 CX 001 CL 01 CS 
010 DX 010 DL 10 SS 
011 BX 011 BL 11 DS 
1(}0 SP 100 AH 
101 BP 101 CH 
110 SI 110 DH 
111 DI 111 BH ," 

Instructions which reference the flag register/ile as a 16-bit 
object use the symbol FLAGS to represent the file: 
FLAGS = x:x:X:X:(OF):(DF):(IF):(TF):(SF):(ZF):X:(AF):X:(PF):x:(CF) 

The following list represents key differences between this and the -002 data $heet. Please review thi$ summa-
ry carefully. . 

1. In the Pin Description Table (Table 1), the description of the HLDA signal beilTg i$sued has. been corrected. 
HLDA will be issued in the middle of either the T 4 or Tj state, 

2-30 



80C86A 
16-BIT CHMOS MICROPROCESSOR 

• Pin-for-Pin and Functionally Compatible . 
to Industry Standard HMOS 8086 

• Fully Static Design with Frequency 
Range from D.C. to: 
- 8 MHz for 8OC86A-2 

• Low Power Operation . 
- Operating Icc = 10 mA/MHz 
- Standby Iccs = 500 fJ-A max 

'. Bus-Hold Circuitry Eliminates Pull-Up 
· Resistors 

• Direct Addressing Capability of 
1 MByte ~f Memory 

• Architecture Designed for Powerful 
Assembly Language and Efficient High 
Level Languages 

• 24 Operand Addressing Modes 

• Byte, Word and Block Operations 

• 8 and 16-Blt Signed and Unsigned 
Arithmetic 
- Binary or Decimal 
- Multiply and Divide 

• Available In 40-Lead Plastic DIP 

The Intel 80C86A is a high performance, CHMOS version of. the industry standard HMOS 8086 16~bit CPU. 
The 80C86A available in 8 MHz. clock rates, offers two modes of operation: MJNimum for small systems and 
MAXimum for larger applications such as multiprocessing. It is available in 40-pin DIP package. 

IlICUTION UMT lUI INT_ACE UNIT 

Vco 

~Igure 1. 80C86A 
CPU Bloc" Diagram 

240029-1 

2-31 

- I 

ADII 
ADIG _ 1 

INTR 

11M -Vee 

ADII 

240029-2 

Figure 2. 80C86A 
4Q..Lead DIP Configuration 

September 1988 
Order Number: 240029-002 



inter 80C86A 

Table 1,Pln Description 

The following pin function descriptions are for BOCB6AAsysterns in either minimum 'or maximum mode. The 
"Local Bus" in these descriptions is the direct multiplexed bus interface connection to the BOCB6A (without 
regard to additional bus buffers); " ", ' 

Symbol 

A19/SS, 

A1S/S5, 
At7/S4, 
A1S/SS 

" 

Pin No. 

2-16,39 

35-38 

34 

'" 

Type Name and Function 

110, ADDRESS DATA BUS: These lines constitute the time multiplexed 
memory/IO address (T1) and data (T2, Ts,Tw,T4) bus. Ao is 
analogous to SHE for the lower byte of the data bus, pins DrDo.lt 
is lOW during T 1 when a byte is to be transferred on the lower , 
portiorlof the bus in memory or I/O operations. Eight·bit oriemed 
devices tied to the lower half would normally use Ao to condition 

o 

, 

o 

. chip select functions. (SeeBHE.) These lines are active HIGH and 
float to 3-state OFF(1) during interrupt acknowledge and local bus 
"hold acknowledge.",. ',' 

ADDRESS/STATUS: During T1 these are the four most significant 
address lines for memory operations. During 110 operations 
these lines are LOW. During 'memory and I/O operations, 
status information is available on these lines during T 2, T 3, T W, 
and T4. The status of the interrupt enable FLAG bit (S5) is updated 
at the beginning of each ClK cycle. A17/S4 and A1S/S3 are 
encoded as shown. 

This information indicates which relocation register is presently 
being used for data accessing. 

These lines float to 3-state OFF(1) during local bus "hold 
acknowledge. " 

"'17/S4 A16/SS Characteristics 

o (lOW) 0 Alternate Data 
0 1 Stack 
1 (HIGH) 0 Code or None 
1 1 " Data 
SsisO 
(lOW) 

BUS HIGH ENABLE/STATUS: During T 1 the bus high enable signal 
(SHE) should be used to enable data ,onto the most significant half 
of the data bus, pins D15-DS. Eight-bit oriented devices tied to the 
upper half of the bus would normally Use SHE to condition chip 
select functions. SHE is lOW during T 1 ,for read, write, and interrupt 
acknowledge cycles when a byte is to be transferred on the high 
portion of the bus. The S7 status information is available during T 2, 
T 3, and T 4. The signal is active LOW, and floats to 3-state OFF(1) in 
"hold." It is lOW during T 1 for the first interrupt acknowledge cycle. 

BHE Ao Characteristics 

0 0 Whole word 
0 1 Upper byte from/ 

to odd ,address 
1 0 lower byte from/ 

to even address 
1 1 None 

2·32 



80C86A 

Table 1. Pin Description (Continued) 

Symbol Pin No. Type Name and Function 

RD 32 0 READ: Read strobe indicates that the processor is performing a 
memory of I/O read cycle, depending on the state of the S2 pin. 
This signal is used to read devices which reside on the 80C86A 
local bus. JID is active lOW during T 2, T 3 and T w of any read cycle, 
and is guaranteed to remain HIGH in T 2 until the 80C86A local bus 
has floated. 

This floats to 3-state OFF in "hold acknowledge." 

READY 22 I READY: is the acknowledgement from the addressed memory or 
I/O device that it will complete the data transfer. The READY signal 
from memory/IO is synchronized by the 82C84A Clock Generator 
to form READY. This signal is active HIGH. The 80C86A READY 
input is not synchronized. Correct operation is not guaranteed if the 
setup and hold times are not met. 

INTR 18 I INTERRUPT REQUEST: is a level triggered input which is sampled 
during the last clock cycle of each instruction to determine if the 
processor should enter into an interrupt acknowledge operation. A 
subroutine is vectored to via an interrupt vector lookup table 
located in system memory. It can be internally masked by software 
resetting the interrupt enable bit. INTR is internally synchronized. 
This signal is active HIGH. 

TEST 23 I TEST: input is examined by the "Wait" instruction. If the TEST input 
is lOW execution continues, otherwise the processor waits in an 
"Idle" state. This input is synchronized internally during each clock 
cycle on the leading edge of ClK. 

NMI 17 I NON-MASKABlE INTERRUPT: an edge triggered input which 
causes a type 2 interrupt. A subroutine is vectored to via an 
interrupt vector lookup table located in system memory. NMI is not 
maskable internally by software. A transition from a lOW to HIGH 
initiates the interrupt at the end of the current instruction. This input 
is internally synchronized. 

RESET 21 I RESET: causes the processor to immediately terminate its present 
activity. The signal must be active HIGH for at least four clock 
cycles. It restarts execution, as described in the Instruction Set 
description, when RESET returns lOW. RESET is internally 
synchronized. 

ClK 19 I CLOCK: provides the basic timing for the processor and bus 
controller. It is asymmetric with a 33% duty cycle to provide 
optimized internal timing. 

Vee 40 Vee: + 5V power supply pin. 

GND 1,20 GROUND: Both must be connected. 

MN/MX 33 I MINIMUM/MAXIMUM: indicates what mode the processor is to 
operate in. The two modes are discussed in the following sections. 

2-33 



inter 80C86A 

Tabl, 1, Pin Description (Continued) 

The following pin function descriptions are for the 80C86A/82CQ8 system in maximum mode (i.e., 
MN/MX= VssJ. Only the pin functions which are unique to maximum mode are described; all other pin func-
tions are as described above. . 

Symbol Pin No. Type 
... 

Name and Function 

52.51.50 26-28 0 STATUS: active during T4. T1. and T::i and is returned to the passive 
state (1.1.1) during T 3 or during T w when READY is HIGH. This 
status is used by the 82C88 Bus Controller to generate all memory 
and 1/0 access control signals. Any change by 52. 51. 50 during T 4 
is used to indicate the beginning of a bus cycle. and the return to the 
passive state in T 3 or T w is used to indicate the end of a bus cycle. 

These Signals float to 3-state OFF(1) in "hold acknowledge." These 
status lines are encoded as shown. 

S2 S1 So Characteristics 

o (lOW) 0 0 Interrupt 
Acknowledge 

0 0 1 Read 110 Port 
0 1 0 Write 110 Port 
0 1 1 Halt 
1 (HIGH) 0 0 Code Access 
1 0 1 Read Memory 
1 1 0 Write Memory 
1 1 1 Passive 

RQ/GTo, .30.31 1/0 REQUEST/GRANT: pins are used by other local bus masters to 
RQ/GT1 force the processor to release the local bus at the end of the 

processor's current bus cycle. Each pin is bidirectional with RQ/GT 0 
having higher priority than RQ/GT 1. RQ/GT has an internal pull-up 
resistor so may be left unconnected. The request/grant sequence is 
as follows (see timing diagram): 

1. A pulse of 1 ClK wide from another local bus master indicates a 
local bus request ("hold") to the 80C86A (pulse 1). 
2. During a T 4 or T 1 clock cycle. a pulse 1 ClK wide from the 
80C86A to the requesting master (pulse 2). indicates that the 
80C86A has. allowed the. local bus to float and that it will enter the 
"ho.ld acknowledge" state at the next ClK. The CPU's bus interface 
unit is disconnected 10.Qicaliy from tile local bus during "hold 
acknowledge. " 
3. A pulse 1 ClK wide from the requesting master indicates to the 
80C86A (pulse 3) that the "hold" request is about to end and that 
80C86A can reclaim the. local bus at the next ClK. 

Each master-master exchange of the local bus is a sequence of 3 
pulses. There must be one dead ClK cycle after each bus exchange. 
Pulses are active lOW. 

If the request is made while the CPU is performing a memory cycle. it 
will release the local bus during T 4 of the cycle when all the following 
conditions are met: 

1. Request occurs onor before T 2. 
2. Current cycle is not the low byte of a word (on an odd address). 
3. Current cycle is not the first acknowledge of an interrupt 
acknowledge sequence. 
4. A locked instruction i.s not currently executing. 



80C86A 

Table 1. Pin Description (Continued) 

Symbol PlnNo'. Type Name and Function 

If the local bus is idle when the request is made the two possible 
events will follow: 

1. Local bus will be released during the next clock. 
2. A memory cycle will start within 3 clocks. Now the four rules for a 
currently active memory cycle apply with condition number 1 already 
Satisfied. 

rneK 29 0 LOCK: output indicates that other system bus masters are not to gain 
control of the system bus while LOCK is active LOW. The rneK 
signal is activated by the "LOCK" prefix instruction and remains 
active until the completion of the next instruction. This signal is active 
LOW, and floats to 3-state OFF(1) in "hold acknowledge." 

QShQSO 24,25 0 QUEUE STATUS: The queue status is valid during the CLK cycle 
after which the queue operation is performed. 
QS1 and QSo provide status to allow external tracking of the internal 
80C86A instruction queue. 

QS1 QSo Characteristics 

o (LOW) 0 No Operation 
0 1 First Byte of Op Code from Queue 
1 (HIGH) 0 Empty the Queue 
1 1 Subsequent Byte from Queue 

The following pin function descriptions are for the BOCB6A in minimum mode (le., MNIMX= Vee). Only the 
pin functions which are unique to minimum mode are described;. all other pin functions are described above. 

MIlO 28 0 STATUS LINE: logically equivalent to S2 in the maximum mode. It 
is used to distinguish a memory access from an 1/0 access. MIlO 
becomes valid in the T 4 preceding a bus cycle and remains valid' 
until the final T 4 of the cycle (M = HIGH, 10 = LOW). MIlO floats to 
3-state OFF(1) in local bus "hold acknowledge." 

WR 29 0 WRITE: indicates that the processor is performing a write memory 
or write 1/0 cycle, depending on the state of the MIlO signal. WR is 
active for T 2, T 3 and T w of any write cycle. It is active LOW, and 
floats to 3-state OFF(1) in local bus "hold acknowledge." 

INTA 24 0 INT A is used as a read strobe for interrupt acknowledge cycles. It is 
active LOW during T 2, T 3 and T w of each interrupt acknowledge 
cycle. 

ALE 25 0 ADDRESS LATCH ENABLE: provided by the processor to latch 
the address into an address latch. It is a HIGH pulse active during 
T 1 of any bus cycle. Note that ALE is never floated. 

DT/R 27 0 DATA TRANSMIT/RECEIVE: needed in minimum system that 
desires to use a data bus transceiver.ltis used to control the 
direction of data flow through the transceiver. Logically DT iff is 
equivalent to 51 in the maximum mode, and its timing is the same 
aR for MIlO. (T = HIGH, R = LOW.) This signal floats tp 3-state 
OFF(1) in local bus "hold acknowledge." 

- 2-35 



80CHA 

Table 1 Pin Description (Continued) 
-Symbol Pin No. Type Name and Function 

DEN 26 0 DATA ENABLE: provided as an output enable for the transceiver in 
a minimum system which uses the transceiver. DEN is active LOW 
during each memory and I/O access and for INTA cycles. For a 
read or INTA cycle itis active from the middle of 1"2 until the middle 
of T 4, while for a write cycle it is active from the beginning of T 2 
until the middle of T 4. DEN floats to 3-state OFF(ll in local bus 
"hold acknowledge." 

HOLD, 31,30 I/O HOLD: indicates that another master is requesting a local bus 
HLDA "hold." To be acknowledged, HOLD must be active HIGH. The 

processor receiving the "hold" request will issue HLDA (HIGH) as 
an acknowledgement in the middle of a T 4 or Ti clock cycle. 
Simultaneous with the issuance of HLDA the processor will float the 
local bus and control lines. After HOLD is detected as being LOW, 
the processor will LOWer the HLDA, and when the processor 
needs to run another cycle, it will again drive the local bus and 
control lines. 
The same rules as for RQ/GT apply regarding when the local bus 
will be released. 
HOLD is not an asynchronous input. External synchronization 
should be provided if the system cannot otherwise guarantee the 
setup time. 

NOTE: 
1. See the section on Bus Hold Circuitry. 

FUNCTIONAL DESCRIPTION 

STATIC OPERATION 

All 80C86A circuitry is of static design. Internal regis­
ters, counters and latches are static and require no 
refresh as with dynamic circuit design. This elimi­
nates the minimum operating frequency restriction 
placed on other microprocessors. The CMOS 
80C86A can operate from DC to the appropriate up­
per frequency ·limit. The processor clock may ~e 
stopped in either state (high/low) and held there In­
definitely. This type of operation is especial.ly useful 
for system debug or power critical applications. 

The 80C86A can be single stepped using only the 
CPU clock. This state can be maintained as long as 
is necessary. Single step clock operation allows sim­
ple interface circuitry to provide critical information 
for bringing up your system. 

Static design also allows very low frequency opera­
tion. Ina power critical situation, this can provide 
extremely low power operation since 80C86A power 
dissipation is directly related to operating frequency. 
As the system frequency is reduced, so is the oper­
ating power until, ultimately, at a DC input frequency, 
the 80C86A power requirement is the standby cur­
rent. 

2-36 

INTERNAL ARCHITECTURE 

The internal functions of the 80C86A processor are 
partitioned logically into two processing units. The 
first is the Sus Interface Unit (SIU) and the second is 
the Execution Unit (EU) as shown in the block dia­
gram of Figure 1. 

These units can interact directly but for the most 
part perform as separate asynchronous operational 
processors. The bus interface unit provides t~e func­
tions related to instruction fetching and queUing, op­
erand fetch and store, and address relocation. This 
unit also.provides the basic bus control. The overlap 
of instruction pre-fetching provided by this unit 
serves to increase processor performance through 
improved bus bandwidth utilization. Up to 6 bytes of 
the instruction stream can be queued while waiting 
for decoding and execution. 

The instruction stream queuing mechanism allows 
the SIU to keep the memory utilized very efficiently. 
Whenever there is space for at least 2 bytes in the 
queue. the SIU will attempt a word fetch memory 
cycle. This greatly reduces "dead time" on the 
memory bus. The queue acts as a First-In-First Out 
(FIFO) buffer, from which the EU extracts instruction 
bytes as requirEjd. If the queue is empty (following a 
branch instruction, for example), the first byte into 
the queue immediately becomes available to the EU. 



inter 80C86A 

Memory Segment Register Segment 
'Reference Need Used Selection Rule 

Instructions CODE (CS) Automatic with all instruction prefetch. 

Stack STACK (SS) . All stack pushes and pops. Memory references relative to BP 
base register except data references. 

Local Data DATA (OS) Data references when: relative to stack, destinati.on of string 
operation, or explicitly overridden. 

External (Global) Data EXTRA (ES) Destination of string operations: Explicitly selected using a 
segment override. 

The execution units receives pre-fetched instruc­
tions from the BIU queue and provides un-relocated 
operand addresses to the BIU. Memory operands 
are passed through the BIU for processing by the 
EU, which passes results to the BIU for storage. See 
the Instruction Set description for further register set 
and architectural descriptions. 

MEMORVORGANIZATION 

The processor provides a 20-bit address to memory 
which locates the byte being referenced. The memo­
ry is organized as a linear array of up to 1 million 
bytes, addressed as OOOOO(H) to FFFFF(H).· The 
memory is logically divided into code, data, extra 
data, and stack segments of up to 64k bytes each, 
with each segment falling on 16-byte boundaries. 
(See Figure 3a.) 

T 64(8 

+ OF SET 

SEGMENT 
REGISTER FILE 

r--'""1 FFFFFH 

i--

I--

-

-

} CODE SEGMENT 

XXXXOH 

} STACK SEGMENT 

} DATA SEGMENT 

} EXTRA OATA SEGMENT 

'L...-J OOOOOH 

240029-3 

Figure 3a. Memory Organization 

2-37 

All memory references are made relative to base ad­
dresses contained in high speed segment registers. 
The segment types were chosen based on the ad­
dressing needs of programs.' The segment register 
to be selected is automatically chosen according to 
the rules of the following table. All information in one 
segment type share the same logical attributes (e.g. 
code or data). By structuring memory into relocat­
able areas of similar characteristics and by automati­
cally selecting segment registers, programs are 
shorter, faster, and more structured. 

Word (16-bit) operands can be located on even or 
odd address boundaries' and are thus not con­
strained to even boundaries as is the case in many 
16-bit computers. For address and data operands, 
the least significant byte of the word is stored in the 
lower valued address location and the most signifi­
cant byte in the next higher address location. The 
BIU automatically performs the proper number of 
memory accesses, one if the word operand is on an 
even byte boundary and two if it is on an odd byte 
boundary. Except for the performance penalty, this 
double access is transparent to ,the software. This 
performance penalty does not occur. for instruction 
fetches, only word operands. 

Physically, the memory is organized asa high bank 
(015-08) and a low bank (DrDo) of 512k 8-bit 
bytes addressed in parallel by the processor's ad­
dress lines. 

A19-A1.Syte data with even addresses is trans­
ferred on the 07-00 bus lines while odd addressed 
byte data (Ao HIGH) is transferred on the 015-08 
bus lines. The processor provides two enable sig­
nals, BHE and Ao, to selectively allow reading from 
or writing into .either an odd byte location, even byte 
location, or both. The instruction stream is fetched 
from memory as words and is addressed internally 
by the processor to the byte level as necessary. 

In referencing word data the BIU requires one or two 
memory cycles depending on whether or not the 
starting byte of the word is on an even or odd ad­
dress, respectively. Consequently, in referencing 

I' 



inter 80C86A 

word operands performance can be optimized by lo­
cating data on even address boundaries. This is an 
especially useful technique for using the stack,since 
odd address references to the stack may adversely 
affect the context switching time for interrupt pro­
cessing or task multiplexing. 

Certain locations in memory are reserved for specific 
CPU operations (see Figure 3b.) locations from ad­
dress FFFFOH through FFFFFH are reserved for op­
erations including a jump to the initial program load­
ing routine. Following RESET, the CPU will always. 
begin execution at 10cationFFFFOH where the jump 
must be. locations OOOOOH through 003FFH are re­
served for interrupt operations. Each of the 256 pos­
sible interrupt types has its service routine pOinted to 
by a4-bytepointer element consisting of a 16-bit 
segment address and a 16-bit offset address. The 
pointer elements are assumed to have been stored 
at the' respective places in reserved memory prior to 
occurrence of interrupts; 

,..--------.. FFFFFH 
RESET BOOTSTRAP 

PROGRA.M JUMP 
1---------00004 FFFFOH 

1-----~-----000043FFH 
INTERRUPT POINTER 

FOR TYPE 255 
~ _____________ ~3FCH 

~--------------~7H 
INTERRUPTPOINlER 

FOR TYPE 1 1--______________ 00004 4H 

3H 
INTERRUPT POINT!;R 

FOR TYPE 0 ~ ______________ -JOH 

240029-4 

Figurt! 3b. Reserved Memory Locations 

MINIMUM AND MAXIMUM MODES 

The requirements for supporting minimum and maxi­
mum 80C86A systems' are. sufficiently different that 

2-38 

they cannot be done efficiently with 40 uniquely de­
fined pins. Conseque~, the 80C86A is equipped 
with a strap pin (MN/MX) which defines the system 
configuration. The definition of a certain subset of 
the pins changes dependent on the condition of the 
strap pin. When MN/MX pin is strapped to GND,the 
80C86A treats pins 24 through 31 in maximum 
mode. An 82C88 bus controller interprets status in­
formation coded into So, Sl, S2to generate bus tim­
ingand control. signals compatible with the MUl TI­
BUS~ architecture .. When. the MN/MX pin is 
strapped to Vee, the 80C86A generates bus control 
signals itself on pins 24 through 31, as shown in 
parentheses in Figure 2. Examples of minimum 
mode and maximum mode systems are shown in 
Figure 4. 

BUS OPERATION 

The 80C86A has a combined address and data bus 
commonly referred to ~s a time multiplexed bus. 
This technique provides' the most efficient use of 
pins on the processor. This "local bus" can .be buff­
ered'directly and used throughout the system with 
address latching provided on memory and I/O mod­
ules. In addition, the bus can also be demultiplexed 
at the processor with a single set of address latches 
if a standard non-multiplexed bus is desired for the 
system. 

Each processor bus cycle consists of at least four 
ClK cycles. These are referred to as T 1, T 2, T 3 and 
T4 (see Figure 5). The address is emitted from the 
processor during T 1 and data transfer occurs on the 
bus during T 3 and T 4. T 2 is used primarily for chang­
ing the direction of the bus during read operations. In 
the event that a "NOT READY" indication is given 
by the addressed device, "Wait" states (T w) are in­
serted between T3 and T 4. Each inserted "Wait" 
state is of the same duration as a elK cycle. Periods 
can occur between 80C86A bus cycles. These are 
referred to as "Idle" states (T1) or inactive ClK cy­
cles. The processor uses these cycles for internal 
housekeeping. 

During T 1 of any bus cycle the ALE (Address Latch 
Enable) signal is emitted (by either the processbr or 
the 82C88 bus controller, depending ontheMN/MX 
strap). At the trailing edge of this pulse, a valid ad­
dress' atld certain status information for the cycle 
may be latched. 



Vee 

T 
OND 

80C86A 

.. - vee 
IIIIIi 

iIiT1i 

III 
l'1li 

~- DTIII ---, I I alii --, I I WAIT I BTATI I _cpu II ----, 
I GIENIRATOR I II I 
L. ___ ..J AU! I 

I 
ADDR 

I I 

II ~::.==-, I L.._"jT , I 

L_ ~ I~I~~~~~~=;~==~~~= '---'---! TRANSCEIVER I r-
I 121 I--

Vee r*l -CLOCK ---

I -L. ____ .t' 
OPTlOlW. 

FOR INCREASED 
DATA aUB DIIIYI liCiT 81W1('1 

(II (21 
.Kxl 2Kxl 2K.I 1tC._ 

Figure 48. Minimum Mode IAPX 8OC86A Typical Configuration 

M""".! r-GND CLK IIIIR 
I'- CLK Io it iiIWfC 
r RlADY i; Ii iiiWC r-N.C. 
f-oRUIT Ii Ii 

_ ale 

I ROY r- DEN J~R RI\Ve 

GND r-J.-, 
I WAIT I 
I GI:m~OR I 
I I L ___ .J 

- r-- DTIII D5Wl! r-N•C. 
CPU 

ALI INVA 

ClI9 r-N.C• r---:1 
ITI 

I 
I GND- t- OE I 

ADo-AD" LATCH 
A'I-A,. A ItORSI A 

1111 r- ~ ~ 

~ 
T 
liE 
TRANSCEIVER DAA 

--'I 
III 

IHl 1 ttll 1hll 
~ imI,. WII OD eli DE 

1IC17 IIRAMIfI -~ 
121 ·Itl 

••• ...L .... .... ..i .... 

Figure 4b. Maximum Mode 8OC86A Typical Configuration 

2-39 

acxx 
PlIIII'IIERAL 

DEVICE 

240029-5 

11 
eI lID II1II -~ 

240029-6 

i 
", 
'. 

Ii 
i"~ 
" 

! 



intJ 80C86A 

I' T, 
(4 + NW~ITI'" Tev -----, I.' ----- 14 + NwAtTf -rey ---~-~'I 

T2 T3 TWAIT I T. \ T, T2 T3 : T4 

eLK 

ADDRI 
STATUI 

ADDR/DATA -----8 'DATAOUTID .. -Dol }-~ 

READY READY 

'.ADY 
WAIT WAIT 

DlIR 

+-- MEMORY "ceEIS TIME--+ 

\'---_-..,.J/ 
240029-7 

Figure 5. Basic System Timing 

Status bits 80, 81, and 82 are used, in maximum 
mode, by the bus controller to identify the type of 
bus transaction according to the following table: ' 

S2 Sl So Characteristics 

o (LOW) 0 0 Interrupt Acknowledge 
0 0 1 Read liD 
0 1 0 Write liD 
0 1 ' 1 Halt 
1 (HIGH) 0 0 Instruction Fetch 
1 0 1 Read Data from Memory 
1 1 0 Write Data to Memory 
1 1 1 Passive (no bus cycle) 

Status bits S3 through S7 are multiplexed with high­
order address bits and the SHE signal, and are 

2-40 

therefore valid during T 2 through T 4. S3 and S4 indi­
cate which segment register (see Instruction Set de­
scription) was used for this bus cycle in forming the 
address, according to the following table: 

S4 S3 Characteristics 

o (LOW) 0 Alternate Data (extra segment) 
0 1 Stack 
1 (HIGH) 0 Code or None 
1 1 Data 

S5 is a reflection of the PSW interrupt enable bit. 
S6 = 0 and S7 is a spare status pin. 



80C86A 

I/O ADDRESSING 

In the 80C86A, 1/0 operations can address up to a 
maximum of 64k 1/0 byte registers or 32k 1/0 word 
registers. The 1/0 address appears in the same for­
mat as the memory address on bus lines A15-AO. 
The address lines A19-A16 are zero in 1/0 opera­
tions. The variable 1/0 instructions which use regis­
ter OX as a pointer have full address capability while 
the direct 1/0 instructions directly address one or 
two of the 256 1/0 byte locations in page 0 of the 
1/0 address space. 

1/0 ports are addressed in the same manner as 
memory locations. Even addressed bytes are trans­
ferred on the 07 - Do bus lines and odd addressed 
bytes on 015-06' Care must be taken to assure that 
each register within an 8-bit peripheral located on 
the lower portion of the bus be addressed as even. 

EXTERNAL INTERFACE 

PROCESSOR RESET AND INITIALIZATION 

Processor initialization or start up is accomplished 
with activation (HIGH) of the RESET pin. The 
80C86A RESET is required to be HIGH for four or 
more ClK cycles. The 80C86A will terminate opera­
tions on the highcgoing edge of RESET and will re­
main dormant as long as RESET is HIGH. The low­
going transition of RESET triggers an internal reset 
sequence for approximately 7 ClK cycles. After this 
interval the 80C86A operates normally beginning 
with the instruction in absolute location FFFFOH 
(see Figure 3b). The details of this operation are 
specified in the Instruction Set description of the 
MCS®-86 Family User's Manual. The RESET input is 
internally synchronized to the processor clock. At 

"PULL·UP/PULL·DOWN" 

Input Buffer exists only on 110 pins 

EXTERNAL 
PIN 

Figure 6a. Bus hold circuitry pin 2·16, 34·39. 

2-41 

initialization the HIGH-to-lOW transition of RESET 
must occur no sooner than 50 ,...S after power-up, to 
allow complete initialization of the 80C86A. 

NMI asserted prior to the 2nd clock after the end of 
RESET will not be honored. If NMI is asserted after 
that point and during the internal reset sequence, 
the processor may execute one instruction before 
responding to the interrupt. A hold request active 
immediately after RESET will be honored before the 
first instruction fetch. 

All 3-state outputs float t03-state OFF(1) during RE­
SET. Status is active in the idle state for the first 
clock after RESET becomes active and then floats 
to 3-state OFF(1). ALE and HlOA are driven low. 

NOTE: 
1. See the section on Bus Hold Circuitry. 

BUS HOLD CIRCUITRY 

To avoid high current conditions caused by floating 
inputs to CMOS devices and eliminate the need for 
pull-up/down resistors, "bus-hold" circuitry has 
been used on the 80C86A pins 2-16, 26-32, and 
34-39 (Figures 6a, 6b). These circuits will maintain 
the last valid logiC state if no driving source is pres­
ent (i.e. an unconnected pin or a driving source 
which goes to a high impedance state). To overdrive 
the "bus hold" circuits, an external driver must be 
capable of supplying 350 ,...A minimum sink or 
source current at valid input voltage levels. Since 
this "bus hold" circuitry is active and not a "resis­
tive" type element, the associated power supply cur­
rent is negligible and power dissipation is significant­
ly reduced when compared to the use of passive 
pull-up resistors. 

"PULL·UP" 

Input Buffer exists only on 110 pins 

EXTERNAL 
PIN 

Figure 6b. Bus hold circuitry pin 26·32. 



8QC8.6A 

INTERRUPT OPERATIONS, 

Interrupt operations fall into tWo claSses; software or 
hardware initiated. The software initiated interrupts 
and software aspects 01 hardware interrupts are 
specified ,in, the Instruction Set description. Hard­
ware interrupts can be classified as non-maskable or 
maskable. ' 

Interrupts resultin a transfer of control to, a new pro­
gram 'location. A 256-element table containing ad­
dress pointers to the interrupt service program loca­
tions resides in absolute locations 0 through 3FFH 
(see Figure3b), which are reserved for this purpose. 
Each element in the table is 4 bytes in'size and cor-, 
responds to an interrupt "type". An interrupting de­
vice supplies an 8-bit type number, during the inter­
rupt acknowledge sequence, which is used to "vec­
tor" through the appropriate element to the neW in­
terrupt service program location. 

NON-MASKABLE INTERRUPT (NMI) 

The processor provides a single non-maskable inter­
rupt pin' (NMI) which has higher priority than the 
maskableinterrupt request pin (INTR). A typical use 
would be to activate a power failure routine. The 
NMI is edge-triggered on a LOW-to-HIGH transition. 
The activation of this pin causes a type 2 interrupt. 
(See Instruction Set description.)' NMI is required to 
have a duration in the HIGH state of greater than 
two eLK cycles, but is not required to be synchroniz­
ed to the clock. Any'high-going transition of NMI is 
latched on-chip and will be serviced at the end of the 
current instruction or between :whole moves of a 
block-type instruction. Worst case response to NMI 
would be for multiply, divide, and variable shift in­
structions. There is no, specification on the occur" 
rence of the low-going edge; it may occur before, 
during, or after the servicing of NMI. Another high­
going edge triggers another response if it occurs af­
ter the start of the NMI pr()cedure. The signal must 
be free of logical spikes in general and be free of 
bounces on', the low-going edge to avoid triggering 
extraneous responses. " ' 

MASKABLE INTERRUPT (INTR) 

The 80C86A provides. a single interrupt request input 
(INTR) which can be masked internally by software 

. 2-42 

with the resetting of the intem.lpt enable FLAG 
status bit. The interrupt request signar is level trig­
gered. It is internally synchronized during each clock 
cycle on the, high-going edge of eLK, To be re­
sponded to, INTR must be present (HIGH) during 
the clpck period preceding the end of the current 
instruction or the end of a whole move for a block­
type instruction. During the' interrupt response se~ 
quence further interrupts are disabled. The enable 
bit is reset as part of the response to any interrupt 
(INTR, NMI, software interriJpt or single-step), a/­
though the FLAGS register which' is automatically 
pushed onto the stack reflects the state of the proc­
essor· prior to the interrupt. Until the old FLAGS reg. 
ister is restored the enable bit' will be zero unless 
specifically set by aninstructibn. 

During the response sequence (Figure 7) the proc­
essor executes two successive (back-to-back) inter­
rupt acknowledge cycles. The 80C86A emits the 
LOCK Signal from T 2 of the first bus cycle until T 2 of 
the second. A local bus "hold" request will not be 
honored until the end of the second bus cycle. In the 
second bus cycle a byte is fetched from the external 
interrupt system (e.g., 82C59 PIC) which identifies 
the source (type) of the 'interrupt. This byte is multi­
plied by four and used as a pointer into the interrupt 
vector lookup table. An INTR signal left HIGH will be 
continually responded to within the limitations of the 
enable bit,and sample period. The INTERRUPT RE­
TURN instruction includes a .FLAGS pop which re­
turns the status of the original interrupt. !3nable bit 
when it restores the FLAGS. 

HALT 

When a software "HALT" instructiCln is executed the 
processor indicates that it is entering the "HALT" 
state in' one of tWo ways depending upon which 
mode is strapped. In minimum mode, the processor 
issues one ALE with no, qualifying bus control sig­
nals. In Maximum Mode, the processor issues ap­
propriate HALT status on 52, 51 and 50 and the 
82C88 bus contrpllerissuesQne ~L!:. The 80C86A 
will not leaVE! the !'HAL T" state when a local bus 
"hold" is entered while in "HALT":.In this case, the 
processor reissues,the HALT indicator. An interrupt 
r",quest or RESET will force the, 80C86A Qut of the 
"HALT" state. . 



80C86A 

T1 T2 T3 I T4 lTd T1 I T2 

ALE~ ________________ ~I ~ __________________ __ 

LOCK \"' ________ ..... ____ "". ~J ___ .. / 

~ ____ -""rl INTA \_ • '\ '\ 
ADD • AD15' F.LOAT ()----1'-' ..... ;.;.;.;---------~I ~I -----< TYPE VECTOR 

240029-10 

Figure 7. Interrupt Acknowledge Sequence 

READ/MODIFY /WRITE (SEMAPHORE) 
OPERATIONS VIA LOCK 

The LOCK status information is provided by the 
processor when directly consecutive bus cycles are 
required during the execution of an instruction. This 
provides the processor with the capability of per­
forming read/modify/write operations on memory 
(via the Exchange Register With Memory instruction, 
for example) without the possibility of another sys­
tem bus master receiving intervening memory cy­
cles. This is useful in mutliprocessor system configu­
rations to accomplish "test and set lock" operations. 
The LOCK signal is activated (forced LOW) in the 
clock cycle following the one in which the software 
"LOCK" prefix instruction is decoded by the EU. It is 
deactivated at the end of the last bus cycle of the 
instruction following the "LOCK" prefix instruction. 
While LOCK is active a request on a RQ/GT pin will 
be recorded and then honored at the end of the 
LOCK. 

EXTERNAL SYNCHRONIZATION VIA TEST 

As an alternative to the interrupts and general I/O 
capabilities, the SOCS6A provides a single software­
testable input known as the TEST signal. At any time 
the ,program may execute a WAIT instruction. If at 
that ~ime the TEST signal is inactive (HIGH), pro-

2-43 

gram execution becomes suspended while the proc­
essor waits for TEST to become active. It must re­
main active for at least 5 CLK cycles. The WAIT in­
struction is re-executed repeatedly until that time. 
This activity does not consume bus cycles. The 
processor remains in an idle state while waiting. All 
SpCS6A drivers go to 3-state OFF if bus "Hold" is 
entered. If interrupts are enabled, they may occur 
while the processor is waiting. When this occurs the 
processor fetches the WAIT instruction one .extra 
time, processes the interrupt, and then re-fetches 
and re-executes the WAIT instruction upon returning 
from the interrupt. 

BASIC SYSTEM TIMING 

Typical system configurations for the processor op­
erating in minimum mode and in maximum mode are 
shown in Figures 4a and 4b, respectively. In mini­
mum mode, the MN/MX pin is strapped toVcc and 
the processor emits bus control signals in a manner 
similar to the SOS5.ln maximum mode, the MN/MX 
pin is strapped to Vss and the processor emits cod­
ed status information which the S2CS8 bus control­
ler uses to generate MUL TIBUS compatible bus 
control Signals. Figure 5 illustrates the signal. timing 
relationships. 

!.·.·.I·.:'.···· 

i 

l.

i.;4 .. I. 

, 

'~ 



inter 80C86A 

AX 

BX 

CX 

Ox 

AH AL 

BH BL 

CH CL 

DH DL 

mp 
BP 

SI 

01 

em OS 

SS 

ES 

ACCUMULJ\TOR 

BASE 

COUNT 

DATA 

STACK POiNTER 

BASE POINTER 

SOURCE INDEX 

DESTINATiON INDEX 

INSTRUCTION POINTER 

STATUS FLAGS 

CODE SEGMENT 

DATA SEGMENT 

STACK SEGMENT 

EXTRA SEGMENT 

240029-11 

Figure S. SOCS6A Register Model 

SYSTEM TIMING-MINIMUM SYSTEM 

The read cycle begins in T 1 with the assertion of the 
Address Latch Enable (ALE) signal. The trailing (low­
going) edge of this signal is used to latch the. ad­
dress information, which is valid on the local bus at 
this time, into a latch. The BHE and Ao signals ad­
dress the low, high, or both bytes. From T 1 to ! 4 the 
MilO signal indicates a memory or 110 operation. At 
T 2 the address is removed. from the local bus and 
the bus goes to a high impedance state. The read 
control signal is also asserted at T 2. The read (AD) 
signal causes the addressed device to e~able its 
data bus drivers to the local bus. Some time later 
valid data will be available on the bus and the ad­
dressed device will drive the AEADY line HIGH. 
When the processor returns the read signal to a 
HIGH level, the addressed device will again 3-state 
its bus drivers. If a transceiver is re.9uired to buffer 
the 80C86A local bus, signals DT IA and DEN are 
provided by the 80C86A. 

A write cycle also begins with the assertion ?f AL.E 
and the emission of the address. The MIlO signal IS 
again asserted to indicate a memory or 1/0 write 
operation. In the 'T2 immediately.following the ad­
dress emission the processor emits the data to be 
written into the addressed location. This data re­
mains valid until the middle of T 4. During T 2, T 3, and 
T w the processor asserts the writ~ control sign~1. 
The write (WA) signal becomes active at the begin­
ning of T 2 as opposed to the read which is delayed 
somewhat into T 2 to provide time for the bus to float. 

The BHE and Ao signals are used to select the prop­
er byte(s) of the memoryllO word to be read or writ­
ten according to the following table: 

BHE AO Characteristics 
0 0 Whole word 
0 1 Upper byte froml 

to odd address 
1 0 Lower byte froml 

to even address 
1 1 None 

1/0 ports are addressed in the same manner as 
memory location. Even addressed bytes are trans­
ferred on the 07-00 bus lines and odd addressed 
bytes on 015-08. 

The basic difference between the interrupt acknowl­
edge cycle and a read cy?le is that t~e interrupt ac­
knowl~e signal (INTA) IS asserted In place of the 
read (AD) signal and the address bus is float~d. 
(See Figure 7.) In the second of two successive 
INTA cycles, a byte of information is read from bus 
lines 07-00 as supplied by the interrupt system lo~­
ic (i.e., 82C59A Priority Interrupt Controller). ThiS 
byte identifies the source (type) of the interrupt. It is 
multiplied by four and used as a pointer into an inter­
rupt vector lookup table, as described earlier. 

BUS TIMING-MEDIUM SIZE SYSTEMS 

For medium size systems the MN/MX pin is con­
nected to Vss and the 82C88 Bus Controller is add­
ed to the system as· well as a latch for latching the 
system address, and a transceiv~r to allow for bus 
loading greater than· the 80C86A IS .-9apable of han­
dling. Signals ALE, DEN, and DT/A are generated 
by the 82C88 instead of the processor in this .config­
uration . although their timing remain.!? r~atively !!le 
same. The 80C86A status outputs ,(S2,' S1, and So) 
provide type-of-cycle inform~tion and beC?~e 
82C88 inputs. This bus cycle Information specifies 
read (code, data, or 110), write (data or 1/0), inter­
rupt acknowledge, or software halt. The 82C88 thus 
issues control signals specifying memory read or 
write 1/0 read or write, or interrupt acknowledge. 
The 82C88 provides two types of write strobes, nor­
mal and advanced, to be applied as required. The 
normal write strobes have data valid at the leading 
edge of write. The advanced write strobes have. th? 
same timing as read strobes,and hence data Isn t 
valid at the leading edge of write. The tran~ceiver 
receives the usual T and OE inputs from the 82C88 
DT fR and .DEN. 

2-44 

The pOinter into the interrupt vector table, whic~ is 
passed during the second INTA cycle, can derive 
from an 82C59A located on either the local bus or 
the system bus. If the master 82C59A Priority Inter­
rupt Controller is positioned on the local ~us, a TIL 
gate is required to disable the transceiver when 
reading from the master 82C59A during the interrupt 
acknowledge sequence and software ·"poll". 



80C86A 

ABSOLUTE MAXIMUM RATINGS'" 

Supply Voltage 
(With respect to ground) ........... - 0.5 to 7.0V 

Input Voltage Applied 
(w.r.t. ground) ............. - 0.5 toVCC + O.SV 

Output Voltage Applied 
(w.r.t. ground) ............. -0.5 to VCC + O.SV 

Power Dissipation .......................... 1.0W 
Storage Temperature ............. - 6S·C to 1S0·C 
Ambient Temperature Under Bias ...... O·C to 70·C 

D.C. CHARACTERISTICS 
(T A = O·C to 70·C. Vcc = SV ± 5%) 

• Notice: Stresses above those listed under "Abso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and 
functional operation of the device at these or any 
other conditions above those indicated in the opera­
tional sections of this specification is not implied. Ex­
posure to absolute maximum rating conditions for 
extended periods may affect device reliability. 

Symbol Parameter 80C86A-2 Units Test Conditions 
Min Max 

VIL Input Low Voltage -0.5 +0.8 V 

VIH Input High Voltage 2.0 V 
(All inputs except clock) 

VeH Clock Input High Voltage Vee- 0.8 V 

VOL Output Low Voltage 0.45 V IOL = 2.5i'nA 

VOH Output High Voltage 3.0 V IOH = -2.5mA 
Vee-O.4 IOH =-100 /loA 

lee Power Supply Current 10 mA/MHz VIL = GND. VIH = Vee 

lees Standby Supply Current 500 /loA VIN = Vee or GND 
Outputs Unloaded 
CLK = GND or Vee 

III Input Leakage Current ±1.0 /loA OV';; VIN';; Vee 

IBHL Input Leakage Current 50 400 /loA VIN = 0.8V 
(Bus Hold Low) (Note 4) 

IBHH I nput Leakage Current -50 -400 /loA VIN = 3.0V 
(Bus Hold High) (Note 5) 

IBHLO Bus Hold Low Overdrive 600 /loA (Note 2) 

IBHHO Bus Hold High Overdrive -600 /loA (Note 3) 

ILO Output Leakage Current ±10 /loA VOUT = GNDorVee 

CIN Capacitance of Input Buffer 5 pF (Note 1) 
(All inputs except 
ADo-AD15. RO/GT) 

CIO Capacitance of I/O Buffer 
(ADo-AD15. RO/GT) 

20 pF (Note 1) 

COUT Output Capacitance 15 pF (Note 1) 

NOTES: 
1. Characterization conditions are a) Frequency = 1 MHz; b) Unmeasured pins at GND; c) VIN at + 5.0V or GND. 
2. An .external driver must source at least IBHLO to switch this node from LOW to HIGH. 
3. An external driver must sink at least IBHHO to switch this node from HIGH to LOW. 
4. Test Condition is to lower VIN to GND and then raise VIN to 0.8V on pins 2-16 & 34-39. 
5. Test Condition is to raise VIN to Vee and then lower VIN to 3.0V on pins 2-16.26-32 & 34-39. 

2-45 



intJ 
A.C. CHARACTERISTICS 
(TA= 0·Cto70·C, Vee = 5V±5%) 

80C86A 

MINIMUM COMPLEXITY SYSTEM TIMING REQUIREMENTS 

Symbol Parameter 
80C86A-2 

Min Max 

TClCl ClK Cycle Period 125 D.C. 

TClCH ClKlowTime 68 

TCHCl ClK High Time 44 

TCH1CH2 ClK Rise Time 10 

TCL2Cl1 ClKFaliTime 10 

TDVCl Data in Setup Time 20 

TClDX Data in Hold Time 10 

TR1VCl ROY Setup Time 35 
into 82C84A 
(Notes 1,2) 

TCI:.R1X ROY Hold Time 0 
into 82C84A 
(Notes 1, 2) 

TRYHCH READY Setup 68 
Time into 80C86A 

TCHRYX READY Hold Time 20 
into80C86A 

TRYlCl READY Inactive to -8 
ClK (Note 3) 

THVCH HOLD Setup Time 20 

TINVCH INTR, NMI, TEST 15 
Setup Time 
(Note 2) 

TILIH Input Rise Time 15 
(Except ClK) 

TIHll Input Fall Time 15 
(Except ClK) 

2-46 . 

Units 
Test 

Conditions 

ns 

ns 

ns 

ns From 1.0V to 3.5V 

ns From 3.5V to 1.0V·· . 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns From O.8V to 2.0V 

ns From 2.0V to 0.8V 



inter 80C86A 

A.C. CHARACTERISTICS (Continued) 
(TA = O·Cto 70·C, Vcc = 5V ±5%) 

Timing Responses 

Symbol Parameter 8OC86A·2 

Min 

TCLAV Address Valid Delay 10 

TCLAX Address Hold Time 10 

TCLAZ Address Float TCLAX 
Delay 

TLHLL ALE Width TCLCH-10 

TCLLH ALE Active Delay 

TCHLL ALE Inactive Delay 

TLLAX Address Hold Time TCHCL-10 
to ALE Inactive 

TCLDV Data Valid Delay 10 

TCHDX Data Hold Time 10 

TWHDX Data Hold Time TCLCH-30 
AfterWR 

TCVCTV Control Active 10 
Delay 1 

TCHCTV Control Active 10 
Delay 2 

TCVCTX Control Inactive 10 
Delay 

TAZRL Address Float to 0 
READ Active 

TCLRL FID Active Delay 10 

TCLRH AD Inactive Delay 10 

TRHAV AD Inactive to Next TCLCL-40 
Address Active 

TCLHAV HLDA ValjdDelay 10 

TRLRH AD Width 2TCLCL-50 

TWLWH WRWidth 2TCLCL-40 

TAVAL Address Valid to TCLCH-40 
ALE Low 

TOLOH Output Rise Time 

TOHOL Output Fall Time 

NOTES: 

Units Test 

Max Conditions 

60 ns 

ns 

50 ns 

ns 

50 ns 

55 ns 

ns 

60 ns 

ns 

ns 

70 ns 

60 ns 

70 ns 

ns 

100 ns 

80 ns 

ns 

100 ns 

ns 

ns 

ns 

15 ns From 0.8V to 2.0V 

15 ns . From 2.0V to 0.8V 

1. Signal at 82C84A shown for reference only. See 82C84A data sheet for the most recent specifications. 
2. Setup requirement for asynchronous Signal only to guarantee recognition at next CLK. 
3. Applies only to T2 state: (8 ns into T3l. . 

2-47 

It'; ~ " 

I 



inter 80C86A 

A.C. TESTING INPUT, OUTPUT WAVEFORM A.C. TESTING LOAD CIRCUIT 

INPUT / OUTPUT 

2.4==X.5 I.e 

0.45 ---------...... 
240029-12 

A.C. Testing inpUls are driven at 2.4V fora logic "I" and O.45V 
for a logic "0". Timing measurements are made at 1.5V. 

WAVEFORMS 

MINIMUM MODE 

CL Includes Jig Capacitance 

T1 T2 T3 Tw T4 

240029-14 

YCHv-\ ~TClC~~CH1CH]HCCl2Cll~,,"""\ ~ 
CUll_OUtput) . -I.. !'----I ---

~ TCHCTY • t::. I------ TCHCl I- TClCH_ 

MIlO lX. 
_+-T_C_lA..;....V-+-""""\(- TClA;:: TClDY::: 

TCHDX- f~---

TCllH- I: TLHll-:::: I--TlLAX r--
ALE ! I '~ __ -+--""--I __ --+ __ +-_~+-_--,J~ __ _ 

--+--fJ .. ~ TA~Al !+-I- j 
TCHll-1 - TR1YCL 

V'H- ...... 
RDYIQCI4A ....... 

Y" - ~_ \+>--=::::-:±~-+--'-t---­I--rClR1X 
SEE NOTE 4 

TAYLCL- - .. -

"~--l 
- TAVAl I- TRYHCH! 

_ -TCHAYX 

READ CYCLE 
(NOTE 1) 

(WII,IHTA. YoHl 

TLLAX_ ;0- I :"1 
~f-TC.,..LA_Y_'-"':"'"","""II-J ___ .:-=t-_'\I~~~t~~ TDVCl-I-TClDX-

~r-________ T_ArZA_l--_'I~~ 
I,+_~ _____ ~-JI 

A15-ADO Ao,s-ADo 

Rli 

TClAl/---I--\---+--.::L j-TCHCTY 

DTIR ~ 
~--~-----+~------~--f-J 

TCYCtv- f 
'--_____ -....,.....-J 

2-48 



inter BOCB6A 

WAVEFORMS (Continued) 

MINIMUM MODE (Continued) 

CLJ((~A~) 

ALE 

ADlI·ADo 

WRITE CYCLE 

'''::;~'I 
DEN 

DTitI.VOH) 

W. 

ADlI.ADO 

INTA CYCLE OTIR 
(NOTESU3) 

:ir~:JOH 
iNTA 

DEN 

IIOFTWARE HALT-

RD. WR, INTA - YoH INVALID ADDRESS SOFTWARE HALT 

DT/ft - INDETERMINATE TelAY 

240029-15 

NOTES: 
1. All output timing measurements are made at 1.5V unless otherwise noted. 
2. RDY is sampled near the end of T 2, T 3, T W to determine if T W machines states are to be inserted. 
3. Two INTA cycles run back-to-back. The 80C86A local ADDR/DATA BUS is floating during both INTA cycles. Control 
signals shown for second INTA cycle. 
4. Signals at 82C84A are shown for reference only. 

2·49 



8OC86A 

A.C. CHARACTERISTICS 

MAX MODE SYSTEM (USING 82C88 BUS CONTROLLER) 
TIMING REQUiREMENTS .. .. . 

Symbol Parameter 
aoC86A-2 

Units 
Test 

Conditions ., Min Max 

TClCl ClKCycle Period 125 O;C. ' ns 

TClCH· ClK loW Time . 68 . ns 

TCHCl ClK High Tinie 44 ns 

TCH1CH2 eL.K Rise Time. ~, 10 ns From 1.0V to 3.5V 

TCl2Cl1 ClK Fall Time 10 ns From ~.5V to 1.0V 

TDVCl Data in Setup Time 20 ns 

TClDX Data in Hold Time 10 ns 

TR1VCl ROY Setup Time into 82C84A 35 ns , 
(Notes 1, 2) 

TClR1X ROY Hold Time into 82C84A 0 ns 
. (Notes 1 , 2) 

TRYHCH READY Setup Time into 80C86A 68 ns 

TCHRYX READY Hold. Time into 80C86A 20 ns 

TRYlCl REA.DYlnactive to -8 ns 
. ClK (Note 4) 

TINVCH SetlJp.TInie for Recognition 15 ns 
(INTR, NMI, TEST) 
(Note 2) 

TGVCH RQ/GT Setup Time 15 ns 

TCHGX RQ /-:Iold Time into 80C86A 30 ns 

TlblH Input Rise Time 15 ns From 0.8V to 2.OV 
(Except ClK) (Note 5) 

.,H,l Input Fall Time 15 ns From 2.OV to 0 .. 8V 
(Except ClK) (Note 5) 

< 

2·50 



inter 80C86A 

A.C. CHARACTERISTICS (Continued) 

TIMING RESPONSES 

Symbol Parameter 
80C86A-2 Units 

Test 

Min Max Conditions 

TClMl Command Active 5 35 ns 
Delay (Note 1) 

TClMH Command Inactive 5 35 ns 
Delay (Note 1) 

TRYHSH READY Active to 65 ns 
Status Passive (Note 3) 

TCHSV Status Active Delay 10 60 ns 

TClSH Status Inactive Delay 10 70 ns 

TCLAV Address Valid Delay 10 60 ns 

TClAX Address Hold Time 10 ns 

TClAZ Address Float Delay TClAX 50 ns 
, 

TSVlH Statl,ls Valid to ALE High (Note 1) 20 ns 

TSVMCH Status Valid to 30 ns 
MCE High (Note 1) 

TCllH ClK low to ALE Valid (Note 1) 20 ns 

TClMCH ClK low to MCE High (Note 1) 25 ns 

TCHll ALE Inactive Delay (Note 1) 4 18 ns 

TClDV Data Valid Delay 10 60 ns 

TCHDX Data Hold Time 10 ns 

TCVNV Control Active Delay (Note 1) 5 45 ns 

TCVNX Control Inactive Delay (Note 1) 10 45 ns 

TAZRl Address Float to Read Active 0 ns 

TClRl RD Active Delay 10 100 ns 

TClRH RD Inactive Delay 10 80 ns 

TRHAV RD Inactive to TClCl-40 ns 
Next Address Active 

TCHDTl Direction Control 50 ns 
Active Delay (Note 1) 

TCHDTH Direction Control 30 ns 
Inactive Delay (Note 1) 

TClGl GT Active Delay 0 50 ns 

TClGH GT Inactive Delay 0 50 ns 

TRlRH RDWidth 2TClCl-50 ns 

TOlOH Output Rise Time 15 ns From 0.8V to 2.0V 

TOHOl Output Fall Time 15 ns From 2.0V to 0.8V 

NOTES: 
1. Signal at 82C84A or 82C88 shown for reference only. See 82C84A and 82C88 for the most recent specifications. 
2. Setup requirement for asynchronous signal only to guarantee recognition at next ClK. 
3. Applies only to T3 and wait states. 
4. Applies only to T2 state (8 ns into T3). 
5. These parameters are characterized and not 100% tested. 

2-51 



•
"n+_f 
ll'eI 80C86A 

A.C. TESTING INPUT, OUTPUT WAVEFORM A.C. TESTING. LOAD CIRCUIT 

INPUT / OUTPUT 

2.4~.5 l:C 
0.45 ---------

DIVICE 
UNDER 

TEST 

240029-17 240029-16 

A.C. Testing inputs are driven at 2.4V for a logic "1" and 0.45V for 
a logic "0". Timing measurements are made at 1.SV 

CL Includes Jig Capacitance 

WAVEFORMS 

MAXIMUM MODE 

eLK yeH~ 

.-' vel 

uSa,as, 

1j,I1.ro (EXCEPT HAI.T) 

ilifIs, .• , .... -.,0/ •• 

SEE NOTU I·La IUCII OUTPUT) 

RDV_INPUt) 

.ICII 0UTJIUTlI 
SEE NOTES 5.' 

IDU"ADo 

DTIK 

i\lJ!6l:0Am 

DEN 

TCLAV-

r-

- -
TSVLH 
TeLLH-

TeLAV-

T, T, 

~. ,=iO~~C Tw TCLCh f""""'i r" '---/n-. "-----' x- :.--- TeHCL ..,.TCLCH-:-

TCHSV ..,. ~TCLsH ------W&, 1//1 (SEE NOTE 7) 
, 

• CTeLAY q:CLDV rCHDX- f-----TeLAX __ 

X liII .• ,.-." Sr-S3 ' .. 

~- .1 TCHLL 

J 
r--

I 
----

~ 
i--TA1VCL - 'i \l;>;'::~ '.~~~~\~ ~\~S~~~~\~~ ..,... 

~TeLA1X 

TAYLel -
I - -TCHRYX 

TAYHSH_ -- TeLAX i--- l-
I-~ TRYHCH -

f- -TeLAl I- I,:::::;DVCl-~TCLDX-

"Is-ADo 

~~ 
DATA IN 

FL:~ 
TAZRL- TeLRH 

I 
TRHAY 

TCHDTL- .1-- TCLRL 
TRLAH 

' tTcHDrH 

'\ .' ! 
TCLML- { TClMH'-* 

~ 
TCVNV- 11"- I , 

TCVNX-

240029.,.18 ' 

2-52 



intJ 
WAVEFORMS (Continued) 

MAXIMUM MODE (Continued) 

WRITE CYCLE 

AD,s-AD. 

DEN 

82C88 OUTPUTS 
NOTES 5.6 AMWC OR AIOWC 

INTA CYCLE 

ADWADO 
NOTES 3,4 

AD,s-AD. 

MCEJ 

FLOAT 

TSVMCH 

80C86A 

T, 

RESERYED FOR 
CASCADE ADDR 

T, T, 

TDVCL 

POINTER 

FLOAT 
TCLDX 

FLOAT 

I 
~~--------~~~-­

,. "" 
Pimii TCLMCH 
DT/R ---+...;.,.-...;. .... 1 

TCHDTH 

82C88 OUTPUTS 
NOTES5.6 INTA 

DEN 

SOFTWARE HALT-
(DEN = YoL;RD.MRDC.IQRC,MWTC,AMWC, 

IOWC,AIOWC,INTA, = YOH) AD'S-A""D.--+-"'\.I''''''''''IN''''Y''''A''''L-ID-AD-D-R-E-S-S--

TCLAV 

TCYNX 

:.---\ I,.----~--T" - - - -
5,,5,,5. "" ____ J \ ___ • 

NOTES: 
1. All timing measurements are made at 1.5V,unless otherwise noted. 
2. ROY is sampled near the end of T 2, T 3, T w to determine if T w machines states are to be inserted, 
3. Cascade address is valid between first and second INTA cycle. 

240029-19 

4. Two INTA cycles run back-to-back. The 80C86A local ADDR/OATA BUS is floating during both INTA cycles. Control for 
pOinter address is shown for second INTA cycle. 
5. Signals at 82C84A or 82C88 are shown for reference only. 
6. The issuance of the 82C88 command and control signals (MRDC, MWTC, AMWC, IORC,lOWC, AIOWC, INTA and DEN) 
lags the active high 82C88 CEN. 
7. Status inactive in state just prior to T 4. 

2·53 



80CHA 

WAVEFORMS (Continued) 

ASYNCHRONOUS SIGNAL RECOGNITION 

NMI} ~ifk-
INTR SIGNAL, _ ..: 

Tiif " 
240029-20 

NOTE: Setup requirements for asynchronous signal~only to guarantee recognition at next eLK. 

BUS LOCK SIGNAL TIMING 
(MAXIMUM MODE ONLy) 

CLK~CLK;1 __ iCLK~ 

'::~ 
240029-21 

RESET TIMING 

~I'-----:~~'-------~ 

CLK 

ao Cl.K CYCLII 

240029-22 

REQUEST IGRANT SEQUENCE TIMING (MAXIMUM MODE ONL. V) 

AD'S"ADO 
A,e/SI"AII'S. !i! s-..!.!-~ _---_______ _ 
RD. LOCK 
BHE/S, 

COPROCESSOR 
RELEASE 

COPROCESSOR 

(SEE NOTE) 

NOTE: The coprocessor may not drive the buses outside the region shown without risking contention. 

2·54 

240029-23 



BOCB6A 

. WAVEFORMS (Continued) 

HOLD/HOLD AC.KNOWLEDGE TIMING· (MINIMUM MODE ONLY) 

~1 C1.KCYCLe 

:y$ 
T=-~CLJtAV 

ADII·AD", _____ .. "_-=U;::.TCIolIIII-" __ 

~""" .. 180, ' IOC.. _OCEIIIOR lOCH 

:r~n~~,--_------~ 

HLDA -----

DATA TRANSFER 
MOY = lIove: 

Register/Memory to/from Register" 

Immediate to Register/Memory 

Immediate to Register 

Memory to Accumulator 

Accumulator to Memory 

Register/Memory to Segment Register" 

Segment Register to Register/Memory 

PUSH = Push: 

Regiater/Memory 

Reglater 

Segment Register 

POP = Pop: 

Register/Memory 

Register 

Segment Register 

XCHG = Exchange: 

Regiater/Memory with Regiater 

Register with Accumulator 

IN = Input from: 

FixedPcrt 

Variable Port 

OUT = Output to: 

Fixed Pert 

Variable Pert 

XLAT = Translate Byte to AL 

LEA = Load EA to Regiater 

LOS = Lced Pointer to OS 

LES = Load Pcinter to ES 

LAHF = Load AH with Flags 

SAHF = Store AH into Flags 

PUSHF. = Push Flags 

POPF = Pop Flags, 

Table 2. Instruction Set Summary 

I InstNCUon Code 

7,8543210 78643210 78543210 

100010dw mod reg rim 

1100011 w ' modOOOr/m data 

1011wreg data dataifw 1 

1010000w addr-Iow addr·high 

1010001w addr-Iow addr·hlgh 

10001110 mod 0 reg r/m 

10001100 mod 0 reg rim 

11111111 modll0r/m 

01010reg 

OOOreg 11 0 

10001111 modOOOr/m 

01011 reg 

OOOreg 111 

1000011w I modregr/m 

10010reg I 

1110010w port 

1110110w 

1110011 w port 

1110111w 

11010111 

10001101 mod reg r/m 

11000101 modregr/m 

11000100 modregr/m 

10011111 

10011110' 

10011100 

10011101 

2-55 

240029-24 

78&43210 

data if w 1 



inter 

ARITHMETIC 

ADD = Add: 

Mnemonic and 
Description 

Reg.! Memory with Register to Either 

Immediate to Register/Memory 

Immediate to Accumulator 

ADC = Add with Carry: 

Reg.lMemory with Register to Either 

Immediate to RegisterlMemory 

Immediate to Accumulator 

INC = Increment: 

RegisterlMemory 

Register 

AAA = ASCII Adjust for Add 

DAA = Decimal Adjust for Add 

sue = Subtract: 

Reg.!Memory and Register to Either 

Immediata from RegisterlMemory 

Immediate from Accumulator 

see = Subtract with Borrow 

Reg.!Memory and Register to Either 

Immediate from RegisterlMemory 

Immediate from Accumulator 

DEC = Decrement: 

RegisterlMemory 

Register 

NEG = Change Sign 

CMP = Compare: 

RegisterlMemory and Register 

Immediate with Register IMemory 

Immediate with Accumulator 

AAS = ASCII Adjust for Subtract 

DAS = Decimal Adjust for Subtract 

MUL = Multiply (Unsigned) 

IMUL = Integer Multiply (Signed) 

AAM = ASCII Adjust for Multiply 

DIY = Divide (UnSigned) 

IDlY = Integer Divide (Signed) 

AAD = ASCII Adjust for Divide 

CBW = Convert Byte to Word 

CWO = Convert Word to Double Word 

80C86A 

Table 2. Instruction Set Summary (Continued) 

I ' Instruction Code 

76543210 78543210 76543210 76543210 

OO,OOOOdw mod reg rim 

100000sw modOOO rIm data data ils w = 01 

0000010w data dataifw = 1 

000100dw mod reg rIm 

100000sw modOl0r/m data datailsw = 01 

0001010w data dataifw = 1 

l1111111V modOOOr/m 

01000reg 

00110111 

00100111 

001010dw mod reg rIm 

100000Sw mod 101 rIm data data ils w =01 

0010110w data data ifw = 1 

000ItOdw mod reg rIm 

100000sw mod 0 11 rIm data data if s w = 01 

0001110w data dataifw = 1 

1 1 1 111 1 w modOOI rIm 

01001 reg 

1111011w modOl1 rIm 

001110dw mod reg rIm 

'100000sw mod 111 rIm data datails w = 01 

0011110w data data ifw = 1 

00111111 

001 011 1 1 

1111011 w mod 1 00 rIm 

1111011 w mod 1 0 1 rIm 

11010100 00001010 

1111011w modl10r/m 

1111011w mod 111 rIm 

11010101 00001010 

10011000 

10011001 

2-56 



inter 80C86A 

8086/8088 Instruction Set Summary (Continued) 11\ 

Mnemonic and I 
I 

Description Instruction Code 

~ LOGIC 76543210 76543210 76543210 76543210 
" 

NOT = Invert 1111011w modO 1 o rIm 

SHLISAL = Shift Logical! Arithmetic Left 110100vw mod 1 OOr/m 

SHR = Shift Logical Right 110100vw mod 101 rIm 

SAR = Shift Arithmetic Right 110100vw mod 111 rIm 

ROL = Rotate Left 110100vw modOOOr/m 

ROR = Rotate Right 110100vw modOOl rIm 

RCL = Rotate Through Carry Flag Left 110100vw modOl0r/m 

RCR = Rotate Through Carry Right 110100vw mod 0 11 rIm 

AND = And: 

Reg.lMemory and Register to Either 001000dw mod reg rIm 

Immediate to Register IMemory 1000000w mod 1 OOr/m data dataifw = 1 

Immediate to Accumulator 0010010w data dataifw = 1 

TEST = And Function to Flags, No Result: 

RegisterlMemory and Register 1000010w mod reg rIm 

Immediate Data and Register/Memory 1111011w modOO Or/m data dataifw = 1 

Immediate Data and Accumulator 1010100w data dataifw = 1 

OR = Or: 

Reg.lMemory and Register to Either 00OO10dw mod reg rIm 

Immediate to RegisterlMemory 1000000w modOOl rIm data dataifw = 1 

Immediate to Accumulator 0OOOl10w data dataifw=l 

XOR = Exclusive OR: 

Reg.lMemory and Register to Either 0Ol100dw mod reg rIm 

Immediate to Register/Memory 1000000w mod 11 o rIm data dataifw = 1 

Immediate to Accumulator 0011010w data data~w = 1 

STRING MANIPULATION 

REP = Repeat 1111001 z 

MOVS = Move BytelWord 1010010w 

CMPS = Compare BytelWord 1010011w 

SCAS = Scan Byte/Word 1010111w 

LODS = Load Byte/Wd to ALI AX 1010110w 

STOS = Stor Byte/Wd from ALI A 1010101w 

'CONTROL TRANSFER 

CALL = Calt 

Direct Within Segment 11101000 disp-Iow disp-high 

Indirect Within Segment 1 1 1 1 11 11 modO 1 0 rIm 

Direct Intersegment 10011010 offset-low offset-high 

seg-Iow seg-high 

Indirect Intersegment 1 1 1 1 1 111 modOl1 rIm 

2·57 



inter 80C86A 

Table 2. Instruction Set Summary (Continued) 
Mnemonic and 

Description 

CONTROL TRANSFER (Continued) 
JMP = Unconditional Jump: 

Direct Within Segment 

Direct Within Segment-Shari 

Indirect Within Segment 

Directlntersegment 

Indirectlntersagment 

RET = Return from CALL: 

Within Segment 

Within Sag. Adding Immed to SP 

Intersegment 

Intersegment Adding Immediate to SP 

JE/JZ = Jump on Equal/Zero 

JLlJNGE = Jump on Less/Not Greater 
or Equal 

JLE/JNG = Jump on Less or Equall 
Not Greater 

JBI JNAE = Jump on Below/Not Above 
, or Equal 
JBE/JNA = Jump on Below or Equal/ 

Not Above 
JP/JPE = Jump on Parity/Parity Even 

JO = Jump on Overflow 

JS = Jump on Sign 

JNEI JNZ = Jump on Not Equal/Not Zero 

JNL/JGE = Jump on Not Less/Greater 
or Equal 

JNLE/JG = Jump on Not Less or Equal/ 
Greater 

JNB/JAE = Jump on Not Below/Above 
or Equal 

JNBEI JA = Jump on Not Below or 
Equal/Above 

JNP/JPO = Jump on Not Par/Par Odd 

JNO = Jump on Not Overflow 

JNS = Jump on Not Sign 

LOOP = Loop CX Times 

LOOPZ/LOOPE = Loop While Zero/Equal 

LOOPNZ/LOOPNE = Loop While Not 
Zero/Equal 

JCXZ '" Jump on CX Zero 

INT = Interrupt 

Type Specified 

Type 3 

INTO = Interrupt on Overflow 

IRET = Interrupt Return 

I Instruction Code 

76543210 76543210 76543210 

11 101001 disp-Iow I disp-high 

11101011 disp I 
11111111 mod 1 OOr/m I 
11101010 o.ffset-Iow I offset-high 

seg-Iow I seg-high 

11111111 mod 101 rIm I 

11000011 

11000010 data-low data-high 

11001011 

11001010 data-low data-high 

01110100 disp 

01111100 disp 

01111110 disp 

01110010 disp 

01110110 disp 

01111010 disp 

01110000 disp 

01111000 disp 

01110101 disp 

01111101 disp 

01111111 disp 

01110011 disp 

01110111 disp 

01111011 disp 

01110001 disp 

01111001 'disp 

11100010 disp 

11100001 disp 

11100000 disp 

1 1 ,1 00011 disp 

1 1 00'11 01 type 

11001100 

l1QOf110 

11001111 

2-58 



inter 80C86A 

Table 2. Instruction Set Summary (Continued) 

Mnemonic and 
Description 

PROCESSOR CONTROL 

CLC = Clear Carry 

CMC = Complement Carry 

STC = Set carry 

CLD = Clear Direction 

STD = Set Direction 

CLI = Clear Interrupt 

STI = Set Interrupt 

HLT = Halt 

WAIT = Wait 

ESC = Escape (to External Device) 

LOCK = Bus Lock Prefix 

NOTES: 
Al = 8-bit accumulator 
AX = 16-bit accumulator 
CX = Count register 
OS = Data segment 
ES = Extra segment 
Above/below refers to unsigned value. 
Greater = more positive: 

I 
76543210 

I 11111000 

11110101 

11111001 

11111100 

11111101 

11111010 

11111011 

11110100 

1.0011011 

11011xxx 

11110000 

less = less positive (more negative) Signed values 
if d = 1 then "to" reg; if d = 0 then "from" reg 
if w = 1 then word instruction; if w = 0 then byte instruc­

tion 
if mod = 11 then rIm is treated as a REG field 
if mod = 00 then OISP = 0', disp-Iow and disp-high arE) 

absent 
if mod = 01 then OISP = disp-Iow Sign-extended to 

16 bits, disp-high is absent 
if mod = 10 then OISP =disp.high: disp-Iow 
if rIm = 000 then EA. = (BX) + (SI) + OISP 
if rIm = 001 then EA = (BX) + (01) + OISP 
if rIm = 010 then EA = (BP) + (SI) + OISP 
if rIm "= 011 then EA = (BP) + (01) + OISP 
if rIm = 100 then EA = (SI) + OISP 
if rIm = 101 then EA = (01) + OISP 
if rIm = 110 then EA = (BP) + OISP' 
if rIm = 111 then EA = (BX) + OISP 
OISP follows 2nd byte of instruction (before data if re­
quired) 
'except if mod = 00 and rIm = 110 then EA = disp-high: 
disp-Iow. 

"MOV CS, REG/MEMORY not allowed. 

DATA SHEET REVISION REVIEW 

Instruction Code 

76543210 

modxxxr/m 

if s w= 01 then 16 bits of immediate data form the oper­
and 

if s w = 11 then an immediate data byte is sign extended 
to form the 16-bit operand 

if v = 0 thEm "count" = 1; if v = 1 then "count" in (Cl) 
register 

x = don't care 
z is used for string primitives for comparison with ZF FLAG 
SEGMENT OVERRIDE PREFIX 

001reg110 

REG is assigned according to the following table: 

16-Blt (w = 1) S-Blt(w = 0) Segment 

000 AX 000 AL 00 E5 
001 CX 001 CL 01 C5 
010 DX 010 DL 10 55 
011 BX 011 BL 11 D5 
100 5P 100 AH 
101 BP 101 CH 
110 51 110 DH 
111 DI 111 BH 

Instructions which reference the flag register file as a 16-bit 
object use the symbol FLAGS to represent the file: 
FLAGS = 
X:X:X:X:(OF):(OF):(IF):(TF):(SF):(ZF):X:(AF):X:(PF):X:(CF) 

Mnemonics ® Intel, 1978 

The following list represents key differences between this and the -001 data sheet. PleaSe review. this summa­
ry carefully. 

1 .. ln the Pin Description Table (Table 1), the description of the HLDA signal being issued has been corrected. 
HLDA will be issued in the middle of either the T 4 or Ti state. 

2-59 

I 



80C86AL 
16-BIT CHMOS MICROPROCESSOR 

• Pin-for-Pin and Functionally Compatible 
to Industry Standard HMOS 8086 

• Fully Static Design with Frequency 
Range from D.C. to: 
- 5 MHz for 80C86AL 
- 8 MHz for 80C86AL-2 

• Low Power Operation 
-Operating Icc = 10 mA/MHz 
- Standby Iccs = 500 p,A Max 

• Bus-Hold Circuitry Eliminates Pull-Up 
Resistors 

• Direct Addressing Capability of . 
1 MByte of Memory 

• Architecture Designed fOr Powerful 
Assembly Language and Efficient High 
Level Languages 

• 24 Operand Addressing Modes 

• Byte, Word and Block Operations 

• 8 and 16-Blt Signed and Unsigned 
Arithmetic 
- Binary or Decimal 
- Mu/tl~ly and Divide 

• Available In 40-Lead Plastic DIP and 
44-Lead PLCC Packages 
(Se9 Packaging Spec., Order #231369) 

The Intel 80C86AL is a high performance. CHM05 version of the industry standard HMOS 8086 16-bit CPU. It 
is available in 5 and 8 MHz clock rates. The 80C86AL offers two modes of operation: MINimum for small 
systems and MAXimum for larger,applications such as multiprocessing. It is available in 40-pin DIP and 44-pin 
plal3tic leaded chip carrier (PLCC) package •. 

.---1---, ..... ., .... ....... 

TDf_"""--""""""'----, 
"' ... 

IMT;,; 

240074-1 

Figure 1. 80C86AL 
CPU Block Diagram 

GND 1 

IIAX 
MOllE 

iiii 
iiiimO(HOLDI 
iiiiIoTi(HLDAI 

LOCK (Wil 
Ii (lIIiiil 

READY 

(OlIAI 

(DiNI 
(ALEI 

(WI 

21 RESET """1.-__ .1-

240074-2 

Figure 2a. 80C8.6AL 
40·Lead P·DIP Configuration 

2·60 

8OC8"" 
CPU 

39 He 

38 Ali/S6 

iiil/S1 
MN/Mx 

iD 
A07GTO (HOlD) 

33 1f07iffi, (HLDA) 
32 [OCl( (WIi) 

S2 (101/0) 

ii (OT/Iit) 

29 so (m) 
18'19202121232"21128'2728 

~ i !i ~ p·8 ~ I~ ii ~ 
·u 

240074-3 

Figure 2b. 80C86AL 
~.4·l.,ead PLCC·Conflgur"tlon 

September 1988 
Order Number: 240074-002 



inter 80C86AL 

Table 1. Pin Description 
The following pin function descriptions are for 8OC86AL systems in either minimum or maximum mode. The 
"Local Bus" in these descriptions/s the direct multiplexed bus interface connection to the 80C86AL (without 
regard to additional bus buffers). , 

Symbol 
P·DIP Contlg. Type Name and Function 

Pin No. 

AD15-ADo 2-16.39 1/0 ADDRESS DATA BUS: These lines constitute the time 
multiplexed memory/lO address (T1) and data (T2. T3. Tw. T4) 
bus. Ao is analogous to SHE for the lower byte of the data bus. 
pins D7-Do. It is lOW during T 1 when a byte is to be transferred 
on the lower portion of the bus in memory or I/O operations. Eight-
bit oriented devices tied to the lower half would normally use Ao to 
condition chip select functions. (See SHE.) These lines are active 
HIGH and float to 3-state OFF(1) during interrupt acknowledge and 
local bus "hold acknowledge." 

A19/S6. 35-38 0 ADDRESS/STATUS: During T 1 these are the four most significant 
A18/S5. address lines for memory operations. During I/O operations 
A17/S4. these lines are. lOW. During memory and I/O operations. 
A16/S3 status information is available on these lines during T 2. T 3. T w. 

and T 4. The status of the interrupt enable FLAG bit (S5) is updated 
at the beginning 0(.8Ilch ClK cycle. A17/S4 and A16/Sa are 
encoded as shown. 

This information indicates which relocation register is presently 
being used for data accessing. 

These lines .float to 3-state OFF(1) during local bus "hold 
acknowledge. " 

A17/S4 A16/SS Characteristics 

o (lOW) . 0 Alternate Data 
0 1 Stack 
1 (HIGH) 0 Code or None 
1 1 Data 
S6 isO 
(lOW) 

m:rE/S7 34 0 BUS HIGH ENABLE/STATUS: During T 1 the bus high enable signal 
(BRE) should be used to enable data onto the most significant half 
of the data bus. pins D15-D8. Eight-bit orient9d devices tied to the 
upper'half of the bus would normally use SHE to condition chip 
select functions. SHE is LOW during T 1 for read. write. and 
interrupt acknowledge cycles when a byte is to be transferred on 
the high portion of the bus. The S7 status information is available 
during T 2. T 3. and T 4 .. The signal is active lOW. and floats to 
3-state OFF(1) in "hold." It is lOW during T 1 for the first interrupt 
acknowledge cycle. 

BHE Ao Characteristics 
I 

0 0 Whole word 
0 1 Upper byte froml 

to odd address 
1 0 lower byte froml 

.to even address 
1 1 None 

2-61 

'j 
II 



80C86AL. -; .. ; 

Table 1. Pin Description (Continued) 

Symbol P·DIP Conflg. Type Name and Function, 
Pin No. 

J!ID 32 0 READ: Read strobe indicates th@.t t",e proc~ssor is performing a 
memory of I/O read cycle, depending on the state of the S2 pin. 
This signal is used to read devices which reside on the 80C86Al 
local bus. J!ID, is active' lOW during T 2, t 3 and T w of any read 
cycle, and is guaranteed to remain HIGH in T 2 until the 80C86Al 
local bus has floated. 

This floats to 3-state OFF in "hold acknowledge." 

READY, 22 I READY: is the acknowiedgement from the addressed memory or 
110 device that it will complete the data transfer. The READY 
signal from memory/IO iS,synchronized by the 82C84A Clock 
Generator to form READY. This signal is active HIGH. The 
80C86Al READY input is not synchronized. Correct operation is 
not guaranteed if the setup and hold times are not met. 

INTR 18 I INTERRUPT REQUEST: is a level triggered input which is 
sampled during the'last clpck cycle of each instruction to 
determine if the processor should enter into an interrupt 
acknowledge operation. A subroutine is vectored to via an 
interrupt vector lookup table located in system memory. It can be 
internally masked by software resetting the interrupt enable bit. 
INTRis internally synChronized. This signal is active HIGH. 

TEST 23 I TEST: input is examined by the "Wait" instruction. If the 'fEST 
input ,is lOW execution continues, otherwise the processor waits 
in an "Idle'~ state. This input is synchronized internally during each 
olock cycle on the leading edge of ClK. 

NMI 17 I NON·MASKABLE INTERRUPT: an edge triggered input which 
causes a type 2 interrupt. A subroutine is vectored to via an 
interrupt vector lookup table located in system memory. NMI is not 
maskable internally by software. A transition from a lOW to HIGH 
initiates the interrupt at the end of the current instruction. This 
input is internally synchronized. 

RESET 21 I RESET; causes thE! Processor to immediately terminate its prese,nt 
" . 

activity. The signal must be active HIGH for at least four clock 
cycles. It restartse~cution, as deSCribed in the Instruction Set 
description, when RE~.ET returns lOW. RESET is internally 
synchronized. 

ClK' 19' I CLOCK: provides the basic timing for the processor and bus 
controller. It is asymmetric with a 33% duty cycle to provide 
optimized internal timing. 

V6c 40 Vee:' + 5V power supply pin. 

GND 1,20 GROUND: Both must be connected. 

MN/MX . 33 I MINIMUM/MAXIMUM:,indicates what mode the processor is to 
operate in. The two modes are discussed in the following sections. 

" 

2·62 



intJ·· 8OC86AL 

Table 1. Pin Description (Continued) 
The following pin function descriptions are for the 80C86AU82C88 system in maximum mode (i.e., 
MNI1JX= VssI. Only the pin·functions which are unique to maximum mode are described; al/ other pin func-
tions are as described above. . 

Symbol P·DIP Conflg. Type Name and Function 
Pin No. 

S2,S1,So 26"';28 0 STATUS: active during T4, Tl, andT2 and is returned to the passive 
state (1,1,1) during T 3 or during T w when READY is HIGH. This 
status is used by the 82C88 Bus Controller to generate all memory 
and I/O access control signals. Any change by 52, 51, So during T 4 
is used to indicate the beginning of a bus cycle, and the return to 
the passive state in T 3 or T w is used to indicate the end of a bus 
cycle. 
These signals float to 3-state OFF(l) in "hold acknowledge." These 
status lines are encoded as shown. 

§i Sl So Characteristics 

o (lOW) 0 0 Interrupt 
Acknowledge 

0 0 1 Read I/O Port 
0 1 0 Write I/O Port 
0 1 1 Halt 
1 (HIGH) 0 0 Code Access 
1 0 1 Read Memory 
1 1 0 Write Memory 
1 1 1 Passive 

RQ/GTo, 30,31 I/O REQUEST IGRANT: pins are used by other local bus masters to 
RO/GTl force the processor to release the local bus at the end of the 

processor's current bus cycle. Each pin is bidirectional with 
RQ/GT ° having higher priority than RO/GT 1. RQ/GT has an 
internal pull-up resistor so'may be left unconnected. The 
request/grant sequence is as follows (see timing diagram): 

1. A pulse of ,1 ClK wide from another local bus master indicates a 
lOCal bus request ("hold") to the 80C86Al (pulse 1). 
2. During a T 4 or T 1 clock cycle, a pulse 1 ClK wide from the 
8OC86Al to the requesting master (pulse 2), indicates that the 
80C86Al has allowed the local bus to float and that it will enter the 
"hold acknowledge" state at the next ClK. The CPU's bus interface 
unit is disconnected logically from the local bus during "hold 
acknowledge." 
3. A pulse 1 ClK wide from the requesting master indicates to the 
80C86Al (pulse 3) that the "hold" request is about to end and that 
80C86Al can reclaim the local bus at the next ClK. 
Each master-master exchange of the local bus is a sequence of 3 
pulses. There must be one dead ClK cycle after each bus 
exchange. Pulses are active lOW. 

If the request is made while the CPU is performing a memory cycle, 
it will release the local bus during T 4 of the cycle when all the 
following conditions are met: 

1. Request Occurs on or before T 2. 
2. Current cycle is not the ·Iow byte of a word (on an odd address). 
3. Current cycle is not the first acknpwledge of an interrupt 
acknowledge sequence. 
4. A locked instruction is not currently executing. 

2-63 



80C86AL 

Table 1. Pin· DeScription (Continued) 

P-OIP Conflg. 
.' 

Symbol Pin No; , Type Name and Function 

If the local bus is idle when the request is made ~he two possible 
events will follow: 

1. Lo~al bus will be released during the next clocl< . 
. 2. A memorY cycle will start within 3 clocks. Now the four rules for a 

currently aQtive memQry. cycre apply with condition number 1 already 
satisfied. 

meR 29 0 LOCK: output indicates that other system bus masters are not to 
gain control o11he system bus while LOCK is active LOW. The 
LOCK signal is activated by the "LOCK" prefix instruction and 
remains active !-Inti! the completion of the next instruction. This 
signal is active LOW, and.floats to 3-state OFF(1) in "hold 
acknowledge." . 

QS1,()SO 24,25 0 QUEUE STATUS: The queue status is valid during the CLK cycle 
after which the queue operation is performed. 
QS1 and QSo provide status to allow external tracking of the internal 
80C86AL instruction queue. 

QS1 QScI Characteristics 

o (LOW) 0 No Operation 
0 1 First Byte of Op Code from Queue 
1 (HIGH) 0 Empty the Queue 
1 1 Subsequent Byte from Queue 

The followingpin function descriptions are for the B0C86AL in minimllm mode (i.e., MN/MX= Vee). Only the 
pin functions which are unique to minimum mode are described; all other pin functions are described above. 

M/iO 28 0 STATUS LI .. E: logically equivalent to S2 in the maximum mode. It 
is used to distingu,sl:1 a memory access from an I/O access. M/iO 
becomes valid in the T 4 preceding a bus cycle and remains valid 
until.the fin~1T 4 of the cycle (M= HIGH, 10= LOW). M/iO floats to 
3-sfate OFF(1)in local bus "hold acknowledge." 

WR 29 () WRITE: indicates that the processor is performing a write memory 
or write I/O cycle, depending on the state Of the M/iO signal. WR is 

: active for T 2, T 3 and T w of any write cycle. It is active LOW, and 
floats to 3-state OFF(1) in local bus "hold acknowledge." 

INTA 24 0 INTA is ut\ed a~ a r~d strobe for interrupt acknowledge cycles. It is 
acti:ve LOW during T 2, T 3 and T w of each interrupt acknowledge 
cycle. " 

ALE 25 0 ADDRESS loA TCH EN~BLE: provided by the processor to latch 
the address into an address latcl1. It is a HIGH pulse active during 
T 10f any bus, cycle. Note that ALE is never floated. 

DT/R 27 0 DATA TRANSMIT/RECEIVE: needed in minimum system that 
desires to usa a data bus transceiver. It is used to control the 
direction of data flow through the transceiver. Logically DT iRis 
equivalentto S-t in the maximum mode, and its timing Is the same 

. as for M/iO. (T = HIGH,A"" LOW.) This signal floats to 3-state 
OFF(1) in local bus "hold,acknowledge." 

2-64 



80C86AL 

Table 1 Pin Description (Continued) . 
Symbol P·DIP Conflg. Type Name and Function 

Pin No. 

DEN 26 0 DATA ENABLE: provided as an output enable for the transceiver 
in a minimum system which uses the transceiver. DEN is active 
LOW during each memory and I/O access and for INTA cycles. 
For a read or TNTA cycle it is active from the middle of T 2 until the 
middlE! of T 4, while for a write cycle it is active from the beginning 
of T 2 until the middle of T 4. DERfloats to 3-state OFF(1) In local 
bus "hold acknowledge." 

HOLD, 31,30 I/O HOLD: indicates that another master is requesting a local bus 
HLDA "hold." To be acknowledged, HOLD must be active HIGH. The 

processor receiving the "hold" request will issue HLDA (HIGH) as 
an acknowledgement in the middle of a T 4 or TI clock cycle. 
Simultaneous with the issuance of HLDA the processor will float 
th,e local bus and control lines. After HOLD is detected as being 
LOW, the processor will LOWer the HLDA, and when the 
processor needs to run another cycle, it will again drive the local 
bus and control lines. 
The same rules as for RC/GT apply regarding when the local bus 
will be released. 
HOLD is not an asynchronous input. External synchronization 
should be provided if the system cannot otherwise guarantee the 
setup time. 

NOTE: 
1. See the section on Bus Hold Circuitry. 

FUNCTIONAL DESCRIPTION 

STATIC OPERATION 

~II 80C86AL circui~ry is of static design. Internal reg­
Isters, cOLlnters and latches are static and require no 
refresh as with dynamic circuit deSign. This elimi­
nates the minimum operating frequency restriction 
placed on other microprocessors. The CMOS 
8OC86AL can operate from DC to the appropriate 
upper frequency limit. The processor clock may be 
stopped in either state (high/low) and held there in­
definitely. This type of operation is especially useful 

, for system debug or power critical applications. 

The 80C86AL can be single stepped using only,the 
CPU clock. This state' can be maintained as long as 
is necessary. Single step clock operation allows sim­
ple interface circuitry to provide critical information 
for bringing up your system.' 

~tatic deSign also allows very low frequency opera­
tion. In a power critical situation, this can provide 
extremely low power operation since 80C86AL pow­
er dissipation is directly related to operating frequen­
cy. As the syste!l1 frequency is reduced, so is the 
operating power until, ultimatelY,at a DC input fre­
quency, the 80C86AL power requirement is the 
standby current. 

2-65 

INTERNAL ARCHITECTURE 

The internal functions of the 80C86AL processor are 
partitioned logically into two processing units. The 
first is the Bus Interface Unit (BIU) and the second is 
the Execution Unit (EU) as shown in the block dia­
gram of Figure 1. 

These units can interact directly but for the most 
part perform as separate asynchronous operational 
processors. The bus interface unit provides the func­
tions related to instruction fetching and queuing, op-, 
erand fetch and store, and address relocation. This 
unit also provides the basic bus control. The overlap 
of instruction pre-fetching provided by this unit 
serves to increase processor performance through 
improved bus bandwidth utilization. Up to 6 byt$s of 
the instruction stream can be queued while waiting 
for decoding and execution. 

The instruction' stream queuing mechanism allows 
the BIU to keep the memory utilized very efficiently. 
Whenever there i,s space for at least 2 bytes in the 
queue, the BIU will attempt a word fetch memory 
cycle. This greatly reduces "dead time" on the 
memory bus. The queue acts as a First-In-First Out 
(FIFO) buffer; from which the EU extracts instruction 
bytes as required. If the queue is empty (following a 
branch instruction, for example), the first byte into 
the queue immediately becomes available to the EU. 

'\ 
',I 

I': 
1

1 
i 

1 

,I 

i 

,I 

I 
I' 
i 



inter 80C8$AL 

Memory. Segment RegIster .. Segment. 
Reference Need Used Selection Rule 

Instructions CODE (CS) Automatic with all instruction prefetch. 
.... 

Stack' STACK (SS) All stackp'ushes and pops. Memory references relative to BP 
base register except data references. 

Lqcal Data O,ATA (OS) Data referenct?s when: relative to stack, destination of string 
operation, or explicitly overridden. 

External (Global) Data EXTRA (ES) Destination of string operations: Explicitly selected using a 
segment override. 

The execution units receives pre-fetched instruc~ 
tions from the BIU queue and provides I.m-relocated 
operand addresses to the BIU. Memory operands 
are passed through the BIU for processing by the 
EU, which passes results to the BIU for storage. See 
the Instruction Set description for further register set 
and architectural descriptions. 

MEMORY ORGANIZATION 

The processor provides a 20-bit address to memory 
which locates the byte being referenced. The memo­
ry is organized as a linear array of up to 1 million 
bytes, addressed as OOOOO(H) to FFFFF(H). The 
memory is logically divided into code,' data, extra 
data, and stack segments of up to 64k bytes each, 
with each segment falling on 16-byte boundaries. 
(See Figure 3a.) 

~FFF~H 

8I } CODE, SEGMENT 

~_...L.*"_~ XXXXOH 

...... L-j*"""-I 

1 STACK SEGMENT 

SIGMENT } 

.~'R~E~GI8~TEIR~.F~IL~E ~~~~~~~' DATA SEGMENT 

'J EXTRA DATA 8EGMENT 

'-'~--t 
--..J" OOODOH' , 

240074-4 

Figure 3a. ft/Iemory Organization 

All memory references are made relative to base ad­
dresses contained in high speed segment registers. 
The segment types were chosen based on the ad­
dressing needs of programs. The segment register 
to be selected is automatically chosen according to 
the rules of the following table. All information in one 
segment type share the same logical attributes (e.g. 
code or data). By structuring memory into relocat­
able areas of similar characteristics and byautomati­
cally selecting segment registers, programs are 
shorter,faster, and more structured. 

Word (16-bit) operands can be located on even or 
odd address boundaries and are thus not con­
strained to even boundaries as is the case in many 
16-bit computers. For address and data operands, 
the least Significant byte of the' word is stored in the 
lower valued address location and the most. signifi­
cant byte in the next higher address location. The 
BIU automatically' performs the proper number of 
memory accesses, one if the wprd operand is on an 
even byte boundary and two if it is on an odd byte 
boundary. Except for the performance penalty, this 
double access is transparent to the software. This 
performance penalty does not occur for instruction 
fetches, only wordoper.ands. 

Physically, the memory is organized asa high bank 
(015-08) and a low bank (07~Do) of 512k.a-bit 
bytes addressed in parallel by the processor's ad­
dreSS lines. 

, ' 

A19-Al' Byte data with even addresses is trans-' 
ferred on the 01-00 bus lines while odd addressed 
byte data (Ao HIGH) is transferred on the 015-08 
bus lines. The processor provides two enable sig­
nals, BHE and Ao, to selectively allow reading from 
or writing intO' either an odd byte location, even' byte 
location, or both. The instruction stream is fetched 
from memory as words and is addressedinternaUy 
by the processo~ to the byte level as'necessary. 

In referencing word data the BIUtequiresone or two 
memory cycles depending on whether or not the 
starting byte of the word is on an eVEmor·odd ad­
dress, respectively .. Consequently,i in referencing 



inter 80C86AL 

word operands performance can be optimized by lo­
cating data on even address boundaries. This is an 
especially useful technique for using the stack, since 
odd address references to the stack may adversely 
affect the context switching time for interrupt pro­
cessing or task multiplexing. 

Certain locations in memory are reserved for specific 
CPU operations (see Figure 3b.) Locations from ad­
dress FFFFOH through FFFFFH are reserved for op­
erations including a jump to the initial program load­
ing routine. Following RESET, the CPU will always 
begin execution at location FFFFOH where the jump 
must be. Locations OOOOOH through 003FFH are re­
served for interrupt operations. Each of the 256 pos­
sible interrupt types has its service routine pointed to 
by a 4-byte pointer element consisting of a 16-bit 
segment address and a 16-bit offset address. The 
pointer elements are assumed to have been stored 
at the respective places in reserved memory prior to 
occurrence of interrupts. 

FFFFFH 
RESET BOOTSTRAP 

PROGRAM JUMP 
FFFFOH 

3FFH 
INTERRUPT POINTER 

FOR TYPE 255 
3FCH 

· · · 7H 
INTERRUPT POINTER 

FOR TYPE 1 
4H 

INTERRUPT POINTER 
3H 

FOR TYPE 0 
OH 

240074-5 

Figure 3b. Reserved Memory Locations 

MINIMUM AND MAXIMUM MODES 

The requirements for supporting minimum and maxi­
mum 80C86AL systems are sufficiently different that 
they cannot be done efficiently with 40 uniquely de­
fined pins. Conseque!!!!t, the 80C86AL is equipped 
with a strap pin (MN/MX) which defines the system 
configuration. The definition of a certain subset of 
the pins changes dependent on the condition of the 
strap pin. When MN/MX pin is strapped to GND, the 
80C86AL treats pins 24 through 31 in maximum 
mode. An 82C88 bus controller interprets status in­
formation coded into So, 51, 52 to generate bus tim­
ing and control Signals compatible with the MUL TI­
BUS® architecture. When the MN/MX pin is 
strapped to Vee, the 80C86AL generates bus con­
trol signals itself on pins 24 through 31 , as shown in 
parentheses in Figure 2. Examples of minimum 
mode and maximum mode systems are shown in 
Figure 4. 

BUS OPERATION 

The 80C86AL has a combined address and data bus 
commonly referred to as a time multiplexed bus. 
This technique provides the most efficient use of 
pins on the processor. This "local bus" can be buff­
ered directly and used throughout the system with 
address latching provided on memory and 1/0 mod­
ules. In addition, the bus can also be demultiplexed 
at the processor with a single set of address latches 
if a standard non-multiplexed bus is desired for the 
system. 

Each processor bus cycle consists of at least four 
CLK cycles. These are referred to as T 1, T 2, T 3 and 
T 4 (see Figure 5). The address is emitted from the 
processor during T 1 and data transfer occurs on the 
bus during T 3 and T 4. T 2 is used primarily for chang­
ing the direction of the bus during read operations. In 
the event that a "NOT READY" indication is given 
by the addressed device, "Wait" states (T w) are in­
serted between T 3 and T 4. Each inserted "Wait" 
state is of the same dur~tion as a CLK cycle. Periods 
can occur between 80C86AL bus cycles. These are 
referred to as "Idle" states (T1) or inactive CLK cy­
cles. The processor uses these cycles for internal 
housekeeping. 

During T 1 of any bus cycle the ALE (Address Latch 
Enable) Signal is emitted (by either the processor or 
the 82C88 bus controller, depending on the MN/MX 
strap). At the trailing edge of this pulse, a valid ad~ 
dress and certain status information for the cycle 
may be latched. 

I 

I 

i. 
;,f. 

I , . 



inter 8.0C86AL 

_x~Y!'C 

~L= -t CUI 
.... -tREADY 

~~----~-------------------------------------------------. 
~r-------------------------------~----------------

-tMHT ~r-----------------------------~------~l-------+----lr "~ ~r---------------------------~~------~,-------+~~ 
OND .... _1_, DTIIII----, I 

•, WAIT I 1IIIIr---, I I 
I STATE I I I .... ----, I 
I GENERATOR I ........ LCPU I ---J'U-'-t~;===ll' I 
L ___ .J ALE~ GND~::: I 

- i! ~ 
AD"'AOtlK~AD~~t!::jI LATCH 

A ... A",. ~ (2ORS, 

iiHl- ~ I 

I: ,.c::.==-' I 
I 1..._"1' ' I I 
L_~~ I l I 

L------1 ____ -! TRANSCEIVE" I ~::;:~:=JD~AitlTAC::~=~:=::;;;;:::;==~;;:~~:::::: 

L_~ __ ~IHE·lhn h 1T 1 ,n 
FOr.:-~~ O8a. i:IO,. WE OD CE OE 08 ill WR 

OATA IUS DRIVE 61C118"AII(4, .21C14 EPIIOII(" 

.~.~ • L .~.~ • 2K.' I 2K.I 

Figure 4a. Minimum Mode iAPX 80C86AL Typical Configuration 

Yee r~ I - ~CLlC "NI~ I-GND CLK IIIIIie 
CLOCK ii OI!NEJV.TOII .. iii\m! 

I-IIR r READY s; S; iiiWC -N.C. 

GO 

RENT s; s; _ilIliC r RDY r-- DEN C;~~R ;awe 

ND i-~-' ICCIIAL r--'- OT/i! ~ -N.C. 
CPU 

ALE iNT'" I WAIT I 
I o':~:l~. I 

[lJeK -N.C. -'=--":'"-:1 
I I I L ___ -' STI 

I 
ONO- -OE 

I ADe-AD1' A AI TA LATCH 
l..-..!OO AtI-A,. 

~ r2 
(2 OR 31 

Bill! Fr 

~ 
T 
DE 

T"ANSC~IVEFI D 

L->" 
III) 

~'11 J1 TT liHI 
cso" ffo, wroo CE OE 

.'C1111AA11(41 21CI4e_ .. , 12, .. ,. ..,. 
1M •• J IICx' 

Figure 4b. Maximum Mode 80C86AL Typical Configuration 

2-68. 

CI 

8XXX 
I'E",_HAL 

OEYlCE 

240074-6 

II 
II1IIVlI 

IIClOC 
PE~RAL 

240074-7 



intJ 80C86AL 

1----- (. + NWAIT) =Tcv -----·+1-' -----~ .. + NwAtT) '" fey -----°1 
• 1:, T2 TJ TWAtT I T4 ,T, T2 T3 TWAIT I T4 

eLK 

ADDRI 
STATUI 

ADDR/DATA 

READY 

D1Jii 

READY 

WAIT 

.....-- MEMORY ACCES. TIME-

,--
-----8 __ D_.T_._OU_T_'D_"_-D_~ __ t-DC 

READY 

WAIT 

\--------', 
240074-8 

Figure 5. Basic System Timing 

Status bits 50, 51, and 52 are used, in maximum 
mode, by the bus controller to identify the type of 
bus transaction according to the following table: 

S2 S1 So Characteristics 

o (LOW) 0 0 Interrupt Acknowledge 
0 0 1 Read 1/0 
0 1 0 Write 1/0 
0 1 1 Halt 
1 (HIGH) 0 0 Instruction Fetch 
1 0 1 Read Data from Memory 
1 1 0 Write Data to tv'Iemory 
1 1 1 Passive (no bus cycle) 

Status bits S3 through S7 are multiplexed with high­
order address bits and the SHE signal, and are 

2-69 

therefore valid during T 2 through T 4. S3 and S4 indi­
cate which segment register (see Instruction Set de­
scription) was used for this bus cycle in forming the 
address, according to the following table: 

S4 S3 Characteristics 

o (LOW) 0 Alternate Data (extra segment) 
0 1 Stack 
1 (HIGH) 0 Code or None 
1 1 Data 

S5 is a reflection.of the PSWinterrupt enable bit. 
S6 = 0 and S7 is a spare status pin. 

I,': 
!',I 

I; 
I~ 
,.,~ 

'.'.' .. I',~, 

j.\ 
I 

[Ii 
!~ , 
.• " .... 
!\ 
" 



intJ 80C86AL 

I/O ADDRESSING 

In the 80C86Al, I/O operations can address up to a 
maximum of 64k 110 byte registers or 32k 110 word 
registers. The 110 address appears in the. same for­
mat as the memory address on bus lines A15-AO. 
The address lines A19-A16 are zero in 110 opera­
tions. The variable 110 instructions which use regis­
ter OX as a pointer have full address capability while 
the direct 110 instructions directly address one or 
two of the 256 110 byte locations in page 0 of the 
110 address space. 

110 ports are addressed in the same manner as 
memory locations. Even addressed bytes are trans­
ferred on the 07-00 bus lines and odd addressed 
bytes on 015-08. Care must be taken to assure that· 
each register within an 8-bit peripheral located on 
the lower portion of the bus be addressed as even. 

EXTERNAL INTERFACE 

PROCESSOR RESET AND INITIALIZATION 

Processor initialization or start up is accomplished 
with activation (HIGH) of the RESET pin. The 
80C86Al RESET is required to be HIGH for four or 
more ClK cycles. The 80C86Al will terminate oper­
ations on the high-going edge of RESET and will 
remain dormant as long as RESET is HIGH. The 
low-going transition of RESET triggers an internal 
reset sequence for approximately 7 ClK cycles. Af­
ter this interval the 80C86Al operates normally be­
ginning with the instruction in absolute location 
FFFFOH (see Figure 3b). The details of this opera­
tion are specified in the Instruction Set description of 
the MCS®-86 Family User's Manual. The RESET in­
put is internally synchronized to the processor 

"PULL-UP/PULL-DOWN" 

Input Buffer exists only on I/O pins 

EXTERNAL 
PIN 

240074-24 

Figure 6a. Bus hold circl,litry pin 2-16, 
34-39 for P-DIP package. 

2-70 

clock. At initialization the HIGH-to-lOW transition of 
RESET must occur no sooner than 50 /Ls after pow­
er-up, to allow complete initialization of the 
80C86AL. 

NMI asserted prior to the 2nd clock after the end of 
RESET will not be honored. If NMI is asserted after 
that point and during the internal· reset sequence, 
the processor may execute one instruction before 
responding to the interrupt. A hold request active 
immediately after RESET will be honored before the 
first instruction fetch. 

All 3-state outputs float to 3-state OFF(l) during RE­
SET. Status is active in the idle state for the first 
clock after RESET becomes active and then floats 
to 3-state OFF(l). ALE and HlOA are driven low. 

NOTE: 
1 .. See the section on Bus Hold Circuitry. 

BUS HOLD CIRCUITRY 

To avoid high current conditions caused by floating 
inputs to CMOS devices and eliminate the need for 
pull-up/down resistors,"bus-hold" circuitry has 
been used on the 80C86Al pins 2-16, 26-32, and 
34-39 (Figures 6a, 6b). These circuits will maintain 
the last valid logic state if no driving source is pres­
ent (Le. an unconnected pin or a. driving source 
which goes to a high impedance state). To overdrive 
the "bus hold" circuits, an external driver must be 
capable of supplying 350 /LA minimum sink or 
source current at valid input voltage levels. Since 
this "bus hold" circuitry is active and not a "resis­
tive" type element, the associated power supply cur­
rent is negligible and power dissipation is significant­
ly reduced when compared to the use of passive 
pull-up resistors. 

"PULL-UP" 

EXTERNAL 
PIN 

240074-25 
Input Buffer exists only on I/O pins 

figur~ 6b. Bus hold Circuitry 
pin 26-32 for P-DIP package. 



80C86AL 

INTERRUPT OPERATIONS 

Interrupt operations fall into two classes; software or 
hardware initiated. The software initiated interrupts 
and software aspects of hardware interrupts are 
specified in the Instruction Set description. Hard­
ware interrupts can be classified as non-maskable or 
maskable. 

Interrupts result in a transfer of control to a new pro­
gram location. A 256-element table containing ad­
dress pointers to the interrupt service program loca­
tions resides in absolute locations 0 through 3FFH 
(see Figure 3b), which are reserved for this purpose. 
Each element in the table is 4 bytes in size and cor­
responds to an interrupt "type". An interrupting de­
vice supplies an 8-bit type number, during the inter­
rupt acknowledge sequence, which is used to "vec­
tor" through the appropriate element to the new in­
terrupt service program location. 

NON·MASKABLE INTERRUPT (NMI) 

The processor provides a single non-maskable inter­
rupt pin (NMI) which has higher priority than the 
maskable interrupt request pin (INTR). A typical use 
would be to activate a power failure routine. The 
NMI is edge-triggered on a lOW-to-HIGH transition. 
The activation of this pin causes a type 2 interrupt. 
(See Instruction Set description.) NMI is required to 
have a duration in the HIGH state of greater than 
twoClK cycles, but is not required to be synchroniz­
ed to the clock. Any high-going transition of NMI is 
latched on-Chip and will be serviced at the end of the 
current instruction or between whole moves of a 
block-type instruction. Worst case response to NMI 
would be for multiply, divide and variable shift in­
structions. There is no specification on the occur­
rence of the low-going edge; it may occur before, 
during, or after the servicing of NMI. Another high­
going edge triggers another response if it occurs af-

2-71 

ter the start of the NMI procedure. The signal must 
be free of logical spikes in general and be free of 
bounces on the low-going edge to avoid triggering 
extraneous responses. 

MASKABLE INTERRUPT (INTR) 

The 80C86Al provides a single interrupt request in­
put (INTR) which can be masked internally by soft­
ware with the resetting of the interrupt enable FLAG 
status bit. The interrupt request signal is level trig­
gered. It is internally synchronized during each clock 
cycle on the high-going edge of ClK. To be re­
sponded to, INTR must be present (HIGH) during 
the clock period preceding the end of the current 
instruction or the end of a whole move for a block­
type instruction. During the interrupt response se­
quence further interrupts are disabled. The enable 
bit is reset as part of the response to any interrupt 
(INTR, NMI, software interrupt or single-step), al~ 
though the FLAGS register which is automatically 
pushed onto the stack reflects the state of the proc­
essor prior to the interrupt. Until the old FLAGS reg­
ister is restored the enable bit will be zero unless 
specifically set by an instruction. 

During the response sequence (Figure 7) the proc­
essor executes two successive (back-to-back) inter­
rupt acknowledge cycles. The 80C86Al emits the 
lOCK signal from T 2 of the first bus cycle until T 2 of 
the second. A local bus "hold" request will not be 
honored until the end of the second bus cycle. In the 
second bus cycle a byte is fetched from the external 
interrupt system (e.g., 82C59 PIC) which identifies 
the source (type) of the interrupt. This byte is multi­
plied by four and used as a pointer into the interrupt 
vector lookup table. A.n INTR signal left HIGH will be 
continually responded to within the limitations of the 
enable bit and sample period. The INTERRUPT RE­
TURN instruction includes a FLAGS pop which re­
turns the status of the original interrupt enable bit 
when it restores the FLAGS. 

:'1" 

1'\ 

i 

i 

i I~ 
~~ 



80C86AL 

I Tl I T2T~ I T4 lTd Tl , T2 ,'T3 

ALE~~ ____________ ~I~ __ " ____________ _ 

LOCK \ ~----JI \0, __ -_;...,.;...,.-~, 1_ -

""'-_____ r I, m \ _ 
... ~ .. \ ... 

AD'o-AD15,\ FLO,AT" , { , , ' }-J"". --------------11 1-1 ---,--4 . TVPE VECTOR , 

240074-9 

Figure 7. Interrupt Acknowledge Sequence" 

HALT 

When a software "HALT" instruction is executed the 
processor indicates that it is entering the "HALT" 
state in one of two ways depending upon which 
mode is strapped. In minimum mode, the processor 
issues one ALE with no qual/fying bus control sig­
nals. In Maximum MOde, the processor issues ap­
propriate HALT status on 52, 51 and So and the 
82C88 bus controller issues one ALE. The 80C86AL. 
will not leave the "HAL r' state when a local bus 
"hold"isentered while in "HALT". In this case, the 
processor reissues the HAL Tindicator. An interrupt 
request or RESET will force the 80C86AL out of the 
"HALT" state. -

REAO/MOO'FY IWRITE (SEMAPHORE) 
OPERATIONS VIA LOCK 

The j15CK status information is provided - by the 
processor when directly consecutive bus cycles are 
required during the execution of an instruction. This 
provides the processor with the capability of per­
forming' read/modify/write operations on,memory 
(via the Exchange Register With Memory instruction, 
for example) without the possibility of anoth,er sys­
tem bus master receiving intervening memory cy­
cles. This is useful in mutliprocessor system configu­
rations to accomplish "test and set lock" operations. 
The ~ signal is activated (forced LOW) in the 
clock cycle following the one in which the software 
"LOCK" prefix instruction is decoded by the EU. It is 
deactivated at the end of the last bus cycle of the 
instruction following the "LOCK" prefix instruction. 
While 'COOK is active a request on a RQ/GT pin will 
be recorded and then honored at the end of the 
LOCK. 

2-72 

EXTERNAL SYNCHRONIZATION VIA TEST' 

As an alternative to the interrupts arid general 110 
capabilities, the80C86AL provides a single, soft­
ware~testable input known as the TEST signah' At 
any time the program may execute a WAIT instruc­
tion. If at - that time' the TEST signal is - inactive 
(HIGH); program execution becomes suspended 
whiletheprocEisso(waits for TEST to become ac­
tive. It must remain active for at least 5 CLK cycles. 
The WAIT histruction'is re"executed repeatedly until 
that time, This activity'does not consume 'bus cycles. 
The processor remains in an idle state while waiting. 
All 80C86AL drivers go to 3-state OFF ifbus "Hold" 
is entered. If interrupts are enabled, they may occur 
while the processor is waiting. When,this occurs the 
proceSSor fetches the WAIT instruction one extra 
time,processes the interrupt, and then 're-fetches 
and re-executes the WAIT instruction upon returning 
from the interrupt. 

BASIC SYSTEM TIMING 

Typical system configurations for the proces~or op­
erating in minimum mode and in maximum mode are 
shown in Figures 4a and 4b, respectively. In mini­
mum mode, the MN/MX pin is strapped to Vee and 
the processor emits bus control signals in a manner. 
similar to the 8085. In maximum mode, the MN/MX 
pin is strapped to Vss and the processor emits cod­
ed status information which the 82C88 bus control­
ler uses to generate MUL TIBUS ' compatible, bus 
control' signals. Figure 5 illustrates the signal timing 
relationships. 



intJ 80C86AL 

AX 

BX 

CX 

DX 

AH AL 

BH BL 

CH CL 

DH DL mp · 

BP 

SI 

DI 

em DS 

5S 

ES 

ACCUMULATOR 

BASE 

COUNT 

DATA 

STACK POINTER 

BASE POINTER 

SOURCE INDEX 

DESTINATION INDEX 

INSTRUCTiON POINTER 

ST ATUSFLAOS 

CODESEOMENT 

DATA SEGMENT 

STACK SEGMENT 

EXTRA SEGMENT 

240074-10 

Figure S. IAPX SOCS6AL Register Model 

SYSTEM TIMING-MINIMUM SYSTEM 

The read cycle begins in T 1 with the assertion of the 
Address Latch Enable (ALE) signal. The trailing (Iow­
going) edge of this signal is used to latch the ad­
dress information, which is valid on the local bus at 
this time, into a latch. The BHE and Ao signals ad­
dress the low, high, or both bytes. From T1 to:4 the 
MilO signal indicates a memory or 1/0 operation. At 
T 2 the address is removed from the local bus and 
the bus goes to a high impedance state. The read 
control signal is also asserted at T 2. The read (RD) 
signal causes the addressed device to e~able its 
data bus drivers to the local bus. Some time later 
valid data will be available on the bus. and the ad­
dressed device will drive the READY line HIGH. 
When the processor returns the read signal to a 
HIGH level, the addressed device will again 3-state 
its bus drivers. If a transceiver is reg,uired to buffer 
the 80C86AL local bus, signals DT IR and DEN are 
provided by the 80C86AL. 

A write cycle also begins with the assertion ?f AL.E 
and the emission of the address. The M/iO signal IS 
again asserted to indicate a memory or 1/0 write 
operation. In the T 2 immediately.following the ad­
dress emission the processor emits. the data to be 
written into the addressed location. This data re­
mains valid until the middle of T 4. During T 2, T 3, and 
T w the processor asserts· the writ~ control sign~1. 
The write (WR) Signal becomes active at the begin­
ning of T 2 as opposed to the read which is delayed 
somewhat into T 2 to provide time for the bus to float. 

The BHE and Ao signals are used to select the prop­
er byte(s) of the memory/IO word to be read or writ­
ten according to the following table: 

2-73 

BHE AO Characteristics 
0 0 Whole word 
0 1 Upper byte froml 

to odd address 
1 0 Lower byte froml 

to even address 
1 1 None 

1/0 ports are addressed in the same manner as 
memory location. Even addressed bytes are trans­
ferred on the 07-00 bus lines and odd addressed 
bytes on 015-08. 

The basic difference between the interrupt acknowl­
edge cycle and a read cy?leis that t~e interrupt ac­
knowl~e signal (INTA) IS asserted In pl~ce of the 
read (RD) signal and the address bus IS float~d. 
(See Figure 7.) In the second of two successive 
INTA cycles, a byte of information is read from bus 
lines 07-00 as supplied by the interrupt system lo~­
ic (i.e., 82C59A Priority Interrupt Controller). ThiS 
byte identifies the source (type) of the interrupt. It is 
multiplied by four and used as a pointer into an inter­
rupt vector lookup table, as described earlier. 

BUS TIMING-MEDIUM SIZE SYSTEMS 

For medium size systems the MN/MX pin is con­
nected to V 88 and the 82C88 Bus Controller is add­
ed to the system as well as a latch for latching the 
system address, and a transceiver to allow for bus 
loading greater than the 80C86AL i!!..capable of han­
dling. Signals ALE, DEN, and DT IR are generated 
by the 82C88 instead of the processor in thi~ config­
uration although their timing. remain~ re.!!itlvely !tie 
same. The 80C86AL status outputs (52, 51, and So) 
provide type-of-cycle information and become 
82C88 inputs. This bus cycle information specifies 
read (code, data, or 1/0), write (data or I/O), inter­
rupt acknowledge, or software halt. The 82C88 thus 
issues control signals specifying memory read or 
write 1/0 read or write, or interrupt acknowledge. 
The 82C88 provides two types of write strobes, nor­
mal and advanced, to be applied as required. The 
normal write strobes have data valid at the leading 
edge of write. The advanced write strobes have. th? 
same timing as read strobes, and hence data Isn t 
valid at the leading edge of write. The transceiver 
receives the usual T and OE inputs from the 82C88 
DT IA and DEN. 

The pointer into the interrupt vector table, whic~ is 
passed during the second INTA cycle, can denve 
from an 82C59A located on e.ither the local bus or 
the system bus. If the master 82C59A Priority Inter­
rupt Controller is positioned on the local ~us, a TTL 
gate is required to disable the transceiver when 
reading from the master 82C59A during the interrupt 
acknowledge sequence and software "poll". 



80C86AL 

ABSOLUTE MAXIMUMRATINGS* 

Supply Voltage 
(With reSPect to ground) ........•.. - O.S to 8.0V 

Input Voltage Applied 
{w.r.t. ground) ............. -2.0 to VCC + O.SV 

Output Voltage Applied 
(w.r.t. ground) •...•........ -O.S to VCC + O.SV 

Power Dissipation .•...•...••...•...•......• LOW 

Storage Temperature .................. 6SoC to 1S0°C 

AmbientTemperature Under Bias ..•... 0°Cto 70°C 

D.C. CHARACTERISTICS 

Case Temperature (PDIP) ............. O°C to 80°C 

Case Temperature (PLCC) •.. , .... : ... O°C to 8SoC 

.* Notice: Stresses above those listed under '~bso­
lute Maximum Ratings" may Cause permanent dam­
age to the device. This is a stress rating only and 
functional operation of the devi~ at' these or any 
other conditions above those indicated in the opera­
tional sections of this specification is not implied. Ex­
posure to absolute maximum rating conditions for 
extendedperiods may affect deVice reliability. 

(T A = ooG to 70°C, T CASE (Plastic) = O°C to 80°C, TCASE (PLCC) = QOC to 8S°C) 
(VCC = sv ± 10% for 80C86AL, VCC = sv ± S% for 80C86AL-2) 

Symbol Parameter Min Max Units Test Conditions 

Vil Input I.ow Voltage +O.B V .' (Note 4)" 

VIH InputHigh Voltage 2.0 V (Note 5) 
(All inputs except .... 
clock and MN/MX) 

VeH Clock and MN/MX Vee- O.B V 
Input High Voltage , 

VOL Output Low Voltage 0.4 V IOL = 2.5mA 

VOH Output High Voltage 3,0 V IOH = --'-2.5mA 
Vee- O.4 IOH =-100 p,A 

lee Power Supply Current 10mA/MHz Vll=GND, VIH ,;" Vee 

Ices Standby Supply Current 500 p,A VIN "",' Vee or GND 
Outputs Unloaded 
CI.K = GND or Vee 

III Input I.eakage Current ±1.0 p,A OV';; VIN ';;Vee 

ISHl Input I.eakage Current 50 300 p,A VIN e= O.BV 
(BusHoldl.ow) 

ISHH Input I.eakage Current -50 -300 p,A VIN = 3.0V 
(Bus Hold High) 

ISHlO Bus Hold I.ow Overdrive 400 , p,A (Note 2) 

ISHHO Bus Hold High Overdrive -400 p,A '(Note 3) 

ILO . Output I.eakage Current ±10 /LA VOUT = GND or Vee 

CIN Capacitahce of Input Buffer 5 pF (Note 1) 
(All inputs except 
ADo':'AD15, RQ/GT) 

CIO Capacitance of 110 Buffer 20 pF (Note 1) 
(ADo-AD15. RQ/GT) 

COUT Output Capacitance 15 pF (Note 1) 
,. 

NOTES: .. ' 
1. Characterization conditions are a) Frequency = 1 MHz; b) Unmeasured pins at GND; C)VIN at +5.0V or GND. 
2. An exterrial driver must~ource at least ISHlO to switch this node frOm LOWto HIGH. 
3 .. Anexternal driver must sink at least ISHHO to switch this node from HIGH to LOW. 
4,VILfor all.input pins .(except MN/MX pin) tested with MN/MX pin = GND. 
5. VIIi tested with MN/MX pin = Vee. . 

2-74 



80C86AL 

A.C. CHARACTERISTICS 
(T A = O'C to 70'C, T CASE (Plastic) = O'C to SO'C, T CASE (PLCC) = O'C to 85'C) 
(Vee = 5V ±10% forSOCS6AL, Vcc = 5V ±5% forS0C86AL-2) 

MINIMUM COMPLEXITY SYSTEM TIMING REQUIREMENTS 

Symbol Parameter 80C86AL aoC86AL-2 Units 
Min Max Min Max 

TClCl ClK Cycle Period 200 D.C. 125 D.C. ns 

TClGH CLKlowTime 11S 68 ns 

TCHCl ClK High Time 69 44 ns 

TCH1CH2 ClK Rise Time 10 10 ns 

TCl2Cl1 ClKFaliTime 10 10 ns 

TDVCl Data in Setup Time 30 20 ns 

TClDX Data in Hold Time 10 10 ns 

TR1VCl ROY Setup Time 35 35 ns 
intoS2CS4A 
(Notes 1, 2) 

TClR1X ROY Hold Time . ·0 0 ns 
intoS2CS4A 
(Notes 1, 2) 

TRYHCH READY Setup 11S 6S ns 
Time into SOCS6Al 

TCHRYX READY Hold Time 30 20 ns 
into SOCS6AL 

TRYlCl READY Inactive to -S -S ns 
ClK (Note 3) 

THVCH HOLD Setup Time 35 20 ns 

TINVCH INTR, NMI, TEST 30 15 ns 
Setup Time 
(Note 2) 

TIl!H Input Rise Time 15 15 ns 
(Except ClK) 

TIHll Input Fall Time 15 15 ns 
(Except ClK) 

2-75 

Test 
Conditions 

i~ 
\ 

From 1.0V to 3.5V 

From 3 .. 5V to 1.0V 

I 

From o.sv to 2.0V 

From 2.0V to O.SV 



80C86AL 

A.C. CHARACTERISTICS (Continued) 
(T A = O'C to 70'C, TeASE (Plastic) = O'C to SO'C, TeASE (PLCC) = O'C to S5'C) 
(Vee = 5V ± 10% for SOCS6AL, Vee = 5V ± 5% for SOCS6AL-2) 

Timing Responses 

Symbol Parameter 80C86AL 80C86AL·2 

Min Max Min Max 

TCLAV Address Valid Delay 10 110 10 60 

TCLAX Address Hold Time 10 10 

TCLAZ Address Float TCLAX SO TCLAX 50 
Delay 

TLHLL ALE Width TCLCH-20 TCLCH-10 

TCLLH ALE Active Delay SO 50 

TCHLL ALE Inactive Delay 85 55 

TLLAX Address Hold Time TCHCL-10 TCHCL-10 
to ALE Inactive 

TCLDV Data Valid Delay 10 110 10 60 

TCHDX Data Hold Time 10 10 

TWHDX Data Hold Time TCLCH-30 TCLCH-30 
AfterWR 

TCVCTV Control Active 10 110 10 70 
Delay 1 

TCHCTV Control Active 10 110 10 60 
Delay 2 

TCVCTX Control Inactive 10 110 10 70 
Delay 

TAZRL Address Float to 0 0 
READ Active 

TCLRL RD Active Delay 10 165 10 100 

TCLRH RD Inactive Delay 10 150 10 SO 

TRHAV RD Inactive to Next TCLCL-45 TCLCL-40 
Address Active 

TCLHAV HLDA Valid Delay 10 160 10 100 

TRLRH RDWidth 2TCLCL-75 2TCLCL-50 

TWLWH WRWidth 2TCLCL-60 2TCLCL-40 

TAVAL Address Valid to TCLCH-60 TCLCH-40 
ALE Low 

TOLOH· Output Rise Time 15 15 
(Note 4) 

TOHOL Output Fall Time . 15 15 
(Note 4) 

NOTES: 

Units 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

1. Signal at 82C84A shown for reference only. See 82C84A data sheet for the most recent specifications. 
2. Setup requirement for asynchronous signal only to guarantee recognition at next elK. 
3. Applies only to T2 state. (8 ns into T3l. 
4. These parameters are characterized and not 100% tested. 

2-76 

Test 
Condlt/ons 

FromO.SVto 
2.0V 

From 2.0Vto 
O.SV 



inter 80C86AL 

A.C. TESTING INPUT, OUTPUT WAVEFORM A.C. TESTING LOAD CIRCUIT 

INPUT IOUTPUT :::=x ________ '~.W~ 
240074-26 

A.C. Testing inputs are driven at V,H + OAV for a logic "1" and 
V,l - OAV for a logic "0". The clock is driven at VCH + OAVand 
VCl - OAV. Timing measurements are made at 1.SV. 

WAVEFORMS 

MINIMUM MODE 

I DEVICE 
UNDER 11:, TEST 

L----...I J. c, • 100 pF 

Cl Includes Jig Capacitance 

MIlO IX 
.. ~ ~.--4--__ ~T~C~LD=V~~-t--~--~-r--+---,~~-~~-J 

240074-27 

TCLA.- - TCLAX- ~ TCHDX- .1,.. 
-1---+--. IilR,AlI-A" 5,,5, X'r----

~----r_--_+--_+-----rJ 
TCLLH- I- TLHLL-:::: 

I,. r--
ALE !.1 ~:----+:---f----i--+---+-_-JJ~---

!--TLLAX 

V'H-
RDY IQCI4A Input) 

SEE NOTE 4 

,..-f---+JTCflLL!!YAl :: 1=_TR1VCL 

VIL- __ L~';"C=l-::Rt.1X-:--+---f-------

READ CYCLE 

CNOTE1) 
(WlI,IIITl.VQH) 

TRYLCl- -

J 
_ -TCHRYX 

-- TAVAl TRYHCH! 
TLlAX_ - I =-1 

-II-TC_LA_V_-,--""\. ~~---=--=t--, r::~~t~~ TDVCL- _TCLDX_ 

RD 

_+-_____ -+_'"" ,:i FLOAT J' 
TAZRl- .-~ 

~-~----r-JI 
TClRLI---f"'--f--' -=_j-"TCHCTV 

DT/R , 

~-----------r-+----~--~--f-J 
TCVCTV- f 

'-_____ J' 

2·77 

I' 
1 



WAVEFORMS (Continued) 

MINIMUM MODE (Continued) 

CUC(~ 0Utput1 

./iI! 

ALE 

WAITECVClE 

DT'R.VOH) (Al):;:''' I 
ADu .. ADo 

INTA CYCLE DT/A 
(NOTESU3) 

:Ri~:JOH 

IIOPTWAIHi HALT-

RD, WH. - = YoH 
DT/R ~ INDETERMINATI! 

NOTES: 

80C86AL 

INVALID ADDRESS 

TCLAV 

1. All output timing measurements are made at 1.5V unless otherwise noted. 

TW T4 

SOFTWARE HALT 

2. ROY is sampled near the end of T 2. T 3. Tw to determine if Tw machines states are to be inserted. 

240074-14 

3. Two INTA cycles run back-to-back. The 80C86AL local AOOR/OATA BUS is floating during both INTA cycles. Control 
signals shown for second INTA cycle. 
4. Signals at 82C84A are shown for reference only. 

2-78 



intJ 80C86AL 

A.C. CHARACTERISTICS 

MAX MODE SYSTEM (USING 82C88 BUS CONTROLLER) 
TIMING REQUIREMENTS 

Symbol Parameter 80C86~L 

Min Max 

TClCl ClK Cycle Period 200 D.C. 

TClCH ClKlowTime 118 

TCHCl ClK High Time 69 

TCH1CH2 ClK Rise Time 10 

TCL2Cl1 ClKFaliTime 10 

TDVCl Data in Setup Time 30 

TClDX Data in Hold Time 10 

TR1VCl ROY Setup Time into 82C84A 35 
(Notes .1. 2) 

TClR1X ROY Hold Time into 82C84A 0 
(Notes 1. 2) 

TRYHCH READY Setup Time into 80C86Al 118 

TCHRYX READY Hold Time into 80C86Al 30 

TRYlCl READY Inactive to -8 
ClK (Note 4) 

TINVCH Setup Time for Recognition 30 
(INTR. NMI. 'i'ES'f) 
(Note 2) 

TGVCH "AO/(IT Setup Time 30 

TCHGX RC:i Hold Time into 80C86Al 40 

TILIH Input Rise Time 15 
(Except ClK) (Note 5) 

TIHll Input Fall Time 15 
(Except ClK) (Note 5) 

80C86AL-2 

Min Max 

125 D.C. 

68 

44 

10 

10 

20 

10 

35 

0 

68 

20 

-8 

15 

15 

30 

15 

15 

Units 

ns 

ns 

ns . 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

.. 
ns 

ns 

ns 

ns 

Test 
Conditions 

From 1.0V to 3.5V 

From 3.5V to 1.0V 

From 0;8V to 2.0V 
, .. 

From 2.0V to.0.8V 

. 

, 
I' I'll 

~ 



inter 80C86AL 

A.C. CHARACTERISTICS (Continued) 

TIMING RESPONSES 

Symbol Parameter 80C86AL 80C86AL.2 Units Test 

Min Max Min Max Conditions 

TClML Command Active 5 45 5 35 ns 
Delay (Note 1) 

TClMH Command Inactive 5 45 5 35 ns 
Delay (Note 1) ... 

TRYHSH READY Active to 110 65 ns 
Status Passive (Note 3) 

TCHSV Status Active Delay 10 110 10 60 ns 

TClSH Status Inactive Delay 10 130 10 .. · 70 ns 

TClAV Address Valid Delay 10 110 10 60 ns 

TeLAX Address Hold Time 10 10 ns 

TCLAZ Address Float Delay TClAX 80 TCLAX 50 ns 

TSVlH Status Valid to ALE High (Note 1) 35 20 ns 

TSVMCH Status Valid to 35 30 ns 
MCE High (Note 1) 

TCllH ClK low to ALE Valid (Note 1) 35 20 ns 

TClMCH ClK low to MCE High (Note 1) 35 25 ns 

TCHLl ALE Inactive Delay (Note 1) 4 35 4 25 ns 

TClDV Data Valid Delay 10 110 10 60 ns 

TCHDX Data Hold Time 10 10 ns 

TCVNV Control Active Delay (Note 1) 5 45 5 45 ns 

TCVNX Control Inactive Delay (Note 1) 5 45 10 45 ns 

TAZRl Address Float to Read Active 0 0 ns 

TClRl RDActive Delay 10 165 10 100 ns 

TClRH RD Inactive Delay 10 150 10 80 ns 

TRHAV RD Inactive to TClCl-45 TClCl-40 ns 
Next Address Active 

TCHDTl Direction Control 50 50 ns 
Active Delay (Note 1) 

TCHDTH Direction Control 35 30 ns 
Inactive Delay (Note 1) 

TClGl GT Active Delay 0 85 0 50 ns 

TClGH GT Inactive Delay 0 85 O. 50 ns 

TRlRH RDWidth 2TClCl-75 2TClCl-50 ns 

TOlOH Output Rise Time 15 15 ns From 0.8V to 2.0V 

TOHOl Output Fall Time 15 15 ' ns From 2.0V to O.SV 

NOTES: 
1, Signal at 82C84Aor 82C88 shown for reference only. See 82C84A and 82C88 for the most recent specifications. 
2, Setup requirement for asynchronous signal only to guarantee recognition at next ClK. 
3. Applies only to T3 and wait states. 
4. Applies only to T2 state (8 ns into T3j. 
5, These parameters are characterized and not 100%' tested. 

2-80 



inter 80C86AL 

A.C. TESTING INPUT, OUTPUT WAVEFORM A.C. TESTING LOAD CIRCUIT 

INPUT/OUTPUT 

VIH+UVJ uvV-
VIL-"'V --------~~ 

240074-12 240074-11 
A.C. Testing inputs are driven at VIH + O.4V for a logic "I" and 
Vil .- 0.4V for a logic "0". The clock is dr.iven at VCH + O.4Vand 
VCl - 0.4V. Timing measurements are made at 1.5V. 

Cl Includes Jig Capacitance 

WAVEFORMS 

MAXIMUM MODE 

CLk VCHr--\ 

. ..J VCL 

1i,1i',1O (EXCEPT HAI.T) 

. IALI-OIII'PI/I') 
sEE NOTE & 

RD'I C-IIINI) 

READY (8OCHAL INPUT) 

_CIU1I'ImI 
SEE NOTES 5.' 

ADlI-ADo 

Df/ll 

_ORIl!lfC 

DEN 

TCLAV-

I--

-
TSVLH 
Tell" 

TCLAV-

T, T. , 
I--- :>==\fCH1CH2-11- -I I- TCLICL 1 Tw 

TCLCL [;:--; r" ~~. 
~ ~ ~ .1::. I---- TCHCL .... T~LCH'-

X 
TeHSY - ·TCL. ------

V//;'l, WI (IU IIOTI 7) \ 

.I::.TCLAJ. r--1--TCLDV TCHDX- .t-----
TC x-

X. I ill. A".A" )( ..... X. 
~- .r- TCHLL 

r--
J \ I ----

l -TRWCL 

] i~~ ~~~ ~~~~~ 
_TelA1X 

TRneL -
I' r-TCHRYX 

TRYHSH_ -- TeLAX +- iI-- TRYHCH -
.1- -TelAl - ~DVCL- r-TCLDX-

X "Is-ADo 

rf[~ 
OATAIN FL::J 

TAZRl- TClA" 

1 
TRHAV 

. 
TCHDTL- .1-~ TCLRL 

TRLAH '\ I:TCHDTH 

\ f 
TClML- .\- TCLMH ... I· 

'\ h 
TCYNV- .-

" TeVHX- -
240074-15 

2·81 



WAVEFORMS (Continued) 

MAXIMUM MODE (Continued) 

WRITE CYCLE 

INTA CYCLE 

S.,8"S. (EXCEPT 

AD'5-AD• 

DEN 

AOwAOo . 
·NOTESM 

820880UTPUT$ 
!"OTES5,6 

DEN 

NOTES: 

80C86AL 

T, T. 

\_---

'1. All timing measurements ate/Trade at1.5V unless otherwise noted. 
2. ROY is sampled near the end of T 2, T 3, T w to det~ine if Tw machines states ,are to be inserted. 
3. Cascade address is valid betWeen fll'St and second INTA-cycle. 

, ~ , 

240074-16 

4. Two INTA cycles run back-to-back. The 80C86AL local AODR/DATA BUS is floating during both INTA cycles. Control for 
painter, address is shown for second INTA cycle. . 
5; Signals at 82C84A .or 82C88are shown for reference only. ..' .' 
6. The issuance of the 82088 command and control signals (MRDC, MWTC, AMWC, iORC, iOWC, AIOWC, INTA and DEN) 
lags the active high 82088 CEN. . 
7. Status inactive in state just prior to T 4. 

2·82 



inter 80C86AL 

WAVEFORMS (Continued) 

ASYNCHRONOUS SIGNAL RECOGNITION 

NYI} ~Jk-
INTH SIGNAL . : 

TEST· 
240074-17 

NOTE: Setup requirements for asynchronous signals only to guarantee recognition at next elK. 

BUS LOCK SIGNAL TIMING 
(MAXIMUM MODE ONLY) 

RESET TIMING 

Vee 

CUI 

Run 

REQUEST IGRANT SEQUENCE TIMING (MAXIMUM MODE ONLY) 

~ CL.KCVCLES 

240074-19 

COPROCESSOR 
RELEASE 

COPROCESSOR 

(SEE NOTE) 

240074-20 

NOTE: The coprocessor may not drive the buses outside the region shown with.out risking cOntention. 

2·83 



inter 80C86AL 

WAVEFORMS (Continued) 

HOLD/HOLD ACKNOWLEDGE TIMING (MINIMUM MODE ONLY) 

'1 ClK CYCLE 

CLK"\ rt 

-? 
TClHAY 

HLDA' -----:~;~:.::~>. 1-, -----__ -~,r,;;.:..l=~---..... ---"I 
l1li. 8OC86AL COPROCESSOR 

~~w:.'~!"' -----....... 

Mnemonic and 
Oeserl tlon 

DATA TRANSFER 
MOV ~ Move: 

Register/Memory to/from Register" 

Immediate to Register/Memory 

Immediate to Register : 

Memory to Accumulator 

Accumul'ator to Memory 

Register/Memory to Segment Register" 

Segment Register to Register/Memory 

PUSH = PU8h: 

Register/Memory 

Register 

Segment Register 

POP ~ Pop: 

Register/Memory 

Register 

Segment Register 

XCHG ~ Exchange: 

Register/Memory with Register 

Register with Accumulator 

IN = Input from: 

Fixed Port 

Variable Port 

OUT'; Output to: 

Fixed Port 

Variable Port 

XLA T ~ Translate Byte to AL 

LEA ~ Load EA to Register 

LDS ~ Load Pointer to OS 

LES = Load Pointer to ES 

LAHF = Load AH with Flags 

SAHF = Store AH into Flags 

PUSHF ~ Push Flags 

POPF = Pop Flags 

Table 2. Instruction Set Summary 
Instruction Code 

76543210 76543210 76543210 

lQQ01Qdw mod reg rIm 

llQQOllw mod 0 0 0 rim data 

1011 wreg 

101QOQQw 
~~~~~~==~====~da=ta======*====da=~~ifw;=-;I===;1 

addr·low addr.high

lQ1QOOlw addr·low addr·high

10001110 mod 0 reg rim

10.0.011.0.0 modOregr/m

11111111 mod 11 Or/m

01010reg

000regll0

1000111,1 modOQOr/m

01011reg

OOOreg 111

10.o.o.ollw mod reg r/m :1
l.oOl0reg

1110.ol0w port

1110110w

1110011 w port

1110111 w

11.010111

1.0001101 mod reg r/m

1100.01.01 mod reg rim

11.0.0.01.0.0 ,mod regr/m

1.0011111

1.0.01111.0

10.0111.0.0

1.0011101

2-84

240074-21

76543210

dataifw - 1

inter .80C86AL if
r:!l
iiI

Table 2. Instruction Set Summary (Continued) Iii

I
;',\

Mnemonic and i.i'
Instruction Code il'i

Description
1:\

ARITHMETIC 76543210 76543210 76543210 76543210 ~
ADD = Add:

.1
,I.

Reg.lMemory with Register to Either OOOOOOdw mod reg rim

Immediate to RegisterlMemory 100000sw modOO o rim data data ils w = 01

Immediate to Accumulator 0000010w data dataifw=1
,

ADC = Add with Carry:
.",1

Reg.lMemory with Register to Either 000100dw mod reg rim f
II

Immediate to RegisterlMemory 100000sw mod010r/m data data ils w = 01)
Immediate to Accumulator 0001010w data dataifw = 1

INC = Increment:

RegisterlMemory 1111111w modOOOr/m

Register 01000reg

AAA = ASCII Adjust for Add 00110111

DAA = Decimal Adjust for Add 00100111

SUB = Subtract:

Reg.lMemory and Register to Either 001010dw mod reg rim

Immediate from Register IMemory 100000sw mod 101 rim data dataifsw = 01

Immediate from Accumulator 0010110w data dataifw = 1

SBB = Subtract with Borrow

Reg.lMemory and Register to Either 000110dw mod reg rim

Immediate from RegisterlMemory 100000sw mod 0 11 rim data data ils w = 01

Immediate from Accumulator 0001110w data data if w = 1

DEC = Decrement:

RegisterlMemory 1111111w mod001 rim

Register 01001 reg

NEG = Change Sign 1111011w mod011 rim

CMP = Compare:

RegisterlMemory and Register 001110dw mod reg rim

Immediate with RegisterlMemory 100000sw mod 111 rim data dataifsw = 01

Immediate with Accumulator 0011110w data data if w = 1

AAS = ASCII Adjust for Subtract 001111 1 1

DAS = Decimal Adjust for Subtract 00101111

MUL = Multiply (Unsigned) 1111011w mod 1 OOr/m

IMUL = Integer Multiply (Signed) 1111011w mod 1 0 1 rim

AAM = ASCII Adjustfor Multiply 11010100 00001010

DIY = Divide (Unsigned) 1111011w mod 11 Orlm

IDlY. = Integer Divide (Signed) 1111011\11 mod 111 rim

AAO = ASCII Adjust for Divide 11010101 00001010

CBW = Convert Byte toWord 10011000

CWO = Convert Word to Double Word 10011001

2·85

intJ 80C86AL

Table 2. Instruction Set Summary (Continued)

Mnemonic and I Instruction Code
Description

LOGIC 76543210 76543210 76543210 76543210

NOT = Invert 1111011w modOl0r/m

SHL/SAL = Shift Logical! Arithmetic Left 110100vw modi OOr/m

SHR '" Shift Logical Right lfol00vw mod 101 rIm

SAR = Shift Arithmetic Right 110100vw mod 111 rIm

ROL = Rotate Left 110100vw modOOOr/m

ROR = Rotate Right 110100Vw modOOI rIm

RCL = Rotate Through Carry Flag Left 110100vw modO 1 o rIm

RCR = Rotate Through Carry Right 110100vw modOll rIm

AND = And:

Reg.lMemory and Register to Either 001000dw mod reg rIm

Immediate to Register/Memory 1000000w modl00r/m data data ifw = 1

Immediate to Accumulator 0010010w data data if w = 1

TEST = And Function to Flags. No Result:

Register/Memory and Register 1000010w mod reg rIm

Immediate Data and Register/Memory 111101.1w mod OOOr/m data 'dataifw= 1

Immediate Data and Accumulator 1010100w data dataifw = 1

OR = Or:

Reg.lMemory and Register to Either 000010dw mod reg rIm

Immediate to Register/Memory 1000000w mod 00 1 rIm data dataifw = 1

Immediate io Accumulator 0000110w data dalaifw = 1

XOR = Exclusive OR:

Reg.lMemory and Register to Either 001100dw mod reg r/m

Immediate to Register/Memory 1000000w modl10r/m data data ifw = 1

Immediate to Accumulator 0011010w data dataifw = 1

STRING MANIPULATION

REP = Repeat 1111001z

MOYS = Move l3yte/Word 1010010w

CMPS = Compare Byte/Word 1010011w

SCAS = Scan Byte/Word 1010111 w

LODS = Load Byte/Wd to ALI AX 1010110w

STas = Stor Byte/Wd from AL/ A 1010101w

CONTROL TRANSFER

CALL = Call:

Direct W!thin Segment 11101000 disp-IOw disp-high

Indirect Within Segment 1 11 11 1 1 1 mod 0 10 rIm

Direct Intersegment 10011010 offset-low offset-high

seg-Iow seg-high

Indirect Intersegment 1 1 1 1 1 11 1 modO 11 rIm

2-86

80C86AL

Table 2. Instruction Set Summary (Continued)

Mnemonic and
Description

CONTROL TRANSFER (Continued)
JMP = Unconditional Jump:

Direct Within Segment

Direct Within Segment-Short

Indirect Within Segment

Direct Intersegment

Indirect Intersegment

RET = Return from CALL:

Within Segment

Within Seg. Adding Immed to SP

Intersegment

Intersegment Adding Immediate to SP

JE/JZ = Jump on Equal/Zero

JLlJNGE = Jump on Less/Not Greater
or Equal

JLEI JNG = Jump on Less or Equall
Not Greater

JB/JNAE = Jump on Below/Not Above
or Equal

JBEI JNA = Jump on Below or Equal/
Not Above

JP/JPE = Jump on Parity/Parity Even

JO = Jump on Overflow

JS =' Jump on Sign

JNE/JNZ = Jump on Not Equal/Not Zero

JNL/JGE = Jump on Not Less/Greater
or Equal

JNLE/JG = Jump on Not Less or Equal/
Greater

JNB/JAE = Jump on Not Below/ Above
or Equal

JNBE/ JA = Jump on Not Below or
Equal/ Above

JNP/JPO = Jump on Not Par/Par Odd

JNO = Jump on Not Overflow

JNS = Jump on Not Sign

LOOP = Loop CX Times

LOOPZ/LOOPE = Loop While Zero/Equal

LOOPNZ/LOOPNE = Loop While Not
Zero/Equal

JCXZ = Jump on CX Zero

INT = Interrupt

Type Specified

Type 3

INTO = Interrupt on Overflow

IRET = Interrupt Return

I Instruction Code

76543210 76543210 76543210

11101001 disp-Iow disp-high

11 1 01 01 1 disp

1 1 1 1 11 1 1 modl00r/m

11101010 offset-low offset-high

seg-Iow seg-high

1 1 1 1 1 1 11 mod 101 rIm

11000011

11000010 data-low data-high

11001011

11001010 data-low data-high

01110100 disp

01111100 disp

01111110 disp

01110010 disp

01110110 disp

01111010 disp

01110000 disp

01111000 disp

01110101 disp

01111101 disp

01111111 disp

01110011 disp

01110111 disp

01111011 disp

01110001 disp

01111001 disp

11100010 disp

11100001 disp

11100000 disp

11100011 disp

11001101 type

1 1 00'1 1 00

11001110

11001111

2-87

, ,

if
I~
Ii
I
~

li~
Ij

!i
!

I':

inter SOC86AL

Table 2. Instruction Set Summary· (Continued)
~--------------------r-------

I Mnemonic and
Description

PROCESSOR CONTROL

ClC = Clear Carry

CMC = Complement Carry

STC = Set Carry

ClD = Clear Direction

STD = Set Direction

Cli = Clear Interrupt

STI = Set Interrupt

HlT = Halt

WAIT = Wait

ESC = Escape (to External Device)

lOCK = Bus lock Prefix

NOTES:
Al ';' 8-bit accumulator
AX = 16-bit accumulator
ex = Count register
OS = Data segment
ES = Extra segment
Above/below refers to unsigned value.
Greater = more positive:

76543210

I 11111000

I 11110101

I 11111001

I 11111100

I 11111101

I 11111010

I 11111011

I 11110100

I 10011011

I 11011x)<x

I 11110000

Less = less positive (more negative) signed values
if d = 1 then "to" reg; if d = 0 then "from" reg
if w = 1 then word instruction; if w = 0 then byte instruc­

tion
if mod = 11 then rim is treated as a REG field
if mod = 00 then DISP = 0', disp-Iow and disp-hi9h are

absent
if mod = 01 then OISP = disp-Iow sign-extended to

16 bits, disp-high is absent
if mod = 10 then OISP = disp-high: disp-Iow
if rim = 000 then EA = (BX) + (SI) + OISP
if rim = 001 then EA = (BX) + (01) + OISP
if rim = 010 then EA = (BP) + (SI) + OISP
if rim = 011 then EA = (BP) + (01) + OISP
if rim = 100 then EA = (SI) + OISP
if rim = 101 then EA = (01) + OISP
if rim = 110 then EA = (BP) + OISp·
if rim = 111 then EA = (BX) + DISP
OISP follows 2nd byte of instruction (before data .if re­
quired)
'except if mod = 00 and rim = 110 then EA = disp-high:
disp-Iow.

"MOV CS, REG/MEMORY not allowed.

DATA SHEET REVISION REVIEW

Instructlc," Code

76543210

modxxxr/m

if s w = 01 then 16 bits of immediate data form the oper-
and '

if s w = 11 then ~n immediate data byte is sign extended
to form the 16-bit operand

if v = 0 then "count" = 1; if v = 1 then "count" in (Cl)
register· .

x = don't care
z is used for string primitives for comparison with ZF' FLAG
SEGMENT OVERRIDE PREFIX

001 re91 1 0

REG is assigned according to the following table:

16~Sit (w = 1) S-Sit(w = 0) Segment

000 AX 000 AL 00 ES
001 CX 001 CL 01 CS
010 DX 010 DL 10 SS
011 BX 011 BL 11 DS
100 SP 100 AH
101 BP 101 CH
'110 SI 110 DH
111 DI 111 BH

I nstructions which reference the flag register file as. a 16-bit
object use the symbol FLAGS to represent the. file: .
FLAGS =
X:X:X::X:(OF):(DF):(lF):(TF):(SF):(ZF):X:(AF):X:(PF):X:(CF)

Mnemonics @l Intel, 1978

The following list represents key differences between this and the -001 data sheet. Please review this summa-
ry carefully. . .

1. In the Pin Description Table (Table 1), the description of the HLDA signal being issued has been corrected.
HLDA will be issued in the middle of either the T 4 or Tj state. .

2-88.

in1er
8088

•
•
•
•
•
•

8-BIT HMOS MICROPROCESSOR
8088/8088-2

8-Blt Data Bus Interface • Byte, Word, and Block Operations

16-Blt Internal Architecture • 8-Blt and 16-Blt Signed and Unsigned

Direct Addressing Capability to 1 Mbyte Arithmetic In Binary or Decimal,

of Memory Including Multiply and Divide

Direct Software Compatibility with 8086 • Two Clock Rates:

CPU - 5 MHz for 8088
- 8 MHz for 8088-2

14-Wordby 16-Blt Register Set with
Available In EXPRESS Symmetrical Operations • - Standard Temperature Range

24 Operand Addressing Modes - Extended Temperature Range

The Intel® 8088 is a high performance microprocessor implemented in N-channel, depletion load, silicon gate
technology (HMOS), arid packaged in a 40-pin CERDIP package. The processor has attributes of both 8- and
16-bit microprocessors. It is directly compatible with 8086 software and 8080/8085 hardware and peripherals.

C·BUS

INSTRUCTION
STREAM BYTE

QUEUE

BUS
CS

INTERFACE 5S
UNIT

OS

IP

A·BUS .

AH AL

BH BL
CH CL

EXECUTION DH Dl
UNIT SP

BP

SI

DI FLAGS

231456-1

Figure 1. 8088CPU Functional Block Diagram

2-89

MIN ! MAX 1
MODE MODE

GND Vee

A14 A15

A13 Al6/S3

A12 A17/54

All Al81S5

A1D Al91S6

A9 sso (HIGH)

A8 MN/MX

AD7 iiii
ADe HOLD (~/lfI'O)

ADS HlDA (im/em)

AD4 WR (1liCK)

AD3 101M (82)

AD2 DTill (81)

ADl lml (SO)

ADO ALE (QSO)

NMI TRfA (QS1)

INTR TBf
ClK READY

GND RESET

231456-2

Figure 2. 8088 Pin Configuration

October 1988
Order Number: 231456-004

8088

," . Ta~l~ 1.~ln Description ':.;' :

The following pin function descriptions are for 80fJ!J sY$teni,in;elther minimum or maximum mode. The "local
bus" in these descriptions is the direct multiplexed bus interface connection to the 8088 (without regard to
additional bus buffers), "

Symbol Pin No, Type Name and Funqtlcm
ADt'::'ADO ..

A15-A8 2-8,39

A19/S6, A18/S5, 35':':38
A17/S4, A16/S3

RD 32

READY. ,22

INTR 18

TEST " 23

ADDRESS DATA BUS: These lines constitute the time niuitlplexed
meniprYlIO address (T1)and data (T2, T3;Tw; T4)buS'. These'lines are
actiVe HIGH and float to 3-state OFF during interrupt acknowledgEi and

_, ,Ipcal bus "hol~acknowl~ge:'. "','
o 'ADDRESS BUS: These lines provide address bits 8 through 15 for the

o

'. entil'El bus cycle (T1-T4). These lines do not have to be latch~ by ALE
to femain valid. A 15-A8 are active HIGH and flolino 3-state OFF
'during iriterruptacknowledge and local bus '~hold ,acknowledge".
ADOhESS/STATUS: During T1, these, are the four most si9l1ificant
address lines for memory operations. During I/O operations, these lines
are LOW. During memory and I/O operations, status information is

'. available on these lines during T2, T3, Tw, and 14. $6 is always ,low.
The status of t~e interrupt enable flag bit(S5) is updated at ,the " '
beginning of eacn clock cycle. S4 and ~3 are enc:oded as shown.
This information indicates which segment register is presently being
used for data accessing.
These lines float to 3-state OFF during local bus "hold acknowledge".

S4 S3 Character.latics
o (LOW)
o
1 (HIGH)
f
saisO (LOW)

o Alternate Data
1 ,$t~ck. ,
o ' Code or None
1 pata

a READ: Read strobe indicates that the processor is performin.a a
!"{Iemory or va read cycle, depending pnthe state of the 101M pin or
S2. This signal is used to read devices which,reside on the 8088 local
bus. RD is active LOW during T2, T3 and Tw of any read cycle, and Is
guaranteed to remain HIGH in T2 until the 8088 local bus has floated.
This signal floats to 3-state, OFF in "hold acknowledge".

I READY: is the acknowledgement from the'addressed memorY or I/O
device that it will complete the data transfer. The ROY signal from
memory or I/O is synchronized by the 8284 clock generator to form
READY. This signal is actiVe HIGH., The:8088~EADYinput is ,not
synchroniZed. C.orrect operatiQnlsnot guaranteed if the set up and hold
times are not met. ' .

I.. ' INTERRUPT REQUEST: is a level triggered inPut which is sample,d
during th~ last clock; cycle of each instruction to determine if the
,processor should enter~to an interrupt acknowledge operation. A
subroutine is vectored ,to via an interrupt vector lookup table located in
system memory:lfcatiitie internally masked by software resetting the
interrupt enable bit. INTI3 is internally synchronized; This Signal is active
HIGH.' ,

'. I TE$T: inputis examined by the "wait for test" instruction. I, the TEST
input is LOW, eXecution continLles,otherwise,tbe processor waits in an
"idle" state. This input is' syhchroniz$cf'internally during each clock
cycle on ,the leading edge of CLK.

inter 8088

Table 1. Pin De,crlptlon(Continued)
Symbol Pin No. Type Name and Function

I NMI 17 I NON.-MASKABLE INTERRUPT:.is an edge triggered input which causes a
type 2 interrupt. A subroutine is vectored to via an interrupt vector lookup
table located in system memory. NMI is not maskable internally by
software. A transition from a LOW toHIGH initiates the interrupt at the end
of the current instruction. This input is internally synchronized.

RESET 21 I RESET: causes the processor to immediately terminate its present activity.
The signal must be active HIGH for at least four clock cycles. It restarts
execution; as described in the instruction set description, when RESET
returns LOW. RESET is internally synchronized.

CLK 19 I CLOCK: provides the basic timing for the processor and bus controller. It is
asymmetric with a 33% duty cycle to provide optimized internal timing.

Vee 40 Vee: is the + 5V ± 10% power supply pin.
GND 1,20 GND: are the ground pins.
MN/MX 33 I MINIMUM/MAXIMUM: indicates what mode the processor is to operate in.

The two modes are discussed in the following sections.

The fol/owing pin function descriptions are for the 8088 minimum mode (i.e., MN/MX = Vcd Only the pin
functions which are unique to minimum mode are described; aI/ other pin functions are as described above.

Symbol Pin No. Type Name and Function
101M 28 0 STATUS LINE: is an inverted maximum ~ode S2.ltis used to distinguish a

memory access from an 1/0 access. 101M becomes valid in the T4 preceding a
bus cycle and remains valid until the final T 4 ofthecycle (1/0 == HIGH,. M =
LOW). 10/M floats.to 3-state ·OFF in local bus "hold acknowledge".

WR 29 0 WRITE: strobe indicates that the processor is performing a write memory or write
1/0 cycle, depending on the state of the 101M signal. WR is active for T2, T3, and
Twof any write cycle. It is active LOW, and floats to 3-state OFF in local bus
"hold acknowledge".

INTA 24 0 INT A: is used as a read strobe for interrupt acknowledge cycles. It is active LOW
during T2, T3, and Tw of each interrupt acknowledge cycle.

ALE 25 0 ADDRESS LATCH ENABLE: is provided by the processor to latch the address
into an address latch. It is a HIGH pulse active during clock low of T1 of any bus
cycle. Note that ALE is never floated.

DTIR 27 0 DATA TRANSMIT/RECEIVE: is needed in a minimum system that desires to use
a data bus transceiver. It is used to control the direction of data flow through the
transceiver. Logically, DT IR is equivalent to S1 in the maximum mode, and its
timing is the same as for 101M (T = HIGH, R = LOW). This signal floats to
3-state OFFin local "hold acknowledge".

DEN 26 0 DATA ENABLE: is provided as an output enable for the data bus transceiver in a
minimum system which uses the transceiver. DEN is active LOW during each
memory and I/O access, and for INTA cycles. For a read or INT A cycle, it is
active from the middle of T2 until the middle of T 4, while for a write cycle, it is
active from the beginning of T2 until the middle of T 4. DEN floats to 3-state OFF
during local bus "hold acknowledge".

2-91

i

'"

8088

Table 1. Pin DfJactlptron:(pontinlred)

Symbol Pin No. Type , .- Name and Functlol"! ".!'

,",OLD, '31;'30 1,,0 HOLD: indicates that another master is h!lquestirig a local bus "hold". To be
HlDA acknowledged, HOLD must be active HIGH; The processor receiving the "hold"

.. request will isSue HlDA (HIGH) as an acknowledgement, inthe middle of a T4 or
, 'Ti clock·cycle. Simultaneous with the issuanceiOf HlDA the processor .."m float

. th.e lOcal bus and control IInEis. ' After HOlDJs detected.as being lOW, the
" procellsorlowers HlQA, andwhen ,the processor needs to run another cycle;.Jt

will again cl,rivethe·localbusand controlli"es.
Hold is not an asynchroriousinput.:elCtemal synchronization should be provided if
the system cannot otherwiSe gua~ant&e the set. uP time.

"
SSO ., 34 0 STATUS LlNE:'is l~ical~eqUiValent to ~ in the maximum mode. The'

combination of~, 101 and DT IA' allQwstlle system to 9bmpletely (lecode the
current bus cycle status.

10/M DTiR '&so Characteristics

1 (HIGH) 0 0 Interrupt Acknowledge
1 0 . 1 Read 110 Port
1 1 0 Write 110 Port
1 1 1 Halt .
O(lOW) '0 0 . CodeAccess
0 0 f ReadMem~,
0 1:. ' 0 Write Mel1lory

I··',. o. , 1, ,:1,. '. Pass~i
, ..

The following piil'functiondesCtiptions are.for:the 8088/8288.system in'maximum mode (i.e., MN/MX =
GND). Qn/y the pin ftJOO/ioils which are uniqqe tOfflaximum mdJIeare (JescrifJ6d; all other pin functions ate as
described above. '.c,',' i ,i.

Symbol Pin No. Type Name arid Function i

52,Sf;'SO 26-28 OSl'ATU8:iS active during cloCk high ofi4~ T1, andt2, and is returned to the
passive state (1,1,1) during T3 orduririgTwwhen READY is HIGH.This status ill,
used by the' 8288 bus controller to ~nerate all memory and 110 aCcess control '
signals. Any change by 52, S1"or S'O during T4 ist/sed to i"dicate the beginning
of a bus cycle, and the. returr). to.the passive.state in T3 and Tw is u~ to
indicate.the end of a bus cycle. .,'. '
These Signals float to. 3-stateOF,F during "hold acknowledge". During the first ,
cl~ck cycle after ReSETbecom~.s active, t~ese signais are active HIGH: After
this fir$t clock, they float to 3.-state OFF,. . . .

S2·· $1 so Characteristics

O(LOW) 0 0 '. '" Interrupt Acknowledge
o -,0 1 ,Read 110 Port
o 10 Write 1!,Q,Port
0" 11 , Halt, . - .'
1 (HIGH) .•. 0 0 Cod~ Access

" l' ,: O. "/~:,,,; \ ,1, .. R~ad,Memory
1 1 _I 0 Writ~ Memory
1 1 _~) Passive .

8088

Table 1 Pin Description (Continued)
Symbol Pin No. Type Name and Function

RQ/GTO, 30,31 I/O REQUEST/GRANT: pins are used by other local bus masters to force the
Ra/GT1 processor to release the local bus at the end of the processor's current bus

cycle. Eac-a¥in is bidirectional with Ra/GTO having higher priority than Ra/
GT1. Ra/ T has an internal pull-up resistor, so may be left unconnected.

!~

II

I·····.· .1
,')'

~

The request/grant sequence is as follows (See Figure 8):
1. A pulse of one CLK wide from another local bus master indicates a local
bus request ("hold") to the 8088 (pulse 1).
2. During aT 4 or TI clock cycle,a pulse one clock wide from the 8088 to the
requesting master (pulse 2), indicates that the 8088 has allowed the local
bus to float and that it will enter the "hold acknowledge" state at the next
CLK. The CPU's bus interface unit is disconnected logically from the local
bus during "hold acknowledge". The same rules as for HOLD/HOLDA apply
as for when the bus is released.
3. A pulse one CLK wide from the requesting master indicates to the 8088
(pulse 3) that the "hold" request is about to end and that the B088 can
reclaim the local bus at the next CLK. The CPU then enters T4.
Each master-master exchange of the local bus i.s a sequence of three
pulses. There must be one idle CLK cycle after each bus exchange. Pulses
are active LOW.
If the request is made while the CPU is performing a memory cycle, it will
release the local bus during T 4 of the cycle when all the following conditions
are met:
1. Request occurs on or before T2.
2. Current cycle is not the low bit of a word.
3. Current cycle is not the first acknowledge of an interrupt acknowledge
sequence.
4. A locked instruction is not currently executing.
If the I.ocal bus is idle when the request is made the two possible events will
follow:
1. Local bus will be released during the next clock.
2. A memory cycle will start within 3 clocks. Now the four rules for a currently
active memory cycle apply with condition number 1 already satisfied.

LOCK 29 0 LOCK: indicates that other system bus masters are not to gain control of the
system bus while LOCK is active (LOW). The LOCK signal is activated by
the "LOCK" prefix instruction and remains active until the completion of the
next instruction. This signal is active LOW, and floats to 3-state off in "hold
acknowledge" .

QS1, aso 24,25 0 QUEUE STATUS: provide status to allow external tracking ofthe internal
8088 instruction queue.
The queue status is valid during the CLK cycle after which the queue
operation is performed. .

QS1 QSO Characteristics
O(LOW) 0 No Operation
0 1 First Byte of Opcode from Queue
1(HIGH) 0 Empty the Queue
1 1 Subsequent Byte from Queue

- 34 0 Pin 34 is always high in the maximum mode.

2-93

8088

7 0 FFFFFH
..r--:l.

64LD· .•..•. \'0""".'"
.---'--_.....J........ . . XXXXOH

\ "'" ",.,"

SEGMENT I
REGISTER FILE

E~~;I~§~~==~=r~r=1' DATA SEGMENT OS
ES

\m" .. " ,,,.,"
L..--......... _--t

~OOilOoH
231456-3

Figure 3. Memory Organization

FUNCTIONAL DESCRIPTION

Memory Organization'

The processor provides a 20-bit address to memory
which locates the byte being referenced. The memo­
ry is organi;zed· as a linear array of up to 1 million
bytes, addressed as OOOOO(H) to FFFFF(H). The
memory is logically divided into code, data, extra
data, and. stack segments of up to 64K bytes each,
with each segment falling on 16-byte boundaries
(See Figure 3).

All memory references are made relative to base ad­
dresses contained in high speed segment registers.
The segment types were chosen based on the ad-

Memory Segment'
Reference Used Register Used

Instructions CODE (CS)

Stack STACK (SS)
-

Local Data DATA (OS)

External (Global) Data EXTRA (ES)

dressing needs of programs. The segment register
to be selected is' automatically chosen according to
the rules of the following table. All information in one
segment type share the same logical attributes (e.g.
code or data). By structuring memory into relocat­
able areas of similar characteristics and by automati­
cally selecting segment registers, programs are
shorter,faster, and more structured.

Word. (16-bit). operands can be located on even or
odd address boundaries. For address and data oper­
an cis, the least significant byte of the word is stored
in the lower valued address location and the most
significant byte in the next higher address location.
The BIU will automatically execute two fetch or write
cycles for 16-bit operands.

Segment Selection Rule

Automatic with .all instruction prefetch.

All stack pushes and pops. Memory references
relative to BP base register except data references.

Data references when: relative to stack, destination
of string operation, or explicity overridden.

Destination of string operations: Explicitly selected
using a segment override.

2-94

intJ 8088

. Certain locations in memory are reserved for specific
CPU operations (See Figure 4). Locations from ad­
dresses FFFFOH through FFFFFH are reserved for
operations including a jump to the initial system ini­
tialization routine. Following RESET, the CPU will al­
ways begin execution at location FFFFOH where the
jump must be located. Locations OOOOOH through
003FFH are reserved for interrupt operations. Four­
byte pointers consisting of a 16-bit segment address
and a 16-bit offset address direct program flow to
one of the 256 possible interrupt service routines.
The pointer elements are assumed to have been
stored at their respective places in reserved memory
prior to the occurrence of interrupts.

Minimum and Maximum Modes

The requirements for supporting minimum and maxi­
mum 8088 systems are sufficiently different that
they cannot be done efficiently with 40 uniquely de­
fined pins. Cons~ently, the 8088 is equipped with
a strap pin (MN/MX) which defines the system con-

RESET BOOTSTRAP
PROGRAM JUMP

• • •
INTERRUPT POINTER

FOR TYPE 255

•
•
•

. INTERRUPT POINTER
FOR TYPE 1

INTERRUPT POINTER
FOR TYPE 0

FFFFFH

FFFFOH

3FFH

3FOH

7H

4H
3H

OH

231456-4

Figure 4. Reserved Memory Locations

2-95

figuration. The definition of a certain subset of the
pins changes, dependent on the condition of the
strap pin. When the MN/MX pin is strapped to GNO,
the 8088 defines pins 24 thro~ 31 and 34 in maxi­
mum mode. When the MN/fiifX pin is strapped to
Vee, the 8088 generates bus control signals itself on
pins 24 through 31 and 3-t

The minimum mode 8088 can be used with either a
multiplexed or demultiplexed bus. The multiplexed
bus configuration is compatible with the MCS-85™
multiplexed bus peripherals. This configuration (See
Figure 5) provides the user with a minimum chip
count system. This architecture provides the 8088
processing power in a highly integrated form.

The demultiplexed mode requires one latch (for 64K
addressabiliiy) or two latches (for a full megabyte of
addressing). A third latch can be used for buffering if
the address bus loading requires it. A transceiver
can also be used if data bus buffering is required
(See Figure 6). The 8088 provides DEN and OT /R to
control the transceiver, and ALE to latch the ad­
dresses. This configuration of the minimum mode
provides the standard demultiplexed bus structure
with heavy bus buffering and relaxed bus timing re-
quirements. . ..

The maximum mode employs the 8288 bus control­
ler (See Figure 7). The 8288 decodes status lines.
SQ, 51, and S2, and provides the system with all bus
control Signals. Moving the bus control to the 8288
provides better source and sink current capability to
the control lines, and frees the 8088 pins for extend­
ed large system features. Hardware lock, queue
status, and two request! grant interfaces are provid­
ed by the 8088 in maximum mode. These features
allow co-processors in local bus and remote bus
configurations.

inter 8088

/'~ ~ ll· .
H-- eE PDR!~

WR ~ _ PORT j81,
AO 811i6 B •

.. ALE PORT~
OATA C 161

AOOR

" " IN-
10·1:; TIMER

RESET
OUT -

'" A. -A1. ADDR
./

lOW

Ail A· ~ ADo - .lOr ADDR/DATA ALE

~ - sJ~ elK

"
PORT

ct A

~
"- As 10

8088 V 83~5 ·815~A

r-- READY ..
MN/MX -Vee

DATA
ADDR

r01 ALE I-- ~

~ Vee 10 M PORT
AESET Ail I-- - I- RESET B

~ XI X2

.~~
elK WR r--

~c
READY i'"""""'"" 10/1i I-- lOR

~~ RES 1 t t t I2I4A

r RESET r-- Vss Vee Voo PROG

GND WR

RD.

C,E 1 8185

ALE

S-I-- CS, CE,

s-- As. At) ..
~ ADo 1

~

1 f
Vss Vn'

~ " 7

231456-5

FIgure 5. MultIplexed Bus ConfIguratIon

2-96

inter 8088

ltr*l -CLOCk eLK MN!IIl[-Vee
';;NERATOR

READY lOIII
RESET m 1" ROY '"' • 0

CPU' IAft

OTIR ==ll r---:1
II1II - I ." ST.

ADo-AD,
GNo-K-: OJ :

AI-Att ~DDRI Ar--v t1~~CRH31
J

"'TO I

p:: T

DE
TAANSC£IVER DATA

E Jll l II 1 lr II
I

WT~II ~ IB m~1 1\ RAM (2) PROM MCS-eo
PERIPHERAL

II250A
INTERRUPT -CONTROL

'NT

"----
¢==='''.'

231456-6

Figure 6. Demultiplexed Bus Configuration

ltr*l = ... eL~
MNI~ r- 0ND elK M1fDc

~NERATOR
S, 50 MWTC

READY S; S, l<IIWl! r NC

RESET s, S; .28. iORC 1" FlOY r---
'US

DEN CTALR lowe .No - '-. OTIA Alowe r NC
CPU

ALE INTA

r_---:1
I

STB

GNO- I----- .. I
I AOo-AD7

POOR/DAr
LATCH ADDRESS At-A" 11.20A3)

.J
'NT

D= T

0.

TRANSCEiVER DATA

F ill 1 n 1 TT II
I w'~11 ~II B ~ww I 1\ RAM (2) PROM MCS·80

PERIPHERAL

""A
INTERRUPT -CONTROL

L.-
¢==='RG-'

231456-7

Figure 7. Fully Buffered System Using Bus Controller

2-97

inter 8088

Bus Operation
The 8088 address/data bus is broken into three
parts-the lower eight address/data bits (ADO­
AD?), the middle eight address bits (A8-:-A 15), and
the upper four address bits (A 16-A 19}. The ad­
dress/data bits and the highest four address bits are
time multiplexed. This technique provides the most
efficient use of pins on the processor, permitting the
use of a standard 40 lead package. The middle eight
address bits are not multiplexed, i.e. they remain val-

,

id throughout each bus cycle. In addition, the bus
can be demultiplexed at the processor'!Vith a single
address latch if a standard, non-multiplexed bus is
desired for the system.

Each processor bus cycle consists of at least four
elK cycles. These are referred to as T1, T2, T3, and
T 4 (See Figure 8). The address is emitted from the
processor during T1 and data transfer occurs on the
bus during T3 and T 4. T2 is used primarily for chang-

!------l4+ NWAIT);TCV _____ -!-_____ (4+NwlJd-Tcv------!

T, '2 I T] TWAIT I T. T, T.

eLK

\\.-..-
ADDAISTATUS

ADDR

ADOR/DATA -----8 ___ DA_TA_O_"T_ID_,._00_, ---')--~

READY

DT/R

MeMORY ACCESS TIME

. 231456-8

Figure 8. Basic System Timing

2-98

inter 8088

ing thedirection'of the bus during read operations. In
the event that a "NOT READY" indication. is given
by the addressed-device, "wait" states (Tw) are in­
serted between T3 and T4. Each inserted "wait"
state is of the same duration as a ClK cycle .. Periods
can occur between 8088 driven bus cycles. These
are referred to as "idle" states (Ti), or inactiveClK
cycle$. The processor uses these, cycles for internal
housekeeping.

During T1 of any bus cycle, the ALE (address latch
enable) signal iS,emitted (by eit~r the processor or
the 8288 bus controller, depending on,the MN/MX
strap). At the trailing edge of this pulse, a valid ad­
dress and certain status information for the cycle
may be latched.

Status bits SO, Sf,.and 52 are used by the bus con­
troller, in maximum mode, to identify the type of bus
transaction according to the following table:

S2 S1 SO Characteristics

O(lOW) 0 0 Interrupt Acknowledge
0 0 1 Read I/O
0 1 0 Write I/O
0 1 1 Halt
1(HIGH) 0 0 Instruction Fetch
1 0 1 Read Data: from Memory
1 1 0 Write Data to Memory
1 1 1 Passive (No Bus Cycle)

Status bits 53 through 56 are multiplexed with high
order address bits and are therefore valid during T2
through T4. S3 and S4 indicatew/Jich segment reg­
ister was used for this bus cy~le in forming. the ad­
dress according to the following table:

'S4 83 Characteristics

O(lOW) 0 Alternate Data (Extra Segment)
0 1 Stack
1 (HIGH) 0 Code or None.
1 1 Data

: .

55 is a reflection of the PSW interrupt enable bit. 56
is always equal to 0; ,

1/0 Addressing'

In the 8088, 110 operations can :addres's ·up to a
maximum of 64KI/O registers~ The I/O address ap­
pears in the same ·format as the memory address on
bus lines A15"-AO.'The address lines A19-A16 are
zero in I/O operations. The variable 1/0 instructions,

2-99

which use register DX as a pointer, have full address
capability, while the direct I/O instructions directly
address one or two of the 256 1/0 byte locations in
page 0 afthe 1/0 address space. 110 ports are ad­
dressed in the same manner as memory locations.

Designers familiar with the 8085 or upgrading an
8085 design should note that the 8085 addresses
I/O with an 8-bit address on both halves of the 16-
bit address bus. The 8088 uses a full 16-bit address
on its lower 16 address lines.

EXTERNAL INTERFACE

Processor Reset and Initialization

Processor initialization or start up is accomplished
with activation (HIGH) of the RESET pin. The 8088
RESET is required ,to be HIGH for greater than four
clock cycles. The 8088 will teiminate operations on
the high-going edge of RESET and.will remain dor­
mant as long as RESET is HIGH. The low-going
transition . of· RESET triggers' an· internal reset se­
quenceforapproximately 7 plock cycles. After this
intel"l(aJ. the. 8088 operates, normally, beginning with
the instru~tion in absolute locations FFFFOH (See
Figure 4). The RESET input is internally,synchroniz~
edto the processor clock. At initialization, ~eHIGH
to lOW transition of RESET must occur .,0 sooner
than 50 /'S after power .up,. to allowcompl~te initiali-
zation of the 8088. .

NMI asserted prior to the 2nd clock after the end of
RESET will not be honored. If NMI is asserted after
that point and .during the internal reset sequence,
the processor may execute one instruction before
responding to the interrupt. A hold request active
immediately after RESET will be honored before the
first instruction fetch.

All 3-state outputs float to 3-state OFF· during
RESET. Status is active in the idle state forthe'first
clock' after RESET becomes active and then floats
to 3-state OFF. ALE and HlDA are driven low.

Interrupt Operations

Interrupt operations fall into two classes: software or
hardware initiated. T/Je software initiated interrupts
and software aspects of hardware interrupts are
specified in the, instruction set description in the
iAPX 88 book. or .theiAPX 86,88 User's Manual.
Hardware interrupts can ,be classified as nonmaska­
ble or maskable.

inter 8088

Interrupts result in a transfer. of control to a new pro­
gram location. A 256 element table containing ad­
dress pointers to the interrupt service program loca­
tions resides in absolute locations 0 through 3FFH
(See Figure 4), which are reserved for this purpose.
Each element in the table is 4 bytes in size and cor­
responds to an interrupt "type," An interrupting de­
vice supplies an 8-bit type number\ during the inter­
rupt acknowledge sequence, which is used to vector
through the appropriate element to the new interrupt
service program location.

Non-Maskable Interrupt (NMI)

The processor provides a Single non-maskable inter­
rupt (NMI) pin which has higher priority fhan the
maskable interrupt request (INTR) pin. A typical use
would be to activate a power failure routine. The
NMI is edge-triggered ona LOW to HIGH transition.
The activation of this pin causes a type 2 interrupt.

NMI is required to have a duration in the HIGH state
of greater than two clock cycles, but is not required
to be synchronized to the· clock .. Ahy higher going
transition of NMlis latched on-chip and will be serv­
iced at the end of the current instruction or between
whole moves (2 bytes in the case of word moves) Of
a block type instruction. Worst case response to
NMI would be for ·multiply, divide, and variable shift
instructions. There is no specification On the occur­
rence of the low-going edge; it may occur before,
during, or after the servicing of NMI. Another high­
go.ing edge triggers another response if it occurs af­
ter the start Of the NMI proCedure. The Signal must
be free of logical spikes in· genera'· and be free of
bounces on the low-going edge to· avoid triggering
extraneous responses.

Maskable Interrupt (INTR) .

The.8088 provides a single .interrupt request input
(INTA) which can be masked internally.by software
with the. resetting of the interrupt enable (IFlflag bit.
The interrupt request signal is level triggered. It is
internally synchronized during each clock cycle on
the high-going edge of CLK. To be responded to,
INTR must be present (HIGH} during the clock peri­
od preceding the end of the current instruction or the
end of a whole move for a block type instruction.
During interrupt response sequence, further inter­
rupts are disabled. The enable bit is reset as part of
the response to any interrupt (INTR, NMI, software
interrupt, or single step),although the· FLAGS regis­
ter which is automatically pushed onto the stack re­
flects the state of the processor prior to the inter­
rupt. Until the old FLAGS register is restored, the

enable bit will be zero unless specifically set by an
instruction.

During the response sequence (See Figure: 9), the
processor executes two successive· (back to back)
interrupt acknowledge cycles. The 8088 emits the
LOCK signal (maximum mode only) from T2 of the
first bus cycle until T2 of the second. A local bus
"hold" request will not be honored until the end of
the second bus cycle. In the second bus cycle, a
byte is fetched from· the external interrupt system
(e.g., 8259A PIC) which identifies the source (type)
of· the interrupt. This byte is multiplied by four and
used as a pointer into the interrupt vector lookup
table. An INTR signal left HIGH will be continually
responded to within the limitations of the enable bit
and sample period. The interrupt return instruction
includes a flags pop which returns the status of the
original interrupt enable bit when it restores the
flags.

HALT

When a software HALT instruction is executed, the
processor indicates that it is entering the HALT state
in one of two ways, depending upon which mode is
strapped. In minimum mode, the processor issues
ALE, delayed by one clock cycle, to .. allow the sys-·
tern to latch the halt status. Halt status is available'
on lolM, DT IR, andSSO.ln maximum mode, the
E!:9cessq0ssues appropriate HALT status on S2,
S1, and SO, and the 8288 bus controller issues one
ALE. The 8088 win not le.ave the HAL Tstate when a
local bushold is.entered while in HALT. In this case,
the processor reissues the HALT indicator at the
end of the local bus. hold. An interrupt request or
RESET will force the 8088.out of the HALT state.

Read/Modify/Write (SemaphOre)
Operations via LOCK

The LOCK status information is provided by the
processor when consecutive bus cycles are required:
during the execution of an instruction. This allows
the processor to perform read/modify/write opera­
tions on memory (via the "exchange register with
memory" instruction), without another system bus
master receiving intervening memory cycles. This is
useful in multiprocessor system configurations to ac­
complish "test and set lock" operations. Th.e LOCK
signal is activated (LOW) in the Clock cycle following
decoding oUhe LOCK prefixinstruction.ltjsdeacti­
vatedatthe end of the last bus cycle .01 the. in.struc,
tion following the LOCK prefix. While LOCK is active,
a request on a RQ/GT pin will be recorded, and then
honored. at the end of the LOCK.

2-100

inter 8088

I T, J T. T3 T. T, I T.

ALE ~L....,.-' _----In\.-__

FLOAT
ADo-AD7

231456-9

Figure 9, 'Interrupt Acknowledge Sequence

External Synchronization via TEST

As an alternative to interrupts, the 8088 provides a
single software-testable input pin (TEST). This input
is utilized by executiliga WAIT instruction. The sin­
gle WAIT instruction is repeatedly executed until the
TEST input goes active (LOW). The execution of
WAIT does not cdnsumebus cycles once the queue
is full.'

11a local bus request occurs during WAIT execution,
the 8088 3-states all output drivers. If interrUpts are
enabled, the 8088 will recognize interrupts and pro­
cess them. The WAIT instruction is then refetched,
and reexecuted.

Basic System Timing

In minimum mode, the MN/MX pin is strapped to
Vee and 'the processor emits bus control signals
compatible with the 8085 bus structure. In maximum
mode, the MN/MX pin is strapped to GNDand the
processor emits coded status information Which the
8288 bus controller uSeS to generate MUL TIBUS
compatible bus control signals.

System Timing-Minimum System

(See Figure 8)

The read cycle begins in T1 with the assertion of the
address latch enable (ALE) signal. The trailing (low

2-101

going) edge of this signal is used to latch the ad­
dress information, which is valid on the addressl
data bus (ADO-AD7) at this time, into the
8282/8283 latch. Address lines A8 through A15 do
not need to' be latched because they remain valid
throughout the bus cycle. From T1 to T4 the 10/M
signal indicates a memory or 1/0 operation. At T2
the address is removed from the addressldata bus
and the bus goes to a high impedance state. The
read control signal is also asserted at T2. The read
(RD) signal causes the addressed device to enable
its data bus drivers to the local bus. Some time later,
valid data will be available on the bus and the ad­
dressed device will drive the READY line HIGH.
When the processor returns the read signal to a
HIGH level, the addressed device will agaih 3-state
its bus drivers. If a transceiver is required to buffer
the 8088 local bus, signals DT /Ff and DEN are pro-
vided by the 8088. .

A write cycle also begins with the assertion of ALE
and the emission of the address. The 10/M Signal is
again asserted to indicate a memory or 1/0 write
operation. In T2, immediately following the address
emission, the processor emits the data to be written
into the addressed location. This data remains valid
until at least the middle of T4. During T2, T3, and
Tw, the processor asserts the write control signal.
The write (WR) signal becomes active at the begin­
ning of T2, as opposed to the read, which is delayed
somewhat into T2 to provide time for the bus to
float.

intJ 8088

The basic difference between the interrupt acknowl­
edge cycle and a read cycle is that the interrupt ac­
knowl~e (INTA) signal is asserted in place of the
read (AD) signal and the address bus is floated.
(See Figure 9) In the second of two successive INTA
cycles, a byte of information is read from the data
bus, as supplied by the interrupt system logic (i.e.
8259A priority interrupt controller). This byte identi­
fies the source (type) of the interrupt. It is multiplied
by four and used as a pointer into the interrupt vec­
tor lookup table, as described earlier.

Bus Timing-Medium Complexity
Systems

(See Figure 10)

For medium complexity systems, the MN/MX pin is
connected to GND and the 8288 bus controller is
added to the. system, as well as a latch for latching
the system address, and a transceiver to allow for
bus loading.greater than the 8088 is capable of han­
dling. Signals ALE, DEN, and DT lR' are generated
by the 8288 instead of the processor in this configu­
ration, although their timing remaiQ!.relati~. the
same. The 8088 status outputs (S2, S 1, and SO) pro­
vide type of cycle information and become 8288 in·
puts. This bus cycle information specifies read
(code, data, or 1/0), write (data or 1/0), interrupt ac·
knowledge, or software halt. The 8288 thus issues
control signals specifying memory read or write, I/O
read Or write, or interrupt acknowledge. The 8288
provides two types of write strobes, normal and ad·
vanced, to be applied as required. The normal write
strobes have data valid at the leading edge of write.
The advanced write strobes have the same timing
as read strobes, and hence, data is not valid at the
leading edge of write. The transceiver receives the
usual T and OE inputs from the 8288's DT IR and
DEN outputs.

The pointer ihto the interrupt vector table, which is
passed during the second INTA cycle, can derive
from an 8259A located on either the local bus or the
system bus. If the master 8289A priority interrupt
controller is pm,iitioned on the local bus, a TTL gate
is required to disable the transceiver when reading
from the master 8259Aduring the interrupt acknowl.
edge.sequence and software "pOll".

The 8088 Compared totbe8086

The. 8088 CPU isa~ 8-bit processor designed
around the 8086 internal structure. Most internal
functions of the 8088 are identical to the equivalent
8086 functions. The 8088 handles the external bus

the same way the 8086 does with the distincti!)n of
handling only 8 bits at a time. Sixteen-bit operands
are fetched or written in two consecutive bus cycles.
Both processors will appear identical to the software
engineer, with the exception of execution time. The
internal register structure is identical and all instruc­
tions have the same end result. The differences be­
tween the 8088 and 8086 are outlined below. The
engineer who is unfamiliar with the 8086 is referred
to the iAPX 86, 88 User's Manual, Chapters 2 and 4,
for function description and instruction set informa­
tion. Internally, there are three differences between
the 8088 and the 8086. All changes are related to
the 8·bit bus interface.

• The queue length is 4 bytes in the 8088, whereas
the 8086 queue contains 6 bytes, or three words.
The queue was shortened to prevent overuse of
the bus by the BIU when prefetching instructions.
This was required, because of the additional time
necessary to fetch instructions 8 bits at a. time.

• To further optimize the queue, the prefetching al·
gorithm was changed. The 8088 BIU will fetch a

, new instruction to load into the. queue each time
there is a 1 byte hole (space available) in the
queue. The 8086 waits until a,~·byte space is
available.

• The. internal execution time of the instruction set
is affected by the 8-bit interface. All 16-bit fetches'
and writes from/to ,memory take an additional
four clock cycles; The CPU is also limited by the
speeci· of instruction fetches. This. latter problem
only occurs when a series of simple operations
occur. When the more sophisticated instructions
of the 8088 are being used, the queue has time to
fill and the execution proceeds as fast as the exec
cution unit will allow.

The E!088 and 8086. are completely software com·
patible by virtue of their identical execution units.
Software that is system dependent may not be com­
pletely transferable, but software that is not system
dependent will operate equally as well on an 8088
and an 8086.

The hardware. interface of the 8088 contains the mao
jor differences between the two CPUa. The pin as­
signments are nearly identical, however,. with the fol·
lowing functional changes:

• AS-A15-These pins are only address outputs
on the 8088. These address lines are latched in­
ternally and remain valid throughout a bus cycle
in a manner similar to the 8085 upper address
lines:

• BHE has no meaning on the 8088 and has been
eliminated.

2·102

8088

• SSO provides the SO status information in the
minimum mode. This out~t oc~rs on ~34 in
minimum mode only. DT IR, 101M, and 550 pro­
vide the complete bus status in minimum mode.

T\

ClK ~ r
051. OSO X

8088

A19156 - A16153 A19-A16

ALE "\

8288 ROY 8284

READY 8088

AD7-ADO / A7 AO

8088 A15-A8

RD

oTlft

8288 MRDC

DEN

To

• 101M has been inverted to be compatible with the
MeS-a5 bus structure.

• ALE is delayed by one clock cycle in the mini­
mum mode when entering HALT, to allow the
status to be latched with ALE.

T3 T.

I I\--

-

1L1LJ -:- - ----
'--- ---

56-53

,-
~. --

DATA IN
./

A15 - A8

/

231456-10

Figure 10. Medium Complexity System Timing

2-103

intJ 8088

ABSOLUTE MAXIMUM RATINGS·

Ambient Temperature UnderBias O·C to + 70·C

Case Temperature (Plastic) O·C to + 95·C

Case Temperature (OERDIP) ;O·C to + 75·C

Storage Temperature - 65·C to + 150·C

Voltage on Any Pin with
Respect to Ground -1.0 to + 7V

Power Dissipation 2.5 Watt

D.C. CHARACTERISTICS

• Notice: Stresses above those listed under "Abso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and
functional operation of the device at these or any
other conditions above those indicated in the opera­
tional sections of this specification is not implied. Ex­
posure to absolute maximum rating conditions for
extended periods may affect device reliability.

(T A = O·C to 70·C, T CASE (Plastic) = O·C to 95·C, T CASE (CERDIP)= O·C to 75·C,
T A = O·C to 55·C and T CASE = O·C to 75·C for P8088-2 only
T A is guaranteed as long as T CASE is not exceeded)

(VCC = 5V ± 10% for 8088, VCC = 5V ±5% for 8088-2 and Extended Temperature EXPRESS)

Symbol Parameter

Vil Input Low Voltage

VIH Input High Voltage

VOL Output Low Voltage

VOH Output High Voltage

Icc 8088
Power Supply Current: 8088-2

P8088

III Input Leakage Current

ILO Output and I/O Leakage Current

VCl Clock Input Low Voltage

VCH Clock Input High Voltage

CIN Capacitance If Input Buffer
(All Input Except
ADo-AD7' RQ/GT)

CIO Capacitance of I/O Buffer
ADo-AD7, RQ/GT)

NOTES:
1. VIL tested with MN/MX Pin '7 OV

VIH tested with MN/MX Pin = 5V
MN/MX Pin is a strap Pin

Min

-0.5

2.0

2.4

-0.5

3.9

2. Not applicable to RQ/GTO and RO/GT1 Pins (Pin 30 and 31)

2-104

Max Units Test Conditions

+0.8 V (Note 1)

Vec + 0.5 V (Notes 1, 2)

0.45 V 10l = 2.0 rnA

V 10H = -400p,A

340 rnA TA = 25·C
350
250

±10 p,A OV s VIN S VCC

±10 p,A 0.45V s VOUT S Vcc

+0.6 V

Vce + .1.0 V

15 pF fc = 1 MHz

15 pF fc = 1 MHz

inter 8088

A.C. CHARACTERISTICS

(T A = O·C to 70·C, T CASE (Plastic) = O·C to 9S·C, T CASE (CERDIP) = O·C to 7S·C,
T A = O·C to SS·C and T CASE = O·C to 80·C for P8088-2 only
T A is guaranteed as long as T CASE is not exceeded)

(VCC = 5V ± 10% for 8088, Vce = SV ± S% for 8~88-2 and Extended Temperature EXPRESS)

MINIMUM COMPLEXITY SYSTEM TIMING REQUIREMENTS

8088 8088-2 Test
Symbol Parameter Units

Conditions Min Max Min Max

TClCl ClK Cycle Period 200 SOO 12S SOO ns

TClCH ClKlowTime 118 68 ns

TCHCl ClK High Time 69 44 ns

TCH1CH2 ClK Rise Time 10 10 ns From 1.0V to 3.SV

TCl2Cl2 ClK Fall Time 10 10 ns From 3.SV to 1.0V

mVCl Data in Setup Time 30 20 ns

TClDX Data in Hold Time 10 10 ns

TR1VCl ROY Setup Time into 8284 3S 3S ns
(Notes 1, 2)

TClR1X ROY Hold Time into 8284 0 0 ns
(Notes 1, 2)

TRYHCH READY Setup Time 118 68 ns
into 8088

TCHRYX READY Hold Time 30 20 ns
into 8088

TRYlCl READY Inactive to ClK -8 -8 ns
(Note 3)

THVCH HOLD Setup Time 3S 20 ns

TINVCH INTR, NMI, TEST Setup Time 30 1S ns
(Note 2)

TILIH Input Rise Time (Except ClK) 20 20 ns From 0.8V to 2.0V

TIHll Input Fall Time (Except ClK) 12 12 ns From 2.0V to 0.8V

2-10S

"

j

I

8088

A.C. CHARACTERISTICS (Continued)

TIMING RESPONSES

8088 8088-2 Test
Symbol Parameter Units

Conditions Min Max Min Max

TCLAV Address Valid Delay 10 110 10 60 ns

TCLAX Address Hold Time 10 10 ns

TCLAZ Address Float Delay TCLAX 80 TCLAX 50 ns

TLHLL ALE Width TCLCH-20 TCLCH-10 ns

TCLLH ALE Active Delay 80 50 ns

TCHLL ALE Inactive Delay 85 55 ns

TLLAX Address Hold Time to TCI:lCL-10 TCHCL-10 ns
ALE Inactive

TCLDV Data Valid Delay 10 110 10 60 ns

TCHDX Data Hold Time 10 10 ns

TWHDX Data Hold Time after WR TCLCH-30 TCLCH-30 ns

TCVCTV Control Active Delay 1 10 110 10 70 ns

TCHCTV Contro.1 Active Delay 2 10 110 10 60 ns

TCVCTX Control Inactive Delay 10 110 10 70 ns

TAZRL Address Float to READ 0 0 ns
Active

TCLRL RD Active Delay 10 165 10 100 ns

TCLRH RD Inactive Delay 10 150 10 80 ns

TRHAV RD Inactive to Next TCLCL-45 TCLCL-40 ns
Address Active

TCLHAV HLDA Valid Delay 10 160 10 100 ns

TRLRH RDWidth 2TCLCL-75 2TCLCL-50 ns

TWLWH WRWidth 2TCLCL-60 2TCLCL-40 ns

TAVAL Address Valid to ALE Low TCLCH-60 TCLCH-40 ns

TOLOH Output Rise Time 20 20 ns From 0.8V to 2.0V

TOHOL Output Fall Time 12 12 ns From 2.0V to 0.8V

NOTES:
1. Signal at 8284A shown for reference only. See 8284A data sheet for the most recent specifications.
2. Set up requirement for asynchronous signal only to guarantee recognition at next elK.
3. Applies only to T2 state (8 ns into T3 state).

2-106

8088

A.C. TESTING INPUT, OUTPUT WAVEFORM A.C. TESTING LOAD CIRCUIT

DEVICE
UNDER

~c, TEST
100pF

--
231456-12

231456-11

A.C. Testing; Inputs are driven at 2.4V for a logic "I" and 0.45V
for a logic "0". Timing measurements are made at 2.0V for a logic
"I" and O.BV for a logic "0".

CL includes Jig Capacitance

WAVEFORMS

BUS TIMING-MINIMUM MODE SYSTEM

eLK (8284 Outpull

IOIM,SSO

ALE

ROY (8284 Input)

SEE NOTES

READY (8088 Input)

READ CYCLE

(NOTE tl

iWii. IIlTA = VOHI

ADr-ADo

RD

DT/R

T1 T2 T3 Tw T4 . · r-"~-tjH I-"~' I CH~.~ r",
~~

~~~tl-""~ !-TCLCH_ 

'I 

An - Ai (Float during INTA) 

TCLA_ I-- - -T LDV 
TCHDX- -TCLAX- -

A1t-Ate lis-&.! 

TCLLH- t TLHLL-= -TlLAX 

7 
r--

I 
----

TCHll- - l~l 
-TRIVCl 

!-TAVAL- ~U ~ ~~~ 
tYLCL-

!-TCLR1X 

- ~ 
r 

,f-

1 I - - CHRYX 

..... 

TRYHCH I--
I 

/::="TDVCL--- !-TCLAZ -TCLDX-

ADl-ADo V DATA IN 

fr FLOA:--/,-
TAZRL- TCLRH- H -,TRHAV 

r---
=~TCHCTV TClRl TRLRH 

1 
TCHCTV 

TCVCTV- t TCVCTX- C 
)J 

231456-13 

2-107 



inter 8088 

WAVEFORMS (Continued) 

BUS TIMING-MINIMUM MODE SYSTEM (Continued) 

elK (8284 Output) 

WRITE CYCLE 
NOTE 1 

INTA CYCLE 

HOTES 1.3 

SOFTWARE HALT -

i5EN,RD,WR.iNTA VOH 

DT/R INDETERMINATE 

NOTES: 

DT/R 

INVALI~ ADDRESS SOFTWARE HALT 

1. All Signals switch between VOH and VOL unless otherwise specified. 
2. ROY is sampled near the end of T 2. T 3. T W to determine if T W machines states are to be inserted. 

231456-14 

3. Two INTA cycles run back-to-back. The 8088 local AOOR/OATA bus is floating during both INTA cycles. Control 
signals are shown for the second INTA cycle. 
4. Signals at 8284 are shown for reference only. 
5. All timing measurements are made at 1.5V unless otherwise noted. 

2-108 



intJ 8088 if 
:,1,1 

I'l 

A.C. CHARACTERISTICS IJ, 
,'I 
I'J' 

,) 

MAX MODE SYSTEM (USING 8288 BUS CONTROLLER) 
l 

~ 
TIMING REQUIREMENTS 

8088 8088-2 Test Symbol Parameter Units Conditions Min Max Min Max 

TCLCL CLK Cycle Period 200 500 125 500 ns 

TCLCH CLKLowTime 118 68 ns 

'i-

'~;:i, 

II II 

I 

TCHCL CLK High Time 69 44 ns !J 
TCH1CH2 CLK Rise Time 10 10 ns From 1.0V to 3.5V 

TCL2CL1 CLKFaliTime 10 10 ns From 3.5V to 1.0V 

TDVCL Data in Setup Time 30 20 ns 

TCLDX Data in Hold Time 10 10 ns 

TR1VCL ROY Setup Time into 8284 35 35 ns 
(Notes 1,2) 

TCLR1X ROY Hold Time into 8284 0 0 ns 
(Notes 1, 2) 

TRYHCH READY Setup Time into 8088 118 68 ns 

TCHRYX READY Hold Time into 8088 30 20 ns 

TRYLCL READY Inactive to CLK ~8 -8 ns 
(Note 4) 

TINVCH Setup Time for Recognition 30 15 ns 
(INTR, NMI, TEST) (Note 2) 

TGVCH RQ/GT Setup Time 30 15 ns 

TCHGX RQ Hold Time into 8088 40 30 ns 

TILIH Input Rise Time (Except CLK) 20 20 ns From 0.8V to 2.0V 

TIHIL Input Fall Time (Except CLK) 12 12 ns From 2.0V to 0.8V 

2-109 



intJ 8088 

A.C. CHARACTERISTICS (Continued) 

TIMING RESPONSES 

8088 8088-2 Test 
Symbol Parameter 

Min Max Min Max Units Conditions 

TCLML Command Active Delay 10 35 10 35 ns 
(Note 1) 

TCLMH Command Inactive Delay 10 35 10 35 ns 
(Note 1) 

TRYHSH READY Active to 110 65 ns 
Status Passive (Note 3) 

TCHSV Status Active Delay 10 110 10 60 ns 

TCLSH Status Inactive Delay 10 130 10 70 ns 
TCLAV Address Valid Delay 10 110 10 60 ns 
TCLAX Address Hold Time 10 10 ns 

TCLAZ Address Float Delay TCLAX 80 TCLAX 50 ns 

TSVLH Status Valid to ALE High 15 15 ns 
(Note 1) 

TSVMCH Status Valid to MCE High 15 15 ns 
(Note 1) 

TCLLH CLK Low to ALE Valid 15 15 ns 
(Note 1) 

TCLMCH CLK Low to MCE (Note 1) 15 15 ns 
TCHLL ALE Inactive Delay (Note 1) 15 15 ns 

TCLMCL MCE Inactive Delay (Note 1) 15 15. ns 

TCLDV Data Valid Delay 10 110 10 60 ns 
TCHDX Data Hold Time 10 10 ns 

Cl = 20-100pFfor 
TCVNV Control Active Delay 5 45 5 45 ns All 8088 Outputs (Note 1) 

in Addition to 
TCVNX Control Inactive Delay 10 45 

(Note 1) 
10 45 ns Internal Loads 

TAZRL Address Float to 0 0 ns 
Read Active 

TCLRL RD Active Delay 10 165 10 100 ns 

TCLRH RD Inactive Delay 10 150 10 80 ns 
TRHAV RD Inactive to Next TCLCL-45 TCLCL-40 ns 

Address Active 

TCHDTL Direction Control 50 50 ns 
Active Delay (Note 1) 

TCHDTH Direction Control 30 30 ns 
Inactive Delay (Note 1) 

TCLGL GT Active Delay 85 50 ns 
TCLGH GT Inactive Delay 85 50 ns 

TRLRH RDWidth 2TCLCL-75 2TCLCL-50 ns 

TOLOH Output Rise Time 20 20 ns From 0.8V to 2.0V 

TOHOL Output Fall Time 12 12 ns From 2.0V to 0.8V 

NOTES: 
1. Signal at 8284 or 8288 shown for reference only. 
2. Setup requirement for asynchronous signal only to guarantee recognition at next elK. 
3. Applies only to T3 and wait states. 
4. Applies only to T2 state (8 ns into T3 state). 

2-110 



inter 8088 

A.C. TESTING INPUT, OUTPUT WAVEFORM 

231456-11 

A.C. Testing; Inputs are driven at 2.4V for a logic ·"1" and 0.45V 
for a logic "0". Timing measurements are made at 2.0V for a logic 
"1" and 0.8V for a logic "0". 

WAVEFORMS (Continued) 

BUS TIMIN~AXIMUM MODE SYSTEM 

eLK 

12,11.10 (EXCEPT HALT) 

1 
ALE (12IB OUTPUll 

SEe NOTE 5 

RDY (8214 INPUT) 

READY (lI0II INPUT) 

AEADCYCLE 

AD,-ADo 

RD 

DTIlI 

.... OOT'UTs.l- OR ImiC SEE NOTES 5,1 

DEN 

veH ,........... 

veL...J 
j Teu.v-

I--

-
~~~t::: 

I
I

TeLAV-

T,

_T""

'" t
I

1 TeHSV

_f ·LAi

.. , "
f- .r

\:

.1= --
X

TCHDTl-

\
, TeLML-:-

A.C. TESTING LOAD CIRCUIT

DEVICE
UNDER

TEST

CL Includes Jig Capacitance

T. T,

231456-12

T1·

t1 I-TeL2CL' ;.~

~n-~ ~

1,)(
- I-TeLSI

WI» f//J"s. NOTEI! . \'-----=
A"CAe

~e,ov
,.

TeHDX- -
I

'-reHLL ,r--
1-1 -1 ~'veL

~ ~ -'I ~\\~ ~\\\~ ~ ~~~
TR~ ... - ,:"TOL"'

h,....

- -TeHAYX·
~ ... H....;

~
1- ,....

TCLAX-

TeL.Z -

L
:LOAT.

D.TA 'N
FLOAT

TelAH

f'"

~
TCHD'"

r TeLMH- F-1
TCVNV- l-

f b TeVNX-

231456-15

2-111

.. ~
Il
j!
I.;
I'

inter 8088

WAVEFORMS (Continued)

BUS TIMING-MAXIMUM· MODE SYSTEM (USING 8288)

CLK

ii. st. so (EXCEPT HAL 1)

WRITE CYCLE

_TCHSV

VCH"

VCL-I

TCLAV-

~f(... note.j
1'---4---4----4---4--~~U

-. TCLDVI_ _ L TCLSH TCHDX-1- .TClAX~ .1
AD,-Ao" 'V DATA

__ +I-' '--+---+--J.JI\I~+----,-___ -+_--If-JII'--__
TCVNV- - TCVNX- -

DEN 1r--4---+--------4---~~1

_ -TCLI L TCLMH- -

---+f---f--'--t---'-b---:'-'\ r-I r1CLMl-
_TCLMH

INTA CYCLE

A1S'- Aa
ISEE NOTES 3.41

.. FLOAT / RESERVED FOR \}--~=:--------l---+'::-::::-;---<
---:'="-"-{ CASCADE ADDR I FLOAT FLOAT

____ -I-+'/c...,.JTCtAZ !-TDVCL- !-TCLDX

POINTER
FLOAT J. FLOAT?-)

TSVMCH-, r--
I

MeEI
I'li£N

OT/A

TCLMCL-~ ./

_TC_L_M_CH_-t-_---.,._-_~{tD\.TL--t/---,I------+--I-\-f-"t-T..JCH~';;'--

,d.,- fj \ X

SOFTWARE

"III OUTPIJTS
SEE NOTES 5,6 INTA

DEN

~I' --_=I-'. ·elH _ \~_ TCVNV .I1_:tLM

_---l _____ ...JJ TCVNX- 1:-'-----.......;
HALT - (DEN'; vo"tm.MIiilC.ImIe.1i!WTC,AMWC.IOwc.AiOWC.INT A.DTI~ = VOH.

AD1- ADo. A,s - At'
INVALID ADDRESS

TCLA

~ /~-------T\-------

~.--------~. ~------

NOTES: 231456-16
1. All signals switch between VOH and VOL unless otherwise specified.
2. RDY is sampled near the end of T 2, T 3, T w to determine if T w machines states are to be inserted.
3. Cascade address is valid between first and second INTA cycles.
4. Two INTA cycles run back-to-back. The 8088 10caJ.ADDR/DATA bus is floating during both INTA cycles. Control for
pOinter address is shown for setond INTAcycle ..
5. Signals at 8284 or 8288 are shown for reference only.
6. The issuance of the 8288 command and control signals (MRDC, MWTC, AMWC, IORC, IOWC, AIOWC, INTA and
DEN) lags the active high 8288CEN.
7. All timing measurements are made at 1.5V unless otherwise noted.
S. Status inactive in state just prior to T 4.

2·112

inter
WAVEFORMS (Continued)

ASYNCHRONOUS SIGNAL. RECOGNITION

ClK

NMI

8088

BUS LOCK SIGNAL TIMING
(MAXIMUM MODE ONLY)

ClK

I·,,··
INTR

TEST
-,~. 9 ______ T-J"'f

NOTE: 231456-17
1. Setup requirements for asynchronous signals only to
guarantee recognition at next elK.

REQUEST/GRANT SEQUENCE TIMING (MAXIMUM MODE ONLY)

Previous gil"'

A'''''A~~:: 1-1 -------------___i ADr-ADo _

:~ I-I----------~---___i
NOTE:
1. The coprocessor may not drive the busses outside the region shown without risking contention.

HOLD/HOLD ACKNOWLEDGE TIMING (MINIMUM MODE ONLY)

~ 1 elK CYCLE-

ClK

I~

231456-18

231456-19

HOLD ,.--f-

HlDA

\

1---'----i:~Cl_+_lHAV ~

8018 COPAOC~SSOA

231456-20

2-113

intJ

Mnemonic and
Description

DATA TRANSFER

MOY = Move:

Register/Memory tolfrom Register

Immediate to Register IMemory

Immediate to Register

Memory to Accumulator

Accumulator to Memory

Register/Memory to Segment Register

Segment Register to Register/Memory

PUSH = Push:

Register/Memory

Register

Segment Register

POP = Pop:

Register/Memory

Register

Segment Register

XCHG = EXchange:

Register IMemory with Register

Register with Accumulator

IN = Input from:

Fixed Port

Variable Port

OUT = Output to:

Fixed Port

Variable Port

XLA T = Translate Byte to At

LEA = Load EA to Register

LOS = Load Pointer to DS

LES = Load Pointer to ES

LAHF = Load AH with Flags

SAHF = Store AH into Flags

PUSHF = Push Flags

POPF = Pop Flags

8088

8086/8088 Instruction Set Summary

J ... Instructlon,Codll •

76543210 76543210 76543210 76543210.

100010dw mod reg rIm

1100011w modO OOr/m data data ifw = 1

1011wreg data data Ifw = 1

1010000w addr-Iow addr-high

1010001w addr-Iow addr-high

10001110 mod 0 reg rIm

10001100 mod 0 reg r/m

1 1 1 11 1 1 1 mod 110 rIm

01010reg

000regll0

10001111 modOO o rIm

01011reg

OOOreglll

L 1000011 w mod reg rIm

I 10010reg

1110010w port

1110110w

I 1110011w I port

I 1110111w I
I 1 1 01 01 1 1 I
I 10001101 I mod reg rIm

I 11000101 I mod reg rIm

I 11000100 I mod reg rIm

I 10011111]
I 10011110 I
I 10011100 I
I 10011101 I

2-114

inter 8088

8086/8088 Instruction Set Summary (Continued)
Mnemonic and I Instruction Code i!l;

Description ,.
ARITHMETIC 7.6543210 76543210 76543210 76543210

ADD = Add:

Reg.lMemory with Register to Either OOOOOOdw mod regr/m

Immediate to Register/Memory 100000sw modOOOr/m data data if s:w = 01

Immediate to Accumulator 0000010w data dataifw = 1

ADC = Add with Carry:

Reg.lMemory with Register to Either 000100dw mod reg rIm

Immediate to Register/Memory 100000sw modO 1 Or/m data data if s:w = 01

Immediate to Accumulator 0001010w data dataifw = 1

INC = Increment:

Register/Memory l111111w modOOOr/m

Register 01000reg

AAA = ASCII Adjustfor Add 00110111

BAA = Decimal Adjust for Add 00100111

SUB = Subtract:

Reg.lMelYlory andHegister to Either 001010dw mod reg rIm

Immediate from Register/Memory 100000sw mod 101 rIm data dataits:w = 01

Immediate from Accumulator 0010110w data dataifw = 1

SSB = Subtract with Borrow I','

Reg.lMemory and Register to Either 000110dw mod regr/m

Immediate from Register/Memory 100000sw mod 0 11 rIm data data if s:w = 01

Immediate from Accumulator 000111 w data data ifw = 1

DEC = Decrement:

Register/memory lllllllw modOOI rIm

Register 01001 reg

NEG = Change sign 1111011 w mod 0 11 rIm

CMP = Compare:

Register/Memory and Register 001110dw mod reg rIm

Immediate with Register/Memory 100000sw mod 111 rIm data data if s:w = 01

Immediate with Accumulator 0011110w data data if w = 1

AAS = ASCH Adjust for Subtract 00111111

DAS = Decimal Adjust for Subtract 00101111

MUL = Multiply (Unsigned) 1111011w modl00r/m

IMUL = Integer Multiply (Signed) 1111011 w mod 1 01 rIm

AAM = ASCII Adjust for Multiply 11010100 00001010
I

DIY = Divide (Unsigned) 1111011w mod 11 0 rIm

IDlY = Integer Divide (Signed) 111101tw mod 111 rIm

AAD = ASCII Adjust for Divide 11010101 00001010

CBW = Convert Byte to Word 10011000

CWD = Convert Word to Double Word 10011001

2-115

intJ 8088

8086/8088 Instruction Set Summary (Continued)

Mnemonic and I Instruction Code
Description

LOGIC 76543210 76543210 76543210 76543210

NOT = Invert 1111011w modO 1 o rIm

SHL/SAL = Shift Logicall Arithmetic Left 110100,vw mod 1 OOr/m

SHR = Shift!.ogical Right 110100vw mod 101 rIm

SAR = Shift Arithmetic Right 110100vw mod 111 rIm

ROL = Rotate Left 110100vw modOOOr/m

ROR = Rotate Right 110100vV! mOdOO 1 rIm

RCL = Rotate Through Carry Flag Left 110100vw modO 1 Or/m

RCR = Rotate Through Carry Right 110100vw modOl1 rIm

AND = And:

Reg.lMemory and Register to Either 001000dw mod reg rIm

Immediate to ReglsterlMemory 1000000w mod 1 QOr/m data data if w = 1

Immediate to Accumulator 0010010w data dataifw= 1

TEST = And Function to Flags. No Result:

Register/Memory and Register I 1000010w mod reg r/m

Immediate Data and Reglster/Memory I 1111011w modOOOr/m data dataifw= 1

Immediate Data and Accumulator I 1010100w data data if V! = 1

OR= Or:

Reg.lMemory and Register to Either 000010dw mod reg rIm

Immediate to Register/Memory 1000000w, modOa 1 rIm data dataifw= 1-

Immediate to Accumulator 00OOl10w data dataifw = 1

XOR = Exclusive or:

Reg.lMemory and Register to Either 0Ol100dw mod reg rIm

Immediate to Register/Memory 1000000w mod 11 Or/m data dataifw = 1

Immediate to Accumulator 0011010w data dataifw = 1

STRING MANIPULATION

REP = Repeat 1111001 z I
MOVS = Move BytelWord 1010010w I
CMPS = Compare BytelWord 1010011 w I
SCAS = Scan BytelWord 10101f1w I
LODS = Load Byte/Wd to ALI AX 1010110w I
STOS = Stor BytelWd from ALIA 1010101 w I
CONTROL TRANSFER

CALL = Call:

Direct Within Segment 111010'00 disp-Iow disp-high

Indirect Within Segment ~ 111 1111 modO 1 Or/m

Direct Intersegment 10011010 offset-low offset-high

seg-Iow seg-high

Indirect Intersegment 11111111 modO 11 rIm

2-116

inter 8088

8086/8088 Instruction Set Summary (Continued)

Mnemonic and
Description

JMP = Unconditional Jump:

Direct Within Segment

Direct Within Segment-Short

Indirect Within Segment

Direct Intersegment

Indirect Intersegment

RET = Return from CALL:

Within Segment

Within Sag Adding Immed to SP

Intersegment

Intersegment Adding Immediate to SP

JE/JZ = Jump on Equal/Zero

JLI JNGE = Jump on Less/Not Greater
or Equal

JLEI JNG = Jump on Less or Equal/
Not Greater

JB/JNAE = Jump on BelowlNot Above
or Equal

JBE/JNA = Jump on Below or Equal/
Not Above

JP/JPE ,= Jump on Parity/Parity Even

JO = Jump on Overflow

JS = Jump on Sign

JNE/JNZ = Jump on Not Equal/Not Zero

JNL/JGE = Jump on Not Less/Greater
or Equal

JNLE/JG = Jump on Not Less or Equal/
Greater

JNBI JAE = Jump on Not Below/Above
or Equal

JNBEI JA = Jump on Not Below or
Equal/Above

JNP/JPO = Jump on Not Par/Par Odd

JNO = Jump on Not Overflow

JNS = Jump on Not Sign

LOOP = Loop ex Times

LOOPZ/LOOPE = Loop While Zero/Equal

LOOPNZ/LOOPNE = Loop While Not
Zero/Equal

JCXZ = Jump on ex Zero

INT = Interrupt

Type Specified

Type 3

INTO = Interrupt on Overflow

IRET = Interrupt Return

I Instruction Code

765432tO 76543210 76543210

11101001 disp-Iow disp-high

11101011 disp

11111111 mod 1 OOr/m

11101010 offset-low offset-high

seg-Iow seg-high

11111111 mod 1 0 1 rIm

11000011

11000010 data-low data-high

11001011

11001010 data-low data-high

01110100 disp

01111100 disp

01111110 disp

01110010 disp

01110110 disp

01111010 disp

01110000 disp

01111000 disp

01110101 disp

01111101 disp

01111111 disp

01110011 disp

01110111 disp

01111011 disp

01110001 disp

01111001 disp

11100010 disp

11100001 disp

11100000 disp

11100011 disp

11001101 type

11001100

11001110

11001111

2-117

! '

!J

: :l
:
"

:J'

8088

8086/8088 Instruction Set Summary (Continued)

Mnemonic and
Description

PROCESsoR CONTROL

CLC = Clear carry

CMC = Complement carry

STC = Set carry

CLD = Clear Direction

STD = Set Direction

CU = Clear Interrupt

STI = Set Interrupt

HLT"; Halt

WAIT = Wait

ESC = Escape (to External Device)

LOCK = Bus LockPrelix

NOTES:
Al = 8-bit accumulator
AX = 16-bit accumulator
ex = Count register
OS = Data segment
ES = Extra segment
Above/below refers to unsigned value
Greater = more positive:

I
76543210

11111000

11110101

·11111001

"
.,

:11111100

11111101.

11111010

11111011

11110100

10011011

11011 xxx

11110000

less = less positive (more negative) signed values
. if d = 1 then "to" reg; if d = 0 then "!rom" reg
if w = 1 then word instruction; if w = 0 then byte

instruction '
if mod = 11 then rIm is treated as a REG field
if mod = 00 then OISP = 0·, disp-Iow and disp-higl:1 are

absent
if mod = 01 then OISP = disp-Iow sign-extended to

. 16 bits, disp-high is absent
If mod = 10 then OISP = disp-high; disp-Iow
if rIm = 000 then EA = (aX) + (SI) + OISP
if rIm = 001 then EA = (aX) + (01) + OISP
if rIm = 010 tl:1en EA= (ap) + (SI) + OISP
If rIm = 011 tl:1enEA= (ap) + (01) + OISP
if rIm = 100 then EA = (SI) + OISP
if rIm = 101 then EA = (01),+ OISP
ifr/m = 110 then EA = (ap) + OISp·
if rIm = 111 then EA = (aX) + OISP
OISP follows 2nd byte of instruction (before data if re;
quired)
·except if mod = 00 and rIm = then EA= disp-high:

disp-Iow, .
if s:w = 01 then 16 bits of immediate data form the oper-
, and .
if s:w = 11 then an iinmediate data byte is sign extended

to form the 16-bit operand
if v ;" 0 then "count" = 1; if v = 1 then "count" in (Cl)

register
x = don't care
z is used for string primitives for comparison with ZF FLAG
SEGMENT OVERRIDE PREFIX

001reg110 I

Instruction Code

76,543210

mod xxx rIm

REG is assigned according to the following table:

16-Blt (w = 1) B-Blt(w - 0) Segment
000 AX 000 AL 00 ES
001 CX 001 CL 01 CS,
010 OX 010' DL 10 SS
011 BX 011 BL 11 OS
100 SP 100 AH
101 BP 101 CH
110 SI 110 DH.
111 01 111 BH

Instruction~ which reference the flag register file as a 16"bit
object use the symbol FLAGS to represent the file: . ,
FLAGS =
X:X:X:X:(OF):(OF):(IF):(TF):(SF):(ZF):X:(AF):X:(PF):X:(CF)

Mnemonics@ Intel, 1978

DATA SHEET REVISION REVIEW

The following list represents key differences be­
tween this and the -003 data sheet, Please review
this summary carefully,

1 ,'In the Pin Description Table (Table 1), the descrip­
tion oftheHLDA signal being issued has been cor·
rected, HLDA will be issued in the middle of either
the T 4 or Ti state, '

2·118

inter
80C88A

8-BIT CHMOS MICROPROCESSOR

• Pin-tor-Pin and FunCtionally Compatible • Direct Addressing Capability of 1
toJndustry Standard HMOS aoaa MByteot Memory

• Direct Software Compatibility with • Architecture Designed tor Powerful
aOCa6,aoa6,aoaa Assembly Language and Efficient High

• Fully Static Design with Frequency Level Languages

Range trom D.C •. to: . • 24 Operand Addressing Modes
- a MHz for aOCa8A-2 • Byte, Word and Block Operations

• Low Power. Operation • a and 16-Blt Signed and Unsigned
- Operating Icc = 10 mA/MHz Arithmetic
- Standby IcCs. = 500 /J-A max ..,.. Binary or Decimal

• Bus-Hold Circuitry Eliminates Pull-Up - Multiply and Divide
Resistors • Available In 40-Lead Plastic DIP

(See Packaging Spec .• Order # 231369)

The Intel 86c8M is a high performance, CHMOS version of the industry standard HMOS 8088 8-bit CPU. The
processor has attributes of both 8 and 16-bit microprocessors. The 80C88A, available in 8 MHz clock rate,
offers two modes of operation: MINimum for small systems and MAXimum for larger applications such as
multi-prooessing;lt is available in 40-piil DIP.

INTERFml---':'::----I
UNIT 1---':':0.----1

I.

AH AL
IH IL
CH CL

EXECUTION OH OL
UNIT SP

8 •. ..
·01

A-lUI .

INSTRUCTION
STREAM BYTE

QUEUE

Figure 1. 8OC88A CPU
Functional Block Diagram

240026-1

2-119

MIN I MAX 1 MODE MODE

GND Vee
AI. A15

A13 AI8/83

A12 A17184

Al1 Al1/85

AID
Al_

AI DO CHIGH)

AI MNtIiX

A07 IiII
AOI HOLD clill/llTll)
ADS HLDA CRlllIffi)

Ao. ViIi cl:l5Cii)
ADS 101M (ii)

AD2 DTIlI cfi)
ADI m; clii)
ADO ALE (0$01

HMI lIiTA (DS1)

INTR TEST
CLK READY

GND RESET

240026-2

Figure 2. 80C88A 4G-Lead
DIP Configuration

September 1988
Order Number: 24OO2a.oo2

inter 80C88A

TliIble1. Pin Description

The following pin functIon descr/pt/onsare for 80C88A systems in either minimum or maximum mode. The
"local bus" in these descriptions is .the direct multiplexed bus interface connection to the 80CQ8A (without
regard to additional bus bufferS)· • ..

: "

SYl1'lbOI Pln~o. Type Name and Function

AD7-ADO 9-16 ' I/O ADDRESS DATA BUS: These lines constitute the time
multiplexed memory/IO ~ddress(T1) and data (T2, T3, Tw, and
T4) Qus. These lines are active HIGH and float to 3~stat~ OFF(1)
during interrupt acknowledge and local bus "hold acknowledge".

A15-AS 2-S, 39 0 ADDRESS BUS: These lines provide addfessbits S through 15 for
the entire bus cycle (T1-T 4). These lines do not have to be
latched by ALE to remain valid. A15':'ASare actil/e HIGH and float
to 3-state OFF(1) during interrupt acknowledge and local bus
"hold acknowledge".

A19/S6, A1S/55, 35-3S 0 ADDRESS/STATUS: During T1, these are the four most
A17/S4, A16/S3 significant address lines for memory operations. During I/O

operations, these lines are LOW. During memory and I/O
operations, status information is available on these lines during
T2, T3, Tw, and T 4. S6 is always low. The status of the interrupt
enable flag bit (55) is updated at the beginning Of each c;lock
cycle. S4 and S3 are encoded as shown.

This information indicates which segment register is presently
being used for data accessing.

These lines float to 3-state OFF(1) during local bus "hold
acknowledge" .

S4 S3 CHARACTERISTICS

O(LOW) 0 Alternate Data
0 1 Stack
1(HIGH) 0 Code or None
1 1 Data
S6 isO(LOW)

RD 32 0 READ: Read strobe indicates that the processor is performing'a
memory or I/O read cycle, depending on the state of the 10liiA' pin
or S2. This signal is used to read devices which reside on the
SOCSSA local bus. RD is active LOW during T2, T3 and Tw of any
read cycle, and is guaranteed to remain HIGH inT2 until the
SOCSSA local bus has floated.

This Signal floats to 3-state OFF(1) in "hold acknowledge".

READY 22 I READY: is the acknowledgement from the addressed memory or
I/O device that it will complete the data transfer. The RDY Signal
from memory or I/O is synchronized by the S2CS4A clock
generator to form READY. This signal is active HIGH. The SOCSSA
READY input is not synchronized. Correct operation is not
guaranteed if the set up and hold times are hOt met.

80C88A

Table 1. Pin Descrlptlon.(Continued)

Symbol Pin No. Type Name and Function

INTR 18 I INTERRUPT REQUEST: is a level triggered input which is sampled
during the last clock cycle of each instruction to determine if the
processor should enter into an interrupt acknowledge operation. A
subroutine is vectored to via an interrupt vector lookup table located
in system memory. It can be internally masked by software resetting
the interrupt enable bit. INTR is internally synchronized. This signal is
active HIGH.

TEST 23 I TEST: input is examined by the "wait for test" instruction. If the
TEST input is lOW, execution continues, otherwise the processor
waits in an "idle" state. This input is synchronized internally during
each clock cycle on the leading edge of ClK.

NMI 17 I NON-MASKABLE INTERRUPT: is an edge triggered input which
causes a type 2 interrupt. A subroutine is vectored to via an interrupt
vector lookup table located in system memory. NMI is not maskable
internally by software. A transition from a lOW to HIGH initiates the
interrupt at the end of the current instruction. This input is internally
synchronized.

RESET 21 I RESET: causes the processor to immediately terminate its present
aotivity. The signal must be active HIGH for at least four clock cycles.
It restarts execution, as described in the instruction set description,
when RESET returns lOW. RESET is internally synchronized.

ClK 19 I CLOCK: provides the basic timing for the processor and bus
controller. It is asymmetric with a 33% duty cycle to provide
optimized internal timing.

Vee 40 V cc: is the + 5V ± 10% power supply pin.

GND 1,20 GND: are the ground pins. Both must be connected.

MN/MX 33 I MINIMUM/MAXIMUM: indicates what mode the processor is to
operate in. The two modes are discussed in the following sections.

The fol/owing pin function descriptions are for the 80C88A minimum mode (i.e., MN/MX = Vee). Only the pin
functions· which are unique to minimum mode are described; aI/ other pin functions are as described above.

101M 28 0 STATUS LINE: is an inverted maximum mode S2. It is used to
distinguish a memory access from an 1/0 access. 101M becomes
valid in the T4 preceding a bus cycle and remains valid until the final
T4 of the cycle (1/0 = HIGH, M = lOW). 101M floats to 3-state
OFF(l) in local bus "hold acknowledge".

WR 29 0 WRITE: strobe indicates that the processor is performing a write
memory or write liD cycle, depending on the state of the 101M
signal. WR is active for T2. T3, and Tw of any write cycle. It is active
lOW, and floats to 3~state OFF(l) in local bus "hold acknowledge".

INTA 24 0 INT A: is used as a read strobe for interrupt acknowledge cycles. It is
active lOW during T2, T3, and Tw of each interrupt acknowledge
cycle.

2-121

j
'i
i'

80C88A

Table 1. Pin .Descrlption(Continued)

Symbol Pin No. Type Name and Function

ALE 25 0 .. ADDRESS LATCH ENABLE: is provided by the processor to latch
the address into an address latch. It is a HIGH pulse active during

. clock low of T1. of any bus cycle. Note that ALE is never floated. .

DT/R 27 0 DATA TRANSMIT/RECEIVE: is needed in a minimum system that
desires to use a data bus transceiver. It is used to control the
direction of data flow through the transceiver. Logically, DT /R' is
equivalent to S1 in the maximum mode, and its timing is the same as
for 10/M(T "" HIGH,R = LOW). This signal floats to 3-state OFF(1)
in local "hold acknowledge".

DEN 26 0 DATA ENABLE: is provided as an output enable for the transceiver
in a minimum system which uses the transceiver. DEN is active LOW
during each memory and 110 access, and for INTA cycles. For a read
or INT A cycle, it is active from the middle of T2 until the middle of T 4,
while for a write cycle, it is active from the beginning of T2 until the
middle of T4. DEN floats to 3-state OFF(l) during local bus "hold

.. acknowledge" .

HOLD, HLDA 30,31 1,0 HOLD: indicates that another master is requesting a local bus
"hold". To be acknowledged,HOLD must be active HIGH. The
processor receiving the "hold" request will issue HLDA (HIGH) as an
acknowledgement, in the middle of a T 4 or Ti clock cycle.
Simultaneous with the issuance of HLDA the processor will float the
local bus and controrlines.After HOLD is detected as being LOW,
the processor lowers HLDA, and when the processor needs to run
another cycle, itwill again drive the local bus and control lines.

Hold is not an asynchronous input. External synchronization should
be provided if the system cannot otherwise guarantee the set up
time.

SSO 34 0 STATOS LINE: is logically equivalent to SO in the maximum mode.
The combination of SSO, 10/M and DT /R' allows the system to
completely decode the current bus cycle status.

101M DT/R SSO CHARACTERISTICS

1(HIGH) 0 0 Interrupt Acknowledge
1 0 1 Read I/O port
1 1 0 Write I/O port
1 1 1 Halt
O(LOW) 0 0 Code access
0 0 1 Read memory
0 1 0 Write memory
0 1 1 Passive

..

2-122

inter 80C88A

Table 1. Pin Description (Continued)

The following pin function descriptions are for the 80C88AI82C88 system in maximum mode (i.e.,
MNIMX = GND.) Only the pin functions which are unique to maximum mode are described; all other pin
functions are as described above. .

Symbol Pin No. Type Name and Function

S2, S1, SO 26-28 0 STATUS: is active during clock high of T4, T1, and T2, and is
returned to the passive state (1,1,1) during T3 or during Tw when
READY is HIGH. This status is used by the 82C88 bus controller to
generate all memory and I/O access control signals. Any change by
~, Sf, or SO during T 4 is used to indicate the beginning of a bus
cycle, and the return to the passive state in T3 or Tw is used to
indicate the end of a bus cycle.

These signals float to 3-state OFF(1) during "hold acknowledge".
During the first ,clock cycle after RESET becomes active, these
signals are active HIGH. After this first clock, they float to 3-state
OFF.

S2 S1 SO CHARACTERISTICS

O(lOW) 0 0 Interrupt Acknowledge
0 0 1 Read I/O port
0 1 0 Write I/O port
0 1 1 Halt
1 (HIGH) 0 0 Code access
1 0 1 Read memory
1 1 0 Write memory
1 1 1 Passive

RQ/GTO, 30,31 I/O REQUEST/GRANT: pins are used by other local bus masters to
RQ/GT1 force the processor to release the local bus at the end of the

processor's current bus cycle. Each pin is bidirectional with RQ/GTO
having higher priority than RQ/GT1. RQ/GT has an internal pull-up

. reSistor, so may be left unconnected. The request/grant sequence is
as follows (see timing diagram):

1. A pulse of one ClK wide,from another local bus master indicates a
local bus request ("hold") to the 80C88A (pulse 1).

2. During a T 4 or T1 clock cycle, a pulse one clock wide from the
80C88A to the requesting master (pulse 2), indicates that the
80C88A has allowed the local bus to float and that it will enter the
"hold acknowledge" state at the next ClK. The CPU's bus interface
unit is disconnected logically from the local bus during "hold
acknowledge". The same rules as for HOLD/HOLDA apply as for
when the bus is released.

3. A pulse one ClK wide from the requesting master indicates to the
80C88A (pulse 3) that the "hold" request is about to end and that the
80C88A can reclaim the local bus at the next ClK. The CPU then
enters T4.

2-123

80C88A

Table 1. Pin Descriptions (Oontinued)
.

Symbol Pin No. Type Name and Function

RO/GTO, 30,31 1/0 Each master~master exchange of the 10c~1 bus is a sequence of
RO/GT1 three pulses. There must be one idle CLK cycle after each bus

Elxchange. Pulses are active LOW.

If the request is made· while the CPU is performing a memory cycle,
it will rele!!'se the local bus during T 4 of the cycle when all the
following conditions are met:

1. Request occurs on or before T2.
2. Current cycle is not the low bit of a word.
3. Current cycle is not the first acknowledge of an interrupt
acknowledge sequence.
4. A locked instruction is not currently executing.

If the local bus is idle when the request is made the two possible
events will follow:

1. Local bus will be released during the next clock.
2. A memory cycle will start within 3 clocks. Now the four rules for a
currently active memory cycle apply with condition number 1
already satisfied.

LOCK 29 0 LOCK: indicates that other system bus masters are not to gain
control of the system bus while LOCK is active (LOW). The LOCK
signal is activated by the "LOCK" prefix instruction and remains
active until the completion of the next instruction. This signal is
active LOW, and floats t03-state OFF(1) in "holdacknowledge".

OS1,OSO 24,25 0 QUEUE. STATUS: provide status to allow external tracking of the
internal·SOCSSA instruction queue.

The queue status is valid during the CLK cycle after which the
queue operation is performed.

QS1 QSO CHARACTERISTICS

O(LOW) 0 No operation
0 1 First byte of opcode from queue
1(HIGH) 0 Empty the queue
1 1 Subsequent byte from queue

- 34 0 Pin 34 is always high in the maximum mode.

NOTE:
1. See the section on Bus Hold Circuitry.

2-124

intJ 80C88A

FUNCTIONAL DESCRIPTION

STATIC OPERATION

All 80C88A circuitry is of static design. Internal regis­
ters counters and latches are static and require no
refr~sh as with dynamic circuit design. This elimi­
nates the minimum operating frequency restriction '
placed on other microprocessors. The CMOS
80C88A can operate from DC to the appropriate up­
per frequency limit. The processor clock may ~e
stopped in either state (high/low) and held there In­
definitely. This type of operation is especially useful
for system debug or power critical applications.

The 80C88A can be single stepped using only the
CPU clock. This state. can be maintained as long as
is necessary. Single step clock operation allows sim­
ple interface circuitry to provide critical information
for bringing up your system.

Static design also allows very low frequency opera­
tion. In a power critical situation, this can provide
extremely low power operation since 80C88Apower
di~sipation is directly related to operating frequency.
As th~ system frequency is reduced, so is the oper­
ating power until ultimately, at a DC input frequency,
the eOC88A power requirement is the standby cur­
rent.

~FFFFFH

61: 1 CODE SEGMENT

,..---'-_-...... XXXXOH

r-+F=9 } STACK SEGMENT
• OFFSET

SEGMENT [}

~R~EG~ISjTiER~F~ILElg~~WlOIR_Dt:~L:=~3 DATA SEGMENT

1 EXTRA DATA SEGMENT

'L---'r OOOOOH

240028-3

Figure 3. Memory Organization

MEMORY ORGANIZATION

The processor provides a 20-bit address to memory
which locates the byte being referenced. The memo­
ry is organized as a linear array of up to 1 million
bytes, addressed as OOOOO(H) to FFFFF(H). The
memory is logically divided into code, data. extra
data, and stack segments of up to 64K bytes e~ch,
with each segment falling on 16-byte boundaries.
(See Figure 3.)

All memory references are made relative to base ad­
dresses contained in high speed segment registers.
The segment types were chosen based on the. ad­
dressing needs of programs. The segment re.glster
to be selected is automatically chosen according to
the rules of the following table. All information in one
segment type share the same logical attributes (e.g.
code or data). By structuring memory into reloeat­
able areas of similar characteristics and by automati­
cally selecting segment registers, programs are
shorter, faster, and more structured.

Word (16-bit) operands can be located on even or
odd address boundaries. For address and data oper­
ands, the least significant byte of the word is stored
in the lower valued address location and the most
significant byte in the next higher address locati~n.
The BIU will automatically execute two fetch or write
cycles for 16-bit operands.

Certain locations in memory are reserved for specific
CPU operations. (See Figure 4.) Locations from ad­
dresses FFFFOH through FFFFFH are reserved for
operations including a jump to the initial system

RESET BOOTSTRAP
PROGRAM JUMP

! • •
•

INTERRUPT POINTER
FOR TYPE 255

· · •
INTERRUPT POINTER

FOR TYPE 1

INTERRUPT POINTER
FOR TYPE 0

--

FFFFFH

FFFFOH

3FFH

3FOH

7H

4H
3H

OH

240028-4

Figure 4. Reserved Memory Locations

2-125

inter 80C88A

Memory . Segment Register Segment
Reference Ne.ed .. U.sed Selection Rule

Instructions CODE (CS) Automatic with all instructionprefetch.

Stack STACK (55)
All stack pushes and pops.M~mory references relative to BP

. base register except data references .
..

Local Data DATA (DS)
Data references when: relative to stack, destination of string
operation, or explicitly overridden.

External (Global) Data EXTRA (ES)
Destination of string operations: Explicitly selected using .a
segment override.

initialization .routine. Following RESET, the CPU will
always begin execution at . location FFFFOH where
the jump must be located. Locations OOOOOH
through 003FFH are reserved for interrupt opera­
tions. Four-byte pointers consisting of a 16-bit seg­
ment address and a 16-bit offset address direct pro­
gram flow to one of the 256 possible interrupt serv­
ice routines. The pointer elements are assumed to
have been stored at their respective. places in re­
served memory prior to the occurrence of interrupts.

MINIMUM AND MAXIMUM MODES

The requirements for supporting minimufTl and maxi­
mum 80C88A systems are sufficiently different that
they cannot be done efficiently with 40 uniquely de"
fined pins. Conseque!!!!y, the 80C88A is equipped
with a strap pin (MN/MX) which defines the system
configuration. The definition of· a certain subset of
the pins changes, dependent on the condition of the
strap pin. When the MN/MX pin is strapped to GND,
the 80C88A defines pins 24 thr2!:!,gh 31 and 34 in
maximum mode. When the MN/MX pin is strapped
to Vee, the 80C88A generates bus control signals
itself on pins 24 through 31 and 34.

The minimum mode 80C88A can be used with either
a multiplexed or demultiplexed bus. The multiplexed
bus configuration. is compatible with the MCS®-85

multiplexed. bus peripherals. (8155, 8156, 8355,
8755A, and 8185). This configuration (See Figure 5)
provides· the user with a minimum chip count sys­
tem.This architecture provides. the80C88A pro­
cessing power·in a highly integrated form.

The demultiplexed mode requires one latch (for 64k
addressability) or two latches (for a full megabyte of
addressing). A third latch can be used for buffering if
the address bus loading requires it. A transceiver
can also be used if data bus bufferi~ required.
(See Figure 6.) The 80C88A provides DEN and DT /
R to control the transceiver, and ALE to latch the
addresses. This configuration of the minimum mode
provides the standard demultiplexed bus structure
with heavy bus buffering and relaxed bus timing re­
quirements.

The· maximum mode employs the 82C88 bus con­
troller.:.JSee Figur~.) The· 82C88 decodes status
lines SO, 51, and 52, and provides the system with
all bus control signals. Moving the bus control to the
82C88 provides better source and sink current capa­
bility to the control lines, and frees the 80C88A pins
for extended large system features. Hardware lock,
queue status, and two request/grant interfaces are
provided by the 80C88Ain maximum mode. These
features allow co-processors in local bus and. re­
mote bus configurations.

2-126

intJ 80C88A

v v .. ;0.. ;.. i' r
f.- CE POR! ~

WR ~ _ PORT (

RD 8155 B

J ~
ALE PORT ~
DATAl C

... , ADDR +-
IN

101M TIMER

RESET OUT

...
lOW A,.A" ADDR

...

~
AD

ClK ADo-AD, ADDR/DATA ALE ¢!Y .---- PORT ...
f-- CE A

f.-
...

IOCI8A A,-10
f.-

~ r-- ROY ... 8355/8755A

MN/MX I--Vee

Vee rDl ALE f.- ~
-y

~ 101M PORT

RES AD f.- - f-< RESET B
X, t~K r- WR I-- Ue

ROY f--- 101M I-- lOR

>---+ RES JJ!t. 82C84A -- RES I-- V •• Vee VDD PROG

T
GND WR

AD

ce; 8185
ALE

"I-- ai.CE,

! .. f.- A,. Ag

... ..
ADo•7

... ,
t t

V •• Vee

.... ~ "'","
240028-5

Figure 5. Multiplexed Bus Configuration

2-127

OTIA

••• AL.~--+1f--.!

80C88A

Figure 6. Demultlplexed Bus Configuration.

UN"'" OND IIIIIR!
I; I; IiWTC

0; AIIWC NC
s; 82C8ljOfiC

BUS _
DENCTFILFlIOWC ...,... DTIiI liiOWt NC

CPU

Figure 7. Fully Buffered System Using Bus Controller

2-128

240028-6

240028-7

intJ BOC88A

Bu. Operation

The 80C88A addressl data bus is broken into three
parts-the lower eight address/data bits (AD()-;AD7),
the middle eight address bits (A8-A 15), and the up­
per four address bits (A 16-'-A 19). The address/data
bits arid the highest four address bits are time multi­
plexed. This technique provides the most efficient
use of pins on the processor. The middle eight ad­
dress bits are not multiplexed, i.e. they remain valid
throughout each bus cycle. In addition, the bus can
be demultiplexed at the processor with a single ad­
dress latch if a standard, non-multiplexed bus is de­
sired for the system.

Each processor bus cycle consists of at least four
ClK cycles. These are referred to as n, T2, T3, and
T 4. (See Figure 8). The address is emitted from the
processor during T1 and data transfer occurs on the
bus during T3 and T4. T2is used primarily for chang­
ing the direction of the bus during read operations; In
the event that a "NOT READY" indication is given
by the addressed device, "wait" states (Tw) are in­
serted between T3 and T4. Each'inserted "wait"
state is of the same duration as a ClK cycle. Periods
can occur between 80C88A driven bus cycles.
These are ·referred to as "idle" states (Ti), or inac­
tive ClK cycles. The processor uses these cycles
for internal housekeeping.

1-----..... "" -----4-----........ , -----1

" " I' 11 T_AIT I 14 T, 'I 'I "
eLl<

ADDlVIlATUS

•• DR A,,-AI

ADbR#DATA -----8~~ .. _·_·o_u._t ... _DoI __ ...J)---OC=

READY

MEMORY ACC ... TIME

''--_---If
240028-8

Figure 8. Basic System Timing

2-129

i,',

II

I.I·I··~. i.'
I

I

iii
I ,~
1/:
1

inter 80C88A

During:T1 of any bus cycle, the ALE (address latch
enable) Signal is emitted (by either the processor or
the 82C88 bus controller, depending on the MN/MX
strap). At the trailing edge of this pulse, a valid ad­
dress· and ce.rtain status. information for the cycle
may be latched.

Status bitsSOj S1, and S2are used by the bus con­
troller, in maximum mode, to identify the type of bus
transaction according to the following table:

.~

S2 St So CHARACTERISTICS

o (LOW) 0 0 Interrupt Acknowledge
0 0 1 Read 1/0
0 1 0 Write 1/0
0 1 1 Halt
1 (HIGH) 0 0 Instruction Fetch
1 0 1 Read Data from Memory
1 1 0 Write Data to Memory
1 1 1 Passive (no bus cycle)

Status bits 53 through S6 are multiplexed with high
order address bits and are therefore valid during T2
through T4. S3 and S4indicate which segment reg­
ister was used for this bus cycle in forming the ad­
dress according to the following table:

S4 S3 CHARACTERISTICS

o (LOW) 0 Alternate Data (extra segment)
0 1 Stack
1 (HIGH)· 0 Code or None
1 1 Data

S5 is a reflection of the PSW interrupt enable bit. 56
~~~~~ . 

1/0 ADDRESSING 

In the 80C88A, 1/0 operations can address up to a 
maximum of 64k I/O registers; The I/O address ap­
pears in the same format as the memory address on 
bus lines A15-AO. The address lines A19-A16 are 
zero in I/O operations. The variable 1/0 instructions. 
which use register OX as a pointer, have full address 

capability, while the direct I/O instructions directly 
address one or two of the 256 I/O byte locatioris in 
page 0 of tbe.I/O address space. 110 ports are ad­
dressed in the same manner .. as .memory locations. 

Designers familiar with the. 8085 or upgrading an 
8085 design should note that .the 8085 addresses 
I/O with an 8-bit address on. both halves of the 16-
bit address bus. The 80C88A uses a full 16-bit ad­
dress on its lower 16 address lines. 

EXTERNAL INTERFACE 

PROCESSOR RESET AND INITIALIZATION 

Processor initialization or start up is accomplished 
with activation (HIGH) of the RESET pin. The 
80C88A RESET is required to be HIGH for four or 
more clock cycles. The 80C88A will terminate oper­
ations on the high-going edge of RESET and will 
remain dormant as long as RESET is HIGH. The 
low-going transition of RESET triggers an internal 
reset sequence for approximately 7 clock cycles. Af­
ter this interval the 80C88A operates normally, be­
ginning with the instruction in abso.lute location 
FFFFOH. (See Figure 4.) The RESET input is inter­
nally synchronized to the processor clock. At initiali­
zation, the HIGH to LOW transition of RESET must 
occur no sooner than 50 JLs after power up, to allow 
complete. initialization of the 80C88A. 

NMI asserted prior to the 2nd clock after the end of 
RESET will not be honored. If NMI is asserted after 
that point and during the internal reset sequence, 
the processor may execute one instruction before 
responding to the interrupt. A hold request active 
immediately after RESET will be honored before the 
first instruction fetch. 

All 3-state outputs float to 3-state OFF(t) during RE­
SET. Status is active in the idle state for the first 
clock after RESET becomes active and then floats 
to 3-state OFF(1). ALE and HLDA are driven low. 

NOTE: 
1. See the section on Bus Hold Circuitry. 

2-130 



inter 80C88A 

BUS HOLD CIRCUITRY 

To avoid high current conditions caused by floating 
inputs to CMOS devices and to eliminate the need 
for pull-up/down resistors, "bus-hold" circuitry has 
been used on the 80C88A pins 2-16, 26-32, and 
34-39 (Figure 9a, 9b). These circuits will maintain 
.the last valid logic state if no driving SOI,Arce is pres­
ent (Le. an unconnected pin or a driving sou~ce 
which goes to a high impedance state). To over<lnve 
the "bus hold" cir¢uits, an external driver must be 
capable of supplying 350 /LA minimum sin~ or 
source current at valid input voltage levels. Since 
this "bus hold" circuitry is active and not a "resis­
tive" type element, the associated power supply 

current is negligible and power dissipation is signifi­
cantly reduced when compared to the use of pas­
sive pull-up resistors. 

INTERRUPT OPERATIONS 

Interrupt operations fall into two classes: software or 
hardware initiated. The software initiated interrupts 
and softWare aspects of hardware interrupts are 
specified in· the instruction set description in the 
iAPX 88 book or the iAPX 86,88 User's Manual. 
Hardware interrupts can be classified as nonmaska­
ble or maskable. 

·'Pull-Up/Pull-Down" 

Input buffer exists only on I/O pins 

EXTERNAL 
PIN 

Figure 9a. Bus hold circuitry pin 2-16, 35-39. 

"Pull-Up" 

Input buffer exists only on I/O pins 

EXTERNAL 
PIN 

Figure 9b. Bus hold circuitry pin 26-32, 34. 

2-131 

240028-9 

240028-10 

i 
" 



inter 80C8.8A 

Interrupts resultins t~ansferef,centreUe a new'pr~ 
gram,lecatien.;A 256 element, table Containing ad­
dress pointers to. the interrupt servicepregral'llieca­
tiens resides in abselute locatiens 0 threugh 3FFH 
(See Figure 4), which are reserved fer this purpese. 
Each element in the table is 4 bytes in Size and cor­
~espon(fs, to. an)nterrupt "type." An int~rrupting de­
vicesuppliesari8-bit type,number~ ~uring the inter­
rI,Jpt 'ac~riowledge 'sequence, whjqh is 'uSEld to. vecto.r 

, t~roughtbe ,a,pprepriate element to. the new interrupt 
service pregram ,'I,ocatien. ' ' 

" ' 

NON·MASKABLE INTERRUPT (NMI) 

The precesser prevides a single nen-maskable inter­
rupt (NMI) pin which has higher prierity than the 
maskable interrupt request (lNTR) pin. A typical use 
weuld be to. activate a pewer failure reutinE!' The 
NMI is edge-triggered en a LOW to. HIGH transitien. 
The activatien ef this pin causes a type 2 interrupt. 

NMI is required to. have a duratien in the HIGH state 
ef greater than two. clock cycles, but is net required 
to be synchronized to the clock. Any higher going 
tranSition of NMI is latched on-chip and will be serv­
iced at the end ef the current instruction or betweel'1 
whole moves (2 bytes in the case of werd moves) of 
a block type instruction. Worst case response to 
NMI would be for multiply, divide, and variable shift 
instructions. There is no specificatien en the eccur­
rence of, the lew-geing edge; it may occur befere, 
during, er after the servicing ef' NMI, Anetherbigh~ 
geing edge triggers anether response if it eccurs af­
ter the start ef the NMI precedure. The Signal must 

be free ef logical spikes in, generale and be {reem 
beunces en the lew-geing edge to. aveid triggering 
extraneous responses. , '. 

: '. ',", .'",... 

MASK,ABLE INTERRUPT (INTR) , 

The 8oC88A, prayidesa si,nglEl interrupt reql,lest input 
(INTR) whicncan !;le l11aske~iriternally by seftWl;lre 
With theresetting ef the interrupt enable (IF) flag bit. 
Tbe,intei'rupt' request sighl;ll is lavel triggered~' It' is 
internally synchreniz!9d duringeacl:! clOCk cycle en 
the high-go.ing edge' of cl,.'K. To. be resp<>nded to., 
rNT~ m\!sf ,be present (HIGH) during the Cleck ,Peri­
ed preceding the end ef, the cllrreritinstruction er the 
end ef awhele move fer a block type instruction. 
During interrupt respense sequence, further inter­
rupts are disabled. The enable bit is reset as part ef 
the respense to. any interrupt (INTR, NMI, seftware 
interrupt, er single step), altheugh the FLAGS regis­
ter which is, autematically pushed ente the stack re­
flects the state ef the precessor prier to. the inter­
rupt. ,Until the eld FLAGS register is restered, the 
enable bit will be zero. unless specifically set by an' 
instruction~ 

" 

During the respense sequence (See Figure 10), the 
precessor executes two. successive (back to. back) 
interrupt acknewledge cycles. The 80C88A emits 
the LOCK signal (maximum mede enly) frem T2 0.( 
the, first bus cycle until T2 ef the secend. A lecal bus 
"held" request will net be honered until the end of 
the secendbus cycle. In the second bus cycle, a 

I T, I T, T. T. I T, I T. T. 

AU J"\~_----Jn\"'--"'-____ """,-

240028-11 

Figure 10. Interrupt Acknowledge Sequence 

2-132 



80C88A 

byte is fetched from the external interrupt system 
(e.g., 82C59A PIC) which identifies the source (type) 
of the interrupt. This byte is multiplied by four and 
used as a pointer into the interrupt vector lookup 
table. An INTR signal left HIGH will be continually 
responded to within the limitations of the enable bit 
and sample period. The interrupt return instruction 
includes a flags pop which returns the status of the 
original interrupt enable bit when it restores the 
flags. 

HALT 

When a software HALT instruction is executed" the 
processor indicates that it is entering the HALT state 
in one of two ways, depending upon which mode is 
strapped. In minimum. mode, the processor issues 
ALE, delayed by one clock cycle, to allow the, sys­
tem to latch the halt status. Halt status is available 
on 101M, DT IR, and SSO. In, maximum mode, the 
e!:9cessor issues appropriate HALT status on S2, 
S1, and SO, and the 82CBB bus controller issues one 
ALE. The BOCBBA will not leave the ' HALT state 
when a local bus hold is entered while in HALT. In 
this case, the processor reissues the HALT indicator 
at the end of the local buS hold. An interrupt request 
or RESET Will force the BOCBBA out of the HALT 
state. 

READ/MODIFY IWRITE (SEMAPHORE) 
OPERATIONS VIA LOCK 

The LOCK status information is provided by the 
processor when consecutive bus cycles are required 
during the execution of an instruction. This allows 
the processor to perform read/modify/write opera­
tions on memory (via the "exchange register with 
memory" instruction), without another system bus 
master receiving intervening memory cycles. This is 
useful in multiprocessor system configurations to ac­
complish "test and set lOCk',' operations. The LOCK 
signal is activated (LOW) in the clock cycle following 
decoding of the LOCK prefix instruction. It is deacti­
vated at the end of the last bus cycle of the instruc­
tion following the LOCK prefix. While LOCK is active, 
a request on a RQ/GT pin will be recorded, and then 
honored at the end of the LOCK. 

EXTERNAL SYNCHRONIZATION VIA TEST 

As an alternative to interrupts, the BOCBBA provides 
a single software-testable input pin (TEST). This in­
put is utilized by executing a WAIT instruction. The 
single WAIT instruction is repeatedly executed until 
the TEST input goes active (LOW). The execution of 
WAIT does not consume bus cycles once the queue 
is full. 

If a local bus request occurs during WAIT execution, 
the BOCBBA 3-states all output drivers. If interrupts 
are enabled, the BOCBBA will recognize interrllpts 
and process them. TheWAIT instruction is thEm re­
fetched, and reexecuted. 

BASIC SYSTEM TIMING 

In minimum mode, the MN/MX',pin is strapped to 
Vee and the processor emits bus control signals 
compatible with the BOBS bus structure. In maximum 
mode, the MN/MX pin is strapped to GND and the 
processor emits coded status information Which the 
B2CBB bus controller uses to generate MUL TIBUS 
compatible bus control signals. 

System Timing - Minimum System 

(See Figure B.) 

The reae! cycle begins in T1 with the assertion of the 
address latch enable (ALE) signal. The trailing (low 
going) edge of this signal is used to latch the ad­
dress information,' which is valid on, the address I 
data bus (ADO-AD7) at this time, into a latch. Ad­
dress lines AB through A15 do not need to be 
latched because they remain valid throughout the 
bus cycle. From T1 to T4 the 101M signal indicates a 
memory or 110 operation. At T2 the address is re­
moved from the addressl data bus and the bus goes 
to a high impedance state. The read control signal is 
also asserted at T2. The read (RD) signal causes the 
addressed device to enable its data bus drivers to 
the local bus. Some time later, valid data will be 
available on the bus and the addressed device will 
drive the READY line HIGH. When the processor 
returns the read signal to a HIGH level, the ad­
dressed device will again3-state its bus drivers. If a 
transceiver is re~ired to buffer the BOCBBA local 
bus, signals DT IR and DEN are provided by the 
BOCBBA. 

A write cycle also begins with the assertion of ALE 
and the emission of the address. The 101M signal is 
again asserted to indicate a memory or 110 write 
operation. In T2, immediately following the address 
emission, the processor emits the data to be written 
into the addressed location. This data remains valid 
until at least the middle of T 4. During T2, T3, and 
T w, the processor asserts the write control signal. 
The write (WR) signal becomes active at the begin­
ning of T2, as opposed to the read, which is delayed 
somewhat into T2 to provide time for the bus to 
float. 

2-133 



infef 80C88A 

The ba~ic difference between the interrupt aCknowl­
edge cycle and a read cyple. is that the interrupt ac­
knowl~e (I NT A) signal is. asserted in place of the 
read (RD) signal and the address bus is floated. 
(See Figure 10.) In the second of two successive 
INTA cycles, a byte of information is read from the 
data bus, as supplied by the interrupt system logic 
(Le. 82C59A priority interrupt controller). This byte 
identifies the source (type) of the interrupt. It is mUlti­
plied by fbur and used as a pointer into the interrupt 
vector lookup table, as described earlier. 

BUS TIMING - MEDIUM COMPLEXITY 
SYSTEMS 

(See Figure 11.) 

For medium complexity systems, the MN/MX pin is 
connected to GND and lhe 82C88 bus controller is 
added to the system, as well as a latch for latching 
the system address, and a transceiver to allow for 
bus loading greater than the 80C88A is capable of 
handling. Signals ALE, DEN, and DT /R" are generat­
ed by the 82C88 instead of the processor in this 
configuration, although their timing remains relatively 
the same. The 80C8SA status outputs (S2, 81, and 
SO) provide type of cycle information and become 
82C88 inputs. This bus cycle information specifies 
read (code, data, orllO), write (data or 110), inter­
rupt acknowledge, or software halt. The 82C88 thus 
issues control signals specifying memory read or 
write, 110 read or write, or interrupt acknowledge. 
The 82C88 provides two types of write strobes, nor­
mal and advanced, to be applied as required. The 
normal write strobes have data valid at the leading 
edge of write. The advanced write strobes have the 
same timing as read strobes, and hence, data is not 
valid at the leading edge of write .. The transceiver 
receives the usual T and DE inputs from the 
82C88'sDTlR and DEN outputs: 

The pointer into the interrupt vector table, which is 
passed during the second INTA cycle, can derive 
from an 82C59A located. on either the local bus or 
the system bus. If the master 82C59A priority inter­
rupt controller is positioned on the local bus, a TTL 
gate is required to disable the transceiver when 
reading from the master 82C59A during the interrupt 
acknowledge sequence and software "poll". 

THE 80C88A COMPARED TO THE 80C86 

The 80C88A CPU is an 8-bit processor designed 
around the 80C86 internal structure. Most internal 
functions of the 80C88A are identical to the equiva-

lent8qC86 functions. The 80C88A handles the ex-. 
ternal bus the same way theSOC86 does with the 
distinctiQnof handling only 8 bits at a time. Sixteen­
bit operands are fetched or written in .two consecu­
tive bus cycles. Both processors will appear identical 
to the software engineer, with the exception of exe­
cution. time. The internal register structure is identi­
cal· and all instructions have the same end result. 
The differences between the 80C88A and 80C86 
are outlined below. The engineer who is unfamiliar 
with the 80CS6 is referred to the iAPX 86, 88 User's 
Manual, Chapters 2 and 4, for function description 
and instruction set information. Internally, there are 
three differences between the 80C88A and the 
80C86. All changes are related to the 8-bit bus inter­
face. 

• The queue length is 4 bytes in the SOC88A, 
whereas· the 80C86 queue conlains 6 bytes, or 
three words. The queue was shortened to pre­
vent overuse of the bus by the BIU when pre­
fetching instructions. This was required because 
of the additional time nece~sary to fetchinstruc­
tions 8 bits at a time. 

• To further optimize the queue, the prefetching 81-
gorithmwas changed. The 80C88A BIU will fetch 
a new instruction to load into the queue each 
time there i~ a 1 byte hole (space available) in the 
queue. The 80C86 waits until a 2-byte space is 
available. 

• The internal execution time of the instruction set 
is affected by the 8ebit interface. All 16-bit fetches 
and writes fromlto memory take an additional 
four clock cycles. The CPU is also limited by the 
speed of instruction fetches. This latter problem 
only occurs when a s~ries of simple. operations 
occur. When the more sophisticated instructions 
of the 80C88A are being used, the queue has 
timE! to fill and the execution proceeds as fast as 
the execution unit will allow. 

The. 80C88A and 80C8S are completely software 
compatible by virture of their identical execution 
units. Software that is system dependent may not be 
completely transferabie, but software that is not sys­
tem dependent will operate eq!lally as well on an 
80C88A or an 80C86. 

The hardware interface of the 80C88A coritains the 
major differences between the two CPUs. The pin 
assignments are nearly identical, however with the 
following functional changes: 

• A8-A 15 ---, These pins are only address outputs 
on the 80C88A. Thase address lines are latched 
internaliy and remain valid throughout a bus cycle 
in a manner similar to the 8085 upper address 
lines. 

2-134 



intJ 80C88A 

• SHE has no meaning on the 80C88A and has 
been eliminated. 

• SSO provides the SO status information in the 
minimum mode. This out~t oc~rs on ~34 in 
minimum mode only. DT IR, 101M; and SSO pro­
vide the complete bus status in minimum mode. 

ClK 

aSl, aso 

8OC88A 
52,81, so 

A 19/56-A i 6/S3 

(

ALE 

82C88 RDY 8~C84A 

RDY 80C88 

80C88A1A::-::: 
RD 

82C88!M::: 

DEN 

--./' 
T, 

~ 

x 

X AI9-Al 

r--.... 

A7-AO 

Y 

" 

• 101M has been inverted to be compatible with the 
MCS-8S bus structure. 

• ALE is delayed by one clock cycle in the mini­
mum mode when entering HALT, to allow the 
status to be latched with ALE. 

T, 

~ 0"' 
T. 

~ 
x x x ~ 

-----11111 '-----
X S6-S3 ~ 

,r--_. 
A 

X 

DATA IN 

-A15-A8 ~ 

'" / 

./ 

'" / 

/ '" 
240028-12 

Figure 11. Medium Complexity System Timing 



80C88A 

ABSOLUTE MAXIMUM RATINGS>iI 

Supply Voltage 
(With respect to ground) ........... -0.5 t,o 7.0V 

Input Voltage Applied 
(w.r.t. ground) ............. -0.5 to Vee + 0.5V 

Output Voltage Applied 
(w.r.t. ground) ............. -0.5 to Vee + 0.5V 

Power Dissipation .......................... 1.0W 

Storage Temperature .......... - 65°C to + 150°C 

Ambient Temperature Under Bias .... O°C to + 70°C 

"Notice: Stresses above those listed under "Abso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and 
functional operation. of the device at these or any 
other conditions above those indicated in the opera­
tional sections of this specification is not implied. Ex­
posure to. absolute m(1ximum rating conditions for 
extended periods may affect device reliability. 

D.C. CHARACTERISTICS T A = O°C to 70°C, Vee = 5V ± 5% 

SOCSSA-2 
Symbol Parameter Units Test Conditions 

Min Max 

VIL Input low Voltage -0.5 +0.8 V 

VIH Input High Voltage (All inputs 2.0 V 
except clock) 

VeH Clock High Voltage Vee-0.8 V 

VOL Output low Voltage 0.45 V IOL = 2.5 mA 

VOH Output High Voltage 3.0 V IOH = -2.5 mA 
Vee- O.4 IOH = -100/LA 

Icc Power Supply Current 10 mA/MHz VIL = GND, VIH = Vee 

Ices Standby Supply Current 500 /LA VIN = Vee or GND 
Outputs Unloaded 
ClK = GND or Vee 

III Input leakage Current ±1.0 /LA OVsVINSVCC 

ISHL Input leakage Current 50 400 /LA VIN = 0.8V 
(Bus Hold low) (Note 4) 

ISHH Input leakage Current -50 -400 /LA VIN = 3.0V 
(Bus Hold High) (Note 5) 

ISHLO Bus Hold low Overdrive 600 /LA (Note 2) 

iSHHO Bus Hold High Overdrive -600 /LA (Note 3) 

ILO Output leakage Current ±10 /LA VOUT = GND or Vee 

GIN Capacitance of Input Buffer 5 pF (Note 1) 
(All inputs except ADo-AD7, RQ/GT) 

GIO Capacitance of I/O Buffer 20 pF (Note 1) 
(ADo-AD7, RQ/GT) 

GOUT Output Capacitance 15 pF (Note 1) 

NOTES: 
1. Characterization conditions are a) Frequency = 1 MHz, b) Unmeasured pins at GND 

c) VIN at +5.0Vor GND. 
2. An external driver must source at least ISHLO to switch this node from LOW to HIGH. 
3. An external driver must sink at least ISHHO to switch this node from HIGH to LOW. 
4. Test condition is to lower VIN to GND and then raise VIN to O.BV on pins 2-16 and 34-39. 
5. Test condition is to raise VIN to Vee and then lower VIN to 3.0V on pins 2-16,26-32 and 34-39. 

2-136 



intJ 80C88A 

A.C. CHARACTERISTICS TA = 0·Cto70·C, vee = 5V ±5% 

MINIMUM COMPLEXITY SYSTEM TIMING REQUIREMENTS' 

Symbol Parameter 
80C88A-2 

Units 
Test 

Min Max Conditions 

TClCl ClK Cycle Period 125 D.C. ns 

TClCH ClKlowTime 68 ns 

TCHCl ClK High Time 44 ns 

TCH1CH2 ClK Rise Time 10 ns From 1.0V to 3.5V 

TCl2Cl1 ClK Fall Time 10 ns From 3.5V to 1.0V 

TDVCl Data in Setup Time 20 lis 

TClDX Data in Hold Time 10 ns 

TR1VCl ROY Setup Time into 82C84A 35 ns 
(Notes 1, 2) 

TClR1X ROY Hold Time into 82C84A 0 ns 
(Notes 1,2) 

TRYHCH READY Setup Time into 80C88A 68 ns 

TCHRYX READY Hold Time into 80C88A 20 ns 

TRYlCl READY Inactive to ClK (Note 3) -8 ns 

THVCH HOLD Setup Time 20 ns 

TINVCH INTR, NMI, TEST Setup Time 15 ns 
(Note 2) 

TILIH Input Rise Time (Except ClK) 15 ns From 0.8V to 2.0V 
(Note 4) 

TIHll Input Fall Time (Except ClK) 15 ns From 2.0V to 0.8V 
(Note 4) 

2-137 



80C88A 

A.C. CHARACTERISTICS (Continu~d) 

TIMING RESPONSES '" , 
,', 

Symbol Parameter 
80C88A-2 

Units 
Test 

Min Max Conditions 

TClAV Address Valid.Delay 10 60 ns 

TClAX Address Hold Time 10 ns 

TCLAZ Address Float Delay TClAX 50 ns 

TlHll ALE Width TClCH-10 ns 

TCllH ALE Active Delay 50 ns 

TCHll ALE Inactive Delay 55 ns 

TllAX Address Hold Time to ALE Inactive TCHCl-10 ns 

TClDV Data Valid Delay 10 60 ns 

TCHDX Data Hold Time 10 ' ns • 
TWHDX Data Hold Time Aft~r WR TClCH-30 ns 

TCVCTV Control Active Delay 1 10 70 ns 

TCHCTV Control Active Delay 2 10 60 ns 

TCVCTX Control Inactive Delay 10 70 ns 

TAZRl Address Float to READ Active 0 ns 

TClRl RD Active Delay 10 100 ns 

TClRH RD Inactive Delay 10 BO ns 

TRHAV RD Inactive to N~xt Address Active TClCl-40 ns 

TClHAV HlDA Valid Delay 10 100 ns 

TRlRH RDWidth 2TClCl":50 ns 

TWlWH WRWidth 2TClCl-40 ns 

TAVAl Address Valid to ALE low TClCH-40 ns 

TOlOH Output Rise Time (Note 4) 15 ns From O.BV to 2.0V 

TOHOl Output Fall Time (Note 4) 15 ns From 2.0V to O.BV 

NOTES: 
1. Signal at 82C84A shown for reference only. See 82C84A data sheet for the most recent specifications. 
2. Setup requirement for asynchronous Signal only to guarantee recognition at next ClK. 
3. Applies only to T2 state (8 ns into T3 state). 
4. These parameters are characterized and not 100% tested. 

2-138 



inter aDeaaA 

A.C. TESTING INPUT, OUTPUT WAVEFORM 

Input/Output 

2.4==X 1'1C 
0.45 -------~ 

240028-13 
A.C. Testing inputs are driven a12.4 for a logic "I"' and 0.45 for a 
logic "0"'. Timing measurements are made at 1.5V 

WAVEFORMS 

BUS TIMING - MINIMUM MODE SYSTEM 

'OIM. iii 

ALE 

RDY (_,nput) 
SEE NOTE' 

READY (IIOCIIA Input) 

T, ... ~=z 
~ TCHCTV • /::. 

A 

TCLAY- - -TCLAX-

A".A,. 

TCLLH- I: TLH L-:::: 

-' 
TCHLL- I-

!-TAVAL-

I 
1 

-
AD,.. .... 

A.C. TESTING LOAD CIRCUIT 

100 pF 

240028-14 

CL Includes Jig Capacitance 

T, T, Tw T. 

TCH'CH'~ H[ TCL2CLr~ 
i'--J - ~~ 
TCKeL !-TCLCH_ 

A,,-A. (Float during INTA) 

I--T LDV 
TCHDX~ -I--

..43 

!-TLLAX r--
j~---

Y'(~~ 
-TR,VCl 

-~ ~ ~~~~ vr - - !-TCLRtX 

A~~A. -
I - -TCHRYX 

TRYHCH -
!-TCLAl !=TDVCL- -TCLDX-

_v DATA IN 

TAlRL- =1 TCLAH- -.., 
FLOA:-J'-

-TRHAY 

READ CYCLE 

(NOTE') 
(VIR. 1IiTl. YOM) 

DTI" 

:::. ~ TCHCfY 
TCLAL 

I 
TCYCfY- f 

2·139 

"-.. 

TRLAH----1-; !:=,CHCTV 

! 
TCVCTX- I 

240028-15 

II 
I" 
:~ 



80C88A 

WAVEFORMS (Continued) 

BUS TIMING - MINIMUM MODE SYSTEM (Continued) 

ClK (82C84A Oulput) 

WRITE CYCLE 
NOTE 1 

INTA CYCLE 
NOTES 1,3 

(liD, WI! = VOH) 

SI?FTWARE HALT -

5m,AD,WR,iiifA-: YOH 

DTIiI" INDETERMINATE 

NOTES: 

AD7-ADO 

ADi-ADo 

DT/R 

AOr-ADo INVALID ADDRESS 

TeLAY 

1. All output timing measurements are made at 1.5V unless otherwise noted. 

SOFTWARE HALT 

2. RDY is sampled near the end of T 2, T 3, T w to determine if T w machines states are to be inserted. 

240028-16 

3. Two INTA Cycles run back-to-back. The 80C88A local ADDR/Data bus is floating during both INTA Cycles. Control 
signals are shown for the second INTA cycle. 
4. Signals at 82C84A are shown for reference only. 

2-140 



80C88A 

A.C. CHARACTERISTICS 

MAX MODE SYSTEM (USING 82C88 BUS CONTROLLER) 
TIMING REQUIREMENTS 

Symbol Parameter 80C88A·2 

Min Max 

TClCl ClK Cycle Period 125 D.C. 

TClCH ClKlowTime 68 

TCHCl ClK High Time 44 

TCH1CH2 ClK Rise Time 10 

TCl2Cl1 ClKFaliTime 10 

TDVCl Data In Setup Time 20 

TClDX Data In Hold Time 10 

TR1VCl ROY Setup Time into 82C84 
, 

35 
(See Notes 1 , 2) 

TClR1X ROY Hold Time into 82C84 0 
(See Notes 1, 2) 

TRYHCH READY Setup Time into 80C88A 68 

TCHRYX READY Hold Time into 80C88A 20 

TRYlCl READY Inactive to ClK -8 
(See Note 4) 

TINVCH Setup Time for Recognition 15 
(INTR, NMI, TEST) (See Note 2) 

TGVCH RQ/GT Setup Time 15 

TCHGX RQ Hold Time into 80C88A 30 

TILIH Input Rise Time (Except ClK) 15 
(Note 5) 

TIHll Input Fall Time (Except ClK) 15 
(Note 5) 

2-141 

Units Test Conditions 

ns 

ns 

ns 

ns From 1.0V to 3.5V 

ns From 3.5V to 1.0V 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns From 0.8V to 2.0V 

ns From 2.0V to 0.8V 



inter 80C88A 

A.C. CHARACTERISTICS 

TIMING RESPONSES 

SOCSSA-2 
.c· 

Symbol Parameter Units Test Conditions 
Min Max 

TClMl Command Active Delay (Note 1) 5 35 ns 

TClMH Command Inactive Delay(Note 1) 5 35 ns 

TRYHSH READY Active to Status Passive (Note 3) 65 ns 

TCHSV Status Active Delay 10 60 ns 

TClSH Status Inactive Delay 10 70 ns 

TClAV Address Valid Delay 10 60 ns 

TClAX Address Hold Time 10 ns 

TClAZ Address Float Delay TCLAX 50 n8 

TSVlH Status Valid to ALE High (Note 1) 20 ns 

TSVMCH Status Valid to MCE High (Note 1) 30 ns 

TCllH ClK low to ALE Valid (Note 1) 20 ns 

TClMCH ClK low to MCE High (Note 1) 25 ns 

TCHll ALE Inactive Delay (Note 1) 4 18 ns 

TClDV Data Valid Delay 10 60 ns 

TCHDX Data Hold Time 10 ns 

TCVNV Control Active Delay (Note 1) 5 45 ns 

TCVNX Control Inactive Delay (Note 1) 10 45 ns 

TAZRl Address Float to Read Active 0 ns 

TClRl RD Active Delay 10 100 ns 

TClRH RD Inactive Delay 10 80 ns 

TRHAV RD Inactive to Next Address Active TClCl-40 ns 

TCHDTl Direction Control Active Delay (Note 1) 50 ns 

TCHDTH Direction Control Inactive Delay (Note 1) 30 ns 

TClGl GT Active Delay 0 50 ns 

TClGH GT Inactive Delay 0 50 ns 

TRlRH RDWidth 2TClCl-50 ns 

TOlOH Output Rise Time (Note 5) 15 ns From 0.8V to 2.0V 

TOHOl Output Fall Time (Note 5) 15 ns From 2.0V to 0.8V 

NOTES: 
1. Signal at 82C84A or 82C88 shown for reference only. See 82C84A and 82C88 data sheets for the most recent 
specifications. 
2. Setup requirement for asynchronous signal only to guarantee recognition at next ClK. 
S. Applies only to TS and waitstates (8 ns into TS state). 
4. Applies only to T2 state (8 ns into TS state). 
5. These parameters are characterized and not 100% tested. 

2-142 



80C88A 

A.C. TESTING INPUT, OUTPUT WAVEFORM 

Input/Output 

240028-17 
A.C. Testing inputs are driven at 2.4V for a logic "I" and 0.45V 
for a logic "0". Timing measurements are made at 1.5V. 

WAVEFORMS 

BUS TIMING-MAXIMUM MODE 

ClK 

!Ji.!i,1O (EXCEPT HAL TI 

SEE NOTE 5 

1 .. 1 Ilacll OUTPUT) 

I ROY IlacM INPUT) 

READY (IOC88A INPUT) 

READ CYCLE. 

nell OUTPUTS 
SEE NOTES 5,8-

ADr-ADo 

OTt" 

DE' 

VCHr\ 

VCl....l TClAV-

-

-
~~~~~: 

I
I

TClAV-

'" t
X

TCHOV

_TI ~~tX, -
A"·A,,

1:=- .r-
I \

-
E- -

i AD,·AD,

TA

TCHDlL- ,

TClMl-

A.C. TESTING LOAD CIRCUIT

T,

I DEVICE
UNDER

TEST
100pF

CL Includes Jig Capacitance

T.

240028-18

~t1C;~ ~~

,... -TClSI ------
W/,ij, I;:0'ISIENDTE

'>S-"
~CfDV TCHD'- I--v---X ... &.!

I\..--
eTCHLL

--

1--1 i-TII1VCl ---

~ ~~~-~~
- I.TClOI

TO~

~:~- I-TCHO"

j.
TCLAX I=" f.-.-/ TOVHCH _

TClAZ l"-

DATA IN "
:Ol-I"-

'"~//r
TCLRH FL~~J

V
TCHDTH

TClMH. r~ \
\ ? TCVNV- .Ii--

/{

TCVNX-

240028-19

2-143

I:'
I,

80C88A

WAVEFORMS (Continued)

BUS TIMING - MAXIMUM MODE SYSTEM (USING 82C88)

ClK
VCl

5,. 5,. So (EXCEPT HALT)

WRITE CYCLE

82C88
OUTPUTS

SEE
NOTES 5.6

INTA CYCLE

DEN

AMWC
OR AIOWC

MWTC
OR IOWC

A,s"Aa
(SEE NOTES 3.4)

MCEI
PDEN
DTiR

82C88 OUTPUTS
SEE NOTES 5.6 INTA

DEN

SOFTWARE

FLOAT

T,

RESERVED FOR
CASCADE ADDR

HALT ~ (DEN = VOL: RD. MRDC. iORC.'MWTC. AMWC. iOWc. AiOwC.INTA.DT/R = VOH '

'AD7-ADo. A,s-Aa . J r INVALID ADDRESS

TCLAV::j '1=
--""'\"-__ -..J/~-----~\ - ---
-. ,----

NOTES:
1. All output timing measurements are made at 1.5V unless otherwise noted.
2. RDY is sampled near the end of T 2, T3, Tv;. to determine if Tw machines states are to be inserted.
3. Cascade address is valid between first and se.cond INTA cycles.

240028-20

4. Two INTA cycles run back-to'back. The 80C88A local ADDR/Data bus is floating during both INTA cycles. Control for
pOinter address is shown for second I.NT A cycle.
5. Signals at 82C84A or 82C88 are shown for reference only.
6. The issuance of the 82C88 command and control signals (MRDC, MWTC, AMWC, IORC, lOWe, AIOWC, INTA and
DEN) lags the active high 82C88 CEN.
7. Status inactive in state just prior to T 4.

2-144

WAVEFORMS (Continued)

ASYNCHRONOUS SIGNAL RE(;OGNITION

80C88A

BUS LOCK SIGNAL TIMING
(MAXIMUM MODE ONLY)

NMI

ClK~NV ClK CV;;I ~2NY ClK CY;:J .

:~ rr-, INTR

240028-21

NOTE: Setup requirements for asynchronous signals
only to guarantee recognition at next elK.

REQUEST/GRANT SEQUENCE TIMING (MAXIMUM MODE ONLY)

;. O-ClK CYCLE

ClK

A,./S.-A,~S3 _PR_E_V_'O_U_S ________ _
A1S-A. t-

AD -AD 8OC88A

~~ ~, ----------------~ RD, lOCK

COPROCESSOR

(... nole)

NOTE: The coprocessor may not drive the busses outside the region shown without risking contention.

HOLD/HOLD ACKNOWLEDGE TIMING (MINIMUM MODE ONLY)

240028-22

240028-23

'" ~~'CLKCYCLE_ ~"~._'""~ ","r--+-----I'CYCLES :c=
-I~~

HOlD~

• ","" ,~\-L_H't-V ____ -;
HlDA

- COPROCESSOR

240028-24

2-145

i,,'

I'i

II
'I
j',

80C88A

80C86A/80C88A INSTRUCTION SET SUMMARY
Mnemonic and

Description

DATA TRANSFER

MOV,", Move:

Register/Memory tolfrom Register

Immediate to Register IMemory

Immediate to Register

Memory to Accumulator

Accumulator to Memory

Register/Memory to Segment Register"

Segment Register to Register/Memory

PUSH ~ Push:

Register IMemory

Register

Segment Register

POP ~ Pop:

Register/Memory

Register

Segment Register

XCHG ~ Exchange:

Register/Memory with Register

Register with Accumulator

IN~ Input from:

Fixed Port

Variable Port

OUT. = Output to:

Fixed Port

Variable Port

XLAT ~ Translate Byte to AL

LEA = Load EA to Register

LOS ~ Load Pointer to DS

LES ~ Load Pointer to ES

LAHF ~ Load AH with Flags

SAHF. ~ Store AH inlo Flags

PUSHF ~ Push Flags

POPF ~ Pop Flags

I
76543210

100010dw

1100011w

1011wreg

1010000w

1010001w

10001110

10001100

1 1 1 1 1 1 1 1

01010reg

000regll0

10001111

01011 reg

OOOreglll

1000011w

10010reg

1110d.l0w

1110110w

1110011w

~OIIIW
I I 10101 1 I

I 10001101

I 11000101

I 11000100

000111<Q

I 10011110 I
I 10011100 I
110011101 I

Instruction Code

76543210 76543210

mod reg rim

modOOO rim data

data data ifw I

add-low addr-high

addr-Iow addr-high

mod 0 reg rim

mod 0 reg rim

mod 110 rim

modOOOr/m

mod reg rim

port

port

mod reg rim

mod reg rim

mod reg rim

2-146

76543210

dataifw I

inter 80C88A

II
80C86A/80C88A INSTRUCTION SET SUMMARY 'f (Continued) I' i

Mnemonic and I Instruction Code

~ Description

ARITHMETIC 76543210 76543210 76543210 76543210 iiI
ADD = Add:

Reg.lMemory with Register to Either OOOOOOdw mod reg rim

Immediate to Register/Memory 100000sw modOOOr/m data data if s:w = 01 Ii Immediate to Accumulator 0000010w data dataifw = 1

ADC = Add with Carry:
(,j

, I~ Reg.lMemory with Register to Either 000100dw mod reg rim
'i.

Immediate to RegisterlMemory 100000sw modOl0r/m data data if sow = 01

Immediate to Accumulator 0001010w data dataifw = 1

INC = Increment:

Register/Memory 11 11,111 w mod 0 00 rim

Register 01000reg

AAA = ASCII Adjust lor Add 00110111

DAA = Decimal Adjust lor Add 00100111

SUB = Subtract:

Reg.lMemory and Register to Either 001010dw mod reg rim

Immediate lrom RegisterlMemory 100000sw mod 101 rim data data if sow = 01

Immediate from' Accumulator 0010110w data dataifw = 1

SBB = Subtract with Borrow

Reg.lMemory and Register to Either 000110dw mod reg rim

Immediate from Register/Memory 100000sw modO 11 rim data data if sow = 01

Immediate from Accumulator 0001110w data dataifw = 1

DEC = Decrement:

RegisterlMemory 1111111 w mod 0 0 1 rim

Register 01001 reg

NEG = Change Sign 1111011 w mod 0 11 rim

CMP = Compare:

Register/Memory and Register 001110dw mod reg rim

Immediate with RegisterlMemory 100000sw mod 111 rim data data if s:w = 01

Immediate with Accumulator 0011110w data dataifw = 1

AAS = ASCII Adjust for Subtract 001 1 1 1 1 1

DAS = Decimal Adjust for Subtract 00101111

MUL = Multiply (UnSigned) 1111011 w mod 100 rim

IMUL = Integer Multiply (Signed) 1111011 w mod 1 01 rim

AAM = ASCII Adjust for Multiply 11010100 00001010

DIY = Divide (UnSigned) 1111011 w modl1 0 rim

IDlY = Integer Divide (Signed) 1111011 w mod 111 rim

AAD = 'ASCII Adjust for Divide 11010101 00001010

CBW = Convert Byte to Wqrd 10011000

CWO = Convert Word to Double Word 10011001

2·147

inter 80C88A

SOCS6A/SOCSSA INSTRUCTION SET SUMMARY (Continued)
Mnemonic and I Instruction Code Description

LOGIC 76543210 76543210 76543210 76543210

NOT ~ Invert 1111011 w modO 1 o rIm

SHL/SAL ~ Shift Logic,,11 Arithmetic Left 110100vw mod 100 rIm

SHR ~ Shift Logical Right 110100v.w mod 101 rIm

SAR ~ Shift Arithmetic Right 110100vw mod 111 rIm

ROL ~ Rotate Left 110100vw mod 0 00 rIm

RDR ~ Rotate Right 110100vw modOOlr/m

RCL ~ Rotate Through Carry Flag Left 110100vw modOl0r/m

RCR ~ Rotate Through Carry Right 110100vw mod 0 11 rIm

AND =; And: .
Reg.lMemory and Register to Either 001000dw mod reg rIm

Immediate to RegisterlMemory 1000000w modi OOr/m data dataifw ~ 1

Immediate to Accumulator 0010010w data dalaifw ~ 1

TEST ~ And Function to Flags, No Result:

Register/Memory and Register 1000010w mod reg rIm

Immediate Data and RegisterlMemory 1111011w modOOOr/m data dataifw ~ 1

Immediate Data and Accumulator 1010100w data dataifw ~.1

OR~ Or:

Reg.lMemory and Register to Either 000010dw mod reg rIm

Immediate to RegisterlMemory 1000000w mod 0 0 1 rIm data dataifw ~ 1

Immediate to Accumulator 0000110w data dataifw ~ 1

XOR ~ Exclusive or:

Reg.lMemory and Register to Either 001100dw mod reg rIm

Immediate to RegisterlMemory 1000000w mod 110 rIm data dataifw ~ I

Immediate to Accumulator OOllOIOw data data ifw ~ I

STRING MANIPULATION

REP ~ Repeat 11.11001z

MOYS ~ Move BytelWord 1010010w

CMPS ~ Compare BytelWord 101001lW

SCAS ~ Scan BytelWord 1010111w

LODS ~ Load Byte/Wd to ALI AX 1010110w

STOS ~ Stor Byte/Wd from ALI A 101010lW

CONTROL TRANSFER

CALL ~ Call:

Direct Within Segment 11101000 disp-Iow disp-high

Indirect Within Segment If111111 mod 0 10 rIm

Directlntersegment 10011010 offset-low offset-high I
seg-Iow seg-high I

Indirect Intersegment I I I 1 1 I II modOll rIm

2-148

inter 80C88A

80C86A/80C88A INSTRUCTION SET SUMMARY, (Continued)
Mnemonic and

Description

JMP = Unconditional Jump:

Direct Within Segment

Direct Within Segment-Short

Indirect Within Segment

Direct Intersegment

Indirect Intersegment

RET = Return from CALL:

Within Segment

Within Seg Adding Immed to SP

Intersegment

Intersegment Adding Immediate to SP

JE/JZ = Jump on Equal/Zero

JL/JNGE = Jump on Less/Not Greater
or Equal

JLE/JNG = Jump on Less or Equal/
Not Greater

JB/JNAE = Jump on Below/Not Above
or Equal

JBE/JNA = Jump on Below or Equal!
Not Above

JP/JPE = Jump on Parity/Parity Even

JO = Jump on Overflow

JS = Jump on Sign

JNE/JNZ = Jump on Not Equal/Not Zero

JNL/JGE = Jump on Not Less/Greater
or Equal

JNLE/JG = Jump on Not Less or Equal/
Greater

JNB/JAE = Jump on Not Below/Above
or Equal

JNBE/JA = Jump on Not Below or
Equal/Above

JNP/JPO = Jump on Not Par/Par Odd

JNO = Jump on Not Overflow

JNS = Jump on Not Sign

LOOP = Loop ex Times

LOOPZ/LOOPE = Loop While Zero/Equal

LOOPNZ/LOOPNE = Loop While Not
Zero/Equal

JCXZ = Jump on ex Zero

INT = Interrupt

Type Specified

Type 3

INTO = Interrupt on Overflow

IRET = Interrupt Return

I Instruction Code

76543210 7654,3210 76543210

11101001 disp-IOW disp-high

11 10101 1 disp

1 1 1 1 1 1 1 1 modl00r/m

11101010 offset-low offset-high

seg-Iow seg-high

1 1 1 1 1 1 1 1 mod 1 01 rIm

11000011

11000010 data-low data-high

11001011

11001010 data-low data-high

01110100 disp

01111100 disp

01111110 disp

01110010 disp

o 1 1 1 01 10 disp

01 111010 disp

01110000 disp

01111000 disp

01110101 disp

01111101 disp

01111111 disp

01110011 disp

01110111 disp

01111011 disp

01110001 disp

01111001 disp

11100010 disp

11100001 disp

11100000 disp

11100011 disp

11001101 type

11001100

11001110

1 10011 1 1

2·149

80C88A

80C86A/80C88A INSTRUCTION SET SUMMARY (Continued)
Mnemonic and

Description

PROCESSOR CONTROL

CLC = Clear Carry

CMC = Complement Carry

STC = Set Carry

CLD = Clear Direction

STD = Set Direction

CLI = Clear Interrupt

STI = Set Interrupt

HLT = Halt

WAIT = Wait

ESC = Escape (to External Device)

LOCK = Bus Lock Prefix

NOTES:
AL = 8-bit accumulator
AX = 16-bit accumulator
ex = Count register
OS = Data segment
ES = Extra segment
Above/below refers to unsigned value.
Greater = more positive;

I
76543210

1 t 111000

11110101

11111001

11111100

11111101

11111010

11111011

11110100

10011011

1101hxx

11110000

less = less positive (more negative) signed values
if d = 1 then "to" reg; if d = 0 then "from" reg
if w = 1 then word instruction; if w = 0 then byte instruc­

tion
if mod = 11 then rIm is treated as a REG field
if mod = 00 then OISP = 0·, disp-Iow and disp-high are

absent
if mod = 01 then OISP = disp-Iow sign-extended to

16 bits, disp-high is absent
if mod = 10 then OISP = disp-high: disp-Iow
if rIm = 000 then EA = (BX) + (SI) + OISP
if rIm = 001 then EA = (BX) + (01) + OISP
if rIm = 010 then EA = (BP) + (SI) + OISP
if rIm = 011 then EA = (BP) + (01) + OISP
if rIm = 100 then EA = (SI) + OISP
if rIm = 101 then EA = (01) + OISP
if rIm = 110 then EA = (BP) + OISp·
if rIm = 111 then EA = (BX) + OIS'P
OISP follows 2nd byte of instruction (before data if re­
quired)
'except if mod = 00 and rIm = 110 then EA = disp­
high: disp-Iow.

"MOV CS, REG/MEMORY not allowed.

DATA SHEET REVISION REVIEW

Instruction Code

76543210

mod xxx rIm

if s:w = 01 then 16 bits of immediate data form the oper­
and.

if s:w = 11 then an immediate data byte is sign extended
to form the 16-bit operand.

if v = 0 then "count" = 1; if v = 1 then "count" in (Cl)
x = don't care
z is used for string primitives for comparison with ZF FLAG.
SEGMENT OVERRIDE PREFIX

001reg110

REG is assigned according to the following table:

16·Blt (w = 1) 8·Blt (w = 0) Segment

000 AX 000 AL 00 E5
001 CX 001 CL 01 C5
010 DX 010 DL 10 55
011 BX 011 BL 11 D5
100 5P 100 AH
101 BP 101 CH
110 51 110 DH
111 DI 111 BH

I nstructions which reference th~ flag register file as a 16-bit
object use the symbol FLAGS to represent the file:
FlAGS'=
X:X:X:X:(OF):(OF):(lF):(TF):(SF):(ZF):X:(AF):X:(PF):X:(CF)

Mnemonics @) Intel, 1978

The following list represents key differences between this and the -001 data sheet. Please review this summa­
ry carefully.

1. In the Pin Description Table (Table 1), the description of the HLDA signal being issued has been corrected.
HLDA will be issued in the middle of either the T 4 or Ti state.

2-150

80C88AL
8-BIT CHMOS MICROPROCESSOR

• Pin-for-Pln and Functionally Compatible • Direct Addressing Capability of 1
to I.ndustry Standard HMOS SOSS MByte of Memory

• Direct Software Compatibility with • Architecture Designed for Powerful
SOCS6AL,SOS6,SOSS Assembly Language and Efficient High

• Fully Static Design with Frequency Level Languages

Range from D.C. to: • 24 Operand Addressing Modes
- 5 MHz for SOCSSAL • Byte, Word and Block Operations
- S MHz for SOCSSAL-2

Low Power Operation • Sand 16-Bit Signed and Unsigned • Arithmetic
- Operating Icc = 10 mA/MHz - Binary or Decimal
- Standby IcCs = 750 p,A max - Multiply and Divide

• Bus-Hold Circuitry Eliminates Pull-Up • Available in 40-Lead Plastic DIP and 44-
Resistors Lead PLCC Packages

(See Packaging Spec., Order .. 231369)

The Intel 80C88AL is a high performance, CHMOS version of the industry standard HMOS 8088 8-bit CPU.
The processor has attributes of both 8 and 16-bit microprocessors. It is available in 5 and 8 MHz clock rates.
The 80C88AL offers two modes of operation: MINimum for small systems and MAXimum for larger applica­
tions such as mUlti-processing. It is available in 40-pin DIP and 44-pin plastic leaded chip carrier (PLCC)
package.

240075-1

Figure 1. 80C88AL CPU
Functional Block Diagram

ONO

A"

AO'

MIN {:O~EI MODI!

AI81S3

A11/S4

A

(HIGH)

M_

ilO
HOLD (1Ri/im:J)

HLDA (IlQIm)
iilI j~)

101M (iiI

0"" iii) ... (iii)

ALE IOSOl

""" (OSI)

TID
READY

RESET

240075-2

Figure 2a. 80C88AL
40-Lead

DIP Configuration

2-151

654 1 2 1 "4434241-40

o

AD7 10

AD6 11

'05 6OCBIW.

"02 15

(iQ/GTo)

(RO/Gfi)
Wii (LOCK)

IOfij (52)

1.01 16 DT/ii (Si)

1.00 17 29 DiN (so)
1819 to 21222324252&212&

~~~d3~~~@li~ 

\~~ 
240075-3 

Figure 2b. 80C88AL 44-Lead 
PLCC Configuration 

September 1988 
Order Number: 240075-002 

II 
JI, 

1\ 
j 

~, 



80C88AL ~', 
:( .. ' 

Table 1, f»ln Deacrlption 
The following pin iunction'descriptlon;are for 80Cs'8AL systems'ln eitherminimum or maximum mode.' The 
''local bus" in these descriptions is the direct m/Jltiplexed bus interface connection to the 80C88AL (without 
regard to additional bUs buffers).' ,.' ,) - .... '. r . ' .. 

Symbol 
P-DIP Conflg. Type Nam,'and Function >' ',{,' ' .. 

Pin'No. ., *-

AD7-ADO 9-1~ . 110. ADDfiESS DATA BUS: These lines constitute the time 

,"' 
multiplel<ed memoryllO address (T1) and d~t8 (T2,T3, TW"and 
T4) bUll: These lines are active HIGH andflOlitto 3~'sta.te OFF(fl 
during interrupt acknowledge and locai bus "hold acknowledge". 

A15-AS ' 2-S,39' 0 ADDRESS BUS: These lines provide address bits S through 15 
for the entire bus cycle (T1-T 4). These lines do n9t have to be 

" latched by ALE to remainvalid. A15".AS are aetiveHIGHand 
float to 3-state OFF(l l during interrupt 'acknowledge and local bus 
"hold acknowledge". 

A19/56, A1S/55, 35-3S C,'" ADDRESS/STATUS: During T1, these are the four most 
A17/54, A16/53 significant address lines for memory operations. During flO 

operations, these lines are LOW. During memory and 1/0 
operations, status information is available on these lines during 

>-

,. 
T2, l3, Tw,andT4: 56 is always lciw. Th~status of the interrupt 
Ei~able flag bit (55) is upd~tecJ at the begiriningof each clock' " " 
CyCle. 54 andS3are encQded as shown. . , , 

": '" 

This information indicates which segment register is presently 
being used for data accessing. 

These lines float to 3~state OFF(ll during local bus "hold 
acknowledge" . 

S4 S3 CHARACTERISTICS 

O(LOW) 0 Alternate Data 
0 1 5tack 
1(HIGH) 0 CO,de or None 
1 1 Data 
56 is O(LOW) , :: , 

RD 32 0 READ: Read strobe indicates that the processor is performing a 
memory or 1/0 read cycle, depending on the state of the 101M 
pin or 52. This signal is used to read devices which.reside on the 
SOCSSAL local bus. RD is active LOW during T2, T3 and Twof 
any read cycle, and is guaranteed to remain HI,GHJn 12 untUthe 
SOC8SAL local bus has floated~ 

This ~ignal floats to 3-state OFF(ll in "hold acknowledge:'. 

READY 22 I READY: is the acknowlecJg,emenUrom the addressed memory or 
1/0 device that it will complete the data transfer. The HDY signal 
ftom'memoryorl/O is synchronized by the S2C84A clock 

, ' generator to form READY. This signaUs active HIGH, The 
SOC8SAL HEADY input is not synchronized. Corre<:t pperation is 
not guaranteed if the set up and hOld times are not met. 

2-152 



80C88AL 

Table 1. Pin Description (Continued) 

Symbol 
P-DIP Conflg. 

Type Name and Function 
Pin No. 

INTR 18 I INTERRUPT REQUEST: is a level triggered input which is sampled 
during the last clock cycle of each instruction to determine if the 
processor should enter into an interrupt acknowledge operation. A 
subroutine is vectored to via an interrupt vector lookup table 
located in system memory. It can be internally masked by software 
resetting the interrupt enable bit. INTR is internally synchronized. 
This signal is active HIGH. 

TEST 23 I TEST: input is examined by the "wait for test" instruction. If the 
TEST input is LOW, execution continues, otherwise the processor 
waits in an "idle" state. This input is synchronized internally during 
each clock cycle on the leading edge of CLK. 

NMI 17 I NON-MASKABLE INTERRUPT: is an edge triggered input which 
causes a type 2 interrupt. A subroutine is vectored to via an 
interrupt vector lookup table located in system memory. NMI is not 
maskable internally by software. A transition from a LOW to HIGH 
initiates the interrupt at the end of the current instruction. This input 
is internally synchronized. 

RESET 21 I RESET: causes the processor to immediately terminate its present 
activity. The signal must be active HIGH for at least four clock 
cycles. It restarts execution, as described in the instruction set 
description, when RESET returns LOW. RESET is internally 
synchronized. 

CLK 19 I CLOCK: provides the basic timing for the processor and bus 
controller. It is asymmetric with a 33% duty cycle to provide 
optimized internal timing. 

Vee 40 Vee: is the + 5V ± 10% power supply pin. 

GND 1,20 GND: are the ground pins. Both must be connected. 

MN/MX 33 I MINIMUM/MAXIMUM: indicates what mode the processor is to 
operate in. The two modes are discussed in the following sections. 

The fol/owing pin function descriptions are for the 80C88AL minimum mode (i.e., MNIMX = Vee). Only the 
pin functions which are unique to minimum mode are described; aI/ other pin functions are as described above. 

101M 28 0 STATUS LINE: is an inverted maximum mode S2. It is used to 
distinguish a memory access from an 1/0 access. 101M becomes 
valid in the T4 preceding a bus cycle and remains valid until the final 
T4 of the cycle (1/0 = HIGH, M = LOW). 101M floats to 3-state 
OFF(1) in local bus "hold acknowledge". 

WR 29 0 WRITE: strobe indicates that the processor is performing a write 
memory or write 1/0 cycle, depending on the state of the 101M 
signal. WR is active for T2. T3. and Tw of any write cycle. It is active 
LOW, and floats to 3-state OFF(1) in local bus "hold acknowledge". 

INTA 24 0 INTA: is used as a read strobe for interrupt acknowledge cycles. It is 
active LOW during T2. T3. and Tw of each interrupt acknowledge 
cycle. 

2-153 



80C88AL 

Table 1. Pin Description (Continued) 

Symbol 
P-DIP Conflg. 

Type Name and Function 
Pin No. 

ALE 25 0 ADDRESS LATCH ENABLE: is provided by the processor to latch 
the address into an address latch. It is a HIGH pulse active during 
clock low of T1 of any bus cycle. Note that ALE is never floated. 

DTiR 27 0 DATA TRANS~IT/RECEIVE: is needed in a minimum system that 
desires to use a data bus transceiver. It is used to control the 
direction of data flow through the transceiver. Logically, DT iFf is 
equivalentto 51 in the maximum mode, and its timing is the same 
as for 101M (T ;= HIGH, R = LOW). This signal floats to 3-state 
OFF(l) in local "hold acknowledge". 

DEN 26 0 DATA ENABLE: is provided as an output enable for the transceiver 
in a minimum system which uses the transceiver. DEN is active 
LOW during each memory and 1/0 access, and for INTA cycles. For 
a read or INTA cycle, it is active from the middle of T2 until the 
middle of T 4; while for a write cycle, it is active from the beginning 
of T2 until the middle of T 4. DEN floats to 3-state OFF(l) during 
local bus "hold acknowledge". 

HOLD, HLDA 30,31 1,0 HOLD: indicates that another master is requesting a local bus 
"hold". To. be acknowledged, HOLD must be active HIGH. The 
processor receiving the "hold" request will issue HLDA (HIGH) as 
an acknowledgement, in the middle of a T 4 or Ti clock cycle. 
Simultaneous with the issuance of HLDA the processor will float the 
local bus and control lines. After HOLD is detected as being LOW, 
the processor lowers HLDA, and when the processor needs to run 
another cycle, it will again drive the local bus and control lines. 

Hold is not an asynchronous input. External synchronization should 
be provided if the system cannot otherwise guarantee the set up 
time. 

SSO 34 0 STATUS LINE: is logically equivalent to SO in the maximum mode. 
The combination of SSO, 101M and DT iFf allows the system to 
completely decode the current bus cycle status. 

101M DT/R SSO CHARACTERISTICS 

1(HIGH) 0 0 Interrupt Acknowledge 
1 0 1 Read I/O Port 
1 1 0 Write I/O port 
1 1 1 Halt 
O{LOW) 0 0 Code access 
0 0 1 Read memory 
0 1 0 Write memory 
0 1 1 Passive 

2-154 



80C88AL 

Table 1. Pin Description (Continued) 

The following pin function descriptions are for the 80C88AU82C88 system in maximum mode (i.e., 
MN/MX = GND.) Only the pin functions which are unique to maximum mode are described; all other pin 
functions are as described above. 

Symbol 
P-DIP Config. 

Type Name and Function 
Pin No. 

S2, S1, SO 26-28 0 STATUS: is active during clock high ofT4, T1, and T2, and is 
returned to the passive state (1,1,1) during T3 or during Tw when 
READY is HIGH. This status is used by the 82C88 bus controller to 
generate all memory and I/O access control signals. Any change by 
S2, S 1, or SO during T 4 is used to indicate the beginning of a bus 
cycle, and the return to the passive state in T3 or Tw is used to 
indicate the end of a bus cycle. 

These signals float to 3-state OFF(1) during "hold acknowledge". 
During the first clock cycle after RESET becomes active, these 
Signals are active HIGH. After this first clock, they float to 3-state 
OFF. 

S2 S1 SO CHARACTERISTICS 

O(lOW) 0 0 Interrupt Acknowledge 
0 0 1 Read I/O port 
0 1 0 Write I/O port 
0 1 1 Halt 
1(HIGH) 0 0 Code access 
1 0 1 Read memory 
1 1 0 Write memory 
1 . 1 1 Passive 

RQ/GTO, 30,31 I/O REQUEST IGRANT: pins are used by other local bus masters to 
RQ/GT1 force the processor to release the local bus at the end of the 

processor's current bus cycle. Each pin is bidirectional with RQI 
GTO having higher priority than RQ/Gn. RQ/GT has an internal 
pull-up resistor, so may be left unconnected. The request/grant 
sequence is as follows (see timing diagram): 

1. A pulse of one ClK wide from another local bus master indicates 
a local bus request ("hold") to the 80C88Al (pulse 1). 

2. During a T 4 or T1 clock cycle, a pulse one clock wide from the 
80C88Al to the requesting master (pulse 2), indicates that the 
80C88Al has allowed the local bus to float and that it will enter the 
"hold acknowledge" state at the next ClK. The CPU's bus interface 
unit is disconnected logically from the local bus during "hold 
acknowledge". The same rules as for HOLD/HOLDA apply as for 
when the bus is released. 

3. A pulse one ClK wide from the requesting master indicates to 
the 80C88A.l (pulse 3) that the "hold" request is about to end and 
that the 80C88Al can reclaim the local bus at the next ClK. The 
CPU then enters T 4. 

2-155 

I 



inter 80C88AL 

Table 1. Pin Description (Continued) 

P-DIP Conflg. " ',' 

Symbol 
Pin No. 

Type Name and Function 

RQ/GTO, 30,31 I/O Each master-master exchange oUhe local bus is a sequence of 
RQ/GT1 three pulses. There must be one idle CLK cycle after each bus 

exchange., Pulses are ,active LOW. 

If the request is made while the CPU is performing a memory cycle, 
it will release the local bus during T 4 of the cycle when all the 
following conditions are met: 

1. Request occurs on or before T2. 
2. Current cycle is not the low bit of a word. 
3.Current cycle is not the first acknowledge of an interrupt 
acknowledge sequence. 
4. A locked instruction is not currently executing. 

If the local bus is idle when the request is made the two possible 
events will follow: 

1. Local bus will be released during the next clock. 
2. A memory cycle will start within 3 clocks. Now the four rules for a 
curreotly active memory cycle apply with condition number 1, 
already satisfied. 

,LOCK 29 0 LOCK: indicates that other system bus masters are not to gain 
control of the system bus while LOCK is active (LOW). The LOCK 
signal is activated by the "LOCK" prefix instruction and remains 
active until the completion of the next instruction. This signal is 
active LOW, and floats to 3-state OFF(l) in "hold acknowledge". 

OS1, QSO 24,25 0 QUEUE STATUS: provide status to allow extemal tracking of the 
internal 80C88AL instruction queue. 

The queue status is valid during the CLK cycle after which the 
queue operation is performed. 

QS1 QSO CHARACTERISTICS 

O(LOW) 0 No operation 
0 1 First byte of opcode from queue 
1(HIGH) 0 Empty the queue 
1 1 Subsequent byte from queue 

- 34 0 Pin 34 is always high in the maximum mode. 

NOTE: 
1. See the section on Bus Hold Circuitry. 

2-156 



inter 80C88AL 

FUNCTIONAL DESCRIPTION 

STATIC OPERATION 

All 80C88AL circuitry is of static design. Internal reg­
isters counters and latches are static and require no 
refre~h as with dynamic circuit design. This elimi­
nates the minimum operating frequency restriction 
placed on other microprocessors. The CMOS 
80C88AL can operate from DC to the appropriate 
upper frequency limit. The processor clock may ~e 
stopped in either state (high/low) and held there In­
definitely. This type of operation is especially useful 
for system debug or power critical applications. 

The 80C88AL can be single stepped using only the 
CPU clock. This state can be maintained as long as 
is necessary. Single step clock operation allows sim­
ple interface circuitry to provide critical information 
for bringing up your system. 

Static design also allow.s very low frequency opera­
tion. In a power critical Situation, this can provide 
extremely low power operation since 80C88AL pow­
er dissipation is directly related to operating frequen­
cy. As the system frequency. is reduced, so is the 
operating power· until ultimately, at a DC input fre­
quency,the 80C88AL power requirement is the 
standby current. 

~FFFFFH 

T 
64 KB } CODE SEGMENT 

...---'-_-...,. XXXXOH 

r-~="'l } STACK SEGM~NT 
+ OFFSET 

SEGMENT [} 

~R~EG~ISjTiER~F~ILEl~~~WlO_R_DtJ~:Tj~ DATA SEGMENT 

} EXTRA DATA SEGMENT 

'--.... --{ 
T..-......J OOOOOH 

240075-4 

Figure 3. Memory Organization 

MEMORY ORGANIZATION 

The processor provides a 20-bit address to memory 
which locates the byte being referenced. The memo­
ry is organized as a linear array of up to 1 million 
bytes, addressed as OOOOO(H) to FFFFF(H). The 
memory is logically divided into code, data, extra 
data, and stack segments of up to 64K bytes e~ch, 
with each segment falling on 16-byte· boundaries. 
(See Figure 3.) 

All memory references are made relative to base ad­
dresses contained in high speed segment registers. 
The segment types were chosen based on the. ad­
dressing needs of programs. The segment register 
to be selected is automatically chosen according to 
the rules of the following table, All information in one 
segment type share the same logical attributes (e.g. 
code or data). By structuring memory into relocat­
able areas of similar characteristics and by automati­
cally selecting segment registers, programs are 
shorter, faster, and more structured. 

Word (16-bit) operands can be located on even or 
odd address boundaries. For address and data oper­
ands, the least significant byte of the word is stored 
in the lower valued address location and th~ .JTiost 
significant byte in the next higher address locati~n. 
The BIU will automatically execute two fetch or write 
cycles for 16-bit op~rands. . 

Certain locations in memory are reserved for specific 
CPU operations. (See Figure.4.) Locations from ad­
dresses FFFFOH through FFFFFH are reserved for 
operations including a jump to the initial system 

RESET BOOTSTRAP 
PROGRAM JUMP 

b • · • 
INTERRUPT POINTER 

FOR TYPE 255 

· • 
• 

INTERRUPT POINTER 
FOR TYPE 1 

INTERRUPT POINTER 
FOR TYPE 0 

FFFFFH 

FFFFOH 

3FFH 

3FOH 

7H 

4H 
3H 

OH 

240075-5 

Figure 4. Reserved Memory Locations 

2-157 



inter 80C88AL 

Memoory Segment Register Segment 
. Reference Need .. Used Selection Rule 

Instructions CODE (CS) Automatic with all instruction prefetch. 

Stack STACK (SS) 
All stack pushes and pops. Memory references relative to BP 
base register except data references. 

Local Data DATA (OS) 
Data references when: relative to stack, destination of string 
operation, or explicitly overridden. 

External (Global) Data EXTRA (ES) 
Destination of string operations: Explicitly selected using a 
segment override. 

initialization routine. Following RESET, the CPU will 
always begin executional location FFFFOH where 
the jump must be located. Locations OOOOOH 
through 003FFH are reserved· for interrupt opera­
tions. Four-byte. pointers consisting of a 16-bit seg­
ment address. and a 16-bit offset address direct pro­
gram flow to one of the 256 possible interrupt serv­
ice routines. The pointer elements are assumed to 
have been stored at their respective places in· re­
served memory prior. to the occurrence of interrupts .. 

MINIMUM AND MAXIMUM MODES 

The requirements for supporting minimum and maxi­
mum 80C88AL systems are sufficiently different that 
they cannot be done efficiently with 40 uniquely de­
fined pins .. Conseque~, the 80C88AL is equipped 
with a strap pin (MN/MX) which defines the system 
configuration. The definition of a certain subset of 
the pins changes, dependent on the condition of the 
strap pin. When the MN/MX pin is strapped to GND, 
the 80C88AL defines pins 24 th~h 31 and 34 in 
maximum mode. When the MN/MX pin is strapped 
to Vee, the 80C88AL generates bus control signals 
itself on pins 24 through 31 and 34. 

The minimum mode 80C88AL can be used with ei­
ther a multiplexed or demultiplexed bus. The multi­
plexed bus configuration is compatible with the 

MCS®-85 multiplexed bus peripherals (8155, 8156, 
8355, 8755A, and 8185). This configuration (See 
Figure 5) provides the user with a minimum chip 
count system. This architecture provides the 
80C88AL processing power in a highly integrated 
form. .. 

The demultiplexed mode requires one latch (for 64k 
addressability) or two latches (for a full megabyte of 
addressing). A third latch can be used for buffering if 
the address bus loading requires .it. A transceiver 
can also be used if data bus buffering is ~ired. 
(See Figure 6.) The 80C88AL provides DEN and 
DT IA to control the transceiver, and ALE to latch 
the addresses. This configuration of the minimum 
mode provides the standard demultiplexed bus 
structure with heavy bus buffering and relaxed bus 
timing requirements. 

The maximum mode employs the 82C88 bus con­
troller. (See Figure 7.) The 82C88 decodes status 
lines SO, S1,and 52, and provides the system with 
all bus control signals. Moving the bus control to the 
82C88 provides better source and sink current capa­
bility to the control lines, and frees the 80C88AL 
pins for extended large system features. Hardware· 
lock, queue status, and two request! grant interfaces 
are provided by the80C88AL in maximum mode. 
These features allow co-processors in local bus and 
remote bus configurations. 

2-158 



80C88AL 

f:o. ... 

"" 
1·1--

'.t 

!, 

• 
A."A1t ADDR 

r 
J. ~ ClK ADo·AD, ADDAIDATA 

r--- , ~::1 
8OC88AL != 

,....- RDY I .. 
MN/MX !--Vcc 

Vee rD'l ALE r- r!-
RES Ri5 r- t--t-

X, X, 
WA I---ClK 

RDY I-- 101M r-
~ RES 

T 
82C84A 

RES r-

GND 

.~-

~-
J. 

I' 

............. ...,'" 

Figure 5. Multiplexed Bus Configuration 

2-159 

v v is r 
CE POR!~ 
WR ~ PORT 

Ri5 8155 B '" 

,ALE PORT I¢¢ 
~ DATAl C 

ADDR I+-r IN 
101M TIMER 1-+ 
RESET OUT 

iOW 

RD 

ALE 

~ PORT 

CE A 

~ 
A.·l0 

,. 8355/8755A 

,. 
~ 101M PORT 

RESET B 

lOR ~c 

J.rrt 
Vss Vee VDD PROG 

WR 

Ri5 

CE, 8185 
ALE 

CS, CE2 

A •• Ag 

• 
AD .. , ,. 

J i 
Vss Vee 

240075-6 

'I 

i·'···.'.'·' 

,Ii, 

I 

i: 
", 

II 
1 
Iii ,1 

Ii 
:'J 



inter 80C88AL 

240075-7 

Figure 6. Demultiplexed Bus Configuration 

MN/IIX GNO L iii!D1l .. .. MW'fli 
s; s; ...WC NC ., s; I::. iOJiC 

"DY DENCTRl.R lowe 

OOC88AL DTJR iRiWC NC 
CPU 

INT 

240075-8 

Figure 7. Fully Buffered System Using Bus Controller 

2~160 



inter 80C88AL 

Bus Operation 
The 80C88Al address/data bus is broken into three 
parts-the lower eight address/data bits (ADO-AD7), 
the middle eight address bits (AB-A 15), and the up­
per four address bits (A16-A19). The address/data 
bits and the highest four address bits are time mUlti­
plexed. This technique provides the most efficient 
use of pins on the processor. The middle eight ad­
dress bits are not multiplexed, i.e. they remain valid 
throughout each bus cycle. In addition, the bus can 
be demultiplexed at the processor with a single ad­
dress latch if a standard, non-multiplexed bus is de­
sired for the system. 

Each processor blJs cycle consists of at least four 
ClK cycles. These are referred to as T1, T2, T3, and 
T4. (See Figure 8). The address is emitted from the 
processor during T1 and data transfer occurs on the 
bus during T3 and T 4. T2 is used primarily for chang­
ing the direction of the bus during read operations. In 
the event that a "NOT READY" indication is given 
by the addressed device, "wait" states (Tw) are in­
serted between T3 and T 4 .. Each inserted "wait" 
state is of trie same duration as a ClK Cycle. Periods 
can occur between 80C88Al driven bus cycles. 
These are referred to as "idle" states (TQ, or inac­
tive ClK cycles. The processor uses these cycles 
for internal housekeeping. 

i-----C4+Nwant·'c't'------i-----"+NwAl-r»aTC1'------t 

" ,_ I Ta '''''' I T.. '1 12 " " 
CLI< 

ADDMn'ATU8 

IDDR 

AD_DATA -----8 ....... _DA_T_AO_U'_,D_.DoI __ .J)---cx= 

"lADY 

DTII 

MEMORY ACCEII TIMI 

\\..-_---11 
240075-9 

Figure 8. Basic System Timing 

2-161 



inter 80C88AL 

During T1 of any bus cycle, the ALE (address latch 
enable) signal is emitted (by .. either the processor or 
the 82C88 buscontroUer,dependingon the MN/MX 
strap). At the trail.ing edge of this pulse, a valid ad­
dress and certain status information for the cycle 
may be. latched. 

Stat\ls bits SO, 51, and S2 are used by the bus con­
troller, in maximum mode, to .identify the type of bus 
transaction according to the following table: 

S2 S1 So CHARACTERISTICS 

o (LOW) 0 0 Interrupt Acknowledge 
0 0 1 Rea.d 1/0 
0 1 0 . Write 110 
0 1 1 Halt 
1 (HIGH) 0 0 Instruction Fetch 
1 0 1 Read Data from Memory 
1 1 0 Write Data to Memory 
1 1 1 Passive (no bus cycle) 

Status bits S3 through S6 are multiplexed with high 
order address bits and are therefore valid during T2 
through T 4. S3 and S4 indicate which segment reg­
ister was used for this bus cycle in forming the ad­
dress according to the following table: 

S4 S3 CHARACTERISTICS 

o (LOW) ·0 Alternate Data (extra segment) 
0 1 Stack 
1 (HIGH) 0 Code or None 
1 1 Data 

S5 is a reflection of the PSW interrupt enable bit. S6 
is equal to O. 

I/O ADDRESSING 

In the 80C88AL, 1/0 operations can address up to a 
maximum of 64k 110 registers. The 1/0 address ap­
pears in the same format as the memory address on 
bus lines A 15-AO. The address lines A 19-A 16 are 
zero in 110 operations. The variable 1/0 instructions, 
which use register DX as a pointer, have full address 

capability, while the direct 110 instructions directly 
address one or two of the 256 1/0 byte locations in 
page 0 of the 1/0 address space. 1(0 ports are ad­
dressed in the same manner as memory locations. 

DeSigners familiar with .the 8085 or. upgrading an 
8085 design should note. that the 8085 addresses 
1/0 with an 8-bit address on both halves of the 16-
bit address bus. The 80C88AL uses a full.16-bit ad­
dress on its lower 16 address lines. 

EXTERNAL INTERFACE 

PROCESSOR RESET AND INITIALIZATION 

Processor initialization or start up is accomplished 
with activation (HIGH) of the RESET pin. The 
80C88AL RESET is required to be HIGH for four or 
more clock cycles. The 80C88AL will terminate op­
erations on the high-going edge of RESET and will 
remain dormant as long as RESET is HIGH. The 
low-going transition of RESET triggers an internal 
reset sequence for approximately 7 clock cycles. Af­
ter this interval the 80C88AL operates normally, be­
ginning with. the instruction in absolute location 
FFFFOH. (See Figure 4.) The RESET input is inter­
nally synchronized to the processor clock. At initiali­
zation,the HIGH to LOW transition of RESET must 
occur no sooner than 50 J-Ls after power up, to allow 
complete initialization of the 80C88AL. 

NMI asserted prior to the 2nd clock after the end of 
RESET will not be honored. If NMI is asserted after 
that point and during the internal reset sequence, 
the processor may execute one instruction before 
responding to the interrupt. A hold request active 
immediately after RESET will be honored before the 
first instruction fetch. 

All 3-state outputs float to 3-state OFF(1) during RE­
SET. Status is aCtive in the idle state for the first 
clock after RESET becomes active and then floats 
to 3-state OFF(1). ALE and HLDA are driven low. 

NOTE: 
1. See the section on Bus Hold Circuitry. 

2-162 



intJ 80C88AL 

BUS HOLD CIRCUITRY 

To avoid high current conditions caused by floating 
inputs to cMos devices and to eliminate the need 
for pull-up/down resistors, "bus-hold" circuitry has 
been used on the 80C88AL pins 2-16,26-32, and 
34-39 (Figure 9a, 9b). These circuits will maintain 
the last valid logic state if no driving source is pres­
ent (Le. an unconnected pin or a driving sou~ce 
which goes to a high impedance state). To overdnve 
the "bus hold" circuits, ali external driver must be 
capable of supplying 350 p.A minimum sin~ or 
source current at valid input voltage levels. Since 
this "bus hold" Circuitry is active and not a "resis­
tive" type element, the associated power supply 

current is negligible and power dissipation is signifi­
cantly reduced when compared to the use of pas­
sive pull-up resistors. 

INTERRUPT OPERATIONS 

Interrupt operations fall into two classes: software or 
hardware initiated. The software initiated interrupts 
and software aspects of hardware interrupts are 
specified in the instruction set description In the 
iAPX 88 book or the iAPX 86,88 User's Manual. 
Hardware interrupts can be classified as nonmaska­
ble or maskable. 

··Pull·Up/Pull·Down" 

Input buffer exists only on 110 pins 

EXTERNAL 
PIN 

240075-24 

Figure 9a. Bus hold circuitry pin 2-16, 35-39 for P-DIP package. 

"Pull·Up" 

Input buffer exists only on liD pins 

EXTERNAL 
PIN 

240075-25 

Figure 9b. Bus hold circuitry pin 26-32, 34 for P-DIP package. 

2-163 

·i 
1 



8OC88AL 

Interrupt$result in ,a transfer ,of control to a new pro­
gramlocation. ,A 256, element table ,containing ad­
'dress pointers to the interrupt service program loca­
tions resides in absolute locations 0 through 3FFH 
(See Figure 4), which are ~~serv~,for thi,s purpose. 
Each element in the table IS 4 bytes in size and cor­
responds to an interrupt "type." ,An interrupting de­
vic,e $upplies an'S-blt type number, during the inter­
rupt acknowledge !!equence, which is used to vector 
through the apprQpriate element to the new interrupt 
seNice progr~in 'oca~ion. ' , 

NON-MASKABLE INTERRUPT (NMI) 

The processor provides a single non~maskable inter­
rupt '(NMI) pin which has higher priority than the 
maskable interrupt request (INTR) pin. A typical use 
would be to activate a power failure routine. The 
NMI is edge-triggered on a LOW tq HIGH transition. 
The activation of this pin causes a type 2 interrupt. 

NMI is required to have a duration in the HIGH state 
of greater than two clock cycles, but is not required 
to be synchronized to the clock. Any higher going 
transition of NMI is latched on-chip and will be serv·' 
iced at the end of the current instruction or betWeen 
whole moves (2 bytes in the case of word moves) of 
a block type instruction. Worst case response to 
NMI would be for multiply, divide, and variable shift 
instructions. There is no specification on the occur­
rence of the low-going edge; it may occur before, 
during, or after the servicing of NMI. Another high­
going edge triggers another response if it occurs af-­
ter the start of the NMI procedure. The si,gnal must 

be free of logical spikes in general ,and be freE!; of 
bounces on the low-going edge to avoid triggering 
extraneous responses. 

MASKABLE INTERRUPT (INTA) , 

The SOC8SALprovides a $ingle intehlJPtr~q~~st in­
put (INTR) which can be masked iI,ternally by soft­
ware with the resetting, of tM interrupt enable (IF) 
flag bit. The interrupt request', signal' is, leVa,I, trig~ 
gered. It is internally synchroniz~duririg eaCh clock 
cycle on the !'Iigh-going edge of 'elK. To ~e re­
sponded to, INTR must be present (HIGH) during 
the clock period preceding the end ,of the,corrent 
instruction or the end of a whole move f6ra block 
type instruction. During interrupt response se­
quence, furttler interrupts are disabled. The enable 
bit is reset as part of the response to any interrupt 
(INTR, NMI, software interrupt, or single step), al­
though the, FLAGS register which is automatically 
pushed onto the stack reflects the state of the proc­
essor prior to the interrupt. Until the old FLAGS reg­
ister is restored, the enable bit will be zero unless 
specifically set by an instruction. ' ' 

During the response sequence (See Figure 10), the 
processor executes tWo successive (back to back) 
interrupt acknowledge cycles. The SOCSSAL emits 
the LOCK signal (maximum mode only) from T2 of 
the first bus cycle until T2 of the second. A local bus 
"hold" request will not be honored until the end of 
the second bus cycle. In the second bus cycle, a 

I T, I T. T. T, I T, I T. T. T, 

ALIJ\ __ ~n\..--" ~_ 

\I--__ ----J! 

'~ \~/ .\' \ 
ADo-AJIr ~>F~LOA;;;;';'T ____________ ' __ --<~ ~,~ t-

240075-10 

Figure 10. Interrupt Acknowledge Sequence 



inter 80C88AL 

byte is fetched from the external interrupt system 
(e.g., S2C59A PIC) which identifies the source (type) 
of the interrupt. This byte is multiplied by four and 
used as a pointer into the interrupt vector lookup 
table. An INTR signal left HIGH will be continually 
responded to within the limitations of the enable bit 
and sample period. The interrupt return instruction 
includes a flags pop which returns the status of the 
original interrupt enable bit when it restores the 
flags. 

HALT 

When a software HALT instruction is executed, the 
processor indicates that it is entering the HALT state 
in one of two ways, depending upon which mode is 
strapped. In minimum mode, the' processor issues 
ALE, delayed by one clock cycle, to allow the sys­
tem to latch the halt status. Halt status is available 
on 10/M, DT /A", and SSO. In maximum mode, the 
E!:9cess~issues appropriate HALT status on S2, 
S1, and SO, and the S2CSS bus controller issues one 
ALE. The SOCSSAL will not leave the HALT state 
when a local bus hold is entered while in HALT. In 
this case, the processor reissues the HALT indicator 
at the end of the local bus hold. An interrupt request 
or RESET will force the SOCSSAL out of the HALT 
state. 

READ/MODIFY /WRITE (SEMAPHORE) 
OPERATIONS VIA LOCK 

The LOCK status information is provided by the 
processor when consecutive bus cycles are required 
during the execution of an instruction. This allows 
the processor to perform read/modify/write opera­
tions on memory (via the "exchange register with 
memory" instruction), without another system bus 
master receiving intervening memory cycles. This is 
useful in multiprocessor system configurations to ac­
complish "test and set lock" operations. The LOCK 
signal is activated (LOW) in the clock cycle following 
decoding of the LOCK prefix instruction. It is deacti­
vated at the end of the last bus cycle of the instruc­
tion following the LOCK prefix. While LOCK is active, 
a request on a RQ/GT pin will be recorded, and then 
honored at the end of the LOCK. 

EXTERNAL SYNCHRONIZATION VIA TEST 

As an alternative to interrupts, the SOCSSAL pro­
vides a single software-testable input pin (TEST). 
This input is utilized by executing a WAIT instruction. 
The single WAIT instruction is, repeatedly executed 
until the TEST input goes active (LOW). The execu­
tion of WAIT does not consume bus cycles once the 
queue is full. 

If a local bus, request occurs during WAIT execution, 
the SOCSSAL 3-states all output drivers. If interrupts 
are enabled, the SOCSSAL will recognize interrupts 
and process them. The WAIT instruction is then re­
fetched, and reexecuted. 

BASIC SYSTEM TIMING 

In minimum mode, the MN/MX pin is strapped to 
Vee and the processor emits bus control signals 
compatible with the SOS5 bus structure. In maximum 
mode, the MN/MX pin is strapped to GND and the 
processor emits coded status information which the 
S2CSS bus controller uses to generate MUL TIBUS 
compatible bus control signals. 

System Timing - Minimum System 

(See Figure S.) 

The read cycle begins in T1 with the assertion of the 
address latch enable (ALE) signal. The trailing (low 
going) edge of this signal is used to latch the ad­
dress information, Which is valid on the address/ 
data bus (ADO-AD7) at this time, into a latch. Ad­
dress lines AS through A 15 do not need to be 
latched because they remain valid throughout the 
bus cycle. From T1 to T4 the 10/M signal indicates a 
memory or I/O operation. At T2 the address is re­
moved from the address/data bus and the bus goes 
to a high impedance state. The read control signal is 
also asserted at T2. The read (RD) signal causes the 
addressed device to enable its data bus drivers to 
the local bus. Some time later, valid data will be 
available on the bus and the addressed device will 
drive the READY line HIGH. When the processor 
returns the read signal to a HIGH level, the ad­
dressed device will again 3-state its bus drivers. If a 
transceiver is required to buffer the SOCSSAL local 
bus, signals DT /R and DEN are provided by the 
SOCSSAL. 

A write cycle also begins with the assertion of ALE 
and the emission of the address. The 10/M signal is 
again asserted to indicate a memory or I/O write 
operation. In T2, immediately following the address 
emission, the processor emits the data to be written 
into the addressed location. This data remains valid 
until at least the middle of T4. During T2, T3, and 
T w, the processor asserts the write control signal. 
The write (WR) signal becomes active at the begin­
ning of T2, as opposed to the read, which is delayed 
somewhat into T2 to provide time for the bus to 
float. 

2-165 

i, 
,I 



80C88AL. 

The basic difference. between the jnterruptacknowl~ 
edge cycle and.a read cycle is-that the interrupt ac­
knowlme (INTA) signal is asserted in place of the 
read (RO) signal and the. address bus is floated. 
(See Figure 10.) In the second of two successive 
INTA cycles, a byte of information is read from the 
data bus, as supplied by the interrupt system logic 
(i.e. 82C59A priority interrupt controller). This byte 
identifies the source (type) of the interrupt. Itis multi­
plied by fOur and used asia pointer into the interrupt 
vector IOOk,Up table, asdesc;ribed earlier. ' 

BUS TIMING - MEDIUM COMPLEXITY 
SYSTEMS 

(See Figure 11.) 
For medium complexity systems, the MN/MX pin is 
connected to GND and the 82C88 bus controller is 
added to the system, as well as a latch for latching 
the system address, and a ,transceiver to allow for 
bus loading greater than the 80C88AL is capable of 
handling. Signals ALE,. DEN, and DT lR" aree generat." 
ed by the 82C88 instead of the processor in this 
configuration, although their timing remains relatively 
the same. The 80C88AL status outputs (S2, S 1, and 
SO) provide type of cycle information and become 
82C88 inputs. This bus cycle .information specifies 
read (code, data, or 110), write (data or 110), inter­
rupt'acknowledge, or software halt. The 82C88 thus 
issues control signals specifying memory read or 
write, 110 read or write, or interrupt acknowledge. 
The 82C88 provides two types of write strobes, nor­
mal and advanced, to be applied as required. The 
normal write strobes have data valid at the leading 
edge of write .. The' advanced write strobes have the 
same timing as read strobes, and hence, data is not 
valid at .the leading edge of write. The transceiver 
receives the usual T and OE inputs from the 
82C88's DT/R and DEN outputs. 

The pointer into the interrupt vector table, which is 
passed .during the second INTA cycle, can derive 
from an 82C59A located. on either the local bus or 
the system bus. If the master 82C59A priority inter­
rupt controller is positioned on the local bus,. a TTL 
gate is required to disable the transceiver When 
reading from the master 82C59A during the interrupt 
acknowledge sequence and software "poll". 

THE 8oc88~U. COMPARED TO THE 80C86AL 

The 80C88AL CPU. is . an 8-bit processor deSigned 
around the 80C86AL interlial structure. Most internal 
functions of the 80C88AL are identical to the equiva-

lent 80C86AL functions. The 80C88AL handles the 
external bus the same way the80C86AL does with 
the distinction of handling only ,8 bits at a time. Six­
teen-bit operands are fetched or written in twq con­
secutive • bus cycles. Both processors, will appear 
identical to the software engineer;:with the excep­
tion of execution time.· The internal register structure 
is .. identical: and all instructions have.the same end 
result. The differences .between the 80C88AL and 
80C86AL are outlined below. The engineer who is 
unfamiliar with the 80C86ALis referred. to the 
iAPX 86, 88 User's Manual, Chapters 2 and· 4, for 
function description and instruction set information. 
Internally, there are three differences between the I 

80C88AL and the 80C86AL. All changes are related 
to the 8-bit bus interface. 
• The queue length is 4 bytes in the 80C88AL, 

whereas the 80C86AL queue c;ontains 6 bytes, or 
three' words. The queue was shortened to pre­
vent overuse of the bus by the BIU when pre­
fetching instn.ictions . .This was required because 

. of the additionaltime. necessary to fetch instruc-
tions 8 bits at a time. . . 

• To further optimize the queue, the prefetching al­
gorithm was changed. The a0C88AL .BIU will 
fetch a new instruction to load into the queue 
each time there is a 1. byte hole (space available) 
in the queue. The 80C86AL waits until a 2-byte 
space is available. 

• The internal execution time of the instruction set 
is affected by the S-bit interface. AII1~-bitfetc;hes 
and writes from/to memory take an additional 
four clock cycles. The CPU is also limited by the 
sp~d of instruction fetches. This .latter problem 
only occurs when a series of simple operations 
occur. When the more sophisticated instructions 
of the 80C88AL. are being used, the queue has 
time to fill and the execution proceeds as fast as 
the execution unit will allow. . . . . . . 

The 80C88AL and 80C86AL' are completely 'soft­
warjilcompatible by virtureof their identical execu­
tion units. Software thaUs system dependent may 
not be completely. transferable, but software that is 
not system dependent will.operate equally as well 
on. an 80C88AL or an BOCB6AL. 

The hardware interface of the B0C88AL contains the 
major differences between the two CPUs. The pin 
assignments are nearly' identical, however. with the 
following functional changes: 
• A8-A15.....; These 'pins are· only address outputs 

on thjil 80C8BAL. These address lines are latched 
lnwnally and remain valid throughout a bus cycle 
in a manner similar to the 8085 upper addre$s 
Jines. 

2-166 



80C88AL 

• SHE has no meaning on the 80C88AL and has 
been eliminated. 

• SSO provides the SO status information in. the 
minimum mode. This output occurs on pin 34 in 
minimum mode only. DT lA, 101M, and SSO pro­
vide the complete bus status in minimum mode. 

Tl 

ClK -.r r 
OS1,OSO X 

80C88Al 

82, S1, SO 

A 19/56-A 16/S3 X A19-A16 

/ ..... 

[

ALE 

82C88 RDY 82C84A 

ROY BOC8B 

A7-AO 

X BOC88Al IA::-::: 

RD 

DT/R 
"-

82C88 MRDC "-

DEN 

• 101M has been inverted to be compatible with the 
MCS-85 bus structure. 

• ALE is delayed by one clock cycle in the mini­
mum mode when entering HALT, to allow the 
status to be latched with ALE. 

T2 T3 T4 

r ~ 

X X X 

IIIII ' .. ----
~----

-X S6-S3 ~ 

r-"".:.a_-

x 

X 

DATA IN 

-A15-AB ~ 

"- / 

/ 

/ 

/ ...... 

240075-11 

Figure 11. Medium Complexity System Timing 

2-167 



inter 80C88AL 

ABSOLUTE MAXIMUM RATINGS!!' 

Supply Voltage 
(With respect to ground) ......•.... -0.5 to S.OV 

Input Voltage Applied 
(w.r.t. ground) ............. - 2.0 to Vcc + 0.5V 

Output Voltage Applied 
(w.r.t. ground) ............. -0.5 to VCC + 0.5V 

Power Dissipation .......................... 1.0W 

Storage Temperature .......... - 65·C to + 150·C 

Ambient Temperature .Under Bias .... O·C to + 70·C 

Case Temperature (Plastic) .........•.. O·C to SO·C 

Case Temperature (PLCC) ............ O·C to 85·C 

• Notice: Stresses above those listed under '~bso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a.stress rating only and 
functional operation of the device at these or any 
other conditions above those indicated in the opera­
tional sections of this specification is not implied Ex­
posure to absolute maximum rating conditions for 
extended periods may affect device reliability. 

D.C. CHARACTERISTICS T A = O·C to 70·C, T CASE (Plastic) = O·C to SO·C, T CASE (PLCC) = O·C to 
S5·C, VCC = 5V ±10% forSOCSSAL, VCC = 5V ±5% forSOCSSAL-2 

Symbol Parameter Min Max Units Test Conditions 

V,l Input Low Voltage +O.B V (Note 4) 

Input High Voltage 
V,H (All inputs except 2.0 V (NoteS) 

clock and MN/MX) 

VeH Clock and MN/MX Input 
Vee- O.B V 

High Voltage 

VOL Output Low Voltage 0.4 V IOl = 2.SmA 

VOH Output High Voltage 
3.0 

V 
IOH = -2.SmA 

Vee- OA IOH = -100 /LA 

lee Power Supply Current 10 mA/MHz V,l = GND, V,H = Vee 

Y,N = Vee or GND 
lees Standby Supply Current 750 /LA Outputs Unloaded 

CLK = GND or Vee 

III Input Leakage Current ±1.0 /LA OV,;;V,N,;;Vee 

ISHl 
Input Leakage Current 

50 300 /LA 
Y,N = O.BV 

(Bus Hold Low) 

ISHH 
Input Leakage Current 

-50 -300 /LA 
Y,N = 3.0V 

(Bus Hold High) 

ISHlO Bus Hold Low Overdrive 400 /LA (Note 2) 

ISHHO Bus Hold High Overdrive -400 /LA (Note 3) 

ILO Output Leakage Current ±10 /LA VOUT = GND or Vee 

Capacitance of Input Buffer 
C,N' (All inputs except 5 pF (Note 1) 

ADo-AD? RQ/GT) .. 

C'O 
Capacitance of I/O Buffer 

20 pF (Note 1) 
(ADo-AD? RQ/GT) 

COUT Output Capacitance 15 pF (Note 1) 

NOTES: 
1. Characterization conditions are a) Frequency = 1 MHz, b) Unmeasured pins at GND 

c) Y,N at + 5.0V or GND. 
2. An external driver must source at least ISHlO to switch this node from LOW to HIGH. 
3. An external driver must sink at least ISHHO to switch this node from HIGH to LOW. 
4. V,l for all input pins (except MN/MX pin) tested with MN/MX pin = GND. 
5. V,H tested with MN/MX pin = Vee. 

2-16S 



intJ 80C88AL 

A.C. CHARACTERISTICS T A = O·C to 70·C, T CASE (Plastic) = O·C to 80·C, T CASE (PlCC) = O·C to 
85·C, VCC = 5V ±10% for80C88Al, VCC = 5V ±5% for80C88Al-2 

MINIMUM COMPLEXITY SYSTEM TIMING REQUIREMENTS 

SOCSSAL SOC8SAL-2 

Symbol Parameter Min Max Min Max Units 
Test 

Conditions 

TClCl ClK Cycle Period 200 D.C. 125 D.C. ns 

TClCH ClK low Time 118 68 ns 

TCHCl ClK High Time 69 44 ns 

TCH1CH2 ClK Rise Time 10 10 ns 
From 1.0V 
to 3.5V 

TCl2Cl1 ClK Fall Time 10 10 ns 
From 3.5V 
to 1.0V 

TDVCl Data in Setup Time 30 20 ns 

TClDX Data in Hold Time 10 10 ns 

RDY Setup Time 
TR1VCl into 82C84A . 35 35 ns 

(Notes 1, 2) 

RDY Hold Time 
TClR1X into 82C84A 0 0 ns 

(Notes 1, 2) 

TRYHCH 
READY Setup 

118 68 ns 
Time into 80C88Al 

TCHRYX 
READY Hold Time 
into 80C88Al 

30 20 ns 

TRYlCl 
READY Inactive to 
ClK (Note 3) 

-8 -8 ns 

THVCH HOLD Setup Time 35 20 ns 

INTR, NMI, TEST 
TINVCH Setup Time 30 15 ns 

(Note 2) 
-

TILIH 
Input Rise Time 

15 15 
FromO.8V 

(Except ClK) (Note 4) 
ns 

to 2.0V 

TIHll 
Input Fall Time 

15 15 
From 2.0V 

(Except ClK) (Note 4) 
ns 

to 0.8V 

2-169 

.. 



80C88AL 

A.C. CHARACT.ERISTICS (ContinuE!d) 

TIMING RESPONSES 

SOCSSAL SOCSSAL-2 

Symbol Parameter Min Max Min Max Units Test 
Conditions 

TCLAV Mdress Valid Delay 10 70 10 60 ns 

TCLAX Address Hold Time 10 10 ns 

TCLAZ Address Float Delay rCLAX SO TCLAX 50 ns 

TLHLL ALE Width TCLCH-20 TCLCH-10 ns 

TCLLH ALE Active Delay SO 50 ns 

TCHLL ALE Inactive Delay S5 55 ns 

TLLAX Address Hold Time to TCHCL-25 TCHCL-25 ns 
ALE Inactive 

TCLDV Data Valid Delay 10 110 10 60 ns 

TCHDX Data Hold Time 10 10 ns 

TWHDX Data Hold Time TCLCH-30 TCLCH-30 ns 
After WR 

TCVCTV Control Active Delay 1 10 110 10 70 ns 

TCHCTV Control Active Delay 2 10 110 10 60 ns 

TCVCTX Control Inactive Delay 10 110 10 70 ns 

TAZRL Address Float to READ 0 0 ns 
Active 

TCLRL RD Active Delay 10 165 10 100 ns 

TCLRH RD Inactive Delay 10 150 10 SO ns 

TRHAV RD Inactive to Next TCLCL-45 TCLCL-40 ns Address Active 

TCLHAV HLDA Valid Delay 10 160 10 100 ns 

TRLRH RDWidth 2TCLCL-75 2TCLCL-50 ns 

TWLWH WRWidth 2TCLCL-60 2TCLCL-40 ns 

TAVAL Address Valid to ALE Low TCLCH-60 TCLCH-40 ns 

TOLOH Output Rise Time (Note 4) 15 15 ns From O.SV to 2.0V 

TOHOL Output Fall Time (Note 4) 15 15 ns From 2.0V to O.SV 

NOTES: 
1. Signal at 82C84A shown for reference only. See 82C84A data sheet for the most recent specifications. 
2. Setup requirement for asynchronous signal only to guarantee recognition at next CLK. 
3. Applies only to T2 state (8 ns into T3 state). 
4. These parameters are characterized and not 100% tested. 

2-170 



inter 80C88AL 

A.C. TESTING INPUT, OUTPUT WAVEFORM A.C. TESTING LOAD CIRCUIT 

Input/Output :::=x __________ 1.5)C 100 pF 

240075-12 
A.C. Testing inputs are driven at V,H + O.4V for a logic "I" and 
V,l - O.4V for a logic "0". The clock is driven at VCH + 0.4Vand 
Vel - O.4V. Timing measurements are made at 1.5V. 

WAVEFORMS 

BUS TIMING - MINIMUM MODE SYSTEM 

CLK CneMA 0UIputl 

101M. iSii 

ALE 

ROY CIICMAlnpul) 

SEE NOTE 1 

READY (BOCIIAL Input) 

.lOr-ADo 

T, 
V _TCLCL_ 

~=~ 
I 

TCLAV~ - TeLAX 

A,.-4" 

TCLLH- Y TLH L-=: 

TCHLL- I-
-TAVAL-

I 
-

.oJ-ADo 

240075-13 

Cl Includes Jig Capacitance 

T. T, Tw T. 

TCH.CH.+! r1 I- TCLICL. , 

r~ -,.-n-'----'" L-.I 
TCHCL _TCLCH_ 

A15 - '" (FIOIt during INTA.) 

-T LDV 
TCHDX~ ~ - ...... 

-TLL"" r--
,~---.:1. r- TR1VCl 

vr ~~~~0 ~ \(\'l~:X ~'\'\ vr ~I""' -:: t-TCLR'X 

R::~9 -

I - -TCHRYX 

TRYHCH -
i-TCLAZ TDVCL-r-TCLDX-

DATA IN 

TAZRL- ;:{ TCLRH- - FLOA:J-
-TRHAV 

READ CYCLE 

(NOTE', 
(\1iR. n;w..VOHI 

OT/A 

'::~TCHCTV TeLRL 

/ 
TCVCTV- f 

2-171 

...... 
TRLRH TCHCTV 

I 
TCVCTX- I 

240075-14 



80C88AL 

WAVEFORMS (Continued) 

BUS TIMING - MINIMUM MODE SYSTEM (Continued) 

ClK (82C84A OUIput) 

WRITE CYCLE 
NOTE 1 

INTA CYCLE 
NOTES 1,3 

(Ii!), WI! = VOH) 

SOFTWARE HALT -

om,iil5,WR,INTA = VOH 

DTIli INDETERMINATE 

NOTES: 

AO,-ADo 

OTIR 

AD7-ADo INVALID ADDRESS 

TClAV 

1, All output timing measurements are made at 1,5V unless otherwise noted, 

SOFTWARE HALT 

2. ROY is sampled near the end of T 2. T 3. T w to determine if T w machines states are to be inserted. 

240075-15 

3. Two INTA Cycles run back-to-back. The 80C88AL local AOOR/Oata bus is floating during both INTA Cycles. Control 
signals are shown for the second INTA cycle. 
4. Signals at 82C84A are shown for reference only. 

2-172 



intJ 80C88AL 

A.C. CHARACTERISTICS 

MAX MODE SYSTEM (USING 82C88 BUS CONTROLLER) 
TIMING REQUIREMENTS 

Symbol Parameter 
80C88AL 

Min Max 

TClCl ClK Cycle Period 200 D.C. 

TClCH ClKlowTime 118 

TCHCl ClK High Time 69 

TCH1CH2 ClK Rise Time 10 

TCl2Cl1 ClK Fall Time 10 

TDVCl Data In Setup Time 30 

TClDX Data In Hold Time 10 

TR1VCl 
ROY Setup Time into 82C84 

35 
(See Notes 1, 2) 

TClR1X 
ROY Hold Time into 82C84 

0 
(See Notes 1, 2) 

TRYHCH 
READY Setup Time into 

118 
80C88Al 

TCHRYX READY Hold Time into 80C88Al 30 

TRYlCl 
READY Inactive to ClK (See -8 
Note 4) 

Setup Time for Recognition 
TINVCH (lNTR, NMI, TEST) 30 

(See Note 2) 

TGVCH RQ/GT Setup Time 30 

TCHGX RQ Hold Time into 80C88Al 40 

TILIH 
Input Rise Time 

15 
(Except ClK) (Note 5) 

TIHll Input Fall Time (Except ClK) 15 
(Note 5) 

2-173 

80C88AL-2 

Min Max 

125 D.C. 

68 

44 

10 

10 

20 

10 

35 

0 

68 

20 

-8 

15 

15 

30 

15 

15 

Units Test Conditions 

ns 

ns 

ns 

ns From 1.0V to 3.5V 

ns From 3.5V to 1.0V 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns From O.8V to 2.0V 

ns From 2.0V to 0.8V 

i 
I 
I"~ 
II 

It 
Ii\; 

i' 

I' 



intJ 80C88AL 

A.C. CHARACTERISTICS (Continued) 

TIMING RESPONSES 

SOCSSAL SOCSSAL-2 

SymbQI Parl;lmeter Min Max Min Max Units Test CQnditiQns 

TClMl Command Active Delay (Note 1) 5 45 5 35 ns 

TCLMH Command Inactive Delay (Note 1) 5 45 5 35 ns 

TRYHSH READY Active to Status Passive 110 65 ns (Note 3) 

TCHSV Status Active Delay 10 100 10 60 ns 

TClSH Status Inactive Delay 10 130 10 70 ns 

TClAV. Address Valid Delay 10 70 10 60 ns 

TCLAX Address Hold Time 10 10 ns 

TCLAZ Address Float Delay TCLAX 80 TClAX 50 ns 

TSVlH Status Valid to ALE High (Note 1) 35 20 ns 

TSVMCH Status Valid to MCE High (Note 1) 35 30 ns 

TCllH ClK low to ALE Valid (Note 1) 35 20 ns 

TClMCH ClK low to MCE High (Note 1) 35 25 ns 

TCHll ALE Inactive Delay (Note 1) 4 35 4 25 ns 

TClDV Data Valid Delay 10 110 10 60 ns 

TCHDX Data Hold Time 10 10 ns 

TCVNV Control Active Delay (Note 1) 5 45 5 45 ns 

TCVNX Control Inactive Delay (Note 1) 5 45 10 45 ns 

TAZRl Address Float to Read Active 0 0 ns 

TClRl RD Active Delay 10 165 10 100 ns 

TClRH RD Inactive Delay 10 150 10 80 ns 

TRHAV RD Inactive to Next Address TClCl-45 TClCl-40 ns Active , 

TCHDTL Direction Control Active Delay 
50 50 ns (Note 1) 

TCHDTH Direction Control Inactive Delay 
35 30 ns (Note 1) 

TClGl GT Active Delay 0 85 0 50 ns 

TClGH GT Inactive Delay 0 85 0 50 ns 

TRlRH RDWidth 2TClCl-75 2TClCl-50 ns 

TOlOH Output Rise Time (Note 5) 15 15 ns 
FromO.8Vto 
2.0V 

TOHOl Output Fall Time (Note 5) 15 15 ns 
From 2.0Vto 
0.8V 

NOTES: 
1. Signal at 82C84A or 82C88 shown for reference only. See 82C84A and 82C88 data sheets for the most recent 
specifications. 
2. Setup requirement for asynchronous signal only to guarantee recognition at next ClK. 
3. Applies only to T3 and wait states (8 ns into T3 state). 
4. Applies only to T2 state (8 ns into T3 state). 
5. These parameters are characterized and not 100% tested. 

2-174 



inter 80C88AL 

A.C. TESTING INPUT, OUTPUT WAVEFORM A.C. TESTING LOAD CIRCUIT 

Input/Output 

V,H + uv ------v I .• V­
Vll-UV-.I\--------~~ 

100pF 

240075-13 
240075-12 

A.C. Testing inputs are driven at V,H + OAV for a logic "I" and 
V,l - OAV for a logic "0". The clock is driven at VCH + O.4Vand 
VCl - OAV. Timing measurements are made at 1.5V. Cl Includes Jig Capacitance 

WAVEFORMS 

BUS TIMING-MAXIMUM MODE 

ClK 

QSo.QS, 

Si.It.'SO (EXCEPT HALT) 

IALE (IOCOI OUTPUT) 

see NOTE 5 

RDY (UCM INPUT) 

READY (accOlAL INPUT) 

READ CYCLE, 

I2C8I OUTPUTS 

SEE NOTES 5,8 

DTift 

DEN 

VCH~ 

.-' VCl 
TCLAV 

I--

-
TSYlH 
TCLLH· 

TCLAV-

" 
T, T, T. 

!---TClCl- TCH1CH2-1 1---1 l- TCl2CL1 Tw 

~~ r--\ r----i r" 
I' ,1=1 ~ '------' 
~ TeKel !--TClCH_ 

l. 
TCHSV - • TCLSH -----

Wffi, W(SEE NOTE 7) \ 

'------
Au-As 

r--Tl~tXx~ =fClDV 

TCHDX- I--
AnJ"A18 So·s, 

~- J- TCHLl 

r--
J \ I 

----

~ 
-TRivel 

~ -t-.\\\\\~ ~ ~ 
JRYLel -

I -TCHRYX 

TRVHSH -':'1. -
~ TCLAlCF _fT"VHCH -

.1- TClAl I- ~DVCl- I-TClDX- , 
l AD7-ADo 

~~ 
DATA IN 

FL::J~ 
TAZRl-- TeLRH TRHAV 

TCHDTl- -'--- TCtAL ~\ i;..TCHDTH 
TRlRH 

! 
TCLMl- - TeLMH -... 

F1 
TCVNV- h--

I( 

TCYNX- -
240075-16 

2-175 

i 



80C88AL 

WAVEFORMS (Continued) 

BUS TIMING - MAXIMUM MODE SYSTEM (USING 82C88) 

TCHSV 
T, T3 T T2 

w 
VC 

ClK 
Vel ~ ~ L-J"~.'"\~ --J 

S2' S,. So (EXCEPT HALT) .ifL{fCSEE NOTE 7) ---

--1TClS~ 1 -- ": ~;D-; WRITE CYCLE T CLAV-

82C88 
OUTPUTS 

SEE 
NOTES 5.6 

INTA CYCLE 

AD7-ADo 

DEN 

AMWC 
OR AIOWC 

MWTC 
OR IOWC 

FLOAT 

I-> ::: TC\£V 

TClAXX DATA 

TCVNV ~ r- TCVNX - . 
~ I--TClML TCLMH-- r--. 

- {TClMl- I-- TClMH 

j 

RESERVED FOR 
CASCADE ADDR 

'\.. J FLOAT FLOAT 
ClAZ~ <., \ I:..TDVCL- jTClDX , T 

POINTER 
FLOA~J FLOAT 

TCVNX _. / .. 

T SVMCH r-
MCEt ~-

PDEN TC 
DT/R 

lMCH~ 'l J -{ T~HDTL/ \- t:. TCHDT H 

82C88 OUTPUTS INTA 
SEE NOTES 5.6 

DEN 

SOFTWARE 

TCLML_ ~ 

- \ r::. TCVNV 
. , .... 

TCVNX-

---,---- ---- --- ---- --- -

.J 
\ 

..f1CLMH 

I-

HALT - (DEN = VOL; RD. MRDC. IORC. MWTC.AMWC. IOWC. AIOWC.INTA.DT/R = VOH ' 

AD7-ADo• A,s-A. 1· )(INVALID ADDRESS 

TCLAv::j '1= 
~ /r----.....".--r, - ---
.. ,----

NOTES: 
1. All output timing measurements are made at 1.5V unless otherwise noted. 
2. RDY is sampled near the end of T 2, T 3, T w to determine if T wmachines states are to be inserted. 
3. Cascade address is valid between first and.second INTA cycles. 

240075-17 

4. Two INTA cycles run back-to-back. The 80C88AL local ADDR/Data bus is floating during both INTA cycles. Control 
for pointer address is shown for second INTA cycle. . 
5. Signals at 82C84A or 82C88 are shown for reference only. 
6. The issuance of the 82C88command and contro! signals (MRDC, MWTC, AMWC, IORC, lOWe, AIOWC, INTA and 
DEN) lags the active high 82C88 CEN. 
7. StatlJs inactive in state just prior to T4. 

2-176 



inter 
WAVEFORMS (Continued) 

ASYNCHRONOUS SIGNAL RECOGNITION 

80C88AL 

BUS LOCK SIGNAL TIMING 
(MAXIMUM MODE ONLY) 

ClK\.' r\ 
I ~L~~~ NMI 

INTR I ~.< ~ : 
240075-18 

NOTE: Setup requirements for asynchronous" signals 
only to guarantee recognition at next elK. 

:i(~--¥ 

REQUEST/GRANT SEQUENCE TIMING (MAXIMUM MODE ONLY) 

.. a·ClK CYCLE 

ClK 

A,./S,.A,./S. PREVIOUS 
A,s-As .. , -----------

AD~AD 8OC88Al 
S;.S.. ..., ---------­

RJ). 

COPROCESSOR 

( ... note) 

NOTE: The coprocessor may not drive the busses outside the region shown without risking contention. 

HOLD/HOLD ACKNOWLEDGE TIMING (MINIMUM MODE ONLY) 

2-177 

240075-19 

aOC88AL 

240075-20 

240075-21 



80C88AL 

80C86AL/80C88AL INSTRUCTION SET SUMMARY 
Mnemonic and 

Description 

DATA TRANSFER 

MOV = Move: 

Register/Memory to/from Register 

Immediate to Register/Memory 

Immediate to Register 

Memory to Accumulator 

Accumulator to Memory 

Register/Memory to Segment Register" 

Segment Register to Register/Memory 

PUSH = Push: 

Register/Memory 

Register 

Segment Register 

POP = Pop: 

Register/Memory 

Register 

Segment Register 

XCHG = Exchange: 

Register/Memory with Register 

Register with Accumulator 

IN = Input from: 

Fixed Port 

Variable Port 

OUT = Outpullo: 

Fixed Port 

Variable Port 

XLAT = Translate Byte to AL 

LEA = load EA to Register 

LOS = load Pointer to DS 

LES = Load Pointer to ES 

LAHF = Load AH with Flags 

SAHF = Store AH inlo Flags 

PUSHF = Push Flags 

POPF = Pop Flags 

I Instruction Code 

76543210 76543210 76543210 

100010dw mod reg'r/m 

II000llw modOOOr/m data 

10tlwreg data data ifw I 

10lOOQOw add-low addr'high 

101·OOOlw addr-Iow addr-high 

10001110 mod 0 reg rIm 

10001100 modO reg ,1m 

1 I I 1 1 I I I mod II Orlm 

'0 10 10 reg 

oooregllU 

[ 10001111 mod 0 0 0 rIm 

I 0.1011 reg 

C OOOreglll 

100001lw mod reg rIm 

10010te9 

1110010w I port 

1110110w :::J 

1110011 w port 

C,I-110111W 

I 11010111 

I 1000 1101 mod reg rIm 

I 11000 1 01 mod reg rIm 

I 11000100 mod reg rIm 

[ 10011111 

I 10011110 

I 100 11100 

I 10011101:=1 

2-178 

76543210 

data ifw I 



inter 80C88AL II 
J ';' 
I~ 

80C86AL/80C88AL INSTRUCTION SET SUMMARY (Continued) 
l
ri 

Mnemonic and I I 
Instruction Code " Description 

~ 
ARITHMETIC 76543210 76543210 76543210 76543210 
ADD = Add: 

R'ilg.lMemory with Register to Either OOOOOOdw mod reg rIm 

Immediate to RegisterlMemory 100000sw modO 0 0 rIm data data if sow = 01 I, 
Immediate to Accumulator 0000010w data dataifw = 1 

ADC = Add with Carry: 

Reg,lMemory with Register to Either 000100dw mod reg rIm 

Immediate to RegisterlMemory 100000sw mod 0 10 rIm data data if sow = 01 

Immediate to Accumulator 0001010w data dataifw = 1 

INC = Increment: 

RegisterlMemory 1111111 w modOOOr/m 

Register 01000reg 

AAA = ASCII Adjust for Add 00110111 

DAA = Decimal Adjust for Add 00100111 

SUB = Subtract: 

Reg.lMemory,and Register to Either 001010dw mod reg rIm 1 
Immediate from RegisterlMemory 1000,00sw mod 101 rIm I data data if sow = 01 

Immediate from Accumulator 0010110w data I dataifw = 1 

SBB = Subtract with Borrow 

Reg.lMemoryand Register to Either 000110dw mod reg rIm 

Immediate from RegisterlMemory lo0000sw mod 0 11 rIm data data if sow = 01 

Immediate from Accumulator 0001110w data dataifw = 1 

DEC = Decrement: 

Register I Memory 1111111 w mod001 rim 

Register 01001 reg 

NEG = Change Sign 1111011 w mod 011 rIm 

CMP = Compare: 

RegisterlMemory and Register 001110dw mod reg rIm 

Immediate with RegisterlMemory 100000sw mod 111 rIm data data if sow = 01 

Immediate with Accumulator 0011110w data dataifw = 1 

AAS = ASCII Adjust for Subtract 001 1 1 1 1 1 

DAS = Decimal Adjust for Subtract 00101111 

MUL = Multiply (Unsigned) 1111011 w mod 100 rIm 

IMUL = Integer Multiply (Signed) 1111011 w mod 101 rIm 

AAM = ASCII Adjust for Multiply 11010100 00001010 

DIV = Divide (Unsigned) 1111011 w mod 110 rIm 

IDIV = Integer Divide (Signed) 111101 1 w mod 11,1 rIm 

AAD = ASCII Adjustlor Divide 11010101 00'001010 

CBW = 90nvert Byte to Word 10011000 

CWD = Convert Word to Double Word 10011001 

2-179 



intJ 80C88AL 

80C86AL/80C88AL INSTRUCTION SET SUMMARY (Continued) 
Mnemonic and I Instruction Code Description 

LOGIC 76543210 76543210 76543210 76543210 

NOT = Invert 1111011 w mod 0 10 rIm 

SHL/SAL = Shift Logical! Arithmetic Left 110100vw modl00r/m 

SHR = Shift Logical Right 110100vw mod 10,1 rIm 

SAR = Shift Artthmetlc Right 110100vw mod 111 rIm 

ROL = Rotate Left 110100vw mod 000 rIm 

ROR '" Rotate Right 110100vw modOOl rIm 

RCL = Rotate Through Carry Flag Left 110100vw modO 1 Or/m 

RCR = Rotate Through Carry Right 110100vw modO 11 rIm 

AND = And: 

Reg.lMemory and Register to Either 001000dw mod reg rIm "I 
Immediate to RegisterlMemory 1000000w modl00r/m I data dataifw = 1 

Immediate to Accumulator 0010010w data I dataifw = 1 

TEST = And Function to Flags, No Result: 

RegisterlMemory and Register 1000010w mod reg rIm 

Immediate Data and Register/Memory 1111011w mod 00 0 rIm data data,ifw = 1 

Immediate Data and Accumulator 1010100w data dataifw = 1 

OR = Or: 

Reg.lMemory and Register to Either 0OOO10dw mod r"gr/m 

Immediate to RegisterlMemory 1000000w modOOl rIm data dataifw = 1 

Immediate to Accumulator 0000110w data data ifw = 1 

XOR = Exclusive or: 

RegJMemory and Register to Either 001100dw mod reg ,1m 

Immediate to RegisterlMemory 1000000w mod 11 Or/m data dataifw = 1 

Immediate to Accumulator 0011010w data dataifw = 1 

STRING MANIPULATION 

REP = Repeat 1111001 z 

MOVS = Move BytelWord 1010010w 

CMPS = Compare BytelWord 1010011 w 

SCAS = Scan BytelWord 1010111 w 

LODS = Load Byte/Wd to ALI AX 1010110w 

8TOS = Star Byte/Wd from ALI A 1010101 w 

CONTROL TRANSFER 

CALL = Call: 

Direct Within Segment 11101000 disp-Iow disp-high 

Indirect Within Segment 11111111 modOl0r/m 

Direct Intersegment 10011010 offset-low offset-high I 
seg-Iow seg-high I 

Indirect Intersegment 11111111 mo~ 0 11 rIm 

2-180 



intJ 80C88AL 

80C86AL/80C88AL INSTRUCTION SET SUMMARY (Continued) 
Mnemonic and 

Description 

JMP = Unconditional Jump: 

Direct Within Segment 

Direct Within Segment-Short 

Indirect Within Segment 

Direct Intersegment 

Indirect Intersegment 

RET = Return from CALL: 

Within Segment 

Within Seg Adding Immed to SP 

Intersegment 

Intersegmenl Adding Immediate to SP 

JE/JZ = Jump on Equal!Zero 

JL/JNGE = Jump on Less/Not Greater 
or Equal 

JLEI JNG = Jump on Less or Equal! 
Not Greater 

JB/JNAE = Jump on Below/Not Above 
or Equal 

JBE/JNA = Jump on Below Or Equal! 
Not Above 

JP/JPE = Jump on Parity/Parity Even 

JO = Jump on Overflow 

JS = Jump on Sign 

JNE/JNZ = Jump on Not Equal/Not Zero 

JNL/JGE = Jump on Not Less/Greater 
or Equal 

JNLE/JG = Jump on Not Less or Equal! 
Greater 

JNB/JAE = Jump on Not Belowl Above 
or Equal 

JNBE/JA = Jump on Not Below or 
Equal! Above 

JNP/JPO = Jump on Not ParI Par Odd 

JNO = Jump on Not Overflow 

JNS = Jump on Not Sign 

LOOP = Loop ex Times 

LOOPZ/LOOPE = Loop While Zero/Equal 

LOOPNZ/LOOPNE = Loop While Not 
Zero/Equal 

JCXZ = Jump on ex Zero 

INT = Interrupt 

Type Specified 

Type 3 

INTO = Interrupt on Overflow 

IRET = Interrupt Return 

I Instruction Code 

76543210 76543210 76543210 

11101001 disp-Iow disp-high 

111 01 01 1 disp 

1 1 1 1 1 1 1 1 mod 1 OOr/m 

11101010 offset-low offset-high 

seg-Iow seg-high 

1 1 1 1 1 1 1 1 mod 10 trIm 

11000011 

11000010 data-low data-high 

11001011 

11001010 data-low I data-high 

01110100 disp I 
01111100 disp I 
01111110 disp 

01110010 disp 

01110110 disp 

01111010 disp 

01110000 disp 

01111000 disp 

01110101 disp 

011 t 1101 disp 

011 1 1111 disp 

01110011 disp 

01110111 disp 

01111011 disp 

01110001 disp 

01111001 disp 

11100010 disp 

11100001 disp 

11100000 disp 

111000 11 disp 

11001101 type 

11001100 

11001110 

11001111 

2-181 

i 
'I 



inter 80C88Al 

80C86AL/80C88AL INSTRUCTION SET SUMMARY (Continued) 
Mnemon!c and 

Description 

PROCESSOR CONTROL 

CLC = Clear Carry 

CMC = Complement Carry 

STC = Set Carry 

CLD = Clear Direction 

STD = Set Direction 

CLI = Clear Interrupt 

STI = Set Interrupt 

HLT = Halt 

WAIT = Wait 

ESC = Escape (to External Device) 

LOCK = Bus Leck Prefix 

NOTES: 
Al = 8-bit accumulator 
AX = 16-bit accumulator 
CX = Count register 
OS = Oata segment 
ES = Eixtra segment 
Above/below refers to unsigned value. 
Greater = more positive; 

I 
765432tO 

11111000 

11110101 

11111001 

11111100 

11111101 

11111010 

11111011 

11110100 

10011011 

r==t2 0 1 l·X x x 

11110000 

less = less positive (more negative) Signed values 
if d = 1 then "to" reg; if d = 0 then "from" reg 
if w = 1 then word instruction; if w = 0 then byte instruc­

tion 
if mod = 11 then rIm is treated as a REG field 
if mod = 00 then OISP = 0*, disp-Iow and disp-high are 

absent 
if mod = 01 then OISP = disp-Iow sign-extended to 

16 bits, disp-high is absent 
if mod = 10 then OISP = disp-high: disp-Iow 
if rIm = 000 then EA = (BX) + (51) + OISP 
if rim = 001 then EA = (BX) + (01) + DISP 
if rIm = 010 then EA = (BP) + (SI) +' OISP 
if rIm = 011 then EA = (BP) + (01) + OISP 
if rIm = 100 then EA.= (51) + OISP 
if rIm = 101 then EA = (01) + OISP 
if rim = 110 then EA = (BP) + OISP* 
if rim = 111 then EA = (BX) + DISP 
OISP follows 2nd byte of instruction (before data if re­
quired) 
'except if mod = 00 and rIm = 110 then EA = disp­
high: disp-Iow. 

"MOV CS, REG/MEMORY not allowed. 

DATA SHEET REVISiON REViEW 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Instruction Code 

76543210 

modxxxr/m 

if s:w = 01 then 16 bits of immediate data form the oper­
and. 

if s:w = 11 then an immediate data byte is sign extended 
to form the IS-bit operand. 

if v = 0 then "count" = 1; if v = 1 then ':count" in (Cl) 
x = don't care 
z is used for string primitives for comparison with ZF FLAG. 
SEGMENT OVERRIDE PREFIX 

001reg110 

REG is assigned according to the following table: 

16·Bit (w = 1) S-Bit(w = 0) Segment 

000 AX 000 AL 00 ES 
001 CX 001 CL 01 CS 
010 DX 010 DL 10 SS 
011 BX 011 BL 11 DS 
100 SP 100 AH 
101 BP 101 CH 
110 SI 110 DH 
111 DI 111 BH 

Instructions which reference the flag register file as a IS-bit 
object use the symbol FLAGS to represent the file: 
FLAGS = 
X:X:X:X:(OF):(OF):(IF):(TF):(SF):(ZF):X:(AF):X:(PF):X:(CF) 

Mnemonics @ Intel, 1978 

The following list represents key differences between this and the -001 data sheet. Please review this summa­
ry carefully. 

1. In the Pin Description Table (Table 1), the description of the HLDA signal being issued has been corrected. 
HLDA will be issued in the middle of either T4 or Ti state. 

2-182 



8087 
NUMERIC DATA COPROCESSOR 

8087/8087-2/8087-1 

• High Performance Numeric Data • Available in 5 MHz (8087), 8 MHz (8087-
Coprocessor 2) and 10 MHz (8087-1): 8 MHz 80186/ 

• Adds Arithmetic, Trigonometric, 80188 System Operation Supported 

Exponential, and Logarithmic with the 8087-1 

Instructions to the Standard 8086/8088 • Adds 8 x 80-Bit Individually 
and 80186/80188 Instruction Set for All Addressable Register Stack to the 
Data Types 8086/8088 and 80186/80188 

• CPU/8087 Supports 7 Data Types: 16-, Architecture 

32-, 64-Bit Integers, 32-, 64-, 80-Bit • 7 Built-In Exception Handling Functions 
Floating POint, and 18-Digit BCD • MUL TIBUS® System Compatible 
Operands Interface 

• Compatible with IEEE Floating Point 
Standard 754 

The 8087 Numeric Data Coprocessor provides the instructions and data types needed for high performance 
numeric applications, providing up to 100 times the performance of a CPU alone. The 8087 is implemented in 
N-channel, depletion load, silicon gate technology (HMOS III), housed in a 40-pin package. Sixty-eight numeric 
processing instructions are added to the 8086/8088, 80186/80188 instruction sets and eight 80-bit registers 
are added to the register set. The 8087 is compatible with the IEEE Floating Point Standard 754. 

STATUS 

ADDRESS 

CONTROL WORD 

OPERANDS 
QUEUE 

MICROCODE 
CONTROL 

UNIT 

w 
o 
R 
o 

REGISTER STACK 

aoens 

I 
___ L ---------

Figure 1.8087 Block Diagram 

2-183 

I 
I 

'" I '61 
'5) I ''I 
13' I 
'" I "' '01 

----~ 
205835-1 

GND Vce 
(A14)AD14 AD15 

(A13)AD13 AIB/S3 

(A12)AD12 A17/S4 

(All) ADll A18/S5 

(Al0)AD10 • A19/S6 

(A9)AD9 !lIiE/S7 
(A8)AD8 iiOm, 

AD7 INT 
ADB iiOmo 
ADS NC 
AD4 ' Ne 

AD3 52 
AD2 S1 
AD1 !iii 
ADO " QSO 

NC aS1 
NC BUSY 

CLK READY 
GND RESET 

205835-2 

Figure 2. 8087 Pin 
Configuration 

October 1986 
Order Number: 205835·006 

~ 
I:', 
" !, 

I:, 
, i 

II"" " 

i ~,r 
,I 
'I' ',I 
y' 

II 
I ~ 
I: 

I 

,I 

I)' 
I 

I) 
1 

II 



Symbol. 

AD15-ADO 

A19/56, 
A18/55, 
A17/54, 
A16/53 

SHE/57 

52,51,50 

RQ/GTO 

Type 

I/O 

I/O 

I/O 

I/O 

, 

I/O 

8087 

Table 1.8087 Pin Description 

Name and Function 

ADDRESS DATA: These lines constitute the time multiplexed memory address (T 1) 
and data (T 2, T 3, T w, T 4) bus. AO is analogous to the SHE for the lower by1e of the data 
bus, pins 07-DO. It is LOW during T1 when a byte is to be transferred on the lower 
portion of the bus in memory operations. Eight-bit oriented devices tied to the lower half 
of the bus would normally use AO to condition chip select functions. These lines are 
active HIGH. They are input!output lines for 8087-driven bus cycles and are inputs 
which the 8087 monitors when the CPU is in control of the bus. A 15-A8 do not require 
an address latch in an 8088/8087 or 80188/8087. The 8087 will supply an address for 
the T1-T 4 period. 

ADDRESS MEMORY: During T 1 these are the four most significant address lines for 
memory operations. During memory operations, status information is available 6n these 
lines during T 2, T 3, T w, and T 4. For 8087 -controlled bus cycles, 56, 54, and 53 are 
reserved and currently one (HIGH), while 55 is always LOW. These lines are inputs 
which the 8087 monitors when the CPU is in control of the bus. 

BUS HIGH ENABLE: During T1 the bus high enable signed (SHE) should be used to 
enable data onto the most significant half of the data bus, pins D15-D8. Eight-bit­
oriented devices tied to the upper half of the bus would normally use SHE to condition 
chip select functions. SHE is LOW during T 1 for read and write cycles when a by1e is to 
be transferred on the high portion of the bus. The 57 status information is available 
during T 2, T 3, T w, and T 4. The signal is active LOW. 57 is an input which the 8087 
monitors during the CPU-controlled bus cycles. 

STATUS: For 8087-driven, these status lines are encoded as follows: 
S2 S1 SO 

o (LOW) X X Unused 
1 (HIGH) 0 0 Unused 
1 0 1 Read Memory 
1 1 0 Write Memory 
1 1 1 Passive 
5tatus is driven active during T 4, remains valid during T 1 and T 2, and is returned to the 
passive state (1, 1, 1) during T 3 or during T w when READY is HIGH. This status is used 
by the 8288 Sus Controller (or the 82188 Integrated Sus Controller with an 80186/ 
80188 CPU) to generate all memory access control signals. Any change in 52, 51, or 
50 during T 4 is used to indicate the beginning of a bus cycle, and the return to the 
passive state in T 3 or T w is used to indicate the end of a bus cycle. These signals are 
monitored by the 8087 when the CPU is in control of the bus. 

REQUEST IGRANT: This request! grant pin is used by the 8087 to gain cOhtrol of the 
local bus from the CPU for operand transfers or on behalf of another bus master. It 
must be connected to one of the two processor request! grant pins. The request! grant 
sequence on this pin is as follows: 
1. A pulse one clock wide is passed to the CPU to indicate a local bus request by either 

the 8087 or the master connected to the 8087 RQ/GT1 pin. 
2. The 8087 waits for the grant pulse and when it is received will either initiate bus 

transfer activity in the clock cycle following the grant or pass the grant out on . the 
RQ/GT1 pin in this clock if the initial request was for another bus master. 

3. The 8087 will generate a release pulse to the CPU one clock cycle after the 
completion of the last 8087 bus cycle or on receipt of the release pulse from the bus 
master on RQ/GT1. 

For 80186/80188 systems the same sequence applies except RQ/GT signals are 
converted to appropriate HOLD, HLDA signals by the 82188 Integrated Sus Controller. 
This is to conform with 80186/80188's HOLD, HLDA bus exchange protocol. Refer to 
the 82188 data sheet for further information. 

2-184 



8087 

Table 1.8087 Pin Description (Continued) 

Symbol Type Name and Function 

RQ/GT1 110 REQUEST/GRANT:This request/grant pin is used by another local bus master to 
force the 8087 to request the local bus. If the 8087 is not in control of the bus when the 
~uest is made the request/grant sequence is passed through the 8087 on the RQ/ 
GTO pin one cycle later. Subsequent grant and release pulses are also passed through 
the 8087 with a two and one clock delay, respectively, for resynchronization. RQ/GT1 
has an internal pullup resistor, and so may be left unconnected. If the 8087 has control 
of the bus the request/grant sequence is as follows: 
1. A pulse 1 ClK wide from another local bus master indicates a local bus request to 

the 8087 (pulse 1). 
2. During the 8087's next T 4 or T 1 a pulse 1 ClK wide from the B087 to the requesting 

master (pulse 2) indicates that the 8087 has allowed the local bus to float and that it 
will enter the "RQ/GT acknowledge" state at the next ClK. The 8087's control unit 
is disconnected logically from the local bus during "RQ/GT acknowledge." 

3. A pulse 1 ClK wide from the requesting master indicates to the 8087 (pulse 3) that 
the "RQ/GT" request is about to end and that the 8087 can reclaim the Ibcal bus at 
the next ClK. 

Each master-master exchange of the local bus is a sequence of 3 pulses. There must 
be one dead ClK cycle after each bus exchange. Pulses are active lOW. 
For 80186/80188 system, the RQ/GT1 line may be connected to the 82188 Integrated 
Bus Controller. In this case, a third processor with a HOLD, HlDA bus exchange 
system may acquire the bus from the 8087. For this configuration, RQ/GT1 will only be 
used if the 8087 is the bus master. Refer to 82188 data sheet for further information. 

QS1, QSO I Q51, QSO: QS1 and QSO provide the 8087 with status to allow tracking of the CPU 
instruction queue .. 

QS1 QSO 
o (lOW) 0 No Operation 
0 1 ~irst Byte of Op Code from Queue 
1 (HIGH) 0 Empty the Queue 

.c-. 1 1 Subsequent Byte from Queue 

INT 0 INTERRUPT: This line is used to indicate that an unmasked exception has occurred 
during numeric instruction execution when 8087 interrupts are enabled. This Signa! is 
typically routed to an 8259A for 8086/8088 systems and to INTO for 80186/80188 
.systems. INT is active HIGH. 

BUSY 0 BUSY: This signal indicates that the 8087 NEU is executing a numeric instruction. It is 
connected to the CPU's TEST pin to provide synchronization. In the case of an 
unmasked exception BUSY remains active until the exception is cleared. BUSY is 
active HIGH. 

READY I READY: READY is the acknowledgement from the addressed memory device that it 
will complete the data transfer. The ROY signal from memory is synchronized by the 
8284A Clock Generator to form READY for 8086 systems. For 80186/80188 systems, 
ROY is synchronized by the 82188 Integrated Bus Controller to form READY. This 
signal is active HIGH. 

RESET I RESET: RESET causes the processor to immediately terminate it!! present activity. 
The signal must be active HIGH for at least four clock cycles. RESET is internally 
synchronized. ' 

ClK I CLOCK: The clock provides the basic timing for the processor and bus controller. It is 
asymmetric with a 33% duty cycle to provide optimized internal timing. 

Vee POWER: Vee is the + 5V power supply pin. 

GND GROUND: GND are the ground pins. 

NOTE: 
For the pin descriptions of the 8086, 8088, 80186 and 80188 epus, reference the respective data sheets (8086, 8088. 
~0186. 80188). 

2·185 

'I .. ~ 
I; 
Ii 
~ ~ 
~ Ii 
1'1, 

,".i . 
'f 

It 
i~ 
I 

I'" 

,I,' 



8087 

APPLICATION AREAS 

The 8087 provides functions meant specifically for 
high performance numeric processing requirements. 
Trigonometric, logarithmic, and exponential func­
tions are built into the coprocessor hardware. These 
functions are essential in scientific. engineering, 
navigational, or military applications. 

The 8087 also has capabilities meant for business or 
commercial computing. An 8087 can process Binary 
Coded Decimal (BCD) numbers up to 18 digits with­
out roundoff errors. It can also perform arithmetic on 
integers as large as 64 bits ±1018). 

PROGRAMMING LANGUAGE 
SUPPORT 

Programs for the 8087 can 'be written in Intel's high­
level languages for 8086/8088 and 80186/80188 
Systems; ASM-86 (the 8086, 8088 assembly lan­
guage), PLlM-86, FORTRAN-86, and PASCAL-86. 

RELATED INFORMATION 

For 8086, 8088, 80186 or 80188 details, refer to the 
respective data sheets. For 80186 or 80188 sys­
tems, also refer to the 82188 Integrated Bus Con­
troller data sheet. 

FUNCTIONAL DESCRIPTION 

The 8087 Numeric Data Processor's architecture is 
designed for high performance numeric computing 
in conjunction with genera.l purpose processing. 

The 8087 is a numeric processor extension that pro­
vides arithmetic and logical instruction support for a 
variety of numeric data types. It also executes nu­
merous built-in transcendental functions (e.g., tan­
gent and log functions). The 8087 executes instruc­
tions as a coprocessor' to a maximum mode CPU. It 
effectively extends the register and instruction set of 
the system and adds several new data types as well. 
Figure 3 presents the registers of the CPU + 8087. 
Table 2 shows the. range of data types supported by 
the 8087. The 8087 is treated as an extension to the 
CPU, providing register, data types, control, and in­
struction capabilities at the hardware level. At the 
programmer's level the CPU and the 8087 are 
viewed as a single unified processor. 

System Configuration 

As a coprocessor to an 8086 or 8088, the 8087 is 
wired in parallel with the CPU as shown in Figure 4. 
Figure 5 shows the 80186/80188 system configura­
tion. The CPU's status (SO-52) and queue status 
lines (050-051) enable the 8087 to monitor and 
decode instructions in synchronization with the CPU 
and without any CPU overhead. For 80186/80188 
systems, the queue status signals of the 801861 
80188 are synchronized to 8087 requirements by 
the 8288 Integra.ted Bus Controller. Once started, 
the 8087 can process in parallel with, and indepen­
dent of, the host CPU. For resynchronization, the 
8087'sBUSY signal informs the CPU that the 8087 
is executing an instruction and the CPU WAIT in­
struction tests this signal to insure that the 8087 is 
ready to execute subsequent instructions. The 8087 
can interrupt the CPU when it detects an error or 
exception. The .8087's interrupt request line is typi­
cally routec.\to the CPU through an 8259A Program­
mable Interrupt. Controller for 8086, 8088 systems 
and INTO for 80186/80188. 

B081 
CPU . , I -79 78 ::T~3FIELO TAG FIELD 

AX ~15 FILE ,,0 I 'A1 ~SI=GN~..."E,!!XP~O~NE:!:'.NT~~_~SIG~N~IF~ICA~N~O __ -l° m" 0 

~':.' '.' .... l~~ .' .' 
01 I RB 1---t------:-I-----'-'-----1 

8P : R7 t::=t:::::::t::::::::::::::j SP I R8 

L __ ., 

IP 

FLAGS 

I 
I 
I L ____ --. 

I i 

15 

CONTROL REGISTER' 

STATUS REGISTER 

TAG WORD 

INSTRUCTION POINTER_ 

f- OAT A POINTER -

Figure 3. CPU + 8087 Architecture 

2-186 

0 

205835-3 



intJ 8087 

The 8087 uses one of the requestl ~n!J!!1es of the 
8086/8088 architecture (typicallyRQ/GTO) to ob­
tain control of the local bus for data transfers. The 
other requestlgrant line is available for general sys­
tem use (for instance by an I/O processor in LOCAL 
mode). A bus master can also be connected to the 
8087's RQ/GT1 line. In this configuration the 8087 
will pass the requestlgrant handshake signals be­
tween the CPU and the attached master when the 
8087 is not in control of the bus and will relinquish 
the bus to the master directly when the 8087 is in 
control. In this way two additional masters can be 
configured in an 8086/8088 system; one will share 
the 8086/8088 bus with the 8087 on a first-come 
first-served basis, and the second will be guaranteed 
to be higher in priority than the 8087. 

For 80186/80188 systems, RQ/GTO and RQ/GT1 
are connected to the corresponding inputs of the 
82188 Integrated Bus Controller. Because the 
80186/80188 has a HOLD, HLDA bus exchange 
protocol, an interface is needed which will translate 
RQ/GT signals to corresponding HOLD, HLDA sig­
nals and vice versa. One of the functions of the 
82188 IBC is to provide this translation. RQ/GTO is 
translated to HOLD, HLDA Signals which are then 
directly connected to the 80186/80188. The. RQ/ 
GT1 line is also translated into HOLD, HLDA signals 
(referred to as8Y8HOLD, 8Y8HLDA signals) by the 
82188 IBC. This allows a third processor (using a 
HOLD, HLDA bus exchange protocol) to gain control 
of the bus. 

Unlike an 8086/8087 system, RQ/GT is only used 
when the 8087 has bus control. If the third processor 
requests the bus when the current bus master is the 
80186/80188, the 82188 IBC will directly pass the 
request onto the 80186/80188 without going 
through the 8087. The third processor has the high­
est bus priority in the system. If the 8087 requests 
the bus while the third processor has bus control, 
the grant pulse will not be issued until the third proc­
essor releases the bus (using 8Y8HOLD). In this 
configuration, the third processor has the highest 
priority, the 8087 has the next highest, and the 
80186/80188 has the lowest bus priority. 

Bus Operation 
The 8087 bus structure, operation and timing are 
identical to all other processors in the 8086/8088 
series (maximum mode configuration). The address 
is time multiplexed with the data on the first 16/8 
lines of the address/data bus. A16 through A19 are 
time multiplexed with four status lines 83-86. 83, 
84 and 86 are always one (HIGH) for 8087-driven 
bus cycles while 85 is always zero (LOW). When the 
8087 is monitoring CPU bus cycles (passive mode) 
86 is also monitored by the 8087 to differentiate 
8086/8088 activity from that of a local 1/0 proces­
sor or any other local bus master. (The 8086/8088 
must be the only processor on the local bus to drive 
86 LOW). 87 is multiplexed with and has the same 
value as BHE for al/ 8087 bus cycles. 

Table 2. 8087 Data Types 

Data 
Range Precision 

Formats 

Word Integer 104 16 Bits 

8hort Integer 109 32 Bits 

Long Integer 1018 64 Bits 

Packed BCD 1018 18 Digits 

8hort Real 10±38 24 Bits 

Long Real 10±308 53 Bits 

Temporary Real 10±4932 64 Bits 

Integer: I 
Packed BCD: (-1 )S(017"'00) 
Real: (-1 )S(2E -Bias)(Fo.F1"') 
bias = 127 for Short Real 

1 023 for Long Real 
16383 for Temp Real 

7 

115 

131 

163 

sl-

81 E7 

SlE10 

81E14 

~ 

Most Significant Byte 

017 017 017 017 017 017 017 017 011 oj 
10lTwo's Complement 

10lTwo's Complement 

Ill. Two's 
o Complement 

D17D161 ID1 DOI 

EoIF1 F231Fo Implicit 

EoIF1 F521Fo Implicit 

EolFo _ FS3J 

2-187 



8087 

The firstthree status lines, SO-52, are used with an 
8288 bus controller or 82188 Integrated Bus Con­
troller to determine the type of bus cycle being run: 

52 S1 SO 

0 X X Unused 
1 0 0 Unused 
1 0 1 Memory Data Read 
1 1 0 Memory Data Write 
1 1 1 Passive (no bus cycle) 

Programming Interface 

The 8087 includes the standard 8086, 8088 instruc­
tion set for general data manipulation and program 
control. It also includes 68 numeric instructions for 
extended precision integer, floating pOint, trigono­
metric, logarithmic, and exponential functions. Sam­
ple execution times for several 808'7 functions are 
shown in Table 3. Overall performance is up to 100 
times that of an 8086 processor for numeric instruc­
tions. 

Any instruction executed by the 8087 is the com­
bined result of the CPU and 8087 activity. The CPU 
and the. 8087 have specialized function~ and regis­
ters providing fast concurrent operation, The CPU 
controls .overall program. execution while the 8087 
uses the coprocessor interf~ce to recognize ana 
perform numeric operations. 

Table 2 lists the seven data types the 8087 supports 
and presents the format for each type. Internally, the 
8087 holds all numbers.in the temporary real format. 
Load and store instructions automatically convert 
operands represented in memory as 16-, 32-, or 64-
bit integers, 32- or 64-bit floating point numbers or 
18-digit packed BCD numbers into temporary real 
format and vice versa. The. 8087 also provides the 
capability to control round off, underflow, and over­
flow errors in each calculation. 

Computations in the 8087 use the processor's regis­
ter stack. These' eight 80-bit registers provide the 
equivalent capacity of 20 32-bit registers. The 8087 
register set can be accessed as a stack, with in­
structions operating on the top one or two stack ele­
ments, or as a fixed register set, with instructions 
operating on explicitly deSignated registers. 

Table 5 lists the.8087's instructions by class. All ap­
pear as ESCAPE instructions to the host. Assembly 
language programs are written in ASM-86, the 8086, 
8088 assembly language. 

Table 3. Execution Times for Selected 
8086/8087 Numeric Instructions and 

Corresponding 8086 Emulation 

Approximate Execution 

Floating Point 
Time (/-Ls) 

Instruction 8086/8087 
8086 

(8 MHz 
Emulation 

Clock) 

Add/Subtract 10.6 1000 
Multiply (Single 

Precision) 11.9 1000 
Multiply (Extended 

Precision) 16.9 1312 
Divide 24.4 2000 
Compare -5.6 812 
Load (DQuble Precision) -6.3 1062 
Store (Double PreCision) 13.1 750 
Square Root 22.5 12250 
Tangent 56.3 8125 
Exponentiation 62.5 10687 

NUMERIC PROCESSOR 
EXTENSION ARCHITECTURE, 

As shown.in Figure 1, the 8087 i~ internally divided 
into two processing elements, the control lJnit (CU) 
and the numeric execution unit (NEU). The NEU ex­
ecute~ all numeric instructions, while the CU re­
ceilies and decodes instructions, reads and writes 
memory operands and executes 8087 control in­
structions. The two elements are able to operate in­
dependently of one another, allowing the CU to 
maintain synchronization with the CPU while the 
NEU is busy processing a numeric instruction. 

Control Unit 

The CU keeps the 8087 oper:ating hi synChronization 
with its host CPU. 8087 instructions are intermixed 
with CPU instructions in a single instruction stream. 
The CPU fetches all instructions from memory; by 
monitoring the status (50-82, 56) emitted by the 
CPU, the control unit determines when an instruction 
is being fetched.· The CPU monitors the data bus in 
parallel with the CPU to obtain instructions that per­
tain to the 8087. 

2-188 



intJ 

r - - ., 

8284A 
CLOCK 

GENERATOR 

8259A 
PIC 

INT t-1------t.~IINTR 

ClK~t-------~~---1 

'--------'-----, INT 

8087 

8086/8088 
BUS 

INTERFACE 
COMPONENTS 

Figure 4. 8086/8087,8088/8087 System Configuration 

r-
1017 

1Ill/(!T1 

W lIll/(!To 

1 QS1 080 BUSY INT 

IIll/GT1 lilIIlli'o aslO J 
J 1 1 QSOO 

as, 
TEST INTO 

OS1l 1--
1-- W W 

80'86 
82188 asol as. BUS 
IBe 80186/80188 INTERFACE 

CPU COMPONENTS 

H"'" I-- HLOA 

HOLO t---- HOLO 

SYS svs 
HLOA HOLD 

I r r----------., 
: L ___ .J SVSHOI.D : 

I , , 
L-----..lS' ... LOA 1/'-'\ 

I J'," 
I 3AO I '.,/ -'.,/ 
I PAOCESSOfI I L __________ .J 

'-------------------------------~~ 
v ... 

Figure 5. 80186/8087, 80188/8087 System Configuration 

2-189 

MULTIMASTER 
SYSTEM 

BUS 

205835-4 

W ~I~ ~ 

205835-5 



inter 8087 

The CU maintains an instruction queue that is identi­
cal to the queue in the host CPU. The CU automati­
cally determines if the CPU is an 8086/80186 or an 
8088/80188 immediately after reset (by monitoring 
the BHE/S7 line) and matches its queue length ac­
cordingly. By monitoring the CPU's queue status 
lines (OSO, OS1), the CU obtains and decodes in­
structions from the queue in synchronization with the 
CPU. 

A numeric instruction appears as an ESCAPE in­
struction to the CPU. Both the CPU and 8087 de­
code and execute the ESCAPE instruction together. 
The 8087 only recognizes the numeric instructions 
Shown in Table 5. The start of a numeric operation is 
accomplished when the CPU executes the ESCAPE 
instruction. The instruction mayor may not identify a . 
memory operand. 

The CPU does, however, distinguish between ESC 
instructions that reference memory and those that 
do not. If the instruction refers to a memory operand, 
the CPU calculates the operand's address using any 
one of its available addressing modes, and then pt'lr­
forms a "dummy read" Of the word at that location. 
(Any location within the 1 M byte address space is 
allowed.) This is a normal read cycle except that the 
CPU ignores the data it receives. If the ESC instruc­
tion does not contain a memory reference (e.g. an 
8087 stack operation), the CPU simply proceeds to 
the nextinstruction. 

An 8087 instruction can have one of three memory 
reference options: (1) not ref~rence memory; (2) 
load an operand word from memory into the 8087; .or 
(3) stofe an operand word from the 8087 into memo­
ry. If no memory reference is required, the 8087 sim­
ply executes its instruction. If a memory reference is 
required, the CU uses a "dummy read" cycle initiat­
ed by the CPU to capture and save the. address that 
the CPU places on the bus. If the instruction is a 
load, the CU additionally captures the data word 
when it becomes available on the local data bus .. If 
data required is longer than one word, the CU imme.­
diately obtains the bus from the CPU using the 
request! grant protocol and reads the rest of the in­
formation in consecutive bus cycles. In a store oper­
ation, theCU captures and saves the store address 
as in a load, and ignores the. data wor9 that follows 
in the "dummy read" cycle. When the 8087 is ready 
to perform the store, the CU obtains the bus from 
the CPU and writes the operand starting at the spec­
ified address. 

Numeric Execution Unit 

The NEU executes all instructions that involve the 
register stack; these include arithmetic, logical, tran­
scendental, constant and data transfer instructions. 
The data path in the NEU is 84 bits wide (68 frac­
tions bits, 15 exponent bits and a sign bit) which 
allows internal operand transfers to be performed at 
very high speeds. 

When the NE;U begins executing an instruction, it 
activates the 8087 BUSY signal. This signal can be 
used in conjunction with the CPU WAIT instruction to 
resynchronize both processors when the NEU has 
completed its current instruction. 

Register Set 

The CPU + 8087 register set is shown in Figure 3. 
Each of the eight data registers in the 8087's regis­
ter stack is 80 bits and is divided into "fields" corre­
sponding to the 8087's temporary real data type. 

At a given point in time the TOP field in the control 
word identifies the current top-of-stack register. A 
"push" operation decrements TOP by 1 and loads a 
value into the new top register. A "pop" operation 
stores the value from the current top register and 
then increments TOP by 1. Like CPU stacks in mem­
ory, the 8087 register stack grows "dOwn" toward 
lower-addressed registers. 

Instructions may address the data registers either 
implicitly or explicitly. Many instructions operate on 
the register at the top of the stack .. These instruc­
tions implicitly address the register pointed to by the 
TOP. Other instructions allow the programmer to ex­
plicitly specify the register which is to be used. Ex­
plicit register addressing is "top-relative." 

Status Word 

The status word shown in Figure 6 reflects the over­
all state of the 8087; it may be stored in memory and 
then inspected by CPU code. The status word is a 
f6-bit register divided into fields as shownin Figure 
6. The busy.bit (bit 15) indicates whether the NEUis 
either executing an instruction or has an interrupt 
request pending (B = 1), or is idle, (B = 0). Several 
instructions which store and manipulate the status 
word are executed exclusively by the CU, and these 
do not set the busy bit themselves. 

2-190 



inter 8087 

15 

I B I c, ITO P 1 Cal c, l c, J IR I X J PE JUE JOEJzE I DE liE I 

I 

NOTES: 

EXCEPTION FLAGS (1 " EXCEPTION HAS OCCURRED) 

INVALID OPERATION 

DENORMALIZED OPERAND 

ZERO DIVIDE 

OVERFLOW 

UNDERFLOW 

PRECISION 

(RESERVED) 

INTERRUPT REQUEST,11 

CONDITION CODE(2) 

TOP OF STACK POINTER(3J 

NEU BUSY 

205835-6 

1. IR is set if any unmasked exception bit is set, cleared otherwise. 
2. See Table 3 for condition code interpretation. 
3. Top Values: 

000 = Register 0 is Top of Stack. 
001 = Register 1 is Top of Stack. 

• 
• 
• 

111 = Register 7 is Top of Stack. 

Figure 6. 8087 Status Word 

The four numeric condition code bits (Co-Cs) are 
similar to flags in a CPU: various instructions update 
these bits to reflect the outcome of the 8087 opera· 
tions. The effect of these instructions on the condi­
tion code bits is summarized in Table 4. 

Bits 14-12 of the status word point to the 8087 reg­
ister that is the current top-of-stack (TOP) as de­
scribed above. 

Bit 7 is the interrupt request bit. This bit is set if any 
unmasked exception bit is set and cleared other­
wise. 

Bits 5-0 are set to indicate that the NEU has detect­
ed an exception while executing an instruction. 

Tag Word 

The tag word marks the content of each register as 
shown in Figure 7. The principal function of the tag 
word is to optimize the 8087's performance. The tag 
word can be used, however, to interpret the con­
tents of 8087 registers. 

Instruction and Data Pointers 

The instruction and data pointers (see Figure 8) are 
provided for user-written error handlers. Whenever 
the 8087 exec4tes a math instruction, the CU saves 
the instruction address, the operand address (if 
present) and the instruction opcode. 8087 instruc­
tions can store this data into memory 

Figure 7. 8087 Tag Word 

2-191 



inter 8087 

Table 4a. Condition Code Interpretation 

Instruction 
C3 C2 Type 

Compare, Test 0 0 
0 0 
1 0 
1 1 

Remainder 01 0 

U 1 

Examine 0 0 
0 0 
0 0 
0 0 
0 1 
0 1 
0 1 
0 1 
1 0 
1 0 
1 0 
1 0 
1 1 
1 1 
1 1 
1 1 

NOTES: 
1. ST = Top of stack 
2. X = value is not affected by instruction 
3. U = value is undefined following instruction 
4. Qn = Quotient bit n 

Table 4b. Condition Code Interpretation 
after FPREM Instruction As a 

Function of Divided Value 

Dividend Range Q2 Q1 

Dividend < 2 • Modulus C31 C11 

Dividend < 4 • Modulus C31 01 
Dividend ~ 4 • ModulUS 02 01 

NOTE: 

C1 

X 
X 
X 
X 

00 

U 

0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 

Qo 

00 
00 
00 

1. Previous value of indicated. bit, not affected by FPREM 
instruction exec,ution. 

2-192 

Co 

0 
1 
0 
1 

02 

U 

0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 

15 

Interpretation 

ST > Source or 0 (FTST) 
ST < Source or 0 (FTST) 
ST = Source or 0 (FTST) 
ST is not comparable 

Complete reduction with 
three low bits of quotient 
(See Table 4b) 
Incomplete Reduction 

Valid, positive un normalized 
Invalid, positive, exponent = 0 
Valid, negative, unnormalized 
Invalid, negative, exponent = 0 
Valid, positive, normalized 
Infinity, positive 
Valid, negative, normalized 
Infinity, negative 
Zero, positive 
Empty 
Zero, negative 
Empty 
Invalid, positive, exponent = 0 
Empty 
Invalid, negative, exponent = 0 
Empty 

CONTROL WORD 

STATUS WORD 

TAG WORD 

o 

MEMORY 
OFFSET· 

INSTRUCTION POINTER (15-0) 

+0 

+2 

+4 

+6 

INSTRUCTION II IINSTRUCTION 
POINTER (19-16) 0 OPCODE (10-0) +8 

DATA POINTER (15-0) +10 

DATA POINTER 1 
(19-16) 0 +12 

15 12 11 o 

Figure 8. 8087 Instruction and Data Pointer 
Image In Memory 



inter 8087 

Control Word 

The 8087 provides several processing options which 
are selected by loading a word from memory into the 
control word. Figure 9 shows the format and encod­
ing of the fields in the control word. 

The low order byte of this control word configures 
8087 interrupts and exception masking. Bits 5-0 of 
the control word contain individual masks for each of 
the six exceptions that the 8087 recognizes and bit 7 
contains a general mask bit for all 8087 interrupts. 
The high order byte of the control word configures 
the 8087 operating mode including precision, round­
ing, and infinity controls. The precision control bits 
(bits 9-8) can be used to set the 8087 internal oper­
ating precision at less than the default of temporary 
real precision. This can be useful in providing com­
patibility with earlier generation arithmetic proces­
sors of smaller precision than the 8087. The round­
ing control bits (bits 11-10) provide for directed 
rounding and true chop as well as the unbiased 
round to nearest mode specified in the proposed 
IEEE standard. Control over closure of the number 
space at infinity is also provided (either affine clo­
sure, ± 00, or projective closure, 00, is treated as 
unsigned, may be specified). 

15 

Exception Handling 

The 8087 detects six different exception conditions 
that can occur during instruction execution. Any or 
all exceptions will cause an interrupt if unmasked 
and interrupts are enabled. 

If interrupts are disabled the 8087 will simply contin­
ue execution regardless of whether the host clears 
the exception. If a specific exception class is 
masked and that exception occurs, however, the 
8087 will post the exception in the status register 
and perform an on-Chip default exception handling 
procedure, thereby allowing processing to continue. 
The exceptions that the 8087 detects are the follow­
ing: 

1, INVALID OPERATION: Stack overflow, stack un­
derflow, indeterminate form (0/0, 00 - 00, etc.) 
or the use of a Non-Number (NAN) as an oper­
and. An exponent value is reserved and any bit 
pattern with this value in the exponent field is 
termed a Non-Number and causes this exception. 
If this exception is masked, the 8087's default re­
sponse is to generate a specific NAN called IN­
DEFINITE, or to propagate already existing NAMs 
as the calculation result. 

I xxx Ilcl RC I PC 1M I X'lPMluMloMlzMIDMllM I 

NOTES: 
1. Precision Control 

00 = 24 bits 
01 = Reserved 
10 = 53 bits 
11 = 64 bits 

~ 

2. Rounding Control 
00 = Round to Nearest or Even 
01 = Round Down (toward - 00) 
10 = Round Up (toward + 00) 
11 = Chop (truncate, toward zero) 

Figure 9. 8087 Control Word 

2-193 

EXCEPTION MASKS (1 a EXCEPTION IS MASKED) 

INVALID OPERATION 

DENORMALIZED OPERAND 

ZERO DIVIDE 

OVERFLOW 

UNDERFLOW 

PRECISION 

(RESERVED) 

INTERRUPT MASK (1 = INTERRUPTS ARE MASKED) 

PRECISION CONTROL'" 

ROUNDING CONTROL'" 

INFINITY CONTROL (0 = PROJECTIVE. 1 = AFFINE) 

(RESERVED) 

205835-7 



inter 8087 

2. OVERFLOW: The result is too large in ma!;!nitude 
to fit the specified format. The 8087 will generate 
an encoding. for infinity if this exception is 
masked. 

3. ZERO DIVISOR: The divisor is zero while the divi­
dend is a non-infinite, non"zero number. Again, 
the 8087 will generate an encoding for infinity if 
this exception is masked. 

4. UNDERFLOW: The resuitis non-zero but too 
small in magnitude to fit in the specified format. If 
this exception i.s masked the 8087 Will denormal-

ABSOLUTE MAXIMUM RATINGS* 

Ambient Temperature Under Bias ...... O°C to 70°C . 

StorageTemperature ........ :. -65°C to + 15poC 

Voltage on Any Pin with 
Respect to Ground ..........•... -1.0V to + 7V 

Power Dissipation ....................... 3.0 Watt 

ize (shift right) the fraction until the exponent is in 
range. This process is called gradual underflow. 

5. DENORMALIZED OPERAND: At least one of the 
operands or the resultisdElnOrmalized; it has the 
smallest exponent but a non-zero significand. 
Normal processing cohtinues if tMis exception is 
masked off. 

6. INEXACT RESULT: If the true result is not exactly 
representable. in the specified format, the result is 
rounded according toJherounding mode, and this 
flag is set. If this exception is. masked, processing 
will simply continue. 

. . 
• Notice: Stresses above those listed under "Abso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a· stress rating only and 
functional operation .Of the. device at these. or any 
other conditions above those indicated in the opera­
tional sections of this specification is not implied. Ex­
posure to absolute maximum rating conditions for 
extended periods may affect device reliability. 

D.C. CHARACTERISTICS fA =QoCt070°C, Vee = 5V±5% 

Symbol Parameter Min Max Units Test Conditions 

Vil Input low Voltage -0.5 0.8 V 

VIH Input High Voltage .' 2.0 Vee+ 0.5 V 

VOL Output low Voltage (Note 8) 0.45 V IOl= 2.5 rnA 

VOH Output High Voltage 2.4 V IOH = - 400 /LA 

Icc Power Supply Current 475 rnA TA = 25°C 
, 

III Inpot leakage Current ±10 /LA OV s V,N s Vee 

ILO Output Leakage Current ±10 /LA TA = 25°C 

Vel Clock Input low Voltage . -0.5 0.6 V 

VeH Clock Input High Voltage 3.9 Vee + 1.0 V 

C'N Capacitance of Inputs 10 pF fc = 1 MHz 

CIO Capacitance of 110 Buffer 15 pF fc = 1 MHz 
(ADO-15, A16-A19, BHE, 52-SO, 
RQ/GT) and ClK 

COUT Capacitance of Outputs 10 pF fc = 1 MHz 
BUSYINT 

2-194 



intJ 8087 

A.C. CHARACTERISTICS TA = 0·Cto70·C, vee = 5V ±5% 

TIMING REQUIREMENTS 

8087·1 
8087 8087·2 (Preliminary: 

Symbol Parameter Note 7) 

Min Max Nlln Max Min Max 

TClCl ClK Cycle Period ,2QO 500 125 500 100 500 

TClCH ClKlowTime 1,18 68 53 

TCHCl ClK High Time 69 44 39 

TCH1CH2 ClK Rise Time 10 10 15 

TCl2Cl2 ClK Fall Time, 10 10 15 

TDVCl Data In Setup Time 30" 20 15 

TClDX Data In Hold Time 10 10 10 

TRYHCH READY Setup Time 118 68 53 

T-CHRYX READY Hold Time 30 20 5 

TRYlCl READY Inactive to ClK (Note 6) -8 -8 -10 

TGVCH RO/GT Setup Time (Note 8) 30 15 15 

TCHGX RO/GT Hold Time 40 30 20 

TOVCl OSO-1 Setup Time (Note 8) 30 30 30 

TClOX OSO-1 Hold Time 10 10 5 

TSACH Status Active Setup Time 30 30 30 

TSNCl Status Inactive Setup Time 30 30 30 

TILIH Input Rise Time (Except ClK) 20 20 20 

TIHll Input Fall Time (Except ClK) 12 12 15 

TIMING RESPONSES 

8087·1 
8087 8087·2 (Preliminary: 

Symbol Parameter Note 7) 

Min Max Min Max Min Max 

TClMl Command Active Delay 10/0 35/70 10/0 35/70 10/0 35/70 
(Notes 1, 2) 

TClMH Command Inactive Delay 1010. 35/55 10/0 35/55 10/0 35/70 
(Notes 1, 2) 

TRYHSH Ready Active to Status 110 65 45 
Passive (Note 5) 

TCHSV Status Active Delay 10 110 ,10, 60 1.0 45 

TClSH Status Inactive Delay 10 130 10 70 Hi 55 

TCLAV Address Valid Delay 10 110 10 60 10, 55 

TCLAX Address Hold Time 10 10 10 

Units Test Conditions' 

ns, 

ns 

ns 

ns From 1.0V to 3.5V 

ns, From 3.5V to 1.0V 

ns 

ns 

ns 

ns 

ns' 

ns 

ns " ", 

ns 

ns 

ns 

ns 

ns From 0.8V to 2.0V 

ns From 2.0V to 0.8V 

Units Test Conditions 

i 

nS CL = 20-,100 pF 
for all 8087 Outputs 

ns (in addition to 8087 
self-load) 

ns 

ns 

ns 

ns 

ns 

, 

i' , 

il 
, .. 
,'( 



8087 

A.C. CHARACTERISTICS T A = O°C to. 70°C, V CC = 5V ± 5% (Continued) 

TIMING RESPONSES (C f d) onlnue 

Symbol Parameter 
8087 8087-2 

Min Max Min' 

TCLAZ Address Float Delay TCLAX 80 TCLAX 

TSVLH Status Valid to ALE High 15/30 
(Notes 1,2) 

TCLLH CLK Low to ALE Valid 15/30 
(Notes 1, 2) 

TCHLL ALE Inactive Delay 15/30 
(Notes 1,2) 

TCLDV Data Valid Delay 10 110 10 

TCHDX Status Hold Time 10 10 

TCLDOX Data Hold Time 10 10 

TCVNV Control Active Delay 5 45 5 
(Notes 1,3) 

TCVNX Control Inactive Delay 10 45 10 
(Notes 1,3) 

TCHBV BUSY and INT Valid Delay 10 150 10 

TCHDTL Direction Control Active 50 
Delay (Notes 1, 3) 

TCHDTH Direction Control Inactive 30 
Delay (Notes 1, 3) 

TSVDTV STATUS to DT/R Delay 0 30 0 
(Notes 1,4) 

TCLDTV DT IR Active Delay 0 55 0 
(Notes 1,4) 

TCHDNV DEN Active Delay 0 55 0 
(Notes 1,4) 

TCHDNX DEN Inactive Delay 5 55 5 
(Notes 1,4) 

TCLGL RQ/GT Active Delay 0 85 0 
(Note 8) 

TCLGH RQ/GT Inactive Delay 0 85 o ' 
TOLOH Output Rise Time 20 

TOHOL Output Fall Time 12 

NOTES: 
1. Signal at 8284A, 8288, or 82188 shown for reference only., 
2.8288 timing/82188 timing. 
3. 8288 timing. 
4. 82188 timing. 
5. Applies only to T 3 and wait states. 
6. Applies only to T 2 state (8 ns into T 3). 

Max 

50 

15/30 

15/30 

15/30 

60 

45 

45 

85 

50 

30 

30 

55 

55 

55 

50 

50 

20 

12 

8087-1 
(Preliminary: 

Note,7) 

Min Max 

TCLAX 45 

15/30 

15/30 

15/30 

10 50 

10 45 

10 

5 45 

to 45 

10 65 

50 

30 

0 30 

0 55 

0 55 

5 55 

0 38 

0 45 

15 

12 

'. , 

Units Test Conditions 

ns CL = 20-100 pF 

ns for aU 8087 Outputs 
(in addition to 8087 

ns 
self-load) 

ns 

ns 

ns 

ns 

ns 

ns-

ns 

ns 

ns 

ns 

ns 

ns 

ns, 

ns CL =40 pF(in 
addition t6 8087 

ns self-load) 

ns From 0.8V to 2.0V 

ns From 2.0V to 0.8V 

7. IMPORTANT SYSTEM CONSIDERATION: Some 8087-1 timing parameters are constrained relative to the corresponding 
8086-1 specifications. Therefore, 8086-1 systems incorporating the 8087-1 should be designed with the 13087-1 specifica­
tions. 
B. Changes since last revision. 

2-196 



infef 
A.C. TESTING INPUT, OUTPUT WAVEFORM 

205835-8 
A.C. Testing: Inputs are driven at 2AV for a Logic "1" and OA5V 
for a Logic "0". 

WAVEFORMS 

MASTER MODE (with 8288 references) 

READY (_7 INPUT) { 
(SEE NOT! 2) 

READ CYCLE 

1 
DTIii 

(=~~ MRDe 

WRITE CYCLE 

82tI OUTPUTS 
(SEE NOTES e. 1) 

DE. 

.D •• -ADo 

{.:: 
MWTC 

T, 

8087 

A.C. TESTING LOAD CIRCUIT 

DEVICE 
UNDER 

ICL'100 PF 
TEST 

-=-
205835-9 

CL Includes Jig Capacitance 

T, T, T, 

NOTES: 205835-10 
1. All signals switch between VOL and VOH unless otherwise specified. 
2. READY is sampled near the end of T 2, T 3 and T w to determine if T w machine states are to be inserted. 
3. The local bus floats only if the 8087 is returning control to the 8086/8088. 
4. ALE rises at later of (TSVLH, TCLLH). 
5. Status inactive in state just prior to T 4. 
6. Signals at 8284A or 8288 are shown for reference only, 
7. The issuance of 8288 command and control signals (MRDC, (MWTC, AMWC, and DEN) lags the active high 8288 
CEN. 
8. All timing measurements are made at 1.5V unless otherwise noted. 

2-197 



inter 
WAVEFORMS (Continued) 

MASTER MODE (with 82188 references) 

CLK 

READY (8017 INPUT) '{ 
(SEE NOTE 2) 

READ CYCLE 
AD,.-AD, 

VCL 

TSVDTV 

8087 

T, 

Rna DUTPUTS RD ---+---+-~ ..... " 
(SEE NOTES '.7) 

T, 

{(SE~J~i!,. ;CLDTV 

DEN -----+----+----~-__ ~~/ 

WRITE CYCLE 

82111 OUTPUTS 
(SEE NOTES ',7) 

AD,,-ADo 

{: 

T, 

DATA OUT 

NOTES: 205835-11 
1. All signals switch between VOL and VOH unless otherwise,specified. 
2, READY is sampled near the end of T 2. T 3 and Twto, determine if t w machinE! states are to be inserted: 
3. The local busfloatsonlY'if the808! is retW'nil'1g coritrol to ,the ,801$6f80188. 
4. ALE rises at later of (TSVLH. TCLLH). ' 
5. Status inactive in state· just prior to T 4. 
6. Signals at 8284A or 82188 are shown for reference only: , ,"" ' 
7. The issuance of 8288 command and control Signals (MRDC, (MWTC, AMVVC. andDENHags the active high 8288 
CEN. '" 
8. All timing measurements 'are made at 1.5V unless otherwise noted. 
9. DT fA' becomes valid at the later of (TSVD!V. TCLOTV). 



inter 
WAVEFORMS (Continued) 

PASSIVE MODE 

elK 

oS,.oS. 

i.,s"so 

AD15-AD. 

READY { 

IN~ . 

RESET TIMING 

VCC 

CLK 

RESET 

;"4 CLKCYCLES 

8087 

205835-12 

1-.. ---- ,.ZOCLKCYCLES----+! 

2-199 

8087 TRACKS 
cpu ACTIVITY 

8087 READY TO 
EXECUTE INSTRUCTIONS 

205835-13 

I.' .. ~. 
" 

'f 



inter 
WAVEFORMS (Continued) 

REQUEST/GRANTO TIMING 

CLK 

AD 1S-ADo 
A'9/S.-A,./S) 
82,1,,50 

BFi!/S7 

NOTE: 

_r-~~g:~ -0-

8087 

CPU 

The CPU provides active pullup of RQ/GTO, see TCLGH spec. 

REQUEST /GRANT1 TIMING 

CLK 

~ ..... "'~C. L~L . '. _TGVCH TCLGL. 
TCHGX 

iiQ . 

AO,s-ADo 
A,9/S l -Au/S) 
82.8,,80 

SHE/S7 

NOTE: 

8087 ALTERNATE MASTER 

(SEE NOTE) 

Alternate master may not drive the buses outside of the region shown without risking bus contention. 

BUSY AND INTERRUPT TIMING 

M':: ~"'----'-CH-.-fr-.-~·-·-----

205835-14 

205835-15 

205835-16 



i~ 8087 

Table 5. 8087 Extensions to the 86/186lnstructlons'Sets 

, Data Transfer 

J Optional 
'.1' Bli 

Dloplaca",ant 

FLD = LOAD I MF = 

-.- -.- -.- -
IntegerlReal Memory to ST(O) I .... E_S_C_A_P_E_M_F __ -<-M_O_D_O_O_O_R_'_M-II_ DISP -' 
Long Integer Memory to ST(O) 

Temporary Real Memory to 
ST(O) 

BCD Memory to ST(O) 

ST(i) to ST(O) 

FST = STORE 

ST(O) to IntegerlReal Memory 

ST(O) to ST(i) 

FSTP = STORE AND POP 

ST(O) to IntegerlReal Memory 

ST(O) to Long Intege, Memory 

ST(O) to Temporary Real 
Memory 

51"(0) to BCD Memory 

ST(O) to ST(i) 

FXCH = Exchange ST(i) and 
ST(O) 

ComparIson 

FCOM = Compare, 

IntegerlReal Memory to ST(O) 

ST(I) to ST (0) 

FCOMP = Compare and Pop 

IntegerlReal Memory to ST(O) 

ST(i) to ST(O) 

FCOMPP = Compare ST(I) to 
ST(O) and Pop Twice 

FTST = Test ST(O) 

FXAM = Examine ST(O) 

L-______ J-M_O~,_D_'_0 __ R_'_M_'[' =: =, ..o1~P _ =: I ESCAPE 1 1 

~=__'''___''____'__'_J-M.:.cO=D__'__'O_'_'__Rl=M_'[ = _ ..o1~P _ =: I ESCAPE 0 

I ESCAPE MOD 0 0 RIM [~~~I~P_J 

I ESCAPE 0 0 1 1 0 0 0 ST(i) I 

I ESCAPE MF MOD 0 0 RIM [ - DISP 
, 

.J 
I ESCAPE 1 0 1 1 0 0 ST(i) I 

I ESCAPE MF MOD 0 RIM [ DISP 
, 
i -.-.-.-.-.-

I ESCAPE MOD RIM C- - DISP ! 
~ 

I ESCAPE 0 MOD RIM [- DISP 
, 
i 

I ESCAPE MOD 0 RIM C- DISP 
! 

I ESCAPE 0 1 1 0 ST(i) I 

I ESCAPE 0 0 1 1 1 0 0 1 ST(i) I 

-I ESCAPE MF 0 MOD 0 0 RIM I DISP -
I ESCAPE 0 0 0 1 1 0 0 ST(I) I 

I ESCAPE MF 0 '-MOD 0 RIM I: DISP 
._! 

-, I ESCAPE 0 0 0 0 ST(i) 

I ESCAPE 0 0, 0 0 

I ESCAPE 0 0 0 0 0 0 

I ESCAPE 0 0 0 0 0 

2-201 

Clock Count lIange 
32 Bli 32811 84811 
11 •• 1 Integ.r 11 •• 1 

00 01 10 

38-56 52~60 40-60 
+~ +EA +EA 

80-68 +EA 

53-65 +EA 

,290-310 +EA 

17-22 

84-90 82-92 96-104 
+EA +EA +EA 

15-22 

86-92 84-94 98-106 
+EA +EA +EA 

94-105 +EA 

52-58 +EA 

520-540 +EA 

17-24 

10-15 

60-70 78-91 65-75 
+EA +EA +EA 

40-50 

63-73 80-93 67-77 
+EA +EA +EA 

45-52, 

45-55 

38-48 

12-23 

,. Bli 
Inleger 

11 

46-54 
+EA 

80-90 
+EA 

82-92 
+EA 

72-86 
+EA 

74-88 
+EA 

205835-17 

!,I',',', 

!: 
i' 

I, 

il 
~ 

'i 

',I 
" 

'~ 
j',1 
I: 
II 
I' 

i'! 

1"1 
i 



intJ 80,(J7 

Table 5. 8087 E)!tensions. to the 86/186 Instruct.ions Sets (Continued) 

Co.,stl!nts 

1 Opllonal Clock Count Range 
8,16 BII 32 BII 32 BII 64 BII 16 BII 

Displacemenl Real Inleger Real Inleger 

I MF = 00 01 '0 11 

FLDZ = LOAD + 0.0 intoST(O) ESCAPE 00 1 1 1 1 0 1 11 0 11-17 

FLDI = LOAD + 1.0 into ST(Oj ESCAPE 0 0 1 1 1 1 0 1 0 0 0 15-21 

FLDPI = LOAD". into ST(O) ESCAPE 0 0 1 1 0 0 1 1 16-22 

FLDL2T = LOAD log2 10 into ESCAPE 1 1 1 0 1 0 0 16-22 
ST(O) 

FLDL2E = LOAD 1092 e into ESCAPE 0 1 1 1 1 0 0 15-21 
ST(O) 

FLDLG2 = LOAD 10910 2 into 
ST(O) ESCAPE 0 1 1 0 1 0 0 18-24 

FLDLN2 = LOAD 109.2 into ESCAPE 0 lIt 1 0 1 1 0 1 17-23 
ST(O) 

Arithmetic 

FADD = Addition 

IntegerlReal Memorywith ST(O) ESCAPE MF 0 MOD 0 0 0 RIM 1- DlSP 
-, 

90-120 108-143 95-125 102-137 ..! +EA +EA +EA +EA 

ST(i) and ST(O) ESCAPE d P 0 1 1 0 0 0 S1(i) 70-100 (Nole 1) 

FSUB ::::: Subtraction 

IntegerlReal Memory with ST(O) I ESCAPE MF 0 MOD 0 R RIM [ DISP 
-, 

90-120 108-143 95-125 102-137 
.! +EA +EA +EA +EA 

ST(i) and ST(O) ~:~11 1 0 R RIM I 70-100 (Note 1) 

FMUL = Multiplication 

IntegerlReal Memory with ST(O) I ESCAPE MF a MOD a 0 RIM [ DISP 
, 

110-125 130-144 112-168 124-138 i 
+EA +EA +EA +EA 

ST(i) and ST(O) I ESCAPE d P 0 1 1 0 a 1 RIM 90-145 (Note 1) 

FDIV = Division 
IntegerlReal Memory with ST(O) ~CAPE MF 0 MOD R RIM 1- DISP 

-, 
215-225 230--243 220-230 224-238 

..! +EA +EA "EA +EA 

ST(i) and ST(O) ESCAPE d P 0 1 1 1 R RIM 1 193-203 (Note 1) 

FSQRT = Square Root ofST(O) ESCAPE 0 0 1 1 1 1 1 0 1 0 1 180--186 

FSCALE = Scale ST(O) by ST(I) ESCAPE 0 0 1 1 1 1 1 0 1 32-38 

FPREM = Partial Remainder'pf ESCAPE 0 0 1 1· t 1 ,., 0 00 15-190 
ST(O) +ST(I) 

FRNDINT = Round ST(O) to ESCAPE 0 0 1 1 1 1 1 1 La 0 16-50 
Integer 

205835-18 

NOTE: 
1. If P = 1 then add 5 clocks. 

2·202 



8087 

Table 5. 8087 Extensions to the 86/186 Instructions Sets (Continued) 

FXTRACT - Extract 
Components of StIO) 

FABS ~ Absotute Value of 
SlIO) 

FCHS ~ Change Sign of SlIO) 

Transcendental 

FPTAN = Partial langent of 
SlIO) 

FPATAN =- Partial Arctangent 
of SliD) ~Slll) 

F2XMl = 2ST(0l_1 

FYL2X = Slll)'Log2 
ISlIO)l 

FYL2XPI = Slll)' Log2 
[Sl(O) +IJ 

Processor Control 

FINIT = Initialized 8087 

FEN I = Enable' Interrupts 

FDISI ;:: Disable Interrupts 

FLDCW = Load Control Word 

FSTCW = Store Control Word 

FSTSW .;;= Store Status Word 

FCLEX = Clear Exceptions 

ESCAPE 0 0 1 

ESCAPE 0 0 

ESCAPE 0 0 

ESCAPE 0 0 1 

ESCAPE 0 

ESCAPE 

ESCAPE 

1 1 1 1 0 1 0 0 

o 0 0 0 

o 000 

Opllonal 
8,16 Bit 

Displacement 

11110~ 

o 0 

o 0 0 0 

o 0 Ot] L-________ __ __________ ~ 

ESCAPE o I 1 1 o 

ESCAPE o 

ESCAPE o 0 0 0 

ESCAPE 1 0 o 0 '; I 
L-E_S_C_A_P_E_O __ O_--'_M_O_O _____ R_I_M __ ...JI ~ ~?I~~~~ 

ESCAPE 0 0 MOD R/M=-:J ~ ~~I~~ ~ ~: 

I ~ ~ ~I~~~ ~ L-__________ J-____________ ~ ESCAPE o MOD RIM 

~.A __ P_E ______ ~ __ I __ I ____ 0 ___ 0 __ 0 __ ' __ 0__' 

FLDENV = Load EnVIronment I ESCAPE 0 0 MOD 0 RIM r- DISP -L-__________ ~ ______________ ~ 

FSAVE = Save State 

FRSTOR .= Restore State 

FINCSTP = Increment Slack 
Pointer 

FDECSTP = Decrement Stack 
Pointer 

~CAPE o MOD RIM 

[E$CAPEiO---;r MOD 0 RIM [~?~~ ~.~ L-__________ ~ ____________ ___ 

ESCAPE 0 1 1 o 1 1 1 

ESCAPE 0 0 'E' o l--yy] 

2-203 

Clock Count Range 

27-55 

10-17 

10-17 

30-540 

250-800 

310-630 

900-1100 

700-1000 

2-8 

2-8 

2-8 

7-14 + EA 

12-18 +EA 

12-18 + EA 

2-8 

40-50 + EA 

35-45 +EA 

197-207+EA 

197-207+EA 

6-12 

6-12 

205835-19 



intJ '. , 
8087 

TabfeS_ 8087 ExtensIons to the 88/188 Instructions sets (Continued) 

Pl"REE - Free STlil ESCAPE 1 0 1 I 1 1 0 0 0 STlil I 
F.,oP - No Operation ESCAPE b 0 1 I 1 1 0 1 0 0 0 0 

..wAIT = CPU W8M for 8087 1 0 0 1 1 0 1 1 I 
,On", number of times CPU examines TEST line before 8087 lowers SUSY. 

NoTES: 
1. if mod '" 00 then OISP '" 0·, disp-Iow and disp-high are absent 

. if mod = ()1 then OISP '" disp-Iow Sign-extended to 16-bits, disp-high is absent 
if mod = 10 then OISP '" dlsp-hlgh; disp-Iow 

, . If mod '" 11 then rim Is treated as an STeil field 
a If rim "'.000 then EA '" (SX) + (SI) + OISP 

.' .if rim = 001 then EA '" (SX) + (01) + OISP' 
" 'It~/m = 010 then EA '" (SP) + (SI) + OISP 

jf rIm = 011 then EA = (SP) + (01) + OISP 
If rim = 1.00 then EA = (SI) + OISP 
if rim = 101 then EA '" (01) + OISP 
If rim = 110 then EA = (SP) + OISP 
if rim'" 111 then EA = (SX) + OISP 
°except If mod. = 000 and rim = 110 then EA '" disp-high; disp-Iow. 

3. MF = Memory Format ' 
00-32-bit Real 
01-32-bit Integer 
10-64-bit Real 
11-16-bit Integer 

4, ST(O) = Current stack top 
STO) =. ith register below stack top 

5 .. d= Destination 
o-Oestination is ST(O) 
1-Destination Is STO) 

6.P'" Pop 
o-Nopop 
1-PopST(0) 

'l. R '" Reverse: When d = 1 reverse the sense of R 
0-4)estination (op) Source 
1-8ource (op) Destination e. 'For FSQRT: -0 s: ST(O) s: + co 

For FSCALE: -215 s: ST(1) < +215 and ST(1) Intager 
For F2XM1: 0 S:.ST(O) s: 2-1 -
For FYL2X: 0 < ST(O) < co 

-co < ST(1) < + co 
For FYL2XP1: OS: IST(O)I < (2 - V2)/2 

-co < ST(1) < co 
For FPTAN: 0 s: ST(O) s: 7r/4 
For FPATAN: 0 s: ST(O) < ST(1) < + co 

2-204 

Clock Count Ran •• 

9-16 

10-16 

3+5n-

205835-20 



• 

• 
• 
• 

82C84A 
CHMOS CLOCK GENERATOR AND DRIVER 

FOR 80C86, 80C88 PROCESSORS 
Generates the System Clock for the • Generates System Reset Output from 
80C86, 80C88 Processors: Schmitt Trigger Input 

82C84A·5 for 5 MHz • Capable of Clock Synchronization with 
82C84A for 8 MHz other 82C84As 

Pin Compatible with Bipolar 8284A * • Low Power Consumption 
Uses a Crystal or an External • Single 5V Power Supply 
Frequency Source 

Provides Local READY and MUL TIBUS® • TTL Compatible Inputs/Outputs 

READY Synchronization • Available In 18·Lead Plastic DIP 
(See Packaging Spec., Order #231369) 

The Intel 82C84A is a high performance CHMOS clock generator-driver designed to service the requirements 
of the 80C86/88 and 8086/88. Power consumption is a fraction of that of equivalent bipolar circuits. The chip 
contains a crystal controlled oscillator, a divide-by-three counter and complete READY synchronization and 
reset logic. Crystal controlled operation up to 15, 25 MHz utilizes a parallel, fundamental mode crystal and two 
small load capacitors. 

"The Bipolar 8284A requires two load resistors and a resonant crystal. 

~-----------~ ~--; 

X1 

lC2 

F/C----T-II>----l....J 

EFI----------l....J 
CSYNC ------------~_-++_---' 

RDY1 

MYNC-----~------J 

82C84A Block Diagram 

CSYNC 

PCLK 

AEN1 3 

RDYl 

READY 

RDY2 

mI2 

REseT 

osc 

PClK 

ClK 

READY 

VCC 

Xl 

X2 

ASYNC 
EFI 

FIe­

OSC 

RES 
RESET 

82C84A 18-Lead 
DIP Configuration 

2-205 

Control Logical 1 Logical 0 
Pin 

FIC External Crystal 
Clock Drive 

RES Normal Reset 

RDY 1 Bus Ready Bus not 
RDY2 ready 

AEN 1 Address Address 
AEN2 Disabled Enabled 

ASYNC 1 Stage Ready 2 Stage Ready 
Synchronization Synchronization 

82C84A Pin Description 

231198-2 

August 1987 
Order Number: 231198-004 



intJ 82C84A 

Table 1. Pin Description 

Symbol Type Name and Function 

AEN1, I ADDRESS ENABLE: AEN is an active lOW signal. AEN serves to qualify 
AEN2 its repective Bus Ready Signal (RDY1 or RDY2). AEN1 validates RDY1 

, while AEN2 validates RDY2. Two AEN signal inputs are useful in system 
configurations which permit the processor to access two Multi-Master 
System Busses. In non Multi-Master configurations the AEN signal inputs 
are tied true (lOW). 

RDY1, I BUS READY: (Transfer Complete). RDY is an active HIGH signal which 
RDY2 is an indication from a device located on the system data bus that data 

has been received, or is available. RDY1 is qualified by AEN1 while 
RDY2 is qualified by AEN2. 

AS,(NC I READY SYNCHRONIZATION SELECT: ASYNC is an input which 
defines the synchronization mode of the READY logic. When ASYNC is 
lOW, two stages of READY synchronization are provided. When ASYNC 
is left open (an internal pull-up is provided) or HIGH a single stage of 
READY synchronization is provided. 

READY a READY: READY is an active HIGH signal which is the synchronized RDY 
signal input. READY is cleared after the guaranteed hold time to the 
processor has been met. 

X1, X2 I CRYSTAL IN: X1 and X2 are the pins to which a crystal is attached. The 
crystal frequency is 3 times the desired processor clock frequency. (If no 
crystal is attached, then X1 should be tied to Vee or GND and X2 should 
be left open.) 

F/C I FREQUENCY /CRYSTAL SELECT: F IC is a strapping option. When 
strapped lOW, FIG permits the processor's clock to be generated by the 
crystal. When FIG is strapped HIGH, ClK is generated from the EFI 
input. 

EFI I EXTERNAL FREQUENCY: When F/C is strapped HIGH, ClK is 
generated from the input frequency. appearing on this pin. The input 
signal is a square waVe 3 times the frequency of the desired ClKoutput. 
When FIG is strapped lOW, EFI should be tied HIGH or lOW. 

ClK a PROCESSOR CLOCK: ClK is the clock output used by the processor 
and ail devices which directly connect to the processor's local bus (i.e., 
the bipolar support chips and other MaS devices). ClK has an output 
frequency which is % of the crystal or EFI input frequency and a % duty 
cycle. 

PClK a PERIPHERAL CLOCK: PClK is a TTL level peripheral clock signal 
whose output frequency is % that of ClK and has a 50% duty cycle. 

OSC a OSCILLATOR OUTPUT: OqC is the TTL level output of the internal 
oscillator circuitry. Its frequency is equal to that of the crystal. 

RES I RESET IN: RES is an active lOW signal which is used to generate 
RESET. The 82C84A provides a Schmitt trigger input so that an RC 
connection can be used to establish the power-up reset of proper 
duration. 

2-206 



82C84A 

Table 1 Pin Description (Continued) 

Symbol Type Name and Function 

RESET 0 RESET: RESET is an active HIGH signal which is used to reset the 
80C86/88 family processors. Its timing characteristics are 
determined by RES. . 

CSYNC I CLOCK SYNCHRONIZATION: CSYNC is an active HIGH signal 
which allows multiple 82C84A's to be synchronized to provide clocks 
that are in phase. When CSYNC is HIGH the internal counters are 
reset. When CSYNC goes lOW the internal counters are allowed to 
resume counting. CSYNC needs to be externally synchronized to EFI. 
When using the internal oscillator CSYNC should be hardwired to 
ground. 

GND GROUND. 

Vee POWER: + 5V supply. 

FUNCTIONAL DESCRIPTION 

Oscillator 

The oscillator circuit of the 82C84A is designed· pri­
marily for use with an external parallel resonant, fun­
damental mode crystal from which the basic operat­
ing frequency is derived. 

The crystal frequency should be selected at three 
times the required CPU clock. X1 and X2 are the two 
crystal input crystal connections. For themoststa­
ble operation of the oscillator (OSC) output circuit, 
two capacitors (C1 = C2) as shown in the waveform 
figures are recommended. The output of the oscilla­
tor is buffered and brought out on OSC so that other 
system timing signals can be derived from this sta­
ble, crystal-controlled source. 

Capacitors C1, C2 are chosen such that their com­
bined capacitance: 

CT = C1 • C2 (Including stray capacitance) 
C1 + C2 

matches the load capacitance as specified by the 
crystal manufacturer. This insures operation .within 
the frequency tolerance specified by the crystal 
manufacturer. 

Clock Generator 

The clock· generator consists of a synchronous di-. 
vide-by-three counter with a special clear input that 
inhibits the counting. This clear input (CSYNC) al­
lows the output clock to be synchronized with an 
external event (such as another 82C84A clock). It is 
necessary to synchronize the CSYNC input to the 
EFI clock external to the 82C84A. This is accom-

plished with two Schottky flip-flops. The counter out­
put is a 33% duty cycle clock at one-third the input 
frequency. 

The F lc input is a strapping pin that selects either 
the crystal oscillator or the EFI input as the clock for 
the + 3 counter. If the EFI input is selected as the 
clock source, the oscillator section can be used in­
dependently for another clock source. Output is tak­
en from OSC. 

Clock Ou~puts 

The ClK ouputis a33% duty cycle. MOS clock driv­
er designed to dl-ive the 80C86/S8 processors di­
rectly. PClK is a TIL level peripheral clock signal 
whose output frequency is % that of ClK. PClK has 
a 50% duty cycle. 

Reset. Logic 

The reset logic provides a Schmitt trigger input 
(RES) and a synchronizing flip-flop to generate the 
reset timing. The reset signal is synchronized to the 
falling edge of ClK. A simpleRC network can be 
used to provide power-on reset by utilizing this func-
tion of the 82C84A. . 

READY Synchronization 

Two READY inputs (RDY1, RDY2) are provided to 
accommodate two Multi-Master system busses. 
Each input has a qualifier (AEN1 and AEN2, respec­
tively). The AEN signals validate their respective 
RDY signals; If a Multi-Master system is not being 
used the AEN pin should be tied LOW. 

2-207 



82C84A 

Synchronization is required for all asynchronous ac­
tive-going edges of either ROY il'lput to guarantee 
that the ROY setup and holdtirnes are met. Ina:ctive­
going edges of ROY in normally. ready systems do 
not require synchronization but must satisfy. ROY 
setup and hold as a matter of proper system design. 

The ASYNC input defines two' modes of READY 
synchronization operation. 

When ASYNC i.s lOW,. two stages of synchroniza­
tionare Provided for active READY input signals. 
Positive-going asynchronous READY inputs will first 
be synchronized to flip-flop one at the rising edge of 
CLK and then synchronized to flip-flop two at the 
next falling edge of ClK, after which time the 
READY output will go active (HIGH). Negative-going 
asynchronous READY inputs will be synchronized 

CLOCK 
SYNCHRONIZE >-+----+-1 D 

EFI 

Q 

directly to flip-flop two at the falling edge of ClK, ' 
after which time the READY output will 1;10 inactive. 
This mode of operation is intended for uSe by asyn­
chronoulil (normally not ready) devices in the system 
which cannot be guaranteed by design to meet the re­
quired ROY setup timing, T R1VCL, on each bus cycle. 

When ASYNC is HIGH, the first READY flip-flop is 
bypassed in the READY synchronization logic. 
READY inputs are synchronized by flip-flop two on 
the falling edge of ClK before they are presented to 
the processor. This mode is available for synchro­
nous devices that can be guaranteed to meet the 
required ROY setup time. 

ASYNC can be changed on every bus cycle. to se­
lect the appropriate mode of synchronization for 
each device in the system. 

D 
Q 

(TO OTHER 82C84AI) 231198-3 

Figure 3. CSYNC Syn.chronlzatlon 

ABSOLUTE MAXIMUMRATINGS* 

Supply Voltage .................... -0.5V to 7.0V 

Input Voltage Applied ........ -0.5VtoVcc + 0.5V 

Output Voltage Applied ...... -0.5V to Vcc + 0.5V 

Storage Temperature .......... - 65'C to + 150'C 

Ambient Temp. Under Bias .......... O'C to + 70'C 

Power Dissipation .............. , ........ 1.0 Watt 

"Notice: Stresses above those listed under ':04bso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating on/yand 
functional operation of the device at these or any 
other conditions above those indicated in the opera­
tional sections of this specification is not implied Ex­
posure to absolute maximum rating conditions for 
extended periods may affect device reliability. 

D.C. CHARACTERISTICS (TA =O'Cto +70'C, Vee = .5V ±10%) 

Symbol Parameter Min Max Units Test Conditions 

Icc Operating Supply Current 82C84A 10 mA 25 MHz xtal, CL = 0 

82C84A-5 10 mA 15 MHz xtal, CL = 0 

Iccs Stand By Supply Current (Note 1) 100 p.A 

III Input ASYNC 10 p.A ASYNC = VCC 
leakag.e Only -130 p.A ASYNC =GND 
Current . 

±1.0 p.A OV :S;. VIN :s; Vcc (Note 2) All Other Pins 



82C84A 

D.C. CHARACTERISTICS (Continued) 

Symbol Parameter Min Max Units Test Conditions 

VIL Input LOW Voltage 0.8 V 

VIH Input HIGH Voltage 2.2 VCC + 0.5 V 

VIHR Reset Input HIGHVoitage 0.6Vcc V 

VOL Output LOW Voltage 0.4 V CLK: IOL = 4 mA 
Others: IOL = 2.5 mA 

VOH Output HIGH Voltage 
VCC - 0.4 

V CLK: IOH = -4 mA 
V Others: IOH = - 2.5 mA 

VIHR"VILR RES Input Hysteresis: 82C84A 0.15 V 
82C84A-5. 0.25 V 

CIN Input Capacitance 7 pF freq = 1 MHz 

NOTES: 
1. VIH, FIC, X1 :;, Vee - O.2V; EFI = Vee or GND; ASYNC = Vee or OPEN; X2 = OPEN; VIL ~ O.2V. 
2. An internal pull-up resistor is implemented on the ASYNC input. 

A.C. CHARACTERISTICS (TA = O·Cto +70·C, VCC = 5V ±10%) 

TIMING REQUIREMENTS 

82C84A 82C84A-5 
Symbol Parameter Units Test Conditions 

Min Max Min Max 

tEHEL External Frequency HIGH Time 13 20 ns 90%-90% VIN 

tELEH External Frequency LOW Time 13 20 ns 10%-10% VIN 

tELEL EFI Period 40 66 ns (Note 1) 

XTAL Frequency 2.4 25 6.0 15 MHz 

tRWCL RDY1, RDY2 Active Setup to CLK 35 35 ns ASYNC = HIGH 

tR1VCH RDY1, RDY2 Active Setup to CLK 35 35 ns ASYNC = LOW 

tRWCL RDY1, RDY2 Inactive Setup to CLK 35 35 ns 

tcLR1X RDY1, RDY2 Hold to eLK 0 0 ns 

tAYVCL ASYNC Setup to CLK 50 50 ns 

tCLAYX ASYNC Hold to CLK 0 0 ns 

tAWRW AEN1, AEN2 Setup to RDY1, RDY2 15 15 ns 

tcLA1X AEN1, AEN2 Hold to CLK 0 0 ns 

tYHEH CSYNC Setup to EFI 20 20 ns 

tEHYL CSYNC Hold to EFI 10 20 ns 

tYHYL CSYNCWidth 2· tELEL 2· tELEL ns 

tl1HCL RES Setup to CLK 65 65 ns (Note 2) 

tCLl1H RES Hold to CLK 20 20 ns (Note 2) 

tlLlH Input Rise Time 15 15 ns (Note 1) 

tlHIL Input Fall Time 15 15 ns (Note 1) 

2-209 

.:.1.: 

III 
.~ .. ',; 
i!i 

~ , 

i .. I····.·I~···.:.··i. ill 
ii 

ii" 

i 



inter 82C84A 

A.C. CHARACTERISTICS (Continued) 

TIMING RESPONSES 

Symbol Parameter Min 82C84A Min 82C84A-5 Max Units Test Conditions 

tclCl ClK Cycle Period 125 200 ns 

tcHCl ClK HIGH Time (1/3 tclCU + 2 (%tclcu+2 ns 

tClCH ClKlOWTime (%tClCU-15 (%tClCU-15 ns 

tCH1CH2 ClK Rise or Fall Time 10 ns 1.0Vto 3.5V 
tcL2Cl1 

tPHPl PClK HIGH Time tClCl -20 tClCl -20 ns 

tplPH PClK lOW Time tClCl -20 tClCl -20 ns 

tRYlCl Ready Inactive to 
ClK (Note 4) -8 -8 ns 

tRYHCH Ready Active to ClK 
(Note 3) (% tCLCU-15 (%tclcu-15 ns 

tCLIL ClK to Reset Delay 40 ns 

tClPH ClK to PClK HIGH DELAY 22 ns 

tClPL ClK to PClK lOW Delay 22 ns 

felCH OSC to ClK HIGH Delay -5 -5 22 ns 

felCl OSC to ClK lOW Delay 2 2 35 ns 

tOlOH Output Rise Time 
(except ClK) 15 ns FromO.8V to 2.0V 

tOHOL Output Fall Time 
(except ClK) 15 ns From 2.0V to 0.8V 

NOTES: 
1. Transition between VIL!max) - O.4V and VIH(min) + O.4V. 
2. Setup and hold necessary only to guarantee recognition at next clock, 
3. Applies only to T3 and TW states. 
4. Applies only to T2 states. 

A.C. TESTIN.G INPUT, OUTPUT WAVEFORM 

INPUT OUTPUT 

3-___ TE_ST_PO_I_NT_S_---'£ 
231198-4 

A.C. TESTING.: ALL INPUT SIGNALS MUST SWITCH BETWEEN 
0.45V AND 2.4V. T RISE AND T FAll MUST BE S; 15 ns. 
ALL TIMING MEASUREMENTS ARE MADE AT 1.5V. 

A.C. TESTING LOAD CIRCUIT 

..., VL = IoftV 

IlL = 7400 FOR AU OUTPUTS 
EXCEPT, eLK 

DEVICE 4130 fOR CLOCK OUTPUT 
UNDER ---1 TEST 

I C' 

231198-5 
Cl = 100 pF FOR CL~ 
Cl= 30 pF FOR READY 
CL INCLUDES PROBE AND JIG CAPACITANCE 

2-210 



inter 
WAVEFORMS 

CLOCKS AND RESET SIGNALS 

NAME 
EFl 

Ole 

NOTE: 

82C84A 

ALL TIMING MEASUREMENTS ARE MADE AT 1.5V, UNLESS OTHERWISE NOTED. 

READY SIGNALS (FOR ASYNCHRONOUS DEVICES) 

elK 

ROY1,2 

READY 

tRYHCH 

2·211 

1'1"" 
I.· •.•. 
" 

'.' •. ".'.' ~ 
:~ 

231198-6 

231198-7 



82C84A 

WAVEFORMS. (Continued) 

READY SIGNALS (FOR SYNCHRONOUS DEVICES) 

eLK 

RDY1,2 

READY 

IRYLCL 

231198-8 

Xl ClK 
24MHzCJ 

X2 

FIe rC1 reI CSYNC 

':" ":" 
231198-9 

Clock High and Low Time (Using X1, X2) 

..... --01 EFI CLK t----i 

Vee 

CSYNC 

231198-10 

Clock High and Low nme (Using EFt) 

2·212 



inter 

NOTES: 
1. Cl = 100 pF 
2,Cl=30pF 

82C84A 

Vee 

Jrnfl ClK 

Xl 
24MHz CJ READY 

X2 

RDY2 osc 
Fie 

AEN2 
CSYNC 

Ready to Clock (Using X1, X2) 

i--1P----I EFI ClK t----i 

F/~ 

1mi1 
t----IRDY2 

imI2 
CSYNC READYt---.... 

Ready.to Clock (Using EFI) 

231198-11 

231198-12 

DATA SHEET REVISION REVIEW 2. Test conditions for Iccs (stand by supply current) 
were clarified in Note 1. 

The following list represents key differences be­
tween this and the October 1986 (order no. 231198-
003) data sheet. Please review this summary. 

1. A diagram of the PlCC package was deleted. 

3. tcU1H(RES Hold to ClK) for82C84A changed 
from 10 ns to 20 ns to reflect current testing. 

4. For the "Clocks and Reset Signals" diagram, all 
timing measurements voltages changed to 1.5V 
from 0.8V and 2.0V. 

2-213 



inter 
82C88 

CHMOSBUSCONTROLLER 

• Pin Compatible, with Bipolar 8288 • 3-State Command Output Drivers 

• Provides Support for 8086/88, " • High Drive Capability 
80C86/88 • Conflgurablefor Use with an I/O Bus 

• Low Power Operation • Single 5V Power Supply 
-Iccs = 100 p.A 
-Icc = 10 mA • 8 MHz Operation 

-82C88-2 • Provides Advanced Commands for 
Multi-Master Busses 

The Intel 82C88-2 is a high performance CHMOS version of the 8288 bipolar bus controller. The 82C88-2 
provides command and control timing generatio!1 for 8086 architecture' systems. Static CHMOS circuit design 
ensures low operating power. The 82C88-2 high output drive capability eliminates the need for additional bus 
drivers. 

*NOTE: 
In this data sheet. all references to 8086 or 8086 architecture include: 8086/88 and 80c86/88. 

, , 

{
SO-

ST: !I-
S2-

{

CLK-

CONTROL liEN-­
INPUT CEN 

108-

STATUS 
DECODER 

CONTROL 
LOGIC 

COM· 
MANO 

SIGttAL 
GENER· 
ATOR 

CONTROL 
SIGNAL 
GENER· 
ATOR 

+5V GND 

MROCl MWTC' , 

. AMWC '~ULTI8U·S. 
lORe J COMMAND iiiiYc SIGNALS 

AiliWC 
iNTA , 

QT/A 

DEN l ADDRESS LATCH. D~TA 
TRAttSCEIVER, AND 

MCElPiiEN /'NTERRUPT CONTROL 
ALE SIGNALS , 

240027-1 

Figure 1. Block Diagram 

2-214 

lOB Vce 
CLK SO 

51 52 
DT/R MCEIPDEN 

ALE DEN 

Wi eEN ' 

. MRDc INTA 

,AMWC iOiiC 
M,WTC 'AIQWC 

GND iOWC 
240027-2 

Figure 2a. 82C88-2 2D-Lead 
DIP Configuration 

September 1918 
Order Number: 240027-002 



inter 82C88 

Table 1. Pin Description 

Symbol Type Name and Function 

Vce POWER: + 5V supply. 

GND GROUND. 

So,S1,~ I STATUS INPUT PINS: These pins are the status input pins from the BOB6 or BOBB 
processors. The B2CBB·2 decodes these inputs to generate command and control 
Signals at the appropriate time. When these pins are not in use (passive) they are all 
HIGH. (See chart under Command and Control Logic.) Internal pull·up resistors hold 
these lines HIGH when no other driving source is present. 

CLK I CLOCK: This is a clock signal from the B2CB4A clock generator and serves to establish 
when command and control signals are generated. 

ALE 0 ADDRESS LATCH ENABLE: This signal serves to strobe an address into the address 
latches. This signal is active HIGH and latching occurs on the falling (HIGH to LOW) 
transition. ALE is intended for use with transparent 0 type latches. 

DEN 0 DATA ENABLE: This signal serves to enable data transceivers onto either the local or 
system data bus. This signal is active HIGH. 

DTIR 0 DATA TRANSMIT IRECEIVE: This Signal establishes the direction of data flow through 
the transceivers. A HIGH on this line indicates Transmit (write to 110' or memory) and a 
LOW indicates Receive (Read). 

AEN I ADDRESS ENABLE: AEN enables command outputs of the B2CBB·2 Bus Controller at 
least T AELCV after it becomes active (LOW). AEN going inactive immediately. 3-states the 
command output drivers. AEN does not affect the 1/0 command lines if the B2CBB-2 is in 
the 110 Bus mode (lOB tied HIGH). 

CEN I COMMAND ENABLE: When this Signal is LOW all B2CBB-2 command outputs and the 
DEN and PDEN control outputs are forced to their inactive state. When this signa! is 
HIGH, these same outputs are enabled. 

lOB. I INPUT 10UTPUT BUS MODE: When the lOB is strapped HIGH the B2CBB-2 functions in 
the 110 Bus mode. When it is strapped LOW, the B2CBB-2 functions in the System Bus 
mode. (See sections on 110 Bus and System Bus modes). 

AIOWC 0 ADVANCED I/O WRITE COMMAND: The AIOWC issues an 1/0 Write Command earlier 
in the machin.e cycle to give 110 devices an early indication of a write instruction. Its 
timing is the same as a read command signal. AIOWC is active LOW. 

iOWC 0 I/O WRITE COMMAND: This command line instructs an 110 device to read the data on 
the data bus. This Signal is active LOW. 

10RC 0 I/O READ COMMAND: This command line instructs an 110 device to drive its' data onto 
the data bus. This signalis active LOW. 

AMWC 0 ADVANCED MEMORY WRITE COMMAND: The AMWC issues a memory write 
command earlier in the machine cycle to give memory devices an early indication of a 
write instruction. Its timing is the same as read command signal. AMWC is activ~ LOW. 

MWTC 0 MEMORY WRITE COMMAND: This command line instructs the memory to record the 
data present on the data bus. This sigrial is active LOW. 

MRDC 0 MEMORY READ COMMAND: This command line instructs the memory to drive its data Ii 
onto the data bus. This signal is active LOW. 

INTA 0 INTERRUPT ACKNOWLEDGE: This command line tells an interrupting device that its 
interrupthas been acknowledged arid that .it should drive vectoring information onto the 
data bus. This Signal is active LOW. 

MCE/PDEN 0 This is a dual function pin. 
MCE (lOB .IS TIED LOW): Master Cascade Enable occurs during an interrupt sequence 
and serves to read a Cascade Address from a master PIC (Priority Interrupt Controller) 
onto the data bus. The MCE signal is active HIGH. 
PDEN (lOB IS TIED HIGH): Peripheral Data Enable enables the data bus transceiver for 
the 1/0 bus that DEN performs for the system bus. PDEN is active LOW. 

2-215 



inter 82C88 

FUNCTIONAL DESCRIPTION 

Command and Control Logic 

The command logic decodes the three 8086 or 8088 
CPU status lines (So, 51, 82) to determine what 
command is to be issued: 

This chart' shows the meaning of each status 
"word". 

iS2 S1 So Processor State 82C88·2Command 

0 0 o Interrupt Acknowledge INTA 

0 0 1 Read 1/0 Port 10RC 

0 1 o Write 1/0 Port 10WC,AIOWC 

0 1 1 Halt None 

1 0 o Code Access MRDC 

1 0 1 Read Memory MRDC 

1 1 o Write Memory MWTC,AMWC 

1 1 1 Passive None 

The command is issued in one of two ways depen­
dent on the mode of the 82C88-2 Bus Controller. 

1/0 Bus Mode - The 82C88-2. is in the 1/0 Bus 
mode ifthe lOB pin is strappedHIGH. In the I/O Bus 
mode all 1/0 command lines (IORC, 10WC, AIOWC, 
INTA) are always enabled (i.e., not dependent on 
AEN)~ When an 1/0 command is initiated by the 
processor, the 82C88-2 immediately ~tivates .the 
command Jines, using PDEN and DT IR to control 
the I/O bus transceiver. The 1/0' command lines 
should not be used to control the System bus in thi.s 
configuration because no arbitration is present. This 
mode allows one 82C88-2 Bus Controller to handle 
two external busses. No waiting is involved when the 
CPU wants to'gain access to the 1/0 bus. Normal 
memory access requires a "Bus Ready" signal (AEN 
LOW) before it will prOceed. It is advantageous to 
use the lOB mode if 1/0 or peripherals dedicated to 
one processor exist in a multi-processor system. 

System Bus Mode - The 82C88-2 in the System 
Bus mode if the lOB pin is strapped LOW. In this 
mode no command .is issued until T AELCV after the 
AEN Line is activated (LOW). This mode assumes 
bus arbitration logic will inform the bus controller (on 
the AEN . line) when the bus is free for use. Both 
memory and 1/0 commands waitfor bus arbitration. 
This mode is used when only one bus exists. Here, 
both 1/0 and memory are shared by more than one 
processor. 

COMMAND OUTPUTS 

The advanced write commands are made available 
to initiate write procedures early in the machinecy­
cle. This signal canpe used to prevent the proces­
sor from entering an unnecessary wait state. 

The. command outputs are: 
MRDe - Memory Read Command 

. MWTC- Memory Write Command 
iO'RC -1/0 Read Command 
lOWe -'- I/0Write Command 
AMWe - Advanced Memory Write Command 
AIOWe - Advanced I/O Write Command 
INTA - Interrupt Acknowledge 

INTA (Interrupt Acknowledge) acts as an I/O read 
during an interrupt cycle. Its purpose is to inform an 
interrupting device that its interrupt is being acknowl­
edged and that it should place vectoring information 
onto the data bus. 

CONTROL OUTPUTS 

The control outputs of the 82C88-2 are Data Enable 
(DEN), Data Transmit/Receive (DT IR) and Master 
Cascade Enable/Peripheral Data Enable (MCEI 

. PDEN).TheOEN signal determines when the exter­
nal bus should be enabled onto the local bus and 
the DT IR determines the direction of data transfer. 
These two signals usually go to the chip select and 
direction pins of, a transceiver. 

The MCE/PQEN pin changes function with the two 
modes of the 82C88-2. When the 82C88-2 is in the 
lOB mode (lOB HIGH) the PDEN signal serves as a 
dedicated data enable signal for the I/O or Peripher­
al ,System bus. 

INTERRUPT ACKNOWLEDGE AND MCE 

The MCE Signal is used during an interrupt acknowl­
edge cycle if the 82C88-2 is in the System Bus mode 
(lOB LOW). During any interrupt sequence there are 
two interrupt acknowledge cycles that occur back to 
back. During the first interrupt cycle no data or ad­
dress transfers take place. Logic should be provided 
to mask off MCE during this cycle, Just before the 
second cycle begins the MCE signal gates a master 
Priority Interrupt Controller's (PIC) cascade address 
onto the processor's. local bus where ALE (Address 
Latch ~nable) strobes it into the address latches. On 
the leading edge of the second interrupt cycle the 
addressed slave PIC gates an interrupt vector onto 
the system data bus where it is read by the proces­
sor. 

if the system contains only one PIC, the MCE signal 
is not used. In this case the second interrupt Ac-



intJ 82C88 

ABSOLUTE MAXIMUM RATINGS* 

Temperature Under Bias .............. O·C to 70·C 

Storage Temperature .......... - SS·C to + 1S0·C 

Supply Voltage 
with Respect to GND .......... -O.SV to + 7.0V 

All Input Voltages 
with Respect to GND ...... -O.SV to Vcc + O.SV 

All Output Voltages 
with Respect to GND ...... -O.SV to Vcc + O.SV 

Power Dissipation ......................... 0.7W 

• Notice: Stresses above those listed under "Abso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and 
functional operation of the device at these or any 
other conditions above those indicated in the opera­
tional sections of this specification is not implied Ex­
posure to absolute maximum rating conditions for 
extended periods may affect device reliability. 

D.C. CHARACTERISTICS (Vcc = SV ±10%, TA = 0·Ct070·C) 

Symbol Parameter Min Max Unit Test Conditions 

Icc Operating Supply Current 10 mA Cl = 0 pF 
tClCl = 200 ns 

Iccs Standby Supply Current 100 p.A Outputs Unloaded (Note 1) 

VIH Input High Voltage 2.2 Vcc + 0.3 V 

Vil Input Low Voltage -0.3 0.8 V 

VCH VIH for Clock, &>, S1, S2 3.0 Vcc + 0.3 V 

VCl Vil for Clock, SO, S1, S2 -0.3 0.8 V 

'll Input Leakage Current ±10 p.A OV :;; VIN :;; Vec (Note 2) 

ILO Output Leakage Current ±10 p.A OV :;; VOUT:;; Vcc 

IllS Status Input Current -100 10 p.A OV:;; VIN:;; Vcc 

VOL Output Low Voltage: 
Command Outputs O.S V IOl = 20mA 
Control Outputs O.4S IOL = 8mA 

VOH Output High Voltage: 
Command Outputs 3.7 V IOH = -8mA 
Control Outputs 3.7 IOH = -4mA 

CIN Input Capacitance 7 pF 
Freq. = 1 MHz 
Unmeasured pins at GND 

COUT Output Capacitance 1S pF 
Freq. = 1 MHz 
Unmeasured pins at GND 

NOTES: 
1. Ices test conditions are: Status inputs @ Vee. other inputs @ Vee or GND. Outputs open. 
2. Except SO. S1. S2· 

knowledge signal gates the interrupt vector onto the 
processor bus. 

ADDRESS LATCH ENABLE AND HALT 

Address Latch Enable (ALE) occurs during each ma­
chine cycle and serves to strobe the current address 
into the address latches. ALE also serves to strobe 
the status (So. S1, S2) into a latch for halt state de­
coding. 

COMMAND ENABLE 

The Command Enable (CEN) input acts as a com­
mand qualifier for the 82C88-2. If the CEN pin is high 
the 82C88-2 functions normally. If the CEN pin is 
pulled LOW, all command lines are held in their inac­
tive state (not 3-state). This feature can be used to 
implement memory partitioning and to eliminate ad­
dress conflicts between system bus devices and 
resident bus devices. 

2-217 

I 

I 



intJ 82C88 

A.C. CHARACTERISTICS (Vee = 5V ± 10%, T A = O°C to 70°C)* 

82C88-2 TIMING REQUIREMENTS 

Symbol Parameter Min Max Units Test Conditions 

fc ClK Frequency B MHz 

TCLCl ClK Cycle Period 125 ns 

TCLCH ClKlowTime 66 ns 

TCHCl ClK High Time 40 ns 

TSVCH Status Active Setup Time 35 ns 

TCHSV Status Inactive Hold Time 10 ns 

TSHCL Status Inactive Setup Time 35 ns 

TClSH Status Active Hold Time 10 ns 

82C88-2 TIMING RESPONSES 

Symbol Parameter Min Max Units Test Conditlons'-

TCVNV Control Active Delay 5 45 ns a 

TCVNX Control Inactive Delay 5 45 ns a 

TCllH ALE Active Delay (from ClK) 25 ns a 

TClMCH MCE Active Delay (from ClK) 25 ns a 

TMHNl Command to DEN Delay TClCH-5 ns DEN:a 

.. Command: b 

TSVlH ALE Active Delay (from Status) 25 ns a 

TSVMCH MCE Active Delay (from Status) 30 ns a 

TCHll ALE Inactive Delay 4 25 ns a 

TClMl Command Active Delay 5 35 ns b 

TClMH COmmand Inactive Delay 5 45 ns b 

TCHDTl Direction Control Active Delay 50 ns a 

TCHDTH Direction Control Inactive Delay 30 ns a 

TAElCH Command Enable Time 40 ns c 

TAEHCZ Command Disable Time 40 ns d 

TAElCV Enable Delay Time 100 250 ns b 

TAEVNV AEN to DEN 35 ns a 

TCEVNV CEN to DEN, PDEN 35 ns a 

TCELRH CEN to Command TCLML + 10 ns b 

TOlOH Output, Rise Time . 15 ns a, b. From O.BV to 2.2V 

TOHOl Output, Fall Time 15 ns a, b .. From 2.2V to 0.8V 
.. . .. 

"See Test Condl.tlon Definition Table . 

2-218 



intJ 82C88 

TEST LOAD CIRCUITs-a-STATE COMMAND OUTPUT TEST LOAD 

Vl 

41 

Test C,!ndltlon Definition Table 

Test 

OUTPUT FROM '. . TEST 
DEVICE 

UNDER TEST POINT 

Condition 

a 
b 

Cl-

I 
c 

d 

240027-3 
'Includes stray and jig capacitance 

A.C. TESTING INPUT, OUTPUT WAVEFORM 

J.S +- TEST POINTS -+ 1·C 
A.C. Testing: 
Input rise and fall times are: 
5 ns ± 2 ns between 0.8V and 2.2V for AEN. CEN and lOB 
8 ns ±2 ns between 0.8V and 3.0V for 50.51. 52 and elK. 

2-219 

Vl,v Rl,n 

2.13 220 

2.29 91 

1.5 187 

1.5 187 

240027-4 

Cl,pf 

80 

150 

150 

50 

:1 

1,1··'.:.:,·'·,·:··.·'·' 

I' 
I', 

, 
.,'\ 

,.', 



inter 
WAVEFORMS 

STAT\! 

CLK 

ADDRI"'DATA 

ALI 

I 
I 

I I'!mitAEAD 
(INTA I 

DENfWRITE I 

I'DlIiItWAITE I 

NOTES: 

I 
) 

DTlllt"EA' 
(tNTA 

MCI 

~T4 

v-\ 
J 

TCHSY-

'\ 

TCLLH_ 

TCHDTH-.... _k:: ----
---- J 

TCLMCH-

82C88 

T, T2----I---T3~ --T.~ 

-TCLCLn i--TCLCH-h Lr n 
I "---.I ---1 '---- TSYCM I- TCHCL- 1-1-; - TSHCL I-- J TCLS: , 

r'\ 

ADOA WRITE 0 YALID DATAVALID 

r rTlVLl~--TCHLL 

fr 
- -TCLMH 

\ 
r'\ 

- -TCLML - I--TCLML , 
1\ I 

- -fCYNY 

J '\ 
TCYNX- -

\ V 
1\ I 

TCVNV- I--

V \ 
/ i\ 

- I-TCYNX 

V 
I 

1 V 
I 

- TCHDTL 

if v@ \ TCHDTH- -II 
r- -- r-- TCVN)( 

I--TSYMCH 

240027-5 

1. Address/Data Bus is shown only for reference purposes. 
2. Leading edge of ALE and MCE is determined by the falling edge of ClK or Status going active, whichever occurs last. 

2-220 



82C88 

WAVEFORMS (Continued) 

DEN, PDEN QUALIFICATION TIMING 

CIN 
\ 
J 

lIII \V 
II\. 

!---TAIVNY-

DIN 
\V \V 
11\ 11\ 

!--TCEYNY_ 

- \V 
II\. 

ADDRESS ENABLE (AEN) TIMING (3-STATE ENABLE/DISABLE) 

OUll'UT <D 
COMMAND 

CEN 

NOTES: 

\I-:--TAELCV-

1\ 
TAELC'!I 

VOH 

f \ 

/ 
If 

TCELAH-

V 
J 

.. TCELRH 

I\. -

I 

=:1 
\.. 

CEN must be low or valid prior to T2 to prevent the command from being generated. 
1. All Command outputs when in system bus mode, MRDe, MWTC, and AMWC when in liD .bus mode. 

Data Sheet Revision Review 

240027-6 

240027-7 

The following represents key differences between this and the previous 82C88. (Order No. 231199-004) data 
sheet. Please review. 

1. This component has been redesigned from 5 MHz to 8 MHz for higher performance. 

2-221 



8237A 
HIGH PERFORMANCE 

PROGRAMMABLE DMA CONTROLLER 
(8237 A, 8237 A-4, 8237 A-S) 

• Enable/Disable Control of Individual • Directly Expandable to Any Number of 
DMA Requests Channels 

• Four Independent DMA Channels • End of Process Input for Terminating 

• Independent Autoinitialization of All Transfers 

Channels • Software DMA Requests 

• Memory-to-Memory Transfers • Independent Polarity Control for DREQ 

• Memory Block Initialization and DACK Signals 

• Address Increment or Decrement • Available in EXPRESS 
- Standard Temperature Range 

• High Performance: Transfers up to 
Available in 40-Lead Cerdip and Plastic 1.6M Bytes/Second with 5 MHz 8237A-5 • Packages 
(See Packaging Spec, Order # 231369) 

The 8237A Multimode Direct Memory Access (DMA) Controller is a peripheral interface circuit for microproc­
essor systems. It is deSigned to improve system performance by allowing external devices to directly transfer 
information from the system memory. Memory-to-memory transfer capability is also provided. The 8237A 
offers a wide variety of programmable control features to enhance data throughput and system optimization 
and to allow dynamic reconfiguration un~er program control. 

The 8237 A is designed to be used in conjunction with an external 8-bit address latch. It contains four indepen­
dent channels and may be expanded to any number of channels by cascading additional controller chips. The 
three basic transfer modes allow programmability of the types of DMA service by the user. Each channel can 
be individually programmed to Autoinitialize to its original condition following an End of Process (EOP). Each 
channel has a full 64K address and word count capability. 

The 8273A-4 and 8237A-5 are 4 MHz and 5 MHz versions of the standard 3 MHz 8237A respectively. 

,.,. 
"ESET 

"'.IV 

ADST8 .... ..... ... 
lOW 

Ofl(oo- 4 
OMEG3 

DACKO_ 4 
OACKS 

Figure 1. Block Diagram . 

2-222 

COMMAND 
CO!llTROL 

231466-1 

.. ... 
Vcc(+SV) 

'BO 
'" '" 

'" 
231466-2 

Figure 2. Pin 
Configuration 

October 1987 
Order Number: 231466-003 



inter 8237A 

Table 1. Pin Description 

Symbol Type Name and Function 

Vee . POWER: +5V supply. 

Vss GROUND: Ground. 

ClK I CLOCK INPUT: Clock Input controls the internal operations of the 
8237 A and its rate of data transfers. The input may be driven at up 
to 3 MHz for the standard 8237 A and up to 5 MHz for the 8237 A-5. 

CS I CHIP SELECT: Chip Select is an active loW input used to select 
tile 8237A as an 1/0 device during the Idle cycle. This allows CPU 
communication on the data bus. 

RESET I RESET: Reset is an active high input which clears the Command, 
Status,Request and Temporary registers. It also clears the first! 
last fliplflop and sets the Mask register. Following a Reset the 
device is in the Idle cycle. 

READY I READY: Ready is an input used to extend the memory read and 
write pulses from the 8237 A to accommodate slow memories or 
1/0 peripheral devices. Ready must not make transitions during its 
specified setuplhold time. 

HlDA I HOLD ACKNOWLEDGE: The active high Hold Acknowledge from 
the CPU .indicates that it has relinquished control of the system 
busses. 

DREQO-DREQ3 I '. DMA REQUEST:The DMA·Request lines are individual 
. asynchronous channel request inputs used by peripheral circuits to 
obtain DMA service. In fixed Priority, DREQO has the highest . 
prioijty and DREQ3 has. the lowest priority. A request is generated 
by activating the DREQ Itne of a channel. DACK will acknowledge 
the recognition of DREQ signal. Polarity of DREQ is 
programmable. Reset initializes these lines to active high. DREQ 

.must be maintained until the corresponding DACK goes active. 

DBO-DB7 1/0 DATA BUS: The Data Bus lines are bidirectional three-state ! 

signals connected to the system data bus. The outputs are 
enabled in the Program condition during the 1/0 Read to output 
the contents of an Address register. a Status register, the 
Temporary register or a Word Count register to the CPU. The 
outputs are disabled and the inputs are read during an 1/0 Write 
cycle when the CPU is programming the 8237 A control registers. 
During DMA cycles the most significant 8 bits of the address are 
output onto the data bus to be strobed into an external latch by 
ADSTB. In memory-to-memory operations, data from the memory 
comes into the 8237 A on the data bus during the read-from-
memory transfer. In the write-to-memory transfer, the data bus·: 
outputs place the data into the new memory location. 

iOR 1/0 1/0 READ: 110 Read is a bidirectional active low three-state line. \ 
In the Idle cycle,.it is an input control signal used by the CPU to 
read the control registers. In the Active cycle, it is an output control 
signal used by the8~37 A to access data from a peripheral during a 
DMA Write transfer. 

lOW 1/0. JlO WRITE: 1/0 Write is a bidirectional active low three-state line. 
In the Idle cycle, it is an input control signal used by the CPU to 
load information into the 8237 A. In the Active cycle, it is an output 
control signal used by the 8237 A to load data to the peripheral 
during a DMA Read transfer. 

2-223 



inter 8237A 

Table 1. Pin Description (Continued) 

Symbol Type Name and Function 

EOP I/O END OF PROCESS: End of Process is an active low bidirectional 
signal. Information concerning the completion Of DMA services is 
available at the bidirectionalEOP pin. The 8237 A allows an 
external signal to terminate an active DMA service. This is ' 
accomplished by pulling the EOP input low with an external EOP 
signal. The 8237 A also generates a pulse when the terminal count 
(TC) for any channel is reached. This generates an EOP Signal 
which is output through the EOP line. The reception of EOP, either 
internal or external, will cause the 8237 A to terminate the service, 
reset the request, 'and, if AutOinitialize is enabled, to write the base 
registers to the current registers of that channel. The mask bit and' 
TC bit in the statu~ word will be set for the currently active channel 
by EOP unless the channel is programmed for Autoinitialize,. In that 
case, the mask bit remains unchanged. During memory-to-memory 
transfers, EOP will be output when the TC for channel 1 occurs. 
EOP should be tied high with a pull-up resistor if it is not used to 
prevent erroneous end of process inputs. 

AO-A3 I/O ADDRESS: The four least significant address lines are 
bidirectional three-state Signals. In the Idle cycle they are inputs 
and are used by the CPU to address the register to be loaded or 
read. In the Active cycle they are outputs and provide the lower 4 
bits of the output address. 

A4-A7 0 ADDRESS: The four niost significant address lines are three-state 
outputs and provide 4 bits of address. These lines are enabled 
only during the DMA service. 

HRC! 0 HOLD REQUEST: This i~ the Hold Request to the CPU and is 
used to request control of the system bus. If the corresponding 
mask bit is clear, the 'presence of any valid DREQ causes 8237 A to 
issue the HRQ. 

DACKO-DACK3 0 DMA AC,KNOWLEDGE: DMAAcknowledge is used to notify the 
individual peripherals when one has been granted a DMA cycle. 
The sense of these lines is programmable. Reset initializes them 
to active low. 

AEN 0 ADDRESS ENABLE: Address Enable enables the 8-bit latch 
containing the upper 8 address bits onto the system address bus. 
AEN can also be used to disable other system bus drivers during 
DMAtransfers. AEN is active HIGH. 

ADSTB .0 ADDRESS STROBE: The active high, Address Strobe is used to 
strope the upper address byte into an external latch. 

, MEMR 0 MEMORY READ: The Mernory Read signal is an active low three-
state output used to access data from the selected memory 
location during a DMA Read or a memory-to-memory transfer. 

MEMW 0 MEMORY WRITE:TheMemory Write is an active low three-state 
output used to write data to the selected memory location during a 
DMA Write or a ":lemory-to"memory transfer. 

PIN5 I PIN5: This pin should always be at a logic HIGH level. An internal 
pull-up resistor will establish a logic high when the pin is left 

. floating. It is recommended however, that PIN5be connected to 
Vee· 

2-224 



inter 8237A 

FUNCTIONAL DESCRIPTION 

The 8237 A block diagram includes the major logic 
blocks and all of the internal registers. The data in­
terconnection paths are also shown. Not shown are 
the various control signals between the blocks. The 
8237 A contains 344 bits of internal memory in the 
form of registers. Figure 3 lists these registers by 
name and shows the size of each. A detailed de­
scription of the registers and their functions can be 
found under Register Description. 

Name Size Number 

Base Address Registers 16 bits 4 
Base Word Count Registers 16b~s 4 
Current Address Registers 16 bits 4 
Current Word Count Registers 16b~s 4 
Temporary Address Register 16 bits 1 
Temporary Word Count Register 16 bits 1 
Status Register a bits 1 
Command Register a bits 1 
Temporary Register a bits 1 
Mode Registers 6 bits 4 
Mask Register 4 bits 1 
Request Register 4 bits 1 

Figure 3. 8237 A Internal Registers 

The 8237 A contains three basic blocks of control 
logic. The Timing Control block generates internal 
timing and external control signals for the 8237 A. 
The Program Command Control block decodes the 
various commands given to the 8237 A by the micro­
processor prior to servicing a DMA Request. It also 
decodes the Mode Control word used to select the 
type of DMA during the servicing. The Priority En­
coder block resolves priority contention between 
DMA channels requesting service simultaneously. 

The Timing Control block derives internal timing 
from the clock input. In 8237 A systems, this input 
will usually be the 4>2 TIL clock from an 8224 or 
ClK from an 8085AH or 8284A. 33% duty cycle 
clock generators, however, may not meet the clock 
high time requirement of the 8237 A of the same fre­
quency. For example, 82C84A-5 ClK output violates 
the clock high time requirement of 8237 A-5. In this 
case 82C84A ClK can simply be inverted to meet 
8237 A-5 clock high and low till1e requirements. For 
8085AH-2 systems above 3.9 MHz, the 8085 
ClK(OUT) does not satisfy 8237 A-5 clock lOW and 
HIGH time requirements. In this case, an external 
clock should be used to drive the 8237 A-5. 

DMA OPERATION 

The 8237 A is designed to operate in two major cy­
cles. These are called Idle and Active cycles. Each 
device cycle is made up of a number of states. The 
8237 A can assume seven separate states, each 
composed of one full clock period. 5tate I (51) is the 
inactive state. It is entered when the 8237 A has no 

valid DMA requests pending. While in 51, the DMA 
controller is inactive but may be in the Program Con­
dition, being programmed by the processor. 5tate 
50 (50) is the first state of a DMA service. The 
8237 A has requested a hold but the processor has 
not yet returned an acknowledge. The 8237 A may 
still be programmed until it receives HlDA from the 
CPU. An acknowledge from the CPU will Signal that 
DMA transfers may begin. 51, 52, 53 and 84 are the 
working states of the DMA service. If more time is 
needed to complete a transfer than is available with 
normal timing, wait states (8W) can be inserted be­
tween 82 or 83 and 84 by the use of the Ready line 
on the 8237 A. Note that the data is transferred di­
rectlt.!r.Qm the 1/0 device to memory ~Wvice versa) 
with TOR and MEM"W (or MEMR and I ) being ac­
tive at the same· time. The data is not read into or 
driven out of the 8237 A in I/O-to-memory or memo­
ry-to-I/O DMA transfers. 

Memory-to-memory transfers require a read-from 
and a write-to-memory to complete each transfer. 
The states, which resemble the normal working 
states, use two digit numbers for identification. Eight 
states are required for a Single transfer. The first four 
states (811, 812, 513, 814) are used for the read­
from-memory half and the last four states (821, 522, 
523, 524) for the write-to-memory half of the trans­
fer. 

IDLE CYCLE 

When no channel is requesting service, the 8237 A 
will enter the Idle cycle and perform "51" states. In 
this cycle the 8237A will sample the DREQ lines ev­
ery clock cycle to determine if any channel is re-
9!!.esting a DMA service. The device will also sample 
C5, looking for an attempt by the microprocessor to 
write or read the internal registers of the 8237 A. 
When C8 is low and HlDA is low, the 8237A enters 
the Program Condition. The CPU can now establish, 
change or inspect the internal definition of the part 
by reading from or writing to the internal registers. 
Address lines AO-A3 are inputs to the device and 
select which registers will be read or written. The 
lOR and lOW lines are used,to select and time reads 
or writes. Due to the number and size of the internal 
registers, an internal flip-flop is used to generate an 
additional bit of address. This bit is used to deter­
mine the upper or lower byte of the 16-bit Address 
and Word Count registers. The flip-flop is reset by 
Master Clear or Reset. A separate software com­
mand can also reset this flip-flop. 

Special software commands can be executed by the 
8237 A in the Program Condition. These commands 
are decoded as sets of addresses with the C5 and 
lOW. The commands do not make use of the data 
bus. Instructions include Clear First/last Flip-Flop 
and Master Clear. 

2-225 

II , 
'{,I 



inter 8237A 

ACTIVE CYCLE 

When the 8237A is in the Idle cycle and a non­
masked channel requests a DMA service, the device 
will outputan.HRQ to the microprocessor and enter 
the Active cycle; It is in .this cycle that the DMA serv­
ice will take place, in one of four modes: 

Single Transfer Mode-In. Single Transfer mode 
the device is programmed to make one transfer only. 
The word count will be decremented .andthead­
drE;lss decremented or incremented following each 
transfer. When.the word count "rolls over" from zero 
to FFFFH, a Terminal Count (TC) will cause an Auto­
initialize if the channel has been programmed to do 
so. 

DREQ must be held active until DACK becomes ac­
tive in order to be recognized. If. DREQ is held active 
throughout the single transfer, HRQ will go inactive 
and release the bus to the system. It will again go 
active and, upon receipt of a new HLDA, another 
single transfer will be performed. In 8080A, 8085AH, 
8088, or 8086 system,. this will ensure one full ma­
chine cycle execution between DMA transfers. De­
tails of timing between the 8237 A and other bus 
control protocols will depend upon the characteris­
tics of the microprocessor involved. 

Block Transfer Mode-In Block Transfer mode the 
device is activated by DREQ to con~inue making 
transfers during the service until a TC, caused by 
word count going to FFFFH, or an external End of 

Process (EOP) is encountered. OREQ need only be 
held active until DACK becomes active. Again, an 
Autoinitialization will occu~ at the· end of the service 
if the channel has been programmed for it. 

Demand Transfer Mode-In Demand Transfer 
mode the device is programmed to continue making 
transfers until a TC or external. EOPis encountered 
or until DREQ goes inactive. Thus transfers may 
continue until. the 1/0 device. has exhausted its data 
capacity. After the 1/0 device has had a chance to 
catch up, the DMA service is re-established by 
means of a DREQ. During the time between services 
when the microprocessor is allowed to operate, the 
intermediate values of address and word count are 
stored. in the 8237A Current Address and Current 
Word Count registers. Only an EOP can cause an 
Autoinitialize at the end of the service. EOP is gener­
ated either by TC or by an external signal. DREQ 
has to be low before S4 to prevent another Transfer. 

Cascade Mode-This mode is used to cascade 
more than one 8237 A together for simple system 
expansion. The HRQ and HLDA signals from the ad­
ditional 8237Aare connected to the DREQ and 
DACK Signals of a channel of the initial 8237A. This 
allows the DMA requests of the additional d.evice to 
propagate through the priority network circuitry of 
the precedIng device. The priority chain is preserved 
and the new device must wait for its turn to acknowl­
edge requests. Since the cascade channel of the 
initial 8237 A is used only for prioritizing the addition­
al device, it does not output any address or control 

2ND LEVEL 

1ST LEVEL 8237A 
MICROPROCESSOR 

1- HRQ OREQ 1-

r-- HLOA OACK r--

8237A 

OREO 1-
OACK r---

INITIAL OEVICE 

Figure 4. Cascaded 8237 As 

2-226 

HRQ 

HLOA 

\ 

HRQ 

HLOA 

8237A 

ADOITIONAL 
DEVICES 

231466-3 



8237A 

signals of its own. These could conflict with the 9ut­
puts of the active channel in the added device. The 
8237 A will respond to DREQ and DACK but all other 
outputs except HRQ will be disabled. The ready in­
put is ignored. 

Figure 4 shows two additional devices cascaded into­
an initial device using two of the previous channels. 
This forms a two level DMA system. More 8237 As 
could be added at the second level by using the 
remaining channels of the first level. Additional de­
vices can also be added by cascading into the chan­
nels of the second level device, forming a third level. 

TRANSFER TYPES 

Each of the three active transfer modes can perform 
three different types of transfers. These are Read, 
Write and \(erify. Write transfers move data from an 
I/O device to the memory by activating MEMW and 
lOR. Read transfers move data from memory to an 
I/O device by activating MEMR and lOW, Verify 
transfers are pseudo transfers. The 8237 A operates 
as in Read or Write transfers generating addresses, 
and responding to EOP, etc. However, the memory 
and I/O control lines all remain inactive. The ready 
input is ignored in verify mode. 

Memory-to-Memory-To perform block moves of 
data from one memory address space to another 
with a minimum of program effort and time, the 
8237 A includes a memory-to-memory transfer fea­
ture. Programming a bit in the Command register 
selects channels 0 and 1 to operate as memory-to­
memory transfer channels. The tra-nsfer is initiated 
by setting the software DREQ for channel O. The 
8237 A requests a DMA service in the normal man­
ner. After HLDA is true, the device, using four state 
transfers in Block Transfer mode, reads data from 
the memory. The channel 0 Current Address register 
is the source for the address used and is decrement­
ed or incremented in the normal manner. The data 
byte read from the memory is stored in the 8237 A 
internal Temporary register. Channel 1 then per­
forms a four-state transfer of the data from the Tem­
porary register to memory using the address in its 
Current Address register and incrementing or decre­
menting it in the normal manner. The channel 1 cur­
rent Word Count is decremented. When the word 
count of channel 1 goes to FFFFH,a TC is generat­
ed causing an EOP output terminating the service. 

Channel 0 may be programmed to retain the same 
address for all transfers. This allows a single word to 
be written to a block of memory. 

The 8237A will respond to external EOP signals dur­
ing memory-to-memory transfers. Data comparators 
in block search schemes may use this input to termi­
nate the service when a match is found. The timing 
of memory-to-memory transfers is found in Figure 
12. Memory-to-memory operations can be detected 
as an active AEN with no DACK outputs. 

Autoinitialize-By programming a bit in the Mode 
register, a channel may be set up. as an Autoinitialize 
channel. During Autoinitialize initialization, the origi­
nal values of the Current Address and Current Word 
Count registers are automatically restored from the 
Base Address and Base Word count registers of that 
channel following EOP. The base registers are load­
ed simultaneously with the current registers by the 
microprocessor and remain unchanged throughout 
the DMA service. The mask bit is not altered when 
the channel is in Autoinitialize. Following Autoinitial­
ize the channel is ready to perform another DMA 
service, without CPU intervention,as soon as a valid 
DREQ is detected. In order to Autoinitialize both 
channels in a memory-to-memory transfer, both 
word counts should be programmed identically. If in­
terrupted externally, EOP pulses should be applied 
in both bus cycles. 

Priority-The 8237 A has two types of priority en­
coding available as software selectable options. The 
first is Fixed Priority which fixes the channels in pri­
ority order based upon the descending value of their 
number. The channel with the lowest priority is 3 
followed by 2, 1 and the highest priority channel, O. 
After the recognition of anyone channel for service, 
the other channels are prevented from interfering 
with that service until it is completed. 

After completion of a service, HRQ will go inactive 
and the 8237A will wait for HLDA to go low before 
activating HRQ to service another channel. 

The second scheme is Rotating Priority. The last 
channel to get service becomes the lowest priority 
channel with the others rotating accordingly.· 

highest 

lowest 

18t 
Service 

2nd 
Se .. lce 

3rd 
Se .. lc. 

o 2 .--service \3...__servlce 
1..--servic8, ,3~request 0 

2 ,0 1 
3 1 2 

231466-4 

2-227 



inter 8237A 

With Rotating Priority in a Single chip DMA system, 
any device requesting service is guaranteed to be 
recognized after no more than three higher priority 
services have occurred. This prevents anyone 
channel from monopolizing the system. 

Compressed Timing-In order to achieve even 
greater throughput where system characteristics 
permit, the 8237 A can compress the transfer time to 
two clock cycles. From Figure 11 it can be seen that 
state S3 is used to extend the access time of the 
read pulse. By removing state S3, the read pulse 
width is made equal to the write pulse width and a 
transfer consists only of state S2 to change the ad­
dress and state S4 to perform the read/write. S1 
states will still occur when A8-A15 need updating 
(see Address Generation). Timing for compressed 
transfers is found in Figure 14. 

Address Generation-In order to reduce pin count, 
the 8237 A multiplexes the eight higher order ad­
dress bits on the data lines. State S1 is used to out­
put the higher order address bits to an external latch 
from which they may be placed on the address bus. 
The falling edge of Address Strobe (ADSTB) is used 
to load these bits from the data lines to the latch. 
Address Enable (AEN) is used to enable the bits 
onto the address bus through a three~state enable. 
The lower order address bits are output by the 
8237A directly. Lines AO-A7 should be connected 
to the address bus. Figure 11 shows the time rela­
tionships betweenCLK, AEN, ADSTB, DBO-DB7 
and AO-A7. 

During Block and Demand Transfer mode services, 
which include multiple transfers, the addresses gen­
erated will be sequential. For many transfers the 
data held in the external address latch will remain 
the same. This data need only change when a carry 
or borrow from A7 to A8 takes place in the normal 
sequence of addresses. To save time and speed 
transfers, the 8237A executes S1 states only when 
updating of A8-A 15 in the latch is necessary. This 
means for long services, S1 states and Address 
Strobes may occur only once every 256 transfers, a 
savings of 255 clock cycles for each 256 transfers. 

REGISTER DESCRIPTION 

Current Address Register-Each channel has a 
16-bit Current Address register. This register holds 
the value of the address used during DMA transfers. 
The address is automatically incremented or decre­
mented after each transfer and the intermediate val­
ues of the address are stored in the Current Address 
register during the transfer. This register is written or 
read by the microprocessor in successive 8-bit 
bytes. It may also be reinitialized by an Autoinitialize 
back to its original value. Autoinitialize takes place 
only after an EOP. 

Current Word Register-Each channel has a 16-
bit Current Word Count register. This register deter­
mines the number of transfers to be performed. The 
actual number of transfers will be one more than the 
number programmed in the Current Word Count reg­
ister (Le., programming a count of 1 00 will result in 
101 transfers). The word count is decremented after 
each transfer. The intermediate value of the word 
count is stored in the register during the transfer. 
When the value in the register goes from zero to 
FFFFH, a TC will be generated. This register is load­
ed or read in successive 8-bit bytes by the micro­
processor in the Program Condition. Following the 
end of a DMA service it may also be reinitialized by 
an Autoinitialization back to its ori~nal value. Auto­
initialize can occur only when an E P occurs. Ifit is 
not Autoinitialized, this register will have a count of 
FFFFH after TC. 

Base Address and Base Word Count Registers­
Each channel has a pair of Base Address and Base 
Word Count registers. These 16-bit registers store 
the original value of their associated current regis­
ters. During Autoinitialize these values are used to 
restore the current registers to their original values. 
The base registers are written simultaneously with 
their corresponding current register in 8-bit bytes in 
the Program Condition by the microprocessor. 
These registers cannot be read by the microproces­
sor. 

Command Register-This 8-bit register controls 
the operation of the 8237 A. It is programmed by the 
microprocessor in the Program Condition and is 
cleared by Reset or a Master Clear instruction. The 
following table lists the function of the command 
bits. See Figure 6 for address coding. 

Mode Register-Each channel has a 6-bit Mode 
register associated with it. When the register is being 
written to by the microprocessor in the Program 
Condition, bits 0 and 1 determine which channel 
Mode register is to be written. 

Request Register-The 8237 A can respond to re­
quests for DMA service which are initiated by soft­
ware as well as by a DREQ. Each channel has a 
request bit associated with it in the 4-bit Request 
register. These are nori-maskable and subject to pri­
oritization by the Priority Encoder network. Each reg­
ister bit is set or reset separately under software 
control or is cleared upon generation of a TC or ex­
ternal EOP. The entire register is cleared by a Reset. 
To set or reset a bit, the software loads the proper 
form of the data word. See Figure 5 for register ad­
dress coding. In order to make a software request, 
the channel must be in Block Mode. 

2-228 



inter 8237A 

Command Register 

7 8 5 4 3 2 1 0' -+--Blt Number 

II I I I I I II I 

Mode Register 

y~ Memory·ta-memory disable 
Memory·ta-memory enable 

~-{! Chennel 0 address hold disable 
Channel 0 address hold enable 
I! bit 0=0 

0 Controlier enable 
1 Controlier disable 

10 Normal timing 

I ~ Compressed timing 
I! bit 0=1 

10 Flxad priority 
I 1 Rotating priority 

10 L.atewrlte selection 

I ~ 
Extended write selection 
If bit 3= 1 

0 OREQ sense active high 
, 1 DREQ sense active low 

f 0 DACK sense active low 
1 OACK sense active high 

231466-5 

00 Verify transfer 
01 Write transfer 

'-----{ 10 Read transfer 
11 Illegal 
XX I! bits 6 and 7=11 

o Autoinitialization disable 
1 AutOinitialization enable 

o Address increment select 
1 Address decrement select 

00 Demand mode select 
'--'--_____ --{ 01 Single mode select 

10 Block mode select 
11 Cascade mode select 

231466-6 

Request Register 

7 8 5 4 3 2 1 0 _Bit Number 

I I I I I I I J J - ~ L{ 00 Select channel 0 
O,on', Care 01 Select channell 

10 Select channel 2 
11 Select channel 3 

'--_--\f 0 Reset request bit 
1 Set request bit 

231466-7 

Mask Register-Each channel haS associated with 
it a mask bit which can be set to disable the incom­
ing DREQ. Each mask bit is set when its associated 
channel produces an EOP if the channel is not pro­
grammed for Autoinitialize. Each bit of the 4-bit 
Mask register may also be set or cleared separately 
under software control. The entire register is also set 
by a Reset. This disables all DMA requests until a 
clear Mask register instruction allows them to occur. 
The instruction to separately set or clear the mask 
bits is similar in form to that used with the Request 
register. See Figure 5 for instruction addressing. 

7 8 II 4 3 2 1 O~BItNumber 

I I I I I I I I I 
Don't care L{ 00 Select channel 0 mask bit 

, '01 Select channell maSk bit 
10 Select channel 2 mask bit 
11 Select channel 3 mask bit 

'--__ -{f 0 Clear mask bit 
" Set mask bit 

231466-8 

, All four bits of the Mask register may also be written 
with a single command. 

Register 

Command 
Mode 
Request 
Mask 
Mask 
Temporary 
Status 

,0 Clear channel 0 mask bit 
1 Set channel 0 mask bit 

o Clear channel 1 mask bit 
1 Set channell mask bit 

'--__ -{ 0 Clear channel 2 mask bit 
I Set channel 2 mask bit 

'--___ -{ 0 Clear channel 3 mask bit 
I Set channel 3 mask bit 

231466-9 

Operation 
Signals 

CS lOR lOW A3 A2 A1 AO 

Write 0 1 0 1 0 0 0 
Write 0 1 0 1 0 1 1 
Write 0 1 0 1 0 0 1 
Set/Reset 0 1 0 1 0 1 0 
Write 0 1 0 1 1 1 1 
Read 0 0 1 1 1 0 1 
Read 0 0 1 1 0 0 0 

.. Figure 5. Deflmtlon of Register Codes 

, Status Register-The Status register is available to 
be read out of the 8237A by the microprocessor. It 
contains information about the status of the devices 
at this pOint. This information includes which chan­
nels have reached a terminal count and which chan-

2-229 



intJ 8237A 

r,....:--.-'=-r..:..;-'-.-=--r-'-...,;O--,~ Bit Number 

nels have pending DMA requests. Bits 0-3 are set 
every time a TC is reached by that channel or an 
external EOP is applied. These bits are cleared upon 
Reset and on each Status Read. Bits 4-7 are set 
whenever their corresponding channel is requesting 
service. 

Temporary Register-The Temporary register is 
used to hold data during memory-to-memory trans­
fers. Following the completion of the transfers, the 
last word moved can be read by the microprocessor 
in the Program Condition. The Temporary register 
always contains the last byte transferred in the previ­
ous memory-to-memory operation, unless cleared 
by a Reset. 

Software Commands-These are. additional spe­
cial. software commands which can be executed in 
the Program Condition. They do not depend on any 
specific bit pattern on the data bus. The three soft­
ware commands are: 

Signals 

A3 A2 A1 AO lOR 
1 0 0 0 0 

1 0 0 0 1 
1 0 0 1 0 

1 0 0 1 1 

1 0 1 0 0 

1 0 1 0 1 

1 0 1 1 0 

1 0 1 1 1 

1 1 0 0 0 

1 1 0 0 1 

1 1 0 1 0 

1 1 0 1 1 

1 1 1 0 0 

1 1 1 0 1 

1 1 , 1 1 0 

1 1 1 1 1 

Channel 0 has reached TC 
Channel 1 has reached TC 
Channel2 has reached TC 
Chennel 3 has reached TC 

Chennel 0 request 
Chennel 1 request 
Channel 2 request 
Channel 3 request 

231466-10 

Clear First/Last Flip-Flop: This command must be 
executed prior to writing or reading new address 
or word count information to the 8237 A. This ini­
tializes the flip-flop to a known state so that sub­
sequent accesses to register contents by the mi­
croprocessor will address upper and lower bytes 
in the correct sequence. 

Master Clear: This software instruction has the 
same effect as the hardware Reset. The Com­
mand, Status, Request, Temporary, and Internal 
First/Last Flip-Flop registers are cleared and the 
Mask register is set. The 8237 A will enter the Idle 
cycle. 

Clear Mask Register: This command clears the 
mask bits of all four channels, enabling them to 
accept DMA requests. 

Figure 6 lists the address codes for the software 
commands. 

lOW 
Operation 

1 Read Status Register 

0 Write Command Register 

1 Illegal 

0 Write Request Register 

1 Illegal 

0 Write Single Mask Register Bit 

1 Illegal 

0 Write Mode Register 
1 Illegal 

0 Clear Byte Pointer Flip/Flop 

1 Read Temporary Register 

0 Master Clear 

1 Illegal 

0 Clear Mask Register 
1 Illegal 

0 Write All Mask Register Bits 

Figure 6. Software Command Codes 



inter 8237A 

Channel Register Operation 
Signals Internal Data Bus 

CS lOR lOW A3 A2 A1 AO Flip-Flop DBO-DB7 

0 Base and Current Address Write 0 1 0 0 0 0 0 0 AO-A7 
0 1 0 0 0 0 0 1 A8-A15 

Current Address Read 0 0 1 0 0 0 0 0 AO-A7 
0 0 1 0 0 0 0 1 A8-A15 

Base and Current Word Count Write 0 1 0 0 0 0 1 0 WO-W7 
0 1 0 0 0 0 1 1 W8-W15 

Current Word Count Read 0 0 1 0 0 0 1 0 WO-W7 
0 0 1 0 0 0 1 1 W8-W15 

1 Base and Current Address Write 0 1 0 0 0 . 1 0 0 AO-A7 
0 1 0 0 0 1 0 1 A8-A15 

Current Address Read 0 0 1 0 0 1 0 0 AO-A7 
0 0 1 0 0 1 0 1 A8-A15 

Base and Current Word Count Write 0 1 0 0 0 1 1 0 WO-W7 
0 1 0 0 0 1 1 1 W8-W15 

Current Word Count Read 0 0 1 0 0 1 1 0 WO-W7 
0 0 1 0 0 1 1 1 W8-W15 

2 Base and Current Address Write 0 1 0 0 1 0 0 0 AO-A7 
0 1 0 0 1 0 0 1 AS-A15 

Current Address Read 0 0 1 0 1 0 0 0 AO-A7 
0 0 1 0 1 0 0 1 AS-A15 

Base and Current Word Count Write 0 1 0 0 1 0 1 0 WO-W7 
0 1 0 0 1 ,0 1 1 W8-W15 

Current Word Count Read 0 0 1 0 1 0 1 0 WO-W7 
0 0 1 0 1 0 1 1 W8-W15 

3 Base and Current Address Write 0 1 0 0 1 1 0 0 AO-A7 
0 1 0 0 1 1 0 1 AS-A15 

Current Address Read 0 0 1 0 1 1 0 0 AO-A7 
0 0 1 0 1 1 0 1 AS-A15 

Base and Current Word Count Write 0 1 0 0 1 1 1 0 WO-W7 
0 1 0 0 1 1 1 1 W8-W15 

Current Word Count Read 0 0 1 0 1 1 1 0 WO-W7 
0 0 1 0 1 1 1 1 W8-W15 

Figure 7. Word Count and Address Register Command Codes 

2·231 



inter 8237A 

PROGRAMMING 

The 82:37A will accept programming from the host 
processor any time that HLDA is. inactive; this is true 
even if HRQ is active. The responsibility of the host 
is to assure that programming and HLDA are mutual­
ly exclusive. Note that a problem can occur if a DMA 
request. occurs, on an unmasked channel while the 
82:37 Ais being programmed. For instance, the CPU 
may be starting to reprogram the two byte A~dress 
register of channel 1 when channel 1 receives a 
DMA request. If the 82:37 Ais enabled (bit 2 in the 
commahd register is 0) and channel 1 is unmasked, 
a DMA service will occur after only one byte of· the 
Address. register has been reprogrammed. This can 
be avoided by disabling the controller (setting bit 2 in 
the command register) or masking the channel be­
fore programming any other registers. Once the pro­
gramming is complete, the controller can be en­
abled/ unmasked. 

After power-up it is suggested that all internal lo~a­
tions, especially the Mode registers, be load~d with 
some valid value. This should be done even If some 

channels are unused. An invalid mode may force all 
control signals to go active at the same time. 

APPLICATION INFORMATION (Note 1) 

Figure 8 shows a convenient method for configuring 
a DMA system with the 82:37 A controller and a~ 
8080Al8085AH microprocessor system. The multl­
mode DMA controller issues a HRQ to the processor 
whenever there is at least one valid DMA request 
from a peripheral device. When the processor re­
plies with a HLDA signal, the 8237Atakescontrol of 
the address bus, the data bus and the control bus. 
The address for the first transfer operation comes 
out in two bytes-'-the least significant .8 bits on the 
eight address outputs and the most significant 8 bits 
on the data bus. The contents of the data bus are 
then latched into an 8-bitlatch to complete the full 
16 bits of the address bus. The 8282 is a high 
speed, 8-bit, three-state latch .in. a 20-pin pac~age; 
After the initial transfer takes place, the latch IS up­
dated only after a carry or borrow is generated in the 
least significant address byte. Four DMA channels 
are provided when one 8237 A is used. 

ADDRESS BUS AO-A15 -> 

AI-A15 

r--- .... In! 

I 
..... 

.... ITlATCII 

I 
ST8 

AO-A15 'EN AO-A3 A4-A7 m; ADSTI 
BUSEN r--

..h 
HLOA 1237. D"· HLDA 

~ ~ D87 

i ~ r; i ~ HOLD HAQ 
" ~ ~ u 
u l! 

CPU ; 

J I t"f CLOCK 

AESEl 

MEMR 

MEMW 
}CONTAOL. 

8US lOA -
DBO-DB7 

~ 

SYSTEM DATA BUS .) 

231466-11 

Figure 8. 8237A System Interface 

NOTE: 
1. See Application Note Ap·67 for 8086 design information. 

2-232 



8237A 

ABSOLUTE MAXIMUM RATINGS* 

Ambient Temperature under Bias ...... O·C to 70·C 

Case Temperature ................. O·C to + 75·C 

Storage Temperature .......... - 65·C to + 150·C 

Voltage on Any Pin with 
Respect to Ground .............. - 0.5V to + 7V 

Power Dissipation ....................... 1.5 Watt 

D.C. CHARACTERISTICS 

• Notice: Stresses above those listed under "Abso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and 
functional operation of the device at these or any 
other conditions above those indicated in the opera­
tional sections of this specification is not implied Ex­
posure to absolute maximum rating conditions for 
extended periods may affect device reliability. 

TA = O·C to 70·C, TeAsE = O·C to 75·C, Vee = +5.0V ±5%, GND = OV 

Symbol Parameter Min 
Typ 

Max Unit Test Conditions 
(Note 1) 

VOH Output High Voltage 2.4 V IOH = -200J.LA 

3.3 V IOH = -100 J.LA (HRQ Only) 

VOL Output LOW Voltage 0.40 V IOL':" 3.2 mA 

VIH Input HIGH Voltage 2.0 Vee + 0.5 V 

VIL Input LOW Voltage -0.5 0.8 V 

III Input Load Current ±10 J.LA OV ~ VIN ~ Vee 

ILO Output Leakage Current ±10 J.LA 0.45V ~ VOUT ~ Vee 

lee Vee Supply Current 110 130 mA TA = +25·C 

130 150 mA TA = O·C 

Co Output Capacitance 4 8 pF 

CI Input Capacitance 8 15 pF fc = 1.0 MHz, Inputs = OV 

CIO 1/0 Capacitance 10 18 pF 

NOTE: 
1. Typical values are for T A = 25"e, nominal supply voltage and nominal processing parameters. 

2-233 

" 

:1 

II 
'I 
j' 

i,i: 
;'1 



inter 8237A 

A.C. CHARACTERISTICS-DMA (MASTER) MODE 
T A = ooe to 7ooe, T CASE = ooe to 75°e, VCC = + 5V ± 5%, GND = OV 

Symbol Parameter 
8237A 8237A·4 8237A·5 

Unit 
Min Max Min Max Min Max 

TAEl AEN HIGH from ClK lOW (Sl) Delay Time 300 225 200 ns 

TAET AEN lOW from ClK HIGH (SI) Delay Time 200 150 130 ns 

TAFAB ADR Active to Float Delay from ClK HIGH 150 120 90 ns 

TAFC READ or WRITE Float from ClK HIGH 150 120 120 ns 

TAFDB DB Active to Float Delay from ClK HIGH 250 190 170 ns 

TAHR ADR from READ HIGH Hold Time TCY-l00 TCY-l00 TCY-l00 ns 

TAHS DB from ADSTB lOW Hold Time 40 40 30 ns 

TAHW ADR from WRITE HIGH Hold Time TCY-50 TCY-50 TCY-50 ns 

TAK DACK Valid from ClK LOW Delay Time (Note 1) 250 220 170 ns 

EOP HIGH from ClK HIGH Delay Time (Note 2) 250 190 170 ns 

EOP lOW from ClK HIGH Delay Time 250 190 170 ns 

TASM ADR Stable from ClK HIGH 250 190 170 ns 

TASS DB to ADSTB lOW Setup Time 100 100 100 ns 

TCH Clock High Time (Transitions';; 10 ns) 120 100 80 ns 

TCl Clock lOW lime (Transitions';; 1 0 ns) 150 110 68 ns 

Tey ClK Cycle Time 320 250 200 ns 

TDCl ClK HIGH to READ or WRITE lOW Delay (Note 3) 270 200 190 ns 

TDCTR READ HIGH from ClK HIGH 270 210 190 ns 
($4) Delay Time (Note 3) 

TDCTW WRITE HIGH from ClK HIGH 200 150 130 ns 
(S4) Delay Time (Note 3) 

TDQl HRQ Valid from ClK HIGH Delay Time (Note 4) 160 120 120 ns 

TDQ2 250 190 120 ns 

TEPS EOP lOW from ClK lOW Setup Time 60 45 40 ns 

TEPW EOP Pulse Width 300 225 220 ns 

TFAAB ADR Float to Active Delay from ClK HIGH 250 190 170 ns 

TFAC READ or WRITE Active from ClK HIGH 200 150 150 ns 

TFADB DB Float to Active Delay from elK HIGH 300 225 200 ns 

THS HlDA Valid to elK HIGH Setup Time 100 75 75 nS 

TIDH Input Data from MEMR HIGH Hold Time 0 0 0 ns 

TIDS Input Data to MEMR HIGH Setup Time 250 190 170 ns 

TODH Output Data from MEMW HIGH Hold Time 20 20 10 ns 

TODV Output Data Valid to MEMW HIGH 200 125 125 ns 

TOS DREQ to elK lOW (SI, S4) Setup Time (Note 1) 0 0 0 ns 

TRH elK to READY lOW Hold Time 20 20 20 ns 

TRS READY to elK lOW Setup Time 100 60 60 ns 

TSTl ADSTB HIGH from elK HIGH Delay Time 200 150 130 ns 

TSTT ADSTB lOW from ClK HIGH Delay Time 140 110 90 ns 

2·234 



8237A 

A.C. CHARACTERISTICS-PERIPHERAL (SLAVE) MODE 
TA = O°C to 70°C, TCASE = O°C to 7SoC, VCC = +SV ±S%, GND = OV 

Symbol Parameter 
8237A 

Min Max 

TAR ADR Valid or CS LOW to READ LOW SO 

TAW ADR Valid to WRITE HIGH Setup Time 200 

TCW CS LOW to WRITE HIGH Setup Time 200 

TOW Data Valid to WRITE HIGH Setup Time 200 

TRA ADR or CS Hold from READ HIGH 0 

TRDE Data Access from READ LOW (Note 5) 200 

TRDF DB Float Delay from READ HIGH 20 100 

TRSTO Power Supply HIGH to RESET LOW Setup Time 500 

8237A-4 

Min Max 

50 

150 

150 

150 

0 

200 

20 100 

500 

TRSTS RESET to First IOWR 2TCY 2TCY 

TRSTW RESET Pulse Width 300 300 

TRW READ Width 300 250 

TWA ADR from WRITE HIGH Hold Time 20 20 

TWC CS HIGH from WRITE HIGH Hold Time 20 20 

TWD Data from WRITE HIGH Hold Time 30 30 

TWWS Write Width 200 200 

TWR End of Write to End of Read in DMA Transfer 0 0 

NOTES: 

8237A-5 

Min Max 

50 

130 

130 

130 

0 

140 

0 70 

500 

2TCY 

300 

200 

20 

20 

30 

160 

0 

1. OR EO and OACK signals may be active high or active low. Timing diagrams assume the active high mode. 
2. EOP is an open collector output. This parameter assumes the presence of a 2.2K pullup to Vee. 

Unit 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

3. The net lOW or MEMW Pulse width for normal write will be TCY -1 00 ns and for extended write will be 2TCY -1 00 ns. 
The net lOR or MEMR pulse width for normal read will be 2TCY - 50 ns and for compressed read will be TCY - 50 ns. 
4. TOO is specified for two different output HIGH levels. TOOl is measured at 2.0V. T002 is measured at 3.3V. The value 
for T002 assumes an external 3.3 K!l. pull-up resistor connected from HRO to Vee. 
5. Output Loading on the Oata Bus is 1 TTL Gate plus 100 pE capacitance. 

A_C. TESTING INPUT/OUTPUT WAVEFORM 

2.4=X )C 2.0 ' 2.0 . . > TEST POINTS < 
0.8 0.8 

0.45 

231466-12 
A.e. Testing: Inputs are driven at 2.4V for a Logic "'I"' and 0.45V 
for a Logic "'0."' Timing measurements are made at 2.0V for a 
Logic "'I"' and O.BV for a Logic "0."' Input timing parameters as­
sume transition times.of 20 ns or less. Waveform measurement 
pOints for both input and output signals are 2.0V for HIGH and 
O.BV for LOW, unless otherwise noted. 

2-235 



inter 8237A 

WAVEFORMS 

SLAVE MODE WRITE TIMING 

AO-A3 

DBO-DB7 

NOTE: 

1--------- TCW -------1 

r TWC 
t------------TWWS--------~ ~~--~(~NO~T~E~1~) 

t----------TAW----------~I 

INPUT VALID 

TWO 
I ...... ------'----TDW --------.-.-1 

INPUT VALID 

231466-13 

1. Successive read and lor write operations by the external processor to program or examine the controller must be 
timed to allow at least 600 ns for the 8237A, at least 500 ns for the 8237A-4, and at least 400 ns for the 8237A-5 as 
recovery time between active read or write pulses. The same recovery time is needed between an active read or write 
pulse followed by a DMA transfer. 

Figure 9_ Slave Mode Write 

SLAVE MODE READ TIMING 

cs~ 
~----------------------------------------~~ 

AO-A3~ - ADDRESS MUST BE VALID K 
I--TAR=! ______ ----p-l ~~El) 

____________ ~_~:~~~~~~~~~~~~~~~~~=~~=~~_T~R-D~E __ ~~-T_R~W~~~~~~~~~~~~i~-------~----L-----------T-RD-F------l----~ 
DBO-DB' { DATA OU.T VALID J-

231466-14 

NOTE: 
1.- Successive read and/or write operations by the external processor to program or examine the controller must be 
timed to allow at least 600 ns for the 8237A, at least 500 ns for the 8237A-4, and at least 400 ns for the 8237A-5 as 
recovery time between active read or write pulses. The same recovery time is needed between an active read or write 
pulse followed by a DMA transfer. 

Figure 10. Slave Mode Read 

2-236 



inter 8237A 

WAVEFORMS (Continued) 

DMA TRANSFER TIMING 

.LK j~UrtH~rlrLrtrlr~rt ~lt · 1'-
-j-r ~-e- "" fo---~ fo-(NOTE I, 
LLfi. ~ L\.l\'I\\\ ' , - -

qo~ ~' '00- .Ie-
~ -

.. I- I--

,iLLJ ~~~'-~ 
'-I--h 'An~ , ~ - ..!!!' 

"LOA 

A" 

Tin .-
~ 

t-- TI" 

"" , 
~ -\'~ ~ TfAN - :;,{-'j"" 

Ij r ==;-j"" i- ,- - r--'Ar:U 
, fFUI - t--r- , ... I- r T• n 

A"" 

• ........ VALI - ... 
~ l-I-r-TA .... I-T •• 

, .J .... - ~, """1- ~ TiIcmo t--- 1_ I-TA'. 
-

" , iDiiiiii ~ ~ It-

~ 
TDCTW ' TDCTW I-:::~ 

V~~· ~ """"' 
, 

~ .I""\" ---I 

H ,. ~T'=-~ .... 
I 

\\\\\\\\\\\ .¥//////////// 

iiii.iiii 

.... 
..... 

231466-15 

NOTE: 
1. DREQ should be held active until DACK is returned. 

Figure 11. DMA Transfer 

2·237 

h 
I: 
I 
I' 

" 
, 



8237A 

WAVEFORMS (Continued) 

MEMORY-TO-MEMORY TRANSFER TIMING 

ADST8 

AO-A7 

OBO-OB7 

231466-16 

Figure 12. Memory-to-MemOry Transfer 

READY TIMING 

231466-17 

Figure 13. Ready 

2-238 



intJ 8237A 

WAVEFORMS (Continued) 

COMPRESSED TRANSFER TIMING 

RESET TIMING 

elK 

AO-A1 

READY 

• TAK !: ______________________ D_K~--~~~I 

-~L . :~ ~--'----.\ .......... \\t- ---Jm 
Figure 14. Compressed Transfer 

231466-18 

r-----------------------------------~'~'-----------
Vee ______ /II-I ________ TRSTD ________ -1 

}

----TRSTW ----

RESET ___ ---J ----

lOR OR lOW 

231466-19 

Figure 15. Reset 

2-239 

' .. ~ .. : .. C. " 

I' 

') 
! 
[' •. r ., 
,~ 

I!: 
11 ,. 



inter 8237A 

DESIGN CONSIDERATIONS 

1. CssClldlng 'I'Om chsnnel zel'O. When using mul­
tiple 8237s, always start cascading with channel 
zero. Channel zero of the 8237 will operate incor­
rectly if one or more of channels 1, 2, or3 are 
used in the cascade mode while channel zero is 
used in a mode other than cascade. 

2. Do not trut the DREQ slgnsl ss sn ssynchl'O­
nous Input whIm the channel Is In the "d". 
msnd" or "casCllde" modes. ·If DREQ becomes 
inactive at any time during state 54, .an illegal 
state may occur causing the 8237 to operate im­
properly. 

3. HRQ mustremsln sct/ve until HLDA becomes 
actIve. If HRQ goes inactive before HLDA is re­
ceived the 8237 can enter an illegal state causing 
it to operate improperly .. 

4. Mske sure the MEMR# line hss 50pF loading 
cspacltsnce on It. When doing memory to mem­
ory transfers, the 8237 requires at least 50 pF 
loading capacitance on the MEMR # signal for 
proper operation. In most cases board capaci­
tance is sufficient. 

5. Treat the READY Input ss s synchl'Onous In­
put If a transition occurs during the setup/hold 
window, erratic operation may result. 

DATA SHEET REVISION REVIEW 

The following list represents. key differences. be­
tween this and the -002 data sheet. Please review 
this summary carefully. 

1. Major cleanup on the "NOTE" sections of this 
data sheet. 

a. Pin 5 no longer references a note. It is now 
included in the pin description area under the 
name "PINS". 

b. The note placed in the "typical" section of the 
. D.C. Characteristics table is now referenced to 

a note section Included with that table. 

c. Notes in the A.C. Characteristics table have 
been renumbered and are included in a notes 
section for the A.C. Characteristics. 

d. The note that was previously referenced in the 
A.C. TESTING INPUT/OUTPUT WAVEFORM 
diagram has been replaced with the actual 
note. 

e. The note that was previously referenced in the 
SLAVE MODE WRITE TIMING diagram has 
been included in· a "NOTE" section with the 
diagram. 

f. The note that was previously referenced in the 
SLAVE MODE READ TIMING diagram has 
been included in a "NOTE" section with the dia· 
gram. 

g. The note that was previously referenced in the 
DMA TRANSFER TIMING diagram has been 
included in a "NOTE" section with the diagram. 

2, .A "Design Considerations" section was added to 
. alert designers to certain design aspects Of the 
8237. 

3. The timing parameters TAR for the 8237 A~4and 
8237 A·5 have been changed from 50 ns to 0 ns. 

2·240 



intJ 
82C37A-5 

• 
• 
• 
• 
• 
• 
• 
• 

CHMOS HIGH PERFORMANCE 
PROGRAMMABLE DMA CONTROLLER 

Pin Compatible with NMOS 8237A-5 • Address Increment or Decrement 

Enable/Disable Control of Individual • High performance: 5 MHz Speed 
DMA Requests Transfers up to 1.6 MBytes/Second 

Fully Static Design with Frequency • Directly Expandable to any Number of 
Range from OCto 5 MHz Channels 

Low Power Operation • End of Process Input for Terminating 

Four Independent DMA Channels Transfers 

Independent Autoinitialization of all • Software DMA Requests 

Channels • Independent Polarity Control for DREQ 

Memory-to-Memory Transfers and DACK Signals 

Memory Block Initialization • Available In 40-Lead Plastic DIP 

The Intel 82C37 A-5 Multimode Direct Memory Access (DMA) Controller is a CHMOS peripheral interface 
circuit for microprocessor systems. It is designed to improve system performance by allowing external devices 
to directly transfer information from the system memory. Memory-to-memory transfer capability is also provid­
ed. The 82C37 A-5 offers a wide variety of programmable control features to enhance data throughput and 
system optimization and to allow dynamic reconfiguration under program control. 

The 82C37A-5 is designed to be used in conjunction with an external 8-bit address register. It contains four 
independent channels and may be expanded to any number of channels by cascading additional controller 
chips. 

The.three basic transfer modes allow programmability of the types of DMA service by the user. Each channel 
can be individually programmed to AutOinitialize to its original condition following an End of Process (EOP). 

Each channel has a full 64K address and word count capability. 

AUET 

!lEADY 

CLOCK 

OEN 

ADITI -IIIIIW 
11111 -

Figure 1. Block Diagram 

2-241 

231202-1 

September 1988 
Order Number: 231202-005 

,'" 
I.· .. : 

I 

1.: ... 

1 ...••.. 
~ 
'I 

I~ 
! ..... , •.•...• 

,. 

I 

i 

I. 
,.y' 
,I' 
'~~ 

'I ., 

II 
1,1 

11 
'I 
11 



82C37A-5 

iOA A7 

iOW AI 

MEMR AS 

MEMW A4 

PINS ~ 
READY A3 

HLDA A2 

ADSTB A1 

AEM AO 

HRQ Vcc:j+SV} 

e§ 080 

CLK 081 

RESET 082 

DACK2 D83 

DACK3. Dl4 
DAEOa DACKO 

DREQ2 DACKl 

.DREOl 085 

DREQO DIS 

IGND) v •• 087 

Figure 2. 82C37 A-5 
40-Lead DIP Configuration 

2~242 

231202-2 



inter 82C37A·5 

Table 1. Pin Description 

Symbol Type Name and Function 

Vee POWER: + S volt supply. 

VSS GROUND: Ground. 

ClK I CLOCK INPUT: Clock Input controls the internal operations of the 
82C37 A-S and its rate of data transfers. The input may be driven at 
up to S MHz for the 82C37 A-S. 

CS I CHIP SELECT: Chip Select is an active low input used to select the 
82C37.A~S as an If 0 device during the Idle cycle. This allows CPU 
communication on the data bus. 

RESET I RESET: Reset is an active high input which clears the Command, 
Status, Request and Temporary registers. It also clears the first/last 
flip-flop and sets the Mask register. Following a ,Reset the device is 
in the Idle cycle. 

READY I READY: Ready is an input used to extend the memory read and 
write pulses from the 82C37 A-S to accommodate slow memories or 
1/0 peripheral devices. Ready must not make transitions during its 
specified setuplhold time. 

HlDA I HOLD ACKNOWLEDGE: The active high Hold Acknowledge from 
the CPU indicates that it has relinquished control of the system 
busses. 

DREQO-DREQ3 I DMA REQUEST: The DMA Request lines are individual 
asynchronous channel request inputs used by peripheral circuits to 
obtain DMA service. In fixed Priority, DREQO has the highest priority 
and DREQ3 has the lowest priority. A request is generated by 
activating the DREQ line of a channel. DACK will acknowledge the 
recognition of DREQ signal. Polarity of DREQ is programmable. 
Reset initializes these lines to active high. DREQ must be 
maintained until the corresponding DACK goes active. 

DBO-DB7 1/0 DATA BUS: The Data Bus lines are bidirectional three-state signals 
connected to the system data bus. The outputs are enabled in the 
Program condition during the 1/0 Read to output the contents of an 
Address register, a Status register, the Temporary register or a 
Word Count register to the CPU. The outputs are disabled and the 
inputs are read during an 1/0 Write cycle when the CPU is 
programming the 82C37 A-S control registers. During DMA cycles 
the most significant 8 bits of the address are output onto the data 
bus to be strobed into ari external latch by ADSTB. In mel'\lory-to-
memory operations, data from the memory comes into the 
82C37 A-S on the data bus during the read-from-memory transfer. In 
the write-to-memory transfer, the data bus outputs place the data 
into the new memory location. 

iOR 1/0 1/0 READ: 1/0 Read is a bidirectional active low three-state line. In 

'I 

;j 
1

,1 , 
I 

the Idle cycle, it is an input control signal used by the CPU to read 
the control registers. In the Active cycle, it is an output control signal 
used by the 82C37 A-S to access data from a peripheral during a 
DMA Write transfer. 

lOW 1/0 1/0 WRITE: 1/0 Write is a bidirectional active low three-state line. In 
the Idle cycle, it is an input control signal used by the CPU to load 
information into the 82C37 A-S. In the Active cycle, it is an output 
control signal used by the 82C37 A-S to load data to the peripheral 
during a DMA Read transfer. 

2-243 



82C37A-5 

Table 1. Pin Description (Continued) 

Symbol Type· Name and Function 
§5f5 I/O END OF PROCESS: End of Process is an active low bidirectional 

signal. Information concerningcihe completion of DMA services is 
available at the bidirectional E P pin. The 82C37 A-5 allows an 
external signal to terminate an active DMA service. This is 
accomplished by pulling the EOP input low with an external EOP 
Signal. The 82C37 A-5 also generates a pulse when the terminal 
count (TC) for any channel is reached. This generates an EOP 
signal which is output through the EOP Line. The reception of EOP, 
either internal or external, will cause the 82C37 A-5 to terminate the 
service, reset the request, and, if Autoinitialize is enabled, to write 
the base registers to the current registers of that channel. The mask 
bit and TC bit in the status word will be set for the currently active 
channel by EQl5 unless the channel is programmed for 
Autoinitialize. In that case, the mask bit remains unchanged. During 
memory-to-memo~6~nsfers, EOP will be output when the TC for 
channel 1 occurs. should be tied high with a pull-up resistor if it 
is not used to prevent erroneous end of process inputs. 

AO-A3 Ita ADDRESS; The four least significant address lines are bidirectional 
three-state signals. In the Idle cycle they are inputs and are used by 
the CPU to address the register to be loaded or read. In the Active 
cycle they are outputs and provide the lower 4 bits of the output 
address. 

A4-A7 a ADDRESS: The four most significant address lines are three-state 
outputs and provide 4 bits of address. These lines are enabled only 
during the DMA service. 

HRQ a HOLD REQUEST: This is. the Hold Request to the CPU and is used 
to request control of the system bus. If the corresponding mask bit 
is clear, the presence of any valid DREQ causes 82C37 A-5 to issue 
the HRQ. After HRQ goes active at least one clock cycle (TCY) 
must occur before HLDA goes active. 

DACKO-DACK3 a DMA ACKNOWLEDGE: DMA Acknowledge is used to notify the 
individual peripherals when one has been granted a DMA cycle. The 
sense of these lines is programmable. Reset initializes them to 
active low. 

AEN a ADDRESS ENABLE: Address Enable enables the 8-bit latch 
containing the upper 8 address bits onto the system address bus. 
AEN can also be used to disable other system bus drivers during 
DMA transfers. AEN is active HIGH. 

ADSTB a ADDRESS STROBE: The active high, Address Strobe is used to 
strobe the upper address byte into an external latch. 

MEMR a MEMORY READ: The Memory Read signal is an active low three-
state output used to access data from the selected memory location 
during a DMA Read or a memory-to-memory transfer. 

MEMW a MEMORY WRITE: The Memory Write is an active low three-state 
output used to write data to the selected memory location during a 
DMA Write or a memory-to-memory transfer. 

PIN5 I PINS: This pin should always be at a logic HIGH level. An internal 
pull-up resistor will establish.a logiC HIGH when the pin is left 
floating. It is recommended, however, that PIN5 be connected to 
Vee· 

2-244 



inter 82C37A-5 

FUNCTIONAL DESCRIPTION 

The 82C37 A-S block diagram includes the major log­
ic blocks and all of the internal registers. The data 
interconnection paths are also shown. Not shown 
are the various control signals between the blocks. 
The 82C37 A-S contains 344 bits of internal memory 
in the form of registers. Figure 3 lists these registers 
by name and shows the size of each. A detailed 
description of the registers and their functions can 
be found under Register Description. 

Name Size Number 
Base Address Registers 16 bits 4 
Base Word Count Registers 16 bits 4 
Current Address Registers 16 bits 4 
Current Word Count Registers 16 bits 4 
Temporary Address Register 16 bits 1 
Temporary Word Count Register 16 bits 1 
Status Register a bits 1 
Command Register Bbits 1 
Temporary Register a bits 1 
Mode Registers 6 bits 4 
Mask Register 4 bits 1 
Request Register 4b~s 1 

Figure 3. 82C37A·Slnternal Registers 

The 82C37 A-S contains three basic blocks of control 
logic. The Timing Control block generates internal 
timing and external control signals for the 82C37 A-5. 
The Program Command Control block decodes the 
various commands given to the 82C37 A-5 by the mi­
croprocessor prior to servicing a DMA Request. It 
also decodes the Mode Control word used to select 
the type of DMA during the servicing. The Priority 
Encoder block resolves priority contention between 
DMA channels requesting service simultaneously. 

DMA Operation 

The 82C37 A-5 is designed to operate in two major 
cycles. These are called Idle and Active cycles. 
Each device cycle is made up of a number of states. 
The 82C37 A-5 can assume seven separate states, 
each composed of one full clock period. State 1 (51) 
is the inactive state. It is entered when the 
82C37 A-5 has no valid DMA requests pending. 
While in 51, the DMA controller is inactive,but may 
be in the Program Condition, being programmed by 
the processor. State 0 (SO) is the first state of a 
DMA service. The 82C37 A-5 has requested a hold 
but the processor has not yet returned an acknowl­
edge. The 82C37 A-5 may still be programmed until it 
receives HLDA from the CPU. An acknowledge from 
the CPU will signal that DMA transfers may begin. 
51, 52, 53 and 54 are the working states of the 
DMA service. If more time is needed to complete a 

transfer than is available with normal timing, wait 
states (5W) can be inserted between 52 or 53 and 
54 by the use of the Ready line on the 82C37 A·5. 
Note that the data is transferred directly from the 
I/O device to memory (or vice versa) with TOFi and 
MEMW (or ~ and lOW) being active at the 
same time. The data is not read into or driven out of 
the 82C37A-S in I/O-to-memory or memory-to-I/O 
DMA transfers. 

Memory-to-memory transfers require a read-from 
and a write-to-memory to complete each transfer. 
The states, which resemble the normal working 
states, use two digit numbers for identification. Eight 
states are required for a single transfer. The first four 
states (511, 512, 513, 514) are used for the read­
from-memory half and the last four states (521, 522, 
523, 524) for the write-to-memory half of the transfer. 

IDLE CYCLE 

When no channel is requesting service, the 
82C37A-5 will enter the Idle cycle and perform "51" 
states. In this cycle the 82C37A-5 will sample the 
DREQ lines every clock cycle to determine if any 
channel is re.9!!..esting a DMA service. The device will 
also sample CS, looking for an attempt by the micro­
processor to write or ~ad the internal registers of 
the 82C37A-5. When C5 is low and HLDA is low, the 
82C37 A-5 enters the Program Condition. The CPU 
can now establish, change or inspect the internal 
definition of the part by reading from or writing to the 
internal registers. Address lines AO-A3 are inputs to 
the device and select which registers will be read or 
written. The lOR and lOW lines are used to select 
and time reads or writes. Due to the number and size 
of the internal registers, an internal flip-flop is used 
to generate an additional bit of address. This bit is 
used to determine the upper or lower byte of the 16-
bit Address and Word Count registers. The flip-flop 
is reset by Master Clear or Reset. A separate soft­
ware command can also reset this flip-flop. 

5pecial software commands can be executed by the 
82C37A-5 in the Program Condition. These com­
mands are decoded as sets of addresses with the 
C5 and lOW. The commands do not make use 'of 
the data bus. Instructions include Clear First/Last 
Flip-Flop and Master Clear. 

ACTIVE CYCLE 

When the 82C37 A-5 is in the Idle cycle and a non­
masked channel requests a DMA service, the device 

2-245 

II 



82C37A-5 

will output an HRQ to the microprocessor and enter 
the Active cycle. It is in this cycle that the DMA serv­
ice will take place, in one of four modes: 

Single Transfer Mode - In Single Transfer' mode 
the device is programmed to make one transfer only. 
The word count will be decremented and the ad­
dress decremented or incremented following each 
transfer. When the word count "rolls over" from zero 
to FFFFH, a Terminal Count (TC) will cause an Auto­
initialize if the channel.has been programmed to do 
so. 

DREQ must be held active until DACK becomes ac­
tive in order to be recognized. If DREQ is held active 
throughout the single transfer, HRQ will go inactive 
and release the bus to the system. It will again go 
active and, upon receipt of a new HLDA, another 
single transfer will be performed, in 8080A, 8085AH, 
80C88, or 80C86 system this will ensure one full ma­
chine cycle execution between DMA transfers. De­
tails of timing betw~en the 82C37 A-5 and other bus 
control protocols will depend upon the characteris­
tics of the microprocessor involved. 

Block Transfer Mexle -:". In Block Transfer mode 
the device is activated by DREQ to continue making 
transfers during the service until a TC, caused by 
word count going to FFFFH, or an external End of 
Process (EOP)is encountered. DREQneed only be 
held active until DACK becomes active. Again, an 
Autoinitialization will occur at the end of the service 
if the channel has been programmed for it. 

Demand Transfer Mode - In Demand Transfer 
mode the device isp(ogrammed to continue making 
transfers until a TC or external EOP is encountered 
or until DREQ goes inactive. Thus transfers may 
continue until the I/O device has exhausted its data 
capacity. After the 1/0 device has had a chance to 
catch up, the DMA service is re-established by 
meims of a DREQ. During the time between services 
when the microprocessor is allowed to operate, the 
intermediate values of address and word count are 
stored in the 82C37 A-5 Current Address and Current 
Word Count registers. Only an EOP can cause an 
Autoinitialize at the end of the service. EOP isgener­
ated either by TC or by an (ilxternal signal. 

Cascade Mode - This mode is used to cascade 
more than one 82C37 A-5 together for simple system 
expansion. The HRQ and HLDA Signals from the ad­
ditional 82C37A-5 are cbnnected to the DREQ and 
DACK signals of a channel of the initial 82C37A-5. 
This allows the DMA requests of the additional de­
vice to propagate through the priority network cir­
cuitry of the preceding device. The priority chain is 
preserved and the new device must wait for its turn 
to acknowledge requests. Since the cascade chan­
nel of the initial 82C37 A-5 is used only for prioritizing 
the additional device, it does not output any address 

or control signals of its own. These could conflict 
with the outputs of the active channel in the added 
device. Th(il 82C37 A,5 will respond to DREQ and 

. [)ACK but all other outputs except HRQ will be dis-
abl(ild. The ready input is ignored. 

Figure 4 shows two additional devices cascaded into 
an initial devic(il using two of the previous channels. 
This forms a two level DMA system. More 
82C37 A-5s could be added at the second level by 
using the remaining channels of the first level. Addi­
tional devices can also. be added by cascading into 
the channels of the second level devices, forming a 
third level. 

MICROPROCESSOR 
1ST LEVEL 

r- HRO DREQ 

r-- HLOA DACK 

12C37A·& 

DREO 

DACK 

INITIAL DEVICE 

I--: 
r---

I-
t----

2ND 'LEVEL 

82C3rA05 

HRO 

HLDA 

HRO 

HLOA, 

82C37A05 

ADDITIONAL 
DEVICES 

231202-3 

Figure 4. Cascaded 82C37A-5s 

TRANSFER TYPES 

Each of the three active transfer modes can perform 
three different types of transfers. These are Read, 
Write and Verify. Write transfers move data from and 
110 device to the memory by activating MEMW and 
lOR. Read transfers move data from memory to an 
I/O device by activating MEMR and lOW. Verify 
transfers are pseudo transfers. The 82C37A-5 oper­
ates as in Read or Write transfers. generating ad­
dresses,and responding to EOP, etc. However, the 
memory and I/O control lines all remain inactive. 
The ready input is ignored in verify mode. 

Memory-to.Memory - To perform block moves of 
data from. one memory address space to another 
with a minimum Of program effort and time, . the. 
82C37A-5 includes a memory-to-memory transfer 
feature. Programming a bit in the Command register 
selects channels 0 to 1 to operate as memory-to­
memory transfer channels. The transfer is initiated 
by setting the software DREQ for channel O. The 

2-246 



82C37A·5 

82C37 A-5 requests a DMA service in the normal 
manner. After HlDA is true, the device, using four 
state-transfers in Block Transfer mode, reads data 
from the memory. The channel 0 Current Address 
register is the source for the address used and is 
decremented or incre.mented in the normal manner. 
The data byte read from the memory is stored in the 
82C37A-5 internal Temporary register. Channel 1 
then performs a four-state transfer of the data from 
the Temporary register to memory using the address 
in its Current Address register and incrementing or 
decrementing it in the normal manner. The channel 
1 current Word Count is decremented. When the 
word count of channelJ.....9.oes to FFFFH, a TC is 
generated causing an EOP output terminating the 
service. 

Channel 0 may be programmed to retain the same 
address for all transfers. This allows a single word to 
be written to a block of memory. 

The 82C37 A-5 will respond to external EOP signals 
during memory-to-memory transfers. Data compara­
tors in block search • schemes may use this input to 
terminate the service when a match is found. The 
timing of memory-to-memory transfers is found in 
Figure 12. Memory-to-memory operations can be 
detected as an active AEN with no DACK outputs. 

Autoinitialize - By programming a bit in the Mode 
register, a channel may be set up as an Autoinitialize 
channel. During Autoinitialize initialization, the origi­
nal values of the Current Address and Current Word 
Count registers are automatically restored from the 
Base Address and Base Word count registers of that 
channel following EOP. The base registers are load­
ed simultaneously with the current registers by the 
microprocessor and remain unchanged throughout 
the DMA service. The mask bit is not altered when 
the channel is in Autoinitialize. Following Autoinitial­
ize the channel is ready to perform another DMA 
service, without CPU intervention, as soon as a valid 
DREQ is detected. In order to Autoinitialize both 
channels in a memory-to-memory transfer, both 
word counts should be programmed identically. If in­
terrupted externally, EOP pulses should be applied 
in both bus cycles. 

Priority - The 82C37 A-5 has two types of priority 
encoding available as software selectable options. 
The first is Fixed Priority which fixes the channels in 
priority order based upon the descending value of 
their number. The channel with the lowest priority is 
3 followed by 2, 1 and the highest priority channel, O. 
After the recognition of anyone channel for service, 
the other channels are prevented from interfering 
with that service until it is completed. 

The second scheme is Rotating Priority. The last 
channel to get service becomes the lowest priority 
channel with the others rotating accordingly. 

highest 

lowest 

11' 
Serv.ce 

2nd 
Servici 

o 2_servICe\3_servlce 
1 _service"", 3 _ request 0 
2 ,0 . 1 
3 1 2 

231202-4 

With Rotating Priority in a single chip DMA system, 
any device requesting service is guaranteed to be 
recognized after no more than three higher priority 
services have occurred. This prevents anyone 
channel from monopolizing the system. 

Compressed Timing ---: In order to achieve even 
greater throughput where system characteristics 
permit, the 82C37 A-5 can compress the transfer 
time to two clock cycles. From Figure 11 it can be 
seen that state S3 is used to extend the access time 
of the read pulse. By removing state S3, the read 
pulse width is made equal to the write pulse width 
and a transfer consists only of state S2 to change 
the address and state S4 to perform the read/write. 
S1 states Will still occur when A8-A15 need updat­
ing (see Address Generation). Timing for com­
pressed transfers is found in Figure 14. 

Address Generation - In order to reduce pin 
count, the 82C37A-5 multiplexes the eight higher or­
der address bits on the data lines. State S1 is used 
to output the higher order address bits to an external 
latch from which they may be placed on the address 
bus. The falling edge of Address Strobe (AD5TB) is 
used to load these bits from the data lines to the 
latch. Address Enable (AEN) is used to enable the 
bits onto the address bus through a three-state en­
able. The lower order address bits are output by the 
82C37A-5 directly. Lines AO-A7 should be connect­
ed to the address bus. Figure 11 shows the time 
relationships between ClK, AEN, ADSTB, DBO­
DB7 and AO-A7. 

During Block and Demand Transfer mode services, 
which include multiple transfers, the addresses gen­
erated will be sequential. For many transfers the 
data held in the external address latch will remain 
the same. This data need only change when a carry 
or borrow from A7 to A8 takes place in the normal 
sequence of addresses. To save time and speed 
transfers, the 82C37A-5 executes 51 states only 
when updating of A8-A 15 in the latch is necessary. 
This means for long services, S1 states and Address 
Strobes may occur only once every 256 transfers, a 
savings of 255 clock cycles for each 256 transfers. 

REGISTER DESCRIPTION 

Current Address Register - Each· channel has a 
16-bit Current Address register. This register holds 

2-247 



inter 82C37A·5 

the value of the address used during DMA transfers. 
The address is automatically incremented or decre­
mented after each transfer and the intermediate val­
ues of the address are stored in the Current Address 
register during the tran,sfer. This register is written or 
read by the microprocessor in successive 8-bit 
bytes. It may also be reinitialized by an Autoinitialize 
back to its original value. Autoinitialize takes place 
only after an EOP. 

Current Word Register - Each channel has a 16-
bitCurrent Word Count register. This register deter­
mines the number of transfers to be performed. The 
actual number of transfers will be one more than the 
number programmed in the Current Word Count reg­
ister (Le., programming a count of 100 will result in 
101 transfers). The word count is decremented after 
each transfer. The intermediate value of the word 
count is stored in the register during the transfer; 

, When the value in. the register goes from zero to 
FFFFH, a TC will be generated. This register is load­
ed or read in successive 8-bit bytes by the micro­
processor in the Program Condition. Following the 
end of a DMA service it may also be reinitialized by 
an Autoinitialization back to its original value. Auto­
initialize can occur only when an EOP occurs. If iUs 
not Autoinitialized, this register will have a count of 
FFFFH after TC. 

Base Addre,s and ~ase Word Count Registers 
- .Each channel has a pair of Base Address and 
Base Word Count registers. These 16-bit registers 
store the original value of their associated current 
registers. During,Autoinitialize these values are used 
to restore the current registers to their original val­
ues. The base registers are written simultaneously 
with their' corresponding current register in .. 8-bit 
bytes. in the· Program Condition by the microproces­
sOr. These. registers cannot be read by the micro­
processor. 

Command Register - This 8-bit register controls 
the operation of the 82C37 A-5. It is programmed by 
the microprocessor in the Program. Condition and. is 
cleared by Reset or a Master Clear instruction. The 
following table lists the function Of the command 
bits. See Figure 6 for address coding. 

Mode Register - Each .channel has a6-bit Mode 
register associated with it. When the register is being 
written to by the microprocessor in the Program 
Condition, bits 0 and 1 determine which channel 
Mode register is to be written.·. 

Request Register - The 82C37A-5 can respond to 
requests for DMA service which are initiated by soft­
ware as well as by a DREQ. Each channel has a 
request bit associated with it ,in the 4-bit Request 
register. These are non-maskable and subject to pri­
oritization by the Priority. Encoder network. Each 

register bit is setor 'reset separately under software 
control or is cleared upon generation of a TCor ex­
ternal EOP. The entire register is cleared by a Reset. 
To set or reset a bit, the ·software loads the proper 
form of the data word. See Figure 5 for register ad-

CQmmand . Register 

MO!Ie Register 

0 Memory·t<>memory disable 
1 Memory·t<>memory enable 

0 Channel 0 eddress hold dlseble 
1 Channel 0 eddress hold enable 
X If bit 0=0 

0 Controller enable 
1 Controller disable 

0 Normal timing 
1 Compressed timing 
X If bit 0= 1 

0 Fixed priority 
1 Rotating priority 

0 Late write selection 
1 EXtended write selection 
X Ifb113=1 

0 DREQ sense active high 
1 DREQ sense active low 

0 DACK sense active low 
1 DACK sense active high 

00 Verify tranafer 
01. Write transfer 

'-----( 10 Rillid transfer 
1'1 Illegal 
XX If bits 6 S'ld 7= 11 

'-__ ---I 0 Autoinitialization disable 
1 Autoinitialization enable 

00 Demand mode select 

'--------{ ~~ ~:~~~ ::;d~e s~~~a.::t 

Request flaglster 

11 Cascede mode select 

'----I 0 Reset request bit 
1 Set request bit 

231202-5 

2-248 



inter 82C37A·5 

dress coding. In order to make a software request, 
the channel must be in Block Mode. 

Mask Register - Each channel has associated 
with it a mask bit which can be set to disable the 
incoming DREQ. Each mask bit is set when its asso­
ciated channel produces an EOP if the channel is 
not programmed for Autoinitialize. Each bit of the 4-
bit Mask register may also be set or cleared sepa­
rately under software control. The entire register is 
also set by a Reset. This disables all DMA requests 
until a clear Mask register instruction allows them to 
occur. The instruction to separately set or clear the 
mask bits is similar in form to that used with the 
Request register. See Figure 5 for instruction ad­
dressing. 

7 • 5 4 3 2 1 0 __ 1" Numbe. 

I I I I I I I I I 
Don't Care L{ 00 Select channel 0 mask bit 

01 Select channel 1 mask bit 
10 Select channel 2 mask bit 
11 Select channel 3 mask bit 

~_~I 0 Clear mask bit 
I 1 Set mask bit 

231202-6 

All four bits of the Mask register may also be written 
with a single command. 

0 Clear channel 0 mask bit 
1 Set channel 0 mask bit 

0 Clear channel 1 mask bit 
1 Set channel 1 mask bit 

0 Clear channel 2 mask bit 
1 Set channel 2 mask bit 

0 Clear channel 3 mask bit 
1 Set channel 3 mask bit 

231202-7 

Register Operation 
Signall 

CS iOR iOW A3 A2 A1 AO 

Command Write 0 1 0 1 0 0 0 
Mode Write 0 1 0 1 0 1 1 
Request Write 0 1 0 1 0 0 1 
Mask Set/Reset 0 1 0 1 0 1 0 
Mask Write 0 1 0 1 1 1 1 
Temporary . Read 0 0 1 1 1 0 1 
Status Read 0 0 1 1 0 0 0 

Figure 5. Definition of Register Codes 

Status Register - The Status register is available 
to be read out of the 82C37 A-5 by the microproces­
sor. It contains information about the status of the 
devices at this point. This information includes which 
channels have reached a terminal count and which 
channels have pending DMA requests, Bits 0-3 are 
set every time a TC is reached by that channel or an 
external EC:5J5 is applied, These bits are cleared upon 
Reset and on each Status Read. Bits 4-7 are set 
whenever their corresponding channel is requesting 
service. 

Channel 0 has· reached TC 
Channal 1 has reached TC 
Channel 2 has reached TC 
Channal 3 has reached TC 

Channal 0 request 
Channel 1 request 
Channal 2 request 
Channel 3 requa.t 

231202-8 

Temporary Register - The Temporary register is 
used to hold data during memory·to-memory trans­
fers. Following the completion of the transfers, the 
last word moved can be read by the microprocessor 
in the Program Condition, The Temporary register 
always contains the last byte transferred in the previ· 
ous memory-to-memory operation, unless cleared 
by a Reset. 

Software Commands - These are additional spe­
cial software commands which can be executed in 
the Program Condition. They do not depend on any 
specific bit pattern on the data bus. The three soft· 
ware commands are: 

Clear First/Last Flip-Flop: This command is exe­
cuted prior to writing or reading new address or 
word count information to the 82C37 A·5. This ini-· 
tializes the flip-flop to a known state so that subse· 
quent accesses to register contents by the micro· 
processor will address upper and lower bytes in 
the correct sequence, 

Master Clear: This software instruction has the 
same effect as the hardware Reset. The Com­
mand, Status, Request, Temporary, and Internal 
First/Last Flip-Flop registers are cleared and the 
Mask register is set. The 82C37 A-5 will enter the 
Idle cycle. 

Clear Mask Register: This command clears the 
mask bits of all four channels, enabling them to 
accept DMA requests. 

2·249 



intJ 82C37A .. S 

Figure 6 lists the. address codes for. the software 
commands: ' 

Signals 
Operation 

A3 A2 A1 AD iOR iOW 
1 D 0 0 0 1 Read Status Register 

1 0 0 0 1 0 Write Command Register 

1 0 0 1 0 1 Illegal 

1 0 0 1 1 0 Write Request Register 

1 0 1 0 0 1 Illegal 

1 0 1 0 1 0 Write Single Mask Register Bit 

1 0 1 1 0 1 Illegal 

1 0 1 1 1 0 Write Mode Register 

1 1 0 0 0 1 Illegal 

1 1 0 0 1 0 Clear Byte Pointer Flip-Flop 

1 1 0 1 0 1 Read Temporary Register 

1 1 0 1 1 0 Master Clear 

1 1 1 0 0 1 Illegal 

1 1 1 0 1 0 Clear Mask Register 

1 1 1 1 0 1 Illegal 

1 1 1 1 1 0 Write All Mask Register Bits' 

Figure 6. Software Command Codes 

Channel Register Operation 

PROGRAMMING 

The 82C37 A·5 will accept programming from the 
host processor any time that HLDA is inactive; this is 
true even. if HRQ is active. The responsibility of the 
host is to assure that programming and HLDA are 
mutually exclusive. Note that a problem. can occur if 
a DMA request occurs, on· an unmasked channel 
while the 82C37 A·5 is being programmed. For in· 
stance, . the CPU may be starting to reprogram the 
two byte Address register of channel 1 when chan· 
nel 1 receives a DMArequest. If the 82C37A·5 is 
enabled (bit 2 in the command register is 0) and 
channel 1 is unmasked, a DMA service will occur 
after only one byte of the Address register has been 
reprogrammed. This can be avoided by disabling the 
controller (setting bit 2 in the command register) or 
masking the channel before programming any other 
registers. Once the programming is complete, the 
controller can be enabled/unmasked. 

Signals 
Internal Flip-Flop Data Bus DBO-DB7 

.' CS lOR lOW A3 A2 A1 AO 

0 

1 

2 

3 

Base and Current Address Write 0 1 0 0 0 0 0 0 
0 1 0 0 0 0 0 1 

Current Address Read 0 0 1 0 0 0 0 0 
0 0 1 0 0 0 0 1 

Base and Current Word Count Write 0 1 0 0 0 0 1 0 
0 1 0 0 0 0 1 1 

Current Word Count Read 0 0 1 0 0 0 1 0 
0 0 1 0 0 0 1 1 

Base and Current Address Write 0 1 O. 0 0 1 0 0 
0 1 0 0 0 1 0 1 

Current Address Read 0 0 1 0 0 1 0 0 
0 0 1 0 0 1 0 1 

Base and Current Word Count Write 0 1 0 0 0 1 1 0 
0 1 0 0 0 1 1 1 

Current Word Count Read 0 0 1 0 0 1 1 0 
. 0 0 1 0 0 1 1 1 

Base and Current Address Write (') 1 0 0 1 0 0 0 
0 1 0 0 1 0 0 1 

Current Address Read 0 0 1 0 1 0 0 0 
0 0 1 0 1 0 0 1 

Base and Current Word Count Write 0 1 0 0 1 0 1 0 
0 1 0 0 1 0 1 1 

Current Word Count Read 0 0 1 0 1 0 1 0 
•..... 0 0 1 0 1 0 1 1 

Base and Current Addrel!S Write. 0 1 0 0 1 1 0 0 
0 1 0 0 1 1 0 1 

Current Address Read 0 0 1 0 1 1 0 0 
0 0 1 0 1 1 0 1 

.' Base and Current Word Count Write 0 1 0 0 1 1 1 0 
0 1 0 0 1 1 1 1 

Current Word Count Read 0 0 1 0 1 1 1 0 
0 0 1 0 1 1 1 1 

Figure 7. Word Count and Address Register Command Codes 

2-250 

AO-A? 
AS-A.H5 
AO:"A? 
AS-AI5 
WO-W? 
WS-WI5 
WO-W? 
WS-WI5 

AO-A? 
AS-AI5 
AO-A? 

AS-AI5 
WO-W? 
WS-WI5 
WO-W? 
WS-WI5 

AO-A? 
AS-AI5 
AO-A? 
AS-AI5 
WO-W? 
WS,..WI5 
WO-W? 
WS-WI5 

AO-A? 
AS-A15 
AO-A? 
AS-AI5 
WO-W? 
WS-WI5 
WO-W? 
W8-W15 



inter 82C37A·5 

After power-up it is suggestec;l that all internai.loca­
tions, especially the Mode registers, be loaded with 
some valid value. This should be done even if some 
channels are unused. 

APPLICATION INFORMATION 

Figure 8 shows a convenient method for configuring 
a DMA system with the 82C37 A-5 controller and an 
8080A/8085AH microprocessor system. The mUlti­
mode DMA controller issues a HRQ to the processor 
whenever there is at least one valid DMA request 

from a periplleral device. When the processor re­
plies with a HLDA Signal, the 82C37 A-5 takes con­
trol of the address bus, the data bus and the control 
bus .. The address for the first transfer operation 
comes out in two bytes - the least significant 8 bits 
on the eight address outputs and the most signifi­
cant 8 bits on the data bus. The contents of the data 
bus are then latched into the 8~bit latch to complete 
the full 16 bits of the address bus. After the initial 
transfer takes place, the latch is updated only after a 
carry or borrow is generated in the least significant 
address byte. Four DMA channels are provided 
when one 82C37 A-5 is used. 

ADDRESS BUS AO-A.S ) 
~ ~ ~ 

AI-AU 

r-- ... m: 

I 
..... 

I·BITLATCH 

I 
STB 

!.o-
AO-A15 AEN AO-A3 A4-A1 CI ADSTB .. ~ 

BUSEN , 

A 
HLDA HlDA nca7 .... DBO-

i ~ 
DB7 

HOLD HRO Iii i I ~ 
, .. In 

~ ~ (j w a: 
a: 0 

CPU I J rr CLOCK 

RESET 

iiEIIli 

ImiW 1-RIll BUS 

mw 

DIO-DI7 

~ 

.. ~ ." 
~ 

SYSTEM DATA BUS ) 
r 

231202-9 

Figure 8. 82C37 A·5 System Interface 

2-251 

i'/ 



inter 82C37A~5 

ABSOLUTE MAXIMUM RATINGS· 
Ambient Temperature under Bias ...... O·C to 70·C 
Case Temperature ...... : .......... O"C to + 7S"C 
Storage Temperature .•.......• - SS·C to + 1S0·C 
Voltage on Any Pin with 

Respectto Ground ..........•... - O.SV to + 7V 
Power Dissipation .•.........•........•.. 1.0 Watt 

D.C. CHARACTERISTICS 

• Notice: Stiesses· above those listed under '~bso­
lute Maximum Ratmgs" may cause permanent dam­
age to the device. This is a stress rating only and 
functional operation of the device at these or any 
other conditions above those indicated in the opera­
tional sections of this specification is not implied. Ex­
posure to absolute maximum rating conditions for 
extended periods may affect device reliability. 

TA = o·C to 70·C. TCASE = O·C to 7S·C. Vcc = +S.OV ±S%. GND = OV 

Symbol Parameter Min Typ Max Unit Test Conditions 

VOH Output High Voltage 3.7 V IOH = -1.0mA 

VOL Output LOW Voltage 0.40 V IOL = 3.2mA 

VIH Input HIGH Voltage 2.2 Vee + 0.5 V 

VIL Input LOW Voltage -0.5 0.8 V 

III Input Load Current ±10 p,A OV::;;: VIN::;;: Vec 

ILO Output Leakage Current ±10 p,A OV ::;;: VOUT ::;;: Vee 

Ice Vec Supply Current 10 mA (Note 1) 

Ices Standby Supply Current 10 p,A HLDA = OV, VIL = OV, 
I 

VIH = Vee 

Co Output Capacitance 4 8 pF 

CI Input Capacitance 8 1S pF fc = 1.0 MHz, Inputs = OV 

CIO 110 Capacitance 10 18 pF 

2-2S2 



82C37A-5 

A.C. CHARACTERISTICS-DMA (MASTER) MODE 
T A = O·C to 70·C, TeASE = O·C to 75·C, Vee = + 5V ± 5%, GND = OV 

Symbol Parameter Min 

TAEL AEN HIGH from CLK LOW (Sl) Delay Time 

TAET AEN LOW from CLK HIGH (SI) Delay Time 

TAFAB ADR Active to Float Delay from CLK HIGH 

TAFC READ or WRITE Floa:t from CLK HIGH 

TAFDB DB Active to Float Delay from CLK HIGH 

TAHR ADR from READ HIGH Hold Time TCY-l00 

TAHS DB from ADSrB LOW Hold Time 30 

TAHW ADR from WRITE HIGH Hold Time TCY-50 

TAK DACK Valid from CLK LOW Delay Time (Note 3) 

EOP HIGH from CLK HIGH Delay Time (Note 4) 

EOP LOW from CLK HIGH Delay Time 

TASM ADR Stable from CLK HIGH 

TASS DB to ADSiB LOW Setup Time 100 

TCH Clock High Time (Transitions $; 10 ns) 68 

TCL Clock LOW Time (Transitions $; 1 0 ns) 68 

TCY CLK Cycle Time 200 

TOCL CLK HIGH to READ or WRITE LOW Delay (Note 2) 

TDCTR READ HIGH from CLK HIGH 
(S4) Delay Time (Note 2) 

TOCTW WRITE HIGH from CLK HIGH 
(S4) Delay Time (Note 2) 

TOOl HRO Valid from CLK HIGH Delay Time 

TEPS EOP LOW from CLK LOW Setup Time 40 

TEPW EOP Pulse Width 220 

TFAAB ADR Float to Active Delay from CLK HIGH 

TFAC READ or WRITE Active from CLK HIGH 

TFADB DB Float to Active Delay from CLK HIGH 

THS HLDA Valid to CLK HIGH Setup Time 75 

TIDH Input Data from MEMR HIGH Hold Time 0 

TIDS Input Data to MEMR HIGH Setup Time 170 

TODH Output Data from MEMW HIGH Hold Time 10 

TODV Output Data Valid to MEMW HIGH 125 

TOS DREO to CLK LOW (SI, S4) Setup Time (Note 3) 0 

TRH CLK to READY LOW Hold Time 20 

TRS READY to CLK LOW Setup Time 60 

TSTL ADSTB HIGH from CLK HIGH Delay Time 

TSn ADSTB LOW from CLK HIGH Delay Time 

2-253 

Max 

200 

130 

90 

120 

170 

170 

170 

170 

170 

190 

190 

130 

120 

170 

150 

200 

130 

90 

Unit 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

I; 
I 



82C37A-5 

A.C. CHARACTERISTICS-PERIPHERAL (SLAVE) MODE 
TA = o·c to 70·C, TCASE = o·C to 75·C, vcc = + 5V ± 5%, GND == OV 

Symbol Parameter 

TAR ADR Valid or CS LOW to READ LOW 

TAW ADR Valid to WRITE HIGH Setup Time 

TCW CS LOW to ii'ilRi'fE" HIGH Setup Time 

TOW Data Valid to WRITE HIGH Setup Time 

TRA ADR or CS Hold from READ HIGH 

TRDE Data Access from READ LOW 

TRDF DB Float Delay from READ HIGH 

TRSTO Power Supply HIGH to RESET LOW Setup Time 

Min 

50 

130 

130 

130 

0 

0 

500 

TRSTS RESET to First IOWR 2TCY 

TRSTW RESET Pulse Width 300 

TRW READ Width 200 

TWA ADR from WRITE HIGH Hold Time 20 

TWC CS HIGH from WRITE HIGH Hold Time 20 

TWD Data from WRITE HIGH Hold Time 30 

TWWS Write Width 160 ' 

NOTES: . . 

Max Unit 

ns 

ns 

ns 

ns 

ns 

140 ns 

70 ns 

ns 

ns 

ns 

ns 

ns 

ns 
.. ns 

ns 

1. Input frequency 5 MHz, when RESET, VIN = OVIVCC, CL = 0 pF. 
2. The net iOW or MEMW Pulse width for normal write will be TCY-100 ns and for extended write will. be 2TCY-100 ns. The 
net TOR or MEMR pulse width for normal read will be 2TCY-50 ns and for compressed read will be TCY-50 ns. 
3. DREQ and DACK signals may be active high or active low. Timing diagrams assume the active high mode for DREQ and 
active low for DACK. 
4. ECiJ5 is an open collector output. This parameter assumes the presence of a 2.2K pullup to Vcc. 

A.C. TESTING·.INPUT/OUTPUT WAVEFORM 

u~ -v::-
O.45~ ..... · ___ T_ES_T_PO_IN_.TS ___ . _lL 

... ". 231202-11 
AC. Testing: Inputs are driven at 2.4V for a logic "1" and 0.45V 
for a Logic "0." All timing measurements are made at 1.5V. 

2·254 



inter 82C37A-5 I 
WAVEFORMS. 

SLAVE MODE WRITE TIMING 

1-------TCW -.,.-------r 

r------TWW8-----..j~:_:_---

r------~w-------I 

AO-A3 INPUTYALID 

I------TDW-,-------I TWO 

080-017 INPUTYALID 

231202-'12 

Figure 9. Slave Mode Write 

SLAVE MODE READ TIMING i: 

~ ~'----'M:J ~ADDRESSMUlT----IEVALID -------::!I~~ _ 

_ -=~~:_l:_-=~_-=~~~~T-R_DE~_T=Rw~-_=~-_=~'-It---:-~L--TRD-F-----j-'--i. 
DIO-DB7 { . DATA OUT VALID J-

231202-13 

Figure 10. Slave Mode Read 

2-255 



inter 82C37A-5 

WAVEFORMS (Continued) 

DMA TRANSFER TIMING 

eLK j~rl"A;rt:H~rCrlH~rlh~t '"~ · ~ ~-r ~-- I'! ~-~ 'i r 
(NOTE 5) 

LLfi, \ \ ,\ ,\ \'\ \ \ 

TeN 

Ollila 

MIlO 

T~_ F T~_ ~r-

THS--, -
, III, ,\ ,\ \ \ \ \ \ \ \ \ , 

T··'1--1 
TAn =1 

Vt ~TT 
.' -

H'OA 

.E. 
TITl I- .. .... UPS 

F t""\ ADSTI 

\ 

'It r--- r--r.TASS ~ 
"ADI 1- I-r '":.'1 . ;-F¥rT~i·· r-- T- - _UIFI,' 

TF.u.1 ~ - TAHW - +-'AHW 

DIO-Dll 

..... 
i ADDllesS YALID ""RI"VALID 

.... , 
~ - "TAHII _'AHIl 

DACJt ii 
"ole -- ~ TDC'" ~ TOCT. ro-- __ ,.,e 

r---"\ ~ 
,.... 

i 

,~ 
TDCTW TDCTW -= TWO 

I Vl~-~ 
~ 

,...J 
lFOft EnaNOID WI" 

~ 
\ 

T .... l~r--
.. h""";~",, , 

\\\\\\\\\\\ 

iQW,MDIW 

IXT'" 
231202-14 

Figure 11. DMA Transfer 

2·256 



inter 82C37A-5 

WAVEFORMS (Continued) 

MEMORY-TO-MEMORY TRANSFER TIMING 
Ij 

, 

ADSTS 

:1 
I ;~ 

,', 

AO-A7 

TEP$- rEPS~"'" .. 

EXT lop 

231202-15 

Figure 12. Memory-to-Memory Transfer 

READY TIMING 

231202-16 

Figure 13. Ready 

2-257 



intJ 82C37A-S 

WAVEFORMS (Continued) 

COMPRESSED TRANSFER TIMING 

ClK 

TDCl,-+·--+1 

TWR 

, RWI._ 

READY 

~: ------------------------~--~; 

E~ n~0~L t 
EOP ------~\-......~, iv 

231202-1'7 

'Figure 14. Corripressed Transfer 

RESET TIMING 

r-------------------------------------~.~.------------
Vec ____ oJlil-l,-'-------'----- TR'To ________ -'~ 

)

-----TR8TW ----~ 

RESET _________ -~---:----

lOR OR lOW 

- 231202-18 

Figure 15. Reset 

DATA SHEET REVISION REVIEW 

The following list represents key differences be­
tween this and the-004 data sheet. Please review 
thia summary carefully. 

1.The "PRELIMINARY" markings have been re­
moved 'rom the data sheet. The 82C37 A-5 is no 
Ipl)9sr a preliminary part. 

2~ A section. ()f the Functional Description describing 
, 82C37 A~5 operation with the 8085 CPU has been 
deleted. ' 

2-258 



• 
• • • 
• 
• 

8259A 
PROGRAMMABLE INTERRUPT CONTROLLER 

(8259A/8259A-2) 
8086, 8088 Compatible • Single + 5V Supply (No Clocks) 

MCS-80®, MCS-85® Compatible • Available in 28-Pln DIP and 28-Lead 

Eight-Level Priority' Controller PLCC Package 
(See Packaging Spec .• Order .. 231369) 

Expandable to 64 Levels • Available in EXPRESS 
Programmable Interrupt Modes - Standard Temperature Range 

Individual Request Mask Capability - Extended Temperature Range 

The Intel 8259A Programmable Interrupt Controller handles up to eight vectored priority interrupts for the CPU. 
It is cascadable for up to 64 vectored priority interrupts without additional circuitry. It is packaged in a 28-pin 
DIP, uses NMOS technology and requires a single + 5V supply. Circuitry is static, requiring no clock input. 

The 8259A is designed to minimize the software and real time overhead in handling mUlti-level priority inter­
rupts. It has several modes, permitting optimization for a variety of system requirements. 

The 8259A is fully upward compatible with the Intel 8259. Software originally written for the 8259 will operate 
the 8259A in all 8259 equivalent modes (MCS-80/85, Non-Buffered. Edge Triggered). 

iii> 
Wii 

A. 

cs 

CAS 0 

CAS! 

CAS2 

sp;Eiij 

DATA 
BUS 

BUFFER 

READ; 
WRITE 
lOGIC 

INT 

CONTROL lOGIC 

IRO 

IRI 

IR2 

IR4 

~ INTERNAL BUS 

231468-1 

Figure 1. Block Diagram 

2-259 

DIP 

231468-2 

PLCC 

~I~I; I~ ~ ~I~ 
• 3 2 1282726 

0 
IR6 

IRS 
8259A 

IR2 

12 13 u· 15 16 17 18 

~ ~ ~ ~ I~ ~ i 
U U Ie; 

231468-31 

Figure 2. Pin 
Configurations 

October 1988 
Order Number: 231468-003 

" ", 

;' 
I~ 

I~ ," .•.. . , 
!. 

! 



8259A 

Table 1 Pin Description 

Symbol Pin No. Type Name and Function 

Vee 28 I SUPPLY: + 5V Supply. 

GND 14 I GROUND 
eg 1 I CHIP SELECT: A low on this pin enables RD and WR communication 

between the CPU and the 8259A INTA functions are independent of 
CS. 

WR 2 I WRITE: A low on this pin when CS is low enables the 8259Ato accept 
command words from the CPU. . 

RD 3 I READ: A low on this pin when CS is low enables the 8259A to release 
status onto the data bus for the CPU. 

D7-DO 4-11 I/O BIDIRECTIONAL DATA BUS: Control, status and interrupt-vector 
information is transferred via this bus. 

CASo-CAS2 12, 13, 15 I/O CASCADE LINES: The CAS lines form a private 8259A bus to control 
a multiple 8259A structure. These pins are outputs for a master 8259A 
and inputs for a slave 8259A 

SP/EN 16 1/0 SLAVE PROGRAM/ENABLE BUFFER: This is a dual function pin. 
When in the Buffered Mode it can be used as an output to control 
buffer transceivers (EN). When not in the buffered mode it is used as 
an input to designate a master (SP = 1) or slave (SP = 0), 

INT 17 0 INTERRUPT: This pin goes high whenever a valid interrupt request is 
asserted. It is used to interrupt the CPU, thus it is connected to the 
CPU's interrupt pin. 

IRo-IR7 18'-25 I INTERRUPT REQUESTS: Asynchronous inputs. An interrupt request 
is executed by raising an IR input (low to high), and holding it high until 
it is acknowledged (Edge Triggered Mode), or just by a high levelon an 
IR input (Level Triggered Mode). 

INTA 26 I INTERRUPT ACKNOWLEDGE: This pin is used to enable 8259A 
interrupt-vector data onto the data bus by a sequence of interrupt 
acknowledge pulses issued by the CPU. 

Ao 27 I AO ADDRESS LINE: This pin acts in conjunction with the eg, WR, and 
AD pins. It is used by the 8259A to decipher various Command Words 
the CPUwrites and.status the CPU wishes to read. It is typically 
connected t6 the CPU AO address line (A 1 for 8086, 8088). 

2-260 



intJ 8259A 

FUNCTIONAL DESCRIPTION 

Interrupts In Microcomputer Systems 

Microcomputer system design requires that 1.0 de­
vices such as keyboards, displays, sensors and oth­
er components receive servicing in a an efficient 
manner so that large amounts of the total system 
tasks can be assumed by the microcomputer with 
little or no effect on throughput. 

The most common method of servicing such devic­
es is the Polled approach. This is where the proces­
sor must test each device in sequence and in effect 
"ask" each one if it needs servicing.ltis easy to see 
that a large portion of the main program is looping 
through this continuous polling cycle and that such a 
method would have a serious detrimental effect on 
system throughput, thus limiting the tasks that could 
be assumed by the microcomputer and reducing,the 
cost effectiveness of using such devices. 

A more desirable method would be one that would 
allow the microprocessor to be executing its main 
program and only stop to service peripheral devices 
when it is told to do so by the device itself. In effect, 
the method would provide an external asynchronous 
input that would inform the processor that it should 
complete whatever instruction that is currently being 
executed and fetch a new routine that will service 
the requesting device. Once this servicing is com­
plete, however, the processor would resume exactly 
where it left off. 

This method is called Interrupt. It is easy to see that 
system throughput would drastically increase, and 
thus more tasks could be assumed by the micro­
computer to further enhance its cost effectiveness. 

The Programmable Interrupt Controller (PIC) func­
tions as an overall manager in an Interrupt-Driven 
system environment. It accepts requests from the 
peripheral equipment, determines which of the in­
coming requests is of the highest importance (priori­
ty), ascertains whether the incoming request has a 
higher priority value than the level currently being 
serviced, and issues an interrupt to the CPU based 
on this determination. 

Each peripheral device' or structure usually has a 
special program or "routine" that is associated with 
its speCifiC functional or operational requirements; 
this is referred to as a "service routine". The PIC, 
after issuing an Interrupt to the CPU, must somehow 
input information into the CPU that can "point" the 
Program Counter to the service routine associated 
with the requesting device. This "pointer" is an ad­
dress in a vectoring table and will often be referred 
to, in this document, as vectoring data. 

2-261 

RAM 

ROM 

RAM 

ROM 

C'U·DRIVEN 
MULTIPLEXOR 

231468-3 

Figure 38. Polled Method 

CPU .NT 

231468-4 

Figure 3b. Interrupt Method 

11, 

1;1 
li1 
1',1 

Ii 
'i I, 

: 

'i 

I 
I 

, ~ 

J 

'1 
',I 
,! 
! 



inter 8259A 

The 8259A is a device specifically designed for use 
in real time, interrupt driven microcomputer systems. 
It manages eight levels or requests and has built-in 
features for expandability to other 8259A's (up to 64 
levels). It is programmed by the system's software 
as an 110 peripheral. A selection of priority modes is 
8vailableto the. programmer so that the manner in 
whicn tna requests are prC,)cessed by the 8259A can 
be configured to match his system requirements. 
The priority modes can be changed or reconfigured 
dynamically at any time during the main program. 
This means that the complete interrupt structure can 
be defined as required, based on the total system 
environment. 

INTERRUPT REQUEST REGISTER (IRR) AND 
IN-SERVICE REGISTER (ISR) 

The interrupts at the IR input lines are handled by 
two registers in cascade, the Interrupt Request Reg­
ister (IRR) and the In-Service (ISR). The IRR is used 
to store all the interrupt levels which are requesting 
service; and the ISA is used to store. all the interrupt 
levels which are being serviced. 

PRIORITY RESOLVER 

This logic block determines the priorites of the bits 
set in the IRA. The highest priority is .selected and 
strobed into the corresponding .. bit of the ISR during 
INTA pulse. 

INTERRUPT MASK REGISTER (IMR) 

The IMR stores the bits which mask the interrupt 
lines to be masked. The IMR operates orl the IRR. 
Masking of a higher priority input will not affect the 
interrupt request lines of lower quality. 

INT(INTERRUpn 

This output goes directly to the CPU interrupt input. 
TheVOH level on this line is designed to be fully 
compatible with the8080A, 8085A and 8086 input 
levels. 

INTA (INTERRUPT ACKNOWLEDGE) 

INTA pulses will cause the 8259A to release vector­
ing information onto the data bus. The format of this 
data depends on the system mode (pPM) of the 
8259A. 

DATA BUS BUFFER 

This 3-state, bidirectional 8-bit buffer is used to inter­
face the 8259A to the system Data Bus. Control 
words and status information are transferred 
through the Data Bus Buffer. 

READ/WRITE CONTROL LOGIC 

Tnefunction of this block is to accept OUTput com­
mands from the CPU. It contains the Initialization 
Command Word (ICW) registers and Operation 
Command Word (OCW) registers which store the 
various control formats for device operation. This 
function block also allows the status of the 8259A to 
be transferred onto the Data Bus. 

CS (CHIP SELECT) 

A LOW on this input enables the 8259A. No reading 
or writing of the chip will occur unless the device is 
selected. 

WFi(WRITE) 

A LOW on this input enables the CPU to write con­
trol words (ICWsand OCWs) to the 8259A. 

RD (READ) 

A LOW on this input enables the 8259A to send the 
status· of the Interrupt Request Register tIRR), In 
Service Register (ISR), . the Interrupt Mask Register 
(IMR), or the Interrupt level onto the Data Bus. 

Ao 
This .input signal is used in conjunction with WR and 
RD signals to write commands into the various com­
mand registers, as well as reading the various status 
registers of the qhip. This. line can be tied directly to 
one of the address lines. 

2-262 



8259A 

DATA 
0,-00 BUS 

BUFFER 

" 
11 

iffi 
IRO 
IR1 

WR REAOI IR2 
WRITE 

IR3 lOGIC 
AO IR4 

IRS 

IRi 

CS IR7 

CASO 

CAS 1 

CAS 2 

S;/EN" _----J ~INTERNAL BUS 

231468-5 

Figure 4a. 8259A Block Diagram 

2-263 



inter 8259A 

INT 

CONTAOl lOGIC 

ii6 IAI 
WR IA2 

IN 
IA3 SERVICE 

AD REG fA. 
IISR) lAS 

IA6 
CS IA7 

CASO 

CAS 1 

CAS2 

SP/EN -----, ~ INTERNAL BUS 

231468-6 

Figure 4b. 8259A Block Diagram 

2·264 



intJ 8259A 

THE CASCADE BUFFER/COMPARATOR 

This function block stores and compares the IDs of 
all 8259A's used in the system. The associated 
three I/O pins (CASO-2) are outputs when the 8259A 
is used as a master and are inputs when the 8259A 
is used as a slave. As a master, the 8259A sends 
the 10 of the interrupting slave device onto the 
CASO-? lines. The slave thus selected will send its 
preprogrammed subroutine address onto the Data 
Bus during the next one or two consecutive INTA 
pulses. (See section "Cascading the 8259A".) 

INTERRUPT SEQUENCE 

The powerful features of the 8259A in a microcom­
puter system are its programmability and the inter­
rupt routine addressing capability. The latter allows 
direct or indirect jumping to the specific interrupt rou­
tine requested without any polling of the interrupting 
devices. The normal sequence of events during an 
interrupt depends on the type of CPU being used. 

The events occur as follows in an MCS-80/85 sys­
tem: 

1. One or more of the INTEAAUPT AEQUEST lines 
(IA7 -0) are raised high, setting the correspond­
ing IAA bit(s). 

2. The 8259A evaluates these requests, and sends 
an INT to the CPU, if appropriate. 

3. The CPU acknowledges the INT and responds 
with an INTA pulse. 

4. Upon receiving an INT A from the CPU group, the 
highest priority ISA bit is set, and the correspond­
ing IAA bit is reset. The 8259A will also release a 
CALL instruction code (11001101) onto the 8-bit 
Data Bus through its 07 -0 pins. 

5. This CALL instruction will initiate two more INTA 
pulses to be sent to the 8259A from the CPU 
group. 

6. These two INTA pulses allow the 8259A to re­
lease its preprogrammed subroutine address 
onto the Data Bus. The lower 8-bit address is re-

leased at the first INTA pulse and the higher 8-bit 
address is released at the second INTA pulse. 

7. This completes the 3-byte CALL instruction re­
leased by the 8259A. In the AEOI mode the ISR 
bit is reset at the end of the third INTA pulse. 
Otherwise, the ISR bit remains set until an appro­
priate EOI command is issued at the end of the 
interrupt sequence. 

The events occuring in an 8086 system are the 
same until step 4. 

4. Upon receiving an INTA from the CPU group, the 
highest priority ISA bit is set and the correspond­
ing IAA bit is reset. The 8259A does not drive the 
Data Bus during this cycle. 

5. The 8086 will initiate a second INTA pulse. Dur­
ing this pulse, the 8259A releases an 8-bit pointer 
onto the Data Bus where it is read by the CPU. 

6. This completes the interrupt cycle. In the AEOI 
mode the ISA bit is reset at the end of the sec­
ond INTA pulse. OtherWise, the ISR bit remains 
set until an appropriate EOI command is issued 
at the end of the interrupt subroutine. 

If no interrupt request is present at step 4 of either 
sequence (I.e., the request was too short In duration) 
the 8259Awill issue an interrupt level 7. Both the 
vectoring bytes and the CAS lines will look like an 
interrupt level 7 was requested. 

When the 8259A PIC receives an Interrupt, INT be­
comes active and an interrupt acknowledge cycle Is 
started. If a higher priority interrupt occurs between 
the two INTA pulses, the INT line goes Inactive im­
mediately after the second INTA pulse. After an un­
specified amount of time the INT line is activated 
again to signify the higher priority interrupt waiting 
for service. This inactive time is not specified and 
can vary between parts. The designer should be 
aware of this consideration when designing a sys­
tem which uses the 8259A. It is recommended that 
proper asynchronous design techniques be fol­
lowed. 

2-265 

11 
'.j 



iii) 

ViR 

Aej 

CS 

CASO 

CAS 1 

CAS2 

DATA 
BUS 

BUffER 

READI 
WRITE 
lOGIC 

SP/EN ____ ..I 

8259A 

INT 

CONTROL lOGIC 

IRO 
IR1 

IR2 
IN 

SERVICE 
REG 
lISRI -IRS 

-IRS 

IR7 

INTERNAL BUS 

.231468-7 

Figure 4c. 8259A Block Diagram 

IIli WlI 'NT iNfA 

I 
INTERAUPT 
REQUESTS 

Figure 5. 8259A Interface to 
Standard System Bus 

I, 
231468-8 

INTERRUPT SEQUENCE OUTPUTS 

MCS·~O®, MCS-:-85® 

This sequence is timed by three INTA pulses. During 
the first INTA pulse the CALL opcode is enabled 
onto the data bus. 

Content of First Interrupt Vector Byte 
07 06 05 04 03 02 01 DO 

CALL CODE I 1 0 0 0 1 I 
During the second INTA pulse the lower address of 
the appropriate service routine is enabled onto the 
data bus. When Interval = 4 bits A5-A7 are pro­
grammed, while Ao-A4 are automatically inserted by 
the 8259A. When Interval = 8 only A6 and A7 are 
programmed, while Ao-A5 are automatically insert­
ed. 

2-266 



inter 8259A 

Content of Second Interrupt Vector Byte composed as follows (note the state of the ADI 

IR Interval = 4 

07 06 05 04 03 02 01 00 

7 A7 A6 A5 1 1 1 0 0 

6 A7 A6 A5 1 1 0 0 0 

5 A7 A6 A5 1 0 1 0 0 

4 A7 A6 A5 1 0 0 0 0 

3 A7 A6 A5 0 1 1 0 0 

2 A7 A6 A5 0 1 0 0 0 

1 A7 A6 A5 0 0 1 0 0 

0 A7 A6 A5 0 0 0 0 0 

IR Interval = 8 

07 06 05 04 03 02 01 00 

7 A7 A6 1 1 1 0 0 0 

6 A7 A6 1 1 0 0 0 0 

5 A7 A6 1 0 1 0 0 0 

4 A7 A6 1 0 0 0 0 0 

3 A7 A6 0 1 1 0 0 0 

2 A7 A6 0 1 0 0 0 0 

1 A7 A6 0 0 1 0 0 0 

0 A7 A6 0 0 0 0 0 0 

During the third INTA pulse the higher address of the 
appropriate service routine, which was programmed 
as byte 2 of the initialization sequence (Aa-A15), is 
enabled onto the bus. 

Content of Third Interrupt Vector Byte 
07 06 05 04 03 02 01 00 

I A151 A141 A131 A121 A11 I A10 I A91 Asl 

8086,8088 

SOS6 mode is similar to MCS-SO mode except that 
only two Interrupt Acknowledge cycles are issued by 
the processor and no CALL opcode is sent to the 
processor. The first interrupt acknowledge cycle is 
similar to that of MCS-SO, S5 systems in that the 
S259A uses it to internally freeze the state of the 
interrupts for priority resolution and as a master it 
issues the interrupt code on the cascade lines at the 
end of the INTA pulse. On this first cycle it does not 
issue any data to the processor and leaves its data 
bus buffers disabled. On the second interrupt ac­
knowledge cycle in SOS6 mode the master (or slave 
if so programmed) will send a byte of data to the 
processor with the acknowledged interrupt code 

mode control is ignored and A5-All are unused in 
SOS6 mode): 

IR7 

IR6 

IR5 

IR4 

IR3 

IR2 

IR1 

IRO 

Content of Interrupt Vector Byte 
for 8086 System Mode 

07 06 05 04 03 02 01 

T7 T6 T5 T4 T3 1 1 

T7 T6 T5 T4 T3 1 1 

T7 T6 T5 T4 T3 1 0 

T7 T6 T5 T4 T3 1 0 

T7 T6 T5 T4 T3 0 1 

T7 T6 T5 T4 T3 0 1 

T7 T6 T5 T4 T3 0 0 

T7 T6 T5 T4 T3 0 0 

PROGRAMMING THE 8259A 

00 

1 

0 

1 

0 

1 

0 

1 

0 

The S259A accepts two types of command words 
generated by the CPU: 

1. Initialization Command Words (ICWs): Before 
normal· operation can begin, each S259A In the 
system must be brought to a starting~oint-by 8 
sequence of 2 to 4 bytes timed by WR pulses. 

2. Operation Command Words (OCWs): These are 
the command words which command the 8259A 
to operate in various interrupt modes. These 
modes are: 

a. Fully nested mode 

b. Rotating priority mode 

c. Special mask mode 

ct. Polled mode 

The OCWs can be written into the S259A anytime 
after initialization. 

INITIALIZATION COMMAND WORDS 
(leWS) 

General 

Whenever a command is issued with AO = 0 and 04 
= 1, this is interpreted as Initialization Command 
Word 1 (ICW1). ICW1 starts the intiitalization se­
quence during which the following automatically oc­
cur. 

a. The edge sense circuit Is reset, whicnmeans that 
following initialization, an interrupt request (IR) in­
put must make a low-to-high transistion to gener­
ate an interrupt. 

2-267 



8259A 

b •. The Interrupt Mask Register is cleared. 
c. IR7 input is assigned priority 7. 
d. The slave mode ac;ldress is set to 7. . 
e. Special Mask Mode is cleared and Status Read is 

sat to IRR. 
f.' If 104 = 0, then allfunctions selected in ICW4 

are set to zero. (Non-Buffered mode"; no Auto­
EOI, MCS-80, 85 system). 

°NOTE: 
Master/Slave in ICW4 is only used in the buffered 
mode. 

Initialization Command Words 1 and 2 
(ICW1,ICW2) 

A5-A15: Page starting address of ssrvice routines. 
In an MCS 80/85 system, the 8 request levels will 
generate CALLs to 8 locations equally spaced in 
memory. These can be programmed to be spaced at 
intervals of 4 or 8 memory locations, thus the 8 rOu-' 
tines will occupy a page of 32 or 64 bytes, respec-
tively. ,. 

The address format is 2 bytes long (Ao-A15).When 
the routine interval is 4, Ao.;.~ are automatically In­
serted by the 8259A, while A5..;A15areprog~ammed 
externally. When the routine interval is 8, Ao:-A5 are 
automatically inserted by the 8259A, while As:-A15 
are programmed externally. 

The 8-bYte interval will maintain compatibility with 
current software, while the 4-byte interval is best for 
a compact jump table. 

In an 8086 system A15-A11 are inserted in the five 
most significant bits of the vectoring bytEl and the 
8259A sets the three least significant bits according 
to the interrupt level,. A10:-A5are ignorEld and ADI 
(Address Interval) has no effect. . '. . 
LTIM: If LTIM = 1, then the 8259A will oPerate in 

the level interrupt mode. Edge detect logic 
,on the interrupt InpUts will be disabled. 

ADI: CALL address interval. ADI = 1 then .inter­
val = 4; ADI = 0 then interval = 8. 

SNGL: Single. Means that this is the only 8259A in 
the system. If SNGL' = 1 no ICW3 win be 
issued. ' 

1.C4: If this bit is set-ICW4 has to be read. If 
ICW4is not needed, set 104 ='; O. 

Initialization, Command Word. 3 (lCW3) 

Thl*word is read only when there ill more than one 
8259A in the syStem and cascading is used, 'in w~ich 

caseSNGL = O. It will load the 8-bIt slave register. 
The functions of this register are: 
a. In the master mode (either when SP = 1, or In 

. buffered mode when MIS = 1 In ICW4) a "1" is 
set for each slave in the system. The master then 
will release byte 1 of the call sequence (for MCS-
80/85 system) and will enable the corresponding 
slave to release bytes 2 and 3 (for 8086 only byte 
2) through the cascade IInEls. 

b. In the slave mode (either when S1' = 0, or if BUF 
= 1 and M/S = 0 In ICW4) bits 2-0 identify the 

. slave. The slave compares its cascade input with 
these bits and,' if they are equal, bytes.2 and 3 of 
the call sequence (or Just byte 2 for 8086) are 
released by it on the Data Bus. 

NO (.IMOL = 1) 

NO(IC4 = '0) 

RUDY TO ACC'PT 
INTlRRUPT REQUESTS 

FigureS. Initialization Sequence 



8259A 

Initialization Command Word 4 (ICW4) 
SFNM: If SFNM = 1 the special fully nested mode 

is programmed. 
BUF: If BUF = 1 the buffered mode is pro­

grammed. In buffered mode SJ5 IEfJ be­
comes an enable output and the master I 
slave determination is by MIS. 

MIS: If buffered mode is selected: MIS = 1 
means the 8259A is programmed to be a 

ICW' 

master, MIS = 0 means the 8259A is pro­
grammed to be a slave. If BUF = 0, MIS 
has no function. 

AEOI: If AEOI = 1 the automatic end of Interrupt 
mode is programmed.-

p.PM: Microprocessor mode: p.PM = 0 sets the 
8259A for MCS-80, 85 system operation, 
p.PM . = 1 sets the 8259A for 8086 system 
operation. 

~ ~ ~ ~ ~ ~ ~ 

I o I A, I A, I ~ I 1 I LTIM \ ADI \SNGL\ IC4 1 

I I I 

ICW2 

1 leW4 NEEDED 
o • NO leW4 NEEDED 

1 = SINGLE 
o = CASCADE MODE 

CALL At'DRESS INTERVAl 
, • INTERVAL OF 4 
O' INTERVAL OF. 

1 : LEVEL TRIGGERED MODE 
o : EDGE TRIGGERED MODE 

A7 - As of INTERRUPT 
VECTOR ADDRESS 

(MCS-BO / B5 MODE ONL Y) 

A,s-"e OF INTERRUPT 
VECTOR ADDRESS 

(MCSBO/B5 MODE) 
T7-T3 OF INTERRUPT 
VECTOR ADDRESS 

(BOB6 / BOBB MODE) 

Figure 7. Initialization Command Word Format 

2-269 

231468-10 

231468-11 

1

'.,:,:,:1. 

~ 
I 



8259A 

IcWllMASTER DEVICE) 

0, '\, O. 

ICW] (SLAVE DEVIC[I 

I ' I 0 I 0 I 0 I 0 I 0 1101 110, 1100 I 

'ICW. 

AO 07 0& Ott O. OJ 02 0, 00 

I . I' 1 01 0 I 0' ISFNMII!UF I MIS I AfOl1 "PM I 
L-

1 = iR INPUT HAS A SLAVE 
0= IRINI'UT DoES NOT HAVE 

A SLAVE 

SLAVE 101 'I 
o 1 2 :J • !i & ·7 

o 1 o 1 0 1 o 1 

0 0 1 100 ( 1 

o 0 0 0 1 1 1 1 

1 = 808618088 MODE 
o = MCS·80 185 MODE 

1= AUTO EOI 
o • NORMAl. EOI 

, - ilVFFEREO MODE/S,LAVE §333.- NON BUFFERED MODE 

1 1 ,- 'aUfFfRE'O MODE/",ASTUl 

, .. 
1 .. SPECIAL FULLY NESTED 

MODE • 
..... --\-----~-....., ... 0" NOT'SPeCIAL FUlLY 

NESTED MODE 

NOTE: ",,' '" , 
Slave .10 is equal to the correspo'1ding master IR input. 

Figure 7 • ,nltlalizatlo",CommandWol'd Format (Continued) 

231468-12 

231468-13 

231468-14 



intJ 8259A 

OPERATION COMMAND WORDS 
(OCWS) 

Operation Control Words (OCWs) 
OCW1 

After the Initialization Command Words (ICWs) are 
programmed into the 8259A, the chip is ready to ac­
cept interrupt requests at its input lines. However, 
during the 8259A operation, a selection of algo­
rithms can command the 8259A to operate in vari­
ous modes through the Operation Command Words 
(OCWs). 

AO 

[i] 
07 06 

M6 

SL 

05 04 03 02 01 DO 

M5 M4 M3 M2 M1 MO I 
OCW2 

EOI 0 0 L2 L 1 LO 

OCW3 o I 0 ESMM SMM 0 1 P RR RIS I 

I 0 

OCW1 

~ ~ ~ ~ ~ ~ ~ ~ ~ 

R I SL 

0 0 I 

0 1 I 

1 0 1 

1 0 0 

0 0 0 

1 1 1 

I 1 0 

0 1 0 

INTERRUPT MASK 
I-_'-_'-_'-_'-_"-_.L-_.L-_--t 1 = MASK SET 

0= MASK RESET 

OCW2 

EOI I 0 I 0 I II I l, I lo I 
IR LEVEL TO BE 
ACTED UPON 

0 I 2 3 • 5 6 

0 I 0 I 0 1 0 

0 0 I I 0 0 I 

0 0 0 0 1 1 I 

NON·SPECIFIC EOICOMMAND l END OF INTERRUPT 
SPECIFIC EOI CO_AND 

ROTATE ON NON-SPECIFIC EOI COMMAND } ROTATE IN AUTOMATIC EOI MODE (SET) . AUTOMATIC ROTATION 

ROTATE IN AUTOMATIC EO.I MODE (CLEAR) 

-ROTATE ON SPECIFIC EOI COMMAND } SPECIFIC ROTATION 
-SET PRIORITY COMMAND 

NO OPERATION 

-LO-L2 ARE USED 

Figure 8_ Operation Command Word Format 

2-271 

231468-15 

1 

I 

1 

, 

231468-16 



8259A 

Operation Control Word 1 (OCW1) 

OCW1 set$and clears the mask bits in the interrupt 
Mask Register, (IMR)., M7-MO represent the eight 
mask bits. M =, 1 indicates the channel is masked 
(inhibited), M = 0 indicates the channel is ~nabled. 

OCW3 

~ ~ ~ ~ ~ ~ ~ ~ ~ 

I' 0 I 0 IUMMISMM I 0 ,[ 'ip I RII I RIS I 

, 

.. 

Operation Control Word, 2 (OCW2), 

R, SL, EOI-These three bits'control the Rotate and 
End of Interruptmodes and combinationsofthe two~ 
A chart of these combinations can be found on the 
Operation Command Word Format. , 

L2, Lh La-These bits determine the interrlJpt level 
acted upon when the SL bit is active. 

READ !lEOIITE,R COMMAND 

0 1 0 1 

0 0 I 1 

,READ READ 

NO ACTION IR REG IS REG 
ON NEXT ON NEXT 
iii5 PULSE Ri> PULSE 

'." 

,-POLL COMMAND 
O-NO POLL COMMAND 

SPECIAL MASK MODE 

0 1 0 1 

0 0 1 1 

RESET SET 
NO ACTION S;ECIAl ~C"'L 

'MASK MASK 

,," 

231468-17 

Figure 8. Operation Command Word Format (Continued) 

2-272. 



8259A 

Operation Control Word 3 (OCW3) 

ESMM-Enable Special Mask Mode. When this bit 
is set to 1 it enables the SMM bit to set or reset the 
Special Mask Mode. When ESMM = 0 the SMM bit 
becomes a "don't care". 

SMM-Special Mask Mode. If ESMM = 1 and SMM 
= 1 the 8259A will enter Special Mask Mode. If 
ESMM = 1 and SMM = 0 the 8259A will revert to 
normal mask mode. When ESMM = 0, SMM has no 
effect. 

Fully Nested Mode 

This mode is entered after initialization unless anoth­
er mode is programmed. The interrupt requests are 
ordered in priority from 0 through 7 (0 highest). 
When an interrupt is acknowledged the highest pri­
ority request is determined and its vector placed on 
the bus. Additionally, a bit of the Interrupt Service 
register (ISO-7) is set. This bit remains set until the 
microprocessor issues an End of Interrupt (EOI) 
command immediately before returning from the 
service routine, or if AEOI (Automatic End of Inter­
rupt) bit is set, until the trailing edge of the last INTA. 
While the IS bit is set, all further interrupts of the 
same or lower priority are inhibited, while higher lev­
els will generate an interrupt (which will be acknowl­
edged only if the microprocessor internal Interupt 
enable flip-flop has been re-enabled through soft­
ware). 

After the initialization sequence, lAO has the highest 
prioirity and IA7 the lowest. Priorities can be 
changed, as will be explained, in the rotating priority 
mode. 

End of Interrupt (EOI) 

The In Service (IS) bit can be reset either automati­
cally following the trailing edge of the last in se­
quence INTA pulse (when AEOI bit in ICW1 is set) or 
by a command word that must be issued to the 
8259A before returning from a service routine (EO I 
command). An EOI command must be issued twice 
if in the Cascade mode, once for the master and 
once for the corresponding slave. 

There are two forms of EOI command: Specific and 
Non-Specific. When the 8259A is operated in modes 
which perserve the fully nested structure, it can de­
termine which IS bit to reset on EOI. When a Non­
Specific EOI command is issued the 8259A will auto­
matically reset the highest IS bit of those that are 
set, since in the fully nested mode the highest IS· 
level was necessarily the last level acknowledged 
and serviced. A non-specific EOI can be issued with 
OCW2 (EO I = 1, SL = 0, A = 0). 

When a mode is used which may disturb the fully 
nested structure, the 8259Amay no longer be able 
to determine the last level acknowledged. In this 
case a Specific End of Interrupt must be issued 
which includes as part of the command the IS level 
to be reset. A specific EOI can be issued with OCW2 
(EOI = 1, SL = 1, A = 0, and LO-L2 is the binary 
level of the IS bit to be reset). 

It should be noted that an IS bit that is masked by an 
IMA bit will not be cleared by a non-specific EOI if 
the 8259A is in the Special Mask Mode. 

Automatic End of Interrupt (AEOI) 
Mode 

If AEOI = 1 in ICW4, then the 8259A will operate in 
AEOI mode continuously until reprogrammed by 
ICW4. in this mode the 8259A will automatically per­
form a non-specific EOI operation at the trailing 
edge of the last interrupt acknowledge pulse (third 
pulse in MCS-80/85, second in 8086). Note that 
from a system standpoint, this mode should be used 
only when a nested multilevel interrupt structure is 
not required within a single 8259A. 

The AEOI mode can only be used in a master 8259A 
and not a slave. 8259As with a. copyright date of 
1985 or later will operate in the AEOI mode as a 
master or a slave. 

Automatic Rotation 
(Equal Priority Devices) 

In some applications there are a number of interrupt­
ing devices of equal priority. In this mode a device, 
after being serviced, receives the lowest priority, so 
a device requesting an interrupt will have to wait, in 
the worst case until each of 7 other devices are 
serviced at most once. For example, if the priority 
and "in service" status is: 

Before Rotate (IA4 the highest prioirity requiring 
service) 

IS7 I.. III 114 IS3 112 ISl ISO 

1 0 11 101 1 101010101 
"IS" Status 231468-18 

~t Priority H ....... Priority 

1 " 1 7 8 I 5 I 4 I 3 I 21 1 1'0 I 
Priority Status 231468-19 

2-273 

:' 
I"~ 



inter 8259A 

After Rotate (IR4 was .serviced, all other priorities 
rotated corresp()ndingly) 

1.7 lSI lSI 114', 113 lSI 181 ISO 

I' 0 1 1 1 0 I' 0 1 0 1,01 0 1 0 I 
';IS" StatUs 231468-20 

H ...... ' PrlOfIt, L,...' PrIoItty 

1 2 I Pro 1 71!Gi 4 I 3 I 
PrioritySta~s 231468-21 

There are two ways to accomplish Automatic Rota­
tion using OCW2, the Rotation on Non-SpecificEOI 
Command(R = 1, SL = 0, EOI'= 1) and the Ro­
tate in Automatic EO! Mode which is set by (R = 1,' 
SL = 0, EOI;: 0) and cleared by(R = 0, SL = 0, 
EOI = 0). 

Specific Rotation 
(Specific Prlorlty) 

The programmer can' change priorities by program­
ming the 'bottom priority and thus fixing all other pri­
orities; i.e., if iR5 ·is programmed as the bottom prior­
ity device, then IR~ will have the highest one. 

The Set Priority command is issued in OCW2 where: 
R = 1, SL = 1, LO:-L2 is. the binary priority level 
code of the bottom priority device. 

Observe that in thiS mode internal status is updated 
by software control during OCW2. However, it isin~ 
dependent of the End of Interrupt (EOI) command 
(also executed by OCW2). Priority changes can be' 
executed during an EOI command by using tI:Ie Ro­
tate on Specific,EOI command in OCW2 (R = 1,SL 
= 1, EOI = 1 and LO-L2 IR level to receive 
bottom priority). . 

Interrupt Masks 

Each lriterrupt Request input can bem masked indi­
vidually by the Interrupt Mask Register (IMR) pro-, 
grammed through OCW1. Eaclibit in the IMR masks 
one interrupt channel if it is set (t). Bit 0 masks IRO, 
Bit 1 masks IR1 and so forth. Maskil1g anlR channel 
does not affect the other channels operation. 

Special Mask Mode 

Some applications may require an interrupt service 
routine to ~ynaniicallY alter the system priority struc-

ture during its ,execution under software control. For 
example, the routine may wish to inhibit lower priori­
ty requestsf9r a portion of its execution but enable 
some of them for another portion. 

The difficu'lty here is that if an Interrupt Request is 
acknowledged and an End of Interrupt command did 
not re~et its IS bit (i.e., while executing a servic,e 
routine), the 8259A would have inhibited all lower 
priority requests with no easy way for the routine to 
enable them. 

That is where the SpeCial Mask Mode comes in. In 
the special Mask Mode, when a mask bit is set in 
OCW1, it inhibits further interrupts at that.level and 
enables interrupts from al/ other levels (lower as well 
as higher) that are not masked. 

Thus, any interrupts may be selectively enabled by 
,loading the, mask register. 

The special Mask Mode is set by OWC3 where: 
SSMM = 1, SMM =, 1, and cleared where SSMM = 
1, SMM= Q. ' 

, POll Command 

In Poll. mode the INT output functions as it normally, 
does. The microprocessor should ignore this output. 
This can be accomplished· either by, not connecting 
thelNT output or by masking .interrupts within the 
microprocessor,thereby disabling its interrupt input. 
Service to devices is achieved by software using a 
Poll command. 

The Poll command is issued by se!!!!];! P "" '1" in 
OCW3. The 8259A treats the next RD pulse to the 
8259A (i.e., RD = 0, CS = 0) as an interrupt ac­
knowledge, sets the appropriate IS bit if there is a 
request, and reads the priority level. Interrupt is fro-
zen from WR to RD. " , 

The word enabled onto the data bus during RD is: 
07 0605 04 03 02 01 DO 

'W2 ,W1 WO 

, WO-W2: Binary code of the highest priority level 
requesting service. . 

I: Equal to 'T' if there is an interrupt: 

This mode is useful if there is a routine command 
common to several levels so 'that the INTA se­
qUence is not neede~ (saves ROM space). Another 
~pplication is to use the poll mode to expand the 
number ~f priority levels to more than 64. 

Reading the 8259A Status; 

T~e input sta,tusof seVeral internal registers c~n ,be 
read to update the user informat,ion on the system_ 

2-274 



inter 8259A 

lTtM I" 
0", EDGE. 
, :: LEVEl 

TO OTHlJIII ,,,,o.nv CU.U 

"'<I( 
SENSE 

In 

IS,. lIT 

~:!..-4----4----+--+--~r-r-itt--:::-::~:-'HHT 11111 
"'IO'UT ... 
JiIIlIOLYI,. 

"(QUEST 
LATCH 

COHTAOL 
lOGIC 

o ap-r--t---=~-+++--~~ -MASKlO 
•• a 

c a 

~~----HMr-~---+-~--:~::~ 

NOTES: 
1. Master clear active only during ICW1. 
2. FREEZE is active during INTA and poll sequences only. 

231468-22 

3. Truth Table for a O-Latch. 
C D Q Operation 

1 Oi Oi Follow 
o X On-1 Hold 

Figure 9. Priority Cell-Simplified Logic Diagram 

The following registers can be read via OCW3 (IRR 
and ISR or OCW1 IIMR]). 

Interrupt Request Register (IRR): B-bit register which 
contains the levels requesting an interrupt to be ac­
knowledged. The highest request level is reset from 
the IRR when an interrupt is acknowledged. (Not af­
fected by IMR.) 

In-Service Register (ISR): B-bit register which con­
tains the priority levels that are being serviced. The 
ISR is updated when an End of Interrupt Command 
is issued. 

Interrupt Mask Register: B-bit register which con­
tains the interrupt request lines which are masked. 

The IRR .can be read when, prior to the RD pulse, a 
Read Register Commanct is issued with OCW3 (RR 
= 1, RIS = 0.) 

ThelSR can be read, when, prior to the RD pulse, a 
Read Register Command is issued with OCW3 (RR 
= 1, RIS = 1). 

There "is no need to write an OCW3 before every 
status read operation, as long as the status read 
corresponds with the previous one; i.e., the B259A 
"remembers" whether the IRR or ISR has been pre­
viously selected by the OCW3. This is not true when 
poll is used. 

After initialization the B259A is set to IRA. 

For reading the IMR, no OCW3 is needed. The out­
put data bus will contain the IMR whenever RD is 
active and AO = 1 (OCW1). 

Polling overrides status read when P = 1, RR = 1 
in OCW3. 

Edge and Level Triggered Modes 

This mode is programmed using bit 3 in ICW1. 

IfL TIM = '0', an interrupt request will be recognized 
by a low to high transition on an IR input. The IR 
input can remain high without generating another in­
terrupt. 

2-275 



8259A 

IR 

INT ____ -+-J 

~-----~---~---~ 

LATCH' 
ARMED 

EARLIEST IR 
CAN BE REMDVED 

808118018 808018085 

808118088 

8080/8085 

LATCH" 
'EDGE TRIGGERED MODE ONLY ARMED 

231468-23 

Figure 10.IR Triggering Timing Requirements 

If LTIM = '1', an interrupt request will be recognized 
by a 'high' level on IR Input, and there is no need for 
an edge detection. The interrupt request must be 
removed before the EO/ command is issued or the 
CPU interrupts is enabled to prevent a second inter­
rupt from occurring. 

The priority cell diagram shows a conceptual circuit 
of the level sensitive and edge sensitive input circuit­
ry of the 8259A. Be sure to note that the request 
latch is a transparent D type latch. 

In both the edge and level triggered modes the IR 
inputs must remain high until after the falling edge of 
the. first INTA. It the I.R input goes Idw before this 
time aDEFAUL T IR7 will occur when the CPU ac­
knowledges the interrupt, This can be a useful safe­
guard for detecting interrupts caused by spurious 
noise glitches on the fR inputs. To implement this 
feature the IR7 routine is used for "clean up" simply 
executing a return instruction, thus ignoring the inter­
rupt. If IR7 is needed for other purposes a default 
IR7 can still be detected by reading the ISA. A nor· 
mal/R7 interrupt will set the corresponding ISR bit, a 
default IR7 won't. If a default IR7 routine occurs dur­
ing a normallR7 routine, however, thelSR will re­
main set. In this case it is necessary to keep track of 
whether or not the IR7 routine was previously en­
tered. If another IR70ccurs it is a default. 

The Special Fully Nest Mode 

This mode will be usEidin the case of a big system 
where cascading is used, and the priority has to· be 
conserved within each slave .. In this case the fully 
nested mode will be programmed to the master (us- . 

ing ICW4).This mode is similar to the normal nested 
mode with the following exceptions: 

a. When an interrupt request from a certain slave is 
in service this slave is not locked out from the 
master's priority logic and further interrupt re­
quests from higher priority IR's within the slave 
will be recognized by the master and will initiate 
interrupts to the processor. (In the normal nested 
mode a slave is masked out when its request is in 
service and no higher requests from the same 
slave can be serviced.) 

b. When exiting the Interrupt Service routine the 
software has to check whether the interrupt serv­
iced was the only one from· that slave. This is 
done by sending a non-specific End of Interrupt 
(EOI) command to the slave and then reading its 
In-Service register and checking for zero. If it is 
empty, a non-specific EOI can ·be sent to the 
master too. If not, no EOI should be sent. 

Buffered Mode 
When. the 8259A is used in a large system where 
bus driving buffers are required on the data bus and 
the cascading mode is used, there exists the prob­
lem of enabling buffers~ 

The buffered mode will structure the 8259A to send 
an enable si.gnalonSP/EN.to enable the buffers. In 
this mode, whenever the 8259A's data bus outputs 
are enabled, the SP/EN output becomes active. 

This modification forces theus~ •. Of. software pro­
gramming. to determine whether the 8259Ais. a masc 

ter or a slave. Bit 3 in ICW4 programs the buffered 
mode, and bit 2 in ICW4 determines whether it is a . 
master or a slave. 

2-276 



8259A 

CASCADE MODE 

The 8259A can be easily interconnected in a system 
of one master with up to eight slaves to handle up to 
64 priority levels. 

The master controls the slaves through the 3 line 
cascade bus. The cascade bus acts ,like chip selects 
to the slaves during the INTA sequence. 

In a cascade configuration, the slave interrupt out.: 
puts are connected to the master interrupt request 
inputs. When a sl$ve request line is activated and 
afterWards acknowledged, the master will enable the 
corresponding slave to release the device .routine 
address during bytes 2 and 3 of INT A. (Byte 2 only 
for 8086/8088). 

The cascade bus lines ~re normally low and will con­
tain the slave address code from the trailing edge of 
the first im'A pulse to the trailing edge of the third 
pulse. Each 8259A in the system must follow a sep­
arate initialization sequence and can be pro­
grammed to work in a different mode. An EOI com­
mand must be issued twice: once for the master and 
once for the corresponding slave. An address de­
coder is required to activate the Chip Select (CS) 
input of each 8259A. 

The cascade .lines of the Master 82'59A are activat-' 
ed only for slave inputs, non-slave inputs leave. the 
cascade line inactive (low). . 

ADDRESS.US 1111 \ 

CONTROL_US 

'N'REQ 

DATA IUS 'I. I 
< 

- - - - - - --- - --- - - t- -- - - --- - - - -- - - c...... f--

r- 1 ~ 
a Ao 00-7 "TA 'NT CS Ao OM MA 'N' CS Ao 00-7 INTA 'N' 

CASO CASO CAS 0 

1259A , CAS' - 1259A .259A 

SLAVE A SLAVE 8 CAS' CAS 1 MASTER 

CAS, - CAS. CAS. 

P,flii7 • 5 • 3 2 1 • P/flii7 • 5 • 3 a 1 • P,fliiM7 Me M5 MO M3 M2 Ml MO 

Jol II I r ! I I G!O 11111111 lLf.II III 
7 • 5 • 3 a 1 0 1 • 5 • 3 a , o. , . 3 2 1 0 

I I 
I 

INTERRUPT REQUESTS 

231468-24 

Figure 11. Cascading the 8259A 

2-277 

I 
1 
! 
" 



8259A 

ABSOLUTE MAXIMUM RATINGS· 

Ambient Temperature Under Bias ...... O·C to 70·C 

Storage Temperature ., ........ -65·C to + 150·C 

Voltage on Any Pin 
with Respect to Ground ....•..... -0.5V to +7V 

Power Dissipation ..•......•.................. 1W 

• Notice: Stresses above those listeq under '~bso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and 
functional operation of the device at these or any 
other conditions above those indicated in the opera­
tional sections of this specification is not implied Ex­
posure to absolute maximum rating conditions for 
extended periods may affect device reliability. 

D.C. CHARACTERISTICS T A = O·C to 70·C. Vee = 5V ± 10% 

Symbol I Parameter Min Max Units Test Conditions 

VIL Input Low Voltage -0.5 0.8 V 

VIH Input High Voltage 2.0' Vee + 0.5V V 

VOL Output Low Voltage 0.45 V IOL = 2.2mA 

VOH Output High Voltage 2.4 V IOH = -400/LA 

VOH(INT) Interrupt Output High 3.5 V IOH = -100 /LA 
Voltage 2.4 V IOH = -400 p.A 

III Input Load Current -10 +10 /LA OV::;; VIN::;; Vee 

ILOL Output Leakage Current -10 +10 /LA 0.45V:;; VOUT ::;; Vee 

Icc Vee Supply Current 85 mA 

ILiR IR Input Load Current -300 /LA VIN = 0 

10 /LA VIN = Vee 

'NOTE: 
For Extended Temperature EXPRESS VIH = 2.3V. 

CAPACITANCE TA = 25·C; Vee = GND = OV 

Symbol Parameter Min Typ Max Unit Test Conditions 

GIN Input Capacitance 10 pF fc = 1MHz 

GIIO 1/0 Capacitance 20 pF Unmeasured Pins Returned to Vss 

2-278 



8259A 

A.C. CHARACTERISTICS T A = O·C to 70·C, Vcc = 5V ± 10% 

TIMING REQUIREMENTS 

Symbol Parameter 
8259A 8259A-2 

Units 'Test Conditions 
Min Max Min Max 

TAHRL AO/CS Setup to RD/INTA J, 0 0 ns 

TRHAX AO/CS Hold after RD/INTA t 0 0 ns . 

TRLRH RD Pulse Width 235 160 ns 

TAHWL AO/CS Setup to WR J, 0 0 ns 

TWHAX AO/CS Hold after WR t 0 0 ns , . 

TWLWH WR Pulse Width 290 190 ns 

TDVWH Data Setup to WR t 240 160 ns 

TWHDX Data Hold after WR t 0 0 ns 

TJLJH Interrupt Request Width (Low) 100 100 ns See Note 1 

TCVIAL Cascade Setup to Second or Third 
55 40 

INTA J, (Slave Only) 
ns 

TRHRL End of RD to Next RD 
End of INTA to Next INTA within 160 100 ns 
an INTA Sequence Only 

TWHWL End of WR to NextWR 190 100 ns 

·TCHCL End of Command to Next Command 
500 150 

(Not Same Command Type) 
ns 

End of INTA Sequence to Next 
500 300 

INTA Sequence. 
, , 

·Worst case timing for TCHCL In an actual microprocessor system IS typically much greater than 500 ns (I.e. 8085A = 
1.6 ,..S, 8085A-2 = 1 ,..S, 8086 = 1 ,..S, 8086-2 = 625 ns) 

NOTE: 
This is the low time required to clear the input latch in the edge triggered mode. 

TIMING RESPONSES 

Symbol Parameter 
8259A 8259A-2 

Units Test Conditions 
Min Max Min Max 

TRLDV Data Valid from RD/INTA J, 
200 120 

C of Data Bus = 
ns 

100pF 

TRHDZ Data Float after RDONTA t 10 100 10 85 ns Cof Data Bus 

TJHIH Interrupt Output Delay 350 300 ns Max Test C = 100pF 
Min Test C = 15pF 

TIALCV Cascade Valid from First INTA J, 
565 360 CINT = 100 pF (Master Only) 

ns 

TRLEL Enable Active from RD J, or INT A J, 125 100 ns 
CCASCADE = 100 pF 

TRHEH Enable Inactive from RD t or INTA t 150 150 ns 

TAHDV Data Valid from Stable Address 200 200 ns 

TCVDV Cascade Valid to Valid Data 300 200 ns 

2-279 



inter 8259A 

A.C. TESTING INPUT/OUTPUT WAVEFORM A.C. TESTING LOAD CIRCUIT 

u=x x= 2.0 . 2.0 .. . > TESt POINTS < . 
0.8 0.8 

0.45 

231468-25 

A.C. Tesling:lnputs are driven at 2.4V for a logic "I" and 0.45V 
for a logic "0". Timing measurements are made at 2.0V for a logic 
"I" and 0.8V for a logic "0". 

WAVEFORMS 

WRITE 

\ 
- TAHWL -Ci 

ADOIIE .. 

Au 

DATA lUI 

lUI ). 

2-280 

DEVICE 
UNDER 

~CL~I00PF TEST 

231468-26 

CL = 100 pF 
CL Includes Jig Capacitance 

TWLWH 

- TWHAX I.-

~( 
!--TDVWH- !--TWHDX 

) K 
231468-27 



inter 8259A 

WAVEFORMS (Continued) 

READ/INTA 

ifDIINTA-------_ .... ----TIILIIH----... u----------

TIILEL 

TAHA~ 

9----_'-\ 

ADDIIESS IUS 

Ao------J 
TIILDV=j, ~-

DATA IUS· - - - - - - - - - - --~~: -= -t ... _________ J-------
231468-28 

OTHER TIMING 

1m 

Jf=TRHRL=f\ 
iNTA 

\ / 
WR 

\ !t=TWHWL=!\ ~ 
jjjj 

IliITA 

\ C~"~ 
WR 

RO 
INTA 

/ WR 

231468-29 

2·281 



WAVEFORMS (Continued) 

INTA SEQUENCE 

." 

.NT ---___,---' 

~-------------~ 

DI--------____ _ 

8259A 

TCVIAL 

C~2~~-------_r--~~t_---,--L----L~------~~ 

-TIALCV_ 

NOTES: 
Interrupt output must remain HIGH at least until leading edge of first iN'fA. 
1. Cycle 1 in 8086, 8088 systems, the Data Bus is not active. 

Data Sheet Revision Review 

The following cha,nges have been made since revision 2 of the 8259A data sheet. 

231468-30 

1. The first paragraph of the Poll Command section was rewritten to clarify the status of the INT pin. 

2. A paragraph was added to the Interrupt Sequence section to indicate the status of the INT pin during 
multipl,e interrupts. 

3. A reference to PLCC packaging was added. 

4. All references to the 8259A·8 have been deleted. 

2·282 



• 
• 
• 
• 
• 
• 

82C59A-2 
CHMOSProgrammable Interrupt Controller 

Pin Compatible with NMOS 8259A-2 • 80C86/88 and 8080185/86/88 

Eight-Level Priority Controller Compatible 

Expandable to 64 levels • Fully Static Design 

Programmable 'Interrupt Modes • Single 5V Power Supply 

Low Standby Power-10,..,A • Available in 28-Pin Plastic DIP 
(See Packaging Spec., Order # 231369) 

Individual Request Mask Capability 

The Intel 82C59A-2 is a high performance CHMOS version of the NMOS 8259A-2 Priority Interrupt Controller. 
The 82C59A-2 is designed to relieve the system CPU from the task of polling in a multi-level priority interrupt 
system. The high speed and industry standard configuration of the 82C59A-2, make it compatible with micro­
processors such as the 80C86/88, 8086/88 and 8080/85. 

The 82C59A-2 can handle up to 8 vectored priority interrupts for the CPU and is cascadable to 64 without 
additional circuitry. It is designed to minimize the software and real time overhead in handling multi-level 
priority interrupts. Two modes of operation make the 82C59A-2 optimal for a variety of system requirements. 
Static CHMOS circuit design, requiring no clock input, insures low operating power. It is packaged in a 28-pin 
plastic DIP. 

Rii 
ViR 

'. 
cs 

CAS 2 

DATA 
BUS 

BUrrER 

SP/" _---I 
INTERNAL BUS 

Figure 1. Block Diagram 

OR? 

231201-1 

2-283 

OR. 

IRJ 

231201-2 

Figure 2. Pin Configuration 

October 1988 
Order Number: 231201-004 

II·.· I, 

:~ 
I' Ij 

~ 



82C59A-2 

Table 1 Pin Description 

Symbol Pin No. Type Name and Function 

Vee 28 I SUPPLY: + 5V Supply. 

GND 14 I GROUND. 

CS 1 I CHIP SELECT: A low on this pin enables AD and WA 
communication between the CPU and the 82C59A-2.INTA 
functions are independent of CS. 

WA 2 I WRITE: A low on this pin when CS is low enables the 
82C59A-2 to accept command words from the CPU. 

AD 3 I READ: A low on this pin when CS is low enables the 
82C59A-2 to release. status onto the data bus for the CPU. 

D7-DO 4-11 110 BIDIRECTIONAL DATA BUS: Control, status and interrupt-
vector information is transferred via this bus. 

CASo-CAS2 12,13,15 lID CASCADE LINES: The CAS lines form a private 82C59A-2 
bus to control a multiple 82C59A-2 structure. These pins are 
outputs for a master 82C59A-2 and inputs for a slave 
82C59A-2. 

SP/EN 16 lID SLAVE PROGRAMIENABLE BUFFER: This is a dual 
function pin. When in tl;le Buffered Mode it can be used as an 
output to control buffer transceivers (EN). When not in the 
buffered mode it is used as an input to designate a master (SP 
= 1) or slave (SP = 0). 

INT 17 0 INTERRUPT: This pin goes high whenever a valid interrupt 
. ~equest is asserted. It is used to interrupt the CPU, thus it is 

connected to the CPU'sinterrupt pin. 

IRo-IA7 18-25 I INTERRUPT REQUESTS: Asynchronous inputs. An interrupt 
request is executed by raising an IA input (low to high), and 
holding it high until it is acknowledged (Edge Triggered Mode), 
or just by a high level on an IR input (Level Triggered Mode). 
Internal pull-up resistors are implemented on IRO-7. 

INTA 26 I INTERRUPT ACKNOWLEDGE: This pin is used to enable 
82C59A-2 interrupt-vector data onto the data bus by a 
sequence of interrupt acknowledge pulses issued by the CPU. 

Ao 27 I AO ADDRESS LINE: This pin acts in conjunction with the CS, 
WR, and RD pins. It is used by the 82C59A-2 to decipher 
various Command Words the CPU writes and status the CPU 
wishes to read. It is typically connected to the CPU AO 
address line (A 1 for 80C86, BOC88). 



inter 82C59A·2 

FUNCTIONAL DESCRIPTION 

Interrupts In Microcomputer Systems 
Microcomputer system design requires that 1/0 de­
vices such as keyboards, displays, sensors and oth­
er components receive servicing in an efficient man­
ner so that large amounts of the total system tasks 
can be assumed by the microcomputer with little or 
no effect on throughput. 

The most common method of servicing such devic­
es is the Polled approach. This is where the proces­
sor must test each device in sequence and in effect 
"ask" each one if it needs servicing. It is easy to see 
that a large portion of the main program is looping 
through this continuous polling cycle and that such a 
method would have a serious, detrimental effect on 
system throughput, thus limiting the tasks that could 
be assumed 'by the microcomputer and reducing the 
cost effectiveness of using such devices. 

A more desirable method would be one that would 
allow the microprocessor to be executing its main 
program and. only stop to service peripheral devic~s 
when it istQld to do so by the device itself. In effect, 
the methOd would provide an external asynchronous 
input that would inform the processor that it should 
complete whatever instruction that is currently being 
executed and fetch a new routine that will service 
the requesting device. Once this servicing is com­
plete, however, the processor would resume exactly 
where it left off. 

This method is called Interrupt. It is easy to see that 
system throughput would drastically increase, and 
thus more tasks could be assumed by the micro­
computer to further enhance its cost effectiveness. 

The Programmable Interrupt Controller (PIC) func­
tions as an overall manager in, an Interrl,lpt-Driven 
system environment. It accepts requests from the 
peripheral equipment, determines whicl:! of the,in­
coming requests is of the highest importance (priori­
ty), ascertains whether the incoming request has a 
higher priority value, than the level currently being 
serviced, and issues an interrupt to the CPU I:!ased 
on thisdeterminatlon. 

Each' peripheral device or structure usually has a 
special program or "routine" that is associated with 
its specific functional or operational requirements; 
this is referred to as a "service routine". The PIC, 
after issuing an Interrupt to the CPU, must somehow 
input information into the CPU that can "point" the 
Program Counter to the service routine associated 
with the requesting ,device. This "pointer" Is an ad­
dress in a vectoring table and will often be referred 
to, in this document, as vectoring data. 

The 82C59A-2 

The 82C59A-2 is a device specifically designed for 
use in real time, interrupt driven microcomputer sys-

CPU-DRIVEN 
MULTII'I,.!X9" 

RAM lID 111 

ROM lID 121 

Figure 38. Polled Method 

, 231201-4 

Figure 3b. Interrupt Method 

I:, 
1 ~ 

II~ I 

11 
"'j 
I 



82C59A-2 

terns. It manages eight levels or requests and has 
built-in features for expandability to other 
82C59A·2's (up to 64 levels). It is' programmed by 
the system's software as an I/O peripheral. A selec­
tion of priority modes is available to the programmer 
so that themanner in which the requests are proc­
essed by the 82C59A-2 can be configured to match 
system requirements. The priority modes can be 
changed or reconfigured dynamically at any time 
during the main program. This means that the com­
plete interrupt structure can be defined as required, 
based on the total system environment. 

INTERRUPT REQUEST REGISTER (IRR) AND 
IN-SERVICE REGISTER .(ISR) 

The interrupts at the IR input lines are handled by 
two registers in cascade, the Interrupt Request Reg­
ister (IRR) and the In-Service Register (ISR). The 
IRR is used to store all the interrupt levels which are 
requesting service; and the ISR is used to store all 
the interrupt levels which are being serviced. 

PRIORITY RESOLVER 

This logic block determines the priorities of the bits 
set in the IRA. The highest priority is selected and 
strobed into the corresponding bit of the ISR during 
INTA pulse. 

INTERRUPT MASK REGISTER (IMR) 

The IMR stores the bits which mask the interrupt 
lines to be masked. ThelMR operates on the IRR. 
Masking of a higher priority input will not affect the 
interrupt request lines of lower priority. 

INT (INTERRUPT) 

This output goes directly to the CPU interrupt input. 
The VOH'evel on this line is designed to be fully 
compatible with the 8080A, 808SA, 80C88 and 
80CM input levels .. 

IN:rA (INTERRUPT ACKNOWLEDGE) 

INTA pulses will cause the 82C59A-2 to release vec­
toring information onto the data bus. The format of 
this data depends on. the system mode (J.l.PM) of the 
82C59A-2. 

DATA BUS BUFFER 

This 3-state, bidirectional8-bit buffer is used to inter­
face the 82C59A-2 to the system Data Bus. Control 
words and status information are transferred 
through the Data Bus Buffer. 

READ/WRITE CONTROL LOGIC 

The function of this block is to accept OUTput com­
mands from the CPU. It contain!3 the Initialization 
Command Word (ICW) registers and Operation 
Command Word (OCW) registers which store the 
various control formats' for device operation. This 
function block also allows the status of the 
82C59A-2to be transferred onto the Data Bus. 

CS (CHIP SELECT) 

A LOW on this input enables the 82C59,1).-2. No 
reading or writing of the chip will occur unless the 
device is selected. 

WR (WRITE) 

A . LOW on this input enables the CPU to write con­
trol words (ICWs and OCWs) to the 82C59A-2. 

RD (READ) 

A LOW on this input enables the 82C59A-2 to send 
the status of the Interrupt Request Register (JRR), In 
Service Register (IS A), the Interrupt Mask Register 
(IMR),or the Interrupt level onto the Data Bus. 

Ao 

This input Signal is used.in conjunction with WRand 
AD signals to write commands into the various com­
mand registers, as well as reading the various status 
registers of the chip. This line can pe tied directly to 
one of the address lines. 

THE CASCADE BUFFER/COMPARATOR 

This function block stores and compares the IDs of 
all 82C59A-2's used in the system. The associated 
three. I/O pins. (CASO-2) are outputs when the 
82C59A-2 is used as a master and are inputs when 
the 82C59A-2 is used as a slave. As a master, the 
82C59A-2 sends the ID of the interrupting slave de­
vice onto the CASO-2 lines. Theslave thus selected 
will send its preprogrammed subroutine address 
onto the Data Bus during the next one. or two con­
secutive INT A pulses. (See section "Cascading the 
82C59A-2".) 

2-286 



82C59A-2 

INTERRUPT SEQUENCE 

The powerful features of the 82C59A-2 in a micro­
computer system are its programmability and the in­
terrupt routine addressing capability. The latter al­
lows direct or indirect jumping to the specific inter­
rupt routine requested without any polling of the in­
terrupting devices. The normal sequence of events 

D.-Do 

during an interrupt depends on the type of CPU be­
ing used. 

The events occur as follows in an MCS-80/85 sys­
tem: . 
1. One or more of the INTERRuPT REQUEST Lines 

(IR7 -0) are raised high, setting the corresponding 
IRR bites). 

. ,-,. 
IA'. 
lA' 

'-__ -'R7 

231201-5 

Figure 4. 82C59A·2 Block Diagram 

CASCADE { 
LINES 

SLAVE PROGRESS / INTERRUPT REQUESTS 
ENABLE BUFFtR 

231201':'8 

Figure 5. 82C59A-2 Interface to Standard System Bus 

2-287 



inter 82C59A-2 

2. The 82C59A-2 evaluates these requests,and 
sends an INT to the CPU, if appropriate. 

3. The. CPU acknowledges the INT and responds 
with an INTA pulse. . 

4. Upon receiving an INTA from the CPU group,the 
highest priority ISR bit is set, and the correspond· 
ing IRR bit is reset. The 82C59A-2 will also. reo 
lease a CALL instruction code (11001101) onto 
the 8-bit Data Bus through its 07-0 pins. 

5. This CALL instruction will initiate two more INTA 
pulses to be sent to the 82C59A-2 from the CPU 
group. 

6. These two INTA pulses allow the 82C59A-2to 
release its preprogrammed subroutine address 
onto the Data Bus. The lower 8-bit address is reo 
leased at the first INTA pulse and the higher 8-bit 
address is released at the second INTA pulse.' 

7. This completes the 3-byte CALL instruction reo 
leased by the 82C59A-2. In the AEOI mode the 
ISR bit is reset at the end of the third INTA pulse. 
Otherwise, the ISR bit remains set until an appto~ 
priate EOI command is issued at the end of the 
interrupt sequence. 

The events occurring in an 80C86 system are the 
same until step 4. 
4. Upon receiving an INTA from the CPU group, the 

highest priority ISR bit is $et and the correspond· 
ing IRR bit is reset. The 82C59A-2 does not dr-ive 
the Data Bus during this cycle. 

5. The 80C86 will initiate a second INTA pulse. Our· 
ing this pulse, the 82C59A-2 releases an 8-bit 
pointer onto the Data Bus where it is read by the 
CPU. 

6. This completes the interrupt cycle. In the AEOI 
mode the ISR bit is reset at the end of the second 
INTA pulse. Otherwise, the ISR bit remains set 
until an appropriate EOI command is issued at the 
end of the interrupt subroutine. 

If no interrupt is present at step 4 of either sequence 
(i.e., the request was too short in duration) the 
82C59A-2 will issue an interruptlevell.Both the 
vectoring bytes and the CAS lines will look like an 
interrupt level 7 was requested. 

When the 82C59A-2 PIC receives. an interrupt, INT 
becomes active and an interrupt acknowledge cycle 
is. started. If a higher priority interrupt occurs be· 
tween the two INTA pulses, thelNT line goesinac· 
tive immediately after the second INTA pulse. After 
an unspecified amount of time the INT line is activat· 
ed again to signify the higher priority interrupt waiting 
for service. This inactive time is not specified and 
can vary between part$. The designer should be 
aware of this consideration when designing a sys· 
tem which uses the 82C59A-2. It is recommended 
that proper allynchronous design techniques be fol~ 
lowed. 

INTERRUPT SEQUENCE OUTPUTS 

MCS®-80, MCS-85 

This sequence is timed by three INTA pulses. During 
thefirstlNTA pulse the. CALL opcode is enabled 
onto the data bus. 

Content of FlrsUnterrupt 
Vector Byte 

07 06 05 04 03 02 01 00 

CALL CODE I 1 0 0 0 1 I 
~------~--------------~ 

During the second INTA pulse the lower address of 
the appropriate $ervice· routine is enabled onto the 
data bus. When Interval = 4 bits A5-A7 are pro· 
grammed, while Ao-'A4 are automatically inserted by 
the 82C59A-2. When Interval == 8 only A6 and A7 
are programmed, while Ao-A5 are automatically in~ 
serted. 

Content of Second Interrupt 
.. Vector Byte 

IR Interval = 4 

07 06 05 04 03 02 01 DO 

7 A7 A6 A5 1 1 1 0 0 

6 A7 A6 A5 1 1 0 0 0 

5 A7 A6 A5 1 0 1 0 0 

4 A7 A6 A5 1 0 0 0 0 

3 A7 A6 A5 0 1 1 0 0 

2 A7 A6 A5 0 1 0 0 0 

1 A7 A6 A5 0 0 1 0 0 

0 A7 A6 A5 0 0 0 0 0 

IR Interval = 8 

07 06 05 04 03 02 01 DO 

7 A7 A6 1 1 1 0 0 0 

6 A7 A6 1 1 0 0 0 0 

5 A7 A6 1 0 1 0 0 0 

4 A7 A6 1 0 0 0 0 0 

3 A7 A6 ' 0 1 1 0 0 0 

2 A7 A6 0 1- 0 0 0 0 

1 A7 A6 0 0 1 0 0 0 

0 A7 A6 0 0 0 0 0 0 

During the third INTA pulse the higher address of the 
appropriate service routine, which was programmed' 
as byte 2 of the.initialization sequence (As - A15), is 
enabled onto the bus. 

2-288 



inter 82C59A-2 

Content of Third Interrupt 
Vector Byte 

D7 D6 D5 D4 D3 D2 D1 DO 

I AiSI Ai41 Ai31 Ai21 Aii I Ai0 I A91 A81 

80C86, 80C88 

80C86, 80C88 mode is similar to MCS-80 mode ex­
cept that only two Interrupt Acknowledge cycles are 
issued by the processor and no CALL opcode is 
sent to the processor. The first interrupt acknowl­
edge cycle is similar to that of MCS-80, 8S systems 
in that the 82CS9A-2 uses it to internally freeze the 
state of the interrupts for priority resolution and as a 
master it issues the interrupt code on the cascade 
lines at the end of the INTA pulse. On this first cycle 
it does not issue any data to the processor and 
leaves its data bus buffers disabled. On the second 
interrupt acknowledge cycle in 80C86, 80C88 mode 
the master (or slave if so programmed) will send a 
byte of data to the processor with the acknowledged 
interrupt code composed as follows (note the state 
of the ADI mode control is ignored and A5-A11 are 
unused in 80C86, 80C88 mode): 

IR7 

IR6 

IRS 

IR4 

IR3 

IR2 

IRi 

IRO 

Content of Interrupt Vector Byte 
for 80C86, 80C88 System Mode 

D7 D6 D5 D4 D3 D2 D1 

T7 T6 TS T4 T3 1 1 

T7 T6 TS T4 T3 1 1 

T7 T6 TS T4 T3 1 0 

T7 T6 TS T4 T3 1 0 

T7 T6 TS T4 T3 0 1 

T7 T6 TS T4 T3 0 1 

T7 T6 TS T4 T3 0 0 

T7 T6 T5 T4 T3 0 0 

PROGRAMMING THE 82C59A-2 

DO 

1 

0 

1 

0 

1 

0 

1 

0 

The B2C59A-2 accepts two types of command 
words generated by the CPU: 

1. Initialization Command Words (ICWs): Before nor­
mal operation can begin, each 82C59A-2 in the 
system must be brought to a startinwint - by a 
sequence of 2 to 4 bytes timed by WR pulses. ' 

2. Operation Command Words (OCWs): These are 
the command words which command the 
82C59A-2 to operate in various interrupt modes. 
These modes are: 

a. Fully nested mode 

b. Rotating priority mode 

c. Special mask mode 

d. Polled mode 

The OCWs can be written into the 82CS9A-2 any­
time after initialization. 

INITIALIZATION COMMAND WORDS 
(ICWS) 

GENERAL 

Whenever a command is issued with AO = 0 and 04 
= 1, this is interpreted as Initialization Command 
Word 1 (ICW1). ICW1 starts the initialization se­
quence during which the following automatically oc­
cur. 

a. The edge sense circuit is reset, which means that 
following initialization, an interrupt request (IR) in­
put must make a low-to-high transition to gener­
ate an interrupt. 

b. The Interrupt Mask Register is cleared. 

c. IR7 input is assigned priority 7. 

d. The slave mode address is set to 7. 

e. Special Mask Mode is cleared and Status Read is 
set to IRA. 

f. If IC4 = 0, then all functions selected in ICW4 are 
set to zero. (Non-Buffered mode*, no Auto-EOI, 
MCS-80, 8S system). 

"NOTE: 
Master/Slave in ICW4 is only used in the buffered 
mode. 

INITIALIZATION COMMAND WORDS 1 AND 2 
(ICW1,ICW2) 

A5-A15: Page starting address of service routines. 
In an MCS 80/8S system, the 8 request levels will 
generate CALLs to 8 locations equally spaced in 
memory. These can be programmed to be spaced 
at intervals of 4 or 8 memory locations, thus the 
8 routines will occupy a page of 32 or 64 bytes, 
respectively. 

The address format is2 bytes long (Ao-A15). When 
the routine interval is 4, Ao-A4 are automatically in­
serted by the 82CS9A-2, while A5-A15 are pro­
grammed extermilly. When the routine interval is 8, 
Ao-A5 are automatically inserted by the 82C59A-2, 
while As-A15 are programmed externally. 

The B-byte interval will maintain compatibility with 
current software, while the 4-byte interval is best for 
a compact jump table. 

In an BOCB6, SOCSS system A15-A11 are inserted in 
the five most significant bits of the vectoring 

2-2S9 

.,. 
, '~ 

".1'.' ", 

I', 

~ 
,< 



inter 82C59A-2 

byte and the 82C59A-2 sets the three least signifi­
cant bits according to the interrupt level. AlO-AS are 
ignored and ADI (Address Interval) has no effect: 

L TIM: If L TIM = 1, then theS2C59A-2 will operate 
in the level interrupt mode. Edge detect logic 
on the interrupt inputs will be disabled. 

ADI: CALL address interval. ADI = 1 then inter­
val = 4; AD! =0 then interval = S. 

SNGL: Single. Means that this is the only S2C59A-2 
in the system. If SNGL = 1 no ICW3 will be 
issued. 

IC4: If this bit is set - ICW4 has to be read. If 
ICW4 is not needed, set IC4 = O. 

INITIALIZATION COMMAND WORD 3 (ICW3) 

This word is read only when there is more than one 
82C59A-2 in the system and cascading is used, in 
which case SNGL = O. It will load the S-bit slave 
register. The functions of this register are: 

a. In the masW mode (either when SP = 1, or in 
buffered mode when MIS = 1 in ICW4) a "1" is 
set for each slave in the system. The master then 
will release byte 10f the call sequence (for MCS­
SO/85 system) and will enable. the corresponding 
slave to release bytes 2 and 3 (for SOCS6,SOCSS 
only byte 2) through the cascade lines. 

b. In the slave moge (either when SP = 0, or if BUF 
= 1 and MIS = a in .ICW4) bits 2-0 identify the 
slave. The .slave compares its cascade input with 
these bits and, if they are 'equal, bytes 2 and 3 of 
the call sequence (or· just byte 2 for SOCS6, 
SOC8S are released by it on the Data Bus. 

INITIALIZATION COMMAND WORD 4 (ICW4) 
SFNM: If SFNM = 1 the special fully nested mode 

is programmed. 

BUF: If BUF = 1 the buffered mode is pro­
grammed. In buffered mode SP/EN be­
comes an enable output and the masterl 
slave determination is by MIS. 

MIS: If buffered mode is selected: MIS = 1 
means the S2C59A"2 is programmed to be a 
master, MIS = a means the S2C59A-2 is 
programmed to be a slave. If BUF = 0, MIS 
has no function. 

AEOI: If AEOI = 1 the automatic end of interrupt 
mode is programmed. 

,""PM: Microprocessor mode: ,""PM = a sets the 
82C59A-2for MCS-SO, S5 system operation, 
,""PM = 1 sets the 82C59A-2 for SOCS6 sys­
tem operation. 

231201-9 

Figure 6. Initialization Sequence 

2-290 



inter 

Ao 07 

I, I 5,1 
I 

AD 07 

NOTE: 

82C59A-2 

, = ICW, NEEDED 
O=NO ICW4 NEEDED 

, =SINGlE 
o :::: CASCADE MODE 

CALL ADDRESS INTERVAL 
1 = INTERVAL OF' 4 
o = INTERVAL OF 8 

, = LEVEL TRIGGERED MODE 
o = EDGE TRIGGERED MODE 

"7 - AS OF' INTERRUPT 
VECTOR ADDRESS 

(MCS-80 / 85 MODE ONLY) 

lew3 (MASTER DEVICE) 

"'5 - A8 OF INTERRUPT 
VECTOR ADDRESS 

(MCS-80/85 MODE ONLY) 
T]-T, OF. INTERRUPT 

VECTOR ADDRESS 
(80C86 / SOCSS MODE) 

06 05 0, 03 

5·1 '. I 5·1 '3 I 
I I I 

O2 0 , 

'2' " I I 

00 

I '0 I 
I 1 :::: IR INPUT HAS A SLAVE 

0:::: IR INPUT DOES NOT HAVE 
A SLAVE 

lew3 (SLAVE. DEVICE) 

06 05 0, 

ICW4 

03 O2 0, 00 

SLAVE 10(') 

01234567 

o 1 0 , 0 1 0 1 

o 0 1 1 0 0 1 1 

o 0 0 0 , 1 1 1 

, = SOCS6 / SOCSS MODE 
o = MCS-SO / S5 MODE 

, = AUTO EOI 
o = NORMAL EOI 

BI§x NON-BUFFERED MODE 
I 0 BUFFERED MODE / SLAVE 
, , BUFFERED MODE / MASTER 

, =SPECIAL FULLY NESTED M9DE 
'--------~_t0=NOT SPECIAl. FULLY NESTED 

MODE 

Slave 10 is equal to the corresponding master IR input. 

Figure 7. Initialization Command Word Format 

231201-10 

··II ... :.·~.·.: 
I, 

j.:, 

I: 
.. 

i.I.I.·.~ ',; 
! 

I 

!.\il ii, 
I) 
"i ' 



82C59A-2 

OPERATION COMMAND WORDS 
(OCWs) 

After the initialization Command Words (ICWs) are 
programmed into the 82C59A-2, the chip i~ready to 
accept interrupt requests at its input lines. However, 
during the 82C59A-2 operation, a selection of algo­
rithms can command the 82C5gA-2' to operate in 
various modes through the Operation Command 
Words (OCWs). 

.OPERATION CONTROL WORDS (OCWs) 

OCW1 
AO D7 De D5 D4 D3 D2 D1 DO 

GJ I M7 Me M5 M4 M3. M2 M1 MO I 

OCW2 

I A SL EOI 0 0 L2' L 1 LO I 

OCW3 o I 0 ESMM SMM 0 1 P AA· Risl 

OPERATION CONTROL WORD 1 (OCW1) 

OCW1 sets and clears the mask bits in the interrUpt 
Mask Aegister (1M A). M7- Mo· represent the eight 
mask bits.·M = 1 indicates the channel is masked 
(inhibited), M = 0 indicates the channel is enabled. 

OPERATION CONTROL WORP ~(OCW2) 

. A, SL, EOI - These three bits control the Aotate 
and End of Interrupt modes and combinations of the 
two. A chart of these combinations can be found on 
the Operation Command Word Format. 

L2, L1, Lo-These bits determine the interrupt level 
acted upon when the SL bit is active. 

OPERATION CONTROL WORD 3 (OCW3) 

ESMM - Enable Special Mask Mode. When this bit . 
is set to 1 it enables the SMM bit to set or reset the 
Special Mask Mode. When ESMM' =. 0 the SMM bit 
becomes a "don't care". 

SMM - Special Mask Mode. If ESMM = 1 and 
SMM = 1 the 82C59A-2 will enter Special Mask 
Mode. If ESMM = 1 and SMM = 0 the 82C59A~2 
will revert to normal mask mode .. When ESMM =0, 
SMM has no effect. 

FULLY NESTED MODE 

This mode is entered after initialization unless anoth" 
'er mode is programmed. The interrupt requests are 
ordered in priOrity form 0 through 7 (0 highest). 
When an interrupt is acknowledged the highest pri­
ority request is determined and its vector placed on 
the bus. Additionally, a bit of the Interrupt Service 
register (ISO-7) is set. This bit remains set until the 
microprocessor issues an End of Interrupt (EOI) 
command immediately before returning from the 
service routine, or if AEOI (Automatic. End of Inter­
rupt) bit is set, until the trailing edge of the last INTA. 
While the IS bit is set, all further interrupts of the 
same or lower priority are inhibited, while higher lev­
els will generate an interrupt (which will be .acknowl­
edged only if the microprocessor internal interrupt 
enable flip-flop has been re-enabled through soft­
ware). 

After the initialization sequence, lAO has the highest 
. priority and IA7 the lowest. Priorities can be' 
changed, as will be explained, in the rotating priority 
mode. 

, 
END OF INTERRUPT (EOI) 

The In Service (IS) bit can be reset either automati­
cally following the trailing edge of the last in se­
quence INT A pulse (when AEOI bit in ICW4 is set) or 

. by a 'command word that must be issued to the, 
82C59A-2 before retL!rning from' a service routine 
(EOI command). An EOI command must be issued 
twice if in the Cascade mOde, once for the master 
and once for the corresponding slave. 

There are two forms of EOI command: Specific and 
Non-Specific. When the 82C59A-2 is operated in 
modes which preserve'the fully nested structure, it 
can determine which IS bit to reset on EOI. When a 
Non-Specific EOI command is issued the 82C59A-2 
will . automatically reset the highest IS bit of those 
that are set, since in the fully nested mode the high­
est IS level was necessarily the last level aCknowl­
edged and serviced. A non-specific EOI can be is­
sued withOCW2 (EOI = 1, SL = 0, A = 0). 

When a mode is used which may disturb the fully. 
nested structure, the 82C59A-2 may no longer be 

'able to determine the last level acknowledged. In 
this case a Specific End of Interrupt must be issued 
which includes as part of the command the IS level 
to be reset. A specific EOI can be issued with OCW2 
(EOI = 1, SL = 1, A = 0, and LO-L2 is the binary 
level of the IS bit to be reset). . 

It should. be noted that an IS bit that is masked by an 
IMA bit will not be clearedbya non-specific EOI if 
the 82C59A-2 is in the Special Mask Mode. 

2-292 



inter 82C59A·2 

OCWI 

AO 07 06 05 04 03 Oz 0 , DO ii 

I 1 I M7 I M6 I 115 I 114 I M3 I liZ I 111 I 110 I 
I I I I I I 

OCWZ 

AO 07 06 05 04 03 DZ Il, DO 

I 0 1 H 1 SL 1 EOI 1 0 I· OiL Z 1 L 1 1 L 0 J 
IR LEVEL TO BE 

ACTED UPON 

o 1 Z 3 4 5 6 7 
- 0 1 o 1 0 1 o 1 

0 0 1 1 0 0 1 1 

o 0 0 o 1 1 1 1 

I 

001 NON SPECIFIC EOI COMMAND 
} END OF INTERRUPT o 1 1 SPECIFIC EOI COMMAND 

1 0 1 ROTATE ON NON-SPECIFIC EOI COMMAND 

} AUTOMATIC ROTATION 1 o 0 ROTATE IN AUTOMATIC EOI MODE(SET) 
o 0 0 ROTATE IN AUTOMATIC EOI MODE(CLEAR) 
1 1 1 'ROTATE ON SPECIFIC EOI COMMAND 

} SPECIFIC ROTATION 
r.1:-

1 0 'SET PRIORITY COMMAND 

.2- 1 0 NO OPERATION 
'LO - L2 ARE USED 

OCW3 

AO 07 06 Os D4 03 O2 0 , DO 

I 0 I 0 IESIIMISMMI 0 1 'lpIRRIRISI 

l L .. READ REGISTER COMMAND 

0 i 1 0 1 

0 0 1 1 

READ IR REAO IS 
NO ACTION REG ON REG ON 

NEXT iii5 NEXT RJj 
PULSE PULSE 

1 = POLL COMMAND 
0= NO POLL COMMAND 

SPECIAL MASK MODE 

0 --L 1 0 1 

0 J 0 1 1 

RESET SET 
NO ACTION SPECIAL SPECIAL 

MASK MASK 

231201-11 

Figure 8. Operation Command Word Format 

2-293 



inter 82C59Ai-2 

AUTOMATIC END OF INTERRUPT (AEOI) MODE 

If AEOI = 1 in ICW4, then the 82C59A-2 will operate 
in AEOI mode continuously until reprogrammed by 
ICW4. In this mode the 82C59A-2 will automatically 
perform a non-specific EOI operation at the trailing 
edge of the last interrupt acknowledge pulse (third 
pulse in MCS-80/85, second in' 80C86/88). Note" 
that from a system standpoint, t!1i$mode should be 
used only when a nested multilevel interrupt struc­
ture is not required within a single 82.C59A. 

The AEOI mode can only be used in a master 
82C59A and not a slave. 

AUTOMATIC'ROTATlON . 

(Equal Priority Dftvlces) 

In some applications there are a number of interrupt­
ing devices of equal priority. In this mode a device, 
after being serviced, 'receives the lowest priOrity, sO 
a device requesting an interrupt will have to wait, in 
the worst case until each of 7 other devices are· 
serviced at most once. For example, if. the priority , 
and "in servics" status is: 

Before Rotate (IA4 the, highest priority requiring 
service) . 

IS7 186 ISS IS4 IS3 IS2 IS1 ISO 

"IS" Status 1 0 1 1 1 0 'I 1 0 1 0 1 0 1 0 I 
Lowest Highest 
Priority Priority 

,J.. ,J.. 

Priority Status 1] 161514131211 10 I 
After Rotate (IA4 was seiviced, all other priorities 
rotated correspondingly) , 

IS7 IS6 ISS IS4 IS3 IS2 181 ISO 

"IS" Status 1 0 1 11. 0 1 0 I 0 I 0 I 0 I 0 I 
Highest Lowest 
Priority Priority 

, ,J.. ,J... 

Priority Status 1211 101 "(161 ?141al, 

There are two ways to accompliSh Autor:natic Aota­
tion using OCW2. the Aotation on Non-Specific EOI 
Command (A = 1, SL = 0, EOI = 1 ) and the Ao-

tate in Al-ltomatic EOI Mode which is set by (A = 1, 
SL = 0, EOI = 0) and cleared by (A = 0, SL = 0, 
EOI = 0). 

SPECIFIC ROTATION 

(Spetiflc Priority) 

The programmer can change priorities by program­
ming the bottom priority ~nd thus fixing all other pri­
orities; i.e., if IA5 is programmed as the bottom prior­
ity device, then lAS will have the highest one. 

The Set Priority command is issued in OCW2 where: 
A c= 1, SL ;= 1; LO,... L2 is the binary priority level 
code of the bottom priority device. 

Observe that in this mode internal status is updated 
by software control during OCW2. However, it is in­
dependent of the End of Interrupt (EOI) command' 
(also executed by OCW2). Priority changes can be 
executed during an EOrcommand by using the Ao­
tate on Specific EOI command in OCW2 (R = 1, SL 
= 1, EOI ;= :1 and LO,...L2 IR level to receive 

. bottom priority). 

INTERRUPT MASKS 

Each Interrupt Request input can be masked individ­
ually by the Interrupt Mask Register (IMR) pro­
grammed through OCW1. Each bit in the IMR masks 
one interrupt channel if it is set (1). Bit 0 masks lAO, 
Bit 1 masks IR1 and so forth. Masking an IR channel 
does not affect the other channels operation. 

SPECIAL MASK MODE 

SOnie applications m~y require an interrupt service 
routine to dynamically alter the system priority struc­
ture during its execution under software control. For 
example; the routine may wish to inhibit lower priori­
ty requests for a portion of its execution but enable 
some of them for another portion. 

The difficulty here is that if an interrupt Request is 
acknowledged and an End of Interrupt command did 
not reset its IS bit (i.e., while executing a service 
routine), the 82C59A-2 would have inhibited all lower 
priority requests with no easy way for the routine to 
enable ~hem. 

That is where the Special Mask Mode comes in. In 
the special Mask Mode, when a mask bit is set in 
OCW1, it inhibits further interrupts at that level and 
enables interrupts from all other levels (lower as well 
as higher) that are not masked. 

2-294 



82C59A·2 

Thus, any interrlJPtsmay be selectivity ,enabled ,l:)y 
loading, the mask register. 

The special Mask Mode is set by OCW3 where: 
SSMM '"' 1, SMM = 1, and cleared where SSMM = 
1, SMM = O. 

POLL COMMANO 

In Poll mode the INT output functions as it normally 
does. The ~icroprocessor should ignore this output. 
This,can be accomplished either by not connecting 
the INT output or by masking interrupts within the 
microprocessor, thereby disabling its interrupt input. 
Service to devices is achieved by software using a 
Poll command. 

The Poll command is issued by setting P = "1" in 
OCW3. The 82C59A-2 treats the next AD pulse to' 

the 82C59A-2 (i.e., RD = 0, CS = 0) as an interrupt 
acknowledge, sets the appropriate IS bit if there is a 
request, and reads the priority level. Interrupt is fro-
zen from WR to'RD. " 

The word enabled onto the data bus during RD is: 
07 06 05 04 03 02 01 00 

I I ' W2 W1 WO I 
WO-W2: 

Binary code cif the highest priority level requesting 
service. 

I: Equal to a "1" i( there is an interrupt. 

This mode is useful if there is a routine command 
common to several levels so that the INTA se­
quence is not needed (saves ROM space). Another 
application is to use the poll mode to expand, the 
number of priority levels to more than 64. 

LTlM BIT 
0,= EDGE 
1 = LEVEL 

, . TO OTHER PRIORITY CELLS CLR lSI!' 

EDGE 
SENSE 

QI--..... ISR BIT . 

,..LA_TC_H --I __ .... .....; ___ +_-I_<IF--+-t+--+--+-I SET ISR: 

IR 

MCS-80,SS{ INTA=E1'= 
MODE ffiffi 

NON 
MASKED 
REQ 

PRIO,R1TY 
RESOLVER 

CONTROL 
LOGIC 

S0C86/S0CSS{ INTAflIlr-
MODE ffiffi~ 

L H .... __ -+++_ .... ___ .......... INTERNAL 
DATA BUS 

NOTES: 
1. Master Clear active only during ICW1 
2. Freeze/ is active during INTAland poll sequences only 
3. TrothcTablefor O-Latch 

c 
1 
o 

OPERATION 
FOLLOW 

HOLD 

Figure 9. Priority Cell-Slmpllfied Logic Diagram 

231201-12 

ii' :' 

Ii 
I'l 
I~ 

~ 



82C59A-2 

READING THE 82C59A·2 STATUS 

The .input status Of several internal registers can .be 
read to update the user information on the system. 
The following registers can be read via OCW3 (IAA 
and ISA or OCW1 [lMAl). 

Interrupt Request Register (IRR): 8-bit register which 
contains the levels requesting an interrupt to be ac­
knowledged. The highest request level is reset from 
the IAA when an interrupt is acknowledged. (Not af­
fected by IMA). 

In-Service Register (ISR): 8-bit register which. con­
tains the priority levels that are being serviced. The 
ISA is updated when an End of Interrupt Command 
is issued. 

Interrupt Mask Register. 8-bit register which con­
tains the interrupt request lines which are masked. 

The IAA can be read when, prior to the AD pulse, a 
Aead Aegister Command is issued with OCW3 (AA 
= 1, AIS = 0.) 

The ISA can be read when, prior to the AD pulse, a 
Aead Aegister Command is .issued with OCW3 (AA 
= 1, AIS = 1): . 

There is no need to. write an DCW3 before every 
status read operation, as long as the status read 
corresponds with the previous one; Le., the 
82C59A-2 "remembers" whether the IAA or ISA has 
been previously selected by the OCW3. This is not 
true when poll is used. 

After initialization the 82C59A-2 is set tolAA. 

For reading the IMA, nO OCW3 is needed. The out­
put data bus will contain the IMRwhenever AD is 
active and AO = 1 (OCW1). 

Polling overrides status read when P = 1, AA =·1 
inOCW3. 

I. 

INT----+-

I~A-----~""""""""~ 

LATCH" 
ARMED 

EARLIESTIR 
, CAN IE REMOVED 

EDGE AND LEVEL TRIGGERED MODES 

This mode is programmed using bit 3 in ICW1. 

If LTIM = '0', an interrupt request will be recognized 
by a low to high transition on an IR input. The IR 
input can remain high without generating another in­
terrupt. 

If L TIM = '1', an interrupt raquest will be recognized 
by a 'high' level on IA Input, and there is no need for 
an edge detection. The interrupt request mus~. be 
removed before the EOI command is issued or the 
CPU interrupt is enabled to prevent a second inter­
rupt from occurring. 

The priority cell diagram shows a conceptual circuit 
of the level sensitive and edge sensitive input circuit­
ry of the 82C59A-2. Be sure to note that the request 
latch is a transparent D type latch. 

In both the edge and level triggered modes the IR 
inputs must remain high until after the falling edge of 

. the first INTA. If the IR input goes low before this 
time a DEFAULT IA7 will occur when the CPU ac­
knowledges the interrupt. This can be a useful safe­
guard for detecting interrupts caused by spurious 
noise glitches on theiR inputs. To implement this 
feature the IA7 routine is used for "clean up" simply 
executing a return instruction, thus ignoring the inter­
rupt. If IR7 is needed for other purposes a default 
IA7 can still be detected by reading the ISA. A nor­
mal IR7 interrupt will set the corresponding ISA bit, a 
default IR7 won't. If a default IR7 routine occurs dur­
ing a normal IR7 routine, however, the ISA will re­
main set. In this case it is necessary to keep track of 
whether or not the IR7 routine was previously en­
tered. If another IR7 occurs it is a default. 

-- .-

-EDGE TRIGGERED MODE ONLY 
LATCH' 
ARMED 231201-13 

Figure 10. IR Triggering Timing Requirements 

2-296 



inter 82C59A-2 

THE SPECIAL FULLY NESTED MODE 

This mode will be used in the case of a big system 
where cascading is used, and the priority has to be 
conserved within each slave. In this case the fully 
oested mode will.be programmed to ~hemaster (us­
ing ICW4). This mode is similar to. the normal nested. 
mode with the following exceptions: 

a. When an interrupt request from a certain slave is 
in service this slave is not locked out from the 
master's priority logic and further interrupt re­
quests from higher priority IR's within the slave 
will be recognized by the master and will initiate 
interrupts to the processor. (In the normal nestled 
mode a slave is masked out when its request is in 
service and no higher requests from the same 
slave can be serviced.) 

b. When exiting the Interrupt Service routine the 
software has to check whether the interrupt serv­
iced was' the only one from that slave. This is 
done by sending a non-specific End of Interrupt 
(EOI) command to the slave and then reading its 
In-Service register and checking for zero. If it is 
empty, a non-specific EOI can be sent to the mas­
ter too. If not, no EOI should be sent. 

BUFFERED MODE 

When the' 82C59A-2 is used in a large system where 
bus driving buffers are required on the data bus and 
the cascading mode is used, there exists the prob­
lem of enabling buffers. 

The buffered mode will structure the 82C59A-2 to 
send an enable Signal on SP/EN to enable the buff­
ers. In this mode, whenever the 82C59A-2's data 
bus outputs are enabled, the SP/EN output be­
comes active. 

This modification forces the use of 'software pro­
gramming to determine whether the 82C59A-2 is a 
master or a slave. Bit 3 in ICW4 programs the buff­
ered mode, and bit 2 in ICW3 determines whether it 
is a master or a slave. 

CASCADE MODE 

The 82C59A-2 can be easily interconnected in a 
system of one master with up to eight slaves to han­
dle up to 64 priority levels. 

The master controls the slaves' through the 3 line 
cascade bus. The cascade bus acts like chip selects 
to the slaves during the if;I'i'A sequence. 

In a casc;:ade configuration, the slave interrupt out­
puts are connected to the master interrupt request 
inputs. When a slave request line is activated and 
afterwards acknowledged, the master will enable the 
corresponding slave to release the device routine 
address during bytes 2 and 3 of INTA. (Byte 2 only 
for 80G86/80e88). 

The cascade bus lines are normally low and will con­
tain the slave address code from the trailing edge of 
the first INTA pulse to the trailing edge of the third 
pulse. Each 82C59A-2 in the system must follow a 
separate, initialization sequence and can be pro­
grammed to work in a different mode. An EOI com­
mand must be issued twice: once for the master and 
once for the corresponding slave. An address de­
coder is required to activate the Chip Select (CS) 
input of each 82C59A-2. 

The cascade lines of the Master 82C59A-2 are acti­
vated only for slave inputs, non slave inputs leave 
the cascade line inactive (low). 

ADOfIIlSSlUl1111 

\ 

CONTROL lUI 

'. OAt.eUlIII 

- - - - - - - - - ,---,---+--+--.1 r-- f0-

Ci .. ..., iiiTA 

-.. ...... 
IN' 

c.s. -
C ... _ 

C." -

Ci .. 
r-- f0-
r-- f0-

DO·' INT. 

-.. ...... 

r--

INI 

CAS. 
,CI At 00·7 iiYi 

1--4-++-1, .. • 
C .. , -.. -I----+-++--IC .. , 

C ... I---~-ICAS' 
Pin 1 • 5 4 3 2 1 0 

"" 

Tii!il!!! l .L!llII!!! ;',1,1.11.!11 
I 

i 
INTI"""" "EQUlITS 

Figure 11. Cascading the 82C59A-2 
2-297 

,HTIUQ 

\ 

231201-14 

il 
,I 

I, 

I 



intJ 82C59A-2 

ABSOLUTE MAXIMUM RATINGS* 

Ambient Temperature Under Bias ...... O°C to 70°C 

Storage Temperature .......... - 65°C to + 150°C 

Supply Voltage (w.r.t. ground) ........ - 0.5 to 7.0V 

Input Voltage (w.r.t. ground) ... -0.5 to Vee + 0.5V 

Output Voltage (w.r.t. ground) .. -0.5 to Vee + 0.5V 

Power Dissipation ...............•....... 0.9 Watt 

• Notice: Stresses above those listed under '~bso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This Is a stress rating only and 
functional operation of the device at these or any 
other conditions above those indicated in the opera­
tiona/sections ofthisspecification is notimplied. Ex­
posure to. absolute maximum rating conditions for 
extended periods may affect device reliabi(ity. 

D.C. CHARACTERISTICS TA = 0°Ct070°C, Vee = 5V ±10% 

Symbol Parameter Min Max Units Test Conditions 

Ices Standby Supply Current 10 p.A VIN = Vee or GND 
AIIIR = GND 
Outputs Unloaded 
Vee=5.5V 

. 
Icc Operating Supply Current 5 mA (Note) 

VIH Input High Voltage 2.2 Vee + 0.5 , V 

VIL Input Low Voltage -0.5 0.8 V 

VOL Output Low Voltage 0.4 V IOL = 2.5 mA 

VOH Output High Voltage 3.0 V IOH= -2.5mA 
Vee -0.4 IOH = -100 p.A 

lu Input Leakage Current ::I:; 1.0 . p.A OV::;; VIN ::;;Vee 

ILO Output Leakage Current ::1:;10 p.A OV ::;; VOUT ::;; Vee 

IUR IR Input Leakage Current -300 p.A VIN = 0 
+10 VIN = Vee 

NOTE: 
Repeated data input with 80e86-2 timings. 

CAPACITANCE T A = 25°C· Vee =GND = OV , 

Symbol Parameter Min Max Units Test Conditions 

CIN Input Capacitance 7 pF fc = 1 MHz 

CliO I/O Capacitance 20 pF Unmeasured pins at GND 

COUT Output Capacitance 15 pF 

2-298 



inter 82C59A-2 

A.C. CHARACTERISTICS T A = O·C to 70·C, Vcc = 5V ± 10% 

TIMING REQUIREMENTS 

Symbol Parameter 
82C59A-2 

Units Test Conditions 
Min Max 

TAHRL AO/CS Setup to RDIINTA.,J.. 10 ns 

TRHAX AO/CS Hold after RDIINTA t 5 ns 

TRLRH RDIINTA Pulse Width 160 ns 

TAHWL AO/CS Setup to WR .,J.. 0 ns 

TWHAX AO/CS Hold after WR t 0 ns 

TWLWH WR Pulse Width 190 ns 

TDVWH Data Setup toWR t 160 ns 

TWHDX Data Hold after WR t 0 ns 

TJLJH Interrupt Request Width (Low) 100 ns (See Note) 

TCVIAL Cascade Setup to Second or Third 40 ns 
INTA.,J.. (Slave Only) 

TRHRL End of RD to next RD 160 ns 
End of INTA to next INTA within 
an INT A sequence only 

·TWHWL End of WR to next WR 190 ns 

*TCHCL End of Command to next Command 400 ns 
(Not same command type) 
End of INTA sequence to next 
INTA sequence. 

'Worst case timing for TCHCL in an actual microprocessor system is typically much greater than 400 ns (i.e. 8085A = 1.6 
,..5, 8085-A2 = 1 ,..S, 80C86 = 1 ,..S, 80C86-2 = 625 ns) 

NOTE: 
This is the low time required to clear the input latch in the edge triggered mode. 

2-299 



82C59A..;2 

TIMING RESPONSES '. 

Symbol Parameter 
8259A-2 

Units Teat C~ndltlona" 
. Min Max 

TRLDV Data Valid .from FiD/INTAJ, 120 ns 1 

TRHDZ Data Float after Rt5/W t 10 85 ns 2 

TJHIH Interrupt Output Delay 300 
. 

ns 1 

TIALCV Cascade Valid from First INTA J, 360 ns 1 
(Master Only) 

TRLEL Enable Active from FiD J, or iNTA J, 110 ns 1 

TRHEH Enable Inactive from RD t or INTAt 150 ns 1 

TAHDV Data Valid from Stable Address 200 ns 1 

TCVDV Cascade Valid to Valid Data 200 . ns 1 

"Teat Condition Definition Table. 

TEST CONDITION V1 R1 R2 C1 

1 1.7V 5230 OPEN 100.pf 
2 4.5V 1.8 kO 1.8kO 30pf 

A.C. TESTING INPUT, OUTPUT WAVEFORM A.C. TESTING LOAD CIRCUIT 

VI 
INPUT OUTPUT . 

VIH+O.4V~ ~2.4V 

VIL-O.4V~----7'\-- O.45V OUTPUT .. TEST POINT hR.I 

231201-15 
. FROM 

DEVICE UNDER TEST . . 

A.C. Testing: All Input signals must switch between VIL - O.4V 
and VIH + 0.4V. Input Rise and Fall TImes must be :s; 15 ns. All 
timing .measurements are made'at 2.4V and 0.45V. 

.. _R2 I CI' 

"'ncludes Stray and 
Jig Capacitance 

- -

WAVEFORMS 

WRITE 

TWHAX 

Ci-----'"\. Ir--+-------++-'"'" r----.. _-
~---~-----J ~ __ +_-------...;-----+~-" ~ ___ _ 

010' .. _ 

2·300 

231201-16 

231201-17 



intJ 82C59A-2 

WAVEFORMS (Continued) 

READ/INTA 

~------------~ ~-------
1m 

a--------------~~ TIILIL 

TRHA)( 

~----------~ ~~~----------------~~ r--~-------
A_ ... UI 

Ao---__ ----.J 

... _-----------~--~:::4'__ ______ ___'r_-----
231201-18 

OTHER TIMING 

lID 

;t= T~HRL=--4\ IRTA 

\ I 
WI! 

\ J=TWHWL=t\ . / 
lHi 

IIITA 

\ c_'~ 
WI! 

RD 

W / 
231201-19 

2-301 



inter 82C59A-2 

WAVEFORMS (Continued) 

INTA SEQUENCE 

~ ~ t-TJHIH 

IR __ ~_TJ_LJ_H __ }Ir!-_\: __ ._."'. ___ ~ ___ "\\ 
INT • G):X-----..a..--
w------"'\. 

DB············· . 

C02------~--~+_---~-------~ 
231201·20 

NOTES: 
1. Interrupt output must remain HIGH at least until leading edge of first INTA. 
2. Cycle 1 in 80C8S and 8OCS8 systems. the Data Bus is not active. 

DATA SHEET REVISION REVIEW 

The following changes have been made since revision 003 of the 82C59A-2 data sheet. 

1. Preliminary was removed. 

2. A reference to PLCC packaging was removed. 

3. The first paragraph of the Poll Command section was rewritten to clarify the status of the INT pin. 

4. A paragraph was added to the Interrupt Sequence section to indicate the status of the INT pin during 
multiple interrupts. . 

2-302 



80286 Microprocessor 
Family 

3 
, 

~, 

I,ll 

1\' 
,,',Ii 
It 

1''1 





• 
• 

• 

• 
• 

• 

80286 
High Performance Microprocessor 

with Memory Management and Protection 
(80286-12, 80286-10, 80286-8) 

High Performance Processor (Up to six • Two 8086 Upward Compatible 
times 8086) Operating Modes: 

Large Address Space: - 8086 Real Address Mode 

- 16 Megabytes Physical - Protected Virtual Address Mode 

- 1 Gigabyte Virtual per Task • Range of Clock Rates 

Integrated Memory Management, Four- -12.5 MHz for 80286-12 

Level Memory Protection and Support -10 MHz for 80286-10 

for Virtual Memory and Operating - 8 MHz for 80826-8 
- 6 MHz for 80286-6 Systems 

High Bandwidth Bus Interface • Complete System Development 
Support: (12.5 Megabyte/Sec) 
- Development Software: Assembler, 

Industry Standard O.S. Support: PL/M, Pascal, FORTRAN, and System 
-iRMX® Utilities 
-XENIX* -In-Clrcuit-Emulator (lCETM_286) 
-UNIX* 
-MS-DOS* • Available in 68 Pin Ceramic LCC 

(Leadless Chip Carrier), PGA (Pin Grid 
Optional Processor Extension: Array), and PLCC (Plastic Leaded Chip 
- 80287 High Performance 80-bit Carrier) Packages 

Numeric Data Processor (See Packaging Spec., Order ;I' 231369) 

The 80286 is an advanced, high-performance microprocessor with specially optimized capabilities for multiple 
user and multi-tasking systems. The 80286 has built-in memory protection that supports operating system and 
task isolation as well as program and data privacy within tasks. A 12 MHz 80286 provides six times or more 
throughput than the standard 5 MHz 8086. The 80286 includes memory management capabilities that map 230 
(one gigabyte) of virtual address space per task into 224 bytes (16 megabytes) of phySical memory. 

The 80286 is upward compatible with 8086 and 88 software. Using 8086 real address mode, the 80286 is 
object code compatible with existing 8086, 88 software. In protected virtual address mode, the 80286 is source 
code compatible with 8086, 88 software and may require upgrading to use virtual addresses supported by the 
80286's integrated memory management and protection mechanism. Both modes operate at full 80286 per­
formance and execute a superset of the 8086 and 88 instructions. 

The 80286 provides special operations to support the efficient implementation and execution of operating 
systems. For example, one instruction can end execution of one task, save its state, switch to a new task, load­
its state, and start execution of the new task. The 80286 also supports virtual memory systems by providing a 
segment-not-present exception and restartable instructions. 

'XENIX and MS-DOS are trademarks of Microsoft Corp. 
'UNIX is a trademark of Bell Labs or AT&T 

;~~"~)-------------------~ 

I 
I 
I 
I , 
I ftEAOV.~D 

I $'.SO.COO,ItrtA 

I ~ ~2~~~~h;;;~~~~q:;~::~j~ lOCitHI.OA 
: L-J-"---"~ D,. _ Du 

l 
I 
I 

lil~~_~~_~~~·~~_~i~~_~ __ ~-;-;-;-~-~-~-~-~-~-~-~-~-~-~--~;~~~~~~~~~JJ~~ 
Figure 1. 80286 Internal Block Diagram 

210253-1 

3-1 
September 1988 

Order Number: 210253-013 

I··.· 

!~ 
·.1 

I·.: 
: ;;~ 



intJ 
Component Pad Views-As viewed from underside of 
component when mounted on the board. ' 

AO 34 

A1 33 

L .. 32 

" elK 31 'E 
0 Vee 30 
u RESET 29 
0. A3 28 :.c 
u 27 

" 2. 

" " 25 
0 .. " ..J 

23 

~ 22 
0 2. 
0:: 20 

•• 
A13 18 

18 

nnr,nnr"".,n 

80286 

P .C. Board Views-As viewed from the component 
side of the P;C. board. 

CAP s~ 

PIIlm " 
Illfi ' 

N.C. 
H.C. 

INTA 
N.C. 
NMI 

v" 
'PEREa 

Vee 
Im5V 
HOLD 
HLOA 

co_ 
~ 
tmI 

L ... L.JLJLJLJL JL.JLJ ... .IL .. H .... LJL J lJL.) L J C .. 
A, 

" eLK 

Vee 
RESET 

PIN NO.1 fIIIAPK 

NOTE: 
N.C. signals must not be connected 

o Nit)'" III 

g (5 0 0 0 ;:; 0 

AD 00 

A2 AI 

Vec eLK 

A3 RESET 

A5 A4 

A7 A6 

'A. A8 

AI1 AID 

A13 Al2 

ERROR CAP 

N.C. BUSY 

INTR N.C. 

NMI N.C. 

PEREQ Vss 

READY Vee 

HLOA HOLD 

~ jTo COD/INTA 

" '" 
,., 

'" c 
i?l 1l >'tl. Q Q " Q Q " 

II l:i 1l :g ~ tl ~ Q g 

@@@@@@@@@ 
CAP ERROR@@@@@@@@@@@ 

BUSY N.C. @ @ @ @ 
N,C. INTR @ @ @ @ 

N.C. N"' @@ @@ 
VS5 PEREO @ @ @ @ 
Vee READY @ @ @ @ 

HOLD HLOA @ @ @ @ 
COO/.NTA "/io @@ @ @ 

LOcK N.C, @ 200@@@@@@@ 
'@@<V@@@@@ 

Figure ,2. 80286 Pin Configuration 

3-2 

00 AD 

A' '2 
CLK Vee 
RESET ,4,3 

.4 '5 
A6 .7 
A8 •• 
Al0 AI1 

Al2 Al3 

210253-3 



inter 80286 

Table 1. Pin Description 
The following pin function descriptions are for the 80286 microprocessor: 

Symbol Type Name and Function 

CLK I SYSTEM CLOCK provides the fundamental timing for 80286 systems. It is divided by two 
inside the 80286 to generate the processor clock. The internal divide·by·two circuitry can 
be synchronized to an external clock generator by a LOW to HIGH transition on the RESET 
input. 

015- 00 I/O DATA BUS inputs data during memory, 110, and interrupt acknowledge read cycles; 
outputs data during memory and 110 write cycles. The data bus is active HIGH and floats to 
3-state OFF during bus hold acknowledge. 

A2S-Ao a ADDRESS BUS outputs physical memory and 1/0 port addresses. AO is LOW when data is 
to be transferred on pins 07-0. A2S-A16 are LOW during 1/0 transfers. The address bus is 
active HIGH and floats to 3-state OFF during bus hold acknowledge. 

BHE 6 BUS HIGH ENABLE indicates transfer or data on the upper byte of the data bus. 015-8. 
~t-bit oriented devices assigned to the upper byte of the data bus would normally use 
BHE to condition chip select functions. BHE is active LOW and floats to 3-state OFF during 
bus hold acknowledge. 

BHE and AO Encodlngs 

BHE Value AOValue Function 

0 0 Word transfer 
0 1 Byte transfer on upper half of data bus (015-08) 
1 0 Byte transfer on lower half of data bus (07-0) 
1 1 Will never occur 

Sl, SO a BUS CYCLE STATUS indicates initiation of a bus cycle and, along with MIlO and COOl 
INTA, defines the type of bus cycle. The bus is in a Ts state whenever one or both are LOW, 
Sl and SO are active LOW and float to 3-state OFF during bus hold acknowledge. 

80286 Bus Cycle Status Definition 

COD/INTA M/IO 81 SO Bus Cycle Initiated 

o (LOW) 0 0 0 Interrupt acknowledge 
0 0 0 1 Will not occur 
0 0 1 0 Will not occur 
0 0 1 1 None; not a status cycle 
0 1 0 0 IF Al = 1 then halt; else shutdown 
0 1 0 1 Memory data read 
0 1 1 0 Memory data write 
0 1 1 1 None; not a status cycle 
1 (HIGH) 0 0 0 Will not occur 
1 0 0 1 I/O read 
1 0 1 0 1/0 write 
1 0 1 1 None; not a status cycle 
1 1 0 0 Will not occur 
1 1 0 1 Memory instruction read 
1 1 1 0 Will not occur 
1 1 1 1 None; not a status cycle 

MilO a MEMORY I/O SELECT distinguishes memory access from 1/0 access. If HIGH during Ts, a 
memory cycle or a halt/shutdown cycle is in progress. If LOW, an 1/0 cycle or an interrupt 
acknowledge cycle is in progress. MIra floats to 3-state OFF during bus hold acknowledge. 

COO/INTA a CODE/INTERRUPT ACKNOWLEDGE distinguishes instruction fetch cycles from memory 
data read cycles. Also distinguishes interrupt acknowledge cycles from 1/0 cycles. COOl 
INTA floats to 3-state OFF during bus hold acknowledge. Its timing is the same as MIlO. 

LOCK a BUS LOCK indicates that other system bus masters are not to gain control of the system 
bus for the current and the following bus cycle. The LOCK signai may be activated explicitly 
by the "LOCK" instruction prefix or automatically by 80286 hardware during memory XCHG 
instructions, interrupt acknowledge, or descriptor table access. LOCK is active LOW and 
floats to 3-state OFF during bus hold acknowledge. 

READY I BUS READY terminates a bus cycle. Bus cycles are extended without limit until terminated 
by READY LOW. READY is an active LOW synchronous input requiring setup and hold 
times relative to the system clock be met for correct operation. READY is ignored during 
bus hold acknowledge. 

3-3 



80286 ~', 

Table 1. Pin Description (Continued) 

Symbol Type Narolt anet function 
HOLD' I BUS HOLD REQUEST AND HOLD ACK,NOWLEOGE coht~ol ownership of. 
HLDA 0 the 80286 local bus, The HOLD input allows, another local bus master to 

request control of the local bus. When control is granted, the 80286 will float 
its bus drivers to 3-state OFF and then activate HLDA, thus entering the bus 
hold acknowledge condition. The local bus will remain granted to the 
requesting-master until HOLD become~ inactive which results in the 80286 
deactiva,ing HLDA and regaining control of the local bus. This terminates the ' 
bus hold acknowledge condition. HOLD may be asynchronous to the system 
clock. These signals are active HIGH. 

INTR I INTERRUPT REQUEST requests the 80286 to suspend its current program 
executionand service a pending external request. Interrupt requests are 
masked whenever the Interrupt enablEi bit in the flag word is cleared. When 
the !l0286 responds to an interrupt request, it performs two interrupt 
acknowledge bus cycles to read an 8-bit interru!?t vector that identifies the 
source of the Interrupt. To assure program interruption, INTR must remain 
active until the first interrupt acknowledge cycle is completed. INTR is 

, sampled at the beginning of each processor cycle and must be active HIGH 
at least two processor cycles before the current instruction ends in order to 
interrupt before the next instruction. INTR is level sensitive, active HIGH, and 
may be asynchronous to the system clock. 

NMI I NON-MASKABLE INTERRUPT REQUEST interrupts the 80286 with an 
internal.1y supplied vector value of 2. No 'interrupt acknowledge cycles are 
performed. The interrupt enable bit in the 80286 flag word does not affect this 
inPIlt. The NMI input is active HIGH, may be asynchronous to the .system 
clock, and Is edge triggered after internal synchronization. For proper 
recognition, the input must have been previously LOW for at least four system 
clock cycles and remain HIGH for at least four system clock cycles. 

PEREa .' I PROCESSOR EXTENSION OPERAND REQUEST A,ND ACKNOWLEOGE 
~ 0 extend the memory management and protection capabilities of the 80286 to 

processor extensions. The PEREa input requests the 80286 to perform a 
data operand transfer for a processor extension. The J5EAa< output signals 
the processor extension when the requested operand is being transferred. 
PEREa is active HIGH and floats to 3-state OFF during bus hold 
acknowledge. PEACK may be asynchronous to the system clock. PEACK is 
active LOW. 

BW7 I PROCESSOR EXTENSION BUSY AND ERROR indicate tho 0wrating 
ERROR I condition of a processor extension to the 80286. An active 8 S input stops 

80286 program executi0"l on WAIT and some ESC instructions until ~ 
becomes inactive (HIGH). The 80286 maYd'e interrupted while waiting for 
~ to become inactive. An aClive ERR R input causes the 80286 to 
perform a processor extension interrupt when executing WAIT or some ESC 
instructions. These inputs are active LOW and may be asynchronous to the 
system clock. These inputs have internal pull-up resistors. 

3-4 



inter 80286 

Table 1. PIn DescrIptIon (Continued) 

Symbol Type Name and Function 
RESET I SYSTEM RESET clears the internal logic of the 80286 and is active HIGH. 

The 80286 may be reinitialized at any time with a lOW to HIGH transition on 
RESET which remains active for more than 16 system clock cycles. During 
RESET active, the output pins of the 80286 enter the state shown below: 

80286 Pin State During Reset 
PlnValue PlnNames 

1 (HIGH) SO, S1, PEACK, A23-AO, SHE, IT5CK 
o (lOW) M/iO, COD/INTA, HlDA (Note 1) 
3-state OFF D15-DO 

Operation of the 80286 begins after a HIGH to lOW transition on RESET. 
The HIGH to lOW transition of RESET must be synchronous to the system 
clock. Approximately 38 ClK cycles from the trailing edge of RESET are 
required by the 80286 for internal initialization before the first bus cycle, to 
fetch code from the power-on execution address, occurs. 
A lOW to HIGH transition of RESET synchronous to the system clock will 
end a processor cycle at the second HIGH to lOW transition of the system 
clock. The lOW to HIGH transition of RESET may be asynchronous to the 
system clock; however, in this case it cannot be predetermined which phase 
of the processor clock will occur during the next system clock period. 
Synchronous lOW to HIGH transitions of RESET are required only for 
systems where the processor clock must be phase synchronous to another 
clock. 

Vss I SYSTEM GROUND: 0 Volts. 

Vee I SYSTEM POWER: + 5 Volt Power Supply. 

CAP I SUBSTRATE FILTER CAPACITOR: a 0.047 "F ± 20% 12V capacitor must 
be connected between this pin and ground. This capacitor filters the output of 
the internal substrate bias generator. A maximum DC leakage current of 1 "A 
is allowed through the capacitor. 
For correct operation of the 80286, the substrate bias generator must charge 
this capacitor to its operating voltage. The capacitor chargeup time is 5 
milliseconds (max.) after Vee and ClK reach their specitied AC and DC 
parameters. RESET may be applied to prevent spurious activity by the CPU 
during this time. After this time, the 80286 processor clock can be 
synchronized to another clock by pulsing RESET lOW synchronous to the 
system clock. 

NOTE: 
1. HlDA is only low if HOLD is inactive (low). 

3-5 



inter 80286 

FUNCTIONAL DESCRIPTION· 

Introduction 

The 80286 is ao advanced, high-performance micro­
processor with specially optimized capabilities for 
multiple user and multi-tasking systems. Depending 
on the application, a 1.2 MHz 80286's performance 
is up to six times faster than the standard 5 MHz 
8086's, while providing complete upward software 
compatibility with Intel's 8086, 88, and 186 family of 
CPU's. 

The. 80286 . operates in two modes: 8086 real ad­
dress mode and protected virtual address mode. 
Both modes execute a superset of the 8086 and 88 
instruction set. 

. In 8086 real address mode programs use real ad­
dresses with up to one megabyte of address space. 
Programs use virtual addresses in protected virtual 
address mode, also called protected mode. In pro­
tected mode, the 80286 CPU automatically maps 1 
gigabyte of virtual addresses per task into a 16 
~egabyte real addres~ space. This mode also pro­
vides memory protection to isolate the operating 
system and ensure privacy of each tasks' programs 
and data. Both modes provide the same base in­
struction set, registers, and addressing modes. 

The following Functional Description describes first, 
the base .80286 architecture common to both 
modes, second, 808~ teal address mode, and third, 
protected mode. . 

80286 BASE ARCHITECTURE 

The 8086, 88, 186, and 286 CPU family all contain 
the same basic set of registers, instructions, and 

BYTE 

16-8IT 
REGISTER 

NAME 

o 7 

AH 

DH 

AL 

DL 

SPECIAL 
REGISTER 

FUNCTIONS 

MULTIPLY IDiVIDE . 
1/0 INSTRUCTIONS 

addressing modes. The 80286 processor is upward 
compatible with the 8086, 8088, and 8018~ CPU's.· 

Register Set 

The 80286 base architecture has fifteen registers as 
shown in Figure 3. These registers are grouped into 
the following four categories: 

Ge~eral Registers: Eight 16-bit general purpose 
registers used to contain arithmetic and logical oper­
ands. Four of these (AX, BX, CX, and OX) can be 
used either in their entirety as 16-bit· words or split 
into pairs of separate 8-bit registers. 

Sef!Jment Registers: Four 16-bit special purpose 
registers select, at any given time, the segments of 
memory that are immediately addressable for code, 
stack, and data. (For usage, refer to Memory Organi-
zation.) . 

Base and Index Registers: Four of the general pur­
pose registers may also. be used to determine offset 
addresses. of operands in memory. These registers 
may contain base addresses or indexes to particular 
loc.ations within a segment. The addressing mode 
determines the specific registers used for operand 
address calculations. . 

. Status and Control Registers: The 3 16-bit special 
purpose registers in figure 3A record or control cer­
tain aspects of the 80286 processor state including 
the Instruction POinter, which contains the offset ad­
dress of the next sequential instruction to be execut­
ed. 

15 

CODE SEGMENT SELECTOR 

DATA SEGMENT SELECTOR 

STACK SEGMENT SELECTOR 

EXTRA SEGMENT SELECTOR 

. ADDRESSABLE 
(8-8IT 
REGISTER 
NAMES 
SHOWN) 

j AX 

OX 

CX 

. BX 

CH CL lOQP/SHIFT IREPEAT ICOUNT 

:F==1 
ES~ 

BP 

I 

01 

BP 

15 

BH BL 

GENERAL 
REGISTERS 

) 

BASE REGISTERS 

INDEX REGISTERS 

STACK POINTER 

Figure 3. Register Set 

3-6 

SEGMENT REGISTERS 

15 

STATUS AND CONTROL 

REGISTERS 

STA~WORD 

INSTRUCTION POINTER 



inter 80286 

ITATVSFUOI· 

CAAAV 
PARITY 

AUXlLlMY CARRY 

1. 
ZIfIO 

1, L .... 
OVERFLOW) .~, .. 14 13 12 t1 .. . . . . . . . 

I\ill'l NT ..... OF OF . .. IF Zf~., 1\\\ .. --"'\lli c' 

f I CONTROL FLAGS: 
TRAP ..... 
INTERRUPT !ENABLE 
DIRECTION R.AO 

IfIRCIALfllLD8: 
110 PRMLlQI U!VlI. 
NlSTU TAlK ,LAG 

210253-4 

Figure 3a. Status and Control Register Bit Functions 

Flags Word Description 

The Flags word (Flags) records specific characteris­
tics of the result of logical and arithmetic instructions 
(bits 0,2,4,6, 7, and 11) and controls the operation 
of the 80286 within a given operating mode (bits 8 
and 9). Flags is a 16-bit register. The function of the 
flag bits is given in Table 2. 

Instruction Set 

The instruction set is divided into seven categories: 
data transfer, arithmetic, shift/rotate/logical, string 
manipulation, control transfer, high level instruc­
tions, and processor control. These categories are 
summarized in Figure 4. 

An 80286 instruction can reference zero, one, or two 
operands; where an operand resides in a register,. in 
the instruction itself, or in memory. Zero-operand In­
structions (e.g. NOP and HLT) are usually one byte 
long. One-operand instructions (e.g. INC and DEC) 
are usually two bytes long but some are encoded in 
only one byte. One-operand instructions may refer­
ence a register or memory location. Two-operand 
instructions permit the following six types of instruc­
tion operations: 

-Register to Register 

-Memory to Register 

-Immediate to Register 

-Memory to Memory 

-Register to Memory 

-Immediate to Memory 

3-7 

Table 2 Flags Word Bit Functions 
Bit 

Name Function Position' 

'0 CF Carry Flag-Set on high-order bit 
carry or borrow; cleared otherwise 

2 PF Parity Flag-Set if low-order 8 bits 
of result contain an even number of 
1-bits; cleared otherwise 

4 AF Set on carry from or borrow to the 
low order four bits of AL; cleared 
otherwise 

6 ZF Zero Flag-Set if result is zero; 
cleared otherwise 

7 SF Sign Flag-Set equal to high-order 
bit of result (0 if positive, 1 if negative) 

11 OF Overflow Flag-Set if result is a too-
large positive number or a too-small 
negative number (excluding sign-bit) 
to fit in destination operand; cleared 
otherwise 

8 TF Single Step Flag-Once set, a sin-
gle step interrupt occurs after the 
next instruction executes. TF is 
cleared by the single step interrupt. 

9 IF Interrupt-enable Flag-When set, 
maskable interrupts will cause the 
CPU to transfer control to an inter· 
rupt vector specified location. 

10 OF Direction Flag-Causes string 
instructions to auto decrement 
the appropriate index registers 
when set. Clearing OF causes 
auto increment. 

IJ 

'II :1 

Il 
.' 



inter 80286 

Two-operand instructions (e.g. MOV and ADD) are 
usually three to six bytes long. Memory to memory 
operations are provided by a special class of string 
instructions requiring one to three bytes. For de­
tailed instruction formats and encodings refer to the 
instruction set summary at the end of this document. 

For detailed operation and usage of each instruc­
tion, see Appendix of 80286 Programmer's Refer­
ence Manual (Order No 210498) 

GENERAL PURPOSE 

MOV Move byte or word 

PUSH Push word onto stack 

POP Pop word off stack 

PUSHA Push all registers on stack 

POPA Pop all registers from stack 

XCHG Exchange byte or word 

XLAT Translate byte 

INPUT/OUTPUT 

IN Input byte or word 

OUT Output byte or word 

ADDRESS OBJECT 

LEA Load effective address 

LOS Load pointer using OS 

LES Load pointer using ES 

FLAG TRANSFER 

LAHF Load AH register from flags 

SAHF Store.AH register in flags 

PUSHF Push flags onto stack 

POPF Pop flags off stack 

Figure 4a. Data Transfer Instructions 

MOVS Move byte or word string 

INS Input bytes or word string 

OUTS Output bytes or.word string 

CMPS Compare byte or word string 

SCAS Scan byte or word string 

LODS Load byte or word string 

STOS Store byte or word string 

REP Repeat 

REPE/REPZ Repeat while equal/zero 

REPNE/REPNZ Repeat while not equal/not zero 

Figure 4c. String Instructions 

3-8 

ADDITION 

ADD Add byte or word 

ADC Add byte or word with carry 

INC I ncrement byte or word by 1 

AAA ASCII adjust for addition 

DAA Decimal adjust for addition 

SUBTRACTION 

SUB Subtract byte or word 

SBB Subtract byte or word with borrow 

DEC Decrement byte or word by 1 

NEG Negate byte or word 

CMP Compare byte or word 

AAS ASCII adjust for subtraction 

DAS Decimal adjust for subtraction 

MULTIPLICATION 

MUL Multiple byte or word unsigned 

IMUL Integer multiply byte or word 

AAM ASCII adjust for multiply 

DIVISION 

DIV Divide byte or word unsigned 

IDIV Integer divide byte or word 

AAD ASCII adjust for division 

CBW Convert byte to word 

CWO Convert word to doubleword 

Figure 4b. Arithmetic Instructions 

LOGICALS 

NOT "Not" byte or word 

AND "And" byte or word 

OR "Inclusive. or" byte or word 

XOR "Exclusive or" byte or word 

TEST "Test" byte or word 

SHIFTS 

SHL/SAL Shift logical 1 arithmetic left byte or word 

SHR Shift logical right byte or word 

SAR Shift arithmetic right byte or word 

ROTATES 

ROL Rotate left byte or word 

ROR Rotate right byte or word 

RCL Rotate through carry left byte or word 

RCR Rotate through carry right byte or word 

Figure 4d. Shift/Rotate Logical Instructions 



80286 

CONDITIONAL TRANSFERS UNCONDITIONAL TRANSFERS 

JAlJNBE Jump if above/not below nor equal CALL Call procedure 

JAE/JNB Jump if above or equal/not below RET Return from procedure 

JB/JNAE Jump if below/not above nor equal JMP Jump 

JBE/JNA Jump if below or equal/not above 

JC Jump if carry ITERATION CONTROLS 

JE/JZ Jump if equal/zero 

JG/JNLE Jump if greater/not less nor equal LOOP Loop 

JGE/JNL Jump if greater or equal/not less LOOPE/LOOPZ Lo,?p if equal/zero 

JL/JNGE Jump if less/not greater nor equal LOOPNE/LOOPNZ Loop if not equal/not zero 

JLE/JNG Jump if less or equal/not greater JCXZ Jump if register CX = 0 

JNC Jump if not carry 

JNE/JNZ Jump if not equal/not zero INTERRUPTS 

JNO Jump if not overflow 

JNP/JPO Jump if not parity/parity odd INT Interrupt 

JNS Jump if not sign INTO Interrupt if overflow 

JO Jump if overflow IRET Interrupt return 

JP/JPE Jump if parity/parity even 

JS Jump if sign 

Figure 4e. Program Transfer Instructions 

FLAG OPERATIONS 

STC Set carry flag 

CLe Clear carry flag 

CMC Complement carry flag 

STD Set direction flag 

CLD Clear direction flag 

STI Set interrupt enable flag 

CLI Clear interrupt enable flag 

EXTERNAL SYNCHRONIZATION 

HLT Halt until interrupt or reset 

WAIT Wait for BUSY not active 

ESC Escape to extension processor 

LOCK Lock bus during next instruction 

NO OPERATION 

NOP No operation 

EXECUTION ENVIRONMENT CONTROL 

LMSW Load machine status word 

SMSW Store machine status word 

Figure 4f. Processor Control Instructions 

ENTER Format stack for procedure entry 

LEAVE Restore stack for procedure exit 

BOUND Detects values outside prescribed range 

Figure 4g. High Level Instructions 

3-9 

Memory Organization 

Memory is organized as sets of variable length seg­
ments. Each segment is a linear contiguous se­
quenceof up to 64K (216) a-bit bytes. Memory is 
addressed using a two component address (a point­
er) that consists of a 16-bit segment selector, and a 
16-bit offset. The segment selector indicates the de­
sired segment in memory. The offset component in­
dicates the desired byte address within the segment. 

t' t' 
32·BIT POINTER ... 

I SEGMENT I OFI'JIET I 
31 tl,15 • 

l OPiRAND 
SELECTED I SELECTED 

SEGMENT 

-

'" '" '\J "\J 

MEMORY 

210253-5 

Figure 5. Two Component Address 



inter 80286 

Table.3. Segment Register Selection Rules 

Memory Segment Register Implicit Segment 
Reference Needed Used ... selection . Rule 

Instructions Code (CS) Automatic with instruction prefetch 

Stack Stack (55) All stack pushes and pops. Any memory reference which uses BP 
as a base register. 

Local Data Data (DS) All data references except when relative to stack or 
string destination 

External (Global) Data Extra (ES) Alternate data segment and destination of string operation 

All instructions that address operands in memory 
must specify the segment and the offset. For speed 
and compact instruction encoding, segment selec­
tors are usually stored in the high speed segment 
registers. An instruction need specify only the de­
sired segment register and an offset in order to ad­
dress a memory operand. 

Most instructions need not explicitly specify whiCh 
segment register is used. The correct segment reg­
ister .is automatically chosen according to the rules 
of Table 3. These rules follow the way programs are 
written (see Figure 6) as independent modules that 
require areas for code and data, a stack, and access 
to external data areas. 

Special segment override instruction prefixes allow 
the implicit segment register selection rules to be 
overridden for special cases; The stack, data, and 
extra segments may coincide for simple prograrns. 
Toaccass operands not residing in one of the four 
immediately available segments, a full 32cbit pointer 
ora new segment selector must be loaded. 

Addressing Modes 

The 80286. provides a total of eight addressing 
modes for instructions to specify operands. Two ad­
dressing modes are provided for . instructions that 
operate on register or immediate operands: 

Register Operand Mode: Tlie operand is locat­
ed in one of the 8 or 16-bit general registers. 

Immediate Operand. Mode: The operand is in­
cluded in the instruction. 

Six modes are provided to specify the location of an 
operand in a memory segment. A memory operand 
address consists of two 16-bit components: seg­
ment selector and offset. The segment selector is 
supplied bya segment register either implicitly cho­
sen by the addressing mode or explicitly chosen by 
a segment· override prefix .. The .offset, is calculated 
by summing any combination of the following three 
address elements: 

the displacement (an 8 or 16-bit immediate val­
ue contained in the instruction) 

the base (contents of either the BX or BP base. 
registers) 

3-10 

MOOULE. 

r---' 
I I 

~. 
DATA 

I 
I 

MODULE. 1::::::=:1---, 

PfIOC£SS 
STACK 

PROCESS 
DATA 
BLOCK 1 

:::
E850··' BI.OCK2 

I I L ___ J 

MEMORY 210253-6 

Figure 6. Segmented Memory Helps 
Structure Software 

the index (contents of either the SI or 01 index 
registers) 

Any carry out from the 16-bit addition is ignored. 
Eight-bit displacements are sign extended to 16-bit 
values. 

Combinations of these three address elements de­
fine the six memory addressing modes, described 
below. 

Direct Mode: The operand's offset is contained in 
the instruction as a.n 8 or 16-bit displacement ele­
ment. 

Register Indirect Mode: The operand's offset is in 
one of the registers SI, 01, BX, orBP. 

Based Mode: The operand's offset is the sum of an 
8 or 16-bit displacement and the contents of a base 
register (BX or BP). 



inter 80286 

Indexed Mode: The operand's offset is the sum of 
an 8 or 16-bit displacement and the contents of an 
index register (51 'or 01). 

Based Indexed Mode: The operand's offset is the 
sum of the contents of a base register and an index 
register. 

Based Indexed Mode with Displacement: The op­
erand's offset is the sum of a base register's con­
tents, an index register's contents, and an 8 or 16-bit 
displacement. 

Data Types 

The 80286 directly supports the following data 
types: 

Integer: 

Ordinal: 

Pointer: 

String: 

ASCII: 

BCD: 

A signed binary numeric value con­
tained in an 8-bit byte or a 16-bit 
word. All operations assume a 2's 
complement representation. Signed 
32 and 64-bit integers are supported 
using the Numeric Data Processor, 
the 80287. 

An unsigned binary numeric value 
contained in an 8-bit byte or 16-bit 
word. 
A 32-bit quantity, composed of a 
segment selector component and an 
offset component. Each component 
is a 16-bit word. 

A contiguous sequence of bytes or 
words. A string may contain from 1 
byte to 64K bytes. 

A 'byte represent~tion of alphanu­
meric and control characters using 
the ASCII standard of character rep­
resentation. 

A byte (unpacked) representation of 
the decimal digits 0-9. 

Packed BCD: A byte (packed) representation of 
two, decimal digits' 0-9 storing one 

. digit in each nibble of the byte: 

Floating Point: A signed 32, 64, or 80-bit real num­
ber, representation. (Floating point 
operands are supported using the 
80287 Numeric Processor). 

Figure 7 graphically represents the data types sup­
ported by the 80286. '. 

1/0 Space 

The liD space consists of 64K 8-bit or 32K 16-bit 
ports. liD instructions address the liD space with 

3-11 

either an 8-bit port address, specified in the instruc­
tion, or a 16-bit port address in the OX register. 8-bit 
port addresses are zero extended such that A15-Ae 
are LOW. liD port addresses 00F8(H) through 
OOFF(H) are reserved. 

7 0 

SIGNED rrrrrrn1 
aYTE LL-.:..-....I 

SIGN alT "L.....--J 
MAGNITUDE 

7 0 
UNSIGNED rtTTTTTT1 
BVTE~ 

~ 
MAGNITUDE 

1514+ 1 87 0 0 

s:~~glililililriiliiil 

SIGN BtT..J L,:! '-~M"'S:~AG"'N"'IT""UDE;---' 

SIGNED 31 +3 +2 1615 +1 0 0 

D~~:~~ Iii iIi iii' iii iii Iii iii iii iii Iii i I 
SIGN BIT j l L MSB MAGNITUDE ! 

+7 +6 +5 +4 +3 ... 2 +1 
SIGNED 63 4! 47 32 !1 16 n 

w~~~11 I I I 
SIGN 81T JICL~M~SB:""'_-::'MAG=NI:;;TU;;;D"'E _-"-:_........J 

15 +1 0 

UNS~~:g r I iii i , Iii i I' i 'I 
~ J 

MAGNITUDE 

BINARY 1 +N 0 

CODED~ 
DECIMAL BCD 

(BCD) DIGIT N 

7 +N 0 

ASCII~ 
ASCII 

CHARACTEAN 

7 +N 0 
PACKED fTTTTTTTl 
BCD~ 

L--.J 
MOST 
SIGNIFICANT DIGIT 

1 +1 01 0 

1"'.liiil"'I"" 
BCD BCD 

DIGIT 1 DIGIT 0 

1 +1 07 0 

l'iil'''I"II"'1 
ASCII ASCII 

CHARACTER, CHARACTERo 

7 +1 01 0 0 

I'''lilil'ii (ffi I 
I....-.J 
LEAST 

SIGNIFICANT DIGIT 

715 +N 0 115 +1 071S 0 0 

STRING~ .' •• (UIII,ii)"'li!'1 
BYTE/WORD N BYTE/WORD 1 BYTE WORD 0 

31 +3 +2 1615 +1 0 0 

POINTER Ii r i I r i r Iii' Iii ii" iii iii iii Iii i I 
I I , 

SELECTOR OFFSET 
79+9 +8 +7 +6 +5 +4 ,+3 +2 +1 o 0 

210253-7 
'Supported by 80287 Numeric Data Processor 

Figure 7. 80286 Supported Data Types 



80286 

Table 4. Interrupt Vector Assignments 

Interrupt Related 
Does Return Addriilss 

Function Point to Instruction 
Number 

Divide error exception 0 

Single step interrupt 1 

NMI interrupt 2 

Breakpoint interrupt 3 

INTO detected overflow exception 4 

BOUND range exceeded exception 5 

Invalid opcode exception 6 

Processor extension not available exception 7 

Intel reserved-do not use 8-15 

Processor extension error interrupt 16 

Intel reserved-do not use 17·31 

User defined 32-255 

Interrupts 

An interrupt transfers execution to a new program 
location. The old program address (CS:IP) and ma­
chine state (Flags) are saved on the stack to allow 
resumption of the interrupted program. Interrupts fall 
into three classes: hardware initiated, INT instruc· 
tions, and instruction exceptions. Hardware initiated 
interrupts occur in response to an external input and 
are classified as non-maskable or maskable. Pro­
grams may cause an interrupt with an INT instruc­
tion. Instruction exceptions occur when an unusual 
condition, which prevents further instruction pro­
ceSSing. is detected while attempting to execute an 
instruction. The· return address from an exception 
will always point at the instruction causing the ex­
ception and include any leading instruction prefixes. 

A table containing up' to 256 pointers defines the 
proper interruptseNice routine for. each interrupt. In­
terrupts 0-31, some of which are used for instruc­
tion exceptions, are reserved. Fbr each interrupt, an 
8-bit vector must be supplied to the 80286 which 
identifies the appropriate table entry. Exceptions 
supply the interrupt vector internally. INT instructions 
contain .or imply the vector and allow access to all 
256 interrupts.' Maskable hardware initiated inter· 
rupts supply the 8-bit vector to the CPU during an 
interrupt acknowledge bus sequence. Non-maska­
ble hardware il1terrupts use a predefined internally 
supplied vector. 

MASKABLE INTERRUPT (INTR) 

The 80286 provides a maskable hardware interrupt 
request pin, INTR. Software enables this input by 

3-12 

Instructions 
Causing Exception? 

DIV,IDIV Yes 

All 

INT 2 or NMI pin , 

INT3 

INTO No 

BOUND Yes 

Any undefined opcode Yes 

ESC or WAIT Yes 

ESC or WAIT 

' ' 

setting the interrupt flag bit (IF)in the flag word. All 
224 user-defined interrupt sources can share this in­
put, yet they can retain separate.interrupt handlers. 
An 8-bit vector read by the CPU during the interrupt 
acknowledge sequence (discussed in System Inter­
face section) identifies the source of the interrupt. 

Further maskable interrupts are disabled while serv­
icing an interrupt by resetting the IF bit as part of the 
response to an interrupt or exception. The saved 
flag word will reflect the enable status of the proces­
sor prior to the interrUpt. Until the flag word is re­
stored to the flag register, the interrupt flag will be 
zero unless specifically set. The interrupt return in­
struction includes restoring the flag word, thereby 
restoring the original status of IF; 

NON-MASKABLE INTERRUPT REQUEST (NMI) 

A non-maskable.interrupt input (NMI) is also provid­
ed. NMI has higher priority than INTR. A typical use 
of NMI would be to activate a power failure routine. 
The activation of this input causes an interrupt with 
an internally supplied vector value of 2. No external 
interrupt acknowledge sequence is performed. 

While executing the NMI servicing procedure, the 
80286 will Service neither further NMI requests, 
INTR requests, nor the processor extension seg­
ment overrun interrupt until an interrupt return (IRET) . 
instruction is executed or the CPU is reset. If NMI 
occurs while currently servicing an NMI,its presence 
will be saved for servicing after executing the first 
IRET instruction. IF is cleared at the beginning of an 
NMI interrupt to inhibit INTRinterrupts. 



80286 

SINGLE STEP INTERRUPT 

The 80286 has an internal interrupt that allows pro­
grams to execute one instruction at a time. It is 
called the single step interrupt and is controlled by 
the single step flag bit (TF) in the flag word. Once 
this bit is set, an internal single step interrupt will 
occur after the next instruction has been executed. 
The interrupt clears the TF bit and uses an internally 
supplied vector of 1. The IRET instruction is used to 
set the TF bit and transfer control to the next instruc­
tion to be single stepped. 

Interrupt Priorities 

When simultaneous interrupt requests occur, they 
are processed in a fixed order as shown in Table 5. 
Interrupt processing involves saving the flags, return 
address, and setting CS:IP to point at the first in­
struction of the interrupt handler. If other interrupts 
remain enabled they are processed before the first 
instruction of the current interrupt handler is execut­
ed. The last interrupt processed is therefore the first 
one serviced. 

Table 5. Interrupt Processing Order 
Order Interrupt 

1 Instruction exception 

2 Single step 

3 NMI 

4 Processor extension segment overrun 

5 INTR 

6 I NT instruction 

1nitialization and Processor Reset 

Processor initialization or start up is accomplished 
by driving the RESET input pin HIGH. RESET forces 
the 80286 to terminate all execution and local bus 
activity. No instruction or bus activity will occur as 
long as RESET is active. After RESET becomes in­
active and an internal processing interval elapses, 
the 80286 begins execution in real address mode 
with the instruction at physical location FFFFFO(H). 
RESET also sets some registers to predefined val­
ues as shown in Table 6. 

Table 6. 80286 Initial Register State after RESET 
Flag word 
Machine Status Word 
Instruction pointer 
Code segment 
Data segment 
Extra segment 
Stack segment 

0002(H) 
FFFO(H) 
FFFO(H) 
FOOO(H) 
OOOO(H) 
OOOO(H) 
OOOO(H) 

HOLD must not be active during the time from the 
leading edge of RESET to 34 CLKs after the trailing 
edge of RESET. 

Machine Status Word Description 
The machine status word (MSW) records when a 
task switch takes place and controls the operating 
mode of the 80286. It is a 16-bit register of which the 
lower four bits are used. One bit places the CPU into 
protected mode, while the other three bits, as shown 
in Table 7, control the processor extension interface. 
After RESET, this register contains FFFO(H) which 
places the 80286 in 8086 real address mode. 

Table 7. MSW Bit Functions 
Bit 

Name Function Position 

0 PE Protected mode enable places the 
80286 into protected mode and cannot 
be cleared except by RESET. 

1 MP Monitor processor extension allows 
WAIT instructions to cause a processor 
extension not present exception 
(number 7). 

2 EM Emulate processor extension causes a 
processor extension not present 
exception (number 7) on ESC 
instructions to allow emulating a 
processor extension. 

3 TS Task switched indicates the next 
instruction using a processor extension 
will cause exception 7, allowing software 
to test whether the current processor 
extension context belongs to the current 
task. 

The LMSW and SMSW instructions can load and 
store the MSW in real address mode. The recom­
mended use of TS, EM, and MP is shown in Table 8. 

Table 8. Recommended MSW Encodings For Processor Extension Control 
Instructions 

TS MP EM Recommended Use Causing 
Exception 7 

0 0 0 Initial encoding after RESET. 80286 operation is identical to 8086, 88. None 

0 0 1 No processor extension is available. Software will emulate its function. ESC 

1 0 1 No processor extension is available. Software will emulate its function. The current ESC 
processor extension context may belong to another task. 

0 1 0 A processor extension exists. 
. .. 

None 

1 1 0 A processor extension exists. The current processor extension context may belong to ESC or 
another task. The Exception 7 on WAIT allows software to test for an error pending WAIT 
from a previous processor extension operation. 

3-13 



inter 80286 

Halt 

The HL T instruction stops program execution and 
prevents the CPU from using the local bus until re­
started. Either NMI, INTR with IF = 1, or RESET will 
force the 80286 out of halt. If interrupted, the saved 
CS:IP will point to the next instruction after the HL T. 

8086 REAL ADDRESS MODE 

The 80286 executes a fully upward-compatible su­
perset of the 8086 instruction set in real address 
mode. In real address mode the 80286 is object 
code compatible with 8086 and ,8088 software. The 
real address mode architecture (registers and ad­
dressing modes) is exactly as described in the 
80286 Base Architecture section of this Functional 
Description. 

Memory Size 

Physical memory is a contiguous array of up to 
1,048,576 bytes (one megabyte) addressed by pins 
Ao through A19 and SHE. A20 through A23 should be 
ignored. 

Memory Addressing 

In real address mode physical memory is a contigu­
ous array of up to 1,048,576 bytes (one megabyte) 
addressed by pins Ao through A19 and BHE. Ad­
dress bits A20-A23 may not always be zero in real 
mode. A20-A23 should not be used by the system 
while the 80286 is operating in Real Mode. 

The selector portion of a pointer is interpreted as the 
upper 16 bits of a 20-bit segment address. The lower 
four bits of the 20-bit segment address are always 
zero. Segment addresses, therefore, begin on multi­
ples of 16 bytes. See Figure 8 for a graphic repre­
sentation of address information. 

All segments in real address mode are 64K bytes in 
size and may be read, written, or executed. An ex­
ception or interrupt can occur if data operands or 
instructions attempt to wrap around the end of a 
segment (e.g. a word with its low order byte at offset 
FFFF(H) and its high order byte at offset OOOO(H). If, 
in real address mode, the information contained in a 
segment does not use the full 64K bytes, the unused 
end of the segment may be overlayed by another 
segment to reduce physical memory requirements. 

Reserved Memory Locations 

The 80286 reserves two fixed areas of memory in 
real address mode (see Figure 9); system initializa-

3-14 

tion area and interrupt table area. Locations from 
addresses FFFFO(H) through FFFFF(H) are re­
served for system initialization. Initial execution be­
gins at location FFFFO(H). Locations OOOOO(H) 
through 003FF(H) are reserved for interrupt vectors. 

15 a 

10000 1 OFFSET 1 OFFSET __________ -' ADDRESS 

1--''--"'" 

SEGMENT 
ADDRESS 

19 a 
2O-81T PHYSICAL 

MEMORY ADDRESS 

210253-8 

Figure 8. 8086 Real Address Mode 
Address Calculation 

~::: 

~::: 

RESET BOOTSTRAP 
PROGRAM JUMP 

· · , 

INTERRUPT POINTER 
FOR VECTOR 255 

· · · 
INTERRUPT POINTER 

FOR VECTOR 1 

INTERRUPT POINTER 
FOR VECTOR 0 

~::: 

~~ 

FFFFFH 

FFFFOH 

3FFH 

3FCH 

7H 

4H 
3H 

OH 

INITIAL CS:IP VALUE IS FOOO:FFFO. 
210253-9 

Figure 9. 8086 Real Address Mode Initially 
Reserved Memory Locations 



inter 80286 

Table 9. Real Address Mode Addressing Interrupts 

Interrupt Related Return Address Function 
Number Instructions Before Instruction? 

Interrupt table limit too small exception 8 INT vector is not within table limit Yes 

Processor extension segment overrun 9 ESC with memory operand extend· No 
interrupt ing beyond offset FFFF(H) 

Segment overrun exception 13 Word memory reference with offset Yes 
= FFFF(H) or an attempt to exe· 
cute past the end of a segment 

Interrupts 

Table 9 shows the interrupt vectors reserved for ex· 
ceptions and interrupts which indicate an addressing 
error. The exceptions leave the CPU in the state ex· 
isting before attempting to execute the failing in· 
struction (except for PUSH, POP, PUSHA, or POPA). 
Refer to the next section on protected mode initiali· 
zation for a discussion on exception 8. 

Protected Mode Initialization 

To prepare the 80286 for protected mode, the LlDT 
instruction is used to load the 24-bit interrupt table 
base and 16-bit limit for the protected mode interrupt 
table. This instruction can also set a base and limit 
for the interrupt vector table in real address mode. 
After reset, the interrupt table base is initialized to 
OOOOOO(H) and its size set to 03FF(H). These values 
are compatible with 8086, 88 software. LlDT should 
only be executed in preparation for protected mode. 

Shutdown-

Shutdown occurs when a severe error is detected 
that prevents further instruction processing by the 
CPU. Shutdown and halt are externally signalled via 
a halt bus operation. They can be distinguished by 
Al HIGH for halt and Al LOW for shutdown. In real 
address mode, shutdown can occur under two con· 
ditions: 

• Exceptions 8 or 13 happen and the lOT limit does 
not .include the interrupt vector. 

• A CALL INT or PUSH instruction attempts to wrap 
around the stack segment when SP is not even. 

An NMI input can bring the CPU out of shutdown if 
the lOT limit is at least OOOF(H) and SP is greater 
than 0005(H), otherwise shutdown can only be exit· 
ed via tne RESET input. 

3-15 

PROTECTED VIRTUAL ADDRESS 
MODE 

The 80286 _ executes a fully upward·compatible suo 
perset of the 8086 instruction set in protected virtual 
address mode (protected mode). Protected mode 
also provides memory management and protection 
mechanisms and associated instructions. 

The 80286 enters protected virtual address mode 
from real address mode by setting the PE (Protec· 
tion Enable) bit of the machine status word with the 
Load Machine Status Word (LMSW) instruction. Pro· 
tected mode offers extended physical and virtual 
memory address space, memory protection mecha· 
nisms, and new operations to support operating sys· 
tems and virtual memory. 

All registers, instructions, arid addressing modes de· 
scribed in the 80286 Base Architecture section of 
this Functional Description remain the same. Pro· 
grams for the 8086, 88, 186, and real address mode 
80286 can be run in protected mode; however, em· 
bedded constants for segment selectors are differ· 
ent. 

Memory Size 

The protected mode 80286 provides a 1 gigabyte 
virtual address space per task mapped into a 16 
megabyte physical address space defined by the ad· 
dress pin A23-AO and BHE. The virtual address 
space may be larger than the physical address 
space since any use of an address that does not 
map to a physical memory location will cause are· 
startable exception. 

Memory Addressing 

As in real address mode, protected mode uses 32-
bit pointers, consisting of 16-bit selector and offset 
components. The selector, however, specifies an in· 
dex into a memory resident table rather than the up· 
per 16-bits of a real memory address. The 24-bit 



intJ 80286 

base address of the desired segment is obtained 
from the tables in memory. The 16-bit offset is add­
ed to the segment base address to form the physical 
address as shown in Figure 10. The tables are auto­
matically referenced by the CPU whenever a seg­
ment register is loaded with a selector. All 80286 
instructions which load a segment register will refer­
ence the memory based tables without additional 
software. The memory based tables contain 8 byte 
values called descriptors. 

CPU 

'V 

210253-10 

Figure 10. Protected Mode Memory Addressing 

DESCRIPTORS 

Descriptors define the use of memory. Special types 
of descriptors also define new functions for transfer 
of control and task switching. The 80286 has seg­
ment descriptors for code, stack and data segments, 
and system control descriptors for special system 
data segments and control transfer operations. De­
scriptor accesses are performed as locked bus op-

. erations to assure descriptor integrity in multi-proc­
essor systems. 

CODE AND DATA SEGMENT DESCRIPTORS 
(S = 1) 

Besides segment base addresses, code and data 
descriptors contain other segment attributes includ­
ing segment size (1 to 64K bytes), access rights 
(read only, read/write, execute only, and execute I 
read), and presence in memory (for virtual memory 
systems) (See Figure 11). Any segment usage vio­
lating a segment attribute indicated by the segment 
descriptor will prevent the memory cycle and cause 
an exception or interrupt. 

Code or Data Segment Descriptor 

• 7 • 
+7 INTEL RESERVED' +.6 

/toCCESS 
RIGHTS BYTE + 5 ploPLlsl TYPE H BASE23-1. +4 

+3 BASlE15-C1 +2 

+1 LI~IT15-0 

,. 
" 210253-11 

'Must be set to 0 for compatibility with 80386. 

Access Rights Byte Definition 

Type 
Field 
Definition 

Bit 
Position 

7 

6-5 

4 

3 
2 

1 

3 
2 

. 1 

0 

Name Function 

Present (P) P-1 Segment is mapped into physical memory. 
p=o No mapping to physical memory exits, base and. limit are 

not used. 
Descriptor Privilege Segment privilege attribute used in privilege tests. 
Level (DPL) 
Segment Descrip' S=1 Code or Data (includes stacks) segment descriptor 
tor (S) S=O System Segment Descriptor or Gate Descriptor 

Executable (E) E-O Data segment descriptor type is: 

) 
If 

Expansion Direc- ED = 0 Expand up segment, offsets must be S; limit. Data 
tion (ED) ED = 1 Expand down segment, offsets must .be > limit. Segment 
Writeable (W) W= 0 Data segment may not be written into. (S = 1, 

W=.1 Data segment may be written into. E = 0) 

Executable (E) E - 1 Code Segment Descriptor type is: 

} 
If 

Conforming (C) C=1 Code segment may only be executed Code 
when CPL'~ DPL and CPL Segment 
remains unchanged . 

Readable (R) R =0 Code segment may not be read (S = 1, 
R=1 Code segment may be read. E - 1) 

Accessed (A) A-O Segment has not been accessed . 
. A = 1 Segment selector has been loaded into segment register 

or used by selector test instructions. 

Figure 11. Code,and Data Segment Descriptor Formats 

3-16 



intJ 80286 

Code and data (including stack data) are stored in 
two types of segments: code segments and data 
segments. Both types are identified and defined by 
segment descriptors (8 = 1). Code segments are 
identified by the executable (E) bit set to 1 in the 
descriptor access rights byte. The access rights byte 
of both code and data segment descriptor types 
have three fields in common: present' (P) bit, De­
scriptor PriVilege Level (DPL), and accessed (A) bit. 
If P = 0, any attempted use of this segment will 
cause a not-present exception. DPL specifies the 
privilege level of the segment descriptor. DPL con­
trols when the descriptor may be used by a task 
(refer to privilege discussion below). The A bit shows 
whether the segment has been previously accessed 
for usage' profiling; a necessity for virtual memory 
systems. The CPU will always set this bit when ac­
cessing the descriptor. 

Data segments (8 = 1, E = 0) may be either read­
only or read-write as controlled by the W bit of the 
access rights byte. Read-only (W = 0) data seg­
ments may not be written into. Data segments may 
grow in two directions, as determined by the Expan­
sion Direction (ED) bit: upwards (ED = 0) for data 
segments, and downwards (ED ~ 1) for a segment 
containing a stack. The limit field for a data segment 
descriptor is interpreted differently depending on the 
ED bit (see Figure 11). 

A code segment (8 = 1, E = 1) may be execute­
only or execute/read as . determined by the Read­
able (R) bit. Code segments may never be written 
into and execute-only code segments (R = 0) may 
not be read. A code segment may also have an attri­
bute called conforming (C). A conforming code seg­
ment may be shared by programs that execute at. 
different privilege levels. The DPL of a conforming 
code segment defines the range of privilege levels 
at which the segment may be executed (refer to priv­
ilege discussion below). The limit field identifies the 
last byte of a code segment. 

SYSTEM SEGMENT DESCRIPTORS (S = 0, 
TYPE = 1-3) 

In addition to code and data segment descriptors, 
the protected mode 80286 defines System Segment 
Descriptors. These descriptors define special sys­
tem data segments which contain a table of descrip­
tors (Local Descriptor Table Descriptor) or segments 
which contain the execution state of a task (Task 
State Segment Descriptor). 

Figure 12 gives the formats for the special system 
data segment descriptors. The descriptors contain a 
24-bit base address of the segment and a 16-bit lim­
it. The access byte defines the type of deSCriptor, its 
state and privilege level. The descriptor contents are 
valid and the segment is in physical memory ifP = 1. 
If P = 0, the segment is not valid. The DPL field is 
only used in Task State Segment descriptors and 
indicates the privilege level at which the descrip-

3-17 

tor may be used (see Privilege). Since the Local De­
scriptor Table descriptor may only be used by a spe­
cial privileged instruction, the DPL field is not used; 
Bit 4 of the access byte is 0 to indicate that it is a 
system control descriptor. The type field specifies 
the descriptor type as indicated in Figure 12. 

+7 

+1 

+. 

System Segment Descriptor 

07 

IN"" IUlllBVID' 

'IDl'L.IOI,nr', I ........ -.... 
UIIIT .... 

II 

+1 .. 
+1 

• 
210253-12 

'Must be set to 0 for compatibility with 80388. 

System Segment Descriptor Flelda 

Name Value DeacrlpUon 
TYPE 1 .Available Task state Segment (TSS) 

2· Local DeSCriptor Table 
3 Busy Task State Segment (TSS) 

P 0 Descri~or contents are not valid 
1 Descriptor contents are valid 

DPL 0-3 Descriptor Privilege LevEll 

BASE 24-bit .Base Address of special system data 
number segment in real memory 

LIMIT 16-bit Offset of last bYte in segment 
number 

Figure 12. System Segment Descriptor Format 

GATE DESCRIPTORS (S = 0" TYPE = 4-7) 

Gates are used to control access to entry pOints 
within the target code segment. The gate descrip­
tors are call gates, task gates, interrupt gates and 
trap gates. Gates provide a level of indirection be­
tween the source and destination of the control 
transfer. This indirection allows the CPU to automati­
cally perform protection checks and control entry 
point of the destination. Call gates are used to 
change. privilege levels (see Privilege), task gates 
are used to perform a task switch, and interrupt and 
trap gates are used to specify interrupt service rou­
tines. The interrupt gate disables interrupts (resets . 
IF) while the trap gate does not. 

Gate DeSCriptor ., 
+7 INtEL RIBIRVID' +1 

.5 pIDPLr~I' TYPE Ix x xl :..., .4 

+3 DESTINATION SELECTOR, .... Ix X .2 

., DES11NATION OFFSET,I-O 

IS 17 

210253-13 
'Must be set to 0 for compatibility w~h 80386 (X is don't care) 



80286 

Gate Descriptor Fields 

Name Value Description 

4 -Call Gate 

TYPE 5 -Task Gate 
6 -Interrupt Gate 
7 - Trap Gate 

P 0 - Descriptor Contents are not 
valid 

I - Descriptor Contents are 
valid 

DPL 0-3 Descriptor Privilege Level 

WORD Number of words to copy 
COUNT 0-31 from callers stack to called 

procedures stack. Only used 
with call gate. 

Selector to the target code 

DESTINATION 16-bit 
segment (Call, Interrupt or 

SELECTOR selector Trap Gate) 
Selector to the target task 
state segment (Task Gate) 

DESTINATION 16-bit Entry point within the target 
OFFSET offset code segment 

Figure 13. Gate Descriptor Format 

Figure 13 shows the format of the gate descriptors. 
The descriptor contains a destination pointer that 
points to the descriptor of the target segment and 
the entry point offset. The destination selector in an 
interrupt gate, trap gate, and call gate must refer toa 
code segment descriptor. These gate descriptors 
contain the entry point to prevent a program from 
constructing and using an illegal entry point. Task 
gates may only refer to a tas.k state segment. Since 
task gates invoke a task switch, the destination off­
set is not used in the task gate. 

Exception 13 is generated when the gate is used if a 
destination selector does not refer tothe correct de­
scriptor type. The word count field is used.in the call 
gate descriptor to indicate the number of parameters 
(0-31 words) to be automatically copied from the 
caller's stack to the stack of the called routine when 
a control transfer changes privilege levels. The word 

. count field is not used by any other gate descriptor. 

The access byte format is the same for all gate de­
scriptors. P =.1 indicates that the gate contents are 
valid. P = 0 indicates the contents are not valid and 
causes exception 11 if referenced. DPL is the de-

scriptor privilege level and specifies when this de­
scriptor may be used by a task (referto privilege 
discussion below). Bit 4 must equal 0 to indicate a 
system control descriptor. The type field specifies 
the descriptor type as indicated In Figure 13. 

SEGMENT DESCRIPTOR CACHE REGISTERS 

A segment descriptor cache register is. assigned to 
each of the four segment registers (CS, SS, DS, ES). 
Segment descriptors are automatically loaded 
(cached) into a segment descriptor cache register 
(Figure 14) whenever the associated segment regis­
ter is loaded with a selector .. Only segment descrip­
tors may be loaded Into segment descriptor cache 
registers. Once loaded, all references to that seg­
ment of memory use the cached descriptor informa­
tion Instead of reaccesslng the descriptor. The de­
scriptor cache registers are not visible to programs. 
No instrl,lctions exist to store their contents. They 
only change when a segment register is loaded. 

SELECTOR FIELDS 

A protected mode selector has three fields: descrip­
tor entry index, local or global descriptor table indi­
cator (TI), and sEll ector privilege (RPL) as shown in 
Figure 15. These fields. s.elect one of two memory 
based tables of descriptors, select the appropriate 
table entry and allow highspeed testing of the selec­
tor's privilege attribute (refer to privilege discussion 
below). 

SELECTOR 

I ! INDEX 
! ! , ! ! 

15 3 2 1 0 

BITS NAME FUNCTION 

1-0 REQUESTED INDICATES SELECTOR PRIVILEGE 
PRIVILEGE LEVEL DESIRED 
LEVEL 
(RPL) 

.2 TABLE 1'1 = 0 USE GLOBAL DESCRIPTOR TABLE 
INDICATOR (GOT) 
(TI) n· = 1 USE LOCAL DESCRIPTOR TABLE 

(LOT) 

15-3 INDEX SELECT DESCRIPTOR ENTRY IN TABLE 

210253.,15 

Figure 15. Selector Fields 

PROGRIIM VISIBLE r - - -- - - - - - PRoGR,u" ;V-;-Sl;L;"' - - - - - - - - - l 
I ACCESS 

SEGMENT SELECTORS I RIGHTs SEGMENT PHYSICAL BASE ADDRESS SEGMENT SIZE 

~~ j I I I 
15 ,0 I 47 4039 1116 

(~~:~N~:~::~:) I SEGMENT DESCRIPTOR CACHE REGISTERS I L ______ (~~~~~~~ED_~C~~ ________ J 

Figure 14. Descriptor Cache Registers 

3-.18 

210253-14 



inter 80286 

LOCAL AND GLOBAL DESCRIPTOR TABLES 

Two. tables of descripto.rs, called descripto.r tables, 
co.ntain aU descripto.rs accessible by a task at any 
given time. A descripto.r table is a linear arrayo.f up 
to. 8192 descripto.rs. The upper 13 bits o.f the selec­
to.r value are an index into. a descripto.r table. Each 
table has a 24-bit base register to. Io.cate the descrip­
to.r table in physical memo.ry and a 16-bit limit regis­
ter that co.nfine descripto.r access to. the defined lim­
its o.f the table as sho.wn in Figure 16. A restartable 
exceptio.n (13) will o.ccur if an attempt is made to. 
reference a descripto.r o.utside the table limits. 

One table, called the Glo.bal Oescripto.r table (GOT), 
co.ntains descripto.rs available to all tasks. The o.ther 
table, called the Lo.cal Oescripto.r Table (LOT), co.n­
tains descriptbrs that can be private to. a task. Each 
task may have its o.wn private LOT. The GOT may 
co.ntain all descripto.r types except interrupt and trap 
descripto.rs. The, LOT may co.ntain o.nly segment, 
task gate, and, cali gate descripto.rs. A segment can­
no.t be accessed by a task if its segment descripto.r 
do.es no.t exist in either descripto.r table at the time o.f 
access. 

""\,... MEMORY "V 

210253-16 

Figure 16. Local and Global 
Descriptor Table Definition 

The LGOT and LLOT instructio.ns Io.ad the base and 
limit o.f the glo.bal and Io.cal descripto.r tables. LGDT 
and LLOT are privileged, i.e. they may o.nly be exe­
cuted by trusted programs o.perating at level O. The 
LGDT instructio.n Io.,ads a six byte field co.ntaining the 
16-bit table limit and 24"bit physical base address o.f 
the Glo.balDescripto.rTable as sho.wn in Figure 17. 
The LLOT instructio.n Io.ads a selecto.r which refers 
to. a Lo.cal Descripto.r Table descripto.r co.ntaining the 

3-19 

base address and limit fo.r an LOT, as sho.wn in Fig­
ure 12. 

o 1 

+5 INTEL RESERVED' I BASE23···15 +4 

+3 BASE,~o +2 

+1 lIM1Tl5-0 

15 • 1 

210253-17 
'Must be set to 0 for compatibility with 80386. 

Figure 17. Global Descriptor Table and Interrupt 
Descriptor Table Data Type 

INTERRUPT DESCRIPTOR TABLE 
The protected mo.de 80286 has a third descripto.r 
table,' called the Interrupt Descripto.r Table (lOT) 
(see Figure 18), used to. define up to. 256 interrupts. 
It may co.ntain o.nly task gates, interrupt gates and 
trap gates. The lOT (interrupt Descriptor Table) has 
a 24-bit physical base and 16-bitlimitregister in the 
CPU. The privileged LlDT instructio.nlo.ads these 
registers with a six byte value o.fidentical fo.rm to. 
that o.f the LGOT instructio.n (see Figure 17 and Pro­
tected Mo.de Initializatio.n). 

~ MEMORY ~ 

GATEFOA 
INTERRUPT #n 

GATE FOR 
INTERRUPT #n'·l 

GATE FOR 

INTERRUPT 
DESCRIPTOR 
TABLE 
(lOT) 

GATE FOR iii ~ 9.! 
INTERRUPT #0 ~ iZ 

INTERRUPT #1 lli!, III 

H-'--++-~~':-,-Ii a:! a: 
~--~ ~2i 

'" 
210253-18 

Figure 18. Interrupt Descriptor Table Definition 

References to. lOT entries are made via INT instruc­
tio.ns, external interrupt vecto.rs, or exceptio.ns. The 
lOT must be at least 256 bytes in size to. allo.cate 
space fo.r all reserved interrupts. 

Privilege 
The 80286 has a fo.ur-Ievel hierarchical privilege sys­
tem which co.ntrols the useo.f privileged instructio.ns 
and access to descripto.rs (and their asso.ciated seg­
ments) within a task. Fo.ur-Ievel privilege, as sho.wn 
in Figure 19, is an extensio.n o.f the user/superviso.r 
mo.de co.mmo.nly fo.und in minico.mputers. The privi­
lege levels are numbered 0 thro.ugh 3. Level 0 is the 

I 
! • 

I' 
,tl 
I:' 

I 

I 'v' 
! ,~ 

I 



inter 80286 

CPU 
I_aD 
8OF1WAIIE 
INTERFACES 

HIGH SPEED 
OPERATING 

'YSTEII INTERFACE 

NOTE: PI. _ NUMERICALLY LOIInR AS PRIVILEGE LEVEL 
INCREASES 

?10253-19 

most privileged level. Privilege levels provide protec­
tion within a task. (Tasks are isolated by providing 
I?rivate LOT's for· each task.) Operating system rou~ 
tines, interrupt handlers; and other system software 
can be included and protected within the virtual ad-

. dress space of each task using the four levels of 
privilege. Each task in the system has a separate 
stack for each of its privilege levels. 

Tasks, descriptors, and selectors have a privilege 
level attribute that determines whether the descrip­
tor may be used. Task privilege effects the use of 
instructions and descriptors. Descriptor and selector 
privilege only effect access to the descriptor. 

TASK PRIVILEGE 
A task always executes at one of the four privilege 
!evels. The task. privilege level at any specific instant 
IS called the Current Privilege Level (CPL) and is de­
fined by the Jower two bits of the CS register. CPL 
cannot change during execution in a single code 
segment. A task's CPL may only be changed by con­
trol transfers through gate descriptors to a new code 
segment. (See Control Transfer). Tasks begin exe­
cuting at the Cp,L value specified by the code seg" 
ment selector within TSS when the task is initiated 
via a task switch operation (See Figure 20). A task 
executing at Level () can access all data segments 
defined in the GOT and the task's LOT andjs con-. 
sidered the most trusted level. A task executing a 
Level 3 has the most restricted access to data and is 
considered the least trusted level. 

DESCRIPTOR PRIVILEGE 
D~~criptor privilege is specified by. the Descriptor 
Privilege Level (DPL) field of the descriptor access 
byte. DPL specifies the least trusted task privilege 
level (CPL) at which a task may access the descrip-

tor. Descriptors with DPL, =:' 0 are the m9~~ protect­
ed. Only tasks executing at privilege level· 0 
(CPL= 0)· may aCcess them. Descriptors with OPL 
=3 are the leastprotectEld (i.e. liave the least re­
stricted access) since tasks cari access them when 
CPL = 0, 1, 2, or 3. This rule applies to all descrip­
tors, except LDn~escriptors. . .. 

SELECTOR PRIVILEGE 
Selector privilege is specified by the Requested Priv­
ilege Level (RPL) field in the least significant two bits 
of a selector. Selector· RPL may establish a less 
trusted privilege level than the current privilege level 
for .the ·use of a selector. This level is called the 
task's effective privilege level (EPL). RPL can only 
reduce the scope of a task's access to data with this 
selector. A task's effective privilege is the<numeric 
maximum of RPL and CPL. A selector with RPL = 0 
imposes no additional restriction on its use while a 
selector with RPL = 3 can only refer to segments at 
privilege Level 3 regardless of the task's CPL. RPL 
is generally used to verify that pointer parameters 
passed to a ·more trusted procedure are not allowed 
to use data at amore privileged level than the caller 
(refer to pointer testing instructions). . 

Descriptor Access and Privilege 
Validation 
Determining the ability of a task to access a seg­
ment involves the type of segment to be accessed, 
the instruction used, the type of descriptor used and 
CPL, RPL, and DPL. The two basic types of segment 
accesses are control transfer (selectors loaded into 
CS) arid data (selectors loaded into OS, ES or SS) .. 

DATA SEGMENT ACCESS 
Instructions that (oaaselectors into OS and ES must 
refer to a data segment deSCriptor or re.adable code 
segment descriptor. The CPL of the task and the 
RPL of the ~Iector must be the same as or more 
privileged (numerically equal to or lower than) than 
the descriptor DPL. In general, a task can only ac­
cess data segments at the same or less privileged 
I~vels than the CPL or RPL (whichever is numerically 

,higher) to prevent a program from accessing data it 
cannot be trusted to use. 

3-20 

An exception to the rule is a readable conforming 
code segment. This type of code segment can be 
read from any privilege level. . . ... 

If the privilege checks fail (e.g. DPL is numerically 
less than the maximum of CPL and RPL) or an incor­
rect type of descriptor is. referenced (e.g. gate de-



intJ 80286 

scriptor or execute only code segment) exception 13 
occurs. If the. segment is not present, exception 11 
is generated. 

Instructions that load selectors into SS must refer to 
data segment descriptors for writable data seg­
ments. The descriptor privilege (DPL) and RPL must 
equal CPL. All other descriptor types· or a privilege 
level violation will cause exception 13. A not present 
fault causes exception 12. 

CONTROL TRANSFER 

Four types of control transfer can occur when a se­
lector is loaded into CS by a control transfer opera­
tion (see Table 10). Eachtransfer type can only oc­
cur if the operation which loaded the selector refer­
ences the correct descriptor type. Any violation of 
these descriptor usage rules (e.g. JMP through a call 
gate or RET to a Task State Segment) will cause 
exception 13. 

The ability to reference a descriptor for control trans­
fer is also subject to rules of privilege. A CALL or 
JUMP instruction may only reference a code seg­
ment descriptor with DPL equal to the task CPL or a 
conforming segment with DPL of equal or greater 
privilege than CPL. The RPL of the selector used to 
reference the code descriptor must have as much 
privilege as CPL. 

RET and IRET instructions may only reference code 
segment descriptors with descriptor privilege equal 
to or less privileged than the task CPL. The selector 
loaded into CS is the return address from the stack. 
After the return, the selector RPL is the task's new 
CPL. If CPL changes, the old stack pointer is popped 
after the return address. 

When a JMP or CALL references a Task State Seg­
ment descriptor, the descriptor DPL must be the 
same or less privileged than the task's CPL. Refer-

ence to a valid Task State Segment descriptor caus­
es a task switch (see Task Switch Operation). Refer­
ence to a Task State Segment descriptor at a more 
privileged level than the task's CPL generates ex­
ception 13. 

When an instruction or interrupt references a gate 
descriptor, the gate DPL must have the same or less 
privilege than the task CPL. If DPL is at a more privi­
leged level than CPL, exeception 13· occurs. If the 
destination selector contained in the gate refer­
ences a code segment descriptor, the code seg­
ment descriptor DPL must be the same or more priv­
ileged than the task CPL. If not, Exception 13 IS is­
sued. After the control. transfer, the code segment 
descriptors DPL is the task's new CPL. If the desti­
nation selector in the gate references a task state 
segment, a task switch is automatically performed 
(see Task Switch Operation). 

The privilege rules on control transfer require: 

- JMP or CALL direct to a code segment (code 
segment descriptor) can only be to a conforming 
segment with DPL of equal or greater privilege 
than CPL or a non-conforming segment at the 
same· privilege level. 

- interrupts within the task or calls that may 
change privilege levels, can only transfer control 
through agate at the same or a less privileged 
level than CPL to a code segment at the same or 
more privileged level than CPL. 

- return instructions that don't switch tasks can 
only return control to a code segment at the 
same or less privileged level. 

- task.switchcan be performed by a call, jump or 
interrupt which references either a task gate or 
task state segment at the same or less privileged 
level. 

Table 10. Descriptor Types Used for Control Transfer 

Control Transfer Types 

Intersegment within the same privilege level 

Intersegmentto the same or higher privilege level Interrupt 
within task may change CPL. 

Intersegment to a lower privilege level (changes task CPL) 

Task Switch 

"NT (Nested Task bit of flag word) = 0 
""NT (Nested Task bit of flag word) = 1 

Operation Types 

JMP, CALL, RET, IRET' 

CALL 

Interrupt Instruction, 
Exception, External 
Interrupt 

RET,IRET' 

CALL,JMP 

CALL,JMP 

IRET" 
Interrupt Instruction, 
Exception, External 
Interrupt 

3-21 

Descriptor Descriptor 
Referenced Table 

Code Segment GOTILOT 

Call Gate GOT/LOT 

Trap or lOT 
Interrupt 
Gate 

Code Segment GOT/LOT 

Task State GOT 
Segment 

Task Gate GOT/LOT 

Task Gate lOT 



80286 

PRIVILEGE LEVEL CHANGES 

Any control transfer that changes CPL within the 
task, causes a change of stacks as part of the oper­
ation. Initial values of SS:SP for privilege levels 0, 1, 
and 2 are kept in the task state segment (refer to 
Task Switch Operation). During a JMP or CALL con­
trol transfe~, the new stack pOinter is loaded into the 
SS and SP registers and the previous stack pointer 
is pushed onto the new stack. 

When returning to the original privilege level, its 
stack is restored as part of the RET or IRET instruc­
tion operation. For subroutine calls that pass param­
eters on the stack and cross privilege levels, a fixed 
number of words, as specified in the gate, are cop­
ied from the previous stack tq t.he currentstack. The 
inter-segment RET instruction with a stack adjust­
ment value will correctly restore the previous stack 
pointer upon return. 

Protection 
The 80286 includes mechanisms to protect critical 
instructions that affect the CPU execution state (e.g. 
HL n and code or data segments from improper us­
age. These protection mechanisms are grouped into 
three forms: 

Restricted usage of segments (e.g. no write al­
lowed to read-only data segments). The only seg­
ments available for use are defined by descrip­
tors in the Local Descriptor Table (LOT) and 
GloQal Descriptor Table (GOT). 

Restricted access to segments via the rules of 
privilege and descriptor usage. 

Privileged instructions or operations that may 
only be executed at certain privilege levels as de­
termined by the CPL and 110 Privilege Level 
(IOPL). The 10PL is defined by bits 14 and 13 of 
the flag word. 

These checks are performed for all instructions and 
can be split into three categories: segment load 
checks (Table 11), operand reference checks (Table 
12), and privileged instruction checks (Table 13). 
Any violation of the rules shown will result in an ex­
ception. A not-present exception related to the stack 
segment causes exception 12. 

The IRET and POPF instructions do not perform 
some of their defined functions if CPL is not of suffi­
cient privilege (numerically small enough). Precisely 
these are: 

• The IF bit is not changed if CPL > 10PL. 

• The 10PL field of the flag word is not changed if 
CPL> O. 

No exceptions or other indication are given when 
these conditions occur. 

3-22 

Table 11 
Segment Register Load Checks 

Error Description 
Exception 
Number 

Descriptor table limit exceeded 13 

Segment descriptor not-present 11 or 12 

Privilege rules violated 13 

Invalid descriptor/segment type seg-
ment register load: 

-Read only data segment load to 
SS 

-SpeCial Control descriptor load to 
OS, ES,SS 13 

-Execute only segment load to 
DS,ES,SS 

-Data segment load to CS 
-Read/Execute code segment 

load to SS 

Table 12, Operand Reference Checks 

Error Description 
Exception 
Number 

Write into code segment 13 
Read from execute-only code 
segment 13 
Write to read-only data segment 13 
Segment limit exceeded1 12 or 13 

NOTE: 
Carry out in offset calculations is ignored. 

Table 13. Privileged Instruction Checks 

Error Description 
Exception 
Number 

CPL * 0 when executing the following 
instructions: 13 

LlDT, LLDT, LGDT, L TR, LMSW, 
CTS,HLT 

CPL > IOPL when executing the fol-
lowing instructions: 

13 INS, IN, OUTS; OUT, STI, CLI, 
LOCK 

EXCEPTIONS 

The 80286 detects several types of exceptions and 
interrupts, in protected mode (see Table 14). Most 
are restartable after the exceptional condition is re­
moved. Interrupt handlers for most exceptions can 
read an error code, pushed on the stack after the 
return address, that identifies the selector involved 
(0 if none). The return address normally points to the 
failing instruction, including allleadinlJ prefixes. For a 
processor extension segment overrun exception, 
the return address will not point at the ESC instruc­
tion that caused the exception; however, the proces­
sor extension registers may contain the address of 
the failing instruction. 



inter 80286 

Table 14. Protected Mode Exceptions 

Return 
Always Error Interrupt 

Function Address Restart- Code Vector At Failing able? on Stack? Instruction? 

B Double exception detected Yes N02 Yes 
9 Processor extension segment overrun No N02 No 

10 Invalid task state segment Yes Yes Yes 
11 Segment not present Yes Yes Yes 
12 Stack segment overrun or stack segment not present Yes Yes1 Yes 
13 General protection Yes N02 Yes 

NOTE: 
1. When a PUSHA or POPA instruction attempts to wrap around the stack segment, the machine state after the exception 
will not be restartable because stack segment wrap around is not permitted. This condition is identified by the value of the 
saved SP being either OOOO(H), 0001 (H), FFFE(H), or FFFF(H). 
2. These exceptions indicate a violation to privilege rules or usage rules has occurred. Restart is generally not attempted 
under those conditions. 

These exceptions indicate a violation to privilege 
rules or usage rules has occurred. Restart is gener­
ally not attempted under those conditions. 

All these checks are performed for all instructions 
and can be split into three categories: segment load 
checks (Table 11), operand reference checks (Table 
12), and privileged instruction checks (Table 13). 
Any violation of the rules shown will result in an ex­
ception. A not-present exception causes exception 
11 or 12 and is restartable. 

Special Operations 

TASK SWITCH OPERATION 

The 80286 provides a built-in task switch operation 
which saves the entire 80286 execution state (regis­
ters, address space, and a link to the previous task), 
loads a new execution state, and commences exe­
cution in the new task. Like gates, the task switch 
operation is invoked by executing an inter-segment 
JMP or CALL instruction which refers to a Task 
State Segment (TSS) or task gate descriptor in the 
GOT or LOT. An INT n instruction, exception,or ex­
ternal interrupt may also invoke the task switch op­
eration by selecting a task gate descriptor in the as­
sociated lOT descriptor entry. 

The TSS descriptor points at a segment (see Figure 
20) containing the entire 80286 execution state 
while a task gate descriptor contains a TSS selector. 
The limit field of the descriptor must be >002B(H). 

Each task must have a TSS associated with it. The 
current TSS is identified by a special register in the 
80286 called the Task Register (TR). This register 
contains a selector referring to the task state seg­
ment descriptor that defines the current TSS. A hid­
den base and limit register associated with TR are 
loaded whenever TR is loaded with a new selector. 

The IRET instruction is used to return control to the 
task that called the current task or was interrupted. 
Bit 14 in the flag register is called the Nested Task 
(NT) bit. It controls the function of the IRET instruc­
tion. If NT = 0, the IRET instruction performs the 
regular current task by popping values off the stack; 

. when NT = 1, IRET performs a task switch opera­
tion back to the. previous task. 

When a CALL, JMP, or INT instruction initiates a 
task switch, the old (except for case of JMP) and 
new TSS will be marked busy and the back link field 
of the new TSS set to the old TSS selector. The NT 
bit of the new task is set by CALL or INT initiated 
task switches. An interrupt that does not cause a 
task switch will clear NT. NT may also be set or 
cleared by POPF or IRET instructions. 

The task state segment is marked busy by changing 
the descriptor type field from Type 1 to Type 3: Use 
of a selector that references a busy task stateseg­
ment causes Exception 13. 

PROCESSOR EXTENSION CONTEXT 
SWITCHING 

The context of a processor extension (such as the 
80287 numerics processor) is not changed by the 
task switch operation. A processor extension con­
text need only be changed when a different task at­
tempts to use the processor extension (which still 
contains the context of a previous taSk). The 80286 
detects the first use of a processor extension after a 
task switch by causing the processor extension not 
present exception (7). The interrupt handler may 
then decide whether a context change is necessary. 

Whenever the 80286 switches tasks, it sets the Task 
Switched (TS) bit of the MSW. T8 indicates that a 
processor extension context may be.long to a differ­
ent task than the current one. The processor exten­
sion not present exception (7) will occur when at­
tempting to execute an ESC or WAIT instruction if 
T~ = 1 and a processor extension is present (MP = 1 
in MSW) . 

. 3-23 

'·1.:.1 .. 

,. 

Ii 
hi 

~ 

! j 

:1 

i 



inter 80286 

POINTER TESTING INSTRUCTIONS 

The 80286 provides several instructions to speed 
pointer testing and consistency checks for maintain­
ing system integrity (see Table 15). These instruc-

tions use the memory management hardware tover· 
ify that a selector value refers to an appropriate seg­
ment without risking an exception. A condition flag 
(ZF) indicates whether use of the selector or seg­
ment will cause an exception. 

CPU 

TASK REGISTER 

TRD---
SYSTEM 

~ SlGMENT 
DESCRIPTOR 

" • r---------.., 
I PROGRAM INVISIBLE I 
I 

R 
I 

I 

H I 
LIMIT 

: I I 
------

BASE 

I .. • I L ___ 

--- - .. 

TASK 
STATE 
SEGMENT 

'l- I-

INTEL RESERVED TYPE DESCRIPTION 

pi r IoITYp~1 BASE23-1I 1 AN AVAILABLE TASK STATE 
SEGMENT. MAY BE USED AS 

BASE,1-O THE DESTINATION OF A TASK 
SWITCH OPERATION. 

3 A BUSY TASK STATE SEGMENT. 
LlMfT15-0 CANNOT BE USED AS THE 

DESTINATION OF A TASK 
SWITCH. 

------------

15 

TASK LDT SELECTDR 

DSSELECTOR 

SSSELECTOR 

CSSELECTOR 

ESSELECTOR 

Of 

SI 

BP 

SP 

BX 

DX 

CX 

AX 

FLAG WORD 

IP (ENTRY POINT) 

SSFORCPL2 

SPFORCPL2 

SSFORCPL1 

SPFORCPL1 

SS FOR CPLO 

SP FOR CPLO 

BACK UNK SELECTOR TO TSS 

~ 

0 
BYTE 
OFFSET 

42 

40 

36 

36 

34 

32 

30 

28 

28 

2. 

22 

20 

18 

16 

1. 

P DESCRIPTION 
1 BASE AND LIMIT FIELDS ARE VALID 
o SEGMENT IS NOT PRESENT IN 

MEMORY. BASE AND LIMIT ARE NOT 
DEFINED 

CURRENT 
TASK 
STATE 

12 

10 

8 

8 '. 
2 

J
INITIAL 
STACKS 
FOR CPL 0.1,2 

0 

~ 
210253-20 

Figure 20. Task State Segment and TSS Registers 

3-24 



i~ 80286 

Table 15.80286 Pointer Test Instructions mediately execute an intra-segment JMP instruction 

Instruction Operands Function 

ARPL Selector, Adjust Requested Privilege 
Register Level: adjusts the RPL ot 

the selector to the numeric 
maximum of current selec-
tor RPL value and the RPL 
value in the register. Set 
zero flag if selector R PL 
was changed by ARPL. 

VERR Selector VERify for Read: sets the 
zero flag if the segment re-
ferred to by the selector 
can be read. 

VERW Selector VERify for Write: sets the 
zero flag if the segment re-
ferred to by the selector 
can be written. 

LSL Register, Load Segment Limit: reads 
Selector the segment limit into the 

register if privilege rules 
and descriptor type allow. 
Set zero flag if successful. 

LAR Register, Load Access Rights: reads 
Selector the descriptor access 

rights byte into the register 
if privilege rules allow. Set 
zero flag if successful. 

DOUBLE FAULT AND SHUTDOWN 

If two separate exceptions are detected during a sin­
gle instruction execution, the 80286 performs the 
double fault exception (8). If an execution occurs 
during processing of the double fault exception, the 
80286 will enter shutdown. Ouring shutdown no fur­
ther instructions or exceptions are processed. Either 
NMI(CPU remains in protected mode) or RESET 
(CPU exits protected mode) can force the 80286 out 
of shutdown. Shutdown is externally signalled via a 
HALT bus operation with AI LOW. 

PROTEC'fED MODE INITIALIZATION 

The 802El6 initially executes in real address mode 
after RESET. To allow initialization code to be 
placed at the top of physical memory, A23-A20 will 
be HIGH when the 80286 performs memory refer­
ences relative to the CS register until CS is changed. 
A23-A20 will be zero for references to the OS, ES, or 
SS segments. Changing CS in real address mode 
will force A23-A20 LOW whenever CS is used again. 
The initial CS:IP value of FOOO:FFFO provides 64K 
bytes of code space for initialization code without 
changing CS; 

Protected mode operation requires several registers 
to be initialized. The GOT and lOT base registers 
must refer to a valid GOT and lOT. After executing 
the LMSW instruction to set PE, the 80286 must im-

3-25 

to clear the instruction queue of instructions decod­
ed in real address mode. 

To force the 80286 CPU registers to match the initial 
protected mode state assumed by software, execute 
a JMP instruction with a selector referring to the ini­
tial TSS used in the system. This will load the task 
register, local descriptor table register, segment reg­
isters and initial general register state. The TR 
should point at a valid TSS since any task switch 
operation involves saving the current task state. 

SYSTEM INTERFACE 
The 80286 system interface appears in two forms: a 
local bus and a system bus. The local bus consists 
of address, data, status, and control signals at the 
pins of the CPU. A system bus is any buffered ver­
sion of the local bus. A system bus may also differ 
from the local bus in terms of coding·of status and 
control lines and/or timing and loading of signals. 
The 80286 family includes several devices to gener­
ate standard system buses such as the IEEE 796 
standard MUL TIBUS. 

Bus Interface Signals and Timing 
The 80286 microsystem local bus interfaces the 
80286 to local memory and I/O components. The 
interface has 24 address lines, 16 data lines, and 8 
status and control signals. 

The 80286 CPU, 82C284 clock generator, 82288 
bus controller, 82289 bus arbiter, tranceivers, and 
latches provide a buffered and decoded system bus 
interface. The 82C284 generates. the system clock 
and synchronizes REAOY and RESET. The 82288 
converts bus operation status encoded by the 80286 
into command and bus control signals. The 82289 
bus arbiter generates Multibus bus arbitration sig­
nals. These components can provide the timing and 
electrical power drive levels required for most sys­
tem bus interfaces including the Multibus. 

Physical Memory and 1/0 Interface 
A maximum of 16 megabytes of physical memory 
can be addressed in protected mode. One mega­
byte can be addressed in real address mode. Memo­
ry is accessible as bytes or words. Words consist of 
any two consecutive bytes addressed with the least 
significant byte stored in the lowest address. 

Byte transfers occur on either half of the 16-bit local 
data bus. Even bytes are accessed over 07-0 while 
odd bytes are transferred over 015-8. Even-ad­
dressed words are transferred over 015-0 in one 
bus cycle, while odd-addressed word require two 
bus operations. The first transfers data on 015-8, 
and the second transfers data on 07-0. Both byte 
data transfers occur automatically, transparent to 
software. 

rl 



inter 80286 

Two bus signals, Ao and BHE, control transfers over 
the lower and upper halves of the data bus., Even 
address byte transfers are indicated by Ao lOW and 
BHE HIGH. Odd address byte transfers are indicat­
ed by Ao HIGH and SHE lOW. Both Ao and BHE are 
lOW for even address word transfers. 

The I/O address space contains 64K addresses in 
both modes. The I/O space is accessible as either 
bytes or words, as is memory. Byte wide peripheral 
devices may be attached to either the upper or lower 
byte of the data bus. Byte-wide I/O devices attached 
to the upper data byte (015-8) are accessed with 
odd I/O addresses. Devices on the lower data byte 
are accessed with even I/O addresses. An interrupt 
controller such as Intel's 8259A must be connected 
to the lower data byte (07-0) for proper return of the 
interrupt vector. 

Bus Operation 
The 80286 uses a double frequency system clock 
(ClK input) to control bus timing. All Signals on the 
local bus are measured relative to the system ,ClK 
input. The CPU divides the system clock by 2 to pro­
duce the internal processor clock, which determines 
bus state. Each processor clock is composed of two 
system clock cycles named phase 1 and phase 2. 
The 82C284 clock generator output (PClK) identi­
fies the next phase of the processor clock. (See Fig­
ure 21.) 

elK 

PClK' ...J/ \ ..... ------' 
210253-21 

Figure 21. System and Processor 
Clock Relationships 

Six types of' bus operations are supported; memory 
read, memory write, I/O read, I/O write, interrupt ac­
knowledge, and halt/shutdown. Data can be trans­
ferred at a maximum rate of one word per two proc­
essor clock cycles. 

The 80286 bus has three basic states: idle (Ti), send 
status (T s), and perform command (T d. The 80286 
CPU also has a fourth local bus state called hold 
(T h)' T h indicates that the 80286 has surrendered 
control of the local bus to another bus master in 
response to a HOLD request. 

Each bus state is one processor clock long. Figure 
22 shows the four 80286 local bus states and al-
lowed transitions. ' 

3-26 

RESET 

210253-22 

Figure 22. 80286 Bus States 

Bus States 
The idle (Ti) state indicates that no data transfers 
are in progress or requested. The first active state 
T s is signaled by status line S1 or SO going lOW 
and identifying phase 1 of the processor clock. Dur­
ing T s, the command encoding, the address, and 
data (for a write, operation)' are available on the 
80286 output pins. The 82288 bus controller de­
codes the status Signals and generates Multibus 
compatible read/write command and local trans­
ceiver control Signals. 

After T S, the perform command (T c> state is en­
tered. Memory or I/O devices respond to the bus 
operation during T c, either transferring read data to 
the CPU or accepting write data. T c states may be 
repeated as often as necessary to assure sufficient 
time for the memory or I/O device to reSpond. The 
READY signal determines whether T c is repeated. A 
repeated Testate is called a wait state. 

During hold (Th), the 80286 will float all address, 
data, and status output pins enabling another bus 
master to use the local bus. The 80286 HOLD input 
signal is used to place the 80286 into the T h state. 
The 80286 HlDA output signal indicates that the 
CPU has entered T h. 

Pipelined Addressing 
The 80286 uses a local bus interface with pipelined 
timing to allow as much time as possible for data 
access. Pipe lined timing allows a new bus operation 
to be initiated every two processor cycles, while al­
lowing each individual bus operation to last for three 
processor cycles. 

The timing of the address outputs is pipelined such 
that the address of the next bus operation becomes 
available during the current bus operation. Or in oth­
er words, the first clock of the, next bus operation is 
overlapped with the last clock of the current bus op­
eration. Therefore, address decode and routing logic 
can operate in advance of the next bus operation. 



80286 

T, ~-- READ BUS CYCLE N .. ,~ READ BUS CYCLE N ; 1~ 
-, -Ts .. ---Tc----......---.-Ts----...........-Tc ,~I I --:;;-1 ,~1 I .14 - .,., I ,/12 I ,/,' I ./12 

elK 

PROCClK 

A" - .. -_J'-=.l.f---..:.........;;...;..:-~-_-J-..... ....... -+-------t----'''''.....,.---

SO.91 

REAlly 

0 ,5 -Do ~--- -------- -- - -- -- - - - ----~----- - - - - --- - ---e:>-
VAUD READ VALID READ 

DATACN) DATA (N+l) 

PlPELINING: VALID ADDRESS (N ; 1) AVAILABLE IN LAST PHASE OF BUS CYCLE (N). 

210253-23 

Figure 23. Basic Bus Cycle 

External address latches may hold the address sta­
ble ,for the entire bus operation, and provide addi­
tional AC and DC buffering. 

The 80286 does not maintain the address of the cur­
rent bus operation during all Tc states. Instead, the 
address for the next bus operation may be emitted 
during phase 2 of any T c. The address remains val,id 
during phase 1 of the first T c to guarantee hold time, 
relative to ALE, for the address latch inputs. 

Bus Control Signals 
The 82288 bus controller provides control signals; 
address latch enable (ALE), Read/Write commands, 
data transmit/receive (DT IR), and data enable 
(DEN) that control the address latches, data trans­
ceivers, write enable, and output enable for memory 
and 1/0 systems. 

The Address Latch Enable (ALE) output determines 
when the address may be latched. ALE provides at 
least one system CLK period of address hold time 
from the end of the previous bus operation until the 
address for the next bus operation appeafs at the 
latch outputs. This address hold time is required to 
support MUL TIBUS and common memory systems. 

The data bus, transceivers are controUed by 82288 
outputs Data Enable (DEN) and Data Transmit/Re­
ceive (DT IR). DEN enables the data transceivers; 
while DT IR controls tranceiver direction. DEN and 
DT IR are timed to prevent bus contention between 
the bus master, data bus transceivers, and system 
data bus transceivers. 

3-27 

Command Timing Controls 
Two system timing customization options, command 
extension and command delay, are provided on the 
80286 local bus. 

Command extension allows additional time for exter­
nal devices to respond to a command and is analo­
gous to inserting wait states on the 8086. External 
logic can control the duration of any bus operation 
such that the operation is only as long as necessary. 
The READY input signal can extend any bus opera­
tion for as long as necessary. 

Command delay allows an increase of address or 
write data setup time to system bus command aCtive 
for any bus operation by delaying when the system 
bus command becomes active. Command delay is 
controlled by the 82288 CMDL Y input. After T s, the 
bus controller samples CMDL Y at each failing edge 
of CLK. If CMDL Y is HIGH, the 82288 will not actb 
vate the command signal. When CMDL Y is LOW, 
the 82288 will activate the command signal. After 
the command becomes active, theCMDL Yinput is 
not sampled. 

When a command is delayed, the .available re­
sponse time from command active to return read' 
data or accept write data is less. To customize sys­
tem bus timing, an address decoder can determine 
which bus operations require delaying the com­
mand. The CMDL Y i~ut does not affect the timing 
of ALE, DEN, or DT IR. 

" 

)' 
I" 



80286 

i+-------READ BUS CYCLE N 1 -------~------READBUS~N------~ 

CLK 

PAOC---' 
CLK 

ALE 
----' 

EX! ~: _COIII_MAN_D_.Jr-+--'--+---L""'\\,. __ .l.-____ + _____ -+_->-t-___ -+ __ 

~ III!. COMMAND • 
EX. 

CMDlY 

210253-24 

Figure 24. CMDLY Controls the Leading Edge of Command Signal 

Figure 24 illustrates four uses of CMDLY. Example 1 
shows delaying the read command two system 
CLKs for cycle N-1 and no delay for cycle N, and 
example 2 shows delaying the read command one 
system CLK for cycle N-1 and one system CLK de­
lay for cycle N. 

Bus Cycle Termination 
At maximum transfer rates, the 80286 bus alternates 
between the status and command states. The bus 
status signals become inactive after T s so that they 
may correctly signal the start of the next bus opera­
tion after the completion of the current cycle. No 
external indication of T c exists on the 80286 local 
bus. The bus master and bus controller enter T c di­
rectly after T s and continue executing T c cycles until 
terminated by READY. 

READY Operation 
The current bus master and 82288 bus controller 
terminate each bus operation simultaneously to 
achieve maximum bus operation bandwidth. Both 
are informed in advance by READY active (open­
collector output from 82C284) which identifies the 
last T c cycle of the current bus operation. The bus 
master and bus controller must see the same sense 

of the READY signal, thereby requiring READY be 
synchronous to the system clock. 

Synchronous Ready 
The 82C284 clock generator provides READY syn­
chronization from both synchronous and asynchro­
nous sources (see Figure 25). The synchronous 
ready input (SRDY) of the clock generator is sam­
pled with the falling edge of CLK at the end of phase 
1 of each T c. The state of SRDY is then broadcast to 
the bus master and bus controller via the READY 
output line. 

Asynchronous Re~dy 
Many systems have devices or subsystems that are 
asynchronous to the system clock. As a result, their 
ready outputs cannot be guaranteed to meet the 
82C284 SRDY setup and hold time requirements. 
But the 82C284 asynchronous ready input (ARDY) is 
designed to accept such signals. The ARDY input is 
sampled at the beginning of each T C cycle by 
82C284 . synchronization logic. This provides one 
system CLK cycle time to resolVe its value before 
broadcasting it to the bus master and bus controller. 



i~ 80286 

• MEMORY ~LE N - 1 .1. MEMORY CYCLE N ./ 
--T.~....--TC-----..:...---T·------+I4---TC--+I+----TC-_____ 

I .. I 6t I 411 6' I.. </11 I dI2 <ilt I 411 

eLI< 

PAOCCLK 

An-~ ________________ ~J~~~~ ____ ~_~_A_D_M ________ ~~~~~~ __ J 

IIDlIV fSEE NOTE 1.) fSEE NOTE 2.) 

DDV \\\\\\\\\\\\\\\\\\\\\\\\\\~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ ~1/0/I0l0 
NOTES: 
1. SRDYEN is active low. 
2. If SRDYEN is high, the state of SRDY will no affect READY. 
3: ARDYEN is active low .. 

(SEE NOTE 3.) 

210253-25 

Figure 25. Synchronous and Asynchronous Ready 

ARDY or ARDYEN must be HIGH at the end of T s. 
ARDY cannot be used to terminate bus cycle with no 
wait states. 

Each ready input of the 82C284 has an enable pin 
(SRDYEN and ARDYEN) to select whether the cur­
rent bus operation will be terminated by the synchro­
nous or asynchronous ready. Either of the ready in­
puts may terminate a bus operation. These enable 
inputs are active low and have the same timing as 
their respective ready inputs. Address decode logic 
usually selects whether the current bus operation 
should be terminated by ARDY or SRDY. 

Data Bus Control 

Figures 26, 27, and 28 show how the DT/A, DEN, 
data bus, and address signals operate for different 
combinations of read, write, and idle bus operations. 
DT IA goes active (LOW) for a read operation. DT IA 
remains HIGH before, during, and between write op­
erations. 

3-29 

The data bus is driven with write data during the 
second phase of T s' The delay in write data timing 
allows the read data drivers, from a previous read 
cycle, sufficient time to enter 3-state OFF before the 
80286 CPU begins driving the local data bus for 
write operations. Write data will always remain valid 
for one system clock past the last T c to provide suffi­
cient hold time for Multibus or other similar memory 
or 1/0 systems. During write-read or write-idle se­
quences the data bus enters 3-state OFF during the 
second phase· of the processor cycle after the last 
T c. In a write-write sequence the data bus does not 
enter 3-state OFF between T c and T 5' 

Bus Usage 

The 80286 local bus may be used for several func­
tions: instruction data transfers, data transfers by 
other bus masters, instruction fetching, processor 
extension data transfers, interrupt acknowledge, and 
halt/shutdown. This section describes local bus ac­
tivities which have special signals or requirements. 

' .•. , •.. ' •.•. 

: 

I ,i 
ji 

~ .! 



80286 

ClK 

so. $1 

MRDe 

MWTC 

DEN ____________ +-____ -J, 

OTR 

210253-26 

Figure 26. Back to Back Read-Write Cycles 

WRITE CYCLE 

elK 

AU-~ ____ -'~~.'-________ -+ __ ~ ______ "~~' ________ ~ ________ -4-'~~~~~~~'~~''-

D1S- Do - - - - - --- --' 

DEN 

D11R 

210253-27 

Figure 27. Back to Back Write-Read Cycles 

3-30 



80286 

WAITE CYCLE .N-1 WRITE CYCLE N 

eLK' 

SO. $, 

DEN ______ ..J 

mm ~---------------------------------------------------------
210253-28 

Figure 28 •. BaCk to Back Write-Write Cycles 

HOLD and HLDA 
HOLD AND HLDA allow another bus master to gain 
control of the local bus by placing the 80286 bus into 
the T h state. The sequence of events required to 
pass control' between the 80286 and another local 
bus master are shown in Figure 29. 

In this example, the 80286 is initially in the T h state 
as signaled by HLDA being active. Upon leaving T h; 
as signaled by HlDA going inactive, a write opera· 
tion is started. During the. write operation another 
local bus master requests the local bus from the 
80286 as shown by the HOLD signal. After complet­
ing the write operation, the 80286 performs one Tj 
bus cycle, to guarantee write data hold time, then 
enters T h as signaled by HLDA going active. 

The CMDL Y signal and ARDY ready are used to 
start and s~p the write bus command, respectively. 
Note that ROY must be inactive or disabled by 
SRDYEN te? guarantee ARDY will terminate the cy­
cle. 

HOLD must not be active during the time from the 
leading edge of. RESET until 34 CLKs following the 
trailing edge of RESET. 

Lock· 
The CPU asserts an active lock signal during Inter­
rupt-Acknowledge cycles, the XCHG instruction, and 
during some descriptor accesses. Lock is also as­
serted when the LOCK prefix is used. T'he LOCK 
prefix may be used with the following ASM-286 as­
sembly instructions; MOVS, INS, and OUTS. For bus 

. cycles other than Interrupt-Acknowledge cycles, 
Look will be active for the first and subsequent cy­
cles of a series of cycles to be locked. Lock will not 
be shown active during the last cycle to be locked. 
For the next·to-Iast cycle, .Lock will become inactive 
at the end of the first T c regardless of the number of 
wait·states inserted. For Interrupt-Acknowledge cy­
cles,Lock will be active for each cycle, and will be· 
come inactive at the end o.f the first T c for each cy­
cle regardless of the number of wait·states inserted. 

Instruction Fetching 
The 80286 Bus Unit (BU) will' fetch instructions 
ahead of the current instruction being executed. This 
activity is called prefetching. It occurs when the local 
bus would otherwise be idle and obeys the following 
rules: 

A prefetch bus operation starts when at least two 
bytes of the 6-byte prefetch queue are empty. 

The prefetcher normally performs word prefetches 
independent of the byte alignment of the code seg­
ment base in physical memory. 

The prefetcher will perform only a byte code fetch 
operation for control tra!'lSfers to,~ninstruction be­
ginning on a: rwmerically od(j physiCal address. 

Prefetching ,stops whenever a control transfer or 
HL T instruction is ,decoded by the IU and placed into 

, the instruction queue. ' 

3-31 

In real address mode; the prefetcher may fetch up to 
6 bytes beyond the last control transfer or HLT in­
struction in a code segment. 

I
I,,: 

" 

'! 
! 



inter 80286 

In protected mode, the prefetcher will never cause a 
segment overrun exception. The prefetcher stops at 
the last physical memory word of the code segment. 
Exception 13 will occur if the program attempts to 
execute beyond the last full instruction in the code 
segment. 

If the last byte of a code segment appears on an 
even physical memory address, the prefetcher will 
read the next physical byte of memory (perform a 
word code fetch). The value of this byte is ignored 
and any attempt to execute it causes exception 13. 

NOTES: 

WRITE CYCLE I IUS HOLD ACKNOWLEDGE 

BUS CYCLE TYPE T 'T ' T .' ,1".21.1 r.21,., r.2 

I 

=[ ;: 

eLK 

HOI.D 

ILDA 

An - Ao (SEE NOTE 2.) 

C~~:---------------- -'C::~~Y.~Lm~::JZ~~~~~~~~~~---------
(SEE NOTE 3.) 

~.L~K------------------'~==~~~====~~~~~~~~~~-----___ _ 
D" -Do --------'----------------.:( .... ____ ~Y..;.L;;;;ID;...... ___ ~~»>-W -----'---

MWTC 

~---------~-----~--------~---~--
OTl!! 

DEN ,'-------
.~ _______________ ~J~ .... ____ ~--~---------------~ 

T5 ., STATUS CYCLE 
Te- - COMMAND'CYCLE 

210253-29 

1. Status lines ~re not driven by 80286, yet remain high due to pullup resistors in 82288 and 82289 during HOLD state. 
2. Address, M/iO and COD/INTA may start floating during any Te depending on when internal 80286 bus arbiter de­
cides to release bus to external HOLD. The float starts in </>2 of T e. 
3. BHEand LOCK may start floating after the end of. any T e depending on when internal 80286 bus arbiter decides to . 
release bus to. external HOLD .. The f1Qat starts in </> 1 of T e. 
4. The minimum HOLD to HLDA time is shown. Maximum is one T H longer. 
5. The earliest HOLD time is shown. It will always allow a subsequent memory cycle if pending is shown. 
6. The minimum HOLD to HLDA til11eis shown: Maximum is a function of the instruction, type of bus cycle and other 
machine state (i.e., Interrupts, Waits, LoCk, etc.). 
7. Asynchronous ready allows terl')1ination of the cycle. SynchronQusready does· not signal. ready in tlJi.sexample. Syn­
chronous ready state is ignored after ready is signaled via the asynchronous input. 

Figure 29. MUL TIBUS® Write Terminated by Asynchronous Ready with Bus Hold 



80286 

Processor Extension Transfers 
The processor extension interface uses 1/0 port ad­
dresses 00F8(H), OOFA(H), and OOFC(H) which are 
part of the 1/0 port address range reserved by Intel. 
An ESC instruction with Machine Status Word bits 
EM = 0 and TS = 0 will perform 1/0 bus operations 
to one or more of these 1/0 port addresses indepen­
dent of the. value of 10PL and CPL. 

ESC instructions with memory references enable the 
CPU to accept PEREQ inputs for processor exten­
sion operand transfers. The CPU will determine the 
operand starting address and readlwrite status of 
the instruction. For each operand transfer, two or 
three bus operations are performed, one word trans­
fer with 1/0 port address OOFA(H) and one or two 
bus operations with memory. Three bus operations 
are required for each word operand aligned on an 
odd byte address. 

NOTE: 
Odd-aligned numerics operands should be avoided 
when using an 80286 system running six or more 
memory-write wait states. The 80286 can generate 
an incorrect numerics address if all the following 
conditions are met: 

- Two floating point· (FP) instructions are fetched 
and in the 80286 queue. 

- The first FP instruction is any floating point store 
except FSTSW AX. 

- The second FP instruction accesses memory. 

- The operand of the first instruc~on is aligned on 
an odd memory address. 

- Six or more wait states are inserted during either 
of the last two memory write (odd aligned oper­
ands are transferred as two bytes) transfers of 
the first instruction. 

The second FP operand's address will be incre­
mented by one. if these conditions are met These 
conditions are most likely to occur in a mUlti-master 
system. For a hardware solution, contact your local 
Intel representative. 

Commands to the numerics coprocessor should not 
be delayed by nine or more T-states. Excessive 
(nine or more) command-delays .can cause the 
80286 and 80287 to lose synchronization. 

Interrupt Acknowledge Sequence 

Figure 30 illustrates an interrupt. acknowledge se­
quence performed by the 80286 in response to an 

3-33 

INTR input. An interrupt acknowledge sequence 
consists of two INTA bus operations. The first allows 
a master 8259A Programmable Interrupt Controller 
(PIC) to determine which if any of its slaves should 
return the interrupt vector. An eight bit vector is read 
on 00-07 of the 80286 during the second INTA bus 
operation to select an interrupt handler routine from 
the interrupt table. 

The Master Cascade Enable (MCE) signal of the 
82288 is used to enable the cascade address driv­
ers, during INTA bus operations (See Figure 30), 
onto the local address bus for distribution to slave 
interrupt controllers via the system address bus. The 
80286 emits the LOCK signal (active LOW) during T s 
of the first INTA bus operation. A local bus "hold" 
request will not be honored until the end of the sec­
ond INTA bus operation. 

Three idle processor clocks are provided by the 
80286 between INTA bus operations to allow for the 
minimum INTA to INTA time and CAS (cascade ad­
dress) out delay of the 8259A. The second INTA bus 
operation must always have at least one extra T c 
state added via logiC controlling READY. This is 
needed to meet the 8259A minimum INTA pulse 
width. 

Local Bus Usage Priorities 
The 80286 local bus is shared among several inter­
nal units and external HOLD requests. In case of 
simultaneous requests, their relative priorities are: 

(Highest) Any transfers which assert LOCK either 

(Lowest) 

explicitly. (via the LOCK instruction prefix) 
or impliCitly (i.e. some segment descriptor 
accesses, interrupt acknowledge se­
quence, or an XCHG with memory). 

The second of the two byte bus opera­
tions required for an odd aligned word op­
erand. 

The second or third cycle of a processor 
extension data transfer. 

Local bus request via HOLD input. 

Processor extension data operand trans­
fer via PEREQ input. 

Data transfer performed by EU as part of 
an instruction. 

An instruction prefetch request from BU. 
The EU will inhibit prefetching two proc­
essor clocks .inadvance of any data 
transfers to minimize waiting by EU for a 
prefetch to fh,ish. 



80286 

I 

..... ~ ________ ,. _ -<'-_---=-DON:.;.;'T.;..;e:.;.;AR.;;;.E_~>- __ u u ____ -<= 
ClIIENOTEI.) 

~SEE NOTE 1., 

DIS - De w:~l'C~~tE }---- -- -0------ -- --- -- --- ----€c§>---
OND7·DO . 

(SEE NOTE 2.) (8.e NOTE 3.) 

~ \\\\\\\ momllll!! \\\\\\moommmIIIIIllllRII/III!IW \\\\\\ ITTllTl 
NOT READY READY NOTAEADY READY 

."'. \ I \ r-
MeE r---\ r---\ 

! AL,E n n iii 

DfR \ I \ I 

OEN I , I .L-
210253-31 

NOTES: 
1. Data is ignored,upper databus, De-D15,should not change state during this time. 
2; First INTA cycle should ha:veat least one wait state inserted to meet 8259A minil1'!um INT A pulse width. 
3. SecondlNTAcycle should have atleasl one wait state inserted t9 meet 8259A minimum INTA PIJlse width. 
4. LOCK is active for the first INTA cycle to prevent the 82289 from ~eleasing the bus between INTA cycles in amulti· 
master system. LOCK is also active for. the. second INTA cycle. . .. 
5. A23-AO exits 3·state OFF du\ing</>2 of the second Tc in the INTA cycle. 
6. Upper data bus should not change state during this time. 

Figure 30. Interrupt Acknowledge Sequence 

Halt or Shutdown Cycles 

The 80286 externally iridicates halt or shutdown 
conditions as a bus operation. These conditions oc­
cur due toa HLTlnstruction or multiple protection 
exceptions while ~tter'npting to execute one instruc­
tion. A halt or shutdown bus operation is signalled 
when 51, SO and COD//Ni'Aare LOW and MilO is 
HIGH. A1 HIGH indicates halt, and A1 LOW indi­
cates shutdown. The 82288 bus controller does not 

3-34 

issue ALE, nor is READY required to terminate a halt 
or shutdown bus operation: 

During halt or shutdown, the 80286 may service 
PEREa or HOLD requests. A processor extension 
segment overrun exception during shLitdown will in­
hibit further service of PEREa. Either NMI or RESET 
will force the '80286· out of either halt or· shutdown. 
An INTR, if interrupts areenabled,or a processor 
extension segment overrun exception will also force 
the 80286 out of halt. 



infef 80286 

r---~-------------------------------------------------------------------~ 

Vee Vee 

'1011 

lfC rD~ .... '", 

,·· .. f I i .. , X, X, 

_b. h so 

;~ 4JA -"4'. 'r.,. 
RES 

SI . RIADY ~10P' :: PCl' 
EFI 

eLK T .,.. 
Fe 

AEN MRDe 

MB MWTe 

CMDLY 
lORe 
tOwe 
INTA 

SO ALE 

SI MCE 

AEADY DEN -
elK DTA -

12281 BUS ,-
CONTROLLER 

I MIO 
c 

c-
1 c 

..J 1 

-" 

MEMORY READ 
MEMORY WRITE 
I 0 READ 

10 WAITE 
INTERRUPT ACKHOWL (DOE 

.. ----, 
- --.I t--A 

---' DICODE t-_ A 

r - .t ~ 10PTIONAli I 
I ,.,. I 

DYANCED MEMORY 
NO I 0 CHIP SELECTS 

r 
~_1 

1 r- .J I L ____ " 

SYNC MADY -----.. SADV RESET 

• 
I 1 r - " ~ 

_llE_ SADVEN 1 I 1 I _r:--... SYNC RlAOV ____ ARDY I RESET MIO 

r:J 
1 1 

~ .... lE_ ARDVEN I LOCK I 1 

¥" lIE m ... 
1 ~ elK CODINTA 1 I 

ClOCK READY 
Vee GENERATOR 1 

1 '--- 51 Au-Ao 

\' I '---- 50 I~ lATCH 

I ,-------.1 ::: NMI BHE 

~ 
HOLD k::-2OK!1 1 r-------

4- HLDA 1 I "l-
I ERROR 

"'IV INT cs I- CHIP I I IHlA I I I BUSY 
INTI. 

ADDRESS IUS 

SelECT 

L_-l'l-t,.,. - - - - - - - - - PlACK 

I 1 I I I r - - - - - - - - PEREa CAPlk WA 

AD !;:~:1 ' ag:~ T+ SPEN k= I I ' I ! ! 015 - 00 -= 

l 
"-

I j I ! I I r-'/ 
Do - Dr 

IRo - tAy 

. _tt:_:_t: ______ , 
I 

10287 
I 

I PROCESSDII ~~~----I EICTENSION r-
I IC)PTJDNAI.) I 

~ "' ____________ .I 

11259A 
tNTERRUPT 

CONTROlLER 

I r---
III 

TRANS- ~ 
CEIYER 

OIR ---
""TA 
BUS 

210253-32 

Figure 31. Basic 80286 System Configuration 

SYSTEM CONFIGURATIONS 

The versatiie bus structure of the 80286 microsys­
tem, with a full complement of support chips, aliows 
flexible configuration of a wide range of systems. 
The basic configuration, shown in Figure 31, is simi­
lar to an 8086 maximum mode system. It includes 
the CPU plus an 8259A interrupt controller, 82C284 
clock generator, and the 82288 Bus Controller. 

As indicated by the dashed lines in Figure 31, the 
ability to add processor extensions is an integral fea­
ture of 80286 microsystems. The· processor exten­
sion interface allows external hardware to perform 
special functions and transfer data concurrent with 
CPU execution of other instructions. Full system in­
tegrity is maintained because the 80286 supervises 
all data transfers and instruction execution for the 
processor extension. 

3-35 

The 80287 has all the instructions and data types of 
an 8087. The 80287 NPX can perform numeric cal­
culations and data transfers concurrently with CPU 
program execution. Numerics code and data have 
the same integrity as all other information protected 
by the 80286 protection mechanism. 

The 80286 can overlap chip select decoding and ad­
dress propagation during the data transfer for the 
previous bus operation. This information is latched 
by ALE during the middle of a Ts cycle. The latched 
chip select and address information remains stable 
during the bus operation while the next cycle's ad­
dress is being decoded and propagated into the sys" 
tem. Decode logic can be implemented with a high 
speed bipolar PROM. . 

The optional decode logic shown in Figure 31 takes 
advantage of the overlap between address and data 
of the 80286 bus cycle to generate advanced mem­
oryand la-select signals. This· minimizes system 

I, 

I 



81011 .... 

80286 

2OK~" ,-Hf-+'-.j''' ....... " ~ ) 
r-: "lin INIT~ 

:'tS PlO r----. MULneuae r-=: :Ot.C. :: ~ 8UUIIIIITRATION 
~ ... u,,_ 

'-----I-H-_._.j AUDY CIN) ...--. 

CLie LOCK...-

r+-I+H~ A'. M 001-
." ..... OC.~ .. 

I\.IS ARIITER 

MWTC MEMORY WRITE 
teAC IOAUD 

" " 
lowe I 0 WAITE ~t!~~:A':'-"';-~""""lli~I~~i~~~~~ MIEMOAYAEAD 
INT... INTIERAUPT ACKNOWLEDGE 

• ~I" 
~'.,., 

10 141--++++1 SO ALE 

511-+--If+HOO/ ., MCf j 
READV "EADY DEN _ ~ 

elk cue OT JIll t--
IUII.US 

I CONTReLLEA 

SYNC RUDY -... SIIDV RESET I 1 ~ t 
ENABlE --. IADYEN I to' r- .-----

Ie,"", • 00 l 
"SYNC READY - AltO... I t RESET M 10 rc;---

ENABLE ---.. AfID't'::c.. I I elk LOCK r--- L...,.... at ~t- AUDRISS IUS 

Yee Ct.OCK I I _ READY COO INT... t-rV" 
? IENMATOR :: _ 51 An Aol==~:;=~::;:~~~ 
I I I '- SO ""I-_H-+-I~I~ <~CALA .. :rc, H _" ! r - - - - - _.1 I :: MMI __ • 11 _______ " -HOLO 

A,_ f It ...... =,. 
L ___ - - _~.J.J~ - - - - - - - :~:~IC INTRt:111t!:==~::;A 

, 1'1 I r--- -~-_ PEREO CA'r-, WfI 

11111 ..... Icd:: AO 

cs - CHIP SELECT 

1 1,,1' CP .. T· ,P'N IA 

I I , I I : 0" D, -=- l--==:> Do :;"A F'o, '0, 
I I I I I I 'N"OOUP' 

r _t'_!_I_'_I _____ , CONTROLLER 

I 10117 I ..--
I "'__ ~1._ - - ,----+r;--: =: ;.-._.. ~ ~ 
t.. _____ ...;. __ ....J L:===~==:::'...~=:>I _ ["r--V DATA aus 

CliVER 

~ 
210253-33 

Flgu~e 32. MUL TIBUS® System Bus Interface 

perfQrmance degradation caused by address propa­
gation and. decode delays. In addition to selecting 
memory and 110, the advanced selects may be used 
with configurations supporting local.and system bus­
es to enable the appropriate bus interface for each 
bus cycle. The COD/INTA and MilO signals areap­
plied to the decode logic to distinguish between in­
terrupt, ·1/0, code and data pus cycles. 

By adding the 82289 bus arbiter chip, the 80286 pro­
vides a MUL TIBUS system bus interface as shown 
in Figure 32. The ALE output of the 82288 for the 

3-36 

MUL TIBUS bus is connected to its CMDL Y input to 
delay the start of. commands one system CLK as 
required to meet MUL TIBUS address and write data 
setup time!3. This arrangement will add at least one 
extra Testate to each bus operation which uses the 
MULTIBUS. 

A second.82288 bus controller and additional latch­
es and transceivers could be added to.the local bus 
of Figure 32. This configuration allows the 80286 to 
support an on-board bus for local memory and pe­
ripherals, and the MUL TIBUS for system bus inter· 
facing. 



inter 80286 

DATA D,.-Do 

802 .. 
CPU 

DECODE 

ADDRESS AU - Ao. iRE. LoCK 

LOCAL 
SELECT '----"I F+-~=! 

L::===iiiiiiEsi 
210253-34 

Figure 33. 80286 System Configuration with Dual-Ported Memory 

Figure 33 shows the addition of dual ported dynamic 
memory between the MUL TIBUS system bus and 
the 80286 local bus. The dual port interface is pro­
vided by the 8207 Dual Port DRAM Controller. The 
8207 runs synchronously with the CPU to maximize 
throughput for local memory references. It also arbi­
trates between requests from the local and system 
buses and performs functions such as refresh, 

initialization of RAM, and read/modify/write cycles. 
The 8207 combined with the 8206 Error Checking 
and Correction memory controller provide for single 
bit error correction. The dual"ported memory can be 
combined with a standard MUL TIBUS system bus 
interface to maximize performance and protection in 
multiprocessor system configurations. 

Table 16. 80286 Systems Recommended Pull Up Resistor Values 

80286 Pin and Name PullupValue Purpose 

4-51 

5-50 20 KO ±10% Pull SO, S1 , and PEACK inactive during 80286 hold periods(l) 

6-PEACK 

63-READY 9100 ±5% 
Pull READY inactive within required minimum time (CL = 150 pF, 

IR :S;7mA) 

NOTE: 
1. Pull-up resistors are not required on SO and S1 when the corresponding pins of the 82C284 are connected to SO and S1. 

121CETM·286 System Design 
Considerations 

One of the advantages of using the 80286 is that full 
in-circuit emulation debugging support is provided 
through the 121CE system 80286 probe. To utilize 
this powerful tool it is necessary that the system de­
signer be aware of a few minor parametric and 

3-37 

functional differences between the 80286 and 121CE 
system 80286 probe. The 121CE data sheet (121CE 
Integrated Instrumentation and In-Circuit Emulation 
System, order #210469) contains a detailed de­
scription of these design considerations; It is recom­
mended that this document be reviewed by the 
80286 system designer to determine whether or not 
these differences affect his design. 

!~ 

i 
i.' •... 
If 
Ii 
;...-~ 
iiI 

I 



inter 80286 

ABSOLUTE MAXIMUM RATINGS* 

Ambient Temperature Under Bias ..•. Q'G to + 7Q'G 
Storage Temperature ..••....... -65'G to+ 15Q'G 
Voltage on Any Pin with 

Respect to Ground •............. -1.QV to + 7V 
Power Dissipation .•...•..•...........••.••. 3.3W 

° Notice: Stresses above those listed under '~bso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and 
functional operation of the device at these or any 
other conditions above those indicated in the opera­
tional s(i1ctions of this specification is not implied Ex­
posure to absolute maximum rating conditions for 
extended periods may affect device reliability. 

D.C. CHARACTERISTICS (Vcc = 5V ±5%, TCASE = Q'Gto +85'C)° 

Symbol Parameter Min Max Unit Test Condition 

Icc Supply Current (O°C Turn On) 600 mA (Note 1) 

CCLK CLK Input Capacitance 20 pF (Note 2) 

CIN Other Input Capacitance 10 pF (Note 2) 

Co Input/Output Capacitance 20 pF (Note 2) 

NOTES: 
1. Tested at worst case load and maximum frequency. 
2. These are not tested. They are guaranteed by design characterization. 

D.C. CHARACTERISTICS 
(Vec = 5V ±5%, TCASE = Q'G to +85'C)° Tested at the minimum operating frequency of the part. 

Symbol Parameter Min Max Unit Test Condition 

VIL Input LOW Voltage -0.5 0.8 V 

VIH Input HIGH Voltage 2.0 Vee +0.5 V 

VILC CLK Input LOW Voltage -0.5 0.6 V 

VIHC CLK Input HIGH Voltage 3.8 VCC +0.5 V 

VOL Output LOW Voltge 0.45 V IOL = 2.0mA 

VOH Output HIGH Voltage 2.4 V IOH = -400.0/LA 

III Inplli Leakage Current ±IO /LA OV ';:,VIN ,;: VCC 

ILCA Input CLK, RESET Leakage Current ±10 /LA 0.45 ,;;; VIN ,;;; Vee 

ILeA Input CLK, RESET Leakage Current ±1 mA 0,;;; VIN < 0.45 

IlL Inpu~Sustaining Current on 30 500 /LA VIN = OV BUS and ERROR Pins 

ILO Output Leakage.Current :±;10 /LA 0.45 ,;: Your ,;;; VCC 

ILO Output Leakage Current. ±1 mA o ,;: Your < 0.45 

*T A IS guaranteed from O°C to + 55°C as long as T CASE IS not exceeded. 

3-38 



intJ 80286 

A.C. CHARACTERISTICS (Vee = SV ±S%, TeAsE = o·Cto +SS·C)* 
AC timings are referenced to O.SV and 2.0V points of signals as illustrated in datasheet waveforms, unless 
otherwise noted. 

8 MHz 10'MHz 12.5 MHz 

Symbol Parameter 
(Preliminary) 

Unit Test Condition 
-8 -8 -10 -10 -12 -12 

Min Max Min Max Min Max 

1 System Clock (CLK) Period 62 250 SO 250 40 250 ns 

2 System Clock (CLK) LOW Time 15 225 12 232 11 237, ns at 1.0V 

3 System Clock (ClK) HIGH Time 25 235 16 239 13 239 ns at3.6V 

17 System Clock (ClK) Rise Time 10 8 - 8 ns 1.0V to 3.6V, 
(Note 7) .' 

18 System Clock (ClK) Fall Time 10 8 - 8 ns 3.6V to 1.0V, 
(Note 7) 

4 Asynch. Inputs Setup Time 20 20 15 ns (Note 1) 

5 Asynch. Inputs Hold Time 20 20 15 ns (Note 1) 

6 RESET Setup Time 28 23 18 ns 

7 RESET Hold Time 5 5 5 ns 

8 Read Data Setup Time 10 8 5 ns 

9 Read Data Hold Time 8 8 6 ns 

10 READY Setup Time 38 26 22 ns 

11 READY Hold Time 25 25 20 ns 

12 Status/~ Valid Delay 1 40 - - - - ns (Notes 2, 3) 

12a1 Status Active Delay - - 1 22 3 18 ns (Notes 2, 3) 

12a2 ~ Active Delay - - 1 22 3 20 ns (Notes 2, 3) 

12b Status/PEACK Inactive Delay - - 1 30 3 22 ns (Notes 2,3) 

13 Address Valid Delay 1 60 1 35 1 32 ns (Notes 2, 3) 

14 Write Data Valid Delay 0 50 0 30 0 30 ns -(Notes 2, 3) 

15 Address/Status/Data Float Delay 0 50 0 47 0 32 ns, (Notes 2, 4, 7) 

16 HlDA Valid Delay 0 50 0 47 o· 27 ns (Notes 2, 3) 

19 Address Valid To Status 38 27 22 ns (Notes 3, 5, 6) 
Valid Setup Time 

*T A is guaranteed from O'C to + 55·C lIS long lIS T CASE is not exceeded. 

NOTES: 
1. Asynchronous inputs are INTR, NMI, HOLD, PEREa, ~, and 'IroS'i'. This specification is given only for testing 
purpO!!8S, to assure recognition at aspecijic elK edge. 
2. Delay from 1.0V on the eLK, to 0.SVor2.0V or float on the output as appropriate for valid or floating condition. 
3. Output load: CL = 100 pF. 
4. Float condition occurs when output current is less than ILO in magnitude. 
5. Delay measured from address either reaching O.SV or 2.0V (valid) to status going active reaching 2.0V or status going 
inactive reaching O.SV. , 
6. For load capacitance of 10 pF or more on STATUS/PEACK lines, subtract typically 7 ns for S MHz, 10 MHz and 12.5 MHz 
spec. 
7. These are not tested. They are guaranteed by design characterization. 

3-39 



intJ 
A.C. CHARACTERISTICS (Continued) 

NOTE 8: 

DEVICE 
OUTPUT 

AC Test Loading on Outputs 

4.0V 

CLKINPUT 

NOTE 9: 
AC Drive and Measurement Points-CLK Input 

4.0V 

CLKINPUT 

O.4SV 

80286 

210253-37 

. 2.4V 7><S<5c:x;Q<Jr:.=--I-=:-'St3G72xx)0;~ 
OTHER 9<;o<XS~if- 2.0V 

NOTE 10: 

DEVICE 
INPUT 

DEVICE 
OUTPUT 

AC Setup, Hold and Delay Time Measurement-General 

'DELAY ..."...-..."...~ 

2.0V 

O.8V 

210253-38 

210253-39 



80286 

A.C. CHARACTERISTICS (Continued) 

82C284 Timing Requirements 

Symbol Parameter 
82C284-8 82C284·10 82C284·12 

Units 
Test 

Min Max Min Max Min Max Conditions 

11 SRDY fSRDYEN Setup Time 17 15 15 ns 

12 SRDY fSRDYEN Hold Time 0 2 2 ns 

13 ARDY f ARDYEN Setup Time 0 0 0 ns (Note 1) 

14 ARDY f ARDYEN Hold Time 30 30 25 ns (Note 1) 

19 PCLK Delay 0 45 0 35 0 23 ns CL = 75pF 
IOL = 5 mA 
IOH = -1 mA 

! 

NOTE 1: 
These times are given for testing purposes to assure a predetermined action. 

82288 Timing. Requirements 

Symbol Parameter 
82288·8 82288-10 82288-12 

Units 
Test 

Min Max Min Max Min Max Conditions 

12 CMDL Y Setup Time 20 15 15 ns 

13 CMDL Y Hold Time 1 1 1 ns 

30 Command Delay Command 5 20 5 20 5 20 CL = 300 pF max 
IromCLK . Inactive IOL = 32 mA max 

ns 
IOH = -5 mA max 29 Command 3 25 3 21 3 21 

Active 

16 ALE Active Delay 3 20 3 16 3 16 ns 

17 ALE Inactive Delay 25 19 19. ns 

19 DT fR Read Active Delay 25 . 23 23 ns 
CL = 150pF 

22 DT fR Read Inactive Delay 5 35 5 20 5 18 ns 
IOL = 16 mA max 

20 DEN Read Active Delay 5 35 5 21 5 21 ns 
IOH = -1 mA max 

21 DEN Readlnactive Delay 3 35 3 21 3 19 ns 

23 DEN Write Active Delay 30 23 23 ns 

24 DEN Write Inactive Delay 3 30 3 19 3 19 ns 

3-41 



inter 
WAVEFORMS 

MAJOR CYCLE TIMING 

BUS CYCLE TYPE 

READ CYCLE 
ILLUSTRATED WITH ZERO 
WAIT STATES 

TI TS 

80286 

Te 

WRITE CYCLE 
ILLUSTRATED WITH ONE 
WAIT STATE 

Ts Te Te 

READ 
(TI OR TS) 

ClK :y' ~®- V~ :P~ V~ ~ 0V~ ~j 
V ® @~ - - @f-

.l\23-AO 

~ ,,/iO. COD/INTA 

!il 

OL ~@__ @f-

~. 

'-@1J 
VALID ADDRESS 

@..:1 

ro+ 
W/~ 

I 
-\: , 

~ ~.j 
I 

)QJlJJc --VALID ADDRESS JV//Al VALID IF Ts 

~. 
...., , 

--VALID CONTROL W//Al, VALID CONTROL Xf///Al Xf///b. --
®- I-

J;:;;r-
H3l-l -@ 

_._-----.-------. ---- .--- - l---~ VALID WRITE DATA ~ 
VALID READ QATA 

-(D r- -:r .:i@ - 1-1 @ 
/ll/J, Wz 'I<\.\.\.\.\.\. 

- I-@ 

~(D 

... @ f- -19-
-j@1-

~ ~~ ~\~ 

~ 
@I- - @I-

V 
-19~ 

""' ~~ '--V-~ ~ I'-
-@ ~ ~I- r t"\ .-I 

I 

j: - -@Jji ?t @i:. -j@1-
.~ "Il'&: 

- @) r ----'It -@ -@t (SEE NOTE 1) 

'It -f--@-
'f-

I@~~ @ 

-@t - @r.:.. -@ -
'f- _--T 

210253-40 

NOTE: 
1. The modified timing is due to the CMDL Y signal being active. 

3-42 



inter 80286 

WAVEFORMS (Continued) 

80286 ASYNCHRONOUS 
INPUT SIGNAL TIMING 

BUS CYCLE TYPE 

CU< 

peLl< 
(SEE NOTE 1.) 

INTR,"" 
HOLD,PEREQ 
(SEE NOTE 2.1 1..I..L<i..LLj~:Wl'--+-'I""''''''LLl.u. 

NOTES: 

ERROR,BUSY rrr:W""'""T""""'TfTrrr ... r----.'",.." 
(SEE NOTE 2·1 u..L~-+...II'I ..... LLI."'"----'--''''-Lu. 

210253-41 

1. PClK indicates which processor cycle phase will occur 
on the next ClK. PClK may not indicate the correct phase 
until tlie first bus cycle is performed. 
2. These inputs are asynchronous. The setup and hold 
times shown assure recognition for testing purposes. 

EXITING AND ENTERING HOLD 

co 

'" ... 
o 

'" 

BUS CYCLE TYPE 

CLK 

HLOA 

80286 RESET INPUT TIMING AND 
SUBSEQUENT PROCESSOR CYCLE PHASE 

CLK 

RESET 

CLK 

210253-42 

NOTE: 
When RESET meets the setup time shown, the next elK 

. will start or repeat </>2 of a processor cycle. 

(SEE.NOTE 4.) 

+---+..;;;;;;a.-+--~r--+~-----------------------

@ . j--(SEE NOTE 1.) 
Irrr""",,"---+---~~: "»T'I»i"T)"»~»~ ____________________ _ 

--I @. j--(SEE NOTE 2.) . 

BHE.LOCK 
A23 - /&J ... L!Q; -- - -- -- - -- - -- VALID 

COO/INTA 
(SEE NOTE 6.) 

015-00 --- --------- ----- --------- - ""~il-VA-L .. IO~· ~rW-R .. IT ... E~»~)~)~)~------- -- ------------

~[ PCLK _____ oJ I ''------II 
210253-43 

NOTES: 
1. These Signals may not be driven by the 80286 during the time shown. The worst case in terms of latest float time is 
shown. 
2. The data bus will be driven as shown if the last cycle before TI in the diagram was a write T c. 
3. The 80286 floats its status pins during T H. External 20 KO resistors keep these signals high (see Table 16). 
4.·For HOLD request set up to HlDA, refer to Figure 29. 
5. SHE and lOCK are driven at this time but will not become valid until T s. 
6. The data bus will remain in 3-state OFF if a read cycle is performed. 

3-43 



80286 

WAVEFORMS (Continued) 

80286 PEREQ/PEACK TIMING FOR ONE TRANSFER ONLY 

I/O PORT ADDfIESS OOF.t.(H)IF PROC. UT. TO MEMORY TIliNSFtIt 
@ (j) IoIEMOIIYADORESSIF MEMOfIYTOP.oc;.[Xf,TRAttSFER 

".,,("'NO~,.) ~ 
(ia:MOTE2')3@ 

""'~\\\\\\\\\\\\\\\\\\\\\\\\Wl' JfU(//JUIUU(//m/mf(//fu/IlUfff(/fffldua 
210253'-44 

NOTES: 
1. PEACK always goes active during the first bus operation of a processor extension data operand transfer sequence. The 
first bus operation will be either a memory read at operand address or 1/0 read at port address OOFA(H). 
2. To prevent a second processor extension data operand transfer, the worst case maximum time (Shown above) is: 3 x 
(!) -12a2max. - @min .. The actual, configuration dependent, maximum time is: 3 x (!) -12a2max. - @mln. + A X 2 X (!) . 
A is the number of extra Tc states added to either the first or second bus operation of the. processor extension data operand 
transfer sequence: 

INITIAL 80286 PIN STATE DURING RESET 

NOTES: 

IUS CYCLE TYPE: 

ClK 

.... T 
'TLEAST 

16 eLK PERIODS 

~'~--~--------------------~----------~~~n---------~~--------UNKNOWN 

'EA"" 
AU Ao ---__ -----------------+-'---------+----,~=+ __ ---4)---------.... 

",jO 

coo/iiii 

lOCK 

DATA 

..... 

UNKNOWN 

UNKNOWN 

UNKNOWN 

UNKNOWH 

210253-45 

1. Setup time for RESET t may be violated with the consideration that 4>1 of the processor clock may begin one system 
elK period later. 
2. Setup and hold times for RESET ,J, must be met for proper operation, but RESET ,J, may o.ccur during 4>1 or cj.2. 
3. The data bus is only guaranteed to be in 3-state OFF at the time shown. 

3-44 



inter 80286 

BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTES BYTES 

nTr,n::..r,.,..:.r:.nn::..rn; - - - - - - - 'T - - - - - - - ... - - - - - - - ... - - -- - - -., 

LOW DISPIDATA : HIGH DlSPIDATA : LOW DATA HIGH DATA 

REGISTER OPERANDIREGISTERS TO USE IN OFFSET CALCULATION 
'---- REGISTER OPERANDIEXTENSION OF OPCODE 

'------ REGISTER IoIOOEIMEMORY IoIODE WITH DISPLACEiolENT LENGTH 
'------- WORDIBYTE OPERATION 

'-------- DIRECTION IS TO REGISTERIDIRECTION IS FROIo! REGISTER 

'---------- OPERATION (INSTRUCTIONI CODE 

A. SHORT OPCODE FORiolAT EXAIoIPLE 

BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 

7.1432107.14321071143210 

I IIIIIIIIIIIIIIIIII"I"I--::DIS.-p--~--H::D:P--~ LONG qPCODE mod NIl rim I I 
~--"""'-""""----....-"""'---1I.-';;"'.I.----I - - - - - - - ~ - - - - - - - ... 
B. LONG OPCODE FORiolAT EXAIoIPLE 

210253-46 

Figure 35. 80286 Instruction Format Examples 

80286 INSTRUCTION SET SUMMARY 

Instruction Timing Notes 

The instruction clock counts listed below establish 
the maximum execution rate of the 80286. With no 
delays in bus cycles, the actual clock count of an 
80286 program will average 5% more than the cal­
culated clock count, due to instruction sequeoces 
which execute faster than they can be fetched from 
memory. 

To calculate elapsed times for .. instruction se­
quences, multiply the sum of all instruction clock 
counts, as listed in the table below, by the processor 
clock period. An 8 MHz processor clock has a clock 
period of 125 nanoseconds and requires an 80286 
system clock (ClK input) of 16 MHz. 

Instruction Clock Count Assumptions 

1. The instruction has been prefetched, decoded, 
and is ready for execution. Control transfer in­
struction clock counts include all time required to 
fetch, decode, and prepare the next instruction for 
execution. 

2. Bus cycles do not require wait states. 

3. There are no processor extension data transfer or 
local bus HOLD requests. 

4. No exceptions occur during instruction execution. 

3--45 

Instruction Set Summary Notes 

Addressing displacements selected by the MOD 
field are not shown. If necessary they appear after 
the instruction fields shown. 

Above/below refers to unsigned value 

Greater refers to positive signed value 

lesS' refers to less positive (more negative) signed 

values 

if d = 1 then to register; if d "'" 0 then from register 

if w = 1 then word instruction; if w = 0 then byte 
instruction 

if s. = 0 then 16-bit immediate data form the oper­
and 

if s = 1 then an immediate data byte is sign-ex­
tended to form the 16-bit operand 

x don't care 

z used for string primitives for comparison with 
ZF FLAG 

If two clock counts are given, the smaller refers to a 
register operand and the larger refers to a memory 
operand 

• = add one clock if offset calculation requires 
summing 3 elements 

n = number of times repeated 

m = number of bytes of code in next instruction 

level (l)-lexical nesting level of the procedure 

II 
I 
,~ 

,'~ 



intJ 80286 

The following comments describe possible excep­
tions, side effects, and allowed usage for instiUc­
tions in both operating modes of the 80286. 

REAL ADDRESS MODE ONLY 
1. This is a protected mode instruction. Attempted 

execution in real address mode will result in an 
undefined opcode exception (6). . 

2. A segment overrun exception (13) will occur if a 
word operand reference at offset FFFF(H) is at­
tempted. 

3. This instruction may be executed in real address 
mode to initialize the CPU for protected mode. 

4. The IOPL and NT fields will remain O. 

5. Processor extension segment overrun interrupt 
(9) will occur if the operand exceeds the seg­
ment limit. 

EITHER MODE 
6. An exception may occur, depending on the value 

of the operand. 

7. LOCK is automatically asserted regardless of the 
presence or absence of the LOCK instruction 
prefix. 

8. LOCK does not remain active between all oper­
and transfers. 

PROTECTED VIRTUAL ADDRESS MODE ONLY 
9. A general protection exception (13) will occur if 

the memory operand cannot be used due to ei­
ther a segment limit or access rights violation. If 
a stack segment limit is violated, a stack seg­
ment overrun exception (12) occurs. 

10. For segment load operations, the CPL, RPL, and 
OPL must agree with privilege rules to avoid an 
exception. The segment must be present to 
avoid a not-present exception (11). If the SS reg­
ister is the destination, and a segment not-pres­
ent violation occurs, a stack exception (12) oc­
curs. 

3-46 

11. All segment descriptor accesses in the GOT or 
LOT made by this instruction will automatically 
assert LOCK to maintain descriptor integrity in 
multiprocessor systems. 

12. JMP, CALL, INT, RET, IRET instructions refer­
ring to another code segment will cause a gener­
al protection exception (13) if any privilege rule is 
violated. 

13. A general protection exception (13) occurs if 
CPL *" O. 

14. A general protection exception (13) occurs if 
CPL> IOPL. 

15. The IF field of the flag word is not updated if CPL 
> IOPL. The IOPL field is updated only if 
CPL = O. 

16. Any violation of privilege rules as applied to the 
selector operand do not cause a protection ex­
ception; rather, the instruction does not return a 
result and the zero flag is cleared. 

17. If the starting address of the memory operand 
violates a segment limit, or an invalid access is 
attempted, a general protection exception (13) 
will occur before the ESC instruction is execut­
ed. A stack segment overrun exception (12) will 
occur if the stack limit is violated by the oper- ' 
and's starting address. If a segment limit is vio­
lated during an attempted data transfer then a 
processor extension segment overrun exception 
(9) occurs. 

18. The destination of an INT, JMP, CALL, RET or 
IRET instruction must be in the defined limit of a 
code segment or a general protection exception 
(13) will occur. 



80286 

80286 INSTRUCTION SET SUMMARY 

FORMAT 
Protected Protected 

Real Virtual Real Virtual 
Addre.. Addres. 

Address Addre •• 
Mode 

1000100w mod reg rIm 2,3* 2,3' 2 9 

to register 1000101w mod reg rIm 2,5' 2,5' 2 

to register/memory 1100011 w modOOO rIm data data ifw - 1 2,3' 2,3' 2 

1011 w reg data dataifw-l 2 

1010000w addr·low addr·high 5 5 2 

to memory 1010001w addr·low addr·high 2 

to segment register 10001110 I mod 0 reg rIm I 2,5' 17,19' 2 9,10,11 

10001100 I mod 0 reg rIm I 2,3' 2,3' 2 

11111111 I mod 1 1 0 rIm I 5' 5' 2 

01010 reg 3 3 2 

3 2 

10001111 ImodOOO rIm! 5' 5' 2 9 

01011 reg 2 

register (reg"'OI) 20 2 9,10,11 

with register 1000011 w ImOdreg rIm! 3,5' 3,5· 2,7 7,9 

accumulator 10010 reg 

111001 Ow I port 14 

port 1",0" Ow I 5 14 

1110011 wi port 14 

port 1110111 w! 3 14 

Translate byte to AL 11010111 5 5 9 

10001101 I mod reg rIm! 3' 3' 

11000101 I mod reg rIm! (mod"''') 7' 21' 2 9,10,11 

Load pointer to ES 11000100 lmodreg rIm! (mod'" 1) 7' 21' 2 9,10,11 

Shaded areas indicate instructions not available in 8086, 88 micro systems. 

3-47 



intJ 80286 

80286 INSTRUCTION SET SUMMARY (Continued) 

CLOCK COUNT COMMENTS 

Real 
Protec:t8d 

ReIII 
Protectecl 

UNCTION ,FORMAT V1rt .... V1r1U11l 
Add ..... 

Add,. .. 
AddreI8 

Add .... 
Mode 

Mode 
Mode 

Mode 

DATA TRANSFER (Continued) 

~HF Load AH with fllljlS 110011111 I 2 2 

SAHF= Store AH into flags 110011110 I 2 2 

PUSHF= Push flags 110011100 I 3 3 2 9 

POPF= Pop flags 110011101 I 5 5 2,4 9,15 

ARITHMmC 
ADD=Add: 

Reglmemory with register to either 'I OOOOOOdw 1 ~odneg rIm I 2,7' 2,7- 2 9 

mmedlate to neglster/memory , 11 OOOOOsw 1 modOOO rIm 1 daIS IdateHsW = 011 3,7' 3.7* 2 9 

mmsdlate to accumulator I 0000010w 1 daIS 1 dalSHw=l r 3 3 

,.DC = Add with carry: 

Reglmemory with neglster to either I 0001 OOdw 1 modneg rIm I 2,7' 2,7' 2 9 

mmedlate to'neglster/memory , 11 OOOOOsw 1 modOl 0 rIm 1 daIS IdalelfSW = 011 3,7- 3,7' 2 9 

mmsdlate to accumulator I 0001010w 1 daIS dalSffw=l I 3 3 

NC= Inerem8nt: 

Registerlmemory 11111111W,I modOOO rIm I 2,7- 2.7* 2 9 

Register I 01000reg I 2 2 

BUB= Subtract 

Reglmemory and register to either loo1010dw I modneg rIm I 2,7' 2,7' 2 9 

mmsdlate from register/memory 11 OOOOOsw I mod 1 01 rIm I data IdataffsW = 011 '3,7' 3,7' 2 9 

mmsdillte from accumulator 10010110wl daIS I dataHw=l I 3 3 

BBB= Subtract with 1II!rr~ 
Reglmemory and register to eKher I 000110dw I modneg rIm I 2,7- 2,7- 2 9 

mmsdlate from reglsterlmemory 11 ooooosw,1 modO 11 rIm 1 daIS 1 dalSifsw=oll 3;1' 3,7- 2 9 

10001110wl 1 I " 

mmediate from accul"(lulator daIS dalSHw-l 3 3 

DEC = Decrement 

Register/memory 11111111wlmodOOl rlml 2,7' 2,7- 2 9 

Register I 01001 rag I 2 2 

CMP=Compare 

~eglster/mernory with register I 001110iw Imodneg rlml 2;6- 2,6- 2 9 

~egl.terwlth registerlmemory I 00111 OOw linodneg r/ml 2.7- 2,7' 2 9 

mmsdlate with negister/memory 11 OO~oosw Imodlll r/ml daIS I dataij8W=Ol I 3,6- 3,S' : 2 9' 

mmsdlate with accumulator 1001111 Ow I daIS 1 dataffw=l I 3 3 

~EG=,Change sign 11"'0,,w ImodO" ,tlml' 2 7' 2 9 

I 00"0'1' I 

" 

iAAA=oASCliadjust for add 3 3 

pM = 08ciinal adltist for add I 00' 00'" I I:' 3 3, 



inter 80286 

80286 INSTRUCTION SET SUMMARY (Continued) 

I&D'T"'U",T'" (Continued) 

Integer divide (signed) 

IAA,D =. A~iC;1I adjust for divide 

lCaw =. Ce,nv,.rt byte to word 

IC\\/O =. Celnv,.rt word to double word 

\'lellist,,, I~Iemorvby CL 

FORMAT 

00111111 

00101111 

1111011w Imodl00 rlml 

1111011w Imodl0l rIm! 

1111,011w!modll1 rIm! 

11010100 00001010 

11010101 100001010 I 
10011000 

10011001 

1101000w!modTTT rim! 

TTT 
000 
001 
010 
011 
100 
101 
111 

Shaded areas indicate instructions not available in 8086, 88 microsystems. 

3-49 

InstructIon 
ROL 
ROR 
RCL 
RCR 

SHL/SAL 
SHR 

3 

3 

13 13 
21 21 
IS' IS' 2 9 
24' 24' 2 9 

13 13 
21 21 
16' 16' 2 9 

14 14 6 6 
22 22 6 6 
17' 17', 2,6 6,9 
25' 25' 2,6 6,9 

17 17 6 6 
25 25 6 6 
20' 20' 2,6 6,9 
28' 28' 2,6 6,9 

16 16 

14 14 

2 

2 

2,7' 2,7' 2 9 

5+n,8+1')' 5+n,8+n' 2 



intJ 80286 

80286 INSTRUCTION SET SUMMARY (Continued) 

FORMAT 

I4A!lT""'OT'r. (Continued) 

1001 OOOdw I modreg rIm I 

[ 1 OOOOOOw I mod 1 00 rIm I data dataifw~t 

I 00100tOw I data Idataifw=11 

1000010w I modreg r/,;;] 
1111011 w I mod 0 0 0 rIm I data C I data ifw~ 1 

1010100wl data I dataifw~1 I 

register to either I 000010dw I modreg rIm I 
to register/memory 11 OOOOOOw I modOO 1 rIm I data dataifw~1 

I 0000110w I data I dataifw~11 
or: 

and register to either 10011 OOdw I mod reg rIm I 
to register/memory 11000000 w I mod 11 0 rIm I data data if w ~ 1 

0011010wl data Idataifw~ 11 

1111011 w I mod 0 10 rIm I 

11010010W I 
1010011 wi 

byte/word 1010111 wi 

·1101011 Ow I 

11110011 1010.010w I 
string 1111001 z 1010011 w I 

1111001 z 1010111 w I 
11110011 101011 Ow I 

Shaded areas indicate instructions not available in e086, 88 microsystems. 

Real 
Address 

Mode 

2,6* 

3,6* 

2,7' 

3,7~ 

2,7' 

3,7' 

2,7' 

8 

7 

5+4n 

5+9n 

5+8n 

5+4n 

Protected 
Virtual 

Address 
Mode 

2,7* 

3,7* 

3 

2,6* 

3,6* 

3 

2,7' 

3,7* 

3 

2,7' 

3,7' 

2,7' 

5 

5+4n 

5+9n 

5+8n 

5+4n 

Protected 
Real 

Virtual 
Address Address 

Mode 

2 

2 

9 

9 

2 

2 

2 

2 

2 

2 

2 

2 

2,8 8,9 

2,8 8,9 

2,8 8,9 



infef 80286 

80286 INSTRUCTION SET SUMMARY (Continued) 

CLOCK COUNT COMMENTS 

Real 
Protected 

Real 
Protected 

FUNCTION FORMAT Virtual Virtual 
Address 

Address 
Address 

Address 
Mode 

Mode 
Mode 

Mode 

iCONTROL TRANSFER 
",ALL = Call: 

Direct within segment I 11101000 I disp-Iow I disp-high ! 7+m 7+m 2 18 

Register/memory I 11111111 Imod010 rIm! 7+m,11+m" 7+m.11 +m" 2,8 8,9,18 
indirect within segment 

Direct intersegment I 10011010 I segment offset ! 13+m 26+m 2 11,12,18 

Protected Mode Only (Olrect Intersegment): I segment selector ! 
Via call gate to same privilege level 41+m 8,11,12,18 

Via call gate to different privilege level, no parameters 82+m 8,11,12,18 
Via call gate to different privilege level, x parameters 86 +4x+m 8,11,12,18 
ViaTSS 177+m 8,11,12,18 
Via task gate t82+m 8,1t,12,18 

Indirect intersegment I 11111111 Imod011 rIm! (mod*11) 16+m 29+m" 2 8,9,11,12,18 

Protected Mode Only (Indirect intersegment): 
Via call gate to same privilege level 44+m* 8,9,11,12,18 
Via call gate to different privilege level, no p~rameters 83 +m* 8,9,11,12,18 
Via call gate to different privilege level, x parameters 90+4x +m" 8,9,11,12,18 

ViaTSS 180+m" 8,9,11,12,18 
Via task gate 18S+m" 8,9,11,12,18 

~MP = Unconditional jump: 

Ishort/long I 11101011 I disp-Iow ! 7+m 7+m 18 

Direct within segment I 11101001 I disp-Iow I disp-high ! 7+m 7+ m 18 

Register/memory indirect within segment I 11111111 I mod 100 r/ml 7+m,11+m* 7+m, 11 +m* 2 9,18 

Direct intersegment I 11101010 I segment offset I 11+m 23+m 11,12,18 

Protected Mode Only (Dlrecllntersegmenl): I segment selector I 
Via call gate to same privilege level 38+m 8,11,12,18 

ViaTSS 175+m 8,11,12,18 
Via task gate 180+m 8,11,12,18 

Indirect intersegment I 11111111 I mod 1 0 1 rIm! (mod*11) 15+m" 26+m' 2 8,9,11,12,18 

Protected Mode Only (Indirect Intersegment): 
Via call gate to ,same privilege level 41+m* 8,9,11,12,18 

ViaTSS 17B+m" 8,9,11,12,18 

Via task gate 1B3+m* 8,9,11,12,18 

RET = Return from CALL: 

!Within segment I 11000011 ! 11+m 11+m 2 8,9,18 

!WIthin seg adding immed to SP I 11000010 I data-low I data-high ! 11+m 11+m 2 8,9,18 

Intersegment I 11001011 ! 15+m 25+m 2 8,9,11,12,16 

Intersegment adding immediate to SP I 11001010 I data-low I data-high ! 15+m 2 8,9,11,12,18 

Protected Mode Only (REn: 
To different privilege level 55+m 9,11,12,18 

c 

3-51 



inter 80286 

80286 INSTRUCTION SET SUMMARY (Continued) 

Real 
Protected 

Real 
Protected 

FORMAT Virtual Virtual 
Addr ... 

Addre .. 
Addre •• 

Addre .. 
Mode 

on equal zero 01110100 disp 7+mor3 7+mor3 18 

= Jump on less/not greater or equal 01111100 disp 7+mor3 7+mor3 18 

= Jump on less or equal/nol greater 01111110 disp 7+mor3 7+mor3 18 

belowlnot above or equal 01110010 disp 7+mor3 7+mor3 18 

below or equal/not above 01110110 dlsp 7+mor3 7+mor3 18 

parltylparity even 01111010 dlap 7+mor3 7+mor3 18 

= Jump on overflow 01110000 disp 7+mor3 7+mor3 18 

01111000 disp 7+mor3 7+mor3 18 

= Jump on not equallnot zero 01110101 disp 7+mor3 7+mor3 18 

= Jump on not less(greater or equal 01111101 disp 7+mor3 7+mor3 18 

= Jump on not less or equall greater 01111111 disp 7+mor3 7+mor3 18 

Jump on not belowlabove or equal 01110011 disp 7+mor3 7+mor3 18 

Jump on not below or equalfabove 01110111 disp 7+mor3 7+mor3 18 

01111011 disp 7+mor3 7+mor3 18 

01110001 disp 7+mor3 7+mor3 18 

01111001 disp 7 +mor3 7+mor3 18 

11100010 disp- 8+mor4 8+mor4 18 

= Loop while zerolequal 11100001 disp 8+mor4 8+mor4 18 

loop while not zerol equal I 11100000 disp 8+mor4 8+mor4 18 

11001101 type 23+m 2,7,8 

11001100 23+m 2,7,8 

INTO = Interrupt on overflow 11001110 24 +mor3 2,6,8 
(3 ilno (3 ilno 

interrupt) interrupt) 

Shaded areas indicate instructions not available in 8088, 88 microsystems. 

3-52 



inter 80286 

80286 INSTRUCTION SET SUMMARY (Continued) 

Real 
Protected 

Real 
Protected 

Addre •• 
Virtual 

Addre •• 
Virtual 

Mode 
Addre •• 

Mode 
Addre •• 

Mode 

FORMAT 

40+ m 7,8,11,12,18 
78+ m 7,8,11,12,18 

167+m 7,8,11,12,18 

11001111 17+m 31+ m 2,4 8,9,11,12,15,18 

55+m 8,9,11,12,15,18 

carry 11111000 2 2 

11110101 2 2 

1111·1001 2 2 

11111100 2 2 

11111101 1 2 2 

11111010 14 

11111011 2 2 14 

11110100 13 

10011011 3 

0 0 14 

Extension Escape 11011 TTT I modLLL 9-20' 9-20' 5,8 8,17 

Shaded areas indicate instructions not available in 8086, 88 micro systems. 

3-53 



inter 80286 

80286 INSTRUCTION SET SUMMARY (Continued) 

FORMAT 

Shaded areas indicate instructions not available in 8086, 88 microsystems. 

3-54 

Real 
Address 

Protecied 
Virtual 

Real 
Address 

Protected 
Virtual 

Addrass 



intJ 80286 

Footnotes 

The Effective Address (EA) of the memory operand 
is computed according to the mod and rIm fields: 

if mod = 11 then rIm is treated as a REG field 
if mod = 00 then OISP = 0', disp-Iow and disp-high 
are absent 
if mod = 01 then OISP = disp-Iow sign-extended to 
16 bits, disp-high is absent 
if mod = 10 then OISP = disp-high: disp-Iow 

if rIm = 000 then EA = (BX) + (SI) + OISP 
if rIm = 001 then EA = (BX) + (01) + OISP 
if rIm = 010 then EA = (BP) + (SI) + OISP 
if rIm = 011 then EA = (BP) + (01) + OISP 
if rIm = 100 then EA = (SI) + OISP 
if rIm = 101 then EA = (01). + OISP 
if rIm = 110 then EA = (BP) + OISP' 
if rIm = 111 then EA = (BX) + OISP 

OISP follows 2nd byte of instruction (before data if 
required) 
'except if mod = 00 and rIm = 110 then EQ = disp-high:disp-Iow_ 

SEGMENT OVERRIDE PREFIX 

10 0 1 reg 11 01 

reg is assigned according to the following: 

Segment 
reg . Register 
00 ES 
01 CS 
10 SS 
11 OC 

3-55 

REG is assigned according to the following table: 
16·Blt (w = 1) 8·Blt (w = 0) 

000 AX 000 AL 
001 CX 001 CL 
010 OX 010 OL 
011 BX 011 BL 
100 SP 100 AH 
101 BP 101 CH 
101 SI 110 OH 
111 01 111 BH 

The physical addresses of all operands addressed 
by the BP register are computed using the SS seg­
ment register. The physical addresses of the desti­
nation operands of the string primitive operations 
(those addressed by the 01 register). are computed 
using the ES segment, which may not be overridden. 

DATA SHEET REVISION REVIEW 

The following list represents key differences be­
tween this and the -012 data sheet. Please review 
this summary carefully. 

1. Specifications for the 6, MHz version of the part 
have been deleted. Intel no longer manufactures 
ari 80286-6. 

2. The system diagrams (Figures 31 and 32) have 
been modified. The circuit which drives the RES 
input of the 82C284 has been modified in order to 
allow the 82C284 to correctly generate a system 
reset signal. See the 82C284 data sheet (Order 
No. 210453) for further information. 

!. 



inter 
80287 

80-BIT HMOS 

• 
• 
• 

• 
• 
• 
• 

NUMERIC PROCESSOR EXTENSION 
(80287-3, 80287-6, 80287-8, 80287-10) 

High Performance 80-Bit Internal • Protected Mode Operation Completely 
Architecture Conforms to the 80286 Memory 

Implements Proposed IEEE Floating Management and Protection 

Point Standard 754 Mechanisms 

Expands 80286 Data types to Include • Directly Extends 80286 Instruction Set 

32-, 64-, 80-81t Floating POint, 32-, 64- to Trigonometric, Logarithmic, 

.Bit Integers and 18-Digit BCD Operands Exponential and Arithmetic Instructions 
for All Data types 

Object Code Compatible with 8087 
Operates with 80386 CPU without 

Built-in Exception Handling • Software Modification 
Operates in Both Real and Protected • Available in EXPRESS-Standard 
Mode .80286 Systems Temperature Range 
8x80~Bit, Individually Addressable, • Available in 40 pin-CERDIP package 
Numeric Register Stack (see Packaging Spec: Order # 231369) 

The Intel 80287 is a high performance numerics processor extension that extends the 80286 architecture with 
floating point, extended integer and BCD data types. The 80286/80287 computing system fully conforms to 
the proposed IEEE Floating Point Standard. Using a numerics oriented architecture, the 80287 adds over fifty 
mnemonics to the 80286/80287 instruction set, making the 80286/80287 a complete solution for high per­
formance numeric processing. The 80287 is implemented in N-channel, depletion load, silicon gate technology 
(HMOS) and packaged in a 40-pin cerdip package. The 80286/80287 is object code compatible with the 
808618087 and 8088/8087. 

BUS INTERflICE UNIT 

DATA 

STATUS 

ADDRESS 

NUMERIC EXECUTION UNIT 

MICROCODE 
CONTROl. 

UNIT 

i 
1------1: 
1-___ --1 151 

AEQI811!R STACk ('1 
1-___ --1(3) 
1------1 (') 
t------i ::: 

Figure 1.80287 Block Diagram 

3-56 

210920-1 

HIC HIC 
HIC CKM 

NIC 

N.C. HIC 
015 ... eK 

AESET 

MPS' 

NPS. 

Yce CLK 

Yss CMD' 

Yss 
D •• CMDO 

N/c HN" 
ot NPRD 
DI ERROR 

BUSY 
DO PEREO 

D. DO 

DO 

D3 

210920-2 
NOTE: 
N/C Pins should not be connected 

Figure 2. 
80287 Pin Configuration 

September 1987 
Order Number: 21092().007 



intJ 80287 

Table 1.80287 Pin Description 

Symbols Type Name and Functon 

CLK I CLOCK INPUT: this clock provides the basic timing for internal 80287 
operations. Special MOS level inputs are required. The 82284 or 8284A 
CLK outputs are compatible to this input. 

CKM I CLOCK MODE SIGNAL: indicates whether CLK input is to be divided by 
3 or used directly. A HIGH input will cause CLK to be used directly. This 
input must be connected to Vee or Vss as appropriate. This input must 
be either HIGH or LOW 20 CLK cycles before RESET goes LOW. 

RESET I SYSTEM RESET: causes the 80287 to immediately terminate its 
present activity and enter a dormant state. RESET is required to be I 

HIGH for more than 4 80287 CLK cycles. For proper initialization the 
HIGH-LOW transition must occur no sooner than 50 ,...s after Vee and 
CLKm~et their D.C. and A.C. specifications. 

015-00 1/0 DATA: 1-bit bidirectional data bus. Inputs to these pins may be applied 
asynchronous to the 80287 clock. 

BUSY 0 BUSY STATUS: asserted by the 80287 to indicate that it is currently 
executing a command. 

ERROR 0 ERROR STATUS: reflects the ES bit of the status word. This signal 
indicates that an unmasked error condition exists. 

PEREa 0 PROCESSOR EXTENSION DATA CHANNEL OPERAND TRANSFER 
REQUEST: a HIGH on this output indicates that the 80287 is ready to 
transfer data. PEREa will be disabled upon assertion of PEACK or upon 
actual data transfer, whichever occurs first, if no more transfers are 
required. 

PEACK I PROCESSOR EXTENSION DATA CHANNEL OPERAND tRANSFER 
ACKNOWLEDGE: acknowledges that the request signal (PEREa) has 
been recognized. Will cause the request (PEREa) to be withdrawn in 
case there are no more transfers required. PEACK may be 
asynchronous to the 80287 clock. 

NPRO I NUMERIC PROCESSOR READ: Enables transfer of data from the 
80287. This input may be asynchronous to the 80287 clock. 

NPWR I NUMERIC PROCESSOR READ: Enables transfer of data from the 
80287. This input may be asynchronous to the 80287 clock. 

NPS1. NPS2 I NUMERIC PROCESSOR SELECTS: indicate the CPU is performing an 
ESCAPE instruction. Concurrent assertion of these signals (i.e., NPS1 is 
LOW and NPS2 is HIGH) enables the 80287 to perform floating point 
instrucctions. No data transfers involving the 80287 will occur unless the 
device is selected via these lines. These inputs may be asynchronous to 
the 80287 clock. 

CMD1, CMDO I COMMAND LINES: These, along with select inp.uts, allow the CPU to 
direct the operation of the 80287. 
These inputs may be asynchronous to the 80287 c.lock. 

3-57 



inter 80~87 

Table .1.80187 Pin Description (Continued) 

Symbols Type Name and Function 

Vss I System ground, both pins must be connected to ground. 

Vee I I +SVsupply 

fUNCTIONAL DESCRIPTION 

The 80287 Numeric Processor Extension (NPX) pro­
vides arithmetic instructions for a variety Of numeric 
data types in 80286/80287 systems. It also.exe­
cutes numerous . built-in transcendental functions 
(e.g., tangent and.log functions). The 80287 exe­
cutes instructions in parallel with an 80286. It effec-

15 

80286 

FILE· o I 79 78 

tively extends the register and instruction set of an 
80286 system for existing 80286 data types and 
adds several new data types as well. Figure 3 pres­
ents the program visible register model of the 
80286/80287. Essentially, the 80287 can be treated 
as an additional resource or an extension to the 
80286 that can be used as a single unified system, 
the. 80286180287. 

80287 
STACK: 

64 63 
TAG FIELD 

o 1 0 

AX 

ax 
cx 
OX 

SI 

01 

ap 
SP 

I Rl 

I R2 

I R3 

I R4 

I A5 

SIGN EXPONENT SIGNIFICANO 

, .. 

I Re 
I R7 

I A8 
I 
L __ , 

r.:.15:...-_~ __ --:..0 I 

~1~~F~L~:~G~s----,-i1 1 

.. 

..... , 

, .. 

15 L ____ -, 

E ... I----~-----tl j 

15 . o 
CONTAOLREGISTEA 

.. STATUS REGISTER 

... ' TAGWORO 

r- IN.STRUCTION POINTER -

I- DATAPOINTER -

210920-3 

Figure 3 .. 80~86/80287 Archit~cture 

The 80287 has two op(ilrating modes similar to the 
two modes oLthe 80286. When reset,80287 is in 
the real address mode. It can be· placed, in the pro, 
tected virtual address mode by executing the 
SETPM ESC instruction. The 80287 cannot be 
switched back to the real address mode except by 
reset. In the real address mode, the 80286/80287 is 
completely software compatible with 808618087 and 
8088/8087. 

Once· in protected mode, all references to memory 
for numerics data or status information, obey.the 
80286 memory management and protection rules 
giving a fully protected extension of the 80286 CPU. 
In the protected mode, 80286/80287 numerics soft­
ware is also completely compatible with 808618087 
and 8088/8087. 



intJ 80287 

SYSTEM CONFIGURATION 
WITH 80286 

As a processor extension to an 80286, the 80287 
can be connected to the CPU as shown in Figure 
4A .. The data channel control signals (PEREQ, 
PEACK), the BUSY signal and the j'\j'jS'RjJ, NPWR 
signals, allow the NPX to receive instructions and 
data from the CPU. When in the protected mode, all 
information received by the NPX is validated by the 
80286 memory' management alld protection unit. 
Once started, the 80287 can process in parallel with 
and independent of the host CPU. When the NPX 
detects an erroror.exception, it will indicate this to 
the CPU by asserting the ERROR signal. 

The NPX uses.theprocessor 'extension request and 
acknowledge pins' of the 80286 CPU to implement 
data transfers with memory under the protection 
model of the CPU. The full virtual and physical ad­
dress space of the 80286 is available. Data for the 
80287 in memory is addressed and represented in 
the same manner as· for an 8087. 

The 80287 can operate either directly from the CPU 
clock or with a dedicated clock. For operation with 
the CPU clock (CKM = 0), the 80287 works at one- . 
third the frequency of the system clock (I.e.,. for an 
8 MHz 80286, the 16 MHz system clock is divided 
down to 5.3 MHz). The 80287 provides a capability 
to internally divide the CPU clock by three to pro­
duce the required. internal clock (33%. duty cycle). 
To use a higher performance 80287 (8 MHz), an 
8284A clock driver' and appropriate crystal may be 
used to directly drive the 80287 with a Ya duty cycle 
clock on the CLK input (CKM = 1). The following 
table describes the relationship between the clock 
speed and the 287 speed version needed as a func-
tion of the CKM state. . 

287 Speed CLKSpeed 
Version CKM = 0 

5MHz 12 MHz 
6MHz 16 MHz 
8MHz 20 MHz 

10 MHz 25 MHz 

SYSTEM CONFIGURATION 
WITH 80386 

CKM = 1 

5MHz 
6MHz 
8MHz 

10MHz 

The 80287 can also be connected as a processor 
extension to the 80386 CPU as shown in Figure 4b. 
All software written for 8086/8087 and 80286/ 
80287 is object code compatible with 80386/80287 
and can benefit from the· increased speed of the 
80386 CPU. 

3-59 

Note that the PEACK input pin is pulled high. This is 
because the 80287 is not required to keep track of 
the number of words transferred during an' operand 
transfer when it is connected to the 80386 CPU. Un­
like the 80286 CPU, the 80386 CPU knows the exact 
length of the operand being transferred to/from the 
80287. After an ESC instruction has been sent to the 
80287,the 80386 processor extension data channel 
will initiate the data transfer as soon as it receives 
the ·PEREQ signal 'from the· 80287. The transfer is 
automatically terminated by the 80386 CPU as soon 
as all the words of the operand have been trans­
ferred. 

Because of the very high speed local local bus of 
the 80386 CPU, the 80287 cannot reside directly on 
the CPU local bus. A local bus controller logic is 
used to generate the necessary read and write cycle 
timings as well as the chip select timings for the 
80287. The 80386 CPU uses I/O addresses 
800000F8 through 800000FF to communicate with 
the 80287. This, is. beyond the normal I/O address 
space of theGpU and makes it easie~enerate 
the chip select signals using A31 and M/IO. It may 
also be noted that the 80386 CPU automatically 
generates 16-bit bus cycles whenever it communi­
cates with the 80287. 

HARDWARE INTERFACE 

Communication of in$tructions and data operands 
between the 80286 and 80287 is handled by the 
CMDO, CMD1, NPSf, NPS2, NPRD, and NPWR sig­
nals. I/O port addresses 00F8H, OOFAH, and OOFCH 
are used by· the 80286 for this communication. 
When any of ,th~seaddressesare used, the NPS1 
input must be LOW and NPS2 input HIGH. The 
10RCand 10WC outputs of the 82288 identify I/O 
space transfers (see Figure. 4A). CMDO should be 
connected to latched 80286 A 1 and CMD1 should 
be connected to latched 80286 A2. 

I/O portsOOF8H toOOFFH are reserved for the 
80286/80287 interface. To guarantee correct opera­
tion of the 80287, programs. must not perform any 
I/O operations to these ports. 

The PEREQ, PEACK, BUSY, and ERROR signals of 
the 80287 are connected to the same-named 80286 
input. The data pins of the 80287 should be directly 
connected to the 80286 data bus. Note that all bus 
drivers connected to the 80286 local bus must be 
inhibited when the 80286 reads from the 80287. The 
use of M/IO in the decoder prevents INTA bus cy­
cles from disabling the data transceivers. 

PROGRAMMING INTERFACE 

Table 2 lists the seven data types the 80287 sup­
ports and presents the format for each type. These 



80287 

values are stored in memory with the least sighifi· 
cant digits at the lowest memory address. Programs 
retriE,we these values by generating the lowest ad· 
dress. All values should start at even addresses for 
maximum system perlormance" 

Internally the 80287 holds all numbers in the. tempo· 
rary real fQrmat. Load instructions . automatically con· 
vert operands represented in memory .. as 1.a-, 32-, or 
64·bit integers, 32- or 64~bit floating point humber or 

f 

READY 
ClK 

51 
So 

t.f/iO 

82C288 
BUS 

CONTROllER 
DEN 

DT/R 
ALE 

IOWC IORC 

--. R£SET 

, ... - ..... +-+I READY 
1+--"-++-" ClK 

' ......... +++--151 

BUSY 
...... ---I-t++t-.. NPRD 

L,------t++f-l--+I NPWR I l , 

". 

RESET j---,I+H ........ RESET 

ffi6Y -
I 

82C284 elK - , 
CLOCK 51 +-GENERATOR so +-

80286 
CPU 

I'" I'" ~ .~ 
'" .. 

80287 
SOCKET 

18-digit packed BCD numbers into temporary. real 
format. Store instructions perform the reverse type 
conversion. 

80287 computations use .the processor's register 
stack. These eight 80,bit register$ provide the equiv· 

. alent . capacity of 40 16-bit registers. The 80287 
register set can be. accessed as a stack, with in· 
structionsoperating on the top one or two stackele· 
ments, or as a fixed register set, with instructions 
operating on explicitly designated registerS. 

015-00 
Cool 
INTA 

PEREO 

PEREO 

Vec 

A S 

YJ Iy 
ceA G2A 

74AS.)38 

Of 
L,--~D::-:A""TA,.....--j---,+--t-+I D1R ~ 

015-00 ~-~-======~::::=~ TRANS-
NPS2 - Vcc ..... ;;.:CE;;.;,IV:.:;ER:::,S-' 
NPS1 -

Ct.fD1 
Ct.fDO 

ClK CKt.f 

r----------'" 
r-1 L ,~ 
r..;t •. 1 8284.0. ,---(1 
L_~ I .. _--------..;.; 

~ 

Vcc·--O 

Flgur. 4A. 80286/80287 System Configuration 

3-60 

210920-4 



inter 

82384 
CLOCK 

GENERAtoR 

CLK! RESET 

t t 
CLK! RESET 

iUii 
ERROR 

PEREQ 

MIlO 

A31 
AI 

':: 
A 

D154 

~ 

READY 
t.. 

ADS, MIlO 
DIll. wiii 

" 

80287 

Yee 

10K 

'--

r 

lIIF373 
LATCH 

OE r-• 
~ 

- ~ t.. 
) 1V245 

XCYRS 
V' E 
~ " • 

LOCAL lOR 
BUS -

CONTROLLER lOW 

I 30 MHz I OSCILLAtoR 

F/C EFI~ 
8284A-1 

X1 CLOCK 

t 
-,~YCC 

RESET CLK ) 

BUSY CICM H TIEL 

lnE~ 
OW FOR DIYlDE-8Y-a Tn. CLK 
GH FOR NCJ.DMDE MOS CLK . 

ERROR 

PEilEa 

NPS1 

NPS2 

CMDO 

CMD1 
80287 

NUMERIC 
COPROCESSOR 

01W. PEACi Yco· 

10K 

NiiiiD 
NPWii 

210920-5 

Figure 48. 80386/80287 System Configuration 

3-61 



inter 80287 

Table 2. 80287 Data Type Representation in M emory 

Most Significant Byte HIGHEST ADDRESSED BYTE 
Data 

Formats 
Range Precision 

01 7 01 7 01 7 01 7 01 7 01 7 017 7 

Word Integer 104 16 Bits I (TWO'S 
COMPLEMENT) 

15 0 

Short Integer 109 32 Bits I!TWO'S 
COMPLEMENT) 

31 0 . 

Long Integer 1019 64 Bits 

63 

Packed BCD 1018 18 Digits SI x I d" d'b dl~ d'4 d13 d'l d '1 

MAGNITUDE 
d" d, d. d, db d, 

79 72 '. 

Short Real l<f38 24 Bits ;\ BIASED I S EXPONENT SIGNIFleAND J 
31 23'- I, 0 

Long Real 10±308 53 Bits sl BIASED 
I 

SIGNI~ICAND EXPONENT 

63 52'-. I, 

Temporary Real 10±4932 64 Bits sl BIASED III SIGNIFICAND EXPONENT 

79 64 63· 

NOTES: 
1. S = Sign bit (0 = positive, 1 = negative) 
2. dn = Decimal digit (two per byte) 
3. X = Bits have no significance; 8087 ignores when loading, zeros when storing. 
4. ... = Position of implicit binary point 
5. I = Integer bit of significant; stored in temporary real, implicit in short and long real. 
6. Exponent Bias (normalized values): 

Short Real: 127 (7FH) 
Long Real: 1023 (3FFH) 
Temporary Real: 16383 (3FFFH) 

7. Packed BCD: (-1)8 (017 ... Do) 
8. Real: (-1)5 (2E-BIAS)(FoF1 ... ) 

017 017 01 

.1 (TWO'S 
COMPLEMENT) 

0 

d.\ d:; d, d, do I 
0 

1 
0 

1 
0 

210920-6 

Table 6 lists the 80287's instructions by cl.ass. No 
special programming tools are necessary to use the 
80287 since all new instructions and data types are 
directly supported by the 80286 assembler and 

appropriate high level languages. All 8086/8088 de­
velopment tools which support the 8087 can also be 
used to develop software for the 80286/80287 in 
real address mode. 

3-62 



intJ 80287 

SOFTWARE INTERFACE 
The 80286/80287 is programmeli as a single proc­
essor. All communication between the 80286 and 
the 80287 is transparent to software. The CPU auto­
matically controls the 80287 whenever a numeric in­
struction is executed. All memory addressing 
modes, physical memory, and virtual memory of the 
CPU are available for use by the NPX. 

Since the NPX operates in parallel with the. CPU, any 
errors detected by the NPX may be reported after 
the CPU has executed the ESCAPE instruction 
which caused it. To allow identification of the failing 
nu""eric instruction, the NPX contains two pointer 
registers which identify the address of the failing nu­
meric instruction and the numeric memory operand if 
appropriate for the instruction encountering this er­
ror. 

INTERRUPT DESCRIPTION 

Several interrupts' of the 80286 are used to report 
exceptional conditions while executing numeric pro­
grams in either real or protected mode. The inter­
rupts and theii" functions are shown in Table 3. 

3-63 

PROCESSOR ARCHITECTURE 

As shown in Figure 1, the NPj( isintemally 'divided 
into two processing elements, the bus interface unit 
(BIU) and the numeric execution· unit (NEU). The 
NEU ex~cutes all numeric instructions, while the BIU 
receives and decodes instructions, requests oper" 
and tral1sfers to and from memory and executes 
processor control instructions. The two units are 
able to operate independently of one another allow­
ing the BIU to maintain asynchronous communica­
tion with the CPU while the NEU is busy processing 
a numeric instruction .. 

BUS INTERFACE UNIT 

The BIU decodes the ESC instruction executed by 
the CPU. If the ESC code defines a math instruction, 
the' BIU transmits the formatted instruction to the 
NEU. If the·ESC code defines an administrative in­
struction, the BIU executes it independently of the 
NEU. The parallel operation of the NPX with the 
CPU is noimallyMansparent to the user. The BIU 
generates the BU Y and ~ Signals for 808261 
80287 processor synchronization and error notifica­
tion, respectively, 

The 80287 executes .a single numeric instruction at 
a time. When executing most ESC instructions, the 



80287 

Table 3. 80286 Interrupt Vectors Reserved for NPX 

Interrupt Number Interrupt Function 

7 An ESC instruction was encountered when EM or TS of the 80286 MSW was 
set. EM = 1 indicates that software emulation of the instruction is required. 
When TS is set, either an ESC or WAIT instruction will cause interrupt 7. This 
indicates that the current NPX context may not belong to the current task. 

9 The second or subsequent words of a numeric operand in memory exceeded a 
segment's limit. This interrupt occurs after executing an ESC instructiOn. The 
saved return address will not point at the numeric instruction causing this 
interrupt. After processing the addressing error, the 80286 program can be 
restarted at the return address with IRET. The address of the failing numeric 
instruction and numeric operand and saved in the 80287. An interrupt handler 
for this interrupt must execute FNINIT before any other ESC or WAIT 
instruction. 

13 The starting address of a numeric operand is not in the segment's limit. The 
return address will point at the ESC instruction, including prefixes, causing this 
error. The 80287 has not executed this instruction. The instruction and data 
address is 80287 refer to a previous, correctly executed, instruction. 

16 The previous numeric instruction caused an unmasked numeric error. The 
address of the faulty numeric instruction or numeric data operand is stored in 
the 80287. Only ESC or WAIT instructions can cause this interrupt. The 80286 
return address will point at a WAIT or ESC instruction, including prefixes, which 
may be restarted after clearing the error condition in the NPX. 

80286 tests the BUSY pin and waits until the 80287 
indicates that it is not busy before initiating the com­
mand. Once initiated, the 80286 continues program 
execution while the 80287 executes the ESC in­
struction. In 8086/8087 systems, this synchroniza­
tion is achieved by placing a WAIT instruction before 
an ESC instruction. For most ESC instructions, the 
80287 does not require a WAIT instruction before 
the ESC opcode. However, the 80287 will operate 
correctly with these WAIT instruction. In all cases, a 
WAIT or ESC instruction should be inserted after 
any 80287 store to memory (except FSTSW and 
FSTCW) or load from memory (except FLDENV or 
FRSTOR) before the 80286 reads or changes the 
value to be sure the numeric value has already been 
wrtten or read by the NPX. 

Data transfers between memory and the 80287, 
when needed, are controlled by the PEREQ PEACK, 
NPRD, NPWR, NPS1, NPS2 signals. The 80286 
does the actual data transfer with memory through 
its processor extension data channel. Numeric data 
transfers with memory performed by the 80286 use 
the same timing as any other bus cycle. Control sig­
nal for the 80287 are generated by the 80826 as 

3-64 

shown in Figure 4a, and meet the timing require­
ments shown in the AC requirements section. 

NUMERIC EXECUTION UNIT 

The NEU executes all instructions that involve the 
register stack; these include arithmetic, logical, tran­
scendental, constant and data transfer instructions. 
The data path in the NEU is 84 bits wide (68 signifi­
cand bits, 15 exponent bits and a sign bit) which 
allows internal operand transfers to be performed at 
very high speeds. 

When the NEU begins executing an instruction, it 
activated the BIU BUSY signal. This signal is used in 
conjunction with the CPU WAIT instruction or auto­
matically with most of the ESC instructions to syn­
chronize both processors. 

REGISTER SET 

The 80287 register set is shown in Figure 5. Each of 
the eight data registers in the 8087's register stack 



intJ 80287 

DATA FIELD TAG FIELD 
79 78 6463 0 1 0 

SIGN EXPONENT SIGNIFICAND 

15 0 

CONTROL REGISTER 

STATUS REGISTER 

TAG WORD 

--INSTRUCTION POINTER-

- DATA POINTER -

Figure 5. 80287 Register Set 

is 80 bits wide and is divided into "fields" corre­
sponding to the NPX's temporary real data type. 

At a given point in time the TOP field in the status 
word identifies the current top-of-stack register. A 
"push" operation decrements TOP by 1 and loads a 
value into the new top register. A "pop" operation 
stores the value from the current top register and 
then increments TOP by 1. Like 80286 stacks in 
memory, the 80287 register stack grows "down" 
toward lower-addressed registers. 

Instructions may address the data registers either 
implicitly or explicitly. Many instructions operate on 
the register at the TOP of the stack. These instruc­
tions implicitly address the register pointed by the 
TOP. Other instructions allow the programmer to ex­
plicitly specify the register which is to be used. This 
explicit register addressing is also "top-relative." 

STATUS WORD 

The 16-bit status word (in the status register) shown 
in Figure 6 reflects the overall state of the 80287. It 
may be read and inspected by CPU code. The busy 
bit (bit 15) indicates whether the NEU is executing 
an instruction (B = 1) or is idle (B = 0). 

3-65 

The instructions FSTSW, FSTSWAX, FSTENV, and 
FSAVE which store the status word are executed 
exclusively by the BIU and do not set the busy bit 
themselves or require the Busy bit be cleared in or­
der to be executed. 

The four numeric condition code bits (CO-C3) are 
similar to the flags in a CPU: instructions that per­
form arithmetic operations update these bits to re­
flect the outcome of NPX operations. The effect of 
these instructions on the condition code is summa­
rized in Tables 4a and 4b. 

Bits 14-12 of the status word point to the 80287 
register that is the current top-of-stack (TOP) as de­
scribed above. Figure 6 shows the six error flags in 
bits 5-0 of the status word. Bits 5-0 are set to indi­
cate that the NEU has detected an exception while 
executing an instruction. The section on exception 
handling explains how they are set and used. 

Bit 7 is the error summary status bit. This bit is set if 
any unmasked exception bit is set and cleared oth­
erwise. If this bit is set, the ERROR signal is assert­
ed. 



80287 

15 o 
I B I C31 TOplc..IC, ICoIESI x IPEluEloEIZEIDEllEI 

I 

NOTES: 

EXCE PTION FLAGS (1 EXCEPTION HAS OCCURRED) 

INVALID OPERATION' 
DENORMALIZED OPERAND' 

ZERO DIVIDE' 
OVERFLOW' 
UNDERFLOW' 
PRECISION-

(RESE RVED) 

ERIIO R SUMMARY STATUSI11 

DITION CODF21 CON 
TOP 
NEU 

OF STACK POINTER13I 

BUSY 

210920-7 

1. ES is set if any unmasked exception bit is set, cleared otherwise. 
2. See Table 5 for condition code interpretation. 
3. Top Values 

000 = Register 0 is Top of Stack 
001 = Register 1 is Top of Stack 

• 
• 
• 

111 = Register 7 is Top of Stack. 

"For definitions, see the section on exception handling 

l7igure 6~ 80287 Status Word 

TAG WORD 

The tag word marks the content of each register as 
shown in Figure 7. The principal function of the tag 
word is to optimize the NPX's performance: The 
eight.two-bit tags in the tag word can be used, how­
ever, to interpret the contents of 80287· registers. 

INSTRUCTION AND DATA POINTERS 

The in!!truction and data pointers (See Figures 8a 
and 8b) are provided for,user-written error handlers. 
Whenever the 80287 executes a new instruction, the 
BIU saves the instruction address, the operand ad­
dress (if present) and the instruction opcode.80287 
instructions can store this data into memory. 

The instruction and data pointers appear in one of 
twq formats depending on the operating mode of the 
80287. In real mode, these values are the20-bit 
physical address and 11-bit opcode formatted like 
the 8087. In protection mode, these values are the 

3-66 

32-bit virtual address used by the program which ex­
ecuted an ESC instruction. The same FLDENV I 
FSTENV/FSAVE/FRSTOR instructions as those of 
the 8087 are used to transfer these values between 
the 80287 registers and memory. 

The saved instruction address in the 80287 will point 
at any prefixes which preceded' the instruction. This 
is different than in the 8087 which only pointed at 
the ESCAPE.instruction opcode. 

CONTROL WORD 

The NPX provides several processing options which 
are selected by loading aword from memory into the 
control word. Figure 9 shows the format and encod­
ing of fields in the control word. 

The low order byte of this control word configures 
the 80287 error and exception masking. Bits 5-0 of 
the control word contain individual masks for each of 
the six exceptions that the 80287 recognizes. The 
high order byte of the control word configures the 



inter 80287 

Table 4a. Condition Code Interpretation 

Instruction 
Ca C2 Type 

Compare, Test 0 0 
0 0 
1 0 
1 1 

Remainder 01 0 

U 1 

Examine 0 0 
0 0 
0 0 
0 0 
0 1 
0 1 
0 1 
0 1 
1 0 
1 0 
1 0 
1 0 
1 1 
1 1 
1 1 
1 1 

NOTES: 
1. ST = Top of Stack 
2. X = value is not affected by instruction 
3. U = value is undefined following instruction 
4. Qn = Quotient bit n 

Table 4b. Condition Code Interpretation after 
FPREM (See Note 1) Instruction as a Function of 

Dividend Value 

Dividend Range Q2 Q1 Qo 

Dividend < 2 • Modulus Cs C1 00 
Dividend < 4 • Modulus C3 01 00 
Dividend ;" 4 • Modulus 02 01 00 

NOTE: 
1. Previous value of indicated bit, not affected by FPREM 
instruction execution. 

C1 

X 
X 
X 
X 

00 

U 

0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 

3-67 

Co Interpretation 

0 ST > Source or 0 (FTST) 
1 ST < Source or 0 (FTST) 
0 ST = Source or 0 (FTST) 
1 ST is not comparable 

02 Complete reduction with 
three low bits· of quotient 
(See Table 5b) 

U Incomplete Reduction 

0 . Valid, positive un normalized 
1 Invalid, positive, exponent = 0 
0 Valid, negative, un normalized 
1 Invalid, negative, exponent = 0 
0 Valid, positive, normalized 
1 Infinity, positive 
0 Valid, negative, normalized 
1 Infinity, negative 
0 Zero, positive 
1 Empty 
0 Zero, Negative 
1 Empty 
0 Invalid, positive, exponent = 0 
1 Empty 
0 Invalid, negative, exponent = 0 
1 Empty 

80287 operating mode including precision, rounding, 
and infinity control. The precision control bits (bits 
9-8) can be used to set the 80287 internal operating 
precision at less than the default of temporary real 
(80-bit) precision. This can be useful in providing 
compatibility with the early generation arithmetic 
processors of smaller precision than the 80287. The 
rounding control bits (bits .11-10) provide for direct­
ed rounding and true chop as well as the unbiased 
round to nearest even mode specified in the IEEE 
standard. Control over closure of the number space 
at infinity is also provided (either affine closure: ± 
00, or projective closure: 00, is treated as unsigned, 
may be specified). 



80287 

15 

TAG (7) TAG (6) TAG (5) TAG (4) 

NOTE: 
The index i of tag(i) is not top-relative. A program 
typically use.s the "top" field of Status Word to deter­
mine which tag(i) field refers to logical top of stack. 

TAG (3) TAG (2) TAG (1) 

TAG VALUES: 
00 = VALID 
01 = ZERO 
10 = INVALID or INFINITY 
11 = EMPTY 

o 

TAG (0) 

Figure 7. 80287 Tag Word 

MEMORY OFFSET 
15 0 

CONTROL WORD +0 

STATUS WORD +2 

TAG WORD +4 

IPOFFSET +6 
CSSELECTOR +6 

DATA OPERAND OFFSET +10 

DATA OPERAND SELECTOR +12 

Figure 8a. Protected Mode 80287 Instruction and Data Pointer Image in Memory 

EXCEPTION HANDLING 

The 80287 detects six different exception conditions 
that can occur during instruction execution. Any or 
all exceptions will cause the assertion of external 
ERROR signal and ES bit of the Status Word if the 
appropriate exception masks are not set. 

The exceptions that the 80287 detects and the 'de­
fault' procedures that will be carried out if the excep­
tion is masked, are as follows: 

Invalid Operation: Stack overflow, stack underflow, 
indeterminate form (010, 00, - 00, etc) or the use of 
a Non-Number (NAN) as an operand. An exponent 
value of all ones and non-zero significand is re­
served to identify NANs. If this exception is masked, 
the 80287 default response is to generate a specific 

3-68 

NAN called INDEFINITE, or to propogate already ex­
isting NANs as the calculation result. 

Overflow: The result is too large in magnitude to fit 
the specified format. The 80287 will generate an en­
coding for infinity if this exception is masked. 

Zero Divisor: The divisor is zero while the dividend 
is a non-infinite, non-zero number. Again, the 80287 
will generate an encoding for infinity if this exception 
is masked. 

Underflow: The result in non-zero but too small in 
magnitude to fit in the specified format. If this excep­
tion is masked the 80287 will de normalize (shift 
right) the fraction until the exponent is in range. The 
process is called gradual underflow. 



80287 

15 o 
CONTROL WORD 

STATUS WORD 

TAG WORD 

INSTRUCTION POINTER (15-0) 

INSTRUCTION I I INSTRUCTION 
POINTER (19-16) 0 OPCODE (10-0) 

DATAPOINTER (15-0) 

DATA POINTER I 0 
(19-16) 

15 12 11 o 

MEMORY 
OFFSET 

+0 

+2 

+4 

+6 

+8 

+10 

+12 

Figure 8b. Real Mode 80287 Instruction and Data Pointer Image in Memory 

16 o 
I xxx Ilcl RC I pclxlxlpMluMloMlzMIDMllMI 

(1) PRECISION CONTROL 
00 = 24 BITS (SHORT REAL) 
01 = RESERVED 
10 = 53 BITS (LONG REAL) 
11 = 64 BITS (TEMP REAL) 

I EXCEPTION MASKS (1" EXCEPTION IS MASKED) 

INVALID OPERATION 
DENORMALIZED OPERAND 

ZERO DIVIDE 

OVERFLOW 

UNDERFLOW 
PRECISION 

(RESERVED) 

(RESERVED) 

PRECISION CONTROL (1) 

ROUNDING CONTROL(2) 

INFINITY CONTROL (0 ~ PROJECTIVE, 1 ~ AFFINE) 

(RESERVED) 

(2) ROUNDING CONTROL 
00 = ROUND TO NEAREST OR EVEN 
01 = ROUND DOWN (TOWARD -.., 
10 = ROUND UP (TOWARD +.., 
11 = CHOP (TRUNCATE TOWARD ZERO) 

Figure 9. 80287 Control Word 

3-69 

210920-6 

I 

" 



80287 

Denormalized Operand: At least one of the oper­
ands is denormalized; it has the smallest exponent 
but a non-zero significand. Normal processing con­
tinues if this exception is masked off. 

Inexact Result: The true result is not exactly repre­
sentaQle in the specified format, the result is round­
ed according to the rounding mode, and this flag is 
set. If this exception is masked, processing will sim­
ply continue. 

If the error is not masked, the corresponding error 
bit and the error status bit (ES) in the control word 
will be set, and the ERROR output signal will be as­
serted. If the CPU attempts to execute another ESC 
or WAIT instruction, exception 7 will occur. 

The error condition must be resolved via an interrupt 
service routine. The 80287 saves the address of the 
floating pOint instruction causing the error as well as 
the address of the lowest memory location of any 
memory operand required by that instruction. 

8086/8087 COMPATIBILITY: 

The 80286/80287 supports portability of 808618087 
programs when it is in the real address mode. How­
ever, because of differences in the numeric error 
handling techniques, error handling routines may 
need to be changed. The differences between an 
80286/80287 and 808618087 are: 

1. The NPX error signal does not pass through an 
interrupt controller (8087 INT signal does). 

3-70 

Therefore, any interrupt controller oriented in­
structions for the 8086/8087 may have to be de-
leted. . 

2. Interrupt vector 16 must point at the numeric error 
handler routine. 

3. The saved floating point instruction address in the 
80287 includes any leading prefixes before the 
ESCAPE opcode. The corresponding saved ad­
dress of the 8087 does not include leading prefix­
es. 

4. In protected mode, the format of the saved in­
struction and operand pointers is different than for 
the 8087. The instruction opcode is not saved-it 
must be read from memory if needed. 

5. Interrupt 7 will occur when executing ESC instruc­
tions with either TS or EM or MSW = 1. If TS of 
MSW = 1 then WAIT will also cause interrupt 7. 
An interrupt handler should be added to handle 
this situation. 

6. Interrupt 9 will occur if the second or subsequent 
words of a floating point operand fall outside a 
segment's size. Interrupt 13 will occur if the start­
ing .address of a numeric operand falls outside a 
segment's size. An interrupt handler should be 
added to report these programming errors. 

In the protected mode, 8086/8087 application code 
can be directly ported via recompilation if the 80286 
memory protection rules are not violated. 



80287 

ABSOLUTE MAXIMUM RATINGS· 

Ambient Temperature Under Bias ...... O·C to 70·C 

Storage Temperature .......... - 65·C to + 150·C 

Case Temperature ................... O·C to 85·C 

Voltage on any Pin with 
Respect to Ground ............... -1.0 to + 7V 

Power Dissipation ....................... 3.0 Watt 

'Notice: Stresses above those. listed under "Abso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and 
functional operation of the device at these or any 
other conditions above those indicated in the opera­
tional sections of this specification is not implied Ex~ 
posure to absolute maximum rating conditions for 
extended periods may affect device reliability. 

D.C. CHARACTERISTICS T A = O·C to 70·C, T c = O·C to 85·C, Vcc = 5V ± 5% 

ALL SPEEDS SELECTIONS 

Symbol Parameter Min Max Unit Test Conditions 

VIL Input lOW Voltage -0.5 0.8 V 

VIH Input HIGH Voltage 2.0 Vcc +0.5 V 

VIHC· Clock Input HIGH Voltage 
CKM = 1: 2.0 Vcc +1 V 
CKM = 0: 3.8 Vcc +1 V 

VILC Clock Input lOW Voltage 
CKM = 1 -0.5 0.8 V 
CKM = 0 -0.5 0.6 V 

VOL Output lOW Voltage 0.45 V IOL = 3.0mA 

VOH Output HIGH Voltage 2.4 V IOH = -400p,A 

III Input leakage Current • ±10 p,A OV ,,;;VIN:5: Vcc 

ILO Output leakage Current • ±10 p,A 0.45V ,,;; VOUT ,,;; Vcc 

Icc Power Supply Current 600 mA TA = O·C 
475 mA TA = 25·C 

• 375 mA TA = 70·C 

CIN Input Capacitance • 10 pF Fc = MHz 

Co Input/Output Capacitance • 20 pF Vc = 1 MHz 
(00-015) 

CCLK ClK Capacitance • 12 pF Fc = 1 MHz 

3-71 



inter 80287 

A.C .. CHARACTERISTICS TA = (j·Cto 70·C, TCASE = 0·Ct085·C, VCC = 5V ±5% 

TIMING REQUIREMENTS 

A.C. timings are referenced to 0.8V and 2.0V points on signals unless otherwise noted. 

80287-3 80287-6 80287-8 80287-10 

Symbol Parameter 5 MHz 6MHz 8 MHz 10 MHz 
Units Teilt 

Preliminary Conditions 
Min Max Min Max Min Max Min Max 

TCLCl ClK Period 
CKM = 1: 200 500 166 500 125 500 100 500 ns 
CKM = 0: 62.5 250 62.5 166 50 166 40 166 ns 

TClCH ClKlOWTime 
CKM = 1: 118 100 343 68 343 62 343 ns Atb.8V 
CKM = 0: 15 230 15 146 15 146 11 146 ns AtO.6V 

TCHCl ClK HIGH Time 
CKM = 1: 69 50 230 43 230 28 230 ns At2.0V 
CKM == 0: 20 235 20 151 20 151 18. 151 ns At3.6V 

TCH1CH2 ClK Rise Time 10 10 10 10 ns 1.0V to 3.6V 
ifCKM = 0 

TCL2Cll ClK Fall Time 10 10 10 10 ns 3.6Vto 1.0V 
ifCKM = 0 

TOYWH Data Setup to 75 75 75 75 ns 
NPWR Inactive 

TWHOX Data Hold from 30 30 18 18 ns 
NPWR Inactive 

TWlWH NPWRNPRD 95 95 90 90 ns AtO.8V 
TRLRH Active Time 

TAVWL Command Valid 
TAVRl to NPWR or 0 0 0 0 ns 

NPRDActive 

TMHRl Minimum Delay 
from PEREQ Active 130 130 130 100 ns 
to NPRD Active 

TKLKH PEAK Active Time 85 85 85 60 ns AtO.8V 

TKHKL PEAK Inactive Time 250 250 250 200 ns At2.0V 

TKHCH PEAK Inactive to 
NPWR, NPRD 50 50 40 40 ns 
Inactive 

TCHKL NPWR,NPRD 
Inactive to -30 -30 -30 -30 ns 
PEAK Active 

TWHAX Command Hold 
TRHAX from NPWR, 30 30 30 22 ns 

NPRD Inactive 

TKLCL' PEAK Active 
Setup to NPWR 50 50 40 40 ns 
NPRDActive 

3·72 



80287 

A.C. CHARACTERISTICS T A = o'e to 70'C, T CASE = O'C to 85'C, VCC = 5V ± 5% (Continued) 

TIMING REQUIREMENTS (Continued) 

A.C. timings are referenced to 0.8V and 2.0V points on signals unless otherwise noted. 

80287-3 80287-6 80287-8 
80287-10 

Symbol 5 MHz 6 MHz 8 MHz 
10 MHz 

Units 
Test 

Parameter Preliminary Conditions 
Min Max Min Max Min Max Min Max 

TIVCL NPWR, NPRD 70 70 70 53 ns (Note 1) 
to ClK Setup Time 

TCLIH NPWR,NPRD 45 45 45 37 ns (Note 1) 
from ClK Hold Time 

TRSCL RESET to ClK . 20 20 20 20 ns (Note 1) 
Setup Time 

TCLRS RESET from ClK 20 20 20 20 ns (Note 1) 
Hold Time 

TIMING RESPONSES 

80287-3 80287-6 S02S7-8 
S02S7~10 

Symbol 5MHz 6 MHz SMHz 
10 MHz 

Units 
Test 

Parameter Preliminary Conditions 
Min Max Min Max Min Max Min Max 

TRHOZ NPRD Inactive to 37.5 37.5 35 21 ns (Note 2) 
Data Float 

TRLOV NPRD Active to 60 60 60 60 ns (Note 3) 
Data Valid 

TILBH ERROR Active to 100 100 100 100 ns (Note 4) 
BUSY Inactive 

TWLBV NPWR Active to 100 100 100 100 ns (Note 5) 
BUSY Active 

TKLML PEAK Active to 127 127 127 100 ns (Note 6) 
PEREa Inactive 

TCMOI Command Inactive 
Time 

Write-to-Write 95 95 95 75 ns At2.0V 
Read-to-Read 250 95 95 75 ns At2.0V 
Write-to-Read 105 95 95 75 ns At2.0V 
Read-to-Write 95 95 95 75 ns At2.0V 

TRHOH Data Hold from· 5 3 3 3 ns (Note 7) 
NPRD Inactive 

NOTES: 
1. This is an asynchronous input. This specification is given for testing purposes only, to assure recognition at a specific CLK 
edge. 
2. Float condition occurs when output current is less than ILO on 00-015. 
3.00-015 10SINF¢: XL = 100 pF. 
4. BUSY loading: CL = 100 pF. 
5. BUSY loading: CL = 100 pF. 
6. On last data transfer on numeric instruction. 
7.00-015 loading: CL = 100 pF. 

3-73 



inter 80287 

WAVEFORMS 

DATA TRANSFER TIMING (Initiated by 80286) 

CMDOCMD1 
IiiJIIl,NPS2 

NPRD 

) 
_TRLRH 

VALID 

.. 
I ' ' 

J( 
TRHAX ~ 

TA~RL~ l DATA 
":l_TRHQZ_ TRANSFER 

TRLQV r--- _TRHQH--:J FADM 
80287 

Iffff'V DATA OUT 
D 

TAVWL '"-" " " " " 

VALID 00-0" 

.. .. _TWLW .. TWHAX .. 

" ~ '"l DATA 
lD~': TWHDX TRANSFER 

TO 

00-0, I ) ~ K DATA MAY CHANGE 
80287 

; DATA MAY CHANGE DATA IN 
VALID - TWLBN 4-

DATA CHANNEL TIMING (Initiated by 80287) 

C~CMDt--l~ 
N"~l,NPS2 ~-...:r VALID 

---I 
TAVWL 'I-TAVRL 

\ 
_TMHRL _TCLML-----,.. 

TKLCL-,,-.. - ~ II:: ... TKLML_ -
S --------------

II:: 

TKLKH 

3-74 

210920-12 

- TRHAX 
TWHAX 

~ ... TCMDI_ 

_TCHKL_ 

TKHCfI - _TKHKL-. 

V }~ f\-
210920-13 



intJ 80287 

WAVEFORMS (Continued) 

ERROR OUTPUT TIMING 

210920-14 

CLK, RESET TIMING (CKM = 1) 

<1>. 

eLK 
(IFCKM=l) ------' 

RESEI' 

210920-15 

NOTE: 
Reset. NPWR. NPRD are inputs asynchronous to CLK. Timing requirements on this page are given for testing purposes only. 
to assure recognition at a specific CLK edge. . 

I 
I 

I: 
! 



80287 

WAVEFORMS (Continued) 

ClK, NPRD, NPWR TIMING (CKM = 1) 

ClK 
(IF CKM = 11 '-------' 

\\\\\\\\\ 

ClK, RESET TIMING (CKM = 0) 

NOTE: 
Reset must meet timing shown to guarantee known phase of internal + 3 circuit. 

ClK, NPRD, NPWR TIMING (CKM = 0) 

NiiRD. 
NPWR \\\\\\\\\ \\ 

3-76 

210920-16 

210920-17 

210920-18 



FLD = LOAb 

InlegerlReal Memory 10 ST(OI 

Long Inleger Memory 10 ST(O) 

Temporary Real Memory 10 
ST(O) 

BCD Memory 10 ST(O) 

ST(i) 10 ST(O) 

FST = STORE 

ST(O) 10 InlegerlReal Memory 

ST(O) 10 ST(i) 

FSTP = STORE AND pop 

ST(O) 10 InlegerlReal Memory 

ST(O) 10 Long Inleger Memory 

ST(O) 10 Temporary Real 
Memory 

ST(O) 10 BCD Memory 

ST(O) 10 ST(i) 

FXCH = Exchange ST(i) and 
ST(O) 

ComparllOn 
FCOM = Compare 

InlegerlReal Memory 10 ST(O) 

ST(i) loST (0) 

FCOMP s Compare and Pop 

Inleger/Rea,1 Memory 10 ST(O) 

ST(i) 10 ST(O) 

FCOMPP - Ccimpare ST(I) 10 
ST(O) and Pop 1Wice 

FTIT = Test ST(O) 

FlCAM = Examine ST(O) 

80287 

Table 6. 80287 Extensions to the 80286 Instruction Set 

I OptI_1 . Clock Counl " .... 
',18111 32 Bit 321" 84BII 11 lit 

DlIPI.camanl " .. I Inlall·' ..... Int.ger 

l MF = 00 01 10 11 
-.,_._.- -.-

ESCAPE MF MOD 0 0 0 RIM ,_ 
-, 

DISP _i 38-58 52-80 40-80 46-54 

ESCAPE 1 1 1 

ESCAPE 0 

ESCAPE 

ESCAPE 0 0 

1 ESCAPE MF 

1 ESCAPE o 

MOD 0 RIM [=:=:PI~P==: 
MOD 0 RIM [=:=:=DI~P=:J 
MOD 1 0 0 RIM [:'::EI~P:J 
1 1 0 0 0 ST(i) 1 

MOD 0 1 0 RlMC: 

1 1 0 1 0 ST(i) 1 

DISP 

I ESCAPE MF 1 1 MOD 0 1 RIM I~:.::E;~P: J 
~I E::SC=AP=E=I=1 ='=*1 =M=O::D====RI=M~[:::: Ei~p: I 
IESCAPE 0 11 I 
I ESCAPE 1 

I ESCAPE 1 0 I 

IESCAPE 001 I 

I ESCAPE MF o 

MOD 1 1 ,RIM [:::'~;~:.j 

MODi 0 RIM [:~:: :'~i~: J 
1 1 0 1 1 ST(i) I 

1 1 0 0 1 ST(i) I 

o RIM [~ MOD 0 DISP , -.-.-.-.-
IESCAPE 0 0 0 1 1 0 1 0 ST(i" 

ESCAPE MF 0 MOD 0 1 RIM []jl~P=:J 
ESCAPE 0 0 0 0 1 1 ST(i) 

ESCAPE 1 1 0 0 1 0 0 1 

ESCAPE 0 0 ,1 1 1 0 0 0 0 

ESCAPE 0 0 0 0 0 1 

3-77 

80-88 

53-85 

290-310 

17-22 

84-90 82-92 96-104 80-90 

15-22 

86-92 84-94 96-106 82-92 

94-105 

52-58 

520-540 

17-24 

10-15 

80-70 76-91 65-75 72-88 

40-50 

63-73 80-93 67-n 74-88 

45-52 

45-55 

36-48 

12-23 

210920-19 



ClK 
INPUT 

4.0Y 2.4Y 
O.45YCKM = 0 
o.45VCKM = 1 

80287 

CKM 00 
CKM 0 1 

AC Drive and Measurement Points-CLK Input 

4.0Y 
2.4Y 

O.45Y 
O.45Y 

CKM 00 
CKM 0 1 

CKM 00 
CKM 0 1 

I.OY CKM 0 0 
0.8Y CKM = I 

IHOLD 

210920-9 

3.6Y CKM 0 0 
2.0YCKM 0 1 

CKM=O 
CKM=1 

2.4Y_~_ OTHER 2.0Y 
DEYICE 
INPUT 

,~~~Ci~~~ __ -+ ____ ~O=.8Y~~~~~~~~ 0.4SY ~ 

DEVICE 
OUTPUT 

'DELAY ----001 

2.0Y 

O.8V 

AC Setup, Hold and Delay Time Measurement-General 

DEVICE 
OUTPUT 

AC Test Loading on Outputs 

3-78 

210920-11 

210920-10 



i~ 80287 

Table 6. 80287 Extensions to the 80286 Instruction Set (Continued) 

Constllnts 

I Optlon.1 Clock Counl R.nll. 
',1' alt 32 all 32811 Mall 1.811 

DI,plecement R •• I Inteo'r R •• I Inl·lI·r 

[ MF ~ 00 01 10 11 

FLDZ ~ LOAD + 0.0 into ST(O) ESCAPE 0 0 1 1 1 ,1 0 1 1 1 0 tl-17 

FLD1 = LOAD + 1.0 into ST(O) ESCAPE 0 0 0 1 0 0 0 15-21 

FLOPI = LOAD" inlo ST(O) ESCAPE 0 0 0 0 16-22 

FLDUT = LOAD 1092 10 into ESCAPE 0 0 1 0 0 0 16-22 
ST(O) 

FLDL2E = LOAD 1092 e Into ESCAPE 0 0 0 0 0 15-21 
ST(O) 

FLDLQ2 = LOAD 10910 2 into 
ST(O) 'ESCAPE 0 0 1 l' 0 0 0 18-24 

FLDLN2 ~ LOAD 109.2 into ESCAPE 0 0 ,1 0 0 17-23 
ST(O) 

Arithmetic 

FADD = Addition 

Integer/Real Memory with ST(O) ESCAPE MF 0 MOD 0 0 0 R/M [ DISP 
I 

90-120 108-143 95-125 102-137 .! 

ST(i) and ST(O) ESCAPE d P 0 1 1 0 0 0 ST(i) 70-100 (Nole 1) 

FSua ~ Subtraction 

Integer/Real Memory with ST(O) ESCAPE MF 0 MOD 1 0 R RIM L DISP 
-, 

90-120 108-143 95-125 102-137 
j 

ST(i) and ST(O) ESCAPE d P 0 1 1 1 0 R RIM I 70-100 (Note 1) 
" 

FMUL ~ Multiplication 
i ~ 

Integer/Real Memory with ST(O) ESCAPE MF 0 MOD 0 0 R/M 1- DISP 
, 

110-125 130-144 112-168 124-138 
.! 

ST(i) and ST(O) ESCAPE d P 0 1 1 0 0 RIM I 90-145 (Note 1) 

,FDIV ~ Division 
Integer/Real Memory with ST(O) ESCAPE MF 0 MOD R R/M [ DISP 

, 
21 ~225 230-243 220-230 224-238 i 

ST(I) and ST(O) ESCAPE d P 0 1 1 R RIM I 193-203 (Note 1) 

FSQRT ~ Square Root of ST(O) ESCAPE 0 0 0 0 180-186 

I,l 
FSCALE ~ Scale ST(O) by ST(I) I ESCAPE 0 0 0 32-38 

i'l 
FPREM ~ Parlial Remainder of ESCAPE 0 0 1 1 1 1 1 1 0 0 0 15-190 .j 
ST(O) +ST(I) 

II FRNDINT ~ Round ST(O) 10 ESCAPE 0 0 1 1 1 1 1 1 1 0 0 16-50 
Integer I'l ! 

210920-20 
I '~ 

lil NOTE: ~ 
~. If P = 1 then add 5 clocks. i~ 

,~ 
!,'" 

3-79 



inter 80287 

Table 6. 80287 ElCtenslons to the 80286 Instruction Set (Continued) 

FXTRACT = Extract 
Components of St(O) 

FABS = Absolute Value of 
ST(O) 

FC"S = Change Sign of ST(O) 

Transcendental 
FPTAN = Partial Tangent of 
ST(O) 

FPATAN = Partial Arctangent 
of ST(O) ~ST(1) 

F2XM1 = 25T101_1 

FYL2X = ST(I)· Log2 
(ST(O)l 

FYL2XP1 = S1(I) • Log2 
(ST(O) +1( 

Processor Control 

FINIT = Initialize NPX 

FSETPM = Enter Protected 
Mode 

FSTSW AX = Store Control 
Word 

FLDCW = Load Control Word 

FSTCW = Store Control Word 

FSTSW = Store Status Word 

ESCAPE 0 0 1 

ESCAPE 0 0 

ESCAPE 0 0 

1 1 1 1 0 I 0 0 

o 0 0 0 

o 0 000 

Optional 
8,1' BII 

Dloplacemenl 

~ 0 _0-1~L-'-'--'-'-0-0-'-0~ 

ESCAPE 0 0 o 0 

ESCAPE 0 0 o 0 0 0 

ESCAPE 0 0 000 

ESCAPE 0 0 1 1 1 0 0 

ESCAPE 0 000 

ESCAPE 0 o 0 o 0 

ESCAPE 1 1 1 1 1 100 000 

L-E_S_C_A_PE __ O_O---:-,-...,M-O-D--O--Rl-,-M---,1 ~~~f~~~J 

L-E_S_C_A_PE __ O_O_--:-'-_M_O_D ____ R_I_M,:=J ~~~I~~J 

L-E_S--,C_A_PE ___ O_'_' -L-M_O_D_' ___ Rl_M_--,1 ~~~I~~~J 

FCLEX = Clear Exceptions L-E_S_C_A_PE __ O __ --'-_' __ ' __ 0_0_0 __ ' _0-,1 

FSTENV = Store Environment . ESCAPE 0 0 MOD o RIM [~~~~~J 
FLDENV = Load Environment ESCAPE 0 0 MOD o 0 RIM [=~~~=J 
FSAVE = Save State L-E_S_C_A_PE ___ O_--:-,-_M_O_D ___ O_A_I_M_--,C?I~~~J 

FRSTOR = Restore State 

FINCSTP = Increment Stack 
Pointer 

FDECSTP = Decrement Stack 
Pointer 

L-E_S_C_AP_E ___ O_...J._M_O_D __ O-...,O_Rl_M_ ......... 1 ~~~~~~J 

ESCAPE 0 0 o 

ESCAPE 0 0 o o 

3-80 

ClocIc Counl Range 

27-55 

10-17 

10-17 

30-540 

250-800 

310-630 

900-1100 

700-1000 

2-8 

2-8 

10-16 

7-14 

12-18 

2-8 

40-50 

35-45 

205-215 

205-'215 

6-12 

6-12 

210920-21 



inter 80287 

Table 6. 80287 Extensions to the 80286 Instruction Set (Continued) 

Clock Count Ran,. 

FFRII = F .... ST(i. ESCAPE 1 0 1 I 1 1 0 0 0 ST(i. 

FNOP = No Operation ESCAPE001111 010000 

NOTES: 
1. if mod = 00 then OISP = 0·, disp-Iow and disp-high are absent 

if mod = 01 then DISP = disp-Iow sign-extended to 16-bits, disp-high is absent 
if mod = 10 then OISP = disp-high; disp-Iow 
if mod = 11 then rIm is treated as an ST(i) field 

2. if rIm = 000 then EA = (BX) + (SI) + OISP 
if rIm = 001 then EA = (BX) + (01) + OISP 
if rIm = 010 then EA = (BP) + (SI) + OISP 
if rIm = 011 then EA = (BP) + (01) + OISP 
if rIm = 100 then EA = (SI) + OISP 
if rIm = 101 then EA = (01) + OISP 
if rIm = 110 then EA = (BP) + OISP 
if rIm = 111 then EA = (BX) + OISP 
"except if mod = 000 and rIm = 110 then EA = disp-high; disp-Iow. 

3. MF = Memory Format 
00-32-bit Real 
01-32-bit Integer 
1 Cl-64-bit Real 
11-16-bit Integer 

4. ST(O) = Current stack top . 
ST(i) = ith register below stack top 

5. d = Destination 
O-Oestination is ST(O) 
1-0estination is ST(i) 

6. P = Pop 
O-No pop 
1-Pop ST(O) 

7. R = Reverse: When d = 1 reverse the sense of R 
O-Oestination (op) Source 
1-Source (op) Destination 

8. For FSQRT: -0 :s: ST(O) :s: + 00 

For FSCALE: -215 :s: ST(1) < +215 and ST(1) integer 
For F2XM1: 0 :s: ST(O) :s: 2-1 
For FYL2X: 0 < ST(O) < 00 

- 00 < ST(1) < + 00 

For FYL2XP1: 0 :s: IST(O)I < (2 - V2)/2 
-00 < ST(1) < 00 

For FPTAN: 0 :s: ST(O) :s: 'Tt'/4 
For FPATAN: 0 :s: ST(O) < ST(1) < + 00 

9. ESCAPE bit pattern is 11011. 

DATA SHEET REVISION REVIEW 

9-16 

10-16 

210920-22 

The following list represents the key differences between this and the -006 80287 Data Sheet. Please review 
the summary carefully. 

1. The ClK speed table in the section entitled "SYSTEM CONFIGURATION WITH 80286" was modified to 
show the required ClK frequencies in the divide-by-3 mode (CKM = 0) for the 287 speeds tabulated. 

2. Obsolete components were replaced with readily available components in Figure 4A. 

3. In the AC TIMING REQUIREMENTS table, the timing symbols, T AVRL and T AVWL were reversed in order to 
match the parameter description. . 

3-81 



82258 
ADVANCED DIRECT MEMORY ACCESS COPROCESSOR 

(ADMA) 
• High Performance 16 Bit DMA 

Coprocessor for the 80386, 80286 and 
80186 Families 
- 8 MByte/sec Maximum Transfer Rate 

in 8 MHz 80286 Systems 

• Four Independently Programmable 
Channels 

• Multiplexor Channel Capability to 
Support Up to 32 Subchannels 

• On Chip Bus Interface for the Whole 
8086 Architecture 
-80286 
-80186/188 
-8086/88 

• Command Chaining for CPU 
Independent Processing 

INTRODUCTION 

, 

• Automatic Data Chaining for Gathering 
.and Scattering of Data Blocks 

• 16 MByte Addressing Range 

• 16 MByte Block Transfer Capability 

• "On the Fly" Compare, Translate and 
Verify Operations 

• Automatic Assembly/Disassembly Of 
Data 

• Programmable Bus Loading 

• 6 and 8 MHz Speed Selections 

• Available in 68-Pin LCC and PGA 
Packages 
(See Packaging Spec. Order # 231369) 

Intel's 82258, Advanced Direct Memory Access Coprocessor is a high performance, 16 bit DMA processor 
optimized for the 80286, 80186 and the 8086 families of CPUs and compatible with 80386 CPU. It has on-chip 
bus interface for the whole 8086 family architecture. Four high speed, independently programmable DMA 
channels can achieve a maximum cumulative transfer rate of 8 MByte/sec in an 8 MHz 80286 system and 
4 MByte/sec in 8 MHz 8086180186 systems. Channel 3 can be used as a Multiplexor channel, whereby, it 
supports 32 subchannels. This flexibility allows one to use a single DMA channel to handle a large number of 
slow and medium speed 1/0 devices. Advanced capabilities like Command and Data chaining and "On the fly" 
operations allow the 82258 to remove the 1/0 management load from the processor. The 82258 addresses 
the full 80286 CPU memory (16 MB for 80286), thus simplifying the system deSign. Automatic assembly/disas­
sembly of data allows 16 bit processors to interface with common 8 bit peripherals and vice-versa. Remote 
mode of operation, where the 82258 has its own resident bus, allows modular system design. The 82258 
complements the high performance, multitasking capabilities of the 80286. 

Figure 1. 82258 Internal Block Diagram 

3-82 

CHANNn 
CONTROL 
SIGNALS 

231263-1 

November 1987 
Order Number: 231263-004 



82258 

FABRICATION 

The 82258 is a 68 pin device, fabricated in Intel 
HMOS II technology. It is packaged in JEDEC type A 
hermetic lead less chip carrier and pin grid array. 

Pins of the 82258 have different definitions for differ­
ent modes. 286 and remote modes have the same 
non-multiplexed bus structure and similar pin de­
scriptions. Similarly, the 186 and the 8086 modes 
have multiplexed bus and similar pin description. 

PIN DEFINITIONS AND FUNCTIONS PINNING IN THE 286 MODE 

The 82258 has four operational modes 

- 286 

In the 286 mode, the bus signals and the bus timings 
of the 82258 are the same as those of the 80286 
processor. The processor can access the internal 
registers of the 82258 and these accesses must be 
supported by the bus signals. Therfore, some of the 
bus control signals are bidirectional and some addi­
tional bus control signals are necessary. 

- 186-for the 80186/88 and the 8086/88 (Min. 
mode) CPUs 

- 8086-for the 8086/88 (Max. mode) CPUs 

- Remote 

Componen~ Pad View - As viewed from underside of component 
when mounted on the board 

P.C. Board View - As viewed from the component side of the p.e. 
board 

00 
08 
01 
DB 
D2 
010 
D3 
011 
vee 
04 
012 
DB 
013 
IJ6 
014 
07 
015 

AlB AlB 
rtL..L..A.-L.JI,..JL..a. .... .JL .... .JL.JL..JL.JL.A...L~ 

~ ~ 
A17 A17 
AlB AlB 

~ ; 
~ ; 

AI. All 
A20 A20 ~ ; 

~ ; 
A21 A21 

~ ; AU AU , • A23 A23 , ; sma vee vee 
~ ; 

0ACt( 0 0ACt( 0 , ; 
0ACt( 1 DACK 1 

~ • OACK 2 OACK 2 
OACK 3 0ACt( 3 

, ; 
EOO 0 EOO 0 ' . • , ; EOO 1 EOO 1 
EOO 2 EOO 2 ~ ~ 

EOD 3 E003 ' 51 ~,..".., ........ .,....,..""II"' ......... ...,.."..."..., ... .". .... .,.. ...... -r 
1 

~ iii iii iii iii 1>- D~ N .. 

~i !.'llIilllOm !!llSii ii Illili 
PIN NO. lMARK 

lili Iii ii i,lS !!Ii 110 il =~.i ~ 

PGA 

35 37 39 41 43 45 47 49 51 

(§)(§)(§)(§) (§)(§)(§)(§)(§) 
36 53 

34 (§) @) (§) (§) (§) (§) (§) (§) (§) (§) @) 52 

32 (§) (§) 3~8 40 42 44 46 48 sg5 (§) (§) 54 

30 (§) (§)31 57(§) (§) 56 

28 (§). (§) 29 59 (§) (§) 58 

26 (§) (§)27 

24 (§) (§)25 

22 (§) (§)23 

82258 61(§) (§) 60 

63(§) (§) 62 

65(§) (§) 64 

20 (§) (§)216 14 12 10 8 6 17(§) (§) 66 
18 (§) @) (§) (§) (§) (§) (§) (§) (§) (§) (§) 68 

19 2 
(§) (§) (§) (§) (§) (§) (§) (§) (§) J 

17 15 13 11 9 7 5 3 1 

Bottom View 

Figure 2. Pin Configuration in 286 Mode 

3-83 

231263-54 

00 
08 
01 
09 
D2 
010 
03 
011 
vee 
04 
012 
08 
013 
DB 
014 
D7 
015 

231263-2 

l~ 
" 

I',! 
. ~ 

Il 
!,\ 
" 

I 



82258 

Table 1. Pin Description for the 286 Mode (Also Contains Pins Identical in Other Modes) 

Pin 
Identical 

Symbol Type In Functions 
Input (I) Number All Modes 

Output (0) 

'BRE 110 1 YES BUS HIGH ENABLE indicates transfer of data on the upper 
byte of the data bus, D15-D8. Eight bit devi.ces assigned to 
the upper byte of the data bus would normally use BHE to 
condition chip select function. BHE is active LOW and 
floats to Tri-State OFF when the 82258 does not own the 
bus. 

BHE and AO Encoding 

BHE AO 
Function 

Value Value 

0 0 Word Transfer (D15-DO) 
0 1 Byte Transfer on upper half of data 

bus (D15-D8) 
1 0 Byte Transfer on lower half of data 

bus (D7-DO) 
1 1 Odd addressed byte on 8 bit 

bus (D7-DO) 

RD I 2 NO READ command in conjunction with chip select (CS) 
enables reading out of the 82258 register, addressed by 

, the address lines A7-AO. RD is an active LOW signal and is 
asynchronous to the 82258 clock. 

WR I 3 NO WRITE command along with CS is used for writing into the 
82258 registers. WR is an active LOW signal and is 
asynchronous to the 82258 clock. 

DREQ3-DREQO I 4-7 YES DMA REQUEST input signals are used for externally 
synchronized DMA transfers. If channel 3 is used as a 
Multiplexor channel, DREQ3 is defined as 1/0 Request 
(I0REQ) signal. These signals are active HIGH signals and 
are asynchronous to the 82258 clock. Unused DREQn 
lines should not be left floating, but should be tied inactive 
toVss· 

CS I 8 NO CHIP SELECT is used to enable a processor to access the 
82258 registers. This access is additionally controlled 
either by bus status signals or by the Read or Write 
command signals. CS is an active LOW signal, 
asynchronous to the 82:258 clock. 

READY I 10 NO BUS READY terminates a bus cycle. Bus cycles are 
extended without limit until terminated by an active READY. 
READY is an active LOW, synchronous input, requiring set 
up and hold times relative to system clock to be met for 
correct operation. 

S1,SO 1/0 11,13 YES BUS CYCLE STATUS Signals control the support circuitry. 
The beginning of a bus cycle is indicated by S1, or SO, or 
both going active. The.termination of a bus cycle is 
indicated by all the status signals going inactive in the 186 
mode or the bus ready (READY) going active in the 286 
mode .. Both SO & 51 are active LOW signals. SO, S1 along 
with S2 (in the 186 mode) or MIlO (in the 286 mode) define 
the type of bus cycle. 52 and MilO have the same meaning 
but, in the 186 mode S2 signal can be active only when at 
least one of 51 and SO is active, whereas in the 286 mode 
the MilO signal is valid with the address on address lines. 

3-84 



inter 82258 

Table 1. Pin Description for the 286 Mode (Also Contains Pins Identical in Other Modes) (Continued) 

Pin 
Identical 

Symbol Type In Functions 
Input (I) Number All Modes 

Output (0) 

The 82258 Bus Cycle Status Definitions 
(82258 Local Bus Master, All Signals (0» 

MilO 
S1 SO Bus Cycle Initiated 

orB 

0 0 0 Read IIO-Vector 
(For Multiplexor channel) 

0 0 1 Read from 1/0 space 
0 1 0 Write into 1/0 space 
0 1 1 None. (Does not occur 

in the 186 mode). 
1 0 0 None. (Does not occur) 
1 0 1 Read from memory space 
1 1 0 Write into memory space 
1 1 1 None; not a bus cycle 

When the 82258 is not a bus master of the local bus, the 
status signais are u$8d as inputs for detection of 
synchronous accesses to the 82258. 

Interpretation of the Status and CS Signals 
by the 82258 -

.. (82258 Slave, All Signals (I» 

CS S1' SO Interpretation 

1 X X 82258 not selected 
(No action) 

0 0 0 No 82258 access 
(No action) 

0 0 1 Read from an 82258 register 
0 1 0 Write into an 82258 register 
0 1 1 Not a bus cycle" 

0: The 82258 is selected but no synchronous access is 
activated. The 82258 monitors AD and WR Signals for 
detection of an asynchronous access. 

elK I 12 NO SYSTEM CLOCK provides the fundamental system timing. It 
is divided by two to generate the 82258 internal clock. elK is 
an active HIGH signal which can be connected directly to the 
82284 elK output. The internal divide-by-two circuitry is 
synchronized to the external clock generator .. by a lOW to 
HIGH transition on the RESET input, or by first HIGH to lOW 
transition on the Status Input so or Sf after RESET. 

M/iO 0 14 NO MEMORY 110 SELECT distinguishes between memory and 
i -- 1/0 space addresses. --- -

RESET I 15 YES SYSTEM RESET forces the 82258 to the initial state. RESET 
is an active HIGH signal and must be synchronous to the 
system clock. Reset must be activated for at least 16 elK 
cycles. 

3-85 

'-, 
I,' 

I 



inter 82258 

Table 1. Pin Description for the 286 Mode (Also Contains Pins Identical in Other Modes) (Continued) 

Pin 
Identical 

Symbol Type In Functions 
Input (I) Number All Modes 

Output (0) 

HOLD 0 16 NO BUS HOLD REQUEST AND HOLD ACKNOWLEDGE 
HLDA I 17 control ownership of the local 82258 bus. When active, 

HOLD indicates a request for the control of the local bus. 
HOLD goes inactive when the 82258 relinquishes the bus. 
HLDA, when active, indicates that the 82258 can acquire 
the control of the bus. When HLDA goes inactive, the 
82258 must relinquish the bus at the end of its current 
cycle. HLDA may be asynchronous to the system clock. 
Both HOLD and HLDA are active HIGH signals. 

D15-DO 1/0 18-25, NO DATA BUS is the bidirectional 16 bit bus. For use with an 8 
27-34 bit bus, only the lower 8 data lines DO-D7 are relevant. The 

data bus is active HIGH. 

AO-A7 1/0 35-42 NO ADDRESS LINES AO-A7 are the lower 8 address lines for 
DMA transfers. They are also used to input the register 
address when the processor accesses an 82258 register. 
All lines are active HIGH. 

A8-A23 0 44~59 NO ADDRESS LINES A8-A23 form the remainder of the 
82258 address bus. Address bus is active HIGH. Pin A21 
must have a pull-up resistor (n 10k OJ connected to It 
to ensure that It Is high during reset. 

DACKO-DACK3 0 61-64 YES DMA ACKNOWLEDGE signal acknowledges the requests 
of thecorresponding DREQ signal. DACKi goes active 
when the requested transfers are performed on the 
channel i in response to a DREQi, If channel 3 is in the 
multiplexor mode, DACK3 is defined as 110 acknowledge 
(IOACK). These signals are active LOW. 

EODO-EOD3 110 65-68 YES END OF DMA signals are open drain drivers with internal 
high impedance pull up resistors (an external pull-up 
resistor is required) and can be used as quasi-bi-directional 
lines. These signals are active LOW. 
As OUTPUTs the signals are activated (if enabled) for two 
T -STATE cycles at the end of the DMA transfer of the 
corresponding channel or they are activated under 
~am control (End of DMA output or interrupt output). 
EODs acts as "End of DMA" level triggered INPUTs if the 
signals are held high internally but forced low by the 
external circuitry for at least 250 ns. The current transfer is 
aborted and the 82258 continues with the next command. 
EOD2 can also be used as a common active high interrupt 
signal (INTOUT) for all four channels. In this mode, this 
signal is a push-pull output and not an open drain output. 
Other EODi pins may still be used in their regular 1/0 mode. 

VSS I 9,43 YES SYSTEM GROUND: 0 Volt. 

Vee I 26,60 YES SYSTEM POWER: + 5V Power Supply Pin. 

3-86 



inter 82258 

PINNING IN THE 186 MODE 

The 80186 has a multiplexed bus structure. Therefore, many 82258 pins have different meaning in the 186 
mode than in the 286 mode .. Since the 80186 has 20 address lines compared to 24 for the 80286, the 4 extra 
lines are used to generate additional bus control signals. The following table gives the details of pins having 
different meaning in the 186 mode compared to the 286 mode: 

Component Pad View - As viewed from underside of component 
when mounted on the board 

P.C. Board View - As viewed from the component side of the P:C. 
board 

ADD 
ADB 
AD1 
AD9 
AD2 
ADtO 
ADa 
AOl1 
vee 
AD4 
AUt2 
AUt 
ADt3 
ADD 
AUt4 
A07 
AD15 

1122511 

PGA 

35 37 39 41 43 45 47 49 51 

@)@)@)@)@)@)@)@)@) 
36 53 

34 @) @ @) @) @) @) @) @) @) @) @ 52 
32 @) @)3~8 40 42 44 46 48 5~5@) @) 54 

30 @) @)31 57@) @) 56 

28 @) @)29 

26 @) @)27 82258 

59@) @) 58 

61@) @) 60 

24 @) @)25 63@) @) 62 

22 @)@)23 65@) @) 64 

20 @) @)216 14 12 10 8 6 f@) @) 66 
18 @) @) @) @) @) @) @) @) @) @) @) 68 

19 . 2 
@)@)@)@)@)@)@)@)@) / 

17 15 13 11 9 7 5 3 1 

Bottom View 

Figure 3. Pin Configuration in the 186 Mode 

3-87 

231263-55 

ADO 
ADB 
AUt 
AOI 
AD2 
AUtO 
ADa 
AD1t 
vee 
AD4 
AUt2 
AUt 
ADt3 
ADD 
AUt4 
AU7 
AUI5 

231263-3 

,. 
i. 
'I 

:1 
.! 



82258 

Table 2. Changes In Pin Description In the 186 Mode: (Compared:tothe 2.86 Mode), 

'" ',. 
Pin , 

Symbol Type F~nctlons 
Input (I) Number 

Output (0) 

RD,WR i/o 2,3 READ. WRITE In the 186 mode, the RD & WR pins are used 
" additionally as output pins to support the 80186'or the 8086 

minimum systems. These signals are active lOW. 

ALE 0 
" 

58 ADDRESS LATCH ENABLE signal provides a strobe to separate 
, " the address information on the multiplexed address-data lines. 

ALE is an actil(e HIGH signal. 

DEN 0 56 DATA,ENABLE signal is used for enabling the dat~ transceiver, 
8286/8287. DENis an active lOW signal. -'-

, DT/R 0 57 DATA TRANSMIT/RECEIVE signal controls the direction of data 
flow ~hrough the external data bus transceiver, depending on 
Whether a read, or a write bus cycle is performed. ThIs pin must 
havtl a pullup reSistor iionnected to It to, ensure that It Is high 
durlngreiJef ' " 

5READY I 10 SYNCHRONOUS READY input Signal must be synchronized 
externaily. Useofthis pin permits a relaxed system and timing 

" , specification by eliminating the clocK phaSe,requ'ired for resolving 
, the signal level, when using ~READY input. 5R~ADY is an active 

HIGH signal. 

ClK I 12 SYSTEM CLOCK input gets a prescaled signal from the 186 
clock (ClKOUT) or the 8086 clock (50% duty cycle for 186 and 

" 

3,3% duty cycle for 8086)~ No internal presealing is done. elK is 
an active HIGH signal. 

52 0 '14' STATUS SJGNA~ along with 'SO and Sf provides the bus cycle 
description (for details see 266 mode pin description of 50 and 
Sf).' , 

ADO-AD15 I/O 18-25 ADDRESS/DATA BUS signals ADO-AD15 contain multiplexed 
27"':34 lower address and data information. Also, the demultiplexed 

AO..,A7 I/O 35-42 address information is available,on address pins AO-A15. 
A8-A15 0 ,44':'51, 

A16/53-A19/56 0 52-55 ~DDRESS PINS A16,:"A19 are multiplexed with additional status 
information on the bus cycle. These pins are active HIGH. 
Signals 55 andSS provide information on the status of the bus 
cycle. During an active bus Cycle, S6 is always high and 55 always 
IQw.Low 56 implies a processor bus cycle. 
5ignals 54and 53 give the channel number for the running bus 
cycle as follows: 

54 53 Channel Number 
I 0"" 0 0 

0 1 1 
1 0 2 
1 1 3 

AREADY I 59 ASYNCHRONOUS, READY is ~n asynchronous bus ready sig,",a!. 
The rising edge is internally synchronised. During reset, AREADY 
must be low to enter the 82258 into the 186 mode. AREADY is an 
active HIGH signal. 

3-88, 



82258 

PINNING FOR THE 8086 MODE 

For the 8086 MIN configuration the .£!!lning is identical to the 186 mode. For the 8086 MAX configuration, the 
bus arbitration is done via the RQ/GT protocol. Otherwise, the function of pins is identical to the 186 mode. 

Component Pad View . As viewed from underside of component 
when mounted on the board 

P.C. Board View· As viewed from the component side of the P.C. 
board 

Symbol 

RQ/GT 

HLDA 

PGA 

'35 37 39 4t 43 45 47 49 51 

@)@)@)@)@)@)@)@)@) 

34 @)36@) @) @) @) @) @) @) @) ~53@) 52 

32 @) @) 3~8 40 42 44 46 48 585@) @) 54 

30 @)@)31[J57@) @) 56 
28 @) @)29 . 59@) @) 58 

26 @) @)27 82258 61@) @) 60 

24 @) @)25 63@) @) 62 

22 @) @)23 65@) @) 64 

20 @) @)216 14 12 10 8 6 f@) @) 66 
18 @)1~ @) @) @) @) @) @) @) @)2 @) 68 

@)@)@)@)@)@)@)@)@) 

17 15 13 11 9 7 5 3 1 
Bottom View 

231263-4 

231263-56 

Figure 4. Pin Configuration in the 8086 (Max) Mode 

Table 3. Changes in Pin Description In the 8086 (Max) Mode 
(Compared to the 186 Mode) 

Pin 

Type Functions 
Input (I) Number 

Output (0) 

I/O 16 REQUEST IGRANT implements a one line communication 
protocol to arbitrate the use of the system bus; normally done 
via HOLD/HLDA. RQ/GT is an active LOW signal having an 
internal pull-up resistor. 

I 17 HOLD ACKNOWLEDGE has no meaning in the 8086 (Max) 
mode. It should be tied high for mode recognition during reset. 

9-89 

,I 
!~ 
,j 

~i 
Ii 
, J 
1,1 

rt 
I,,' 

! 



82258 

PINNING IN THE REMOTE MODE 

In ,the remote mode, most of the signals,have the same function as in the 286 mode. Exceptions are noted in 
t~!lfolioWing table: 

Compone," Pad ,View" ,As viewed from underside of .component 
when mounted on the board 

P.C.Board View· As viewed from:the component side of theP. C. 
board 

.. 
DO 
DI .. .. 
DI. 
DO ... ... 
DO 
D1Z 
DO 
OIl 
DO 
DI. .. . " 

'1 "", ". ,-

D 
AlI '" '", m ,. '" )fI '" .. AS 

.AI1 AI1 
All All 
AD ... 
ICC ICC 

IRIP. I!R 
BID 1 ;-t 

< 
< 
< 
< 
< 
< 
< 
< 
< 
< 
< 
< 
< 
~ m m j~.~TT~TTTTTT~TT •• 

~n.I.:IIM~ 1m ii iilll!!11 ....... ,-
PGA 

35 37 39 41 43 45 47 49 51 
@@@@@@@@@ 

34 @3~ @@ @ @ @ @ @ @53@ 52 
32. @ @3~8 40 42 44 46 48 5g5@ @ 54 

30@j@31G":·'·'57@.@56 
. 28 @ @29 ' 59@ @' 58 

· 2,6@,@27'82258."6,'1@@60" 
24 @ @25 ' '. . ~3@@ 62 

22 @:@23 65@ @ 64 

· 20 @'@2Js 14 12 10 8 6 :7@ @ 66 
· 18 @lP@ @ @ @@ @ @ @2 @ 68. 

@@@@@@@~@ 

17 15 13 11 ·9 7 5 3 1 

Bottom View 
231263-57 

Figure 5. Pin,Configuration Ii'lRemote Mode 

DO .. 
DI .. 
II 
'1D • . .. ... 
DO ... .. 
OIl .. 
." " ... 

231263-5 

Table 4. Changes in Pin Description in the Remote Mode (Compared to the 286 Mode) 
Pin 

Type; 
Input (I) Number 

Symbol 

OutPLlt(O) 

I ~ 

. ,' ': . 

BREl 0 '14 
I 

" 

HOLD 0 6 
,''.' 

HLDA I 7 

Functions 

,CHIP SELECT has two functions in the remote mode. As in 
the 28& mode, CS emibles access to the 82258 internal 
registers. In addition CS works8s an Access Request Input. 
When forced LOW, it signals to the 82258 that anotl')er bus 
master needs access to th.e local bus of the 82258. The 
82258 releases the bus as soon as possible and si~ls it to 
the CPU by activating BREL (Bus Release) output. CS is an 

I'" active LGW$lgnal. , :' . 
BUS. RE.LI;ASEsignal is used to indicate when the 82258 
releasescorittol' of the resident bus. 

',",OLD & HQLD ACKNOWLEDGE signals are used 
'only:foraccess't9 the system bus. They are connected to the 
, bus arbiter (i:e:, 82289). Resident bus accesses are directly 
executed without the HOLD/HLDA sequence. 

3-90 



intJ 82258 

FUNCTIONAL DESCRIPTION 

The 82258 is an advanced DMA coprocessor for the 
8086 family architecture. In addition to providing 
high speed DMA transfers (8 MByte/sec in an 
8 MHz 80286 and 4 MByte/sec in 8 MHz 80186/86 
systems), the 82258 takes I/O processing load off 
the CPU, thus improving overall system perform­
ance. The 82258 has advanced features not found 
in the previous generation DMA controllers: multiple­
xor channel, command & data chaining and 'on the 
fly' data manipulation operations. 

MODES OF OPERATION 

The 82258 has a number of different modes of oper­
ation based upon its coupling with the CPU (tight or 
loose) and its adaptive on-chip bus interface (the 
286 bus or the 186 bus). . 

Figure 6 shows the different operating modes of the 
82258 and the CPUs it can interface with in those 
modes. Figure 7 shows how to configure the 82258 
into these different modes. 

REMOTE 
MOOE 

LOCAL MODE 

In this mode the 82258 shares the local bus and all 
the support/control devices with the CPU. Because 
of its on-chip bus interface, the 82258 can be direct­
ly coupled to the whole 8086 family of microproces­
sors. 

BUS INTERFACE 

NON-MULTIPLEXED MULTIPLEXED 
BUS BUS 

LOOSE 
(REMOTE MODE) 

TIGHT 
(LOCAL MODE) 

80386 
80286 
80186 
80188 
8086 
8088 

80286 

(286 MODE) 

DOES 
NOT 

EXIST 

80186 
80188 
8086 
8088 

(186/86 MODE) 

231263-52 

Figure 6. Operating Modes for the 82258 

111 
MODE 

8088 
MOOE 

I BUS WIDTH 

I ~·fi ~ I 
231263-6 

Figure 7. Selecting Modes of Operation 

3-91 
I ~ 



82258 

. 
286. System 

"The configuration in Figure 8 shows the 82258 in ~he 
local mode (286 mode) in an 80286 system which 
includes the Numeric Processor Extension, 80287. 
The 286 mode is. selected during reset (Figure 7). In 
this mode the 82258 supports the non-multiplexed, 
pipelined 286 bus. The DMA coprocessor resides on 
the processor's local· bus (physical pins of the 
80286) and shares all the support Circuits: latches, 
tranceivers, bus controller and arbiter, clock genera­
tor etc. By residing on the 286 bus, the 82258 
achieves maximum data transfer rate; up to 8 
MByte/sec at 8 MHz for single cycle transfer. 
HOLD/ HLDA protocol is used for bus exchange be­
tween the 80286 and the 82258. The 82258 can be 
programmed to handle both internal and external 
terminate conditions. Internal termination is pro­
grammed In the command block (in type 2 command 
as explained later). External termination is handled 
by the ml5 (end of DMA) pins If they are enabled. 
Interrupts f9r the CPU are handled. by an interrupt 

. controller (~825.9A) which receives the end of 
DMA pins (EOn 0-3) as Interrupts. The multiplexor 
channel uses external 8259As to prioritize and arbi­
trate service requests between perlpher~ls (Figure 
13). 

To link this system to the MUL TIBUSI8l bus architec­
ture another set of latches, tranceivers, bus control­
lers and a bus arbiter (i.e., 82289) as shown in Fig­
ure 11 (for remote mode configuration) are needed. 

186/188 (8086/8088 Min) Systems 

The 82258 can be configured into the 186 mode dur­
ing reset (Figure 7). In this mode it supports the 
80186 and the 8086 (Min) processors. It can be pro­
grammed to support the 80188 and the 8088 (Min) 

. by programming the bus width in General Mode 
Register (GMR). Figure 9 shows the 82258 used in 
an 80186 system containing the 8087 numeric co­
processor. This system uses the 8086 bipolar sup­
port components: latches, transceivers and the bus 
controller (8288). The Integrated Bus Controller 
(82188) links the 80186'to the8087. The 82188 is 
also used to support the 82258, since the 80186 has 
only one set. of bus exchange signals (HOLD/ 
HLDtsln interrupt controller (8259A) processes 
the Signals for the CPU. .' 

In the 186 mode, the 82258 directly supports the 
80186/8086 bus with 16 address bits internally mul­
tiplexed into the data lines (AD15:ADO).The address 
pins A 19-A 16 are multiplexed with the status lines 
S6-83. The address pins A22-A20 (in the 286 mode) 
are used to generate the control signals ALE, DEN 
and DT iff (in the 186 modekThe A23 pin (in the 
286.mode).serves as an asynchronous ready input 

. AREADY (In the 186 mode). As a master in the 186 

mode, the 82258 offers address lines A 15-AOas 
latched outputs and shares all the 186/8086 support 
components with the processor. . 

8086/88 Systems 

The 82258 is configured into the 8086 mode during 
reset (Figure 7). In this mode the 82258 supports 
8086/88 in the maximum mode and uses the 
FiC:i/crr' protocol for the processor - DMA copr?ces­
sor bus exchange. The 8087 can be supported In the 
system without requiring the integrated bus control­
ler, 82188. To support the 8088 system in the maxi­
mum mode, the General Mode Register is pro­
grammed for 8 bit bus width. Figure 10 Shows the 
82258 in an 8086 system containing the 8087. The 
system configuration is very similar to the 80186 
system in Figure 9. 

REMOTE MODE 

The 82258 is configured to be in the Remote Mode 
(Figure 7) by programming the General Mode Regis-

· ter (RM bit), after putting the 82258 in the 286 mode 
during the .reset. The 82258 has the bus timings and 
signals compatible to the 286 bus. 

In the remote mode, the ADMA can access two 
16 MByte address spaces normally called the resi­
dent space and the system space. The .ADMA does 
not distinguish between accessing an I/O device 
and accessing a memory in the remote mode, so 
either peripheral or memory can belong to either of. 
the two spaces. . 

In the remote mode, the 82258 is the sole local bus 
(resident bus) master and interfaces to the proces­
sor through the system bus (using a bus arbiter). 
Therefore, the 82258 can work in parallel with the 
processor. The remote mode is useful for a modular 
1/0 subsystem. 

Figure 11 shows the 82258 configured in the remote 
· mode of operation~ The peripherals interface to the 
82258 on the resident bus. The resident bus compo­
nents are similar to the ones used for the 286 sys­
tem. Additional support components are used to 

· interface the 82258 to a system bus e.g. the MULTI­
BUS. The 82258 communicates with the CPU 

3-92 

(80286) over the system bus. ' 

SinCe the 82258 is the only master of the local/resi­
dent bus, it can start the local bus cycles without any 
bus arbitration. For system bus accesses, a dead­
lock can arise if: 

- The 82258 occupies the local bus to gain access 
to the system bus and 

- The CPU (80286) occupies the system bus to 
; gain access to the 82258 (through its local bus) 



II 
CD 

!I 1111 (0) 

cO 
(0) DI 

::I 
CD 
0 
N 
CD 
QI 

~ 
!. 
CD 
3 

INTERRUPTS 

I I I ClK, 
PREQ 

RESET 

80287 

I 

i~ 

READY 
PREQ 

r--fPEACK 

INTR 

BHE,Mjil'i 
AO-A23 

PEACKI I I 

:I 
ClK, 

RESET 

80286 HlDA 

HOLD 

51, so 00-D15 

01 

rOt-, 
Xl X2 

82C284 

ClK, 
RESET READY , 

1 
ClK, 

RESET 

HlDA 

HOLD 

I 
READY 

82258 

SELECTOR 
CHANNELS 

i 

DREQn s:1 HIGH 
DACKn SPEED 

EODn . PERIPH. I-

IDREQ 1-4141-------. 

i~1 

BHE,Mjil'i _ _ _ 
AQ-A23 00-D15 CS 51,50 

X X I 1 

IDACK 1-1 -----, 

1 

DATA 

~s 

t= ~------------------~I~llmA 50,51 

I----------...;.--+~ ALE B.C. 
...------4-1 DTjR 82C288 

,...--'~ DEN 
MULTI­
PLEXER 
CHANNEL . _ .. -.---- .. . .1.------ .. , 

! . I ' , ~I CS INTA INT , , 
I\. , , 

~ 

l 

(1) 
N 
N 
CJI 
(1) 

TI~U] 
lOW SPEED DEVICES 

(MAX. 32) 
L--_______ I_D:_~gD_~R__'5 ' I 

231263-7 

-""--i-_~~~~~~-="::'_"_~, __ ~ ----~--::_~~~~~~;;s_ __ ;s'~:.._ 



~ c 
; 
!" 
CD 

m 
CfJ s-
CO II 
~ :I 

~ 
' .... 
~. 

I 

RfSET 

T=F T 1=:. 
CLOCI(, RESET 

SRDY RES CLKOUT, INTO CLOCK, 
RESET RESET 

eLK 
HLOA RESET SYSHlDA HOlDA 
HOLD SYSHOLO HOLD 

82188 DEN 

.r1 X1 

r:qxz 80186 

. SHE, sz-so OTIR A16-A19 

C AIJO.AD15 

READY 

BHE 
A16-A19 

AIJO.AD15 

"A"'" 

AnI:!,! 
RO/6Tl 

a7 

I =~ '1 t:FU I I 'I 
c 

SELECTOR 
CHANNELS 

I 
SREADY A23{ARDY) 

DIIEIIiI HI6H 
DACIIn SPEED ~I-

PERlPII. 
82258 EDDn 

IDRED 
IDACK t---. 

sz-so cs 

MULTIPLEXDR 
CHANNEL 

r wl---- .. ---- .. 
• I 

.-----------. I • • • • 
INTA INT :: 

• • • • 
8259A • • :-.. 

I 1······1 1 
LOW SPEED DEVICES 

(MAX. 321 

• .1 

231263-8 

l 

co 
N 
N 
(II 
co 



82258 

XI X2 
ROYl SREAOY 

Cl~~84 RDY2 . f AREADY 

CHANNELS r_-;:====+====:;:=~REISET==REA~OY..... SELECTOR 

R:OY C~K. C:. SREADY AREADY DREQn "@IGH 
INTERRUPTS 

IRn RESET +5V RESET OACKn SPEED 

_ 8259A INT IH---t---+lINTR ,. EOOn .. PERIPH. 

1 ...... ·1 I 

CS INTA r--t" RQ/GTo 8086 l..-+ HLDA 82258 
RCi/Gi', ~ RCi/Gi' A23 

BHE. BHE. IDREQ .,!. 
A16-A19, A16-A19. _ IDACK _ 

"-;.;;AO,,,,:0-,.A:;-Dl;.;,5_,;;;52,:!:-,;;;SO_-, ADO-AD15 52-SO CS 

r READY ClK. RQ/GT 
RESET 52-SO I+-- -

INTA 
S2-S0 

8087 BHE. lA--
AI6-AI9. I'v--- ~@DR!fESlSIDrAT~A]Bi1lusC:~~=~~=db~ _____ +~ ADO-AD1S I • 

L--=======~-I i"-- [I 
- ALE B.C. 

8288 

C lATCHES I XCVRS DIRlJ - r"-----' 
OE oi~ ':' ~i~~r -....I .--." 

DT/ii 
DEN 

MULTI­
PLEX 
CHANNEL 

r- - .. 
.~------ .. 

ADDRESS BUS 

DATA BUS 
I I 

..-t cs 

, I 

INTA INT 

8259A 

1 I 
I I 
I I 
I I 
I I 
~. 

.-~P::-::-:-ROM--.----___ --,I I L-.-~ ___ T'T....I .. 

LO~ ~~~;; ';~I~ES 
DECODER I--. 

----..... , (MAX. 32) 

231263-9 

Figure 10. 82258 In an iAPX 86 System 

To prevent this deadlock, for the system bus ac­
cesses the 82258 does not occupy the local bus 
until it has the system bus. Therefore, in the remote 
mode, the 82258 initiates all system bus accesses 
(and only these) through the HOLD/HLDA protocol. 
The local bus arbitration (for the CPU) is done 
through the CS and the BREL lines. 

COMMUNICATION MECHANISMS 

CPU -+ 82258 COMMUNICATION 

Communication from the CPU to the 82258 is two­
fold: 

- Some 82258 registers receive the main com­
mands from the CPU, through the slave interface 
of the 82258. Access to the 82258 is either syn­
chrono~ (usin9...QS, S1, SO) or asynchronous 
(using CS, RD, WR; S1 = S2 = 1). 

- Most of the data is transferred via the control 
space· in the memory in terms of organization 
blocks e.g. command blocks and multiplexor ta-

3-95 

ble. Control space can lie in the memory space 
or the memory mapped 1/0 space (system or 
resident space for the remote mode) and can be 
dynamically changed with every start channel 
command. 

The CPU communicates with the 82258 by deposit­
ing data in the memory and into the on-chip registers 
of the 82258. The CPU can access the 82258 gener­
al registers and status registers, and can start a 
channel by writing the proper command to the gen­
eral command. register (GCR). The 82258 will then 
read the data from the memory command block and 
set itself up. 

Slave Interface 

The slave interface of the 82258 is used by the CPU 
to access the 82258 internal registers. Although 
most of the CPU to 82258 communication is done 
through memory based data blocks, some direct ac­
cesses to the 82258 registers are necessary. For 
example, during the initialization phase the general 



inter 82258 

231263-10 

Figure 11. 82258 In Remote Mode 

mode register (GMR) must be written to set up the 
82258 or, to start a channel the command pointer 
registor (CPR) and the general. command register 
(GCR) must be loaded. During the system debug­
ging phase, access to the 82258 internal registers is 
very important. 

The slave interface is enabled by the CS input and 
consists of the following lines: 

51, SO -"-Status Lines (inputs) 

RD,WR -Control Lines (inputs) 

A7-AO -Register Address (inputs) 

D15-DO -Data Lines (inputs/outputs)-(for the 
286 and the remote moges) 

AD15-ADO -Address/Data Lines (inputs/out-
puts)-(for the 186 and 8086 modes) 

In the 286 mode and the 186/86 mode, two types of 
accesses are possible: 
- synchronous access through the status lines Si 

and SO . 
- Asynchronous access using RD and WR 

The register address must be supplied on the ad­
dress pins A7-AO, except for the synchronous ac­
cess in the 186/86 mode. Address data lin~s AD7-
ADO are used for the register address information in 
case of a synchronous access in the 186/86 mode. 

In the remote mode,. a synchronous access is not 
possible as the 82258 has to release its local bus to 
enable the CPU to, access its registers, On receiving 
an access request (CS input asserted), the 82258 
releases the local bus as soon as possible and sig­
nals it by asserting the BREL line. Only then, can the 
CPU access the 82258 registers. ' 

82258 -+ CPU COMMUNICATION 

The 82258 to the CPU communication is also two­
fold: 

- Hardware based communication, using one or 
more .EOD lineS as.interrupt.request lines to the 
CPU. The CPU can then read the status registers 



82258 

(and the interrupt vector register for the multi­
plexor channel) and service the interrupt. 

- Control space based communication: At the end 
of a DMAtransfer, the 82258 writes the contents 
of the appropriate channel status register into 
the channel command block. Additionally, it may 
transfer some other information (e.g. the updat­
ed source pointer) into the command status 
block. 

'The 82258 updates its internal registers (e.g. the 
channel command pointer, the general status regis- ' 
ter etc.) for any CPU access. 

82258 - PERIPHERAL COMMUNICATION 

The DMA interface of the 82258 is used for its com­
munication with the peripherals. It consists of three 
signal lines: 

DREQ -DMA Request 

DACK -DMA Acknowledge 
EOD -End of DMA 

DREQ and DACK control the externally synchroniz­
ed DMA transfers. A burst of data is transferred for a 
continuous DMA request, as long as the request sig­
nal is active. 

EOD lines, which are quasi-bidirectional, enhance 
the 82258-Peripheral communication link. First 
these can be used as inputs to the 82258 to receive 
an asynchronous external terminate signal to termi­
nate a running DMA. As outputs, they can be used to 
interrupt the CPU and/or to signal a specific status 
to the peripheral (e.g. transfer aborted or, end of a 
block or send/receive next block .. ). In addition, the 
EOD output of channel 2 can be used as a collective 
interrupt output (INTOUTbfor all the DMA channels 
while the other three EO ,lines retain their normal 
'function. 

An EODoutput signal can be generated synchro­
nous to a synchroniSing device at the last data trans­
fer or synchronous to the internal clock at the last 
desti~ation cycle. An EOD can also be generated 
asynchronously through a Type 2 command. 

BUS ARBITRATION 

HOLD/HLDA Sequence 

These signals are used for the bus arbitration in the 
286 mode and the 186/88 (8086/88 Min.) mode. 
Whenever the 82258 needs the bus, it activates the 
HOLD signal and the processor surrenders the local 
bus as soon as possiqleby asserting HLDA. The 
82258 performs the transfer and switches the HOLD 
to low. The processor takes the bus and switches 

3-97 

the HLDA to low. To force the 82258 to surrender 
the bus, the HLDA must be set to low. The. 82258 
will release the bus after the currently running bus 
cycle or the unseparable bus cycles. Unseparable 
bus cycles are: 

- The two 10 acknowledge bus cycles for the 
8259A PIC. 

- Word transfers on odd boundary addresses, real­
ised by two bus cycles where each transfer is a 
byte. 

- Fetch of 24 bit address pointers out of the memo-
ry or restore of the pointers. 

- Read- modify- write the 8259A mask registers. 

The 82258 signals the surrendering of the bus by 
floating the bus and removing the HOLD signal. If 
requests for bus cycles are present, the HOLD will 
go active after a delay of two T~states. 

Ro/G"i' Sequence 

RC;/GT protocol is used for the 8086/88 (Max.) 
Mode. The 82258 requestS the bus by sendir:!Q.. a 
~uest pulse of orie,CLK period I$ngt,h,' via the ROI 
GT signal, to the processor. The processor acknowl­
edges it with a pulse on the same line. Then the 
82258 controls the bus. When surrendering the bus, 
it sends a release pulse on the 'RO/'GT line. 

CS/BREL Sequence 

This is used in the remote mode along with the 
HOLD/HLDA signals. HOLD/HLDA are used for 
system bus arbitration and CS/BREL for local bus 
arbitration (to allow the CPU to access the' 82258 
~isters or the resident bus). The CPU asserts the 
CS signal' to ask for the local bus and the 82258 
releases the bus as soon as possible by activating 
BREL. After the CPU has completed its access, it 
should set "OS high. The 8225,8 deactivates BREL 
and proceeds with its own bus cycles on the local 
bus. 

NOTE: 
When the 82258 is not in possession of the bus, all 
output signals are tristated except the fOllowi~: 

HOLD (eeO&t in the RC;/GT protocol), DA KO-
DACK3, 0-EOD3, , ' 
BREL (remote mode) and ALE (186 mode) 

CHANNEL CONFIGURATION 

The 82258 has' four independently programmable 
DMA channels with their own register sets. All chan­
nels can be used as high speed selector channels 
for achieving maximum transfer rate or channel 3 
can be used as a multiplexor channel to allow the 
82258 to interface to a large number of 110 devices. 



inter 82258 

UP 10 
32 REGUEST 

LINES 

• g 

CII. 

CII.1 

82258 

eH.! 

IORED 

ilIiCK CHJ 

MUI1IPLEXOR CON81rrs OF ONE 
OR MORE 8258A 
tl/lTERRUPf CONTROUER) 

HOLO 

HLIIA 

BUS 

231263-11 

Figure 12.82258 Channel Configuration 

The selector channels support synchronised and 
non synchronised transffilrs as well as advanced fea· 
tures like single cycle transfer, command and data 
chaining. Channel switching imposes no perform­
ance penalty on the 82258. Programmable priority 
schemes allow flexible multiple channel processing. 

MUI. TIPI.EXOR CHANNEl. 

Channel 3 of the 82258 can also be operated as a 
multiplexor channel supporting up to 32 subchan­
nels. External 8259As are used to arbitrate and pri­
oritize channel requests (Figure 13). Multiplexor 
channel allows command chaining but data chaining 
is not supported. 

As a multiplexor channel, channel 3 uses an exter­
nal multiplexor table (MT) in the memory to store 
separate command pointers and. the PIC (8259A) 
mask register locations for each device in that chan­
nel. Each entry in the MT consists of 8 bytes; the 
first 4 give the command pointer for the subchannel 
and the second 4 the address of the mask register 
of the 8259A for that subchannel (Figure 14). 

After an I/O request from the 8259A. the 82258 
fetches an 8 bit vector (device number) from the in­
terrupt controller (by the INTIINTA mechanism). left 
shifts it by three and. uses that as an offset into the 
multiplexor table with tha:t entry pointing to the cur­
rent subchannel command block. The 8259A should 
be programmed for AEOI mode. 

3-98 

Each subchannel can have a· subchannel program 
or a command chain. The command chain must be 
terminated by a stop and mask command (as op­
posed to a stop command for a fielector channel). 
Three kinds of data transfers are possible:. 

Byte/Word One byte/word is transferred per 
Multiplex: request. The source/destination 

pointer and the byte count fields 
of the command block are updat­
ed. The command pointer is not 
advanced until the block transfer 
is terminated. Maximum cumula­
tive data transfer rate of 275K 
Bytes/sec can be achieved for 
the channel. 

Single Transfer: Similar to the byte/word multplex. 

""". 

But. the command pointer is ad­
vanced after each transfer, thus, 
executing command chaining. 

231263-12 

Figure 13. Multiplexor Configuration 



82258 

Block Multiplex The whole command block is ex­
. Transfer: ecuted and a block transfer made 

upon receiving a request. Such 
transfer is .necessarily free run­
ning or non-synchronized and is 

- carried out at a maximum speed 
of 4 MByte/sec in an 8 MHz 
80286 system. After termination, 
the command pointer is ad­
vanced (command chaining). 

The type 2 commands have the same function as for 
the selector channels (Table 6). A subchannel is 
stopped with a stop and mask command which must 
occur at the end of a command block chain. The 
82258 generates the interrupt (INTOUT) or EOD, if 

programmed. The 82258. automatically masks the 
request line on the 8259A by setting its mask bit. 
Thus no further requests can come from this sub­
channel until it is enabled by the CPU. The 82258 
indicates the interrupted subchannel (vector) in the 
Multiplexor Channel Interrupt Vector Register 
(MIVR). The MIVR can be accessed by the CPU 
and, after reading the MIVR, the stop bit of the indi­
cated subchannel is reset. If no channel 3 'interrupt 
(EOD or programmed INTOUT) is enabled, the inter­
nal interrupt flag is set by the stop and mask com­
mand. Then the CPU checks the MIVR by polling, 
i.e., with each reference of this register, the CPU can 
read off the stopped subchannel vector that has the 
highest priority in queue until the NV (vector is not 
valid) bit in MIVR is set. 

I MUI1IPLEXOR TABLE POINTER ON CHIP 

REO 
UEsrs FROM DEVICES ____________________ )-------------
~~,~ MULTIPLEXOR TABLE 

,/ IN MEMORY 

I I SIISCH, #0 
. SUBCHANNEL 0 

825M COMMAND CIIAIN 
COMMAND 

8 BYTES -0. I POlliTER TYPE 1 -
COMMAND PER 

SUBCHANNEL SUBCH. #0 
MASK TYPE 1 

I POINTER 
COMMAND 

.g. 

STOP AND MASK 
SUSCH. #1 INTR. COMMAND 

8 BIT VECTOR COMMAND n (DEVICE NUMBERI 
·0· 

I POINTER 
- SUBCH,1 PROGRAM 

SUBCH. #1 TYPE 1 
MASK I POINTER .0-

TYPE 2 

SUBCH. If2 
COMMAND -I POINTER TYPE 1 

·0· 

SlOP AND MASK 
SUBCH. If2 INTR. COMMAND MASK 

·0· 
I POINTER 

SUBCH. 2 PROGRAM 

TYPE 1 -
~ 

TYPE 1 

TYPE 1 

. SlOP AND MASK 
INTERRUPT 

231263-1.3 

Flgure14~ Multiplexor Table 

'1 

,~ 
i~ 
! ., 

I'; 

1:1 

l
i;.,1 

" !j 

: ~ 
I':·: , 
1'1 ,. 

~ 

i: 
I·

'·: I 
II 



inter 82258 

DATA TRANSFER AND 
MANIPULATION CONTROL 

SINGLE CYCLE AND TWO CYCLE TRANSFERS 

The 82258 provides the flexibility to optimize the 
system design by allowing: 

- Highest speed DMA transfers in the single cycle 
transfer mode. In this mode bytes or words (16 
bits) are transferred directly from the source to 
the destination without storing the data in the 
82258 registers (Figure 15). The single cycle 
transfer mode does not, necessarily, mean one 
bus cycle for transfer (though most of the trans­
fers require either a source or a destination data 
cycle only). Maximum single channel or multiple 
channel transfer rate of 8 MByte/sec. in an 8 
MHz 80286 system (4 MByte/sec in 8 MHz 
80186 systems) is achieved in this mode. 

a) Single Cycle Transfer 

In the single cycle transfer mode, while the re­
qlJesting device is serviced (and addressed) us­
ing DACK signal, the pointer to the other location 
(memory or I/O) is issued and its bus cycle exe­
cuted by the 82258. It is the duty of the I/O de­
vice to know whether the cycle is a read cycle or 
a write cycle and, to generate its command signal 
out of the bus command signals. 

Single cycle transfers mode is not allowed for the 
multiplexor channel. All single cycle transfer are 
externally synchronised and "On the fly" opera­
tions are restricted (see Table 5). 

- Maximum data manipulation operations in the two 
cycle transfer mode. The two cycle transfer mode 
does not, necessarily, imply two bus cycles, 
though most of the transfers consist of a fetch 
cycle from the source and a store cycle to the 
destination location. In this mode the source data 
is always stored in the 82258 registers before be­
ing sent out to the destination. Although. half as 

MEMORY PERIPHERAL , + 
~ "'-_/ .~ ADVANTAGE: 

< > 'SPEED-
BUS t BUS CYCLE/TRANSFER 

~ 

c:J 
b) Two Cycle Transfer 

MEMORY PERIPHERAL 

• + ADVANTAGE: 

~l )~ ·"ON THE FLY" 

A ~ ·TRANSLATE 

< BUS eVERIFY AND HALT , 
~ 

f' OPERATIONS 
• MEl!. TO WEM. 

TRANSFERS 
• DISSIMILAR BUS 

WIDTH SUPPORT 

82258 

231263-14 

Figure 15. Single/Two Cycle Transfer 

3-100 



82258 

fast as the single cycle mode, a number of "On 
the fly" operations e.g., translation, make this 
mode extremely versatile. The two cycle transfer 
mode also allows automatic assembly and disas­
sembly of the data, Le., the data can be read as 
one 16 bit word and written as 2 bytes or vice­
versa. It is useful for linking the 8 bit peripherals 
to a 16 bit system and vice-versa. 

The two cycle transfer .mode allows multiplexor 
channel operation and memory to memory trans­
fers. Two special cases of two cycle data transfer 
are: 

Read Operation or, data transfer without a 
destination address (the data assembly regis­
ter of the 82258 itself is the destination of the 
source data). Compare operations on the 
source data are possible (e.g. to test the 
status of a disk controller). 

Write Operation or, data transfer with no 
source address Le., the source data is a byte 

or word constant (literal) in the data assembly 
register of the 82258 (loaded during the setup 
routine with a low word out of the source point­
er field). The write operation can be used to 
erase a memory/peripheral data block (or pe­
ripheral register) or to load it with a certain 
constant. 

CHANNEL COMMANDS AND COMMAND 
BLOCKS 

The 82258 controls the data transfer, with all its 
modifications, through the channel command 
blocks. These contain the channel command word 
and all the initial parameters for the data transfer 
execution. The channel start command from the 
CPU causes the 82258 to read the channel com­
mand block, with all its parameters from the memory 
and, to load them into the internal channel registers. 
The channel registers that are loaded via the com­
mand blocks are: CCR, SPR, DPR, BCR, TIPR, 

Table 5. Data Manipulation Operations 

Single Two Byte/Word Block 
Operation Cycle Cycle Multiplex· Multiplex' 

Bus. Cycles Required·· 

Masked Compare (Byte/Word) 2 2 2 2 
Verify N/A 2 N/A 2 
Verify and Halt N/A' 2 N/A 2 
Verify and Save 2 F F F 
Translate F 3 3 3 
Transfer w / 0 Source or Destination F 1 1 1 

Operation Allowed 

Command Chaining Yes Yes Yes Yes 
List Data Chaining Yes Yes No No 
Linked List Data Chaining Yes Yes No No 
Assembly/Disassembly No Yes Yes Yes 
Source Synchronization Yes Yes Yes Yes 
Destination Synchronization Yes Yes Yes Yes 
Free Running No Yes Yes Yes 

: The multiplexor channel can only run in the two cycle transfer mode. 
•• : Actual number of bus cycles may vary depending upon address boundary, hardware wait state 

number, pointer modification direction etc. 
F : Fatal error is generated. 
NI A : Not Allowed 

3-101 

I 
II 
~ 



inter 82258 

LPR/MTPR, MASKR and COMPR(see the register 
description for details on these registers). After ex­
amining the channel command for programming er­
rors, the data block transfer is executed if no errors 
are detected. After the transfer termination, the rea­
son for the termination is displayed in a word in the 
channel command block (channel status). Optional­
ly, the last values of the source and the destination 
pointers anct the byte count register may also be 
written out to the command block (constituting a 
status block if enabled). The CPU should not access 
the channel's control space while the channel is ac­
tive (not stopped). 

There are two basic types of channel commands: 

Type 1 Channel Command......,Data transfer Op­
eration (Transfer Channel Comma~d). 

Type 2 Channel Command-Control Operation 
(Organizational Channel Command). 

ON 
CHIP 

IN MEMORY -t 
~ 

I 
~ 
~ -. 
I 

A complete channel program consists of at least 
one channel command block with a type one com­
mand and one type 2 comman(j (stop). 

Type 1 Channel Commands And Command 
Blocks 

A command block always specifies a data transfer 
operation. The type 1 channel command defines the 
task to be performed by the channel (seethe chan­
nel command register for details). Simple block· 
transfer is specified by the short channel command 
block (Figure 16), which also allows data chaining. 
For more complex .operations, the standard block is 
expanded by a .commandand a block extension, 
forming along channel command block (Figure 16). 
The command block is always pointed at. by the 
command pointer. Each· channel has its own com­
mand pointer. Enabling of the status bloc.k (a bit in 
the channel command extension) extends the long 
channel command block by a status field of 12 byte 
length. This status field is loaded by the 82258 after 
the termination of the block transfer (Figure 16). 

COMMAND POINTER 

) 
15 TYPE 1 COMMAND 0 

SOURCE POINTER 

-0- I 
DESTINATION POINTER 

-0- I 
BYTE COUNT 

-o- J 
CHANNEL STATUS 

COMMAND EXTENSION 

MASK 

COMPARE DATA 

g ~:----ffi-A-NS-~-TE-.-PO-IN-TE-R--~ 
r ·~: ___ -_O_-__ -L ______ ~ 

T I ~ST SOURCE POINTER 

I: I--_-0_---L---_I 
.. I ~ST DESTINATION POINTER I i: -0- : 

~: ~ST BYTE COUNT 

Iii I -0- 1 I 
~.------- ____ a_e. 

231263-15 

Figure 16. Type 1 Command Block 

3-102 



82258 

Type 2 Channel Commands and Command 
Blocks 

The type 2 channel commands support the con­
struction of channel programs by allowing opera­
tions such as auto-initialization, conditional chaining 
or . program controlled interrupts. Figure 17 shows 
the structure of the type 2 channel command blocks. 

The first word of the type 2 command block is the 
command and the second and the third may be an 
address. 

Most of the type 2 commands can be executed con­
ditionally; only exception being .the unconditional 
stop which on the multiplexor channel functions as 
the Stop and Mask command. The 4 termination 
conditions are given in the CSA. If more than one 
condition is specified, the conditions are ORed.· A 
special flag in the command word (I flag) allows to 
invert the channel status register bits before they are 
compared with the termination conditions. Table 6 
gives the list of the different type 2 channel com­
mands .. 

The type 2 commands can also activate ~ogram 
controlled interrupt (INTOUT) and/or an EOD signal 
during the execution of a command (controlled by 
the ED and the IT flags). In the type 2 command, the 
EOD is an asynchronous EOD (compared to the 
type 1 EOD which is synchronous to the last data 
transfer). If the ED or the IT flag is set, the signal 
generation is unconditional, independent of the con­
dition code. 

Table 6. Type 2 Channel Commands 

Command 
Relative Jump· 
Absolute Jump· 
Unconditional Stop 
(Stop and Mask Subchannel 

for multiplexor channel) 
Conditional Stop'· 

• : Both conditional or unconditional 
•• : The 82258 does not check if a selector channel only 

type 2 command is used on the multiplexor channel, 
but its execution will lead to erroneous channel 
processing. 

15 o 
Type 2 Command 

Signed 16-bit Displacement - Relative JUMP 

-0-

Type 2 Command 

24-bit Pointer 

- 0 - I 
- Absolute JUMP 

Type 2 Command - Conditional STOP 
f---'-'--_-o-_-----I- Unconditional STOP 
I---------i- STOP and MASK 

- 0 - for MUX Channel 

Figure 17. Type 2 Command Block 



82258 

COMMAND AND DATA CHAINING ;: . 

Command Chaining 

The 82258 allows chaining of the command blocks in thememor}t, tor any channel,' for sequential E!xecuti()n: 
Figures 16 and, 17- show channel command blocks and Figure 18 shows, the examples ,cif comlTland ~haining~ 
The 82258 gets the address of the command block from its on-chip command pointer (initialized by ~hErCF:>U) 
and starts executing. When it comes to the end of one command, it automatically starts to fetch and execute 
the next command block until a stop command is found. Conditional and uncondition_~I, STo,f' and ,JUMP 
commands allow complex sequences of DMAsto be performed. " ' ' '", ',. ,,,' 

. " i ., '. ,. 

COrylmand chaining Illlows the 822~8 to do CPU indepedent 1/0 processing, thus, saving valuable CPU time. 

TYPE 1 DMA, DMA TYPE 1 

TYPE 2 
STOP JUMP 

TYPE 2 

A) SI~PLEST DWA OPERATION II) AUTO-RELOAD DWA 

TYPE I 

TYPE 2 

TYPE 1 

TYPE 2 

/ 
r-------~ TYPE I 

DMA 
#2 

STOP 

TYPE 2 

DMA 
# 1 

JUMP IF' .CON-
omON. MET 

DMA 
#3 

STOP 

"CONDITION· = 
MASK COMPARE HIT 

Q! 
VERIFY SUCCEED 

Q! 
EXTERNAL TERMINATE 

OR 
BYTE COUNT END 

C) CONomONAL DMA OPERAnON 

Figure 18. Command Chaining 

231263-16 



82258 

Data Chaining 

Data chaining allows gathering and scattering of data blocks. The 82258 permits automatic, dynamic linking of 
the data blocks scattered in the memory. Each data .block in a chain can be up to 64K bytes. Two types of data 
chaining are allowed: 

List Chaining: The chained data block descriptors are contiguous in a block which forms the data chain list 
(Figure 19). End of the chain is indicated by making the byte count field zero in the data chain list. list chaining 
is fast (1 microsecond between completion of one block transfer and going to the next element in the list, in an 
8 MHz 80286 system) but not very flexible. 

I COMMAND POINTER I 
---------------------;t------~~~~;------------------. 

15 TYPE 1 COMMAND 

SOURCE POINTER 

-0-

CHAIN LIST POINTER 

-0-

NOT USED 

-0-

CHANNEL STATUS 

CHANNEL COMt.lAND BLOCK 

DATA 
BLOCK 
# 1 

DATA 
BLOCK 
#2 

o 

DATA 
BLOCK 
#3 F 

Figure 19. Destination List Chaining of Data 

3-105 

BYTE COUNT 

DATA POINTER 

BYTE COUNT = 0 

DATA CHAIN LIST 

231263-17 



82258 

Linked List Chaining: Each list element which describes a particular data block (location and length) also 
holds a pointer to the next list element to be processed (Figure 20). End of the chain is indicated by making the 
byte count field zero in the linked list. 

Linked list chaining is slower than the list chaining but the data blocks can be included, removed or, their 
sequence altered dynamically, through the link pointer manipulation by the CPU. 

I COMMAND POINTER I 
---------------------~------~~~~------------------

15 TYPE 1 COMMAND 0 

LINKED LIST POINTER 

-0- I BYTE COUNT 

DESTINATION POINTER DATA POINTER 

-0- I / -0- I 
NOT USED LINK POINTER 

-0- I DATA -0- I BLOCK 
CHANNEL STATUS # 1 

BYTE COUNT 

DATA POINTER --------. -0- I 
DATA 

LINK POINTER 

BLOCK -0- I #2 

BYTE COUNT 

DATA POINTER 

/ 
-0- I 

LINK POINTER 

-0- I DATA 
BLOCK 
#3 

BYTE COUNT=O ____ J 
DATA CHAIN LINKED LIST 

231263-18 

Figure 20. Source Linked List Chaining of Data 

3-106 



82258 

"ON THE FLY" OPERATIONS 

The 82258 allows various data manipulation opera­
tions during the transfer: 

Mask and Compare 

Allows comparison of each byte. word or bit field 
(masking) in source data with some given pattern. 
Data transfer can be terminated on a match or a 
mismatch depending upon the program. This is pos­
sible both for the single and the two cycle transfer' 
modes but. the transfer rate is halved in the single 
cycle mode. 

Verify 

No data transfer is performed. but the complete 
source data block is compared with a given data 
block. The data conversion can be terminated on 
mismatch (Verify and Halt). Supported only for the 
two cycle transfer mode. 

I SOURCE POINTDI 

I. 1\IANSLAlE POINTDI t--
.--------~-------

IlIIANSLAlEO SOURCE POINTDI 

. ----- -. 
I I 
I I 
I OPTIONAl. I 
I MASK-COMPARE I 
I I 
I I .. --- --.. 

I DESTINATION POINTDI 

82258 

Verify and Save 

The data block is transferred from source to destina­
tion and in parallel compared with a given data 
block. The data transfer is not stopped on a mis­
match. This operation is supported only for the sin­
gle cycle transfer. 

Translate 

The source data (bytes) is translated with the aid of 
a translation table (Figure 21) before being sent to 
the destination. Translation is supported for the two 
cycle transfer mode only. If the destination is 16 bits. 
the two translated source bytes are assembled in 
the DAR before the destination cycle is executed. 

Various 'on the fly' operations can be combined to 
allow the 82258 to perform versatile DMA opera­
tions. 

~ 

I' 

BYTE 

I-Ef)+. 

~ --BYTE 

--"'w 

SOURCE 
BlOCK 

TliANSLAlE 
TABlE 
(MAX. 256 
BYTES LONG) 

DESTINATION 
BlOCK 

231263-19 

Figure 21. Translate Operation 

3-107 



82258 

PRIORITY CONTROL 

The 82258 controls concurrent processing of its dif­
ferent channels (and subchannels) and, the internal 
and the external requests through a flexible priority 
scheme. 

The PRI bits in the GMR are used to select the prior­
ity scheme which can be fixed or variable or a com­
bination of the two (see the GMR description for the 
details). The unseparable bus cycles (e.g., 24 bit 
pointers) are not affected by the priority rotation. Ex­
ternal 8259As determine the priorities for the multi­
plexed subchannels. 

The processing of the internal or the external re­
quests is controlled by a fully nested priority system 
including all four channels. Since more than one re­
quest can compete for the same channel, the re­
quests are also prioritised in relation to their types as 
follows (in descending order of priority). 

- Channel Stop (Command from the CPU out of the 
GCR) 

- External ~nchronous termination request 
(through EOD) 

- Internal continue request on previously interrupt­
ed sequence 

- Start or stop subchannel or multiplexor channel 

- Internal (without synchronization) or external 
(with synchronization) data service request or 10 
request for the multiplexor channel 

- Channel wait (idle) 

Data chaining and internal termination belong to the 
data service request processing, command chaining 
belongs to the termination processing. 

Slave operations. where the 82258 is addressed by 
the CPU, have the highest priority of all the activities. 

ADDRESSABILITY 

The 82258 has two address spaces like the 80286, 
the 80186/188 and the 8086188 processors: 

- Memory space 

- 1/0 space 

Both the spaces are 16 MByte large for the 286/re­
mote mode and 1 Mbyte for the 186/8086 mode. All 
types of transfers are possible: ' 

- Memory/Memory 

- 1/0/1/0 

- Memory/l/O 

- 1/0 I Memory 

Either of the memory or the peripheral can lie in ei­
ther of the two spaces. Each space can be indepen­
dently 8 bit or 16 bit wide. All possible Even-Odd 
boundary address combinations are supported for 
the data transfer from source (8 bit or 16 bit) to des­
tination (8 bit or 16 bit) in the two cycle transfer 
mode. The source and the destination pointers can 
be incremented, decremented or not modified at all 
(INC/DEC bits of type 1 channel command in the 
CCR) after the corresponding data bus cycle. The 
82258 does not indicate or check an 'address out of 
range' condition. Address overflow and underflow 
during a block' transfer results in an address wrap 
around. Maximum length of the data block can be 16 
MBytes in an 80286 system. In the 186/86 mode the 
maximum byte count is (1 M-1). This is not checked 
by the 82258. 

SYNCHRONIZATION OF DATA TRANSFER 

The 82258 allows both the external synchronization 
of a DMA transfer (from a source or a destination 
device) or a free running DMA (internally synchroniz­
ed). 

The external synchronization allows control of input! 
output operations in the cycle of the peripheral de­
vice, hence occupying the bus only when the periph­
eral is able to receive or transmit data. 

Free running DMA (no external synchronization) is 
used for the memory to memory transfers, during a 
continuous DMA request or, in the block multiplex 
subchannel after the channel start. It is not support­
ed for the single cycle transfer mode. 

3-108 



intJ 82258 

286 PROTECTION Figure 23 gives a layout of the registers. Note that all 
registers lie on even addresses. 

The 82258 needs special consideration to operate in 
an 80286 system in the protected mode. The 82258 
works only with the real addresses but it supports a 
protected mode 80286 system if the following condi­
tions are fulfilled: 

- The 286 kernel software must check all the pro­
tection rules during the set up routine for the 
82258 and perform the limit checks for the block 
transfer$. This is supported by the 80286 instruc­
tions e.g. VERR (verify Read Access), VERW 
(verify Write Access), LSL (load Segment Limit). 

- The 286 kernel has to translate the logical ad­
dresses into the physical addresses. 

- All the 82258 registers should be memory 
mapped and access to them should be allowed 
only for a 286 kernel routine (task isolation). 

Normally an 1/0 utility routine is provided by the op­
erating system to service the 82258. No direct user 
access should be allowed to the 82258 from the 
lower privilege levels. The real addresses can be 
generated only by using the 286 protection mecha­
nism and are so checked against any protection vio­
lation. 

82258 REGISTER MODEL 

The 82258 has three sets of registers (Figure 22): 

General Registers 
Channel Registers 
Multiplexor Channel Registers, 

All registers can be read or written into by the CPU 
but, most are accessed only for the test purposes. 
The CPU loads some registers (e.g. General. Mode 
Register) during the initiali;zation after the reset, and 
others, during the invocation ofa channel (General 
Command Register). Some of the channel registers 
are programmed or read by the CPU but most of 
them are loaded by the 82258 itself during the setup 
routine after a channel start. All accessible registers 
can be accessed bytewise or wordwise by the CPU. 

3-109 

23 

CPR 

SPR 

OPR 

TTPR 

LPR 

BCR 

CCR 

GENERAL REGISTERS 

15 0 

GSR I STATUS 

OUR I WODE 

OCR COWIWIO 

G8R BURST 

GOR DE\.AY 

7 0 

CHANNEL REGISTERS (4 sm, I, PER CHANNEL) 

0 

COWWANO POINIIR 

SOURCE POIIIIR 

DESlINAlION POINTER 

TRANSLATE TAILE POINTER 

LIST POIIIIR 

BYTE COUNT 

CHANNEL COWWAND 

IIASKR WASK 

COWPl! COMPARE 

DAR ASSEWBLY /DISASSEWBLY 

15 CSR I CHANNEL STATUS 

7 0 

WULTIPLElCOR CHANNEL REGISTERS 

7 0 

WlVR INTERRUPT VECTOR 

LVR LAST VECIOR 

SCR SUBCHANNEL 

7 0 

231263-20 

Figure 22. 82258 Register Set 

i 
II 

I 



82258 

Address Bits 
Address Bits 7,6 

Address Bits 
5-0 5-0 

(hexadecimal) 00 01 10 11 (binary) 

0 GCR 000000· 
2 SCR 000010 
4 GSR 000100 
6 RESERVED 

RESERVED RESERVED RESERVED 
000110 

8 GMR 001000 
A GSR 001010 
C GDR 001100 
E· RESERVED 001110 

10 CSRO CSR1 CSR2 CSR3 010000 
12 DARO DAR1 DAR2 DAR3 010010 
14 MASKRO MASKR1 MASKR2 MASKR3 010100 
16 COMPRO COMPR1 COMPR2 COMPR3 010110 
18 MIVR 011000 
1A 

RESERVED RESERVED RESERVED 
LVR 011010 

1C 
RESERVED 

011100 
1E 011110 

20 CPRLO CPRL1 CPRL2 CPRL3 100000 
22 CPRHO CPRH1 CPRH2 CPRH3 100010 
24 SPRLO SPRL1 SPRL2 SPRL3 100100 
26 SPRHO SPRH1 SPRH2 SPRH3 100110 
28 DPRLO DPRL1 DPRL2 DPRL3 101000 
2A DPRHO DPRH1 DPRH2 DPRH3 101010 
2C TIPRLO TIPRL1 TIPRL2 TIPRL3 101100 
2E TIPRHO TIPRH1 TIPRH2 TIPRH3 101110 

30 LPRLO LPRL1 LPRL2 LPRL3/MTPRL 110000 
32 LPRHO LPRH1 LPRH2 LPRH3/MTPRH 110010 
34 RESERVED. RESERVED RESERVED RESERVED 110100 
36 . RESERVED RESERVED RESERVED RESERVED 110110 
38 SCRLO BCRL1 BCRL2 BCRL3 111000 
3A BCRHO BCRH1 BCRH2 BCRH3 111010 
3C CCRLO CCRL1 CCRL2 CCRL3 111100 
3E CCRHO CCRH1 CCRH2 CCRH3 111110 

GCR = General Command Regi~ter MIVR = Multiplexor Interrupt Vector Register 

SCR = Subchannel Register LVR = Last Vector Register 

GSR = General Status Register CPR = Command Pointer Register 

GMR = General Mode Register SPR = Source Pointer Register 

GBR = General Burst Register DPR = Destination Pointer Register 

GDR = General Delay Register TIPR = Translate Table Pointer Register 

CSR = Channel Status Register LPR = List Pointer Register 

DAR = Data Assembly Register MTPR· = Multiplexor Table Pointer Register 

MASKR = Mask Register BCR = Byte Count Register 

COMPR = Compare Register CCR = Channel Command Register 

L = Low Word 0,1,2,3 = Channel Number 

H = High Byte 
Figure 23. Layout of Register Addresses 

3-110 



inter 82258 

GENERAL REGISTERS 

These registers are common to all the channels. 

General Mode Register (GMR) 

This is the first register to be programmed after the reset since it describes the 82258 environment. Here the 
system wide parameters are specified,. The 16 bit register is loaded bytewise with the low byte being pro­
grammed first. 

15 14 13 9 7 3 2 

EN 
MINT CYC 

0 CI 
3 I I 0 

PRI 

3 I I 0 

CON RM 
2 1 2 I . " " , 

Figure 24. General Mode Register 

3-111 

o 

I/O MEt.t 
(RES) (SYS) 
BUS BUS 

. , 

L PHYSICAL BUS WIDTH 

0- 8 BIT 
1 - 16 BIT 

REMOTE MODE ENABLE 

o - LOCAL MODE 
1 - REMOTE MODE 

MODE OF CHANNEL 3 

o - NORMAL CHANNEL 
1 - MULTIPLEXOR CHA NNEL 

TRANSFER TYPE 

0- lWO CYCLE 
1 - SINGLE CYCLE 

CHANNEL PRIORITY 

00 - ALL FIXED, CH.O 
HIGHEST 

01 - CH.O,I,2 ROTATIN G, 
CH.3 FIXED (LOW EST) 

10 - CH.O,1 ROTATING 
(HIGHER GROUP) 
CH.2,3ROTATING 
(LOWER GROUP) 

11 - ALL ROTATING 

INTERRUPT MASK 
FOR TYPE 2 
CHANNEL COMMAND 

o - INTERRUPT ENABLE D 
D 1 - INTERRUPT DISABLE 

COMMON INTERRUPT 
ENABLE 

o - EOD2 PIN = E002 
1 - [OD2 PIN = COMMON 

INTERRUPT 
(lNTOUT) 

231263-21 

II 
: :~ 

~ 



inter 82258 

General Status Register (GSR) 

This register provides the status information for all the channels. Italso shows which channels have interrupts 
pending and. where the channel control space lies. It is a 16 bit register. 

15 12 8 4 3 2 

CH.3 CH.2 CH.I CH.O 

S/RIINT OhiST SIR liNT OhiST SIR liNT DhiST SIR liNT I 

\ H n , 

Figure 25. General Status Register 

3-112 

o 

DhiST 

l~.~~_u 
00 - CHANNEL INACTIVE/ 

T STOPPED, NO REQUES 
01 - CHANNEL INACnVE/ 

STOPPED. REQUEST 
PENDING 

10 - CHANNEL IN 
ORGANISATIONAL 
PROCESSING 

II - Dt.fA IN PROGRESS 

INTERRUPT STATUS 

o - NO INTERRUPT 
I - INTERRUPT PENDING 

CONTROL SPACE LOCATION 

o - CONTROL SPACE ON 
RESIDENT BUS (REhiOT E WODE) 

DE) OR 10 B.US (LOCAL hlO 
I - CONTROL SPACE ON 

SYSTEhi BUS (REhiOTE hlODE) 
CAL WODE) OR hlEWORY BUS (LO 

STATUS CHANNEL I 

STATUS CHANNEL 2 

STATUS CHANNEL 3 

231263-22 



82258 

General Command Register (GCR) 

GCR is an 8 bit register directly loaded by the CPU to start or stop a channel. The START command also 
defines the control space assignment. The pending interrupt from any channel is also cleared through the 
GCR. Any combination of channels Can be addressed simultaneously. To start/stop a multiplexor subchannel, 
the subchannel number must be first loaded in the Subchannel Register (SCR). The Halt/single step com­
mand is useful for the system debugging. 

7 

CHANNEL 

3 I 2 1 I 0 

3 o 

COMMAND 

L awm ... "".,,' 
000 - NOP 
001 - CONTINUE CHANNEL (s) AfTER IT HAS BEEN STOPPED 

010 - START 
011 - START 
100 - STOP 
101 - START 
110 - STOP 
111 - HALT 

BY THE STOP COMMAND 
CHANNEL (S) - COMMAND BLOCK iN. SYSTEM/MEMORY SPACE 
CHANNEL (s) - COMMAND BLOCK IN RESIDENT/IO SPACE 
CHANNEL (s) 
SUBCHANNEL (N IN SCR) 
SUBCHANNEL (N IN SCR) . 
SINGLE STEP CHANNEL (S): START EXECUTION AND STOP 
AfTER NEXT COMMAND BLOCK HAS BEEN LOADED 

.... ----. INTERRUPT COMMAND 

0- NOP 
1 - CLEAR INTERRUPT (S) Of CHANNEL (s) 

.... --------.... CHANNEL SELECT 

231263-23 

Figure 26. General Command Register 

3-113 



inter 82258 

General Burst Register (GBR) 

This 8 bit register determines the maximum number 
of contiguous bus cycles that can be requested by 
the 82258. GSR = O. means unlimited contiguous 
bus cycles for the 82258. The GBR must be directly 
loaded by the CPU. 

General Delay Register (GDR) 

GDR is an 8 bit register which determines the mini­
mum number of clocks between the 82258 burst ac­
cesses. GDR = 0 means no minimum delay be­
tween the HOLD request. 

Burst/Delay Algorithm 

Both the GBR and the GDR do their actual counting 
through their respective counters the GBC and the 
GDC. For the burst and delay counters, the following 
rules apply: 

- Whenever the 82258 controls a bus cycle the 
burst counter .is decremented by one. but not be­
yond :z;ero. 

- Whenever the 82258, in the local mode, does 
not have the bus, the delay counter is decre­
mented by one: every second T-state in the 286 
mode or, every fourthT-state in the 186 mode. 

- Whenever the delay cO!lnter is zero, the burst 
and the delay counters are loaded from the burst 
and the delay registers. 

- If the burst counter is zero (and no exception 
occurs), the 82258 releases the bus and the de­
lay counter counts until it is zero. Then both 
counters are loaded from their corresponding 
registers and the 82258 can again. request the 
bus by activating HOLD signal. Unseparable bus 
cycles are the exception to this rule. Counting of 
the burst is not prevented but surrendering of. the 
bus is. 

- In the remote mode the burst and the delay are 
relevant only for the system bus cycles. The 
GBC is only decremented while the 82258 per­
forms the system bus cycles and the GDC decre­
ments when the 82258 does not control the sys­
tem bus (idling or the resident bus cycles). 

CHANNEL REGISTERS 

Each of the four 82258 channels has these regis­
ters. All the channel registers are loaded by. the 
82258 from the memory except the Command Point-

er (CPR) [Multiplexor TablePointer (MTPR)& Sub­
channel Register (SCR) for the channel 3 in the mul­
tiplexor model., The initial. contents of the· registers 
are specified, by the CPU in the command blocks in 

. the memory. 

Command POinter Register (CPR) 

This 24 bit register contains the physical address of 
the command block. It must be loaded by the CPU 
before starting the channel. For the channel 3 in the 
multiplexor mode, the CPR is loaded by the 82258 
from the multiplexor table (MT) in thememory. 

Source Pointer Register (SPR) 

SPR is 24 bits and contains the physical address of 
the source (memory or 1/0, system or resident 
space) in a DMA transfer. In the single cycle transfer 
mode, it contains the only address pointer (source or 
destination). 

Destination Pointer Register (DPR) 

DPR contains the· physical address of the destina­
tion (memory or 1/0, system or resident space) in a 
DMA transfer. During Verify operations it contains 
the verify pOinter (pointer to compare the. data 
block), For the single cycle transfer mode, it is only 
used for the verify and save operation. It is a 24 bit 
register. 

Translate Table Pointer Register (TTPR) 

This 24 bit register is used to reference the translate 
table in the memory when the translate function is 
enabled in the channel command register extension 
(CCRX). 

List Pointer Register (LPR) 

LPR is used for data chaining (list and linked list) 
operation. It is a 24 bit register and points to the list 
element. In the multiplexor mode for the channel 3, it 
is used as the Multiplexor Table Pointer Register 
(MTPR). (Multiplexor mode does not support data 
chaining). 

Byte Count Register (BCR) 

BCR is a 24 bit register and contains the byte count 
for the DMA transfer. 

3-114 



82258 

Channel Command Register (CCR) 

CCR specifies the type of DMA transfer or the type 
of internal operation. The channel commands are 
contained in a channel command block. The 82258 
has two types of channel commands: 

- Type 1 for data movement 

- Type 2 for command chaining control 

The channel command register has three configura­
tions: 

- Short Type 1 command: SYN field NE. 00 and 
ECX = O. Upper 8 bits, i.e., Channel Command 
Register Extension (CCRX field), are not valid. 

15 13 12 11 10 

- Long Type 1 command: SYN field. NE. 00 and 
ECX = 1. All 24 bits are valid. 

- Type 2 command: SYN field = 00, Upper 8 bits 
(CCRX field) are not valid. 

Figure 27 shows CCR for Type 1 command and Fig­
ure 28 has the CCRX (Channel Command Register 
Extension). Figure 29 shows CCR for type 2 com­
mand. 

DO - NO INC/DEC 
01 - DEC 
10 - IHC 
11 - NO POINTER (CONSTANT VALUE) 

'---.... LOGICAL BUS WIDTH 

0- 8 BIT 
1 - 16 BIT 

....... ----+ DESTINATION DESCRIPTION 

SA.~[ AS SOURCE DESCR. 

'----------+ DATA CHAINING 

LLC LC 
o 0 NO CHAINING 
a 1 LtsT CHAINING 
1 0 LINKED LIST CHAINING 
1 1 NOT ALLOWED 

'----------,.-. SELECT CHAINING 
0- DESTINATION CHAINING 
1 - SOURCE CHAINING _ 

(ALWAYS 1 FOR SINGLE CYCLE) 
FOR WUX. CHANNEL: 
TRANSFER CHAINING 

o - TRANSFER IS SYNCHRONIZED 
1 - TRANSFER NOT SYNCHRONIZED 

1-____________ -+ ~: ~~::C: :gg g~;:~i 

'------------------+ CHANNEL COMMAND BLOCK LENGTH 
0- SHORT 
1 - LONG (WITH COMMAND EXTENSION) 

1-________________ ,_+ SYNCHRONIZATION 

00 - TYPE 2 COMMAND 
01 - SOURCE SYNC. 
10 - DESTINATION SYNC. 
11 - NO SYNC. (I'REE RUNNING) 

FOR MULTIPLEXOR CHANNEL 

DO - TYPE 2 COMMANO 
01 - BYTE/WORD MULTIPLEX OPERATiON 
10 - SINGLE TRANSFER OPERATION 
11 - BLOCK MULTIPLEX OPERATION 231263-24 

Figure 27. Type 1 Channel Command CCR 

3-115 I 
I.' 

" I' 



inter 

15 

0 0 

82258 

I 0 I~~I ru I V~ I ~reH I 

13 

OPCODE 

'---'L:L ~-~ . 
00 - DISABLED 
01 - ENABLE MIS~reH (BYTtjWORD) 
10 - ENABLE BYTE MATCH 
11 - ENABLE WORD'MATCH 

VERIFY 

00 - NO VERIfY 
01 - VERIFY 
10 - ~1fY AND HALT (ON MISMAreH) 
,11 - VERWY AND SAVE 

1-. _____ -. ruNSLATE ~LE 

o - TRANSLATE DISABLED 
1 - ruNSLATE ENABLED 

1--------+ ENABLE STATUS BLOCK 
0- UPDATE IN CHANNEL COMMAND BLOCK DISABLED 
1 - UPDATE ENABLED 231263-25 

Figure 28. Channel Command Register Extension CCRX 

11 10 9 7 5 

ED IT 0 0 0 0 0 I 

3 o 

CONDITION CODE 

VERIMAIETIBC 

~ CONDITION CODE 

BYTE COUNT = 0 

EXTERNAL TERMINATE 

BYTE/WORD 
MATCH/MISMATCH 

VERIFY MATCH 

INVERT 

INVERT CHANNEL STATUS 
BITS BEFORE COMPARING 
WITH CONDITION CODE 

GENERATE INTERRUPT 

GENERATE EOD PULSE 

OPCODE 

00 - UNCONDITIONAL STOP 
STOP AND MASK FOR 
MUXCHANNEL 

01 - CONDITIONAL STOP 
10 - CONDITIONAL· JUt.lP 

RELATIVE 
11 - CONDITIONAL. JUt.lP 

ABSOLUTE 231263-26 

• If all condition code bits are 1, JUITIP becomes unconditional. 

Figure 29. Type 2 Channel Command CCR 

3-116 



intJ 82258 

Mask Register (MASKR) and Compare Register 
(COM~R) 

Both of these registers are '16 bit and are used dur~ 
ing the match/mismatch operation. For comparison 
with the transferred data, only those bit positions in 
the Compare Register which are not masked with 
1 's in the Mask register are considered., These two 
registers together allow byte, word or bit level com" 
parisons. MASKR is also used during the verify oper-

7 8 5 .. 32 o 

DIolA TERMINATION 
BUSY FE H SSH 

VERIMAI~IBC 
, . ' I 

ations. MASKR and COMPR each should contain 
two identical bytes for Byte Match/Mismatch opera­
tions. 

Channel Status Register (CSR) 

CSR, an 8 bit register, reflects the status of th~ 
channel. The least significant half byte is-the termi­
nation condition and the most significant· half byte 
indicates fatal error, busy state and halted state. 

L FLAGS SET ON DWA TERWINATION 

BC -BYTE COUNT EXCEED 

..... 
~ 

..... 

'-"" 

..... 

• Valid only for channel 3 in multiplexor mode; zero otherwise. 

ET - EXTERNAL TERMINATE 
t.iA ' - lolA TCH/I4ISMA TCH 
VER..,; VERIFY OPERATION ENDING IN MISMATCH 

SINGLE STEP HALT MODE 

CHANNEL OPERATING 
IN SSH MODE 

HALTED 

CHANNEL IN HALTED STATE 

FATAL ERROR 

FATAL ERROR HAS OCCURED 

BUSY* 

LAST SUBCHANNEL COMMAND TRANSFERRED 
IS PROCE,SSED 

231263-27 

Figure 30. Channel Status Register 

3-117 

Il 
I' II 

I"

.': 1 
.1· 

, 

.: 



82258 

Data Assembly Register (DAR) 

This 16 bit register is used for automatic assembly/ 
disassembly of data. 

Mutiplexor Channel Registers 

These registers are valid only for channel 3, when 
used as a multiplexor channel. 

Multiplexor Table Pointer (MTPR) 

This register is used to reference the multiplexor ta­
ble in the memory when channel 3 is programmed 
as a multiplexor channel. Since data chaining is not 
allowed for the multiplexor channel, the List Pointer 
Register (LPR) is used as the MTPR. MTPR is 24 bit 
and must be loaded by the CPU. 

Multiplexor Interrupt Vector Register (MIVR) 

This 8 bit register is used by the CPU to determine 
which channels are stopped. The vectors of the 
stopped subchannels are output in the priority order 
(0 has the highest priority) upon each reference of 
this register, until the NV bit is set. A maximum of 32 
vectors can be distinguished. 

7 6 5 4 o 

VECTOR 

Last Vector Register (LVR) 

L VR gives the last vector read by the 82258 (from 
the 8259A). In case of a fatal error stop of channeH3, 
L VR determines the guilty subchannel. L VR is an 8 
bit register.. 

Subchannel· Register (SCR) 

This register gives the 8 bit subchannel number for 
the general commands START/STOP Subchannel. 
It must be loaded by the CPU before a subchannel 
command is written into the GCR. MIVR limits the 
number of subchannelssupported to 32 (5 bits). 

82258 OPERATION AND 
PROGRAMMING OVERVIEW 

INITIAL STATE 

Upon activation of the RESET signal: 

- all channels are disabled (by clearing the DMA 
status bits in the General Status Register) 

- all bus activities are stopped 

- all tristate signals are tristated and the others en-
ter the inactive. state 

L SUBCHANNEL VECTOR 

VECTOR OF" THE HIGHEST PRIORIlY 
SUBCHANNEL STOPPED AND NOT YET READ 

..... -------------+ ~ NON VALID 

0- VECTOR IS VALID 
1 - VECTOR IS NOT VALID 

(NO CHANNEL STOPPED OR 
ALL VECTORS READ) 

Figure 31. Multiplexor Interrupt Vector Register 

3-118 

231263-28 



intJ 82258 

After the RESET signal becomes inactive, the 82258 
state gets defined: 

- it is in' the 186 mode if A23 pin was low at the 
falling edge of RESET; otherwise it is in the 286 
mode 

- it is in the 8086 max (Request/Grant) mode if the 
186 mode is detected and HLOA pin was high at 
the falling edge of RESET; otherwise it is in the 
186/8086 Min. (HOLO/HLOA) mode. 

- The conte.nts of the 82258 registers are as follows: 

• GMR: All bits are zero 

• GBR: Zero value 

• GOR: Zero value 

• GSR:' OMST bits for channels: OX 
(Stopped) 

INT for all channels: 0 (no interrupt 
pending) 

. "- SIR = 0 (1/0 or resident space) 

• All Channel St~tus Registers (CSR): Zero Values 

.MIVR: N,V,= 1 (Vector not valid) 

-' Vector is all 1, rest zero 

- All Stop bits in matrix are reset 

• AIIoii'ler registers (GCR, LVR, SCR, CPRn, SPRn, 
OPRn, TTPRn, LPRn, BCRn, CCRn, COMPRn, 
MASKRn, MTPR) are undefined 

INITIALIZATION AND CHANNEL INVOCATION 

After. RESET, the 82258 has to be initialized by the 
CPU. The General. Mode Register (GMR) should be 
loa,ded first in the. 16 bit systems; the lower byte of 
the GMR (w/:lich gives main configuration informa­
tion) in the 8 bit systems. 

SYSBUS (MEMBUS) bit of the GMR determines the 
physical bus width of the CPU-82258 communica­
tion. All register write and read operations are exe­
cuted: 

- Bytewise on the lower half of the" data bus 
(07-00), if SYSBUS (MEMBUS) == O' 

- wordwise on 015.;..00 if SYSBUS (MEM~US) = 
1. Byte transfers are also possible here with the 
bytes' being transferred on that half of the data 
bus which is addressed by the least significant bit 
of the register address. 

Internally the 82258 use$ BHE and AO tC).detect the 
effective. transfer width of the. 82258---:qPU commu­
nications. After the GMR, the General Burst Register 
(GBR) and the General Delay Register (GOR) 
should be programmed, if needed, (Initial state = 0 
for both), by the CPU. ' 

Before a channel is invoked, the control space in the 
memory and the channel registers in the 82258 have 
to be initialized: 

Selector Channel Start 

Following conditions should be met: 

- channel program in the control space 

- if data chaining enabled, the cha:ining list or the 
linked lists in the control space 

- if trans,late enabled, the translate table in the COn­
trol space 

- load the CPR with the start address of the chan­
, nel program 

Multiplexor Channel Start 

For the-multiplexor channel operation, the following 
is essential: . 

~ the multiplexor table MT in the control space .with 
the subchannel command pOinter and the mask 
register pOinter of the associated' 8259A for each 
subchannel " 

- initialization of the 8259A's mask registers by 
masking off all the request inputs. In the remote 

, mode, this can also be done by the data transfer 
operation on the selector channel (or by stop 
subchannel commands) 

- load MTPR with the base address of the multiple­
xor table (MT) 

For the subchannel start 

, - the subchannel program should be in the control 
space 

- if translate enabled, the translate table should be 
in the control space _ 

- the subchannel command pointer should be in 
the multiplexor table 

- read the multiplexor channel status register 
CSR3. Write a new subchannel number into the 
SCR only if BUSY bit = O. 

In case of a normal .channel start, the last CPU <:>per­
ation is to write the general command into the GCR. 
Then the start will be processed by the 82258 ac­
cording to the requested channel's priority, with the 
hiQhest priority being processed first. If the ad­
dressed channel is already active, the start com­
mand is ignored. If I = 1 in GCR, the INT bit(s) oHhe 
indicatedchannel(s) will be erased in the GSR. 

3-119 



. 82258 

COMMAND EXECUTION 

Selector Channel: The command bits in the GCA 
give the commands available to a selector channel. 
Execution of the continue and the start commands is 
prioritized; the stop commands are executed imme­
diately. The stop command forces the DMA status 
bit (DMST) in the GSA to channel inactive (stopped) 
without any additional routine. The continue com­
mand works directly with internal stored register 
parameters and continues a previously stopped 
channel operation. The start commands define, the 
location of the control space and initiate the set up 
routine. The halt command has multiple functions: 

- It forces the channel into the single step and halt 
mode, indicated by the SSH bit in the CSA 

- If the channel is running, it will be halted after the 
completion of the current command block execu­
tion; the halted data is shown by the H bit of the 
CSA; the DMST bits of the GSA are not changed 

- If the channel is halted (or stopped) the halt/sin~ 
91e step command starts the channel, and the 
channel will again be halted after the completion 
of the next command block execution (type 1 or 
2) 

The .single step and halt mode is finished by a start 
or a continue command. After a channel start, first 
the general status reflected in the GSR is changed 
into 'DMA in organizational processing'. GSR also 
indicates the location of the control space (S/R bit). 
After the prioritization of the start command, the 
channel's set up routine is executed. 

After the set up routine execution, all the transfer 
parameters are accessible in the 82258 internal reg­
isters. The SYN bits in the CCR decide: 

- if the channel activity is continued by an immedi­
ate start of the data transfer (Le., free running 
mode or an internal data' transfer service request) 

- or the channel is waiting for a DMA request Le., 
external synchronization mode. 

Multiplexor Channel: On the multiplexor channel, 
there are two cases: 

a. The whole channel has to be treated bya gen­
eral command 

b. Only the addressed subchannel has to be 
treated by a general command 

a. In case of the whole channel, the commands are 
the same as the selector channel commands. 
Execution of the continue and the stop (stops 
whole channel) is the same. The channel 3 start 
command has only two functions: 

- specify whether the system/memory or the 
resident/IO control space has to be used on 
the, multiplexor channel (S/R bit in GSR) 

....., change of the general status of the channel 3 
(DMST bits in GSR) into "Channel started but 
idling" thus, enabling the 10REQs and the 
Subchannel commands. 

The general channel command "Halt/Single 
Step" has a slightly different interpretation for 
the multiplexor channel. While the selector chan­
nel can only be halted during the chaining of the 
command blocks, the multiplexor channel in the 
single step/halt mode will also be halted when it 
takes the idle state. In that case, a new halt/sin­
gle step command will only be executed if an 
10REQ or a subchannel start/stop command is 
pending. 

b. With the start subchannel command, the 82258 
unmasks the corresponding bit in the 8259A 
mask register for the addressed subchannel, 
thus enabling the subchannel. The BUSY bitin 
the CSR is set indicating the state: "subchannel 
command pending". After prioritization, the sub­
channel routine is executed. When an I/O re­
quest is received on the subchannel, the com­
mand pointer is fetched from the MT and the 
channel's set up routine is executed. After the 
reset of the BUSY bit, a new start/stop subchan­
nel command can be accepted by the multiple­
xor channel. 

Only distinction between the stop subchannel 
command and the start subchannel command is 
the handling of the mask bit in the 8259A. For 
the STOP command, the vector specific mask bit 
is set by the 82258. As the start command, the 
stop command has also to be prioritized before 
execution. 

For the multiplexor channel the following rules 
are observed: 

- Before any 10REQcan be processed, the 
whole channel 3 has to be started and the 
channel 3 must be in the idle state 

- In any state a subchannel command can be 
accepted and transferred into the state "s\lb­
channel command pending" 

- A pending s,ubchannel command can be pro­
cessed only in the idle state 

- In the idle state, a subchannel command has 
a higher priority than an 10REQ 

- In case of a, fatal error stop of a subchannel, 
the whole channel 3 is stopped. L VR identi­
fies the guilty subchannel. To stop (mask) this 
subchahnel, the' CPU at first has to issue a 
STAAT CH3 command and then stop the af-
fected subchannel. . 

3-120' 



inter 82258 

TERMINATION CONDITIONS 

The 82258, distinguishes the fo.llo.wing co.nditio.ns fo.r 
terminatio.n o.f a blo.ck transfer: 
- byte co.unt is zero. and the,data chaining no.t en­

abled; a standard terminatio.n co.nditio.n 
- data chaining enabled and the new fetched byte 

co.unt is zero. 
- external terminatio.n via the channel's EOO line if 

enabled by the EXT bit in the CCR 
- match/mismatch during the masked byte o.r wo.rd 

co.mpare, as specified and enabled in the com­
mand extensio.n CCRX 

- mismatch during a verify & halt o.peratio.n, as 
specified and enabled in the co.mmand extensio.n 
CCRX ' 

- The CPU Io.ading the GCR with a sto.p 'co.mmand, 
tho.ugh,the channel is no.t really terminated. 

INTERRUPT CONTROL 

The 82258 has fo.ur pro.grammable mI5 pins ,(o.ne 
fo.r each, channel) fo.r the C;PU interruptio.n and fo.r 
co.mmunicatio.n with the system enviro.nment. As in­
puts, the EOO pins are used fo.r external terminatio.n, 
enable(i by the EXT bit o.f the type 1 channel com­
mand in the' CCR. When used as o.utPl,lt, the EOO 
pins pro.vide two. basic functio.ns: 

EOO '(end o.f OMA), a channel specific active 
LOW pulse Signal o.f 2 T-states length, always en­
abled by the so.ftware. With a type 1 channel 
co.mmand, EODs, if enabled, are synchro.no.us 
and always co.ntro.lled by the!Jyte co.unt. If data 
chaining is enabled, type 1 EOOs sho.uld no.t be 
used fo.r interrupts since multiple EOOs (witt) ev­
ery exceeding byte coun1) are issued. With a type 
2 command, the EOO, if enabled (EO = 1 in the 
CCR), is an asynchro.no.us signal generated after 
a command executio.n. ' 
INTOUT (interrupt o.utput) is a hardware generat­
'ed (erro.r detectio.n) ,o.r a so.ftware enabled static 
active' HIGH Signal o.n the E002 pin, if pro.­
grammed (ENCI = 1 in the GMR). The channel 
generating the INTOUT is indicated by the, INT bit 
in the GSA. Hardware generated interrupt o.ccurs 
in caSe o.f a fatal errOr (INTOUT issued if no.t 
masked by' the MINT bit in the GMR); Type 2 
channel co.mmand allo.ws so.ftwaregenerated 
INTOUT if pro.grammed (IT = 1 in the CCR and 
no.t masked by the MINT bit in the GMR).,A chan­
nel's INT bit in the GSR is activated independent 
o.f the MINT (inGMR). INTOUT.,remains active 
until all INT bits In the GSA-are reset by the CPU 
with the gen~ral co.mmand CLEAR INTERRUPT. 

Multiplexor Channel Interrupts 

Interrupts fro.m the multiplexo.r channel belo.ng to. a 
certain subchannel. Fo.r pro.gram co.ntro.lled inter-

rupts, the status and the co.ntext info.rmatio.n canno.t 
be fetched fro.m the internal 82258 registers (since 
the multiplexo.r channel is no.t sto.pped). Hence, the 
CPU can o.nly investigate the interrupt via the MIVR 
register. After the MIVR read fro.m the CPU, the valid 
bit and matrix sto.p bit (the vecto.r o.f which was indi­
cated in the MIVR) are eraSed. Fo.r multiple sto.p 
co.nditio.ns in the sto.p matrix, the sto.pped subchan­
nels get their vecto.rs in the MIVR in the prio.rity o.rder 
(highest fo.r vecto.r zero.). The MIVR is activated inde­
pendent o.f the programming o.f EOO o.rINTOUT. 
Therefo.re, the CPU can E1>'ble the MIVRin a po.II­
ing mode when neither no.r' INTOUT is used. 
With the interrupt vecto.r o.ut o.f the MIVR, the CPU 
finds the related co.mmand pointer (in MT) which 
points to. the last executed channel command (sto.p 
and mask). Fo.r status info.rmatio.n o.f last blo.ck trans­
fer, the CPU has to. find the last type 1 co.mmand 
blo.ck in the channel pro.gram. Programmable inter­
mediate interrupt messages sho.uld no.t be used o.n 
the multiplexo.r subchannels (MIVR Is activated o.nly 
fo.r the sto.pped subchannel). 

Fo.r hardware generated INTOUT the who.le channel 
3 is sto.pped with the LVR indicating the last (guilty) 
vecto.r. After the erro.r investigatio.n the CPU sho.uld 
start the channel 3 and thensto.p the, affected sub­
channel. 

FAULT DETECTION' 

On detecting a fatal erro.r, the 82258 does the 
fo.llo.wing: 

immediately sto.ps the affected channel 
sets erro.r bit.in the channel's status register 
sets channel specific tNT bit in the GSR 
sends interrupt if no.t masked (in GMR) 

Fo.r erro.r investigatio.n, the CPU sho.uld: 
read GSR (what channel?, channel sto.pped?) 
read GSR (erro.r?) 
read CPR and investigate the channel ,co.mmand 
(type 1 co.mmand) 
read LVR fo.r multiplexo.r channel, if affected, 
(what subchannel?) 

The 82258 recognizes o.nly type 1 co.mmand erro.rs. 
Other erro.r types are defaulted into. no.n-fatal erro.rs 
and no.t identified. The FE bit in the CSR indicates 
the fatal erro.rs. 

Fatal Errors: Fatal erro.rs are detected during the 
decoding o.f a type 1 channel co.mmandwith the 
GMR. Six conditio.ns are used fo.r detectio.n and the 
a1lo.wed six combinatiqns o.f them lead to. six differ" 
enttransfer executio.ns (Table 7). All o.ther co.mbina­
tio.ns o.f the six co.nditio.ns generate a fatal error. 

3~121 

,~ 

11 
:j 

!J 

i!,,:i 1 
I 
'i 



82258 

.. ' , . . Jable 7 Fatal Error Detection . 
. , > 

CQncilt,lons Decoded Valid . Operation 
·'Comblnatlon ··Slngle No Dst., > NoSre. 

Cycle " :Ptr.· Ptl". 
1 False . False . False 

: 2 . False' FEilse False 

, :' 3 False· False True 

4 False True False 

5 True '. False False .' 

6. True False .Fals~ 

The synchronization error is predecoded and acti­
vated in the following cases: 

Single cycle combined with free running 

. 1\10 ,source. pointer mode' combined with the 
source synchronization on· a selector channel 

No destination pointer combined with the destina­
tion synchronization on. a selector channel 

Non Fatal Errors and Undetected Fatal Errors 

A non fatal error is not indicated in the channel 
stat\Js register. It is only defaulted. Chann,el.process. 
ing is not interrupted. Following are some examples 
of non fatal errors and the -undetected fatal, errors: 

Fault . Action 

Remote mode + 186 RM not inhibitedbLit 
mode read/write pins are also 

used as outputs 

Both. list chaining .and Linked list data chaining 
linked list chaining executed 
enabled :. 

Start/Stop subdharinel New command 
and BUSY active overWrites old cpmmand 

(Fatal Error) 

Data chaining enabled MTPR is overwritten with 
on themyltiplexor the list pointer 
channel ' , ,(F atall;r~Qr) 

, 

TRANSFER RATES 

Selector Channel 

Table 8, illustrates the different transfer rates .. (in 
MBytes/sec) .for the 286: mode of .0peration.These 
transfer rates are not-affected by switching channels 
and are halved for both 186 and 86 modes of opera­
tion. 

Verify Trans- Sync. Performed 
& Save late Error 

False F~lse - Two Cycle DMA 

False True - Translate 

False False False No SourcePtr. DMA 

False False False No Dest. Ptr. D~A 

False False False Single Cyc. DMA 

True False False Verify & Save 

Table 8. Cummulatlve Selector Channel 
Transfer Rates (8 MHz 286 System) 

Transfer Single Cycle Two Cycle 

Word - Word 8 4 

: Word - Byte not possible 2.6.6 

Byte - Word not possible '. 2.66 

Byte -.Byte 4 2 

Byte- Bytew! not possible 800 KBytes 
Translate , 

Multiplexor Chan,nel 

The transfer rates' on the multiplei<or chlmnel . are 
different from the selector cilianneland depend on 
the mode of operation and the size' of the command 
block. . 

Table 9. Climmiilative Multiplexor . 
Channel Transfer Rates 

Mode 
Command Word Byte 

Block Trallsfers Transfers 
Byte/ short 275 KBytes/sec 138 KBytes/sec 
Word 

Mul~ex long 240 KBytes/sec 1'20 KByteslsec 

Block short 4 MBytes/sec 2 MBytes/sec 

Multiplex . long, 4 MBytes/sec 2 MBytes/sec 
',' 

Data Chaining , 

The .transfer rate for· data chaining depends ort the 
block.l!ilngth of each chained data,block,.the number 
of block!Hn the chain and also. the> type of 'chaining 
that is being done. See the section on data chaining 
latenCies. . " . , 

3-122 



infef 82258 

LATENCIES 

The latency calculations do not take into account set 
up, hold and output delay times which are specified 
in the A.C. Characteristics section. These should be 
added to get the final latency figures. All timings are 
in units of T-states (125 ns in an 8 MHz system). If 
bus cycles are involved then the following abbrevia­
tions are used: 

T = time for one bus transfer 

W = wait time during bus cycles for a slow device 

In case of various influences affecting the timing, the 
most typical case is mentioned in the table and ex­
plained in notes. 

DMA Request Processing: 

Assumptions: 

1. The ch~nnel for which latencies are calculated 
currently has the highest priority and will not be 
blocked by other still higher priority requests. 

2. In remote mode delays due to CPU accesses to 
the 82258 are not taken into account for laten­
cies. 

3. All control space accesses are on a 16 bit bus 
and command blocks and data chain lists are ad­
dressed on even boundaries. 

4. Organizational and other ur'lsynchronized trans­
fers (e.g. prefetch) have been completed before 
the processing of DREQ starts; 

0.5 BJ 

231263-29 

Figure 32. DREQ to DACK Latency in Local Mode" 

Table 10 DREQ to DACK In Local Mode" 

Minimum Typical Maximum 

DREQtoHOLD 2.5 3 3 + W (1) (2) 

HOLD to HLDA 1 4.5 (3) 

HLDA to CYCLE START 1.5 2.5 2.5 

DREQ to CYCLE START 
2 2.5 4 + W(1) 

(without bus arbitration) 

CYCLE START to DACK 0.5 0.5 0.5 

Notes are indicated in parenthesis 
"All timings are in units of T-states (125 ns in an 8 MHz system). If bus 

cycles are involved then the following abbreviations are used: 
T = Time for one bus transfer 
W = Wait time during bus cycles for a slow device 

I( 

I~ 



I DREQ t ... 1_1'_5_~_ .... ~.:. 

RESIDENT 
BUS 
REQUEST 

82258 

Figure 33. DREQ to DACK Latency In Remote Mode· 

Table 11. DREQ to DACK In Remote Mode" 

DREQ to HOLDset 

HOLDset to HLDAset 

HOLDAset TO CYCLE START 

DREQ to HOLDreset 

HOLDreset to HLDAreset 

HLDAreset to CYCLE START 

DREQ to CYCLE START 
(without bus change) 

CYCLE START to DACK 

Notes: 
(1) Single bus cycle running: 1 + W 

unseparable bus cycles running: 

Minimum 

2.5 

2BC 

1.5 

1.5 

1 

1.5 

2 

0.5 

Typical Maximum 

3 3 + W (1) (2) 

2 + 2BC (4) 

2 2.5 

3 5.5+ W(1) 

2 2 

2 2.5 

3.5 5 + W (1) 

0.5 0 .. 5 

. -word access at odd addresses (and pOinter transfers): 3 + 2W 
-IOACK cycle (only multiplexor channel): 7 + 2W 

(2) General Burst Counter = 0: 2 x GDR 
HLDA = 1, HOLD = 0: Walt for HLDA = 0 
HLDA lost: 2 

(3) 16 + 15W (from the 286 manual, assumed repeat and lock prefix not combined) 
(4) Bus arbitration + currentty running bus transfers. 

BC = Multlbus clock cycle. 
• All timings are in units ofT-states (125 ns in an 8 MHz system); 

If bus cycles are involved then the following abbreviations are used: 
T = Time for one bus transfer 
W = Walt time during bus cycles for a slow device 

3-124 

231263-30 



82258 

General Command Processing:' 

Minimum Typical Maximum 
WRITE to Set Up 6.5 8 9.5 

+ HOLD/HOLDA sequence 

At this point the start command is ready for the start 
of the channel set up routine 

Set Up Processing:' 

Standard command block 
additional for long command block 
additional for list data chaining 
additional for linked list data chaining 

Type 1 Command Processing:' 

Chaining : same as the set up processing 

Termination: 
store CSR and calculate next 
comm~nd pointer 
store status block (if programmed) 

Type 2 Command Processing:' 

Standard: 
CCR load 
CCR decode and execution 
additional for jump 

:7T + 4 
:5T 
: 1T + 2 
:3T + 2 

: 1T + 6 
:6T 

1T 
2T + 2 
4 

START/STOP Subchannel:* 

(see General Command Processing for set up) 

Execution :4T + 6 

Multiplexor Channel:' 

(see General Command Processing for set up) 

IOREQ to IOACK : identical to DREQ to DACK timing 
First IOACK to second IOACK : 1 T + 2 
Second IOACK to vector in L VR : 1T + 2 
,Calculate MT address and read 
command pointer into CPR 
Data transfer 
Restore pointers 
Restore byte count 

Data Chaining:' 

:2T + 4 
:2T + 2 
:4T + 4 
:2T 

Latencies in data chaining occur when transfers are 
changed between data blocks. 

List Chaining 
Linked List Chaining 

:3T + 6 
:5T + 6 

• All timings are in units of T-states (125 ns.in an 8 MHz 
system). 

If bus cycles are involved then the following abbreviations 
are used: 

T = Time for one bus transfer 
W = Wait time during bus cycles for a slow device 

3-125 

.. ~ 
:1 
! 

; 
Ii 
1'1. 

~ 
I'" 

.1 



822~8 

Absolute Maximum Ratings 

Ambient Temperature Under Bias 
Case Temperature 

, Storage Temperature 
Voltage on Any Pin with 

Respect to Ground 
Power Dissipation 

O"Ct055~C 

0·Ct085·C 
-65·Cto + 150·C 

-1.0Vto +?'!I 
3.6 Watt 

*Notice: Stresses abo'{8t(lose list¢ under':Abso­
lute Maximum Ratings" may cause permanent dam­
age· to' the device. This is' ii stress rating only and· 
furidtionaloperation of thedeviceiltlhese Or'any 
other conditions above thOse indicated in the opera­
tional sections of this specification is not implied. Ex­
posure to alisolute maximum ratingcoriditions for 
extended periods may affect device reliability. . 

D.C. Characterlstlcsvcc= 5V ±5%; TA =<>"C to + 55·C, or TCASE= o·C to +85·C ,. 

Symbol Parameter 
Limit Values ' Units Test Conditions 

Min Max 

VIL Input low Voltage "'0.5 +0.8. 
(except ClK) 

-
VIH Input High Voltage 2.0 Vee + 0.5 Y 

(except ClK) 

VOL Output low Voltage - 0.45 IOL = 3.00 rnA 

.'. VOH Output High Voltage 2.4 - 10H = ~400 p.A 

Icc Power Supply Current 475 mA TA = O"C, 
370 . TA'= 55· 

all o~tputsopen 

ILl Input leakage Current ±10 p.A OV s: VIN s: vcc. 

ILO Output Leakage Current 

SO, ST, 'S2, BHE, RD, -200 p.A 

WR,MIIO - 0.45V :5;; VOUT= Vee 
, HOLD (RQIGT mode), EOD -1.5 rnA 

other pins ± 10 p.A 

VCL Clock Input low Voltage -0.5 +0.6 
V -

VCH Clock Input High Voltage 3.8 Vcc+ 1.O 

CIN Capacitance of Inputs 10 
(except ClK) 

Co Capacitance of I/O or - 20 pF fc = 1 MHz 
Outputs 

CClK Capacitance of ClK Input 12 

3;.:126 



inter 82258 

A.C. Characteristics Vcc=5V ±5%; TA=O·Cto + 55·C, or TCASE=O·Cto + 85·C 

AC timings are referenced to 0.8V and 2.0V points of signals as illustrated in datasheet waveforms, unless 
otherwise noted 

Sym Parameter 
6MHz 8 MHz 

Unit Test Conditions 
Min Max Min Max 

1 ClK Cycle Period (286 Mode) 83 250 62 250 ns 

2 ClK low Time (286 Mode) 20 225 15 230 ns at 1.0V 

3 ClK High Time (286 Mode) 25 230 20 235 ns at 3.6V 

4 Output Valid Delay 1- 80 1- 60 ns Cl = 125 pF 

5 Output Valid Delay 1- 55 1- 40 ns Cl = 125 pF 

6 Data Setup Time 15 10 ns 

6a Address Input Setup (186 Mode) 20 15 ns 

7 Data Hold Time 8 5 ns 

8 READY Setup Time 50 38 ns 

9 READY Hold Time 35 25 ns 

10 Input Setup Time 25 20 ns 

10a Status Setup Time (186 Mode) 30 30 ns 

11 Input Hold Time 25 20 ns 

11a SHE Hold Time (186 Mode) 15 10 ns 

12 Address Setup Time 3 2 ns 

13 Data Valid Delay 0 60 0 50 ns 

14 Data Float Delay 8 80 5 60 ns 

15 Chip Select Setup 30 20 ns 

16 Command length 320 290 ns 

17 Data Setup Time 185 165 ns 

18 Address Setup Time 30 20 ns 

19 Command Inactive 320 290 ns 

19a Access Time 420 380 ns 

20 ClK Period (186 Mode) 166 500 125 500 ns 

21 ClK low Time (186 Mode) 76 55 ns 

22 ClK High Time (186 Mode) 76 55 ns 

23 ClK Rise Time (186 Mode) 15 15 ns 

24 ClK Fall Time (186 Mode) 15 15 ns 

25 . READY Active Setup Time 20 20 ns 

26 READY Hold Time 10 10 ns 

26a SREAD'Y Hold Time (186 Mode) 15 15 ns 

27 READY Inactive SetupTime 35 35 ns 

28 Control Reset Setup Time 25 20 ns 

29 Control Reset Hold Time 0 0 ns 

30 Address/Data Valid Delay 10 55 10 50 ns 

31 Status Delay 10 75 10 55 ns 

32 Address/Data Float Delay 10 50 10 50 ns 

33 DT /R Delay (186 Mode) 10 76 10 55 ns 

34 DEN Delay (186 Mode) 10 80 10 60 ns 

3-127 



82258 

A.C. MEASUREMENT POINT>OESCRIPTION 
~----------------------~--------~ 

4.00 V 
. 3.BVV -J -

100V I-
0.45V ----

A.CLK Input 

2.40 V ,., 
O.SV -

0.45 V 

\.3'6V . 
. - 100V 

231263-31 

-\- 2 •• 0V 

\O.SV 
'----

231263-32 

B. Outputs and Other'lnputs 

Figure 33a. AC Drive and Measurement Points 

CLK 
INPUT 

4.00 V 

0.46 V 

0=1 T C1. = 150pF" 

231263-53 

_ Figure 33b. AC.Test Loading on Outputs 

-3.BV 

1.0V 

_TSETUP- ----'-T HOLD '----

OTHER 
DEVICE 
INPUTS· 

~' 
X 

Ih 
IJ 

It. 

~I 1/ 2.0V 2.0V" 

:X 

~, \. O.SV O.SV I 

~\ {'J. '(/ J( :X 
X X 
X :X 

.~ 7/ Y 
~TDELAY-

DEVICE 
OUTPUT 

~ . I 

Ii. 
I 

I 

.ll 

'/ '2.0V 
X 
II 

X 
.\ O.SV 

231263-33 

Figure 34. AC Setup, Hold and Delay Time Measurement-Gener~1 

BUS CYCLE T-STATES: T1: 

The' bus cycles are subdivided into T -states which 
are interpreted differently depending on whether the 
82258 is in the 286, mode or the 186 mode. ' T21: 

286 ModeT-states: Each T·state is two clock cy. 
cles long and starts in- the middle of a processor -
cycle and ends in the middle of thesuccaeding proc· 
essor cycle. 

TI: [The bus is idle] This state will occur if the 
82258 C8.n110t start the next bus cycle. . T20: 

TO: [A -new bus cycle is beginning] When the 
address and status (jf Ii new bus cycle is to 
be sent as output; this state is used. 

3-128 

[A bus cycle is proceeding] This state is 
used to allow the bus controller commands 
to become active and, to output data during 
a write Cycle. _ 

[A bus cycl.e is prepared for termination with 
no new cycle ready. to beginllf the REAi5Y 
signal is active and no new bus cycle is 
readY to begin, this will be the state used. 
Inputdata will be accepted during this state 
if the READY Signal is active and ·if the bus 
cycle is an input cycle. 

[A bus cycle is prepared for termination with 
a new cycle ready to begin}. This state ter­
minates a bus cycle if the READY signal is 
active and if a new bus cycle is ready. to _ 



inter 82258 

begin. As with the T21 state, input data will 
be. accepted during this state if the cycle is 
an input cycle and if the READY Signal is 
active. This state will also output the ad­
dress of the new bus cycle, and if READY is 
active, the status also. 

186 Mode T-states: The T-states are one elK peri­
od long, beginning and ending with the falling edge 
of the elK signal. 
TI: [The bus is idlel This state occurs if the 

82258 cannot start the following bus cycle. 
T1: [The first bus cycle T-statel During this 

state, address information is output to the 
A19/56-A16/53 and ADt5-ADO pins. The 
status is activated with the rising edge of 
the elK previous to this state. 

Waveforms 

T2: 

T3: 

T4: 

PROCESSOR STATES 

Ts I 
TO OR T20 T1 

ClK 

[The second bus cycle T-statel This state 
allows the bus controller and the 82258 
commands to become active and outputs 
data if the cycle is a write cycle. 

[The third bus cycle T-statel This state is 
used to synchronize the ready signals. If the 
bus is not ready, then the bus cycle is ex­
tended by repeating this state, with the 
status lines going inactive during the last 
T3-state. 
[The last bus cycle T-statel During this cy­
cle, data is input for input cycles and the 
bus controller and the 82258 commands 
are disactivated. If the following state is T1, 
then the status is activated during this state. 

T21 OR T20 
NOTE 2 

A23-AO.t.C/iO ---...... 'I'-+----~---+------_'f"""""l---_t_----

BHE _____ +-~ __ ~--_+------~~~--~-------

015-00 (INPUT) FLOAT 

-13--
015-00 (OUTPUT) -----+----~w_---------_t---_t_-r--

NOTE1 _____ +-___ ~~--------~---~-~--

NOTES: 

EOOn 
NOTE3 

--4~~ __ . ____________________ __ 

1.015-00 floats during Single Cycle Transfer like a Read Cycle. 
2. T2 will be repeated, if READY is inactive. 
3. Initiated by terminal count. 

Figure 35. Timing of an Active Bus Cycle (286 and Remote Modes) 

3-129 

231263-34 



NOTES: 

ALE 
iUi.iii 

DJIR 
READ l

AD1~ 

lUll cw:u DElI 

WRITE 
1U8 cw:u 

iiiilOl/l) 

-IIDJE< 

iiiii 
IIDJE4 

iiiiilOl/l) 

r-.... 
""~ 
-=:~I< 

-t-.... 

==-

-=" 

;!.!!f 

-<> 

82258 

n 12 

NOIE5 
II'1lI 

r-'I 

13 

,--,""'" ~ ~ 
' ... '_I--.,. ... 311<>-

J:-
l1li1<>- ... l1li1+-
A-A -1IIIi4= 
x 

III!I!: ...:! ~I+- FUIIIT 
1-,-... 

X- _IN 

-=" !!J+"" .... 
-t-... 34 .... 

-t 

311~ _ .... 3111-

x-x _OUT 

~4\1 
_=,,",4ft- .... 

-t-

.,. 

~ r.-f I'-' 

r ••••• ' 
- ._---

\. ----.' -X 

-IX ,-
7 J., 

FUIIIT 

-=. 331;:: i---.,.. ------3414 .,. 
3414-.,. 

... JOt: 
x .... 4~ f--.,. 

4t!:: .,. 
231263-35 

4. For a Single Cycle Transfer the timings of AD15-ADO, DEN and DT/A are the same as in a Read Bus Cycle. 
5. Additional T3 cycles will be inserted if bus is not ready (see Figure 40). 

Figure 36. Timing of an Active Bus Cycle (186 and 8086 Modes) 

eLI( 

ii.iii 
~NP\lT) 

A7-NJ. 
tlHPIIT) 

FOIl WRITE: 015-00 

FOR READ: DlS-DO 

Figure 37. Timing of a Synchronous Access to the 82258 (286 Mode) 

3-130 

231263-36 



CLK 

AREADY 

SREADY 

ii,i1,ii 

ClK 

WITHOUT 
BUS ARBITRATION: 

DREOn 

WITH 
BUS ARBITRAnON: 

OREOn 

82258 

12tT3 13 12tT3 13 

'tl u 
t1' , 

BUS READY BUS NOT READY 

231263-39 

Figure 40. READY Timing (186 Mode) 

10 

---l~---~~~--~--~--HOLD II ~ 

HlOA -----U--~------"1 

SI,SO 

OACKn-------~ll~--------------------

231263-40 

NOTE: 
6. The trailing edge of DREQn, as specified in this diagram, is necessary if only one bus cycle should be executed. 

A later trailing edge may cause an additional bus cycle (continuous DREQ), if no READY-wait-states are inserted. 

Figure 41. DREQ, DACK Timing (286 and Remote Modes) 

3-132 



82258 

T1 12 1'3 14 

CUI 

i1,ii 

WRITE: 
AD15-ADO 

READ: 
AD15-ADO 

13 I-
~ DATA OUT 

Figure 38. Timing of a Synchronous Access to the 82258 (186 and 8086 Modes) 

A7-A8, 
BHE 

WRITE: 
WR 

015-1lO 
(AII15-AOO) 

READ: 
Rii 

015-00 
(AD15-ADD) 

=1:-' ~---F 
18-- - 11 

1\ f 

1+-10-- - 11 '1-

I 
17 11f=_ 

X 

16 ~ 19 

I" 198 -- 14 

Figure 39. Timing of an Asynchronous Access to the 82258 (All Modes) 

3-131 

231263-37 

231263-38 



82258 

~~----------'I 

- ~.~'----------~~~ 

~~U ______ ~.~ ________________________ ~ ____________ ~+-_____ ~ _________ ~ ___ -+ ______ ~ __ _ 
\._--

m6 ~'~-------------------------------i 

231263-41 

NOTE: 
The DREQ and DArn< signal timings are the same for the 8086 mode. 

Figure 42. DREQ, DACK Timing (186 Mode) 

cue 

IREL 
231263-42. 

Flgu" 43. BREL,Bu8 Trl8tate Timing (Remote Mode) 

3-133 



intJ 

CLK 

RESET 

H~ 
(ONLY IN 188 MODE) 

CLK 

HOLD 

HLOA 

BUS 
ACTIVITY 

NOTE: 

82258 

HOLOIH~ MOOE 1m/lIT MODE 

Figure 44. RESET Timing (All Modes) 

I T-SI'ATE I 

)' ?~I j) 
SEE NOTE. .... 

TO~?+-T2 

h '1 l { 

See Figures 32, 33 and Table 10, 11 for HLDA to Cycle Start Latency. 

Figure 45. HOLD, HLDA Timing (286 and Remote Modes) 

3-134 

29 

231263-43 

231263-44 ' 



inter 

NOTE: 

CLK 

HOLD 

HLOA 

BUS 
ACTIVITY 

82258 

SEE NOTE 

See Figure 32 and Table 10 for HLDA to Cycle Start Latency. 

Figure 46. HOLD, HLDA Timing (186 Mode) 

CLK 

Figure 47. RQ/GT Timing (8086 Mode) 

3-135 

231263-45 

23,1263-46 



CLI( 

(ACTIVE 
HIGH) 

EOOn 
(OUTPUT) 

EOOn 
(INPUT) 

CI.I( 

INTOUT 
(EliDc 2 PIN) 

EOOn 
(OUTPUT) 

EOOn 
ONPUT) 

82258 

1+---- T • Sl'ATE -----+I 

------t "1--------
231263-47 

Figure 48. INTOUT, EOD Timing (286 and Remote Modes) 

1+----2 T-srATES ---+I 

-=t"j--
231263-48 

Figure 49. INTOUT, EOD Timing (186 and 8086 Modes) 



inter 82258 

PROCESSOR STIIT£S 
T8 TC I . 

82258 STIIT£S TO OR Ta T2I ORTZO 

CLOCK [ 

A2M. MIiii [ __ ~X", ___ SO_U_RCE __ ADIIIIESS ___ VAUD ___ ~x", __ _ 

BHE [ _____ ..JX"' ___ VALlD_COIIT_ROl ___ >C 

moft [ \"' ____ -..J1 

D15-oa [ --.--------~------.««< VAUD WRITE DATA »»-------
READY [ ______________ ...1\ ___ ""1 ____ _ 

iiiiiii (OUTPUT) [ \~.--~------------_' 231263-49 

Figure 50. Single Cycle Transfer (286 Mode) 

3·137 



~ c 
; 
en 
~ 

'i 
0 

!J 
'f' n .... ii 
(oJ .... CD ii1 

:;, 
!. • .. -,I\) 
I 
I: 
0 
Do 
.!. 

READ &'/ClE VIRITE C'ICI.E 
PROCESSOR SIlII'ES TS I T~ I TS I TC 

82251 SIlII'ES T, OR Ta Tt Ta Tt T21 OR Ta 

CLOCK [ 

A23-A1J, MIiii [ X SOURCE ADDRESS VAUD >c:X DESnUIlDN ADDRESS VAUD X\,, ____ _ 

BHE [ X VAUD CONTROL >c:J< VAUD CDNllIDl x: 
II·Sf [ \ I- L.:..J 

VAUD 

1J15..DD[ --.--------------------~------~.-.(«<< ,¥AUD WRITE DA1l ).>..»----
IMTA 

READY [ , I , t 

EDIIII IDIJlI'\II) [ , -, 
23t263-50 

l 

C» 

~ g: 



inter 

(Note 2) 

~ ~ ~ ...LTC 

CLK,~ 

Tron'fer~f 
Subchannel 
Number 4 

IOACK 
(ADMA) 

INTA ------+ ... 
(82C288) '--U-----II-'I 

Modification 
of Mask Bits 

82258 

TI TI 1$ TC 

Bus 

ViR 
BWlth 

-----------it"------------------- Controller 

231263-58 

NOTES: 
1. These timing8 are 82C288 timings. 
2. Additional wait states may be inserted. 

Figure 52. Access to 8259A In 80286 and Remote Modes. 

3-139 

II 
1;1 
~ ii' 
~ I" :' 

I 
I· I: 

I ~ " 

l~ 
! 



82258 

(Note 2) 

___ . . __ J Tl_ I T2.! . .13 

CLK~ 
Transfer of· ~ 
Subchannel 
Number .... 4 

IOACK 
(ADMA) 

INTA -------------+~ 
(8288A) --~!-~I-'I 

Modification 
of Mask Bits . 

(Note 2) 

TCLML (Note I)} With 

Bus 1\--------- Controller 

4 

(Note 1) TCLML - TCLMH (Note 1) 

Rii 

____________ (I~S----------------tTCLML 
WR _ 

] 
With 

(Note 1) Bus 
Controller 

231263-59 

NOTES: 
1. These timings are 8288A timings. 
2. Additional wait states may be inserted. 

Figure 53. Access to 8259A in 8086 and 80186 Modes 

DATA SHEET REVISION REVIEW 

The following list represents key differences be­
tween this and the -003 82258 data sheet. Please 
review this summary carefully. 

1. Figure 35 was updated. The new timing diagram 
now illustrates DACKN #, IOACK #, and EODn # 
timings during active bus cycles in the 80286 and 
remote modes. 

2. Figure 37 was updated. The new timing diagram 
now illustrates the READY # signal during a syn­
chronous access to the 82258. 

3. Figure 41 was updated. The new timing diagram 
completely separates the DREQ, DACK # timings 
from "without bus arbitration" and "with bus arbi­
tration". 

4. Two new timing illustrations were added to the 
82258 data sheet. Figure 52 illustrates bus ac­
cesses to the 8259A in 80286 and remote modes, 
and Figure 53 illustrates bus accesses to the 
8259A in 80186 and 8086 modes. 

5. A note to the DREQ pin description was added to 
advise designers to leave unused DREQn inputs 
left floating. 

3-140 



• 
• 
• 

82288 
BUS CONTROLLER FOR 80286 PROCESSORS 

(82288-12, 82288-10, 82288-8) 
Provides Commands and Controls for • Optional MUL TIBUS® Compatible 
Local and System Bus Timing 

Wide Flexibility In System • Single + 5V Supply 
Configurations • Available in 20 Pin Cerdip Package 
Flexible Comllland Timing (See Packaging Spec, Order .. 231369) 

The Intel 82288 Bus Controller is a 20-pin HMOS component for use in 80286 microsystems. The bus control- . 
ler provides command and control outputs with flexible timing options. Separate command outputs are used 
for memory and liD devices. The data bus is controlled with separate data enable and direction control 
signals. 

Two modes of operation are possible via a strapping option: MUL TIBUS® I compatible bus cycles, and high 
speed bus cycles. 

STATUS 

[ so 
§1 STATUS 

DECODER 
M/iO 

ClK-t-'-i 
CONTROL 

INPUTS 

CEN/AEN 

CENl 

CMDlY 

iiEADv 

MB 

~ATE 
COMMAND 
OUTPUTS 

~] ~ i'OR 
~ 
II\Im 

210471-1 

Figure 1. 82288 Block Diagram 

3-141 

20 Pin Cerdip Package 

mi5V VCC 

ClK so 
§1 M/iO 

MCE DT/A 

ALE DEN 

MB CENIAEN 

CMDlY CENl 

MiiDc INTA 

MWTC iO'iW 

GND iOWC 

210471-2 

Figure 2. 82288 Pin Configuration 

November 1988 
Order Number: 210471·007 



82288 

Table 1. Pin Description 

The following pin function descriptions are for the 82288 bus controller. 

Symbol Type Name and Function 

eLK I SYSTEM CLOCK provides the basic timing control for the 82288 in an 80286 
microsystem. Its frequency is twice the internal processor clock frequency. The falling 
edge of this input signal establishes when inputs are sampled and command and control 
outputs change. 

~,ST I BUS CYCLE STATUS starts a bus cycle and, along with M/R5, defines the ty;Of bus 
cycle. These inputs are active LOW. A bus cycle is started when either S1 or 0 is 
sampled LOW at the falling edge of CLK. Setup and hold times must be met for proper 
operation. 

80286.Bu8 Cycle StatU8 Definition 

MIlO S1 SO Type of BU8 Cycle 

0 0 0 Interrupt Acknowledge 
0 0 1 I/O Read 
0 1 0 I/O Write 
0 1 1 None; Idle 
1 0 0 Halt or Shutdown 
1 0 1 Memory Read 
1 1 0 Memory Write 
1 1 1 None; Idle 

MtiC5 I MEMORY OR I/O SELECT determines whether the current bus cycle is in the memory 
, space or I/O space. When LOW, the current bus cycle is in the I/O space. Setup and 
hold times must be met for proper operation . 

MB I . MUL TIBUS MODE SELECT determines. timing of the command and control outputs. 
When H}GH, the bus controller operates With MUl TIBUS I compatible timings. When 
LOW, the bus controller optimizes the command and control output timing fOr short bus 
cycles. The function of the CENt AEN input pin is selected by this .signal. This input is 
typically a strapping option and not dynamically changed.· 

CENl I COMMAND ENABLE LATCHED is a bus controller select signal which enables the bus 
controller to respond to the current bus cycle being initiated. CENL is an active HIGH 
input latched internally at the end of each T s cycle. CENl is used to select the 
appropriate bus controller for each bus cycle in a system where the CPU has more than 
one bus it can use. This input may be connected to Vee to select this 82288 for all 
transfers. No control inputs affect CENL. Setup and hold times must be met for proper 

,. operation. 

.CMDLY I COMMAND DELAY allows delaying the start of a command. CMDl Y is an active HIGH 
input. If sampled HIGH, the command output is not activated and CMDL Y is again 
sampled at the next ClK cycle. When sampled lOW the selected command is enabled. If 
READY is detected LOW before the command output is activated, the 82288 will 
terminate the bus cycle, even if no command was issued. Setup and hold times must be 
satisfied for proper operation. This input may be connected to GND if no delays are 
required before starting a command. This input has no effect on 82288 control outputs. 

READY I READY indicates the end of the current bus cycle. READY is an active LOW input. 
MUl TIBUS I mode requires at least one wait state to allow the command outputs to 
become active. READY must be lOW during reset, to force the 82288 into the idle state. 
Setup and hold times must be met for proper operation. The 82C284-drives READY lOW 
during RESET. 

3·142 



82288 

Table 1. Pin Description (Continued) 
Symbol Type Name and Function 

CEN/AEN I COMMAND ENABLEI ADDRESS ENABLE controls the command and DEN 
outputs of the bus controller. CEN/AEN inputs may be asynchronous to CLK. 
Setup and hold times are given to assure a guaranteed response to 
synchronous inputs. This input may be connected to Vee or GND. 
When MB is HIGH this pin has the AEFJ function. AEFJ is an active LOW input 
which indicates that the CPU has been granted use of a shared bus and the 
bus contoller command outputs may exit 3-state OFF and become inactive 
(HIGH). A,EN HIGH indicates that the CPU does not have control of the shared 
bus and forces the command outputs into 3-state OFF and DEN inactive 
(LOW). 
When MB is LOW this pin has the CEN function. CEN is an unlatched active 
HIGH input which allowS-the bus controller to activate its command and DEN 
outputs. With MB LOW, CEN LOW forces the command and DEN outputs 
inactive but does not tristate them. 

ALE 0 ADDRESS LATCH ENABLE controls the address latches used to hold an 
address stable during a bus cycle. This control output is active HIGH. ALE will 
not be issued for the halt bus cycle and is not affected by any of the control 
inputs. 

MCE 0 MASTER CASCADE ENABLE signals that a cascade address from a master 
8259A interrupt con,roller may be placed onto the CPU address bus for 
latching by the address latches under ALE control. The CPU's address,bus 
may then be used to broadcast the cascade address to slave intel1\lpt 
controllers so only one of them will respond to the interrupt acknowledge cycle. 
This control output is active HIGH. MCE is only active during interrUPt '. ' 
acknowledge cycles and is not affected by any control input. USing MCE to 
enable cascade address drivers requires latches which save tile cascade 
address on the falling edge of ALE. 

DEN 0 DATA ENABLE controls when data transceivers connected to the local data 
bus should be enabled. DEN is an active HIGH cont~ol output. DEN is delayed 
for write cycles in the MUL TIBUS I mode. 

DTIR 0 DAtA TRANSMIT IRECEIVE establishes the direction of data flow to or from 
the local data bus. When HIGH. this control output indicates that a write bus 
cycle is being performed. A LOW indicates a read bus cycle. DEN is always 
inactive wh!.n DT lFf changes states. This output is HIGH when no bus cycle is 
active. DT IR is not affected by any of the control inputs. 

IOWC ,0 1/0 WRITE COMMAND instructs an 1/0 device to read the data on the data 
bus. This command output is active LOW. The MB and CMDL Y inputs control 
when this output becomes active. READY controls when it becomes inactive. 

~ 0 ' 1/0 READ COMMAND instructs an 1/0 device to place data onto the data bus. 
This command output is active LOW. The MB and CMDL Y inputs control when 
this output becomes active. READY controls when it becolTies inactive. ' . 

MWiC 0 MEMORY WRITE CO.MANDinstructs a memory device to read the data on 
the data bus. This command output is active LOW. The MB and CMDLY inputs 
control when this output becomes active. t=t~ADY controls when it becomes , 
inactive. ' 

MRDe 0 MEMORY READ COMMAND instructs the memory,device to place data onto " 
the data bus. This command output is active LOW. The MB and CMDL Y inputs 
control when this output becomes active. READY controls when it becomes 
inactive. 

3-143 



82288 

Table 1. Pin Description (Continued) 

Symbol Type .. Name and Function 

INTA 0 INTERRUPT ACKNOWLEDGE tells an interrupting device that its interrupt 
request is being acknowledged. This command output is active LOW. The MB 
and CMDL Y inputs control when this output becomes active. READY controls 
when it becomes inactive . 

. Vee System Power: + 5V Power Supply 

GND System Ground: OV 

Table 2 Command and Control Outputs for Each Type of Bus Cycle 

Type of 
MilO S1 SO Bus Cycle 

Interrupt Acknowledge 0 0 0 

I/O Read 0 0 1 

1/0 Write 0 1 0 

None; Idle 0 1 1 

Halt/Shutdown 1 0 0 

Memory Read 1 0 1 

Memory Write . 1 1 0 

None; Idle 1 1 1 

Operating Modes 

Two types of buses are supported by the 82288: 
MULTIBUS I andnon-MULTIBUS I. When the MB 
input is strapped HIGH, MUL TIBUS I timing is used. 
In MUL TIBUS.I mode, the 82288 delays command 
and data activation to meet .IEEEc796 requirements 
on address to command active and write data to 
command active setup timing. MUL TIBUS I mode 
requires at least one wait state in the bus pyclesince 
the command outputs are delayed. The non­
MUL TIBUSI mode does not delay any outputs and 
does not require wait states. The MB input affects 
the timing ofthe command and DEN outputs. 

Command and Control Outputs 

The type of bus cycle performed· by the local bus 
master is encoded in the MilO, 51, and SO inputs. 
Different command and control outputs are activat­
ed depending on the type of bus cycle. Table 2 indi­
cates the cycle decode done by the 82288 and the 
effect on command, OT lA', ALE, DEN, and MCE out­
puts. 

Command DT/R ALE,DEN MCE 
Activated State Issued? Issued? 

INTA LOW YES YES 

10RC LOW YES NO 

IOWC HIGH YES NO 

None HIGH NO NO 

None ... HIGH NO NO 

MRDC. LOW YES NO 

MWTC HIGH YES NO 

None HIGH NO NO 

Bus cycles. come in three forms: read, write, and 
halt. Read bus cycles include memory read, 1/0 
read, and interrupt acknowledge. The timing of the 
associated read. command outputs (MRDC, 10RC, 
and INTA), control outputs (ALE, DEN, DT/A) and 
control inputs (CEN/ AEN,CENL, CMDL Y, MB, and 
READY) are identical for all read bus cycles. Read 
cycles differ only in which command output is acti­
vated. The MCE control output is only asserted dur­
ing interrupt acknowledge cycles. 

Write.bus cycles activate different control and com­
mand outputs with different timing than read bus cy­
cles. Memory write and 1/0 write are write bus cy­
cles whose timing for command outputs (MWTCand 
10WC),control outPEts (ALE, DEN, DT/A) and con­
trol~puts (CENI A N, CENL, CMDL Y, MB, and 
REA Y) are identical. They differ only in which com­
mand output is activated. 

Halt· bus cycles are different because no command 
or control output. is activated. All control inputs are 
~ored until the next bus cycle is started via 51 and 
SO. 

3-144 



inter 82288 

FUNCTIONAL DESCRIPTION 

Introduction 

The 82288 bus controller is used in 80286 systems 
to provide address latch control, data transceiver 
control, and standard level-type command outputs. 
The command outputs are timed and have sufficient 
drive capabilities for large TTL buses and meet all 
IEEE-796 requirements for MUlTIBUS I. A special 
MUl TIBUS I mode is provided to satisfy all address/ 
data setup and hold time requirements. Command 
timing may be tailored to special needs via a CMDl Y 
input to determine the start of a command and 
READY to determine the end of a command. 

Connection to multiple buses are supported with a 
latched enable input (CENl). An address decoder 
can determine which, if any, bus controller should be 
enabled for the bus cycle. This input is latched to 
allow an address decoder to take full advantage of 
the pipelined timing on the 80286 local bus. 

Buses shared by several bus controllers are sup­
ported. An AEN input prevents the bus controller 

82C284 
(FOR REFERENCE) 

VCH 

elK 
Vel 

PCLK 

-----~ 

from driving the shared bus command and data 
signals except when enabled by an external 
MUl TIBUS I type bus arbiter. 

Separate DEN and DT /Fi outputs control the data 
transceivers for all buses. Bus contention is eliminat­
ed by disabling DEN before changing DT /A. The 
DEN timing allows sufficient time for tristate bus driv­
ers to enter 3-state OFF before enabling other driv­
ers onto the same bus. 

The term CPU refers to any 80286 processor or 
80286 support component which may become an 
80286 local bus master and thereby drive the 82288 
status inputs. 

Processor Cycle Definition 

Any CPU which drives the local bus uses an internal 
clock which is one half the frequency of the system 
clock (ClK) (see Figure 3). Knowledge of the phase 
of the local bus master internal clock is required for 
proper operation of the 80286 local bus. The local 
bus master informs the bus controller of its internal 
clock phase when it asserts the status signals. 
Status signals are always asserted beginning in 
Phase 1 of the local bus master's internal clock. 

210471-3 

Figure 3. ClK Relationship to the Processor Clock and Bus T -States 

3-145 

'i 

i rt 



82288 

Bus State Definition 

The 82288 bus controller has three bus states (see 
Figure 4): Idle (TI) Status (Ts) and Command (Te). 
Each bus state is two ClK cycles long. Bus state 
phases correspond to the internal CPU processor 
clock phases. 

The TI bus state occurs when no bus cycle is cur­
rently active on the 80286 local bus. This state may 
be repeated indefinitely. When control of the local 
bus is being passed between masters, the bus re­
mains in the TI state. 

READY . 
NEW CYCLE 

Figure 4. 82288 Bus States 

VOM 
ClK 

Veo. 

210471-4 

Bus Cycle Definition 

The S1 and SO inputs signal the start of a bus cycle. 
When either input becomes lOW, a bus cycle is 
started. The T S bus state is defined to be the two 
ClK cycles during which either S1 or SO are active 
(see Figure 5). These input~ are sampled by the 
82288 at every falling edge of ClK. When either S1 
or SO are sampled lOW, the next ClK cycle is con­
sidered the second phase of the internal CPU clock . 
cycle. 

The local bus enters the T c bus state after the T S 
state. The shortest bus cycle may have one T s state 
and one Testate. longer bus cycles are formed by 
repeating Testate. A repeated T c bus state is called 
a wait state. 

The READY input determines whether the current 
T c bus state is to be repeated. The READY input 
has the same timing and effect for all bus cycles. 
READY is sampled at the end of each T c bus state 
to see if it is active .. If sampled HIGH, the T C bus 
state is repeated. This is called inserting a wait state. 
The control and command outputs do not change 
during wait states. 

When READY is sampled lOW, the current bus cy­
cle is terminated. Note that the bus controller may 
enter the T S bus state directly from T C if the status 
lines are sampled active at the next falling edge of 
ClK. 

Figure 5. Bus Cycle Definition 

3-146 



infef 82288 

Figures 6 through 10 show the basic command and 
control output timing for read and write bus cycles. 
Halt bus cycles are not shown since they activate no 
outputs. The basic idle-read-idle and idle-write-idle 
bus cycles are shown. The signal label CMD repre­
sents the appropriate command output for the bus 
Cycle. For Figures 6 through 10, the CMDL Y input is 
connected to GND and CENL to Vee. The effects of 
CENL and CMDL Yare described later in the section 
on control inputs. 

Figures 6, 7 and 8 show non-MUL TIBUS I cycles. 
MB is connected to GND while CEN is connected to 
Vee. Figure 6 shows a read cycle with no wait states 
while Figure 7 shows a write cycle with one wait 
state. The READY input is shown to illustrate how 
wait states are added. 

T, 

CLI< 

i---READBUS CYCLE-j 

I . T, I Tc I 

ALE ____ --J 

DEN ______ ~--J 

DT/R 

CMD----------~ 

T, 

210471-6 

Figure 6. Idle-Read-Idle Bus Cycles with MI;S = 0 

T, Ts 

WRITE BUS CYCLE ::::I 
Tc IWArr~ATE I T, 

CLK 

ALE _____ V 

DEN _____ ..1 

VOH 

DTIA -------/------+---------\--------

210471-7 

Figure 7.ldle-Write-ldle Bus Cycles with MB = 0 

3-147 



inter 82288 

Bus cycles can occur back to back with no TI bus 
states between T c and T s. Back to back cycles do 
not affect the timing of the command and control 
outputs. Command and control outputs always 
reach the states shown for the same clock edge 
(within T s, T c or following bus state) of a bus cycle. 

A special case in control timing occurs for back to 
back write cycles with MB = o. In this case, DT /Fi 
and DEN remain HIGH between the bus cycles (see 
Figure 8). The command and ALE output timing 
does not change .. 

Figures 9 and 10 show a MUL TIBUS I cycle with MB 
= 1. AEN and CMDL Yare connected to GND. The 
effects of CMDL Y and AEN ar.e described later in 
the section on control inputs. Figure 9 shows a read 
cycle with one wait state and Figure 10 shows a 
write cycle with two wait states. The second wait 
state of the write cycle is shown only for example 
purposes and is not required. The READY input is 
shown to illustrate how wait states are added. 

T, T. 

ClK 

ALE _-.... __ --' 

DEN _____________ ~~J 

DT/A ----------+-"" 

Tc 

CMD-------------------~ 

1ST WRITE CYCLE -1- 2ND WRITE CYCLE 

Tc I T. I Tc 

ClK 

V~----T--~------------;-
DEN 

Vo• ---+--------------t-
DT/R 

CMD ____ ___ 

210471-8 

Figure 8. Write-Write Bus Cycles with MB = 0 

Tc T, 

210471-9 

. Figure 9. Idle-Read·ldle Bus Cycles with 1 Wait State and with MB = 1 

3-148 



inter 82288 

T, T~ . Tc Tc To T, 

ClK 

110l1li--"'\ 

ALE ____ ....J 

DEN ________ .J 

CMD---------------------~--~ 

210471-10 

Figure 10. Idle-Wrlte-Idle Bus Cycles with 2 Walt States and with MB. =.1 

The MBcontrol input affects the timing of the com­
mand and DEN outputs. These outputs' are automat­
ically delayed in MUl TIBUS I mode ,to satisfy three 
requirements: . 

1) 50 ns minimum setup time for valid address be­
fore any command output becomes active. 

2) 50. ns minimum setup time for valid write data 
before any write command output becomes ac-
tive. . 

3) 65 ns maximum time from when any read com­
mand becomes inactive until the slave's. read 
data drivers reach 3-state OFF. 

Three signa] transitions are delayed by MB = 1 as 
compared to MB = 0: 

1) The HIGH 'to lOW transition of the read com­
mand outputs (iO'Rc;MFiDC, and INTA) are de-
layed one ClK cycle. . 

2) The HIGH to lOW transition of the write com­
mand outputs (IOWC and MWTC) are delayed 
two ClK cycles. 

3) The lOW to HIGH transition of DEN for write cy­
cles is delayed one ClK cycle. 

. . 
Back to back bus cycles with MB = 1 do not change 
the timing of any of the command or control outputs. 
DEN always . becomes . inactive. between bus cycles 
with MB = 1. 

Except for a halt or shutdown bus cycle, AlE will be 
issued during the second half of T S for any bus cy­
cle. ALE becomes inactive at the end of the T S to 
allow latching the address to keep it stable during 
the entire bus cycle. The address outputs may 
change during Phase 2 of any T c bus state. ALE is 
not affected by any control input. 

Figure 11 shows hQw MCE is timed during interrupt 
acknowledlge (INTA) bus cycles.MCE is one CllS 
cycle longer than ALE to hold. the cascade address 
frOm a master 8259A. vaUd after the falling edge of 
ALE. With the exception of the MCE .control output, 
an INTA bus cycle .is identical in timing to a read bllS 
cycle. MCE is not affected by any control input. 

3-149 

i I 



inter 82288 

T, T. 

CLK 

ALE ---~t--.J 

MCE __ ----' 

210471-11 

Figure 11. MCE Operation for an INTA Bus Cycle 

Control Inputs 

The control intputs can alter the basic timing of com­
mand outputs, allow interfacing to multiple buses, 
and share a . bus between different masters. For 
many 80286 systems, each CPU will have more than 
one bus which may be used to perform a bus cycle. 
Normally, a CPU will only have one bus controller 
active for each bus cycle. Some buses may be 
shared by more than one CPU (I.e. MUL TIBUS) re­
quiring only one of them use the bus at a time. 

Systems with multiple and shared buses· use two 
control input signals of the 82288 bus controller, 
CENL and AEN (see Figure 12). CENL enables the 
bus controller to control the current bus cycle. The 
AEN input prevents a bus controller from driving its 
command outputs. AEN HIGH means that another 
bus controller may· be driving the shared buS. 

In Figure 12, two buses are shown: a local bus and a 
MUL TIBUS I. Only one bus is used for each CPU 
bus cycle. The CENL inputs of the bus controller 
select which bus controller is to perfotm the bus cy­
cle. An address' decoder determines which bus to 
use for each bus cycle. The 82288 connected to the 
shared MULTIBUS I must be selected by GENLand 
be given access to the MULTIBUS I by AENbefore it 
will begin a MULTIBUS I operation. 

CENL must be sampled HIGH at the end of the T s 
bus state (see waveforms) to enable the bus control­
lerto activate its command and control outputs. If 
sampled LOW the commands and DEN. will not go 
active and DT /R will remain HIGH. The bus control­
ler will ignore the CMDL Y, CEN, and READY inputs 
until another bus cycle is started via S1 and SO. 
Since an address decoder is commonly used to 
identify which bus is required for each bus cycle, 
CENL is latched to avoid the need for latching its 
input. 

The CENL input can affect the DEN control output. 
When MB = 0, DEN normally becomes active dur­
ing Phase 2 of T s in write bus cycles. This transition 
occurs before CENL is sampled. If CENL is sampled 
LOW, the DEN output will be forced LOW during T c 
as shown in the timing waveforms. 

When MB = 1, CENI AEN becomes AEN. AEN con­
trols when the bus controller command outputs en­
ter and exit 3-state OFF. AEN is intended to be driv­
en bya MULTIBUS Itype bus arbiter, which assures 
only one bUS controller is driving the shared bus at 
any time. When AEN makes a LOW to HIGH tran­
sition, the command outputs immediately enter 
3-state OFF and DEN is forced inactive.' An inactive 
DEN should force the local data transceivers con­
nected to the shared data bus into 3-state OFF (see 
Figure 12). The' LOW to HIGH transition of AEN 
should only occur during T, or Ts bus states .. 

The HIGH to LOW transition of AEN signals that the 
bus controller may now drive the shared bus com­
mand signal~. Since a bus CYE~ may be active or be 
in the process of starting, A can become active 
during any T-state. AEN LOW immediately allows 
DEN to go to the appropriate state. Three CLK edg­
es later, the command outputs will go active (see 
timing waveforms). The MUL TIBUS I requires this 
delay for the address and data to be valid on the bus 
before the command becomes active. 

When MB = 0, CENI AEN becomes CEN. CEN is an 
asynchronous input which immec;liatelyaffects .the 
command and DEN outputs. When CEN makes a 
HIGH to LOW transition, the. commands and DEN 

3-150 



inter 82288 

are immediately forced inactive. When CEN makes a 
LOW to HIGH transition, the commands and DEN 
outputs immediately go to the appropriate state (see 
timing waveforms). READY must still become active 
to terminate a bus cycle if CENremains LOW for a 
selected bus controller (CENL was latched HIGH). 

rD~ 
Xl X2 

READY 
SRDY ARDY 

CMD 

ADDRESS 
DATA 

t= 

F 
READV 

CMD 82288 ClK 

MliO ' 
S1.50 

CENl I+-
MB CEN 

i- t 
+ 5V 

ADDRESS 

DECODER 

MilO n 
II 
An .D 

iiR'iiYEN 12C284 ARDYEN 

ClK READY S1.50 

>----

50 

S1 

.~ 
ClK READY MilO 

S1.50 

80288 

Some memory or 1/0 systems may require more ad­
dress or write data setup time to command active 
than provided by the basic command output timing. 
To provide flexible command timing, the CMDL Y in~ 
put can delay the activation of command outputs~ 
The CMDL Y input must be sampled LOW to activate 
the command outputs. CMDL Y does not affect the 
control outputs ALE, MCE, DEN, and DT IR. 

ilACK 

910fl .5% 

1 
READY COMM AND5 

ClK 82288 
CMD 

MliO DEN {>o-
S1.SO 

DT/R 

r- CENl ALE 

MB AEN 

+!v t 

READY AEN 
MUL T,BUS'" I 

ClK TYPE BUS 
ARBITER 

CON TROl 

MliO CNTL 

51.50 

5YSiRE5B 

20Kn / 
+5V 

/ 

LATCH ,,-
v 

-
JA~ 

Du .Q 
It<-- ~Cl1 

J 
DATA 

210471-12 

Figure 12. System Use of AEN and CENL 

3-151 



82288 

CMDl Y is first sampled on the falling . edge of the 
ClK ending T s- If sampled HIGH, the commandout~ 

. put is notactivatt;ld, and CMDlY is again sampled 
on the next falling edge ofClK. Once sampled 
lOW, the proper command output becomes active 
immediately if MB = o. If MB=1, the proper com­
mand goes active no earlier than shown in Figures 9 
and 10. 

READY can terminate a bus cycle before CMDl Y 
allows a command to be issued. In this case no 
commands are issued an the bus controller will de­
activate DEN and DT iFf in the same manner as if a 
command had been issued. 

Waveforms Discussion 

The waveforms show the timing relationships of in­
puts and outputs and do not show all possible tran-

sitions of all signals in all modes. Instead, all signal 
timing relationships are shown via the general cas" 
es .. Special cases are shown when needed. The 
waveforms provide some functional descriptions of 
the 82288; however, most functional descriptions 
are provided in Figures 5 through H. 

To find the timing specification for a signal transition 
in a particular mode, first look for a special case in 
the waveforms. If no special case applies, then use 
a timing specification for the same or related func­
tion in another mode. 

3-152 



intJ 82288 

ABSOLUTE MAXIMUM RATINGS'" 

Ambient Temperature Under Bias O·C to + 70·C 

Storage Temperature - 65·C to + 150·C 

Voltage on Any Pin with 
Respect to GND -0.5V to + 7V 

Power Dissipation 1 Watt 

• Notice: Stresses above those listed under "Abso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and 
functional operation of the device at these or any 
other conditions above those indicated in the opera­
tional sections of this specification is not implied Ex­
posure to absolute maximum rating conditions for 
extended periods may affect device reliability. 

D.C. CHARACTERISTICS Vcc = 5V ±5%, TCASE = 0·Ct085·C·, orTA = O·Cto +70·C 

Symbol Parameter Min Max 

VIL Input lOW Voltage -0.5 0.8 

VIH Input HIGH Voltage 2.0 Vcc + 0.5 

VILC ClK Input lOW Voltage -0.5 0.6 

VIHC ClK Input HIGH Voltage 3.8 VCC + 0.5 

VOL Output lOW Voltage 
Command Outputs 0.45 
Control Outputs 0.45 

VOH Output HIGH Voltage 
Command Outputs 2.4 
Control Outputs 2.4 

IF Input Current (SO and S1 Inputs) -0.5 

IlL Input leakage Current ±10 
(All Other Inputs) 

ILO Output leakage Current ±10 

Icc Power Supply Current 140 

CCLK ClK Input Capacitance 12 

CI Input Capacitance 10 

Co Input! Output CapaCitance 20 

*T A is guaranteed from Q·C to + 7Q·C as long as T CASE is not exceeded. 

NOTES: 
1. Command Outputs are INTA, ~.IOWC. MRDC. MWRC. 
2. Control Outputs are DT IA. DEN, ALE and MCE. 

3-153 

Units Test Conditions 

V 

V 

V 

V 

V IOL = 32 mA (Note 1) 
V IOL = 16 mA (Note 2) 

V IOH = -5 mA (Note 1) 
V IOH = -1 mA (Note 2) 

mA V, = 0.45V 

p.A OV ~ VIN ~ Vcc 

p.A 0.45V ~ VOUT ~ VCC 

mA 

pF Fc = 1 MHz 

pF Fc = 1 MHz 

pF Fc = 1 MHz 



82288 

A.C. CHARACTERISTICS 

Vcc = 5V, ±5%, TCASE = QOC to + 85°C.* AC timings are referenced to 0.8V and 2.0Vpoints of signals as 
illustrated in data sheet waveforms, unless otherwise noted. 

8 MHz 10MHz 12.SMHz 

Symbol Parameter 
(Advance) (Advance) (Advance) 

Unit 
Test 

-8 -8 -10 -10 -12 -12 Condition 

Min Max Min Min Min Max 

1 ClK Period 62 250 50 250 40 250 ns 

2 ClK HIGH Time 20 235 16 238 13 239 ns at3.6V 

3 ClKlOWTime 15 230 12 234 11 237 ns at 1.0V 

4 ClK Rise Time 10 8 8 ns 1.0Vto 3.6V 

5 ClKFallTime 10 8 8 ns 3.6Vto 1.0V 

6 MilO and Status 22 18 15 ns 
Setup Time 

7 MilO and Status 1 1 1 ns 
Hold Time 

8 CENl Setup Time 20 15 15 ns 

9 CENl Hold Time 1 1 1 ns 

10 READY Setup Time 38 26 18 ns 

11 READY HoldTime 25 25 20 ns 

12 CMDl Y Setup Time 20 15 15 ns 

13 CMDl Y Hold Time 1 1 1 ns .-
14 AEN Setup Time 20 15 15 ns (Note 3) 

15 AEN HoldTime 0 0 0 ns (Note 3) 

16 ALE, MCE Active 3 20 3 16 3 16 ns (Note 4) 
Delay from ClK 

17 ALE, MCE Inactive 2~ 19 19 ns (Note 4) 
Delay from ClK 

18 DEN (Write) 35 23 23 ns (Note 4) 
Inactive from CENl 

19 DT IR lOW from ClK 25 23 23 ns (Note 4) 

20 DEN (Read) Active 5 35 5 21 5 21 ns (Note 4) 
from DT/R" 

21 DEN (Read) Inactive 3 35 3 21 3 19 ns (Note 4) 
Diy from ClK 

22 DT IR HIGH from 5 35 5 20 5 18 ns (Note 4) 
DEN Inactive 

23 DEN (Write) Active 30 23 23 ns (Note 4) 
Delay from ClK 

24 DEN (Write) Inactive 3 30 3 19 3 19 ns (Note 4) 
DlyfromClK 

*r A IS guaranteed from O"C to + 70'C as long as r CASE IS not exceeded. 

3-154 



inter 82288 

A.C. CHARACTERISTICS 

VCC = 5V, ±5%, TCASE = O'C to +85'C.* AC timings are referenced to 0.8V and 2.0V points of signals as 
illustrated in data sheet waveforms, unless otherwise noted. (Continued) 

8MHz 10 MHz 12.SMHz 

Symbol Parameter 
(Advance) (Advance) (Advance) 

Unit 
Test 

-8 -8 -10 -10 -12 -12 Condition 

Min Max Min Min Min Max 

25 DEN Inactive from 30 25 25 ns (Note 4) 
CEN 

26 DEN Active from 30 24 24 ns (Note 4) 
CEN 

27 DT fA HIGH from ClK 35 25 25 ns (Note 4) 
(when CEN = lOW) 

28 DEN Active from AEN 30 26 26 ns (Note 4) 

29 CMD Active Delay 3 25 3 21 3 21 ns (Note 5) 
fromClK 

30 CMD Inactive Delay 5 25 5 20 5 20 ns (Note 5) 
fromClK 

31 CMD Active from 25 25 25 ns (Note 5) 
CEN 

32 CMD Inactive from CEN 25 25 25 ns (Note 5) 

33 CMD Inactive Enable from AEN 40 40 40 ns (Note 5) 

34 CMD Float Delay from AEN 40 40 40 ns (Note 6) 

35 MB Setup Time 20 20 20 ns 

36 MB Hold Time 0 0 0 ns 

37 Command Inactive Enable 40 40 40 ns (Note 5) 
from MB i 

38 Command Float Time from MB i 40 40 40 ns (Note 6) 

39 DEN Inactive from MB i 30 26 26 ns (Note 4) 

40 DEN Active from MB i 30 30 30 ns (Note 4) 

*T A IS guaranteed from O'C to + 70'C as long as T CASE IS not exceeded. 

NOTES: 
3. AEN is an asynchronous input. This specification is for testing purposes only, to assure recognition at a specific ClK 
edge. 
4. Control output load: CI = 150 pF. 
5. Command output load: CI = 300 pF. 
6. Float condition occurs when output current is less than ILOin magnitude. 

4.0V 

210471-13 

Note 7: AC Drive and Measurement Points-CLK Input 

3-155 

1"(' 



inter 

WAVEFORMS 

82288 

4.0Y 
CLKINPUT 

tOY 

O.45Y --------+-'-------
tHOLD 

OTHER 2.0Y 2.4YEED DEYICE 
INPUT 

O.BY 
O.45Y 

DEYICE 
DUTPUT 

tDELAY ---I 

2.OY 

O.BY 

Note 8: AC Setup, Hold and Delay Time Measurement-General 

DEYICE 
OUTPUT 

Note 9: AC Test loading on Outputs 

210471-15 

210471-14 

ClK CHARACTERISTICS 

ClK 

210471-16 

3-156 



intJ 82288 

WAVEFORMS (Continued) 

STATUS, ALE, MCE, CHARACTERISTICS 

CLK 

Mliii.ii.iO ----+=i(J-.( 

ALE ______ +:! 

MCE ______ --J 

210471-17 

CENL, CMDLY, DEN CHARACTERISTICS WITH MB = 0 AND CEN = 1 DURING WRITE CYCLE 

CLK 

DEN ____ +--J 

CENL 

CMDLY LLL.tJ.L..CLLi.'LL./.tJ.L..CLL/ 

READ CYCLE CHARACTERISTICS WITH MB = 0 AND CEN = 1 

T,--.-.j+--

CLK 

CMDLY 

DT/ii--~ 

DEN __ -+::,.....-J 

Ciiij---+\ 

CENL 

3-157 

210471-18 

210471-19 



inter 82288 

WAVEFORMS (Continued) 

WRITE CYCLE CHARACTERISTIC WITH MB = 0 AND CEN = 1 

210471-20 

CEN CHARACTERISTICS WITH MB = 0 

ClK 

CEN 

DEN 

DT/ii ______ ~ ___ n__'__+_:! 

210471-21 

3-158 



WAVEFORMS (Continued) 

AEN CHARACTERISTICS WITH MB = 

NOTE: 

elK 

AEN 

DEN ___ -' 

82288 

210471-22 

1. AEN is an asynchronous input. AEN setup and hold time is specified to guarantee the response shown in the waveforms. 

MB CHARACTERISTICS WITH AEN/CEN = HIGH 

Ts TC Tc TC TS 

ClK 

MB 

_______ ~O~T~~ =-= _-+,j-f-e®---'".31------{-_@_29_--<.c,'r-_@_3C_--+=--[,--+----

--. J--@-4Il--------'.,'r---I---<t,'--_--"'--_ DEN 

210471-23 

3-159 



82288 

WAVEFORMS (Continued) 

MB CHARACTERISTICS WITH AEN/CEN = HIGH (Continued) 

Ta Tc Tc Ts 

CLK 

MI 

DTiii 

DEN 

210471-24 

CLK 

MI 

FLOAnNG ------------ ---

DEN 

READY 

210471-25 

NOT~S: 
1.· MB is an asynchronous input. MB setup and hold times specified to guarantee the response shown in the waveforms. 
2. If the setup time, t35, is met two clock cycles will occur before ~ becomes active after the falling edge of MB. 

3·160 



intJ 
82C288 

BUS CONTROLLER FOR 80286 PROCESSORS 
(82C288-12, 82C288-10, 82C288-8) 

• Provides Commands and Controls for 
Local and System Bus 

• Wide Flexibility In System 
Configurations 

• Implemented In High Speed CHMOS III 
Technology 

• Fully Compatible with the HMOS 82288 

• Fully Static Device 

• Single + 5V Supply 
• Available In 20 Pin PLCC (Plastic 

Leaded Chip Carrier) and 20 Pin Cerdlp 
Packages 
(See Packaging Spec. Order #231369) 

The Intel 82C288 Bus Controller is a 20·pin CHMOS III component for use in 80286 microsystems. The 
82C288 is fully compatible with its predecessor the HMOS 82288. The bus controller is fully static and 
supports a low power mode. The bus controller provides command and control outputs with flexible timing 
options. Separate command outputs are used for memory and 1/0 devices. The data bus is controlled with 
separate data enable and direction control signals. 

Two modes of operation are possible via a strapping option: MUL TIBUSe I compatible bus cycles, and high 
speed bus cycles. . . 

CLK-+--~ 
CONTROL 

INPUTS 
CENIAEN 

CENL 

CMOLY 

iiiiDY 

MB 

Figure 1. 82C288 Block Diagram 

3·161 

240042-1 

September 1988 
Order Number: 240042-002 

I 

, .•... 

j 

~ ,., 



inter 82C288 

20 Pin Cerdlp Package 

ClK 

MCE 

ALE 

M8 

CMDlY 

GND 

VCC 

so 

DT/R 

DEN 

CENIAEN 

CENl 

240042-2 

P.C. Board Views-As Viewed from the compo­
nent side of the P.C. board. 

Component Pad Views-As viewed from under­
side of component when mounted on the board . 

CENL 

CEN/AEN 
DEN 

DT/R 
M/iO 

. 20 Pin PLCCPackage 

MRDC 
CMDLY 
MB 
ALE 

MCE 

240042-3 

MRDC 8 
CMDLY 7 

MB 6 

ALE 5 
McE"4 

Figure 2. 82C288 Pin Configuration 

3-162 

I~ c I~ I~ Ii! ~ 13 Q Q 2: 
9 10 11 1213 

3 2 1 20 19 

IVi '" 1>- t! 1° d ~ > CIl 

"" 

14 CENL 
15 CEN/AEN 
16 DEN 

17 DT/R 
18 M/iO 

240042-4 



82C288 

Table 1. Pin Description 

The following pin function descriptions are for the 82C288 bus controller. 

Symbol Type Name and Function 

ClK. I SYSTEM CLOCK provides the basic timing control for the 82C288 in an 80286 
microsystem. Its frequeney is twice the internal processor clock frequency. The falling 
edge of this input signal establishes when inputs are sampled and command and control , 
outputs change. 

SO,Sl I BUS CYCLE STATUS starts a bus cycle and, along with MIlO, defines the ty~ of bus 
cycle. These inpl,lts are active lOW. A bus cycle is started when either S1 or SO is 
sampled lOW at the falling edge of ClK. Setup and hold times must be met for proper 
operation. 

80286 Bus Cycle Status Definition 

MIlO 51 .§O Type of Bus Cycle 

0 0 0 Interrupt Acknowledge 
0 0 1 1/0 Read 
0 1 0 1/0 Write 
0 1 1 None; Idle 
1 0 0 Halt or Shutdown 
1 0 1 Memory Read 
1 1 0 Memory Write 
1 1 1 None; Idle 

M/iC5 I MEMORY OR 1/0 SELECT determines whether the current bus cycle is in the memory 
space or 1/0 space. When lOW, the current bus cycle is in the 1/0 space. Setup and 
hold times must be met for proper operation. 

MB I MUL TIBUS MODE SELECT determines timing of the command and control outputs. 
When HIGH, the bus controller operates with MUl TIBUS I compatible timings. When 
lOW, the bus controller optimizes the dommandand control output timing for short bus 
cycles. The function of the CENI AEN 'input pin is SEilected by this signal. This input is 
typically a strapping option and no~ dynamically changed. 

CENl I COMMAND ENABLE LATCHED is a bus control.ler select Signal which enables the bus 
controller to respond to the current bus Cycle behig initiated. CENl is an active HIGH 
input latched internally at the end of each T s cycle. CENl is used to select the 
appropriate bus controller for each bus cycle in a system where the CPU has more than 
one bus it can use. This input may be connected to Vee to select this 82C288 for all 
transfers. No control inputs affect CENL. Setup and hold times must be met for proper 
operation. 

CMDlY I COMMAND DELAY allows delaying the start of a command. CMDLY is an active HIGH 
input. If sampled HIGH, the command output is not activated and CMDlY is again 
S~ed at the next ClK cycle. When sampljild lOW the selected command is enabled. If 
R Y is detected lOW before the command output is activated, the 82C2a8 will . 
terminate the bus cycle, even if no command was issljed. Setup and hold times must be 
satisfied for proper operation. This input may be connected to GND if no delays are 
required before starting a command. This input has no effect on 82C288 control outputs. 

READY I READY indicates the end of the current bus cycle. READY is an active lOW input.· 
MUl TIBUS I mo~e reqUires at least one wait state to allow the command outputs to 
become active. EA Y must be lOW during reset, to force the 82C288 into the idle 
state. Setup and hold times must be met for proper operation. The 82C284 drives READY 
lOW during RESET. . 

3-163 



82C288 

Table 1. Pin Description (Continued) 

Symbol Type Name and Function 
CEN/AEN I COMMAND ENABLEI ADDRESS ENABLE controisthe command and DEN 

outputs of the bus controller. CENI AEN inputs may be asynchronous to CLK. 
Setup and hold times are given to assure a guaranteed response to 
synchronous inputs. This input may be connected to Vee or GND. 
When MB is HIGH this pin has the AEN function. AEN is an active LOW input 
which indicates that the CPU has been granted use of a shared bus and the 
bus contoller command outputs may exit 3-state OFF and become inactive 
(HIGH). AEN HIGH indicates that the CPU does not have control of the shared 
bus and forces the command outputs into 3-state OFF and DEN inactive 
(LOW). 

When MB is LOW this pin has the CEN function. CENis an unlatched active 
HIGH input which allows the bus controller to activate its command and DEN 

, outputs. With MB LOW, CEN LOW forces the command and DEN outputs 
inactive but does not tristate them. 

ALE 0 ADDRESS LATCH ENABLE controls the address latches used to hold an 
address stable during a bus cycle. This control output is active HIGH. ALE will 
not be issued for the halt bus cycle and is not affected by any of the control 
inputs. 

MCE 0 MASTER CASCADE ENABLE Signals that a cascade address from a master 
8259A interrupt controller may be placed onto the CPU address bus for 
latching by the address latches under ALE control. The CPU's address bus 
may then be used to broadcast the cascade address to slave interrupt 
controllers so only one of them will respond to the interrupt acknowledge cycle. 
This control output is active HIGH. MCE is only active during interrupt 
acknowledge cycles and is not affected by any control input. Using MCE to 
enable cascade address drivers requires latches which save the cascade 
address on the falling edge of ALE. 

DEN 0 DATA ENABLE controls when data transceivers connected to the local data 
bus should be enabled. DEN is an active HIGH control output. DEN is delayed 
for write cycles in the MUL TIBUS I mode. 

DT/R 0 DATA TRANSMIT IRECEIVE establishes the direction of data flow to or from. 
the local data bus. When HIGH, this control output indicates that a write bus 
cycle is being performed. A LOW indicates a read bus cycle. DEN is always 
inac;tive when DT IR changes states. This output is HIGH when no bus cycle is 
active. DT fR is not affected by any of the control inputs. 

10WC 0 I/O WRITE COMMAND instructs an I/O device to read the data on the data 
bus. This command output is active LOW. The MB and CMDLY inputs control 

. when this output becomes active. READY controls when it becomes inactive. 

10RC 0 I/O READ COMMAND instructs an I/O device to place'd,ata onto the data bus. 
This command output is active LOW. TheMB and CMDLY inputs control when 
this output becomes active. READY controls when it becomes inactive. 

MWTC 0 MEMORY WRITE COMMAND instructs a memory device to read the data on 
the data bus. This command output is active LOW. The MB and CMDL Y inputs 
control when this output becomes active. READY controls when it becomes 
inactive. 

MRDC 0 MEMORY READ COMMAND instructs the memory device to place data onto 
the data bus. This command output is active LOW. The MB and CMDL Y inputs 
control when this output becomes active. READY controls when it becomes 
. inactive. . .... 

3-164 



inter 82C288 

Table 1. Pin Description (Continued) 

Symbol Type Name and Function 

INTA 0 INTERRUPT ACKNOWLEDGE tells an interrupting device that its interrupt 
request is being acknowledged. This command output is active LOW. The MB 
and CMDL Y inputs control when this output becomes active. READY controls 
when it becomes inactive. 

Vee System Power: + 5V Power Supply 

GND System Ground: OV 

Table 2. Command and Control Outputs for Each Type of Bus Cycle 

Type of 
MilO S1 SO Bus Cycle 

Interrupt Acknowledge 0 0 0 

1/0 Read 0 0 1 

1/0 Write 0 1 0 

None; Idle 0 1 1 

Halt/Shutdown 1 0 0 

Memory Read 1 0 1 

Memory Write 1 1 0 

None; Idle 1 1 1 

Operating Modes 

Two types of buses are supported by the 82C288: 
MUL TIBUS I and non-MUL TIBUS I. When the MB 
input is strapped HIGH, MUL TIBUS I timing is used. 
In MUL TIBUS I mode, the 82C288 delays command 
and data activation to meet IEEE-796 requirements 
on address to command active and write data to 
command active setup timing. MUL TIBUS I mode 
requires at least one wait state in the bus cycle since 
the command outputs are delayed. The non­
MUL TIBUS I mode does not delay any outputs and 
does not require wait states. The MB input affects 
the timing of the command and DEN outputs. 

Command and Control Outputs 
The type of bus cycle performed by the local bus 
master is encoded in the MilO, S1, and SO inputs. 
Different command and control outputs are activat­
ed depending on the type of bus cycle. Table 2 indi­
cates the cycle decode done by the 82C288 and the 
effect on command, DT IR, ALE, DEN, and MCE out­
puts. 

Bus cycles come in three forms: read, write, and 
halt. Read bus cycles include memory read, 1/0 
read, and interrupt acknowledge. The timing of the 
associated read command outputs (MRDC, 10RC, 

Command DT/R ALE,DEN MCE 
Activated State Issued? Issued? 

INTA LOW YES YES 

IORC LOW YES NO 

lOWe HIGH YES NO 

None HIGH NO NO 

None HIGH NO NO 

MRDC LOW YES NO 

MWTC HIGH YES NO 

None HIGH NO NO 

and INTA), control outputs (ALE, DEN, DT/R) and 
control inputs (CENI AEN, CENL, CMDL Y, MB, and 
READY) are identical for all read bus cycles. Read 
cycles differ only in which command output is acti­
vated. The MCE control output is only asserted dur­
ing interrupt acknowledge cycles. 

Write bus cycles activate different control and com­
mand outputs with different timing than read bus cy­
cles. Memory write and 1/0 write are write bus cy­
cles whose timing for command outputs (MWTC and 
10WC), control outputs (ALE, DEN, DT IR) and con­
trol inputs (CENt AEN, CENL, CMDL Y, MB, and 
REAOY) are identical. They differ only in which com­
mand output is activated. 

Halt bus cycles are different because no command 
or control output is activated. All control .inputs are 
~ored until the next bus cycle is started via S1 and 
SO. 

Static Operation 

All 82C288 circuitry is of static design. Internal regis­
ters and logic are static and require no refresh as 
with dynamic circuit design. This eliminates the mini­
mum operating frequency restriction placed on the 
HMOS 82288. The CHMOS III 82C288 can operate 
from DC to the appropriate upper frequency limit. 

3-165 



82C288 

The clock may be, stopped in either state (HIGH/ 
lOW) and held there indefinitely. 

Power dissipation is directly related to, operating fre­
quency. As the system frequency is reduced, so is, 
the operating power. When the clock is stopped to 
the 82C288, power diSSipation is at a minimum. This 
is useful for low-power and portable applications. 

FUNCTIONAL DESCRIPTION 

Introduction 

The 82C288 bus controller is used in 80286 systems 
to provide address latch control, data transceiver 
control, and standard level-type command outputs. 
The command outputs are timed and have sufficient 
drive capabilities fot large TTL buses and meet all 
IEEE-796 requirements for MULTIBUS I. A special 
MUl TIBUS I mode is provided to satisfy all address/ 
data setup and hold time requirements. Command 
timing may be tailored to special needs via a CMDl Y 
~~~Dto determine the start of a com, mand and,' 

Y to determine the end of a command. , '

Connection to multiple buses are supported with a
latched enable input (CENl). An address decoder
can determine which, if any, bus controller should be
enabled for the bus cycle. This input is latched to
allow an address decoder to take full advantage of
the pipelined timing on the 80286 local bus.

Buses shared, by several bus controll~rs are sup­
ported. An AEN input prevents the bus controller
from driving the shared bus command' and' data
signals except when enabled by an external
MUl TIBUS I type bUll arbiter.

Separate DEN and DT /R outputs control the data
transceivers for all buses. Bus contention is eliminat,
ed by disabling DEN before changing, DT /R. The
DEN timing allows sufficient time for tristate bus driv­
ers to enter 3-state OFF before enabling otherdriv­
ers onto the same bus.

The term CPU refers to any 80286 processor or
80286 support component which may become an
80286 local bus master and thereby drive the
82C288 status inputs.

Processor Cycle Definition

Any CPU which drives the local bus uses anintemal
clock which is one half the frequency of the system
clock (ClK) (see Figure 3). Knowledge of the phase
of the local bus master internal clock is required for
proper operation of the 80286 local bus. The local
bus master informs the bus controller of its internal
clock phase when it asserts the status Signals.
Status signals are always asserted beginning in
Phase 1 of the local bus master's internal clock.

ONE PROCESSOR CLOCK CYCLE

t----ONE BUS T STATE-----I

82C284
(FOR REFERENCE)'

Figure 3. ClK Relationship to the Processor Clock and BusT -States

inter 82C288

Bus State Definition

The 82C288 bus controller has three bus states (see
Figure 4): Idle (TI) Status (T s) and Command (T d.
Each bus state is two CI,.K cycles long. Bus state
phases correspond to the internal CPU processor
clock phases.

The TI bus state occurs when no bus cycle is cur­
rently active on the 80286 local bus. This state may
be repeated indefinitely. When control of the local
bus is being passed between masters, the bus re­
mains in the TI state.

READY .
NEW CYCLE

Figure 4. 82C288 Bus States

VCR
ClK

VCL

IIhllii V .. --~
FROM
CPU VL

240042-6

Bus Cycle Definition

The S1 and SO inputs signal the start of a bus cycle.
When either input becomes lOW, a bus cycle is
started. The T s bus state is defined to be the two
ClK cycles during which either S1 or SO are active
(see Figure 5). These inputs are sampled by the
82C288 at every falling edge of elK. When either
S1 or SO are sampled lOW, the next ClK cycle is
considered the second phase of the internal CPU
clock cycle.

The local bus enters the T c bus state after the T s
state. The shortest bus cycle may have one T s state
and one Testate. longer bus cycles are formed by
repeating Testate. A repeated T c bus state is called
a wait state.

The READY input determines whether the current
T C bus state is to be repeated. The READY input
has the same timing and effect for all bus cycles.
READY is sampled at the end of each T c bus state
to see if it is active. If sampled HIGH, the T C bus
state is repeated. This is called inserting a wait state.
The control and command outputs do not change
during wait states.

When READY is sampled lOW, the current bus cy­
cle is terminated. Note that the bus controller may
enter the T s bus state directly from T c if the status
lines are sampled active at the next falling edge of
ClK.

240042-7

Figure 5. Bus Cycle Definition

3-167

82C288

Figures 6 through 10 show the basic command and
control output timing for read and write bus cycles.
Halt bus cycles are. not shown since they activate no
outputs. The basic idle-read-idle and idle-write-idle
bus cycles are shown. The signal.label CMDrepre­
sents the appropriate command output for the bus
cycle. For Figures 6 through 10, the CMDLY input is
connected to GND and CENL to Vee. The effects of
CENL and CMDL Yare described later in the section
on control inputs.

Figures 6, 7 and 8 show non-MUL TIBUS I cycles.
MB is connected to GND while CEN is connected to
Vee. Figure 6 shows a read cycle with no wait states
while Figure 7 shows a write cycle· with· one wait
state. The READY input is shown to illustrate how
wait states are added.

T,

I----READ _CYCLE

I T. I Tc T,

CLK

ALE __ -'--_--.I

DEN -------t---'

DT/I!

am--------~~

240042-8

Figure 6. Idle·Read·ldle Bus Cycles with MB = 0

T, . T.
I--WAIT STATE

WArn; BUS CYCLE . ==j
Tc I· To T,

elK

AlE ____ -i'

DEN ...:.. _____ --'

240042-9

Figure 7. Idle·Write·ldleBus Cycles with MB = 0

3-168

. 82C288

Bus cycles can occur back to back with no TI bus
states between T c and T s. Back to back cycles do
not affect the timing of the command and control
outputs. Command and control outputs always
reach the states shown for the same clock edge

• (within Ts, T c or following bus state) of a bus cycle.

A special case in control timing occurs for back to
back write cycles with MB = O. In this case, DT /Fi
and DEN remain HIGH between the bus cycles (see
Figure 8). The command and ALE output timing
does not change.

Figures 9 and 10 show a MUL TIBUS I cycle with MB
= 1. AEN and CMDL V are connected to GND. The
effects of CMDL V and AEFJ are described later in
the section on control inputs. Figure 9 shows a read
cycle with one wait state and Figure 10 shows a
write cycle with two wait sta,tes. The second wait
state of the write cycle is shown onl~ for example
purposes and is not required. The R A V input is
shown to illustrate how wait states are added.

T.

ALE ____ -.J

DEN ______ -+_......,
.. DT/II-. ------+-\.\

To

1ST WRrrE CYCLE --1- 2ND WRrrE CYCLE

To I T. I To

CLK

11 olll---+-'"\

VOIt __ r-_______ +
DEN

VOlt __ -+ _______ -+
DTlii

CiiD ___ J

240042-10

Figure 8. Write-Write Bus Cycles with MB = 0

To

240042-11

Figure 9. Idle-Read-Idle Bus Cycles with 1 Walt State and with MB = 1

3-169

inter .82C288

To . Ts

DEN ________________ ~

CMD----------------------~--~

240042-12

Figure 10. Idle-Write-Idle Bus Cycles with 2 Wait States and with MB = 1

The MB control input affects the timing of the com­
mand and DEN outputs. These outputs are automat­
ically delayed in MUl TIBUS. I mode to satisfy three
requirements:

1) 50 ns minimum setup time for valid address be­
fore any command output becomes active.

2) 50 ns minimum setup time for valid write data
before any write command output becomes ac-
tive. '

3) 65 ns maximum time from when any read com­
mand becomes inactive until the slave's read
data drivers reach 3-state OFF.

Three signal transitions are delayed by MB = 1 as
compared to MB = 0:

1) The HIGH to lOW transition of the read com­
mand outputs (IORC, MRDe, and INTA) are de-
layed one ClK cycle. .

2) The HIGH to lOW transition of the write com­
mand outputs (IOWC and MWTC) are. delayed
two ClK cycles.

3) The lOW to HIGH transition of DEN for write cy­
clesis delayed one ClK cyCle.

Back to back bus cycles with MB = 1 do not change
the timing of any of the command or control outputs.
DEN always becomes inactive between bus cycles
with MB = 1.

Except for a halt or shutdown bus cycle, ALE will be
issued during the second half of T s for any bus cy­
cle. ALE becomes inactive at the end of the T s to
allow latching the address to keep it stable during
the entire bus cycle. The address outputs may
change during Phase 20f any T C bus state. ALE is
not affected by any control input.

Figure 11 shows how MCE is timed during interrupt
acknowledlge (INTA) bus cycles. MCE is one ClK
cycle longer than ALE to hold the cascade address
from a master 8259A valid after the falling edge of
ALE. With the exception of the MCE control output,
an INTA bus cycle is identical in timing to a read bus
cycle. MCE is not affected by any control input.

3-170

.82C288

To T.

CLK

ALE ___ ~k--.J

MCE ____ --J

240042-13

Figure 11. MCE Operation for an INTA Bus Cycle

Control Inputs

The control intputs can alter the basic timing of com­
mand outputs, allow interfacing to multiple buses,
and share a bus between different masters. For

. many 80286 systems, each CPU will have more than
one bus which may be used to perform a bus cycle.
Normally, a CPU will only have one bus controller
active for each bus cycle. Some buses may be
shared by more than one CPU (i.e. MULTIBUS) re­
quiring only one of them use the bus at a time.

Systems with multiple and shared buses use two
control input signals of the 82C288 . bus controller,
CENL and AEN (see Figure 12). CENL enables the
bus controller to cOntrol the current bus cycle. The
AEN input prevents a bus controller from driving its
command outputs. AEN HIGH means that another
bus controller may be driving the shared bus.

In Figure 12, two buses are shown: a local bus and a
MUL TIBUS I. Only one bus is used for each CPU
bus cycle. The CENL inputs of the bus controller
select which biJs controller is to perform the bus cy­
cle. An address decoder determines which bus to
use for each bus cycle; The 82C288 connected to
the shared MUL TIBUS I must be selected by CENL
and be given access to the MUL TIBUS I by AEN
before it will begin a MUL TIBUS I operation.

CENL must be sampled HIGH at the end of the T s
bus state (see waveforms) to enable the bus control­
ler to activate its command and control outputs. If
sampled LOW !Ie commands and DEN will not go
active and DT tR will remain HIGH. The bus control­
ler will· ignore the. CMDLY, CEN, and READY inputs
until another bus cycle is started via 51 and SO.
Since an address decoder is commonly used to

. identify which bus is required for each bus cycle,
CENL is latched to avoid the need for latching its
input.

The CENL input can affect the DEN control output.
When MB = 0, DEN normally becomes active dur­
ing Phase 2 of T S in write bus cycles. This transition
occurs before CENL is sampled. If CENL is sampled
LOW, the DEN output will be forced LOW during T c
as shown in the timing waveforms.

When MB = 1, CENt AEN becomes AEN. AEN con­
trols when the bus controller command outputs en­
ter and exit 3-state OFF. AEN is intended to be driv­
en by a MUL TIBUS I type bus arbiter, which assures
only one bus controller is driving the shared bus at
any time. When AEN makes a LOW to HIGH tran­
sition, the command oJ,Jtputs immediately enter

. 3-state OFF and DEN is forced inactive. An inactive
DEN should force the local data transceivers con­
nected to the shared data bus into 3-state OFF (see
Figure 12). The LOW to HIGH transition of AEN
should only occur during TI or T s bus states. .

The HIGH to LOW transition of AEN signals that the
bus controller may now drive the shared bus com­
mand signals. Since a bus eyele may be active or be
in the process of starting, A N can become active
during any T-state. AEN LOW immediately allows
DEN to go to the appropriate state. Three CLK edg­
es later, the Command outputs will go active (see
timing waveforms). The MUL TIBUS I requires this
delay for the address and data to be valid' on the bus
before the command becomes active.

When MB = 0, CENt AEN becomes CEN. CEN is an
asynchronous input which immediately affects the
command and DEN outputs. When CEN makes a
HIGH to LOW transition, the commands and DEN

3-171

82C288

are immediately forced inactive. When CEN makes a
LOW to HIGH transition, the commands and DEN
outputs immediately go to the appropriate state (see
timing waveforms). READY most still become active
to terminate a bus cycle if CEN remains LOW for a
selected bus controller (CENL was latched HIGH).

CMD

ADDRESS
DATA

RmiV

¢=
READY

CMD82C88 ClK

M/iO
51,SO

CENl

MB CEN

t Jv

ADDRESS

DECODER

11
II

A:rloo

rO~
XI X2

SiiDY iiiDi
12C284--

t
iii6Yiiii ARDYEN

ClK AEAiiY 51, so

-
~

~

MilO

~
ClK READY MilO

51,SO

80286

Some memory or 1/0 systems may require more ad­
dress or write data setup time to command active
than provided by the basic command output timing.
To provide flexible command timing, the CMDLY in­
put can delay the activation of command outputs.
The CMDL Y input must be sampled LOW to activate
the command outputs. CMDL Y does not affect the
control outputs ALE, MCE, DEN, and DT IR.

mit

910n ±1i'MI

READY COMM ANDS

ClK ucaCMD }

MIlO DEN {>o-
liM

DT/A - CENl ALE

MB AEN

.Iv
t

READY AEN
IlULTIIIUSo,

.ClK TYPE IUS CON - TROl

MIlO CNTl

1i,IlI

SYSIRESB

/'
/'

~

LATCH /'

1.1
/01110£/

~~NscJl DATA

0'''0
I'--

IY
240042-14

Figure 12. System Use of AEN and CENL

3-172

inter 82C288

CMDl Y is first sampled on the falling edge of· the
ClK ending T s. If sampled HIGH, the command out­
put is not activated, . and CMDl Y is again sampled
on the next falling edge of ClK.. Once sampled
lOW, the proper command output becomes active
immediately if MB = O. If MB == 1, the proper com"
mand goes active no earlier t~an shown in Figures 9
and 10.

'R'EADY can terminate a bus cycle before CMDl Y
allows a command to be Issued. In this case no
commands are issued an the bus controller will de­
activate DEN and DT lA in the same manner as if a
command had been issued.

Waveforms Discussion
The waveforms show the timing relationships of in·
puts and outputs and do not show all possible tran·

sitions of all signals in all modes. Instead, all Signal
timing relationships are shown via the general cas·
es. Special cases are shown when needed. The
waveforms provide some functional descriptions of
the 82C288; however, most functional descriptions
are provided in Figures 5 through 11.

To find the timing specification for a signal transition
in a particular mode, first look for a special case in
the waveforms. If no special case applies, then use
a timing specification for the same or related func­
tion in another mode.

3-173

82C288

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias O·C to + 70·C

Storage Temperature - 6S·C to + 1S0·C

Voltage on Any Pin with
Respec;t to GND - O.SV to + 7V

Power Dissipation 1 Watt

• Notice: Stresses above those listed under "Abso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is astress ratingon/y and
functional operation of· the· device at these or any
other conditions above those indicated in the operac

tional sections of this specification is not implied. Ex­
posure to absolute maximum rating conditions for
extended periods may affect device reliability.

NOTICE- Specifications contained within the
following tables are subject to change.

D.C. CHARACTERISTICS Vcc = SV ±S%, TCASE = 0·Cto8S·C'

Symbol Parameter Min Max Units Test Conditions

V,L Input lOW Voltage -0.5 0.8 V

V,H Input HIGH Voltage 2.0 VCC + 0.5 V

V,LC ClK Input lOW Voltage -0.5 0.6 V

V,HC ClK Input HIGH Voltage 3.8 VCC + 0.5 V

VOL Output lOW Voltage
Command Outputs 0.45 V IOL = 32 mA (Note 1)
Control Outputs 0.45 V IOL = 16 mA (Note 2)

VOH Output HIGH Voltage
Command Outputs 2.4 V IOH = -5 mA (Note 1)

VCC - 0.5 V IOH = -1 mA (Note 1)
Control Outputs 2.4 V IOH = -1 mA (Note 2)

VCC - 0.5 V IOH = -0.2 mA (Note 2)

I,L Input leakage Current ±10 p.A OV:;;: V,N:;;: VCC

ILO Output leakage Current ±10 p.A 0.45V :;;: VOUT :;;: VCC

Icc Power Supply Current 75 mA

Iccs Power Supply Current (Static) 1 rnA (Note 3)

CCLK ClK Input Capacitance 12 pF Fc = 1 MHz

C, Input Capacitance 10 pF Fc= 1 MHz

Co Input/Output Capacitance 20 pF Fc = 1 MHz

'T A IS guaranteed from O"C to + 70"C as long as T CASE IS not exceeded.

NOTES:
1. Command Outputs are INTA, IORC, IOWC, MRDC and MWRC.
2. Control Outputs are DT IR, DEN, ALE and MCE.
3. Tested while outputs are unloaded, and inputs at Vee or Vss.

3-174

82C288

A.C. CHARACTERISTICS

Vee = 5V, ±5%, TeAsE = O·C to + 85·C.* AC timings are referenced to 0.8V and 2.0V points of signals as
illustrated in data sheet waveforms, unless otherwise noted.

8MHz 10 MHz 12.5 MHz

Symbol Parameter
(Advance) (Advance) (Advance)

Unit
Test

·8 ·8 ·10 ·10 ·12 ·12 Condition

Min Max Min Min Min Max

1 ClK Period 62 250 50 250 40 250 ns

2 ClK HIGH Time 20 16 13 ns at3.6V

3 ClKlOWTime 15 12 11 ns at 1.0V

4 ClK Rise Time 10 8 8 ns 1.0V to 3.6V

5 ClK Fall Time 10 8 8 ns 3.6V to 1.0V

6 MilO and Status 22 18 15 ns
Setup Time

7 MilO and Status 1 1 1 ns
Hold Time

8 CENl Setup Time 20 15 15 ns

9 CENl Hold Time 1 1 1 ns

10 READY Setup Time 38 26 18 ns

11 READY Hold Time 25 25 20 ns

12 CMDl Y Setup Time 20 15 15 ns

13 CMDl Y Hold Time 1 1 1 ns

14 AEN Setup Time 20 15 15 ns . (Note 3)

15 AEN Hold Time 0 0 0 ns (Note 3)

16 ALE, MCE Active 3 20 3 16 3 16 ns (Note 4)
Delay from ClK

17 ALE, MCE Inactive 25 19 19 ns (Note 4)
Delay from ClK

18 DEN (Write) 35 23 23 ns (Note 4)
Inactive from CENl

19 DT IR lOW from ClK 25 23 23 ns (Note 4)

20 DEN (Read) ActiveR 5 35 5· 21 5 21 ns (Note 4)
from DTI

21 DEN (Read) Inactive 3 35 3 21 3 19 ns (Note 4)
DlyfromClK

22 DT IR HIGH from 5 35 5 20 5 18 ns (Note 4)
DEN Inactive

23 DEN (Write) Active 30 23 23 ns (Note 4)
Delay from ClK

24 DEN (Write) Inactive 3 30 3 19 3 19 ns (Note 4)
DlyfromClK

*T A is guaranteed from o'e to + 70'e as long as T CASE IS not exceeded.

3-175

inter 82C288

A.C. CHARACTERISTICS

vee = 5V, ±5~, TeAsE '"",O"Ct.o + 85'C.oAC timings are referenced to 0.8Vand 2.0V points of signals as
illustrated in data sheet waveforms, unless otherwise noted. (Continued)

8 MHz 10 MHz

Symbol Parameter
(Advance) (Advance)

-S, ·8 ·10 ·10 '
Min Max Min Min

25 DEN Inactive from 30 25
CEN

26 DEN 'Active from 30 24
CEN

27 DT IFf HIGH from ClK 35 25
(when CEN = lOW)

28 DEN Active from AEliI 30 26

29 om5 Active Delay 3 25 3 21
fromClK

30 ~ Inactive Delay 5 20 5 20
fromClK

31 om5 Active from 25 25
CEN

32 em5lnactive from CEN 25 25

33 CM15 Inactive Enable from AEN 40 40

34 ~ Float Delay from AEN 40 40

35 MB Setup 1ime 20 20

36 MBHoldTime 0 0

37 Command Inactive Enable 40 40
from MB.!

38 Command Float Time from MB t 40 40

39 DEN Inactive from MB t 30 26

40 DEN Active from MB .! 30 30
·T A IS guaranteed ,from O'C to + 70"e as long as T CASE IS not exceeded.

NOTES:

12.5 MHz
!

(Advance)
Unit

Test
·12 " ·12 Condition
Min Max

25 ns (Note 4)

24 ns (Note 4)

25 ns (Note ,4)

26 ns (Note 4)

3 21 ns (Note 5)

5 20 ns (Note 5)

25 ns (Note 5)

25 ns (Note 5)

40 ,ns (Note 5)

40 ns (Note 6)

20 ns

0 ns

40 ns (Note 5)

40 ns (Note 6)

26 ns (Note 4)

30 ns (Note 4)

3. AEfij is an asynchronous Input. This specification Is for testing purposes only. to assure recognition at a specific elK
edge. ' ,
4. Control output load:el = 150 pF,
5. Command output load: el, = 300 pF.
6. Float condition occurs whenoulput current is less than ILO in magnitude.

4.OV

240042-15

Note,7: AC Drive and Measurement Polnts-CLKlnput

3-17E~

WAVEFORMS

82C288

4.DY

CLKINPUT

1.OV

D.45Y ----...---+l~----J

!HoLD

OTHER EE2.ov 311 DEYICE
INPUT

D.8Y
D.45Y

DEYICE
OUTPUT

IDELAY ---.I

2.OV

D.8Y

Note 8: AC Setup, Hold and Delay Time Measurement-General

DEVICE
OUTPUT-

Note 9: AC Test loading on Outputs

240042-17

ClK CHARACTERISTICS

CLK

240042-16

240042-18

3-177

intJ 82C288

WAVEFORMS (Continued)

STATUS, ALE, MCE, CHARACTERISTICS

CLK

MliO,Si,Sii ---+""ill~

ALE ______ +.:!.

MCE ______ ...J

240042-19

CENL, CMDL Y, DEN CHARACTERISTICS WITH MB = 0 AND CEN = 1 DURING WRITE CYCLE

CLK

OEN ___ -+...J

CENL

CMOLY LLi..CLLi.'LLi.CLLi.'LLi.{i;
240042-20

READ CYCLE CHARACTERISTICS WITH MB = 0 AND CEN = 1

T.--"'--
CLK

OT/A ---+"\

DEN __ -b::-J

CENL

240042-21

3-178

82C288

WAVEFORMS (Continued)

WRITE CYCLE CHARACTERISTIC WITH MB = 0 AND CEN = 1

CLK

VOH ________________ ~---+------~~----+_-----------

CMDLY

CENL

240042-22

CEN CHARACTERISTICS WITH MB = 0

CLK

DT/ii ____________ --\~--_+J

240042-23

3-179

WAVEFORMS (Continued)

AEN CHARACTERISTICS WITH MB = 1

NOTE:

ClK

AiM

DEN __ -J

82C288

240042-24

1. AEN is an asynchronous input. AEN setup and hold time is specified to guarantee the response shown in the waveforms.

MB CHARACTERISTICS WITH AEN/CEN = HIGH

T5 TC Tc Tc T5

elK

MB

_______ ~O~T~~ =-: _ -+k-r®--"31-----,-t_@ __ -<,c,'r-_@_3lJ_-_I-=J~~---~
---. ~--@_4Il-. --~---'--'----<,'c,___-_'_i--tt~.::.;,;;,,~'--_ DEN

240042-25

3-180

inter 82C288

WAVEFORMS (Continued)

MB CHARACTERISTICS WITH AEN/CEN = HIGH (Continued)

Ts Tc TC Ts

CLK

MB

DTIII'

DEN

240042-26

CLK

MB

FLOATING . - -- - -------- ---
DEN

240042-27

NOTES:
1. MB is an asynchronous input. MB setup and hold times specified to guarantee the response shown in the waveforms.
2. If the setup time, t35, is met two clock cycles will occur before ~ becomes active after the falling edge of MB.

DATA SHEET REVISION REVIEW

The following list represents key differences between this and the -001 data sheet. Please review this summa-
ry carefully. .

1. The 82C288 data sheet has been upgraded from "ADVANCED" to "PRELIMINARY".

3-181

inter
82C284

•
•
•
•

CLOCK GENERATOR AND READY INTERFACE
FOR 80286 PROCESSORS

(82C284-12, 82C284-10, 82C284-8)
Generates System Clock for 80286 • CHMOS III Technology
Processors • Generates System Reset Output
Uses Crystal or TTL Signal for • Available in 18-Lead Cerdip and 20-Pin
Frequency Source PLCC (Plastic Leaded Chip Carrier)
Provides Local READY and Packages
MULTIBUS®I READY Synchronization (See Packaging Spec, Order #231369)

Single + 5V Power Supply

The 82C284 is a clock generator/driver which provides clock signals for 80286 processors and support
components. It also contains logic to supply READY to the CPU from either asynchronous or synchronous
sources and synchronous RESET from an asynchronous input.

RES

Xl

X2

EFI

Fie

ARDYEN
ARDY

SRDYEN
SRDY

51
so

RESET
SYNCHIIONIZEII

Figure 1. 82C284 Block Diagram

3-182

RESET

elK

READY

PCLK

210453-1

September 1988
Order Number: 210453-009

inter 82C284

18-Lead Cerdlp

ARDY Vee

SRDY ARDYEN

SRDYEN

READY

EFI

Fie
x,
x.

GND

51
so
N.C.

PCLK
RESET

RES

CLK
210453-2

P.C. Board Views-As viewed from the compo­
nent side of the P.C. Board.

Component Pad Views-As viewed from under­
side of component when mounted on the board.

NOTE:

RESET
PCLK
GND

so
51

1. N.C. Signals must not be connected.

20 Pin PLCC

210453-18

X18

FIC 7
EFI6

READY 5

SRDYEN 4

Figure 2. 82C284 Pin Configuration

3-183

N ~ ~ :=l I~ x (,!) Z 0 a::
910111213

3 2

I~ I~
1 2019

c..! ~1i5 z > ~
~

14 RESET
15 PCLK
16 GND

17 so
18 51

210453-19

'I
j

i'I'
I

inter 82C284

Table 1. Pin Description

The following pin function descriptions are for the 82C284 clock generator.

Symbol Type Name and Function

ClK a SYSTEM CLOCK is the Signal used by the processor and support
devices which must be synchronous with the processor. The frequency
of the ClK output has twice the desired internal processor clock
,frequency. CLK can drive both TIL and MaS level inputs.

F/C I FREQUENCY ICRYSTAL SELECT ~ a strapping option to select the
source for the ClK output. When F/C ~ strapped lOW, the internal
crystal oscillator drives ClK. When F/C is strapped HIGH, the EFI
input drives the ClK output.

X1, X2 I CRYSTAL IN are the pins to which a parallel resonant fundamental
mode crystal is attached for the internal oscillator. When FIG is lOW,
the internal oscillator will drive the ClK output at the crystal frequency.
The crystal frequency must be twice the desired internal processor

,
clock frequency.

EFI I EXTERNAL FREQUENCY IN drives ClK when the F/C input is
strapped HIGH. The EFI input frequency. must be twice the desired.
internal processor clock frequency.

PClK a PERIPHERAL CLOCK is an output which provides a 50% duty cycle
clock with 112 the frequency of ClK. PClK will be in phase with the
internal processor clock following the first bus cycle after the
processor has been reset.

ARDYEN I ASYNCHRONOUS READY ENABLE is an active lOW input which
qualifies the ARDY input. ARDYEN selects ARDY as the source of
ready for the current bus cycle. Inputs to ARDYEN may be applied
asynchronously to ClK. Setup and hold times are given to assure a
guaranteed response to synchronous inputs.

ARDY I ASYNCHRONOUS READY is an active lOW input used to terminate
the current bus cycle. The ARDY input is qualified by ARDYEN. Inputs
to ARDY maybe applied asynchronously to ClK. Setup and hold times
are given to assure a guaranteed response to synchronous outputs.

SRDYEN I SYNCHRONOUS READY ENABLE is an active lOW input which
qualifies SRDY. SRDYEN selects SRDY as the source for READY to
the CPU for the current bus cycle. Setup and hold times must be
satisfied for proper operation.

SRDY I SYNCHRONOUS READY is an active lOW input used to terminate
the current bus cycle. The SRDY input is qualified by the SRDYEN
input. Setup and hold times must be satisfied for proper operation.

READY a READY is an active lOW output which signals the current busEcle is
to be completed. The SRDY, SRDYEN, ARDY, ARDYEN, S1, SO and
RES inputs control READY as explained later in the READY generator
section. READY is an open drain output requiring an external pull-up
resist9r.

3-184

82C284

Table 1. Pin Description (Continued)

The following pin function descriptions are for the 82C284 clock generator.

Symbol Type Name and Function

SO,S1 I STATUS input prepare the 82C284 for a subsequent bus cycle. SO and
Sf synchronize PClK to the internal processor clock and control
READY. These inputs have internal pull-up resistors to keep them
HIGH if nothing is driving them. Setup and hold times must be satisfied
for proper operation.

RESET 0 RESET is an active HIGH output which is derived from the RES input.
RESET is used to force the system into an initial state. When RESET is
active, READY will be active (lOW).

RES I RESET IN is an active lOW ~'fut which generates the system reset
Signal, RESET. Signals to R may be applied asynchronously to ClK.
Setup and hold times are given to assure a guaranteed response to
synchronous inputs.

Vee SYSTEM POWER: + 5V Power Supply

GND SYSTEM GROUND: OV

FUNCTIONAL DESCRIPTION

Introduction

The 82C284 generates the clock, ready, and reset
signals required for 80286 processors and support
components. The 82C284 is packaged in an 18-pin
DIP and contains a crystal controlled oscillator,
clock generator, peripheral clock generator, Multi­
bus ready synchronization logic and system reset
generation logic.

Clock Generator

The ClK output provides the basic timing control for
an 80286 system. ClK has output characteristics
sufficient to drive MOS devices. ClK is generated by
either an internal crystal oscillator or an external
source as selected by the F /C strapping option.
When FIC is lOW, the crystal oscillator drives the
ClK output. When FIC is HIGH, the EFI input drives
the ClK output.

The 82C284 provides a second clock output, PClK,
for peripheral devices. PClK is ClK divided by two.
PClK has a duty cycle of 50% and MOS output
drive characteristics. PClK is normally synchronized
to the internal processor clock.

After reset, the PClK signal may be out of phase
with the internal processor clock. The S1 and SO
signals of the first bus cycle are used to synchronize

PClK to the internal processor clock. The phase of
the PClK output changes by extending its HIGH

\ time beyond one system clock (see waveforms).
PClK is forced HIGH whenever either SO or S1 were
active (lOW) for the two previous ClK cycles. PCLK
continues to oscillate when both SO and S1 are
HIGH.

Since the phase of the internal processor clock will
not change except during reset, the phase of PClK
will not change except during the first bus cycle after
reset.

OSCillator

The oscillator circuit of the 82C284 is a linear Pierce
oscillator which requires an external parallel reso­
nant, fundamental mode, crystal. The output of the
oscillator is internally buffered. The crystal frequency
chosen should be twice the required internal proces­
sor clock frequency. The crystal should have a typi­
cal load capacitance of 32 pF.

X1 and X2 are the oscillator crystal connections. For
stable operation of the oscillator, two loading capac­
itors are recommended, as shown in Table 2. The
sum of the board capacitance and loading capaci­
tance should equal the values shown. It is advisable
to limit stray board capacitances (not including the
effect of the loading capaCitors or crystal capaci­
tance) to less than 10 pF between the X1 and X2
pins. Decouple Vee and GND as close to the
82C284 as possible.

3-185

82C284

10
.---_~XI CLK Vee' CLK_

.--........ ---=-lX2 _

CI J l READY:.

C~Uor
SUPPORT

COMPONENT

READY"

Vee .

DECOUPUNG
SEETABLE '

21'011
CAPM:I1OR

llllLUES t CAPM:I1OR"

210453-3

Figure 3. Recommended Crystal
and READY Connections

elK Termination

Due to the ClK output having a very fast rise and fall
time, it is recommended to properly terminate the
ClK line at frequencies above 10 MHz to avoid sig­
nal reflections and ringing. Termination is accom­
plished by inserting a small resistor (typically 100-
74~). in series with the output, as shown in Figure 4.
ThiS IS known as series termination. The resistor val­
ue plus the circuit output impedance should be
made, ecjual to the impedance' of the' transmission
line, '

}.1.0453-15

Figure 4. Series Term,lnatlon,

Reset Operation

The reset logic provides the RESET output to force
the system into aknowri,initial state. WhSn the RES
input is ,active (l~W),' the RESET output becomes
active (HIGH). RE ,is synchronized, internally at the
falling edge of ClKbeforegenerating the RESET
output (see waveforms). Synchronization oftha RES
input introduces a one or two ClK delay beforeaf-
fecting the RESET output: " '

At power up, 'a system does not have a stable V c~
and ClK. To prevent spurious activity, RES' should

be asserted until V cc and ClK stabilize at their oper­
ating values. 80286 processors and support compo­
nents also require their RESET inputs be HIGH a
minimum of 16 ClK cycles. A network such as
shown in Figure 5 will keep RES lOW long' enough
to satisfy both needs. . '

, vee

210453-4

Figure 5. Typical RES Timing Circuit

Ready Operation

The 82C284 acc~Pts ~~ ready sources for the sys­
tem ready signal which terminates the current bus
cycle. Eithe~nchronous (SRDy) or asynchro­
nous ready (ARDY) source may be used. Each ready
input has an enable (SRDYEN and ARDYEN) for se­
lecting the type of' ready source required to termi~
nate the current bus cycle; An 'address deco~er
would normally select one of the enable inputs,

READY is enabled (lOW), if either SRDY +
SRDYEN = 0 or ARDY + ARDYEN = 0 when·
sampled by the 82C284 READY generation logic.
READY will remain active for at least two ClK cy­
cles.

The READY output has' an·open-drain driver allow~
ing other ready circuits to be wire or'ad with it; as
shown in Figure 3. The 'FiEABY signal of lin 80286
syste'E reguires an eldernalpull-up resistor. To force
the R. ADY signal ~~ctive '(HIGH) at the start ota
bu~ycle, the REA" output floats when either S1
or SO are sampled LOW at the falling edge of ClK.
Tw? system clock periods are allowed for the pull-up
resistor to pull the READY signal to VIH. When RE­
SET is active, READY is forced active oneClKlater
(see waveforms).

",

Figure 6 iIIustrates'the operation 01 SRDY and
SRDYEN. These i~ts ar~sampled on the falling
edge of ClK when S1 and SO are inactive and PClK

3-186

inter 82C284

is HIGH. READY is forced active when both SRDY
and SRDYEN are sampled as lOW.

Figure 7 shows the operation of ARDY and
ARDYEN. These inputs are sampled by an internal
synchronizer at each falling edge of ClK. The output
of the synchronizer is then sampled when PClK is
HIGH. If the synchronizer resolved both the ARDY

and ARDYEN as active, the SRDY and 5RDYEN in­
puts are ignored. Either ARDY or ARDYEN must be
HIGH at the end of T s (see Figure 7).

READY remains active until either 51 or 50 are sam­
pled lOW, or the ready inputs are sampled as inac­
tive.

Table 2. 82C284 Crystal Loading Capacitance Values

Crystal Frequency
C 1 Capacitance C2 Capacitance

(Pin 7) (Pin 8)

1 to 8MHz , 60pF 40pF
8t020MHz 25 pF 15 pF

Above 20 MHz 15pF 15pF

NOTE:
Capacitance values must include stray board capacitance.

T. To T,

ClK

PClK

ARDy:~----------~-----------+----------------4-----+---~--­
SRDYEN

+
SRDY

READY --------------

Figure 6. Synchronous Ready Operation

T. To To

eLK

PClK

M~Y----______ --__ ~

Figure 7. Asynchronous Ready Operation

3-187

210453-5

T,

210453-6

I,

820284

ABSOLUTE. MAXIMUM RATINGS·

Temperature Under Bias ; O·C to + 70·C

Storage Temperature - 6S·C to + 1S0·C

All Output and Supply Voltages .. , .. -O.SV to + 7V

All Input Voltages -1.0V to + S.SV

Power Dissipation 1 Watt

• Notice: Stresses above those listed under "Abso­
lute Maximum Ratings" may cause permanent dam­
age to the. device. This is a stress rating only and
functional operation of the device at these or any
other conditions above those indicated in the opera­
tional sections of this specification is not implied Ex­
posure to absolute maximum rating conditions for
extended periods may affect device reliability.

D.C. CHARACTERISTICS TeAsE = O·Cto +8S·C,* Vee = SV ±S%

Symbol Parameter . Min Max Unit Test Condition

V,L Input lOW Voltage 0.8 V

V,H Input HIGH Voltage 2.0 V

V,HR "FiE§ and EFllnput HIGH Voltage 2.6 V

VOL RESET, PClK Output lOW Voltage 0.4S V IOL = SmA

VOH RESET, PClK Output 2.4 V IOH = -1 mA
HIGH Voltage

Vee- O.S V IOH = -0.2mA

VOLR READY, Output lOW Voltage O.4S V IOL = 9mA

VOLC ClK Output lOW Voltage O.4S V IOL = SmA

VOHe elK Output HIGH Voltage 4.0 V IOH = - 800p..A

I,L Input Sustaining Current 30 SOO p..A Y,N = OV
on SO and S 1 Pins

III Input leakage Current ±10 p..A o :5: Y,N :5: VeC<1)

lee Power Supply Current
7S mA

at 2S MHz Output
ClK Frequency

C, Input Capacitance 10 pF Fe = 1 MHz
°TA IS guaranteed from O"C to + 70'C as long as TeASE IS not exceeded.

NOTE:
1. Status lines SO and S1 excluded because they have internal pull-up resistors.

3-188

inter 82C284

A.C. CHARACTERISTICS vee = 5V ±5%, TeAsE = O·Cto +85·C.*

Timings are referenced to 0.8V and 2.0V points of signals as illustrated in the datasheet waveforms, unless
otherwise noted.

82C284 A.C. Timing Parameters
8.0 MHz 10.0 MHz 12.5 MHz

Symbol Parameter Preliminary Preliminary Preliminary Units Test
Min Max Min Max Min Max Conditions

1 EFI to ClK Delay 25 25 25 ns At 1.5V (1)

2 EFI lOW Time 28 22.5 13 ns At 1.5V (1, 7)

3 EFI HIGH Time 28 22.5 22 ns At 1.5V (1,7)

4 ClKPeriod 62 500 50 500 40 500 ns

5 ClKlOWTime 15 12 11 ns At 1.0V (1, 2, 7, 8, 9,10)

6 ClK HIGH Time 25 16 13 ns At 3.6V (1, 2, 7, 8, 9, 10)

7 ClK Rise Time 10 8 8 ns 1.0V to 3.6V (1, 2, 10.11)

8 ClK Fall Time 10 8 8 ns 3.6V to 1.0V (1, 9, 10, 11)

9 Status Setup Time 22 - - ns (Note 1)

9a Status Setup Time for - 20 22 ns (Note 1)
Status Going Active

9b Status Setup Time for - 20 18 ns (Note 1)
Status Going Inactive

10 Status Hold Time 1 1 3 ns (Note 1)

11 SRDY or SRDYEN 17 15 15 ns (Note 1)
Setup Time

12 SRDY or SRDYEN 0 2 2 ns (Notes 1,11)
Hold Time

13 ARDY or ARDYEN 0 0 0 ns (Notes 1,3)
Setup Time

14 ARDY or ARDYEN 30 30 25 ns (Notes 1,3)
Hold Time

15 RES Setup Time 20 20 18 ns (Notes 1,3)

16 RES Hold Time 10 10 8 ns (Notes 1, 3)

17 READY Inactive Delay 5 5 5 ns At O.BV (4)

18 READY Active Delay 0 24 0 24 0 18 ns At O.BV (4)

19 PClK Delay 0 45 0 35 0 23 ns (Note 5)

20 RESET Delay 5 34 5 27 3 22 ns (Note 5)

21 PClK lOW Time t4-20 t4-20 T4-20 ns (Notes 5,6)

22 PClK HIGH Time t4-20 t4-20 T4-20 ns (Notes 5, 6)

'T A IS guaranteed from O'C to 70'C as long as T eliSE IS not exceeded.

NOTES:
1. elK loading: CL = 100 pF. The 82C284's X1 and X2 inputs are designed primarily for parallel-resonant crystals. Serial­
resonant crystals may also be used, however, they may oscillate up to 0.01 % faster than their nominal frequencies when
used with the 82C284. For either type of crystal, capacitive loading should be as specified by Table 2.
2. With the internal crystal oscillator using recommended crystal and capacitive loading; or with the EFI input meeting speci­
fications t2 and t3. The recommended crystal loading for ClK frequencies of 8 MHz-20 MHz are 25 pF from pin XI to
ground, and 15 pF from pin X2 to ground; for ClK frequencies above 20 MHz 15 pF from pin XI to 9round, and 15 pF from
pin X2 to ground. These recommended values are ±5 pF and include all stray capacitance. Decouple Vcc and GND as
close to the 82C284 as possible.
3. This is an asynchronous input. This specification is given for testing purposes only, to assure recognition at specific ClK
edge.

3-189

82C284

NOTES:
4. Pull-up Resistor values for READY Pin:

CPU Frequency 8 MHz 10 MHz 12.SMHz

Resistor 9100 7000 6000
Cl 150pF 150pF 150pF'
IOL 7mA 7mA 9mA

5. PClK and RESET loading: CL = 75 pF.
6. t4 refers to any allowable ClK period. ,
7. When driving the 82C284 with EFI. provide minimum EFI HIGH and lOW times as follows:

ClK Output, Frequency 16 MHz 20 MHz 2SMHz

Min. Required EFI HIGH Time 28ns 22.5ns 22ns
Min. Required EFI lOW Time 28ns 22.5ns 13 ns ..

8. When USing a crystal (with recommended capacitive loading per Table 2) appropnatefor the speed of the 80286. ClK
output HIGH and lOW times guaranteed to meet the 80286 requirements. '

Reset Drive EFI Drive and
Measurement Points

~
,ov

1.5V 1.5V'

O,45V '.

Note 9

210453-7

829214 cue
OUTPUT

DEVICE
INPUT

ClK Output Measurement
Ppints

t; 1.OV

210453-8

Note 10

fIe Drive Points

.45 ~
210453-9

Note 11

210453-10,

Nole 12. AC Setup, Hold and Delay Time Measl,lrement-General

3-190

intJ

PCLK
output

WAVEFORMS

Vee

~

>
7500hm>

~>

-r
ClK as a Function of EFI

EFI

ClK

NOTE:

82C284

Vee
9

>-9100hm~

READY 0-----..
output

Note 13. AC Test loading on Outputs

Other 00----1.,
outputo ~

~I

210453-12

210453-11

The EFI input LOW and HIGH times as shown are required to guarantee the eLK LOW and HIGH times shown.

RESET and READY Timing as a Function of RES with S1, SO, ARDY + ARDYEN, and SRDY +
SRDYEN High

210453-13

NOTE:
1. This is an asynchronous input. The setup and hold times shown are required to guarantee the response shown.

3-191

82C284

WAVEFORMS (Continued)

READY and PCLK Timing with RES High

210453-14

NOTES:
1. This is an asynchronous input. 'The setup and hold times shown are required to guarantee the response show_n. __
2. If SRDY + SRDYEN or ARDY + ARDYEN are active before and/or during the first bus cycle after RESET, READY
may not be deasserted until after the falling edge of </>2 of T s.

ICC vs.Frequency @ Nominal Conditions

1.6 -------------..

1.5

1.4

1.3

1.2

1.1

12 14

CLK OUTPUT FREQUENCY, 101Hz
2310453-16

ICC vs Case Temperature @ 25 MHz

1.04
~ 1.03
It) 1.02

'" 1.01 1 0.99
0 0.98 IoJ

~ 0.97
0.96 0.95 lIE

'" 0.94
0 0.93 z 0.92 .; 0.91 ..!! 0.9

0.89

3-192

0 20 40 60 80

CASE TEMPERATURE, °c
2310453-17

82C284

DATA SHEET REVISION REVIEW

The following list represents key rlifferences between this and the -008 data sheet. Please review this summa­
ry carefully.

1. The "PRELIMINARY" markings, have been removed from the data sheet.

3-193

I~
11,1

.'
I" .'

INTEL386™ Family 4

',',I'" I

\
1\

386™ MICROPROCESSOR
HIGH PERFORMANCE 32-81T CHMOS MICROPROCESSOR

WITH INTEGRATED MEMORY MANAGEMENT
• Flexible 32-Blt Microprocessor

- 8, 16, 32-Blt Data Types
- 8 General Purpose 32-Blt Registers

• Very Large Address Space
- 4 Gigabyte Physical
- 64 Terabyte Virtual
- 4 Gigabyte Maximum Segment Size

• Integrated Memory Management Unit
- Virtual Memory Support
- Optional On·Chip Paging
- 4 Levels of Protection
- Fully Compatible with 80286

• Object Code Compatible with All 8086
Family Microprocessors

• Virtual 8086 Mode Allows Running of
8086 Software In a Protected and
Paged System

• Hardware Debugging Support

• Optimized for System Performance
- Plpelined Instruction Execution
- On·Chlp Address Translation Caches
-16,20 and 25 MHz Clock
- 32, 40 and 50 Megabytes/Sec Bus

Bandwidth

• High Speed Numerics Support via
80387 Coprocessor

• Complete System Development
Support
- Software: C, PL/M, Assembler

System Generation Tools
- Debuggers: PSCOPE, ICETM-386

• High Speed CHMOS III and CHMOS IV
Technology

• 132 Pin Grid Array Package
(See Packaging Specification. Order # 231369)

The 386TM Microprocessor is an advanced 32-bit microprocessor designed for applications needing very high
performance and optimized for multitasking operating systems. The 32-bit registers and data paths support
32-bit addresses and data types. The processor addresses up to four gigabytes of physical memory and 64
terabytes (2**46) of virtual memory. The integrated memory management and protection architecture includes
address translation registers, apvanced multitasking hardware and a protection mechanism to support operat­
ing systems. In addition, the 386 Microprocessor allows the simultaneous running of multiple operating. sys­
tems. Instruction pipelining, on-chip address translation, and high bus bandwidth ensure short average instruc­
tion execution times and high system throughput.

The 386 Microprocessor offers new testability and debugging features. Testability features include a self-test
and direct access to the page translation cache. Four new breakpoint registers provide breakpoint traps on
code execution or data accesses, for powerful debugging of even ROM-based systems.

Object-code compatibility with all 8086 family members (8086, 8088, 80186, 80188, 80286) means the 386
Microprocessor offers immediate access to the world's largest microprocessor software base.

16 BYTE
COD{

QUEUE

INSTRUCTION
PREfETCH 32

HOLD,itlTR,Nllll
ERROR,iffiSY
R[SET.HLOA

8[01- BU/I.
A2-0\31

M/IO"O/CI/.
W/RI,LOCKII.
ADSI,NAI.
8S16,. READY,

231630-49

Figure 1-1. 386TM Microprocessor Pipelined 32-Bit Microarchitecture
386™ is Trademark of Intel Corporation.
UNIXTM is a Trademark of AT&T Bell Labs.
MS-DOS is a Trademark of MICROSOFT Corporation.

4-1
November 1988

Order Number: 231630·005

I

I'
I
~
I

.386™ MICROPROCESSOR

2. BASE ARCHITECTURE

2.1 INTRODUCTION

The 386™ Microprocessor consists of a central pro­
cessing unit, a memory management unit and a bus
interface.

The central processing unit consists of the execu­
tion unit and instruction unit. The execution unit con­
tains the eight 32-bit general purpose registers
which are used for both address calculation, data
operations and a 64-bit barrel shifter used to speed
shift, rotate, multiply, and divide operations. The
multiply and divide logic uses a 1-bit per cycle algo­
rithm. The multiply algorithm stops the iteration
when the most significant bits of the multiplier are all
zero. This allows typical 32-bit multiplies to. be exe­
cuted in under one microsecond. The instruction unit
decodes the instruction opcodes and stores them in
the decoded instruction queue for immediate use by
the execution unit.

The memory management unit (MMU) consists of a
segmentation unit and a paging unit. Segmentation
allows the managing of the logical address space by
providing an extra addressing component, one that
allows easy code and data relocatability, and effi­
cient. sharing. The paging mechanism operates be­
neath and is transparent to the segmentation pro­
cess, to allow management of the physical address
space. Each segment is divided into one or more 4K
byte pages. To implement a virtual memory system,
the 386 Microprocessor supports full restartability
for all page and segment faults.

Memory is organized into one or more variable
length segments, each up to four gigabytes in size. A
given region of the linear address space, a segment,
can have' attributes associated with it. These attri­
butes include its location, size, type (i.e. stack, code
or data), and protection characteristics. Each task
on an 386 Microprocessor can have a maximum of
16,381 segments of up to four gigabytes each, thus
providing 64 terabytes (trillion bytes) of virtual mem­
ory to each task.

The segmentation unit provides four-levels of pro~
tection for isolating and protecting applications and
the operating system from each other. The hardware
enforced protection allows the design of systems
with a high degree 01 integrity.

The 386 Microprocessor has two modes of opera­
tion: Real Address. Mode (Real Mode), and Protect­
'ed Virtual Address Mode (Protected Mode). In Real
Mode the 386 Microprocessor operates as a very

4-2

fast 8086, but with 32-bit extensions if desired. Real
Mode is required primarily to setup the processor for
Protected Mode operation. Protected Mode provides
access to the sophisticated memory management,
paging and privilege capabilities of the processor.

Within ProteCted Mode, software can perform a task
switch to enter into tasks designated as Virtual 8086
Mode tasks. Each such task behaves with 8086 se­
mantics, thus allowing 8086 software (an application
program, or an entire operating system) to execute.
The Virtual 8086 tasks can be isolated and protect­
ed from one another and the host 386 Microproces­
sor operating system, by the use of paging, and the
liD Permission Bitmap.

Finally, to facilitate high performance system hard­
ware designs, the 386 Microprocessor bus interface
offers address pipelining, dynamic data bus sizing,
and direct Byte Enable signals for each byte of the
data bus. These hardware features are described
fully beginning in Section 5.

2.2 REGISTER OVERVIEW

The 386 MicroprOcessor has 32. register resources
in the following categories:

• General Purpose Registers

• Segment Registers

• Instruction POinter and Flags

• Control Registers

• System Address Registers

• Debug Registers

• Test Registers.

The registers are a superset of the 8086, 80186 and
80286 registers, so all 16-bit8086,80186 and
80286 registers are contained within the 32-bit 386
Microprocessor. .

Figure 2-1 shows all of 386 Microprocessor base ar­
chitecture registers, which include the general ad­
dress and data registers, the instruction pOinter, and
the flags register. The contents 01 these registers
are task-specific, so these registers are automatical­
ly loaded with a new context upon a task switch op­
eration.

The base architecture also includes six directly ac­
cessible segments, each up to 4 Gbytes in size. The
segments are indicated by the selector values
placed in 386 Microprocessor segment registers of
Figure 2-1. Various selector values can be loaded as
a program executes, if desired.

386TM MICROPROCESSOR

GENERAL OAT A AND ADDRESS REGISTERS
31 16 15 0

AX EAX

BX EBX

CX ECX

OX EDX

SI ESI

01 EDI

BP EBP

SP ESP

SEGMENT SELECTOR REGISTERS
15 0

CS CODE

SS STACK

OS I DATA
ES

FS

GS

INSTRUCTION POINTER
AND FLAGS REGISTER
31 16 15 0

I I
IP I EIP

FLAGS : EFLAGS

Figure 2·1. 386™ Microprocessor Base
Architecture Registers

The selectors are also task-specific, so the segment
registers are automatically loaded with new context
upon a task switch operation.

The other types of registers, Control, System Ad­
dress, Debug, and Test, are primarily used by sys­
tem software.

2.3 REGISTER DESCRIPTIONS

2.3.1 General Purpose Registers

General Purpose Registers: The eight general pur­
pose registers of 32 bits hold data or address quanti­
ties. The general registers, Figure 2-2, support data
operands of 1, 8, 16, 32 and 64 bits, and bit fields of
1 to 32 bits. They support address operands of 16
and 32 bits. The 32-bit registers are named EAX,
EBX, ECX, EDX, ESI, ED I, EBP, and ESP.

The least significant 16 bits of the registers can be
accessed separately. This is done by using the 16-
bit names of the registers AX, BX, CX, OX, SI, 01,

4-3

BP, and SP. When accessed as a 16-bit operand,
the upper 16 bits of the register are neither used nor
changed.

Finally 8-bit operations can individually access the
lowest byte (bits 0-7) and the higher byte (bits 8-
15) of general purpose registers AX, BX, CX and OX.
The lowest bytes are named AL, BL, CL and DL,
respectively. The higher bytes are named AH, BH,
CH and DH, respectively. The individual byte acces­
sibility offers additional flexibility for data operations,
but is not used for effective address calculation.

31

31

I

16 15 8 7 0

AH AX AL

BH BX BL

CH CX CL

DH OX DL

SI

01

BP

SP

16 15 0

I I
\)

T

IP

Figure 2·2. General Registers
and Instruction Pointer

2.3.2 Instruction Pointer

EAX

EBX

ECX

EDX

ESI

EDI

EBP

ESP

EIP

The instruction pointer, Figure 2-2, is a 32-bit regis­
ter named EIP. EIP holds the offset of the next in­
struction to be executed. The offset is always rela­
tive to the base of the code segment (CS). The low­
er 16 bits (bits 0-15) of EIP contain the 16-bit in­
struction pOinter named IP, which is used by 16-bit
addressing.

2.3.3 Flags Register

The Flags Register is a 32-bit register named
EFLAGS. The defined bits and bit fields within
EFLAGS, shown in Figure 2-3, control certain opera­
tions and indicate status of the 386 Microprocessor.
The lower 16 bits (bit 0-15) of EFLAGS contain the
16-bit flag register named FLAGS, which is most
useful when executing 8086 and 80286 code.

intJ 386TM MICROPROCESSOR

rLAGS

3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 .1 1 1 1 1
1098765432109 8 7 6 5 432 ~ 9 8 7 6 5 4 3 2 1 0

EfLAGS

NK7TE: .
• indicates Intel.reserved: do not define; see section 2.3.10.

CARRY FLAG
'---- PARITY rLAG

..... ----AUXILIARY CARRY
..... -----ZERO rLAG

..... -------s~rLAG
..... -------l~AprLAG

231630-50

Figure 2-3.FI8gS Register

VM (Virtual 8086 Mode, bit 17) ,
The VM bit provides Virtual 8086 Mode within
Protected Mode. If set while the 386 Micro­
processor is in Protected Mode, the 386 Mi­
croprocessor will switch to Virtual 8086 oper­
ation, handling segment loads as the 8086
does, but generating exception 13 faults on
privileged opcodes. The VM bit can be set
only in Protected Mode, by the IRET instruc­
tion (if current privilege level = 0) and by task
switches at any privilege level. The VM bit is
unaffected by POPF. PUSHF always pushes
a 0 in this bit, even if executing in virtual 8086
Mode. The EFLAGS image pushed during in-

. terrupt processing or saved . during task
switches will contain a 1 in this bit if the inter­
rupted code was executing as a Virtual 8086
Task.

RF (Resume Flag, bit 16)

The RF flag is used· in conjunction with the
debug register breakpoints. It is checked at
instruction boundaries before breakpoint pro­
cessing. When RF is set, it causes any debug
fault to be. ignored on the next instruction. RF
is then automatically reset at the successful
completion of every instruction (no faults are
Signalled) except 'the IRET instruction, the
POPF instruction, (and JMP, CALL, and INT
instructions causing. a task switch), These in~,
structions set RF to the value specified by the
memory image. For example" at the, end of
the breakpoint service ,routine, the IRET

instruction can pop an EFLAG image having
the RF bit set and'resume the. program's exe­
cution at the breakpoint address without gen­
erating another breakpoint fault on the same
location.

NT (Nested Task, bit 14)
This flag applies to Protected Mode. NT is set
to indicate that the execution of this task is
nested within another task. If set, it indicates
that the current nested task's Task State
Segment (TSS) has a valid back link to the
previous task's TSS. This bit is set or reset by
control transfers to other tasks. The value of
NT in EFLAGSis tested by the IRET instruc­
tion to determine whether to do an inter-taSk
return or an intra-task return. A POPF or an
IRET instruction will affect the setting of this
bit according to the image popped, at any
privilege level.

10PL (Input/Output Privilege Level, bits 12-13)

This two-bit field applies to Protected Mode.
10PL indicates the numerically maximum CPL
(current privilege leve,l) value permitted to ex­
ecute I/O instructions without generatinO an
exception 13 fault or consulting the I/O Per­
mission.Bitmap .. It also indicates the maxi­
mum CPL value allowing alteration of the IF
(INTR Enable Flag) bit when new values are
popped into the EFLAGregister. POPF and
IRET instruction can alter the 10PL field when
executed at CPL = O.Task switches can al·
ways alter the 10PL field, when the new flag
image is ;Ioaded from' the incoming task's
TSS ..

inter 386TM MICROPROCESSOR

OF (Overflow Flag, bit 11)

OF is set if the operation resultecl In a signed
overflow. Signed overflow occurs when the
operation resulted In carry/borrow Into the
slgn bit (high-order bit) of the result but did
not result in a carry/borrow out of the high­
order bit, or vice-versa For 8/16/32 bit oper­
ations, OF is set according to overflow at bit
7/15/31, respectively.

DF (Direction Flag, bit 10)

DF defines whether ESI and/or EDI registers
postdecrement or postincrement during the
string instructions.Postincrement occurs if
DF is reset. Postdecrement occurs if DF Is
set.

IF (INTR Enable Flag, bit 9)

The IF flag, when set, allows recognition of
external interrupts signalled on the INTR pin.
When IF is reset, external interrupts Signalled
on the INTR are not recognized.IOPL indi­
cates the maximum CPL value allowing alter­
ation of the IF bit when new values are
popped into EFLAGS or FLAGS.

TF (Trap Enable Flag, bit 8)

TF controls the generation of exception 1
trap when single-stepping through code.

. When TF is set, the 386 Microprocessor gen­
. erates an exception 1 trap after the next in­
struction is executed. When TF is reset, ex­
ception 1 traps occur only as a function of the
breakpoint addresses loaded into debug reg­
isters DRO:"DR3.

SF (Sign Flag, bit 7)

SF is set if the high-order bit of the result is
set, it is reset otherwise. For 8-, 16-, 32-bit
operations, SF reflects the state of bit 7, 15,
31 respectively.

SEGMENT

ZF (Zero Flag, bit 6)

ZF is set if all bits of the result are O. Other­
wise It is reset.

AF (Auxiliary Carry Flag, bit 4)

The Auxiliary Flag is used to simplify the addi­
tion and subtraction of packed BCD quanti­
ties. AF is set If the operation resulted in a
carry out of bit 3 (addition) or a borrow into bit
3 (subtraction). Otherwise AF is reset. AF is
affected by carry out of, or borrow into bit 3
only, regardless of overall operand length: 8,
16 or 32 bits.

PF (Parity Flags, bit 2)

PF is set if the low-order eight bits of the op­
eration contains an even number of "1's"
(even parity). PF is reset if the low-order eight
bits have odd parity. PF is a function of only
the low-order eight bits, regardless of oper­
and size.

CF (Carry Flag, bit 0) ,

CF is set if the operation resulted in a carry
out of (addition), or a borrow into (subtraction)
the high-order bit. Otherwise CF is reset. For
8-, 16- or 32-bit operations, CF is set accord­
ing to carry/borrow at bit 7,15 or 31,respec­
tively .

Note in these descriptions, "set" means "set to 1,"
and "reset" means "reset to 0."

2.3.4 Segment Registers

Six 16-bit segment registers hold segment selector
values identifying the currently addressable memory
segments. Segment registers are shown in Figure 2-
4. In Protected Mode, each segment may range in
size from one byte up to the entire linear and physi-

REGISTERS DESCRIPTOR REGISTERS (LOADED AUTOMATICALLY)
... • r " r Other " Segment

15 0 Physical Base Address Segment Limit Attributes from Descriptor

Selector CS- -
Sele.ctor SS- e - -
Selector DS- - - -
Selector ES- - - -
Selector FS- - - -
Selector GS- - - -

Figure 2-4. 386TM Microprocessor Segment Registers, and ASSOCiated Descriptor Registers

4-5

I

386T" ,MICROPROCESSOR

cal space of the machine, 4 Gbytfils (232 bytes). In
Real. Address Mode, the m~imijm segment size is
fixed at 64 Kbytes (216 bytes).

The six segments addressable at any given moment
are definer;! by the segment regh:~ters CS, SS, OS,
ES; . FS and GS, The . .sei.ector in' CS indicates the
cLirrent code segment; the selector in SS indicates
the current stack segment; the sele~ors in OS, ES,
FS and GS indicate the current data segments.

2.3.5 Segment Descriptor ~eglsters
The segment descriptor registers are not program­
mer visible, yet it is very usefLiI to understand their
content. Inside the 386 Microprocessor, a descriptor
register (programmer invisible) is associated with
each programmer-visible segment register, as
shown by Figure 2-4. Each descriptor register holds
a 32-bit segment base address, a !32-bit segment
limit, and the other necessary segment attributes.

When a selector value is loaded into a segment reg­
ister, the associated descriptor register is automati­
cally updated. with the' correct information. In Real
Address Mode, only the base address is updated
direCtly (by shifting the selector value four bits to the
left), since the segment rnaximum limit and attributes
are fixed in Real Mode. In Protected Mode, the base
address, the limit, and the attributes are all updated
per the contents of the segment descriptor indElxed
by the selector. .

Whenever a memory reference occurs, the segment
descriptor register associated With the segment be.
ing used is automatically involved with the memory
reference. The 32-bit' segment base address be~
comes a component of the IinEiara~ress calcula­
tion, the 32-bit limit is used for the limit-check opera­
tion, 'and the attributes arfilchecked against the type
of memory reference requested~

2.3.6 Control Registers
The3e6 Microprocessor has three control registers
of . 32 bits, CRO, CR2 and CR3, to hold machine

state of a global nature (not specific to an individual
task) .. These registers, al!,lng with 'System Address
Registers described in the nel(1: section, hold ma­
chin~ state that affects all tasks in the system. To
access the Control Registers, load and storEi instruc­
tions are defined.

CRO: Machine Con~rol Register (Includes 80286
Machine Status Word) .

CRO, shown in Figure 2-5, contains 6 defined bits for
. control and status purposes. The low-order '16 bits
of CRO are also known as the Machine Status Word,
MSW, for compatibility with 8.0286 Protected Mode.
LMSWand SMSW instructions are taken as special
aliases of the load and store CRO operations, where
only the low-order 16 bits of CRO are involved. For
compatibility with 80286 operating systems the 386
Microprocessor's LMSW instructions work in an
identical fashion to' the LMSW instruction on the
80286. (i.e. It only operates on the low-order 16-bits
of CRO and it ignores the new bits in CRO.) New 386
Microprocessor operating systems should use the
MOV CRO, Reg instruction.

The defined CRO bits are described belo'w.

PG (Paging Enable, bit 31)

the PG bit is set to enable theon-chip paging
unit. It is reset to disable the on-chip paging
unit. .

ET (Processor Extension Type, bit 4)

ET indic;ates the processor extension type (ei­
ther 80287 or 80387) as detected by the level
of the ERROR" input following 386 Microproc­
essor reset. The ET bit may also beset or reset
by loading CRO under program control if de­
sired.' IfET is set; the 80387 -compatible 32-bit
protocol is used. If ET'is reset; 80287 -compati­
ble 16-bit protocol is used.

Note that for strict 80286 compatibility, ET is
not affected by the LMSW instruction. When
the MSW or CRO is stored, bit 4 accurately re­
flects the current state of the ET bit.

~~------------__ ~T~,~ ______ ~ __ ~l

MSW

NOTE: _indicates Intel reserved: Do not define; SEE SECTION 2:3.10

Figure 2~Ii.C~ntrol FJeQlster.O

4-6

inter 386™ MICROPROCESSOR

TS (Task Switched, bit 3)

TS is automatically set whenever a task switch
operation is performed. If TS is set, a coproces­
sor ESCape opcode will cause a Coprocessor
Not Available trap (exception 7). The trap han­
dier typically saves the 80287/80387 context
belonging to a previous task, loads the
80287/80387 state belonging to the current
task, and clears the TS bit before returning to
the faulting coprocessor opcode.

EM (Emulate Coprocessor, bit 2)

The EMulate coprocessor bit is set to cause all
coprocessor opcodes to generate a Coproces­
sor Not Available fault (exception 7). It is reset
to allow coprocessor opcodes to be executed
on an actual 80287 or 80387 coprocessor (this
the default case after reset). Note that the
WAIT opcode is not affected by the EM bit set­
ting.

MP (Monitor Coprocessor, bit 1)

The MP bit is used in conjunction with the TS
bit to determine if the WAIT opcode will gener­
ate a CoprocessOr Not Available fault (excep­
tion 7) when TS = 1. When both MP = 1 and
TS = 1, the WAIT ,opcode g~nerates a trap.
Otherwise, the WAIT opcode does not gener­
ate a trap. Note that TS is automatically set
whenever a task switch operation is performed.

PE (Protection Enable, bit 0)

The PE bit is set to enable the Protected Mode.
If PE is reset, the processor operates again in
Real Mode. PE may be set by loading MSW or
CRO. PE can be reset only by a load into CRO.
Resetting the PE bit is typically part of a longer
instruction sequence needed for proper tran­
sition from Protected Mode to Real Mode. Note
that for strict 80286 compatibility, PE cannot be
reset by the LMSW instruction.

CR1: reserved

CR1 is reserved for use in future Intel processors.

CR2: Page Fault Linear Address

CR2, shown in Figure 2-6, holds the 32-bitlinear ad­
dress that caused the last page fault detected. The

error code pushed onto the page fault handler's
stack when it is invoked provides additional status
information on this page fault.

CR3: Page Directory Base Address

CR3, shown in Figure 2-6, contains the physical
base address of the page directory table. The 386
Microprocessor page directory table is always page­
aligned (4 Kbyte-aligned). Therefore the lowest
twelve bits of CR3 are ignored when written and
they store as undefined.

A task switch through a TSS which changes the
value in CR3, or an explicit load into CR3 with any
value, will invalidate all cached page table entries in
the paging unit cache. Note that if the value in CR3
does nof change during the task switch, the cached
page table entries are not flushed.

2.3.7 System Address Registers

Four special registers are defined to reference the
tables or segments supported by the 80286 CPU
and 386 Microprocessor protection modeL TheSe ta­
bles or segments are:

GOT (Global DeSCriptor Table),

lOT (Interrupt Descriptor Table);

LOT (Local Descriptor Table),

TSS (Task State Segment).

The addresses of these tables, and segments ar,e
stored in special registers, the System Address and
System Segment Registers illustrated in Figure 2-7.
These registers are named GOTR, 10TR, LOTR and
TR, respectively. SectiOn 4 Protected Mode Archl.
tecture describes the use of these registers.

GDTR and IDTR

These registers hold the 32-bit linear base address
and 16-bit limit of the GOT and lOT, respectively.

The GOT and lOT segments, since they are global to
all tasks in the system, are defined by 32-bit linear
addresses (subject to page translation if paging is
enabled) and 16-bit limit values.

r-~------~PM~~TtJr~~0iReiS!~~~~~--~--~CR2
CR3

NOTE: • indicates Intel reserVed: Do not define; ~EE SECTION 2.3.10 '

Figure '2-6. Control Registers 2 and 3

4-7

386TM MICROPROCESSOR

SYSTEM ADDRESS REGISTERS
47 32-BIT LINEAR BASE ADDRESS 16 15 LIMIT 0

~~~:I I j 
SYSTEM SEGMENT 

REGISTERS DESCRIPTOR REGISTERS (AUTOMATICALLY LOADED) 

r 32-BIT LINEAR BASE ADDRESS 32-BIT SEGMENT LIMIT ATTRIBUTES' 

TR f--_S"-E_L_E_CT"-OO-R-'----I 

LDTR L...-_S::.,:E:.:L:::E.;:.CT,;,.;O:..:.R.:...-..J I II II 
Figure 2·7. System Address and System Segment Registers 

LDTR and TR 

These registers hold the 1S-bit selector for the LDT 
descriptor and the TSS descriptor, respectively. 

The LDT and TSSsegments, since they are task­
specific segments, are defined by selector. values 
stored .in the system segment registers. Note that a 
segment descriptor register (programmer-invisible) 
is associated with each system segment register. 

2.3.8 Debug and Test Registers 

Debug Registers: The six programmer accessible 
debug registers provide on-chip support for debug­
ging. Debug Registers DRO-3 specify the four linear 
breakpoints. The· Debug Control Register DR? is 
used to set the breakpoints and the Debug Status 
Register DRS, displays the current state of the 
breakpoints. The use of the debug registers is de­
scribedin section 2.12 Debugging support. 

DEBUG REGISTERS 
31 0 

LINEAR BREAKPOINT ADDRESS 0 DRO 

LINEAR BREAKPOINT ADDRESS 1 DR1 

LINEAR BREAKPOINT ADDRESS 2 DR2 

LINEAR BREAKPOINT ADDRESS 3 DR3 

Intel reserved. Do not define. DR4 

Intel reserved. Do not define. DR5 

BREAKPOINT STATUS DRS 

BREAKPOINT CONTROL DR? 

TEST REGISTERS (FOR PAGE CACHE) 
31 0 I TEST CONTROL 

I 
TRS 

TR? TEST STATUS 

Figure 2·8. Debug and Test Registers 

4-8 

Test Registers: Two registers are used to control 
the testing of the RAM/CAM (Content Addressable 
Memories) in the Translation Lookaside Buffer por­
tion of the 38S Microprocessor. TRS is the command 
test register, and TR? is the data register which con­
tains the data .of the Translation Lookaside buffer 
test. Their use is discussed in section 2.11 Testabll· 
Ity. 

Figure 2-8 shows the Debug and Test registers. 

2.3.9 Register Accessibility 

There are atew differences regarding the accessibil­
ity of the registers in Real and Protected Mode. Ta­
ble2-1 summarizes these differences. See Section 
4 Protected Mode Architecture for further details. 

2.3.10 Compatibility 

VERY IMPORTANT NOTE: 
COMPATIBILITY WITH FUTURE PROCESSORS 

In the preceding register descriptions, note cer­
tain 386 Microprocessor register bits are Intel re­
served. When reserved bits are called out, treat 
them as fully undefined. This is essential for 
your software compatibility with future proces­
sorsl Follow the guidelines below: 

1) Do not depend on the states of any unde­
fined bits when testing the values of defined 
register bits. Mask them out when testing. 

2) Do not depend on the states of any unde­
fined bits when storing them to memory or 
another register. . . 

3) Do not depend on the ability to retain infor­
mation wrJtten into any undefined. bits. 

4) When loading registers always load the unde­
fined bits as zeros. 



inter 386TM MICROPROCESSOR 

Table 2-1. Register Usage 

Use In Use In Use In 

Register 
Real Mode Protected Mode Virtual 8086 Mode 

Load Store Load Store Load Store 

General Registers Ves Ves Ves Ves Ves Ves 

Segment Registers Ves Ves Ves Ves Ves Ves 

Flag Register Ves Ves Ves Ves IOPL IOPL" 

Control Registers Ves Ves PL = 0 PL = 0 No Ves 

GDTR Ves Ves PL = 0 Ves No Ves 

IDTR Ves Ves PL = 0 Ves No Ves 

LDTR No No PL = 0 Ves No No 

TR No No PL = 0 Ves No No 

Debug Control Ves Ves PL = 0 PL = 0 No No 

Test Registers Ves Ves PL = 0 PL = 0 No No 

NOTES: 
PL = 0: The registers can be accessed only when the current privilege level is zero. 
*IOPL: The PUSHF and POPF Instructions are made 110 Privilege Level sensitive In Virtual 8086 Mode. 

5) However, registers which have been previ­
ously stored may be reloaded without mask­
Ing. 

Depending upon the values of undefined regis­
ter bits will make your software dependent upon 
the unspecified 386 Microprocessor handling of 
these bits •. Depending' on undefined values risks 
making your software incompatible with future 
processors that define usages for the 386 Micro­
processor-undefined bits. AVOID ANY , SOFT­
WARE DEPENDENCE UPON THE STATE OF UN­
DEFINED 386 MICROPROCESSOR REGISTER 
BITS. 

2.4 INSTRUCTION SET 

2.4.1 Instruction Set Overview 

The instruction set is divided into nine categories of 
operations: 

Data Transfer 

Arithmetic 

Shift/Rotate 

String. Manipulation 

Bit Manipulation 

Control Transfer 

High Level Language Support 

Operating System Support 

Processor Control 

4-9 

These 386 Microprocessor instructions are listed in 
Table 2-2. 

All 386 Microprocessor instructions operate on ei­
ther 0, 1, 2, or 3 operands; where an operand re­
sides in a register, in the instruction itself, or in mem­
ory. Most zero operand instructions (e.g. CLI, STI) 
take oniy one byte. One operand instructions ganer­
ally are two bytes long. The average instruction is 
3.2 bytes long. Since the 386 Microprocessor has a 
16-byte instruction queue, an average of 5 instruc­
tions. will be prefetched. The use of two operands 
permits the following types of common instructions: 

Register to Register 

Memory to Register 

Immediate to Register 

Register to Memory 

Immediate to Memory. 

The operands can be either 8, 16, or 32 bits long. As 
a general rule, when executing code written for the 
386 Microprocessor (32-bit code), operands are 8 or 
32 bits; when executing existing 80286 or8086 code 
(16-bit code), operands are 8 or 16 bits. Prefixes can 
be added to all instructions whiCh override the de­
fault length of the operands, (i.e. use 32-bit oper­
ands for 16-bit cOde, or 16-bit operands for 32-bit . 
code). 

,. 
i 



inter 386TM MICROP,ROCESSOR 

2.4.2 386TM Microprocessor Table 2-2b Arithmetic Instructions . 
Instructions ,ADDITION 

Table 2~2a Data Transfer ADD Add operands 

,GENERAL PURPOSE ADP Add with carry ~ 

MOV Move operand INC ' Increment operand by 1 

PUSH Push operand onto stack AM ASCII adjust for addition 

POP , Pop operand off ~tack DAA Decimal adjust for addition 

PUSHA Push all registers on stack SUBTRACTION 

POPA Pop all registers off stack SUB Subtract operands 

XCHG Exchange Operand, Register see Subtract with borrow 

XLAT Translate DEC Decrement operand by 1 

CONVERSION NEG Negate operand 

MOVZX Move byte or Word, Dword, with zero CMP , Compare operands 
extension DAS Decimal adjust for subtraction 

MOVSX Move byte or Word, Dword, sign 
extended " 

AAS ASCII Adjust for subtraction 

MULTIPLICATION 
CBW Convert byte to Word, or Word to Dword 

CWO Convert Word to DWORD 

CWDE Convert Wardlo DWORD extended 

CDa Convert DWORD toaWORD " 

MUL Multiply Double/Single Precision 

IMUL Integer multiply 

AAM ASCII adjust after multiply 

DIVISION 
INPUT IOUTPUT 

IN Input operand from I/O space 

OUT Output pperand to I/O space 

" , '. ADDRESS OBJECT -

DIV Divide unsigned 

IDIV Integer Divide 

AAD ASCII adjust before division 

LEA Load effective address -Table! 2c String Instructlo ns 

LOS. Load pointer into 0 segment register Mbvs Move byte or Word, Dword string 
, , 

LES Load painter into E segment register INS Input string from I/O space 

LFS Load pointer into F segment register 

LGS Load pointer intoG segmElnt register 

OUTS Output string to I/O space 

CMPS Compare byte or Word, Dword string 

LSS Load pointer into S(Stack) segment 
register ' 

SCAS ' Scan Byte or Word, Dword string 

LODS Load byte or Word, Dword string 

FLAG MANiPULATION STOS Store byte or Word, Dword string 

LAHF Load A register from Flags REP Repeat 

SAHF Store A register in Flags REPE/ 

PUSHF Push flags onto stack REPZ Repeat.while equal/zero 

POPF Pop flags off stack, 

PUSHFD Push EFlags onto ,stack 

PQPFD Pop EFlags off stack 

CLC Clear Carry Flag " 

CLD Clear Direction Flag 

CMC Complement Carry Flag 

STC Set Carry Flag 

sm Set Direction Flag 

RENE;/ 
Repeat whilenof equal/not zero REPNZ 

Table 2-2d Logical Instructions 

LOGICALS 

NOT "NOT" operands 

AND "AND" operands 

OR , "Inclusive OR" operands 

XOR "Exclusive OR" operands 

TEST "Test" operands, 



inter 386TM MICROPROCESSOR 

Table 2-2d Logical Instructions (Continued) . Table 2-2f. Program Control Instructions 
SHIFTS (Continued) 

SHL/SHR Shift logical left or right UNCONDITIONAL TRANSFERS 

SAL/SAR Shift arithmetic left or right CALL Can procedure/task 

SHLD/ RET Return from procedure 
SHRD Double shift left or right JMP Jump 

ROTATES ITERATION CONTROLS 
ROL/ROR Rotate left/right LOOP Loop 
RCL/RCR Rotate through carry left/right LOOPE/ 

Table 2-2e Bit Manipulation Instructions LOOPZ Loop if equal/zero 

SINGLE BIT INSTRUCTIONS 
BT Bit Test 

BTS Bit Test and Set 

BTR Bit Test and Reset 

BTC Bit Test and Complement 

BSF Bit Scan Forward 

BSR Bit Scan Reverse 

Table 2-21 Program Control Instructions 
. CONDITIONAL TRANSFERS 

SETCC Set byte equal to condition code 

JAlJNBE Jump if above/not below nor equal 

JAE/JNB Jump if above or equal/not below 

LOOPNE/ 
LOOPNZ Loop if not I:Iqual/not zero 

JCXZ JUMP if register CX-O 

INTERRUPTS 
INT Interrupt 

INTO Interrupt if overflow 

IRET Return from Interrupt/Task 

CLI Clear interrupt Enable 

STI Set Interrupt Enable i 
Table 2-2g High Level Language Instructions 

BOUND Check Array Bounds 

ENTER Setup Parameter Block for Entering 
Procedure 

JB/JNAE Jump if below/not above nor equal 

JBE/JNA Jump if below or equal/not above 
LEAVE Leave Procedure ... I' 

Table 2 2h Protection Model -
JC Jump if carry 

JE/JZ Jump if equal/zero 

JG/JNLE Jump if greater/not less nor equal 

JGE/JNL Jump if greater or equal/not less 

JLlJNGE Jump if less/not greater nor equal 

SGDT Store Global Descrip~orTable 

SIDT Store Interrupt Descriptor Table 

STR Store Task Register 

SLDT Store Local Descriptor Table 

LGDT Load Global Descriptor Table 
JLE/JNG Jump if less or equal/not greater 

JNC Jump if not carry 

JNE/JNZ Jump if not equal/not zero 

JNO Jump if not overflow 

JNP/JPO Jump if not parity/parity odd 

JNS Jump if not sign 

JO Jump if overflow 

L1DT Load Interrupt Descriptor Table 

LTR Load Task Register 

LLDT Load Local Descriptor Table 

ARPL Adjust Requested Privilege Level 

LAR Load Access Rights 

LSL Load Segment Limit 

VERR/ 
JP/JPE Jump if parity/parity even VERW Verify Segment for Reading or Writing 
JS JumpifSigri LMSW Load Machine Status Word (lower 

16 bits of CRO) 

SMSW Store Machine Status Word 

Table 2 21 Processor Control Instructions -
HLT Halt 

WAIT Wait until BUSY # negated 

ESC Escape 

LOCK Lock Bus 

4·11 



inter 386™ MICROPROCESSOR 

2.5 ADDRESSING MODES 

2.5.1 Addressing Modes Overview 

The 386 Microprocessor provides a total of 11 ad­
dressing modes for instructions to specify operands. 
The addressing modes are optimized to allow the 
efficient execution of high level languages such as C 
and FORTRAN, and they cover the vast majority of 
data references needed by high-level languages. 

2.5.2 Register and Immediate Modes 

Two of the addressing modes provide for instruc­
tions that operate on register or immediate oper­
ands: 

Register Operand Mode: The operand is located 
in one of the 8-, 16- or 32-bit general registers. 

Immediate Operand Mode: The operand is in­
cluded in the instruction as part of the opcode. 

2.5.3 32·Blt Memory Addressing 
Modes 

The remaining 9 modes provide a mechanism for 
specifying the effective address of an operand. The 
linear address consists of two components: the seg­
ment base address and an effective address. The 
effective address is calculated by using combina­
tions of the following four address elements: 

DISPLACEMENT: An 8-, or 32-bit immediate value, 
following the instruction. 

BASE: The contents of any general purpose regis­
ter. The base registers are generally used by compil­
ers to point to the start of the local variable area. 

INDEX: The contents o/any general purpose regis­
ter except for ESP. The index registers are used to 
access the elements of an array, or a string of char­
acters. 

SCALE:The index register's value can be multiplied 
by a scale factor, either 1, 2, 4 or 8. Scaled index 
mode is especially useful for accessing arrays or 
structures. 

Combinations ofthese 4 components make up the 9 
additional addressing modes. There is no perform­
ance penalty for using any of these addressing com­
binations, since the effective address calculation is 
pipelined with the execution of other instructions. 

4-12 

The one exception is the simultaneous use of Base 
and Index components which requires one addition­
al clock. 

As shown in Figure 2-9, the effective address (EA) of 
an operand is calculated according to the following 
formula. 

EA = Base Reg + (Index Reg • Scaling) + Displacement 

Direct Mode: The operand's offset is contained as 
part of the instruction as an 8-, 16- or 32-bit dis­
placement. 
EXAMPLE: INC Word PTR [500) 

Register Indirect Mode: A BASE register contains 
the address of the operand. 
EXAMPLE: MOV [ECX], EDX 

Based Mode: A BASE register's contents is added 
to a DISPLACEMENT to form the operands offset. 
EXAMPLE: MOV ECX, [EAX + 24) 

Index Mode: An INDEX register's contents is added 
to a DISPLACEMENT to. form the operands offset. 
EXAMPLE: ADD EAX, TABLE[ESI) 

Scaled Index Mode: An INDEX register's contents is 
multiPlied by a scaling factor Which is added to a 
DISPLACEMENT to form the operands offset. 
EXAMPLE: IMUL EBX, TABLE[ESI"4],7 

Based Index Mode: The contents of a BASE register 
is added to the contents of an INDEX register to 
form the effective address of an operand. 
EXAMPLE: MOV EAX, [ESI) [EBX] 

Based Scaled Index Mode: The contents of an IN­
DEX register is multiplied by a SCALING factor and 
the result is added to the contents of a BASE regis­
ter to obtain the operands offset. 
EXAMPLE: MOV ECX, [EDX'S) [EAX) 

Based Index Mode with Displacement: The contents 
of an INDEX· Register and a BASE register's con­
tents and a DISPLACEMENT are all summed to­
gether to form the operand offset. 
EXAMPLE: ADD EDX, [ESI) [EBP + OOFFFFFOH) 

Based Scaled Index Mode with Displacement: The 
contents of an· INDEX register are multiplied by a 
SCALING factor, the result is added to the contents 
of a BASE register and a DISPLACEMENT to form 
the operand's offset. 
EXAMPLE: MOV EAX, LOCALTABLE[EDI*4) 
[EBP+SO) 



inter 386TM MICROPROCESSOR 

SEGMENT REGISTER 

SS 
GS 

FS 
ES 

OS 

EFFECTIVE 
ADDR ESS 

LINEAR 

/' 
SEGMENT 
LIMIT 

DESCRIPTOR REGISTERS o ADDRESS 

SS 
GS 

FS 
ES 

OS 

ACCESS RIGHTS CS 

LIMIT 

• TARGET ADDRESS 

SELECTED 
SEGMENT 

BASE ADDRESS ------~ 
~ 

SEGMENT BASE ADDRESS 

231630-51 

Figure 2-9. Addressing Mode Calculations 

2.5.4 Differences Between 16 and 32 
Bit Addresses 

In order to provide software compatibility with the 
80286 and the 8086, the 386 Microprocessor can 
execute 16-bit instructions in Real and Protected 
Modes. The processor determines the size of the 
instructions it is executing by examining the D bit in 
the CS segment Descriptor. If the D bit is 0 then all 
operand lengths and effective addresses are as­
sumed to be 16 bits long. If the D bit is 1 then the 
default length for operands and addresses is 32 bits. 
In Real Mode the default size for operands and ad­
dresses is 16-bits. 

Regardless of the default precision of the operands 
or addresses, the 386 Microprocessor is able to exe­
cute either 16 or 32-bit instructions. This is specified 

'via the use of override prefixes. Two prefixes, the 
Operand Size Prefix and the Address Length Pre­
fix, override the value of the D bit on an individual 
instruction basis. These prefixes are automatically 
added by Intel assemblers. 

4-13 

Example: The processor is executing in Real Mode 
and the programmer needs to access the EAX regis­
ters. The assembler code for this might be MOV 
EAX, 32-bit MEMORYOP, ASM3B6 Macro Assem­
bler automatically determines that an Operand Size 
Prefix is needed and generates it 

Example: The D bit is 0, and the programmer wishes 
to use Scaled Index addressing mode to access an 
array. The Address Length Prefix allows the use of 
MOV DX, TABLE[ESI*2]. The assembler uses an 
Address Length Prefix since, with D=O, the default 
addressing mode is 16-bits. 

Example: The D bit is 1, and the program wants to 
store a 16-bit quantity. The Operand Length Prefix is 
used to specify only a 16-bit value; MOV MEM16, 
DX. 



inter 386™ MICROPROCESSOR 

Table 2-3. BASE and INDEX Registers for 16- and 32-Bit Addresses 

16-Blt Addressing 32-Bit Addressing 

BASE REGISTER BX,BP 
INDEX REGISTER SI,DI 

SCALE FACTOR none 
DISPLACEMENT 0,8,16 bits 

The OPERAND LENGTH and Address Length Pre­
fixes can be applied separately or in combination to 
any instruction. The Address Length Prefix does not 
allow addresses over 64K bytes to be accessed in 
Real Mode. A memory address which exceeds 
FFFFH will result in a General Protection Fault. An 
Address Length Prefix only allows the use of the ad­
ditional 386 Microprocessor addressing modes. 

When executing 32-bit code, the 386 Microproces­
sor uses either 8-, or 32-bit displacements, and any 
register can be used· as base or index registers. 
When executing 16-bit code, the displacements are 
either 8, or 16 bits, and the base and index register 
conform to the 80286 mode/. Table 2-3 illustrates 
the differences. 

2.6 DATA TYPES 

The 386 Microprocessor supports all of the data 
types commonly used in high level languages: 

Bit: A single bit quantity. 

Bit Field: A group of up to 32 contiguous bits, 
which spans a maximum of four bytes. 

Bit String: A set· of contiguous bits, on the 386 
Microprocessor bit strings can be up to 4 gigabits 
long. 

Byte: A signed 8-bit quantity. 

Unsigned Byte: An unsigned 8-bit quantity. 

Integer (Word): A signed 16-bit quantity. 

Long Integer (Double Word): A sign.ed32-bit quan­
tity. All operations assume a 2's complement rep­
resentation. 

Unsigned Integer (Word): An .unsigned 16-bit 
quantity. 

4-14 

Any 32-bit GP Register 
Any 32-bit GP Register 
Except ESP 
1,2,4,8 
0,8,32 bits 

Unsigned Long Integer (Double Word): An un-
signed 32-bit quantity. . 

Signed Quad Word: A signed 64-bit quantity. 

Unsigned Quad Word: An unsigned 64-bit quanti­
ty. 

Offset: A 16- or 32-bit offset only quantity which 
indirectly references another memory. location. 

Pointer: A full pointer which consists of a 16-bit 
segment selector and either a 16- or 32-bit offset. 

Char: A byte representEltion of an ASCII Alphanu­
meric or control character. 

String: A contiguous sequence of bytes, words or 
dwords. A string may contain between 1 byte and 
4 Gbytes. . 

BCD: A byte (unpacked) representation of decimal 
digits 0-9. 

Packed BCD: A byte (packed) representation of 
two decimal digits 0-9 storing one digit in each 
nibble. 

When the 386 Microprocessor is coupled with a 
80387 Numerics Coprocessor then the following 
common Floating Point types are supported. 

Floating Point: A signed 32-, 64-, or 80-bit real 
number representation. Floating point numbers 
are supported by the 80387 numerics coproces­
sor. 

Figure 2-10 illustrates the data types supported by 
the 3.86 Microprocessor and the 80387. 



386™ MICROPROCESSOR 

+N +1 0 
7 0 7 0 7 07 0 

SIGNED[E:J 
BYTE BINARY ~ I "'1' "I II 'I "'1 COOEO ••• 

SIGN B'T.JL-...j DEC,MAL BCD BCD BCD 
(BCD) DIG,T N DIGIT 1 DIGIT 0 

MAGNITUDE 

+N +1 0 
7 0 7 0 7 07 0 

UNSIGNED~ 
BYTE ASCII ~ • • • I II 'I "'1 II 'I "'1 

L--J ASCII ASCII ASCII 

MAGNITUDE CHARACTERN CHARACTER 1 CHARACTERO 

+1 0 +N +1 0 
1514 87 0 7 0 7 07 0 

s~~~g 11"1"'1"'1"'1 PACKED~ ••• 
BCD 1'"1"'1"'1"'1 

SIGN BIT .J,L MSB I L-.J L-.J 
MAGNITUDE 

MOST LEAST 
SIGNIFICANT DIGIT SIGNIFICANT DIGIT 

+1 0 +N +1 0 
15 0 7/15 0 7/15 07/15 0 

UNS~~~g 1"'1"'1 i "1"'1 ST~itJ~~·· .1"'1"'1"'1'"1 
I I 

MAGNITUDE 

+3 +2 +1 0 +2 GIGABITS 
-2 GIGABITS 

31 1615 0 210 

SIGNED DO~g~~ 11"1' "1"'1' "I' 11 1'"1"'1"'1 STR'~'~ I1111 II \\ 11111 
SIGN BIT .J,LMSB I BITO 

MAGNITUDE 

+3 +2 +1 0 +3 +2 +1 0 
31 0 31 0 

UNSIGNED DO~g~~ 1"'1"'1"'1"'1"'1"'1"'1 ' "I ;~.?~i 1"'1"'1" , 1"'1"'1' , 'I' , 'I ' , 'I 
POINTER , , , I 

MAGNITUDE OF"F"SET 

+7 +6 +5 +5 +3 +2 +1 0 +5 +4 +3 +2 +1 0 
63 4847 3231 1615 0 47 0 

SIGNED ~g~g II I I I I I I I I 4i~~g 1"'1 ' "I' , 'I ' "1"'1"'1 ' , , 1"'1"'1"'1"'1"'1 
SIGN BIT.J,LMSB 

POINTER 
I , , , 

MAGNITUDE SELECTOR OF"F"SET 

+9 +8 +7 +6 +5 +4 +3 +2 +1 0 
79 0 

FLOATING II 
POINT· I 1 1 I I I I I 1 I 

SIGN BIT.J, I I 
EXPONENT MAGNITUDE 

+5 +4 +3 +2 +1 0 

BIT3~~~~ 1"'1"'1"'1"'1"'1"'1 ' "1"'1 ' , '1"'1" , 1"'1 ·SUPPORTED BY 80387 

I- BIT FIELD -I NUMERIC DATA 

1 TO 32 BITS 
COPROCESSOR 

231630-52 

Figure 2-10. 386™ Microprocessor Supported Data Types 

4-15 



386™ MICROPROCESSOR 

2.7 MEMORY ORGANIZATION 

2.7.1 Introduction 
~emo~ on th~. 386. Microprocessor is divided up 
Into 8-bIt quantities (bytes), 16-bit quantities (words), 
and 32-bit quantities (dwords). Words are stored in 
two consecutive bytes in memory with the low-order 
byte at the lowest address, the high order byte at the 
high address. Dwords are stored in four consecutive 
bytes in memory with the low-order byte at the low­
est address, the high-order byte at the highest ad- . 
dress. The address of a word or dword is the byte 
address of the low-order byte. . 

In addition to these basic data types, the 386 Micro­
processor supports two larger units of memory: 
pages and segments. Memory can be divided up 
into one or more variable length segments, which 
can be swapped to disk or shared between pro­
grams. Memory can also be organized into one or 
mor~ 4K byte pages .. Finally, both segmentation and 
paging can be combined, gaining the advantages of 
both systems. The 386 Microprocessor supports 
both pages and segments in order to provide maxi­
mum flexibility to the system designer. Segmentation 
and paging are complementary. Segmentation is 
!Jseful for organizing memory in logical modules, and 
as. such is a tool for the application programmer, 
while pages are useful for the system programmer 
for managing the physical memory of a system. 

2.7.2 Address Spaces 
The 386 Microprocessor has three distinct address 
spaces: logical, linear, and physical. A logical 

EFFECTIVE ADDRESSCALCULA nON 

EFFECTIVE 

. address (also known as a virtual address) consists 
of a selector and an offset. A selector is the con­
tents of a segment register. An offset is formed by 
summing all of the addressing components (BASE, 
INDEX, DISPLACEMENT) discussed in section 2.5.3 
Memory Addressing Modes into an effective ad­
dress. Since each task on 386 Microprocessor has a 
maximum of 16K (214 -1) selectors, and offsets 
can be 4 gigabytes, (232 bits) this gives a total of 246 
bits. or 64 terabytes of logical address space per 
task. The programmer sees this virtual address 
space. 

The segmentation unit translates the logical ad: 
dress space into a 32~bit linear address space. If the 
paging unit is not enabled then the 32-bit linear ad­
dress corresponds to the physical address. The 
paging unit translates the linear address space into 
the physical address space. The physical address 
is what appears on the address pins. 

The primary difference between Real Mode and Pro­
tected Mode is how the segmentation unit performs 
the translation of the logical address into the linear 
address. In Real Mode, the segmentation unit shifts 
the selector left four bits and adds the result to the 
offset to form the linear address. While in Protected 
Mode every selector has ~ linear base address as­
sociated with it. The linear base address is stored in 
one of two operating system tables O.e. the Local 
Descriptor Table or Global DesCriptor Table). The 
selector's linear base address is added to the offset 
to form the final linear adc!ress: 

Figure 2-11 shows the relationship between the vari­
ous address spaces. 

BE3- BEO 
A31-A2 

32 0 

PHYSICAL 
MEMORY 

PHYSICAL 

ADDRESS 
,;.;;.._...;,2,...;,0 LOGICAL OR SEGMENTATION 1--..-;3;.;;,2010+1 PAGING UNIT 

14 VIRTUA.L ADDRESS UNIT LINEAR (OPTIONAL USE) 

32 

. SEGMENT . 
REGISTER 

t'"7'";:D:;:ES;;:C:;RIP;;:;T:::OR;-.~. -+L-___ -J ADDRESS 

INDEX 

Figure 2~11. Address Translation 

4-16 

ADDRESS '--_-.J 

231630-53 



386TM MICROPROCESSOR 

2.7.3 Segment Register Usage 

The main data structure used to organize memory is 
the segment. On the 386 Microprocessor, segments 
are variable sized blocks of linear addresses which 
have certain attributes associated with them. There 
are two main types of segments: code and data, the 
segments are of variable size and can be as small 
as 1 byte or as large as 4 gigabytes (232 bytes). 

In order to provide compact instruction encoding, 
and increase processor performance, instructions 
do not need to explicitly specify which segment reg­
ister is used. A default segment register is automati­
cally chosen according to the rules of Table 2-4 
(Segment Register Selection Rules). In general, data 
references use the selector contained in the DS reg­
ister; Stack references use the SS register and In­
struction fetches use the CS register. The contents 
of the Instruction Pointer provides the offset. Special 
segment override prefixes allow the explicit use of a 
given segment register, and override the implicit 
rules listed in Table 2-4. The override prefixes also 
allow the use of the ES, FS and GS segment regis­
ters. 

There are no restrictions regarding the overlapping 
of the base addresses of any segments. Thus, all 6 
segments could have the base address set to zero 
and create a system with a four gigabyte linear ad­
dress space. This creates a system where the virtual 
address space is the same as the linear address 
space. Further details of segmentation are dis­
cussed in section 4.1. 

2.8 1/0 SPACE 

The 386 Microprocessor has two distinct physical 
address spaces: Memory and I/O. Generally, periph­
erals are placed in I/O space although the 386 Mi­
croprocessor also supports memory-mapped periph­
erals. The I/O space consists of 64K bytes, it can be 
divided into 64K 8-bit ports, 32K 16-bit ports, or 16K 
32-bit ports, or any combination of ports which add 
up to less than 64K bytes. The 64K I/O address 
space refers to physical memory rather than linear 
address since I/O instructions do not go through the 
segmentation or paging hardware. The M/IO# pin 
acts as an additional address line thus allowing the 
system designer to easily determine which address 
space the processor is accessing. 

Table 2-4. Segment Register Selection Rules 

Type of Implied (Default) Segment Override 
Memory Reference Segment Use Prefixes Possible 

Code Fetch CS None 

Destination of PUSH, PUSHF, INT, SS None 
CALL, PUSHA Instructions 

Source of POP, POPA, POPF, SS None 
IRET, RET instructions 

Destination of STOS, MOVS, REP ES None 
STOS, REP MOVS Instructions -
(DI is Base Register) 

Other Data References, with 
Effective Address Using Base 
Register of: 

[EAX) DS CS,SS,ES,FS,GS 
[EBX) DS CS,SS,ES,FS,GS 
[ECX) DS CS,SS,ES,FS,GS 
[EDX) DS CS,SS,ES,FS,GS 
[ESI) DS CS,SS,ES,FS,GS 
[EDI) DS CS,SS,ES,FS,GS 
[EBP) SS CS,SS,ES,FS,GS 
[ESP] 55 CS,SS,ES,FS,GS 

4-17 

I ~ 

-I 
! 



intJ 386™MICROPROCESSOR 

The I/O ports are accessed via the IN .and OUT I/O 
instructions,with the port address supplied as an 
immediate 8-bit constant in the instruction or in the 
OX register. All 8· and 16-bit port addresses are zero 
extended on the upper address lines. The 110 in­
structions Cause the M/IO#.pin to be driven loW. 

I/O port addresses OOF8H through OOFFH are re­
served for use by Intel. 

2.9 INTERRUPTS 

2.9.1 Interrupts and ":xceptions 

Interrupts and exceptions alter the normal program 
flow, in c;>rder to handle external events, to report 
errors or exceptional conditions. The difference be­
tween interrupts and exceptions is that interrupts are 
used to handle asynchronous external events while 
exceptions handle instruction faults. Although a pro­
gram can generate a software interrupt via an INT N 
instruction, the processor treats software interrupts 
as exceptions. 

Hardware interrupts occur as the'result of an exter­
nal event and are classified into two types: maskable 
or non-maskable. Interrupts are serviced after the 
execution of the current instruction. After the inter­
rupt handler is finished servicing the interrupt, exe­
cution proceeds with the instruction immediately 
after the interrupted instruction. Sections 2.9.3 and, 
2.9.4 discuss the differences between Maskable and 
Non-Maskable interrup~s. 

Exceptions are classified as faults, traps, or aborts 
depending on the way they are reported, and wheth­
er or not restart of the instruction causing the excep­
tion is supported. Faults are exceptions that are de­
tected and serviced before the execution of the 
faulting instruction. A fault would occur in a virtual 
memory system, when the processor referenced a 
page or a segment which was not present. The oper­
ating system would fetch the page or segment from 
disk, and then the 386 Microprocessor would restart 
the instruction. Traps are exceptions that are report­
ed immediately after the execution of the instruction 
which caused the problem. User defined interrupts 
are examples of traps. Aborts are exceptions which 
do not permit the precise location of the instruction 
causing the exception to be determined. Aborts are 
used to report severe errors, such as a hardware 
error, or illegal values in system tables. 

Thus, when an interrupt service routine has been 
completed, execution proceeds from the instriJction 

immediately following the interrupted instruction. On 
. the other hand, the return address from an excep­

tion fault routine will always point at the instruction 
causing the exception and include. any leading in­
struction prefixes. Table 2-5 summarizes the possi­
bleinterrupts for the 386 Microprocessor and shows 
where the return address points. 

The 386 Microprocessor has the ability to handle up 
to 256 different interrupts/exceptions. In order to 
service the interrupts, a table with up to 256 interrupt 
vectors must be defined. The interrupt· vectors are 
simply pOinters to the appropriate interrupt service 
routine. In Real Mode (see section 3.1), the vectors 
are 4 byte quantities, a Code Segment plus a 16-bit 
offset; in Protected Mode, the interrupt vectors are 8 
byte quantities,'which are put in an Interrupt Descrip­
tor Table (see section 4.1). Of the 256 possible inter­
rupts, 32 are reserved for use by Intel, the remaining 
224 are free to be used by the system designer. 

2.9.2 Interrupt Processing 

When an interrupt occurs the following actions hap­
pen. First, the current program address and the 
Flags are saved on the stack to allow resumption of 
the interrupted program. Next, an 8-bit vector is sup­
plied to the 386 Microprocessor which identifies the 
appropriate entry in the· interrupt table. The table 
contains the starting address of the interrupt service 
routine. Then, the user supplied interrupt service 
routine is executed. Finally, when an IRET instruc­
tion is executed the old processor state is restored 
and program execution resumes at the appropriate 
instruction. 

The 8-bit interrupt vector is supplied to the 386 Mi­
croprocessor in several different ways: ,. exceptions 
supply the interrupt vector internally; software INT 
instructions contain or imply the vector; maskable 
hardware interrupts supply the. 8-bit vector via the 
interrupt acknowledge bus sequenCe. Non-Maska­
ble hardware interrupts are a:ssigned to interrupt 
vector 2. . 

2.9.3 Maskable Interrupt 

Maskable interrupts are the most common way used 
by the 386 Microprocessor to respond to asynchro­
nous external hardware events. A hardware interrupt 
occurs when the INTR is pulled high and the Inter-

. rupt Flag bit (IF) is enabled. The processor only re­
sponds to interrupts between instructions, (REPeat 
String instructions, have an "interrupt window", be­
tween memory moves, which allows interrupts 

4-18, 



inter . 386TM MICROPROCESSOR 

Table 2-5. Interrupt Vector Assignments 

Instruction Which 
Return Address 

Interrupt Points to 
Function Can Cause Type 

Number Faulting 
Exception 

Instruction 

Divide Error 0 DIV,IDIV YES FAULT 

Debug Exception 1 any instruction YES TRAP' 

NMI Interrupt 2 INT 20rNMI NO NMI 

One Byte Interrupt 3 INT NO TRAP 

Interrupt on Overflow 4 INTO NO TRAP 

Array Bounds Check 5 BOUND YES FAULT 

Invalid OP-Code 6 Any Illegal Instruction YES FAULT 

Device Not Available 7 ESC, WAIT YES FAULT 

Double Fault 8 Any Instruction That Can ABORT 
Generate an Exception 

Coprocessor Segment Overrun 9 ESC NO ABORT 

InvalidTSS 10 JMP, CALL, IRET, INT YES FAULT 

Segment Not Present 11 Segment Register Instructions YES FAULT 

Stack Fault 12 Stack References YES FAULT 

General Protection Fault 13 Any Memory Reference YES FAULT 

Page Fault 14 Any Memory Access or Code Fetch YES FAULT 

Coprocessor Error 16 ESC, WAIT YES FAULT 

Intel Reserved 17-32 

Two Byte Interrupt 0-255 INTn NO TRAP . Some debug exceptions may report both traps on the prevIous instruction, and faults on the next Instruction. 

during long string moves). When an interrupt occurs 
the processor reads an 8-bit vector supplied by the 
hardware which identifies the source of the interrupt, 
(one of 224 user defined interrupts). The exact na­
ture of the interrupt sequence is discussed in section 
5. 

The IF bit in the EFLAG registers is reset when an 
interrupt is being serviced. This effectively disables 
servicing additional interrupts during an interrupt 
service routine. However, the IF may be set explicitly 
by the interrupt handler, to allow the nesting of inter­
rupts. When an IRET instruction is executed the 
original state of the IF is restored. 

2.9.4 Non-Maskable Interrupt 

Non-maskable interrupts provide a method of servic­
ing very high priority interrupts. A common example . 
of the use of a non-maskable interrupt (NMI) would 

4-19 

be to activate a power failure routine. When. the NMI 
input is pulled high it caus~s an interrupt with an 
internally supplied vector value of 2. Unlike a normal 
hardware interrupt, no interrupt acknowledgment se­
quence is performed for an NMI. 

While executing the NMI servicing procedure, the 
386 Microprocessor will not service further NMI re­
quests, until an interrupt return (IRET) instruction is 
executed or the processor is reset. If NMI occurs 
while currently servicing an NMI, its presence will be 
saved for servicing after executing the first IRET in­
struction. The IF bit is cleared at the beginning of an 
NMI interrupt to inhibit further INTR interrupts. ' 

2.9.5 Software Interrupts 

A third type of interrupti exception for the 386 Micro­
processor is the software interrupt. An INT ninstruc­
tion causes the processor to execute the inter-



386,.M MICROPROCESSOR 

rupt service routine pointed to by the nth vector in 
the interrupt table. 

A special case of the two byte software interrupt INT 
n is the one byte INT 3, or breakpoint interrupt. By 
inserting this one byte instruction in a program, the 
user can set breakpoints in his program as a debug­
ging tool. 

A final type of software interrupt, is the single step 
interrupt. It is discussed in section 2.12. 

2.9.6 Interrupt and Exception 
Priorities 

Interrupts are externally-generated events. Maska­
ble Interrupts (on the INTR input) and Non-Maskable 
Interrupts (on the NMI input) are recognized at in­
struction boundaries. When NMI and maskable 
INTR are both recognized at the same instruction 
boundary, the 386 Microprocessor invokes the NMI 
service routine first. If, after the NMI service routine 
has been invoked, maskable interrupts are still en­
abled, . then the 386 Microprocessor will invoke the 
appropriate interrupt service routine. 

Table 2-6a. 386TM Microprocessor Priority for 
Invoking Service Routines in Case of 

Simultaneous External Interrupts 

1.NMI 

2.INTR 

Exceptions are internally-generated events. Excep­
tions are detected by the 386 Microprocessor if, in 
the course of executing an instruction, the 386 Mi­
croprocessor detects a problematic condition. The 
386 Microprocessor then immediately invokes the 
apprOpriate exception. service routine. The state of 
the 386 Microprocessor is such that the instruction 
causing the exception can be restarted. If the excep­
tion serv.ice routine has taken care of the problemat­
ic condition, the instruction will execute without 
causing the same exception. 

It is possible for a single. instruction to generate sev­
eral exceptions (for example, transferring a single 
operand could generate two page faults if the oper­
and location'spans two "nClt present" pages). How­
ever, only one exception is generated upon each at­
tempt to execute the instruction. Each exception 
service routine should correct its corresponding ex­
ception, and restart the instruction. In this manner, 
exceptions are serviced .until the instructionexe­
cutes. successfully. 

As the 386 Microprocessor executes instructions, it 
follows a consistent cycle in checking for excep­
tions, as shown in Table 2-6b. This cycle is repeated 

4-20 

as each instruction is executed, and occurs in paral­
lel with instruction decoding and execution. 

Table 2-6b. Sequence of Exception Checking 

Consider the case of the 386 Microprocessor 
having just completed an instruction. It then per­
forms the following checks before reaching the 
point where the next instruction is completed: 

1. Check for Exception 1 Traps from the instruc­
tion just completed (single-step via Trap Flag, 
or Data Breakpoints set in the Debug Regis­
ters). 

2. Check for Exception 1 Faults in the next in­
struction (Instruction Execution Breakpoint set 
in the Debug Registers for the next instruc­
tion). 

3. Check for external NMI and INTR. 

4. Check for Segmentation Faults that prevented 
fetching the entire next instruction (exceptions 
11 or 13). 

5. Check for Page Faults that prevented fetching 
the entire next instruction (exception 14). 

6. Check for Faults decoding the next instruction 
(exception 6 if illegal opcode; exception 6 if in 
Real Mode or in Virtual 8086 Mode and at­
tempting to execute an instruction for Protect­
ed Mode only (see 4.6.4); or exception 13 if 
instruction is longer than 15 bytes, or privilege 
violation in Protected Mode (i.e. not at IOPL or 
at CPL=O). 

7. If WAIT opcode, check if TS=1 ahd MP=1 
(exception 7 if both are 1). 

8. If ESCAPE opcode for numeric coprocessor, 
check if EM = 1 or TS = 1 (exception 7 if either 
are 1). 

9. If WAIT opcode or ESCAPE oPCClde for nu­
meric coprOcessor, check ERROR # input sig­
nal(exception 16 if ERROR# input is assert­
ed). 

10. Check in the following order for each memo­
ry reference required by tl)e instruction: 

a. Check for Segmentation Faults that pre­
vent transferring the entire memory quanti-
ty (exceptions 11, 12, 13). . 

b.Check for Page Faults that prevent trans­
ferring the entire memory quantity (excep­
tion 14). 

Note that the order stated supports the concept 
of the paging mechanism being "underneath" 
the segmentation mechanism. Therefore, for any 
given code or data reference in memory, seg­
mentation exceptions are generated before pag­
ing exceptions are generated. 



inter 386TM MICROPROCESSOR 

2.9.7 Instruction Restart 

The 386 Microprocessor fully supports restarting all 
instructions after faults. If an exception is detected in 
the instruction to be executed (exception categories 
4 through 10 in Table 2-6c), the 386 Microprocessor 
invokes the appropriate exception service routine. 
The 386 Microprocessor is in a state that permits 
restart of the instruction, for all cases but those in 
Table 2-6c. Note that all such cases are easily 
avoided by proper design of the operating system. 

Table 2·6c. Conditions Preventing 
Instruction Restart 

A. An instruction causes a task switch to a task 
whose Task State Segment is partially "not 
present". (An entirely "not present" TSS is re­
startable.) Partially present TSS's can be 
avoided either by keeping the TSS's of such 
tasks present in memory, or by aligning TSS 
segments to reside entirely within a single 4K 
page (for TSS segments of 4K bytes or less). 

B. A coprocessor operand wraps around the top 
of a 64K-byte segment or a 4G-byte segment, 
and spans three pages, and the page holding 
the middle portion of the operand is "not pres­
ent." This condition can be avoided by starting 
at a page boundary any segments containing 
coprocessor operands if the segments are ap­
proximately 64K-200 bytes or larger (i.e. large 
enough for wraparound of the coprocessor 
operand to possibly occur). 

Note that these conditions are avoided by using 
the operating system designs mentioned in this 
table. 

2.9.8 Double Fault 

A Double Fault (exception 8) results when the proc­
essor attempts to invoke an exception service rou­
tine for the segment exceptions (10, 11, 12 or 13), 
but in the process of doing so, detects an exception 
other than a Page Fault (exception 14). 

A Double Fault (exception 8) will also be generated 
when the processor attempts to invoke the Page 
Fault (exception 14) service routine, and detects an 
exception other than a second Page Fault. In any 
functional system, the entire Page Fault servicerou­
tine must remain "present" in memory. 

When a Double Fault occurs, the 386 Microproces­
sor invokes the exception service routine for excep­
tion 8. 

4-21 

2.10 RESET AND INITIALIZATION 

When the processor is initialized or Reset the regis­
ters have the values shown in Table 2-7. The 386 
Microprocessor will then start executing instructions 
near the top of physical memory, at location 
FFFFFFFOH. When the first InterSegment Jump or 
Call is executed, address lines A20-31 will drop low 
for CS-relative memory cycles, and the 386 Micro­
processor will only execute instructions in the lower 
one megabyte of physical memory. This allows the, 
system designer to use a ROM at the top of physical 
memory to initialize the system and take care of Re­
sets. 

RESET forces the 386 Microprocessor to terminate 
all execution and local bus activity. No h1struction 
execution or bus activity will occur as long as Reset 
is active. Between 350 and 450 CLK2 periods after 
Reset becomes inactive the 386 Microprocessor will 
start executing instructions at the top of physical 
memory. 

Table 2·7. Register Values after Reset 

Flag Word 
Machine Status Word (CRO) 
Instruction Pointer 
Code Segment 
Data Segment 
Stack Segment 
Extra Segment (ES) 
Extra Segment (FS) 
Extra Segment (GS) 
OX register 

All other registers 

NOTES: 

UUUU0002H Note 1 
UUUUUUUOH Note 2 

OOOOFFFOH 
FOOOH Note3 
OOOOH 
OOOOH 
OOOOH 
OOOOH 
OOOOH 

component and 
stepping 10 Note 5 

undefined Note 4 

1. EFLAG Register. The upper 14 bits of the EFLAGS reg­
ister are undefined, VM (Bit 17) and RF (Bin 16 are 0 as 
are all other defined flag bits. 
2. CRO: (Machine Status Word). All of the defined fields in 
the CRO are 0 (PG Bit 31, TS Bit 3, EM Bit 2, MP Bit 1, and 
PE Bit 0) except for ET Bit 4 (processor extension type): 
The ET Bit is set during Reset according to the type of Co­
processor in the system. If the coprocessor is an 80387 
then ET will be 1, if the coprocessor is an 80287 or no 
coprocessor is present then ET will be O. All other bits are 
undefined. 
3. The Code Segment Register (CS) will have its Base Ad­
dress set to FFFFOOOOH and Limit set to OFFFFH. 
4. All undefined bits are Intel Reserved and should nof be 
used. 
5. DX register always holds component and stepping iden­
tifier (see 5.7). EAX register holds self-test signature if self­
test was requested (see 5.6). 



intJ 386™MICROPROCESSOR 

2.11 TESTABILITY 

2.11.1 Self-Test. 

The 386 Microprocessor h.as the capability to per­
form a self-test. The self-test checks the function of 
all of the Control ROM and most of the non-random 
logic of the part. Approximately one-halfof the 386 
Microprocessor can be tested during self-test. 

Self-Test is initiated .on the 386 Microprocessor 
when the RESET pin transitions from HIGH to LOW, 
and the BUSY # pin is low. The self-test takes about 
2* *19 clocks, or approximately 33 milliseconds with 
a 16 MHz 386 Microprocessor. At the completion of 
self-test the processor performs reset and begins 
normal operation. The part has successfully.passed 
self"test if the contents of the EAX register are zero 
(0), If the results of EAX are not zero then the self· 
test has. detected a flaw in the part. 

2.11.2 TLB Testing 

The 386 Microprocessor provides a mechanism for 
testing the Translation Lookaside Buffer (TLB) if de­
sired. This particular mechanism is unique to the 386 
Microprocessor and may not be. continued in the 
same way in future processors. When testing the 
TLB paging must be turned off (PG =0 i.n CRO) to 
enable the TLB testing hardware and avoid interfer­
ence with the test data being written to the TLI3. 

There are two' TLB testing operations: 1) write en­
tries into the TLB, and, 2) perform TLB lookups. Two 
Test Registers, shown in Figure 2.-12, are provided 
for the purpose of testing. TR6 is the "test command 
register", and TR7 is the "test data register". The 
fields within these registers are defined below. 

c: This is the command bit. For a write into TR6 to 
cause an immediate write into the TLB entry, write a 
o to this bit. For a write into TR6 to cause an immedi­
ate TLB lookup, write a 1 to this bit. 

linear Address: This is the tag field of the TLB; On 
a TLB write, a TLB entry is allocated to this linear 
address and the rest 6f that TLB entry is set per the 
value of TR7 and the vallie just written into TR6. On 
a TLB lookup, the TLBis interrogatE:ldper thi.s value 
and. if one and only one TLB entry matches, the rest 
of the fields of TR6 and TR7 are set from the match­
ing TLB entry. 

Physical Address: This is the data field ·of the TLB. 
On a write to the TLB, the TLB entry allocated to the 
linear address in TR6 is set to this value. On a TLB 
lookup, the data field (physical address) from the 
TLB is read out to here. 

4-22 

PL: On a TLB write, PL = 1 causes the REP field of 
TRl to select which of four associative blocks of the 
TLB is to be written, but PL = 0 allows the internal 
pointer in the paging unit to select which TLB block 
is written. On a TLB lookup, the PL bit indicates 
whether the lookup was a hit(PL gets set to 1) or a 
miss (PL gets reset to 0). 

V: The valid bit for this TLB entry. All valid bits can 
also be cleared by writing to CR3. 

D, D#: The dirty bit for/from the TLB entry. 

U, U#: The user bitfor/from the TLB entry. 

W, W#: The writable bit for/from the TLB entry. 

For 0, U and W, both the attribute and its comple­
ment are provided as tag bits, to permit the option of 
a "don't care" on TLB lookups. The meaning of 
these pairs of bits is given in the following table: 

, Effect During Value of Bit 
X X# 

TLB Lookup X after TLB Write 

0 0 Miss Ail Bit X Becomes Undefined 
0 1 Match ifX= 0 BitX Becomes 0 
1 0 Match if X = 1 Bit X Becomes 1 
1 1 Match all Bit X Becomes Undefined 

For writing a TLB entry: 

1. Write TR7 for the desired physical address, PL 
and REP values. 

2. Write. TR6 with the appropriate linear address, 
etc. (be sure to write C = 0 for "write" com­
mand). 

For looking up (reading) a TLB entry: 

1. Write TR6 with the appropriate linear address (be 
sure to write C = 1 for "lookup" command). 

2. ReadTR7 and TR6. If the PL bit in TR7 indicates 
a hit, then the other values reveal the TLB con­
tents. If PL indicates a miss, then the other values 
in TR7 and TR6 are indeterminate. 

2.12 DEBUGGING SUPPORT 

The 386 Microprocessor provides several features 
which simplify'thedebuggingprocess. The three cat-
egories of on-chip debugging aids are: . 

1) the code execution breakpoint opcode (OCCH), 

2) the single-step capability provided by the TF bit in 
the flag register,and 

3) the code and data breakpoint capability provided 
by the Debug Registers DRO-3, DR6,and DR7. 



386TM MICROPROCESSOR 

31 

LINEAR ADDRESS TR6 

~HYSICAL ADDRESS TR7 

NOTE: • indicates Intel reserved: Do not define; SEE SECTION 2.3.10 

Figure 2-12. Test Registers 

2.12.1 Breakpoint Instruction 

A single-byte-opcode breakpoint instruction is avail­
able for use by software debuggers. The breakpoint 
opcode is OCCh, and generates an exception 3 trap 
when executed. In typical use, a debugger program 
can "plant" the breakpoint instruction at all desired 
code execution breakpoints. The single-byte break­
point opcode is an alias for the two-byte general 
software interrupt instruction, INT n, where n = 3. 
The only difference between INT 3 (OCCh) and INT n 
is that INT 3 is never IOPL-sensitive but INT n is 
IOPL-sensitive in Protected Mode and Virtual 8086 
Mode. 

2.12.2 Single-Step Trap 

If the single-step flag (TF, bit 8) in the EFLAG regis­
ter is found to be set at the.end of an instruction, a 
single-step exception occurs. The single-step ex­
ception is auto vectored to exception number 1. Pre­
cisely, exception 1 occurs as a trap after the instruc­
tion following the instruction which set TF. In typical 
practice, a debugger sets the TF bit of a flag register . 
image on the debugger's stack. It then typically 
transfers control to the user program and loads the 
flag image with a signal instruction, the IRET instruc­
tion. The single-step trap occurs after executing one 
instruction of the user program. 

Since the exception 1 occurs as a trap (that is, it 
occurs after the instruction has already executed), 
the CS:EIP pushed ontothe debugger's stack points 
to the next unexecuted instruction of the program 
being debugged. An exception 1 handler, merely by 
ending with an IRET instruction, can therefore effi­
ciently support single-stepping through a user pro­
gram. 

2.12.3 Debug Registers 

The Debug Registers are an advanced debugging 
feature of the 386 Microprocessor. They allow data 
access . breakpoints as well as code execution 
breakpoints. Since the breakpoints are i.ndicated by 
on-chip registers, an instruction execution break-

4-23 

point can be placed in ROM code or in code shared 
by several tasks, neither of which can be supported 
by. the INT3 breakpoint opcode. ' 

The 386 Microprocessor contains six Debug Regis­
ters, providing the ability to specify up to four distinct 
breakpoints addresses, breakpoint control options, 
and read breakpoint status. Initially after reset, 
breakpoints are in the disabled state. Therefore, no 
breakpoints will occur unless the debug registers are 
programmed. Breakpoints set up in the Debug Reg­
isters are autovectored to exception number 1, 

2.12.S.1 LINEAR ADDRESS BREAKPOINT 
REGISTERS (DRO-DRS) 

Up to four' breakpoint addresses can be specified by 
writing into Debug Registers DRO-DR3, shown in 
Figure 2-13. The breakpoint addresses specified are 
32-bit linear addresses. 386 Microprocessor hard­
ware continuously· compares the linear breakpoint 
addresses in DRO-DR3with the linear addresses 
generated by executing software (a linear address is 
the result of computing the effective address and 
adding the 32-bit segment base address). Note that" 
if paging is not enabled the linear address equals the 
physical address. If paging is enabled, the linear ad­
dress is translated to a physical 32-bit address by 
the on-chip paging unit. Regardless of whether pag­
ing is enabled or not, however, the breakpoint regis­
ters hold linear addresses. 

2.12.S.2 DEBUG CONTROL REGISTER (DR7) 

A Debug Control Register, DR7 shown in Figure 
2-13, allows several debug control functionSo.such as 
enabling the breakpoints and setting upothercon~ 
trol options for the breakpoints. The fields within the 
Debug Control Register, DR7, are as follows: 

LENi (breakpoint length specification bits) 

A 2-bit LEN field exists for each of the fciur break­
points. LEN specifies the length of the associated 
breakpoint field. The choices for data breakpoints 
are: 1 byte, 2 bytes, and 4 bytes. Instruction execu-

I 
I:" ", 

I
t 

,I,: , 

" 

" I 
i 



386TM MICROPROCESSOR 

31 16 15 o 

DRO 

DR1 

DR2 

DR3 

DR4 

DRS 

DR6 

DR? 

NOTE: II1I indicates Intel reserved: Do not define; SEE SECTION 2.3.10 

Figure 2-13. Debug Registers 

tion breakpoints must have a length of 1 (LENi = 
00). Encoding of the LENi field is as follows: 

Usage of Least 
LENI Breakpoint Significant Bits in 

Encoding Field Width Breakpoint Address 
Register I, (1=0-3) 

00 1 byte All 32-bits used to 
specify a single-byte 
breakpoinUield. 

01 2 bytes A 1-A31 used to 
specify a two-byte, 
word-aligned 
breakpoint field. AO in 
Breakpoint Address 
Register is not I,Ised. 

10 Undefined-
do not use 

this encoding 

11 4 bytes A2-A31 used to 
specify. a four-byte, 
dword-aligned 
breakpoint field. AO 
and A 1 in Breakpoint 
Address Register are 
not used. 

The LENifield controls the size of breakpoint field i 
by controlling whether all low"order linear address 
bits in the breakpoint address register are used to 
detect the breakpoint event. Therefore, all break­
point fields are aligned; 2-byte breakpoint fields be­
gin on Word boundaries,· and 4-byte breakpoint 
fields begin on Dword boundaries. 

4-24 

The following is an example of various size break­
point fields. Assume the breakpoint linear address in 
DR2 is OOOOOOOSH. In that situation, the following 
illustration indicates the region of the breakpoint 
field for lengths of 1, 2, or 4 bytes. 

DR2 = 00000005H; LEN2 = OOB 

b:=1=.====I=====:lb=k=P=tf=ld=,:1 ====0=1==: 

DR2 = 00000005H; 
31 

LEN2 = 01B 

I 
o 

I 00000008H 

<E- bkpt fld2 -+ 00000004H 

I OOOOOOOOH 
~----~----~----~----~ 

DR2 = 00OOOO05H; LEN2 = 11B 
31 

J 1 J 
0 

I I 00000008H - bkpt fld2 -+ 00000004H 

I I oOOOOOOOH 



inter 386TM MICROPROCESSOR 

RWi (memory access qualifier bits) 

A 2-bit RW field exists for each of the four break­
points. The 2-bit RW field specifies the type of usage 
which must occur in order to activate the associated 
breakpoint. 

RW Usage 
Encoding Causing Breakpoint 

00 Instruction execution only 
01 Data writes only 
10 Undefined-do not use this encoding 
11 Data reads and writes only 

RW encoding 00 is used to set up an instruction 
execution breakpoint. RW encodings 01 or 11 are 
used to set up write-only or read/write data break­
points. 

Note that Instruction execution breakpoints are 
taken as faults (Le. before the instruction exe­
cutes), but data bre.akpolnts are taken as traps 
(i.e. after the data transfer takes place). 

Using LENi and RWi to Set Data Breakpoint i 

A data breakpoint can be set up by writing the linear 
address into DRi (i = 0-3). For data breakpoints, 
RWi can = 01 (write-only) or 11 (write/read). LEN 
can = 00,01, or 11. 

If a data access entirely or partly falls within the data 
breakpoint field, the data breakpoint condition has 
occurred, and if the breakpoint is enabled, an excep­
tion 1 trap will occur. 

Using LENi and RWi to Set Instruction Execution 
Breakpoint i 

An instruction execution breakpoint can be set up by 
writing address of the beginning of the instruction 
(including prefixes if any) into DRi (i = 0-3). RWi 
must = 00 and LEN must = 00 for instruction exe­
cution breakpoints. 

If the instruction beginning at the breakpoint address 
is about to be executed, the instruction execution 
breakpoint condition has occurred, and if the break­
point is enabled, an exception 1 fault will occur be­
fore the instruction is executed. 

Note that an instruction execution breakpoint ad­
dress must be equal to the beginning byte address 
of an instruction (including prefixes) in order for the 
instruction execution breakpoint to occur. 

GO (Global Debug Register access detect) 

The Debug Registers can only be accessed in Real 
Mode or at privilege level 0 in Protected Mode. The 

4-25 

GO bit, when set, provides extra protection against 
any Debug Register access even in Real Mode or at 
privilege level 0 in Protected Mode. This additional 
protection feature is provided to guarantee that a 
software debugger (or ICETM-386) can have full con­
trol over the Debug Register resources when re­
quired. The GO bit, when set, causes an exception 1 
fault if an instruction attempts to read or write any 
Debug Register. The GO bit is then automatically 
cleared when the exception 1 handler is invoked, 
allowing the exception 1 handler free access to the 
debug registers. 

GE and LE (Exact data breakpoint match, global and 
local) 

If either GE or LE is set, any data breakpoint trap will 
be reported exactly after completion of the instruc­
.,tion that caused the operand transfer. Exact report­
ing is provided by forcing the 386 Microprocessor 
execution unit to wait for completion of data operand 
transfers before beginning execution of the next in­
struction. 

If exact data breakpoint match is not selected, data 
breakpoints may not be reported until several in­
structions later or may not be reported at all. When 
enabling a data breakpoint, it is therefore recom­
mended to enable the exact data breakpoint match, 

When the 386 Microprocessor performs a task 
switch, the LE bit is cleared. Thus, the LE bit sup­
ports fast task switching out of tasks, that have en­
abled the exact data breakpoint match for their 
task-local breakpoints. The LE bit is cleared by the 
processor during a task switch, to avoid. having ex­
act data breakpoint match enabled in the new task. 
Note that exact data breakpoint match must be re­
enabled under software control. 

The 386 Microprocessor GE bit is unaffected during 
a task switch. The GE bit supports exact data break­
pOint match that is to remain enabled during all tasks 
executing in the system. 

Note that instruction execution breakpoints are al­
ways reported exactly, whether or not exact data 
breakpoint match is selected. 

Gi and Li (breakpoint enable, global and local) 

If either Gi or Li is set then the associated breakpoint 
(as defined by the linear address in DRi, the length 
in LENi and the usage criteria in RWi) is enabled. If 
either Gi or Li is set, and the 386 Microprocessor 
detects the ithbreakpoint condition, then the excep­
tion 1 handler is invoked. 

When the 386 Microprocessor performs a task 
switch to a new Task State Segment (TSS) , all Li 
bits are cleared. Thus, the Li bits support fast task 
switching out of tasks that use some task-local 

i'.: 
, 



inter 386TM MICROPROCESSOR 

breakpoipt. registers. The Li bits are cleared by the 
processor during a task switch, to avoid spurious ex­
captions in the new task. Note that the breakpoints 
must be re-enabled under software control. 

All 386 Microprocessor Gi bits are unaffected during 
a task switch. The Gi bits support breakpoints that 
are active in all tasks executing in the system. 

2.12.3.3 DEBUG STATUS REGISTER (DR6) 

A Debug Status Register, DR6 shown in Figure 2-13, 
allows the exception 1 handler to easily determine 
why it was invoked. Note. the exception 1 handler 
can be invoked as a result of one of several events: 

1) ORO Breakpoint faultltrap. 

2) DR1' Breakpoint faultltrap. 

3) DR2 Breakpoint faultltrap. 

4) DR3 Breakpointfaultltrap. 

5) Single-step (TF) trap. 

6) Task switch trap. 

7) Fault due to attempted debug register access 
when GD=1. 

The Debug Status Register.contains single-bit flags 
for each of the possible events invokitlg exception 1. 
Note below that some of these events are faults (ex­
ception taken before the instruction' is executed), 
while other events are traps (exception taken after 
the debug events obcurred). 

The flags in DR6 are set by the hardware but never 
cleared by hardware; Exception 1 handler software 
should clear DR6 before returning to the user .. pro­
gram to avoid future confusion in identifying the 
source of exception 1. 

The fields within the Debug Status Register,: DR6, 
are as follows: 

Bi (debug fault/trap due to breakpoint 0-3) 

Four breakpoint indicator flags, BO-B3, correspond 
one-to-one with the breakpoint registers in' DRO­
DR3. A flag Bi is set when the condition described 
by DRi, LENi, and RWi occurs. 

If Gi or Li is set, and if the ith breakpoint is detected, 
the processor will invoke. the exception 1 handler. 
The exception is handled as a fault if an instruction 
execution brel;lkpoint occurred, or as a trap"f a data 
breakpoint occurred. . 

IMPORTANT NOTE: A flag Bi is set whenever the 
hardware detects a match condition on enabled 
breakpoint i. Whenever Ii match is . detected on at 
least one enabled breakpoint i, the hardware imme-

diately sets all Bi bits corresponding to breakpoint 
conditions matching .at that instant, whether enabled 
or not. Therefore, the exception 1 handler may see 
that multiple' Bi bits are set, but only set Bi bits corre­
sponding to enabled breakpoints(Li or !3i set) are 
true indications of why the exception 1 handler was 
invoked. 

BD (debug fault due to attempted register access 
when GO bit set) 

This bit is set if the exception 1 handler was invoked 
due to an instruction attempting to read or write to 
the debug registers When GO bit was set. If such an 
event occurs, then the GO bit is automatically 
cleared when the exception 1 handler' is invoked, 
allowing handler access to the debug registers. 

BS (debug trap due to single-step) 

This bit is set if the exception 1 handler was invoked 
due to the TF bit in the flag register being set (for 
single-stepping). See section 2.12.2. 

BT (debug trap due to task switch) 

This bit is set if the exception 1 handler was invoked 
due to a task switch occulTing to a task having a 38.6 
Microprocessor TSS with the T bit set. (See Figure 
4-15a) .. Note the task switch Into the new task oc­
curs normally, but before the first instruction of the 
task is executed, the exception 1 handler is invoked. 
With respect to the task switch operation, the opera­
tion is considered to bea trap. 

2.12.3.4 USE OF.RESUME FLAG (RF) IN FLAG 
REGISTER 

The Resume Flag (RF) in the flag word can sup­
press· an instruction execution breakpoint when the 
exception 1 hlindler returns to a user program at a 
user address which .is, also an instruction execution 
breakpoint. See section 2.3.3. 

i 

3. REAL MODE ARCHITECTURE 

3.1 REAL MODE INTRODUCTION 

When the processor is reset or powered up iUs ini­
tialized in Real Mode. Real Mode has the same base 
architecture as the 8086, but allows aCCess to the 
32-bit register set of the. 386 Microprocessor.' The 
addressing mechanism, memory si2;e,interrupt han­
dling, are all identical to the Real Mode on the 
80286. 

All of the 386 Microprocessor instructions are avail­
able in Real Mode (except those instructions 

4-26' 



inter 386™ MICROPROCESSOR 

19 o 
~AX LI~IT 

FIX EO AT 64K IN 
REAL ~ODE 

~E~ORY OPERAND 

'-----'-- --~I-----+~-

SELECTED 
SEG~ENT 

SEG~ENT BASE 

231630-54 

Figure 3-1. Real Address Mode Addressing 

listed in 4.6.4). The default operand size in Real 
Mode is 16-bits, just like the 8086. In order to use 
the 32-bit registers and addressing modes, override 
prefixes must be used. In addition, the segment size 
on the 386 Microprocessor in Real Mode is 64K 
bytes so 32-bit effective addresses must have a val­
ue less the OOOOFFFFH. The primary purpose of 
Real Mode is to set up the processor for Protected 
Mode Operation. 

The LOCK prefix on the 386 Microprocessor, even in 
Real Mode, is more restrictive than on the 80286. 
This is due to the addition of paging on the 386 Mi­
croprocessor in Protected Mode and Virtual 8086 
Mode. Paging makes it impossible to guarantee that 
repeated string instructions can be LOCKed. The 
386 Microprocessor can't require that all pages 
holding the string be physically present in memory. 
Hence, a Page Fault (exception 14) might have to be 
taken during the repeated string instruction. There­
fore the LOCK prefix can't be supported during re­
peated string instructions. 

These are the only· instruction forms where the 
LOCK prefix is legal on the 386 Microprocessor: 

Opcode 
Operands 

(Dest, Source) 

BIT Test and Mem, Reg/immed SET/RESET /COMPLEMENT 
XCHG Reg, Mem 
XCHG Mem, Reg 
ADD, OR, ADC, SBB, Mem, Reg/immed 

AND, SUB, XOR 
NOT, NEG, INC, DEC Mem 

An exception 6 will be generated if a LOCK prefix is 
placed before any instruction form or opcode not 
listed above. The LOCK prefix allows indivisible 
read/modify/write operations on memory operands 

4-27 

using the instructions above. For example, even the 
ADD Reg, Mem is not LOCKable, because the Mem 
operand is not the destination (and therefore no 
memory read/modify/operation is being performed). 

Since, on the 386 Microprocessor, repeated string 
instructions are not LOCKable, it is not possible to 
LOCK the bus for a long period of time. Therefore, 
the LOCK prefix is not IOPL-sensitive on the 386 
Microprocessor. The LOCK prefix can be used at 
any privilege level, but only on the instruction forms 
listed above. 

3.2 MEMORY ADDRESSING 

In Real Mode the maximum memory size is limited to 
1 megabyte. Thus, only address lines A2-A19 are 
active. (Exception, the high address lines A20-A31 
are high during CS-relative memory cycles until an 
intersegment jump or call is executed (see section 
2.10», 

Since paging is not allowed in Real Mode the linear 
addresses are the same as physical addresses. 
Physical addresses are formed in Real Mode by 
adding the contents of the appropriate segment reg­
ister which is shifted left by four bits to an effective 
address. This addition results in a physical address 
from OOOOOOOOH to 0010FFEFH. This is compatible 
with 80286 Real Mode. Since segment registers are 
shifted left by 4 bits this implies that Real Mode seg~ 
ments always start on 16 byte boundaries. 

All segments in Real Mode are exactly 64K bytes 
long, and may be read, written, or executed. The 386 
Microprocessor will generate an exception 13 if a 
data operand or instruction fetch occurs past the 
end of a segment. (i.e. if an operand has an offset 
greater than FFFFH, for example a word with a low 
byte at FFFFH and the high byte at OOOOH.) 



inter 386TM MICROPROCESSOR 

Segments may be overtapped in Real Mode. Thus, if 
a particular segment does not use all 64K bytes an­
other segment can be overtayedon top of the un­
used portion of the previous segment. This allows 
the programmer to minimize the amount of physical 
memory needed for a program. 

3.3 RESERVED LOCATIPNS 

There are two fixed areas in memory which are re­
served in Real address mode: system initialization 
area and the interrupt table area.· Locations OOOOOH 
through 003FFH are reserved for interrupt vectors. 
Each one of the 256 possible interrupts has a 4-byte 
Jump vector reserved for it. Locations FFFFFFFOH 
through FFFFFFFFH are reserved for.system initiali-
zation. -

3.4 INTERRUPTS 

Many of the exceptions shown in Table 2-5 and dis­
cussed in section 2.9 are not applicable to Real 
Mode operation, in particular exceptions 10, 11, 14, 
will not happen in Real Mode. Other exceptions 
have slightly different meanings in Real Mode; Table 
3-1 identifies these exceptions. _ 

3~5 SHUTDOWN AND HALT 

The HL T instruction stops program execution and 
prevents the processor fT6m using the local bus until 
restarted. Either NMI, INTR with interrupts enabled 
(IF = 1), or RESET will force the 386 Microprocessor 
out of halt. If interrupted, the saved CS:IP will point 
to the next instruction after the HLT. 

Shutdown will occur when a severe error is detected 
that prevents further proceSSing. In Real Mode, 
shutdown can occur under two conditions: . . . . 

An interrupt or an exception occur (Exceptions 8 
or 13): and the interrupt vector is larger than the 

Interrupt Descriptor Table (i.e. There is not an in­
terrupt handler for the interrupt). 

A CALL, INT or PUSH instruction attempts to wrap 
around the stack segment when SP is not even. 
(e.g. pushing a value on the stack when SP = 
0001 resulting in a stack segment greater than 
FFFFH) 

An NMI input can bring the processor out of shut­
down if the Interrupt Descriptor Table limit is large 
enough to contain the NMI interrupt vector (at least 
0017H) and the stack has enough room to contain 
the vector and flag -information (i.e. SP is greater 
than 0005H). Otherwise shutdown can only be exit­
ed via the RESET input. 

4. PROTECTED MODE 
ARCHITECTURE 

4.1 INTRODUCTION 

The complete capabilities of the 386 Microprocessor 
are unlocked when the processor operates in Pro­
tected Virtual Address Mode (Protected Mode). Pro­
tected Mode vastly increases the linear address 
space to four gigabytes (232 bytes) and allows the 
running of virtual memory programs of almost unlim­
ited size (64 terabytes or 246 bytes). In addition Pro­
tected Mode allows the 386 Microprocessor to run 
all of the existing 8086 and 80286 software, while 
providing a sophisticated memory management and 
a hardware-assisted protection mechanism. Protect­
ed Mode allows the use of additional instructions 
especially optimized for supporting multitasking 
operating systems. The base architecture of the 386 
Microprocessor remains the same, the registers, 
instructions, and addressing mcx:tes described in the 
previous sl;!ctions are retained. The main difference 
between Protected Mode, and Real ModI;! from a 
progrl;lmmer's view is the-increased address space, 
and a different addressing mechanism. 

Table 3-1 

Function 
Interrupt Related Return 
Number Instructions Address LoCation 

Interrupt table limit too small 8 INT Vector is not Before 
within tabll;!lirnit Instructipn 

CS, OS, ES, FS, GS 13 Word memory reference Before 
Segment overrun exception beyond offset = FFFFH. Instruction 

An attempt to execute 
past the end of .CS segment. 

SS Segment overrun exception 12 Stack Referl;!nce Before 
beyond offset = FFFFH _ Instruction 

4-28 



inter 386TM MICROPROCESSOR 

4.2 ADDRESSING MECHANISM 

Like Real Mode, Protected Modfl uses two compo­
nents to form the logical address, a 16-bit selector is 
used to determine the linear base address of a seg­
ment, the base address is added to a 32-bit effective 
address to form a 32-bit linear address. The linear 
address is then either used as the 32-bit physical 
address, or if paging is enabled the paging mecha­
nism maps the 32-bit linear address into a 32-bit 
physical address. 

The differ~nce between the two modes lies in calcu­
lating the base address. In Protected Mode the se­
lector is used to specify an index into an operating 

48/32 BIT POINTER 

ACCES,S, RIGHTS 

LIMIT 

BASE ADDRESS 

SEGMENT 
DESCRIPTOR 

system defined table (see Figure 4-1). The table 
contains the 32-bit base address of a given seg­
ment. The physical address is formed by adding the 
base address obtained from the table to the offset. 

Paging provides an additional memory management 
mechanism which operates only in Protected Mode. 
Paging provides a means of managing the very large 
segments of the 386 Microprocessor. As such, pag­
ing operates beneath segmentation., The paging 
mechanism translates the protected linear address 
which comes from the segmentation unit into' a 
physical address. Figure 4-2 shows the complete 
386 Microprocessor addreSSing mechanism with 
paging enabled. 

MEMORY OPERAND 

SEGMENT BASE 
ADDRESS 

SEGMENT LIMIT 

SELECTED 
SEGMENT 

231630-55 

Figure 4-1. Protected Mode Addressing 

48 BIT POINTER 

c "' I SEGMENT I OFFSET 

15 31 I 0 

3861111 CPU 

ACCESS RIGHTS PAGING 
MECHANISM PHYSICAL 

LIMIT , r ADDRESS 

~ ~ LINEAR'" 
BASE ADDRESS PAGE FRAME 

SEGMENT ADDRESS ADDRESS 
DESCRIPTOR 

Figure 4-2. Paging and Segmentation 

4-29 

PHYSICAL ADDRESS 

MEMORY OPERAND 

4KBYTES 

4KBYTES 

4KBYTES 

PHYSICAL PAGE: 
4KBYTES 

4KBYTES 

4KBYTES 

4KBYTES 

231630-56 

If 
I,~ 
Il 

~'".,i,' ,1 
r' 
" 

i!. 

11:,1, 
I 

1:, 

I,,' 
" 

! 



386TM MICROPROCESSOR 

4.3 SEGMENTATION 

4.3.1 Segmentation . Introduction 

Segmentation is one method of memory· manage­
ment. Segmentation provides the basis for protec­
tion. Segments are used to encapsulate regions of 
memory which have common attributes; For exam­
ple, all of the code of a given program could be con­
tained in a segment, or an operating system table 
may reside in a segment. All information about a 
segment is stored in an 8 byte data structure called 
a descriptor. All of the descriptors in a system are 
contained in tables recognized by hardware. 

4.3_2 Terminology 

The following terms are used throughout the discus­
sion of descriptors, privilege levels and protection: 

PL: Privilege Level-One of the four hierarchical 
privilege levels. Level 0 is the most privileged I.evel 
and level 3 is the least privileged. More privileged 
levels are numerically smaller than less privileged 
levels. 

RPL: Requestor Privilege Level-The privilege level 
of the original supplier of the selector. RPL is deter­
mined by. the least two significant bits of a selector. 

DPL: Descriptor Privilege Level~ This is the least 
privileged level at which a task may access that de­
scriptor (and the segment associated with that de­
scriptor). Descriptor Privilege Level is determined by 
bits 6:5 in the Access Right Byte of a descriptor. 

CPL: Current Privilege Level-The privilege level at 
which a task is currently executing, which equals the 
privilege level of the code segment being executed. 

CPL can also. be determined by examining thelow­
est 2 bits of the CS register, except for conforming 
code segments. 

EPL: Effective Privilege Level-The effective privi­
lege level is the least privileged of the RPL and DPL. 
Since smaller privilege level values indicate greater 
privilege, EPL is the numerical maximum of RPLand 
DPL. 

Task: One instance of the execution of a program. 
Tasks are also referred to as processes. 

4.3.3 Descriptor Tables 

4.3.3.1 DESCRIPTOR TABLES INTRODUCTION 

The descriptor tables define all of the segments 
which are used in an 386 Microprocessor system. 
There are three types of tables on the 386 Micro­
processor which hold descriptors: the Global De­
scriptor Table, Local Descriptor Table, and the Inter­
rupt Descriptor Table. All of the tables are variable 
length memory arrays. They can range in size be­
tween 8 bytes and 64K bytes. Each table can hold 
up to 8192 8 byte descriptors. The upper 13 bits of a 
selector are used as an index into the descriptor ta­
ble. The tables have registers associated with them 
which hold the 32-bit linear base address, and the 
16-bit limit of each table. 

Each of the tables has a register associated with it 
the GDTR, LDTR, and the IDTR (see Figure 4-3). 
The LGDT, LLDT, and LlDT instructions, load the 
base and limitof the Global, Local, and Interrupt De­
scriptor Tables, respectively, into the appropriate 
register. The SGDT, SLDT, and SIDT store the base 
and limit values. These tables are manipulated by 
the operating system. Therefore, the load descriptor 
table instructions are privileged instructions . 

•. _____ ', ___ --- _e. 
=~::::~o: : .- I I 

LDTR : LOT LIMIT : 
1.-__ --': : 

I I 

15 b : : r-----" I 
I PROGRAM INVISIBLE I 

........... __ -; I AUTOMATICALLY LOADED: 
: FROM LOT DESCRIPTOR I 

IDTR ._------------_. 

GDTR 

Figure 4-3. Descriptor Table Registers 
4-30 

231630-57 



inter 386™ MICROPROCESSOR 

4.3.3.2 GLOBAL DESCRIPTOR TABLE 

The Global Oescriptor Table (GOT) contains de· 
scriptors which . are possibly available to all of. the 
tasks in a system. The GOT can contain any type of 
segment descriptor except for descriptors which are 
used for servicing interrupts (Le. interrupt and trap 
descriptors). Every 386 Microprocessor system con­
tains a GOT. Generally the GOT contains code and 
data segments used by the operating systems and 
task state segments, and descriptors for the LOTs in 
a system. 

The first slot of the Global Oescriptor Table.corre­
sponds to the null selector and is not used. The null 
selector defines a null pointer value. 

4.3.3.3 LOCAL DESCRIPTOR TABLE 

LOTs contain descriptors which are associated with 
a given task. Generally, operating systems are de­
signed so that each task has a separate LOT. The 
LOT may contain only code, data, stack, task gate, 
and call gate descriptors. LOTs provide a mecha­
nism for isolating a given task's code and data seg­
ments from the rest of the operating system, while 
the GOT contains descriptors for segments which 
are common to all tasks. A segment cannot be ac­
cessed by a task if its segment descriptor does not 
exist in either the current LOT or the GOT. This pro­
vides both isolation and protection for a task's seg­
ments, while still allowing global data to be shared 
among tasks. 

Unlike the 6 byte GOT or lOT registers which contain 
a base address and limit, the visible portion of the 
LOT register contains only a 16-bit selector. This se­
lector refers to a Local Oescriptor Table descriptor in 
the GOT. 

31 

4.3.3.4 INTERRUPT DESCRIPTOR TABLE 

The third table needed for 386 Microprocessor sys­
tems is the Interrupt Oescriptor Table. (See Figure 
4-4.) The lOT contains the descriptors which point to 
the locaticm of up to 256 interrupt service routines. 
The lOT may contain only task gates, interrupt 
gates, and trap gates. The lOT should be at least 
256 bytes in size in order to hold the descriptors for 
the 32 Intel Reserved Interrupts. Every interrupt 
used by a system must have an entry in the lOT. The 
lOT entries are referenced via INT instructions, ex­
ternal interrupt. vectors, and exceptions. (See 2.9 
Interrupts). 

I 
31 

CPU U 
15 0 

~ 
IDTBME 

0 

"\.. MEMORY ":V , 
GATE FOR 

INTEARUPT #n 

GATEFOA 
INTERRUPT ,"·1 

· · · GATEFOA 
INTERRUPT #1 

GATEFOA 
INTERRUPT #0 

;;, 'V 

INTERRUPT 
DESCRIPTOR 
TABLE 
(lOT) 

lid 
231630-58 

Figure 4-4. Interrupt Descriptor 
Table Register Use 

4.3.4 Descriptors 

4.3.4.1 DESCRIPTOR ATTRIBUTE BITS 

The object to which the segment selector pOints to 
is called a descriptor. Oescriptors are eight byte 

0 BYTE 
ADDRESS 

SEGMENT BASE 15 ... 0 SEGMENT LIMIT 15 ... 0 
0 

BASE 31 ... 24 G D 0 AVL 
LIMIT 

P DPL S 
BASE 

TYPE A +4 
19 ... 16 

1 1 I. 
23 ... 16 

BASE Base Address 01 the segment 
LIMIT The length 01 the segment 
P Present Bit 1 ~ Present o ~ Not Present 
DPL Descriptor Privilege Level 0-3 
S Segment Descriptor o ~ System Descriptor 1 ~ Code or Data Segment Descriptor 
TYPE Type 01 Segment 
A Accessed Bit 
G Granularity Bit 1 ~ Segment length is page granular. 0 ~ Segment length is byte granular 
D Default Operation Size (recognized in code segment descriptors only) 1 ~ 32-bit segment o ~ 16-bit segment 
0 Bit must be zero (0) lor compatibility with future processors 
AVL Available lield lor user or OS 

NOTE: 
In a maximum-size segment (ie. a segment with G = 1 and segment limit 19 ... 0 = FFFFFH). the lowest 12 bits of the 
segment base should be zero (ie. segment base 11 ... 000 = OOOH). 

Figure 4·5. Segment Descriptors 
4-31 



386™MICROPROCESSOR 

quantities which contain attributes about a given re­
gion of linear address space (i.e. a segment). These 
attributes include the 32-bit base linear address of 
the segment; the 20-blt length and granularity of the 
segment, the protection level, read, write or execute 
·privileges, the default size of the operands (16-bit or 
32-bit), and the type of segment. All of the attribute 
information about a segment is contained in 12 bits 
in the segment descriptor. Figure 4-5 shows the gen­
eral format of a descriptor. All segments on the 386 
Microprocessor have three attribute fieldsii-! com~ 
mon: the P bit, the DPL bit, and the S bit. The Pres­
ent P bit is 1 ,if the segment is loaded In physical 
memory, if P=O then any attempt to access this 
segment causes a not present exception (exception 
11). The Descriptor Privilege Level DPL is a two-bit 
field which specifies the protection leverO-3 associ­
ated with a segment. 

The 386 Microprocessor has two main categories of 
segments system segments and non-system seg­
ments (for code and data). The segmentS bit in the 
segment descriptor determines if a given segment is 
a system segment or a code or data segment. If· the 
S bit is 1 then the segment is either a code or data 
segment, if it is 0 then the segment is a system seg­
ment. 

4.3.4.2. 386™ CPU CODE, DATA DESCRIPTORS 
(S=1) . 

Figure 4-6 shows the general format of a code and 
data deSCriptor and Table 4-1 illustrates how the bits 
in the Access Rights Byte are interpreted. 

31 0 

SEGMENT BASE 15 ... 0 SEGMENT LIMIT 15 ... 0 0 

LIMIT 
ACCESS BASE 

BASE: 31 ... 24 G· 0 0 AVL 
19 ... 16 

RIGHTS 
23 ... 16 

+4 
BYTE .. 

DIE!' 1 '" Default Instructions Attributes are 32·BI18 G Granularity Bit 1 "" Segment length is Pl\ge granular 
0= Default Instruction Attributes are 16·BiIs 0= Segment length is byte granular 

AVL Available field for user or OS 0 B~ must be zero (0) for comPl\tlbillty with future proCessors 

Figure 4·6. Segment Descriptors 

Type 
Field 
Definition 

Table 4-1. Access Rights Byte Definition for Code and Data Descriptions 

Bit 
Name Function 

Position 

7 Present (P) P= 1 Segment is mapped into physical memory. 
P=O No mapping to physical memory exits, base and limit are 

not used. 
6-5 Descriptor Privilege Segment privilege attribute used in privilege tests. 

Level (DPL) 
4 Segment Descrip- S=1 Code orData (includes stacks) segment descriptor 

tor (S) S=O System Segment Descriptor or Gate Descriptor 

3 Executable (E) E = 0 ~type. data oegment r 
2 Expansion Direc- ED = 0 Expand up segment, offsets must be ~ limit. Datil 

tion (ED) ED = 1 Expand down segment, offsets must be > limit. Segment 
1 Writeable (W) W = 0 Data segment may not be written into. . (S = 1, 

W = 1 Data segment may be written into..' E = 0) 

3 Executable (E) E=1 Descriptor type is code segment: 

r 2 Conforming (C) C=1 Code segment may only be executed Code 
when CPL ~ DPL and CPL . Segmem 
remains unchanged. (S = 1, 

1 Readable (R) R=O Code segment may not be read. . E = 1) 
R=1 Code segment may be read. 

0 Accessed (A) A=O Segment has not .been accessed. '. 
A=1 Segment selector has been loaded ihtosegment register 

or used by selector test instruCtions. 
, 

4-32 . 



inter 386™ MICROPROCESSOR 

Code and data segments have several descriptor 
fields in common. The accessed A bit is set whenev­
er the processor accesses a descriptor. The A bit is 
used by operating systems to keep usage statistics 
on a given segment. The G bit, or granularity bit, 
specifies if a segment length is byte-granular or 
page-granular. 386 Microprocessor segments can 
be one megabyte long with byte granularity (G = 0) 
or four gigabytes with page granularity (G = 1), (i.e., 
220 pages each page is 4K bytes in length). The 
granularity is totally unrelated to paging. A 386 Mi­
croprocessor system can consist of segments with 
byte granularity, and page granularity, whether or not 
paging is enabled. 

The executable E bit tells if a segment is a code or 
data segment. A code segment (E = 1, S = 1) may be 
execute-only or execute!read as determined by the 
Read R bit. Code segments are execute only if 
R = 0, and execute! read if R = 1. Code segments 
may never be written into. 

NOTE: 
Code segments may be modified via aliases. Alias­
es are writeable data segments which occupy the 
same range of linear address space as the code 
segment. 

The 0 bit indicates the default length for operands 
and effective addresses. If D = 1 then 32-bit oper­
ands and 32-bit addressing modes are assumed. If 
D = 0 then 16-bit operands and 16-bit addressing 
modes are assumed. Therefore all existing 80286 
code segments will execute on the 386 Microproc­
essor assuming the D bit is set o. 

Another attribute of code segments is determined by 
the conforming C bit. Conforming segments, C = 1, 
can be executed and shared by programs at differ­
ent privilege levels. (See section 4.4 Protection.) 

31 16 

SEGMENT BASE 15 ... 0 

BASE 31 ... 24 / G / 0 / 0 / 0 /1 ;~~~~ 6 

Type Defines 
0 Invalid 
1 Available 80286 TSS 
2 LDT 
3 Busy 80286 TSS 
4 80286 Cell Gate 
5 Task Gate (for 80286 or 386TM CPU Task) 
6 80286 Interrupt Gate 
7 80286 Trap Gate 

Segments identified as data segments (E = 0, S = 1 ) 
are used for two types of 386 Microprocessor seg­
ments: stack and data segments. The expansion di­
rection (ED) bit specifies if a segment expands 
downward (stack) or upward (data). If a segment is a 
stack segment all offsets must be greater than the 
segment limit. On a data segment all offsets must be 
less than or equal to the limit. In other words, stack 
segments start at the base linear address plus the 
maximum segment limit and grow down to the base 
linear address plus the limit. On the other hand, data 
segments start at the base linear .address and ex­
pand to the base linear address plus limi~. 

The write W bit controls the ability to write into a 
segment. Data segments are read-only if W = o. The 
stack segment must have W = 1. 

The B bit controls the size of the stack pointer regis­
ter. If B = 1, then PUSHes, POPs, and CALLs all use 
the 32-bit ESP register for stack references and as­
sume an upper limit of FFFFFFFFH. If B = 0, stack 
instructions all use the 16-bit SP register and as­
sume an upper limit of FFFFH. 

4.3.4.3 SYSTEM DESCRIPTOR FORMATS 

System segments describe information about oper­
ating system tables, tasks, and gates. Figure 4-7 
shows the general format of system segment de­
scriptors, and the various types of system segments. 
386 Microprocessor system descriptors contain a 
32-bit base linear address and a 20-bit segment lim­
it. 80286 system descriptors have a 24-bit base ad­
dress and a 16-bit segment limit. 80286 system de­
scriptors are identified by the upper 16 bits being all 
zero. 

o 
SEGMENT LIMIT 15 ... 0 o 

P / DPL I 0 I TYPE I BASE 
23 ... 16 

+4 

Type Defines 
8 Invalid 
9 Available 386TM CPU TSS 
A Undefined (Intel Reserved) 
B Busy 386TM CPU TSS 
C 386TM CPU Call Gate 
D Undefined (Intel Reserved) 
E 386TM CPU Interrupt Gate 
F 386™ CPU Trap Gate 

Figure 4·7. System Segments Descriptors 

4-33 



inter 386™ MICROPROCESSOR 

4.3.4.4 LDT DESCRIPTORS (S = 0, TYPE = 2) 

LOT descriptors (S=OTYPE=2) contain informa­
tion about Local Descriptor Tables. LOTs contain a 
table .of segment descriptors. unique to a particular 
task. Since the instruction to load the LDTR is only 
available at privilege level 0, the DPL field is ignored. 
LOT descriptors are .only allowed in the Global De-
scriptor Table (GOT). -

4,3.4.5 TSS DESCRIPTORS (S= 0, 
TYPE:= 1,3,9, B) 

A Task S~ate Segment (TSS) descriptor contains in­
formation about the loca~on, size, and privilege level 
of a Task State Segment (TSS). A TSS in turn is a 
special fixed format segment which contains all the 
state information for a task and a linkage field to 
permit nesting tasks. The TYPE field is used to indi­
cate whether the task is currently BUSY (i.e. on a 
chain of active tasks) or the· TSS is available .. The 
TYPE field also indicates if the segment contains a 
80286 or a 386 Microprocessor TSS. The Task Reg­
ister (TR) contains. the selector which points to the 
current Task State Segment. 

4.3,4.6 GATE DESCRIPTORS (S=O, 
TYPE = 4-7, C, F) 

Gates are used to control access to· entry pOints 
within the target code segment. The various types of 

31 24 16 

gate descriptors are call gates; task gates, 
Interrupt gates, and, trap gates. Gates provide a 
level of indirection between the source and destina­
tion of the· control transfer: Tnis indirection allows 
the processor to automatically perform protection 
checks. It also allows system designers to control 
entry points to the operating system. Call gates are 
used to change privilege. levels (see section 4.4 
Protection), task gates are used to perform a task 
switch, and interrupt and trap gates are used to 
specify interrupt Service routines. 

Figure 4-8 shows the format of the four types of gate 
descriptors. Call gates are primarily used to transfer 
program control to a more privileged level. The call 
gate descriptor consists of three fields: the access 
byte, a long pointer (selector and offset) which 
points to. the start of a routine and a word count 
which specifies how many parameters are to be cop­
ied from the caller's stack to the stack of the called 
routine. The word count field is only used by call 
gates when there is a change in the privilege level, 
other types of gates ignore the word count field. 

Interrupt and trap gates use the destination selector 
and destination offset fields of the gate descriptor as' 
a pointer to the start of the interrupt or trap handler 
routines. The difference between interrupt gates and 
trap gates is that the interrupt gate disables inter­
rupts (resets the IF bit) while the trap gate does not. 

8 5 0 

SELECTOR OFFSET 15 ... 0 0 

WORD 
OFFSET 31 ... 16 P DPL 0 TYPE 0 0 0 COUNT +4 

4 ... 0 

Gate Descriptor Fields 
Name Value Descrtptlon 
Type 4 80286 call gate 

5 Task gate (for 80286 or 386TM CPU task) 
6 80286 interrupt gate 
7 80286 trap gate 
C 386™ CPU call gate 
E 386™ CPU interrupt gate 
F 386TM CPU trap gate 

P 0 Descriptor contents are not valid 
1 Descriptor contents are valid 

DPL-Ieast privileged level at which a tesk may access the gate. WORD COUNT 0-31-the number of parameters to copy from caller's stack 
to the called procedure's steck. The parameters are 32-b~ quantitles for 386TM CPU gates. and 16·bit quantities for 80286 gates. 
DESTINATION 16-bit Selector to the target code segment 
SELECTOR selector or 

Selector to the target task stete segment for task gate 

DESTINATION offset Entry pOint within the target code segment 
OFFSET 16-bit 80266 , 

32-bit 386TM CPU 

Figure 4-8. Gate Descriptor Formats 

4-34 



intJ 386TM MICROPROCESSOR 

Task gate~ are used to switch tasks. Task gates 
may only refer to a task state segment (see section 
4.4.6 Task Switching) therefore only the destination 
selector portion of a task gate descriptor is used, 
and the destination offset is ignored. 

Exception 13 is generated when a destination selec­
tor does not refer to a correct descriptor type, i.e., a 
code segment for an interrupt, trap or call gate, a 
TSS for a task gate. 

The access byte format is the same for all gate de­
scriptors. P = 1 indicates that the gate contents are 
valid. P = 0 indicates the contents are not valid and 
causes exception 11 if referenced. DPL is the de­
scriptor privilege . level and specifies when this de­
scriptor may be used. by a task (see section 4.4 
Protection). The S field, bit 4 of the access· rights 
byte, must be 0 to indicate a system control descrip­
tor. The type field specifies the descriptor type as 
indicated in Figure 4-8. 

4.3.4.7 DIFFERENCES BETWEEN 386™ 

~~~~~r~T~C::SOR AND 80286 

In order to provide operating system compatibility
between the 80286 and 386 Microprocessor, the
386 Microprocessor supports all of the 80286 seg­
ment descriptors. Figure 4-9 shows the general for­
mat of an 80286 system segment descriptor. The
only differences between 80286 and 386 Microproc­
essor descriptor formats are that the values of the
type fields, and the limit and base address fields
have been expanded for the 386 Microprocessor.
The 80286 system segment descriptors contained a
24-bit base address and 16-bit limit, while the 386
Microprocessor system segment descriptors have a
32-bit base address, a 20-bit limit field, and a granu­
larity bit.

-, By supporting 80286 system segments the 386 Mi­
croprocessor is able to execute 80286 application
programs on a 386 Microprocessor operating
system. This is possible because the processor
automatically understands which descriptors are

31 ,

80286-style descriptors and which descriptors are
386 Microprocessor-style descriptors. In particular, if
the upper word of a descriptor is zero, then that de­
scriptor is a 80286-style descriptor.

The only other differences between 80286-style de­
scriptors and 386 Microprocessor descriptors is the
interpretation of the word count field of call gates
and the B bit The word count field specifies the
number of 16-bit quantities to copy for 80286 call
gates and 32-bit quantities for 386 Microprocessor
call gates. The B bit controls the size of PUSHes
when using a call gate; if B = 0 PUSHes are 16 bits,
if B = 1 PUSHes are 32 bits.

4.3.4.8 SELECTOR FIELDS

A selector in Protected Mode has three fields: Local
or Global Descriptor Table Indicator (TI), Descriptor
. Entry Index (Index), and Requestor (the selector's)
Privilege Level (RP\-) as shown in Figure 4-10. The
TI bits select one of two memory-based tables of
descriptors (the Global Descriptor Table or the Local
Descriptor Table). The Index selects one of 8K de­
scriptors in the appropriate descriptor table. The
RPL bits allow high speed testing of the selector's
privilege attributes.

. 4.3.4.9 SEGMENT DESCRIPTOR CACHE

In addition to the selector value, every segment reg­
ister has a segment descriptor cache register asso­
ciated with it. Whenever a segment register's con­
tents are changed, the a-byte descriptor associated
with that selector is automatically loaded. (cached)
on the chip. Once loaded, all references to that seg­
ment use the cached descriptor information instead
of reaccessing the descriptor. The contents of the
descriptor cache are not visible to the programmer.
Since descriptor caches only change when a seg­
ment register is changed, programs which modify
the descriptor tables must reload the appropriate
segment registers after changing a descriptor's val­
ue.

o
-SEGMENT BASE 15 ... 0 SEGMENT LIMIT 15 ... 0 o

Intel Reserved
Set to 0

BASE
LIMIT
P

Base Address of the segment
The length of the segment
Present Bit 1 = Present 0 = Not Present

P~ DPL Js1 TYPE J BASE
23 ... 16

DPL
S '
TYPE

.. Descriptor PnVllege Level 0-3
System DeSCriptor 0 = System 1 = User
Type of Segment

Figure 4-9. 80286 Code and Data Segment Descriptors

4-35

+4

Ii
1:1

I
, ~

f

I
:
,~
Il
Ii
,

,'1

inter

SEGMENT
REGISTER

386'TM MICROPROCESSOR

SELECTOR

15

I 0 I 0 ---- 0 I 0
\

INDEX

N

6

5

4

-!
2

1

0

4 3 2 1 0

1 I, I ~II R~L I
.

TABLE
INDICATOR

TI=1

\p~¢M1AA· •••

LOCAL
DESCRIPTOR

TABLE

DESCRIPTOR
NUMBER

-

N

6

5

4

3

2

1

0

TI=O!

~

NULL

GLOBAL
DESCRIPTOR

TABLE

Figure 4-10. Example Descriptor Selection

4-36

231630-59

inter 386TM MICROPROCESSOR

4.3.4.10 SEGMENT DESCRIPTOR REGISTER
SETTINGS

The contents of the segment descriptor cache vary
depending on the mode the 386 Microprocessor is
operating in. When operating in Real Address Mode,
the segment base, limit, and other attributes within
the segment cache registers are' defined as

shown in Figure 4·11. For compatiblity with the 8086
architecture, the base is set to sixteen times the cur·
rent selector value, the limit is fixed at OOOOFFFFH,
and the attributes are fixed so as to indicate the seg·
ment is present and fully usable. In Real Address
Mode, the internal "privilege level" is always fixed to
the highest level, level 0, so 110 and other privileged
opcodes may be executed.

SEGMENT DESCRIPTOR CACHE REGISTER CONTENTS

32-BIT B~SE
(UPDATED DURING SELECTOR

LOAD INTO SEGMENT REGISTER)

32 - BIT LIMIT
(FIXED)

OTHER ATTRIBUTES

(FIXED)

CONFORMING PRIVILEGE-------------------.,
STACK SIZE----------------....;;.-----.,
EXECUTABLE--------------------__.
WRITEABLE------------~-------.,
READABLE--------------------,
EXPANSION DIRECTION

GRANULARITY 1
ACCESSED 1
PRIVILEGE LEVEL 1
~R~E~~ _______ ~A~~ ___________ !I~I! ___ t ~ _ _ _ __
CS 16X CURRENT CS SELECTOR· OOOOFFFFH Y OY BUY Y Y - N
SS 1 6X CURRENT SS SELECTOR OOOOFFFFH Y 0 Y BUY Y N W •
os 16X CURRENT OS SELECTOR OOOOFFF!'H Y 0 Y BUY Y N - -
ES 16X CURRENT ES SELECTOR OOOOFFFFH Y 0 Y BUY Y N - -
FS 16X CURRENT FS SELECTOR OOOOFFFFH Y 0 Y BUY Y N - -
GS 16X CURRENT GS SELECTOR OOOOF'F'F'F'H Y 0 Y BUY Y N - -

231630-60

'Excep1 the 32-bit CS base is initialized to FFFFFOOOH after reset until first intersegrnent control transfer (e.g. Intersegrnent CALL. or
intersegment JMP, or INn. (See Figure 4-13 Example.)

Key: Y = yes
N = no
o = privilege level 0
1 = privilege level 1
2 = privilege level 2
3 = privilege level 3
U = expand up

o = expand down
B = byte granularity
P = page granularity
W = push/pop 16-bH words

',F = push/pop 32-M dwords
- = does not apply to that segment cache register

FIgure 4·11. Segment DeSCriptor Caches tor Real Address Mode
(Segment Limit and Attributes are Fixed)

4·37

intJ 386TM MICROPROCESSOR

When operating in ,Protected Mode, the segment
base, . limit, and. other attributes within the. segment
cache registers are ·defined as shown .in Figure 4-12.
In Protected Mode, each of these fields are defined

according to the contents of the segmentdescriptor
indexed by. the selector value loaded into the seg­
ment register.

SEGMENT DESCRIPTOR CACHE REGISTER CONTENTS

32 - BIT BASE

(UPDATED DURING
SELECTOR LOAD INTO

SEGMENT REGISTER)

32 - BIT LIMIT

(UPDATED DURING
SELECTOR LOAD INTO

SEGMENT REGISTER)

OTHER ATTRIBUTES

(UPDATED DURING
SELECTOR LOAD INTO

SEGMENT REGISTER)

CONFORMING PRIVILEGE ---"---"----------------,
STACK SIZE--------------...... ---------...,
EXECUTABLE-----------------------,
WRITEABLE --------------------..,-,
READABLE----------------------------~
EXPANSION DIRECTION

GRANULARITY 1
ACCESSED 1
~:y~~~~E _L~~E~ ~~s: ___________ ~I~I~ ______ ttl _ __
CS BASE PER SEG DESCR LIMIT PER SEG DESCR p d d d d d N Y - d
SS BASE PERSEG OESCR LIMIT PER SEG DESCR P d d d

OS BASE PER SEC DESCR LIMIT PER SEG DESCR p d d d

ES BASE PER SEG DESCR LIMIT PER SEG DESCR P d d d

FS BASE PER SEG DESCR LIMIT PER SEG DESCR P d d d

GS BASE PER SEG DESCR LIMIT PER SEG DESCR P d d d

Key: Y = fixed yes
N = fixed no
d = per segment descriptor
p = per segment descriptor; descriptor must indicate "present" to avoid exception 11

(exception 12 in case of SS)
r = per segment descriptor, but descriptor must indicate "readable" to avoid exception 13

(special case for SS)
w = per segment descriptor, but descriptor must indicate "writable" to avoid exception 13

(special case for.SS) .
- = does not apply to that segment cache register

d r w N d -
d d d N - -
d d d N - -
d d d N - -
d d d N - -

231630-61

Figure 4-12. Segment Descriptor Caches for Protected Mode (Loaded per Descriptor)

4-38

inter 386TM MICROPROCESSOR

When operating in a Virtual 8086 Mode within the
Protected Mode, the segment base, limit, and other
attributes within the segment cache registers are de­
fined as shown in Figure 4-13. For compatibility with
the 8086 architecture, the base is set to sixteen
times the current selector value, the limit is fixed at

OOOOFFFFH, and the attributes are fixed so as to
indicate the segment is present and fully usable. The
virtual program executes at lowest privilege level,
level 3, to allow trapping of all IOPL-sensitive in­
structions and level-O-only instructions.

Key: Y = yes
N = no

SEGMENT DESCRIPTOR CACHE REGISTER CONTENTS

32- BIT BASE

(UPDATED DURING SELECTOR
LOAD INTO SEGMENT REGISTER)

32 - BIT LIMIT

(FIXED)

OTHER ATIRIBUTES

(FIXED)

CONFORMING PRIVILEGE --------------------,
STACK SIZE------------------------,
EXECUTABLE----------------------,
WRITEABLE--------....,..------------.,
READABLE--------------------,
EXPANSION DIRECTION

GRANULARITY 1
~~~ 1 
~~~V~~~~E_L:~E~ ___ B~~E ____________ :I~I! ___ ~ 11 _ __ 
CS l6X CURRENT CS SELECTOR
SS l6X CURRENT. SS SELECTOR
OS 1 6X CURRENT OS SELECTOR

ES 1 6X CURRENT ES SELECTOR
FS 1 6X CURRENT FS SELECTOR

GS l6X CURRENT GS SELECTOR

OOOOFFFFH y 3 y B U

OOOOFFFFH Y 3 Y B U
OOOOFFFFH Y 3 Y B U

OOOOFFFFH Y 3 Y B U
OOOOFFFFH Y 3 Y B U

OOOOFFFFH Y 3 Y B U

D = expand down
B = byte granularity
P = page granularity
W = push/pop ·16-bit words
F = push/pop 32-bit dwords

y

Y
Y

Y
Y
Y

y y- N

Y N W -
Y N - -
Y N - -
Y N - -
Y N - -

231630-62

o = privilege level 0
1 = privilege level 1
2 = privilege level 2
3 = privilege level 3
U = expand up

- = does not apply to that segment cache register

Figure 4·13. Segment Descriptor Caches for Virtual 8086 Mode within Protected Mode
(Segment Limit and Attributes are Fixed)

4-39

386TM MICROPROCESSOR

4.4 PROTECTION

4.4.1 Protection Concepts

CPU
ENFORCED
SOFTWARE
INTERFACES

tHGHSPEID
OPERATlNQ
SYSTEM
INTERFACE

231630-63

Figure 4·14. Four·Level Hlerachlcal Protection

The 386 Microprocessor has four levels of protec~
tion which are optimized to support the needs of a
multi-tasking operating system to isolate and protect
user programs from each other and the operating
system. The privilege levels .control the use of privi­
leged instructions, I/O instructions, and access to
segments and segment descriptors. Unlike tradition­
al microprocessor-based systems where this protec­
tion is achieved only through the use of complex
external hardware and software the 386 Microproc­
essor provides the protection as part of its integrat­
ed Memory Management Unit. The 386 Microproc­
essor offers an' additional type of protection on a
page baSis, when paging is enabled (See section
4.5.3 Page Level Protection).

The four-level hierarchical privilege system is illus­
trated in Figure 4·14. It is an extension of the user(
supeNisor privilege mode commonly used by mini­
computers and, in fact, the user I supeNisor mode is
fully supported by the 386 Microprocessor paging
mechanism. The privilege levels (PL) are numbered
o through 3. Level 0 is the most privileged or trusted
level.

4.4.2 Rules of Privilege
The 386 Microprocessor controls access to" both
data and procedures between levels of a task, ac­
cording to the following rules.

, • Data stored in a segment with privilege level p can
be accessed only by code executing at a privilege
level at least as privileged as p.

• A code segment/procedure with privilege level p
can only be called by a task executing at the same
or a lesser privilege level than p.

4.4.3 Prlvllege'Levels
"

4.4.3.1 TASK PRIVILEGE

At any point in time, a task on the 386 Microproces­
sor always executes at one of the four privilege lev­
els. The Current Privilege Level (CPL) specifies the
task's privilege level. A task's CPL maY,. only be
changed by control transfers through gate descrip­
tors to a code segment with a different privilege lev­
el. (See section 4.4.4 Privilege Level Transfers)
Thus, an application program running at PL = 3 may
call an operating system routine at PL = 1 (via a
gate) which would cause the task's CPL to be set to
1 until the operating system routine was finished.

4.4.3.2' SELECTOR PRIVILEGE (RPL)

, The privilege level of a selector is specified by the
RPL field. The RPL is the two least significant bits of
the selector. The selector's RPL is only used to es­
tablish a less trusted privilege Jevel than the current
privilege level for the use of a segment. This level is
called the task's effective privilege level (EPL). The
EPL is defined as being the least privileged (i.e. nu­
merically larger) level of a task's CPL and a selec­
tor's 'RPL. Thus, if selector's RPL = 0 then the CPL
always specifies the privilege level for making an ac­
cess using the selector. On the other hand if RPL =
3 then a selector can only access segments at level
3 regardless of the task's CPL. The RPL is most
commonly used to verify that pointers passed to an
operating system procedure do not access data that
is of higher privilege than the procedure that origi­
nated the pOinter. Since the originator of a selector
can specify any RPL value, the Adjust RPL (ARPL)
instruction is provided to force the RPL bits to the
Originator's CPL.

4-40

4.4.3.3 1/0 PRIVILEGE AND 110 PERMISSION
BITMAP

The 110 privilege level (IOPL, a 2-bit field in the
EFLAG register) defines the least privileged level at
which I/O instructions can be unconditionally per­
formed. I/O instructions can be unconditionally per'­
formed when CPL :5: 10PL. (The I/O instructions are
IN, OUT, INS, OUTS, REP INS, and REP OUTS.)
When CPL > 10PL, and the current task is associat­
ed with a 286 TSS, attempted I/O instructions cause,
an exception 13 fault. When CPL > 10PL, and the
current task is associated with a 386 Microprocessor
TSS, the I/O Permission Bitmap (part of a 386 Mi­
croprocessor TSS) is consulted on whether I/O to
the port is allowed, or an exception 13 fault is to be
generated instead. For diagrams of the I/O Permis­
sion Bitmap, refer to Figures 4-15a and 4-15b. For
further information on how the I/O Permission Bit­
map is used in Protected Mode or in Virtual 8086

intJ 386TM MICROPROCESSOR

Mode, refer to section 4.6.4 Protection and 110 Per-
mission Bitmap. .

The 1/0 privilege level (IOPL) also affects whether
several other instructions can be executed or cause
an exception 13 fault instead. These instructions are
called "IOPL-sensitive" instructions and they are
CLI and STI. (Note that the LOCK prefix is not 10PL­
sensitive on the 386 Microprocessor.)

The 10PL also affects whether the IF (interrupts en­
able flag) bit can be changed by loading a value into
the EFLAGS register. When CPL ~ 10PL, then the
IF bit can be changed by loading a new value into
the EFLAGS register. When CPL > 10PL, the IF bit
cannot be,changed by a new value POP'ed into (or
otherwise loaded into) the EFLAGS register; the IF
bit merely remains unchanged and no exception is
generated.

Table 4-2. Pointer Test Instructions

Instruction Operands Function

ARPL Selector, Adjust Requested Privi-
Register lege Level: adjusts the

RPL of the selector to the
numeric maximum of
current selector RPL value
and the RPL value in the
register. Set zero flag if
selector RPL was
changed.

VERR Selector VERify for Read: sets the
zero flag if the segment
referred to by the selector
can be read.

VERW Selector VERify for Write: sets the
zero flag if the segment
referred to by the selector
can be written.

LSL Register, Load Segment Limit: reads
Selector the segment limit into the

register if privilege rules
and descriptor type allow.
Set zero flag if successful.

LAR Register, Load Access Rights: reads
Selector the deSCriptor access

rights byte into the register
if privilege rules allow. Set
zero flag if successful.

4-41

4.4.3.4 PRIVILEGE VALIDATION

The 386 Microprocessor provides several instruc­
tions to speed pOinter testing and help maintain sys­
tem integrity by verifying that the selector value
refers to an appropriate segment. Table 4-2 summa­
rizes the selector validation procedures available for
the 386 Microprocessor.

This pointer verification prevents the common prob­
lem of an application at PL = 3 calling a operating
systems routine at PL = 0 and passing the operat­
ing system routine a "bad" pointer which corrupts a
data structure belonging to the operating system. If
the operating system routine uses the ARPL instruc­
tion to ensure that the RPL of the selector has no
greater privilege than that of the caller, then this
problem can be avoided.

4.4.3.5 DESCRIPTOR ACCESS

There are basically two types of segment accesses:
those involving code segments such as control
transfers, and those involving data accesses. Deter­
mining the ability of a task to access a segment in­
volves the type of segment to be accessed, the in­
struction used, the tyPe of descriptor used and CPL;
RPL, and OPL as described a!>pve.

Any time an instruction loads data segment registers
(OS, ES, FS, GS) the 386 Microprocessor makes
protection validation checks. Selectors loaded in the
OS, ES, FS, GS registers must refer only to data
segments or readable code segments. The data ae..
Cj3SS rules are specified in section 4.2.2 Rules of
Privilege. The only exception to those rules is read­
able. conforming code segments which can be ac­
cessed at any privilege level.

Finally the privilege validation checks are performed.
The CPL is compared to the EPL and if theEPL is
more privileged than the CPL an exception 13 (gen-
eral protection fault) is generated. .

The rules regarding the stack segment are slightly
different than those involving data segments. In­
structions that load selectors into SS must refer to
data segment descriptors for writeable data seg­
ments. The OPL and RPL must equal the CPL. All
other descriptor types or a privilege level violation
will cause exception 13. A stack not present· fault
causes exception 12. Note that an exception 11 is
used for a not-present code or data segment.

4.4.4 Privilege Level Transfers

Inter-segment control transfers occur when a selec­
tor is loaded in the CS register. For a typical system
most of these transfers are simply ~he result of a call

I

!

386TM MICROPROCESSOR

Table 4.3. Descriptor Types Used for Control Transfer

Control Transfer Types

Intersegment within the same privilege level

Intersegment to the same or higher privilege level
Interrupt within task may change CPL

Intersegment to a lower privilege level
(changes task CPL)

Task Switch

'NT (Nested Task bit of flag register) = 0
"NT (Nested Task bit of flag register) = 1

or a jump to another routine. There are five types of
control transfers which are summarized in Table 4-3.
Many of these transfers result in a privilege level
transfer. Changing privilege levels is done only via
control transfers,by using gates, task switches, and
interrupt or trap gates.

Control transfers can only occur if the operation
which loaded the selector references the correct de­
scriptor type. Any violation of these descriptor usage
rules will cause an exception 13 (e.g. JMP through a
call gate, or IRET from a normal subroutine call).

In order to provide further system security, all control
transfers are also subject to the privilege rules.

The privilege rules require that:

- Privilege level transitions can only occur via
gates.

- JMPs can be made to a non-conforming code
segment with the same privilege or to a conform­
ing . code segment with greater or equal privilege.

- CALLs can be made to a non-conforming code
segment with the same privilege or via agate to a
more privileged level.

- Interrupts handled within the task obey the same
privilege rules as CALLs.

- Conforming Code segments are accessible by
privilege levels which are the same or less privi­
leged than the conforming-code segment's OPL.

- Both the requested privilege level (RPL) in the
selector pOinting to the gate and the task's CPL

Operation Types
Descriptor Descriptor

Referenced Table

JMP,GALL, RET, IRET' Code Segment GOT/LOT

CALL Call Gate GOT/LOT

Interrupt Instruction, Trap or lOT
Exception, External Interrupt
Interrupt Gate

RET,IRET* Code Segment GOT/LOT

CALL,JMP Task State GOT
Segment

CALL, JMP Task Gate GOT/LOT

IREP' Task Gate lOT
Interrupt Instruction,
Exception, External
Interrupt

4-42

must be of equal or greater privilege than the
gate's OPL.

- The code segment selected in the gate must be
the same or more privileged than the task's CPL.

- Return instructions that do not switch tasks can
only return control to a code segment with same
or less privilege.

- Task switches can be performed by a CALL,
JMP, or INT which references either a task gate
or task state segment who's OPL is less privi­
leged or the same privilege as the old task's CPL.

Any control transfer that changes CPL within a task
causes a change of stacks as a result of the privi­
lege level change. The initial values of SS:ESP for
privilege levels 0, 1, and 2 are retained in the task
state segment (see section 4.4.6 Task Switching).
Ouring a JMP or CALL control transfer, the new'
stack pointer is loaded into the SS and ESP regis­
ters and the previous stack pointer is pushed onto
the new stack.

When RETurning to the original privilege level, use
of the lower-privileged stack is restored as part of
the· RET or IRET instruction operation. For subrou­
tine calls that pass parameters on the stack and
cross privilege levels, a fixed number of words (as
specified in the gate's word count field) are copied
from the previous stack to the current stack. The
inter-segment RET instruction with a stack adjust­
ment value will correctly restore the previous stack
pointer upon return.

inter

NOTE:
AP_OFFSET BIT_M

must be ,;; DFFFH

.. ----------- ... - .. ,
ACCESS I TSS.

, , r+ , RIGHTS LIMIT , , , , ,
BASE

, , , , ,
, 31 , PROGRAM 0' , , INVISIBLE , a. _______ ... _____ ..

TASK REGISTER

TR SELECTOR }-
15 0

-

31

Type = 9: Available 386™ CPU TSS,
Type = B:Busy 386™ CPU TSS

31

386TM MICROPROCESSOR

16 15

0000000000000000 I
ESPO

0000000000000000 I
ESPI

0000000000000000

ESP2

0000000000000000

CR3

EIP

EFLAGS

EAX

ECX

EDX

EBX

ESP

EBP

ESI

EDI

0000000000000000

0000000000000000

0000000000000000

0000000000000000

0000000000000000

0000000000000000

0000000000000000

BACK LINK

SSO

SSI

SS2

ES

CS

SS

OS

FS

, GS

LOT

00 .J
4

8

C

10

14

18

lC

20

24

28

2C

30

34

38

3C

40

44

48

4C

50

54

58

5C

60

TSS BASE

STACKS
FOR
CPL 0,1,2

CURRENT
TASK
STATE

BILMAP _OFFSET(15:0) 0000000000000000 1"5 AVAILABLE ----SYSTEM STATUS, ETC,
IN 386 Tt.! CPU TSS

31 24 23 16 15 8 7

63 56 55 48 47 40 39

95 88 87 80 79 72 71

I/o PERMISSION BITMAP

65407 (ONE BIT PER BYTE I/O
PORT, BITMAP MAY BE 65439

TRUNCATED USING TSS LIMIT.)
65471 I
65503 I
65535

386 Tt.! CPU TSS DESCRIPTOR (IN GOT)

0

32

64

96

..

65472

65504

"FFH"

DEBUG
TRAP BIT

BILMA

OFFS

OFFS

OFFS

ET + C

ET + 10

OFFSE

ET + lrEC

T + lrro

+ lFF4

+ 1Ff'8

ET + lFFC

OFFSET

OFFSET

OFFS

T + 2000 OFFSE

t TSS LIMIT = or rSET + 2000H

0

SEGMENT BASE 15 ..• 0 SEGMENT LIMIT 15 •• 0

BASE 31 •• 24IGlll0j0llL~~~ PIOPLlol.TYPE. I
BASE

23 •. 16
231630-64

Figure 4-15a. 386™ Microprocessor TSS and TSS Registers

4-43

inter 38~TM MICROPROCESSQR

31

63

95
127

31 30 29 282726 25 2423 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 " 3 2 1 0

1 j 1 1 0 1 1 o 0 000 1 1 1 1 0 1 001 l' 0 0 o 0 o 0 0 0 1 1

o 0 1 000 1 1 1 1 o 0 , 0 1 0 1 1 1 1 1 1 o 0 1 1 1 1 1 o 0 1

1 1 1 1 1 1·1 1 1 1 1 1 '·1 1 1 1 1· 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 00 0 000 o b o 0 0 ,0 o 0 o 0 0 0 o 0 0 0 000 o 0 0 0 0 0

1.1 1 1 1 1 1 1

etc.
I/O Ports Accessible: 2 _ 9,12,13, 15,20 - 24, 27, 33, 34, 40, 41, 48, 50, 52, 53, 58 - 80, 62, 63, 98 -127 231630-71

Flgure4.15b. Sample 110 Perml88lon Bit Map

4.4.5 Call Gates

Gates provide protected, indirect CALLs. One of the
major uses of gates is to provide a secure method of
privilege transfers within a task. Since the operating
system defines all ·of the gates in a system, it can
ensure that all gates only allow entry into a few trust­
ed procedures (such as those which allocate memo·
ry, or perform I/O).

Gate descriptors follow the data access rules of priv·
ilege; that is, gates can be accessed by a task if the
EPL, is equal to or more. privileged than the gate
descriptor's OPL. Gates follow the control transfer
rules of privilege and therefore may only transfer
control to a more privileged level.

Call Gates are accessed via a CALL instruction and
are syntactically identical to calling a normal subrou~
tine. When an inter·level 386 Microprocessor call
gate is activated, the following actions occur.

1,. Load CS:EIP from gate check for validity

2. SS is pushed zero·extend8cl to 32 bits

3. ESP is pushed

4. Copy Word Count 32-bit parameters from the
old stack to the new stack

5. Push Return address on stack

The procedure is identica/for 8.0286 Call gates, ex·
cept that 16-bit parameters are copied and 16-bit
registers are pushed.

Interrupt Gates and Trap gates work ina similar
fashion as the call gates. except there is no copying
of parameters. The only difference between Trap
and I~terruptgates is that control transfers through
an Interrupt gate disable further interrupts (i.e. the IF
bit is set to 0), and. Trap gates leave the interrupt
status unchanged. .

4.4.6 Task Swltcl1lng
A very important attribute of any multi·tasking/multi·
user operating systems is its ability tE> rapi!ily switch
between tasks or processes. The 38~, ~icroproces·
sor directly supports this operation by providing a ..
task switch instruction in hardware. The 38~ Micro·
processor task switch operation saves the' en·

tire. state of the machine (all of the registers. address
space. and a link to the previous task). loads a new
execution state. performs protection checks. and
commences execution in the new task. in about 17
microseconds, like transfer of control via gates. the
task switch operation is invoked by executing an in­
ter-segment JMP or CALL instruction which refers to
a Task State Segment (TSS). or a task gate descrip­
tor in the GOT or LOT, An INT n instruction, excep­
tion. trap; or external interrupt may also invoke the
task sWitch operation if there is a task gate descrip­
tor in the associated lOT descriptor slot.

The TSS descriptor pOints to a segment (see Figure
4·15) containing the entire 386 Microprocessor exe·
cution stat$ while a task gate descriptor contains a
TSS selector. The 386 Microprocessor supports
both 80286 and 386 ~icroprocessor style TSSs. Fig.
ure4-16 shows a 80286 TSS. The limit of a 386
Microp(ocessor TSS must be greater than 0064H
(002BH fOr a 80286 TSS), and can be as large as 4
Gigabytes. In the additional TSS space, the operat·
ing system is free to store additional information
such as the reaSon the task is inactive, time the task
has spent running, and open files belong to the task.

Each tasl< must have a TSS associated with it. The
current TSSis identified by a special register in the
386. Microprocessor called the Task State Segment
Register (TR). This register contains a s,elector refer·
ring to the task state segment descriptor that de·
fines the current TSS. A hidden base and limit regis·
ter associated with TR are loaded whenever TR is
loaded with a new selector. Returning from a task is
accOmplished by the IRET instruction. When IRET is
executed, control is returned to the task which was
interrupted. The current executing task's state is
saved in the TSS and the old task. state is restored
from its. TSS. .

Several bits In·the flag' register and machine status
, word (CRO) give information' about, the state of a

task which are useful to the operating system. The
Nested Task (Nn (bit 14 in EFLAGS) controls the
function.of the IRET instruction. If NT = 0, the IRET

., instructi,on performs the regular return; when NT =
1, IRET performs a task switch operation back to the
previous task. The NT bit is set Or reset in the follow­
ing fashion:

4-44

inter 386TM MICROPROCESSOR

15 0

BACK LINK SELECTOR TO TSS 0

SP FOR CPL 0 2

SS FOR CPL 0 4

SP FOR CPL 1 6 INITIAL

SS FOR CPL 1 8
STACKS
FOR CPL 0,1.2

SP FOR CPL 2 A

SS FOR CPL 2 C

IP (ENTRY POINT) E

FLAGS 10

AX 12

CX 14

OX 16

BX 18
CURRENT

SP lA TASK

BP IC STATE

SI IE

01 20

ES SELECTOR 22

CS SELECTOR 24

SS SELECTOR 26

OS SELECTOR 28

TASK'S LOT SELECTOR 2A . AVAILABLE ."
231630-65

Figure 4-16. 80286 TSS

When a CALL or INT instruction initiates a task
switch, . the new TSS will be marked busy and the
back link field of the new TSS set to the old TSS
selector. The NT bit of the new task is set by CALL
or INT initiated task switches. An interrupt that does
not cause a task switch will clear NT. (The NT bit will
be restored after execution of the interrupt handler)
NT may also be set or cleared by POPF or IRET
instructions.

The 386 Microprocessor task state segment is
marked busy by changing the descriptor type field
from TYPE 9H to TYPE BH. An 80286 TSS is
marked busy by changing the descriptor type field
from TYPE 1 to TYPE 3. Use of a selector that refer­
ences a busy task state segment causes an excep­
tion 13.

The Virtual Mode (VM) bit 17 is used to indicate if a
ta.sk, is a virtual 8086 task. If VM = 1, then the tasks
will use the Real Mode addressing mechanism. The
virtual 8086 environment is only entered and exited
via a task switch (see section 4.6 Virtual Mode).

The coprocessor's state is not automatically saved
when a task switch occurs. because the incoming
task may not use the coprocessor. The Task
Switched (TS) Bit (bit 3 in the CRO) helps deal with
the coprocessor's state in a multi-tasking environ-

4-45

ment. Whenever the 386 Microprocessor switches
tasks, it sets the TS bit. The 386 Microprocessor
detects the first. use of a processor extension in­
struction after a task switch and causes the proces­
sor extension not available exception 7. The excep­
tion handler for exception 7 may then decide wheth­
er to s~ve the state of the coprocessor. A processor
extension not present exception (7) will occur when
attempting to execute an ESC or WAIT instruction if
the Task Switched and Monitor coprocessor exten­
sion bits are both set (I.e. TS = 1 and MP = 1).

The T bit in the 386 Microprocessor TSS indicates
t~at the proc~ss~r should generate a debug excep­
tion when sWitching to a task. If T= 1 then upon
entry to a new task a debug exception 1 will be gen­
erated.

4.4.7 Initialization and Transition to
Protected Mode

Since the ~86 Mi~roprocessor begins executing in
Re~l. ~~de Immediately after RESET it is necessary
to Initialize the system tables and registers with the
appropriate values.

The GOT and lOT registers must refer to a valid GOT
and lOT. The lOT should be at least 256 bytes long,
and. GOT must contain descriptors for the initial
code, and data segments. Figure 4-17 shows the
tables and Figure 4-18 the' descriptors needed for a
simple Protected Mode 386 Microprocessor system.
It has a sin91e code and single datal stack segment
each four gigabytes long and a single privilege level
PL = O.

The actual method of enabling Protected Mode is to
!oad C~O with .the PE bit set, via the MOV CRO, RIM
Instruction. ThiS puts the 386 Microprocessor in Pro­
tected Mode.

After enabling Protected Mode, the· next instruction
should execute an intersegment JMP to load the CS
register and flush the instruction decode queue. The
final step is to load all of the data segment registers
with the initial selector values.

An alternate approach to entering Protected Mode
whi~h is especial!y appropriate for multi-tasking op­
erating systems, IS to use the built in task-switch to
load all of the registers. In this case the GOT would
contain two TSS descriptors in addition to the code
and data descriptors needed for the first task. The
first JMP instruction in Protected Mode would jump
to the ~SS ca~sing a task switch and loading all of
the registers With the values .stored in the TSS. The
Task State Segment Register should be initialized to
point to ~ valid TSS descriptor since a task switch
saves the state of the current task in a task state
segment.

i!
I····
h rr

386TM MICROPROCESSOR

15 0

SS 10010 I

BASE ADDRESS

3;.1 ____ ..;;0 FFFFFFFF.
RESET ROUTINES

INITIALIZATION
ROUTINES

FFFFFFFO

00000118]
~=-=~=--~ 00000110
~~~~~~ 00000108 GOT 

'-11-"-';;...0.;--'''-';--1 00000100 

INTERRUPT 
DESCRIPTORS (32) 

t 
JOT 

• '---------- 00000000 231630-66 

Figure 4-17. Simple Protected System 

DATA SEGMENT BASE 15 ... 0 SEGMENT LIMIT 15 ... 0 
DESCRIPTOR 0118 (H) FFFF (H) 

BASE 31 ... 24 G D 0 
LIMIT 

BASE 23 ... 16 
2 0 19.16 1 o 0 1 o 0 1 0 

00 (H) 1 1 F (H) 
00 (H) 

CODE SEGMENT BASE 15 . ; .0 SEGMENT LIMIT 15 ... 0 
DESCRIPTOR 0118 (H) FFFF(H) 

BASE 31 ... 24 G D 
LIMIT 

BASE 23 ... 16 
1 o 0 19.16 1 o 0 1 1 o 1 0 00 (H) 1 1 

F (H) 
00 (H) 

NULL DESCRIPTOR 

0 

31 24 16 15 8 0 

Figure 4-18. GOT Descriptors for Simple System 

4.4.8 Tools for Building Protected 
Systems 

In order to simplify the design ofa protected multi· 
tasking system, Intel provides a tool which allows 
the system designer an easy method of constructing 
the data structures needed for a Protected Mode 
386 Microprocessor system. This tool is the builder 
BLD,386™. BLD-386 letsthe operating system writ­
er specify all of the segment descriptors discussed 
in the previous sections (LDTs, IDTs, GDTs, Gates, 
and TSSs) in a high-level language. 

4-46 

4.5 PAGING 

4.5.1 Paging Concepts 

Paging is another type of memory management use­
fulfor virtual memory multitasking operating sys­
tems. Unlike segmentation which modularizes pro­
grams and data into variable length segments, 
paging divides programs into multiple uniform size 
pages. Pages bear no direct relation to the logical 



inter 386™ MICROPROCESSOR 

structure of a program. While segment selectors can 
be considered the logical "name" of a program 
module or data structure, a page most likely corre­
sponds to only a portion of a module or data struc­
ture. 

By taking advantage of the locality of reference dis­
played by most programs, only a small number of 
pages from each active task need be in memory at 
anyone moment. 

4.5.2 Paging Organization 

4.5.2.1 PAGE MECHANISM 

The 386 Microprocessor uses two levels of tables to 
translate the linear address (from the segmentation 
unit) into a physical address. There are three com­
ponents to the paging mechanism of the 386 Micro­
processor: the page directory, the page tables, and 
the page itself (page frame). All memory-resident el­
ements of the 386 Microprocessor paging mecha­
nism are the same size, namely, 4K bytes. A uniform 
size for all of the elements simplifies memory alloca­
tion and reallocation schemes, since there is no 
problem with memory fragmentation. Figure 4-19 
shows how the paging mechanism works. 

4.5.2.2 PAGE DESCRIPTOR BASE REGISTER 

CR2 is the Page Fault Linear Address register. It 
holds the 32-bit linear address which caused the last 
page fault detected. 

CR3 is the Page Directory Physical Base Address 
Register. It contains the physical starting address of 
the Page Directory. The lower 12 bits of CR3 are 
always zero to ensure that the Page Directory is al­
ways page aligned. Loading it via a MOV CR3," reg 
instruction causes the Page Table Entry cache to be 
flushed,as will a task switch through a TSS which 
changes the value of CRO. (See 4.5.4 Translation 
Lookaside Buffer). 

4.5.2.3 PAGE DIRECTORY 

The Page Directory is 4K bytes long and allows up to 
1024 Page Directory Entries. Each Page Directory 
Entry contains the address of the next level of ta­
bles, the Page Tables and information about the 
page table. The contents of a Page Directory Entry 
are shown in Figure 4-20. The upper 10 bits of the 
linear address (A22-A31) are used as an index to 
sele.ct the correct Page Directory Entry. 

TWO LEVEL PAGING SCHEME 

31 22 12 0 

• DIRECTORY 1 TABLE 1 OFFSET J USER 
LINEAR MEMORY 

ADDRESS 
101 L 12 

10 or 31 
ADDRESS 

386™ CPU 
31 or 31 0 

CRO 1 

t r+ CR1 
PAGE TABLE 

CR2 

CR3 ROOT 
DIRECTORY 

CONTROL REGISTERS 

231630-67 

Figure 4·19. Paging Mechanism 

31 12 11 10 9 8 7 6 5 4 3 2 1 0 

OS U R 
PAGE TABLE ADDRESS 31 .. 12 RESERVED 0 0 D A 0 0 - - P 

S W 

Figure 4·20. Page Directory Entry (POints to Page Table) 

4-47 

I 

I 
I" 
I: 
r" 



386™ MICROPROCESSOR 

31 12 11 10 9 8 7 6 !! 4 3 2 1 0 

as U R 
PAGE FRAME ADDRESS 31 .. 12 RESERVED 0 0 0 A 0 0 - - P 

S W 

Figure 4-21. Page Table Entry (Points to Page) 

4.5.2.4 PAGE TABLES 

Each Page Table is 4K bytes and holds up to 1024 
Page Table Entries. Page Table Entries contain the 
starting address of the page frame and statistical 
information about the page (see Figure 4-21). Ad­
dress bits A12-A21 are used as an index to select 
one of the 1024 Page Table Entries. The 20 upper­
bit page frame address is concatenated with the 
lower 12 bits of the linear address to form the physi­
cal address. Page tables can be shared between 
tasks and swapped to disks. 

4.5.2.5 PAGE DfRECTORY/TABLE ENTRIES 

The lower 12 bits of the Page Table Entries and 
Page Directory Entries contain statistical information 
about pages and page tables respectively. The P 
(Present) bit 0 indicates if a Page Directory or Page 
Table entry can be used in address translation. If 
P = 1 the entry can be used for address translation 
if P = 0 the entry can not be used for translation, 
and all of the other bits are avaiiable for use by the 
software. For example the remaining 31 bits could 
be used to indicate where on the disk the page is 
stored. 

The A (Accessed) bitS, is set by the 386 Microproc­
essor for both types of entries before a read or write 
access occurs to an address covered by the entry. 
The D (Dirty) bit 6 is set to 1 before a write to an 
address covered by that page table entry occurs. 
The 0 bit is undefined for Page Directory Entries. 
When the P, A and 0 bits are updated by the 386 
Microprocessor, the processor generates a Read­
Modify-Write cycle which locks the bus and prevents 
conflicts with other processors or perpherials. Soft­
ware which modifies these bits should use the LOCK 
prefix to ensure the integrity of the page tables in 
multi-master systems. 

The 3 bits marked OS Reserved in Figure 4-20 and 
Figure 4-21 (bits 9-11) are software definable. ass 
are free to use these bits forwhatever purpose they 
wish.· An example use of the OS Reserved bits 
would be to store information about page aging. By 
keeping track of how long a page has been in mem­
ory since being accessed, an operating system can 
implement a page replacement algorithm lil:<e Least 
Recently Used. 

4-48 

The (User/Supervisor) U/S bit 2 and the (Read/ 
Write) R/W bit 1 are used to provide protection attri­
butes for individual pages. 

4.5.3 Page Level Protection 
(R/W, U/S Bits) 

The 386 Microprocessor provides a set of protection 
attributes for paging systems. The paging mecha­
nism distinguishes between two levels of protection: 
User which corresponds to level 3 of the segmenta­
tion based protection, and supervisor which encom­
passes all of the other protection levels (0, 1, 2). 
Programs executing at Level 0, 1 or 2 bypass the 
page protection, although segmentation based pro­
tection is stili enforced by the hardware. 

The UlS and R/W bits are used to provide Us­
er/Supervisor and Read/Write protection for individ­
ual pages or for all pages covered by a Page Table 
Directory Entry. The U/S and R/W bits in the first 
level Page Directory Table apply to all pages de­
scribed by the page table pointed to by that directory 
entry. The U/S and R/W bits in the second level 
Page Table Entry apply only to the page described 
by that entry. The U/S and R/W bits for a given 
page are obtained by taking the most restrictive of 
the U/S and R/W from the Page Directory Table 
Entries and the Page Table Entries and using these 
bits to address the page. 

Example: If the U/S and R/W bits for the Page Di­
rectory entry were 10 and the U/S and R/W bits for 
the Page Table Entry were 01, the access rights for 
the page would be 01, the numerically smalier of the 
two. Table 4-4 shows the affect of the UlS and R/W 
bits on accessing memory. 

Table 4-4. Protection Provided by R/W and U/S 

U/S R/W 
Permitted Permitted Access 

Level 3 Levels 0,1, or 2 

0 0 None Read/Write 
0 1 None Read/Write 
1 0 Read-Only Read/Write 
1 1 Read/Write Read/Write 

However a given segment can be easiiy made read­
only for level 0, 1, or 2 via the use of segmented 
protection mechanisms. (Section 4.4 Protection). 



inter 386™ MICROPROCESSOR 

4.5.4 Translation Lookaslde Buffer 

The 386 Microprocessor paging hardware is de­
signed to support demand paged virtual memory 
systems. However, performance would degrade 
substantially if the processor was required to access 
two levels of tables for every memory reference. To 
solve this problem, the 386 Microprocessor keeps a 
cache of the most recently accessed pages, this 
cache is called the Translation Lookaside Buffer 
(TLB). The TLB is a four-way set associative 32-en­
try page table cache. It automatically keeps the most 
commonly used Page Table Entries in the proces­
sor. The 32-entry TLB coupled with a 4K page size, 
results in coverage of 128K bytes of memory ad­
dresses. For many common multi-tasking systems, 
the TLB will have a hit rate of about 98%. This 
means that the processor will only have to access 
the two-level page structure on 2% of all memory 
references. Figure 4-22 illustrates how the TLB com­
plements the 386 Microprocessor's paging mecha­
nism. 

4.5.5 Paging Operation 

32 ENTRIES 
PHYSICAL 

TRANSLA liON 
""Et.tORY 

~ci~~::s --+- LOOKASIDE 
BUFFER HIT 

MISS 

31 0 

Y -

4 

PAGE PAGE 
DIRECTORY TABLE 

.98% HIT RATE 

231630-68 

Figure 4·22. Translation Lookaslde Buffer 

The paging hardware operates in the following fash­
ion. The paging unit hardware receives a 32-bit lin­
ear address from the segmentation unit. The upper 
20 linear address bits are compared with all 32 en­
tries in the TLB to determine if there is a match. If 
there is a match (i.e. a TLB hit), then the 32~bit phys­
ical address is calculated and will be placed on the 
address bus. 

However, if the page table entry is not in the TLB, 
the 386 Microprocessor will read the appropriate 
Page Directory Entry. If P = 1 on the Page.Directory 
Entry indicating that the page table is in memory, 
then the 386 Microprocessor will read the appro-

4-49 

priate Page Table Entry and set the Access bit. If 
P = 1 on the Page Table Entry indicating that the 
page is in memory, the 386 Microprocessor will up­
date the Access and Dirty bits as needed and fetch 
the operand. The upper 20 bits of the linear address, 
read from the page table, will be stored in the TLB 
for future accesses. However, if P = 0 for either the 
Page Directory Entry or the Page Table E;ntry, then 
the processor will generate a page fault, an Excep­
tion 14. 

The processor will also generate an exception 14, 
page fault, if the memory reference violated the 
page protection attributes (i.e. U/S or R/W) (e.g. try­
ing to write .to a read-only page). CR2 will hold the 
linear address which caused the page fault. If a sec­
ond page fault occurs, while the processor is at­
tempting to enter the service routine for the first, 
then the processor will invoke the page fault (excep­
tion 14) handler a second time, rather than the dou­
ble fault (exception 8) handler. Since Exception 14 is 
classified as a fault,CS: EIP will point to the instruc­
tion causing the page fault. The 1.6-bit error code 
pushed as part of the page fault handler will contain 
status bits which indicate the cause of the page 
fault. 

The 16-bit error code is used by the operating sys­
tem to determine how to handle the page fault Fig­
ure 4-23A shows the format of the page-fault error 
code and the interpretation of the bits. 

NOTE: 
Even though the bits in the error code (U/S, W/R, 
and P) have similar names as the bits in the Page 
Directory/Table Entries, the interpretation of the er­
ror code bits is different. Figure 4-23B indicates 
what type of access caused the page fault. 

15 3 2 1 0 

lulululululululululu[ulululul~~lpl 
Figure 4·23A. Page Fault Error Code Format 

U/S: The UlS bit indicates whether the access 
causing the fault occurred when the processor was 
executing in User Mode (U/S = 1) or in Supervisor 
mode (U/S = 0) 

W/R: The WIR bit indicates whether the access 
causing the fault was a Read (WIR = 0) or a Write 
(W/R = 1) 

P: The P bit indicates whether a page· fault was 
caused by a not-present page (P = 0), or by a page 
level protection violation (P = 1) 

U: UNDEFINED 

I 
I: 
I;. 
1:,1 



386TM MICROPROCESSOR 

UtS WtR Access Type 

0 0 Supervisor· Read 
0 1 Supervisor Write 
1 0 User Reaq 
1 1 User Write 

·Descriptor table access will fault WIth U/S - 0, even If the program 
Is executing at level 3. 

Figure 4-238. Type of Access 
Causing Page Fault 

4.5.6 Operating Sy'stem 
. Responsibilities 

The 386 Microprocessor takes care of the page ad· 
dress translation process, relieving the burden from 
an .operating system in a demand-paged s¥stem. 
The operating system is responsible for setting· up 
the initial page tables, and handling any page faults. 
The operating system also is. required to invalidate 
(Le. flush) theTLB when any changes are made to 
any of the page table entries. The operating system 
must reload CR3 to cause the TLB to be flushed. 

Setting up the tables is simply a matter of loading 
CR3 with the. address of the Page Directory, and 
allocating space for. the Page Directory and the 
Page Tables. The primary responsibility of th~ oper­
ating system is to implement a swapping policy and 
handle all of the page faults. 

A final concern of the operating system is to ensure 
that the TLB cache. matches the information .in the 
Paging table!;~ In particular, any time. the operating 
system sets the P present bit of page table en~ry to 
zero, the TLB must be flushed .. Operating systems 
may want to take advantage of the fact that CR3 is 
stored as part of a TSS, to give every task or group 
of tasks its own set of page tables. 

4.6 VIRTUAL 8086 ENVIRONMENT 

4.6.1 Executing 8086 Programs. 

The 386 Microprocessor allows the execution of 
8086 application programs in both Real Mode and in 
the Virtual 8086 Mode (Virtual Mode). Of the two 
methods, Virtual 8086 Mode offers the system de­
signer the most flexibility. The Vi~ual.8086 M?de a.l­
lows the execution of 8086 applications, while still 

. allowing the system deSigner to take full advantage 
of.the 386 Microprocessor protecti.on mechanism. In 
particular, the 386 Microprocassorallows.the simul­
taneous execution of 8086 operating systems and 
its applications, and a 386 Microprocessor operating 
system and both 80286 and 386 Micropre>cessor 

application~.Thus,in a multi-user 386 Microproces­
sor computer, one person could be running an MS­
DOS spreadsheet, anotner person using MS-DOS, 

. and a third person could be running multiple Unix 
utilities and applications. Each person in this scenar­
io would believe that he had the computer complete­
ly to himself. Figure 4-24 illustrates this concept. 

4-50 

4.6.2 Virtual 8086 Mode Addressing 
Mechanism 

One of the major differences between 386 Micro­
processor Real. and Protected modes is how the 
segment selectors are interpreted. When the proc­
essor is executing in Virtual 8086 Mode the segment 
registers are used in an identical fashion to Real 
Mode. The contents of the segment register is shift­
ed left 4 bits and added to the offset to· form the 
segment base linear address. 

The 386 Microprocessor allows the operating sys­
tem to specify which programs use the 8086 style 
address mechanism, and which programs use Pro­
tected Mode addressing, ona per tas~· basis. 
Through the use of paging, the one megabyte ad­
dress space of the Virtual Mode task can be mapped 
to anywhere in the 4 gigabyte linear address space 
of the 386 Microprocessor. Like Real Mode, Virtual 
Mode effective addresses (i.e., segment offsets) that 
exceed 64K byte will cause an excep.tion 13. H.owev­
er these restrictions should not prove to be Impor­
ta~t, because most tasks running in Virtual 8086 
Mode will simply be existing 8086 application pro­
grams. 

4.6.3 Paging In Virtual Mode 

The paging hardware allows the concurrent running 
of multiple Virtual Mode tasks, and provides protec­
tion and operating system isolation. Although it is 
not strictly necessary to have the paging hardware 
enabled to run Virtual Mode tasks, it is needed in 
order to run multiple Virtual Mode tasks or to relo­
cate the address space of a Virtual Mode task to 
physical address space greater than one megabyte. 

The paging hardware allows the 20-bit linear. ad­
dress produced by a Virtual· Mode program to be 
divided into up to 256 pages. Each one of the pages 
can be located anywhere within the maximum 4 giga­
byte physical address space of the 386 Microproc­
essor. In addition, since CR3 (the Page Directory 
Base Register) is loaded by a task switch,each Vir­
tual Mode task can use a different mapping scheme 
to maP pages to different physical locations. Finally, 
the paging hardware allows the sharin~ of the 8086 
operating system code between multiple 8086. ap-



inter 386™ MICROPROCESSOR 

VIRTUAL MODE 
8086 TASK 

PAGE DIRECTORY 
ROOT 

VIRTUAL MODE 
8086 TASK 

EMPTY 

TASK 1 PAGE 
TABLE 

PAGE DIRECTORY 
TASK 1 

PHYSICAL 
MEMORY 
~~~~ 02000000(H) 

OOOOOOOO(H)

• -TASK 1 • 8086 OS
MEMORY MEMORY

I777J TASK 2 ~ 386n.t CPU OS
~ MEMORY ~MEMORY

231630-69

Figure 4-24. Virtual 8086 Environment Memory Management

plications. Figure 4-24 shows how the 386 Micro­
processor paging hardware enables multiple 8086
programs to run under a virtual- memory demand
paged system.

4.6.4 Protection and 110 Permission
Bitmap

All Virtual 8086 Mode programs execute at privilege
level 3, the level of least privilege. As such, Virtual
8086 Mode programs are subject to all of the protec­
tion checks defined in Protected Mode. (This is dif-

. ferent from Real Mode which implicitly is executing
at privilege _level 0, the level of greatest privilege.)
Thus, an attempt to execute a privileged instruction
when in Virtual 8086 Mode will cause an exception
13 fault.

The following are privileged instructions, which may
be executed only at Privilege Level O. Therefore,at­
tempting to execute these instructions in Virtual
8086 Mode (or anytime CPL > 0) causes an excep­
tion 13 fault:

LIDT;
LGDT;

MOV DRn,reg;
MOV TRn,reg;

MOV reg,DRn;
MOV reg, TRn;

4-51

LMSW;
CLTS;
HLT;

MOV CRn, reg; MOV reg,CRn.

Several instructions, particularly those applying to
the _ multitasking model and protection model, are
available only in Protected Mode. Therefore, at­
tempting to execute the following instructions in
Real Mode or in Virtual 8086 Mode generates an
exception 6 fault:

LTR;
LLDT;
LAR;
LSL;
ARPL.

STR;
SLDT;
VERR;
VERW;

The instructions which are IOPL-sensitive in Protect­
ed Mode are;

IN; STI;
OUT; CLI
INS;
OUTS;
REP INS;
REP OUTS;

inter 386TM MICROPROCESSOR

In Virtual 8086 Mode, a slightly different set of in­
structions are made 10PL-sensitive. The following in­
structions are 10PL-sensitive in Virtual .8086 Mode:

INT n; STI;
PUSHF; eLl;
POPF; lRET

The PUSHF, POPF, and IRET instructions are 10PL­
sensitive in Virtual 8086 Mode only. This' provision
allows the IF flag (interrupt enable flag) to be virtual­
ized to the Virtual 8086 Mode program. The INT n
software interrupt instruction is also 10PL~sensitive
in Virtual 8086 Mode. Note, however, that the INT 3
(opcode OCCH), INTO, and BOUND instructions are
not 10PL-sensitive in Virtual 8086 mode (they aren't
10PL sensitive in Protected Mode either).

Note that the I/O instructio.ns (IN, OUT, INS, OUTS,
REP INS, and REP OUTS) are not 10PL-sensitive in
Virtual 8086 mode. Rather, the I/O instructions be­
come automatically sensitive to the I/O Permission
Bitmap contained in the 386 Microprocessol: Task
State Segment. The I/O Permission Bitmap, auto~­
matically used by the 386 Microprocessor in Virtual
808S Mode, is illustrated by Agure.s 4.15a and 4-
15b.

The I/O Permission Bitmap can be viewed as a 0-
.64 Kbit bit string, which begins in, memory at offset
BiLMap_Offset in the current TSS. BiLMap_
Offset must be :s: DFFFH so the entire bit map and
the byte FFH which follows the bit map are all at
offsets :s: FFFFH from the TSS base. The 16-bit
pointer BiLMap_Offset (15:0) is found in the word
beginning at offset 66H (102 decimal) from the TSS
base, as shown in Figure 4-1-5a.

Each bit in the I/O Permission Bitmap corresponds
to a single byte-wide I/O port, as illustrated in Figure
4-15a. If a bit is 0, I/O to the corresponding byte­
wide pon can. OCCur without generating an excep­
tion. Otherwise the I/O instruction causes an excep­
tion 13 faul.t. Since every byte-wide I/O port must be
protectable, all bits corresponding to a word-wide or
dword-wide port must be 0 for the word-wide or
dword-wide I/O to be permitted. If all the referenced
bits are 0, the I/O will be allowed .. lf any referenced
bits are 1, the attempted I/O will cause an exception
13 fault. '

Due to the use of a pointer to the base of the I/O
Permission Bitmap;' the bitmap may bef located any­
where within the TSS, or maybe ignored completely
by pointing the BiLMap_Offset (15:0) beyond the
limit of the TSS segment. In the. same manner,only
a small portion of the 64K I/O space need have an
aSSOCiated map bit, by adjusting the TSS limit to
truncate the bitmap. This eliminates the commitment
of 8K of memory when a complete bitmap is not
requited, while allowing the fully general case if
desired;

EXAMPLE OF BITMAP FOR I/O PORTS 0-255:·
Setting the TSS limit to IbiLMap_Offset + 31
+ 1""J [00 see note belowl will allow a 32-byte bit­
map for the I/O ports #0-255, plus a terminator
byte of all 1's [0. see note belowl. This allows the
I/O bitmap to control I/O Permission to I/O port 0-
255 while causing an exception 13 fault on attempt­
. ed I/O. to any I/O port 80256 through 65,565.

··IMPORTANT IMPLEMENTATION NOTE: Beyond
the las.t byte of I/O mapping information in the I/O
Permission Bitmap must be a byte containing all 1's.
The byte of all 1's must be within the limit of the 386
Microprocessor TSS segment (see Figure 4-15a).

4.6.5 Interrupt Handling

In order to fully support the emulation of an 808S
machine, interrupts in Virtual 808S. Mode are han­
dled in a unique fashion. When running in Virtual
Mode all interrupts and exceptions involve a privi­
lege change back to the host 386 Microprocessor
operating system. The 386 Microprocessor operat­
ing system determines if the interrupt comes from a
Protected Mode application or from a Virtual Mode
program by examining the VM bit in the EFLAGS
image stored on the stack.

When a Virtual Mode program is interrupted and ex­
ecution passes to the interrupt routine at level 0, the
VM bit is cleared. However, the VM bit is still set in
the EFLAG image on the stack.

The.386 Microprocessor operating system', in turn
handles the exception or interrupt and then returns
control to the 8086 program. The 386 Microproces­
sor operating system may choose to let the 8086
operating system handle the interrupt or it may emu­
late the function of the interrupt handler. For exam­
ple, many 8086 operating system calls are accessed
by PUSHing parameters on the stack, and.then exe­
cuting an INT n instruction. If the 10PL is set to 0
then. all INT n instructions will be intercepted by the
386 Microprocessor operating system. The 386 Mi­
croprocessor operating. system could emulate the
8086 operating System's call. Figure 4-25. shows
how the 386 Microprocessor operating system could
intercept an 808S.operating system's call to "Open
a File" ..

A 386 Microprocessor operating system can provide
a Virtual 808S Environment which is totally transpar­
ent to the application software via intercepting and
then emulating 8086 operating system's calls, and
intercepting IN and OUT instruction~.

4-52

386TM MICROPROCESSOR

4.6.6 Entering and Leaving Virtual
8086 Mode

Yirtual ~086 mode is entered by executing an IRET
Instruction (at CPL= 0), or Task Switch (at any CPL)
to a 386 Microprocessor task whose 386 Microproc­
essor TSS has a FLAGS image containing a 1 in the
VM bit position while the processor is executing in
Protected Mode. That is, one way to enter Virtual
8086 mode is to switch to a task with a 386 Micro­
processor TSS that has a 1 in the VM bit in the
EFLAGS image. The other way is to execute a 32-bit
IRET instruction at privilege level 0, where the stack
has a 1 in the VM bit in the EFLAGS image. POPF
does not affect the VM bit, even if the processor is in
Protected Mode or level 0, and so cannot be used to
enter Virtual 8086 Mode. PUSHF always pushes a 0
in the VM bit, even if the processor is in Virtual 8086
~ode, so that a program cannot tell if it is executing
In REAL mode, or in Virtual 8086 mode.

The VM bit can be set by executing an IRET instruc­
tion only at privilege level 0, or by any instruction or
Interrupt which causes a task switch in Protected
Mode (with VM = 1 in the new FLAGS image), and
c~n be cleared only by an interrupt or exception in
Virtual 8086 Mode. IRET and POPF instructions exe­
cuted in REAL mode or Virtual 8086 mode will not
change the value in the VM bit.

The transition out of virtual 8086 mode to 386 Micro­
processor protected mode occurs only on receipt of
an interrupt or exception (such as due to a sensitive
instruction). In Virtual 8086 mode, all interrupts and
exceptions vector through the protected mode lOT,
and enter an interrupt handler in protected 386 Mi­
croprocessor mode. That is, as part of interrupt pro­
cessing, the VM bit is cleared.

Because the matching IRET must occur from level 0
if an Interrupt or Trap Gate is used to field an inter~
rupt or exception out of Virtual 8086 mode, the Gate
must perform an inter-level interrupt only to level O.
Interrupt or Trap Gates through conforming seg­
ments, or through segments with OPL> 0, will raise a
GP fault with the CS selector as the error code.

4.6.6.1 TASK SWITCHES TO/FROM VIRTUAL
8086 MODE

Tasks which can execute in virtual 8086 mode must
be described by a TSS with the new 386 Microproc­
essor format (TYPE 9 or 11 descriptor).

A task switch out of virtual 8086 mode will operate
exactly the same as any other task switch out of a
.task with a 386 Microprocessor TSS. All of the pro­
wammer visible. state, including the FLAGS register
With the VM bit set to 1, is stored in the TSS.

4-53

The segment registers in the TSS will contain 8086
segment base values rather than selectors.

A task switch into a task described by a 386 Micro­
processor TSS will have an additional check to de­
termine if the incoming task should be resumed in
virtual 8086 mode. Tasks described by 80286 format
TSSs cannot be resumed in virtual 8086 mode, so
no check is required there (the FLAGS image in
80286 format TSS has only the low order 16 FLAGS
bits). Before loading the segment register images
~rom a 386 Microprocessor TSS, the FLAGS image
IS loaded, so that the segment registers are loaded
from the TSS image as 8086 segment base values.
The task is now ready to resume in virtual 8086 exe­
cution mode.

4.6.6.2 TRANSITIONS THROUGH TRAP AND
INTERRUPT GATES, AND IRET

A task switch is one way to enter or exit virtual 8086
mode. The other method is to exit through a Trap or
Interrupt gate, as part of handling an interrupt, and
to enter as part of executing an IRET instruction.
The transition out must use a 386 Microprocessor
Trap Gate (Type 14), or 386 Microprocessor Inter­
rupt Gate (Type 15), which must point to a non-con­
forming level 0 segment (OPL = 0) in order to permit
the trap handler to IRET back to the Virtual 8086
program. The Gate must point to a non-conforming
level 0 segment to perform a level switch to level 0
so that the matching IRET can change the VM bit.
386 Microprocessor gates must be used, since
80286 gates save only the low 16 bits of the FLAGS
register, so that the VM bit will not be saved on tran­
sitions through the 80286 gates. Also, the 16-bit
IRET (presumably) used to terminate the 8028.6 in­
terrupt handler will pop only the lower 16 bits from
FLAGS, and will not affect· the· VM bit. The action
take~ for. a 386 Microprocessor Trap or Interrupt
~at~ If an Interrupt occurs while the task is executing
In Virtual 8086 mode is given by the following se­
quence.
(1) Save the FLAGS register in a temp to push later.

Turn off the VM and TF bits, and if the interrupt is
serviced by an Interrupt Gate, turn off IF also.

(2) Interrupt and Trap gates must perform a level
switch from 3 (where the VM86 program exe­
cutes) to level 0 (so IRET can return). This pro­
cess involves a stack switch to the stack given in
the TSS for privilege level O. Save the Virtual
8086 Mode SS and ESP registers to push in a
later step. The segment register load of SS will
be done as a Protected Mode segment load
since the VM bit was turned off above. '

(3) Push the 8086 segment register values onto the
new stack, in the order: GS, FS, OS, ES. These
are pushed as 32-bit quantities, with undefined
values in the upper 16 bits. Then load these 4
registers with null selectors (0).

1\

~
':

intJ 386™MIC80PROCESSOR

8086 Application makes "Open FileCaJI" -+ causes
General Protection Fault (Arrow #1)
Virtual8Q86 Monitor intercepts cali. Calis 386"" CPU OS (Arrow #2)
386™ CPU' OS opens file returns control to 8086 OS (Arrow #'3)
·8086 OS returns control to application. (Arrow #4)
Transparent to Application

231630-70

Figure 4-25. Virtual 8086 Envlronmerit Interrupt and Call Handling

(4) Push the old SOS6 stack pointer onto the, new
stack by pushing the SS register (as 32-bits, high
bits undefined), then pushing the 32-bit ESP reg­
i~ter saved, a.bove.

(5) Push the 32"bit FLAGS register saved in step'1.

(6) Push the old 80S6 instruction pointer' ohto the
new stack by pushing the CS register (as 32-bits,
high bits undefined), then pushing the 32-pit EIP
register. . '.

(7) Load up the new CS:EIP value from ,the interrupt
gate, and begin execution of the interrupt routine
,in protected 386. Microprocessor mode.. .

Tne transition out of virtual SOS6 mode performs a
level change and stack switch, in addition to chang­
ing back 'to protected ,mode. In addition, all onhe
SOS6 segment register images are stored on the
stack (behind the S$:ESPirnage), and then loaded
with null (0) selectors before entering the interrupt
handler. This will permit the handler to safely save
and restore the DS, ES, FS;, and. GS registers as
S0286 selectors. This is needed so that interrupt
handlers which don't care about the· mode of the
interrupted program can. use the.' same Prolog' and
epilog code for state saving (i.e .. push all registers in
prolog, pop all in epilog) regardless of whether or not
a "native" mode or Virtual SOS6 mode program was
interrupted. " Restoring null~electors to these regisc

tersbefore executing the IRET will not cause Ii trap,
ihthe interrupt handler, Interrupt routines which ex­
pect values in the segment ~egisters, orre.turn val­
ues in segment registers will have to olJtain/return
values from the SOS6 register' images pushed onto

4"54

the new stack. They will need to know the mode of
the interrupted program' in order to know where to
find/return segment registers, and also to know how
to interpret segment register values; ,

The IRET instruction will perform the inverse of the
above sequence. Only the extended 3S6 Microproc­
essors IRET instruction (operand size=32) can be
used, and must be executedat'leveJ 0 to change the
VM bit to 1.

(1) If the NT bit in the FLAGs register is on, an inter­
task return is performed. The current state is
stored in the current TSS, and the link field in the
current TSS is used to locate the TSS for the
interrupted 'task which is to be resumed.

Otherwise, continue with the following sequence;

(2) Read the FLAGS image from SS:S[ESP] into the
FLAGS register.' This will set VMto the value ac-'
tive in the interrupted routine.

(3) Pop off. the instriJction .pointer CS:EIP.EIP is
popped first, then a 32-bit word is popped which
contains the CS value in the lower 16 bits. If
VM = 0, this CS load is done as a protected
mode segment load. 'If VM =1, this will be done
as an SOS6 segment load.

(4) Increment the ESP register by 4 to bypass' the
FLAGS image which was "popped" in step 1.

(5) If VM,,:, 1" load segment registers ES, OS, FS,
. and QS from memory locations SS:[ESP-tS],
,S'S:[ESP+ 12], . 'SS:[ESP+ 16), and
SS:[ESP + 20], respectively, where the new val-

infef 386TM MICROPROCESSOR

ue of ESP stored in step 4 is used. Since VM = 1,
these are done as 8086 segment register loads.

, Else if VM = 0, check that the selectors in ES,
DS, FS, and GS are valid in the interrupted rou­
tine. Null out invalid selectors to trap if an at­
tempt is made to access through them.

(6) If (RPL(CS) > CPL), pop the stack pointer
SS:ESP from the stack. The ESP register is
popped first, followed by 32-bits containing SS in
the lower 16 bits. If VM = 0, SS is loaded as a
protected mode segment register load. If VM = 1,
an 8086 segment register load is used.

(7) Resume execution of the interrupted routine. The
VM bit in the FLAGS register (restored from the
interrupt routine's stack image in step 1) deter­
mines whether the processor resumes the inter­
rupted routine in Protected mode of Virtual 8086
mode.

5. FUNCTIONAL DATA

5.1 INTRODUCTION
The 386 Microprocessor features a straightforward
functional interface to the external hardware. The
386 Microprocessor has separate, parallel buses for
data and address. The data bus is 32-bits in width,
and bidirectional. The address bus outputs 32-bit ad­
dress values in the most directly usable form for the
high-speed local bus: 4 individual byte enable sig­
nals, and the 30 upper-order bits as a binary value.
The data and address buses are interpreted and
controlled with their associated control signals.

A dynamic data bus sizing feature allows the proc­
essor to handle a mix of 32- and 16-bit external bus­
es on a cycle-by-cycle basis (see 5.3.4 Data Bus
Sizing). If 16-bit bus size is selected, the 386 Micro­
processor automatically makes any adjustment
needed, even performing another 16-bit bus cycle to
complete the transfer if that is necessary. 8-bit pe­
ripheral devices maybe connected to 32-bit or 16-bit
buses with no loss of performance. A new address
pipellnlng option is provided and applies to 32-bit
and 16-bit buses for substantially improved memory
utilization, especially for the most heavily used mem­
ory resources.

The address pipelining option, when selected, typ­
ically allows a" given memory interface to operate
with one less 'Wait state than would otherwise be
required (see 5.4.2 Address Pipelining). The pipe­
lined bus is also 'Well suited to interleaved memory
designs. For 16 MHz interleaved memory designs
with· 100 ns access time DRAMs, zero wait states
can be achieved when pipelined addressing is se­
lected. When address pipelining is requested by the
external hardware, the 386 Microprocessor will

4-55

output the address and bus cycle definition of the
next bus cycle (if it is internally available) even while
waiting for the current cycle to be acknowledged.

Non-pipelined address timing, however, is ideal for
external cache designs, since the cache memory will
typically be fast enough to allow non-pipelined cy­
cles. For maximum design flexibility, the address
pipelining option is selectable on a cycle-by-cycle
basis.

The processor's bus cycle is the basic mechanism
for information transfer, either from system to proc­
essor, or from processor to system. 386 Microproc­
essor bus cycles perform data transfer in a minimum
of only two clock periods. On a 32-bit data bus, the
maximum 386 Microprocessor transfer bandwidth at
16 MHz is therefore 32 Mbytes/sec, at 20 MHz
bandwidth is 40 MBytes/sec and at 25 MHz
bandwidth is 50 Mbytes/sec. Any bus cycle will be
extended for more than two clock periods, however,
if external hardware withholds acknowledgement of
the cycle. At the appropriate time, acknowledge­
ment is signalled by asserting the 386 Microproces­
sor READY # input.

The 386 Microprocessor can relinquish control of its
local buses to allow mastership by other devices,
such as direct memory access channels. When re­
linquished, HLDA is the only output pin driven by the
386 Microprocessor, providing near-complete isola­
tion of the processor from its system. The near-com­
plete isolation characteristic is ideal when driving the
system from test equipment, and in fault-tolerant ap­
plications.

Functional data covered in this chapter describes
the processor's hardware interface. First, the set of
signals available at the processor pins is described
(see 5.2 Signal Description). Following that are the
signal waveforms occurring during bus cycles (see
5.3 Bus Transfer Mechanism, 5.4 Bus Functional
Description and 5.5 Other Functional Descrip­
tions).

5.2 SIGNAL DESCRIPTION

5.2.1 Introduction

Ahead is a brief description of the 386 Microproces­
sor input and output signals arranged by functional
groups. Note the # symbol at the end Of a signal
name indicates the active, or asserted, . state occurs
when the signal is at a low Voltage. When no # is
present after the signal name, the signal is asserted
when at the high voltage level.

Example signal: MIIO# - High voltage indicates
Memory selected

- Low voltage indicates
I/O selected

386TM MICROPROCESSOR

2X CLOCK (

32-BIT[OO_D31
DATA

BUS[CONTROL

BUS{
ARBITRATION

INTERRUPTS [

CLK2

ATA BUS
v

ADS#
NA# 386'"

BSla# • Microproc8S11or

READY#

HOLD
HLDA

INTR.
NMI

RESET

ADDRESS BUS A2-A31
BEll
BE21
BEll
BEO#

]
32-BIT

~~LES ADDRESS .

W/R#
D/C#
1A/1O#
LOCK#

],BUS CYCLE DEFINmON

PEREQ
BUSY,

ERROR,
} COPROCESSOR SIGNALLING

Vee
GND } POWER CONNECTIONS

231630-1

Figure 5-1. Functional Signal Groups

PROCESSOR CLOCK
PERIOD

PROCESSOR CLOCK
PERIOD

CLK2 PERIOD CLK2 PERIOD CLK2 PERIOD CLK2 PERIOD .' .2 .' .2
INTERNAL 386'"

MICROPROCESSOR CLOCK [
(HALF THE FREQUENCY

. OF CLK2)
40 ns MIN} 25 MHz

(25 MHz MAX) 386'" CPU

SOns MIN120WHz
(20 MHz MAX)] 386'" CPU

62 ns MIN 116 MHz
(16 101Hz IoIAXJj 386'" CPU

231~0-2

Figure 5-2. CLK2 Signal and Internal Processor Clock

The signal descriptions sometimes refer to AC tim·
ing parameters, such as "t25 Reset Setup Time" and
"t26 Reset Hold Time." The values of these parame·
ters can be found in Tables 7-4 and 7-5.

5.2.2 CloCk(CLK2)

CLK2 provides the fundamental timing for the 386
Microprocessor. It is divided by two internally to gen·
erate the internal processor clo.ck usEJd for instn.ic·
tion execution. The internal clock is comprised of
two phases, "phase one" and "phase two." Each
CLK2 period is a phase of the internal clock. Figure
5-2 illustrates the relationship. If desirec/, the phase
of the internal. processor clock cal') be synchronized
to a known phase by ensuring the RESET signal fall·
ing edge. meets its applicable setup and hold times,
t25 and t26.

5~2.3 Data Bus (DO thl'o'ugh'D31)

These three-state bidirectional signals provide the
general purpose data path between the 386 Mi·

croprocessor arid other devices. Data bus inputs
and outputs indicate "1" when HIGH. The data bus
can transfer data on 32- and 16-bit buses using a
data bus sizing feature controlled by the 8516# in·
put. See section 5.2.6 Bus Contol. Data bus reads
require that read data setup and hold times t21 and
t22 be met for correct· operation. During any write
operation (and during halt cycles and shutdown cy·
cles), the 386 Microprocessor always drives all 32
signals of the data bus even if the current bus size is
16-bits.

5.2.4 Address Bus (BEO # through
BE3#, A2 through A31)

These three·state outputs provide physical memory
addresses or I/O port addresses. The· address bus
is capable of addressing 4 gigabytes of. physical
memory space (OOOOOOOOH. through FFFFFFFFH),
and 64 kilobytes of I/O address space (OOOOOOOOH
through OOOOFFFFH) for programmed I/O. I/O

4-56·

386™ MICROPROCESSOR

transfers automatically generated for 386 Microproc­
essor-to-coprocessor communication, use 1/0 ad­
dresses 800000F8H through 800000FFH, so A31
HIGH in conjunction with M/IO# LOW allows simple
generation of the coprocessor select signal.

The Byte Enable outputs, BEO#-BE3#, directly in­
dicate which bytes of the 32-bit data bus are in­
volved with the current transfer. This is most conve­
nient for external hardware.

BEO# applies to 00-07
BE1 # applies to 08~015
BE2# applies to 016-023
BE3# applies to 024-031

The number of Byte Enables asserted indicates the
physical size of the operand being transferred (1, 2,
3, or 4 bytes). Refer to section 5.3.6 Operand AlIgn-
ment. '

When a memory write cycle or 1/0 write cycle is in
progress, and the operand being transferred occu­
pies only the upper 16 bits of the data bus (016-
031), duplicate data is simultaneously presented on
the corresponding lower 16-bits of the data bus
(00 .. 015). This duplication is performed for optimum
write performance on 16-bit buses. The pattern of
write data duplication is a function of the Byte En­
ables asserted during the write cycle. Table,5-1 lists
the write data present on 00-031, as a function of
the asserted Byte Enable outputs BEO#-BE3#.

5.2~5 Bus Cycle Definition Signals
(W/R#, D/C#, MIIO#, LOCK#)

These three-state outputs define the type of bus cy­
cle being performed. W/R# distinguishes between
write and read cycles. O/C# distinguishes between
data and control cycles. M/IO# distinguishes be­
tween memory and 1/0 cycles. LOCK# distin­
guishes between locked and unlocked bus cycles.

The primary bus cycle definition signals are W IR # ,
O/C# and M/IO#, since these are the signals driv­
en valid as the ADS # (Address Status output) is
driven asserted. The LOCK # is driven valid at the
same time as the first locked bus cycle begins,
which due to address pipelining, could be later than
AOS# is driven asserted. See 5.4.3.4 Plpellned Ad­
dress. The LOCK # is negated when the ,READY #
input terminates the last bus cycle which was
locked.

Exact bus cycle definitions, as a function of W/R#,
O/C#, and MIIIO#, are given in Table 5-2. Note
one combination of W/R#, O/C# and M/IO# is
never given when AOS# is asserted (however, that
combination, which is listed as "does not occur," will
occur during Idle bus states when AOS# is not as­
serted). If MIIO#, O/C#, and W/R# are qualified
by AOS# asserted, then a decoding scheme may
use the non-occurring combination to its best advan­
tage.

Table 5-1. Write Data Duplication as a Function of BEO# -BE3#

386™ CPU Byte Enables 386TM CPU Write Data Automatic

BE3# BE2# BE1# BEO# 024-031 016-023 08-015 00-07 Duplication?

High High High Low undef undef undef A No
High High Low t:tigh undef undef B undef No
High Low High High undef C ,undef C Yes
Low High High High '0 undef 0 undef Yes

High High Low Low undef undef B A No
High Low Low High undef C B undef No
Low Low High High D C 0 C Yes

High Low Low Low undef C B A No
Low Low Low High D C B undef No

Low Low Low Low 0 C B A No

Key:
o = logical write data d24-d31
C = logical write data d16-d23
B :; logical write data d8-d15
A= logical write data dO-d7

4-57

"
" t

386™ MICROPROCESSOR

Table 5-2 Bus Cycle Definition

M/IO# D/C# W/R# Bus Cycle Type Locked?

Low Low Low INTERRUPT ACKNOWLEDGE Yes

Low Low High does not occur -
Low High Low I/O DATA READ No

Low High High I/O DATA WRITE No

High Low Low MEMORY CODE READ No

High Low High HALT: SHUTDOWN: No
Address = 2 Address = 0

(BEO# High (BEO# Low
BE1# High BE1 # High
BE2# Low BE2# High
BE3# High BE3# High
A2-A31 Low) A2-A31 Low)

High High Low MEMORY DATA READ Some Cycles

High High High MEMORY DATA WRITE Some Cycles

5.2.6 Bus Control Signals

5.2.6.1 INTRODUCTION

The following signals allow the processor to indicate
when a bus cycle has beg~n, and allow other system
hardware to control address pipelining, data bus
width and bus cycle termination.

5.2.6.2 ADDRESS STATUS (ADS#)

This three~state output indicates that a valid bus cy­
cle definition, and address (W/R#, D/C#, M/IO#,
BEO#-BE3#, and A2-A31) is being driven at the
386 Microprocessor pins. It is asserted during T1
and T2P bus states (see 5.4.3.2 Non-pipelined Ad­
dress and 5.4.3.4 Pipelined Address for additional
information on bus states).

5.2.6.3 TRANSFER ACKNOWLEDGE (READY#)

This input indicates the current bus cycle is com­
plete, and the active bytes indicated by BEO#­
BE3 # and BS16 # are accepted or provided. When
READY # is sampled asserted during a read cycle or
interrupt acknowledge cycle, the 386 Microproces·
sor latches the input data and terminates the cycle.
When READY # is sampled asserted during a write
cycle, the processor terminates the bus cycle.

READY # is ignored on the first bus state of all bus
cycles, and sampled each bus state thereafter until
asserted. READY# must eventually be asserted to
acknowledge every bus cycle, including Halt Indica­
tion and Shutdown Indication bus cycles. When be­
ing sampled, READY must always meet setup and

4-58

hold times t19 and t20 for correct operation. See all
sections of 5.4 Bus Functional Description.

5.2.6.4 NEXT ADDRESS REQUEST (NA #)

This is used to request address pipelining. This input
indicates the system' is prepared to accept new val­
uesof BEO#-BE3#, A2-A31, W/R#, D/C# and
M/IO# from the 386 Microprocessor even if the end
of the current cycle is not· being acknowledged on
READY #. If this input is asserted when sampled,
the next address is driven onto the bus, provided the
next bus request is already pending internally. See
5.4.2 Address Pipelining and 5.4.3 Read and
Write Cycles.

5.2.6.5 BUS SIZE 16 (BS16#)

The BS16# feature allows the 386 Microprocessor
to directly connect to 32-bit and 16-bit data buses.
Asserting this input constrains the current bus cycle
to use only the lower-order half (00-015) of the
data bus, corresponding to BEO# and BE1 #. As­
serting BS16# has no additional effect if only BEO#
and/or BE1 # are asserted in the current cycle.
However, during. bus, cycles asserting BE2# or
BE3 # , asserting BS 16 # will automatically cause the
386 Microprocessor to make adjustments for correct
transfer of the upper bytes(s) using only physical
data signals 00-015.

If the operand spans both' halves of the data bus
and BS16# is asserted, the 386, Microprocessor will
automatically perform another' 16-bit bus cycle.
BS16# must always meet setup and hold times t17
and t18 for correct operation.

386TM MICROPROCESSOR

386 Microprocessor I/O cycles are automatically
generated for coprocessor communication. Since
the 386 Microprocessor must transfer 32-bit quanti­
ties between itself and the 80387, BS16# must not
be asserted during 80387 communication cycles.

5.2.7 Bus Arbitration Signals

5.2.7.1 INTRODUCTION

This section describes the mechanism by which the
processor relinquishes control of its local buses
when requested by another bus master device. See
5.5.1 Entering and Exiting Hold Acknowledge for
additional information.

5.2.7.2 BUS HOLD REQUEST (HOLD)

This input indicates some device other than the 386
Microprocessor requires bus mastership.

HOLD must remain as~rted as long as any other
device is a local bus master. HOLD is not recognized
while RESET is asserted. If RESET is asserted while
HOLD is asserted, RESET has priority and places
the bus into an idle state, rather than the hold ac­
knowledge (high impedance) state.

HOLD is level-sensitive and is a synchronous input.
HOLD signals must .always meet setup and hold
times t23 and t24 for correct operation.

5.2.7.3 BUS HOLD ACKNOWLEDGE (HLDA)

Assertion of this' output indicates the 386 Microproc­
essor has relinquished control of its local bus in re­
sponse to HOLD asserted,and is in the bus Hold
Acknowledge state.

The Hold Acknowledge state offers near-complete
signal isolation. In tlTe Hold Acknowledge state,
HLDA is the only Signal being driven by the 386 Mi­
croprocessor. The other output signals or bidirec­
tional signals (DO-D31,BEO#-BE3#, A2-A31,
W/R#, D/C#, M/IO#, LOCK# and ADS#) are in a
high-impedance state so the requesting bus master
may control them. Pullup resistors may be desired
on several signals to avoid spurious activity 'e'\(hen no
bus master is driving them. See 7.2.3 Resistor Rec­
ommendations. Also, one rising edge occuring on
the NMI input during Hold Acknowledge is remem­
bered, for processing after the HOLD, input is negat­
ed.

In addition to the. normal usage of Hold Acknowl­
edge with DMA. controllers or master peripherals,

4-59

the near-complete isolation haspa:rticular attractive­
ness during system test when test equipment drives ,
the system, and in hardware-fault-tolerant applica­
tions.

5.2.8 Copro,cessor Interface Signals

5.2.8.1 INTRODUCTION

In the following sections are descriptions of signals
dedicated to the numeric coprocessor interface. In
addition to the data bus, address bus, and bus cycle
definition Signals, these following signals control
communication between the 386 Microprocessor
and its 80387 processor extension.

5.2.8.2 COPROCESSOR REQUEST (PEREQ)

When asserted, this input signal indicates a coproc­
essor request for a data operand to be transferred
to/from. memory by the 386 Microprocessor. In re­
sponse, the 386 Microprocessor transfers informa-,
tion between the coproces$or .and memory. Be­
cause the 386 Microprocessor has internally. stored
the coprocessor opcode being executed, it performs
the requested data transfer with the correct direction
and memory address. '

PEREO is level-sensitive aod is allowed to be asyn­
chronous to the CLK2 signal.

5.2.8.3 COPROCESSOR BUSY (BUSY #)

When asserted, this input indicates the coprocessor
is still executing an instruction, and is not yet able to
accept another. When the 386 Microprocessor en­
counters any coprocessor instructionwhibhoper­
ates on the numeric stack (e.g. load, pop, or arith­
metic operation), or the WAIT instruction, this input
is first automatically sampled until it is seen to be
negated. This sampling of the BUSY # input pre­
vents overrunning the execution' of a previous co­
processor. instruction.

The FNINIT and FNCLEX coprocessor instructions
are allowed to execute even if BUSY # is asserted,
since these instructions are used for coprocessor
initialization and exception-clearing.

BUSY# is level,sensitive and is allowed to be asyn­
chronous to the CLK2signal.

BUSY# serves an additional function. If BUSY # is
sampled LOW at the falling edge of RESET, the 386
Microprocessor performs an internal self-test (see
5.5.3 Bus Activity During and Following Reset). If
BUSY #. is sampled HIGH, no self-testis performed.

If

I.!~.·,' ~
I: .'\

Ii
!J

i

386TM MICROPROCESSOR

5.2.8.4 COPROCESSOR ERROR (ERROR #:)

This input signal indicates thatJhe previous coprpc~
essor instruction generated a coprocessor error of a
type not masked by the coprocessor's control regis­
ter. This input is automatically sampled by the 386
Microprocessor whet') a coprocessor instruction is
encOuntered, and if asserted, the 386 Microproces­
sor generates exception 16 to access the error-han-
dling software. .

Several coprocessor instructions;· generally those
which clear the numeric error flags in the coproces­
sor or save . coprocessor state, do execute withouf
the 386 Microprocessor. generating exception 16
even if ERROR #: is asserted. These instructions are
FNINIT, FNCLEX, FSTSW, FSTSWAX, FSTCW,
FSTENV, FSAVE, FESTENV and FE~AVE.

ERROR #: is level-sensitive and is allowed to be
asynchronous to the CLK2 signal.

ERROR #: serves an additional function. If ERROR #:
is LOW no later than 20 CLK2periods after the fall·
ing edge of RESET and remains LOW at least until
the 386 Microprocessor begins its first bus cycle, an
80387 is assumed to be present (ET bit in CRO auto­
matically. gets ~et to 1). Otherwise, an 80287 (or no
coprocessor) is assumed tei' be present (ET bit in
CRO automatically is reset to 0); See 5.5.3 Bus Ac­
tivity During and After Reset. Only the. ET bit is set
by this ERROR #: pin test. Software must set the EM
and MP bits in CRO as· needed. Therefore, distin­
guishing 80287 presence from no coprocessor re­
quires a software test and appropriately resetting or
setting the EM bit of CRO (set EM = 1 when no
coprocessor is present). If ERROR#: is. s~mpled
LOW after reset (indicating 80387) but software later
sets EM ;".1, the 386 Microprocessor will behave as
if no coprocessor is present.

5.2.9 . Interrupt Signals

5.2.9.1IHTRODUCTION

The following .. descriptions cover inputs that can in­
terrupt or suspend execution of the processor's .cur­
rent instruction stream.

5.2.9.2 MASKABLE INTE~RUPTREQUEST (INTR)

When asserted, this input indicates a request for in­
terrupt service, which can be' masked' by the 386
Microprocessor Flag Register IF bit. When the 386
Microprocessor responds to the INTR input, it per­
forms two interrupt acknowledge bus cycles, and at
the end ofthesecond, latches an 8-bitinterrupt vec­
tor on 00-07 to identify ·the -source of the interrupt

INTRislevel-~ri~tivearid is allowed to be asyn­
chronous to the CLK2 signal. To assure recognition

of an INTRrequest, INTRshoulcl remain asserted
until the first interrupt acknowledge bus cycle be­
gins.

5.2.9.3 NON~MASKABLE INTERRUPT REQUEST
. (NMI)

This input indicates a request for interrupt service,
which cannot be masked by Software. The non­
maskable interrupt request is always processed ac­
cording to the pointer or gate in slot 2 of the interrupt
table. Because of the fixed NMI slot assignment, no
interrupt acknowledge cycles are perfomed when
processing NMI.

NMI is rising edge-sensitive and is allowed to be
asynchronous to the CLK2 signal. To assure recog­
nition of NMI, it must be negated for at least eight
CLK2 periods, and then. be asserted for at least
eight CLK2 periods.

Once NMI processing has begun,. no additional
NMI.'s are processed until after the next IRET in­
struction, which is typically the end of the NMI serv­
ice routine. If NMI is re-asserted prior to that time,
however,one rising edge on NMI·wili be remem­
bered for processing after executing the next IRET
instruction.

5.2.9.4 RESET (RESET)

This input signal suspends any operation in progress _
and places the 386Microprocessor in a known reset
state. The 386 Microprocessor is reset by asserting
RESET for 15 or more CLK2 periods (80 or more

. CLK2 periods before requesting self test). When RE­
SET is asserted, all other input pins are ignored, and
all other bus pins .are driven to an idle bus state as
shown in Table 5-3. If RESET and HOLD are both
asserted at a point in time,. RESET takes priority
even if the 386 Microprocessor was in a Hold Ac­
knowledge state prior to RESET asserted.

4-60

RESET is level-sensitive and must be synchronous
to the CLK2 signal. If desired, the phase of the inter­
nal processor clock, and the entire 386 Microproc­
essor state can' be completely synchronized to ex­
ternalcircuitry by ensuring the RESET signal falling
edge meets its applicable setup and hold times, t25
andt26.

Table 5-3. Pin State (Bus Idle) During Reset
PI!'INalne Signal Level DuringR8!88t

ADS#: High
00-03.1 High Impedance
BEO#-BE3# - Low
A2-A31 High
W/R# Low
O/C# High
MIIO# Low'
LOCK # High
HLOA Low

inter 386TM MICROPROCESSOR

5.2.10 Signal Summary

Table 5-4 summarizes the charar.teristics of all 386 Microprocessor signals.

Table 5-4. 386TM Microprocessor Signal Summary

Signal Name Signal Function

CLK2 Clock

00-031 Data Bus

BEO#-BE3# Byte Enables

A2-A31 Address Bus

W/R# Write-Read Indication

D/C# Data-Control Indication

M/IO# Memory-I/O Indication

LOCK# Bus Lock Indication

ADS# Address Status

NA# Next Address Request

BS16# Bus Size 16

READY# Transfer Acknowledge

HOLD Bus Hold Request

HLDA Bus Hold Acknowledge

PEREO Coprocessor Request

BUSY# Coprocessor Busy

ERROR# Coprocessor Error

INTR Maskable Interrupt Request

NMI Non-Maskable Intrpt Request

RESET Reset

5.3 BUS TRANSFER MECHANISM

5.3.1 Introduction

All data transfers occur as a result of one or more
bus cycles. Logical data operands of byte, word and
double-word lengths may be transferred without re­
strictions on physical address alignment. Any byte
boundary may be w~ed, although two or even three
physical bus cycles are performed as required for
unaligned operand transfers. See 5.3.4 Dynamic
Data Bus Sizing and 5.3.6 Operand Alignment.

Input
Output

Active Inputl Synch or
High Impedance

State Output Asynch
During HLDA?

toCLK2

- I - -
High 110 S Yes

Low 0 - Yes

High 0 - Yes

High 0 - Yes

High 0 - Yes

High 0 - Yes

Low 0 - Yes

Low 0 - Yes

Low I S -
Low I S -
Low I S -
High I S -
High 0 - No

High I A -
Low I A -
Low I A -
High I A -
High I A -
High I S -

The 386 Microprocessor address Signals are de­
signed to simplify external system hardware. Higher­
order address bits are provided by A2-A31. Lower­
order address in the form of BEO#-BE3# directly
provides linear selects for the four bytes of the 32-bit
data bus. Physical operand size information is there­
by implicitly provided each bus cycle in the most us­
able form.

4-61

Byte Enable outputs BEO#-BE3# are asserted
when their associated data bus bytes are involved
with the present bus cycle, as listed in Table. 5-5.
During a bus cycle, any possible pattern of contigu­
ous, asserted Byte Enable outputs can occur, but
never patterns having a negated Byte Enable sepa­
rating two or three asserted Enables.

386™ MICROPROCESSOR

Address bits AO and A 1 of the physical operand's
base address can be created when necessary (for
instance, for MUL TIBUS® I or MUL TIBUS® " inter­
face), as a function of the lowest-order asserted
Byte Enable. This is shown by Table 5-6. Logic to
generate AO and A 1 is given by Figure 5-3.

Table 5-5. Byte Enables and Associated
Data and Operand Bytes

Byte Enable Signal Associated Data Bus Signals

BEO# 00-07 (byte O-Ieast significant)

BE1# 08-015 (byte 1)

BE2# 016-023 (byte 2)

BE3# 024-031 (byte 3-most significant)

BEO#
L H

L x H L L
L

L x H L

A31

A31

A31

A31

A31

A31

BEO#

Table 5-6. Generating AO-A31 from
BEO#-BE3# and A2-A31

386™ CPU Address Signals

......... A2 BE3# BE2# BE1#

Physical Base
Address

......... A2 A1 AO

......... A2 0 0 X X X

......... A2 0 1 X X Low

......... A2 1 0 X Low High

. A2 1 1 Low High High

BE2# H
L L)(L [~Al. BE3# BE1# --'---H
x x H x L

L H L

BE1#
231630-3

K • Map for A 1 Signal

BED#
L H

L x L H L
L -

L x L H
H

L L X H
H

BE2# 8E3#

x x H x L

L H L

BE1#
231630-4

K - Map for AO Signal

BEO#

Low

High

High

High

Figure 5-3. Logic to Generate AO, A 1 from BEO # -BE3 #

Each bus cycle is composed of at least two bus
states. Each bus state requires one processor clock
period. Additional bus states added to a single bus
cycle are called wait states. See 5.4 Bus Functional
Description.

Since a bus cycle requires a minimum of two bus
states (equal to two processor clock periods), data
can be transferred between external devices and
the 386 Microprocessor at a maximum rate of one
4-byte Dword every two processor clock periods, for
a maximum bus Qandwidth of 50 megabytes/second
(386 Microprocessor operating at 25 MHz processor
clock rate).

4-62

5.3.2 Memory and I/O Spaces

Bus cycles may access physical memory space or
1/0 space. Peripheral devices in the system may ei­
ther be memory-mapped, or I/O-mapped, or bOth.
As shown in Figure 5-4; physical memory addresses
range from OOOOOOOOl'fto FFFFFFFFH (4 gigabytes)
and 1/0 addresses from OOOOOOOOH to OOOOFFFFH
(64 kilobytes) for programmed 1/0. Note the 110 ad­
dresses used by the automatic 1/0 cycles for co­
processor commuriication are 800000F8H to
800000FFH, beyond the address range of pro­
grammed 1/0, to allow easy generation of a coproc­
essor chip select signal using the A31 and MIIO#
signals.

inter 386TM MICROPROCESSOR

FFFFFFFFH ...----.

~f0. ~:a
IACCESSI~

f@a.
PH~SICAL
MEMORY

4GBYTE

:ggggg~~~ I --+- COPROCESSOR

("'~ 'I ~ (~M"

~/).

W . :///J.
OOOOFFFFH B} ACCESSI9LE

64 kBYTE PROGRAMMED
OOOOOOOOH I/o SPACE OOOOOOOOH L... __ .J

231630-5
Physical Memory Space 1/0 Space

NOTE:
Since A31 is HIGH during automatic communication with coprocessor, A31 HIGH and M/IO# LOW can be used to
easily generate a coprocessor select signal.

Figure 5-4. Physical Memory and 1/0 Spaces

5.3.3 Memory and 1/0 Organization

The 386 Microprocessor datapath to memory and
liD spaces can be 32 bits wide or 16 bits wide.
When 32-bits wide, memory and 110 spaces are or­
ganized naturally as arrays of physical 32-bit
Owords. Each.memory or liD Oword has four indi­
vidually addressable bytes at consecutive byte ad­
dresses. The lowest-addressed byte is associated
with data signals 00-07; the highest-addressed
byte with 024-031.

The 386 Microprocessor includes a bus control in­
put, B8 16 #, that also allows direct connection to
16-bit memory or liD spaces organized as a se­
quence of 16-bit words. Cycles to 32-bit and 16-bit
memory or liD devices may occur in any sequence,
since the B8 16 # control is sampled during each bus
cycle. 8ee 5.3.4 Dynamic Data Bus Sizing. The
Byte Enable signals, BEO#-BE3#, allow byte gran­
ularity when addressing any memory or 110 struc­
ture, whether 32 or 16 bits wide.

5.3.4 Dynamic Data Bus Sizing

Oynamic data bus sizing is a feature allowing direct
processor connection to 32-bit or 16-bit data buses
for memory or I/O. A single processor may connect
to both size buses. Transfers to or from 32- or16-bit
ports are supported by dynamically determining the
bus width during each bus cycle. Ouring each bus
cycle an address decoding circuit or the slave de-

4-63

vice itself may assert B816# for 16-bit ports, or ne­
gate B816# for 32-bit ports.

With. B8 16 # asserted, the processor automatically
converts operand transfers larger than 16 bits, or
misaligned 16-bit transfers, into two or three trans­
fers as required. All operand transfers physically oc­
cur on 00-015 when B816# is asserted. There­
fore,16-bit memories or I/O devices only connect
on data signals 00-015. No extra transceivers are
required.

Asserting 8816# only affects the processor when
BE2# and lor BE3# are asserted during the current
cycle. If only 00-015 are involved with the transfer,
asserting B816# has no affect since the transfer
can proceed normally over a 16-bit bus whether
B8 16 # is asserted or not. I n other words, asserting
B8 16 # has no effect when only the lower half of the
bus is involved with the current cycle.

There are two types of situations where the proces­
sor is affected by asserting B816#, depending on
which Byte Enables are asserted during the current
bus cycle:

Upper Half Only:
Only BE2# andlor BE3# asserted.

Upper and Lower Half:
At least BE1 #, BE2 # asserted (and perhaps
also BEO# andlor BE3#).

386™ MICROPROCESSOR

Effect of asserting BS16# during "upper half only"
read cycles:

Asserting BS16# during "upper half only" reads
causes the 386 Microprocessor to read data on
the Ipwer 16 bits of the data bus and ignore data
on the upper 16 bits of the data bus. Data that
would have been read from 016-031 (as indicat­
ed by BE2# and BE3#) will instead be read from
00-015 respectively.

Effect of asserting BS16# during "upper half only"
write cycles:

Asserting BS16# during "upper half only" writes
does not affect the 386 Microprocessor. When
only BE2# and/or BE3# are asserted during a
write cycle the 386 Microprocessor always dupli­
cates data signals 016-031 onto 00-015 (see
Table 5-1). Therefore, no further 386 Microproces­
sor action is required to perform these writes on
32-bit or 16-bit buses.

Effect of asserting BS16# during "upper and lower
half" read cycles:

Asserting BS16# during "upper and lower half"
reads causes the processor to perform two 16-bit
read .cycles for complete physical operand trans­
fer. Bytes 0 and 1 (as indicated by BEO# and
BE1 #) are read on the first cycle using 00-015.
Bytes 2 and.3 (as indicated by BE2# and BE3#)
are read during the second cycle, again using
00-015.016-031 are ignored during both 16-bit
cycles. BEO# and BE1 # are always negated dur­
ing the second 16-bit cycle (See Figure 5-14, cy­
cles 2 and 2a).

Effect of asserting BS16# during "upper and lower
half" write cycles:

Asserting BS16# during "upper and lower half"
writes causes the 386 Microprocessor to perform
two 16-bit write cycles for complete physical oper­
and transfer. All bytes are available the first write
cycle allowing external hardware to receive Bytes
o and 1 (as indicated by BEO# and BE1 #) using
00-015. On the second cycle the 386 Microproc­
essor duplicates Bytes 2 and 3 on 00-015 and
Bytes 2 and 3 (as indicated by BE2# and BE3#)
are written using 00-015. BEO# and BE1 # are
always negated during the second 16-bit cycle.
BS16# must be asserted during the second 16-bit
cycle. See Figure 5-14, cycles 1, and 1a.

5.3.5 Interfacing with 32· and 16·81t
Memories

In 32-bit-wide physical memories such as Figure 5-5,
each physical Oword begins at a byte address that is
a multiple of 4. A2-A31 are directly used as a Oword
select and BEO#-BE3# as byte selects. BSt6# is
negated forall bus cycles involving the 32-bit array.

When 16-bit-wide physical arrays are included in the
system, as in Figure 5-6, each 16-bit physical word
begins at a address that is a multiple. of 2. Note the
address is decoded, to assert BS16# only during
bus cycles involving the 16-bit array. (If desiring to

32 DATA BUS (00-031)

386N 32-BIT
CPU ADDRESS BUS (BEO#-BE3#,A2-A31) MEMORY

TBS16#

"HIGH"
231630-6

Figure 5-5. 386TM Microprocessor with 32-Blt Memory

32 DATA BUS (DO-D31)

386™ , 32-BIT
CPU ADDRESS BUS MEMORY

fBs16#) '\

(BEO#-BE3#,A2-A31)

I ADDRESS I ,16 DATA BUS (00-015) DECODER
\. ADDRESS BUS (A2-A31) 16-BIT

'(BEO#-BE3#> lOGIC (SHE#. BlEH. A 1) MEMORY

231630-7

Figure 5-6. 386TM Microprocessor with 32-Blt and 16-Blt Memory

4-64

386TM MICROPROCESSOR

use pipelined address with 16-bit memories then
BEO#-BE3# and W/R# are also decoded to de­
termine when B516# should be asserted .. See
5.4.3.6 Plpellned Address with Dynamic Data Bus
Sizing.)

A2-A31 are directly usable for addressing 32-bit
and 16-bit devices. To address 16-bit devices;. A 1
and two byte enable signals are also needed.

To generate an A1 signal and two Byte Enable sig­
nals for 16-bit access, BEO#-BE3# should be de­
coded as in Table 5-7. Note certain combinations of
BEO#-BE3# are never generated by the 386 Mi­
croprocessor, leading to "don't care" conditions in
the decoder. Any BEO#-BE3# decoder, such as
Figure 5-7, may use the non-occurring BEO # - BE3 #
combinations to its best advantage.

5.3.6 Operand Alignment

With the flexibility of memory addressing on the 386
Microprocessor, it is possible to transfer a logical
operand that spans more than one physical Dword
or word of memory or I/O. Examples are 32-bit
Dword operands beginning at addresses not evenly

divisible by 4, or a 16-bit word operand split between
two physical Dwords of the memory array.

Operand alignment and data bus size dictate when
multiple bus cycles are required. Table 5-8 describes
the transfer cycles generated for all combinations of
logical operand lengths, alignment, and data bus siz­
ing. When multiple bus cycles are required to trans­
fer a multi-byte logical operand, the highest-order
bytes are transferred first (but if B516# asserted
requires two 16-bit cycles be performed, that part of
the transfer is low-order first).

5.4 BUS FUNCTIONAL DESCRIPTION

5~4.1 Introduction

The 386 Microprocessor has separate, parallel bus­
es for data and address. The data bus is 32-bits in
width, and bidirectional. The address bus.provides a
32-bit value using 30 Signals for the 30 upper-order
address bits and 4 Byte Enable Signals to directly
indicate the active bytes. These buses are interpret­
ed and controlled via several associated definition or
control signals.

. Table 5-7. Generating A1, BHE# and BlE# for Addressing 16-Blt Devices

386TM CPU Signals 16-Bit Bus Signals
Comments

BEU BE2# BE1# BEO# A1 BHE# BlE#(AO)

H" H" H" H" x x x x-no active bytes
H H H L L H L
H H L H L L H
H H L L L L L
H L H H H H L
H" LO H" LO x x x x-not contiguous bytes
H L L H L L H
H L L L L L L
L H H H H L H
LO HO HO LO x x x x-not contiguous bytes
L" HO L" H" x x x x-not contiguous bytes
LO HO L" ·Lo x x x x-not contiguous bytes
L L H H H L. L
L" LO H" LO x x x x-not continguous bytes
L L L H L L H
L 'L L L L L L

BLE# asserted when 00-07 of 16-bit bus is active.
BHE# asserted when 08-015 of 16-bit bus is active.
A 1 low for all even words; A 1 high for all odd words.

Key:
= don't care x

H = high voltage level
L = low voltage IElVel
• = a non-occurring pattern of Byte Enables; either none are asserted,

or the pattern has Byte Enables asserted for non-contiguous bytes

4-65

;1
1 i~
')
1

\
"

!
I

,·
'j

1::

~
' .\

I,

I,~

I
I,:

Ii
I'
I

386™·MICROPROCESSOR

BEO#
L H

L L x Ii L L BEO#

L xf{L [~. A .. 1 BE2# -+-L+-L+-.~;,jI •. -L-I H BE3# BEl # ~
H ----~~

x x Ii x L

L H L

BE1#

K-map for A 1 signal (same as Figure 5-3)

BEO#
L H

L x L L L
L

.~ .. L .11 L
BE2#

ff .j(H
L L

x x L x L

L H L

BE1#

K-map for 16-bit BHe; # signal

BEO#
L H

LLXL)IL

.L x Lil
BE2# -F+--j,,;; 1iII H BE3#

H L L'li'):1

x x .fj ." L

L H L

BE1#

BE3#

BE1#

_BE_3_#-L[_~

K-map for 16-bit BLE # signal (same as AO signal in Figure 5-3)

231630-8

231630-9

Figure 5·7. logic to Generate A 1, BHE # and BlE # for 16·Bit Buses

Table 5·8. Transfer Bus

231630-10

.-~----~----~~~-------------------------,

Physical Byte Address xx 00 01
in Memory (low-order bits)

over

Transfer Cycles over
16·Bit Data Bus

b w

b w

Key: b = byte transfer
w = word transfer

w

I = low-order portion
m = mid-order portion
x = don't cere

10

w

11 00 01

hb,* d hb
Ib 13

3 = 3-byte transfer
d = Dword transfer
h = high-order portion

111= B516# asserted causes second bus cycle
'For this case, 8086, 8088, 80186, 80188, 80286 transfer Ib first, then hb.

4-66

10 11

hw, h3,
Iw Ib

inter 386TM MICROPROCESSOR

The definition of each bus cycle is given by three
definition signals: MIIO#, W/R# and DIC#. At the
same time, a valid address is present on the byte
enable signals BEO#-BE3# and other address sig­
nals A2-A31. A status signal, ADS#, indicates
when-the 386 Microprocessor issues a new bus cy­
cle definition and address.

Collectively, the address bus, data bus and all asso­
ciated control signals are referred to simply as "the
bus".

When active, the bus performs one of the bus cycles
below:

1) read from memory space

2) locked read from memory space

3) write to memory space

4) locked write to memory space

5) read from 1/0 space (or coprocessor)

6) write to 1/0 space (or coprocessor)

7) interrupt acknowledge

8) indicate halt, or indicate shutdown

CYCLE 1
NON-PIPELINED

(READ)

Table 5-2 shows the encoding of the bus cycle defi­
nition signals for each bus cycle. See section 5.2.5
Bus Cycle Definition.

The data bus has a dynamic sizing feature support­
ing 32- and 16-bit bus size. Data bus size is indicated
to the 386 Microprocessor using its Bus Size 16
(BS16#) input. All bus functions can be performed
with either data bus size.

When the 386 Microprocessor bus is not performing
one of the activities listed above, it is either Idle or in
the Hold Acknowledge state, which may be detected
by external circuitry. The idle state can be identified
by the 386 Microprocessor giving no further asser­
tions on its address strobe output (ADS#) since the
beginning of its most recent bus cycle, and the most
recent bus cycle has been terminated. The hold ac­
knowledge state is identified by the 386 Microproc­
essor asserting its hold acknowledge (HLDA) output.

The shortest time unit of bus activity is a bus state. A
bus state is one processor clock period (two CLK2
periods) in duration. A complete data transfer ocCurs
during a bus cycle,' composed of two or more bus
states.

CYCLE 2
NON-PIPELINEO

(READ)

CYCLE 3
NON-PIPELINED

(READ)

T1 T2 T1 T2 T1 T2

CLK2[
(INPUT)

9EO#-9E3#, A2-A31, [
M/IO#, D/C#, W/R#

(OUTPUTS)

ADS#[
(OUTPUT)

NA#[
(INPUT)

READY# [
(INPUT)

.11.2 .11.2 .11.2 .11.2 .11.2 .11.2 .1

LOCK#[
(OUTPUT);r---+---r'---+--....;r'---+--~

00-031 [
(INPUT DURING READ)

Fastest non-pipelined bus cycles consist of Tl and T2

Figure 5-8. Fastest Read Cycles with Non-Pipellned Address Timing

4-67

231630-11

inter 386™· MICROPROCESSOR

The fastest 386 Microprocessor bus. cycle requires
only two bus states. For example, three consecutive
bus read cycles, each consisting of two bus states,
are shown by Figure 5-8. The bus states in each
cycle are named T1 and T2. Any memory or I/O
address may be accessed by such a. two-state bus
cycle, if the external hardware is fast enough. The
high-bandwidth,two"clock bus cycle realizes the full
potential of fast main memory, or cache memory.

Every bus cycle continues until. it is acknowledged
by the external system hardware, using. the 386 Mi­
croprocessor READY # input. Acknowledging the
bus cycle at the end of the first T2 results. in the
shortest bus cycle, requiring only T1 and T2. If
READY #is not immediately asserted, however, T2
states are repeated indefinitely until the READY #
input is sampled asserted.

5.4.2 Address Pipelining

The addresspipelining-option provides a choice of
bus· cycle timings. Pipelined or non-pipelined· ad­
dress timing is selectable on a cycle-by-cycle basis
with the Next Address (NA #) input.

CYCLE 1
PIPELINED

(READ)

When address pipelining is not selected, the current
address and bus cycle definition remain stable
throughout the bus cycle.

When address pipelining- is selected, the address
(BEO#-BE3#, A2..:A31) and definition (W/R#,
D/C# and MIIO#) of the next cycle are available
before the end of the current cycle. To signal their
availability, the 386 Microprocessor address status
output (ADS #) is also. asserted. Figure 5-9 illus~
trates the fastest read cycles with pipelined address
timing. .

Note from Figure 5-9. the fastest bus cycles using
pipelined address require only . two bus states,
named T1P and T2P. Therefore cycles with pipe­
lined address timing allow the same data bandwidth
as non-pipelined cycles, but address-to-data access
time is increased compared to that of a non-pipe­
lined cycle.

By increasing the address-to-data access time. pipe­
lined address timing reduces wait state require­
ments. For example, if one wait state is required with
non-pipelined address timing, no wait states would
be required with pipelined address.

CYCLE 2
PIPELINED

(READ)

CYCLE 3
PIPELINED

(READ)

T1 P . T2P T1 P T2P T1 P T2P

CLK2[
(INPUT)

BEO.#-BE.1#,.A2-A.11. [
M/IO#. D/C#. W IR#

(OUTPUTS)

ADS#[
(OUTPUT)

NA#[
(INPUT)

READY# [
(INPUT)

.11.2 .11.2.11.2 .11.2 .11.2 .11.2

LOCK#[
(OUTPUT) -!I~-+-...... p.-~...;.-..p-"';~--f:"-

00-031 [
(INPUT DURING READ)

Fastest pipelined bus cycles consist of Tl P and T2P

Figure 5·9. Fastest Read CyCles with Pipellned Address Timing

4-68

231630-12

inter 386TM MICROPROCESSOR

Pipelined address timing is useful in typical systems
having address latches. In those systems, once an
address has been latched, plpelined availability of
the next address allows decoding circuitry to gener.
ate chip selects (and other necessary select signals)
in advance, so selected devices are accessed im·
mediately when the next cycle begins. In other
words, the decode time for the next cycle can be
overlapped with the end of the current cycle.

If a system contains a memory structure of two or
more interleaved memory banks, pipelined address
timing potentially allows even more overlap of activi·
ty. This is true when the interleaved memory control·
ler is designed to allow the next memory operation

TWO-BANK INTERLEAVED MEMORY

a) Address Signal A2 selects bank

b) 32·bit datapath to each bank

FOUR-BANK INTERLEAVED MEMORY

a) Address signals A3 and A2 select bank

b) 32·bit datapath to each bank

to begin in one memory bank while the current bus
cycle Is stili activating another memory bank. Figure
5·10 shows the general structure of the 386 Micro·
processor with 2·bank and 4·bank Interleaved memo
ory. Note each memory bank of the interleaved
memory has full data bus width (32·bit data width
typically, unless 16·bit bus size is selected).

Further details of pipelined address timing are given
in 5.4.3.4 Plpellned Address, 5.4.3.5 Initiating and
Maintaining Plpellned Address, 5.4.3.6 Plpellned
Addre88 with Dynamic Bus Sizing, and 5.4.3.7
Maximum Plpellned Address Usage with 16-Blt
Bus Size.

231630-13

231630-14

Figure 5-10. 2-Bank and 4-Bank Interleaved Memory Structure

4·69

inter 386TM MICROPROCESSOR

5;4.3 Read and Write Cycles

5.4.3.1 fNTRODUCTIO~

bata transfers occur as a result of bus cycles, classi,­
fiedas read or write cyCles. During read cycles, data
is transferred from an- external device to the proces­
sor. Duringwrite cycles data is transferred in the oth­
er direction, from the processor to an external de­
vice.

Two choices of address tim'ing are dynamicallyse­
lectable: non~pipelined, or pipelined. After a bus idle,
state, the processor always uses non-pipelined ~d­
dress timing. However, the NA # (Next Address) In­
put· may be asserted to select pipelined address
timing Jor the next bus cycle. When pipelining is se­
lected and the 386 Microprocessor has a bus re­
quest pending internally, the address and definition
of the next cycle is made available even before the
current bus cycle is acknowledged by READY #.
Generally, the NA # input is sampled each bus cycle
to select the desired address timing for the next bus
cycle.

Two choices of physical data bus width are dynami,
cally selectable: 32 bits, or. 16 bits. General!y;,the
BS16#(BusSize 16) input is sampled near,the end
of the bus cycle to confirm the physical data bus size
applicable to the current cycle. Negation of BS16#
indicates a 32-bit size,andassartion indicates a 16-
bit bus size.

If 16-bit bus size is indicated, the 386 Microproces­
sor automatically responds as required to complete
the transfer on, a 16-bit, data bus. Depending- on the
size and alignment of the operand, another 16-bit
bus cycle may be required. Table 5-7 provjd13s all
details. When necessary, the 386 Microprocessor
performs an additional 16-bit bus cycle, using 00-
D15 in place of D16-D31.

Terminating a read cycle or write cycle, like any ~us
cycle, requires acknowledging the cycle by asserting'
the READY# input. Until acknowledged, the proces­
sor inserts wait states into the 'bus cycle, to allow
adjustment for the speed of any external device. Ex-,
ternal hardware, which has decoded the address
and bus cycle type asserts the READY # input at the
appropriate time.

I CYCLE 1 I
NON-PIPELINED ,

(WRITE)

IDLE CYCLE 2' I CYCLE 3 I
NON-PIPELINED NON-PIPELINED

(READ) (WRITE) .

IDLE

I CYCLE 4 I
NON-PIPELINED

(READ)

IDLE I
TI TI 11 T2 TI T2 T1 T2 n TI T2

CLK2 [

W/R#[~~~

ADS#[

NA# [~~~~~m~~"Y'V'~m~~m~"i"i'~rnm~

LOCK# ['~~~~4:::":"~~~::::':'-1~~~~F~P-~r-~-'
00-,031 [

231630-15
Idle states are shown here for diagram variety only. Write cycles are not always followed by an idle state. An active bus cycle can immediately
follow the writa cycle.

Figure 5-11. Various Bus Cycles and Idle States with Non-Plpellned Address (zero walt states)

4-70

386TM MICROPROCESSOR

At the end of the second bus state within the bus
cycle, READY # is sampled. At that time, if external
hardware acknowledges the bus cycle by asserting
READY #, the bus cycle terminates as shown in Fig­
ure 5-11. If READY # is negated as in Figure 5-12,
the cycle continues another bus state (a wait state)
and READY # is sampled again at the end of that
state. This continues.jndefinitely until the cycle is ac­
knowledged by READY # asserted.

When the current cycle is acknowledged, the 386
Microprocessor terminates it. When a read cycle is
acknowledged, the 386 Microprocessor latches the
information present at its data pins. When a write
cycle is acknowledged, the 386 Microprocessor
write data remains valid throughout phase one of the
next bus state, to provide write data hold time.

5.4.3.2 NON-PIPE LINED ADDRESS

Any bus cycle may be performed with non-pipelined
address timing. For example, Figure 5-11 shows a
mixture of read and write cycles with non-pipelined
address timing. Figure 5-11 shows the fastest possi-

ble cycles with non-pipelined address have two bus
states per bus cycle. The states are named T1 and
T2. In phase one of the T1, the address signals and
bus cycle definition signals are driven valid, and to
signal their availability, address status (ADS#) is
simultaneously asserted.

During read or write cycles, the data bus behaves as
follows. If the cycle is a read, the 386 Microproces­
sor floats its data signals to allow driving by the ex­
ternal device being addressed. The 386 Microproc­
essor requires that all data bus pins be at a valid
logic state (high or low) at the end of each read
cycle, when READY # is asserted. The system
MUST be designed to meet this requirement. If
the cycle is a write, data signals are driven by the
386 Microprocessor beginning in phase two of T1
until phase one of the bus state following cycle ac­
knowledgment.

Figure 5-12 illustrates non-pipelined bus cycles with
one wait added to cycles 2 and 3. READY # is sam­
pled negated at the end of the first T2 in cycles 2
and 3. Therefore cycles 2 and 3 have T2 repeated.
At the end of the second T2, READY # is sampled
asserted.

IDLE

I CYCLE I I
NON-PIPELINED

(READ)

CYCLE 2
NON-PIPElINEo

(WRITE)

IDLE CYCLE 3
NON-PIPELINEo

(READ)

TI T1 T2 T1 T2 T2 n T1 T2 T2

ClK2 [

(ClK) [

BED #-BEI #
A2-A31. [

M/IO#. D/C# ~~~IP-......:.;.:.;;:;..;..-p...-+.:;;;;;.:~--..p~Wjj~-..j...:-:.;:;;:...;.r--.p.:~Llf

W/R# [~~~""""-+--f
ADS # [

NA# [~.QQ,QjQ.QQ~~~~cr

00-031[-

231630-16
Idle states are shown here for diagram variety only. Write cycles are not always followed by an idle state. An active bus cycle can immediately
follow the write cycle.

Figure 5-12. Various Bus Cycles and Idle States with Non-Pipelined Address
(various number of wait states)

4-71

386TM MICROPROCESSOR

HOLD ASSERTED

REQUEST PENDING.
HOLD NEGATED

Bus Slates:

ALWAYS

READY# ASSERTED·
HOlO NEGATED.

REQUEST PENDING

READY# NEGATED.
NAH"i'IEGATED

TI-first clock of a non-pipelined bus cycle (386™ CPU drives new address and asserts ADS#)
T2-subsequent clocks of a bus cycle when NA # has not been sampled asserted in the current bus cycle

231630-17

TI- idle state
TI}-hold acknowledge state (386T" CPU asserts HLDA)
The fastest bus cycle consists of two states: TI and T2.
Four basic bus states describe bus operation when not using pipelined address. These states do include BSI6 # usage for 32-bit and 16-bit
bus size. If asserting BSI6# requires a second 16-bit bus cycle to be performed, it is performed before HOLD asserted is acknowledged.

Figure 5·13. 386™ Microprocessor Bus States (not using pipelined address)

When address pipelining is not used, the address
and bus cycle definition remain valid during all wait
states. When wait states are added and you desire
to maintain non-pipelined address timing, it is neces­
sary to negate NA # during each T2 state except the
last one, as shown in Figure 5-12 cycles 2 and 3. If
NA# is sampled asserted during aT2 other than the
last one, the next state would be T21 (for pipelined
address) or T2P(for pipelined. address) instead of
another T2 (for non-pipelined address).

When address pipe lining is not used, the bus states
and transitions are completely illustrated by Figure
5-13. The bus transitions between four possible
states: T1, T2, Ti, and Th. Bus cycles consist of T1
and T2, with T2 being repeated. for wait states. Oth­
erwise, the bus may be idle, in the Ti state, or in hold
acknowledge, the Th state.

When address pipelining is not used, the bus state
diagram is as shown in Figure 5-13. When the bus is

4-72

idle it is in state Ti. Bus cycles always begin with T1.
T1 always leads to T2. If a bus cycle is not acknowl­
edged during T2 and NA# is negated, T2 is repeat­
ed. When a cycle is acknowledged during T2, the
following state will be T1 of the next bus cycle if a
bus .request is pending internally, or Ti if there is no
bus request pending, or Th if the HOLD input is be­
ing asserted.

The bus state diagram in Figure 5-13 also applies to
the use of 8516# .If the 386 Microprocessor makes
internal adjustments for 16-bit bus size, the adjust­
ments do not affect the external bus states. If an
additional 16-bitbus cycle is required to complete a
transfer on a 16-bit bus, it also follows the state tran­
sitions shown in Figure 5-13.

Use of pipelined address allows the 386 Microproc­
essor to enter three additional bus states not shown
in Figure 5-13.Figure 5-20 in 5.4.3.4Plpelined Ad·
dress is the complete bus state diagram, including
pipelined address cycles.

inter 386TM MICROPROCESSOR

5.4.3.3 NON-PIPELINED ADDRESS WITH
DYNAMIC DATA BUS SIZING·

The physical data bus width for any non-pipelined
bus cycle can be either 32-bits or 16-bits. At the
beginning of the bus cycle, the processor behaves
as if the data bus is 32-bits wide. When the bus cy­
cle is acknowledged, by asserting READY # at the
end of a T2 state, the most recent sampling of
8516# determines the data bus size for the cycle
being acknowledged. If 8516# was most recently
negated, the physical data bus size is defined as

32 bits. If 8516# was most recently asserted, the
size is defined as 16 bits.

When 8516# is asserted and two 16-bit bus cycles
are required to complete the transfer. 8516# must
be asserted during the second cycle; 16-bit bus size
is not assumed. Like any bus cycle, the second 16-
bit cycle must be acknowledged by asserting
READY#.

When a second 16-bit bus cycle is required to com­
plete the transfer over a 16-bit bus, the addresses

A TRANSFER REQUIRING TWO
CYCLES ON 16-BIT DATA BUS

A TRANSFER REQUIRING TWO
CYCLES ON 16-BIT DATA BUS

CLK2 [

(CLK) [

BEO#.BE1# [

BE2 #.BE3#
A2-A31.

M/IO#.D/C#
[

W/R# [

ADS# [

NA# [

B516# [

READY# [

LOCK# [

00-015 [-

IDLE

n

CYCLE 1 *CYCLE 1 A NON-PIPELINED NON-PIPELINED
(WRITE WRITE)

PART ONE PART TWO

T1 T2 T1 T2

CYCLE 2 ~CYCLE 2A NON-PIPELINED NON-PIPELINED
(READ READ)

PART ONE PART TWO

T1 T2 T1 T2

IDLE

n

016-031· [- ------- EE=~~0~U~T9==t::)
Key: Dn ~ physical data pin n

dn ~ logical data bit n

Figure 5-14. Asserting BS16# (zero wait states, non-pipelined address)

4-73

231630-18

inter

IDlE

386TM MICROPROCESSOR

A TRANSFER REQUIRING TWO
CYCLES ON 16-BIT DATA BUS

CYCLE 2
. NON-PIPElINED

ClK2 [

(ClK) [

BEO#.BEt# [

BE2#.BE3#
A2-A3t.

M/IO#.D/C#

W/R#

[

[

ADS# I

TI Tl 12

JirL rut rut
-V V V
)(IXXX)(!X VALID 1

IXXX X

.........
,XXX

T2 11 12 12 T , .. 1

rut rut rut n.n nn
V V V V \f

I NEGATED DURING \ PART TWO

VALID 1 X

1/

~{ ''--V
N TE: NA# MUST BE NEGATED

l\-

NA~ [

BSI6# [

READY# [

.LOCK.# [

DO-DIS, [

016-031 [

XXX

)(~

)(XXX

.)(IXXXX

- ----

. ----

HERE TO AllOW RECOGNITION
OF ASSERTED BSI6# IN FINAL T2

.XX)(T '< ~ ~Ol LXXXJ<1 '<

~XX XXXX IA ~ IXXX 'XXX

16-BiT
BUS SIZE

x.xx 'J.J ~ I ~X) XT

X VAliD. 1

dO-dIS

---- .. --0-- ---
'.'

IGNORED

.--- --- --0-- ---
I

~~ l' xxxx

A J. ~~~

16-BIT
BUS SIZj

~ .~~

d16-d31

~~0{
IGNORED

--0<
I

(WRITE)

12 T2

nn nn
V V

VALID 2

I

VALID 2

V

IY '(xxx
3~

BUS XZE

'x)()(
y "

'XY ~
VALID 2

dO-dIS

OUT

d16-d31

OUT

I
Key: On = physical.data pin n

dn = logical data bn n
231630-19

Figure. 5-15. Assertll1g B816# (one walt state, non-plpellned address)

generated for the two 16-bit b\lsCycles arecl()sely
related to each other. The addresses are the same
except BEO# and BE1 # are always negated for the
second cycle. This is because data on 00-015 was
already transferred during the.first 16-bit cycle. . .

Figures 5-14 and 5-15 show cases where assertion
of B816# requires a second 16-bit cycle for com­
plete operand transfer. Figure 5-14 illustrates cycles

. without wait states. Figure 5-15 illustrates cycles
with one wait .state. In Figure 5-15 cycle 1. the bus
cycle during which .B516# is asserted, note that
NA# mustbe negated in the T2 state(s) prior to the
last T2state. This is to allow the recognition of
8516# asserted in the final T2 state. The relation of
N!\# and B516# is given fully in 5~4.3.4 Plpellned
Address, but Figure 5-15 illustrates this o~ly pre­
caution you need to know. when using B516# with
non-pipelined address ..

4-14

inter 386™MICROPROCESSOR

5.4.3.4 PIPELINED ADDRESS

Address pipelining is the option of requesting the
address and the bus cycle definition of the next, in­
ternally pending bus cycle before the current bus
cycle is acknowledged with READY # asserted.
ADS# is asserted by the 386 Microprocessor when
the next address is· issued. The address pipelining
option is controlled on a cycle-by-cycle basis with
the NA # input signal.

Once a bus cycle is in progress and the current ad­
dress has been valid for at least one entire bus
state, the NA# input is sampled at the end of every
phase one until the bus cycle is acknowledged. Dur­
ing non-pipelined bus cycles, therefore, NA # is
sampled at the end of phase one in every T2. An
example is Cycle 2 in Figure 5-16, during which NA #
is sampled at the end of phase one of every T2 (it
was asserted once during the first T2 and has no
further effect during that bus cycle).

If NA# is sampled asserted, the 386 Microprocessor
is free to drive the address and bus cycle definition
of the next bus cycle, and assert ADS#, as soon as
it has a bus request internally pending. It may drive
the next address as early as the next bus state,
whether the current bus cycle is acknowledged at
that time or not.

Regarding the details of address pipelining, the 386
Microprocessor has the following characteristics:

1) For NA# to be sampled asserted, 8S16# must
be negated at that sampling window (see Figure
5-16 Cycles 2 through 4, and Figure 5-17 Cycles 1
through 4). If NA# and 8S16# are both sampled
asserted during the last T2 period of a bus cycle,
8S16# asserted has priority. Therefore, if both
are asserted, the current bus size is taken to be
16 bits and the next address is not pipelined.

IDLE CYCLE 1
NON-PIPELINED

CYCLE 2
NON-PIPELINEo

CYCLE 3
PIPELINED
(WRITE)

CYCLE 4
PIPELINEo

IDLE

CLK2 [

(CLK) [

BEO# -BE3# [
A2-A31.

tot/IO#.o/C#

W/R# [

AoS# [

TI

(WRITE) (READ)

T1 T2 T1 T2

BS16# [C¥~~~~o?'~~C:C.~

REA~#[~~~~~~~~~~~

(READ)

T2P T1P T2P T1P T21 TI

LOCK # [~~Qa(\......;;.;;:::;..;..-r'--!....:.;;:::;..;...--r''''''~;.::..::-r ~-"""--r "-1I:.lUj

00- 031 [

231630-20
Following any idle bus state (Ti). addresses are non-pipelined. Within non-pipelined bus cycles, NA # is only sampled during wait states.
Therefore, to begin address pipelining during a group of non-pipelined bus cycles requites a non-pipelined cycle with at least one wait state
(Cycle 2 above). .

Figure 5-16. Transitioning to Pipelined Address During Burst of Bus Cycles

4-75

,,'I.
"

"I'

inter 386TM MICROPROCESSOR

ClK2 [

(ClK) [

BEO #- BE3 #. [
A2-A31.

M/IO#.D/C#

IDLE

W/R# [~~~

ADS# [

CYCLE 1
NON-PIPELINED

(WRITE)

BSI6# [~~~:.pL.~~

READY # [~~~:.pL.~~~

00- 031 [

CYCLE 2
PIPEllNED

(READ)

CYCLE 3
PIPEllNED
(WRITE)

CYCLE 4
PIP.ELlNED

(READ)

IDLE

231630-21
Following any idle bus state (Ti) the address is always non-pipelined .and NA.# is only sampled during wait states. To start address pipelining
after an idle state requires a non-pipelined cycle with at least one wait state (cycle 1 above).
The pipelined cycles (2. 3, 4 above) are shown with various numbers of wait states.

Figure 5~17. Fastest Transition to Pipelined Address Following Idle Bus State

2) The next address may appear as early as the bus
state after NA# was sampled asserted (see Fig­
ures 5-16 or 5-17). In that case, state T2P is en­
tered immediately: However, when there is not an
internal bus request already pending, the next ad­
dress will not be available immediately after NA #
is asserted and T21 is entered instead of T2P (see
Figure 5-19 Cycle 3). Provided the current bus cy­
cle isn't Yet acknowledged by READY# asserted,
T2P will be entered as soon. as the 386 Micro­
processor does drive the next address. External
hardware should therefore observe the ADS#
output as confirmation the next address is actual­
ly being driven on the bus.

3) Once NA# is sampled asserted, the 386 Micro­
processor commits itself to the highest priority
bus request that ,is pending internally. It can no
longer perform another 16.bit transfer to the same
address should 8S 16 # be asserted externally, so

4-76

thereafter must assume the current bus size is 32
bits. Therefore if NA # is sampled asserted within
a bus cycle, 8S16# must be negated thereafter
in that bus cycle (see Figures 5-16, 5-17, 5-19).
Consequently, do not assert NA # during bus cy­
cles which must have 8S16# driven asserted.
See 5.4.3;6 Dynamic Bus Sizing with Pipelined
Address. '

4) Any address which is validated by a pulse on the
386 Microprocessor ADS # output will remain sta­
ble on the address pins for at least two processor
clock periods. The 386 Microprocessor cannot
produce a new address more frequently than ev­
ery two processor clock periods (see Figures
5-.16,5-17,5-19).

5) Only the address and bus cycle definition of the
very next bus cycle is available. The pipe lining ca­
pability cannot look further than one bus cycle
ahead (see Figure 5c19 Cycle 1).

386TM MICROPROCESSOR

The complete bus state transition diagram, including
operation with pipe lined address is given by 5-20.
Note it is a superset of the diagram for non-pipe lined
address only, and the three additional bus states for
pipelined address are drawn in bold.

The fastest bus cycle with pipelined address' con­
sists of just two bus states, T1 P and T2P (recall for
non-pipelined address it is T1 and T2). T1 P is the
first bus state of a pipelined cycle.

5.4.3.5 INITIATING AND MAINTAINING
PIPELINED ADDRESS

Using the state diagram Figure 5-20, observe the
transitions from an idle state, Ti, to the beginning of
a pipelined bus cycle, T1 P. From an idle state Ti, the
first bus cycle must begin with T1, and is therefore a
non-pipelined bus. cycle. The next bus cycle will be
pipelined, however, provided NA# is asserted and
the first bus cycle ends in a T2P state (the address
for the next bus cycle is driven during T2P). The fast­
est path from an idle state to a bus cycle with pipe­
lined address is shown in bold below:

~ \T1-T2-T2P:; \T1P-T2P'J
.,. .,.

idle non-pipelined pipelined
states cycle cycle

T1-T2-T2P are the states of the bus cycle that es­
tablishes address pipelining for the next bus cycle,
which begins with T1 P. The same is true after a bus
hold state, shown below:

\Th, Th, Th:;\,T1 - T2 - T2P:; \T1 P - T2P'J
.,. + ...

hold non-pipe lined
acknowledge cycle

states

pipelined
cycle

The transition to pipelined address is shown func- .
tionally by Figure 5-17 Cycle 1. Note that Cycle 1 is
used to transition into pipelined address timing for
the subsequent Cycles 2, 3 and 4, which are pipe­
lined. The NA # input is asserted at the appropriate
time to select address pipelining for Cycles 2, 3
and 4.

4-77

Once a bus cycle is in progress and the current ad­
dress has been valid for one entire bus state, the
NA # input is sampled at the end of every phase one
until the bus cycle is acknowledged. During Figure 5-
17 Cycle 1 therefore, sampling begins in T2. Once
NA # is sampled asserted during the current cycle,
the 386 Microprocessor is free to drive a new ad­
dress and bus cycle definition on the bus as early as
the next bus state. In Figure 5-16 Cycle 1 for exam­
ple, the. next address is driven during state T2P.
Thus Cycle 1 makes the transition to pipelined ad­
dress timing. since it begins with T1 but ends with
T2P. Because the address for Cycle 2 is available
before Cycle 2 begins, Cycle 2 is called a pipelined
bus cycle, and it begins with T1 P. Cycle 2 begins as
soon as READY # asserted terminates Cycle 1.

Example transition bus cycles are Figure 5-17 Cycle
1 and Figure 5-16 Cycle 2. Figure 5-17 shows tran­
sition during the very first cycle after an idle bus
state, which is the fastest possible transition into ad­
dress pipelining. Figure 5-16 Cycle 2 shows a tran­
sition cycle occurring during a burst of bus cycles. In
any case, a transition cycle is the same whenever it
dccurs: it consists at least of T1, T2 (you assert
NA# at that time), and T2P (provided the 386 Micro­
processor has an internal bus request already pend­
ing, which it almost always has). T2P states are re­
peated if wait states are added to the cycle.

Note three states (T1, T2 and T2P) are only required
in a bus cycle performing a transition from non­
pipelined address into pipe lined address timing, for
example Figure 5-17 Cycle 1. Figure 5-17 Cycles 2,
3 and 4 show that address pipelining can be main­
tained with two-state bus cycles consisting only of
T1P and T2P .

Once a pipelined bus cycle is in progress, pipelined
timing is maintained for the. next cycle by asserting
NA # and detecting that the 386 Microprocessor en­
ters T2P during the current bus cycle. The current
bus cycle must end in state T2P for pipelining to be
maintained in the next cycle. T2P is identified by the
assertion 'Of ADS#. Figures 5-16 and 5-17 however,
each show pipelining ending after Cycle 4 because
Cycle 4 ends in T21. This indicates the 386 Micro­
processor didn't have an internal bus request prior
to the acknowledgement of Cycle 4. If a cycle ends·
with a T2 or T21, the next cycle will not be pipelined.

CLK2 [

(CLK) [

BEO #- BE1#. [
A2-A31.

~/IO#.D/C#

W/R# [

BS16# [

REAPY# [

LOCK# [

00-031 [

T1P

386TM MICROPROCESSOR

CYCLE .1
PIPELINED

(WRITE)

T2P T2P

ASSERTING NA# ~ORE
THAN ONCE OURING
ANY CYCLE HAS NO
ADDITIONAL EFFECTS

T1P

CYCLE 2
PIPELINED

(READ)

T2 T2P

NA# COULD HAVE
BEEN ASSERTED

IN T1 P IF DESIRED.
ASSERTION NOW IS

THE LATEST TI~E
POSSIBLE TO ALLOW

3861M CPU TO ENTER T2P
STATE TO ~AINTAIN

PIPELINING IN CYCLE 3

T1P

CYCLE 3
PIPELINED

(WRITE)

T21 T2P TIP

Figure 5-19. Details of Address Pipelining During Cycles with: Wait Stat.es

4-78

CYCLE 4
PIPELINED

(READ)

231630-23

386TM MICROPROCESSOR

HOLD ASSERTED

Bus Siates:

READY# ASSERTED­
HOLD NEGATED·

NO REQUEST

T1-first clock of a non-pipelined bus cycle (386™ CPU drives new ad­
dress and asserts ADS #).
T2-subsequent clocks of a bus cycle when NA # has not been sampled
asserted in the current bus cycle.
T21-subsequent clocks of a bus cycle when NA # has been sampled as­
serted in the current bus cycle but there is not yet an internal bus request
pending (386™ CPU will not drive new address or assert ADS#).
T2P'-subsequenl clocks of a bus cycle when NA # has been sampled
asserted in the current bus cycle and there is an internal bus request pend­
ing (386™ CPU drives new address and asserts ADS#).
T1 P-first clock of a pipelined bus cycle.
Ti-idle state.
Th-hold acknowledge state (386™ CPU asserts HLDA).
Asserting NA # for pipelined address gives access to three more bus
states: T21, T2P and T1 P.
Using pipelined address, the fastest bus cycle consists of T1 P and T2P.

REAOY# NEGATED

" ~
~

.~

I
0",

~~
~o

~~ ...
:/'8 ~
z~ ~

0 g

231630-24

Figure 5·20. 386TM Microprocessor Complete Bus States (Including pipelined address)

Realistically, address pipelining is almost always
maintained as long as NA # is sampled asserted.
This is so because in the absence of any other re­
quest, a code prefetch request is always internally
pending until the instruction decoder and code pre­
fetch queue are completely full. Therefore address
pipelining is maintained for long bursts of bus cycles,
if the bus is available (Le., HOLD negated) and NA#
is sampled asserted in each of the bus cycles.

5.4.3.6 PIPE LINED ADDRESS WITH DYNAMIC
DATA BUS SIZING

The BS16# feature allows easy interface to 16-bit
data buses_ When asserted, the 386 Microproces-

4-79

sor bus interface hardware performs appropriate ac­
tion to make the transfer using a 16-bit data bus
connected on 00-015.

There is a degree of interaction, however, between
the use of Address Pipelining and the use of Bus
Size 16_ The interaction results from the multiple bus
cycles required when transferring 32-bit operands
over a 16~bit bus. If the operand requires both 16-bit
halves of the 32-bit bus, the appropriate 386 Micro­
processor action is a second bus cycle to complete
the operand's transfer. It is this necessity that con­
flicts with NA # usage.

When NA# is sampled asserted, the 386 Microproc­
essor commits itself to perform the next internally

inter 386TM MICROPROCESSOR

pending bus request, and is allowed to drive the next
internally pending address onto the bus. Asserting
NA # therefore makes it impossible for the next bus
cycle to again access the current address on A2-
A31. such as may be required when 8816# is as­
serted by the external hardware.

sampled asserted in the current cycle. If NA# is
sampled asserted. the current data bus size is as­
sumed to be 32 bits.

2) To also avoid conflict, if NA# and 8816# are
both asserted during the same sampling window,
8816# asserted has priority and the 386 Micro­
processor acts as if NA # was negated at that
time. Internal 386 Microprocessor circuitry, shown
conceptually in Figure 5-18, assures that 8516#
is sampled asserted and NA# is sampled negat­
ed if both inputs are externally asserted at the
same sampling window.

To avoid conflict, the 386 Microprocessor is de­
Signed with following two provisions:

1) To avoid conflict, 8816# must be negated in the
current bus cycle if NA # has already been

A TRANSFER REQUIRING TWO
CYCLES ON 16-BIT BUS

PREVIOUS
CYCLE

T2P TIP

CYCLE I~YCLE IA
PIPELINED NON-PIPELINED

(WRITE WRITE)
PART ONE PART TWO

n n n n n

CLK2[

BEO#. BEI# [

BE2#, BE3#, [
A2, A31.

M/IO#,D/C#

-rm -V
-~ --
_IA

_V
-

rm rm rm rm rm rm
V V V V V V

ALWAYS

VALID I l/NEGATED DURING
PART TWO

VALID I

CYCLE 2
NON-PIPELINED

(READ)

T1 T2 T2P

rm rm rm
\J V V
I'(VALID 2 IX. VALID 3

IX VA 02 IX VALID 3

~ W/R#[

ADS#[i'--V !C NOTE: NA# MUS~~D IN THESE 1'S ~ ~
RECOGNITION Of ASSERTED 8S16# IN FINAL T2' ••

BSI6#[

READY#[

LOCK#[

I IXXX}(IY 'I V

}(IXXX)(IXXX)C

'5(m. '<X)C

dO-dl5

··--·0-{

~ IX DON'T CAR~Q ~

X)()(IJI. :XX

IS-BIT
BUS SIZE

XY w... '<:X

VALID I

dO-dl5

OUT

~ DC~ Q~;r; ~r0(1X. ~IXXX)(

32-Blt
BUSrlZI

XXX .<IXXXX ~ ~
IS-BIT

BUS SIZE

XY ~ ~X)C XY ~

~ VALID 2

d1S-d31 dO-dl

OUT }- ---- --~
5

d16-d31 d16-d31 I dl6-d 31 _cp-{ OUT)- -.-. --~
I I

Key: On = physical data pin n 231630-25
do = . logical data bit n

Cycle 1 is pipelined. Cycle 1 a cannot be pipelined. but its address can be inferred from that of Cycle 1. to externally simulate address pipelining
during Cycle 1 a.

Figure 5·21. USing NA # and BS 16 #

4-80

intJ 386TM MICROPROCESSOR

Certain types of 16-bit or 8-bit operands require no
adjustment for correct transfer on a 16-bit bus.
Those are read or write operands using only the low­
er half of the data bus, and write operands using
only the upper half of the bus since the 386 Micro­
processor simultaneously duplicates the write data
on the lower half of the data bus. For these patterns
of Byte Enables and the R/W# signals, B516#
need not be asserted at the 386 Microprocessor,
allowing NA # to be asserted during the bus cycle if
desired.

5.4.4 Interrupt Acknowledge (INTA)
Cycles

In response to an interrupt request on the INTR in­
put when interrupts are enabled, the 386 Micro-

PREVIOUS I
CYCLE

T2 T1

INTERRUPT
ACKNOWLEDGE

CYCLE 1

T2 T2 TI

processor performs two interrupt acknowledge cy­
cles. These bus cycles are similar to read cycles in
that bus definition signals define the type of bus ac­
tivity taking place, and each cycle continues until ac­
knowledged by READY # sampled asserted.

The state of A2 distinguishes the first and second
interrupt acknowledge cycles. The byte address
driven during the first interrupt acknowledge cycle is
4 (A31-A3 low, A2 high, BE3#-BE1# high, and
BEO# low). The address driven during the second
interrupt acknowledge cycle is 0 (A31-A2 low,
BE3#-BE1 # high, BEO# low).

IDLE
(4 BUS STATES)

Ti TI TI T1

INTERRUPT
ACKNOWLEDGE

CYCLE 2

T2 T21

IDLE

Ti

CLK2[_nIL nIL rut rtfL nIL nIL rut rIft nIL rut h1l rut

BEl #. BE2#. BE3# [

BEO#. A3-A31. [
M/IO#. D/C#. W/R#

LOCK#[

-V-V-V
XIXXXXY

XIXXX

XIXXXXY

XIXXXXIX-

"-I

V V-V-
x x

,(XXX Xxx

I,{XXX XXX
L?

V

V V V-V \J V
x x .XY ,(XX x J(

r-
x x ')(X- ,,(Xx x :)(

V
x x.x)(X- x xXX

V
~

"-/ ADS#[

NA#[x .XX IXXX ,(IXX IXXX IXXX xx .XX IXXXXX- ,(XXXX .xXX

READY#[

DO-D7[

D8-D31 [

x

x

. ----

. ----

xX

.xX

~ IGNORED IXIXXXX

IXXY ~\ /..xx
IGNORED

----- --{D---
IGNORED

_.'.-. --ep--

IXXX IXXX x

.XX xX Xxxx

----- ----- -----

---- ----- -----

Interrupt Vector (0-255) is read on DO-D7 at end of second Interrupt Acknowledge bus cycle.

xM ~

XX IXXT ~ m.
VECTOR

----- ---- --0---
IGNORED

----- ---- --ep---
231630-26

Because each Interrupt Acknowledge bus cycle is followed by idle bus· states. asserting NA # has no practical effect. Choose the approach
which is simplest for your system hardware design.

Figure 5·22. Interrupt Acknowledge Cycles

4·81

inter 386™ .MICROPROCESSOR

I CYCLE 1 I CYCLE 2· I
.. NON-.P.IPELINED NON-PIPELINED

(WRITE) (HALT)

T1 .T2.T1 T2

IDLE

TI TI TI

CLK2[

BEO#. BE1#. BE3#.[...... :7"" __ ±--n--;--""'ir'ft7~*'~'ft7t-386TM CPU REMAINS HALTED
M/IO#. W/R# ,~~~;w,Qj- UNTIL INTR. NMI OR

RESET IS ASSERTED.

BE2#. A2-A31.[I I
D/C# 386™ CPU RESPONDS TO

HOLD INPUT WHILE IN
ADS# [--+--+---+- THE HALT STATE.

NA#[~~~~~~~~_¥¥¥¥~~~~~~

- ~FLOATING~ - - _ ..

231630-27

Figure 5-23. Halt Indication Cycle

The LOCK# output is. asserted from thebeginning
of the first interrupt acknowledge cycle until the end
of the second interrupt acknowledge cycle. Four idle
bus states, Ti, are inserted by the 386 Microproces­
sor between the two interrupt acknowledge cycles,
allowing for compatibility with spec TRHRL of the'
8259A Interrup.f Controller.

During both.interrupt acknowledge cycles, 00-031
float. No data is read at tl')e end of the first interrupt
acknowledge cycle. At the end of the second inter~
rupt acknowledge cycle, the 386 Microprocessor will
read an external interrupt vector from OO~07 of the
data bus. The vector indicates the specific interrupt
number (from 0-255) requiring service.

5~4.5 Halt Indication Cycle

The 386 Microprocessor halts as a result of execut­
ing a HALT instruction. Signaling its entrance into
the halt state, a halt indication cycle is performed.
The halt indication cycle is identified by the state of
the bus definition signals shown in 5.2.5 Bus Cycle
Definition and a byte address of 2. BEO# and .
. BE2# are the only signals distinguishing halt indica­
tion from shutdown indication, which drives an ad­
dress of .0. During the halt cycle undefined data is
driven on 00-031. The halt indication cycle must be
ac;:knowledged by READY # asserted.

A halted 386 Microprocessor resumes execution
when INTR (if interrupts are enabled) or NMI or RE­
SET is asserted.

4-82

intJ 386TM MICROPROCESSOR

5.4.6 Shutdown Indication Cycle

The 386 Microprocessor shuts down as a result of a
protection fault while attempting to process a double
fault. Signaling its entrance into the shutdown state.
a shutdown indication cycle is performed. The shut­
down indication cycle is identified by the state of the
bus definition signals shown in 5.2.5 Bus Cycle Def­
Inition and a byte address of O. BEO# and BE2#

are the only signals distinguishing shutdown indica­
tion from halt indication. which drives an address of
2. During the shutdown cycle undefined data is driv­
en on 00-031. The shutdown indication cycle must
be acknowledged by READY # asserted.

A shutdown 386 Microprocessor resumes execution
when NMI or RESET is asserted.

ClK2[

(ClK) [

CYCLE 1
PIPELINED

(READ)

TI P T2P

CYCLE 2
PIPELINED

(SHUTDOWN)

TIP

I IDLE

T21 TI TI n n

BE1#. BE2#. BE3#.[-I~~~T"-+---TJ~~""~7Mb~d-386TM CPU REMAINS SHUTDOWN
M/IO#. W/R# UNTil NMI OR RESET

IS ASSERTED.

BEO#. A2-A31.[.K!'.:-mI~~~~*" I I
. D/C# -+....:..;,;;;;;.-+~~+ ____ -I'l~~~W;~~~~3a6TM CPU RESPONDS TO __ + __ +-__ +-_~I- HOLD INPUT WHilE IN

ADS# [THE SHUTDOWN STATE.

NA#[q::~~IOa~II..-~~~~~~~~~~.oj
BSI6#[

00-031 [

231630-28

Figure 5-24. Shutdown Indication Cycle

4-83

386™MICROPROCESSOR

5.5 OTHER FUN,CTIONAL
" DESCRIPTIONS

5.5.1 Entering and Exiting Hold
" Acknowledge

The" bus hold acknowledge state, Th, is entered in
response to the HOLD input being asserted. In the
bus hold acknowledge state, the 386 Microproces­
sor floats all output or bidirectional Signals, except
for HLDA. HLDA is asserted as long as the 386 Mi­
croprocessor remains in the bus hold acknowledge
state. In the bus hold acknowledge state, all inputs
except HOLD, RESET, BUSY #, ERROR #, and
PEREQ are ignored (also up to one rising edge on
NMI is remembered for processing when HOLD is
no longer asserted).

CLK~[

(CLK) [

HOLD [

HLDA[-+---f

BEO#-BE3# [m~iid,
A2":A31.1I/10#

D/CI. W!R#

ADS#[

IDLE

"---- (FLOATlNG)----

NA# [.Qj'l~oCjQo~~~~~~~
BS161[~~7dI~~~~~~~~

READY#[~~~~~o.oo.olOo'l~~~
LOCKI[4C~II:i{.--- (FLOATlNG)----

, I
00- D3{ _ _ ____ Fl-2AJI!I~ ___ _

231630-29
NOTE:
For maximum design flexibility the 386TM Microproces­
sor has no internal pullup resistors on its outputs. Your
design may require an external pullup on ADS# and
other 386™ CPU outputs to keep them negated during
float periods. .

Figure 5-25. Requesting Hold from Idle Bus

Th may be entered from a bus idle state as in Figure
5-25 or after the acknowledgement of the current
physical bus cycle if the LOCK # signal is not assert­
ed, as in Figures 5-26 and 5-27. If HOLD is asserted
during a locked bus cycle, the 386 Microproces-

sor may execute, ona lmlocked bUI! cycle before ac­
knowledging HOLD. If asserting BS16# requires a
second 16-bit bus cycle to complete a physical oper­
and transfer, it ,is performed, befo~e HOLD is ac­
knowledged, although the bus state diagrams inJ:=ig­
ures 5-13 and 5-20 do not indicate that detail.

'Th is exited.in respo!]se to thlil HOLD input being
negated. The following state will be, Ti as in Figure
5-25 if no bus request is pending. The following bus
state will be T1 if a bus request is internally pending,
as in Figures ,5-26 and 5-27.

Th is also exited in resporse to RESET being assert­
ed.

If 'a rising edge occurs on the edge-triggered NMI
input while in Th, the event is remembered as a non­
maskable interrupt 2 arid is serviced when Th is exit­
ed, unless of course, the 386 Microprocessor is re­
set before Th is exited.

5.5.2 Reset During Hold Acknowledge

R,E$ET being aSSerted takes priority over HOLD be­
ing asserted. Therefore; Th is exited in reponse to
the RESET input being asserted. If RESET is assert­
ed while HOLD remains asserted, the 386 Micro­
processor dri,ves its pins to defined states during re­
set, as in Table 5-3 Pin State During Reset, and
performs internal reset activity as usual.

If HOLD remains asserted when RESET is negated,
tl'1e, 386 Microprocessor enters the hold acknowl­
edge state before performing its first bus cycle, pro­
vided HOLD is still asserted when the 386 Micro­
processor would otherwise perform its first bus
cycle. If HOLD remains asserted when RESET is
negated, the BUSY'# input is still sampled as usual
to determine whether a self test is being requested,
and ERROR # is still sampled as usual to determine
whether an 80387 vs. an 80287 (or none) is present.

5.5.3 Bus Activity During and
Following Reset

'RESET is the highest priority input signal, capable of "
interrupting any processor activity when it is ~ssert­
ed. A bus cycle in progress can be aborted at any
stage, or idle states or bus hold acknowledge states
discontinued so that the reset state is established.

RESET should remain asserted for at least 15 CLK2
periods to ensure it is recognized throughout the,386
Microprocessor, and at least 78 CLK2 periods if 386
Microproce~sor self-test is going to be requested at
the falling edge. RESET asserted pulses less than
15 CLK2 periods may not be recognized. RESET
pulses less than 78 CLK2 periods followed by a

4-84

intJ 386™ MICROPROCESSOR

CYCLE 1
NON-PIPELINED

(READ)

HOLD
ACKNOWLEDGE

CYCLE 2
NON-PIPELINED

(WRITE)

. CLK2[

(CLK>[

HOLD [

Tl T2 T2 Th Th T1 T2

HLDA [+--+--+-+-r
BEOtll-BE311.A2-A31. [

M/IO#. D/CII. W /RII

ADSII[

NAII[~~0k7~~~~~~~~~~~

BSI6#[~~~~~
NOTE: IF ASSERTING BS 16#
REQUIRES A SECOND BUS
CYCLE TO BE PERFORMED.
THE SECOND CYCLE IS
PERFORMED BEFORE
HOLD ACKNOWLEDGE

VALID 2

OUT

231630-30

NOTE:
HOLD is a synchronous input and can be asserted at any CLK2'edge. provided setup and hold (t23 and t24) require­
ments are met. This waveform is useful for determining Hold Acknowledge latency.

Figure 5-26. Requesting Hold from Active Bus (NA # negated)

self-test may cause the self-test to report a failure
when no true failure exists. The additional RESET
pulse width ·is required to clear additional state prior
to a valid self-test.

Provided the RESET falling edge meets setup and
hold times t25 and t26, the internal processor clock
phase is defined at that time, as illustrated by Figure
5-28 and Figure 7-7.

A 386 Microprocessor self-tesf may be requested at
the time RESET is negated by having the BUSY #
input at a LOW level. as shOwn in Figure 5-28. The
self-test requires (220) + approximately 60 CLK2
periods to complete. The self-test duration is not af­
fected by the test results. Even if the self-test ilidi-

4-85

cates a problem, the 386 Microprocessor attempts
to proceed with the reset sequence ~tterwards.

Atter the RESET falling edge (and atter the self-test
if it was requested) the 386 Microprocessor per­
forms an internal initialization sequence for approxi­
mately 350 to 450 CLK2 periods. Also during the
initialization, between the 20th CLK2 period and the
first bus cycle, the ERROR # input is sampled to de­
termine the presence of an 80387 coprocessor ver­
sus the presence of an 80287 (or no coprocessor).
During this time period,BUSY # must be HIGH. To
distinguish between an 80287 being present and no
-coprocessor being present requires a software test.

386™ MICROPROCESSOR

NOTE:

CLK2[

HOLD [

HLDA[

8EO#-8E3#, A2-A31, [
M/IO#, D/C#, W/R#

ADS#[

8S16#[

T1P

CYCLE 1
PIPELINED

(WRITE)

T21

HOLD CYCLE 2
ACKNOWLEDGE NON-PIPELINED

(READ)

T21 Th Th T1 T2

231630-31

HOLD is a synchrc;mous input and can· be asserted at any CLK2 edge, provided setup and hold (t23 and (24) require­
ments are met. This waveform is useful for determining Hold Acknowledge latency.

Figure 5-27. Requesting Hold from Active Bus (NA# asserted)

5.6 SELF-TEST SIGNATURE

Upon completion of self-test, (if self-test was re­
quested by holding BUSY# LOW at least eight
CLK2 periods before and after the falling edge of
RESET), the EAX register will contain a signature of
OOOOOOOOh indicating the. 386 Microprocessor
passed its self-test of microcode and major PLA
contents with no problems detected. The passing
signature in EAX, OOOOOOOOh, applies to all 386 Mi­
croprocessor revision levels. Any non,zero signature
indicates the 38!:) Microprocessor unit is faulty.

5.7 COMPONENT AND REVISION
IDENTIFIERS

To assist 386 Microprocessor users, the 386 Micro­
processor after reset holds a component identi-

fier and a revision identifier in its OX register. The
uppe~ 8 bitso! OX hold 03h as identification of the
386 Microprocessor component. The lower 8 bits of
PX hold an 8-bit unsigned. binary. number related to
the component revision level.. The revision identifier
begins chronologically with a value zero and is sub­
jectto change (typically it will be incremented) with,
component steppings intended to have certain im­
provemen~s or distinctions from previous step pings.

I '
These features are intended to assist 386 Micro­
processor users to a practical extent. However, the
revision identifier value is not guaranteed to change
with every stepping revision, or to follow a complete­
Iy. uniform numerical sequence, depending on the
type or intention of revision, or manufacturing mate­
rials required to be, changed. Intel has sole .discre­
tianov,er these characteristics of the component.

ClK2[

RESET [

ClK (INTERNAL) [

BUSY# [

ERROR# [

BEO#-BE3#.
W/R#.M/IO#. [

HlDA

A2-A31. [
D/C#.lOCK#

ADS# [

NA# [

BS16# [

READY# [

386TM MICROPROCESSOR

INTERNAL
I+----RESET-----I---INITIALIZATION-----~
~ 15 ClK2 DURATION IF
NOT GOING TO REQUEST
SELF-TEST.

00-031# [.... ~_~~

NOTES:

CYCLE 1

NON-PIPELINED
(READ)

T1 T2

231630-32

1. BUSY # $hould be held stable for 8 CLK2 periods before and after the CLK2 period in which RESET falling edge
occurs.
2. If self-test is requested. the 386TM Microprocessor outputs remain in their reset state as shown here and in Table 5-3.

Figure 5-28. Bus Activity from Reset Until First Code Fetch

Table 5-10. Component and Revision Identifier History

386™ CPU
Component Revision

386™ CPU
Component Revision Stepping Stepping

Name
Identifier Identifier

Name
Identifier Identifier

80 03 03 DO 03 05
81 03 03

4-87

inter 386TM MICROPROCESSOR

5.8 COPROCESSOR INTERFACING

The 386 Microprocessor provides an automatic in­
terface for the Intel 80387 numeric floating-point co­
processor. The 80387 coprocessor uses an 1/0-
mapped interface driven automatically by the 386
Microprocessor and assisted by three dedicated sig­
nals: BUSY #, ERROR #, and PER EO.

As the 386 Microprocessor begins supporting a co­
processor instruction, it tests the BUSY # and
ERROR # signals to determine if the coprocessor
can accept its next instruction. Thus, the BUSY #
and ERROR # inputs eliminate the need for any
"preamble" bus cycles for communication between
processor and coprocessor. The 80387 can be giv­
en its command opcode immediately. The dedicated
signals provide instruction synchronization, and
eliminate the need of using the 386 Microprocessor
WAIT opcode (9Bh) for 80387 instruction synchroni­
zation (the WAIT opcode was required when 8086 or
8088 was used with the 8087 coprocessor).

Custom coprocessors can be included in 386 Micro­
processor-based systems, via memory-mapped or
I/O-mapped interfaces. Such coprocessor interfac­
es allow a completely custom protocol, and are not
limited to a set of coprocessor protocol "primitives".
Instead, memory-mapped or I/O-mapped interfaces
may use all applicable 386 Microprocessor instruc­
tions for high-speed coprocessor communication.
The BUSY # and ERROR # inputs of the 386 Micro­
processor may also be used for the custom coproc­
essor interface, if such hardware assist is desired.
These Signals can be tested by the 386· Microproc­
essor WAIT opcode (9Bh). The WAIT instruction will
wait until the BUSY # . input is negated (interruptable
by an NMI or enabled INTR input), but generates an
exception 16 fault if th~ ERROR# pin is in the as­
serted state when the BUSY # goes (or is) negated.
If the custom coprocessor interface is memory­
mapped, protection of the addresses used for the
interface can be provided with the 386 Microproces-

4-88

sor on-chip paging or segmentation mechanisms. If
the custom interface is I/O-mapped, protection of
the interface can be provided with the 386 Micro­
processor 10PL (1/0 Privilege Level) mechanism.

The 80387 numeric coprocessor interface is 1/0
mapped as shown in Table 5-11. Note that the
80387 coprocessor interface addresses are beyond
the Oh·FFFFh range for programmed 1/0. When the
386 Microprocessor supports the 80387 coproces­
sor, the 386 Microprocessor automatically generates
bus cycles to the coprocessor interface addresses.

Table 5-11. Numeric Coprocessor
Port Addresses

Address In 80387
386TM CPU Coprocessor
1/0 Space Register

800000F8h Opcode Register
(32-bit port)

800000FCh Operand Register
(32-bit port)

To correctly map the 80387 registers to the appro­
priate I/O addresses, connect the 80387 CMDO#
pin directly to the A2 output of the 386 Microproces­
sor.

5.8.1 Software Testing for
Coprocessor Presence

When software is used to test for coprocessor
(80387) presence, it should use only· the following
coprocessor opcodes: FIN IT, FNINIT, FSTCW mem,
FSTSW mem, FSTSW AX. To use other ,coproces­
sor opcodes when a coprocessor is known to be not
present, first set EM = 1 in 386 Microprocessor
CRO.

intJ 386TM MICROPROCESSOR I'f
Ii
I': 6. MECHANICAL DATA vee and GND connections must be made to multi· "

"

pie Vee and Vss (GND) pins. Each Vee and Vss If
must be connected to the appropriate voltage level. ij

6.1 INTRODUCTION The circuit board should include Vee and GND ~ planes for power distribution and all Vee and Vss
In this section, the physical packaging and its con· pins must be connected to the appropriate plane.
nections are described in detail.

NOTE:
Pins identified as "N.C." should remain completely

6.2 PIN ASSIGNMENT unconnected.

The 386 Microprocessor pinout as viewed from the
top side of the component is shown by Figure 6·1.
Its pinout as viewed from the Pin side of the compo·
nent is Figure 6·2.

p N M L K H G F" E 0 C B A

,.. ,.. ,.. ,.. ,.. ,.. ,.. ... ,.. ,.. ,.. ,.. ,..
A30 A27 A26 A23 A21 A20 A17 A16 AI5 A14 All AS VSS

2
,.. ,.. ,.. ,.. ,.. ,,.. ,.. ,.. ,.. ,.. ,.. ,..

"'"
,..

2
vee A31 A29 A24 A22 VSS A18 vee vss AI3 AIO A7 AS VSS

3
,.. ,.. ,.. ,.. ,.. ,.. ,.. ,.. ,.. ,.. ,.. ,.. ,..

3
030 VSS vee A28 A25 'Iss A19 vee VSS A12 A9 A6 M A3

4
,.. ,.. ,.. ,.. ,.. ,..

4
D29 vee vss A2 NC NC

5
,.. ,.. ,.. ,.. ,..

5
D26 D27 031 vee VSS VCC

6
,.. ,.. ,.. ,.. ,.. ,..

6
VSS 025' 1>28 NC NC VSS

7
,.. ,.. ,.. ,.. ,.. ,..

7
D24 VCC VCC NC INTR vee

8
,.. ,.. ,.. ,.. ,.. ,..

8
vee D23 VSS PEREQ NMI ERRORii'

9 ,.. ,.. ,.. ,..
9

022 D21 D20 RESET BUSYiI' VSS

10
,.. ,.. ,.. ,.. ,..

10
D19 DI7 VSS LOCKiI' W/RiI' vee

11
,.. ,.. ,.. ,.. ,.. ,..

11
D18 D16 D15 vss vss D/CiI'

12
,.. ,.. ,.. ,.. ,.. ,.. ,.. ,.. ,.. ,.. ,.. ,.. ,.. ,..

12
D14 D12 Dl0 vee D7 VSS DO VCC CLK2 BEOil' VCC vee NC 101/10#

13
,.. ,.. ,.. ,.. ,.. ,.. ,.. ,.. ,.. ,.. ,.. ,.. ,.. ,..

13 ,
DI3 Dl1 vee D8 D5 VSS Dl R'EADY# NC NC NAtI' BE1# BE2# BE3#

14
,.. ,.. ,.. ,.. ,.. ,.. ,.. ,.. ,.. ,.. ,.. ,.. ,..

14 '
VSS DB HLDA 06 D4 D3 D2 vee VSS ADS# HOLD BSI6#, VSS VCC

P N M L K H G F" E 0 C B A
231630-33

Figure 6-1. 386TM Microprocessor PGAPlnout-Vlew from Top Side

4·89

386TM MICROPROCESSOR

A B C D £ F G H K L M N P

0 0 0 0 0 0 0 0 0 0 0 0 0
VSS, A8 All AI. A15 A16 A17 A20- A21 A23 A26 A27 A30

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
VSS 'AS A7 Al0 A13 VSS VCC A18 VSS A22 A2. A29 A31 vee

3 0 0 0 0 0 0 o -0 0 0 0 0 0 0 3
A3 A. A6 A9 A12 VSS vee A19 VSS A25 A28 vee VSS 030

• 0 0 0 0- 0 0 • NC NC A2 VSS vee 029

5 0 0 0 0 0 0 5
vee VSS vee 031 027 026

0 0 0
METAL LID

0 0 0 6 6
VSS NC NC 028 025 VSS

7 0 0 0 0 0 0 7
vee INTR NC VCC VCC 02.

8 0 0 0 0 0 0 8
ERROR# NMI PEREQ VSS 023 vee

9 0 0 0 0 0 0 9
VSS BUSY# RESET 020 021 022

10 0 0 0 0 0 0 10
vee W/R# LOCK# VSS 017 019

11 0 0 0 0 0 0 11
O/C# VSS VSS 015 016 018

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12
101/10# NC vee VCC BEO# CLK2 vcc DO VSS 07 vee 010 012 01.

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13
BU# BE2# BEl #, NA# NC NC REAOY# 01 VSS D5 DB vee 011 013 ,. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ,.
vee VSS BSI6# HOLD AD5# VSS vee 02 03 D4 06 HLDA D9 VSS

A B C D E F G H K L M, N P
231630-34

Figure 6-2. 386TM Microprocessor PGA Pinout-View from Pin Side

/

4·-90

intJ 386™ MICROPROCESSOR

Table 6-1. 386TM .Mlcroprocessor PGA Plnout-Functlonal Grouping

Pin/Signal Pin/Signal Pin /Slgnal PlnJ Signal

N2 A31 M5 031 A1 Vee A2 Vss
P1 A30 P3 030 A5 Vee A6 Vss
M2 A29 P4 029 A7 Vee A9 Vss
L3 A28 M6 028 A10 Vee B1 Vss
N1 A27 N5 027 A14 Vee B5 Vss
M1 A26 P5 026 C5 Vee B11 Vss
K3 A25 N6 025 C12 Vee B14 Vss
L2 A24 P7 024 012 Vee C11 Vss
L1 A23 N8 023 G2 Vee F2 Vss
K2 A22 P9 022 G3 Vee F3. Vss
K1 A21 N9 021 G12 Vee F14 Vss
J1 A20 M9 020 G14 Vee J2 Vss
H3 A19 P10 019 L12 Vee J3 Vss
H2 A18 P11 018 M3 vee J12 Vss
H1 A17 N10 017 M7 Vee J13 Vss
G1 A16 N11 016 M13 Vee M4 Vss
F1 A15 M11 015 N4 Vee M8 Vss-
E1 A14 P12 014 N7 Vee M10 Vss
E2 A13 P13 013 P2 VCC' N3 Vss
E3 A12 N12 012 P8. Vee , P6 Vss
01 A11 N13 011 P14 Vss
02 A10 M12 010
03 A9 N14 09 F12 CLK2 A4 N.C;
C1 A8 L13 08 B4 N.C.'
C2 A7 K12 07 E14 AOS# B6 N.C.
C3 A6 L14 D6 B12 N.C.
B2 A5 K13 05 B10, W/R# C6 N.C.
B3 A4 K14 04

...
A11 O/C# C7 N.C.

A3 A3 . J14 03 A12 MIIO# E13 N.C .
C4 A2 . H14 02 C10 LOCK# F13 N.C.
A13 BE3# H13 01
B13 BE2#- H12 DO 013 NA# C8 PEREQ
C13 BE1# C14 BS16# B9 BUSY #
E12 BEO# G13 REAOY# A8 ERROR#

014 HOLO
C9 RESET M14 HLOA B7 INTR B8 NMI

4.91

intJ 386™MICROPROCESSOR

'"' '"' '"' ~ ~ i N 0> ,..,
0> I/')

~ CO ~ "; CI! OJ "l - CO
.::. e e ~ .::. -......

LIN 111 POSITION

1 .@@@@@@'I@@@@@@@
2 @@@@@@@@@@@@@@
3 @@~@@@@,@@@@~@@

4 @@@ @@@
5 @@@ , @@@
6 @@@ I @@@

7 @@@ + @@@
8 -@@@ -- -- @@@

9 @@@ I @@@
10 @@@ @@@
11 @@@ @@@
12 @@~@@@@,@@@@ @@
13 @@@@@@@I@@@@@@@
14 @@@@@@@,@@@@@@@

0
";
GO
.::.
I/')
N
":

C D E F G H J K L
.020 (0.508)
MIN TYP
.070 (1.777) DIA
TYP BRAZE PAD

1------1.450(36.802)

M N P I~ .020 -I
(0.508) • .

.725 (18.401)

.650 (16.497)

.550 (13.959)

.450 (11.421)

.350 (8.883)

.250 (6.345)

.150(3.807)

.050 (1.269)
o

SWEDGE PIN
STANDOFF
(4) PLACES

MAX TYP . "
.057(1.269) ll-

.001 (0.025) R
MIN TYP

.018 (0.47) '"l
DIA TYP L c::~tIi'

",<,-".~I .~
.110(2::U

231630-35

Figure 6·3. 132·Pin Ceramic PGA Package Dimensions

6.3 Package Dimensions and
Mounting .

The initial 386 Microproces~or package is a 132-pin
ceramic pin grid array (PGA). Pins of this package
are arranged 0.100 inch (2.54mm) center-to-center,
in a 14 X 14 matrix,three rows around.

4-92

A wide variety of available sockets allow low inser­
tion force or zero insertion- force mountings, and a
choice of terminals such as soldertail, surface
mount, or wire wrap. Several applicable sockets are
listed in Table 6-2.

inter
6.4 PACKAGE THERMAL

SPECIFICATION

388TM MICROPROCESSOR

in any environment, to determine whether the 386
Microprocessor is within specified operating range.

The 386 Microprocessor is specified for operation
when case temperature is within the range of O"C-
85·C. The case temperature may be measured

The PGA case temperature should be measured at
the center of the top surface opposite the pins, as in
Figure 6·4.

231630-36

Figure 6-4. Measuring 386TM Microprocessor PGA Case Temperature

Table 6-2. Several Socket Options for 132-Pln PGA

• Low Insertion force (lIF) soIdertaii
55274-1

• Amp tests Indicate 50% reduction in Insertion
force compared to machined sockets

Other socket options
• Zero insertion force (ZIF) solderlall

55563·1
• Zero insertion force (ZIF) Burn-ln version

55573·2

Amp Incorporated
(Harrisburg. PA 17105 U.S.A.
Phone 717.564-(100)

231630-45
Cam handle locks in low profile position when substrate Is installed (handle UP for
open and DOWN for closed positions)

courtasy Amp Incorporated

4-93

386™ MICROPROCESSOR

Table 6-2 Several Socket Options for 132-Pin PGA (Continued)

Peel-A-WayTM Mylar and Kapton
Socket Terminal Carriers

Peel-A-Way Carrier No. 132:
Kapton Carrier is KS132
Mylar Carrier is MS132 • Low insertion force surface

mount CS132-37TG

• Low insertion force soldertail
CS132-01TG

Molded Plastic Body KS 132
is shown below:

• Low insertion force wire-wrap
CS 132'()2TG (two level)
CS132'()3TG (three-level)

• ~~~ 3~~~~~~n force press-fit

Advanced Interconnections
(5 Division Street
Warwick, AI 02818 U.S.A.
Phone 401 -885-0485)

• Low insertion force socket soldertail
(for production use)
2XX-6576-00-3308 (new style)
2XX-6003-00-3302 (older style)

• Zero Insertion force soldertail
(for test and burn-in use)
2XX-6568-00-3302

Textool Products
Electronic Products Division/3M

(1410 West Pioneer Drive
Irving, Texas 75601 U.S.A.
Phone 214-259-2676)

FOOT PRINT NO. 132

f- 1.400 80;--1 r II
I Iii ::::::=::i.

-of to- .100TYP

14x 14x3ROW8

231630-46

SOLOER TAIL .01 LOW PROFILE PRESS FIT-OS rr B. I' 1-4
. 4.1.

:iii :iii

~. -+
Lft
Fe

~
bDlA. ~.~::. DIA.

:: DlA. --- !!!I::!!!y •. T:!!: --- 1 ...

WIRE WRAP-<I2/-03 SOLDER TAIL-33 SURFACE MOUNTING ·37

f "l
PEEL-A-WAY IT :r.a 'cr Y. -u

....
:iii ZLEVEL fj . ..!:!l. ~ .!!:!!..os

.• 11

.... 3LEVEL ---1
.:-I~ ~

F I

DIA.

231630-47
courtesy Advanced Interconnections

(Peel-A-Way Terminal Carriers
U.S. Patent No. 4442938)

I

"11._ .. - ._11 ~
'i.

courtesy Textool Products/3~ 231630-48

Table 6-3. 386™ Microprocessor PGA Package Thermal Characteristics

Thermal Resistance - "e/Wall

Airflow - ft./mln (m/sec)

Parameter 0 50 100 200 400 600 800 8Ja
(0) (0.25) (0.50) (1.01) (2.03) (3.04) (4.06)

8 Junction-to-Case 2 2 2 2 2 2 2

8
JPI"rr 8Jc (case measured

as Fig. 6-4)

8J cap I 8 Case-to-Ambient 19 18 17 15 12 10 9
(no heatsink)

UUU UUU 8 Case-to-Ambient 16 15 14 12 9 7 6
(with omnidirectional
heatsink)

8 Case-to-Ambient
231630-72

15 14 13 11 8 6 5
(with unidirectional
heatsink)

NOTES:
1. Table 6-3 applies to 386T .. CPU PGA 3. 8J-CAP ~ 4"C/w (approx.)
plugged into socket or soldered directly 8 J.PIN =' 4"C/w Onner pins) (approx.)
into board. 8J-PIN ~ S"C/w (outer pins) (approx.)
2. 8JA ~ 8JC + 8CA.

4-94

inter 386TM ·MICROPROCESSOR

7. ELECTRICAL DATA

7.1 INTRODUCTION

The following sections describe recommended elec­
trical connections for the 386 Microprocessor, and
its electrical specifications.

7.2 POWER AND GROUNDING

7.2.1 Power Connections

The 386 Microprocessor is implemented in CHMOS
III and CHMOS IV technology and has modest pow­
er requirements. However, its high clock frequency
and 72 output buffers (address, data, control, and
HLDA) can cause power surges as multiple output
buffers drive new signal levels simultaneously. For
clean on-Chip power distribution at high frequency,
20 Vee and 21 Vss pins separately feed functional
units of the 386 Microprocessor.

Power and ground connections must be made to all
external Vee and GND pins of the 386 Microproces­
sor. On the circuit board, all Vee pins must be con­
nected on a Vee plane. All Vss pins must be like­
wise connected on a GND plane.

7.2.2 Power Decoupling
Recommendations

Liberal decoupling capacitance should be placed
near the 386 Microprocessor. The 386 Microproces­
sor driving its 32-bit parallel address and data buses
at high frequencies can cause transient power
surges, particularly when driving large capacitive
loads.

Low inductance capacitors and interconnects are
recommended for best high frequency electrical per­
formance. Inductance can be reduced by shortening
circuit board traces between the 386 Micropro-

cessor and decoupling capacitors as much as possi­
ble. Capacitors specifically for PGA packages are
also commercially available, for the lowest possible
inductance.

7.2.3 ReSistor Recommendations

The ERROR # and BUSY # inputs have resistor pull­
ups of approximately 20 Kfi built-in to the 386 Micro­
processor to keep these signals negated when nei­
ther 60287 or 60367 are present in the system (or
temporarily removed from its socket). The BS16#
input also has an internal pullup resistor of approxi­
mately 20 Kfi, and the PEREQ input has an internal
pulldown resistor of approximately 20 Kfi.

In typical deSigns, the external pullup resistors
shown in Table 7-1 are recommended. However, a
particular design may have reason to adjust the re­
sistor values recommended here, or alter the use of
pullup resistors in other ways.

7.2.4 Other Connection
Recommendations

For reliable operation, always connect unused in­
puts to an appropriate signal level. N.C. pins should
always remain unconnected.

Particularly when not using interrupts or bus hold,
(as when first prototyping, . perhaps) prevent any
chance of spurious activity by connecting these as­
sociated inputs to GND:

Pin

B7
B6
014

Signal

INTR
NMI
HOLD

If not using address pipelining, pull up 013 NA# to
Vee· . .

If not using 16-bit bus size, pullup C14 BS16# to
Vee· .

Pullups in the range of 20 Kfi are recommended.

Table 7·1. Recommended ReSistor Pullups to Vee

Pin and Signal PuliupYalue Purpose

E14 ADS# 20 Kfi ±10% Lightly Pull ADS# Negated
During 386TM Microprocessor

! Hold Acknowledge States

C10 LOCK # 20Kfi ±10% Lightly Pull LOCK # Negated
During 386TM Microprocessor
Hold Acknowledge States

4-95

inter 386TM MICROPROCESSOR

7.3 MAXIMUM RATINGS

Table 7·2. Maximum Ratings

386™ CPU
Parameter 16, 20, 25 MHz

Maximum Rating

Storage Temperature - 65·C to + 150·C
Case Temperature Under Bias -65·Cto +1100C
Supply Voltage with Respect to Vss -0.5Vto +6.5V
Voltage on Other Pins -0.5VtoVcc + 0.5V

7.4 D.C. SPECifiCATIONS

Table 7·2 is a stress rating only, and functional oper­
ation at the maximums is not guaranteed. Functional
operating conditions are given in 7.4 D.C. Speclflca·
tlons and 7.5 A.C. Specifications.

Extended exposure to the Maximum Ratings may af­
fect device reliability. Furthermore, although the 386
Microprocessor contains protective circuitry to resist
damage from static electric discharge, always take
precautions to avoid high static voltages or electric
fields.

Functional Operating Range: Vcc = 5V ±5%; TCASE = O·C to 85°C

Table 7·3 386TM Microprocessor D.C Characteristics

386TM CPU

Symbol Parameter 16 MHz, 20 MHz, Unit Test
25 MHz Conditions

.. Min Max

Vil Input Low Voltage -0.3 0.8 V (Note 1)

VIH Input High Voltage 2.0 Vce + 0.3 V

Vile CLK2 Input Low Voltage -0.3 0.8 V (Note 1)

VIHe CLK21nput High Voltage
16 MHz and 20 MHz Vec -0.8 Vce + 0.3 V
25 MHz 3.7 Vce + 0.3 V

VOL Output Low Voltage
IOl = 4 mA: A2-A31, 00-031 0.45 V
IOl = 5 mA: BEO#-BE3#, W/R#, 0.45 V

O/C#, M/IO#, LOCK#, AOS#, HLOA

VOH Output High Voltage
IOH = 1 mA: A2-A31, 00-031 2.4 V
IOH = 0.9 mA: BEO#-BE3#, W/R#, 2.4 V

O/C#, M/IO#, LOCK#, AOS#, HLOA

lu Input Leakage Current ±15 p.A OV:O;; VIN:O;; Vee
(For All Pins except BS 16 # , PEREQ,
BUSY #, and ERROR #)

IIH Input Leakage Current 200 p.A VIH = 2.4V (Note 2)
(PEREQ Pin)

I,L Input Leakage Current -400 p.A VIL = 0.45 (Note 3)
(BS16#, BUSY#, and ERROR# Pins)

ILO Output Leakage Current ±15 p.A 0.45V :0;; VOUT :0;; Vee

Icc Supply Current
CLK2 = 32 MHz: with 16 MHz 386™ CPU 450 mA Icc Typ. = 370 mA
CLK2 = 40 MHz: with 20 MHz 386TM CPU 500 mA Icc Typ. = 460 mA
CLK2 = 50 MHz: with 25 MHz 386™ CPU 550 mA Icc Typ. = 580 mA

CIN Output Capacitance 10 pF Fc = 1 MHz (Note 4)

COUT Output or I/O Capacitance 12 pF Fe = 1 MHz (Note 4)

CClK CLK2 Capacitance 20 pF Fc = 1 MHz (Note 4)

NOTES:
1. The min value, - 0.3, is not 100% tested.
2. PEREO input has an internal pulldown resistor.
3. BS16#, BUSY# and ERROR# inputs each have an internal pullup reSistor.
4. Not 100% tested.

4-96

intJ 386TM MICROPROCESSOR

7.5 A.C. SPECIFICATIONS

7.5.1 A.C. Spec Definitions

The A.C. specifications, given in Tables 7-4, 7-5, and
7-6, consist of output delays, input setup require­
ments and input hold requirements. All AC. specifi­
cations are relative to the CLK2 rising edge crossing
the 2.0V level: .

A.C. spec measurement is defined by Figure 7-1. In­
puts must be driven. to the voltage levels indicated
by Figure 7-1 when AC. specifications are mea"
sured. 386 Microprocessor output delays are speci­
fied with minimum and maximum limits, measured as
'shown. The minimum 386 Microprocessor delay

times are hold times provided to external circuitry.
386 Microprocessor input setup and hold times are
specified as minimums, defining the smallest ac­
ceptable sampling window. Within the sampling win­
dow, a synchronous input signal must be stable for
correct 386 Microprocessor operation.

Outputs NA#, W/R#, D/C#, M/IO#, LOCK#,
BEO#-BE3#, A2-A31 and HLDA only change at
the beginning of phase one. 00-031 (write cycles)
only change at the beginning of phase two. The
READY #, HOLD, BUSY #, ERROR #, PEREQ and
00-031 (read cycles) inputs are sampled at the be­
ginning of phase one. The NA#, 8516#, INTR and
NMI inputs are sampled at the beginning of phase
two. '

Tx

CLK2 [J~;t~~~:~~:J~2~V~~ OWUTS,
(A2-A31. D/C,. BEON-BE31. [

'--___ ~ 2V

ADSII.IiI/IOI.W!JlII.LOCK/I.HLDA) ..iIII,II;I/,I...II...;;';;;';'~~~~::::!~E~Mbl~ __ l __
OUTPUTS [

(DO-D31)

INPUTS
(NAIl. BSI6,. [

INTR.NIiII)

. INPUTS
(READY,. HOLD. BUSY#. [

ERROR,. PEREq. DO-D31)

VALID OUTPUT n 1.5V

LEGEND:

NOTES:

(A}-IiIAXIIiIUIii OUTPUT DELAY SPEC.

@-IiIINIIiIUIii OUTPUT DELAY SPEC.

@-IiIINIIiIUIii INPUT SETUP SPEC.

@-IiIINIIiIUIii INPUT HOLD SPEC.

1. Input waveforms have tr' S:. 2.0 ns from O.SV to 2.0V.
2. See section 7.5;6 for typical output rise time versus load capaCitance.

Figure 7-1. Drive Levels and Measurement Points for A.C. Specifications

4-97

231630-37

j
'~ I,
i]

I
::

),'
I,
I
i'l

~

1:1
if I,
I
!

inter 386TMMICROPROCESSOR

7.5.2 A.C. Specificatioll'Tables
Functional Operating Range: Vee = 5V ±5%; TeAsE = O°C to +B5°C

Table 7·4. 25 MIi% 386TM Microprocessor A.C. Characteristics

25 MHz Ref. Symbol Parameter 386TM CPU Unit Fig. Notes

Min Max

Operating Frequency 4 25 MHz Half of CLK2 Frequency

t1 CLK2 Period 20 125 ns 7-3

t2a CLK2 High Time 7 ns

t2b CLK2 High Time 4 .V

t3a CLK2 Low Time

t3b CLK2 Low Time

t4 CLK2 Fall Time

t5 CLK2 Rise Time O.BVto 3.7V

t6' A2-A31 Valid Delay CL = 50pF

t7 A2-A31 Float Delay (Note 1)

tB 8EO#-8E3# Valid Delay CL = 50pF

tBa 7-5 CL = 50pF

t9 ns 7-6 (Note 1)

t10" ns 7-5 CL= 50pF

t11 30 ns 7-6 (Note 1)

t12" 27' ns 7-5A CL= 50pF

t12a 2 7-58 CL = 50pF

t13 4 22 ns 7-6 (Note 1)

t14 4 22 ns 7-6 CL = 50 pF

t15 7 ns 7-4

t16 3 ns 7-4

t17 8S16# Setup Time 7 ns 7-4

t18 8S16# Hold Time 3 ns 7-4

t19' READY # Setup Time 9' ns 7-4

t20 READY'# Hold Time 4 ns 7-4

4·9B

inter 386TM MICROPROCESSOR

7.5.2 A.C. Specification Tables (Continued)
Functional Operating Range: VCC = 5V ±5%; TCASE = O·C to +85·C

Table 7-4. 25 MHz 386™ Microprocessor A.C. Characteristics (Continued)

25 MHz
Ref.

Symbol Parameter 3,,~TM CPU
Fig.

Notes

t21" DO-031 Read Setup Time ns 7-4

t22 00-031 Read Hold Time ns 7-4

t23 HOLD Setup Time ns 7-4

t24 HOLD Hold Time ns 7-4

t25 RESET Setup Time ns 7-7

t26 RESET Hold Time ns 7-7

t27 ns 7-4 (Note 2)

t28 NMI, INTR Hold Time 6 ns 7-4 (Note 2)

t29 PEREa, ERROR #., U 6 ns 7-4 (Note 2)

t30 PEREa, ERRO 5 ns 7-4 (Notes 2,3)

NOTES:
·Timing Specifications marked with a "." are tested to guarantee reliable operation with the 25 MHz 82385 (See Note 4 for
more information).

1. Float condition occurs when maximum output current becomes less than ILO in magnitude. Float delay is not 100%
tested.
2. These inputs are allowed to be asynchronous to ClK2. The setup and hold specifications are given for testing purposes,
to assure recognition within a specific ClK2 period.
3. Symbol Parameter Min

T C = O·C t30 PEREa, ERROR #, BUSY # Hold Time 4
T c = + 85°C t30 PEREa, ERROR #, BUSY # Hold Time 5

4. The following 386TM Microprocessor timing values are guaranteed for 82385 operation:
t6 = (2ClK2 - t13B - lOGIC - Cl), (2ClK2 - t7a- Cl)
t8a = (2ClK2 - t7B - Cll
t10 = (2ClK2 ~ t9B- Cl)
t12min = (ClK2 - PO - t25C), (ClK2 - 00 - t43B)
t19 = (2ClK2 - t18 - lOGIC)
121 = (2ClK2 - t25A - OE - PD), (2ClK2 ..,. t25B - OE - PO)
ClK2 = 20 ns (period of 386™ CPU ClK2 input at 25 MHz)
lOGIC = 10 ns (D-PAL)
Cl = 2 ns (Capacitive load derating for an 386TM Microprocessor output)
CE = 9 ns (Output enablel disable time for an AS245)
PO = 5.5 ns (Propagation delay for an AS08 gate)
00 = 10 ns (Output disable for an AS646)
82385 Parameters:
t7a = A2-A31, BEO#-BE3# Setup Time
t7b = lOCK#Setup Time
t9B = ADS#, W/R# Setup Time
t13B = lBA# Setup Time
t18 = READYO# Valid Delay
t25A = COEA#, COEB# Valid Delay
t25B = COEA#, COEB# Valid Delay
t25C = COEA#, COEB# Rising Delay
t43B = DOE # Rising Delay

4-99

intJ 386™·MICROPROCESSOR

7.5.2 A.C. Specification Tables (Continued)
Functional Operating Range: Vee = 5V ±5%; TeASE = O·C to +85°C

Table 7.;5. 20 MHz 386TM Microprocessor A.C. Characteristics

20 MHz Ref.
Symbol Parameter 386™ CPU Unit Fig. Notes

Min Max

Operating Frequency 4 20 MHz Half of CLK2
Frequency

tl CLK2 Period 25 125 ns 7-3

t2a CLK2 High Time 8 ns 7-3 at2V

t2b CLK2 High Time 5 ns 7-3 at (Vee - 0.8V)

t3a CLK2 Low Time 8 ns 7-3 at2V

t3b CLK2 Low Time 6 ns 7-3 atO.8V

4 CLK2 FaU Time 8 ns 7-3 (Vee - 0.8V) to 0.8V

t5 CLK2 Rise Time 8 ns 7-3 0.8V to (Vee - 0.8V)

t6 A2-A31 Valid Delay 4 30 . ns 7·5 CL = 120 pF

t7 A2-A31 Float Delay 4 32 ns 7·6 (Note 1)

t8 BEO#-BE3#, LOCK# 4 30 ns 7-5 CL = 75 pF
Valid Delay

t9 BEO#-BE3#, LOCK# 4 32 ns 7-6 (Note 1)
Float Delay

tl0 W/R#, MIIO#, O/C#, 6 28 ns 7-5 CL=75 pF
AOS# Valid Delay

tll W/R#, MIIO#, O/C#, 6 30 ns 7·6 (Note.1)
ADS # Float Delay

t12 00-031 Write Data 4 38 ns 7-5 CL = 120pF
Valid Delay

t13 00-031 Float Delay 4 27 ns ;7-6 (Note 1)

t14 HLOA Valid Delay 6 28 ns 7-6 CL = 75pF

t15 NA # Setup Time 9 ns 7-4

116 NA # Hold Time 14 ns 7-4

t17 BS16# Setup Time 13 ns 7-4

t18 BS16# Hold Time 21 ns 7·4

t19 READY # Setup Time 12 ns 7-4

t20 READY # Hold Time 4 ns 7-4

t21 00-031 Read 11 ns 7-4
Setup Time

t22 00-031 Read 6 ns 7-4
Hold Time

123 HOLD Setup Time 17 ns 7-4

t24 HOLD Hold Time 5 ns 7-4

t25 RESET Setup Time 12 ns 7-7

4-100

3alTM MICROPROCESSOR

7.5.2 A.C. Specification Tables (Continued)
Functional Operating Range: Vcc = 5V ±5%; TCASE = O"C to +85°C

Table 7·5. 20 MHz 316TY Microprocessor A.C. Characteristics (Continued)

20 MHz
Ref.

Symbol Parameter 386TY CPU Unit
Fig.

Notes

Min Max

t26 RESET Hold Time 4 ns 7-7

t27 NMI, INTR Setup Time 16 ns 7-4 (Note 2)

t28 NMI, INTR Hold Time 16 ns 7-4 (Note 2)

t29 PEREa, ERROR #, BUSY # 14 ns 7-4 (Note 2)
Setup Time

tao PEREa,ERROR#,BUSY# 5 ns 7-4 (Note 2)
Hold Time

NOTES:
1. Float condition occurs when maximum output current becomes less than ILO in magnitude. Float delay is not 1000/0
tested.
2. These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing purposes,
to assure recognition within a specific CLK2 period.

Table 7-6. 16 MHz 316TY Microprocessor A.C. Characteristics

16 MHz
Ref.

Symbol Parameter 316™ CPU Unit
Fig.

Notes

Min Max

Operating Frequency 4 16 MHz - HalfofCLK2
Frequency

t1 CLK2 Period 31 125 ns 7-3

t2a CLK2 High Time 9 ns 7-3 at2V

t2b CLK2 High Time 5 ns 7-3 at (Vee - 0.8V)

taa CLK2 Low Time 9 ns 7-3 at2V

tab CLK2 Low Time 7 ns 7-3 atO.8V

4 CLK2 Fall Time 8 ns 7-3 Nee - 0.8V) to 0.8V

ts CLK2 Rise Time 8 ns 7-3 0.8V to (Vee - 0.8V)

ts A2-A31 Valid Delay 4 36 ns 7-5 CL = 120pF

t7 A2-A31 Float Delay 4 40 ns 7-6 (Note 1)

ts BEO#-BE3#, LOCK# 4 36 ns 7-5 CL = 75pF
Valid Delay

t9 BEO#-BE3#, LOCK# 4 40 ns 7-6 (Note 1)
Float Delay

t10 W/R#. M/IO#. D/C#. 6 33 ns 7-5 CL = 75pF
ADS# Valid Delay

t11 W/R#. M/IO#. D/C#. 6 35 ns 7-6 (Note 1)
ADS# Float Delay

t12 00-031 Write Data 4 48 ns 7-5 CL= 120pF
Valid Delay

4-101

386TM MICROPROCESSOR

7.5.2 A.C. Specification Tables (Continued)
Functional Operating Range: Vcc = 5V ± 5%; T CASE = O·C to + 85·C

Table 7·6. 16 MHz 386TM Microprocessor A.C. Characteristics (Continued)

16MHz
Ref.

Symbol Parameter 386™ CPU Unit
Fig.

Notes

Min Max

t13 00-031 Float Delay 4 35 ns 7-6 (Note 1)

t14 HLOA Valid Delay 6 33 ns· 7-6 CL = 75pF

t15 NA # Setup Time 11 ns 7-4

t16 NA # Hold Time 14 ns 7-4

t17 BS16# Setup Time 13 ns 7-4

t18 BS16# Hold Time 21 ns 7-4

t19 READY # Setup Time 21 ns 7-4

t20 READY # Hold Time 4 ns 7-4

t21 00-031 Read 11 ns 7-4
Setup Time

t22 00-031 Read 6 ns 7-4
Hold Time

t23 HOLD Setup Time 26 ns 7-4

t24 HOLD Hold Time 5 ns 7-4 \

t25 RESET Setup Time 13 ns 7-7

t26 RESET Hold Time 4 ns 7-7

t27 NMI, INTR Setup Time 16 ns 7-4 (Note 2)

t28 NMI, INTR Hold Time 16 ns 7-4 (Note 2)

t29 PEREO,ERROR#,BUSY# 16 ns 7-4 (Note 2)
Setup Time

t30 PEREO,ERROR#,BUSY# 5 ns 7-4 (Note 2)
Hold Time

NOTES:
1. Float condition occurs when maximum output current becomes less than ILOin magnitude. Float delay is not 100%
tested.
2. These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing purposes,
to assure recognition within a specific CLK2 period.

4-102

inter 386™ MICROPROCESSOR

7.5.3 A.C. Test Loads

231630-38

CL = 120 pF on A2-A31, 00-031
CL = 75 pF on BEO#-BE3#, W/R#, MilO # , O/C#, AOS#,
LOCK#, HLOA
CL includes all parasitic capacitances.

Figure 7-2. A.C. Test Load

Tx .2
CLK2 [

REAOY# [

HOLD [

00-031 [(INPUT)

BUSY#,
[ERROR#

PEREQ

NA# [

BSI6# [

INTR. [NMI

7.5.4 A.C. Timing Waveforms

Figure 7-3. CLK2 Timing

Tx Tx

231630-40

Figure 7-4. Input Setup and Hold Timing

4-103

cLK2 [

00-031 [

CLK2 [

8EO#-8E3#. [
LOCK#

W/R#. M/IO#. [
O/eN.ADS#

A2-A31 [

HLOA [

386T~ MICROPROCESSOR

Tx

231630-41

Figure 7-5. Output Valid Delay Timing.

CLK2[

231630-79 231630-80

Figure 7-5a. Write Data Valid Delay Timing Figure 7-5b. Write Data Hold Timing

4-104

intJ 386TM MICROPROCESSOR

7.5.5 Typical Output Valid Delay Versus Load Capacitance at Maximum Operating
Temperature

nom+6r---~--~----~--~

'iii' nom +3

-=-
~
Q
::::;
~
!;

5 o

nom-3

nom-6

nom-9 I..-__ ..J-__ ---.l. ____ .l...-__l

50 75 100 125 150

CL (picofarads)
231630-77

NOTE:
This graph will not be linear outside of the CL range shown.

7.5.6 Typical Output Rise Time Versus Load Capacitance at Maximum Operating
Temperature

8

>
~
N 6 I

iq
0

"ii' 4
.,5.

'" :2
;::

'"
2

!!l
II<

8~--~--~--~--~

50 75 100 125 150

CL (picofarads)
231630-78

NOTE:
This graph will not be linear outside of the CL range shown.

4-105

I
I

I
I

,,"

I

CLK2 [

BEOI-BOI. [LOCKI

W /RI. M/IOI. [O/Cff.ADSI

A2-A31. [

00-031 [

HLOA [

386rM MICROPROCESSOR

Th: 11 OR T1

(HIGHZ)

@ALSO APPLIES TO DATA FLOAT WHEN WRITE
CYCLE IS FOLLOWED BY READ OR IDLE

. Figure 7-6.<Output Float Delay and HLDAValidDeiay Timing

CLK2 [

RESET [

The second internal processor phase following RESET hlgh-to-Iow transition (provided t2Sand t28 are met) is </>2.

Figure 7·7. RESET Setup and Hold Timing, and Internal Phase

MAX

231630-42

231630-43

inter 386™MICROPROCESSOR

7.6 DESIGNING FOR ICETM·386 USE

The 386 Microprocessor in-circuit emulator product
is ICE-386. Because of the high operating frequency
of 386 Microprocessor systems and ICE-386, there
is no cable separating the ICE-386 probe module
from the target system. The ICE-386 probe module
has several electrical and mechanical characteris­
tics that should be taken into consideration when
designing the hardware.

Capacitive loading: ICE-386 adds up to 25 pF to
each line.

Drive requirement: ICE-386 adds one standard
TIL load on the CLK2 line, up to one advanced low­
power Schottky TIL load per control Signal line, and
one advanced low-power Schottky TIL load per ad­
dress, byte enable, and data line. These loads are
within the probe module and are driven by the
probe's 386 Microprocessor, which has standard
drive and loading capability listed in Tables 7-3 and
7-4.

Power requirement: For noise immunity the ICE-
386 probe is powered by the user system. The high­
speed probe circuitry draws up to 0.7A plus the max­
imum 386 Microprocessor Icc from the user 386 Mi­
croprocessor socket.

386 Microprocessor location and orientation:
The ICE-386 Processor Module. (PM), and theOp­
tional Isolation Board (OIB) used for extra electrical

I"
+

II Iliff .80 WIO COVER
1.00 WICOVER

t
•131

buffering of the ICE initially, require clearance as il­
lustrated in Figures 7-8 and 7-9, respectively. Fig­
ures 7-8 and 7-9 also illustrate the via holes in these
modules for recommended orientation of a screw­
actuated ZIF socket. Figure 7-10 illustrates the rec­
ommended orientation for a lever-actuated ZIF
socket.

READY"" drive: The ICE-386 system may be able
to clear a user system READY"" hang if the user's
READY"" driver is implemented with an open-COllec­
tor or tri-state device.

Optional Interface Board (OIB) and CLK2 speed
reduction: When the ICE-386 processor probe is
first attached to an unverified user system, the OIB
helps ICE-386 function in user systems with bus
faults (shorted Signals, etc.). After electrical verifica­
tion it may be removed. Only when the OIB is in­
stalled, the user system must have a reduced CLK2
frequency of 16 MHz maximum.

Cache coherence: ICE-386 loads user memory by
performing 386 Microprocessor write cycles. Note
that if the user system, is not designed to update or
invalidate its cache (if it has a cache) upon proces­
sor writes to memory, the cache could contain stale
instruction code and/or data. For best use of ICE-
386, the user should consider designing the cache
(if any) to update itself automatically when processor
writE!s occur, or find another method of maintaining
cache data coherence with main user memory.

5.100 -,

.. Q t
.98 WIO COVEA
1.18 WICOVER

t

Figure 7·8. ICETM·386 Processor Module Clearance Requirements (Inches)

4-107

inter

•

0

3 .800

PIN 1

11 o· ! p 0

.150_1 -

386™MICROPROCESSOR

5.100 10

0 0 0

~DD
PIN 1

0 0 .~" - .150~
.80 ~

.. C·2OO

2.380

I

11 o

0.188
2PL

231630-76

Figure 7-9. ICETM-386 Optional Interface Module Clearance Requirements (Inches)

PI~
LEVER OF ZIF SOCKET

~ I '
I

COMPONENT SIDE I
PROCESSOR MODULE I l!:: ____

0

231630-74

Figure 7-10. Recommended Orientation of Lever-Actuated ZIF Socket for ICETM-386 Use

4-108

inter 386™ MICROPROCESSOR

8. INSTRUCTION SET

This section describes the 386 Microprocessor in­
struction set. A table lists all instructions along with
instruction encoding diagrams and clock counts.
Further details of the instruction encoding are then
provided in the following sections, which completely
describe the encoding structure and the definition of
all fields occurring within 386 Microprocessor in­
structions.

8.1 386TM MICROPROCESSOR
INSTRUCTION ENCODING AND
CLOCK COUNT SUMMARY

To calculate elapsed time for an instruction, multiply
the instruction clock count, as listed in Table 8-1
below, by the processor clock period (e.g. 62.5 ns
for a 16 MHz 386 Microprocessor, 50 ns for a 20
MHz 386 Microprocessor and 40 ns for a 25 MHz
386 Microprocessor).

For more detailed information on the encodings of
instructions refer to section 8.2 Instruction Encod­
ings. Section 8.2 explains the general structure of
instruction encodings, and defines exactly the en­
codings of all fields contained within the instruction.

Instruction Clock Count Assumptions

1. The instruction has been prefetched, decoded,
and is ready for execution.

2. Bus cycles do not require wait states.

3. There are no local bus HOLD requests delaying
processor access to the bus.

4. No exceptions are detected during instruction ex­
ecution.

5. If an effective address is calculated, it does not
use two general register components. One regis­
ter, scaling and displacement can be used within
the clock counts shown. However, if the effective
address calculation uses two general register
components, add 1 clock to the clock count
shown.

Instruction Clbck Count Notation

1. If two clock counts .are given, the smaller refers to
a register operand and the larger refers to a mem­
ory operand.

2. n = number of times repeated.

3. m = number of components in the next instruc­
tion executed, where the entire displacement (if
any) counts as one component, the entire imme­
diate data (if any) counts as one component, and
each of the other bytes of the instruction and pre­
fix(es) each count as one component.

4-109

I ~

3,6™ MICROPROCESSOR

Table 8-1. 386TM Microprocessor Instruction Set Clock Count Summary
CLOCK COUNT NOTEII'

Real Real
INItTIIUCTION FORMAT Add Protected Add Protected

Mode or Virtual Mode or Virtual
. Virtual . Add Virtual Add

IOn Mode 8086 Mode
Mode . Mode

GENERAL DATA TRANSFER

MOV = Move:

Register to RegisterlMemory I 1000100w I moci",g. rIm! 2/2 2/2 b h

Register/Memdry to Register I 1000101w I mod reg . rIm I 2/4 2/4 b h

Immediate to ReglsterlMemory I 1100011 w ! modOOO rIm I immediate date 2/2 2/2 b h

Immediate to Register (short Iorm) 11011 w reg I Immediate data 2 2

Memory to Accumulator (short form) I 1010000w ! full displacement 4 4 b h

Accumulator to Memory (short form) I 1010001w I fuD displacement 2 2 b h

Register Memory to Segment Register I 10001110 I modsreg3 rIm I 2/5 18/19 b h,i,]

Segment Register to RegisterlMemory I 1.0001100 ! modsreg3 rIm I 2/2 2/2 b h

MOVSX = Move With Sign Extension

Register From RegisterlMemory I 00001111 ! 1011111w I mod reg rIm I 3/6 3/6 b h

MOVZX = Mova With ZIIt'lI Extenalon

Register From .Register/Memory I 00001111 ! 10110.11w ! mod reg rIm I 3/6 3/6 b h

PUSH .,;. Puah:

Registet/Memory I 11111111 I modl1 0 rIm! 5 5 b h

Register (short form) 101010 '",gl 2 2 b h

Segment Register (ES, CS, SS or OS) I 000sreg2110 I 2 2 b h

Segment Register (FS or GS) I 00001111 I 10."'g3000 ! 2 2 b h

Immediate , I 011010s0 ! immediate data 2 2 b h

PUSHA = Puah All I 01100000 ! 16 18 b h

POP = Pop

ReglsterlMemory 10001111 I modOOO rIm! 5 5 b h

Register (short form) 01011 reg! 4 4 b h

Segment Register (ES, SS or OS)
000Sreg21111 7 21 b h,i,]

Segment Register (FS or GS) 00001111 110sreg3001 ! 7 21 b h,l,i

POPA = Pop AI! 01100001 I 24 24 b h

XCHG = Exchange

Register/Memory·With Register I 1000011w I mod reg rIm I 3/5 3/5 b,f f,h

Register With Accumulator (short Iorm) 110010 reg I ClkCount 3 3

IN = Input Irom:
Vlrtuel

80nMode

Fixed Port I 1110010W I port number t26 12 6"'/26 m

Variable Port I 1110110w I t27 13 7"'127·· m

OUT = Output to:

Fixed Port I 1110011 w I port number t24 10 4"'/24"'· m

Variable Port I 1110111w I t25 11 5"'/25" m

LEA = Load EA to Register I 10001101 I mod reg rIm! 2 2

• If CPL :s; IOPL •• If CPL > IOPL

4·110

386TM MICROPROCESSOR

Table 8-1. 386TM Microprocessor Instruction Set Clock Count Summary (Continued)
CLOCK COUNT NOTES

Real Real
INSTRUCTION FORMAT Address Protected Address Protected

Mode or Virtual Mode or Virtual
Virtual Address Virtual Address
8086 Mode 8086 Mode
Mode Mode

SEGMENT CONTROL

LOS = Load Pointer to OS 11000101 mod reg rim I 7 22 b h,i,j

LES = Load Pointer to ES 11000100 mod reg rim I 7 22 b h,i,j

LFS = Load Pointer to FS 00001111 10110100 I mod reg rim I 7 25 b h, i,j

LGS = Load Pointer to GS 00001111 10110101 I mod reg rim I 7 25 b h, i,j

LSS = Load Pointer to SS 00001111 10110010 I mod reg rim I 7 22 b h, i,j

FLAG CONTROL

CLC = Clear Carry Flag I 1111 1000 2 2

CLD = Clear Direction Flag I 11111100 2 2

CLI = Clear Interrupt Enable Flag I 11111010 8 8 m

CL TS = Clear Task Switched Flag I 0000 1111 00000110 I 6 6 c I

CMC = Complement CarTy Flag I 11110101 2 2

LAHF = Load AH Into Flag I 10011111 2 2

POPF = Pop Flags I 10011101 5 5 b h, n

PUSHF = Push Flags I 10011100 4 4 b h

SAHF = Store AH Into Flags I 10011110 3 3

STC = Set Carry Flag I 11111001 2 2

STD = Set Direction Flag I 11111101 2 2

STI = Set Interrupt Enable Flag I 11111011 8 8 m

ARITHMETIC
ADD = Add

Register to Register I OOOOOOdw mod reg rim I 2 2

Register to Memory I OOOOOOOw mod reg rim I 7 7 b h

Memory to Register I 0000001w mod reg rim I 6 6 b h

Immediate to Register/Memory I 100000sw modOOO rim I immediate data 217 2/7 b h

Immediate to Accumulalor (short form) I 0000010w immediate data 2 2

ADC = Add With Carry

Register to Register I 000100dw mod reg rim I 2 2

Register to Memory I 0001000w mod reg rim I 7 7 b h

Memory to Register I 0001001w mod reg rim I 6 6 b h

Immediale 10 RegisterlMemory I 100000sw modO 1 0 rim I immediate data 2/7 2/7 b h

Immediate to Accumulalor (short form) I 0OO1010w immediate data 2 2

INC = Increment

RegisterlMemory 1 1111111w I modOOO rim I 2/6 2/6 b h

Register (short form) 101000 ·reg I 2 2

SUB = Subtract

Register from Register 1 001010dw I mod reg rim I 2 2

4-111

II:
ii
1''1'

t
>,

386TM MICROPROCESSOR

Table 8-1. 386™ Microprocessor Instruction Set Clock Count Summary (Continued)
CLOCK COUNT NOTES

Real Real
INSTRUCTION FORMAT Add Protected Add Protected

Mode or Virtual Mode or Virtual
Virtual Addr ... Virtual Add
8086 Mode 8086 Mode
Mode Mode

~RITHMETIC (Continued)

Register from Memory I 0010100w ImOdreg r/ml 7 7 b h

Memory from Register I 0010101w I mod reg r/mi 6 6 b h

Immediate from RegisterlMemory 1100000sw Imodl0l r/mi immediate dais 217 217 b h

Immediate from Accumulator (short form) 10010110wl immediate data 2 2

SBa = Subtract with Borrow

Register from Register 100011 Odw I mod reg r/ml 2 2

Register from Memory 100011 OOw ImOdreg rIm I 7 7 b h

Memory from Register I 0001101w ImOdreg r/mi 6 6 b h

Immediate from Register/Memory 11 00000 s w Imod 011 r/mi immediate dais 2/7 2/7 b h

Immediate from Accumulator (short form) 10001110wl immediale dais 2 2

DEC = Decrement

Register IMemory I l111111w IregOOl r/ml 2/6 2/6 b h

Register (short form) 101001 reg I 2 2

CMP = Compare

Register w~h Register 100111 Odw ImOdreg r/ml 2 2

Memory wnh Register 100111 OOw Imodreg r/ml 5 5 b h

Register with Memory 100111 01.w ImOdreg r/ml 6 6 b h

Immediate with RegisterlMemory 11 OOOOOsw Imod 111 r/ml immediate data 2/5 2/5 b h

Immediate with Accumulator (short form) 10011-11 Ow I immediate data 2 2

NEG = Change Sign 11111011W ImodOll r/mi 2/6 2/6 b h

AAA = ASCII Adjust for Add 100110111 I 4 4

AAS = ASCII Adjust for Subtract I 00111111 I 4 4

DAA = DeCimal Adjust for Add 1001001111 4 4

DAS = Decimal Adjust for Subtract I 00101111 I 4 4

MUL = Multiply (unalgned)

Accumulator with RegisterlMemory I 1111011wlmodl00 r/ml

Multiplier-Byte 12-17115-20 12-17/15-20 b, d d, h
-Word 12-25/15-28 12-25/15-28 b, d d, h
-Doubleword 12-41/15-44 12-41/15-44 b,d d, h

IMUL = Integer Multiply (signed)

Accumulator with ReglsM/Memory I 11 I 1011 w Imod 101 r/ml

Multiplier-Byte 12-17/15-20 12-17/15-20 b,d d,h
-Word 12-25/15-28 12-25/15-28 b,d d, h
-Doubleword 12-41/15-44 12-41/15-44 b, d d, h

Regisler with Register IMemory I 00001111 I 10101111 Imod reg r/ml

Multiplier-Byte 12-17/15-20 12-17/15-20 b,d d, h
-Word 12-25/15-28 12-25/15-28 b,d d, h
-Doubleword 12-41/15-44 12-41/15-44 b,d d, h

Register IMemory with Immediate to Register I 01101 Os 1 Imod reg r/ml immediate data

-Word 13-26/14-27 13-26/14-27 b,d d, h
-Ooubleword 13-42/14-43 13-42114-43 b, d d, h

4-112

inter 386TM MICROPROCESSOR

Table 8-1. 386™ Microprocessor Instruction Set Clock Count Summary (Continued)
CLOCK COUNT NOTES

Real Real
INSTRUCTION FORMAT Addre.s Protected Add Protected

Mode or Virtual Mode or Virtual

1,(.

~
Virtual Addre .. Virtual Addre ..
8086 Mode 8086 Mode
Mode Mode

ARITHMETIC (Continued)
DIV = Divide (Unsigned)

Accumulator by Register/Memory 111 11 011 w Imod 1 1 0 r/ml

Divisor-Byte 14/17 14/17 b,e e,h
-Word ' 22/25 22/25 b,e e,h
-Doubleword 38/41 38/41 b,e e,h

IDIV = Integer Divide (Signed)

Accumulator By RegisterlMemory 11111 01 1 w Imod 1 11 r/ml

Divisor-Byte 19/22 19/22 b,e e,h
-Word 27/30 27/30 b,e e,h
-Doubleword 43/46 43/46 b,e e,h

AAD = ASCII AdJu.t lor Divide I t 1 010101 1000010101 19 19

AAM = ASCII Adjust lor Multiply 111010100 I 00001010 I 17 17

CBW = Convert Byte to Word 1100110001 3 3

CWD = Convert Word to Double Word I 10011001 I 2 2

LOGIC

Shift Rotate Instructions
Not Through Carry (ROL, ROR, SAL, SAR, SHL, and SHR)

RegisterlMemory by 1 11101 OOOw ImodTTT r/ml 3/7 3/7 b h

RegisterlMemory by CL 11101001W ImOdTTT r/ml 3/7 3/7 b h

RegisterlMemory by Immediate Count 11 100000 w ImOd TTT r/mlimmed 8-bit data 3/7 3/7 b h

hrough Carry (RCL and RCR)

Register IMemory by 1 11101 OOOw ImodTTT r/ml 9/10 9/10 b h

RegisterlMemory by CL 11101001W ImOdTTT r/ml 9/10 9/10 b h

RegisterlMemory by Immediate Count 11 100000 w ImOd TTT r/mhmmed 8·bit data 9/10 9/10 b h

TTT In.tructlon
000 ROL
001 ROR
010 RCL
011 RCR
100 SHLISAL
101 SHR
111 SAR

SHLD = Shift Left Double

RegisterlMemory by Immediate j 00001111 110100100lmOdreg r/mlimmed 8·bit data 3/7 3/7

RegisterlMemory by CL 1000011'11 110100101 ImOd reg r/ml 3/7 3/7

SHRD = Shift Right Double

RegisterlMemory by Immediate I 0000111 1 11 0 1 01 1 00 ImOd reg r/mlimmed 8·bit data 3/7 3/7

Register IMemory by CL I 00001 11 1 11 0 1 011 01 ImOd reg r/ml 317 3/7

AND = And

Register to Register 1001 OOOdw ImOdreg r/ml 2 2

4-113

386,"" MICROPROCESSOR

Table 8-1. 386TM ,Microprocessor Instruction Set Clock Count Summary (Continued)
CLOCK COUNT NOTES'
Real Real

INSTRUCTION FORMAT Add Protactad Addreea ",otactad
Molle or VI.w.I Mode or VI.w.I
VIrtual Add VIrtual Add
8086 Mode 8088 Mode
Mode Mode

LOGIC (Continued) ':,

Register to Memoty I 0010000w Imodreg rIm I 7 7 b h

Memoty to Register I 001000 l,w Imodreg rIm I \ :
b 6 6 h

Immediate to Register/MelllOlY 11 OOOOOOw I mod 100 rIm I Immediate data 217 217 b h

Immediate to Accumulator (Short Form) I 0010010w I immediate data 2 2

TEST = And FUnctloli to Flags, No R .. uIt

Reglster/Memoty and Register 110000low lmodreg r/ml 2/5 2/5 b h

Immediate Data'and Register/Memoty 11111011W ImodOOO rIm I Immediate data 2/5 2/5 b h

Immediate cata and Accumulator
(Short Form) 110101 OOw I Immediate data 2 2

OR=Or

Register to Register 00001 Odw I mod reg r/ml 2 2

Register to Memory 00001 OOw, I mod reg r/ml 1 7 b h

Memory to Register 0000101 w ImOdreg r/ml 6 6 b h

Immediate to Register/Memoty 1 OOOOOOw ImodOOl rIm I immediate data 217 217 b ~

Immediate to Accumulator (Short Form) 000011 Ow I immediate data 2 2
'-",

XOR = ExclusiVe Or

Register to Register 0011 OOdw lmodreg r/ml 2 2

Register to Memory 0011000w lmodreg rIm I 7 7 b h

Memory to Register 0011001w lmodreg r/ml 6 6 b h

Immediate to Register/Memoty 1 OOOOOOw I mod 110 rIm I immediate data 217 217 b h

Immediate to Accumulator (Short Form) o 0 1 1 0 lOw I immediate data 2 2

NOT = Invert Reglster/Memory 11111011 w I mod 0 10 rIm I
'em

2/6 2/6 b h

STRING MANIPULATION Count
VI.w.I

CMPS = Compare Byte Word 11010011 wi
8086

10 10 b h Mode

INS = Input BytelWord from DX Port 1011011 Ow I I t29 15 ·9"/29" b h,m

LODS = Load Byte/Word to ALI AX/EAX 11 0 1 0 1 lOw I 5· 5 b .h

MOYS = Move Byte Word 11010010w I 8 8 b h

OUTS = Output Byte/Word to DX Port I 0110111w I I t28 14 8"'/28·' b h,m

SCAS = Scan Byte Word 11010111W I 8 8 b h

STDS = Store Byte/Word from

ALIAX/EX 11010101 wi 5 5 b h

I I
,.

XLAT = Trenelate String 11010111 5 5 h

REPEATED STRING MANIPULATION
Repeated by Count In ex or ECX

REPE CMPS = Compare String

(Find Non-Match) I 11110011 11010011W I 5+9n 5+9n b h

• If CPL ,;;; IOPL •• If CPL > IOPL

4·114

inter 386TM MICROPROCESSOR

Table 8-1. 386™ Microprocessor Instruction Set Clock Count Summary (Continued)
CLOCK COUNT NOTES

Real Real
INSTRUCTION FORMAT Addre.s Protected Address Prolected

Mode or Virtual Mode or Virtual
Virtual Addre •• Virtual Address
8086 Mode 8086 Mode
Mode Mode

REPEATED STRING MANIPULA T10N (Continued)

REPNE CMPS ~ Compare Siring ClkCounl

(Find Match) 1"" 001 0 1010011 wi
Virtual

5+9n 5+9n b h 8086 Mode

REP INS ~ Inpul Siring 1",10010 011011 Ow I I t28+6n 14+6n 8+6n"'/28+6n'* b h,m

REP LODS ~ Load Siring [11110010 101011 Ow I 5+6n 5+6n b h

REP MOVS ~ Move Siring 111110010 1010010wl 8+4n 8+4n b h

REP OUTS ~ Oulput String 111110010 0110111 wi I t26+5n 12+5n 6+5n·/26+5n" b h,m

REPE SCAS ~ Scan String

(Find Non-ALI AX/EAX) 1'1"00,,110101'1WI 5+8n 5+8n b h

REPNE SCAS ~ Scan String

(Find ALI AX/EAX) 1'11100'011010111WI 5+8n 5+8n b h

REP STOS ~ Store String 111110010 1 1010101 w I 5+5n 5+5n b h

BIT MANIPULATION

BSF ~ Scan Bit Forward 10000111,1'0111'00ImOdreg r/ml 11 +3n 11 +3n b h

BSR ~ Scan Bit Reveraa 100001111 1,0,11,01 Imodreg r/ml 9+3n 9+3n b h

BT ~ Test Bit

Register/~emory, Immediate I 00001 1 1 1 1 1 01 1 1 01 0 ImOd 1 00 r/mllmmed 8-bit datal 3/6 3/6 b h

Register/Memory, Register 100001111110100011 ImOdreg r/ml 3112 3112 b h

BTC ~ Test Bit and Complement

Register/Memory, Immediate 100001111 1,011 1 01 0 ImOdl1 1 r/mlimmed 8-bit datal 6/8 6/8 b h

Register/Memory, Register 100001111 1,011101, ImOdreg r/ml 6113 6113 b h

BTR~ Test Bit and Reaat

Register/Memory, Immediate 100001111 1,01110,0 Imodl1 0 r/mlimmed 8-bit data 6/8 6/8 b h

Register/Memory, Register 100001111 1,0,,00,1 ImOdreg r/ml 6113 6113 b h

BTS ~ Test Bit and Set

Register/Memory, Immediate I 00001 1 1 1 I 1 01 1 1 01 0 Imod 1 01 r/mlimmed 8-bit datal 6/8 6/8 b h

Register/Memory, Register 10000,1"1,0,0,0,, ImOdreg r/ml 6113 6113 b h

CONTROL TRANSFER

CALL ~ Call

Direct Within Segment 11 1 1 0 1 0 0 0 I full displacement 7+m 7+m b r

Register/Memory

Indirect Within Segment 1111 1 1 1 1 1 ImOdO 1 0 r/ml 7+ml 7+ml b h, r 10+m 10+m

Direct Intersegment I 1 0 0 1 1 0 1 0 IUnSigned lull offset, selector t7+m 34+m b j,k,r

NOTES:
t Clock count shown applies if 1/0 permission allows 110 to the port in virtual BOB6 mode. If 110 bit map denies permission
exception 13 fault occurs; refer to clock counts for INT 3 instruction .
• If CPL s; 10PL •• If CPL > 10PL

4-115

I' , ...
! ' ~

"

inter 386TM MICROPROCESSOR

Table 8-1. 386™ Microprocessor Instruction Set Clock Count Summary (Continued)
CLOCK COUNT NOTES

Real Real
INSTRUCTION FORMAT Add .. ,. Protected Add Protected

Mode or Virtual Mode or Virtual
Virtual Add Virtual Addre ••
8086 Mode 8086 Mode
Mode Mode

CONTROL TRANSFER (Continued)
Protected Mode Only (Direct Intersegment)

Via Call Gate to Same Privilege Level 52+m h,j,k,r
Via Call Gate to Different Privilege Level,

(No Parameters) 86+m h,j,k,r
Via Call Gate to Different Privilege Level,

(x Parameters) 94+4x+m h,j,k,r
From 80286 Task to 80286 TSS 273 h,j,k,r
From 80286 Task to 386TM CPU TSS 298 h,j,k,r
From 80286 Task to Virtual 8086 Task (386TM CPU TSS) 218 h,j,k,r
From 386™ CPU Task to 80286 TSS 273 h,j,k,r
From 386TM CPU Task to 386TM CPU TSS 300 h,j,k,r
From 386TM CPU Task to Virtual 8086 Task (386™ CPU TSS) 218 h,j,k,r

Indirect Intersegment I 11111111 ImodOll r/ml 22+m 38+m b h,j,k,r

Protected Mode Only (Indirect Intersegment)
Via Call Gate to Same Privilege Level 56+m h,j,k,r
Via Call Gate to Different Privilege Level,

(No Parameters) 90+m h,j,k,r
Via Call Gate to Different Privilege Level,

(x Parameters) 98+4x+m h,j,k,r
From 80286 Task to 80286 TSS 278 h,j,k,r
From 80286 Task to 386TM CPU TSS 303 h,j,k,r
From 80286 Task to Virtual 8086 Task (386™ CPU TSS) 222 h,j,k,r
From 386TM CPU Task to 80286 TSS 278 h,j,k,r
From 386™ CPU Task to 386TM CPU TSS 305 h,j,k,r
From 386TM CPU Task to Virtual 8086 Task (386TM CPU TSS) 222 h,j,k,r

JMP ~ Unco"dltlonal Jump

Short I 11101011 18-bit diSPlacement! 7+m 7+m r

Direct within Segment I 11101001 I full displacement 7+m 7+m r

Register/Memory Indirect within Segment 111111111 Imodl00 rim! 7+ml 7+ml b h,r 10+m 10+m

Direct Intersegment I 11101010 ! unsigned full offset, selector 12+m 27+m j,k,r

Protected Mode Only (Direct Interse9ment)
Via Call Gate to Same Privilege Level 45+m h,j,k,r
From 80286 Task to 80286 TSS 274 h,j,k,r
From 80286 Task to 386TM CPU TSS 301 h,j,k,r
From 80286 Task to Virtual 8086 Task (386TM CPU TSS) 219 h,j,k,r
From 386™ CPU Task to 80286 TSS 270' h,j,k,r
From 386TM CPU Task to 386TM CPU TSS 303 h,j,k,r
From 386TM CPU Task to Virtual 8086 Task (386™ CPU TSS) 221 h,j,k,r

Indirect Intersegment I 11111111 Imodl0l rim! 17+m 31+m b h,j,k,r

Protected Mode Only (Indirect Intersegment)
Via Call Gate to Same Privilege Level 49+m h,j,k,r
From 80286 Task to 80286 TSS 279 h,j,k,r
From 80286 Task to 386TM CPU TSS 306 h,j,k,r
From 80286 Task to Virtual 8086 Task (386™ CPU TSS) 223 h,j,k,r
From 386TM CPU Task to 80286 TSS 275 h,j,k,r
From 386™ CPU Task to 386TM CPU TSS 308 h,j,k,r
From 386™ CPU Task to Virtual 8086 Task (386™ CPU TSS) 225 h,j,k,r

4-116

inter 386TM MICROPROCESSOR

Table 8-1. 386™ Microprocessor Instruction Set Clock Count Summary (Continued)
CLOCK COUNT NOTES

Real Re.1
INSTRUCTION FORMAT Addre .. Protected Addr ... Protected

MOde or Virtual Modsor Virtual
Virtual Add,. .. Virtual Addrs ..
8086 Mode 8088 Mods
Mode Mod.

CONTROL TRANSFER (Continued)
RET = Return from CALL:

Within Segment I 11000011 I 10+ m 10+ m b g, h, r

Within Segment Adding Immediate to SP I 11000010 I 16·bit dlspl I 10 + m 10 + m b g, h,r

Intersegment I 11001011 I 18+m 32+m b g, h,i, k,r

Intersegment Adding Immediate to SP I 11001010 I 16·bit displ I 18+ m 32+m b g, h,i, k, r

Protected Mode Only (RET):
to Different Privilege Level

Intersegment 69 h,i, k, r
Intersegment Adding Immediate to SP 69 h, i, k, r

CONDITIONAL JUMPS
NOTE: Times Are Jump "Taken or NotTaken"
JO = Jump on Overflow

8·Bit Displacement I 01110000 I 8.bitdispl I 7+mor3 7+mor3 r

Full Displacement I 00001111 I 10000000 I full displacement 7+mor3 7+mor3 r

JNO = Jump on Nol Overflow

8·Bit Displacement I 01110001 I 8·bitdispl I 7+mor3 7 + mor3 r

Full Displacement I 00001111 I 10000001 I full displacement 7 + mor3 7+mor3 r

JB/JNAE = Jump on Below/Nol Above or Equal

8·Bit Displacement I 01110010 I 8·bitdispl I 7+mor3 7+mor3 r

Full Displacement I 00001111 I 10000010 IfulidisPlacement 7 + mor3 7+mor3 r

JNB/JAE = Jump on NolBelow/Above or Equal

8·Bit Displacement I 01110011 I 8·bHdispl I 7+mor3 7 + m or3 r

Full Displacement I 00001111 I 10000011 I full displacement 7+mor3 7 + mor3 r

. JEI JZ = Jump on Equal/Zero

8·Bit Displacement I 01110100 I 8·bit displ I 7 + mor3 7+mor3 r

Full Displacement I 00001111 I 10000100 I full displacement 7+mor3 7+mor3 r

JNE/JNZ = Jump on Not Equal/Not Zero

8·Bit Displacement I 01110101 I 6-bit displ I 7+mor3 7+mor3 r

Full Displacement I 00001111 I 10000101 I full displacement 7+mor3 7+mor3 r

JBE/JNA = Jump on Below or Equal/Not Abovs

8·BH Displacement I 01110110 I 8·bitdispl I 7 + m or3 7+mor3 r

Full Displacement 100001111 I 10000110 I full displacement 7 + mor3 7+mor3 r

JNBEI JA = Jump on Not Below or Equall Abovs

8·Bit Displacement I 01110111 I 8·bitdlspl I 7+mor3 7+mor3 r

Full Displacement I 00001111 I 10000111 I full displacement 7 t mor3 7+mor3 r

JS = Jump on Sign

8·Bit Displacement I 01111000 I 8·bit displ I 7+mor3 7+mor3 r

Full Displacement I 00001111 I 10001000 I full displacement 7+mor3 7 + mor3 r

4-117

inter 386TM MICROPROCESSOR

Table 8-1. 386TM Microprocessor Instruction Set Clo.ck Count Summary (Continued)
CLOCK COUNT NOTES

Real Real
INSTRUCTION FORMAT Address Protected Address Protected

Mode or Virtual Mode or Virtual
Virtual Address Virtual Address
8086 Mode 8086 Mode
Mode Mode

CONDITIONAL JUMPS (Continued)

JNS ~ Jump on Not Sign

B-Bit Displacement I 01111001 I B-bitdispl I 7+mor3 7+mor3 r

Full Displacement I 00001111 I 10001001 I full displacement 7 + mor3 7 + mor3 r

JP/JPE ~ Jump on Parity/Parity Even

B-Bit Displacement I 01111010 I B-bitdispl I 7 + mor3 7 + mor3 r

Full Displacement I 00001111 I 10001010 I full displacement 7+mor3 7 + mor3 r

JNP/JPO ~ Jump on Not Parity/Parity Odd

8-Bit Displacement I 01111011 I B-bitdispl I 7 + mor3 7+mor3 r

Full Displacement I 00001111 I 10001011 I full displacement 7 + mor3 7 + mor3 r

JL/JNGE ~ Jump on Less/Nol Greater or Equal

B-Bit Displacement I 01111100 I B-bit displ I 7 + mor3 7 + mor3 r

Fun Displacement I 00001111 I 10001100 I full displacement 7+mor3 7+mor3 r

JNL/JGE ~ Jump on Not Less/Grealer or Equal

8-Bit Displacement I 01111101 I B-bitdispl I 7+mor3 7+mor3 r

Full Displacement I 00001111 I 10001101 I full displacement 7+mor3 7 + mor3 r

JLE/JNG ~ Jump on Less or Equal/Not Greater

8-Bit Displacement I 01111110 I B-bitdispl I 7+mor3 7 + mor3 r

Full Displacement I 00001111 I 10001110 I full displacement 7 + mor3 7 + mor3 r

JNLE/ JG ~ Jump on Not Less or Equal/Grealer

8-Bit Displacement I 01111111 I B-bitdispl I 7 + mor3 7 + mor3 r

Full Displacement I 00001111 I 10001111 I full displacement 7+mor3 7+mor3 r

JCXZ ~ Jump on CX Zero ~100011 I B-bitdispl I 9+mor5 9 + mor5 r

JECXZ ~ Jump on ECX Zero I 11100011 I B-bitdispl I 9+mor5 9+mor5 r

(Address Size Prefix Differentiates JCXZ from JECXZ)

LOOP ~ Loop CX Times I 11100010 I B-bitdispl I 11 + m 11 +m r

LOOPZ/LOOPE ~ Loop with
Zero/Equal I 11100001 I B-Mdispl I 11 + m 11 + m r

LOOPNZ/LooPNE ~ Loop While
NolZero I 11100000 I B-bitdispl I 11 + m 11 + m r

CONDITIONAL BYTE SET

NOTE: Times Are Register/Memory

SETO ~ Sel Byte on Overflow

To Register/Memory I 00001111 I 10010000 I modOOO r/m I 4/5 4/5 h

SETNO ~ Set Byte on Nol Overflow

ToHegister/Memory I 00001111 I 10010001 I modOOO r/m I 4/5 4/5 h

SETB/SETNAE ~ Set Byte on Below/Not Above or Equal

To Register/Memory I 00001111 I 10010010 I modOOO r/m I 4/5 4/5 h

4-118

386TM MICROPROCESSOR

Table 8-1. 386™ Microprocessor Instruction Set Clock Count Summary (Continued)
CLOCK COUNT NOTES

Real Real
INSTRUCTION FORMAT Addre .. Protected Addre •• Protected

Mode or Virtual Mode or Virtual
Virtual Addre .. Virtual Addre.s
B086 Mode 8086 Mode
Mode Mode

CONDITIONAL BYTE SET (Continued)

SETNB ~ Set Byte on Not Below/ Above or Equal

To Register/Memory I OOOOtlll I 10010011 I modOOO rIm I 4/5 4/5 h

SETE/SETZ ~ Set Byte on Equal/Zero

To Register/Memory I 00001111 I 10010100 I modOOO rIm I 4/5 4/5 h

SETNE/SETNZ ~ Sat Byte on Not EqualINot Zero

To Register/Memory I 00001 1 1 1 I 10010101 I modOOO rIm I 4/5 4/5 h

SETBE/SETNA ~ Set Byte on Below or Equal/Not Above

To Register/Memory I 000011 11 I 10010110 I modOOO rIm I A/5 4/5 h

SETNBE/SETA ~ Set Byte on Not Below or Equal/Above

To Register/Memory I 00001111 I 10010111 I modOOO rIm I 4/5 4/5 h

SETS ~ set Byte on Sign

To Register/Memory I 00001111 I 10011000 I modOOO rIm I 4/5 4/5 h

SETNS ~ Set Byte on Not Sign

To Register/Memory I 00001111 I 10011001 I modOOO rIm I 4/5 4/5 h

SETP/SETPE ~ Set Byte on Parlty/Parlly Even

To Register/Memory I 00001111 I 10011010 I modOOO rIm I 4/5 4/5 h

SETNP/SETPO ~ Set Byte on Not Parity/Parity Odd

To Register/Memory I 00001 111 I 10011011 I modOOO rIm I 4/5 4/5 h

SETL/SETNGE ~ Set Byte on Le .. INot Greater or Equal

To Register/Memory I 00001 1 11 I 10011100 I modOOO rIm I 4/5 4/5 h

SETNL/SETGE ~ Set Byte on Not Less/Greater or Equal

To Register/Memory I 00001 11 1 I 01111101 I modOOO rIm I 4/5 4/5 h

SETLE/SETNG ~ Set Byte on Less or Equal/Not Greater

To Register/Memory I 00001 11 1 I 10011110 I modOOO rIm I 4/5 4/5 h

SETNLE/SETG ~ Set Byte on Not Less or Equal/Greater

To Register/Memory I 000011 11 I 10011111 ImodOOO rIm I 4/5 4/5 h

ENTER ~ Enter Procedure I 1 1 0 0 1 0 0 0 I 16-bit displacement, 8-bit level I
L~O 10 10 b h

L ~ 1 12 12 b h

L> 1 15 + 15 + b h

4(n -1) 4(n -1)

LEAVE ~ Leave Procedure I 11001001 I 4 4 b h

4-119

,j
!~
I ";l~
11

386™ MICROPROCESSOR

Table 8·1. 386™ Microprocessor Instruction Set Clock Count Summary (Continued)
CLOCK COUNT NOTES

Real Real
INSTRUCTION FORMAT Addre .. Protected Addre .. Protected

Mode or Virtual Mode or Virtual
Virtual Add Virtual Addre ••
8086 Mode 8086 Mode
Mode Mode

INTERRUPT INSTRUCTIONS

INT = Interrupt:

Type Specified I 11001101 I 1ype I 37 b

Type 3 I 11001100 I 33 b

INTO = Interrupt 4 If Overflow Flag Set I 11001110 I
II OF = 1 35 b,e
II OF = 0 3 3 b,e

Bound = Interrupt 5 11 Detect Value
OutolR~nge

I 01100010 I mod reg rim I

II Out of Range 44 b,e e,g, h,l, k,r
II In Range 10 10 b,e e, g, h,l, k,r

Protected Mode Only (INn
INT: Type Specilled

Via Interrupt or Trap Gate
to Same Privilege Level 59 g,l, k, r

Via Interrupt or Trap Gate
to Different Privilege Level 99 g,l, k,r

From 80286 Task to 80286 TSS via Task Gate 282 g,l, k, r
From 80286 Task to 386TM CPU TSS via Task Gate 309 g,l, k, r
From 80286 Task to vir! 8086 md via Task Gate 226 g,i, k,r
From 386TM CPU Task to 80286 TSS via Task Gate 284 g,i, k, r
From 386TM CPU Task to 386TM CPU TSS via Task Gale 311 g,l, k, r
From 386TM CPU Task to vir! 8086 md via Task Gate 228 g,i, k, r
From vir! 8086 md to 80286 TSS via Task Gate 289 g,l, k,r
From vir! 8086 md to 386TM CPU TSS via Task Gate 316 g,l, k, r
From vir! 8086md to priv level 0 via Trap Gate or Interrupt Gate 119

INT:TYPE3
Via Interrupt or Trap Gate

to Same Privilege Level 59 g,l, k, r
Via Interrupt or Trap Gate

to Different Privilege Level 99 g,i, k, r
From 80286 Task to 80286 TSS via Task Gate 278 g,l,k, r
From 80286 Task to 386TM CPU TSS via Task Gate 305 g,l, k, r
From 80286 Task to Vir! 8086 md via Task Gate 222 g,l, k, r
From 386TM CPU Task to 80286 TSS via Task Gate 280 g,l, k,r
From 386TM CPU Task to 386TM CPU TSS via Task Gate 307 g,i, k,r
From 386TM CPU Task to Vir! 8086 md via Task Gate 224 g,i,k,r
From vir! 8086 md to 80286 TSS via Task Gate 285 g,l, k, r
From vir! 8086 md to 386TM CPU TSS via Task Gate 312 g,l,k, r
From vir! 8086 md to priv level 0 via Trap Gate or Interrupt Gate 119

INTO:

Via Interrupt or Trap Grate
to Same Privilege Level 59 g,l, k,r

Via Interrupt or Trap Gate ..
to Dillerent Privilege Level 99 g,i, k,r

From 80286 Task to 80286 TSS via Task Gate 280 g,l, k,r
From 80286 Task to 386TM CPU TSS via Task Gate 307 g,l, k, r
From 80286 Task to vir! 8086 md via Task Gate 224 g,i, k, r
From 386TM CPU Task to 80286 TSSvia Task Gate 282 g,),k, r
From 386TM CPU Task to 386TM CPU TSS via Task Gate 309 g,l, k, r
From 386TM CPU Task to vir! 8086 md via Task Gate 225 g,), k,r
From vir! 8086 md to 80286 TSS via Task Gate 287 g,l, k, r
From vir! 8086 md to 386TM CPU TSS via Task Gale 314 g,),k,r
From vir! 8086 md to priv level 0 via Trap Gate or Interrupt Gate 119

4-120

intJ 386TM MICROPROCESSOR

Table 8·1. 386TM Microprocessor Instruction Set Clock Count Summary (Continued)
CLOCK COUNT NOTES

R •• I Real
1
1
,'1 ...

INSTRUCTION FORMAT Add Protected Addr ... Protected
Mode or Virtual Mode or Virtual
Virtual Add Virtual Addre ..
8088 Mode 8088 Mode
Mode Mode

INTERRUPT INSTRUCTIONS (Continued)

BOUND:

Via Interrupt or Trap Gate
to Same Privilege Level 59 g,l, k, r

Via Interrupt or Trap Gate
to Different Privilege Level 99 g,l,k, r

From 80286 Task to 80286 TSS via Task Gate 254 g,i, k, r
From 80288 Task to 386TM CPU TSS via Task Gate 284 g,i, k, r
From 00268 Task to vilt 8086 Mode via Task Gate 231 g, i, k, r
From 386™ CPU Task to 80286 TSS via Task Gate 264 g, i, k, r
From 386TM CPU Task to 386TM CPU TSS via Task Gate 294 g, i, k, r
From 80368 Task to vilt 8066 Mode via Task Gate 243 g, i, k, r,
From virt 8086 Mode to 80286 TSS via Task Gate 264 g,l, k,r
From virt 8086 Mode to 386TM CPU TSS via Task Gate 294 g,l, k, r
From virt 8086 md to priv level 0 via Trap Gate or Interrupt Gate 119

INTERRUPT RETURN

IRET ~ Interrupt Return 1 11001111 I 22 g, h, i, k, r

Protected Mode Only (IRET)
To the Same Privilege Level (within task) 38 g, h,i, k, r
To Different Privilege Level (w~hin task) 82 g, h,l, k,r
From 80286 Task to 80268 TSS 232 h,l, k, r
From 80286 Task to 386™ CPU TSS 265 h,l,k, r
From 80286 Task to Virtual 8086 Task 213 h,i,k, r
From 80286 Task to Virtual 8088 Mode (within task) 60
From 386TM CPU Task to 80286 TSS 271 h, i, k, r
From 386TM CPU Task to 386TM CPU TSS 275 h,i,k,r
From 386TM CPU Task to Virtual 8086 Task 223 h,i,k,r
From 386TM CPU Task to Virtual 8086 Mode (within task) 60

PROCESSOR CONTROL

HLT ~ HALT 111110100 I 5 5 I

MOV. ~ Move to and From ControllOebuglTest Register

CRO/CR2/CR3 from register 1 00001111 00100010 I 11 eeereg 11/4/5 11/4/5 I

Register From CRO-3 1 00001111 00100000 I 11 eeereg 6 6 I

DRO-3 From Register 1 00001111 00100011 I 11 eeereg 22 22 I

DR6-7 From Register 1 00001111 00100011 11 eeereg 16 16 I

Register from DR6-7 1 00001111 00100001 11 eeereg 14 14 I

Register from DRO-3 1 00001111 00100001 11 eee reg 22 22 I

TR6-7 from Register 1 00001111 00100110 11 eeereg 12 12 I

Register from TR6-7 1 00001111 00100100 11 eee reg 12 12 I

NOP ~ No Operation 1 10010000 3 3

WAIT-Walt until BUSY# pin Is negated 1 10011011 7 7

4-121

intJ 386TMMICRO~ROCESSOR

T.-ble 8-1. 386TM Microprocessor Instruction Set Clock Count Summary (Continued)
CLOCK couNI' NOTES

Real Real
INSTRUCTION FORMAT Add Protected Add Protected

Moileor' Virtual Mode or VIrtual
VIrtual Add Virtual Add
8088 Mode 8088 Mode
Mode Mode

PROCESSOR EXTENSION INSTRUCTIONS

Processor Extension Escape I 11011TTT ImodLLL rIm I See h

TIT and LLL bits are opcode 80287/80387

Information for coprocessor, data sheata for

clock counts

PREFIX BYTES

Addre .. Size Prefix I 0110011 f I 0 0

LOCK = Bua Lock Prefix I 1'1110000 I 0 0 m

Operand Size Prefix I 01100110 I 0 0

Segment Override Prefix

CS: 00101110 I 0 0

DB: 00111110 I 0 0

ES: 00100110 I 0 0

Fa: Ofl00l00 I 0 0

G$: 01100101 I 0 0

SS: 00110110 I 0 0

PROTECTION CONTROL ,
ARPL - Adjust Reque.1ad Privilege Level

From'RegiSter/Memory I 01100011 I mod reg rIm I N/A 20/21 a h

LAR = LOecI Acce .. Rlghte

From ReglsterlMemory I 00001111 I 00000010 I mod reg rIm I N/A 15{16 ' a 9,h,J,p

LGDT ,- ,Load Global Deecrlp!or

Table Register I 00001111 I 00000001 ImodOl0 rIm I 11 11 b,c h,l

LlDT = Load Interrup! Deecrlptor ...
Table Register I 0'0001111 I 00000001 I modOll rim I 1,1

"
11 b,c h,l

LLDT = Load Local ,Descriptor

Table Register to
I I ImodOl0 rIm I Rel!lster/Memory 00001111 0000,0000 N/A 20/24 a g,h,;'1

LMSW '- Load MachIne SlIIIua Word

From ReglsterlMemory I 00001111 I 00000001 I modll 0 rIm I 11114 11114 b"c h,l

LSL = Load Segment Limit,

From Reglster/Memory I 00001111 I 00000011 I mod reg 11m I
Byte-Granular Umtt N/A 21/22 a g,h;I,JI
Paga-Granular UmR N/A' 25/28 a g,h,l,p

LTR = Load Teak RIllIeter

From RegisterlMemory I 00001111 I 00000000 I modOO 1 rIm I N/A 23/27 a g,h,l,l

SODT = Store Global Deecrlptor I
Table Ragl8ler I 00001111 I 00000001 I mod'OOO r/';' I 9 9 b,c h

SIDT = Store Interrupt Deecrlptor

Table Rllliater I 000011; 1 I 00000001 I modOOl rIm I g, 9 b,c h

SLOT = Store Local _ptor Table Ragl8ter

To RegisterlMemory I 00001111 I 00000000 I modOOO rIm I N/A 2/2 a h

4·122

386TM MICROPROCESSOR

Table 8-1. 386TM Microprocessor Instruction Set Clock Count Summary (Continued)

CLOCK COUNT NOTES

Real Real
INSTRUCTION FORMAT Address Protected Address Protected

Mode or Virtual Mode or Virtual
Virtual Address Virtual Addre ••
8086 Mode 8086 Mode
Mode Mode

SMSW ~ Store Machine
Status Word I 00001111 I 00000001 Imodl00 rIm I 2/2 2/2 b, c h, I

STR ~ Store Task Register

To RegisterlMemory I 00001111 I 00000000 ImodOOl rIm I N/A 2/2 a h

VERR ~ Verify Read Accesss

Register/Memory I 00001111 I 00000000 I modI 00 rIm I N/A 10/11 a g, h,j, P

VERW ~ Verify Write Accesss I 00001111 I 00000000 I modI 01 rIm I N/A 15/16 a g, h,j, P

INSTRUCTION NOTES FOR TABLE 8·1

Notes a through c apply to 386 Microprocessor Real Address Mode only:
a. This is a Protected Mode instruction. Attempted execution in Real Mode will result in exception 6 (invalid opcode).
b, Exception 13 fault (general protection) will occur in Real Mode if an operand reference is made that partially or fully
extends beyond the maximum CS, OS, ES, FS or GS limit, FFFFH. Exception 12 fault (stack segment limit violation or not
present) will occur in Real Mode if an operand reference is made that partially or fully extends beyond the maximum S8 limit.
c. This instruction may be executed in Real Mode. In Real Mode, its purpose is primarily to initialize the CPU for Protected
Mode.

Notes d through g apply to 386 Microprocessor Real Address Mode.and 386 Microprocessor Protected Virtual
Address Mode:
d, The 386 Microprocessor uses an early-out multiply algorithm. The actual number of clocks depends on the position of the
most significant bit in the operand (multiplier).

Clock counts given are minimum to maximum. To calculate actual clocks use the following forml:Jla:
Actual Clock = if m < > 0 then max ([Iog2 Imll. 3) + b clocks:

. if m = 0 then 3+b clocks
In this formula, m is the multiplier, and
b = 9 for register to register,
b = 12 for memory to register,
b = 10 for register with immediate to register,
b = 11 for memory with immediate to register.

e. An exception may occur, depending on the value of the operand.
f. LOCK# is automatically asserted, regardless of the presence or absence of the LOCK# prefix.
g. LOCK # is asserted during descriptor table accesses.

Notes h through r apply to 386 Microprocessor Protected Virtual Address Mode only:
h. Exception 13 fault (general protection violation) will occur if the memory operand in CS, OS, ES, FS or G8 cannot be used
due to either a segment limit violation or access rights violation. If a stack limit is violated, an exception 12 (stack segment
limit violation or not present) occurs.
i. For segment load operations, the CPL, RPL, and OPL must agree with the privilege rules to avoid an exception 13 fault
(general protection violation). The segment's descriptor must indicate "present" or exception 11 (CS, OS, E8, FS, GS not
present). If the S8 register is loaded and a stack segment not present is detected, an exception 12 (stack segment limit
violation or not present) occurs.
j. All segment descriptor accesses in the GOT or LOT made by this instruction will automatically assert LOCK # to maintain
descriptor integrity in multiprocessor systems.
k. JMP, CALL, INT, RET and IRET instructions referring to another code segment will cause an exception 13 (general
protection violation) if an applicable privilege rule is violated.
I. An exception 13 fault occurs if CPL is greater than 0 (0 is the most privileged level).
m. An exception 13 fault occurs if CPL is greater than IOPL.
n. The IF bit of the flag register is not updated if CPL is greater than IOPL. The IOPL and VM fields of the flag register are
updated only if CPL = O.
o. The PE bit of the MSW (CRO) cannot be reset by this instruction. Use MOV into CRO if desiring to reset the PE bit.
p. Any violation of privilege rules as applied to the selector operand does not cause a protection exception; rather, the zero
flag is cleared.
q. If the coprocessor's memory operand violates a segment limit or segment access rights, an exception 13 fault (general
protection exception) will occur before the ESC instruction is executed. An exception 12 fault (stack segment limit violation
or not present) will occur if the stack limit is violated by the operand's starting address.
r. The destination of a JMP, CALL, INT, RET or IRET must be in the defined limit of a code segment or an exception 13 fault
(general protection violation) will occur.

4-123

I
I,

I'
I ~,

~

I'

'\ •

386TM MICROPROCESSOR

8.2 INSTRUCTION ENCODING

8.2.1 Overview

All instruction encodings are subsets of the general
instruction format shown in Figure 8·1. Instructions
consist of one or two primary opcode bytes, possibly
an address specifier consisting of the "mod rIm"
byte and "scaled index" byte, a displacement if reo
quired, and an immediate data field if required.

Within the primary opcode or opcodes, smaller en·
coding fields may be defined. These fields vary ac·
cording to the class of operation. The fields define
such information as direction of the operation, size
of the displacements, register encoding,· or sign ex·
tension.

Almost all instructions referring to an operand in
memory have an addressing mode byte follOWing
the primary opcode byte(s). This byte,the mod rIm
byte, specifies the address mode to be used. Certain

encodings of the mod rIm byte indicate a second
addressing byte, the scale·index·base byte, follows
the mod rIm byte to fully specify the addressing
mode.

Addressing modes can include a displacement im·
mediately following the mod rIm byte, or scaled in·
dex byte. If a displacement is present, the possible
sizes are 8, 16 ,or 32 bits.

If the instruction specifies an immediate operand,
the immediate· operand follows any displacement
bytes. The immediate operand, if specified, is always
the last field of the instruction.

Figure. 8·1 illustrates several of the fields that can
appear in an instruction, such as the mod field and
the rIm field, but the Figure does not show all fields.
Several smaller fields also appear in certain instruc·
tions, sometimes within the opcode bytes them·
selves. Table 8·2 is a complete list of all fields ap·
pearing in the 386 Microprocessor instruction set.
Further ahead, following Table 8·2, are detailed tao
bles for each field.

ITTTTTTTT I TTTTTTTT I mod TTT rIm I ss index base Id32116181 nonedata32 1 16181 none

;[07 0/\765320/\765320/\, J\ I
'T T T T

opcode
(one or two bytes)
(T represents an

opcode bit.)

"mod rIm"
\. byte byte,
~ ~ ~~

register and address
mode specifier

address
displacement
(4, 2, 1 bytes
. or none)

Figure 8-1. General Instruction Format

Table 8·2 Fields within 386™ Microprocessor Instructions

Field Name Description

w Specifies if Data is Byte or Full Size (Full Size is either 16 or 32. Bits
d Specifies Direction of Data Operation
s Specifies if an Immediate Data Field Must be Sign·Extended
reg General Register Specifier
mod rIm Address Mode Specifier (Effective Address can be a General Register)

ss Scale Factor for Scaled Index Address Mode
index General Register to be used as Index Register
base General Register to be used as Base Register
sreg2 Segment Register Specifier for CS, SS, OS, ES
sreg3 $egment Register. Specifier for CS, SS, OS, ES, FS, GS
tttn For Conditional Instructions, Specifies a Condition Asserted

or a Condition Negated
Note: Table 8·1 shows encoding of individual instructions.

4·124

immediate
data

(4,2, 1 bytes
or none)

Number of Bits

1
1
t
3

2 for mod;
3 for rIm

2
3
3
2
3

4

inter 386™ MICROPROCESSOR

8.2.2 32-Bit Extensions of the
Instruction Set

With the 386 Microprocessor, the 8086/801861
80286 instruction set is extended in two orthogonal
directions: 32-bit forms of all 16-bit instructions are
added to support the 32-bit data types, and 32-bit
addressing modes are made available for all instruc­
tions referencing memory. This orthogonal instruc­
tion set extension is accomplished having a Default
(D) bit in the code segment descriptor, and by hav­
ing 2 prefixes to the instruction set.

Whether the instruction defaults to operations of 16
bits or 32 bits depends on the setting of the D bit in
the code segment descriptor, which gives the de­
fault length (either 32 bits or 16 bits) for both oper­
ands and effective addresses when executing that
code segment. In the Real Address Mode or Virtual
8086 Mode, no code segment descriptors are used,
but a D value of 0 is assumed internally by the 386
Microprocessor when operating in those modes (for
16-bit default sizes compatible with the 80861
80186/80286).

Two prefixes, the Operand Size Prefix and the Effec­
tive Address Size Prefix, allow overriding individually
the Default selection of operand size and effective
address size. These prefixes may precede any op­
code bytes and affect only the instruction they pre­
cede. If necessary, one or both of the prefixes may
be placed before the opcode bytes. The presence of
the Operand Size Prefix and the Effective Address
Prefix will toggle the operand size or the effective
address size, respectively, to the value "opposite"
from the Default setting. For example, if the default
operand size is for 32-bit data operations, then pres­
ence of the Operand Size Prefix toggles the instruc­
tion to 16-bit data operation. As another example, if
the default effective address size is 16 bits, pres­
ence of the Effective Address Size prefix toggles the
instruction to use 32-bit effective address computa­
tions.

These 32-bit extensions are available in all 386 Mi­
croprocessor modes, including the Real Address
Mode or the Virtual 8086 Mode. In these modes the
default is always 16 bits, so prefixes are needed to
specify 32-bit operands or addresses. For instruc­
tions with more than one prefix, the order of prefixes
is unimportant.

Unless specified otherwise, instructions with 8-bit
and 16-bit operands do not affect the contents of
the high-order bits of the extended registers.

8.2.3 Encoding of Instruction Fields
Within the instruction are several fields indicating
register selection, addressing mode and so on. The
exact encodings of these fields are defined immedi­
ately ahead.

8.2.3.1 ENCODING OF OPERAND LENGTH (w)
FIELD

For any given instruction performing a data opera­
tion, the instruction is executing as a 32-bit operation
or a 16-bit operation. Within the constraints of the
operation size, the w field encodes the operand size
as either one byte or the full operation size, as
shown in the table below.

Operand Size Operand Size
wFleld During 16-Blt During 32-Blt

Data Operations Data Operations

0 8 Bits 8 Bits
1 16 Bits 32 Bits

8.2.3.2 ENCODING OF THE GENERAL
REGISTER (reg) FIELD

The general register is specified by the reg field,
which may appear in the primary opcode bytes, or as
the reg field of the "mod rim" byte, or as the rim
field of the "mod rim" byte.

Encoding of reg Field When w Field
Is not Present In Instruction

Register Selected Register Selected
reg Field During 16-Blt During 32-Bit

000
001
010
011
100
101
101
101

reg

000
001
010
011
100
101
110
111

Data Operations Data Operations

AX EAX
CX ECX
DX EDX
BX EBX
SP ESP
BP EBP
SI ESI
DI EDI

Encoding of reg Field When w Field
Is Present In Instruction

Register Specified by reg Field
During 16-Blt Data Operations:

Function of w Field

(whenw = 0) (whenw = 1)

AL AX
CL CX
DL DX
BL BX
AH SP
CH BP
DH SI
BH DI

4-125

intJ 386TM MICROPROCESSOR

Register Specified by reg Field
During 32.-Bit Data Operations

reg
Function of w Field

(when w = 0) (whenw = 1)

000 AL EAX
001 CL ECX
010 OL EOX
011 BL EBX
100 AH ESP
101 CH EBP
110 OH ESI
111 BH EOI

8.2.3.3 ENCODING OF THE SEGMENT
REGISTER (sreg) FIELD

The sreg field in certain instructions is a 2-bit field
allowing one of the four 80286 segment registers to
be specified. The sreg field in other instructions is a
3-bit field, allowing the 386 Microprocessor FS and
GS segment registers to be specified.

2-Bit sreg2 Field

2"Bit
Segment

sreg2 Field
Register
Selected

00 ES
01 CS
10 SS
11 OS

3-Bit sreg3 Field

3-Bit
Segment

sreg3 Field
Register
Selected

000 ES
001 CS
010 SS
011 OS
100 FS
101 GS
110 do not use
111 do not use

8.2.3.4 ENCODING OF ADDRESS MODE

Except for special instructions, such as PUSH or
POP, where the addressing mode is pre-determined,
the addressing mode for the current instruction is
specified by addressing bytes following the primary
opcode. The primary addressing byte is the "mod
rim" byte, and a second byte of addressing informa­
tion, the "s-i-b" (scale-index-base) byte, can be
specified.

The s-i-b byte (scale-index-base byte) is specified
when using 32-bit addressing mode and the "mod
rim" byte has rim = 100 and mod = 00,01 or 10.
When the sib byte is present, the 32-bit addressing
mode is a function of the mod, ss, index, and base
fields.

The primary addressing byte, the "mod rim" byte,
also contains three bits (shown as TIT in Figure 8-1)
sometimes used as an extension of the primary op­
code. The three bits, however, may also be used as
a register field (reg).

When calculating an effective address, either 16-bit
addressing or 32-bit addressing is used. 16-bit ad­
dressing uses 16-bit address components to calcu­
late the effective address while 32-bit addressing
uses 32-bit address components to calculate the ef­
fective address. When 16-bit addressing is used, the
"mod rim" byte is interpreted asa 16-bit addressing
mode specifier. When 32-bit addressing is used, the
"mod rim" byte i,s interpreted as a 32-bit addressing
mode specifier.

Tables on the following three pages define all en­
codings of all 16-bit addressing modes and 32-bit
addressing modes.

386TM MICROPROCESSOR

Encoding of 16-blt Address Mode with "mod r/muByte

mod rIm Effective Address mod rIm Effective Address

00000 DS:[BX+SI) 10000 DS:[BX+SI+d16]
00001 DS:[BX+DI) 10001 DS:[BX+DI+d16]
00010 SS:[BP+SI] 10010 SS:[BP+SI+d16]
00011 SS:[BP+DI) 10011 SS:[BP+ DI+d16]
00100 DS:[SI] 10100 DS:[SI+d16]
00101 DS:[DI) 10101 DS:[DI+d16]
00110 DS:d16 10110 SS:[BP+d16]
00111 DS:[BX] 10111 DS:[BX+d16]

01000 DS:[BX+SI+dS] 11000 register-see below
01001 DS:[BX+DI+d8] 11001 register-see below
01010 SS: [BP + SI + d8] 11010 register-see below
01011 SS: [BP + DI + dS] 11 011 register-see below
01100 DS:[SI+dS] 11100 register-see below
01101 DS:[DI+dS] 11 101 register-see below
01110 SS:[BP+dS] 11110 register-see below
01111 DS:[BX+dSj 11 111 register-see below

Register Specified by rIm
During 16-Bit Data Operations

mod rIm
.Function of w Field

(whenw=O) (whenw =1)

11000 AL AX
11001 CL CX
11010 DL DX
11 011 BL BX
11100 AH SP
11 101 CH BP
11 110 DH SI ~

11 111 BH DI

Register Specified by rIm
During 32-Bit Data Operations

mod rIm
Function of w Field

(whenw=O) (whenw =1)

11000 AL EAX
11001 CL ECX
11010 DL EDX
11 011 BL EBX
11100 AH ESP
11 101 CH EBP
11 110 DH ESI
11 111 BH EDI

4·127

386TM MICROPROCESSOR

Encoding of 32-blt Address Mode with "mod rIm" byte (no "s-I-b" byte present):

mod rIm Effective Address mod rIm Effective Address

00000 os: [EAX] 10000 OS: [EAX + d32]
00001 OS: [ECX] 10001 OS: [ECX + d32]
00010 OS: [EOX] 10010 OS: [EOX + d32]
00011 OS:[EBX] . 10011 'OS: [EBX + d32]
00100 s-i-b is present 10100 s-i-b is present
00101 OS:d32 10101 SS:[EBP+d32]
00110 OS: [ESI] 10110 OS: [ESI + d32]
00111 OS:[EOI] 10111 OS: [EOI + d32]

01000 OS: [EAX+ d8] 11000 register-see below
01001 OS: [ECX + d8] 11001 register-see below
01010 OS: [EOX + d8] 11010 register-see below
01011 OS:[EBX + d8] 11 011 register-see below
01100 s-i-b is present 11100 register-see below
01101 $S: [EBP + d8] 11 101 register-see below
01110 OS:[ESI + d8] 11 110 register-see below
01 111 OS: [EOI + d8] 11 111 register-see below

Register Specified by reg or rIm
during 16-Blt Data Operations:

mod rIm function of w field

(whenw=O) (whenw=1)

11000 AL AX
11001 CL CX
11010 OL OX
11 011 BL BX
11100 AH SP
11 101 CH BP
11 110 OH SI
11 111 BH 01

Register Specified by reg or rIm
during 32-Blt Data Operations:

mod rIm
function of w field

(whenw=O) (whenw=1)

11000 AL EAX
11001 CL ECX
11010 OL EOX
11 011 BL EBX
11100 AH ESP
11 101 CH EBP
11 110 OH ESI
11 111 BH EOI

4-128

inter

mod base

00000
00001
00010
00011
00100
00101
00110
00111

01000
01001
01010
01011
01100
01101
01110
01 111

10000
10001
10010
10011
10100
10101
10110
10111

NOTE:

386'1'M MICROPROCESSOR

Encoding of 32-blt Address Mode ("mod rim" byte and "s-I-b" byte present):

Effective Address

OS:[~AX + (scaled index)]
OS: [ECX + (scaled index)]
OS:[EOX + (scaled index))
OS: [EBX + (scaled index)]
SS: [ESP + (scaled index)]
OS: [d32 + (scaled Index)]
OS: [ESI + (scaled index))
OS: [EOI + (scaled index)]

OS: [EAX + (scaled index) + d8]
OS: [ECX + (scaled index) + d8]
OS: [EOX + (scaled Index) + d8]
OS: [EBX + (scaled index) + d8]
SS: [ESP + (scaled index) + d8]
SS: [EBP + (scaled index) + d8]
OS:[ESI + (scaled index) + d8]
OS: [EOI + (scaled index) + d8]

OS: [EAX + (scaled index) + d32]
OS: [ECX + (scaled index) + d32]
OS:[EOX + (scaled index) + d32]
OS:[EBX + (scaled index) + d32]
SS: [ESP + (scaled index) + d32]
SS:[EBP + (scaled index) + d32]
OS:[ESI + (scaled index) + d32]
OS:[EOI + (scaled index) + d32]

ss Scale Factor

00 x1
01 x2
10 x4
11 x8

Index Index Register

000 EAX
001 ECX
010 EOX
011 EBX
100 no index reg··
101 EBP
110 ESI
111 EOI

··IMPORTANT NOTE:
When index field is 100, indicating "no index register," then
ss field MUST equal 00. If index is 100 and ssdoes not
equal 00, the effective address is undefined.

Mod field in "mod rIm" byte; ss, index, base fields in
"s-i-b" byte.

4-129

386™MICROPROCESSOR

8.2.3.5 ENCODING OF OPERATION DIRECTION
(d) FIELD

In many two-operand instructions the d field is pres­
ent to indicate which operand is considered the
source and which is the destination.

d Direction of Operation

0 Register/Memory <- - Register
"reg" Field Indicates Source Operand;
"mod r/m" or ','mod ss index base" I.ndicates
Destination Operand

1 Register <- - Register/Memory
"reg" Field Indicates Destination Operand;
"mod r/m" or "mod ss index base" Indicates
Source Operand

8.2.3.6 ENCODING OF SIGN-EXTEND (s) FIELD

The s field occurs primarily to instructions with im­
mediate data fields. The s field has an effect only if
the size of the immediate data is 8 bits and is being
placed in a 16-bit or 32-bit destination.

s
Effect on Effect on

Immediate Data8 Immediate Data 16132

None None

1 Sign-Extend Data8 to Fill None
16-Bit or 32-Bit Destination

8.2.3.7 ENCODING OF CONDITIONAL TEST
(tttn) FIELD

For the conditional instructions (conditional jumps
and set on condition), tttn is encoded with n indicat­
ing to use the condition (n = 0) or its negation (n = 1),
and ttt giving the condition to test.

Mnemonic Condition
..

tttn

0 Overflow 0000
NO No Overflow 0001
B/NAE Below/Not Above or Equal 0010
NB/AE Not Below/Above or Equal 0011
E/Z Equal/Zero 0100
NE/NZ Not EquallNot Zero 0101
BE/NA Below or Equal/Not Above 0110
NBE/A Not Below or Equall Above 0111
S Sign 1000
NS Not Sign 1001
PIPE Parity/Parity Even 1010
NP/PO Not Parity/Parity Odd 1011
L/NGE Less Than/Not Greater or Equal 1100
NLIGE Not Less Than/Greater or Equal 1101
LE/NG Less Than or Equal/Greater Than 1110
NLE/G Not Less or Equal/ Greater Than 1111

8.2.3.8 ENCODING OF CONTROL OR DEBUG ,
OR TEST REGISTl:R (eee) FIELD

For the loading and storing of· the Control, Debug
and Test registers~

When Interpreted as Control Register Field

eeeCQde AegName

000 CRO
010 CR2
011 CR3

Do not use any other encoding

'When Interpreted as Debug Register Field

eeeCode Reg Name

000 DRO
001 DR1
010 DR2
011 DR3
110 DR6
111 DR7

Do not use any other encoding

When Interpreted as Test Register Field

eeeCode Reg Name

110 TR6
111 TR7

Do not use any other encoding

4.-130

inter 386TM MICROPROCESSOR.

9.0 Revision History

This 386 Microprocessor data sheet, version -005, contains updates and improvements to previous versions.
A revision summary is listed here for your convenience.

The sections significantly revised since version -001 are:

2.9.6 Sequence of exception checking table added.

2.9.7

2.11.2

2.12

3.1

4.4.3.3

Figures 4-15a, 4-15b

4.6.4

4.6.6

5.6

5.8

5.8.1

Table 6-3

7.6

Figures 7-8,7-9,7-10

8.2.3.4

Instruction restart revised.

TL8 testing revised.

Debugging support revised.

LOCK prefix restricted to certain instructions.

1/0 privilege level and 1/0 permission bitmap added.

1/0 permission bitmap added.

Protection and 1/0 permission bitmap revised.

Entering and leaving virtual 8086 mode through task switches, trap and interrupt
gates, and IRET explained.

Self-test signature stored in EAX.

Coprocessor interface description added.

Software testing for coprocessor presence added.

PGA package thermal characteristics added.

Designing for ICE-386 revised.

ICE-386 clearance requirements added.

Encoding of 32-bit address mode with no "sib" byte corrected.

The sections significantly revised since version ·002 are:

Table 2-5 Interrupt vector aSSignments updated.

Figure 4-15a 8iLmap_offset must be less than or equal to DFFFH.

Figure 5-28

5.7

7.4

7.5

Table 8-1

386 Microprocessor outputs remain in their reset state during self-test.

Component and revision identifier history updated.

20 MHz D.C. specifications added.

16 MHz A.C. specifications updated. 20 MHz A.C. specifications added.

Clock counts updated.

The sections significantly revised since version ·003 are:

Table 2-6b Interrupt priorities 2 and 3 interchanged.

2.9.8 Double page faults do not raise double fault exception.

Figure 4-5

5.4.3.4

Figures 5-16, 5-17,

5-19,5-22

7.5

Maximum-sized segments must have segments 8ase11 .. 0 = O.

8S16# timing corrected.

8S16# timing corrected. 8S16# must not be asserted once NA# has been

sampled asserted in the current bus cycle.

16 MHz and 20 MHz A.C. specifications revised. A" timing parameters are now
guaranteed at 1.5V test levels. The timing parameters have been adjusted to
remain compatible with previous 0.8V/2.0V specifications.

4~131

386TM MICROPROCESSOR

The sections significantly revised since version ·004 are:
Chapter 4 25 MHz Clock data included.
Table 2·4 Segment Register Selection Rules updated.
5.4.4 Interrupt Acknowledge Cycles discussion corrected.
Table 5-10 Additional Steppi'!g Information added.
Table 7-3 Icc values updated.
7.5.2 Table for 25 MHz A.C. Characteristics added. AC. Characteristics tables reor­

dered.
Figure 7-5

Table 8-1

Output Valid DelayTiming Figure reconfigured. Partial data now provided in addi­
tional Figures 7-5a and 7-5b.
Clock counts updated and formats corrected.

4-132

•
•

•
•

•

80387
80-BIT CHMOS III

NUMERIC PROCESSOR EXTENSION
High Performance 80-Bit Internal • Upward Object-Code Compatible from
Architecture 8087 and 80287 .

Implements ANSI/IEEE Standard 754- • Full-Range Transcendental Operations
1985 for Binary Floating-Point for SINE, COSINE, TANGENT,
Arithmetic ARCTANGENT and LOGARITHM

Five to Nine Times 8087/80287 • Built-In Exception Handling
Performance • Operates Independently of Real,
Expands 386™ CPU Data Types to Protected and Vlrtual-8086 Modes of
Include 32-, 64-, 80-Blt Floating Point, the 386TM Microprocessor
32-, 64-Bit Integers and 18-Dlglt BCD • Eight 80-Blt Numeric Registers, Usable
Operands as Individually Addressable General
Directly Extends 386TM CPU Instruction Registers or as a Register Stack
Set to Include Trigonometric, • Available in 68-Pin PGA Package
Logarithmic, Exponential and

(See Packaging Spec: Order ;II 231369)
Arithmetic Instructions for All Data
Types

The Intel 80387 is a high-performance numerics processor extension that extends the Intel386™ Architecture
with floating point, extended integer and BCD data types. The 386TM Microprocessor and the 80387 Coproc­
essor computing system fully conforms to the ANSIIIEEE floating-point standard. Using a numerics oriented
architecture, the 80387 adds over seventy mnemonics to the 386 Microprocessor instruction set, making the
386 Microprocessor and the 80387 Coprocessor a complete solution for high-performance numerics process­
ing. The 80387 is implemented with 1.5 micron, high-speed CHMOS III technology and packaged in a 68-pin
ceramic pin grid array (PGA) package. The 386 Microprocessor and the 80387 Coprocessor are upward
object-code compatible from the 386 Microprocessor and the 80287 Coprocessor, 80286/80287 and
808618087 computing systems.

I
BUS CONTROL LOGIC I DATA INTERFACE AND CONTROL UNIT I FLOATING POINT UNIT

" DBUS INTERrACE
DATA. ALIGNMENT AND OPERAND CHECKING

(0)

"

00-031

CPUCLK2 NUMCLK2

231920-1

Figure 0_1_ 80387 Block Diagram

4-133
November 1988

Order Number: 231920-004

I.

inter 80387

386™ Microprocessor Registers

GENERAL REGISTERS
31 150

EAX

EBX

ECX

. EOX

ESI

EOI

EBP

ESP

BX

IBH I BL

CX

I CH ICL

ox
I OH ~f OL

I SI

I 01

I BP

I SP

. SEGMENT REGISTERS
15 0

CS

SS

OS

ES

FS

GS

31 o

: I

80387 Data Registers

79786463 0

RO Sign Exponent Significa,nd

R1
~~----~~--------~

R2
r--;~----r-------~~

R3
~~----~~--------~

R4
~--~----~-----------4

R5
r--;--~--r---------~

R6
~~----~~--------~

R7
~~------~--------~

15 0 47

Tag
Field

~
.1-­

I--

-
-
-
r-­
I--

o
. Control Register

Status Register

Tag Word

Instruction Pointer (in 386™ CPU)I

Data Pointer (in 386TM CPU) I

....
Fi.gure 1.1, 386™ Microprocessor and 80387 Coprocessor Register Set

1.0 FUNCTIONAL DESCRIPTION

The 80387 Numeric Processor Extension (NPX) pro­
vides arithmetic instructions for a variety of numeric
data types in the 386TM Microprocessor and 80387
Coprocessor systems. It also executes numerous
built-in transcendental functions (e.g. tangent, sine,
cosine, and log functions). The 80387 effectively ElX­
tends the register and instruction set ofa'386 Micro­
processor system for existing d,ata types arid adds
several new data types as well. Figure .1.1 shoYo(s the
model of registers visible to the 386 Microprocessor
and 80387 Coprocessor programs. EssentiaHy, the .
80387 can be treated as an additional reSol!rce or
an extension to ·the386 Microprocessor~ The 386
Microprocessor together with an 80387 can be used
as a single unified system, the 386 Microprocessor·
and 80387 Coprocessor.

The 80387 works the same whether the 386 Micro­
processor is executing in real-address mode, pro­
tected mode, or virtual-8086 mode. All memory ac­
cess is handled by the 386 Microprocessor; the
80387 merely operates on instructions and values
passed to it by the 386 Microprocessor. Therefore,
the 80387 is not sensitive to the processing mode of
the 386 Microprocessor.

In real-address mode and virtual-8086 mode, the
386 Microprocessor and 80387 Coprocessor is com­
pletely upward compatible with software' for
8086/8087, 80286/80287 real-address mode, and
386 Microprocessor and 80287 Coprocessor real­
address mode systems.

In protected mode, the 386 Microprocessor and
80387 Coprocessor is completely upward compati­
ble with software for 80286/80287 protected mode,
and 386 Microprocessor and 80287 Coprocessor
protected mode systems.

The only differences of operation that may appear
when 8086/8087 programs are ported to a protect­
ed-mode 386 Microprocessor and 80387 Coproces­
sorsystem (not using virtual-8086 mode), is in the
format of operands for the ac;tministrative instruc­
tions FLDENV, FSTENV, FRSTOR and FSAVE.
These instructions are normally used only by excep­
tionhandlers and operating systems, not by applica-
tions programs. .

The 80387 contains three functional.units that can
operate in parallel to increase system performance.
The 386 Microprocessor can be transferring com­
manc;ts, and data to the 80387 bus control logic for
the next instruction while the. 80387 floating-point
unifis performing the current numeric instruction.

4·134

inter 80387

2.0 PROGRAMMING INTERFACE

The 80387 adds to the 386 Microprocessor system
additional data types, registers, instructions, and in­
terrupts specifically designed to facilitate high-speed
numerics processing. To use the 80387 requires no
special programming tools, because all new instruc­
tions and data types are directly supported by the
386 CPU assembler and compilers for high-level lan­
guages. All 8086/8088 development tools that sup­
port the 8087 can also be used to develop software
for the 386 Microprocessor and 80387 Coprocessor
in real-address mode or virtual-8086 mode. All
80286 development tools that support the 80287
can also be used to develop software for the 386
Microprocessor and 80387 Coprocessor.

All communication between the 386 Microprocessor
and the 80387 is transparent to applications soft­
ware. The CPU automatically controls the 80387
whenever a numerics instruction is executed. All
physical memory and virtual memory of the CPU are
available for storage of the instructions and oper­
ands of programs that use the 80387. All memory
addressing modes, iricluding use of displacement,
base register, index register, and scaling, are avail­
able for addressing numerics operands.

Section 6 at the end of this data sheet lists by class
the instructions that the 80387 adds to the instruc­
tion set of the 386 Microprocessor system.

2.1 Data Types

Table 2.1 lists the seven data types that the 80387
supports and presents the format for each type. Op­
erands are stored in memory with the least signifi­
cant digit at the lowest memory address. Programs
retrieve these values by generating the lowest ad­
dress. For maximum system performance, all oper­
ands should start at physical-memory addresses
evenly divisible by four (doubleword boundaries); op­
erands may begin at any other addresses, but will
require extra memory cycles to access the entire op­
erand.

Internally, the 80387 holds all numbers in the ex­
tended-precision real format. Instructions that load
operands from memory automatically convert oper­
ands represented in memory as 16-, 32-, or 64-bit
integers, 32- or 64-bit floating-point numbers, or 18-
digit packed BCD numbers into extended-precision
real format. Instructions that store operands in mem­
ory perform. the inverse type' conversion.

2.2 Numeric Operands

A typical NPX instruction accepts one or two oper­
ands and produces a single result. In two-operand
instructions, one operand is the contents of an NPX
register, while the other may be a memory location.
The operands of s'ome instructions are predefined;
for example FSQRT always takes the square root of
the number in the top stack element.

4-135

inter 80387

Table 2.1. 80387 Data Type Representation In Memory

Deta
Most SIgnificant Byte - Highest Ad d Byte

Fo'rma'i
Range Preclalon

017 01 7 017 017 01 7 017 01 7 7

Word Integer ±1()4 16 Bits J ITWO'S
COMPLEMENT I

15 0

Short Integer ±I08 32 Bits ,ITWO'S
COMPLEMENT,

31 0

Long Integer ±I018 64 Bits
63

s1 x ,td l1

MAGNITUDE
Packed BCD ±10±18 18 Digits d'b d,:, d u d 'J d'l d" diU d9 do d, d, d.

79 12

Single Preclalon ±10±38 24 Bits S EXPONENT 1 BIASED 1 SIGNIFICAND J
31 23'-- I' 0

Double Precision ±10±308 53 Bits 1 BIASED I S,GH"'CANO EXPONENT

1'3 52'-, I"

Extended ~ 10±4932 64 Bits sl BIASED r" SIGN"'CANO
PrecisiOn EXPONENT

9

NOTES:
(1) S = Sign bit (0 = positive, 1 = negative)
(2) dn = Decimal digit (two per byte)

64 63'

(3) X = Bits have no significance; 80387 ignores when loading, zeros when storing
(4)& = Position of implicit binary point
(5) I = Integer bit of significand; stored in temporary real, implicit in single and double precision
(6) Exponent Bias (normalized values):

Single: 127 (7FH)
Double: 1023 (3FFH)
Extended Real: 16383 (3FFFH)

(7) Packed BCD: (-I)S (0,7 ... 00)
(8) Real: (-I)S (2E-SIAS) (Fa F,.,,)

4-136

017 o j7 01

J ITWO'S
COMPLEMENT)

0

d,1 d, d, d. d I
0

J
0

I
0

231920-2

inter 80387

15 o
TAG (7) TAG (6) TAG (5) TAG (4) TAG (3) TAG (2) TAG (1) TAG (0)

NOTE:
The index i of tag(i) is not top-relative. A program typically uses the "top" field of Status Word to determine which tag(i)
field refers to logical top of stack.
TAG VALUES:

00 = Valid
01 = Zero
10 = QNaN, SNaN, Infinity, Denormal and Unsupported Formats
11 = Empty

Figure 2.1. 80387 Tag Word

2.3 Register Set

Figure 1.1 shows the 80387 register set. When an
80387 is present in a system, programmers may use
these registers in addition to the registers normally
available on the 386 CPU.

2.3.1 DATA REGISTERS

80387 computations use the 80387's data registers.
These eight 80-bit registers provide the equivalent
capacity of twenty 32-bit registers. Each of the eight
data registers in the 80387 is 80 bits wide and is
divided into "fields" corresponding to the NPXs ex­
tended-precision real data type.

The 80387 register set can be accessed either' as a
stack, with instructions operating on the top one or
two stack elements,or as a fixed register set, with
instructions operating on explicitly designated regis­
ters. The TOP field in the status word identifies the
current top-of-stack register. A "push" operation
decrements TOP by one and loads a value into the
new top register. A "pop" operation stores the value
from the current top register and'thenincrements

TOP by one. Like the 386 Microprocessor stacks in
memory, the 80387 register stack grows "down"
toward lower-addressed registers.

Instructions may address the data registers either
implicitly or explicitly. Many instructions operate on
the register at the TOP of the stack. These instruc­
tions implicitly address the register at which TOP
points. Other instructions· allow the programmer to
explicitly specify which register to user. This explicit
register addressing is also relative to TOP.

2.3.2 TAG WORD

The tag word marks the content of each numeric
data register, as Figure 2.1 shows. Each two-bit tag
represents one olthe eight numerics registers. The
principal function of the tag word is to optimize the
NPXs performance and stack handling by making it
possible to distinguish between empty and nonemp­
ty register locations. It also enables exception han­
dlers to check the contents of a stack location with­
out the need to perform complex decoding of the
actual data.

4-137

I
I,'

~

inter 80387

.-----------------------------------B03B7BUSY

.-,---,-------------------------- TOP OF STACK POINTER

.-t--+-+,.--r--r-------------------'- CONDITION CODE

ERROR SUMMARY STATUS -----------:-'
STACK FLAG ---------------'

EXCEPTION FLAGS:
PRECISION ------------------'

UNDERFLOW -----------------'
OVERFLOW --------------------'

ZERO DIVIDE -------.,..-'---------------'
DENORMALIZED OPERAND -----------------------'

INVALID OPERATION ---------------------------'
231920-3

ES is sel if any unmasked exception bit is set; cleared otherwise.
See Table 2.2 for interpretation of condition code.
TOP values:

000 =' Register 0 is Top of Stack
001 = Register 1 is Top of Stack .
111 = Register 7 is Top of Stack

For definitions of exceptions, refer to the section entitled
"Exception Handling"

Figure 2.2. 80387 Status Word

2.3.3 STATUS WORD

The 16-bit status word (in the status register) shown
in Figure 2.2 reflects the overall state of the 80387.
It may be read and inspected by CPU code.

Bit 15, the B-bit (busy bit) is included for 8087 com­
patibility only. It reflects the contents of the ES bit
(bit 7 of the status word), not the status of the
BUSY# output of 80387.

Bits 13-11 (TOP) point to the 80387 register that is
the current top-of-stack.

The four numeric condition code bits (C3-CO) are
similar to the flags in a CPU; instructions that per­
form arithmetic operations update these bits to ree
flect the outcome. The effects of these instructions
on the condition code are summarized in Tables 2.2
through 2.5.

Bit 7 is the error summary (ES) status bit. This bit is
set if any unmasked exception bit is set; it is clear
otherwise. If this bit is set, the ERROR # signal is
asserted.

Bit 6 is the stack flag (SF). This bit is used to distin­
guish invalid operations due to stack overflow or un­
derflow from other kinds. of invalid operations. When
SF is set, bit 9 (Cl) distinguishes between stack
overflow (Cl == 1) and underflow(Cl= 0).

Figure 2.2 shows the six exception flags in bits 5~0
of the status word. Bits 5-0 are set to indicate that
the 80387 has detected an exception while execut­
ing an instruction. A later section entitled "Exception
Handling" explains how they are set and used.

Note that when a new value is loaded into the status
word by the FLDENV or FRSTOR instruction, the
value of ES (bit 7) and its reflection in the B-bit (bit
15) are not derived from the values loaded from
memory but rather are dependent upon the values of
the exception flags (bits 5-0) in the status word and
their corresponding masks in the control word. If ES
is set in such a case, the ERROR # output of the
80387 is activated· immediately.

4-138

inter 80387

Table 2.2. Condition Code Interpretation

Instruction CO(S) I C3(Z) C1 (A) C2(C)

FPREM, FPREM1 Three least significant bits
Reduction

(see Table 2.3) of quotient
0= complete

Q2 QO Q1
orO/U# 1 = incomplete

FCOM, FCOMP,
FCOMPP, FTST, Result of comparison

Zero
Operand is not

FUCOM, FUCOMP, (see Table 2.4)
or O/U#

comparable
FUCOMPP, FICOM, (Table 2.4)
FICOMP

FXAM Operand class Sign Operand class
(see Table 2.5) orO/U# (Table 2.5)

FCHS, FABS, FXCH,
FINCTOP, FDECTOP,

Zero
Constant loads, UNDEFINED UNDEFINED
FXTRACT, FLO, orO/U#

FILD, FBLD,
FSTP (ext real)

FIST, FBSTP,
FRNDINT, FST,
FSTP, FADD, FMUL,

Roundup
FDIV, FDIVR, UNDEFINED UNDEFINED
FSUB, FSUBR, orOIU#

FSCALE, FSQRT,
FPATAN, F2XM1,
FYL2X, FYL2XP1

FPTAN, FSIN Roundup Reduction
FCOS, FSINCOS UNDEFINED orO/U#, 0= complete

undefined 1 = incomplete
ifC2 = 1

FLDENV, FRSTOR Each bit loaded from memory

FLDCW, FSTENV,
FSTCW, FSTSW, UNDEFINED
FCLEX, FINIT,
FSAVE

O/U.# When both IE and SF bits of status word are set, indicating a stack exception, this bit
distinguishes between stack overflow (C1 = 1) and underflow (C1 = 0).

Reduction If FPREM or FPREM1 produces a remainder that is less than the modulus, reduction is
complete. When reduction is incomplete the value at the top of the stack is a partial
remainder, which can be used as input to further reduction. For FPTAN, FSIN, FCOS, and
FSINCOS, the reduction bit is set if the operand at the top of the stack is too large. In this
case the original operand remains at the top of the stack.

Roundup When the PE bit of the status word is set, this bit indicates whether the last rounding in the
instruction was upward.

UNDEFINED Do not rely on finding any specific value in these bits.

4-139

inter 80381

Table 2.3. Condition CQdelnterpretatlon after FPREM andFPREM11natructiona

Condition Code
Interpretation after FPREM and FPREM 1

C2 C3 C1 ,CO. ,

InComplete Reduction:
1 ,X X X further interation required

for complete reduction

01 00 02 o MOD8

0 0 0 0
0 1 0 1

Complete Reduction:
1 0 0 2

0
1 1 0 .3

CO, ca, C1 contain three least

0 Q 1 4
significant bits of quotient

0 1 1 5
1 0 1 6'
1 1 1 7

Table 2.4. Condition Code Resulting from Comparison

Order C3 C2 CO

TOP> Operand 0 0 0
TOP <Operand 0 0 1
TOP = Operand 1 0 0
Unordered 1 , 1 1

Table 2.5. Condition Code Defining Operand Class

C3 C2 C1 CO Value at TOP

0 0 0 0 + Unsupported '
0 0 0 1 + NaN
0 0 1 0 - Unsupported
0 0 1 1 - NaN
0 1 0 0 + Normal
0 1 0 1 + Infinity
0 1 1 0 - Normal
0 1 1 1 - Infinity
1 0 0 0 +0
1 0 0 1 + Empty
1 0 1 0 - 0 '
1 .0 1 1 - Empty
1 1 0 0 + 'Denornial
1 1 1 0 - Denormal

4·140

inter 80387

2.3.4 INSTRUCTION AND DATA POINTERS

Because the NPX operates in parallel with the CPU,
any errors detected by the NPX may be reported
after the . CPU has executed the ESC instruction
which caused it. To allow identification of the failing
numeric instruction, the 386 Microprocessor and
80387 Coprocessor contains two pointer registers
that supply the address of the failing numeric in·
struction and the address of its numeric memory op·
erand (if appropriate).

The instruction and data pointers are provided for
user-written error handlers. These registers are ac­
tually located in the 386 CPU, but appear to be lo­
cated in the 80387 because they are accessed by
the ESC instructions FLDENV, FSTENV, FSAVE,
and FRSTOR. (In the 8086/8087 and 80286/80287,
these registers are located in the NPX.) Whenever

the 386 CPU decodes a new ESC instruction, it
saves the address of the instruction (including any
prefixes that may be present), the address of the
operand (if present), and the opcode.

The instruction and data pointers appear in one of
four formats depending on the operating mode of
the 386 Microprocessor (protected mode or real-ad­
dress mode) and depending on the operand-size at­
tribute in effect (32-bit operand or 16-bit operand).
When the 386 Microprocessor is in virtual-8086
mode, the real-address mode formats are used.
(See Figures 2.3 through 2.6.) The ESC instructions
FLDENV, FSTENV, FSAVE, and FRSTOR are used
to transfer these values between the 386 Microproc­
essor registers and memory. Note that the value of
the data pointer is undefined if the prior ESC instruc­
tion did not have a memory operand.

32-BIT PROTECTED MODE FORMAT
31 23 15 7 o

RESERVED CONTROL WORD o

RESERVED STATUS WORD 4

RESERVED TAG WORD 8

IPOFFSET C

00000 I OPCODE 10 .. 0 CSSELECTOR 10

DATA OPERAND OFFSET 14

RESERVED OPERAND SELECTOR 18

Figure 2.3. Protected Mode 80387 Instruction and Data Pointer Image In Memory, 32·Blt Format

4-141

80387

32-BIT REAL-ADDRESS MODE FORMAT
31 23 15 7 o

RESERVED CONTROL WORD

RESERVED STATUS WORD

RESERVED TAG WORD

RESERVED INSTRUCTION POINTER 15 .. 0

0000 I INSTRUCTION POINTER 31 .. 16 I 0 I OPCODE 10 .. 0

RESERVED OPERAND POINTER 15 .. 0

0000 I OPEFiAND POINTER 31 .. 16 I 0000 00000000

Figure 2.4. Real Mode 80387 Instruction and Data Pointer Image in Memory, 32-8it Format

16-BIT PROTECTED MODE FORMAT
15 7 0

CONTROL WORD

STATUS WORD

TAG WORD

IPOFFSET

CSSELECTOR

OPERAND OFFSET

OPERAND SELECTOR

Figure 2.5. Protected Mode 80387
Instruction and Data Pointer

Image in 'Memory, 16-81t Format

o

2

4

6

a

A

C

4-142

16-BIT REAL-ADDRESS MODE AND
VIRTUAL-aOa6 MODE FORMAT

15 7 0

CONTROL WORD

STATUS WORD

TAG WORD

INSTRUCTION POINTER 15 .. 0

IP19.16 ioI OPCODE 10 .. 0

OPERAND POINTER 15 .. 0

DP 19.161 0 10 0 0 0 0 0 0 0 0 0

Figure 2.6. Real Mode 80387
Instruction and Data Pointer

Image In Memory, 16-81t Format

0

o

4

a

C

10

1 4

1 a

o

2

4

6

a

A

C

intJ 80387

5 1 17 0

RESERVED

RESERVED"
ROUNDING CONTROL
PRECISION CONTROL

I x : x : x I x I~c I P:c I X; x I : I ~ I ~ I ~ I ~ I ~ I
RESERVED

EXC EPTION MASKS:

PRECISION

U NDERFLOW
OVERFLOW
ERO DIVIDE
D OPERAND

Z
DENORMALIZE

INVALID OPERATION

Precision Control
00-24 bits (single precision)
01-(reserved)
10-53 bits (double precision)
11-64 bits (extended precision)

" "0" AFTER RESET OR FIN IT;
CHANGEABLE UPON LOADING THE
CONTROL WORD (CW). PROGRAMS
MUST IGNORE THIS BIT.

Rounding Control
OO-Round to nearest or even
01-Round down (toward - "')
1 O-Round up (toward + "')
ll-Chop (truncate toward zero)

231920-4

Figure 2.7. 80387 Control Word

2.3.5 CONTROL WORD

The NPX provides several processing options that
are selected by loading a control word from memory
into the control register. Figure 2.7 shows the format
and encoding of fields in the control word.

The low-order byte of this control word configures
the 80387 error and exception masking. Bits 5-0 of
the control word contain individual masks for each of
the six exceptions that the. 80387 recognizes.

The high-order byte of the control word configures
the 80387 operating mode, including precision and
rounding.

• Bit 12 no longer defines infinity control and is a
reserved bit. Only affine closure is supported for
infinity arithmetic. The bit is initialized to zero after
RESET or FINIT and is changeable upon loading
the CWo Programs must ignore this bit.

• The rounding control (RC) bits (bits 11-10) pro­
vide for directed rounding and true chop, as well
as the unbiased round to nearest even mode
specified in the IEEE standard. Rounding control

affects only those instructions that perform
rounding at the end of the operation (and thus
can generate a precision exception); namely,
FST, FSTP, FIST, all arithmetic instructions (ex­
cept FPREM, FPREM1, FXTRACT,. FABS, and
FCHS), and all transcendental instructions.

• The precision control (PC) bits (bits 9-8) can be
used to set the 80387 internal operating precision
of the significand at less than the default of 64
bits (extended preCision). This can be useful in
providing compatibility with early generation arith­
metic processors of smaller precision. PC affects
only the instructions ADD, SUB, DIV, MUL, and
SORT. For all other instructions, either the preci­
sion is determined by the opcode or extended
precision is used.

2.4 Interrupt Description

Several interrupts of the 386 CPU are used to report
exceptional conditions while executing numeric pro­
grams in either real or protected mode. Table 2.6
shows these interrupts and their causes.

4-143

.,0387

Table 2.6. 386™ MlcroproC8asor Interrupt Vectors Reserved for NPX

Interrupt Cause of Interrupt Number

7 An ESC instruction was encountered when EM or TS of the 386™ CPU control register
zero (CRO) was set. EM = 1 indicates that software emulation of the instruction is
required. When TS is set, either an ESC or WAIT instruction causes interrupt 7. This
indicates that the current NPX context may not belong to the current task.

9 An operand of a coprocessor instruction wrapped around an addressing Umit (OFFFFH for
small segments, OFFFFFFFFH for big segments, zero for expand-down segments) and
spanned inaccessible addressesa. The failing numerics instruction is not restartable. The
address of the failing numerics instruction and data operand may be lost; an FSTENV does
not return reliable addresses. As with the 80286/80287, the segment overrun exception
should be handled by executing an FNINIT instruction (i.e. an FINIT without a preceding
WAIT). The return address on the stack does not necessarily point to the failing instruction
nor to the following instruction. The interrupt can be aVOided by never allowing numeric
data to start within 108 bytes of the end of a segment.

13 The first word or doubleword of a numeric operand is not entirely within the limit of its
segment. The return address pushed onto the stack of the exception handler points at the
ESC instruction that caused the exception, including any prefixes. The 80387 has not
executed this instruction; the instruction pOinter and data pointer register refer to a
previous, correctly executed instruction.

16 The previous numerics instruction caused an unmasked exception. The address of the
faulty instruction and the address of its operand are stored in the instruction pointer and
data pointer registers. Only ESC and WAIT instructions can cause this interrupt. The 386™
CPU return address pushed onto the stack of the exception handler points to a WAIT or
ESC instruction (including prefixes). This instruction can be restarted after clearing the
exception condition in the NPX. FNINIT, FNCLEX, FNSTSW, FNSTENV, and FNSAVE
cannot cause this interrupt.

a. An operand may wrap around an addressing limit when the segment IimH is near an addressing limH .and the operand Is near the largest valid
address in the segment. Because of the·wrap·around. the beginning and ending addresses of such an operand will be at opposite ends of the
Segment. There are two ways that such.an operand may also span Inaccessible addresses: 1) H the segment limit is not equal to the addressing
limit (e.g. addressing limit Is FFFFH and segment limit is FFFDH) the operand will span addresses that are not within the segment (e.g. an a-byte
operand that stilrts at valill offset FFFC will span addresses FFFC-FFFF and 0000-0003; however addresses FFFE and FFFF are not valid,
because they excead the limit); 2) it the operand begins and ends In present and accessible pages but intermadlate bytes of the operand fall In II
not-present page or a page to which the procedure does not have access rights.

2.5 Exception Handling
The 80387 detects six different exception conditions
that can occur during instruction execution. Table
2.7 lists the excepti,on conditions in order of prece­
dence, showing for each the cause and the default
action taken .by the 80387 if the exception is masked
by its corresponding mask bit in the control word.

Any exception that is not masked by the control
word sets the corresponding exception flag' of' the
status word, sets the ES bit of the status word, and
asserts the ERROR II signal. When the CPU at­
tempts to execute another ESC instruction or WAIT,
exception 7 occurs. The exception condition must
be resolved via an interrupt service routine. The 386
Microprocessor and 80387 Coprocessor save the
address of the floating-point instruction that caused
the exception and the address of any memory oper­
and required by that instruction.

2.6 Initialization
80387 initialization software must execute an FNIN­
IT instruction (i.e. an FINIT without a preceding
WAIT) to clear ERRORII. After a hardwareRESET,
the ERROR II output is asserted to indicate that an
80387 is present. To accomplish this, the IE and ES
bits of the status word are set, and the 1M bit in the
control word is reset. After FNINIT, the status word
and the control word have the same values as in an
80287 after RESET.

4-144

80387

2.7 8087 and 80287 Compatibility

This section summarizes the differences between
the 80387 and the 80287. Any migration from the
8087 directly to the 80387 must also take into ac­
count the differences between the 8087 and the
80287 as listed in Appendix A.

Many changes have been designed into the 80387
to directly support the IEEE standard in hardware.
These changes result in increased performance by
eliminating the need for software that supports the
standard.

2.7.1 GENERAL DIFFERENCES

The 80387 supports only affine closure for infinity
arithmetic, not projective closure. Bit 12 of the Con­
trol Word (CW) no longer defines infinity control. It is
a reserved bit; but it is initialized to zero after RESET
or FINIT and is changeable upon loading the CWo
Programs must ignore this bit.

Operands for FSCALE and FPATAN are no longer
restricted in range (except for ± 00); F2XM1 and
FPT AN accept a wider range of operands.

The results of transcendental operations may be
slightly different from those computed by 80287.

In the case of FPTAN, the 80387 supplies a true
tangent result in ST(1), and (always) a floating point
1 in ST.

Rounding control is in effect for FLD constant.

Software cannot change entries of the tag word to
values (other than empty) that do not reflect the ac­
tual register contents.

After reset, FINIT, and incomplete FPREM, the
80387 resets to zero the condition code bits C3-CO
of the status word.

In conformance with the IEEE standard, the 80387
does not support the special data formats: pseu­
dozaro, pseudo-NaN, pseudoinfinity, and un normal.

Table 2.7. Exceptions

Exception Cause
Default Action

(If exception Is masked)

Invalid Operation on a signaling NaN, unsupported format, Result is a quiet NaN, integer
Operation indeterminate form (0· 00,0/0, (+ 00) + (- 00), etc.), or indefinite, or BCD indefinite

stack overflow/underflow (SF is also set).

Denormalized At least one of the operands is denormalized, I.e. it has Normal processing
Operand the smallest exponent but a nonzero significand. continues

Zero Divisor The divisor is zero while the dividend is a noninfinite, Result is 00

nonzero number.

Overflow The result is too large in magnitude to fit in the specified Result is largest finite value
format. or 00

Underflow The true result is nonzero but too small to be Result is denormalized or
represented in the specified format, and, if underflOW zero
exception is masked, denormalization causes loss of
accuracy.

Inexact The true result is not exactly representable in the Norrnlill processing
Result specified format (e.g. 1/3); the result is rounded continues
(Precision) according to the rounding mode.

4-145

80387

2.7.2 EXCEPTIONS

A number of differences exist due to changes in the
IEEE standard and to functional improvements to
the architecture of the 80387:

1. When the overflow or underflow' exception is
masked, the 80387 differs from the 80287 in
rounding when overflow or underflow occurs.
The 80387 produces results that are consistent
with the rounding mode.

2. Wh.en the underflow exception is masked, the
80387 sets its underflow flag only if there is also
a loss of accuracy during denormalization.

3. Fewer invalid·operation exceptions due to de­
normal operands, because· the instructions
FSQRT, FOIV, FPREM, and conversions to BCD
or to integer normalize denormal operands be­
fore . proceeding.

4. The FSQRT, FBSTP, and FPREM instructions
may cause underflow, because they support de­
normal operands.

5. The denc>rmal exception can occur during the
transcendental instructions and the FXTRACT
instruction.

6. The denormal exception no longer takes prece­
dence over all other exceptions.

7. When the denormal exception is masked, the
80387 automatically normalizes denormal oper­
ands. The 8087/80287 performs un normal arith­
metic, which might produce an un normal result.

8. When the operand is zero, the FXTRACT in­
struction reports a zero-divide exception and
leaves - 00 in ST(1).

9. The status word has a new bit (SF) that signals
when invalid-operation exceptions are due to
stack underflow or overflow.

10. FLO extended precision no longer reports denor­
mal exceptions, because the instruction is not
numeric.

11. FLO single/double precision when the operand
is denormal converts the number to extended
precision and signals the denormalized operand
exception. When loading a Signaling NaN, FLO
single/double precision signals an invalid-oper­
and exception.

12. The 80387 only generates quiet NaNs (as on the
80287); however, the 80387 distinguishes be­
tween quiet NaNs and signaling NaNs. Signaling
NaNstrigger exceptions when they are used as
operands; quiet NaNs do not (except for FCOM,
FIST, and FBSTP which also raise IE for quiet
NaNs).

13. When stack overflow occurs during FPT AN and
overflow is masked, both ST(O) and ST(t) con­
tain quiet NaNs. The 80287/8087 leaves the
original operand in ST(1) intact.

14. When the scaling ,factor is ± 00, .the FSCALE
(ST(O), ST(1» instruction' behaves as follows
(ST(O) and ST(1) contain the scaled and scaling
operands respectively):

• FSCALE(O,oo) generates the invalid operation
exception.

• FSCALE(finite, - 00) generates zero with the
same sign as the scaled operand.

• FSCALE(finite, + 00) generates 00 with the
same sign as the scaled operand.

The 8087/80287 returns zero in the first case
and raises the invalid-operation exception in the
other cases.

15. The 80387 returns Signed infinity/zeroas the un­
masked response to massive overflow/under­
flow; The 8087 and 80287 support a limited
range for the scaling factor; within this range ei­
ther massive overflow/underflow do not occur or
undefined' results are produced.

3.0 HARDWARE INTERFACE

In the following description of hardware interface,
the' # symbol at the end of a signal name indicates
that the active or asserted state occurs w/:len the
signal is at a low voltage. When no # is present after
the signal name, the signal is asserted when at the
high voltage level.

3.1 Signal Description

In the following signal descriptions, the 80387 pins
are grouped by function as follows:

1. Execution control-CPUCLK2, NUMCLK2, CKM,
RESETIN

2. NPX handshake-PEREQ, BUSY #, ERROR #

3. Bus interface pins-031-00, W/R#, AOS#,
REAOY#, REAOYO#

4. Chip/Port Select-STEN, NPS1 #, NPS2,
CMOO#

5. Power supplies-Vee, Vss

Table 3.1 lists every pin by its identifier, gives a brief
description of its function, .and lists some Of its char­
acteristics. All output signals are tristate; they leave
floating state only when STENis active. The output
buffers of the bidirectional data pins 031-00 are
also tristate; they leave floating state only in read
cycles when the 80387 is selected (i.e. when STEN,
NPS1 #, and NPS2 are all active).

Figure 3.1 and Table 3.2 together show the location
of every pin in the pin grid array.

inter 80387

Table 3.1. 80387 Pin Summary

Pin
Function

Active Inputl Referenced
Name State Output To

CPUCLK2 386TM CPU CLocK 2 I
NUMCLK2 80387 CLocK 2 I
CKM 80387 CLocKing Mode I
RESETIN System reset High I CPUCLK2

PEREQ Processor Extension High 0 CPUCLK2/STEN
REQuest

BUSY# Busy status Low 0 CPUCLK2/STEN
ERROR# Error status Low 0 NUMCLK2/STEN

031-00 Data pins High I/O CPUCLK2
W/R# Write/Read bus cycle HilLo I CPUCLK2
AOS# ADdress Strobe Low I CPUCLK2
REAOY# Bus ready input Low I CPUCLK2
REAOYO# Ready output Low 0 CPUCLK2/STEN

STEN STatus ENable High I CPUCLK2
NPS1# NPX select #1 Low I CPUCLK2
NPS2 NPX select #2 High I CPUCLK2
CMOO# CoMmanD Low I CPUCLK2

Vee I
Vss I

NOTE:
STEN is referenced to only when getting the output pins into or out of tristate mode.

Table 3.2. 80387 Pin Cross-Reference

A2 - 09 C11 - Vss J10 - Vss
A3 - 011 01 - 05 J11 - CKM
A4 - 012 02 - 04 K1 - PEREQ
A5 - 014 010 - 024 K2 - BUSY#
A6 - Vee 011 - 025 K3 - Tie High
A7 - 016 E1 - Vee K4 - W/R#
A8 - 018 E2 - Vss K5 - Vee
A9 - Vee E10 - 026 K6 - NPS2
A10 - 021 E11 - 027 K7 - AOS#
B1 - 08 F1 - Vee K8 - REAOY#
B2 - Vss F2 - Vss K9 - No Connect
B3 - 010 F10 - Vee K10 - CPUCLK2
B4 - Vee F11 - Vss K11 - NUMCLK2
85 - 013 G1 - 03 L2 - ERROR#
86 - 015 G2 - 02 L3 - REAOYO#
87 - Vss G10 - 028 L4 - STEN
88 - 017 G11 - 029 L5 - Vss
89 - 019 H1 - 01 L6 - NPS1#
810 - 020 H2 - DO L7 - Vee
811 - 022 H10 - 030 L8 - CMOO#
C1 - 07 H11 - 031 L9 - Tie High
C2 - 06 J1 - Vss L10 - RESETIN
C10 - 023 J2 - Vee

4-147

80387

3.1.1 386TM CPU CLOCK 2 (CPUCLK2)

This input uses the 386 CPU CL.K2 signal to time the
bus control logic. Several other 80887 signals are
referenced to the rising edge of this signal. When
CKM = 1 (synchronous mode) this pin also clocks
the data interface and control unit and the floating­
point unit of the 80387. This pin requires MOS-Ievel
Input. The signal on this pin is divided by two to pro­
duce the internal clOck signal CLK.

3.1.2 80387 CLOCK 2 (NUMCLK2)

When CKM = 0 (asynchronous mode) this pin pro­
vides the clock for the data interface and control unit
and the floating~point unit of the 80387. In this case,
the ratio of thefrequeney of NUMCLK2 to the fre­
quency of CRUCLK2 must lie within the range 10: 16
to 14:10. When CKM = 1 (synchronous mode) this
pin is ignored; CPUCLK2 is used instead for the data·
interface and control unit and th~ floating-point unit.
This pin requires TTL~level input

3.1.3 80387 CLOCKING MODE (CKM)

This pin is a strapping option. When it is strapped to
Vee, the 80387 operates in synchronous mode;

BUS

·CPUCLK2

386™ CPU '

ABC D E ~ G H J K L

2 +
3 +
4 +
$...
6 . +
7. +
8 +
9 +

10 +
11

*. + + + + +
+
+
+
+
+
+
+
+
+
+

+ + + + +

80387

.+ + + + +
+ + + .+ +

.

PIN SIDE VIEW
·Pin 1

+ + +
+ + + +

+ +
+ +
+ + .. +
+ +
+ +

.+ +
+ + + +
+ + +

231920-5

Figure 3.1. 80387 Pin Configuration

when strapped to VSS, the 80387 operates in asyn­
chronous mode. These modes relate to clocking of
the data interface and control unit and thefloliting­
point unit only; the bus control logic always operates
synchronously with respect to the 386 Microproces­
sor.

.------CKM="

INTERFACE

NUMERIC
CORE

80387

SYNCHRONOUS

ASyNcHRONOUS

387CLK2
231920-21

Figure 3.~ .. Asynchronous Operation

4-148

80387

3.1.4 SYSTEM RESET (RESETIN)

A LOW to HIGH transition on this pin causes the
80387 to terminate its present activity and to enter a
dormant state. RESETIN must remain HIGH for at
least 40 NUMCLK2 periods. The HIGH to LOW tran­
sitions of RESETIN must be synchronous with
CPUCLK2, so that the phase of the internal clock of
the bus control logic (which is the CPUCLK2 divided
by 2) is ~he same as the phase of the internal clock
of the 386 CPU. After RESETIN goes LOW, at least
50 NUMCLK2 periods must pass before the first
NPX instruction is written into the 80387. This pin
should be connected to the 386 CPU RESET pin.
Table 3.3 shows the status of other pins after a re­
set.

Table 3.3. Output Pin Status During Reset

Pin Value Pin Name

HIGH READYO#, BUSY #

LOW PEREa, ERROR #

Tri-State OFF 031-00

3.1.5 PROCESSOR EXTENSION REQUEST
(PEREQ)

When active, this pin signals to the 386 CPU that the
80387 is ready for data transfer to/from its data
FIFO. When all data is written to or read from the
data FIFO, PEREa is deactivated. This Signal al­
ways goes inactive before BUSY # goes inactive.
This signal is referenced to CPUCLK2. It should be
connected to the 386 CPU PEREa input. Refer to
Figure 3.8 for the timing relationships between this
and the BUSY # and ERROR # pins.

3.1.6 BUSY STATUS (BUSY#)

When active, this pin Signals to the 386 CPU that the
80387 is currently executing an instruction. This sig­
nal is referenced to CPUCLK2. It should be connect­
ed to the 386 CPU BUSY # pin. Refer to Figure 3.8
for the timing relationships between this and the
PEREa and ERROR # pins.

3.1.7 ERROR STATUS (ERROR#)

This pin reflects the ES bits of the status register.
When active, it indicates that an unmasked excep­
tion has occurred (except that, immediately after a
reset, it indicates to the 386 MicroprocesSor that an
80387 is present in the system). This signal can be
changed to inactive state only by the following in­
structions (without a preceding WAIT): FNINIT,
FNCLEX, FNSTENV, and FNSAVE. This signal is
referenced to NUMCLK2. It should be connected to
the 386 CPU ERROR # pin. Refer to Figure 3.8 for
the timing relationships between this and the PER­
Ea and BUSY # pins.

3.1.8 DATA PINS (031-00)

These bidirectional pins are used to transfer data
and opcodes between the 386 CPU and 80387.
They are normally connected directly to the corre­
sponding 386 CPU data pins. HIGH state indicates a
value of one. DO is the least significant data bit. Tim­
ings are referenced to CPUCLK2.

3.1.9 WRITE/READ BUS CYCLE (W/R#)

This signal indicates to the 80387 whether the 386
CPU bus cycle in progress is a read or a write cycle.
This pin should be connected directly to the 386
CPU W/R# pin. HIGH indicates a write cycle; LOW,
a read cycle. This input is ignored if any of the sig­
nals STEN, NPS1 #, or NPS2 is inactive. Setup and
hold times are referenced to CPUCLK2.

3.1.10 ADDRESS ST~OBE (ADS#)

This input, in conjunction with the READY" input
indicates when the 80387 bus-control logic may
sample W /R# and the chip-select signals. Setup
and hold times are referenced to CPUCLK2. This pin
should be connected to the 386 CPU ADS# pin.

4-149

i
I

I

I ~

80387

3.1.11 BUS READY INPUT (READY#)

This input indicates to the 80387 when a 386 CPU
bus cycle is to be terminated. It is used by the bus­
control logic to trace bus· activities. Bus cycles can
be extended indefinitely until terminated by
READY #. This input should be connected to the
same signal that drives the 386 CPU READY # in­
put. Setup and hold times are referenced to
CPUClK2.

3.1.12 READY OUTPUT (READYO#)

This pin is activated at such a time that write cycles
are terminated after two clocks and read cycles after
three clocks. In configurations where no extra wait
states are required, this pin must directly or indirectly
drive the 386 CPU READY # input. Refer to section
3.4 "Bus Operation" for details. This pin is activated
only during bus cycles that select the 80387. This
signal is referenced to CPUClK2.

3.1.13 STATUS ENABLE (STEN)

This pin serves as a chip select for the 80387. When
inactive, this pin forces BUSY #, PEREQ, ERROR #,
and READYO# outputs into floating state. D31-DO
are normally floating and leave floating state only if
STEN is active and additional conditions are met.
STEN also causes the chip to recognize its other
chip-select inputs. STEN makes it easier to do on­
board testing (using the overdrive method) of other
chips in systems containing the 80387. STEN should
be pulled up with a resistor so that it can be pulled
down when testing. In boards. that do not use on­
board testing. STEN should be connected to Vee.
Setup and hold times are relative to CPUClK2. Note
that STEN must maintain the same setup and hold
times as NPS1 #, NPS2, and CMDO# (i.e. if STEN
changes state during an 80387 bus cycle, it should
change state during the same ClK period as the
NPS1 #, NPS2, and CMDO# signals).

3.1.14 NPX Select #1 (NPS1#)

When active (along with STEN and NPS2) in the first
period of a 386 CPU bus cycle, this signal indicates
that the purpose of the bus cycle is to communicate

with the 80387. This pin should be connected direct­
ly to the 386 CPU M/IO# pin, so that the 80387 is
selected only when the 386 CPU performs 1/0 cy­
cles. Setup and hold times are referenced . to
CPUClK2.

3.1.15 NPX SELECT #2 (NPS2)

When active (along with STEN and NPS1#) in the
first period of an 386 CPU bus cycle, this signal indi­
cates that the purpose of the bus cycle is to commu­
nicate with the 80387. This pin should be connected
directly to the 386 CPU A31 pin, so that the 80387 is
selected only when the 386 CPU uses one of the
1/0 addresses reserved for the 80387 (800000F8 or
800000FC). Setup and hold times are referenced to
CPUClK2.

3.1.16 COMMAND (CMDO#)

During a write cycle, this signal indicates whether an
opcode (CMDO# active) or data (CMDO# inactive)
is being sent to the 80387. During a read cycle, it
indicates whether the control or status register
(CMDO# active) or a data register (CMDO# inactive)
is being read. CMDO# should be conne.cted directly
to the A2 output of the 386 Microprocessor. Setup
and hold times are referenced to CPUClK2.

3.2 Processor Architecture

As shown by. the block diagram on the front page,
the NPX is internally divided into three sections: the
bus controi.logic (BCl), the data interface and con­
trol unit, and the floating point unit (FPU). TheFPU
(with the support of the control. unit which contains
the sequencer and other support units) executes all
numerics instructions. The data interface and control
unit is responsible for the data flow to and from the
FPU and the control registers, for receiving the in­
structions, decoding them, and sequencing the mi­
croinstructions, and for handling some of the admin­
istrative instructions. The BCl is responsible for the
386 CPU bus tracking and interface. The BCl is the
only unit in the 80387 that must run synchronously
with the 386 CPU; the rest of the 80387 can run
asynchronously with 'respect to the 386 Microproc­
essor.

4-150

inter 80387

3.2.1 BUS CONTROL LOGIC

The BCl communicates solely with the CPU using
I/O bus cycles. The BCl appears to the CPU as a
special peripheral device. It is special in two re­
spects: the CPU initiates I/O automatically when it
encounters ESC instructions, and the CPU uses re­
served I/O addresses to communicate with the BCL.
The BCl does not communicate directly with memo­
ry. The CPU performs all memory access, transfer­
ring input operands from memory to the 80387 and
transferring outputs from the 80387 to memory.

3.2.2 DATA INTERFACE AND CONTROL UNIT

The data interface and control unit latches the data
and, subject to BCl control, directs the data to the
FIFO or the instruction decoder. The instruction de­
coder decodes the ESC instructions sent to it by the
CPU and generates controls that direct the data flow
in the FIFO. It also triggers the microinstruction se­
quencer that controls execution of each instruction.
If the ESC instruction is FIN IT, FClEX, FSTSW,
FSTSW AX, Or FSTCW, the control executes it inde-

CLOCK
GENERATOR

CLK2

CLK f-+ I
RESET

t
t

HLDA

4 RESET D/C# ..
---+ READY# LOCK# ..

CLK2 BE3#-BEO# BSI6# M/IO# NA# A31

-. HOLD A30-A3 INT# 386T~ A2

.... NMI
CPU

W/R#
ADS#

031-00

BUSY#

ERROR#

PEREO

pendently of the FPU and the sequencer. The data
interface and control unit is the one that generates
the BUSY #, PEREa and ERROR # Signals that syn­
chronize 80387 activities with the 386 CPU. It also
supports the FPU in all operations that it cannot per­
form alone (e.g. exceptions handling, transcendental
operations, etc.).

3.2.3 FLOATING POINT UNIT

The FPU executes all instructions that involve the
register stack, including arithmetic, logical, transcen­
dental, constant, and data transfer instructions. The
data path in the FPU is 84 bits wide (68 Significant
bits, 15 exponent bits, and a sign bit) which allows
internal operand transfers to be performed at very
high speeds.

3.3 System Configuration

As an extension to the 386 Microprocessor, the
80387 can be connected to the CPU as shown by
Figure 3.3. A dedicated communication protocol

FROM OTHER PERIPHERALS
T .
;-. CKM

~ 180387 CLOCK I
GENERATOR 387CLK2
(OPTIONAL) I

CPUCLK2

RESETIN

READY#

I WAIT STATE ~
GENERATOR

READYO# (OPTIONAL) I
80387

NPS1#

NPS2

IT
CMDO#

W/R#
ADS# STEN

32 031-00 I

BUSY#

ERRO~#

PEREO

231920-6

Figure 3.3. 386™ Microprocessor and 80387 Coprocessor System Configuration

4-151

80387

Table 3 4 Bus Cycles Definition ..
STEN NPS1# NPS2 CMDO#

0 x x x

1 1 x x
1 x 0 x
1 0 1 0
1 0 1 0
1 0 1 1
1 0 1 1

makes possible high-speed transfer of opcodes and
operands between the 386 CPU and 80387. The
80387 is designed so that no additional components
are required for interface with the 386 CPU. The
80387 shares the 32-bit wide local bus of the 386
CPU and most control pins of the 80387 are con­
nected directly to pins of the 386 Microprocessor.

3.3.1 BUS CYCLE TRACKING

The ADS # and READY # signals allow the 80387 to
track the beginning and end of the 386 CPU bus
cycles, respectively. When ADS # is asserted at the
same time as the 80387 chip-select inputs, the bus
cycle is intended for the 80387. To signal the end of
a bus cycle for the 80387, READY # may be assert­
ed directly or indirectly by the 80387 or by other bus­
control logic. Refer to Table 3.4 for definition of the
types of 80387 bus cycles.

3.3.2 80387 ADDRESSING

The NPS1 #, NPS2 and STEN signals allow the NPX.
to i~entify which bus cycles are intended f(lr the
NPX. The NPX respond~ only to liD cycles when bit
31 of the 110 address is set. In 9ther words, the. NPX
acts as an 110 device in a reserved 110 address
space.

Because A31 is used to select the 80387 for data
transfers, it is not possible for a program runnir'lg on
the 386 CPU to address the 80387 with an 110 in­
struction. Only ESC instructions cause the 386 Mi­
croprocessor to communicate with the 80387. The
386 CPU BS1EI# input must be inactive during 110
cycles when A31 is active.

3.3.3 FUNCTION SELECT

The CMDO# and W/R# Signals identify the four
kinds of bus cycle: control or status register read,
data read, opcode write, data· write.

W/R# Bus CYc;Ie ~e

x 80387 not selected and all
outputs in floating state

x 80387 not Selected
x 80387 not selected
0 CW or SW read from 80387
1 Opcode write to 80387
0 Data read from 80387
1 Data write to 80387

3.3.4 CPU/NPX Synchronization

The pin pairs BUSY#, PEREQ, and ERROR# are
used for. various aspects of synchronization between
the CPU and the NPX. .

BUSY # is used to synchronize instruction transfer
from the 386 CPU to the 80387. When the 8.0387
recognizes an ESC instruction, it asserts BUSY #.'
For most ESC instructions, the 386 CPU waits for
the 80387 to deassert BUSY # before sending the
new opcode. .

The NPX uses the PEREQ pin of the 386 CPU to
signal that the NPX is ready for data transfer to or
from its data FIFO. The NPX does not directly ac­
cess memory; rather, the 386 Microprocessor pro­
vides memory access services for the NPX. Thus,
memory access on behalf of the NPX always obeys
the rules applicable to the mode of the 386 CPU,
whether the 386 CPU be in real-address mode or
protected mode.

Once the 386 CPU initiates an 80387 instruction that
has operands, the 386 CPU waits for PEREQ signals
that indicate when the 80387 is ready for operand
transfer .. Once all operands have been transferred
(or if the instruction has no operands) the 386 CPU
continues program execution while the 80387 exe­
cutes the ESC instruction. '

In 8086/8087 systems, WAIT instructions may be
required to achieve synchronization of both com­
mands and operands. In 80286/80287, 386 Micro­
processor and 80387 Coprocessor systems, WAIT
instructions are required only for operand synChroni­
zation; namely, after NPX stores to memory (except
FSTSW and FSTCW) or loads from memory. Used
this. way, WAIT ensures that the value has already
been written or read by the NPX before the CPU
reads or changes the value.

4-152

80387

Once It has started to execute a numerics instruction
and has transferred the operands from the 386 CPU,
the 80387 can process the Instruction In parallel with
and independent of the host CPU. When the NPX
detects an exception, it asserts the ERROR # signal,
which causes a 386 CPU interrupt. '.

3.3.5 SYNCHRONOUS OR ASYNCHRONOUS
MODES

The internal logic of the 80387 (the FPU) can either
operate directly from the CPU clock (synchronous
mode) or from a separate clock (asynchronous
mode). The two configurations are distinguished by
the CKM pin. In either case, the bus control logic
(BCl) of the 80387 is synchronized with the CPU
clock. Use of asynchronous mode allows the 386
CPU and the FPU section of the 80387 to run at
different speeds. In this case, the ratio of the fre­
quency of NUMClK2 to the frequency of CPUClK2
must lie within the range 10:16 to 14:10. Use of syn­
chronous mode eliminates one clock generator from
the board design. .

3.3.6 AUTOMATIC BUS CYCLE TERMINATION

In configurations where nQ extra wait states are re~
quired, READYO# can be used to drive the 386
CPU READY # input. If this pin is used, it should be.
cQnnected to the logic that ORs all READy'outputs
from peripherals on the 386 CPU bus:READYO# is
asserted by the 80387 only during I/O cycles that
select the 80387. Refer to sectiOn 3.4 "Bus Opera-.
tlon" for details. .

3.4 Bus Operation

With respect to the bus interface, the 80387 is tully
synchronous with the 386 Microprocessor. Both op­
erate at the same rate, because each generates its
internal ClK signal by dividing' CPUClK2 by two.

The 386 CPU initiates a new bus cycle by activating
ADS#. The 80387 recognizes a bus cycle, if, during
the cycle in which ADS# is activated, STEN,
NPS1 #, and NPS2 are all activated. Proper opera­
tion is achieved if NPS1 # is connected to the
MIIO# output of the 386 CPU, and NPS2.to theA31
output. The 386 CPU's A31 output is guaranteed to
be inactive in all bus cycles that do not address the
80387 (i.e. I/O cycles to other devices, interrupt ac­
knowledge, and reserved types of bus cycles). Sys­
tem logic must not signal a 16-bit 'bus cycle via the
386 CPU BS16# input during I/O cycles when A31
is active. '

During the ClK period in' which ADS# is activated,
the 80387 also examines the W/R# input signal to
determine whether the cycle is a read or a write cy­
cle and examines the CMDO# Input to determine
whether an opcode, operand, or control/status reg­
Ister transfer is to occur.

The 80387 supports both pipellned and nonpipe­
lined bus cycles. A nonpipellned cycle is one for
which the 386 CPU asserts ADS *' when no other
80387 bus cycle is in progress. A pipellned bus cycle
is one for which the 386 CPU asserts ADS # and
provides valid next-address and control signals as
soon as In the second ClK period after the ADS #
assertion for the previous 386 CPU bus cycle. Pipe­
lining increases the availability of the bus by at least
one ClK period. The 80387 supports pipelinedbus
cycles in order to optimize address pipelining by the
386 CPU for memory cycles.' . .'

Bus operation is described in terms of an abstract
state machine. Figure 3.4 illustrates the states and
state transitions for 80387 bus cycles:
• TI is the idle state. This is the state of the bus

logic after RESET, the state to which bus logic
returns after evey nonpipelined bus cycle, and

. the state to which bus logic returflS ~fter a series
of pipelined cycles.

• TRS is the READY# sensitive state. Different
types of bus cycle may require a minimum of one
or two successive T RS 'states. The bus logic re­
mains in T RS state until READY # is sensed, at
which point the bus cycle terminates. Any number
of wait states may be implemented by delaying
READY #, thereby causing additional successive
TRS states.

• T p is the first state for every pipelined bus cycle.

READY#
231920-7

Figure 3.4. Bus State Diagram

4-153

I
I

I~

i~
I

80387

The READYO# output of the 80387 indicates when.
a bus cycle for the 80387 may be terminated if no
extra wait states are· required. For all write cycles
(except those for the instructions FLDENV and
FRSTOR), READYO# is always asserted in the first
T RS state, regardless of the number of wait states.
For all read cycles and write cycles for FLDENV and
FRSTOR, READYO# is always asserted in the sece

ond T RS state, regardless of the number of wait
states. These rules apply to both pipelined and non­
pipe lined cycles. Systems designers must use
READYO# in one of the following ways:

1. Connect it (directly or through logic that ORs
READY signals from other devices) to the
READY # inputs of the 386 CPU and 80387.

2. Use it as one input to a wait-state generator.

The following sections illustrate different types of
80387 bus cycles.

Because different instructions have different
amounts of overhead before, between, and after op"
erand transfer cycles, it is not possible to represent
in a few diagrams all of the combinations of succes­
sive operand transfer cycles. The following bus-cy­
cle diagrams show memory cycles between 80387
operand-transfer cycles. Note however that, during
the instructions FLDENV, FSTENV, FSAVE, and
FRSTOR, some consecutive accesses to the NPX
do not have intervening memory accesses. For the
timing relationship between operand transfer cycles
and opcode write or other overhead activities,· see
Figure 3.8.

3.4.1 NONPIPELINED BUS CYCLES

Figure 3.5 illustrates bus activity for consecutive
nonpipelined bus cycles.

3.4.1.1 Write Cycle

At the second clock of the bus cycle, the 80387 en­
ters the TRS (READY#.sensitive) state. During this
state, the 80387 samples the READY.# input and
stays in this state as long as READY # is inactive.

In write cycles, the 80387 drives the READYO# sig­
nal for one CLK period beginning with the second
CLK of the bus cycle; therefore, the fastest write
cycle takes two CLK cycles (see cycle 2 of Figure
3.5). For the instructions FLDENV and FRSTOR,
however, the 80387 forces a wait state by delaying
the activation of READYO# to the second TRS cy­
cle (not shown in Figure 3.5).

When READY # is asserted the 80387 returns to the
idle state, in which ADS # could be asserted again
by the 386 Microprocessor for the next cycle.

3.4.1.2 Read Cycle

At the second clock of the bus cycle, the 80387 en­
ters the TRS state. See Figure 3.5. In this state, the
80387 samples the READY # input and stays in this
state as long as READY # is inactive.

At the rising edge of CLK in the second clock period
of the cycle, the 80387 starts to drive the 031 '-DO
outputs and continues to drive them as long as it
stays in T RS state.

In read cycles that address the 80387, at least one
wait state must be inserted to insure that the 386
CPU latches the correct data. Since the 80387 starts
driving the system data bus only at the rising edge of
CLK in the second clock period of the bus cycle, not
enough time is left for the data signals to propagate
and be latched by the 386 CPU at the falling edge
of the same clock period. The 80387 drives the
READYO# signal for one eLK period in the third
CLK of the bus cycle. Therefore, if the READYO#
output is used to drive the 386 CPU READY # input,
one wait state is inserted automatically.

Because one wait state is required for 80387 reads,
the minimum is three.CLK cycles per read, as cycle
3 of Figure 3.5 shows.

When READY # is asserted the 80387 returns to the
idle state, in which ADS# could be asserted again
by the 386 CPU for the next cycle. The transition
from T RS state to idle state causes the 80387 to put
the tristate 031-00 outputs into the floating state,
allowing another device to drive the system data
bus. .

4-154

80387

CPUClK2

(ClK)

CYCLE 1
NON-PIPElINED'
MEMORY READ

T1TRS

CYCLE 2
NON-PIPElINED

NPX WRITE

TI TRS

CYCLE 3
NON-PIPELINED

NPX READ

TI TRS TRS

CYCLE 4
NON-PIPElINED
MEMORY WRITE

TI TRS

NPS2,~---+----~r---+-----rr~~-'~--~----+---~~---+----~--~
NPS1#,
CMOO# ~ __ -+ ____ ~ __ ~ ____ ~~!~~ __ -+ ____ ~ __ ~~ __ ~ ____ ~ __ ~

W/R#

ADS#

READYO#

231920-8

Cycles 1 & 2 represent part of the operand transfer cYcle for instructions involving either 4-byte or a-byte operand loads.
Cycles 3 & 4 represent part of the operand transfer cycle for a store oper~tlon. '
'Cycles 1 & 2 could repeat here or TI states for various non-operand transfer cycles and overhead.

Figure 3.5. Nonplpellned Read and Write Cycles

3.4.2 PIPELINED BUS CYCLES

Because all the activities of the 80387 bus interface
occur either during the T RS state or during the tran­
sitions to or from that state, the only difference be­
tween a pipelined and a nonpipelined cycle is the
manner of changing from one state to another. The
exact activities in each state are detailed in the pre­
vious section "Nonpipelined Bus Cycles".

When the 386 CPU asserts ADS# before the end of
a bus cycle, both ADS# and READY # are active
during a T RS state. This condition causes the 80387
to change to a different state named T p. The 80387
activities in the transition from a T RS state to a T p
state are exactly the same as those in the transition
from aT RS state to a TI state in nonpipelined cycles,

T p state is metastable; therefore, one clock period
later the 80387 returns to TRS state. In consecutive
pipelined cycles, the 80387 bus logic uses only T RS
and T p states.

Figure 3.6 shows the fastest transition into and out
of the pipelined bus cycles. Cycle 1 in this figure
represents a nonpipelined cycle. (Nonpipelined write
cycles with only one T RS state (i.e. no wait states)
are always followed by another nonpipelined cycle,
because READY # is asserted before the earliest
possible assertion of ADS# for the next cycle.)

Figure 3.7 shows thepipelined write and read cycles
with one additional T RS states beyond the minimum
required. To delay 'the assertion of READY# re-
quires external logic. '

4-155

intJ 80387

3.4.3 BUS CYCLES OF MIXED TYPE

When the 80387 bus /ogicis in the T RS state, it dis­
tinguishes between nonpipelined and pipelined cy­
cles according to the behavior of ADS # and
READY #. In a nonpipelined cycle, only READY # is
activated, and the transition is from T RS to idle state.
In a pipelined cycle, both READY# and ADS# are
active and the transition is first from T RS state to T p
state then, after one clock period, back to T RS state ..

TJ

CPUClK2

(ClK)

CYCLE 1
NON-PIPELINED
MEMORY READ

CYCLE 2
PIPEllNED

NPX WRITE

3.4.4 BUSY # AND PEREQ TIMING
RELATIONSHIP

Figure 3.8 shows the activation of BUSY # at the
beginning of instruction execution and its deactiva­
tion after execution of the instruction· is complete.
PEREQ is activated in this interval. If ERROR # (not
shown in the diagram) is ever asserted, it would oc­
cur at least six CPUCLK2 periods after the deactiva­
tion of PEREQ and at least six CPUCLK2 periods
before the deactivation of BUSY #. Figure 3.8 shows
also that STEN is activated at the beginning of a bus
cycle.

CYCLE 3
PIPELINED

MEMORY READ

Tp

CYCLE 4
NON-PIPElINED

NPX WRITE

NPS2, ~--~~~~~---+-----rr---~----+-----~----~--~----~
NPS1#,

CMD0# ~--~-----f~--+-----~---+----~----~----~---+----~

W/R#

ADS#

READYO#

00-031. ---- ----- --

231920-9

Cycle I-Cycle 4 represent the operand transfer cycle for an instruction involving a transfer of two 32-bit loads in total.
The opcode write cycles and other overhead are not shown.
Note that the next cycle will be a pipelined cycle if both READY # and ADS # are sampled active at the end of a T RS
state of the current cycle.

Figure 3.6. Fastest Transitions to and from Plpellned Cycles

4-156

inter

NOTE:

CPUCLK2

CYCLE 1
P1PEL1NED WRITE

80387

NOTE 1

Tp

CYCLE 2
PIPEUNED READ

Tp

NPS2. 1rr-+-...,:r--w-+ HI'I""-+---+--t---b--+--1
NPS1#.
MilO, 1"---+-...,~-fl--+ !Hr.a...-+---+--t---f'I--+--1

W/R#

ADS,

READYON

DII-D31

1. Cycles between operand write to the NPX and storing result.

NOTES:
1. Instruction dependent.

OPCODE
WRITE

Figure 3.7. Plpellned Cycles with Walt States

NOTE 4
1ST OPERAND

WRITE .

NOTE 1 NOTE 2 NOTE 3 NOTE 1

231920-10

231920-11

2. PEREa is an asynchronous input to the 386TM Microprocessor; it may not be asserted (Instruction dependent).
3. More operand transfers. •
4. Memory read (operand) cycle is not shown.

Figure 3.S. STEN, BUSY /1 and PEREQ Timing Relationship

4·157

'·1.···'

I:,

~ L,~,

I •. i .
I

!~

80387

. 4.0 MECHANICAL DATA

68 LEAD CERAMIC PIN GRID ARRAY PACKAGE INTEL TYPE A

Symbol
Min

A 3.56

A1 0.76

A1

A2 2.72

A2 3.43

Aa 1.14

B 0.43

0 28.83

01 25.27

e1 2.29

L 2.29

N

S1 1.27

ISSUE IWSREV7

SEATING
PlANE

e,

A'=fL eASE
PlANE .

. SEATIN~ PLANE

er."'" ~
sWAGGED

PIN
DETAIL

Family: Ceramic Pin Grid Array Package

Millimeters Inches

Max Notes Min Max

4.57 0.140 0.180

1.27 Solid Lid 0.030 0.050

0.41 EPROM Lid 0.016

3.43 Solid Lid 0.107 0.135

4;32 EPROM Lid 0.135 0.170

1.40 0.045 0.055

0.51 0.017 0.020

29.59 1.135 1.165

25.53 0.995 1.005

2.79 0.090 0.110

3.30 0.090 0.130

68 68

2.54 0.050 0.100

3/26/86

Figure 4.1. Package Description

4-158

231920-12

Notes

Solid Lid

EPROM Lid

Solid Lid

EPROM Lid

intJ 80387

5.0 ELECTRICAL DATA

5.1 Absolute Maximum Ratings*

Case Temperature T C
Under Bias - 65·C to + 11 O·C

Storage Temperature - 65·C to + 150·C

Voltage on Any Pin with
Respect to Ground -0.5 to Vcc + 0.5V

Power Dissipation 1.5W

5.2 D.C. Characteristics

• Notice: Stresses above those listed under '~bso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and
functional operation of the device at these or any
other conditions above those indicated iri the opera­
tional sections of this specification is not implied. Ex­
posure to absolute maximum rating conditions for
extended periods may affect device reliability.

Table 5.1. DC Specifications T c = O· to BO·C, V CC = 5V ± 5 %

Symbol Parameter, Min Max

Vil Input LO Voltage -0.3 +O.B
VIH Input HI Voltage 2.0 Vee + 0.3
VCl CPUCLK2 Input LO Voltage -0.3 +O.B
VCH CPUCLK2 Input HI Voltage 3.7 Vcc +0.3
VOL Output LO Voltage 0.45
VOH Output HI Voltage 2.4
Icc Supply Current

NUMCLK2 = 32 MHz(4) 250
NUMCLK2 = 40 MHz(4) 310
NUMCLK2 = 50 MHz(4) 390

III Input Leakage Current ±15
ILO 1/0 Leakage Current ±15

CIN Input Capacitance 10
Co 1/0 or Output Capacitance 12

CClK Clock Capacitance 20

NOTES:
1: This parameter is for all inputs, including NUMClK2 but excluding 386ClK2.
2. This parameter is measured at IOl as follows:

data = 4.0 mA
READYO# = 2.5 mA
ERROR #, BUSY #, PEREQ = 2.5 mA

3. This parameter is measured at IOH as follows:
data = 1.0 mA
READYO# = 0.6 mA
ERROR #, BUSY #, PEREQ = 0.6 mA

Units Test Conditions

V (Note 1)
V (Note 1)
V
V
V (Note 2)
V (Note 3)

mA Icc typo = 150 mA
mA Icc typo = 190 mA
mA Icc typo = 250 mA
/LA OV:>: VIN:>: Vcc
/LA 0.45V :>: Va :>: Vcc
pF fc = 1 MHz
pF fc = 1 MHz
pF fc = 1 MHz

4. Icc is measured at steady state, maximum capacitive loading on the outputs, and worst-case DC level at the inputs;
386CLK2 at the same frequency as NUMClK2.

4-159

inter 80387

5.3 A.C. Characteristics
Table 5.2a. Combinations of Bus Interface and Execution Speeds

Speed Combinations

Functional Block 80387~16 80387-20 80387-25

Bus Interface Unit (MHz) 16 20
Execution Unit (MHz) 16 20

Pin Symbol

NUMCLK2 t1
NUMCLK2 t2a
NUMCLK2 t2b

. NUMCLK2 t3a
NUMCLK2 t3b
NUMCLK2 t4
NUMCLK2 t5

Pin Symbol

CPUCLK2 t1
CPUCLK2 t2a
CPUCLK2 t2b
CPUCLK2 t3a
CPUCLK2 t3b
CPUCLK2 t4
CPUCLK2 t5

CPUCLK21
NUMCLK2

REAOYO# t7
REAOYO# t7
PEREQ (1) t7
BUSY# (1) t7
BUSY# (1,2) t7
ERROR# (1) t7

Table 5.2b. Timing Requirements of the Execution Unit
Te = O"Cto +80"C, Vee = 5V ±5%

16 MHz 20 MHz 25 MHz

Parameter
1.5V 1.5V 1.5V Preliminary Test

Min Max Min Max Min Max . Conditions

(ns) (ns) (ns) (ns) (ns) (ns)

Period 31.25 125 25 125 20 125 2.0V
High Time 9 8 7 2.0V
High Time 5 5 4 3.7V
Low Time 9 8 7 2.0V
Low Time 7 6 5 0.8V
Fall Time 8 8 7 3.7VtoO.8V
Rise Time 8 8 7 0.8Vto3.7V

Table 5.2c. Timing Requirements of the Bus Interface Unit
Te = O"C to +80"C, Vee = 5V ±5%

16 MHz 20 MHz 25 MHz

Parameter 1.5V 1.5V 1.5V Preliminary Test

Min Max Min Max Min Max Conditions

(ns) (ns) (ns) (ns) (ns) (ns)

Period 31.25 125 25 125 20 125 2.0V
High Time 9 8 7 2.0V
High Time 5 5 4 3.7V
Low Time 9 8 7 2.0V
Low Time 7 6 5 0.8V
Fall Time 8 8 7 3.7Vto 0.8V
Rise Time 8 8 7 0.8Vto 3.7V

Ratio 10/16 14/10 10/16 14/10 10/16 14/10

OutOelay 3 34 3 31 3 24 CL = 75pFt
OutOelay 4 31 3 27 3 21 CL = 25pF
OutOelay 5 34 5 34 4 33 CL = 75pFt
OutOelay 5 34 5 29 4 29 CL = 75pFt
OutOelay N/A N/A N/A N/A 4 27 CL = 25pF
OutOelay· 5 34 5 34 4 33 CL == 75pFt

25
25

Figure
Referenc •

5.1

Figure
Reference

5.1

5.2

031-00 t8 Out Delay 1 54 1 54 0 50 CL = 120pFt 5.3
031-00 t10 Setup Time 11 11 11
031-00 t11 Hold Time 11 11 11
031-00 (3) t12· Float Time 6 33 6 27 5 24 CL = 120pFt

PEREQ(3) t13· FloatTime 1 60 1 50 1 40 CL = 75pFt 5.5
BUSY# (3) t13· . Float Time 1 60 1 50 1 40 CL = 75pFt
ERROR# (3) t13· Float Time 1 60 1 50 1 40 CL= 75 pFt
REAOYO# (3) t13· Float Time 1 60 1 50 1 40 CL = 75pFt

'Float condition occurs when maximum output current becomes less than ILO 10 magnitude. Float delay IS not tested.
tFor 25 MHz, CL = 50 pF.

4-160

inter 80387

Table 5.2c. Timing Requirements of the Bus Interface Unit (Continued)
Te = O'C to +80'C, Vee = 5V ±5%

Pin Symbol Parameter

ADS# t14 Setup Time
ADS# t15 Hold Time
W/R# t14 Setup Time
W/R# t15 Hold Time
READY# (4) t16 Setup Time
READY# t17 Hold Time
CMDO# t16 Setup Time
CMDO# t17 Hold Time
NPS1# t16 Setup Time
NPS2
NPS1# t17 Hold Time
NPS2
STEN t16 Setup Time
STEN t17 Hold Time

RESETIN t18 Setup Time
RESETIN t19 Hold Time

NOTES:
1. Min

(ns)
PEREQ,BUSY#,ERROR#

16 MHz
1.5V

Min Max
(ns) (ns)

26
5

26
5

21
4

21
2

21

2

21
2

13
4

Out Delay 4 @ Tc = O'C
4 @.Tc=85'C

2. Not tested at 25 pF.

20 MHz 25 MHz
1.5V 1.5V Preliminary Test

Min Max Min Max Conditions

(ns) (ns) (ns) (ns)

21 16
5 4

21 16
5 4

12 9
4 4
19 16
2 4
19 16

2 4

21 15
2 2

12 10
4 3

Figure
Reference

5.3

5.4

3. Float delay is not tested. Float condition occurs when maximum output current becomes less than ILO in magnitude.
4. Min

(ns)
t16 Ready Setup t16 = 2CLK2min - t18(82385)max - LOGICmax

where:
CLK2min = 20 ns (period of 386 CLK2 input at 25 MHz)
t18(82385) = 82385 READYO# Valid Delay
LOGICmax = 10 ns (D-PAL)

NOM+6 .---__ -,-___ .,--__ ---.-__ ----,

NOt.l+3 t----+---t-------:::=....;-=------:;.-""-i

NO.· 1---:::;;;..-t"='---t------:74----j

NOhl-6 1-----..,.4---t------1--------I

NOM-9 1------!----t------1--------I

NOM-12 '--__ ---l-___ ..I.-__ ---l-__ .---J

SO 75 100 125 150

'nom - nominal value 231920-19

NOTE:
This graph will not be linear outside of the CL range
shown.

Figure 5.0a. Typical Output Valid Delay vs Load
Capacitance at Max Operating Temperature

4-161

10r-__ -, ___ .-__ -, __ --,

'0 7. 100 12. 100

231920-20
NOTE:
This graph will not be linear outside of the CL range
shown.

Figure 5.0b. Typical Output Rise Time vs Load
Capacitance at Max Operating Temperature

I',;"

".~.
I~
I~
I

CPUCLK2/387CLK2

1.4V/2.0V

80387

~---------tl----~----~ rSETUP HOLD
TI~E rTI~E

1.~r--~}­

INPUTS""'----io--' .

Figure 5.1. CPUCLK2/387CLK2 Waveform and Measurement Points for
Input/Output A.C. Specifications

(CLK) (PH2) \", __ (P_H_l)_....,I! (PH2)

CPUCLK2

(OUTPUTS)

(ERROR# REFERENCED TO 387CLK2)
231920-14

Figure 5.2. Output Signals

4-162

231920-13

inter

NOTE:

80387

(ClK)\ (PHI) / (PH2) \ (PHI) / (PH2) \.-

CPUClK2

ADS"

W/R#

NPSI N. NPS2.
STEN.

CIADO#

READY#

00-031
(INPUT)

00-031
(OUTPUT)

Figure 5.3. Input and I/O Signals

(ClK) / (PHI or PH2) \ (PHI or PH2) ~

CPUClK2

RESET

The second internal processor phase following RESET high to low transition is PH2.

STEN

00-031. PEREQ
BUSY#. ERROR#. READYO#

Figure 5.4. RESET Signal

Figure 5.5. Float from STEN

4-163

231920-15

231920-16

231920-17

inter

Pin

RESETIN

RESETIN

BUSY#

BUSY #, ERROR #

PEREQ, ERROR #

READY #, BUSY #

. READY#

READY#

READY#

BUSY#

PEREQ

ERROR#

• In NUMCLK2's
•• or last operand

NOTE:

80387

Table 5.3. Other Parameters

Symbol Parameter Min Max

t30

t31

t32

t33

t34

t35

t36

t3?

Duration 40

RESETIN Inactive to 1st Opcode Write 50

Duration 6

ERROR # (In) Active to BUSY # Inactive 6

PEREQ Inactive to ERROR# Active 6

READY # Active to BUSY # Active 4 4

Minimum Time from Opcode Write to 6
Opcode/Operand Write

Minimum Time from Operand Write to 8
Operand Write

.~

1ST OPCODE
WRITE NOTE 1

1ST OPERAND 2ND OPERAND
WRITE WRITE (NOTE 1)

H

H

I
~

Units

NUMCLK2

NUMCLK2

CPUCLK2

CPUCLK2

CPUCLK2

CPUCLK2

CPUCLK2

CPUCLK2

t3S--I---+--i---+-t32-t---+---t--o-i

I
231920-18

1. Memory read (operand) cycle is not shown.

Figure 5.6. Other Parameters

4-164

inter 80387

Instruction

1

2

3

4

5

11011

11011

11011

11011

11011

15-11

First Byte

OPA

MF

d P

0 0

0 1

10 9

1

OPA

OPA

1

1

8

6.080387 EXTENSIONS TO THE
386™ CPU INSTRUCTION SET

MOD

MOD

1

1

1

7

Instructions for the 80387 assume one of the five
forms shown in the following table. In all cases, in­
structions are at least two bytes long and begin with
the bit pattern 11011 B, which identifies the ESCAPE
class of instruction. Instructions that refer to memory
operands specify addresses using the 386 CPU ad­
dressing modes.

OP = Instructionopcode, possible split into two
fields OPA and OPB

MF = Memory Format
00-32-bit real
01-32-bit integer
10-64-bit real
11-16-bit integer

P = Pop
0-00 not pop stack
1-Pop stack after operation

ESC = 11011

d = Destination
Q-Destination is ST(O)
1-Destination is ST(i)

R XOR d = Q-Destination (op) Source
R XOR d = 1-Source (op) Destination

Optional

Second Byte

1 ·1 OPB RIM SIB

OPB RIM SIB

1 OPB ST(i)

1 1 I OP

1 1 1 OP

6 5 43210

ST(i) = Register stack element i
000 = Stack top
001 = Second stack element

•
•
•

111 = Eighth stack element

Fields

1 DISP

I DISP

MOD (Mode field) and RIM (Register/Memory spec­
ifier) have the same interpretation as the corre­
sponding fields of the 386 Microprocessor instruc­
tions (refer to 386™ Microprocessor Programmer's
Reference Manual).

SIB (Scale Index Base) byte and DISP (displace­
ment) are optionally present in instructions that have
MOD and RIM fields. Their presence depends on
the values of MOD and RIM, as for 386 Microproc­
essor instructions.

The instruction summaries that follow assume that
the instruction has been prefetched, decoded, and is
ready for execution; that bus cycles do not require
wait states; that there are no local bus HOLD re­
quest delaying processor access to the bus; and
that no exceptions are detected during instruction
execution. If the instruction has MOD and RIM fields
that call for both base and index registers, add one
clock.

4-165

i'

inter 80387

80387 Extensions to the 386TM CPU Instruction Set

. ·Instructlon

FLO = load8

Integer/real memotyto ST(OI

long Integer memory to ST(OI

Extended real memory to 'ST(OI

BCD memory to ST(OI

STOI to ST(OI

FST = Store

ST(OI to integer/real memory

ST(OI to STeil

FSTP = Store and Pop

ST(OI to integer/real memory

ST(OI to long integer memory

ST(OI to extended real

ST(OI to BCD memory

ST(OI to STeil

FXCH = Exchange

STOI and ST(OI

COMPARISON

FCOM = Compare

Integer/real memory to ST(OI

STOI to ST(OI

FCOMP. = Compere ~rid pop

Integer/real memory to ST

STeil to ST(OI

= Compare and pop twice

FLOZ = load + 0.0 into ST(OI

FLDl = load + 1.0 into ST(OI

FLOPI = load pi into ST(OI

FLOL2T = load 1092(101 into ST(OI

ESC 001 11001 STeil

ESC 001 11101110

ESC 001 11101000

ESC 001 11101011

ESC 001 11101001

Shaded areas indicate instructions not available in 8087/80287.

NOTE:
a. When loading single- or double-precision zero from memory. add 5 clOcks.

20

44

44

26

26

45-52 25

56-67

44

266-275

14

79-93 45

11

79-93 45

60-97

53

512-534

66-63

56-63

12

18

24

26

26

20

24

40

40

31

.31.

61-65

82-95

82-95

71-75

71-75

inter 80387

80387 Extensions to the 386™ CPU Instruction Set (Continued)

InstructIOn

I r.r.N .. T 41~T" (Continued)

= Load log2(e) into ST(O)

= Load 10910(2) into ST(O)

= Load log.(2) into ST(O)

Integer/real memory with ST(O)

ST(i) and ST(O)

FMUL = Multiply

Integer/real memory with ST(O)

ST(i) and ST(O)

FDIV = Divide

Integer/real memory with ST(O)

ST(i) and ST(O)

FSQRTI = Square root

FSCALE = Scale ST(O) by ST(I)

FPREM = Partial remainder

FRNDINT = Round ST(O)
to integer

FXTRACT = Extract components
ofST(O)

FABS = Absolute value of ST(O)

FCHS = Change sign of ST(O)

ESC 001 11101010

ESC 001 11101100

ESC 001 11101101

ESC 001 11111010

ESC 001 11111101

ESC 001 11111100

ESC 001 11110100

ESC 001 11100001

ESC 001 11100000

Shaded areas indicate instructions not available in 8087/80287.

NOTES:
b. Add 3 clocks to the range when d = 1.
c. Add 1 clock to each range when R = 1.
d. Add 3 clocks to the range when d = O.
e. typical = 52 (When d = 0, 46-54, typical = 49).
f. Add 1 clock to the range when R = 1.
g. 135-141 when R = 1.
h. Add 3 clocks to the range when d = 1.
i. -0:5: ST(O):5: +00.

4-167

24-32

24-32

27-35

89

40

41

41

57-72 29-37

23-31b

57-82 28-36

26-34d

61-82 32-57

29-57·

120-1271

88h

122-129

67-86

66-80

70-76

22

24-25

94

71-85

71-83c

76-87

136-1409

inter 80387

80387 Extensions to the 386™ CPU Instruction Set (Continued)

Instruction

FPTANk = Partial tangent of ST(O)

FYL2xm = ST(I) '1092(ST(0»

FYL2XP1" = ST(I) '1092(ST(0) + 1.0)

PROCESSOR CONTROL

FINIT = Initialize NPX

FSTSW AX = Store status word

FLDCW = Load control word

FSTCW = Store control word

FSTSW = Store status word

FCLEX = Clear exceptions

FSTENV = Store environment

FLDENV = Load environment

FSAVE = Save state

FRSTOR = Restore state

FINCSTP = Increment stack pOinter

FDECSTP = Decrement stack pointer

FFREE = Free ST(i)

FNOP = No operations

ESC 001 I 11110010

ESC 001 11110001

ESC 001 11111001

ESCOll 11100011

ESC 001 11110110

ESC 101 11000 ST(i)

ESC 001 11010000

Shaded areas indicate instructions not available in 8087/80287.

NOTES:

Clock Count Range

120-538

257-547

33

13

19

15

15

11

103-104

71

375-376

308

21

22

18

12

j. These timings hold for operands in the range Ixl < 1T 14. For operands not in this range, up to 76 additional clocks may be
needed to reduce the operand.
k. 0 s; I ST(O) I < 263.
I. -1.0 S; ST(O) S; 1.0.
m.O S; ST(O) < 00, - 00 < ST(I) < + 00.

n. 0 S; IST(O)I < (2 - SQRT(2»/2, - 00 < ST(I) < + 00.

4-168

intJ 80387

APPENDIX A
COMPATIBILITY BETWEEN
THE 80287 AND THE 8087

The 80286/80287 operating in Real-Address mode
will execute 8086/8087 programs without major
modification. However, because of differences in the
handling of numeric exceptions by the 80287 NPX
and the 8087 NPX, exception-handling routines may
need to be changed.

This appendix summarizes the differences between
the 80287 NPX and the 8087 NPX, and provides
details showing how 8086/8087 programs can be
ported to the 80286/80287.

1. The NPX signals exceptions through a dedicated
ERROR line to the 80286. The NPX error signal
does not pass through an interrupt controller (the
8087 INT signal does). Therefore, any interrupt­
controller-oriented instructions in numeric excep­
tion handlers for the 8086/8087 should be delet­
ed.

2. The 8087 instructions FENI/FNENI and FDISII
FNDISI perform no useful function in the 80287. If
the 80287 encounters one of these opcodes in its
instruction stream, the instruction will effectively
be ignored-none of the 80287 internal states will
be updated. While 8086/8087 containing these
instructions may be executed on the
80286/80287, it is unlikely that the exception­
handling routines containing these instructions
will be completely portable to the 80287.

3. Interrupt vector 16 must point to the numeric ex-
ception handling routine. .

4. The ESC instruction address saved in the 80287
includes any leading prefixes before the ESC op­
code. The corresponding address saved in the
8087 does not include leading prefixes.

5. In Protected-Address mode, the format of the
80287's saved instruction and address pOinters is
differentthan for the 8087. The instruction op­
code is not saved in Protected mode-exception
handlers will have to retrieve the opcode from
memory if needed.

6. Interrupt 7 will occur in the 80286 when executing
ESC instructions with either TS (task switched) or
EM (emulation) of the 80286 MSW set (TS = 1 or
EM = 1). If TS is set, then a WAIT instruction will

also cause interrupt 7. An exception handler
should be included in 80286/80287 code to han­
die these situations.

7. Interrupt 9 will occur if the second or subsequent
words of a floating-point operand fall outside a
segment's size. Interrupt 13 will occur if the start­
ing address of a numeric operand falls outside a
segment's size. An exception handler should be
included in 80286/80287 code to report these
programming errors.

8. Except for the processor control instructions, all
of the 80287 numeric instructions are automati­
cally synchronized by the 80286 CPU-the 80286
automatically tests the BUSY line from the 80287
to ensure that the 80287 has completed its previ­
ous instruction before executing the next ESC in­
struction. No explicit WAIT instructions are re­
quired to assure this synchronization. For the
8087 used with 8086 and 8088 processors, ex­
plicit WAITs are required before each numeric in­
struction to ensure synchronization. Although
808618087 programs having explicit WAIT in­
structions will execute perfectly on the
80286/80287 without reassembly, these WAIT in­
structions are unnecessary.

9. Since the 80287 does not require WAIT instruc­
tions before each numeric instruction, the
ASM286 assembler does not automatically gener­
ate these WAIT instructions. The ASM86 assem­
bler, however, automatically precedes every ESC
instruction with a WAIT instruction. Although nu­
meric routines generated using the ASM86 as­
sembler will generally execute correctly on the
80286/80287, reassembly using ASM286 may re­
sult in a more compact code image.

The processor control instructions for the 80287
may be coded using either a WAIT or No-WAIT
form of mnemonic. The WAIT forms of these in­
structions cause ASM286 to precede the ESC in­
struction with a CPU WAIT instruction, in the iden­
tical manner as does ASM86.

4-169

!

i":

80387

DATA SHEET REVISION REVIEW

The following list represents the key differences be­
tween this and the -003 versions of the 80387 Data
Sheet. Please review this summary carefully.

1. On the front page, the high side of the relative
performance increase of the 80387 over the
8087/80287 was changed from seven to nine
times to reflect the higher performance from a
25 MHz 80387.

2. Data type representation ranges were inaccurate,
and are revised in Table 2.1.

3. The ratio of the 386 CLK2 frequency to the
NUMCLK2 frequency must lie within the range
10:16 to 14:10 instead of the former 10:16 to
16: 10 specification.

4. Figure 3.2 was added to illustrate the 80387 oper­
ating in an asynchronous mode.

5. The 80387 READYO# output must be included in
the system READY # logic for a proper READY #
signal to be generated.

6. Figure 3.5 contains a corrected W/R# signal.

7. The 80387 25 MHz A.C. and D.C. specifications
are now available.

4-170

inter
82380

•

•

•

HIGH PERFORMANCE 32-BIT DMA CONTROLLER WITH
INTEGRATED SYSTEM SUPPORT PERIPHERALS

High Performance 32-Blt DMA • Programmable Walt State Generator
Controller - 0 to 15 Wait States Pipelined
- 50 MBytes/sec Maximum Data - 1 to 16 Wait States Non-Pipelined

Transfer Rate at 25 MHz • DRAM Refresh Controller
- 8 Independently Programmable

Channels • 80386 Shutdown Detect and Reset

20-Source Interrupt Controller
Control
- Software/Hardware Reset

-Individually Programmable Interrupt
Vectors • High Speed CHMOS III Technology

-15 External, 5 Internal Interrupts • 132-Pin PGA Package
- 82C59A Superset • Optimized for use with the 80386
Four 16-Bit Programmable Interval Microprocessor
Timers - Resides on Local Bus for Maximum
- 82C54 Compatible Bus Bandwidth

The 82380 is a multi-function support peripheral that integrates system functions necessary in an 80386
environment. It has eight channels of high performance 32-bit DMA with the most efficient transfer rates
possible on the 80386 bus. System support peripherals integrated into the 82380 provide Interrupt Control,
Timers, Wait State generation, DRAM Refresh Control, and System Reset logic.

The 82380's DMA Controller can transfer data between devices of different data path widths using a single
channel. Each DMA channel operates independently in any of several modes. Each channel has a temporary
data storage register for handling non-aligned data without the need for external alignment logic.

80386 LOCAL BUS

r---------

32- BIT
8-CHANNEL

DMA
CONTROLLER

TIMER 0

TIMER 1

TIMER 2

TIMER 3

.--------------------------~
82380 Internal Block Diagram

4-171

290128-1

October 1988
Order Number: 290128-003

" ,

inter 82380

1.0 . FUNCTIONAL OVERVIEW

The 82380.cont$ins several independent functional
modules. The following is a brief discussion of the
components and features of the 82380. E$ch mod­
ule has a corresponding detailed section later in this
data sheet. Those sections should be referred to for
design and programming information.

1.1 82380 Architecture

The 82380 is comprised of several computer system
functions that are normally found in separate LSI
and VLSI components. These include: a high-per­
formance, eight-channel, 32-bit Direct Memory Ac­
cess Controller; a 20-level Programmable Interrupt
Controller which is a superset of the 82C59A; four
16-bit Programmable Interval Timers which are func­
tionally equivalent to the 82C54 timers; a DRAM Re­
fresh Controller; a Programmable Wait State Gener­
ator; and system reset logic. The interface to the
82380 is optimized for high-performance operation
with the 80386 microprocessor.

The 82380 operates directly on the 80386 bus. In
the Slave mode, it monitors the state of the proces-

sor at all times and acts or idles according to the
commands ofthe host. It monitors the address pipe­
line status·. and generates the programmed number
of wait states for the device being accessed. The
82380 also has logic to reset the 80386 via hard­
ware or software reset requests and processor shut­
down status.

After a system reset, the 82380 is in the Slave
mode. It appears to the system as an liD device. It
becomes a bus master when it is performing DMA
transfers.

To maintain compatibility with existing software, the
registers within the 82380 are accessed as bytes. If
the internal logic of the 82380 requires a delay be­
fore another access by the processor, wait states
are automatically inserted into the access cycle.
This allows the programmer to write initialization rou­
tines, etc. without regard to hardware recovery
times.

Figure 1-1 shows the basic architectural cornpo­
nents of the 82380. The following sections briefly
discuss the architecture and function of each of the
distinct sections of the 82380.

80386 LOCAL BUS

TOUT1/REF"#

, ,
INT

I
I

RESET -r--+ CPU
CPURST RESET

32- BIT
ii-CHANNEL

DMA
CONTROLLER

DREQO
• •
•

DREQ7

EDACKO

EDACKI

EDACK2

EOP#

.--."_-.-.-~ TOUT2#
~---I

TOUT3#

.. __________________ .. __ L._-_";;'_~_-_--: .. -CLKIN

Figure 1-1. Architecture of the 82380

4-172

290128-2

inter 82380

1.1.1 DMA CONTROLLER

The 82380 contains a high-performance, 8-channel,
32-bit DMA controller. It is capable of transferring
any combination of bytes, words, and double words.
The addresses of both source and distination can be
independently incremented, decremented or held
constant, and cover the entire 32-bit physical ad­
dress space of the 80386. It can disassemble and
assemble misaligned data via a 32-bit internal tem­
porary data storage register. Data transferred be­
tween devices of different data path widths can also
be assembled and disassembled using the internal
temporary data storage register. The DMA Controller
can also transfer aligned data between 1/0 and
memory on the fly, allowing data transfer rates up to
32 megabytes per second for an 82380 operating at
16 MHz. Figure 1-2 illustrates the functional compo­
nents of the DMA Controller.

There are twenty-four general status and command
registers in the 82380 DMA Controller. Through
these registers any of the channels may be pro­
grammed into any of the possible modes. The oper­
ating modes of anyone channel are independent of
the operation of the other channels.

Each channel has three programmable registers
which determine the location and amount of data to
be transferred:

Byte Count Register-Number of bytes to trans­
fer. (24-bits)

Requester Register-Address of memory or pe­
ripheral which is requesting DMA service. (32-
bits)

Target Register-Address of peripheral or mem­
ory which will be accessed. (32-bits)

There are also port addresses which, when ac­
cessed, cause the 82380 to perform specific func­
tions. The actual data written does not matter, the
act of writing to the specific address causes the
command to be executed. The commands which op­
erate in this mode are: Master Clear, Clear Terminal
Count Interrupt Request, Clear Mask Register, and
Clear Byte Pointer Flip-Flop.

DMA . transfers can be done between all combina­
tions of memory and 1/0; memory-to-memory, mem­
ory-to-I/O, I/O-to-memory, and I/O-to-I/O. DMA
service can be requested through software and I or
hardware. Hardware DMA acknowledge signals are
available for all channels (except channel 4) through
an encoded 3-bit DMA acknowledge bus
(EDACKO-2).

HOLD +-----, CONTROL/STATUS REGISTERS CHANNEL REGISTERS
HLDA

DREQO
DREQ1
DREQ2
DREQ3
DREQ4
DREQ5
DREQ6
DREQ7

==:
==:
==:
==:

+ I

DMA
REQUEST

ARBITRATION
LOGIC

COMMAND REGISTER I

COMMAND REGISTER II

MODE REGISTER I

MODE REGISTER II

SOFTWARE REQUEST
REGISTER

MASK REGISTER
STATUS REGISTER

BUS SIZE REGISTER
CHAINING REG.ISTER

BASE CURRENT TEMPORARY
BYTE COUNT BYTE COUNT REGISTER

BASE CURRENT
REQUESTER REQUESTER

ADDRESS ADDRESS
CHANNEL 0

BASE CURRENT
TARGET TARGET

ADDRESS ADDRESS

CHANNEL 1 (SAME AS CH 0)
CHANNEL 2 (SAME AS CHO)

CHANNEL 3 (SAME AS CH 0)

I "LOWER" GROUP OF CHANNELS

EDACKO +--
EDACK1 +-- PROCESS

CONTROL
EDACK2 +--

EOP# ~

I "UPPER" GROUP OF CHANNELS

CHANNEL 4 (SAME AS CH 0
CONTROL/STATUS CHANNEL 5 (SAME AS CH 0
(SAME AS

CHANNEL 6 (SAME AS CH 0 LOWER GROUP)
CHANNEL 7 (SAME AS CH 0)

Figure 1·2. 82380 DMA Controller

4-173

290128-3

82380

The 82380 DMA controller transfers blocks of data
(buffers) in three modes: Single Buffer, Buffer Auto­
Initialize, and Buffer Chaining. In the Single Buffer
Process the 82380 DMA Controller is pr-ogrammed
to transfer one particular block of. data. Successive
transfers then require reprogramming of the DMA
channel. Single Buffer transfers are useful in sys­
tems where it is known at the time the transfer be­
gins what quantity of data is to be transferr~d, and
there is a contiguous block of data area available.

The Buffer Auto-Initialize Process allows the same
data area to be used for successive DMA transfers
without having to reprogram the channel.

The Buffer Chaining Process allows a program to
specify a list of buffer transfers to be execut~d .. T~e
82380 DMA Controller, through interrupt routines, IS
reprogrammed from the list. The channel is repro­
grammed for a new buffer before the current buffer
transfer is complete. This pipelining of the channel
programming process allows the system to allocate
non-contiguous blocks of data storage space, and
transfer all of the data with one DMA process. The
buffers that make up the chain do not have to be in
contiguous locations.

Channel priority can be fixed or rotating. Fixed priori­
ty allows the programmer to define the priority of
DMA channels based on hardware or other fixed pa­
rameters. Rotating priority is used to provide periph­
erals access to the bus on a shared basis.

With fixed priority, the prograrnmer can set. any
channel to have the current loweSt priority. This al-

GATES[

elKIN

CONTROL --...
LOGIC

lows the user to reset or manually rotate the priority
schedule without reprogramming the command reg­
isters.

1.1.2 PROGRAMMABLE INTERVAL TIMERS

Four 16-bit programmable interval timers reside
within the 82380. These timers are identical in func­
tion to the timers in the 82C54 Programmable Inter­
val Timer. All four of the timers share a common
clock input which can be independent of the system
clock. The timers are capable of operating in six dif­
ferent modes. In all of the modes, the current count
can be latched and read by the 80386 at any time,
making these very versatile event timers. Figure 1-3
shows the functional components of the Program­
mable Interval Timers.

The outputs of the timers are directed to key system
functions, making system design simpler. Timer 0 !s
routed directly to an interrupt input and is not avail­
able externally. This timer would typically be used to
generate time-keeping interrupts.

Timers·1 and 2 have outputs which are available for
general timer/counter purposes as well as special
functions. Timer 1 is routed. to the refresh control
logic to provide refresh timing. Timer.2 is conne~ted
to an interrupt requeSt input to provide other timer
functions. Timer 3 is a general purpose timer/coun­
ter whose output is available to external hardware. It
is also connected internally to the interrupt request
which defaults to the highest priority (IROO).

TOUTO (INTERNAL)

TIMER 0

TIMER 1 TOUT1

TIMER 2 TOUT2.#

TIMER 3 TOUT3#
290128-4

Figure 1-3. Programmable Interval Timers-.-Block Diagram

4-174

intJ 82380

1.1.3 INTERRUPT CONTROLLER

The 82380 has the equivalent of three enhanced
82C59A Programmable Interrupt Controllers. These
controllers can all be operated in the Master mode,
but the priority is always as if they were cascaded.
There are 15 interrupt request inputs provided for
the user, all of which can be inputs from external
slave interrupt controllers. Cascading 82C59As to
these request inputs allows a possible total of 120
external interrupt requests. Figure 1·4 is a block dia·
gram of the 82380 Interrupt Controller.

Each of the interrupt request inputs can be individu·
ally programmed with its own interrupt vector, allow­
ing more flexibility in interrupt vector mapping than
was available with the 82C59A. An interrupt is pro­
vided to alert the system that an attempt is being

IROO#
IRQ1#
IRQ2#
IRQ3#
IR04#
IR05#
IR06#
IRQ7#

DATA (0-7)

made to program the vectors in the method of the
82C59A. This provides compatibility of existing soft­
ware that used the 82C59A or 8259A with new de­
signs using the 82380.

In the event of an unrequested or otherwise errone­
ous interrupt acknowledge cycle, the 82380 Interrupt
Controller issues a default vector. This vector, pro­
grammed by the system software, will alert the sys­
tem of unsolicited interrupts of the 80386.

The functions of the 82380 Interrupt Controller are
identical to the 82C59A, except in regards to pro­
gramming the interrupt vectors as mentioned above.
Interrupt request inputs are programmable as either
edge or level triggered .and are software maskable.
Priority can be either fixed or rotating and interrupt
requests can be nested.

IRQ2
IRQ3
IRQ4
IR05
IRQ6
IRQ7

r-----+ INTERRUPT
TO HOST

IN­
SERVICE

REG.

DATA (0-7)

INDIVIDUALLY PROGRAMMABLE
VECTOR BANK

82380 ENHANCEMENT OVER THE 82C59A
290128-5

Figure 1-4. 82380 Interrupt Controller-Block Diagram

4-175

82380

Enhancements are added to the 82380 for cascad­
ing external interrupt controllers. Master to Slave
handshaking takes place on the data bus, instead of
dedicated cascade lines.

1.1.4 WAIT STATE GENERATOR

The Wait State Generator is a programmable
READY generation circuit for the 80386 bus. A pe­
ripheral requiring wait states can request the Wait
State Generator to hold the processor's READY in­
put inactive for a predetermined number of bus
states. Six different wait state counts can be pro­
grammed into the Wait State Generator by software;
three for memory accesses and three for 1/0 ac­
cesses. A block diagram of the 82380 Wait State
Generator is shown in Figure 1-5.

The peripheral being accessed selects the required
wait state count by placing a code on a 2-bit wait
state select bus. This code along with the M/IO#
signal from the bus master is used to select one of
six internal 4-bit wait state registers which has been
programmed with the desired number of wait states.
From zero to fifteen wait states can be programmed
into the wait state registers. The Wait State Genera­
tor tracks the state of the processor or current bus
master at all times, regardless of which device is the
current bus master and regardless of whether or not
the Wait State Generator is currently active.

The 82380 Wait State Generator is disabled by mak­
ing the select inputs both high. This allows hardware
which is intelligent enough to generate its own ready
signal to be accessed without penalty. As previously

mentioned, deselecting the Wait State Generator
does not disable its ability to determine the proper
number of wait states due to pipeline status in sub­
sequent bus cycles.

The number of wait states inserted into a pipe lined
bus cycle is the value in the selected wait state reg­
ister. If the bus master is operating in the non-pipe­
lined mode, the Wait State Generator will increase
the number of wait states inserted into the bus cycle
by one.

On reset, the Wait State Generator's registers are
loaded with the value FFH, giving the maximum
number of wait states for any access in which the
wait state select inputs are active.

1.1.5 DRAM REFRESH CONTROLLER

The 82380 DRAM Refresh Controller consists of a
24-bit refresh address counter and bus arbitration
logic. The output of Timer 1 is used to periodically
request a refresh cycle. When the controller re­
ceives the request, it requests access to the system
bus through the HOLD signal. When bus control is .
acknowledged by the processor or current bus mas­
ter, the refresh controller executes a memory read
operation at the address currently in the Refresh Ad­
dress Register. At the same time, it activates a re­
fresh signal (REF#) that the memory uses to force a
refresh instead of a normal read. Control of the bus
is transferred to the processor at the completion of
this cycle. Typically a refresh cycle will take six clock
cycles to execute on an 80386 bus.

INTERNAL WAIT STATE
REQUIREMENT

0403 DO

MEMORY 0 I/O 0
WSCO

WSCI

1.4/10#

REGISTER
SELECT
LOGIC

MEMORY 1 I/O 1

MEMORY 2 I/o 2

(RESERVED) REFRESH

PROGRAMMABLE WAIT STATE
REGISTERS

WAIT STATE
COUNTER

Figure 1-5. 82380 Wait State Generator-Block Diagram

4·176

290128-6

inter 82380

The 82380 DRAM Refresh Controller has the high­
est priority when requesting bus access and will in­
terrupt any active DMA process. This allows large
blocks of data to be moved by the. DMA controller
without affecting the refresh function. Also the DMA
controller is not required to completely relinquish the
bus, the refresh controller simply steals a bus cycle
between DMA accesses.

The amount by which the refresh address is incre­
mented is programmable to allow for different bus
widths and memory bank arrangements.

1.1.6 CPU RESET FUNCTION

The 82380 contains a special reset function which
can respond to hardware reset signals from the
82384, as well as a software reset command. The
circuit will hold the 80386's RESET line active while
an external hardware reset signal is present at its
RESET input. It can also reset the 80386 processor
as the result of a software command. The software
reset command causes the 82380 to hold the proc­
essor's RESET line active for a minimum of 62 CLK2
cycles; enough time to allow an 80386 to re-initialize.

The 82380 can be programmed to sense the shut­
down detect code on the status lines from the
80386. If the Shutdown Detect function is enabled,
the 82380 will automatically reset the processor. A
diagnostic register is available which can be used to
determine the cause of reset.

1.1.7 REGISTER MAP RELOCATION

After a hardware reset, the internal registers of the
82380 are located in I/O space beginning at port
address OOOOH. The map of the 82380's registers is
relocatable via a software command. The default
mapping places the 82380 between liD addresses
OOOOH and OODBH. The relocation register allows
this map to be moved to any even 256-byte bounda­
ry in the processor's 16-bit liD address space or any
even 16-Mbyte boundary in the 32-bit memory ad­
dress space.

1.2 Host Interface

The 82380 is designed to operate efficiently on the
local bus of an 80386 microprocessor. The control

signals of the 82380 are identical in function to
those of the 80386. As a slave, the 82380 operates
with all of the features available on the 80386 bus.
When the 82380 is in the Master mode, it looks iden­
tical to the 80386 to the connected devices.

The 82380 monitors the bus at all times, and deter­
mines whether the current bus cycle is a pipe lined or
non-pipelined access. All of the status signals of the
processor are monitored.

The control, status, and data registers within the
82380 are located at fixed addresses relative to
each other, but the group can be relocated to either
memory or I/O space and to different locations with­
in those spaces.

As a Slave device, the 82380 monitors the controll
status lines of the CPU. The 82380 will generate all
of the wait states it needs whenever it is accessed.
This allows the programmer the freedom of· access­
ing 82380 registers without having to insert NOPs in
the program to wait for slower 82380 ir:Jternal regis­
ters.

The 82380 can determine if a current bus cycle is a
pipe lined or a non-pipelined cycle. It does this by
monitoring the ADS# and READY # signals and
thereby keeping track of the current state of the
80386.

As a bus master, the 82380 looks like an 80386 to
the rest of the system. This enables the designer
greater flexibility in systems which include the
82380. The designer does not have to alter the inter­
faces of any peripherals designed to operate with
the 80386 to accommodate the 62380. The 82380
will access any peripherals on the bus in the same
manner as the 80386, including recognizing pipe­
lined bus cycles.

The 82380 is accessed as an 8-bit peripheral. This is
done to maintain compatibility with existing system
architectures and software. The 80386 places the
data of all 8·bit accesses either on D (0-7) or D (8-
15). The 82380 will only accept data on these lines
when in the Slave mode. When in the Master mode,
the 82380 is a full 32·bit machine, sending and re­
ceiving data in the same manner as the 80386.

4-177

I

i

intJ 82380

1.3 IBM PC* System Compatibility

The 82380 is an 80386 companion device designed
to provide an enhancement of the system functions
common to most small computer systems. It is mod­
eled after and is a superset of the Intel peripheral
products found in the IBM PC, PC-AT, and other
popular small computers.

2.0 80386 HOST INTERFACE

The 82380 contains a set of interface signals to op­
erate efficiently with the 80386 host processor.
These signals were . designed so that minimal hard­
ware is needed to connect the 82380 to the 80386.

Figure 2-1 depicts a typical system configuration
with the 80386 processor. As shown in the diagram,
the 82380 is designed to interface directly with the
80386 bus.

"IBM PC and IBM PC-AT are registered trademarks of Inter­
national Business Machines Inc.

Since the 82380 is residing .on the opposite side of
the data bus transceiver (with respect to the rest of
the peripherals in the system), iUs important to note
that the transceiver should be controlled so that
contention between the data bus transceiv~r and
the 82380 will not occur. In order to do this, port
address decoding logic should be included in the di­
rection and enable control logic of the transceiver.
When any of the 82380 internal registers is read, the
data bus transceiver should be disabled so that only
the 82380 will drive the local bus.

This section describes the basic bus functions of the
82380 to show how this device interacts with the
80386 processor. Other signals which are not direct­
ly related to the host interface will be discussed in
their associated functional block description.

FROM OTHER
PERIPHERALS

CLOCK GENERATOR I RESET
CLK2 I

CLK2

+ AOS#

AOS# CLK2 82380

RESET CPURST

~. OPTIONAL : ~ REAOY#

~
WAIT SlATE REAOYO#

LOGIC
80386 REAOY#

HOLD HOLO

HLOA HLOA

INT INT

NA# NA#

OjC# OjC#

WjR# WjR#
MjIO# MjIO#

BEO-3#,
A ~

BEO-3#,
A2-A31

~ I I
A2-A31 ..

00-031 00-031

" ~.~
TO BUS TO BUS

CONTROLLER BUFFERS
290128-7

Figure 2-1.80386/82380 System Configuration

4-178

82380

2.1 Master and Slave Modes

At any time, the 82380 acts as either a Slave device
or a Master device in the system. Upon reset, the
82380 will be in the Slave Mode. In this mode, the
80386 processor can read/write into the 82380 in·
ternal registers. Initialization information may be pro·
grammed into the 82380 during Slave Mode.

When OMA service (including DRAM Refresh Cycles
generated by the 82380) is requested, the 82380 will
request and subsequently get control of the 80386
local bus. This is done through the HOLD and HLOA
(Hold Acknowledge) signals. When the 80386 proc·
essor responds by asserting the HLOA signal, the
82380 will switch into Master Mode and perform
OMA transfers. In this mode, the 82380 is the bus
master of the system. It can read/write data from/to
memory and peripheral devices. The 82380 will reo
turn to the Slave Mode upon completion of OMA
transfers, or when HLOA is negated.

2.2 80386 Interface Signals

As mentioned in the Architecture section, the Bus
Interface module of the 82380 (see Figure 1·1) con·
tains signals that are directly connected to the
80386 host processor. This module has separate
32-bit Data and Address busses. Also, it has addi­
tional control signals to support different bus opera­
tions on the system. By residing on the 80386 local
bus, the 82380 shares the same address, data and
control lines with the processor. The following sub­
sections discuss the signals which interface to the
80386 host processor.

2.2.1 CLOCK (CLK2)

The CLK2 input provides fundamental timing for the
82380. It is divided by two internally to generate the
82380 internal clock. Therefore, CLK2 should be
driven with twice the 80386's frequency. In order to
maintain synchronization with the 80386 host proc­
essor, the 82380 and the 80386 should share a
common clock source.

The internal clock consists of two phases: PHI1 and
PHI2. Each CLK2 period is a phase of the internal
clock. PHI2 is usually used to sample input and set
up internal signals and PHI1 is for latching internal
data. Figure 2-2 illustrates the relationship of CLK2
and the 82380 internal clock signals. The CPURST
signal generated by the 82380 guarantees that the
80386 will wake up in phase with PHI1.

2.2.2 DATA BUS (00-031)

This 32-bit three-state bidirectional bus provides a
general purpose data path between the 82380 and
the system. These pins are tied directly to the corre­
sponding Data Bus pins of the 80386 local bus. The
Data Bus is also used for interrupt vectors generated
by the 82380 in the Interrupt Acknowledge cycle.

During Slave I/O operations, the 82380 expects a
single byte to be written or read. When the 80386
host processor writes into the 82380, either 00-07
or 08-015 will be latched into the 82380, depend·
ing opon how the Byte Enable (BEO# -BE#3) sig­
nals are driven. The 82380 does not need to look at
016-031 since the 80386 duplicates the single byte

I

82380 CLOCK PERIOD 82380 CLOCK PERIOD 82380 CLOCK PERIOD

CLK2 PERIOD CLK2 PERIOD CLK2 PERIOD
ill I il2 ill I il2 ill I il2

CLK2

I
PHllJ, \ \ \ f I
PHI2\ I I I }-I

290128-8

Figure 2-2. CLK2 and 82380 Internal Clock

4-179

intJ 82380

data on both halves of the bus. When the 80386
host processor reads from the 82380, the single
byte data will be duplicated four times on the Data
Bus; i.e., on 00-07, 08-015, 016-023 and 024-
031.

During Master Mode, the 82380 can transfer 32-,16-,
and 8-bit data between memory (or I/O devices) and
I/O devices (or memory) via the Data Bus.

2.2.3 ADDRESS BUS (A31-A2)

These three-state bidirectional signals are connect­
ed directly to the 80386 Address Bus. In the Slave
Mode, they are used as input signals so that the
processor can address the 82380 internal ports/reg­
isters. In the Master Mode, they are used as output
signals by the 82380 to address memory and periph­
eral devices. The Address Bus is capable of ad­
dressing 4 G-bytes of physical memory space

(OOOOOOOOH to FFFFFFFFH), and 64 K-bytes of I/O
addresses (OOOOOOOOH to OOOOFFFFH).

2.2.4 BYTE ENABLE (BE3#-BEO#)

These bidirectional pins select specific byte(s) in the
double word addressed by A31-A2. Similar to the
Address Bus function, these signals are used as in­
puts to address internal 82380 registers during
Slave Mode operation. During Master' Mode opera­
tion, they are used as outputs by the 82380 to ad­
dress memory and I/O locations.

In addition to the above function, BE3 # is used to
enable a production test mode and must be LOW
during reset. The 80386 processor will automatically
hold BE3# LOW during RESET.

The definitions of the Byte Enable signals depend
upon whether the 82380 is in the Master or Slave
Mode. These definitions are depicted in Table 2-1.

Table 2-1. Byte Enable Signals

As INPUTS (Slave Mode):

BE3#-BEO# Implied A 1, AO
Data Bits Written

to 82380·

XXXO 00 00-07
XX01 01 08-015
X011 10 00-07
X111 11 08-015

X-DONTCARE
'During READ, data will be duplicated on DO-D7, D8-DI5, DI6-D23, and D24-D31.
During WRITE, the 80386 host processor duplicates data on DO-DI5, and DI6-D31, so that the 82380
is concerned only with the lower half of the Data Bus.

As OUTPUTS (Master MOde):

BE3#-BEO#
Byte to be Accessed
Relative to A31-A2

1110
1101
1011
0111
1001
1100
0011
1000
0001
0000

U = Undefined
A = Logical DO-D7
B = Logical D8-D15
C = Logical D16-D23
D = Logical D24-D31

0
1
2
3
1,2
0, 1
2,3
0,1,2
1,2,3
0,1,2,3

Logical Byte Presented On
Data Bus During WRITE.Only·

024-31 016-23 08-15 00-7

U U U A
U U A A
U A U A
A U A A
U B A A
U U B A
B A B A
U C B A
C B A A
0 C B A

• Actual number of bytes .accessed depends upon the programmed data path width,

4-180

inter, 82380

2.2.5 BUS CYCLE DEFINITION SIGNALS (D/C#,
W/R#, M/IO#)

These three-state bidirectional signals define the
type of bus cycle being performed. W/R# dist!n­
guishes between write and read cycles. D/C# diS­
tinguishes between processor data and control cy­
cles. M/IO# distinguishes between memory and 1/0
cycles.

During Slave Mode, these Signals are driven by the
80386 host processor; during Master Mode, they are
driven by the 82380. In either mode, these signals
will be valid when the Address Status (ADS#) is
driven LOW. Exact bus cycle definitions are given in
Table 2-2. Note that some combinations are recog­
nized as inputs, but not generated as outputs. In the
Master Mode, D/C# is always HIGH.

2.2.6 ADDRESS STATUS (ADS#)

This bidirectional Signal indicates that a valid ad­
dress (A2-A31, BEO#-BE3#) and bus cycle defini­
tion (W/R#, D/C#, M/IO#) is being driven on the
bus. hi the Master Mode, it is driven by the 82380 as
an output. In the Slave Mode, this signal is moni­
tored as an input by the 82380. By the current and
past status of ADS# and the READY# input, the
82380 is able to determine, during Slave Mode, if the
next bus cycle is a pipelined address cycle. ADS # Is
asserted during T1 and T2P bus states (see Bus
State Definition).

Note that during the idle states at the beginning and
the end of a DMA process, neither the 80386 nor the
82380 is driving the ADS# Signal; i.e., the signal is
left floated. Therefore, it is important to use a pull-up
resistor (approximately 10 Kn) on the ADS# signal.

2.2.7 TRANSFER ACKNOWLEDGE (READY#)

This input indicates that the current bus cycle is
complete. In the Master Mode, assertion of this sig-

nal indicates the end of a DMA bus cycle. In the
Slave Mode, the 82380 monitors this input and
ADS # to detect a pipelined address cycles. This sig­
nal should be tied directly to the READY # input of
the 80386 host processor. ,

2.2.8 NEXT ADDRESS REQUEST (NA#)

This input is used to indicate to the 82380 in the
Master Mode that the system is requesting address
pipelining. When drive.n LOW by either ~~m?ry or
peripheral devices dUring Master Mode, It Indicates
that the system is prepared to accept a new address
and bus cycle definition signals from the 82380 be­
fore the end of the current bus cycle. If this input is
active when sampled by the 82380, the next address
is driven onto the bus, provided a bus request is
already pending internally. .

This input pin is monitored only in the Master Mode.
In the Slave Mode, the 82380 uses the ADS# and
READY # signals to determine address pipelining
cycles, and NA# will be ign~red.

2.2.9 RESET (RESET, CPURST) ,

RESET

This synchronous input suspends. any operation in
progress and places the 82380 in a known initial
state. Upon reset, the 82380 will be in the Slave
Mode waiting to be initialized by the 80386 host
processor. The 82380 is reset by asserting RESET
for 15 or more CLK2 periods. When RESET is as­
serted all other input pins are ignored, and all other
bus pi~s are driven to an idle bus state as shown in
Table 2-3. The 82380 will determine the phase of its
internal clock following RESET going inactive.

Table 2·2 Bus Cycle Definition

M/IO# D/C# W/R# As INPUTS As OUTPUTS

0 0 0 Interrupt NOT GENERATED
Acknowledge

0 0 1 UNDEFINED NOT GENERATED
0 1 0 1/0 Read 1/0 Read
0 1 1 110 Write 1/0 Write
1 0 0 UNDEFINED NOT GENERATED
1 0 1 HALT if NOT'GENERATED

BE(3-0) # = X011
SHUTDOWN if

BE (3-0)# = XXXO
1 1 0 Memory Read Memory Read
1 1 1 Memory Write Memory Write

4-181

82380

Table 2-3. Output Signals Following RESET

Signal Level

A2-A31, 00-031, BEO#-BE3# Float
O/C#, W/R#, M/IO#, AOS# Float
REAOYO# '1'
EOP# '1'(Weak Pull-UP)
EOACK2-EOACKO '100'
HOLD '0'
INT UNDEFINED"
TOUT1/REF#, TOUT2#/IRQ3#, TOUT3# UNDEFINED"
CPURST '0'

. " 'The Interrupt Controlier and Programmable Interval Timer are Initialized by software commands .

RESET is level-sensitive and must be synchronous
to the CLK2 signal. Therefore, this RESET input
should be tied to the RESET output of the Clock
Generator. The RESET setup and hold time require­
ments are shown in Figure 2.3.

CPURST

This output signal is used to reset the 80386 host
processor. It will go active (HIGH) whenever one of
the following events occurs: a) 82380's RESET input
is active; b) a software RESET command is issued
to the 82380; or c) when the 82380 detects a proc­
eSSOr Shutdown cycle and when this detection fea­
ture is enabled (see CPU Reset and Shutdown De­
tect). When activated,CPURST will be held active
for 62 CLK2 periods. The timing of CPURST is such
that the 80386 processor will be in synchronization
with the 82380. This timing is shown in Figure 2-4.

CLK2

PHI?

2.2.10 INTERRUPT OUT (INT)

This output pin is used to signal the 80386 host
processor that one or more interrupt requests (either
internal or external) are pending. The processor is
expected to respond with an Interrupt Acknowledge
cycle. This signal should be connected directly to
the Maskable Interrupt Request (INTR) input of the
80386 host processor.

2.3 82380 Bus Timing

The 82380 internally divides the CLK2 signal by two
to generate its internal clock. Figure 2-2 shows the
relationship of CLK2 and the internal clock. The in­
ternal ~Iock consists of two phases: PHI1 and PHI2.
Each CLK2 period is a phase of the internal clock. In
Figure 2-2, both PHI1 and PHI2 of the 82380 internal
clock are shown.

PHI 2 PHil PHI 2

RESET \~----------------------------
T30·RESET Hold Time
T31·RESET Setup TIme

CLK2

CPURST

T33·CPU Reset from CLK2

Figure 2-3. RESET Timing

Figure 2-4. CPURST Timing

4"182

290128-9

290128-10

inter 82380

I
82380 CLOCK PERIOD 82380 CLOCK PERIOD 82380 CLOCK PERIOD

CLK2 PERIOD CLK2 PERIOD CLK2 PERIOD
01 I 02 01 I 02 01 I 02

CLK2

I J,-PHllJ, \ \ 1 \
I I

PHI2\ I I t I }-I
290128-11

Figure 2-2. CLK2and 82380 Internal Clock

In the 82380, whether it is in the Master or Slave
Mode, the shortest time unit of bus activity is a bus
state. A bus state, which is also referred as a
'T-state', is defined as one 82380 PHI2 clock period
(i.e., two CLK2 periods). Recall in Table 2-2, there
are six different types of bus cycles in the 82380 as
defined by the MIIO#, D/C# and W/R# signals.
Each of these bus cycles is composed of two or
more bus states. The length of a bus cycle depends
on when the READY # input is asserted (i.e., driven
LOW).

2.3.1 ADDRESS PIPE LINING

The 82380 supports Address Pipelining as an option
in both the Master and Slave Mode. This feature typ­
ically allows a memory or peripheral device to oper­
ate with one less wait state than would otherwise be
required. This is possible because during a pipe lined
cycle, the· address and bus cycle definition of the
next cycle will be generated by the bus master while
waiting for the end of the current cycle to be ac­
knowledged. The pipelined bus is especially well
suited for interleaved memory environment. For 16
MHz interleaved memory designs with 100 ns ac­
cess time DRAMs, zero wait state memory accesses
can be achieved when pipelined addreSSing is se­
lected.

In the Master Mode, the 82380 is capable of initiat­
ing, on a cycle-by-cycle basis, either a pipelined or
non-pipe lined access depending upon the state of
the NA # input. If a pipelined cycle is requested (indi­
cated by NA# being driven LOW), the 82380 will

drive the address and bus cycle definition of the next
cycle as soon as there is an internal bus request
pending.

In the Slave Mode, the 82380 is constantly monitor­
ing the ADS# and READY# signals on the proces­
sor local bus to determine if the current bus cycle is
a pipe lined cycle. If a pipelined cycle is detected, the

,82380 will request one less wait state from the proc­
essor if the Wait State Generator feature is selected.
On the other hand, during an 823BO internal register
access in a pipe lined cycle, it will make use of the
advance address and bus cycle information. In all
cases, Address Pipelining will result in a savings of
one wait state.

2.3.2 MASTER MODE BUS TIMING

When the 82380 is in the Master Mode, it will be in
one of six bus states. Figure 2-5 shows the complete
bus state diagram of the Master Mode, including
pipelined address states. As seen in the figure, the
82380 state diagram is very similar to that of the
80386. The major difference is that in the 82380,
there is no Hold state. Also, in the 82380, the condi­
tions for some state transitions depend upon wheth­
er it is the end of a DMA process'.

NOTE:
'The term 'end of a DMA process' is loosely de­
fined here. It depends on the DMA modes of oper­
ation as well as the state of the EOP # and DREQ
inputs. This is explained in detail in section 3-DMA
Controller.

4-183

82380

The 82380 will· enter the idle state, Ti, upon RESET
and whenever the internal address is not available at
the end of a DMA cycle or at the end of a DMA
process. When address pipelining is not used (NA #
is not asserted), a new bus cycle always begins with
state T1. During T1, address and bus cycle definition
signals will be driven on the bus. T1 is always fol­
lowed by T2.

If a bus cycle is not acknowledged (with READY#)
during T2 and NA # is negated, T2 will be repeated.
When the end of the bus cycle is acknowledged dur­
ing T2, the following state will be T1 of the next bus
cycle (if the internal address latch is loaded and if
this is not the end of the DMA process). Otherwise,
the Ti state will be entered. Therefore, if the memory
or peripheral accessed is fast enough to respond
within the first T2, the fastest non-pipe lined cycle will
take one T1 and one T2 state.

Use of the address pipelining feature allows the
82380 to enter three additional bus states: T1 P,
T2P, and T2i. T1 P is the first bus state of a pipelined
bus cycle. T2P follows T1 P (or T2) if NA # is assert­
ed when sampled. The 82380 will drive the bus with
the address and bus cycle definition signals of the
next cycle during T2P. From the state diagram, it can
be seen that after an idle state Ti, the first bus cycle
must begin with T1, and is therefore a non-pipe lined
bus cycle. The next bus cycle can be pipelined if
NA # is asserted and the previous bus cycle ended
in a T2P state. Once the 82380 is in a pipelined
cycle and provided that NA # is asserted in subse­
quent cycles, the 82380 will be switching between
T1 P and T2P states. If the end of the current bus
cycle is not acknowledged by the READY # input,
the 82380 will extend the cycle by adding T2P
states. The fastest pipelined cycle will consist of one
T1 P and one T2P state.

NA# Asserted. [Not ADAV+ End of DMAJ

Not ADAV. READY# Negated

290128-12

NOTE:
ADAV-Internal Address Available

Figure 2·5. Master Mode State Diagram

82380

The 82380 will enter state T2i when NA # is assert­
ed and when one of the following two conditions
occurs. The first condition is when the 82380 is in
state T2. T2i will be entered if READY # is not as­
serted and there is no next address available. This
situation is similar to a wait state. The 82380 will stay
in T2i for as long as this condition exists. The sec­
ond condition which will cause the 82380 enter T2i is
when the 82380 is in state T1 P. Before going to

state T2P, the 82380 needs to wait in state T2i until
the next address is available. Also, in both cases, if
the DMA process is complete, the 82380 will enter
the T2i state in order to finish the current DMA cycle.

Figure 2-6 is a timing diagram showing non-pipe lined
bus accesses in the Master Mode. Figure 2-7 shows
the timing of pipe lined accesses in the Master Mode.

Tl T2 T1 T2 T2 T1 T2

CLK2

PHI2

I \ I
X

DATA
(READ) -------(c::J ~------~c::J c:

DATA ----<======J (WRITE) (X"' ________ .--IX'-___ _

NA# XXXXXXXXXXXXXXX
READY# XXXXXXXXXXXXXXX I.XXXXXXXXXY WX\",~_~mxxxxm~¥oKoJj~g.._

I 0 WAIT STATE 1 WAIT STATE 0 WAIT STATE

290128-13

Figure 2-6. Non-Plpellned Bus Cycles

T1p T2p T1p T2p T2p I T1p T2p

CLK2

PHI2

ADS# --I \"' __ ..11 \ I '---
ADDRESS c=: X X AND CONTROL ____ ~."'. ______ J'.~ • ________ _

READY#?' 4>O¢OOOOOOt\ J:I.tI1.XX@Y

DATA c::J c::J C
(READ) ----~

(W~~~~ ::::::1 1 1
290128-14

Figure 2-7. Plpellned Bus Cycles

4-185

82380

2.3.3 SLAVE MODE BUS TIMING

Figure 2-8 shows the Slave. Mode bus timing in both
pipelined and non-pipelined cycles when the 82380
is being accessed. Recall that during Slave Mode,
the 82380 will constantly monitor the ADS;II and
READY;II signals to determine if the next cycle is
pipelined. In Figure 2-8, the first cycle is non-pipe­
lined and the second cycle is pipelined. In the pipe­
lined cycle, the 82380 will start decoding the ad-

NON-PIPELINED
CYCLE

CLK2

PHI2

dress and bus cycle signals one bus state earlier
than in a non-pipelined cycle.

The READY;II input signal is sampled by the 80386
host processor to determine the completion of a bus
cycle. This occurs during the end of every T2 and
T2P state. Normally, the output of the 82380 Wait
State Generator, READYO;ll, is directly connected
to the READY;II input of the 80386 host processor
and the 82380. In such case, READYO;ll and
READY;IIwill be identical (see Wait State Genera­
tor).

PIPELINED
CYCLE

1.(2-31) ~jCI;x?:V----t-----t,,.---i ?---I----+,,.--~ ?------I
8E(0-3)# "

M/IOH Wo,j~:uIfoIr'-----+-----+-"----U'--+-"""---1"""'----U-----i
D/C#.W/R#

ADS#

READYO# __ +'

READY#

0(0-31)
(READ)

0(0-15)
(WRITE)

NOTE:

(TWO OR MORE WAIT STATES)

m.

(ONE OR MORE WAIT STATES)

~ ,
,

, ,
, , X . .

NA# Is shown here only for timing reference. It is not sampled by the 82380 during Slave Mode.

,
, .
290128-15

When the 82380 registers are accessed, it will take one or more walt states in pipelined and two or more wait states in
non·pipelined Cycle to complete the internal access. .

Figure 2-8. Slave Read/Write Timing

4-186

82380

3.0 DMA Controller

The 82380 DMA Controller is capable of transferring
data between any combination of memory and/or
110, with any combination (8-, 16-, or 32-bits) of data
path widths. Bus bandwidth is optimized through the
use of an internal temporary register which can dis­
assemble or assemble data to or from either an
aligned or a non-aligned destination or source. Fig-

ure 3-1 is a block diagram of the 82380 DMA Con­
troller.

The 82380 has eight channels of DMA. Each chan­
nel operates independently of the others. Within the
operation of the individual channels, there are many
different modes of data transfer available. Many of
the operating modes can be intermixed to provide a
very versatile DMA controller.

HOLD +-----..,
HLDA

CONTROL/STATUS REGISTERS CHANNEL REGISTERS

I
DREQO
DREQI
DREQ2
DREQ3
DREQ4
DREQS
DREQ6
DREQ7

EDACKO

EDACKI

EOACK2

EOP#

::::::
=:
=:
=:
+-
+-
+--
....-..

• COMMAND REGISTER I BASE CURRENT TEMPORARY
COMMAND REGISTER 1I BYTE COUNT BYTE COUNT REGISTER

MODE REGISTER I BASE CURRENT

MODE REGISTER 1I
REQUESTER REQUESTER

DMA ADDRESS ADDRESS
CHANNEL 0

REQUEST SOFTWARE REQUEST BASE CURRENT ARBITRATION REGISTER TARGET TARGET
LOGIC

MASK REGISTER ADDRESS ADDRESS

STATUS REGISTER CHANNEL 1 (SAME AS CH 0)

BUS SIZE REGISTER CHANNEL 2 (SAME AS CH 0)
CHAINING REGISTER C.HANNEL 3 (SAME AS CH 0)

I "LOWER" GROUP OF CHANNELS

PROCESS
CONTROL

I "UPPER" GROUP OF CHANNELS

CONTROL/STATUS
CHANNEL 4 (SAME AS CH 0)
CHANNEL 5 (SAME AS CH 0)

(SAME AS
CHANNEL 6 (SAME AS CH 0) LOWER GROUP)
CHANNEL 7 (SAME AS CH 0)

290128-16

Figure 3-1. 82380 DMA Controller Block Diagram

4-187

i('
Ij

inter 82380

3.1 Functional· Description

In describing the operation of the 82380's DMA Con­
troller, close attention to terminology is required. Be­
fore entering the discussion of the function of the
82380 DMA Controller, the following explanations of
some of the terminology used herein may be of ben­
efit. First, a few terms for clarification:

DMA PROCESS-A DMA process is the execution
of a programmed DMA task from beginning to end.
E;ach DMA process requires initial programming by
the host 80386 microprocessot.

BUFFER-A contiguous block of data.

BUFFER TRANSFER-The action required by the
DMA to transfer an entire buffer.

DATA TRANSFER-The DMA action in Which a
group of bytes, words, or double words are moved
between devices by the DMA Controller. A data
transfer operation may involve movement of one or
many bytes.

BUS CYCLE-Access by the DMA to a single byte,
word, or double word.

Each DMA channel consists of three major compo­
nents. These components are identified by the con­
tents of programmable registers which define the
memory or 110 devices being serviced by the DMA.
They are the Target, the Requester, and the Byte
Count. They will be defined generically here and in
greater detail in the DMA register definition section.

The Requester is the device which requires service
by the 82380 DMA Controller, and makes the re­
quest for service. All of the control signals which the
DMA monitors or generates for specific channels
are logically related to the Requester. Only the Re­
quester is considered capable of initiating or termi­
nating a DMA process.

The Target is the device with which the Requester
wishes to communicate. As far as the DMA process
is concerned, the Target isa slave which is incapa­
ble of control over the process.

The direction of data transfer can be either from Re­
quester to Target or from Target to Requester; i.e.,
each can be either a source or a destination.

The Requester and Target may each be either 110
or memory. Each has an address associated with it
that can be incremented, decremented, or held con­
stant. The addresses are stored in the Requester
Address Registers and Target Address Registers,

respectively. These registers have two. parts: one
which contains the current address being used in the
DMA process (Current Address Register), and one
which holds the programmed baSe address. (Base
Address Register). The contents of the Base Regis­
ters are never changed by the 82380 DMA Control­
ler. The Current Registers are incremented or decre­
mented according to the progress of the DMA pro­
cess.

The Byte Count is the component of the DMA pro­
cess which dictates the amount of data which must
be transferred. Current and Base Byte Count Regis­
ters.are provided. The Current Byte Count Register
is decremented once for each byte transferred by
the DMA process. When the register is decremented
past zero, the Byte Count is considered 'expired'
and the process is terminated or restarted, depend­
ing on the mode of operation of the channel. The
pOint at which the Byte Count expires is called 'Ter­
minal Count' and several status· Signals are depen­
dent on this event.

Each channel of the .82380 DMA Controller also
contains a 32-bit Temporary Register for use in as­
sembling and disassembling non-aligned data. The
operation of this register is transparent to the user,
although the contents of it may affect the timing of
some DMA handshake sequences. Since there is
data storage available for each channel, the DMA
Controller can be interrupted without loss of data.

The 82380 DMA Controller is a slave on the bus until
a request for DMA service is received via either a
software request command or a hardware request
signal. The host processor may access any of the
control/status or channel registers at any time the
82380 is a bus slave. Figure 3-2 shows the flow of
operations that the DMA Controller performs.

At the time a DMA service request is received, the
DMA Controller issues a bus hold request to the
host processor. The 82380 becomes the bus master
when the host relinquishes the bus by asserting a
hold acknowledge Signal. The channel to be serv­
iced will be the one with the highest priority at the
time the DMA Controller becomes the bus master.
The DMA Controller will remain in control of the bus
until the hold acknowledge signal is removed, or un­
til the current DMA transfer is complete.

While the 82380 DMA Controller has control of the
bus, it will perform the required data transfer(s). The
type of transfer, source and destination addresses,
and amount of data to transfer are programmed in
the control registers of the DMA channel which re­
ceived the request for service.

4-188

inter

290128-17

82380

At completion of the DMA process, the 82380 will
remove the bus hold request. At this time the 82380
becomes a slave again, and the host returns to be­
ing a master. If there· are other DMA channels with
requests pending, the controller will again assert the
hold request signal and restart the bus arbitration
and switching process;

3.2 Interface Signals

Figure 3-2. Flow of DMA Controller Operation

There are fourteen control signals dedicated to the
DMA process. They include eight DMA Channel Re­
quests (DREOn), three Encoded DMA Acknowledge
signals (EDACKn), Processor Hold and Hold Ac­
knowledge (HOLD, HLDA), and End-Of-Process
(EOP#). The DREOn inputs and EDACK(0-2) out­
puts are handshake signals to the devices requiring
DMA service. The HOLD output and HLDA input are
handshake signals to the host processor. Figure 3-3
shows these signals and how they interconnect be­
tween the 82380 DMA Controller, and the Requester
andTarget devices.

END or PROCESS

DREOn

TO HOST {HOLD 82380 t--...... fi5.:-r.=~-----......
PROCESSOR Dt.CA CONTROLLER I-r_~~ DACKn

HLDA L __ -r..JToiiCK~

Figure 3-3. Requester, Target, and DMA Controller Interconnection
(2-Cycle Configuration)

4-189

290128-18

82380

3.2.1 DREQn and EDACK(O-2).

These signals are the handshake signals between
the peripheral and the 82380. When the peripheral
requires DMA service,· it asserts the DREQn signal
of the channel which is programmed to perform. the
service. The 82380 arbitrates. the DREQn against
other pending requests and begins the DMA pro­
cess after finishing other higher priority. processes.

When the DMA service for the requested channel is
in progress, the EDACK(0-2) signllisrepresentthe
DMA channel which is accessing the· Requester.
The 3-bit code on the EDACK(0-2) lines indicates
the number of the channel presently being serviced.
Table 3~2 shows the encoding of these signals. Note
that Channel4'does not have a corresponding hard­
ware acknowledge.

The DMA acknowledge (EOACK)' signals indicate
the active .channel only during 'DMA accesses to the
Requester. During accesses to the Target,
EDACK(0-2) has the idle code (100). EDACK(0:"2)
can thus be used to select a Requester device dur­
ing a transfer.

Table 3-2. EDACK Encoding During
a DMA Transfer

EDACK2 EDACK1 EDACKO Active Channel

0 0- 0 0
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 Target Access
1 0 1 5 _

...

1 1 0 6
1 1 1 7

DREQn can be programmed as either an Asynchro­
nous or Synchronous input. See section 3.4.1 for de­
tails on synchronous versus asynchronous operation
of this pin. ' '.

The EDACKn signals are always active. They either
indicate 'no acknowledge' or they indicate a bus ac­
cess to the requester. The acknowledge code is ei­
ther 100, for an idle DMA or during a DMA access to
the Target, or 'n' during a Requester access, where
n is the binary value representing the channel. A
simple 3-line to 8-line decoder can be used to pro­
vide discrete acknowledge signals for the peripher­
als.

3.2.2 HOLD and HLDA

The Hold Request (HOLD) and Hold Acknowledge
(HLDA) signals are the handshake signals between

· the DMA Controller and the host processor.-HOLD is .
an output from the 82380a'1d HLOA is' an input.
HOLD is asserted by the DMAController when there
is a pending DMA request, thus requesting thEi proc­
essor to give up control of·the bus so the DMA pro­
cess can. take place. The 80386 responds by assert­
ing HLDA when it is ready to relinquish control of the
bus.

The 82380 will begin operations on the bus one
clock cycle after the HLDA signal goes active. For
this reason, other devices on the bus should be in
the slave mode when HLDA is active.

HOLD and HLDA should notbe used to gate or se­
lect peripherals requestingDMA serVice. This is be­
cause of the use of DMA-/ike operations by the
DRAM Refresh Controller. The Refresh Controller is
arbitrated with the DMA Controller for control of the
bus, and refresh cycles have the highest priority. A
refresh cycle will take place between DMA cycles
without relinquishing bus control. See section 3.4.3
for a more detailed discussion of the interaction be­
tween the DMA Controller and the DRAM Refresh
Controller. .

3.2.3 EOP;II

EOP;II is a bi.:(jirectional signal used to indicate the
end ofa DMA process. The 82380 activates this as
an output during the T2 states of the last Requester
bus cycle for whiCh a channel is programmed to exe­
cute. The Requester should respond by either with­
drawing its DMA request, or interrupting the host
processor to indicate that the channel needs to be
programmed with a new buffer. As an input, this sig-

- . nal. is used to tell the DMAController that the periph­
eral being serviced .does not require any more data
to be transferred. This indicates that the current
bl.\ffer is to be terminated.

· EOP;II can be programmed as either an Asynchro­
nous or a Synchronous input.: See section 3.4.1 for

· details on synchronous versus asynchronous opera­
tiori of this pin.

3.3 Modes of Operation

The 82380 DMA Controller has many independent
operating functions. When designing peripheral in­
terfaces for the 82380 DMA Controller, all of the
functions or modes must be considered. All of the
channels are independent of each other (except in
priority of operation) and can operate in any of the
modes. Many of the operating modes, though inde­
pendently programmable, affect the operation of
'other modes. Because of the large number of com-

4-190

inter 82380

binations possible, each programmable mode is dis­
cussed here with its affects on the operation of other
modes. The entire list of possible combinations will
not be presented.

Table 3-1 shows the categories of DMA features
available in the 82380. Each of the five major cate­
gories is independent of the others. The sub-catego­
ries are the available modes within the major func­
tion or mode category. The following sections
explain each mode or function and its relation to oth­
erfeatures.

Table 3-1. DMA Operating Modes

I. Target/Requester Definition

a. Data Transfer Direction

b. Device Type

c. Increment/Decrement/Hold

II. Buffer Processes

a. Single Buffer Process

b. Buffer Auto-Initialize Process

c. Buffer Chaining Process

III. Data Transfer/Handshake Modes
a .. Single Transfer Mode

b. Demand Transfer Mode

c. Block Transfer Mode

d. Cascade Mode

IV. Priority Arbitration

a. Fixed

b. Rotating

c. Programmable Fixed

V.Bus Operation
a. Fly-By (Single-Cycle)/Two-Cycle

b .. Data Path Width

c. Read, Write, or Verify Cycles

3.3.1 TARGET/REQUESTER DEFINITION

All DMA transfers involve three devices: the DMA
Controller, the Requester, and the Target. Since the
devices to be accessed by the DMA Controller vary
widely, . the operating characteristics of the DMA
Controller must be tailored to the Requester and
Target devices.

The Requester can be defined as either the source
or the destination of the data to be transferred. This
is done by specifying a Write or a Read transfer,
respectively. In a Read transfer, the Target is the
data source and the Requester is the destination for

the data. In a Write transfer, the Requester is the
source and the Target in the destination.

The Requester and Target addresses can each be
independently programmed to be incremented, dec­
remented, or held constant. As an example, the
82380 is capable of reversing a string or data by
having a Requester address increment and the Tar­
get address decrement in a memory-to-memory
transfer.

3.3.2 BUFFER TRANSFER PROCESSES

The 82380 DMA Controller allows three programma­
ble Buffer Transfer Processes. These processes de­
fine the logical way in which a buffer of data is ac­
cessed by the DMA.

The three Buffer Transfer Processes include the Sin­
gle Buffer Process, the Buffer Auto-Initialize Pro~
cess, and the Buffer Chaining Process. These pro­
cesses require special programming considerations.
See the DMA Programming section for more details
on setting up the Buffer Transfer Processes.

Single Buffer Process

The Single Buffer Process allows the DMA channel
to transfer. only one. buffer of data. When the buffer
has been completely transferred (Current Byte
Count decremented' past zero or EOP # input ac­
tive), the' DMA process ends and the channel be­
comes idle. In order' for that channel to be used
again, it must be reprogrammed.

The single Buffer Process is usually used when the
amount of data to betransferred is known exactly,
and it is also known that there is not likely to be any
data to follow before the operating system can
reprogram the channel.

Buffer Auto-Initialize Procesfjl

The Buffer Auto-.lnitialize Process allows multiple
groups of data to be transferred to or from a single
buffer. This process does not require reprogram­
ming. The Current Registers are automatically repro­
grammed from the Base Registers when the current
process is terminated, either by an expired Byte
Count or by an external EOP# signal. The data
transferred will always be between the same Target
and Requester. .

The auto-initialization/process-execution cycle is re­
peated, with a HOLD/HLDA re-arbitration, until the
channel is either disabled or re-programmed.

w~r ' •• ".-e-" 82380

Buffer Chaining Process
The Buffer Chaining Process. is useful for transfer­
ring large quantities of data into non-contiguous
buffer areas. In this process, a single channel'is
used· to process data from several buffers, while
having to program the channel only once. Each new
buffer is programmed in apipelined operation that
provides tnenew buffer information while the old
buffer is being processed. The chain is created by
loading new buffer information while the 82380 DMA .
Controller is processing the Current Buffer. When
the Current Buffer expires, the 82380 DMA Control­
ler automatically restarts the channel.using the new
buffer information.

Loading the new buffer information is done by an
interrupt routine which is requested by the 82380.
Interrupt Request 1 (IRa1) is tied intemally to the
82380 DMA Controller for this purpose. IRa1 is gen­
erated hythe 82380 when the new buffer informa­
tion isibaded into the channel's Current Registers,
leaving)heBase Registers 'empty'. The interrupt
service routine ioads new. buffer information into the
Base Registers. The host processor is required to
load the information for another buffer before the
current Byte Count expires. The .. process repeats un­
til the host programs the channel back to single buff­
er operation, or until the .channel runs out of buffers.

The channel runs out of buffers when the Current
Buffer expires and the Base !=Iegisters have not yet
been loaded with new buffer information. When this
occurs, the channel must be . reprogrammed.

If an extemal EOP # is encountered while executing
a.Buffer Chaining Process, the current buffer is con­
sidered expired alJ~ the new buffer information. is
loaded iritothe Current Registers. If the Base Regis~
ters are 'en;.pty', the- ehain is terminated.

The channel uses the Base Target Address Register
as an indicator of whether or not the Base Registers
are full. When.the most significant byte of the Base
Target Register is loaded, the channel considers all
of ~ Sase Regist,rs loaded, and removes the in­
terrupt request.. ThiS requires ~a~ the other Base
Registers (Base Requester Address, Last Byte
Count) must ~ loaded before the Base T,arget Ad­
dress Register. The. reason for implementing the ra-

loading process this way is that,for mostapplica­
tlons, the Byte Count and the Requester will not
change from one buffer to the next, and therefore do
not need to be reprogrammed. The details of pro­
gramming the channel for the Buffer Chaining Pro­
cess can be found in the section of· DMA program­
ming.

. 3.3.3 DATA TRANSFER MODES.

Three'Oata Transfer modes are aVailable in the
82380 DMA Controller. They are the Single Transfer,
Block Transfer, and Demand Transfer Modes.
These transfer modes can be used in' conjunction
with anyone of three Buffer Transfer mQ(ies: Single
Buffer, Auto-Initialized Buffer, and Buffer Chaining.
Any Data Transfer Modes can be used under any of
the Buffer Transfer Modes. These modes are inde­
pendently available for all DMA channels.

Different devices being serviced by the DMA Con­
troUer require different handshaking sequences for
data transfers to take place. Three handshaking

, modes are available on the 8238,0, giving the de­
signer the opportunity to use the DMA Controller as
efficiently as possible. Ihe speed at which data can
be presented or read by a de\li~e can affect the way
a DMA controUeruses the host's bus, thereby affect­
ing not only data throughput during the DMA pro­
cess, but also affecting the host's performance by
limiting its access to the bus.

Single Transfer Mode
In the Single Transfer Mode, one data'transfer to or
from the Requester is performed by the DMA Con­
troller at a time. The DREan input is arbitrated. an~
the HOLD/HLDA sequence is executed. for each
transfer. Transfers continue in thisrnanner until'the
Byte Count expires, or until EOP flis sampled active.
If the DREan input is held a~tive c,ontinuously, the
entire DREQ-HOLD-HLDA-DACK sequence is· re­
peated over and over until the programmed number
of bytes has been 'transferred. Bus eontroFisre­
leased to the host between each transfer. Figl,Jre 3-4
shows the logical flow of events which' make up a
buffer transfer using the Single Transfer Mode:Re­
fer to section 3.4 'for an explanation' of the bus con-
trol arbittation prOCedure.. .' . . .

4-192

intJ

INITIALIZE BUFFER

END OF BUttER
290128-19

Figure 3-4. Buffer Transfer In
Single Transfer Mode

Tx Tx

CLK2

eLK

DREQn

HOLD --+---of'

82380

n

The Single Transfer Mode is used for devices which
require complete handshake cycles with each data
access. Data is transferred to or from the Requester
only when the Requester is ready to perform the
transfer. Each transfer requires the entire DREQ­
HOLD-HLDA-DACK handshake cycle. Figure 3-5
shows the timing of the Single Transfer Mode cy­
cles.

Block Transfer Mode

In the Block Transfer Mode, the DMA process is ini­
tiated by a DMA request and continues until the Byte
count expires, or until EOP# is activated by the Re­
quester. The DREQn signal need only be held active
until the first Requester access. Only a refresh cycle
will interrupt the block transfer process.

Figure 3-6 illustrates the operation of the DMA dur­
ing the Block Transfer Mode. Figure 3,7 shows the
timing of the handshake signals during Block Mode
Transfers.

n T1 T2 Ti

HLDA

A(2-31) ;iiXg~~~~~iiXg~~~;--+---i:==::I:==~ BE(0-3)# J:J --------
1.1/10#,

EDACK(0-2) --+---+-~~-+---~--~~--n~--~~-1~0~0~-

290128-20

Figure 3-5. DMA Single Transfer Mode

4-193

I"
I'

I

CL~2

CLK

DREQn

END OF BUFFER
290128-21

Figure 3-6. Buffer Transfer In
Block Transfer Mode

HOLD __ -1-_-+.1

HLOA ---+---I---!-.1

82380

Demand Transfer Mode.

The Demand Transfer Mode provides the most flex­
ible handshaking procedures during the DMA pro­
cess. A Demand Transfer is initiated' by a DMA re­
quest. The process con.tinues until the Byte Count
expires, or an external EOP# is encountered. If the
device being serviced (Requester) desires, it can in­
terrupt the DMA process by de-lictivating the
DREan' line .. Action is taken on the condition of
DREan during Requester accesses only. The ac­
cess during which DREan is sampled inactive is the
last Requester access which will be performed dur­
ing the current transfer. Figure 3-8 shows the flow of
.events during the transfer of Ii buffer in the Demand
Mode.

290128-22

Figure 3-7. Block Mode Transfers

4-194

inter 82380

INITIALIZE BUFFER

END OF BUF"F"ER
290128-23

Figure 3·8. Buffer Transfer In
Demand Transfer Mode

When the DREQn line goes inactive, the DMA con·
troller will complete the current transfer, including
any necessary accesses to the Target, and relin·
quish control of the bus to the host. The current pro·
cess information is saved (byte count, Requester
and Target addresses, and Temporary Register).

Tx Tx Tx TI TI T1

CLK2

CLK

OREOn

OREOn

HOLD

HLOA

AOS#

REAOY#

A(2-31)
8E(0-3)

M/IO#

EOP#

T2

The Requester can restart the transfer process by
reasserting DREQn. The 82380 will arbitrate the reo
quest with other pending requests and begin the
process where it left off. Figure 3-9 shows the timing
of handshake signals during Demand Transfer Mode
operation.

Using the Demand Transfer Mode allows peripherals
to access memory in small, irregular bursts without
wasting bus control time. The 82380 is designed to
give the best possible bus control latency in the De·
mand Transfer Mode. Bus control latency is defined
here as the time from the last active bus cycle of the
previous bus master to the first active bus cycle of
the new bus master. The 82380 DMA Controller will
perform its first bus access cycle two bus states af·
ter HLDA goes active. In the typical configuration,
bus control is returned to the host one bus state
after the DREQn goes inactive.

There are two cases where there may be more than
one bus state of bus control latency at the end of a
transfer. The first is at the end of an Auto-Initialize
process, and the second is at the end of a process
where the source is the Requester and Two-Cycle
transfers are used.

When a Buffer Auto·lnitialize Process is complete,
the 82380 requires seven bus states to reload the

T1 T2 T1 T2 TI Tx Tx

290128-24

Figure 3·9. Demand Mode Transfers

4-195

I

1

I'
I;.:
I~
i

82380

Current Registers from the Base Registers of the
Auto-Initialized channel. The reloading is done while
the 82380 is still the bus master so that it is prepared
to service the channel immediately after relinquish­
ing the bus, if necessary.

In the case where the Requester is the source, and
Two-Cycle transfers are being used, there are two
extra idle states at the end of the transfer process.
This occurs due to housekeeping in the DMA's inter­
nal pipeline. These two idle states are present only
after the very last Requester access, before the
DMA Controller de-activates the HOLD signal.

3.3.4 CHANNEL PRIORITY ARBITRATION

DMA channel priority can be programmed into one
of· two arbitration· methods: Fixed or. Rotating. The
four lower DMA channels and the four upper DMA
channels operate as if they were two separate DMA
controllers operating in cascade. The lower group of
four channels (0-3) is always prioritized between
channels 7 and 4 of the llPper group of chanllels (4-
7). Figure 3-10 shows a pictorial represe'ntation of
the priority grouping.

The priority can thus be set up as rotating for one
group of channels and fixed for the other, or any
other combination. While in Fixed Priority, the pro­
grammer can also specify which channel has the
lowest priority.

I
CHANNEL 7
CHANNEL 6 I CHANNEL 5
CHANNEL 4

CHANNEL 3

PHANTOM I--
CHANNEL 2

f
CHANNEL 1
CHANNEL 0

1
290128-25

Figure 3·10. DMA Priority Grouping

The 82380 DMA Controller defaults to Fixed Priority.
Channel 0 has the highest priority, then 1, 2, 3, 4, 5,
6, 7. Channel 7 has the lowest priority. Any time the
DMA Controller arbitrates DMA requests, the· re­
questing channel with the highest priority will be
serviced next.

Fixed Priority can be entered into at any time by a
software command. The priority levels in effect

after the mode switch are determined by the current
setting of the Programmable Priority.

Programmable Priority is available for fixing the prior­
ity of the DMA channels within a group to levels oth­
er than the default. Through a software command,
the channel to have the lowest priority in a group
can be specified. Each of the two groups of four
channels can have the priority fixed in this way. The
other channels in the group will follow the natural
Fixed Priority sequence. This mode affects only the
priority levels while operating with Fixed Priority.

For example, if channel 2 is programmed to have the
lowest priority in its group, channel 3 has the highest
priority. In descending order, the other channels
would have the following priority: (3, 0, 1, 2), 4, 5, 6,
7 (channel 2 lowest, channel 3 highest). If the upper
group were programmed to have channel 5 as the
lowest· priority channel, the priority would be (again,
highest to lowest): 6, 7, (3, 0, 1, 2), 4, 5 .. Figure 3-11
shows this example pictorially. The lower group is
always prioritized as a fifth channel of the upper
group (between channels 4 and 7).

CHANNEL 6
CHANNEL 7
PHANTOM --

CHANNEL 4
CHANNEL 5

CHANNEL 3

CHANNEL 0
CHANNEL 1
CHANNEL 2

High Priority

Low Priority

290128-26

Figure 3·11. Example of Programmed Priority

The DMA Controller will only accept Programmable
Priority commands while the addressed group is op­
erating in Fixed Priority. Switching from Fixed to Ro­
tating Priority preserves the current priority le\(els.
Switching from Rotating to Fixed Priority returns the
priority levels to those which were last programmed
by use of Programmable Priority.

Rotating Priority allows the devices using DMA to
share the system bus more evenly. An individual
channel does not retain highest priority after being
serviced, priority is passed to the next highest priori­
ty channel in the group. The channel which was
most recently serviced inherits the lowest priority.
This rotation occurs each time a channel is serviced.
Figure 3-12 shows the sequence of events as priori­
ty is passed between channels. Note that the lower
group rotates within the upper group, and that serv­
icing a channel within the lower group causes rota­
tion within the group as well as rotation of the upper
group.

4-196

82380

10 I 2 3 4 5 6 7 I -default (highest to lowest)

DREQ2 and DREQ6-process channel 2

141516 7 3 0 2 I -channel 2 drops to lowest priority within group.
'----"--'---'----' Lower group drops to lowest priority within upper group.

2(Double Rotation)

DREQ6 (still) and DREQ7-process channel 6

[2] 1 3 I 0 11 I 2 I 1 4 I 5 I 6 I -channel 6 drops to lowest priority within group

DREQ7 (still) and DREQD-process channel 7

I 3 I 0 I 1 I 2 I 1 4 I 5 I 6 I 7 I -channel 7 drops to lowest priority within group

DREQO (still) and DREQ1-process channel 0

14 I 5 I 6 I 7 I 11 I 2 ! 3 I 0 I -channel 0 drops to lowest priority within group (Double Rotation)

DREQ1 (still)-process channel 1

I 2 I 3 I 0 I I -channel 1 drops to lowest priority within group

Figure 3-12. Rotating Channel Priority. Lower and Upper
groups are programmed for the Rotating Priority Mode.

4-197

82380

3.3.5 COMBINING PRIORITY MODES

Since the DMA Controller operates as two four­
channel controllers in cascade, the overall priority
scheme of all eight channels can take on a variety of
forms. There are four possible combinations of prior-

High Low

I 0 I 2 3 4 5 6

High Low

I 4 I 5 6 7 0 2

High Low

CD 0 2 3 4 5

High

4 I 5 6 7 0 2

CASE 1 0-3 Fixed Priority, 4-7 Rotating Priority

High

I 0 I 2 3 4 5 6

High

I 3 I 0 2 4 5 6

High

I 3 I 0 2 4 5 6

High

I 2 I 3 0 4 5 6

CASE 2 0-3 Rotating Priority, 4-7 Fixed Priority

ity modes. between th~ two groups of channels:
Fixed Priority only (default), Fixed Priority upper
group/Rotating Priority lower group, Rotating Priority
upper group/Fixed Priority lower gtoup, and Rotating
Priority only. Figure 3-13 illustrates the operation of
the two combined priority methods.

7 -Default priority.

3 After servicing channel 2

6 -After servicing channel 6

Low

3 -After servicing channel 1

Low

7 Default priority

Low

7 After servicing channel 2

Low

7 After servicing channel 6

Low

7 After servicing channel 1

Figure 3-13. Combining Priority Modes

4·198

inter 82380

3.3.6 BUS OPERATION

Data may be transferred by the DMA Controller us­
ing two different bus cycle operations: Fly-By (one­
cycle) and Two-Cycle. These bus handshake meth­
ods are selectable independently for each channel
through a command register. Device data path
widths are independently programmable for both
Target and Requester. Also selectable through soft­
ware is the direction of data transfer. All of these
parameters affect the operation of the 82380 on a
bus-cycle by bus-cycle basis.

3.3.6.1 Fly-By Transfers

The Fly-By Transfer Mode is the fastest and most
efficient way to use the 82380 DMA Controller to
transfer data. In this method of transfer, the data is
written to the destination device at the same time it
is read from the source. Only one bus cycle is used
to accomplish the transfer.

In the Fly-By Mode, the DMA acknowledge signal is
used to select the Requester. The DMA Controller
simultaneously places the address of the Target on
the address bus. The state of M/IO# and W/R#
during the Fly-By transfer cycle indicate the type of
Target and whether the target is being written to or
read from. The Target's Bus Size is used as an in­
crementer for the Byte Count. The Requester ad­
dress registers are ignored during Fly-By transfers.

Note that memory-to"memory transfers cannot be
done using the Fly-By Mode. Only one memory or
I/O address is generated by the DMA Controller at a
time during Fly-By transfers. Only one of the devices
being accessed· can be selected by an address.
Also, the Fly-By method of data transfer limits the
hardware to accesses of devices with the same data
bus width. The Temporary Registers are not affect­
ed in the Fly-By Mode.

Fly-By transfers also require that the data paths of
the Target and Requester be directly connected.
This requires that successive Fly-By accesses be to
doubleword boundaries, or that the Requester be
capable of switching its connections to the data bus.

3.3.6.2 Two-Cycle Transfers

Two-Cycle transfers can also be performed by the
82380 DMA Controller. These transfers require at
least two bus cycles to execute. The data being
transferred is read into the DMA Controller'S Tempo­
rary Register during the first bus cycle(s). The sec­
ond bus cycle is used to write the data from the
Temporary Register to the destination.

If the addresses of the data being transferred are
not word or doubleword aligned, the 82380 will rec­
ognize the situation and read and write the. data in
groups of bytes, placing them always at the proper
destination. This process of collecting the desired
bytes and putting them together is called 'byte as­
sembly'. The reverse process (reading from aligned
locations .and writing to non-aligned locations) is
called 'byte disassembly'.

The assembly/disassembly process takes place
transparent to the software, but can only be done
while using the Two-Cycle transfer method. The
82380 will always perform the assembly / disassem­
bly process as necessary for the current data trans­
fer. Any data path widths for either the Requester or
Target can be used in the Two-Cycle Mode. This is
very convenient for interfacing existing 8- and . 16-bit
peripherals to the 80386's 32-bit bus.

The 82380 DMA Controller always attempts to fill
the Temporary Register from the source before writ­
ing any data to the destination. If the process is ter­
minated before the Temporary Register is filled (TC
or EOP#), the 82380 will write the partial data to the
destination. If a process is temporarily suspended
(such as when DREQn is de-activated during a de­
mand transfer), the contents of a partially filled Tem­
porary Register will be stored within the 82380 until
the process is restarted.

For example, if the source is specified as an 8-bit
device and the destination as a 32-bit device, there
will be four reads as necessary from the a-bit source
to fill the Temporary Register. Then the 82380 will
write the 32-bit contents to the destination. This cy­
cle will repeat until the process is terminated or sus­
pended.

Note that for a Single-Cycle transfer mode of opera­
tion (see section 3.3.3), the internal circuitry ·of the
DMA Controller actually executes single transfers by
removing the DREQ from the internal arbitration.
Thus single transfers from an 8-bit requester to .a 32-
bit target will consist of four complete and indepen­
dent 8-bit requester cycles, between which bus con­
trol is released and re-requested. Finally, the 32-bit
data will be transferred to the target device from the
temporary register before the fifth requester cycle.

With Two~Cycle transfers, the devices that the
82380 accesses can reside at any address within
I/O or memory space. The device must be able to
decode the byte-enables (BEn#). Also, if the device
cannot accept data in byte quantities, the program­
mer must take care not to allow the DMA Controller
to access the device on any address other than the
device boundary.

4-199

inter 82380

3.3.6.3 Data Path Width and Data Transfer Rate
Considerations

. The number of bus cycles used to transfer a single
'word' of data is affected by whether the Two-Cycle
or the Fly-By (Single-Cycle) transfer method is used.

The number of bus cycles used to transfer data di­
rectly affects the data transfer rate. Inefficient use of
bus cycles will decrease the effective data transfer
rate that can be obtained. Generally, the data trans­
fer rate is halved by using Two-Cycle transfers in­
stead of Fly-By transfers.

The choice of data path widths of both Target and
Requester affects the data transfer ra~e also. During
each bus cycle, the largest pieces of data possible
should be transferred.

The data path width of the devices to be accessed
must be programmed into the DMA controller. The
82380 defaults after reset to 8-bit-to-8-bit data trans­
fers, but the Target and Requester can have differ­
ent data path widths, independent of each other and
independent of the other channels. Since this is a
software programmable function, more discussion of
the uses of this feature are found in the section on
programming.

3.3.6.4 Read, Write, and Verify Cycles

Three different bus cycle types may be used in a
data transfer. They are the Read, Write, and Verify
cycles. These cycle types dictate the way in which
the 82380 operates on the data to. be transferred.

A Read CyCle transfers data from the Target to the
Requester. A Write Cycle transfers data from the
Requester to the target. In a Fly-By transfer, the ad­
dress and bus status signals indicate the access
(read or write) to the Target; the access to the Re­
quester is assumed to be the opposite.

The Verify Cycle is used to perform a data read only.
No write access is indicated or assumed in a Verify
Cycle. The Verify Cycle is useful tor validating block
fill operations. An external comparator must be pro­
vided to do any comparisons on the data read.

3.4 Bus Arbitration and Handshaking

Figure 3-14 . shows the flow of events in the DMA
request arbitration process. The arbitration se-

quence starts when the Requester asserts a OREQn
(or DMA service is requested by software). Figure
3-15 shows the timing of the sequence of events
following a DMA request. This sequence is executed
for each channel that is activated. The DREQn sig­
nal can be replaced by a software DMA channel re­
quest with no change in the sequence.

82380 ASSERTS HOLD REQl)EST

80386 ASSERTS HOLD ACKNOWLEDGE

82380. ARBITRATES PENDING REQUESTS

290128-27

Figure 3-14. Bus Arbitration and DMA Sequence

After the Requester asserts the service request, the
82380 will request control of the bus via the HOLD
signal. The 82380 will always assert the HOLD sig~
nal one bus state after the service request is assert­
ed. The 80386 responds by asserting the HLDA sig­
nal, thiJs releasing control of the bus to the 82380
DMA Controller.

Priority of pending DMA service requests is arbitrat­
ed during the first state after HLDA is asserted by
the 80386. The next state will be the beginning of
the first transfer access of the highest priority pro­
cess.

4-200

intJ 82380

When the 82380· DMA Controller is finished with its
current bus activity, it returns control of the bus to
the host processor. This is done by driving the
HOLD signal inactive. The 82380 does not drive any
address or data bus signals after HOLD goes low. It
enters the Slave Mode until another DMA process is
requested. The processor acknowledges that it has
regained control of the bus by forcing the HLDA sig­
nal inactive. Note that the 82380's DMA Controller
will not re-request control of the bus until the entire
HOLD/HLDA handshake sequence is complete.

The 82380 DMA Controller will terminate a current
DMA process for one of three reasons: expired byte
count, end-of-process command (EOP# activated)
from a peripheral, or de-activated DMA request sig­
nal. In each case, the controller will de-assert HOLD
immediately after completing the data transfer in
progress. These three methods of process termina­
tion are illustrated in Figures 3-16, 3-19, and 3-18,
respectively.

Tx Tx

CLK2

CLK

DREOn

HOLD

HLDA

A(2-31)
8E(0-3)#

M/IO#

EDACK(0-2) 100

ADS#

READY#

NOTE:

TI

An expired byte count indicates that the current pro­
cess is complete as programmed and the channel
has no further transfers to process. The channel
must be restarted according to the currently pro­
grammed Buffer Transfer Mode, or reprogrammed
completely, including a new Buffer Transfer Mode.

If the peripheral activates the EOP# signal, it is indi­
cating that it will not accept or deliver any more data
for the current buffer. The 82380 DMA Controller
considers this as a completion of the channel's cur­
rent process and interprets the condition the same
way as if the byte count expired.

The action taken by the 82380 DMA Controller in
response to a de-activated DREOn signal depends
on the Data Transfer Mode of the channel. In the
Demand Mode, data transfers will take place as long
as the DREOn is active and the byte count has not
expired. In the Block Mode, the controller will com­
plete the entire block transfer without relinquishing

TI T1 T2 T1

n

290126-26

Channel priority resolution takes place during the bus state before HLDA is asserted, allowing the DMA Controller to
respond to HLDA without extra idle bus states.

Figure 3-15. Beginning of a DMA process

4-201

,,,I

i.

or

82380

the bus, even if DREOn goes inactive before the
transfer is complete. In the Single Mode, the control"
ler will execute single data transfers, relinquishing
the bus between each transfer, as long as DREQn is
active.

Normal termination of a DMA process due to expira­
tion of the byte count (Terminal Count-TC) is shown

Single
Buffer Process: or Chaining-

Base Empty

Event

Terminal Count True X
EOP# Input X 0

Results

Current Registers - -
Channel Mask Set Set
EOP# Output 0 X
Terminal Count Status Set Set

. Software Request CLR CLR

in Figure 3-16. The condition of DREQn is ignored
until after the process is terminated. If the channel is
programmed to auto-initialize, HOLD will be held ac­
tive for an additional seven clock cycles while the
auto-initialization takes place.

Table 3-3 showstheDMA channel activity due to
EOP# or Byte Count expiring (Terminal Count).

Auto- Chalnlng-
Initialize Base Loaded

True X True X
X 0 X 0

Load Load Load Load
- - - -
0 X 1 X

Set Set - -
CLR CLR - -

Table 3-3. DMA Channel Activity Due to Terminal Count or External EOP#

T2 T1 T2 n Tx Tx Tx

ClK2.

ClK

DREQn _____ ..."XXg*'MIWx~X~x~X~*_X¥OX¥OX~X~x~XgXXgXQj"~ ________ _
HOLD

HLDA

. ADS# =-..J
EOP#

READY# xg>DOOOOCKX

\~---------------
11 I . \

- BYTE COUNT~. "::EX"::=P::::IR:O::ES::-''::(T~C)~-~--

_--~~~ .. ~~----~-----
~z-I

~**xx**xxxxxxx*xxxx
290128-29

Figure 3-16. Termination of a DMA Process Due to Expiration of Current Byte Count

4-202

82380

The 82380 always relinquishes control of the bus
between channel services. This allows the hardware
designer the flexibility to externally arbitrate bus hold
requests, if desired. If another DMA request is pend­
ing when a higher priority channel service is com­
pleted, the 82380 will relinquish the bus until the
hold acknowledge is inactive. One ,bus state after
the HLDA signal goes inactive, the 82380 will assert
HOLD again, This. is illustrated in Figure 3-17.

3.4.1 SYNCHRONOUS AND ASYNCHRONOUS
SAMPLING OF DREQn AND EOP#

As an indicator that a DMA service is to be started,
DREQn is always sampled asynchronously. It is
sampled at the beginning of a bus state and acted
upon 'at the end of the state. Figure 3-15 illustrates
the start of a DMA process due to a DREQn input.

The DREQn and EOP# inputs can be programmed
to be sampled either synchronously or asynchro­
nously to signal the end of a transfer.

The synchronous mode affords the Requester one
bus state of extra time to react to an access. This
means the Requester can terminate a process on
the current access, without losing any data. The
asynchronous mode requires that the input signal be
presented prior to the beginning of the last state of
the Requester access.

CLl<2

The timing relationships of the DREQn and EOP #
Signals to the termination' of a DMA transfer are
shown in Figures 3-18 and 3-19. Figure 3-18 shows
the termination of a DMA transfer due to inactive
DREQn. Figure 3-19 shows the termination of a
DMA process due to an active EOP # input. '

In the Synchronous Mode, DREQn and EOP# are
sampled at the end of the last state of every Re­
quester data transfer cycle. If EOP # is active or
DREQn is inactive at this time, the 82380 recognizes
this access to the Requester as the last transfer. At
this point, the 82380 completes the transfer in prog­
ress, if necessary, and' returns bus control to the
host. '

In the asynchronous mode, the inputs are sampled
at the beginning of every state of a Requester ac­
cess. The 82380 waits until the end 0.1 the .state. to
act on the input.

DREQn and EOP # are sampled at the latest possi­
ble time when the 82380 can determine if another
transfer is required. In the Synchronous Mode,
DREOh and EOP# are sampled on the trailing edge
of the last bus state before another data access cy­
cle begins. The Asynchronous Mode requires that
the signals be valid one clock cycle earlier.

LOWER PRIORITY DREQa . \~.-------------------------------------
HIGHER PRIORITY DREQb zmowWM

HOLD \~ ________ J~I~---------

HLDA ,

-- CHANNEL A----I
\~------:--§sr,-1 .

,. CHANNEL B--
290128-30

Figure 3·17. Switching between Active DMA Channels

·w r
II 1'iP 82380

Figure 3-18. Termination of a DMA Process Due to De·Assertlng DREQn

ClK2

ClK

ADS,

EOP#
(ASYNCHRONOUS)

290128-31

EOP# ~j1mrr-,gm~~~JJ.=~mm~=~mxx (SYNCHRONOUS) QI

::~: --t--1---+-----t-~4 J I
290128-32

Figure 3·19. Termination of a DMA Proc.ess Due to an External EOP#

4·204

inter 82380

While in the Pipeline Mode, if the NA # Signal is sam­
pled active during a transfer, the end of the state
where NA# was sampled active is when the 82380
decides whether to commit to another transfer. The
device must de-assert DREQn or assert EOP # be­
fore NA # is asserted, otherwise the 82380 will com­
mit to another, possibly undesired, transfer.

Synchronous DREQn and EOP # sampling allows
the peripheral to prevent the next transfer from oc­
curring by de-activating DREQn or asserting EOP #
during the current 'Requester access, before the
82380 DMA Controller commits itself to another
transfer. The DMA Controller will not perform the
next transfer if it has not already begun the bus cy­
cle. Asynchronous sampling allows less stringent,
timing requirements than the Synchronous Mode,
but requires that the DREQn signal be valid at the
beginning of the next to last bus state of the current
Requester access.

Using the Asynchronous Mode with zero wait states
can be very difficult. Since the addresses and con­
trol signals are driven by the 82380 near half-way

80386 82380

DREQO
HOLD HOLD

HLDA HLDA
EDACKO ==: EDACKI
EDACK2 ---.

DREQn

through the first bus state of a, transfer, and the
Asynchronous Mode requires that DREQn be active
before the end of the state, the peripheral being ac­
cessed is required to present DREQn only a few
nanoseconds after the control information is avail­
able. This means that the peripheral's control logic
must be extremely fast (practically non-causal). An
alternative is the Synchronous Mode.

3.4.2 ARBITRATION OF CASCADED MASTER
REQUESTS

The Cascade Mode allows another DMA-type de­
vice to share the bus by arbitrating its bus accesses
with the 82380's. Seven of the eight DMA channels
(0-3 and 5-7) can be connected to a cascaded de­
vice. The cascaded device requests, bus control
through the DREQn line of the channel which is pro­
grammed to operate in Cascade Mode. Bus hold ac­
knowledge is signaled to the cascaded device
through the EDACK lines. When the EDACK lines
are active with the code for the requested cascade
channel, the bus is available to the cascaded master
device.

BUS
MASTER 0

HQLD REQUEST

Or---+ HOLD ACKNOWLEDG E

A · · B · ·
C LATCHED · ·

DECODER
n~ HOLD ACKNOWLEDG

BUS
E

MASTER ,n
HOLD REQUEST

290128-33

Figure 3.20. Cascaded Bus Master

4-205

inter 82380

A Cascade cycle begins the same way a regular
DMA· cycle begins. The requesting bus mast~r as­
serts the DREQn line on the 82380. This bus control
request arbitrated as any other DMA request would
be. If any channel receives a DMA request, the
82380 requests control of the. bus. When the host
acknowledges that it has released bus control, the
82380 acknowledges to the requesting master that it
may access the bus. The 82380 enters an idle state
until the new master relinquishes control.

A cascade cycle will be terminated by one of two
eyents: DREQn going inactive, or HLDA going inac­
tive. The normal way to terminate the cascade cycle

OREQn \

EOACK n x

is for the cascaded master to drop the DREQn sig­
nal. Figure 3-21 shows the two cascade cycle termi­
nation sequences.

The Refresh· Controller may interrupt the cascaded
master to perform a refresh cycle. If this occurs, the
82380 DMA Controller will de-assert the EDACK sig­
nal (hold acknowledge to cascaded master) and wait
for the cascaded master to remove its hold request.
When the 82380 regains bus control, it will perform
the refresh cycle in its normal fashion. After the re­
fresh cycle has been completed, and if the cascad­
ed device has re-asserted its request, the 82380 will
return control to the cascaded master which was in­
terrupted.

100

HOLD \~------------------------
HLOA

290128-34 .\""--------
cascade cycle termination by DREQn inactive

HLOA \

EOACK n x 100

OREQn \SS\\\

HOLD \
290128-35

Cascade cycle termination by HLDA inactive

Figure 3-21. Cascade Cycle Termination

4-206

82380

The 82380 assumes that it is the only device moni~
toring the HLDA Signal. If the system designer
wishes to place other devices on the bus as bus
masters, the HLDA from the processor must be in­
tercepted before presenting it to the 82380. Using
the Cascade capability of the 82380 DMA Controller
offers a much better solution.

U.3 ARBITRATION OF REFRESH REQUESTS

The arbitration of refresh requests by the DRAM Re­
fresh Controller is slightly different from normal DMA
channel request arbitration. The 82380 DRAM Re­
fresh Controller always Ilas the highest priority of
any DMA process. It also can interrupt Ii proce$s in
progress. Two types of processes in progress may
be encountered: normal DMA, and bus master cas-
cade. ...

In the event of a refresh request during a normal
DMA process, the DMA Controller will. complete the
data transfer in progress and then execute the re­
fres.h cycle before continuing with the current DMA
process. The priority of ·the interrupted. process is
not lost. If the data transfer cycle interrupted by the
Refresh Controller is the last of a DMAprocess, the
r~freshcycle will always be $xecuted before control
of the bus is transferred back to the host.

When the Refresh Controller requestocc,urs during
a cascade cycle, the RefreSh Controller must be as­
sured that the cascaded master device has relin­
quished control of the bus before ifcan execute the
refresh cycle. To do this, the OMA Controller drops
the EDACK signal to the Cascaded maSti!lr arid waits
for the corresponding DREQniripuf to go inactive.
By dropping the DREQn signal, the cascaded mas­
ter relinquishes the bus. The RefreshConti'olier then
performs the refresh cycle. Control of the bus is re­
tumed to the. cascaded master if DREQn returns to
an'actiye state b~foretheend of the refresh cycle,
otherwise control IS passed to the processor and the
casca,ded ~aster loses its . priority. " , .

3.5 DMA Controller Register Overview

The ,82380 DMA Controller contains 44 registers
which are accessable to the host procesSor. Twen­
ty-four'of the,*,registei'S contain the device ad­
dresSes and data counts for the individual' DMA
channels (three per channel). The remaining regis­
ters ~e. control and status registers for ,initiating and
mOnitoring the operation of the 82380 DMA COntrol­
ler. Table 3-4 lists the DMA Controller's registers
and their accessability. .•

Register Name Access

Control/Status Reglster-One Each Per
Group

Command Register I Write Only
Command Register II Write Only
Mode Register I Write Only
Mode Register II Write Only
Software Request Register , Read/Write
Mask Set-Reset Register Write Only
Mask Read-Write Register . Read/Write
Status Register Read Only
8IJs Size Register . Write Only
Chaining Register Read/Write

Channel:Reglstel's-One Each Pel' Channel

Base Target Address Wnt~bnly
Current Target Address , Read Only
Base Requester Address Write Only
Current Requester Address Read Only
Base Byte Count Write Only

, Current Byte Count Read Only

Table 3·4.,~MA Controller Registers
'.. .' , " ~ >

3.5;1 CONTROLISTATUSREGISTERS '

The following registers are available to the host
processor for programming the 82380 DMA Control­
ler into its various modes and for checking the oper­
ating status of the DMA processes. Each set of four
DMA channels has one oteachof these registers
associated with it., . . . ,

Command Register I

Enables or disables the DMA channels as a group.
Sets the Priority Mode (Fixed or. Rotating) of the
group. This write-only register is cleared by a hard­
ware reset, defaulting to all channels enabled and
Fixed Priority Mode. '

Command Register II

Sets the sampling mode of the DREQn and EOP#
inputs. Also sets the lowest priority channel for the'
group in the Fixed Priority Mode. The,·functions pro­
grammed through Command Register II default after
a hardware reset to: asynchronous DREQn and'
EOP#, and channels 3 and 7 lowest priority.

Mode Register I

Mode Register I is identical in function to the Mode
register of the 8237 A. It programs the following func­
tions for an individually selected channel:

4-207

82380

'Type of Transfer-read.write. verify
A~lnitializ~nabl,e or dfsable ',,'
Target Address Count........jncrement or
decrement
Data ,Tran~fer Mode-<lemand., single. block.
cascade

Mode'Register I functions' default to the following
after reset verify transfer. Auto-Initialize disabled. In­
crement Target address • .Demand Mode.

Mode F;tegister II
~ ," I "

Programs ,the following functions for an individually
selected Channel: .. '

Target Address Hold-enable or disable
Requester Address Count........jncrement or
decrement , ",
Requester Address Hold-eriableor disable
Target Device Type-:I/O or Memory
Requester Device Type-I/O or Memory
Transfer Cycles-Two-Cycle or .FIY-BY

Mode Register II functions are defineq, .as .follows
after a hardware reset: Disable Target Address Hold.
Increment Requester Address. Target (and, Re­
quester) in memory. fly-By Transfer Cyples. Note:.
Requester Device Type ignored in Fly-By Transfers.

Software Request Register

The DMA Controller can respond to service requests
which are initiated by software, Each channel has an
internal request status bit associated· with 'it. The
host processor can write to this register to set or
reset the request bit of a selected channel.

The status of the grouP;s'software'OMA service reo'
quests can be read from this register as well. Each
request bit isclear-ed upon Terri'linal Count or exter-
nal,EOP#; ,

The software DMA requests are non-maskable and
subject to priority arbitration with all other software,
and hardware requests. The entire register is
cleared by a hardware reset.

Mask Registers . .;'

Each channel has, associated with it a mask bit
which Can be,set!reseHo disable/enable that chan~
nel. Two methods are available for setting and clear­
ing the mask bits. The Mask SetlResetRegister. is a
write-only register which allows the .host to select an
individual channel and, either set or resElt ethe mask
bit for that.c.hannel only. The Mask Read/Write Reg­
ister is available for reading the mask bit status arid
for writing mask bits in groups of four.

The mask bits of a group tna~ be cleared in one step
by executing the Clear Mask. Command,· See the
DMA Programming section for details. A hardware
reset sets allot the channel mask bits. disabling all
channels.'

Status Register

The Status register is a read-only register which con~
tains the Terminal Count (TC) and serVice Request
status for a group. Four bits indicate the TCstatus
and four bits indicate the hardware request status
for the four channels in the.group. The,JC bits are
set when the Byte Col,lntexPires. or when an exter"'
nal, eOP #. is aSserted., thesEl' bits are cleared by
reading fro.m theStatv,s Register. The Service fie­
quest' bit . for a channe.1 indiqates when there is a:
hardware DMA request (DREOn) asserted for that
channel. When the request has been removed. the
bit is cleared.

Sus Size Register

This write-only regi$ter is 'L/sed 'to d~fine'the bus size
of the Target ~nd Requester of.a selected channel.
The bus sizes programmed will be .useQ to. dictate
the sizes of the da.~ paths accessed when the QM~
channel is a~iI;e. The valuespri)grammediAto'.this
register affect the operation ofthe TempOrarY"Regis~
tE!r.Any byte-assembly required t~ make the trans­
fers'using the specified data path widths.will be done
in the Te.mporary Register. The Bus, Size register of
the Target is 4seda.s an inc,rement/ decrement. value
for .tIJe Byte Counter and Target Address, when in
the Fly-By Made, Upon reset. all ~hannels default to
a-bit Targets and, .a-I>it Requesters. .,,' ,
. ,

Chaining Register .

A~ a~mmand. ~r ..vr~e •. rElgist~r. 'the Cha,ining ':e~is~
ter !SJJ$~ to,$nable ordisa~le~.theCh8Jning.Mode
fora sel9<?ted chali~f. Chairiirigcahei,het be~is­
abled or enabled for an i'ndivid'ualcharinel. indepen­
dently of the Chaining Mode status of other chan­
nels. After a hardware reset. all channels default to
Chainlngd,isa,blect , .•..

When.read!>y the h.9st. the , Chaining. Regiliter pro-,
vides the.,Sta1Lis9f the .. C~ainjng Interrupt of . each: of
thE! chanli'els: These interrljpt status i;)its are cletired
when the nE!~buffer information Ilasbeen '0~ged:

3.UCHANNEL REGISTERS: .

Each qhannel :has three individually programmable
registers necessary for the, DMA process; they are
the Base Byte Count. Base Target Address. and
Base Requester Address registers. The 24-bit Base

4-20a

inter 82380

Byte Count register contains the number of bytes to
be transferred by the channel. The 32-bit Base Tar­
get Address Register contains the beginning ad­
dress (memory or liD) of the Target device. The 32-
bit Base Requester Address register contains the
base address (memory or liD) of the device which is
to request DMA service.

Three more registers for each DMA channel exist
within the DMA Controller which are directly related
to the registers mentioned above. These registers
contain the current status of the DMA process. They
are the Current Byte Count register, the Current Tar­
get Address, and the Current Requester Address. It
is these registers which are manipulated (increment­
ed, decremented, or held constant) by the 82380
DMA Controller during the DMA process. The Cur­
rent registers are loaded from the Base registers.

The Base registers are loaded when the host proc­
essor writes to the respective channel register ad­
dresses. Depending on the mode in which the chan­
nel is operating, the Current registers are typically
loaded in the same operation. Reading from the
channel register addresses yields the contents of
the corresponding Current register.

To maintain compatibility with software which ac­
cesses an 8237 A, a Byte Pointer Flip-Flop is used to
control access to the upper and lower bytes of some
words of the Channel Registers. These words are
accessed as byte pairs at single port addresses. The
Byte Pointer Flip-Flop acts as a one-bit pointer
which is toggled each time a qualifying Channel
Register byte is accessed. It always points to the
next logical byte to be accessed of a pair of bytes.

The. Channel registers are arranged as pairs of
words, each pair with its own port address. Address­
ing the port with the Byte Pointer Flip-Flop reset ac­
cesses the least significant byte of the pair. The
most significant byte is accessed when the Byte
Pointer is set.

For compatibility with existing 8237A designs, there
is one exception to the above statements about the
Byte Pointer Flip-Flop. The third byte (bits 16-23) of
the Target Address is accessed through its own port
address. The Byte· Pointer Flip-Flop is not affected
by any accesses to this byte.

The upper eight bits of the Byte Count Register are
cleared when the least significant byte of the regis­
ter is loaded. This provides compatibility with soft­
ware which accesses an 8237 A. The 8237 A has
16-bit Byte Count Registers.

3.5.3 TEMPORARY REGISTERS

Each channel has a 32-bit Temporary Register used
for temporary data storage during two-cycle DMA
transfers. It is. this register in which any necessary
byte assembly and disassembly of non-aligned data
is performed. Figure 3-22 shows how a block of data
will be moved between memory locations with differ­
ent boundaries. Note that the order of the data does
not change.

SOURCE

20H

DESTINATION

21H

22H

23H

24H

25H

26H

27H

A

B

C

D

E

F

G

50H

51H

52H

53H

54H

55H

56H

57H

58H

59H

5AH
Target = source = 00000020H
Requester = destination = 00000053H
Byte Count = 000006H

A

B

C

D

E

F

G

Figure 3·22. Transfer of Data between Memory
Locations with Different Boundaries. This will be

the result, independent of data path width.

If the destination is the Requester and an early pro­
cess termination has been indicated by the EOP #
signal or DREQn inactive in the Demand Mode, the
Temporary Register is not affected. If data remains
in the Temporary Register due to differences in data
path widths of the Target and Requester, it will not
be transferred orotherwise lost, but will be stored for
later transfer.

If the destination is. the Target and theEOP #. signal
is sensed active during the Requester access of a
transfer, the DMA Controller will complete the trans­
fer by sending to the Target whatever information is
in the Temporary Register at the time of process
termination. This implies that the Target could be
accessed with partial data. For this reason it is ad­
visable to· have an liD device designated as a Re- .
quester, unless it is capable of handling partial data
transfers.

4-209

82380

3.6 DMA Controller Programming

Programming a DMA Channel to perform a needed
DMA function is in general a four step process. First
the.global attributes of the"DMA Controller are pro­
grammed via the two Command Registers. These
global attributes include: priority levels, channel
group enables, priority mode, andDREQn/EOP# in­
put sampling.

The second step involves setting the operating
modes of the particular channel. The Mode Regis­
ters are used to define the type of transfer and the
handshaking modes. The Bus Size Register and
Chaining Register may also need to be programmed
in this step.

The third step is setting up the channel is to load the
Base Registers in accordance with the needs of the

. operating modes chosen in step two. The Current
Registers are automatically loaded from the Base
Registers, if required by the Buffer Transfer Mode in
effect. The information loaded and the order in
which it is loaded depends on the operating mode. A
channel used for cascading, for example, needs no
buffer information and this step can be skipped en­
tirely.

The last step is to enable the newly programmed
channel using one of the Mask Registers. The chan­
nel is then available to perform the desired data
transfer. The status of the channel can be observed
at any time through the Status Register, Mask Reg­
ister, Chaining Register, and Software Request reg­
ister.

Once the channel is programmed and enabled, the
DMA process may be initiated. in one of two ways;
either· by a hardware DMA request (DREQn) or a
software request (Software Request Register).

Once programmed to a particular Process/Mode
configuration, the channel will operate in that config­
uration until programmed otherwise. For' this reason,
restarting a channel after the current buffer expires
does not require complete reprogramming of the
channel. Only those parameters Which have
changed need to be reprogrammed. The Byte Count

Register is always changed and must be repro­
grammed. A Target or Requester Address Register
which is incremented or decremented should be re­
programmed also.

3.6.1 BUFFER PROCESSES

The Buffer Process is determined by the Auto-Initial­
ize bit of Mode Register I and the Chaining Register.
If Auto-Initialize is enabled, Chaining should not be
used.

3.6.1.1 Single Buffer Process

The Single Buffer Process is programmed by dis­
abling Chaining via the Chaining Register and pro­
gramming Mode Register I for non-Auto-Initialize.

3.6.1.2 Buffer Auto-Initialize Process

Setting the Auto-Initialize bit in Mode Register I is all
that is necessary to place the channel in this mode.
Buffer Auto-Initialize must not be enabled simulta­
neous to enabling the Buffer Chaining Mode as this
will have unpredictable results. "

Once the Base Registers are loaded, the channel is
ready to be enabled. The channel will reload its Cur­
rent Registers from the Base Registers each time
the Current Buffer expires, either by an expired Byte
Count or an external EOP # .

3.6.1.3 Buffer Chaining Process

The Buffer Chaining Process is entered into from the
Single Buffer Process. The Mode Registers should
be programmed first, with all of the Transfer Modes
defined as if the channel were to operate in the Sin­
gle Buffer Process. The channel's Base and Current
Registers are then loaded. When the channel has
been set up in this way, and the chaining· interrupt
service routine is in place, the Chaining Process can
be entered by programming the Chaining Register.
Figure 3.23 illustrates the Buffer Chaining Process.

An .interrupt (IRQ1) will be generated immediately af­
ter the Chaining Process is entered, as the channel

4-210

intJ 82380

then perceives the Base Registers as empty and in
need of reloading. It is important to have the inter­
rupt service routine in place at the time the Chaining
Process is entered into. The interrupt request is re­
moved when the most significant byte of the Base
Target Address is loaded.

The interrupt will occur again when the first buffer
expires and the Current Registers are loaded from
the Base Registers. The cycle continues until 'the
Chaining Process is disabled, or the host fails to re­
spQnd to IR01 before the Current Buffer expires.

INSTALL IRQi INTERRUPT SERVICE ROUTINE

SET THE CHANNEL TO NON-CHAINING PROCESS

PROGRAM THE MODE REGISTERS

LOAD BASE REGISTERS FOR ~ BUFFER

SET THE CHANNEL TO CHAINING PROCESS

(IRQl WILL BE ACTIVATED)

ENABLE INTERRUPT

(IRQ 1 WILL NEED SERVICE­
LOAD BASE REGISTERS)

ENABLE THE CHANNEL

FRoM THIS POINT. THE HOST CAN PERFORM ANOTHER
TASK. THE INTERRUPT SERVICE ROUTINE LEFT BEHIND

WILL MAINTAIN THE CHANNEL.

290128-36

Figure 3-23. Flow of Events in the
Buffer Chaining Process

Exiting the Chaining Process can be done by reset­
ting the Chaining Mode Register. If an interrupt is
pending for the channel when the Chaining Register
is reset, the interrupt request will be removed. The
Chaining Processean be temporarily disabled by
setting the channel's Mask bit in the Mask Register.

The interrupt service routine for IR01has the re­
sponsibility of reloading the Base Register as neces­
sary. It should check the status of the channel to
determine the cause of channel expiration, etc. It
should also have access to operating system infor­
mation regarding the channel, if any ,exists. The
IR01 service routine should be capable of determin­
ing whether the chain should be continued or termi­
nated and act on that information.

3.6.2 DATA TRANSFER MODES

The Data Transfer Modes are selected via Mode
Register I. The Demand, Single, and Block Modes
are selected by bits 06 and 07. The individual trans­
fer type (Fly-By vs Two-Cycle", Read-Write-Verify,
and 1/0 vs Memory) is programmed through both of
the Mode registers. '

3.6.3 CASCADED BUS MASTERS

The Cascade Mode is set by writing ones to 07 and
06 of Mode Register L When a channel is pro­
grammed to operate in the Cascade Mode, all of the
other modes associated with Mode Registers I and II
are ignored. The priority and OREOn/EOP# defini­
tions of the Command Registers will have the same
effect on the channel's operation as any other
mode.

3.6.4 SOFTWARE COMMANDS

There are five port addresses which, when written
to, command certain operations to be performed by
the 82380 OMA Controller. The data written to these
locations is not of consequence, writing to the loca­
tion is all that is necessary to command the 82380 to
perform the indicated function. Following are ·de­
scriptions of the command function.

4-211

82380

Clear Byte Pointer Flip-Flop-location OOOCH

Resets the Byte Pointer. Flip-Flop. This command
should be performed at the beginning of any access
to the channel registers in order to be assured of
beginning at a predictable place in the register pro­
gramming sequence.

Master Clear-location OOODH

All DMA functions are set to their default states. This
command is the equivalent of a hardware reset to
the DMAControlier. Functions other than those in
the DMA Controller section of the 82380 are not af­
fected by this command.

Clear Mask
Register -Channels 0-3-location OOOEH

Channels 4-7-location OOCEH

Channel Registers
Channel

Register Name

Channel 0 Target Address

Byte Count

Requester Address

Channel 1 Target Address

Byte Count

Requester Address

This command simultaneously clears the Mask Bits
of all channels in the addressed group, enabling all
of the channels in the group.

Clear TC Interrupt Request-location 001 EH

This command resets the Terminal Count Interrupt
Request Flip-Flop. It is provided to allow the pro­
gram which made a software DMA request to ac­
knowledge that it has responded to the expiration of
the requested channel(s).

3.7 Register Definitions

The following diagrams outline the bit definitions and
functions of the 82380 DMA Controller's Status and
Control Registers. The function and programming of
the registers is covered in the previous section on
DMA Controller Pro~ramming. An entry of 'X' as a bit
value indicates "don't care."

(Read Current, Write Base)
Address Byte Bits

(Hex) Pointer Accessed

00 0 0-7
1 8.,..15

87 x 16-23
10 0 24-31
01 0 0-7

1 8-15
11 0 16-23
90 0 0-7

1 8-15
91 0 16-23

1 24-31

02 0 0-7
1 8-15

83 x 16-23
12 0 24-31
03 0 0-7

1 8-15
13 0 16-23
92 0 0-7

1 8-15
93 0 16-23

1 24-31

4-212

82380

Channel Registers (Read Current, Write Base)
Register Name Address Byte Channel (Hex) Pointer

Channel 2 Target Address 04 0
1

81 x
14 0

Byte Count 05 0
1

15 0
Requester Address 94 0

1
95 0

1

Channel 3 Target Address 06 0
1

82 x
16 0

Byte Count 07 0
1

17 0
Requester Address 96 0

1
97 0

1

Channel 4 Target Address CO 0
1

8F x
DO 0

Byte Count C1 0
1

01 0
Requester Address 98 0

1
99 0

1

ChannelS Target Address C2 0
1

8B x
02 0

Byte Count C3 0
1

03 0
Requester Address 9A 0

1
9B 0

1

4-213

Bits
Accessed

0-7
8-15
16-23
24-31
0-7
8-15
16-23

0-7
8-15
16-23
24-31

0-7
8-15
16-23
24-31
0-7
8-15
16-23

0-7
8-15
16-23
24-31

0-7
8-15
16-23
24-31
0-7
8-15
16-23

0-7
8-15
16-23
24-31

0-7
8-15
16-23
24-31
0-7
8-15
16-23

0-7
8-15
16-23
24-31

I,

I
I

!

inter 82380

Channel Registers
'Channel Register .Name

Channel 6 .. Target Address

Byte Count

Requester Address

Channel 7 Target Address

Byte Count

Requester Address

Command Register I (Write Only)

Port Address-Channels 0-3-0008H
Channels 4-7-00C8H

07 06 05 04 03 02

X I x I x I P I x I M I

(Read Current, Write Base)
Address Byte

(Hex) Pointer

C4 0
1

89 x
04 0
C5 0

1
05 0
9C 0

1
90 0

1

C6 0
1

8A x
06 0
C7 0

1
07 0
9E 0

1
9F 0

1

01 DO

x I x I
GROUP MASK

0= ENABLE CHANNELS
1 = DISABLE CHANNELS

PRIORITY
o = fiXEO PRIORITY

Bits
Accessed

0-7
8-15
16-23
24-31
0-7
8-15
16-23

0-7
8-15
16-23
24-31

0-7
8-15
16-'-23
24-31
0-7
8-15
16-23

0-7
8-15
16-23
24-31

1 = ROTATING PRIORITY
290128-37

Command Register " (Write Only)

Port Addresses-Channels 0-3-001 AH
Channels 4-7-000AH

07 06 05 04 03 02 01 DO

OREOn SAMPLING
EOP# SAMPLING

o = ASYNCHRONOUS
1 = SYNCHRONOUS

L..-....L.----LOW PRIORITY LEVEL SET
00 = CHANNEL 0(4) LOWEST
01 = CHANNEL 1 (5) LOWEST
10= CHANNEL 2 (6) LOWEST
11 = CHANNEL 3 (7) LOWEST

4-214

290128-38

82380

Mode Register I (Write Only)

Port Addresses-Channels 0-3-000BH
Channels 4-7-00CBH

07 06 D5 0., D3 02 01 DO

1~1~lnl~lnlwl~lrol
I

• Target and Requester DECREMENT is allowed only for byte transfers.

Mode Register II (Write Only)

Port Addresses-Channels 0-3-001 BH
Channels 4-7-00DBH

D7 D6 D5 0. D3 D2 DI DO

I

I CY I RD I w I RH I RI I TH I CI I ro I

ILL

• Target and Requester DECREMENT is allowed only for byte transfers.

4-215

CHANNEL SELECT
00 = CHANNEL
01 = CHANNEL
10= CHANNEL
II = CHANNEL

TRANSFER TYPE
OD=VERlrY
01 =WRITE
10=READ
II =ILlEGAL
XX IF IN CASCADE MODE

AUTO-INITIALIZE
0= DISABLE, I = ENABLE

TARGET INCREMENT/DECREMENT
0= INCRE .. ENT lARGET
I =DECRE .. ENT TARGET·
X IF T ... RGET HOLD ENABLED

DATA TRANSFER MODE
OD = DE ND t40DE
01 = SINGLE TRANSFER t40DE
10 "BLOCK .. ODE
II = CASCADE .. ODE

CHANNEL SELECT
SEE t40DE REGISTER l:

T ... RGET HOLD
0= INCRE .. ENT /DECRE .. ENT
1 =HOLD

REQUESTER INCREt4ENT o = INCREMENT
I = DECRE .. ENT·
X IF REQUESTER HOLD EN ... BLED

REQM~~lR~~RT/DECREt4ENT
I =HOLD

T ... RGET DEVICE TYPE
O=t4E .. ORY
I = INPUT/OUTPUT

REQUESTER DEVICE TYPE
0= .. Et40RY
I = INPUT/OUTPUT

TR"'NSFER CYCLES o = ONE-CYCLE (FLY-BY)
I = TWO-CYCLE

290128-39

290128"-40

82380

Software Request Register (Read/Write)

Port Addresses--Channels 0-3--0009H
Channels 4-7--00C9H

Write Format:

Read Format:

\
Software DMA Service Request

D7 D6 D5 D4 D3 D2 Dl DO

xlxlxlxlxl R I Cl I co I' I I I

Software Requests Pending

D7 D6 D5 D4 D3 D2 Dl DO

CHANNEL SELECT
SEE t.lODE REGISTER I

REQUEST SERVICE
o = REMOVE REQUEST
1 = ASSERT REQUEST

1 =REQUEST PENDING

CHANNEL 0(4) REQUEST
~--CHANNEL 1 (5) REQUEST

'------CHANNEL 2 (6) REQUEST
'--------C,~ANNEL 3 (7) REQUEST

Mask Set/Reset Register Individual Channel Mask (Write Only)

Port Addresses--Channels 0-3--000AH
Channels 4-7--00CAH

D7 D6 D5 D4 D3 D2 ,Dl 'DO

X I x I x I x ,I x I M I Cl I CO 1
I I CHANNEL SELECT

SEE MODE REGISTER I

'------MASK SET BIT

, 4-216

o = CLEAR MASK (ENABLE)
1 = SET MASK (DISABLE)

290128-41

290128-42

290128-43

82380

Mask Read/Write Register Group Channel Mask (Read/Write)

Port Addresses-Channels 0-3-000FH
Channels 4-7-00CFH

07 06 05 04 03 02

X I x I x I x I M31 M21

I I
01 DO

M1 IM~
CHANNEL 0 (4) MASK BIT
CHANNEL 1 (5) MASK BIT
CHANNEL 2 (6) MASK BIT
CHANNEL 3 (7) MASK BIT

MASK BIT = 0 -CHANNEL ENABLE
= 1 -CHANNEL DISABLE

290128-44

Status Register Channel Process Status (Read Only)

Port Addresses-Channels 0-3-000SH
Channels 4-7-00CSH

07 06 05 04 03 02 01 DO

I R3 I R2 I R1 I RO I TC3 I TC21 TC1 I TCO I

I I L..-

Bus Size Register Set Data Path Width (Write Only)

Port Addresses-Channels 0-3-001SH
Channels 4-7-00DSH

CHANNEL 0 (4) EXPIRED 1 = EXPIRED
CHANNEL 1 (5) EXPIRED
CHANNEL 2 (6) EXPIRED
CHANNEL 3 (7) EXPIRED

CHANNEL 0(4) REQUEST 1=REQUEST
CHANNEL 1 (5) REQUEST PENDING
CHANNEL 2 (6) REQUEST
CHANNEL 3 (7) REQUEST

07 06 05 04 03 02 01 DO

IRBS11RBSOI TBS11TBSoI 0 I 0 I C1 I CO I

I I CHANNEL SELECT
SEE MODE REGISTER I

290128-45

TARGET BUS SIZE

REQUESTER BUS SIZE
290128-46

Bus Size Encoding:
00 = Reserved by Intel 10 = 16-bit Bus
01 = 32-blt Bus 11 =8-bit Bus

4-217

I

I
I,
I,

82380

Chaining Register . (Read/Write)

Port Addresses-Channels 0-3-0019H
Channels 4-7-00D9H

Write Format: Set Chaining Mode

07 06 05 04

o I o I o I o I
03 02 01 DO

0 I CH I Cl I co I
'-----'IL....._ CHANNEL SELECT

SEE MODE REGISTER I I L..... ____ CHAINING ENABLE BIT

Read Format: Channel Interrupt Status

0= DISABLE CHAINING MODE
1 = ENABLE CHAINING MODE

290128-47

07 06 05 04 03 02 01 DO

CHANNEL 0 (4) BASE EMPTY
'---- CHANNEL 1 (5) !lASE EMPTY

'--_..,.---CHANNEL 2 (6) BASE EMPTY
'--,..._-----CHANNEL 3(7) BASE EMPTY

290128-48

3.8 8237 A Compatibility

The register arrangement of the 82380 DMA Con­
troller is a superset of the 8237A DMA Controller.
Functionally the 82380 DMA Controller is very differ­
ent from the 8237 A. Most of the functions of the
8237 A are performed also by the 82380~ The follow­
ing discussion points out the differences between
the 8237A'and the 82380.

The 8237A is limited to transfers between 110 and
memory only (except in one special case, where two
channels can be used to perform memory-to-memo­
ry transfers). The 82380 DMA Controller can transfer
between any combination of memory and 110. Sev·
eral other features of the 8237 A are enhanced or
expanded in the 82380 and other features are add­
ed.

The 8237A is an 8-bit only DMA device. For pro­
gramming compatibility, all of the 8-bit registers are
pr,eserved in the 82380. The 82380 is programmed
via 8-bit registers. The address registers in the
82380 are 32-bit registers in order to support the

80386's 32-bit bus. The Byte Count Registers are
24-bit registers, allowing support of larger data
blocks than possible with the 8237 A.

All of the 8237A's operating modes are supported
by the 82380 (except the cumbersome two-channel
memory-to-memory transfer). The 82380 performs
memory-to-memory transfers using only one chan­
nel. The 82380 has the added features of buffer
pipelining (Buffer Chaining Process), programmable
priority levels, and Byte Assembly.

The 82380 also adds the feature of address regis­
ters for both destination and source. These address­
es may be incremented, decremented, or held con­
stant, as required by the application of the individual
channel. This allows any combination of destination
and source device.

. Each DMA channel has associated with it a Target
and a Requester. In the 8237A, the Target is the
device which can be accessed by the address regis­
ter, the Requester is . the device which is accessed
by the DMA Acknowledge signals and must be an
110 device.

4-218

82380

4.0 Programmable Interrupt
Controller (PIC)

4.1 Functional Description

The 82380 Programmable Interrupt Controller (PIC)
consists of three enhanced 82C59A . Interrupt Con·
toilers. These three controllers together provide 15
external and 5 internal interrupt request inputs. Each
external request input can be cascaded with an ad·
ditional82C59A slave collector. This scheme allows
the 82380 to support a maximum of 120 (15 x 8)
external. interrupt request inputs.

Following one or more interrupt requests, the 82380
PIC issues an interrupt Signal to the 80386. When
the 80386 host processor responds with an interrupt
acknowledge Signal, the PIC will .arbitrate between
the pending interrupt requests and place the inter·
rupt vector associated with the highest priority pend·
ing request on the data bus.

The major enhancement in the 82380 PIC over the
82C59A is that each of the interrupt request inputs

IRQI6#
IRQI7#
IRQI8#
IRQI9#
IRQ20#
IRQ21#
IRQ22#
IRq23#

TOUTO#(lRQ 8#)-

'

...

I-:!
(IRQ10#)~

DREQ4/IRQ9#

IRQll#
IRQI2#
IRQI3#
IRQI4#
IRQ15#

.....
--'-
.....
--"

O#~
1#

.5#) 4
(IRQ2#)

TOUT3fJ\(lRQ
CHAINING (IRQ

ICW2 (IRQ 1

4#)
TOUT2#/IRQ3#
SW Req TC (IRQ

NO
NO

DEFAULT (IR

T USED---.
T USED---'
Q7#)

0
1

can be individually programmed with its own inter·
rupt vector, allowing more flexibility in interrupt vec·
tor mapping.

"-1.1 INTERNAL BLOCK DIAGRAM

The block diagram of the 82380 Programmable In~
terrupt Controller is shown in Figure 4·1. Internally,
the PIC consists of three 82C59A banks: A, Band C.
The three banks are cascaded to one another: C is
cascaded to B, B is cascaded to A. The INT output
of Bank A is used externally to interrupt the 80386.

Bank A has nine interrupt request inputs (two are
unused), and Banks Band C have eight interrupt
request inputs. Of the fifteen external interrupt reo
quest inputs, two are shared by other functions. Spe·
cifically, the Interrupt Request 3 input (IRQ3#) can
be used as the Timer 2 output (TOUT2 #). This pin
can' be used In three different ways: IRQ3 # input
only, TOUTU output only, or using 1'OUT2# to
generate an IRQ3# interrupt request. Also, the In·
terrupt Request 9 input .(IRQ 9#) can be used as
DMARequest 4 input (DREQ4) .. Typically, only
IRQ9# or DREQ4 can be used at a time.

~ INTERRUPT
4 BANK ~
5 C
6
7

° 1

~ INTERRUPT
4 BANK
5 B
6
7

0
1
1.5
2 INTERRUPT
3 BANK
4 A
5
6
7

.!!!!

--+ INT
(OUTPUT)

290128-49

Figure 4-1. Interrupt Controller Block Diagram

4·219

82380

4.1.2 INTERRUPT CONTROLLER BANKS

All three banks are identical, with the exception of
the IRQ1.50nBank A. Therefore, only one bank will
be discussed. In the 82380 PIC, all external requests
can be cascaded into andea.ch interrupt controller
bank behaves like a master. As compared . to the
82C59A, the enhancements in the banks are:
-'- . All interrupt vectors· are· individually programma­

ble, (In the 82C59A, the. vectors must be pro­
. grammed in eight consecutive interrupt vector 1.0-
. cations.)

IRQO#
IRQ1#
IRQ2#
IRQ3#
IRQ4#
IRQ5#
IRQ6#
IRQ7#

DATA (0-7)

- The cascade address is provided 9n the Data
Bus (00-07). (In the 82C59A,three dedicated
control signals (CASO, CAS 1 , CAS2) are used for
master/slave cascading.)

The block diagram of a· bank is shown. in Figure 4-2.
As can be seen from this figure, the bank consists of
six major blocks: the Interrupt Request Register
(IRR), the In-Service Register (ISR), the· Interrupt
Mask Register (IMR), the Priority Resolver (PR), the
Vector Register (VR), and the Control Logic. The
functional description of each block follows .

IRQO
IRQl
IRQ2

·IRQ3

IRQ4
IRQ5

IRQ6
IRQ7

r--____ .INTERRUPT
TO HOST

IN­
SERVICE

REG.

DATA (0-7)

INDIVIDUALLY PROGRAM MAilLE
VECTOR BANK

-------------------~------------. 82380 ENHANCEMENT OVER THE 82C59A
290128-50

Figure 4·2. Interrupt Bank Block Diagram

4-220

inter 82380

INTERRUPT REQUEST (IRR) AND IN-SERVICE
REGISTER (ISR)

,,!"he interrupts at the Interrupt Request (IRQ) input
lines are handled by two registers in cascade, the
Interrupt Request Register (IRR) and the In-Service
Register (ISR). The IRR is used to store all interrupt
levels which are requesting service; and the ISR is
used to store all interrupt levels which are being
serviced.

PRIORITY RESOLVER (PR)

This logic block determines the priorities of the bits
set in the IRR. The highest priority is selected and
strobed into the corresponding bit of the ISR during
an Interrupt Acknowledge cycle.

INTERRUPT MASK REGISTER (IMR)

The IMR stores the bits which mask the interrupt
liries to be masked (disabled). The IMR operates on .
the IRA. Masking of a higher priority input will not
affect the interrupt request lines of lower priority.

VECTOR REGISTERS (VR)

This block contains a set of Vector Registers, one
for each interrupt request line, to store the pre-pro­
~rammed interrupt vector number. The correspond­
Ing vector number will be driven onto the Data Bus
of the 82380 during the Interrupt Acknowledge cy­
cle.

CONTROL LOGIC

The Control Logic coordinates the overall operations
of the other internal blocks within the same bank.
This logic will drive the Interrupt Output Signal (I NT)
HIGH when one or more unmasked interrupt inputs
are active (LOW). The INT output signal goes direct­
ly to the 80386 (in Bank A) or to another bank to
w~ich t~is b~nk is cascaded (see Figure 4-1). Also,
thiS log~c will recognize an Interrupt Acknowledge
c~cle(vlaM/IO#, D/C# andW/R# signals). During
thiS bus cycle, the Control Logic will enable the cor­
responding Vector Register to drive the interrupt
vector onto the Data Bus.

In Bank A, the Control Logic is also responsible for
handling the special ICW2 interrupt request input
(IRQ1.5#).

4-221

4.2 Interface Signals

4.2.1 INTERRUPT INPUTS

There are 15 external Interrupt Request inputs and 5
internal Interrupt Requests. The ext~rnal request in­
puts are: IRQ3 #, IRQ9 #, IRQ11 # to IRQ23 #. They
are shown in bold arrows in Figure 4-1. All IRQ in­
puts are active LOW and they can be programmed
(via a control bit in the Initialization Command Word
1 (ICW1)) to be either edge-triggered or level-trig­
gered. In order to be recognized as a valid interrupt
request, the interrupt input must be active (LOW) un­
til the first INTA# cycle (see Bus Functional De­
~cription). Note that all 15 external Interrupt Request
Inputs have weak internal pull-up resistors.

As mentioned earlier, an 82C59A can be cascaded
to each external interrupt input to expand the inter­
rupt capacity to a maximum of 120 levels. Also, two
of the interrupt inputs are dual functions: IRQ3 # can
be used as Timer 2 output (TOUT2#) and IRQ9#
can be used as DREQ4 input. IRQ3# isa bidirec­
ti?nal dual f~nction pin. This interrupt request input is
wired-OR with the output of Timer 2 (TOUT2#). If
only IRQ3# function is to be used, Timer 2 should
be programmed so that OUT2 is LOW. Note that
TOUT2 # can also be used to generate an interrupt
request to IRQ3# input.

The five internal interrupt requests serve special
system functions. They are shown in Table 4-1. The
following paragraphs describe these interrupts.

Table 4-1. 82380 Internal Interrupt Requests

Interrupt Request Interrupt Source

IRQO# Timer 3 Output (TOUT3#)
IRQ8# Timer 0 Output (TOUTO#)
IRQ1# DMA Chaining Request
IRQ4# DMA Terminal Count
IRQ1.5# ICW2 Written

TIMER 0 AND TIMER 3 INTERRUPT REQUESTS
[lROO#]

IRQ8# andlROO# interrupt requests are initiated
by the output of Timers 0 and 3, respectively. Each
of these requests is generated by an edge-detector
flip-flop. The flip-flops are activated by the following
conditions: .

Set- Rising edge of timer output (TOUT);

Clear- Interrupt acknowledge for this request;
OR Request is masked (disabled); OR
Hardware Reset.

82380

CHAINING AND TERMINAL COUNT INTERRUPTS
URQ1#] .

These interrupt requests are generated by the
82380 DMA Controller. The chaining request
(IRQ1 #) indicates that the DMA Base Register is
not loaded. The Terminal Count request (IRQ4 #) in­
dicates that a software DMA request Was cleared.

ICW2 INTERRUPT REQUEST URQ1.S#]

Whenever an Initialization Control Word 2 (ICW2) is
written to a Bank, a special ICW2 interrupt request is
generated. The interrupt will be cleared when the
newly programmed ICW2 Register is read .. This in­
terrupt request is in Bank A at level 1.5. This inter­
rupt request is internally ORed with the Cascaded
Request from Bank B and is always assigned a high­
er priority than the Cascaded Request.

This special interrupt is provided to support compati­
bility with the original 82CS9A A detailed descript~on
of this interrupt is discussed in the Programming
section.

DEFAULT INTERRUPT URQ?#]

During an Interrupt Acknowledge cycle, if there is no
active pending request, the. PIC will automatically

PREVIOUS
CYCLE

T2
ClK

READY#

INTERRUPT ACKNOWLEDGE
CYCLE 1 (5 WAIT STATES) .

generate a default vector. This vector corresponds
to the IRQ?# vector in Bank A

4_2_2 INTERRUPT OUTPUT (INT)

ThelNT output pin is taken directly from bank A
This signal should be tied tothe Maskable Interrupt
Request (INTR) of. the 80386. When this signal is
active (HIGH), it indicates that one or more internal/
external interrupt requests are pending. The 80386
is expected to respond with an· interrupt. acknowl­
edge cycle.

4.3 Bus Functional Description

The INT output of bank A will be activated as a result
of any unmasked. interrupt request. This may be a
non-cascaded or cascaded request. After the PIC
has driven the INT signal HIGH, 80386 will respond
by performing two interrupt acknowledge ?ycl~s.
The timing diagram in Figure 4-3 shows a typical In­
terrupt acknowledge process between the 82380
and the 80386 CPU. .

, IDLE
(4 BUS STATES) .

INTERRUPT ACKNOWLEDGE
CYCLE 2 (5 WAIT STATES)

T2 T2

SEE NOTE

00-07 ~--t-~~+-~r-~~~~~~~~-t~t--1~1---r--t--+--l-€:g~~)-
SEE NOTE

NOTE:. . "
What is actually driven on the Data· Bus depends on if the current interrupt request IS a Slave Request

NON-SLAVE REQUEST
SLAVE REQUEST

*Slave will place: a vector at,this time,

INTACycle 1
OOH
Slave Address

INTACycle2
Vector
High Impedance*

Figure 4·3. Interrupt Acknowledge Cycle

4-222

I I
290128-51

inter 82380

After activating the INT signal, the 82380 monit~rs
the status lines (M/IO#, O/C#, W/R#) and walts
for the 80386 to initiate the first interrupt acknowl­
edge cycle. In the 80386 environment, two succes­
sive .interrupt acknowledge cycles (I NT A) marked by
MIIO# = LOW, D/C# = LOW, and W/R# =
LOW are performed. During the first INTA cycle, the
PIC will determine the highest priority request. As­
suming this interrupt input has no external Slave
Controller cascaded to it, the 82380 will drive the
Data Bus with OOH in the first INTA cycle. During the
second INTA cycle, the 82380 PIC will drive the
Data Bus with the corresponding preprogrammed in­
terrupt vector.

If the PIC determines (from the ICW3) that this inter­
rupt input has an external Slave Controller cascaded
to it it will drive the Data Bus with the specific Slave
Cas~ade Address (instead of OOH) during the first
INTA cycle. This Slave Cascade Address is the pre­
programmed content in the corresponding Vector
Register. This means that no Slave Address should
be chosen to be OOH. Note that the Slave Address
and Interrupt Vector are different interpretations of
the same thing. They are both the contents of the
programmable Vector Register. During the second
INTA cyCle, the Data Bus will be floated so that the
external Slave Controller can drive its interrupt vec­
tor on the bus. Since the Slave Interrupt Controller
resides on the system bus, bus transceiver enable
and direction control logic must take this into consid­
eration.

In order to have a successful interrupt service; the
interrupt request input must be held active (LOW)
until the beginning of the first interrupt acknowledge
cycle. If there is no pending interrupt request when
the first INTA cycle is generated, the PIC will gener­
ate a default vector, which is the IRQ7 vector (bank
A level 7). .

According to the Bus Cycle definition of the 80386~
there will be four Bus Idle States between the two
interrupt acknowledge cycles. These idle bus cycles
will be initiated by the 80386. Also, during each inter­
rupt acknowledge cycle, the internal Wait State Gen­
erator of the 82380 will automatically generate the
required number of wait states for internal delays.

4.4 Mode of Operation

A variety of modes and commands are available for
controlling the 82380 PIC. All of them are ~rogram­
mabie; that is, they may be changed dynamically un­
der software control. In fact, each bank can be pro­
grammed individually to operate in different modes.
With these modes and commands, many possible

configurations are conceivable, giving the user
enough versatility for almost any interrupt controlled
application.

This section is not intended to show how the 82380
PIC can be programmed. Rather, it describes the
operation in different modes.

4.4.1 END·OF·INTERRUPT

Upon completion of an interrupt service routine, the
interrupted bank needs to be notified so its ISR can
be updated. This allows t~e PIC to keeP traCk. of
which interrupt levels are In the process of being
serviced and their relative priorities. Three different
End-Of-Interrupt (EOI) formats are available. They
are: Non-Specific EOI Command, Specif!c EOI C~m­
mand and Automatic EOI Mode. Selection of which
EOI t~ use is dependent upon the interrupt opera­
tions the user wishes to perform.

If the 82380 is NOT programmed in the Automatic
EOI Mode, an EOI command must be issued by the
80386 to the specific 82380 PIC Controller Bank.
Also, if this controller bank is cascaded to another
internal bank, an EOI command must also be sent to
the bank to which this bank is cascaded. For exam­
ple, if an interrupt request of Bank '? in t~e 82380
PIC is serviced, an EOI should be wntten Into Bank
C, Bank B and Bank A. If the request comes from an
external interrupt controller. cascaded to Bank C,
then an EOI should be written into the external con­
troller as well.

NON-SPECIFIC EOI COMMAND

A Non-Specific EOI command sent from the 80386
lets the 82380 PIC bank know when a service rou­
tine has been completed, without specification of its
exact interrupt level. The respective interrupt bank
automatically determines the interrupt level and re­
sets the correct bit in the ISA.

To take advantage of the Non-Specific EOI, the in­
terrupt b~mk must be in a mode of operation in which
it can predetermine its in-service routine levels. For
this reason, the Non-Specific EOI command should
only be used when the most recent level acknowl­
edged and serviced is always the highest priority lev­
el (Le., in the Fully Nested Mode structure to be de­
scribed below). When the interrupt bank receives a
Non-Specific EOI command, it simply resets the
highest priority ISR bit to indicate that the highest
priority routine in service is finished.

Special consideration should be taken when decid­
ing to use the Non-Specific EOI command. Here are
two operating conditions in which it is best NOT

4-223

82380

used since the Fully Nested Mode structure will be
destroyed:

- Using the Set Priority command within an inter-
rupt service routine.

- Using a Special Mask Mode.

These conditions are covered in more detail in their
own sections, .but are listed here for reference.

SPECIFIC EOI COMMAND

Unlike a Non-Specific EOI command which automat­
ically resets the highest priority ISR bit, a Specific
EOI command specifies an exact ISR bit to be reset.
Any· one of the IRQ levels of an interrupt bank can
be specified in the command.

The Specific EOI command is needed to reset the
ISR bit of a completed service routine whenever the
interrupt bank is not able to automatically determine
it. The Specific EOI command can be used in all
conditions of operation, including those that prohibit
Non-Specific EOI command usage mentioned
above.

AUTOMATIC EO! MODE

When programmed in the Automatic EOI Mode, the
80386 no longer needs to issue a command to notify
the interrupt bank it has completed an interrupt rou­
tine. The interrupt bank accomplishes this by per­
forming a Non~Specific EOI automatically at the end
of the second INTA cycle.

Special consideration should be taken when decid­
ing to use the Automatic EOI Mode because it may
disturb the Fully Nested Mode structure. In the Auto­
matic EOI Mode, the ISR bit of a routine in service is
reset right after it is acknowledged, thus leaving no
designation in the ISR that a service routine is being
executed. If any interrupt request within the same
bank occurs during this time' and interrupts are en­
abled, it will get serviced regardless of its priority.

Therefore, when using this mode, the 80386 should
keep its interrupt request input disabled during exe­
cution of a service routine. By doing this, higher pri­
ority interrupt levels will be· serviced only after the
completion of a routine in service. This guideline re­
stores the Fully Nested Mode structure. However, in
this scheme, a routine in service Cannot be interrupt­
ed since the host's interrupt request input is dis­
abled.

4.4.2 INTERRUPT PRIORITIES

The 82380 PIC provides various methods for arrang­
ing the interrupt priorities of the interrupt request in­
puts to suit different applications. The following sub­
sections explain these methods in detail.

4.4.2.1 Fully Nested Mode

The Fully Nested Mode of operation is a general pur­
pose priority mode. This mode supports a multi-level
interrupt structure in which all of the Interrupt Re­
quest (IRQ) inputs within one bank are arranged
from highest to lowest.

Unless otherwise .. programmed, the Fully Nested
Mode is entered by default upon initialization. At this
time, IRQO#is assigned the highest priority (priority
= .0) and IRQ7#the lowest (priority = 7). This de­
fault priority can be changed, as will be explained
later in the Rotating Priority Mode.

When an interrupt is acknowledged, the highest pri­
ority request is determined from the Interrupt Re­
quest Register (IRR) and its vector is placed on the
bus. In addition, the corresponding bit in the In-Serv­
ice Register (ISR) is set to designate the routine in
service. This ISR bit will remain set until the 80386
issues all End Of Interrupt (EOI) ,command immedi­
ately before returning from the service routine; or
alternately, if. the Automatic End Of Interrupt(AEOI)
bit is set, the ISR bit will be reset at the end of the
second INTAcycle.

4-224

intJ 82380

While the ISR bit is set, all further interrupts of the
same or lower priority are inhibited. Higher level in­
terrupts can still generate an interrupt, which will be
acknowledged only if the 80386 internal interrupt en­
able flip-flop has been re-enabled (through software
inside the current service routine).

·4.4.2.2 Automatic Rotation-Equal Priority .
Devices

Automatic rotation of priorities serves in applications
w~e~e th~ interrupting devices are of equal priority
within an Interrupt bank. In this kind of environment,
once a device is serviced, all other equal priority pe­
ripherals should be given a chance to be serviced
before the original device is serviced again. This is
accomplished by. automatically assigning a device
the lowest priority after being serviced. Thus, in the
worst case, the device would have to wait until all
other peripherals connected to the same bank are
serviced before it is serviced again.

There are two methods of accomplishing automatic
rotation. One is used in conjunction with the Non­
Specific EOI command and the other is used with

the Automatic EOI mode. These two methods are
discussed below.

ROTATE ON NON-SPECIFIC EOI COMMAND

When the Rotate On Non-Specific EOI command is
issued, the highest ISR bit is reset as in a normal
Non-Specific EOI command. However, after it is re­
set, the corresponding. Interrupt Request (IRO) level
is assigned the lowest priority. Other IRO priorities
rotate to conform to the Fully Nested Mode based
on the newly assigned low priority.

Figure 4-4 shows how the Rotate On Non-Specific
EOI command affects the interrupt priorities. As­
sume the IRO priorities were assigned with IROO the
highest and IR07 the lowest. IR06 and IR04 are
already in service but neither is completed. Being
the higher priority routine, IR04 is necessarily the
routine being executed. During the IR04 routine, a
rotate on Non-Specific EOI command is executed.
When this happens., Bit 4 in the ISR is reset. IR04
then becomes the lowest priority and IR05 becomes
the highest. .

157 156 ISS 154 153 152 151 ISO

ISR STATUS 1-....,r--!--4.....;.-+....:.4..:..-I--=-4-..:.. .. (BEFORE
PRIORITY COMMAND)

LOWEST PRIORity HIGHEST PRIORITY
290128-52

157 156 ISS 154 153 152 151 ISO

ISR STATUS ~~r--+ __ -r __ ~ __ +-~~~....:.-'(A~ER
PRIORITY COMMAND)

HIGHEST PRIORITY LOWEST PRIORITY
290128-53

Figure 4-4. Rotate On Non-Specific EOI Command

4-225

I

82380

ROTATE ON AUTOMATICEOI MODE

The Rotate On Automatic EOI Mode works much
like the Rotate On Non-Specific EOI Command. The
main difference is that priority rotation is done auto­
matically after the second INTA cycle of an interrupt
request. To enter or exit this mode, a Rotate-On-Au­
tomatic-EOI Set Command and Rotate-On-Automat­
ic-EOI· Clear Command is provided. After this mode
is. entered, no other commands are needed as in the
normal Automatic EOI Mode. However, it must be
noted again that when using any form of the Auto­
matic EOI Mode, special consideration should be
taken. The guideline presented in the Automatic EOI
Mode also applies here.

4.4.2.3 Specific Rotation-Speclfic Priority

Specific rotation gives the user versatile capabilities
in interrupt controlled operations. ·It serves in those
applications in which a specific device's interrupt pri­
ority must be altered. As opposed to Automatic' Ro­
tation which will automatically set priorities after
each interrupt request is serviced, specific rotation is
completely user controlled. That is, the user selects
which interrupt level is to receive the lowest or the
highest priority. This can be done during the main

program or within interrupt routines. Two specific ro­
tation commands are available to the user: Set Prior­
ity Command and Rotate On Specific EOI Com­
mand.

SET PRIORITY COMMAND

The Set Priority Command allows the programmer to
assign an IRQ level the lowest priority. All other in­
terrupt levels will conform to the Fully Nested Mode
based on the newly assigned low priority.

ROTATE ON SPECIFIC EOI COMMAND

The Rotate On Specific EOI Command is literally a
combination of the Set Priority Command and the
Specific EOI Command. Like the Set Priority Com­
mand, a specified IRQ level is assigned lowest priori­
ty. Like the Specific EOI Command, a specified level
will be reset in the ISA. Thus, this command accom­
plishes both tasks in one single command.

4.4.2.4 Interrupt Priority Mode Summary

In order to· simplify understanding the many modes
of interrupt priority, Table 4-2 is provided to bring out
their summary of operations.

Table 4-2. Interrupt Priority Mode Summary

Interrupt Operation. Effect On Priority After EOI
Priority Mode Summary Non-Speclflcl Automatic Specific

Fully-Nested Mode IRQO#-Highest Priority No change in priority. Not Applicable.
IRQ7 #-Lowest Priority Highest ISR bit is reset. .

Automatic Rotation Interrupt level just serviced Highest ISR bit is reset and the Not Applicable.
(Equal Priority Devices) is the lowest priority. Other corresponding level becomes the

priorities rotate to conform lowest priority.
to Fully-Nested Mode,

Specific Rotation User specifies the lowest Not Applicable. As described under
(Specific Priority priority level. Other priorities 'Operation Summary'.
Devices) rotate to conform to Fully-

Nested Mode.

4~226

inter 82380

4.4.3 INTERRUPT MASKING

VIA INTERRUPT MASK REGISTER

Each bank in the 82380 PIC has an Interrupt Mask
Register (IMR) which enhances interrupt control ca­
pabilities. This IMR allows individual IRQ masking.
When an IRQ is masked, its interrupt request is dis­
abled until it is unmasked. Each bit in the 8-bit IMR
disables one interrupt channel if it is set (HIGH). Bit
.0 masks IRQO, Bit 1 masks IRQ1 and so forth.
Masking an IRQ channel will only disable the corre­
sponding channel and does not affect the others op­
erations.

The IMR acts only on the output of the IRR. That is,
if an interrupt occurs while its IMR bit is set, this
request is not 'forgotten'. Even with an IRQ input
masked, it is still possible to set the IRR. Therefore,
when the IMR bit is reset, an interrupt request to the
80386 will then be generated, providing that the IRQ .
request remains active. If the IRQ request is re­
moved before the IMR is reset, the Default Interrupt
Vector (Bank A, level 7) will be generated during the
interrupt· acknowledg~ qycle.

SPECIAL MASK MODE

In the Fully Nested Mode, all IRQ levels of lower
priority than the routine in service are inhibited. How­
ever, in some applications; it may be desirable to let
a lower priority interrupt request to interrupt the rou­
tine in service. One method to achieve this is by
using the Special Mask Mode. Working in conjunc­
tion with the IMR, the Special Mask Mode enables
interrupts from all levels except the level in service.
This is usually done inside an interrupt service .rou­
tine by masking,the level that is in service and then
issuing the Special Mask Mode Command. Once the
SpeCial Mask Mode is enabled, it remains in effect
until it is disabled.

82380

DATA BUS INTA#
(FRO ... BUS CONTROLLER)

4.4.4 EDGE OR LEVEL INTERRUPT
TRIGGERING

Each bank in the 82380 PIC can be programmed
independently for either edge or level sensing for the
interrupt request signals. Recall that all IRQ inputs
are active LOW. Therefore, in the edg~ triggered
mode, an active edge is defined as an input tran­
sition from an inactive (HIGH) to active (LOW) state.
The interrupt input may remain active without gener­
ating another interrupt. During level triggered mode,
an interrupt request will be recognized,by an active
(LOW) input, and there is no need for edge detec­
tion. However, the interrupt request must be re­
moved before the EOI Command is issued, or the
80386 must be disabled to prevent a second false
interrupt from occurring.

In either modes, the interrupt request input must be
active (LOW) during the first INTA cycle in order to
be recognized. Otherwise, the Default Interrupt Vec­
tor will be generated at level 7 of Bank A.

404.5 INTERRUPT CASCADING

As mentioned previously, the 82~0 allows for exter­
nal Slave interrupt controllers to be cascaded to any
of its external interrupt request pins. The 82380 PIC
indicates that a external Slave Controller is to be
serviced by putting the contents of the Vector Regis­
ter associated with the particular' request on the
80386 Data Bus during the first INT A cycle (instead
of OOH during a non-slave service). The external log­
ic should latch the vector on the Data Bus using the
INTA status signals and use it to select the external
Slave Controller to be serviced (see Figure 4-5). The
selected Slave will then respond to the second INTA
cycle and place its vector on the Data Bus. This
method requires that if external Slave Controllers

POSITIVE
EDGE

... ASTER/SLAVE
FLIP-FLOP

IN OUT
CAS(0-7)
TO SLAVE
8259's

"""'-(
LATCH HERE

290128-54

Figure 4-5. Slave Cascade Address Capturing

4-227

I
i

82380

are used in the system, no vector should be pro­
grammed to OOH.

Since the external Slave Cascade Address is provid­
ed on the Data Bus during INT A cycle 1, an external
latch is required to capture this address for the Slave
Controller. A simple scheme is depicted in Figure
4-5.

4.4.5~~ Special Fully t:JestedMod'e

This mode will be used where cascading 'is em­
ployed and the priority is to be conserved within
each Slave' Controller. The Special Fully Nested
Mode is similar to' the' 'regular' Fully Nested Mode
with the following exceptions:
- When an interrupt request from a Slave Control~

ler is in service, this Slave Controller is not
locked out from the Master's priority logiC. Fur­
ther interrupt requests from the higher priority
logiC withi,n the Slave Controller will be recog­
nized by the 82380 PIC and will initiate interrupts
to the 80386. In comparing to the 'regular' Fully
Nested Mode, the Slave Controller is masked out
when its request is in service and no higher re­
quests from the same Slave Controller can be
serviced.

- Before exiting the interrupt service routine, the
" software has to check whether the interrupt serv­
iced was the only request from the Slave Con­
trolle~. This is done by sending a Non-Specific
EOI Comm,and to the Slave, Cqntroll~rand then
reading its In Se,rvice Register. If there ,are no
requests in,the Slave Controller, a Non.Specific
EOI can ,be sent to the corresponding 82380 PIC
bank ,also. Otllerwise, no EOI sllould be sent.

4.4.6 READINOfNTERRUPT STATUS

The 82380 PIC provides several ways to read differ­
ent status of each interrupt bank, for more flexible
interrupt control operations., These include polling
the highest priority pending interrupt request and
reading the contents of different interrupt status reg­
isters.

4.4.6.1 Poll Command

The 82380 PIC supports status, polling operations
with the Poll Command. In a Poll Command, the

pending interrupt request witll the highest priority
can be determined. To use this command, the INT
output is not used, or the,80386 interrupt is disabled.
Service to devices is achieved by software using the
Poll Command. '

This mode is useful if there" is a routine command
common to several levels so that the,INTA se­
quence is not needed., Another application is to use
the Poll Cbmmand to expand the number of priority ,
levels.

Notice that the ICW2 mechanism is not supported
for the Poll Command. However, if the Poll Com­
mand is used, the programmable Vector Registers
are of no concern since no INTA cycle will be gener­
ated.

4.4.6.2 Reading Interrupt Registers

The Cbntents of each interrupt register (IRR, ISR,
and IMR) can be read to update the user's program
on' the present status of the 82380 PIC. This can be
a versatile tool hi the decision making process of a
service routine, giving the user more control over
interrupt operations.

The reading of the IRR and ISR contents can be
performed via the Operation Control word 3 by us­
ing a Read Status Register Command and the can- '
tent of IMRcanbe read via a simple read operation,
of the register itself.

4.5 Register Set Overview:

Eachbank of the 82380 PIC consists of a set of 8-bit
registers to control' its operations., The address map
of all the registers is shown in Table 4-3.' Since all
three register Sets are identical in functions, only
one set will be described. "

Functionally, each register set can be divided into
five groups. They are: the four Initialization Com­
mand Words (ICW's), the three Operation Control
Words (OCW's), the Poll/Interrupt Request/ln-Serv­
icl!' Register, the Interrupt Mask Register, and the
Vector Registers. A description of each, group fol­
lows.

4-228

inter 82380

Table 4-3. Interrupt Controller Register Address Map

Port Access Register Description Address

20H Write
,

Bank B ICW1, OCW2, or OCW3
Read Bank B Poll, Request or In-Service

Status. Register
21H Write Bank B ICW2, ICW3, ICW4, OCW1

Read Bank B Mask Register
22H Read BankB ICW2
28H Read/Write IR08 Vector Register
29H Read/Write IR09 Vector Register
2AH Read/Write Reserved
2BH Read/Write IR011 Vector Register
2CH Read/Write IR012 Vector Register
20H Read/Write IR013 Vector Register
2EH Read/Write IR014 Vector Register
2FH Read/Write IR015 Vector Register

AOH Write Bank C ICW1, OCW2, or DCW3
Read Bank C Poll, Request or In-Service

Status Register
A1H Write Bank C ICW2, ICW3, ICW4, DCW1

Read Bank C Mask Register
A2H Read BankCICW2
A8H Read/Write IR016 Vector Register
A9H Read/Write IR017 Vector Register
AAH Read/Write IR018 Vector Register
ASH Read/Write IR019 Vector Register
ACH Read/Write IR020 Vector Register
AOH Read/Write IR021 Vector Register
AEH Read/Write IR022 Vector Register
AFH Read/Write IR023 Vector Register

30H Write Bank A ICW1, OCW2, or DCW3
Read Bank A Poll, Request or In-Service

Status Register
31H Write Bank A ICW2, ICW3, ICW4, OCW1

Read Bank A Mask Register
32H Read BanklCW2
38H Read/Write IROO Vector Register
39H Read/Write IR01 Vector Register
3AH Read/Write IR01.5 Vector Register
3SH Read/Write IR03 Vector Register
3CH Read/Write IR04 Vector Register
30H Read/Write Reserved
3EH Read/Write Reserved
3FH Read/Write IR07 Vector Register

4-229

82380

4.5.1 INITIALIZATION COp,jJMANDWORDS (ICW)

Before normal operation can begin, th.e 82380 PIC
must be brought to a known state. There are four
8-bit Initialization Comman~ Words in e.ach interrupt
bank to setup the necessary conditions arid modes
for proper operation. Except ·for the second common
word (ICW2) which is a read/write register, the other
three are write-only registers. Without going.into de­
tail of the bit definitions of the command words, the
following subsections give a brief description of what
functions each command word controls.

ICW1

The ICW1 has three major functions, They are:

- To select between the two IRQ input triggering.
modes (edge-or level-triggered);

- To designate whether or not the interrupt bank is
to be used alone or in the cascade mode. If the
cascade mode is desired, the interrupt bank will
accept ICW3 for further cascade mode program­
ming. Otherwise, no ICW3 will be accepted;

- To determine whether or not ICW4 will be issued;
that is, if any of the ICW4 operations are to be
used.

ICW2

ICW2 is provided for compatibility with. the 82G59A
only. Its contents do not affect the. operation of the
interrupt bank in any way. Whenever the ICW2 of
any of the three banks is written into, anipterrupt is
generated from Bank A at level 1.5. The interrupt

. request will be cleared after the ICW2register has
been read by the 8Q386. The user is expected to
program the corresponding vector register or to use
it as an indicator that an attempt was made to alter
the contents. Note that each ICW2 register has dif­
ferent addresses for read and write operatiops.

Idw3

The interrupt bank will only accept an ICW3 if pro­
grammed in the external cascade mode (as indicat­
ed in ICW1). ICW3 is used for specific programming
within the cascade mode. The bits in ICW3 indicate
which interrupt request inputs have a Slave cascad­
edto them. This will subsequently affect the inter­
rupt vector generation during the interrupt acknowl~
edge cycles as described previously.

ICW4

The ICW4 is accepted only if it was selected in
ICW1. This command word register serves two func­
tions:

.,....,. To select either the Automatic EOI mode or soft­
ware EOI mode;

-To select if the Special Nested mode is to be
used in conjunction with' the cascade mode.

4.5.2 OPERATIOf:,! CONTROL WORDS (OCW)

Once initialized by the ICW's, the interrupt banks will
. be operating in the Fully Nested Mode by default
and they are ready to accept interrupt requests.
However, the operations of each interrupt bank can
be further controlled or modified by the use of
OCW's. Three OCW's are available for programming
various modes and commands. Note that all OCW's
are 8·bit write-only registers.

The modes and operations controlled by the OCW's
are:

- Fully Nested Mode;
- Rotating Priority Mode;
- Special Mask Mode;
- Poll Mode;
- EOI Commands;
- Read Status Commands.

OCW1

OCW1is used solely for masking operations. It pro­
videsa direct. link to the Interrupt Mask Register
(IMR). The.80386 can write to this OCW register to

.' enable or disable the interrupt inputs. Reading the
pre-programmed mask canbe done via the Interrupt
Mask Register which will be discussed shortly.

OCW2

OCW2 is used to select End-Of-Interrupt, Automatic
Priority Rotation, and Specific Priority Rotation oper­
ations. Associated commands and modes of these
operations are selected using the different combina­
tions of bits in. OCW2.

Specifically, the OCW2 is used to:

-' Designate an interrupt level (0-7) to be used to
reset a specific ISR bit or to set a specific priori­
ty. This function can be enabled or disabled;

- Select which software EOI command (if any) is to
be executed (i.e., Non-Specific or $pecific EOI);

- Enable one of the priority rotation operations
(Le., Rotate On Non-Specific EOI, Rotate On Au­
tomatjcEOl, or Rotate on Specific EOI).

OCW3

There are three main categories of operation that
OCW3 controls. That are summarized as follows:

4-230

82380

- To select and execute the Read Status Register
Commands, either reading the Interrupt Request
Register (IRR) or the In-Service Register (ISR);

- To issue the Poll Command. The Poll Command
will override a Read Register Command if both
functions are enabled simultaneously;

- To set or reset the Special Mask Mode.

4.5.3 POLUINTERRUPT REQUEST liN-SERVICE
STATUS REGISTER

As the name implies, this 8-bit read-only register has
multiple functions. Depending on the command is­
sued in the OCW3, the content of this register re­
flects the result of the command executed. For a
Poll Command, the register read contains the binary
code of the highest priority level requesting service
(if any). For a Read IRR Command, the register con­
tent will show the current pending interrupt re­
quest(s). Finally, for a Read ISR Command, this reg­
ister will specify all interrupt levels which are being
serviced.

4.5.4 INTERRUPT MASK REGISTER (IMR)

This is a read-only 8-bit register which, when read,
will specify all interrupt levels within the same bank
that are masked.

4.5.5 VECTOR' REGISTER (VR)

Each interrupt request input has an 8-bit read/write
programmable vector register associated with it. The
registers should be programmed to contain the inter-'
rupt vector for the corresponding request. The con­
tents of the Vector Register will be placed on the
Data Bus during the INT A cycles as described previ­
ously.

4.6 Programming

Programming the 8238Q PIC is accomplished by us­
ing two types of command words: ICW's and
OCW's. All modes and commands explained in the
previous sections are programmable using the -
ICW's and OCW's. The ICW's are issued from the
80386 in a sequential format and are used to setup
the banks in the 82380 PIC in an initial state of oPer­
ation. The OCW's are issued as needed to vary ,and
control the 82380 PIC's operations.

Both ICW's and OCW's are sent by the 80386 to the
interrupt banks via the Data Bus. Each bank distin­
guishes between the different ICW's and OCW's by
the I/O address map, the sequenCe they are issued
(lCW's only), and by some dedicated bits among the
ICW's and OCW's.

All three interrupt banks are programmed in a similar
way. Therefore, only a single bank will be described.

4.6.1.1NITIALIZATION (ICW)

Before normal operation can begin, each bank must
be initialized by programming a sequence of two to
four. bytes written into the ICW's.

Figure 4-6 shows the initialization flow for an inter­
rupt bank. Both ICW1 and ICW2 must be issued for
any form of operation. However, ICW3 and ICW4are
used only if designated in ICW1. Once initialized, if
any programming changes within the ICW's are to
be made, the entire ICW sequence must be repro­
grammed, not just an individuallCW.

. Note that although the ICW2's in the 82380 PIC do
not affect the Bank's operation, they still must be
programmed in order to preserve the compatibility

- with the 82C59A. The contents programmed are not
relevant to the overall operations of the interrupt
bankS. Also, whenever one of the three ICW2's is
programmed, an interrupt level 1.5 in Bank A will be
generated. This interrupt request will be cleared
upon reading of the ICW2 registers. Since the three
ICW2's snare the same interrupt level and the sys­
tem may not know the origin of the interrupt, all three
ICW2's must be read.

However, it is not necessary to provide an interrupt
service routine for the ICW2 interrupt. One way to
avoid this is as follows. At the beginning of the initial­
izationof the interrupt banks, the 80386 interrupt
should be disabled. After each ICW2 register write
operation is performed during the initialization, the
corresponding ICW2 register is read. This read oper­
a~on will. clear the interrupt request of the 82380. At
the end of the initialization, the 80386 interrupt is re­
enabled. With this method, the 80386 will not detect
the ICW2 interrupt request, thus eliminating the need
of an interrupt service, routine.

Certain internal setup conditions occur automatically
within the interrupt bank after the first ICW (ICW1)
has been issued. They are:

- The edge sensitive circuit is reset, which means
that following initialization, an interrupt request
input must· make a HIGH-to-LOW transition to
generate an interrupt;

- The Interrupt Mask Register (IMR) is cleared;
that is, all interrupt inpLR.s areenablEid;

- IRQ7 input of each bank is assigned priority 7
(lowest); -

- Special Mask Mode is cleared and Status Read
is set to IRR; .

- If no lCW4 is needed, then no Automatic-EOI is
selected.

inter 82380

'fCW2 vector address must be programmed now.

(ICW2 INTERRUPT GENERATED)

(ALLOW SERVICING
OF ICW2 INTERRUPT)

290128-55

Other vector addresses may be programmed via ICW2 interrupt service routine.

Figure 4-6. Initialization Sequence

4.6.2 VECTOR REGISTERS (VR)

Each interrupt request input has a separate Vector
Register. These Vector Registers are used to store
the pre-programmed vector number corresponding
to their interrupt sources. In order to guarantee prop­
er interrupt handling, all Vector Registers must be
programmed with the predefined vector numbers.
Since an interrupt request will be generated whenev­
er an ICW2 is written during the initialization se­
quence, it is important that the Vector Registe~ of
IRQ1.5 in Bank A should be initialized and the inter­
rupt service routine of this vector.is set up before the
ICW's are written.

4.6.3 OPERATION CONTROL WORDS (OCW)

After the ICW's . are Programmed, the operations of
each. interrupt. controller. bank can be changed by
writing into the DCW's. as explained before. There is
no special programming sequence required for the
DCW's. Any OCW may be written at any time in or­
der to change the mode of or to perform certain op­
erations on the interrupt banks.

4.6.3.1 Read Status and Poll Commands (OCW3)

Since the reading of IRR and "ISR status as well as
the result of a Poll Command are available on the

4-232

inter 82380

same read-only Status Register, a special Read
Status/Poll Command must be issued before t~
Poll/Interrupt Request/In-Service Status Register is
read. This command can be specified by writing the
required control word into OCW3. As mentioned ear­
lier, if both the Poll Command and the Status Read
Command are enabled simultaneously, the Poll
Command will override the Status Read. That is, af­
ter the command execution, the Status Register will
contain the result of the Poll Command.

Note that for reading IRR and ISR, there is no need
to issue a Read Status Command to the OCWS ev­
ery time the IRR or ISR is to be read. Once a Read

4.7 Register Bit Definition

INITIALIZATION COMMAND WORD 1 (ICW1)

07 06 05 03

Status Command is received by the interrupt bank, it
'remembers' which register is selected. However,
this. is not true when the Poll Command is used.

In the Poll Command, after the OCW3 is written, the
82380 PIC treats the next read to the Status Regis­
ter as an interrupt acknowledge. This will set the ap­
propriate IS bit. if there is a request and read the
priority level. Interrupt Request input status remains
unchanged from the Poll Command to the Status
Read.

In addition to the above read commands, the Inter­
rupt Mask Register (IMR) can also be read. When
read, this register reflects the contents of the pre­
programmed OCW1 which contains information on .
which interruptrequest(s) is(are) currently disabled.

02 01 DO

I x I x I x I 1 I LTIM I X I SNGL I 104 I
~

o - EDG~ TRIGGERED
1 - LEVEL TRIGGERED

0- NO ICW4 NEEDED
1 -ICW4 NEEDED

0- EXTERNAL CASCADE
(ICW3 NEEDED)

1 - NO EXTERNAL CASCADE
(iCW3 NOT NEEDED)

INITIALIZATION COMMAND WORD 2 (ICW2)

I - I r"''''oo' 04 f'''02''''OO'
CONTENT IS NOT RELEVANT TO THE ACTUAL
OPERATION OF" THE BANK BUT CAN BE READ
BY THE INTERRUPT SERVICE ROUTINE TO
DETERMINE WHERE THE INTERRUPT VECTORS
OF" EACH BANK START.

4-233

2901,28-57

290128-56

I
I,
i

!

82380

INITIALIZATION COMMAND WORD 3 (ICW3) .
ICW3 for Bank A:

07 06 05 04 03 02 01 DO

~ 0 - NO SLAVE CASCADED TO BANK A
1 - THERE IS A SLAVE CASCADED TO

TOUT2#/IRQ3# PIN

ICW3 for Bank B:

07 06 05 04 03 02 01 DO

0- NO CASCADED REQUEST TO IRQn
1 - THERE IS A CASCADED REQUEST

CONNECTED TO IRQn (I .•. THE
CORRESPONDING INTERRUPT
REQUEST INPUTS)

ICW3 for Bank C:

0.7 06 05 04 03 02 01 DO

INITIALIZATION COMMAND WORD 4 (ICW4)

L-. 0 - NO CASCADED REQUEST TO IRQn
1 - THERE IS A CASCADED REQUEST

CONNECTED TO IRQn

07 06 05 04 03 02 01 DO

I 0 I 0 I OISfNMI x I x I AEOII xl

OPERATION CONTROL WORD 1 (OCW1).

I . 0 = NORMAL EOI
~ 1 =AUTOMATIC EOI

..

07 06 05 04 03 02 01 DO

4-234

290128-84

290128-85

290128-86

290128-58

290128-59

inter 82380

OPERATION CONTROL WORD 2 (OCW2)

07 06 05 04 03 02 01 DO

R I SL I EOI 0 0 L2 '~" I I I I ,~""'" "''''
0 0 1 NON-SPECIFIC EOI COMMAND

TO BE ACTED UPON

0 1 1 SPECIFIC EOI COMMAND (L2-LO USED)
1 0 1 ROTATE ON NON-SPECIFIC EOI
1 0 0 ROTATE ON AUTO-EOI MODE ~SET)
0 0 0 ROTATE ON AUTO-EOI MODE CLEAR)
1 1 1 ROTATE ON SPECIFIC EOI (L2-LO USED)
1 1 0 SET, PRIORITY (L2-LO USED)
0 1 0 NO OPERATION

290128-60

OPERATION CONTROL WORD 3 (OCW3)

07 06 05 04 03 02 01 DO

ESMM SMM RIS
o 0 NO ACTION o NO ACTION
o 1 NO ACTION 1 - POLL COMMAND 1 NO ACTION
1 0 RESET SPECIAL MASK 0- NO POLL COMMAND o READ IR REG.
1 1 SET SPECIAL MASK 1 READ IS REG.

290128-61

ESMM-Enable Special Mask Mode. When this bit is set to 1, it enables the SMM bit to set or reset the Special Mask
Mode. When this bit is set to 0, SMM bit becomes don't care.

SMM-Special Mask Mode. If ESMM = 1 and SMM = 1, the interrupt controller bank will enter Special Mask Mode. If
ESMM = 1 and SMM = 0, the bank will revert to normal mask mode. When ESMM = 0, SMMhas no effect.

Poll/Interrupt Request/In-Service Status Register

POLL COMMAND STATUS

07 06 05 D4 D3 D2 01 DO

0- NO PENDING INTERRUPT
1 - PENDING INTERRUPT

4-235

BINARY CODE OF
THE HIGHEST PRIORITY
LEVEL REQUESTING

290128-62

82380 £M£OO©rg ooolF©oo~mo©oo
.I.'.,.},

INTERRUPT REQUEST STATUS

07 06 os' D4 03 02 01 DO

IIRQ71 IRQ61 IRQ5 I'RQ4 I IRQ31 IRQ2 I IRQ 11 'ROo;1 "I

IF' IRQ BIT IS: 0 - NO REQUEST
1 - REQUEST PENOING

290128-83

NOTE:
Although all Interrupt Aequest inputs are active LOW; the internal logical will invert the state of the pins so that when
there is a pending interrupt request at the input, the corresponding IRQ bit will be set to HIGH in the Interrupt Request
Status register. "

IN-8ERVICE STATUS VECTOR REGISTER (VR)

07 06 05 04 03 02 01 DO

1,57 I'S6 1,55 1,54 1,53 1,52 1,51 1,50 I '
01 1 DO I

IF" IS" BIT IS: 0 - NOT IN-SERVICE
1 - REQUEST IS IN-SERVICE ,8-Brt VECTOR NUMBER

290128":64 290128-65

4.8 Register Operational Summary

For ease of reference, Table 4-4 gives a, summary of the different operating moeJesandcommands with their
corresponding registers.

Table 4-4 Register Operational Summary

Operational Command
BIts

Description Words

Fully Nested Mode OCW-Default -
Non-specific EOICommand OCW2 EOI
Specific EOI Command OCW2 SL,EOI,

LO,l2
Automatic EOI Mode ICW1,ICW4 1C4,AEOI
Rotate On Non-Specific OCW2 EOI

EOICommand
Rotate On Automatic OCW2 R,SL,EOI

EOI Mode
Set Priority Command OCW2 LO-l2
Rotate On Specific OCW2' R,SL,EOI

EOICommand
Interrupt Mask Register OCW1 MO-M7
Special Mask Mode OCW3 ESMM,SMM
Level Triggered Mode ICW1 LTIM
Edge Triggered Mode ICW1 ' LTIM
Read Register Command, IRR OCW3 RR,RIS
Read Register Command, ISR OCW3 RR,RIS
RedlMR IMR MO-M7
Poll Command OCW3 P
Special Fully Nested Mode ICW2,ICW4, IC4,SFNM

4-236

inter 82380

5.0 PROGRAMMABLE INTERVAL
TIMER·

5.1 Functional Description

The 82380 contains four independently Programma­
ble Interval Timers: Timer 0-3. All four timers are
functionally compatible to the Intel 82C54. The first
three timers (Timer 0-2) have specific functions.
The fourth timer, Timer 3, is a general purpose timer.
Table 5-1 depicts the functions of each timer. A brief
description of each timer's function follows.

Table 5-1. Programmable
Interval Timer Functions

Timer Output Function

0 IR08 Event Based
IR08 Generator

1 TOUT1/REF# Gen. Purpose/DRAM
Refresh Req.

2 TOUTU/IR03# Gen. Purpose/Speaker
OutlIR03#

3 TOUT3# Gen. Purpose/I ROO
Generator

DATA BUFFER • 8-BIT • &: COUNTER 0

INTERNAL BUS
LOGIC

COUNTER 1

CONTROL
GATE WORD

REGISTER I

TIMER 0- Event Based IR08 Generator

Timer 0 is intended to be used as an Event Counter.
The output of this timer will generate an Interrupt
Request 8 (IR08) upon a rising edge of the timer
output (TOUTO). Typically, this timer is used to im­
plement a time-of-day clock or system tick. The Tim­
er 0 output is not available as an external signal.

TIMER 1-General Purpose/DRAM Refresh
Request

The output of Timer 1, TOUT1, can be used as a
general purpose timer or· as a DRAM Refresh Re­
quest signal. The rising edge of this output creates a
DRAM refresh request to the 82380 DRAM Refresh
Controller. Upon reset, the Refresh Request func­
tion is disabled, and the output pin is the Timer 1
output.

TIMER 2-GeneraIPurpose/Speaker OutlIR03#

The Timer 2 output, TOUT2 #, could be used to sup­
port tone generation to an external speaker. This pin
is a bidirectional signal. When used as an input, a
logic LOW asserted at this pin will generate an Inter­
rupt Register 3 (IR03#) (see Programmable Inter­
rupt Controller).

OUTO

OUTI

OUT2

.II EDGE I
IR08

I DETECTOR ,
(INTERN
BANK B

AL)

.I I EDGE

., DETECTOR
REFRESH I

CONTROLLER

REF#

I REF#
2-TO-l
1 MUX

:-+TOUT1/R TOUT1
o select

EF#

OPEN COLLECTOR
L--REF ENA

(INTERN
BLE

AL)

TOUT2#/ IR03#
COUNTER 2

~
T:IR03# tTERNAL)

BANK A

CONTROL OUT3 .II EDGE I IROO "--+ WORD
REGISTER II COUNTER 3

~
I DETECTOR I (lNTERNA

BANK A

Y>- TOUT3#
CLKIN

L)

290128-66

Figure 5-1. Block Diagram of Programmable Interval Timer

4-237

I
i.

'.' :I.·.~I
, ~

"

i
, -:.

inter 82380

TIMER 3-General Purpose/Interrupt Request 0
Generator .

The output of Timer 3 is fed to an edge detector and
generates an Interrupt Request o (IRQO) in the
82380. The inverted output of this timer (TOUT3 #)
is. also available as an external signal for general
purpose use.

5.1.1 INTERNAL ARCHITECTURE

The functional block diagram of the Programmable
Interval Timer section is shown in Figure 5-1. Follow­
ing is a description of each block.

DATA BUFFER & READ/WRITE LOGIC

This part of the Programmable Interval Timer is used
to interface the four timers to the 82380 internal bus.
The Data Buffer is for transferring commands and
data between the 8-bit internal bus and the timers.

GATE"
elK" OUT"

The Read/Write Logic accepts inputs from t~e inter­
nal bus and generates signals to control other func­
tional blocks within the timer section.

CONTROL WORD REGISTERS I & It

The Control Word Registers are write-only registers.
They are used to control the operating modes of the
timers. Control Word Register I controls Timers 0, 1.
and 2, and Control Word Register It controls Timer
3. Detailed description of the Control Word Regis­
ters will be included in the Register Set Overview
section.

COUNTER 0, COUNTER 1,
COUNTER 2, COUNTER 3

Counters 0, 1, 2, and 3 are the major parts of Timers
0, 1, 2, and 3, respectively. These four functional
blocks are identical in operation, so only a single
counter will be described. The internal block dia­
gram of one counter is shown in Figure 5-2.

290128-67

Figure 5·2. Internal Block Diagram of A Counter

4-238

inter 82380

The four counters share a common clock input
(CLKIN), but otherwise are fully independent. Each
counter is programmable t() operate in a different
Mode.

Although the Control Word Register is shown in the
Figure 5-2, it is not part of the counter itself. Its pro­
grammed contents are used to control the opera­
tions' of the counters.

The Status Regi~ter, when latched, contains the cur­
rent contents of the Control Word Register and
status of the output and Null Count Flag. (see Read
Back Command).

The ,Counting Element (CE) is the actual counter. It
is a 16-bit presettable synchronous down ;counter.

The Output Latches (OL) contain two 8-bit latches
(OLM and OLL). Normally, th~se latches. 'follow' the
content of the CEo OLM contains the most signifi­
cant byte of the counter and OLL contains the least
significant byte. If the Counter ,Latch Command is
sent to the counter, OL will latch the. prc:!sent count
until read by the 80386 and then return to follow the
CEo One latch at a time is enabled by the timer's
Control LogiC to drive the internal bus. This is how
the, . 16-bit Counter· communicates over the 8-bit, in­
ternal bus. Note that CE cannot be read. Whenever
the count is read, it is one of the OL's that is being
read.

When a new count is written into the counter, the
value will be stored in the Count Registers (CR),and
transferred to CEo The transferring of tl'le contents
from CR's to CE is defined as 'loading' of the coun~
ter. The Count Register contains two 8.bit registers:
CAM (w!'lioh contains the most significant byte) and
CRL (which contains the least. significant byte). Simi­
lar to the OL's, the Control Logic allows one register
ata time to be loaded from, the . 8-bit. internal bus.
HowE!Ver, both bytes are transferred from the CR's
to the CE simultaneously. Both CR's .are cleared
when the Counter is, programmed. This way, if the
Counter has been programmed for one byte count
(either the most significant or the least significant
byte only), the other byte will be zero. Note that CE
cannot be written into directly. Whenever a count is
written, it is the CR that is being written.

As shown in the diagram, the Control Logic consists
of three signals: CLKIN, GATE, and OUT. CLKIN
and GATE will be discussed in detail in the section
that follows. OUT is the internal output of the coun­
ter.The external outputs of some timers (TOUT) are
the inverted version of OUT (see TOUT1, TOUTU,
TOUT3#). The state of OUT depends on the mode
of operation of the timer.

5.2 Interface Signals

5.2.1 elKIN

CLKIN is an input Signal used by all four timers for
internal timing reference. This signal can be inde­
pendent of the 82380 system clock, CLK2. In the
following discussion, each 'CLK Pulse' is defined as
the time period between a riSing edge and a falling
edge, in that order, of CLKIN.

During the rising edge of ClKIN, the state of GATE
is sampled. All new counts are loaded and counters
aredecremented on the falling edge of CLKIN.

5.2.2 TOUT1, TOUT2#, TOUT3#

TOUT1, TOUTU and TOUT3# are the external
output Signals of Timer 1, Timer 2 and Timer 3, re­
spectively. TOUT2# and TOUT3# are the inverted
signals of their respective counter outputs, OUT.
There is no external ou~ut for TimerO. .

If Timer .2 is to be used as alone generator of a
speaker, external buffering must be used to provide
sufficient drive capability.

The Outputs of Timer 2 and 3 are dual function pins.
The output pin of Timer 2 (TOUT2#tjRQ:3#)' which
is a bidirectional open-collector signal, can also be
used as interrupt request input. When the interrupt
fLinction is enabled (through the' Programmable In­
terrupt Controller), a LOW on this input will generate
an Interrupt Request 3 # to the 82380 Programma­
blelnterrupt C,ontrol,ler. This pin has a weak internal
pull-up resistor. To use the IRQ3# function, Timer 2
should be programmed so that OUT2 is LOW. Addi­
tionally, OUT3 of Timer 3 is connected to an edge
detector which Will generate an Interrupt Request 0 ,
(I ROO) to the 82380 after the rising edge of OUT3
(see Figure 5-1).

5.2.3 GATE

GATE is not an externally controllable signal. Rath­
er, it can be software controlled with the Internal
Control Port. The state of GATE is always sampled
on the rising edge of CLKIN. Depending on the
mode of operation, GATE is used to enable/disable
counting or trigger the start of an operation.

For Timer 0 and 1, GATE is always enabled (HIGH).
For Timer 2 and 3, GATE is connected to Bit 0 and
6, respectively, of an Internal Control Port (at ad­
dress 61H) of the 82380. After a hardware reset, the
state of GATE of Timer 2 and 3 is disabled (LOW).

4~239

82380

5.3 Modes of Operation. .

Each timer can be independently programmed to
operate in one of six different modes. Timers are
programmed by, woting Ii! Control Word into, the con­
trol Word Register followed by an Initial Count (see
Programming). " .'

T~e foJlowing are defined for, use in describing the
different modes of operation. ' ' '

ClK Pulse-A rising edge,th,ena falUng edge, in
that order of. ClKIN. ' " , '
Trigger-A rising edge of a timer's GATE'input:
Timer/COunter loading-The transfer of a count
from COunt Register (CR) to Count El,ement (CE).

5.3.1, MODE G-INTERRUPT ON TERMINAL
COUNT

Mode 0 is typically u$ed for.e~ent counting. After the
Conn:ol Word is written, OLlTis initially lOW, and Will
remain lOW until the counter reaches zero. OUT
thengo~ HIGH and remains HIGH until a, new
count or a new Mode.O Control Word is written into
the counter. ".',

In this mode, GATE = HIGH 'enables counting;
GATE = lOW disables counting. ,However, GATE
has n,o effect on OUT.

After the Control Word anp initi81 count are written to
a timer, the. initial count Will be loaded on the next
ClK pulse. This ClK.pulse does not decrement the
count, so. for an initial count of N, OUT does not go
HIGH until N + 1 ClK pulses after the initial count is
written. .

If a new qount iswrttten to th~timer,it wiUbeloaded
on the next ClK pul~e and counting will continue

from the new'count. If a two-byte count is written
the following happens: ' '" ;'. '

1. Writing the first byte disables counting, OUT is set
lOW immediately (i.e., no ClK pulse required).

2. Writing the second byte allows the new count '0
be, loaded on the, next elK, pulse. ' . ," '

This allo~s the ~unting sequence to be synchroniz­
edby software. Again, OUT does not go HIGH until
~ + 1 ClKpulses after the new count of N is writ-
ten. '

If an initial count'is written while GATE is lOW, the
counter Will be loaded on the next ClK pulse. When
GATEgoes:HIGH, OUTwil/go HIGH N ClK pulses
later; no elK pulse is need,ed to ,Ioed the counter ~
this has already been done. .

$.3.2 MODE ~~ATE RETRIGGERASLE
ON~~$flOT . ,

In this mode, OUT will,be initi~lIy HIGH. OUT Will go
lOW on the ClK pulse following a trigger to start the
one-shot Opera:tion. The OUT signal will then remain
l<?Wuntii the timer reache~ zero. At this point, OUT
will stay HIGH until the next trigger comes in. Since
the state of GATE signals of Timer 0 arid 1 are inter-
nally set to HIGH. ' '

, After writing the Control Word and initial count, the
timer is considered 'armed'. A trigger results in load­
ing the timer and setting OUT lOW on the next CLK
pulse. Therefore, an ihitial count of N will result in a:
one-shot pulse width of NClKcycles. Note that this
one·shotoperation is retriggerable; Le., OUT will re­
main lOW for N ClK pulses after eVery trigger. The
one-shot operation, can be repeated without rewrit-
ing the same count into the timer. " ,
, .. J

If a new .count is written to the timer during a one­
shot operation,the currentone"shot pulse width will
not be affected until the timeF,is retriggered. This is
becauseloeding ·of the new,.countto CE willoceur
only whe~theone-shot is triggered; .' '

",,",1

intJ 82380

CW_10 LSI-4

WRITEUU

CLK

GATE

OUT :=J
I N I N I N I N I 0 0 0 0 I ~ I FF I FF I 4 3 2 1 FF FE

CW.10 LSI-3

WRITE UU
CLK

GATE

OUT :--J
I N I N I N I N I 0 I ~ I ~ I 0 0 0 FF

3 2 1 0 FF

WRITE

CLK

GATE

OUT :=1
I N I N I N I N I 0 0 0 0 0 I g I FF

,3 2 1 2 1 FF
290128-68

NOTES:
The following conventions apply to all mode timing diagrams.
1. Counters are programmed for binary (not BCD) counting and for reading/writing least significant byte (LSB) only.
2. The counter is always selected (CS always low).
3. CW stands for "Control Word"; CW = 10 means a control word of 10, Hex is written to the counter.
4. LSB stands for "least significant byte" of count.
5. Numbers below diagrams are count values.

The lower number is the least significant byte.
The upper number is the most significant byte. Since the counter is programmed to read/write LSB only, the
most significant byte cannot be read.
N stands for an undefined count.
Vertical lines show transitions between count values.

Figure'5-3. ModeO

4-241

intJ··' 82380

CW-12 Ln-3
WRITE' LrUr--....... ------------

CLK

------, n---------'n-----
GATE " . ,

OU~ ::::::J I
ININI"ININI:I: ~I~I~=I:I:

CW-12 LSI-a
WRITE lJU-------------

CLK

GATE -------In----ln----------
OUT ::::J ~ ___ ____Ir

WRITE

eLK

I,N I N I N I N I N I : I,~ o
1

o
3

o
2 ~ I ~ I

GATE --":'"----;n--------l rr----­
OUT =.:J

I N I N I N I N I N I ~ I .. ~ J ~ I ~~ I ~: I ~
Figure 5-4. Mode 1

290128-69

5;3.3 MODE 2-RATE GENERATOR count of N, the sequence repeats every NClK cy-

This mode isadivide-by-N counter. It is typically
used to generate a Real Time Clock interrupt. OUT
will initially be HIGH. When the initial count has dec­
remented to 1. Ol,J.Tgoes lOW for one ClK pulse.
then OUT goes HIGH again. Then the timer reloads,'
the initial count and the process is repeated. In other
words, this. mode is periodic since the same se­
quence is repeated itself indefinitely. For an initial

cles. ..

Similar to Mode 0; GATE '= HIGH enables counting.
where GATE ':" lOW elisa,bles counting. If GATE
goes lOW during an output pulse (lOW), OUT is set
HIGH immediately. A.trigger (rising edge on GATE)
will reload the timer with the initial count on the next
ClK pulse. Then; OUT will go lOW (for one ClK
pulse) N. ClK pulses after the new trigger. Thus.
GATE can be used to synchronize the timer.

4-242

82380

CW.14 LSB =3r""""" ______ -:-___ -:-

WRITE '--1L-.)'

CLK

GATE

OUT

I N I N I N I N I
0 0 0

I
0 0 0

I : I, 3 2 1 3 2 1

CW.14 LSB=3

WRITE LJLj

CLK

GATE LJ
OUT =.::J

I N I N I N I, N I : I ~ I ~ I: ~ I ~ I : I

r-_~~B.S-r_---~--__ ~
WRITE

CLK

GATE

OUT :::J U
ININI~INI 0 0

1 ~ 1 ~ 1 : I
0

1 : I 4 3' 4
290128-70

NOTE:
A GATE transition should not occur on!! clock prior to terminal count

Figure 5·5. Mode 2

After writing a Control Word and initial count, the
timer will be loaded on the next ClK pulse. OUT
goes lOW (for the ClK pulse) N ClK pulses after
the initial count is written. This is another way the,
timer may be synchronized by software. ,

'Writing a new count while counting does not affect
the current counting sequence because the new
count will not be loaded until the end of the current
counting cycle. If a trigger is, received, after writing a
new count but before the end of the current period,

the timer will be loaded with the new count on the
next ClK pulse' after the trigger, and counting will
continue with the new count.

5;3.4 MODE 3-SQUARE WAVE GENERATOR

Mode 3 is typically used for Baud Rate generation.'
Functionally, this mode is similar to Mode 2 except
for the duty cycle of OUT. In this mode, OUT will be
initially HIGH. When half of the initial count has ex­
pired, OUT goes low for the remainder of the count.

4-243

inter 82380

The counting sequence will be repeated, thus this
mode is also periodic. Note that an initial count of N
results in a square wave with a period of N ClK
pulses.

The GATE input can be used to synchronize the tim­
er. GATE = HIGH enables counting; GATE = lOW
disables counting. If GATE goes lOW while OUT is
lOW, OUT is set HIGH immediately (Le,., no ClK
pulse is required). A trigger reloads the timer with the
initial count on the next ClK pulse.

After writing a Control Word and initial count, the
timer will be loaded on the next ClK pulse. This al­
lows the timer to be synchronized by software.

Writing a new count while counting does not affect
the current counting sequence. If. a trigger is re­
ceived after writing a new count but before the end
of the current half-cycle of the square wave, the tim­
er will be loaded with the new count on the next ClK

CW.1, LSB.,.

pulse and counting will continue from the new count.
Otherwise, the new count will be loaded at the end
of the current half-cycle.

There is a slight difference in operation depending
on whether the initial count is EVEN or 000. The
following description is to show exactly how this
mode is implemented.

EVEN COUNTS:

OUT is initially HIGH. The initial count is loaded on
one ClK pulse and is decremented by two on suc­
ceeding ClK pulses. When the count expires (decre­
mented to 2), OUT changes to lOW and the timer is
reloaded with the initial count. The above process is
repeated indefinitely.

000 COUNTS:

OUT is initially HIGH. The initial count minus one
(which is an even number). is loaded on one ClK

WRITE LJUr------------'-----

elK

GATE ------------------

OUT

I H I HI H I N·I : I .~ I: 1 ~ 1 :I~I : I·~ 1 : 1 ~ 1

CW=1. LS8.Sr---'-___________ _

WRITE.LJU

elK

GATE -------------....;.,..----

OUT

CW.1, LS8 .. 4 ______ --:-_r--r--r--_-_

·WRITELJLJ

elK

GATE

OUT

290128-71

NOTE:
A-GATE transition should not occur one clock prior to terminal count.

Figure 5-6. Mode 3

4-244

82380

pulse and is decremented by two on succeeding
ClK pulses. One elK pulse after the count expires
(decremented to 2), OUT goes LOW and the timer is
loaded with the initial count minus one again. Sue·
ceeding ClK pulses decrement the count by two.
When the count expires, OUT goes HIGH immedi·
ately and the timer is reloaded with the initial count
minus one. The above process is repeated indefi·
nitely. So for ODD counts, OUT will be HIGH for (N
+ 1)/2 counts and lOW for (N - 1)/2 counts.

5.3.5 MODE 4-INITIAL COUNT TRIGGERED
STROBE

This mode allows a strobe pulse to be generated by
writing an initial count to the timer. Initially, OUT will

CW-18 LSB.a

be HIGH. When a new initial count is written into the
timer, the counting sequence will begin. When the
initial count expires (decremented to 1), OUT will go
lOW for oneClK. puiS!" and then go HIGHagain.

Again, GATE = HIGH enables counting while GATE
= lOW disables counting. GATE hasno effect on
OUT. .

After writing the Control Word and initial count, the
timer will be loaded on the next ClK pulse. This ClK
pulse does not decrement .the cQunt, so for an initial
count of N, OUT does not strobe lOW until N + 1
ClK pulses after initial count is written.

If a new count is written during counting, it will be
loaded in the next ClK pulse and counting will con·
tinue from the new count.

WRITE "l.....fl.--1r-". --------
CLK

GATE

OUT =::J u
I N I N I N I N I : I : o I 0 I FF I FF I FF I 1 0 FF FEFD

cw.;,. LSB_a

WRITE "l.....fl.--1---------

WIIrrE

eLK

GATE ---------~----..;...---

OUT=:J
ININININI:I:I~I:

Figure 5-7. Mode 4
4·245

290128-72

inter 82380

If a two-byte count is written,. the following will occur:

1. Writing the first byte haS no effect on counting.

2. writing the second bYte allows the new count to
be loaded on the next CLK pulse.

by writing an initial count. Initially, OUT will be HIGH.
Counting. is triggered by a rising edge of GATE.
When the initial count has expired (decremented to
1), OUT will go LOW for one· CLK pulse and then go
HIGH again.

OUT will strobe LOW N+ 1 CLK pulses after the
new count of N is written. Therefore, when. the
strobe pulse will occur after a trigger depends on the
value. of the initial count loaded.

5.3.6 MODE· &-GATE RETRIGGERABLE
STROBE

After loading the Control Word and initial count, the
Count Element will not be loaded until the CLK pulse
after a trigger. This CLK pulse does not decrement
the count. Therefore, for an initial count of N, OUT
does not strobe LOW until N + 1 CLK pulses after a
trigger.

Mode 5 is very similar to Mode 4 except the count
sequence i$ triggered by the GATE signal instead of

CW=IA .LS8=3,..... _________ _

WRITELJU

CLK

GATE -------1 rr--------lfC.:=

OUT

I NI N IN IN I NI :

CW=IA LSB=3

o
1

WRITE LJUr---------------

CLK

GATE - - ------ -1n=..=..:lJ\ --- -- ----- --

OUT =-.J L.J
IN IN I N I N I N I N I : I ~ o I 0 I FF I 1 0 FF

LSB=5

WRITE ,--, r-----------------

OUT =:J. U
I N I N I N I N I N I : I ~ I .~ I ~ I ~~ I ~~ I :

Figure 5-8. Mode 5

4-246

o
4

290128-73

82380

SUMMARY OF GATE OPERATIONS

Mode
GATE LOW or

Going LOW

0 Disable Count
1 No Effect

2 1. Disable Count
2. Sets Output HIGH

Immediately
3 1. Disable Count

2. Sets Output HIGH
Immediately

4 Disable Count
5 No Effect

The counting sequence is retriggerable. Every trig­
ger will result in the timer being loaded with the initial

. count on the next ClK pulse.

If the new count is written during counting, the cur­
rent counting sequence will not be affected. If a trig­
ger occurs after the new count is written but before
the current count expires, the timer will be loaded
with the new count on the next ClK pulse and a new
count sequence will start from there.

. .
5.3.7 OPERATION COMMON TO ALL MODES

5.3.7.1 GATE

The GATE input is always sampled on· the rising
edge of ClKIN. In Modes 0,2,3 and 4, the GATE
input is level sensitive. The logic level is sampled on
the rising edge of ClKIN. In Modes 1, 2, 3 and 5, the
GATE input is rising edge sensitive. In these modes,
a rising edge of GATE (trigger) sets an edge sensi­
tive flip-flop in the timer. The flip-flop is reset imme­
diately after it is sampled. This way, a trigger will be
detected no matter when it occurs; i.e., a HIGH logic
level does not have to be maintained until the next
rising edge of ClKIN. Note that in Modes 2 and 3,
the GATE input is both edge and level sensitive.

5.3.7.2 Counter

New counts are loaded and counters are decre­
mented on the falling edge ofClKIN. The largest
possible initial count is o. This is equivalent to 2**16
for binary counting and 10"4 for BCD counting.

Note that the counter does not stop when it reaches
zero. In Modes 0, 1, 4, and 5, the counter 'wraps

GATE Rising
GATE
HIGH

No Effect Enable Count
1. Initiate Count No Effect
2. Reset Output

After Next Clock
Initiate Count Enable Count

Initiate Count Enable Count

No Effect Enable Count
Initiate Count No Effect

around' to the highest count: either FFFF Hex for
binary counting or 9999 for BCD counting, and con­
tinues counting. Modes 2 and 3 are periodic. The
counter reloads itself with the initial count and con­
tinues counting from there.

The minimum and maximum initial COI,In! in each
counter depends on the mode .ot. operation. They
are summarized below. .

Mode Min. MaXI

0 1 0
1 1 0
2 2 0
3 2 0
4 1 0
5 1 0

5.4 Register Set Overview

The Programmable Interval Timer module of the
82380 contains a set· of six registers. The port ad­
dress map of these registers is shown in Table 5-2.

Table5-2. Timer Register Port Address Map

Port Address Description.'

40H Counter 0 Register (readiVvrite)
41H Counter 1 Register (read/write)
42H COunter 2 Register (read/write)
43H Control Word Register I

(Counter 0, 1. & 2) (write-only)

44H Counter 3 Register (read/write)
45H Reserved
46H Reserved
47H Control Word Register II

(Counter 3) (write-only)

4-247

I
I
!

82380

5.4.1 COUNTER 0, 1, 2, 3 REGISTERS

These four 8-bitreglsters are functionally identical.
They are used to write the initial count value into the
respective timer,Also, they can be used to read the
latched count value of a timer. Since they are 8-bit
registers, reading and writing of the 16-bit initial
count must follow the count format specified. in the
Control Word Registers; i.e., least significant byte
only, most significant byte only, or least significant
byte then most significant byte (see Programming).

5.4.2 CONTROL WORD REGISTER I & II

There are two Control Word Registers associated
with the Timer section. One of the two registers
(Control Word Register I) is used to control the oper­
ations of Counters 0, 1, and 2 and the other (Control
Word Register II) is for Counter 3. The major func~
tions of both Control Wor.d Registers are listed be­
low: .

- Select the timer to be programmed.
- Define which mode the selectedtimer i's to oper-

ate in.
- Define the count sequence; i.e., if the selected,

, timer is to count as a Binary Counter or a Binary
Coded Decimal (BCD) Counter.

- Select the byte access sequence during timer,
read/write operations; i.e., least . significant byte
only, most significant byte only, or least signifi­
cant byte first, then most significant byte.

Also, the Control Word Registers can be pro­
grammed to perform a Counter latch Command or a

, Read Back Command which will be described later.

!S.5 Programming

5.5.1 INITIALIZATION

Uponpower.;up or reset, the state of all timers is
undefined. The mode, count value, and output of all
timers are random. From. this pOint on, how each
timer operates is determined solely by how it is pro­
grammed. Eac" timer mustbe programmed before it
can be used. Since the outputs of some timers can
gener~teinterruptsignalsto the 82380, all timers
should be initialiZed to a .known state. .

Timers are programmed by writing a Control Word
into their respeotive Control Word . Registers. Then,
an Initial Count can be written into the correspond-

ing Count Register. In general, the programming. pro­
cedure is very flexible. Only two conventions need to
be remembered:
1. For each timer, the Control Word must be written

before the initial count is written.
2. The 16-bit initial count must follow the count for- ,

mat specified in the Control Word (least signifi­
cant byte only, most significant byte only, or least
Significant byte first, followed by most significant
byte).

Since the two Control Word Registers and the four
Counter Registers have separate addresses, and
each timer can be individually selected by the appro­
priate Control Word Register, no special instruction
sequence is required. Any programming sequence
that follows the conventions above is acceptable.

A new initial count may be written to a timer at any
time without affecting the timer's programmed mode
in any way. Count sequence will be affected as de­
scribed in the Modes of Operation section. Note that
the new count must follow the programmed count
format.

If a timer is previously programmed to read/write
two-byte counts, the following precaution applies. A
program must not transfer control between writing
the first and second byte to another routine which
also writes into the same timer. Otherwise, the
read/write will result in incorrect cOunt. .

Whenever a Control Word is written to a timer, all
control logic for that timer(s) is immediately. reset
(i.e., no ClK pulse is required). Also, the corre­
sponding output pin, TOUT("), goes to a known ini­
tial state.

5.5.2 READ. OPERATION

Three methods are available to read the. current
count as well as the s~atus of each timer. They are:
Read Counter Registers, Counter Latch Command
and Read Back Command. Following is a descrip­
tion of'these methods.

READ COUNTER REGISTERS

The current count of a timer can be read by perform- .
ing a read operation on .the corresponding Counter
Register. The only reStrictiOn of this read operation
is that theCLKIN of the timers must be inhibited by

~-248

82380

using external logic. Otherwise, the count may be in
the process of changing when it is read, giving an
undefined result. Note that since all four timers are
sharing the same ClKIN signal, inhibiting ClKIN to
read a timer will unavoidably disable the other timers
also. This may prove to be impractical. Therefore, it
is suggested that either the Counter latch Com­
mand or the Read Back Command be used to read
the current count of a timer.

Another alternative is to temporarily disable a timer
before reading its Counter Register by using the
GATE input. Depending on the· mode of operation;
GATE' = lOW will disable the counting operation.
However, this option Is available on Timer 2 and 3
only, since the GATE signals of the other two timers
are internally enabled all the time.

COUNTER LATCH COMMAND

A Counter latch Command will be executed when­
ever a special Control Word is written into a Control
Word Register. Two bits written into the Control
Word Register distinguish this command from a 'reg­
ular' Control Word (see Register Bit Definition). Also,
two other bits in the Control Word will select which
counter Is to be latched.

Upon execution of this command, the selected
counter's Output latch (Ol) latches the count at the
time the Counter latch Command is received. This
count is held in the latch until it is read by the 80386,
or until the timer is reprogrammed. The count is then
unlatched automatically and the Ol returns to 'fol­
lowing' the Counting Element (CE). This allows read­
ing the contents of the counters 'on the fly' without
affecting counting in progress. Multiple Counter
latch Commands may be used to latch more than
one counter. Each latched count is held until it is
read. Counter latch Commands do not affect the
programmed mode of the timer in any way.

If a counter is latched, and at some time later, it is
latched again before the prior latched count is read,
the second Counter latch Command is ignored. The
count read will then be the count at the time the first
command was issued.

In any event, the latched count must be read ac­
cording to the programmed format. Specifically, if
the timer is programmed for two-byte counts, two
bytes must be read. However, the two bytes do not
have to be read right after the other. Read/write or
programming operations of other timers may be per­
formed between them.

Another feature of this Counter latch Command is
that read and write operations of the same timer
may be interleaved. For example, if .the timer is pro­
grammed for two-byte counts, the following se­
quence is valid.

1. Read least significant byte.

2. Write new least significant byte.

3. Read most significant byte.

4. WritEi' new most significant byte.

If a timer is programmed to read/write two-byte
counts, the following precaution applies. A program
must not transfer control between reading the first
and second byte to another ~outine which also reads
from that same timer. Otherwise, an incorrect count
will be read.

READ BACK COMMAND

The Read Back Command is another special Com­
mand Word operation which allows the 'user to read
the current count value and/or the status of the se­
lected timer(s). Like. the Counter latch Command,
two bits in the Command Word identify this as a
Read Back Command (see Register Bit Definition).

The Read Back Command may be used to latch
multiple counter Output latches (Ol's) by selecting
more than one timer within a Command Word. This
single command is functionally equivalent to several
Counter latch Commands, one for each counter to
be latched. Each counter's latched count will be
held until it is read by the 80386 or until the timer is
reprogrammed. The counter is automatically un­
latched when read, but other counters remain
latched until they are read. If multiple Read Back
commands are issued to the same timer without
reading the count, all but the first are ignored; i.e.,
the count read will correspond to the very first Read
Back Command issued.

As mentioned previously, the Read Back Command
may also be used to latch status information of the
selected timer(s). When this function is enabled, the
status of a timer can be read from the Counter Reg­
ister after the Read Back Command is issued. The
status information of a timer includes the following:

1. Mode of timer:

This allows the user to check the mode of opera­
tion of the timer last programmed.

2. State of TOUT pin of the timer:

This allows the user to monitor the counter's out­
put pin via software, possibly eliminating some
hardware from a system.

··:1··.:····

)

I '~,

Ii
Il I.
!~

1

I:
II
.1

I~

82380

3. Null Count/Count available:

The Null Count Bit in the status byte indicates if
the last count written to the Count Register (CR)
has been loaded into the Counting Element (GE).
The exact time this happens depends on the
mode of the timer and. is described in the Pro­
gramming section. Until the count is loaded into
the Counting Element (CE), it cannot be read from
the timer. If the count is latched or read before
this occurs, the count value will not reflect the
new count just written.

If multiple status latch operations of the timer(s) are
performed without reading the status, all but the first
command are ignored; i.e., the status read in will
correspond to the first Read Back Command issued.

Both the current count and status of the selected
timer(s) may be latched simultaneously by.enabling
both functions in a single Read Back Command.
This is functionally the same as issuing two separate
Read Back Commands at once. Once again, if multi­
pie, read commands are issued to latch both the
count and status of a timer, all but the first command
will be ignored.

If both count and status of a timer are latched, the
first read operation of that . timer will return the
latched status, regardless of which was latched first.
The next one or two (if two count bytes are to be
read) read operations return the latched count. Note
that subsequent read operations on the Counter
Register will return the unlatched count (like the first
read method discussed).

5.6 Register Bit Definitions

COUNTER 0, 1, 2, .3 REGISTER (READ/WRITE)

Port Address Description

40H Counter 0 Register (read/write)
41H Counter 1 Register (read/write)
42H Counter 2 Register (read/write)
44H Counter 3 Register (read/write)
45H Reserved
46H Reserved

I 07 I 06 I 05 I 04 I 03 I 02 I 01 ~
I·· ~LSB Of" COUNT BYTE

MSBOf" COUNT BYTE
290128-74

4-250

82380

Note that these B-bit registers are for writing and
reading of one byte of the 16-bit count value, either
the most significant or the least significant byte.

CONTROL WORD REGISTER II

D7 D6 ·D5 D4 D3 D2 Dl DO
CONTROL WORD REGISTER I & II (WRITE-ONLY)

Port Address Description

43H . Control Word Register I
(Counter 0, 1, 2) (write-only)

47H Control Word Register II
(Counter 3) (write-only)

CONTROL WORD REGISTER I

SELECT COUNTER:
00 SELECT COUNTER 3
01 RESERVED
10 RESERVED
11 READ BACK COMMAND

FOR COUNTER 3

READ/WRITE:
00 COUNTER LATCH COMMAND
01 READ/WRITE LSB BYTE ONLY
10 READ/WRITE MSB BYTE ONLY

0- 16-BIT BINARY
COUNTER

1 - BCD COUNTER
(4 DECADES)

D7 D6 D5 D4 D3 D2 Dl DO 11 READ/WRITE LSB, THEN MSB BYTE

MODE:
000 MODE 0
001 MODE 1
Xl0 MODE 2
Xll MODE 3
100 MODE 4
101 MODE 5

290128-78

SELECT COUNTER:
00 SELECT COUNTER 0

0- 1 6-BIT BINARY
COUNTER

COUNTER LATCH COMMAND FORMAT
(Write to Control Word Register)

01 SELECT COUNTER 1
10 SELECT COUNTER 2
11 READ BACK COMMAND

FOR COUNTER 0-2

READ/WRITE:
00 COUNTER LATCH COMMAND
01 READ/WRITE LSB BYTE ONLY
10 READ/WRITE MSB BYTE ONLY

1 - BCD COUNTER
(4 DECADES)

.07 06 05 D4

''$' 0 0

11. READ/WRITE L$B, THEN MSB BYTE

MODE:
000 MODE 0
001 MODE 1
Xl0 MODE 2
Xll MODE 3
100 MODE 4
101 MODES

00 COUNTER 0 (OR 3)
01 COUNTER 1

29012B-75 10 COUNTER 2

Timer Gate
Mode Trigger

0 1 2 3 Edge Level

0 X
1 NA NA <D <D X
2 X X
3 X X
4 X
5 NA NA .<D <D X

(j) = Must use Port 61 to generate../" edge.
NA = Not Applicable

11 READ BACK COMMAND

Interrupt on Terminal Count
Gate Retriggerable One Shot
Rate Generator
Square Wave Generator
Initial Count Triggered Strobe
Gate Retriggerable Strobe

4-251

03 D2 01 DO

I x x ·X x

290128-77

82380

READ BACK COMMAND FORMAT
(Write to Control Word Register)

07 06 05

0- LATCH COUNT
1- 00 NOT LATCH

COUNT

04 03 02 01 00

0- COUNTER NOT
SELECTED

0- LATCH STATUS
1- 00 NOT LATCH

STATUS

1 - COUNTER IS
SELECTED

290128-78

STATUS FORMAT
(Returned from Read Back Command)

07 • 06 05 04 03 02 01 00

0- COUNT AVAILABLE
FOR READING COUNTER

MODE 1 -. NULL COUNT

6.0 WAIT STATE GENERATOR

6.1 Functional Description
The 82380 contains a programmable Wait State
Generator which can generate a pre-programmed
number of wait states during both CPU and DMA
initiated bus cycles. This Wait State Generator is ca­
pable of generating 1 to 16 wait states in non-pipe-

290128-79

lined mode, and 0 to 15 wait states in pipelined
mode. Depending on the bus cycle type and the two
Wait State Control inputs (WSC 0-1), a pre-pro­
grammed number of wait states in the selected Wait
State Register will be generated.

The Wait State Generator can also be disabled to
allow the use of device$ capable of generating their
own READY " signals. Figure 6-1 is. a block diagram
of th~ Wait State Generator.

82380

6.2 Interface Signals

The following describes the interface signals which
affect the operation of the Wait State Generator.
The READY #I, WSCO and WSC1 signals are inputs.
READYO#l is the ready output signal to the host
processor.

6.2.1 READY #I

READY #I is an active LOW input signal which indi­
cates to the 82380 the completion of a bus cycle. In
the Master mode (e.g., 82380 initiated DMA trans­
fer), this signal is monitored to determine whether a
peripheral or memory needs wait states inserted in
the current bus cycle. In the Slave mode, it is used
(together with the ADS #I signal) to trace CPU bus
cycles to determine if the current cycle is pipelined.

6.2.2 READYO#l

READYO#l (Ready Out#l) is an active LOW output
signal and is the output of the Wait State Generator.
The number of wait .states generated depends .on
the WSC(0-1) inputs. Note that special cases are

handled for access to the 82380 internal registers
and for the Refresh cycles. For 82380 internal regis­
ter access, READYO#l will be delayed to take into
account the command recovery time of the register.
One or more wait states will be generated in a pipe­
lined cycle. During refresh, the number of wait states
will be determined by the preprogrammed value in
the Refresh Wait State Register.

In the simplest configuration, READYO#l can be
connected to the READY #I input of the 82380 and
the 80386 CPU. This is, however, not always the
case. If external circuitry is to control the READY #I
inputs as well, additional logic will be required (see
Application Issues).

6.2.3 WSC(O-1)

These two Wait State Control inputs select one of
the three pre-programmed 8·bit Wait State Registers
which determines the number of wait states to be
generated. The most significant half of the three
Wait. State Registers corresponds to memory ac­
cesses, the least significant half to I/O accesses.
The combination WSC(0-1) = 11 disables the Wait
State Generator.

INTERNAL WAIT STATE
. REQUIREMENT

0403

MEMORY 0 I/O 0
WSCO

WSCI

M/IO#

MEMORY 1 I/O 1

MEMORY 2 I/O 2

(RESERVED) REFRESH

PROGRAMMABLE WAIT STATE
REGISTERS

WAIT STATE
COUNTER

Figure 6-1. Walt State Generator Block Diagram

4-253

290128-80

82380

ClK2

ClK

A(2- 31) Ir---+--__ +---~--_I_--_I_--....j.--_l,.
1.1/10#

8E(0-3)# .y[!l[!ll$:r:=>-t---~B!l[!l$C::J+---t---+ WSC(O-1) 1

AOS#

REAOYO#

ONE WAIT STATE TWO WAIT STATES·
290128-81

Figure 6·2. Wait States In Non-PipeJined Cycles

6.3 Bus Function

6.3.1 WAIT STATES IN NON-PIPELINED CYCLE

The timing diagram of two typical non·pipelined cy·
cles with 82380 generated wait states is shown in
Figure 6·2. In this diagram, it is assumed that the
internal registers of the 82380 are not addressed.
During the first T2 state of each bus cycle, the Wait
State Control and the MIIO# inputs are sampled to
determine which Wait State Register (if any) is. se­
lected. If the WSC inputs are active (I.e., not both are
driven HIGH), the pre-programmed number of wait
states corresponding to the selected Wait State
Register will be requested. This is done by driving
the READYO# output HIGH during the end of each
T2 state.

The WSC(O-1) inputs need only be valid during the
very first T2 state of each non-pipelined cycle. As a
general rule, the WSC inputs are sampled on the

rising edge of the next clock (82384 ClK) after the
last state when ADS# (Address Status) is asserted.

The number of wait states generated depends on
the type of bus cycle, and the number of wait states
requested. The various combinations are discussed
below.

1. Access the 82380 internal registers: 2 to 5 wait
states, depending upon the specific register ad­
dressed. Some back-to-back sequences to the In­
terrupt Controller will require 7 wait states.

2. Interrupt Acknowledge to the 82380: 5 wait
states.

3. Refresh: As programmed in the Refresh Wait
State Register (see Register Set Overview). Note
that if WSC(O-1) = 11, READYO# will stay inac­
tive.

4. Other bus cycles: Depending on WSC(0-1) and
MIIO# inputs, these inputs select a Wait State
Register in which the number of wait states will be
equal to the pre-programmed wait state count in
the register plus 1. The Wait State Register selec­
tion is defined as follows (Table 6-1).

4-254

82380

Table 6-1. Walt State Register Selection Note that during HALT and SHUTDOWN, the num·.
ber of wait states will depend on the WSC(0-1) in­
puts, which will s.elect the memory half of one of the
Wait State Registers (see CPU Reset and Shutdown
Detect).

MilO # WSC(1-0) Register Selected

0 00 WAIT REG 0 (1/0 half)
0 01 WAIT REG 1 (1/0 half)
0 10 WAIT REG 2 (1/0 half)
1 00 WAIT REG 0 (MEM half) 6.3.2 WAIT STATES IN PIPELINED CYCLE
1 01 WAIT !;lEG 1 (MEM half)
1 10 WAIT REG 2 (MEM half)
X 11 Wait State Gen. Disabled

The Wait State Control signals, WSC(0-1), can be
generated with the address decode and the Readl
Write control signals as shown in Figure 6-3.

The timing diagram of two typical pipelined cycles
with 82380 generated wait states is shown in Figure
6·4. Again, in this diagram, it is assumed that the
82380 internal registers are not addressed. As de·
fined in the timing of the 80386 processor,· the Ad·
dress (A 2-31), Byte Enable (BE 0-3), and other
control signals (MIIO#, ADS#) are asserted one
T state earlier than in a non-pipeiined cycle; i.e., they
are asserted at T2P. Similar to the non·pipelined
case, the Wait State Control (WSC) inputs are sam­
pled in the middle of the state after the last state
when the ADS # signal is asserted. Therefore, the
WSC inputs should be asserted during the T1 P state
of each pipelined cycle (which is one T state earlier
than in the non·pipelined cycle).

ADDRESS DECODED·
lOGIC wsc (0-1)

W/R#

290128-82

Figure 6-3. WSC(O-1) Generation

TIp T2 T2p TIp T2 T2 T2p

ClK2

ClK

A(2- 31) It---_;_----t~---I---_t---;_--_;_--_v
M/IO#

BE(O- 3)# ~--+----f'''''''--+---+----+----+---r-

WSC(o -1)

ADS#

READY# ~~mxXm~-r,. __ -+,

READYO#

TWO WAIT STATES

Figure 6-4. Wait State in Pipelined Cycles

4·255

290128-83

82380

The number of wait states generatecHn a pipelined
cycle is selected in a similar mariner as in the non·
pipelined case discussed in the previous Section.
The only difference here is that the actual number of
wait states generated will be one less than that of
the non·pipelined cycle. This is done automatically
by the Wait State Generator. .

6.3.3 EXTENDING AND EARLY TERMINATING
BUS CYCLE

The 82380 allows external. logic to either add wait
states or cause early termination of a bus cycle by
controlling the READY # input to the 82380 and the
host processor. A possible configuration is shown in
Figure 6·5.

The EXT. ROY # (External Ready) signal of Figure
6·5 allows external devices to cause early termina·
tion of a bus cycle. When this signal is asserted
LOW, the output of the circuit will also go LOW .
(even though the READYO# of the 82380 may still

be HIGH). This outpulis fed to theREADY# input of
the 80386 and the 823,80 to indicate .the cC>!T1PletiQn
of the current bus cycle. .' .'

Similarly, the EXT. NOT READY (External Not
Ready) signal is used to delay the READY # input of
the processor and the 82380. As long as this Signal
is driven HIGH, the output of the circuit will drive the
READY # input HIGH. This will effectively extend the
duration of a bus cycle.' However, it is important to
note that if the tWo~levellogic is not fast enough to
satisfy the READY # setup time, the OR gate should
be eliminated. Instead, the 82380 Wait State Gener·
ator can be disabled by driving . both WSq(0-1)
HIGH. In this case, the addressed memory or 110
device'should activate the external READY# Input
whenever it is ready to terminate the current bus
cycle.

Figure 6·6 and 6·7 show the timing relationships of
the ready signals for the early termination and exten·
sion of the bus cycles. Section 6.7, Application Is·
sues, contains a detailed timing analysis of the ex·
ternal circuit.

80386

EXTERNAL READY#
(EARLY TERlttINATION)

82380

ClK2

ClK
A(2-31)

Itt/IO#
8E(0-3)#

ADS#

T1

READY#

READYO#

290128-84

L,;..---_.:.---J READY# _--'

Figure 6-5. External 'READY' Control L09Ic

T2 T1 T2 T2 T2 Tx

REA~#ix~~~xmL-~~za~~~~----~--~ __ ~~~~
READYO#

TWO WAIT STATES

Figure 6-6. Early Termination of Bus Cycle By 'READY #'

4·256

290128-85

intJ 82380

T1 T2 T2 T2 T2 Tx Tx

ClK2

ClK

A(2- 31) ir---+---+----I----!----,lr---+---t­M/IO#
8E(0- 3)#

ADS#

READYO#

290128-86

Figure 6·7. Extending Bus Cycle by 'READY #'

Due to the following implications, it should be noted WAIT STATE REGISTER 0,1,2
that early termination of bus cycles in which 82380
internal registers are accessed is not recommended.

1. Erroneous data may be read from or written into
the addressed register.

2. The 82380 must be allowed to recover either be·
fore HLDA (Hold Acknowledge) is asserted or be·
fore another bus cycle into an 82380 internal reg­
ister is initiated.

The recovery time, in bus periods, equals the re­
maining wait states that were avoided plus 4.

6.4 Register Set Overview

Altogether, there are four 8-bit internal registers as­
sociated with the Wait State Generator. The port ad­
dress map of these registers is shown below in Ta­
ble 6-2. A detailed description of each follows.

Table 6-2. Register Address Map

Port Address Description

72H Wait State Reg 0 (read/write)
73H Wait State Reg 1 (read/write)
74H Wait State Reg 2 (read/write)
75H Ref. Wait State Reg (read/write)

These three 8-bit read/write registers are functional­
ly identical. They are used to store the pre-pro­
grammed wait state count. One half of each register
contains the wait state count for I/O accesses while
the other half contains the count for memory ac­
cesses. The total number of wait states generated
will depend on the type of bus cycle. For a non-pipe­
lined cycle, the actual number of wait states request­
ed is equal to the wait state count plus 1. For a
pipelined cycle, the number of wait states will be
equal to the wait state count in the selected register.
Therefore, the Wait State Generator is capable of
generating 1 to 16 wait states in non-pipelined
mode, and 0 to 15 wait states in pipelined mode.

Note that the minimum wait state count in each reg­
ister is O. This is equivalent to 0 wait states for a
pipelined cycle and 1 wait state for a non-pipelined
cycle.

REFRESH WAIT STATE REGISTER

Similar to the Wait State Registers discussed above,
this 4-bit register is used to store the number of wait
states to be generated during the DRAM refresh cy­
cle. Note that the Refresh Wait State Register is not
selected by the WSC inputs. It will automatically be

4-257

82380

chosen whenever a DRAM refresh cycle occurs. If
the Wait State Generator is disabled during the re­
fresh cycle (WSC(0-1) = 11), READYO# will stay
inactive and the Refresh Wait State Register is ig­
nored.

6.5 Programming

Using the Wait State Generator is relatively straight­
forward. No special programming sequence is re­
quired. In order to ensure the expected number of
wait states will be generated when a register is se­
lected, the registers to be used must be pro­
grammed after power-up by writing the appropriate
wait state count into each register. Note that upon
hardware reset, all Wait State Registers are initial­
ized with the value FFH, giving the maximum num­
ber of wait states possible. Also, each register can
be read to check the wait state count previously
stored in the register.

6.6 Register Bit Definition

WAIT STATE REGISTER 0,1,2

Port Address Description

72H Wait State Register 0 (read/write)
73H Wait State Register 1 (read/write)
74H Wait State Register 2 (read/write)

L-___ -L-+ I/O WAIT

STATE COUNT

L-___ -L-+ MEMORY WArr STATE COUNT

290128-87

REFRESH WAIT STATE REGISTER

Port Address: 75H (Read/Write)

L-.....L._..L--L-+ REFRESH WAIT
STATE COUNT

290128-88

6.7 Application Issues

6.7.1 EXTERNAL 'READY' CONTROL LOGIC

As mentioned in section 6.3.3, wait state cycles gen­
erated by the 82380 can be terminated early or ex­
tended longer by means of additional external logic
(see Figure 6-5). In order to ensure that the
READY # input timing requirement of the 80386 and
the 82380 is satisfied, special care must be taken
when designing this external control logic. This sec­
tion addresses the deSign requirements.

4-258

inter 82380

A simplified block diagram of the external logic along
with the READY # tiiming diagram is shown in Figure
6·8. The purpose is to determine the maximum delay
time allowed in the external control logic in order to
satisfy the READY # setup time.

First, it will be assumed that the 80386 is running at
16 MHz (i.e., CLK2 and 32 MHz). Therefore, one bus
state (two CLK2 periods) will be ~uivalent to 62.5
nsec. According to the AC specifications of the

82380, the maximum delay time for.valid READYO#
signal is 31 ns after the rising edge of CLK2 in the
beginning of T2 (for non·pipelined cycle) or T2P (for
pipelined cycle). Also, the minimum READY # setup
time of the 80386 and the 82380 should be 20 ns
before the rising edge of CLK2 at the beginning of
the next bus state. This limits the total delay time for
the external READY # control logic to be 11 ns
(62.5·31·21) in order to meet the READY # setup
timing requirement.

EXT. READY# EXT. NOT READY

80386-16
82380

READY I READY#

1
CONTROL

I
READYO#

LOGIC

READY#

~---------------A----------------~

CLK2

REA~O# __ ~ ______________ ~~,~ ______ -+ ______ +-__ __

A = PHil + PHI2 = 62.5 ns
B = Maximum READYO# Valid Delay = 31 ns
C = READY # Set-up 11me = 21 ns
o = Maximum Ready Control Logic Delay = A - B - C = 11 ns

Figure 6-8. 'READY' Timing Consideration

4·259

290128-89

inter 82380

7.0 DRAM REFRESH CONTROLLER

7.1 FunctionalDescription

The 82380 DRAM Refresh Controller consists of a
24-bit Refresh Address Counter and Refresh Re­
quest logic for DRAM refresh operations (see Figure
7~1). TIMER 1 can be used as a trigger signal to the
DRAM Refresh Request logic. The Refresh Bus Size
can be programmed to be 8-, 16-, or 32-bit wide.
Depending on the Refresh Bus Size, the Refresh
A~dress Counter will be incremented with the appro­
priate value after every refresh cycle. The internal
logic of the 82380 will give the Refresh operation the
highest priority in the bus control arbitration process.
Bus control is not released and re-requested if the
82380 is already a bus master.

TOUT1
(INTERNAL) DRAM

REFRESH
CONTROLLER

7.2 Interface Signals

7.2.1 TOUT1/REF#

The dual function output pin of TIMER 1 (TOUT1/
REF#') can be programmed to generate DRAM Re­
fresh signal. If this feature is enabled, the rising .edge
of TIMER 1 output (TOUT1) will trigger the DRAM
Refresh Request logic. After some delay for gaining
access of the bus, the 82380 DRAM Controller will
generate a DRAM Refresh Signal by driving REF#
output LOW. This signal is cleared after the refresh
cycle has taken place, or by a hardware reset.

If the DRAM Refresh feature is disabled, the
TOUT1 IREF # output pin is simply the TIMER 1 out­
put. Detailed information of how TIMER 1 operates
is discussed in section 6-Programmable Interval
Timer, and will not be repeated here.

INTERNAL
DMA

HANDSHAKE DMA
.... __ '--__ ... CONTROLLER

ARBITRATION
. LOGIC

TO DMA
.... --2~4~-~B~IT~-. CONTROLLER

REFRESH (INTERNAL)

ADDRESS

~ ________ ~~T~O~UT~I~
o select J--------------+TOUT1/REF#

REfRESH ENABLE (INTERNAL)
290128-90

Figure 7·1. DRAM Refresh Controller

4-260

inter 82380

7.3 Bus Function

7.3.1 ARBITRATION

In order to ensure data integrity of the DRAMs, the
82380 gives the DRAM Refresh signal the highest
priority in the arbitration logic. It allows DRAM Re·
fresh to interrupt a DMA in progress in order to per·
torm the DRAM Refresh cycle. The DMA service will
be resumed after the refresh is done.

In case of a DRAM Refresh during a DMA process,
the cascaded device will be requested to get off the
bus. This is done by deasserting the EDACK Signal.
Once DREQn goes inactive, the 82380 will perform
the. refresh operation. Note that the DMA controller
does not completely relinquish the system bus duro
ing refresh. The Refresh Generator simply 'steals' a
bus. cycle between DMA accesses.

Figure 7-2 shows the timing diagram of a Ref,resh
Cycle. Upon expiration of TIMER 1, the 82380 wllI.try
to, take control of the system bus by asserting
HOLD. As soon as the 82~80 see HLDA go active,
the DRAM Refresh Cycle will be carried out by actio
vating the REF # signal as well as the refresh ad·
dress and control signals on the system bus (Note

Tx Tx

ClK2

ClK

HOLD +---"""f

TI

that REF # will not be active until two CLK periods
after HLDA is asserted). The address bus will con·
tain the 24-bit address currently in the Refresh Ad·
dress Counter. The control signals are driven the
same way as in a Memory Read cycle. This 'read'
operation is complete when the READY # signal is
driven LOW. Then, the 82380 will relinquish the bus
by de·asserting HOLD .. Typically, a Refresh Cycle
without wait states will take five bus states to exe·
cute. ,If 'n' wait states are added, the Refresh Cycle
will last for five plus 'n' bus states.

How often the Refresh Generation will initiate are·
fresh cycle depends on the frequency of CLKIN as
well as TIMER1's programmed mode of operation.
For this specific application, TIMER1 should be pro·
grammed to operate in Mode 2 or 3 to generate a
constant clock rate. See section 6-Programmable
Interval Timer for more information on programming
the timer. One DRAM Refresh Cycle will be gElnerat·
ed each time TIMER 1 expires (when TOUT1 chang·
es to LOW to HIGH).

The Wait State Generator can be used to insert wait
states during a refresh cycle. The 82380 will auto·
matically insert the desired number of wait states as
programmed in the Refresh Wait State Register (see
Wait State. Generator).

n n T2 TI

HlDA +----+---f
A(2-31)· M/IO# ~~~~~:XXXX~--+---1C==:;:==1"--i D/C# 8E(0-3)# W/R# ~

Toun

REF'#

ADS#~~:xx~~---~---r----'~ ___ ~
290128-91

"NOTE:
A24-A31 = 1 during Refresh cycle.

Figure 7-2. 82380 Refresh Cycle

4-261

I :t
I~
1'1
!\
I···.

inter 823.80

7.4 Modes of Operation

7.4.1 WORD SIZE AND REFRESH ADDRESS
COUNTER

The 82380 supports 8-, 16- and 32-bit refresh cycle.
The bus width during a refresh cycle is programma­
ble (see Programming). The bus size can be pro­
grammed via the Refresh Control R~gis~er (see Reg­
ister Overview). If the DRAM bus size IS 8-, 16-, or
32-bits, the Refresh Address Counter will be incre­
mented by " 2, or 4, respectively.

The Refresh Address Counter is cleared by a hard­
ware reset.

7.5 Register Set Overview

The Refresh Generator has two internal registers to
control its operation. They are the Refresh Control
Register and the Refresh Wait State Register. Their
port address map is shown in Table 7-1 below.

Port Address Description

1CH Refresh Control Reg. (read/write)
75H Ref. Wait State Reg. (read/write)

Table 7-1. Register Address Map

The Refresh Wait State Register is not part of the
Refresh Generator. It is only used to program the
number of wait states to be inserted during a refresh
cycle. This register is discussed in detail in section 7
(Wait State Generator) and will not be repeated
here.

REFRESH CONTROL REGISTER

This 2-bit register serves two functions. First, i~ is
used to enable/disable the DRAM Refresh function
output. If disabled, the output of TIMER 1 is simply

. used as a general purpose timer. The second fu~¢­
tion of this register is to program the DRAM bus size
for the refresh operation. The programmed bus size
also determines how the Refresh Address Counter
will be incremented after each refresh operation.

7.6 Programming

Upon hardware reset, the DRAM Refresh function is
disabled (the Refresh Control Register is cleared).
The following programming steps are needed before
the Refresh Generator can be used. Since the rate
of refresh cycles depends on how TIMER 1 is pro­
grammed, this timer must be initialized with the de­
sired mode of. operation as well as the co~rect re­
fresh interval (see Programming Interval Timer).

Whether or not wait states are to be generated dur­
ing a refresh cycle, the Refresh Wait State Register
must also be programmed with the appropriate val­
ue. Then, the DRAM Refresh feature must be en­
abled and the DRAM bus width should be defined.
These can be done in one step by writing the appro­
priatecontrolword into the Refresh Control Register
(see Register Bit Definition). After these stepsare
done, the refresh operation will automatically be in­
voked by the RefrElsh Generator upon expiration of
Timer 1. .

In addition to the above programming steps, it
should be noted that after reset, although the
TOUT1/REF# becomes the Timer 1 output, the
state of this pin· is uhdefined. This is because the
Timer module has not been initialized yet. Therefore,
if this output is used as a DRAM Refresh signal, this
pin should be disqualified by external logic until the
Refresh function. is enabled. One simple solution is
to logically AND this output with HLDA, since HLDA
should not be active after reset.

7.7 Register Bit Definition

REFRESH CONTROL REGISTER
Port Address: 1 CH (Read/Write)

00 REf. DISABLE
01 BUS SIZE = 32
10 BUS SIZE=16
11 BUS SIZE=8

290128-92

8.0 RELOCATION REGISTER AND
ADDRESS DECODE

8.1 Relocation Register

All the integrated peripheral devices in the 82380
are controlled by a set of internal registers. These
registers span a total of 256 consecutive address
locations (although not all the 256 locations are
used). The 82380 provides a Relocation Register
which allows the user to map this set of internal reg­
isters into either the memory or i/o address space.
The function of the Relocation Register is to define
the base address of the internal register set of the
82380 as well as if the registers are to be memory­
or" I/O-mapped. The format of the Relocation Regis­
ter is depicted in Figure 8-1.

4-262

82380

D7 D6 D5 D4 D3 D2 Dl DO

fOR I/O MAPPED: A 15-A9
fOR MEMORY MAPPED: A31-A25

o -I/O MApPED
I-MEMORY·

MAPPED

290128-62

Figure 8-1. Relocation Register

Note that the Relocation Register is part of the inter­
nal register set of the 82380. It has a port address of
7FH. Therefore, any time the content of the Reloca­
tion Register is changed, the physical location of this
register will also be moved. Upon reset of the 82380,
the content of the Relocation Register will be
cleared. This implies that the 82380 will respond to
its I/O addresses in the range of OOOOH to OOFFH.

8.1.1 I/O-MAPPED 82380

As shown in the figure, Bit 0 of the Relocation Regis­
ter determines whether the 82380 registers are to be
memory-mapped or I/O-mapped. When Bit 0 is set
to '0', the 82380 will respond to I/O Addresses. Ad­
dress signals BEO#-BE3#, A2-A7 will be used to
select one of the internal registers to be accessed.
Bit 1 to Bit 7 of the Relocation Register will corre­
spond to A9 to A 15 of the Address bus, respectively.
Together with A8 implied to be '0', A15 to A8 will be
fully decoded· by the 82380. The following shows
how the 82380 is mapped· into the I/O address
space.

Example

Relocation Register = 11001110 (OCEH)

82380 will respond to I/O address range from
OCEOOH to OCEFFH.

Therefore, this I/O mapping mechanism allows the
82380 internal registers to be located on any even,
contiguous, 256 byte boundary of the system I/O
space.

Port Address; 7FH (Read/Write)

8.1.2 MEMORY-MAPPED 82380

When Bit 0 of the Relocation Register is set to '1',
the 82380 will respond to memory addresses. Again,
Address signals BEO#-BE3#, A2-A7 will be used
to select one of the internal registers to be ac­
cessed. Bit 1 to Bit 7 of the Relocation Register will
correspond to A25-A31, respectively. A24 is as­
sumed tobe '0', and A8-A23 are ignored. Consider
the following example.

Example

Relocation Register = 10100111 (OA7H)

The 82380 will respond to memory addresses in
the range of OA6XXXXOOH to OA6XXXXFFH
(where 'X' is don't care).

This scheme implies that the internal register can be
located in any even, contiguous, 2**24 byte page of
the memory space.

8.2 Address Decoding

As mentioned previously, the 82380 internal regis­
ters do not occupy the entire contiguous 256 ad­
dress locations. Some of the locations are 'unoccu­
pied'. The 82380 always decodes the lower 8 ad­
dress bits (AO-A7) to determine if anyone of its
registers is being accessed. If the address does not
correspond to any of its registers, the 82380 will not
respond. This allows external devices to be located
within the 'holes' in the 82380 address space. Note
that there are several unused addresses. reserved
for future Intel peripheral devices.

9.0 CPU RESET AND SHUTDOWN
DETECT

The 82380 will activate the CPURST signal to reset
the host processor when one of the following condi­
tions occurs;

-82380 RESET is active;

- 82380 detects a 80386 Shutdown cycle (this fea-
ture can be disabled);

- CPURST software command is issued to 80386.

Whenever the CPURST signal is activated, the
82380 will reset its own internal Slave-Bus state ma­
chine.

9.1 Hardware Reset

Following a hardware reset, the 82380 will assert its
CPURST output to reset the host processor. This
output will stay active for as long as the RESET input
is active. During a hardware reset, the 82380 internal
registers will be initialized as defined in the corre­
sponding functional descriptions.

9.2 Software Reset

CPURST can be. generated by writing the following
bit pattern into 82380 register location 64H.

D7 DO
X X X o

x = Don't Care

4-263

.82380

The Write operation into this port is considered' as
an 82380 access and the internal Wait State Gener­
ator will automatically determine the required num­
ber of wait states. The CPURST will be active follow­
ing the completion of the Write cycle to. this port.
This signal Will last for 62 CLK2 periods. The 82380
should not be accessed until the CPURST is deacti­
vated,

This internal port is Write-Only and. the 82380 wi.1I
not respond to a Read operation to this location.
Also, during a· CPU software reset command, the
82380 will reset its Slave-Bus state machine. How­
ever, its internal registers remain unchanged. This
aJlow~.the operating system to distinguish a 'warm'
reset by reading. any 82380 internal register previ­
ously programmed for an non-default value. The Di­
agnostic registers qan be used or this purpose (see
Internal Control an~ Diagnostic Ports).

9.3. SH~tdown Detect

The 82380 IS constantly monitoring the Bus Cycle
Definition signals (MIIOlfl, D/ClfI,R/WlfI) and is
able to detect when the 80386 executes a Shutdown
bus cycle. Upon detection ofa processor shutdown,
the 82380 will activate the CPUAST output for 62
CLK2 periods to reset. the host processor. This sig­
nal is generated after the Shutdown cycle is termi­
nated by the READYlfI signal.

Although the 82380 Wait State Generator will not
automatically respond to a Shutdown (or Halt) cycle,
the' Wait State Control inputs (WSCO, WSC1) can be
used to determine the· number of wait' states in the
same manl'1er as other nan-82380 bus cycle.

This Shutdown Detect feature can be enabled or dis­
abled bywritil'1g, a control bit in the Internal Control
Port at address 61 H (see Internal Control and Diag-

Port Address: 61 H (Write Only)

07 D6

noSticPorts). This feature is disabled upon a hard­
ware reset of the .82.380. As. in t/)e case of Software
Reset, the 82380 will reset its Siave-;Busstate ma­
chine but will not change any of. its internal register
contents. ' .

10.0 INTERNAL CONTROL AND
DIAGNOSTIC PORTS

10.1 Internal Control Port

The format of the Internal Control Port of the 82380
is shown in Figure 10.1: This Control Port is used to
enable/disable the Processor Shutdown Detect
mechanism as well, as controlling the Gate inputs of
the Timer 2 and 3. Note that this is a Write-Only port.
Therefore, the 82380 will not respond to a read op­
eration to this port. Upon hardware reset, this port
will be cleared; i.e., the Shutdown Detect feature
and the Gate inputs of Timer 2 and 3 are disabled.

10.2 Diagnostic ports

Two 8-bitread/wrlte. piagnostic . Ports are pro~ided
in the 82380.' These are two storage riilgisters and
have rio effect on the operation of the 8?380. They
can be used to store checkpoint data or error codes
in the power-on sequence and in the diagnostic
service routines. As mentioned in CPU RESET AND
SHUTDOWN DETECT. section, these DiagnostiC
Ports can be used to distir:lguish between 'cold' and
'warm: reset. Upon hardware reset, both Diagnostic
Ports are cleared. The address map of these Diag­
nosticPorts is shown in Figure 10-2.

Port Address

Diagnostic Port 1 (Read/Write) 80H
Diagnostic Port 2 (Read/Write) 88101

Figure 10-2. Address Map of Diagnostic Ports

05 D4 03 02 01 DO

290128-93

Figure 10-1. Internal Control Port .

4-264

intJ 82380 £@W£OO©(g OOOIF@OOIMl£ii'O@OO I
.~
i
'I' I,;

11.0 INTEL RESERVED I/O PORTS tion may occur if any peripheral is assigned to the
same address location.

Ii There are eleven 1/0 ports in the 82380 address
space which are reserved for Intel future peripheral

12.0 MECHANICAL DATA :~
device use only. Their address locations are: 2AH, :t
30H, 3EH, 45H, 46H, 76H, 77H, 70H, 7EH, CCH
and COHo These addresses should not be used in 12.1 Introduction
the system since the 82380 may respond to read I I'

write operations to these locations and bus conten- In this section, the physical package and its connec-
tions are described in detail.

P N W l K H G E 0 C B A 1

,.."' I'
01

,..
01 ...,

Vee Vss EOACKI BEOI BEl;!! A3 A5 A8 A9 A12 Vee Vss Vee Vss

02
.....

02 ..., ..., ..., ...,
Vee Vss INT EOACK2 AOS# BE3# A4 A7 AID A13 A15 A17 A19 Vee

03
..... ,..

03 ..., ..., ...,
OREQ5 OREQ7 HlOA EOACKO EOP# BE2# A2 A6 All A14 A16 A18 A21 Vss

04 04

OREQ3 NAI OREQ6 A20 A22 Vee

05 05

OREQI OREQ2 OREQ4/IRQ9# A23 A24 A25

06 06

IR023# IR022# OREQO A26 A27 A28

07 07

IROI9# IR020# IRQ21# A30 A29 A31

08 08

IRQI8;!! IR016# IRQI7# 015 023 031

09 09

IRQI5# IROI4# IRQI3# 022 030 07

10 10

IRQll# IRQI2# WSCI 013 06 014

11 11

WSCO ClKIN REAOY# 028 021 029

12
,..

12 ...,
Vee RESET CPURST O/C# W/R# HOlO REAOYO# 017 010 03 027 012 05 Vee

13 13

Vss TOUT2#/lRQ3# TOUT3;!! MlD# TOUT1/REf# 024 016 D9 02 026 019 04 020 Vss

14 14

Vee Vss Vee Vss 08 DO 01 ClK2 025 018 011 Vee Vss Vee

P N W l K H G f E 0 C B A

290128-94

Figure 12_1.82380 PGA Pinout-View from TOP side

4-265

inter 82380

12.2 Pin Assignment

The 82380 pinout as viewed from the top side of the
component is shown in. Figure 12 .. 1. Its pinout as
viewed from the pin side of the component is shown
in Figure 12.2.

. ..

A B C o G

01 1'0 o o o o o o
Vss Vee vss Vee A 12 A9 A8

02 0 o o o o o o
Vee A19 A17 A15 A13 Al0 A7

03 0 o o o o o o
Vss A21 A18 ·A16 A14 All A6

04 0 o o
Vee A22 A20

Vee and GND connections must be made to mUlti­
ple Vee and Vss (GND) pins. Each Vee and Vss
MUST. be connected to the appropriate voltage lev­
el. The circuit board should include Vee and GND
planes for power distribution and all Vee pins must
be. connected to the appropriate plane.

H K l N P

o o o o o o o 01

A5 A3 BE 1 # BEO# EDACK 1. V ss Vee

o o o o o o o 02

A4 BE3# AOS# EOACK2 INT Vss Vee

o o o o o o o 03
A2 BE2# EOP# EDACKO HlDA DRE07 ORE05

o o o 04
ORE06 NA# ORE03

METAL LID
05 0 o o

A25 A24 A23

06 0 0 0
..,28 A27 A26

07 0 o o
A31 A29 A30

08 0 o o
031 023 015

os 0
07

10 0
014

11 0

o o
030 022

o o
06 013

o o

o o o
ORE04/ ORE02 OREOI
IROS#

05

o 0 0 06
OREOO IR022# IR023#

o o o 07
IR021 # IR020# IR01S#

o o o 08
IROI7# IROI6# IR01S#

o o o 09

IROI3# IROI4# IROI5#

o o o 10

WSCI IROI2# IROll #

o o o 11
029 021 028 L..-_________________ --IREAOY# ClKIN WSCO

12 0
Vee

13 0

o
05

o
Vss 020

14 0 o

o o o
012 027 03

o o o
04 019 026

o o o

o o o o o o o o o 12

010 017 REAOYO# HOLD W/R# O/C# CPURST RESET Vee

o o o o o o o o o 13
02 09 016 024 TOUTt/REF# M/IO# TOUT3# TOUT2#/lRQ3# Vss

o o o o o o o o o 14

Vee vss Vee 011 018 025 ClK2 01 DO OS Vss Vce Vss Vee

A B c o E G H K N P

290128-95

Figure ·12.2.82380 PGA Pinout-View from PIN side

4-266

inter

Pin/Signal

A7 A31
C7 A30
87 A29
A6 A28
86 A27
C6 A26
AS A2S
8S A24
CS A23
84 A22
83 A21
C4 A20
82 A19 .
C3 A1B
C2 A17
03 A16
02 A1S
E3 A14
E2 A13
E1 A12
F3 A11
F2 A10
F1 A9
G1 A8
G2 A7 ,

G3 A6
H1 AS
H2 A4
J1 A3
H3 A2
J2 8E3#
J3 8EU
K1 8E1#
l1 8EO#

82380

Table 12-1.82380 PGA Plnout-Functlonal Grouping

Pin/Signal Pin/Signal

A8 031 P12 Vee l14
89 030 M14 Vee A1
A11 029 P1 Vee P13
C11 028 P2 Vee N1
012 027 P14 Vee N2
E13 026 01 Vee C1
F14 02S C14 Vee A3
J13 024 81 Vee 814
88 023 A2 Vee A13
C9 022 A4 Vee N14
811 021 A12 Vee
813 020 A14 Vee P6
013 019 N6
E14 01B G14 ClK2 M7
G12 017 l12 O/C# N7
H13 016 K12 W/R# P7
CB 01S l13 M/IO# PB
A10 014 K2 AOS# MB
C10 013 N4 NA# NB
C12 012 J12 HOLD P9
014 011 M3 HlOA N9
F12 010 M6 OREQO M9
G13 09 PS OREQ1 N10
K14 DB NS OREQ2 P10
A9 07 P4 OREQ3 M2
810 06 MS OREQ4/IRQ9#
812 OS P3 OREQS N11
C13 04 M4 OREQ6 K13
E12 03 N3 OREQ7 N13
F13 02 M13
H14 01 K3 EOP# M11
J14 00 l3 EDACKO H12

M1 EOACK1 P11
N12 RESET l2 EOACK2 M10
M12 CPURST

4-267

Pin/Signal

Vss
Vss
Vss
Vss
Vss
Vss
Vss
Vss
Vss
Vss

IRQ23#
IRQ22#
IRQ21 #
IRQ20#
IRQ19#
IRQ1B#
IRQ17#
IRQ16#
IRQ1S#
IRQ14#
IRQ13#
IRQ12#
IRQ11 #
INT

elKIN
TOUT1/REF#
TOUTU/IRQ3#
TOUT3#
REAOY#
REAOYO#
WSCO
WSC1

I

I

82380

12.3 Package Dimensions and
Mounting

A wide variety of available sockets allow low inser­
tion force or zero insertion force mountings, and a
choice of terminals such as soldertail,· surface

The 82380 package is a 132-pin ceramic Pin Grid
Array (PGA). The pins are arranged 0.100 inch (2.54
mm) center-to-center. in a 14 x 14 matrix. three rows
around.

. mount,or wire wrap. Several applicable sockets are
listed in Figure 12-4.

'"' -;-
'"' '"' In '"' N '" It) ~ .., 0 ... GO ""': "l "! aq "l aq '" cD
...... '" CD e ~ ~ ~

0
It)

"!

·@@@@(!)(!)'I@@@@@@@
2 @@@@@@@@@@@@@@
3 @@(fiJ)@@@@'@@@@il@@
4 @@@ @@@
5 @@@ , @@@
6 @@@ I @@@

7 @@@ + @@@
8 -@@@ --. -- @@@

9 @@@ I @@@
10 @@@ @@@
11 @@@ @@@
12 @@il@@@@,@@@@ @@
13 @@@@@@@I@@@@@@@
14 @@@@@@@,@@@@@@@

~
ad
......
It)

'" ":

.725 (18.401)

.650 (16.497)

.550 (13.959)

.450 (11.421)

.350 (8.883)

.250 (6.345)

.150 (3.807)

.050 (1.269)
o

SWEDGE PIN
STANDOFF
(4) PLACES

.057(1.269) l t
MAX TYP

.001 (0.025) R
MIN TYP

.018(0.47) 1
DIA TYP - c:::~HI'

'165(4'189~1 .. ~
.110(2::L.i

290128-96

Figure 12.3. 132·Pln Ceramic PGA Package Dimensions

4-268

intJ

• Low insertion force (UF) soldertail
55274-1

• Amp tests indicate 50% reduction in insertion
force compared to machined sockets

Other socket options
• Zero insertion force (ZIF) soldertail
55583-1

• Zero insertion force (ZIF) Burn-In version
55573-2

Amp Incorporated
(Harrisburg, PA 17105 U.S.A.
Phone 717-564-0100)

82380

290128-97
Cam handle locks in low profile position when substrate is installed

Peel-A-WayTM Mylar and Kaplon
Socket Terminal Carriers

• Low insertion force surface mount
CS132-37TG

• Low insertion force soldertail
CS132-0HG

• Low insertion force wire-wrap
CS132-02TG (two level)
CS132-03TG (three-level)

• Low insertion force press-fit
CS132-05TG

Advanced Interconnections
(5 Division Street
Warwick, RI 02818 U.S.A.
Phone 401-885-0485)

(handle UP for open and DOWN for closed positions)

Peel-A-Way Carrier No. 132;
Kaplon Carrier is KS 132
Mylar Carrier is MS 132

Molded Plastic Body KS132
is shown below:

FOOT PRINT NO. 132

IJ
--11- •• 00

14a14x3ROW,

290128-98

courtesy Amp Incorporated

IOI.DIATAIL-O'I LOW PROfIIlE -04 naFtT-O!J

r B. r . 4.11• :tii

l-i L -t L,.
.J.. !!!!.DtA. ~ ~~'.!o - ~A.

~ Ei~::"
'MReWRAP-G2f.03 SOLDER TAIL·. SURFACE MOUNTING-37

,
PEEL-A·WAY

I! ...

N u ...
~ ...

~ .- ILIYeI. ~ '.'
.!!:!! -01

..•
-..I. .-

£- I-~
290128-99

courtesy Advancedlnterconneclions
(Peel-A-Way Terminal Carriers
U.S. Patent No. 4442938)

Figure 12-4. Several Socket Options for 132-pln PGA

4·269

82380

• Low insertion force socket solderleil
(for production use)
2XX-6576-00-3308 (new style)
2XX-6003-00-3302 (older style)

• Zero insertion force solderleil
(for test and burn-in use)
2XX-6568-00-3302

Textool Products
Electronic Products Division/3m
(1410 West Pioneer Drive
Irving. Texas 75601 U.S.A.
Phone 214-259-2676)

.. - -- -- .. (;)

Ti--------. CU " oJ)
: : I I If)

II : :
:: !!~
II . 'U 0

• ~------.l ~ ,--------..
I UI '--_______ 1 I

courtesy Textoll Products/3M

I

~
It.
I

290128-AO

Figure 12-4. Several Socket Options for 132-pln PGA (Continued)

12.4 Package Thermal Specification

The 82380 is specified for operation when case tem­
perature is within the range of O"C -85·C. The case
temperature may be measured in any environment,

to determine whether the 82380 is within the speci­
fied operating range.

The PGA case temperature should be measured at
the center of the top surface oppOSite the pins, as in
Figure 12.5.

IolEASURE PGA CASE TEIolPERATURE
AT CENTER OF TOP SURFACE

290128-Al

Figure 12.5. Measuring 82380 PGA Case Temperature

4-270

82380

Thermal Reslstance-°C/WaH

Alrflow-f3/mln (m3/sec)

Parameter 0 50 100 200 400 600 800
(0) (G.25) (0.50) (1.01) (2.03) (3.04) (4.06)

8 Junction-to-Case 2 2 2 2 2 2 2
(case measured
as Fig. 6.4)

8 case-ta-Ambient 19 18 17 15 12 10 9
(no h~atsink)

8 case-to-Ambient 16 15 14 12 9 7 6
(with omnidirectional
heatsink)

8 Case-ta-Ambient 15 14 13 11 8 6 5
(with unidirectional
heatsink)

NOTES: 290128-A2

1. Table 12-6 applies to 82380 PGA plugged into socket or soldered
directly into board.
2. (JJA = (JJC + BCA·
3. (JJ-CAP = 4°C/W (approx.)

(JJ.PIN = 4°C/W (inner pins) (approx.)
(JJ.PIN = 8°C/W (outer pins) (approx.)

Figure 12-6. 82380 PGAPackage Typical Thermal Characteristics

13.0 ELECTRICAL DATA

13.1 Power and Grounding

The large number of output buffers (address, data
and control) can cause power surges as multiple
output buffers drive new' signal levels simultaneous­
ly. The 22 Vccand Vss pins of the 82380 each feed
separate functional units to minimize switching in­
duced noise effects. All Vee pins of the 82380 must
be connected on the circuit board.

13.2 Power Decoupllng

Liberal decoupling capaclt8.nce, should be placed
close to the 82380. The 82380 driving its 32-bit par­
allel address and data buses at high frequencies can
cause transient power surges when driving large ca­
pacitive loads. Low inductance capacitors and inter-

connects are recommended for the best reliability at
high frequencies. Low inductance capacitors are
available specifically for Pin Grid Array packages.

13.3 Unused Pin Recommendations

For reliable operation, ALWAYS connect unused in­
puts to a valid logic level. As is the case with most
other CMOS processes, a floating input will increase
the current consumption of the component and give
an indeterminate state to the component.

13.4 ICE-386 Support

The 82380 specifications provide sufficient drive .ca­
pability to support the ICE386, On the pins that. are'
generally shared between the 80386 and the '82380,
the additional loading represented by the ICE386
was allowed for in the design of the '82380.

4-271

it
I;~
I~
, ~

82380

13.5 Maximum Ratings

Storage Temperature - 65'C to + 150'C
Case temperature Under Bias '" - 65'C to + 11 O'C
Supply Voltage with Respect

toVss -0.5Vto+6.5V
Voltage on any other Pin -0.5Vto Vee +0.5V

NOTE:
Stress above those listed above may cause perma­
nent damage to the device. This is a stress rating

13.6 D.C. Specifications

TeAsE = O'C to 85'C; Vee = 5V ±5%; Vss = OV.

only and functional operation at the.se or any oth.er
conditions above those .listed in the operational
sections of this specification is not implied.

Exposure to absolute maximum rating conditions for
extended periods may affect device reliability. Al­
though the 82380 contains protective circuitry to re­
set damage from static electric discharges, always
take precautions against high static voltages or elec­
tric fields.

Table 13-1.

Symbol Parameter Min Max Unit Notes

V,L Input Low Voltage -0.3 0.8 V (Note 1)

V,H Input High Voltage 2.0 Vee + 0.3 V

V,LC CLK2 Input Low Voltage -0.3 0.8 (Note 1)

V,HC CLK2 Input High Voltage VCC - 0.8 VCC + 0.3 V

VOL Output Low Voltage
IOL = 4mA: A2-A31,

00-031 0.45 V.
IOL = 5 mA: All Others 0.45 V

VOH Output High Voltage
IOH = -1 mA: A2-A31,

00-D31 2.4 V
IOH = -0.9 mA: All Others 2.4 . V

IU Input Leakage Current for
all ins except:

IRQ11#-IRQ23#,
TOUT2/IRQ3#, EON, OREQ4 ±.15 p.A OV<V,N<Vec

IU1 . Input Leakage Current for
pins:IRQ11 #-IRQ23#,
TOUTU/IRQ3#, EOP#, OREQ4 10 -300 p.A OV<;V'N<VCC

(Note 3)

ILO Output Leakage Current ±15 p.A 0.45 <VOUT<VCe

Icc Supply Current 300 mA CLK2 = 32 MHz
325 .mA = 40 MHz

.. (Note 4)

(CAP) Capacitance (Input/IO) 12 pF fc= 1 MHz
(Note 2)

CCLK CLK2 Capacitance 20 pF fc = 1 MHz
(Note 2)

NOTES:
1. Minimum value is not 100% tested.
2. Sampled only.
3. These pins have internal pullups on them.
4. Icc is specified with inputs driven to CMOS levels. Icc may be higher if driven to TTL levels.

4-272

82380

13.6 D.C. Specifications (Continued)
T CASE = O·C to 85·C; Vcc = 5V ± 5%; Vss = OV.

Table 13-2.82380-25 D.C. Specifications

Symbol Parameter Min Max Unit Notes

Vil Input Low Voltage -0.3 0.8 V (Note 1)

VIH Input High Voltage 2.0 Vcc + 0.3 V

VllC CLK2 Input Low Voltage -0.3 0.8 V (Note 1)

VIHC CLK2 Input High Voltage 2.0 VCC + 0.3 V

VOL Output Low Voltage
IOl = 4 mA: A2-A31, 00-031 0.45 V
IOl = 5 mA: All Others 0.45 V

VOH Output High Voltage
IOH = -1 mA: A2-A31, 00-031 2.4 V
IOH = -0.9 rnA: All Others 2.4 V

III Input Leakage Current ±15 /loA
All Inputs except: IRQ11 #-
IRQ23#, EOP#, TOUT2/IRQ3#,
OREQ4

1U1 Input Leakage Current 10 -300 /loA 0< VIN < Vcc
Inputs: IRQ11 # -IRQ23#, (Note 3)
EOP#, TOUT2/IRQ3#, OREQ4

IlO Output Leakage Current ±15 /loA 0< VIN < Vcc

Icc Supply Current (CLK2 = 50 MHz) 375 rnA (Note 4)

CI Input Capacitance 12 pF (Note 2)

CClK CLK2 Input Capacitance 20 pF (Note 2)

NOTES:
1. Minimum value is not 100% tested.
2. fc = 1 MHz; Sampled only.
3. These pins have weak internal pullups. They should not be left floating.
4. Icc is specified with inputs driven to CMOS levels, and outputs driving CMOS loads. Icc may be higher if inputs are driven
to TTL levels, or if outputs are driving TTL loads.

4-273

,1,

ii
Ii
1,,1,

~

intJ 82380

13.7 A.C. Specifications

The AG: specifications given in the following tables
consist of output delays and input setup require­
ments. The AG. diagram's purpose is to illustrate
the clock edges from which the tirning parameters
are measured. The reader should not infer any other
timing relationships from them. For specific informa­
tion on timing relationships between signals, refer to
the appropriate functional section.

CLK2 [

OUTPUTS
(A2-A31,O/CH.

8EOH-BE3H. AOSH.
M/IOH, W/RH.
LOCKH.HLOA)

OUTPUTS [
(00-031)

INPUTS [(NAH, BSI6H.
INTR.NMI)

INPUTS

[(REAOYH. HOLD.
BUSYH. ERRORH.
PEREO. 00-031)

LEGEND:

~maximum output delay spec

®-minimum output delay spec

©-minimum input setup spec

@.....minimum input hold spec

NOTES:
1. Input waveforms have tr ,;: 2.0 ns from 0.8V to2.0V.

AG. spec measurement is defined in Figure 13.1.
Inputs must be driven to the levels shown when AG.
specifications are measured. 82380 output delays
are specified with minimum and maximum limits,
which are measured as shown. The minimum 82380
output delay times are hold times for external circuit­
ry. 82380 input setup and hold times. are specified as
minimums and define the smallest acceptable sam­
pling window. Within the sampling window, a syn­
chronous input Signal must be stable for correct
82380 operation.

Tx

VALID
1.5V OUTPUT n+l

290128-83

2. Under rated loading (120 pF) 386 output tr. tf is typically,;: 4.0 ns from 0.8V to 2.0V.

Figure 13-1. Drive Levels and Measurement Points for A.C. Specification

4-274

82380

A.C~ SPECIFICATION TABLES

Functional Operating Range: Vee = 5V ±5%; TeASE = O·C to +85·C

Table 13-3.82380 A.C. Characteristics

Symbol Parameter
82380-16 82380-20

Min Max Min Max

Operating Frequency 4MHz 16MHz 4 MHz 20 MHz

t1 CLK2 Period 31 ns 125 ns 25 ns 125 ns

t2a CLK2 High Time 9 8

t2b CLK2 High Time 5 5

t3a CLK2 Low Time 9 8

t3b CLK2 Low Time 7 6

t4 CLK2 Fall Time 8 8

t5 CLK2 Rise Time 8 8

A (2-31), BE (0-3) #,
EDACK (0-2)

t6 Valid Delay 4 36 4 30
t7 Float Delay 4 40 4 32

A (2-31), BE (0-3) #
t8 Setup Time 6 6
t9 Hold Time 4 4

W/R#, M/IO#, D/C#,
t10 Valid Delay 6 33 6 28
t11 Float Delay 4 35 4 30
t12 Setup Time 6 6
t13 Hold Time 4 4

t14 ADS# Valid Delay 6 33 6 28
t15 Float Delay 4 35 4 30
t16 Setup Time 21 15
t17 Hold Time 4 4

Slave Mode-
0(0-31) Read

t18 Valid Delay 3 46 4 46
t19 Float Delay 6 35 6 29

Slave Mode-
D(0-31)Write

t20 Setup Time 31 29
t21 Hold Time 26 26

4-275

Notes

Half CLK2 Frequency

at 2.0V

at (Vce-0.8)V

at2.0V

atO.8V

(Vee-0.8)V to 0.8V

0.8V to (Vee-0.8)V

CL =120 pF
(Note 1)

CL = 75 pF
(Note 1)

CL == 75pF

CL = 120pF
(Note 1)

i

1

"
'
,

.'i.

!I
!',I

82380

.A.C. $PECIFICATION TABLES (Continued)

Functional Operating Range: Vee =5V ±5%; TeASE = O·C to +85·C.

Table 13-3; 82380 A.C. Characteristics (Continued)

Symbol Parameter
82380-16 8~38o-20 Notes

Min Max Min Max

Master Mode-:-
0(0-31) Write

t22 VlllidDelay 4 48 4 38 CL = 120pF
t23 F.loatDelay 4 35 4 27 (Note 1)

Master Mode-
0(0-31) Read

t24 Setup Time 11 11
t25 HoldT/me 6 6

t26 READY# Setup Time 21 12
t27. Hold Time 4 4

t28 WSC (0-1) Setup 6 6
t29 Hold 21 21

131 RESET Setup Time 13 ,12
\

130 Hold Time 4 4

132 READYO# Valid Delay 4 31 4 28 CL = 25pF

133 CPU Reset From CLK2 2 18 2 16 CL = 50pF

134 HOLD Valid Delay 5 33 5 30 CL =100pF

135 HLDA Setup Time 21 17
136 Hold Time 6 6

137a EOP# Setup Time 21 17 Synch. EOP

138a EOP# Hold Time 4 .4

137b EOP# Setup Time 11 11 ASyrich.EOP

138b EOP# HolclTIme 11 11

139 EOP # Valid Delay 5 38 5 30 CL = 100pF ('1'->'0')

t40 EOP# Float Delay 5 40 5 32
_.

,

t41a DREQ Setup Time 21 19 .Synchronous DREQ
t42a . Hold Time 4 4

t41b DREQ Setup Time 11 11 Asynchronous DREQ
t42b Hold Time 11 11

t43 INT Valid Delay 500 500 From IRQ Input
CL = 75pF

t44 NA# Setup Time 11 10
t45 Hold Time 15 15

4·276 .

82380

A.C. SPECIFICATION TABLES (Continued)

Functional Operating Range: Vee = 5V ±5%; TeASE = O·C to + 85·C.

Table 13-3.82380 A.C. Characteristics (Continued)

Symbol Parameter 82380-16 82380-20 Notes
Min Max Min Max

t46 ClKIN Frequency OMHz 10MHz OMHz 10MHz

t47 ClKIN High Time 30 30 At 1.5V

t48 ClKIN low Time 50 50 At 1.5V

t49 ClKIN Rise Time 10 10 0.8Vt02.0V

t50 ClKIN Fall Time 10 10 2.0VtoO.8V

t51 TOUT1 IREF # Valid 4 36 4 30 From ClK2, Cl = 25 pF

t52 TOUT1 IREF # Valid 3 93 3 93 From ClKIN, Cl = 120 pF

t53 TOUT2# Valid Delay 3 93 3 93 From ClKIN, Cl = 120 pF
(Falling Edge Only)

t54 TOUT2 # Float Delay 3 40 3 40 From ClKIN (Note 1)

t55 TOUT3# Valid Delay 3 93 3 93 From ClKIN, Cl = 120 pF

NOTE:
1. Float condition occurs when the maximum output current becomes less than ILO in magnitude. Float delay is not tested.
For testing purposes, the float condition occurs when the dynamic output driven voltage changes with current loads.

Functional Operating Range: Vee = 5V ±5%; TeASE = O·C to +85·C.
A.C. timings are tested at 1.5V thresholds; except as noted.

Table 13-4.82380-25 A.C. Characteristics

Symbol Parameter 82380-25

Min Max

Operating Frequency 1 I (t1 a x 2) 4 25

t1 ClK2 Period 20 125

t2a ClK2 High Time 7
t2b ClK2 High Time 4
t3a ClK2 low Time 7
t3b ClK2 low Time 4
t4 ClK2 Fall Time 7
t5 ClK2 Rise Time 7

t6 A2-A31, BEO#-BE3# 4 20
EDACKO-EDACK3 Valid Delay

t7 A2-A31, BEO#-BE3# 4 27
EDACKO-EDACK3 Float Delay

t8 A2-A31, BEO#-BE3# Setup Time 6
t9 A2-A31, BEO#-BE3# Hold Time 4

t10 W/R#, MIIO#, D/C# Valid Delay 4 20
t11 W/R#, M/IO#, D/C# Float Delay 4 29

4-277

Unit Notes

MHz

ns

ns at 2.0V
ns at3.7V
ns at 2.0V
ns atO.8V
ns 3.7VtoO.8V
ns 0.8Vt03.7V

ns 50 pF load

ns 50 pF load

ns
ns

ns 50 pF load
ns 50 pF load

,'t

I,;
I

82380

A.C. SPECIFICATION TABLES (Continued)

Functional Operating Range: Vcc = SV±S%;TCASE '"' O·C to.+8S·C.

A.C. timings are tested at 1.SV thresholds; except as noted.

Table 13-4. 82389-25 A.C. Characteristics (Continued)

Symbol Parameter
82389-25

Min '. Max

t12 W/R#, M/IO#, D/C# Setup TIme 6
t13 W/R#, MIIO#, D/C#'HoldTime 4

t14 ADS#' Valid Del~y 4 19
tiS ADS# Float Delay 4 29

t16 ADS# Setup TIme 12
t17 ADS# Hold TIme 4

t18 Slave Mode 00-031 Read Valid ,4 31
t19 Slav.e Mode 00-031 Read Float 6 21

120 Slave Mode 00-031 Write Setup 20
t21 Slave Mode 00-031 Write Hold 20

122 Master Mode 00-031 Write Valid 8 27
t23 Master Mode 00-031 Write Float 4 19

t24 Master Mode 00-031 Read Setup 7
t2S Master Mode 00-031 Read Hold' '4

t26 READY # Setup Time 9
t27 READY # Hold Time 4

t28 WSCO..,WSC1 Setup Time 6
t29 WSCO-WSC1 Hold Time is

t30 RESET Hold Time 4
t31 RESET Setup TIme 9

t32 READYO# Valid Delay 3 21

133 CPUAST Valid Delay 2 14

134 HOLD Valid Delay 4 22

t3S HLOA Setup Time 17
t36 HLDA Hold Time 4

t37a EOP# 'Setup (Synchronous) 13
138a EOP# Hold (Synchronous) 4

t37b EOP# Setup (Asynchronous) 10
t38b EOP# Hold (Asynchronous) 10 .

139 EOP# Valid Delay 4 21
t40 EOP# ' Float Delay 4 21

t41a . DREQ Setup (Synchronous) 17
t42a PREQ Hold (Synchronous) 4
t41b DREQ Setup (Asynchronous) 10
t42b DREQ Hold (Asynchronous) . ·10
t43 ,. INT Valid Delay from IRQn SOO

4-278

Unit Notes

ns
ns

ns SOpF Load
ns SO pF Load

ns
ns

ns SO pF Load
. ns SO pF Load

ns
ns

ns, SO pF Load
ns SO pF Load

ns
ns

ns
ns

ns
ns

ns
ns

ns 2S pF Load

ns SO pF Load

ns SO pF Load

ns
ns

ns
ns

ns
oS
ns SOpF Load
ns SOpFLoad

ns
ns

ns
ns

ns SO pFLoad

inter 82380

A.C. SPECIFICATION TABLES (Continued)

Functional Operating Range: Vee = 5V ±5%; TeASE = O°C to +85°C.

A.C. timings are tested at 1.5V thresholds; except as noted.

Table 13-4.82380-25 A.C. Characteristics (Continued)

Symbol

t44
t45

t46
t47
t48
t49
t50

t51
t52

t53

t54

t55

Parameter

NA# Setup Time
NA# Hold Time

ClKIN Frequency
ClKIN High Time
ClKIN low Time
ClKIN Rise Time
ClKIN Fall Time

TOUT1/REF # Valid Delay
from ClK2 (Refresh)
from ClKIN (Timer)

TOUT2# Valid Delay
(Falling Edge Only)

TOUT2# Float Delay

TOUT3# Valid Delay

82380
OUTPUT~

~CL
290128-A4

. Figure 13-2. A.C. Test Load

82380-25 Unit
Min Max

7 ns
8 ns

0 10 MHz
30 ns
50 ns

10 ns
10 ns

4 20 ns
3 90 ns

3 90 ns

3 37 ns

3 90 ns

Notes

2.0V
0.8V
0.8Vt03.7V
3.7VtoO.8V

50pF load
50pF load

50pF load

50pF load

50pF load

290128-A5

Figure 13-3. CLK2 Timing

4-279

I;
I'

82380

CLK2

I I'HII I PHI2 PHil PHI2 PHil I PHI2

~ ~ ~ ~
I- T8...,. - T9--

A(2 - 31). BE(O- 3)#

1-T12"'" -T13--'

WjR#. MjIO#. DjC#

I- T26...,. -T27

READY#

~TI6...,. 1--T17

ADS#

~T35...,. I--T36

HLDA

I- T24"'" I--T25

D(O- 31)(DMA Read)

.... T20-I--T21

D(0-31) (CPU Write)

.... T37-I--T38 --

EOP#

.... T41-I+-T42--

DREO(0-7)

...... T44-~
NA#

-T28--' ~
WSC(O-I)

290128-A6

Figure 13-4. Input Setup and Hold Timing

Tx

. .
. . • PHil I. PH. 12 1 PHil .1 .PHI2

CLK2 . T31 T30

RESET

Tx

CLK2 . .. PHI2, PHil '. PHI2 •

r- T33 MIN.
CPURST ----------+m~

I-- T33 MAX.
290128-A7

Figure 13-5. Reset Timing

82380

PHil PHI 2 PHil PHI2 PHil PHI 2

ClK2

A(2-31). 8E(0-3)* -----:------+-1~~~============ ·VAUD DELAY

A(2-31). 8E(0-3)* ----------t-~~~-------------
EDACK(O-2)

. VAUD DELAY

A(2-31). 8E(0-3)* :=========:t:J~~~------------EDACK(O- 2)
flOAT DELAY

I"

II
1,\
I'.'
i"
I

A~*-------------------r~~~v------------------------
VALID DELAY

ADS*---------------------1--1~~~::::::::::::::::::::::::::: VAUD DELAY

ADS*::::::::::::::::::::::t:)~~~--------------------------__ flOAT DELAY

HOLD

-----------~~ 1----+1 T34Max
290128-AB

Figure 13-6. Address Output Delays

Tx Tx
PHil PHI2 PHil PHI2 PHil PHI2

ClK2

D(0-31) (CPU Read) ------1:~~~~~~::::~::::~~;;~~::---

~0-31)(DmaW~.)------------------------------_+--1C~~c::::::::::::::::::

P(0-31) (Dma Write) _________ ---_---I-...(~~I'_--------

0(0-31) (Dma W~.) ----------.... ----------1--01[
290128-A9

Figure 13-7. Data Bus Output Delays

4·281

82380

PHI2 PHil PHI2 PHil PHI2

CLK2

W/R#. M/IO#.D/C# ----------t-.II"~~-------------

W/R#. M/IO#.D/C# :::::::::::~~~~t:~....;,-.... --------
W/R#. M/IO#.D/C# ---------:~~OO~============:

READYO# ----------..... I-.lJ'j~~r'--------------

EOP#

EOP#

REr# ___________ 1:~~~~~~------------
T51Max

290128-80

Figure 13-8. Control Output Delays

CLKIN

TOUT1 __________ -+J~~~~-----------------

TOUT2# ---------+"'"~

TOUT2# --------1:~~~

TOUT3# ------..... --t:~~~;;;---------------­
T55Max

290128-81

Figure 13-9. Timer Output-Delays

4-282

inter

Port Address (HEX)

00
01
02
03
04
05
06
07
08
09
OA
OB
OC
00
OE
OF
10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1E
20

21

22
28
29
2A
2B
2C
2El
2E
2F

82380

APPENDIX A
Ports Listed by Address

Description

Read/Write DMA Channel 0 Target Address, AO-A15
Read/Write DMA Channel 0 Byte Count, BO-B15
Read/Write DMA Channel 1 Target Address; AO-A15
Read/Write DMA Channel 1 Byte Count, BO-B15
Read/Write DMA Channel 2 Target Address, AO-A15
Read/Write DMA Channel 2 Byte Count, BO-B15
Read/Write DMA Channel 3 Target Address, AO-A15
Read/Write DMA Channel 3 Byte Count, BO-B15
Read/Write DMA Channel 0-3 Status/Command I Register
Read/Write DMA Channel 0-3 Software Request Register
Write DMA Channel 0-3 Set-Reset Mask Register
Write DMA Channel 0-3 Mode Register I
Write Clear Byte-Pointer FF
Write DMA Master-Clear
Write DMA Channel 0-3 Clear Mask Register
Read/Write DMA Channel 0-3 Mask Register
Read/Write DMA Channel 0 Target Address, A24-A31
Read/Write DMA Channel 0 Byte Count, B16-B23
Read/Write DMA Channel 1 Target Address, A24-A31
Read/Write DMA Channel 1 Byte Count, B16-B23
ReadlWrite DMA Channel 2 Target Address, A24-A31
Read/Write DMA Channel 2 Byte Count, B16-B23
Read/Write DMA Channel 3 Target Address, A24-A31
Read/Write DMA Channel 3 Byte Count, B16-B23
Write DMA Channel 0-3 Bus Size Register
Read/Write DMA Channel 0-3 Chaining Register
Write DMA Channel 0-3 Command Register II
Write DMA Channel 0-3 Mode Register II
Read/Write Refresh Control Register
Reset Software Request Interrupt
Write Bank B ICW1, OCW2" or OCW3
Read Bank B Poll, Interrupt Request or In-Service

Status Register
Write Bank B ICW2, ICW3, ICW4 or OCW1
Read Bank B Interrupt Mask Register
Read Bank B ICW2
Read/Write IR08 Vector Register
Read/Write IR09 Vector Register
Reserved
Read/Write IR011 Vector Register
Read/Write IR012 Vector Register
Read/Write IR013 Vector Register
Read/Write IR014 Vector Register
Read/Write IR015 Vector Register

4-283

... \
"~I
j'I',
I
I

82380

APPENDIX A-Ports Listed by Address (Continued)

Port Address (HEX)

30

31

32
38
39
3A
38
3C
3D
3E
3F
40
41
42
43
44
45
46
47
61
64
72
73
74
75
76
77
70
7E
7F
80
81
82
83
87
88
89
8A
88
8F

. Description

Write 8ank A ICW1, OCW2 or OCW3
Read Bank A PolI,lnterrupt Request or In-Service

Status Register
Write Bank A ICW2, ICW3, ICW4 or OCW1
Read Bank A Interrupt Mask Register
Read Bank A ICW2
Read/Write IROO Ve~or Register
Read/Write IRQ1 Vector Register
Read/Write IRQ1.5 Vector Register
Read/Write I.RQ3 Vector Register
Read/Write IRQ4 Vector Register
Reserved
Reserved
Read/Write IRQ7 Vector Register
Read/Write Counter 0 Register
Read/Write Counter 1 Register
Read/Write Counter 2 Register
Write Cont~ol Word Register I-Counter 0, 1, 2
Read/Write Counter 3 Register
ReserVed .
ReserVed .
Write Word Register II-Counter 3
Write Intemal Control Port
. Write CPU Reset Register (Data-1111 XXXOH)
Re/ld/Write Wait State Register 0
Read/Write Wait State Register 1
Read/Write Wait State Register 2
Read/Write Refresh Wait State Register
Reserved
Reserved
Reserved
Reserved
Read/Write Relocation Register
Read/Write Intemal Diagnostic Port 0
Read/WriteDMA Cha,nnel 2 Target Address, A 16-A23
Read/Write DMA Channel 3 Target Address, A 16-A23
Read/Write DMA Channel 1 Target Address, A 16-A23
Read/Write DMA Channel 0 Target Address, A 16-A23
Read/Write Intemal Diagnostic Port 1
Read/WriteDMA Channel 6 Target Address, A 16-A23
Read/Write pMA Channel 7 Target Address,A16-A23
Read/Write DMA Channel 5 Target Address,~16-A23
Read/Write DMAChannel4 Target Address,A 16-A23

4-284

inter 82380

APPENDIX A-Ports Listed by Address (Continued)

Port Address (HEX)

90
91
92
93
94
95
96
97
98
99
9A
9B
9C
90
9E
9F
AO

A1

A2
A8
A9
AA
AB
AC
AD
AE
AF
CO
C1
C2
C3
C4
C5
C6
C7
C8
C9
CA
CB
CC
CD
CE
CF

Description

Read/Write DMA Channel 0 Requester Address, AO-A 15
Read/Write DMA Channel 0 Requester Address, A16-A31
Read/Write DMA Channel 1 Requester Address, AO-A15
Read/Write DMA Channel 1 Requester Address, A16-A31
Read/Write DMA Channel 2 Requester Address, AO-A 15
Read/Write DMA Channel 2 Requester Address, A16-A31
Read/Write DMA Channel 3 Requester Address, AO-A 15
Read/Write DMA Channel 3 Requester Address, A16-A31
Read/Write DMA Channel 4 Requester Address, AO-A 15
Read/Write DMA Channel 4 Requester Address, A16-A31
Read/Write DMA Channel 5 Requester Address, AO-A 15
Read/Write DMA Channel 5 Requester Address, A16-A31
Read/Write DMA Channel 6 Requester Address, AO-A 15
Read/Write DMA Channel 6 Requester Address, A 16-A31
Read/Write DMA Channel 7 Requester Address, AO-A 15
Read/Write DMA Channel 7 Requester Address, A16-A31
Write Bank C ICW1, OCW2 or OCW3
Read Bank C Poll, Interrupt Request or In-Service

Status Register
Write Bank C ICW2, ICW3, ICW4 or OCW1
Read Bank C Interrupt Mask Register
Read Bank C ICW2
Read/Write IRQ16 Vector Register
Read/Write IRQ17 Vector Register
Read/Write IRQ18 Vector Register
Read/Write IRQ19 Vector Register
Read/Write IRQ20 Vector Register
Read/Write IRQ21 Vector Register
Read/Write IRQ22 Vector Register
Read/Write IRQ23 Vector Register
Read/Write DMA Channel 4 Target Address, AO-A15
Read/Write DMA Channel 4 Byte Count, BO-B15
Read/Write DMA Channel 5 Target Address, AO-A15
Read/Write DMA Channel 5 Byte Count, BO-B15
Read/Write DMA Channel 6 TargetAddress, AO-A15
Read/Write DMA Channel 6 Byte Count, BO-B15
Read/Write DMA Channel 7 Target Address, AO-A 15
Read/Write DMA Channel 7 Byte Count, BO-B15
Read DMA Channel 4-7 Status/Command I Register
Read/Write DMA Channel 4-7 Software Request Register
Write DMA Channel 4-7 Set-Reset Mask Register
Write DMA Channel 4-7 Mode Register I
Reserved
Reserved
Write DMA Channel 4-7 Clear Mask Register
Read/Write DMA Channel 4-7 Mask Register

4-285

inter 82380

APPENDIX A-Ports Listed by Address (Continued)

Port Address (HEX)

DO
01
02
03
04
05
06
07
08
09
OA
DB

Description

Read/Write DMA Channel 4 Target Address, A24-A31
Read/Write OMA Channel 4 Byte Count, B16-B23
Read/Write OMA Channel 5 Target Address, A24-A31
Read/Wnte OMA Channel 5 Byte Count, B16':'B23
Read/Write OMA Channel 6 Target Address, A24-A31
Read/Write OMA Channel 6 Byte Count, B16-B23
Read/Write OMA Channel 7 Target Address, A24-A31
Read/Write OMA Channel 7 Byte Count, B16-B23
Write OMA Channel 4-7 Bus Size Register
Read/Write OMA Channel 4-7 Chaining Register
Write OMA Channel 4-7 Command Register II
Write OMA Channel 4-7 Mode Register II

4-286

inter

Port Address (HEX)

OD
OC

08
C8
1A
DA

OB
CB
1B
DB

09
C9
1E

OE
CE
OF
CF
OA
CA

18
D8

19
D9

00
87
10
01
11
90
91

02
83
12
03
13
92
93

82380

APPENDIX B
Ports Listed by Function

Description

DMA CONTROLLER
Write DMA Master-Clear
Write DMA Clear Byte-Pointer FF

Read/Write DMA Channel 0-3 Status/Command I Register
Read/Write DMA Channel 4-7 Status/Command I Register
Write DMA Channel 0-3 Command Register II
Write DMA Channel 4-7 Command Register II

Write DMA Channel 0-3 Mode Register I
Write DMA Channel 4-7 Mode Register I
Write DMA Channel 0-3 Mode Register II
Write DMA Channel 4-7 Mode Register II

Read/Write DMA Channel 0-3 Software Request Register
Read/Write DMA Channel 4-7 Software Request Register
Reset Software Request Interrupt

Write DMA Channel 0-3 Clear Mask Register
Write DMA Channel 4-7 Clear Mask Register
Read/Write DMA Channel 0-3 Mask Register
Read/Write DMA Channel 4-7 Mask Register
Write DMA Channel 0-3 Set-Reset Mask Register
Write DMA Channel 4-7 Set-Reset Mask Register

Write DMA Channel 0-3 Bus Size Register
Write DMA Channel 4-7 Bus Size Register

Read/Write DMA Channel 0-3 Chaining Register
Read/Write DMA Channel 4-7 Chaining Register

Read/Write DMA Channel 0 Target Address, AO-A15
Read/Write DMA Channel 0 Target Address, A16-A23
Read/Write DMA Channel 0 Target Address, A24-A31
Read/WriteOMA Channel 0 Byte Count, BO-B15
Read/Write DMA Channel 0 Byte Count, B16-B23
Read/Write DMA Channel 0 Requester Address, AO-A 15 .
Read/Write DMA Channel 0 Requester Address, A 16-A31

Read/Write DMA Channel 1 Target Address, AO~A15
Read/Write DMA Channel 1 Target Address, A16-A23
Read/Write DMA Channel 1 Target Address, A24-A31
Read/Write DMA Channel 1 Byte Count, BO-B15
Read/Write DMA Channel 1 Byte Count, B16-B23
Read/Write DMA Channel 1 Requester Address, AO-A 15
Read/Write DMA Channel 1 Requester Address, A 16-A31

4-287

82380

APPENDIX B-Ports Listed by Function (Continued)

Port Address (HEX)

04
81
14
05
15
94
95
06
82
16
07
17
96
97
CO
8F
DO
C1
01
98
99
C2
8B
02
C3
03
9A
9B

C4
89
04
C5
05
9C
90
C6
8A
06
C7
07
9E
9F

Description

DMA CONTROLLER

Read/Write OMA Channel 2 Target Address, AO-A 15
Read/Write OMA Channel 2 Target Address, A 16-A23
Read/Write OMA Channel 2 Target Address, A24-A31
Read/Write OMA Channel 2 Byte Count, BO-B15
Read/Write DMA Channel 2 Byte Count, B16-B23
Read/Write OMA Channel 2 Requester Address, AO-A15
Read/Write OMA Channel 2 Requester Address, A 16-A31

Read/Write OMA Channel 3 Target Address, AO-A 15
Read/Write OMA Channel 3 Target Address, A16-A23
Read/Write OMA Channel 3 Target Address, A24-A31
Read/Write OMA Channel 3 Byte Count, BO-B15
Read/Write OMA Channel 3 Byte Count, B16-B23
Read/Write OMA Channel 3 Requester Address, AO-A 15
Read/Write OMA Channel 3 Requester Address, A16-A31

Read/Write OMA Channel 4 Target Address, AO-A15
Read/Write OMA Channel 4 Target Address, A16-A23
Read/Write OMA Channel 4 Target Address, A24-A31
Read/Write OMA Channel 4 Byte Count, 80-B15
Read/Write OMA Channel 4 Byte Count, B16-B23
Read/Write OMA Channel 4 Requester Address, AO-A 15
Read/Write OMA Channel 4 Requester Address, A16-A31

Read/Write OMA Channel 5 Target Address, AO-A 15
Read/Write OMA Channel 5 Target Address, A16-A23
Read/Write OMA Channel 5 Target Address, A24-A31
Read/Write OMA Channel 5 Byte Count, BO-B15
Read/Write OMA Channel 5 Byte Count, B16-B23
Read/Write OMA Channel 5 Requester Address, AO-A 15
Read/Write OMA Channel 5 Requester Address, A 16-A31

Read/WritE! OMA Channel 6 Target Address, AO-A 15
Read/Write OMA Channel 6 Target Address, A 16_A23
Read/Write OMA Channel 6 Target Address, A24-A31
Read/Write OMA Channel 6 Byte Count, BO-B15
Read/Write OMA Channel 6 Byte Count, B16-B23
Read/Write OMA Channel 6 Requester Address, AO-A 15
Read/Write OMA Channel 6 Requester Address, A16-A31

Read/Write OMA Channel 7 Target Address, AO-A 15
Read/Write OMA Channel 7 Target Address, A 16-A23
Read/Write OMA Channel 7 Target Address, A24-A31
Read/Write OMA Channel 7 Byte Count, BO-B15
Read/Write OMA Channel 7 Byte Count, B 16-B23
Read/Write OMA Channel 7 Requester Address, AO-A 15
Read/Write OMA Channel 7 Requester Address, A16-A31

intJ 82380

APPENDIX B-Ports Listed by Function (Continued)

Port Address (HEX)

20

21

22
28
29
2A
2B
2C
20
2E
2F

AO

A1

A2
A8
A9
AA
AB
AC
AD
AE
AF
30

31

32
38
39
3A
3B
3C
3D
3E
3F

Description

INTERRUPT CONTROLLER

Write Bank B ICW1, OCW2, or OCW3
Read Bank B Poll, Interrupt Request or In-Service

Status Register
Write Bank B ICW2, ICW3, ICW4 or OCW1
Read Bank B Interrupt Mask Register
.Read Bank B ICW2
Read/Write IR08 Vector Register
Read/Write IR09 Vector Register
Reserved
Read/Write IR011 Vector Register
Read/Write IR012 Vector Register
Read/Write IR013 Vector Register
Read/Write IR014 Vector Register
Read/Write IR015 Vector Register

Write Bank C ICW1, OCW2 or OCW3
Read Bank C Poll, Interrupt Request or In-Service

Status Register
Write Bank C ICW2, ICW3, ICW4 or OCW1
Read Bank C Interrupt Mask Register
Read Bank C ICW2
Read/Write IR016 Vector Register
Read/Write IR017 Vector Register
Read/Write IR018 Vector Register
Read/Write IR019 Vector Register
Read/Write IR020 Vector Register
Read/Write IR021 Vector Register
Read/Write IR022 Vector Register
Read/Write IR023 Vector Register

Write Bank A ICW1, OCW2 or OCW3
Read Bank A Poll, Interrupt Request oor In-Service

Status Register
Write Bank A ICW2, ICW3, ICW4 or OCW1
Read Bank A Interrupt Mask Register
Read Bank A ICW2
Read/Write IROO Vector Register
Read/Write IR01 Vector Register
Read/Write IR01.5 Vector Register
Read/Write IR03 Vector Register
Read/Write IR04 Vector Register
Reserved
Reserved
Read/Write IR07 Vector Register

4-289

82380

APPENDIX B-Ports Listed by Function (Continued)
Port Address (HEX) Descrlptlon

PROGRAMMABLE INTERVAL TIMER

40 Read/Write Counter 0 Register
41 Read/Write Counter 1 Register
42 Read/Write Counter 2 Register
43 Write Control Word Register l-Counter 0, 1, 2
44 Read/Write Counter 3 Register
47 Write Word Register II-Counter 3

CPU RESET
64 Write CPU Reset Register (Data-1111 XXXOH)

WAIT STATE GENERATOR

72 Read/Write Wait State Register 0
73 Read/Write Wait State Register 1
74 Read/Write Wait State Register 2
75 Read/Write Refresh Wait State Register

DRAM REFRESH CONTROLLER

1 C Read/Write Refresh Control Register

INTERNAL CONTROL AND DIAGNOSTIC PORTS

61 Write Internal Control Port
80 Read/Write Internal Diagnostic Port 0
88 Read/Write Internal Diagnostic Port 1

RELOCATION REGISTER

7F Read/Write Relocation Register

INTEL RESERVED PORTS

2A Reserved
3D Reserved
3f Reserved
45 Reserved
46 Reserved
76 Res~rved
77 Reserved
70 Reserved
7E Reserved
CC Reserved
CD Reserved

4-290

inter 82380

APPENDIX C
Pin Descriptions

The 82380 provides all of the signals necessary to
interface it to an 80386 processor. It has separate
32-bit address and data buses. It also has a set of
control signals to support operation as a bus master
or a bus slave. Several special function signals exist
on the 82380 for interfacing the system support pe­
ripherals to their respective system counterparts.
Following are the definitions of the individual pins of
the 82380. These brief descriptions are provided as
a reference. Each signal is further defined within the
sections which describe the associated 82380 func­
tion.

A2-A31 1/0 ADDRESS BUS

This is the 32-bit address bus. The addresses are
doubleword memory and 1/0 addresses. These are
three-state signals which are active only during Mas­
ter mode. The address lines should be connected
directly to the 80386's local bus.

BEO# 1/0 BYTE-ENABLE 0

BEO# active indicates that data bits 00'-07 are be­
ing accessed or are valid. It is connected directly to
the 80386's BEO#. The byte enable signals are ac­
tive outputs when the 82380 is in the Master mode.

BEH 1/0 BYTE-ENABLE 1

BE1 # active indicates that data bits 08-015 are
being accessed or are valid. It is connected directly
to the 80386'~ BE1 #. The byte enable signals are
active only when the 82380 is in the Master mode.

BE2# 1/0 BYTE-ENABLE 2

BE2# active indicates that data bits 015-023 are
being accessed or are valid. It is connected directly
to the 80386's BE2#. The byte enable signals are
active only when the 82380 is in the Master mode.

BE3# 1/0 BYTE-ENABLE 3

BE3# active indicates that data bits 024-031 are
being accessed or are valid. The byte enable signals
are active only when the 82380 is in the Master
mode. This pin should be connected directly to the
80386's BE3 #. This pin is used for factory testing
and must be low during reset. The 80386 drives
BE3 # low during reset.

4-291

00-031 1/0 DATA BUS

This is the 32-bit data bus. These pins are active
outputs during interrupt acknowledges, during Slave
accesses, and when the 82380 is in the Master
mode.

CLK2 PROCESSOR CLOCK

This pin must be connected to CLK2. The 82380
monitors the phase of this clock in order to remain
synchronized with the 80386. This clock drives all of
the internal synchronous circuitry.

D/C# 1/0 DATA/CONTROL

D/C# is used to distinguish between 80386 control
cycles and DMA or 80386 data access cycles. It is
active as an output only in the Master mode.

W/R# 110 WRITE/READ

W/R# is used to distinguish between write and read
cycles. It is active as an output only in the Master
mode.

M/IO# 1/0 MEMORY/IO

M/IO# is used to distinguish between memory and
10 accesses. It is active as an output only in the
Master mode.

ADS# 110 ADDRESS STATUS

This Signal indicates presence of a valid address on
the address bus. It is active as output only in the
Master mode. ADS# is active during the first T-state
where addresses and control signals are valid.

NA# NEXT ADDRESS

Asserted by a peripheral or memory to begin a pipe­
lined address cycle. This pin is monitored only while
the 82380 is in the Master mode. In the Slave mode,
pipelining is determined by the current and past
status of the ADS# and READY# signals.

•

•
•

•

82385
HIGH PERFORMANCE

32-BIT CACHE. CONTROLLER

Improves 80386 System Performance • Synchronous Dual Bus Architecture
- Reduces Average CPU Wait States to - Bus Watching Maintains Cache

Nearly Zero Coherency
- Zero Wait State Read Hit • Maps Full. 80386 Address Space
- Zero Wait State Posted Memory (4 Gigabytes)

Writes
- Allows Other Masters to Access the • Flexible Cache Mapping Policies

System Bus More Readily - Direct Mapped or 2-Way Set

Hit Rates up to 99%
Associative Cache Organization

- Supports Non-Cacheable Memory
Optimized as 80386 Companion Space
- Simple 80386 Interface - Unified Cache for Code and Data
- Part of 386-Based Compute Engine • Integrates Cache Directory and Cache

Including 80387 Numerics Management Logic
Coprocessor and 82380 Integrated
System Peripheral • High Speed CHMOS III Technology

- 16 MHz, 20 MHz, and 25 MHz • 132-Pin PGA Package
Operation

Software Transparent

The 82385 Cache Controller is a high performance 32-bit peripheral for Intel's 80386 Microprocessor. It stores
a copy of frequently accessed code and data from main memory in a zero wait state local cache memory. The
82385 enables the 80386 to run at its full potential by reducing the average number of CPU wait states to
nearly zero. The dual bus architecture of the 82385 allows other masters to access system resources while the
80386 operates. locally out of its cache. In this situation, the 82385's "bus watching" mechanism preserves
cache coherency by monitoring the system bus address lines at no cost to system or local throughput.

The 82385 is completely software transparent, protecting the integrity of system software. High performance
and board savings are achieved because the 82385 integrates a cache directory and all cache management
logic on one chip.

82385 LOCAL
BUS CONTROL

BUS
ARBITRATION

80386 LOCAL
BUS CONTROL
80386 LOCAL
SUS DECODES

.... ...
...
...

.... ...

... ... 82385 CACHE .. LOCAL BUS DIRECTORY
INTERFACE "' ~ ~ ..

... fI)

:;:li6
z-'
0::0
~~
zz
-0 ... '-' ... PROCESSOR ~ , ... CACHE --. INTERFACE "' .. CONTROL

...

t
82385 CONFIGURATION

82385 Internal Block Diagram

4-292

.... ...
"""-...

... ..

80386
ADDRESS BUS

SNOOP BUS

CACHE
CONTROL BUS

290143-1

October 1988
Order Number: 290143-003

inter 82385

1.0 82385 FUNCTIONAL OVERVIEW

Th~ 82385 Cache Controller is a high performance
32-bit peripheral for Intel's 80386 microprocessor.
This chapter provides an overview of the 82385, and
of the basic architecture and operation of an 80386/
82385 system.

1.1 82385 OVERVIEW

The main function of a cache memory system is to
provide fast local storage for frequently accessed
code and data. The cache system intercepts 80386
memory references to see if the required data re­
sides in the cache. If the data resides in the cache (a
hit), it is returned to the 80386 without incurring wait
states. If the data is not cached (a miss), the refer­
ence is forwarded to the system and the data re­
trieved from main memory. An efficient cache will
yield a high "hit rate" (the ratio of cache hits to total
80386 accesses), such that the majority of accesses
are serviced with zero wait states. The net effect is
that the wait states incurred in a relatively infrequent
miss are averaged over a large number of accesses,
resulting in an average of nearly zero wait states per
access. Since cache hits are serviced locally, a
processor operating out of its local cache has a
much lower "bus utilization" which reduces system
bus bandwidth requirements, making more band­
width available to other bus masters.

The 82385 Cache Controller integrates a cache di­
rectory and all cache management logic required to
support an external 32 Kbyte cache. The cache di-

80386

rectory structure is such that the entire physical ad­
dress range of the 80386 (4 Gigabytes) is mapped
into the cache. Provision is made to allow areas of
memory to be set aside a non-cacheable. The user
has two cache organization options: direct mapped
and 2-way set aSSOCiative. Both provide the high hit
rates necessary to make a large, relatively slow
main memory array look like a fast, zero wait state
memory to the 80386.

A good hit rate is an essential ingredient of a suc­
cessful cache implementation. Hit rate is the mea­
sure ,of how efficient a cache is in maintaining a copy
of the most frequently requested code and data.
However, efficiency is not the only factor for per­
formance consideration. Just as essential are sound
cache management policies. These policies refer to
the handling of 80386 writes, preservation of cache
coherency, and ease of system design. The 82385's
"posted write" capability allows 80386 memory
writes, including non-cacheable, to run with zero
wait states, and the 82385's "bus watching" mecha­
nism preserves cache coherency with no impact on
system performance. Physically, the 82385 ties di­
rectly to the 80386 with virtually no external logiC.

1.2 SYSTEM OVERVIEW I: BUS
STRUCTURE

A good grasp of the bus structure of an 80386/
82385 system is essential in understanding both the
82385 and its role in an 80386 system. The following
is a description of this structure.

I
80386

LOCAL BUS

,..--.;Lo--,~

290143-2

Figure 1~1. 80386 System Bus Structure

4-293

inter 82385

1.2.180386 Local Bus/82385 Local
Bus/System Bus

Figure 1-1 depicts the bus structure of a typical
80386 system. The "80386 Local Bus" consists of
the physical 80386 address, data, and control bus­
ses. The local address and data busses are buffered
and/or latched to become the "system" address
and data busses. The local control bus is decoded
by bus control logic to generate the various system
bus read and write commands. '

The addition of an 82385 Cache Controller causes a
separation of the 80386 bus into two distinct busses:
the actual 80386 local bus and the "82385 Local
Bus" (Figure 1-2). The 82385 local bus is designed
to look like the front end oran 80386 by providing
82385 local bus equivalents to all appropriate 80386
signals. The system ties to this "80386-like" front
end just as it would to an actual 80386. The 80386
simply sees a fast system bus, and the system sees
an 80386 front end with low bus bandwidth require­
ments. The cache subsystem is transparent to both.
Note that the 82385 local bus is not simply a buff­
ered version of the 80386 bus, but rather is distinct
from, and able to operate in parallel with the 80386
bus. Other masters residing on either the 82385 lo­
cal bus or system bus are free to manage system
resources while the 80386 operates out of its cache.

1.2.2 Bus Arbitration

The 82385 presents the "80386-like" interface
which is called the 82385 local bus. Whereas the
80386 provides a Hold Request/Hold Acknowledge
bus arbitration mechanism via its HOLD and HLDA
pins, the 82385 provides an equivalent mechanism
via its BHOLD and BHLDA pins. (These signals are
described in section 3.7.) When another master re­
quests the 82385 local bus, it issues the request to
the 82385 via BHOLD. Typically, at the end of the
current 82385 local bus cycle, the 82385 will release
the 82385 local bus and acknowledge the request
via BHLDA. The 80386 is of course free to continue
operating on the 80386 local bus while another mas­
ter owns the 82385 local bus.

1.2.3 Master/Slave Operation

The ,above 82385 local bus arbitration discussion is
strictly true only when the 82385 is programmed for
"Master" mode operation. The user can, however,
configure the 82385 for "Slave" mode operation.
(Programming is done via a hardware strap option.)
The roles of BHOLD and BHLDA are reversed for an
82385 in slave mode; BHOLD is now an output indi­
cating a request to control the bus, and BHLDA is an
input indicating that a request has been granted. An
82385 programmed in slave mode drives the 82385
local bus only when it has requested and subse­
quently been granted bus control. This allows multi·
pie 80386/82385 subsystems to reside on the same
82385 local bus (Figure 1-3).

80386

80386
LOCAL BUS

~
82385

LOCAL BUS

--.l

290143-3

Figure 1·2. 80386/82385 System Bus Structure

4-294

intJ 82385

------------------------~ ------------ r------------------------
80386 80386

SYSTEM SUS

290143-4

Figure 1-3. Multl-Master/Multi-Cache Environment

1.2.4 Cache Coherency

Ideally, a cache contains a copy of the most heavily
used portions of main memory. To maintain cache
"coherency" is to make sure that this local copy is
identical to main memory. In a system where multi­
ple masters can access the same memory, there is
always a risk that one master will alter the contents
of a memory location that is duplicated in the local
cache of another master. (The cache is said to con­
tain "stale" data.) One rather restrictive solution is to
not allow cache subsystems to cache shared memo­
ry. Another simple solution is to flush the cache any­
time another master writes to system memory. How­
ever, this can seriously degrade system perform­
ance as excessive cache flushing. will reduce the hit

SNOOP BUS -_~
-SYSTEM ADDRESS BUS
-WRITE CYCLE INDICATOR

rate of what may otherwise be a highly efficient
cache.

The 82385 preserves cache coherency via "bus
watching" (also called snooping), a technique that
neither impacts performance nor restricts memory
mapping. An 82385 that is not currently bus master
monitors system bus cycles, and when a write cycle
by another master is detected (a snoop), the system
address is sampled and used to see· if the refer­
enced location is duplicated in the cache. If so (a
snoop hit), the corresponding cache entry is invali­
dated, which will force the 80386 to fetch the up-to­
date data from main memory the next time it access­
es this modified location. Figure 1-4 depicts the gen­
eral form of bus watching.

80386

80386
LOCAL BUS

.. --.. --.)~~~~~ BUS

290143-5

Figure 1-4. 82385 Bus Watching-Monitor System Bus Write Cycles

4-295

II
I,

82385

1.3 SYSTEM OVERVIEW II: BASIC
OPERATION

This discussion is an overview of the basic operation
of an 80386/82385 system. Items discussed include
the 82385's response to all 80386 cycles, including
interrupt acknowledges, halts, and shutdowns. Also
discussed are non-cacheable and local accesses.

1.3.1 80386 Memory Code and Data
Read Cycles .

1_3.1_1 READ HITS

When the 80386 initiates a memory code or data
read cycle, the 82385 compares the high order bits
of the 80386 address bus with the appropriate ad­
dresses (tags) stored in its on-chip directory. (The
directory structure is described in chapter 2.) If the
82385 determines that the requested data is in the
cache, it issues the appropriate control signals that
direct the cache to drive the requested data onto the
80386 data bus, where it is read by the 80386. The
82385 terminates the 80386 cycle without inserting
any wait states.

1.3.1.2 READ MISSES

If the 82385 determines that the requested data is
notin the cache, the request is forwarded to the
82385 local bus and the data retrieved from main
memory. As the data returns.from main memory, it is
directed to the 80386 and also written into the
cache. Concurrently, the 82385 updates the cache
directory such that the nel(t time this particular piece
of information is requested by the 80386, the 82385
will find it in the cache and return it with zero wait
state!!.

The basic unit of transfer between main memory and
cache memory in a cache subsystem is called the
line size. In an 82385 system, the line size is one 32-
bit aligned doubleword. During a read miss, all four
82385 local bus byte enables are active. This en­
sures that a full 32·M entry is written into the cache.
(The 80386 simply ignores what it did not request.)
In any other type of 80386 cycle that is forwarded to
the 82385 local bus, the logic levels of the 80386
byte enables are duplicated on the 82385 local bus.

The 82385 does not actively fetch main memory
data independently of the 80386. The 82385 is es­
sentially a passive device which only. monitors the
address bus and activates control signals. The read
miss is the only mechanism by which main memory
data is copied into the cache and validated in the
cache directory. .

In an isolated read miss, the number of wait states
seen by the 80386 is that required by the system
memory to respond with data plus the cache com­
parison cycle. (hit/miss decision). The cache system
must determine that the cycle is a miss before it can
begin the system memory access .. However, since
misses most often occur consecutively, the 82385
will. begin 80386 address pipelined cycles to effec­
tively "hide" the comparison cycle beyond the first
miss (refer to section 4.1.3).

The 82385 can execute a main memory access on
the 82385 local bus only if it currently owns the bus.
If not, an 82385 in master mode will run the cycle
after the current master releases the bus. An 82385
in slave mode will issue a hold request, and will run
the cycle as soon as the request is acknowledged.
(This is true for any read or write cycle that needs to
run on the 82385 local bus.)

1.3.2 80386 Memory Write Cycles

The 82385's "posted write" capability allows the
majority of 80386 memory write cycles to run with
zero wait states. The primary memory update policy
implemented in a posted write is· the traditional
cache "write through" technique, which implies that
main memory is always updated in any memory write
cycle. If the referenced location also happens to re­
side in the cache (a write hit), the cache is updated
as well.

Beyond this, a posted write latches the 80386 ad­
dress, data, and cycle definition signals, and the
80386 local bus cycle is terminated without any wait
states, even though the corresponding 82385 local
bus cycle is not yet completed, or perhaps. not even
started. A posted write is possible because the
82385's bus state machine, which is almost identical
to the 80386 bus state machine, is able to run 82385
local bus cycles independently of the 80386. The
only time the.80386 sees wait states in a write cycle
is when a previously latched write has not yet been
completed on the 82385 local bus. An 80386 write
can be posted even if the 82385 does not currently
own the 82385 local bus. In this case, an 82385 in
master mode will run the cycle as soon as the cur­
rent master releases the bus, and an 82385 in slave
mode will request the bus and run the cycle when
the request is acknowledged. The 80386 is free to
continue operating out of its cache (on the 80386
local bus) during this time.

1.3.3 Non-Cacheable Cycles

Non-cacheable cycles fall into one of two catego­
ries: cycles decoded as non-cacheable, and cycles

4-296

82385

that are by default non-cacheable according to the
82385's design. All non-cacheable cycles are for­
warded to the 82385 local bus. Non-cacheable cy­
cles have no effect on the cache or cache directory.

The 82385 allows the system designer to define ar­
eas of main memory as non-cacheable. The 80386
address bus is decoded and the decode output is
connected to the 82385's non-cacheable access
(NCA#) input. This decoding is done in the first
80386 bus state in which the non-cacheable cycle
address becomes available. Non-cacheable read cy­
cles resemble cacheable read miss cycles, except
that the cache and cache directory are unaffected.
Non-cacheable writes, like all writes, are posted.

The 82385 defines certain cycles as non-cacheable
without using its non-cacheable access input. These
include 1/0 cycles, interrupt acknowledge cycles,
and halt/shutdown cycles. 1/0 reads and interrupt
acknowledge cycles execute as any other non­
cacheable read. 1/0 write cycles and Halt/Shut­
down cycles, as with other non-cacheable writes,
are posted. During a halt/shutdown condition, the
82385 local bus duplicates the behavior of the
80386, including the ability to recognize and respond
to a BHOLD request. (The 82385's bus watching
mechanism is functional in this condition.)

1.3.3.1 16-BIT MEMORY SPACE

The 82385 does not cache 16-bit memory space (as
decoded by the 80386 BS16# input), but does
make provisions to handle 16-bit space· as non­
cacheable. (There is no 82385 equivalent to the
80386 BS16# input.) In a system without an 82385,
the 80386 BS16# input need not be asserted until
the last state of a 16-bit cycle for the 80386 to rec­
ognize it as such (unless NA# is sampled active ear­
lier in the cycle.) The 82385, however, needs this
information earlier, specifically at the end of the first
80386 bus state in which the address· of the 16-bit
cycle becomes available. The result is that in a sys­
tem without an 82385, 16-bit devices can inform the
80386 that they are 16-bit devices "on the fly,"

while in a system with an 82385, devices decoded
as 16-bit (using the 80386 BS16#) must be located
in address space set aside for 16-bit devices. If 16-
bit space is decoded according to 82385 guidelines
(as described later in the data sheet), then the
82385 will handle 16-bit cycles just like the 80386
does, including effectively locking the two halves of
a nOil-aligned 16-bit transfer from interruption by an­
other master.

1.3.4 80386 Local Bus Cycles

80386 Local Bus Cycles are accesses· to resources
on the 80386 local bus rather than to the 82385 it­
self. The 82385 simply ignores these accesses: they
are neither forwarded to the system nor do they af­
fect the cache. The designer sets aside memory
andlor 1/0 space for local resources by decoding
the 80386 address bus and feeding the decode to
the 82385's local bus access (LBA#) input. The de­
signer can also decode the 80386 cycle definition
Signals to keep specific 80386 cycles from being for­
warded to the system. For example, a multi-proces­
sor design may wish to capture and remedy an
80386 shutdown locally without having it detected
by the rest of the system. Note that in such a design,
the local shutdown cycle must be. terminated by lo­
cal bus control logic. The 80387 Numerics Coproc­
essor is considered an 80386 local bus resource,
but it need not be decoded as such by the user since
the 82385 is able to internally recognize 80387 ac­
cesses via the M/IO# and A31 pins.

1.3.5 Summary of 82385 fiesponse to
All 80386 Cycles

Table 1-1 summarizes the 82385 response to all
80386 bus cycles, as col'lditioned by whether or not
the cycle is decoded as local or non-cacheable. The
table describes. the impact. of each cycle on the
cache and oil the cache directory, and whether or
not the cycle is forwarded to the 82385 local bus.
Whenever the 82385 local bus is marked "IDLE", it
implies that this bus is available to other masters.

4-297

~
r\)
<0
CD

Table 1-1.82385 Response to 80386 Cycles

MilO #

0

0

0

0

1

1

1

1

NOTES:

80386 Bus Cycle
Definition

D/C# W/R#
80386
Cycle

0 0 INTACK

0 1 UNDEFINED

1 0 1/0 READ

1 1 1/0 WRITE

MEMCODE
0 0

READ

0 1
HALTI

SHUTDOWN

MEMDATA
1 0

READ

MEMDATA
1 1

WRITE

Cache

N/A -
N/A
N/A -
N/A -

HIT
CACHE
READ

MISS
CACHE
WRITE

N/A -

HIT
CACHE
READ

MISS
CACHE
WRITE

HIT
CACHE
WRITE

MISS -

82385 Response 82385 Response
when Decoded when Decoded
as Cacheableas Non-Cacheable

Cache 82385
Cache

Cache 82385
Directory Local Bus Directory Local Bus

- INTACK - - INTACK

UNDEFINED UNDEFINED

- 1/0 READ - - 110 READ

- 110 WRITE - - 1/0 WRITE

- IDLE MEM
- - CODE

DATA MEMCODE READ
VALIDATION READ

HALTI HALTI - - -
SHUTDOWN SHUTDOWN

IDLE MEM
- - DATA

DATA MEMDATA READ
VALIDATION READ

MEMDATA
MEM - WRITE - - DATA

MEMDATA WRITE - WRITE

• A dash (-) indicates that the cache and cache directory are unaffllcted. This table does not reflect how an access affects the LRU bit.
• An "IDLE" 82385 Local Bus implies that this bus is available to other masters.
• The 82385's response to 80387 accesses is the same as when decoded as an 80386 Local Bus access.
• The only other operations that affect the cache directory are:

1. RESET or Cache Flush-all tag valid bits cleared.
2. Snoop Hit-corresponding line valid bit cleared.

82385 Response when
Decoded as an 80386

Local Bus Access

Cache
Cache 82385

Directory Local Bus

- - IDLE

IDLE

- - IDLE

- - IDLE

- - IDLE

- - IDLE

- - IDLE

- - IDLE

I

!

I

l

CCI
~
Co)
CCI en

~
©1
~
:?g
@
IiiiiJ

~
'iii!
@
aID
tE
~
C=lJ
=>
@
:?g

inter 82385

1.3.6 Bus Watching

As previously discussed, the 82385 "qualifies" an
80386 bus cycle in the first bus state in which the
address and cycle definition signals of the cycle be­
come available. The cycle is qualified as read or
write, cacheable or non-cacheable~ etc. Cacheable
cycles are further classified as hit or miss according
to the results of the cache comparison, which ac­
cesses the 82385 directory and compares, the ap­
propriate directory location (tag) to the current
80386 address. If the cycle turns out to be non­
cacheable or a 80386 local bus access, the hit/miss
decision is ignored. The cycle qualification requires
one 80386 state. Since the fastest 80386 access is
two states, the second state can be used for bus
watching.

When the 82385 does not own the system bus, it
monitors system bus cycles. If another master writes
into main memory, the 82385 latches the system ad­
dress and executes a cache look-up to see if the
altered main memory location resides in the cache.
If so (a snoop hit), the cache entry is marked invalid
in the cache directory. Since the directory is at most
only being used every other state to qualify 80386
accesses, snoop look-ups are interleaved between
.80386 local bus look-ups. The cache directory is
time multiplexed between the 80386 address and
the latched system address. The result is that all
snoops are caught and serviced without slowing
down the 80386, even when running zero wait state
hits on the 80386 local bus.

1.3.7 Cache Flush

The 82385 offers a cache flush input. When activat­
ed, this signal causes the 82385 to invalidate all
data which had previous!y been cached. Specifically,

INTERNAL EXTERNAL
CACHE DIRECTORY DATA CACHE

all tag valid bits are cleared. (Refer to the 82385
directory structure in chapter 2.) Therefore, the
cache is effectively empty and subsequent cycles
are misses until the 80386 begins repeating the new
accesses (hits). The primary use of the FLUSH input
is for diagnostics and multi-processor support.

NOTE:
. The use of this pin as a coherency mechanism may

impact software transparency.

2.0 82385 CACHE ORGANIZATION

The 82385 supports two cache organizations:. a sim­
ple direct mapped organization and a slightly more
complex, higher performance two way set associa­
tiveorganization. The choice is made by strapping
an 82385 input (2W/D#) either high or low. This
chapter describes the structure and operation of
both organizations.

2.1 DIRECT MAPPED CACHE

2.1.1 Direct Mapped Cache Structure
and Terminology

Figure 2-1 depicts the relationship between the
82385's internal cache directory, the external cache
memory, and the 80386's 4 Gigabyte physical ad­
dress space. The 4 Gigabytes can conceptually be
thought of as cache "pages" each being 8K double­
words (32 Kbytes) deep. The page size matches the
cache size. The cache can be further divided into
1024 (0 thru 1023) sets of eight doublewords (8 x 32
bits). Each 32-bit doubleword is called a ~'line." The
unit of transfer between the main memory and
cache is one line.

t;;;;;;;l~ PAGE SIZE

4 GIClA8YTES MAlN MEMORY

=32KB
(8K DOUBLE

WORDS)

290143-6

Figure 2-1. Direct Mapped Cache Organization

4-299

'I
i'

I ,~

82385

Each block in the external cache has an associated
26-bit ,entry in the 82385's internal cache directory.
This .entry has three components: a 17-bit ~'tag," a
"tag valid" bit, and eight "line .valid" bits .. The tag
acts as a main memory page number (17 tag bits
support 217 pages). For example, if line 9 of page 2
currently resides in the cache, then a binary 2 is
stored in the Set 1 tag field. (For any 82385 direct
mapped cache page in main memory, Set 0 consists
of lines 0-7, Set 1 consists of lines 8-15, etc. Line 9
is shaded in Figure 2-1.) An important characteristic
of a direct mapped cache is that line 9 of any page
can only reside in line 9 of the cache. All identical
page offsets map to a single cache location.

The data in a cache set is considered valid or inval.id
depending on the status of its tag valid bit. If clear,
the entire set is considered invalid. If true, an individ·
ual line within the set is considered valid or invalid
depending on the status of its line valid bit.

The 82385 sees the 80386 address bus (A2-A31)
as partitioned into three fields: a 17-bit "tag" field
(A15-A31), a 10·bit "set·address" field (A5-A14),
and a 3-bit "line select" field (A2-A4). (See Figure
2-2.) The lower 13 address bits (A2-A14) also serve
as the "cache address" which directly selects one
of 8K doublewords in the external cache.

2.1.2 Direct Mapped Cache Operation

The following is a description of the interaction be·
tween the 80386, cache, and cache directory.

2.1.2.1 READ HITS

When the 80386 initiates a memory read cycle, the
82385 uses the 10·bit set address to select one of

1024 directory entries, and the 3"bit line select field
to select one of eight line valid bits within the entry.
The 13-bit cache address selects·the corresponding
doubleword in the cache. The 82385 compares the
17-bit tag field (A15-A31 of the 80386 access) with
the tag stored in the selected directory entry. If the
tag and upper address. bits. match, and if both the
tag and appropriate lir;'le valid bits are set, the result
is a hit, and the 82385 directs the cache to drive. the
selected doubleword onto' the. 80386 data bus. A
read hit does ncit alter the. contents of the cache or
directory. '

2.1.2.2 READ MISSES

A read miss can occur in two ways. The first is
known as a "line" miss, and occurs when the tag
and upper address bits match and the tag valid bit is
set, but the line valid bit is clear. The second is
called a "tag" miss, and occurs when either the tag
and upper address bits do not match, or the tag valid
bit is clear. (The line valid bit is a "don't care" iti a
tag miss.) In both cases, the 82385 forwards the
80386 reference to the system, and as the returning
data is fed to the 80386, it is written into the cache
and validated in the cache directory.

In a line miss, the incoming data is validated simply
by setting the previously clear line valid bit. In a tag
miss, the upper address bits overwrite the previously
stored tag, tMtag valid bit is set, the appropriate
line valid bit is set, and the other seven line valid bits
are cleared. Subsequent tag hits with line misses will
only set the appropriate line valid bit. (Any data as·
sociated with the previous tag is no longer consid·
ered resident in the cache.) .

CACHE ADDRESS r (lor 8K DOUBLE WORDS) 'I
A31 AIS A14 AS A4 A2

~111111111111111111111111
.' -L 'A)

17-BIT TAG -----~ SET ADDRESS ' LINE
(lor 2'7 PAGES '(I.or 1024 SETS) SELECT

(lor 8 LINES)

Figure 2·2. 80386 Address Bus ,Bit Flelds-Dlrect Mapped Organization

4·300

290143-7

82385

2.1.2.3 OTHER OPERATIONS THAT AFFECT
THE CACHE AND CACHE DIRECTORY

The other operations that affect the cache and/or
directory are write hits, snoop hits, cache flushes,
and 82385 resets. In a write hit, the cache is updat­
ed along with main memory, but the directory is un­
affected. In a snoop hit, the cache is unaffected, but
the affected line is invalidated by clearing its line
valid bit in the directory. Both an 82385 reset and
cache flush clear all tag valid bits.

When an 80386/82385 system "wakes up" upon re­
set, all tag valid bits are clear. At this point, a read
miss is the only mechanism by which main memory
data is copied into the cache and validated in the
cache directory. Assume an early 80386 code ac­
cess seeks (for the first time) line 9 of page 2. Since
the tag valid bit is clear, the access is a tag miss,
and the data is fetched from main memory. Upon
return, the data is fed to the 80386 and simulta­
neously written into line 9 of the cache. The set di­
rectory entry is updated to show this line as valid.
Specifically, the tag and appropriate line valid bits
are set, the remaining seven line valid bits cleared,
and a binary 2 written into the tag. Since code is
sequential in nature, the 80386 will likely next want
line 10 of page 2, then line 11, and so on. If the
80386 sequentially fetches the next six lines, these
fetches will be line misses, and as each is fetched
from main memory and written into the cache, its
corresponding line valid bit is set. This is the basic

DIRECTORY A DIRECTORY B BANK A

TAG VALID TAG VALID
BIT BIT

flow of events that fills the cache with valid data.
Only after a piece of data has been copied into the
cache and validated can it be accessed in a zero
wait state read hit. Also, a cache entry must have
been validated before it can be subsequently altered
by a write hit, or invalidated by a snoop hit.

An extreme example of "thrashing" is if line 9 of
page two is an instruction to jump to line 9 of page
one, which is an instruction to jump back to line 9 of
page two. Thrashing results from the direct mapped
cache characteristic that all identical page offsets
map to a single cache location. In this example, the
page one access overwrites the cached page two
data, and the page two access overwrites the cach­
ed page one data. As long as the code jumps back
and forth the hit rate is zero. This is of course an
extreme case. The effect of thrashing is that a direct
mapped cache exhibits a slightly reduced overall hit
rate as compared to a set. associative cache of the
same size.

2.2 TWO WAY SET ASSOCIATIVE
CACHE

2.2.1 Two Way Set Associative Cache
Structure and Terminology

Figure 2-3 illustrates the relationship between the
directory, cache, and 4 Gigabyte address space.

BANK B

1 LINE ! LINE

18-BIT VALID LBU 18-:~BIT:LV~A~LI~Dr--...,t:~.::!._.,t:::E:::::!-__ 4t::s;;r7r TAG BITS BITS TA~ BITS

SEToqprnmtD E3 qr-w= t;;;;;;;;;)iIaa! PAGE SIZE
=16KB

(4K DOUBLE
WORDS)

INTERNAL
CACHE DIRECTORY

EXTERNAL
DATA CACHE

4 GIGABYTES MAIN MEMORY

290143-8

Figure 2-3. Two-Way Set Associative Cache Organization

4-301

I'. i',
I ~
i':,

it
1\

~
I;',

"

'j

inter 82385

Whereas the direct mapped cache is organized as
one bank.of 8K doublewords, the two way set asso­
ciative cache is organized as two banks (A and B) of
4.K doublewords each. The page size is halved, and
t~e number of pages. doubled. (Note the extra tag
bit.) The cache now has 512. sets in each bank. (Two
banks times 512 sets gives a total of 1024. The
structure can be thought of as two half-sized direct
mapped caches in parallel.) The. performance ad­
vantage over a direct mapped cache is that all iden­
tical page offsets map to two cache locations in­
stead of one, reducing the potential for thrashing.
The 82385's partitioning of the. 80386 address bus is
depicted in Figure 2.-4.

2.2.2 LRU Replacement AlgOrithm

The two way set associative directory has an addi­
tional feature: the "least recently used" or LRU bit.
In the event of a read miss, either bank A or bank B
will b~ updated with new data. The LRUbitflagsthe
candidate for replacement. Statistically, of two
blocks of data, the block most recently used is the
block most likely to be needed again in the near
future. By flagging the least recently used block, the
82385 ensures that the cache block replaced is the
least likely to have data needed by the CPU.

2.2.3 Two Way Set Associative
Cache Operation

2.2.3.1 READ HITS

When the 80386 initiates a memory read cycle, the
82385 uses the 9-bit set address to select one of
512 sets. The two tags of this set are simultaneously
compared with A14-A31, both tag valid bits
checked, and both appropriate line valid bits
checked. If either comparison produces a hit, the
corresponding cache bank is directed to drive the
selected doubleword onto the ·80386 data bus.
(Note that both banks will never concurrently cache
the same main memory location.) If the requested
data resides in bank A, the LRU bit is pointed toward

A31

B. If B produces the hit, th~ LRU bit is pointed
toward A.

2.2.3.2 READ MISSES

As in direct mapped operation, a read miss can be
either a line or tag miss. Let's start with a tag miss
example. Assume the 80386 seeks line 9 of page 2,
and that neither the A nor B directory produces a tag
match. Assume also, as indicated in Figure 2-3, that
the LRU bit points to A. As the data returns from
main memory, it is loaded into offset 9 of bank A.
Concur!ently, . this data is validated by updating the
set 1 directory entry for bank A. Specifically, the up­
pe~ ad~r~ss bits overwrite t~e previous tag, the tag
valid bit IS set, the appropriate line valid bit is set,
and the other seven line valid bits cleared. Since this
data is the most recently used, the LRU bit is turned
toward B. No change to bank B occurs.

If the next 80386 request is line 10 of page two, the
result will be a line miss. As the data returns from
main memory, it will be written into offset 10 of bank
~ (tag ~it/l!ne .miss in bank A), and the appropriate
line valid bit Will be set. A line miss in one bank will
cause the LRU bit to pOint to the other bank. In this
example, however, the LRU bit has already been
turned toward B.

2.2.3.3 OTHER OPERATIONS THAT AFFECT
THE CACHE AND CACHE DIRECTORY

Other operations that affect the cache and cache
directory are write hits, snoop hits, cache flushes,
and 82385 resets. A write hit updates the cache
along with main memory. If directory A detects the
hit, bank A is updated. it directory B detects the hit
bank B is updated. If one bank is updated the LRU
bit is pointed toward the other. ' .

If a snoop hit invalidates an entry, for example, in
cache bank A, the corresponding LRU bit is pointed
towa~d A. This ensures that invalid data is the prime
candidate for replacement in a read miss. Finally,
resets and flushes behave just as they do in a direct
mapped cache, clearing all tag valid bits.

CACHE ADDRESS
,-----(1 oF' 4K DOUBLE WORDS) l

A14 A13. A5 A4 A2

~I I II I I I 1I111111 11I11I

18-BIT TAG ~ SET ADDRESS ~ LINE)
(1 OF' 218 PAGES) (1 OF' 512 SETS) SELECT

(1 OF' 8 LINES)

Figure 2-4. 80386 Address Bus Bit Fields-Two-Way Set Associative Organization

4-302

290143-9

82385

3.0 82385 PIN DESCRIPTION

The 82385 creates the 82385 local bus, which is a
functional 80386 interface. To facilitate understand­
ing, 82385 local bus signals go by the same name as
their 80386 equivalents, except that they are pre­
ceded by the letter "S". The 82385 local bus equiva­
lent to ADS# is SADS#, the equivalent to NA# is
SNA #, etc. This convention applies to bus states as
well. For example, ST1 P is the 82385 local bus state
equivalent to the 80386 T1 P state.

3.1 80386/82385 INTERFACE
SIGNALS

These signals form the direct interface between the
80386 and 82385.

3.1.1 80386/82385 Clock (CLK2)

CLK2 provides the fundamental timing for an
80386/82385 system, and is driven by the same
source that drives the 80386 CLK2 input. The
82385, like the 80386, divides CLK2 by two to gen­
erate an internal "phase indication" clock. (See Fig­
ure 3-1.) The CLK2 period whose rising edge drives
the internal clock low is called PHI1, and the CLK2
period that drives the internal clock high is called
PHI2. A PHI1-PHI2 combination (in that order) is

CLK2

INTERNAL CLOCK

known as a "T" state, and is the basis for 80386 bus
cycles.

3.1.2 80386/82385 Reset (RESET)

This input resets the 82385, bringing it to an initial
known state, and is driven by the same source that
drives the 80386 RESET input. A reset effectively
flushes the cache by clearing all cache directory tag
valid bits. The falling edge of RESET is synchronized
to CLK2, and used by the 82385 to properly estab­
lish the phase of its internal clock. (See Figure 3-2.)
Specifically, the second internal phase following the
falling edge of RESET is PHI2.

3.1.3 80386/82385 Address Bus
(A2-A31), Byte Enables
(BEO# -BE3#), and Cycle
Definition Signals (MilO # ,
D/C#, W/R#, LOCK#)

The 82385 directly connects to these 80386 out­
puts. The 80386 address bus is used in the cache
directory comparison to see if data referenced by
80386 resides in the cache, and the byte enables
inform the 82385 as to which portions of the data
bus are involved in an 80386 cycle. The cycle defini­
tion signals are decoded by the 82385 to determine
the type of cycle the 80386 is executin~.

290143-10

Figure 3·1. CLK2 and Internal Clock

CLK2

RESET

INTERNAL CLOCK
-f'~---f

290143-11

Figure 3·2. Reset/Internal Phase Relationship

4-303

:.,1 ... ·.' !i

I'

,~
I~
:~
~

"

82385

3.1.4 80386/82385 Address Status
(ADS #) and Ready:lnput
(READYI #) ,.

ADS # is an 80386 output, and tells the 82385 that
new address and cycle definition information is avail­
able. READYI # is ~n' input to both the 80386 (via
the 80386 REAOY # input pin) and 82385, that indi­
cates the completion of an 80386 bus cycle. ADS if/,
arid READYI# are used to keep track of the 80386
bus state. '

3.1.5 80386 Next Address Request
(NA#)

This 82385 output controls the pipelining of the
80386. It can be tied directly to the 80386 NA # in­
put, or it can be logically "AND"ed with other 80386
local bus next address requests.

3.1.6 Ready Output (READYO #) and
Bus Ready Enable ,(BRDYEN #)

The 82385 directly terminates all but two types of
80386 bus cycles with its REAOYO#output. 80386
local bus cycles must be terminated by the local de­
vice being accessed. This includes devices decoded
uSing the 82385 LBA# signal and 80387 accesses~

The other cycles not directly terminated by the
82385 are 82385 local bus reads, specifically cache
read misses and non-cacheable reads. (Recall that
the 82385 forwards and runs such cycles on the
82385 bus.) In these cycles the signal that termi­
nates the 82385 local bus access is BREADY # ,
which is gated through to the 80386 local bus such
that the 80386 and 82385 local bus cycles are con­
currently terminated. BROYEN # is used to gate the
BREADY # signal to the 80386. .

3.2 CACHE CONTROL SIGNALS

These 82385 outputs control the external 32KB
cache data memory.

3.2.1 Cache Address Latch Enable
(CALEN)

This signal controls the latch (typically an F or AS
series 74373) that resides between, the low order
80386 address bits and the cache SRAM address
inputs. (The outputs of this latch are the "cache ad­
dress" described in the. previous ',chapter.) When
CALEN is high the latch is transparent. The falling
edge of CALEN latches the current inputs which re-

main applied to the cache data memory until CALEN
returns to an active high state.

3.2.2 Cache Transmit/Receive
(CT/R#) ,

This signal defines the direction 'of an optional data
transceiver (typically an 'F or AS series 74245) be­
tween the cache and 80386 data bus. When high,
the transceiver is pointed towards the 80386 local .
data bus (the SRAMs are output enabled). When
low, the transceiver points towards the cache data
memory. A transceiver is required if the cache is de­
signed with SRAMs that lack an output enable con­
trol. A transceiver may also be desirable in a system
that has a heavily loaded 80386 local data bus.
These devices are not necessary when using
SRAMs which incorporate an output enable.

3.2.3 Cache Chip Selects
(CSO#-CS3#)

These active low signals tie to the cache SRAM chip
selects; and individually enable the four bytes of the
32-bit wide cache. CSO# enables 00-07,CS1 #
enables 08-015, CS2# enables 016-023, and
CS3# enables 024-031. During read hits, all four

. bytes are enabled regardle$Sof whether or not all
four 80386 byte enables are active. (The 80386 ig­
nores what it did not request.) Also, all four cache
bytes are enabled in a read miss so as to update the
cache with a complete line (double word). Ina write
hit, only those cache bytes that correspond to active
byte enables are selected. This prevents cache data
from being corrupted in a partial doubleword write.

3.2.4 Cache Output Enables
(COEA #, COEB #) and Write
Enables (CWEA #, CWEB #)

COEA# and COEB# are active low signals which
tie to the cache SRAM output enables and respec­
tively enable cache bank A or B to drive the 80386
data bus. Ina tWo-way set associative cache, either
COEA# or COEB# is active during a read hit, de­
pending on which bank is selected. In a direct
mapped cache, both are activated, so the designer
is free to use either one.

CWEA # and CWEB # are active low Signals which
tie to the cache SRAM write enables, and respec­
tively enable cache bank A or B to receive data from
the 80386 data bus, (80386 write hit or read miss
update). In a two-way set associative cache, one or
the other is enabled in a read miss or write hit.. In a
direct mapped cache, both are activated, so the de­
signer is free to uSe either one.

4-304

82385

If the cache is implemented with 5RAMs that do not
have output enables, then a transceiver between the
cache memory and 80386 data bus. is required. In
this case, the output enable of each bank must be
"ANO"ed with the corresponding write enable to
provide the transceiver enable signal. For example,
COEA# and CWEA# are "ANO"ed to enable the
transceiver between cache bank A and the 80386
data bus (chapter 4, Figures 4-4B and 4-40). The
various cache configurations supported by the
82385 are described in chapter 4.

3.3 80386 LOCAL BUS DECODE
INPUTS

These 82385 inputs are generated by decoding the
80386 address and cycle definition lines. These ac­
tive low inputs are sampled at the end of the first
state in which the address of a new 80386 cycle
becomes available (T1 or first T2P). The signals
must be kept stable during the entire time the ad­
dress is valid. They are not internally latched by the
82385.

3.3.1 80386 Local Bus Access (LBA #)

. This input identifies an 80386 access as directed to
a resource (other than the cache) on the 80386 local
bus. (The 80387 Numerics Coprocessor is consid­
ered an 80386 local bus resource, but LBA # need
not be generated as the 82385 internally decodes
80387 accesses.) The 82385 simply ignores these
cycles. They are neither forwarded to the system nor
do they affect the cach~ or cache directory. Note
that LBA # has priority over all other types of cycles.
If LBA # is asserted, the cycle is interpreted as an
80386 local bus access, regardless of the cycle type
or status of NCA# or X16#. This allows any 80386
cycle (memory, I/O, interrupt acknowledge, etc.) to
be kept on the 80386 local bus if desired.

3.3.2 Non-Cacheable Access (NCA #)

This active low input identifies an 80386 cycle as
non-cacheable. The 82385 forwards non-cacheable
cycles to the 82385 local bus and runs them. The
cache and cache directory are unaffected.

NCA # allows a designer to set aside a portion of
main memory as non-cacheable. Potential applica­
tions include memory-mapped I/O and systems
where multiple masters access dual ported· memory
via different busses.

3.3.3 16-Bit Access (X 16 #)

X16# is an active low input which identifies 16-bit
memory and/or I/O space, and the decoded signal
that drives X16# should also drive the 80386
B516# input. 16-bit accesses are treated like non­
cacheable accesses; they are forwarded to and exe­
cuted on the 82385 local bus with no impact on the
cache or cache directory. In addition, the 82385
locks the two halves of a non-aligned 16-bit transfer
from interruption by another master, as does the
80386.

3.4 82385 LOCAL BUS INTERFACE
SIGNALS

The 82385 presents an "80386-like" front end to the
system, and the signals discussed in this section are
82385 local bus equivalents to. actual 80386 signals.
These signals are named with respect to their 80386
counterparts, but with the letter "B" appended to the
front.

Note that the 82385 itself does not have equivalent
output signals to the 80386 data bus (00-031), ad­
dress bus (A2-A31), and cycle definition Signals
(MIIO#, O/C#, W/R#). The 82385 data bus (BOO­
B031) is actually the system side of a latching trans­
ceiver, and the 82385 address bus and cycle defini­
tion Signals (BA2-BA31, BMIIO#, BO/C#,
BW/R#) are the outputs. of an edge-triggered latch.
The signals that control this data transceiver and ad­
dress latch are discussed in section 3.5.

3.4.1 82385 Bus Byte Enables
(BBEO# -BBE3#)

BBEO#-BBE3# are the 82385 local bus equiva­
lents to the 80386 byte enables. In a cache read
miss, the 82385 drives all four Signals low, regard­
less of whether Or not all four 80386 byte enables
are active. This ensures that a complete line (dou­
bleword) is fetched from main memory for the cache
update. In all other 82385 local bus cycles, the
82385 duplicates the logic levels of the 80386 byte
enableS. The 82385 tri-states these outputs when it
is not the current bus master.

3.4.2 82385 Bus Lock (BLOCK #)

BLOCK #is the 82385 local bus equivalent to the
80386 LOCK # output, and distinguishes between
locked and unlocked cycles. When the 80386 runs a
locked sequence of cycles (and LBA # is negated),
the 82385 forwards and runs the sequence on the
82385 local bus, regardless of whether any locations

4-305

82385

referenced in the sequence" reside in the, cache. A
read hit will be run as if it is a read miss, but a write
hit will update the cache as well as being completed
to system memory. In keeping with 80386 behavior,
the 82385 does not allow another master to interrupt
the sequence. BLOCK # is tri-stated when the
82385 is not the current bus master.

3.4.3 82385 Bus Address Status
(BADS#)

BADS# is the 82385 local bus equivalent of ADS#,
and indicates that a valid address (BA2-BA31,
BBEO#-BBE3#) and cycle definition (BMlIO#,
BW/R#, BD/C#) is available. It is asserted in BT1
and BT2P states, and is tri-stated when the 82385
does not own the bus.

3.4.4 82385 Bus Ready Input
(BREADY#)

82385 local bus cycles are terminated by
BREADY #, just as' 80386 cycles are terminated by
the 80386 READY # input. In 82385 local bus read
cycles, BREADY #is gated by BRDYEN # onto the
80386 local bus, such that it terminates both the
80386 and 82385 local bus cycles.

3.4.5 82385 Bus Next Address
Request (BNA #)

BNA# is the 82385 local bus equivalent to the
80386 NA # input, and indicates that the system is
prepared to accept a pipelined address and cycle
definition. If BNA# is asserted and the new cycle
information is available, the 82385 begins a pipe­
lined cycle on the 82385 local bus.

3.5 82385 BUS DATA TRANSCEIVER
AND ADDRESS LATCH CONTROL
SIGNALS

The 82385 data bus is the system side of a latching
transceiver (typically an F or AS series 74646), and
the 82385 address bus and cycle definition signals
are the outputs of an edge-triggered latch (F or AS
series 74374). The following is a discussion of the
82385 outputs that control these devices. An impor­
tant characteristic of these signals and the devices
they control is that they/ensure that BDO-BD31,
BA2-BA31, BM/IO#, BD/C#, and BW/R# repro­
duce ,the functionality and timing behavior of their
80386 equivalents.

3.5.1 Local Data Strobe (LDSTB), Data
Output Enable (DOE #), and Bus
Transmit/Receive (BT /R #)

These signals control the latching data transceiver.
BTl R # defines the transceiver direction. When
high, thetranscE!iver drives the 82385 data bus in
write cycles. When low, the transceiver drives the
80386 data bus in 82385 local bus read cycles.
DOE # E!nables the transceiver outputs.

The rising edge of LDSTB latches the 80386 data
bus in all write cycles. The interaction of this signal
and the latching transceiver is used to perform the
82385's posted write capability.

3.5.2 Bus Address Clock Pulse
(BACP) and Bus Address
Output Enable (BAOE #)

These signals control the latch that drives BA2-
BA31, BM/IO#, BW/R#, and BD/C#.ln any 80386
cycle that is forwarded to the 82385 local bus, the
rising edge of BACP latches the 80386 address and
cycle definition signals. BAOE # ,enables the latch
outputs when the 82385 is the current bus master
and disables them otherwise.

3.6 STATUS AND CONTROL
SIGNALS '

3.6.1 Cache Miss Indication (MISS#)

ThiS outputaccompaniescacheable read and write
miss cycles., This signal transitions to its active low
state when the 82385 determines that a cacheable
80386 access is a miss. Its timing behavior follows'
that of the 82385 local bus cycle definition signals
(BM/IO#,8D/C#, BW/R#) so that it becomes
available with BADS# in BT1 or the first BT2P.
MISS# is floated when the 82385 does not own the
bus, such thafmultiple 82385's can share thE! same
node in multi-cache systemS. (As discussed in Chap­
ter 7, this signa.l also serves a reserved function in
testing the 82385.) ,

3.6.2 Write Buffer Status (WBS)

The latching'data transceiver is also known as the
"posted write buffer." WBS indicates that this buffer
contains data that has not yet been written, to the
systE!m even though the 80386 may have begun its
next cycle. It is activated when 80386 data is

4-306

intJ 82385

latched, and deactivated when the corresponding
82385 local bus write cycle is completed
(BREADY#). (As discussed in Chapter 7, this signal
also serves a reserved function in testing the
82385.)

WBS can serve several functions. In multi-processor
applications, it can act as a coherency mechanism
by irlforming a bus arbiter that it should let a write
cycle run on the system bus so that main memory
has the latest data. If any other 82385 cache sub­
systems are on the bus, they will monitor the cycle
via their bus watching mechanisms. Any 82385 that
detects a snoop hit will invalidate the corresponding
entry in its local cache.

3.6.3 Cache Flush (FLUSH)

When activated, this signal causes the 82385 to
clear all of its directory tag valid bits, effectively
flushing the cache. (As discussed in Chapter 7, this
signal also serves a reserved function in testing the
82385.) The primary use of the FLUSH input is for
diagnostics and multi-processor support. The use of
this pin as a coherency mechanism may impact soft­
ware transparency.,

The FLUSH input must be held active for at least 4
CLK (8 CLK2) cycles to complete the flush se­
quence. If FLUSH is still active after 4 CLK cycles,
any accesses to the cache will be misses and the
'cache will not be updated (since FLUSH is active).

3.7 BUS ARBITRATION SIGNALS
(BHOLD AND BHLDA)' ,

In master mode, BHOLD is an input that indicates a
request by a slave device for bus ownership. The
82385 acknowledges this request via its BHLDA out­
put. (These Signals function identically to the 80386
HOLD and HLDA signals.)

The roles of BHOLD and BHLDA are reverslild for an
82385 in slave mode. BHOLD is now an output indi­
cating a request for bus ownerShip, and BHLDA an
input indicating that the request has been granted.

3.8 COHERENCY (BUS WATCHING)
SUPPORT SIGNALS (SA2-SA31,
SSTB#, SEN)

These signals form the 82385's bus watching inter­
face. The Snoop Address Bus (SA2-SA31) con­
nects to the system address lines if masters reside
at both the system and 82385 local bus levels, or

the 82385 local bus address lines if masters reside
only at the 82385 local bus level. Snoop Strobe
(SSTB #) indicates that a valid address is on the
snoop address inputs. Snoop Enable (SEN) indi­
cates that the cycle is a write. In a system with mas­
ters only at the 82385 local bus level, SA2-SA31,
SSTB#, and SEN can be driven respectively by
BA2-BA31, BADS#, and BW/R# without any sup­
port circuitry.

3.9 CONFIGURATION INPUTS
(2W/D#, M/S#)

These signals select the configurations supported
by the 82385. They are hardware strap options and
must not be changed dynamically. 2W/D# (2-Wayl
Direct Mapped Select) selects a two-way set asso­
ciative cache when tied high, or a direct mapped
cache when tied low. M/S# (MasterlSlave Select)
chooses between master mode (M/S# high) and
slave mode (M/S# low): ,

4.0 80386 LOCAL BUS INTERFACE

The following is a detailed description of how the
82385 interfaces to the 80386 and to 80386 local
bus resources. Items specifically addressed are the
interfaces to the 80386, the cache SRAMs, and the
80387 Numerics Coprocessor.

The many timing diagrams in this and the next chap­
ter provide insight into the dual pipelined bus struc­
ture of an 80386/82385 system. It's important to re­
alize, however, that one need not know every possi­
ble cycle combination to use the 82385. The inter­
face is simple, and the dual bus operation invisible to
the 80386 and system. To facilitate discussion of the
timing diagrams, several conventions have been
adopted. Refer to Figure 4-2A, and note that 80386
bus cycles, 80386 bus states, and 82385 bus states
are identified along the top. All states can be identi­
fied by the "frame numbers" along the bottom. The
cycles in Figure 4-2A include a cache read hit
(CRDH), a cache read miss ,(CRDM), and a write
(WT). WT represents any write, cacheable or not.
When necessary to distinguish cacheable writes, a
write hit goes by CWTH and a write miss by CWTM.
Non-cacheable system reads go by SBRD. Also, it is
assumed that system bus pipelining occurs even
though the BNA# signal is not shown. When the
sys~em pipeline begins is a function of the system
bus controller.

80386 bus cycles can be tracked by ADS# and
READYI#, and 82385 cycles by BADS# and
BREADY #. These four signals are thus a natural

4-307

"

I' 1·'1
i ~
I~
i'
I·' I'

f

82385

choice to help track parallel bus activity, Note in the
timing diagrams that 80386 cycles are numbered us­
ing ADS# and READYI#, and 8238.5 cYcles using
BADS#and BREADY # . For example, when the ad­
dress of the first 80386 cycle becomes available, the
corresponding assertion of ADS # is marked "1",
Ij.nd the READYI # pulse thaUerminates the cycle is
marked "1" as well. Whenever an 80386 cycle is
forwarded to the system, its number is forwarded as
well so that the corresponding 82385 bus cycle can
be tracked by BADS# and BREADY#.

The "N" value in the timing diagrams is the assumed
number of main memory wait states inserted in a
non-pipelined 80386 bus cycle. For example, a non­
pipelined aCCeSS to. N = 2 memory requires a total of
four bus states, while a pipelined access requires
three. (The pipeline advantage effectively hides one

. main memory wait state.)

4.1 PROCESSOR INTERFACE

This section presents the 80386/82385 hardware in­
terface and discusses· the interaction and timing. of
this interface. Also addressed is how to decode the
80386 address bus to generate the 82385 inputs

LBA#, NCA#, and X16#. (Recall that LBA# allows
memory and/or I/O space to be set aside for 80386
local bus resources; NCA # allows. system memory
to be set aside as non-cacheable; and X16# allows
system memory and/or I/O space to be reserved for
16-bit resources.) Finally, the 82385's handling of
16-bit space is discussed.

4.1.1 Hardwarelnterface

Figure 4-1 is a diagram of an 80386/82385 system,
which can be thought of as three distinct interfaces.
The first is the 80386/82385 interface (including the
Ready Logic). The second is the cache interface, as
depicted by the cache control bus in the upper left
corner of Figure 4-1. The third is the 82385 bus inter~
face, which includes both direct connects and sig­
nals that control the 74374 address/cycle definition
latch and 74646 latching data transceiver. (The
82385 bus interface is the subject of the next chap­
ter).

As seen in Figure 4-1, the 80386/82385 interface is
a straightforward connection. The only necessary
support .logic is that required to sum all ready sourc­
es.

4-308

::!! co
c
~
i'"
!

~ w • CD
Co) CD
~ Cit

= en

i
i

TO
CACHE

-

120.13

32

4

2

.. 2

~

r-

4

CALEN 82385 CLK2

c:r/RII RESET

CSO-CS311 AOSII

COEA#. COEBII NAil

CWEA#. CWEBII LOCKII

lA/lOll. D/CfI. W /RII

BEOII-BE311

A2-A31

BHOLD READYlIL

BHLDA READYOII

WBS BRDYENII

FLUSH BREADYII

IAISSIL BACP

BLOCKII BAOEII -

1

3

4

30

32

I

CLK2 80386

RESET

AOSII

NAil

LOCKII

lA/lOll. D/CfI. W/RII

BEOII-BE311

A2-A31

00-031

READYII

A

}
FROM
OSC/RESET
CIRCUIT

l

co
~ m

BNA# LOSlB - ~L: ER
LB

.DY BAOSII DOEll

BBEOII - BBE311 BT/RII

.T

.. CAB A S~B+ l!: CP D . l!:CP D
~ 0Eil OEII OEII

...... DIR 4x646 4x374 374 f SBA CBA B Q Q

BIA/IOII. -= 32 BDO-BD31 30 BA2-BD31 3 BD/CfI.

SW/RII

82385 LOCAL BUS

!~ I

~

BREAD'

290143-12

~

~
~
~
@
IiiiiI
c:::>
?g
'iii
@
~
~
~
c:::>

@
?g

.--------.,--;-~~..:;:.~:"....~~=:-:-- ---'-~~£-~·$j;<if 1:1 . ~;

82385

4.1.2 Ready Generation

Note in Figure 4-1 that the ready logic consists of
two gates. The upper three-input AND gate (shown
as a negative logic OR) sums all 80386 local bus
ready sources. One such source is the 82385
READYOill output, which terminates read hits and'
posted writes. The output of this gate drives the
80386 READYiII input and is monitored by the

, 82385 (via READYliII) to track the 80386 bus state.

When the 82385 forwards an 80386 relld cycle to
the 82385 bus (cache read miss or non·cacheable
read), it does not directly terminate the cycle via
READYOill. Instead, the 80386 and 82385 bus cy.
cles are concurrently terminated by a system ready

source. This is the purpose of the additional two·in·
put OR gate (negative logic AND) in Figure 4-1.
When the 82385 forwards a read to the 82385 bus, it
asserts BRDYENiII which enables the system ready
signal (BREADYiII) to directly terminate the .80386
bus cycle. .

Figures 4-2A. and 4-2B illustrate the behavior of the
signals involved in ready generation. Note in cycle 1
of Figure 4-2A that the 82385 READYOill directly
terminates the hit cycle. In cycle 2, READYOill is not
activated. Instead the 82385 BRDYEN ill is activated
in BT2, BT2P, or BT21 states such that BREADY ill
can concurrently terminate the 80386 and 82385
bus cycles (frame 6). Cycle 3 is a posted write. The
write data becomes available in T1 P (frame 7), and

80386 CYCLE I
80386 BUS STATE
82385 BUS STATE

CRDH

TI
BTl

CRDM I WT
T2. T2P T2P T1P T2
BT1 I BT2 I BT21 I BTl I BTl

I . CRDM I
TI T2 1'2 T2P

BT2 I BT2P I BTl P I BT21

NA,

!!ADS#

BREADY,

FRAME
NUMBER

2 3 4 5 6 7 8 9 10 11 1~ 13 14 15 16

290143-13

Figure 4-2A. READYOill, BRDYENiII,and NAill (N= 1)

4-310

82385

the address, data, and cycle definition of the write
are latched in T2 (frame 8). The 80386 cycle is ter­
minated by READYO# in frame 8 with no wait
states. The 82385, however, sees the write cycle
through to completion on the 82385 bus where it is
terminated in frame 10 by BREADY #. In this case,
the BREADY # signal is not gated through to the
80386. Refer to Figures 4-2A and4-2B for clarifica­
tion.

4.1.3. NA # and 80386 Local Bus
Plpellnlng

Cycle 1 of Figure 4-2A is a typical cache read hit.
The 80386 address becomes available in T1, and
the 82385 uses this address to determine if the ref­
erenced data resides in the cache. The cache look­
up is completed and the cycle qualified as a hit or
miss in T1. If the data resides in the cache, the
cache is directed to drive the 80386 data bus, and
the 82385 drives its READYO# output so the cycle
can be terminated at the end of the first T2 with no
wait states.

Although cycle 2 starts out like cycle 1, at the end of
T1 (frame 3), it is qualified as a miss and forwarded
to the 82385 bus. The 82385 bus cycle begins one
state after the 80386 bus cycle, implying a one wait
state overhead associated with cycle 2 due to the
look-up. When the 82385 encounters the miss, it im­
mediately asserts NA#, which puts the 80386 into
pipelined mode. Once in pipelined mode, the 82385
is able to qualify an 80386 cycle using the 80386
pipelined address and control signals. The result is
that the cache look-up state is hidden in all but the
first of a contiguous sequence of read misses. This
is shown in the first two cycles, both read misses, of
Figure 4-2B. The CPU sees the look-up state in the
first cycle, but not in the second. In fact, the second
miss requires a total of only two states, as not only
does 80386 pipelining hide the look-up state, but
system pipelining hides one of the main memory
wait states. (System level plpelinhig via BNA# is dis­
cussed in the next chapter.) Several characteristics
of the 82385's pipelining of the 80386 are as fol­
lows:
- The above discussion applies to all system

reads, not just cache read misses.

80386 CYCLE I CROW I CROW I CRDH I CRDH I
80386 BUS STATE T1 I T2 I T2P I T2P TIP I T2P TIP I T2P TIP I 12
823B5 BUS STATE Bn BTl B12 BT2P BTl P BT21 an Bn an BTl

BRDYEH#

READYO#

READYI#

HA#

BADS#

BREADY#

FRAWE
HUWBER

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

290143-14

Figure 4-2B. READYO#, BRDYEN#, and NA# (N= 1)

4-311

I,
I

inter 82385 '

- The 82385 provides the fastest possible switch
to pipelining, T1-T2~ T2P. The. exception to this is
when a system read follows a posted write. In
this case, the sequence is T1-T2"T2-T2P. (Refer
to cycle 4 of' Figure 4-2A.) The number of T2
states is dependent on. the number of main
memory wait states.

- Refer to the read hit in Figure 4-2A (cycle 1),and
note that NA# is actually asserted before the
erid of T1,before the hit/miss decision is made.
This is of no consequence since even though
NA # is sampled active in T2, the activation of
REAOYO# in the same T2 renders NA# a
"don't care." NA# is asserted in this manner to
meet 80386 timing· requirements and to ensure
the fastest possible switch to pipelined mode.

- All read hits and the majority of writes can be
serviced by the 82385 with zero wait states in
non-pipelihed . mode, and the 82385 accordingly
attempts to run all such cycles in non-pipelined
mode. An exception is seen in the hit cycles (cy­
cles 3 and 4) of Figure 4-2B. The 82385 does not
know soon enough that cycle 3 is a hit, and thus
sustains the pipeline. The result is that three se-

. quential hitS are required before the 80386 is.to­
tally out of pipelined mode. (The three hits look
like T1P-T2P, T1P-T2, T1-T2.) Note that this -
does not occur if the number of main memory
wait states is equal to or greater than two.

80386

AS far as the design is concerned, NA# is generally
tied directly to the.80386 NA# input. However, other
local NA# sources may be logically "ANO"ed with
the 82385 NA# output if desired. It is essential,
however, that no device other than the 82385 'drive
the 80386 NA # input unless that device ,resides on
the 80386 local bus in space decoded via LBA #. If
desired, the 82385 NA# output can be ignored and
the 80386 NA# input tied high. The 80386 NA# in­
put should never be tied low, which would always
keep it active.

4.1.4 LBA#, NCA#, and X16#
Generation

The 82385 input signals LBA# and X16# are gener­
ated by decoding the 80386 address (A2-A31) and
cycle definition (W/R#, O/C#, MIIO#) Iines"The
82385 samples them at the end of the first state in
which they become available, which is either T1 or
the first T2P cycle. The decode configuration and
timings are illustrated respectively in Figures 4-3A
and 4-3B.

The 82385 samples NCA # in T1 P, or the first T2, or
the second T2P.

82385
ADDRESS AND " 80386 LOCAL

CYCLE DEF'INITION NCAH. LBAH. X16H
SIGNALS

8US DECODE r-

80386 BUS STATE

ADSH

ADDRESS at CYCLE DEF'.

NCAH

-
--
--

A. Decode Configuration

T1 T2 T2 T1 T2 T2P

~ II ~ II 1\

Dl X X

X - X

X AAAA. X

B. Decode Timing

Figure 4-3. NCA#, LBA#, X16# Generation

4-312

X

290143-15

T1P T2

If

X

290143-16

82385

4.1.5 82385 Handling of 16·Blt Space

As discussed previously, the 82385 does not cache
devices decoded as 16-bit. Instead it makes provi­
sion to accommodate 16-bit space as non-cache­
able via the X16# input. X16# is generated when
the user decodes the 80386 address and cycle defi­
nition lines for the BS16# input of the 80386 (Figure
4-3). The decode output now drives both the 80386
BS16# input and the 82385 X16# input. Cycles de­
coded this way are treated as non-cacheable. They
are forwarded to and executed on the 82385 bus,
but have no impact on the cache or cache directory.
The 82385 also monitors the 80386 byte enables in
a 16-bit cycle to see if an additional cycle is required
to complete the transfer. Specifically, a second cy­
cle is required if (BEO# OR BE1 #) AND (BE2# OR
BE3 #) is asserted in the current cycle. The 82385,
like the 80386, will not allow the two halves of a 16-
bit transfer to be interrupted by another master.

There is an important distinction between the han­
dling of 16-bit space in an 80386 system with an
82385 as compared to a system without an 82385.
The 80386 BS16# input need not be asserted until
the last state of a 16-bit cycle for the 80386 to rec­
ognize it as such. The 82385, however, needs the
information earlier, specifically at the end of the first
80386 bus state (T1 or first T2P) in which the ad­
dress of the 16-bit cycle becomes available. The re­
sult is that in a system without an 82385, 16-bit de­
vices can define themselves as 16-bit devices "on
the fly," while in a system with an 82385, 16-bit de­
vices should be located in space set aside for l6-bit
devices via the X16# decode.

4.2 CACHE INTERFACE

The following is a description of the external data
cache and 82385 cache interface.

4.2.1 Cache Configurations

The 82385 controls the cache memory via the con­
trol signals shown in Figure 4-1. These signals drive
one of four possible cache configurations, as depict­
ed in Figures 4-4A through 4-40. Figure 4-4A shows
a direct mapped cache organized as 8K double­
words. The likely design choice is four 8K x 8
SRAMs. Figure 4-4B depicts the same cache memo­
ry but with a data transceiver between the cache
and 80386 data bus. In this configuration, CT fR #
controls the transceiver direction, and COEA #
drives the transceiver output enable. (COEB# could
also be used.) A data buffer is required if the chosen
SRAM does not have a separate output enable. Ad­
ditionally, buffers may be used to ease SRAM timing
requirements or in a system with a heavily loaded
data bus. (Guidelines for SRAM selection are includ­
ed in Chapter 6.)

Figure 4-4C depicts a two-way set associative cache
organized as two banks (A and B) of 4K double­
words each. The likely design choice is sixteen
4K x 4 SRAMs. Finally, Figure 4-40 depicts the two­
way organization with data buffers between the
cache memory and data bus.

4-313

x
SKxS

CACHE
SRAIoI

(SKxS)

82385

2x373
VII..&.---tO DIJL-+----I

CALEN

4

Figure 4-4A. Direct Mapped Cache without Data Buffers

K
S x

SKxS

CACHE
SRAIoI

(SKxS)

CSO#­
CS3#

2 x 37.3
I/LL..L..---Io DIJL-+---t

4

·A2-A14
"T--i-'

CALEN

CSO#-CS3#

Figure 4-4B. Direct Mapped Cache with Data Buffers

4-314

S2385
CACHE
CONTROL

823S5
CACHE
CONTROL

290143-17

290143-18

inter

.
4Kx4

ADDRESS -
CACHE SRAt.l

BANK A
(4Kx4)

DATA

CSO#- ~
CS3# OE# WEI

4
1 t

4 1 J,
CSO#- OE# WEI
CS3#

VI-ADDRESS

CACHE SRAt.l
''I

BANK B
(4Kx32)

A

DATA

"

82385

~A I ~ r- Q 0

OE#E

-
A2:A13

I---

I---

I "

DO~D31 ~
';(
0

~I---
~I---
ri---;;;'--
~'--
:6

I

DO~031

k CALEN

(/)

~
'" 0
0

i~ CWEA#,

COEA#

CSO#-CS3#

CWEB#

COEB#

~~:
~-<t
0
IX)

"-' V

82385
CACHE
CONTROL

Figure 4-4C. Two-Way Set Associative Cache without Data Buffers

4Kx4

CACHE SRAt.l
BANK A
(4Kx 4)

CSO#­
CS3#

4

4

CSO#­
CS3#

WE#

~
~+-----------i(/)

~~--+-----~--~,ffi
...J

~----+---------~'g
co

r-----+----------;:~

DATAI\r ___ ---,/1 A BI\r-__ +-V
4x245 00-031

CALEN

82385
CACHE
CONTROL

Figure 4-40. Two-Way Set Associative Cache with Data Buffers

4-315

290143-19

290143-20

inter 82385

. 4.2.2 Cache Control-Direct Mapped

Figure 4-5A illustrates the timing of cache read and
write hits, while Figure 4-58 illustrates cache up­
dates. In a read hit, the cache output enables are
driven from the beginning of T2 (cycle 1 of Figure
4·5A). If at the end of T1 the cycle is qualified as a
cacheable read, the output enables are asserted on
the assumption that the cycle will be a hit (Driving
the output enables before the actual hit/miss deci­
sion is made eases SRAM timing requirements.)

Cycle 1 of Figure 4-58 illustrates what happens
when the assumption ofa hit turns out to be wrong.

Note that the output enables are asserted at the be­
ginning of T2, but then disabled at the end of T2.
Once the output enables are inactive, the 82385
turns the transceiver around (via CT/R#) and drives
the write enables to begin the cache update cycle.
Note in Figure 4-58 that once the 80386 is in pipe­
lined mode, the output enables need not be driven
prior to a hit/miss decision, since the decision is
made earlier via the pipelined address information.

One consequence of driving the output enables low
in a miss before the hit/miss decision is made is that
since the. cache starts driving the 80386 data bus,

80386 CYCLE I CRDH

80386 BUS STATE Tl I T2
82385 BUS STATE BTl BTl

CRDH

T1 I T2
BTl BTl

I CWTH I CWTH (BYTES 0, 1) (BYTES 2. 3)
Tl T2 T1 T2 T2
BTl I BT1 BT2 I BT2 I BT1

CRDH

T1 I T2
BT2 BT2

CALEN

CSO#. CSl # l--+--+--+-..... .t-....I
CS2#. CS3# i--+--+--+--+-.....

CWEA# •. CWEB#

COEA#. COEB#

CT/R#

FRAME
NUMBER

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N = Number of Non·Pipelined. main memory wail states. Must be greater than zero.

NOTES:
CRDH = Cache Read Hit
CWTH = Cache Write Hit

Figure 4-SA. Cache Read and Write Cycles-Direct Mapped(N= 1)

4-316

290143-21

inter 82385

the 82385 cannot enable the 74646 transceiver (Fig­
ure 4-1) until after the cache outputs are disabled.
(The timing of the 74646 c.ontrolsignals is described
in the next chapter.) The result is that the 74646
cannot be enabled soon enough to support N = 0
main memory ("N" was defined in section 4.0 as the
number of non-pipelined main memory wait states).
This means that memory which can. run with zero
wait states in a non-pipe lined cycle should not be
mapped into cacheable memory. This should not
present a problem, however, as a main memory sys­
tem built with N = 0 memory has no need of a cache.
(The main memory is as fast as the cache.) Zero
wait state memory can be supported if it is decoded
as non-cacheable. The 82385 knows that a cycle is

non-cacheable in time not to drive the cache output
enables, and can thus enable the 74646 sooner.

In a write hit, the 82385 only updates the cache
bytes that are, meant to be updated as directed by
the 80386 byte enables. This prevents corrupting
cache data in partial doubleword writes. Note in Fig­
ure 4-5A that the appropriate bytes are selected via
the cache byte select lines CSO#-CS3#. In a read
hit, all fou(select lines are driven as the 80386 will
simply ignore data it does not need. Also, in a cache
update (read miss), all four selects are active in or­
der to update the cache with a complete line .(dou-
bleword). .

80386 CYCLE I CRDM I CRDM I CRDM I CRDH I
80386 BUS STATE n I T2 I T2P I T2P Tl P I T2P n P I T2P I T2P Tl P I T2
82385 BUS STATE BTl Bll BT2 BT2P BTl P BT21 Bn BT2 BT21 BTl . BTl'

ADS#

READYI#

BADS#

BREADY#

CALEN

eso#. CS3# 1-_1---1..1

CWEA#. CWEB#

COEA#. COEB#

CT/R#

fRAME
NUMBER

2 3 4 5, 6 7 8 9 10 1.1 12 13 14 15 16

290143-22
N = Number of .Non·Pipelined. main memory walt statE!s. Must be greater than zero.

NOTE:
CRDH = Cache Read Miss

Figure 4-58. Cache Update Cycles-Olrect Mapped (N = 1)

4·317

82385

4.2.3 Cache Conttol-Two-WaySet·
Associative ..

Figures 4-6A and 4-68 iIIusfrate the timing of cache
read hits, write hits, arid . updates . for a two-way set
associative cache. (Note that the cyclesaquences
are'the same as those in Figures.4-5A and 4-58:) In
a cache read hit, only one -bank or the- other is en­
abled to drive the 80386 data bus, so unlike the con­
trol of a direct mapped cache, the appropriate cache
output enable cannot be driven until the outcome of
the hit/miss decision. is known~ (This implies stricter
SRAM timing requirements for -a two-way set asso­
ciative cache.) In write. hits and read misses; only
one bank or the other is updated.

4.3 80381 INTERFACE

The 80387 Numerics Coprocessor interfaces to the
80386 just as it would in·asystem without an 82385.
The 80387READYO# output is logically "AND"ed
along with all other 80386 local bus ready sources
(Figure 4-1),al1d thf:j output is fed to the 80387
READY #, 82385 READYI #, and 80386 READY #
inputs ..

The 80386 uniquely addresses the 80387 by driving
MIIO# low and A31 high. The 82385 decode.s this
internally and treats 80387 accesses in the ,same
way it treats 80386 cycles in which 1.8A# is assert­
ed, it ignores them.

80386 CYCLE I
80386 BUS STATE
82385 .BUS STATE

CRDH,B
(BYTES 0, 1) (BYTES 2. 3) I CWTH,A I CWTH.B

Tl T2 Tl T2 T2
Bn I BTl . BT2 I BT2 I BTl

- CLK2

CLK

ADSII

READYlIl

BADSII

BREADYII

CALEN

esOIi. CSlll I--I_~_-+_-+""'"

CS211. CS311 I--I_~_-+_-+""'"

CWEAII

CWEBII

COEAII

COEBII

CT/~ .
FRAhlE

NUhlBER
2 5 6 7 8 9 1011 12 13. 14 15 16

290143-23
N = Number of Non·Pipelined, main memory wait states_ Must be greater than zero.

Figure 4-6A. Cache Read and Write Cycles-Two Way Set Associative (N = 1)

4-318

82385

80386 CYCLE I CRDM I CRDM I CRDM I CRDH,A I (UPDATE A) (UPDATE B) (UPDATE A)
80386 BUS STATE T1 I T2 I T2P I T2P T1 P I T2P Tl P I T2P I T2P Tl P I T2
82385 BUS STATE BTl BTl BT2 BT2P BT1 P B12I BT1 BT2 BT21 BTl BTl

ADSfI

READVIN

BADS#

BREADYfI

CALEN

CSO#, CS3# 1---+_

CWEA#

CWEB#

COEA#

COEB#

CT/R

FRAME
NUMBER

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

290143-24
N = Number of Non-Pipelined, main memory wait states. Must be greater than zero.

Figure 4·68. Cache Update Cycles-Two Way Set Associative (N = 1)

5.0 82385 LOCAL BUS AND SYSTEM
INTERFACE

The 82385 system interface is the 82385 local Bus,
which presents an "80386-like" front end to the sys­
tem. The system ties to it just as it would to an
80386. Although this 80386-like front end is func­
tionally equivalent to an 80386, there are timing dif­
ferences which can easily be accounted for in a sys­
tem design.

The following is a description of the interface the
82385 presents to a system. After presenting the
82385 bus state machine, the 82385 bus signals are
described, as are techniques for accommodating
any differences between the 82385 bus and 80386
bus. Following this is a discussion of the 82385's
condition upon reset.

5.1 THE 82385 BUS STATE MACHINE

5.1.1 Master Mode

Figure 5-1 A illustrates the 82385 bus state machine
when the 82385 is programmed in master mode.
Note that it is almost identical to the 80386 bus state
machine, only now the bus states are 82385 bus
states (BT1 P, BTH, etc.) and the state transitions
are conditioned by 82385 bus inputs (BNA#,
BHOlD, etc.). Whereas a "pending request" to the
80386 state machine indicates that the 80386 exe­
cution or prefetch unit needs bus access, a pending
request to the 82385 state machine indicates that an
80386 bus cycle needs to be forwarded to the sys­
tem (read miss, non-cacheable read, write, etc.).
The only difference between the state machines is

4-319

82385

BHOLD ASSERTED

8ln ~~o========~~ ~'+-------..., § 8
~~ ~ fSffi
'" 0 '" BHOlD NEGATED g)g)
Z '" '" • REQUEST PENDING < < o~ « ~c
...J 0 0 >-....J
02 ...J 00 iE • ~ BREADY # ASSERTED ~ '"

R T AS T D ~ • BHOlD NEGATED - ~

00

I!:!~
0::0::

""'" VI VI
VI VI «
""0
,.....1
00 <:r
""m
~ .

ESE S; ~ ~ • NO REQUEST IX> •

S5 BNA# NEGATED

Z ~ BTl
90 oz
:r.
m

BTl
REQUEST PENDING.

BHOlD NEGATED

BREADY # ASSERTED
• BHOlD NEGATED _

• REQUEST PENDING

BREADY # ASSERTED
• BHOlDNEGATED

• NO REQUEST

ALWAYS

BREADY # ASSERTED
• BHOlD NEGATED

• REQUEST PENDING
BREADY # NEGATED

• BNA # NEGATED

BREADY # NEGATED
• (NO REQUEST+
BHOlD ASSERTED)

BREADY # NEGATED

Figure 5-1A. 82385 Local Bus State Machine-Master Mode

4-320

+8~§
t-I-LaJ«
(I) 0::: t-C)
I.LJIoUD:W
~(/)LlJz

8~~~
0:: 0 <>-
O:..J::Jt::°
z o -ceL5
--ZZo:::

<Dmm

o<.'lo z 1-5
(§z~
~~~ 
"4I=t:io 
,.. .... ...1 
0::>0 
<o:r ........ m 
~~. 

0 

'" I-
0:: 

'" VI 
VI 
< 

"" < 0 z 
"" CD I-
0:: 

'" VI 

~Sfa~ '" < 
I-I-t-O "" <0:::<2 ,.. 
(!H ..... CH .• J 0 
L&JV)wQ.. ~ ZVlZ 
~<ot:; 0:: m >- "«::...J LaJ 
0«0:::;) 
<z:rO 
LaJCDCDLIJ 
~ .. -; 

290143-25 



inter 82385 

NO REQUEST + BHLDA ASSERTED 

RESET ASSERTED 

BHLDA ASSERTED 

BREADY # ASSERTED 
o BHLDA ASSERTED 
o REQUEST PENDING 

ALWAYS 

BREADY # ASSERTED 
oBHLDA ASSERTED 

o REQUEST PENDING 

BNA# NEGATED 

BREADY # NEGATED 
o BNA # NEGATED 

BREADY # NEGATED 
(NO REQUEST + 

BHLDA NEGATED) 

BREADY # NEGATED 

Figure 5-1B. 82385 Local Bus State Machine-Slave Mode 

4·321 

o 

~ 
VI 
VI « 

290143-26 



int..:...r. '.:.-e-.. " 82385 

that the 82385 does not implement a direct BT1 P­
BT2P transition. If BNA # is asserted in BT1 P, the 
resulting state .sequence is BT1 P-BT21-BT2P. The 
82385's ability to sustain a pipeline is not affected by 
the lack of this state transition. 

5.1.2 Slave Mode 

The 82385's slave mode state machine (Figure 
5·1 B) is similar to the master mode machine except 
that now transitions are conditioned by BHLDA rath­
er than BHOLD. (Recall that ir, slave mode, the roles 
of BHOLD and BHLDA are reversed from their mas­
ter mode roles.) Figure 5-2 clarifies slave mode state 
machine operation. Upon reset, a slave mode 82385 
enters the BTH state. When the 80386 of the slave 
82385. subsystem has a cycle that needs to be for­
warded to the system, the 82385 moves to BTl and 
issues a hold request via BHOLD. It is important to 
note that a slave mode 82385 does not drive the bus 
in a BTl state. When the master or bus .arbiter re­
turns BHLDA, the slave 82385 enters BT1 and runs 
the cycle. When the cycle is completed, an~ if no 
additional requests are pending, the ~82:385 moves 
back to ·BTH .and disabl.es BHOLD. 

If, while a slave 82385 is running a cycle, the master 
or. arbiter drops BHLDA (Figure 5-2B), the 82385 will 
complete the current cycle, move to BTH and re­
move the BHOLD request. If the 82385 still had cy­
cles to run when it was kicked off the bus, it will 
immediately assert a new BHOLD and move to BTl 
to await bus acknowledgement. Note, however, that 
it will only move to BTl if BHLDA is negated, ensur­
ing that the .handshake sequence is completed. 

There are several cases in which a slave 82385 will 
not immediately release the bus if BHLDA is 
dropped. For example, if BHLDA is dropped during a 
BT2P state, the 82385 has already committed to the 
next system bus pipelined cycle and will execute it 
before rele.asing the bus. Also, the 82385 will com­
pletethe second half of a two-cycle 16-bit transfer, 
or will complete a sequence of locked cycles before 
releasing the bus. This should not present any prob­
lems,as a properly designed arbiter will not assume 
that the 82385 has released the bus until it sees 
BHOLD become inactive. 

BTH BTl BTl BT1 BT2 BT2 BTH . BTH 

BTH Bn 

BHOLD ILf/ 

BHLDA 

BHOLD 
+--1'-'-' 

BHLDA 

A. Normal Slave Mode Sequence 

BTl BT1 BT2 BT2 Bn BT2 BT2 8TH 

1\.\\ 

BTl Bn 

IU/ 

IlU I\.\.\ 12385 RIASSfRTS 
BHOLD 

t 
ARBITER 

DROPS BHLDA 

I I I 

B. Sequence of Events if Master or Arbiter Drops BHLDA 

Figure 5·2. BHOLD/BHLDA-5lave Mode 

290143-27 

BTl BTl BTl 

1/// 

290143-28 



82385 

5.2 The 82385 Local Bus 

The 82385 bus can be broken up into two groups of 
signals: those which have direct 80386 counterparts, 
and additional status and control signals provided by 
the 82385. The operation· and interaction of all 
82385 bus signals are depicted in Figures 5-3A 
through 5-3L for a wide variety of cycle sequences. 
These diagrams serve as a reference for the 82385 
bus discussion and provide insight into the dual bus 
operation of the 82385. 

5.2.1 82385 Bus Counterparts to 
80386 Signals 

The following sections discuss the signals presented 
on the 82385 local bus which are functional equiva­
lents to the signals present at the 80386 local bus .. 

5.2.1.1 ADDRESS BUS (BA2-8A31) AND 
CYCLE DEFINITION SIGNALS 
(BM/IO#" BD/C#,BW/R#) 

Th,ese signals are not driven directly by the 82385, 
but rather are the outPl,lts of the 74374 addre~s/cy~ 
cle definition latch. (Refer to Figure 4-1 fo~ the hard­
ware interface.) This latch is controlled by the 82385 
BACP and BAOE # outputs. The bebavior and timing 
of these outputs and the latch they control (typically 
F or AS series TTL) ensure that BA2-BA31, 
BMfIO#, BWfR#, and BOfC# are cOmpletely 
compatible in timing and function to their 80386 
counterparts. 

The behavior of BACP can be seen in Figure 5-3B, 
where the rising edge of BACP latches and forwards 
the 80386 address and cycle definition signals in a 
BT1 or first BT2P state. However, the 82385 need 
not be the current bus master to latch the 80386 
address, as evidenced by cycle 4 of Figure 5-3A. In 
this case, the address is latched in frame 8, but not 
forwarded to the system (via BAOE #) until frame 
1 O.(The latch and output enable functions of the 
74374 are independent and invisible to one 
another.) 

Note that in frames 2 and 6 of Figure 5-3E, the 
BACP pulses are marked "False." The reason is 
that BACP is issued and the address latched before 
the hit/miss determination is made. This ensures 
that should the cycle be a miss, the 82385 bus can 
move directly into BT1 without delay. In the case of 
a hit, the latched address is simply never qualified by 
the assertion qf BAOS #. The .82385 bus stays in EjTI 
if there is no access pending (new cycle is a hit) and 
no bus activity. It will move to and stay in BT21 if the 
system has requested a pipelined cycle and the 
82385 does not have a pending bus access (new 
cycle is a hit). 

5.2,; 1.2 DATA BUS (BDO-8D31) 

The 82385 data bus is the system side of the 74646 
latching transCeiver. (See Figure 4-1.) This device is 
controlled by the 82385 outputs LOSTB, DOE # , and 
BT fR #. LOSTB latches data in write cycles, DOE # 
enables the transceiver outputs, and BT fR # con­
trols the transceiver direction. The· interaction of 
these signals and the transceiver is such that BOO­
B031 behave just like their 80386 counterparts. The 
transceiver is configured such that data flow in write 
cycles (A to B) is latched, and data flow in read cy­
cles (B to A) .is flow-through. 

Although BOO-B031 function just like their 80386 
counterparts, there is a timing difference that must 
be accommodated for in a system design. As men­
tioned above, the transceiver is transparent during 
read cycles, so the transceiver propagation delay 
must be addec! to the 80386 data setup. In addition, 
the cache SRAM setup must be accommodated for 
in cache read miss cycles. 

For non-cacheable reads the data setup is given by: 

Min BDO-BD31 
Read Data Setup 

80386 Min + 74646 B·to·A 
Data Setup Max Propagation 

Delay 

The required BOO-B031 setup in a cache read miss 
is given by: 

Min BDO-BD31 
Read Data 
Setup 

74646 B·to·A 
Max Propagation 
Delay 

+ OneCLK2 
Period 

+ CacheSRAM 
. MinWrite . 

Setup 

82385 CWEA'" or 
CWEB'" Min Delay 

If a data buffer is located between the 80386 data 
bus and the cache SRAMs, then its maximum propa­
gation delay must be added to the above formula as 
well. A design analysis should be completed for ev­
ery new design to determine actual margins. 

A design can accommodate the increased data set­
up by choosing appropriately fast main memory 
DRAMs and data buffers. Alternatively, a designer 
may deal with the longer setup by inserting an extra 
wait state into cache read miss cycles. If an addition­
al state is to be inserted, the system bus controller 
should sample the 82385 MISS# output to distin­
guish read misses from cycles that do not require 
the longer setup. Tips on USing the 82385 MISS# 
signal are presented later in this chapter. 

The behavior of LOSTB, DOE #, and BT /R # can be 
understood via Figures 5-3A through 5-3L. Note that 
in cycle 1 of Figure 5-3A (a non-cacheable system 
read)", DOE # is activated midway through BT1, but 

4'-323 



inter 82385 

in cycle 1 of Figure 5-3B(a cache read miss), DOE# 
is not activated until midway through BT2. As de­
scribed in the last chapter, the. reason is that in a 
cacheable read cycle, . the cache SRAMs are en­
abled to drive the 80386 data bus before the out­
come of the hit/miss decision (in anticipation of a 
hit). In cycle 1 of Figure 5-3B, the assertion of 
DOE ~ must be delayed until after the 82385 has 
disabl.ed the cache output buffers. The result is that 
N = 0 main memory should not be mapped into the 
cache. 

5.2.1.3 BYTE ENABLES (BBEO#-BBE3#) . 

These outputs are driven directly by the 82385, and 
are completely compatible in timing and function 
with their 80386 counterparts. When an 80386 cycle 
is forwarded to the 82385bLis, the 80386 byte en­
ables are duplicated onBBEO#-BBE3#. The one 
exception is a cache read miss, during. which 
BBEO #-BBE3# are all active regardless of the 
status of the 80386 byte enables. This ensures that 
the cache is updated with a valid 32-bit entry. 

5.2.1.4 ADDRESS STATUS (BADS#) 

BADS# is identical in function and timing to its 
80386.counterpart. It is asserted in BT1 and BT2P 
states, and indicates that valid address. and cycle 
definition (BA2-BA31, BBEO#-BBE3#, BM/IO#, 
BW/R#, BD/C#) .information is available on the 
82385 bus. 

5.2.1.5 READY (BREADY#) 

The 82385 BREADY # input terminates 82385 bus 
cycles just as the 80386 READY # input terminates 
80386 bus cycles .. The behavior of BREADY # is the 
same as that of READY #., but note in the A.C. timing 
specifications that a cache read miss requires a 
longer BREADY # setup than do other cycles. This 
must be accommodated for in ready logic design. 

5.2.1.6 NEXT ADDRESS (BNA#) 

BNA # is identical in function and timing to its 80386 
counterpart. Note that in Figures 5-3A through 5-3L, 
BNA # is assumed asserted in every Bn P or first 
BT2 state. Along with the 82385's pipelining of the 
80386, this ensllres that the timing diagrams accu­
ratelyreflect the full pipelined nature of the dual bus 
structure. 

5.2.1.7 BUS LOC!«BLOCK#) 

The 80386 flags a locked sequence of cycles by as­
serting LOCK # . During a locked sequence, the 
80386 does not acknowledge hold requests, so the 
sequence executes without interruption by· another 
master. The 82385 forces all locked 80386 cycles to 
run on the 82385 bus (unless LBA# is active), re­
gardless of whether or not the referenced location 
resides in the cache. In addition, a locked sequence 
of 80386 cycles is run as. a locked sequence on the 
82385 bus; BLOCK# is asserted and the 82385 
does not allow the sequence to be interrupted. 
Locked writes (hit or miss) and locked read misses 
affect the cache and cache directory just as their 

4-324 



inter 82385 

unlocked counterparts do. A locked read hit, howev­
er, is handled differently. The read is necessarily 
forced to run on the 82385 local bus, and as the 
data returns from main memory, it is "re-copied" into 
the cache. (See Figure 5-3L.) The directory is not 
changed as it already indicates that this location ex­
ists in the cach~. This activity ,is invisible to the sys­
tem and ensures that semaphores are properly han­
dled. 

BLOCK# is asserted during locked 82385 bus cy­
cles just as LOCK# is asserted during locked 80386 
cycles. The BLOCK# maximum valid delay, howev­
er, differs from that of LOCK#, and this must be 
accounted for in any circuitry that makes use of 
BLOCK #. The difference is due to the fact that 
LOCK #, unlike the other 80386 cycle definition sig­
nals, is not pipelined. The situation is clarified in Fig­
ure 5-3K. In cycle 2 the state of LOCK# is not 
known before the corresponding system read starts 
(Frames 4 and 5). In this case, LOCK# is asserted 
at the beginning of T1P, and the delay for BLOCK# 
to become active is the delay of LOCK # from the 
80386 plus the propagation, delay through the 
82385. This occurs because T1 P and the corre­
sponding BT1 P are concurrent (Frame 5). The result 
is that BLOCK # should not be sampled at the end 
of BT1 P. The first appropriate sampling point is mid­
way through the next state, as shown in Frame 6. In 
Figure 5-3L, the maximum delay for BLOCK# to be­
come valid in Frame 4 is the same as the maximum 

, delay for LOCK # to become valid from the 80386. 
This is true since the pipelining issue discussed 
above does not occur. 

5.2.2 Additional 82385 Bus Signals 

The 82385 bus provides two status> outputs and one 
control,input that are unique to cache operation and 

thus have no 80386 counterparts. The outputs are 
MISS#, and WBS, and the input is FLUSH. 

5.2.2.1 CACHE READ/WRITE MISS 
INDICATION (MISS#) 

MISS# can be thought of as an extra 82385 bus 
cycle definition signal similar to BM/IO#, BW/R#, 
and BD/C#, that distinguishes cacheable read and 
write misses from other cycles. MISS#, like the oth­
er definition Signals, becomes valid with BADS# 
(BT1 Of first BT2P). The behavior of MISS# is illus­
trated in Figures 5-3B, 5-3C, and 5-3J. The 82385 
floats MISS# when another master owns the bus, 
allowing multiple 82385s to share the same node in 
multi-cache systems. MISS# should thus be lightly 
pulled up (- 20 K!l) to keep it negated during hold 
(BTH) states. 

MISS# can serve several purposes. As discussed 
previously, the BDO-BD31 and BREADY # setup 

, times in a cache read miss are longer than in, other 
cycles. A bus controll,er can distinguish these cycles 
by gating .MISS# with BW/R#. MISS# may also 
prove useful in gathering 82385 system perform­
ance data. 

5.2.2.2 WRITE BUFFER STATUS (WBS) 

WBS is activated when 80386 write cycle data is 
latched into the 74646 latching transceiver (via 
LDSTB). It is deactivated upon completion of the 
write cycle on the 82385 bus when the 82385 sees 
the BREADY # Signal. WBS behavior is illustrated in 
Figures 5-3F through 5-3J, and potential applica­
tions are discussed in chapter 3. 

I 
, I 

I 



inter 82385 

80386 CYCLE I SBRD SBRD SBRD SBRD 

80386 BUS STATE T,1 T2P T1P I T2P T1 P I T2P T1P T2P I T2P T2P 
82385 BUS STATE BTl BT2 BT1 BT2 BT1 BT2 BTH BTH BT1 BT2 

ClK2 

ClK 

ADS# 

READYI# 

BADS# 

BREADY# 

NA# 

BACP 

BAOE# 

DOE# 

FRAME 7 8 9 10 11 12 13 14 15 16 
NUMBER 

290143-29 

Figure 5~3A. Consecutive SBRD Cycles-(N = 0) 

80386 CYCLE I CRDM I CRDM CRDM I CRDM 
80386 BUS STATE T1 T2 I T2P T2P T1 P T2P T1P T2P T2P T1 P T2P 
82385 BUS STATE BTl BT1 BT2 I BT2P , 'BT1P I BT21 BT1 I BT2 I BT2P BT1 P I BT21 

ClK2 

ClK 

ADS# 

READYI# 

BADS# 

BREADY# 

NA# 

BACP 

DOE# 

MISS# 

FRAME 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
NUMBER 

290143-30 

Figure 5-3B. Consecutive CRDM Cycles-(N = 1) 

4-326 



inter 82385 

80386 CYCLE I 
80386 BUS STATE Tl 
82385 BUS STATE 8TI 

SBRD I CRDM I SBRD I 
T2 I T2P I T2P I T2P T1P I T2P I T2P TlP I T2P I T2P 
BTl BT2 BT2P BT2P BTl P BT21 BT2P BTl P BT21 BT2P 

BADS# 

BREADY# 

NA# 

BACP 

DOE# 

MISS# 

rRAME 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
NUMBER 

290143-31 

Figure 5-3C. SBRD, CRDM, SBRD-(N = 2) 

80386 CYCLE I SBRD I SBRD I SBRD 

80386 BUS STATE Tl T2 T2P I T2P T2P T2P TlP T2P TlP T2P I T2P I T2P I T2P I 
82385 BUS STATE BTH BTH BTH BTl BT2 I BT2P . BTl P I BT21 BTH BTH BTl BT2 BT2P 

CLK2 

CLK 

ADS# 

READYI# 

BADS# 

BREADY# 

BACP 

BAOE# 

DOEN 

BHOLD 

BHLDA 

rRAME 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
NUMBER 

290143-32 

Figure5-3D. SBRD Cycles Interleaved with BTH States-{N = 1) 

4-327 



inter 

80386 CYCLE I 
80386 BUS STATE· 
82385 BUS STATE 

ClK2 

.elK 

ADS# 

READYI# 

BADS# 

BREADY# 

BACP 

OOE# 

FRAME 
NUMBER 

80386 CYCLE I 
80386 BUS STATE 
82385 BUS STATE 

ClK2 

ClK 

ADS# 

READYI# 

BADS# 

BREADY# 

NA# 

BACP 

OOE# 

BT/R# 

LDSTB 

WBS 

FRAME 
NUf.4BER 

82385 

CRDH SBRD CRPH SBRD 

2 3 4 5 6 7 8 10 11 12 13 14 15 16 

290143-33 

Figure 5-3E.lnterleaved SBRD/CRDH Cycles-(N= 1) 

SBRD WT SBRD I CRDH 

T1 T2 I T2P I T2P I T1 PI T2 Tl T2 T2 T2P T1 P I T2P 
BTl BTl BT2 BT21 BTl BTl BT2 I BT2P I BTl P I BT21 BTl BTl 

1· 2 3 4 5 7 8 10 11 12 13 14 I 15 I 16 

290143-34 

Figure 5~3F.SBRD, WT, SBRD. CRDH~(N =1) 

4"328 



80386 CYCLE , WT 
80386 BUS STATE T1 1 T2 
82385 BUS STATE BTl BTl 

BACP 

DOE# 

BT/RI 

lOSTB ~----'----.I 

, CROH , 
T1 T2 

. BT2 1 BT21 

WT 

Tl 1 T2 
Bn BTl 

82385 

, T1 CR10H T2 , n 

BT2 BT21 BTl 

WBSt---1I--f 
FRAME 

NUMBER 5 6 8 9 10 11 12 13 14 15 16 

Figure 5-30. Interleaved WT ICRDH Cycles-(N = 1) 

80386 CYCLE ,. WT' WT , CRDH , 
80386 BUS STATE Tl 1 T2 T1 1 T2 I· T2 1 T2 1 T2 Tl 1 T2 
82385 BUS STATE BTH 8TH BTH BTl BT2 BT2P BTl P BT21 BTl 

CLK2 

ClK 

ADS, 

READYI, 

BADS# 

BACP 

BAOEI 

OOE# 

BT/RI t--i-"'""i--f 

lOSTB '-------'----.I 

WBSi--I_-f 

BHOlO 

BHlDA 

FRAME 
NUMBER 5 6 7 8 10 11 

Figure 5-3H. WT, WT, CRDH-(N= 1) 

. 4~329 

12 15 14 15 

290143-35 

16 

290143-36 



82385 

80386 CYCLE I wr I wr I SBRo I 
~:; :~~ ~~:~ B~~' B~ B~' ~, , ~ , Bi~p' B~ Pai~1 ,. ~, , B~ '~I. 

REAoY1# 

SAOS# 

NAI 

BACP 

BAOEN 

oOEI 

BT/R# I-...,f--+--I( 
LDSTB ..... --'-' 

WBSI-~_-{ 
FRAME 

NUMBER 
7 8 10 11 12 13 14 15 16 

2901043-37 

Figure 5-31. WT, WT, SBRD-:-(N = 1) 

8038~0:~~.~~ I TlCW,TH T2 I· TI ,~,o T2 I- TICW,TM T2 I TI r ~H, T2 I· TI CWTM,o T2 
82385 BUS STATE BTl BTl BT2 BT2P BTl P . BT21 BTl BT2 BT2P BTl P BT21 BTl 

REAoY1# 

BADS# 

BREADY# 

BACP 

DOE# 

BT/R# 

LOSTB 

WBS 

MISS 

FRAME 4 
NUMBER 

8 10 11 12 13 14 15 16 

Flgure5-3Jl.Consecuthie Write Cyclea:-,.(N = 1) 

4·330 

290143-38 



intJ 82385 ~@W~OO©[g OOOIF@OOIM]~iiO@OO 

80386 CYCLE I SBRD I CRDM I WT I CRDH I 
80386 BUS ST ... TE Tl T2 I T2P T2P T1P T2P T1P I T2 T1 T2 
82385 BUS ST ... TE BTl BTl. BT2 I BT2P BTl P I BT21 BTl BT1 BT2 I BT21 

CLK2 

CLK 

... DS# 

READYI# 

B ... DS# 

BREADY# 

LOCK# 

BLOCK# 

MISS# 

FR ... ME 2 4 5 6 7 10 11 12 13 14 
NUMBER 

Figure S·3K. LOCK # IBLOCK # In Non·Cacheable or Miss Cycles-(N = 1) 

I CRDH I 80386 CYCLE (UNLOCKED) 
80386 BUS ST ... TE T1 I T2 
82385 BUS ST ... TE BTl BTl 

CRDH.... I CWTH B (LOCKED) (LOCKEO) 

T1 I T2 I T2P I T2P T1 P I T2 
BTl BT1 BT2 BT21 BTl BTl 

I CRDH I (UNLOCKED) 

B~k I B~~I BTH I 

CLK 

... DS# 

RE ... DYI# 

S ... DS# 

BRE ... DY# 

LOCK# 

BLOCK# 

CT/R# 

eWEA# 

eWES# 

BHOLD 

BHLD ... 

FR ... ME 2 3 4 5 6 7 8 
NUMBER 

12 13 14 10 11 

Figure 5·3L. LOCK # IBLOCK # in Cache Read Hit Cycle-(N = 1) 

4-331 

15 16 

290143-39 

15 16 

290143-40 

.J 
, I:: 
~ 

, ~ 

~ 



inter 82385 

5.2.2.3 CACHE FLUSH (FLUSH) 

FLUSH is an 82385 input which is used to reset all 
tag valid bits within the cache directory. The FLUSH 
input must be kept active for at least 4 eLK (8 CLK2) 
periods to complete the directory flush. Flush is gen­
erally used in diagnostics but can also be usep in 
applications where snooping cannot guarantee co­
herency. 

5.3 BUS WATCHING (SNOOP) 
INTERFACE 

The 82385's bus watching interface consists of the 
snoop address (SA2 -SA31 ), snoop strobe 
(SSTB #), and snoop enable (SEN) inputs. If mas­
ters reside at the system bus level, then the SA2-
SA31 inputs are connected to the system address 
lines and SEN the system bus memory write com­
mand. SSTB # indicates that a valid address is pres­
ent on the system bus. Note that the snoop bus in­
puts are synchronous, so care must be taken to en­
sure that they are stable during their sample win­
dows. If no master resides beyond the 82385 bus 
level, then SA2-SA31, SEN, and SSTB# can re­
spectively tie directly to BA2-BA31, BW/R#, and 
BADS#. However, it is recommended that SEN be 
driven by the logical "AND" of BW/R# and 
BM/IO# so as to prevent 110 writes from unneces­
sarily invalidating cache data. 

ClK, BClK 

ADS# 

80386 ADDRESS 

SSTB# (BADS#) 

385lB ADDRESS 

SEN (B/WR#) 

Tl 
BTl 

CACHE DIR. ADDR. -+--' 

T2 
BT2 

When the 82385 detects a system write by another 
master, it internally latches SA2-SA31 and runs a 
cache look-up to see if the altered main memory 
location is duplicated in the cache. If yes (a snoop 
hit), the line valid bit associated with that cache en­
try is cleared. An important feature of the 82385 is 
that even if the 83086 is running z.ero wait state hits 
out of the cache, all snoops are serviced. This is 
accomplished by time multiplexing the cache direc­
tory between the 80386 address and latched system 
address. If the SSTB # signal occurs during an 
82385 comparison cycle (for the 80386), the 80386 
cycle has the highest priority in accessing the cache 
directory. This takes the first of the two 80386 
states. The other state is then used for the snoop 
comparison. This worst case example, depicted in 
Figure 5-4, shows the 80386 running zero wait state 
hits on the 80386 local bus, and another master run­
ning zero wait state writes on the 82385 bus. No 
snoops are missed, and no performance penalty in­
curred. 

5.4 RESET. DEFINITION 

Table 5-1 summarizes the states of all 82385 out­
puts during reset and initialization. A slave mode 
82385 tri-states its "80386-like" front end. A master 
mode 82385 emits a pulse stream on its BACP out­
put. As the 80386 address and cycle definition lines 
reach their reset values, this stream· will latch the 
reset values through to the 82385 bus. 

T1 
Bn 

T2 
BT2 

Tl 
Bn 

290143-41 

Figure 5.4. Interleaved Snoop and 80386 Accesses to the Cache Directory 

4-332 



inter 82385 

Table 5-1. Pin State During RESET and Initialization 

Output Name 
Signal Level During RESET and Initialization 

Master Mode Slave Mode 

NA# High High 

READYO# High High 

BRDYEN# High High 

CALEN High High 

CWEA#-CWEB# High High 

OSO#-CS3# Low Low 

CT/R# High High 

COEA#-COEB# High High 

BADS# High HighZ 

BBEO#-BBE3# 386BE# HighZ 

BLOCK # High HighZ 

MISS# High HighZ 

BACP Pulse(1) Pulse 

BAOE# . Low High 

BT/R# Low Low 

DOE# High High 

LDSTB Low Low 

BHOLD - Low 

BHLDA Low -
WBS Low Low 

NOTE: 
1. In Master Mode, BAOE# is low and BACP emits a pulse stream during reset As the 80386 address and cycle definition 
signals reach their reset values, the pulse stream on BACP will latch these values through to the 82385 local bus. 

6.0 82385 SYSTEM DESIGN 
CONSIDERATIONS , , 

6.1 INTRODUCTION 

This chapter discusses techniques which should be 
implemented iri an 82385 system. Because of the 
high frequencies and high performance nature of the 
80386/82385 system, good design and layout tech­
niques are necessary. It is always recommended to 
perform a complete ,jesign' analysis on new system 
~esigns. 

6.2 POWER AND GROUNDING 

6.2.1 Power Connect,lons 

The 82385 utilizes 8 power (Vee) and 10 ground 
(Vss) pins, All Vcc and Vss pins must be connected 
to their appropriate plane. On a printed circuit board, 
all Vec pins must be connected to the power plane 
and all Vss pins must be connected to the ground 
plane. 

6.2.2 Power Decoupling 

Although the 82385 itself is generally a "passive" 
device in that it has few output signals, the cache 

4-333 



inter 82385 

subsystem as a whole is quite active. Therefore,lib­
eral decoupling capacitance· should be placed 
around the 82385 cache subsystem. 

Low inductance capacitors and interconnects are 
recommended for best high frequency electrical per­
formance. Inductance c~n be reduced by shortening 
circuit board traces between the decoupling capaci­
tors and their respective devices as much as possi­
ble. Capacitors specifically for PGA packages are 
also commercially available, for the lowest possible 
inductance. 

6.2.3 ResistorRecommendations 

Because of the dual bus structure of the 82385 sub­
system (80386 Local Bus and 82385 Local Bus), any 
Signals which are recommended to be pulled up will 
be respective to one of the busses. The following 
sections will discuss signals for both busses. 

6.2.3.1 80386 LOCAL BUS 

For typical designs, the pullup resistors shown in Ta­
ble 6-1 are recommended. This table correlates to 
chapter 7 of the 80386 Data Sheet. However, partic­
ular designs may have a need to differ from the list­
ed values. Design analysis is recommended. to de­
termine specific requirements. 

6.2.3.2 82385 LOCAL BUS 

Pullup resistor recommendations for the 82385 Lo­
cal Bus signals are shown in Table 6-2. Design anal­
ysis is necessary to determine jf deviations to the 
typical values given is needed. 

Table 6·1. Recommended Resistor Pull ups to 
Vee (80386 Local Bus) 

Pin and Pullup 
Purpose 

Signal Value 

ADS# 20 Kn ±10% Lightly Pull ADS # 
E13 Negated for 80386 

Hold States 

LOCK# 20 Kn ±10% Lightly Pull LOCK# 
F13 Negated for 80386 

Hold States 

Table 6·2. Recommended Resistor Pullups to 
Vee (82385 Local Bus) 

Signal and Pullup 
Purpose 

Pin Value 

BADS# 20 Kn ±10% Lightly Pull BADS # 
N9 Negated for 82385 

Hold States 

BLOCK# 20 Kn ±10% lightly Pull BLOCK # 
P9 Negated for 82385 

Hold States 

MISS# 20 Kn ±10% Lightly Pull MISS# 
N8 Negated for 82385 

Hold States 

6.3 82385 SIGNAL CONNECTIONS 

6.3.1 Configuration Inputs 

The 82385 configuration Signals (M/S#, 2W/D#) 
must be connected (pulled up) to the· appropriate 
logic level for the system design. There are also two 
reserved 82385 inputs which must be tied to the ap­
propriate level. Refer to Table 6-3 for the Signals and 
their required logic level. 

Table 6·3. 82385 Configuration 
Inputs Logic Levels 

Pin and Logic 
Purpose 

Signal Level 

M/S# High Master Mode Operation 
B13 Low Slave Mode Operation 

2W/D# High 2-Way Set Associative 
D12 Low Direct Mapped 

Res.erved High Must be tied to Vee via 
L14 a pull-up for proper 

functionality 

Reserved High Must be tied to Vee via 
A14· . a pull-up for proper 

functionality 

NOTE:. ... .. ..... . .. 
The listed 82385 pins which. need to be tied high should 
use a pull'lJp resistor in the range of 5 KO to 20 KO. 

4-334 



82385 

6.3.2 CLK2 and RESET 

The 82385 has two inputs to which the 80386 CLK2 
signal must be connected. One is labeledCLK2 
(82385 pin C13) and the other is labeled BCLK2 
(82385 pin L 13). These two inputs must be tied to­
gether on the printed circuit board. 

The 82385 also has two reset inputs. RESET (82385 
pin 013) and BRESET (82385 pin K12) must be con­
nected on the printed circuit board. 

6.4 UNUSED PIN REQUIREMENTS 

For reliable operation, ALWAYS connect unused in­
puts to a valid logic level. As is the case with most 
other CMOS processes, a floating input will increase 
the current consumption of the component and give 
an indeterminate state to the component. 

6.5 CACHE SRAM REQUIREMENTS 

The 82385 offers the option of using SRAMs with or 
without an output enable pin. Thjs is possible by. in­
serting a transceiver between the SRAMs and the 
80386 local data bus. This transceiver may also be 
desirable in a system which has a very heavily load­
ed 80386 local data pus. The following sections dis­
cuss the SRAM requirements for all cache configuc 
rations. 

6.5.1 Cache Memory without 
Transceivers 

As discussed in section 3.2, the 82385 presents all 
of the control signals necessary to access the cache 
memory. The SRAM chip selects, write enables, and 
output enables are driven directly by the 82385. Ta­
ble 6-4 lists the required SRAM specifiC:ations. 
These specifications allow for zero margin. They 
should be used as guides for the actual system de­
sign. 

6.5.2 Cache Memory With 
Transceivers 

To implement an 82385 subsystem using cache 
memory transceivers, it is necessary to create an 
output enable signal for the transceiver. In a 2-way 
set associative organization this signal is the logical 
"AND" ofCOEA# .and CWEA# for bank A and the 
"AND" of COEB# and CWEB# for bank B. A direct 
mapped cache needs to only use the equation of 
one bank (A or B). All other cache control signals 
are driven directly by the 82385. Table 6-5 lists the 
required SRAM specifications. These specifications 
allow for zero margin. They. should be used as 
guides for the actual system design. 

Table 6-4. SRAM Specs for Non-Buffered Cache Memory 

:' SRAM Spec Requirements 

Direct Mapped 2-Way Set Associative 
16 MHz 20 MHz 16 MHz 20 MHz 

Read Cycle Requirements 
Address Access (MAX) 64ns 44ns 62 ns 42ns 
Chip Select Access (MAX) 76 56 76 56 
OE# to Data Valid (MAX)· 25 19 19 14 
OE# to DataFloat (MAX) 20 20 20 20 

Write Cycle Requirements 
Chip Select to End of Write (MIN) 40 30 40 30 
Address Valid to End of Write (MIN) 58 42 56 40 
Write Pulse Width (MIN) 40 30 40 30 
Data Setup (MAX) - - - -
Data Hold (MIN) 4 .. 4 4 4 

4-335 



. ,. ,f', 

82385 , £[D)W£OO©IE OOOIF@OO~£li"U~ 
'J." 

Table'6-5 SRAM Specs for Buffered Cache Memoty 
, ' .' 

SRAM Spec Requlrement$ 

Direct Mapped 2-Way Set AsSOciative 
16 MHz 

Rea~.·Cycle Requirement. 
Address Access (MAX) 57ns 
Chip Select Access (MAX) 68 

,OEflto Data Valid (MAX) 'N/A 
OE # to Data Float (MAX) N/A 

Write Cycle Requirements 
Chip Select to Endpf Write (MIl')!) 40, 
Address Valid to End of Write (MIN) 58 
Write Pulse Width (MIN) 40 
Data Setup (MAX) 25 
Data Hold (MIN) 3 

" 

7.0 SYSTEM TEST CONSIDERATIONS . " ~ , 

. " . :' 

7.1,INTRODUC'tION 

Power.O\1SEjlf Testing,(P6ST)'isperforme~bY m~~t 
systems after ~ r-eset. This c~apter discusses the 
requirements for, properly, testing an 82385 basE)d 
system after power up. 

7.2 MAIN MEMORY (DRAM) TESTING 

Most systems perform a' memory test by. writing a 
data pattern and then reading and comparing the 
data. This test may also be used to determine the 
total available memory withir;1 the system. Without 
properly taking into account the 82385 cachemem­
ory, the memory test can give' erroneous results. 
This will occur if the cache responds with read hits 
during the memory test r.outine. 

7.2.1 Memory Testing Routine 

In order to properly test main memory, the test rou­
tine must not read from the same block consecutive­
ly. For instance, if the test routine writes a data pat-

. tern to the first 32 kbytes of memory (0000-7FFFH), 
read from the same block, writes a new pattern to 
the same locations (0000-7FFFH), and read the 
new pattern, the .. second .pattern tested would have 
had data returned from the 82385 cache memory. 
Therefore, it is recommended that the test routine 

. work with a memory block otat least 64 kbytes. This 
will guarantee' that no 32 kbyte block will be read 
twice consecutively. 

.• 20 MHz 16 MHz 20 MHz 

',. 

37 ns 55ns 35ns 
48 68 48 

N/A N/A N/A 
N/A N/A N/A 

30 " 'I' . 40 " , 
30. 

42 .. 5~ 40 
.' 

30 40 30 
15 25 15 
3. 3 3 

7.3 82385 CACHE MEMORY TESTING 

Withthe~ddition 'OfSRAMs fo'r'the.cachemembry, it 
may be desirable for the system to be able to test 
the cache SRAMs. during' system diagnostics. This 
requires the' test routine to access only the cache 
memory. The requirements for this routine are based 
on wHere it resides within the memory map. This can 
be broken into two area.s:' the routine residing in 
cachea.ble memory space or the routine,residihg in 
either non~cacheabre memory or on the 60386 local 
bus (using the LBA # input). ' , 

7.3.1 Test Routine in the NCA # or 
LBA # Memory Map 

In this configuration, the test routine will never be 
cached. The' recOmmEl\1c1ed"me~hod. iscoq~"lfihich 
will access a Single 32 kbyte, ~Iock during :the test. 
Initially, a 32 kbyte read (assume 0000:'7Ft=FH) must 
be executed. This will fill the cache directory With 'the 
address iliformation which will be used in thediag­
nostic procedure. Then,a.32kbyte write to the same . 
address locations (0000':' 7FFFH) will load the c.ache 
with the desired te.st pattern (due' to write hitS). The 
comparison can be made 'bycorripleting another, 
32 kbyte read (same locations, .: 0000--7FFFH), 
Which will be cache read hits; Subsequent writes and 
reads to the same addresses will enable various pat-
terns to be tested. . ' , ; '. 

4~336 



inter 82385 

7.3.2 Test Routine in Cacheable 
Memory 

In this case, it must be understood that the diagnos­
tic ,routine must reside in the cache memory before 
the actual data testing can begin. Otherwise, when 
the 80386 performs a code fetch, a location within 
the cache memory which is to be tested will be al­
tered due to the read miss (code fetch) update. 

The first task is to load the diagnostic routine into 
the top of the cache memory. It must be known how 
much memory is required for the code as the rest of 
the cache memory will be tested as in the earlier 
method. Once the diagnostics have been cached 
(via read updates), the code will perform the same 
type of read/write/read/compare as in the routine 
explained in the previous section. The difference is 
that now the amount of cache memory to be tested 
is 32 kbytes minus the length of the test routine. 

7.4 82385 CACHE DIRECTORY 
TESTING 

Since the 82385 does not directly access the data 
bus, it is not possible to easily complete a compari­
son of the cache directory. However, the cache 
memory tests described in section 7.3 will indicate if 
the directory is working properly. Otherwise, the data 
comparison within the diagnostics will show loca­
tions which fail. 

There is a slight possibility that the cache memory 
comparison could pass even if locations within the 
directory gave false hit/miss results. This could 
cause the comparison to always be performed to 
main memory instead of the cache and give a proper 
comparison to the 80386. The solution here is to use 
the MISS# output of the 82385 as an indicator to a 
diagnostic port which can be read by the 80386. It 
could also be used to flag an interrupt if a failure 
occurs. 

The implementation of these techniques in the diag­
nostics will guarantee the proper functionality of the 
82385 subsystem. 

7.5 SPECIAL FUNCTION PINS 

As mentioned in chapter 3, there are three 82385 
pins which have reserved functions in addition to 
their normal operational functions. These pins are 
MISS#, WBS, and FLUSH. 

As discussed previously, the 82385 performs a di­
rectory flush when the FLUSH input is held active for 
at least 4 CLK (8 ClK2) cycles. However, the 
FLUSH pin also serves as a diagnostic input to the 
82385. The 82385 will enter a reserved mode if the 
FLUSH pin is high at the falling edge of RESET. 

If, during normal operation, the FLUSH input is ac­
tive for only one ClK (2 CLK2) cycle/s, the 82385 
will enter another reserved mode. Therefore it must 
be guaranteed that FLUSH is active for at least the 4 
CLK (8 CLK2) cycle specification. 

WBS and MISS# serve as outputs in the 82385 re­
served modes. 

8.0 MECHANICAL DATA 

8.1 INTRODUCTION 

This chapter discusses the physical package and its 
connections in detail. 

8.2 PIN ASSIGNMENT 

The 82385 pinout as viewed from the top side of the 
component is shown . by Figure B-1.. Its pinout as 
viewed from the Pin side of the component is shown 
in Figure 8-2. 

Vee and Vss connections must be made to multiple 
Vee and Vss (GND) pins. Each Vee and Vss must 
be connected to the appropriate voltage level. The 
circuit board should include Vee and GND planes for 
power distribution and all Vee and Vss pins must be 
connected to the appropriate plane. 

4-337 



·nt~r I.·.-tr ' 

P , 

1 ' 0 

N L 

o 00 

82385 

K H 

o o o 
G E D C , B 

o 0 o o o o 0 ..... 
VCC, VSS VCCA27 A24A22A19 A18 415' A12 A9 vee vss A6 

2 o o o o o o o o o o o o o o 
VSS :VSS A31 A29· A25 A23 A21 ,417 Al4 All A8 11.7 A3 SA2 

,3 o o o o 00 o o o o o o o o 
vee NA# . READYO# A30 A28, A26 A20' .A 16 A 13 Al0 AS A4 A2 SA3 

4 do o 
VSS' CALENLDSTB' 

'5 0 0 () 
CS3# CT h# CSO# 

6 0 0 0 
CWEB# CS2#CSI # 

7 o o o 
COEA# CWEA# COEB# 

8 o 0 o 
BRDYEN# MISSII' W$S· 

9 o o o 
BLOCK# BADSII' BAOEH 

10 ,0 0 0 
BACP BT/RII' DOEII' 

11 0 0 0 
vee BHOLD BHLDA 

12 o 000 0 0 0 
VSS 

13 b 
vcc 

14 0 
VSS 

, 

BBEI II' IiBEO# BBE2#, BRESET SEN ,BE2# 

o o 0' 0 0 o 
VCC BBE3# BCLK2 BREADY# SSTB# 9El# 

o o o o o 
'VSS , VSS RESERVED' BNA# BE3# LBA# . 

o o o 
SA4 SA5 SA7 

000 
SA6 SA10 SA9 

000 
SA8' SAIl SA13 

o o o 
SA12 SA15 SA14 

o 0",0 
SA18 SA16 SA17 

o o o 
SA22 . SA19 SA20 

'0 0, 0 
SA25 SA24 ,SA21 

000 
SA27 SA26 SA23 

000 0 000 
NCA# D/CII' FLUSH 2W/D# SA31 SA29 SA28 

o 0 o o o o o 
X16# LOCK# ADS# RESET ClK2 M/SII' SA30 

o 0 000 o 0 
BEO# W/R# w/IOII READY1# vcc VSS RESERVED 

290143-42 

," '.,.' 

, Figure 8-1. 82385PGA Pinout-View from TOP Side 



2 

3 

4 

5 

6 

7 

8 

A 

/ o 
A6 

o 
SA2 

o 
SA3 

o 

B C 

o o 
vss vee 

o o 
A3 A7 

o o 
A2 A4 

o o 
SA7 SA5 SA4 

000 
SA9 SA10 SA6 

o o o 
SA13 SAIl SA8 

o o o 
SAI4. SA15 SA12 

o 0 o 
SA17 SA16 SA18 

D 

o 
A9 

o 
A8 

o 
AS 

82385 

E F G H .K L N P 

o 000 o o o o o o 
A12 A15 AlB A19 A22 A24 A27 VCC VSS VCC 

o o o o o o o o o o 
All A14 A17 A21 A23 A25 A29 A31 VSS VSS 

o 00 o o 00 00 o 
Al0 A 13 A 16 A20 A26 A2B A30 READYOI!' NAil VCC 

o o o 
LDSTB CALEN VSS 

METAL LID 

00 0 
CSO# CT//Ril CS3i1 

00 o 
CS 1 III CS2# CWEBIII 

o o o 
COEBH CWEAiI COEAiI 

o o o 
WBS MISS# BRDYENII 

9 0 0 0 000 
SA20 SA 19 SA22 BAOE# BADS# BLOCK# 

10 o 0 o 000 
SA21 . SA24 SA2S DOE# BT /Ril BACP 

11 o o o o o o 
SA23 SA26 SA27 '--_________________ --' BHLDA BHOLD VCC 

12 o o 000 o 0 o 00 o o 
SA28 SA29 SA31 2W/D# FLUSH O/C#. NCA# BE2# SEN BRESET BBE2# BBEOH BBEI iI VSS 

13 o o o 0 000 o o 00 o o o 
SA30 M/Sil CLK2 RESET ADS# LOCKII x 16# BElii SS18# BREADY# SCLK2 BSE3# VCC VCC 

14 o 0 o 000 o o o o o o o o 
RESERVEO VSS . VCC READY# M/IOH W/R# SEO# L8A# BE3111 BNA# RESERVED VSS VSS VSS 

290143-43 

Figure 8·2. 82385 PGA Pinout-View from PIN Side 

4-339 



82385 

Table 8-1. 82385 PGA Pinout-Functional Grouping 

Pin/Signal . Pin/Signal Pin/Signal Pin/Signal 

M2 A31 C12 SA31 C1 Vee 81 Vss 
L3 A30 A13 SA30 C14 Vee B14 Vss 
L2 A29 B12 SA29 M1 Vee M14 Vss 
K3 A28 A12 SA28 N13 Vee N1 Vss 
L1 A27 C11 SA27 P1 Vee N2 Vss 
J3 A26 B11 SA26 P3 Vee N14 Vss 
K2 A25 C10 SA25 P11 Vee P2 Vss 
K1 A24 B10 SA24 P13 Vee P4 Vss 
J2 A23 A11 SA23 E13 ADS# P12 Vss 
J1 A22 C9 SA22 P14 Vss 
H2 A21 A10 SA21 F14 W/R# 
H3 A20 A9 SA20 F12 D/C# N9 BADS# 
H1 A19 B9 SA19 E14 M/IO# M12 BBEO# 
G1 A18 C8 . SA1B F13 LOCK# N12 BBE1# 
G2 A17 AB SA17 L12 BBE2# 
G3 A16 B8 SA16 N3 NA# M13 BBE3# 
F1 A15 B7 SA15 P9 BLOCK# 
F2 A14 A7 SA14 G13 X16# 
F3 A13 A6 SA13 G12 NCA# K14 ·BNA# 
E1 A12 C7 SA12 H14 LBA# 
E2 A11 B6 SA11 014 READYI# N4 CALEN 
E3 A10 B5 SA10 M3 READYO# P7 COEA# 
01 A9 A5 SA9 M7 COEB# 
02 A8 C6 SAB E12 FLUSH N7 CWEA# 
C2 A7 A4 SA? MB WBS P6 CWEB# 
A1 A6 C5 SA6 NB MISS# M5 CSO# 
03 A5 B4 SA5 M6 CS1# 
C3 A4 C4 SA4 012 2W/D# N6 CS2# 
B2 A3 A3 SA3 B13 M/S# P5 CS3# 
B3 A2 A2 SA2 M10 DOE# 
G14 BEO# J12 SEN M4 LDSTB N5 CT/R# 
H13 BE1# J13 SSTB# 
H12 BE2# N11 BHOLD PB BRDYEN# 
J14 BE3# A14 RESERVED M11 BHLDA K13 BREADY# 

L14 RESERVED P10 BACP 
C13 CLK2 M9 BAOE# 
013 RESET N10 BT/R# 
K12 BRESET 
L13 BCLK2 

4-340 



82385 

B.3 PACKAGE DIMENSIONS AND 
MOUNTING 

8.4 PACKAGE THERMAL 
SPECIFICATION 

The 82385 package is a 132-pin ceramic Pin Grid 
Array (PGA). The pins are arranged 0.100 inch (2.54 
mm) center-to-center, in a 14 x 14 matrix, three rows 
around (Figure 8-3). 

The PGA case temperature should be measured at 
the center of the top surface opposite the pins, as in 
Figure 8-4. The case temperature may be measured 
in any environment to determine whether or not the 
82385 is within the specified operating range. 

A wide variety of available sockets allow low inser­
tion force or zero insertion force mounting. These 
come in a choice of terminals such as soldertail, sur­
face mount, or wire wrap. 

,..... 
R 

,..... 
'iii' N 0> II> 

CD ~. .. GO -.t; 
"! ", GO 

.::::. ~ e e .::::. 

CIN #1 POSITION 

,..... 
R 0> 

II> 0> 
0> .. ,,; ..; 
.::::. .::::. 

• ®®®®®®'I®®®®®®® 
2 ®®®®®®®®®®®®®® 
3 ®®8®®®®'®®®®8®® 
4 ®®® ®®® 
5 ®®® ®®® 
6 ®®® I ®®® 
7 ®®® + ®®® 
8 -®®@ -- -- @®@ 
9 ®®® I ®®® 

10 ®®® ®®® 
11 ®®® ®®® 
12 ®®8®®®®,®®®® ®® 
13 ®®®®®®®/®®®®®®® 
14 ®®®®®®®,®®®®®®® 

C D E F G H J K L t.l N P Ii 
.020 (0.508) .020 --l 
t.lIN TYP (0.508) • 
.070 (1. 777) DIA 
TYP BRAZE PAD 

1------1.450(36.802) ------+-

.725 (18.401) 

.650(16.497) 

.550 (13.959) 

.450 (11.421) 

.350 (8.883) 

.250 (6.345) 

.150 (3.807) 

.050 (1.269) 
o 

SWEDGE PIN 
STANDOFF 
(4) PLACES 

.057(1.269) -I t 
t.lAX TYP 

.001 (0.025) R 
t.lIN TYP 

.018(0.47) 1 
DIA TYP - ==-tH'-

'165(4'189~1 ~I 
.110(22 

290143-44 

Figure 8-3. 132-Pln PGA Package Dimensions 

4-341 



82385 

Figure 8-4. Measuring 82385 PGA Case Temperature 

Table 8-2. 82385 PGA Package Typical Thermal Characteristics. 

Thermal Resistance-'C1Watt , , 

Airflow-f3/min (m3/sec) 

Parameter 0 50 100 200 400 600 
(0) (0.25) (0.50) (1.01) (2.03) (3.04) 

8 Junction-to-Case 2 2 2 2 2 2 
(Case Measured 
as Figure 8,4) " 

8 Case-to-Ambient 19 18 17 15 12 10 
(No Heatsink) 

8 Case-to-Ambient 16 15 14 12 9 7 
(with Omnidirectionai 

'Heatsink) 

8 Case-to-Ambient 15 14 13 11 8 6 
(with Unidirectional 
Heatsink) 

NOTES: 
1. Table 8-2 applies to 82385 PGA plugged into socket or soldered directly onto board. 
2. (JJA = (JJC + (JCA. 
3. (J J-CAP = 4'C/W (approx.) 

(J J-PIN = 4'C/W (inner pins) (approx.) 
(JJ-PIN = 8'C/W (outer pins) (approx.) 

290143-46 

4-342 

800 
(4.06) 

2 

9 

6 

5 



inter 82385 

9.0 ELECTRICAL DATA 

9.1 INTRODUCTION 

This chapter presents the A.C. and D.C. specifica­
tions for the 82385. 

9.2 MAXIMUM RATINGS 

Storage Temperature .......... - 65°C to + 150°C 

Case Temperature Under Bias ... - 65°C to + 11 DoC 

Supply Voltage with Respect 
to VSS ....................... -0.5V to +6.5V 

Voltage on any other Pin ..... -0.5V to Vcc + 0.5V 

NOTE: 
Stress above those listed may cause permanent 
damage to the device. This is a stress rating only 
and functional operation at these or any other con­
ditions above those listed in the operational sec­
tions of this specification is not implied. 

Exposure to absolute maximum rating conditions 
for extended periods may affect device reliability. 
Although the 82385 contains protective circuitry to 
resist damage from static electrical discharges, al­
ways take precautions against high static voltages 
or electric fields. 

9.3 D.C. SPECIFICATIONS T CASE = DoC to + 85°C; Vcc = 5V ± 5%; VSS = OV 

Table 9-1. D.C. Specifications (16 MHz and 20 MHz) 

Symbol Parameter Min Max Unit Test Condition 

Vil Input Low Voltage -0.3 0.8 V (Note 1) 

VIH Input High Voltage 2.0 Vcc + 0.3 V 

VCl CLK2, BCLK2 Input Low -0.3 0.8 V· (Note 1) 

VCH CLK2, BCLK2 Input High Vcc - 0.8 Vcc + 0.3 V 

VOL Output Low Voltage 0.45 V IOl = 4mA 

VOH Output High Voltage 2.4 V IOH = -1 mA 

Icc Power Supply Current 275 mA (Note 2) 

III Input Leakage Current ±15 jJ-A OV < VIN:S: Vcc 

ILO Output Leakage Current ±15 jJ-A ·0.45 <VOUT < VCC 

CIN Input Capacitance 10 pF (Note 3) 

CClK CLK2 Input Capacitance 20 pF (Note 3) 

NOTES: 
1. Minimum value is not 100% tested. 
2. Icc is specified with inputs driven to CMOS levels. Icc may be higher if driven to TTL levels. 
3. Sampled only. 

4-343 

I; 

I 



w.·~·r'· ' •• -e-" 82385 

9.3 D.C. SPECIFICATIONS TCASE = O'Cto + 85'C; vee = 5V ±5%; vss = OV (Continued) 

. Table 9-2 D C Specifications (25 MHz) .. 
Symbol Parameter Min Max Unit Test Condition 

Vil Input Low Voltage -0.3 0.8 V (Note 1) 

VIH Input High Voltage 2.0 Vee + 0.3 V 

VllC CLK2, BCLK2 Input Low Voltage -0.3 0.8 V (Note 1) 

VIHC CLK2, BCLK2 Input High Voltage 3.7 Vcc + 0.3 V 

VOL Output Low Voltage 0.45 V 

VOH Output High Voltage 2.4 V 

III Input Leakage Current ±15 p,A OV < VIN < Vcc 

ILO Output Leakage Current ±15 p.A 0.45 < VOUT < Vcc 

Icc Supply Currerit· 300 mA (Note 2) 

CI Input Capacitance 10 . pF (Note 3) 

CClK CLK2 Input Capacitance 20 pF (Note 3) 

NOTES: 
1. Minimum value is not 100% tested. 
2. Icc is specified with inputs driven to CMOS levels. Icc may be higher if driven to TIL levels. 
3. Not 100% tested. Test conditions fc = 1 MHz, Inputs = OV, TCASE = room. 

9.4 A.C. SPECIFICATIONS 

The A.C. specifications given in the following tables 
consist of output delays and Input setup require­
ments. The A.C. diagram's purpose is to illustrate 
the clock edges from which the timing parameters 
are measured. The reader should not infer any other 
timing relationships ffom them. For specific informa­
tion on timing reiationships between signals, refer to 
the appropriate. functional section. 

A.C. spec measurement is defined in Figure 9-1. In­
puts must be driven to the levels shown when A.C. 
specifications are measured. 82385 output delays 

are specified with minimum and maximum limits, 
which are measured as shown. 82385 input setup 
and hold times are. specified as minimums and de­
fine the smallest acceptable sampling window. With­
in the sampling window, a synchronous input Signal 
must be stable for correct 82'385 operation. 

9.4.1 Frequency Dependent Signals 

The 82385 has signals whose output valid delays 
are dependent on the clock frequency. These sig­
nals are marked in the A.C. Specification Tables wit!'l 
a Note 1. 

4·344 



inter 82385 

CLK2 [ ___ 2_V", 

-B 

3.0V --;;o+-:-.:::~~~-::-~~-VALID 
OUTPUT n 1 .SV 

OV----~--~~~~--~~----

3.0V '""M--.... ---'""'"" 

LEGEND: 
A-Maximum output delay specification 
B-Minimum output delay specification 
C-Minimum input setup specification 
B-Minimum input hold specification 

NOTES: 

NOTE 2 

NOTE 1 

1. Under rated loading B23B5 output (t, and tdis typically,,; 4.0 ns from O.BV to 2.0V. 
2. Input waveforms have t, ,,; 2.0 ns from O.BV to 2.0V. 

290143-47 

Figure 9-1. Drive Levels and Measurement Points for A.C. Specification 

A.C. SPECIFICATION TABLES 
Functional Operating Range: Vee = 5V ±5%; TeASE = O°C to +85°C 

Table 9-3 A C Specifications .. 
Symbol Parameter 

82385-16 82385-20 
Units Notes 

Min Max Min Max 

t1 Operating Frequency 12 16 12 20 MHz 

t2 CLK2 Period 31.25 41.67 25 41.67 ns 

t3 CLK2 High Time 9 8 ns 

t4 CLK2 Low Time I 9 8 ns 

t5 CLK2 Fall Time 8 8 ns 

t6 CLK2 Rise Time 8 8 ns 

t7 A(2-31), BE(0-3)#, 25 19 ns (Note 1) 
Lock Setup Time 

t8 A(2-31), BE(O-3)#, 3 3 ns 
Lock Hold Time 

t9 W/R#, M/IO#, O/C#, 28 21 ns (Note 1) 
AOS# Setup Time 

t10 W/R#, M/IO#, O/C!#, 5 5 ns 
AOS# Hold Time 

4-345 



82385 

A.C. SPECIFICATION TABLES (Continued) 
Functional Operating Range: Vee = 5V ±5%; TeASE = O°C to +85°C 

Table 9-3. A.C. Specifications (Continued) 

Symbol Parameter 
82385-16 82385-20 

Units ,Notes 
Min Max Min Max 

t11 READYI # Setup 21 12 ns (Note 1) 

t12 READYI # Hold 4 4 ns 

t13 LBA#, NCA#, X16# Setup Time 16 10 ns 

t14 LBA#, NCA#, X16# Hold Time 4 4 ns 

t1S RESf;T, BRESET Setup 13 12 ns 

t16 RESET, BRESET Hold 4 4 ns 

t17 NA# Delay 15 42 15 34 ns (Note 1) CL = 25 pF 

t18 READYO# Delay 4 31 4 28 ns (Note 1) CL = 25 pF 

t19 BRDYEN # Delay 4 31 4 28 ns CL = 40pF 

t21a CALEN Delay 3 25 3 19 ns (Note 2) CL =·40 pF 

t21b CALEN Rising Delay 3 38 3 33 ns (Notes 1,3) 

t22a CWEA #, CWEB # Delay 14 31 12 25 ns (Notes 1, 4) CL = 75 pF 

t22b CWEA #, CWEB # Pulse Width 40 30 ns (Notes 1,5) 

t23 CS(0-3)# Delay 14 38 12 33 ns (Notes 1, 6) CL = 50 pF 

t24 CT/R# Delay 14 38 12 33 ns (Notes 1, 7) CL = 75 pF 

t25a COEA # , COEB #, Falling Delay 1 24 1 18 ns (Note 8) CL = 75 pF 

t25b COEA#, COEB#, Falling Delay 1 30 1 23 ns (Notes 1,9) 

t25c COEA # , COEB #, Rising Delay 5 19 5 15 ns (Note 10) 

t26 CS(0-3) # Active to CWEA #, 40 30 ns (Notes 1, 5) . 
CWEB # Rising 

t27 CWEA#, CWEB# Falling 0 0 ns 
to CS(0-3)# Falling Delay 

t28 CWEA #, CWEB # Rising to 0 0 . ns 
CALEN Rising and CS(0-3)# 
Falling Delay 

t31 SA(2-31) Setup 25 19 ns 

t32 SA(2-31) Hold 3 3 ns 

t33 BADS# Valid Delay 6 33 6 28 ns (Note 1) CL = 75 pF 

t34 BADS # Float Delay 6 35 6 30 ns 

t55 BLOCK#, BBE(0...:3)# Valid Delay 4 36 4 30 ns (Note 1) CL = 75 pF 

t56 MISS# Valid Delay 4 43 4 35 ns (Note 1) CL = 75 pF 

t57 MISS#, BBE(0-3)#,BLOCK# 4 40 4 32 ns 
Float Delay . . 

t58 WBSDelay 4 36 4 30 ns (Note 1) CL = 75 pF 

4-346 



82385 

A.C. SPECIFICATION TABLES (Continued) 
Functional Operating Range: VCC = 5V ±5%; TCASE = O°C to +85°C 

Table 9·3. A.C. Specifications (Continued) 

Symbol Parameter 
82385·16 82385·20 

Units Notes 
Min Max Min Max 

t35 BNA# Setup 11 9 ns 

t36 BNA# Hold 15 15 ns 

t37a BREADY # Setup 31 26 ns (Notes 1, 11) 

t37b BREADY # Setup 21 12 ns (Note 12) 

t38 BREADY # Hold 4 4 ns 

t40 BACP Delay 4 23 4 18 ns CL = 60 pF 

t41 BAOE# Delay 4 23 4 18 ns 

t43a BT/R#, DOE# Delay 2 25 2 17 ns CL = 50 pF 

t43b DOE # Rising Delay 4 21 4 17 ns 

t43c LDSTB Delay 2 33 2 26 ns CL = 50 pF 

t44 SEN, SSTB# Setup 15 11 ns 

t45 SEN, SSTB# Hold 5 5 ns 

t46 BHOLD Setup 26 17 ns (Note 13) 

t47 BHOLDHold 5 5 ns (Note 13) 

t48 BHLDADelay 6 33 5 28 ns (Note 13) CL = 75 pF 

t49 BHLDASetup 20 17 ns (Note 14) 

t50 BHLDAHold 5 5 ns (Note 14) 

t51 BI;IOLD Delay 6 33 6 28 ns (Note 14) CL = 75 pF 

t59 FLUSH Setup 21 16 ns 

t60 FLUSH Hold 5 5 ns 

t61 FLUSH Setup to RESET Low 31 26 ns 

162 FLUSH Hold from RESET Low 31 26 ns 

NOTES: 
1. Frequency dependent specifications. 
2. All cycles except cache write hit. CALEN triggers by PHI2 in TIP state. 
3. The end of cache write hit cycles. Triggered by PHI1. 
4. CWE# transitions by PHI1 in cache write hit cycles.CWE# transitions by PHI2 in cache read miss cycles. 
5. Used for cache data memory (SRAM) specifications. . . 
6. In cache write hit cycles, CS(O-3)# transition high by PHI2 and low by PHI1. In cache read miss cycles, CS(0-3)# 
transition high by PHI1 and low by PHI2. 
7. In cache write hit cycles, CT/R# transitions low byPH12. In cache read hit cycles, CT/R# goes high by PHI2: In cache 
read miss cycles, CT/R# goes low by PHI1. . 
6. Direct mapped configuration. 
9. Two way set associative configuration. 
10. COE# switches high by PHil at the end of a cache read hit cycle. 
11. Cache read miss cycles. 
12. Non·cacheable read cycles and system write cycles. 
13. Master mode configuration. BHOLDis an input and BHLDA is an output. 
14. Slave mode configuration. BHOLD is an output and BHLDA is an input. 

4·347 



82385 

A.C. SPECIFICATION TABLES (Continued) 
Functional Operating Range: Vee = 5V ±5%; TeAsE = O·C to +8S·C 

All outputs tested specified at 50 pF load unless otherwise noted. 

Table 9·4. A.C. Specifications 

Symbol Parameter 82385-25 Units 
Min Max 

t1 Operating Frequency 
, 

15.4 25 MHz 

t2 CLK2 Period 20 32.5 ns 

t3a CLK2 High Time 7 ns 
t3b CLK2 High Time 4 ns 
t4a CLK2 Low Time 7 ns 
t4b CLK2 Low Time 5 ns 
t5 CLK2 Fall Time 7 ns 
t6 CLK2 Rise Time 7 ns 

t7a A2-A19, A21-A31 Setup Time 14 ns 
t7b LOCK # Setup Time 17 ns 
t7c BEO-BE3# Setup Time 14 ns 
t7d A20 Setup Time 13 ns 
t8 A2-A31, BEO#-BE3#, LOCK# Hold 3 ns 

t9a M/IO#, D/C#,Setup Time 17 ns 
t9b ADS#, W/R# Setup Time 17 ns 
t10 W/R#, M/IO#, D/C#, ADS# Hold 3 ns 

t11 READYI # Setup Time 9 ns 
tl2 READYI;Ii Hold Time 4 ns 

t13a NCA # Setup Time 15 ns 
t13b LBA#, X16# Setup Time 7 ns 
t14 LBA#, NCA#, X16# Hold Time 3 ns 

t15 RESET, BRESET Setup Time 10 ns 
t16 RESET, BRESET Hold Time 3 ns 

t17 NA#Valid Delay 4 27 ns 
t18 READYO# Valid Delay 4 21 ns 
t19 BRDYEN# Valid Delay 4 21 ns 

t21a CALEN Valid Delay 4 21 ns 
t21b CALEN Valid Delay 4 26 ns 
t22a CWEA#, CWEB# Valid Delay 4 23 ns 
t22b CWEA #, CWEB # Pulse Width 25 ns 
t22c CWEA #, CWEB # Rising Delay 8 21 ns 
t23 CSO#-CS3# Valid Delay 9 29 ns 
t24 CT/R# Valid Delay 9 30 ns 

t25a COEA#,COEB# Valid Delay 4 18 ns 
t25b COEA#,CQEB# Valid Delay 4 18 ns 
t25c COEA #, COEB #I Rising Delay 4 18 ns. 
t26 . CSO#-CS3# toCWE# Delay 25 ns 
t27 CWE# toCSO#-CS3# Delay 0 ns 

t28a CWE # to CALEN 0 ns 
t28a CWE# toCS# 0 ns 

t31 SA2-SA31 Setup Time 10 ns 
t32 SA2-SA31 Hold Time 3 ns 

t33 BADS# Valid Delay 4 21 ns 
t34 BADS# Float Delay 4 30 ns 

t35 BNA # Setup Time 7 ns 
t36 BNA # Hold Time 3 ns 

4-348 

Notes 

(2.0V Threshold) 
(3.7V Measurement) 
(2.0V Threshold) 
(O.8V Measurement) 
(3.7V to 0.8V) 
(0.8V to 3.7V) 

(Notes 1, 15) 
(Notes 1, 15) 
(Notes 1, 15) 
(Notes 1, 15) 

(Notes 1, 15) 
, 

(Notes 1, 15) 

(Note 1) 

(Notes 15, 19) 

(25 pF Load) (Note 1) 
(25 pF Load) (Note 1) 

(Note 2) 
(Notes 1,3) 
(Notes 1, 4) 
(Notes 1,5) 
(Notes 1,4) 
(Notes 1,6) 
(Notes 1, 7) 

(25 pF Load) (Note 8) 
(25 pF Load) (Notes 1, 9) 
(25pF Load) (Notes 10, 16) 

(Notes 1,5) 

(Note. 1) 



82385 

A.C. SPECIFICATION TABLES (Continued) 
Functional Operating Range: VCC = 5V ±5%; TCASE = O°C to +85°C 

All outputs tested specified at a nO pF load unless otherwise noted. 

Table 9·4. A.C. Specifications (Continued) 

Symbol Parameter 82385-25 
Min Max 

t37a BREADY # Setup Time 20 
t37b BREADY # Setup Time 20 
t38 BREADY # Hold 3 

t40a BACP Rising Delay 4 16 
t40b BACP Falling Delay 4 20 
t41 BAOE# Valid Delay 4 15 

t43a BT/R# Valid Delay 4 16 
t43b DOE # Falling Delay 4 20 
t43ab DOE# Rising Delay 4 17 
t43c LDSTB Valid Delay 4 21 

t44a SEN Setup Time 9 
t44b SSTB # Setup Time 5 
t45 SEN, SSTB# Hold Time 5 

t46 BHOLD Setup Time 15 
t47 BHOLD Hold Time 3 
t48 BHOLDA Valid Delay 4 23 

t55a BLOCK# Valid Delay 3 26 
t55b BBE# Valid Delay 4 28 
t56 MISS# Valid Delay 4 30 
t57 MISS#, BBE#, BLOCK# F[oatDelay 4 30 
t58 WBS Valid Delay 4 25 

t59 FLUSH Setup Time 12 
t60 FLUSH HoldTime 5 

t61 FLUSH Setup to RESET Low 21 
t62 FLUSH Hold from RESET Low 21 

NOTES: 
1. Frequency dependent specifications. 
2. All cycles exc;ept cache hit. CALEN triggers PHI2 in Tl P state. 
3. The end of cache write hit cycles. Triggered by PHil. 

Units 

ns 
ns 
ns 

ns 
ns 
ns 

ns 
ns 
ns 
ns 

ns 
ns 
ns 

ns 
ns 
ns 

ns 
ns 
ns 
ns 
ns 

ns 
ns 

ns 
ns 

4. CWE# transitions by PHil in cache write cycles. CWE#transitions by PHI2 in cache read miss cycles. 
5. Used for cache memory (SRAM) specifications. 

Notes 

(Notes 1, 11) 
(Note 12) 

(Note 17) 

(Note 13) 
(Note 13) 
(Note 13) 

(Notes 1, 18) 
(Notes 1, 18) 
(Note 1) 

(Note 1) 

6. In cache write hit cycles, CSO#-CS3# transition high by PHI2 and low by PHil. In cache write miss cycles, CSO#­
CS3 # transition high by PHil and low by PHI2. 
7. In cache write hit cycles, CT/R# transition low by PHI2. In cache read hit cycles, CT/R# goes high by PHI2. In cache 
read miss cycles,CT/R# goes low QY PHI1.. . 
8. Direct mapped configuration. 
9. Two way set associative configuration. 
10. COE # switches high by PHil at the end of a cache read hit cycle. 
11. Cache read miss cycles. 
12. Non-cacheable read cycles and system write cycles. 
13. Master mode configuration. BHOLD is an input and BHLDA is an output. 
14. Not supported as listed in 82385. Data Sheet. '. . . 
15. These inputs are directly affected by capacitive loading on the corresponding 80386 outputs. Use of the 80386 derating 
curve shows a maximum load of 80 pF-90 pF in order to meet the required 82385 setup times. 
16. Symbol Temperature Parameter 17. Symbol Temperature Parameter 

Max Max 
t25C lease = 0 16 t43B tcase = 0 15 

lease = 85 18 tcase = 85 17 
18. BLOCK# delay is either from BPHI1 or from 80386 LOCK#. Refer to Figure 5-3K and 5-3L in the 82385 data sheet. 
19. NCA# setup time is now specified to the rising edge of PHI2 in the state aiter 80386 addresses become valid (either the 
first T2 or the state aiter the first T2P). 

4-349 

, 

!.'.'.~ .. '. ,t 



inter 

PHI2 

ClK2 

ClK 

82385 

t5 t6 

Figure 9·2. CLK2, BCLK2 Timing 

82385 
OUTPUT~ 

~CL 
290143-49 

CL indicates all parasitic capacitances. 

Figure 9·3. A.C. Test Load 

386 Interface Parameters 

PHil PHI2 

290143-48 

PHil 

A2-31~~~~~------~--------~~----------~---i~~~~ 
BEO#-3#..;~~~~~ ____ +-________ ~ __________ ~ ____ ~~~~~ 

lOCK# 

W/R# ~~~~W-~---+-------------+-----------+-~~~~~~ 
M/IO# 4.,;~":'.liLolIj-____ +-__________ -+ _________ +-___ ""~~~u. 
O/C# -

LBA#~~~~~------~---+----~~----------~--~~~~~ 
XI6#~~~~~ ____ -+ ____ +-____ +-______ ~ __ ~~..,.~~~~ 

REAOYI# 

290143-50 . 

4-350 



inter 82385 

OUTPUT DELAYS 

PHI2 PHil PHI2 PHil 

ClK2 

ClK 

NA# __ ~ __________ -+ __________ ~~~~~ __ r-______ __ 

READYO# __ ~ __________ ~~~~~~~ ______ ~ __ ~ ________ __ 

BRDYEN# __ ~ __________ ~~~~~~~ ______ ~ __ ~ ________ __ 

290143-51 

Cache Write Hit Cycle 

n.lp T2 

I PHil : PHI2 I PHil : PHI2 I PHil : PHI2 

ClK2 

CAlEN -f',*,1.V 

CS# -+------i--""i'~:I'1 

CWE# 

CT/R# 

290143-52 
<D*. This would be 218 if previous bus cycle was Cache Write Hit cycle. 

4-351 



82385 

Cache Read Miss (Cache Update Cycle) 

T1P T2P 

'·PHII : PHI2 , PHil : PHI2 

CLK2 

CALEN 

-1""""''' 
CS# -+-~~r, 

CWE# 

CT/R# 

• <D. This would be 218 if previous bus cycle was Cache Write Hit cycle. 

PHI! 

CLK2 

CALEN (n) 
-1-'-'~.1 

CS# 

Cache Read Cycle 

T1,T1P 
PHI2 PHI! 

CT/R# -+----....... - ..... '-f..j:J..j1-" 

COE#--+-------~~------~~~ 

, PHil 

T2,T2P 
PHI2 

TIP 

: PHI2 

PHI! 

(DIRECT MAPPED) ~ .... .a..._...;. ____ _I'""'-
COE# 

(2WAY) 

CALEN 
(T1 P) _""",""-A'J 

• <D. This would be 218 if previous bus cycle was Cache Write Hit cycle. 

290143-53 

290143-54 



inter 

BCLK2 

BCLK 

SA2-31 

BNA# 

BREADY# 

SEN 
SSTB# 

BHOLD 
(MASTER CON FIG.) 

BHLDA 
(SLAVE CON FIG.) 

82385 

System Bus Interface Parameters 

BPHI2 BPHll BPHI2 BPHll 

~~ .. ~~----~--------+---------~----~~~~ 

290143-55 
'This would be 21 B if previous cycle .was Cache Write Hit. 



·n+...;...r I •• ~' 
386SX™ MICRO,PROCESSOR 

• Full 32-Bit Internal Architecture 
-8-,16-, 32-Bjt Data Types 
- 8 General Purpose 32-BltRegisters 

• Runs Intel386™ Software In a Cost 
Effective 16-Bit Hardware Environment 
- Runs Same Applications and O.S~~s 

as the 386™ . prpc~ssor 
- Object Code Compatible with 8086, 

80186, 80286, and 386TM Processors 
-Runs MS-DOS*,OS/2;,o and'UNIX** 

, " ' ", ~, 

• Very HlghPerformance.1.6~Blt Data Bus 
-16 MHz Clock 
- Two~Clock Bus Cycles 
-16 Megabytes/Sec Bus Bandwidth .' 
- Address Plpellnlng Allows Use of 

Slower/Cheaper Memories 

• Integrated Memory Management Unit 
- Virtual Memory Support 
- Optional OnoChip Paging 
- 4 Levels of Hardware Enforced 

Protection 
- MMU Fully Compatible with Those of 

the 80286 and 386TM CPUs 

• Virtual 8086 Mode Allows Execution Of 
8086 Software. in a Protected and 
Paged System" 

• Large Uniform Address Space 
- 16 Megabyte Physical 
."... 64 Terabyte Virtual' 

. ~4 . Gigabyte Ma.ximum Segment Size 
.• ,·High Speed'Numerlcs Support with the 

80387SX Coprocessor 

• On~Chip Debugging Support Including 
Breakpoint Registers 

• Complete System Development 
Support '" .. 
- Software: C, PL/M, Assembler 
- DebUggers: PMON-386,ICETM-386SX 

. - Extensive Third-Party Support: C, 
Pascal, FORTRAN, BASIC, Ada*** on 
VAX, UNIX*.*., MS-DOS·, and Other 
Hosts 

• High Speed CHMOS III Technology 
.100-Pin Plastic Quad Flatpack Package 

(See Packaging Outlines and Dimensions #231369) 

The 386SXTM Microprocessor is a 32·bit CPU with a 16·bit external data bus and a 24·bit external address 
bus. The 386SX CPU brings thehigh·performance software of the Intel386TM Architecture to midrange sys­
tems. It provides the performance benefits of a 32-bit programming architecture with the cost savings associ­
ated with 16-bit hardware systems. 

r;:::=JE!Eirr:gEc;IiTIV~E]]ADOR~ES~S]!8ui1§S=t;:.~~ 3-INPUT 
32 ADDER 

BA.RREL 
SHIFTER. 

EFTECnVE ADDRESS BUS 

ADDER STATUS 
FLAGS 

CONTROL 
I\r--=---I ROM 

CONTROL 

DICATED ALU BUS 

16 BYTE 
CODE 

QUEUE 

INSTRUCTION 
PREF'rTCH 

386SX™ Plpelined 32-81t Microarchltecture 

'MS-DOS and OS/2 are trademarks of Microsoft Corporation. 
"UNIX is a trademark of AT&T . 
••• Ada is a trademark of the Department of Oefense. 

4-SS4 

HOLD,INTR. NMI 
ERROR,BUSY 
RESET, HLDA 

SHE, SLE. 
41-423 

M/IO,.D/C#. 
W/R#. LOCKH. 
ADS#.NA#. 
8516#. READYI 

00- 015 

240187-47 

November 1988 
Order Number: 240187-002 



inter 386SX™ MICROPROCESSOR 

1.0 PIN DESCRIPTION 
I" 
I 

100 
240187-1 

Figure 1.1. 386SX™ Microprocessor Pin out Top View 

Table 1.1. Pin Assignments 

A Row BRow CRow DRaw 

Pin Label Pin Label Pin Label Pin Label 

1 Do 26 LOCK# 51 A2 76 A 21 
2 Vss 27 N1C 52 A3 77 Vss 
3 HLOA 28 N/C 53" A4 78 Vss 
4 HOLD 29 N/C 54 A5 79 A22 
5 Vss 30 N/C 55 A6 80 A23 
6 NA# 31 N/C 56 A7 81 015 
7 REAOY# 32 Vee 57 Vee 82 014 
8 Vee 33 RESET 58 AB 83 013 
9 Vee 34 BUSY# 59 Ae 84 Vee 

10 Vee 35 Vss ' 60 AlO 85 Vss 
11 Vss 36 

" 
,ERROR# 61 An 86 012 

12 Vss 37 PEREQ 62 A12 87 011 
13 Vss 38 NMI 63 Vss 88 010 
14 Vss 39 Vee ,64 A13 89 De 
15 CLK2 40 INTR 65 A14 90 DB 
16 AOS# 41 Vss 66 A15 91 Vee 
17 BLE# 42 Vee 67 Vss 92 07 
18 Al 43 N/C 68 Vss 93 06 
19 BHE# 44 N/C 69 Vee' 94 05 
20 N/C 45 N/C 70 A16 95 04 
21 Vee 46 N/C 71 Vee 96 03 
22' , Vss " 47 N/C 72 A17 97 Vee 
23 MIIO#' 48 Vee 73 AlB 98 Vss 
24 O/C# 49 Vss 74 Ale 99 02 
25 WIR# 50 Vss 75 A20 100 01 

4-355 



386SXTM'MICROPROCESSOR 

1.0 PIN DESCRIPTION (Continued) 

The following are the 386SX™ Microprocessor pin descriptions. The following definitions are used in the pin 
descriptions: 

# The named signal is active L.oW. 
I Input signal. ' 
.0 .output signal. 
1/.0 Input and .output signal. 

No electrical connection. 

Symbol Type Pin 'Name and Fupctlon 

CLK2 I 15 CLK2 provides the fU\1damental timing for the 386SXTM 
Microprocessor. For additional information see Clock (page 39). 

RESET I 33 RESET suspends any operation in progress and places the 
386SXTM Microprocessor in a known reset state. See Interrupt 
Signals Jpage 43) for additional information. 

015-00 1/.0 81-83,86-90, Data Bus inputs data during memory, 1/.0 and interrupt 
92-96,99-100,1 acknowledge read cycles and outputs data. during 'memory and 

1/.0 write cycles. See Data Bus (page 39) for additional 
information. 

A23-A1. .0 80-79,76-72,70, Address Bus outputs physical memory or port 1/.0 addresses. 
66-64,62-58, 
56-51,18· 

See Address Bus (page 40) for additional information. 
I . 

W/R# .0 25 Write/Read is a bus cycle definition pin that distinguishes write 
cycles from read cycles. See Bus Cycle Definition Signals 
(page 40) for additional .information. . 

O/C# .0 24 Data/Control isa bus cycle definition pin that distinguishes data 
CYCles, either memory or 1/.0, from control cycles which are: 
interrupt acknowledge, halt, and code fetch. See Bus Cycle 
Definition Signals (page 40) for additional information. 

M/l.o# .0 23 MemoryllO is a bus cycle. definition pin that distinguishes 
memory cycles from input/output cycles. See Bus Cycle 
Definition Signals (page 40) for additional information. 

L.oCK# .0 26 B .... Lock is a bus cycle definition pin that indicate,S that other 
system bus masters are not to gain control of the system bus 
while it is active. See Bus Cycle Definition Signals (page 40) for 
additional information . 

AOS# .0 16 Address Status indicates that a valid bus cycle definition and. 
address (W/R#, O/C#, M/l.o#, BHE#, BLE# and A23:-A1,are 
bE1ing driven at the 38,6SXTM Microprocessor pins. See Bus .. 
Control Signals (page 41) for additional information. 

NA# I 6 Next Address is used to request address pipellning. See Bus. 
, Control Signals (page 41) for additional information. 

REAOY# I 7 Bus Ready terminates the bus cycle. See Bus Control Signals 
(page 41) for additional information. 

BHE#, BLE# .0 19,17 Byte Enables indicate which data bytes of the data bus take part 
in Ii bus cycle. See Address Bus (page 40) for additional 
information. 

4-356 



386SXTM MICROPROCESSOR 

1.0 PIN DESCRIPTION (Continued) 

Symbol Type Pin Name and Function 

HOLD I 4 Bus Hold Request input allows another bus master to request 
control of the local bus. See Bus Arbitration Signals (page 41) 
for additional information. 

HLDA 0 3 Bus Hold Acknowledge output indicates that the 386SXTM 
Microprocessor has surrendered control of its local bus to 
another bus master. See Bus Arbitration Signals (page 41) for 
additional information. 

INTR I 40 Interrupt Request is a maskable input that signals the 386SXTM 
Microprocessor to suspend execution of the current program and 
execute an interrupt acknowledge function. See Interrupt 
Signals (page 43) for additional information. 

NMI I 38 Non-Maskable Interrupt Request is a non-maskable input that 
signals the 386SXTM Microprocessor to suspend execution of 
the current program and execute an interrupt acknowledge 
function. See Interrupt Signals (page 431 for additional 
information. 

BUSY# I 34 Busy signals a busy condition from a processor extension. See 
Coprocessor Interface Signals (page 42) for additional 
information. 

ERROR# I 36 Error signals an error condition from a processor extension. See 
Coprocessor Interface Signals (page 42) for additional 
information. 

PEREa I 37 Processor Extension Request indicates that the processor has 
data to be transferred by the 386SXTM Microprocessor. See 
Coprocessor Interface Signals (page 42) for additional 
information. 

N/C - 20,27-31,43-47 No Connects should always be left unconnected. Connection of 
a N/C pin may cause the processor to malfunction or be 
incompatible with future step pings of the 386SXTM 
Microprocessor. 

Vee I 8-10,21,32,39 System Power provides the + 5V nominal DC supply input. 
42,48,57,69, 
71,84,91,97 

Vss I 2,5,11-14,22 System Ground provides the OV connection from which all 
35,41 ,49-50, inputs and outputs are measured. 
63,67-68, 
77-78,85,98 

4-357 



inter 

63 

386SXTM MICROPROCESSOR 

31 16 15 87 

AH r AL 

BH E BL 

CH C CL 

DH 0 DL 

SI 

01 

BP 

SP 

15 

31 16 15 

FLAGS 

IP 

PAGE FAULT LINEAR ADDRESS REGISTER 

PAGE DIRECTORY SASE REGISTER 

47 16 15 0 

"I 1 

31 

LINEAR BREAKPOINT ADDRESS 0 

LINEAR BREAKPOINT ADDRESS 1 

LINEAR BREAKPOINT ADDRESS 2 

LINEAR BREAKPOINT ADDRESS 3 

31 

TEST CONTROL 

TEST STATUS 

m - INTEL RESERVED 00. NOT USE 

EAX 

EBX 

ECX 

EDX 

ESI 

EDI 

EBP 

ESP 

CS 

SS 

OS 

ES 

FS 

GS 

EfLAGS 

EIP 

CRO 

CR1 

CR2 

CR3 

GDTR 

IDTR 

LDTR 

TR 

ORO 

DR1 

DR2 

DR3 

DR4 

DR5 

DR6 

DR7 

TR6 

TR7 

] 

] 
"I 

J 

] 

Figure 2.1. 386SX™ Microprocessor Registers 

4-358 

GENERAL PURPOSE 
REGISTERS 

SEGMENT 
REGISTERS 

FLAGS AND 
INSTRUCTION 
POINTER 

CONTROL 
REGISTERS 

SYSTEM ADDRESS 
REGISTERS 

DEBUG 
REGISTERS 

TEST 
REGISTERS 

240187-2 



386SX™ MICROPROCESSOR 

INTRODUCTION 

The 386SXTM Microprocessor is 100% object code 
compatible with the 386, 286 and 8086 microproces­
sors. System manufacturers can provide 386TM CPU 
based systems optimized for. performance and 
386SX CPU based systems optimized for cost, both 
sharing the same operating systems and application 
software. Systems based on the 386SX CPU can 
access the world's largest existing microcomputer 
software base, including the growing 32-bit software 
base. Only the Intel386 architecture can run UNIX, 
OS/2 and MS-DOS. 

Instruction pipelining, high bus bandwidth, and a 
very high performance ALU ensure short average 
instruction execution times and high system 
throughput. The 386SX processor is capable of exe­
cution at sustained rates of 2.5-3.0 million instruc­
tions per second. 

The integrated memory management unit (MMU) in­
cludes an address translation cache, advanced mUl­
ti-tasking hardware, and a four-level hardware-en­
forced protection mechanism to support operating 
systems. The virtual machine capability of the 
386SX CPU allows simultaneous execution of appli­
cations from multiple operating systems such as 
MS-DOS and UNIX. 

The 386SX CPU offers on-chip testability and de­
bugging features. Four breakpoint registers allow 
conditional or unconditional breakpoint traps on 
code execution or data accesses for powerful de­
bugging of even ROM-based systems. Other testa­
bility features include self-test, tri-state of output 
buffers, and direct access to the page translation 
cache. 

2.0 BASE ARCHITECTURE 

The .386SX Microprocessor consists of a central 
processing unit, a memory management unit and a 
bus interface. 

The central processing unit consists of the execu­
tion unit and the instruction unit. The execution unit 
contains the eight 32-bit general purpose registers 
which are used for both address calculation and 
data operations and a 64-bit barrel shifter used to 
speed shift, rotate,· multiply, and divide operations. 
The instruction unit decodes the instruction opcodes 
and stores them in the decOded instruction queue 
for immediate use by the execution unit. 

The memory management unit (MMU) consists of a 
segmentation unit and a paging unit. Segmentation 
allows the managing of the logical address space by 

providing an extra addressing component, one that 
allows· easy code and data relocatability, and effi­
cient sharing. The paging mechanism operates be­
neath and is transparent to the· segmentation pro­
cess, to allow management of the physical address 
space. 

The segmentation unit provides four levels of pro­
tection for isolating and protecting applications and 
the operating system from each other. The hardware 
enforced protection allows the design of systems 
with a high degree of integrity. 

The 386SX Microprocessor has two modes of oper­
ation: Real Address Mode (Real Mode), and Protect­
ed Virtual Address Mode (Protected Mode). In Real 
Mode the 386SX Microprocessor operates as a very 
fast 8086, but with 32-bit extensions if desired. Real 
Mode is required primarily to set up the processor 
for Protected Mode operation. 

Within Protected Mode, software can perform a task 
switch to enter into tasks deSignated as Virtual 8086 
Mode tasks .. Each such task behaves with 8086 se­
mantics, thus allowing 8086 software (an application 
program or an entire operating system) to execute. 
The Virtual 8086 tasks can be isolated and protect­
ed from one another and the host 386SX Microproc­
essor operating system by use of paging. 

Finally, to facilitate high performance system hard­
ware deSigns, the 386SX Microprocessor bus inter­
face offers address pipelining and direct· Byte En­
able signals for each byte of the data bus. 

2.1 Register Set 

The 386SX Microprocessor has thirty-four registers 
as shown in Figure 2-1. These registers are grouped 
into the following seven categories: 

General Purpose Registers: The eight 32-bit gen­
eral purpose registers are used to contain arithmetic 
and logical operands. Four of these (EAX, EBX, 
ECX, and EDX) can be used either in their entirety as 
32-bit registers, as 16-bit registers, or split into pairs 
of separate 8-bit registers, 

Segment Registers: Six 16-bit special purpose reg­
isters select, at any given time, the segments of 
memory that are immediately addressable for code, 
stack, and data: 

Flags and Instruction Pointer Registers: The two 
32-bit special purpose registers in figure 2.1 record 
or control certain aspects of the 386SX Microproc­
essor state. The EFLAGS register includes status 
and control bits that are used to reflect the outcome 
of many instructions and modify the semantics of 

4-359 



386SX™ MICROPROCESSOR 

some· instructions. The . Instruction Pointer, called 
EIP, is 32 bits wide. The Instruction Pointer controls 
instruction fetching and the processor automatically 
increments Wafter executing an instruction. 

Control Registers:· The four 32-bit control register 
are used to control the global nature of the 386SX 
Microprocessor. TheCRO register contains bits that 
set the different processor modes (Protected, Real, 
Paging and Coprocessor Emulation). CR2 and CR3 
registers are used in the paging operation. 

System Address Registers: These four special 
registersrefetence the tables or segments support­
ed by the 80286/386SX/386 CPU's protection mod­
eL These tables or segments are: 

GDTR (Global Descriptor Table Register), 
IDTR (Interrupt Descriptor Table Register), 
LDTR (Local Descriptor Table Register), 
TR (Task State Segment Register). 

SPECIAL FIELDS: 

Debug Registers: The six programmer. accessible 
debug registers provide on-chIp support for debug­
ging. The use of the debug registers is described in 
Section 2.10 Debugging Support 

Te$t Registers: Two registers are used to control 
the testing of the RAMI CAM (Content Addressable 
Memories) in the Translation Lookaside Buffer por­
tion of the 386SX Microprocessor. Their use is dis­
cussed in Testability. 

EFLAGS REGISTER 

The flag register is a 32-bit register named EFLAGS. 
The defined bits and bit fields within EFLAGS, 
shown in Figure 2.2, control certain operations and 
indicate the status of the 386SX Microprocessor. 
The lower 16. bits (bits 0-15) of EFLAGS contain the 
16- bit flag register named FLAGS. This is the de­
fault flag register used when executing 8086, 80286, 
or real mode code. The functions of the flag bits are 
given in Table 2.1. 

STATUS FLAGS: 

r---------.,---OVERFLOW 

r--------SIGN 

,.-----,..-_ZERO 

,.-----AUX CARRY 

I/O PRIVILEGE LEVEL .,---'""'""------, 

NESTED TASK ------.;......--, 

....---PARITY 

CARRY 

I CF EFLAGS 

,.-----PAGING ENABLE 

CONTROL FLAGS 

1 1'------ ::;RUPT 
.... ----....,_-DIRECTION 

L....-"---------...,..-RESUME 
L.... ____________ VIRTUAL 8086 MODE 

PROTECTION ENABLE -------, 

MONITOR COPROCESSOR -----, 

Figure 2.2: Status and Control Register Bit Functions 

240187-3 . 



inter 386SXTM MICROPROCESSOR 

Table 2.1. Flag Definitions 

Bit Position Name Function 

0 CF Carry Flag-Set on high·order bit carry or borrow; cleared 
I"~ 

otherwise. 

2 PF Parity Flag~t if low-order 8 bits of result contain an even 
nurriber of 1-bits; cleared Qtherwise. 

4 AF Auxiliary Carry Flag-Set on carry from or borrow to the low 
order four bits of AL; cleared otherwise. 

6 ZF Zero Flag-Set if result is zero; cleared otherwise. 

7 SF Sign Flag-Set equal to high-order bit of result (0 if positive, 1 if 
negative). 

8 TF Single Step Flag-Once set, a single step interrupt occurs after 
the next instruction executes. TF is cleared by the single step 
interrupt. 

9 IF Interrupt-Enable Flag-When set, maskable interrupts will cause 
the CPU to transfer control to an interrupt vector specified 
location. 

10 OF Direction Flag-Causes string instructions to auto-increment 
(default) the appropriate index registers when cleared. Setting 
OF causes auto-decrement. 

11 OF Overflow Flag-Set if the operation resuited in a carrylborrow 
into the sign bit (high-order bit) of the result but did not result in a 
carry Iborrow out of the high-order bit or vice-versa. 

12,13 10PL 1/0 Privilege Level-Indicates the maximum CPL permitted to 
execute 1/0 instructions without generating an exception 13 fault 
or cohsulting the 1/0 permission bit map while executing in 
protected mode. For virtual 86 mode it indicates the maximum 
CPL allowing alteration of the IF bit. 

14 NT Nested Task-lndicates that the execution of the current task is 
nested within another task. 

16 RF Resume Flag-Used in conjunction with debug register 
breakpoints. It is checked at instruction boundaries before 
breakpoint processing. If set, any debug fault is ignored on the 
neid instruction. , 

17 VM Virtual 8086 Mode-If set while in protected mode, the 386SX™ 
Microprocessor will swi~ch to virtual 8086 operation, handling 
segment loads as the 8086 does, but generating exception 13 
faults on privileged opcodes. 

4-361 



inI-,,:'; ... "r , 
~~ '~' 

CONTROL REGISTERS 

3'S6SX™ ,MICROPROCESSOR 

rhe 386SX Microprocessor has three control registers of 32'bits, CRO. CR2 and'eR3, to hOld the machine 
state of a global nature. These registers are shown in Figures 2.1 and 2.2. The defined CRO bits' are described 
in Table 2.2. 

Table 2.2. CRO Definitions 

Bit Position Name Function 

0 PE Protection mode enable-places the 386SXTM Microprocessor 
, into protected mode. If PE is reset, the processor operates again 
in Real Mode. PE may be set by loading MSW or CRO. PE can be 
reset only by loading CRO, it cannot be reset by the LMSW 
instruction. ' 

1 MP Monitor coprocessor extension-allows WAIT instructions to 
, cause a processor extension not present exception (number 7). 

2 EM Emulate processor extension-causes a processor extension 
not present exception (number 7) on ESC instructions to allow 
emulating a processor extension. 

3 TS Task switched-indicates the next instruction using a processor 
extension will cause exception 7, allowing software to test 
whether the current, processor extension context belongs to the 
current task. ,,' 

,31 PG, Paging enable bit-is set to ,enable the on-chip Pllging unit. It is 
" .' ' reset to disable the on-,chip paging unit. 

2.2 Instruction Set 
The instruction set is divided into nine categorieS of ' 
operations: 

~II 386SX Microprocess,or instructions, operate on 
either 0, 1, 2 or 3 operands; an operand nisides in a 
,register, in the instruction itself, or in memory. Most, 
zero operand instructions (e.g CLI, STI) take only 
one byte. One operand instructions generally are' 
two bytes long. The average instruction is 3.2 bytes 
long. Since the 386SX Microprocessor has a 16 byte 
prefetch instruction queue, an average of 5 instruc­

,tions willqe prefetched. The use of two operands 
permits the following types of common instructions: 

Data Transfer 
Arithmetic 
Shift/Rotate 
String Manipulatio\i 
Bit Manipulation ' 
Control Transfer 
High Level Language Support 
Operating System Support 
Processor Control 

These instructions,are'listed in Table 9.1 
Instruction Set Clock Count Summary. 

4-362 

, Register to Register 
Memory to Register 
,Immediate ti:l Register 
Memory to Memory 
Register to Memory 
,Immediate to Memory. 



inter 386SXTM MICROPROCESSOR 

The operands can be either 8, 16, or 32 bits long. As 
a general rule, when executing code written for the 
386SX Microprocessor (32 bit code), operands are 8 
or 32 bits; when executing existing 8086 or 80286 
code (16-bit code), operands are 8 or 16 bits. Prefix­
es can be added to all instructions which override 
the default length of the operands (i.e. use 32-bit 
operands for 16-bit code, or 16-bit operands for 32-
bit code). 

2.3 Memory Organization 

Memory on the 386SX Microprocessor is divided 
into 8-bit quantities (bytes), 16-bit quantities (words), 
and 32-bit quantities (dwords). Words are stored in 
two consecutive bytes in memory with the low-order 
byte at the lowest address. Dwords are stored in 
four consecutive bytes in memory with the low-order 
byte at the lowest address. The address of a word or 
dword is the byte address of the low-order byte. 

In addition to these basic data types, the 386SX Mi­
croprocessor supports two larger units of memory: 
pages and segments. Memory can be divided up 
into one or more variable length segments, which 
can· be swapped to disk or shared between pro­
grams .. Memory·can also be organized into one or 
more 4K byte pages. Finally, both segmentation and 
paging can be combined, gaining the advantages of 
both systems. The 386SX Microprocessor supports 
both pages and segmentation in order to provide 
maximum flexibility to the system designer. Segmen­
tation and paging are complementary. Segmentation 
is useful for organizing memory in logical modules, 
and as such is a tool for the application programmer, 
while pages are useful to the system programmer for 
managing the physical memory of a system. 

ADDRESS SPACES 

The 386SX Microprocessor has three types of ad­
dress spaces: logical, linear, and physical. A 
logical address (also known as a virtual address) 
conSists of a selector and an offset. A selector is the 
contents of a segment register. An offset is formed 
by summing all of the addressing components 
(BASE, INDEX, DISPLACEMENT), discussed in sec­
tion 2.4 Addressing Modes, into an effective ad­
dress. This effective address along with the selector 
is known as the logical address. Since each task on 
the 386SX Microprocessor has a maximum of 16K 
(214 -1) selectors, and offsets can be 4 gigabytes 
(with paging enabled) this gives a total of 246 bits, or 
64 terabytes, of logical address space per task. The 
programmer sees the logical address space. 

The segmentation unit translates the logical ad­
dress space into a 32-bit linear address space. If the 
paging unit is not enabled then the 32-bit linear ad­
dress is truncated into a 24-bit physical address. 
The physical address is what appears on the ad­
dress pins. 

The primary differences between Real Mode and 
Protected Mode are how the segmentation unit per­
forms the translation of the logical address into the 
linear address, size of the address space, and pag­
ing capability. In Real Mode, the segmentation unit 
shifts the selector left four bits and adds the result to 
the· effective address to form the linear address. 
This linear address is limited to 1 megabyte. In addi­
tion, real mode has no paging capability. 

Protected . Mode will see one of two different ad, 
dress spaces, depending on whether or not paging 
is enabled. Every selector has a logical base ad­
dress associated with it that can be up to 32 bits in 
length. This 32-bit logical base address is added to 
the effective address to form a final 32-bit linear 

4-363 

\ 

t 



386SX™ MICROPROCESSOR 

EF"FECTIVE ADDRESS CALCULATION 

II BASE 

15 2 

SELECTOR 

SEGMENT 
REGISTER 

I 

I 

0 

R 
P 
L 

INDEX I 
I ~ I ""'"'''''''' I 

I SCALE 
1,2,4,8 

.~ 
Y 
b2 EF'''EClIVE 

ADDRESS 
LOGICAL OR SEGMENTATION 

14 VIRTUAL ADDRESS UNIT 

DESCRIPTOR 
INDEX 

15 0 

PHYSICAL 
MEMORY 

BHE#,BLE# 
Al - A23 

32 PAGING UNIT 24 

LINEAR (OPTIONAL USE) PHYSICAL 
ADDRESS ADDRESS 

240187-4 

Figure 2.3. Address Translation 

address. If paging is disabled this final linear ad­
dress reflects physical memory and is truncated· so 
that only the lower 24 bits of this address are used 
to address the 16 megabyte memory address space; 
If paging is enabled this final linear address reflects 
a 32-bit address that is translated through the pag­
ing unit to form a f6-megabyte· physical address. 
The logical base address is .stored in one of two 
operating system tables (i.e. the Local Descriptor 
Table or Global Descriptor Table). 

Figure 2.3 shows the relationship between the vari­
ous address spaces. 

SEGMENT REGISTER USAGE 

The main data structure used to organize memory is 
the segment. On the 386SX Microprocessor, seg­
ments are variable sized blocks of linear addresses 
which have certain attributes associated with them. 
There are two main typ.es of segments, code and 
data. The segments are of variable size and can be 
as small as 1 byte or as large as 4 gigabytes (232 
bits). 

In order to provide compact instruction encoding 
and increase processor performance, instructions 
do not need to explicitly specify which segment reg­
ister is used. The segment register is automatically 
chosen according to the rules of Table.2.3 (Segment 
Register Selection Rules). In general, data refer­
ences use the selector contained in the OS register, 
stack references use the SS register and instruction 

fetches use the CS register. The contents of the in­
struction Pointer provide the offset. Special segment 
override prefixes allow the explicit use of· a given 
segment register, andoverride the implicit rules list­
ed in Table 2.3. The override prefixes also allow the 
use of the ES, FS and GS segment registers. 

There are no restrictions regarding the overlapping 
of the base addresses of. any segrnents. Thus, all 6 
segments could have the baSe address set to zero 
and create a system with a four gigabyte linear ad­
dress space. This creates a system where the virtual 
address space is the same as the linear address 
space. Further details of segmentation are dis­
cussed in chapter 4 PROTECTED MODE ARCHI­
TECTURE. 

2.4 Addressing Modes 

The 386SX Microprocessor provides a total of 8 ad­
dressing modes for instructions to specify operands. 
The addressing modes are optimized to allow the 
efficient execution of high level languages such as C 
and FORTRAN, and they cover the vast majority of 
data references needed by high-level languages. 

REGISTER AND IMMEDIATE MODES 

Two of the addressing modes provide for instruc­
tions that operate on register or immediate oper­
ands: 

4-364 



inter 386SX™ MICROPROCESSOR 

Table 2.3. Segment Register Selection Rules 

Type of I.mplled (Default) Segment Override 
Memory Reference Segment Use Prefixes Possible 

Code Fetch 

Destination of PUSH, 
PUSHA instructons 

Source of POP, POPA 
instructions 

Destination of STOS, 
MOVE, REP STOS, and 
REP MOVS instructions 

Other data references, 
with effe.ctive address 
using base register of: 

[EAX] 
[EBX] 
[ECX] 
[EDX] 
[ESI] 
[EDI] 
[EBP] 
[ESP] 

Register Operand Mode: The operand is located in 
one of the 8, 16 or 32-bit general registers. 

Immediate Operand Mode: The operand is includ­
ed in the instruction as part of the opcode. 

32-BIT MEMORY ADD.RESSING MODES 

The remaining 6 modes provide a mechanism for 
specifying the effective address of an operand. The 
linear address consists of two components: the seg­
ment base address and an effective address. The 
effective address is calculated by summing any 
combination of the following three address elements 
(see figure 2.3): 

DISPLACEMENT: an 8, 16 or 32-bit immediate val­
ue, following the instruction. 

BASE: The contents of any general purpose regis­
ter. The base registers are generally used by compil­
ers to point to the start of the local variable area. 

INDEX: The contents of any general purpose regis­
ter except for ESP. The index registers are used to 
access the elements of an array, or a string of char­
acters. The index register's value can be multiplied 
by a scale factor, either 1,2,4 or 8. The scaled index 
is especially useful for accessing arrays or struc­
tures. 

CS None 

SS None 

SS None 

ES None 

DS CS,SS,ES,FS,GS 
DS CS,SS,ES,FS,GS 
DS CS,SS,ES,FS,GS 
DS CS,SS,ES,FS,GS 
DS CS,SS,ES,FS,GS 
DS CS,SS,ES,FS,GS 
SS CS,DS,ES,FS,GS 
SS CS;DS,ES,FS,GS 

Combinations of these 3 components make up the 6 
additional addressing modes. There is no perform­
ance penalty for using any of these addressing com­
binations, since the effective address calculation is 
pipelined with the execution of other instructions. 
The one exception is the simultaneous use of Base 
and Index components which requires one addition­
al clock. 

As shown in Figure 2.4, the effective address (EA) of 
an operand is calculated according to the following 
formula: 

EA = BaSeRegister + (IndeXRegister'scaling) + 
Displacement 

1. Direct Mode: The operand's offset is contained 
as part of the instruction as an 8, 16 or 32-bit 
displacement. 

2. Register Indirect Mode: A BASE register con­
tains the address of the operand. 

3. Based Mode:. A BASE register's contents are 
added to a DISPLACEMENT to form the oper. 
and's offset. . 

4. Scaled Index Mode: An INDEX register's con­
tents are multiplied by a SCALING factor,and the 
result is added to a DISPLACEMENT to form the 
operand's offset. 

4-365 



intJ 386SX™ MICROPROCESSOR 

SEGMENT REGISTER 

SS 
GS 

FS 
ES 

OS 
-cs 

+1+-----1 

EFFECTIVE 
ADORE ss 

LINEAR 

/ 
'\ 

SEGMENT 
LIMIT 

DESCRIPTOR •. REGISTERS ADDRESS 

SS 
GS 

FS 
ES 

OS 

ACCESS RIGHTS CS 

LIMIT 

~ TARGET ADDRESS 

SELECTED 
SEGMENT 

BASE ADDRESS ------~ 
SEGMENT BASE ADDRESS 

240187-5 

Figure 2.4. Addressing Mode Calculations 

5. Based Scaled Index Mode: The contents of an 
INDEX register are multiplied by a SCALING fac­
tor,and the result is added to the contents of a 
BASE register to obtain the operand's offset. 

6. Based Scaled Index Mode with Displacement: 
The contents of an INDEX register are multiplied 
by a SCALING factor, and the result is added to 
the contents of a BASE register and a DISPLACE­
MENT to form the operand's offset. 

DIFFERENCES BETWEEN 16 AND 32 BIT 
ADDRESSES 

In order to provide software compatibility with the 
8086 and the 80286, the 386SX Microprocessor can 
execute 16-bit instructions in Real and Protected 
Modes. The processor determines the size of the 
instructions it is executing by examining the D bit in a 
Segment Descriptor. If the Obit is 0 then all operand 
lengths and effective addresses are assumed to be 
16 bits long. If the 0 bit is 1 then the default length 
for operands and addresses is 32 bits. In Real Mode 
the default size for operands and addresses is 16 
bits. 

Regardless of the default precision of the operands 
or addresses, the 386SX Microprocessor is able to 
execute either 16 or 32-bit. instructions. This is speci" 
fied through the use of override prefixes. Two prefix­
es, the. Operand Length Prefix and the Address 
Length Prefix, override the value of the D bit on an 
individual instruction basis. These prefixes are,auto­
matically added by assemblers. 

The Operand Length and Address Length Prefixes 
ca:n be applied separately or in combination,to any 
instruction. The Address Length Prefix does not al­
low addresses over 64K bytes· to be accessed in 
Real Mode. A memory address which exceeds 
OFFFFH will result in a General Protection Fault. An 
Address Length Prefix only allows the use of the ad­
ditional 386SX Microprocessor addressing modes. 

When executing 32-bit code, the 386SX Microproc­
essor uses either 8 or 32-bitdisplacements, and any 
register can be used as base or index registers. 
When executing 16~bit code, the. displacements are 
either 8 or 16-bits, and the base and index register 
conform to the 80286 model. Table 2.4 illustrates 
the differences. 

4-366 



intJ 386SX™ MICROPROCESSOR 

Table 2.4. BASE and INDEX Registers for 16- and 32-Blt Addresses 

16-Blt Addressing 32-Blt Addressing 

BASE REGISTER BX,BP' 
INDEX REGISTER SI,DI" 

SCALE FACTOR None 
DISPLACEMENT 0, 8, 16-bits 

2.5 Data Types 

The 386SX Microprocessor supports all of the data 
types commonly used in high level languages: 

BIt: A single bit quantity. 

Bit Field: A group of up to 32 contiguous bits, which 
spans a maximum of four bytes. 

Bit String: A set of contiguous bits; on the 386SX 
Microprocessor, bit strings can be up to 4 gigabits 
long. . . 

By1e: A signed 8-bit quantity. 

Unsigned Byte: An unsigned 8-bit quantity. 

Integer (Word): Asigned 16-bit quantity. 

Long Integer (Double Word): A signed 32~bit quan­
tity. All operations assume a 2's complement repre­
sentation. 

Unsigned Integer (Word): An unsigned HI-bit 
quantity. 

Unsigned Long Integer (Double Word): An un­
signed 32-bit quantity. 

Signed Quad Word: A signed 64-bit quantity. 

Unsigned Quad Word: An unsigned 64-bilquantity. 

Pointer: A 16 or 32-bit offset-only quantity which in­
directly references another memory location. 

Long Pointer: A full pOinter which consists of a 16-
bit segment selector and either a 16 or 32-bit offset. 

Char: A byte representation of an ASCII Alphanu" 
meric or control character. ," 

String: A' contiguous sequence of bytes, words or 
dwords. A string may contain between 1 byte' and 4 
gigabytes 

Any 32-bit GP Register 
Any 32-bit GP Register 
Except ESP 
1,2,4,8 
0, 8, 32-bits 

BCD: A byte (unpacked) representation of decimal 
digits 0-9. 

Packed BCD: A byte (packed) representation of two 
decimal digits 0-9 storing one digit in each nibble. 

When the 386SX Microprocessor is coupled with its 
numerics coprocessor, the 80387SX, then the fol­
lowing common floating point types are supported: 

Floating Point: A signed 32, 64, or 80-bit real num­
ber representation. Floating p.oint numbers are sup­
ported by the 80387SX numerics coprocessor. 

Figure 2.5 illustrates the data types supported by the 
386SX Microprocessor and the 80387SX; 

2.6 1/0 Space 

The 386SX Microprocessor has two' distinct physical 
address spaces: physical memory and 1/0. General­
ly, peripherals are placed in I/O space although the 
386SX Microprocessor also supports. memory­
mapped peripherals. The 1/0 space consists of 64K 
bytes which can be divided into 64K 8-bit ports or 
32K 16-bit ports, or any combination of ports which 
add up to no more than 64K bytes. The 64K 1/0 
address space' refers to physical addresses rather 
than linear addresses since 1/0 instructions do not 
go through the segmentation or paging hardware. 
The M/ID# pin acts as an additional.address line, 
thus allowing the system deSigner to easily deter­
mine which address space the'processor is access-
ing. . ., 

The 1/0 ports are accessed by the IN and OUT in­
structions, with the port addresl1 supplied as an im­
media:te 8-bit constant in the instruction or in the OX 
register. AlI8-bit and 16-bit port addresses are zero 
extended on the upper address lines. The 1/0 in­
structions cause the M/IO# pin to be driven LOW. 
1/0 port addresses 00F8Hthrough OOFFH are re­
served for use by Intel. 

4-367. 

il'····. 

i 

i 
I. 

t,·, 



inter 

7 0 
SIGNEDIJ'"TITT'I 

BYTELL..:......J 
SIGN BIT.J'--.-,J 

MAGNITUDE 

7 0 
UNSIGNED fT"T'"Tl 

BYTEL..:...J 

L--I 
MAGNITUDE 

+1 0 
1514 87 0 

s~~~g II' i , ' , , I ' , , I' , I 1 
SIGN BIT .J,L. MSB , 

MAGNITUDE 

+1 0 
15 0 

UNS~~~g I I , I , ' , , I ' I I , ' , , I 
I , 

MAGNITUDE 

386SX™MICROPROCESSOR 

+N +1 o 
? 0 7 07 0 

~~~~bE:1-- _1"'1 "'1" ""'1 
DECIMAL BCD ' '"-B-C-D -BC-D

(BCD) DIGIT N DIGIT 1 DIGIT 0

+N +1 0
7 0 7 07 0

ASCIIE:1 ___ 1"'ji"II'I"'1
ASCII ASCII ASCII

CHARACTERN CHARACTER 1 CHARACTERO

+N +1 o
7 0 7 07 0

PAC~~gE:1 ___ 1"'1"""""'1
L-J . L-J
MOST LEAST
SIGNIFICANT DIGIT SIGNIFICANT DIGIT'

+N +1 0
7/15 0 7/15 07/15 0

ST~iJ~E:1" _liI'liI"iI"""

+3 +2 +1 0
31 1615 0

+2 GIGABITS -2 GIGABITS
210

SIGNED OO~~~~ II ' I I ' , , I ' i , Iii, I I , i' ' , ii' , iii, , 1
SIGN BIT .J,L. MSB ,

STR'~'~ LUIII II __ ..u.II-..,.......;,\ \ ____ - 11 111
BITO

MAGNITUDE

+3 +2 +1 o +3 +2 +1 o
31 0 31 0

UNSIGNED DO~g~~ I' , ii' , , I' , , , i , i I I I , , ' , , I ' , , , ' Ii 1 :~..oB~i I i ii I ii 'I i Ii I' iiI' i 'I Ii iii iii iii I
POINiER ' _ ' , ,

MAGNITUDE OFFSET

+7 +6 +5 +5 +3 +2 +1 0 +5 +4 +3 +2 +1 0
63 4847 32311615 0 47 .' 0

SIGNED ~g~g'lIri~'I"'"";,'~"" 'PI;.;...,.I...-.,.' ~,I"'"""I p6~!r~!I' i, I"','" I'" I""'" I"""'"""", i" I,'" 1
SIGNBIT.J,L.MSB ,,' ,

MAGNITUDE SELECTOR

+9 +8 +7 +6 +5 +4 +3 +2 +1 0
n 0

FL~~~~~~ I, , , , , , , I , , 1
SIGN BIT .J" ,

EXPONENT MAGNITUDE

+5 +4 +3 +2 +1 o

BI/~~~~I'" Ii" 1""'" I'" I"',"""','" I'" I""'" I
,- BIT FIELD .1

1 TO. 32 BITS

Figure 2.5. 386SX™ Microprocessor Supported Data Types

4-368

OFFSET

·SUPPORTED BY
80387SX
NUMERIC DATA
COPROCESSOR

240187-6

386SXTM MICROPROCESSOR

'fable 2.5. Interrupt Vector Assignments

Instruction Which
Return Address

Interrupt Points to
Function Number CanCause Faulting Type

Exception Instruction

Divide Error 0 DIV,IDIV YES FAULT

Debug Exception 1 any instruction YES TRAP'

NMI Interrupt 2 INT20rNMI NO NMI

One Byte Interrupt 3 INT NO TRAP

Interrupt on Overflow 4 INTO NO TRAP

Array Bounds Check 5 BOUND YES FAULT

Invalid OP-Code 6 Any illegal instruction YES FAULT

Device Not Available 7 ESC, WAIT YES FAULT

Double Fault 8
Any instruction that can

ABORT
generate an exception

Coprocessor Segment Overrun 9 ESC NO ABORT

InvalidTSS 10 JMP, CAll, IRET, INT YES FAULT

Segment Not Present 11 Segment Register Instructions YES FAULT

Stack Fault 12 Stack References YES FAULT'

General Protection Fault 13 Any Memory Reference YES FAULT

Page Fault 14 Any Memory Access or Code Fetch YES FAl!lT

Coprocessor Error 16 ESC, WAIT YES FAULT

Intel Reserved 17-32

Two Byte Interrupt 0-255 INT" NO TRAP

'Some debug exceptions may report both traps on the prevIous instruction and f!lults on the next Instruction.

2.7 Interrupts and Exceptions

Interrupts and ,exceptions alter the normal program
flow in oider to hal)dle external events, report errors
or exceptional' conditions. The difference between
interrupts lind exceptions is that interrupts are used

,to handle asynchronous external events, while ex­
ceptions handle instruction faults. Although a pro­
gram can generate a softwlire interrupt via an INT N
instruction, the processor treats software interrupts
as exceptions.

Hardware interrupts occur as the result of an exter­
nal event and are classified into two types: maskable
or non-maskable. Interrupts are serviced after the
execution of the current instruction. After the inter­
rupt handler is finished servicing the interrupt, exe­
cution proceeds with the instruction immediately
after the interrupted instruction.

Exceptions are classified as faults, traps; Qr aborts,
depending on the way they are reported and wheth­
er or not restart of.the instruction causing the excep­
tion is supported. Faults are exceptiQns that are de­
tected and Serviced before the execution of the
faulting 'instruction. Traps, are exceptions that are
reported immediately after the execution of the in­
struction which caused the problem. Aborts are,ex­
ceptions which do not permit the pr.epise loclition of
the instruction causing, the exc~ptionto be,deter-
mined. .'

Thus, when an interrupt service routine has, been
completed, execution proceeds from the instruction
immediately following the interrupted instruction. On
the other hand, the return address from an excep-

. tion fault routine will always point to the instruction
causing the exceptiOn and will include any leading
instruction prefixes. Table 2.5 summarizes the possi­
ble interrupts for the 386SX Microprocessor and
shows where the return address pointS to.

4~369

inter 386SX™ MICROPROCESSOR

The 386SX Microprocessor has the ability to handle
up to 256 different interrupts/exceptions. In order to
service th~ interrupts, a table with up to 256 interrupt
vectors must be defined. The interrupt vectors are
simply pointers to the appropriate interrupt service
routine. In Real Mode,the vectors are 4-byte quanti­
ties, a Code Segment plus a 16-bit offset; in Protect­
ed Mode, the interrupt vectors are 8 byte quantities,
which are put in an Interrupt Descriptor Table. Of the
256 possible interrupts, 32 are reserved for use by
Intel and the remaining 224 are free to be used by
the system designer.

INTERRUPT PROCESSING

When an interrupt occurs, the following actions hap­
pen. First, the current. program address and Flags
are saved on the stack to allow resumption of the
interrupted program. Next, an 8-bit vector is supplied
to the 386SX Microprocessor which identifies the
appropriate entry in the interrupt table. Thetable
contains the starting address of the interrupt service
routine.' Then, the user supplied interrupt service
routine is executed. Finally, when an IRET instruc­
. tion '. is executed the old processor state is restored
and program execution resumes at the appropriate
instruction.

The 8-bit interrupt vector is supplied to the 386SX
Microprocessor inseiveral different ways: exceptions
supply the interrupt vector internally; software INT
instructions contain . or imply the vector; maskable
hardware interrupts supply the 8-bit vector via the
interrupt acknowledge bus sequence. Non-Maska­
ble hardware interrupts are assigned to interrupt
vector 2.

Maskable Interrupt

Maskable interrupts are the most common way to
respond to asynchronous external hardware events.
A hardware interrupt occurs when the.INTR is pulled
HIGH and the Interrupt Flag bit (IF) is enabled. The
processor only responds to interrupts between in­
structions (string instructions have an 'Interrupt win­
dow' . between memory moves which allows inter­
ruptS'during long string moves). When an interrupt
occurs the processor reads an 8-bit vector supplied
by the hardware which identifies the source of the
interrupt (one of 224 user defined interrupts).

Interrupts through interrupt gates automatically reset
IF, disabling INTR requests. Interrupts through Trap
Gates leave the state of the IF bit unchanged. Inter­
rupts through a Task Gate change the IF bit accord­
ing to the image of the EFLAGs register in the task's
Task State Segment (TS8). When an IRET instruc­
tion is executed, the original state of the IF bit is
restored.

Non-Maskable Interrupt

Non-maskable interrupts provide a method of servic- .
ing very high priority interrupts. When the NMI input
is pulled HIGH it causes an interrupt with an internal­
ly supplied vector value of 2. Unlike a normal hard­
ware interrupt, no interrupt acknowledgment se-.
quence is performed for an NMI.

While executing the NMI servicing procedure, the
386SX Microprocessor will not service any furthel"'
NMI request or INTrequests until an interrupt return
(IRET) instruction is· executed or the processor is
reset If NMI occurs while currently servicing an NMI,
its presence will be saved for servicing after execut­
ing the first IRET instruction. The IF bit. is cleared at
the beginning of an NMI interrupt to inhibit further
INTRinterrupts.

Software Interrupts

A third type of interrupti exception for the. 386SX Mi­
croprocessor is the software interrupt. An tNT n in­
struction causes the processor to execute the inter­
rupt service routine pointed to by the nth vector in
the interrupt table.

A special case of the two byte software interrupt INT
n is the one byte INT3, or breakpoint interrupt. By
inserting this one byte instruction ina program, the
user can set breakpoints in his progra.mas a debug'
gingtool.

A final type'. of software interrupt is the single step
interrupt. Itis discussed in Single Step Trap '(page
20),

4-370

386SXTM MICROPROCESSOR

INTERRUPT AND EXCEPTION PRIORITIES

Interrupts are externally generated events. Maska·
ble Interrupts (on the INTR input) and Non·Maskable
Interrupts (on the NMI input) are recognized at in·
struction boundaries. When NMI and maskable
INTR are both recognized at the same instruction
boundary, the 386SX Microprocessor invokes the
NMI service routine first. If maskable interrupts are
still enabled after the NMI service routine has been
invoked, then the 386SX Microprocessor will invoke
the appropriate interrupt service routine.

As the 386SX Microprocessor executes instructions,
it follows a consistent cycle in checking for excep·
tions, as shown in Table 2.6. This cycle is repeated

as each instruction is executed, and occurs in paral·
lei with instruction decoding and execution.

INSTRUCTION RESTART

The 386SX Microprocessor fully supports restarting
all instructions after Faults. If an exception is detect·
ed in the instruction to be executed (exception cate·
gories 4 through 10 in Taqle 2.6), the 386SX Micro·
processor invokes the appropriate exception service
routine. The 386SX Microprocessor is in a. state that
permits restart of the instruction, for all cases but
those given in Table 2.7. Note that all such cases
will be avoided by a properly designed operating
system.

Table 2.6. Sequence of Exception Checking

Consider the case of the 386SXTM Microprocesso~ having just completed an instruction. It then perfo~ms .
the following checks before reaching the point where the next instruction is completed:

1. Check for Exception 1 Traps from the instruction just completed (single·step via Trap Flag, or Data
Breakpoints set in the Debug Registers). '

2. Check for external NMI and INTR.

3. Check .for Exception 1 Faults in the next instruction (Instruction Execution Breakpoint set intheDebug
. Registers for the next instruction).

4. Check for Segmentation ,Faults that prevented fetching the entire next instruction (exceptions 11 or 13)."

5. Cneck for Page Faults that prevented fetching the entire next instruction (exception 14).

6. Check for Faults decoding the next instruction (exception 6 if illegal opcQde; exception 6 if in Real Mode
orin Virtual 8086 Mode and attempting to execute an instruction fOr Protected Mode only; or exc~ption
13 if instruction is longer than 15' bytes, or privilege violation in Protected Mode (I.e. not at IOPL or at
CPL=O).

7. If WAIT opcode, check if TS=1 .and MP= 1 (exception 7 if both are t).

8. If ESCape opc:ode for numeric coprocessor, check if EM = 1 or TS = 1 (exception 7 if either are 1).

9. If WAIT'opcodeor ESCape opcode for numeric coprocessor, check ERROR # input sign~.I(excepti()n16
if ERRQR# input is asserted). ' .

10. Check in the following order for each memory reference required by the instruction:

a. Check for Segmentation Faults that prevent transferring the entire memory quantity (exceptions 11,
12,13).

b. Clleck for Page ' Faults that prevent transferring the entire memory quantity (exception 14).

NOTE:
Segl)"lentation exceptions are ' generated before paging exceptions.

Table 2.7. Conditions Preventing Instruction Restart,

1.An instruction causes a task switch to a task whose Task Stafe Se,gmentis partiallv 'not present' (An '.
entirely 'not present' rSS is restartable)., Partially present T~S'~ can beavoi~ed either by keeping the
TSS's'()f such tasks, present in memory, or by !iligning TSSsegments to re.side entirely within a single 4K
page (for TSS segments of 4K bytes or less).

,2. A ,coprocessor operand wraps around the top of a 64K·byte segment or a 4G"byte segment, and spans
threepagesi and the page holding the middle portion of the operand is 'not present' .' This condition can

. be avoided by starting at a page boundary any segments containing .coprocessor operands if the
, segments are approximately 64K·200 bytes or larger (I.e. large enough for wraparound of the coproces"
sor operand to possibly occur).

Note that these co~ditions are avoided by using the operating system designs mentioned in this table.

4·371

intJ 3$6SX™ MICROPROCESSOR

Table 2.8. Register Values after Reset

Flag Word (EFLAGS) uuuuOO02H Note 1
Machine Status Word (CRO) uuuuuuuOH Note 2
Instruction Pointer (EIP) OOOOFFFOH
Code Segment (CS) FOOOH Note 3
Data Se.gment (OS) OOOOH Note 4
Stack Segment (SS) OOOOH

I
Extra Segmenf(ES) OOOOH Note 4
Extra Segment (FS) OOOOH
Extra Segment (GS) OOOOH
EAX register OOOOH NoteS
EDX register component and stepping 10 Note 6
All other registers undefined Note 7

NOTES:
1. EFLAG Register. The upper 14 bits of the EFLAGS register are undefined, all defined flag bits are zero.
2. CRO: All of the defined fields in CRO are O.
3. The Code Segment Register (CS) will have its Base Address set to OFFFFOOOOH and Limit set to OFFFFH.
4. The Data and Extra Segment Registers (DS, ES) will have their Base Address set to OOOOOOOOOH and Limit set to
OFFFFH.
5. If self-test is selected, the EAX register should contain a 0 value. If a value of 0 is not found. then the self-test has
detected a flaw in the part.
6. EDX register always holds component and stepping identifier.
7. All undefined bits are Intel Reserved and should not be used.

DOUBLE FAULT

A Double Fault (exception 8) results when the proc­
essor attempts to invoke an exception service rou­
tine for the segment exceptions (10,11,12 or 13),
but in the process of doing so detects an exception
other than a Page Fault (exception 14).

One other cause of generating a Double Fault is the
386SX Microprocessor detecting any other excep­
tion when it is attempting to invoke the Page Fault
(exception 14) service routine (for example, if a Page
Fault is detected when the 386SX Microprocessor
attempts to invoke the Page Fault service routine).
Of course, in any functional system, not only in
386SX Microprocessor-based systems, .the entir~
page fault service routine must remain 'present' in
memory.

2.8 Reset and Initialization

When the processor is initialized or Reset the regis­
ters have the values shown in Table 2.S.The 386SX
Microprocessor will then start executing instructions
near the top of physical memory, at location
OFFFFFOH. When the first Intersegment Jump or
Call is executed, address lines A20-A23 'will drop
LOW for CS-relative memory cycles, and the 386SX
Microprocessor will only execute instructions in the
lower one megabyte of physical memory. This al­
lows the.system designer to use.a·shadow.ROM at
the top of physical memory to initialize the system
and take care of Resets.

RESET forces the 386SX Microprocessor totermi­
nate all execution and local bus activity. No instruc­
tion execution or bus activity will occur as long as
Reset is active. Between 350 and 450 CLK2 periods
after Reset becomes inactive, the 386SX Microproc­
essor will start executing instructions at the top of
physical memory.

2.9 Testability
The 386SX Microprocesscr,likethe 386 Micioproc­
essor, offers testability features which include a self­
test and direct access to the page translation cache.

SELF-TEST

The 386SX Microprocessor h~s the capability to per­
form a self-test. The self-test checks the function of
. all of the Control ROM· and most of the non-random
logic of the part. Approximately one-half 01 the
386SX Microprocessor can be tested during self­
test.

Self-Test is initiated on the 386SX Microprocessor
when the RESET pin transitions from HIGH to LOW,
and the BUSY # pin is LOW. The self-test takes
about 220 clocks, or approximately q3 milliseconds
with a 16 MHz 386SX CPU. At the completion of
self-test the processor performs reset and begins
normal operation. The part has successfully, passed
self-test if the contents of the EAX are.zero. If the
results of the'EAX are not zero then the. self-test has
detected a flaw in. the part.

4-372

386SX™ MICROPROCESSOR

C~MAND---,

WRITABLE -------------------------------------,

USER --------------------------,

DIRTY ---------------------,

VALID ---------------------,

31

31

IZ::l - INTEL RESERVED 00 NOT USE

LINEAR ADDRESS

PHYSICAL ADDRESS

TEST
STATUS

240187-7

Figure 2.6. Test Registers

TLBTESTING

The 38SSXMicroprocessor also provides a mecha­
nism for testing the Translation Lookaside Buffer
(TLB) if desired. This particular mechanism may not
be continued in the same way in future processors.

There are two TLB testing operations: 1) writing en­
tries into the TLB, and, 2) performing TLB lookups.
Two Test Registers,shown in Figure 2.S, are provid­
ed for the purpose of testing. TRS is the "test com­
mand register", and TR7 is the "test data register".
For a more detailed explanation of testing the TLB,
see the 38SSXTM Microprocessor Programmer's
Reference Manual.

2.10 Debugging Support

The 38SSX Microprocessor provides several fea­
tures which simplify the debugging process. The
three categories of on-chip· debugging aids are:

1. The code execution breakpoint opcode (OCCH).

2. The single-step capability provided by the TF bit
. in the flag register.

S. The code and data breakpoint capability provided
by the Debug Registers DRO-3, DRS, and DR7~

BREAKPOINT INSTRUCTION

A single-byte software interrupt (Int 3) breakpoint in­
struction is available for use by software debuggers.

The breakpoint opcode is OCCh, and generates an
exception 3 trap when executed.

SINGLE-STEP TRAP

If the single-step flag (TF, bit 8) in the EFLAG regis­
ter is found to be set at the end of an instruction, a
single-step exception occurs. The single-step ex­
ception is auto vectored to exception number 1.

DEBUG REGISTERS

The Debug Registers are an advanced debugging
feature of the 38SSX Microprocessor. They allow
data access breakpoints as well as code execution
breakpoints. Since the breakpoints are indicated by
on-chip registers, an instruction execution break­
pOint can be placed in ROM code orin code shared
by several tasks, neither of which can be supported
by the INT 3 breakpoint opcode.

The 38SSX Microprocessor contains six Debug Reg­
isters, . consisting of four breakpoint address regis­
ters and two breakpoint control registers. Initiallyaf­
ter reset, breakpoints are in the· disabled state;
therefore, no breakpoints will occur unless the de­
bug registers are programmed. Breakpoints set up in
the Debug Registers are auto-vectored to exception
1. Figure 2.7 shows the breakpoint status and con-
trol registers. .

4-373

38&SXTt.' MICROPROCESSOR

BREAKPOINT.() DEBUG FAULT/TRAP -----------------,
BREAKPOINT I DEBuG

BREAKPOINT 2 DEBUG FAULT/TRAP ---------------,

BREAKPOINT 3 DEBUG FAULT/TRAP ---------------, DEBUG
STATUS
REGISTER

REGISTER ACClESS.IFAUI.T.----.....,

6

G~I:G~g~~ ::~~~:~ ~~:m: 1------------,
LOCAL EXACT BREAKPOINT MATCH --------,

GLOBAL EXACT BREAKPOINT MATCH -----......

GLOBAL DEBUG REGISTER ACCESS DETECT

BREAKPOINT
,.... ___ L-__, CONTROL

DR7

L-...... _~ __ ~ ___ -I[lENI, BREAKt'OINT LEHGTH I
- RWI: IotEMORY ACCESS QUALIFIER I ,

1Zl' ~ INTEl, RESERVED DO HOT USE

240187~~

Figure 2.7. Debug Regi~ers

3.0 REAL MODE ARCHITECTURE

When the procesSOr is reset or powered up it is ini­
tializ9(:l in Real Mode. Real. Mode has the same base
architectLlre. as. the 8086, b!Jt allows ac;:cess to the
32-bit register set of the 386SX Microprocessor. The
addressing mechanism, memory size, and interrupt
Dandling are all identical to .the Real Mode, on ,the
80286.

The default.operand size in Rea' Mod(lis t6,bits, as
in the 8086., In, o.rder to use .the 32~bit regi~ter~and
addressing mqdes, override prefixes must ~ used.
In addition, the segment size.on the 38.6SXMicro­
processor in Real Mode is 64K bytes so 32-l;>it ad~
drel!sel!must have a value leS!! then OOOOFFFFH,
The primary purpose of R.eal Mode is.to setup the
processor for Proteqted Mode operation. '

3 •. 1' Memory Addressing

InReal Modethe line~r addresses are the same as
physical addresses (paging is not allowed). Physical
addresses are formed in Real Mode by adding the
contents of the appropriate segmel'lt register Which
is shifted left by four bits to an effective address.
This addition results in a20-bit Physical address or .a
1 megabyte addre.ss space. Since segment registers
are shiftedleftby4 bits, Real Mode segments .al­
ways start on 16~byte boundaries.

All segments' in Real Mode are exactly 64K bytes
long, and may be read, written, or executed. The
386SX Microprocessor will gene(ate an exception
13 if a data 'operand or instruction. fetch occurs past .
the end of a segment. '

4-374

386SXTMMICROPROCESSOR

Table 3 1 Exceptions In Real Mode ..
Function

Interrupt
Number

Interrupt table limit 8
too small

CS, DS, ES, FS, GS 13
Segment overrun exception

SS Segment overrun 12
exception

3.2 Reserved Locations

There are two fixed areas in memory which are re­
served in Real address mode: the system initializa­
tion area and the interrupt table area. Locations
OOOOOH through 003FFH are reserved for interrupt
vectors. Each one of the 256 possible interrupts has
a 4-byte jump vector reserved for it. Locations
OFFFFFOH through OFFFFFFH are reserved for sys­
tem initialization.

3.3 Interrupts

Many of the exceptions discussed in section 2. 7 are
not applicable to Real Mode operation; in particular,
exceptions 10, 11 and 14 do not occur in Real
Mode. Other exceptions have slightly different
meanings in Real Mode; Table 3.1 identifies these
exceptions.

3.4 Shutdown and Halt

The HL T instruction stops program execution and
prevents the processor from using the local bus until
restarted. Either NMI, INTR with interrupts enabled
(IF= 1), or RESET will force the 386SX Microproces­
sor out of halt. If interrupted, the saved CS:IP will
point to the next instruction after the HL T.

Shutdown will occur when a severe error is detected
that prevents further processing. In Real Mode,
shutdown can occur under two conditions:

1. An interrupt or an exception occurs (Exceptions 8
or ·13) and the interrupt vector is larger than the
Interrupt Descriptor Table.

2. A CALL,INT or PUSH instruction attempts to
wrap around the stack segment when SP is not
even.

An NMI input can bring the processor out of shut­
down if the Interrupt Descriptor Table limit is large
enough to contain the NMI interrupt vector (at least

Related Return
Instructions Address Location

INT vector is not Before
within table limit Instruction

Word memory reference Before
with offset = OFFFFH. Instruction
an attempt to execute
past the end of CS segment.

Stack Reference Before
beyond offset = OFFFFH Instruction

OOOFH) and the stack has enough room to contain
the vector and flag information (Le. SP is greliterthat
0005H). Otherwise, shutdown can only be exited by
a processor reset.

3.5 LOCK operation

The LOCK prefix on the 386SX Microprocessor,
even in Real Mode, is more restrictive than on the
80286. This is due to the addition of paging.on the
386SX Microprocessor in Protected Mode and Virtu­
al 8086 Mode. The LOCK prefix is not supported
during repeat string instructions.

The only instruction forms where the LOCK prefix is
legal on the 386SX Microprocessor are shown in Ta­
ble 3.2.

Table 3.2. Legal Instructions for the LOC.K Prefix

Opcode
Operands

(Dest, Source)

BIT Test and
SET/RESET Mem, Regllmmediate
/COMPLEMENT

XCHG Reg,Mem

XCHG Mem, Reg

ADD, OR, ADC, SBB,
AND, SUB, XOR Mem, Regllmmediate

NOT, NEG, INC, DEC Mem

An exception 6 will be generated if a LOCK prefix is
placed before· any instruction form or opcode not
listed above. The LOCK prefix allows indivisible
read/modify/write operations on memory operands
using the instructions above.

The LOCK prefix is not IOPL-sensitive on the 386SX
Microprocessor. The LOCK prefix can be used at
any privilege level; but only on the instruction forms
listed in Table 3.2.

4-375

,

I'

386SXT,. MICROPROCESSOR

4.0 PROTECTED MODE
ARCHITECTURE

The complete capabilities of the 386SX Microproc­
essor are unlocked when the processor operates in
Protected Virtual Address Mode (Protected Mode).
Protected Mode vastly increases the linear address
space to four gigabytes (232 bytes) and allows the
running of virtual memory programs of almost unlim­
ited size (64 terabytes (246 bytes». In addition, Pro­
tected Mode allows the 386SX Microprocessor to­
run all of the existing 386 CPU (using only 16 mega­
bytes of physical memory), 80286 and 8086 CPU's
software, while'providing a sophisticated memory
management and a hardware-assisted protection
mechanism. Protected Mode allows the use of addi­
tional instructions speciall.Y optimized for supporting
multitasking operating systems. The base· architec­
ture of the 386SX Microprocessor remains the
same; the registers, instructions, and addressing
modes described in the previous sections are re­
tained. The main difference between Protected
Mode and Real Mode from a programmer's view­
point is the increased addresS. space and a different
addressing mechaniSm. '

4.1 Addressing Mechanl,m

Like Real Mode, Protected Mode' uses two compO­
nents to form the logical address; a 16-bit selector is
used to determine tl:ielinear base address. of a seg­
merit, the base address is added to a 32-bit effective
address to form a 32-bit linear address. The linear
address is then either used !is .!i 24-bit phYSical acl­
dress, or if paging is enabled the paging mechanism
maps the 32-bit . linear address into a 24-bit physical
address.

The difference between the two modes 'lies in calcu­
lating the base address. In Protected Mode, the se­
lector is used to specify an' index into an operating
system defined table (see Figure 4.1). The table
contains the. 32-bit base address of a given seg­
ment. The physical address is formed by adding the
base address obtained from the table, to the offset.

Pagingprovi~s an additional memory management
mechanism which pperates only in P(oteoted Mode.

, Paging provides a means of managing the very large
segments of the 386SX Microprocessor, as such
paging operates . beneath segrriehtation. The plige
mechanism translates the protected linear address
which comes from the segmentation unit irito' a
phySical address. Figure 4;2 shoWS the compiete
386SX Microprocessor addressing mechanism with
paging enabled.

" ,;'.'

4.2, Segrrientatlon '

Segmentation is (me method of memory manage­
ment. Segmentation provides the basis for protec"
tion. Segments are used to encapsulate regions of
memory which have common attributes. For exam­
ple, all of the code of a given program could be con-

, tained ina segment, or an operating system table
may reside in a segment. All information. about alich
segment is stored in an 8 byte data structure called
a descriptor. All of the descriptors in a system are
contained in descriptor tables which are recognized
by hardware.' '

TERMINOLOGY

The following terms are li~ed throughout the discus­
sion of descriptors, privilege levels and protection:

PL: Privilege Level-One of the four hierarchical
privilege levels. Level 0 is the most privileged

, level and level 3 is the least privileged.

RPL: Requestor Privilege Level-The privilege level
'of the original supplier of the selector. RPL is
determined by the least two significant bits of

'a selector. " ,

DPL: Descriptor Privilege Level-This is the least
privileged level at which a task m!iy access
that descriptor (and the segmeht associated
with that descriptor). DescriptOr privilege Lev­
el is determined by· bits 6;5 in the Access
Right Byte of a descriptor.

CPL: Current Privilege Level-The privilege level at
which a task is currently executing, which
equals the privilege level of the code segment
being executed. CPL can also be determined
by examining the lowest 2 bits of the CS regis­
ter, except for conforming code segments.

EPL: Effective Privilege Level~ The effective privi­
lege level is the lea$t privileged of the RPL
and the DPL. EPL is 'the numerical maximum

, ,of RPL ~nd DPL. ,

Task: Oneinstance ofthe execution'of a program.
Tasks are, also referred to as processes. '

DESCRIPTOR TABLES

The descriptor tables " define all of the segments
which are used ina'386SKMicroprocessor system.
There are three tyPes. of tables which hold desorip­
tors: the Global Descriptor Table, Local Descriptor
Table, and the Interrupt Descriptor Table. All of the
tables are, ",ariable. IEingth . memory array!!. and can
vary in size from 8 bytes to 64K bytes. Each table
can hold up to 8192 8-byte descriptors. The upper
13 bits of a selector are used as an index into ttte
qescriptodable. The tables have registers associat­
ed with them which hold the 32,bit linear base ad­
dress and the 16:bit Iimit'61each table.

4-376

,

386SX™ MICROPROCESSOR

48/32 BiT POINTER

ACCESS RIGHTS

LIMIT

BASE ADDRESS

SEGMENT
DESCRIPTOR

MEMORY OPERAND

SEGMENT BASE
ADDRESS

SEGMENT LIMIT

SELECTED
SEGMENT

Figure 4~ 1. Protected Mode Addressing

48 BIT POINTER

""' PHYSICAL ADDRESS

240187-9

I SEGMENT I OFFStT 4KBYTES

15 31 I
ACCESS RIGHTS

LIMIT

~ BASE ADDRESS

SEGMENT·
DESCRIPTOR

0

386SX™
MICROPROCESSOR PHYSICAL PAGING ADDRESS ~ j,

~+
MECHANISM MEMORY OPERAND

PAGE FRAME
32 '-'LINEAR"

ADDRESS ADDRESS

Figure 4.2. Paging and Segmentation

LDTR

IDTR

GDTR

15 0

LOT LIMIT

LOT BASE
LINEAR ADDRESS

32
PROGRAM INVISIBLE
AUTOMATICALLY LOADED
FROM LOT DESCRIPTOR

Figure 4.3. Descriptor Table Registers

4-377

240187-11

4KBYTES

4KBYTES

PHYSICAL PAGE:
4KBYTES

4KBYTES

4KBYTES

4KBYTES

240187-10

i.i
~

386.SXTM MICROPROCESSOR

Each of the tables has a register associated with it:
GOTR, LOTR, and IOTR; see Figure 2.1. The LGOT,
LLOT, and LlOT instructions load the base and limit
of the Global, Local, and Interrupt Descriptor Tables
into the appropriate register. The SGOT. SLOT, and
SIDT store the base and limit values. Th~se are priv­
ileged instructions.

~Iobal Descriptor Table

The Global Descriptor Table (GOT) contains de­
scriptors which are available to all of the tasks in a
system. The GOT can contain any type of segment
descriptor except for interrupt and trap descriptors.
Every 386SX CPU system contains a GOT.

The first slot of the Global Descriptor Table corre­
sponds to the null selector and is not used. The null
selector defines a null pointer value.

Local Descriptor Table

LOTs contain descriptors which are associated with
a given task. Generally, operating systems are .de­
signed so that each task has a separate LOT. The
LOT may contain only code, data, stack, task gate,
and call gate descriptors. LOTs provide a mecha­
nism for isolating a given task's .code and data seg­
ments from' the rest 'of. the operating system, while
the GOT contains descriptors for segments which
are common to all tasks. A segment cannot be ac­
cessed by a task if its segment descriptor does not
exist in either the current LOT or the GOT. This pro-.
vides both isolation and protection for a task's seg­
ments while still allowing global data to be shared
among tasks.

31

Unlike the 6-byte GOT or lOT registers which contain
a base address and limit, the visible portion of the
LOT register contains only a 16-bit selector. This se­
lector refers to a Local Descriptor Table descriptor in
the GOT (~ee figl,lre2.1).

IntertuptDescrfptor Table

The third table. needed for 386SX Microprocessor
systems is. the Interrupt Descriptor Table. The lOT
contains.the d~scriptors which point to the location
of the up to 256 interrupt service routines. The lOT
may contain only task gates, interrupt gates, and
trap gates. The lOT should be at least 256 bytes in
size in order to hold the descriptors for the 32 Intel
Reserved Interrupts. Every interrupt used by a sys­
tem must have an entry in the lOT. The lOT entries
are referenced by INT instructions, external interrupt
vectors, and exceptions.

DESCRIPTORS

The object to which the segment selector points to
is called a de§criptor. Descriptors are eight byte
quantities which contain attributes about'a given re­
'gion of. linear address space. These attributes in­
clude the 32-bit ,base linear address of the segment,
the 20-bit length andgranula.rity of the segment, the
protection .Ielial; read, write or execute privileges;

. the default size of the operands (16-bit or 32-bit),
and the type of segment. All of the attribute'informa­
tion about a segment is contained in 12 bits in the
segment descriptor. Figure 4.4 shows the general
format of a descriptor. All segments on the 386SX
Microprocessor have three attribute fields in com­
mon: the P bit, the OPL bit, and' the S bit. The P

,
0 BYTE

ADDRESS
SEGMENT BASE 15 ... 0 SEGMENT LIMIT 15 ... 0

0

BASE 31 ... 24 G 0 0 .AVL
LIMIT

P OPL S TYPE A
BASE

+4
19 ... 16

I I I
23 ... 16

'.

BASE Base Address 'of the segment
LIMIT The length of the segment
P Present Bit 1 = Present 0= Not P~sent
OPL Descriptor Privilege Level 0-3
S Segment Descriptor 0= System Descriptor 1 = Code or. Data Segment Descriptor
TYPE Type of Segment
A Accessed Bit
G Granularity B~ 1 = Segment leng1h is page granular 0= Segment length is byte granular
D Default Operation Size (recognized in code segment descriptors only) 1 = 32·bit segment 0= 16-bit segment
0 Bit must be zero· (0) for compatibility with future processcrs
AVL Available field·for user or OS

Figure 4.4. Segment Desci'ipt~rs

4·378

386SX™ MICROPROCESSOR

(Present) Bit is 1 if the segment is loaded in physical
memory. If P = 0 then any attempt to access this
segment causes a not present exception (exception
11). The Descriptor Privilege Level, DPL, is a two bit
field which specifies the protection level, 0-3, asso-

or a code or data segment. If the S bit is 1 then the
segment is either a code or data segment; if it is 0
then the segment is a system segment.

ciated with a segment. . Code and Data Descriptors (5= 1)

The 386SX Microprocessor has two main categories
of segments: system segments and non-system
segments (for code and data). The. segment bit, S,
determines if a given segment is a system segment

Figure 4.5 shows the general format of a code and
data descriptor and Table 4.1 illustrates how the bits
in the Access Right Byte are interpreted.

31 o
SEGMENT BASE 15 ... 0 SEGMENT LIMIT 15 ... 0 o

LIMIT
ACCESS BASE

BASE 31 ... 24 G D 0 AVL
19 ... 16

RIGHTS
23 ... 16

BYTE
+4

DIB 1 = Default InstructIons AttrIbutes are 32·Blts
0= Default Instruction Attributes are 16·Bits

AVL Available field for user or OS

G Granularity BIt 1 = Segmant length IS page granular
0= Segment length is byte granular

o Bit must be zero (0) for compatibility with future processors

Figure 4.5. Code and Data Descriptors

Table 4.1. Access Rights Byte Definition for Code and Data Descriptors

Bit
Name Function

Position

7 Present (P) P = 1 Segment is mapped into physical memory.
p=o No mapping to physical memory exists, base and limt are

not used.
6-5 Descriptor Privilege Segment privilege attribute used in privilege tests.

Level (DPL)
4 Segment Descrip- S=1 Code or Data (includes stacks) segment descriptor

. tor (S) S=O System Segment Descriptor or Gate Descriptor

3 Executable (E) E=O Descriptor type is data segment: r 2 Expansion Direc- ED = 0 Expand up segment, offsets must be ~ limit. Data
tion (ED) ED = 1 Expand down segment, offsets must be > limit. Segment

1 Writeable (W) W = 0 Data segment may not be written into. (S = 1,
W= 1 Data segment may be written into. E = 0)

3 Executable (E) E=1 Descriptor type is code segment: If
2 Conforming (C) C = 1 Code segment may only be executed

} COO. when CPL ~ DPL and CPL -remains unchanged. (S = 1,
1 Readable (R) R=O Code segment may not be read. E =1) ..

R = 1 Code segment may be read.

0 Accessed (A) A=O Segment has not been accessed.
A=1 Segment selector has been loaded into segment register

or used by selector test instructions.

4-379

intJ 386SXTM MICROPROCESSOR

31 16 0

SEGMENT BASE 15 ... 0 SEGMENT LIMIT 15 ... 0 0

BASE31 ... 24I G 10 I 0 I 0 11i~~~~6 pi DPLI 0 I TYPE I BASE
23 ... 16 +4

,

Type Defines Type Defines

0 Invalid 8 Invalid
1 Available 80286 TSS 9 Available 386SXTM Micrpprocessor TSS
2 LOT A Undefined (Intel Reserved)
3 Busy 80286 TSS B Busy 386SXTM Microprocessor TSS
4 80286 Call Gate C 386SXTM Microprocessor Call Gate
5 Task Gate (for 80286 or 386SXTM Microprocessor Task) 0 Undefined (Intel Reserved)
6 80286 Interrupt Gate E 386SXTM Microprocessor Interrupt Gate
7 80286 Trap Gate F 386SXTM Microprocessor Trap Gate

Figure 4.6. System Descriptors

Code and data segments have several descriptor
fields in common. The accessed bit, A, is set when­
ever the processor accesses a descriptor. The gran­
ularity bit, G, specifies if a segment length is byte­
granular or page-granular.

System Descriptor Formats (S = 0)

System segments describe information about ()per­
ating system tables, tasks, and gates. Figure 4.6
shows the general format of system segment de­
scriptors, and the various types of system segments.
386SX system descriptors (which are the same as
386 CPU system descriptors) contain a 32-bit base
linear address and a 20-bit segment limit. 80286 sys­
tem descriptors have a, 24-bit base address and a
16-bit segment limit. 80286 system descriptors are
identified by the upper 16 bits being all zero.

Differences Between 386SX™ Microprocessor '
and 80286 Descriptors

In order to provide operating system compatibility
with the 80286 the 386SX CPU supports all of the
80286 segment descriptors. The 80286 system seg­
ment descriptors contain a 24-bit base address and
16-bit limit, while the 386SX CPU system segment
descriptors have a 32-bit base address, a 20-bit limit
field, and a granularity bit. The word count field
specifies the number of 16-bit quantities to copy for
80286 call gates and 32-bit quantities for 386SX
CPU call gates.

Selector Fields

A selector in Protected Mode has three fields: Local
or Global Descriptor Table indicator (TI), Descriptor
Entry Index (Index), and Requestor (the selector's)
Privilege Level (RPL) as shown in Figure 4.7. The TI
bit selects either the Global Descriptor Table or the
Local Descriptor Table. The Index selects one of 8k
descriptors in the appropriate descriptor table. The
RPL bits allow high speed testing of the selector's
privilege attributes.

Segment Descriptor Cache

In addition to the selector value, every segment reg­
ister has a segment descriptor cache register asso­
ciated with it. Whenever a segment register's con-,
tents are changed, the 8-byte descriptor associated
with that selector is automatically loaded (cached)
on the chip. Once loaded, all references to that seg­
ment use the cached descriptor information instead
of reaccessing the descriptor. The contents of the
descriptor cache are not visible to the programmer.
Since descriptor caches only change when a seg­
ment register is changed, programs which modify
the descriptor tables must reload the appropriate
segment registers after changing a descriptor's val­
ue.

4-380

386SXTIII MICROPROCESSOR

SELECTOR,

" 3 2 1 0 15

, SEGM~N1;. ·1010 ---- 010 11Ir~R~LI REGISTER . .
TABLE INDEX
INDICATOR

'N

6

5

" ~
2

1

0

n=1

DESCRIPTOR

LOCAL
DESCRIPTOR

TABLE

DESCRIPTOR
NUMBER'

N

6

5

" 3

2

1

0

n=ol

•

NULL

. , GLOBAL
DESCRIPTOR
, TABLE

,

240187-12

Figure 4.7. Example Descriptor Selection

4.3 Protection
The 386SX Microproces~r has 'our levels of pro­
tection which. a~~ optimized to support ,a multi"task­
ing operating systE!m and ,to isolate and protect user
programs frolT) each o~her and the operating system.
The privilege levels contr.ol"the use of privileged in­
structions, I/O instructions, and ~ccess to ,segments
and segment descriptors. The 386SX Micropr.oces­
sor also offers an additional type of protection on a
page basis when paging is enabled.

the four-level hierarchical privilege system is an ex­
tension of the user/supervisor privilege mode com­
monly used by minicomputers. The user/supervisor
mode is fullyslipported by the 386SX Microproces­
sor paging mechanism. The privilelJ9levels(PL) are
n!lmbered 0 through 3; Level 0 is the most privileged
leVel. ,"

RULES OF PRIVILEGE

The 386SX Microprocessor controls adcess to both
data and procedures between levels of a task, ac·
cording to the following rules.

- Data stored in a segment with .privilege level' p
can be accessed only by code executing at a
privilege level at least as privileged as p.

- A code segment/procedure with'privilege level p
can only be, called by a task executing at the
same or a lesser privilege level than p.

4·381

PRIVILEGE LEVELS

At any point in time, a task on the 386SX Mi~;QPr9c­
essor ,always executes .at one of the four privilege
levels. 'T~ Current Privilege, Level (CPL) specifies
whatth& task's privilege level is. A t8$k's CPL may
only be· changed by control transfers through gate
descriptors to,a code S$grnent with a different privi­
lege level. Thus, an applic~tion program running at
PL = 3 may call an operating system routine at
PL = 1 (via a gate) which would cause the task's CPL
to be set to 1 until the operating system routine wa.s
finished.

Selector Privilege (RPL)

The privilege level of a selec~r is specifie", by the
RPL field. The selector's RPL is only used toestab­
lish a less trusted privileg.e level, than the,current
privilege level of the task for the use of a segment.
This level is called the task's effective privilege level
(EPL). ,Th,eEPL is defined as being the least privi­
leged (numericallylargeJ) level of at8$k's CPL and a
selector's RPL. The RPL is most commonly used to
verify that pOinters passed to·,an operating system
procedure do not access data that is of higher privi­
lege than the procedure that originated the pOinter.
Since the originator of a selector can specify any
RPL value, the Adjust RPL (ARPL) instruction is pro­
vided to force the RPL bits to the originator's CPL.

I

I

386SXT~;MICROPROCESSOR

Table 4.2. Descriptor Types Used for Control Transfer

Control Transfer Types

Intersegment within the same privilege level

Intersegment to the same or higher privilege level
Interrupt within task may change CPL '

Intersegment to a lower privilege level
(cranges task CPL)

Task Switch

' ...
. ',

'NT (Nested Task bit of flag fElQI!Ster) = 0
, 'NT (Nested Task bit of flag r,e~lster) = 1

110 PriVilege

,

The 110 privii'ege level (IOPL) lets the operating sys­
tem code executing at CPL = o define the least privi­
leged level at which I/O instructions can be used. An
exception 13 (General Protection Violation) is genef­
ated'if an 110 instriJctiorf>isatfempted'when the CPL
of the ,task is les$' privilegedt"'en 'the 10PL The
IQPL is stored in bits 13 and'14of'the EFILA'SS reg­
ister. The' following instructions' cause an exception
13 if theCPL is'greater'than IOPL:IN, INS" OUT;
OUTS,STI,CLI, LOCK prefix.

DesCriptor Access

There are basically two types of segment accesses:
those involving code segments such as control
transfers, and those involving data ,accesses. Deter­
mining the ability of a task to access a segment in­
volves thetypeotsegment to be accessed, the in­
struction used, the type of descriptor used and CPL;
RPL, and DPL as described above.

Any time an 'instruotion loadS a data segment regis­
ter(DS, ES,FS, GS),the 386SX Microprocessor
makes protection vaUdation cheeks. ,Selectors load­
ed in the OS, ES, FS, GS registersmusf reter only to
data segment or readable code' segments,

Operation Types
Descriptor Descriptor
R~ferenced Table

JMp,CALL RET, IRET" COde Segment GOT/LOT

CALL Call Gate GOT/LOT

Interrupt instruction Trap or lOT
Exception External Interrupt
Interrupt Gate

RET,IRET· Code Segment GOT/LOT

CALL,JMP Task State GOT
Segment

CALL,JMP Task Gate GOT/LOT

IRET·· TaskGate lOT
Interrupt instruction,
Exception, EXternal
Interrupt

Finally the privilege validation checks are performed.
The CPL'is Compared to the EPL and if the EPL is
more privileged than the CPL, an exception 13 (gen­
eral protection fault) is generated.

The rulesfegarding the stack segment are slightly
differenFthan those involving data segments. In~
structionstliat load SelectorilintoSS must refer to
data segment descriptors for writeabledata 'seg~
ments. The DPL ahd'RPL must equal the CPL of all
other descriptClr 'types' ora privilege level 'violation
wi" cause an exception 13. A stack not present fault
causes an exception 12.

PRIVILEGE LEVEL ,TRANSFERS

Inter-segment control transfers OCCiJrVihen aselec­
tor isload9(.!jn tt,e,'CS register, For a typil;:al system
m.ost of these transfers arE~ simply thl:' result.ot a call
Or a lump to another routine. There ,are five, tYpes of,
control transfers which are summarized in Table 4.2.
Many of tliese transfers' result in a privilege level
transfer. Changing privilege levels is done only by
control transfers, using gatesitask switches,andin-
terruptortrap gates. . .

Control transfers can only oceur if the operation
which loaded the selectdr references the correct de­
scriptor type; Any violation, of these, descriptor usage '
rules wilt ,cause an exception 13,

4-382

inter

... _-------_ .. _- ..
I

ACCESS I TSS
I

I I -I RIGHTS LIMIT I
I I
I .;. I BASE I
I I

: 31 PROGRAM 0:
I INVISIBLE I _-_ ... _----_ ..

TASK REGISTER

TR SELECTOR ~
15 0

386SX™ MICROPROCESSOR

31 16 15

0000000000000000 I BACK LINK

ESPO

0000000000000000 I SSO

ESP1

0000000000000000 SS1

ESP2

0000000000000000 I SS2

CR3

EIP

EfLAGS

EAX

ECX

EDX

EBX

ESP

EBP

ESI

EDI

0000000000000000 ES

DOOOOOOOOOOOOOOO CS

0000000000000000 SS

0000000000000000 DS

OOOOOODOOOOOOOOO fS

0000000000000000 GS

0000000000000000 LOT

BILMAP _OffSET(1 5:0) ODOOOOOOooOOOOOO IT

AVAILABLE ---SYSTEM STATUS, ETC.
IN TSS

31 24 23 16 15 8 7 -0

63 56 55 48 47 40 -39 32-

9S BB 87 80 79 72 71 64

96

I/O PERMISSION BITMAP

65407 (ONE BIT PER BYTE I/o
PORT. BITMAP MAY BE 65439

TRUNCATED USING TSS LIMIT.)
65471 I
65503 I 65472

65535 I 65504

"ffH"

\.J TSS BASE

4

B

C

10

STACKS
fOR
CPL 0,1,2

14

1B

1C

20

24

2B

2C

30

34

3B

3C

40

44

CURRENT
TASK
STATE

4B

4C

50

54

58

5C

60

~-
DT

DEBUG
RAP BIT

BILMA P.;.OffSET

OffSET

OffSET

OffSET

OffSET

OffSET

OffSET

OFfSET

OffSET

+C

+ 10

+ 1fEC

+ 1ffO

.. 1ff4

.. 1ff8

+ 1ffC

+ 2000

t TSS liMIT = or PSET + 2000H
31 TSS DESCRIPTOR (IN GOT)

SEGMENT BASE 15 .•• 0 SEGMENT LIMIT 15 .. 0

BASE 31..24IGI 1 10 10 1 1L~~;~ pi OPLIOITYjE I

Type ~ 9: Available 386SXTM Microprocessor TSS.
Type = B: Busy 386SXTM Microprocessor TSS.

0

BASE
23 .. 16

Figure 4.8. 386SXTM Microprocessor TSS and TSS Registers

4-383

240187-13,

I
I ..

386SXTM MICROPROCESSOR

313029282726252423222120191817 S 5 I I 141312'1109 8 7 6 ,5 4 3 2 I 0

31
'$3

95

127

I I I

0'0 I

1 I 1

0 0 0

I 0 I I 0 0 0 0

o ,0' 0, I I 1'1 0

1·1 1 I 11 1 1

0 0 0" 0 0 0 o 0

0 I I I

0 I 0 I

I ,. I 1

0 0 0 0

.to.

I 0 I 0 0 I I 0 0 0 0 0 0 0 0 I 'I

0 I, I I I 1 1 0 0 1 1 1. I 1 0 0 1

1 I· I,' I I I 1·1 I I I I I I I I

o ,0 0 p 0,,0 0 0 0 0 0 o 0 0 0 0 0

I I I I I I I I

-"" , " " 240187-14
1/0 Ports Accessible: 2 -9,12,13,15, 20 ~ 24~ 27, 33, 34, 40,41,48, 50,52,53,58 - 60,82,63,96 - 127

Figure 4.9. Sample 1/0 Permission Bit Map

CALL GATES

Gates provide protected indirect CALLs. One of the
major uses of gates is to provide a secure method of
privilege transfers within a task. Since the operating
system defines all of the, gates in a system, it, can
ensure that all gates only allow entry into a few trust-
ed procedures. '

TASK SWITCHING

A very important attribute of tiny multi-tasklng/multi­
;user operating system is its ability to rapidly 'switch
between tasks or processes. The 386SX Microproc­
essor directly supports this operation by providing. a '
task switch instruction In hardware. The task ,switch
operation saves the enth'~ stat~ of the machinEl Jail
of the registers, address space, and a link to the
previous taSk), load$ a new execution state, per~
forms protection checks, and commences executiOn
in the new task. Like transfer of control by gates, the
task switch operation is invoked by executing an in­
ter-segment JMP or CALL,instructionwhich refers to
a Task State Segment (TSS), or a task gate descrip­
tor in the GOT or LOT. An INT n instruction, excep­
tion, trap, or external interrupt may ~Iso invoke the
task switch operation if there is a task gate descrip­
tor in the associated lOT descriptor slot.

. '.'

The TSS descriptor points to a segment (see Figure
4.8) containing the entin,~ ,execution ,state. A task
gate deSCriptor contains a'TSS~lector" The 386$X
Microprocessor supports both 286 and 38GSX CPU
TSSs. The limit of a 386SX ,Microprocessor TSS
must be greater than 64H(2BH fQr,a286 TSS), and
can be as large as 16 megabytes. In the additional,
TSS space, the. Qperating system Is free tei store ad­
ditional information such as the re8$On the task is
inactive, time llle ~a$k ,has spent running, or open
files belonging to the task, '

Each task must have a TSS asSociated with it. The
current TSS is identified bya special registElr in the
386SX Microprocessor palled the, Task StateSeg­
ment Register (TR). Thi$ register contains a selector
referring to the task sfate segment deSCriptor that
j:lefines the current TSS, A' hidden base and limit
register associated with TSS descriptor are loaded
whenever T.R is loaded with a new selector. Return­
ing from a task is accomplisl'1Etd by the IR,ETinstruc­
tion. When IRET is executed, control is returned to'

the task which was interrupted. The currently exe­
cuting task's state is saved in the TSS and the old
task state is restored from its TSS.

Seyeral bits in, the flag register and machine status
word (CRO) give information about the state of a
task which is useful to the operating system. The
Nested Task bit, NT, controls the function of the
IRET instruction. If NT=O the IRET instruction per­
forms the regular return. If NT= 1 IRET performs a
task Bwitchoperation back to the previous task. The
NT bit Is set or reset in the following fashion:

When a CALL or INT instruction initiates a task
switch, the new TSS will be marked busy and
the back link field of the new TSS set to the old
.TSS selector. The NT bit of the new task is set
by CALL or INT initiated task switches. An in­
terrupt that does not cause a task switch will
clear NT (The NT bit will be restored after exe­
cution Of the interrupt handler). NT may also be
set or oleared by POPFor IRET instructions.

, The ,386SX Microprocessor task state segment is
marked busy by changing the descriptor type field
from TYPE 9 to TYPE OBH. A 286 TSS is marked
busy by changing the' deScriptor type field from
TYPE 1 to tyPE 3. Use of a selector that references
a busy task state segment causes an exception 13.'

'fhe VM (Virtual Mode) bit is used to indicate if a task
is If virtual 8086 task. If VM = 1 then:the tasks will
use' the Real Mode addressing mechanism. The vir­
tual8086environment is only eriteredand'exited by
a task switch.

The coprocessor's state is not automatic!illy saved
when a task"switch occurs. The Task Switched Bit,
TS, in the CRO register helps deal with the coproces­
sor's state ina multi-tasking erjvlronment. Whenever
the 386SX Microprocessor switohes task, it sets the
TSbit. The 386SX Microprocessor detectS the first
use of a processor extension instruction after a task
,switch and causes the processor extension not
available expeption 7; The exception handler for ex­
ception 7 may then decide whether to save the state
of the poprocessor.

"The,T bit ,In the 386SX Microprocessor TSS indi­
, cates that the processor should generate a debug
exception when switching to a task. If T = 1 then
U'pOn entry to a new task a debug exception 1 will be
generated: ' .

4·384

inter 386SX™ MICROPROCESSOR

INITIALIZATION AND TRANSITION TO
PROTECTED MODE

Since the 386SX Microprocessor begins executing
in Real Mode immediately after RESET it is neces­
sary to initialize the system tables and registers with
the appropriate values. The GOT and lOT registers
must refer to a valid GOT and lOT. The lOT should
be at least 256 bytes long, and the GOT must con­
tain descriptors for the initial code and data seg­
ments.

Protected Mode is enabled by loading CRO with PE
bit set. This can be accomplished by using the MOY
CRO, RIM instruction. After enabling Protected
Mode, the next instruction should execute an inter·
segment JMP to load the CS register and flush the
instruction decode queue. The final step is to load all
of the data segment registers with the initial selector
values.

An alternate approach to entering Protected Mode is
to use the built in task-switch to load all of the regis­
ters. In this case the GOT would contain two TSS
descriptors in addition to the code and data descrip­
tors needed for the first task. The first JMP instruc­
tion in Protected Mode would jump to the TSS caus­
ing a task switch and loading all of the registers with
the values stored in the TSS. The Task State Seg­
ment Register should be initialized to pOint to a valid
TSS descriptor. .

4.4 Paging

Paging is another type of memory management use­
ful for virtual memory multi-tasking operating sys­
tems. Unlike segmentation, which modularizes pro­
grams and data into variable length segments, pag­
ing divides programs into multiple uniform size
pages. Pages bear no direct relation to the logical
structure of a program. While segment selectors can
be considered the logical 'name' of a program mod­
ule or data structure, a page most likely corresponds
to only a portion of a module or data structure.

PAGE ORGANIZATION

The 386SX Microprocessor uses two levels of tables
to translate the linear address (from the segmenta­
tion unit) into a physical address. There are three
components to the paging mechanism'of the 386SX
Microprocessor: the page directory,the page tables,
and the page itself (page frame). All memory-resi­
dent elements of the 386SX Microprocessor paging
mechanism are the same size, namely 4K bytes. A
uniform size for all of the elements simplifies memo­
ry allocation am;! reallocation schemes, since there
is no problem with memory fragmentation. Figure
4.10 shows how the paging mechanism works.

TWO LEVEL PAGING SCHEME

31 22 12 0

DIRECTORY I TABLE I OFFSET I USER:
LINEAR MEMORY

ADDRESS
10}

I 12
10

OI'I'I'I'I'I'H

31
ADDRESS ,t

31 't 31 0

CRO I
CR1 t -+

o

PAGE TABLE
CR2

CR3 ROOT
DIRECTORY

CONTROL REGISTERS

Figure 4.10. Paging Mechanism

31 12 11 10 9 8 7 6 5 4

System
PAGE TABLE AOORESS 31..12 Software 0 0 0 A 0

Oefineable

, Figure 4.11. Page Directory Entry (Points to Page Table)

4-385

240187-15

3 2 1 0

U R
0 - - P

S W

:1','
I
I

)

i
i
I!
I'

intJ 386SXTM MICROPROCESSOR

31 12 11 10 9 8 7 6 5 4 3 2 1 0

System U R
PAGE FRAME ADDRESS 31 .. 12 Software 0 0 0 A 0 0 - - P

Defineable S W

Figure 4.12. Page Table Entry (Points to Page)

Page Fault Register

CR2 is the Page Fault Linear Address register. It
holds the 32-bit linear address which caused the last
Page Fault detected.

Page Descriptor Base Register

CR3 is the Page Directory Physical Base Address
Register. It contains the physical starting address of
the Page Directory (this value is truncated to a 24-bit
value associatecj with the 386SX CPU's 16 mega­
byte physical memory limitation). The lower 12 bits
of CR3 are always zero to ensure that the Page Di­
rectory is always page aligned. Loading it with a
MOV eR3, reg instruction causes the page table en­
try cache to be flushed, as willa task switch through
a TSS which changes the value of CRO.

Page Directory

The Page Directory is 4k bytes long and allows up to
1024 page directory entries. Each page directory en­
try contains information about the page table and
the address of the next level of tables, the Page
Tables .. T~e contents of a Page Directory Entry are
shown In figure 4.11. The upper 10 bits of the linear
address (A31-A22) are used as an index to select
the correct Page Directory Entry.

The page table address contains the upper 20 bits
of a 32-bit physical address that is used as the base
address for the next set of tables, the page tables.
The lower 12 bits of the page table address are zero
so that the page table addresses appear on 4 kbyte
boundaries. For a 386 CPU system the upper 20 bits
wi.1I select one of 220 page tables, but for an 386SX
Microprocessor system the upper 20 bits only select
one of 212 page tables. Again, this is because the
386SX Microprocessor is limited to a 24-bit physical
address and the upper 8 bits (A24-A31) are truncat­
ed when the address is output on its 24 address
pins.

Page Tables

Each Page Table is 4K bytes long and allows up to
1024 Page table Entries. Each page table entry con­
tains information about the Page Frame and its ad-

dress. The contents of a Page Table Entry are
shown in figure 4.12. The middle 10 bits of the linear
address (A21-A12) are used as an index to select
the correct Page Table Entry.

The. Page Frame Address contains the upper 20 bits
of a 32-bit physical address that is used as the base
address for the Page Frame. The lower 12 bits of the
Page Frame Address are zero so that the Page
Frame addresses appear on 4kbyte boundaries. For
an 386 CPU system the upper 20 bits will select one
of 220 Page Frames, but for an 386SX Microproces­
sor system the upper 20 bits only select one of 212
Page Frames. Again, this is because the 386SX Mi­
croprocessor is limited to a 24-bit physical address
space and the upper 8 bits (A24-A31) are truncated
when the address is output on its 24 address pins.

Page Directory/Table Entries

The lower 12 bits of the Page Table Entries and
Page Directory Entries contain statistical. information
about pages and page tables respectively. The P
(Present) bit indicates if a Page Directory or Page
Table entry can be used in address translation. If
P = 1, the entry can .be. used for address translation.
If P = 0, the entry. cannot be used for translation. All
of the other bits are available for use by the soft·
ware. For example, the remaining 31 bits could be
used to indicate where on disk the page is stored.

The A (Accessed) bit is set by the 386SX CPU for
both types of entries before a read or write access
occurs to an address covered by the entry. The 0
(Dirty) bit is set to 1 before a write to an address
covered by that pagetable entry occurs. The 0 bit is
undefined· for Page Directory Entries. When the P, A
and 0 bits are updated by the 386SX CPU, the proc­
essor generates a Read- Modify-Write oycle which
locks the bus and prevents conflicts with other proc­
essors or peripherals. Software . which modifies
these bits should use the LOCK prefix to ensure the
integrity of the page tables. in multi-master systems.

The 3 bits marked system software definable in Fig·
ures 4.11 and Figure 4.12 are software definable.
System software writers are free to use these bits
for whatever purpose they wish.

4·386

inter 386SX™ MICROPROCESSOR

PAGE LEVEL PROTECTION (R/W, U/S BITS)

The 386SX Microprocessor provides a set of protec­
tion attributes for paging systems. The paging mech­
anism distinguishes between two levels of protec­
tion: User, which corresponds to level 3 of the seg­
mentation based protection, and supervisor which
encompasses all of the other protection levels (0, 1,
2). Programs executing at Level 0, 1 or 2 bypass the
page protection, although segmentation-based pro­
tection is still enforced by the hardware.

The U/S and R/W bits are used to provide User/Su­
pervisor and Read/Write protection for individual
pages or for all pages covered by a Page Table Di­
rectory Entry. The U/S and R/W bits in the second
level Page Table Entry apply only to the page de­
scribed by that entry. While the U/S and R/W bits in
the first level Page Directory Table apply to all pages
described by the page table pointed to by that direc­
tory entry. The U/S and R/W bits for a given page
are obtained by taking the most restrictive of the U/
Sand R/W from the Page Directory Table Entries
and using these bits to address the page.

TRANSLATION LOOKASIDE BUFFER

The 386SX Microprocessor paging hardware is de­
signed to support demand paged virtual memory
systems. However, performance would degrade
substantially if the processor was required to access
two levels of tables for every memory reference. To
solve this problem, the 386SX Microprocessor
keeps a cache of the most recently accessed pages,
this cache is called the Translation LookasideBuffer
(TLB). The TLB is a four-way set associative 32-en­
try page table cache. It automatically keeps the most
commonly used page table entries in the processor.
The 32-entry TLB coupled with a4K page size re­
sults in coverage of 128K bytes of memory address­
es. For many common multi-tasking systems, the
TLB will have a hit rate of greater than 98%. This
means that the processor will only have to access
the two-level page structure for less than 2% of all
memory references.

PAGING OPERATION

The paging hardware operates in the following fash­
ion. The paging unit hardware receives a 32-bit lin­
ear address from the segmentation unit. The upper
20 linear address bits are compared with all 32 en­
tries in the TLB to determine if there is a match. If
there isa match (Le. a TLB hit), then the 24-bit phys­
ical address is calculated and is placed on the ad­
dress bus.

If the page table entry is not in the TLB, the 386SX
Microprocessor will read the appropriate Page Direc­
tory Entry. If P= 1 on the Page Directory Entry, indi­
cating that the page table is in memory, then the
386SX Microprocessor will read the appropriate

Page Table Entry and set the Access bit. If P= 1 on
the Page Table Entry, indicating that the page is in
memory, the 386SX Microprocessor will update the
Access and Dirty bits as needed and fetch the oper­
and. The upper 20 bits of the linear address, read
from the page table, will be stored in the TLB for
future accesses. If P = 0 for either the Page Directo­
ry Entry or the Page Table Entry, then the processor
will generate a page fault Exception 14.

The processor will also generate a Page Fault (Ex­
ception 14) if the memory reference violated the
page protection attributes. CR2 will hold the linear
address which caused the page fault. Since Excep­
tion 14 is classified as a fault, CS:EIP will point to the
instruction causing the page-fault. The 16-bit error
code pushed as part of the page fault handler will
contain status bits which indicate the cause of the
page fault.

The 16-bit error code is used by the operating sys­
tem to determine how to handle the Page Fault. Fig­
ure 4.13 shows the format of the Page Fault error
code and the interpretation of the bits. Even though
the bits in the error code (UlS, W/R, and P) have·
similar names as the bits in the Page Directory/Ta­
ble Entries, the interpretation of the error code bits is
different. Figure 4.14 indicates what type of access
caused the page fault

15 3 2 1 0

H+H+H+I+I+H~I;H
Figure 4.13. Page Fault Error Code Format

U/S: The U/S bit indicates whether the access
causing the fault occurred when the processor was
executing in User Mode (U/S = 1) or in Supervisor
mode (UIS = 0)

W/R: The W/R bit indicates whether the access
causing the fault was a Read (W/R = 0) or a Write
(W/R = 1)

P: The P bit indicates whether a page fault was
caused by a not-present page (P = 0), or by a page
level protection violation (P = 1)

U = Undefined

U/S W/R Access Type

0 0 Supervisor' Read
0 1 Supervisor Write
1 0 User Read
1 1 User Write

'Descriptor table access will fault with U/S = 0, even If
the program is executing at level 3.
Figure 4.14. Type of Access Causing Page Fault

4-387

,.. ,.

inter 386SXTM MICROPROCESSOR

OPERATING SYSTEM RESPONSIBILITIES

When the operating system enters or exits paging
mode (by setting or resetting bit 31 in the CRO regis­
ter) a short JMP must be executed to flush the
386SX Microprocessor's prefetch queue. This en­
sures that all instructions executed after the address
mode change will generate correct addresses.

The 386SX Microprocessor takes care of the page
address translation 'process, relieving the burden
from an, operating system in, a demand-paged sys­
tem. The operating system is responsible for setting
up the initial page tables and" handling any page
faults. The operating system also is required to inval­
idate (i.e. flush) the TL6 when any changes are
made to ahy of the page table entries. The operating
system must reload CR3 to cause the TLB' to be
flushed.

Setting up the tables is simply a matter of loading
CR3 with the address Ofthe Page Directory, and
allocating space for the Page Directory and the
Page Tables. The primary responsibility of the oper­
ating system is to implement a swapping policy' and
handle all of the page faults. .

A final concern of the operating system is to ensure
that the TLB cache matches the information iii the
paging tables. In particular, 'any time the operating
systems, sets the P (Present) bit of page table entry
to zero. The TLB must be flushed by reloading CR3.,
Operating systems may want to take advantage of
the fact that CR3 is stored as part of a TSS, to give
every task or group of tasks its own set of page
tables. ' ., '

4.5' Virtual \8086 Environment'

The 386SX Microprocessor allows the execution of
8086 application programs in both Real Mode and in
the Virtual 8086 Mode. The Virtual 8086 Mode al·
lows the execution of 8086 applications, while still
allowing the system designer to take full advantage
of the 386SX CPU's protection mechanis,m.

VIRTUAL 8086 ADDRESSING MECHANISM

One Of the major differences between 386SX CPU
Real and Protected modes'is how the segment se~
lectors are interpreted. When the processor is exe­
cuting in Virtual808~ Mode, the segment registers
are used in a fashion identical to Real Mode. The
contents Of the segment register are shifted left 4
bits and added to the offset to form the segment
base linear address.

The 386SX Microprocessor allows the operating
system to specify which programs use the 8086 ad-

dress mechanism and which programs use Prot~­
ed Mode addressing on a per task basis. Through
the, use of paging, the one megabyte address space
of the Virtual Mode task' can be mapped to any­
where in the 4 gigabyte ,linear address space of the
386SX Microprocessor: Like Real Mode, Virtual
Mode addresses that, exceed one megabyte will
cause an exception 13. However, these restrictions
shOuld not prove to be important, because most
tasks running in Virtual 8086 Mode will simply be
existing 8086 application programs.

PAGING IN VIRTUAL MODE

The paging hardware allows the concurrent running
of multiple Virtual Mode tasks, and provides protec­
tion and operating system Isolation. Although it is
not strictly necessary to have the paging hardware
enabled to run Virtual Mode tasks, it is needed in
order to run multiple Virtual Mode tasks Or to relo­
cate the address space of a Virtual Mode task to
physical address space greater than one megabyte.

The paging hardware allows the 20-bit linear ad­
dress produced bya Virtual Mode program ,to be
divided into as many as 256 pages. Each Qne of the
pages can be located anywhere within the maximum
16 megabyte physical address space of the 386SX
Microprocessor. In'addition, since CR3 (the Page Di­
rectory Base' Register) is 'loaded by a task switch,
each Virtual Mode task can use a different mapping
scheme to map pages to different physicallocatibns.
Finally,the paging hardware all,ows the sharing of
the 8086' operating system' code between multiple
8086' applications.' ,

PROTECTION AND 1/0 PERMISSION BIT MAP

All Virtual Mode programs execute at privilege level
3. As such, Virtual Mode programs are ,subject to all
of the protection checks definEi'd in Protected Mode.
This is different than Real Mode, which implicitly is
executing at privilege level O. Thus, an attempt to
execute a privileged instruction in Virtual Mode will
cause an exception 13 fault.

The following are privileged instructions, which may
be executed only at Privilege Level O. Attempting to
execute these instructions in Virtual 8086 Mode (or
anytime CPL~O)causes an exception 13 fault:

I.,IDT;MOVDRn,REG; MOV reg,DRn;
LGDT; MOV TRn,reg; MOV reg,TRn;
LM$W; MOV CRn,reg; MOV reg,CRn;

CLTS;
HLT; ,

386SXTM . MicROPROCESSOR

Several' instructions, particularly those applying to
the multitasking and the protection model, areayail­
able only in Protected Mode. Therefore, attempting
to execute the following instructions in Real Mode or
in Virtual SOS6 Mode generates an exception 6 fault:

LTR;
-LLDT;
LAR;
LSL;
ARPL;

STR;
SLOT;
VERR;
VERW;

The instructions which are 10PL sensitive in Protect­
ed Mode are:

IN; STI;
OUT;- CLI
INS;
OUTS;
REP INS;
REP OUTS;

In Virtual SOS6 Mode the following instructions are
10PL-s$nsitive:

INTn; STI;
PUSHF; CLI;
POPF;, IRET;

The PUSHF, POPF, and IRET instructions are 10PL­
sensitive in Virtual SOS6 Mode only. This provision
allows the IF flag to be virtualized to the virtual SOS6
Mode program. The INT n software interrupt instruc­
tion is also 10PL-sensitive in Virtual SOS6. mode.
Note that the INT 3, INTO, and BOUND instructions
are not 10PL-sensitive in VirtualSOS6 Mo~e.

The 110 instructions that directly refer to addresses
in tlie processor's 110 space are IN, INS, OUT, and
OUTS. The 3S6SX Microprocessor has the ability to
selectively trap references to specific I/O address­
es. The structure that enables selective trapping is
the 110 Permission Sit Map in the. TSS segment (see
Figures 4.S and 4.9). The I/O permission map is a bit
vector. The size of the map and its location in the
TSS segment ,are variable, The processor locates
the I/O permission map ~y means of the I/O map
base .1ield in the fixed portion of ,he TSS. The I/O
map base field is 16bitswicie and contains the off~
set of the beginning oithe 1/0 permission map.

In protected;oode when an I/O in~truction, (IN, INS,
OUT or OUTS) is encountered, the processor first
checks whether C:PL s: 10PL. If this condition is true,
the I/boper~tion may proceed: If not true, the proc~
essorcMc~s the I/O permission map (in Virtual
SOS6 Mode, the. processor consults the, map withol,lt
regard for the. 10PL).

Each bit in the map corresponds to an I/O port byte
address; for example, the bit for port 41 Is found at
1/0 map ba.e + 5, bit offset 1. The processor tests
all the bits that correspond to the 1/0 addresses
spanned by an 110 operation; for example, a double
word operation tests four bits corresponding to four
adjacent byte addresses. If any tested bit is set, the
processor signals a general protection exception. If
all the tested bits are zero, the I/O operations may
proceed.

It is not necessary for the 110 permission map to
represent all the 110 addresses. 110 addresses not
spanned by the map are treated as if they had one­
bits in the map. The 1/0 map ba.e should be at
least one byte less than the TSS limit, the last byte
beyond the 110 mapping inforrTiation must contain
all1's.

Because the 110 permission map is in the TSS seg­
ment, different tasks can have different maps. Thus,
the operating system can allocate ports to a task by
changing the 110 permission map in the task's TSS.

IMPORTANT IMPLEMENTATION .NOTE: Beyond
the last byte of 110 mapping information in the 1/0
permission bit map mu.t be a byte containing all1's.
The byte of all 1's must. be within the limit of the
3S6SX CPU TSS segment (see Figure 4;S).

Interrupt Handling

In order to fully support the emulation of an SOS6
machine, interrupts in Virtual .SOS6 Mode. are han~
died ina unique fashion. When 'running in Virtual
Mode all interrupts and exqeptions involve. a privi­
lege change back to the host 3S6SX Microprocessor
operating system. The. 3S6SX Microprocessoroper­
ating system determines if the interrupt comes from
a Protected Mode application or .from a Virtual. Mode
program by examining the V~ bit in the EfLAGS
image stored on the. stack. .

When a Virtual Mode program is interrupted and ex­
ecution passes to the interrupt routine at level 0, the
VM bit is cleared. However, the VM bit is still set in
the EFLAG image on the stack.

The 3SI;lSX Microprocessor operating system in turn
handl.esthe exception or interrupt llnd then re~urns
control to the SOS6 program, The . .3f}6SX..Microproc­
essor operating system may c,hoosecio, leUhe 80S6

, operating. system handle the interrupt or it may emu-
late the function of the interrupt handler. For exam­
ple, many SOS6 operating system calls are access~d
by PUSHing parameters on t~e stack, .and then exe.
cuting an INT n instruction. If the I()PL is setto 0
then all INT n instructions will be ir:itercepted by the
3S6SX Microprocessor operating system. .

I
1'1'

386SX™MICROPROCESSOR

An 386SX Microprocessor operating system can
provide a Virtual 8086 Environment which is totally
transparent to the application software. by intercept­
ing and then emulating 80860p~rating .system's
calls, and intercepting IN and OUT Instructions.

Entering IimdLeaving VirtualSOS6Mode

Virtual 8086 mode is entered by executing a 32-bit
IRET instruction at CPL = 0 where the stack has a 1
in the VM bit of its EFLAGS image, or aTask Switch
(at any CPL) to a 386SX Microprocessor task whose
386SX CPU TSS has a EFLAGS image containing a
1 in the VM bit position while the processor is exe­
cuting in the Protected Mode. POPF does not affect
the VM bit but a PUSHF always pushes a 0 in the
VM bit.

The transition out of virtual 8086 mode to protected
mode occurs only on receipt of an interrupt or ex­
ception. In Virtual 8086 mode, all interrupts and ex­
ceptions vector through the protected mode IDT,
and enter an interrupt handler in protected mode. As
part of the interrupt processing the VM bit is cleared.

Because the matching IRETmust occur from level 0,
Interrupt or Trap Gates used to field an interrupt or
exception out of Virtual 8086 mode must perform an
inter-level interrupt only to level O. Interrupt or Trap
Gates through conforming segments, or through
segments with DPL> 0, will raise a GP fault with .the
CS selector as the error code.

Task Switches TolFrom Virtual SOS6 Mode

Tasks which can execute in virtual 8086 mode must
be described by a TSSWith the. 386SX CPU format
(type 9 or11 descriPtor): A task switch out of virtual
8086 mode will operate exactly the same as any oth­
er task switch out of a task with a 386SX CPU TSS.
All of the programmer visible state, including the
EFLAGS register with the VM· bit set to 1, is stored in
the TSS. The segment reQisters in the TSS.will con­
tain 8086 segment base values rather than sel~c­
torS.

A task switch into a task described by a 386SX CPU
TSS will have an additional check to determine if the
incoming task should' be resumed in virtual 8086
mode. Tasks described by 286 format TSSs cannot
be resumed in virtual 8086 mode, so no check is
required there (the FLAGS image In. 286 format TSS
has only the low order 16 FLAGS bits). Before load­
ing the segment register images from a 386SX CPU
TSS, the FLAGS image isloaded,s() that the seg­
ment registers. are loaded' from the TSS image. a~
8086 segment base values. The task is now ready to
resume in virtual 8086 mode. .

Transitions Through Trap and Interrupt Gates,
andiRET' . .

A task switch is one way to enter or exit virtual 8086
mode. The other method is to exit through a Trap or
Interrupt gate, as part of handling an interrupt, and
to enter as part of executing an IRET instruction.
The transition out must use a 386SX CPU Trap .Gate
(Type 14), or 386SX CPU Interrupt ~ate (Type 15),
which must point to a non-conforming level 0 seg­
ment (DPL = 0) in order to permit the trap handler to
IRET back to the Virtual 8086 program. The Gate
must point to a· non-conforming level 0 segment. to
perform a level switch to level 0 so that the matching
IRET can change the VM bit. 386SX CPU gates
must be used since 286 gates save only the low 16
bits of the EFLAGS register (the VM bit will not be
saved). Also, the 16-bit IRET used to terminate t~e
286 interrupt handler will pop only the lower 16 bits
from FLAGS and will not affect the VM bit. The ac­
tion taken fo~ a 386SX CPU Trap or Interrupt gate if
an interrupt occurs while the task is executing in vir­
tual 8086 mode is given by the following sequence:

1. Save the FLAGS register in a temp to push later.
Turn off the VM, TF, and. IF bits.

2. Interrupt and Trap gates must perform a level
switch from 3 (where the Virtual 8086 Mode pro­
gram executes) to level 0 (so IRET can return).

3. Push the 8086 segment register values onto the
new stack, in this order: GS, FS, DS, ES. These
are pushed as 32-bit quantities. Then load these 4
registers with null selectors (0).

4. Push the' old 8086 stack pointer onto the new
stack by pushing the SS register (as 32-bits), then
pushing the 32-bit ESP register saved above.

5. Push th.e 32-bit EFLAGS register saved in stEjP 1.

6. Push the old 8086 instruction onto the new stack
by pushing the CS register (as 32-bits), then push­
ing the 32-bit EIP register.

7. Load up the new CS:EIP value from the interrupt
gate, and begin execution of the interrupt routine
in protected mode.

The transition out of V86 mode performs a level
change and stack switch, in addition to changing
back to protected mode. Also all of the 8086 seg­
ment register images are stored on the stack (be­
hind the SS:ESP image), and then loaded with null
(0) selectors before. entering. the interrupt handler.
This will permit the handler to safely save and re­
store the DS, ES, FS, and GS registers as 286selec­
tors. Tllisis needed so that interrupt handlers which
don't care about the mode of the interrupted pro­
gram can use the same prologue and epilogue code
for state saving regardless of whether or not ~ 'na­
tive' mode or Virtual 8086 Mode program was Inter­
rupted. Restoring null selectors to these registers

386SX™ MICROPROCESSOR

before executing the IRET will cause a trap in the
interrupt handler. Interrupt routines which expect or
return values in the segment regist$rs will have to
obtain/return values from the SOS6 register images
poshedonto the new stack. They will need to know
the mode of the interrupted program in order to
know where to find/return segment registers, and
also to know how to interpret se.gment register val­
ues.

The IRET instruction will perform the inverse of the
above sequence. Only the extended IRET instruc­
tion (operand size=32) can be used and must be
executed at level 0 to change the VM bit to 1.

1. If the NT bit in the FLAGS register is on, an inter­
task return is performed. The current state is
stored in the current TSS, and the link field in the
current TSS is used to locate the TSS for the in­
terrupted task which is . to be resumed. Otherwise,
continue with the following sequence:

2. Read the FLAGS image from SS:S[ESP) into the
FLAGS register. This will set VMJo the value ac­
tive in the interrupted routine.

3. Pop off the instruction pointer CS:EIP. EIP' is
popped first, then a 32-bit word .is popped Which
contains the CS value in the lower 16 bits. If
VM = 0, this CS load is done as a protected mode
segment load. If VM = 1, this will be done as an
SOS6 segment load:

4. Increment the ESP register by 4 to' bypass the
FLAGS image which was 'popped' in step 1.

5. If VM = 1, load segment registers ES, OS, FS, and
GS from memory locations SS:[ESP+S],
SS:[ESP+12], SS:[ESP+16), and
SS:[ESP=20), respectively, where the new value
of ESP stored in step 4 is used. Since VM = 1,
these are pone as SOS6 segment register loads.

Else if VM = 0, check that the selectors in ES, OS,
FS, and GS are valid in the interrupted routine.
Null out invalid selectors to trap if an attempt is
made to access through them. .

6. If RPl(CS) > CPl, pop the stack pointer SS:ESP
from the stack. The ESP register is popped first,
followed by 32-bits containing SS in the lower 16
bits. If VM = 0, SS is loaded as.a protected mode
segment register load. If VM == 1, an SOS6 seg­
ment register load is used.

7. Resume execution of the interrupted routine. The
VM bit in the FLAGS register (restored from the
interrupt routine's stack image in step 1) deter-'
mines whether the processor resumes the inter­
rupted routine in Protected mode or Virtual SOS6
Mode ..

5.0 FUNCTIONAL DATA

The3S6SX Microprocessor features a. straightfor­
ward functional interface to the. external hardware.
The 3S6SX Microprocessor has separate parallel
buses for data and address. The. data bus is 16-bits
in width, and bi-directional. The address bus outputs
24-bit address values using 23 address lines and
two byte enaple signals;

The 386SX Microprocessor has two. selectable ad­
dress bus cycles: address pipelined and non-ad­
dress pipelined. The address pipelining option al- ,
lows as much time as possible for data access by
starting the pending bus cycle before the present
bus cycle is finished. A non-pipelined bus cycle
gives the highest bus performance by executing ev­
ery bus cycle in two processor ClK cycles. For maxi­
mum design flexibility, the address pipelining option
is selectable on a cycle-by-cycle basis.

The processor's bus cycle is the basic mechanism
for information transfer, either from system to proc­
essor, orf(()m 'processor to system. 386SX Micro­
processor bus cycles perform data transfer in a mini­
mum of only two clock periods. The maximum trans­
fer bandwidth at 16 MHz is therefore 16 Mbytes/
sec .. However, any bus cycle will be extended for
more than two. clock periods if external hardware
withholds acknowledgement of the cycle.

The 3S6SX Microprocessor can relinquish control of
its local buses to allow mastership by other devices,
such as direct memory access (OMA) channels.
When relinquished, HLOA is the only output pin driv­
en by the 386SX Microprocessor, providing near­
complete isolation of the processor from its system
(all other output pins are in a float condition).

5.151gn81 Description Overview

Ahead is a brief description of the 386SX Microproc­
essor input and output signals arranged by function­
al groups. Note the # symbol at the end of a signal
name indi~tes the active, or asserted, state occurs

. when ,the signal is at a lOW voltage. When no ,# is
present after the signal name, the Signal is asserted
when at the HIGH voltage level.

Example signal: MIIO# - HIGH voltage indicates
Memory selected

- laW voltage indicates
I/O selected

The signal descriptions sometimes refer to AC tim­
ing parameters, such as 't25 ResetSetup Time' and
't26 Reset Hold Time.' The values of these parame­
ters can be found in Table 7.4,

4-391

386SXtflMICROPROCESSOR

CLOCK (CLK2)

CLK2 provides the. fundamental timing for the 386SX
Microprocessor. It is qividedby two internally to gen­
erate the internal processor. clock used ·for instruc­
tionexecution. The internal' clock is, comprised of
two phases" 'phase one' and 'phase two'. Each
CLK2 period is a phase of the internal clock. Figure
5.2 illustrates the relationship. If desired,' the phase
of the internal processor clock can be synchronized
toa known phase by ensuring the falling edge of the
RESET signal meets the applicable setup and hold
times t25 and t26'

CLK2 •

A "

2X CLOCK{

16-B.IT(DO-DI5
DATA

i(DATA BUS
'I v

BUS[
CONTROL

BUS{
ARBITRATION

INTERRUPTS{

ADS#

NA#:

READY# :

HOLD
HLDA ~

INTR
NMI ~

RESET •

386SX™
MICRO-

PROCESSOR

D~TA BUS (Q1S-DO)

These three~state. bidirectional signals provide the
general purpose data path between the 386SX Mi­
croprocessor and other devices. The data bus out­
puts are activEiHIGH and will float during bus hold
acknowledge. Data bus reads require that read-data
setup and hold times t21andt22 be met relative to
CLK2 for correct operation.

" ADDRESS BUS ,)
BHE# ~

BLE#

W/R#

D/C#

1.1/10#

LOCK#

PEREQ

~ BUSY#
ERROR#

vee
GND

Al-A23]24_BIT .

}.
BYTE ADDRESS

ENABLES

1 ''''''''''' ",

} COPROCESSOR .SIGNALLING

} POWER CONNECTIONS

240187-16

Figure 5_ 1. Functional Signal Groups

CLK2[

INTERI-IAL[
PROCESSOR CLOCK

62.5 ns MIN.
(16 101Hz MAX)

PROCESSOR CLOCK
PERIOD

Figure 5.2. CLK2 Signal and Internal Processor Clock

4-392

240187-17

386SX™ MICROPROCESSOR

ADDRESS BUS (A23-A1, BHU, BlEI)

These three-state outputs provide physical memory
addresses or 1I0.port addresses. A23-A16 are lOW
during 110 transfers except for 110 transfers auto­
matically generated by coprocessor instructions.
During coprocessor 110 transfers, A22-A16 are driv­
en lOW, and A23 is driven HIGH so that this ad­
dress line can be used by external logic to generate
the coprocessor select signal. Thus, the 110 address
driven by the 386SX Microprocessor for coproces­
sor commands is 8000F8H; the 110 addresses driv­
en by the 386SX Microprocessor for coprocessor
data are 8000FCH or 8000FEH for cycles to the
80387SX.

The address bus is capable of addressing 16 mega­
bytes of physical memory space (OOOOOOH through
FFFFFFH), and 64 kilobytes of 110 address space
(OOOOOOH through OOFFFFH) for programmed 110.
The address bus is active HIGH and will float during
bus hold acknowledge.

The Byte Enable outputs, BHEland BlEI, directly
indicate which bytes of the 16-bit data bus are in­
VOlved with the current transfer. BHE # applies to
D15~D8 and BlEI applies to 07-00. If both BHEI
and BlEI are asserted, then 16 bits of data are
being transferred. See Table 5.1 for a complete de~
coding of these Signals. The byte enables are active
lOW and will float during bus hold acknowledge.

BUS CYCLE DEFINITION SIGNALS (W IR I, DI
C#, MIIOI, lOCKI)

These three"state outputs define the type of bus cy­
cle being performed: W IR I distinguishes between

write and read cycles, D/CI distinguishes between
data and control cycles, M/IO# distinguishes be­
tween memory and 110 cycles, and lOCKI distin­
guishes between locked and unlocked bus cycles.
All of these signals are active lOW and will float
during bus acknowledge.

The primary bus cycle definition signals are W/RI,
D/CI and M/IOI, since these are the signals driv­
en valid as ADS I (Address Status output) becomes
active. The lOCK I is driven valid at the same time
the bus cycle begins, which due to address pipelin­
ing, could be after ADSI becomes active. Exact bus
cycle definitions, as a function of W IR I, DIC I, and
MIIOI are given in Table 5.2.

lOCK I indicates that other system bus masters are
not to gain control of the system bus while it is ac­
tive. lOCK I is activated on the ClK2 edge that be­
gins the first locked bus cycle (i.e., it is ·not active at
the same time as the other bus cycle definition pins)
and is deactivated when ready is returned at the end
of the last bus cycle which is to be locked. The be­
ginning of a bus cycle is determined when READY I
is retlJrned in a previous bus cycle and another is
pending (AOSI is active) or the clock in which
ADS #, is driven active if the bus was idle. This
means that it follows more closely with the write
data rules when it is valid, but may cause the bus to
be locked longer than desired. The. lOCK I signal
may be explicitly activated by the lOCK prefix on
certain instructions. LOCK I is always asserted
when executing the XCHG instruction, during de­
scriptorupdates, and during the interrupt acknowl-
edge sequence. .

Table 51. Byte Enable Definitions

BHEI BlEI Function

0 0 Word Transfer
0 1 Byte transfer on upper byte of the data bus, 015-08
1 0 Byte transfer on lower byte 0' the data bus, 07-00
1 1 Never occurs

Table 5 2 Bus Cycle Definition ..
MilO I D/CI W/RI Bus Cycle Type locked?

0 0 0 Interrupt Acknowledge ' . Yes
0 0 1 does not occur -
0 1 0 110 Data Read NQ
0 1 1 110 Data Write No
1 0 0 Memory Code Read No
1 0 1 Halt: Shutdown: No

Address = 2 Address = 0
BHEI =1 BHEI = 1 ,
BlEI = 0 BlEI == 0

1 1 0 Memory Data Read Some Cycles
1 1 1 Memory Data Write Some Cycles

4-393

II I:,

I;
I .~

, I

386SXTM MICROPROCESSOR

BUS CONTROL SIGNALS (ADS #, READY #,
NA#)

The following signals allow the processor to indicate
when abus cycle has begun, and allow other system
hardware to control address pipelining and bus cycle
termination.

Address Status (ADS#)

This three-state output indicates that a valid bus cy­
cle.definition and address (W/R#, D/C#, M/IO#,
BHE#, BLE# and A23-A1) are being driven at the
386SX Microprocessor pins. ADS# is an active
LOW output. Once ADS # is driven active, valid ad­
dress, byte enables, and definition signals will not
change. In addition, ADS# will remain active until its
associated bus cycle begins (when READY # is re­
turned for the previous bus cycle when running pipe­
lined bus cycles). When address pipelining is uti­
lized, maximum throughput is achieved by initiating
bus cycles whenADS# and READY# are active in
the same clock cycle. ADS# will float during bus
hold acknowledge. See sections Non-Pipelined Ad­
dress (page 49) and Plpelined Address (page 50)
for additional information on how ADS# is asserted
for different bus states.

Transfer Ack~owledge (READY#)

This input indicates the current bus cycle is com­
plete, and the active bytes indicated by BHE# and
BLE # are accepted or provided. When READY # is
sampled active during a read cycle or interrupt ac­
knowledge cycle, the 386SX Microprocessor latches
the input data and terminates the cycle. When
READY # is sampled active during a write cycle, the
processor terminates the bus cycle.

READY # is ignored on the first bus state of all bus
cycles, and sampled each bus state thereafter until
asserted. READY # must eventually be asserted to
acknowledge every bus cycle, including Halt Indica~
tion and Shutdown Indication bus cycles. When be­
ing sampled, READY # must always meet setup and
hold times t19 and t20 for correct operation.

Next Address Request (NA #)

This is used to request address pipelining. This input
indicates the system is prepared to accept new val­
ues of BHE#, BLE#, A23-A1, W/R#, D/C# and
M/IO# from the 386SX Microprocessor even if the
end of the current cycle is not being acknowledged
on READY #. If this input is active when sampled,
the next address is driven onto the bus, provided the
next bus request is already pending internally. NA#
is ignored in CLK cycles in which ADS# or READY#

i~ activated. This signal is active LOW and must sat­
isfy setup and hold times t15 and t16 for correct op­
eration. See Pipelined Address (page 50) and
Read and Write Cycles (page 47) for additional in-
formation. .

BUS ARBITRATION SIGNALS (HOLD, HLDA)

This section describes the mechanism by which the
processor relinquishes control of its local buses
when requested by another bus master device. See
Entering and Exiting Hold Acknowledge (page
57) for additional information.

Bus Hold Request (HOLD)

This input' indicates some device other than the
386SX Microprocessor requires bus mastership.
When control is granted, the 386SX Microprocessor
floats A23-Al, BHE#, BLE#, 015-00, LOCK#, MI
10#, D/C#, W/R# and ADS#, and then activates
HLDA, thus entering the bus hold acknowledge
state. The local bus will remain granted to the re­
questing rnaster until HOLD becomes' inactive.
When HOLD becomes inactive, the 386SX Micro­
processor will deactivate HLDA and drive the local
bus (at the same time), thus terminating the hold
acknowledge condition.

HOLD must remain asserted as .Iong as any other
device is a local bus master. External pull-up resis­
tors may be required when in the hold acknowledge
state since none of the 386SX Microprocessor float­
ed outputs have internal pull-up resistors. See
Resistor Recommendations (page 64) for addi­
tional information. HOLD is not recognized while RE­
SET is active. If RESET is asserted while HOLD is
asserted, RESET has priority and places the bus into
an idle state, rather than the hold acknowledge
(high-impedance) state.

HOLD is a level-sensitive, active HIGH, synchronous
input. HOLD signals must always meet setup and
hold times t23 and t24 for correct operation.

Bus Hold Acknowledge (HLDA)

When active (HIGH), this output indicates the 386SX
Microprocessor has relinquished control of its local
bus in response to an asserted HOLD signal, and is
in the bus Hold Acknowledge state.

The Bus Hold Acknowledge state offers near-com­
plete signal isolation. In the Hold Acknowledge
state, HLDA is the only signal being driven by the
386SX Microprocessor. The other output signals or
bidirectional signals (015-00, BHE#, BLE#, A23-
Al, W/R#, D/C#, M/IO#, LOCK# and ADS#) are
in a high-impedance state so the requesting bus

4-394

inter 386SXTM MICROPROCESSOR

master may control them. These pins remain OFF
throughout the time that HLDA remains active (see
Table 5.3». Pull-up resistors may be desired on sev­
eral signals to avoid spurious activity when no bus
master is driving them. See Resistor Recommen­
dations (page 64) for additional information.

When the HOLD signal is made inactive, the 386SX
Microprocessor will deactivate HLDA and drive the
bus. One riSing edge on the NMI input is remem­
bered for processing after the HOLD input is negat­
ed.

Table 5.3. Output pin State During HOLD

Pin Value Pin Names

1 HLDA
Float LOCK#, MIIO#, D/C#, W/R#,

ADS#, A2S-A1, BHE#, BLE#, 015-00

In addition to the normal usage of Hold Acknowl­
edge with DMA controllers or master peripherals,
the near-cClmplete isolatlbn has particular attractive­
ness during system test when test equipment drives
t~e system, and in hardware fault-tolerant applica-
tions. '

HOLD latencies

The maximum possible HOLD latency depends on
the software being executed. Tne actual HOLD la­
tency at any time depends on the current bus activi­
ty, the state of the LOCK# signal (internal toethe
CPU) activated by the LOCK # prefix, and interrupts.
The 386SX Microprocessor will not honor a HOLD
request until the current bus operation is complete.
Table 5.4 shows the types of bus operations that
can affect HOLD latency, and indicates the types of
delays that these operations may introduce. When
considering maximum HOLD latencies, designers
must select which of these bus operations are possi­
ble, and then' select the maxlm.um latency from
among them. ' .

The 386SX Microprocessor breaks32~bit data or
110 accesses into 2 internally locked 16-bit bus .cy­
cles; the LOCK#· signal is not asserted. The 386SX
Microprocessor breaks. unaligned 16-bit or 32-bit
data or 110 accesses into 2 or ,3 internally locked 16-
bit bus cycles. Again, the LOCK # signal is not as­
serted but a HOLD request will not be recognized
until the end of the entire transfer.

As indicated 'in Table 5.4, wait states affect HOLD
latency. The 386SX Microprocessor will not honor a
HOLD request until the end of the current bus opera­
tion, no matter how many wait states are required.
Systems with DMA where data transfer is critical
must insure that READY # returns sufficiently soon.

{ .. * Not Available At This Time "*1

Table 5.4. Locked Bus Operations Affectlng
HOLD Latency In Systems Clocks

COPROCESSOR INTERFACE SIGNALS (PEREQ,
BUSY #, ERROR #)

In the following sections are descriptions of signals
dedicated to the numeric coprocessor interface. In
addition to the data bus, address bus, and bus cycle
definition signals, these following signals control

, communication between the 386SX Microprocessor
and its 80387SX processor extension.

Coprocessor Request (PEREQ)

When asserted (HIGH), this input signal indicates a
coprocessor request fora data operand to be trans­
ferred to/from memory by the 386SX Microproces­
sor. In response, the 386SX Microprocessor trans­
fers information between the coprocessor and
memory. Because the 386SX Micropro.cessor has
internally stored the coprocessor opcode being exe­
cuted, it performs the requested data transfer with
the correct direction and memory address,

PEREa is a level-sensitive active HIGH asynchro­
nous Signal. Setup and hold times, t29 and t30, rela­
tive to the CLK2 Signal must be met to guarantee
recognition at a particular clock edge. This signal is
provided with a weak internal pull-down resistor of
around 20 K-ohms to ground so that it will not float
active when left unconnected.

Coprocessor Busy (BUSY #)

When asserted (LOW), this input indicates the co­
processor is still executing an instruction, and is not
yet able to accept another. When the 386SX Micro­
processor encounters any coprocessor instruction
which operates on the numerics stack (e.g. load;
pop, or arithmetic operation), or· the WAIT instruc­

. tion, this input is first automatically sampled until it is
seen to be inactiVe. This sampling of the BUSY #
input prevents overrunning the execution of a previ­
ous coprocessor instruction.

The FNINIT, FNSTENV,' FNS,iWE, FNSTSW;
FNSTCWand FNCLEX coprocessor instructions are
allowed to. execute even if .BUSY # is active, since
these instructions are used for coprocessor initializa­
tion and exception-clearing. I'

BUSY # is an active LOW, level-sensitive asynchro­
nous Signal. Setup and.hold·times, t29 and t30, rela-

4-395

I i
"

I'
i'i
If
I'

I·

inter 386SX™ MICROPROCESSOR

tive to the CLK2 signal must be met to guarantee
recognition at a particular clock edge. This pin is pro­
vided with a weak internal pull-up resistor of around
20 K-ohmsto Vcc so that it will not float active when
left unconnected.

BUSY # serves an additional function. If BUSY # is
sampled LOW at the falling edge of RESET, the
386SX Microprocessor performs an internal self-test
(see Bus Activity During and Following Reset,
page 58). If BUSY#is sampled HIGH, no self-testis
performed.

Coprocessor Error (ERROR #)

When asserted (LOW), this input signal indicates
that the previous coprocessor instruction generated
a coprocessor error of a type not masked by the
coprocessor's control register. This input is automat­
ically sampled by the 386SX Microprocessor when a
coprocessor instruction is encountered, and if ac­
tive, the 386SX Microprocessor generates exception
16 to access the error-handling software.

Several coprocessor instructions, generally those
which clear the numeric error flags in the coproces­
sor or save coprocessor state, do execute without
the 386SX Microprocessor generating exception 16
even if ERROR # is active. These instructions are
FNINIT, FNCLEX, FNSTSW, FNSTSWAX,
FNSTCW, FNSTENV and FNSAVE.

ERROR # is an active LOW, level-sensitive asyn­
chronous signal. Setup and hold times, t29 and t30,
relative to the CLK2 signal must be met to guarantee
recognition at a particular clock edge. This pin is pro­
vided with a weak internal pull-up resistor of around
20 K-ohms to Vcc so that it wil.1 not float active when
left unconnected.

INTERRUPT SIGNALS (INTR, NMI, RESET)

The following descriptions cover inputs that can in­
terrupt or suspend execution of the processor's cur­
rent instruction stream.

Maskable Interrupt Request (INTR)

When asserted, this input indicates a request for iri­
terrupt service, which can be masked by the 386SX
CPU Flag Register IF bit. When the 386SX Micro­
processor responds to the INTR input, it performs
two interrupt acknowledge bus cycles and, at the
end of the second, latches. an 8-bit interrupt vector
on 07-00 to identify the source of the interrupt.

INTRis an active HIGH, level-sensitive asynchro­
nous Signal. Setup and hold times, t27 and t28, rela­
tive to the CLK2 signal must be met to guarantee

recognition at a particular clock edge. To assure rec­
ognition of an INTR request,.INTR should remain
active until the first interrupt acknowledge bus cycle
begins. INTR is sampled at the beginning of every
instruction in the 386SX Microprocessor's Execution
Unit. In order to be recognized ata particular instruc­
tion boundary, INTR must be active at least eight
CLK2 clock periods before the beginning of the in­
struction. If recognized, the 386SX Microprocessor
will begin execution of the interrupt.

Non-Maskable Interrupt Request (NMI»

This input indicates a request for interrupt service
which cannot be masked by software. The non­
maskable interrupt request is always processed ac­
cording to the pointer or gate in slot 2 of the interrupt
table. Because of the fixed NMI slot assignment, no
interrupt acknowledge cycles are performed when
processing NMI.

NMI is an active HIGH,rising edge-sensitive a$yn­
chronous Signal. Setup and hold times, t27 and t28,
relative to the CLK2 signal must be met to guara.ntee
recognition at a particular clock edge. To assure rec­
ognition of NMI, it must be inactive for at least eight
CLK2 periods, and then be active for at least eight
CLK2 periods before the beginning of the instruction
boundary in the 386SX Microprocessor's Execution
Unit.

Once NMI processing has begun, no additiorial
NMI's are processed until after the next IRET in'
struction, which is typically the end of the NMI serv­
ice routine. If NMI is re-asserted prior to that time,
however,one rising edge on NMI will be remem­
bered for processing after executing the next IRET
instruction. .

Interrupt Latency

The. time that elapses before an interrupt request is
serviced (interrupt latency) varies according to sev­
eral factors. This delay must be taken into account
by the interrupt source. Any of the following factors
can affect interrupt latency:

1. If interrupts are masked, an INTR request will not
be recognized until interrupts are reenabled.

2. If an NM,J is currently being serviced, an incoming
NMI request will not be recognized until the
386SX Microprocessor encounters the IRETin­
struction.

3. An interrupt request is recognized only on an in­
struction boundary of .. the 386SX Microproces­
sor's Execution Unit except for the following cas­
es:

- Repeat string instructions can be interrupted
after each iteration.

4-396

386SXTM MICROPROCESSOR

- If the instruction loads the Stack Segment reg­
ister, an interrupt is not processed until after
the following instruction, which should be an
ESP. This allows the entire stack pointer to be
loaded without interruption.

- If an instruction sets the interrupt flag (enabling
interrupts), an interrupt is not processed' until
after the next instruction.

The longest latency occurs when the interrupt re­
quest arrives while the 386SX Microprocessor is
executing a long instruction such as multiplication,
division, or a task-switch in the protected mode.

4. Saving the Flags register and CS:EIP registers.

5. If interrupt service routine niquires a task switch,
time must be allowed for the task switch.

6. If the interrupt service routine saves registers that
are not automatically saved by the 386SX Micro­
processor.

RESET

This input signal suspends any operation in progress
and places the 386SX Microprocessor in a known
reset state. The 386SX Microprocessor is. reset by
asserting RESET for 15 or m,ore CLK2 periods (80 or
more CLK2 periods before requesting self-test).
When RESET is active, all other input pins are ig­
nored, and all other bus pins ate driven to an. idle .
bus state as shown in Table 5.5. If RESET and
HOLD are both active at a point in time, RESET
takes priority even if the 386SX Microprocessor was
in a Hold Acknowledge state ,prior ~o RESET active.

RESET is an active HIGH, level-sensitive synchro­
nous signal. Setup and hold times, t25 and t26, must
be met in order to assure proper operation of the
386SX Microprocessor.

Table 5.5. Pin State (Bus Idle) During Reset

Pin Name Signal Level During Reset

AOS# 1
015-0 0 Float
BHE#, BLE# 0
A23-A1 1
W/R# 0
O/C# 1
M/IO# 0
LOCK # . 1 .
HLOA 0

5.2 Bus Transfer Mechanism

All data transfers occur as a result of olie or more
bus cycles. Logical 'data openinds of byte and word'
lengths may be transfer.red without restrictions on

PhySidal address alignment. Any byte boundary may
be us'ed, although two physical bus cycles are per­
forme'd as required for unaligned operand transfers.

The 386SX Microprocessor address signals are de­
signed to simplify external system hardware. Higher­
order address bits are provided by A23-A1. BHE#
and BLE# provide linear selects for the two bytes of
the 16-bit data bus.

Byte Enable outputs BHE# and BLE# are asserted
when their associated data bus bytes are involved
with the present bus cycle, as listed in Table 5.6.

Table 5.8. Byte Enables and As80clated Data
and Operand Bytes

Byte Enable
Associated Data Bus Signals

Signal

BLE# 07-00 I (byte 0 -least significant)
BHE# 015-08 (byte 1 - most significant)

Each bus cycle is' composed of at least two. bus
states. Each b.us state requires one processor clock
period. Addition~l. bus states added' to a Single bus
cycle are called wait states. See section 5.4 Bus
Functional Description. .

5.3 Memory and 1/0 Spaces

Bus cycles may access physical memory space or II
.0 space. I;leripheral devices in the system may ei­
ther be memory-mapped, or I/O-mapped, or both.
As shown in Figure 5.3, physical memory addresses
range from OOOOOOH to OFFFFFFH (16 megabytes)
and 1/0 addresses from OOOOOOH to OOFFFFH (64
kilobytes). Note the 1/0 addresses used by. the auto­
matic 1/0 cycles for coprocessor communication are
8QOOF8H to 8000FFH, beyond the address range of
programmed 1/0, to allow easy generation of a co­
processor chip select signal using the A23 and MI
10# Signals.

5.4 Bus Functional Description

The 386SX Microprocessor has separate, parallel
buses for data and address. The data bus is 16-bits
in width, and bidirectional. The address bus provides
a 24-bit value using 23 signals for the 23 upper-order
address bits and 2 Byte Enable Signals to directly
indicate the active bytes. These buses are interpret­
ed and controlled by several definition signals.

The definition of each bus cycle is given by three
signals: M/IO#, W/R# and O/C#. At the same
time, a valid address. is present on the byte enable
Signals, SHE # and BLE# ~ and the other address
signals A23-A1' A status signal, AOS#, indicates

4-397

[,

,-

3~6SXT~NIICROP90CESSOR

FFFFFFH _-.--.....

PHYSICAL
MEMORY

..---._ ..
• • " I . . ' . . ' .
: NOT :
• ACCESSIBLE. , · ',' , .
• • • • • • , ,

:ggg~~~ I =----+ COPROCESSOR

16-MBYlE (NOTE) :

• • •
• NOT :
',ACCESSIBLE.
• • · .' • • • • • •

OOFFFFH B" '} ACCESSIBLE
64 kBYlE PROGRAMMED

OOOOOOH OOOOOOH I/O SPACE

J ,"

NOTE: PHYSICAL MEMORY SPACE I/O SPACE 240187-18

" l:jince, A23 is HIGH during automatic communication with coprocessor. A23 HIGH and ,MilO# LOW can be used to
,~li!l!IY 9~nerate a coprOCSl!sor select signal, ' ,

Fi~ure ,5.3. Physical Memory and 110 Spaces

CLK2[
(INPUT),

BHE#.BLE#.A 1 ~A23. '[,
M/ION. D/C#; W/R#

. (OUTPUTS)

ADSi[
(OUTPUT)

NAN [
(INPUT)

READY# [
'(INPUT) ,

,,' DO-DIS [
(INPUT DURING READ)

CYCLE 1
NON-PIPELINED

(READ)

CYCLE 2
NON-PIPELINED

(READ)

CYCLE 3
NON-PIPELINED

(READ)
nUn u nu

.1'1.2 .11.2 .11.2 .11.2 .11.2 .11.2 .1

Fastest ,non.pi~lin~ bus cycles consist of Tl and T2

4-398

• 24Q181-,1~, ~

intJ 386SXTM MICROPROCESSOR

when the 386SX Microprocessor issues a new bus
cycle definition and address.

Collectively, the address bus, data bus and all asso­
ciated control signals are referred to simply as 'the
bus'. When active, the bus performs one of the bus
cycles below:

1. Read from memory space

2. Locked read from memory space

3. Write to memory space

4. Locked write to memory space

5. Read from I/O space (or coprocessor)

6. Write to 1/0 space (or coprocessor)

7. Interrupt acknowledge (always locked)

8. Indicate halt, or indicate shutdown

Table 5.2 shows the encoding of the bus cycledefi­
nition signals for each bus cycle. See Bus Cycle
Definition Signals (page 40) for additional informa­
tion.

CYCLE 1
PIPELINED

(READ)

When the 386SX Microprocessor bus is not perform­
ing one of the activities listed above, it is either Idle
or in the Hold Acknowledge state, Which may be de­
tected externally. The idle state can be identified by
the·386SX Microprocessor giving no further asser­
tions on its address strobe output (ADS#) since the
beginning of its most recent bus cycle, and the most
recent bus cycle having been terminated. The hold
acknowledge state is identified by the 386SX Micro­
processor asserting its hold acknowledge (HLDA)
output.

The shortest time unit of bus activity is a bus state. A
bus state is one processor clock period (two CLK2
periods) in duration. A complete data transfer occurs
during a bus cycle, composed of two or more. bus
states.

The fastest 38SSX MicroprocesSOr bus cycle re­
quires only two bus states. For example, three con­
secutive bus read cycles, each consisting of two bus
states, are shown by Figure 5.4. The bus states in
each cycle are named T1 and T2. Any memory or 1/
o address may be accessed by such a two-state
bus cycle, if the external hardware is fast enough.

CYCLE 2
PIPELINED

(READ)

CYCLE 3
PIPELINED

(READ)

T1P T2P T1P T2P T1P T2P

CLK2[
(INPUT)

.11.2 .11.2 .11.2 .11.2 .11.2 .1.1.2

·BHE#,BLE#,A1-A23. [
1.1/10#. D/C#. W /R#

(OUTPUTS) -+--+--+--""'7i---+--"""""!~"""-i--

ADS#[
(OUTPUT)

NA#[.
(INPUT)

READY# [
(INPUT)

LOCK# [
(OUTPUT)

DO-D15[
(INPUT DURING READ)

Fastest pipelined bus cycles consist of T1 P and T2P

Figure 5.5. Fastest Read Cycles with Pipelined Address Timing

4-399

240187-20

inter·· 386SXTM MICROPROCESSOR

Every bus .. cycle continues until it is acknowledged
by the external system hardware, using the 386SX
Microprocessor READY'" input. Acknowledging the
bus cycle at the end, of the first 12 results in .the
shortest bus· cycle, requiring only. T1 'and T2. ,If
READY # is not immediately asserted however, T2
states are, repeated indefinitely until the READY #
input is sampled active.

The address pipelining option provides a choice of
bus cycle timings. Pipelined or non-pipelined ad­
dress timing is selectable on a cycle-by-cycle basis
with the Next Address (NA#) input.

When ·address pipelining is selected the address
(SHE#, SlE# and A23-A,) and definition (W/R#,
D/C#, M/IO# and lOCK#) of the next cycle are
available before the end of the current cycle. To sig­
nal their availability, the 386SX Microprocessor ad-

dre,ssstatus output (ADS#) is asserted. Figure. 5.5
illustrates the fastest read cycles with pipe lined ad­
dress timing.

Note from Figure 5.5 the fastest bus cycles using
pipelined address, require only two bus states,
named T1P and T2P. Therefore cycles with pipe­
lined address timing allow the $Sme ,data bandwidth
as non-pipelined cycles, but address-to-data access
time is increased by Ohe T-state time compared to
that of a non-pipelined cycle.

READ AND WRITE CYCLES

Data transfers occur as a result of bus cycles, classi­
fied as read or write cycles. During read cycles; data
is transferred from an external device to the proces­
sor. During write cycles, data is transferred from the
processor to an external device.

IDLE I CYCLE 1
NON-PIPELINED

(WRITE)

CYCLE 2 I
NON-PIPELINED

(READ)

CYCLE 3 I
NON-PIPELINED

(WRITE)

IDLE I CYCLE 4
NON-PIPELINED

(READ)

IDLE I
TI

CLK2 [

PROCESSOR CLK [

BHE#.BLE#. [
Al-A23.

MilO #. DIC #

ADS# [

NA# [

READY# [

LOCK # [

DD-D1S[

TI T1 T2 T1 T2 T1 T2 TI T1 T2

240187-21
Idle states are shown here for diagram variety only. Write cycles are not always followed by an idle state. An active bus
cycle can immediately follow the write cycle;

Figure 5.6. Various l3us Cycles with Non-Pipeline~ Address (Jero wait states)

4-400

386SX™ MICROPROCESSOR

Two choices of address timing are dynamically se­
lectable: non-pipelined or pipelined. After an idle bus
state, the processor always uses non-pipe lined ad­
dress timing. However the NA# (Next Address) in­
put may be asserted to select pipelined address tim­
ing for the next bus cycle. When pipelining is select­
ed and the 386SX Microprocessor has a bus request
pending internally, the address and definition of the
next cycle is made available even before the current
bus cycle is acknowledged by READY #.

Terminating a read or write cycle, like any bus cycle,
requires acknowledging the cycle by asserting the
READY # input. Until acknowledged, the processor
inserts wait states into the bus cycle, to allow adjust­
ment for the speed of any external device. External
hardware, which has decoded the address and bus
cycle type, asserts the READY # input at the appro­
priate time.

At the end of the second bus state within the bus
cycle, READY # is sampled. At that time, if external
hardware acknowledges the bus cycle by asserting
READY #, the bus cycle terminates as shown in Fig­
ure 5.6. If READY# is negated as in Figure 5.7, the
386SX Microprocessor executes another bus state
(a wait state) and READY # is sampled again at the
end of that state. This continues indefinitely until the
cycle is acknowledged by READY # asserted.

When the current cycle is acknowledged, the 386SX
Microprocessor terminates It. When a read cycle is
acknowledged, the 386SX Microprocessor latches
the information present at its data pins. When a write
cycle is acknowledged, the 386SX CPU's write data
remains valid throughout phase one of the next bus
state, to provide write data hold time.

IDLE I CYCLE I
NON-PIPELINED

(READ)

CYCLE 2
NON-PIPELINED

(WRITE)

IDLE I

TI

CYCLE 3
NON-PIPELINED

(READ)

IDLE I
TI

ClK2 [

PROCESSOR ClK [

BHE#,BlE#, [
AI-A23,

M/IO#.D/C#

W/R# [

ADS# [

NA# [

lOCK # [

DO-DIS[•

n T1 T2 T1 T2 T2 T1 T2 T2

240187-22
Idle states are shown here for diagram variety only. Write cycles are not always followed by an idle state. An active bus
cycle can immediately follow the write cycle.

Figure 5.7. Various Bus Cycles with Non·Pipelined Address (various number of wait states)

4-401

I.

inter 386SX™ MICROPROCESSOR

Non·Pipelined Address

Any bus cycle may be performed with non-pipelined
address timing. For example, Figure 5.6 shows a
mixture of read and write cycles with non-pipelined
address timing .. Figure 5.6 shows that the 'fastest
possible cycles with non-pipelined address have two
bus states per bus cycle .. The states .are named T1
and T2. In phase one of T1,. the address signals and
bus cycle definition signals are driven valid and, to
signal their availability, address strobe (ADS#)is
simultaneously asserted.

During read or write cycles, the data bus behaves as
follows. If the cycle is a .read, the 386SX Microproc­
essor floats its data signals to allow driving by the
external device being addressed. The 386SX Micro­
processor requires ,that all data bus pins be at a
valid logic state (HIGH or LOW) at the end of
each read cycle, when READY # is asserted. The
system MUST be designed to meet this require­
ment. If the cycle is a write, data signals are driven
by the 386SX Microprocessor beginning in phase
two of T1 until phase one of the bus state following
cycle acknowledgment.

Figure5.? illustrates non-pipelined bus cycles with
one wait state added to Cycles 2 and 3. READY # is
sampled inactive at the end of the first T2 in Cycles
2 and 3. Therefore Cycles 2 and 3 have T2 repeated
again. At the end of the second T2, READY # is
sampled' active.

When address pipelining is not. used, the address
and bus cycle definition remain valid during all wait
states. When wait states are added and it is desir­
able to maintain non-pipe lined address timing, it is
necessary to negate NA#during each T2 state ex·
cept the last one, as shown in Figure 5.7 Cycles 2
and 3. If NA # is sampled active during a T2 other
than the last one, the next state would be T21 or T2P
instead of another T2.

When address pipelining is not used, the bus states
and transitions are completely illustrated by Figure
5.8. The bus transitions between four possible
states, T1, T2, Ti, and T h. Bus cycles consist of T1
and T2, with T2 being repeated for wait states. Oth­
erwise the bus may be idle, Ti, or in the hold ac·
knowledge state T h.

HOLD ASSERTED

ALWAYS

READY# ASSERTED­
HOLD NEGATED­

REQUESTPENDIN,G

READY# NEGATED­
NA#NEGATED

Bus States:
T1-first clock of a non-pipelined bus cycle (386SX™ CPU drives new address and asserts ADS#).
T2-subsequent clOCks of a bus cycle when NA # has not been sampled asserted in the current bus cycle.
Ti-idle state.
Th-hold acknowledge state (386SXTM CPU asserts HLDA).
The fastest bus cycle consists of two states T1 and T2.
Four basic bus states describe bus operation when not using pipelined address.

Figure 5.8. Bus States (not using pipelined address)

4-402

240187-23

386SXTM MICROPROCESSOR

Bus cycles always begin with T1. T1 always leads to
T2. If a bus cycle is not acknowledged during T2 and
NA# is inactive. T2 is repeated. When a cycle is
acknowledged during T2. the following state will be
T1 of the next bus cycle if a bus request is pending
internally. or Ti if there is no bus request pending. or
T h if the HOLD input is being asserted.

Use· of pipelined address allows the 386SX Micro­
processor to enter three additional bus states not
shown in Figure 5.8. Figure 5.12 on page 53 is the
complete bus state diagram. including pipelined ad­
dress cycles.

Pipellned Address

Address pipelining is the option of requesting the
address and the bus cycle definition of the next in-

ternally pending bus cycle before the current bus
cycle is acknowledged with READY # asserted.
ADS# is asserted by the 386SX Microprocessor
when the next address is issued. The address pipe­
lining option is controlled on a cycle-by-cycle basis
with the NA# input signal.

Once a bus cycle is in progress and the current ad­
dress has been valid for at least one entire bus
state. the NA# input is sampled at the end of every
phase one until the bus cycle is acknowledged. Dur­
ing non-pipelined bus cycles NA#. is ~ampled at the
end of phase one in every T2. An example is Cycle 2
in Figure 5.9. during which NA# is sampled at the
end of phase one of every T2 (it was asserted once
during the first T2 and has no further effect during

. that bus Cycle),

IDLE CYCLE 1
NON-PIPELINED

CYCLE 2
NON-PIPELINED

CYCLE 3
PIPELINED

CYCLE 4
PIPELINED

IDLE

CLK2 [

PROCESSOR ~LK [

BHE#.BLE #. [
A1-A23.

M/IO#.D/C#

n

(WRITE)

T1 T2

(READ)

T1 T2

W/~# [. m~~-t-"'_-+---+-f

ADS# [

NA# [

READY# [

(WRITE) (READ)

T2P T1P T2P T1P :r21

LOCK# [.&JI.~~('.-:':';:::"';'-¥"--+--~--r "'-"'!"""'--f . "------f
00-015 [

TI

240187-24
Following any idle bus state (Ti). addresses are non-pipelined. Within non-pipelinEld bus cycles. NA# is only sampled
during wait states. Therefore. to begin address pipelining duril)g a gro.up of non-pipelined bus cyclesrequires\a non-pipe-
lined cycle with at least one wait state (Cycle 2 above).

Figure !i.9. Transltlonlng toPipelined Address During Burst of Bus Cycl.es

4-403

386SXTM MICROPROCESSOR

If NA # is sampled active, the 386SX Microproces­
sor is free to drive the address and bus cycle defini­
tionof the next bus cycle, and assert ADS#, as
soon as it has a bus request internally pending. It
may. drive the next address as early as the next bus
state, whether the current bus cycle is acknowl­
edged at that time or not.

Regarding the details of address pipe lining, the
386SX Microprocessor has the following character­
istics:

1. The next address may appear as early as the bus
state after NA # was sampled active (see Figures
5.9 or 5.10). In that case, state T2P is entered
immediately. However, when there is not an inter­
nal bus request already pending, the next address
will not be available immediately after NA# is as­
serted and T21 is entered instead of T2P (see Fig-

Ure 5.11 Cycle 3). Provided the current bus cycle
isn't yet acknowledged by READY# asserted,
T2P will be entered as soon as the 386SX Micro­
processor does drive the next address. External
hardware should therefore observe the ADS #
output as confirmation .the next address is actual-
ly being driven on the bus. .

2. Any address which is validated by a pulse on the
ADS # output will remain stable on the addreSs
pins for at least two processor clock periods. The
386SX Microprocessor cannot produce a new ad­
dress more frequently than every two processor
clock periods (see Figures 5.9, 5.10, and 5.11).

3. Only the address and bus cycle definition of the
very next bus cycle is available. The pipelining ca­
pability cannot look further than one bus cycle
ahead (see Figure 5.11 Cycle 1).

~DlE ... _____ c_yc_l_E_1 ____ ~---C-Y-Cl-E-2---~~C-Y-C-lE-3--~.~---C-Y-Cl_E_4 ____ ~1 NON-PIPELINED PIPELINED PIPELINED PIPELINED
(WRITE) (READ) (WRITE) (READ)

IDLE

ClK2 [.

PROCESSOR ClK [

BHE#,BlE#. [
A1.,.23.

M/IO#.D/C#

W/R# [

ADS# [

NA#l

11 T1 T2 T2P

READY # [~'-Mo.v..lllo.J¥o.Mo~"I-M'''*

T1P T2P T1 P T2P T1P T21 T21 11

lOCK # [~~"~-...j...:.:=,.;...-_1'~;,;;;:;;;;..:-.,,;..p;.;.;;:;;:..;;...J~-_I_;;.::::...;.--I'l'~~1
00-015 [

240187-25
Following any bus state (TO the address is always non-pipelined and NA# is only sampled during wait states. To start
address pipelining after an idre state requires a non.pipelined cycle with at least one wait state (cycle j above)
The pipelined cycles (2, 3. 4 above) are shown with various numbers of wait states.

Figure 5.10. Fastest Transition toP/pelined Address Following Idle Bus State

4-404

inter 386SX™ MICROPROCESSOR

The complete bus state transition diagram. including
operation with pipelined address is given by Figure
5.12. Note it is a superset of the diagram for non­
pipelined address only. and the three additional bus
states for pipelined address are drawn in bold.

The fastest bus cycle with pipelined address con­
sists of just two bus states. T1 P and T2P (recall for
non-pipelined address it is T1 and T2). T1 P is the
first bus state of a pipelined cycle.

T1P

CYCLE 1
PIPELINED

(WRITE)

T2P T2P T1P

CYCLE 2
PIPELINED

(READ)

T2. T2P T1P

CYCLE 3
PIPELINED
(WRITE)

hi T2P TIP

CYCLE 4
PIPELINED

(READ)

CLK2 [

PROCESSOR CLK [

BHE#.BLE#. [
A1-A23.

M/IO #. D/C # • ";';';;;;';'';'''I9--+''';';~';;;'''-!--''''''''';';';;:;;;'';''..-..K~~p....;.;.~..;..;.-r

W/R# [

ADS # [

READY# [

LOCK# [

00-015 [

NA# COULD HAVE
BEEN ASSERTED

IN T1 P IF DESIRED.
ASSERTION NOW IS

THE LATEST TIME
POSSIBLE TO ALLOW

THE CPU TO ENTER T2P
STATE TO MAINTAIN

PIPELINING IN CYCLE 3

Figure 5.11. Details of Address Pipellning During Cycles with Walt States

4-405

240187-26

38.6SXTr.iI.MICROPROCESSOR

HOLD ASSERTED

aus States: . . ,
Tl-first clock of. a nQn-:pipelined bus cycle (386&XTM CPU
drives new address anq aS$ll!1sADS#). ."
T2-subsequent clacks· of: a bus cycle when NA # has not been
sampled asserted in the current bus cycle.
T21-subsequent clocks of a .bus cycle whenNA# has been
sampled asserted in the current bus cycle but there is' not yet
an internal bus request pending (386SXTM CPU will not drive
new address or assert ADS #).'
T2P-subsequent clocks of a. bus cycle when NA# has been
sampled asserted in the current bus cycle and there Is an inter­
nal bus request pending (386SXTM CPU drives neW address
and asserts ADS#).
Tl P-first clock oj a pipelined bus,9ycle.
Ti-idle state.
Th-hold acknowledge state (386SXTM CPU asserts HLDA).
Asserting NA # for pipelined address gives access to ,three
more bus states: T21, T2P and T1P.
USing pipelinedaddress, the fastest bus cycle . consists of Tl P
and T2P.

READY # NEGATED

Figure 5.12. Complete Bus States (includingplpelinedaddress)

4-406

" z
C
z w
Cl.

0 OVI O •• (!) Ww ~
I.&JOCZ 1;:::> "' !<,~~~ m~

w
V>

Sf5cw VI
ZVlLWQ. "'. '" v>Z ... ,,"0 "" ~:!9~ "'w >-

z!;(0

~~~B " ~ w "' 0: Z 

9 
0 
:r 

240187-27 



386SX™ MICROPROCESSOR 

Initiating and MalntalnlngPlpelined Address 

Using the state diagram Figure 5.12, observe the 
transitions from an idle state, Tj, to the beginning of 
a pipelined bus cycle T1 P. From an idle state, Ti, the 
first bus cycle must begin with T1; and is therefore a 
non-pipelined bus cycle. The next bus cycle will be 
pipelined, however, provided NA # is asserted and 
the first bus cycle ends in a T2P state (the address 
for the next bus cycle is driven during T2P). The fast­
est path from an idle state to a bus cycle with pipe­
lined address is shown in bold below: 

T .. TI, T .. T1 • T2· T2P,T1P· T2P, 
idle non-pipelined pipelined 
states cycle cycle 

T1-T2-T2P are the states of the bus cycle that es­
tablish address pipelining for the next bus cycle, 
which begins with T1 P. The same is true after a bus 
hold state, shown below: 

Th, Th, Th, T1 . T2· T2P, T1p· T2P, 
hold acknowledge non-pipelined pipelined 

states cycle cycle 

The transition to. pipelined address is shown func­
tionally by Figure 5.10 Cycle 1. Note that Cycle 1 is 
used. to transition into pipelined address timing for 
the subsequent Cycles 2, 3 and 4, which are pipe­
lined. The NA # input is asserted at the appropriate 
time to select .address pipelining for Cycles 2, 3 and 
4. ' . 

Once a bus cycle is in· progreSs' and the current ad­
dress has been valid for one entire bus state, the 
NA # input is sampled r;lJ the end of every phase one 
until the bus cycle is acknowledged. Sampling be­
ginsin T2 during Cycle 1 in Figure 5.10. Once NA # 
is sampled active during the current cycle, the 
366SX Microprocessor is free to drive a new ad­
dress and bus cycle definition on the bus as early as 
the next bus state. In Figure 5.10 Cycle 1 for exam­
ple, the next address is driven during state T2P. 
Thus Cycle 1 makes the transition to pipelined ad­
dress timing, since it begins with T1 but ends with 
T2P. Because the address for Cycle 2 is available 
before Cycle 2 begins, Cycle 2 is called a pipelined 

bus cycle, and it begins with T1 P. Cycle 2 begins as 
soon as READY # asserted terminates Cycle 1. 

Examples of transition bus cycles are Figure 5.10 
Cycle 1 and Figure 5;9 Cycle 2. Figure 5.10 shOws 
transition during the very first cycle after an idle bus 
state, which is the fastest possible transition into ad­
dress pipelining. Figure 5.9 Cycle 2 shows a tran­
sition cycle occurring during a burst of bus cycles. In 
any case, a transition cycle is the same whenever it 
occurs: it consists at least of T1, T2 (NA #is assert­
ed at that time), and T2P (provided the 366SX Micro­
processor has an internal bus request already pend­
ing, which it almost always has). T2P states are re­
peated if wait states are added to the cycle. 

Note that only three states (T1, T2 and T2P) are 
required in a bus cycle performing a transition from 
non-pipe lined address into pipelined address timing, 
for example Figure 5.10 Cycle 1., Figure 5.10 Cycles 
2, 3 and 4 show that address pipelining can be main­
tained with two-state bus cycles consisting only of 
T1P and T2P. 

Once a pipelined bus cycle is in progress, pipelined 
timing is maintained for the next cycle bY.asserting 
NA# and detecting that the 366SX Microprocessor 
enters T2P during the current bus cycle. The current 
bus cycle must end instate T2P for pipelining to be 
maintained in the next cycle, T2P is identified by the 
assertion of ADS #. Figures 5.9 and 5.10 however, 
each show pipelining ending after Cycle 4 because 
Cycle 4 ends in T21. This indicates the 366SX Micro­
processor didn't have an internal bus request prior 
to the acknowledgement-of Cycle 4. If a cycle ends 
with a T2 or T21, the next cycle will not be pipelined. 

Realistically, address pipelining is almost always 
maintained as long as NA# is sampled asserted. 
This is so because in the abstlnce Of any other re­
quest, a code prefetch request is always internally 
pending until the instruction decoder and code pre­
fetch queue are completely full. Therefore, address 
pipelining is maintained for long bursts of bus cycles, 
if the bus is available (i.e., HOLD inactive) and NA# 
is sampled active in each of the bus cycles. 

4-407 



inter 386SXTNlMICROPROCESSOR 

INTERRUPT ACKNOWLEDGE (INTA) CYCLES 

In response to an interrupt request on the INTR in­
put when interrupts are enabled, the 386SX Micro­
processor' performs two interrupt .acknowledge cy­
cles. These bus cycles are similar to read cycles in 
th/ii bus definition signals define the type of bus ac­
tivity taking place, and each cycle continues until ac­
knowledged by READY # sampled active. 

The state .of A2 distinguishes. the first and second 
interrupt acknowledge cycles. The byte address 
driven during the first interrupt acknowledge. cycle is 
4 (A23-A3, A1, BLE# LOW, A2and BHE# HIGH). 
The byte addres.s driven during the second interrupt 
acknowledge cycle is 0 (A23-A1, BLE# LOW, and 
BHE# HIGH). 

PREVIOUS 1 
CYCLE 

T2 T1 

INTERRUPT I 
ACKNOWLEDGE 

CYCLE 1 

T2 T2 TI 

The LOCK # output is asserted from the beginning 
of the first interrupt acknowledge cycle until the end 
of the.second interrupt acknowledge cycle. Four idle 
bus states; Ti, are inserted by the 386SX Microproc­
essor between the. two interrupt acknowledge cycles 
for compatibility with spec TRHRLof the 8259A In­
terrupt Controller. 

During both interrupt acknowledge cycles, 015-00 
float. No data is read at the end of the first interrupt 
acknowledge cycle. At the end of the second inter­
rupt acknowledge cycle,the 386SX Microprocessor 
will read an external interrupt vector from 07-00 of 
the data bus. The vector indicates the specific inter­
rupt number (from 0-255) requiring service. 

IDLE 
(4 BUS STATES) 

I 
TI TI TI Tl 

INTERRUPT 
ACKNOWLEDGE 

CYCLE 2 

T2 

.1 IDLE 

T21 TI 

CLK2[ _nnnnnnnnnnnnrmnnnnnnnnnn 
PROCESSOR CLK[ -V-\JVVv-VVVv-v-VV-

BHE#[ XX .IY "(XXX IXXXX !XXXX :XX.X y ,'{xx ,xXX 

~ r 
'BLE#,Al,A3-A23,[ XlXvX' v ,,, 

M/IO#, D/c#, W/R# ~;loj."'~'~"'A~_I-_+_-hl~~~~~~QL~~~~_I-+-~~~~~~ .xxx IXXXX 'XXXX ,xx ,. [XX .xXX 
V" / 

A2[ IXXXXIY xxx IXXXX xXX XXXXx, xx xx 
.... 

LOCK#[~ XIX~X~:X~.X~x. V / 
tX:J.X 

.-
ADS#L 

NA#[ XiXXXX xx: x xxX XX XX Xx .XXX!,. )(XXXXIXXXX 

READYH[ x xx xx .XY ~ \ AAXX.XX .XXXX IXXXX XI ~ m.. 
0O-O7[ - ---- ---- -----

IGNORED VECTOR 

--0-- ----- ---------------._---I---@---
OS-D1S[ - ---- ---- ___ e. --~-- ---- _ .. _------------ ---- --:q:>---

240187-28 
Interrupt Vector (0-255) is read on 00-07 at end of second interrupt Acknowledge bus cycle. 
Because each Interrupt Acknowledge bus cycle is followed by idle bus states. asserting NA # has no practical effect. 
Choose the approach which is simplest for your system hardware design. 

Figure 5.13. Interrupt Acknowledge Cycles 

4-408 



386SXTM MICROPROCESSOR 

HALT INDICATION CYCLE definition signals shown on page 40, BU8 Cycle 
Definition Slgnal8, and an address of 2. The halt 
Indication cycle must be acknowledged by READY"" 
asserted. A halted 386SX Microprocessor resumes 
execution when INTR (if interrupts are enabled), NMI 
or RESET is asserted. 

The execution unit halts as a result of executing a 
HL T instruction. Signaling its entrance into the halt 
state, a halt indication cycle is performed. The halt 
indication cycle is identified by the state of the bus 

/ 
CYCLE 1 / CYCLE 2 /IDLE 

NON-PIPELINED NON-PIPELINED 
(WRITE) (HALT) 

T1 T2 T1 T2 TI TI TI TI 

CLK2[ 

PROCESSOR CLK [ 

BHE#, Al,[ 
M/IO#, W/R# 

'r~':'t'-:--T'7--t---tm'lm::~m::mr386SXTM CPU REMAINS HALTED 
~;W;~llI.l&a~ UNTIL INTR, NMI OR 
- RESET IS ASSERTED. 

A2-A23,[ 
BLE#,D/C# 

I I 
-je~..;,;;=t:.':"'-~--4--~~Q-'~Q-'~386SXTM CPU RESPONDS TO 

ADS#[ 
_--+'---1--......... HOLD INPUT WHILE IN 

THE HALT STATE. 

NA# [ ~~~~~,QQ,QjQ,QQ~,QQ~QQ~QQ~~~ 

00-0 [ 

240187-29 

Figure 5.14. Example Halt Indication Cycle from Non-Plpellned Cycle 

4·409 



SHUTDOWN INDICATION CYCLE 

386SX™ MICROPROCESSOR 

ENTERING AND EXITING HOLD 
ACKNOWLEDGE 

The 386SX Microprocessor shuts down as a result 
of a protection fault while attempting to process a 
double fault. Signaling its entrance into the shut­
down state, a shutdown indication cycle is per­
formed. The shutdown indication cycle is identified 
by the state of the bus definition signals shown in 
Bus Cycle Definition Signals (page 40) and an ad­
dress of O. The shutdown indication cycle must be 
acknowledged by READY # asserted. A shutdown 
386SX Microprocessor resumes execution when 
NMI or RESET is asserted. 

The bus hold acknowledge state, Th, is entered in 
response to the HOLD input being asserted. In the 
bus hold acknowledge state, the 386SX Microproc­
essor floats all outputs or bidirectional signals, ex­
cept for HLDA. HLDA is asserted as. long as the 
386SX Microprocessor remains in the bus hold ac­
knowledge state. In the bus hold acknowledge state, 
all inputs except HOLD and RESET are ignored. 

ClK2[ 

PROCESSOR ClK [ 

BHE#, [ 
M/IO#, W/R# 

BlE#,A l-A23 [ 
D/C# 

ADS#[ 

CYCLE 1 
PIPELINED 

(READ) 

Tl P T2P 

CYCLE 2 
PIPELINED 

(SHUTDOWN) 

TlP 

I IDLE 

T21 11 TI 11 TI 

-t~~-+r--+---b~?t'lb~~~'m~386SXTt.4 CPU REMAINS SHUTDOWN 
'Q~~~QL~.QIl~iI- UNTil NMI OR RESET 
• IS ASSERTED. 

I I 
-I-";';;;::':'~~-4---.p.Qll~~~~Ql.~oQj- 386SX™ CPU RESPONDS TO 

HOLD INPUT WHilE IN r--+--+---I---f- THE SHUTDOWN STATE. 

NA# [ ~1i...-~~~"--~~~~QjQ~QjQ~~~~ 

DO-D1S[ 

240187-30 

Figure 5.15. Example Shutdown Indication Cycle from Non-Plpellned Cycle 

4-410 



infef 386SXTM MICROPROCESSOR 

T h may be entered from a bus idle state as in Figure 
5.16 or after the acknowledgement of the current 
physical bus cycle if the LOCK# signal is not assert­
ed, as in Figures 5.17 and 5.18. 

This exited in response to the HOLD input being 
negated. The following state will be TI as in Figure 
5.16 if no bus request is pending. The following bus 
state will be T1 if a bus request is internally pending, 
as in Figures 5.17 and 5.18. This exited in response 
to RESET being asserted. 

If a rising edge occurs on the edge-triggered NMI 
input while in T h' the event is remembered as a non­
maskable interrupt 2 and is serviced when This exit­
ed unless the 386SX Microprocessor is reset before 
This exited. 

RESET DURING HOLD ACKNOWLEDGE 

RESET being asserted. takes priority over HOLD be­
ing asserted. If RESET is asserted while HOLD re-

IDLE 

n 

CLK2[ 

PROCESSOR CLK [ 

HLDA[ 

mains asserted, the 386SX Microprocessor drives its 
pins to defined states during reset, as in Table 5.5 
Pin State During Reset, and performs internal reset 
activity as usual. 

If HOLD remains asserted when RESET is inactive, 
the 386SX Microprocessor enters the hold acknowl­
edge state before performing its first bus cycle, pro­
vided HOLD is still asserted when the 386SX Micro­
processor would otherwise perform its first bus cy­
cle. 

BUS ACTIVITY DURING AND FOLLOWING 
RESET 

RESET is the highest priority input signal, capable of 
interrupting any processor activity when it is assert­
ed. A bus cycle in progress can be aborted at any 
stage, or idle states or bus hold acknowledge states 
discontinued so that the reset state is established. 

I--- HOLD . --I I _ ACKNOWLEDGE _ I 
Th Th. Th 

IDLE 

n 

BHE#,BLE#, [ 
Al-A23, t.4/IO# ~~~"" 

D/CII, W/R# -
(FLOATING)···· 1~1oUj~ 

I 
ADS#[ (FLOATING) •••• 

NA#[ 

READY#[ 

LOCK#[ L¥~~'i( •••• (FLOATING)···· - I ''"'-'''-' ...... 
(FLOATING) .. -.- •..••..•. -~-.-. 00-015 [ • 

240187-31 

NOTE: 
For maximum design flexibility the 386SXTM CPU has no internal pull up resistors on its outputs. Your design may require 
an external pullup on ADS # and other outputs to keep them negated during float periods. 

Figure 5.16. Requesting HQld from Idle Bus 

4-411 



NOTE: 

386SXTM MICROPROCESSOR 

C;LK2[ 

PROCESSOR CLK[ 

HOLD [ 

HLDA[ 

BHE#.BLE#,A l-A23. [ 
M/IO#. D/CH. W/R# 

R~DY#[ 
(NE 

LOCK#[ 

T1 

CYCLE 1 
NON-PIPELINED 

(READ) 

T2 T2 

HOLD CYCLE 2 
ACKNOWLEDGE NON-PIPELINED 

(WRITE) 

Th Th Tl T2 

NO LATER T/:IAN READY# ASSERTED 

VALID 2 

240187-32 

HOLD Is a synchronous input and can be asserted at any CLK2 edge. provided setup and hold (t23 and t24) require· 
ments are met. This waveform is useful for determining Hold Acknowledge latency. 

FlglJre 5.17. Requesting Hold from Active Bus (NA# Inactive) 

4·412 



inter 386SX™ MICROPROCESSOR 

RESET should remain asserted for at least 15 CLK2 
periods to ensure it is recognized throughout the 
386SX Microprocessor, and at least 80 CLK2 peri­
ods if self-test is going to be requested at the falling 
edge. RESET asserted pulses less than 15 CLK2 
periods may not be recognized. RESET pulses less 
than 80 CLK2 periods followed by a self-test may 
cause the self-test to report a failure when no true 
failure exists. 

Provided the RESET falling edge meets setup and 
hold times t25 and t26, the internal processor clock 
phase is defined at that time as illustrated by Figure 
5.19 and Figure 7.7. 

CLK2[ 

PROCESSOR CLK[ 

HOLD [ 

HLDA[ 

BHE#.BLE#.A l-A23, [ 
M/IO#. D/C#. W/R# 

ADS# [ 

np 

CYCLE 1 
PIPELINED 

(WRITE) 

T21 

A self-test may be requested at the time RESET 
goes inactive by having the BUSY # input at a LOW 
level as shown in Figure 5.19. The self-test requires 
(220 + approximately 60) CLK2 periods to com­
plete. The self-test duration is not affected by the 
test results. Even if the self-test indicates a problem, 
the 386SX Microprocessor attempts to proceed with 
the reset sequence afterwards. 

. After the RESET falling edge (and after the self-test 
if it was requested) the 386SX Microprocessor per­
forms an internal initialization sequence for approxi-
mately 350 to 450 CLK2 periods.· . 

HOLD CYCLE 2 
ACKNOWLEDGE NON-PIPELINED 

(READ) 

T21 Th Th n T2 

NA# [ ~~~~~~~~~~Llp~LlpQQCj 

240187-33 

NOTE: 
HOLD is a synchronous input and can be asserted at any CLK2 edge, provided setup and hold (t23 and t24) require­
ments are met. This waveform is useful for determining Hold Acknowledge latency. 

Figure 5.18: Requesting Hold from Idle Bus (NA# active) 

4-413 



ClK2[ 

RESET [ 

ClK (INTERNAL) [ 

PROCESSOR ClK [ 

BUSY# [ 

ERROR# [ 

BHE#.BlE#. 
W/R#. M/IO#. [ 

HlDA 

Al-A23. [ 
D/C#.lOCK# 

ADS#[ 

NA#[ 

00-015#[ 

NOTES: 

38.6SXTM MICROPROCESSOR 

INTERNAL 
1-----RESET----I----INITIAlIZATION------I 
~ 15 ClK2 .DURA TlON If 
NOT GOING TO REOUEST 
SELF-TEST. 

DURING RESET 

DURING RESET 

DURING RESET 

-(FLOATING) - - - -- -- - ---

CYCLE 1 

NON-PIPELINED 
(READ) 

Tl T2 

240187-34 

1. BUSY # should be held stable for 8 CLK2 periods before and after the CLK2 period in which RESET falling edge 
occurs. 
2. If self-test is req\lested the outputs remain in their reset state as shown here. 

Figure 5.19. Bus Activity from Reset Until First Code Fetch 

4-414 



infeF 386SXTM MICROPROCESSOR 

5.5 Self-test Signature 

Upon completion of self-test (if self-test was re­
quested by driving BUSY # LOW at the falling edge 
of RESET) the EAX register will contain a signature 
of OOOOOOOOH indicating the 386SX Microprocessor 
passed its self-test of microcode and major PLA 
contents with no problems detected. The passing 
signature in EAX, OOOOOOOOH, applies to all revision 
levels. Any non-zero signature indicates the unit is 
faulty. 

5.6 Component and Revision 
Identifiers 

To assist users, the 386SX Microprocessor after reo 
set holds a component identifier and revision identifi­
er in its OX register. The upper 8 bits of OX hold 23H 
as identification of the 386SX Microprocessor (the 
lower nibble, 03H, refers to the Intel386 Architec· 
ture. The upper nibble, 02H, refers to the second 
member of the Intel386 Family). The lower 8 bits of 
OX hold an 8-bit unsigned binary number related to 
the component revision level. The revision identifier 
will, in general, chronologically track those compo­
nent steppings. which. are intended to have certain 
improvements or distinction from previous step­
pings. The 386SX Microprocessor revision identifier 
will track that of the 386 CPU where possible. 

The revision identifier is intended to assist users to a 
practical extent. However, the revision identifier val­
ue is not guaranteed to change with every stepping 
revision, or to follow a completely uniform numerical 
sequence, depending on the type or intention of re­
vision, or manufacturing materials required to be 
changed. Intel has sole discretion over these char­
acteristics of the component. 

Table 5.7. Component and 
Revision Identifier History 

Stepping Revision Identifier 

AO 04H 
B 05H 

5.7 Coprocessor Interfacing 
The 386SX Microprocessor provides an automatic 
interface for the Intel 80387SX numeric floating­
point coprocessor. The 80387SX coprocessor uses 
an lID mapped interface driven automatically by the 
386SX Microprocessor and assisted by. three dedi­
cated signals: BUSY #, ERROR # and PEREa. 

As the. 386SX Microprocessor begins supporting a 
coprocessor instruction, it tests the BUSY # and ER­
ROR # signals to determine if the coprocessor can 
accept its next instruction. Thus, the BUSY # and 
ERROR # inputs eliminate the need for any 'pre-

amble' bus cycles for communication between proc· 
essor and coprocessor. The 80387SX can be given 
its command opcode immediately. The dedicated 
signals provide instruction synchronization, and 
eliminate the need of using the WAIT opcode (9BH) 
for 80387SX instruction synchronization (the WAIT 
opcode was required when the 80B6 or 80BB was 
used with the B087 coprocessor). 

Custom coprocessors can be included in 3B6SX Mi­
croprocessor based systems by memory-mapped or 
liD-mapped interfaces. Such coprocessor interfac­
es allow a completely custom protocol, and are not 
limited to a set of coprocessor protocol 'primitives'. 
Instead, memory-mapped or lID-mapped interfaces 
may use all applicable instructions for high-speed 
coprocessor communication. The BUSY # and ER· 
ROR # inputs of the 386SX Microprocessor may 
also be used for the custom coprocessor interface, if 
such hardware assist is desired. These Signals can 
be tested by the WAIT opcode(9BH). The WAIT 
instruction will wait until the BUSY # input is inactive 
(interruptable by an NMI or enabled INTR input), but 
generates an exception 16 fault if the ERROR # pin 
is active when the BUSY # goes (or is) inactive. If 
the custom coprocessor interface is memory­
mapped, protection of the addresses used for the 
interface can be provided with the 3B6SX CPU's on­
chip paging or segmentation mechanisms. If the 
custom interface is lID-mapped, protection of the 
interface can be provided with the 10PL (1/0 Privi­
lege Level) mechanism. 

The B03B7SX numeric coprocessor interface is lID 
mapped as shown in Table 5.B. Note that the 
B03B7SX coprocessor interface addresses are be­
yond the OH-OFFFFH range for programmed lID. 
When the 386SX Microprocessor supports the 
B03B7SX coprocessor, the 3B6SX Microprocessor 
automatically generates bus cycles to the coproces­
sor interface addresses. 
Table 5.8. Numeric Coprocessor Port Addresses 

Address in 386SXTM CPU 80387SX Coprocessor 
1/0 Space Register 

BOOOFBH Opcode Register 
BOOOFCH/8000FEH* Operand Register 
'Generated as 2nd bus cycle dUring Dword transfer. 

To correctly map the B03B7SX registers to the ap­
propriate liD addresses, connect the CMOO and 
CM01 lines of the B03B7SX as listed in Table 5.9. 

Table 5.9. Connections for CMDO 
and CMD11nputs for the 80387SX 

Signal Connection 

CMOO Connect to latched version 
of 3B6SXTM CPU A2 Signal 

CM01 Connect to ground. 

4-415 



inter 386SX™ MICROPROCESSOR 

Software Testing for Coprocessor Presence 

When software is used to test for coprocessor 
(80387SX) presence, it should use only the following 
coprocessor opcodes: FIN IT, FNINIT, FSTCW mem, 
FSTSW mem and FSTSW AX. To use other coproc· 
essor opcodes when a coproce.ssor is known to be· 
not present, first set EM = 1 in the 386SX CPU's 
CRO register. 

6.0 PACKAGE THERMAL 
SPECIFICATIONS 

The 386SX Microprocessor is specified for operation 
when case temperature is within the range of O·C-
8S·C. The case temperature may be measured in 
any environment, to determine whether the 386SX 
Microprocessor is within specified operating range. 
The case temperature should be measured at the 
center of the top surface opposite the pins. 

The ambient temperature is guaranteed as long as 
T c· is not violated. The ambient temperature can be 
calculated from the Bjc and Bja from the following 
equations: 

Tj = Tc + POOjc 

Ta = Tj - P*Bja 

Tc = Ta + P*[Oja - Ojc] 

Values for Bja and Bjc are given in table 6.1 for the 
100 lead fine pitch. Bja is given at various airflows. 
Table 6.2 shows the maximum T a allowable (without 
exceeding T c> at various airflows. Note that T a can 
be improved further by attaching 'fins' or a 'heat 
sink' to the package. 

7.0 ELECTRICAL SPECIFICATIONS 

The following sections describe recommended elec· 
trical connections for the 386SXMicroprocessor, 
and its electrical specifications. 

7.1 Power and Grounding 

The 386SX Microprocessor is implemented in 
CHMOS III technology and has modest power reo 
quirements. However, its high clock frequency and 
47 output buffers (address, data, control, and HLDA) 
can cause power surges as multiple Qutput buffers 
drive new signal levels simultaneously. For clean on· 
chip power distribution at high frequency, 14 Vcc 
and 18 Vss pins separately feed functional units of 
the 386SX Microprocessor. 

Power and ground connections must be made to all 
external Vcc and GND pins of the 386SX Microproc· 
essor. On the circuit board, all Vcc pins should be 
connected on a Vcc plane and all Vss pins should 
be connected on a GND plane. 

POWER· DECOUPLING RECOMMENDATIONS 

Liberal decoupling capacitors should be placed near 
the 386SX Microprocessor. The 386SX Microproc­
essor driving its 24-bit address bus and 16-bit data 
bus at high frequencies can cause transient power 
surges, particularly when driving large capacitive 
loads. Low inductance capacitors and interconnects 
are recommended for best high frequency electrical 
performance. Inductance. can be reduced by short­
ening circuit board traces betweenttie 386SX MicrO· 
processor and decoupling capacitors as much as 
possible. 

Table 6.1. Thermal Resistances ("C/Watt) Ole and 0la. . 

Bla versus Airflow· ftlmln (m/sec) 
Package Blc 0 200 400 600 800 1000 

(0) (1.01) (2.03) (3.04) (4.06) (5.07) 

100 Lead 
7 33 27 24 21 18 17 

Fine Pitch 

Table 6.2: Maximum T aat various airflows. 

TA("C) versus Airflow· ft/mln (m/sec) 
Package 0 200 400 600 800 1000 

(0) (1.01) (2.03) (3.04) (4.06) (5.07) 

100 Lead 
33 45 51 57 63 65 

Fine Pitch 
Max. T A calculated at 5.0V and max Icc. 

4-416 



inter 386SXTM MICROPROCESSOR 

Table 7 1 Recommended Resistor Pull·ups to Vee .. 
Pin Signal Pull·up Value 

16 ADS# 20 K·Ohm ± 10% 

26 LOCK# 20 K-Ohm ± 10% 

RESISTOR RECOMMENDATIONS 

The ERROR # and BUSY # inputs have internal pull­
up resistors of approximately 20 K-Ohms and the 
PEREQ input has an internal pull-down resistor of 
approximately 20 K-Ohms built into the 386SX Mi­
croprocessor to keep these signals inactive when 
the 80387SX is not present in the system (or tempo­
rarily removed from its socket). 

In typical designs, the external pull-up resistors 
shown in Table 7.1 are recommended. However, a 
particular design may have reason to adjust the re­
sistor values recommended here, or alter the use of 
pull-up resistors in other ways. 

OTHER CONNECTION RECOMMENDATIONS 

For reliable operation, always connect unused in­
puts to an appropriate signal level. N/C pins should 
always remain unconnected. Connection of N/C 
pins to Vee or Vss will result in component mal· 
function or incompatibility with future stepplngs 
of the 386SX Microprocessor. 

Particularly when not using interrupts or bus hold (as 
when first prototyping), prevent any chance of spuri­
ous activity by connecting these associated inputs to 
GND: 

Pin 
40 
38 
4 

Signal 
INTR 
NMI 
HOLD 

Purpose 

Lightly pull ADS # inactive during 
386SXTM CPU hold acknowledge 
states 

Lightly pull LOCK # inactive during 
386SXTM CPU hold acknowledge 
states 

If not using address pipelining, connect pin 6, NA #, 
through a pull-up in the range of 20 K-Ohms to Vcc. 

7.2 Maximum Ratings 

Table 7.2. Maximum Ratings 

Parameter Maximum Rating 

Storage temperature - 65°C to 150°C 
Case temperature under bias -65°Ct0110°C 
Supply voltage with respect 

toVss -.5Vt06.5V 
Voltage on other pins - .5V to (Vcc + .5)V 

Table 7.2 gives stress ratings only, and functional 
operation at the maximums is not guaranteed. Func­
tional operating conditions are given in section 7.3, 
D.C. Specifications, and section 7.4, A.C. Speclfl· 
cations. 

Extended exposure to the Maximum Ratings may af­
fect device reliability. Furthermore, although the 
386SX Microprocessor contains protective circuitry 
to resist damage from static electric discharge, al­
ways take precautions to avoid high static voltages 
or electric fields. 

4-417 

i; 
I' 
1\ 



386SXTM. MICROPROCESSOR 

7.3 D.C. Specifications 
Functional operating range: Vcc = 5V ± 10%; T CASE = O°C to 85°C 

Table 7.3. D.C. Characteristics 

Symbol 

VILC 

VIHC 

VOH 

III 

IIH 

IlL 

Parameter 

Input LOW Voltage 

Input HIGH Voltage 

CLK2 Input LOW Voltage 

CLK2 Input HIGH Voltage 

Output LOW Voltage 
IOL =4mA: 
IOL =5mA: 

Output high voltage 
IOH= -1mA: 
iOH= -0.2 mA: 
IOH= -O.gmA: 

IOH= -0.18 mA: 

A23-A1,D1S-DO 
BHE#,BLE#,W/R#, 

D/C#,MIIO#,LOCK#, 
ADS#,HLDA 

A23-A1,D 
A23-A 

BHE#,B 
D/C#,M 

Input leakage cU[le 
(for all pins except 
PEREQ, BUSY # and ER 

ILO Output I 

Icc Supply current 
(CLK2 = 32 MHz) 

CIN Input capacitance 

COUT Output or 1/0 capacitance 

CCLK CLK2 Capacitance 

Tested at the minimum operating frequency of the part. 

NOTES: 
1. PEREQ input has an internal pull-down resistor. 

Min 

-0.3 

2.0 

-0.3 

Vcc-0.8 

2. BUSY # and ERROR # inputs each have an internal pull-up resistor. 

Max 

+0.8 

Vcc+0.3 

+0.8 

Vcc+0.3 

±15 

200 

-400 

±15 

400 

10 

12 

20 

3. Icc max measurement at worst case load, frequency, Vcc and temperature. 
4. Not 100% tested. 

4-418 

Unit Notes 

V 

V 

V 

p.A OV~VIN~VCC 

p.A VIH = 2.4V, Note 1 

p.A VIL=OA5V,Note 2 

p.A 0.45V~VOUT~VCC 

mA Icc typ = 300mA, Note 3 

pF Fc= 1 MHz, Note 4 

pF Fc= 1 MHz, Note 4 

pF Fc= 1 MHz, Note 4 





inter 386SX.TM MICROPROCESSOR [P)OOrgn..DlMlOOO~OOW 

A.C. SPECIFICATONS TABLES 
Functional operating ra.nge: Vcc = 5V ± 10%; TeASE = O·C to 85·C 

, I ' 

Table 7.4. A.C. Characteristics at 16 MHz 

Symbol Parameter Min Max Unit Figure Notes 

Operating frequency 4 16 MHz Half CLK2 Freq 

tl CLK2 period 31 125 ns 7.3 

t2a CLK2 HIGH time 9 ns 7.3 at2V(S) 

t2b CLK2 HIGH time 5 ns 7.3 at (Vcc-0.8)V(S) 

tSa CLK2 LOW time 9 nS 7.3 

tSb CLK2 LOW time 7, ns 7.3 

t4 CLK2falitime 8 ns -0.8)V to 0.8V(S) 

t5 CLK2 rise time 8 

t6 A2S-Al valid delay 4 

t7 A2S-Al float delay 4 (Note 1) 

t8 BHE#, BLE#, LOCK# 
valid delay CL = 75pF(4) 

t9 BHE#, BLE#, LOCK# 
float delay (Note 1) 

tl0 W/R#, M/IO#, D/C#, 
ADS # valid delay 7.5 CL = 75pF(4) 

tll W/R#, M/IO#, 
ADS# floatd 7.6 (Note 1) 

t12 
ns 7.5 CL = 120pF(4) 

tlS 
35 ns 7.6 (Note 1) 

t14 33 ns 7.5 CL = 75pF(4) 

t15 ns 7.4 

t16 21 ns 7.4 

t19 READY # setup time 19 ns 7.4 

t20 READY # hold time 4 ns 7.4 

t21 015-00 Read Data 
setup time 9 ns 7.4 

t22 015-00 Read Data 
hold time 6 ns 7.4 

t2s HOLD setup time 26 ns 7.4 

t24 HOLD hold time 5 ns 7.4 

t25 RESET setup time 13 ns 7.7 

t26 RESET hold time 4 ns 7.7 

4-420 



inter 386SX™ MICROPROCESSOR 

Functional operating range: Vee = 5V ± 10%; TCASE = O·C to 85·C 

Table 7.4. A.C. Characteristics at 16 MHz (Continued) 

Symbol Parameter Min Max Unit Figure Notes 

t27 NMI, INTR setup time 16 ns 7.4 (Note 2) 

t28 NMI, INTR hold time 16 ns 7.4 (Note 2) 

t29 PEREQ, ERROR #, BUSY # 
setup time 16 ns 7.4 (Note 2) 

t30 PEREQ, ERROR #, BUSY # 
hold time 5 ns 7.4 (Note 2) 

NOTES: 
1. Float condition occurs when maximum output current becomes less than ILO in magnitude. Float delay is not 100% 
tested. 
2: These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing purposes, 
to assure recognition within a specific CLK2 period. 
3: These are not tested. They are guaranteed by design characterization. 
4: Tested with CL set at 50 pf and derated to support the indicated distributed capacitive load. See figure 7.8 for the 
capacitive derating curve. 

A.C. TEST LOADS A.C. TIMING WAVEFORMS 

80386SX~ 
OUTPUT .L. 

~CL 
240187-36 

240187-37 

Figure 7.2. A.C. Test Loads Figure 7.3. CLK2 Waveform 

4·421 

I 

I: -



", .. 

386SX™'MICROPROCESSOR 

Tx Tx 

CLK2 [ 

READYN [ ~~~~--f---~~ 

HO,LD [ ~~~~--f---~~ 

00-015 [ 
(INPUT) ~~~ __ -+ __ ......II~~ 

BUSYN. [ 
ERRORN PEREO W~~""' __ f-__ AW~ 

NAN [ 

INTR. [ 
Nt.ll 

Tx 

Figure 7.4. A.C. Timing Waveforms-Input Setup and Hold Timing 

CLK2 [ 

SHEN.BLEN. [ 
LOCKN 

W/RN.t.l/ION. [ 
D/CN.ADSN 

Al-A23 [ 

00-015 [ 
(OUTPUT) 

HLDA [ 

Tx 

Figure 7.5. A.C. Timing Waveforma-Output Valid Delay Timing 

4-422 

240187-38 

240187-39 



CLK2 [ 

BHE#.BLE#. [ 
LOCK# 

W/R#.M/IO#. [ 
D/C#.ADS# 

Al-:A23.[ 

00-015 [ 

HLDA [ 

386SX™ MICROPROCESSOR 

Th TI OR T1 

(HIGH Z) 

@ALSO APPLIES TO DATA flOAT WHEN WRITE 
CYCLE IS'FOLLOWED BY READ OR IDLE 

MAX 

240187-40 

Figure 7.6. A.C. Timing Waveforms-Output Float Delay and HLDA Valid Delay Timing 

-RESET-,!----INITIALIZATION SEQUENCE ----

CLK2 [ 

RESET [ 

240187-41 

Figure 7.7. A.C. Timing Waveforms-RESET Setup and Hold Timing and Internal Phase 

4-423 



I;;-
5 
>-
::l w 

" §1 
~ ... 
::> e: 
::> 
0 

NOM+4 
NOM+3 

NOM+2 
NOI.4+1 

NOI.4 1/ 
./ . NOII-l 

NOl.1-2 

N0II-3 1/ 
/ NOI.1-4 

V NOI.4~5 

N0II-6 / 
N0II-7 V 

25 50 75 100 120 

LOAD CAPACITANCE (pr) 

240187-42 

Figure 7.8. Capacitive 
Derating Curve 

386SX™ MICROPROCESSOR 

• - RISE TIMES (0.4-3.5V) 

o - rALL TIMES (3.5-0.4V) 

150 OL-~~-L __ ~~ __ ~ 

7 

6 

1 

o 

25 50 75 100 120 150 

CAPACITANCE (pt) 

240187-43 

Figure 7.9. CMOS Level Slew Rates for Output Buffers 

./ 
/ 

./ ./ 
./ r/ 

1/ ./ r"" 
/" 

25 50 75 100 120 150 

CAPACITANCE (pr) 

• - RISE TIMES (0.8-2.0V) 

[J - FALL TIMES (2.0-0.aV) 

240187-44 

Figure 7.10. TTL Level Slew Rates for Output Buffers 

ICC MEASURED AT WORST CASE Vce AND TEMPERATURE 
OL-__ ~ ____ ~ ____ L-__ ~ ____ ~ __ ~ 

4 6 8 10 12 14 16 

rREOUENCY (MHz) 
240187-45 

Figure 7.11. Typical Icc vs Frequency 

4-424 



386SX™ MICROPROCESSOR 

1--------17.5'' -------_1°1 
r-r------I 

DI-~-------_~~~~~-X-=--_I-B---L_--~~--__ _' 

--------------
FLEXIBLE -----------=-=--=-= --

t-1·------~--------26.75"--------------_I 

Po 
240187-48 

Figure 7.12. Preliminary ICETM·386SX Emulato~ User Cable with PQFP Adapter 

1--------12.75"---------_1 

DI-_-__ ~_~~_-X-.l_B--L_~~--__ ..... 

------------------
FLEXIBLE ----------

t 
PIN 1 

1---------------22.0"------'----------'---1 

240187-49 

Figure 7.13. Preliminary ICETM·386SX Emulator User Cable with OIB and PQFP Adapter 

4·425 

[I'; 
i 
I 

I·· 
I: 
I
i 
!~ 

~ 



386SXTM MICROPROCESSOR 

7.5 Designing for ICETM·386SX 
Emulator (Advanced Data) 

The 386SX CPU's in-circuit emulator product is the 
ICETM-386SX emulator. Use of the emulator re­
quires the target system to provide a socket that is 
compatible with the ICE-386SX emulator. The ICE-
386SX offers a1 OO-pin fine pitch flat-pack probe for 
emulating user systems. The 100-pin fine pitch flat­
pack probe requires a socket, called the 100-pin 
PQFP, which is available from 3M text·tool (part 
number 2·0100·07243·000). The ICE·386SX emula­
tor probe attaches to the target system via an adapt­
er which replaces the 386SX CPU component in the 
target system. Because of the high operating fre­
quency of 386SXCPU systems and of the ICE-
386SX emulator, there is no buffering between the 
386SX CPU emulation processor in the ICE-386SX 
emulator probe and the target system. A direct result 
of the non-buffered interconnect is that the ICE-
386SX emulator shares the address and data bus 
with the user's system, and the RESET signal is in­
tercepted by the ICE emulator hardware. In order for 
the ICE-386SX emulator to be functional in the us­
er's system without the Optional Isolation Board 
(alB) the designer must be aware of the following 
conditions: 

1. The bus controller must only enable data trans­
ceivers onto the data bus during valid read cycles 
of the 386SX CPU, other local devices or other 
bus masters. 

2. Before. another bus master drives the local proc­
essoraddress bus, the other master must gain 
control of the address bus by asserting HOLD and 
receiving the HLDA response. 

3. The emulation processor receives the RESET sig­
nal 2 or 4 CLK2 cycles later than an 386SX CPU 
would, and responds to RESET later. Correct 
phase of the response is guaranteed. 

In addition to the above considerations, the ICE· 
386SX emulator processor module has several elec­
trical and mechanical characteristics that should be 
taken into consideration when designing the 386SX 
CPU system. 

Capacitive Loading: ICE-386SX adds up to 27 pF 
to each 386SX CPU signal. 

Drive Requlrem~nts: ICE-386SX adds one FAST 
TTL load on the CLK2, control, address, and data 
lines. These loads are within the processor module 
and are driven by the 386SX CPU emulation proces­
sor, which has standard drive and loading capability 
listed in Tables 7.3 and 7.4. 

Power Requirements: For noise immunity and 
CMOS latch-up protection the ICE-386SX emulator 
processor module is powered by the user system. 

The circuitry on the processor module draws up to 
1.4A including the maximum 386SX CPU Icc from 
the user 386SX CPU socket. 

386SX CPU Location and Orientation: The ICE-
386SX emulator processor module may require lat­
eral clearance. Figure 7.12 shows the clearance re­
quirements of the iMP adapter. The optional isola­
tion board (alB), which provides extra electrical buff­
ering and has the same lateral clearance require­
ments as Figure 7.12, adds an additional 0.5 inches' 
to the vertical clearance requirement. This is illus­
trated in Figure 7.13. 

Optional ·Isolatlon Board (OIB) and the CLK2 
speed reduction: Due to the unbuffered probe de­
sign, the ICE-386SX emulator is susceptible to er· 
rors on the user's bus. The alB allows the ICE-
386SX emulator to function in user systems with 
faults (shorted Signals, etc.). After electrical verifica­
tion the alB may be removed. When the alB is in­
stalled, the user system must have a maximum 
CLK2 frequency of 20 MHz. 

8.0 DIFFERENCES BETWEEN THE 
386SXTM CPU AND THE 386™ 
CPU 

The following are the major differences between the 
386SX CPU and the 386 CPU: . 

1. The 386SX CPU generates byte selects on BHE # 
and BLE# (like the 8086 and 80286) to distin· 
guish the upper and lower bytes on its 16-bit data 
bus. The 386 CPU uses four byte selects, BED #­
BE3 #, to distinguish between the different bytes 
on its 32-bit bus. 

2. The 386SX CPU has no bus sizing option. The 
386 CPU can select between either a 32·bit bus 
or a i6-bit bus by use of the BS16# input. The 
386SX CPU has a i6-bit bus size. 

3. The NA# pin operation in the 386SX CPU is iden­
tical to thafofthe NA# pin on the 386 CPU with 
one exception: the 386 CPU NA# pin cannot be 
activated on i6-bit bus cycles (where BS16# is 
LOW in'the 386 CPU case), whereas NA# can be 
activated on any 386SX CPU bus cycle. 

. 4. The contents of all 386SX CPU registers at reset 
are identical to the contents of the 386 CPU regis­
tersat reset, except the OX register. The OX reg­
ister contains a component-stepping identifier at 
reset, i.e. 

in 386 CPU, DH = 3 indicates 386 CPU 
after reset 

DL = revision number; 

in 386SX CPU, DH = 23H indicates 386SX 
after reset CPU 

DL = revision number. 

4-426 



inter 386SXTM MICROPROCESSOR 

5. The 386 CPU uses A31 and M/IO# as selects for 
the numerics coprocessor. The 386SX CPU uses 
A23 and M/IO# as selects. 

6. The 386 CPU prefetch unit fetches code in four­
byte units. The 386SX CPU prefetch unit reads 
two bytes as one unit (like the 80286). In BS16 
mode, the 386 CPU takes two consecutive bus 
cycles to complete a prefetch request. If there is a 
data read or write request after the prefetch 
starts, the 386 CPU will fetch all four bytes before 
addressing the new request. 

7. Both 386 CPU and 386SX CPU have the same 
logical address space. The only difference is that 
the 386 CPU has a 32-bit physical address space 
and the 386SX CPU has a 24-bit physical address 
space. The 386SX CPU has a physical memory 
address space of up to 16 megabytes instead of 
the 4 gigabytes available to the 386 CPU. There­
fore, in 386SX CPU systems, the operating sys­
tem must be aware of this physical memory limit 
and should allocate memory for applications pro­
grams within this limit. If a 386 CPU system uses 
only the lower 16 megabytes of physical address, 
then there will be no extra effort required to mi­
grate 386 CPU software to the 386SX CPU. Any 
application which uses more than 16 megabytes 
of memory can run on the 386SX CPU if the oper­
ating system utilizes the 386SX CPU's paging 
mechanism. In spite of this difference in physical 
address space, the 386SX CPU and 386 CPU can 
run the same operating systems and applications 
within their respective physical memory con­
straints. 

9.0 ·INSTRUCTION SET 

This section describes the instruction set. Table 9.1 
lists all instructions along with instruction encoding 
diagrams and clock counts. Further details of the 
instruction encoding are then provided in the follow­
ing sections, which completely describe the encod­
ing structure and the definition of all fields occurring 
within instructions. 

9.1 386SX™ CPU Instruction 
Encoding and Clock Count 
Summary 

To calculate elapsed time for an instruction, multiply 
the instruction clock count, as listed in Table 9.1 be-

low, by the processor clock period (e.g. 62.5 ns for 
an 386SX Microprocessor operating at 16 MHz). The 
actual clock count of an 386SX Microprocessor pro­
gram will average 5% more than the calculated 
clock count due to instruction sequences which exe­
cute faster than they can be fetched from memory. 

Instruction Clock Count Assumptions 

1. The instruction has been prefetched, decoded, 
and is ready for execution. 

2. Bus cycles do not require wait states. 

3. There are no local bus HOLD requests delaying 
processor access to the bus. 

4. No exceptions are detected during instruction ex­
ecution. 

5. If an effective address is calculated, it does not 
use two general register components. One regis­
ter, scaling and displacement can be used within 
the clock counts shown. However, if the effective 
address calculation uses two general register 
components, add 1 clock to the clock count 
shown. 

Instruction Clock Count Notation 

1. If two clock counts are given, the smaller refers to 
a register operand and the larger refers to a mem­
ory· operand. 

2. n = number of times repeated. 

3. m = number of components in the next instruc­
tion executed, where the entire displacement (if 
any) counts as one component, the entire imme­
diate data (if any) counts as one component, and 
all other bytes of the instruction and prefix( es) 
each count as one component. 

Misaligned or 32-Bit Operand Accesses 

- If instructions accesses a misaligned 16-bit oper­
and or 32-bit operand on even address add: 
2* clocks for read or write 
4 •• clocks for read and write 

- If instructions accesses a 32-bit operand on odd 
address add: 
4 * clocks for read or write 
8·' clocks for read and write 

Wait States 

Wait states add 1 clock per wait state to instruction 
execution for each data access. 

4-427 

I 

!, 
I 
I 



inter 386SX™ MICROPROCESSOR [P)rru~I!..D!MIDOO&fMf 

Table 9-1, Instruction Set Clock Count Summary 
CLOCK COUNT NOTES 

Real Real 
!NSTRUCTION FORMAT Add .... Protected Addr ••• Protected 

Mode or Virtual Mode or Virtual 
Virtual Addres. Virtual Addre .. 
8086 Mode 8086 Mode 
Mode Mode 

GENERAL DATA TRANSFER 
MOV ~ Move: 

Register to RegisterlMemory 1000tOOw I mod reg rim I 2/2 2/2' b 

RegisterlMemoryto Register 1000101w I mod reg rim I 2/4 2/4' b 

Immediate to Register IMemory 11000 t 1 w I modOOO rim I immediate data 2/2 2/2' 

Immediate to Register (short form) 1011 w reg I immediate data 2 2 

Memory to Accumulator (short form) 1010000w I full displacement 4' 4' b 

Accumulator to Memory (short form) 1010001w I full displacement 2' b 

Register Memory to Segment Register 10001tl0 I modsreg3 rim I h, i,j 

Segment Register to Register/Memory 10001tOO I modsreg3 rim I 
MOVSX ~ Move With Sign Extension 

Register From Register/Memory 3/6' 

MOVZX ~ Move With Zero Extension 

Register From RegisterlMemory 3/6' b 

PUSH~ Push: 

Register IMemory 7/9' 

Register (short form) 

Segment Register (ES, CS, SS or OS) 2 (short form) 
Segment Register (ES, CS, SS,DS, 2 b FSorGS) 

Immediate 2 4 b 

PUSHA ., Push All 18 34 b 

POP ~ Pop 

RegisterlMemory 5/7 7/9 

Register (short form) e 
Segment Register (ES, CS, SS 

25 h, i,j (short form) 
Segment Register (ES, CS, 10sreg3001 25 b h, i,j FSorGS 

POPA = Pop All 01100001 24 40 b 

XCHG ~ Exchange 

Register/Memory With Register 1000011w I mod reg rim I 3/5"'* 3/5 .... b,f f, h 

Register With Accumulator (short form) 110010 reg I ClkCount 3 

IN ~ Input Irom: 
Virtual 

8086 Mode 

Fixed Port port number t26 12' 6"'/26' slt,m 

Variable Port 1110110w t27 13' 7"'/27· slt,m 

OUT ~ Output 10: 

Fixed Port port number t24 10' 4'/24' sll,m 

Variable Port 1110111 w t25 II' 5'/25' sll,m 

LEA ~ Load EA to Register 10001101 I mod reg rim I 

4·428 



intJ 386SXTM MICROPROCESSOR ~OO~IL.Of.MlOOO~OO\'1 

Table 9·1, Instruction Set Clock Count Summary (Continued) 
CLOCK COUNT NOTES 

I' 
Reel Real I 

INSTRUCTION FORMAT Addre .. Protected Add .... Protected I 
Mode or Vlrtuel Mode or Virtual ,.. 
Virtual Add .... Virtual Add .... 
8086 Mode 8088 Mode 
Mode Mode 

SEGMENT CONTROL 

LDS = Load Pointer to OS 11000101 mod rag rIm 7' 26'/28' b h,i,! 

LES = Load Pointer to ES 11000100 mod reg rIm 7' 26'/28' b h,i,! 

LFS = Load Pointer to FS 00001111 10110100 mod reg rIm I 7' 29'/31' b h,I,! 

LOS = Load Pointer to GS 00001111 10110101 mOd reg rIm I 7' 26'/28' b h,I,! 

LSI = Load Pointer to SS 00001111 10110010 mod reg rIm I 7' 26'/28' b h,l,l 

FLAG CONTROL 

CLC = C .... carry Flag 11111000 2 

CLD = Clear Direction Flag 11111100 

CLI = C .. ar Interrupt Enab .. Flag 11111010 m 

CL TS = Clear Teak Switched Flag 00001111 5 

CMC = Complement C .. ry Flag 11110101 2 

LAHF = Load AH Into Flag 10011111 2 

POPF = Pop Flags 5 b h, n 

PUSHF = Puah Flags 4 b 

BAHF = Store AH Into Flags a 

STC = Set Carry Flag 2 2 

lTD = Set Direction Flag 

STI = Set Interrupt Enable Flag 8 8 m 

ARITHMETIC 
ADD = Add· 

Register to Register 2 2 

Register to Memory 7" 7" b h 

Memory to Register S' S' b 

Immediate to Register/Me 217*- 217"'· b h 

Immediate to Accumulator (s 2 

ADC = Add With Carry 

Register to Register 000100dw mod reg rIm I 2 2 

Register to Memory 0001000w mod reg rIm I 7" 7" b h 

Memory to Register 0001001w mod reg rIm I S' 6' b h 

Immediate to RegisterlMemory 100000sw modOl0 rIm I immediate date 2/7·· 217" h 

Immediate to Accumulator (short form) 00D10l0w immediate data 2 2 

INC = Increment 

RegisterlMemory lllllllw ImOdOOO rIm I 2/6·· 2/6*" h 

Register (short form) 10niDo ·reg I 2 2 

SUB = Subtract 

Register from Register D010l0dw I mod reg rIm I 2 

4·429 



inter':" 386S.X™'.MICROPROCESSOR ~OO~I!..OIMlO~mM 

Table 9-1. Instructlcm Set Clock COl,lnt Summary (Continued) 
CLOCK COUNT NOTES' 

Real Real 
INSTRUCTION FORMAT Address Protected Add .... Protected 

Mode or Virtual Mode or Virtual 
Virtual Add .... Virtual Add .... 
8086 Mode 8086 Mode 
Mode Mode 

1001 0100w lmodreg r/ml 7" 7" b 

10010101 w lmod reg r/ml 6' 6' b 

1100000swlmod101 r/li1jlmmediate data 2/7" 2/7" b 

mmediate from Accumulator (short form) I 0010110w 1 immediate data 2 2 

I 000110dw Imodreg rId 2 

I 0001100w Im6dreg rId 7" b 

I 0001101w Imodreg rId 6' b h 

11 OOOOOsw Imod011 b h 

10001110wl 

2/S b 

2 

2 

5' b h. 

S' 6' b 

2/5' 2/5' b 

2 2 

2/6' 2/S' b h 

= ASCII Adjust for Add 4 4 

S = ASCII Adjust for Subtract 4 4 

~ 4 

4 4 

1111101 fw·lmod100 r/ml· 

12-17/15-20' 12-17/15-20' b,d d, h 
12-25/15-28' 12-25/15-28' b,d d,h 

-Doubleword 12-41117-46' 12-41/17-46' b,d d,h 

ccumulator with Register/Memory 11111011wlmod101 r/ml 

Multiplier-Byte 12-17/15-20' 12-17/15-20' b,d d, h 
;Word 12-25115-28' 12-25/15-28' b,d d,h 
-Doubleworcf 12-41/17-46' 12-41/17-46' b,d d, h 

1000011111101011111modreg tlml 
12-17115-20' 12-17/15-20' b,d d,h 
12-25/15-28' 12-25115-28' b,d d,h 

-Doubleword 12-41/17-46' '12-41/17-46' b,d d, h 

eglster/M~mOry with Immediate to Regist~rl 0 1'1 0 1 0 s1 lmod reg r/ml immediate data 

-Word 13-26 13-28/14-27 b,d d,h 
-Doubleword 13-42 13-42/16-45 b,d d, h 

4-430 



inter 386SXTM MICROPROCESSOR 

Table 9-1. Instruction Set Clock Count Summary (Continued) 

INSTRUCTION FORMAT 

ARITHMETIC (Continued) 
DIV = Divide (Unllgnecl) 

ccumulator by Register IMemory 11111 011 w Imod 11 0 r/mi 

Divisor-Byte 
-Word 
-Doubleword 

IDIV = Integer Divide (Signed) 

Accumulator By Register/Memory 11111011 w Imod 111 r/mi 

Divisor-Byte 
-Word 
-Doubleword 

AAD = ASCII Adjust for Divide 11010101 1000010101 

AAM = ASCII Adjust for Multiply 110101001000010101 

BW = Convert Byte to Word 1100110001 

WD = Convert Word to Double Word I 10011001 

LOGIC 

Register/Memory by 1 

Register ~Memory by CL 

Through Carry (RCL and RCR) 

Register IMemory by 1 

Register IMemory by CL 

000 
001 
010 RCL 
011 RCR 
100 SHL/SAL 
101 SHR 
111 SAR 

HLD = Shift Left Double 

RegisterlMemory by Immediate 100001111 1 10100100 1 mod reg 

Regls~ IMemory by CL 100001111 110100101 1 mod reg 

SHRD = Shift Right Doubte 

RegisterlMemory by Immediate 100001111 1 10101100 1 mod reg 

RegisterlMemory by CL 100001111 1 1 0 1 01 1 01 Imod reg 

ND= And 

Register to Register 1 001000dw 1 mod reg r/ml 

4-431 

r/mlimmed 8·bit data 

r/ml 

r/mlimmed S·bit data 

rlml 

CLOCK COUNT 

Real 
Addres. 
Modeo. 
Virtual 
8086 
Mode 

14/17 
22/25 
38/43 

17 

3 

2 

317" 

317' 

317' 

9/10' 

9/10' 

9/10' 

317'" 

317·· 

3/7·· 

317" 

2 

Protected 
Virtual 

Add.e .. 
Mode 

14/17 
22/25 
38143 

19 

17 

3 

317'" 

3/7' 

3/7' 

9/10' 

9/10' 

9/10' 

317'" 

317*.-

317" 

317··, 

2 

NOTES 

Real 
Addr ... 
Mode or 
Virtual 
8066 
Mode 

b,e 
b,e 
b,e 

b,e 
b,e 
b,e 

b 

b 

b 

b 

b 

b 

Protected 
VIrtual 

Addre •• 
Mode 

e,h 
e,h 

. e,h 

e,h 
e,h 
e,h 

h 

h 

h 

i, 
: ~ 



inter 386SX™ .MICROPROCESSOR· 

Tabla 9·1, Instruction Set Clock Count Summary (Continued) 
NOTES 

R .. I RNI 
INSTRUCTION FORMAT Add,.. ProIecIecI Add .... Pro_ 

Mode or VIrtuIII Mocleor VlrIUIIl 
VlrIUIIl Add .... Virtual Add,.. 
8088 Mode 8088 Mode 
Mocle Mode 

LOGIC (Continued) 

Register to Memory I 0010000w Imoores r/ml 7" 7" b 

Memory to Register I 0010001w Imooreg r/ml 6' 8' b h 

Immediate to RegisterlMemory 11 oooooow·lmodl 00 r/mllminediatedata 217' 2/7" b 

Immediate to Accumulator (Short Form) I 001001 Ow I Immediate data 2 2 

TEST =: And Function to·FI .... No Reault 

RegisterlMemory and Register 1100001 Ow lmodres r/ml b 

Immediate Data and ReglsterlMemory 11111011W Imadooo r/ml immediate data b h 

Immediate Data and Accumulator 
(Short Form) t 0 1 0 1 0 0 W I Immediate data 2 

OR= Or 

Register to Register 2 

Register to Memory 7" b h 

Memory to Register 8' b h 

Immediate to RegisterlMemory 217" b h 

Immediate to Accumulator (Short Form) 2 2 

XOR = Exclusive Or 

Register to Register 2 2 

Register to Memory 7" 7" b h 

Memory to Register 6' 6' b h 

Immediate to RegisterlMemory 2/7u 2/7*- b 

2 2 

NOT = Invert Reglater/Me.mory 2/6" 2/6" b 
Clk 

STRING MANIPULATION Count 
Virtual 

CMPS = Compa .. Byte W 
8088 

10' 10' b h Mode 

INS = Input BytelWord t29 15 9'/29" b s/t,h,m 

LODS = Load BYte/Word to ALI AX/EAX 11 0 1 0 1 1 Ow I 5 5' b 

MOYS = Move Byte Word 11010010W I 7 7" b h 

OUTS = Output BytelWord to OX Port I 0110111w I t28 14 8'/28' b slt,h,m 

SCAS = scan Byte Word 11010111W I 7' 7' b h 

STOS = Store Byte/Word from 

ALIAX/EX 11010101 wi 4' 4' .' b 

XLAT = Translate String 11010111 5' 5' h 

REPEATEOSTRING MANIPULATION 
Repeated by Count In ex or EeX 

REPE CMPS = Compare String 

(Find Non-Match) 11110011 11010011 wi 5 + 9nu 5 + 9n" b h 

4·432 



intJ 386SX™ MICROPROCESSOR ~OO[g!bO~OOO£OO\"! 

Table 9-1, Instruction Set Clock Count Summary (Continued) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Addre •• Protected Addre •• Protected 

Mode or Virtual Mode or Virtual 
Virtual Addre •• Virtual Addre •• 
8088 Mod. 8086 Mod, 
Mode Mod, 

REPEATED STRING MANIPULATION (Continued) 

REPNE CMPS ~ Compare String ClkCount 

(Find Match) 1111100 10 110 100 II w I Virtual 5+90 .... 5+9n" b h 8086Moda 

REP INS ~ Input String 1IIII001010iloilowi 13+6n'" 7+Sn'/ b sIt, h, m 
27+6n· 

REP LODS ~ Load String 1IIII0010iloi0ilowi 5+6n' b 

REP MOVS ~ Move String 1IIII0010iloi0010wi b 

REP OUTS ~ Output String 111110010 1011011lwi b sIt, h, m 

REPE SCAS ~ Scan String 

(Find Non·AL/ AX/EAX) 1IIII00liliololllwi 5+8n' b 

REPNE SCAS ~ Scan String 

(Find AL/ AX/EAX) 5+8n· b 

REP STOS ~ Store String 5+5n' b 

BIT MANIPULATION 

BSF = Scan Bit Forward 10+3n' 10+3n"" b 

BSR = SCln Bit Rever., 10+3n' 10+3n"" b 

BT ~ Te.tBlt 

Register/Memory, Immediate 3/S' 3/6' b 

Register/Memory, Register 3/12' 3/12' 

BTC ~ Te.t Bit and Complement 

Register/Memory, Immediate 6/8' 6/S' 

Register/Memory, Register 6/13' 6/13' 

6/8' 6/S' 

Register/Memory, Reg' 6/13' 6/13' b 

BTS. ~ Te.t Bltand set 

loooolllilloilioloimodiol Register/Memory, Immediate r/mlimmed 8·bit datal 6/6' S/8' b 

Register/Memory, Register I 0000 II I I 11 01 0 I 011 Imod reg r/ml 6/13' 6/13' b 

CONTROL TRANSFER 

CALL ~ Calt 

Direct Within Segment II 1 I 0 1 0 0 0 I full displacement 7+m'" 9+m· b 

Register/Memory 

Indirect Within Segment 11 I I I I I I I Imod 0 I 0 r/ml 7+m"'/10+m· 9+m/ b h, r 

12+m'" 

Direct Intersegment II 0 0 I I 0 I 0 IUnSigned full offset, selector 17f"m' 42+m' b J,k,r 

NOTE: 
t Clock count shown applies if 1/0 permission allows 1/0 to the port in virtual 8086 mode. If 1/0 bit map denies permission 
exception 13 fault occurs; refer to clock counts for INT 3 instruction. 

4-433 



386SXTM MICROPROCESSOR 

Table 9-1.lnstructlon Set Clock Count Surnrnary (Continued) 

INSTRUCTION 

ONTROL TRANSFER (Continued) 
rotected Mode Only (Direct Intersegment) 

Via Call Gat. to Same Privilege Level 
Via Call Gate to Different Privilege Level, 

(No Parameters) 
Via Call Gate to Different Privilege Level, 

(x Parameters), 
From 286 Task to 286 TSS' 
From 286 Task to 386SXTM CPU TSS 

FORMAT 

From 286 Task to Virtual 8086 Task (386SXTM CPU TSS) 
From 386SXTM CPU Task to 286 TSS 
From 386SXTM CPU Task to 386SXTM CPU TSS 

ndirect Intersegment 

rotected Mode Only (Indirect Intersegment) 
Via Call Gate to Same Privilege Level 
Via Call Gate to Different Privilege Level, 

(No Parameters) 
Via Call Gate to Different Privilege Level, 

(x Parameters) 
From 286 Task to 286TSS 
From 286 Task to 386SXTM CPU TSS 
From 286 Task to Virtual 8086 Task (386SXTM CP 
From 386SXTM CPU Task to 286 TSS 

From 386SXTM CPU Task to Virtual 8 
MP = Unconditional Jump 

hort 

irect within Segment 

egister/Memory Indirect within Segment 

irect Intersegment 

From 286 Task to 386SXTM 
From 286 Task to Virtual 8086 Task (386SXTM CPU TSS) 
From 386SXTM CPU Task to 286 TSS 
From 386SXTM CPU Task to 386SXTM CPU TSS 
From 386SXTM CPU Task to Virtual 8086 Task (386SXTM CPU TSS) 

ndirect Intersegment I, , " , , 1 , , Imod 1 0 , r/ml 

rotected Mode Only (Indir""t Intersegment) 
Via Call Gate to Same Privilege Level 
From 286 Task to 286 TSS 
From 286 Task to 386SXTM CPU TSS 
From 286 Task to Virtual 8086 Task (386SXTM CPU TSS) 
From 386SXTM CPU Task to 286 TSS 
From 386SXTM CPU Task to 386SXTM CPU TSS 
From 386SXTM CPU Task to Virtual 8086 Task (386SXTM CPU TSS) 

4-434 

CLOCK COUNT 

Real 
Addre •• 
Mode or 
Virtual 
8086 
Mode 

7+m 

7+m 

Protected 
Virtual 

Address 
Mode 

64+m 

98+m 

106+8x+m 
285 
310 
229 
285 
392 
309 

46+m 

68+m 

102+m 

110+8x+m 

399 

7+m 

7+m 

9+m/14+m9+m/14+ 

,6+m 31+m 

53+m 

395 

'7+m 

49+m 

328 

NOTES 

Real 
Addre.. Protected 
Mode or Virtual 
Virtual Addre •• 
8086 Mode 
Mode 

b 

b 

h,j,k,r 

h,j,k,r 

h,j,k,r 
h,j,k,r 
h,j,k,r 
h,j,k,r 
h,j,k,r 
h,j,k,r 
h,j,k,r 

h,j,k,r 

h,j,k,r 

hJ,k,r 

h,j,k,r 
h,l,k,r 
h,j,k,r 
h,j,k,r 
h,j,k,r 
h,j,k,r 
h,j,k,r 

h,r 

j,k,r 

h,l,k,r 
h,j,k,r 
h,j,k,r 

, h,l,k,r 
h,j,k,r 
h,j,k,r 
h,j,k,r 

h,j,k,r 

h,j,k,r 
h,l,k,r 

.h,j,k,r 
h,j,k,r 
h,j,k,r 
h,j,k,r 
h,j,k,r 



386SXTM MICROPROCESSOR 

Table 9-1. Instruction Set Clock Count Summary (Continued) 

INSTRUCTION 

CONTROL TRANSFER (Continued) 
RET = Retum ,_ CALL: 

Within Segment 

Within Segment Adding Immediate to SP 

Intersegment 

Intersegment Adding Immediate to SP 

Protected Mode Only (RET): 

to Different Privilege Level 
Intersegment 
Inlet'segment Adding Immediate to SP 

CONDITIONAL JUMPS 

FORMAT 

11000011 

11000010 16-b~displ 

11001011 

11001010 16·b~dlspl 

NOTE: Times Are Jump "Taken or Not Taken" 
JO = Jump on OVerflow . ,--____ ...,-____ -,., 

8,Btt Displacement 

Full Displacement 

JNO = Jump on Not OVerflow. 

8·BH Diaplacement 

Full Displacement 

8·Blt Displacement 

Full Displacement 

8-BH Displacement 

Full Displacement 

JE/JZ = Jump on Equal/Zero 

8·BH Displecement 

Full Displacement 

JNE/JNZ = Jump on N 

8-Btt Displacement 

Full Displacement 

01110101 8·bitdispl 

100001111 1000010t' ! full displacement 

JBElJNA = Jump on Below or Equel/Nrot'"'Abo='"'ve..;;...._~r-____ .... 

8·Blt Displacement ~I ::0::1::1::1::0::::1::1 ::O:::==8-:=bl::t d==iap=:1 =: 
Full Displacement I 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 0 ! full displacement 

JNBE/JA = Jump on Not Below or Equ.I,,/A""bo""-'V.;;.. ___ r-____ .... 

8-Bit Displacement I 0 1 1 1 0 1 1 1 8-bit displ 

Full Displecement I 0 0 0 0 1 1 1 1 1 0 0 0 0 1 II! full displacement 

JS = Jump on SIgn 

8·Bit Displacement o 1 1 1 10 0 0 8-bit displ 

Full Displacement 00001111 10001000 !fulldiliplacement 

4-435 

CLOCK COUNT 

R .. I 
Add .... Pro_ 
Mode or Virtual 
Vlrtuel Add .... 
8086 Mod. 
Mod. 

12+m 

12+m 

36+m 

36+m 

7+mor3 

7+mor3 

7+mo,3, 7+mor3 

7+mor3 7+mor3 

7+mor3 7+mor3 

7+mor3 7+mor3 

7+mor3 7+mor3 

7+mor3 7+mor3 

7+mor3 7+mor3 

7+mor3 7+mor3 

7+mor3 7+mor3 

7+mor3 7+mor3 

7+mor3 7+mor3 

7+mor3 7+mor3 

7+mor3. 7+mor3 

7+mor3 7+mor3 

NOTES 

R .. I 
Acid .... Protected 
Mod. or VIrtual 
VIrtual Add .... 
8086 Mod. 
Mod. 

b g,h,r 

b g,h,r 

b g, h,i, k, r 

b g,h,i,k,r 

h,i,k,r 
h,i,k, r 



386SX™ MICAOPROCESSOR 

Table 9-1, Instruction Set Clock Count Summary (Continued) 

INSTRUCTION FORMAT 

CONDITIONAL JUMPS (Continued) 

JNS = Jump on Not Sign 

8-Bit Displacement 0111'1001 8-bi1displ I' 
Full Displacement 00001111 tOO01001 I full displacement 

JPlJPE = Jump on ParitylParlly Even 

8-BH Displacement 1 01111010 8-bi1displ 

Full Displacement 1 00001111 10001010 I full displacement 

JNPlJPO = ·Jump on NotParity/Partty 0rdd=-___ -r ____ ---. 

8-lm Displacement ~I :::0::1::1::1::1::0::::1::1 =*=8::::-::bi1::d:;'spl=::::: 

Fuil Displacement 

8-Blt Displacement 

Full Displacement 

8-Blt Displacement 

Full Displacement 

Full Displacement 

JCXZ = Jump on CX Zero 

JECXZ = Jump on ECX Zero 

(Address Size PrefIx Differe. 

LOOP = Loop CX nmea 

LOOPZlLOOPE = Loop with 
ZerO/Equal 

LooPNZlLooPNE = Loop While 
Not%ero 

CONDITIONAL BYTE SET 
NOTE: TImes Are Register/MeriloiY . 

SETO = SelByte on Overflow 

To Register/Memory 

SETNO = Set Byte on Not Overflow 

To Reglster/Me~ory 

I 00001111 10001011 

8-bHdispl 

11100001 8-bHdlspl 

11100000 8-bHdispi 

00001111 10010000 lmodooo rIm I 

00001111 10010001 Imodooo rIm I 
SETB/SETNAE - Set Byte on 8eIOW/Nr-ot;:.,;A.;;bo",· ..;.ve;;.or=E"'q"'uaI;;;-____ -.-_'-'-__ -. 

To Reglster/Memory 1'00001111 110010010 Imadooo rIm I 

4·436 

CLOCK COUNT 

Real 
Add ..... Protected 
MOde or VIrtual 
Virtual Add,.ea 
8086 Mode 
MOde 

, 
7+mor3 7+mor3 

7+mor3 7+mor3 

7+mor3 7+mor3 

7+mor3 

7+mor3 

7+m6r3 7+ ",'or 3 

7+mo..3 7+mor3 

7+mor3' 7+mor3 

7+mpr3 7+mor3 

9+morS 9+morS 

9+morS 9+morS 

II+m II+m 

II+m' II+m 

'11+m 1'I+m 

4/S' 4/S' 

4/S' 4/S' 

4/S' 4/S' 

NOTES 

Real 
Add_ Protected 
Mode or VIrtual 
Virtual Add,. •• 
8088 Mode 
Mode 

'r 

," 



i~ 386SXTM· MICROPROCESSOR ~OO[!1l.0~OOO£00\1 l~ 
i >~ 
I>\' 

Table 9-1. Instruction Set Clock Count Summary (Continued) 

I' .f 
I.NSTRUCTION FORMAT Protected ~ VIrtual --. Mode 

BYTE SET (Continued) I. 
SETNB = Sat Byte on Not Balow/Above or Equal 

To Register/Memory I 00001111 10010011 1 madOOO rIm I 4/5' 4/5' h 

SETE/SETZ - Sal Byle on Equal/Zero 

To Register/Memory I 10010100 1 modOOO h 

SETNE/SETNZ = Sat Byte on Not 

4/5' 

SETNBE/SETA = Sat Byte on Nol 

4/5' 

SETS = Sat Byte on Sign 

To Register/Memory 4/5' h 

SETNS = Sat Byte on Not SllIn 

To Register/Memory 4/5' 4/5' h 

SETP/SETPE = Sat Byte on 

To Register/Memory 4/5' 4/5' h 

SETNP/SETPO = Sat Byte on Nol 

4/5' 4/5' h 

SETUSETNGE = Sal Byte on 

To 4/5' 4/5' h 

4/5' 4/5' h 

SETLE/SETNG = 

4/5' 4/5' h 

SETNLElSETG - Sat Byte on Not Leu or Equal/Greeter 

To Register/Memory I 00001111 1 10011111 1 madOOO rIm I 4/5' 4/5' h 

ENTER = Enter_ra 11001000 11 a-b~ displacement, a-bit level 

L-O 10 10 b h 
L= 1 14 14 b h 
L>1 17+ 17 + b h 

6(n -1) a(n -1) 

LEAVE = Leave Procedura 11001001 4 4 b h 

4-437 



386SXTM MICROPROCESSOR 

Table 9-1. Instruction Set Clock Count Summary (Continued) 

INSTRUCTION FORMAT 

INTERRUPT INSTRUCTIONS 

INT = Interrupt 

Type Specified 11001101 type 

Type 3 11001100 

INTO = interrupt 4 If Overflow Flag Set I 11001110 

If Of = 1 

IfOF=O 

Bound = Interrupt 5 If Detect Valua 01100010 I mod reg 
Out 01 Range 

If Out of Range 

If In Range 

Protected Mode Only (INT) 

INT: Type Specified 

Via Interrupt or Trap Gate 

Via Interrupt or Trap Gate 

to Seme Privilege Level 

to Different Privilege Level 

From 288 Task to 286 T88 via Task Gate 

From 286 Task to 388SXTM CPU TSS via Task Gate 

From 286 Task to vir! 8088 md via Task Gate' 

From vir! 8086 md to 388SXTM CPU T 

From vir! 8086 md to priv level 0 via T 

fNT:TVPE3 

Via Interrupt or Trap Gate 

to Same Privilege Level 

Via Interrupt or Trap Gate 

to Different Privilege Level 

From 286 Task to 286 T88 via T 

From 386SXTM CPU T 

From 386SXTM CPU T 

From 386SXTM CPU T 

From vir! 8066 md to 386SXTM CPU TSS via Task Gate 

From vir! 8086 md to priv level 0 via Trap Gate or Interrupt Gate 

INTO: 

Via Interrupt or Trap Grate 

to Same Privilege Level 

Via Interrupt or Trap Gate 

to Different Privilege Level 

From 286 Task to 286 TSS via Task Gate 

From 286 Task to 386SXTM CPU T88 via Task Gate 

From 286 Task to vir! 8086 md via Task Gate 

From 386SXTM CPU Task to 286 T88 via Task Gate 

From 386SXTM CPU Task to 386SXTM CPU TSS via Task Gate 

From 386SXTM CPU Task to vir! 8066 md via Task Gate 

From vir! 8086 md to 286 TSS via T8!'k Gate 

From vir! 8086 md to 386SXTM CPU T88 via Task Gate 

From'vir! 8086 md to priv level 0 via Trap Gate or Interrupt Gate 

rIm I 

4-438 

CLOCK COUNT 

Real 
Add .... 
Mode or 
Vlrtuel 
8086 
Mode 

37 

33 

35 

3 

Protected 
Virtual 

Addre •• 
Mode 

3 

71 

111 

438 

465 

382 

440 

467 
384 

445 

472 

275 

71 

111 

382 

409 

326 

384 

411 

328 

389 

416 

223 

71 

111 

384 
411, 

328 

386 

413 

329 

391 

418 

223 

NOTES 

Real 
Address 
Mode or 
Virtual 
8086 
Mode 

b 

b 

b,e 

b,e 

b,e 

b,e 

Protected 
Virtual 

Address 
Mode 

G,g,h,j,k,r 

e,g, h,j, k, r 

g,j, k, r 
g,/,k,r 

g,/, k, r 
g,/, k, r 

g,/,k,r 

g,/,k, r 
g,/,k, r 
g,/,k,r 

g,/, k, r 

g,/,k,r 

g,/, k, r 

g,/,k,r 

g,/, k,r 

g,j"k,r 
g,j,k,r 

g,/,k,'r 

g,/,k,r 

g,/,'k,r 

g,j,k,r 

, g,/, k, r 

g,j,k,r 

g,/,k,r 

g,/, k, r 
g,/, k,r 

g,/, k, r 
g,/,k,r 

g,/,k,r 

g,/, k,r 

g,/, k, r 
g,/, k, r 



386SXTM MICROPROCESSOR 

Table 9-1.lnstructlon Set Clock Count Summary (Continued) 

INSTRUCTION 

INTERRUPT INSTRUCTIONS (Continued) 

BOUND: 

Via Interrupt or Trap Gate 
to Same Privilege Level 

Via Interrupt or Trap Gate 
to Different Privilege Level 

FORMAT 

From 286 Task to 286 TSS via Task Gate 
From 286 Task to 386SXTM CPU TSS via Task Gate 
From 268 Task to virt 8086 Mode via Task Gate 
From 386SXTM CPU Task to 286 TSS via Task Gale 
From 386SXTM CPU Task to 386SXTM CPU TSS via Task Gate 
From 386SXTM CPU Task to virt 8086 Mode via Task Gale 

From virt 8086 Mode to 286 TSS via Task Gate 
From virt 8086 Mode to 386SXTM CPU TSS via Task Gate 

From virt 8086 md to priv level 0 via Trap Gate or Interrupt Gate 

INTERRUPT RETURN 

IRET = Interrupt Return 1 1 0 0 1 1 1 1 

Protected Mode Only (IRET) 

CLOCK COUNT 

Real 
Addre •• 
Mode or 
Virtual 
8086 
Mode 

Protected 
Virtual 

Addre •• 
Mode 

71 

368 
398 
223 

To the Same Privilege Level (within task) 42 
To Different Privilege Level (within task) 86 
From 286 Task to 286 TSS 285 
From 286 Task to 386SXTM CPU TSS 318 
From 286 Task to Virtuale086 Task 267 
From 286 Task to Virtual e086 Mode ( 113 
From 386SXTM CPU Task to 286 TSS 324 
From 386SXTM CPU Task to 386Sxik CP 328 

PROCESSOR CONTROL 

HLT = HALT 

MOV 

CRO/CR2/CR3 from re . 

Register From CRO-3 00001111 

DRO-3 From Register 00001111 

DR6-7 From Register 00001111 

Register from DR6-7 0000111.1 

Register from DRO-3 00001111 

TR6-7 from Register 00001111 

Register from TR6-7 00001111 

NOP = No Operation 10010000 

WAIT = Walt until BUSY;; pin I. negated 1 0 0 1 1 0 1 1 

00100010 11 eee reg 

00100000 11 eee reg 

00100011 '11eeereg 

00100011 11 eee reg 

00100001 11 eee reg 

00100001 11 eee reg 

00100110 11 eee reg 

00100100 11 eee reg 

4-439 

10/4/5 

6 

22 

16 

14 

22 

12 

12 

6 

377 

113 

10/4/5 

22 

16 

14 

22 

12 

12 

6 

NOTES 

Real 
Addre •• 
Mode or 
Virtual 
8086 
Mode 

Protected 
Virtual 

Addre •• 
Mode 

g,j, k, r 

g,j, k, r 
g,j, k, r 
g,j, k, r 
g, j, k, r 

g, j, k, r 
g,j, k, r 

g,j, k, r, 
g, j, k, r 
g, j, k, r 

g, h, j, k, r 

g, h,j, k, r 
g, h, j, k, r 
h,j,k,r 
h,j, k, r 
h, j, k, r 

h, j, k, r 
h, j, k, r 
h, j, k, r 

i 
I. 
I'!' , 





intJ 386SXTM MICROPROCESSOR 

Table 9·1" Instruction Set Clock Count Summary (Continued) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Addre .. Protected Addre •• Protected 

Mode or Virtual Mode or Virtual 
Virtual Addre •• Virtual Add .... 
8086 Mode 8086 Mode 
Mode Mode 

PROTECTION CONTROL (Continued) 

SMSW = Store Machine 
StatuaWord I 00001111 I 00000001 Imodl00 rIm I 2/2" 2/2" b.c h.1 

STR = Store Taak Regllte, 

To RegisterlMemory I 00001111 I 00000000 I modOO 1 r/ml N/A 2/2" a h 

VERR = Verify Read Acce.s 

RegisterlMemory I 00001111 I 00000000 Imodl00 rIm I N/A 10/11" a g. h.i.p 

VERW = Verily Write Acce .. I 00001111 I 00000000 I mod 1 01 rIm I N/A 15/16" a g. h.i.p 

INSTRUCTION NOTES FOR TABLE 9·1 

Notes a through c apply to Real Address Mode only: 
a. This is a Protected Mode instruction. Attempted execution in Real Mode will result in exception 6 (invalid opcode). 
b. Exception 13 fault (general protection) will occur in Real Mode if an operand reference is made that partially or fully 
extends beyond the maximum CS; OS, ES, FS or GS limit, FFFFH. Exception 12 fault (stack segment limit violation or not 
present) will occur in Real Mode if an operand reference is made that partially or fully extends.beyond the maximum SS limit. 
c. This instruction may be executed in Real Mode. In Real Mode, its purpose is primarily to initialize the CPU for Protected 
Mode. 

Notes d through g apply to Real Address Mode and Protected Virtual Address Mode: 
d. The 386SX CPU uses an early-out multiply algorithm. The actual number of clocks depends on the position of the most 
significant bit in the operand (multiplier). 

Clock counts given are minimum to maximum. To calculate actual clocks use the following formula: . 
Actual Clock = if m < > 0 then max (IIog2 Iml1, 3)· + b clocks: 

if m = 0 then 3+b clocks 
In this formula, m is the multiplier, and 
b = 9 for register to register, 
b = 12 for memory to register, 
b = 1 0 for register with immediate to register, 
b = 11 for memory with immediate to register. 

e. An exception may occur, depending on the value of the operand. 
f. LOCK # is automatically asserted, regardless of the presence or absence of the LOCK # prefix. 
g. LOCK # is asserted during descriptor table accesses. . 

Notes h through r apply to Protected Virtual Address Mode only: 
h. Exception 13 fault (general protection violation) will occur if the memory operand in CS, OS, ES, FS or GS cannot be used 
due to either a segment limit violation or access rights violation. If a stack limit is violated, an exception 12 (stack segment 
limit violation or not present) occurs. 
i. For segment load operations, the CPL, RPL, and OPL must agree with the privilege rules to avoid an exception 13 fault 
(general protection violation). The segment's descriptor must indicate "present" or exception 11 (CS, OS, ES, FS, GS not 
present). If the SS register is loaded and a stack segment not .present is detected, an exception 12 (stack segment limit 
violation or not present) occurs. 
j. All segment descriptor accesses in the GOT or LOT made by this instruction will automatically assert LOCK# to maintain 
descriptor integrity in multiprocessor systems. 
k. JMP, CALL, INT, RET and IRET instructions referring to another code segment will cause an exception 13 (general 
protection violation) if an applicable privilege rule is violated. 
I. An exception 13 fault occurs if CPL is greater than 0 (0. is the most privileged level). 
m. An exception 13 fault occurs if CPL is greater than IOPL. 
n. The IF bit of the flag register is not updated if CPL is greater than IOPL. The IOPL and VM fields of the flag register are 
updated only if CPL = O. 
o. 'The PE bit of the MSW (CRO) cannot be reset by this instruction. Use MOV into. CRO if desiring to reset the PE bit. 
p. Any violation of privilege rules as applied to the selector operand does not cause a protection exception; rather, the zero 
flag is cleared. 
q. If the cqprocessor's memory operand violates a segment limit or segment access rights, an exception 13 fault (general 
protection exception) will occur before the ESC instruction is executed. An exception 12 fault (stack segment limit violation 
or not present) will occur if the stack limit is violated by the operand's starting address. 
r. The destination of a JMP, CALL, INT, RET or IRET must be in the defined limit of a code segment or an exception 13 fault 
(general protection violation) will occur. 
sIt. The instruction will execute in s clocks if CPL ,,;; IOPL. If CPL > IOPL, the instruction will take t clocks. 

4-441 



inter 386SXTM MICROPROCESSOR 

9.2 INSTRUCTION ENCODING 

9.2.1 Overview 

All instruction encodings are subsets of the general 
instruction format shown in Figure 8-1. Instructions 
consist of one or two primary opcode bytes, possibly 
an address specifier consisting of the "mod rim" 
byte and "scaled index" byte, a displacement if re­
quired, and an immediate data field if required. 

Within the primary opcode or opcodes, smaller en­
coding fields may be defined. These fields vary ac­
cording to the class of operation. The fields define 
such information as direction of the operation, size 
of the displacements, register encoding, or sign ex­
tension. 

Almost all instructions referring to an operand in 
memory have an addressing mode byte following 
the primary opcode byte(s). This byte, the mod rim 
byte, specifies the address mode to be used. Certain 

encodings of the mod rim byte indicate a second 
addressing byte, the scale-index-base byte, follows 
the mod rim byte to fully specify the addressing 
mode. 

Addressing modes can include a displacement im­
mediately following the mod rim byte, or scaled in­
dex byte. If a displacement is present, the possible 
sizes are 8, 16 or 32 bits. 

If the instruction specifies an immediate operand, 
the immediate operand follows any displacement 
bytes. The immediate operand, if specified, is always 
the last field of the instruction. 

Figure 9-1 illustrates several of the fields that can 
appear in an instruction, such as the mod field and 
the rim field, but the Figure does not show all fields. 
Several smaller fields also appear in certain instruc­
tions, sometimes within the opcode bytes them­
selves. Table 9-2 is a complete list of all fields ap­
pearing in the instruction set. Further ahead, follow­
ing Table 9-2, are detailed tables for each field. 

ITT T T T T TTl T T T T T T TTl mod T T T rim I ss index base Id32 116 1 8 1 none data32 116 1 8 1 none 

~,--____ 0""T,...7 ____ -,0) 1..1 6 5 T 3 2 0; \.? 6 5 T 3 2 0 A __ -.-.,..-___ ) 1. .... __ ........ __ .... ), 

opcode 
(one or two bytes) 
(T represents an 

opcode bit.) 

"mod rim" "s-i-b" address 

\. 
byte byte 

) 
displacement 

T ' (4, 2, 1 bytes 
register and address or none) 

mode specifier 

, ' 

Figure 9-1. General Instruction Format 

Table 9-2. Fields within Instructions 

Field Name Description 

w Specifies if Data is Byte or Full Size (Full Size is either 16 or 32 Bits 
d Specifies Direction of Data Operation 
s Specifies if an Immediate Data Field Must be Sign-Extended 
reg General Register Specifier 
mod rim Address Mode Specifier (Effective Address can be a General Register) , 

S5 Scale Factor for Scaled Index Address Mode 
index General Register to be used as Index Register 
base General Register to be used as Base Register 
sreg2 Segment Register Specifier for CS, SS, OS, ES 
sreg3 Segment Register Specifier for CS, SS, OS, ES, FS, GS 
tttn For Conditi.onal Instructions, Specifies a Condition Asserted 

or a Condition Negated 
, . 

Note: Table 9·1 shows encoding of Individual Instructions. 

4-442 

immediate 
data 

(4, 2, 1 bytes 
or none) 

Number of Bits 

1 
1 
1 
3 

2 for mod; 
3 for rim 

2 
3 
3 
2 
3 

4 



intJ 386SXTM MICROPROCESSOR 

9.2.2 32·Blt Extensions of the 
Instruction Set 

With the 386SX CPU, the 8086/80186/80286 in­
struction set is extended in two orthogonal direc­
tions: 32-bit forms of all 16-bit instructions are added 
to support the 32-bit data types, and 32-bit address­
ing modes are made available for all instructions ref­
erencing memory. This orthogonal instruction set ex­
tension is accomplished having a Default (D) bit in 
the code segment descriptor, and by having 2 prefix­
es to the instruction set. 

Whether the instruction defaults to operations of 16 
bits or 32 bits depends on the setting of the 0 bit in 
the code segment deSCriptor, which gives the de­
fault length (either 32 bits or 16 bits) for both oper­
ands and effective addresses when executing that 
code segment. In the Real Address Mode or Virtual 
8086 Mode, no code segment descriptors are used, 
but a 0 value of 0 is assumed internally by the 
386SX CPU when operating in those modes (for 16-
bit default sizes compatible with the 8086/801861 
80286). 

Two prefixes, the Operand Size Prefix and the Effec­
tive Address Size Prefix, allow overriding individually 
the Default selection of operand size and effective 
address size. These prefixes may precede any op­
code bytes and affect only the instruction they pre­
cede. If necessary, one or both of the prefixes may 
be placed before the opcode qytes. The presence of 
the Operand· Size Prefix and the Effective Address 
Prefix will toggle the. operand size or the effective 
address size, respectively, to the value "opposite" 
from the Default setting. For example, if the default 
operand size is for 32-bit data operations, then pres­
ence of the Operand Size Prefix toggles the instruc­
tion to 16-bit data operation. As another example, if 
the default effective address size is 16 bits, pres­
ence of the Effective Address Size prefix toggles the 
instruction to use 32-bit effective address computa­
tions. 

These 32-bit extensions are available in all modes, 
including the Real Address Mode or the Virtual 8086 
Mode. In these modes the default is always 16 bits, 
so prefixes are needed to specify 32-bit operands or 
addresses. For instructions with more than one pre­
fix, the order of prefixes is unimportant. 

Unless specified otherwise, instructions with 8-bit 
and 16-bit operands do not affect the contents of 
the high-order bits of the extended registers. 

9.2.3 Encoding of Instruction Fields 
Within the instruction are several fields indicating 
register selection, addressing mode and so on. The 
exact encodings of these fields are defined immedi­
ately ahead. 

9.2.3.1 ENCODING OF OPERAND LENGTH (w) 
FIELD . 

For any given instruction performing a data opera­
tion, the instruction is executing as a 32-bit operation 
or a 16-bit operation. Within the constraints of the 
operation size, the w field encodes the operand size 
as either one byte or the full operation size, as 
shown in the table below. 

Operand Size Operand Size 
wFleld During 16-Blt During 32-Blt 

Data Operations Data Operations 

0 8 Bits 8 Bits 
1 16 Bits 32 Bits 

9.2.3.2 ENCODING OF THE GENERAL 
REGISTER (reg) FIELD 

The general register is specified by the reg field, 
Which may appear in the primary opcode bytes, or as 

/ the reg field of the "mod rIm" byte, or as the rIm 
field of the "mod rim" byte. 

Encoding of reg Field When w Field 
Is not Present In Instruction 

Register Selected Register Selected 
reg Field During 16-Blt During 32-Blt 

000 
001 
010 
011 
100 
101 
101 
101 

reg 

000 
001 
010 
011 
100 
101 
110 
111 

Data Operations Data Operations 

AX EAX 
CX ECX 
OX EDX 
BX EBX 
SP ESP 
BP EBP 
SI ESI 
01 EDI 

Encoding of reg Field When w Field 
Is Present In Instruction 

Register Specified by reg Field 
During 16-Blt Data Operations: 

Function of w Field 

(whenw = 0) (whenw = 1) 

AL AX 
CL CX 
01,- OX 
BL BX 
AH SP 
CH BP 
DH SI 
BH 01 

4-443 

If." 

I· 

,; 

:~ 



inter 386SX™ MICROPROCESSOR 

Register Specified by reg Field 
During 32-Blt Data Operations 

reg 
Function of w Field 

(when w;= 0) (whenw = 1) 

000 AL EAX 
001 CL ECX 
010 DL EDX 
011 BL EBX 
100 AH ESP 
101 CH EBP 
110 DH ESI 
111 BH EDI 

9.2.3.3 ENCODING OF THE SEGMENT 
REGISTER (sreg) FIELD 

The sreg field in certain instructions is a 2~bit field 
allowing one of the four 80286 segment registers to 
be specified. The sreg field in other instructions is a 
3-bit field, allowing the 386SX CPU FS and GS seg­
ment registers to be specified. 

2-Bit sreg2 Field 

2-Blt 
Segment 

sreg2Fleid 
Register 
Selected 

00 ES 
01 CS 
10 SS 
11 DS 

3-Bit sreg3 Field 

3-Blt 
Segment 

sreg3 Field 
Register 
Selected 

000 ES 
001 CS 
010 SS 
011 DS 
100 FS 
101 GS 
110 do not use 
111 do not use 

9.2.3.4 ENCODING OF ADDRESS MODE 

Except for special instructions, such as PUSH or 
POP, where the addressing mode is pre-determined, 
the addressing mode for the current instruction is 
specified by addressing bytes following the primary 
opcode. The primary addressing byte is the "mod 
rim" byte, and a second byte of addressing informa­
tion, the "s-i~b" (scale-index-base) byte, can be 
specified. 

The s-i-b byte (scale-index-base byte) is specified 
when using 32-bit addressing mode and the "mod 
rim" byte has rim = 100 and mod = 00, .01 or 10. 
When the sib byte is present, the 32,bit addressing· 
mode is a function of the mod, ss, index, and base 
fields. 

The primary addressing byte, the "mod rim" byte, 
also contains three bits (shown as TTT in Figure 8-1) 
sometimes used as an extension of the primary op­
code. The three bits, however, may also be used as 
a register field (reg). 

When calculating an effective address, either 16-bit 
addressing or 32-bit addressing is used. 16-bit ad­
dressing uses 16-bit address components to calcu­
late the effective address while 32-bit addressing 
uses 32-bitaddress components to calculate theef­
fective address. When 16-bit addressing is used, th.e 
"mod rim" byte is interpreted as a 16-bit addressing 
mode specifier. When. 3?-bit addressing is used, the 
"mod rim" byte is interpreted as a 32-bit addressing 
mode specifier. 

Tables on the following three pages define all en­
codings of all 16-bit addressing modes and· 32-bit 
addressing modes. 

4-444 



intJ 

mod rIm 

00000 
00001 
00010 
00011 
00100 
00101 
00110 
00111 

01000 
01001 
01010 
01011 
01100 
01101 
01110 
01 111 

386SX™ MICROPROCESSOR 

Encoding of 16-blt Address Mode with "mod rIm" Byte 

Effective Address mod rIm Effective Address 

OS:[BX+SIl 10000 OS:[BX + SI +d16] 
OS:[BX+OIl 10001 OS:[BX + 01 +d16] 
SS:[BP+SIl 10010 SS:[BP+ SI +d16] 
SS:[BP+OIl 10011 SS:[BP+ 01 + d16] 
OS: [SI] 10100 OS:[SI + d16] 
OS: [01] 10101 OS:[01+d16] 
OS:d16 10110 SS:[BP+d16] 
OS: [BX] 10111 OS:[BX+d16] 

OS: [BX + SI + d8] 11000 register-see below 
OS: [BX + 01 + d8] 11001 register-see below 
SS:[BP+SI+d8] 11010 register-see below 
SS: [BP + 01 + d8] 11 011 register-see below 
OS:[SI+d8] 11100 register-see below 
OS:[01+d8] 11 101 register-see below 
SS:[BP+d8] 11 110 register-see below 
OS:[BX+d8] 11 111 register-see below 

Register Specified by rIm 
During 16-Bit Data Operations 

mod rIm 
Function of w Field 

(when w=O) (whenw =1) 

11000 AL AX 
11001 CL CX 
11010 OL OX 
11 011 BL BX 
11100 AH SP 
11 101 CH BP 
11 110 OH SI 
11 111 BH 01 

Register Specified by rIm 
During 32-Blt Data Operations 

mod rIm 
Function of w Field 

(whenw=O) (whenw =1) 

11000 AL EAX 
11001 CL ECX 
11010 OL EOX 
11 011 BL EBX 
11100 AH ESP 
11 101 CH EBP 
11 110 OH ESI 
11 111 BH EOI 

4-445 

I', 

I 
I", 

I
',' 

'~ ... !., 
I. 
I, 
I:, 



386SXTM MICROPROCESSOR 

Encoding of 32-bit Address Mode with "mod rIm" byte (no "s-i·b" byte present): 

mod rIm Effective Address mod rIm Effective Address 

00000 OS: [EAX] 10000 OS: [EAX + d32] 
00001 OS: [ECX] 10001 OS: [ECX + d32] 
00010 OS: [EOX] 10010 OS: [EOX + d32] 
00011 OS: [EBX] 10011 OS: [EBX + d32] 
00100 s-i-b is prasent 10100 s-i-b is present 
00101 OS:d32 10101 SS: [EBP + d32] 
00110 OS: [ESJ] 10110 OS: [ESI + d32] 
00111 OS: [EOIl 10111 OS: [EOI + d32] 

01000 OS:[EAX+d8] 11000 register-:-see below 
01001 OS:[ECX+d8] 11001 register-see below 
01010 OS: [EOX + d8] 11010 register-see below 
01011 OS: [EBX + d8] 11 011 register-see below 
01100 s-i-b is present 11100 register-see below 
01101 SS:[EBP+d8] 11 101 register-see below 
01110 os: [ESI + d8] 11110 register-see below 
01111 OS:[EOI+d8] 11 111 register-see below 

Register Specified by reg or rIm 
during 16-Bit Data Operations: 

mod rIm function of w field 

(whenw=O) (whenw=1) 

11000 AL AX 
11001 CL CX 
11010 OL OX 
11 011 BL BX 
11100 AH SP 
11 101 CH BP 
11 110 OH SI 
11 111 BH 01 

Register Specified by reg or rIm 
during 32-Bit Data Operations: 

mod rIm function of w field 

(whenw=O) (whenw=1) 

11 000 AL EAX 
11001 CL ECX 
11010 OL EOX 
11 011 BL EBX 
11100 AH ESP 
11 101 CH EBP 
11 110 OH ESI 
11 111 BH EOI 

4-446 



inter 

mod base 

00000 
00001 
00010 
00011 
00100 
00101 
00110 
00111 

01000 
01001 
01010 
01011 
01100 
01101 
01110 
01 111 

10000 
10001 
10010 
10011 
10100 
10101 
10110 
10111 

NOTE: 

386SXTM MICROPROCESSOR 

Encoding of 32-bit Address Mode ("mod rIm" byte and "s-I-b" byte present): 

Effectlvt' Address 

DS: [EAX + (scaled index)] 
DS:[ECX + (scaled index)] 
OS:[EOX + (scaled index») 
OS:[EBX + (scaled index») 
SS:[ESP+ (scaled index») 
OS:[d32 + (seated index») 
OS:[ESI + (scaled index») 
OS: [EOt + (scaled index») 

OS: [EAX + (scaled index) + dS] 
OS: [ECX + (seated index) + dS) 
OS: [EOX + (seated index) + dS] 
OS: [EBX + (scaled index) + dS] 
SS: [ESP + (scaled index) + dS) 
SS: [EBP + (seated index) + dS) 
OS: [ESI + (scaled index) + dS) 
OS: [EOI + (scaled index) + dS) 

OS: [EAX + (scaled index) + d32) 
OS: [ECX + (scaled index) + d32] 
OS: [EOX + (scaled index) + d32] 
OS: [EBX + (scaled index) + d32) 
SS: [ESP + (scaled index) + d32] 
SS:[EBP + (scaled index) + d32] 
OS: [ESI + (scaled index) + d32) 
OS: [EOI + (scaled index) + d32] 

ss Scale Factor 

00 x1 
01 x2 
10 x4 
11 xS 

Index Index Register 

000 EAX 
001 ECX 
010 EOX 
011 EBX 
100 no index reg" 
101 EBP 
110 ESI 
111 EOI 

"IMPORTANT NOTE: 
When index field is 1 ~O, indicating "no index register," then 
ss field MUST equal 00. If index is 100 and ss does not 
equal ~O, the effective address is undefined. 

Mod field in "mod rim" byte; ss, index, base fields in 
"s-i-b" byte. 

4-447 



386SX™ MICROPROCESSOR 

9.2.3.5 ENCODING OF OPERATION DIRECTION 
(d) FIELD ' 

In many two"operand instructions the d field is pres· 
ent to indicate which operand is considered the 
source and which is the destination. 

d Direction of Operation 

.0 Register/Memory < .. Register 
"reg!' Field Indicates Source Operand; 
"mod r/m" or "mod ss index base" Indicates 
Destination Operand 

1 Register < .. Register/Memory 
"reg" Field Indicates Destination Operand; 
"mod r/m" or "mod ss index base" Indicates 
Source Operand 

9.2.3.6 ENCODING OF SIGN·EXTEND (s) FIELD . 

The s field occurs primarily to instructions with im· 
mediate data fields. The s field has an effect only if 
the size of the immediate data is 8 bits and is being 
placed in a 16"bit or 32·bit destination. 

Effeeton Eftecton 
Immediate Data& Immediate Data 1613~ 

None None 

1 Sign·Extend Data8 to Fill None 
16·Bit or 32·Bit Destination 

9.2.3.7 ENCODING OF CONDITIONAL TEST 
(tHn) FIELD 

For the conditional instructions (conditional jumps 
and set on condition), tttn is encoded with n indicat· 
ing to use the condition (n = .0) or its negation (n = 1), . 
and ttt giving the condition to test. 

Mnemonic Condition tttn 

0 Overflow .0.0.0.0 
NO No Overflow .0.0.01 
B/NAE BelowlNot Above or Equal 0.010 
NB/AE Not Below/Above or Equal .0.011 
E/Z Equal/Zero .01.0.0 
NEINZ Not Equal/Not Zero ' .01.01 
BE/NA Below or Equal/Not Above ' .011.0 
NBE/A Not Below or Equal/ Above .0111 
S Sign 100.0 
NS Not Sign 1.0.01 
PIPE Parity/Parity Even 1.01.0 
NP/PO Not Parity/Parity Odd 1.011 
LlNGE Less Than/Not Greater or Equal 11.0.0 
NL/GE Not Less Than/Greater or Equal 11.01 
LE/NG Less Than or Equal/Greater Than 111.0 
NLE/G Not Less or Equal/Greater Than 1111 

9.2.3.& ENCODING OF CONTROL OR DEBUG 
OR TEST REGISTER (eee) FIELD 

For the loading and .storing of the Control, Debug 
and Test registers. 

When Interpreted as Control Register Field 

eeeCode Reg Name 

.0.0.0 CR.o 
.01.0 CR2 
.011 CR3 

Do not use any other encoding 

When Interpreted as Debug Register Field 

eeeCode Reg Name 

.0.0.0 DR.o 

.0.01 DR1 

.01.0 DR2 

.011 DR3 
11.0 DR6 
111 DR7 

Do not use any other encoding 

Wlfen Interpreted as Test Register Field 

eeeCode Reg Name 

11.0 TR6 
111 TR7 

Do not use any other encoding 

4-448 



inter 386SX™ MICROPROCESSOR 

DATA SHEET REVISION REVIEW 

The following list represents key differences between this and the -001 version of the 386SXTM microproces­
sor data sheet. Please review this summary carefully. 

The sections significantly revised since version -001 are: 
Front Page The Microarchitecture diagram was added. 

Section 2.0 Figure 2.1 was updated to show the 16-bit registers 51, 01, BP and SP. 

Section 2.1 Figure 2.2 was updated to show the correct bit polarity for bit 4 in the CRO register. 

Section 2.1 

Section 2.7 

Section 4.2 

Section 4.5 

Section 5.1 

Section 5.1 

Section 5.4 

Section 7.5 

Section 9.2 

Table 2.1 was updated to include additional information on the EFlAGs register. 

In the subsection Maskable Interrupt a paragraph was added to describe the effect of 
interrupt gates on the IF EFlAGs bit. 

Figures 4.4 and 4.5 were updated to show the AVl bit field. 

The last sentence in the first paragraph of subsection PROTECTION AND 1/0 PERMIS­
SION BIT MAP was deleted. This was an incorrect statement. 

In the Subsection ADDRESS BUS (BHE#, BLE#, A23,A1l, the last sentence in the first 
paragraph was updated to reflect the numerics operand addresses as 8000FCH and 
8000FEH. Because the 386SX CPU sometimes does a double word 1/0 access a sec­
ond access, to 8000FEH, can be seen. 

The Subsection Hold Latencies was updated to describe how 32-bit andurtaligned 
accesses are internally locked but do not assert the lOCK# signal. 

Figure 5.14 was modified to show the correct states of A 1 and BlE # during a Halt 
Indication Cycle. 

This entire section was updated to reflect the new ICE-386SX emulator. 

The section INSTRUCTION ENCODING was appended to the data sheet. 

4-449 



80387SX 
80-BIT NUMERIC ~ROCESSOREXTENSION 

• High Performance 80-Blt Internal 
Architecture 

• Two to Three Times 8087/80287 
Performance at Equivalent Clock Speed 

• Implements··ANSIIIEEE Standard 754-
1985 for Binary Floating-Point 
Arithmetic 

• Fully compatible with 80387. 
Implements all 80387 architectural 
enhancements over 8087 and 80287 •. 

• Upward Object-Code Compatible from 
8087 and 80287 . 

• Interfaces with 386SXTM 
Microprocessor 

• Expands 386SXTM CPU Data Types to 
Include 32-, 64-, 80-Blt Floating POint, 
32-, 64-Blt Integers and 18-Dlglt BCD 
Operands 

• Directly Extends 386SXn. CPU· 
Instruction Set to Trigonometric, 
Logarithmic, Exponential, and 
Arithmetic Instructions for All Data 
Types . 

• Full-Range Transcendental Operations 
for SINE, COSINE, TANGENT, 
ARCTANGENT, and LOGARITHM; 

• Bullt~ln Exception.· Handling 

• Operates Independently of Real, 
Protected, and Vlrtual-8086 Modes of 
the 386SXTM Microprocessor 

• Eight 80-Blt Numeric Registers, Usable 
aslndlvldually Addressable General 
Registers or as a Register Stack 

• Available In a 68-pln ·PLCC Package 
(see Packaging Specs: Order #231369) 

The Intel 80387SX is a high-performance numerics processor extension that extends the architecture of the 
386SXTM Microprocessor with floating pOint, extended integer, and BCD data types. A computing system that 
includes the 80387SX fully confomts to the IEEE Floating Point Standard. Using a numerics oriented architec­
ture, the 80387SX adds over seventy mnemonics to the instruction set of the 386SX Microprocessor, making a 
complete solution for high-performance numerics processing. The 80387SX is implemented with 1.5 micron, 
high-speed CHMOS III technology. The 80387SX is upward object-code compatible from the 80287 and 8087 
numerics coprocessors and completely object-code compatible with the 80387 numerics coprocessor. 

I 
BUS CONTROL LOGIC I DATA INTERfACE AND CONTROL UNIT I 

015"DO 

1. 

.2 

r-__ I-::St:::'1\I;::S:-::WO::::.D~ ... -'.1O'"-·:...IINTERNAL I 
L.:COHTRO=:..:L WO:;::;RD~"""""'1:~A 

"""OUC2 NUMCLK2 

FLOATING POINT UNrr 

DlUS INTEItF ACE 
DATA AUGNMENT AND OPERAND CHECKING 

Figure 0-1. Block Diagram 

4-450 

240225-1 

November 1988 
Order Number: 240225-002 



inter 80387SX 

386SXTM Microprocessor Registers I 80387SX Data Registers 
I Tag 

GENERAL REGISTERS SEGMENT REGISTERS I Field 
31 16 15 0 15 0 I 79 78 64 63 0 1 0 

,.--

EAX AX CS I RO Sign Exponent Significand 

, AH , AL I R1 
t--

SS I I--
EBX BX I R2 

, BH , BL 
DS I 

I--
R3 

CX ES I R4 
I--

ECX 
, CH , CL 

I I--
FS I R5 

DX GS I R6 
t--

EDX 
, DH -, DL I ~ 

R7 I '---
ESI , 31 o I 

SI 

I : EF~: II 
15 0 47 0 

EDI , Control Register 'Instruction Pointer (in CPU) , 
DI Status Register , Data Pointer (in CPU) , 

EBP 
I 

I Tag Word 
BP I 

I 
ESP 

I I 
SP I 

I 
I 
I 
I 
I 

Figure 1-1. 386SXTM Microprocessor and 80387SX Coprocessor Register Set 

1.0 FUNCTIONAL DESCRIPTION 

The 80387SX Numerics Processor Extension (NPX) 
provides arithmetic instructions for a variety of nu­
meric data types. It also executes numerous built-in 
transcendental functions (e.g. tangent, sine, cosine, 
and log functions). The 80387SX effectively extends 
the register and instruction set of its CPU for existing 
data types and adds several new data types as well. 
Figure 1-1 shows-the model of registers visible to 
the 386SXTM Microprocessor and 80387 Coproces­
sor applications programs. Essentially, the 80387SX 
can be treated as an additional resource or an ex­
tension to the 386SX Microprocessor. The 386SX 
Microprocessor together with an 80387SX NPX can 
be used as a single unified system, the 386SX Mi­
croprocessor and 80387 Coprocessor. 

The 80387SX Numerics Processor Extension works 
the same whether the CPU is executing in real-ad­
dress mode, protected mode, or virtual-8086 mode. 
All references to memory for numerics data or status 
information are performed by the CPU, and there­
fore obey the memory-management and protection 
rules of the CPU mode currently in effect. The 
80387SX Numerics Processor Extension merely op­
erates on instructions and values passed to it by the 

CPU and therefore is not sensitive to the processing 
mode of the CPU. 

In real-address mode and virtual-8086 mode, the 
386SX Microprocessor and 80387 Coprocessor is 
completely upward compatible with softWare for the 
8086/8087 and 80286/80287 real-address mode 
systems. 

In protected mode, the 386SX Microprocessor and 
80387 Coprocessor is completely upward compati­
ble with software for the 80286/80287 protected 
mode system. 

In all modes, the 386SX Microprocessor and 80387 
Coprocessor is completely compatible with software 
for the 80836/80387 system. 

The only differences of operation that may appear 
when 808618087 programs are ported to the pro­
tected-mode 386SX Microprocessor and 80387 Co­
processor system (not using virtual-8086 mode) is in 
the format of operands for the administrative instruc­
tions FLDENV, FSTENV, FRSTOR, and FSAVE. 
These instruction are normally used only by excep­
tion handlers and operating systems, not by applica­
tions programs. 

4-451 

iii 
i 
~ 



inter 80387SX 

2.0 PROGRAMMING INTERFACE 

The 80387SX. NPX adds to an 386SX Microproces­
sor system additional data types, registers, instruc­
tions, and interrupts specifically designed to facili­
tate high-speed numerics processing. To use the 
80387SX NPX requires no special programming 
tools, because all new instructions and data types 
are directly supported by the assembler and compil­
ers for high-level languages. All 386 Microprocessor 
development tools that support 80387 programs can 
also be used to develop software for the 386SX Mi­
croprocessor and 80387 Coprocessor. All 80861 
8088 development tools that support the 8087 can 
also be used to develop software for the 386SX Mi­
croprocessor and 80387 Coprocessor in real-ad­
dress mode or virtual-8086 mode. All 80286 devel­
opment tools that support the 80287 can also be 
used to develop software for the 386SX Microproc­
essor and 80387 Coprocessor. 

The 80387SX NPX supports all 80387 instructions. 
The 386SX Microprocessor and 80387 Coprocessor 
supports all the same programs and gives the .same 
results as an 386 Microprocessor and 80387 Co­
processor. 

All communication between the CPU and the NPX is 
transparent to applications software. The CPU auto­
matically controls the NPX whenever a numerics in­
struction is executed. All physical memory and virtu­
al memory of the CPU are available for storage of 
the instructions and operands of programs that use 
the NPX. All memory addressing modes, including 
use of displacement, base register, index register, 
and scaling, are available for addressing numerics 
operands: 

Section 7 at the end of this data sheet lists by class 
the instructions that the 80387SX NPX adds to the 
instruction set of an 386SX Microprocessor system. 

2.1 Data Types 

Table 2·1 lists the seven data types that the NPX 
supports and presents the format for each type. Op­
erands are· stored in memory with the least signifi­
cant digit at the lowest memory address. Programs 
retrieve these values by generating the lowest ad­
dress. For maximum system performance, all oper­
andsshould start at physical-memory addresses 
that correspond to the word size of the CPU; oper­
ands may begin at any other addresses, but will re­
quire extra memory cycles to access the entire oper­
and. 

Internally, the NPX holds all numbers in the extend­
ed-precision real format. Instructions that load oper­
ands from memory automatically convert operands 
represented in memory as l6~, 32-, or 64-bit inte­
gers, 32- or 64-bit floating-point numbers, or l8-digit 
packed BCD numbers into extended-precision real 
format. Instructions that store operands in memory 
perform the inverse type conversion. 

2.2 Numeric Operands 

A typical NPX instruction accepts one or two oper­
ands and produces one (or sometimes two) results. 
In two-operand instructions, one operand is the con­
tents of an NPX register, while the other may be a 
memory location. The operands of some instructions 
are predefined; for example, FSQRT always takes 
the square root of the number in the top stack ele­
ment. 

4-452 



inter 80387SX 

Table 2"1. 80387SX Data Type Representation In Memory 

Data 
Yo" SIgnificant .,..- HIGHEST ADDRESSED BYTE . 

Forma .. 
Range Pracilion 

017 017 01 7 017 017 017 017 0/7 OJ7 oj 7 
Word Integer ± 1()4 1~ Bits J tTWO·S 

COMPLEMENTI 

15 0 

Short Integer ±109 32 Bits J tTWO·S 
COMPLEMENT! 

31 0 

, 

Long Integer ±10l8 64 Bits J ITWO·S 
COMPLEMENTI 

63 0 
-' 

±10l8 51 l( I dl1 
MAGNITUDE 

dJ Packed BCD 18 Digits dlt, d,!t d'4 d'3 d'2 d" d,u d, d, d, d. do, dl d~ d, d, 
79 72 0 

Single Preci$lOn ±10±38 24 Bits 1 BIASED 1 EXPONENT SIGNIFICAND J 
31 23'- 0 

10 

Double Precision ±10±308 53 Bits 51 BIASED I SIGNIFICAND J EXPONENT 

83 52\..:... 10 0 

Extended ±10±4932 64 Bits sl BIASED lTI SIGNIF,CAND J Precision EXPONENT , 

NOTES: 
(1) S = Sign bit (0 = positive, 1 = negative) 
(2) dn = Decimal digit (two per byte) 

7. 84 63" 

(3) X = Bits have no Significance; B03B7 ignores when loading, zeros when storing 
(4) A = Position 01 implicit binary point . 
(5) I = Integer bit 01 signilicand; stored in temporary real, implicit in Single and double precision 
(6) Exponent Bias (normalized values): 

Single: 127 (7FH) 
Double: 1023 (3FFH) 
Extended REal: 16383 (3FFFH) 

(7) Packed BCD: (-1)5 (017 .. 00) 
(B) Real: (-1)5 (2E-BIA5) (Fo Fl ... ) 

4-453 

0 

240225-2 



·M .... r 1 •• 'eII' 80381SX 

2.3 Register Set 

Figure 1-1 shows' the' 80387SXregister set. When 
an NPX is present in a system, programmers may 
use these registers in addition to the registers nor-
mally available on the CPU. ' 

2.3.1 DATA REGISTERS 

80387SX computations use the 80387SX's data reg­
isters. These eight 80-bit registers provide the equiv­
alent capacity of 20 32-bit registers. Each of the 
eight data.registers in the NPX is 80 bits wide and is 
divided into "fields" corresponding to the NPX's ex­
tended-precision real data type. 

The NPX register sat can be accessed either as a 
stack, with instructions operating on the top one or 
tWo stack elements, or as individually addressable 
registers. The TOP field in the' status word identifies 
the current top-of-stack register. A "push" operation 
decrements TOP by one and loads a value into the 
new top register. A "pop" operation stores the value 
from the current top register and then inc.re.ments 
TOP by One. The NPX register stack grows "down" 
toward lower-addressed registers. 

Instructions may address the data registers either 
implicitly or explicitly. Many instructions operate on 
the register at the TOP of the stack. These instruc­
tions implicitly address the register at which TOP 
pOints. Other instructions. allow the programrnerto 
explicitly 'specify which r~gister to use.' This explicit 
register addressing is also relative to TOP. 

15 

2.3.2' TAG WORD 

The tag word marks the content of each numeric 
, data register, as Figure 2-1 shows .. Each, two-bit tag 
represents one of the eight data registers. The prin­
cipal function of the tag word is to optimize the 
NPX's performance and stack handling by making it 
possible to distinguish between empty and nonemp-' 
ty register locations. It also enabllils exception han­
dlers to identify special values (e.g; NaNs or denor­
mals) in the contents of a stack location without the 
need to, perform complex decoding of the . actual 
data. ' 

2.3.3 STATUS WORD 

The 16-bit status word (in the status register) shown 
in Figure 2-2 reflects the overall state of the NPX. It 
may be read and inspected by programs. 

Bit 15, the B-bit (busy bit) is included for 8087 com­
patibility only. It always has the same value as the 
ES bit (bit 7 of the status, word); it does not indicate 
the status of the BUSY # output of NPX. ' 

Bits 13-11 (TOP) point to the NPX register that is 
the current top-of-stack. 

The four numeric condition code bits (C3-CO) are 
similar to the flags in a CPU; instructions that per­
form arithmetic operations update these bits to re­
flect the outcome. The effects of these instructions 
On the condition code are summarized in Tables 2-2 
through 2-5. 

o 
TAG (7) TAG (6) TAG (5) TAG (4) j' TAG (3) TAG (2) TAG (1) TAG (0) 

NOTE: 
The 'index i of tag(i) is not top-relative. A program typically uses the "top" field of Status' Word to determine which tag(i) 
field refers to logical top of stack. 
TAG VALUES: 

00 = Valid 
01 = Zero 
10 = QNaN, SNaN, Infinity, Denormal and Unsupported Formats 
11 = Empty 

Figure 2·1. Tag Word 

4-454 



intJ 80387SX 

.-~----------------------------BUSY 

.--.--,.---------------------- TOP OF STACK POINTER 

.--+-+-+-"'T'"""-.--.-------------- CONDITION CODE 

ERROR SUMMARY STATUS --------' 
STACK FLAG ------------' 

EXCEPTION RAGS: 

PRECISION ------------' 

UNDERFLOW ------------' 
OVERFLOW ----------------' 

ZERO DIVIDE --------------:---:-~ 
DENORMALIZED OPERAND -----------------' 

INVALID OPERATION ------------------,,---' 
·240225-3 

ES is set if any unmasked exception bit is set; cleared otherwise. See Table 2-2 for interpretation of condition code. 
TOP values: 

000 = Register 0 is Top of Stack 
001 = Register 1 is Top of Stack 

111 = Register 7 is Top of Stack 
For definitions of exceptions, refer to the section entitled "Exception Handling" 

Figure 2-2. Status Word 

Bit 7 is the error summary (ES) status bit. This bit is 
set if any unmasked exception bit is set; it is clear 
otherwise. If this bit is set, the ERROR;II signal is 
asserted. 

Bit 6 is the stack flag (SF). This bit is used to distin­
guish invalid operations due to stack overflow or .un­
derflow from other kinds of invalid operations. When 
SF is set, bit 9 (C1) distinguishes between stack 
overflow (C1 = 1) and underflow (C1 = 0). 

Figure 2.2 shows the six exception flags in bits 5-0 
of the status word. Bits 5-0 are set .to indicate that 
the NPX has detected an exception while executing 
an instruction. A later section entitled "Exception, 
Handling" explains how they are set and used. 

Note that when a new value is loaded into the status 
word by the FlDENV or FRSTOR ins~ruction, the 
value of ES (bit 7) and its reflection in the B-bit (bit 
15) are not derived from the values loaded from 
memory but rather are dependent .upon the values of 
the exception flags (bits 5-0) in the status word and 
their corresponding masks in the control word. If .ES 
is set in such a case, the ERROR'" output of the 
NPX is activated immediately. 

4-455 

I
ii 

., 

II 
I ~ , 

'~ 

I' 



803878)( 

Table 2-2. Condition Code Interpretation 

Instruction CO(S) I C3(Z) C1 (A) C2(C) 

FPREM, FPREM1 Three least significant bits 
Reduction 

(see Table 2.3) of quotient 
0= complete 

02 00 01 
orO/U# 1 = incomplete 

FCOM, FCOMP, 
FCOMPP, FTST, Result of comparison 

Zero 
Operand is not 

FUCOM, FUCOMP, (see Table 2.4) 
orO/U# 

comparable 
FUCOMPP, FICOM, . (Table 2.4) 
FICOMP 

FXAM Operand class Sign Operand class 
(see Table 2.5) orO/U# (Table 2.5) 

FCHS, FABS, FXCH, 
FINCTOP, FDECTOP, 

Zero 
Constant loads, UNDEFINED 

orO/U# 
UNDEFINED 

FXTRACT, FLO, 
FILD, FBLD, 
FSTP (ext real) .. 

FIST, FBSTP, 
FRNDINT, FST. 
FSTP, FADD, FMUL, 

Roundup 
FDIV. FDIVR, UNDEFINED UNDEFINED 
FSUB. FSUBR. orO/U# 

FSCALE, FSORT, 
FPATAN, F2XM1, 
FYL2X, FYL2XP1 

FPTAN, FSIN Roundup Reduction 
FCOS, FSINCOS UNDEFINED OrO/U#, 0= complete 

undefined 1 = incomplete 
ifC2 = 1 

FLDENV, FRSTOR Each bit loaded from memory 

FLDCW, FSTENV, 
FSTCW, FSTSW, UNDEFINED , 
FCLEX, FIN IT, . . .. 

FSAVE 

O/U# When both IE and SF bits of status word are set, indicating a stack exception, this bit 
distinguishes between stack overflow (Ct = 1) and underflow (C1 = 0). 

Reduction If FPREM or FPREM1 produces a remainder that is less than the modulus, reduction is 
complete. When reduction is incomplete the value at the top of the stack is a partial remain-
der, which can be used as input to further reduction. For FPTAN, FSIN, FCOS,and FSIN-
COS. the reudction bit is set if the oeprand at the top of the stack is too large. In this case 
the original operand remains at the top of the stack. 

Roundup When the PE bit of the status word is set, this bit indicates whether the last rounding in the 
instruction was upward. 

UNDEFINED Do not rely on finding any specific value in these bits. 

4-456 



80387SX 

Table 2-3. Condition Code Interpretation after FPREM and FPREM1 Instructions 

Condition Code 
Interpretation after FPREM and FPREM1 

C2 C3 C1 CO 

Incomplete Reduction: 
1 X X X further interation required 

for complete reduction 

01 00 02 o MOD8 

0 0 0 0 
0 1 0 1 

Complete Reduction: 
1 0 0 2 

0 
1 1 0 3 

CO, C3, C1 contain three least 

0 0 1 4 
significant bits of quotient 

0 1 1 5 
1 0 1 6 
1 1 1 7 

Table 2-4. Condition Code ~esultlng from Comparison 

Order C3 C2 CO 

TOP> Operand 0 0 0 
TOP < Operand 0 0 1 
TOP = Operand 1 0 0 
Unordered 1 1 1 

Table 2.5. Condition Code Defining Operand Class i: 

C3 C2 C1 CO Value at TOP I 

0 0 0 0 + Unsupported. 
0 0 0 1 + NaN 
0 0 1 0 - Unsupported 
0 0 1 1 - NaN 
0 1 0 0 + Normal 
0 1 0 1 + Infinity 
0 1 1 0 - Normal 
0 1 1 1 - Infinity 
1 0 0 0 +0 
1 0 0 1 + Empty 
1 0 1 0 ..,.0 
1 0 1 1 ..,. Empty 
1 1 . .. 0 0 + Denormal 
1 1 1 0 -Denormal 

4·457 



inter 80387SX 

r-,..,-----:---:----------.:... RESERVED 

r-------------- RESERVED· 
,,-----'--------- ROUNDING CONTROL 

.--r-------~-- PRECISION CONTROL . 

RESERVED ______ .I..-J 

EXCEPTION MASKS: 

PRECISION ----------' 
UNDERFLOW ________ -...l 

• "0" AFTER RESET OR 'INIT; 
CHANGEABLE UPON LOADING THE 
CONTROL WORD(CW). PROGRAMS 
MUST IGNORE THIS BIT. 

OVERFLOW __________ ...1 

ZERO DIVIDE ___________ ..J 
DENORMALIZED OPERAND ____________ ...J 

INVALID OPERATION _~ ___________ --l 

Precision Control 
00-24 bits (single precision) 
01-(reserved) 
10-53 bits (double precision) 
11-64 bits (extended precision) 

Rounding Control 
OO-Round to nearest or even 
01-Round down (toward - 00) 
10-Round up (toward + 00) 
11-Chop (truncate toward zero) 

240225-4 

Figure 2·3. Control Word 
2.3.4 CONTROL WORD 

The NPX provides several processing options that 
~re selected by loa.ding a control word from memory 
Into the control register. Figure 2-3 shows the format 
and encoding of fields in the control word. 

The low-order byte of this control word configures 
exception masking. Bits 5-0 of the control word 
contain individual masks for each of the six excep­
tions that the NPX recognizes. 

The high-order byte of the control word configures 
the NPX operating mode, including precision, round­
ing, and infinity control. 

• The "infinity control bit" (bit 12) is not meaningful 
~o the 80387SX NPX, and programs must ignore 
Its value. To maintain compatibility with the 8087 
and 80287, this bit can be programmed; however, 
regardless of its value, the 80387SX NPKalways 
treats infinity in the affine sense (- 00 < + 00). 
This bit is initialized to zero both after a hardware 
reset and after the FINIT instruction. 

• The rounding control (RC) bits (bits 11-10) pro· 
vide for directed rounding and true chop, as well 
as the unbiased round to nearest even mode 
specified in the IEEE standard. Rounding control 
affects only those instructions that perform 
rounding at the end of the operation (and thus 
can generate a precision exception); namely, 
FST, FSTP, FIST, all arithmetic instructions (ex­
cept FPREM, FPREM1, FXTRACT, FABS, and 
FCHS), and all transcendental instructions. 

• The precision control (PC) bits (bits 9-8) can be 
used to set the NPX internal operating precision 
of the significand at less than the default of 64 
bits (extended precision) .. This can be useful in 
providing compatibility with early generation arith­
metic processors of smaller precision. PC affects 
only the instructions ADD, SUB, DIV, MUL, and 
SORT. For all other instructions, either the preci­
sion is determined by the opcode or extended 
precision is used. 



80387SX 

2.3.5 INSTRUCTION AND DATA POINTERS 

Because the NPX operates in parallel with the CPU, 
any exceptions detected by the NPX may be report­
ed after the CPU has executed the ESC instruction 
which caused it. To allow identification of the failing 
numeric instruction, the 386SX Microprocessor and 
80387 Coprocessor contains registers that aid in 
diagnosis. These registers supply the address of the 
failing instruction and the address of its numeric 
memory operand (if appropriate). 

The instruction and data pbinters are provided for 
user-written exception handlers. These registers are 
actually located in the CPU, but appear to be located 
in the NPX because they are accessed by the ESC 
instructions FLDENV, FSTENV, FSAVE, and 

FRSTOR. Whenever the CPU executes a new ESC 
instruction, it saves the address of the instruction 
(including any prefixes that may be present), the ad­
dress of the operand (if present), and the opcode. 

The instruction and data pOinters appear in one of 
four formats depending on the operating mode of 
the CPU (protected mode or real-address mode) 
and depending on the operand-size attribute in ef­
fect (32-bit operand or 16-bit operand). (See Figures 
2-4, 2-5, 2-6, and 2-7.) The ESC instructions 
FLDENV, FSTENV, FSAVE, and FRSTOR are used 
to transfer these values between the registers and 
memory. Note that the value of the data pointer is 
undefined if the prior ESC instruction did not have a 
memory operand. 

32·BIT PROTECTED MODE FORMAT 

31 23 15 7 a 

RESERVED CONTROL WORD a 

RESERVED STATUS WORD 4 

RESERVED TAG WORD 8 

IPOFFSET C 

00000 I OPCODE 10 .. 0 CSSELECTOR 10 

DATA OPERAND OFFSET 14 

RESERVED OPERAND SELECTOR 18 

Figure 2-4.lnstructlon and Data Pointer Image in Memory, 32-blt Protected-Mode Format 

4-459 



31 

15 

80387SX 

16-BIT PROTECTED MODE FORMAT 
7 

CONTROL WORD 

STATUS WORD 

TAG WORD 

IPOFFSET 

CSSELECTOR 

OPERAND OFFSET 

OPERAND SELECTOR 

o 

o 

2 

4 

6 

8 

A 

C 

Figure 2-5. Instruction and Data Pointer Image in Memory, 16-bit Protected-Mode Format 

0000 I 

0000 I 

23 

RESERVED 

RESERVED 

RESERVED 

32-BIT REAL-ADDRESS MODE FORMAT 
15 7 

CONTROL WORD 

STATUS WORD 

TAG WORD 

RESERVED INSTRUCTION POINTER 15 .. 0 

INSTRUCTION POINTER 31 .. 16 I 0 I OPCODE 10 .. 0 

RESERVED OPERAND POINTER 15 .. 0 

OPERAND POINTER 31..16 I 0000 00000000 

Figure 2-6. Instruction and Data Pointer Image in Memory, 32-bit Real-Mode Format 

16-BIT REAL-ADDRESS MODE AND VIRTUAL BOB6 MODE FORMAT 

15 7 o 

CONTROL WORD o 

STATUS WORD 2 

TAG WORD 4 

INSTRUCTION POINTER 15 .. 0 6 

IP19.16 101 OPCODE10 .. 0 8 

OPERAND POINTER 15 .. 0 A 

DP 19.16 I 0 I 0 0 0 0 0 0 0 0 o 0 0 C 

Figure 2-7. Instruction and Data Pointer Image in Memory, 16-bit Real-Mode Format 

4-460 

o 
o 
4 

B 

C 

10 

14 

lB 



inter 80387SX 

Table 2-6. CPU Interrupt Vectors Reserved for NPX 

Int~rrupt 
Cause of Interrupt 

Number 

7 An ESC instruction was encountered when EM or TS of CPU control register zero (CRO) was 
set. EM = 1 indicates that software emulation of the instruction is required. When TS is set, 
either an ESC or WAIT instruction causes interrupt 7. This indicates that the current NPX 
context may not belong to the current task. 

9 In a protected-mode system, an operand of a coprocessor instruction wrapped around an 
addressing limit (OFFFFH for expand-up segments, zero for expand-down segments) and 
spanned inaccessible addressesa. The failing numerics instruction is not restartable. The 
address of the failing numerics instruction and data operand may be lost; an FSTENV does not 
return reliable addresses. The segment overrun exception should be handled by executing an 
FNINIT instruction (Le. an FINIT without a preceding WAIT). The exception can be avoided by 
never allowing numerics operands to cross the end of a segment. 

13 In a protected-mode system, the first word of a numeric operand is not entirely within the limit 
of its segment. The return address pushed onto the stack of the exception handler pOints at the 
ESC instruction that caused the exception, including any prefixes. The NPX has not executed 
this instruction; the instruction pointer and data pOinter register refer to a previous, correctly 
executed instruction. 

16 The previous numerics instruction caused an unmasked exception. The address of the faulty 
instruction and the address of its operand are stored in the instruction pOinter and data pointer 
registers. Only ESC and WAIT instructions can cause this interrupt. The CPU return address 
pushed onto the stack of the exception handler points to a WAIT or ESC instruction (including 
prefixes). This instruction can be restarted after clearing the exception condition in the NPX. 
FNINIT, FNCLEX, FNSTSW, FNSTENV, and FNSAVE cannot cause this interrupt. 

a. An operand may wrap around an addressing limit when the segment limit is near an addressing limit and the operand is 
near the largest valid address in the segment. Because of the wrap-around, the beginning and ending addresses of such an 
operand will be at opposite ends of the segment. There are two ways that such an operand may also span inaccessible 
addresses: 1) if the segment limit is not equal to the addressing limit (e.g. addressing limit is FFFFH and segment limit is 
FFFDH) the operand will span addresses that are not within the segment (e,g. an a-byte operand that starts at valid offset 
FFFCH will span addresses FFFC-FFFFH and 0000-0003H; however addresses FFFEH and FFFFH are not valid, because 
they exceed the limit); 2) if the operand begins and ends in present and accessible segments but intermediate bytes of the 
operand fall in a not-present page or in a segment or page to which the procedure does not have access rights. 

2.4 Interrupt Description 

CPU interrupts are used to report exceptional condi­
tions while executing numeric programs in either real 
or protected mode. Table 2-6 shows these interrupts 
and their functions. 

2.5 Exception' Handling 

The NPX detects six different exception conditions 
that can occur during instruction execution. Table 2-
7 lists the exception conditions in order of prece­
dence, showing for each the cal,lse and the default 
action taken by the NPX if the exception is masked 
by its corresponding mask bit in the control word. 

Any exception that is not masked by the control 
word sets the corresponding exception flag of the 
status word, sets the ES bit of the status word, and 
asserts the ERROR # signal. When the CPU at­
tempts to execute another ESC instruction or WAIT, 
exception 16 occurs. The exception condition must 
be resolved via an. interrupt service routine. The re­
turn address pushed onto the CPU stack upon entry 

4-461 

to the service routine does not necessarily pOint to 
the failing instruction nor to the following instruction. 
The CPU saves the address of the floating-point in­
struction that caused the exception and the address 
of any memory operand required by that instruction. 

2.6 Initialization 

After FNINIT or RESET, the control word contains 
the value 037FH (all exceptions masked, precision 
control 64 bits, rounding to nearest) the same values 
as in an 80287 after RESET. For compatibility with 
the 8087 and 80287, the bit that used to indicate 
infinity control (bit 12) is set to zero; however, re­
gardless of its setting, infinity is treated in the affine 
sense. After FNINIT or RESET, the status word is 
initialized as follows: 

• All exceptions are set to zero. 

• Stack TOP is zero, so that after the first push the 
stack top will be register seven (1118). 

• The condition code C3-CO is undefined. 

• The 8-bit is zero. 



80387SX 

Table 2-7. Exceptions 

Exception Cause Default Action 
(If exception is masked) , 

Invalid, Operation on a signalling NaN, unsupported format, Resultis a quiet NaN, integer 
Operation indeterminate for (0· 00, 0/0, (+ (0) + (- (0), etc.), or " indefinite, or BCD indefinte 

stack overflow/underflow (SF is also set) 

Denormalized ' At least one of the operands is denormalized, i.e;, it has Normal processing 
: Operand the smallest exponent but 'a nonzero significand. continues 

Zero Divisor The divisor is zero while the dividend is a noninfinite, Result is 00. 

,nonzero number 

OverfloW The result is too large in magnitude to fit in the specified Result is largest finite 
format value or 00 

Underflow The true result is nonzero but too small to be Result is denormalized 
represented in the specified format, and, if underflow or zero 
exception is masked, de normalization causes the loss of 
accuracy. 

Inexact The true result is not exactly representable in the Normal processing 
Result specified format (e.g. %); the result is rounded continues 
(PreciSion according to the rounding mo~e. 

The tag word contains FFFFH (all stack locations 
are empty). 

The 386SX Microprocessor and 80387 Coprocessor 
initialization software must execute an FNINITin· 
struction (i.e an FINIT without a preceding WAIT) af· 
ter RESET. The FNINIT is not strictly required for the 
80287 software, but Intel recommends its use to 
help ensure upward compatibility with other proces­
sors. After a hardware RESET, the ERROR# output 
is asserted to indicate that an 80387SX is present. 
To accomplish this, the IE and ES bits of the status, 
word are set, and the 1M bit in the control word is 
cleaf9d. After FNINIT, the status word and the con· 
trol word have the same values as in an 80287 after 
RESET. 

2.7 8087 and 80287 Compatibility 

This section summarizes the differences between 
the 80387SX and the 80287. Any migration from the 
8087 directly to the 80387SX must also take into 
account the differences between the 8087 and the 
80287 as listed in Appendix A. 

Many changes have 'been designed into the 
80387SX to directly support the IEEE standard in 
hardware. These changes result in increased per~ 
formance by eliminating the need for software that 
supports the standard. 

2.7.1 GENERAL DIFFERENCES 

The 80387SX supports only affine closure for infinity 
arithmetic, not p.rojective closure. 

Operands for FSCALE and FPATAN are no longer 
restricted in range (except for ± (0); F2XM1and 
FPT AN accept a wider range of OPerands. 

Rounding control is in effect for FLO constant. 

Software cannot change entries of the tag word to 
values (other than empty) that differ from actual reg­
ister contents. 

After reset, FINIT, and incomplete FPREM, the 
80387SX resets to zero the condition code bits C3-
Co of the status word. 

In conformance with the IEEE standard, the 
80387SX does not support the special data formats 
pseudozero, pseudo-NaN, pseudoinfinity, and un­
normal. 

The denormal exception has a different purpose on 
the 80387SX. A system that uses the denormal·ex·, 
ception handler solely to normalize the denormal op­
erands, would better mask the denormal exception 
on the 80387SX. The 80387SXautomaticaily nor~ 
malizes denormal' operands when the de normal ex­
ception is masked. 

4-462 



80387SX 

2.7.2 EXCEPTIONS 

A number of differences exist due to changes in the 
IEEE standard and to functional improvements to 
the architecture of the 80387SX: 

1. When the overflow or underflow exception. is 
masked, the 80387SX differs from the 80287 in 
rounding when overflow or underflow occurs. 
The 80387SX produces results that are consist­
ent with the rounding mode. 

2. When the underflow exception is masked, the 
80387SX sets its underflow flag only if there is 
also a loss of accuracy during denormalization. 

3. Fewer invalid-operation exceptions due to de-. 
normal operands, because the instructions 
FSORT, FOIV, FPREM, and conversions to BCD 
or to integer normalize denormal operands be­
fore proceeding. 

4. The FSORT, FBSTP, and FPREM instructions 
may cause underflow, because they support de­
normal operands. 

5. The denormal exception can occur during the 
transcendental instructions and the FXTRACT 
instruction. 

6. The denormal exception no longer takes prece-
dence over all other exceptions. . 

7. When the denormal exception is masked, the 
80387SX automatically normalizes denormal op­
erands. The 8087/80287 performs unnormal 
arithmetic, which might produce an unnormal re-
~~ . 

8. When the operand' is zero; the FXTRACT in­
struction reports a zero-divide 'exception and 
leaves - 00 in ST(1). '. 

9. The status word has a new bit (SF) that signals' 
when invalid-operation exceptions are due to 
stack underflow or overflow. 

10. FLO extended precision no longer reports denor­
mal exceptions, because the instruction is not 
numeric. 

11. FLO single/double precision when the operand 
is denormal converts the number to extended 
precision,and signals the denormalized operand 
exception. When loading a signalling NaN, FLO 
single/double precision signals an invalid-oper­
and exception. 

12. The 80387SX only generates qiJiet NaNs (as on 
the 80287); however, the 80387SX distinguishes 
between quiet NaNs and signaling NaNs. Signal­
ing NaNs trigger exceptions when they are used 
as operands; quiet NaNs do not (except for 
FCOM, FIST, and FBSTP which also raise IE for 
quiet NaNs). 

13. When stack overflow occurs during FPT AN anp 
overflOW is. masked, both ST(O) and ST(1) con-

tain quiet NaNs. The 80287/8087 leaves the 
original operand in ST(1) intact. 

14. When the scaling factor is ± 00, the FSCALE 
(ST(O), ST(1» instruction behaves as follows 
(ST(O) and ST(1) contain the scaled and scaling 
operands respectively): 

• FSCALE(O,oo) generates the invalid operation 
exception. 

• FSCALE(finite, - 00) generates zero with the 
same sign as the scaled operand. 

• FSCALE(finite,' + 00) generates 00 with' the 
same sign as the scaled operand. 

The 8087/80287 returns zero in the first case 
and raises the invalid-operation exception in the 
other cases. 

15. The 80387SX returns signed infinity/zero as the 
unmasked response to massive overflow/under­
flow. The 8087 and 80287 support a limited 
range for the scaling factor; within this range ei­
ther massive overflow/underflow do not occur or 
undefined results are produced. 

3.0 HARDWARE INTERFACE 

In the following description of hardware interface, 
the # symbol at the end of a signal name indicates 
that the active or asserted state occurs when the 
signal is at a low Voltage. When no # is present after 
the. signal name, the signal is asserted when at the 
high voltage level. . 

3.1 Signal Description 

In the following signal descriptions, the 80387SX 
pins are grouped by function as shown by Table 3-1. 
Table 3-1 lists every pin by its identifier, gives a brief 
description of its function, and lists some of its char­
acteristics (Refer to Figure 5-1 and Table 5"1 for pin 
configuration). 

SYNCHRONOUS 

CPUCLK2 

ASYNCHRONOUS 

386SXTN 

NUMCLK2 

240225:-21 

Figure 3.1. AsynchrOnous9peration 

4-463 



inter 80387SX 

Table 3·1. Pin Summary 

Ph,! Function Active Input! Referenced 
Name State Output To ... 

Execution Control 

CPUCLK2 386SXTM Microprocessor CLocK 2 I 
NUMCLK2 80387SX CLocK 2 I 
CKM 80387SX ClocKing Mode I 
RESETIN System reset High I CPUCLK2 

NPX Handshake 

PEREQ Processor Extension REQuest High 0 STEN/CPUCLK2 
BUSY# Busy status Low 0 STEN/CPUCLK2 
ERROR# Error status Low 0 STEN/NUMCLK2 

Bus Interface 

015-00 Data pins High I/O CPUCLK2 
W/R# Write/Read bus cycle Hi/Lo I CPUCLK2 
ADS# ADdress Strobe Low I CPUCLK2 
READY# Bus. ready input Low I CPUCLK2 
READYO# Ready output Low 0 STEN/CPUCLK2 

Chip/Port Select 

STEN STatus ENable High I CPUCLK2 
NPS1# NPX select # 1 Low I CPUCLK2 
NPS2 NPX select #2 High I CPUCLK2 
CMOO# CoMmanD Low I CPUCLK2 

Power and Ground 

Vee System power 
Vss System ground 

All output signals are tristate; they leave floating 
state only when STEN is active. The output buffers 
of the bidirectional data pins 015-00 are also tri­
state; they leave floating state only during cycles 
when the NPX is selected (i.e. when STEN, NPS1 #, 
and NPS2 are all active). . 

3.1.1 386SXTM CPU CLOCK 2 (CPUCLK2) 

This input uses the CLK2 signal of the CPU to time 
the bus control logic. Several other NPX signals are 
referenced to the rising edge of this signal. When 
CKM = 1 (synchronOl:s mode) this pin also clocks 
the data interface and control unit and the floating­
point unit of the NPX. This pin requires MOS-Ievel 
input. The signal on this pin is divided by two to pro­
duce the internal clock signal CLK. 

3.1.2 80387SX CLOCK 2 (NUMCLK2) 

When CKM = 0 (asynchronous mode) this pin pro­
vides the clock for the data interface and control unit 
and the floating-point unit of the NPX. In this case, 
the ratio of the frequency of NUMCLK2 to the fre­
quency of CPUCLK2~ust lie within the range 10:16 
to 14:10. When CKM = 1 (synchronous mode) sig­
nals on this pin are ignored; CPUCLK2 is used in­
stead for the data interface and control unit and the 
floating-point unit. This pin requires MOS-Ievel input. 

3.1.3 CLOCKING MODE (CKM) 

This pin is a strapping option. When it is strapped to 
Vee (HIGH). the NPXoperates in synchronous 
mode; when strapped to Vss (LOW). the NPX oper­
ates in asynchronous mode. These modes relate to 
clocking of the data interface and control unit and 
the floating-point unit only; the bus control logic al­
ways operates synchronously with respect to the 
CPU. 

3.1.4 SYSTEM RESET (RESETIN) 

A LOW to HIGH transition on this pin causes the 
NPX to terminate its present activity and to enter a 
dormant state. RESETIN must remain active (HIGH) 
for at least 40 NUMCLK2 periods. 

The HIGH to LOW transitions of HESETIN must be 
synchronous with CPUCLK2. so that the phase of 
the internai clock of the bus control logic (which is 
the. CPUCLK2 divided by two). is the same as the 
phase of the internal clock of the CPU. After RESE­
TIN goes LOW. at least 50 NUMCLK2 periods must 
pass before the first NPX instruction is written .into 
the NPX. This pin should be connected to the CPU 
RESET pin. Table 3-1 shows the status of the output 
pins during the reset sequence. After a reset. all out­
put pins return to their inactive states. 

4-464 



inter 80387SX 

Table 3-2. Output Pin Status during Reset 

Pin Value Pin Name 

HIGH READYO#, BUSY# 
LOW PER EO, ERROR # 
Tri-State OFF D15-DO 

3.1.5 PROCESSOR EXTENSION REQUEST 
(PEREQ) 

When active, this pin signals to the CPU that the 
NPX is ready for data transfer to/from its data FIFO. 
When all data is written to or read from the data 
FIFO, PEREO is deactivated. This Signal always 
goes inactive before BUSY # goes inactive. This sig­
nal is referenced to CPUCLK2. It should be connect­
ed to the CPU PEREO input. 

3.1.6 BUSY STATUS (BUSY#) 

When active, this pin signals to the CPU that the 
NPX is currently executing an instruction. This signal 
is referenced to CPUCLK2. It should be connected 
to the CPU BUSY # pin. 

3.1.7 ERROR STATUS (ERROR#) 

This pin reflects the ES bit of the status register. 
When active, it indicates that an unmasked excep­
tion has occurred. This signal can be changed to 
inactive state only by the following instructions (with­
out a preceding WAIT): FNINIT,FNCLEX, 
FNSTENV, FNSAVE, FLDCW, FLDENV, and 
FRSTOR. This pin is referenced to CPUCLK2. It 
should be connected to the ERROR # pin of the 
CPU. 

3.1.8 DATA PINS (D15-DO) 

These bidirectional pins are used to transfer data 
and opcodes between the CPU and NPX. They are 
normally connected directly to the corresponding 
CPU data pins. HIGH state indicates a value of one. 
DO is the least significant data bit. Timings are refer­
enced to CPUCLK2. 

3.1.9 WRITE/READ BUS CYCLE (W/R#) 

This signal indicates to the NPX whether the CPU 
bus cycle in progress is a read or a write cycle. This 
pin should be connected directly to the CPU's 
W /R # pin. HIGH indicates a write cycle; LOW a 
read cycle. This input is ignored if any of the signals 
STEN, NPS1 #, or NPS2 is inactive. Setup and hold 
times are referenced to CPUCLK2. 

3.1.10 ADDRESS STROBE (ADS#) 

This input, in conjunction with the READY # input, 
indicates when the NPX bus-control logic may sam­
ple W/R# and the chip-select signals. Setup and 
hold times are referenced to CPUCLK2. This pin 
should be connected to the ADS# pin of the CPU. 

3.1.11 BUS READY INPUT (READY#) 

This input indicates to the NPX when a CPU bus 
cycle is to be terminated. It is used by the bus-con­
trol logic to trace bus activities. Bus cycles can be 
extended indefinitely until terminated by READY #. 
This input should be connected to the same signal 
that drives the CPU's READY # input. Setup and 
hold times are referenced to CPUCLK2. 

. 3.1.12 READY OUTPUT (READYO#) 

This pin is activated at such a time that write cycles 
are terminated after two clocks and read cycles after 
three clocks. In configurations where no extra wait 
states are required, this pin must directly or indirectly 
drive the READY # input of the CPU. Refer to the 
section entitled "Bus Operation" for details. This pin 
is activated only during bus cycles that select the 
NPX. This signal is referenced to CPUCLK2. 

3.1.13 STATUS ENABLE (STEN) 

This pin serves as a chip select for the NPX. When 
inactive, this pin forces, BUSY#, PEREO#, ER­
ROR #, and READYO # outputs into floating state. 
D15-DO are normally floating; they leave floating 
state only if STEN is active .and additional conditions 
are met. STEN also causes the chip to recognize its 
other chip-select inputs. STEN makes it easier to do 
on-board testing (using the overdrive method) of 
other chips in systems containing the NPX. STEN 
should be pulled up with a resistor so that it can be 
pulled down when testing. In boards that do not use 
on-board testing. STEN should be connected to 
Vee. Setup and hold times are relative to CPUCLK2. 
Note that STEN must maintain the same setup and 
hold times as NPS1 #, NPS2, and CMDO# (i.e. if 
STEN changes state during an NPX bus cycle, it 
must change state during the same CLI< period as 
the NPS1 #, NPS2, and CMDO# signals). 

3.1.14 NPX SELECT 1 (NPS1 #) 

When active (along with STEN and NPS2) in the first 
period ora CPU bus cycle, this signal indicates that 
the purpose of the bus cycle is to communicate with 
the NPX. This pin should be connected directly to 
the M/IO# pin of the CPU, so that the NPX is select­
ed only when the CPU performs I/O cycles, Setup 
and hold times are referenced to CPUCLK2. 

4-465 

J 

!~ 
i:'1 
!'·I; .1; 

I: 
I, 



80387SX 

3.1.15 NPX SELECT 2 (NPS2) 

When active (along with STEN and NPS1 #)in the 
first period of a CPU bus cycle,. this signal indicates 
that the purpose of the bus cycle is to communicate 
with the NPX. This pin should be connected directly 
to the A23 pin of the CPU, so that the NPX is select­
ed only when the CPU issues one of the I/O ad· 
dresses reserved for the NPX (8000F8H, 8000FCH 
or 8000FEH which is treated· as 8000FCH by the 
80387SX). Setup and hold times are referenced to 
CPUCLK2. 

3.1.16 COMMAND (CMDO#) 

During a write cycle, this signal indicates whether an 
opcode (CMDO#active) or data (CMDO# inactive) 
is being sent to the NPX. During a read cycle, it indio 
cates whether the control or ,status register (CMDO# 
active) or a data register (CMDO# inactive) is being 
read. CMDO# should be connected directly to the 
A2 output of the CPU. Setup and hold times are ref­
erenced to CPUCLK2. 

3.1.17 SYSTEM POWER (Vee) 

System power provides the + 5V DC supply input. 
All Vee pins should be tied together on the circuit 
board and local decoupling capacitors should be 
used between Vee and Vss. 

3.1.18 SYSTEM GROUND (Vss) 

All Vss pins should be tied together on the circuit 
board and local decoupling capacitors should be 
used between Vee' and Vss. 

3.2 System Configuration 

The 80387SX is designed to interface with the 
386SX Microprocessor as shown by Figure 3-1. A 
dedicated communication protocol makes possible 
high-speed transfer of opcodes and operands be­
tween the CPU and NPX. The 80387SX is designed 
so that no additional components are required for 
interface with the CPU. Most control pins of the NPX 
are connected directly to pins of the CPU. 

FROM OTHER PERIPHERALS 
T , 

; ...... CKM , 
CLOCK 180387SX CLOCK I 

'" GENERATOR GENERATOR NUMCLK2 

CLK2 (OPTIONAL) 

I CLK -+ CPUCLK2 

RESET RESETIN 

t 
READY# 

WAIT STATE +-
t 

GENERATOR READYO# (OPTIONAL) 

HLDA 

386SXTM CPU 
80387SX 

.,... RESET D/C# --+ 
---+ READY# LOCK# :; CLK2 BHE#, BLE# 

M/IO# NPS1# .,... NA# A23 NPS2 

..... HOLD A22-A3,Al ~ . • r-

..... INT# A2 CMDD# 

..... NMI W/R# W/R# 
ADS# ADS# 

STEN I-

015-00 
16/ 

015-00 / 

BUSY# BUSY# 

ERROR# ERROR# 

PEREQ PEREQ 

Figure 3·1. 386SXTM CPU and 80387SX Coprocessor System Configuration 

4-466 

240225-5 



80387SX 

The interface between the 80387SX and the CPU 
has these characteristics: 

• The NPX shares the local bus of the 386SX Mi­
croproces_sor. 

• The CPU and NPX share the same reset signals. 
They may also share the same clock input; how­
ever, for greatest performance, an external oscil­
lator may be needed. 

• The corresponding BUSY"", ERROR"", and PER­
Ea pins are oonnected together. 

• The NPX NPS1 "" and NPS2 inputs are connect­
ed to the latched CPU MIlO"" and A23 outputs 
respectively. For coprocessor cycles, MIlO"" is 
always lOW and A23 always HIGH. 

• The NPX input CMDO is connected to the latched 
A2 output. The 386SX Microprocessor generates 
address 8000F8H when writing a command and 
address 8000FCH or 8000FEH (treated as 
8000FCH by the 80387SX) when writing or read­
ing data. It does not generate any other address­
es during NPX bus cycles. -

3.3 Processor Architecture 

As shown by the block diagram on the front page, 
the 80387SX NPX is internally divided into three sec­
tions: the bus control logic (BCl), the data interface 
and control unit, and the floating point unit (FPU). 
The FPU (with the support of the control unit which 
contains the sequencer and other support units) ex­
ecutes all numerics -instructions. The data interface 
and control unit is responsible for the data flow to 
and from the FPU and the control registers, for re­
ceiving the instructions, decoding them, and se­
quencing the microinstructions, and for handling 
some of the administrative instructions. The BCl is 
responsible for CPU bus tracking and interface. The 
BCl is the only unit in the NPX that must run syn­
chronously with the CPU; the rest of the NPX can 
run asynchronously with respect to the CPU. 

3.3.1 BUS CONTROL LOGIC 

The BCl communicates solely with the CPU using 
110 bus cycles. The BCl appears to the CPU as a 
special peripheral device. It is special in two re-

spects: the CPU initiates 110 automatically when it 
encounters ESC instructions, and the CPU uses re­
served 110 addresses to communicate with the BCL. 
The BCl does not communicate directly with memo­
ry. The CPU performs all mem9ry access, transfer­
ring input operands from memory to the NPX and 
transferring outputs from the NPX to memory. 

3.3.2 DATA INTERFACE AND CONTROL UNIT 

The data interface and control unit latches the data 
and, subject to BCl control, directs the data to the 
FIFO or the instruction decoder. The instruction de­
coder decodes the ESC instructions sent to it by the 
CPU and generates controls that direct the data flow 
in the FIFO. It also triggers the microinstruction se­
quencer that controls execution of each instruction. 
If the ESC instruction is FIN IT, FClEX, FSTSW, 
FSTSW AX, FSTCW, FSETPM, or FRSTPM, the 
control executes it independently of the FPU and the 
sequencer. The data interface and control unit is the 
one that generates the BUSY"", PEREa, and ER­
ROR"" signals that synchronize NPX activities with 
the CPU. 

3.3.3 FLOATING.POINT UNIT 

The FPU executes all instructions that involve. the 
register stack, including arithmetic, logical, transcen­
dental, constant, and data transfer instructions. The 
data path in the FPU is 84 bits wide (68 significant 
bits, 15 exponent bits, and .a sign bit) which allows 
internal operand transfers to be performed at very 
high speeds. 

3.4 Bus Cycles 

The pins STEN, NPSa, NPS2, CMDO, and W/R"" 
identify bus cycles for the NPX. Table 3-3 defines 
the types of NPX bus cycles. 

3.4.1 80387SX ADDRESSING 

The NPS1 "", NPS2, and CMDO Signals allow the 
NPX to identify which bus cycles are intended for the 
NPX. The NPX responds to 110 cycles when the 1/0 
address is 8000FaH, 8000FCH or 8000FEH (treated 

Table 3·3. Bus Cycle Definition 

STEN NPS1* NPS2 CMDO"" W/R# Bus Cycle Type 

0 x x x x 80387SX not selected and all_outputs in floating state 
1 1 x x x 80387SX not select9d 
1 x 0 x x 80387SX not selected 
1 0 1 0 0 CW or SW read from 80387SX 
1 0 1 0 1 Opcode write to 80387SX 
1 0 1 1 0 Data read from 80387SX 
1 0 1 1 1 Data write to 80387SX 

4-467 



inter 80387SX 

as 8000FCH by the 80387SX). The NPX responds to 
1/0 cycles when bit 23 of the 110 address is set. In 
other words, the NPX acts as an 1/0 device in a 
reserved I/O address space. 

Because A23 is used to select the 80387SX Numeri­
cs Processor Extension for data transfers,' it is not 
possible for a program running on the CPU to ad­
dress the NPX with an 1/0 instruction. Only ESC in­
structions cause the CPU to communicate with the 
NPX. 

3_4.2 CPU/NPX SYNCHRONIZATION 

The pins BUSY #, PEREQ, and ERROR#. are used 
for various aspects of synchronization between the 
CPU and the NPX. 

BUSY # is lIsed to synchronize instruction transfer 
from the CPU to the NPX. When the NPX recognizes 
an ESC instruction, it asserts BUSY #. For most ESC 
instructions, the CPU waits for the NPX to deassert 
BUSY # before sending the new opcode. 

The NPX uses the PEREQ pin of the CPU to signal 
that the NPX is ready for data transfer to or from its 
data FIFO. The NPX does not directly access mein­
ory; rather, the CPU provides memory access serv­
ices for the NPX. (For this reason, memory access 
on behalf of the NPX always obeys the protection 
rules applicable to the current CPU mOde.) Once the 
CPU initiates anNPX instruction that has operands, 
the CPU waits for PEREQ Signals that indicate when 
the NPX is ready for operand transfer. Once all oper­
ands have been transferred (or if the instruction has 
no operands) the CPU continues program execution 
while the NPX executes the ESC instruction. 

In 8086/8087 systems, WAIT instructions may be 
required to achieve synchronization of both com­
mands and operands. In the 386SX Microprocessor 
and 80387 Coprocessor systems, however, WAIT in­
structions are required only for operand synchroni­
zation; namely, after NPX.stores to memory (except 
FSTSW and FSTCW) or load from memory. (In 
80286/80287 systems, WAIT is required before 
FlDENV and FRSTOR; with the 386SX Microproc­
essor and 80387 Coprocessor, WAIT is not required 
in these cases.) Used this way, WAIT ensures that 
the value has already been written or read by the 
NPX before the CPU reads or changes the value. 

Once it has started to execute a numerics instruction 
and has transferred the operands from the CPU, the 
NPX can process the instruction in parallel with and 
independent of the host CPU. When' the NPX de­
tects an exception, it asserts the ERROR#signal, 
which causes a CPU interrupt. 

3.4.3 SYNCHRONOUS OR ASYNCHRONOUS 
. MODES 

The internal logic of the 80387SX (the FPU) can op­
erate either directly from the CPU clock (synchro­
nous mode) or from a separate clock (asynchronous 
mode). The two configurations are distinguished by 
the CKM pin. In either case, the bus control logic 
(BCl) of the 80387SX is synchronized with the CPU 
clock. Use of asynchronous mode. allows the CPU 
and the FPU section of the NPX to run at different 
speeds. In this' case, the ratio of the frequency of 
NUMClK2 to the frequency of CPUClK2 must lie 
within the range 10: 16 to 14: 1 O. Use of synchronous 
mode eliminates one clock generator from the board 
design. 

3.4.4 AUTOMATIC BUS CYCLE TERMINATI.ON 

In configurations where no extra wait states are re­
quired, . READYO# can drive the CPU's READY # 
input. If this pin is used, it should be connecteq to 
the logic that ORs all READY outputs from peripher­
als on the CPU bus. READYO# is asserted by the 
NPX only during 1/0 cycles that select the NPX. Re­
fer to Section 4.0 "Bus Operation" for details. 

4.0 BUS OPERATION 

With respect to bus interface, the80387SX is fully 
synchronous with the CPU. Both operate at the 
same rate, because each generates its internal ClK 
signal by dividing CPUClK2 by two. Furthermore, 
both internal ClK signals are in phase, because they 
are synchronized by the same RESETIN signal. 

A bus cycle for the NPX starts when the CPU acti­
vates ADS# and drives new values on the address 
and cycle-definition lines. The NPX examines the ad­
dress and cycle-definition lines in the same.ClK pe­
riod during which ADS # is activated. This. ClK peri­
od is considered the first ClK of the bus cycle. 
During this first ClK period, the 80387SX also exam­
ines the RIW # input signal to determine whether 
the cycle is a read or a write cycle and examines the 
CMDO input to determine whether an opcode, oper­
and, or controllstatus register transfer is to OCcur. 

The.80387SX supports both pipelined (Le. over­
lapped) andnonpipelined bus cycles. A nonpipelined 
cycle is one for which the CPU asserts ADS # when 
no other NPX bus cycle is in progress. A pipelined 
bus cycle is one for which the CPU asserts ADS # 
and provides valid next-address and control signals 
before the prior NPX cycle terminates. The CPU may 
do this as early as the second ClK period after asc 

serting ADS # for the prior cycle. Pipelining increas-

4-468 



80387SX 

es the availability of the bus by at least one ClK 
period. The 80387SX supports pipelined bus cycles 
in order to optimize address pipelining by the CPU 
for memory cycles. 

Bus operation is described in terms of an abstract 
state machine. Figure 4-1 illustrates the states and 
state transitions for NPX bus cycles: 

• T, is the idle state. This is the state of the bus 
logic after RESET, the state to which bus logic 
returns after every nonpipelined bus cycle, and 
the state to which bus logic returns after a series 
of pipelined cycles. 

• T RS is the READY # -sensitive state. Different 
types of bus cycles may require a minimum of 
one or two successive T RS states. The bus logic 
remains in TRS state until READY#is sensed, at 
which point the bus cycle terminates. Any number 
of wait states may be implemented by delaying 
READY #, thereby causing additional successive 
TRS states. 

• T p is the first state for every pipelined bus cycle. 
This state is not used by nonpipelined cycles. 

Note that the bus logic tracks bus state regardless 
of the values on the chip/port select pins. 

The READYO# output of the NPX indicates when 
an NPX bus cycle may be terminated if no extra wait 
states are required. For all write cycles (except 
those for the instructions FlDENV and FRSTOR), 
READYO# is always asserted during the first TRS 
state, regardless of the number of wait states. For all 
read cycles and write cycles for FlDENV and 

ADS# 

READY# 
240225-6 

Figure 4·1. Bus State Diagram 

FRSTOR, READYO# is always asserted in the sec­
ond T RS state, regardless of the number of wait 
states. These rules apply to both pipelined and non­
pipe lined cycles. Systems designers may use 
READYO# in one of the following ways: 

1. Connect it (directly or through logic that ORs 
READY # signals from other devices) to the 
READY # inputs of the CPU and NPX . 

2. Use it as one input to a wait-state generator. 

The following sections illustrate different types of 
80387SX bus cycles. Because different instructions 
have different amounts of overhead before, be­
tween, and after operand transfer cycles, it is not 
possible to represent in a few diagrams all of the 
combinations of successive operand transfer cycles. 
The following bus-cycle diagrams show memory cy­
cles between NPX operand-transfer cycles. Note 
however that, during FRSTOR, some consecutive 
accesses to the NPX do not have intervening memo­
ry accesses. For the timing relationship between op­
erand transfer cycles and opcode write or other 
overhead activities, see the figure "Other Parame­
ters" in section 6. 

4.1 Nonpipelined Bus Cycles 

Figure 4-2 illustrates bus activity for consecutive 
nonpipelined bus cycles. 

At the second clock of the bus cycle, the NPX enters 
the T RS state. During this state, it samples the 
READY # input and stays in this state as long as 
READY # is inactive. 

4.1.1 WRITE CYCLE 

In write cycles, the NPX drives the READYO# signal 
for one ClK period during the second ClK period of 
the cycle (Le. the first T RS state); therefore, the fast­
est write cycle takes two ClK periods (see cycle 2 of 
Figure 4-2). For the instructions FlDENV and 
FRSTOR, however, the 80387SX forces a wait state 
by delaying the activation of READYO# to the sec­
ond T RS state (not shown in Figure 4-2). 

The NPX samples the 015-00 inputs into data 
latches at the falling edge of ClK as long as it stays 
in T RS state. 

When READY # is asserted, the NPX returns to the 
idle state. Simultaneously with the NPX's entering 
the idle state, the CPU may assert ADS# again, sig­
naling the beginning of yet another cycle. 

4-469 



80387SX 

CYCLE 1 
NON-PIPELINED 
MEMORY READ 

015-00 ---- --

CYCLE 2 
NON-PIPELINED 

NPX WRITE 

CYCLE 3 
NON-PIPELINED 

NPX READ 

CYCLE 4 
NON-PIPELINED 
MEMORY WRITE 

240225-7 
Cycles 1 & 2 represent part of the operand transfer cycle for instructions involving either 4-by1e or a-byte operand loads. 
Cycles 3 & 4 represent part of the operand transfer cycle for a store operation. 
'Cycles 1 & 2 could repeat here or TI states for various non-operand transfer cycles and overhead. 

Figure 4-2. Nonpipelined Read and Write Cycles 

4.1.2 READ CYCLE 

At the rising edge of ClK in the second ClK period 
of the cycle (Le. the first T RS state), the NPX starts 
to drive the 015-00 outputs and continues to drive 
them as long as it stays in T RS state. 

At least one wait state must be inserted to ensure 
that the CPU latches the correct data. Because the 
NPX starts driving the data bus only at the rising 
edge of ClK in the second clock period olthe bus 
cycle, .not enough time is left for the data signals to 
propagate and be latched by the CPU before the 
next falling edge of ClK. Therefore, the 80387SX 
does not drive the REAOYO# signal until the third 
ClK period of the cycle. Thus, if the REAOYO# out. 
put drives the CPU's READY # input, one wait state 
is automatically inserted. 

Because one wait state is required for NPX reads, 
the minimum length of an NPX read cycle is three 
ClK periods, as cycle 3 of Figure 4-2 shows. 

When READY # is asserted, the NPX returns to the 
idle state. Simultaneously with the NPX's entering 
the idle state, the CPU may assert AOS# again, sig­
naling the beginning of yet another cycle. The tran­
sition from T RS state to idle state causes the NPX to 
pu~ the tristate 015-00 outputs into the floating 
state, allowing another device to drive the data bus. 

4.2 Pipelined Bus Cycles 

Because all the activities of the 80387SX bus inter­
face occur either during the T RS state or during the 
transitions to or from that state, the only difference 
between a pipelinedand a nonpipelined cycle is the 
manner of changing from one state to another. The 
exact activities during each state are detailed in the 
previous section "Nonpipelined .Bus Cycles". 

When the CPU asserts ADS # before the end of a 
bus cycle, both AOS# and REAOY# are active dur-

4-470 



inter 80387SX 

CPUClK2 

(ClK) 

CYCLE 1 
NON-PIPElINED 
MEMORY READ 

CYCLE 2 
PIPELINED 

NPX WRITE 

CYCLE 3 
PIPELINED 

MEMORY READ 

CYCLE 4 
NON-PIPELINED 

NPX WRITE 

NPS2, ~--~-----1~---+-----rr---~----+-----YT----~--~----~ 
NPS1#, 
CMD0# ~ __ ~ ____ ~~ __ -+ ____ ~~ __ ~ ____ +-____ ~ ____ ~ __ ~ ____ ~ 

WjR# 

ADS# 

READYO# 

READY# 

015-00 

240225-6 
Cycle 1 -Cycle 4 represent the operand transfer cycle for an instruction involving a transfer of two 32-bit loads in total. 
The opcode write cycles and other overhead are not shown. 
Note that the next cycle will be a pipelined cycle if both READY# and ADS# are sampled active at the end of a TRS 
state of the current cycle. 

Figure 4-3. Fastest Transitions to and from Pipelined Cycles 

ing a T RS state. This condition causes the NPX to 
change to a different state named T p. One clock 
period after a T p state, the NPX always returns to 
TRS state. In consecutive pipe lined cycles, the NPX 
bus logic uses only the T RS and T p states. 

Figure 4-3 shows the fastest transitions into and out 
of the pipelined bus cycles. Cycle 1 in the figure rep­
resents a nonpipelined cycle. (Nonpipelined write. 
cycles with only one T RS state (I.e. no wait states) 
are always followed by another nonpipelined cycle, 
because READY # is asserted before the earliest 
possible assertion of ADS# for the next cycle.) 

4-471 

Figure 4-4 shows pipe lined write and read cycles 
with one additional T RS state beyond the minimum 
required. To delay the assertion of READY # re­
quires external logic. 

4.3 Bus Cycles of Mixed Type 

When the NPX bus logic is in the T RS state, it distin­
guishes between nonpipelined and pipelined cycles 
according to the behavior of ADS# and READY#. 
In a nonpipelined cycle, only READY # is activated, 
and the transition is from T ~S state to idle state. In a 



80387SX 

CPUClK2 

(ClK) 

CYCLE 1 
PIPELINED WRITE 

Tp 

NOTE 1 CYCLE 2 
PIPELINED READ 

Tp 

NPS2. ~---+----~r---~--~~~~-T~--~----+---~-----Tr---~--~ 
NPS1#. 
CMD0# ~ __ -+ ____ ~~ __ ~ __ ~~~~-+~ __ ~ ____ +-__ ~ ____ ~~ __ ~ __ ~ 

W/R# 

ADS# 

READYO# 

READY# 

240225-9 

NOTE: 
1. Cycles between operand write to the NPX and storing result. 

Figure 4-4. Pipelined Cycles with Wait States 

pipelined cycle. both READY# andADS# are ac­
tlve. and the transition is first from T RS state to T P 
state. then. after one clock period. back to T RS 
state. 

4.4 BUSY # and PEREQ Timing 
Relationship 

Figure 4-5 shows the activation of BUSY # at the, 
beginning of instruction execution and its deactiva-

tion upon completion of the instruction. PEREQ is 
activated within this interval. If ERROR # (not shown 
in the figure) is ever asserted, it would be asserted at 
least six CPUCLK2 periods after the deactivation of 
PEREQ and would be deasserted at least six 
CPUCLK2 periods before the deactivation of 
BUSY #. Figure 4-5 also shows that STEN isactivat­
ed at the beginning of an NPX bus cycle. 

4-472 



inter 

NOTES: 

OPCODE 
WRITE 

1. Instruction dependent. 

80387SX 

NOTE" 

NOTE 1 NOTE 2 

1ST OPERAND 
WRITE 

NOTE 3 NOTE 1 

240225-10 

2. PEREQ is an asynchronous input to the 386TM Microprocessor; it may not be asserted (instruction dependent). 
3. More operand transfers. 
4. Memory read (operand) cycle is not shown. 

Figure 4-5. STEN, BUSY", and PEREQ Tlml~g Relationships 

4·473 

'! 
" 

i, 
I" 
1:1 

~ 
I 

I",.' ., 

I! 
If 
I' 
I 
I 



80387SX 

5.0 MECHANICAL DATA 

Figure 5-1 shows the locations of pins on the chip package. Table 5-1 helps to locate. pin identifiers in 
Figure 5-1. 

171615141312 11 10 9 8 7 6 5 4 3 :2 1 

18 

19 

20 

21 

22 

23 

24 
80387SX 

25 

26 top view 

27 

28 

29 

30 

31 

32 

33 

34 

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 

The term "top view" means "as viewed when mounted in a printed-circuit board". 

Figure 5·1. PLCC Pin Configuration 

Table 5·1. Pin Cross·Reference 

1-n.c. 1S-n.c. 35-ERROR# 
2-007 19-000 36-8USY# 
3-006 20-001 37- Vee 
4- Vee 21-Vss 38- Vss 
5- Vss 22- Vee 39- Vee 
6-005 23-002 40-STEN 
7-004 24,-008 41-W/R# 
8-003 25- Vss 42- Vss 
9- Vee 26- Vee 43- Vee 

10-n.c. 27- Vss 44-NPS1# 
11-015 28-009 45-NPS2 
12-014 29-010 46- Vee 
13-Vee 30-011 47-AOS# 
14- Vss 31- Vee 48-CMOO# 
15-013 32- Vss 49-REAOY# 
16-012 33- Vee 50- Vee 
17::"" n.c. 34- Vss 51-RESETIN 

n.c.-The corresponding pins of the 80387SX are left unconnected. 

4-474 

52-n.c. 
53-NUMCLK2 
54-CPUCLK2 
55- Vss 
56-PEREQ 
57-REAOYO# 
58- Vee 
59-CKM 
60-Vss 
61- Vss 
62- Vee 
63- Vss 
64- Vee 
65-n.c. 
66- Vss 
67-n.c. 
68-n.c. 



80387SX 

6.0 ELECTRICAL DATA 

6.1 Absolute Maximum Ratings 

NOTE: 
Stresses above those listed may cause permanent 
damage to the device. This is a stress rating only 
and functional operation of the device at these or 
any other conditions above those indicated in the 

6.2 D.C. Characteristics 

operational sections of this specification is not im· 
plied. Exposure to absolute maximum rating condi· 
tions for extended periods may affect device reliabili· 
ty. 

Case temperature T C under bias ....... O·C to 85·C 
Storage temperature ........... - 65·C to + 150·C 
Voltage on any pin with respect to ground - 0.5 to 
Vcc+ 0.5V 
Power dissipation ....................... 1.5 Watt 

Table 6-1. D.C. Specifications Tc = O· to 85·C, Vcc = 5V ± 10%' 

Symbol Parameter Min 

Vil Input LO Voltage -0.3 

VIH Input HI Voltage 2.0 
VCl CPUCLK2 and NUMCLK2 -0.3 

Input LO Voltage 

VCH CPUCLK2 and NUMCLK2 Vcc- 0.8 
Input HI Voltage 

VOL Output LO Voltage 

VOH Output HI Voltage 2.4 
VOH Output HI Voltage Vcc- 0.8 
Icc Power Supply Current 

NUMCLK = 32 MHz(5) 

III Input Leakage Current 
IlO I/O Leakage Current 

CIN Input Capacitance 
Co I/O or Output Capacitance 

CClK Clock Capacitance 

NOTES: 
1. This parameter is for all inputs, excluding the clock inputs. 
2. This parameter is measured at IOL as follows: 

data = 4.0mA 
READYO#, ERROR#, BUSY#, PEREa = 2.5mA 

3. This parameter is measured at IOH as follows: 
data = 1.0mA 
READYO#, ERROR#, BUSY#, PEREa = O.SmA 

4. This parameter is measured at IOH as follows: 
data = O.2mA 
READYO#, ERROR#, BUSY#, PEREa = O.12mA 

Max Units Test Conditions 

+0.8 V See note 1 
Vcc+ 0.3 V See note 1 

+0.8 V 

Vcc+ 0.3 V 

0.45 V See note 2 
V See note 3 
V See note 4 

250 mA Icc typo = 150 mA 
±15 /LA OV S; VIN S; Vcc 
±15 /LA 0.45V S; Vo S; Vcc 
10 pF fc = 1MHz 
12 pF fc = 1MHz 
20 pF fc = 1MHz 

5, Icc is measured at steady state, maximum capacitive loading on the outputs, and worst-case D.C. level at the inputs; 
CPUClK2 at the same frequency as NUMClK2. 

6.3 A.C. Characteristics 

Table 6-2a. Combinations of Bus Interface and Execution Speeds 

Functional Block 80387SX-16 

Bus Interface Unit (MHz) 16 
Execution Unit (MHz) 16 

4-475 



80387SX 

Table 8-2b Timing Requlremente ot Execution Unit Te = O· to 8S· C Vee = SV ±1 0% ." , 

Pin Symbol Parameter 16 MHz Teet Reterto 

Min (ne) M!lx (ne) Conditione figure 

NUMCLK2 T1 Period 31.2S 12S 2.OV 6.2 
NUMCLK2 t2b ,HighTime S Vee- 0.8V 
NUMCLK2 '" t3b Low Time 7 0.8V 
NUMCLK2 ' ''t4 Fall Time 8 FromVcc-0.8 to 0.8V (Note 1) 
NUMCLK2 tS Rise Time 8 From 0;8 to Vee-0.8V ' 

" 

Note: 
1. If not used (eKM = 1), tie LOW. 

Table 6·2c. Timing Requirements ot Bus Interface Unit T e = 0" to 8S· C, Vee = SV ± 10% 

Pin Symbol Parameter 

CPUCLK2 
CPUCLK2 
CPUCLK2 
CPUCLK2 
CPUCLK2 

t1 Period 
t2b High Time 
t3b Low Time 
t4 Fall Time 
tS Rise Time 

REAOYO# t7 
REAOYO# t7 
PEREQ t7 
BUSY#t7 
ERROR# t7 

01S-00 T10 
01S-00 t10: 
01S-00 t11 
01S-00 t12* 

PEREQ 
BUSY# 
ERROR# 
REAOYO# 

AOS# 
AOS# 
W/R# 
W/R# 

REAOY#. 
REAOY# 
CMOO# 
CMOO# 
NPS1#, 
NPS2 

NPS1#, 
NPS2 

STEN 
STEN 

NOTES: 

t17 

t16 
t17 

t18 
T19 

Ratio 

Hold Time 

Setup Time 

SetupTirne 
Hold Time 

10/16 

2 

21 
2 

13 
4 

Refer to 
Figure 

6.2 

6.3 

6.4 

6.6 

.. 6.4 

6.S 

·Float condition occurs when maximum output current becomes less the ILO in magnitude. Floatdelay is not test. 
··Not tested at 25 pf. ' 

4-416 



nom+8 

nom+6 

nom+4 

Typical" Output nom + 2 

Delay (ns) nom 

01.5V nom-2 

nom-4 

nom-6 

nom-8 

NOTES: 
Graphs are not linear outside the CL range shown. 
nom =- nominal value given In the AC timing table 
·Typical part under worst-case conditions 

80387SX 

./ 
..,.- ", 

READYO" PEREO, /" / BUSY , ERROR' 

./ ""'5-00 
./ ./ 

./ 
./ 

V 

/' 
50 75 100 125 150 

Load Capacitance. CL (pf) 
240225-12 

Figure 6·1a. Typical Output Valid Delay vs. Load Capacitance at Max Operating Temperature 

10 

8 

Typical" Output 6 

Slew TIme(ns) 
(0.8 <->2.0V) 4 

2 

0 

50 75 100 125 

Load Capacitance. CL (pf) 

NOTES: 
Graphs are not linear outside the CL range shown. 
·Typical part under worst-case conditions 

150 

26 

22 

Typical" Output 18 

Slew TIme (ns) 

(0.4 H 3.5V) 14 

10 

6 
50 

/' 
.// 

./ /' 
015 00 ",/ 
/. /' 

V'/ 
/~ V' 
/R£AOYOI. PEREO, BUSY,. ERROR, 

75 100 125 150 

Load Capacitance. ~ (pf) 

240225-13 

Figure 6·1b. Typical Output Slew Time vs. Load Capacitance at Max Operating Temperature 

4-477 

I, 

I' 



80387SX 

300 

250 
-;( 

5 200 <.> 
..Y . 
"0 150 °a 
~ 

10H=-200u!,. .......-: ~ 
./ ~ ~Oaded 

r::::-
.", 

100 

50 

4 6 8 10 12 14 16 

Frequency (MHz) 
240225-14 

NOTES: 
Graphs are not linear outside the frequency range shown. 
"Typical part under worst·case conditions. 

Figure 6-1c. Typical Icc vs. Load Capacitance at Max Operating Temperature 

CPUCLK2/NUMCLK2 . 

OUTPUTS 

r:\' 
1.~"""--"",,\}­

INPuT$''---''''':--J 

240225-15 

Figure 6-2. CPUCLK2/NUMCLK2 Waveform and Measurement Points for Input/Output 

4-478 



inter 80387SX 

(ClK) (PIi2) \", __ (P_H_' )_-..J/ (P"l 

CPUClK2 

(OUTPUTS) 

(ERROR# REFERENCED TO NUMClK2) 
240225-16 

Figure 6-3. Output Signals 

(ClK)\ (PHI) / (PH2) \ (PHI) / (PH2) ~ 

CPUClK2 

W/R# 

NPS 1 #. NPS2, 
STEN, 

CMDO# 

READY# 

015-00 
(INPUT) 

015-00 
(OUTPUT) 

Figure 6-4. Input and I/O Signals 

240225-17 

,'." 

, I 
) 

" 



80387SX 

(CU<) / ('"' 0, '"') \ ('"' ~ '"') F 
CPUCLK2 

RESET 

NOTE: 

r- .-1 t 18 

"'ss" 
The second internal processor phase following RESET high to low transition is PH2. 

Figure 6·5. RESET Signal 

STEN 

015-00, PEREQ 
BUSY#,ERROR#,READYO# 

Pin Symbol 

RESETiN t30 

RESETIN t31 

BUSY# t32 

BUSY #, ERROR # t33 

PEREQ, ERROR # t34 

READY#,BUSY# t35 

READY# t36 

READY# t37 

Figure 6·6. Float from STEN 

Table 6·3. Other Parameters 

Parameter 

Duration 

RESETIN inactive to 1 st opcode write 

Duration 

ERROR # (in)active to BUSY # inactive 

PEREQ inactive to ERROR# active 

READY# active to BUSY# active 

Minimum time from opcode write to 
opcode/operand write 

Minimum time from operand write to 
operand write 

4-480 

240225-18 

240225-19 

Min Max Units 

40 NUMCLK2 

50 NUMCLK2 

6 CPUCLK2 

6 CPUCLK2 

6 CPUCLK2 

'4 4 CPUCLK2 

4 CPUCLK2 

4 CPUCLK2 



inter 80387SX 

READY# 

BUSY# 

PEREQ 

ERROR# 

1ST OPCODE 
WRITE NOTE 1 

•• 
1 ST OPERAND 2ND OPERAND 

WRITE WRITE (NOTE 1) 

H 

H 

I 
H 

t3S--II---+--I---+-

• In NUMCLK2's 
•• or last operand 

NOTE: 
1. Memory read (operand) cycle is not shown. 

I 
240225-20 

Figure 6·7. Other Parameters 

7.0 80387SX EXTENSIONS TO THE 
CPU'S INSTRUCTION SET 

Instructions for the 80387SX assume one of the five 
forms shown in Table 7-1. In all cases, instructions 
are at least two bytes long and begin with the bit 
pattern 11011 B, which identifies the ESCAPE class 
of instruction. Instructions that refer to memory oper­
ands specify addresses using the CPU's addressing 
modes. 

MOD (Mode field) and RIM (Register/Memory spec­
ifier) have the same interpretation as the corre­
sponding fields of CPU instructions (refer to Pro­
grammer's Reference Manual for the CPU). SIB 

4-481 

(Scale Index Base) byte and DISP (displacement) 
are optionally present in instructions that have MOD 
and RIM fields. Their presence depends on the val­
ues of MOD and RIM, as for instructions of the CPU. 

The instruction summaries that follow assume that 
the instruction has been prefetched, decoded, and is 
ready for execution; that bus cycles do not require 
wait states; that there are no local bus HOLD re­
quests delaying processor access to the bus; and 
that no exceptions are detected during instruction 
execution. If the instruction has MOD and RIM fields 
that call for both base and index registers, add one 
clock. 

1'\' 
'I 
Ii 
~ 



1 

2 

3 

4 

5 

11011 

11011 

11011 

11011 

11011 

First Byte 

OPA 

MF 

d P 

0 0 

0 1 

80387SX 

Table 7-1. Instruction Formats 

Instruction 

Second Byte 

1 MOD 1. I OPB RIM 

OPA MOD OPB' RIM 

OPA 1 1 OPS' ST(i) 

1 1 1 1 I OP 

1 ·1 1 1 I OP 

15-11 10 9 8 7 6 5 43210 
OP = Instruction opcode, possibly split into two fields OPA and OPB 
MF = Memory Format 

00-32-bit real . 
01-32-bit integer 
1O-M-bit real 
11-16-bit integer 

d = Destination . 
O-Destinatino is ST(O) 
1--:-Destination is STeil 

R XOR d = O-Oestination (op) Source 
R XOR d = 1-Source (op) Destination 
'In FSUB and FDIV, the low-order bit of OPS is the R (reversed) bit 
P = POP 

0-00 not pop stack 
1-Pop stack after operation 

ESC = 11011 
STeil = Register stack element i 

000 = Stack top 
.001 = Second stack element 

111 = Eighth stack element 

4-482 

Optional 
Fields 

SIB I DISP 

SIB I DISP 

, , 



intJ 80387SX £@W£OO©(g OOOrF©OOIMl£'iiO©OO 

80387SX Extension to the 386TM Microprocessor Instruction Set 

Instruction 

TRANSFER 
= Load" 

Integer/real memory to ST(O) 

Long Integer memory to ST(O) 

Extended real memory to ST(O) 

BCD memory to ST(O) 

ST(i) to ST(O) ESC 001 11000ST(i) 

= Store 

ST(O) to Integer/real memory 

ST(O) to ST(i) ESC 101 _ 11010ST(1) 

FSTP = Store and Pop 

ST(O) to integer/real memory 

ST(O) to long integer memory 

ST(O) to extended real 

ST(O) to BCD memory 

ST(O) to ST(I) ESC 101 1100IST(i) 

FXCH = Exchange 

ST(I) and ST(O) ESC 001 11001ST(I) 

COMPARISON 

FCOM = Compare 

Integer/real memory to ST(O) 

ST(i) to ST(O) ESC 000 11010ST(i) 

= Compare and pop 

Integer/real memory to ST 

ST(i) to ST(O) ESC 000 1101IST(i) 

FCOMPP = Compare and pop twice 

ST(I) to ST(O) ESCll0 11011001 

FXAM = Examine ST(O) ESC 001 11100101 

CONSTANTS 

FLOZ = Load + 0,0 into ST(O) ESC 001 11101110 

FLOI = Load + 1.0 into ST(O) ESC 001 11101000 

FLOPI = Load pi into ST(O) ESC 001 11101011 

FLOL2T = Load log2(10) into ST(O) ESC 001 11101001 

Shaded areas indicate instructions not available in 8087/80287. 

NOTE: 
a. When loading si.ngle- or double-precision zero from memory. add 5 clocks. 

4-483 

24 

49 

49 

30 

30 

49-56 33 

64-75 

52 

274-283 

14 

84-98 55 

11 

84-98 55 

90-107 

63 

522-544 

60-67 

60-67 

12 

18 

24 

26 

26 

20 

24 

40 

40 

39 

39 

61-65 

82-95 

82-95 

71-75 

71-75 

I], 

.,' 

I: 
I 



inter 80387SX 

80387SX Extension to the 38aTM Microprocessor Instruction Set (Continued) 

Instruction 

I CCINS'T 41.TS (Continued) 

= Load log2(e) into ST(O) 

= Load IOg10(2) into ST(O) 

= Load log.(2) into ST(O) 

= Subtract 

= Multiply 

= Square root 

= Scale ST(O) by ST(I) 

= Extract components 

= Absolute value of ST(O) 

= Change sign of ST(O) 

ESC 001 11101010 

ESC 001 11101100 

ESC 001 11101101 

ESCdPO 110QOST(i) 

ESCdPO 11001 RIM 

ESCdPO 1111 R RIM 

ESC 001 11111010 

ESC 001 11110100 

ESC 001 11100001 

ESC 001 11100000 

Shaded areas indicate instructions not available in 8087/80287. 

NOTES: 
b. Add 3 clocks to the range when d = 1. 
c. Add 1 clock to each range when R = 1. 
d. Add 3 clocks to the range when d = O. 
e. typical = 52 (When d = 0, 46-54, typical = 49). 
f. Add 1 clock to the range when R = 1. 
g. 135-141 when R = 1. 
h. Add 3 clocks to the range when d = 1. 
i. -0 ~ ST(O) ~ + 00. 

4-484 

28-36 

28-36 

31-39 

93 

I 
I 
I 

40 

41 

41 

61-76 37-45 

23-31 b 

61-76 36-44 

26-34d 

65-86 40-65 

29-57· 

124-131' 102 

88h 

122-129 

67-86 

70-76 

22 

24-25 

71-85 

71-830 

76-87 



80387SX 

80387SX Extension to the 388™ Microprocessor Instruction set (Continued) 

Instruction 

TRANSCENDENTAL 

FPT ANk = Partial tangent of ST(O) 

FYL2xm = ST(I) *log2(ST(0» 

FYL2XP1 ft = ST(I) * lo92(ST(0) + 1.0) 

PROCESSOR CONTROL 

FINIT = In~ialize NPX 

FSTSW AX = Store status word 

FLDCW = Load control word 

FSTCW = Store control word 

FSTSW = Store status word 

FCLEX = Clear exceptions 

FSTENV = Store environment 

FLDENV = Load environment 

FSAVE = Save state 

FRSTOR = Restore state 

FINCSTP = Increment stack pointer 

FDECSTP = Decrement stack pointer 

FFREE = Free ST(i) 

FNOP = No operations 

ESC 001 11110010 

ESC 001 11110001 

ESC 001 11111001 

ESCOll 11100011 

ESC 001 11110110 

ESC 101 11000ST(i) 

ESC 001 11010000 

Shaded areas indicate instructions not available in 8087/80287. 

NOTES: 

Clock Count Range 

120-538 

257-547 

33 

13 

19 

15 

15 

11 

103-104 

71 

475-476 

388 

21 

22 

18 

12 

j. These timings hold for operands in the range Ixl < 'tr/4. For operands not in this range, up to 76 additional clocks may be 
needed to reduce the operand. . 
k.O ,,:; I ST(O) I < 263. 
I. -1.0":; ST(O) ,,:; 1.0. 
m.O ,,:; ST(O) < 00, - 00 < ST(I) < + 00. 

n.O ,,; IST(O)I < (2 - SQRT(2))/2, - 00 < ST(I) < + 00. 

4-485 



80387SX 

APPENDIX A 
COMPATIBILITY BETWEEN 
THE 80287 AND THE 8087 

The 80286/80287 operating in Real-Address mode 
will execute 8086/8087 programs without major. 
modification. However, because of differences in the 
handling of numeric exceptions by the 80287 I\IPX 
and the 8087 NPX, exception-handling routines may 
need to be changed. 

This appendix summarizes the differences between 
the 80287 NPX and the 8087 NPX, and provides 
details showing how 8086/8087 programs can be 
ported to the 80286/80287. 

, 1. The NPX signals exceptions through a dedicated 
ERROR line to the 80286. The NPX error signal 
does not pass through an interrupt controller (the 
8087 INT signal does). Therefore, any interrupt­
controller-oriented instructions in numeric excep­
tion handlers for the 8086/8087 should be delet­
ed. 

2. The 8087 instructions FENIIFNENI and' FDISII 
. FNDISI perform no useful function in the 80287. If 

the 80287 encounters one of these opcodes in its 
instruction stream, the instruction will effectively 
be ignored-none of the 80287 internal states will 
be· updated. While 8086/8087 containing these 
instructions may be executed on the 
80286/80287, it is unlikely that the exception­
handling routines containing these instructions 
will be completely portable to the 80287. 

3. Interrupt vector 16 must point to the numeric ex-
ception handling routine. .. . 

4. The ESC instruction address saved in the 80287 
includes any.leading prefixes before the ESC opo: 

, code. The corresponding address saved in the 
8087 does not include leading prefixes. 

5. In Protected-Address mode, the format of the 
80287'ssaved instruction and address pointers is 

. different than for the 8087. The instruction op­
code is not saved in Protected mode-exception 
handlers will have to retrieve the opcode from 
memory if needed. 

6. Interrupt 7 will occur in the 80286 when executing 
ESC instructions with either TS (task switched) or 
EM (emulation) of the 80286 MSW set (TS = 1 or 
EM = 1). If TS is set, then a WAIT instruction will 

also cause interrupt 7 .. An exception handler 
should be included in 80286/80287 code to han­
dle these situations. 

7. Interrupt 9 will occur if the. second or subsequent 
words of a floating-point operand fall outside a 
segment's size. Interrupt 13 will occur if the start­
ing address of a numeric operand. falls outside a 
segment's size. An exception handler should be 
included in 80286/80287 code to report these 
programming errors. 

8. Except for the processor control instructions, all 
of the 80287 numeric instructions are automati­
cally synchronized by the 80286 CPU-the 80286 
automatically tests the BUSY line from the 80287 
to ensure that the 80287 has completed its previ­
ous instruction before executing the next ESC in­
struction. No explicit WAIT· instructions are re­
quired . to assure this synchrollization; For the 
8087 used with 8086 and 8088 processors, ex­
plicit WAITs are required before each numeric in~ 

. struction to ensure synchronization. Although 
, 8086/8087 programs having explicit WAIT in­

structions will· execute perfectly on the 
80286/80287 without reassembly, these WAIT in­
structions are unnecessary. 

9. Since the 80287 does not require WAIT instruc­
tions before each numeric instruction, the 
.ASM286 assembler does not automatically gener­
ate these WAIT instructions. The ASM86 assem­
bler, however, automatically precedes everY ESC 
instruction with a WAITihstruction. Although nu­
meric routines generated . using the ASM86 as­
sembler will generally execute correctly on . the 
80286/80287, reassembly using ASM286 may re­
sult in a more compact code image. 

The processor control i!'lstructions for the 80287 
may be coded using either a WAIT or No-WAIT 
form of mnemonic. The WAIT forms of these in­
structions cause ASM286 t6 precede the ESC in­
struction with a CPU WAIT instruction, in the iden­
tical manner as does ASM86. 

4-486 



80387SX 

DATA SHEET REVISION REVIEW 

The following list represents the key differences be­
tween this and the -001 versions of the 80387SX 
Data Sheet. Please review this summary carefully. 

1. A new Figure 3-1 was added to illustrate the 
80387SX operating in an asynchronous mode. 

2. Data type representation ranges were inaccurate, 
and are revised in Table 2-1. 

3. The ratio of the CPUCLK2 frequency to the 
NUMCLK2 frequency must lie within the range 
10:16 to 14:10 instead of the former 10:16 to 
16: 10 specification. 

4-487 



82310/11 
Micro Channel * Compatible 

. Peripheral Family 

·Micro Channel. PS/2. AT are trademarks of IBM. 

4-488 
November 1988 

Order Number: 290167-002 



Micro Channel COMPATIBLE PERIPHERALS FAMILY 
High Performance/High Integration/100% Compatibility 

• Total Solution ••. High Integration VLSI 
Components Implement Complete 
Micro Channel Compatible . 
Motherboards 

• Single Architectural Solution for 80386 
and 80386SX Systems 

• High Performance 
- 80386 Systems to 25 MHz 
- Up to 16 MB of Zero Walt State 

Page-Interleaved DRAM 
-Interface to Industry Standard 82385 

Cache Controller for Maximum 
Performance Memory Design 

• 100% Compatible at All Levels 
- Architecture Compatible 
- Register Level Compatible 
- Compatible with All Micro Channel 

Bus Timing and Drive Characteristics 

• High Integration ... Two Chip Sets to 
Choose from, 82310 and More Highly 
Integrated 82311 

• 82310 Chip Set Includes: 
- 82306 Local Channel Support Chip 
- 82307 DMA Controller/Central 

Arbiter 
- 82308 Micro Channel Bus Controller 
- 82309 Address Bus Controller 
- 82706 VGA Graphics Controller 

• 82311 Chip Set Includes: 
- 82303 and 82304 Local I/O Channel 

Support Chips 
- 82307 DMA Controller/Central 

Arbiter 
- 82308 Micro Channel Bus Controller 
- 82309 Address Bus Controller 
-.82706VGA Graphics Controller 
- 82077 Floppy Disk Controller 

Intel's Micro Channel Peripheral Family consists of two chip sets, either of which can be used to build a high 
performance, 100% Micro Channel compatible motherboard. The two chip sets differ primarily in their imple­
mentation of the motherboard peripheral· bus. The 82310 Chip Set supports either the 8272A or 82072 Floppy 
Disk Controller. The 82311 Chip Set features a more highly integrated peripheral bus, and includes the 82077 
Single Chip Floppy Disk Controller. (The 82311 chip set does not support the 8272A or 82072.) Both chip sets 
support 80386 systems up to 25 MHz and 80386SX 16 MHz systems. 

The following pages describe Intel's Micro Channel Peripheral Family. The first section presents an overview 
of the 82310 and 82311 chip sets, and discuss.es system .issues such as clock requirements !lnd Micro 
Channel interface logic. Following this are the iridividual component descriptions and specifications. 

82310 82311 
Chip Set Chip Set 

82303 Local 1/0 Support Chip ~ 

82304 Local 1/0 Support Chip ~ 

82306 Local Channel Support ~ 
Chip 

82307 DMAIMicro Channel 
Arbitration Controller 

8.2308 Micro Channel Bus ~ ~ 
Controller 

82309 Address Bus Controller ~ ~ 

82706 VGA Graphics ~ ~ 
Controller 

82077 Floppy Disk Controller ~ 

Figure 1. Micro Channel Peripheral Family 

4-489 



• 
• 

• 
• 
• 

• 

• 

82310 
Micro Channel COMPATIBLE 

PERIPHERAL CHIP SET 
Highly Integrated VLSI Components to • Flexible Memory Architecture Support 
Implement Micro Channel™ Compatible - Up to 4 Banks of Interleaved Page 
Motherboard Memory 

Single Architectural Solution for 8()386 - 256K, 1 M, 4M DRAM Support 

16 MHz, 20 MHz and 25 MHz systems, • Multiple Floppy Disk Controller 
and 80386SX 16 MHz Systems Interface to Support 3%" and 5%" 

Full Compatibility with IBM Micro Disk Drives 

Channel Architecture • Keyboard and BIOS Support from 3rd 

Zero-Walt State Performance Party 

Cache Interface (82385) for Highest • Numeric Coprocessor(s) Interface 

Performance Compatible .System (80387,80387SX) 

Implementation with 80386 • Surface Mount Packaging for Small 

Supports up to 1.6 MB of Memory on Footprint Design (0.025" Pitch) 

Motherboard • Low Power C.HMOS Technology 
- Extended Memory for OS/2 Support • Available in 100" 132-Pln Plastic Quad 
1000/0 IBM Compatible VGA Graphics Flat Pack Packages. 

(See Packaging Spec. (; 231369). 

Intel's peripheral chip family is designed to support the new generation of Micro Channel compatible systems. 
Intel's Micro Channel compatible peripheral solution consists of highly integrated VLSI components designed 
to support 80386 systems up to 25 MHz, as well as 16 MHz 80386SX systems. 

The Intel solution is based on the high performance IBM Model 80 register model but it is highly integrated to 
provide full compatibility across a/l models. The specifications for 82310 VLSI components conform to archi­
tectural specifications defined for the Micro Channel Bus Architecture. The VLSI components are implemented 
in 1.5 micron CHMOS technology and packaged in space saving surface mount JEOEC flat pack packages. 

290167-1 

4-490 



82310/11 CHIP SET D:\[Q)WD:\OO©~ nOOfr@OO!M]D:\iiO@OO 

INTRODUCTION 

The new generation of Personal Computer systems 
from IBM offers significant technological advantages 
over the PC/AT and XT systems. The most signifi­
cant advancement is in the Architectural definition of 
the bus-Micro Channel Bus. Unlike the AT bus, the 
Micro Channel is well defined in terms of bus proto­
col timings. To create a compatible Micro Channel 
system requires adherence to the Micro Channel 
timings and electrical drive characteristics. 

All IBM Micro Channel models have increased sys­
tem functionality included on the motherboard. In 
the older PC/AT architecture, such functionality re­
quired the addition of peripheral cards. Specific fea­
tures added to the motherboard include the Serial 
Port, Bi-directional Parallel Port and Video Graphics. 
Control. 

Micro Channel ARCHITECTURE 

The Micro Channel Bus is defined. to support an 
open architecture providing Multi-Master capability, 
Multi-Device arbitration with fairness, arbitration ca­
pability and easy configurability of the total system 
(Programmable Option Select-POS). Providing full 
details about the Micro Channel Bus Architecture is 
beyond the scope of this document. Please refer to 
IBM Technical Reference Manuals on Micro Chan­
nel systems. 

To provide Multi~Master capability as defined in the 
Micro Channel Architecture, each Master device is 
responsible for driving the Address, Data, arbitration 
and control signals. For operation reliability and 
compatibility there are significant constraints in 
terms of timing and drive levels. These· constraints 
are well documented in IBM's Technical Reference 
Manual for Micro Channel systems. Intel's chip set is 
designed to meet the Micro Channel timings. 

The Micro Channel has four modes of Memory and 
I/O Bus cycles. These are Default cycle, Synchro­
nous Extended cycle, Asynchronous Extended cycle 
and Matched Memory cycle. Each. of these bus cy­
cles is supported by the Intel Peripheral chip set. 

COMPATIBILITY METRICS 

The Intel chip set provides full compatibility with the 
IBM Micro Channel solution. All Bus cycles comply 
with the Micro Channel timings. Selection of buffers 
for drive level with minimum delays to meet Micro 
Channel timings are specified in the Intel Designers 
Guide for Micro Channel Compatible Implementa­
tion. 

MEMORY PERFORMANCE 

With the Intel chip set, Micro Channel compatible 
motherboards can be designed to provide zero-wait 
performance. Performance is predicated on memory 
design and DRAM speed selection. The Intel chip 
set offers flexible memory design support to meet 
various cost/performance goals. 

SYSTEM CONSIDERATIONS 

System Components 

82306 Local Channel Support Chip 
82307 DMAICACP Controller 
82308 Micro Channel Bus Controller 
82309 Address Bus Controller 
82706 VGA Graphics Controller 

Note that the above part names/numbers are fre­
quency independent; i.e., they refer to a generic 
functional VLSI device. To actually implement for ex­
ample, a 20 MHz system, however requires an 
82310-20 Chip Set as opposed to an 82310-16 Chip 
Set. The 25 MHz version of the 82308 (dubbed the 
82308HS-25) cannot be used at 16 MHz or 20 MHz: 

To implement a minimum configuration Micro Chan­
nel compatible motherboard, each of the five system 
components listed above are required in addition to 
the following components: 

• 80386 or 80386SX Microprocessor 

• TTL/CMOS Buffers for Various Buses in the Sys­
tem 

• 8742 Keyboard Controller with Firmware for 101 
and 102 Keyboard Interface 

• 8272A or 82072 for Floppy Disk Controller 

- 8272A Required to Maintain IBM Look-Alike 
Motherboard with 3%" Drive Support 

- 82072 for PS/2 Compatible 3%" and AT Com­
patible 5%" Disk Drive Interface 

• Battery-Backed Real· Time Clock with CMOS 
RAM 

• Serial Port 

• Parallel Port 
• Programmable Interrupt Controllers (Two 8259s) 

• Memory 
- ROM BIOS 

- DRAMs for Main Memory 

- DRAMs for VGA 

• System Clock Sources 
• Mechanical Connectors/Components 

4-4.91 

.~l: . . 
.. 
~ 

I' 



The Intel solutionis supportedbyafully compatible 
BIOS firmware from a third-party vendor. 

82310 CHIP SET SYSTEM CLOCK 
REQUIREMENTS 

• Introduction 
• Clock Definitions 
• Clock Requirements 

INTRODUCTION 

This section describes the basic clocking scheme of 
the host CPU (80386 or 80386SX), LCS (82306), 
DMA (82307), BC (82308) and ABC (82309). Al­
though each component spec individually describes 

BASIC. FOUR-PHASE CLOCKING REQUIREMENT 

Ot.iA BUS STATE 

SCLK 

(82307 Ot.iA)CLKl 

(82307 Ot.iA)CLK3 

(112307 Ot.iA)CLK2 

• (82306 LCS)CLKl 

(82306 LCS)CLK2 

its own clock requirements, this section describes 
the synchronous relationship that exists between 
them; (Note that several other clocks exist in a Micro 
Channel system. HOwever, this section describes 
only those clocks that ~re synchronously related to 
the CPU clock.) 

The clocking .scheme ess~mtially divides the DMA 
bus state into four phases as depicted in the figure. 
Note that there is a direct No-1 mapping of. 80386 
state to DMA state ... The DMA (82307) and LCS 
(82306) comprehend phases by inputting distinct, 
active low, non-overlapping cloCk phases. The Ad­
dress Bus Controller and Bus Controller learn the 
system phase by synchronously sampling the. falling 
edge of RESET, as described in the component 
specifications. 

Ot.iABUS STATE 

290167-6 

4-492 



inter 82310/11 CHIP SET £[Q)W£OO©~ OOO!F©lmfMJ£ii'D©OO 

CLOCK CIRCUIT DEFINITION 

XTAL 

Tl 

SCLK 
90" ./ 
50" 

~ r--T5 

T3 

SCLK 

(DMA)CLKI 

(DMA)CLK3 

(DMA)CLK2 

SYSTEM CLOCK REQUIREMENTS 

Symbol Parameter 

T1 SCLK High Time (90%) 
T2 SCLK Low Time (10%) 
T3 SCLK High Time (50%) 
T4 SCLK Low Time (50%) 
T5 SCLK Rise Time 
T6 SCLK Fall Time 
T7 SCLK-To-DMACLK(N) Skew 
T8 DMACLK(N) Rise Time 
T9 DMACLK(N) Fall Time 
T10 SCLKPeriod 
T11 DMACLK-To-DMACLK Skew 
T12 DMACLK Low Time 
T13 DMACLK Non-Overlap Time 

NOTES: 

SCLK (CLK2 for 80386, 80387,82385, 82308, 82309) 

(DMA)CLK3 (also (LCS)CLK2) 

(DMA)CLKI 

(DMA)CLK2 

(LCS)CLKI 
290167-7 

-..... ./ 

" ./ 

4-~ 1 T2 T6 

T4 

Kit 16MHz Kit 20 MHz Kit 25 MHz Notes 
Min Max Min Max Min Max 

8 6.5 5.5 
8 6.5 5.5 
12 10 9 1 
12 10 9 1 

3.5 3.5 3.5 
3.5 3.5 3.5 

-2 3 -2 3 -2 3 2 
2 2 2 
2 2 2 

-2 2 -2 2 -'2 2 2 
15 15 12 
4 4 2 

1. Needed to enforce a duty cycle between 40% and 60%. (45% and 55% at 25 MHz.) 
2. Limiting skew to this level is recommended. 

,4-493 



, "; . . 'I ' '-mer.· ........ . 

82311 
HIGH INTEGRATION Micro Channel 

COMPATIBLE PERIPHERAL CHIP SET 

• High Integration VLSI Components to • Flexible Memory Architecture Support 
Implement Micro Channel™ Compatible - Up to 4 Banks of Interleaved Page 
Motherboard Memory 

• Single Architectural Solution for 80386 -256K, 1M, 4M DRAM Support 

16 MHz, 20 MHz and 25 MHz Systems • Supports the 82077 Single Chip Floppy 
and 80386SX 16 MHz Systems, Disk Controller, Which Supports 3%" 

• Full Compa~ibility with IBM Micro and 5%" Disk Drives 

Channel Architecture • Keyboard and ~IOS Support from 3rd 

• Zero· Wait State Performance Party , 

• Cache Interface (82385) for Highest • Numeric Coprocessor(s) Interface 

Performance Compatible System (80387, 80387SX) 

Implementation with 80386, • Surface Mount Packaging for Small 

• Supports up to 16 MB of Memory on Footprint Design (0.025" Pitch) 

Motherboard • Low Power CHMOS Technology 
- Extended Memory for OS/2 Support • Available in 100 & 132·Pln PlastiC, Quad 

• 100% IBM Compatible VGA Graphics Flat Pack Packages. 
(See Packaging Spec. # 2313~9) 

Intel's peripheral chip family is designed to support the new generation of Micro Channel compatible systems. 
Intel's Micro Channel compatible peripheral solution consists of highly Integrated VLSI components designed 
to support 80386 systems up to 25 MHz, as well as16 MHz 80386SX systems. 

The Intel solution is based on the high performance IBM Model 80 register model but it is highly integrated 
to provide full compatibility across all models. The,specifications for 82311 VLSI components conform to 
arcl'1itectural specifications defined for the Micro Channel Bus Architecture. The VLSI components are imple· 
mented in ,1.5 micron CHMOS technology and packaged in space saving surface mount JEDEC flat pack 
packages. ' 

290167-82 

4-49.4 



82310/11 CHIP SET ~IQ)W~OO©jg OOOIF@OOIMl~ii'O@OO 

INTRODUCTION 

The new generation of Personal Computer systems 
from IBM offers significant technological advantages 
over the PC/AT and XT systems. The most signifi­
cant advancement is in the Architectural definition of 
the bus-Micro Channel Bus. Unlike the AT bus, the 
Micro Channel is well defined in· terms of bus proto­
col timings. To create a compatible Micro Channel 
system requires adherence ,to the Micro Channel 
timings and electrical drive characteristics. 

All IBM Micro Channel models have increased sys­
tem functionality included on the motherboard. In 
the older PC/ AT architecture, such functionality re­
quired the addition of peripheral cards. Specific·fea­
tures added to the motherboard include the Serial 
Port, Bi-directional Parallel Port and Video Graphics 
Control. 

Micro Channel ARCHITECTURE 

The Micro Channel Bus is defined to support an 
open architecture providing Multi-Master capability, 
Multi-Device arbitration with fairness, arbitration ca­
pability and easy configurabilitY of the total system 
(Programmable Option Select-POS). Providing full 
details about the Micro Channel Bus Architecture is 
beyond the scope of this document. Please refer to 
IBM Technical Reference Manuals on Micro Chan­
nel systems. 

To provide Multi-Master capability as defined in the 
Micro Channel Architecture, each Master device is 
responsible ,for driving the Address, Data, arbitration 
and control signals. For operation reliability and 
compatibility there are significant constraints in 
terms of timing and drive levels. These constraints 
are well documented in IBM's Technical Reference 
Manual for Micro Channel systems. Intel's chip set is 
designed to meet the Micro Channel timings. 

The Micro Channel has four modes of Memory and 
110 Bus cycles. These are Default cycle,' Synchro­
nous Extended cycle, Asynchronous Extended cycle 
and Matched Memory cycle. Each of these bus cy­
cles is supported by the Intel Peripheral chip set. 

COMPATIBILITY METRICS 

The Intel chip set provides full compatibility with the 
IBM Micro Channel solution. All Bus cycles comply 
with the Micro Channel timings. Selection of buffers 
for drive level with minimum delays to meet Micro 
Channel timings are specified in the Intel Designers 
Guide for Micro Channel Compatible Implementa­
tion. 

MEMORY PERFORMANCE 

With the Intel chip set, Micro Channel compatible 
motherboards can be designed to provide zero-wait 
performance. Performance is predicated on memory 
design and DRAM speed selection. The Intel chip 
set offers flexible memory design support to meet 
various cost/performance goals. ' 

SYSTEM CONSIDERATIONS 

System Components 

82303 Local 110 Support Chip 
82304 Local 110 Support Chip 
82307 DMAICACP Controller 
82308 Micro Channel Bus Controller 
82309 Address Bus Controller 
82706 VGA Graphics Controller 
82077 Floppy Disk Controller 

Note that the above names/numbers are frequency 
independent; i.e., they refer to a generiC functional 
VLSI device. To actually implement for example, a 
20 MHz system, however, requires an 82311-20 
Chip Set as opposed to an 82311-16 Chip Set. The 
25 MHz version of the 82308 (dubbed tne 82308HS-
25) cannot be used at 16 MHz or 20 MHz. 

To implement a minimum configuration Micro Chan­
nel compatible motherboard, each of the seven sys­
tem components listed above are required in agdi­
tion to the following components: 

• 80386 or 80386SX Microprocessor 

• TTL Buffers for Various Buses in the System 

• 8742 Keyboard Controller with Firmware for 101 
and 102 Keyboard Interface 

• Battery-Backed Real Time Clock with CMOS 
RAM 

• Serial Port 

• Memory 
- ROM BIOS 

- DRAMs for Main Memory 

- DRAMs for VGA 

• System Clock Sources 

• Mechanical Connectors/Components 

The Intel solution is supported by a fully compatible 
BIOS firmware from a third-party vendor. 

4-495 

I" 
I'; 



82310/11 CHIP SET £m>W£OO©f! OOOIF@I!IMI.l'U"O@OO , t, ",_ ' 

82311 CHIP SET SYSTEM CLOCK 
REQUIREMENTS 

• Introduction 
• Clock Definitions 
• Clock Requirements 

INTRODUCTION 
This section describes the basic clocking scheme of 
the host CPU (80386 or 80386SX), LIO (82304), 
DMA (82307), BC (82308) and ABC (82309). Al­
though each component spec individually describes 
its own clock requirements, this section describes 

BASIC FOUR-PHASE CLOCKING REQUIREMENT 

Dt.fA BUS STATE 

SCLK 

(82307 Dt.fA)CLi<1 

(82307 Dt.fA)CLK3 

(82307 Dt.fA)CLK2 

the synchronous relationship that exists ,.between 
them. (Note that several other clocks exist in a Micro 
Channel system. However, this .section describes 
only those clocks that are synchronously related to 
the CPU clOCk.) 

The cloeking sgheme essentially divides the DMA 
bus state into four phases as depicted in the figure. 
Note that there. is a direct 2-lo-1 mapping of 80386 
state to DMA state. The DMA (82307) comprehends 
phases by inputting distinct, active low, non-overlap­
ping clock phases. The Address Bus Controller, Bus 
Controller and LIO device leam the system phase by 
synchronously sampling the falling edge . of 
RESET, as described in the component specifica­
tions. 

Dt.fA BUS STATE 

290167-83 

400496 



82310/11 CHIP SET ~@W~OO©[! OOOIP@OOIMJ~'U'O@OO 

CLOCK CIRCUIT DEFINITION 

XTAL 

T1 

SCLK 
90% :/ 

:/ 50% L 10% 

t I-T5 

T3 

SCLK 

(DMA)ClK1 

(DMA)CLK3 

(DMA)CLK2 

SYSTEM CLOCK REQUIREMENTS 

Symbol Parameter 

T1 SCLK High Time (90%) 
T2 SCLK Low Time (10%) 
T3 SCLK High Time (50%) 
T4 SCLK Low Time (50%) 
T5 SCLK Rise Time 
T6 SCLK Fall Time 
T7 SCLK-To-DMACLK(N) Skew 
T8 DMACLK(N) Rise Time 
T9 DMACLK(N) Fall Time 
T10 SCLKPeriod 
T11 DMACLK-To-DMACLK Skew 
T12 DMACLK Low Time 
T13 DMACLK Non-Overlap Time 

NOTES: 

SCLK (CLK2 for 80386, 80387, 82385, 82308, 82309, 82304) 

(DMA)CLK3 

(DMA)CLK1 

(DMA)CLK2 

" .;--
..... ./ 

r..... L -H" 1 T2 T6 

T4 

Kit 16 MHz Kit 20 MHz Kit 25 MHz 

Min Max Min Max Min Max 

8 6.5 5.5 
8 6.5 5.5 
12 10 9 
12 10 9 

3.5 3.5 3.5 
3.5 3.5 3.5 

-2 3 -2 3 -2 3 
2 2 2 
2 2 2 

-2 2 -2 2 -2 2 
15 15 12 
4 4 2 

1. Needed to enforce a duty cycle between 40% and 60% (45% and 55% at 25 MHz). 
2. Limiting skew to this level is recommended. 

4-497 

290167-84 

290167-8 

Notes 

1 
1 

2 

2 



·n+-.F I.I-e-' 
Micro, Channel INTERFACE AND SPECIFICATIONS 

• Introduction 
• Micro Channel, Specifications 

INTRODUCTION 

• Micro Channel Interface Logic 
, Requirements 
- 80386 System Data Path , 
- 80386 System Address/Command 

Path 
...., 80386SX System Data Path 
- 80386SX System Address Command 

. Path 

This section describes the interface between the host CPU (80386, 803865X), OMA (82307), Bus Controller 
(82308) and Micro Channel Bus. This interface provides 100% compliance to published Micro Channel tim~ 
ings, driver type requirements, drive levels, and drive current capability. TImings meet the full capacitive load 
allowed on the Micro Channel. 

The Micro' Channel 5~ecifications included in this section assume the specific TTL Data, Address, and Com· 
mand Path interfaces depicted in the accompanying figures. Timing analysis was based on the Bus Controller 
AC specifications included in the 82308 Bus Controller section. Worst case TTL analysis was used, except 
when two related signals share a path through the same physical chip. (For example, since MMCCMO#, 50#, 
~nd 51 # propagate through the same 74F241 package in an 80386 system, one signal will not experience a 
worst case delay while the other sees a best case. Rather, it is assumed that the signals will track within 2ns 
of each other.) For this reason, it is important to follow the recommendations detailed at tire end of this section 
in the Interface LogiC Notes. . 

The F and A5TT~ logic Is typically specified into a 50 pF load, worst calle delays were derated at 1 ns per 50 
pF for loads greater than 50 pF. As an example, the 74F241 published maximum delay is speCified as7 ns. To 
meet Micro Channel bus loading of 250 pF, a 4 ns derating factor was added, resulting in an effective worst 
case delay of 11 ns.· .. .' 

4~98 



82310/11 CHIP SET £IO)W£OO©~ OOOIF©!Pa!MI£'ifO(Q)OO 

DEFAULT CYCLE SPECIFICATIONS ALL KITS 
Symbol Parameter Min Max 

T1 Status active from ADDR,M/IO# ,REFRESH # 10 
T2 CMD# active from Status active 55 
T3 ADL# active from ADDR,M/IO# ,REFRESH # 45 
T4 ADL# active to CMD# active 40 
T5 ADL # active from Status active 12 
T6 ADL# pulse width 40 
T7 Status hold from ADL # inactive 25 
T8 ADDR,M/IO#,REFRESH#,SBHE# hold frm ADL# INACTIVE 25 
T9 ADDR,MIIO#,REFRESH#,SBHE# hold frm CMD# ACTIVE 30 
T10 Status hold from CMD# active 30 
T11 SBHE# setup to ADL# inactive 40 
T12 SBHE # setup to CMD# active 40 
T13 CDDS16/32 active from ADDR,MIIO# ,REFRESH# 55 
T14 CDSFDBK# active from ADDR,MIIO# ,REFRESH # 60 
T15 CMD# active from ADDRESS valid 85 
T16 CMD# pulse width 90 
T17 Write data setup to CMD # active 0 
T18 Write data hold from CMD# inactive 30 
T19 Status to Read Data valid (Access Time) 125 
T20 Read Data valid from CMD# active . ·60 
T21 Read Data hold from CMD# inactive 0 
T22 Read Data bus tri-state from CMD# INACTIVE 40 
T23 CMD# active to next CMD# active 190 
T23A CMD# inactive to next CMD# active 80 
T23B CMD# inactive to next ADL# active 40 
T24 Next Status active from Status Inactive 30 
T25 Next Status active to CMD# Inactive 20 
T26 CHRDY INACTIVE FROM ADDR VALID 60 
T27 CHRDY INACTIVE FROM STATUS ACTIVE 30 
T28 CHRDY RELEASE FROM CMD# ACTIVE 30 
T28D READ DATA VALID FROM CMD# ACTIVE 160 
T29S READ DATA VALID FROM CHRDY RELEASE 60 
T31 BE # (0-3) from Addr valid (32-Bit Masters Only) 40 
T32 BE#(0-3) active from SBHE#,AO,A1 active 30 
T33 BE#(0-3) active to CMD# active 10 

4-499 



82310/1 t CHIP SET £IQ)W£OO©[g OOOIF©OOIMl£ii'D©~ 

MATCHED MEMORY CYCLE SPECIFICATIONS ALL KITS 
Symbol Parameter Min Mal( 

Tl ADDR VALID TO STATUS ACTIVE 10 
T2 Status valid to MMCCMD# active 82 
T3 ADDR hold from MMCCMD#active 20, 
T4 Status hold from MMCCMD# active 25 
T5 CDDS16/32 active from ADDR valid 55 
T6 MMCR # active from ADDR valid 55 
T7 CDSFDBK # active from AD DR valid 60 
T8 ADDR valid to MMCCMD# active 100 
T9 MMCCMD# pulse width 85 
Tl0 Write Data valid to MMCCMD# active 0 
Tll Write Data hold from MMCCMD# inactive 30 
T12A Read Data valid from Status active 145 
T12B for non-alignedxfers (16b < = = > 32b) 145 
T13A Read Data valid from MMCCMD# active 60 
T13B for non-aligned xfers (16b < = = > 32b) 60 
T14 Read Data hold from MMCCMD# inactive 0 
T15 Read Data off dly from MMCCMD# inactive 40 
T16 MMCCMD# active to next MMCCMD# active 180 
T17 CDCHRDY valid from ADDR valid 70 
T18 CDCHRDY valid from Status active 30 
T23 Status inactive pulse width 30 
T24 MMCCMD# inactive to Status active 5 
T25 MMCCMD# inactive pulse width 85 
T26 MMCCMD# ACTIVE TO NEXT STATUS ACTIVE 90 

4-500 



~ ... 

~ 
~ 

80386 ~ 82308 

~ USO# 
30 

A31-2 ~ .... r- 50# 
US1# 

HLDA ~ U .... CMON 

~ ~ 51# UBHE# 
"/10# -

~ UCMON 

~ UAI 

~ UAO 
82307 ~ UAOl# 

SOH 
51# ~ -

REFRESH# ~ 
IlMA# 24 ~ 1/1 

:::> 
A23-0 

~ 
til 

+-- ~ "/10# ~ ~ 
UBEO#-3# 

~ BEDIR 

~ :::> SAL 

~ e 
~ 
~ 
~ 

II ,) ~ ~ 
~ 
~ AS!! 
~ A3!-A2 30 

~ 

~ ~ 

F241 

::::()-=-t lAl 

2Y4 lYl 

...J 
~ 

2M 

lA2 S lY2 
.....,J 2Y3 ~ 2A3 

~ 
lA3 CI lY3 

I+-- rtlM lY4 . .....,J 
2Y1 2A1 

t . 

" ~'" m ~ 2Y4 2M 

I+-- lA2 lY2 

2Y3 S 2A3 ...J .. L...:. lA3 (; lY31+-1 
2Y2 2A2 

2Yl 2Al 

~ W lA4 lY4 
4 

F241 

~ F245 
BEOER r r---

OED 
4 '---t A B 

DlR ----
~K FOB AS 373 

AlO 0 Q 

D Q 

D'. Q 

CK OED +-

SO 

Sl 

.. II 

BH 

CII 

Al 

AO 

AO 

~ TRANSLATOR 
1618 

!4 

A20 

A31-21,19-2 

"/10# 

ce"ON 

ON 

TR32 

BEO# 
BE3# 

CD 

l 0 w 
CD 
CD 
(I) 

< 
~ m 
ill: ,. 
c 
C 
:II m 
i ..... 
() 
0 
ill: 
ill: ,. 
z 
C 
"U 

~ CD 
~ 

::E: Co) ... 
0 .... ... ... 
n ::z: :;; 
UJ m 
~ 

~ 

~ 
~ 
:?& 
©> 
IiiiiI 
c:::o 

:?& 
'iii! 
@ 
~ 
~ 
~ 

290167-2 c:J 
c:::II 

@ 
:?& 



.... ..;;:r· 
U"I", . ' ,,,. 82310111 CHIP SET b:\fQ)Wb:\OO©[! OOOIP©OOIMl~1i;~.©OO 

80386 SYSTEM BYTE ENABLE TRANSLATOR PAL 

CR32 
MICRO CHANNEL. BH. E# 

SIGNALS AO 

A1 

AEN# 

TR32 AEN# BHE# A1 

1 1 0 0 

1 1 0 0 

1 1 0 1 

. 1 1 0 1 

1 1 1 0 

1 1 1 0 
1 1 1 1 

1 1 1 1 

0 X X X 

X .. 0 X X 
TS = TRISTATE 

AO BE3# 

0 1 

1 1 

0 0 

1 0 

0 1 

.1 1 

0 1 

1 0 

X TS 
X TS 

4-502 

BEOJ BE1# MICRO CHANNEL 
BE2# SIGNALS 

BE3# 

BEOE# 
290167-3 

BE2# BE1# BEO# ' BEOE# 

1 0 0 1 

1 0 1 1 

0 1 ~ 1 

1 1 1 1 

1 1 0 1 

1 0 1 1 

0 1 1 1· 

1 1 1 1 

TS TS TS 0 

TS TS TS 0 



.j>. 

0, 
o 
c.J 

CPU 

.. DATA 
BUS 

WDL DBE2 DWHE 

SBHW 

~CW j' DBLl 

F543 

--+ OEBA OEAB 

LEAB LEBA 

~ A 
> .. 

B " I CEAB CEBA r-
F 
2 
4 

F543 5 

---+ OEBA OEAB ~ I-
LEAB LEBA 

... A B .. 
I CEAB CEBA t--

F543 

OEBA OEAB 

LEAB LEBA 

_ ... 
A B .. .. 

I CEAB CEBA t--

F543 

OEBA OEAB 

LEAB LEBA t--
... A B ~ .. .. I CEAB CEBA t--

~7 

~ 
A 6E 

T/R 
B .-
I 

DBL3 

DBL2 SwAPi SWAP2 SWAP3 

~ ~ 
F A 6E ~ 

F A 6E 
2 2 +-
4 T/R ~ 

4 T/R 
5 B 5 B 

f . .. 
"'I ~ 

F A 

2 
4 
5 B 

f 

SWAP4 SWDIR 

I-~ MICRO CHANNEL 
DATA BUS 

6E +-
T/R 

290167-4 

-- ----- - - - - ---------------- - - --

CD 
0 
Co) 
CD 
CD 
tJ) 

-< 
tJ) 
-I 
m 

== C 
):0 

~ 
." 
):0 

~ 

--
cf 

CD 
N 
Co) .... 
o ..... .... .... 
o 
:J: 
=a 
UI 
m 
~ 

~ 
l§l 

~ 
~ 
© 
IiiiiI 
= 
~ 
'1iiI 
© 
2& 
~ 
~ 
C=:J = © 
~ 

~---.f:-.. - <-~J r"'.i,..~ __ -·4~,~,:t~ __ 



82310/11 CHIP SET ~@W~OO©r! OOOIF@OOIMl~ii"O@OO 

80386SX SYSTEM ADDRESS/COMMAND PATH 

80386SX 

r---
HLOA 
BHE# 

1.1/10# 
A23-AO 

'" 82307 

50# 
51# '- i'-

REI'RESH# i..--

1----11 
~ 

OMA# 
BHE# 

1.1/10# nAS1~ 
A23-AO 

CPU 
ADDR 

BUS 

82308 

i---'o 50# USO# 
_ 51# US1# 

UCMO# 
UAOL# +--

+1'254 UAO+-
UBHE# +- L==; OIR 

~ SAL 
B A 

OE# +-• 
~20 GATE AS373 

." --"08 
A23-A1 23 20i=LJ"""! 0 010-

, 0 Ol-
D 01-

10-
CK OE#I-

: : 
r: 

:: r.. 

50# 
51# 
CMO# 
ADL# 
AO 
BHE# 

A20 
A23-A21.19-1 
1.1/10# 
, , 

MICRO CHANNEL 
SIGNALS 

290167-80 

80386SX SYSTEM DATA PATH 

WDL 

SBLW 

I 
1'543 

~ OEBA 

LEAB .. 
00-07 .. A 

CPU 

I CEAB 

.... DATA 1'543 
BUS L...-..t OEBA 

LEAB 

08-015 
... 

A .. 
r CEAB 

DBE1 

OEAB +-
LEBA .. 

B , 

CEBA -

OEAB l+- I--

LEBA '-
1..-

B .... 

CEBA ..... 

~7 

DBLl 

.l 
I' A 
2 
4 
5 B 

f 

4-504 

SWDIR 

OE 

i'/R 

.... ..,.. MICRO CHANNEL 
DATA BUS 

290167-5 



82310/11 CHIP SET £WW£OO©IE DOOIF@IRUMI£VD@OO 

Micro Channel Interface Logic Notes 

80388 SYSTEM 

1. The F08 gates in the SO #, S 1 # path are required 
at 20 MHz and at 25 MHz. They should not be 
used at 16 MHz. 

2. In an 82385 system, the A20 gate logic is on the 
80386 local bus, and is thus not required on the 
82385 local bus as shown in the diagram. 

3. The F08 gates in the SO#, S1 # path and the F08 
in the A20 path should all be from the same TTL 
package. 

4. It is important that SO#, S1 #, BHE#, and 
MMCCMD# go through the same F241 package, 
and that CMD#, ADL#, AO, and A1 go through 
the same package. 

80386SX SYSTEM 

1. The F08 gates in the SO#, S1# path and in the 
A20 path should all be from the same package. 

PLASTIC PACKAGING INFORMATION 

(See Packaging Spec. Order # 231369) 

Introduction 

The individual components of Intel's Micro Channel 
Compatible Peripheral Chip Sets come in JEDEC 
standard Gull W.ing packages (25 MIL pitch), with 
"bumpers" on the comers for ease of handling. 
Please refer to the accompanying table for the pack­
age associated with each device, and to the individ­
ual component specifications for pinouts. (Note that 
the individual pinouts are numbered consistently 
with the numbering scheme depicted in the accom­
panying figures.) 

MICRO CHANNEL COMPATIBLE PERIPHERAL 
FAMILY COMPONENT PACKAGES 

Component Package 

82303 100 Pin PQFP 

82304 132 Pin PQFP 

82306 100 Pin PQFP 

82307 132 PinPQFP 

82308 100 Pin PQFP 

82309 100 Pin PQFP 

82706 132 Pin PQFP 

82077 68-Pin PLCC, 
See Component Data Sheet 

PLASTIC QUAD FLAT PACK (PQFP) 

290167-11 

4-505 



PRINCIPAL DIMENSIONS & DAtuMS 

~--------~-D2------------~ 

11---:---------- 0 ------------1 ,BASE PLANE 

~---------Dl----------

.-cl -1 ~Al 

o 

E2 ,E El ~TOPVIEW 

290167-12 

TERMINAL . DETAILS 

-I 1-10.635 (0.025)\ 
, , 

I ! ! . I , 

I! 

\ j 
~ ~ 

I ! I I t-1·-------03/E3;-------I·i 
f40o--------0/E:-----'-------. 

290167-81 
mm ~nch) 

4·506 



TYPICAL LEAD 

mm (inch) 

Symbol 

N 

A 

A1 

D,E 

01, E1 

D2,E2 

03, E3 

L1 

0.31 (0.012>-1 1-. 
0.20 (0.008) 

Description 

Lead Count 

Package Height 

Standoff 

Terminal Dimension 

Package Body 

Bumper Distance 

Lead Dimension 

Foot Length 

82310/11 CHIP SET ~[Q)W~OO©~ OOO!F©OOfMl~i1'O©OO 

L1 

Case Outline Drawings 
Plastic Fine Pitch Chip Carrier 

0.025 inch Pitch 

Min Max Min Max 

100 132 

0.160 0.170 0,160 0.170 

0.020 0.030 0.020 0.030 

0.875 0.885 1.075 1.085 

0.747 0.753 0.947 0.953 

0.897 0.903 1.097 1.103 

0.600 Ref 0.800 Ref 

0.020 0.030 0.020 0.030 

Inch 

4-507 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

0.20 (0.008) 
0;14 (0.005) 

--==+ I-- 8 DEG. 
o DEG. 

290167-13 

0.84 mm Pitch 

Min Max Min Max 

100 132 

4.06 4.32 4.06 4.32 

0.51 0.76 0.51 0.76 

22.23 22.48 27.31 27.56 

18.97 19.13 24.05 24.21 

22.78 22.94 27.86 28.02 

15.24 Ref 20.32 Ref 

0.51 0.76 0.51 0.76 

mm 



inter 82310/11 CHIP SET £[Q)W£OO©~ OOOff©OOIMl£VO©OO 

REVISION HISTORY 

The A.G. Specifications of the 82306, 82307, 82308 
and 82309 chips have been modified with respect to 
the 82310 Data Sheet Order Number 290167-001. 
These modifications apply to the 16 MHz and 
20 MHz kits only. 

82306 Spec Revisions 

- T1 changed from 14 ns to 15 ns at 16 MHz ... 
from 12 ns to 15 ns at 20 MHz 

- T2 changed from 10 ns to 4 ns at 16 MHz ... 
from 7 ns to 4 ns at 20 MHz 

- T16 changed from 180 ns to 230 ns at 16 MHz 
and 20 MHz 

- T20 changed from 200 ns to 120 ns at 16 MHz 
and 20 MHz 

82307 Spec Revisions 

-.T1 changed from 14 ns to 15 ns at 16 MHz ... 
from 12 ns to 15 ns at 20 MHz 

- T2 changed from 10 ns to 4 ns at 16 MHz ... 
from 7 ns to 4 ns at 20 MHz 

- T33 cap load G(l) changed from 50 pF to 25 pF 

82308 Spec Revisions 

- T5A changed from 37 ns to 30 ns at 16 MHz and 
20 MHz 

- T6A broken into two specs ... T6A for FLUSH, 
and T6G for SNOOP # 

- T 44 broken into two specs ... T 44A for Setup to 
SGlK and T44B for Setup to UGMD# ... T44A 
left at 0 ns, but T 44B changed to 3 ns 

- T 4 7G changed from 35 ns to 40 ns 

82309 Spec Revisions 

- T18A changed from 45 ns to 30 ns at 16 MHz 

- T18B changed from 50 ns to 38 ns at 16 MHz 

- T18G changed from 50 ns to 35 ns at 16 MHz 

- T27B changed from 30 ns to 33 ns 

- T32B changed from 50 ns to 55 ns 

- T32E (Min) changed from 8 ns to 4 ns 

- T32E (Max) changed from 30 ns to 27 ns 

- T32G (Min) changed from 6 ns to 4 ns 

- T321 changed from 50 ns to 40 ns 

- T33 (Min) changed from 8 ns to 5 ns 

- T34 (Min) changed from 6 ns to 3 ns 

- T34 (Max) changed from 26 ns to 27 ns 

- T35 changed to 115 ns to 100 ns at 16 MHz and 
from 90 ns at 20 MHz 

- T 45 changed from 26 ns to 32 ns 

4-508 



inter 
82303 

LOCAL 1/0 SUPPORT CHIP 

• High Integration-The 82304, 82303 and • Supports System Board Setup 
82077 Floppy Disk Controller Replace • Integrated Peripheral Bus Address 
50 IC's In IBM Design Latches 

• Integrated Parallel Port • Low Power CHMOS Technology 

• Integrated Card Setup Port (96H) • 100·Pln Plastic Quad FlatPackage 

The 82303 Local Channel Support Chip, along with its companion chip (the 82304) and the 82077 Floppy Disk 
Controller, significantly reduce system cost, design effort, and form factor constraints by replacing 50 IC 
devices in an equivalent IBM system. 

The 82303 integrates most all logic required to implement a parallel port. This port operates either as a 
standard parallel port or as a Microchannel architecture compatible "extended mode" (bi-directional) .port. The 
82303 also integrates the Card Setup Port (96H) and several peripheral bus address latches, and provides 
signals in support of system setup functions . 

A(0:2,10:23) 
XA(0:2,10:23) 

XD(0:7) 
MIO# 

LMIO# 
VGAMS# 

LVGAMS# 
IOR# 
IOW# 
ADL# 

PO 
ABCPD 

Pl03RD# 
Pl03WR# 
Pl01RD# 

. ----------------------------. I I 
I 
I 

BUS 
INTERFACE 

MOTHERBOARD 
SETUP 

SUPPORT 

CARD 
SETUP 
PORT 

PARALLEL 
PORT 

PWRUP# --+: 
I I .. --------------------------_. 

4-509 

CDSU#(1 :8) 
CDEN# 
PORTRST 
M60STR# 
CDSUWR 
CDSURD# 

290184-1 

November 1988 
Order Number: 290184-001 



inter 82303 

Introduction 

The 82303 is a high integration device intended for 
Microchannel compatible system designs. Itinte­
grates the Microchannel card SE!tUP Port, a parallel 
port, several peripheral bus address latche~,and a 
variety of system board setup functions. The 82303, 
in conjunction with its sister chip the 82304 and the 
82077 Floppy Disk. Controller, replaces' approxi­
mately 50 Ie devices in an equivalent IBM system: 
Included as an appen~ix to this data sheet isa func­
tional logic diagram of the 82303 that will facilitate 
understanding of the part. Note that the 82304 and 
82303 integrate a variety of system ports. For pro­
gramming and register level details, please refer to 
the IBM Technical Reference Manual. 

Bus Interface 

The Bus Interface unit interfaces the 82303 to the 
Microchannel and peripheral busses. It inputs the 
unlatched Microchannel address, latches it for inter­
nal use, and makes-the latched version available ex­
ternally for other peripheral bus resources. It also 
provides additional latches for decodes generated 
from the Microchannel address. 

Parallel Port 

The 82303 integrates most all logic required to im­
plement a standard or "extended-mode" parallel 

port. The only logic not integrated is that which di­
rectly drives' the physical parallel port connector, 
specifically one '05 (open collector) inverter pack­
age .and one '652 data buffer. (This allows the sys~ 
tern design to stay'clear of directly expOSing a VLSI 
component to an external,connector.) The parallel 
port can serve as LPT1, LPT2, or LPT3, as dictated 
by the decode received via the input parallel port 
decode PP~EL #. 

Card Setup Port 

The 82303 integrates the Card Setup Port (96H), 
which generates the card setup lines to the individu­
al Microchannel' connectors. This port also features 
a softWare generated reset capability that resets the 
Microchannel, serial port, and parallel port indepen­
dently of the rest of the system. 

Motherboard Setup Support 

The 82303 generates decoded read/write strobes 
for system board setup port 103H, and a read strobe 
fCl.f. setup port 101H. It also generates a version of 
the system board POS decode (ABCPD) that is then 
forwarded to the 82309 Address Bus Controller. 
Note that other system board setup ports can be 
easily implemented externally using the same PO 
(POS Decode) that the 82303 uses. 

82303 Local Channel Support Chip Pin Definitions 
Signal Pin I/O Description Name Number 

PWRUP# 82 I Power-up reset input. Brings 82303 to initial 
known state. 

A[0:2,10:23) 9-12,22;..25, I Microchannel address inputs. These signals are 
27,30-37 internally latched, (Note that in'systems in 

which a full 24-bit peripheral address is not 
required, the upper significant address latches 
may be used as general purpose decode 
latches.) 

XA[0:2,10:23] 90-98,1:"'8 0 Peripheral Bus Address. These outputs are 
latched versions of ~he Microchannel address 
inputs. ' 

XD[0:7) 14-21 I/O Bi-directional peripheral data bus. 

MIO!f! 39 I Microchannel MIO# indicator. 

LMIO# 66 0 Latched Microchannel MIO# indicator. The 
MIO# /LMIO# pin combination may be used as 
a general purpose latch if LMIO# is not 
required. -

VGAMS# 38 I VGA memory buffer decode. 

4-510 



inter 82303 

82303 Local Channel Support Chip Pin Definitions (Continued) 

Signal Pin 1/0 Description Name Number 
LVGAMS# 65 0 Latched VGA memory buffer decode. The 

VGAMS# /1,. VGAMS# pin combination may be 
used as a general purpose latch if LVGAMS# is 
not required. 

IOR#,IOW# 49,48 I 82303 read/write strobes. 

ADL# 88 I Microchannel ADL # input. 

PO 46 I POS decode. Decode driven in response to 
accesses to system board setup ports 100, 101, 
103-107H. 

ABCPD 58 0 Address Bus Controller (82309) POS decode. 
This is simply the PO input gated by an active 
lOW # signal, and insures that the 82309 does 
not see a decoding glitch. 

P101RD#, P103RD#, 57,56, 0 Various system board setup port read/write 
P103WR# 55 strobes. 

CDSU#[1:8] 67-74 0 Card setup signals to the Microchannel slots. 

CDEN# 79 I Port 100-1 07H decode used as qualifier for card 
setup Signals. 

-

PORTRST 75 0 Microchannel reset signal. The. "OR" of the 
power-up reset and the reset function built into 
Port 96H. 

M60STR# 83 I Model 60 strap. When low, the 82303 will drive 
Port 96H data in either a Port 96 or 97H read. 
(This is in keeping with the Model 50/60 
definition.) When high, the 82303. will remain tri-
stated during a Port 97H read. 

CDSUWR 80 I Port 96-97H write strobe. 

CDSURD# 81 I Port 96-97H read strobe. 

STROBE, AUTOFC, 59,64, 0 Parallel port control outputs. These signals are 
SLCTIN, INIT 63,60 externally buffered with open collector inverters 

before driving the parallel port connector. 

STROBE#, AUTOFC#, 84,87, I Parallel port control inputs. 
SLCTIN#,INIT# 86,85 

IRQ7# 51 0 Parallel port interrupt request. 

ACK#, ERROR#, BUSY, 43,41,47, I Parallel port status inputs. 
PE,SLCT 42,40 

ENEXPP 44 I Enable parallel port extended mode. Allows 
parallel port to operate bi-directionally. 

PPSEL# 45 I Parallel port chip select. 

PPDREN# 52 0 Enables the external '652 parallel port data 
buffer to be used bi-directionally. This signal is a 
function of the Control port direction bit (bit 5) 
and the ENEXPP input. 

PPDWR#, PPRD# 54,53 0 Parallel port data buffer write/read strobes. 

Voo 13,61,99 Power. 

Vss 26,50,62, Ground. 
89,100 

N.C. 28,29,76, No Connect. 
77, 78 

4-511 



intJ 

NOTE: 

XA1,6 
XA17 
XA18 
XA19 
XA20 
XA21 
XA22 
XA23 

AO 
Al 
A2 

Al0 
Voo 
XOO 
XDI 
XD2 
XD3 
XD4 
XD5 
XD6 
XD7 
All 
A12 
A13 
A14 

1. N.C. pins must be left not connected. 

82303 

82303 100-Plh PQFP Pinout 

TOP VIEW 

4·512 

PORTRST 
CDSUS# 
CDSU7# 
CDSU6# 
CDSUS# 
CDSU4# 
CDSU3# 
CDSU2# 
CDSU1# 
UAIO# 
LVGAMS# 
AUTOF'C 
SLCTIN 
Vss 
Voo 
INIT 
STROBE 
ABCPD 
Pl01RD# 
Pl03RD# 
Pl03WR# 
PPDWR# 
PPDRD# 
PPDREN# 
IRQ7# 

290184-2 



82303 

82303 PARAMETRICS 
ABSOLUTE MAXIMUM RATINGS'" 

Case Temperature Under Bias .... - 40·C to + 85·C 
Storage Temperature .......... - 65·C to + 150·C 
Voltage to any Pin 

with Respect to Ground - 0.3V to + (Vcc + 0.3)V 
DC Supply Voltage (Vcd ......... -0.3V to + 7.0V 
DC Input Current ....................... ± 10 mA 

·Notice: Stresses above those listed under '~bso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and 
functional operation of the device at these or any 
other conditions above those indicated in the opera­
tional sections of this specification is not implied Ex­
posure to absolute maximum rating conditions for 
extended periods may affect device reliability. 

D.C. CHARACTERISTICSTc = O·Cto +70·C, Vcc = 5V ±10% 

Symbol Parameter Min Max Units 

VIL Input Low Voltage 0.8 V 

VIH Input High Voltage 2.0 V 

VOL Output Low Voltage 0.4 V 

VOH Output High Voltage 2.4 V 

VOL Output Low Voltage 0.4 V 

VOH Output High Voltage 2.4 V 

Icc Power Supply Current 180 mA 

III Input Leakage Current ±10 ILA 

loz TRI-STATE Output Leakage Current ±10 ILA 

NOTES: 
1. CDSU# [1:8], XA [0:2,10:23], XD[0:7]. 
2. All outputs other than those listed. in Note 1. 

82303 A.C. SPECIFICATIONSTc = O·Cto +70·C, Vcc = 5V ±10% 

Symbol Parameter 

T1 PWRUP #, Pulse Width 

T2 IOR#, IOW#, CDSURD#, CDSUWR PulseWidth 

T3 Write Data Setup 

T4 Write Data Hold 

Ts Read Data Valid Delay 

Ts Read Data Float Delay 

T7 Status Inputs to XD[0:7] 

T8 Write Strobe Delays 

T9 Read Strobe Delays 

Tn PPSEL#, PD Setup to lOR #, lOW # J. 
T12 PPSEL#, PD Hold from IOR#, IOW#f 

T13 XA[0:2, 10:231 DL Y from ADL # J. 
T14 A[0:2, 10:23], VGAMS#, MIO# Setup to ADL# t 
T17 CDSU# [1:8] Delay from CDEN# 

T18 IOR# t to ADL# J. 
T19 LVGAMS#, LMIO# Delay from ADL# J. 

NOTES: 
1. To IOW# or CDSUWR active, whichever is appropriate. 
2. From 10W# orCDSUWRinactive, whichever is appropriate. 
3. From IOR# or CDSURD# active, whichever is appropriate. 
5. From lOR # or CDSURD# inactive, whichever is appropriate. 
S. Parallelportstatus inputs include SLCT, PE, BUSY, ERROR#, and ACK#. 
7. Write strobes include P103WR# and PPDWR#. 
8. Read strobes include P103RO#, P101RD#, and PPDRD#. -

4-513 

Min Max 

500 

170 

25 
10 

60 

40 

35 

35 

40 

20 

5 

35 

30 

28 

30 

35 

Notes 

10L = 4 mA (Note 1) 

10H = 4 mA (Note 1) 
10L = 2 mA (Note 2) 

10H = 2 mA (Note 2) 

No DC Loads 

Vss < VIN < Vce 

VSS < VOUT < Vcc 

CL(pF) Notes 

(Note 1) 

(Note 2) 

100 (Note 3) 

100 (Note 5) 

100 (Note 6) 

50 (Note 7) 

50 (Note 8) 

100 

75 

50 



82303 

82303 Drive Levels/MeasurementPoints for A.C. Specifications 

Input/Output Pulse Widths 

INPUT TO 

INPUTS ___ ..J~:~~'1 ____ :~ 
oUTPUTS _______ ~-.1.5V 

*. '~~'~ ~ INPUT/OUTPUT---' ---
PULSE WIOTHS___ 1.SV 1.5V __ _ 

290184-4 

NOTE: 

290184-3 

Input Setup and Hold to another Input 

INPUT SETUP--------~".,_.---­
AND HOLD TO 

ANOTHER INPUT --------'1------
~~~~--~~--~~~~3V 

~~~~--~~--~~~~OV 
290184-5 

InplllWaveforms have, TR ~ 2.0 ns from O.BV 10 2,.OV. 

UCHANNEL A~~~ ~_T1_41 ___ -..JXlZZZZZZZZZZZZZZZZZZZZZZZZZZ 

STATUS ---, " ~ 
ADL# L.Jr--------------------. T2 ! 

CMD# 

10R#.IOW# 

CDSURD#. CDSUWR 

XD[O:71(RD) 

XD[O:7)(WR) 

READ/WRITE 
STROBES 

PPSEL#.PD 

VGAMS# 

INACTIVE 

------------
111111111. 

IIIIIIIII 
J:::: 

IIIIIIX 

I 

---- -------
~ 

'/11. 'II II. 
~ 

. r::11-. 

'III 'IIX 
T14-

I I ' 
~T5- r-T6--

T2 

ACTIVE INACTIVE 

~T5"" .T~ 
---- --- " }---

- T4' -
:/// 

T3-- I-T4-

I I 
~T8.T9-1 I---IT8.T9 

~ 
XlIIIII 

'JIIIII/IIII//II/IIIIIIIII 
-T13.T19 

XA[O:2.10:231 _____ -..JXlvC :"------------------LVGAMS#.LMIO# • ~_ 
290f84~6 

4-514 



inter 82303 

," T! " Ct.lD# 

% PWRUP# 1111/1 r-
290184-7 IOR# 

t I ADL# 

T18~ 
290184-8 

t~ 
STATUS INPUTS 

XD[O:7) 
(PARALLEL STATUS PORT RD) 

290184-9 

NOTE: 
T7 is the flow through propagation delay, and thus assumes T5A, is not the limiting parameter. 

UCHANNEL ADDR "IJ~ ___________ """'-'-~"""""","'-'-~"""'~""""'-'-~_ 

STATUS 

ADL# 

Ct.1D# 

CDEN# WIIX ______ ...JXlZOZZZZZZZZZZZZZZZZZZZ 
~T1?:i . 

CDSU#[1 :8) ""lZ;""'Z"'-Z""ZZ"'"Z""Z11.,,-"" ___ - _-_-_-_-_-_-_-_-_-_-_-_-...J""'XlZlIlIllZIIIWVV 
290184-10 

4-515 



82303 

APPENDIX . . 
82303 INTERNAL LOGIC DIAGRAMS 

These logic diagrams are provided to aid in understanding the basic functionality of the 82303, and should not 
be used to estimate signal loading, propagation delays, or any other timing behavior. 

The clocked latches in the. diagrams are functionally equivalent to 7474 type TTL latches. The transparent 
latches are equivalent to 74373 type TTL latches except that the gate input is active low rather than active 
high. 

The truth table for the combinatorial PAL is as follows: 

RD WR 

P P P P P P P 
P P P P P P P 
5 I 0 C 5 5 I 0 C , E 0 X X R R R E 0 X X W W 
L R A A 0 0 0 L W A A R R 
# # 0 1 # # # # # 0 1 # # 

0 0 0 0 0 1 1 0 0 0 0 0 1 
0 0 0 1 1 0 1 0 0 0 1 1 0 
0 0 1 0 1 1 0 

P 
P P 0 
'0 0 5 
5 5 5 1 

5 1 1 E 0 
E 0 0 L I 3 
L I 1 3 P 0 X X X W 
P 0 X X X R R 0 W A A A R 
0 R A A A 0 0 5 # 2 1 0 # 
5 # 2 1 0 # # 1 0 0 1 1 0 
1 0 0 0 1 0 1 
1 0 0 1 1 1 0 

4-516 



x 
~ 
3 

YA"--

AI20:23) ----10110# 

--VGAIoIS# 

--All0:19) 

--A(0:2) 

--AOL# 

............ 

X07 

82303 

Address Latch 
Transparent Latch x 19 

LATCH 
0116:19) 

Q(16:19]' 

015 Q15 

014 Q14 

014:13) 

QI4:13) 

011:3) 

Qll:3) 

G# 

Card Setup Port 

74174 
01 
02 01 
03 02 
04 ". 
05 n 

I }-L: !~OCK 06-
ClEAR# 

-~ 
~OO - 2G# lG# J 

lYl lAl -
XOI - 2A4 2Y4 

lY2 lA2 

X02 - 2A3 2Y3 
IY3 IA3 

X03 - 2A2 2Y2 
IY4 lA4 

- 2AI 2YI 
74244 

M -
::u-

~ ~!I ~jn 
." 
0 
:II 

~, l ~I ~n 

4-517 

'" I!' 
" 

i, 
I: 
"" 

XAI20:23) --
LIoIIO# --

I 

LVGAIoIS# I --
I 

XAll0:19) --
XAI0:2) --

290184-11 

74138 
YO ~ 

A Yl ~ 
B Y2 ~ 
g2A# ~~ 

~f 
foo.4 

G2B# ~~ ~ ~ Gl va 

Y7 

-

0 
51 

0 C 
0 ~ 
,fll !! 

290184-12 



.... IOR# 

10W# 

XA[O:2) 
,;:; 

Pl03RD# 

PPSEl(l 

PPDWRI 

~Pl03WR(I ~ " 

.:- Pl01RD# 

- PD -~ PPDRD# 
-;-

, PAL U 
103W~ 

;410:2) 

1 g~:g: IOWI/ r-
PPSEtl/ 1011# ~, 
SELPOS CWR(I 
DWRII CRD# 

~ ilRD# SRD# 

d 
COMBINATORIAL 

PAL 

--ABCPD 

....... PP'DREN(I 

ENEXPP ,-
SlCT 

,PE 

.... -.... -,-, BUSY ..-

.... -ERROR, 

' .... -ACK(I 

ADl# --

\ 

".f1 
~ 

\ 

~ 

CLOCKED LATCH,' 2 
~' 

ClK 
~ D ,OI- I I--- PRE, 0, 

[~ 

L~ 
CLK 

p-- D ot-
'-- PRE, 0# 

ClR# ----

82303 

" 
74174 

:' p-XD Dl 
, D2 01 

D3 02 
D4 03 

p- OS 04 
D6 05 t----

r--- CLEARII a.OCK'06~ 

': 

" 
I 

L 74240 
D3 ' 
D2 03# 

,,~ D1' 02# 
~DO 01# 

OE# 08, 

"~ 

..... 
" " 

lG# 2G, - XD4 lAl lYl - 2Y4:' 2A4 - XOS lA2 lY2 

" - 2Y3 2A3 !- XD6 lA3 lY3 - 2Y2 2A2 .... 
XD7 lA4, ' lY4 - 2Yl2Al 

74244 
1-' 

~ XD3 

rD) XD2 

" 

=p-
-

4~518 

'.~ 

XD4 

XD3 
~, 

1 

, 

J"Ooo -... 
:::. 
..;:::; 
~ 
-:: 

-
~ 

STROBE 

AUTOFC 

STROBEl 

AUTOFC(I 
SlCTIN 
SLCTIN(I 

INIT 

INIT# 

290184-13 



inter 
82304 

LOCAL 1/0 SUPPORT CHIP 

• Hlgh-Integratlpn-The 82304, 82303 and • Integrates Programmable Timer 
82077. Floppy Disk Controller ,Replace Counters 0, 2 and 3 
50 IC's in IBM Design • Supports VGA Controller on the Local 

• Supports I/O Peripherals •.. Keyboard/ Channel 
Mouse c::ontroller, Serial/Parallel Ports" • Integrates the OS/2 Optimized HOT 
Configuration RAM; and Real Time A20 and HOT RESET Functions 
Clock 

• Integrates Two 8,259 PIC's and All • Integrates Variety of System Status/ 

Associated Logic 
Control Ports and Functions 

• Low Power CHMOSTechnology/132-
Pin POFP Package 

The 82304 Local Channel Support Chip, along with its companion chip (the 82303) and the 82077 Floppy Disk 
Controller, significilntly reduce system cost, design effort, and form factor constraints by replacing 50 IC 
devices in an equivalen~ IBM system. ' 

The 82304 integrates logic to support local bus I/O peripherals and the VGA Controller. Also integrated are 
three programmable timer/counters, two "8259-like" programmable interrupt controllers, and a variety of 
system status/control ports and functions. Integrated along with the 8259 PIC's is all logic required to make 
the PIC's Microchannelarchitecture cornpatible: 

s.eLK 
RESET 

AlO,9J 
""[3"'J 

CWOI 

AOI., 

S'* 
lOR, 

lOW, 

~O["'"J 
Lstl 

L£IIA# 
OWl 
LBEN, 

FB"'" 
VGAFBI 

LCCSI 
CHRDY 

TNRCU< 

AUDIO 

CDSUWR 

CosUROf 

OSKSTAT. 

RFRSH' 

CHCKI 
PCHCKI 

NMII 

KV8DA20 

KYBORC# 
Re, 

A200ATE 

PO 

REAL mlE 
CLOCK AND 
CONFlG RAM 

SUPPORT 

4-519 

PICeS, 

INTA, IRQ., , 
[3:7,9:12,'.(:15) 

IRQ" RTCINT, 
INTR 

RA.o[O"J 
RAMRD, ...... , 
RA.A[0,'2J 
RTCALE 

RTCROf 
RTCWR, 

PPSELI 

EHEXPP 

SPINEN, 

SP1N 
DOSTR, 
DlSTRI 
1003, -
VGASUI 

VGAOI 

NPOLl< 

NPOST 

NPCNT 

KYBD 

YOUSE 

KYBOOS, 

IRQ12 

290185-1 

November 1988 
Order Number: 290185-001 

, " , 
I' I ;~ 
I" 
I 
r" 



82304 

INTRODUCTION 

The 82304 is a high integration devi~ illt,nded for 
Microchannel compatible system designs .. 'tessen­
tially integrates the 82306.Local Channel'Support 
chip,two 8259. Programmable 'nterrupt Controllers. 
and a wide assortment of TTL circuitry, The 82304, 
in conjunction with its sister chip the 82303 and the 
82077 ,. Floppy Disk Controller,replaces approxi­
mately 50lC devices in an equivalent ·,BM system. 
IncludjKl as an appendix .to this data sheet is a func­
tional lOgic diagram of the .82304 that should facili­
tate understanding of the part. Note that the 82304, 
82303 and 82077 integrate a variety of system ports. 
For programming and register level details, please 
refer to the IBM Technical Reference Manual, 82077 
data sheet, and 8259A data sheet. 

BUS INTERFACE AND CONTROL 

The Bus Interface and Control unit interfaces the 
82304 to the Microchannel and peripheral busses. It 
inputs the unlatched Microchannel address, latches 
it for internal use, and makes the latched )lersion 
available externally for other peripheral bus resourc­
es. It also provides signals to control an external 
74F543 latching data transceiver that . sits between 
the Microchannel and peripheral data busses. The 
bus interface unit also provides functions such as 
cycle extension on behalf of slower peripherals,· and 
support of the Microchannel architecture's system 
feedback function. 

SYSTEM TIMERS 
The 82304 integrates the timers required for mUlti­
task time slice interrupt (timer 0), audio tone genera­
tion (timer 2), and "watch-dog" function (timer 3). 
These timers are accessed via ports 40, 42, 43, 44, 
and 47H. 

FLOPPY DISK SUPPORT 

The 82304 provides the decode signal required by 
the 82077 Floppy Disk Controller. The decode ad­
dresses ports 3FO-3F7H. The 82304 also inputs the 
82077's DMA acknowledge in support of the system 
feedback function. 

VGA SUPPORT 
The 82304 supports the VGA setup and enable/dis­
able functions. Specifically, bit 5 of integrated port, 

94H isusecjitoput the VGA into setup mode, and 
this mode is reflected to the VGA on the 82304's 
VGAS/J.* pin. Also, the .82304 integrates bit 0 of 
poi13C3H"which is used to en8bleldi~,le the sys­
tem . board VGA subsystem as indicated by the 
82304's VGAEN output. . 

CARD SETUP PQRT SUPPO~T 
The 82304 provides decoded read/write strobes for 
ports 96-97H. Port 96H is the card setup port, which 
is integrated on the 82303 Chip. Port 97H is currently 
reserved by IBM. 

INTERRUPT CONTROL 
The 82304 integrates two 8259 Programmable Inter­
rupt Controllers, and all additional logic' required to 
make these interrupt controllers Microchannel archi.­
tecture compatible. Specifically, the Microchannel 
definition requires that interrupts be active low and 
level sensitive. This allows a wire-OR system imple­
mentation. Integrated .logic includes inverters for in­
coming interrupts, as the 8259 treats level sensitive 
interrupts as active high. Additionally, logiC to inhibit 
the 8259's from being programmed in edge-trig­
gered mode is integrated. 

REAL TIME CLOCK AND 
CONFIGURATION RAM SUPPORT 
The 82304 integrates all logic required to support an 
external battery backed up real time clock chip and 
static RAM. Note that while the IBM implementation 
supports a 2K RAM, the 82304 makes provision to 
support either a 2K or 8K RAM. The real time clock 
is accessed via ports 70-71H, while the RAM is ac~ 
cessed via ports 74-76H. (RAM data is accessed 
via port 76H, while ports 74H and 75H serve as an 
indirect address latch for the RAM.) The 82304 also 
integrates the logic required to enforce the Micro­
channel architecture's password security function. 
Specifically, writes to port 70H are monitored. If a 
write to 70H is attempting to access offsets 38-3FH , 
in the real time clock chip's onboard RAM, and if the 
security bit in 92H indicates that these offsets are off 
limits, then no address latch signal is generated to 
the real time clock chip. 

SERIAL AND PARALLEL PORT 
SUPPORT 

The 82304 provides various functions in support of 
an·externaJ serial port chip (the 16550A), and a par-

4-520 



inter 823.04 

allel port (integrated on the 82303 ,chip). The 82304 
provides decoded read/writes strobes for the serial 
port chip, as well as converting a serial port interrupt 
into either IRQ3# or IRQ4#, depending on whether 
the serial PQrt is configured as COMM1 or COMM2 .. , 
When configured as COMM1, the ,serial port is de­
coded at POrts 3F8-3FFH. AsCOMM2, the port is 
decoded from 2F8-2FFH. Configuration is done via 
the integrated system setup port 102H. 

The 82304 generates a parallel port chip select that 
maps to LPT1, LPT2,or LPT3, depending on how' 
system setup port 102H is programmed. As LPT1, 
the parallel port is decoded at ports 3BC, 3BO, 3BE, 
and 3BFH. LPT2 maps to ports 378, 379, 37 A, and 
37BH. LPT3 maps to 278, 279, 27A, and 27BH.The 
82304 also generates a signal that indicates wheth­
er the parallel port is to operate in its normal output­
only mode, or its "extended"· bi-directional mode. 
The mode is selected via system setup port 102H. 

NUMERIC COPROCESSOR SUPPORT - . 
The 82307 OMA Controller, In response to a soft­
ware command, issues. a, pulse to re~tthe 80387 qr 
80387SX NUmeric Coprocessor. The 82304 inputs 
this pulse and effectively stretches it out to insure 
that the 80387 reset input pulse is long enough to 
meet its internal reset requirements. (Note that the 
80387 reset pulse out of the 82304 must be exter­
nally synchronized to the 80387 clock so as to con­
vey the system phase to the 80387.) The 82304 also 

manipulates CHROY to extend the bus cycle tha,t 
initiates the reset so as to tie up the CPU until the 
80387's reset and- initialization requirements are 
met. 

KEYBOARD AND MOUSE SUPPORT 

The 82304 provides a chip select for the 8742 Key­
board Controller. This decode maps to ports 60 and 
64H. The 82304 also integrates the logic required to 
both latch and subsequently clear keyboard and 
mouse interrupts. 

SYSTEM STATUS AND CONTROL 
FUNCTIONS . 

The 82304 integrates a variety of system status and 
control functions and ports. Integrated ports include: 

Port 61 H System Control Port B 

Port 92H System Control Port A 

Port 91H Card Selected Feedback Register 

Port 94H System Board, Setup port 

Port 1 02H System Board POS Port 

Port 70H NMI Enable (Write Only) 

The functions and register level details of these 
ports are documented in the IBM Technical·Refer­
ence. 

82304 LOCAL CHANNEL SUPPORT CHIP PIN· DEFINITIONS '. 

Symbol PI!) Type ,: DesCription No. " 

SCLK 50 I .INPUT CLOCK: Tied to same clock as host CPU. 
. RESET 64 I SYNCHRONIZED POWER-UP RESET: Resets 82304 and 

synchronizes internal· clock to system phase. 

A [0:9] 85-81, I MICROCHANNEL ADDRESS: Address Lines are internally 
78-74 latched. 

XA[3:9] 73-67 0 PERIPHERAL BUS ADDRESS: These are latched versions of 
the Microchannel address. 

CMO# 97 I MicROCHANNEL CMD# INPUT 

AOL# 
.-

100 I MICROCHANNEL ADL# INPUT 

S1# 1 I MICROCHANNEL S1 # .INPUT 

IQR#;IOW# 96,95 I 82304 READ AND WRITE STROBES 

XO[0:7] 94-90, I/O BI-DIRECTIONAL DATA BUS 
88..,86 -

., 

LSH 131 0 LATCHED VERSIONQF MICROCHANNEL S1 # INPUT 

LEBA#, 130, 0 EXTERNAL 74543 DATA BUFFER CONTROL SIGNALS: 
OEBA# 129 These signals control data timing on the peripheral data bus. 

LBEN# 52 0 LOCAL (PERIPHERAL) BUS ENABLE; The 82304 generates 
this in response to address decodes of peripheral bus ports. It 
is typically "OR~'ed with other system qualifiers to enable the 
peripheral bus data buffer. 

4-521 

, 

I, 

! 
I,. 

lit J :,i 
I' 
I 



intJ 82304 

82304 LOCAL CHANNEL SUPPORT CHIP PIN DEFINITIONS (Continued) 

Signal Pin 110 De.~rlpt'on Name No. " 

'FBATN 41 I SYSTEM FEEDBACK: This input receives the OA of the system 
feedback signals of the Mi9rochannel slots. It is internally ,latched 
and "OA"ed with other feedback sources, and the result made 
available via a Port 91 H read (Bit 0). 

VGAFB# 42 I VGA FEEDBACK. 
LCCS# 37 I LOCAL CHANNEL CHIP SELECT: Activated for the 1/0 address 

range 0-3FFH (CPU or DMA master) or 100-3FFH (Microchannel 
Master). LCCS# is internally latched. 

CHADY 5 0 CHANNEL READY: The 82304 deasserts CHADY to extend 
accesses to certain peripheral bus resources,speciflcally the 
keyboard controller, real time clock and serial port. Also, CHADY is ' 
used to tie up the CPU dlJring numeric coprocessor resets. 

TMACLK 45 I 1.193 MHz CLOCK INPUT: Drives clock inputs of system timers 0 
and 2. 

AUDIO 128 0 OUTPUT OF SYSTEM TIMER 2 GATED BY BIT 1 OF PORT 61H: It 
drives. the Microchannel audio sum node. 

FCS# 46 0 FLOPPY DISK CONTROLLER (82077) CHIP SELECT: Aesponds 
to 1/0 range 3FO-3F7H. " 

FDACK# 49 I FLOPPY DISK CONTROL DMA ACKNOWLEDGE: Internally 
latched and "OA"ed with other system feedback sources. 

VGASU# 44 0 VGA SETUP: Puts the VGA into setup mode when active, according 
, to Bit 5 of Port 94H. 

VGAEN 43 , 0 VGA ENABLE: Enables/Disables motherboard VGA according to 
Bit 0 of Port 3C3H. 

CDSUWA 126 0 CARD SETUP WRITE STROBE: Active High command generated 
during writes to Port 96-97H. 

CDSUAD# 125 0 CARD SETUP READ STROBE: Active low command generated 
during reads from Port 96-97H. 

DSKSTAT 127 0 FIXED DISK STATUS: Controls the fixed disk activity light. It is 
active when either Bit 6 or Bit 7 of Port 92H is set. 

AFASH# 5,1 I REFRESH CYCLE INDICATOR: Diagnostics can monitor refresh 
activity via Bit 4 of Port 61 H. 

CHCK# 5,4 I MICROCHANNELCHECK INDICATOR: Used to report adapter 
errors. 

PCHCK# 55 I DRAM PARITY ERROR: Driven in response to motherboard 
memory parity errors. 

NMI# 53 0 NON-MASKABLE INTERRUPT REQUEST TO CPU: This acts as 
an open drain output !hat allows for an external wire "OA" with other 
NMI sources. 

KYBDA20 60 I A20 GATE SIGNAL OUT OF THE KEYBOARD CONTROLLER: 
'Internally "OA"ed with the alternate A20 switch incorporated in i;3it1 
of Port 92H. 

KYBDAC# 58 I CPU RESET SIGNAL OUT OF THE KEYBOARD CONTROLLER: It 
is internally "OA"ed with the alternate reset function of Bit 0 of Port 
92H. 

RC# /59 0 RESET CPU: Aesets CPU via Port 92H (Bit 0) or the KYBDAC# 
input. 

A20GATE 57 0 A20 GATE SIGNAL: The "OA" of Bit 1 of Port 92H and the 
KYBDA20 input. 

4-522 



82304 

82304 LOCAL. CHANNEL SUPPORT CHIP PIN DEFINITIONS (Continued) 

Signal Pin I/O Description Name No. 
PO 61 0 POS DECODE: An active high decode of system board setup 

ports 100, 101, 103-1 07H. (Port 102H is integrated on the 
82304.) 

PICCS# 101 I CHIP SELECT FOR THE INTEGRATED 8259 
PROGRAMMABLE INTERRUPT CONTROLLERS (PIC) 

INTA# 56 I INTERRUPT ACKNOWLEDGE: Generated by the bus 
controller during interrupt acknowledge cycles. 

IROM# 102-110, I MICROCHANNEL INTERRUPT INPUTS. 
[3:7,9:12,14:15) 112-113 

IR013 111 I INTERRUPT INPUT USED TO REPORT NUMERIC 
COPROCESSOR ERRORS. 

RTCINT# 114 I INTERRUPT INPUT FROM REAL TIME CLOCK. 
INTR 115 0 MASKABLE INTERRUPT REQUEST TO CPU. 
RAMO[O:7) 22-25, I/O REAL TIME CLOCK AND CONFIGURATION RAM DATA 

28-31 BUS. 
RAMRO#, 32,33 0 READ/WRITE STROBES TO CONFIGURATION RAM: 
RAMWR# Generated during accesses to Port 76H. 

RAMA[O:12) 6-11, 0 CONFIGURATION RAM ADDRESS BUS: Internal RAM 
. 14-20 address latches are written to via Ports 74-75H . 

RTCALE 38 0 REAL TIME CLOCK ADDRESS LATCH ENABLE. 
RTCRO#, 39,40 0 REAL TIME CLOCK READ/WRITE STROBES. 
RTCWR# 

PPSEL# 123 0 PARALLEL PORT CHIP SELECT: Maps to LPT1, LPT2, or 
LPT3 as controlled by Bits 5 and 6 of system board setup Port 
102H. 

ENEXPP 124 0 PARALLEL PORT EXTENDED MODE ENABLE: This mode is 
controlled via bit 7 of system board setup Port 102H. 

SPINEN# 63 I SERIAL PORT INTERRUPT ENABLE. 
SPIN 62 I SERIAL PORT INTERRUPT. 
IR03#, 119,118 0 SERIAL PORT INTERRUPT: Configured to either COMM1 
IR04# (IR04 #) or COMM2 (IR03#). Selection is done via Bit 3 of 

system board setup Port 102H. 

OOSTR#, 122,121 0 WRITE/READ STROBES FOR SERIAL PORT. 
OISTR# 

NPCLK 3 I CLOCK FOR NUMERIC PROCESSOR RESET PULSE 
STRETCHER. 

NPRST 2 I NUMERIC PROCESSOR RESET REQUEST INPUT 
NPCNT 4 0 NUMERIC PROCESSOR COUNT: Numeric processor reset 

signal typically synchronized externally and fed to 80387 or 
80387SX. 

KYBO 36 I INTERRUPT REQUEST INPUT FROM KEYBOARD 
CONTROI:.LER: It is internally latched, and then subsequently 
cleared by a keyboard controller read. 

4-523 



82304 

82304 LOCAL CHANNEL SUPPORT CHIP PIN DEFINITIONS (Continued) 

, Signal Pin 110 Name No. 
MOUSE 34 I 

KYBDCS# 120 . 0 
IRQ12 35 0 

Voo 12,21,26,47, 
79,98,116 

Vss 13,27,48,80, 
89,99,117 

NC 65, 132 

RSVD 66 '. 

82304 132·Pln PQFP Pinout 

NOTES: 

51# 
NPRST 
NPClK 
NPCNT 
CHROY' 
RAMAO 
RAMAl 
RAMA2 
RAMA3 
RAMA4 
RAMA5 

VOO 
Vss 

RAMA6 
RAMA7 
RAMA8 
RAMA9 

RAMAIO 
, RAMAli 

RAMAl 2 
VOO 

RAMOCl 
RAMOI 
RAM02 
RAM03 

Voo 
Vss 

RAM04 
RAMOS 
RAM06 ' 
RAM07 

RAMRO# 
RAMWR# 

1, N,C, pins must be left not 'connected, 

.', 

Descrlptlo~ 
..c'. 

INTERRUPT REQUEST INPUT FROM KEYBOARD 
CONTROLLER'S MOUSE PORT: It is internally latched and 
subsequently cleared by a keyboard controller read, 

KEYBOARD CONTROLLER CHIP SELECT. 
LATCHED VERSION OF MOUSE INPUT INTERRUPT 
REQUEST. 
POWER. 

GROUND. 

NO CONNECT. 
RESERVED .. 

Vss 
Voo 
c~o# 
IOR# 
IOWN 
XOO 
XOI 
X02 
X03 
X04 
vss 
X05 
X06 
X07 
AO 
AI 
A2 
A3 
A4 
Vss 
Voo 
A5 
A6 
A7 
A8 
A9 
XA3 
XA4 
XA5 
XA6 
XA7 
XA8 
XA9 

290185-2 

2, This pin is reserved , . , must be tied to ground in system, 

4-524 



intJ 82304 

82304 Parametrlcs 

Absolute Maximum Ratlngs* 

Case Temperature Under Bias .... -40°C to + 85°C 
Storage Temperature .......... - 65°C to + 150°C 

Voltage to any Pin with 
Respectto Ground .... - 0.3V to + (Vee + 0.3)V 

DC Supply Voltage (Vee) ......... -0.3V to + 7.0V 

DC Input Current ....................... ± lOrnA 

• Notice: Stresses above those.listed under '~bso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and 
functional operation of the device at these or any 
other conditions above those indicatedin the opera­
tional sections of this specification is not implied Ex­
posure to absolute maximum rating conditions for 
extended periods may a·ffect device reliability. 

D.C. Electrical Characteristics Te = O°Cto + 70°C, vee = 5V ±10% 

Symbol Parameter Min Max Units Notes 

VIL Input Low Voltage 0.8 V 

VIH Input High Voltage 2.0 V 

VIL Input Low Voltage 0.8 V SCLK 

VIH Input High Voltage Vee- 0.8 V SCLK 

VOL Output Low Voltage 0.4 V 10L = 4 rnA (Note 1) 

VOH Output High Voltage 2.4 V 10H = 4 rnA (Note 1) 

VOL Output Low Voltage 0.4 V 10L = 2mA (Note 2) 

VOH Output High Voltage 2.4 V IOH=2mA (Note 2) 

lec Power Supply Current 180 rnA NoDC Loads 

III Input Leakage Current ±10 ,...A Vss < VIN < Vee 

loz TRI-STATE Output Leakage Current ±10 ,...A . Vss < Your < Vee 

NOTES; 
1. DSKSTAT. XA[3:9), XD[O:7]. 
2. All outputs other than those listed in Note 1. 

82304 A.C. Electrical Specifications Te = O°Cto + 70°C, vee = 5V ±10% 

Symbol Parameter 
KIT-16 KIT-20 KIT-25 CL Notes 

Min Max Min Max Min Max (pF) 

T1 SCLK Period 31.25 25 20 

T2A SCLKHigh/Low Time 12 10 8 

T29 SCLK High/Low Time 8 6.5 6 

T3 Reset Setup 10 10 10 

T4 Reset Hold 3 3 3 

T5 Reset Pulse Width 500 500 500 

T6 RC# Pulse Width 75 150 75 150 75 150 50 

T7 TMRCLK High/Low Time 300 300 300 

T8 PICCS #, FDACK #. Setup 30 30 30 

T9 PICCS #, FDACK # Hold 0 0 0 

TlO IOR#,IOW#,INTA# 170 170 170 
Pulse Width 

4-525 

I' 



inter 82304 

82304 A C Electrical SpecificationST e = O°C to + 70°C Vee = 5V ± 10% (Continued) . , 

Symbol Parameter KIT~16 KIT·20 KIT·25 CL Notes 
Min Max Min Max Min Max (pF) 

T11 Write DataSetup 25 I 25 25 

T12 Write Data Hold 10 10 10 

T13 Read Data Vaiid Delay 0 90 0 90 0 90 100 

T14 Read Data Float Delay 0 0 0 100 

T15 RAMD[0:7] to XD[0:7] Delay 36 36 36 100 

T17 CHRDYDelay 0 80 0 80 0 80 25 

T18 CHRDY Inactive Pulse Width 280 280 230 25 5 

T19 Address Decode Delays from 
ADL# .! 

0 62 0 62 0 62 50 1 

T20A Write Strobe Delays from 
IOW# .! 

0 40 0 40 0 40 50 2 

T20B CDSUWR, DOSTR # Delays 0 35 0 35 0 35 50 
from IOW# t 

T20e RTCWR #, RAMWR # Delay 0 33 0 33 0 33 50 
fromCMD# t 

T21 Read Strobe Delays 0 40 0 40 0 40 50 6 

T22 RTCALE Min Pulse Width 120 120 110 50 3 

T23 XA[3:9] Delay from ADL# .! 35 35 35 100 5 

T24 S1#, LCCS#, A[0:9] Setup 
toADL# t 

30 30 30 

T25 FBRTN Setup to CMD# .! 15 15 15 

T26 VGAFB# Setup to CMD# t 15 15 15 

T27 LEBA# Delay from CMD# 26 26 26 25 

T28 OEBA# Delay from CMD.# .! 30 30 30 25 

T30 CHRDY.! Delay 38 38 38 25 4 

T31 NPCNT t Delay 128 NPCLKS 128 NPCLKS 128NPCLKS 50 5 

T32 CHRDY t Delay 192 NPCLKS 192 NPCLKS 192 NPCLKS 25 5 

T33 NPCLK High/Low Time 12 12 12 

T34 LS 1 # Delay from ADL # .! 35 35 35 50 

NOTES: 
1. Address decodes include FCS#, PPSEL#, KYBOeS#, PO and LBEN#. 
2. Write strobes include RTCWR #, COSUWR #, OOSTR #, and RAMWR #. 
3. Read strobes include RTCRD#, CDSURO#, OISTR# and RAMRO#. 
4. From later or NPRST t or CMO# .J,. 
5. Functional Specification ... Not tested.· 
6. CMO# t causes "RTCWR# t and RAMWR# t, while IOW# t causes RAMO[0:7) to float. The 82304 insures that 
CMO#-to-RAMWR#/RTCWR# is at least 5 ns faster than IOW# to RAMO[0:7) float, assuming loading on RAMO[0:7) is 
greater than or equal to loading on RAMWR # or RTCWR # .. This provides Ii minimum of 5 ns data hold time for the real 
time clock and SRAM, assuming CMO# and IOW# reach the 82304 at the same instant. Typically, more than 5 ns is 
provided, since IOW# is generated from, and thus delayed from CMO#. 
7. Specification applies to software reset generated via port 92H. 

4-526 



inter 82304 

82304 DRIVE LEVELS/MEASUREMENT POINTS FOR A.C. SPECIFICATIONS 

SCLK 

.,--+---3V 
____ ~I'~--~----ov 

1.5 V 

MIN INPUT SETUP TO SCLK MIN INPUT HOLD FROM SCLK 290185-4 

Input/Output Pulse Widths, 
Input Clock (Other than SCLK) 
HIGH/LOW Times 

;....- T28--; 

SCLK 

, 
:---:-- T2A 

290185-5 

a~. T2A_: 

... : .--------- T1 ----------: 

290185-7 

NPRST 

CMD# 

NPCNT 

CHRDY 

, 
I :-T30~ , , 
:--T30--: 

NOTE: 
Input Waveforms have T A S 2.0 ns from O.BV to 2.0V. 

290185-3 

3V 
1.5V 

OV 

3V 

OV 

290185-6 
Input Setup and Hold to 
another Input (Other than SCLK) 

4-527 

0, °2 0, °2 0, °2 

II 
:\\\ RESET Ijj II /// /1//////1{ 

T4~ :--: 
,~ 

:~'-------T5------~': 
~T3 

290185-8 

290185-9 

i: 
i 
r"" 
I 



82304 

UCHANNEL .... ~"'""-~ ___ , -.-IXIf2i:1;/y/iZWW/!%X\.. ____ ---'W001//ql$ 
:---TZ4----: 

STATUS --, I 

J..--- 124 --: 

L--_---..Jr-

, 0IID1 

, ' , 
'----T10~ 

IOOI,,,",',INT" ---...;.-.-.;...---...... , : r-! --,--:"--'L 
I I i--Tl---: ~TI~ I 

PICCSI,FDACK, ""'?/i,=w=fI/=m""'w""';;1""'Ij;;;=0;J/;=;,;"""W"""';;j i~ 
I I :_n3_: ' " 
:: :---; :-not -----l : : ·----4----~------:--{ i )----j 
: I :_"1-: :"'-T12---": 

1, i$%f,Z, 0ZX: i,' ~i, 
~T1a---: 

X1l[O")CRO) 

XDlO,7)(WR) 

CHRDY , , I I 
" , r--- T24.25 --.., 

" ,LCCS"reo," ~' ! 
. : Tl', T2S. T3. : 

XI:(@!i122@WffiWf4r-------..;.i ..... ~ 
, 

'Mm~~~~~~ ______________ ~!JX~ ________ ~: __________ ~ __ ~ __________ ~! X~ __ ----

--------------~--------------~L~~-n-.-~--~' ~------~r----:,' ~FB' ! 
T2ClA.121 :-- 1208,721 --; 

READ/'fIRIl£ STROBES ________ ....."... ______ ~----__ ----------..J* ,+' ~E 
~ READ ;-T20C ----! f!!!.: R£AD 

LEIIAI --------..;:-, ",r----;Rm--------------m--i--I : r------;.,i.it 
: 128 !127:: T21 ' 

______________ -..;.~___\: R£AD ~ ~ MAD 

OERA, X WIIIT£ ~ 
290185-10 

STATUS IL-____ ..,.......J 

lOR"lOW' 

.... RDI, .. ·WOI, -----------+----++ ...... 
RTCROI, on:wR. -,:-.;;:.".. __________ -.,'---:T 

".DlO")CRD) ----------t---~+----..-:~C===:s:=) _______ ~~~---f--__ --~~~:T:'5~:c:==~~ XDlM)CRD) 

xDlo,,)CWO) ____________ .J\--\,.;-__________________ ~-------

RA.D(O,,)(WR) ~--------------~==========j>--
I!'ICAlE _______ ....... 

i-----~ fl' ----.., 
290185-11 

4-528 



inter 82304 

APPENDIX 
82304 Internal Logic Diagrams 

These logic diagrams are provided to aid in understanding the basic functionality of the 82304, and should not 
be used to estimate Signal loading, propagation delays, or any other timing behavior. 

The clocked latches in the diagrams are functionally equivalent to 7474 type TIL latches. The transparent 
latches are equivalent to 74373 type TIL latches except that the gate input is active low rather than active 
high. The Signals marked with asterisks (*) are not actually available external to the 82304, but simply serve as 
page-to-page references. Note however, that the XA[O:9] internal address bus is not marked with an asterisk. 
Only XA[3:9] are available externally, while XA[O:2] are not. 

The truth table for the combinatorial PAL is as follows: 

H L R 
L A A T 
F R R D D C 
D A A D D B 
S I I M M R R U 
C X X X X X X X X X X 0 0 R W W W S 
S A A A A A A A A A A R W D R R R G 
# 9 8 7 6 5 4 3 2 1 0 # # # # # # # 

0 0 0 0 1 1 1 0 1 1 0 0 1 0 1 1 1 1 76H READ 
0 0 0 0 1 1 1 0 1 1 0 1 0 1 0 1 1 1 76HWRITE 
0 0 0 0 1 1 1 0 1 0 1 1 0 1 1 0 1 1 75HWRITE 
0 0 0 0 1 1 1 0 1 0 0 1 0 1 1 1 0 1 74H WRITE 
0 0 0 0 1 1 1 0 0 0 0 1 0 1 1 1 1 0 70HWRITE 
0 0 0 0 1 1 1 0 0 0 1 1 0 1 1 1 1 0 71HWRITE 
0 0 0 0 1 1 1 0 1 1 0 1 0 1 1 1 1 0 76HWRITE 
0 0 0 0 1 1 1 0 0 0 1 0 1 1 1 1 1 0 71H READ 
0 0 0 0 1 1 1 0 1 1 0 0 1 1 1 1 1 0 76H READ 

4-529 

~ 
I 



82304 

'" 'j" 
r---------------------------------~----~--~----------------------------(:~~ #~~. ~ 

..----....... ----...,..-------------...,...."..,...,---0= ::~:: ~ 
~------...,--------------·-··------------~o #S~~~ .-----------------------i::> #ijlSIO 

"---r---_ -_-_ -_-:_ -~ -.., -_-_ -_-_ -_-_ -_ -_ -... -,.. -,.. -_ -~ -.., -.,. -_ -_ -_-_ -_-_ -.,.---_ -_ -_~~~ :::~10 • 

"-f-l_+-+-+-I-I13SlN' rl - '- #SOdS 

'-t-+------++---t#S~B~ 

.------+-+--i·Od 
..-H---+++-----------4--I---i #~80JOO 

...------+---+--1 AOijHO 

...-+--+--ofl3S3l1l1~ 

r---++--+--IOrnlY 
-!-r-- £Xnd 

-

, 

.-------------------------il::> #13Sdd .----------__ -.--..------------0;:::: ddX3N3 

r-----""'--------,..,..-""'------D #OijnSOO 
1r------------------------~DH~n~o 

4-530 

.-------....;""----------...,--. -0_ lVlS~SO 

.-----------+---O~ #OijOl~ 

I .-----------+----0_ 31YOl~ 

#nSA I--+---t---e> #nS~OA 
.. ~ N3~OA 

13SN30 

#O~SJ 

IOOA 
ijYA11d 

J3ijlld 

DOAJ 
[I'O]SdJ 

MO. 

~10~MJ 

~10~"ll_l_+_--CJ ~10~"l 
#50 ~ #SOSOJl •. 

n~o~ • 
Vl~OM' 

3M. - ..... f-i> 
O~10' 

#50.1_-+_--1::> #SO. 

13S3~' 

#~OYci. 1_-+_--(--::3 #~OYO' 
O~O 



~ 

~ 

INTA 

Xo[O:7) 

IOR# 
PICCS# 

10W# 

XA7 

XAO 

-.... 

,..." .... 
...... 
...... .... 

,..." 

~ 

:[r 

X04 

{]:~ 

~n=c> ==u 
Y> I 

X03 4>0, ~ M 1 
I ...... 

8259 

"7" INTA# IRQ7 

CASO .IRQ6 

CAS2 IRQ5 

CSI 1RQ4 

WR# IRQ3 

RON IRQ2 

X0[4:7) 
03 IRQI 

XO[0:2 
X0[4:7) IROD 

Xo[O:2) iNTR 

,..--,- XAO .sPHEN 

....-U- CASI 

8259 

INTAI IRQ7 

CASO IRQ6 

CAS2 IRQ5 

CS# IRQ4 

WRH IRQ3 

ROI IRQ2 

D3 IRQI 

X0[4:7) IRQO 

Xo[O:2) INTR 

- XAO SP#EN 

- CASI 

r---
74240 

03# 03 f---<:J 
02# 02 f---<:J 
Oil 01 

r--- '001 DO--<J 

OE#~ _ 

>-
---J -..-----
f-- 74240 

'03# D3 f---<:J 
.02# 02 f----<:J 
01# 01 f--<:l 

.-- 00# DO--<J 

I---- ~R, 
l, 
~ ...... 

.....-
74240 

03# 03~ 
021 02 f---<:J 
01# Ol~ 
00# DO f--<:l 

- ~~ 
1 I....-

::::" -.... 
- H 

<J 

IRQI5M# 

IRQI4M# 

IRQI2M, 

IRQI3 

IRQIIM# 

IRQIOM# 

IRQ9M# 

IR0711# 

RTCINT# 

IRQ6M# 

1RQ5M# 

IRQ4M# 

RQ311, 

KBIRO· 

NTR 

LCSINT· 

290185-13 

.~ 

l 

CD 
II.) 
(0) 
o ,. 

.~"~--..-



~ 
I\) 

~ RAMRDI '~"""'-,"- ~ ~......, -XA[O:9] 

IOWI 
IORI 

• LFDSCS# 

XD(O:7] 

XA[O:9] A[O'9] RAMRDI r r--I ../ _ - . ......., - -<1-~r"""! ____ -,= "=::::, _ 1 "'" ...... """'''1 ~ lFDSCSI ·RTC8USGl ~ XDO Dl LRA~MD8~-tI-_________ ":" 
• ....... . XDI D2 01 RAMD9 -4 

C~------------rrrE~XID2q D3 02 RAMD!!!. ~ RAMD(0:7] XD3 D4 03 RAMDll ~ ~ ~ XD4 OS ()4. RAMD12 

.1..."'-"_-. CLOCK 06 .> _ 

ClEARI .. 1;""-1-11-.,-, --' . 74590 

L..- CCLRI 0[1:6] 

I "'" r- """"" n ...,. 
> XDO lD RAMAO,rr-- CCLK .QH .... +r--,." XDI 2D 10 RAMAl '>J I-- RClK I 

XD2 3D 20 RAMA2....., GI ~ _ 
NPCNT 

XD3 4D . 3Q RAMA3. J 
XD4 5D 40. RAMA4 
XOS 6D 50 RAMAS 
XD6 7D .60:RAMA6 . , 

' ;;;;..~ ClOcK '70 RAMA7 > 'L .-{ .' C:, 
XD7 lID, 8Q .. ~..cl 

.Lr--+--'L ClEAR# J. J. ,_, 
NPCLK 

1 " .... ~ 'c:.j"" _. . 
icD? All ,·RAMD7 .~ D 0 tQg. ~. ~ DB ~ .. 

"'" :: :" =.. , - -"r" ";c, XD4 AS 8S RAMD4 . ". > 

..l!.D3 A4 . 851t(MD3 > roo- CLR# ........ 

XD2 A3 IU RAMD2 'CLOCKED LATCH . '" XD1' A2 83. RAMDI '. _ 

DtR 82 RAMDO ........ . .. ::. 
LSl# ;:::...n_++-..... JXiiiDO[J ~ 81 ~ " 

L...I---'L _I 1 <"'I 

[ ~ . .c""1 
-'--I' <"1 

CHRDY 

U:HRDY" 

~~ i 

NPRST· 
CWD" 
RESETI ;. 

290185-14 

l 

I 



o 
~ 

1 
TRANSPARENT 

LATCH x 10 -A(0:9] D[O:9] 

0[0:9] ~ 

AIlL# - ~ - G# 

VGAFB/I 

CMDI 
FBRlN 

;:. 
~ -

t 
XA(0:9] 

Co) 
Co) 

U - CLK 

D 0 

PRE# 0# 

• KYBDC§ - CLR# -
CLOCKED 4 
LATCHx2 

- CLK 

D 0 
~ 

PRE# Of 
CLR, 

III J 0 n 
o ... 

E ~ 
2 

'" ~ m 
'" 

CLOCKED i 
LATCH x 2 I) 
CLK CLOCKED 

~-- D 0 LATCH -'- PREI 0# 
CLK CLR# 

~ ~D 0 ..... PREI Of 

~ ~ 
CLR# .... 

CLK 

D 0 

~ PRE# 0# -- CLR# 

TRANSP~TCH x 2 

G# 0 

I~ 
r---

'-- Gf 0 

I~ 

. 
.. i 
:i~~ 
... '" 0 o ....I U 

U~ )U 

~ 

--
-.-
-.. -

--~ 

-~ 

l 

RESET# • 

KBIRQ • 

01» 

~ .... 

LFDSCS# • 

LCCS# 

SI# 

2901115-15 

---.,;f~~~~~- ,;;.,-...,-=------:-::-::::-~"'" __ -~, 



inter 
82306 

LOCAL CHANNEL SUPPORT CHIP 

• Supports I/O Peripherals on the Local 
Channel 

• Supports VGA Controller on the VGA 
Graphics Channel 

• Floppy Disk Sub-System Support 
- 8272A InterfQce for IBM Micro 

Channel Compatible 3%" Drives 
(Dual Speed Drives -250/500 Kbps) 

- 82072 Interface for IBM Micro 
Channel Compatible 3%" Drives 
(250/500 Kbps) and AT Compatible 
5%" Drive 
(250/300/500 Kbps) 

• Integrated Programmable Timerl 
Counters (0, 2, 3) 

• Integrates System Registers and Ports 

• Low Power CHMOS Technology 

• 100·Pln Plastic Quad Flat Pack 
Packaging 
(See Packaging Guide Order # 231369) 

The 82306 Local Channel Support chip is the register level implementation of the equivalent VLSI device in the 
IBM Micro Channel systems. It provides FOC interface to support IBM compatible 3%" disk drives when used 
with 8272A FDA and 3%" & 5%~ (AT Compatible) disk drives when used with the 82072 FOC. 

The 82306 also has integrated I/O ports and registers for miscellaneous system board functions, Integrated 
Address decoder for generaing chip selects for the I/O devices on the Local Channel and 8254 like program­
mable timers (0, 2, 3) to support speaker tone generation, watch-dog timer and periodic interrupts. 

1.(0,9) 

cs, 
D(0<7) 

RDt 

WR, 
CHRDY 

LBE", 

INTA# 

CLK1.2 

F'CLK1.2 

RESET 

RTCR., 
RTCWR, 
RTCALE 
spcs, 

PPSELI 

WRCDSU 
RDCDSU 

KYIIDCS, 

PD 

STATUS 

ALTRESET 

ALTA20 

CHCJql 

PCHCKI 

NMII 

REfRESH, 

BUS. 
INTERFACE 

UN" 

LCS 
CONTROL 

ADORESS 
DECODE 

CHIP 
SELECTS 

4-534 

TlIRCLK 

'SPKR 

IRao 

ClAO 

UA~' 
US11 

FVCO 

FPSO.1 

FWE 
PlLVAR 

PLLREr 

row 
rOSA.8 

FCI..kO 

rDACK, 
~K 
FWDATA 

FRESET. 

FWOATAI 

F'RDATA, 
FRDAT ... 

VCOI ,.R., 
INTSEL 

ENEXPP " 

VSU, 

VGA.EN 

290183-1 

October 1988 
Order Number: 290183-001 



inter 82306 

FLOPPY DISK CONTROLLER 
INTERFACE 

The Floppy Disk Controller (FDG) function of the 
82306 Local Channel Support chip has two FDC in­
terfaces: 8272A FDC interface as used in IBM Micro 
Channel systems Model 50/60 and 80, and 82072 
FDC interface for value-added performance and 
compatibility. 

The 82306 Local Channel Support chip integrates 
glue logic required to support the 8272A and the 
82072 Floppy Disk Controllers. The FDC interface 
includes the pre-compensation logic, digital portion 
of the read data separator logic, and status registers 
(03F1 H, 03F2H, 03F7 ports). The integrated pre­
scaler supports 250 Kbits/sec and 500 Kbits/sec as 
required in the IBM Micro Channel compatible sys­
tem. With the 8~072 FDC, however, an additional 
300 Kbits/sec data stream is supported for interfac­
ing to a standard AT 5%" drive. 

The Floppy Disk subsystem support includes gener­
ation of the chip select for the FDC when ports 
03F4H or 03F5H are referenced. The Floppy status 
register (Read only) is implemented externally on 
the motherboard. To read this register, the 82306 
generates the decoded read signal for address 
03FOH. 

The clock for 8272A is generated by the 82306 Lo­
cal Channel Support chip, from an external 16 MHz 
frequency source. The 82072 utilizes its own fixed 
clock source of 24 MHz. 

LOCAL CHANNEL ADDRESS 
DECODER 

The 82306 Local Channel Support provides the Ad­
dress decoding for the following devices and ad­
dresses. 

• 8742 Keyboard Interface Chip 

• Serial Port 

• Parallel Port 

• Ports 096H and 097H 
• Real-Time Clock (Read, Write and Address Latch 

Enable) 

SYSTEM TIMERS 0, 2,3 

The timers used for periodic interrupt (timer 0), tone 
generation for audio (timer 2) and watch-dog func­
tion (timer 3) are integrated on the 82306 Local 
Channel Support chip. Timer 0 and 2 are identical in 
their functionality as the timers in IBM PCI AT, XT 
and PC systems. The watch-dog timer 3 provides 
error detection capability and via BIOS, the watch­
dog function can be enabled and disabled. 

These timers can be programmed via ports 40, 42, 
43, 44 and 47. 

INTEGRATED SYSTEM REGISTER 
AND PORTS 

The 82306 Local Channel Support chip has the fol­
lowing registers and ports integrated on the chip: 

• System Control Port A & B (092H and 061 H) 

• Card Selected Feedback Register (091 H) 

• System Board POS Port (102H) 

• Port 070H (Write Only) 

• System Board Set Up (094H) 

The POS register space as defined in the Micro 
Channel architecture is 100H to 107H. The 82306 
integrates 102H on chip and generates PD signal 
during set-up mode for external implementation of 
POS ports 100, 101 and 103-107H. POS port 102H 
is programmed during set-up to enable serial, paral­
lel port and the Floppy Disk Controller. 

VGA ENABLE PORT 3C3H 

When bit 0 of port 3C3H is programmed as 1, the 
VGA sUb-system is enabled. The chip enable 
VGAEN is deactivated when a zero is written to the 
bit. On power up or reset, the VGA sub-system is 
enabled. 

I/O DEVICE MAP 

The following table lists the ports and registers inte­
grated on the 82306 Local Channel Support chip. 

1/0 Register Function Address 

03F1H Floppy Status Register B 
03F2H Floppy Digital Output Register 
03F7H DigitallnputiConfig. Register 
061H System Control Port B 
092H System Control Port A 
091H Card Selected Feedback Register 
102H System Board POS Port 
070H NMI Enable (Write Only) 
094H System Board Set-Up 
3C3H VGA Enable Port 
40H, 42H, 43H, System Timer Ports 
44H,47H 

For programming and register level details, please 
refer to/8M technical reference manual. 

4-535 



82306 

82306L c ICh o a anne IS uppo rtChl P' D f 'tl p In elm ons ... 

Signal Pin 
I/O Description 

Name Number 

A<0:9> 98-'-89 I Address inputs, 

0<0:7> 86-79 B Bi-directional data bus. 

CS# 78 I Device chip select. 

RD#, WR# 70,69 I 1/0 read and write command inputs. 

REFRESH # 67 I Refresh request generated by the DMA Controller. 

RESET 5 I •. System power-up reset. 

CHRDY 6 0 Channel Ready signal. Driven low (not ready) by the Local Channel 
Support to extend accesses to its internal ports and to other local 
1/0 bus devices that require a longer cycle time. 

CDFDBK# 7 I Latched card feedback signal. 

TMRCLK 9 I 1.19:3 MHz clock input generated by the Address Bus Controller. It 
drives the clock inputs of system timers 0 and 2.. 

SPKR 10 0 Output of system timer 2 gated by bit 1 of Port 61 H. It drives the 
Micro Channel audio sum node. 

CLK1, CLK2 72,3 I Clock inputs. 

FCLK1,FCLK2 71,4 I 16 MHz (tied high for 82072 interface), clock inputs for 8272A 
interface. 

VSU# 23 0 VGA Setup. It puts the VGA into set-up mode when low. 

VGAEN 8 0 VGA chip enable. (Active High) A low level disables the VGA 
subsystem. 

ENEXPP 22 0 Parallel port "extended mode" enable. When high, the parallel port 
can function bi-directionally. When low, the port is in "compatible 
mode" Le., write only. 

SPCS# 31 0 Serial port chip select. Can be mapped to COMM1 or COMM2. 

INTSEL 32 0 Selects either IRQ3# (COMM2) or IRQ4# (COMM1) to serve as 
the interrupt request for the serial port. 

STATUS 33 0 Floppy Disk Active Status 

RTCWR# 34 0 Write, Read and Address latch enable signal to the real time clock 
RTCRD# 36 chip. 
RTCALE 35 

FSRD# 37 0 Read command for the Read-only floppy status port 3FOH. 

WRCDSU 40 0 Write CD Setup Register. Active high write command generated on 
writes to port 96H (adapter enable setup register). 

RDCDSU# 49 0 Read CD setup register. Active low signal reads port 96H. 

LBEN# 42 0 Local Bus Engage. It is "OR"ed with the LBEN# output of the 
DMAICACP to become one of the qualifiers that enable the data 

. buffer between Micro Channel Bus and motherboard 110 bus. The 
LCS enable this buffer for accesses to the local 110 bus. 

KYBDCS# 43 0 8742 keyboard controller chip select. 

ALTRESET 44 0 Processor reset under sOfuvare control. Except for a shorter reset 
pulsewidth,it is identical in function to the reset generated under 
software control by the 8742. (Optimized for switching between 
Real-mode and Protected-mode tasks;) 

4-5:36 



inter 82306 
I r 

i 

82306 Local Channel Support Chip Pin Definitions (Continued) I 

Signal Pin 
1/0 ' Description 

Name Number 

ALTA20 45 0 Alternate A20 bit-Controls address bit A20 in a manner similar to 
the way it is controlled by the 8742. (Optimized for s.witching 
between Real-mode and Protected-mode tasks). 

PO 46 0 P~S Decode output. When the system board is .in setup mode, this 
output acts as an (active high) chip select for system board P~S 
ports 100H, 101 H, and 103H through 107H. (POS port 102H is 
integrated on the Local Channel Support.) 

INTA# 47 I Interrupt acknowledge generated by the Bus controller. 

PPSEL# 48 0 Parallel port chip select. Can be programmed to map the parallel 
port to LPT1, LPT2, or LPT3. 

PCHCK# 54 I DRAM Parity Error. It is driven by the Bus Controller upon 
detection of a motherboard DRAM parity error. 

IROO 66 0 System Timer 0 timeout Interrupt Request. 

NMI# 68 0 NMI request to the CPU. This is an open drain output that allows 
for an external wire "OR" with other NMI sources. 

CHCK# 77 I Micro Channel channel check indicator, for reporting adapter 
errors. 

FPSO, FPS1 13,62 I Low and high order pre-compensation select bits. They are driven 
by the 8272A floppy disk controller. (Note that the pre-
compensation logic is integrated on the Local Channel Support). 
Tied to GND when using 82072. 

FWE 14 I Write Enable for floppy. Generated by the FDC to enable the write 
data stream to disk. 

FWDATA 15 I FDC output write data stream. It goes through the LCS integrated 
pre-compensation logic, and then is fed to the drive over the LCS 
WRDATA# output. In 82072, the FWDATA is inverted and fed into 
the drive controller. 

FWDATA# 58 0 Pre-compensated write data stream to disk for 8272. For 82072 it 
is simply an inverted output of FWDAT A 

FRDATA# 61 I Read data stream from disk. 

FRDATA 19 0 Buffered read data output to the FDC. No connect for 82072. 

FDSA, FDSB 28,29 0 Drive select/motor enable outputs. 

DENSEL 18 0 Density Select. 

FCS# 20 0 Device select for the FDC. 

FDACK# 41 I DMA acknowledge to the FDC from the DMAICACP. 

FCLKO 30 0 8272A clock. It is 8 MHz for high density, or 4 MHz for low density. 
Not required for 82072. 

FWRCLK 55 0 8272A write clock input. It oscillates at twice the data rate; i.e., 1 
MHz for a rate of 500 Kbits/sec and 500 KHz for a rate of 250 
Kbits/sec. No connect for 82072. 

FRESET 56 0 FDC Reset. 

DSKCHG# 60 I Disk changed Signal. 

VCOI 12 I Buffered output of the 4024 voltage controlled oscillator. 
Grounded for 82072. 

4-537 



82306 

82306· Local Channel Support Chip Pin Definitions (Continued) 

Signal PI" 110 Description , Name Number 

PLLVAR 17 0 Divided down version of veol. It is fed back and used for phase' 
.. comparison against the PLLREF output. No connect for 82072 . 

PLLREF 59 0 Phase Lock Loop Reference Clock. No connect for 82072. 

FVCO 63· I Valid Read Data Stream Indicator. It isdrive~ by the 8272A, and 
defiries a valid read data stream. Grounded for 82072. 

FDW 21 0 Data window input of 8272A. It defines the valid sample points in 
the read data stream. No connect for 82072 • 

·OAO 99 0 . Output AO signal foru~ by the 82072 disk controller. No connect 
for 8272A. . 

UADL# 26 I. Micro Channel Address decode latch. An Active low signal used to 
latch US1 # on the trailing edge for support of the OAO signal. 
Grounded for 8272A. 

usa 27 I Micro Channel status bit 1. Used to distinguish a write operation 
from a read operation for support of the OAOsignal. Grounded for 
8272A. 

PU 11,57,65 I, Pull Up 

Voo 16,39, Power 
64,87 

Vss 2;24,38, Ground 
53,73,88 

NC 1,25,50, No Connect 
51,52,74, 
75,76,100 

4·538 



NC 
VSS 

CLK2 
F"CLK2 
RESET 
CHRDY 

CDF"DBK# 
VGAEN 

TMRCLK 
SPKR 

(TIE HIGH) PU 
VCOI 
F"PSO 

FWE 

NOTES: 

F"WDATA 
VOO 

PLLVAR 
DENSEL 
F"RDATA 

F"CS# 
F"DW 

ENEXPP 
VSU# 

VSS 
NC 

PU = Pull-Up 
NC = No Connect 
-Pull-Up Resistor Value = 2K to 10K 

82306 

82306 Local Channel Support Chip 

TOP VIEW 

-No more than three nodes to a single pull-up resistor. 

4-539 

NC 
NC 
Vss 
CLKI 
F"CLKI 
RD# 
WR# 
NMI# 
REF"RESH# 
IROO 
PU (TIE HIGH) 
Voo 
F"VCO 
F"PSI 
F"RDATA# 
,DSKCHG# 
PLLREF" 
F"WDATA# 
PU (TIE HIGH) 
F"RESET 
F"WRCLK 
PCHCK# 
Vss 
NC 
NC 

290183-2 

I~ 
I
, 'f 
,'Ii 

: 
1:1 



82306 

82306 PARAMETRICS 

ABSOLUTE MAXIMUM RATINGS* 

Case Temperature under .Bias ... ~ - 40·C to + 85·C 

Storage Temperature .......... - 65·C to + 150·C 

Voltage to Any Pin with 
Respect to Ground ....... -0.3V to (Vee+0.3)V 

DC Supply Volta~e (Vecl ......... -0.3V to + 7.0V 

DC Input Current ....................... ± 10 mA 

D.C. CHARACTERISTICS 
Te = O·Cto +70·C, Vee = 5V ±10% 

Symbol Parameter 

VIL Input Low Voltage 

VIH Input High Voltage 

VIL Input Low Voltage 

VIH Input High Voltage 

VOL Output Low Voltage 

VOH Output High Voltage 

Icc Power Supply Current 

III Input Leakage Current 

loz Tri-State Output Leakage Current 

• Notice.; Stresses above those listed under "Abso­
lute Maximum Ratings" may cause permanent dam­
age to the deviae. This is a stress rating only and 
functional operation of the device at these or any 
other conditions above those indicated in the opera­
tional sections of this specification is not implied. Ex-

, . pcsure to absolute maximum rating conditions for 
extended periods may affect device reliability. 

NOTICE' Specifications contained within the 
fol/owing tables are subject to change. 

Min Max Units Conditions 

0.8 V 

2.0 V 

0.8 V CLK1, CLK2 

Vee - 0.8 V CLK1, CLK2 

0.4 V IOL = 2 mA 

2.4 V IOH = 2mA 

180 mA No DC Loads 

±10 p.A Vss < VIN < Vee 

±10 p.A Vss < Your < Vee 

4-540 



82306 

82306 LCS A.C. SPECS 
Tc = O·Cto +70·C, vcc = 5V ±10% 

Symbol Parameter 
Kit 16 MHz Kit 20 MHz Kit 25 MHz CL Notes 
Min Max Min Max Min Max (pF) 

T1 CLK1, CLK2 LOW TIME 15 15 14 
T2 CLK1, CLK2 NON-OVERLAP 4 4 0 
T3 FCLK1, FCLK2 LOW TIME 10 10 10 
T4 FCLK1, FCLK2 NON-OVERLAP 10 10 10 
T5 RESET PULSE WIDTH 500 500 500 
T6 AL TRESET PULSE WIDTH' 75 150 75 150 75 150 75 
T7 TMRCLK HIGH/LOW TIME 300 300 300 
T8 A9-AO, CS#, FDACK# SETUP 30 30 30 
T9 A9-AO, CS#, FDACK# HOLD 10 10 10 
T10 RD#, WR#,INTA# PULSE WIDTH 170 170 170 
T11 WRITE DATA SETUP 25 25 25 
T12 WRITE DATA HOLD 0 0 0 
T13 READ DATA VALID DELAY 0 50 0 50 0 50 75 
T14 READ DATA FLOAT DELAY 0 35 0 35 0 35 75 
T15 CHRDYDELAY 0 80 0 80 0 80 75 5 
T16 CHRDY INACTIVE PULSE WIDTH 230 230 180 75 5, 10 
117 ADDRESS DECODE DELAYS 0 50 0 50 0 50 75 1 
T18 WRITE STROBE DELAYS 0 40 0 33 0 30 75 2 
T19 READ STROBE DELAYS 0 40 0 40 0 40 75 3 
T20 RTCALE MIN PULSE WIDTH 120 120 110 75 10 
T21 DATA SETUP TO INTA# 25 25 25 
T22 DATA HOLD FROM INTA# 5 5 5 
T23A FCLKO HIGH TIME 45 63 45 63 45 63 75 6 
T23B FCLKO HIGH TIME 90 150 90 150 90 150 75 6 
T23C FCLKO VALID DELAY 35 35 35 75 
T24A FWRCLK HIGH TIME 200 300 200 300 200 300 75 
T24B FWRCLK VALID DELAY 35 35 35 75 
T25 FWDATA# PULSE WIDTH 350 350 350 75 
T26 FRDATA# PULSE WIDTH 40 40 40 75 
T:27 FRDTA PULSE WIDTH 125 125 125 75 
T28A FDW SAMPLE PERIOD 1 J.l.s 1 J.l.s 1 J.l.s 75 4, 7 
T288 FDW SAMPLE PERIOD 2J.1.s 2J.1.s 2J.1.s 75 4, 7 
T29 VCOI FREQUENCY 4MHz 4MHz 4MHz 4 
T30A PLLVAR,PLLREF FREQUENCY 1 MHz 1 MHz 1 MHz 75 4,7,8 
T308 PLLVAR,PLLREF FREQUENCY 500 KHz 500 KHz 500 KHz 75 4,7,8 : 
T31 US1 # SETUP TO UADL# 25 1 25 1 25 1 9 

NOTES: 
1. Address decode delays include SPCS#, LBEN#, KYBDCS#, FCS#, PO, PPSEL#, and OAO. (OAO supports 82072 
interface.) 
2. Write Strobe delays include RTCWR# and WRCDSU. 
3. Read Strobe delays include RTCRD#, FSRD#, and RDCDSU#. 
4. Typical values ... not tested. 
5. LCS extends cycles to -the 8242 keyboard controller,. serial port, real time clock, and 8272 Floppy Disk Controller. 
6. T23A applies to FCLKO = 8 MHz. (500 KBPS Data Rate). 

T23B applies to FCLKO = 4 MHz (250 KBPS Data Rate). 
7. T28A and T30A apply to 500 KBPS. The T288 and T30B apply to 250 KBPS. 
8. VCOI/4 for 500 KBPS. VCOI/8 for 250 KBPS. PLLREF applies only when PLL is locked. 
9. 82072 Support. 
10. Functional Spec . . . not tested. 

4-541 



82306 

DRIVE LEVELS AND MEASUREMENT POINTS FOR A.C. SPECIFICATIONS 

, ClK(N),[ 

OU,TP, UTS [ ___ VA_l_'D __ ~~ ... ...,;~~~ __ V_A.,LI_D_ OUTPUTn 1.5V t.5V OUTPUTn.l 

INPUTS [ 
3.0V ~...,.obJ.---.l...--_~~~ 

LEGEND: 
A. Maximum Output Delay Specification. 

290183-3 

Input waveforms have tr ~ 2.0 ns from 0.8" to 2.0V. 
B. Minimum Output Delay Specification. 
C. Minimum Input Setup Specification. 
D. Minimum Input Hold Specification. 

LCSCLOCKS 

lCS 
SYSTEM 
CLOCKS, 

lCS 
FOC 

CLOCKS 

ClK1 

ClK2 

FClKl 

FClK2 

T1 '. .' I " I 

~, - -~:-------:-{--vee-O.8V 
O.8V~----r : ' . 

• • I T2 I 
I' I, 

I 

---------~---"'-~- -- vee - O~V 

T3 
I, .' I I ,-___ ,' __________ ~ 

~~------:-{--Vee-o.ey ", ,,/", , 
O.8V~--,--r :. " . • • I T4 I __ ..J 

,I I, 
I 

------------, --.... -, - ---/- - -Vee- O.8V 

290183-4 

4·542 



SYSTEM INTERFACE 

ADDR,CS#,FDACK# 

RD#, WR#.INTA# 

COMB DECODES 

DATA (RD) 

DATA (WR) 

READ/WRITE STROBES 

CHRDY 

RTCALE 

DATA (8259RD 
MONITORED 

BY LCS) 

82306 

T17 

T10 

T8 T13 

------ ---------- ------ K. 

tF: -00 

" 
INACTIVE IL ACTIVE 

-00 I-- T18.T19 -00 

TIS T16 

I~ 

t T20 

I T21 

-------------------------1<: 

4-543 

T9 

~--- ------.-

j-m 
J INACTIVE 

- T18, T19 

~~~----------
290183-5

FCLKI ---, U U

FCLK2 ~ U U U U U ,....--
T23C'-: :_ : T23A. B U

"

FCLKO

T24B --: ;.-

FWRCLK ----------~:~--------------~~---------------------------------
I T24A I
:. ., p

FRDAtA V T27 \\-; --

i>"
: • I ~

U1
FWDATA#

" V ~ • I :
T31 "

T25

FRDATA# \ - ___ if \iL: __ +-_ US1#

:. ., I

T26

RESET
, ,
:/ T5 , .. : ----. I,

UADL# \ V

ALTRESET v ' ____ ---I:. T6 \

.:

TIIRCLK J \ V
:. T7 .:. T7 .:

290183-6

ii:

~ m
r-

> z
m
o
c:
en
:::!
ii:
Z
Cl
en

l

CD
~

~ c»

~
l§!

~ zg
@
IiiiiJ

~
'iii!
@
:?8
~
~
~
@
zg

82307
DMA/Micro Channel ARBITRATION CONTROLLER

• 8 Channel DMA Controller (8/16-Blt)

• Integrated Central Arbitration Control
Point

• Refresh Address Generation/Cycling

• Numerics Co-processor Interface

• ACIdress Decoding
- Numeric Coprocessor
-Interrupt Controller
- POS Address Space for Expansion

Slots

• Low Power CHMOSTechnology

• 132-Pln Plastic Quad Flat Pack
Packaging
(See Packaging Spec., Order # 231369)

The 82307 DMAIMicro Channel Arbitration Controller is a register level implementation of the equivalent VLSI
device in IBM Micro Channel systems. The Central Arbitration Control Point (CACP) as defined in the Micro
Channel Architecture for bus arbitration is integrated in this VLSI device.

The 82307 also integrates the Address decoder logic for generating decodes for numeric coprocessor, Inter­
rupt controllers and POSaddress space.

A(16:23)

A(0:15)

0(0:15)

BHE# BUS
PM/IO INTERFACE

UNIT
SOH

51#

USO#

US1#

UCM01#

UCM02#

NPCS#

NPRESET

NPERR# NUMERICS

NPBUSY# INTERFACE
PBUSY#

IR013

RESET

NMI# CPU
CONTROL

PROYI#

59CS# 8259
INTR PIC

INTA# CONTROL

CLK 1 CLK2 CLK3

BUS CONTROL LOGIC

CENTRAL ARBITRATION
CONTROL POINT

(CACP)

4-545

HOLD

HLOA

FORO

FOACK#

OENSEL

TC#

REFRESH#

RFRO#

LBEN#

COEN#

PBA#

OARB(O:3)

ARB(O:3)

OPMT#

PREEMPT#

ARB/GNT#

BSTO#

BURST#

TO#

OMA#

290186-1

November 1988
Order Number: 290186-001

82307

DMA FUNCTION

The 82307 features eight 8/16-bit channels, 24-bit
addressing capability, and operates in two-cycle
transfer mode as defined in the Micro Channel archi­
tecture. The DMA controller owns the bus for both
halves of the transfer cycl~.

The DMA function in the 82307 also supports the
motherboard Floppy Disk Controller. Upon receiving
the DMA request from the FOC, the DMA controller
arbitrates for the Micro Channel bus on behalf of the
FDC. The FDC is acknowledged once the bus is
granted to initiate the data transfer.

Micro Channel ARBITRATION

The other major function of the 82307 DMA control­
ler is to provide Micro Channel Arbitration. It pro­
vides full Micro Channel bus arbitration capability ac­
cording to the 18-level priority scheme. During nor­
mal operation priority 0-15 are assigned with 15 be­
ing the lowest priority for the CPU. Priority level -1
which has the higher priority than 0 is also assigned
to CPU (switched from 15 to -1) during NMI error
recovery. The highest priority - 2 is used for refresh.

The bus arbitration priority is asserted via the
ARBO-ARB3 signals by the requesting masters to
gain control. Bus granting is assigned by the priority
level. During an arbitration cycle no Micro Channel
master is allowed to drive the bus.

The bus can be preempted by the 82307 when arbi­
trating on behalf of DMA, or when it is requested to
run a refresh cycle, or to respond to NMI error recov­
ery. The preempting of the. bus can also be initiated
by Micro Channel masters.

The CACP Control Port 090H is integrated on chip.

Micro Channel REFRESH ADD.RESS
GENERATION/CYCLING

The actual refresh request is generated by the
82309· Address Bus Controller. Upon receiving this
request the 82307 DMA Controller gains bus control
and executes the refresh cycle. Address generation
for the Micro Channel refresh cycle is generated by
the 82307. DMA controller.

/

NUMERICS COPROCESSOR
INTERFACE

The 82307 DMA controller supports the numerics
coprocessor interface. It provides software transpar­
ency required to interface an 80387 to 80386 proc­
essor. Ports FOH and F1 H are integrated on the
82307.

The numerics coprocessor interface support in­
cludes the chip select decode for coprocessor inter­
nal register accesses of addresses F8H, FAH and
FCH. The 82307 also alerts the CPU of any coproc­
essor error output generated by asserting the inter­
rupt requesURQ13.

ADDRESS DECODER

The Address Decoder logic decodes the chip select
for the 8259 Interrupt Controllers and generates POS
Address Space output for addresses 100H through
107H to support the Card set-up signals for the ex­
pansion slots.

The chip select output is for both 8259s in the sys­
tem, so it must be externally gated with local chan­
nel address bit A7 to select each actual device.

For programming and register level details, please
refer to IBM PS/2 Technical Reference Manual

4-546

Signal
Name

A<0:23>

D<0:15>

SO#, S1 #

BHE#

PMIIO#

USO#,US1#

OARBO-OARB3

PBA#

ARB3-ARBO

I

OPMT#

PREEMPT#

ARB/GNT#

82307

82307. DMA/Mlcro Channel Arbitration Controller Pin Definitions

Pin
I/O Description

Number

13-2, AO-A15 Processor local address bus. A 16-A23 are output only and are
130-124, B driven when the DMA controller is bus master. AO-A 15 are bi-
122-118 A16-A23 directional. They are inputs when the CPU is master, allowing the

0 CPU access to the chip's internal ports. They are outputs when the
DMA is master.

18-21, B Processor local data bus. When the DMA is master, it drives this bus
23-31, in a write Cycle, and samples it during a read cycle. When the CPU is
35-37 master, the bus is used to access DMA's internal registers.

87,85 B CPU orDMA cycle status indicators. The DMA drives these signals
when it is bus master. When a slave, the DMA inputs these signals to
track CPU cycles.

84 0 Byte high enable. It is driven when the DMA owns the bus and
tristated otherwise. This signal ties directly to the CPU BHE# output
in an 80386SX machine.

8,1 B CPU memory / I/O indicator. The DMA drives PM/IO# when bus
master, and inputs it when it is slave.

43,44 I Micro Channel status pins. Generated by the Bus controller when the
CPU or DMA is master. When a slot-resident master owns the bus, it
generates USOM# and US1 M #, and the DMA inputs these so as to
recognize when the slot-resident master relinquishes the bus. (The
slot-resident master end-of-transfer is recognized when USOM # ,
US1M#, the channel CMD# signal, and the channel BURST# signal
are all negated.)

58-55 0 DMAICACP arbitration bus outputs. These signals are driven by the
DMAICACP to arbitrate on behalf of a floppy disk service at priority
level 2.

107 0 Processor Bus Access. The signal indicates a CPU bus access to the
numeric coprocessor or to one of the DMAICACP registers.

59-62 I DMAICACP arbitration bus inputs. These signals tie directly to the
Micro Channel. All competing masters including the DMAICACP
drive these during an arbitration cycle, and the master with the
highest priority takes control of the Micro Channel after the arbitration
cycle is complete.

92 0 Preempt Bus Master. DMAICACP drives this output whenever it
wishes to preempt the current bus master. This can occur when
arbitrating on behalf of a DMA channel service or when arbitrating on
behalf of a refresh request, or when arbitrating on behalf of the CPU
so as to let it respond to a NMI (non-maskable interrupt) request.

45 I Wired "OR" of the PREEMPT # signals from all Micro Channel
masters, including the DMAICACP (PMTO#). It signifies that a
master wishes to force an arbitration cycle.

63 0 Arbitration Cycle indicator. The DMAICACP drives this Micro
Channel signal high to signify an arbitration cycle. During the
arbitration cycle, all competing masters drive their priorities onto the
arbitration bus (ARB03-ARBOO). The falling edge of ARBGNT #
signifies the end of the arbitration cycle, at which time the master with
the highest priority takes control of the bus. If no master compete~
for the bus, the pullupson ARB03-ARBOO will read binary 1111 by
,default, which is the normal operating prIority of the CPU.

4-547

!
I'

inter 82307

82307 DMAIMicro Channel Arbitration Controller Pin Definitions (Continued)

Signal Pin
1/0 Description Name Number

BSTO# 53 0 Burst Output. The DMAICACP drives this output in order to own
the Micro Channel for multiple cycles. Specifically, since all PS/2
DMA cycles are two-cycle, BSTO# is driven to allow the DMA
controller to own the bus for both halves of a two-cycle transfer.

BURST# 52 I Burst Request Input. It is an input to the CACP from the current
master wishing to own the bus for multiple cycles. It is derived by
"OR"ing the Micro Channel BURST # signal with the DMAICACP
BSTO# signal. ,

HOlD,HlDA Hold/HoldAcknowledge to the CPU.
76, 79 (HOlD=O)

(HlDA"=I)

FDRO, FDACK # Floppy DMA Request,·Acknowledge signals. The motherboard
90,64 (FDRO=I) FDC requests DMA service via FDRO. In response, the DMAI

(FDACK#=O) CACP arbitrates for the Micro Channel on behalf of the floppy
disk system. Once the DMAICACP has gained control of the bus,
it acknowledges the FDC via FDACK # .

TC# 65 0 DMA Transfer Complete.

UCMD1#, 49,48 I Micro Channel Command Inputs. These inputs are driven directly
UCMDU by the Micro Channel CMD# signal.

RFRO# 46 I Refresh Cycle Request from the Address Bus Controller.

REFRESH# 69 0 Refresh Cycle Signal. The DMA/CACP drives this output active
during refresh cycles. This Signal is buffered to become the Micro
Channel REFRESH # signal.

59CS# 89 0 Interrupt Controller Chip Select (8259s). Note that this output is
activated if either interrupt controller is selected. It is then
externally gated with the local 110 channel address bit A7 to
distinguish between controller 1 and controller 2.

DENSEL 88 I Density Selected for the motherboard FDC

CDEN# 91 0 Card Setup Enable. During system setup, a bit pattern is written to
port 96H to select a particular slot for configuration. CDEN #
enables the decode of these bits to send an active CDSETUP#
signal to the selected slot. CDEN # is simply a combinatorial
(non-clocked) decode of ports 100H-107H.

ClK1, ClK2, 95,98,94, I Clock Inputs
ClK3 114, 113

RESET 104 I Power-up System Reset

INTR,INTA# 73, 108 I Interrupt Request! Acknowledge. The PSl2's 8259 based
. interrupt system generates interrupt requests to the CPU via
INTR. In response; the CPU fetches the appropriate, interrupt
vector from the interrupt controller in an interrupt acknowledge
cycle. The Bus controller decodes the CPU status outputs, and
drives INTA# to identify a.CPU interrupt acknowledge cycle. The
DMAICACP monitors this activity via its I NTR and I NT A # inputs.
In response to INTA #, the DMAICACP drives lBEN # so as to
enable the 8259 vector onto the Micro Channel. The CACP uses

'. INTR to ensure that the CPU has an opportunity to service an
.... interrupt within one "fairness" cycle; i.e., it prevents the CPU from

being totally locked out by. higher priority arbiters.

Signal
Name

NMI#

PRDYI#

NPCS#

NPRESET

NPERR#

NPBUSY#

PBUSY#

IRQ13

LBEN#

DMA#

TO#

Voo

Vss

NC

PU

PU2

82307

82307 DMA/Mlcro Channel Arbitration Controller Pin Definitions (Continued)

Pin
1/0 Description

Number

74 B Non-Maskable Interrupt to force arbitration cycle to allow CPU bus
ownership. As an output, this appears to the system as an open
drain, which allowS for an external wire "OR" with other NMI sources.

75 I Processor Ready Input. The Bus controller generates this signal to
terminate CPU and DMA cycles.

40 0 Chip select for the Numeric Coprocessor. It is an unlatched decode
that acts as a chip select for CPU accesses to the numeric
coprocessor's internal registers.

41 0 Numeric Coprocessor Reset. It resets the numeric coprocessor
either upon a system reset or under software control. ,

38 I Numeric Coprocessor Error Input. It is an input from the numeric
coprocessor error output. The DMA/CACP uses it to generate an
interrupt request (IRQ13) to inform the CPU of a coprocessor error.

39 I Numeric Coprocessor Busy

72 0 Processor Busy Output. It drives the CPU numeric coprocessor busy
input. It is activated normally when the coprocessor is busy executing
an instruction, but is also activated when a coprocessor error is
detected. The CPU will not attempt to utilize the coprocessor as long
as PBUSY # is active.

71 0 Numeric Coprocessor Error Interrupt

117 0 Local Bus Enable. This signal is used to enable the data buffers
between the Micro Channel and local 110 bus. It is activated for
decoded accesses to the 8259 interrupt controllers, as well as for
interrupt acknowledge cycles. It is also driven during theDMA
acknowledge cycle to the FDC.

93 0 DMAICACP as the Bus Master. It is driven low aUhe end of an
arbitration cycle (ARB/GNT # falling) to indicate that the DMA
controller has gain control of the Micro Channel. It is negated during
arbitration cycles, and is negated when either the CPU or slot-
resident master owns the bus. It is also negated during refresh
cycles.

42 0 Bus Timeout signal. The DMAICACP also issues an NMI to the CPU
in response to the Bus timeout, and forces an arbitration cycle.

16,34,47, Power
51,66,78,

86,101,115,131

1,14,22,33, Ground
50,54,67,82,
99,116,123

15,17,32,70, No Connect
83,100,106,132

68,77,80,97, I Pull Up
102,103,105,

109-112

96 I Pull Up. This input must have its own pullup.

I

i

inter 82307

I

82307 DMAlPAlcro Channel Arbitration Controller .

Vss
All
Al0

A9
AS
A7
A6
A5
A4
A3
A2
Al
AO

Vss
NC

Voo.
NC
DO
os
01
D9

Vss
02

010
03

011
04

012
05

013
06
NC

Vss

NOTES:

~~~~~~~~~~~~~~~~~~~~~=~~8S88~aS~8 
------------~--------------------• 

TOP VIEW 

Importantll No other node allowed to share pull-up with PU2. 
NC = No Connect 
PU. = Pull-Up 
-Pull-Up Resistor Valve = 2K to 10K 
-No more than three nodes to a single pull-up resistor. 

4·550 

Vss 
ClKl -
PU 
PU2 
CLKl 
ClK2 
OMA# 
OPMT# 
COEN# 
FORO 
59CS# 
OENSEL 
SOH 
voo 
Sl# 
BHE# 
NC 
vss 
PM/IO# 
PU 
HLOA 
Voo 
PU 
HOLD' 
PROYI# 
NMI# 
INTR 
PBUSY# 
IR013 
NC. 
REFRESH# 
PU 
Vss 

290186-2 



82307 

82307 PARAMETRICS 

ABSOLUTE MAXIMUM RATINGS'" 

Case Temperature under Bias· .... - 40·C to + 85·C 

Storage Temp~rature .......... - 65·C to + 150·C 

Voltage to Any Pin with 
Respect to Ground ....... -0.3V to (Vee + 0.3)V 

DC Supply Voltage (Vecl ......... -0.3V to + 7.0V 

DC Input Current ....................... ± 10 mA 

D.C. CHARACTERISTICS 
Te = O·C to +70·C. vee = 5V ±10% 

Symbol Parameter 

VIL Input low Voltage 

VIH Input High Voltage 

VIL Input low Voltage 

VIH Input High Voltage 

VOL Output low Voltage 

VOH Output High Voltage 

lee Power Supply Current 

III Input leakage Current 

loz Tri-State Output leakage Current 

• Notice: Stresses above those listed under "Abso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and 
functional operation of the device at these or any 
other conditions above those indicated in the opera­
tional sections of this specification is not implied Ex­
posure to absolute maximum rating conditions for 
extended periods may affect device reliability. 

NOTICE: Specifications contained within the 
following tables are subject to change. 

Min Max Units Conditions 

0.8 V 

2.0 V 

0.8 V ClK1. ClK2. ClK3 

Vee - 0.8 V CLK1. ClK2. CLK3 

0.4 V IOL = 2mA 

2.4 V 10H = 2mA 

180 mA No DC Loads 

±10 /LA Vss < VIN < Vee 

±10 /LA Vss < VOUT < Vee 

4-551 



inter 82307 

82307 DMA CONTROLLER A.C. SPECS 

Te = O·C to +700C, Vee = 5V ±10% 

Symbol Parameter 
Kit 16MHz Kit 20 MHz Kit 25 MHz CL Notes 
Min Max Min Max Min Max (pF) 

T1 CLK1, CLK2, CLK3 LOW TIME 15 15 14 
T2 CLK(N) NON-OVERLAP TIME 4 4 0 
T3 RESET(IN), NPRESET(OUT) PULSE WIDTH 500 500 500 50 
T4 TO# PULSE WIDTH 60 60 60 50 
T5 A23-AO, PMIIO#, SHE#, 4 35 4 35 4 32 75 

REFRESH# DELAY 
T6 A23-AO, PMIIO#, SHE#, 4 40 4 40 4 40 75 

STATUS FLOAT DELAY 
T7 WRITE DATA VALID DELAY 2 35 2 35 2 28 75 
T8 WRITE DATA FLOAT DELAY 2 40 2 35 2 35 75 
T9 READ DATA SETUP TIME 15 13 11 
T10 READ DATA HOLD TIME 4 4 4 
T11A STATUS VALID DELAY (TPHL) 4 25 4 25 4 20 75 
T11B STATUS VALID DELAY (TPLH) 2 35 2 35 2 30 75 
T12 ADDR-TO-STATUS SETUP 35 27 22 75 
T13A PRDYI # SETUP TIME 25 20 20 2 
T13B PRDYI # SETUP TIME 8 8 8 2 
T14 PRDYI # HOLD TIME 5 5 5 2 
T15 A15-AO, PM/IO# SETUP TIME 35 35 35 
T16 A15-AO, PM/IO# HOLD TIME 10 10 10 
T17 STATUS SETUP TIME 26 26 24 
T18 STATUS HOLD TIME 10 10 10 
T19 WRITE DATA SETUP TIME 25 25 25 1 
T20 WRITE OAT A HOLD TIME 25 25 25 1 
T21 READ DATA VALID DELAY 2 100 2 100 2 100 75 
T22 READ DATA FLOAT DEALY 8 40 8 35 8 35 75 
T23 HOLD DELAY 2 35 2 32 2 32 50 
T24 ARBiGNT # DELAY FROM EDT 30 30 30 50 
T25 ARB/GNT # PULSE WIDTH 300 300 300 50 
T26 OARB3-0ARBO DELAY 32 32 32 50 
T27 OPMH INACTIVE DELAY 35 35 35 50 
T28 BSTO# DELAY 2 40 2 40 2 40 50 
T29 TC# DELAY 2 36 2 33 2 33 50 
T30 FDACK#, DMA# DELAY 2 40 2 40 2 40 50 
T32 LBEN# VALID DELAY 0 30 0 25 0 . 22 50 
T33 CDEN# VALID DELAY 2 35 2 35 2 35 25 
T34 NPCS# DELAY 2 65 2 65 2 50 50 
T35 59CS# VALID DELAY 8 42 8 42 8 42 50 
T36 PBA# DELAY 2 34 2 34 2 30 50 

NOTE: 
1. Write data is sampled on different clock edges by different DMA internal registers. T19 is speced relative to the earliest . 
sampling edge, while T20 is relative to the latest edge. 
2. PRDYI # must be inactive and stable according to these specs at all DMA state boundaries except at the end of the TC 
boundary at which the cycle is to be terminated. 



infef 82307 

DRIVE LEVELS AND MEASUREMENT POINTS FOR A.C. SPECIFICATIONS 

CLK(N) [ 

OUTPUTS [ 

INPUTS [ 

LEGEND: 

i-----{A}----i 

i---+--<B 
lAIN. IAAX. 

VALID 
OUTPUT n 1.5V 

VALID 
1.5V OUTPUT n+ 1 

3.0V ~""'''''---'''---~+--~ 
1.5V VALID 

INPUT 
1.5V 

290186-3 

A. Maximum Output Delay Specification. Input waveforms have tr 5: 2.0 ns from O.8V to 2.0V. 
B. Minimum Output Delay Specification. 
C. Minimum Input Setup Specification. 
D. Minimum Input Hold Specification. 

4-553 



.,.. 

~ 
t:l 
z 
z « 
:r: 
u 
o 
gj ,. 

CLKI 

CLK3 

CLK2 

RESET. 
NPRESET 

TO# 

BURST# 

CIotD# 

,T1 
-' ~'=YcV~~-O~'8WV~--------------------------~~~~~~~= 
, ' 

T2 .: ~ 

T3 

T4 

EIotO OF TRANSFER (EOT) ••• 
WHiCHEVER is DE-ASSERTED LAST 

1 

-VCC-0.8V 

"-/ 

123 

HOLD __ --'x'--__ 

SO#,SI# T24 T25 .; 

.: 
~~~ ~ , 

I. '.

ARB 3#-ARBO# >< ... ____ ...
OARB3H-OARBO# X ___ _ , 127

OPIotT# ;' "

iNTA# x-
T32

~- ~ ,

LBEN# ~ __

290186-4

en

~ m
3l:
-I
i
z
I:)
en

l

CD
N
W o
"'-.I

~
I§I

~
~
@
IiiiiJ
<=
~
'1iiJ
@
22J
~
~
~
@
~

~
UI
UI
UI

I~ •
~ re n ~

• m~ ~

~-----------------'I~ ~ ~

CU<3 §
CLK2

ADORES', &'Y~~'Z&'Z&Xxtt:=~=:t==::=t~~===4t:===1:;~~oooo~~~~~~~~~m. PM/IO# ~

J I STATUS

~~ OATA(WR) - - - - - - - - - - - - - -- ~ f:«K -::--~------- ~
no :J

TI18....1

T9

----------.-~ OATA(RD) -- -------- - - - - -oi--- - --1---- --/- - -- - --- - --/-- -_.::----.-.---- , I I I '1-

130

1
129

J
1

'To XXXAAA.A '~l ~I ~ '-I i I'
,AAAA ~ J\A I ..{ - 1><" ~ ~.AA • _

l
n3A

""

~
'"

j

~
PR!lYIf

OM.,

. 4\" CIIIl2#

I FDAC.,.

REFRESH,

.-{ ~ BSTOI
128

290186-5

l

CD

H

~

~
11
(Q)
IiW
C::>

~
9iiI
@
:?8
~
~
C::>

@
~

....
0.
'01
0)

r---~--------------------------------~IC

CLKI

ClK3

CLK2

ADIIR.
PM/Wli

STATUS

CiID#

AIlL#

eDEN,.
NPCSf

DATA (RD).

DATA (WR)

59CSf.PBAI

n Ti 12 12 12 12P 12P 12P 12P 120' TiP 12P

-'.1 U U U U U .~
I I I I
I I I I

u ,U U U U ~
,! T15 I I Ttl 1 .

I II I I I I

DclXXXXXXXXX~ ; : CXxXXXXXXXXXXXXXXX'-+:---'-_______ !--
r . II T17 I I ! I I I

II " " _ I. I _+ _____ __ -!-III-~1 'T18 I

:, \ l \' " ' '-!-------
" ,I

:: \ I
,I ,
II <-

-~~----____ ~"~ ___ ~~ ,.~.--~, ---~---...... ---------~----~------------~--+---~ :: \ I.: \P
II I.· ";

,~M " ,
~ : *XXXXXXXXX_-----.....;.--

1'_ I I I J 122 I I I'
'I .'

, 121 ,< i >>-: -' --__ i-
.---=-~.: I , :

IC~,-·-"-----;-----·-1---·-~---------·--;-~ I:.~

I 119" i ' 120 i. I· . !
., I I

_...;;-. ___ ___ ~----..... ...;;~. I.

, \ I
~ ~
.135_36, I m.B'

290186-6

~

tn'

§;
ii
i:
o
C m

l

I

~

I
~ n
IiiiiJ
c::I

~
'iii
@
~
~
;~

·1

intJ
82308

Micro Channel BUS CONTROLLER
• MIcro Channel CompatIble Bus Control

• Supports 8-,16- or 32-81t Data
Transfers on the MIcro Channel

• OptIonal Hardward Enforced 110
Recovery MechanIsm

• Cache Controller (82385) Interface to
MaxImIze Performance for 80386 Based
Systems

• Low Power CHMOS Technology

• 10o-Pln PlastIc Quad Flat Pack
PackagIng
(See Packaging Spec .• Order'" 231369)

The 82308 Micro Channel Bus Controller is the complementary device to the 82309 Address Bus Controller. It
is designed to facilitate data transfers between the Microprocessor, DMA, Memory and Micro Channel bus. It
generates the appropriate data conversion and alignment control Signals to implement an extemal byte swap
mechanism for transferring data of equal and different widths.

The 82308 Bus Controller generates all control signals necessary to run Micro Channel Memory and 1/0 Bus
cycles for both 80386 and 80386SX processors.

To implement the highest performance 80386 based system with the 82385 cache controller, the Bus Control­
ler features special cache hardware interface signals.

'DACICI 0/0
RDYRTN, IIECOOE

IO.EN,
CHROY

PROVO,

""/10,
" "" RAMEN,

FRC,

"/10, STA,. pole, WltCHINE
PW!R, p-

PHAI
5~,.S1,

UC",,*

usaf,US1, .. -UACI.f

.STCPU

.om,

seLK

~.

lOW

""Ie,
""'." ""AI

AC.'

BE(O:J)I

lloIEI

UItO.,
UIHEI

UBt(O:3),

lR32

SAL

....
11011101,

DSt8RTN
OS32,,"

ARB/GNTI
REFRESH

"AI
HLOA ...
DlLI,:!.l

/riIL-W,
.HW, .0_
DlE11 -,
DWI:4E1
SBLW,

SBtrW,

"'" P(0:3)

PCHCIC, 290187-1

0C1ober1988
Order Numbitr: 290187-1101

I
I.
I

I
I
!

in+~r II I", .. ' 82308

STATE MACHINE

The primary purpose of the state machine is .to gen­
erate the Micro Channel signals· for proces$()'r and
DMA cycles; These Micro Channel signals are: SO#,
S1#, ADL#, MMCCMD# and CMD#, The state
machine also .generates the PNA# signal required
by the 386 CPU and generates the DMA SO # and
S 1" based on', the 386 processor status.

DATA TRANSFER

The 82~08 Bus Controller directs the transfer of
data between the 32-bit 80386 bus and 32-bit, 16-bit
or 8-bit devices on the Micro Channel. For 16-bit
transfers initiated by the 80386SX or OMA, the Bus
Controller provides. the control Signals to facilitate
transfers to 16-bit or 8-bit devices on the Micro
Channel data bus and vice versa.

In addition to providing the transceiver direction,
latch, and enable signals, the Bus Controller manip­
ulates Address signals for the DMA and Micro Chan­
nel. For example, a 32-bit access to an 8-bit device
is broken into four cycles, and the BC automatically
sequences A 1 and AO in each cycle.

The 82308 Bus Controller also supports the ROM
BIOS by providing the output enaple for the BIOS
based on the decoded BIOS address signal from the
Address Bus Controller (ROMEN").

RESET DETECT

The reset detect logic generates a synchronous
CPU reset Signa! based on any of the fOllowing
events:

- . An active low-pulse on the RC#input to the Bus
Controller

- Processor Shutdown Condition' based on the
Processors' status Signals

- Power-up condition as determined by the RESET
input.

1/0 SUPPORT

The 82308 Bus Controller generates Mernory and
110 Read and Write signals for devices on the moth­
erboard. It also generates the Interrupt Acknowl­
edge signal.

The Bus Controller extends motherboard device ac­
cesses by de-asserting CHRDY until a read or write
strobe is generated. This gives the peripheral device
an opportunity to extend the cycle even further if
required by driving its own CHRDY inactiVe after it
detects the. read or write strobe .. The motherboard
device decode is performed by the 82309 Address
Bus Contro,lIer.· .

CACHE SUPPORT

The 82308 Bus. Controller supports 82385 Cache
Controller interface signals to allow maximum .sys­
tem performance in cache based 386 systems.

CACHE FLUSH

The Bus Controller generates a synchronous flush
output signal (FLUSH) to the cache controller when­
ever the flush request (FIN) is generated.

SNOOP STROBE

The Snoop Strobe output of the 82308 Bus Control­
ler is a synchronized strobe indicating a valid ad­
dress during non-processor write cycles. It is com­
patible with the 82385 cache controller's bus watch­
ing mechanism.

HARDWARE ENFORCED
110 RECOVERY

Certain 110 devices require a minimum delay be­
tween consecutive accesses. Typically, software
loops are executed in the lID routine to force the
delay, but. software loops cannot guarantee mini­
mum delay times in all cases. The 82308 Bus Con­
troller provides the option of enforcing lID recovery
in hardware. This rnechanism is controlled by two
inputs (RSEL 1 and RSELO), which select one of four
possible minimum 110 recovery times. At the end of
a CPU initiated lID cycle, an internal timer is trig­
gered, and the 82308 will not allow the next 110 ac­
cess to proceed until the timer has timed out. The
specific functioning of RSEL 1 and RSELO is detailed
in the pin definitions and A.C. Timing specifications.

inter
16 MHz CPU DEFAULT CYCLE (FP = 0)

T1 T2

CLK2

STATUS

ADL#

CIAD#. IAIACIAD#

ADS#

RDY#

SAL

NOTE:
MMCCMD# only driven in CPU initiated cycles.
EOC = End Of Cycle.

16 MHz CPU SYNCHRONOUS EXTENDED

STATUS
- :\

ADL# "---
CIAD#

j

82308

T2 T2

RDYRTN#
(RDYRTN# SAIAPLED ACTIVE.

NO CYCLE EXTENSION REOUESTED)

RDYRTN#

4-559

T2P

/

EOC
(RD&:WR)

/

EOC EOC
(RD&:WR) (CACHE RD)

T2P

EOC
(CACHE RD)

290187-2

290187-3

82308

16 MHz CPU ASYNCHRONOUS EXTENDED

STATUS - \

/ -AOL#

CWO# \

t t t
ROYRTN# RDYRTN# RDYRTN#· ROYRTN#

EOC = End Of Cycle

20 MHz CPU DEFAULT CYCLE (FP = 1)

T1 12 12 T2

'CLK2

AOL#

CWO#

ADS#

ROY#

NA#

SAL·

ROYRTN#

4·560

12P

I /

EOC EOC
(RO at WR) (CACHE RO)

290187-4

EOC
(WRITES)

12P

EOC
(READS)

290187-5

20 MHz CPU SYNCHRONOUS EXTENDED

STATUS - \
AOL#

-P'"

CIAO#

20 MHz CPU ASYNCHRONOUS EXTENDED

STATUS - \
AOL# -
CIAO,

82308

ROYRTN#

4·561

/ /

EOC ·EOC
(WR) (RO)

290187-6

/ /

EOC EOC
(ROBe WR) (CACHE RO)

290187-7

DMA DEFAULT CYCLE

CLK2

AOOR

STATUS

AOL#

CWO#

ROY#

SAL

DMA SYNCHRONOUS EXTENDED

OWA TS

STATUS

AOL#

CWO#

82308·

OWA TS

ROYRTN#

OWA TC

ROYRTN#

4-562.

OWA TC

OMA TC

EOC

EOC
290187-8

290187-9

intJ 82308

DMA ASYNCHRONOUS EXTENDED

DMA TS DMA TC DMA TC DMA TC DMA TC

1 1 1 I, 1

STATUS
- \ 1 1

1 1 1 1 1
1 1 1

1 1 1 1 1

ADL# 1 1 1 1 1

1 - 1 1 1 1
1 1 1 1 1

1 1 1 I'
1 1 1 1 1
1

CMD#

RDYRTN#

ROM CYCLES

ADDR
-tx -

STATUS \ I

ADL# L-~
CMD# \ I I I I I

ROMOE# \ I 'I I I I

16 101Hz NO CACHE (F"RC#=O) ~ J J J J
16 101Hz wi CACHE OR 20 101Hz (F"RC#=O)

16 101Hz NO CACHE (F"RC#=I)

16 101Hz wi CACHE OR 20 101Hz NO CACHE(F"RC#=I)

, 20 101Hz WI CACHE (F"RC#=I)

, 4--563

EOC

290187-10

290187-11

I,
4r

inter 82308

CPU SYSTEM BOARD MEMORY IMicro Channel MEMORY ACCESSES

I--- A~~SS -I- AC~~S

CPU
ADDR

CHANNEL
AOCR

SAL

ADS#

ROY#

FOES#

NA#(2)

STATUS

ADI.#

eMO#

TI T2 T2P

-X N X -
:D' N X
-f--L V-
- r l\-'--

IL --,
--I\-1

RAMEN#

NOTes:

TIP T2P TIP T2P.

N+' X N,+ 2 X

N + , X N+2

IL r~
V- L V-'
r L~

'J

L V-L1
1\

1 1
RAMEN# RAMEN#(I)

CHANNEL ACCESS
(SYNC EXTENDED)

T2P T2P T2P TZP T2P TIP

N+'

X N+'

1/

I

ILl

I 1\

ILl
\ II
,

1
RAMEN#(I)

CHA(:~;:~~ESS -I-- AC~~SS-

T2 T2

,

IL-

ILl
\

T2P TIP T2P

X N + • L I"'" -X N+4 JLI"'"

V- '--rr-
IL r L 1
!L r I\-1

\ r
r L v--
I

II

RAMEN#

290187-12

1. RAMEN# distinguishes between system board and channel memory accesses. The BC must wait for RAMEN# to
resolve before driving STATUS in a, channel access. Thus, in non-pipelined channel accesses or pipelined channel
accesses in which the ABC sees only one state of pipelined address, the BC delays starting the channel access until the
end of the T1 P or first T2 state.
2. In memory cycles the BC must drive NA# before RAMEN# resolves in order to sustain OWS pipelined page hits.

4-564

82308

82308HS-25 MICROCHANNEL BUS
CONTROLLER TIMING DIAGRAMS

The 82308HS-25 provides Microchannel Bus Con­
trol for 25 MHz 80386 systems. It is 100% function
and pin compatible with the 82308-16/20 Bus Con­
troller, so minimal system re-design is required to
upgrade current 16 MHz or 20 MHz systems to
25 MHz. (Note that the S230SHS-25 FP input must
be tied high.)

Although the 82308HS-25 is functionally identical to
the 8230S-16/20, its internal state machine and ex­
ternal timing behavior are modified to insure full

compatibility with published Microchannel timings at
the increased CPU frequency, and to accommodate
25 MHz system and component specifications. This
addendum to the S230S-16/20 data sheet provides
the basic timing diagrams for the 8230SHS-25, high­
lighting the specific clock edges that either sample
specific inputs, or, else trigger specific outputs. All
AC specification output delays are referenced to the
"causal" clock edge, and input setup/hold times are
referenced to the sampling clock edge. Any signal
not specifically addressed in these diagrams be­
haves just as it does in the 82308-16/20. (Note in
the AC specifications that notes numbered 21 or
greater apply only to the 8230SHS-25.)

r-5L rJ-
rDS16RTN.DS32RTN SETUP REF'[RENCtD TO THIS [DGE

~ ~ r-u-t-CLK2

STATUS

ADlI

ADS#

ROY#

NAN

SAL

OMA
STATUS

CPU
ADDRESS

LrL

""\

~

M
(
'-\.

/

'-\.

,--------
VALID

~

J Y

/ I

I 10\.

I
,-------

'A. y

/
WHICHEVER
IS ALIGNED-

'\/ ~-------- /

X

RDYRTN#
(RDYRTNH SAMPLED ACTIVE. NO
CYCLE EXTENSION REQUESTED. RSELO,1
ALSO SAMPLED HERE,)

rLrL

~------- "
,

-------.. -j-

,-------
.. _------- :

EOC EOC
(RD&WR)
IF ALIGNED-

(CACHE READ)
IF' ALIGNED-

290187-13
'If necessary, a wait state is added to CPU 1/0 cycles to align them with-even DMA state boundaries. (Recall that DMA states are 4 clock
phases wide while 80386 states are only 2 phases.)

82308HS 25 MHz CPU Default I/O Cycle

4-565

I,."

:!

',',I',
!,

"

"1

0.
f;:!

",0.

g~
,..

'" ~~
al-,.
" '" l!;",
dl- '" 0.
Ii:
I

Z
0",
ZI-

;:
......

i"l

N
I-

'" g
" ~~
0 '" ,.
'" ,.
~~
::i

'" il: '" f;:!

0.

'" ;:

0.
f;:!

0.
f;:!

'" -'
~~ '" ~
~~
a
!!,

'"
0.
I",
Zl-
0
Z

'" '" I-

;:

82308

'"
"l
)

")

......

")

'"

")'

)
I

"-

I
~

......

'I
/

'"

......

'I
,/

'"

.
".

-I~

*Ramen# distinguishes between (non·broadcast) system board and channel memory accesses. (The 82308·25 samples Ramen# and
Romen # on the phase 2 clock edge.) The BC must wait for Ramen # to resolve "not true" before driving status in a channel access .. Thus, in a
non·piplined channel memory access, the BC delays starting the channel cycle until after the first T2 state.

82308HS 25 MHz CPU Default Micro Channel Cycles

4·566

82308

82308HS 25 MHz CPU EXTENDED CYCLES

STATUS - 1\ /

ADL# II

~ , , .
RDYRTN# EOC EOC

(385 RD)
290187-15

Defaul1

STATUS
- 1\ /

ADL# /

/ , , CMD#

RDYRTN# EOC EOC
(385 RD)

290187-16

Synchronous Extended

STATUS
- \

ADL#

CMD# '--.. .:'
t t t

RDYRTN# RDYRTN# RDYRTN# EOC EOC
(385 RD)

290187-17

Asynchronous Ex1ended

4-567

intJ 82308

82308HS 25 MHz DMA EXTENDED CYCLES

TS TC TC

STATUS -\ /

AOL#

CMO# \ V-

ROYRTN#
290187-18

Default

TS TC TC TC

STATUS -r\
AOL# \ /

CMD# II

ROYRTN#
290187-19

Synchronous Extended

TS

I
TC

I
TC I TC I TC I TC I -hi I j I I

STATUS

AOL# \

CIdON Ir
t t

ROYRTN# ROYRTN# ROYRTN#

290187-20

Asynchronous Extended

4-568

ADDR :0<
STATUS \

ADL# \

CIAD#. ROIAOE#

82308

I

I

\ I II I I

NO CACHE/fRC#=O ~ J J J
CACHE/fRC#=O

NO CACHE/fRC#=1

CACHE/fRC#=1
290187-21

82308HS 25 MHz ROM Cycles

4-569

011
I\)

~
! en
I\)
(II

3:
::E:
N
(')
"U c:

i -o

j
:I

~ g'
-..j I\)

o i3.
3:
CD

5
<

!
III
5
g
::J

~

I' ...
f?
i

ClK2

WjR#

ADS#

CAS#

MDIR

MlW#

MHW#

FCES#

RDY#

READ

T1 T2 T2 T2P TIP T2 T2P T1P T2 T21 T1 T2 T2 T2P T2P TIP T2 T2

~~~~r~~rur~~~~~~~~~~ 

.~ \. \ I' \ """'~"" / 

'I\-v "---I ~_I I~V \. i/ 

V / '--~~i\ 1 ~I \ /, ,---v 
v 6 \. i/ \. / 

.V '( ~ \. ;,-- \. / \. r- \.'--+---+' 

.V '--\. / \. r- \. / \. r- \.'--+---+' 

.V \. r-i\ r- \. \ r- \.'-+----+' 

.v ,--I I \..._1 '---v 1,,---1' ,---v 
NON-PIPElINED PIP[lINED PIPEllNED NON-PIPElINED READ DOUBLE 

WRITE READ WRITE (WS# = 0) PIPELINED WRITE 

290187-22 
'The 82308-25 Prevents Contention at these points by insuring that MLW II' and MHW II' are faster signals than MDIR 

( 

co 
N 
~ 

g 

~ 
\§! 

~ 
~ 
© 
IiiiiJ 
c:= 
~ 
'1iiI 
© 
:?ID 
~ 
~ 
ClJ 
c:= 

© 
~ 



CD 

~ 
0 
CD 
:z:: 
(/) 
fI) 
CII 

i: TI T2 T2 12P T2P TIP 12 T2P T2P TIP 
:z:: 
N 
01 W!RI/ 
"G :~ \. 
C ,. 
8 1 ADSI/ 
CD 

-\-V I \. / 
lit 
lit 

0'1 CASI/ \. r- '\. r 
(/) 

~ 
;" 
3 

WDIR \. 

f- UI 
U1 21 W~WII ....... .... a. r '\. r-

i: . 
CD 
31 WHWI/ r '\. r-
0 
< ..... 
~I . FCESII r '\. r \. 
S-
UI 
;1 RDYI/ 

"'I 
iii 
:s 

'L- / 1"-V 
NON-PIPE~INED DOUB~E PIPELINED 

WRITE READ (WSI/ = 0) 
1/1 
() 
CD 
<' 
CD .. 
0 
0 
:s .. 
2. 

T2 T2P TIP T2 T2P 

/ 

'-- / \. 

I\. / \. 

1\ r ""\ 

1\ r ""\ 

I\. / \. 

'L-/ 
DOUBLE PIPELIHED WRITE 

PIPELINED 
~I=" .. n 

T2P TIP T2 T2 

1/ 

1/ '--

r-1\ 

r 1\ 

r 1\ 

1"-V '---
DOUBLE 

PIPELIHED WRITE 

290187-23 

.~c. 

l 

co 
I\) 

Ii 

~ 
l§ 

~ 
~ 
@ 
IiiiiI 

~ 
"iii! 
@ 
:w 
~ 
~ 
C::J 
c:::> 

@ 
~ 



inter 82308 

82308 Micro Channel Bus Controller Pin Definitions 

Signal Pin 
I/O Description Name Number 

RSTRQ# 87 I Logical NOR of 8042 pin 20 and LCS AL TRESET to initialize reset 
(Software reset). 

RSTCPU 91 0 Microprocessor Reset. 

PCE# 82 I Enable Parity Check from Memory Encoding Register Bit O. This input 
should be tied low for a model 60 system. (Parity check always 
enabled.) 

PO 83 I Parity Error from DRAM for bits 0-7. 

P1 84 .I Parity Error from DRAM for bits 8-15. 

P2 85 I Parity Error from DRAM for bits 16-23. 

P3 86 I Parity Error from DRAM for bits 24-31. 

PCHCK# 90 0 Parity Error Output. 

10EN# 79 I Active low signal from the Address Bus controller indicating a 
motherboard 1/0 device address. 

CHRDY 92 0 Input to the Channel Ready Return logic to extend the current cycle. 

FDACK# 81 I FDC DACK # Signal. 

lOR 97 0 1/0 Read signal for motherboard devices (8042, 8259, etc.). 

lOW 98 0 1/0 Write signal for motherboard devices. 

VMWR# 96 0 Memory write strobe to the VGA. 

VMRD# 95 0 Memory read strobe to the VGA. 

INTA# 94 0 INTA# Inputto the 8259. 

AO 9 B CPU and DMA Address O. AO Will be driven by the Bus controller 
, based on the' byte enable Signals when the 386 owns the bus. It is a 
Bus controller input in an 80386SX system, or when the DMA is 
master. 

A1 10 B CPU and DMA Address 1. A 1 will be driven by the Bus controller 
based on the byte enable signals when the 386 owns the bus. It is a 
Bus controller input in an 80386SX system, or when the DMA is 
master. 

BHE# 100 I Byte High Enable signal from the CPU and DMA. 

BEO-3# 11-12,14-15 I Byte Enable bits 0-3 from the 80386. 

UAO 3 B Unbuffered Micro Channel Address bit O. This signal is generated by 
the bus controller based on the byte enable signals and AO from the 
DMA. It is also manipulated by ~he swap logic. 

UA1 4 B Unbuffered Micro Channel Adqress bit 1. This signal is generated by 
the bus controller based on the byte enable signals and A 1 from the 
DMA. It is also manipulated by the swap logic. 

NOTE: 
For 80386SX systems, UA 1 is unconnected, and should be lightly 
pulled up (10K). The channel A 1 is latched along with the upper 
address lines.) , . 

UBHE# 16 B l,/nbuffered Micro Channel System Bus High Enable. This signal is 
generated from BEO-3# when the 386 owns the bus. or BHE# from 
the DMA.ln 80386SX systems, UBHE # is a reflection of the 

:' 80386SXBHE# .output. " -
4·572 



inter 82308 

82308 Micro Channel Bus Controller Pin Definitions (Continued) 

Signal Pin 
I/O Description Name Number 

UBEO-3# 5-8 B Unbuffered Micro Channel Byte Enable bits 0-3. These byte enable 
signals are driven by the bus controller when the CPU or DMA is 
master. (An external PAL is required to generate the channel byte 
enables on behalf ofa 16-bit channel master that requests 
translation.) 

TR32 99 I Translate 32 from the Micro Channel to indicate 32 bit masters 
driving BEO-3# (when inactive). (Tie high for 80386SX system.) 

SAL 18 0 Latch enable for the system address bus. This signal controls the 
address latch between the CPU bus and channel. 

BEDIR 17 0 Direction control for the UBEO-3# transceiver. It is high when the 
Bus controller is driving UBEO-3#. 

PBA# 48 I Indicates that the DMA or numeric coprocessor has been selected 
and is using the local data bus. 

ROMEN# 49 I Decode that inidicates that the BIOS ROM has been selected. 

DS16RTN 50 I Micro Channel Data Size 16 signal. 

DS32RTN 53 I Micro Channel Data Size 32 signal. 

ARB/GNT# 54 I Micro Channel ARBI-GNT status. 

REFRESH # 55 I Refresh Indicator. 

DMA# 56 I Indicates that the DMA owns the bus. 

HLDA 57 I CPU HLDA input. Indicates CPU controls local address and data bus 
if low. 

WDL 36 0 Latch enable signal for latching data bus DO-31 for generating Micro 
Channel DO-31 signal. Insures Micro Channel write data hold time 
spec is met. 

DBE1# 43 0 Output Enable for driving data on CPU DO-7 onto Micro Channel 
DO -7 during CPU or DMA writes or Micro Channel DRAM reads. 

DBEU 44 0 Output Enable for driving data on CPU D8-15 onto Micro Channel 
D8-15 during CPU or DMA writes or Micro Channel DRAM reads. 

DWHE# 45 0 Output Enable for driving data on CPU D16-31 onto Micro Channel 
D16-31. 

SBLW# 41 0 Output enable for driving data on Micro Channel DO-15 onto CPU 
DO-15 . 

SBHW# 42 0 . Outputenable for driving data on Micro Channel D16-31 onto CPU 
D16-31. 

MDIR 32 0 Direction control· for transferring data between the CPU Data Bus and 
the DRAM memory databu8. 

MLW# 29 0 Output enable for the transceiver between· the CPU data bus DO-15 
and the DRAM memory data bus. 

MHW# 30 
, 

0 Output enable for the transceiver between the CPU data bus D16'-3.1 
and the DRAM memory data bus. 

ROMOE# 73 0 Output Enable signal for the BIOS ROMs. 

SWAP1# 19 0 Transceiver enable for transferring data between Micro Channel Data 
Bus 0-7 and 8-15. 

4·573 



82308 

82308 Micro Channel Bus Controller Pin Definitions (Continued) 

Signal Pin 
I/O Description 

Name Number 

SWAP2# 20 0 Transceiver enable for transferring data between Micro Channel Data 
Bus 0-7 and 16-23. 

SWAP3# 21 0 Transceiver enable for transferring data between Micro Channel Data 
Bus 8-15 and 24-31. 

SWAP4# 22 0 Transceiver enable for transferring data between Micro Channel Data 
Bus 0-7 and 24-31. 

SWDIR 23 0 Direction control for Micro Channel Data Bus transceivers. 

DBL1 33 0 Latch enable for latching Micro Channel Data Bus 0-7. 

DBL2 34 0 Latch enable for latching Micro Channel Data Bus 8-15. 

DBL3 35 0 Latch enable for latching Micro Channel Data Bus 16-23. 

SCLK 58 I Microprocessor Clock. 

RESET 59 I Synchronized reset input to synchronize the internal clock with the 
processor phase. c 

RDYRTN# 80 I Channel Ready Return signal from Micro Channel (active low) .. 

PRDYO# 93 0 Microprocessor ready signal. 

FP 68 I Processor Speed Select. (20 MHz = 1, 16 MHz = 0.) 

PRDYI# 60 I Syn<::hronized microprocessor ready input. 

FRC# 61 I Fast ROM Cycle Select. When tied low, ROM cycles are run as Micro 
Channel default read cycles. When tied high, additional wait states 
are inserted to accommodate slower ROMs . 

RAMEN# 62 I . Decode tha.t indicates a system board DRAM access. 

FCE# 63 I Input that directs BC to terminate a CPU system board DRAM 
aCcesS. . 

UM/IO# 64 I Micro Channel Memory/lO status. 

PD/C#. 65 I CPU D/C#. output.' 

PW/R# 66 I CPUW/R# output 

PADS# 67 I CPU ADS# output. (Indicates addresS valid.) 

PNA# 71 0 Next Address Signal for address pipelining. 

SO#, S1 # 69, 70 B DMA Status lines; input by the BC when DMA is master, and output 
by the BC when CPU isinaster. 

UADL# 78 B Micro Channel Address Latch Signal. 

UMMCMD# 40 0 '." Micro Channel Matched Memory Command Signal. 

UCMD# 72 B Micro Channel Command Signal. 

USO#,US1# 76, 77 B Micro Channel Status. 

. RSEL1 27,31 I These two signals are used for hardware enforced 1/0 recovery . 
RSELO 'I They are sampled at the leading edge of UCMD # during CPU 

initiated 1/0 cycles, and are used to select one of four possible 1/0 
recovery times. At the end of the 1/0 cycle, an internal timer is 
triggered, a.nd then timesc:>utafter the selected 1/0 recovery time. 
The hextl/O cycle is not allowed to proceed into the active UCMD# 
phase until.the .internal timer times out. RSEL.1 ,0 can be strapped for 
a particular time, or else driven from a combinatorial address decode. 



inter 82308 

82308 Micro Channel Bus Controller Pin Definitions (Continued) 

Signal Pin 
1/0 Description Name Number 

FIN 26 I Asynchronous cache flush request input. A pulse on FIN causes a 
cache flush. Also, if FIN is left active for a long period of time, the 
82385 will be kept in flush mode for as long as FIN is active. The 
exception to this is when the BC is directed to do a software initiated 
CPU reset when FIN is active. The BC will de-activate FLUSH for a 
period of time surrounding the falling edge of RSTCPU so as to 
prevent the 82385 from entering its self-test mode. If FIN is still active 
after the reset, then FLUSH will be re-activated. 

FLUSH 46 0 Synchronous flush request to the 82385 Cache Controller. 

SNOOP # 47 B Synchronous strobe to the cache controller to indicate valid address 
during a non-processor memory write. SNOOP# is sampled·atreset 
to indicate the presence of a cache. (1 = cache present, 0 = no 
cache.) 

PMIIO# 28 I CPU M/IO# output. 

WS# 39 I This input, if tied low, inserts an additional wait state into CPU reads 
from system board memory beyond the number of wait states 
requested via the FCE # input. It is primarily intended for cache 
applications, which typically require increased CPU data setup. 

NC 1,25,51, No Connect 
52, 75 

Voo 13,37,88 Power 

Vss 2,24,38, Ground 
74,89 

4-575 



NC 
VSS 
UAO 
UAI 

UBEO# 
UBE1# 
UBE2# 
UBE3# 

AO 
Al 

BEO# 
BE1# 

VOO 
BE2# 
BE3# 

UBHE# 
BEDIR 

SAL 
SWAP 1 # 
SWAP2# 
SWAP3# 
SWAP4# 

SWDIR 
VSS 
NC 

82308 

82308 Micro Channel Bus Controller 

TOP VIEW 

~~~~~9~~~~s8~~~~~~~~~~~~~ 
~~~~~~~~~~~»~~~~~~X~O~~~ 
~~22~ co ~~~~!~~~~~~ 

NC 
VSS 
ROIAOE# 
UCIAD# 
PNA# 
SI# 
SOH 
FP 
PADS# 
PW/R# 
PD/C# 
UIA/IO# 
FCE# 
RAIAEN# 
FRC# 
PRDYI# 
RESET 
SCLK 
HLDA 
DIAA# 
REF"RESH# 
ARB/GNT# 
DS32RTN 
NC 
NC 

290187-24 
I Q.. ~ Vl a:~ 

,'--------------' 

NO'!"E: 
NC = No Connect 



82308 

82308 PARAMETRICS 

ABSOLUTE MAXIMUM RATINGS· 

Case Temperature under Bias .... - 40·C to· + 8S·C 

Storage Temperature .......... - 6S·C to + 1S0·C 

Voltage to Any Pin with 
Respect to Ground ....... - 0.3V to (Vee + 0.3)V 

DC Supply Voltage (Vee) ......... -0.3V to + 7.0V 

DC Input Current ....................... ± 10 mA 

D.C. CHARACTERISTICS 
Te = O·Cto +70·C, Vee = SV ±10% 

Symbol Parameter 

VIL Input Low Voltage 

VIH Input High Voltage 

VIL Input Low Voltage 

VIH Input High Voltage 

VOL Output Low Voltage 

VOH Output High Voltage 

lee Power Supply Current 

ILl Input Leakage Current 

loz Tri-State Output Leakage Current 

• Notice: Stresses above those listed under "Abso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and 
functional operation of the device at these or any 
other conditions above those indicated in the opera­
tional sections of this specification is not implied. Ex­
posure to absolute maximum rating conditions for 
extended periods may affect device .reliability. 

NOTICE' Specifications contained within the 
following tables are subject to change. 

Min Max Units Conditions 

0.8 V 

2.0 V 

0.8 V SCLK 

Vee - 0.8 V SCLK 

0.4 V 10L = 4mA 

2.4 V 10H =' 4mA 

180 mA No DC Loads 

±10 /LA Vss < VIN < Vee 

±10 /LA Vss < Your < Vee 

4-S77 



82308 

82308 Micro Channel BUS CONTROLLER A.C. SPECS 
Tc = O·Cto +70·C, Vcc = 5V ±10% 

82308 

~ymbol Parameter Kit 16 MHz 

Min Max 

T1 SCLKPERIOD 31.25 
T2A SCLK HIGH/LOW TIME (50%) 12 
T2B SCLK HIGH/LOW TIME (90%) 8 
T3 RESET SETUP 10 
T4 RESET HOLD 4 
T5A RSTCPU DELAY 2 30 
T5S RSTCPU PULSE WIDTH 1980 
T6A FLUSH DELAY 5 41 
T6S FLUSH PULSE WIDTH 240 
T6C SNOOP# DELAY 5 41 
T7 FIN PULSE WIDTH 25 
T8A COMMAND I/O RECOVERY PULSE WIDTH 600 
T8B COMMAND 1/0 RECOVERY PULSE WIDTH 2500 
T8C COMMAND 1/0 RECOVERY PULSE WIDTH 10000 
T6D COMMAND 1/0 RECOVERY PULSE WIDTH 0 
T9 RSELO,l SETUP 15 
Tl0 RSELO,l HOLD 20 
Tl1A PW/R#, PD/C#, PM/IO# SETUP 25 
TllS PADS# SETUP 25 
T12 PADS#, PW/R#, PD/C#, PM/IO# HOLD 4 
T13A UM/IO# SETUP TO UADL # ,J, 20 
T13B UM/IO# SETUP TO SCLK 20 
T14A UM/IO# HOLD FROM UADL# i OR 20 

• UCMD#,J, 

T14S UM/IO# HOLD FROM SCLK 20 
T15 PRDYO# DELAY 4 30 
T16 PRDYI # SETUP is 
T17 PRDYI# HOLD 3 
T18 PNA# DELAY 0 25 
T19A UADL# DELAY (TPHL) 2 24 
T19B UADL# DELAY (TPLH) 2 24 
T20A UCMD# DELAY (TPHL) 2 23 
T20B UCMD# DELAY (TPLH) 2 25 
T21A UMMCMD# DELAY (TPHL) 2 23 
T21B UMMCMD# DELAY (TPLH) 2 25 
T22A USO#,US1#(TPHL)DELAY 2 27 
T22S USO#,US1#(TPLH)DELAY 2 27 
T22C USO#, USl # (TPHL) DELAY FROM 0 27 

SO#,Sl# 

T23 SO#, Sl # SETUP 20 
T24 SO#,Sl# DELAY 2 35 
T25 AO, A1 DELAY FROM SEO-3# 2 35 
T26 USEO-3#,UAO-l#,USHE# 

DELAY FROM BEO-3 # , AO-1 , BHE # 2 30 
T28 SAL DELAY 2 36 
T30A SSHW#, SSLW# INACTIVE DELAY 2 30 

FROMSCLK 
T30S SSHW,#, SSLW# DELAY FROM UADL# 2 40 

4-578 

82308 82308HS 

Kit 20 MHz Kit 25 MHz CL (pF) Notes Conditions 

Min Max Min Max 

25 20 
, 

" 

10 8 
6.5 6 
10 10 

4 4 
2 30 2 27 25 

1580 1260 25 14,20 
5 34 5 28 50 

190 150 50 15,20 

5 34 5 34 50 
25 25 

600 600 20 RSEL1,0 =,01 
2500 2500 20 RSEL1,O = 10 
10000 10000 20 RSEL1 ,0 =' 00 

0 0 20 RSEL1,O = 11 
15 15 4 
20 20 4 
22 13 

22 17 
4 4 

20 20 
20 20 8 
16 16 7 

16 16 8 
4 24 3 20 75 
18 15 
3 3 

0 25 3 28 25 
2 24 2 22 25 
2 24 2 22 25 
2 20 2 20 25 2 
2 23 2 20 25 f 

2 20 2 20 25 2,5 
2 23 2 20 25 
2 26 2 24 25 2 
2 26 2 24 25 
0 30 0 30 25 

20 15 

2 30 2 22 50 
2 30 2 25 25 

2 28 2 28 25 
2 30 2 27 100 
2 25 2 32 50 11,21 

2 40 2 40 50 25 



82308 

82308 Micro Channel BUS CONTROLLER A.C. SPECS 
TC = O·C to +70·C, VCC = 5V ±10% (Continued) 

82308 

Symbol Parameter Kit 16 MHz 

Min Max 

T30C SBHW#. SBLW# DELAY FROM UCMD# 5 35 
TSOD SWDIR DELAY FROM UADL# 2 40 
T30E DWHE# DELAY FROM UADL# 2 40 
T30F DWHE# DELAY FROM UCMD# 5 45 
T30G DBEl #, DBEU DELAY FROM UADL# 2 40 
T30H DBEl #, DBEU. DELAY FROM UCMD# 5. 45 
T301 SWAPl-4# DELAY FROM.UADL# 2 40 
T30J SWAPl-4# DELAY FROM UCMD# 5 35 
T30K SBHW#, SBLW# ACTIVE DELAY FROM SCLK 2 40 
T30L SWDIR DELAY FROM UCMD# 5 40 
TgOM SWDIR DELAY FRO~ DS16RTN, DS32RTN 2 35 
T30N SWAPl-4# DELAY FROM UCMD# 2 35 
T31 DBL 1-3 SEtUP TO UCMD#, UMMCMD# -4 
T32 WDLDELAY 2 32 
T33 DBLl-3 DELAyt 2 27 
T34A MHW#, MLW# ACTIVE DELAY FROM SCLK t 2 30 
T34B MHW#, MLW# INACTIVE DELAY FROM SCLK t 2 30 

,T34C MDIR DELAY FROM SCLK 2 40 
T34D MHW#, MLW# DELAY FROM UADL# 2 45 
T34E MHW#, MLW# DELAY FROM UCMD# 5 40 
T34F MDIR DELAY FROM UADL# 2 45 
T34H ROMOE# DELAY FROM SCLK 2 28 
T341 MHW#. MLW# ACTIVE DELAY FROM SCLK J. 2 35 
T34J MHW#, MLW# INACTIVE DELAY FROM SCLK t 2 35 
T35 FCE# SETUP 15 
T36 FCE# HOLD 3 
T37 ROMEN#, RAMEN# SETUP 20 
T38A DS16RTN, DS32RTN SETUP TO SCLK 30 
T38B DS16RTN, DS32RTN SETUP TO UADL# t 15 
T41 RDYRTN# SETUP TO SCLK 10 
T42 RDYRTN# HOLD FROM SCLK 4 
T43 10EN#, FDACK# SETUP TO UADL# ACTIVE 10 
T44A PO-P3 SETUP TO SCLK 0 
T44B PO-P3 SETUP TO UCMD# 3 
T45 PO-P3HOLD 12 
T46A CHRDY DELAY FROM 10EN# 2 30 
T46B CHRDY DELAY FROM STATUS 2 25 
T46C CHRDY ACTIVE FROM MB COMMAND 100 
T47A MB COMMAND DELAY FROM UCMD# ACTIVE 75 
T47C MB COMMAND DELAY FROM UCMD# INACTIVE 3 40 
T48 MB COMMAND PULSE WIDTH 250 

NOTES: 
1. MB Commands include lOR, lOW, INTA#, VMRD# and VMWR#. 

82308 82308HS 

Kit 20 MHz Kit 25 MHz CL(PF) Not •• Condition. 

Min Max Min Max 

5 35 5 35 50 10.25 
2 40 2 40 100 12 
2 40 2 40 50 
5 45 5 45 50 25 
2 40 2 40 25 
5 45 5 45 25 25 
2 40 2 40 25 25 
5 35 5 35 25 13,25 
2 40 2 40 50 11 
5 40 5 40 100 13,25 
2 35. 2 35 100 12,25 
2 35 2 35 25 11,25 
-4 -4 25 
2 26 2 21 50 
2 25 2 22 25 
2 25 2 25 50 16 
2 25 2 32 50 17,21,24 
2 40 2 40 125 22,24 
2 45 2 45 50 25 
5 40 5 40 50 25 
2 45 2 45 125 25 
2 28 2 28 50 
2 35 2 35 50 18,23,25 
2 35 2 35 50 19,24,25 
15 10 
3 3 
19 19 
30 25 6 
15 15 3 
10 10 9 
4 4 
10 10 25 
0 0 11 
3 3 13,25 
12 12 
2 30 2 30 25 
2 25 2 25 25 25 

90 70 25 1,20 
75 75 100 1,20 
3 40 3 40 100 1,25 

225 190 100 1,12,20 

2. These specs and cycle edge definitions support a worst case "effective" data setup of 40 ns for a 385 system at 20 MHz. 
(Effective setup means setup to the "386-like" front end created by the 385.) 
3. Spec applies only when master resides on Micro Channel. 
4. RSELO,l should be tied high or low, or else driven from a combinatorial address decode. 
5. UMMCMD# is only driven when the CPU is master. 
6. Applies only when CPU is master. 
7. T14A applies to the later of AOL# t or CMD# J.. 
8. T13B, T14B apply to CPU or DMA master. 
9. RDYRTN# is an asychrQnous input. Meeting T41 simply guarantees recognition at a particular clock edge. 

4-579 



82308 

NOTES: 
10. Applies when DMA is master. 
11. Applies when CPU is master. 
12. Applies when CPU or DMA is master. 
13. Applies when DMA or channel master is master." 
14. Functional Spec ... Not Tested (= 64·$CLK PeriOds). 
15. Functional Spec ... Not Tested (= 8 SCLK Periods). 
16. READS AND PIPELINED WRITES 
17. READS 
18. NON-PIPELINED WRITES 
19. WRITES 
20. Functional Spec ... Not Tested 

NOTES (82308H8-25 ONLY): 
21. Contention will not occur when a write immediately follows a read because the 82385 insures at least one BTl state 
between a read followed by write sequence during which the data bus remains tri-stated. 
22. MDIR is generated and speced from SCLK t instead of from SCLK.J, at it is in the 82308-16/20. 
23. In non-piped writes, MHW # and MLW # are generated from the phase 2 SCLK tedge. rather than from SCLK.J, as in 
the 82308-16/20. 
24. Since MDIR toggles from the same clock edge that MHW# and MLW# are de-asserted from, contention is prevented 
by 82308-25 internal design such that MDIR is guaranteed to be slower than MHW # or MLW #. 
25. Only tested when UADL #, UCMD #, USO #, and US1 # are inputs; i.e., when Microchannel is master. 

4·580 



intJ 82308 

DRIVE LEVELS AND MEASUREMENT POINTS FOR A.C. SPECIFICATIONS 

SCLK[2V 

r---+--<8 

OUTPUTn • 
VALID 

1.5V OUTPUT n+ 1 
OUTPUTS [ VALID 1 5V 

------~ .. ~~~----~--
INPUTS [ 

3.0V ,...,...,.Mo---.l.---_+-O~ 

1.5V VALID 
INPUT 

1.5V 

OV~"~----~------~"" 
290187-25 

LEGEND: 
A. Maximum Output Delay Specification. Input waveforms have tr s;; 2.0 ns from O.SV to 2.0V. 
B. Minimum Output Delay Specification. 
C. Minimum Input Setup Specification. 
D. Minimum Input Hold Specification. 

T28 
, .. Ii 

SCLK 

, T28 , , 
J .. . ' 

, T2A T2A , 
I" -:. . , 

T1 :. to ~ 
290187-26 

SCLK 

RESET '~ 
, T5A T4 ~ :- : T3 , 
:---; ~" , I~----------------------~~~ RSTCPU 

, T58 I I 

: ... " ~ I 

290187-27 

4-581 

I, 



SCLK 

PADS# 

386 STATUS 

PRDYO# 

PRDYI# 

SO#.S1# 

SCLK 

SNOOP# 

FLUSH 

SCLK 

DIAA 
STATUS 

82308 

T1 T2 T2P 

T16 T17 

290187-28 

\ __ -+-_--......... 1 , 
:. T23 -: 

290187-29 

TX TX TX 

u'-___ ....-.-I' 
: T6C ~ 

--~I:~----~--------~---\~---
---. T68 ' :T6A~~. ________ ~~~ __ ~=-________________ ,~: 

SAL x,"'-----........... 
~ T28 ~ 

290187-30 

FIN ----iI---T~7 }---

290187-31 

4·582 



inter 
PNA# TIMING 

SClK 

OWA STATUS 

82308 

SCLK 

PNA, ('6WH.) --:-lL';"'_';"'_+-_';"'.;J 

PNA, (20 MHz) 

, , 
1118 ' 
:--! 

OW ... TS 

T2 

\~---.;.. ___ ~--,I 

290187-32 

""ATe 

T2 TZP 

__ -+ ____________ ~--~;-T2-2C~: ~ 
. "~.O CHAHNEL '\'--__ .,.. _________ .....:. ______ ~-JV,.-----.....; 

STATUS :~_ • 

T19B 

VADLI \. ..... __ -+-__ ...JI 
T148 : T208,1218 

T1P 

: 119A: 

uelolo#. Ut.lMCMOI , '---+--+--__ ;....;..:-'"'-'/,r:,:, G\ f ' 
: T20A,!21A 

~ 
CPU,Ot.lA AODR, --l---"'\' 1 : 

BYTE EN-:/l~S; x.\._..;......; ______ .,......, ____ -+_..;-____ ....; __ ~X\. __ i~--+_i _ 
1138 

Ttl. T14A 

I.IICRO c~~~Ni~A~~; _-+ ____ -+_..JX'--+ _________ .;.... .... _____ -l-_____ .....:. __ r-_____ ¢+ 
:.......; T25 

AO,Al --+---;..' "'\xr~--!------....;.-....;.-----+...;..---...;.....;-----x::t:t: 

ROMDER 

SAL 

-.: T28 :-- --' T28 :--

I \~_~~'~)~----~+-~--~--
, T38A , T31~ ,_ 
~ " 

OS16RTN,~~=~=~'r---.... ----+- : : 
DS32ATN~ 133 -..: ;:-__ ":" __ -'-__ 

1388 DSLl-3 --U 
WDl __ "";--J! 

~ '-~ '132 . 

290187-33 

I 

i 

I, 
I' 



STATUS 

UCMD# 

MB I/O 
COMMANDS 

10EN# 

CHRDY 

82308 

\\-____ ---J! 

.}~--~----------~I ~',.~ ___ --,.' : T47C I 

T47A I ,~ 
-------+-----~:......,~--------...:-.--. ~--

INACTIVE X"" ACTIVE X'r- INACTIVE 
____________________ ~--------------------.J:~------------------------------.J.,~.---------

I T48 ' 

T46A 

, T46B , 
~ 

4-584 

, T46C , 
--..,,-----; I 
I 

. : 

29Q187-34 



i~ 82308 

MEMORY DATA BUFFER CONTROL 
80386 ACCESSES TO MOTHERBOARD DRAM 

i:l 
Q 

~ 
'" Q ... 
Z 

~ ::J ... 
!!. .. 
I 

Z 
0 
Z 

;:: 

4·585 

II) 

'" I ... 
CD 

~ I 

Ii 

:~ 
I: 
I 
, 



82308 

Micro Channel DATA BUFFER CONTROL 386/DMA MASTER, 
DATA STEERING FOR CHANNEL MASTER TO CHANNEL SLAVE 

DMA STATES 

386 STATES 

SCLK 

TS 

T2 

READ 

T2 T2 

WRITE 

TC TS 

T2P T1P T2 

_nnrmrmr-
READ 

TC TS TC 

T2 T2P T1P T2 T2 T2P 

STATUS "11---+--+_ofI1hl---+---+_..,..r 11---+---+_..,..1 rr 

II 1 
I~I"'" 

LJ ADL# 

I 

CMD# I II ~ T30C. F. H. J. N ! i T30B.E~ II.G.-I--+-__ +,I : 1"", --I---+' 

SWA:B1;:::~:~~:. ® +--+---IM-~-i; :1-11 h--9 
08El-2# _.1 _~ I .... +---I---+--+~,--' I '"+--+ 

OS16RTN. <D 
OS32RTN 

SWOIR 

T30K ...--; T30A ~ I T30M I : 

ex : : :,..' -r;'_ .. :-+_--t---+"'\. '-+~:-__ f-: --+--+ 
'-+-_-I~'_-+ __ +"'~'-I~'_+'-+ __ + __ +-~'-+~'_-IM-'_-+ __ + 

: : : : I T300""": ~ : 

; II-f-_H-i .... r hI-: +--+_""'f-_+-if-lr 111-+_+ 
T39L ~ T30L ~ ~ T3?D : T30L ~ :-

290187-36 
<DT300 applies to SWOIR only when all involved combinatorial data size inputs (DS16RTN. OS32RTN) are available 
early enough not to delay SWOIR. 
®T30A and T30K apply only to SBHW# and SBLW#. and only when the 386 is master. 
®T30B applies here when OMA data is routed to system board memory from the lower ha!fof the data bus (00-015) to 
the upper half (016-031). 

4-586 



82308 

MEMORY/Micro Channel DATA BUFFER CONTROL 
DMA/CHANNEL MASTER ACCESSES TO MB DRAM 

READ WRITE 

DhiA STATES TS TC TS TC 

READ 

TS TC 

STATUS ·' ______ +-...... 1 , ______ +-...... I~ ______ +-...... r 
ADL# I I 

I II : I II: I 

hlDlR 

: T34F ': T3~F , 

H : ~: , 1"'-'11-----+--+.... ' 
: I :: I : 
I T3~D : T34£ I -1-, ..... ---,.. 
~ H: H 

, 11--+:--+";':-1 
: 1308 : ...... _-+-

, T3~E 
I' I. ;---. ~ , 
: I I I : ...... --+i-:...... : T30B 

, T34E 

hlHW#.t.lLW# 

:.-..; 1 

I"'-'Ir+'----+-
I 

I : ~ 

SBHW#.SBLW# <D +-----++: ----1 ... '---.... 1 
,T30F.H 'T30F.H 

, 
, T30r.H , " 

~ ii 
'I ''', I 

DWHE#. 08EI-2# ® +-----1-_1 I 

<DChannel Master writes to MB DRAM. 
C»Channel Master reads from MB DRAM. 

(HARDWARE ENFORCED) I/O RECOVERY TIMING_ 

ADDR --x X -
RSELO.l X X , , 

1\ / 
, , , , , 

STATUS 

, , , , 

~ 
, 
.' , , 

UChiDjI. 
UhlhlChlD# 

, , 

, , 

~ , 

L 
290187-37 

\ I{ 

I ~ , , , , 
, T9' T10 " T8 ' 
~:.------,~:.~.~--------~.: ~:.~--------------------~.: 

290187-38 

4-587 



82309 
ADDRESS BU$ CQNTROLLER 

• Address Decoder • Integrated 110 Ports and Registers 
• DRAM Controller . .. Up to Four Banks 

of Page Interleaved Mern~ry (Max 16M) 
• Low Power CHMOS Technology 
• ··10o.;Pln Plastic Quad Flat Packaging 

(See Packaging Spec •• Order # 231369) • Refresh Tlrner 

The 82309 Address Bus Controller provides Address decodl!'lg.fo~ devices on the motherboard, including the 
sh.adowed DRAM address of the ROM BIOS. The Address Bus Controller also has Integrated· DRAM control-. 
ler, Refresh Timer and miscellaneous registers for memory control and error recovery, specifically ports EO, 
E1, E3, E4, E5, E7 and 103. 

The 82309 Address Bus Controller provides the designer several pric;;e/performance choices for the configura­
tion of up to 16 MBytes of Page Interleave DRAM memory on the motherboard. Up to four banks of 256K, 1 M 
and 4M DRAMs are supported. 

The 82309 Address Bus Controller generates periodic refresh requests to the 82307 DMA controller to run 
refresh cycles. The 82309 does not use the Refresh Address generated by the DMA controller but provides its 
own refresh address to the 256K, 1 M and 4M DRAMs. 

DLYI 

DLY2 

DLY3 

DLY4 

DSTB 

SCLK 

HLDA 

RESET 

REFRESH# 

TINCLK 

PM/IO# 

PRDYlII' 

PW/R# 

PD/CII 

PADS# 

$011. SIll' 

M/IO# 

CMDIJ 

MADE24 

HIMEM# 

AD-A23 

ARB/GNT# 

PO 

. ERS 

00-07 

DRAM 

CONTROLLER 

ADDR~S·'· 

. DECODER 

POS 
REGISTERS/ 

.,. PORTS 

RASO-RAS3 

CASO#-CAS3# 

WE 

CHRDY 

MADOO-MAD10 

FCES# 

RFRQ# 

TMRCLK 

ROMEN# 

RAM~N# 

!OEN# 

LCSCS#. 

VMSEl# 

EXEN# 

FRO# 

P<:E# . 

290188-1 

November 1988 
Order Number: 280188-001 



82309 

PORTS AND REGISTERS 
Configuration bits SS1 and SS2 control the function 
of the Ports and Register Block. The Ports and Reg­
ister Block, in turn, control the function of the Re­
fresh Timer and the address mapping of the mother~ 
board DRAMs and the BIOS EPROMs. 

SS1 and SS2 essentially select one of four defini­
tions of the memory encoding registers (EO, E1), er­
ror trace registers (E3, E4, E5, E7), and motherboard 
POS setup port (103). These defintions are depicted 
in Table 0, and go by the names System A, System 
B, System C and System D. 

System A presents a Model 50/60 compatible defi­
nition of these ports. Specifically, Port 103 is defined 
as it is in the IBM PS/2 Model 50/60 Technical Ref­
erence and ports EO-E7 are non-existent. System B 
presents a Model 80 compatible definition of these 
ports, as detailed in the IBM PS/2 Model 80 Techni­
cal Reference. 

System B has a limitation in that due to the definition 
of the card enable bits in ports EO and E1 (described 
later), it is limited to 4 Mbytes of system board mem­
ory. System C overcomes this by making the card 
enable bits "free form"; I.e., accessible as read/ 

write bits, but otherwise meaningless in terms of 
their effect on the system. System C allows a Model 
80 type system to provide up to 16 Mbytes of system 
board memory. 

System D provides a Model 50/60 compatibledefini­
tion of port 103 and a Model 80 compatible definition 
of ports EO-E7. This system is targeted for designs 
that wish to present a Model 50/60 port definition, 
but wish to make use of features provided in the 
Model 80 register set, specifically the ability to copy 
ROM into RAM for increased performance. This sys­
tem requires external logic (approx. % of a 16L8 
PAL) that essentially makes EO-E7 disappear from 
a software point of view once the ROM has been 
copied into RAM. (Details will be provided in the 
forth coming Intel Designers Guide for Micro Chan­
nel Compatible Implementation. ) 

In systems A and D, bit 0 (the Memory Enable Bit) is 
the only accessible bit in Port 103. This bit can be 
accessed via channel I/O Read and/or Write opera­
tions. When Port 103 is read only bit 0 is driven, all 
other data bus bits remain tristated. This bit is set to 
a 1 by RESET. When the Memory Enable Bit = 0 all 
of the motherboard DRAM is disabled (but still re­
freshed). In both systems A and D, the refresh timer 
produces a 400 ns pulse every 1S.12 /A-s. In system 
D, mapping is controlled by ports EO and E1, as de-

Table o. Configuration Bits SS1, SS2 Definition 

Config Bits 
System Description 

SS1 ... SS2 

0 0 A Mode1SO/60 Compatible Port 103(1) 
Registers EO-E7 Non-Accessible 

1 0 B Model 80 Compatible Port 103 
Error Trace Registers E3, E4, E5 and E7 Accessible 
Memory Encoding Registers EO and E1 Accessible 
Compatible Card Enable Bits in EO and E1 

1 1 .C Model 80 Compatible Port 103 
Error Trace Registers E3, E4, ES and E7 Accessible 
Memory Encoding Registers EO and E1 Accessible 
Free Form Card Enable Bits In EO and E1 

0 1 D Model SO/60 Compatible Port 103 
Error Trace Registers E3, E4, ES and E7 Accessible 

(But Not Typically Used) 
Memory Encoding Registers EO and E1 Accessible 
Free Form Card Enable Bits In EO and E1 

NOTES: 
1. Port 103 is a motherboard POS port; i.e., accessible only when the motherboard is in Setup Mode. 

4-S89 



823C)9 

. scrib~din .a moment In system A, the other flJnc­
tions of the ports anc! regist~r block W, as,follows.: 
- The. Split in the first megabyte is 'located at 640 

Kbytes. 

- .If the motherboard DRAM .. space equals 
16 Mbytes then the remaining DRAM is disabled, 
otherwise the remaining 384 Kbytes are re-

, mapped to the first 384. Kbytes past the end of 
the motherboard DRAM address space. (i.e., if 
there are 4 Mbytes of DRAM then thespliUs 
. remapped to address 00400000 ..... 0045FFFF.) 

...,. The BIOS EPROMs, are . mapped to both 
OOOEOOOO ..... OOOFFFFF and 
FFFEOOOO ~ FFFFFFFF. 

In systems Band C, port 103 is defined as follows: 

- Port 103 bit 0 (the Memory Enable Bit) is not 
accessible. 

- . Port '103 bit 1 (the Refresh Rate Bit) is accessi­
ble for write operation$/only. If this bit is a 1 then 
the Refresh' Timer produces an approximately 
400 ns long pulse once every 15.12 ILS; If this bit 
is a 0 then the'Refresh Timer produces a contin­
uousstream of 400 os pulses with a period of 
approximately 800 riS. This bitis set to a 1 by 
RESET. . 

In systems B, C and D,ports EO, E1, E3, E4, E5arid 
E? are defined as follows: 

- Four of the Read only Micro Channel Error Trace 
Registers (Ports 00E3, OOE4, 00E5 and OOE?) 
are accessible. (Typically, a system D design will 
not utilize these registers and will thus not re­
qUire any external logic to implement any error 
register support.) These registers' sample 
SA <02:23 > , M/IO#, D/C# andARB/GNT# 
on every rising edge of the .ERS. input pin. The bit 
assignments for these registers are as follows: 

.Blt OOE3 OOE4 
, 

OOES OoE7 
? SA23 SA15 SAO? -
6 SA22 SA14 SAOe -
5 SA21 SA13 SA05 -

.4 SA20 S)l.12 SA04 -
3 SA19 SA11 SA03 -
2 SA18 SA10 SA02 -
1 SA17 SA09 M/IO# -
0 SA16·. SA08 ARB1GNT# D/C# 

These four registers areal! set to 00 by RE$ET. 
When Register E? is read; only data bus bit 0 is 
(jri.veo by the ABC, data bus bit 1~? ~er:nain. tristat~d. 
- Registers EO and Et are accessible via the chan" 

nel for ,both. 1/0 read Iilnd '1/0 write operations~ 
These two registers control theilddress mapping 
of both the. motherboard DRAMs and the BIOS 
EPROMs. (The reset state of EO and E1 is FF.) 
The .two . most significant bits of both .of'these 
registers .are free form register bits and' have' no 
effect on the functioning of the ABC. The ,func­
tioning of the'two next most significant bits (bits 
5 & 4, the card enable bits) of both· of these reg­
isters are controlled by configuration bits SS2 
and SS1 as discussed in a moment. 

- The fOur least significant bits (bits 3, 2, 1 & 0) of 
registerE1 are defined as follows: 

Bit 
321 0 
o 

o 
1 

0. 

o 
1 

- Memory beyond split Enabled 
- Memory beyond splitDisabled 
- Split is at 640K (OOOAOOO()) 
- Split is at 512K (OO()80000) 
- BIOS ROMs deactivated in' . 

ClOOEOOOO to OOOFFFFF 
BIOS ROM!; active in' 
FFFEOOOOto FFFFFFFF 
Shadow RAM Write ProteCted 

- BIOS ROMs active in OOOEOOOO 
toOOOFFFFF 
BIOS ROMs active in 
FFFEOOOOto FFFFFFFF 

. Shadow RAM Writeabls; 
- Parity Checking enabled 
- Parity Checking disabled 

If the memory beyond the Split is enabled by bit 3 
then the four least significant bits (bits 3, 2, 1 & 0) of 
register OOEOdefine the address range in memory 

. where the portion of the first megabyte of system 
RAM beyond the split will be. remapped. Bits 3, 2, 1 
& 0 of this .register correspond to address bits 23, 
22,21 & 20 of the remap location for this memory. 

4-590 



82309 

Bit 2 of register E1 defines the partitioning of the 
first megabyte of the motherboard DRAM. Figure 
o details the effect of this bit. The S in the remap 
addresses represents the value of the four least 
significant bits of register EO. 

E1 bit 2 

00000 

9FFFF 
AOOOO 

DFFFF 
EOOOO 

~O 

00000000 

to 

0009FFFF 

OOSOOOOO 

to 

00S3FFFF 

OOOEOOOO 

to 

00000000 

to 

0007FFFF 

OOSOOOOO 

to 

00S5FFFF 

OOOEOOOO 

to 

00000 

7FFFF 

80000 

DFFFF 
EOOOO 

OOOFFFFF OOOFFFFF FFFFF FFFFF 

Figure o. Partition of First Megabyte of DRAM 

There is DRAM mapped in the address range 
OOOEOOOO to OOOFFFFF. The function of this 
DRAM is controlled by bit 1 of register E1. If bit 1 
= 1 then this RAM is writeable but not readable 
(thus the BIOS EPROMs can be Shadowed by 
Reading and Writing to the same address). If bit 
1= 0 then the BIOS EPROMs are disabed and 
this area of RAM is read enabled but write pro­
tected. 

When bit 1 of register E1 is a1 both the 
ROMEN # and the RAMEN # . signals will re­
spond to accesses in the range OOOEOOOO to 
OOOFFFFF. In this way, the 82308 Bus Controller 
knows to direct reads to ROM and writes to RAM 
to allow shadowing. (In system 0, if memory is 
disabled via bit 0 of port 103, then ROM is en­
abled in OOOEOOOO to OOOFFFFF, regardless of 
the status of bit 1 in E1.) 

Bit 0 of register E1 is output to the Bus Controller 
on the PCE# pin for use as an (active low) Parity 
Check Enable control bit. 

4~591 

- In system B, the amount of the physical mother­
board DRAM that is accessable is controlled by 
the card enable bits (bits 5 and 4 of registers EO 
and E1). These four bits act as enables (active 
low) for each of the first four megabytes of the 
physical motherboard DRAM space. Any addi­
tional DRAM controlled by the ABC will be re­
freshed but is otherwise disabled. 

Register 

EO E1 Function 

Bit 5 Bit4 Bit 5 Bit4 

0 X X X Megabyte # 3 Enabled 
1 X X X Megabyte # 3 Disabled 
X 0 X X Megabyte # 2 Enabled 
X 1 X X Megabyte # 2 Disabled 
X X 0 X Megabyte # 1 Enabled 
X X 1 X Megabyte # 1 Disabled 
X X X 0 Megabyte # 0 Enabled 
X X X 1 Megabyte #0 Disabled 

All megabytes that are enabled by these bits are 
mapped into one continuous block (with the ex­
ception of the Split from the first active mega­
byte) starting at address 00000000. (Thus if 
megabyte #0 is disabled, then the rest of the 
megabytes are remapped down to the range 
00000000 to 002FFFFF, etc.) 

In systems C and D, bits 5 and 4 of both regis­
ters EO and E1 are free form register bits and 
have no effect on the functioning of the· ABC. 

DRAM CONTROLLER 

The DRAM controller supports page interleaved 
memory designs in the configurations shown in Ta­
ble 1. This table also details which channel address 
bits map to which DRAM address bits. Note that 
even though options Dand Gare two-bank options, 
the ABC thinks of these banks as 0 and 2, not banks 
o and 1, i.e., use RASO, RAS2, CASO# and CASU. 

Table 1 describes the basic· memory configurations 
A through N. However, a wide variety of additional 
options can be easily realized by building on A 
through N with minimal external address decode log­
ic. These additional options include. the ability t() mix 
DRAM types (for example 256K and 1 M DRAMs in 
the same system), and allow for a great deal of flexi­
bility in memory upgrade paths. Examples of how to 
do this are included in the Designer's Guide for Mi­
cro Channel Compatible Implementation. 



82309 

Table 1. Memory ConfIguratIon OptIons and Channel Address-To-DRAM Address MappIng 

Opt Size 

A 1M 
B 1M 
C 2M 
D 2M 
E 2M 
F 4M 
G 4M 
H 4M 
I 8M 
J 8M 
K 8M 
L 16M 
M 16M 
N 16M 

Opt 23 22 21 20 19 18 17 18 

A Ps Ps Ps Ps 
B Ps Ps Ps Ps 
C Ps Ps Ps Ps Ps 
D Ps Ps Ps Ps Ps 

I E Ps Ps Ps Ps Ps 
F Ps Ps Ps Ps Ps Ps 
G Ps Ps Ps Ps Ps Ps 
H Ps Ps Ps Ps Ps Ps 
I Ps Ps Ps Ps Ps Ps Ps 
J Ps Ps Ps Ps Ps Ps Ps 
K Ps Ps Ps Ps Ps Ps Ps 
L Ps Ps Ps Ps Ps. Ps .Ps Ps 
M Ps Ps Ps Ps Ps Ps Ps Ps 
N Ps Ps Ps Ps Ps Ps Ps Ps 

Ps :2: Page Select Ws :2: Word Select 

NOTE: 
Options A, C, F, I & L use Bank 0 
Options 0 & G use Bank 0 & 2 

Opt 
P. 

10 09 08 07 08 05 

A >< . >< 11 12 13 19 
B >< >< 11 12 13 19 
C >< 11 20 12 13 19 
D >< >< 20 12 13 19 
E >< >< 20 12 13 19 
F >< 21 '20 12 13 19 
G >< 21 20 12 13 19 
H >< >< 20 21 13 19 
I 22 21 20 12 13 19 
J '>< 21 20 22 13 19 
K >< 21 20 22 13 19 
L 23 21 20 22 13 19 
M 23 21 20 22 13 19, 
N >< 21 20 22 23 19 

04 

16 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 

,18 

18 
18 

03 

17 
17 
17 
17 
17 
17 
17 
17 
17 
17 
17 
17 
17 
17 

Memory Conflguretlon Options 

1 . Bank of 256K DRAMs. (x 32) Page Mode 
2 Banks of 256K DRAMs (x 16) Page Mode 
1 Bank of 1 M DRAMs (x 16) Page Mode 
2 Banks of 256K DRAMs (x 32) Page Mode 
4 Banks of 256K DRAMs (x 16) Page Mtlde 
1 Bank of 1 M DRAMs (x 32) Page Mode 
2 Banks of 1 M DRAMs (x 16) Page Mode 
4 Banks of 256K DRAMs (x 32) Page Mode 
1 Bank of 4M DRAMs (x 16) Page Mode 
2 Banks of 1 M DRAMs (x 32) Page Mode 
4 Banks of 1 M DRAMs (x 18) Page Mode 
1 Bank of 4M DRAMs (x 32) Page Mode 
2 Banks of 4M DRAMs (x 16) Page Mode 
4 Banks of 1 M DRAMs (x 32) Page Mode 

15 14 13 12 11 10 09 08 07 08 05 

Ps Ps Ps Ps Ps Ws Ws Ws Ws Ws Ws 
Ps Ps Ps Ps Ps Bs Ws Ws Ws Ws Ws 
Ps Ps Ps Ps Ps Ws Ws Ws Ws Ws Ws 
Ps Ps Ps Ps Bs Ws Ws Ws Ws Ws Ws 
Ps Ps Ps Ps Bs Bs Ws Ws Ws Ws Ws 
Ps Ps Ps Ps Ws Ws Ws Ws Ws Ws Ws 
Ps Ps Ps Ps Bs Ws Ws Ws Ws Ws Ws 
Ps Ps Ps Bs Bs Ws Ws Ws Ws Ws Ws 
Ps Ps Ps Ps Ws Ws Ws Ws Ws Ws Ws 
Ps Ps Ps Bs Ws Ws Ws Ws Ws Ws Ws 
Ps Ps Ps Bf Bs Ws Ws Ws Ws Ws Ws 
Ps Ps Ps Ws Ws Ws Ws Ws Ws Ws Ws 
Ps Ps Ps Bs Ws Ws, Ws Ws Ws Ws Ws 
Ps Ps Bs Bs Ws Ws Ws Ws Ws Ws Ws 

Bs :<: Bank Select 

02 01 00 

16 15 14 
16 15 14 
16 15 14 
16 15 14 
16 15 14 
16 15 14 
16 15 14 
16 15 14 
16 15 14 
16 15 14 
16 15 14 
16 15 14 
16 15 14 
16 15 14 

10 

>< 
>< 
>< 
>< 
>< 
>< 
>< 
>< 
01 
>< 
>< 
12 
01 
>< 

Options B, J & M use Bank 0 & 1 
OptionsE, H, K & N use aU Banks 

w. 
09 08 07 06 05 04 03 

>< 02 10 03 09 08 07 
>< 02 01 03 09 08 07 
01 02 10 03 09 08 07 
>< 02 10 03 09 08 07 
>< 02 01 03 09 08 07 
11 02 fO 03 09 08 07 
01 02 10 03 09 08 07 
>< 02 10 03 09 08 07 
11 02 10 03 09 08 07 
11 02 10 03 09 08 07 
01 02 10 03 09 08 07 
11 02 10 03 09 08 07 
11 02 10 03 09 08 07 
11 02 10 03 09 08 07 

4-592 

PegeSlze 

512 
.512 
1024 
512 
512 
1024 
1024 
512 

2048 
1024 
1024 
2048 
2048 
1024 

04 03 02 01 

Ws Ws Ws 
Ws Ws Ws Ws 
Ws Ws Ws Ws 
Ws Ws Ws 
Ws Ws Ws Ws 
Ws Ws Ws 
Ws Ws Ws Ws 
Ws Ws Ws 
Ws Ws Ws Ws 
Ws. Ws Ws 
Ws Ws Ws Ws 
Ws Ws Ws. 
Ws Ws Ws Ws 
Ws Ws Ws 

Bs 
02 01 00 01 

06 05 04 >< 
06 05 04 >< 
06 05 04 >< 
06 05 04 11 
06 05 04 11 
06 05 04 >< 
06 05 04 1.1 
06 05 04 1.1 
06 q5 04 >< 
06 05 04 >< 
06 05 04 11 
06 05 04 >< 
06 05 04 >< 
06 05 04 13 

00 

00 
>< 
10 
>< 
>< 
10 
>< 
>< 
12 
>< 
12 
12 
>< 
12 
12 



82309 

Typically, zero wait state pipelined page hit perform­
ance .can be achieved at 16 MHz using 100 ns or 
120 ns DRAMs, resulting in an aggregate of 0.5 to 
0.8 wait states on average. The same DRAMs at 
20 MHz will yield 1 wait state page hits. 

At power-up, the 82309 Address Bus Controller 
samples its memory address bus to determine the 
desired system configuration. (This operation is de­
scribed in detail later in the data sheet under "MAD 
BUS RESET CONFIGURATION".) The three config-

uration switches, CO, C1 and C2 are used to select a 
specific performance level as measured in page hit! 
page miss wait states. DRAM selection involves not 
only selecting a DRAM, but also choosing delay line 
taps to control the sequence of DRAM control sig­
nals, and then choosing the performance level that 
can be reliably supported using a particular DRAM 
and set of delay line taps. The next several pages 
describe all the available configuration options, and 
following this is a DRAM/Delay Tap selection guide 
along with some sample calculations. 

Table 2 82309 ABC Configuration and CPU Performance(3) 

(1) 

(1) 

(1) 

NOTES: 

Conflg Inputs 

CO C1 C2 

0 0 0 

0 0 1 

0 1 0 

0 1 1 

1 0 0 

1 0 1 

1 1 0 

1 1 1 

Plpellned 
Read 

Hit Miss 

0 2 

0 3 

0 4 

1 4 

1 5 

1 6 

1 7 

2 7 

Plpellned Non-Plpellned Non-Plpellned Reference 
Write Read Write Figures 

Hit Miss Hit Miss Hit Miss 

1(2) 2 1 3 1 (2) 3 1,4 

1(2) 3 1 4 1 (2) 4 1,4 

1(2) 4 1 5 1(2) 5 1,4 

1 4 2 5 2 5 2,5 

1 5 2 6 2 6 2,5 

1 6 2 7 2 7 2,5 

1 7 2 8 2 8 2,5 

2 7 3 8 3 8 3,5 

1. These three configuration options feature OWS pipelined page read hits: Strapping for dne of these directs the ABC to 
determine whether a cycle is a page hit or miss, and to generate CAS # one SCLK phase earlier then the other options. 
Hence, these options are only supported at 16 MHz. 
2. Note that both pipelined and non-pipelined write page hits run 1 WS in these three configuration options. 
3. The ABC completely controls the wait state counts in memory cycles according to this table via its FCES# output. The 
BC can however, (via its WS# strap) insert an additional wait state beyond those stated above in memory reads. (The WS# 
strap is intended for cache systems, which typically require additional data setup.) 

4-593 

k 
I ! 
!I 
I, 

I 



PADSH 

PRDYI~ 

fCESH 

CASH 

WE 

fCES# rlRED NON-CAUSALLY 
(BEfO.RE HIT/II1ISS OUTCOIl1E IS KNOWN). SO 

BOTH SPECS T20A AND T20B APPLY 

NOTE: 

DE-ACTIVATE FCES# 
SINCE II1EII1 WRITES 
CANNOT RUN "WS 

PIPELINED 

ACTIVATE· FCES# TO 
END WRITE (FCES# IS ·FIRED 

CAUSALLY HERE, SO ONLY T20A 
APPLIES.) 

EVEN THOUGH THIS IS.A T2P STATE, 
THE ABC DOES NOT SEE A NEW ADDRESS, 
II1ADE24, OR. t.t!IOHUNTIL THE NEXT T2P, 

SINCE THE BC DOES NOT OPEN THE 
TRANSPARENT CHANNEL ADDR LATCH UNTIL THE 

BEGINNING OF THE LAST STATE OF A 
NON-BROADCAST DRAt.t CYCLE. 

82309 

ACTIVATE FCES# (NON-CAUSALLY), SIN~E 
WRITES CAN RUN 1 WS NON-PIPELINED 

290188-2 

Once the ABC fires FCES# to terminate a DRAM cycle, it remains active until the ABC detects the actual CPU end of 
cycle via the PRDYI # input. This allows the BC or any other external device to extend DRAM cycles if desired. 

Figure 1.0/2,0/3,014 Page Hits 
(Cycles Named According to Pipelined Read Performance) 

4-594 



RO 

TI T2 T2P 

PADS, -N-vr ~: 
PRDYI# : : , , , 
feES, , : 

, , CAS# 

, 
WE 

RO 

TI T2 T2 

PADS, -rL~ 
PRDYI# 

feES, 

\ 

WE 

82309 

RO WR RO IDLE 

T2P TIP T2 T2P TIP T2 T2P TIP T2 T21 TI TI 

II : I~ i! ''"+-~! 
, , '"+-, , , ' , 

: 
IU-~! It+-Ji U-Ji : it+-'.I! : 

: : 
If: ~: , 'rt-\: irt-~: : I: , 

: : : : , : : 
: Ir:--~: : I: ~ It \: : I: 
: : : , , , 

: , , , 
\ : 

, 
: I: , , : : 

Figure 2.1/4,1/5,1/6,117 Page Hits 
(Cycles Named According ,to Plpelined Read Performance) 

RO WR 

T2P T2P TIP T2 T2P T2P TIP T2 

\ I \ II 

L 1 L~ 

\ II \ II \ 

lr\ II \ 

II 

Figure 3. 217 Page Hit 

4·595 

T21 T21 TI TI 

ILl 

L~ 

11 

II 

1\ 

1 
WE TRANSITIONS BACK 
TO ITS DEfA.ULT STATE 

(SETUP FOR A RO CYCLE) 

, 

I 

T2 

T2 

J: 
, 

, 

, 

I : 

WR 

T2 

WR 

T2 T2P 

, '~ V 
: t+-If 

\ : r 
: 

~ If , 
, \. , 

290188-3 

T2P T2P 

1\ if 

ILl 
1\ I 
i\ ':" I 

290188-4 

" ji 

I 
, ' 
I,: ., 



~IIDW~OO©rg OOOIF@OOIMl.Q'~ 
" "f~ , 

NON-PIPEUNED WRITE PIPELINED READ 
" 

TI T2 12P 12P ,12P 12P TIP 12 T2P 

" PAOS# ,"" ~ \ ;" 1\ i, " r , , ' I : , , , , , , ' , , , , , , , , , , , , , , , 
I~ ~"i 

, , , , , , , , , , , , , , , , 
I : 

" ; , , , " , " , , , 
PRDYI# 

I~ " \: " 

, 
IIIHI • , , , , , 

" 
, , , FCES, 

, , , , , , 
:It A..J , , , , 1 ' (Ai , , , , :\ , , , , 

') , , , 
" 

~ 
, , , 

.1K , 

OSTB 

RAS 

DLY3 , , 

\ 
, , , " " , , 

H·:' :" , 
, , , , , , 

MAD xx ]( \ ROW 

DLY2 

CAS, 

CPU 
DMA 

CHANNEL 
ADOR 

, , , 
" 
" , 
, , , , 
I 

..:~ 
~p. - , - ' X, - , , 

, 

\-r , , , 
, ," , , 
, , , , , , , , 

" 
, , , , , , , 

, , , , 
, , , , 
, , 
, , , , 

FCES# IS FIRED NON-CAUSALLY 
IN ANTICIPATION OF A HIT. BUT IS 

THEN NEGATED ONCE THE HIT/MISS 
OUTCOME IS KNOWN. 

, , 
, , , , 
, , , , 
, , , 
I 

, , 
, 
'" , 
, , 

, , , 
I 

, , , , , 
, :\ 

, 
: I , , , , , , , , 

" , , , , , , 
: I ," 

" :\ , , , , , , , , , , , , , , 
I: 

, , 
I' , , 

, ' 
, 

" , , , , , , .. , , ,. , • 
~: 

, , 
I: , , , , , , , , , , , I( 

xYx i COLUMN ROW 

i , , , , , , , 

!'-f.tD 
, 

" 
, , 

I , , , , , 
:( 

, , , , , , , , 

:' H-J ': 
, , , , , , , , , , , 

\ ! 
, , , , , , , , , , , , , 

" 
, , , , , , 

} 
, , , , -.. - -~--, , , , , , , , " , 

, X, , , 
, , , , , , , , 

I 
WHEN STRAPPED FOR B/2.B/3.OR 8/4: 
THE HIT/MISS DECISION IS MADE AT THE 

PHASE 2 SCLK EDGE IN THE MIDDLE 
OF EITHER TIP OR THE FIRST 12. THE 

EQUIVALENT DECISION POINT FOR ANY OTHER 
STRAPPING IS ONE SCLK PHASE LATER. 

12P 

, , 
, 

" , , , , 
1\ : 

, , 
, , , , 
, , , , , 

, 
" , , 
I: , , 

* " 

:'1 
" , 
, , , , , , , 
, , ' 

" 1 - .. -, , , 
, 
, , 

12P 

fr , , 
, , r \..i-
" , , 

Ir , , 
, , 
, , , , 
, , , , , 

.~ r-, , , 
, , 

COLUMN ,>6r -, , , , 
, , 

~ r 
~~ :r-
~ -X, 
~ -: 

} 
THE BC LATCHEs THE CHANNEL ADDR 
(VIA ITS SAL OUTPUT) AND HOLDS IT 
UNTIL THE BEGINNING OF THE LAST 
CYCLE STATE. HENCE. THE ABC ONLY 
EFFECTIVELY SEES ONE STATE OF 
PIPELINED ADDR. EVEN THOUGH THE 
CPU EXECUTES MULTIPLE 12P STATES. 

290188-5 

Figure 4. 0/2, 0/3, 0/4 Page Misses (Diagram Depicts 0/3 Operation. 
In 0/2, FCES# Fired One State Earlier. In 0/4, FCES# Fired One State Later.) 

4~96 



Q 

~ 
IX 
Q ... 
~ ... 
0.. 
0:: 

... 
t: 
IX 
~ 
Q ... z 
::; ... 
0.. 
0:: 
I z 

0 
Z 

82309 

L... ~L... L 
0.. j J ~ z 

:IE 
::> 
...J 

0.. 8 
~rr N ... --

0.. "1 r::! 
~ 

0.. 
N -- \:~ ... .--

~ 
IX 

N -... 
...... 

N 

~ 
... 

r-"'" r-"'" 
0.. ~ t= --. -., -. .--
0.. j r::! ~ z 

:IE 
::> 
...J 

0.. 8 
N ... 

~ .-- ./ 

0.. r N ... 
~ 

t \~ 0.. 

r::! .-- ~ 
IX 

N -... 

N T ... 
.e:" r-"'" r"><' 

........... r-- ./ 

~ N ... -., -. 
t=j ~ 

~ 
I pc:;, 

g 
Q 

Figure 5.1/4,1/5,1/6,117,217 Page Misses (Diagram Depicts 1/5 Operation. 
FCES# Is Fired One State Earlier in 1/4 Operation, One State Later In 1/6 

Operation, and Two States Later In Either 117 or 217 Operation.) 

4-597 

-. 

7 

!"I 
I 
I 



",' 

82309 

DRAM AND DELAY LINE TAP SELECTION 
This chapter illustrates the methods that should be used to determine the delay line taps for a given DRAM, 
and the number 0.1 wait states a given DRAM will require. 

The Flow ,Chart below should be used to select a DRAM/Delay line tap combination that meets the perform­
ance requirements of a system. 

CHOOSE SYSTEM FREQUENCY AND USE OF CACHE 

CHOOSE THE DESIRED PAGE HIT/MISS 
PERFORMANCE FROM TABLE 2 

SELECT A DRAMjTAP COMBINATION THAT MEETS THE 
, ABOVE REQUIREMENTS 

USING PHASE COUNTS DERIVED FROM 
TABLE: 3, VALIDATE THE DRAM SELECTION 

USING EQUATIONS 7 &: 8' 

'IF THE DRA~ DOES, NOT MEET THE REQUIREMENTS 
EITHER CHANGE THE CHOICE OF DRAMS AND 

RECALCULATE f- 8, OR CHANGE THE PE:RFORMANCE 
EXPECTATIONS 

IF THE DRAM MEETSJHE REQUIREMENTS BY A LARGE 
MARGIN A SLOWER DRAM, COULD 8E USED OR THE 
PER~ORMANCE£XPECTATIONS ,CAN BE INCREASED 

4-598 

290188-7 



inter 82309 

DELAY LINE TAP SELECTION 

Function of the 4 Delay Line Taps 

DLY1- Guarantees max. DRAM data from CHRDY 
on Micro Channel 

DL Y2- Guarantees the minimum RAS to CAS de­
lay and DRAM address setup to CAS 

DLY3- Guarantees min. RAS# precharge time 

DLY4- Guarantees min. address hold to RAS# 

Simplified DRAM Tap Selection 
Equations 

DL Y1 is the maximum of the following: 

80386 System-

Trae (Max) - 10 

Tred (Min) + Teae (Max) 

(1a) 

(1b) 

Tase (Min) + Trah (Min) + Teae (Max) + 20 (1c) 

80386SX System-

Trae (Max) - 25 (1a) 

Tred (Min) + Teae (Max) -15 (1 b) 

Tase (Min) + Trah (Min) + Teae (Max) + 5 (1c) 

DL Y2 is, the maximum of the following: 

Tred (Min) + 10 

Tase (Min) + Trah (Min) + 30 

DL Y3 = Trp (Min) 

DLY4 = Trah (Min) + 10 

(2a) 

(2b) 

(3) 

(4) 

DRAM Access Time Calculations 

Two access time parameters have been derived, 
one for hits (Th) and one for misses (Tm). These are 
the time from the decision to start a DRAM access 
to the time that data is available to the motherboard 
CPU. 

Th = Teae (Max) + K1 (5) 

Tm is the maximum of the following: 

DL Y3 + Trae (Max) + K2 
(RAS Path Limited) (6a) 

DLY3 + DLY2 + Teae (Max) + K3 
(CAS Path Limited) (6b) 

The constants K1, K2 and K3 in equations 5 and 6 
are simply a sum of all the propagation delay ele­
ments in the appropriate data access path including 
capacitive load derating: 

K1 - ABC CAS # DLY + CAS# BUFFER DLY 
- (T41 A) (INCLUDE DERATE) 

+ DATA BUFFER DLY = 445 
('F657) . 

K2 - ABC DSTB DLY + NORGATEDLY 
- (T32E) (' AS02) 

+ ABC RAS DL Y + RAS BUFFER DL Y 
(T32G) (INCLUDE DERATE) 

+ DATABUFFERDLY = 79 
(,F657) 

K3 = ABC DSTB DL Y + 2X NOR GATE DL Y 
(T32E) (,AS02) 

+ ABC CAS# DL Y + CAS# BUFFER DLY 
(T34) (INCLUDE DERATE) 

+ DATA BUFFER DLY == 815 
(,F657) . 

(See Figure 6 for a diagram of the timing model 
used.) 

4-599 

, , 

i 

I 

" 

.". 



82309. 

ABC 

DLY3 r-T----;:=:;;:L=-~-., 

DSTB ,----.. _, 

DLY2!+--------.J 

DLY1!+---------' 

DLY4!+----------...J 

CASH r--::f) __ ---.J 
DRAM 

DATA 
BUFFER 

Figure 6. DRAM Timing Analysis Model 

CPU 

290188-8 

Tables 2 and 3 define the number of DRAM wait states that the motherboard CPU will see for all combinations 
of the configuration bits CO, C1 and C2. 

Table 3. Configuration and DRAM Calculation Clock Phase Counts 

Config Inputs 

CO C1 C2 

o o o 
o o 
o o 
o 

o o 
o 

o 

NOTES: 

SCLK 
Phases 

PH Pilii 

3 7 

3 9 

3 11 

4 10 

4 12 

4 14 

4 16 

6 16 

PH, PM Definition Examples 
CO,Cl,C2 = 001 

r- PH =3l 
, , , ,--t+-H' T2 I T2P 

cml: ~I:V 

OSTB 

CO,Cl,C2 = 011 

CASH 

DSTa 

I Tt I T,21 Tt I T,2 I T~P I 
~I~' ........... :"W,//,NI i I I, I 
1-1 ----Pw=10----' -II 

290188-9 

1. The phase counts are from the clock edge that either fires CAS# (Hit) or fires OSTB (Miss) to the end of cycle, as 
shown above. 
2. Cache systems typically require additional read data setup. The BC WS# (Wait State) strap inserts an additional wait 
state into system board memory reads, and can be used to accommodate this increased setup if required. If WS# is tied 
low, then the phase counts above all increase by two. 

4-600 



82309 

Validation of DRAM Selection 

After Th and Tm have been C!llculated the perform­
ance expectations of the DRAM Can be checked. 

First the number of clock phases both hit and miss 
DRAM cycles are allowed are calculated. For Con­
figurations 0, 1 & 2 this is 2 x the number of non­
pipelined, waitstates '+ 1. For other Configurations 
this is just 2 X the number of non-pipelined wait­
states. The phases for hits are called Ph, Pm for 
misses. 

The following equations must then ,be satisfied: 

Ph/(2*Clk Freq.) - Th - CPU Data setup ~ 0 (7) 

Pm/(2*Clk Freq.). - Tm - CPU Data setup ~ 0 (8) 

Two examples of Delay Line Tap Selection' and 
DRAM Performance Verification are given below, 
one for an 80386 system and one for an 80386SX 
system. ' 

Sample calculation-80386 20 MHz 100 ns 
DRAMs 1/5 Performance 

Target Drarn 

Key Specs (ns) 
Trac 100, 
Trp 80 
Trah 15 
Trcd 25 
Tasc 0' 
Tcac 35 

Delay LIne Calculations 

DLY3 = Trp = 80 ns 

DLY4 = Trah + 10 = 15 + 10 = 25 ns 

DLY2 = Tred + 10 = 25 + 10 = 35ns 
or 

= Tasc + Trah + 30 = 0 + 15 + 30 = 45 ns 

Page Hit Access Time & Performance 

Th = Teae + 44.5 
= 35 + 44.5 = 79.5 ns 

80386 Data Setup Time = 10 ns 

1 Waitstate Margin (Pipelined) 

Ph/(2'ClK Freq.) - Th - 386 Data Setup = 100 - 79.5 - 10 
= 10,5 ns 

Page Miss Access Time & Performance 

Tm is the maximum of EON 6a and 6b. 

or 

Tm = DLY3 + Trae + 79 
= 80 + 100 + 79 = 259 

Tm = DLY3 + DLY2 + Teac + 81.5 
= 80 + 45 + 35 + 81.5 = 241.5 

5 Waitstate (Pipelined) Margin 

Pm/(2' ClK Freq.) - Tm - 80386 Data Setup = 300 - 259 - 10 
= 31 ns 

Sample Calculation-80386SX 16 MHz 100 ns 
DRAMs 

0/3 Performariee 

Only Dl Y1 changes 

,DLY1 = Trae - 25, = 100 - 25 = 75 OS 

Delay LIne Summary 

DlY1 75 
DlY2,45 
DlY3 80 
DlY4 25 

Page Hlf Access'Tlme & Performance 

Th = Teae + 44.5 
= 35 + 44.5 = 79.5 

80386SX Data Setup = 5 ns 
DLY1 = Trae - 10 = 100 '7 10 = 90 ns 

or 
= Tred + Teae = 25 + 35 = 60 ns 

or 

o Waitstate Margin (Pipelined) 

= Tase + Trah + Teae + 20 
= 0 + 15 + 35 + 20 = 70 ns 

Delay LIne Summary 
DlY1 90 
DlY2 45 
DlY3 80 
DlY4 25 

Ph/(2' elK Freq.) - Th - 80388SX Data Setup > - 0 
93.75 - 79.5 - 5 - 9.25 ns 

4-601 



82309 

Page Miss Access Time & Performance . 

Tm = 259 

(Same as for 20 MHz 386 Case) 

3 Waitstate Margin (Pipelined) 

Pm/(2' elK Freq.) - Tm - 80386SX Data Setup> = 0 
281.25 - 259 - 5 = 17.5 ns 

MAD BUS RESET CONFIGURATION 

The ABC samples the MAD bus at the falling edge of 
RESET to determine system configuration as 
shown: 

Table 4 

MAD Bus Bits Options 
10 9 8 7 6 5 4 3 2 1 0 

0 0 256KDRAMs 

0 1 1M DRAMs 

1 1 4M DRAMs 

0 32 Bit Memory 
0.0 

1 16 Bit Memory 

0 SS1 = 0 

1 SSt = 1 

0 0 Invalid 

0 1 Single Bank 

1 0 Two Banks 

1 1 Four Banks 

0 Reserved 

1 Normal Mode 

0 C2 = 0 

1 C2= 1 

0 C1 = 0 

1 C1 = 1 

0 CO =0 

1 CO = 1 

0 SS2 = 0 

1 SS2 = 1 

NOTES: 
1. When either MAD09 or MAD10 is sensed as a zero, it's 
output driver.is tri-stated, thus allowing these two pins to 
be tied directly to ground. ~or example, i.f 1 M DRAMs are 
used,' MAD1 0 should be tied to ground, since 1 M DRAMs 
only require use of bits 0-9. Moo9 should be lightly pulled 
up (-10K) .. 
2. For MAD bits 0-8, any bit that is to be sensed as a one 
should be lightly. pulled up. Any bit that is to be sensed as 
a zero must be driven low by a tn-state driver that is active 
while theABC RESET.inpu\is active; and then tri-stated 
from the falling edge of RESET, as depicted in th~ figure: 

ABC 

MADX 1-----.... --1 ~O--. TO DRAM 

RESET 

SYSTEM 
RESET 

290188-.10. 

3. MAD4 sensed as a 0 is a reserved state. This bit should 
be lightly pulled up. 
4. MADO is typically configured low for an 80386 system, 
and high for an 80386SX system. 
5. MAD1 and MAD8 are respectively the system select bits 
881 and 882. These bits determine the definition of ABC 
ports EO, E1 and 103, as described in the. section on. ABC 
ports and registers. 
6. MADS, MAD6 and MAD? are respectively the DRAM 
performance select bits C2, C1 and CO. The effect of these 
bits is described in the DRAM control section. 

4-602 



inter 82309 

82309 Address Bus Controller Pin Definitions 

Signal Pin I/O Description Name Number 

A<00:23> 42-50, I Micro Channel Address 0 to 23 
53-67 

HIMEM# 84 I Micro Channel Address 24 to 31 = FF (Active Low). Used in 
decoding the top-of-memory mapping of the BIOS EPROMs. 

MADE24 85 I Micro Channel Address 24 to 31 = OO(Active High) 

ROMEN# 32 0 EPROM Decode. In systems that support shadow RAM, if ROM is 
enabled (bit 1 in port E1), accesses to ROM space actually generate 
both ROMEN # and RAMEN #. In this mode, reads are from ROM, 
and writes are to RAM. 

RAMEN # 33 0 DRAM Decode 

10EN# 34 0 Motherboard lID devices decode (Active Low). Decode also 
includes memory decode of video RAM. 

LCSCS# 35 0 Chip Select for the LCS (82306) Chip (Active Low). Decodes address 
range 0-3FFH when CPU master, or 100-3FFFH when CPU is not 
master . 

VMSEL# 36 0 . VGA Memory Space Selected (Active Low) (OOOAOOOO-OOOBFFFF) 

SO# 89 I Micro Channel SO # Signal 

S1# 90 I Micro Channel S1 # Signal 

PM/IO# 41 . I Microprocessor M/IO# Signal 

PW/R# 91 I Microprocessor W IR # Signal 

PD/C# 92 I Microprocessor D/C# Signal 

PADS # 93 I Microprocessor ADS # Signal 

SCLK 94 I Microprocessor CLK2 

HLOA 95 I HLDA Signal from the Processor 

PRDYI# 96 I READY # Signal from the Processor 

MIIO# 86 I Micro Channel M/IO# Signal 

CMD# 87 I Micro Channel CMD Signal 

4-603 



82309 

82309 Addre888u8 Controller Pin Definitions (Continued) 

Signal Pin 
1/0 De.c;rlptlon 

Name Number 

WE 73 0 DRAM Write Enable Signal (Active High) 

RAS<0:3> . 76,..79 0 DRAM RAS Strobes (Active High) 

CAS # <0:3> 80-83 0 DRAM CAS StrQbe Enables (Active Low) 

MAD<00:10> 17"';23, B DRAM Muxed Aifdretls bus. These signals are sampled at reset to '. 
27-30 determine ABC configuration. 

DSTB 70 0 Outputto ,Delay Lirie. A pulse put into the delay line controls page 
miss timing. . 

DLY<1:4> 12-14,71 I Inputs from the Delay Line. DL Y1 controls CHRDY timing in non-CPU 
cycles. DL Y2 controls RAS active to CAS active timing. DL V3. . 
controls RAS precharge, and DL Y 4 controls row~to-column address 
. multiplex . 

CHRDY 72 0 . DRAM Ready Signal (Active High) 

REFRESH # 15 I Refresh. Operation in Progress (Active Low) 

FCES# 31 0 Request to BC to terminate CPU accesses to system board memory. 

TINCLK 40 I 14.3 MHz Clock for Refresh Timer 

RFRQ# 37 0 Refresh Request (Active tow) 

TMRCLK 39 0 14.3 MHz Clock di\lidedby 12. to get 1.19 MHz. 

FRQ# 68 0 Asynchronous Cache Flush Request. Activated in I/O writes to ports 
EO, E1, or 100-107. (PQS Address Space). .. . 

EXEN# 69 0 Read/Write Strobe for Ports 00EQ-00E7 (Active Low) 

ERS 8 I Sampling Strobe for Ports 00E2-00E7 

PD 9 I Select Signal for P~S Register 10X 

ARBlGNT# 10 I Micro Channel ARB/GNT# Signal 

D<0:7> 97-100, I/O Data Bus 
3-6 

PCE# 7 0 Enable Parity Checking (MER <0» 

RESET 11 I Synchronous reset input. RESET falling edge used to synchronize 
ABC internal clock to CPU phase. 

NC 1,25, No Connect 
51,52,75 

Voo 26,28 Power 

Vss 2,16,24, Ground 
38,74 



inter 

NOTE: 

Ne 
Vss 
04 
05 
06 
07 

peEN 
ERS 

PO 
ARB/GNT# 

RESET 
DLYI 
DLY2 
DLY3 

REFRESH# 
Vss 

MADOO 
MAD01 
MAD02 
MAD03 
MAD04 
MAD05 
MAD06 

Vss 
Ne 

NC = No Connect 

82309 

4·605 

NC 
VSS 
WE 
CHRDY 
DLY4 
DSTB 
EXEN# 
FRO# 
A23 
A22 
A21 
A20 
A19 
AlB 
A17 
A16 
A15 
A14 
A13 
A12 
All 
Al0 
A09 
Ne 
Ne 

290188-11 



82309 

82309 PARAMETRICS 

ABSOLUTE MAXIMUM RATINGS· 

Case Temperature under Bias. , .. -40·C to + 85·C 

Storage Temperature .......... - 65·C to + 150·C 

Voltage to Any Pin with 
Respect to Ground ....... -0.3Vto (Vee+0.3)V 

DC Supply Voltage (Vee> ......... -0.3V to + 7.0V 

DC Input Current ....................... ± 10 mA 

D.C. CHARACTERISTICS 
Te = O·Cto +70·C, Vee = 5V ±10% 

Symbol Parameter 

VIL Input Low Voltage 

VIH Input High Voltage. 

VIL Input Low Voltage 

VIH Input High Voltage 

VOL Output Low Voltage 

VOH Output High Voltage 

lee Power Supply Current 

III Input Leakage Current 

loz Tri-State Output Leakage Current 

• Notice: Stresses above those listed under "Abso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and' 
functional operation of the device at these or any 
other conditions above those indicated in the opera­
tional sections of this specification is not implied. Ex­
posure to absolute maximum rating conditions for 
extended periods may affect device reliability. 

NOTICE- Specifications contained within the 
following tables are subject to change. 

Min Max Units Conditions 

0.8 V 

2.0 V 

0.8 V SCLK 

Vee - 0.8 V SCLK 

0.4 V 10L = 4mA 

2.4 V 10H = 4mA 

180 mA No DC Loads 

±10 p.A Vss < VIN < Vee 

±10 p.A Vss < VOUT < Vee 

4-606 



82309 

82309 ADDRESS BUS CONTROLLER A.C. SPECS 
Te = O·C to +70·C, Vee = 5V ± 10% 

lSymbol Parameter 

T1 SCLKPERIOD 
T2A SCLK HIGH/LOW TIME (50%) 
T2B SCLK HIGH/LOW TIME (90%) 
T3 RESET SETUP 
T4 RESET HOLD 
T5A STATUS SETUP TO SCLK 
T5B CMD# SETUP TO SCLK 
T6 PADS#,PW/R#,PD/C#,PM/IO# SETUP 
T7 PADS#,PW/R#,PD/C#,PM/IO# HOLD 
T8 ADDRESS,MIIO # ,MADE24,REFRESH # SETUP 
T9 ADDRESS,M/IO # ,MADE24,REFRESH # HOLD 
T10 ADDRESS, MIIO# SETUP 
T11 ADDRESS, M110# HOLD 
T12 MADE24 SETUP 
T13 MADE24 HOLD 
T14 M/IO# ,ARB/GNH SETUP TO ERS 
T15 MIIO#,ARB/GNT# HOLD FROM ERS 
T16 PRDYI # SETUP 
T17 PRDYI# HOLD 
T18A ROMEN # ;RAMEN # ,IOEN # ,VMSEL# 

DL Y FRM MADE24 HIMEM # 
T18B ROMEN# ,RAMEN # ,IOEN # ,VMSEL# 

DLY FRMADDR 
T18C ROMEN # ,RAMEN # ,IOEN # ,VMSEL # 

DLYFRMA20 
T19 LCSCS# DELAY 
T20A FCES # DELAY FROM SCLK 
T20B FCES# DLY FRM ADDR, M/IO#, MADE24 
T21 PO SETUP TO CMD# t 
T22 WRITE DATA SETUP 
T23 WRITE DATA HOLD 
T24 READ DATA VALID DELAY 
T24A CMD# J, TO READ DATA LOW-Z 
T25 READ DATA FLOAT DELAY 
T26 EXEN# DELAY (INACTIVE) 
T26A EXEN # DELAY (ACTIVE) 
T27A CHRDY DELAY (FROM ADDR) 
T27B CHRDY DL Y FROM STATUS OR CMD# 
T29 TMRCLK HIGH/LOW TIME 
T30 RFRQ# PULSE WIDTH 
T31 TINCLK HIGH/LOW TIME 
T32B CMD # t -RAS J, (REFRESH CYCLE ONLY) 
T32C CMD# t-CAS# t 
T32E SCLK-DSTB J, 
T32F OL Y3 t -DSTB t 
T32G DLY3t-RASt 
T321 SCLK-RASJ, 
T33 DLY1 J, TO CHRDY t 
T34 DLY2 J, TO CAS # J, 

4-.607 

Kit 16MHz 

Min Max 

31.25 
12 
8 
10 
4 
11 
11 
25 
4 
10 
10 
40 
30 
32 
30 
20 
10 
18 
3 
2 30 

2 38 

2 35 

2 45 
3 45 

50 
100 
30 
5 

200 
25 
2 35 
2 50 
25 150 
2 50 
0 33 

300 
300 
21 
0 55 
0 38 
4 27 
0 50 
4 26 
8 40 
5 30 
3 27 

Kit 20 MHz Kit 25 MHz 

Min Max' Min Max 

25 20 
10 8 
6.5 6 
10 10 
4 4 
11 8 
11 8 
22 13 
4 4 
10 10 
10 10 
50 36 
30 30 
40 28 
30 30 
20 20 
10 10 
18 15 
3 3 
2 30 2 30 

2 38 2 38 

2 35 2 35 

2 45 2 45 
3 35 3 30 

100 100 
30 30 
5 5 

200 200 
25 25 
2 35 2 35 
2 50 2 50 
25 150 25 150 
2 50 2 50 
0 33 0 33 

300 300 
300 300 
21 21 
0 55 0 55 
0 38 0 38 
4 27 4 27 
0 50 '0 50 
4 26 4 26 
8 40 8 40 
5 30 5 30 
3 27 3 27 

CL(PF) 

75 

75 

75 

75 
25 
25 

75 
75 
75 
50 
50 
50 
50 
50 
50 

75 
75 
50 
50 
75 
75 
50 
75 

Notes 

1 
1 

3 
3, 12 

3 
3, 12 

15 

15 

5 
2,5 

4,5,7 
4,5,7 

10 

8 

8 

, 

I 

I 

I" I.:; 

~ 



82309 

82309 ADDRESS BUS CONTROLLER A.C. SPECS (Contfnued) 

Symbol Parameter 
Kit 16MHz Kit 20 MHz Kit 25 MHz 

CL(PF) Notes 
Min Max Min Max Min Max 

T35 CMD# t TOCAS# t (WRITE CYCLES ONLY) 25 115 25 115 25 115 75 6 
T39A WE DL Y FROM STATUS 2 30 2 30 2 30 75 . 14 
T398 WE DL Y FROM CMD# t 2 30 2 30 2 30 75 14 
T41A CAS # t DELAY FROM SCLK (READS) 2 30 2 30 2 30 75 \ 

T418 CAS # t DELAY FROM SCLK 5 34 5 34 5 34 75 9 
T41C CAS# t DELAY FADM SCLK (WRITES) 2 38 2 38 2 38 75 
T43A AD DR TO MAD DELAY (COLUMN ADDR) 45 45 40 75 13 
T438 SCLK TO MAD DELAY (COLUMN ADDR) 36 .36 31 75 13 
T43C CMD# TO MAD DELAY (COLUMN ADDR) 38 38 38 75 13 
T43D SCLK TO MAD DELAY (ROW ADDR) 50 50 50 75 13 
T44 WE DELAY FROM SCLK 2 42 2 42 2 42 75 
T45 DLY4t TO MAD 6 32 6 32 6 32 75 
T46 MAX PAGE MODE RAS ACTIVE 15/Ls 15/Ls 15/Ls 10, 11 

NOTES: 
1. Status and CMD # are asychronous inputs. T5 simply guarantees that they are recognized at a particular clock edge. 
2; FCES# is speced from address only in OWS pipelined/lWS non-pipelined memory cycles, which are only supported at 
16 MHz. 
3. Address, M/IO# and MADE24 setup and hold times are speced relative to the Phase 2 SCLK edge only in OWS pipe­
lined/lWS non-pipelined memory cycles, which are only supported at 16 MHz. (This Phase 2 edge is in the middle of the 
first T2 state, or the middle of the T1 P state.) 
4. The 82309 de-activates CHRDY for motherboard 110 and VGA Memory cycles (as decoded by IOEN#), and then re-acti­
vates it when CMD# is activated. The 82309 also de-activates CHRDY for non-CPU (DMAor channel master) accesses to 
motherboard DRAM that are decoded as page misses. CHRDY is then re-activated according to the appropriate external 
DRAM control delay line tap (DL Yl), or else when CMD" is activated, whichever comes later. 
5. FCES# is used to terminate CPU accesses to motherboard DRAM, as these cycles are not broadcast on the Micro 
Channel. CHRDY is used to terminate DMA and channel master accesses to motherboard DRAM, which are broadcast. 
6. The large value for T35 (Min) guarantees that data being written into motherboard DRAM by a channel master or DMA 
controller has adequate time to propogate through the data buffers between the channel or DMA and memory. T35 (Min) is 
guaranteed on any non-CPU write, both page hit and paQe miss. (The Micro Channel specs ONS of data setup to CMD# 
active.) T35 (Max) applies only when CMD# J. -to-CAS # J. is indeed the limiting spec; specifically, when neither T34 (Max) 
norT41A (Max) limits CAS# activation. 
7. The 82309 guarantees that any time it de-asserts CHRDY, it will net re-assert it until after CMD# is activated. 
8. These specs are referenced with respect to the causal SCLK edge, which differs in different frequency systems. At 
16 MHz, the appropriate edge is one clock phase after the edge that recognizes status in non-CPU cycles, or one phase 
after the edge that samples PADS# active in CPU cycles. At 20 MHz, the appropriate edge is two clock phases after these 
events. The 82309 distinguishes 16 MHz from 20 MHz via the memory performance configuration inputs CO, Cl and C2. 16 
MHz is assumed anytime these inputs indicate a zero wait state pipelined read page hit. (CO, Cl, C2 = 000,001,010). 
9. This spec insures a minimum CAS# high time of 25 ns at 16 MHz. (16 MHz is the worst case since the CAS" inactive 
and CAS# active SCLKedges are only one phase apart. At 20 MHz, these edges are always at least two phases apart.) 
10. Refresh cycles are RAS only, and are forced to b~ page misses. Thus, the refresh interval (typically 15 /Ls) defines the 
required page mode RAS active time. RAS is de-activated at the end of a refresh cycle since typical page mode DRAMs 
spec a maximum RAS active timeless. than 15. /Ls for refresh ~ycles. (Note that the first access to any bank following a 
refresh cycle is also a forced page miss.) 
11. Functional spec only ... Not tested. Max page mode RAS active is governed by refresh interval. 
12. T11 and T13 are speced relative to the clock edge that samples the page hit/miss outcome. This edge also is used by 
the 82309 to internally latch the channel address. At 20 MHz, Tll & T13 are speced relative to the end of the first T2 state 
or the end of T1P. Note, however, the large Tll & T13 values in the spec, which seem like they would be difficult to maet 
going directly into a T2P, where the CPU puts out a new address. This is not a problem, however, since tl1e minimum 
memory cycles at 20 MHz run Tl eT2eT2P.T2PenPeT2PeT2P, and the 82308 does not open the transparent channel 
address latch until the beginning of the last T2P, i.e., the 82309 effectively only sees the last T2P in terms of pipelined 
addressing regardless of how many T2P states the CPU actually executes. 
13. T43A, T438, and T43C all rafer to column address, as the 82309 assumes a page hit as the default case until proven 
otherwise. In case of a page miss, the row address is muxed onto the MAD lines from the same cloCk edge that d.e-activates 
RAS and fires a pulse (DST8) into the delay line. The column address is then muxed onto the MAD lines by delay tap DL Y4. 
14. In Non-CPU cycles, WE (active high from the 82309) is simply an inverted version of channel SO#, which indicates a 
write cycle when. low. This signal is internally latched (transparent latch) by the leading edge of CMD #, and then released by 
the trailing edge .of CMD #, hence the need for T39B. 
15. A20 typically has more logic in its path than the other address bits, hence the tighter spec. T188 applies to aliMs 
except A20. 

4-608 



82309 

DRIVE LEVELS AND MEASUREMENT POINTS FOR A.C. SPECIFICATIONS 

LEGEND: 

SCLK[ZV 

~----~Ar-----~ 

t---+--{B 

OUTPUTn • 
VALID 

1.SV OUTPUT n+ 1 
OUTPUTS [ VALID 1 SV 

------~~--~--~~----~--

INPUTS [ 
3.0V ~""''''''---''''--'"'''r+-O~ 

l.SV VALID 
INPUT 1.SV 

290188-12 

A. Maximum Output Delay Specification. Input waveforms have tr ::; 2.0 ns from 0.8V to 2.0V. 
B. Minimum Output Delay Specification. 
C. Minimum Input Setup Specification. 
D. Minimum Input Hold Specification. 

:. T28 
" , 

SCLK / .'\ / , , , , , , 128 , , , : . ,I 
, , , , T2A , T2A , ,. ':. .1 , , 

T1 :. .: 
290188-13 

4·609 

: ~'i 
" 

If 
I 

I 

i 
, 

I 

I ~ 

II 
I 
Ii 



SCLK 

RESET 

t .. 

RF"RQ# \ 
TMRCLK 

: . Ii,: • 

TINCLK 

~ " T31 
.. : ill 

82309 

T4 ' 
--' , , 

T30 

T29 

T31 
Ii: 

4-610 

.: 

~\ , , -' , , 
, --: 

, 
, T3 
:-

.. I 

I 

290188-14 

290188-15 



"" ~ .... 

:--______ ~A .:. ~A .: 

TI T2 T2 T2 T2 

SClK 

OMA STATUS 

CHANNEL STATUS 

101/10#. ADDRESS. X· I X; 
MADE24. HIWEWN, "'. ___ ...;._ 

, ' 

CMD# 

,T8 
I 

T8 , 

REFRESH# ' ~ • I 

T14 

~ 7 

T9 

T9 

TIS 

. T18. T19 ," 
ROMEN#. RAWEN#. : T2S ; 

IOEN#.lCSCS#. T24A ~ 
VIISElI _..: ___ _ 

DATA (RD) ' , 1 I I ------I----:------------~--t---- ~~4~~-----~---~-----f------l-----~-- :: I 124 

DATA (WR) ---~------~----+-------~---;.--<lXXXXXXXXXXXXXxxxxxXXX>q >: 
EXEN, T26A 

127A' \ ! 
.' 

CHRDY : 

T22 I T23 

:-- 126 --;--: 
, ' . 

~ 
1278 ---' 

:. .: ' T27B ' 

T21 
I ~ 

PO IXXOXXXXXXXXXXXX20\XXXXXXXMXXXMMXXXXMMXXX~XXXll VALID 

290188-16 

--:-f 

l 

C» 
I\) 

i 

~ 
©1 
~ 
~ 
@ 
IiiiiI 
=-
~ 
'1iiI 
@ 
a;pJ 

~ 
~ 
~ =-
@ 
~ 



inter 82309 

82309/80386 INTERFACE TIMINGS 

PAGE HIT/MISS PAGE HIT/MISS 
SAtolPt •• E POINT SAMPLE POINT 

AT 1ISMHz AT 20MHz 
(ACOR LATCHED) (ADDR LATCHED) 

selK -nh-nhrLh-rli-LrthrLh-rLh-rLh- ~ 
: TS T1 , I 

PADS, -H I; I I .... I I; I 
'---~ 

f-E--i 
: 
: 

X : X -... -r·.!!.-. .: 
>w/",. PD/e,. PM/IO, 

: TID, T12 , 111. TI3 TID, TU' TlI,T1! 

i r ~ 
TID, T12 TIl, T13 

ADDR. MIlO,. MADE2" f TID, T12 TII,Tt3 : 

PROYI, T20A (MAX) I I I I I 
T20B 

mmm 
: I-' T20A (MIN) : 

reES, I1111111111I 

: T16 '117 

I I 
f208 : 

x ROM EN,. RAW£N# : X x -: 
"0 

290188-17 

NOTE: 
Once the ABC fires FCES#,it remains active until the ABC detects and end of cycle Via itsPRDYI# input. This allows 
the BC or other external devices to extend DRAM cycles if desired. 

ADDRESS, M/IO#, MADE 24 SETUP FOR DMAlMlcro Channel MASTER 

nO,T12 

flO. fl2 

-v ADDRESS.M/ION.MADE2' --"~_ ..... _____ ....;_~_....;._ 

STATUS J::=::i 

SCLK 

. STATUS IS SAMPLED ~ JU ASYCHRONOUSLY.BUTMEETING 
T5A SETUP INS. URES RECOGNITION. 

AT THIS SCLK EDGE 

PAGE HIT/MISS SAMPLE POINT 
AT 16 MHz <CAS# .ACTIVATED IF RD PAGE 
HIT OR RAS DEACTIVATED IF PAGE MISS) 

PAGE HIT/MISS SAM~LE POINT AT 20MHz· . 

4-612 

290188-18 



SCLK 

ADDR J( x= 
STATUS ::::J T5A --. :..-

ADL# 

CMD# 

CAS#(RD) 

, 43A , T43C 
• "'1 I '. .1 

----.. * i * 
! T41A :...---...: ' T32C 
:(20 MHz), : :----: 

---~---i---------'I ' ,...---

MAD 

:.T41A(16MHz)" T35 ' 
, '~ 

CAS#(WR) 

; T39A ; 
T39B 

¥LOW) :. ': 

WE ~, '~~~~~~--------------------------------------------==================:J ' ..wRITE (SO 

READ (SO# HIGH) 290186-19 

I~ o 
:J: 
:I> z 
z 
m 
r-
iii: 

~ m 
::II 

f) 
o m 
~ m en 

! 
m 
:J: 

.3 

l 

CD 
N 
(0) 

~ 

~ 
(§l 

~ zg 
@ 
IiiiiI 

!2 
<liiJ 
© :w 
~ 
~ 
C::J 
c:::I 

© 
zg 



.... 
~ .... 

SCU< .Il..JlJl..flJL , , , , , , 

:::::x :!! x:= , ---.J
TSA

_ 

H: :1 
I 

ADOR 

STAWS 

, ' 

ADl#~' ' ',' " " , 

""D# 

DSlB 

RAS 

DlY3 

DlY4 

.... 
DlY2 

CAS# 

, :' I T35 (WR CYCLES ONLY) 

16t.tHz·' t . , 

20MHZB==::' ' T32f ' 

~~T32E :---'r'---~-----------:""-"";'-------
1 Tl2B 
:-.; 

(INACl1VE If PREVIOUS CYCLE A REFRESH) : 
'"'--;----- -------- --~- - ·-(RAS·WCTWATEO-· 

x ROW ADDR-~ 

IF CURRENT CYCLE 
A REfRESH) 

, T43C , ,-
j ___ ~ COLUMN AOOR (REMAINS_~W_ ADOR If R~RESH) *==' 

<.-----L---.. 

16MH~ T43D:---'-: 
20 • ..! ' ~------+\~---l' =j ~, ' , 

\ \ -: ~T34 :: 

~+----+\-, --+\---:......;.I-----------S~----:---:-r--I -

DlYl "~ ,\~ 
, (CASfI STAYS NEGATED IF 
CURRENT CYClE A REFRESH) 

!----:-----;--:.----
_ T27B :-

CHRDY 

I T33 ' 

T27A ;-----.! 
T39B ' :---: 

WRITE (SO, lOW) , 

WE 1 REAO (50# HIGH) x== 
139.4. ' ' T39A ' 
~ ~-' 

0 
_. 

31: cf > ..... 
0 
% 
> 
Z 
Z 

'" r-
31: 
> en .... 
'" :u 
> 
0 
0 

'" en 
en 

'" en 
.... 
0 
0 
:u 
> 
31: C» 
';i N 

Co) > 0 g CD 

'" ! 
~ 

~ 
l§! 

~ 
~ 
© 
IiiiiI 
<= 

~ 
'1iiJ 
@ 
:w 
~ 
~ 
C::J = 290188-20 @ 
~ 



inter 82309 

DMA MASTEi=I ... BACK-TO-BACK RD PAGE HITS 

SCLK 

CMDH 

STATUS 

CASH 

DMATC ----1----- DMATS 

STATUS'" CMD# ARE ASYNCHRONOUS ~. 
INPUTS. MEETING T5A '" T58 SIMPLY 

INSURE THAT THE INPUTS ARE 
RECOGNIZED AT THIS EDGE. 

CAS# IS ACTIVATED HERE AT 
16 101Hz PROVIDED T5A '" T58 WERE 

BOTH MET AT THE PREVIOUS EDGE AS 
SHOWN. IF T5A OR T5B IS NOT MET, 

THEN CASH ACTIVATION IS SIMPLY DELAYED 
UNTIL ONE CLK PHASE AFTER THE 

EDGE AT WHICH BOTH STATUS AND 
CMD# ARE RECOGNIZED. 

T411\ (16 101Hz) 

L CASH IS ACTIVATED HERE AT 20 MHz 
PROVIDED T5A '" T5B WERE MET 
TWO CLK EDGES PREVIOUSLY 
AS SHOWN. 

290188-21 
The requirement that T5B be met before CAS# is allowed (one or two phases later) insures adequate CAS# high time 
in back-to-back cycles. (OneSClK phase at16 MHz; Two SClK phases at 20 MHz.) 

o WAIT STATE (PIPELINED) READ PAGE HITS 

Tl T2 T2P' 

SCLK 

PADS# 

PRDYI# 

CHANNEL 
ADDR 

MAD 

CASH 

~ 
T43A '141A' 

4-615 

TlP 

, , , , 

, 
: T41A , 

~. 
T438 

(MAD LINES RELEASED 
FROM EDGE THAT 

ENDS CYCLE) 

T2P 

, 
~ 
: T418 I 

'-----' , T438 ' 

290188-22 



SCLI< 

PAOSH 

PRDYlH 

; WE 
0) 

CASH 

Tl 

NON-PIPELINED WRITE 

I 

I I 

T2 

~T44 
I I 

WE SWITCHED TO REFLECT 
STATE OF PW/RH AT END 

OFTI 

PIPELINED READ 

T2P TlP T2P 

I 
I I I I I I 

T41B ...... 

t I 

'*-'T41A 
I I 

T41B ...... 

t I 

WE SWITCHED TO REFLECT STATE 
OF PW/RH AT END OF LAST T2P 

. (PADSH AND PRDYIH ASSERTED) 

TIP 

PIPElINED WRITE 

T2 T21 n 

I I 

T41B~ 

t I 

WE SWITCHED BACK TO DEFAULT 
STATE (INACTIVE) AT END OF 

CYCLE (PRDYlH ASSERTED BUT 
PADSH NEGATED ••• INDICATES 
MOVE INTO EITHER Tl OT n.) 

290188-23 

:e 
III 
.... 
i 
Z 
Ii) 

Z 
() 

I! 
() 

1(1 
r-
III 
(I) 

l 

CD 

= i 

~ 

~ 
~ 
Iiiii1 
c:::::o 
~ a 
~ 
~ .• c:::::o 
@) 
~ 



inter 82077 
CHMOS SINGLE-CHIP FLOPPY DISK CONTROLLER 

• Single-Chip Floppy Dlek Solution 
-- 100''''' PC-AT Hardware Compatible 
-100%PSI2™ Hardware Compatible 
-Integrated Drive and Data Bus 

Buffers 

• Integrated Analog Data Separator 
- 250 Kblts/sec . 
- 300 Kblts/sec 
- 500 Kblts/sec 
-1 Mblts/sec (82077-1 only) 

• High Speed Processor Interface 

• Vertical Recording Support 

• 12 mA Data Bus Drivers, 40 m.A Disk. 
Drivers' . . 

• Four Fully Decoded Drive Select and 
Motor Signals 

• Programmable Write Precompensatlon 
Delays 

• Addre .. es 256 Tracks Directly, 
Supports Unlimited Tracks 

• 16 Byte FIFO 
• 68-Pln PLCC 

The 82077 floppy disk controller has completely integrated all of the logic required for floppy disk control. The 
82077, a 24 MHz crystal, a resistor package and a device chip select implements a PC-AT or PS/2TM solution. 
All programmable options default to compatible values. The dual PLL data separator has better performance 
than most board level/discrete PLL implementations. The FIFO allows better .system performance in multi­
master systems (e.g. PS/2TM). 

The 82077 is fabricated with Intel's CHMOS III technology and is available in a 68-lead PLCC (plastic) pack­
age. , 

A2 

DBO 

Vss 
OBI 
DB2 
DB3 

Vss. 
DB4 

Vee 
DBS 

DBB 

Vss 
DB7 

INT 

ORO 
TC 

INDX 

o 

82077 

Figure 1. 82077 Pinout 
"For a cOlplete data sheet, please refer to the floppy Disk 
Controller section of the Intel Microprocessor and Pe"ripeherials 
Handbook (Volu., II. fleripeherials)". 

PS/2TM'is Ii trademark of IBM. 

Vee 
Vss 
050 

MEO 
DIR 
STEP 

VSS 
WRDATA 

WE 

HDSEL 

VSS 
DENSEL 

MFM 
NC 
AVee 

AVSS 
NC 

290166-1 

October 1988 
Order Number: 290168-001 



82706 
INTEL VIDEO GRAPHICS ARRAY 

• Single Chip Video Graphics Array for 
IBM PC/XT/AT*, Personal System/2* 
and Compatible Systems· . 

• 100% Gate, Register, and BIOS Level 
Compatibility with IBM VGA 

• EGAlCGAlMDA BIOS Compatibility 

• Inmos IMSG 171 Palette/DAC.ln.terface . 

• 4 inA. Drive Capability on Output Pins 

• Implemented in High Speed CHMOS III 
Technology 

• Available in 132-prn Plastic Quad .Flat 
Pack Package 
(See Packaging Spec. Order" 231369) 

The 82706 is the Intel VGA compatible display controller. It is 100% register compatible with alltBM VGA 
modes and provides software compatibility at the BIOS level with EGA, CGA, and MOA. All video monitors 
designed for IBM PS/2" systems are supported by the Intel VGA controller. The 82706 provides an 8-bit video 
data path to any Inmos IMSG 171 compatible palette/OAC. It also acts as a CRT controller and video memory 
controller. The 82706 supports 256 Kbytes of video memory. 

The 82706 is designed for compatibility with the Intel 80286 and80386 microprocessors and other microproc­
essors. 

Implemented in low power CHMOS technology, the 82706 VGA Controller is packaged in a fine pitch (25 mil) 
surface mount gull wing package. It can be enabled or disabled under software control via the 82306 Peripher­
al Bus Controller. 

"IBM PC, XT, AT, Personal System/2, PS/2, and MicroChannel are trademarks of International Business 
Machines. 

AO:19 

00:7 

MCS# 

SETUP# 

VGAEN 

RO# 10 
WR# BLOCK 

MIO 

ROY 

INTR 

OEN# 

SFOBK# 

SENSE 

RESET 

Figure 1. Block Diagram 

4-618 

OS2 

OS3 

EXTCLK 

AAO:7 

ABO:7 

RAMEN 

RASO:3# 

CAS# 

WEN 

000:7 

010:7 

020:7 

030:7 

PO:7 

OACR# 

OACW# 

HSYNC 

VSYNC 

BLANK 

OCLK 

240194-2 

November 1988 
Order Number: 240194-002 



inter 82706 

PLASTIC QUAD FLAT PACK (PQFP) 

240194-1 

Pinout (Top View) 

4-619 



inter 82706 

82706 PIN DESCRIPTION 

Left side of package (top view): 

Number Name Active 1/0 Description 

1 AB4 HI 0 DRAM address bus, planes 2 and 3 (continued from top side 
2 AB5 HI 0 of package). 
3 AB6 HI 0 
4 AB7 HI 0 
5 VOO 
6 AO HI I System address bus, from current MicroChannel· master. 
7 Ai HI .. ~ , Used to select display buffer words, VGA registers, or video 
8 A2 HI DAC registers. ' 
9 A3 HI 

" 10 A4 HI 
11 A5 HI 
12 A6 I HI 
13 A7 HI 
14 A8 HI 
15 - A9 HI 
16 A10 HI 
17 A1i HI 
18 A12 HI 
19 A13 HI 
20 A14 HI 
21 A15 HI 
22 A16 HI 
23 A17 HI J 
24 A18 HI I 
25 A19 HI I 
26 ~ LO I Display buffer (memory) select, generated from A24:20. 

These inputs do not qualify 110 cycles. 
27 RESET HI I Device reset. Tri-States all VGA pins when active. 
28 RAMEN HI I RAM Enable. When inactive, tri-states all VGA DRAM 

interface pins to allow board test of DRAMs or to allow 
another device to share control of the DRAM. 

29 SENSE HI I Switch sense input. The state of this pin can be read from 
Input Status 0 register, bit 4, and indicates if a monochrome or 
color monitor is attached to the Display Connector. BIOS . requires this information to set the video mode correctly . 

30 SETUP LO I, VGA Setup. Used during Programmable Option Select (POS) 
operation. Analogous to MicroChannel-CD SETUP Signals for 
the other adapter slots. After RESET, the 82706 requires the 
setup pin to be pulled low. An 110 write to port address XX2h 
must write a "1" to data bit o while setup is low. Then setup 
must be pulled high. Once this is complete, the 82706 can 
respond to CPU accesses. 

31 VGAEN HI I VGA Enable. Allows VGA to respond to memory or 110 cycles 
when active. 

32 FCO 0 
33 FCI 0 

4-620 



82706 PIN DESCRIPTION (Continued) 

Bottom side of package (top view): 

Number Na .... Active 1/0 
34 Vss 
35 RASa LO 0 
36 ~ LO 0 
37 RAS2 LO 0 
38 RASa LO 0 
39 WE LO 0 
40 Vee 
41 OAS LO 0 
42 HSYNC 0 
43 VSYNC 0 
44 BLANK LO 0 
45 Vss 
46 AD LO I 
47 iNA LO I 
48 MIO HI I 
49 01 
50 OS2 I 
51 OS3 I 
52 EXTCLK I 

53 Vss 
54 DCLK 0 
55 DACR LO 0 
56 f5ACW LO 0 
57 Vee 
58 P7 HI 0 
59 P6 HI 0 
60 P5 HI 0 
61 P4 HI 0 
62 P3 HI 0 
63 P2 HI 0 
64 P1 HI 0 
65 PO HI 0 
66 Vss 

82706 

Description 

Row Address Strobe for plane O. 
Row Address Strobe for plane 1. 
Row Address Strobe for plane 2. 
Row Address Strobe for plane 3. 
RAM Write Enable for all planes. 

Column Address Strobe for all planes. 
Horizontal and Vertical Sync to Display Connector. 
These are programmable to be active high or low. 
Video Blank to Video DAC and Display Connector. 

Read Strobe, active for memory or 1/0 cycles. 
Write Strobe, active for memory or 1/0 cycles. 
Memoiy/TO; high for memory cycles, low for 1/0. 
Pull up to VDD using 10K resistor. 
Video clocks. OS2 (28.3 MHz) is used for modes with 720 
pixel horizontal resolution. OS3 (25.17 MHz) is used for 
modes with 320 or 640 pixel horizontal resolution. EXTCLK is 
a MicroChannel video extension Signal, which allows using a 
user-defined clock. 

Pixel clock to Video DAC. 
Video DAC read and write strobes. 

Pixel output bus to Video DAC. 

-

4-621 



82706 

82706 PIN DESCRIPTION (Continued) 

Right side of package (top view): 

Number Name Active .110 Description 
67 Voo 
68 07 HI 110 System data bus. The VGA may be access8d by any 
69 06 HI I/O MicroChannel bus master. 
70 05 HI I/O 
71 04 HI I/O 
72 03 HI I/O 
73 02 HI I/O 
74 01 HI I/O 
75 DO HI I/O 
76 Vss 
77 ROY Hf 0 Bus ready Signal. 
78 INTR LO 0 Interrupt request. When enabled, !NTR is activated during 

vertical retrace. 
79 DEN· LO 0 . Data Enable to the VGA's data bus transceiver. The direction 

of the transceiver is controlled by the bus controller array. 
80 ~ LO 0 VGA Selected Feedback.' Active when VGA is address . 

selected for a memory or 1/0 cycle, as an acknowledgement 
of its presence at the address specified. Used during 

, diagnostics. 
81 Voo 
82 000 HI 1/0 DRAM data bus, plane O. 
83 001 HI '1/0 
84 002 HI 1/0 
85 003 HI 1/0 
86 004 HI 1/0 
87 005 HI 1/0 
88 006 HI 1/0 
89 007 HI 1/0 
90 Vss 
91 010 HI I/O DRAM data bus, plane 1. 
92 011 HI 1/0 
93 012 HI 1/0 
94 013 HI 1/0 
95 014 HI 1/0 
96 015 HI 1/0 
97 016 HI 1/0 
98 017 HI 1/0 

99 Voo 

4-622 



intJ 82706 

82706 PIN DESCRIPTION (Continued) 

Top side of package (top view): 

Number Name Active I/O 
100 VSS 

Description 

101 020 HI I/O DRAM data bus, plane 2. 
102 021 HI I/O 
103 022 HI I/O 
104 023 HI I/O 
105 024 HI I/O 
106 025 HI I/O 
107 026 HI I/O 
108 027 HI I/O 

109 VDD 
110 030 HI I/O DRAM data bus, plane 3. 
111 031 HI I/O 
112 032 HI I/O 
113 033 HI I/O 
114 034 HI I/O 
115 035 HI 110 
116 036 HI I/O 
117 037 HI I/O 

118 VSS 
119 VDD 
120 AAO HI 0 DRAM address bus, planes 0 and 1. 
121 AA1 HI 0 
122 AA2 HI 0 
123 AA3 HI 0 
124 AM HI 0 
125 AA5 HI 0 
126 AA6 HI 0 
127 AA7 HI 0 
128 VSS 
129 ABO HI 0 DRAM address bus, planes 2 and 3. 
130 AB1 HI 0 
131 AB2 HI 0 
132 AB3 HI 0 

FUNCTIONAL DESCRIPTION 

The 82706 interfaces the host processor and video 
memory, and provides palette DAC support and dis­
play of video data. All accesses between the host 
and video memory go through the 82706. These ac­
cesses are arbitrated with display refresh require­
mentstoallow the CPU to read or write video mem­
ory at any.time without having to wait for display 
retrace. 

Video memory contains 256 Kbytes organized as 
four64K x 8 maps. The starting address of the video 
memory in the host address space is programmable, 
providing three different start addresses. Display 
data from video memory is formatted into an 8-bit 
value clocked out on pins PO-P7, which may drive a 
DAC or go directly to a TTL monitor interface. 

CRT Controller 

In addition to generating horizontal and vertical sync 
timings, the CRT controller (CRTC) generates ad­
dressing for DRAM refresh and timings to support 
the cursor and underline capabilities. 

Graphics Controller 

The graphics controller provides the interface be­
tween video memory and both the host processor 
and the attribute controller. In alphanumeric (AlN) 
modes, display data is latched from video memory 
and sent in parallel to the attribute controller. In All 
Points Addressable (APA) modes, latched display 
data is serialized before being sent to the attribute 
controller. 

4-623 

1'( 



.2706 

Two read modes and four write modes are support­
ed. Processor reads to video memory cause one 
byte from each of the four memory maps to be 
latched. Read mode 0 causes the host processor to 
read this latched data from a selected map, allowing 
access to each bit plane separately. Read mode 1 
,causes the pixel values in each selected map to be 
compared to a reference value stored in the Color 
Compare register. Each bit of the byte read contains 
a 1 when the latched pixel value matches the refer­
ence value. 

Memory maps may be masked for write operations, 
allowing the host processor to update any or all 
memory maps with a single 8-bit access. In write 
moode 0, logical operations may be performed be­
tw6en,pixel data latched by,the previous read opera­
tion and either write data, which may be rotated, or 
data stored in the Set/Reset register. Logical opera­
tions supported are AND, OR, XOR, or write data 
unmodified. Write mode 1 simply copies latched 
data to the memory maps. Write Modes 2 and 3 are 
Similar to write mode O. In write mode 2, each en­
abled memory map is updated with 8 bits of the val­
ue in the cOrresponding bit position of the write data. 
Write mode 3 writes each enabled'map with 8 bits of 
the value in the Set/Reset register. The bit mask 

value is derived ,t?Y ANDing write data with the value 
in the bit mask register. ' 

Attribute Controller 

DisplaY data in APA modes,' and 'character generator 
and attribute data in AIN modes is sent to the attri­
bute controller from the graphics controller. The at­
tribute controller handles cursor insertion, panning, 
underlining, and blinking. The 8~bit per pixel output 
value is available on pins PO-P7. 

Sequencer 

The ,sequencer generates DRAM memory timings 
and arbitrates all accesses to video memory. It in­
serts CPU memory cycles at appropriate times be­
tween display memory fetches. The sequencer con­
tains map mask registers which can prevent maps 
from being updated by memory accesses. 

Preliminary product information describes products 
for which full characterization data is not yet avail­
able. Intel believes this information is accurate and 
reliable. However, it is subject to change without no­
tice. 

Table 1. Modes of Operation 

GRAPHICS MODES 

Mode Resolution Colors 

4,5 320 x 200 4 out of 256K 
6' 640 x 200 2 out of 256K 
D 320 x 200 16 out of 256K 
E 640 x 200 16 out of 256K 
F 640 x 350 Monochrome 
10 640 x 350 16 out of 256K 
11 640 x 480 2 out of 256K 
12 640 x 480 16 out of 256K 
13 320 x 200 256 out of 256K 

ALPHA (TEXT) ,-,ODES 

Mode Rows Columns Cl)ar. Box Resolution Colo~s 

0, 1 25 40 9x 16 320 x 200 (CGA) 16 out of 256K 
320 x 350 (EGA) , 16 out of 256K 
360 x 400 (VGA) 16 out of 2561< 

2,3" 25 80 9x 16 640 x 200 (CGA) 16 out of 256K 
640 x 350 (EGA) 16 out Of 256K , 
720 x 400 (VGA) 16 out of 256K 

7 25 80 9x16 720 x 350 (EGA) Monochrome 
720 x 400JliGA) MonochrCimEi 

" 

4-624 



·, ...... 

REGISTER SET 
Register Name • ",j R/W 

GENERAL REGISTERS 

Miscellaneous Output W 
R 

InputStatu~ 0 R 
Input Status 1 R 
Featl:lre Control W 

R 

GRAPHICS CONTROL~ER 

Graphics Address R/W 
setlReset R/W 
Enable Set/Reset R/W 
Color Compare R/W 
Data Rotate R/W 
Read Map select R/W 
Graphics Mode R/W 
Miscellaneous R/W 
Color Don't Care R/W 
Bit Mask R/W 

SEQUENCER 

Sequencer Address R/W 
Reset R/W 
Clocking Mode R/W 
Map Mask R/W 
Character Map select R/W 
Memory Mode R/W 

ATTRIBUTE CONTROLLER 

Address R/W 
Palette Registers R/W 
Attribute Mode Control R/W 
Overscan Color R/W 
Color Plane Enble R/W 
Horizontal PEL Panning R/W 
Color select R/W 

82706 

Index Read Port 

03ce 
03C2 
03?A 

_. 
03CA 

03CE 
00 03CF 
01 03CF 
02 03CF 
03 03CF 
04 03CF 
05 03CF 
06 03CF 
07 03CF 
08 03CF 

03C4 
00 03C5 
01 03C5 
02 03C5 
03 03C5 
04 03C5 

03CO 
OO-OF 03C1 

10 03C1 
11 03C1 
1.2 03C1 
13 03C1 
14 03C1 

4-625 

Write Port 

03C2 

03?A 

03CE 
03CF 
03CF 
03CF 
03CF 
03CF 
03CF 
03CF 
03CF 
03CF 

03C4 
03C5 
03CS 
03C5 
03C5 
03C5 

03CO 
03CO 
03CO 
03CO 
03CO 
03CO 
03CO 

~ 

I 
I. 

I 



REGISTER SET (Continued) 

... Register Name 

CRT CONTROLLER 

CRT Controller Address 
Horizontal Total 
Hori~ontal Display Enable 
Start Horizontal Blanking 
End Horizontal Blanking 
Start Horizontal Retrace Pulse 
End Horizontal Retrace 
Vertical Total. 
Overflow 
Preset Row Scan 
Maximum Scan Line 
Cursor Start 
Cursor End 
Start Address High 
Start Address Low 
Cursor Location High 
Cursor Location Low 
Vertical Retrace Start 
Vertical Retrace End 
Vertical Display Enable End 
Offset 
Underline Location 
Start Vertical Blank 
End Vertical Blank 
CRTC Mode Control 
Line Compare 

NOTES: 
? = B in Monochrome Emulation Modes 
? = 0 in Cplpr Emulation Modes 
All .addresses are given in Hex 

Register Name 

R/W 

R/W 
R/W 
R/W 
R/W 
R/W 
R/W 
R/W 
R/W 
R/W 
R/W 
R/W 
R/W 
R/W 
R/W 
R/W 
R/W 
R/W 
R/W 
R/W 
R/W 
R/W 
R/W 
R/W 
R/W 
R/W 
R/W 

R/W 

VIDEO DIGITAL TO ANALOG CONVERTER 

PEL Address (Write Mode) R/W 
PEL Address (Read Mode) W 
DACState R 
PEL Data R/W 
PEL Mask R/W 

NOTE: 

82706 

Index· Read Port .·.WrltePort 

... 

0314 0314 
00 0315 0315 
01 0315 0315 
02 0315 0315 
03 0315 0315 
04 0315 0315 
05 0315 0315 
06 0315 0315 
07 0315 0315 
08 0315 0315 
09 0315 0315 
OA 0315 0315 
OB 0315 0315 
OC 0315 0315 
00 0315 0315 
OE 

. 
0315 0315 

OF 0315 0315 
'10 0315 0315 
11 0315 03.15 
12 0315 0315 
13 0315 0315 
14 0315 0315 
15 0315 0315 
16 0315 0315 
17 03?5 03?5 
18 0315 0315 

Index Read Port Write Port 

03C8 03C8 
03C7 

03C7. 
03C9 03C9 
03C6 03C6 

1. DAC state register is located on the 82706. PEL Address, PEL Data, and PEL mask are located on the Palette DAC. The 
8270~ decodes accesses to these registers to generate DACR and DACW. 

4-626 



inter 82706 

82706 PARAMETRICS 

ABSOLUTE MAXIMUM RATINGS· 

Case Temperature Under Bias .... - 40°C to + 85°C 

Storage Temperature ........•. - 65°C to + 150°C 

Voltage to Any Pin with 
Respect to Ground .... - 0.3V to + (Vcc + 0.3)V 

DC Supply Voltage {Vce> ..•....... -0.3 to + 7.0V 

DC InputCurrent •.... '.' ...............•. ± 10 mA 

• Notice: Stresses above those listed under "Abso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and 
functional operation of the device at these or any 
other conditions above those indicated in the opera­
tional sections of this specification is not implied Ex­
posure to absolute maximum rating conditions for 
extended periods may affect device reliability. 

NOTICE' Specifications contained within the 
following tables are subject to change. 

D.C; CHARACTERISTICS Tc = QOC to + 70°C, Vcc = 5V ±10% 

Symbol Parametef Min Max Units Notes 

VIL Input Low Voltage 0.8 V 

VIH Input High Voltage 2.0 V 

VOL . Output Low Voltage 0.4 V 10L = 4 mA (Note 1) 

VOH . Output High Voltage 2.4 V 10H =; 4 mA (Note 1) 

VOL1 Output Low Voltage 0.4 V 10L = 2 mA (Note 2) 

VOH1 Output High Voltage 2.4 V 10H = 2 mA (Note 2) 

IcC Power Supply Current 100 mA 

ILl Input Leakage Current 10 p,A Vss < VIN < Vee 

loz Tri-State Output -10 10 p,A Vss < VOUT < Vec 
Leakage Current 

NOTES: 
1. Applies to ali outputs except those listed in Note 2. 
2. Applies only to pinslNTR, DEN, FCO, FC1, and WE. 

4-627 



,82706 

A.e. CHARACTERISTICS Tc ='O'Cto +'70·C, vee = 5V ±10% 
Timing' Requirements 
AC Timings are referenced to 1.5V .'. 

Symb(ll , Parameter " ." MIn Max 

T1 Clock Cycle Time '" 35 10000 

T2 Clock High Time 10 10000 

T3 Clock Low Time 14' 10000 

T4 A 19:0, MIO Valid to RO or WR Low '35 

T4A A 19:0, MCS Hold from CAS Low 0 

T48 A 19:0, MCS Hold from RO High 0 

T4C ROY High to RO, WR High 0 

T5 WR Pulse Width 70 

T6 07:0 Set· Up to WR Higtl 60 

T7 WR High to 07:0 Hold 16 

T7A DEN High to 07:0 Hold 0 . ' 

T78 ROY High, to 07:0 Hold 0 

T7C WR Low to 07:0 Valid 30 

f8 037:00 Valid to CLK High 0 

T9 CLK High to 037:00 Hold 40 

T9A " CAS Highto 037:00 Hold 0 

Timing Responses 
AC Timings are referenced to 1.5V 

Symbol Parameter Min Max 

T10 DCLK High Time 7 

T11 DCLK Low Time 9 

T12 P7:0 Valid to OCLK High 12 

T13 DCLK High to P7:0 Invalid 15 

T13A DCLK High to BLANK Valid 40 

n3B . DCLK High to HSYNC, VSYNC Valid 65 

T14 A 19:0 MIO Valid to SFOBK Valid 60 

T15 RO Low to 07:0 Valid 60 

T16 RO High to 07:0 Invalid 0 

T17 RO High to 07:0 Float 20 

4·628 

, ';""" . ,,' . ~ ~ . 

UnIt. Note. 

ns 

ns ,. .,'. " . 
ns 

ns 

ns (Note 6) 

ns (t-Jote 7) 

nil '(Note 5) 
., 

ns (Note 2) 

ns (Note 2) 

ns (Notes 2, 8) 

hs (Notes 1, 8) 

ns (Note 6) 

ns (Note 6) 
" nil , 

ns," 

ns 

UnIts ,. Notes, 

ns (Note 3) 

ns (Note 4) 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 



82706 

A.C. CHARACTERISTICS Tc = O·Cto +70·C, vee = 5V ±10% (Continued) 

Symbol 

T18 

T19 

T20 

T21 

T22 

T23 

T24 

T25 

T26 

T27 

T27A 

T278 

T28 

T29 

T30 

T31 

T32 

T33 

T34 

T35 

T36 

T38 

T39 

T40 

T41 

NOTES: 
1.110 cycles. 

Parameter 

RD, WR low to DEN low 

RD, WR High to DEN High 

WR High to DEN High 

CAS low to 037:00 Valid 

RD, WR low to DACR, DACW low 

RD, WRHigh to DACR, DACW High 

RD, WR low to ROY low 

ClK High to ROY High 

DATA Hold from ROY High 

ClK High to RAS 3:0 low 

RAS low to CAS low 

RAS low to CAS High 

ClK High to CAS low 

ClK High to CAS High 

DRAM Cycle Time 

Row Address Hold Time 

Column Address Set-up Time 

Column Address Hold Time 

RAS Pulse Width 

CAS Pulse Width 

RAS Precharge Time 

037:00 Valid to 07:0 Valid 

ClK High to WE Valid 

CAS low to ROY High 

037:00 Valid to WE 

2.110 write cycles only; 
3. T10 is typically at least T3 (Clock Low Time) - 4. 
4. T11 is typically at least T2 (Clock High TIme) - 1. 
5. Memory cycles only. 
6. Memory write cycles. 
7. Memory read cycles only. 

Min Max 

65 

5 30 

6 

70 

55 

4 25 

40 

0 60 

0 

50 

50 70 

60 

45 

45 

8T1-10 

T1-10 

10 

2T1-10 

4T1"10 

4T1-10 

4T1-15 

76 

50 

58 

0 

Units Notes 

ns 

ns 

ns (Note 2) 

ns 

ns 

ns 

ns 

ns 

ns (Note 6) 

ns 

ns 

ns 

ns 

ns 

ns, 

ns 

ns 

ns 

ns 

ns 

ns 

ns (Note 7) 

ns 

ns 

ns 

8. For 1/0 write cycles, D7:0 must be held past the 'rising edge of WR for· at least T7 or until DEN goes high (T20 + T7A), 
whichever is least. 

4-629 



OS2,OS3, 
EXTCLI( -J ~ ~ ~ ~ rw 

RO 
~-

DEN \ 
T18 -

T4D 

ROY \ 
T24 T 

SETUP,lofes, 
VGAEN,A19:11 7J:li,.. VALID :' 

i" m 07:11 
Q jllii. '1111/ 'II 'II '11111. '1111/ 

AA7:II. 
AB7:11 7J:li,.. :' ROW COLUIofN X 

T31 -I 
'T32 T33 

T27A 

RAS3:11 T27 

T34 

T21 

CAS 

1·T28 , 
----

T35 

037:1111 <1111 /1~ 
T27B 

'---

, 

~ ~ 

T4C 

l«-

T25 

'/ IlLL 'j) 
T38 

'I I I I I, 'IIII/. 

1'36 

T29 

~ 
. T9A -T9 

VALID 

-----

~ 

T19 :1 
I. 
I 

T4B --.. 

'(II. 
T16 

VALID 

'III/I, 

T3D 

r-L 

'11111 
T17 

~ 
'111/1 

-

-
240194-3 

I (" 
~ . 

-< 
~ 

~ 

m 
N 

i 

"@) 
aID 
Iiiii1 
IF 
c::::> 

~ 
c::::> 

> ,a?: 
/~ 

~ 



~ ...... 

052,053, 
EXTCLK 

WR 

DEN 

ROY 

SETUP, lies, 
VGAEN,AI9:11 

07:11 

AA7:11 
A87:11 

RAS3:11 

CAS 

WI 

037:8' 

--J 

~ 

1 
118 

1 
124'---': 

"'Il:A VAUD . : 

~ 
"'Il:A : 

~ ~ ~ ~ 

, 

~ 
)ilill. 

VALID 

ROW COLUIIN 

127 131 J 132 133 
127A 

134 

T35 

T30 ~ 

139 

~~1 
I 
1. 

~ ~ ~ ~ 
~ I-

119 1 
I. 
J 

125 

140 

'I I I I I. 'II/II. '1111. 'I I I I I. 
178 .f.l 

1. 

I 'I I I I I. '1111. '11111. 

136 

T278 

~. 
J 

139 

I 
"I 

126· -I 
1. 

r 

'11111 

'11111 

1-

~40194-4 

III 
iii: 

~ 
~ 
::::j 
m 

l 

CD 
II.) ..... 
o 
m 

"@} 
aeJ 
IiiiiI 
IF' 
c:::J 

~ 
~ 
~ 

~ 



inter 
1/0 CYCLE 

A 19: I!l, 
MIO 

SF"DBK 

RD,WR 

WRITE DATA 

READ DATA 

DEN 

DACR,DACW 

CLOCK TIMINGS 

OS2,OS3, 
EXTCLK 

DCLK 

::J VALID 

T14 

\ 
r!!. TS 

I 

I 

" 
TIS 

~ 
~. 

\ 

~ 
\ 

240194'-6 

82706 

K 

~ 
-' 

T6 T7 

VALID 

T16 
T17, 

VALID m 
T19,T2D PAl 

I. 
1 I 

I.T23• 

240194-5 

VIDEO TIMINGS 

DCLK 

X 
T12 .I''''k:: VALID HSYNC, VSYNC, 

BLANK, P7:1!l __ --I 

240194-7 

4-632 



intJ 82706 

PLASTIC PACKAGING INFORMATION 

The 82706 comes in a JEDEC Standard Gull Wing package (25 mil pitch), with "bumpers" on the corners for 
ease of handling. 

PRINCIPAL DIMENSIONS & DATUMS 

~TOPVIEW 

TERMINAL DETAILS 

-j/-IS.635 (II.S25)/ 

'lb I SEE DETAIL L 
, Y---+----' SEE DETAIL .J 

f---D3/E3-----1 

D/E-----I 
mm (inch) 

, 4·633 

240194-9 

I BASE PLANE 

Al 

240194-8 



TYPICAL LEAD 

mm (inch) 

Symbol 

N 

A 

A1 

D,E 

01, E1 

D2,E2 

D3,E3 

l1 

0.31 (0.012l-l I-
0.20 (0.008 

DETAIL J 

82706 

DETAIL L 

Case Outline Drawings 
Plastic Fine Pitch Chip Carrier 

0.84 mm Pitch 

Description Min Max 

Lead Count 132 

Package Height 0.160 0.170 

Standoff 0.020 0.030 

Terminal Dimension 1.075 1.085 

Package Body 0.947 0.953 

Bumper Distance 1.097 1.103 

Lead Dimension 0.800 Ref 

Foot Length 0.020 0.030 

Inch 

4-634 

0.20 (0.008) 
0.14 (0.005) 

240194-10 

Min 

132 

4.06 

0.51 

27.31 

24.05 

27.86 

20.32 Ref 

0.51 

mm 

Max 

4.32 

0.76 

27.56 

24.21 

28.02 

0.76 



inter 
BUMPER DETAIL 

mm (inch) 

82706 

'" "", '" I ~ E2 

I 
U~ U~~; . '="'-t----r-.L 

a.9a (.a35) MIN. j 
2.a3 CaSa)-l 
1. 93 Can) 

-~--D2 ----i 

( .aSa) 
( .an) 

240194-11 

DATA SHEET REVISION REVIEW 

This 82706 data sheet, version ·002, contains updates and improvements to the previous version. A revision 
summary is listed here for your convenience. 

The sections significantly revised since version ·001 are: 

Packaging Information - Drawing of ceramic package replaced with drawing of. plastic package. 

Pin Description 

Register Set 

Timing Specs 

Timing Diagrams 

- Plastic package information section added containing mechanical information. 

- A note was added to the description of the SETUP pin. 

- Video DAC register information added. 

- Values ·for timings T7, T8, and T9 changed. 

- Spec T21 added. 

- Memory Read timing diagram altered as follows: 

- SETUP and VGAEN added. 

- T8 and T9 are now referenced from clock cycle earlier. 

- T21 is added. 

- T38 reference is changed. 

4·635 



• 
• 
• 
• 

82335 
HIGH-INTEGRATION INTERFACE DEVICE FOR 

386SX™ MICROPROCESSOR BASED PC-AT SYSTEMS 
Operates with the 82230 and 82231 to • 80387SX Numerics Coprocessor 
Provide 100% IBM ATTM Compatibility Synchronization Interface 

Optimized for 16 MHz 386SXTM • Parity Generation and Checking 
Mlcroprocesor Based AT Systems • Low Power, High Speed CHMOS III 
Page Mode, Interleaved DRAM Technology 
Controller • Available in 132 Lead Plastic Quad Flat 
Address Mapping/Shadow ROM Pack 
Support 

The Intel 82335 is a high integration interface device used together with the 82230/82231 to provide the most 
cost-effective and highest performance system design solution for AT-compatible 386SXTM microprocessor 
based systems. 

The 82335 DRAM control feature is designed and optimized for the 16 MHz 386SX microprocessor bus 
architecture. The page mode, interleaved memory design allows 0 wait state performance on most memory 
accesses with 100 ns DRAM. 

Several address mapping options are available to provide flexibility in the system memory size and configura-
tion. . 

The 82335 also provides the necessary interface signals to allow the 387SX numerics coprocessor to run in a 
PCI AT system. The 82235 with its intergrated parity generation and checking· provides system designers with 
data integrity and reliability. 

Efl -----':~I ~LOCK GENERATOR I 
Reset • RESET SYN~HRONIZER : 

Clk2, Pelk# 

Ir----~i~.--+PQrh. Pori ,Perror# 
.PARITY GENERATOR 1/ .... _ ...... ' 

&: CHECKER 00-015 

111-1123 __ --.J~-----,,,.-_-----..,..__---___,---' 
Romes, ------./1 ADDRESS MAPPER 

Imeges, 4-_--.:1.._~&:~0:EC~O:OE:R_~.:.....----'--'--'---7r::::;;:;) 
Obmem ' I.IL---I\. Memory control 

386SX™CPU (L------------' 
Status \r-----, 

Coprocessor 
Status 

r-;:::===:;---,lL.:=;;;::...J1v----v Signals 

CYCLE 
TRANSLATOR 

80286 Status 

240340-1 

Figure 1.1. 82335 Internal Block Diagram 

November 1988 
Order Number: 240340-001 



inter 
1.0 PIN DESCRIPTION 

A Row 

Pin Label Pin 

1 RE.SETNPX 34 
2 EFt 35 
3 Vss 36 
4 PCLK# 37 
5 Vee 38 
6 RESETCPU 39 
7 REAOY286# 40 
8 MII0286 # 41 
9 S1# 42 

10 Vss 43 
11 50# 44 
12 Vee 45 
13 ERROR# 46 
14 A2 47 
15 A3 48 
16 A4 49 
17 A5 50 
18 A6 51 
19 A7 52 
20 Vss 53 
21 A8 54 
22 Vee 55 
23 A9 56 
24 A10 57 
25 A11 58 
26 A12 59 
27 A13 60 
28 A14 61 
29 A15 62 
30 A16 63 
31 A17 64 
32 A18 65 
33 A19 66 

82335 

132 

Figure 1.2.82335 Pin Out Top View 

Table 1.1. Pin Assignments 

BRow CRow 

Label Pin Label 

A20 67 TESTO 
A21 68 TEST1 
A22 69 Vee 
A23 70 RAS2# 
ROMCS1# 71 CASL2# 
ROMCSO# 72 CASH2# 
OBMEM 73 RAS3# 
MA9 74 CASL3# 
MA8 75 CASH3# 
Vss 76 OtR 
MA7 77 OEN# 
Vee 78 PARL 
MA6 79 Vss 
MA5 80 PARH 
MA4 81 Vee 
Vss 82 015 
MA3 83 014 
Vee 84 013 
MA2 85 012 
Vss 86 011 
MA1 87 010 
Vee 88 09 
MAO 89 08 
WE# 90 07 
RASO# . 91 06 
CASLO# 92 05 
CASHO# 93 04 
RAS1# 94 03 
CASL# 95 02 
CASH1# 96 01 
Vss 97 00 
MMS 98 TURBO# 
FM 99 EXTROY 

4·637 

I 

"'I' 

240340-2 

DRow 

Pin Label 

100 REAOYNPX# 
101 PEREONPX 
102 LMEGCS# 
103 HLOASX 
104 HROSX 
105 Vss 
106 NA# 
107 REAOYSX# 
108 Vss 
109 CLK2 
110 Vee 
111 AOS# 
112 BLE# 
113 A1 
114 BHE# 
115 Vee 
116 MIIO# 
117 O/C# 
118 W/R# 
119 RESETSX 
120 BUSYSX# 
121 PEREOSX 
122 HR0286 
123 REFRESH # 
124 PERROR# 
125 MEMR# 
126 SYSRESET 
127 A20GATE 
128 Vss 
129 MEMW# 
130 Vee 
131 BUSYNPX# 
132 HLOA 



inter , 82335 

The 82335 is implemented in a 132-pin plastic flatpack package designed for cjirect surface mounting ,on 
component boards. The following is a description of the physical pin connections. 

, Table 1.2. Pin Description 

Symbol Pin Type Name and Function No. 

A1-A23 14-19, I· ADDRESS INPUTS: These inputs are used to select the dynamic RAM 
21, address for a memory read or write operation. 

23-37, 
113 

A20GATE 127 I This' actiVe high input is used by the keyboard controller to force A20 
low. When A20GATE is low, A20 is forced low internal to the 82335 
during CPU memory cycles (not OMA or master). When A20GATE is 
high, A20 follows the CPU address input from the A20 pin. 

ADS # 111 ·1 ADDRESS STATUS: This active low input indicates that a valid bus 
cycle definition and address (W/~#, MIIO#, D/C#, BLE#, BHE#, 
and A 1-A23) is being driven by the 386SX microprocessor. 

BHE#' 114 I BYTE HIGH ENABLE: This active low input is used for the physical 
address of the. high byte of a 16-bit data word. It indicates when data is 
being transferred on 08-015. 

BLE# 112 I BYTE LOW ENABLE: This active low input is used for the physical 
address of the low byte of a 16-bit data word. It indicates when data is 
being transferred on 00-07. 

BUSYNPX# 131 I BUSY NP: This active low inpUt is used by the 80387SX to indicate 
that it is busy. It is usually connected directly to BUSY # of 80387SX. 

BUSYSX# 120 0 BUSY SX: This active low output indicates to the 386SX CPU that the 
80387SX is busy. It is usually connected directly to BUSY # of the 
386SXCPU. 

CASHO#- 60,63, 0 COI,.UMN ADDRESS STROBE (HIGH BYTE): These outputs are used 
CASH3#< 72, 75 by the high ,byte of the dynamic RAM array to latch the column address 

present on the MAO-MA9 pins. They can drive the dynamic RAM array 
directly and need no external drivers. 

CASLO#- 59,62, 0 COLUMN ADDRESS STROB.E (LOW BYTE): These outputs are used 
CASL3# 71,74 by the low byte of the dynamic RAM array to latch the column address 

present on the MAO-MA9 pillS. They can drive the dynamic RAM array 
directly and need no external drivers. 

CLK2 109 0 CLOCK2: This output drives the 386SX CPU and 80387SX input 
clocks. Its frequency is divided by two internally by the 386SX CPU and 
80387SX chips to generate the processor and coprocessor clocks. It is 
designed for 32 MHz Qutput frequency. 

O/C", 117 I DATA/CONTROL SELECT: This input from the 386SX 
microprocessor is used to distinguish between data and control bus 
cycles. . 

OEN# 77 0 DATA ENABLE: This active low output is used by the data, 
transceivers to enable the transfer of data ~tween the dynamic RAM 
array and the local data bus. 

OIR 76 0 DIRECTION: This signal is used to control the direction input of the . 
data transceivers which connect the dynamic RAM array to the local 
data bus. When OIR is high, data is being written into memory. 

NOTES: 
·The following conventions are uSed in this table: 
1= IIlPut, 
'0 = Output 
110= Input or Output. .. 
The symbol '" following a Signal name indicates that the signal is low active. 

4~638 



82335 
II I: 
I;' 

i1 
Table 1.2 Pin 08scrlptlon (Continued) 

Symbol 
Pin 

Type Name and Function 
No. 

D15-DO 82-97 110 DATA/BUS: These inputs are used by the 82335 for parity generation 
and checking of data which is transferred between the local bus and 
the DRAM array. During initialization. of the 82335, they are used to 
writelread control words to/fromthe internal memory configuration 
registers. 

EFI 2 I EXTERNAL FREQUENCY IN: This input is driven by an external 
oscillator. It is used by the 82335 to generate the CLK2 andPCLK # 
output clocks. All internal 82335 logic is also driven by EFI. The EFI 
frequency is the same as the CLK2 (32 MHz). 

ERROR # 13 I ERROR: This input indicates when a numeric coprocessor error has 
occurred. ERROR# is directly connected to the ERROR# output of 
the 80387SX and ERROR # input of the 82230. ERROR # has a weak 
pull-up resistor inside the 82335. 

EXTRDY 99 I EXTERNAL READY: The External Ready input is an active high level 
triggered input which is used to insert additional wait states into 386SX 
processor bus cycles. Deactivation ofEXTRDY during a bus cycle 
delays the active edge of the 82335 READYSX # output until the 
EXTRDY input is sampled active. 

FM 66 I FM and MMS are used. to select DRAM operating modes. Refer to the 
MMS 65 I DRAM controller section for available modes. These pins should be 

static after system reset. 

HLDA 132 0 HOLD ACKNOWLEDGE: This output indicates the 386SX CPU has 
relinquished control of the local bus. It is asserted in response to 
activation of the HLDASX input from the 386SX processor. It is usually 
connected to the 82231 HLDA input. 

HLDASX 103 I HOLD ACKNOWLEDGE SX: This input is asserted by the 386SX .. 
processor in response to assertion of the 386SX processor's HOLD 
pin. It indicates that the processor has relinquished control of the local 

. bus. 

HRQ286 122 I CPU HOLD REQUEST INPUT: This active high input is driven by the 
82231 CPU HRO pin when requesting DMA or refresh cycles. 

HRQSX 104 0 CPU HOLD REQUEST OUTPUT: This active high output drives the 
386SX processor's HOLD input. It is the HR0286 input with the trailing 
edge delayed. 

LMEGCS# 102 0 LOWER MEG CHIP SELECT: This decodes A23-A20 for local 
memory accesses. 

MAO-MA9 41,42, 0 MUL TIPLEXED.ADDRESS:These outputs are designed to provide 
44, the row and column addresses for CPU or DMA access, and row 

46;..48, . addresses for refreshaccess.to the dynamic RAM array. 
50,52, 
54,56 

MEMR# 125 I MEMORY REAQ COMMAND: This active low input from the 82231 
indica~es when a DMA memory read cycle is being .performed. 
MEMR# is connected directly to the -XMEMR output of the 82231. 
MEMR # is allowed to be an asynchronous input. 

MEMW# 129 I ' MEMORY WRIYE COMMAND:.This active low input from the 82231 
indicates when a DMA memory write cycle is being performed. 
MEMW" is coilnected .directly to the - XMEMW output of the 82231. 
MEMW # is allowed to be an asynchronous input. 

4-639 



inter 82335 

Table 1.2. Pin Description (Continued) 

Symbol 
Pin 

Type . Name and Function 
No. 

M/IO# 116 I MEMORY 110 SELECT: This input from the 386SX processor is used 
to distinguish between memory and 10 accesses. 

M/10286# 8 0 MEMORY I/O SELECT 286: This output emulates the MIIO# output 
of the 80286. It is used by the 82230/82231 and other system 
peripherals to distinguish memory access from 1/0 access. It also 
indicates halt/shutdown and interrupt acknowledge cycles. 

NA# 106 0 NEXT ADDRESS: The NA#output is used to control the address 
pipelining of the 386SX processor. When asserted, the address of the 
next bus cycle is valid in the T2P state of the current bus cycle. 
Consecutive local memory accesses are always pipelined after the first 
access. 

OBMEM 40 0 ON~BOARD MEMORY: This active high output indicates to the system 
that the memory being address is on the local bus. 

PARH 80 1/0 PARITY HIGH BYTE: This three state input/output is used for the 
upper byte parity bit of data on the local bus (D8-D15). For memory 
write cycles, the 82~.35 outputs the internally generated parity bit to the 
DRAM array via the PARH pin. puring a memory read, the 82335 uses 
the data received at PARH to validate the upper byte of data from the 
DRAM array. 

PARL 78 1/0 PARITY LOW BYTE:This 3-state input/output is used for the lower 
byte parity bit of data on the local bus (DO-D7). Its function is identical 
to the PARH pin described above. 

PCLK# 4 0 PROCESSOR CLOCK: This clock output is used to drive the 82230 X3 
pin. It is a divide-by-two of.the EFI input. 

PEREQNPX 101 I PROCESSOR EXTENSION REQUEST NP: This input is used by the 
80387SX to indicatethatit requires a data transfer. It should be 
connect~d. directly to PEREQ of the 80387SX. If no numeric 
coprocessor is installed, this pin should be connected to ground, 

PEREQSX 121 0 PROCESSOR EXTENSION REQUEST SX: This output to the 386SX 
processor is used torequest a data transfer to or from the numeric 
coprocessor. It should be connected directly to PEREQ of the 386SX 
CPU. , 

PERROR# 124 0 PARITY ERROR: This active low output indicates that the 82335 has 
detected a parity error in either the upper or lower byte of data from 
the DRAM array. It drives the 82231 DPCK# input. 

RASO#- 58,61, 0 ROW ADDRESS STROBE:These outputs are used by the dynamic 
RAS3# 70, 73 RAM array to latch the row address present on the MAO-MAS pins. 

The four outputs support up to a four-way interleaved dynamic RAM 
configuration with page-mode access. They drive the dynamic RAM 
array directly and need no external drivers. 

READY286# 7 I READY 286: This active low input is used toindicate the completion of 
110 bus cycles. It is priven by the 82230 READY # pin. " 

READYNPX# 100 I READYNP: This active low il1putindicates the completion of 80387SX 
bus cycles. It is driven by the 80387SX READYO# output. 

READYSX# 107 0 REAI)YSX: This activEllow output indicates the completion of the 
current bus cyc/eto the procElssor. It is a function of the internally 
generated memory ready signal, and the READY286# , READYNPX #, 

. EXTROY, and TURBO#inputs~ 

4-640 



Symbol 
Pin 
No. 

REFRESH # 123 

RESETCPU 6 

RESETNPX 1 

REsETSX 119 

ROMCSO# 39 
ROMCS1# 38 

50# 11 
51# 9 

sYSRESET 126 

TESTO 67 
TEST1 68 

TURBO# 98 

Vee 5,12, 
22,45, 
51,55, 
69,81, 

110,115, 
130 

Vss 3,10, 
20,43, 
49,53, 
64,79, 

105,108, 
128 

WE# 57 

W/R# 118 

82335 

Table 1.2. Pin Description (Continued) 

Type Name and Function 

I REFRESH: This active low input is used to notify the dynamic RAM 
controller that the dynamic RAM array requires refresh. It is normally 
driven by the 82231 - REFRESH output. 

I RESET CPU: This reset input is driven by the RES, CPU output of the 
82230. It is activated during system power up, keyboard reset, or when 
thE! 386SX processor generates a HALT status. 

0 RESET NPX: This output drives the REsETIN pin of the 80387SX. 
RESETNPX is a function of the sYSRESET input and is only activated 
during power-on reset. 

0 RESET SX: This output drives the RESET pin of the 386SX processor. 
It is a logical OR function of the SYSRESET and RESETCPU inputs. 

0 ROM CHIP SELECT: These outputs are used to support shadow RAM. 
They select the ROMs or EPROMs during system initialization. Once 
the ROM or EPROM contents are copied into the DRAM space, the 
ROMCSO-1 outputs are disabled and the ROM (EPROM) addresses 
are mapped into the DRAM physical address space by the 82335. 

0 BLJS CYCLE STATUS: The SO# and S1 # outputs indicate the 
initiation of a system (non-local) bus cycle and, along with MII0286 # , 
define the type Of bus cycle. 

I SYSTEM RESET: This reset input is driven by the + RESET output of 
the 82230. It is driven active during system power up. 

I TEST MODE: These inputs are reserved tor speciaLtest modes, and' 
must be connected to Vs~during normal operation. ' 

I TURB,O MODE SELECT:, This active low input, when asserted, allows 
the 386SX processOr local bus to run with maximum performance. 
Deactivating the TURBO# input causes the 82335 READY generation 
logic to insert additional wait states irito each bus cycle. In the non-
turbo mode, 386SX processor performance approximates 80286 bus 
efficiency. 

- POWER SUPPLY: 11 Vee pins total. 

- GROUND: 11 Vss pins total. 

0 WRITE ENABLE: This output is used by the dynamic RAM array to 
enable input for a write operation. It is deSigned to drive eight 
megabytes of DRAM with no additional buffering. 

I WRITE/READ SELECT: This input from the 386SX processor is used 
to distinguish between read and write cycles. 

4-641 

:.'~:' 
" 

,I 

1., 

I) 
ii 
I: 
!: 
I 
I, 
I' 

1"7 



intJ 82335 

2.0 FUNCTIONAL DESCRIPTION 

2.1 Introduction 

The 82335 is a highcintegration VLSI companion 
chip for the Intel 386SX 32-bit microprocessor. It in­
terfaces the 386SX microprocessor to the 80387SX 
numeric coprocessor and to the 82230/82231 highly 
integrated peripherals in an AT compatible system 
by converting 386SX processor bus cycles to 80286 
compatible cycles, generating necessary clock sig­
nals, and providing local dynamic memory control. 
Figure 2.1 shows a block diagram of this system. 

I ,80387SX 

... 
,..---fi 

f+,-

386SXTIICPU ADDR 
DATA 82335 
CTRL 

VI 
::> 
CD 

;:!: LOCAL 
C!i RAM 
::IE 

~ 

The 82335 is composed of seven functional blocks: 

1. DRAM Controller 

2. Address Mapper/Decoder 

3. Ready Generator 

4. Bus Cycle Translator 

5. Math Coprocessor Interface 

6. Clock Generator/Reset Synchronizer 

7. Parity Generator/Checker 

Each functional block is described in the following 
sections. 

, '. -- KB 
-, 

-482230 r-
AT CONTROL BUS 
X DATA BUS SYSTEM 

X ADDRESS BUS RAM 

-182231 ~ 

I-VI VI 
:::> ::> 

CD CD 

VI ...I 

tl 0 
eo: I!: 
8 z 

0 

~ u 
OIl 

::l .. 
'" ROM 

240340-3 

Figure 2.1. 386SX™ CPU with 82335 System Block Diagram 

4-642 



inter 82335 

2.2 DRAM Controller 

2.2.1 INTRODUCTION 

The 82335 dynamic RAM (DRAM) controller is de· 
signed and optimized for the Intel 386SXTM Archi· 
tecture. It keeps track of 386SX CPU bus states and 
provides the necessary Signals to address and r~. 
fresh up to four 16-bit banks of 256K or 1 M dynamic 
RAMs. 

To optimize memory performance and flexibility, ~he 
DRAM controller has built in support for both paging 
and bank interleaving, and can be configured for 
several different modes of operation. These include 
four different memory modes to, accommodate 
DRAM with different levels of performance: two for 
fast page-mode 100 ns DRAM's (F1 and F4) and 
two for slower DRAM's (W01 and W02). These 
modes are described in more detail in the DRAM 
mode configuration section. 

In addition to the four memory modes available, the 
DRAM controller can be configured to operate in ei­
ther turbo or non-turbo mode. The turbo mode al­
lows '. the 386SX miCroprocessor based system to 
run at peak efficiency, while the non-turbo mo?e .al­
lows it to approximate 80286 bus cycles for timing 
dependent. software. 

82335 

DIR,DEN# 

to 386SX TIACPU 
data bus 

2.2.2 DRAM BANK CONFIGURATION 

The local Dynamic RAM for the 386SX CPU/82335 
system can be configured into one to four banks ~f 
256K x 16 bits or 1M x 16 bits each. Each 16-blt 
bank of memory is further divided into two 8-bit 
banks, low and high. Each 8-bit bank may contain 
one extra bit for parity. See Figure 2.2 for a block 
diagram of the 82335 to DRAM interface. 

The exact memory configuration installed is deter­
mined during system initialization through execution 
of a memory autoscan routine in the BIOS. Relevant 
memory configuration information is then pro­
grammed into the memory configuration.regist~r, roll 
compare registers, and address compare registers. 
See the address mapping/decodingsection for de­
tails on register programming. 

The 82335 internally decodes the address lines A 1 .;.. 
A23 from the 386SX processor and outputs mUlti­
plexed row and column addresses, row address 
strobe (RAS), column address strobe (CASL & 
CASH), and write enable (WE) signals for local 
memory accesses. Each bank has separate RAS, 
CASL, and CASH signals. 

16 

240340-4 

Figure 2.2. 82335 to DRAM Interface 

4-643 

i 

r 



82335 

2.2.3. PAGE·MODE DRAM OPERATION 

In any DRAM access, read or write, a row address 
and a column address is required. A DRAM access 
requiring both a new row address and column ad­
dress has a long cycle time which causes two or 
more wait states for a 386SX CPU bus cycle. An 
example is shown in Figure 2.3. Bus performance is 
improved in 386SX CPU/82335 systems by the use 
of page-mode DRAM operation. Memory locations 
sharing the same row address are in the same mem­
ory page. When successive memory accesses are in 
the same page (a page-hit memory access), only a 
new column address is required. In this mode of op­
eration, the row address strobe, RAS#, can be kept 
active, and only a new CAS # edge needs to be gen· 
erated, thus reducing memory cycle time. An exam­
ple with both page hit and page miss (opposite of 
page hit) is shown in Figure 2.4. Page-mode, DRAM 
operation is only effective when successive memory 
accesses are in the same page, therefore, row ad­
dresses are taken from the higher order address bits 
since they are less likely to change than the lower 
order address bits in most programs. 

2.2.4 PAGE·MODE BANK INTERLEAVE 
OPERATION 

The effectiveness of page-mode operation in the re­
duction of number of wait states depends on many 
factors. Among the most important of them are: 
page locations, page size and, page-mode cycle 
time. 

Page Location: As mentioned in the above para­
graph, the memory pages should be arranged such 
that the row address is unlikely to change in ,succes· 
sive memory operations. This can be done' by as­
signing the more often lower order address bits to 
the column address as done in the 82335 DRAM 
controller. 

Page Size: A larger page size increases the chance 
of a page hit. In a DRAM configuration with more 
than one memory bank, one page of memory can be 
kept active per bank. In a four bank configuration, a 
maximum of four pages of memory can be kept ac­
tive at a time. A successive memory access to an 
active page in a different bank (a page-hit-bank-miss 
access) does not require a new row address, there­
by requiring no wait states. This effectively increases 
the DRAM page size by a factor of four. 

Page-Mode Cycle Time: Most fast page-mode 100 
ns DRAM's have a short page-mode cycle time 
which allows the 386SX processor to run O-wait­
state bus cycles. Slower DRAM's, however, have 
longer page-mode cycle times which causes the 
386SX processor to run at 1 or 2 wait states. The 
82335 uses a memory interleaving scheme to allow 
the 386SX processor to run O-wait bus cycles. It 
works as follows: In a DRAM configuration with more 
than one memory bank, one page of memory is kept 
active per bank. Slower memories (W01/W02 
modes) use the lower address bit(s) to alternate 
bank hits for consecutive memory accesses. This in­
creases the number of page-hit-bank-miss cycles 
which run at 0 wait states. 

Cycle N Cycle N+l Cycle N+2 

I T2 I T2 I T2P T1 P I T2 I T2 I T2P T1 P I T2 I 
PHI PH2 PHI PH2 PHI PH2 PHI PH2 PHI PH2,PHI PH2 PHI PH2 PHI PH2 PHI PH2 

Address --------' ",....----------' ",....-----

MAO-MA9 

RASO# 

CASHO# -----­
CASLO# 

240340-5 

NOTES: 
1. The address of the next bus cycle is read into the 82335 during phase 2 of the first T2P state of the current bus cycle. 
2. RAS# must be high for row precharge (Trpl before latching in a new row address. 
3. Two wait states are inserted to meet RAS# precharge time. 

Figure 2.3. 82335 DRAM Cycle with New Rowand Column Addresses 

4-644 



intJ 82335 

Cycle N Cycle N+ I Cycle N+2 

I T2P T1 P I T2P T1 P I T2 I T2 I T2P T1 P I T2P 
PHI PH2 PHI PH2 PHI PH2 PHI PH2 PHI PH2 PHI PH2 PHI PH2 PHI PH2 PHI PH2 

Address __ ....,. ____ J .... ,.... ____ N_+_I ____ J,~-----' 

MAO-MAg 

RASO# 

CASHON ---+--"10. 
CASLO# 

240340-6 

NOTES: 
1. Page miss in cycle N + 1, thus requiring 2 wait states. Notice RASO# returns to "1" in the first part of cycle N+ 1 for 
precharge (T ,pl. 
2. Page hit on cycle N + 2, therefore, no wait state is required between cycle N + 1 and N + 2. Notice the 2 consecutive 
CAS# pulses without intervening RAS# pulse. 

Figure 2.4. 82335 Page Mode DRAM Cycle with Both Page Miss and Page Hit 

The 82335 has 4 built·in watch·dog timers to keep 
track of RAS# active time. Once timed out, the timer 
will force RAS # of the corresponding bank to be 
deactivated at the end of the memory cycle such 
that the maximum RAS# active time of the DRAM 
will not be violated. Figure 2.5 shows an example of 
interleaved· memory cycles. 

2.2.5 DRAM MODE CONFIGURATION 

The 82335 can be configured to run in four different 
modes to operate with DRAM of various perform· 
ance levels. This .allows the system designer consid· 
erable flexibility. There are two modes (F1 and F4) 
for fast page. mode 100 ns DRAM and two modes 
(W01 and W02) for slower DRAM. The mode of op­
eration is selectable by setting the input pins FM and 
MMS to the values shown in Table 2.1. Table 2.1 

shows a summary of the different DRAM modes. A 
brief description of each mode follows. 

F4: This· mode is for fast 100 ns DRAM and allows 
up to four pages to be active simultaneously. The 
critical timing specifications that determine which 
1 OOns DRAM can use this mode are CAS access 
time (teAd, CAS pulse widtlJ (teAS), and CAS pre· 

.. charge time (tcp). Table 2.1 shows the maximum 
values for tCAC,tCAS and tep thafcan be used in F4 
mode. 

F1: This mode is the same as F4 except that only 
one page can be active at a time. Activating only 
one page at a time reduces power consumption. 

W01: This mode can be used for all 100 ns DRAM. 

W02: This mode is used for 120 ns DRAM. 

4·645 

I 



NOTES: 

Address 

MAO-MAg 

RASO# 

RAS1# 

CASHO# 
CASLO# 

CASH 1 # 
CASL1# 

~Cycle N 

I T2P 
PHI PH2 

T1P I T2P 
PHI PH2 PHI PH2 

N X 

Col N-l K Col N 

- / ~ 

82335 

Cycle N+l Cycle N+2--

T1P I T2 I 'f2P 
PHI PH2 PHI PH2 PHI PH2 

T1P I T2 I T2P 
PHI PH2 PHI PH2 PHI PH2 

N+l X N+2 X 

K Row N+l X Col N+l K Rpw N+2 Col N+2 

I Trp ·1 
\. 

r--- Trp -

/ 

/ "---
"---/ 

Z40340-7 

1. DRAM access alternates between banks 0 and 1. 
2. RAS precharge for bank 0 is hidden behind memory access of bank 1 and vice versa. 

Figure 2.5. 82335 DRAM Cycle with Interleaved Memory In F1 Mode 

Table 2.1. Summary of DRAM Modes 

Max Wait States 

fm mms Mode Pages Page Hit Page Miss 
Active Bank Hit Bank Miss Bank Hit Bank Miss 

1 1 F4 4 0 0 

1 0 F1 1 0 NA 

0 1 W01 4 1 0 

0 0 W02 4 2 0 

NOTES: 
'tCAS = Column Address Strobe Pulse Width 
tcAC = Column Address Strobe Access Time 
tcp = Column Address Strobe Precharge Time 

2 2 

2 1 

2 2 

3 3 

4-646 

New DRAM Type 
RAS 

1 100 ns Fast 
Page Mode 

1 100 ns Fast 
Page Mode 

1 All 100 ns DRAM 

2 120 nsDRAM 

Critical 
DRAM 

Specifications' 

tCAS ~ 35 ns 
tcAC ~ 35 ns 

tcP ~ 20 ns 

tCAS ~ 35 ns 
tCAC ~ 35 ns 
tcP.~ 20 ns 



inter 82335 

2.2.6 NON· TURBO MODE 

In non-turbo mode (TURBO# pin driven to >VIH), a 
fixed number of bus states (six per memory cycle) 
will be used for all local memory access. Non-turbo 
mode is designed for compatibility with 80286 pro­
grams with software timing loops. The TURBO# in­
put must remain static during local memory bus cy-
cles. . 

2.2.7. REFRESH CYCLE 

The 82335 generates its own DRAM refresh address 
with a 10-bit refresh counter which· increments by 
one every refresh cycle. During a refresh cycle, the 
refresh address appears on MAO-MAe, followed by 
activation of RASO#-RAS3# in staggered cycles. 
The staggering of RAS activation reduces current 
surge during refresh. 

2.3 Address Mapper/Decoder 

2.3.1 INTRODUCTION. 

Several address mapping and decoding options are 
provided to improve performance and allow flexibility 
in the system memory size and configuration. These 
options include ROM/EPROM shadowing, mapping 
up to 512K addresses above the top of physical 
memory into physical addresses, and decoding input 
addresses to generate chip select signals. Selection 
of these options is done via programming of the con­
figuration, roll compare, and address compare regis­
ters. 

2.3.2 SHADOWING 

Shadowing refers to copying data from slow memory 
devices like ROM and EPROM memories into RAM 
to speed up memory .accesses .. Since access to -lo­
cal RAM is much faster than ROM, this can provide 
a considerable increase in performance. The.82335 
has built in support for shadowing three different 
areas of memory: BIOS ROM, adapter ROM, _ and 
video RAM. Shadowing video RAM can improve per­
formance by making access to the video RAM local 
to the 82335 memory controller. Figure 2.6 shows 
the memory address ranges available for. shadow­
ing. 

Shadowing can. be selected for the BIOS ROM area, 
adapter ROM area, or video RAM area by program­
ming the ROMEN #, ENADP #, and ENV # bits re­
spectively of the configuration register. Each area 
can be selected for shadowing independently of the 
other areas. 

When shadowing the BIOS ROM and adapter ROM, 
the ROM contents must be copied to the shadow 
RAM area before. the lock bit is set in the configura­
tion register. Once the lock bit is set, both of these 
RAM areas become read only. If video RAM shad­
owing has been enabled· and the VRO bit (video 
read. only) in the configuration register is set, then 
the video shadow area will also become read only. 

7FFFFFH ,....----., 

lM--+ ~m~~ t------4 

~wrm t------4 

=~~ t-------4 

~~~----~ 

OOOOOOH '-____ ..1

..-..t BIOS ROM

..--i Adapter ROM

..--i VIdeo RAM

LOCAL DRAII ADDRESS SPACE

Figure 2.6. Shadow RAM Address Map

4-647

240340-8

82335

2.3.3 ROLL ADDRESS MAPPING

Roll address mapping is a method of utilizing DRAM
memory'space that may otherwise not be accessi·
ble. If. ROM or video.RAM shadowing is not select·
ed, then any addresses ganerated in these areas will
access the ROM or system· video RAM. Any local
DRAM with the .. sama physical addresses as the
ROM or video RAM cannot be directly addressed;
TO allow access to this DRAM space, the 82335 can
re·mapor "roll" logical addresses above the top of
the physical address range into this DRAM space in
128 Kbyte segments. Figure 2.7 shows a memory
map illustrating roll address mapping.

There are four 128 Kbyte segments of physical
memory (512 Kbytes total) that can be re-mapped.
These areas are in the top half of the lowest mega­
byte of memory as illustrated in Figure 2.7. Program­
ming of the memory configuration register bits
ROMEN# S640, ENADP#, and ENV# control
which segments are available for remapping. (See
the Memory Configuration Register section for
programming details.) Enabling roll address mapping
and specification of the logical addresses to be re­
mapped is done through programming of the

roll compare registers. (See Roll Compare Regis­
ter section for more details.)

2.3.4 REGISTERS

There are five registers in the 82335 that control the
operation of the address mapping and DRAM cpn­
trol options. These registers are the configuration,
roll compare (RC1 and RC2), and address range
compare (CCO and CC1) registers. Each of these
registers reside in the local I/O space of the 82335
and are read/writable until the LOCK bit has been
set in the configuration register. The contents and
purpose of each register are described in the follow·
ing sections.

2.3.4.1 Memory Configuration Register

The memory configuration register resides at I/O lo­
cation 22H upon system reset and is used to select
a number of addre.ss mapping and· DRAM control
options. Upon reset,· all bits in this register are set to
zero. Figure 2.8 shows the bits used in the memory
configuration register. The purpose of each bit is de·
scribed in the following paragraphs.

[
~----128K-----~ .]. L ___________ .J r- t::::j~~~::::j
I 128K ,
.------------- +- TOP OF PHYSICAL WEWORY 1

Logical addresses
re-mapped to Logical "T"·T " ! •• ,,"! .. ,:.. ':':!'

, Adapter ROW I address

! Vldeo RAW I spece

640K 1 S12K

logical addresses above the physical address space
can b. re-mapp.d Into physical addr

Figure 2.7. Roll Address Mapping Range

4-648

240340-9

82335

Memory Configuration Register = 1/0 Address 22H

7

Bit Name Function Poaltlon

0 ROMEN# o = Enable BIOS ROM/EPROM Accesses (OEOOOOH-OFFFFFH)
1 = Disable BIOS ROM/EPROM Accesses, Shadow Enabled

3 8640 0= BaseMemorySIzeis512K
1 = Base Memory Size is 640K

4 DSIZE o = 256K 1 DRAM Installed
1 = 1 Mb DRAM Installed

7,6 INTERL 00 = 1 Mem. Bank Installed (No Interleave)
01 = 2 Mem. Bank Installed·
10 = 3 Mem. Bank Installed~
11 = 4 Mem. Bank Installed·

8 ROMSIZE o = 256K ROM/EPROM; 1 = 512K ROM/EPROM

9 ENADP# o = Enable Adaptor ROM/EPROM Accesses (OCOOOOH-ODFFFFH)
1 = Disable Adaptor (ROM/EPROM Accesses, Shadow Enabled

10 ENV# o = Enable Video RAM Accesses (OAOOOO-OBFFFFH)
1 = Disable Video RAM Accesses, Shadow Enabled

11 VRO Video Read Only
o = Video Area Read-Write
1 = Video Area Read-Only

15 LOCK o = Enable altConfiguration Register Ac~sses
1 = Disable all Configuration Register Accesses

NOTE:
·When more than one bank of memory is installed, banks are alw,ays interleaved.

Figure 2.8. Memory Configuration Register

ROMEN #: This bit is used to enable or disable
shadowing of the BIOS ROM/EPROM in the ad­
dress range OEOOOOH-OFFFFFH. When this bit is
cleared, BIOS ROM shadowing is disabled. A mem­
ory access in this range will access ROM by assert­
ing ROMCSO# or ROMCS1 # and by deactivating
the OBMEM output. If BIOS ROM shadOWIng is dis­
abled, this memory space can be re-mapped above
the top of the physical address space. See roll.ad­
dress mapping for details on re-mapping.

When this bit is set, BIOS ROM shadowing is en­
abled and memory accesses to this address range
are made from local DRAM. During shadow DRAM
accesses, the OBMEMsignal is aSserted and the
ROMCSO# and ROMCS1 # signals are disabled.

8640: This bit selects the base memory size. When
cleared, a base memory of 512K is selected. When
set, a base memory of 640K is selected. If a base
memory of 512K is selected, the address range
080000H-09FFFFH can be re-mapped above the
top of the physical address space. See roll address
mapping for details on re-mapping.

DSIZE: This bit is used to indicate the type of DRAM
installed. When cleared, it indicates 256K DRAM
and when set, it indicates 1 M DRAM im~talled. When
256K DRAM is installed, the multiplexed address
line MA9 is not used.

4-649

82335

INTERL: These two bits indicate the number of
banks of memory installed. When more than one
memory bank is installed, the banks are always in­
terleaved' l

ROMSIZE: This bit indicates the size of the installed
ROM/EPROM. When cleared, it indicates 256K bit
ROM/EPROM and when set, it indicates 512K bit
ROM/EPROM is installed. This bit also affects the
ROMCSO# and ROMCS1 # address decode ranges
when ROM shadowing is disabled. (See Chip Select
Signals for further information.)

ENADP#: This bit is used to enable or disable shad­
owing of the adapter ROM area. If cleared, adapter
ROM shadowing is disabled and accesses to the
memory range OCOOOOH-ODFFFFH will be made
from ROM. If set, adapter ROM shadowing is en­
abled and memory accesses in this range will be
from local DRAM .. If adapter ROM shadowing is dis­
abled, this memory space can be re-mapped above
the top of the physical address spac~. See roll ad­
dress mapping for details on re-mapping.

ENV #: This bit is used to enable or disable shadow­
ing of the external video RAM. If cleared; video RAM
shadowing is disabled and accesses to the memory
range OAOOOOH-OBFFFFH will be made from the
system video RAM. If set, video RAM shadowing is
enabled and memory accesses in this range will be
from local DRAM. If video RAM shadowing. is dis­
abled, this memory space can be re-mapped above
the top of the physical address space. See roll ad­
dress mapping for details on re-mapping.

VRO: This bit selects either read/write access or
read only access from the video RAM area when
shadowing is selected. When video RAM shadowing
is enabled and this bit is set, the . local· video RAM
area will be read only, otherwise it will be available
for both read and write access.

LOCK: This bit enables or disables external access
to the configuration, roll compare, and address
range compare registers. When this bit is cleared,
the following conditions will exist:

• The configuration, rQII compare, and address
. range compare registers will be read/writable at
even I/O addresses from 22H-2EH

• The status outputs SO# and S1;' will not be gen­
erated for these I/O addresses

• The shadowing DRAM area will be available for
both reading and writing

When the LOCK bit is set, the following conditions
will exist:

• The configuration, roll compare, and .address
range compare registers will not be accessible.
external to the 82335

• The status outputs SO# and S1 # will be generat­
ed for I/O addresses between 22H-2EH

• The shadowing DRAM area will be read only with
the exception of OAOOOOH-OBFFFFH if the VRO
bit is cleared.

Once the lock bit is set, the configuration, roll com­
pare, and address compare registers can only be
accessed again by resetting the system. It is recom­
mended that the LOCK bit be set after the 82335 is
properly configured.

The lock bit does not affect the operations of I/O
Ports 061H or OFOH. Writing to these ports writes to
both the 82335 and the 82230.

When writing to the 82335 registers, all bits are writ­
ten over. Care should be taken to insure that all bits
of the data to be written are set for the intended
operation.

2.3.4.2. Roll COmpare Registers

. There are two roll compare registers, RC1 and RC2,
located at I/O addresses 24H and 26H respectively.
These registers are used to re-map logical address­
es above the physical address· space· into physical
addresses .. Figure 2;9 shows the bit functions in the
roll compare registers.

Roll address mapping works as follows. The output
of the roll complilrator activates the address mapper
and causes an· address roli-over. Thisisaccom­
plished by using the Iilddress bits A23-A17, and the
three outputs from each roll compare register: com­
pare enable, address mask, and compare data.
Each time a new address is received by the 82335, it
compares the address bits A23-A17 with the com­
pate data C23-C17 using M23~M17 as a mask. For
example,· if M23-M 17 = 1111110, the output of the
comparison is true if A23-A18 is identical to C23:;'
C18 with A 17 being a don't care. If the comparison is
disabled (EN = 0), then the' output will always be
false. The roll comparator performs an'OR function
of the comparisons of address input with the two roll
registers. The following examples illustrate program­
ming of the roll compare registers.

4.650

82335

Example #1

- 4 Banks of 256K x 1 DRAM Installed

- S640 = 0, ROMEN# = 1, ENADP# = 0,
ENV # = 0 (384K Roll-Over Avail.)

- Top of Physical Address Space = 1FFFFFH
(2M)

- Roll Decode Range = 200000H - 25FFFFH
(384K)

Register EN C23- M23- Address
C17 M17 Range

RC1 1 001000x 111111x 200000H-23FFFFH
(256K)

RC2 1 0010010 1111111 240000H-25FFFFH
(128K)

In this example, both roll compare registers are re­
quired to decode the 384K roll address area.

Example #2

- 3 Banks of 1 M x 1 DRAM Installed

- S640 = 1, ROMEN# = 1., ENADP# = 0,
ENV # = 0 (256K Roll-Over Avail.)

- Top of Physical Address Space = 5FFFFFH
(6M)

- Roll Decode Range = 600000H-63FFFFH
(256K)

Register EN C23- M23- Address
C17 M17 Range

RC1 1 011000x 111111x 600000H-63FFFFH
(256K)

RC2 0 xxxxxxx xxxxxxx None

In this example, the 256K roll address area can be
decoded with only one register. Therefore, the other
register has been disabled.

RC1 = 110 Address 24H
RC2 = 110 Address 26H

Enables roll
address mapping

Selects address bits to be
Included in re-mapping
comparison (10123-10117)

Selects address range to be re-mapped (C23-C17)

Figure 2.9. Bit Functions of the Roll Compare Registers

4-651

240340-10

I

i-7

82335

2.3 .• 4.3 Address Range Compare Registers

There are two address range compare registers,
CCO and CC1, located at 1/0 addresses 28H and
2AH respectively. They are used to decode the on­
board memory address range. Figure 2.10 shows
the bit functions of the address range compare reg­
isters. Upon reset, register CCO will be enabled and
register CC1 will be disabled.

The on-board memory address range is decoded in
a similar manner as the roll-over address. range.
Each address range comparator accepts address in­
puts A23-A19, compare data C23-C19, mask data
M23-M19, and an enable bit EN. Each comparator
compares A23-A19 with C23-C19 using M23-M19
as a mask. For example, if M23-M19 = 00001, the
output of the comparison is true if A 19 is identical to
C19 with A23-A20 being don't cares. Comparison is
disabled if EN = 0, yielding a false regardless of the
address input.

Examples of address range compare register pro­
gramming are shown below.

Example #1
Memory Installed: One 16-Bit Bank of 256K x 1
DRAM (512K)

Register EN C23- M23- Address
C19 M19 Range

CCO 1 00000 11111 000000H-07FFFFH
(512K)

CC1 0 xxxxx xxxlo< None

Only one address range compare register is required
to decode a 512K address space.

Example #2
Memory Installed: Three 16-Bit Banks of 1 M x 1

DRAM (6M)

Register EN C23- M23- Address
C19 M19 Range

CCO 1 OOxxx 11000 000000H-3FFFFFH
(4M)

CC1 1 010xx 11100 400000H-5FFFFFH
(2M)

In this example, two address. range compare regis­
ters are required to decode the 6 megabyte address
space.

2.3.5 CHIP SELECT SIGNALS

The address mapper/decoder uses the configura­
tion, roll compare, and address range compare reg­
ister contents along with input addresses to gener­
ate the following output signals:

ROMCSO# - ROM 0 Chip Select

ROMCS1;' - ROM 1 Chip Select

LMEGCS - Lower Meg Chip Select

OBMEM . - On-Board Memory Address Range

The ROM chip select signals are functions of the
ROMSIZE, and ROMEN # bits in the configuration
register as well as the input address. If ROM shad­
owing is enabled (ROM EN # = 1), then the ROM
chip select outputs will be disabled. If ROM shadow­
ing is disabled, then the ROM chip select outputs will

. be activated as follows:

If ROMSIZE = 0 (256K ROM)

ROMCSO# decodes the address ranges
OEOOOOH-OEFFFFH and FEOOOOH-FEFFFFH.

ROMCS1 # decodes the address ranges
OFOOOOH-OFFFFFH and FFOOOOH-FFFFFFH.

CCO = I/O Address 28H
CC1 = I/O Address 2AH

Enables address
range comparison

Setects address bits to be
Included in address range
comparison (10123-10119)

Speclfie. top of address range (C23-CI9)
240340-11

Figure 2.10. Bit Functions of the Address Range Compare Registers

4-652

intJ 82335

If ROMSIZE = 1 (512K ROM)

ROMCSO # decodes the address ranges
OEOOOOH-OFFFFFH and FEOOOOH-FFFFFFH.

ROMCS1 # is inactive.

The lower meg chip select output (LMEGCS) is a
function of both the input address and MIIO# in­
puts. It is activated whenever a memory address
within the first megabyte of memory is decoded. It is
inactive during 1/0 cycles.

The on-board memory output (OBMEM) is a function
of the address range comparators, roll comparators,
and the bits ROMEN #, ROMSIZE, DSIZE, and S640
in the configuration register. It is used to differentiate
local DRAM access from system RAM, ROM, or I/O
accesses. When system memory is being ad­
dressed, the OBMEM output is inactive and the
NA # output is de-activated to extend the 386SX
processor address long enough to be latched onto
the system address bus.

2.4 Ready Generator

The 82335 indicates completion of the current bus
cycle to the 386SX microprocessor via the READ·
YSX # signal. The.· ready generator determines the
appropriate number of· wait states (if any) to ins.ert,
and activates the READYSX # output at the correct
time. Table 2.1 in the DRAM control section shows
the number of wait states during local memory ac­
cesses for each mode.

The READY generator has three external inputs:
READY286 # , READYNPX#, and EXTRDY. The
READY286# input is driven by the 82230 READY#
pin and is used to identify the completion of system
bus cycles. Completion of math coprocessor bus cy­
cles is indicated by the READYNPX# input. This in­
put is. usually tied directly to the 80387SX READ­
YO# pin. The EXTRDY input is an active high, level"
triggered input which directly gates READYSX #.
The READYSX # output is held inactive until the EX­
TRDY input is sampled active. It is used to extend
bus cycles when using slow peripherals or off·board
memory. Setup and hold times for these inputs must
be met to guarantee correct operation.

2.5 Bus Cycle Translator

The 82335 has a builtin interface unit that translates
386SX processor control signals to 80286 control
signals. This bus cycle translator identifies the bus
cycle being performed, monitors the CPU T-states,
and outputs 80286-like bus control signals to the
82230/82231 and other components in a PCIAT
system. It also receives 80286 control inputs and
translates them into 386SX processor compatible
signals when required.

As the bus cycle translator monitors control inputs
from both the 386SX processor and the 82231, it
determines what type of cycle is being requested. If
one of the following cycles is being requested:

1. 1/0 Access

2. System Memory Access

3. Halt/Shutdown

4. Interrupt

then the bus tracker monitors the timing of the bus
cycle and simultaneously outputs 80286ctype bus
control signals. The control signals output are SO # ,
S1#, and M/I0286#. The SO# al)d S1# outputs
are· not .activated for ·Iocal memory accesses, or for
accesses to the 82335 on-chip 1/0 (programming of
the on-chip registers).

In additionto contrOlling status output to the 822301
82231, the bus cycle translator also controls
the hold request (HROSX) input to the 386~X proc­
essor. A hold request signal coming from the. 82230
(HR028E?)is translated into a 386SX processor­
compatible output and driven to the 386SX proces­
sor. The 386SX processor responds with a hold ac­
knowledge (HLDASX) to the 82335. which then
translates that to a HLDA output to the 822301
82231.

2.6 Math Coprocessor Interface

The 82335 provides synchronous interface signals
to allow the 80387SX coprocessor to run in a PCI AT
system with proper error handling. It also has logic
built in to automatically sense when an 80387SX is
installed. If a 80387SX coprocessor is not present,

4-653

I,;

inter 82335

MATH BUSY# I+-COPROCESSOR 82230

80387SX
ERROR# ERROR#

PEREQ

READYON RESETNPX

f ,

+
4 PEREQNPX RESETNPX

READYNPX#

~ BUSYNPX#

...... ERROR#
82335

ERROR#

386SX TIICPU BUSY# BUSYSX#

PEREQ PEREQSX

240340-12

Figure 2.11. Math Coprocessor Interface

BUSYSX# is toggled by REFRESH# and
PEREQSX is forced low. Otherwise BUSYSX# and
PEREQSX, function normally. If a a0387SXcoproc­
essor is not installed, the READYNPX # input should
be pulled up and PEREQNPX should be grounded. A
diagram of the coprocessor interface is shown in
Figure 2.11.

If a 80387SX coprocessor isinstalled and a numeric
exception occurs, the following sequence will occur.
BUSYSX # is latched low and PEREQSX is forced
high. This holds processing on the 386SX processor
while completing the 80387SX coprocessor trans­
fers. The ERROR #, output from the 80387SX co­
processor becomes, active causing the' 82230 to
issue an interupt request on IRQ13. The interrupt
handler performs anlOWR cycle to address OxFO
which clears the BUSY latching hardware. The inter­
rupt handler then clears the numerics ERRORNPX
signal and normal operation resumes.

2.7 Clock Generator/Reset
Synchronizer

The 82335 clock generator is used to synchronize
the CPU, coprocessor, and peripherals by convert­
ing an input frequency into the system clock outputs
CLK2 and PCLK #. The input frequency must be pro­
vided by a 32 MHz external oscillator connected to
the 82335 EFI pin. This EFI input is internally buff­
ered and output to the 386SX processor and
80387SX coprocessor via the CLK2 output. It is also
divided by two (to 16 MHz) and output to the 82230/
82231 using the PCLK # output.

The reset synchronizer receives the RESETCPU
and SYSRESET inputs from the 82230 and gener­
ates the synchronous outputs RESETSX and
RESETNPX to reset either the processor or the en­
tire system. When theSYSRESET signal is activat­
ed, both theRESETSX and RESETNPX outputs are
asserted to reset the system. Activating the
RESETCPU input will only assert the RESETSX out·
put to resetthe 386SX processor. Both RESETCPU
and SYSRESET can be asynchronous inputs.

2.8 Parity Generator/Checker

The 82335 has a built in parity generator and check·
er to maintain data integrity for the local memory.
This parity generator/checker has local data bus in­
put/outputs 00-015, and two parity input/output
pins, parity high byte (PAR H) and parity low byte
(PARL). PARH and PARL are three-state input/out­
put pins which are designed to directly drive the
DRAMs without data transceivers.

During memory write cycles, the DO~D15 pins are
evaluated by the internal parity generator and the
parity bits PARH and PARL are output to the DRAM.
During memory read cycles, the' data from the
DRAMs 00-015 are combined with the DRAM pari­
ty outputs and checked for parity errors. If a parity
error is detected, the parity error pin (PERROR#) is
asserted.

A parity register bit is provided within the 82335 for
resetting the PERROR # output. Bit 2 of the I/O ad­
dress 61 H is the PARCH KEN (parity check enable)
bit. When programmed to "0", parity checking is en­
abled. Otherwise, parity checking is disabled. This is
a write-only register and cannot be read.

4-654

intJ 82335

2.9 General System Considerations

1. The RASO#-RAS3#, CASHO#-CASH3#, and
CASLO # -CASL3 # output buffers are designed
to directly drive the heavy capacitive loads of the
dynamic RAM arrays. To keep the RAM driver
outputs from ringing excessively in the system
environment it is necessary to match the output
impedance with the RAM array by using series
resistors. Each application may have different im­
pedance characteristics and may require different
series resistance values. The series resistance
values should be determined for each application.

2. If the capacitive loading on the MAO-MA9 out­
puts exceeds the maximum capacitive loading
specification (see AC DRAM Timing Specifica­
tions), then buffering of the MAO-MA9 outputs is
recommended. The MAO-MA9 outputs can di­
rectly drive approximately two megabytes of
memory.

3. The NA # pin on the 82335 must be connected to
NA# on the 386SX processor.

4. If a math coprocessor is not installed, the READ­
YNPX# pin should be pulled high and the PER­
EQNPX pin should be grounded to avoid extrane­
ous processor extension requests.

5. If there is no DRAM installed in the physical ad­
dress space 080000H-OFFFFFH, then shadow­
ing and roll address mapping must be disabled.

6. When setting the LOCK bit in the configuration
register, the entire contents of the configuration
register must be written. Writing to a register in
the 82335 will overwrite all bits in that register.

3.0 MECHANICAL DATA

3.1 Package Dimensions

The 82335 is available in a 132 lead plastic quad flat
pack (PQFP) package. Table 3.1 and Figures
3.1-3.5 show the physical dimensions of this pack­
age.

Table 3.1. Intel Case Outline Dimensions for 132 Lead Plastic Quad Flat Pack 0.025 Inch Pitch

Symbol Description Inch " ' mm

Min Max Min Max

A Package Height 0.160 0.170 4.06 4.32

A1 Standoff 0.020 0.030 0.51 0.76

D,E Terminal Dimension 1.075 1.085 27.31 27.56

D1, E1 Package Body 0.947 0.953 24.05 24.21

D2,E2 Bumper Distance 1.097 1.103 27.86 28.02

D3, E3 Lead Dimension 0.800 REF 20.32 REF

L1 Foot Length 0.020 0.030 0.51 0.76

Issue IWS Preliminary 1/15/87

Symbol List

Letter or Symbol Description of Dimensions

A Package Height: Distance from Seating Plane to Highest Point of Body

A1 Standoff: Distance from Seating Plane to Base Plane

DIE Overall Package Dimension: Lead Tip to Lead Tip

D1/E1 Plastic Body Dimension

D2/E2 Bumper Distance

D3/E3 Footprint

L1 Foot Length

NOTES:
1. All dimensions and tolerances conform to ANSI Y14.5M-1982.
2. Datum plane H located at the mold parting line and coincident with the bottom of the lead where lead exits plastic body.
3. Datums A Band 0 to be determined where center leads exit plastic body at datum plane H.
4. Controlling Dimension, Inch.
5. Dimensions 01, 02, E1, and E2 are measured at the mold parting line and do not include mold protrusion. Allowable mold
protrusion is 0.18 mm (0.007 in) per side.
s. Pin 1 identifier is located within one of the two zones indicated.

4-655

mm (inch)

mm (inch)

mm (inch)

82335

A
-c- SEA TING PLANE
CI 'ioU <.334)

Figure 3.1. Principal Dimensions and Datums

3.81 <'153) MAX TYP

~ 3.25 (.313) C A®-B® D S
...L .932 MM/MM <IN/IN> D

Figure 3.2. Molded Details

lb SEE DETAIL L

. '-t--+--SEE DETAIL J

. . 1------'--. . D3/E3 ----1

DIE .

240340-13

240340-14

240340-15

Figure 3.3. Terminal Details

4-656

intJ

mm (inch)

mm (inch)

82335

®:: ~~ ~: m~ @:tB..->==~ri===*=l
I 9.29 <'99S)

9.l4 (.995)

9.3l <'9l2) -i I-
9.29 <'99S)

1.19.29 U9S><E) IcIA®-B® ID® I&,
DetailJ

Figure 3.4. Typical Lead

l.32 (.952)
l. 22 <'94S) j

9.99 <'935) MIN.

2.93 (.9S9)
l.93 <'9n)

---02----1

Figure 3.5. Detail M

Detail L

+m
S DEe.
9 DEe.

240340-17

240340-16

3.2 Package Thermal Specifications Table 3.2. Thermal Resistances eC/Watt)

The 82335 is specified. for operation when the case
temperature is within the range of 0°C-85·C. The
case temperature may be measured in any environ­
ment to determine whether the 82335 is within the
specified range of operation. The case temperature
should be measured at the center of the top surface
opposite the pins. Table 3.2 shows the thermal re­
sistance for this package.

4-657

(J Junction to Case 12

(J Case to Ambient 40

82335

4.0 ELECTRICAL DATA

4.1 D.C. Electrical Specifications
Functional Operating Range: Vcc = 4.5V to 5.5V, T CASE = O°C to + 85°C

Symbol Parameter Min Max Unit Notes

V,L Input Low Voltage ~0.3 0.8 V (Note 1)

V,H Input High Voltage 2.0 VCC + 0.3 V

V,LC EFllnput Low Voltage -0.3 0.8 V (Note 1)

V,HC EFllnput High Voltage Vcc- 0.8 Vcc+ 0.3 V

VOL Output Low Voltage 0.45 V IOL = 2mA

VOH Output High Voltage 2.4 V IOH = 1 mA

'll Input Leakage Current for All Pins ±15 p.A 0< V,N < Vcc
except BUSYNPX# and ERROR#

I,L Input Sustaining Current -400 p.A IV,L = 0.45V,
(BUSYNPX # and ERROR # pins) (Note 2)

ILO 3-State Output Leakage Current ±15 p.A VOL < V,N < Vcc

Icc Supply Current 150 mA (Note 3)

NOTES:
1. The min value, -0.3, is not tested.
2. BUSYNPX# and ERROR# inputs each have an internal pullup resistor.
3. CLK2 = 32 MHz, maximum loading on DRAM address and control pins.

4.2 A.C. Specifications
Unless otherwise specified, all timings are referenced ~t V = 1.5V, all timing values are in nano-seconds, and
all voltages are in volts.

A C Timings for Clocks . .
Symbol Parameter Figure Min

Operating Frequency

T1 EFI Period 4.1 31

T2a EFI High Time 4.1 12

T2b EFI High Time 4.1 5

T3a EFI LowTime 4.1 12

T3b EFI Low Time 4.1 7

T4 EFI Fall Time 4.1

T5 EFI Rise Time 4.1

T6 CLK2 Period 4.1 31

T7a CLK2 High Time 4.1 9

T7b CLK2 High Time 4.1 5

T8a CLK2 Low Time 4.1 9

T8b CLK2 Low Time 4.1 7

T9 CLK2 Fall Time 4.1

T10 CLK2 Rise Time 4.1

T11 PCLK # Delay from CLK2 4.1

NOTES:
1. This device is only guaranteed for 16 MHz operation.
2. These are not tested. They are guaranteed by design characterization.
Output Loadings: CLK2 75 pF Max.

PCLK # 75 pF Max.

Max Notes

16 MHz (Note 1)

at2V ...

at (VCG - 0.8)

at2V

atO.8V

8 (Vcc - 0.8)to 0.8 (Note 2)

8 0.8 to (Vcc - 0.8) (Note 2)

at2V

at (Vcc - 0.8)

at2V

atO.8V

8 (Vcc - 0.8) to 0.8 (Note 2)

8 0.8 to (Vcc - 0.8) (Note 2)

8

82335

A.C. Timings for DRAM Controller Unit
Symbol Parameter Figure Min Max Unit

T12 RAS# Active Delay from CLK2 4.3 55 ns

T13 RAS# Inactive Delay from CLK2 4.3 8 ns

T14 Row Addr Setup to RAS# Active 4.3 20 ns

T15 Row Addr Hold from RAS # Active 4.3 20 ns

T16 RAS # Precharge Time 4.5 92 ns

T17 Col Addr Setup to CAS # Active 4.3 25 ns

T18 Col Addr Hold from CAS# Active 4.3 25 ns

T19a CAS # Active Delay from CLK2 4.3 55 ns

T19b CAS # Active Delay from CLK2 (Read) 4.6 43 ns

T19c CAS# Active Delay from CLK2 (Write) 4.4 39 ns

T20 CAS # Inactive Delay from CLK2 4.3 , 8 ns

T21a CAS # Active Pulse Width 4.4 37 ns

T21b CAS # Active Pulse Width 4.6 .62 ns

T23a CAS# Precharge Pulse Width 4.4 . 22 ns

T23b CAS# PrechargePulse Width 4.5 .52 ns

T24 Read Data Setup before CLK2 4.4 11 ns

T25 Read Data Hold from CAS# Inactive 4.4 2 ns

T26 Write Data Delay from CLK2 4.4 . 9 ns

T27 Write Data Hold after CLK2 4.4 0 ns

T28 PARL/PARH Setup to CAS# Active 4.4 0 ns

T29 PARL/PARH Hold from CAS# Active 4.4 28 ns

T30 DEN# Active from CLK2 4.4 0 20 ns

T31 DEN# Inactive from CLK2 4.4 8 ns

T32 DIR Delay from CLK2 4.4 ?5 55 ns

T33 WE# Setup to CAS # Active 4.6 5 ns

T34 386SX CPU Addr, SHE #, SLE # Setup to CLK2 4.3 26 ns

T79 RAS# Active Delay from MEMx# 4.10 36 ns

T80 RAS # Pulse Width 4.10 150 ns

T81 CAS# Inactive from Memx# 4.10 9 40 ns

T8.2 CAS # Active Delay from RAS # Active 4.10 55 100 ns

T83 . Refresh Pulse Width 4.10 375 .. ns

NOTES:
1. All cycle except a) F1/F4 page-mode write, b) W01/02 page-hit-bank-miss.
2. Page-hit-bank-miss read cycles in W01 IW02.
3. Page write cycles in F11F4,or page-hit-bank-miss write cycles in W01/W02.
4. F1 IF4 mode only.
5. W01/Wb2 mode only.
6. For parity checker.
7. To guarantee PARL, PARH timings.
8. DMAIMASTER mode timings.

WEI!: 100 pF to 500 pF Output Loadings: RAS#: 125 pF to 250 pF
CAS#: 75 pF to 150 pF MA, DEN#, DIR: 25 pF to 75 pF

4-659

Notes

(Note 1)

(Note 2)

(Note 3)

(NoteA)

(Note 5)

(Note 4)

(Note 5)

(Note 6)

(Note 7)

.

(Note 8)

(Note 8)

(Note 8)

(Note 8)

intJ 82335

Other A C Timings . .
Symbol Parameter Figure Min Max Notes

T40 W/R#, MIIO#, D/C#, 4.3 29
ADS # Setup to CLK2

T41 RESETSX Valid before CLK2 4.2 15 CLoad =30pF

T42 RESETSX Hold after CLK2 4.2 6 CLoad = 30 pF

T43 READYSX# Valid before CLK2 4.11 20 CL08d = 30pF

T44 READYSX# Hold after CLK2 4.11 6 CLoad = 30pF

T45 NA# Valid before CLK2 4.3 7 CLoad = 30 pF

T46 NA# Holdafter.CLK2 4.3 27 CLoad = 30 pF

T47 HRQSX Valid before CLK2 4.12 28 CLoad = 30pF

T48 HRQSX Hold after CLK2 4.12 7 CLoad = 30 pF

T54 READYNPX# Setup to CLK2 4.11 31

T55 READYNPX# Hold fromCLK2 4.11 0

T57 READY286# Setup to PCLK# 4.11 15 90

T58 READY286# Hold from PCLK# 4.11 10

T59 RESETCPUSetup to CLK2 4.2 15 (Note 1)

T60 RESETCPU Hold from CLK2 4.2 15 (Note 1)

T61 A20GATE Setup to CLK2 4.12 40 (Note 1)

T62 A20GATE Hold from CLK2 4.12 15 (Note 1)

T63 HRQ286 Setup to CLK2 4.12 50

T64 HRQ286 Hold from CLK2 4.12 5

T66 MEMR#, MEMW#, REFRESH#, 4.12 50 (Note 1)
TURBO# Setup to CLK2

T67 MEMR#, MEMW#, REFRESH#, 4.12 5 (Note 1)
TURBO# Hold from CLK2

T68 EXTRDY Setup to CLK2 4.11 50

T69 EXTRDY Hold from CLK2 4.11 6

T70 MII0286#, SO# and S1 # Output 4.12 5 25 CLoad = 100 pF
Delay from PCLK #

T71 ROMCS#, LMEGCS# Output 4.3 40 CLoad = 50 pF
Delay from Valid Address

T72 OBMEM Output Delay from 4.3 40 CLoad =100 pF
Valid Address

T73 DO-D15 Output Delay form PCLK # 4:8 5 40 CLoad = 120 pF

T74 PERROR # Output Delay from PCLK # 4.4 50 CLoad = 50 pF

T75 HLDA Active Delay from HRQ286 4.10 92

T76 HLDA Inactive Delay from HRQ286 4.10 185

GIN Input Capacitance 10 pF (Note 2)

COUT Output or liD Capacitance 12 pF (Note 2)

GCLK GLK2 Capacitance 20 pF (Note 2)

NOTES:
1. Asynchronous parameters, provided to assure recognition at a specific clock edge.
2. Not tested. These are guaranteed by design characterizatiOn. . ,

4·660

82335

4.3 A.C. Timing Diagrams
The following diagrams illustrate AC timing relations.

Vee
Vee-O.8 .-

EFI
CLK2 2.0V .-

PCLK#

Figure 4.1. Clock Timings

CLK2~

SYSRESET ---1

RESETCPU ----'

240340-18

RESETSX ______ ~~----slr-------b ... __ ~""-------
RESETNPX ~ r

BUSYSX# E'lm ...t
~~~~~~---~:~:---------------------~:~: ---)L ____ _ ADS# f//#ff#/#///tM$/J/!I/A ~ 

240340-19 

Figure 4.2a. Power-On Reset Sequence 

CLK2~~~ 

SYSRESET ____ ..... ____ ~II~-----I__+--~~------

RESETCPU ----' 
It. 

I 

RESETSX ____ ~ ·s 
RESETNPX _________ ~liS~----------~I~S------

240340-20 

Figure 4,2b. RESETCPU Sequence 

4~661 



NOTES; 

82335 

CYCLE I CYCLE 2 INACTIVE CYCLE 

'I '2 

CLK2 AAAAAAAA AAAA AA 
-Tl2- " - I-Tl3 

AS# 

C 

-Tl9o-- -p= - I-T20 

AS# J 
T20-~ 

DATA 'iiii DAT~ :ED~ 
f-TI TI5 Tl7 Tl~17 

MAO-MA9 COLUMN ADDRESS 1 I COLUMN ADDRESS 2 

r- T40 -
DS# r\ I A 

-AI,I-I A23 
W/R#,MI 

BHEU,B 
o 

10#, I 
LEU, 
Ic# 

LMEGCS,OBM 
ROMCS0,ROM 

EM, 
CSI 

DIR 

EN# 

NA# 

H~6a 
CPU ADDRESS 1 

T11 
T72 

I 

'IA 

~ 
\ 

T45-

~ 

'--V 
CPU ADDRESS 2 

X 

~ ~ 
n-
H· 

..... 
r-1 -

AA 

[f, 'fLU 

Figure 4.3. DRAM Cycles-Inactive . .. Read . .. Page Read . .. Inactive 

240340-21 

1. Add 1 Wait State for W01 Mode. 
2. Add 1 Wait State for W01 Mode, 2 Wait States for W02 Mode. 

240340-22 

Figure 4.4. DRAM Cycles-Page Read . .. Page Write . .. Page Read F1/F4 Mode 

4-662 



inter 82335 

Figure 4.5. DRAM Cycles-Page Write . .. Bank-Hit-Page-Miss Read . .. Inactive 

NOTES: 
1. Add 1 Wait State for W01 Mode or 2 Wait States for W02 Mode. 
2. Add 1 Wait State for W02 Mode. 

CASON 

CAS1# 

WEN 

OIR 

DEN# 

NA# 

NOTE: 

bank switch page read bank switch page writ. 

Figure 4.6. DRAM Cycles-Bank Switch Page Read . .. Bank 
Switch Page Write . .. Bank Hit Page Read for WOllW02 Mode 

1. Add 1 Wait State for W02 Mode. 

4-663 

240340-23 

240340-24 



Idle cycle 

ClK2 ~ 
RAS# 

CASH 

DATA 

WAO-MA9 

A23-Al 

READYSX# 

DEN# 

NA# 

82335 

cycle 1 o.ycl82 - . 

rv-\.rv-\.(V\.(V\.f\.Ar\f\.. rv-\.rv-\.fV\. f\.A f\.A f\.A r\f\.. 
- . r-

r-
Rood data Read data -

Row addre.ss X Columli address X Rowaddren X Column address X 

I add .. I add", •• 2 X 

L ~ L. ~ 
I h ,--

I I 

240340-25 

CLK2 

l'Cl.K# 

ADDRESS 

M/1O# 
BHEH.BLEN 

Figure 4.7. DRAM Cycles-Non-Turbo Mode Read 

LOCAL MEMORY WRITE 
. TIP I T2P T1 T2 

I/O READ I 
I T2 I T2 

~ 
~ 

I c: 
I c: 

-~----~--~--------~~-------------
SO*.Sl*----t--------...,~!ffi;:;;m;'r,ACT1~V:ll!E~-.-.....,----

M/l0286# r-T73 ~ 

DO-D15-----CamE t1@DATAI">-

DEN II 

DIR 

NA'~---------~U~----------

READY2861------------~I~ 

READYSX 1\ 

Figure 4,8. Local Memory Write . •. 1/0 Read 

4·664· 

-240340-26 



inter 82335 

TI TI TI T2 T2- T1 T2 

CLK2 

PCLK# 

BUSYNPX# 

~ :: BUSYSX# 

-~ :: % 
PEREQNPX 

PEREQSX 

ERROR# II 

240340-27 

Figure 4.9. Numeric Coprocessor Interface Timing 

HRQ286 

" HRQSX 

~, 

HLDASX 

\. 
!.T75.J 4-T76J 

HLDA 

MEMW# ------ _ j 
MEMR# ~~---~Ss----( 

RASH 

TBO~ 
CAS# 

TBl 

REFRESH# 

240340-28 

Figure 4.10. DMA/MASTER DRAM Access and Refresh Timings 

4-665 



W.~"'··r.:"'· II."" 
CLK2 

PCLK# 

READY286# 

READYNPX~ 

EXTRDY 

R~DYSX 

NOTE: 

82335 

S~r-T68 
I 

Figure 4.11. Ready Setup and Hold Timing 

PCLK# ---, .. ____ . · ... 1 .... '-_ .... 
~ MEMR#.MEMW#----~,.-. .... -------

REF"RESH#. TURBO#----I~L ... -------

HRQ286 ____ x:::::J( 

HRQSX-.... ---i T47 .1148-4_-..... -_-
240340~30 

Figure 4.12. Misc. Setup and Hold Timing, 

The information contained in this data sheet is advance information. It is accurate at the time of printing. however. Intel 
reserves the right to make cha~ges ,without notice. 



inter 
82230/82231 

HIGH INTEGRATION AT*-COMPATIBLE CHIP SET 

• Fully IBM PC-AT* System Compatible 

• Two Chip Set Replaces the Major Logic 
Functions of the IBM PC-AT 
Motherboard Including the Functions of 
all the Microprocessor Peripherals: 
- 8259A Programmable Interrupt 

Controller (Master) 
- 8259A Programmable Interrupt 

Controller (Slave) 
- 8254 Programmable Interval Timer 
- 8284A Clock Generator 
- 82284 Clock Generator & Ready 

Interface 
- 82288 Bus Controller 
- 8237 DMA Controller (2) 
-6818 Real Time Clock 
-74LS612 Memory Mapper 

• Includes: 
- Refresh Generation Logic 
- Refresh/DMA Arbitration 
- Address/Data Bus Control 
-16- to 8-Bit Conversion Logic 

• Memory Refresh Controller Drives Up 
to 4 Mb DRAMs 

• Numeric Processor Control Logic 

• Up to 12 MHz System Clock Utilizing 
RAMs with Zero Wait States 

• Single + 5VPower Supply 

• CHMOS Technology 

• 84 Pin PLCC Packages 
(See Packaging Specification Order # 231369-004) 

The 82230 and 82231 are a two-chip implementation of LSI/MSI/SSI logic controlling the IBM Personal 
Computer AT. The devices provide a low power, highly integrated PC-AT design solution that may be applied 
to any 80286-based system. 

The 82230 performs the functions of the 82284 Clock Generator & Ready Interface, 82288 Bus Controller for 
80286 processors, 6818 Real Time Clock/RAM, and the Master-Slave implementation of the dual 8259A 
Programmable Interrupt Controllers as well as Command Delay, Shut Down, Address/Data Bus Control and 
Ready Generation logic. 

The 82231 includes the 8254 Programmable Interval Timer, 8284A Clock Generator, LS612 Memory Mapper 
and the dual 8237 DMA Controller functions as well as Refresh Generation and Refresh/DMA Arbitration 
Logic. 

NOTE: 
"+" and "-" in front of signal names is consistent with PC-AT Documentation. 

·PC-AT is a Trademark of International Business Machine Corporation. 

4-667 
August 1988 

Order Number: 240017-002 

I 

! 



il1tJ 

X3..,;........:.....Ir-~-......, 
X4_---! 

PAOCCLK----' 
SlSCUC_---! .82284 

PCLK----' CLOCK 
-PCLtC----' GENERATORI 

SO READY INTERFACE 

Ra~::::=t~:AN:D::LO:Q:IC~J 

F1. COMMAND 
DELAY 

REFRDY LOGIC 

CPUHLDA 
M/~ 
ALE 82288 

-lOR BUS 
-lOW CONTROLLER 

-MEMR 
-INTA 
DT/R 

-LSDEN 

-MSDEN BUS 
CONTROL 

CNTLOFF 
LOGIC 

-XBHE 

-AC 

A1 CPU 
SHUTDOWN 

RES CPU LOGIC 

+RESET 

-B~R CO PROCESSOR 
-c&287 INTERFACE 

-ERROR LOGIC 
+RES287 

XA3 

3 

• 

5 

2 

4 

7 

82230/82231 

XD7" • XDO . 

3 

4 

2 

8 ; ~ 
~ III 
III !ii c 
III Oil 

• 

IROO 
+OPT 
IRQ3 

""""'~~".IRQ4 
7 IROS 

IRQI 
8258 

PROGRAMMABLE 
INTERRUPT 

CONTROLLER I-----I~ 
I=~~ .. ~INTR1CS 

--------' 
XAO 

825. -1NTR2CS 
PROGRAMMABLE IRQ. 

INTERRUPT '. IRQ10 
CONTROLLER IRQ'!1 

IRQ12 
IRQ14 
IRQ15 

CCRRIW 

6818 CCROSC 

REAL nME CCRRST 
CLOCK BATT 

PDWERGOOD 

AO 
SAO 
SMI~ 
A20 

ADDR/DATA BUS A20QATE 
CONTROL AND NA20 

MISCELLANEOUS LOGIC -UN1 
-AEN2 
+FSYS18 
DIR245 
GATE245 
-IOCS18 

I ! ! 11 
'iilB 

240017-3 

8223o-Block Diagram 

4·668 



inter 82230/82231 

-IOR_ 
-IOW,_ 

-XMEMWi--
-INTA_ 

:::i=~g~:== 
-R%~~'~ 
-8042Cs'i--

>C>C>C>C>c>C>C>C 
!:l5l51!i!B2~8 
~ ...... . 

READIWRITE 
LOGIC AND 

PE=r~~;AL I---'....,.._~ 
DECODE 

CCRRIW-L-___ .... 
7 

-MASTER --ii-
-DMAAENi: 

-AENl 
-AEN2 MISCELLANEOUS 

f- ~ 

TC:: LOGIC 
SPE~~~~ ii- <'-,..-"8 __ .,....,_~ 

+RESET ......... ____ --' .... 

IROO --
SYSCLK :== OSC 

Xl --X2 .-
A17~ Al8 
A19 

!ii::t 

8254 
COUNTER! 

TIMER 

8284 
CLOCK 

GENERATION 
& LOGIC 

74612 
MEMORY 
MAPPER 

Ie'" 8 

'" 
1..- 5 

-

2 

l.-A 4 

~ 
8 

A23 '--__ --' 8 

.A. 

I-- '--
f- '--

f- I--

~ ~~R 
QO 

DRO 1 

8237 
4 DRO 2 

DMA 
DRO 3 

CONTROLLER k -DA CKO 

11 
-DA CK1 

4 -DA CK2 
-DA CK3 

8 ./ LATCHES 

8 
~ 

():;? ~IDRO 5 
DR 06 

8237 3 DRO 7 
8 DMA 

CONTROLLER CKS 
11 Ir-E-DA 

3 -DA CK6 

~ -DA CK7 

<' 8 
'" 

5 

....., 
LATCHES 

DRAM 
REFRESH 
COUNTER 
!LATCH 

REFRESH 
& DMA 

ARBITRATION 

____ CPUHRO ==== ~EFRESH 
-___. REFRDY 

& TIMING ====:! -XMEMR 
, ===: WL~RDY L..... __ ~ 

PARITY f_____,.NMI 
CHECK f---. -IOCHCK 
LOGIC 

L-___ ~f-----,.-DPCK 

240017-4 

82231-Block Diagram 

4-669 



inter 82230/82231 

;I~ ~ i ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ 11 ~ i n<~ ! ; W &n .... a::: G J:. ~ :D ~Eo 
12 SMliO :II .... = ~ 1l XDO 74 

13 SAO g XDI 73 

14 AI " XD2 72 

IS AO XD3 71 

16 NA20 XD4 70 

17 A20 XD5 69 

18 so XD6 68 
19 SI XD7 67 

20 M/iO -MEMR 68 
21 READY CPUHLDA 65 
22 INTR REFRDY 114 
23 +RESCPU 82230 -AENI 113 

24 VCC1 -AEN2 82 

25 VSS' CCRRIW 61 

26 X3 -CS287 IiO 
27 X4 IRCO 59 

26 PROCCLK -INTRICS 58 

29 BUSY286 -INTR2CS 57 

30 XA3 -INTA 58 
31 XAO +RESET 55 
32 BATT SYSCLK 54 

240017-1 

Pin Diagram 82230 

12 XDO AI9 7. 

13 XDI A20 73 

14 X02 A21 72 

15 XD3 A22 71 

16 XD4 A23 70 

17 XDS X2 69 

18 XD6 XI 68 

19 XD7 OSC 67 

20 NC SPEAKER 66 

21 HLDA NMI 65 

22 REFRDY CPUHRQ 114 
23 -AEN1 82231 -8042CS 63 

2. -AEN2 TIC 62 

25 -CCRRIW -DACKO 61 

26 -CS287 -DACKI 60 

27 IRoo -DACK2 59 

26 -INTR1CS -DACK3 58 

29 -INTR2CS -DACK5 57 

30 -INTA -DACK6 58 
31 +RESET -DACK7 55 
32 SYSClK VSS2 54_ 

! I :D - I i".Iq:gs,\c>C 
~~ ~t~~0~i~~~~i~g~ii< 
~i~~m~~i~~~I=Rgee~~98 

240017-2 

Pin Diagram 82231 

4·670 



82230 PIN DESCRIPTION 

Symbol Pin Type No. 

AO 15 I 

A1 14 I 

A20 17 0 

A20GATE 50 I 

-AEN2 62 I 
-AEN1 63 

ALE 33 0 

BATT 32 I 

-BUSY286 29 0 

-BUSY 11 I 

CCROSC 77 I 

CCRRST 79 I 

CCRR/W 61 I 

c::NTLOFF 41 0 

CPU HLDA 65 I 

-CS287 60 I 

DIR245 36 0 

82230/82231 

, Description 

ADDRESS 0 input from the CPU. It is used to generate 
SAO. 

ADDRESS 1 input from the CPU. It is used in 
conjunction with M/iO, SO and S1 to detect a CPU 
Shutdown condition. 

ADDRESS 20 is the A20 (NA20) line from the CPU after 
conditioning by the A20GATE signal. During a CPU Hold 
A20 goes to a high impedance state. 

A20GATE from the Keyboard Controller is used to force 
A20 low. When A20GATE is low, A20 on the CPU 
Address Bus is forced low. When A20GATE is high, A20 
follows the CPU Address 20. Tie directly to the P21 Pin 
ofthe Keyboard Controller. 

ADDRESS ENABLE 1 & 2 from DMA's 1 & 2, 
respectively. The signal is the result of the OMMEN pin 
NAND'd with -MASTER. Tie directly from the -AEN1 
and -AEN2 pins of 82231. 

ADDRESS LATCH ENABLE is an active high signal that 
controls the address latches used to hold addresses 
during bus cycles. ALE is held inactive for Halt bus 
cycles. 

BATTERY Power to the Clock Calendar and RAM. 

- BUSY286 is an active low output indicating the 
operating condition of the 80287 coprocessor to the 
processor. It is normally tied to the processor .,- BUSY 
pin. 

- BUSY is an active low input from the 80287 to indicate 
that it is currently executing a command. It is used to 
generate the - BUSY286 output signal. 

CLOCK CALENDAR OSCILLATOR; 32.768 KHz signal. 

CLOCK CALENDAR RESET signal for the Real Time 
Clock. This is an active low input. 

CLOCK CALENDAR READ/WRITE signal for the Real 
Time Clock. A high enables READ/WRITE operation to 
the rf;lal-time clock. Tie directly from the CCRR/W Pin of 
82231. 

CONTROl OFF is used to enable the low byte data bus 
latch during byte accesses. This signal is active high. 

CPU HOLD ACKNOWLEDGE is an active high input 
from the processor. An active condition indicates that 
the CPU has relinquished the bus to another bus master 
in the system. 

CHIP SELECT 287 is, used to derive the -NPCS signal. 
Tie directly from the - CS287 pin of 82231. 

DIRECTION-245 controls the high to low byte and, low to 
high byte conversion during data transfers to and from 
8-bit peripherals. 

4-671 

i~ 
'" I' 
I 



82230/82231 

82230 PIN DESCRIPTION (Continued) 

Symbol Pin Type Description 
No. 

DTIR 39 0 DATA TRANSMIT IRECEIVE establishes the data 
direction to and from the local data bus. When high, this 
output signals a CPU write bus cycle. A low indicates a 
CPU read bus cycle is being performed. This signal is 
always high when no bus cycle is active. 

-ERROR 10 I ERROR is a negative edge triggered input from the 
numeric processor indicating that an unmasked error 
condition exists. Tie directly from the - ERROR Pin of 
the 80287. 

F16 45 I F16 is an active high input indicating a word memory 
access. It is used to inhibit command delays for memory 
accesses. 

+ FSYS16 46 I A latched version of F16. 

-GATE245 37 0 GATE245 is an active low output. When active it enables 
the bus transceiver that performs the high to low byte 
conversion with the DIR245 signal. Conversion does not 
take place if AO = 0 which indicates a word transfer. 

-INTA 56 0 INTERRUPT ACKNOWLEDGE instructs an interrupting 
device that its interrupt request is being acknowledged. 
This signal is active low. -INTA is tri-stated when CPU 
HLDA is high and CNTLOFF is low. Tie directly to the 
-INTA pin of 82231. 

INTR 22 0 INTERRUPT REQUEST is connected directly to the 
CPU's interrupt pin. INTR is active high, and is 
generated when a valid interrupt request has been 
asserted. 

-INTR1CS 58 I INTERRUPT CONTROLLER 1 (MASTER) CHIP 
SELECT is an active low output that is used to select the 
Interrupt Controller as an 1/0 device. This allows 
communication between the master interrupt controller 
and the CPU via the 'X' Data Bus. Tie directly from the 
-INTR1CS pin of 82231. 

-INTR2CS 57 I INTERRUPT CONTROLLER 2 (SLAVE) CHIP SELECT 
is an active low output that is used to select the Interrupt 
Controller as an 1/0 device. This allows communication 
between the slave interrupt controller and the CPU via 
the 'X' data bus. Tie directly from the -INTR2CS Pin of 
82231. 

-IOCS 16 35 I 110 16-BIT CHIP SELECT signals the system that the 
current data transfer is a 16-bit, one wait-state, 1/0 
cycle. It is derived from an address decode and is an 
active low signal. 

-lOR 53 1/0 1/0 READ signal instructs a selected 1/0 device to drive 
its data onto the data bus. The -lOR signal is active 
low. It is tri-stated when CPU HLDA is high and 
CNTLOFF if low. 

-lOW 52 1/0 110 WRITE signal instructs a selected I/O device to read 
the data on the data bus. The -lOW signal is active low. 
It is tri-stated when CPU HLDA is high and CNTLOFF is 
low. 

4-672 



inter 82230/82231 

82230 PIN DESCRIPTION (Continued) 

Symbol Pin Type Description 
No. 

IRQO 59 I INTERRUPT REQUEST 0 (system timer) receives 
interrupt requests from channel 0 of the timer/counter. 
Tie direqtly from the IRQO pin of 82231. 

IRQ7-IRQ3 3·? I INTERRUPT REQUESTS 3-7,9-12, and 14-15 are 
IRQ10-IRQ9 1·2 I used to signal the CPU that an I/O device needs 
IRQ12-IRQ11 83·84 I attention. The interrupt requests are prioritized with 

IRQ15-IRQ14 81-82 I IRQ9-IRQ12 and IRQ14-IRQ15 having the highest 
priority (IRQ9 highest) and IRQ3-IRQ? having the 
lowest priority (IRQ7 lowest). IRQn signals are active 
high. The requesting signal is held high until the CPU 
acknowledges the interrupt request. 

-LSDEN 40 0 LEAST SIGNIFICANT DATA ENABLE is an active low 
output. When active, it enables the transceiver/receiver 
connected to the least significant byte of the local data 
bus. 

-MEMR 66 I/O MEMORY READ COMMAND instructs a memory device 
to drive data onto the data bus. This signal is active low. 
- MEMR is active on all memory read cycles. It is tri-
stated when CPU HLDA is high and CNTLOFF Output is 
low. 

-MEMW 44 I/O MEMORY WRITE COMMAND instructs a memory 
device to read the data on the data bus. This signal is 
active low. - MEMW is active on all memory write 
cycles. It is tri-stated when CPU HLDA is high and 
CNTLOFF Output is low. 

-MSDEN 38 0 MOST SIGNIFICANT DATA ENABLE is an active low 
output. When active, it enables the transceiver 
connected to the most significant byte of the local data 
bus. 

M/IO 20 I MEMORY-INPUT OUTPUT is the M/IO Signal from the 
CPU. When high, it indicates a memory access. When 
low, it indicates an I/O access. It is used to generate the 
memory and I/O signals for the system. 

NA20 16 I NA20 is the CPU address 20. 82230 conditions this 
signal with A20GATE to produce A20. NA20 is tied 
directly from the CPU A20 output. 

NC 80' Do Not Connect. 

-NPCS 9 0 NUMERICAL PROCESSOR CHIP SELECT is an active 
low output used to select the 80287 Numerical 
Processor. It is tied directly to the NPS1 pin of the 
80287. -

+OPT 49 I KEYBOARD OUTPUT BUFFER FULL is an active high 
Signal from the Keyboard Controller P24 Pin. The signal 
is an interrupt request (IRQ1) signaling a full keyboard 
buffer. 

-OWS 47 I ZERO WAIT STATE option. When pulled active (low), 
the current processor cycle can be terminated. 

4-673 



inter 82230/82231 

82230 PIN DESCRIPTION (Continued) 

Symbol 
Pin 

Type Description 
No. 

PCLK 42 0 PERIPHERAL CLOCK is half the frequency of 
PROCCLK. It is used to clock peripheral controllers, 
specifically XT AL 1 of the Keyboard Controller. 

-PCLK 43 0 PERIPHERAL CLOCK INVERTED is the inverse of 
PCLK. It has been made available specifically for XTAL2 
of the Keyboard Controller. 

PROCCLK 28 0 PROCESSOR CLOCK provides the clock signal for the 
CPU and 80287 Numerical Processor. It is equal to the 
frequency of the crystal across pins X3 and X4. Tie 
directly to the CLK Pins of the 80286 and 80287. 

POWER 78 I POWER GOOD is an active low input that indicates that 
GOOD system power is sufficient to maintain the integrity of the 

system. If high, it will force a system reset. 

RC 51 I RESET CPU from the keyboard controller P21 Pin. 

READY 21 0 READY is an active low output which signals that the 
current bus cycle is to be completed. SO, S1, POWER 
GOOD, and OWS control the READY. 

REFRDY 64 I REFRESHIIO-CHANNEL-READY is generated by 
82231. It is used to preset the READY Interface 
Asynchronous READY (ARDY). 

+RES287 8 0 RESET 80287 is the reset signal for the 80287 
Numerical Processor. 

RES CPU 23 0 RESET CPU is the reset signal for the CPU. Active high, 
RESCPU is generated when either POWERGOOD or RC 
become active, or when the CPU generates a HALT 
status by forcing MilO high. SO, S1 and Ai low. If this 
signal is initiated by RC, or by MilO, SO, S1 and Ai, it 
will remain active for 16 PROCCLK cycles. 

+ RESET 55 0 RESET (SYSTEM) is an active high output derived from 
the POWER GOOD input. + RESET is used to force the 
system into an initial state. When + RESET is active, 
READY will also be active (Low). 

SO,S1 18,19 I STATUS inputs from the CPU. The status signals are 
used by the bus controller to determine the state of the 
CPU. 

SAO 13 0 ADDRESS 0 of the CPU bus. SAO outputs AO from the 
CPU during local CPU cycles. During a CPU Hold SAO 
goes to a high impedance state so that another master 
on the expansion bus can take control. During an 
interrupt acknowledge this signal will be forced low. 

SMIIO 12 I SYSTEM MEMORY-INPUT OUTPUT is the MilO Signal 
from the CPU, conditioned by ALE. 

SYSCLK 54 0 
) 

SYSTEM CLOCK is the result of PROCCLK divided by 
two, thus synchronized to the processor's T-states. It 
may be used to clock peripheral devices that must be 
synchronized to the CPU. 

4-674 



inter 82230/82231 

82230 PIN DESCRIPTION (Continued) 

Symbol Pin Type Description No. 

VCC1 24 POWER: + 5V supply. 
VCC2 75 

VSS1 25 GROUND. 
VSS2 76 
VSS3 48 

X3 26 I CRYSTAL inputs used to generate PROCCLK and Ii 
X4 27 0 SYSCLK. The crystal frequency must be twice the 

processor clock frequency. Alternatively, an oscillator 
may be connected to X3. 

XAO 31 I ADDRESS 0 is used by the 8259A to decipher command 
words the CPU issues. XAO works in conjunction with 
the read, write and chip select signals to the interrupt 
controller in determining whether the CPU wishes to 
issue a. command or read the status of the controller. 

XA3 30 I ADDRESS 3 is used for generating the chip select and 
reset signals for the 80287. 

-XBHE 34 I/O BUS HIGH ENABLE is an active low signal which is used 
by 82230 to generate the MSDEN signal. 

XD7-XDO 67-74 I/O Data Bus 0-7 for the peripheral bus. The direction of the 
bus is determined by the - RDXDB signal from 82231. It 
is used by the 8259A to decipher command words the 
CPU issues. 

82231 PIN DESCRIPTION 

Symbol Pin Type Description No. 
-8042CS 63 0 8042 CHIP SELECT is an active low, chip select signal 

for the Keyboard Controller. 

A23-A17 70-76 0 A23-A 17 are the Address bits 17 -23 of the CPU 
Address bus. They are outputs directly from the Memory 
Mapper Pins M01-M07 and supply page information 
during DMA transfers. These outputs are tri-stated 
unless HLDA and - MASTER are high. 

+ACK 36 0 ACKNOWLEDGE is an active low output. When active it 
enables the bus transceiver between the system and 
peripheral (XBUX) bus. + ACK is used in conjunction 
with - RDXDB which controls the direction of the bus 
transceiver. 

-AEN1 23 0 ADDRESS ENABLE FROM DMAs 1 & 2, respectively. 
-AEN2 24 0 The signal is the result of the DMA's AEN signal NAND'd 

with - MASTER. Tie directly to the - AEN1 and - AEN2 
pins of 82230. 

CCRR/W 25 0 CLOCK CALENDAR READ/WRITE Signal for the real-
time clock. A high enables READ/WRITE operations to 
the real-time clock. Tie directly to the CCRR/W pin of 
82230. 

CPU HRQ 64 0 CPU HOLD REQUEST is an active high output indicating 
a DMA request to the CPU. It is also active during 
refresh cycles. CPU HRQ is normally connected to the 
80286 HOLD Pin. 

4-675 



ir1tJ .. 82230/82231 

82231 PIN DESCRIPTION (Continued) 

Symbol Pin " ~ type " Description No. " 

-CS287 26 0 CHIP SELECT 287 is used by 82230 to derive the 
:-NPCS signal. Tie directly to the ~CS287 pin of82230. 

":'DACKO-3 61-58' 0 DMA ACKNOWLEDGE 0-3 and 5":'7 are used to 
-DACK5-7 57-55 0 acknowledge DMA requests (DRQO-3 & 5-7). The 

output signal is an active low. 

-DMAAEN 37 0 
, 

DMA ADDRESS ENABLE is an active low signal and is 
active when an 1/0 device is making a DMA access to .. 
system memory or during refresh . 

-DPCK 39 I PATA PARITY CHECK is used to generate NMI. This 
input is active low. 

DRQO-3 46-49 I DMA REQUEST 0-3 & 5-7 are synchronous channel 
DRQ5-7 50-52 I requests used by peripheral dCilvices and 1/0 processors 

'to gain DMA service. The requests are prioritized with 
DRQO having the highest and DRQ7 having the lowest 
priorities. A ORQ line must be held active (high) u!'ltiUhe 
corresponding DACK line goes active. 

HLDA 21 I HOLD ACKNOWLEDGE is an active high input that is 
equivalent to CPU HLDA. Afl active condition inidicates 
that the CPU has relinquished the bus to another bus 
master in the system. 

-INTA 30 I INTERRUPT ACKNOWLEDGE instructs an interrupting 
device that Its interrupt Is being acknowledged, and the 
device may place its interrupt vector onto the data bus; 
This input signal is active low. -INTA is used by 82231 
in the generation of - RDXpB. Tie directly from 82230 
Pin 56. 

-INTR1CS 28 0 INTERRUPT CONTROLLER 1 (MASTER) CHIP 
, SELECT is an active low output that is used by 82230 to 

seleot the Interrupt Controller as an 1/0 device. This 
allows communication between the Master Interrupt 
Controller and the CPU via the 'X' Data Bus. Tie directly 
to the -INTR1CS pin of 82230. 

-INTR2CS 29 0 INTERRUPT CONTROLLER 2 (SLAVE) CHIP SELECT 
is an active low output that is used by 82230 to select 
the Interrupt Controller as an 1/0 device. This allows 
communication between the Slave Interrupt Controller 
and the CPU via the 'X' Data Bus, Tie directly to the 
-INTR2CS Pin of 82230. 

~IOCHCK 43 I 110 CHANNEL CHECK is an active low input. It is used 
to indicate anuncorrectable system error. It provides the 
system with parity error information about memory or 
devices on the 110 channel. ' 

IOCHRDY ,42 I 110 CHANNEL READY is generated by an 110 device. 
When low it indicates a 'not ready' condition and forces 
thlil insertion of wait states in 110 or Memory accesses 
by the 110 device. When active (high), it will allow the 
completion of a memory or an 110 access by the 110 
device. ' , 

4-676 



intJ 82230/82231 

82231 PIN DESCRIPTION (Continued) 

Symbol Pin Type Description No. 
~IOR 33 I/O I/O READ signal instructs a selected I/O device to drive 

1'1 
.\i, 

-til I, 

its data onto the data bus. The -lOR signal is active 
low. It is used for data transfers between the CPU and 
I/O devices and by DMA transfers. 

-lOW 34 1/0 1/0 WRITE signal instructs a selected 1/0 device to read 
the data on the data bus. The -lOW signal is active low. 
It is used for data transfers between the CPU and 110 
devices and by DMA transfers. 

IROO 27 0 INTERRUPT REOUEST 0 (System Timer) from Channel 
o of the Timer/Counter. Tie directly to the IROO Pin of 
82230. 

-MASTER 40 I - MASTER is an active low input used in conjunction 
with a DRO line to gain control of the system. A DMA 
controller or processor on the 1/0 channel may issue a 
DRO to a DMA channel and receive a - DACK. The 1/0 
processor may then activate - MASTER which will allow 
it to contrc;>1 the system address, data, and control lines. 

NC 20 Do Not Connect. 

NMI 65 0 NON-MASKABLE INTERRUPT is an active high output 
that is connected to the CPU NMI pin. 

OSC 67 0 OSCILLATOR output is the clock frequency of the 
crystal connected across X1-X2. It is the OSC output 
from the Clock Generator. 

P2 35 0 P2 is an active high output indicating that a valid refresh 
address is available on the XA bus. 

-RDXDB 38 0 READ X-DATA BUS controls the direction of the 
bidirectional buffer between the least significant byte of 
the '5' Data Bus and the 'X' Data Bus. - RDXDB is used 
in conjunction with + ACK to controlXBUS activity. 
When + ACK is active (low) and - RDXDB is low, data is 
to be read from the peripheral bus. When + ACK is 
active (low) and - RDXDB is high, data is to be written 
to the peripheral bus. 

REFRDY 22 0 REFRESH/IO-CHANNEL-READY is generated by 
+ REFRESH OR'd with lOCH ROY. It is used by 82230 
to preset the Clock Generator & Ready Interface 
Asynchronous Ready (ARDY). 

-REFRESH 41 1/0 REFRESH is an active low output used to initiate a 
refresh cycle for the dynamic RAMs. 

+ RESET 31 I RESET (SYSTEM) is an active high input from 82230. 
+ RESET is used to force 82231, as well as the system, 
into an initial state. Tie directly from 82230 Pin 55. 

SPEAKER 66 0 SPEAKER DATA is an output of the Programmable 
interval timer tone signal used to drive the speaker. 

SYSCLK 32 I SYSTEM CLOCK input from 82230. It is used to 
synchronize 82231 to the system. Tie directly from 
82230 SYSCLK Pin. 

TC 62 0 TERMINAL COUNT provides a pulse when the terminal 
count for any DMA channel is reached. 

4-677 



inter 82230/82231 

82231 PIN DESCRIPTION (Continued) 

Symbol 
Pin 

Type Description No. 
VCC1 11 POWER: + 5V supply. 

VCC2 53 

VSS1 10 GROUND. 
VSS2 54 

X1 68 I CRYSTAL inputs for the internal oscillator used to 
X2 69 0 generate clocking for 1/0 devices. A parallel resonant 

fundamental frequency mode crystal is required.' An 
alternative oscillator may be connected to X1. 

XA8-XAO 1-9 1/0 XBUS ADDRESSES 0-16 are the peripheral addresses 
XA9 84 1/0 for the local 110 bus. 
XA16-XA10 77-83 0 

XDO-XD7 12-19 110 Data Bus 0-7 for the peripheral bus. The direction of the 
bus is determined by the - RDXDB signal from 82231. 

-XMEMR 44 110 MEMORY READ signal indicating a DMA read operation 
from peripheral devices or memory. 

-XMEMW 45 0 MEMORY WRITE signal indicating a DMA write 
operation to peripheral devices or memory. It is tri-stated 
except during DMA transfers. 

4-678 



82230/82231 

FUNCTIONAL DESCRIPTION 

Introduction 

The 82230 and 82231 are a two-chip implementa­
tion of LSI/MSI/SSI logic controlling the IBM Per­
sonal Computer AT. The devices provide a low pow­
er, highly integrated PC-AT design solution that may 
also be applied to any 80286-based system. With 
the 82230 and 82231, a PC-AT system can be de­
signed to operate at 12 MHz with zero wait state 
RAM accesses. 

These standard cell products contain most of the 
logic peripheral to the microprocessors and memory 
on the "standard" AT motherboard. The LSI periph­
erals which support the AT design reside as super­
cells on the 82230/82231 chips. These peripherals 
are compatible with the products they replace and 
the user should refer to the standard product data 
sheets for additional information on the operation of 
these devices. 

80286 

MEMORY 

ADDR DATA CTL 

The 82230 performs the functions of the 82284 
Clock Generator & Ready Interface, 82288 Bus 
Controller, 6818 Real Time Clock/RAM, and the 
Master-Slave implementation of the dual 8259A Pro­
grammable Interrupt Controllers as well as Com­
mand Delay, Shut Down, Address/Data Bus Control 
and Ready Generation logiC. ' 

The 82231 includes the 8254 Programmable Inter­
rupt Timer, 8284A Clock Generator, LS612 Memory 
Mapper and the dual 8237 DMA Controller functions 
as well aS,Refresh Generation and Refresh/DMA 
Arbitration Logic. 

PC·AT BLOCK DIAGRAM 

The block diagram is shown below in Figure 1 which 
shows the 82230 and 82231 being used in a PC-AT 
compatible design. Note how the basic structure of 
the PC-AT is retained in the design. The five address 
busses and four data busses are present. The 
82230 and 82231 'sit' on the X Address and Data 
Busses and monitor the status and control line out­
puts from the 80286 in order to operate the peripher­
al supercells. 

240017-5 

Figure 1. Block Diagram of 82230 and 82231 for PCI AT 

4-679 



82230/82231 

A brief description of each of the basic PC-AT bus­
ses is included in order to show how a system de­
sign using the 82230/82231 allows for the retention 
of the PC-AT bus structure. 

ADDRESS BUSSES 

The 82230/82231 allows a straightforward PC-AT 
design which preserves the five basic address. bus­
ses. System designers can interact with these bus­
ses, create new busses, or eliminate busses, de­
pending upon design objectives. Each bus must be 
independently buffered and separated by buffersl 
latches. Most handshake signals are generated by 
the 82230182231. 

The Local Address Bus is comprised of the 24 ad­
dress pins emanating from the 80286. External buff­
ers are required in order to separate the local 
address bus from the system address bus. AO, how­
ever, is input directly into the 82230 and is used in 
c~njunction with XBHE in order to enable the appro­
priate memory bank. The 82230 inputs CPU address 
bit NA20 and outputs A20. 

The System Address Bus is the main AT address 
bus. This is a latched version of the local address 
bus, and is a 20-bit bus. SAO is an output of the 
82230 and SA 1-SA 19 are latched from the local 
address bus. The latch signal is ALE, which is gener­
ated by the 82288 supercell in the 82230. CPU 
HLDA, generated by the 80286 and active high, 
should be used as the. output enable signal. 

The Memory Address Bus applies to the RAM on the 
PC-AT system board only. It is a multiplexed version 
of the System Address Bus with nine address lines, 
MAO-MA8. External multiplexers are used to gener­
ate the row and column addres13es. 

The X Address Bus is separated from the System 
Address Bus. The X address lines are input/outputs 
into the 82230/82231. The X Address Bus is a 
motherboard address bus which is used to address 
ROM (BIOS) and motherboard 1/0. In addition, the X 
Address Bus generates addresses for DMA and 
memory refresh. 

The L Address Bus is an unlatched 7 -bit address 
bus. LA17-LA23 can allow a PC-AT design up to 16 
MBytes of address space. TheL Address Bus 
should be made available at the expansion bus con­
nector. 

DATA BUSSES 

The Local Data Bus is the name for the data bus 
lines emanating directly from the 80286. The local 
data bus has 16 lines, DO-D15. Because the 80286 
can do word and byte transfers and because word 
transfers need not be aligned, it is necessary to de­
sign a bus interface which differentiates between the 
high bus byte and the low bus byte. 

The System Data Bus is the main data bus of a PC­
AT system and interfaces with all other data busses. 
The 82230 and 82231 are designed to control these 
interfaces in order to simplify system design and 
maximize bus flexibility. 

The Memory Data Bus interfaces both DRAM and 
ROM. It is a 16-bit bus and connects with the Sys­
tem Data Bus through buffers. 

The X Data Bus is the bus intended primarily for sys­
tem board I/O functions. It interfaces to functions 
such as the DMA controllers, Interrupt controllers, 
Keyboard controller, and Real Time Clock. 

82230/82231 Interface 

The 82230 and 82231 are relatively independent of 
each other; the 82230 generates most of the timing 
and control signals and the 82231 controls the X 
Address Bus for DMA and refresh. Both chips have 
additional functions but because of the desire to par­
tition the system design such that the 82230 and the 
82231 could be assembled in low cost 84-pin PLCC 
packages, each chip relies on the other for certain 
functions. This entails introducing dedicated inter­
face signals between the 82230 and 82231 into a 
system design. The 82230/82231 interface requires 
14 pins on each device and these pins are described 
below. 

• REFRDY is generated by the 82231 and used to 
tell the 82230 to insert wait-states in response to 
the 82231 input 10CHRDY. 10CHRDY i13 active 
high. 

• -AEN1 and -AEN2 are signals generated by 
the 82231 which indicate DMA byte (-AEN1) or 
word (-AEN2) transfers, and are used by the 
82230 to generate bus buffer control signals. 

• CCRR/W is generated by the 82231 and used by 
the 82230 as part of the 6818 chip select. 

• :-INTR1CS and -INTR2CS are generated by 
the 82231 and used by the 82230 as the interrupt 
controller chip selects. 

• -CS287 is generated by the 82231 and is used 
by the 82230 to generate 80287 control signals. 

• IROO is the output of the 8254 timer 0 on the 
82231 and is connected to interrupt request 0 on 
the master interrupt controller in the 82230. 

4-680 



inter 82230/82231 

• + RESET is generated by the 82230 in response 
to POWERGOOD and is used by the 82231 for 
initialization. 

• SYSCLK is PROCCLK divided by two. 
• -INTA, -MEMR, -lOR, and -lOW are com­

mands generated by the 82230 in response to 
the 80286 status inputs SO and S 1, and are used 
by the 82231 .as basic system commands. 

Coprocessor Interface 

The 82230 contains a coprocessor interface logic 
block to allow interfacing with an 80287 math co­
processor. The coprocessor interface includes the 
IBM PC-AT compatible error handling hardware. 

Memory Operations 

When the 82230 and 82231 are used in a PC-AT 
system design, the system can be designed to oper­
ate with the full 16 MBytes of memory that the 24 
address lines of the 80286 allow. 

The 82230/82231 chipset normally operates with 
one wait state inserted for memory operations and 
four wait-states inserted for 1/0 operations. The 
number of wait states may be increased for slow 
memory or 1/0 devices, or decreased if use of high­
speed memory or 1/0 devices is desired in order to 
provide higher system performance. 

During normal operation, the number of ROM ac­
cesses are relatively few compared to RAM access­
es, so ROM subsystem speed does not significantly 
affect system performa~ce. When designing high 
performance PC-AT systems, it should be verified 
that the ROM subsystem is fast enough for opera­
tion. Note also that older versions of the IBM BIOS 
may not operate in systems faster than 8 MHz. Mod­
ifications of both RAM and ROM subsystem per­
formance are covered in detail in the Intel 286EX 
Application Note. 

X3 ,.... 

PROCCLK 

SYSCLK ----4--' 

PCLK ____ >( 

-PCLK 

System Clocks and Oscillators 

Because of the high level of integration of the 
82230/82231, several different clock frequencies 
are present on the chips. Figure 2 shows the rela­
tionships·between the various clock signals. 

PROCCLK is the main system clock which is used in 
a PC-AT system to generate all the basic system 
and bus timings. The clock is generated by the 
82230 and operates at twice the system clock fre­
quency. See Table 1 for processor clock capaci­
tance. The tolerance of the PROCCLK oscillator is 
independent of the 82230/82231 and is primarily de­
termined by the requirements of the 80286 and 
80287 processors. For reliable operation at the 
specified Voo and temperature condition, the proc­
essor timing specifications must not be exceeded. 

Table 1. Recommended Fundamental Mode 
Crystal Characteristics and Recommended Load 

Capacitance for PROCCLK 

Oscillator Crystal CLOAD CIN (pF) COUT(pF) 
Freq. (pF) X3 X4 

PROCCLK 12MHz 20 30 10 
PROCCLK 16MHz 20 30 10 
PROCCLK 20 MHz 20 27 8 
PROCCLK 24 MHz 20 22 8 

SYSCLK is PROCCLK divided by two, and should be 
used as the expansion bus clock. SYSCLK is an out­
put of the 82230. To ensure compatibility with ex­
pansion cards, SYSCLK should not be above 8 MHz. 

X1 is an input to the 82231 which is 12 times the 
frequency used to clock the three counters in the 
8254 timer on the 82231. In order to be compatible 
with AT hardware and software, it should be a 
14.318 MHz fundamental mode crystal with CLOAO 
= 32 pF, and a 27 pF capacitor should be placed in 
series with the crystal. Alternately, a 14 MHz funda· 

240017-12 

Figure 2. 82230 Clock Timing 

4-681 

~ 
I' 

1 

I 

I, 
I 



82230/82231. 

mental mode crystal (CLOAD = 32 pF) may be 
trimmed with a 5-50 pF trimmer capacitor in'series 
for high .accuracy applications such as NTSC or 
RS170 video-compatibility with chroma colorburst. 

Note that the trim cap must be adjusted with a low­
capacitance nylon or teflon tuning wand for accurate 
trimming. Tolerance for this clock is 0.1 % or less for 
non-video or non time-critical use, 0.01 % or greater 
if used for video color-burst or time-critical applica­
tions. 

The CCR clock is the low-frequency oscillator used 
to clock the 6818 Clock/Caiendar/RAMon the 
82230; CCROSCtolerance is variable and depen­
dent upon real-time clock accuracy requirements~ 
See Table 2 for CCROSC clock tolerance and accu­
racy .. 

Table 2. CCROSC Tolerance/Accuracy 
. Tolerance Accuracy 
0.001% or 5 niinutes/year 
10ppm trimming required 
0.01% or ',1 minute/week no 
100 ppm trimming required 
0.02% or 2 minutes/week no 
200 ppm . trimming required 
0.05% or 5 minutes/week no " 
500 ppm trimming required 

EXT,ERNAL OSCILLATORS 

External CMOS output drive oscillators nil:1y be used 
for either PROCCLK or OSC. Simply connect the ex­
ternal oscillator outputs, .to PROCCLK inputs X1 or 
X3. TIL output oscillators may be used if the output 
drive VOHI~ greater than 4.1 V; puU-upresistors will 
generally suffice. The oscillator invertor outputs X2 
and X4 may be left open, or may be used to drive 
one moderate rise-time CMOS load if needed. 

4-682 



·nt.:....f I •• .e- 82230/82231 

ABSOLUTE MAXIMUM RATINGS· 

Am~ient Temperature Onder Bias ...... O·C to 70·C 

Storage Temperature ,': ........ -:-~·C to .+ 150·C 

Voltage on any Pin 
with Respect to Ground ... :-0.5V to Vee +0.5V 

Power Dissipation '" ................. , ...... 1 W 

82230/82231 DC CHARACTERISTICS 

'Notice.~ Stresses. above those Usted under '~bso­
lute Maidmum Ratings" may cause permanent dam­
age to the device. This is a stress rating onlY and 
functional operation. of the device at these or any 
dthe; conditions above those indicated in the opera­
tional S6Ctions of this specification is not implied. Ex­
posure to absolute maximum rating conditions for 
extended periods may affect device reliability. 

NOTICE: Specifications contained within the 
following tables are subject to change. 

vee = 5V ±5%, VSAT = 2.8V to vee, TA = O·C to +70·C 

Parameter Conditions Min Max Units 
VIL 0.5 V 

VIH 2.0 V 

VIL 
82230 Pins 26, 77, 78, 79 

0.5 V 

82231 Pins 41, 42, 68 

VIH . 
82230 Pins 26, 77, 78, 79. 

4.5 V 

82231 Pins 41, 42, 68 

VIH • 
82230 Pin 47 

4.5(1) V 

110 VIN = 0 -100 ,...A 

110. . VIN = 0 .' -10 ,...A 
.82230 Pins 26, 77, 78, 79 

111 VIN'= Vee 10 ,...A 

~H VOH = 2.4 -4 mA 
xceptfor 82231 Pin 41 (2) 

IOL VOL = 0.4SV 4 mA 

IOL 
82230 Pins 13, 28, 44, 52, 53 

VOL = 0.45V 16 mA 

54,56,66 
. 

82231 Pins 3334,67 

IOL 
82231 Pin 41 

VOL = 0.45V 18 rnA. 

loz Vo = OtoVcc -10 +10 ,...A 

ICC 82230 F = 10MHz 55 mA 
F= 12 MHz 60 mA 

lee 82231 F = 10MHz 45 mA 
F.= 12MHz 50 mA 

ICC 82230 F = 32.768 KHz 25 /LA 
from Battery VSAT = 5V 

Vec = OV 
ICC 82230 F = 32.768 KHz 20 ,...A 
from Battery VSAT = 2.8V 

Vec = ov 

NOTES: 
1. -:-OWS (82230 Pin 47) is driven by an open collector output. It is pulled up to CMOS voltage levels of Vee - 0.5V by a 
pullup resistor. 
2. -REFRESH (82231 Pin 41) is an open collector output. 

4-683 



82230/82231 

82230 AC CHARACTERISTICS (VDD""SV ±5% TA = O·Cto7p·C) , , 

Symbol 
Parameter 

10,MHz 12,MHz 
Units Notes 

-:-Flgure 
" 1",'I\4ln Max Min Max, 

53-15 -OWS Setup TimetoPROCCLK .l. 25 25 ns 13 
54-15 - OWS Hold Time from PROCCLK .l. .',' 0 0 ns 13 

- OWS Setup Time to PROCCLK .l. 36 36 ns 11 
- OWS Hold Time from PROCCLK .l. 0 0 ns 11 

69-22 AO Setup Time to ALE 30 25 ns 
AO Hold Time from ALE 0 0 ns 

26-6 A1 Setup Time to S1, SO 27 22 ns 
27-6 A 1 Hold Time from S 1 , SO 0 0 ns 

43-13 A20 Delay from NA20 27 22 ns 
44-13 A20 Delay from A20GATE 37 32 ns 
45-13 A20 Disable Delay from CPUHLDA t 35 30 ns 4 
46-13 A20 Enable Delay from CPUHLDA .l. 35 30 ns 

17-3 ALE Active Delay from PROCCLK .l. 25 23 ns 
18-3 ALE Inactive Delay from PROCCLK .l. 30 25 ns 

68-21 BUSY286 Delay from BUSY, lOW 35 35 ns 

CCROSC High Time 25 25 p's 5 
CCROSC Low Time 25 25 p.s 5 
CCROSC Input Rise/Fall Time 20 20 ns 12 

39-10,11 CCRR/W Setup Time to IORIiOW .l. 0 0 ns 
40-10,11 CCRR/W Hold Time from IORIiOW t 17 15 ns 

CCRRST Pulse Width toO 83 ns 

67-20 CNTLOFF Delay from PROCCLK .l. 30 , 25 ns 

70-23 CPUHLDA Setup Time to PROCCLK .l. 20 15 ns 
71-23 CPUHLDA Hold Time from PROCCLK .l. 0 0 ns 

49-14 DIR245 De!ay from -lOR J" ~ lOW .l. 17 15 ns 
49-14 DIR245 Delay from - MEMR, - MEMW 17 15 ns 

DIR245 Delay from -AEN1, -AEN2 40 35 ns 

55-16 DT /R Delay High from PROCCLK .l. 45 40 ns 
56-16 DT / R Delay Low from PROCCLK .l. 45 40 ns 

60-16 F16 Setup Time to PROCCLK .l. 30 30 ns 
61-16 F16 Hold Time from PROCCLK.l. 0 0 ns 

+ FSYS16 Setup Time to PROCCLK .l. 100 83 ns 
+ FSYS16 Hold Time from PROCCLK .l. 50 40 ns 

50-14 - GATE245 Delay from -lOR .l., -lOW .l. 22 20 ns 
50-14 - GATe:245 Delay from - MEMR, - Me:MW 22 20 ns 

-GATE245 Delay from -AEN1, -AEN2 45 40 ns 

4-684 



inter 82230/82231 

82230 AC CHARACTERISTICS (Voo = 5V ± 5%, T A = O·C to 70·C) (Continued) 

Symbol 
Parameter 10 MHz 12 MHz Units Notes -Figure Min Max Min Max 

37-9 Interrupt Request Pulse Width 100 100 ns 8 

29-7,8 -lOR, -lOW Active Delay from PROCCLK J.. 3 15 3 15 ns 
30-7,8 -lOR, -lOW Inactive Delay from PROCCLK J.. 3 15 3 15 ns 

-lOR, -lOW Enable/Disable Delay from CPUHLDA 40 40 ns 

-INTA Active Delay from PROCCLK J.. 3 .45 3 35 ns 
-INTA Inactive Delay from PROCCLK J.. 3 45 3 35 ns 
-INTA Enable/Disable Delay from CPUHLDA 40 40 ns 

38-9 INTR Delay from Interrupt 175 150 ns 

33-7,8 -INTR1 CS, - INTR2CS Setup Time to -lOR, -lOW J.. 0 0 ns 
34-7,8 -INTR1 CS, - INTR2CS Hold Time from -lOR, -lOW i 0 0 ns , 

72-24 -10 CS 16 Setup Time to SYSCLK J.. 85 75 ns 
73-24 -10 CS 16 Hold Time from SYSCLK J.. 0 0 ns 

57-16 - LSDEN, - MSDEN Active Delay from PROCCLK J.. 45 40 ns 
58-16 - LSDEN, - MSDEN Inactive Delay from PROCCLK J.. 35 30 ns 
66-19 - LSDEN, - MSDEN Delay from - NPCS 15 15 ns 

- LSDEN, - MSDEN Active Delay from 
30 30 ns 

SMIIO after' - CS287 Inactive 

79-16 - MEMR, - MEMW Active Delay from PROCCLK J.. 3 15 3 15 ns 
80-16 - MEMR, - MEMW Inactive Delay from PROCCLK J.. 3 15 3 15 ns 

- MEMR, - MEMW Enable/Disable Delay from CPUHLDA 40 40 ns 

64-17 - MSDEN Delay from - XHBE 27 25 ns 

62-16 M/IO Setup Time to PROCCLK J.. 28 25 ns 
63-16 MilO Hold Time from PROCCLK J.. 0 0 ns 

65-18 - NPCS Delay from SM/IO-CS287, XA3, -INTA 40 35 ns 

11-2 PCLK, - PCLK High Time 45 35 ns 
12-2 PCLK, - PCLK Low Time 45 35 ns 
13-2 PCLK, - PCLK Delay from PROCCLK 45 40 ns 
14-2 PCLK, - PCLK Rise/Fall Times 7.5 5 ns 12 

19-4 POWER GOOD Setup Time to PROCCLK J.. 26 26 ns 3 
POWER GOOD Hold Time from PROCCLK J.. 50 41 ns 3 

8-4 POWER GOOD Rise/Fall Times 20 20 ns 12 
POWER GOOD Inactive Pulse Width 1 1 fJ-s 

5-2 PROCCLK Delay from X3 5 25 5 20 ns 
6-2 PROCCLK High Time 16 13 ns 
7-2 PROCCLK Low Time 12 11 ns 
9-2 PROCCLK Rise/Fall Time 8 8 ns 12 

22-5 - RC Setup Time to SYSCLK i 30 30 ns 3 
23-5 - RC Pulse Width 100 83 ns 

51-15 READY Active Delay from PROCCLK J.. 22 18 ns 
52-15 READY Inactive Delay from PROCCLK J.. 70 60 ns 

4-685 



inter 82230/82231 

82230 AC CHARACTERISTICS (Voo == 5V ±5%, TA = 0·Ct070·C) (Continued) 

Symbol 
Parameter 

10 MHz 12MHz 
Units Notes 

-Figure Min Max Min Max 

REFRDY Pulse Width 50 40 ns 
REFRDY Hold Time from PROCCLK ,I- 34 34 ns 
REFRDY Setup Time to PROCCLK ,I- -14 -14 ns 

74-25 RES 287 Delay from -lOW 60 50 ns 

21-4 RES CPU Delay from PROCCLK ,I- 27 22 ns 

20-4 + RESET Delay from PROCCLK ,I- 50 50 ns 

41-12 SAO Enable Time from CPU HLDA 60 50 ns 
42-12 SAO Disable Time from CPU HLDA 60 50 ns 4 

15-3 S1, SO Setup Time to PROCCLK ,I- 28 15 ns 
16-3 S1, SO Hold Time from PROCCLK ,I- 0 0 ns 

10-2 SYSCLK Delay from PROCCLK ,I- 5 20 5 20 ns 

1-2 X3 Period 50 41.7 ns 
2-2 X3 Low Time 17 15 ns 
3-2 X3 High Time 23 20 ns 
4-2 X3 Rise/Fall Times 5 3 ns 12 

35-8, 11 XDO-XD7 Delay Time from -lOR ,I- 45 40 ns 
36-8,11 XDO-XD7 Hold Time from -lOR t 17 15 ns 
31-7 XDO-XD7 Setup Time to -lOW t 100 83 ns 
32-7 XDO-XD7 Hold Time from -lOW t 0 0 ns 

82231 AC CHARACTERISTICS (Voo = 5V ±5% TA = 0·Ct070·C) , 

Symbol 
Parameter 

10MHz 12MHz 
Units Notes 

-Figure Min Max Min Max 

96-27 - 8042CS Delay from XAx 60 48 ns 

98-28 A 17 -A23 Delay from SYSCLK t 150 125 ns 
99-28 A 17 -A23 Enable Delay from HLDA 

100 83 
or -MASTER 

ns 

97-28 A 17 -A23 Disable Delay from HLDA 
100 83 4 

or -MASTER 
ns 

100-29 + ACK Delay from HLDA 45 40 ns 
101-29 + ACK Delay from - MASTER 45 40 ns 

109-30 - AEN1, - AEN2 Delay from SYSCLK t 130 115 ns 

94-27 CCRR/W Delay from XAx 60 48 ns 
102-29 CCRR/W Delay from HLDA or - MASTER 50 41 ns 

108-30,39 CPU HRQ Delay from SYSCLK t 80 70 ns 

95-26 - CS287 Delay from XAx 60 48 ns 
103-29 ~CS287 Delay from HLDAor -MASTER 50 41 ns 

113-30 - DACKO-3, - DACK5-7 Delay 
110 100 

from SYSCLK t ns 

110-30 - DMAAEN Delay from SYSCLK t 140 120 ns 

4·686 



inter 82230/82231 

82231 AC CHARACTERISTICS (Voo = 5V ±5%, TA = 0·Cto70·C) (Continued) 

Symbol 
Parameter 10 MHz 12 MHz Units Notes -Figure Min Max Min Max 

1'1 

,': 

' . .. 
:~ 

I~ 

I~ 
~ 

132-32 - DPCK Setup Time to - XMEMR t 8 6 ns· 
133-32 - DPCK Hold Time from - XMEMR t 5 5 ns 

107-30 - DROO-3, - DR05-7 Setup Time to SYSCLK t 0 0 ns 3, 7 

HLDA Setup Time to SYSCLK t 70 65 ns 
HLDA Hold Time from SYSCLK t 0 0 ns 

28-7 -INTR1 CS, -INTR2CS Delay from XAx 60 41 ns 
104-29 -INTR1 CS, -INTR2CS Delay from HLDA or - MASTER 60 41 ns 

134-33 -IOCHCK Pulse Width 25 20 ns 

IOCHRDY Setup Time to SYSCLK t . 
25 25 ns 

(During Refresh) 
IOCHRDY Hold Time from SYSCLK t 

25 25 ns 
(During Refresh) 

114-30 -lOR, -lOW Active Delay from SYSCLK t 
125 100 

(During DMA Transfers) 
ns 

115-30 -lOR, -lOW Inactive Delay from SYSCLK t 
115 100 ns 

(During DMA Transfers) 
116-30 -lOR, -lOW Float to Inactive Delay from SYSCLK t 

120 100 
(During DMA Transfers) 

ns 

117-30 -lOR, -lOW Inactiv.e to Float Delay from SYSCLK t 
170 156 ns 4 

(During DMA Transfers) 

152-37 -lOW Active Pulse Width 
90 75 ns 

(During CPU Transfers) 

137-34 IROO Delay from X1 100 100 ns 

NMI Delay from - XMEMR t 100 83 ns 
135-33 NMI Delay from -IOCHCK J. 100 83 ns 

143-35 OSCLowTime 20 20 ns 
144-35 OSC High Time 20 20 I1s 
145-35 OSC Rise/Fall Times 15 15 ns 12 
146-35 OSC Delay from X1 30 24 ns 

P2 Delay from SYSCLK t 100 83 ns 

148-36 - RDXDB Delay from --: lOR 100 83 ns 
149-36 ...,.RDXD.B Delay from .".INTA 100 83 ns 

REFRDY Delay from IOCHRDY 10 35 10 35 ns 

157-39 -REFRESH Delay from HLDA 28 24 ns 
158-39 - REFRESH Delay from SYSCLK t 100 83 ns 

+ RESET Active Pulse Width 4!00 160 ns 

138-34 SPEAKER Delay from X1 100 100 ns 

91-26 SYSCLK Period 100 83 ns 
92-26 SYSCLK Low Time 40 30 ns 
93-26 . SYSCLK High Time 40 30 ns 

4-687 



82230/82231 

82231 AC CHARACTERISTICS (VDD = 5V ±5%, TA = 0·Cto70·C) (Continued) 

Symbol 
Parameter 

10 MHz 12 MHz 
Units Notes -Figure Min Max Min Max 

124-30 TC Delay from SYSCLK i 110 100 ns 

140-35 X1 Low Time 30 30 ns 
141-35 X1 High Time 30 30 ns 
142-35 X1 Rise/Fall Times 5 5 ns 12 

150-37 XAx Input Setup Time to -lOW .,J.. 
100 83 

(During CPU Transfers to 82231) 
ns 

151-37 XAX Input Hold Time from -lOW i 
45 40 

(During CPU Transfers to '82231) 
ns 

XAx Input Hold Time from -lOR i 
100 67 ns 

(During CPU Transfers to 82231) 
111-30 XAx Valid Delay from SYSCLK i 

160 150 
(During DMA Transfers) 

ns 

15,9-39 XAx Valid Delay from SYSCLK i 
90 75 ns 

(During Refresh) 
112-30 XAx Disable Delay from SYSCLK i 

150 130 4 
(During DMA Transfers) 

ns 

153-37 XDx Input Setup Time to -lOW i 100 83 ns 
154-37 XDx Input Hold Time from -lOW i 17 15 ns 
155-38 XDx Output Delay from -lOR .,J.. 125 100 ns 
156-38 . XDx Output Hold Time from -lOR i 17 70 15 60 ns 

125-31 - XMEMR Active Delay from SYSCLK i 110 100 ns 
126-31 - XMEMR Inactive Delay from SYSCLK i 110 100 ns 
127-31 -- XMEMR Enable/Disable Delay from SYSCLK i 120 120 ns 4, 12 

121-30 - Xi\I1EMWActive Delay from SYSCLK i 110 100 ns 
122-30 - XMEMW Inactive Delay from SYSCLK i 110 100 ns 
123-30 - XMEMW Enable/Disable Delay from SYSCLK i 120 120 ns 4,12 

"------

NOTES: 
1. To' provide clearly understood information, the complex timing diagrams depict operation in a standard IBM PC AT system 
design, Combinational logic data paths are shown with less complex timing diagrams. The signal source (82230, 82231, 
PROCESSOR, LOGIC, etc.) follows the signal name. I 

2. The direction control signals are delayed to PROCCLK J. on an -lOW cycle. This is done to avoid changing the direction 
of the byte-swapping bus transceivers while data is still on the bus. 
3. This signal is an asynchronous input. The timing specification is provided for testing purposes only to assure recognition 
at a specific clock e<;lge. 
4. The output float or high impedance condition occurs when output current is less than loz in magnitude. 
5. The frequency of CCROSC sets the count rate for the real time clock. CCROSC frequency, accuracy and stability, should 
be maintained as close as possible to 32.768 KHz to ,insure the validity of time and data information. 
6. Input rise and fall times are assumed to be less than 20 ns unless otherwise specified. 
7. DRQx must be held active with DACKx is returned. 
8. The interrupt request inputs include IRQO, IRQ3-7, IRQ9-12, IRQ14-15 and + OPT. 
9. Address XAO-1S are output for byte DMA operations. XAo Q6 are oUYfr)t for word DMA operations, with XAO low. 
10. A minimum of 16 PROCCLK cycles must occur before PO ERGOO becomes valid. 
11. At the end of TC phase I, after TCW2 or TCW3 for 16-bit transfer to 8-bit source/destination, for the first 8 bits of 
transfer. 
12. These are not tested. They are guaranteed by design characterization. 
13. At the end of TC phase 1 for 16 bit back plane memory transfers and 8-bit transfers after TCW2 or TCW3. 

4-688 



4.5V 
SPECIAL 

INPUT 0.5V 

INPUT 

OUTPUT 

2.0V 

O.BV 

2.4V 

0.45V 

82230/82231 

240017-13 

Figure 1A. Delay Time and Pulse Width Measurements 

2.0V _~:-::,:,+::':""i_ 
INPUT 

O.BV ..J~:=':'F~'-

2.0V ",,",~:-::,:,+::':""i_ 
INPUT 

O.BV ..J~:=':'F~'-

2.0V _r."::l"+-::':""i_ 
INPUT 

O.BV ..J~';;:':'F~'-

SPEcIAL 4.5V ---:~~- OUTPUT 2.4V --_~~-INPUT 2.0V --_~-::oio­
(REFERENCE) O.BV ---1'-"---- INPUT 

(REFERENCE) O.5V --- 11-"--- (REFERENCE) O.45V --- ~---

SPECIAL 4.5V 

INPUT O.5V 

INPUT 

OUTPUT 

2.0V 

O.BV 

2.4V 

0.45V 

Figure 1B. Setup/Hold Time Measurements 

toDHLS - ~- ~ tOEHL 

) 4.0V ) 4.0V 
1.0V 1.0V 

toDLHS - r--- ~ toELHS 

toDHL - ~- ~ toEHL 

) 1.BV ) 1.BV 
1.0V 1.0V 

toPLH - r--- I-- tOELH 
.. 

• NOTE 1 : NOTE 1 
~:t·-----1 2.0V ::NOTE;-~ 

2.0V 
• NOTE 1 O.BV O.BV 

Figure 1C. Output Enable/Disable Time Measurement 

4-689 

240017-14 

240017-15 



intIf·· '22~O/822:U 

xi (82230) .. 

® 

PROCCLK (82230) 

5YSCLK (82230) 
---I' 

PCLK (82230) __ -+-...J 

-PCLK (82230) 

240017-16. 

Figure 2; 82230 Clock Timing 

11-' --- Ts -----I-I 
PROCCLK (82230) 

51·51 (80286) 

ALE (82230) ______________ ~--J 

Figure .3.82230 Status and ALE Timing . 



PROCCLK 
(NOTE 10) (82230) 

SYSCLK (82230) 

POWERGOOD 
(LOGIC) 

+RESET (82230) 

RES CPU (82230) 

PROCCLK (82230) 

SYSCLK (82230) 

RC (8042) 

82230/82231 

----~----~--~~ 

~--~!\~---------------
240017-18 

Figure 4. 82230 Power on Initiated Reset 

_____ J~--------------~!\~------------~\ RES CPU (82230) '--

240017-19 

Figure 5. 82230 Keyboard Initiated Reset 

SYSCLK(82230) ~ 

SI'SO (80286) 

M/Ki (80286) 

Al (80286) 

RES CPU (82230) 

240017-20 

Figure 6. 82230 Processor Shutdown Initiated Reset 

4-691 



W.:..:::""·.' •• '.'eII 

PROCCLK (82230) 

XAX (80286) 

82230/82231 

--+I' I~' -III-- TC ---:--+~-- TS ---

______________ -J~----~----~~--------~----~--
-INTR1CS. ----------~I 

-INTR2CS (82231) 

XDO_7 (80286) -----------+-'~--~~--4S_---~~+-..,,1'_--+_-
@ 

~--~---~----------~ 

-lOW (82230) 

240017-21 

Figure 7. 82230 8254 Bus Write Timing 

rTs ---+-- TC 

~ROCCLK (82230) 

XAx (80286) __________ ...... ___ -+ ___ ~!_-..... ---+_----,,--
-INTR1CS. 

-INTR2CS (82231) 

~ __ ~ ____ ~ ___ @_33~@ 
-lOR (82230) , 

'l'-r:=--@I~~-, --. ---
XDo-7 (80286) .. - -------------------SIs--{t_·::V~A~LI!D~DA~TA~:}----

240017-22 

.' Figure 8. 82230 8254 Bus Read Timing' 

IRQO.3-7.S-12.14.1S ~~ 
+OPT (EX. CARDS. 8042) JJ.. 3 

_ ___ ......,...@_8. t:..:. 
INTR (82230) ! 

240017-23 

~Igure 9. Interrupt Reque,st Timing 

4.,692 



intJ 82230/82231 

TC I Tc I 
rf\-/\..f\.../\ 

XAX (80286) ===~I::JlADmiDft!:l7~O====nu======:xlC::::;A~DDiRi:71c:==:::tU~======C 

,~:~ ::::::::~:::::@39::---1:::V:AL:ID:;;;;:A:DDft:E:SS:D:AT:A:::::C:X--C-:-:-JV:AL~ID:D-AiilTA:~~:I:~~~~~~~~j~~~-@:4-0}--~~ 
(82230) ~!-I----II------'"""~!-I-----~'--;" 

PROCCLK 
(82230) 

XAX (80286) 

CCRR/W 
(82231) 

XDX 

-lOW 
(82230) 

-lOR 
(82230) 

240017-24 

Figure 10.822306818 Write Cycle 

TS I TC I TC T5 TC I TC I TS I 
~ ~ 

X ADOR 10 U X ADD~ 71 U C 

I S 
~ 

VALID ADORES i DATA ) ! VALID DATA 

~ @r-
! 

I I c-I---@ ~ @ -
II 

240017-25 

Figure 11.822306818 Read Cycle 

r TH ---l r-- TH ---l 
PROCCLK(82230) ~~ 

~ @!-Ir------lI_i_4 @J-t-
SAO (82230) -----..... -r-, ____ ~::_ }-

CPU HLDA (80286) 

240017-26 

Figure 12. 82230 SAO Timing 

4-693 



82230/82231 

NA20 (S02S6) 

A20 GATE (S042) 

CPU HLDA (S02S6) 

A20 (S2230) ___ ..;T 

PROCCLK 
(S2230) 

S1'SO (S0286) 

ALE (S2230) 

-MEMR, 
-MEMW (S2230) 

READY (S2230) 

OWS (LOGIC) 

Figure 13. 82230 A20 Timing 

-lOW, -lOR, -MEMR, 
-MEMW (82230) 

DIR245 (S2230) 

GATE245 (S2230) 

Figure 14.82230 DIR245, GATE245 Timing 

Figure 15. 82230 Zero Wait State Timing 

4-694 

240017-27 

240017-28 

240017-29 



inter 82230/82231 

I READ ----I WRITE -----1 ' 
TS I TC I TC TS I Tc 1 Tc 

p(~~~~~ ~/\....I"""'J\...f""\J\J\/\....I"""'J\. 

Ax (80286) -X X X 

ALE (82230) I \ I 1\ 

XBHE (80286) X X 
~ @ ~ C@ 

-wo,tR (82230) 'i II 
- @ -~ -IdEMW (82230) ~ 

- @ - r@ 
OTjR (82230) 'J..' T 

- t@ - t® ~ LSDEN, \ MSDEN (82230) I t 
~ ~ 

! 

f16 (LOGIC) T \. : I C:1 

-j@1-- ~@ 
I 

M/IO (80286) 7 \. : I C 1 
I 

240017-30 

Figure 16. MemorY,Read/Wrlte Cycles 

-XBHE (80286) 4@t ~@~ 

-MSDEN (82230) '_ r-
240017-31 

Figure 17.82230 XHBE Timing 

240017-32 

Figure 18.82230 NPCS Timing 

4-695 



intJ 82230/82231 

-",,, '''''') ~ @+t4@t 
-MSDEN. -LSDEN (82230) , 

--------~ ~---- 240017-33 

Figure 19.82230 MSDEN,LSDEN Timing 

PROCCLK (82230) 

CNTLOff (82230) 
~ ______ ~~~I ______ J 

240017-34 

Figure 20. CNTLOFF Timing 

-lOW (82230) 

-ER,ROR (80287) 

-8USY (80287) 

-BUSY 286 (82230) 

@t 
~--------------~/~-----

240017-35 

Figure 21. -BUSY286 Timing 

PROCCLK (82230) 

AO (80286) __ ~X§ 
69 ________ ~ 

ALE (82230) \ ----
240017-36 

Figure 22. 82230 AO Timing 

4-696 



intJ 82230/82231 

PROCCLK (82230) 

"""' .. ("''')~ 

SYSCLK (82230) 

-IOCS16 

-INTA,XAO 

-CS287, 
St.l/iO, -XIOW, XA3 

RES 287 (82230) 

Figure 23. 82230 CPU HLDA Timing 

Figure 24. Bus Control Signal Timing 

, 
I 

I 
, 

- @ - @t 

Figure 25. RES 287 Timing 

i----{91r---i 

SYSCLK (82230) 

Figure 26. 82231 SYSCLK Timing 

4·697 

240017-40 

" 
,. 
" 

240017-37 

240017-38 

240017-39 



82230/82231 

XAX (80286) ____ J 

CCRR/W (82231) 
-----+..1 

-CS287 (82231) 

-8042CS (82231) 

240017-41 

Figure 27. 82231 CCRR/W and CS287 Timing 

HLDA. -MASTER 
(80286. LOGIC) 

SYSCLK (82230) 

A17':A23 (82231) 

--r--J 

s-rf-----!IS---J' ---

Figure 28. 82231 A17 to A23 Timing 

HLDA (80286) 

-MASTER (LpGIC) 

+ACK (82231) 

CCRR/W( 82231 ) 

--~~-+--~~~-~~---

-CS287 (82231) 

-INTR1CS. 
-INTR2CS 

(82231) 

Figure 29. 82231 HLDA & - MASTER Timing 

4-698 

240017-42 

240017-43 



.... 
m co 

~I~I~I~I~I~I~I~I~I I ~ I ~ I ~ I ~ I ~ I ~ I 
SYSCLK (82230) 

ORQx (NOTE 7) (LOGIC) 

CPUHRQ (82231) ., II .1 \I I\--+I-t----
HLOA (80286) 11-'1 

+ACK(82231} ~Ir-f I I I I \I I I I ~ I \.....-
-AENX (82231) \I ~ I i I I I \I I I I lJf-':~~-

-OMMEN (82231) II \ I \I II 
XAo-15' ~: i 

XAo-1S(NOTE 9) (82231) ~lvALID APoRESS H I ~ 
-OACKX (82231) 1\' \ I ~ \I l' 

-lOR (82231) 

-XMEMW (82231) 

Te (82231) \I \I 'f" 1<'10--------
240017-44 

Figure 30. 82231 DMA I/O Read Timing (Single Transfer Shown) 

( 

01) 
I\) 
I\) 

~ ..... 
01) 
I\) 
I\) 
Co) .. 

"@ 
:w 
IiiiiI 
IF 

~ 
~ 
~ 

~ 

_-~_""f. ",~_-';"_.'--'-hE _---;-::::-i-~'! .. ~:".~._:__:;:,."''- ~':;"-,,-~~.,., _~.~ 



I I I I 
SYSCLK (82230) 

DROX (LOGIC) 

CPUHRO (82231) 

HLDA (80286) 

"'" 
-AENX (82231) 

~ 
0 

-DMAAEN (82231) 0 

XAX (82231) 

-DACKX (82231) 

-XMEMR (82231) 

-lOW (82231) 

I I~I~I~I~I~I~I~I~[~I~I~I~I~I~I~I~I~I~I~I~I~I~I~I~I~I~I~I~I -

-ADDRESS VALID ADDRESS VALID 

Figure 31. 82231 DMA 1/0 Write Timing (Block Transfer Shown) 

l 

ar 

E o ..... 
00 

·N 

tI .. 

~­

~ 
IiiiiI 
IF" 
c::::o 

~ 
c::::o 

.. ~ 
.~ 

.~ 



82230/82231 

240017-46 

Figure 32. 82231 DPCK Timing 

~@1 
~Jrot _____ _ 

NIolI (82231) . ___ --', 

-IOCHCK (LOGIC) 

240017-47 

Figure 33. 82231 IOCHCK and NMI Timing 

XI (LOGIC) 
, 
~@-

IRQO (82231) ) 

~@ 
SPEAKER (82231) ------'~I'----

240017 .. 48 

Figure 34. 82231 IRQQ and SPEAKER Timing 

XI (LOGIC) _____ oJ 

OSC (82231) 

240017-49 

Figure 3S.X1 andOSC Timing 

4-701 



intJ 82230/82231 

-INTA (82230) \; J 
--@--ft~r8 

-RDXDB (82231)_ ! 

-lOR (82230) 

-RDXDB (82231) 

SYSCLK (82230) 

XAX (80286) 

-lOW (82230) 

XDO_7 (80286) 

SYSCLK (82230) 

XAX (80286) 

-lOR (82230) 

XDO_7 (80286) 

240017-50 

Figure 36. 82231 RDXDB Timing 

I- Ts -+--- Te ---1.1--. --111-1 ...... ·+--1· - Te + Ts -

f\.J\..F 

t~-----------I~~------~ 
-------~l VALID .DATA ::r-------.Jf 

Figure 37. 82231 CPU Write Timing 

______ -'x VALID ADDRESS :: 

--------------§S--....... [iVALID DATA 

Figure 38: 82231 CPU Read Timing 

4-702 

240017-51 

240017-52 



intJ 82230/82231 

SYSCLK (82230) 

CPU HRQ (82231) 

HLDA (80286) 

-REFRESH (82231) 

-XMEMR (82231) 

XAo-9 (82231) ~I------~ ! !~:=> VALID ADDRESS )0---
! !~ 

240017-53 

Figure 39. 82231 REFRESH Timing 

TEST LOADS 

Vee 
r-

470.0. 
TEST POINT 

FROM OUTPUT \.. .... 
UNDER TEST .... ~, 

i-

°c .,,,,, I 600.0. ~, 
~, 

-:: - -
Output Load Circuit 
For 82230 pins 

-lOR 
, -lOW 

SAO 
82231 pins -lOR 

-lOW 

RL =220.0. 

240017-54 

SYSCLK 
-MEMR 
-MEMW 

OSC 

240017-11 

Output Load Circuit for All Other Pins 

Vee -FL =240A 

FROM OUTPUT TEST POINT 
UNDER TEST 

I CL =50pF 

240017-55 

Load Circuit for Open-Collector Output 

4-703 



82230/82231 

The following list represents the differences be­
tween this and the -001 version of the data sheet. 

1. Several timing diagrams were added to further de­
tail operating characteristics. 

2. The "D.C. CHARACTERISTICS" table was reor­
ganized to clarify the different testing conditions. 

3. Extensive changes were made to the "A.C. 
CHARACTERISTICS" table. These. changes in­
clude the following: 

- In cases where different specs for the same 
signal were identical, they were combined into 
one spec. . 

- In cases where combined specs for signals 
were found to differ, they were split. 

-'Specs necessalY for system design were add­
ed. 

- Unnecessary or irrelevant specs were deleted. 

- Notes were added, deleted or changed as nec-
essary to correspond to the updated table. - Timing characteristics were changed to reflect 

current max and min operating values. 4. The test load diagram was changed. 

4-704 



376™ HIGH PERFORMANCE 
32·BIT EMBEDDED PROCESSOR 

• Full 32·Blt Internal Architecture 
- a·, 16-, 32·Blt Data Types . 
- 8 General Purpose 32·Blt Registers 
- Extensive 32·Blt Instruction Set 

• High Performance 16·Blt Data Bus 
-16 MHz CPU Clock 
- Two·Clock Bus Cycles 
- 16 Mbytes/Sec Bus Bandwidth 

• 16 Mbyte Physical Memory Size 
. • High Speed Numerics Support with the 

a03a7SX 

• Low System Cost with the 82370 
Integrated System Peripheral 

• On-Chip Debugging Support Including 
Break Point Registers . 

INTRODUCTION 

• Complete Intel Development Support 
- C, PL/M, Assembler Translators 

.. ....;,ICETM·376, In·Clrcult Emulator 
-IRMK Real Time Kernel 

• Extensive Thlrd·Party Support: 
- Software: C, Pascal, FORTRAN, 

BASIC and ADA· 
-Hosts: VMS·, UNIX·,M8-DOS·, and 

Others 
- Real· Time Kernels 

• High Speed CHMOS Technology 
• Available In 100 Pin Plastic Quad Flat· 

Pack Package and 8a·Pin Pin Grid Array 
(See Packaging Outlines and Dimensions. # 231369) 

The 376 32·bit embedded processor is designed for high performance embedded systems. It provides the 
performance benefits of a highly pipelined 32·bit internal architecture with the low system cost associated with 
16·bit hardware systems. The 80376 is based on the 80386 and offers a high degree of compatibility with the 
80386. All 80386 32·bit programs not dependent on paging can be executed on the 80376 and all 80376 
programs can be executed on the 80386. All 32·bit 80386 language translators can be used for software 
development With proper support software, any 80386·based computer can be used to develop and test 
80376 programs. In addition, any 80386·based PC·AT" compatible computer can be used for hardware proto· 
typing for designs based on the 80376 and its companion product the 82370. 

Execution Unit MMU 

32-Bft Roglsto,. Protection 

64-811 Barrol Segment 
Shifter Reglst.,.. 

Multlply/OMde 
Segment 

rot ~. 
Translator 

ALU 

I : 
I I Bus Interface 

32-Bft Dolo Path Unit 

J I 
Decoder ~ 

Profetch 
Queue 

..... Instruction Prefetcher 
Queue 

Prefetch Unit 

80376.Mlcroarchltecture 

·UNIX is a registered trademark of AT&T. 
ADA is a registered trademark of the U.S. Government, Ada Joint Program Office. 
PC-AT is a registered trademark of IBM Corporation • 

. VMS is a trademark of Digital Equipment Corporation. 
MS·DOS is a trademark of MicroSoft Corporation. 

4·705 

Control 

f¥-
~ 

240182-48 

August 1988 
Order Number: 240182·002 



80376 

1.0 PIN DESCRIPTION 

100 
240182-1 

Figure 1.1.803,76 100.Pln Quad Flat-Pack Pin Out (Top View) 

Table 1.1. 100-Pln Plastic Quad Flat-Pack Pin Assignments 

A Row BRow CRow o Row 

Pin Label Pin Label Pin Label Pin Label 

1 00 26 LOCK # 51 A2 76 A21 
2 Vss 27 .N/C 52 A3 77 Vss 
3 HLOA 28 .. N/C 53 '-4 78 Vss 
4 HOLO 29 N/C 54 A5 79 A22 
5 Vss 30 N/C 55 At; 80 A23 
6 NA# 31 N/C 56 A7 81 015 
7 READY# 32. Vee 57 Vee 82 014 
8 Vee· 33 RESET 58 . Ae 83 013 
9 Vee 34 BUSY# 59. Ag 84 Vee 
10 Vee 35 Vss 60 Ala 85 Vss 
11 . Vss 36 ERROR# 61 All 86 012 
12 Vss 37 PEREQ 62 A12 87 011 
13 Vss 38 NMI 63 Vss 88 010 
14 Vss 39 Vee· 64 A13 89 Og 
15 CLK2 40 INTR 65 A14 90 Oe 
16 AOS# 41 Vss 66 A15 91 Vee 
17 BLE# 42 Vee 67 Vss 92 07 
18 AI 43 N/C 68 Vss 93 06 
19 BHE# 44 N/C 69 Vee 94 05 
20 N/C 45 N/C 70 A16 95 04 
21 Vee 46 N/C 71 Vee 96 03 
22 Vss 47 . N/C 72 A17 97 Vee 
23 MIIO# 48 Vee 73 Ale 98 Vss 
24 O/C# 49 Vss 74 A19 99 02 
25 W/R# 50 Vss 75 . A20 100 01 

4-706 



intJ 80376 ~[Q)W~OO©~ OOOIF@OO[M]~ifO@OO 

Top View Bottom View 
" (Component Side) (Pin Side) ;'!: 
r 

I 0 0 0 0 d 0 0 0 0 0 0 0 0 ., /0 0 0 0 0 0 0 0 0 0 0 0 0 ., 
Vee Vss ./e AI AOS/ll READY, HOLD 00 D2 Vss Vee Vss Vee Vee Vss Vee Vss D, D, HOLD READY, AOS# AI "/e Vss Vee , 0 0 0 0 0 0 0 0 0 0 0 0 0 , 

D' 0 0 0 0 0 0 0 0 0 0 0 0 0 D, 

Vss 'Icc 101/10# SHEiII BlEN CLK2 .A, HLDA 01 D' Vss vee Vss Vss vee v" 0, D, HLDA HAl CLI<2 BlE, SHEI '1.1/101/ Vee v" , 0 0 0 0 , 03 0 0 0 0 ., 
vee D/eli .. vee vee 0, o/ell vee , 0 0 0 0 , " 0 0 0 0 .. 
V" W/RI DO D. D, O. W/R~ 'Iss 

• 0 0 0 0 , 0 0 0 0 .5 
Vee LOCK, D' D8 D • ., LOCK, 'Icc 

• 0 0 0 0 • " 0 0 0 0 ., 
'Iss RESET D' DID D" Do RESET "ss , 0 0 0 0 , 07 0 0 0 0 0' 

PEREO BUSY, DII DIZ D" DII BUSY, PEREO 

• 0 0 0 0 • .8 0 0 0 0 D8 

ERRORI NWI D13 DI< D,. D" NMI ERRORI 

, 0 0 0 0 , D. 0 0 0 0 09 

V" JNTA DIS AZ3 A" D" INTR V" 
10 0 0 0 0 10 I. 0 0 0 0 10 

vee AZ AZI m A" A" A, Vee 
II 0 0 0 0 II 0 0 0 0 

v" A3 Vss vee Vee Vss A, Vss 

12 0 0 0 0 0 0 0 0 0 0 0 0 0 12 12 0 0 0 0 0 0 0 0 0 0 0 0 0 12 

Vss A4 " A7 ,. AID m AI5 AI7 AIS A20 vee v" 
Vss vee A" A" '" A" A" A" A. A, " " v" 

13 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 
vee Vss vee " A' '" AI> ,I< '" 419 vee Vss vee vee v" vee A" Ale ',. '" A" A, A. vee v" vee 

• c J 

240162-49 240162-2 

Figure 1.2. S0376 SS-Pin Grid Array Pin Out 

Table 1.2. SS-Pin Grid Array Pin Assignments 

Pin Label Pin Label Pin Label Pin Label 

2H CLK2 120 A1S 2L M/IO# 11A Vee 
98 015 12E A17 5M LOCK# 13A Vee 
8A 014 13E A1S 1J AOS# 13C Vee 
88 013 12F A15 1H REAOY# 13L Vee 
7A 012 13F A14 2G NA# 1N Vee 
78 011 12G A13 1G HOLO 13N Vee 
6A 010 13G A12 2F HLOA 118 Vss 
68 Og 13H All 7N PEREO 2C Vss 
5A Os 12H AlO 7M 8USY# 10 Vss 
58 07 13J Ag 8N ERROR# 1M Vss 
48 Os 12J As 9M INTR 4N Vss 
4A 05 12K A7 8M NMI 9N Vss 
38 04 13K As 6M RESET 11N Vss 
20 03 12L A5 28 Vee 2A Vss 
1E 02 12M ~ 128 Vee 12A Vss 
2E 01 11M A3 1C Vee 18 Vss 
1F 00 10M A2 2M Vee 138 Vss 
9A A23 1K Al 3N Vee 13M Vss 
10A A22 2J BLE# 5N Vee 2N Vss 
108 A21 2K 8HE# 10N Vee 6N Vss 
12C A20 4M W/R# 1A Vee 12N Vss 
130 A19 3M O/C# 3A Vee 1L N/C 

4·707 



80376 

The following table lists a brief description of each pin on the 80376. The following definitions are used in 
these descriptions: 

# The named signal is active LOW. 
I Input signal. 
o Output signal. 
I/O Input and Output signal. 

No electrical connection. 

Symbol Type Name and Function 

CLK2 I CLK2 provides the fundamental timing for the 80376. For additional 
information see Clock (page 33). 

RESET I RESET suspends any operation in progress and places the 80376 in a 
known reset state. See Interrupt Signals (page 38) for additional 
information. 

015-0 0 I/O DATA BUS inputs data during memory, I/O and interrupt acknowledge 
read cycles and outputs data during memory and I/O write cycles. See 
Data Bus (page 34) for additional information. 

A23-A1 0 ADDRESS BUS outputs physical memory or port I/O addresses. See 
Address Bus (page 34) for additional information. 

W/R# 0 WRITE/READ is a bus cycle definition pin that distinguishes write 
cycles from read cycles. See Bus Cycle Definition Signals (page 35) 
for additional information. 

O/C# 0 OAT AlCONTROL is a bus cycle definition pin that distinguishes data 
cycles, either memory or I/O, from control cycles which are: interrupt 
acknowledge, halt, and instruction fetching. See Bus Cycle Definition 
Signals (page 35) for additional information. 

M/IO# 0 MEMORY I/O is a bus cycle definition pin that distinguishes memory 
cycles from input/output cycles. See Bus Cycle Definition Signals 
(page 35) for additional information. 

LOCK# 0 BUS LOCK is a bus cycle definition pin that indicates that other 
system bus masters are denied access to the system bus while it is 
active. See Bus Cycle Definition Signals (page 35) for additional 
information. 

AOS# 0 ADDRESS STATUS indicates that a valid bus cycle definition and 
address (W/R#, O/C#, M/IO#, BHE#, BLE# and A23-A1) are being 
driven at the 80376 pins. See Bus Control Signals (page 35) for 
additional information. 

NA# I NEXT ADDRESS is used to .. request address pipelining. See Bus 
Control Signals (page 35) for additional information. 

READY # I BUS READY terminates the bus cycle. See Bus Control Signals 
(page 35) for additional information. 

BHE#, BLE# 0 BYTE ENABLES indicate which data bytes of the data bus take part in 
a bus cycle. See Address Bus (page 34) for additional information. 

HOLD I BUS HOLD REQUEST input allows another bus master to request 
control of the lo,oal bus. See Bus Arbitration Signals (page 36) for 
additional information. 

4-708 



inter 80376 

Symbol Type Name and Function 
HLDA 0 BUS HOLD ACKNOWLEDGE output· indicates that the 80376 has 

surrendered control of its local bus to another bus master. See BU8 
Arbitration Signal8 (page 36) for additional information. 

INTR I INTERRUPT REQUEST is a maskable input that Signals the 80376 to 
suspend execution of the current pr~ram and execute an interrupt 
acknowledge function. See Interrupt Ignal8 (page 38) for additional 
information. 

NMI I NON-MASKABLE INTER,RUPT REQUEST is a non-maskable input 
that signals the 80376 to suspend execution of the current program 
and execute an interrupt acknowledge function. See Interrupt Signal8 
(page 38) for additional information. 

BUSY# I BUSY signals a busy condition from a processor extension. See 
Coproces8or Interface Signal8 (page 37) for additional information. 

ERROR# I ERROR signals an error condition from a processor extension. See 
Coprocessor Interface Signal8 (page 37) for additional information. 

PEREa I PROCESSOR EXTENSION REQUEST indicates that the processor 
extension has data to be transferred by the 80376. See Coprocessor 
Interface Signals (page 37) for additional information. 

N/C - NO CONNECT should always remain unconnected. Connection of a 
N/C pin may cause the processor to malfunction or be incompatible 
with future steppings of the 80376. 

Vee I SYSTEM POWER provides the + 5V nominal D.C. supply input. 

Vss I SYSTEM GROUND provides OV connection from which all inputs and 
outputs are measured. 

2.0 ARCHITECTURE OVERVIEW sists of the execution unit and instruction unit. The 
execution unit contains the eight 32-bit general reg­
isters which are used for both address calculation 
and data operations and a 64-bit barrel shifter used 
to speed shift, rotate, multiply, and divide operations. 
The instruction unit decodes the instruction opcodes 
and stores them in the decoded instruction queue 
for immediate use by the execution unit. 

The 80376 supports the' protection mechanisms 
needed by sophisticated multitasking' embedded 
systems and real-time operating systems. The use 
of these protection mechanisms is completely op­
tional. For embedded applications not needing pro­
tection, the 80376 can easily be configured to pro­
vide a 16 Mbyte physical address space. 

Instruction pipelining, high bus bandwidth, and a 
very high performance ALU ensure short average 
instruction execution times and high system 
throughput. The 80376 is capable of execution at 
sustained rates of 2.5-3.0 million instructions' per 
second. 

The 80376 offers on-chip testability and debugging 
features. Four break point registers allow conditional 
or unconditional break point traps on code execution 
or data accesses for powerful debugging of even 
ROM based systems. Other testability features in­
clude self-test and tri-stating of output buffers during 
RESET. 

The Intel 80376 embedded processor consists of a 
central processing unit, a memory management unit 
and a bus interface. The central processing unit con-

The Memory Management Unit (MMU) consists of a 
segmentation and protection unit. Segmentation al­
lows the managing of the logical address space by 
providing an extra addressing component, one that 
allows easy code and data relocatability, and effi­
cient sharing. 

The protection unit provides four levels of protection 
for isolating and protecting applications and the op­
erating system from each other. The hardware en­
forced protection allows the design of systems with 
a high degree of integrity and simplifies debugging. 

Finally, to' facilitate high performance system hard­
ware designs, the 80376 bus interface offers ad­
dress pipelining and direct Byte Enable signals for 
each byte of the data bus. 

4-709 

1,\1,' 

I,~ 

I'··~.'.'.· 
" 



80376 

2.1 Register Set 

The 80376 has twenty-nine registers as shown in Figure 2.1. These registers are grouped into the following six 
categories:· . 

16 15 87 

AH I 

.BH E 

CH C 

DH C 

SI 

01 

BP 

SP 

15 

31 

31 

47 16 1S 

o 
AL 

BL 

CL 

DL 

0 

0 

I 
0 

EAX 

EBX 

ECX 

EDX 

ESI 

EDI 

EBP 

ESP 

CS 

SS 

OS 

ES 

FS 

GS 

EFLAGS 

EIP 

I CRO 

0 

I 
GDTR 

IDTR 63 
4811-----+----1 

LDTR 

TR 

31 

LINEAR BREAKPOINT ADDRESS 0 ORO 

LINEAR BREAKPOINT ADDRESS 1 DRI 

LINEAR BREAKPOINT ADDRESS 2 DR2 

LINEAR BREAKPOINT ADDRESS 3 DR3 

DR4 

DRS 

BREAKPOINT STATUS DR6 

BREAKPOINT CONTROL DR7 

- INTEL RESERVED DO NOT USE 
240182-5 

GENERAL PURPOSE 
REGISTERS 

SEG~ENT 
REGISTERS 

J FLAGS AND 
INSTRUCTION 
POINTER 

~ 

] 
CONTROL 
REGISTER 

SYSTEM ADDRESS 
REGISTERS 

DEBUG 
REGISTERS 

Figure 2.1. 80376 B8se Architecture Registers 

4-710 

240182-47 



inter 80376 

General Registers: The eight 32-bit general pur· 
pose registers are used to contain arithmetic and 
logical operands. Four of these (EAX, EBX, ECX and 
EDX) can be used either in their entirety as 32·bit 
registers, as 16-bit registers, or split into pairs of 
separate 8·bit registers. 

Segment Registers: Six 16·bit special purpose reg· 
isters select, at any given time, the. segments of 
memory that are immediately addressable for code, 
stack, and data. 

Flags and Instruction Pointer. Registers: These 
two 32·bit special purpose registers in Figure 2.1 
record or control certain aspects of the 80376 proc· 
essor state. The EFLAGS register includes status 
and control bits that are used to reflect the outcome 
of many instructions and modify the semantics of 
some instructions. The Instruction Pointer, called 
EIP, is 32 bits wide. The Instruction Pointer controls 
instruction fetching and the processor automatically 
increments it after executing an instruction. 

Control Register: The 32·bit control register, CRO, 
is used to control Coprocessor Emulation. 

SPECIAL FIELDS: 

System Address Registers: These four special 
registers reference the table!> or segments support· 
ed by the 80376/80386 protection model. These tao 
bles or segments are: 

GDTR (Global Descriptor Table Register), 
IDTR (Interrupt Descriptor Table Register), 
LDTR (Local Descriptor Table Register), 
TR(Task State Segment Register). 

Debug Registers: The six programmer accessible 
debug registers. provide on·chip support for debug· 
ging. The use of the debug registers is described in 
Section 2.11 Debugging Support. 

EFLAGS REGISTER 

The flag Register is a 32·bit register named 
EFLAGS. The defined bits and bit fields within 
EFLAGS, shown in Figure 2.2, control certain opera· 
tions and indicate the status of the 80376 processor. 
The function of the flag bits is given in Table 2.1. 

STATUS FLAGS: 

,..--,-----------OVERFLOW 

,..--------SIGN 

.--------ZERO 

.------AUX CARRY 

.----PARITY 

CONTROL FLAGS 

'-----TRAP 

'------INTERRUPT 

L....-----DIRECTION 

CARRY 

L....-----------RESUME 

MONITOR COPROCESSOR _____ , 

EWULATE COPROCESSOR ____ -, 

TASK SWITCHED ___ -, 

I22J - INTEL RESERVED DO NOT USE 
240182-5 

Figure 2.2. Status and Control Register Bit Functions 

4·711 

240182-3 

1 eRO 
o 
240182-4 

'I 



• ... .:...;r· I •• ~ 

. Bit Position 
0 
2 

4 

6 
7 

8 

9 

10 

11 

12,13 

14 

16 

Name 
CF 
PF 

AF 

ZF 
SF 

TF 

IF 

OF 

OF 

10PL 

NT 

RF. 

CONTROL .REGISTER 

80376 

. Table 2.1. Flag Definitions 

. Function 
carry Fla.-set on high-order bit carry or,borrow~ cleared otherwise. 
Parity Flag-Set if low-order 8 bits of result contain an even' number 
of .1-bits; cTeared otherwise. - . 
Auxiliary Carry Flag-Set on carry from or borrow to the low order 
four bits of. AL; cleared otherwise. 
Zero Flag-Set if result is zero; cleared otherwise. 
Sign Flag-Set. equal to high-order bit of result (0 if pOsitiva, 1 if 
negatiVe). . -

Single Step Fl8g-Once set,.a single step interrupt occurs after the 
next instruction executes. TFis·cleared by the single step' interrupt. 
Interrupt-Enable Flag-When set, external interrupts signaled on the 
INTR pin will cause the CPU to transfer. control to an interrupt.v~or 
specified location. ..' 
Direction Flag-Causes string instructions to auto·increment (default) 
the appropriate index registers when cleared. Setting OF causes auto­
decrement. 
Overflow F1ag-Set if the operation resulted in a carry/borrow into 
the' sign bit (high-order bit) of the result but did. not result. in a 
'carry/borrow out of the high-order bit or vice-versa. . 
I/O Privilege Level-Indicates the maximum CPL permitted to 
execute 110 instructions without .generating a,n exception 13 fault or 
consulting the 110 permission bit map. It also indicates the maximum 
CPL value allowing alteration of the IF bit. 
Nested Task-Indicates that the execution of the current task is 
nested within another task (see Task Switching). 
Resume Flag-Used in conjunction with debug register breakpoints. It 
is checked at instruction boundaries before breakpoint processing. If 
set, any debug fault is ignored on the next instruction. It is reset at the 
successful completion of any instruction except IRET, POPF, and 
those instructioris causing task switches. 

The 80376 has a 32-bit control register called CRO that is used to control coprocessor emulation. This register 
.is shown in Figures 2.1 and 2.2. The defined CRO bits are described in Table 2.2. 

Table. 2.2. CRO Definitions 

Bit POSition Nam.e Function 
1 MP Monitor Coprocessor Extenslon--'Allows WAIT instructions to cause 

a processor extension not present exception (number 7). 
2 EM Emulate Processor ExtenSion-When set, this bit causes a 

processor extension not present exception (number 7) on ESC 
Instructions to allow processor extension emulation. 

3 TS Task Switched-When set, this bit indicates the next instruction using 
a processor extension will cause exception 7, allowing software to test 
whether the current processor. extension context belongs to the 
current task (see Task Switching). 

4-712 



intJ 80378 

2.2 Instruction Set 

The instruction set is divided into nine categories of 
operations: 

Data Transfer 
Arithmetic 
Shift/Rotate 
String Manipulation 
Bit Manipulation 
Control Transfer 
High Level Language Support 
Operating System Support 
Processor Control 

These 80376 processor instructions are listed in Ta­
ble 8.1 80376 Instruction Set and Clock Count 
Summary. 

All 80376 processor instructions operate on either 0, 
1, 2 or 3 operands; an operand resides in a register, 
in the instruction itself, or in memory. Most zero op­
erand instructions (e.g. CLI, STI) take only one byte. 
One operand instructions generally are two bytes 
long. The average instruction is 3.2 bytes long. 
Since the 80376 has a 16-byte prefetch instruction 
queue an average of 5 instructions can be pre­
fetched. The use of two operands permits the follow­
ing types of common instructions: 

Register to Register 
Memory to Register 
Immediate to Register 
Memory to Memory 
Register to Memory 
Immediate to Memory 

The operands are either 8-, 16- or 32-bit long. 

2.3 Memory Organization 

Memory on the 80376 is divided into 8-bit quantities 
(bytes), 16-bit quantities (words), and 32-bit quanti­
ties (dwords). Words are stored in two consecutive 
bytes in memory with the low-order byte at the low­
est address. Dwords are stored in four consecutive 
bytes in memory with the low-order byte at the low­
est address. The address of a word or Dword is the 
byte address of the low-order byte. 

In addition to these basic data types the 80376 proc­
essor supports segments. Memory can be divided 
up into one or more variable length segments, which 
can be shared between programs. 

ADDRESS SPACES 

The 80376 has three types of address spaces: 
logical, linear, and physical. A logical address 
(also known as a virtual address) consists of a se­
lector and an offset. A selector is the contents of a 
segment register. An offset is formed by summing all 
of the addressing components (BASE, INDEX, and 
DISPLACEMENT), discussed in Section 2.4 
Addressing Modes, into an effective address. 

Every selector has a logical base address associat­
ed with it that can be up to 32 bits in length. This 32-
bit logical base address is added to either a 32-bit 
offset address or a 16-bit offset address (by using 
the address length prefix )to form a final 32-bit 
linear address. This final linear address is then trun­
cated so that only the lower 24 bits of this address 
are used to address the 16 Mbytes physical memory 
address space. The logical base address. is stored 
in one of two operating system tables (i.e. the Local 
Descriptor Table or Global Descriptor Table). 

Figure 2.3 shows the relationship between the vari­
ous address spaces. 

4-713 



80376 

EffECTIVE AOORESS CALCULATION 

I Base I 15 0 
I 

~." ~ ----------------------- .. OffffffH 

I ~ 32 32 
I 16 Mbyte 

Index I Physical 
1.2.4.8 • 1 Memory 

24 ~~ II DI.placement : 
Protection D.scrlptor 

Table I BHE#. 
(GOT or LOT) I BlE# •. 

:A23-A1 

~I~~~ A.::e!"- I 
I 

8ase I 
o 

~I~~~A'::.!"-
I 
I 

BQse I 
I 

I Selector I RPL I 14 
- ~I~~~A.::.!"- I 

Er- I 

Bas. I 
I 
I 
I 
I 

240182-6 

Figure 2.3. Address Translation 

SEGMENT REGISTER USAGE 

The main data structure used to organize memory is 
the segment. On the 80376. segments are variable 
sized blocks of linear addresses which have certain 
attributes associated with them. There are two main 
types of segments. code and data. The simplest use 
of segments is to have one code and data segment. 
Each segment is 16 Mbytes in Size overlapping each 
other .. This allows code and data to be directly ad· 
dressed by the same offset. 

In order to provide compact instruction encoding 
and increase processor performance. instructions 
do not need to explicitly specify which segment reg· 

ister is used. The segment register is automatically 
chosen according to the rules of Table 2.3 (Segment 
Register Selection Rules). In general, data refer· 
ences use the selector contained in the OS register, 
stack references use the SS register and instructiQn 
fetches use the CS register. The contents of the In· 
struction Pointer provide the offset. Special segment 
override prefixes allow the explicit use of a given 
segment register, and override the implicit rules list· 
ed in Table 2.3. The override prefixes also allow the 
use of the ES, FS and GS segment registers. 

There are no restrictions regarding the overlapping 
of the base addresses of any segments. Thus, all 6 
segments could have the base address set to zero. 
Further details of segmentation are discussed in 
Section 3.0 Architecture. 

4-714 



intJ 80376 

Table 2.3. Segment Register Selection Rules 

Type of 
Memory Reference 

Code Fetch 

Destination of PUSH, PUSHF, INT, 
CALL, PUSHA Instructions 

Source of POP, POPA, POPF, IRET, 
RET Instructions 

Destination of STOS, 
MOVS, REP STOS, 
REP MOVS Instructions 
(01 is Base Register) 

Other Data References, 
with Effective Address 
Using Base Register of: 

[EAX] 
[EBX] 
[ECX] 
[EDX] 
[ESI] 
[EDI] 
[EBP] 
[ESP] 

2.4 Addressing Modes 

The .80376 provides a total of 8 addressing modes 
for instructions to specify operands. The addressing 
modes are optimized to allow the .efficient execution 
of high level languages such as C and FORTRAN, 
and they cover the vast majority of data references 
needed by high-level languages. 

Two of the addressing modes· provide for instruc­
tions that operate on register or immediate oper­
ands: 

Register Operand Mode: The operand is located in 
one of the 8-, 16- or 32-bit general registGrs. 

Immediate Operand Mode: The operand is includ­
ed in the instruction as part of the opcode. 

The remaining 6 modes provide a mechanism for 
specifying the effective address. of an operand. The 
linear address consists of two components: the seg-

Implied (Default) Segment Override 
Segment Use Prefixes Possible 

CS None 

SS None 

SS None 

ES None 

OS CS, SS, ES, FS, GS 
OS CS, SS, ES, FS, GS 
OS CS, SS, ES, FS, GS 
OS CS, SS, ES, FS, GS 
OS CS, SS, ES, FS, GS 
OS CS, SS, ES, FS, GS 
SS CS, SS, ES, FS, GS 
SS CS, SS, ES, FS, GS 

ment base address and an effective address. The 
effective address is calculated by summing any 
combination of the following three address elements 
(see Figure 2.3): 

DISPLACEMENT: an 8-, 16- or 32-bit immediate val­
ue following the instruction. 

BASE: The contents of any general purpose regis­
ter. The base registers are generally used by compil­
ers to point to the start of the local variable area. 
Note that if the Address Length Prefix is used, only 
BX and BP can be used as a BASE register. 

INDEX: The contents of any general purpose regis­
ter except for ESP. The index registers are used to 
access the elements 01 an array, or a string of char­
acters. The index register's value can be multiplied 
by a scale factor, either 1, 2, 4 or 8. The scaled index 
is especially useful for accessing arrays or struc­
tures. Note that if the Address Length Prefix is 
used, no. Scaling is available and only the registers 
SI and 01 can be used to INDEX. 

4-715 



intJ 8037& 

Combinations of these 3 components mak~!lP the 6 
additional addressing modes. There is no perform­
ance penalty for using any of these addressing com, 
binations, since the effective address calculation is . 
pipelined with the execution of other instructions. 
The one exception is the simultaneous use of BASE 
and INDEX components which requires one addi­
tional clock. 

As shown in Figure 2.4, the effective address (EA) of 
an operand is calculated according to the following 
formula: 

EA = BASER~ter + (INDEXRegisterxscaling) + 
DISPLACEMENT 

1. Direct Mode: The operand's offset is contained 
as part of the instruction as an 8-, 16- or 32-bit 
DISPLACEMENT. 

SS 
GS 

FS 
ES 

OS 

EFFECTIVE 
SS 

LINEAR 

2. Register. Indirect Mode: A BASE register con­
tains the address of the operand. 

3. Based Mode: A BASE register's contents is add­
ed to a DISPLACEMENT to form the operand's 
offset. 

4. Scaled Index Mode: An INDEX r~gister's con­
tents is multiplied by a SCALING factor which is 
added to a DISPLACEMENT to form the oper­
and's offset. 

5. Based Scaled Index Mode: The contents of an 
INDEX register is multiplied by a SCALING factor 
and the result is added to the contents of a BASE 
register to obtain the operand's offset. 

6. Based Scaled Index Mode with Displacement: 
The contents of an INDEX register are multiplied 
by a SCALING factor, and the result is added to 
the contents of a BASE register and a DISPLACE­
MENT to form the operand's offset. 

/' 
SEGMENT 
LIMIT 

DESCRIPTOR REGISTERS C ADDRESS 
~ TARGET ADDRESS 

SS 
GS 

FS 
ES 

OS 

ACCESS RIGHTS CS 

LIMIT 

BASE ADDRESS ------~ 
SEGMENT BASE ADDRESS 

Figure 2.4. Addressing Mode Calculations 

4-716 

./. 

SELECTED 
SEGMENT 

240182-7 



inter 80376 

GENERATING 16-BIT ADDRESSES biers. The Operand Length and Address Length Pre­
fixes can be applied separately or in combination to 
any instruction. The 80376 executes code with a default length for 

operands and addresses of 32 bits. The 80376 is 
also able to execute operands and addresses of 16 
bits. This is specified through the use of override 
prefixes. Two prefixes, the Operand Length Prefix 
and the Address Length Prefix, override the de­
fault 32-bit length on an individual instruction basis. 
These prefixes are automatically added by assem-

The 80376 normally executes 32-bit code and uses 
either 8- or 32-bit displacements, and any register 
can be used as based or index registers. When exe­
cuting 16-bit code (by prefix overrides), the displace­
ments are either 8 or 16 bits, and the base and index 
register conform to the 16-bit model. Table 2.4 illus­
trates the differences. 

Table 2.4. BASE and INDEX Registers for 16- and 32-Blt Addresses 

16-Blt Addressing 32-Blt Addressing 

BASE REGISTER BX,BP Any 32-Bit GP Register 

INDEX REGISTER SI,DI Any 32-Bit GP Register 
except ESP 

SCALE FACTOR None 1,2,4,8 

DISPLACMENT 0,8,16 Bits 0,8,32 Bits 

2.5 Data Types 

The 80376 supports all of the data types commonly used in high level languages: 

Bit: 

Bit Field: 

Bit String: 

Byte: 

Unsigned Byte: 

Integer (Word): 

Long Integer (Double Word): 

Unsigned Integer (Word): 

Unsigned Long Integer 
(Double Word): 

Signed Quad Word: 

Unsigned Quad Word: 

Pointer: 

Long Pointer: 

Char: 

String: 

BCD: 

Packed BCD: 

A single bit quantity. 

A group of up to 32 contiguous bits, which spans a maximum of four 
bytes. 

A set of contiguous bits, on the 80376 bit strings can be up to 16 Mbits 
long. 

A signed 8-bit quantity. 

An unsigned 8-bit quantity. 

A signed 16-bit quantity. 

A signed 32-bit quantity. All operations assume a 2's complement 
representation. 

An unsigned 16-bit quantity. 

An unsigned 32-bit quantity. 

A signed 64-bit quantity. 

An unsigned 64-bit quantity. 

A 16- or 32-bit offset only quantity which indirectly references another 
memory location. 

A full pointer which consists of a 16-bit segment selector and either a 
16- or 32-bit offset. 

A byte representation of an ASCII Alphanumeric or control character. 

Acontiguous sequence of bytes, words or dwords. A string may 
contain between 1 byte and 16 Mbytes. 

A byte (unpacked) representation of decimal digits 0-9. 

A byte (packed) representation of two decimal digits 0-9 storing one 
digitin each nibble. 

4-717 

I' 
I 

i 
t 



80376 

When the 80376 is coupled with a numerics Coprocessor such as the 80387SX then the following 
common Floating Point types are supported. 

Floating Point: A signed 32-, 64- or 80-bit real number representation. Floating point 
numbers are supported by the 80387SX numerics coprocessor. 

Figure 2.5 illustrates the data types supported by the 80376 processor and the 80387SX coprocessor. 

7 0 
SIGNED IT"'1TTTJ 

BYTELL-:.....J 
SIGN BIT.JL-...J 

t.4AGNITUDE 

7 0 
UNSIGNED I'""T""1 

BYTEL.:......J 

L--..J 
t.4AGNITUDE 

+1 0 
1514 87 0 

s~~~~ II iii i i ;'1 iii I i Ii I 
SIGN BIT.J ... ,L...;;t.4;.;;.S;;.,B __ ---' 

t.4AGNITUDE 

+1 0 
15 0 

UNS~~~g I' iii iii Iii iii iii , , 
t.4AGNITUDE 

+N +1 o 
7 0 7 07 0 

BINARY I'""T""1 Ii ii I Ii iii Ii I" i I 
CODED L.:......J ••• • • • 

DECIt.4AL BCD ~B~C~D"""'~B~CD~ 
(BCD) DIGIT N DIGIT 1 DIGIT 0 

+N +1 o 
7 0 7 07 0 

ASCII L!:1 ••• I'" P" Ii" I Ii " 

ASCII ASCII ASCII 
CHARACTERN CHARACTER 1 CHARACTERO 

+N +1 o 
7, 0 7 07, 0 

PAC~~g L!:1 ••• I" i I Ii i)'" I Ii i I 
L..J L..J 
t.40ST LEAST 
SIGNIFICANT DIGIT SIGNIFICANT DIGIT 

+N +1 0 
7/15 0 7/15 07/1,5 0 

ST:JJ~L!:1 .••• 1' i 'I' '.'I'i')' iii 

+3 +2 +1 0 
31 1615 0 + 2 GIGABITS - 2 GIGA~J~ 

SIGNED DO~~~~ II ~i Iii iii iii'. iii iii Iii iii iii iii I STR'~'~ IU,lII.u..II __ .u..II_\...,. \~_--I.I.II.Ll.l1I1 
SIGN BIT.J ... ,L...;;t.4;.;;.S;;.,B ________ ...... BITO 

t.4AGNITUDE 

+3 +2 +1 o +3 +2 +1 0 
31 0 

UNSIGNED DO~~~~li III i i 'I iii iii ') i ~ iii iii iii Iii 'I 31 0 
;~.?~i Iii iii iii iii Iii ') iii Iii iii iii i i 'I 

POINTER L. __ ...1. __ ........ __ ...L. __ .... 

I ' 
t.4AGNITUDE OFFSET 

+7 +6 +5 +5 +3 +2 +1 0 +5 +4 +3 +2 +1 o 
63 4847 3231 1615 0 Q 0 

SIGNED ~g~g [I I I I 
SIGN BIT.J ... IL...;;t.4;;.;;S.;;.B ________ -l 

p6~~~~ I' i i I" iii iii i ''1'''1' i 'I' iii" 'I i i '1'' iii iii i i 'I 
I I I 

t.4AGNITUDE SELECTOR 

+9 +8 +7 +6 +5 +4 +3 +2 +1 0 
H 0 

FL~~~~~;II ':'''-II'--...... ....I,_I-..I.....I._ ..... ....L.-I--I 
SIGN BIT .JI ' 

EXPONENT t.4AGNITUDE 

+5 +4 +3 +2 +1 0 

BI/~;~~Ii i '_, i Ii Iii q iii Iii iii iii iii I i ~ ,1_, iii I' i 1,1 iii Iii 'I 
I. BIT FIELD , I 

1 TO 32 BITS 

Figure 2.5. 80376 Supported Data Types 

4-718 

OFFSET 

·SUPPORTED BY 80387SX 
NUt.4ERIC DATA 
COPROCESSOR 

240182-8 



80376 

2.61/0 Space 

The 80376 has two distinct physical address 
spaces: physical memory and I/O. Generally, pe­
ripherals are placed in I/O space although the 
80376 also supports memory-mapped peripherals. 
The I/O space consists of 64 Kbytes which can be 
divided into 64K 8-bit ports" 32K 16-bit ports, or any 
combination of ports which add to no more than 64 
Kbytes. The M/IO# pin acts as an additional ad­
dress line, thus allowing the system designer to easi­
ly determine which address space the processor is 
accessing. Note that the 110 address refers to a 
physical address. 

The I/O ports are accessed by the IN and OUT in­
structions, with the port address supplied as an im­
mediate 8-bit constant in the instruction or in the OX 
register. All 8-bit and 16-bit port addresses are zero 
extended on the upper address lines. The I/O in­
structions cause the M/IO# pin to be driven LOW. 
I/O port addresses 00F8H through OOFFH are re­
served for use by Intel. 

2.7 Interrupts and Exceptions 

Interrupts and exceptions alter the normal program 
flow in order to handle external events, report errors 
or exceptional conditons. The difference between in­
terrupts and exceptions is that interrupts are used to 
handle asynchronous external events while excep­
tions handle instruction faults. Although a program 
can generate a software interrupt via an INT N in­
struction, the processor treats software interrupts as 
exceptions. 

Hardware interrupts occur as the result of an exter­
nal event and are classified into two types: maskable 
or non-maskable. Interrupts are serviced after the 
execution of the current instruction. After the inter­
rupt handler is finished servicing the interrupt, exe­
cution proceeds with the instruction immediately 
after the interrupted instruction. 

Exceptions are classified as faults, traps, or aborts 
depending on the way they are reported, and wheth­
er or not restart of the instruction causing the excep­
tion is suported. Faults are exceptions that are de­
tected and serviced before the execution of the 
faulting instruction. Traps are exceptions that are 
reported immediately after the execution of the in­
struction which caused the problem. Aborts are ex­
ceptions Which do not permit the precise location of 
the instruction causing the exception to be deter­
mined. Thus, when an interrupt service routine has 
been completed, execution proceeds from the in-

structionimmediately following the interrupted in­
struction. On the other hand the return address from 
an exception/fault routine will always point at the 
instruction causing the exception and include any 
leading instruction prefixes. Table 2.5 summarizes 
the possible interrupts for the 80376 and shows 
where the return address points to. 

The 80376 has the ability to handle up to 256 differ­
ent interrupts/exceptions. In order to service the in­
terrupts, a table with up to 256 interrupt vectors 
must be defined. The interrupt vectors are simply 
pointers to the appropriate interrupt service routine. 
The interrupt vectors are 8-byte quantities, which are 
put in an Interrupt Descriptor Table. Of the 256 pos­
sible interrupts, 32 are reserved for use by Intel and 
the remaining 224 are free to be used by the system 
designer. 

INTERRUPT PROCESSING 

When an interrupt occurs the following actions hap­
pen. First, the current program address and the 
Flags are saved on the stack to allow resumption of 
the interrupted program. Next, an a-bit vector is sup­
plied to the 80376 which identifies the appropriate 
entry in the interrupt table. The table contains either 
an Interrupt Gate, a Trap Gate or a Task Gate that 
will point to an interrupt procedure or task. The user 
supplied interrupt service routine is executed. Final­
ly, when an IRET instruction is executed the old 
processor state is restored and program execution 
resumes at the appropriate instruction. 

The a-bit interrupt vector is supplied to the 80376 in 
several different ways: exceptions supply the inter­
rupt vector internally; software INT instructions con­
tain or imply the vector; maskable hardware inter­
rupts supply the 8-bit vector via the interrupt ac­
knowledge bus sequence. Non-Maskable hardware 
interrupts are assigned to interrupt vector 2. 

Maskable Interrupt 

Maskable interrupts are the most common way to 
respond to asynchronous external hardware events. 
A hardware interrupt occurs when the INTR is pulled 
HIGH and the Interrupt Flag bit (IF) is enabled. The 
processor only responds to interrupts between in­
structions (string instructibnS have an "interrupt win­
dow" between memory moves which allows inter­
rupts during long string moves). When an interrupt 
occurs the processor reads an a-bit vector supplied 
by the hardware which identifies the source of the 
interrupt (one of 224 user defined interrupts). 

4-719 

i' 
I, 
" 

" 

:' 



80376 

Table 2.5. Interrupt Vector Assignments 

Instruction Which, Return Address 

Function Interrupt 
Can Cause 

Points to Type Number Exception Faulting 
Instruction 

Divide Error 0 DIV,IDIV Yes FAULT 

Debug Exception 1 Any Instruction Yes TRAp· 

NMllnterrupt 2 INT20rNMI No NMI 

One·Byte Interrupt 3 INT No TRAP 

Interrupt on Overflow 4 INTO No TRAP 

Array Bounds Check 5 BOUND Yes FAULT 

Invalid OP-Code 6 Any Illegal Instruction Yes FAULT 

Device Not Available 7 ESC, WAIT Yes FAULT 

Double Fault 
8 

Any Instruction That Can ABORT 
Generate an Exception 

Coprocessor Segment Overrun 9 ESC No ABORT 

InvalidTSS 10 JMP, CALL, IRET, INT Yes FAULT 

Segment Not Present 11 Segment Register Instructions Yes FAULT 

Stack Fault 12 Stack References Yes FAULT 

General Protection Fault 13 Any Memory Reference Yes FAULT 

Intel Reserved 14-15 - , - -
Coprocessor Error 16 ESC, WAIT Yes FAULT 

Intel Reserved 17-32 

Two-Byte Interrupt 0-255 INTn No TRAP 
'Some debug exceptions may.report both traps on the preVIous instruction, and faults on the next Instruction. 

Interrupts through Interrupt Gates automatically re­
set IF, disabling INTR requests. Interrupts through 
Trap Gates leave the state of the IF bit unchanged. 
Interrupts through a Task Gate change the IF bit ac­
cording to the image of the EFLAGs register in the 
task's Task State Segment (TSS). When an IRET 
instruction is executed, the original state of the IF bit 
is restored. 

tion is executed or the processor is reset. If NMI 
occurs while currently servicing an NMI, its presence 
will be saved for servicing after executing the first 
IRET instruction. The disabling of INTR requests de­
pends on the gate in lOT location 2. 

Non-Maskable Interrupt 

Non-maskable interrupts provide a method of servic­
ing very high priority interrupts. When the NMI input 
is pulled HIGH it causes an interrupt with an internal­
ly supplied vector value of 2. Unlike a normal hard­
ware interrupt no interrupt acknowledgement se­
quence is performed for an NMI. 

While executing the NMI servicing procedure, the 
80376 will not service any further NMI request, or 
INT requests, until an interrupt return (IRET) instruc-

Software Interrupts 

A third type of interrupti exception for the 80376 is 
the software interrupt. An INT n instruction causes 
the processor to execute the interrupt service rou­
tine pointed to by the nth vector in"the interrupt table. 

A special case of the two byte software interrupt 
INT n is the one byte INT 3, or breakpoint interrupt. 
By inserting this one byte instruction in a program, 
the user can set breakpoints in his program as a 
debugging tool. 

4-720 



inter 80376 

A final type of software interrupt, is the single step 
interrupt. It is discussed in Single-Step Trap (page 
22). 

INTERRUPT AND EXCEPTION PRIORITIES 

Interrupts are externally-generated events. Maska­
ble Interrupts (on the INTR input) and Non-Maskable 
Interrupts (on the NMI input) are recognized at in­
struction boundaries. When NMI and maskable 
INTR are both recognized at the Slime instruction 
boundary, the 80376 invokes the NMI service rou­
tine first. If, after the NMI service routine has been 
invoked, maskable interrupts are still enabled, then 
the 80376 will invokE! the appropriate interrupt serv­
ice routine. 

As the 80376 executes instructions, it follows a con­
sistent cycle in checking for exceptions, as shown in 
Table 2.6. This cycle is repeated as each instruction 
is executed, and occurs in parallel with instruction 
decoding and execution. 

INSTRUCTION RESTART 

The 80316 fully supports. restarting all instructions 
after faults. If an exception is detected in the instruc­
tion to be executed (exception categories 4 through 
9 in Table 2.6), the 80376 device invokes the appro­
priate exception service routine. The 80376 is in a 
state that permits restart of the instruction. 

DOUBLE FAULT 

A Double fault (exception 8) results when the proc­
essor attempts. to invoke an exception service rou­
tine for the segment exceptions (10, 11, 12 or 13), 
but in the process of doing so, detects an exception. 

2.8 Reset and Initialization 
When the processor is Reset the registers have the 
values shown in Table 2.7. The 80376 will then start 
executing instructions near the top of physical mem­
ory, at location OFFFFFOH. A short JMP should be 
executed within the segment defined for power-up 
(see Table 2.7). The GOT should then be initialized 
for a start-up data and code segment followed by a 
far JMP that will load the segment descriptor cache 
with the new descriptor values. The lOT table, after 
reset; is located at physical address OH, with a limit 
of 256 entries. 

RESET forces the 80376 to terminate all execution 
and local bus activity. No instruction execution or 
bus activity will occur as long as Reset is active. 
Between 350 and 450 CLK2 periods after Reset be-

, comes inactive, the 80376 will start executing in­
structions at the top of physical memory. 

Table 2.6. Sequence of Exception Checking 

Consider the case of the 80376 having just completed an instruction. It then performs the following checks 
before reaching the pOint where the next instruction is completed: . . , 

1. Check for Exception 1 Traps from the instruction just completed (single-step via Trap Flag, or Data 
BreakpOints set in the Debug Registers). 

2. Check for external NMI and INTR. 
3. Check for Exception 1 Faults in the next instruction (Instruction Execution Breakpoint setin the 

Debug Registers for the next instruction). , 
4. Check for Segmentation Faults that prevented fetching the entire next instruction (exceptions 11 or 

13). 
5. Check for Faults decoding the next instruction (exception 6 if illegal opcode; or exception 13 if • 

instruction is longer than 15 bytes, or privilege violation (i.e. not at IOPL or at CPL ,,; 0). 
6. If WAIT opcode, cheCk if TS = 1 and MP =1 (exception 7 if both are 1). 
7. If ESCape opcode for numeric coprocessor, check if EM = 1 or TS = 1 (exception 7 if either are 1). 
8. If WAIT opcode or ESCape opcode for numeric coprocessor, check ERROR# input signal (excep­

tion 16 if ERROR # input is asserted)., . 
9. Check for Segmentation Faults that prevent transferring the entire memory quantity (exceptions 11, 

12,13). 

4-72.1 

'.11 
, j~, 

" 



inter 80376 

Table 2.7. Register Values after Reset 

Flag Word (EFLAGS) ,. uuuuOO02H (Note 1) 

Machine Status Word (CRO) uuuuuuu1H (Note 2) 

Instruction Pointer (EIP) OOOOFFFOH 

Code Segment (CS) FOOOH (Note 3) 

Data Segment (OS) OOOOH (Note 4) 

Stack Segment (SS) OOOOH 

Extra Segment (ES) ,OOOOH (Note 4) 

Extra Segment (FS) OOOOH 

Extra Segment (GS) OOOOH 

EAX Register OOOOH (Note 5) 

EOX Register Component and Stepping 10 (Note 6) 

All Other Registers Undefined (Note 7) 

NOTES: 
1. EFLAG Register. The upper 14 bits of the EFLAGS register are undefined, all defined 
flag bits ,are zero. 
2. CRO: The defined 4 hits in the CRO is equal to 1 H. 
3. The Code Segment Register (CS) will have its Base Address set to OFFFFOOOOH and 
Limit set to OFFFFH. 
4. The Data and Extra Segment Registers (OS and ES) will have their Base Address set 
to OOOOOOOOOH and Limit set to OFFFFH. 
5. If self·test is selected, the EAX should contain a 0 value. If a value of 0 is not found 
the self-test has detected a flaw in the part. 
6. EDX register always holds component and stepping identifier. 
7. All unidentified bits are Intel Reserved and should not be used. 

2.9 Initialization 

Because the 80376 processor starts executing in protected mode, certain precautions need be taken during 
initialization. Before any far jumps can take place the GOT and/or LOT tables need to be setup and their 
respective registers loaded. Before interrupts can be initialized the lOT table must be setup and the 10TR must 
be loaded. The example code is shown below: 

******-********************************************************* 

This is an example of startup code to put either an 80376, 
80386SX or 80386 into flat mode. All of memory is treated as 
simple linear RAM. There are no interrupt routines. The 
Builder ,creates the GDT-alias and IDT-alias and places them, 
by default , in GDT [1] and GDT [2] • Other entries, in the GDT 
are specified in ,the, Build file. After initialization it jumps 
to a C startup routine. To use this template, change this jmp 
address to that of your code, or make the label of your code 
·c_startup·. 

This code was assembled and built using version 1.2 of the, 
Intel RLL utilities and Intel 386ASM assembler. 

*** This code was tested *** 

**************************************************************** 

4-722 



80376 

NAME FLAT name of the object module 

EXTRN c_startup:near this is the label jmped to after init 

pe_flag equ I 
data_selc equ 20h ; assume code is GDT[3] , data GDT[4] 

SEGMENT ER PUBLIC USE32 ; Segment base at Offffff80h 

PUBLIC GDT_DESC 

gdLdesc dq ? 

PUBLIC START 

start: 
cld 
smsw bx 
test bl,1 
jnz pestart 

realstart 
db 66h 
mov eax,offset gdt_desc 
xor ebx,ebx 
mov bh,ah 
move bl,al 
db 67h 
db 66h 
19dt cs: [ebx] 
smsw ax 
or al,pe_flag 
lmsw ax 
jmp next 

pestart: 
mov ebx,offset gdt_desc 
xor eax,eax 
mov ax,bx 
19dt cs: [eax] 
xor ebx,ebx 
mov bl,data_selc 
mov ds,bx 
mov sS,bx 
mov eS,bx 
mov fs,bx 
mov gS,bx 
jmp pejump 

next: 
xor ebx,ebx 
mov bl,data_selc 
mov ds,bx 
mov ss,bx 
mov es,bx 
mov fs,bx 
mov gs,bx 
db 66h 

pejump: 
jmp far ptr c_startup 

org 70h 
jmp short start 

INIT_CODE ENDS 
END 

clear direction flag 
check for processor (80376) at reset 
use SMSW rather than MOV for speed 

is an 80386 and in real mode 
force the next operand into 32-bit mode. 
move address of the GDT descriptor into eax 
clear ebx 
load 8 bits of address into bh 
load 8 bits of address into bl 

use the 32-bit form of LGDT to load 
the 32-bits of address into the GDTR 
go into protected mode (set PE bit) 

flush pre fetch queue 

lower portion of address only 

initialize data selectors 
GDT [3] 

initialize data selectors 
GDT [3] 

for the 80386, need to make a 32-bit jump 

but the 80376 is already 32-bit. 

only if segment base is at Offffff80h 

4-723 



80376 

This code should be linked into your application for boot loadable code. The following build file illustrates how 
this is accomplished. 

FLAT; -- build program id 

SEGMENT 

GATE 

*segments (dpl=O), 
_phantom_code_ (dpl=O), 
_phantom_data_ (dpl=O), 
init_code (base=Offffff80h); 

g13 (entry:13, dpl=O, trap), 

Give all user segments a DPL of O. 
These two segments are created by 
the builder when the FLAT control is used. 
Put startup code at the reset vector area. 

i32 (entry=32, dpl=O, interrupt), 
trap gate disables interrupts 
interrupt gates doesn't 

TABLE 

TASK 

-- create GDT 

GDT (LOCATION = GDT_DESC. 

ENTRY = (3:_phantom_code_, 
4:_phantom_data_, 
5:code32, 

) ; 

MAIN_TASK 
( 

6:data, 
7:init_code) 

DPL = O. 
DATA = DATA, 

CODE = main, 

STACKS = (DATA), 

NO INTENABLED. 
PRESENT 

) ; 

MEMORY 

In a buffer starting at GDT_DESC, 
BLD386 places the GDT base and 
GDT limit values. Buffer must be 
6 bytes long. The base and limit 
values are places in this buffer 
as two bytes of limit plus 
four bytes of base in the format 
required for use by the LGDT 
instruction. 

Explicitly place segment 
-- entries into the GDT. 

Task privilege level is O. 
Points to a segment that 
indicates initial DS value. 
Entry point is main, which 

-- must be a public id. 

Segment id points to stack 
segment. Sets the initial SS:ESP. 
Disable interrupts. 
Present bit in TSS set to 1. 

(RANGE = (EPROM = ROM(Offff8000h •• Offffffffh). 
DRAM = RAM(O •• Offffh)). 

ALLOCATE = (EPROM = (MAIN_TASK))); 

END 

asm386 flatsim.a38 debug 
asm386 application.a38 debug 
bnd386 application.obj ,flatsim.obj nolo debug oj (application.bnd) 
bld386 application.bnd bf (flatsim.bld) bl flat 

Commands to assemble and build a boot-Ioadable application named "application.a38". The initialization code 
is called "flatsim.a38", and build file is called "application. bid". . . 

4-.724 



80376 

2.10 Self-Test 

The 80376, like the 80386, has the capability to per­
form a self-test. The self-test cheeks the function of 
all of the Control ROM and most of the non-random 
logic of the part. Approximately one-half of the 
80376 can be tested during self-test. 

Self-Test is initiated on the .80376 when the RESET 
pin transitions from HIGH to LOW,and the BUSY'" 
pin is LOW. The self-test takes about 220 clocks, or 
approximately 33 ms with a 16 MHz 80376 proces­
sor. At the completion of self-test the processor per­
forms reset and begins normal operation. The part 
has successfully passed self-test if the contents of 
the EAX register is zero. If the EAX register is not 
zero then the self-test has detected a flaw in the 
part. If self-test is not selected after reset, EAX may 
be non-zero after reset. 

DEBUG REGISTERS 

2.11 Debugging Support 

The 80376 provides several features which simplify 
the debugging process. The three categories of on­
chip debugging aids are: 

1. The code execution breakpoint opcode (OCCH). 

2. The single-step capability provided by the TF bit 
in the flag register, and 

3. The code and data breakpoint capability provided 
by the Debug Registers DRO-3, DR6, and DR7. 

BREAKPOINT INSTRUCTION 

A single-byte software interrupt (Int 3) breakpoint in­
struction is available for use by software debuggers. 
The breakpoint opcode is OCCh, and generates. an 
exception 3 trap when executed. 

BREAKPOINT 0 DEBUG FAULT/TRAP ------------------, 

BREAKPOINT I DEBUG FAULT/TRAP ------------------, 

BREAKPOINT 2 DEBUG FAULT/TRAP ----------------, 

BREAKPOINT 3 DEBUG FAULT/TRAP ----------------, 

REGISTER ACCESS FAULT -----. 

SINGLE-STEP DEBUG TRAP ---..., 

TASK SwrrtH DEBUG TRAP 

6 
o 
240182-9 

GI~I~tg~t ::~~~:Wr ~~:~: 1-------------. 
LOCAL EXACT BREAKPOINT MATCH --------, 

GLOBAL EXACT BREAKPOiNT MATCH -------, 

IZ:J - INTEL RESERVED DO NOT USE 

Figure 2_6. Debug Registers 

4-725 

BREAKPOINT 

r----L-----, CONTROL 

7 

240182-10 

240182-5 



inter 80376 

SINGLE-STEP TRAP 

If the single-step flag (TF, bit 8) in the. EFLAG.regis­
ter is found to beset at the end of an instruction, a 
single-step exception occurs. The Single-step ex­
ception is auto vectored to exception number 1. 

The Debug Registers are an advanced debugging 
feature of the 80376. They allow data access break­
points as well· ~s code execution breakpoints. Since 
the breakpoints are indicated by on-chip registers, 
an instruction execution breakpoint can be placed in 
ROM code or in code shared by several tasks, nei­
ther of which can be supported by thelNT 3 break­
point opcode. 

The 80376 contains six Debug Registers, consisting 
of four breakpoint. address registers and two break­
point control registers. Initially after reset, break­
points are in the disabled state; therefore, no break­
points will occur unless the debug registers are 
programmed. Breakpoints set up in the Debug 
Registers are auto-vectored to exception 1. 
Figure 2.6 shows the breakpoint status and control 
registers. 

48/32 BIT POINTER 

3.0 ARCHITECTURE 

The Intel 80376 Embedded Processor has a physi­
cal address space of 16 Mbytes (224 bytes) and al­
lows the running of. virtual memory programs of al­
most unlimited size (16 Kbytes X 16 Mbytes or 
256 G.bytes (238 bytes». In addition the 80376 pro­
vides a sophisticated memory management and a 
hardware-assisted protection mechanism. 

3.1 Addressing Mechanism 

The 80376 uses two components to form the logical 
address, a 16-bit selector which determines the lin­
ear base address of a segment, and a 32-bit effec­
tive address. The selector is used to specify an 
index into an operating system defined table (see 
Figure 3.1). The table contains the 32-bit base ad­
dress of a given segment. The linear address is 
formed by adding the base address obtained from 
the table to the 32"bit effective address. This value 
is truncated to 24 bits to form the physical address, 
which is then placed on the address bus. 

SEGMENT LIMIT 

~ ~ MEMORY OPERAND 

16 

ACCESS RIGHTS 

LIMIT 

BASE ADDRESS 

SEGMENT 
DESCRIPTOR 

32 

SEGMENT BASE 
ADDRESS 

Figure 3.1. Address Calculation 

4-726 

SELECTED 
SEGMENT 

240182-11 



intJ 80376 

3.2 Segmentation 

Segmentation is one method of memory manage­
ment and provides the basis for protection in the 
80376. Segments are used to encapsulate regions 
of memory which have common attributes. For ex­
ample, all of the code of a given program could be 
contained in a segment, or an operating system ta­
ble may reside in a segment. All information about 
each'segment, is stored in an 8-byte data structure 
called a descriptor. All of the descriptors in a system 
are contained in tables recognized by hardware. 

TERMINOLOGY 

Th,e following terms are used throughout the discus­
sion of descriptors, privilege levels and protection: 

PL: Privilege Level-One of the four hierarchical 
privilege levels. Level 0 is the most privileged 
level and level 3 is the least privileged. 

RPL: Requestor Privilege Level-The privilege 
level of the original supplier of the selector. 
RPL is determined by the least two significant 
bits of a selector. 

DPL: Descriptor 'Privilege Level-This is the least 
privileged level at which a task may access 
that descriptor (and the segment associated 
with that descriptor). Descriptor Privilege Lev­
el is determined by bits 6:5 in the Access 
Right Byte of a descriptor. 

CPL: Current Privilege Level-The privilege level 
at which a task is currently executing, which 
equals the privilege level of the code seg­
ment being executed. CPL can also be deter­
mined by examining the lowest 2 bits of the 
CS register, except for conforming code seg­
ments. 

EPL: Effective Privilege Level-The effective 
privilege level is the least privileged of the 
RPL and the DPL. EPL is the numerical maxi­
mum of RPL and DPL. 

Task: One instance of the execution of a program. 
Tasks are also referred to as processes. 

DESCRIPTOR TABLES 

The descriptor tables define all of the segments 
which are used in an 803'76 system. There are three 
types of tables on the 80376 which hold descriptors: 
the Global Descriptor Table, Local Descriptor Table, 
and the Interrupt Decriptor Table. All of the tables 
are variable length memory arrays, they can range in 
size between 8 bytes and 64 Kbytes. Each table can 
hold up to 81928-byte descriptors. The upper 13 
bits of a sel,ector are used as an index into the de­
scriptor table. The tables have registers associated 
with them which hold the 32-bit linear base address, 
and the 16-bit limit of each table. 

Each of the tables have a register associated with it: 
GDTR, LDTR and IOTR; see Figure 3.2. The LGDT, 
LLDT and LlDT instructions load the base and limit 
of the Global, Local and Interrupt Descriptor Tables 
into the appropriate register. The SGOT, SLOT and 
SIDT store these base and limit values. These are 
privileged instructions. 

15 o 

LDTR LOT LIMIT 

LOT BASE 
LINEAR ADDRESS 

o 
32 

lOT LIMIT ' PROGRAM INVISIBLE 
,....~----t : AUTOMATICALLY LOADED 

I FROM LOT DESCRIPTOR 
IDTR ._-------------

o 

15 0 

GOT LIMIT 

GDTR 

o 
240182-12 

Figure 3.2. Descriptor Table Registers 

Global Descriptor Table 

The Global Descriptor Table (GDT) contains de­
scriptors which are possibly available to all of the 
tasks in a system. The GDT can contain any type of 
segment descriptor except for interrupt and trap de­
scriptors. Every 80376 system contains a GDT. A 
simple 80376 system contains only 2 entries in the 
GDT; a code and a data descriptor. 

The first slot of the Global Descriptor Table corre­
sponds to the null selector and is not used. The null 
selector defines a null pointer value. 

Local Descriptor Table 

LDTs contain descriptors which are associated with 
a given task. Generally, operating systems are de­
signed so that each task has a separate LDT. The 
LDT may contain only code, data, stack, task gate, 
and call gate descriptors. LDTs provide a mecha­
nism for isolating a given task's code and data seg­
ments from the rest of the operating system, while 
the GDT contains descriptors for segments which 
are common to all tasks. A segment cannot be ac­
cessed by a task if its segment descriptor does not 
exist in either the current LDT or the GDT. This pro-

4-727 



80376 

vides both isolation and protection for a task's seg­
me.nt!!. while s,till allowing global data to be shared 
among tasks. 

Unlike .the 6-byte GDT or IDT registers which contain 
a base address and limit, the visible portion of the 
LDT register contains only a 16-bit selector. This se­
lector refers to a Local Descriptor Table descriptor in 
the GDT (see Figure 2.1). 

INTERRUPT DESCRIPTOR TABLE 

The third table needed for 80376 systems is the In­
terrupt Descriptor Table. The IDT contains the de­
scriptors which pOint to the location of up to 256 
interrupt service routines. The IDT may contain only 
task gates, interrupt gates and trap gates. The IDT 
should be at least 256 bytes in size in order to hold 
the descriptors for the 32 Intel Reserved Interrupts. 
Every interrupt used by a system must have an entry 
in the IDT. The IDT entries are referenced by INT 
instructions, external interrupt vectors, and excep­
tions. 

DESCRIPTORS 

The object to which the segment selector points to 
is called a descriptor. Descriptors are eight-byte 
quantities which contain attributes about a given 
region of linear address space. These attributes in­
clude the 32-bit logical' base address of the seg-

31 

ment, the 20-bit length and granularity of the. seg­
ment, the protection level, read, write or execute 
privileges, and the type of segment. All of the attri­
bute information .about a segment is. contained in 12 
bits in the segment descriptor. Figure ~.3 shows the 
general format of a descriptor. All segments on the 
the 80376 have three attribute fields in common: the 
Present bit (P), the Descriptor Privilege Level bits 
(DPL) and the Segment bit (S). P= 1 if the segment 
is loaded in physical memory, if P = o then any 
attempt to access the segment causes a not present 
exception (exception 11). The DPL is a two-bit field 
which specifies the protection level, 0-3, assOciated 
with a segment. 

The 80376 has two main categories of segments: 
system segments, and non-system segments (for 
code and data). The segment bit, S, determines if a 
given segment is a system segment, a code seg­
ment or a data segment. If the S bit is 1 then the 
segment is either a code or data segment, if it is 0 
then the segment is a system segment. 

Note that although the 80376 is limited to - a 
16-Mbyte Physical address space (224), Its base ad­
dress allows a segment to be placed anywhere in a 
4-Gbyte linear address space. When writing ,code for 
the 80376, users should keep code protability to an 
130386 processor (or other processors with a larger 
physical address space) in mind. A segment base 
address can be placed anywhere In this 4-Gbyte lin­
ear address space, but a physical address will be 

o BYTE 

SEG~ENT BASE 15 ... 0 SEGMENT LIMIT 15 ... 0 
ADDRESS 

o ' 

BASE A LIMIT 
31 ... 24 G .1 o V 19 ... 1~ L 

BASE Base Address of the segment 
LIMIT Tha length of the segmen,t 

P DPL 

I 

P Present Bit 1 = Present 0 = Not Present 
DPL Descriptor Privilege Level 0-3 

S TYPE A 

I I 

S Segment DeSCriptor: 0 = System Descriptor. 1 = Code or Data Descriptor 
TYPE Type of Segment 
A Accessed Bit 
G Granularity Bit 1 = Segment lerigth is 4 Kbyte Granular 

o = Segment length is byte granular 
o ' BII must be zero (0) for compatibility with fuMe processcrs 
AVL Available field for user or OS 

Figure 3.3. Segment Descriptors 

BASE +4 
23 ... 16 

31 0 
SEGMENT BASE 15 ... 0 SEGMENT LIMIT 15 ... 0 

BASE A LIMIT ACCESS BASE G 1 0 V RIGHTS 31 ... 24 L 19 ... 16 
, BYTE 23 ... 16 

o 

+4 

G 'Granularity Bit 1 = Segment length is 4 Kbyte granular 
, 0 = segment length is byte gram.ilar 

o BHmust be zero (0) for compatibility w1111 futureprocesscrs 
AVL Available field for user or OS, 

Figure 3.4. Code and Data Descriptors-
4·728 



inter 80376 

Table 3.1. Access Rights Byte Definition for Code and Data Descriptors 

Bit 
Name Function 

Position 

7 Present (P) P = 1 Segment is mapped into physical memory. 
P=O No mapping to physical memory exits 

6-5 Descriptor Privilege Segment privilege attribute used in privilege tests. 
Level (DPL) 

4 Segment S = 1 Code or Data (includes stacks) segment descriptor 
Descriptor (S) S=O System Segment Descriptor or Gate Descriptor 

3 Executable (E) E=O Descriptor type is data segment: 

} 
If 

2 Expansion ED = 0 Expand up segment, offsets must be :5: limit. Data 
Direction (ED) ED = 1 Expand down segment, offsets must be > limit. Segment 

1 Writable (W) W = 0 Data segment may not be written into. (S = 1, 
W = 1 Data segment may be written into. E = 0) 

3 Executable (E) E = 1 Descriptor type is code segment: 

} 
If 

2 Conforming (C) C=1 Code segment may only be executed when Code 
CPL 2 DPL and CPL remains unchanged. Segment 

1 Readable (R) R=O Code segment may not be read. (S = 1, 
R = 1 Code segment may be read. E = 1) 

0 Accessed (A) A=O Segment has not been accessed. 
A=1 Segment selector has been loaded into segment register 

or used by selector test instructions. 

generated that is a truncated version of this . linear 
address. Truncation will be to the maximum number 
of address bits. It is recommended to place EPROM 
at the highest physical address and DRAM at the 
lowest physical addresses. 

Code and Data Descriptors (S= 1) 

Figure 3.4 shows the general format of a code and 
data descriptor and Table 3.1 illustrates how the bits 
in the Access Right Byte are interpreted. 

Code and data segments have several descriptor 
fields in common. The accessed bit, A, is set when­
ever the processor accesses a descriptor. The gran­
ularity bit, G, specifies if a segment length is 1-byte­
granular or 4-Kbyte-granular. Base address bits 
31-24, which are normally found in 80386 descrip­
tors, are not made externally available on the 80376. 
They do not affect the operation of the 80376. The 
AS1-A24 field should be set to allow an 80386 to 
correctly execute with EPROM at the upper 4096 
Mbytes of physical memory. 

System Descriptor Formats (S = 0) 

System segments describe information about oper­
ating system tables, tasks,. and· gates. Figure 3.5 
shows the general format of system segment de­
scriptors, and the various types of system segments. 

80376 system descriptors (which are the same as 
80386 descriptor types 2, 5, 9, B, C, E and F) contain 
a 32-bit logical base address and a 20-bit segment 
limit. 

SelectQr Fields 

A selector has three fields: Local or Global Descrip­
tor Table Indicator (TI), Descriptor Entry Index (In­
dex), and Requestor ( the selector's) Privilege Level 
(RPL) as shown in Figure 3.6. The TI bit selects ei­
ther the Global Descriptor Table or the Local De­
scriptor Table. The Index selects one of 8K descrip­
tors in the appropriate descriptor table. The RPL bits 
allow high speed testing of the selector's privilege 
attributes. 

Segment Descriptor Cache 

In addition to the selector value, every segment reg­
ister has a segment descriptor cache register asso­
ciated with it. Whenever a segment register's con­
tents are changed, the 8-byte descriptor associated 
with that selector is automatically loaded (cached) 
on the chip. Once loaded, all references to .that seg­
ment use the cached descriptor information instead 
of reaccessing the descriptor. The contents of the 
descriptor cache are not visible to the programmer. 
Since descriptor caches only change when a seg­
ment register is changed, programs which modify 
the descriptor tables must reload the appropriate 
segment registers after changing a descriptor's 
value. 

4-729 



80376 

31 16 o 
SEGMENT BASE 15 ... 0 SEGMENT LIMIT 15 ... 0 o 

P BASE +4 
23 ... 16 

Type Defines Type Defines . 
a Invalid 8 Invalid 
1 Reserved 9 Available 80376180386 TSS 
2 LDT A Undefined (Inlel Reserved) 
3 Reserved B Busy 80376/80386 TSS 
4 Reserved C 80376/80386 Call Gale 
5 Task Gale (80376/80386 Task) D Undefined (Inlel Reserved) 
6 Reserved E 80376/80386 Inlerrupl Gale 
7 Reserved F 80376/80386 Trap Gale 

Figure 3.5. $ystem Descriptors 

SELECTOR 

15 432 I 0 

SEGMENT 
REGISTER I a I 0 ---- 0 1 a 1 L 1;11 R~L 1 

. , 
TABLE INDEX 
INDICATOR 

TI=1 TI=O! 

N N 

DESCRIPTOR . 
'NUMBER 

6 6 

5 5 

4 4 

~ •• •• ···t>$¢RJ~rO~ •• ···•·· 3 

2 

1 

a 
LOCAL 

DESCRIPTOR 
TABLE 
(LOT) 

2 

1 

0 NULL 

GLOBAL 
DESCRIPTOR 

TABLE 
(GOT) 

240182-13 

Figure 3.6. Example Descriptor Selection 

3.3 Protection 

The 80376· offers extensive protection features. 
These protection features are particularly useful in 
sophisticated embedded applications which use 
multitasking real-time operating systems. For sim­
pier embedded applications these protection capa­
bilities can be easily bypassed by making allapplica­
tions run at privilege level (PL) O. 

RULES OF PRIVILEGE 

The 80376 controls access to both data and proce­
dures between levels of a task, according to the fol­
lowing rules. 

-Data stored in a segment with privilege level p 
can be accessed only by code exe9uting at a 
privilege level at least as privileged as p. 

-A code segment/procedure with privilege level p 
can only be called by a task executing at the 
s.ame or a lesser privilege level than p. 

PRIVILEGE LEVELS 

At any point in time, a task on .the 80376 always 
executes.!!.t one oOhe four privilege levels. The Cur­
rent Privilege Level (CPL) specifies what the task's 
privilege level is. A task's CPL may only be changed 

4-730 



80376 

by control transfers through gate descriptors to a 
code segment with a different ,privilege level. Thus 
an application program running at PL=3 may caUa~ 
operating system routine at PL = 1 (via a gate) which 
would cause the task's CPL to be set to 1 until the 
operating system routine was finished. 

Selector Privilege (RPL) 

The privilege level of a selector is specified by the 
RPL field. THe selector's RPL is only used to estab­
lish a less trusted privilege level than the current 
priyilege I~vel of the task for the use of a segment. 
This level IS called the task's effective'privilege level 
(EPL). The EPL is defined as being the least privi­
leged (numerically larger) level of a task's CPL and a 
selector's RPL. The RPL is most commonly used to 
verify that pointers passed to an operating system 
procedure do not access data that is of higher privi­
lege than the procedure that originated the pointer. .. 
Since the originator of a selector can specify any 
~PL value, the Adjust RPL (ARPL) instruction is pro­
Vided to force the RPL bits. to the originator's CPL. 

1/0 Privilege 

The 110 privilege level (IOPL) lets the operating sys­
tem code executing at CPL = 0 define the least privi­
leged level at which 110 instructions can be used. An 
exception 13 (General Protection Violation) is gener­
ated if an 110 instruction is attempted when the CPL 
of the task is less privileged than the 10PL. The 
!OPL is stored in bits 13 and 14 of the EFLAGS reg­
Ister. The following instructions cause an exception 
13 if the CPL is greater than 10PL: IN, INS, OUT, 
OUTS, STI, CLI and LOCK prefix. 

Descriptor Access 

There are basically two types of segment acces­
sess: those involving code segments such as con­
trol transfers, and those involving data accesses. 
Determining the ability of a task to access a seg­
ment involves the type of segment to be accessed 
the instruction used, the type of descriptor used and 
CPL, RPL, and DPL as described above. 

4-731 

Any time an instruction loads a data segment regis­
ter (OS, ES, FS, GS) the 80376 makes protection 
validation checks. Selectors loaded in the OS ES 
FS, GS registers must refer only to data segm~nt 0; 
readable code segments. 

Finally the privilege validation checks are performed. 
The CPL is compared to the EPL and if the EPL is 
more privileged than the CPL, an exception 13 (gen­
eral protection fault) is generated. 

T~e rules regarding the stack segment are slightly 
different than those involving data segments. In­
structions that load selectors into SS must refer to 
data segment descriptors for writeable data seg­
ments. The DPL and RPL must equal the CPL of all 
other descriptor types or a privilege level violation 
will cause an exception 13. A stack not present fault 
causes an exception 12. 

PRIVILEGE LEVEL TRANSFERS 

Inter-segment control transfers occur when a selec­
tor is loaded in the CS register. For a typical system 
most of these transfers are simply the result of a call 
or a jump to another routine. There are five types of 
control transfers which are summarized in Table 3.2. 
Many of these transfers result in a privilege level 
transfer. Changing privilege levels is done only by 
control transfers, using gates, task switches, and in­
terrupt or trap gates. 

Control transfers can only occur if the operation 
which loaded the selector references the correct de­
scriptor. type. Any violation of these descriptor uS!'lge 
rules Will cause an exception 13. 

CALL GATES 

Gates provide protected indirect CALLs. One of the 
major uses of gates is to provide a secure method of 
privilege transfers within a task. Since the operating 
system defines all of the gates in a system, it can 
ensure that all gates only allow entry into a few trust­
ed procedures. 



80376 

Table 3.2. pescrlptor Types Used for Control Transfer 

Control Transfer Types 

Intersegment within the same privilege level 

Intersegment to the same or higher privilege level 
Interrupt within task may change CPL 

Intersegment to a lower privilege level 
(changes task CPL) 

Task Switch 

'NT (Nested Task bit of flag register) - 0 
"NT (Nested Task bit of flag register) - 1 

OperatIon Types 

JMP, .CALL, RET, IREP 

CALL 

Interrupt Instruction, 
Exception, External 
Interrupt 

RET,IREP 

CALL,JMP 

CALL, JMP 

IRET"" 
Interrupt Instruction, 
Exception, External 
Interrupt 

4-732 

DescrIptor 
Referenced 

Code Segment 

Call Gate 

Trap or 
Interrupt 
Gate 

Code Segment 

Task State 
Segment 

. Task Gate 

Task Gate 

DescrIptor 
Table 

GOT/LOT 

GOT/LOT 

lOT 

GOT/LOT 

GOT 

GOTtLOT 

lOT 



: NOTE 
BIT_ 
must 

MAP_OFFSET 
be s: DFFFI-I 

Type 

Type 

" ... ------------. 
I 

ACCESS I TSS + I 
I RIGHTS . LlWIT 
I I 
I 4-I BASE I I 
I I 

: 31 PROGRAW 0 ' I 
I INVISIBLE I ._-----------_. 

TASK REGISTER 

TR SELECTOR t-
15 0 

= 9: Available 80376 
TSS. 

= B:· Busy ·80376 TSS. 

-

31 

80376 

31 16 15 

0000000000000000 I 

ESPO 

0000000000000000 I 
ESPI 

BACK LINK 
\J 

4 

SSO 8 

C 

10 

TSS BASE 

STACKS 
rOR 

0000000000000000 I SSI CPL 0,1,2 
ESP2 

0000000000000000 I 

CR3 

EIP 

ErLAGS 

EAX 

ECX 

EDX 

EBX 

ESP 

EBP 

ESI 

EDI 

0000000000000000 

0000000000000000 

0000000000000000 

0000000000000000 

0000000000000000 

0000000000000000 

0000000000000000 

SS2 

ES 

cs 
SS 

os 
rs 

GS 

LOT 

14 

18 

lC 

20 

24 

28 

2C 

50 

34 

38 

3C 

40 

44 

48 

4C 

50 

54 

58 

5C 

60 

CURRENT 
TASK 
STATE 

BIY-WAP _OrrSET( 15:0) 6000000000000000 IT'~ 
AVAILABLE ---SYSTEW STATUS, ETC. 

IN 80386 TSS 

31 ,,24 23 16 15 8 

63 56 55 48 47 40 

95 88 87 8,0 79 72 

.. 
~' 

I/o PERWISSION BITWAP 
65407 (ONE BIT PER 8YTE I/o 

PORT. BITt.lAP WAY BE 65439 
TRUNCATED USING TSS LIWIT.) 

65471 I 

655,03 I 

65535 

7 0 

39 32 

71 64 

96 

65472 

65504 

"rrH" 

~ 
DEBUG 
TRAP BIT 

, 
BILWA p_orrSET 

orrs ET + C 

T + 10 OrrSE 

OrrSE T + lrEc, 

ET + lFFO 

ET + lrF4 

ET + lrF8 

orrs 

orrs 

orrs 

OrrSET + lrFC 

ET + 2001) orrs 

t TSS LlWIT=Or rSET + 2oo0H 
80386 TSS DESCRIPTOR (IN GOT) 0 

SEGWENT BASE 15 ... 0 SEGWENT LIWIT 15 .. 0 

8ASE 31 .. 24IGllI01011L~~~1 pi D~L 10 1 TYrE I 
BASE 

23 .. 16 

240182-14 

Figure 3.7. 80376 1SS And TSS Registers 

II 
" I", 

" I' 
~ 



inter 80376 

TASK SWITCHING 

A very important attribute of any mUlti-tasking oper­
ating system is its ability to rapidly switch between 
tasks or processes. The 80376 directly supports this 
operation by providing a task switch instruction in 
hardware. The 80376 task switch operation saves 
the entire state of the machine (all of the registers, 
address space, and a link to the previous task), 
loads a new execution state, performs protection 
checks, and commences execution in the new task. 
Like transfer of control by gates, the task switch op­
eration is invoked by executing an inter-segment 
JMP or CALL instruction which refers to a Task 
State Segment (TSS), or a task gate descriptor in 
the GOT or LOT. An INT n instruction, exception, 
trap or external interrupt may also invoke the task 
switch operation if there is a task gate descriptor in 
the associated lOT descriptor slot. For simple appli­
cations, the TSS and task switching may not be 
used. The TSS or task switch will not be' used or 
occur if no task gates are present in the GOT, LOT 
or lOT. 

The TSS descriptor points to a segment (see Figure 
3.7) containing the entire 80376 execution state. A 
task gate descriptor contains a TSS selector. The 
limit of an 80376 TSS must be greater than 64H, and 
can be as large as 16 Mbytes. In the additional TSS 
space, the operating system is free to store addition­
al information as the reason the task is inactive, the 
time the task has spent running, and open files be­
longing to the task. 

Each Task must have a TSS associated with it. The 
current TSS is identified by a special register in the 
80376 called the Task State Segment Register (TR). 
This register contains a selector referring to the task 
state segment descriptor that defines the current 
T5S. A hidden base and' limit register associated 
with the TSS descriptor is loaded whenever TR is 
loaded with a new selector. Returning from'a task is 
accomplished by the IRET instruction. When IRET is 
executed, control is returned to the task which was 

interrupted. The current executing task's state is 
saved in the TSS and the old task state is restored 
from its TSS. 

Several bits in the flag register aild CRO register give 
information about the state of a task which is useful 
to the operating system. The Nested Task bit, NT, 
controls the function of the IRET instruction. If NT = 
o the IRET instruction performs the regular return. If 
NT = 1, IRET performs a task switch operation 
back to the previous task. The NT bit is set or reset 
in the following fashion: 

When a CALL or INT instruction initiates a task 
switch, the new TSS will be marked busy and 
the back link field of the new TSS set to the old 
T5S selector. The NT bit of the new task is set 
by CALL or INT initiated task switches. An inter­
rupt that does not cause a task switch will clear 
NT (The NT bit will be restored after execution 
of the interrupt handler). NT may also be set or 
cleared by POPF or IRET instructions. 

The 80376 task state segment is marked busy by 
changing the descriptor type field from TYPE 9 to 
TYPE OBH. Use of a selector that references a busy 
task state segment causes an exception 13. 

The coprocessor's state is not automatically saved 
when a task switch occurs. The Task Switched Bit, 
TS, in the CRO register helps deal with the coproces­
sor's state in a multi-tasking environment. Whenever 
the 80376 switches tasks, it sets the TS bit. The 
80376 detects the first use of a processor extension 
instruction after a task switch and causes the proc­
essor extension not available exception 7. The ex­
ception handler for exception 7 may then deCide 
whether to save the state of the coprocessor. 

The T bit in the 80376 TSS indicates that the proc­
essor should generate a debug exception when 
switching to a task. If T = 1 then upon entry to a 
new task a debug exception 1 will be generated. 

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0 

31 

63 

95 

127 

'l" 

1 1 1 

0 0 1 

1 1 1 

000 

1 0 1 

0 o 0 

1 1 1 

000 

1 o 0 00 0 1 1 

1 1 1 1 o 0 1 0 

1 1 1 1 1 1 1 1 

000 000 0 0 

etc. 

1 1 o 1 001 I' 0 0 o 0 0 0 o 0 1 1 

1 0 1 1 1 1 1 1 o 0 1 1 1 1 1 o 0 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

000 o 0 0 0 0 o 0 o 0 0 0 0 0 o 0 

1 1 1 1 1 1 1 1 

"" 240182-15 

110 Ports Accessible 2 -+ 9.12,13,15,20 -+ 24,27,33,34,40,41,48,50,52,53,58 -+ 60,62,63,96 -+ 127 

Figure 3.S. Sample I/O Permission Bit Map 

4-734 



80376 

PROTECTION AND 1/0 PERMISSION BIT MAP 

The 110 instructions that directly refer to addresses 
in the processor's I/O space are IN, INS, OUT and 
OUTS. The 80376 has the ability to selectively trap 
references to specific I/O addresses. The structure 
that enables selective trapping is the //0 Permls­
s/on Bit Map in the TSS segment (see Figures 3.7 
and 3.8). The I/O permission map is a bit vector. 
The size of the map and its location in the TSS seg­
ment are variable. The processor locates the I/O 
permission map by means of the 1/0 map base field 
in the fixed portion of the TSS. The 1/0 map base 
field is 16 bits wide and contains the offset of the 
beginning of the I/O permission map. 

If an I/O instruction (IN, INS, OUT or OUTS) is en­
countered, the processor first checks whether 
CPL :::;; 10PL. If this condition is true, the I/O opera­
tion may proceed. If not true,the processor checks 
the I/O permission map. 

Each bit in the map corresponds to an 1/0 port byte 
address; for example, the bit for port 41 is found at 
1/0 map base + 5 linearly, (5 x 8 = 40), bit offset 
1. The processor tests all the. bits that correspond to 
the 1/0 addresses spanned by an 1/0 operation; for 
example, a double word operation tests four bits cor­
responding to four adjacent byte addresses. If any 
tested bit is set, the processor signals a general pro­
tection exception. If all the tested bits are zero, the 
I/O operations may proceed. 

ClK2 

A 
i( DATA BUS 

2X CLOCK ( 

16-BIT(DO_D15 
DATA 

" 

BUS{ 
CONTROL 

BUS( 
ARBITRATION 

INTERRUPTS [ 

" .. 
ADS# 

NA# 

READY# 
. ~ 

HOLD 

HlDA 

INTR 

NMI 

RESET 

110376 
PROCESSOR 

It is not necessary for the I/O permission map to 
represent all the 1/0 addresses. 1/0 addresses not 
spanned by the map are treated as if they had one­
bits in the map. The 1/0 map base should be at 
least one byte less than the TSS limit and the- last 
byte beyond the 1/0 mapping information must con­
tain all1's. 

Because the 1/0 permiSSion map is in the TSSseg­
ment, different tasks can have different maps. Thus, 
the operating system can allocate ports to a task by 
changing the 1/0 permission map in the task's TSS. 

IMPORTANT IMPLEMENTATION NOTE: 
Beyond the last byte of I/O mapping information in 
the 1/0 permission bit map must be a byte contain­
ing an 1 'so The byte of all 1's must be within the 
limit of the 80376's TSS segment (see Figure 3.7). 

4.0 FUNCTIONAL DATA 

The Intel· 80376 embedded processor features a 
straightforward functional interface to the external 
hardware. The 80376 has separate parallel buses 
for data and address. The data bus is 16 bits in 
width, and bidirectional. The address bus outputs 
24-bit address values using 23 address lines and 
~o-byte enable Signals. 

The 80376 has two selectable address bus cycles: 
pipelined and non-pipelined. The pipelining option 
allows as much time as possible for data access by 

" ADDRESS BUS.:> 
BHE# I' 

BlE# 

A1-A23] 
24-BIT 

} BYTE . ADDRESS 
'ENABLES 

W/R# 
D/C# 

M/IO# 

lOCK# 
1 BUS =, ",.,,"'" 

PEREQ 

BUSY# 

ERROR# 
) COPROCESSOR SIGNALLING 

vee 
GND } POWER CONNECTIONS 

240182-16 

Figure 4.1. Functional Signal Groups. 

4-735 

I! 
I ~, 

.1 



80376 

starting the pending bus cycle before the present 
bus cycle is finished. A non·pipelined bus cycle 
gives the highest bus performance by executing ev· 
erybus cycle in two processor clock cycles. For 
maximum design flexibility, the address pipelining 
option is selectable on a cycle·by·cycle basis. 

The processor's bus cycle is the basic mechanism 
for,information transfer, either from system to proc· 
essor, or from processor to system. 80376 bus cy· 
cles perform data transfer in a minimum of only two 
c:lock periods. On a 16·bit data bus, the maximum 
80376 transfer bandwidth at 16 MHz is therefore 
16 Mbytes/sec. However, any bus cycle will be ex· 
tended 'for more. than two clock periods if external 
hardware withholds acknowledgement of the cycle. 

The 80376 can relinquish control of, its local buses 
to allow mastership by other devices, such as direct 
memory access (DMA) channels. When relin· 
quished, HLDA is the only o4tput pin driven by the 
80376, providing near·complete isolation of the 
processor from its system (all other output pins are 
in a float condition). . 

4.1 Signal Description Overview 

Ahead is a brief description of the 80376 input and 
output signals arranged by functional groups. Note 
the' # symbol aUhe end ·01' a signal name indicates 
the active,or asserted, state occurs when the Signal 
is at a LOW voltage. When no # is present after the 
signal name, the signal is asserted when'at the 
HIGH voltage level. 

Example signal: MIIO#-HIGH voltage indicates 
Memory selected 

-LOW voltage indicates 
110 selected 

The signal descriptions sometimes refer to AC, tim· 
ing parameters, such as "t25 Reset Setup Time" and 
"t26 Reset Hold Time." The values of these parame· 
ters can be found inTable 6.4. 

CLOCK (CLK2) 

CLK2 provides the fundamental tim,ihg' for ,the 
80376. It is ,divided by two internally to generate the 
internal processor clock used for instruction execu· 
tion. the internal clock. is c9mprised pI two 

PROCESSOR CLOCK 
PERIOD 

PROCESSOR CLOCK 
PERIOD 

INTERNAL [ 
PROCESSOR CLOCK 

CLK2 PERIOD CLK2 PERIOD CLK2 PERIOD CLK2 PERIOD 
01 02 01 02 

62.5 NS MIN. 
(16 101Hz MAX) 

Figure 4.2. CLK2 Signal and Internal Processor Clock 

4·736 

. 240182-17 



inter 80376 

phases, "phase one" and "phase two". Each CLK2 
period is a phase of the internal clock. Figure 4.2 
illustrates the relationship. If desired, the phase of 
the internal processor clock can be synchronized to 
a known phase by ensuring the falling edge of the 
RESET signal meets the applicable setup and hold 
times t25 and t26. 

DATA BUS (D'S-DO) 

These three-state bidirectional signals provide the 
general purpose data path between the 80376 and 
other devices. The data bus outputs are active HIGH 
and will float during bus hold acknowledge. Data bus 
reads require that read-data setup and hold times 
t21 and t22 be met relative to CLK2 for correct oper­
ation. 

ADDRESS BUS (BHE#, BLE#, A23-A,) 

These three-state outputs provide physical memory 
addresses or 110 port addresses. A23-A16 are LOW 
during 1/0 transfers except for 1/0 transfers auto­
matically generated by coprocessor instructions. 

During coprocessor, 1/0 transfers, A22-A16 are driv­
en LOW, and A23 is driven HIGH so that this ad­
dress line can be used by external logic to generate 
the coprocessor select signal. Thus, the 1/0 address 
driven by the 80376 for coprocessor commands is 
8000F8H, and the 1/0 address driven by the 80376 
processor for coprocessor data is 8000FCH or 
8000FEH. 

The address bus is capable of addressing 16 Mbytes 
of physical memory space (OOOOOOH through 
OFFFFFFH), and 64 Kbytes of 1/0 address space 
(OOOOOOH through OOFFFFH) for programmed 1/0. 
The address bus is active HIGH and will float during 
bus hold acknowledge. 

The Byte Enable outputs BHE# and BLE# directly 
indicate which bytes of the 16-bit. data bus are in­
volved with the current transfer. BHE# applies to 
015-08 and BLE# applies to 07-00. If both BHE# 
and BLE# are asserted, then 16 bits of data are 
being transferred. See Table 4.1 for a complete de­
coding of these signals. The byte enables are active 
LOW and will float during bus hold acknowledge. 

Table 4.1. Byte Enable Definitions 

BHE# BLE# Function 

0 0 Word Transfer 

0 1 Byte Transfer on Upper Byte of the Data Bus, 015-'08 

1 0 Byte Transfer on Lower Byte of the Data Bus, 07-00 

1 1 Never Occurs 

4-737 

I 

I, 
I, 



80376 

BUS CYCLE DEFINITION SIGNALS 
(W/R#,D/C#, M/IO#, LOCK#) 

These three-state outputs define the type of bus cy­
cle being performed: W/R# distinguishes between 
write and read cycles, D/C# distinguishes between 
data and control cycles,M/IO# distinguishes be­
tween memory and I/O cycles, and LOCK# distin­
guishes between locked and unlocked bus cycles. 
All of these signals are active LOW and will float 
during bus acknowledge: 

The primary bus cycle definition signals are W IR #, 
D/C# and M/IO#, since these are the signals driv­
en valid as ADS# (Address Status output) becomes 
active. The LOCK # signal is driven valid at the same 
time the bus cycle begins, which due to address 
pipelining, could. be after ADS# becomes active. Ex­
act bus cycle definitions, as a function of W IR #, 
D/C# and M/IO# are given in Table 4.2. 

LOCK # indicates that other system bus masters are 
not to gain control of the system bus while it isac­
tive. LOCK # is activated on the CLK2 edge that be­
gins the first locked bus cycle (Le., it is not active at 
the same time as the other bus cycle definition pins) 
and is deactivated when ready is returned to the end 
of the last bus cycle which is to be locked. The be­
ginning of a bus cycle is determined when READY# 
is returned in a previous bus cycle and another is 
pending (ADS# is active) or the clock in which 
ADS# is driven active if the bus was idle. This 
means that it follows more closely with the write 
data rules when it is valid, but may cause the bus to 
be locked longer than desired. The LOCK# Signal 
may be explicitly activated by the LOCK prefix on 
certain instructions. LOCK # is always asserted 
when executing the XCHG instruction, during de­
scriptor updates, and during the interrupt acknowl­
edge sequence. 

BUS CONTROL SIGNALS 
(ADS#, READY#, NA#) 

The following signals allow the processor to indicate 
when a.bus cycle has begun, and allow other system 
hardware to control address pipelining and bus cycle 
termination. 

Address Status (ADS#) 

This threecstate output indicates that a valid bus cy­
cle definition and address (W/R#, D/C#, M/IO#, 
SHE#, SlE # and A23-A1) are being driven at the 
80376 pins. ADS# is an active LOW output. Once 
ADS# is driven active,valid address, byte enables, 
and definition signals will not change. In addition, 
ADS # will remain active until its associated bus cy­
cle begins (when READY # is returned for the previ­
ous bus cycle when running pipelined bus cycles). 
ADS # will float during bus hold acknowledge. See 
sections Non-Pipelined Bus Cycle$ (page 43) and 
j)ipelined Bus Cycles (page 45) foradditionalinfor­
mation on how ADS# is asserted for. different bus 
states. 

Tran$fer Acknowledge (READY # ) 

This inPut indicates the current bus cycle is com­
plete, and the active bytes indicated by SHE# and 
SLE # are accepted or provided. When READY # is 
sampled active during a read cycle or interrupt ac­
knowledge cycle, the 80376 latches the input data 
and terminates the cycle. When READY # is sam­
pled active during a write cycle, the processor termi­
nates the bus cycle. 

Table 4.2. Bus Cycle Definition 

M/IO# D/C# W/R# Bus Cycle Type Locked? 

0 0 0 INTERRUPT ACKNOWLEDGE Yes 

0 0 1 Does Not Occur -
0 1 0 I/O DATA READ No 

0 1 1 1/0 DATA WRITE No 

1 0 0 MEMORY CODE READ No 

1 0 1 HALT: SHUTDOWN: No 
Address = 2 Address = 0 
SHE# = 1 SHE# = 1 
SLE# = 0 SLE# = 0 

1 1 0 MEMORY DATA READ Some Cycles 

1 1 1 MEMORY DATA WRITE Some Cycles 

4-738 



80376 

READY # is ignored on the first bus state of all bus 
cycles, and sampled each bus state thereafter until 
asserted.' READY # must eventually be asserted to 
acknowledge every bus cycle, including Halt Indica­
tion and Shutdown Indication bus cycles. When be­
ing sampled, READY # must always meet setup and 
hold times t19 and t20 for correct operation. 

Next Address Request (NA #) 

This is used to request pipelining. This input indi­
cates the system is prepared to accept new values 
of BHE#, BLE#, A23-A1, W/R#, D/C# and 
MIIO# from the 80376 even if the end of the current 
cycle is not being acknowledged on READY #. If this 
input is active when sampled, the next bus cycle's 
address and status signals are driven onto the bus, 
provided the next bus request is already pending in­
ternally. NA # is ignored in clock cycles in which 
ADS# or READY# is activated. This signal is active 
LOW and must satisfy setup and hold times t15 and 
t16for correct operation. See Plpellned Bus Cycles 
(page 45) and Read and Write Cycles (page 42) for 
additional information. 

BUS ARBITRATION SIGNALS (HOLD, HLDA) 

This section describes the mechanism by which the 
processor relinquishes control of its local buses 
when requested by another bus master device. See 
Entering and Exiting Hold Acknowledge (page 
52) for additional information. 

Bus Hold Request (HOLD) 

This input indicates some device other than the 
80376. requires bus mastership. When control is 
granted, the 80376 floats A23-A1, BHE#, BLE#, 
015-00, LOCK#, M/IO#, DIC#, W/R# and 
ADS#, and then activate.s HLDA, thus entering .the 
bus hold acknowledge state. The local bus will re­
main granted. to the requesting master until HOLD 
becomes inactive. When HOLD becomes inactive, 
the 80376 will deactivate HLDA and drive the local 
bus (aUhesame-time), thus terminating the hold 
acknowledge condition. ' 

HOLD. must remain asserted as long as any other 
device is a local bus. master. External. pull-up .resis­
tors may be required when in the hold acknowledge 
state since none of the 80376 floated outputs have 
internal pull-up resistors. See Resistor Recommen­
dations (page 59) for additional information. HOLD 
is not recognized while RESET is active but is recog­
nized during the time between the high-to-Iow tran­
sistion of RESET and the first instruction fetch. If 
RESET is asserted while HOLD is asserted, RESET 
has priority and places the bus into an idle state, 
rather than the hold acknowledge (high-impedanqe) 
state. 

HOLD is a level-sensitive, active HIGH, synchronous 
input. HOLD signals must always meet setup and 
hold times t23 and t24 for correct operation. 

Bus Hold Acknowledge (HLDA) 

When active (HIGH), this output indicates the 80376 
has relinquished control of its local bus in response 
to an asserted HOLD Signal, and is in the bus Hold 
Acknowledge state. 

The Bus Hold Acknowledge state offers near-com­
plete signal isolation. In the Hold Acknowledge 
state, HLDA is the only signal being driven by the 
80376. The other output signals or bidirectional sig­
nals (015-00, BHE#, BLE#, A23-A1, W/R#, 
D/C#, MIIO#, LOCK# and ADS#) are in a high­
impedance state so the requesting bus master may 
control them. These pins remain OFF throughout the 
time that HLDA remains active (see Table 4.3). Pull­
up resistors may be desired on several signals to 
avoid spurious activity when no bus master is driving 
them. See Resistor Recommendations (page 59) 
for additional information. 

When the HOLD Signal is made inactive, the 80376 
will deactivate HLDA and drive the bus. One riSing 
edge on the NMI input is remembered for processing 
after the HOLD input is negated. 

Table 4.3. Output Pin .State during HOLD 

Pin Value Pin Names 

1 HLDA 
Float LOCK#, MIIO#, DIC#, W/R#, 

ADS#, A23-A1, BHE#, BLE#, 
015-00 

In addition to the normal usage of Hold Acknowl­
edge with DMA controllers or master peripherals, 
the near-complete isolation has particular attractive­
ness during system test when test equipment drives 
the system, and in hardware-fault-tolerant applica­
tions. ' 

Hold Latencies 

The maximum possible HOLD latency depends ,on 
the software being executed. The actual ,HOLD la­
tencyat any time depends on the current bus activi­
ty, the state of the LOCK # signal (internal to the 
CPU) activated by the LOCK#. prefix, .and interrupts. 
The 80376 will not honor a HOLD request until the 
current bus opera:tion is complete. Table 4.4 shows 
the types of bus operations that can affect HOLD 
latency, and indicates the types of delays that 

4-739 

i,' 
I' 



80376 

these' operations may introduce. When considering 
maximum HOLD latencies, designers must select 
which of these bus operations are possible, and 
then select the maximum latency form among them. 

The 80376 breaks 32-bit data or 110 accesses into 2 
internally locked 16-bit bus cycles; the LOCK# sig­
nal is not asserted. The 80376 breaks unaligned 
16-bit Cir 32-bit data or I/O accesses into'2 or 3 inter­
nally locked 16-bit bus cycles. Again the LOCK # 
signal is not asserted but a HOLD request will not be 
recognized until the end of the ~ntire transfer. 

As indicated in Ta!;>le 4,4, wait states affect HOLD 
latency. The 80376 will not honor a HOLD request 
until the end of the current bus operation, no matter 
how many wait states are required. Systems with 
DMA where data transfer is critical must insure that 
READY #, returns sufficiently soon. 

Table 4.4. Locked Bus Operations Affecting 
HOLD Latency In Systems Clocks 

} * UNot Available At This Time";' t 

COPROCESSOR INT,ERFACE SIGNALS 
(PEREO, ·BUSY#, ERROR#) 

In the following sections are descriptions of Signals 
dedicated to the numeric coprocessor interface. In 
addition to the data bus,' address bus, and bus cycle 
definition signals, these following signals control 
communication between the 80376 and the 
80387SX processor extension, 

Coprocessor Request (PEREO) 

When asserted (HIGH), this input signal indicates a 
coprocessOr request for a data operand to be trans­
ferred to/from, memory by the 80376. ·In response, 
the .803.7.6 transfers information between the co­
processor and memory. Because the 80376 has in­
ternallystored, the coprocessor opcode baing exe­
cuted, it performs the requested data transfer with 

. the correct direction and memory address. 

PEREQ is a level-sensitive active HIGH asynchro­
nous "signal. Setup and holcl times, t29 and tao, rela· 
tive . tCi.tt)e CLK2 signal must be met to guarantee 
recognition at a particular. clock, edge. This siglJal is 
prqvided with a weak internal pull-down 'resistor of 
around 20 KG to ground so that it will not float active 

. when left .unconnected.' . 

Coprocessor Busy (BUSY#) 

When asserted (LOW), this input indicates ·the co­
processor is still executing an instruction,and is not 
yet able to accept another. When the 80376 en­
counters any coprocessor instruction which oper­
ates on the numerics stack (e.g. load, pop, or arith­
metic operation), or the WAIT instruction, this input 
is first automatically sampled until it is seen to. be 
inactive. This sampling of the BUSY # input prevents 
overrunning the execution of a previous coprocessor 
instruction. 

The F(N)INIT, F(N)CLEX coprocessor instructions 
are allowed to execute even if BUSY # is active, 
since these instructions are used' for coprocessor 
initialization and exception-clearing. 

BUSY # is an active, LOW, level-sensitive asynchro­
nous sighal. Setup and . hold times, t29 and tao, rela­
tive to the CLK2 signal must be met to guarantee 
recognition at a particular clock edge, This pin is pro­
vided with a weak interna:l pull-up resistor of around 
20 KG to Vee so that it will not float active when left 
unconnected. 

BUSY # serves an' additional function. If BUSY # is 
sampled LOW.at the falling edge of RESET; the 
80376, processor performs an internal self-test (see 
Bus Activity During and Following Reset on page 
54). If BUSY,# is sampled HIGH, no self-test is per­
formed. 

Coprocessor Error (ERROR;If) 

When asserted (LOW), this input signal indicates 
that the previous coprocessor instruction generated 
a coprocessor error of a type not masked by the 
coprocessor's control register. This input is automat­
icallysampled by the 80378 when Ii coprocessor 
instruction is encountered, and if active, the 80376 
generates exception 16 to access the 'error-handling 
software. 

Several coprocessor instructions, . generally those 
which clear the numeric error flags in the coproces­
sor or save coprocessor state, do execute without 
the 80376 generating exception 16. even if ER­
ROR# is active. These instructions are FNINIT, 
FNCLEX, FNSTSW, FNSTSWAX; FNSTCW, 
FNSTENV and FNSAVE. ' .,' 

4-740 



intJ 80376 

ERROR# is an active LOW, level-sensitive asyn­
chronous signal. Setup and hold times t29 and tao, 
relative to the CLK2 signal must be met to guarantee 
recognition at a particular clock edge. This pin is pro­
vided with a weak internal pull-up resistor of around 
20 K!l to Vee so that it will not float active when left 
unconnected. 

INTERRUPT SIGNALS (INTR, NMI, RESET) 

The following descriptions cover inputs that can in­
terrupt or suspend execution of the processor's cur­
rent instruction stream. 

Maskable Interrupt Request (INTR) 

When asserted, this input indicates a request for in­
terrupt service, which can be masked by the 80376 
Flag Register IF bit. When the 80376 responds to 
the INTR input, it performs two interrupt acknowl­
edge bus cycles and, at the end of the second, 
latches an 8-bit interrupt vector on DrDo to identify 
the source of the interrupt. 

INTR is an active HIGH, level-sensitive asynchro­
nous signal. Setup and hold times, t27 and t28, rela­
tive to the CLK2 signal must be met to guarantee 
recognition at a particular clock edge. To assure rec­
ognition of an INTR request, INTR should remain 
active until the first interrupt acknowledge bus cycle 
begins. INTR is sampled at the beginning of every 
instruction. In order to be recognized at a particular 
instruction boundary, INTR must be active at least 
eight CLK2 clock periods before the beginning of the 
execution of the instruction. If recognized, the 80376 
will begin execution of the interrupt. 

Non-Maskable Interrupt Request (NMI) 

This input indicates a request for interrupt service 
which cannot be masked by software. The non­
maskable interrupt request is always processed ac­
cording to the pointer or gate in slot 2 of the interrupt 
table. Because of the fixed NMI slot assignment, no 
interrupt acknowledge cycles are performed when 
processing NMI. 

NMI is an active HIGH, rising edge-sensitive asyn­
chronous signal. Setup and hold times, t27 and t28, 
relative to the CLK2 signal must be met to guarantee 
recognition at a particular clock edge. To assure rec­
ognition of NMI, it must be inactive for at least eight 
CLK2 periods, and then be active for at least eight 
CLK2 periods before the beginning of the execution 
of an instruction. 

Once NMI processing has begun, no additional 
NMl's are processed until after the next IRET in­
struction, which is typically the end of the NMI serv-

ice routine. If NMI is re-asserted prior to that time, 
however, one rising edge on NMI will be remem­
bered for processing after executing the next IRET 
instruction. 

Interrupt Latency 

The time that elapses before an interrupt request is 
serviced (interrupt latency) varies according to sev­
eral factors. This delay must be taken into account 
by the interrupt source. Any of the following factors 
can affect interrupt latency: 

1. If interrupts are masked, and INTR request will 
not be recognized until interrupts are reenabled. 

2. If an NMI is currently being serviced, an incoming 
NMI request will not be recognized until the 80376 
encounters the IRET instruction. 

3. An interrupt request is recognized only on an in­
struction boundary of the 80376 Execution Unit 
except for the following cases: 

- Repeat string instructions can be interrupted 
after each iteration. 

- If the instruction loads the Stack Segment reg­
ister, an interrupt is not processed .until after 
the following instruction, which should be an 
ESP load. This allows the entire stack pOinter 
to be loaded without interruption. 

- If an instruction sets the interrupt flag (enabling 
interrupts), an interrupt is not processed until 
after the next instruction. 

The longest latency occurs when the interrupt re­
quest arrives while the 80376 processor is exe­
cuting a long instruction such as multiplication, di­
vision or a task-switch. 

4. Saving the Flags register and CS:EIP registers. 

5. If interrupt service routine requires a task switch, 
time must be allowed for the task switch. 

6. If the interrupt service routine saves registers that 
are not automatically saved by the 80376. 

RESET 

This input signal suspends any operation in progress 
and places the 80376 in a known reset state. The 
80376 is reset by asserting RESET for 15 or more 
CLK2 periods (80 or more CLK2 periods before re­
questing self-test). When RESET is active, all other 
input pins are ignored, and all other bus pins are 
driven to an idle bus state as shown in Table 4.5. If 
RESET andcHOLD are both active at a point in time, 
RESET takes priority even if the 80376 was in a 
Hold Acknowledge state prior to RESET active. 

RESET is an active HIGH, level-sensitive synchro­
nous signal. Setup and hold times, t25 and t26, must 
be met in order to assure proper operation of the 
80376. 

4-741 



inter 80376 

Table 4.5. Pin State (Bus Idle) during RESET 

Pin Name Signal Level during RESET 

AOS# 1 

015-0 0 Float 

BHE#, BLE# 0 

A23-A1 1 

W/R# 0 

O/C# 1 

MlIO# 0 

LOCK# 1 

HLOA 0 

4.2 Bus Transfer Mechanism 

All data transfers occur as a result of one or more 
bus cycles. Logical data operands of byte and word 
lengths may be transferred without restrictions on 
physical address alignment. Any byte boundary may 
be used, although two physical bus cycles are per­
formed as required for unaligned operand transfers. 

The 80376 processor address Signals are designed 
to simplify external system hardware. BHE # and 
BLE# provide linear selects for the two bytes of the 
16-bit data bus. 

Byte Enable outputs BHE#and BLE# are asserted 
when their associated data bus bytes are involved 
with the present bus cycle, as listed in Table 4 .. 6. 

Table 4.6. Byte Enables and ASSOCiated 
Data and Operand Bytes 

Byte Enable Associated Data Bus Signals 

BHE# 015-08 (Byte 1-Most Significant) 
BLE# 07-00 (Byte O-Least Significant) 

Each bus cycle is composed of at least two bus 
states. Each bus state requires one processor clock 
period. Additional bus states added to a single bus 
cycle are called wait states. See Bus Functional 
Description (page 39) for additional information. 

4.3 Memory and 1/0 Spaces 

Bus cycles may access physical memory space or 
liD space. Peripheral devices in the system may ei­
ther be memory-mapped, or liD-mapped, or both. 
As shown in Figure 4.3, physical memory addresses 
range from OOOOOOH to OFFFFFFH (16 Mbytes) and 
liD addresses from OOOOOOH to OOFFFFH 
(64 Kbytes). Note the liD addresses used by the 
automatic liD cycles for coprocessor communica­
tion are 8000F8H to 8000FFH, beyond the address 
range of programmed liD, to allow easy generation 
of a coprocessor chip select signal using the A23 
and M/IO# Signals. 

OPERAND ALIGNMENT 

With the flexibility of memory addressing on the 
80376, it is possible to transfer a logical operand 
that spans more than one physical Oword or word of 
memory or liD. Examples are 32-bit Oword or 16-bit 
word operands beginning at addresses not evenly 
divisible by 2. 

Operand alignment and size dictate when multiple 
bus cycles are required. Table 4.6a describes the 
transfer cycles generated for all combinations of log­
ical operand lengths and alignment. 

Table 4.6a. Transfer Bus Cycles 
for Bytes, Words and Dwords 

Byte-Length of Logical Operand 

1 

Physical Byte 
Address in xx 00 
Memory 
(Low-Order 
Bits) 

ITransfer 
Cycles 

b w 

Key: b = byte transfer 
w = word transfer 

01 

lb. 
hb 

I = low·order portion 
m = mid·order portion 
x = don't care 
h = high·order portion 

2 4 

10 11 00 01 10 

w hb. Iw, hb. hw, 
I.b hw lb. Iw 

mw 

11 

mw, 
hb. 
Ib 

4-742 



intJ 80376 

rrrrrrH _--__. 

~ 
I Nor~ 

~ PHYSICAL 
MEMORY 8000rrH I ~. COPROCESSOR 8000r8H I.. __ ~_.., 

".rr} ~ 

/NOr/). 

16-MBYTE 

~ ./~ 
OOrrrrH B } ACCESSIBLE 

64 kBYTE PROGRAMMED 
OOOOOOH I/O SPACE OOOOOOH '----' 

PHYSICAL MEMORY SPACE I/O SPACE 
240182-18 

NOTE: 
Since A23 is HIGH during automatic communication with coprocessor, A23 HIGH and M/IO# LOW can be used to easily 
generate a coprocessor select signal. 

Figure 4.3. Physical Memory and 1/0 Spaces 

4.4 Bus Functional Description 

The 80376 has separate, parallel buses for data and 
address. The data bus is 16 bits in width, and bidi· 
rectional. The address bus provides a 24cbit value 
using 23 signals for the 23 upper·order address bits 
and 2 Byte Enable signals to directly indicate the 
active bytes. These buses are interpreted and con· 
trolled by several definition signals. 

The definition of each bus cycle is given by three 
signals:' MIIO#, W/R# and D/C# .. At the same 
time, a valid address is present on the byte enable 
signals, BHE# and BlE#, and the other address 
signals A23-Al. A status signal, ADS#, indicates 
when the 80376 issues a new bus cycle definition 
and address. 

Collectively, the address bus, data bus and all asso­
ciated control signals are referred to simply as "the 
bus". When active, the bus performs one of the bus 
cycles below: 

1. Read from memory space 

2. locked read from memory space 

3. Write to memory space 

4. locked write to memory space 

5. Read from 1/0 space (or coprocessor) 

6. Write to 1/0 space (or coprocessor) 

7. Interrupt acknowledge (always locked) 

8. Indicate halt, or indicate shutdown 

Table 4.2 shows the encoding of the bus cycle defi­
nition signals for each bus cycle, See Bus Cycle 
Definition Signals (page 35) for additonal informa­
tion. 

When the 80376 bus is not performing one of the 
activities listed above, it is either Idle or in the Hold 
Acknowledge state, which may be detected by ex­
ternal circuitry. The idle state can be identified by the 
80376 giving no further assertions on its .address 
strobe output (ADS#) since the beginning of its 
most recent bus cycle, and the most recent bus cy­
cle having been terminated. The hold acknowledge 
state is identified by the 80376 asserting its hold ac­
knowledge (HlDA) output. 

The shortest time unit of bus activity is a bus state. A 
bus state is one processor clock period (two ClK2 
periods) in duration. A complete data transfer occurs 
during a bus cycle, composed of two or more bus 
states. 

4-743 

I .. 

~ 
I.' 
I 

I. 



inter 80376 

CYCLE 1 
NON-PIPELINED 

(READ) 

CYCLE 2 
NON-PIPELINED 

(READ) 

CYCLE 3 
NON-PIPELINED 

(READ) 

n n n n n n 
.11.2 .11.2 .11.2 .11.2 .11.2 .11.2 .1 

CLK2[ 
(INPUT) 

BHE#,BLE#,Al-A23 [ 
1.4/10#, D/C#, W/R# 

(OUTPUTS) 

ADS# [ 
(OUTPUT) 

NA# [ 
(INPUT) 

READY# [ 
(INPUT) 

LOCK# [ 
(OUTPUT) 

DO-D1S[ 
(INPUT DURING READ) 

240182-19 

Figure 4.4. Fastest Read Cycles with Non-Pipelined Timing 

The fastest 80376 bus cycle requires only two bus 
states. For example, three consecutive bus read cy­
cles, each consisting of two bus states, are shown 
by Figure 4.4. The bus states in each cycle are 
named T1 and T2. Any memory or 110 address may 
be accessed by such a two-state bus cycle,· if the 
external hardware is fast enough. 

Every bus cycle continues until it is acknowledged 
by the external system hardware, using the 80376 
READY# input. Acknowledging the bus cycle at the 
end of the first T2 results in the shortest bus cycle, 
requiring only T1 and T2. If READY # is not immedi­
ately asserted however, T2 states are repeated in­
definitely until the READY # input is sampled active. 

The pipelining option provides a choice of bus cycle 
timings. Pipelined or non-pipelined cycles are 

selectable on a cycle-by-cycle basis with the Next 
Address (NA #) input. 

When pipelining is selected the address (BHE#, 
BLE# and A23~Al) and definition (W/R#, D/C#, 
M/IO# and LOCK#) of the next cycle are available 
before the end of the current cycle. To signal their 
availability, the 80376 address status output (ADS#) 
is asserted. Figure 4.5 illustrates the fastest read cy­
cles with pipelined timing. 

Note from Figure 4.5 the fastest bus cycles using 
pipelining require only two bus states, named T1P 
and T2P. Therefore pipelined cycles allow the same 
data bandwidth as non-pipe lined cycles, but ad­
dress-to-data access time is increased by one 
T-state time compared to that of a non-pipe lined cy­
cle. 

4-744 



inter 80376 

CYCLE 1 
PIPELINED 

(READ) 

CYCLE 2 
PIPELINED 

(READ) 

CYCLE 3 
PIPELINED 

(READ) 

Tl P T2P T1 P T2P T1 P T2P 

.11.2 .11.2 .11.2 .11.2 .11.2 .11.2 

CLK2[ 
(INPUT) 

BHE#,BLE#,A l-A23 [ 
"'/10#, D/C#, W /R# 

(OUTPUTS) 

ADS#[ 
(OUTPUT) 

NA# [ 
(INPUT) 

READY# [ 
(INPUT) 

LOCK# [ 
(OUTPUr) 

DO-D1S[ 
(INPUT DURING READ) 

240182-20 

Figure 4.5. Fastest Read Cycles with PlpelinedTlming 

READ AND WRITE CYCLES 

Data transfers occur as a result of bus cycles, classi­
fied as read or write cycles. During read cycles, data 
is transferred from an.external device to the proces­
sor. During write cycles, data is transferred from the 
processor to an external device. 

Two chOices of bus cycle timing are dynamically se­
lectable: non-pipelined or pipelined. After an idle bus 
state, the processor always uses non-pipelined tim­
ing, However the NA# (Next Address) input may be 
asserted to select pipelined timing for the next bus 
cycle. When pipelining is selected and the 80376 
has a bus request pending internally, the address 
and definition of the next cycle is made available 
even before the current bus cycle is acknowledged 
by READY#. 

Terminating a read or write cycle, like any bus cycle, 
requires acknowledging the cycle by asserting the 
READY # input. Until acknowledged, the processor 
inserts wait states into the bus cycle, to allow adjust-

ment for the speed of any external device. External 
hardware, which has decoded the address and bus 
cycle type, asserts the READY # input at the appro­
priate time. 

At the end of the second bus state within the bus 
cycle, READY # is sampled. At that time, if external 
hardware acknowledges the bus cycle by asserting 
READY #, the bus cycle terminates as shown in Fig­
ure 4.6. If READY# is negated as in Figure 4.7, the 
80376 executes another bus state (a wait state) and 
READY #. is sampled again at the end of that state. 
This continues indefinitely until the cycle is acknowl­
edged by READY # asserted. 

When the current cycle is acknowledged, the 80376 
terminates it. When a read cycle is acknowledged, 
the 80376 latches the information present at its data 
pins. When a write cycle is acknowledged, the write 
data of the 80376 remains valid throughout phase 
one of the next bus state, to provide write data hold 
time. 

4-745 



inter 80376 

'
IDLE I CYCLE 1 

NON-PIPELINED 
(WRITE) 

CYCLE 2 I 
NON-PIPELINED 

(READ) 

CYCLE 3 I 
NON-PIPELINED 

(WRITE) 

IDLE I 
TI 

CYCLE 4 I 
NON-PIPELINED 

(READ) 

IDLE I 

TI TI T1 T2 T1 T2 T1 T2 T1 T2 

ClK2 [ 

PROCESSOR ClK [ 

BHE #.BlE #. [ 
Al-A23. 

M/IO#.D/C# 

W/R# [ 

ADS# [ 

NA# [ 

READY# [ 

lOCK# [ 

240182-21 

Idle states are showp here for diagram variety only, Write cycles are not always followed by an idle state. An active bus 
cycle can immediately follow the write cycle. 

Figure 4.6. Various Non·Pipelined Bus Cycles (Zero Wait States) 

Non·Pipelined Bus Cycles 

Any bus cycle may be performed with non-pipelined 
timing. For example. Figure 4.6 shows a mixture of 
non-pipe lined read and write cycles. Figure 4.6 
shows that the fastest possible non-pipelined cycles 
have two bus states per bus cycle. The states are 
named T1 and T2. In phase one of T1. the address 
signals and bus cycle definition signals are driven 
valid and. to signal their availability. address strobe 
(ADS#) is simultaneously ,asserted. 

During read or write cycles. the data bus behaves as 
follows. If the cycle is a read. the 80376 floats its 
data signals to allow driving by the external device 
being addressed. The 80376 requires that all data 
bus pins be at a valid logic state (HIGH or LOW) 
at the end of each read cycle, when READY # Is 
asserted. The system MUST be designed to 
meet this requirement. If the cycle is a write. data 
signals are driven by the 80376 beginning in phase 
two of T1 until phase one of the bus state following 
cycle acknowledgement. . 

4-746 



inter 80376 

IDLE I CYCLE 1 
NON-PIPELINED 

(READ) 

CYCLE 2 
NON-PIPELINED 

(WRITE) 

I IDLE 

TI 

CYCLE 3 
NON-PIPELINED 

(READ) 

IDLE I 

TI 

ClK2 [ 

PROCESSOR ClK [ 

BHE#,BlE#, [ 
Al-A23, 

M/IO#.D/C# 

W/R# [ 

ADS# [ 

NA# [ 

READY# [ 

TI T1 T2 T1 T2 T2 T1 T2 T2 

lOCK # [ ~~~~~~~~ __ ~~ __ ~~~~ __ -4~~~~ __ ~V~A~LI~D~34-____ ~~~1 

DO-D1S[ • 

240182-22 

Idle states are shown here for diagram variety only. Write cycles are not always followed by an idle state. An active bus 
cycle can immediately follow the write cycle. 

Figure 4.7. Various Non-Pipelined Bus Cycles (Various Number of Wait States) 

Figure 4.7 illustrates non-pipe lined bus cycles with 
one wait state added to Cycles 2 and 3. READY # is 
sampled inactive at the end of the first T2 in Cycles 
2 and 3. Therefore Cycles 2 and 3 have T2 repeated 
again. At the end of the second T2, READY # is 
sampled active. 

When address pipeliningis not used, the address 
and bus cycle definition remain valid during all wait 
states. When wait states .are added and it is desir­
able to maintain non-pipelined timing, it is necessary 
to negate NA # during· each T2 state except the 

last one, as shown in Figure 4.7, Cycles 2 and 3. If 
NA#issampled active during a T2 other than the 
last one, the next state would be T210r T2P instead 
of another T2. 

When address pipelining is not used, the bus states 
and transitipns are completely illustrated by Figure 
4.8. The bus transitions between four possible 
states, T1, T2, Ti, and T h. Bus cycles consist of T1 
and T2, with T2 being repeated for wait states. Oth­
erwise the bus may be idle, Ti, or in the hold ac­
knowledge state T h. 

4-747 

,.. 
I 



80376 

HOLD AS,SERTED 

ALWAYS 

REQUEST PENDING. 
HOLD NEGATED READY# ASSERTED. 

HOLO NEGATED. 
REQUEST PENDING 

READY# NEGATED. 
NA#!'lEGATED 

240182-23 

Bus States: 
Tl-first clock of a non-pipelined bus cycle (80376 drives new address and asserts ADS#). 
T2-subsequent clocks of a bus cycle when NA# has not been sampled asserted in the current bus cycle. 
Ti-idle state. 
Th-hold acknowledge state (80376 asserts HLDA). 
The fastest bus cycle consists of two states:T1 and T2. 
Four basic bus states describe bus operation when not using pipelined address. 

Figure 4.8. 80376 Bus States (Not Using Pipelined Address) 

Bus cycles always begin with T1. T1 always leads to 
T2. If a bus cycle is not acknowledged during T2 and 
NA# is inactive, T2 is repeated. When a cycle is 
acknowledged during T2, the following state will be 
T1 of the next bus cycie if a bus request is pending 

. internally, or Tiif there is no bus request pending, or 
Thif the HOLD input is. being asserted. 

Use of pipelining allows the 80376 to enter three 
additional bus states not shown in Figure 4.8. Figure 
4.12 on page 49 is the complete bus state. diagram, 
including pipe lined cycles. 

Pipellned Bus Cycles 

Pipelining is the option of requesting the address 
and the bus cycle definition of the . next inter-

nally pending bus cycle before the current bus cycle 
is acknowledged with READY# asserted. ADS# is 
asserted by the 80376 when the next address is is­
sued. The pipelining option is controlled on a cycle­
by-cycle basis with the NA # input signal. 

Once a bus cycle is in progress and the current ad­
dress has been valid for at least one entire bus 
state, the NA # input is sampled at the end of every 
phase one until the bus cycle is acknowledged. Dur­
ing non-pipelined bus cycles NA # is sampled at the 
end of phase one in every T2. An example is Cycle 2 
in Figure 4.9, during which NA# is sampled at the 
end of phase one of every T2 (it was asserted once 
during the first T2 and has no further effect during 
that bus cycle). 

4-748 



80376 

IDLE CYCLE 1 
NON-PIPELINED 

CYCLE 2 
NON-PIPELINED 

CYCLE 3 
PIPELINED 

CYCLE 4 
PIPELINED 

IDLE 

CLK2 [ 

PROCESSOR CLK [ 

. BHE I,BLE I, [ 
Al-A23, 

MilO." Dlc I 

W/RI [ 

ADSI [ 

n 

(WRITE) 

T1 T2 Tl 

(READ) (WRITE) (READ) 

T2 T2P T1P T2P T1P T21 11 

NAI [ "~~~~pa~QQ~.&£.~~l..@.~ot:::J.~e.q~~~ 
R~ADY I [ ~~lJJ.~lJJ.~~~~~~(Y 

LOCKI [ .J:iI.~~f\.""':=:":"-JI--+-----r '"-~--r "'---of 
00-015 [ 

240182-24 

Following any idle bus ~t!!te '(Ti), bus cycles are non-pipelined. Within non-pipelined bus cycles, NA# is OQly sampled 
during wait states. Therefore, to begin pipelining during a group. of non-pipelined bus cycles requires a non-pipelined 
cycle with at least one wait state (Cylcle 2 above). 

Figure 4.9. Transitionlng ~o Pipelining during 'Burst of Bus Cycles 

If NA# is sampled active, the 80376 is free to drive 
the address and bus cycle definition of the next bus 
cycle, and assert ADS #, as' soon as it has a bus 
request internally pendjng. It may drive the next ad­
dress as early as the next bus state, whether the 
current bus cycle is acknowledged at that time or 
not. 

Regarding the details of pipelining, the 80376 has 
the following characteristics: 

1. The next address and status may appear as early 
as the bus state after NA# was sampled active 
(see Figures 4.9.or 4.10). In that case, state T2P 
is entered immediately. However, when there is 
not an internal bus request already pending, the 
next address and status will not be available im­
mediately after NA# is asserted and T21 is en­
tered instead of T2P (see Figure 4.11 Cycle 3). 
Provided the current bus cycle isn't yet acknow-

ledged by READY # asserted, T2P will be entered 
as soon as the 80376 does drive the next address 
and status. External hardware should therefore 
observe the ADS # output as confirmation the 
next address and status are actually being driven 
on the bus. 

2. Any address and status which are validated by a 
pulse on the 80376 ADS# output will remain sta­
ble on the address pins for at least two processor 
clock periods. The 80376 cannot produce a new 
address and status more frequently than every 
two processor clock periods (see Figures 4.9, 
4.10 and.4.11). . 

3. Only the. address and bus cycle definition of the 
very· next bus cycle is available. The pipelining ca­
pability cannot look further than one bus cycle 
ahead (see Figure 4.11, Cycle 1). 

4-749 . 



80376 

IDLE CYCLE 1 
NON-PIPELINED 

(WRITE) 

CYCLE 2 
PIPELINED 

(READ) 

CYCLE 3 
PIPELINED 

(WRITE) 

CYCLE 4 
PIPELINED 

(READ) 

IDLE 

n Tl T2 T2P TlP T2P TlP T2P TlP T21 T21 n 

CLK~ [ 

PROCESSOR eLK [ 

BHE#.BLE#. [ 
Al-A23. 

MilO #. D/c# ~~lQjQ..;..;,;.;::r-;-~~;';';::":'-4~...:.:..r=';;""'R-....;.:r:;";"'~~~CoQ~~~1 

W/R# [ 

ADS#[ 

READY # [ ~.¥.l~-P'-l~~tI.N 

LOCK # [ .&:Jf.~OOp..--I-=:;':-"";I'l-":':;;:;"=--l'L....;,::::..:..p.-...j...:=::';:'-~lQCQjI 
DO-D15 [ 

240182-25 

Following any idle bus state (Ti) the bus cycle is always non-pipelined and NAil' is only sampled during wait states. To 
start, address pipelining after an idle state requires a non-pipelined cycle with.at least one wait state (cycle 1 above). 
The pipellnedcycles (2, 3, 4 above) are shown with various numbers of wait states. 

Figure 4.10. Fastest Transition to Plpellned Bus Cycle Following Idle Bus State 

The complete bus state transition diagram, including 
pipelining is given by Figure 4.12. Note it is a super­
set of the diagram for nori-pipelined only, and the 
three additional bus states for pipelining' are drawn 
in bold. ' 

I 

lhe fastest bus cycle with pipelining consists of just 
two bus states, T1 P and T2P (recall for non-pipe­
lined it is T1· and T2). T1 P is the first bus state ·of a 
pipelined cycle. 

~nltiatlng and MalntalnlngPlpeilned Bus Cycles 

Using the state diagram Figure 4.12. observe the 
transitions from an idle state, Tio to the beginning of 

apipelined bus cycle T1P. Frorn an idle state, Ti; the 
first bus cycle must begin with T1, and is therefore a 
non-pipelined bus cycle. The next bus cycle will be 
pipelined. however. provided NA# is asserted and 
the first bus Cycle ends ina T2P state (the address 
and status for the next bus cycle is driven during 
T2P). The fastest path from an idle state to a pipe- . 
lined bus cycle is shown in bold below: 

.idle non-pipelined 
states cycle 

T1P-T2P, . 

pipelined 
cycle 

4-750 



intJ 

CLK2 [ 

PROCESSOR CLK [ 

BHE #.BLE N. [ 
A1-A23. 

Iot/IO#.D/C# 

W/R# [ 

ADS# [ 

READYN [ 

00-015 [ 

CYCLE 1 
PIPELINED 
(WRITE) 

80376 

CYCLE 2 
PIPELINED 

(READ) 

CYCLE 3 
PIPELINED 
(WRITE) 

T1P T2P T2P T1P T2 T2P T1P T21 T2P T1P 

ASSERTING NAN MORE 
THAN ONCE DURING 
ANY ·CYCLE HAS NO 
AODmONAL EFFECTS 

NAN COULD HAVE 
BEEN ASSERTED 

IN T1 P IF DESIRED. 
ASSERTION NOW. IS 

THE LATEST TIME 
POSSIBLE TO ALLOW 
80376 TO ENTER T2P 

STATE TO MAINTAIN 
PIPELINING IN CYCLE 3 

CYCLE 4 
PIPELINED 

(READ) 

Figure 4.11. Details of Address Plpellnlng during Cycles with Wait States 

240182-26 

T1 ~T2-T2P are the states of the bus cycle that es­
tablishes address pipelining for the next bus cycle. 
which begins with T1 P. The same is true after a bus 
hold state, shown below: 

The transition to pipelined address is shown func­
tionally by Figure 4.10. Cycle 1. Note that Cycle 1 is 
used to transition into pipelined address timing for 
the subsequent Cycles 2, 3 and 4, which are pipe­
lined. The NA# input is asserted at the appropriate 
time to select address pipelining for Cycles ?, 3 and 
4. 

T1-T2-T2P, 

hold aknowledge rion~pipelined 
states cycle . 

T1P-T2P, 

pipelined 
cycle 

4-751 

Once a bus cycle is in progress and the currentad­
dress and status has been valid for one entire bus 
state, the NA# input is sampled atthe end of every 
phase one until the bus cycle is acknowledged. 

:I·~· 
1 

1'1 
! 

j: 



80376 

H~LD ASSERTED 

REA~tDA~~L'1ig: 
REQUEST PENDING 

" ~ z 
'" Q. 

.; •• CI 
,;m " ~5 ~ 

~~~a; '" '" ~ <liS 
",'"

~ ZehwG. ~~
,~~~ .. " ~
~""'....I!) 2!~ i::l

READY, ASSERTED' ... 00
Cl!!:z:r~ '" '" HOLD NEGATED' z

NO REQUEST "
" '"

READY# NEGATED

240182-27

Bus states:
Tl-first clock of a non-pipelined bus cycle (80376 drives new address, status and asserts ADS#).
T2-subsequent clocks of a bus cycle when NA# has nolbeen sampled asserted in the current bus cycle.
T21~bsequentclocks of a bus cycle when NJ1.# has been sampled asserted in the current bus cycle but there is not
yet an internal bus request pending (8037,6 will not drive new address, status or assert ADS#). '
T2P-sub.sequent clacks of a bus cycl. when NA# has been sampled asserted in the current bus cycle and there is an
internal bus request pending (80376 drives new address, status and asserts ADS#).
Tl P-tirSiclock of Iii pipelined bus cycle.
Tl-idle state.
Th-hold acknowledge state (80376 asserts HLDA).
Asserting NA# for pipelined bus cycles gives access to three more bus states: T21, T2P and T1P.
Using pipelining the fastest bus cycle consists of TIP and T2P.

Figure 4.12. 80376 Processor Complete Bus States (Including Plpellnlng)

4·752

80376

Sampling begins in T2 during Cycle 1 in Figure 4.10.
Once NA # is sampled active during the current cy­
cle, the 80376 is free to drive a new address and bus
cycle definition on the bus as early as the next bus
state. In Figure 4.10, Cycle 1 for example, the next
address and status is driven during state T2P. Thus
Cycle 1 makes the transition to pipe lined timing,
since it begins with T1 but ends with T2P. Because
the address for Cycle 2 is available before Cycle 2
begins, Cycle 2 is called a pipelined bus cycle, and it
begins with T1 P. Cycle 2 begins as soon as
READY # asserted terminates Cycle 1.

Examples of transition bus cycles are Figure 4.10,
Cycle 1 and Figure 4.9, Cycle 2. Figure 4.10 shows
transition during the very first cycle after an idle bus
state, which is the fastest possible transition into ad­
dress pipelining. Figure 4.9, Cycle 2 shows a tran­
sition cycle occurring during a burst of bus cycles. In
any case, a transition cycle is the same whenever it
occurs: it consists at least of T1, T2 (NA # is assert­
ed atthat time), and T2P (provided the 80376 has an
internal bus request already pending, which it almost
always has). T2P states are repeated. if wait states
are added to the cycle.

Note that only three states (T1, T2 and T2P) are
required in a bus cycle performing a transition from
non-pipe lined into pipelined timing, for example Fig­
ure 4.10, Cycle 1. Figure 4.10, Cycles 2, 3 and 4
show that pipelining can be maintained with two­
state bus cycles conSisting only of T1 P and T2P.

Once a pipelined bus cycle is in progress, pipelined
timing is maintained for the next cycle by asserting
NA# and detecting that the 80376 enters T2P dur­
ing the current bus cycle. The current bus cycle must
end in state T2P for pipelining to be maintained in
the next cycle. T2P is identified by the assertion of
ADS#. Figures 4.9 and 4.10 however, each show

pipelining ending after Cycle 4 because Cycle 4
ends in T21. This indicates the 80376 didn't have an
internal bus request prior to the acknowledgement
of Cycle 4. If a cycle ends with a T2 or T21, the next
cycle will not be pipelined.

Realistically, pipelining is almost always maintained
as long as NA# is sampled asserted. This is so be­
cause in the absence of any other request, a code
prefetch request is always internally pending until
the instruction decoder and code prefetch queue are
completely full. Therefore pipelining is maintained
for long bursts of' bus cycles, if the bus is available
(I.e., HOLD inactive) and NA# is sampled active in
each of the bus cycles. .

INTERRUPT ACKNOWLEDGE (INTA) CYCLES

In repsonse to. an interrupt request on the INTR in­
put when interrupts are enabled, the 80376 performs
two interrupt acknowledge cycles. These bus cycles
are similar to read cycles in that bus definition sig­
nals define the type of bus activity taking place, and
e~ch cycle continues until acknowledged by
READY # sampled active.

The state of A2 distinguishes the first and second
interrupt acknowledge cycles. The byte address
driven during the first interrupt acknowledge cycle is
4 (A2S-As, A1, BLE# LOW, A2 and BHE# HIGH).
The byte address driven- during the second interrupt
acknowledge cycle is 0 (A23-A1, BLE# LOW and
BHE# HIGH).

The LOCK# output is asserted from the beginning
of the first interrupt acknowledge cycle until the end
of the second interrupt acknowledge cycle .. Four idle
bus states, Tj, are inserted by the 80376 between
the two interrupt acknowledge cycles for compatibil­
ity with the interrupt specification TRHRL of the
8259A Interrupt Controller and the 82370 Integrated
Peripheral.

4-753

80376

ClK2[

PROCESSOR ClK [

BHE~[
BlE#. AI. A3-A23[

W/IO#. D/CI/. W/RI/

lOCKI[

, READY,[

PREYIOUSj
CYCLE

INTERRUPT
ACKNOWLEDGE

CYCLE 1

T2 T1 T2 T2 TI

-rut rt1l n.n. rut rut
-V V V-V V

xx xx

/"
.x l.x.x X x

.x l.x.x X x

.x1.x.xX.x1A

~I

x x x,X x xx

x IXXJI,.x IXXT ~\ .<x
IGNORED . ---- ----- ----- ---@--
IGNORED

. ---- ___ e. ----- --cp--

IDLE'
'(4 BUS STATES)

TITI TI

rut rt1l n.n.
V V V-

x xx xx,x

xx x XX

xx x xx

x x xx x

xx xx xx

----- ----- -----

I
INTERRUPT

ACKNOWl,~OGE
CYCLE 2

I 'IDLE '

T1 12 T21 TI

rut rut rut rut
V V V V

xx xx

r
xx xX

V
xx xx

V
~

'---,
xx xx xXX

xx XY ~' m
VECTOR

----- ----~ --0---
IGNORED

-- --- - - - - - - - - - - -- -- -1-'- - - -,I---<:p---
240182-28

Interrupt Vector (0-255) is read on 00-07 at end of second Interrupt Acknowledge bus cycle.
Because each Interrupt Acknowledge bus cycle Is followed by Idle bus states. asserting NAil' has no practical effect.
Choose the approach which is simplest for your system hardware design. '

Figure 4.13; Interrupt Acknowledge Cycle.

During both interrupt acknowledge cycles, 015..;.00
float. No data is read at the end of the 'first interrupt
acknowledge cycle. At the end of'the second inter­
rupt acknowledge cycle, the 80376 wi" read an ex·
ternalinterrupt vector from 07-DO of the data bus.
The vector indicates the specific interrupt number
(from 0-255) requiring service.

HALT INDICATION CYCLE

The 80376 execution unit halts as a result, of execUt­
ing a HL T instruction. Signaling its entrance into the'
halt state, a halt indication cycle is performed. The
halt indication cycle is identified by the state of the
bus definition signals shown on page 34, Bu. Cycle
Definition Signal., and a byte address of 2. The
halt indication cycle must be acknowledged by
READY"" asserted. A halted 80376 resumes execu­
tion when INTR (if interrupts are enabled), NMI or
RESET is asserted.

4·754

80376

I CYCLE 1 I
NON-PIPELINED

(WRITE)

T1 T2

CYCLE 2 I IDLE
NON-PIPELINED

(HALT)

T1 T2 TI TI TI n

CLK2[

PROCESSOR CLK [

BHE#. Al,[
M/IO#. W/R#

",""r'":":':±-:--t7---t--~~m*,mmr-80376 REMAINS HALTED
UNTIL INTR. NMI OR

~~~~~+- RESET IS ASSERTED. 

A2-A23[ 
BLE#.D/C# 

I I 
~~"';';';';';''';''-~--t---I'~~~~~1-80376 RESPONDS TO 

ADS#[ 

NA#[ 

READY#[ 

LOCK#[ -P;Jr"..-+--o( 

__ +-__ 1-_+ HOLD INPUT WHILE IN 
r THE HALT STATE. 

00-015[ ~-~+..;.......-+-..u.--t--;""-+....I - (FLOATING) - - --

I I 
240182-29 

Figure 4.14. Example Halt Indication Cycle from Non-Pipelined Cycle 

SHUTDOWN INDICATION CYCLE 

The 80376 shuts down as a result of a protection 
fault while attempting to process a double fault. Sig­
naling its entrance into the shutdown state. a shut­
down indication cycle is performed. The shutdown 
indication cycle is identified by the state. of the bus 
definition signals shown on page 34 Bus Cycle Def­
inition Signals and a byte address of O. The shut­
down indication cycle must be acknowledged by 
READY # asserted. A shutdown 80376 resumes ex­
ecution when NMI or RESET is asserted. 

ENTERING AND EXITING HOLD 
ACKNOWLEDGE 

The bus hold acknowledge state. T h. is entered in 
response to the HOLD input being asserted. In the 
bus hold acknowledge state. the 80376 floats all 
outputs or bidirectional signals. except for HLDA. 
HLDA is asserted as long as the 80376 remains in 
the bus hold acknowledge state. In the bus hold ac­
knowledge state. all inputs except HOLD and RE­
SET are ignored. 

4-755 



inter 

ClK2[ 

PROCESSOR ClK [ 

BHE#[ 
M/IO#. W/R# 

BlE#. Al-A23.[ 
D/C# 

ADS#[ 

CYCLE 1 
PIPELINED 

(READ) 

80376 

PIPELINED 
(SHUTDOWN) 

T1P 

I 
CYCLE 2 I IDLE 

T2P . T1 P T21 TI TI TI TI 

"",~~~""'-;----1~'I'\I'\7It'l'\l'~~~" 80376 PROCESSOR REMAINS 
v~Qt,lpQt,~~~~ SHUTDOWN UNTil NMI OR 
• RESET IS ASSERTED. 

I I 4..:.:;;,::.::..4:l ..... --I----il~~~~Qt,lpQt,~ 80376 RESPONDS TO 
HOLD INPUT WHilE IN 

--+---1---1----1- THE SHUTDOWN STATE. 

NA#.[ .~I...-~~~"--~~~~~~~~~~~ 
READY#[ 

240182-30 

Figure 4.15. Example Shutdown Indication Cycle from Non-Plpellned Cycle 

T h may be entered from a bus idle state as in Figure 
4.16 or after the acknowledgement of the current 
physical bus cyple if the LOCK # Signal is not assert­
ed, as iriFigures 4.17 and 4.18. 

This exited in response to the HOLD· input being 
negated. The following state will be Tj as in Figure 
4.16 if no bus request is pending. The following bus 

state will be T1 if a bus request is internally pending. 
as in Figures 4.17 and 4.18. This exited in response 
to RESET being asserted. 

If arising edge occurs on the edge-triggered NMI 
input while in T h. the event is remembered as a non­
maskable interrupt 2 and is servicedwhen This exit­
ed unless the 80376 is reset before Til is exited. 

4-756 



inter 80376 

IDLE r- HOLD ~ IDLE 
ACKNOWLEDGE 

TI Th Th Th TI 

CLK2[ 

PROCESSOR CLK [ 

HOLD[ 

HLDA[ 

BHE#, BLE#[ 
Al-A23, M/IO# (FLOATING) -.--

D/C#, W/R# I 
ADS#[ (FLOATING) _ ••• 

LOCK#[ .QjI!~~~ ---- (FLOATliG)---- 1"'-_.,)1 

00- 015 [ ___________ ~F"!_~A.!'!'~----

240182-31 

NOTE: 
For maximum design flexibility the 80376 has no internal pull-up resistors on its outputs. Your design may require an 
external pullup on ADS # and other 80376 outputs to keep them negated during float periods. 

Figure 4.16. Requesting Hold from Idle Sus 

RESET DURING HOLD ACKNOWLEDGE 

RESET being asserted takes priority over HOLD be­
ing asserted. If RESET is asserted while HOLD re­
mains asserted, the 80376 drives its pins to defined 
states during reset, as in Table 4.5, Pin State Dur­
Ing Reset, and performs internal reset activity as 
usual. 

If HOLD remains asserted when RESET is inactive, 
the 80376 enters the hold acknowledge state before 
performing its first bus cycle, provided HOLD is still 
asserted when the 80376 processor would other-

wise perform its first bus cycle. If HOLD remains as­
serted when RESET is inactive, the BUSY # input is 
still sampled as usual to determine whether a self 
test is being requested. 

BUS ACTIVITY DURING AND FOLLOWING 
RESET 

RESET is the highest priority input signal, capable of 
interrupting any processor activity when it is assert­
ed. A bus cycle in progress can be aborted at any 
stage, or idle states or bus hold acknowledge states 
discontinued so that the reset state is established. 

4-757 



inter 80376 

NOTE: 

ClK2[ 

PROCESSORClK [ 

HOLD [ 

HlDA [ 

SHE #, SlE #,A l-A23, [ 
1.4/10#, D/C#, W/R# 

ADS# [ 

NA# [ 

T1 

CYCLE 1 
NON-PIPELINED 

(READ) 

T2 T2 

HOLD CYCLE 2 
ACKNOWLEDGE NON-PIPELINED 

(WRITE) 

Th Th T1 T2 

NO LATER THAN READY# ASSERTED 

240182-32 

HOLD is a synchronous input and can be asserted at any CLK2 edge, provided setup and hold (t23 and t24) require­
ments are met. This waveform is useful for determining Hold Acknowledge latency. 

Figure 4.17. Requesting Hold from Active Bus (NA# Inactive) 

RESET should remain asserted for at least 15 CLK2 
periods to ensure it is recognized throughout the 
80376, and at least 80 CLK2 periods if a 80376 self­
test is going to be requested at the falling edge. RE­
SET asserted pulses less than 15 CLK2 periods may 
not be recognized. RESET pulses less than 80 OLK2 

periods followed by a self-test may cause the self­
test to report a failure when no true failure exists. 

Provided the RESET falling edge meets setup and 
hold times t25 and t26, the internal processor clock 
phase is defined at that time as illustrated by Figure 
4.19 and Figure 6.7. 

4-758 



intJ 80376 

CLK2[ 

PROCESSOR CLK[ 

HOLD [ 

HLDA[ 

BHE #. BLE #. A 1- A23. [ 
1.4/10#. D/C#. W /R# 

ADS#[ 

TIP 

CYCLE 1 
PIPELINED 

(WRITE) 

T21 

HOLD CYCLE 2 
ACKNOWLEDGE NON-PIPELINED 

(READ) 

T21 Th Th Tl T2 

NA# [ ~""'~~~~~~.QjQ~.QjQ~.QjQQ/::.~ 

240182-33 

NOTE: 
HOLD is a synchronous' input and can be asserted at any CLK2 edge. provided setup and hold (123 and 124) require­
ments are met. This waveform is useful for determining Hold Acknowledge latency. 

Figure 4.18. Requesting Hold from Idle Bus (NA# Active) 

An 80376 self-test may be requested at the time RE­
SET goes inactive by having the BUSY # input at a 
LOW level as shown in Figure 4.19. The self-test 
requires (220 + approximately 60) CLK2 periods to 
complete. The self-test duration is not affected by 
the test results. Even if the self-test indicates a 

problem. the 80376 attempts to proceed with the 
reset sequence afterwards. 

After the RESET falling edge (and after the self-test 
if it was requested) the 80376 performs an internal 
initialization sequence for approximately 350 to 450 
CLK2 periods. 

4-759 

"', 
1\: 

i 

I 



intJ 80376 

INTERNAL 
1-----RESET---"4"----INITIALIZATION-----.., 
~ 15 CLK2 DURA nON IF 
NOT GOING TO REOUEST 
SELF-TEST. 

CYCLE 1 

CLK2[ 

RESET [ 

CLK {INTERNAL) [ 

PROCESSOR CLK [ 

ERROR# [ 

BHE#. BLE#. 
W/R#.M/IO#. [ 

HLDA 

Al-A23. [ 
D/C#.LOCK# 

ADS#[ 

NA#[ 

READY# [ 

~~~T---l 
DURING RESET

DURING RESET

DURING RESET

NON-PIPELINED
(READ)

T1 T2

- (fLOATING) ~ ~ - - - = = = - - = - - - --

240182-34

NOTES: '
1. BUSY # should be held stable for 8 CLK2 periods before and after the CLK2 period in which RESET falling edge
occurs.
2. If self·test is requested. the 80376 outputs remain in their reset state as shown here.

Figure 4.19. Bus Activity from Reset until First Code Fetch

4.5 Self-Test Signature

Upon completion of self-test (if self-test was re­
quested by driving BUSY # LOW at the falling edge
of RESET) the EAX register will contain a signature
of OOOOOOOOH indicating the 80376 passed its self­
test of microcode and major PLA contents with no
problems detected. The passing Signature in EAX,
OOOOOOOOH, applies to all 80376 revision levels. Any
non-zero signature indicates the 80376 unit is faulty.

4.6 Component and Revision
Identifiers

To assist 80376 users; the 80376 after reset holds a
component identifier and revision identifier in its OX
register. The upper 8 bits of OX hold 33H as identifi­
cation of the 80376 component. (The lower nibble,
03H, refers to the Intel386™ architecture. The up­
per nibble, 30H, refers to the third member of the
Intel386 family). The lower 8 bits of OX hold an
8-bit unsigned binary number related to the

4-760

inter 80376

component revision level. The revision identifier will,
in general, chronologically track those component
steppings which are intended to have certain im­
provements or distinction from previous steppings.
The 80376 revision identifier will track that of the
80386 where possible.

The revision identifier is intended to assist 80376
users to a practical extent. However, the revision
identifier value is not guaranteed to change with ev­
ery stepping revision, or to follow a completely uni­
form numerical sequence, depending on the type or
intention of revision, or manufacturing materials re­
quired to be changed. Intel has sole discretion over
these characteristics of the component.

Table 4.7. Component and
Revision Identifier History

80376 Stepping Name Revision Identifier

AO 05H

4.7 Coprocessor Interfacing

The 80376 provides an automatic interface for the
Intel 80387SX numeric floating-point coprocessor.
The 80387SX coprocessor uses an 110 mapped in­
terface driven automatically by the 80376 and as­
sisted by three dedicated signals: BUSY # , ER­
ROR # and PEREQ.

As the 80376 begins supporting a coprocessor in­
struction, it tests the BUSY # and ERROR # signals
to determine if the coprocessor can accept its next
instruction. Thus, the BUSY # and ERROR # inputs
eliminate the need for any "preamble" bus cycles
for communication between processor and coproc­
essor. The 80387SX can be given its command op­
code immediately. The dedicated signals provide in­
struction synchronization, and eliminate the need of
using the 80376 WAIT opcode (9BH) for 80387SX
instruction synchronization (the WAIT opcode was
required when the 8086 or 8088 was used with the
8087 coprocessor).

Custom coprocessors can be included in 80376
based systems by memory-mapped or liD-mapped
interfaces. Such coprocessor interfaces allow a
completely custom protocol, and are not limited to a
set of coprocessor protocol "primitives". Instead,
memory-mapped or liD-mapped interfaces may use
all applicable 80376 instructions for high-speed co­
processor communication. The BUSY # and

4-761

ERROR # inputs of the 80376 may also be used for
the custom coprocessor interface, if such hardware
assist is desired. These signals can be tested by the
80376 WAIT opcode (9BH). The WAIT instruction
will wait until the BUSY # input is inactive (interrupta­
ble by an NMI or enabled INTR input), but generates
an exception 16 fault if the ERROR # pin is active
when the BUSY # goes (or is) inactive. If the custom
coprocessor interface is memory·mapped, protec­
tion of the addresses used for the interface can be
provided with the segmentation mechanism of the
80376. If the custom interface is liD-mapped, pro­
tection of the interface can be provided with the
80376 10PL (110 Privilege Level) mechanism.

The 80387SX numeric coprocessor interface is 110
mapped as shown in Table 4.8. Note that the
80387SX coprocessor interface addresses are be­
yond the OH-OFFFFH range for programmed 110.
When the 80376 supports the 80387SX coproces­
sor, the 80376 automatically generates bus cycles to
the coprocessor interface addresses.

Table 4.8 Numeric Coprocessor Port Addresses

Address in 80376 80387SX
1/0 Space Coprocessor Register

8000F8H Opcode Register
8000FCH Operand Register
8000FEH Operand Register

SOFTWARE TESTING FOR COPROCESSOR
PRESENCE

When software is used to test coprocessor
(80387SX) presence, it should use only the following
coprocessor opcodes: FNINIT, FNSTCW and
FNSTSW. To use other coprocessor opcodes when
a coprocessor is known to be not present, first set
EM = 1 in the 80376 CRO register.

5.0 PACKAGE THERMAL
SPECIFICATIONS

The Intel 80376 embedded processor is specified
for operation when case temperature is within the
range of 0·C-115·C for the ceramic 88-pin PGA
package, and 0·C-110·C for the 100-pin plastic
package. The case temperature may be measured
in any environment, to determine whether the 80376
is within specified operating range. The case tem­
perature should be measured at the center of the
top surface.

I,;

I:
I""
'"

inter 80376

The ambient temperature is guaranteed as ICing as
T c is nQt viQlated. The ambient temperature'can be
calculated frQm the Die and Dia frQm the fQIIQwing
equatiQns:

Values fQr Dia and Die are given in Table 5.1 fQr the
100-lead fine pitch. Dia is given at variQus airflQws.
Table 5.2 shQWS the maximum T a allQwable (withQut
exceeding T c) at variQus airflQws. NQte that T a can
be imprQved further by attaching "fins" Qr a "heat
sink" to. the package. P is calculated uSing the maxi­
mum hot Icc.

Table 5_1. 80376 Package Thermal
Characteristics Thermal Resistances

eC/Watt) Dje and DJa

Dja Versus Airflow-ft/min (m/sec)

Package Die 0 200 400 600 800 1000
(0) (1.01) (2.03) (3.04) (4.06) (5.07)

100-Lead 7 33 27 24 21 18 17
Fine Pitch

88-Pin 2 25 20 17 14 12 11
PGA

Assuming Icc hQt Qf 360 mA, Vee Qf 5.0V, and a
T CASE Qf 110°C fQr plastic and 115°C fQr the 88-Pin
PGA Package: .

Table 5.2. 80376
Maximum Allowable Ambient

Temperature at Various Airflows

T AeC) vs Airflow-ft/mln (m/sec)

Package 8Je 0 200 400 600 800 1000
(0) (1.01) (2.03) (3.04) (4.06) (5.07)

100-Lead 7 63 74 79 85 91 92
Fine Pitch

88-Pin 2 74 83 88 93 97 99
PGA

6.0 ELECTRICAL SPECIFICATIONS

The fQIIQwing sectiQns describe recQmmended elec­
trical cQnnectiQns fQr the 80376, and its electrical
specificatiQns.

6.1 Power and Grounding

The 80376 is implemented in CHMOS III technQIQgy
and has mQdest PQwer requirements. HQwever, its
high clQck frequency and 47 Qutput buffers (address,
data, cQntrQI, and HLDA) can cause PQwer surges
as multiple Qutput buffers drive new signal levels
simultaneQusly. FQr clean Qn-chip PQwer distributiQn
at high frequency, 14 Vee and 18 V ss pins separate­
ly feed functional units of the 80376.

Power and ground cQnnections must be made to. all
external Vce and GND pins of the 80376. On the
circuit board, all Vee pins shQuld be connected Qn a
Vee plane and all Vss pins shQuld be cQnnected on
a GND plane.

POWER DECOUPLING RECOMMENDATIONS

Liberal decoupling capacitors ,shQuld be placed near
the 80376. The 80376 driving its 24-bit address bus
and 16-bit data bus at high frequencies can cause
transient PQwer surges, particularly when driving
large capacitive loads. LQW inductance capacitQrs
and interconnects are recommended for best high
frequency electrical performance. Inductance can
be reduced by shQrtening circuit board traces be­
tween the 80376 and decoupling capacitQrs as
much as PQssible.

RESISTOR RECOMMENDATIONS

The ERROR # and BUSY # inputs have internal pull­
up resistors Qf approximately 20 KOand,the PEREQ
input has an internal pull-dQwn resistQr of approxi­
mately 20 KO built into the 80376 to keep these
signals inactive when the 80387SX is not present in
the system (or tempQrarily remQved frQm its sQcket).

4-762

intJ 80376

In typical designs, the external pull-up resistors
shown in Table 6.1 are recommended. However, a
particular design may have reason to adjust the re­
sistor values recommended here, or alter the use of
pull-up resistors in other ways.

Pin Signal

16 ADS#

Table 6.1. Recommended
Resistor Pull-Ups to Vee

Pull-Up Value Purpose

20Kn ± 10% Lightly Pull ADS#
Inactive during 80376
Hold Acknowledge
States

26 LOCK# 20 Kn ± 10% Lightly Pull LOCK #
Inactive during 80376
Hold Acknowledge
States

OTHER CONNECTION RECOMMENDATIONS

For reliable operation, always connect unused in­
puts to an appropriate signal level. N/C pins should
always remain unconnected. Connection of N/C
pins to Vee or Vss will result In Incompatibility
with future stepplngs of the 80376.

Particularly when not using interrupts or bus hold (as
when first prototyping), prevent any chance of spuri­
ous activity by connecting these associated inputs to
GND:

-INTR
-NMI
-HOLD

If not using address pipelining connect the NA # pin
to a pull-up resistor in the range of 20 Kn to Vee.

6.2 Absolute Maximum Ratings
Table 6.2. Maximum Ratings

Parameter Maximum Rating

Storage Temperature - 65·C to + 150·C

Case Temperature -65·Cto + 120·C
under Bias

Supply Voltage with -0.5Vto +6.5V
Respect to Vss

Voltage on Other Pins -0.5V to (Vee + 0.5)V

Table 6.2 gives a stress ratings only, and functional
operation at the maximums is not guaranteed. Func­
tional operating conditions are given in Section 6.3,
D.C. Specifications, and Section 6.4, A.C. Specifi­
cations.

Extended exposure to the Maximum Ratings may af­
fect device reliability. Furthermore, although the
80376 contains protective circuitry to resist damage
from static electric discharge, always take precau­
tions to avoid high static voltages or electric fields.

4-763

inter 80376

6.3 D.C. Specifications

ADVANCE INFORMATION SUBJECT TO CHANGE
Table 6.3: 80376 D.C. Characteristics

Functional Operating Range: Vcc = 5V ± 10%; TCASE = O°C to 115°C 88-pin PGA, TCASE = O°C to 110°C
100-pin plastic

Symbol Parameter Min Max Unit

Vll Input LOW Voltage -0.3 +0.8 V(1)

Input HIGH Voltage 2.0 VcctO.3 vM,i;

VllC

VIHC

IOl = 4 rnA:

IOl = 5 rnA:

IOH = -1 rnA:

IOH = -0.2 rnA:

CLK2 Input LOW Voltage

CLK2 Input HIGH Voltage

Output LOW Voltage

BHE#, BLE#, W/R#,
D/C#, M/IO#, LOCK#,
ADS#,HLDA

Output High Voltage

IOH = -0.9 rnA: BHE#, BLE#, W
D/C#, M/IO#

IOH = -0.18 rnA:

III

*
IIH

III

ICC

CIN

COUT

CClK

NOTES:

ADS#, HLD

Input Leakage Current
(Busy# and ERROR# Pins)

Output Leakage Current

Supply Current
at HOT

Input Capacitance

Output or 1/0 Capacitance

CLK2 Capacitance

1. Tested at the minimum operating frequency of the part.
2. PEREQinput has an internal pull-down resistor.

-0.3

VCC - 0,8

3. BUSY # and ERROR # inputs each have an internal pull-up resistor.
4. Icc max measurement at worse case frequency, Vcc and temperature (O·C).
S. Not 100% tested.

±15

200

-400

±15

400
360

10

12

20

6. Icc HOT max measurement at worse case frequency, Vcc and max temperature.

4-764

V(1)

V(1)

/LA,OV s YiN S Vcd1)

p.A; VIH = 2.4V(1, 2)

p.A, Vll = 0.45V(3)

p.A,0.45V s VOUT S VCC<1)

mA(4)
mA(6)

pF, Fc = 1 MHz(S)

pF, Fc = 1 MHz(S)

pF, Fc = 1 MHz(S)

inter 80378

The A.C. specifications given in Table 6.4 consist of
output delays, input setup requirements and input
hold requirements. All A.C. specifications are rela­
tive to the CLK2 rising edge crossing the 2.0V level.

A.C. specification measurement is defined by Figure
6.1. Inputs must be driven to the voltage levels indi­
cated by Figure 6.1 when A.C. specifications are
measured. 80376 output delays are specified with
minimum and maximum limits measured as shown.
The minimum 80376 delay times are hold times pro­
vided to external circuitry. 80376 input setup and
hold times are specified as minimums, defining the

01

CLK2[

OUTPUTS
NOTE 2 MIN

®
MAX

smallest acceptable sampling window. Within . the
sampling window, a synchronous input signal must
be stable for correct 80376 processor operation.

Outputs NA#, W/R#, O/C#, M/IO#, LOCK#,
BHE#, BLE#, A23-A1 and HLOA only change at
the beginning of phase one. 015-00 (write cycles)
only change at the beginning of phase two. The
REAOY#, HOLD, BUSY#, ERROR#, PEREQ and
015-00 (read cycles) inputs are sampled at the be­
ginning of phase one. The NA#, INTR and NMI in­
puts are sampled at the beginning of phase two.

1112

(A l-A23.BHE#.BLE#. [
ADS#.M/IO#.D/C#.

W/R#.LOCK#.HLDA) ----..... ;.;;...:.....;.. :.....;.. ~---r--

OUTPUTS [
(00-015)

INPUTS [
(NA#.INTR.NMI)

INPUTS
(READY#.HOLD. [
ERROR#.BUSY#.
PEREO.DO-DI5)

LEGEND:
A-Maximum Output Delay Spec.
B-Minimum Output Delay Spec.
C-Minimum Input Setup Spec.
D-Minimum Input Hold Spec.

~----~Ar-----~

© NOTE 1
3.0V ~..,..,bor--....;.--~t+~:-

1.5V ~~L~~ 1.5V
OV~~~-----""'~~~

© NOTE 1 ®
3.0V ,..,..,..,~-----~~~

1.5V VALID
INPUT 1.5V

OV--~~---------~~~

240t82-35

Figure 6.1. Drive Levels and Measurement Points for A.C. Specifications

4-765

I"~

h'

inter 80376 £(Q)W£OO©~ OOOIP@OO!Ml£'U'O@OO

6.4 A.C. Specifications

ADVANCE INFORMATION SUBJECT TO CHANGE
Table 6.4. 80376 A.C. Characteristics at 16 MHz

Functional Operating Range: Vee = 5V ±10%; TeASE = OOG to 115°G for 88-pin PGA, OOG to 1100G for
100-pin plastic

Symbol Parameter .Mln Max Unit Figure Notes

Operating Frequency 4 16 MHz Half GLK2 Freq

tl GLK2 Period 31 125 ns

t2a GLK2 HIGH Time 9 ns

t2b CLK2 HIGH Time 5 - 0.8)V(3)

t3a GLK2 LOW Time 9)

t3b CLK2 LOW Time 7

t4 CLK2 Fall Time

t5 CLK2 Rise Time

Is A23-Al Valid Delay

t7 A23-Al Float Delay

ta BHE#, BLE#, LOCK# CL = 75 pF(4)
Valid Delay

t9 BHE#, BLE#, LOGK# (1)

Float Delay

tlO W/R#, MIIO#, DI 6.5 CL = 75pF(4)
ADS# Valid Del

tll W/R#, Mil ns 6.6 (1)

ADS#

t12 40 ns 6.5 CL = 120 pF(4)

t13 4 35 ns 6.6 (1)

t14 6 33 ns 6.6 GL = 75 pF(4)

t15 5 ns 6.4

t16 NA # Hold Time 21 ns 6.6

t19 READY # Setup Time 19 ns 6.4

120 READY # Hold Time 4 ns 6.4

t21 Setup Time D15-DO Read Data 9 ns' 6.4

t22 Hold Time DIs-Do Read Data 6 ns 6.4

123 HOLD Setup Time 26 ns 6.4

t24 HOLD Hold Time 5 ns 6.4

t25 RESET Setup Time 13 ns 6.7

t26 RESET Hold Time 4 ns 6.7

NOTE:
The 80376 does not have t17 or t18 timing specifications.

4-766

inter 80376

Table 6.4. 80376 A.C. Characteristics at 16 MHz
Functional Operating Range: Vcc = SV ±10%; TCASE O°C to 115°C for aO-pin PGA, O°C to 110°C for
100-pin plastic (Continued)

Symbol Parameter Min Figure Notes

t27 NMI, INTR Setup Time 16 ns 6.4 (2)

t28 NMI, INTR Hold Time ns 6.4 (2)

t29 PEREa,ERROR#,BUSY# ns 6.4 (2)
Setup Time

t30 PEREa, ERROR#, BUSY# ns 6.4 (2)

Hold Time

NOTES:
1. Float condition occurs when maximu ecomes less than ILO in magnitude. Float delay is not 100%
tested.
2. These inputs are allowed to be async 0 CLK2. The setup and hold specifications are given for testing purposes,
to assure recognition within a specific C d.
3. These are not tested. They are guara by design characterization.
4. Tested with CL set to 50 pF and derated to support the indicated distributed capacitive load. See Figure 6.8 for the
capacitive derating curve.

A.C. TEST LOADS A.C~ TIMING WAVEFORMS

80376
OUTPUT~

Jel= 50pF

240182-36

Figure 6.2. A.C. Test Loads

Tx

CLK2 E
Tx

REAOY# [:w.:w.;loD. __ -+ ___ ~~~

HOLD [
.~~U-__ -+ ____ ~~

00-015 [
(INPUT) ~~.IIUo __ -+ __A~1o.},

BUSY#, [
ERROR# PEREQ ~:w..IIUo __ -+ __ ...a:~1o.},

NM [

INTR, [
NIo.1I

240182-37.

Figure 6.3. CLK2 Waveform

Tx

240182-38

Figure 6.4. A.C. Timing Waveforms-Input Setup and Hold Timing

4-767

ClK2 [

BHE H. BlE H. [
LOCKH

W/RH. M/IOH. [
D/CH.ADSH

Al-A23 [

00-015 [
(OUTPUT)

HLDA [

80376

Tx

240182-39

Figure 6.5. A.C. Timing Waveforms-Output Valid Delay Timing

CLK2 [

BHE H. BLE H. [
LOCKH

W/RH. M/IOH. [.
D/CH.ADSH

Al-A23 [

00-015 [

HLDA [

Th TI OR T1

--I-~---HM:;IGH~~ ~ 1MI~ ___ 'JMAX

@ALSO APPLIES TO DATA FLOAT WHEN WRITE
CYCLE IS FOLLOWED BY READ OR IDLE

240182-40

Figure 6.6. A.C. Timing Waveforms-Output Float Delay and HLDA Valid Delay Timing

4·768

inter 80376

-RESET-I----

CLK2 [

RESET [

240182-41
The second internal processor phase following RESET high-to-Iow transition (provided t25 and t26 are met) is 4>2.

Figure .6.7. A.C. Timing Waveforms-RESET Setup and Hold Timing, and Internal Phase

Typical Capacitive Derating
25

! 20

~ 15
o

~ 10

5
§ 5

--Low to High
X-High to Low

o

~

~ ~ ;......-0 ~

~

25 50 75 100 125 150

CAPACITIVE LOAD (pF)

240182-42

Figure 6.8. Capacitive Derating Curve

Typical Slew Rates at TTL Levels
~p.8V to 2.0V and 2.0V to 0.8V)

20

.. 15

.5-
:;;; 10

--Low to High
X-High to Low

5 ~ ~
~~ :::-~
25 50 75 100 125 150

CAPACITANCE

240182-44

Figure 6.10. TTL Level Slew
Rates for Output Buffers

4-769

Typical Slew Rates
at CMOS Levels
30

25

20

10

/'
e-3.5V Tp or

~

A".Y
~ "<'::;.4V ~o 3.5V

25 50 75 100 125 150

CAPACITANCE

240182-43

Figure 6.9. CMOS Level Slew
Rates for Output Buffers

ICC MEASURED AT WORST CASE Vee AND TEMPERATURE
oL-_~ __ -L __ ~_~ __ ~_~

4 8 10 12 14 16

FREQUENCY (MHz)

240182~45

Figure 6.11. Typical Icc vs Frequency

80376

6.5 Designing for ICETM·~76 Emulator
(Advanced Data)

The 376 embedded processor in-circuit emulator
product is the ICE-376 emulator. Use of the emula­
tor requires the target system to provide a socket
that is compatible with the ICE-376 emulator. The
80376 offers two different probes for emulating user
systems: an 88-pin PGA p~obe and a 100-pin fine
pitch flat-pack probe. The 100-pin fine pitch flat­
pack probe requires a socket, called the 100-pin
PQFP, which is available from 3-M text-tool (part
number 2-0100-07243-000). The ICE-376 emulator
probe attaches to the target system via an adapter
which replaces the 80376 component' in the target
system. Because of the high operating frequency of
80376 systems and of the ICE-376 emulator, there is
no buffering between the 80376 emulation proces­
sor in the ICE-376 emulator probe and the target
system. A direct result of the non-buffered intercon­
nect is that the ICE-376 emulator shares the ad­
dress and data bus with the user's system, and the
RESET signal is intercepted by the ICE emulator
hardware. In order for the ICE-376 emulator to be
functional in the user's system without the Optional
Isolation Board (OIB) the designer must be aware of
the, following conditions:

1. The bus' controller must only enable data trans­
ceivers onto the data bus during valid read cycles
of the 80376, other local devices or other bus
masters.

2. Before another bus master drives the local proc­
essor address bus, the other master must gain
control of the address bus by asserting HOLD and
receiving the HLDA response.

3. The emulation processor receives the RESET sig­
nal 2 or 4 CLK2 cycles later than an 80376 would,
~nd responds to RESET later. Correct phase of
the response is guaranteed.

In addition to the above considerations, the ICE-376
emulator 'processor module has several electrical
and mechanical characteristics that should be taken
into consideration when designing the 80376 sys­
tem.

Capacitive Loading: ICE-376 adds up to 27 pF to
each 80376 signal.

Drive Requirements: ICE-376 adds one FAST TTL
load on the CLK2, control,address, and data lines.
These loads are within the processor module and
are driven by the 80376 emulation processor, which
has standard drive and loading capability listed in
Tables 6.3 and 6.4.

Power Requirements: For noise immunity and
CMOS latch-up protection the ICE-376 emulator
processor module is powered by the user system.
The circuitry on the processor module draws up to
1.4A including the maximum 80376 Icc from the
user 80376 socket.

80376 Location and Orientation: The ICE-376 em­
ulator processor module may require lateral clear­
ance. Figure 6.12 shows the clearance requirements
of the iMP adapter and Figure 6.13 shows the clear­
ance requirements of the 88-pin PGA adapter. The

1--,------- 17.5" ~-------l'1
r-~-----l

4.0" Do

00 ~----------------~

FLEXIBLE

- -==::. ~~ -=-=--FLEXIBLE

L ~------------26.75"--------------r·1

~-C=E--~========~~~S========~b~=I,t~~~' F .. e==n,
1.25"

Figure 6.12. Preliminary ICETM-376 Emulator User Cable with PQFP Adapter

4-770

240182-46

inter 80376

b
240182-50

Figure 6.13. Preliminary ICETM-376 Emulator User Cable with aa·Pln PGA Adapter

optional isolation board (018), which provides extra
electrical buffering and has the same lateral clear­
ance requirements as Figures 6.12 and 6.13, adds
an additional 0.5 inches to the vertical clearance re­
quirement. This is illustrated in Figure 6.14.

Optional Isolation Board '(OIB) and the CLK2
speed reduction: Due to the unbuffered probe de­
sign, the ICE-376 emulator is susceptible to errors

on the user's bus. The 018 allows the ICE-376 emu­
lator to function in user systems with faults (shorted
Signals, etc.). After electrical verification the 018
may be removed. When the 018 is installed, the user
system must have a maximum CLK2 frequency of 20
MHz.

1----------12.75"---------1'1
i-------i

DI-~_-~=~=~:-=-_F~-~_-~--=-x~-l-B~--=L=~--=::--:::-:.-::._ ... --=-=-~-

FLEXIBLE ----------

1----------------'----22.0"-----------------+1

1.

240182-51

Figure 6.14. Preliminary ICETM-376 Emulator User Cable with OIB and PQFP Adapter

4-771

rr
I

inter 80376

7.0 DIFFERENCES BETWEEN THE
80376 AND THE 80386

The following are the major differences between the
80376 and the 80386.

1. The 80376 generates byte selects on BHE # and
BLE# (like the 8086 and 80286 microprocessors)
to distinguish the upper and lower bytes on its
16-bit data bus. The 80386 uses four-byte selects,
BEO#-BE3#,to distinguish between the differ­
ent bytes on its 32-bit bus.

2. The 80376 has no bus sizing option. The 80386
can select between either a 32-bit bus or a 16-bit
bus by use of the BS16# input. The 80376 has a
16-bit bus size.

3. The NA # pin operation in the 80376 is identical to
that of the NA # pin on the 80386 with one excep­
tion: theNA# pin of the 80386 cannot be activat­
ed on 16-bit bus cycles (where BS16# is LOW in
the 80386 case), whereas NA# can be activated
on any 80376 bus cycle.

4, The' contents of, all, 80376 registers at reset are
identical to the contents of the, 80386 registers at
reset, except the OX register. The OX register
contains a component-stepping identifier at reset,
i.e.

in 80386, after reset OH = 3 indicates 80386
OL = revision number;

in 80376, after reset OH = 33H indicates 80376
OL = revision number.

5. The 80386 USesA31 andM/IO#as a select
for numerics coprocessor. The 80376 uses the
A23 and M/IO# to select its numerics coproc­
essor.

6. The 80386 prefetch 'unit fetches code in four­
byte units. The 80376 prefetch unit reads two

bytes as one unit (like the 80286 microproces­
sor). In BS16# mode, the 80386 takes two con­
secutive bus cycles to complete a prefetch re­
quest. If there is a data read or write request after
the prefetch starts, the 80386 will fetch all four
bytes before addressing the new request.

7. The 80376 has no paging mechanism.

8. The 80376 starts executing code in what corre­
sponds to the 80386 protected mode. The 80386
starts execution in real mode, which is then used
to enter protected mode.

9. The 80386 has a virtual-86 mode that allows the
execution of a real mode 8086 program as a task
in protected mode. The 80376 has no virtual-86
mode.

10. The 80386 maps a 48-bit logical address into a
32-bit physical address by segmentation and
paging. The 80376 maps its 48-bit logical ad­
dress into a 24-bit physical address by segmen­
tation only.

11. The 80376 uses the 80387SX numerics coproc­
essor for floating point operations, while the
80386 uses the 80387 coprocessor.

12. The 80386 can execute from 16-bit code seg­
ments. The 80376 can only execute from 32-bit
code Segments.

8.0 INSTRUCTION SET

This section describes the 3.76 embedded processor
instruction set. Table 8.1 lists all instructions along
with instruction encoding diagrams and clock
counts. Further details of the instruction encoding
are then provided in the following sections, which
completely describe the encoding structure and the
definition of all fields occurring within 80376 instruc­
tions.

8.1 80376 Instruction Encoding and
Clock Count Summary

To calculate elapsed time for an instruction, multiply
the instruction clock count, as listed in Table 8.1 be­
low, by the processor clock period (e.g. 62.5 nsfor
an 80376 operating at '16 "MHz). The actual, clock
count of an 80376 program will average 10% more

4-772

80376

than the calculated clock count due to instruction
sequences which execute faster than they can be
fetched from memory.

Instruction Clock Count Assumptions:

1. The instruction has been prefetched, decoded,
and is ready for execution.

2. Bus cycles do not require wait states.

3. There are no local bus HOLD requests delaying
processor acess to the bus.

4. No exceptions are detected during instruction ex­
ecution.

5. If an effective address is calculated, it does not
use two general register components. One regis­
ter, scaling and displacement can be used within
the clock counts showns. However, if the effec­
tive address calculation uses two general register
components, add 1 clock to the clock count
shown.

6. Memory reference instruction accesses byte or
aligned 16-bit operands.

Instruction Clock Count Notation

~ If two clock counts are given, the smaller refers to
a register operand and the larger refers to a
memory operand.

-n = number of times repeated.

-m = number of components in the next instruc-
tion executed, where the entire displacement (if
any) counts as one component, the entire im­
mediate data (if any) counts as one component,
and all other bytes of the instruction and pre­
fix(es) each count as one component.

Misaligned or 32·Blt Operand Accesses:

- If instructions accesses a misaligned 16-bitoper­
and or 32-bit operand on even address add:

2* clocks for read or write.

4" clocks for read and write.

- If instructions accesses a 32-bit operand on odd
address add:

4 * clocks for read or write.

S·· clocks for read and write.

Walt States:

Wait states add 1 clock per wait state to instruction
execution for each data access.

4-773

80376

Table 8.1. 80376 Instruction Set Clock Count summary

Instruction

GENERAL DATA TRANSFER
MOV= Move:

Register to RegisterlMemory

RegisterlMemory to Register

Immediate to RegisterlMemory

Immediate to Register (Short Form)

Memory to Accumulator (Short Form)

Accumulator to Memory (Short Form)

RegisterlMemory to Segment Register

Segment Register to Register IMemory

MOVSX = Move with Sign Extension

Register from Register/Memory

MOVZX = Move with Zero Extension

Register from Regjster/Memory

PUSH = Push:

RegisterlMemory

Register (Short Form)

Segment Register (ES, es, ss or DS)

Segment Register (FS or GS)

Immediate

PUSHA = Push All

POP = Pop

Register/Memory

Register (Short Form)

Segmeni Register (FS or GS)

POPA = Pop AI!

XCHG = Exchange

Format

1000100w , mod reg rIm'

1000101w I mod reg rIm'

1100011 w I modOOO rIm'

1011 w reg 1 immediate data

1 0 1 0 0 0 0 w full displacement

1 0 1 0 0 0 1 W full displacement

10001110 I modsreg3 rIm'

10001100 'mOdsre93

00001111 10sreg3001

01100001

Register/Memorywith Register 1000011 w I mod reg rIm'

Register with Accumulator (Short Form) 11 0 0 1 0 reg'

IN = Input from:

Fixed Port 1110010w port number

Variable Port 1110110w

OUT = Output to:

Fixed Port 1110011 w port number

Variable Port 1110111 w

LEA = Load EA to Register 10001101 I mod reg rIm ,

immediate data

4·774

Clock
Counts

212'

2/4'

7/9'

4

4

4

4

34

7/9'

6

25

25

40

3

6'

26'

7'

27'

4'

24'

S'

26'

2

Number
01 Date
Cycles

0/1~

OIl'

I'

I'

0/6'

0/1*

OIl'

011'

2/4'

2

2

2

2

16

2/4'

6

16

0/2**

o

I'

I'

I'

I'

I'

I'

I'

I'

Notes

a

a

a

a

a,b,c

a

a

a

a

a

a

a

a

a,b,c

a,b,c

a

a,m

I,k

1,1

I,k

1,1

I,k

1,1

I,k

1,1

inter 80376 ~IQ)W~OO©~ OOO[r@OOIMl~iiO@OO

Table 8.1. 80376 InstructIon Set Clock Count Summary (Continued)

Clock
Number !\' Instruction Format olData Notes Counts Cycles i.

SEGMENT CONTROL
,.

LOS = Load Pointer to OS 11000101 mod reg rim I 26' 6' a, b,c

LES = Load Pointer to ES 11000100 mod reg rim I 26' 6' a, b,c
~~ I mod reg rim I " LFS = Load Pointer to FS 00001111 10110100 6' a,b, c

LGS = Load Pointer to GS 00001111 10110101 I mod reg rim I a,b,c

LSS = Load Pointer to SS 00001111 10110010 I mod reg rim I a, b, c

FLAG CONTROL I'
I

CLC = Clear Carry I'lag 11111000

CLD = Clear Direction Flag 11111100

CLI = Clear Interrupt Enable Flag

CL TS = Clear Task Switched Flag e

CMC = Complement Carry Flag

LAHF = Load AH into Flag

POPF = Pop Flags a, g

PUSHF = Push Flags 4 a

SAHF = Store AH Into Flags

STC = Set Carry Flag

STD = Set Direction Flag 2

ARITHMETIC
ADD = Add

Register to Register 2

Register to Memory 7" 2" a

Memory to Register 6' I'

Immediate to Register IMemory 100000sw I modOOO rim I immediate data 2/7" 0/2** a

Immediate to Accumulator (Short Form) 0000010w immediate data

ADC = Add with Csrry

Register to Register 000100dw mod reg rim I 2

Register to Memory 0001000w mod reg rim I 7" 2" a

Memory to Register 0001001w mod reg rim I 6' I' a

Immediate to Register/Memory 100000sw modO 1 0 rim I immediate data 217" 0/2" a

Immediate to Accumulator (Short Form) 0001010w immediate data 2

INC = Increment

RegisterlMemory lllllllw I modOOO rim I 2/6** 0/2*- a

Register (Short Form) 101000 reg I 2

SUB = Subtract

Register from Register 001010dw I mod reg rim I 2

4-775

80376

Table B.1. B0376 Instruction Set Clock Count Summary (Continued)

Clock Number
Instruction Format Of Data Notes Counts Cycle.

ARITHMETIC (Continued)

Register from Memory I OOIOIOOw ImOdreg rIm! 7" 2" a

Memory Irom Register I OOIOIOIW ImOdreg rIm! 6' a

Immediate from Register/Memory 11 OOOOOsw I mod I 01 r/m! immediate data 2/7·· 0/1" a

Immediate from Accumulator (Short Form) 10010110wl immediate data

SSB = Subtract with Borrow

Register from Register 100011 Odw ImOdreg r/ml

Register from Memory I 000 II OOw I mod reg r/ml 2" a

Memory from Register I OOOIIOIW ImOdreg r/ml I' a

Immediate from Register/Memory 1I00000sw ImOdOll 0/2"

Immediate from Accumulator (Short Form) 10001110wl

DEC = Decrement

Register/Memory 0/2"

Register (Short Form) 2

CMP = Compare

Register with Register

Memory with Register 5' I'

Register with Memory 6" 2"

Immediate with Register/Memory 2/5' 011'

Immediate wtth Accumulator (S 2

NEG = Change Sign 2/6' 0/2'

AAA = ASCII AdJustll/rAdd

AAS = ASCII Adjuatfor Sub 4

DAA = Decimal Adjust lor 4

DAS = Decimal Adjust lor Subtract 00 101111 4

MUL = Multiply (Unsigned)

Accumulator with Register/Memory 1,1,1011W ImodlOO r/ml

Mulliplier-Byte 12-17115-20 0/1 a,n
-Word 12-2511 5-28' 011' a,n
-Doubleword 12-41117-46' 0/2' a,n

IMUL = Integer Multiply (Signed)

Accumulator with Register/Memory 11110 II w I mod 10 I r/ml

Multiplier-Byte 12-1711 5-20 011 a,n
-Word 12-25/15-28' 0/1' a,n
-Doubleword 12-41117-46' 0/2' a,n

Register with Register/Memory 00001111 10101111 Imod reg r/ml

Multiplier-Byte 12-17/15-20 011 a,n
-Word 12-25I1S~28' 011' a,n
-Doubleword 12-41117-46' 0/2' a,n

Register/Memory with Immediate 10 Register [0 I I 0 lOs I ImOdreg r/ml immediate data

-Word 13-26/14-27' 011' a,n
-Doubl.word 13-42116-45' 0/2' a,n

4·776

intJ 80376
'l
1\'1
I'
I

I

Table 8.1. 80376 Instruction Set Clock Count Summary (Continued)

Clock Number
Instruction Format Counta 01 Data Notas

Cyel.

ARITHMETIC (Continued)
DIY = Divide (Unsigned)

Accumulator by Register/Memory 11 111 011 w Imod 1 10 r/ml

I! Divisor-Byte *'17 0/1 a,o
-Word 0/1' 8,0 Ii -Doubleword 0/2' a,o :j

IDlY = Integar Divide (Signed)
'j

Accumulator by Register/Memory 11 111 011 w IITIQd 111 r/ml I
Divioor-Byte 0/1 a,o

-Word 0/1 a,o
-Doubleword 0/2' a,o

AAD = ASCII Ad,ust for Divide 111010101 100001010 I

AAM = ASCII Ad,ust for Multiply

caw = Convert By1e to Word

CWD = Convert Word to Doubte Word 11 0 0 1 1 0 0 1

LOGIC

Register/Memory by 1 3/7·· 0/2" a

Register/Memory by CL 3/7"'· 0/2'" a

3/7'· 0/2"'· a

9/10" 0/2"'" a

9/10" 10/2*- a

9/10" 0/2" a

001 ROR
010 RCL
011 RCR
100 SHL/SAL
101 SHR
111 SAR

SHLD = Shift Left Double

Register/Memory by Immediate 100001111 110100100 lmodreg r/mllmmed B·blt data 317" 0/2"

Register/Memory by CL 100001111 110100101 I mod reg r/ml 3/7·· 0/2"

SHRD = Shift Right Double

Register/Memory by Immediate I 0000111 1 1101 01100 I mod reg r/ml immed B·bH data 317"'· 0/2"

Register/Memory by CL I 0000111 1 1101 01101 I mod reg r/ml 317" 0/2"

AND- And

Register to Register I 001000dw ImOdreg r/ml 2

4~777

intJ 80376

Table 8.1. 80376 Instruction Set Clock Count Summary (Continued)

Clock
Number

Instruction Format
Counts

olOata Note.
Cyclea

LOGIC (Continued)

Register to Memory I 0010000w I mod reg r/mi ~ 2" a

Memory to Register 0010001w I mod reg r/mi I' a

Immediate to Register/Memory 1 OOOOOOw Imodl 00 rim I immediate data 0/2u

Immediate to Accumulator (Short Form) 1001001 Ow I immediate data

TEST = And Function to Flaga, No R •• ult

Register/Memory and Register I 100001 Ow ImOdreg r/mi 0/1' a

Immediate Data and Register/Memory I 1111011w ImodOOO 0/1' a

Immediate Data and Accumulator
(Short Form) 2

OR = Or

Register to Register 2

Register to Memory 7" 2" a

Memory to Register 6' I' a

Immediate to Register/Memory 217n 0/2n a

Immediate to Accumulator (Short Form)

XOR = Exclusive Or

Register to Register

Register to Memory 7" 2" a

Memory to Register 6' I' a

Immediate to Register~mory 217"- 0/2" a

Immediate to Accumulator (Short 2

NOT = Invert Register/Memory r/ml 2/6" 0/2" a

STRING MANIPULATION

CMPS = Compare Byte Word 1010011 wi 10' 2' a

INS = Input Byte/Word Irom OX Port I 011011 Ow I 9" I" a,l,k
29n I" a,l,l

LODS = Load Byte/Word to ALI AX/EAX I 101011 Ow I s' I' a

MOVS Move Byte Word 1010010w I 7" 2"

OUTS = Output Byte/Word to OX Port I 0110111 wi
8" 1*·· a.f,k
28" I" a,l,l

SCAS = Scan Byte Word 1010111 wi 7' I' a

STOS = Store Byte/Word Irom

AL/AX/EX 1010101 w 4' I' a

XLA T = Translate String 11010111 5' I' a

REPEATED STRING MANIPULATION

Repeated by Count in CX or ECX

REPE CMPS = Compare String

(Find Non-Match) 11110011 11010011 w I 5 + 9nn 2n** a

4-778

inter 80376 ~IIDW~OO©~ OOOrF@OO~~ii'O@OO

Table 8.1. 80376 Instruction Set Clock Count Summary (Continued)

Clock Number
Inslructlon Formal of Data Nole. Counls

Cycle.

REPEATED STRING MANIPULATION (Continued)

REPNE CMPS ~ Com par. Siring

(Find Match) , , "00'0 , 0' 00" w 5 + 9n'" 2n·· a

REP INS ~ Input Siring ""00' , 0"0" Ow
'n' a,f,k

'n' a,f,1

REP LODS ~ Load Siring ""00' , , 0' 0" Ow 'n' a

REP MOYS ~ Move Slrlr.g ""00' , ,0,00'Ow 2n"" a

REP OUTS ~ Oulpul String "11 00" 0"0'" w
'n' a,f,k

'n' a,f,1

REPE SCAS ~ Scan String
I

(Find Non-ALI AX/EAX)
"" 00" , 0'0' "w 'n' a

REPNE SCAS ~ SCan Siring

(Find AL/ AX/EAX) " , '00'0 '0'0'" w 'n' a

REP STOS ~ Siore Siring ""00' , 'n' a

BIT MANIPULATION

BSF ~ SCan Bit Forward 10 + 3n" 2n"'*

BSR ~ Scan BII Reve .. e 10 + 3n** 2n** a

BT ~ Te.IBII

Register/Memory, Immediate 3/6' 0/" a

Register/Memory, Register 3/'2' 0/" a

BTC ~ Teal BII and Complemenl

Register/Memory,lmmediate 6/S' 0/2' a

6/'3' 0/2' a

BTR ~ Test BII and Res

6/S' 0/2' a

6/'3' 0/2'

BTS ~ Tesl BII and Set

Register/Memory, Immediate 6/S' 0/2' a

Register/Memory, Register 000011'1 '010'011 6/'3' 0/2'

CONTROL TRANSFER

CALL ~ Can

Direct within Segment '1'01000 I full displacement 9 + m*

Register/Memory

Indirect within Segment , 1 1 , 1 1 , , ImodO 1 0 r/ml 9 + m/'2 + m 2/3 a,j

Direct Intersegment 1001'010 I unsigned full offset. selector 42 + m c, d,j

4-779

80376

Table 8.1.80376 Instruction Set Clock Count Summary (Continued)

Clock Number
Instruction Format of Data Notes Counts Cycles

CONTROL TRANSFER (Continued)
(Directlntersegment)

64:f$ m Via Call Gate to Same. Privilege Level 13 a,c,d,l
Via Call Gate to Dillerent Privilege Level,

(No Parameters) 13 a,c,d,l,
Via Call Gate to Dillerent Privilege Level,

(x Parameters) 13 + 4x a,c,d,l

From 386 Task to 386 TSS 124 a,c,d,l

Indirectlntersegment 11111111 ImodO 11 r/ml 10 a,c,d,]

Via Call Gate to Same Privilege Level 14 a,c,d,l
Via Call Gate to Different Privilege Level,

(No Parameters) 14 a,c,d,l
Via Call Gate to Dillerent Privilege Level,

(x Parameters) 14 + 4x 'a,c,d,l

From 386 Task to 386 TSS 399 130 a,c,d,l

JMP ~ Unconditional Jump

Short 7 + m

Direct within Segment 7 + m

9 + m/14 + m 2/4 a,l

Direc1lntersegment 37 + m c,d,l

Via Call Gate to sam~ . 53 + m a,c,d,l

From 386 Task to 386 TSS 395 124 a,c,d,l

Indirect Intersegment Imodl0l rlml, 37 + m a,c,d,l

Via Call Gate to Same Privilege Level 59 + m 13 a,c,d,l
From 386 Task to 386 TSS 401 124 a,c,d,l

4-780

80376

Table 8.1. 80376 Instruction Set Clock Count Summary (Continued)

Clock
Number

lnattuctlon Fol'IIIIIt Counts
of Dats Nota
Cycl ..

CONTROL TRANSFER (Continued)
RET = Retum from CALL:

WithlnSegment 11000011 2 a,l,p

Within Segment Adding Immediate to SP 11000010 16-bltdispl aJ,p

Intersegment 11001011 4 a,c,d,I,p

Interaegment Adding Immediate to SP 11001010 16-bltdlspl 4 a,c,d,l,p

to Different PrMlage Level
Interaegment 4 c,dJ,p
Interaegment Adding Immediate to $p 4 c,dJ,p

CONDITIONAL JUMPS
NOTE: Times Are Jump "Taken or Not Taken"
JO = Jump on Overflow

8-BH Displacement

Full Displacement

JNO '" Jump on Not Overflow

8-Btt Displacement

Full Displacement 7 + mor3 I

8-BH Displacement 7 + mor3

Full Displacement 7+mor3

8-Bn Displacement 7 + mor3

7.+ mor3

8-Bit Displacement 7 + mor3

Full Displacement 00001111 10000100 "UII displacement 7 + mor3

JNE/JNZ = Jump on Not Equai/Not zero

8-Bit Displacement I 01110101 8-bltdispl 7 + mor3

Full Displacement I 00001111 10000101 '·lull displacement 7+mor3

JBElJNA = Jump on Balow or Equal/Not Above

8-BH Displacement I 01110110 8-bltdispl 7+mor3

Full Displacement I 0000.1111 10000110 I lull displacem~nt 7+ mor3

JNBE/JA = Jump on Not Balow or Equal/Above

8-Blt Displacement I 01110111 8-bitdispl 7 + mora

Full Displacement I 00001111 10000n 1 I lull displacement 7 + mor3

JS = Jump on Sign

8-Btt Displacement I 01111000 8-bitdispl 7+mor3

Full Displacement I 00001111 10001000 I lull displacement 7+mor3

4·781

80376

Table 8.1. 80376 Instruction Set Clock ,Count Summary" (Continued)

Instruction

<:ONDITIONAL JUMPS (Continued)

JNS = Jump on Not Sign

8-BH Displacement

,Format

01111.001 8-bitdispl

Full Displacement 0 0 0 0 1 1 1 1 , 1 0 0 0 1 0 0 1 I full displacement

JPlJPE = Jump on ParitylParlty Even ,..,-____ ..-_-'-__ -,

8-Bit Displacement I' 0 1 1 1 1 0 1 0 8-bH dlspl

Full Displacement , 0 0 0 0 1 1 1 1 1 0 0 0 1 0 1 0 I full displacement

JNP/JPO = Jump on Not Parity/ParityOdd ;;.=-___ --. ____ --.

B-BH Displacement '::' =0=1=1=1=1=0::, 1=1~==8=-b=H=di=spI=::::
Full Displacement , 00001111 1000101,1

8-Blt Displacement

Full Displacement

B-BH Displacement

Full Displace,ment

8-Bit Displacement

Full Displacement

JNLE/JG = JumponNotLeaaor~III~!!!~~~~~":IiII~

8-Bit Displacement ~ :==:flII~IF~~III~~=:
Full Displacement ... V

JCXZ = Jump on Cqlfro Y""
JECXZ = Jump on ECX Zero

(Address Size Prefix Differentiate

LOOP = Loop CX Tlmas

LOOPZlLOOPE = Loop WI,th
zero/Equal

LOOPNZ/LOOPNE = LoopWhIle
Not Zero

CONDITIONAL BYTE SET '
NOTE: Times Are Register/Memory

SETO ,= Sat Byta on OVerflow

To Register/Memory

SETNO = Sat Byte on Not Overflow

To Register/Memory

11100010 B-bit displ

11100001 B-bitdispl

11100000 8-bitdlspl

00001111 10010000lmodOOO rim I

00001111 10010001 I,~ooo r/ml

SETB/SETNAE = Sat Byta on BelOW/N';:.ot:.:Abo=~ve:.o::r...:E::!q!:;u':;I-'"' ____ r-____ ...,

TORegister/Memory'l 00001111 1,10010010 I modOOO rIm I

Clock
Couilta

7 + mor3

7 + mor3

7 + mor3

7 + mor3

7 + mor3

7 + mor3

9 + marS

9 + marS

11 + m

11 +m

11 +m

4/S'

4/S'

4IS'

Number
01 Data
Cycles

0/1'

0/1'

0/1'

. Nolls

a

a

a

inter 80376 £@W£OO©~ OOOIF@OOIMl£'iiO@OO

Table 8.1. 80376 Instruction Set Clock Count Summary (Continued)

Clock Number
Instruction Format Counts of Data Notes

Cycles '"t

CONDITIONAL BYTE SET (Continued)

SETNB ~ Set Byte on Not Below/ Above or Equal

To Register/Memory I 00001111 10010011 I modOOO rIm I 4/5' 0/1' a

SETE/SETZ ~ Set Byte on Equal/Zero ~;"
To Register/Memory I 00001111 10010100 I modOOO rim I a

SETNE/SETNZ ~ Set Byte on Not EqualiNot Zero

To Register/Memory I 00001111 10010101 I modOOO a

To Register/Memory Oil' a

To Register I Memory Oil' a

SETS ~ Set Byte on Sign

To Register/Memory Oil' a

SETNS ~ Set Byte on Not Sign

To Register/Memory Oil' a

To Register/Memory 4/5' Oil' a

4/5' Oil' a

4/5' Oil' a

4/5' Oil' a

SETLE/SETNG ~ S ".'

4/5' Oil' a

SETNLE/SETG ~ Set Byte on

To Register/Memory 00001111 10011111 I madOOO rim I 4/5' Oil' a

ENTER ~ Enter Procedure 16-bit displacement, 8~bit level

L~O 10
L~1 14 1 a
L> 1 17 +8(n - 1) 4(n -1) a

LEAVE ~ Leave Procedure 11001001 6 a

4·783

int.eF 803,76

Table 8.1. 803.76 Instruction Set Clock Count Summary (Continued)

Instruction

INTERRUPT INSTRUCTIONS

INT = Interrupt:

Type Specnied

Via Interrupt or Trap Gate
to Same Privilege Level

Via Interrupt or Trap Gate
to Different Privilege Level

Format

,I 11001101

From 386 Task to 386 TSS via Task Gate

Type 3

Via Interrupt or Trap Gate
to Same Privilege Level

Via Interrupt or Trap Gate
to Different Privilege Level

From 386 Task to 386 TSS via Task Gate

If OF = 1:
If OF = 0

11001100

type

71

111

308

71

111

413

4·784

Number
of Data
Cycles

14

14

140

14

14

138 .

14

14

138

. Notes

c,d,l,p

·c,d,l,p

c,d,l,p

c,d,l,p

c,d,l,p

c,d,l;p

c,d,l,p

c,d,j,p

c,d,l,p

80376

Table 8.1. 80376 Instruction Set Clock Count Summary (Continued)

Clock
Instnicuon Format

Counts

INTERRUPT INSTRUCTIONS (Continued)

Bound = Out 01 Range 01'100010 mod reg rim
Interrupt 511 Oetect Value

II In Range

II Out 01 Range:
Via Interrupt or Trap Gate

to Same PrivIlege Level
Via Interrupt or Trap Gate

to Different Privilege Level

From 386 Task to 386 TSS via Task Gate

INTERRUPT RETURN

IRET = Interrupt Fte\urn 11001111

To the Same Privilege Level (w~hin Task) 42
To Different Privilege Level (w~hin Task) , 86

From 386 Task to 386 TSS 328

PROCESSOR CONTROL

5

10

6

22

DR6-7 from Register 16

Register from DR6_7 00001111 00100001 11 eeereg 14

Register from DRO-3 00001111 00100001 11 eeereg 22

NOP = NoOperallon 10010000 3

WAIT=WaltunuIBUSY# PlnjaNegated I 10011011 6

Number
01 Data
Cycle.

0

14

14

138

138

Note.

a,c,dJ,o,p

c,d,l,p

c,dJ,p

., c,dJ,p

a,c,d,l,p
a,c,d,l,p

c,d,l,p

b

b

b

b

b

b

b

I~

I~
I

',
,.'!)

" "
j,:'

1'1

I,i
~
I:
I:
I;
:~
I'

80376

Tabl~ 8,1, 80376 In.tructlon .Set CI~ck Count Summary (ContinLlecl)

Instruction Format

PROCESSOR EXTENSION INSTRUCTIONS

Proceesor Extension Escape 1 1 1 0 lIT TTl mod L L L rIm 1

PREFIX BYTES

Add Size Prefix

LOCK = Bus Lock Preflx '

Operand SIn Prellx

Segment Override Preflx

cs:

DS:

ES:

FS:

GS:

S&

PROTECTION CONTROL

From RegisterlMemory

L.AR = Load Acceea Riglita

m and LLL bila ara opcode
, informatiOn lor coprocessor.

1011001111

1';11100001

1 01100110 I·

00101110

00111110

00100110

From Register/MemOry'l"~=:"":"';:r4 •• ~:06iiJ1"'E:::=.:l!.._:.:..:::.J

LIDT=

Table Register

Table Register to
RagisterlMemory 00001111 00000000 ImedOl0 r/mi

LMSW =Load Machine SIaIus WOrdi-____ -r-____ "'T'" ____ --,

FrornRegister/l.,1amory 100001111 00000001 Imed110 rIm I
L.SL = Load Segment Umll

From RegisterlMemory

Byte-Granular UmR
Page-Granular Umit

L TR = Load Talk Register

From Registar/Mamory

SGDT = StOre Global Daacrlpto,

00001111 00000011 1 mod reg rIm 1

00001111 00000000 I modOO 1 rIm 1

Table Register 00001111 00000001 I modOOO rIm 1

SlOT = Store Interrupt DescrIpto',------r-----"'T'"-----,
Tabla Registar 1 00001111 00000001 I medOal rIm I

SLDT = Store Local Da_lptO'Tab"'Is""R"'eg=Iate=.'_-r _____ ..-____ -.

To Register/Memory 1 00001111 00000000 I madOOO rIm 1

4-786

Clock
Counta

Saa 80387SX Date Sheet

o

20/21"

17118'

24/28'

10/13'

24/27'
29/32'

27131'

11'

II'

2/2'

Numba,
otData
Cycle.

2"

3'

3'

5' .

I'

4'

3'

3'

Notas

a

a

a,c,l,p

a,e

a,a

a,c,e,p

a,e

a,c,i,p
8.c,i,p

a,c,e,p

a

a

a

80376

Table 8.1. 80376 Instruction Set Clock Count Summary (ContiniJed)

Clock Number
InatrucUon Fonnat Counta of Data Notaa

Cycle.

PROTECTION CONTROL (Continued)

SMSW - SIDra M8chlne
Statu. Word 2/2' I' a,c

STR- SIDra Talk Register

To Register/Memory 2/2' I' a

VERR ~ Verify Reed~.

Regis1er/Memory 10/11" . 2" a,c,i,p

VERW = Verity Write A_ 15/1S" 2" a,c.i,p

NOTES: 'k

a. Exception 13 fault (general violation) ur if the memory operand in CS, OS, ES, FS or GS cannot be used dlle to
either a segment limit violation or access hts violation. If a stack limit is violated, and exception 12 (stack segment limit
violation or not present) occurs.. . .
b. For segment load operations, the CPL, RPL and OPL must agree with the privilege rules to avoid an exception 13 fault
(general protection violation). The segments's deSCriptor must indicate "present" or exception'11 (CS, OS, ES, FS, GS not
present). If the SS register is loaded and a stack segment not present is detected, an exception 12 (steck segment limit
violation or not present occurs).
c. All segment descriptor accesses in the GOT or LOT made by this instruction will automatically assert LOCK # to maintain
descriptor integrity in multiprocessor systems.
d. JMP,CALL,INT, RET and IRET instructions referring to another code segment will cause an exception 13 (general
protection violation) if an applicable privilege rule is volated.
e. An exception 13 fault occurs if CPL is greater than O.
f. An exception 13 fault Occurs if CPL is greater than IOPL. '
g. The IF bit of the flag register is not updated if CPL is greater than IOPL. The IOPL field of the flag register is updated only
if CPL = O.
h. Any violation of privelege rules alii applied to the selector. operand does not cause a protection exception; rather, the zero
flag is cleared. '.
i. If the coprocessor's memory operand violates a segment limit or segment access rights, an exception 13 fault (general
protection exception) will occur before the ESC instruction Is executed. An exception 12 fault (stack segment limit violation
or no present) will occur if the stack limit is violated by the operand's starting address. ,
j. The destination of a JMP, CALL. INT. RET or IRET must.be in the defined limit of a code segment or an exception 13 fault
(general protection violation) will occur.
k. If CPL s; IOPL
I. If CPL > IOPL
m. LOCK# is automatically asserted, regardless of the presence or absence of the LOCK# prefix.
n. The 80376 uses an early-out multiply algorithm. The actual number. of 1:locks depends on the position of the most signifi­
cant bit in the operand (multiplier). Clock counts given are minimum to maximum. Jo calculate actual clocks use the follow­
ing formula:

... Actual ClOck = if m < > 0 then max ([iog2Imll. 3) + 9 clocks:
if m = 0 then 12. clocks ,(where m is the multiplier)

o. An exception may occur, depending on the value of the operand. .
p. LOCK# is asserted during deSCriptor table accesses .

....

4·787

~

80376

8.2 INSTRUCTION ENCODING

Overview
All instruction encodings are subsets of the general
instruction format shown in Figure 8.1. Instructions
consist of one or two primary opcode bytes, possibly
an address specifier consisting of the "mod rim"
byte and "scaled index" byte, a displacement if re­
quired, and an immediate data field if required.

Within the primary opcode or opcodes, smaller en­
coding fields may be defined. These fields vary ac­
cording to the class of operation. The fields define
such information as direction of the operation, size
of the displacements, register encoding, or sign ex-
tension. ..

Almost all instructions referring to an operand in
memory have an addressing mode byte following
the primary opcode byte(s). This byte, the mod r'lm
byte, specifies the address mode to be used. Certain

encodings of the mod rim byte indicate a second
addressing byte; the scale-index-base byte, follows
the mod rim byte to fully specify the addressing
mode.

Addressing modes can include a displacement im­
mediately following the mod rim byte, or scaled in­
dex byte. If a displacement is present, the possible
sizes are 8, 16 or 32 bits. .

If the instruction specifies an immediate operand,
the immediate operand follows any displacement
bytes. The immediate operand, if specified, is always
the last field of the instruction.

Figure 8.1 illustrates several of the fields that can
appear in an instruction, such as the mod field and
the· rim field, but the Figure does not show all fields.
Several smaller fields also appear in certain instruc­
tions, sometimes within the opcode bytes. them­
selves. Table 8.2. is· a complete list of all fields ap~
pearing in the 80376 instruction set. Further ahead,
following Table 8.2, are detailed tables for each
field.

ITTTTTTTT 1 TTTTTTTT 1 modTTT rim 1 ss index base Id32116181 none data32 1 16181 none

Z 07 01\7653201\7653201\ 1\ 1
¥ T ¥ if 'T'

opcode
(one or two bytes)
(T represents an

opcode bit.)

"mod rim" u s4·b"
byte byte 1

\..~ __ ~ ____ ~ __ ~~ __ -J.

register and address
mode specifier

address
displacement
(4, 2, 1 bytes

or none)

Figure 8.1. General Instruction Format

Table 8.2. Fields within 80376 Instructions

Field Name Description

w Specifies if Data is Byte or Full Size (Full Size is either 16 or 32 Bits
d Specifies Direction of Data Operation
s Specifies if an Immediate Data Field Must be Sign-Extended
reg General Register Specifier
mod rim Address Mode Specifier (Effective Address can be a General Register)

ss Scale Factor for Scaled Index Address Mode
index General Register to be used as Index Register
base General Register to be used as Base Register
sreg2 Segment Register Specifier for CS, SS, OS, ES
sreg3 Segment Register Specifier for CS, SS, OS, ES, FS, GS
tttn For Conditional Instructions, Specifies a Condition Asserted

or a Condition Negated

Note: Table 8.1 shows encoding of individual instructions.

4-788

immediate
data

(4, 2, 1 bytes
or none)

Number of Bits

1
1
1
3

2 for mod;
3 for rim

2
3
3
2
3

4

16·Blt Extensions of the
Instruction Set

80376

Encoding of reg Field When w Field
Is not Present In Instruction

Register Selected Register Selected Two prefixes, the Operand Size Prefix (66H) and the
Effective Address Size Prefix (67H), allow overriding
individually the Default selection of operand size and
effective address size. These prefixes may precede
any opcode bytes and affect only the instruction
they precede. If necessary, one or both of the prefix­
es may be placed before the opcode bytes. The
presence of the Operand Size Prefix and the Effec­
tive Address Prefix will allow 16-bit data operation
and 16-bit effective address calculations.

reg Field During 18-81t During 32-81t

For instructions with more than one prefix, the order
of prefixes is unimportant.

Unless specified otherwise, instructions with 8-bit
and 16-bit operands do not affect the contents of
the high-order bits of the extended registers.

Encoding of Instruction Fields

Within the instruction are several fields indicating
register selection, addressing mode and so on.

ENCODING OF OPERAND LENGTH (w) FIELD

For any given instruction performing a data opera­
tion, the instruction will execute as a 32-bit opera­
tion. Within the constraints of the operation size, the
w field encodes the operand size as either one byte
or the full operation size, as shown in the table be­
low.

Operand Size
wField During 16-81t

Data Operations

0 8 Bits
1 16 Bits

ENCODING OF THE GENERAL
REGISTER (reg) FIELD

Operand Size
During 32-81t

Data Operations

8 Bits
32 Bits

The general register is specified by the reg field,
which may appear in the primary opcode bytes, or as
the reg field of the "mod rim" byte, or as the rim
field of the "mod rim" byte.

4-789

000
001
010
011
100
101
101
101

reg

000
001
010
011
100
101
110
111

reg

000
001
010
011
100
101
110
111

Data Operations Data Operations

AX EAX
CX ECX
OX EOX
BX EBX
SP ESP
BP EBP
SI ESI
01 EOI

Encoding of reg Field When w Field
Is Present in Instruction

Register Specified by reg Field
During 18·81t Data Operations:

Function of w Field

(whenw = 0) (whenw = 1)

AL AX
CL CX
OL OX
BL BX
AH SP
CH BP
OH 51
BH 01

Register Specified by reg Field
During 32-8it Data Operations

Function of w Field

(whenw = 0) (whenw = 1)

AL EAX
CL ECX
OL EOX
BL EBX
AH ESP
CH EBP
OH ESI
BH EOI

i ...

inter 80376

ENCODING OF THE SEGMENT
REGISTER (sreg) FIELD

The sreg field in certain instructions is a 2-bit field
allowing one of the es, OS, ES or 55 segment regis­
ters to be specified. The sreg field in other instruc­
tions is a 3-bit field, allowing the FS and GS segment
registers to be specified also.

2-Bit sreg2 Field

2-Bit Segment

sreg2 Field
Register
Selected

00 ES
01 es
10 55
11 OS

3-Blt sreg3 Field

3-Bit Segment

sreg3 Field
Register
Selected

000 ES
001 es
010 55
011 OS
100 FS
101 GS
110 do not use
111 do not use

ENCODING OF ADDRESS MODE

Except for special instructions, such as . PUSH or
POP, where the addressing mode is pre-determined,
the addressing mode for .thecurrent instruction is
specified by addressing bytes following the .. primary
opcode. The primary addressing byte is the "mod
rim" byte, and a second byte of addressinginforma­
tion, .the "s-i-b" (scale-index-base) byte, can be
specified.

The s-i-b byte (scale-index-base byte) is. specified
when using 32-bit addressing mode and the "mod
rim" byte has rim = 100 and mod = 00,01 or 10.
When the sib byte is present, the 32-bit addressing
mode is a function of the mod, ss, index, and base
fields.

The primary addressing byte, the "mod rim" byte,
also contains three bits (shown as TIT in Figure 8.1)
sometimes used as an extension of the primary op­
code. The three bits, however, may also be used as
a register field (reg). .

When calculating an effective address, either 16-bit
addressing or 32-bit addressing· is used. 16-bit. ad"
dressing uses 16-bit address components to calcu­
late. the. effective address while 32-bit addressing
uses 32-bit address components to calculate the ef­
fective address. When 16-bit addressing is used, the
"mod rim" byte is interpreted as a 16-bit addressing
mode specifier. When 32-bit I3ddressing is. used, the
"mod rim" byte is interpreted as a 32-bit addressing
mode specifier.

Tables on the following three pages define all en­
codingsofall16-bit addressing modes and 32-bit
addressing modes.

4-790

inter 80376

Encoding of Normal Address Mode with "mod rIm" byte (no "s·l·b" byte present):

mod rIm Effective Address mod rIm Effective Address

00000 DS:[EAX) 10000 DS: [EAX + d32)
00001 DS:[ECX) 10001 DS: [ECX + d32)
00010 DS:[EDX) 10010 DS: [EDX + d32)
00011 DS:[EBX) 10011 DS: [EBX + d32)
00100 s-i-b is present 10100 s-i-b is present
00101 DS:d32 10101 SS: [ESP + d32)
00110 DS:[ESI) 10110 DS: [ESI + d32)
00111 DS:[EDI) 10111 DS: [EDI + d32)

01000 DS:[EAX+d8) 11000 register-see below
01001 DS:[ECX+d8) 11001 register-see below
01010 DS: [EDX + d8) 11010 register-see below
01011 DS: [EBX + d8) 11 011 register-see below
01100 s-i-b is present 11100 register-see below
01101 SS:[EBP+d8) 11 101 register-see below
01110 DS: [ESI + d8) 11 110 register-see below
01 111 DS: [EDI + d8) 11 111 register-see below

Register Specified by reg or rIm
during Normal Data Operations:

mod rIm function of w field

(whenw=O) (whenw= 1)

11000 AL EAX
11001 CL ECX
11010 DL EDX
11 011 BL EBX
11100 AH ESP
11 101 CH EBP
11 110 DH ESI
11 111 BH EDI

Register Specified by reg or rIm
during 16·Bit Data Operations: (66H Prefix)

mod rIm function of w field

(when w=O) (when w= 1)

11000 AL AX
11001 CL CX
11010 DL DX
11 011 BL BX
11100 AH SP
11 101 CH BP
11110 DH SI
11 111 BH DI

4-791

.. '
"

80376

Encoding of 16-blt Address Mode with "mod rim" Byte Using 67H Prefix

mod rim Effective Address mod rim Effective Address

00000 OS:[BX+SI] 10000 OS:[BX+SI+d16]
00001 OS:[BX+OI] 10001 OS:[BX + 01 +d16]
00010 SS:[BP+SI] 10010 SS:[BP+SI+d16]
000.11 SS:[BP+OI] 10011 SS:[BP+01+d16]
00100 OS:[SI] 10100 OS:[SI+d16]
00101 OS:[OI] 10101 OS:[01+d16]
00110 OS:d16 10110 SS:[BP+ d16]
00111 OS: [BX] 10111 OS:[BX + d16]

01.000 OS: [BX + SI + d8] 11000 register-see below
01001 OS: [BX + 01 + d8] 11001 register-see below
01010 SS:[BP+SI+d8] 11010 register-see below
01011 . SS:[BP+01+d8] 11 011 register-see below
01100 OS:[SI+d8] 11100 register-see below
01101 OS:[OI+d8]
01110 SS:[BP+d8]

11 101 register-see below
11 110 register-see below

01111 OS:[BX+d8] 11 111 register-see below

4·792

mod base

00000
00001
00010
00011
00100
00101
00110
00111

01000
01001
01010
01011
01100
01101
01110
01 111

10000
10001
10010
10011
10100
10101
10110
10111

NOTE:

80376

Encoding of 32-blt Address Mode ("mod rIm" byte and "s-I-b" byte present):

Effective Address

OS: [EAX + (scaled index)]
OS: [ECX + (scaled index)]
OS: [EOX + (scaled index)]
OS: [EBX + (scaled index)]
SS: [ESP + (scaled index))
OS: [d32 + (scaled index)]
OS: [ESI + (scaled index))
OS: [EOI + (scaled index)]

OS: [EAX + (scaled index) + d8]
OS: [ECX + (scaled index) + d8]
OS: [EOX + (scaled index) + d8]
OS: [EBX + (scaled index) + d8]
SS: [ESP + (scaled index) + d8]
SS: [EBP + (scaled index) + d8]
OS: [ESI + (scaled index) + d8]
OS: [EOI + (scaled index) + d8]

OS: [EAX + (scaled index) + d32]
OS: [ECX + (scaled index) + d32]
OS: [EOX + (scaled index) + d32]
OS: [EBX + (scaled index) + d32]
S5: [ESP + (scaled index) + d32]
S5: [EBP + (scaled index) + d32]
OS: [ESI + (scaled index) + d32]
OS: [EOI + (scaled index) + d32]

ss Scale Factor

00 x1
01 x2
10 x4
11 , x8

index Index Register

000 EAX
001 ECX
010 EOX
011 EBX
100 no index reg"
101 EBP
110 ESI
111 EOI

""IMPORTANT NOTE:
When index field is 100, indicating "no index register," then
ss field MUST equal 00. If index is 100 and ss does not
equal 00, the effective address is undefined.

Mod field in "mod rim" byte; ss, index, base fields in
"s-i-b" byte.

4-793

80376

ENCODING OF OPERATION
DIRECTION (d) FIELD

In many two-operand instructions the d field is pres­
ent to indicate which operand is considered the
source and which is the destination.

d Direction of Operation

0 Register/Memory <- -Register
"reg" Fieldlndicates Source Operand;
"mod r/m" .or "mod ss index base" Indicates
Destination Operand

1 Register <- -Register/Memory
"reg" Field Indicates Destination Operand;
"mod r/m" or "mod ss index base" Indicates
Source Operand

ENCODING OF SIGN·EXTEND (s) FIELD

The s field occurs primarily to instructions with im­
mediate data fields. The s field has an effect. only if
the size of the immediate data is 8 bits and is being
placed inalS-bit or 32-bit destination.

Effect on Effect on
s Immediate Data8 Immediate Data 16/32

None

1 Sign-Extend Data8 to Fill
lS-Bit or 32-Bit Destination

ENCODING OF CONDITIONAL
TEST (tttn) FIELD

None

None

For the conditional instructions (conditional jumps
and set on condition). tttn is encoded with n indicat­
ing to use the condition (n = 0) or its negation (n = 1).
and ttt giving the condition to test.

Mnemonic Condition

0 Overflow
NO No Overflow
B/NAE BelowlNot Above or Equal
NB/AE Not Below/Above or Equal
E/Z Equal/Zero
NE/NZ Not Equal/Not Zero
BE/NA Below or Equal/Not Above
NBE/A Not Below or Equal! Above
S Sign
NS Not Sign
PIPE Parity/Parity Even
NP/PO Not Parity/Parity Odd
LlNGE Less ThanlNot Greater or Equal
NL/GE Not Less Than/Greater or Equal
LEING Less Than or Equal/Greater Than
NLE/G Not Less or Equal/Greater Than

ENCODING OF CONTROL OR DEBUG
REGISTER (eee) FIELD

tttn

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

For the loading and storing of the Control and Debug
registers.

When Interpreted as Control Register Field

eeeCode Reg Name

000 CRO
010 Reserved
011 Reserved

Do not use any other encoding

When Interpreted as Debug Register Field

eeeCode Reg Name

000 ORO
001 DRl
010 DR2
011 DR3
110 DRS
111 DR7

Do not use any other encoding

4-794

inter 80376

9.0 REVISION HISTORY

This 80376 data sheet, version -002, contains updates and improvements to previous versions. A revision
summary is listed here for your convenience.

The sections significantly revised since version -001 are:

Front Page The 80376 Microarchitecture diagram was added.

Section 1.0 Figure 1.2 was updated to show both top and bottom views of the 88-pin PGA package.

Section 2.0 Figure 2.0 was updated to show the 16-bit registers SI, DI, BP and SP.

Section 2.1

Section 2.1

Section 2.3

Section 2.6

Section 2.8

Section 2.10

Section 3.0

Section 3.2

Section 3.2

Section 3.3

Section 4.1

Section 4.1

Section 4.2

Section 4.4

Section 4.6

Section 4.7

Section 5.0

Section 6.2

Section 6.4

Section 6.4

Section 6.5

Section 8.1

Section 8.2

Figure 2.2 was updated to show the correct bit polarity for bit 4 in the CRO register.

Tables 2.1 and 2.2 were updated to include additional information on the EFLAGs and CRO
registers.

Figure 2.3 was upda~ed to more accurately reflect the addressing mechanism of the 80376 ..

In the subsection Maskable Interrupt a paragraph was added to describe the effect of
interrupt gates on the IF EFLAGs bit.

Table 2.7 was updated to reflect the correct power up condition of the CRO register.

Figure 2.6 was updated to show the correct bit positions of the BT, BS and BD bits in the
DR6 register.

Figure 3.1 was updated to clearly show the address calculation process.

The subsection DESCRIPTORS was elaborated upon to clearly define the relationship be­
tween the linear address space and physical address space of the 80376.

Figures 3.3 and 3.4 were updated to show the AVL bit field.

The last sentence in the first paragraph of subsection PROTECTION AND I/O PERMIS­
SION BIT MAP was deleted. This was an incorrect statement.

In the Subsection ADDRESS BUS (BHE#, BLE#, A23-A1 .Iast sentence in the first para­
graph was updated to reflect the numerics operand addresses as 8000FCH and 8000FEH.
Because the 80376 sometimes does a double word I/O access a second access to
8000FEH can be seen.

The Subsection Hold Lantencies was updated to describe how 32-bit and unaligned ac­
cesses are internally locked but do not assert the LOCK # Signal.

Table 4.6 was updated to show the correct active data bits during a BLE# assertion.

This section was updated to correctly reflect the pipelining of the address and status of the
80376 as opposed to "Address Pipelining" which occurs on processors such as the 80286.

Table 4.7 was updated to show the correct Revision number, 05H.

Table 4.8 was updated to show the numerics operand register 8000FEH. This address is
seen when the 80376 does a DWORD operation to the port address 8000FCH.

In the first paragraph the case temperatures were updated to correctly reflect the 0·C-115·C
for the ceramic package and 0·C-11 O·C for the plastic package.

Table 6.2 was updated to correctly reflect the Case Temperature under Bias specification of
-65·C-120·C.

Figure 6.8 vertical axis was updated to reflect "Output Valid Delay (ns)".

Figure 6.11 was updated to show typical Icc vs. Frequency for the 80376.

This entire section was updated to reflect the new ICE-376 emulator.

The clock counts and opcodes for various instructions were updated to their correct value.

The section INSTRUCTION ENCODING was appended to the data sheet.

4-795

82370
INTEGRATED SYSTEM PERIPHERAL

• High Performance 32-Bit DMA • Programmable Walt State Generator
Controller for 16-Blt Bus - 0 to 15 Walt States Pipellned
- 16 MBytes/Sec Maximum Data - 0 to 16 Walt States Non-Plpellned

Transfer Rate at 16 MHz • DRAM Refresh Controller
- 8 Independently Programmable

80376 Shutdown Detect and Reset Channels •
20-Source Interrupt Controller

Control • - Software/Hardware Reset
-Individually Programmable Interrupt

Vectors • High Speed CHMOS III Technology
-15 External, 5 Internal Interrupts • 100-Pin Plastic Quad Flat-Pack Package
- 82C59A Superset and 132-Pin Pin Grid Array Package

• Four 16-Bit Programmable Interval (See Packaging Handbook Order "231369)

Timers • Optimized for Use with the 80376
- 82C54 Compatible Microprocessor

• Software Compatible to 82380 - Resides on Local Bus for Maximum
Bus Bandwidth

The 82370 is a multi-function support peripheral that integrates system functions necessary in an 80376
environment. It has eight channels of high performance 32-bit DMA (32-bit internal, 16-bit external) with the
most efficient transfer rates possible on the 80376 bus. System support peripherals integrated into the 82370
provide Interrupt Control, Timers, Wait State generation, DRAM Refresh Control, and System Reset logic.

The 82370's DMA Controller can transfer data between devices of different data path widths using a single
channel. Each DMA channel operates independently in any of several modes; Each channel has a temporary
data storage register for handling non-aligned data without the need for external alignment logic.

80376 LOCAL BUS

16 - BIT PHYSICAL
(32 - BIT LOGICAL)

8- CHANNEL
DMA

CONTROLLER

TIMER 0

TIMER 1

TIMER 2

TIMER 3

Internal Block Diagram

4-796

290164-1

October 1988
Order Number: 290164-002

inter 82370

Pin Descriptions

The 82370 provides all of the si!}nals necessary to
interface an 80376 host processor. It has a separate
24-bit address and 16-bit data bus. It also has a set
of control Signals to support operation as a bus mas­
ter or a bus slave. Several special function signals

exist on the 82370 for interfacing the system support
peripherals to their respective system counterparts.
Following are the definitions of the individual pins of
th~ 82370. These brief descriptions are provided as
a reference. Each signal is further defined within the
sections which describe the associated 82370 func­
tion ..

Symbol Type Name and Function

A1-A23 1/0 ADDRESS BUS: Outputs physical memory or port 1/0 addresses. See
Address Bus (2.2.3) for additional information.

BHE# 1/0 BYTE ENABLES: Indicate which data bytes of the data bus take part in a bus
BLE# cycle. See Byte Enable (2.2.4) for additional information.

Do-D15 1/0 DATA BUS: This is the 16-bit data bus. These pins are active outputs during
interrupt acknowledges, during Slave accesses, and when the 82370 is in the
Master Mode.

CLK2 I PROCESSOR CLOCK: This pin must be connected to the processor's clock,
CLK2. The 82370 monitors the phase of this clock in order to remain
synchronized with the CPU. This clock drives all of the internal synchronous
circuitry.

D/C# 1/0 DATA/CONTROL: D/C# is used to distinguish between CPU control cycles
and DMA or CPU data access cycles. It is active as an output only in the
Master Mode.

W/R# 110 WRITE/READ: WIR # is used to distinguish between write and read cycles. It
is active as an output only in the Master Mode:

MIIO# 1/0 MEMORY/lO: M/IO# is used to distinguish between memory and 10
accesses. It is active as an output only in the Master Mode.

ADS# 1/0 ADDRESS STATUS: This. signal indicates presence of a valid address on the
address bus. It is active as output only in the Master Mode. ADS# is active
during the first T-state where addresses and control signals are valid.

NA# I NEXT ADDRESS: Asserted by a peripheral or memory to begin a pipelined
address cycle. This pin is monitored only while the 82370 is in the Master
Mode. In the Slave Mode, pipelining is determined by the current and past
status of the ADS # and READY # Signals.

HOLD 0 HOLD REQUEST: This is an active-high signal to the Bus Master to request·
control of the system bus. When control is granted, the Bus Master activates
the hold acknowledge signal (HLDA).

HLDA I HOLD ACKNOWLEDGE: This input signal tells the DMA controller that the
Bus Master has relinquished control of the system bus to the DMA controller.

4-797

i,;
i,
Ii ,I
i!
I

I

i:
I

inter 82370

Pin Descriptions (Continued)

Symbol Type Name and Function

DREQ (0-3, 5-7) I DMA REQUEST: The DMA Request inputs monitor requests from peripherals
requiring DMA service. Each of the eight DMA channels has one DREQ input.
These active-high inputs are internally synchronized and prioritized. Upon
request, channel 0 has the highest priority and channel 7 the lowest.

DREQ4/IRQ9# I DMA/INTERRUPT REQUEST: This is the DMA request input for channel 4. It
is also connected to the interrupt controller via interrupt request 9. This
internal connection is available for DMA channel 4 only. The interrupt input is
active low and can be programmed as either edge or level triggered. Either
function can be masked by the appropriate mask register. Priorities of the
DMA channel and the interrupt request are not related but follow the rules of
the individual controllers ..

Note that this pin has a weak internal pull-up. This causes the interrupt
request to be inactive, but the DMA request will be active if there is no
external connection made. Most applications will require that either one or the
other of these functions be used, but not both. For this reason, it is advised
that DMA channel 4 be used for transfers where a software request is more
appropriate (such as memory-to-memory transfers). In such an application,
DREQ4 can be masked by software, freeing IRQ9 # for other purposes.

EOP# 1/0 END OF PROCESS: As an output, this signal indicates that the current
Requester access is the last access of the currently operating DMA channel.
It is activated when Terminal Count is reached. As an input, it signals the DMA
channel to terminate the current buffer and proceed to the next buffer, if one
is available. This signal may be programmed as an asynchronous or
synchronous input.

EOP# must be connected to a pull-up resistor. This will prevent erroneous
external requests for termination of a DMA process.

EDACK (0-2) 0 ENCODED DMA ACKNOWLEDGE: These signals contain the encoded
acknowledgment of a request for DMA service by a peripheral. The binary
code formed by the three signals indicates which channel is active. Channel 4
does not have a DMA acknowledge. The inactive state is indicated by the
code 100. During a Requester access, EDACK presents the code for the
active DMA channel. During a Target access, EDACK presents the inactive
code 100.

IRQ (11-23)# I INTERRUPT REQUEST: These are active low interrupt request inputs. The
inputs can be programmed to be edge or level sensitive. Interrupt priorities
are programmable as either fixed or rotating. These inputs have weak internal
pull-up resistors. Unused interrupt request inputs should be tied inactive
externally.

INT 0 INTERRUPT OUT: INT signals that an interrupt request is pending.

elKIN I TIMER CLOCK INPUT: This is the clock input Signal to all of the 82370's
programmable timers. It is independent of the system clock input (ClK2).

TOUT1/REF# 0 TIMER 1 OUTPUT IREFRESH: This pin is software programmable as either
the direct output of Timer 1, or as the indicator of a refresh cycle in progress.
As REF #, this signal is active during the memory read cycle which occurs
during refresh.

4-798

inter 82370

Pin Descriptions (Continued)

Symbol Type Name and Function

TOUT2#/IRQ3# 1/0 TIMER 2 OUTPUT IINTERRUPT REQUEST: This is the inverted output of
Timer 2. It is also connected directly to interrupt request 3. External hardware
can use IRQ3# ifTimer 2 is programmed as OUT=O (TOUT2# = 1).

TOUT3# 0 TIMER 3 OUTPUT: This is the inverted output of Timer 3.

READY# I READY INPUT: This active-low input indicates to the 82370 that the current
bus cycle is complete. READY is sampled by the 82370 both while it is in the
Master Mode, and while it is in the Slave Mode.

WSC (0-1) I WAIT STATE CONTROL: WSCO and WSC1 are inputs used by the Wait-
State Generator to determine the number of wait states required by the
currently accessed memory or 1/0. The binary code on these pins, combined
with the M/IO# signal, selects an internal register in which a wait-state count
is stored. The combination WSC= 11 disables the wait-state generator.

READYO# 0 READY OUTPUT: This is the synchronized output of the wait-state generator.
It is also valid during CPU accesses to the 82370 in the Slave Mode when the
82370 requires wait states. READYO# should feed directly the processor's
READY # input.

RESET I RESET: This synchronous input serves to initialize the state of the 82370 and
provides basis for the CPURST output. RESET must be held active for at least
15 CLK2 cycles in order to guarantee the state of the 82370. After Reset, the
82370 is in the Slave Mode with all outputs except timers and interrupts, in
their inactive states. The state of the timers and interrupt controller must be
initialized through software. This input must be active for the entire time
required by the host processor to guarantee proper reset.

CHPSEL# 0 CHIP SELECT: This pin is driven active whenever the 82370 is addressed in a
slave bus read or write cycle. It is also active during interrupt acknowledge
cycles when the 82370 is driving the Data Bus. It can be used to control the
local bus transceivers to prevent contention with the system bus.

CPURST 0 CPU RESET: CPURST provides a synchronized reset signal for the CPU. It is
activated in the event of a software reset command, a processor shut-down
detect, or a hardware reset via the RESET pin. The 82370 holds CPURST
active for 62 clocks in response to either a software reset command or a shut-
down detection. Otherwise CPURST reflects the RESET input.

Vee POWER: + 5V input power.

Vss Ground Reference.

Table 1. Wait-State Select Inputs

Port Wait-State Registers Select Inputs

Address D7 D4 D3 DO WSC1 WSCO

72H MEMORY 0 1/00 0 0
73H MEMORY 1 1/01 0 1
74H MEMORY 2 1/02 1 0

DISABLED 1 1

M/IO# 1 0

4-799

82370

100
290164-2

100 Pin Quad Fiat-Pack Pin Out (Top View)

A Row BRow CRow DRow

Pin Label Pin Label Pin Label Pin Label

1 CPURST 26 Vee 51 An 76 OREQ5
2 INT 27 011 52 A10 77 OREQ4/IRQ9#
3 Vee 28 04 53 A9 78 OREQ3
4 Vss 29 012 54 Ae 79 OREQ2
5 TOUT2#/IRQ3# 30 05 55 A7 80 OREQ1
6 TOUT3# 31 013 56 Ae 81 OREQO
7 O/C# 32 De 57 As 82 IRQ23#
8 Vee 33 Vss 58 Vee 83 IRQ22#
9 W/R# 34 014 59 A4 84 IRQ21 #

10 M/IO# 35 07 60 A3 85 IRQ20#
11 HOLD 36 015 61 A2 86 IRQ19#
12 TOUT1/REF# 37 A23 62 Al 87 IRQ18#
13 CLK2 38 A22 63 Vss 88 IRQ17#
14 Vss 39 A21 64 BLE# 89 IRQ16#
15 REAOYO# 40 A20 65 BHE# 90 IRQ15#
16 EOP# 41 A19 66 Vss 91 IRQ14#
17 ·CHPSEL# 42 Ale 67 AOS# 92 IRQ13#
18 Vee 43 Vee 68 Vee 93 IRQ12#
19 Do 44 A17 69 EOACK2 94 IRQ11 #
20 De 45 Ale 70 EOACK1 95 CLKIN
21 01 46 A15 71 EOACKO 96 WSCO
22 09 47 A14 72 HLOA 97 WSC1
23 02 48 Vss 73 OREQ7 98 RESET
24 010 49 A13 74 OREQ6 99 REAOY#
25 03 50 A12 75 NA# 100 Vss

4-800

inter 82370

A B C D E F G H J K l M N P

~VSs Vee VSS Vee A12 A9 A8 A5 A3 BHE# DREQO EDACKl VSS Vee
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Vee A19 A17 A15 A13 Al0 A7 A4 Al ADS(I EDACK2 INT VSS Vee
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

VSS A2l A18 A16 A14 All AS A2 BlE#
DREQ4/
IRQ9# EDACKO HlDA DREQ7 DREQ5

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Vee A22 A20 OREQS NA# OREQ3

4 0 0 0 0 0 0
(NC) (NC) A23 WSCO DREQ2 DREQl

5 0 0 0 0 0 0
(NC) (NC) (NC)

BOTTOM VIEW
METAL LID WSCl IRQ22(1 IRQ23#

S 0 0 0 0 0 0
(NC) (NC) (NC) IRQ21# IRQ20# IRQI9#

7 0 0 0 0 0 0
(NC) (NC) DI5 (82370) IRQI7# IRQIS# IRQI8#

8 0 0 0 0 0 0
07 (NC) , (NC) IRQI3# IRQI4# IRQI5#

9 0 0 0 0 0 0
014 OS DI3 O/C# IRQI2# IRQ 11 #

10 0 0 0 0 0 0
(NC) 05 (NC) REAOY# ClKIN W/R#

11 0 0 0 0 0 0
Vee (NC) 012 (NC) D3 010 (NC) REAOYO# HOLD CHPSEl# EOP# CPURST RESET Vee

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Vss (NC) 04 (NC) (NC) 02 09 (NC) (NC)

TOUTI/
REF# M/Kl# TOUT3#

TOUT2#/
IRQ3 vss

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Vee vss Vee 011 (NC) (NC) ClK2 01 00 08 Vss Vee Vss Vee

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0

290164-3

82370 PGA Pinout

4-801

82370

Pin Label Pin Label

G14 CLK2 014 Dl1
N12 RESET F12 Dl0
M12 CPURST G13 D9
C5 A23 K14 Ds
B4 A22 AS D7
B3 A21 B10 D6
C4 A20 B11 D5
B2 A19 C13 D4
C3 A1S E12 D3
C2 A17 F13 D2
D3 A16 H14 Dl
D2 A15 J14 Do
E3 A14 P11 W/R#
E2 A13 L13 M/IO#
E1 A12 K2 ADS#
F3 All M10 D/C#
F2 A10 N4 NA#
F1 A9 M11 READY#
G1 As H12 READYO#
G2 A7 J12 HOLD
G3 A6 M3 HLDA
Hi A5 M2 INT
H2 ~ L12 EOP#
J1 A3 L2 EDACK2
H3 A2 M1 EDACK1
J2 Al L3 EDACKO
J3 BLE# N3 DREQ7
K1 BHE# M4 DREQ6
K12 CHPSEL# P3 DREQ5
C8 D15 K3 DREQ4/IRQS#
A10 D14 P4 DREQ3
Ci0 D13 N5 DREQ2
C12 D12 P5 DREQ1

1.0 FUNCTIONAL OVERVIEW

The 82370 contains several independent functional
modules. The following is a brief discussion of the
components and features of the 82370. Each mod­
ule has a corresponding detailed section later in this
data sheet. Those sections should be referred to for
design and programming information.

1.1 82370 Architecture

The 82370 is comprised of several computer system
functions that are normally found in separate LSI
and VLSI components. These include: a high-per­
formance, eight-channel, 32-bit Direct Memory Ac­
cess Controller; a 20-level Programmable Interrupt

Pin Label Pin Label

L1 DREQO A2 Vee
P6 IRQ23# P2 Vee
N6 IRQ22# A4 Vee
M7 IRQ21 # A12 Vee
N7 IRQ20# P12 Vee
P7 IRQ1S# A14 Vee
P8 IRQ18# C14 Vee
M8 IRQ17# M14 Vee
N8 IRQ16# P14 Vee
PS IRQ15# AS NC
NS IRQ14# B5 NC
MS IRQ13# A6 NC ..

N10 IRQ12# B6 NC
P10 IRQ11 # C6 NC
M5 WSCO A7 NC
M6 WSC1 B7 NC
Mi3 TOUT3# C7 NC
N13 TOUT2# IIRQ3 # A8 NC
Ki3 TOUT1/REF# B8 NC
N11 CLKIN BS NC
Ai Vss CS NC
C1 Vss A11 NC
N1 Vss B11 NC
N2 Vss C11 NC
A3 Vss D12 NC
A13 Vss G12 NC
P13 Vss B13 NC
B14 Vss D13 NC
L14 Vss E13 NC
N14 Vss H13 NC
B1 Vee J13 NC
D1 Vee E14 NC
Pi Vee F14 NC

Controller which is a superset of the 82C5SA; four
16-bit Programmable Interval Timers which are func­
tionally equivalent to the 82C54 timers; aORAM Re­
fresh Controller; a Programmable Wait State Gener­
ator; and system reset logic. The interface to the
82370 is optimized for high-performance operation
with the 80376 microprocessor.

The 82370 operates directly on the 80376 bus. In
the Slave Mode, it monitors the state of the proces­
sor at all times and acts or idles according to the
commands of the host. It monitors the address pipe­
line status and generates the programmed number
of wait states for the device being accessed. The
82370 also has logic to the reset of the 80376 via
hardware or software reset requests and processor
shutdown status.

4-802

intJ 82370

After a system reset, the 82370 is in the Slave
Mode. It appears to the system as an 110 device. It
becomes a bus master when it is performing DMA
transfers.

To maintain compatibility with existing software, the
registers within the 82370 are accessed as bytes. If
the internal logic of the 82370 requires a delay be­
fore another access by the processor, wait states

are automatically inserted into the access cycle.
This allows the programmer to write initialization rou­
tines, etc. without regard to hardware recovery
times.

Figure 1-1 shows the basic architectural compo­
nents of the 82370. The following sections briefly
discuss the architecture and function of each of the
distinct sections of the 82370.

80376 LOCAL BUS CHPSEL#

TOUT1/REF"#

13 IRO#

INT
I
I

RESET -.-- CPU
CPURST RESET

------- ..

DREOO

DRE07

EDACKO

EDACKI

EDACK2

EOP#

.--.._-.~ TOUT2#
J----I

TOUT3#

.. _____________________ '-_-_.::._:.=_-_~ .. - eLK IN

Figure 1-1. Architecture of the 82370

4-803

290164-4

inter 82370

1.1.1 DMA CONTROLLER

The 82370 contains a high-performance, 8-channel
DMA Controller. It provides a 32-bit internal data
path. Through its 16-bit external physical data bus, it
is capable of transferring data in any combination of
bytes, words and double-words. The addresses of
both source and destination can be independently
incremented, decremented or held constant, and
cover the entire 16-bit physical address space of the
80376. It can disassemble and assemble non­
aligned data via a 32-bit internal temporary data
storage register. Data transferred between devices
of different data path widths can also be assembled
and disassembled using the internal temporary data
storage register. The DMA Controller can also trans­
fer aligned data between I/O and memory on the fly,
allowing data transfer rates up to 16 megabytes per
second for an 82370 operating at 16 MHz. Figure.
1-2 illustrates the functional components of the DMA
Controller.

There are twenty-four general status and command
registers in the 82370 DMA Controller. Through
these registers any of the channels may be pro­
grammed into any of the possible modes. The oper­
ating modes of anyone channel are independent of
the operation of the other channels.

Each channel has three programmable registers
which determine the location and amount of data to
be transferred:

Byte Count Register- Number of bytes to trans­
fer. (24-bits)

Requester Register - Byte Address of memory
or peripheral which is re­
questing DMA service.
(24-bits)

Target Register - Byte Address of peripheral
or memory which will be
accessed. (24-bits)

There are also port addresses which, when ac­
cessed, cause the 82370 to perform specific func­
tions. The actual data written doesn't matter, the act
of writing to the specific address causes the com­
mand to be executed. The commands which operate
in this mode are: Master Clear, Clear Terminal Count
Interrupt Request, Clear Mask Register, and Clear
Byte Pointer Flip-Flop.

DMA transfers can be done between all combina­
tions of memory and 110; memory-to-memory, mem­
ory-to-I/O, I/O-to-memory, and I/O-to-I/O. DMA
service can be requested through software andlor
hardware. Hardware DMA acknowledge signals are
available for all channels (except channel 4) through
an encoded 3-bit DMA acknowledge bus
(EDACKO-2).

I
HOLD.---------~ CONTROL/STATUS REGISTERS CHANNEL REGISTERS
HLDA·

DREQO
DREQl
DREQ2
DREQ3
DREQ4
DREQS
DREQ6
DREQ7

~
~
~
~

~

DMA
REQUEST

ARBITRATION
LOGIC

COMMAND REGISTER I

COMMAND REGISTER rr
MODE REGISTER I

MODE REGISTER rr
SOFTWARE REQUEST

REGISTER
MASK REGISTER

STATUS REGISTER
BUS SIZE REGISTER

CHAINING REGISTER

BASE CURRENT TEMPORARY
BYTE COUNT BYTE COUNT REGISTER

BASE CURRENT
REQUESTER REQUESTER

ADDRESS ADDRESS
CHANNEL 0

BASE CURRENT
TARGET TARGET

ADDRESS ADDRESS

CHANNEL 1 (SAME AS CH 0)

CHANNEL 2 (SAME AS CH 0)

CHANNEL 3 (SAME AS CH 0)

I "LOWER" GROUP OF CHANNELS

EDACKO +--
EDACKl +-- PROCESS

CONTROL
EDACK2 +--

EOP# ~

I "UPPER" GROUP OF' CHANNELS

CHANNEL 4 (SAME AS CH 0)
CONTROL/STATUS CHANNEL S (SAME AS CH 0)
(SAME AS

CHANNEL 6 (SAME AS CH 0) LOWER GROUP)
CHANNEL 7 (SAME AS CH 0)

Figure 1·2. 82370 DMA Controller
4-804

290164-5

inter 82370

The 82370 DMA Controller transfers blocks of data
(buffers) in three modes: Single Buffer, Buffer Auto­
Initialize, and Buffer Chaining. In the Single Buffer
Process, the 82370 DMA Controller is programmed
to transfer one particular .block of data. Successive
transfers then require reprogramming of· the DMA
channel. Single Buffer transfers are useful in sys­
tems where it is known at the time the transfer be­
gins what quantity of data is to be transferred, and
there is a contiguous block of data area available.

The Buffer Auto-Initialize Process allows the same
data area to be used for successive DMA transfers
without having to reprogram the channel.

The Buffer Chaining Process allows a program to
specify a list of buffer transfers to be executed. The
82370 DMA Controller,· through interrupt routines, is
reprogrammed from the list. The channel is repro­
grammed for a new buffer before the current buffer
transfer is complete. This pipelining of the channel
programming process allows the system to allocate
non-contiguous blocks of data storage space, and
transfer all of the data with one DMA process. The
buffers that make up the chain do not have to be in
contiguous locations.

Channel priority can be fixed or rotating. Fixed priori­
ty allows the programmer to define the priority of
DMA channels based on hardware or other fixed pa-

CONTROL -~
LOGIC

elKIN

rameters. Rotating priority is used to provide periph­
erals access to the bus on a shared basis.

With fixed priority, the programmer can set any
channel to have the current lowest priority. This al­
lows the user to reset or manually rotate the priority
schedule without reprogramming the command reg­
isters.

1.1.2 PROGRAMMABLE INTERVAL TIMERS

Four 16-bit programmable interval timers reside
within the 82370. These timers are identical in func­
tion to the timers in the 82C54 Programmable Inter­
val Timer. All four of the timers share a common
clock input which can be independent o.f th~ ~ste~
clock. The timers are capable of operating In SIX dif­
ferent modes. In all of the modes, the current count
can be latched and read by the 80376 at any time,
making these very versatile event timers. Figure 1-3
shows the functional components of the Program­
mable Interval Timers.

The outputs of the timers are directed to key system
functions, making system design simpler. Timer O'is
routed directly to an interrupt input arid is riot' avail­
. able externally. This timer would typically be used to
generate time-keeping interrupts. .

TOUTO

-------nM~O--------
TIMER 1 TOUT1

TIMER 2 TOUT2

TIMER 3 TOUT3
290164-6

Figure 1·3. Programmable Interval Tlmers-Block Diagram

4-805

iii ~.

:~
I,

82370 .

Timers 1 and 2 have outputs which are available for
general timer / counter purposes as well as special
functions. Timer 1 is routed to the refresh control
logic to provide refresh timing. Timer 2 is connected
to an interrupt request input to provide other timer
functions. Timer 3 is a general purpose timer/coun­
ter whose output is available to external hardware. It
is also connected internally to the interrupt request
which defaults to the highest priority (I ROO).

1.1.3 INTERRUPT CONTROLLER

The 82370 has the equivalent of three enhanced
82C59A Programmable Interrupt Controllers. These
controllers can all be operated in the Master Mode,
but the priority is always as if they were cascaded.
There are 15 interrupt request inputs provided for
the user, all of which can be inputs from external
slave interrupt controllers. Cascading 82C59As to
these request inputs allows a possible total of 120
external intetrupt requests. Figure 1-4 is a block dia­
gram of the 82370 Interrupt Controller.

Each of the interrupt request inputs can be ind.ividu­
ally programmed with its own interrupt vector, allow­
ing. more flexibility in interrupt vector mapping than

IRQO#
IRQ1#
IRQ2#
IRQ3#
IRQ4#
IRQS#
IRQa#
IRQ7# .

DATA (0-7)

was available with the 82C59A.An interrupt is pro­
vided to alert the system that an attempt is being
made to program the. vectors in the method of the
82C59A. This provides compatibility of existing. soft­
ware that used the 82C59A or 8259Awith new de­
signs using the 82370.

In the event of an· unrequested .or otherwise errone­
ous interrupt acknowledge cycle, the 82370 Interrupt
Controller issues a default vector. This vector, pro­
grammed by the system software, will alert the sys­
tem of unsolicited interrupts of the 80376.

The functions of the 82370 Interrupt Controller are
identical to the 82C59A, except in regards to pro­
gramming the interrupt vectors as mentioned above.
Interrupt request inputs are programmable as either
edge or level triggered and are software maskable.
Priority can be either fixed or rotating and interrupt
requests can be nested.

Enhancements are added to the 82370 forcascad·
ing external interrupt controllers. Master to Slave
handshaking takes place on the data bus, instead of
dedicated cascade lines.

IRQO
IRQl
IRQ2
IRQ3
IRQ4
IRQ5

IRQa
IRQ7

r--___ .. INTERRUPT
TO HOST

IN­
SERVICE

REG.

DATA (0-7)

INDIVIDUALLY PROGRAMMABLE
II,ECTORBANK

82370 ENHANCEMENT OVER THE 82CS9A
290164-7

Figure 1·4.82370 Interrupt Control.ler-Block Diagram

4-806

inter 82370

1.1.4 WAIT STATE GENERATOR

The Wait State Generator is a programmable
READY generation circuit for the 80376 bus. A p~­
ripheral requiring wait states can request the Walt
State Generator to hold the processor's READY in­
put inactive for a predetermined number of bus
states. Six different wait state counts can be pro­
grammed into the Wait State Generator by software;
three for memory accesses and three for 1/0 ac­
cesses. A block diagram of the 82370 Wait State
Generator is shown in Figure 1-5.

The peripheral being accessed selects the re~uire~
wait state count by placing a code on a 2-bIt walt
state select bus. This code along with the M/IO#
signal from the bus master is used to select one of
six internal 4-bit wait state registers which has been
programmed with the desired number of wait states.
From zero to fifteen wait states can be programmed
into the wait state registers. The Wait State genera­
tor tracks the state of the processor or current bus
master at all times, regardless of which device is the
current bus master and regardless of whether or not
the wait state generator is currently active.

The 82370 Wait State Generator is disabled by mak­
ing the select inputs both high. This allows hardware
which is intelligent enough to generate its own ready
signal to be accessed without penalty. As previously
mentioned, deselecting the Wait State Generator
does not disable its ability to determine the proper
number of wait states due to pipeline status in sub­
sequent bus cycles.

The number of wait states inserted into a pipelined
bus cycle is the value in the selected wait state reg­
ister. If the bus master is operating in the non-pipe­
lined mode, the Wait State Generator will increase
the number of wait states inserted into the bus cycle
by one.

Pipelined 0-15 Wait States
Non·Pipelined 0-16 Wait States

On reset, the Wait State Generator's registers are
loaded with the value FFH, giving the maximum
number of wait states for any access in which the
wait state select inputs are active.

1.1.5 DRAM REFRESH CONTROLLER

The 82370 DRAM Refresh Controller consists of a
24-bit refresh address counter and bus arbitration
logic. The output of Timer 1 is used to periodically
request a refresh cycle. When the controller re­
ceives the request, it requests access to the system
bus through the HOLD signal. When bus control is
acknowledged by the processor or current bus mas­
ter, the refresh controller executes a memory read
operation at the address currently in the Refresh Ad­
dress Register. At the same time, it activates a re­
fresh signal (REF#) that the memory uses to force a
refresh instead of a normal read. Control of the bus
is transferred to the processor at the completion of
this cycle. Typically a refresh cycle will take six clock
cycles to execute on an 80376 bus.

The 82370 DRAM Refresh Controller has the high­
est priority when requesting bus access and will in­
terrupt any active DMA process. This allows large
blocks of data to be moved by the DMA controller
without affecting the refresh function. Also. the DMA
controller is not requirel;! to completely relinquish the
bus, the refresh controller simply steals a bus cycle
between DMA accesses.

The amount by which the refresh address is incre­
mented is programmable to allow for different bus
widths and memory bank arrangements.

1.1.6 CPU RESET FUNCTION

The 82370 contains a special reset function which
can respond to hardware reset signals as well as a

07 0403

wsco

WSCl

1.4/10#

MEMORY 0 1/0 0

MEMORY 1 1/01

MEMORY 2 1/02

(RESERVED) REFRESH

PROGRAMMABLE WAIT STATE
REGISTERS

WAIT STATE
COUNTER

Figure 1-5.82370 Wait State Generator-Block Diagram

4-807

290164-8

82370

software reset command. The circuit will hold the
80376's RESET line active while an external hard­
ware reset Signal is present at its RESET input. It
can also reset the 80376 processor as the result of a
software command. The software reset command
causes the 82370 to hold the processor's RESET
line active for a minimum of 62 clock cycles. The
80376 requires that its RESET line be held active for
a minimum of 80 clock cycles to re-initialize. For a
more detailed explanation and solution, see Appen­
dix 0 (System Notes).

The 82370 can be programmed to sense the shut­
down detect code on the status lines. from the
80376. If the Shutdown Detect function is enabled,
the 82370 will automatically reset the processor. A
diagnostic register is available which can be used to
determine the cause of reset.

1.1.7 REGISTER MAP RELOCATION

After a hardware reset, the· internal registers of the
82370 are located in liD space beginning at port
address OOOOH. The map of the 82370's registers is
relocatable via a software command. The default
mapping places the 82370 between I/O addresses
OOOOH . and OOOBH. The relocation register allows
this map to be moved to any even 256-bytebounda­
ry in the processor's 16-bit liD address space or any
even 64 kbyte boundary in the 24-bit memory ad­
dress space.

1.2 Host Interface

The 82370 is designed to operate efficiently on the·
local bus of an 80376 microprocessor. The control
Signals of the 82370 are identical in function to
those of the 80376: As a slave, the. 82370 operates
with all of the features available on the 80376 bus.
When the 82370 is in the Master Mode, it looks iden­
tical to an 80376 to the connected devices.

The 82370 monitors the bus at all times, and deter­
mines whether the current bus cycle is a pipelined or
non-pipelined access. All of the status Signals of the
processor are monitored.

The control, status, and data registers within the
82370 are located at fixed addresses relative to
each other, but the group can be relocated to either
memory or 110 space and to different locations with­
in those spaces.

As a Slave device, the 82370 monitors the control I
status .lines of the CPU. The 823.70 will generate all
of the wait states it needs whenever it is accessed.
This allows the programmer .the freedom of access-

ing 82370 registers without having to insert NOPs in
the program to wait for slower 82370 internal regis­
ters.

The 82370 can determine if a current bus cycle is a
pipelined or a non-pipe lined cycle. It does this by
monitoring the AOS#, NA# and REAOY# Signals
and thereby keeping track of the current state of the
80376.

As a bus master, the 82370 looks like an 80376 to
the rest of the system. This enables the designer
greater flexibility in systems which include the
82370. The designer does not have to alter the inter­
faces of any peripherals designed to operate with
the 80376 to accommodate the 82370. The 82370
will access any peripherals on the bus in the same
manner as the 80376, including recognizing pipe­
lined bus cycles.

The 82370 is accessed as an 8-bit peripheral. The
80376 places the data of all 8-bit accesses either on
0(0-7) or 0(8-15). The 82370 will only accept data
on these lines when in the Slave Mode. When in the
Master Mode, the 82370 is a full 16-bit machine,
sending and receiving data in the same manner as
the 80376.

2.0 80376 HOST INTERFACE

The 82370 contains a set of interface signals to op­
erate efficiently with the 80376 host processor.
These signals were designed so that minimal hard­
ware is needed to connect the 82370 to the 80376.
Figure 2-1 depicts a typical system configuration
with the 80376 processor, As shown in the diagram,
the 82370 is designed to interface directly with the
80376 bus.

Since the 82370 resides on the opposite side of the
data bus transceivers with· respect to the rest of the
system peripherals, it is important to note that the
transceivers should be controlled so that contention
between the data bus transceivers and the 82370
will not occur. In order to ease the implementation of
this, the 82370 activates the CHPSEL# signal which
indicates that the 82370 has been addressed and
may output data. This signal should be included in
the direction and enable control logic of the trans­
ceiver. When any of the 82370 internal registers are
read, the data bus transceivers should be disabled
so that only the 82370 will drive the local bus.

This section describes the basic bus functions of the
82370 to show how this device interacts with the
80376 processor. Other signals which are not direct­
ly related to the host interface will be discussed in
their associated functional block description.

4-808

82370

FROM OTHER
PERIPHERALS

Vee
~

<"
CLOCK GENERATOR ~ 10kll.

CLK2 RESET RESET

CLK2

I
ADS#

ADS# CLK2
CPURST RESET

I OPTIONAL

~ READY#

1 I
WAITSTATE READYO#

LOGIC

READY#

HOLD HOLD 82370
HLDA HLDA

80376 INT INT

D/C# D/C#

W/R# W/R#

M/IO# M/IO#

BLE#.BHE# " " BLE#.BHE# .
A1 -A23

" II ':
A1 - A23

00- 015 00- 015 CHPSEL#

! JJ
J TO BUS TO BUS OE

CONTROLLER BUFFERS
290164-A6

Figure 2·1. 80376/82370 System Configuration

2.1 Master and Slave Modes

At any time, the 82370 acts as either a Slave device
or a Master device in the system. Upon reset, the
82370 will be in the Slave Mode. In this mode, the
80376 processor can read/write into the 82370 in­
ternal registers. Initialization information may be pro­
grammed into the 82370 during Slave Mode.

When DMA service (including DRAM Refresh Cycles
generated by the 82370) is requested, the 82370 will
request and subsequently get control of the 80376
local bus. This is done through the HOLD and HLDA
(Hold Acknowledge) signals. When the 80376 proc-

essor responds by asserting the HLDA Signal, the
82370 will switch into Master Mode and perform
DMA transfers. In this mode, the 82370 is the bus
master of the system. It can read/write data from/to
memory and peripheral devices. The 82370 will re­
turn to the Slave Mode upon completion of DMA
transfers, or when HLDA is negated.

2.2 80376 Interface Signals

As mentioned in the Architecture section, the Bus
Interface module of the 82370 (see Figure 1-1) con­
tains Signals that are directly connected to the
80376 host processor. This module has separate

4·809

I.
I

L

82370

16-bit Data and 24-bit Address busses. Also, it has
additional control signals to support different bus op­
erations on the system. By residing on the 80376
local bus, the 82370 shares the same address, data
and control lines with the processor. The following
subsections discuss the signals which interface to
the 80376 host processor.

2.2.1 CLOCK (CLK2)

The ClK2 input provides fundamental timing for the
82370. It is divided by two internally to generate the
82370 internal clock. Therefore, ClK2' should be
driven with twice the 80376's frequency. In order to
maintain synchronization with the 80376 host proc­
essor, the 82370 and the 80376 should share a
common clock source.

The internal clock consists of two phases: PHI1 and
PHI2. Each ClK2 period is a phase of the internal
clock. PHI2 is usually used to sample input and set
up internal signals and PHI1 is for latching internal
data. Figure 2-2 illustrates the relationship of ClK2
and the 82370 internal clock signals. The CPURST
signal generated by the 82370 guarantees that the
80376 will wake up in phase with PHI1.

2.2.2 DATA BUS (Do-D1S)

This 16-bit three-state bidirectional bus provides a
general purpose data path between the 82370 and
the system. These pins are tied directly to the corre­
sponding Data Bus pins of the 80376 local bus. The
Data Bus is also used for interrupt vectors generated
by the 82370 in the Interrupt Acknowledge cycle.

During Slave I/O operations, the 82370 expects a
single byte to be written or read. When the 80376
host processor writes into the, 82370, either 00-07
or 08-015 will be latched into the 82370, depending

upon whether Byte Enable bit BlE# is 0 or 1 (see
Table 2-1). When the 80376 host processor reads
from the 82370, the single byte data will be duplicat­
ed twice on the Data Bus; i.e. on Do-D7 and 08-
015·

During Master Mode, the 82370 can transfer 16-,
and 8-bit data between memory (or I/O devices) and
I/O devices (or memory) via the Data Bus.

2.2.3 ADDRESS BUS (A23-A1)

These three-state bidirectional signals are connect­
ed directly to the 80376 Address Bus. In the Slave
Mode, they are used as input signals so that the
processor can address the 82370 internal ports/reg­
isters, In the Master Mode, they are used as output
signals by the 82370 to address memory and periph­
eral devices. The Address Bus is capable of ad­
dressing 16 Mbytes of physical memory space
(OOOOOOH to FFFFFFH), and 64 Kbytes of I/O ad­
dresses.

2.2.4 BYTE ENABLE (BHU, BLE #)

The Byte Enable pins' BHE# and BlE# select the
specific byte(s) in the word addressed by A1-A23.
During Master Mode operation, it is used as an out­
put by the 82370 to address memory and I/O loca­
tions. The definition of BHE# and BlE# is further
illustrated in Table 2-1.

NOTE:
The 82370 will activate BHE# when output in Mas­
ter Mode. For a more detailed explanation and its
solutions, see Appendix 0 (System Notes),

Figure 2-2. CLK2 and 82370 Internal Clock

4-810

82370

As an output (Master Mode):
Table 2-1. Byte Enable Signals

Byte to be Accessed
Logical Byte Presented on

BHE# BLE# Data Bus During WRITE Only'
Relative to A23-A1

015-08 07-00

0 0 0, 1 B A
0 1 1 A A
1 0 0 U A
1 1 (Not Used)

U = Undefined
A = Logical 00-07
B = Logical Ds-D15

"NOTE:
Actual number of bytes accessed depends upon the programmed data path width.

Table 2-2. Bus Cycle Definition

MIIO# D/C# W/R#

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1

1 1 0
1 1 1

2.2.S BUS CYCLE DEFINITION SIGNALS
(D/C#, W/R#, MIIO#)

These three-state bidirectional signals define the
type of bus cycle being performed. W/R# distin­
guishes between write and read cycles. D/C# dis­
tinguishes between processor data and control cy­
cles. M/IO# distinguishes between memory and I/O
cycles.

During Slave Mode, these signals are driven by the
80376 host processor; during Master Mode, they are
driven by the 82370. In either mode, these signals
will be valid when the Address Status (ADS#) is
driven LOW. Exact bus cycle definitions are given in
Table 2-2. Note that some combinations are recog­
nized as inputs, but not generated as outputs. In the
Master Mode, D/C# is always HIGH.

2.2.6 ADDRESS STATUS (ADS#)

This signal indicates that a valid address (A1-A23,
BHE#, BLE#) and bus cycle definition (W/R#,
D/C#, M/IO#) is being driven on the bus. In the
Master Mode, it is driven by the 82370 as an output.
In the Slave Mode, this signal is monitored as

As INPUTS As OUTPUTS

Interrupt Acknowledge NOT GENERATED
UNDEFINED NOT GENERATED
1/0 Read 110 Read
1/0 Write 1/0 Write
UNDEFINED NOT GENERATED
HALT if A1 = 1 NOT GENERATED
SHUTDOWN if A1 = 0
Memory Read Memory Read
Memory Write Memory Write

an input by the 82370. By the current and past
status of ADS# and theREADY# input, the 82370
is able to determine, during Slave Mode, if the next
bus cycle is a pipelined address cycle. ADS# is as­
serted during T1 and T2P bus states (see Bus State
Definition).

NOTE:
ADS# must be qualified with the rising edge of
CLK2.

2.2.7 TRANSFER ACKNOWLEDGE (READY#)

This input indicates that the current bus cycle is
complete. In the Master Mode, assertion of this sig­
nal indicates the end of a DMA bus cycle. In the
Slave Mode, the 82370 monitors this input and
ADS# to detect a pipe lined address cycle. This sig­
nal should be tied directly to the READY # input of
the 80376 host processor.

2.2.8 NEXT ADDRESS REQUEST (NA#)

This input is used to indicate to the 82370 in the
Master Mode that the system is requesting address

4-811

i
'1"
I

inter 82310

pipelining. When driven LOW by either memory or
peripheral devices during Master Mode, it indicates
that the system is prepared to accept a new address
and bus cycle definition signals from the 82370 be­
fore the end of the current bus cycle. If this input is
active when sampled by the 82370, the next address
is driven onto the bus, provided a bus request is
already pending internally.

This input pin is monitored only in the Master Mode.
In the Slave Mode, the 82370 uses the ADS# and
READY # signals to determine address pipelining
cycles, and NA# will be ignored.

2.2.9 RESET (RESET, CPURST)

RESET

This synchronous input suspends any operation in
progress and places the 82370 in a known initial
state. Upon reset, the 82370 will be in the Slave
Mode waiting to be initialized by the 80376 host
processor. The 82370 is reset by asserting RESET
for 15 or more CLK2 periods. When RESET is as­
serted, all other input pins are ignored, and all other·
bus pins are driven to an idle bus state as shown in
Table 2"3. The 82370 will determine the phase of 'its
internal clock following RESET going inactive.

RESET is level-sensitive and must be synchronous
to the CLK2 signal. The RESET setup and hold time
requirements are shown in Figure 2-3.

CLK2

RESET

TaO-RESET Hold Time·
Tal-RESET Setup Time

Table 2"3. Output Signals Following RESET

Signal Level

Al-A23, 00-015, BHE#, BLE# Float
D/C#, W/R#, MlIO#, ADS# Float
READYO# '1 '
EOP# '1' (Weak Pull-UP)
EDACK2-EDACKO '100'
HOLD '0'
INT UNDEFINED"
TOUT1 IREF #, UNDEFINED"
TOUTU/IRQ3#, TOUT3#
CPURST '0'
CHPSEL# '1 '

'NOTE:
The Interrupt Controller and Programmable Interval Timer
are initialized by software commands.

CPURST

This output signal is used to reset the 80376 host
processor. It will go active (HIGH) whenever one of
the following events occurs: a) 82370's RESET input
is active; b) a software RESET command is issued
to the 82370; or c) when the 82370 detects a proc­
essor Shutdown cycle and when this· detection fea­
ture is enabled (see CPU Reset and Shutdown De­
tect). When activated, CPURST will be held active
for 62 clocks. The timing of CPURST is such that the
80376 processor will be in synchronization with the
82370. This timing is shown in Figure 2-4.

290164-10

Figure 2-3. RESET Timing

·PHI2 PHI 1 PHI. 2 PHil

CLK2

j--T33 MIN.

CPURST \\\\\\~
290164-11

T33-CPU Reset from CLK2

Figure 2-4. CPURST Timing

4-812

intJ 82370

2.2.10 INTERRUPT OUT (lNT)

This output pin is used to signal the 80376 host
processor that one or more interrupt requests (either
internal or external) are pending. The processor is
expected to respond with an Interrupt Acknowledge
cycle. This signal should be connected directly to
the Maskable Interrupt Request (INTR) input of the
80376 host processor.

2.3 82370 Bus Timing

The 82370 internally divides the CLK2 signal by .two
to generate its internal clock. Figure 2-2 showed the
relationship of CLK2 and the internal clock which
consists of two phases: PHI1 and PHI2. Each CLK2
period is a phase of the internal clock.

In the 82370, whether it is in the Master or Slave
Mode, the shortest time unit of bus activity is a bus
state. A bus state, which is also referred as a
'T-state', is defined as one 82370 PHI2 clock period
(i.e. two CLK2 periods). Recall in Table 2-2 various
types of bus cycles in the 82370 are defined by the
MIIO#, D/C#and W/R# signals. Each of these
bus cycles is composed of two or more bus states.
The length of a bus cycle depends on when the
READY # input is asserted (i.e. driven LOW).

2.3.1 ADDRESS PIPELINING .

The 82370 supports Address' Pipelining as an option
in both the Master and Slave Mode. This feature typ­
ically allows a memory or peripheral device to oper­
ate with one less wait state than would otherwise be
required. This is possible because during a pipelined
cycle, the address and bus cycle definition of the
next cycle will be generated by the bus master while
waiting for the end of the current cycle to be ac­
knowledged. The pipelined bus is especially well
suited for an interleaved memory environment. For
16 MHz interleaved memory designs with 100 ns ac­
cess time DRAMs, zero wait state memory accesses
can be achieved when pipelined addressing is se­
lected.

In the Master Mode, the 82370 is capable of initiat­
ing, on a cycle-by-cycle basis, either a pipelinEid or
non-pipe lined access depending upon the state of
the NA# input. If a pipelined cycle is requested (indi­
cated by NA# being driven LOW), the 82370 will
drive the address and bus cycle definition of the next
cycle as soon as there is an internal bus request
pending.

In the Slave Mode, the 82370 is constantly monitor­
ing the ADS# and READY# Signals on the proces­
sor local bus to determine if the current bus cycle is

a pipelined cycle. If a pipelined cycle is detected, the
82370 will request one less wait state from the proc­
essor if the Wait State Generator feature is selected.
On the other hand, during an 82370 internal register
access in a pipelined cycle, it will make use of the
advance address and bus cycle information. In all
cases, Address Pipelining will result in a savings of
one wait state.

2.3.2 MASTER MODE BUS TIMING

When the 82370 is in the Master Mode, it will be in
one of six bus states. Figure 2-5 shows the complete
bus state diagram of the Master Mode, including
pipelined address states. As seen in the figure, the
82370 state diagram is very similar to that of the
80376. The major difference is that in the 82370,
there is no Hold state. Also, in the 82370, the condi­
tions for some state transitions depend upon wheth­
er it is the end of a DMA process.

NOTE:
The term 'end of a DMA process' is loosely defined
here. It depends on theDMA modes of operation
as well as the state of the EOP# and. DREQ in­
puts. This is. expained in detail in section 3-DMA
Controller.

The 82370 will enter the idle state, Ti, upon RESET
and whenever the internal address is not available at
the end of a DMA cycle or at the end of a DMA
process. When address pipelining is not used (NA #
is not asserted), a new bus cycle always,begins with
state T1. During T1, address and bus cycle definition
Signals will be driven on the bus. Tf is always fol­
lowed by T2.

If a bus cycle is not acknowledged (with READY #)
during T2 and NA# is negated, T2 will be repeated.
When the end of the bus cycle is acknowledged dur­
ing T2, the following state will be T1 of the next bus
cycle (if the internal address latch is loaded and if
this is not the end of the DMA process). Otherwise,
the Ti state will be entered. Therefore, if the memory
or peripheral accessed is fast enough to respond
within the first T2, the fastest non-pipe lined cycle will
take one T1 and one T2 state.

Use of the address pipelining feature allows the
82370 to enter three additional bus states: T1 P, T2P
and T2i. T1 P is the first bus state of a pipelined bus
cycle. T2P follows T1P (or T2) if NA# is asserted
when sampled. The 82370 will drive the bus with the
address and bus cycle definition signals of the next
cycle during T2P. From the state diagram, it can be
seen that after an idle state Ti, the first bus cycle
inU!?t begin with T1, and is therefore a non-pipelined
bus cycle. The next bus cycle can be pipelined if

4-813

inter 82370

NA # is asserted and theprevicius bus cycle ended
in a T2P state. Once the 82370 is in a pipelined
cycle and provided that NA # is asserted in subse­
quent cycles, the 82370 will be switching between
T1 P and T2P states. If the end of the current bus
cycle is not acknowledged by the READY # input,
the 82370 will extend the cycle by adding T2P
states. The fastest pipelined cycle will consist of one
T1 P and one T2P state.

The 82370 will enter state T2i when NA # is assert·
ed and when one of the following two conditions
occurs. The first condition is when the 82370 is in
state T2. T2i will be entered if READY # is not as·
serted and there is no next address available. This
situation is similar to a wait state. The 82370 will stay
in T2i for as long as this condition exists. The sec·
ond condition which will cause the 82370 to enter
T2i is when the 82370 is in state T1 P. Before going
to state T2P, the 82370 needs to wait in state T2i
until the next address is available. Also, in both cas·
es, if the DMA process is complete, the 82370 will
enter the T2i state in order to finish the current DMA
cycle.

Figure 2·6 is a timing diagram showing non·pipelined
bus accesses in the Master Mode. Figure 2-7 shows
the timing of pipelined accesses in the Master Mode.

2.3.3 SLAVE MODE BUS TIMING

Figure 2-8 shows the Slave Mode bus timing in both
pipelined and non-pipelined cycles when the 82370
is being accessed. Recall that during Slave Mode,
the 82370 will constantly monitor the ADS# and
READY # signals to determine if the next cycle is
pipelined. In Figure 2-8, the first cycle is non-pipe­
lined and the second cycle is pipelined. In the pipe­
lined cycle, the 82370 will start decoding the ad­
dress and bus cycle signals one bus state earlier
than in a non-pipe lined cycle.

The READY # input signal is sampled by the 80376
host processor to determine the completion of a bus
cycle. This occurs durin'g the end of every T2, T2i
and T2P state. Normally, the output of the 82370
Wait State Generator, READYO#, is directly con·
nected to the READY # input of the 80376 host
processor and the 82370. In such case, READYO#
and READY # will be identical (see Wait State Gen­
erator).

NAN Asserted. [Not ADAV+ End of DMA)

Not ADAV, READY# Negated

290164-12

NOTE:
ADAV-Internal Address Available

Figure 2-5. Master Mode State Diagram

4-814

inter 82370

CYCLE 1 CYCLE 2

T1 T2 Tl T2 T2 T1 T2

CLK2

PHI2

ADSN , I \ 2 I \ 3 ,--
ADDRESS

AND CONTROL --< ADDR 1 X ADDR 2 X ADDR 3

DATA CD CD cr:: (READ)

DATA (X X (WRITE)

NAN XXXXXXXXXXXX1 ~ '<XXXXXXXXXXXXX
READYN XXXXXXXXXXXXXXX 1 ~XXXXXXXXY '<m 2 .<XXXXXXXXA 3

I o WAIT STATE 1 WAIT STATE o WAIT STATE

Figure 2-6. Non-Plpellned Bus Cycles

CYCLE 1

T1p T2p T1p

CLK2

PHI2

CYCLE 2

T2p T2p

CYCLE 3

Tip, I T2p

\

290164-13

AND ~g~;;; :.2J:l::::~@§:_~\ _2 __ :;.' _' -I. ~_..J1\ __ 3_~3 __ '_-+C_~
NAN ~ &QOOOOOOOO<A .()QQQQQQQ()Q() ,()QQQQQQQ{

READYN X\ ,<XXXXXXXXX&\ 1 J.XXXXmXXXY
DATA CIJ CD'----~r:-(READ) ------0(1 -------C 2 ;- ~

DATA --"""""\,....--~--"",....---~----"",....""""'!~-
(WRITE) X X 2 XI.......:3~_

290164-14

Figure 2-7. Plpellned Bus Cycles

4-815

82370

CLK2

PHI2

NON-PIPELINED
CYCLE

PIPELINED
CYCLE

A(1-23) A:~m,-~--t--""';'-h.,----i '---+----+ ... I'"---....i' -----/ Bl.E#.BHE# A ~ {-
M/IO# ~1IoAo1l.Cfo"----+----~"---~ "l---!----..,.-"---.. ;n.--........j

D/C#.W/R#

ADS#

READYO# __ -+"
(TWO OR MORE WAIT STATES)

0(0-15)
(REAO)

(ONE OR MORE WAIT STATES)

~
,

~

0(0-15) ---t-....:.-{~~===::t====j (WRITE) , X ,

290164-15

NOTE:
NA 11 is shoWn here only for timing reference. It is not sampled by the 82370 -during Slave Mode.
When the 82370 registers are accessed. it will tl!ke one or more wait states in pipelined and two or more wait states in
non-pipelined cycle to complete the internal access. '

,Figure 2~8. Slave Read/Write Timing

3.0 DMA CONTROLLER

The 82370 DMA Controller is capable of transferring
data between any combination of memory andlor
liD, with any combination of data path widths. The
82370 DMA Controller can be programmed to ac­
commodate 8- or 16-bit devices. With its 16-bit ex­
ternal data path, it can transfer data in units of byte
or a word. Bus bandwidth is optimized through the
use of an internal temporary register which can dis­

,assemble or assemble data to or from either an
aligned or non-aligned destination or source. Figure
3-1 is a block diagram of the 82370 DMA Controller.

The 82370 has eight channels of DMA. Each chan­
nel operates independently of the others. Within the
operation of the individual channels, there are many
different modes of data transfer available. Many of
the operating modes can be intermixed to provide a
very versatile DMA controller.

3.1 Functional Description

In describing the operation of the 82370's DMA Con­
troller, close attention to terminology is required. Be-

4-816

inter 82370

HOLD -----,
HLDA

DREQO
DREQl
DREQ2
DREQ3
DREQ4
DREQ5
DREQ6
DREQ7

=:
=:
=:
=:

.. I

DMA
REQUEST

ARBITRATION
LOGIC

CONTROL/STATUS REGISTERS CHANNEL REGISTERS

COMMAND REGISTER I BASE CURRENT TEMPORARY
COMMAND REGISTER II BYTE COUNT BYTE COUNT REGISTER

MODE REGISTER I BASE CURRENT
REQUESTER REQUESTER

MODE REGISTER II ADDRESS ADDRESS
CHANNEL 0

SOFlWARE REQUEST BASE CURRENT
REGISTER TARGET TARGET

MASK REGISTER ADDRESS ADDRESS

STATUS REGISTER CHANNEL 1 (SAME AS CH 0)

BUS SIZE REGISTER CHANNEL 2 (SAME AS CH 0)

CHAINING REGISTER CHANNEL 3 (SAME AS CH 0)

I "LOWER" GROUP or CHANNELS

EDACKO +--
EDACKl +-- PROCESS

CONTROL
EDACK2 +--

EOP# +---+ I "UPPER" GROUP or CHANNELS

CHANNEL 4 SAME AS CH 0)
CONTROL/STATUS CHANNEL 5 SAME AS CH 0)
(SAME AS

CHANNEL 6 SAME AS CH 0) LOWER GROUP)
CHANNEL 7 (SAME AS CH 0)

290164-16

Figure 3·1. 82370 DMA Controller Block Diagram

fore entering the discussion of the function of the
82370 DMA Controller, the following explanations of
some of the terminology used herein may be of ben­
efit. First, a few terms for clarification:

DMA PROCESS-A DMA process is the execution
of a programmed DMA task from beginning to end.
Each DMA process requires intitial programming by
the host 80376 microprocessor.

BUFFER-A contiguous block of data.

BUFFER TRANSFER-The action required by the
DMA to transfer an entire buffer.

DATA TRANSFER-The DMA action in which a
group of bytes or words are moved between devices
by the DMA Controller. A data transfer operation
may involve movement of one or many bytes.

BUS CYCLE-Access by the DMA to a single byte
or word.

Each DMA channel consists of three major compo­
nents.· These components are identified by the con­
tents of programmable registers which define the

memory or 1/0 devices being serviced by the DMA.
They are the Target, the Requester, and the Byte
Count. They will be defined generically here and in
greater detail in the DMA register definition section.

The Requester is the device which requires service
by the 82370 DMA Controller, and makes the re­
quest for service. All of the control signals which the
DMA monitors or generates for specific channels
are logically related to the Requester. Only the Re­
quester is considered capable of initiating or termi­
nating a DMA process.

The Target is the device with which the Requester
wishes to communicate. As far as the DMA process
is concerned, the Target is a slave which is incapa­
ble of control over the process.

The direction of data transfer can be either from Re­
quester to Target or from Target to Requester; i.e.
each can be either a source or a destination.

The Requester and Target may each be either 1/0
or memory. Each has an address associated with it
that can be incremented, decremented, or held con­
stant. The addresses are stored in the Requester

4-817

j
1,'(

i ,'.

82370

Address Registers and Target Address Registers,
respectively. These registers have two parts: one
which contains the current address being used in the
DMA process (Current Address Register), and one
which holds the programmed base address (Base
Address Register). The contents of the Base Regis­
ters are never changed by the 82370 DMA Control­
ler. The Current Registers are incremented or decre­
mented according to the progress of the DMA pro­
cess.

The Byte Count is the component of the DMA pro­
cess which dictates the amount of data which must
be transferred. Current and Base Byte Count Regis-

, ters are provided. The Current Byte Count Register
is decremented once for each byte transferred by
the DMA process. When the register is decremented
past zero, the Byte Count is considered 'expired'
and the process is terminated or restarted, depend­
ing on the mode of operation of the channel. The
point at which the Byte Count expires is called 'Ter­
minal Count' and several status signals are depen­
dent on this event.

Each channel of the 82370· DMA Controlier also
contains a 32-bit Temporary Register for use in as­
sembling and disassembling non-aligned data. The
operation of this register is transparent to the user,
although the contents of it may affect the timing of
some DMA handshake sequences. Since there is
data storage available for each channel, the DMA
Controlier can be interrupted without loss of data.

To avoid unexpected results, care should be taken
in programming the byte count correctly when as­
sembing and disassembling non-aligned data. For
example:

Words to Bytes:
Transferring two words to bytes, but setting the byte
count to three, will result in three bytes transferred
and the final byte flushed.

Bytes to Words:
Transferring six bytes to three words, but setting the
byte count to five, will result in the sixth byte trans­
ferred being undefined.

The 82370 DMA Controller is a slave on the bus until .
a request for DMA service is received via either a
software request command or a hardware request
signal. The host processor may access any of the
control/status or channel registers at any time the
82370 isa bus slave. Figure 3-2 shows the flow of
operations that the DMA Controlier performs.

At the time a DMA service request is received, the
DMA Controlier issues a bus hold request to the
host processor. The 82370 becomes the bus master
when the host relinquishes the bus by asserting a

hold acknowledge signal. The channel to be serv­
iced will be the one with the highest priority at the
time the DMA Controlier becomes the bus master.
The DMA Controlier wili remain in control of the bus
until the hold acknowledge signal is removed, or un­
til the current DMA transfer is complete.

While the 82370.DMA Controlier has control of the
bus, it will perform the required data transfer(s). The
type of transfer, source and destination addresses,
and amount of data to transfer are programmed in
the control registers of the DMA channel which re­
ceived the request for service.

At completion of the DMA process, the 82370 will
remove the bus hold request. At this time the 82370
becomes a slave again, and the host returns to be­
ing a master. If there are other DMA channels with
requests pending, the controlier will again assert the
hold request signal and restart the bus arbitration
and switching process.

290164-17

Figure 3-2. Flow of DMA Controller Operation

3.2 Interface Signals

There are fourteen control signals dedicated to the
DMA process. They include eight DMA Channel Re­
quests (DREQn), three EncodedDMA Acknowledge
signals (EDACKn), Processor Hold and Hold Ac-

4-818

82370

W/R# 1.4/10# D/C#} ~~~;~~TROL
END OF PROCESS

DREOn

DACKn

HLDA L __ -r'Jw:cK~

290164-18

Figure 3-3. Requester, Target and DMA Controller Interconnection

knowledge (HOLD, HLDA), and End-of-Process
(EOP#). The DREOn inputs and EDACK (0-2) out­
puts are handshake signals to the de.vices requiring
DMA service. The HOLD output and HLDA input are
handshake signals to the host processor. Figure 3-3
shows these signals and how they interconnect be­
tween the 82370 DMA Controller, and the Requester
and Target devices.

3.2.1 DREQn and EDACK (0-2)

These signals are the handshake signals between
the peripheral and the 82370. When the peripheral
requires DMA service, it asserts the DREOn signal
of the channel which is programmed to perform the
service. The 82370 arbitrates the DREOn against
other pending requests and begins the DMA pro­
cess after finishing other higher priority processes.

When the DMA service for the requested channel is
in progress, the EDACK (0-2) signals represent the
DMA channel which is accessing the Requester.
The 3-bit code on the EDACK (0-2) lines indicates
the number of the channel presently being serviced.
Table 3-2 shows the encoding of these signals. Note
that Channel 4 does not have a corresponding hard­
ware acknowledge.

The DMA acknowledge (EDACK) signals indicate
the active channel only during DMA accesses to the
Requester. During accesses to the Target, EDACK
(0-2) has the idle code (100). EDACK (0-2) can
thus be used to select a Requester device during a
transfer. .

DREOn can be programmed as either an Asynchro­
nous or Synchronous input. See section 3.4.1 for de­
tails on synchronous versus asynchronous operation
of these pins.

EDACK2

0
0
0
0
1
1
1
1

Table 3-2. EDACK Encoding
During a DMA Transfer

EDACK1 EDACKO Active Channel

0 0 0
0 1 1
1 0 2
1 1 3
0 0 Target Access
0 1 5
1 0 6
1 1 7

The EDACKn signals are always active. They either
indicate 'no acknowledge' or they indicate a bus ac­
cess to the requester. The acknowledge code is ei­
ther 100, for an idle DMA or during a DMA access to
the Target, or 'n' during a Requester access., where
n is the binary value representing the channel. A
simple 3-line to 8-line decoder can be used to pro­
vide discrete acknowledge signals for the peripher­
als.

3.2.2 HOLD AND HLDA

The Hold Request (HOLD) and Hold Acknowledge
(HLDA) signals are the handshake signals between
the DMA Controller and the host processor. HOLD is
an output from the 82370 and HLDA is an input.
HOLD is asserted by the DMA Controller when there
is a pending DMA request, thus requesting the proc­
essor to give up control of the bus so the DMA pro­
cess can take place. The 80376 responds by assert­
ing HLDA when it is ready to relinquish control of the
bus.

4-819

82370

The 82370 wmbegin operations on the bus one
clock cycle after the HLDA signal goes active. For
this reason, other devices on the bus should .bein
the slave mode when HLDA is active.'

HOLD and HLDA should not be used to gate or se­
lect peripherals requesting DMA service. This is be- ,
cause of the use of DMA-like operations by the
DRAM Refresh Controller. The Refresh Controller is
arbitrated with the DMA Controller for control of the
bus, and refresh cycles have the highest priority. A
refresh cycle will take place between DMA cycles
without relinquishing bus control. See section 3.4.3
for a more detailed discussion of the interaction be­
tween the DMA Controller and the DRAM Refresh
Controller.

3.2.3 EOPI<

EOP# is a bi-directional signal used to indicate the
end of a DMA process. The 82370 activates this as
an output during the T2 states of the last Requester
bus cycle for which a channel is programmed to exe­
cute. The Requester should respond by either with­
drawing. its DMA request, or interrupting the. host
processor to indicate that the channel needs to be
programmed with a new buffer. As an input, this sig"
nal is used to tell the DMA Controller that the per:iph­
eral being serviced does not require any more data
to be transferred. This indicates that the current
buffer is to be terminated.

EOP I< can be programmed as either an Asynchro­
nous or a Synchronous input. See section 3.4.1 for
details on synchronous versus asynchronous opera"
tion of this pin.

3.3 Modes of Operation

The 82370 DMA Controller has many independent
operating functions: When designing peripheral in­
tedaces for the 82370 DMA Controller, all of the
functions or modes must be considered. All of the
channels are independent of each other (except in
priority of operation) and can operate in any of the
modes. Many of the operating modes, though inde­
pendently programmable, affect the operation of
other modes. Because of the large number of com­
binations possible, each programmable· mode is dis­
cussed here with its affects on the operation of other
modes. The entire list of possible combinations will
'1ot be presented.

Table 3~1 shows the categories of DMA featu~es
available in the 82370. Each of the five major cate­
gories is independent of the others. The sub"Catego­
ries are the ayailable modes within the, major func,

Table 3·1. DMA Operating Modes

I. TARGET/REQUESTER DEFINITION
a. Data Transfer Direction
b. Device Type

II. BUFFER PROCESSES
,a. Single Buffei' Process
b. Buffer Auto-Initialize Process
c. Buffer Chaining Process

III. DATA TRANSFER/HANDSHAKE MODES
a. Single Transfer Mode
b. Demand Transfer Mode
c. Block Transfer Mode
d. Cascade Mode

IV. PRIORITY ARBITRATION
a. Fixed
b. Rotating
c. Programmable Fixed

V. BUS OPERATION
a. Fly-By (Single-Cycle)/Two-Cycle
b. Data Path Width
c. Read, Write"or Verify Cycles

tion or mode category; The' foll6wing sections ex­
plain each mode or function and its relation to other
features.

3.3.1 TARGET/REQUESTER DEFINITION

All DMA transfers involve three devices: the DMA
Controller, the Requester,and the Target. Since the
devices to .. be ,accessed by the DMA Controller vary
widely, the operating characteristics of the DMA
Controller must be tailored. to the Requester and
Target devices.

The Requester can be defined as either the source
or the destination of the data to be transferred. This
is . done by specifying a Write or Ii Read transfer,
respectively. In ,a Read transfer, the Target is the
data source and the Requester is the destination for
the data. In a Write transfer, the Requester is the
source and the Target is the destination.

The Requester and Target addresses can each be
independently programmed to be incremented, dec­
remented, or' held constant.· As an example, the
82370 is capable of reversing a string of data by
having the' Requester address increment and the
Target address decrement in a memory-to-memory
transfer.

4-820

82370

3.3.2 BUFFER TRANSFER PROCESSES

The 82370 DMA Controller allows three programma­
ble Buffer Transfer Processes. These processes de­
fine the logical way jn which a buffer of data is ac­
cessed by the DMA.

The three Buffer Transfer Processes include the Sin­
gle Buffer Process, the Buffer Auto-Initialize Pro­
cess, and the Buffer Chaining Process. These pro­
cesses require. special programming considerations.
See the DMA Programming section for more details
on setting up the Buffer Transfer Processes.

Single Buffer Process

The Single Buffer Process allows the DMA channel
to transfer only one buffer of data. When the buffer
has been completely transferred (Current Byte
Count decremented past zero or EOP # input ac­
tive), the DMA process ends and the channel be­
comes idle. In order for that channel to be used
again, it must be reprogrammed.

The Single Buffer Process is usually used when the
amount of data to be transferred is known exactly,
and it is also known that there is not likely to be any
data to follow before the operating system can re­
program the channel.

Buffer Auto-Initialize Process

The Buffer Auto-Initialize Process allows multiple
groups of data to be transferred to or from a single
buffer. This process does not require reprogram­
ming. The Current Registers are automatically repro­
grammed from the. Base Registers when the current
process is terminated, either by an expired Byte
Count or by an external EOP# signal. The data
transferred will always be between the same Target
and Requester.

The auto-initialization/process.execution cycle is re­
peated until the channel is either disabled or re-pro­
grammed.

Buffer Chaining Process

The Buffer Chaining Process is useful for transfer­
ring large quantities of data into non-contiguous '
buffer areas. In this process, a single channel is
used to process data from several buffers, while
having to program the channel only once. Each new
I?uffer is programmed in a pipelined operation that
provides the new buffer information while the old
buffer is being processed. The chain is created by
loading new buffer information while the 82370 DMA
Controller is processing the Current Buffer. When
the Current Buffer expires, the 82370 DMA Control­
ler automatically restarts the channel using the new
buffer information.

Loading the new buffer information is done by an
interrupt routine which is requested by the 82370.
Interrupt Request 1 (IRQ1) is tied internally to the
82370 DMA Controller for this purpose. IRQ1 is gen­
erated by the 82370 when the new buffer informa­
tion is loaded into the channel's Current Registers,
leaving the Base Registers 'empty'. The interrupt
service routine loads new buffer information into the
Base Registers. The host processor is required to
load the information for another buffer before the
current Byte Count expires. The process repeats un­
til the host programs the channel back to single buff­
er operation, or until the channel runs out of buffers.

The channel· runs out of buffers when the Current
Buffer expires and the Base Registers have not, yet
been loaded with new buffer information. When this
occurs, the channel must be reprogrammed.

If an external EOP# is encountered while executing
a Buffer Chaining Process, the current buffer is con­
sidered expired and the new buffer information is
loaded into the Current Registers. If the Base Regis­
ters are 'empty', the chain is terminated.

The channel uses the Base Target Address Register
as an indicator of whether or not the Base Registers
are full. When the most significant byte of the Base
Target Register is loaded, the channel considers all
of the Base Registers loaded, and removes the in­
terrupt request. This requires that the other Base
Registers (Base Requester Address, Base Byte
Count) must be loaded before the Base Target Ad­
dress Register. The reason for implementing the re­
loading process this way is that, for mostapplica­
tions, the Byte Count and the Requester will not
change from one buffer to the next, and therefore do
not need to be reprogrammed. The detailS of pro­
grammingthe channel for the Buffer Chaining Pro­
cess can be found in the section on DMA program­
ming.

3.3.3 DATA TRANSFER MODES

Three Data Transfer modes are available in the
82370 DMA Controller. They are the Single Transfer,
Block Transfer, and Demand Transfer Modes.
These transfer modes can be used in conjunction
with anyone of three Buffer Transfer modes: Single
Buffer, Auto-Initialized Buffer and Buffer Chaining.
Any Data Transfer Mode can be used under any of
the Buffer Transfer Modes. These modes are inde­
pendently available for all DMA channels.

Different devices being serviced by the DMA Con­
troller require different handshaking sequences for
data transfers to take place. Three handshaking
modes are available on the 82370, giving the de­
signer the opportunity to use the DMA Controller as
efficiently as possible. The speed at which data can

4-821

82370

be presented or read by a device can affect the way
a DMA Controller uses the host's bus, thereby af­
fecting not only data throughput during the DMA pro­
cess, but also affecting the host's performanqe by
limiting its access to the bus.

HOLD-HLDA-DACK. handshake cycle. Figure 3-5
shows the timing of the Single Transfer Mode cyci.e.

Single Transfer Mode

In the Single Transfer Mode, one data transfer to or
from the Requester is performed by the DMA Con­
troller at a time. The DREQn input is arbitrated and
the HOLD/HLDA sequence is executed for each
transfer. Transfers continue in this manner until the
Byte Count expires, or until EOP # is sampled active.
If the DREQn input is held active continuously, the
entire DREQ-HOLD-HLDA-DACK sequence is re­
peated over and over until the programmed number
of bytes has been transferred. Bus control is re­
leased to the host between each transfer. Figure 3-4
shows the logical flow of events which make up a
buffer transfer using the Single Transfer Mode. Re­
fer to section 3.4 for an explanation of the bus con­
trol arbitration procedure.

The Single Transfer Mode is used for devices which
require complete handshake cycles with each data
access. Data is transferred to or from the Requester
only when the Requester is ready to perforrn the
transfer. Each tra.nsfer requires the entire DREQ-

Tx Tx n
ClK2

ClK

DREOn

HOLD _-+-__ ...;:;.,
HLDA

n

INITIALIZE BUFFER

EN 0 OF BU FFER

Figure 3-4. Buffer Transfer
in Single Transfer Mode

11 T2 TI

290164-19

A(1-23) ;iiixXKK~~~~~~~~;i>---+---~==!==~ BLE#,BHE# A --------
WR#,M/IO#

EDACK(0-2) ---+----+--l~OO~+--~~----~---n~--~~-l~O~O~

ADS# XXXXXXXXXXXXXXXXX> - - - - -
I I I

R~DY# ~~XXXXXX~~~~~~~~~~~XXXXXX~~~~~xg[:~

29016.4-20

NOTE:
The Single Transfer Mode is more efficient (15%-20%) in the case where the source is the Target. Because of the
internal pipeline of the 82370 DMA Controller, two idle states are added at the end ofa transfer in the case where the
source is the Requester.

Figure 3-5. DMA Single Transfer Mode

4-822

inter 82370

Block Transfer Mode

In the Block Transfer Mode, the DMA process is ini­
tiated by a DMA request and continues unti the Byte
Count expires, or until EOP# is activated by the Re­
quester. The DREQn signal need only be held active
until the first Requester access. Only a refresh cycle
will interrupt the block transfer process.

Figure 3-6 illustrates the operation of the DMA dur­
ing the Block Transfer Mode. Figure 3-7 shows the
timing of the handshake signals during Block Mode
Transfers.

Tx Tx Tx TI TI Tl

CLK2

eLK

DREOn

HOLD __ -+_"""'"I~

HLDA ---+---i--+'

T2 T1 T2

END OF BUFFER
290164-21

Figure 3-6. Buffer Transfer
In Block Transfer Mode

Tl T2 n Tx TI

290164,.22

Figure 3-7. Block Mode Transfers

4-823

inter 82370

Demand Transfer Mode.

The .Demand Transfer Mode provides the most flex­
ible handshaking procedures during the DMA pro­
cess. A Demand Transfer is initiated by a DMA re­
quest. The process continues until the Byte Count
expires, or an external EOP# is encountered. If the
device being serviced (Requester) desires, it can in­
terrupt the DMA process by de-activating the
DREQn line. Action is taken on the condition of
DREQn during Requester accesses only. The ac­
cess during which DREQn is sampled inactive is the
last Requester access which will be performed dur­
ing the current transfer. Figure 3-8 shows the flow of
events during the transfer of a buffer in the Demand
Mode.

When the DREQn line goes inactive, the DMA Con­
troller will complete the current transfer, including
any necessary accesses to the Target, and relin­
quish control of the bus to the host. The current pro­
cess information is saved (byte count, Requester
and Target addresses, and Temporary Register).

The Requester can restart the transfer process by
reasserting DREQn. The 82370 will arbitrate the re­
quest with other pending requests and begin the
process where it leltoff. Figure 3-9 shows the timing
of handshake signals during Demand Transfer Mode
operation.

Tx Tx Tx TI Ti T1

ClK2

elK

DREOn

DREOn

HOLD __ -+_--'1

HLDA --+--f---';

T2 T1 T2

INITIALIZE BUFFER

END OF BUFFER
290164-23

Figure 3-8. Buffer Transfer
in Demand Transfer Mode

T1 T2 Tl Tx Tx

290164-24

Figure 3-9. Demand Mode Transfers

4-824

inter 82370

Using the Demand Transfer Mode allows peripherals
to access memory in small, irregular bursts without
wasting bus control time. The 82370 is designed to
give the best possible bus control latency in the De­
mand Transfer Mode. Bus control latency is defined
here as the time form the last active bus cycle of the
previous bus master to the first active bus cycle of
the new bus master. The 82370 DMAControlier will
perform its first bus access cycle two bus states af­
ter HLDA goes active. In the typical configuration,
bus control is returned to the host one bus state
after the DREQn goes inactive.

There are two cases where there may be more than
one bus state of bus control latency at the end of a
transfer. The first is at the end of an Auto-Initialize
process, and the second is at the end of a process
where the source is the Requester and Two-Cycle
transfers are used.

When a Buffer Auto-Initialize Porcess is complete,
the 82370 requires seven bus states to reload the
Current Registers from the Base Registers of the
Auto-Initialited channel. The reloading is done while
the 82370 is still the. bus master so that it is prepared
to service the channel immediately after relinquish­
ing the bus, if necessary.

I
CHANNEL 7
CHANNEL 6
CHANNEL 5
CHANNEL 4
PHANTOM 00---

f

In the case where th.e Requester is the source, and
Two-Cycle transfers are being used, there are two
extra idle states at the end of the transfer process.
This occurs due to. the housekeeping in the DMA's
internal pipeline. These two idle states are present
only after the very last Requester access, before the
DMA Controller de-activates the HOLD signal.

3.3.4 CHANNEL PRIORITY ARBITRATION

DMA channel priority can be programmed into one
of two arbitration methods: Fixed or Rotating. The
four lower DMA channels and the four upper DMA
channels operate as if they were two separate DMA
controllers operating in cascade. The lower group of
four channels (0-3) is always prioritized between
channels 7 and 4 of the upper group of channels (4-
7). Figure 3-10 shows a pictorial representation of
the priority grouping.

The priority can thus be set up as rotating for one
group of channels and fixed for the other, or any
other combination. While in Fixed Priority, the pro­
grammer can also specify which channel has the
lowest priority.

LOW PRIORITY

I
CHANNEL :5
CHANNEL 2
CHANNEL 1
CHANNEL 0

1
HIGH PRIORITY

290164-25

Figure 3-10. DMA Priority Grouping

4-825

intJ 82370

The 82370 DMA Controller defaults to Fixed Priority.
Channel 0 has the highest priority, then 1, 2, 3, 4, 5,
6, 7. Channel 7 has the lowest priority. Any time the
DMA Controller arbitrates DMA requests, the re­
questing channel with the highest priority will be
serviced n'ext.

Fixed Priority can be entered into at any time by a
software command. The priority levels in effect after
the mode switch are determined by the current set­
ting of the Programmable Priority.

Programmable Priority is available for fixing the prior­
ity of the DMA channels within a group to levels oth­
er than the default. Through a software command,
the channel to have the lowest priority in a group
can be specified. Each of the two groups of four
channels can have the priority fixed in this way. The
other channels in the group will follow the natural
Fixed Priority sequence. This mode affects only the
priority levels while operating with Fixed Priority.

For example, if channel 2 is programmed to have the
lowest priority in its group, channel 3 has the highest
priority. In descending order, the other channels
would have the following priority: (3,0,1,2),4,5,6,7
(channel 2 lowest, channel 3 highest). If the upper

CHANNEL 6
CHANNEL 7
PHANTOM I---

CHANNEL 4
CHANNEL 5

group were programmed to have channel 5 as the
lowest priority channel, the priority would be (again,
highest to lowest): 6,7, (3,0,1,2), 4,5. Figure 3-11
shows this example pictorially. The lower group is
always prioritized as a fifth channel of the upper
group (between channels 4 and 7).

The DMA Controller will only accept Programmable
Priority commands while the addressed group is op­
erating in Fixed Priority. Switching from Fixed to Ro­
tating Priority preserves the current priority levels.
Switching from Rotating to Fixed Priority returns the
priority levels to those which were last programmed
by use of Programmable Priority.

Rotating Priority allows the devices using DMA to
share the system bus more evenly. An individual
channel does not retain highest priority after being
serviced, priority is passed to the next highest priori­
ty channel in the group. The channel which was
most recently serviced inherits the lowest priority.
This rotation occurs each time a channel is serviced.
Figure 3~ 12 shows the sequence Of events as priori­
ty is passed between channels. Note that the lower
group rotates within the upper group, and that serv­
icing a channel within the lower group causes rota­
tion within the group as well as rotation of the upper
group.

LOW PRIORITY

CHANNEL 3
CHANNEL 2
CHANNEL 1
CHANNEL 0

HIGH PRIORITY
290164-26

Figure 3·11. Example of Programmed Priority

4-826

inter 82370

10111213114151s171-default (highest to low­
est)

DREQ2 and DREQ6-processchannel 2

14151s171131011121- chann~1 .2 dr?p~ to low-
est PriOrity within group.
Lower group drops to
lowest priority within up­
per group. (Double Rota­
tion)

DREQS (still) and DREQ7-process channelS

0131011121 ~-chan~el.s dr?p.s to low-
est PriOrity Within group

DREQ7 (still) and DREQO-process channel 7

13101112114151s171- chann.el? dr?p,s to low-
est PriOrity Within group

DREQO (still) and DREQ1-process channel 0

14151s171111213101_ channel 0 drops to low­
est priority within group.
(Double Rotation)

DREQ1 (still)-process channel 1

1415IsI71121310111-chann.el.1 d~o~s to low-
est Priority Within group

Figure 3-12. Rotating Channel Priority.
Lower and upper groups are programmed

for the Rotating Priority Mode.

3.3.5 COMBINING PRIORITY MODES

Since the DMA Controller operates as two four­
channel controllers in cascade, the overall priority
scheme of all eight channels can take on a variety of
forms. There are four possible combinations of prior­
ity modes between the two groups of channels:
Fixed Priority only (default), Fixed Priority upper
group/Rotating Priority lower group, Rotating Priority
upper group/Fixed Priority lower group, and Rotating
Priority only. Figure 3-13 illustrates the operation of
the two combined priority methods.

Case 1-
0-3 Fixed Priority, 4-7 Rotating Priority

High Low

Default priority 10 111213114151s 71

After servicing channel 2 14151s171101112131

After servicing channel S 010 1112131 ~

After servicing channel 1 14151s171101112131

Case 2-
0-3 Rotating Priority, 4-7 Fixed Priority

High Low

Default priority 10 111213114151s 71

After servicing channel 2 13101112114151s171

After servicing channel S 13101112114151s171

After servicing channel 1 12131011114151s171

Figure 3-13. Combining Priority Modes

3.3.6 BUS OPERATION

Data may be transferred by the DMA Controller us­
ing two different bus cycle operations: Fly-By (one­
cycle) and Two-Cycle. These bus handshake meth­
ods are selectable independently for each channel
through a command register. Device data path
widths are independently programmable for both
Target and Requester. Also selectable through soft­
ware is the direction of data transfer. All of these
parameters affect the operation of the 82370 on a
bus-cycle by bus-cycle basis.

3.3.6.1 Fly-By Transfers

The Fly-By Transfer Mode is the fastest and most
efficient way to use the 82370 DMA Controller to
transfer data. In this method of transfer, the data is
written to the destination device at the same time it
is read from the source. Only one bus cycle is used
to accomplish the transfer.

4-827

I
I

82370

In the Fly-By Mode, the DMA acknowledge signal is
used to select the Requester. The DMA Controller
simultaneously places the address of the Target on
the address bus. The state of M/IO# and W/R#
during the Fly-By transfer cycle indicate the type of
Target and whether the Target is being written to or
read from. The Target's. Bus Size is used as an in­
crementer for the Byte count. The Requester ad­
dress registers are ignored during Fly-By transfers.

Note that memory-to"memory transfers cannot be
done using the Fly-By Mode. Only one memory of
110 address is generated by the DMA Controller at a
time during Fly-By transfers. Only one of the devices
being accessed can be selected by an address.
Also, the Fly-By method' of data transfer limits the
hardware to accesses of devices with the same data
bus width. The Temporary Registers are not affect­
ed in the Fly-By Mode.

Fly-By transfers also require that the data paths of
the Target and Requester be directly connected.
This requires that successive Fly-By access be to
word boundaries, or that the Requester be capable
of switching its connections to the data bus.

3.3.6.2. Two-Cycle Transfers

Two-Cycle transfers can also be performed by the
82370 DMA Controller. TheSe transfers require at
least two bus cycles to execute. The data being
transferred is read into the DMA Controller's Tempo­
rary Register during the first bus cycle(s). The sec­
ond bus. cycle is used to write the data from the
Temporary Register to' the destination.

If the addresses of the data being transferred are
not word aligned, the 82370 will recognize the situa­
tion and read and write the data in groups of bytes,
placing them always at the proper destination. This
process of collecting the de.sired bytes and putting
them together is called "byte assembly". The re­
verse process (reading from aligned locations and
writing to non-aligned locations) is called "byte dis­
assembly".

The assembly/disassembly process takes place
transparent to the software, but can only be done
while using the Two-Cycle transfer method. The
82370 will always perform the assembly/disasSem­
bly process. as necessary for the current data trans­
fer. Any data path widths for either the Requester or
Target can be used in the Two-Cycle Mode. This is
very convenient for interfacing existing 8- and 16-bit
peripherals to the 80376's 16-bit bus.

The 82370 DMA Controller always reads and write
data within the word boundaries; i.e. if a word to be

read is crossing a word boundary, the DMA Control­
ler will perform two read operations, each reading
one byte, to read the 16·bit word into the Temporary
Register. Also, the 82370 DMA Controller always at­
tempts to fill the Temporary Register from the
source before writing any data to the destination. If
the process is terminated before the Temporary
Register is filled (TC or EOP#), the 82370 will write.
the partial data to the destination. If a process is
temporarily suspended (such as when DREQn is de­
activated during a demand transfer), the contents of
a partially filled Temporary Register. will be stored
within the 82370 until the process is restarted.

For example, if the source is specified as an 8-bit
.device and the destination as a 32-bit device, there
will be four reads as necessary from the 8-bit source
to fill the Temporary Register. Then the 82370 will
write the 32-bit contents to the destination in two
cycles of 16-bit each. This cycle will repeat until the
process is terminated. or suspended.

With Two-Cycle transfers, the devices that the
82370 accesses can reside at any address within
I/O or memory space. The device must be able t9
decode the byte-enables (BLE#, BHE#). Also, if the
device cannot accept data in byte quantities, the
programmer must. take care not to allow the DMA
Controller to access the device on any address oth­
er than the device boundary.

3.3.6.3 Data Path Width and Data Transfer Rate
ConSiderations

The number of bus cycles used to transfer a single
"word" of data is affected by whether the Two-Cycle
or the ~Iy-By (Single-Cycle) transfer method is used.

The number of bus cycles used to transfer data di­
rectly affects the data transfer rate. Inefficient use of
bus cycles will decrease the effective data transfer
rate that can be obtained. Generally, the data trans­
fer rate is halved by using Two-Cycle transfers in­
stead of Fly-By transfers.

The choice of data path widths of both Target and
Requester affects the data transfer rate also. During
each bus cycle, the largest pieces of data possible
should be transferred.

The data path width of the devices to be accessed
must be programmed into the DMA controller. The
82370 defaults after reset to 8-bit-to-8-bit data trans·
fers, but the Target and Requester can have differ­
ent data path widths, independent of each other and
independent of the other channels. Since this is a
software programmable function, more discussion of
the uses of this feature are found in the section on
programming.

4·828

inter 82370

3.3.6.4 Read, Write and Verify Cycles

Three different bus cycles types may be used in a
data transfer. They are the Read, Write and Verify
cycles. These cycle types dictate the way in which
the 82370 operates on the data to be transferred.

A Read Cycle transfers data from the Target to the
Requester. A Write Cycle transfers data from the
Requester to the target. In a Fly-By transfer, the ad­
dress and bus status signals indicate the access
(read of write) to the Target; the access to the Re­
quester is assumed to be the opposite.

The Verify Cycle is used to perform a data read only.
No write access is indicated or assumed in a Verify
Cycle. The Verify Cycle is useful for validating block
fill operations. An external comparator must be pro­
vided to do any comparisons on the data read.

3.4 Bus Arbitration and Handshaking

Figure 3-14 shows the flow of events in the DMA
request arbitration process. The arbitration se­
quence starts when the Requester asserts a DREQn
(or DMA service is requested· by software). Figure
3-15 shows the timing of the sequence of events
following a DMA request. This sequence is executed
for each channel that is activated. The DREQn sig­
nal can be replaced by a software DMA channel re­
quest with no change in the sequence.

After the Requester asserts the service request, the
82370 will request control of the bus via the HOLD
signal. The 82370 will always assert the HOLD sig­
nal one bus state after the service request is assert­
ed. The 80376 responds by asserting the HLDA sig­
nal, thus releasing control of the bus to the 82370
DMA Controller.

Priority of pending DMA service requests is arbitrat­
ed during the first state after HLDA is asserted by
the 80376. The next state will be the beginning of
the first transfer access of the highest priority pro­
cess.

When the 82370 DMA Controller is finished with its
current bus activity, it returns control of the bus to
the host processor. This is done by driving the
HOLD signal inactive. The 82370 does not drive any
address or data bus Signals after HOLD goes low. It
enters the Slave Mode until another DMA process is
requested. The processor acknowledges that it has

regained control of the bus by forcing the HLDA sig­
nal inactive. Note that the 82370's DMA Controller
will not re-request control of the bus until the entire
HOLD/HLDA handshake sequence is complete.

82370 PERFORMS HIGHEST PRIORITY
TRANSFER (SEE DATA TRANSFER MODES)

82370 DE-ASSERTS HOLD REQUEST

290164-27

Figure 3-14. Bus Arbitration and DMA Sequence

The 82370 DMA Controller will terminate a current
DMA process for one of three reasons: expired byte
count, end-of-process command (EOP# activated)
from a peripheral, or deactivated DMA request sig­
nal. In each case, the controller will de-assert HOLD
immediately after completing the data transfer in
progress. These three methods of process termina­
tion are illustrated in Figures 3-16, 3-19 and 3-18,
respectively.

An expired byte count indicates that the current pro­
cess is complete as programmed and the channel
has no further transfers to process. The channel
must be restarted according to the currently pro­
grammed Buffer Transfer Mode, or reprogrammed
completely, including a new Buffer Transfer Mode.

4-829

82370

ClK2

ClK

DREQn

HOLD _-+ ___ 1'

HlDA

A(l- 23) ;ii~~~~iit~~~i;i~:::-+---1C=~~=::J~=: BlE#,BHE#'A
WR#,M/IO#'_-+ __ -+ __ ~I-__ +-_""'+ __ -+ __ -'li""' __

EDACK(O-2) _-+-___ t_--l-00~--_+--..... ~---nt_--"I'_--

READY# XEXXgggg:~~:DDggal~~:DXXgg:~~:D:DXX~..J.J.8m!K
NOTE: 290164-28
Channel priority resolution takes place during the bus state before HOLDA is asserted, allowing the DMA Controller to
respond to HLDA without extra idle bus states.

Figure 3-15. Beginning of a DMA j)rocess

If the peripheral activates the EOP# signal, it is indi­
cating that it will not accept or deliver any more data
for the current buffer. The 82370 DMA Controller
considers this as a completion of the channel's cur­
rent process arid interprets the condition the same
way as if the byte count expired.

The action taken by the 82370 DMA Controller in
response to a de-activated DREOn signal depends
on the Data Transfer Mode of the channel. In the
Demand Mode, data transfers will take place as long
as the DREOn is active and the byte count has not
eXpired. In the Block Mode, the controller will com­
plete the entire block transfer without relinquishing
the bus, even if DREOn goes inactive before the

transfer is complete. In the Single Mode, the COntrol­
ler. will execute single data transfers, relinquishing
the bus between each transfer, as long as DREOn is
active.

Normal termination of a DMAprocess due to expira­
tion of the byte count (Terminal Count"'::TC) is
shown if Figure 3-16. The condition of OREOn is
ignored until after the process is terminated. If the
channel is programmed to auto-initialize, HOLD will
be held active for an additional seven clock cycles
while the auto-initialization takes place.

Table 3-3 shows the DMA channel activity due to
EOP# or Byte Count expiring (Terminai Count).

Table 3-3. DMA Channel Activity Due to Terminal Count or External EOP#

SIngl80r
Auto- Chalnlng-Ba~

B"ffer PrC)Cess . Chaining-Base
Empty

Initialize Loaded

EVENT

Terminal Count True X True X True X
EOP# X 0 X 0 : X 0

RESULTS
:

Current Registers Load Load Load Load,
Channel Mask Set Set
EOP# Output 0 X 0 X 1 X
Terminal Count Status Set Set· Set Set
Software Request CLR CLR CLR CLR

4-830

82370

T2 T1 T2 n Tx Tx Tx

ClK2

ClK

DREQn \XXXXXXXXXXXM@
HOLD \~------------------------
HlDA

ADS# =--.J
EOP#

11 I '. \
- BYTE COUNT~EX~P:::IR::E:::'S~(T~C~)---------

\~---Jr-i~----------------------
~~

READY# XX>QOOOOCKX tXXXXxxxx&xxxxxxXXxxxxxx
290164-29

Figure 3-16. Termination of a DMA Process Due to Expiration of Current Byte Count

T2 Ti Tx Tx Ti

ClK2

ClK

DREQa

DREQb

HOLD

HlDA II
--CHANNElA~ If..--- CHANNEL B--

290164-30

Figure 3-17. Switching between Active DMA Channels

The 82370 always relinquishes control of the bus
. between channel services. This allows the hardware

designer the flexibility to externally arbitrate bus hold
requests, if desired. If another DMA request is pend­
ing when a higher priority channel service is com­
pleted, the 82370 will relinquish the bus until the
hold acknowledge is inactive. One bus state after
the HLDA signal goes inactive, the 82370 will assert
HOLD again. This is illustrated in Figure 3-17.

3.4.1 SYNCHRONOUS AND ASYNCHRONOUS
SAMPLING OF DREQn AND EOP #

As an indicator. that a DMA service is to be started,
DREQn is always sampled asynchronous. It is sam-

pled at the beginning of a bus state and acted upon
at the end of the state. Figure 3-15 illustrates the
start of a DMA process due to a DREQn input.

The DREQn and EOP# inputs can be programmed
to be sampled either synchronously or asynchro­
nously to signal the end of a transfer.

The synchronous mode affords the Requester one
bus state of extra time to react to an access. This
means the Requester can terminate a process on
the current access, without losing any data. The
asynchronous mode requires that the input signal be
presented prior to the beginning of the last state of
the Requester access.

82370

The timing relationships of the PREOn and EOP#
signals to the termination of a PMA transfer are
shown in Figures. 3-18 and 3-19. Figure 3-18 shows
the termination of a PMA transfer due to inactive
PREOn. Figure 3-19.shows the· termination of a
PMA process due to an active EOP # input.

In the Synchronous Mode, PREOn and EOP# are
sampled at the end of the last state of every Re­
quester data tranSfer cycle. If EOP# is active . or
PREOn is inactive at this time, the 82370 recognizes
this access to the Requester as the last transfer. At
this pOint, the 82370 completes .the transftilrin prog­
ress, if necessary, and returns bus control to the
host.

T2 Tl

In the asynchronous mode, the inputs are sampled
at the beginning of every state of a Requester ac­
cess. The 82370 waits until the end of the state to
act on the input.

PREOn and EOP# are sampled at the latest possi­
ble time when the 82370 can determine if another
transfer.· is required. In the Synchronous Mode,
PREOn and EOP# are sampled on the trailing edge
of the last bus state before another data access cy­
cle begins. The Asynchronous Mode requires that
the signals be valid one clock cycle earlier.

T2 n Tx Tx Tx

DREQn---+------+---'~------~~gg~gggggg~gggggg~ggKK (ASYNCHRONOUS) \,

DREQn~~~~--~~~~~~ __ 4-~gg~gggggg~~~~~~~ (SYNCHRONOUS) .(l

::~: __ -+-__ -+ ___ I---_+-~~14/o~·.;·--· -·-·-+-1---.;---
290164-31

Figure 3-18. Termination of a DMA Process due to De-Asserting DREQn

T2 Tl T2 TI Tx Tx Tx

CLK2

CLK

ADS# .

READY#

EOP~ . (ASYNCHRONOUS

EOP~ (SYNCHRONOUS

4 I
HOLD

HLDA

290164-32

Figure 3-19. Termination of a DMA Process due to an External EOP#

4-832

intJ 82370

While in the Pipeline Mode, if the NA'III signal is sam­
pled active during a transfer, the end of the state
where NA'III was sampled active is when the 82370
decides whether to commit to another transfer. The
device must de-assert DREQn or assert EOP'III be­
fore NA'III· is asserted, otherwise the 82370 will com­
mit to another, possibly undesired, transfer.

Synchronous DREQn and EOP'III sampling allows
the peripheral to prevent the next transfer from oc­
curring by de-activating DREQn or asserting EOP'III
during the current Requester access, before the
82370 DMA Controller commits itself to another
transfer. The DMA Controller will not perform the
next transfer if it has not already begun the bus cy­
cle. Asynchronous sampling allows less stringent
timing requirements than the Synchronous Mode,
but requires that the DREQn signal be valid at the
beginning of the next to last bus state of the current

. Requester access.

Using the Asynchronous Mode with zero wait states
can be very difficult. Since the addresses and con­
trol signals are driven by the 82370 near half-way
through the first bus state of a transfer, and the
Asynchronous Mode requires that DREQn be inac­
tive before the end of the state, the peripheral being
accessed is required to present DREQn only a few
nanoseconds after the control information is avail­
able. This means that the peripheral's control logic
must be extremely fast (practically non-causal). An
alternative is the Synchronous Mode.

80376 82370

OREQO
HOLD ~ HOLD

HLDA r--+ HLDA
EDACKO ::::: EDACKI
EDACK2 ---+

DREQn

A
B
C

3.4.2 ARBITRATION OF CASCADED MASTER
REQUESTS

The Cascade Mode allows another DMA-type de­
vice to share the bus by arbitrating its bus accesses
with the 82370's. Seven of the eight DMA channels
(0-3 and 5-7) can be connected to a cascaded de­
vice. The cascaded device requests bus control
through the DREQn line of the channel which is pro­
grammed to operate in Cascade Mode. Bus hold ac­
knowledge is signalled to the cascaded device
through the EDACK lines. When .the EDACK lines
are active with the code for the requested cascade
channel, the bus is available to the cascaded master
device.

A cascade cycle begins the same way a regular
DMA cycle begins. The requesting bus master as­
serts the DREQn line on the 82370. This bus control
request is arbitrated as any other DMA request
would be. If any channel receives a DMA request,
the 82370 requests control of the bus. When the
host acknowledges that it has released bus control,
the 82370 acknowledges to the requesting master
that it may access the bus. The 82370 enters an idle
state until the new master relinquishes control.

A cascade cycle will be terminated by one of two
events: DREQn going inactive, or HLDA going inac­
tive. The normal way to terminate the cascade cycle

Bus Master 0
HOLD REQUEST

o r---. HOLD ACKNOWLEDGE

latched
decoder

n r---. HOLD ACKNOWLEDGE
Bus Master n
HOLD REQUEST

290164-33

Figure 3·20. Cascaded Bus Master

4-833

I

I

82370

is for the cascaded master to drop the DREQn sig­
nal. Figure 3-21 shows the two cascade cycle termi­
nation sequences.

The Refresh Controller may interrupt the cascaded
master to perform a refresh cycle. If this occurs, the
82370 DMA Controller will de-assert the EDACK sig­
nal (hold acknowledge to cascaded master) and wait
for the cascaded master to remove its hold request.
When the 82370 regains bus control, it will perform
the refresh cycle in its normal fashion. After .the re­
fresh cycle has been completed, and if the cascad­
ed device has re-asserted its request, the 82370 will
return control to the cascaded master which was in­
terrupted.

The 82370 assumes that it is the only device moni­
toring the HLDA signal. If the system designer
wishes to place other devices on the bus as bus
masters, the HLDA from the processor must be in­
tercepted before presenting it to the 82370. Using
the Cascade capabililty of the 82370 DMA Controller
offers a much better solution.

3.4.3 ARBITRATION OF REFRESH REQUESTS

The arbitration of refresh requests by the DRAM Re·
fresh Controller is slightly different from normal DMA

channel request arbitration. The 82370 DRAM Re­
fresh Controller always has the highest priority of
any DMA process. It ,also can interrupt a process in
progress. Two types of processes in progress may
be encountered: normal DMA, and bus master cas­
cade.

In the event of a refresh request during a normal
DMA process, the DMA Controller will complete the
data transfer in progress and then execute the. re­
fresh cycle before continuing with the current DMA
process. The priority of the interrupted process is
not lost. If the data transfer cycle interrupted by the
Refresh Controller is the last of a DMA process, the
refresh cycle will always be executed· before control
of the bus .is transferred back to the host.

When the Refresh Controller request occurs during
a cascade cycle, the Refresh Controller must be as­
sured that the cascaded master device has relin­
quished control of the bus before it can execute the
refresh cycle. To do this, the DMA Controller drops
the EDACK signal to the cascaded master and waits
for the corresponding DREQn input to go inactive.
By dropping the DREQn signal, the cascaded mas­
ter relinquishes the bus. The Refresh Controller then
performs the refresh cycle. Control of the bus is re­
turned to the cascaded master if DREQn returns to
an active state before the end of the refresh cycle,
otherwise control is passed to the ,processor and the
cascaded master loses its priority.

Cascade cycle termination by DREOn Inoctlve

DREOn -----..... \.

~------------------------
EDACK ____________JXI...-___ ,..;;o.;..o __ ...,.. ___ _

HOLD-----------....... \.

~------------
HLDA ------------------.......\. '---------

Cascade cycle termination by HlDA Inactive

HLDA

,'-------------------------
EDACK ___________JX'-____ ,_OO ______ __

DREOn \XX\

HOLD------------------------~\.

~---

Figure 3-21. Cascade Cycle Termination

4-834

290164-34

inter 82370

3.5 DMA Controller Register Overview

The 82370 DMA Controller contains 44 registers
which are accessable to the host processor. Twen­
ty-four of these registers contain the device ad­
dresses and data counts for the individual DMA
channels (three per channel). The remaining regis­
ters are control and status registers for initiating and
monitoring the operation of the 82370 DMA Control­
ler. Table 3-4 lists the DMA Controller's registers
and their accessability.

Table 3·4. DMA Controller Registers

Register Name Access

Control/Status Reglsters-one each per group
Command Register I write only
Command Register II write only
Mode Register I write only
Mode Register II write only
Software Request Register read/write
Mask Set-Reset Register write only
Mask Read-Write Register read/write
Status Register read only
Bus Size Register write only
Chaining Register read/write

Channel Reglsters-one each per channel
Base Target Address
Current Target Address
Base Requester Address
Current Requester Address
Base Byte Count
Current Byte Count

write only,
read only
write only
read only
write only
read only

3.5.1 CONTROL/STATUS REGISTERS

The following registers are available to the host
processor for programming the 82370 DMA Control­
ler into its various modes and for checking the oper­
ating status of the DMA processes. Each set of four
DMA channels has one of each of these registers
associated with it.

Command Register I

Enables or disables the DMA channel as a group.
Sets the Priority Mode (Fixed or Rotating) of the
group. This write-only register is cleared by a hard­
ware reset, defaulting' to all . channels enabled· and
Fixed Priority Mode. .

Command Register II

Sets the sampling mode of the DREQn and EOP#
inputs. Also sets the lowest priority channel for the
group in the Fixed Priority Mode. The functions pro­
grammed through Command Register II default after

a hardware reset to: asynchronous DREQn and
EOP#, and channels 3 and 7 lowest priority.

Mode Registers I

Mode Register I is identical in function to the Mode
register of the 8237 A. It programs the following func­
tions. for an individually selected channel:

Type of Transfer-read, write, verify
Auto-Initialize-enable or disable
Target Address Count-increment or decrement
Data Transfer Mode-demand, single, block,
cascade

Mode Register I functions default to the following
after reset: verify transfer, Auto-Initialize disabled, In­
crement Target address, Demand Mode.

Mode Register II

Programs the following functions for an individually
selected channel:

Target Address Hold-enable or disable
Requester Address Count-increment or
decrement
Requester Address Hold-enable or disable
Target Device Type-I/O or Memory
Requester Device Type-I/O or Memory
Transfer Cycles-Two-Cycle or Fly-By

Mode Register II functions are defined as follows
after a hardware reset: Disable Target Address Hold,
Increment Requester Address, Target (and Re­
quester) in memory, Fly-By Transfer Cycles. Note:
Requester Device Type ignored in Fly-By Transfers.

Software Request Register

The DMA Controller can respond .to service requests
which are initiated by software. Each channel has an
internal request status bit associated with it. The
host processor can write to this register to set or
reset the request bit of a selected channel.

The status of a group's software DMA service re­
quests can be read from this register as well. Each
status bit is cleared upon Terminal Count or external
EOP#.

The software DMA requests are non-maskable and
subject to priority arbitration with all other software
and hardware requests. The entire register is
cleared by a hardware reset.

Mask Registers

Each channel has associated with it a mask bit
which can be set/reset to disable/enable that chan­
nel. Two methods are available for setting and clear-

4-835

,

i:t,
I ~

Ii
I~
I:,
I

intJ 82370

ing the mask bits. The Mask Set!Reset Register is a
write-only register which allows the host to select an
individual channel and either set or reset the mask
bit for that channel only. The Mask Read/Write Reg­
ister is available for reading the mask bit status and
for writing mask bits in groups of four.

The mask bits of a group may be cleared in one step
by executing the Clear Mask Command. See the
DMA Programming section for details. A hardware
reset sets all of the channel mask bits, disabling all
channels.

Status Register

The Status register is a read-only register which con­
tains the Terminal Count (TC) and Service Request
status for a group. Four bits indicate the TC status
and four bits indicate the hardware request status
for the four channels in the group. The TC bits are
set when the Byte Count expires, or when and exter­
nal EOP # is asserted. These bits are cleared by
reading from the Status Register. The Service Re­
quest bit for a channel indicates when there is a
hardware DMA request (DREQn) asserted for that
channel. When the request has been removed, the
bit is cleared.

Bus Size Register

This write-only register is used to define the bus size
of the Target and Requester of a selected channel.
The bus sizes programmed will be used to dictate
the sizes of the data paths accessed when the DMA
channel is active. The values programmed into this
register affect the operation of the Temporary Regis­
ter. When 32-bit bus width is programmed, the
82370 DMA Controller will access the device twice
through its 16-bit external Data Bus to perform a
32-bit data transfer. Any byte-assembly required to
make the transfers using the specified data path
widths will be done in the Temporary Register. The
Bus Size register of the Target is used as an incre­
ment! decrement value for the Byte Counter and
Target Address when in the Fly-By Mode. Upon r~­
set, all channels default to 8-bit Targets and 8-bIt
Requesters.

Chaining Register

As a command or write register, the Chaining regis­
ter is used to enable or disable the Chaining Mode
for a selected channel. Chaining can either be dis­
abled or enabled for an individual channel, indepen­
dently of the Chaining Mode status Of .other chan­
nels. After a hardware reset, all channels default to
Chaining disabled.

When read by the host, the Chaining Register pro­
vides the status of the Chaining Interrupt of each of

the channels. These interrupt status bits are cleared
when the new buffer information has been loaded.

3.5.2 CHANNEL REGISTERS

Each channel has three individually programmable
registers necessary for the DMA process; they are
the Base Byte Count, Base Target Address, and
Base Requester Address registers. The 24-bit Base
Byte Count register contains the number of bytes to
be transferred by the channel. The 24-bit Base Tar­
get Address Register contains the beginning ad­
dress (memory or 110) of the Target device. The
24-bit Base Requester Address register contains the
base address (memory or 110) of the device which is
to request DMA service.

Three more registers for each DMA channel exist
within the DMA Controller which are directly related
to the registers mentioned above. These registers
contain the current status of the DMA process. They
are the Current Byte Count register, the Current Tar­
get Address, and the Current R~quester ~ddress. It
is these registers which are manipulated (Increment­
ed, decremented, or held constant) by the 82370
DMA Controller during the DMA process. The Cur­
rent registers are loaded from the Base registers at
the beginning of a DMA process.

The Base registers are loaded when the host proc­
essor writes to the respective channel register ad­
dresses. Depending on the mode in which the chan­
nel is operating, the Current registers are typically
loaded in the same operation. Reading from the
channel register addresses yields the contents of
the corresponding Current register.

To maintain compatibility with software which ac~
cesses an 8237 A, a Byte Pointer Flip-Flop is used to
control access to the upper and lower bytes of some
words of the Channel Registers. These words are
accessed as byte pairs at single port addresses. The
Byte Pointer Flip-Flop acts as a one-bit pointer
which is toggled each time a qualifying Channel
Register byte is accessed.

It always points to the next logical byte to be ac­
cessed of a pair of bytes.

The Channel registers are arranged as pairs of
words, each pair with its own port address. Address­
ing the port with the Byte Pointer Flip-Flop re~et ac­
cesses the least significant byte of the pair. The
most significant byte is accessed when the Byte
Pointer is set.

For compatibility with existing 8237 A designs, there
is one exception to the above statements about the
Byte Pointer Flip-Flop. The third byte (bits 16-23) of

4-836

82370

the Target Address is accessed through its own port
address. The Byte Pointer Flip-Flop is not affected
by any accesses to this byte.

The upper eight bits of the Byte Count Register are
cleared when the least significant byte of the regis­
ter is loaded. This provides compatibility with soft­
ware which accesses an 8237 A. The 8237 A has
16-bit Byte Count Registers.

3.5.3 TEMPORARY REGISTERS

Each channel has a 32-bit Temporary Register used
for temporary data storage during two-cycle DMA
transfers. It is this register in which any necessary
byte assembly and disassembly, of non-aligned data
is performed. Figure 3-22 showS how a block of data
will be moved between memory locations with differ­
ent boundaries. Note that the order of the data does
not change. ",

Source
20H A

Destination

50H

21H B 51H

22H C 52H

23H 0 53H

24H E 54H

25H F 55H

26H G 56H

27H 57H

58H

59H

5AH

Target = source = 00000020H
Requester = destination = 00OO0053H
Byte Count = 000007H

A

a
c
0

, '!:

F

G

Figure 3-22. Transfer of data between memory
locations with different boundaries. This will be ,

the result, Independent of data path width.

If the destination is the Requester and an early pro­
cess termination has been indicated by the EOP#
signal or DREQn inactive in the Demand Mode, the
Temporary Register is not affected. If data remains
in the Temporary Register due to differences in data
path widths of the Target and Requester, it will not
be transferred or otherwise lost, but will be stored for
later transfer. '

If the destination is the Target and the EOP# signal
is sensed active during the Requester access of a
transfer, the DMA Controller will complete the trans-

, fer by sending to the Target whatever information is
in the Temporary Register at the time of process

termination. This implies that the Ta(get could be
accessed with partial data in two accesses. For this
reason It is advisable to have an I/O device desig­
nated as a Requester, unless It is capable of han­
dling partial data transfers.

3.6 DMA Controller Programming

Programming a DMA Channel to perform a needed
DMA function is In general a four step process. First
the global attributes of the DMA Controller are pro­
grammed via the two Command Registers. These
global attributes include: priority levels, channel
group enables, priority mode, and DREQn/EOP# in­
put sampling.

The second step involves setting the operating
modes of the particular channel. The Mode Regis­
ters are used to define the type of transfer and the
handshaking modes. The Bus Size Register and
Chaining Register may also need to be programmed
in this step.

The third step in setting up the channel is to load the
Base Registers in accordance with the needs of the
operating modes chosen in step two. The CUrrent
Registers are automatically loaded from the Ba~e
Registers, if required by the Buffer Transfer Mode ~n
effect. The information loaded and the order In
which it is loaded depends on the operating mode. A
channel used for cascading, for example, needs no
buffer information and this step can be skipped en­
tirely.

The ,last step is to enable the newly programmed
channel using one of the Mask Registers. The chan­
nel is then available to perform the desired data
transfer. The status of the channel can be observed
at any time through the Status Register, Mask Reg­
ister, Chaining Register, and Software Request reg­
ister.

Once the channel is programmed and enabled, the
DMA process may be initiated in one of two ways,
either by a hardware DMA request (DREQn) or a
software request (Software Request Register).

Once programmed to a particular Process/Mode
configuration, the channel will operate in that config­
uration until programmed otherwise. For this reason,
restarting a channel after the current buffer expires
does not require complete reprogramming of the
channel. Only those parameters which have
changed need to be reprogrammed. The Byte Count
Register is always changed and must be repro­
grammed. A Target or Requester Address Register
Which is incremented or decremented should be re­
programmed also.

Ii

I

I
I
,

intJ 82370

3.6.1 BUFFER PROCESSES

The Buffer ProceSs is determined by the Auto-Initial.
ize. bit of Mode Register I and the Chaining Register.
If Auto-Initialize is enabled, Chaining should not be
used.

3.6.1.1 Single Buffer Process

The Single Buffer Process is programmed by dis­
abling Chaining via the Chaining. Register and pro­
gramming Mode Register I for non-Auto-Initialize.

3.6.1.2 Buffer Auto-Initialize Process

Setting the Auto-Initialize bit in Mode Register I is all
that is necessary to place the channel in this mode.
Buffer Auto-Initialize must not be enabled simulta­
neous to enabling the Buffer Chaining Mode as this
will have unpredictable results.

Once the Base Registers are loaded, the channel is
ready to be enabled. The channel will reload its Cur­
rent Registers. from the Base Registers each time
the Current Buffer expires, either by an expired Byte
Count or an external EOP # .

3.6.1.3 Buffer Chaining

The Buffer Chaining Process is entered .into from the
Single Buffer Process. The Mode Registers should
be programmed first, with all of the Transfer Modes
defined as if the channel were to operate in the Sin­
gle Buffer Process. The channel's Base Registers
are then loaded. When the channel has been set up
in this way, and the chaining interrupt service routine
is in place, the Chaining Process can be entered by
programming the Chaining Register. Figure 3-23 il­
lustrates the Buffer Chaining Process.

An interrupt (IRQf) will be generated immediately af­
ter the Chaining Process is entered, as the channel
then perceives the Base Registers as empty and in
need of reloading. It is important to have the inter­
rupt service routine in place at the time the Chaining
Process is entered into. The interrupt request is reo
moved when the most significant byte of the Base
Target Address is loaded.

The interrupt will occur again when the first buffer
expires and the Current Registers are loaded from
the Base Registers. The cycle continues until the
Chaining Process is disabled, or the host fails to re­
spond to IRQ1 before the Current Buffer expires.

INSTALL IRQl INTERRUPT SERVICE ROUTINE

SET THE CHANNEL TO NON-CHAINING PROCESS

SET THE CHANNE~ TO CHAINING PROCESS

(lRQl WILL BE ACTIVATED)

(IRQl WILL NEED SERVICE­
LOAD BASE REGISTERS)

FROM THIS POINT, THE HOST CAN PERFORM
ANOTHER TASK. THE INTERRUPT SERVICE ROUTINE

LEFT BEHIND WILL MAINTAIN THE CHANNEL.
290164-35

Figure 3-23. Flow of Events in the Buffer Chaining Process

4-838

82370

Exiting the Chaining Process can be done by reset­
ting the Chaining Mode Register. If an interrupt is
pending for the channel when the Chaining Register
is reset, the interrupt request will be removed. The
Chaining Process can be temporarily disabled by
setting the channel's Mask bit in the Mask Register.

The interrupt service routine for IR01 has the re­
sponsibility of reloading the Base Registers as nec­
essary. It should check the status of the channel to
determine the cause of channel expiration, etc. It
should also have access to operating system infor­
mation regarding the channel, if any exists. The
IR01 service routine should be capable of determin­
ing whether the chain should be continued or termi­
nated and act on that information.

3.6.2 DATA TRANSFER MODES

The Data Transfer Modes are selected via Mode
Register I. The Demand, Single, and Block Modes
are selected by bits 06 and 07. The individual trans­
fer type (Fly-By vs Two-Cycle, Read-Write-Verify,
and 1/0 vs Memory) is programmed through both of
the Mode registers.

3.6.3 CASCADED BUS MASTERS

The Cascade Mode is set by writing ones to 07 and
,06 of Mode Register I. When a channel is pro­
grammed to OPerate in the Cascade Mode, all of the
other modes associated with Mode Registers I and II
are ignored. The priority and DREOn/EOP# defini­
tions of the Command Registers will have the same
effect on the channel's operation as any other
mode.

3.6.4 SOFTWARE COMMANDS

There are five port addresses which, when written
to, command certain operations to be performed by
the 82370 DMA Controller. The data written to these
locations is not of consequence, writing to the loca-

tion is all that is necessary to command the 82370 to
perform the indicated function. Following are de­
scriptions of the command functions.

Clear Byte Pointer Flip-Flop-Location OOOCH

Resets the Byte Pointer Flip-Flop. This command
should be performed at the beginning of any access
to the channel registers in order to be assured of
beginning at a predictable place in the register pro­
gramming sequence.

Master Clear-Location OOODH

All DMA functions are set to their default states. This
command is the equivalent of a hardware reset to
the DMA Controller. Functions other than those in
the DMA Controller section of the 82370 are not af­
fected by this command.

Clear Mask Register-Channels 0-3
- Location OOOEH

Channels 4-7
- Location OOCEH

This command simultaneously clears the Mask Bits
of all channels in the addressed group, enabling all
of the channels in the grou,p.

Clear TC Interrupt Request-Location 001EH

This command resets the Terminal Count Interrupt
Request Flip-Flop. It is provided to allow the pro­
gram which made a software DMA request to ac­
knowledge that it has responded to the expiration of
the requested channel(s).

3.7 Register Definitions

The following diagrams outline the bit definitions and
functions of the 82370 DMA Controller's Status and
Control Registers. The function and programming of
the registers is covered in the previous section on
DMA Controller Programming. An entry of "X" as a
bit value indicates "don't care."

4-839

I

I

I"

82370

Channel Registers (read Current, write Base)

Channel Register Name Address Byte Bits
(hex) Pointer Accessed

Channel 0 Target Address 00 0 0-7
1 8-15

87 x 16-23
Byte Count 01 0 0-7

1 8-15
11 0 16-23

Requester Address 90 0 0-7
1 8-15

91 0 16-23

Channel 1 Target Address 02 0 0-7
1 8-15

83 x 16-23
Byte Count 03 0 0-7

1 8-15
13 0 16-23

Requester Address 92 0 0-7
1 8-15

93 0 16-23

Channel 2 Target Address 04 0 0-7
1 8-15

81 x 16-23
Byte Count 05 0 0-7

1 8-15
15 0 16-23

Requester Address 94 0 0-7
1 8-15

95 0 16-23

Channel 3 Target Address 06 0 0-7
1 8-15

82 x 16-23
Byte Count 07 0 0-7

1 8-15
17 0 16-23

Requester Address 96 0 0-7
1 8-15

97 0 16-23

Channel 4 Target Address CO 0 0-7
1 8-15

8F x 16-23
Byte Count C1 0 0-7

1 8-15
D1 0 16-23

Requester Address 98 0 0-7
1 8-15

99 0 16-23

4-840

inter 82370

Channel Registers (read Current, write Base) (Continued)

Channel Register Name Address Byte
(hex) Pointer

Channel 5 Target Address C2 0
1

8B x
Byte Count C3 0

1
03 0

Requester Address 9A 0
1

9B 0

Channel 6 Target Address C4 0
1

89 x
Byte Count C5 0

1
05 0

Requester Address 9C 0
1

90 0

Channel 7 Target Address C6 0
1

8A x
Byte Count C7 0

1
07 0

Requester Address 9E 0
1

9F O.

Command Register I (write only)

Port Addresses- Channels 0-3-0008H

Channels 4-7-00C8H

D7 D6 D5 D4 D3 D2 Dl DO

I x x I x M I x x I P I x

I GROUP MASK 1-____ 0 = ENABLE CHANNELS
1 = DISABLE CHANNELS I ",,,m 1-------- 0 = ,IXED PRIORITY
1 = ROTATING PRIORITY

4-841

Bits
Accessed

0-7
8-15
16-23

" 0-7 i
8-15
16-23
0-7
8-15
16-23

0-7
8-15
16-23
0-7
8-15
16-23
0-7
8-15
16-23

0-7
8-15
16-23
0-7
8-15
16-23
0-7
8-15
16-23

290164-36

Command Register II (write only)

Port Addresses- Channels 0-3~01 AH

Channels 4-7-00DAH

07 06 05 04

82370

03 02 01 DO

101010101~1~1~1~1

L OREQN SAt.4PLING

Mode Register I (write only)

Port Addresses- Channels 0-3-000BH

Channels 4-7-00CBH

07 06 05 04 03 02 01 DO

I Bl I BO I TI I AI I T1 I TO I Cl I CO. I

I I

EOP# SAt.4PLING
o = ASYNCHRONOUS
1 = SYNCHRONOUS

LOW PRIORITY. LEVEL SET
00 = CHANNEL 0(4) LOWEST
01 = 1(5)
10 = 2(6)
11 = 3(7)

CHANNEL SELECT
00 = CHANNEL 0(4)
01 = 1(5)
10 = 2(6)
11 = 3(7)

TRANSFER TYPE
00 = VERIF'Y
01 = WRITE
10 = READ
11 = ILLEGAL
XX IF IN CASCADE t.400E

AUTO-INITIALIZE
o = DISABLE, 1 = ENABLE

TARGET INCREt.4ENT/OECREt.4ENT
0= INCREt.4ENT TARGET
1 = OECREt.4ENT TARGET •
X IF TARGET HOLD ENABLED

DATA TRANSFER t.400E
00 = OEt.4ANO t.400E
01 = SINGLE TRANSFER t.400E
10 = BLOCK t.400E
11 .. CASCADE t.400E

"Target and Requester DECREMENT is allowed only for byte transfers.

4-842

290164-37

290164-38

intJ
Mode Register II (write only)

Port Addresses- Channels 0-3-001 BH

Channels 4-7 -OODBH

82370

07 06 05 04 03 02 01 DO

1~1~lrol~I~I~I~lml

I I CHANNEL SELECT
SEE MODE REGISTER I

TARGET HOLD
o = INCREMENT/DECREMENT
1 = HOLD

REQUESTER INCREMENT
o = INCREMENT
1 = DECREMENT •

X IF REQUESTER HOLD ENABLED

REQUESTER HOLD
o = INCREMENT/DECREMENT
1 = HOLD

TARGET DEVICE TYPE

REQUESTER DEVICE TYPE
0= MEMORY
1 = INPUT/OUTPUT

TRANSFER CYCLES
o = ONE-CYCLE (FLY-BY)
1 = TWO-CYCLE

"Target and Requester DECREMENT is allowed only for byte transfers.

Software Request Register (read/write)

Port Addresses- Channels 0-3-0009H

Channels 4-7-00C9H

Write Format: Software DMA Service Request

07 06 05 04 03

I x I x I x x x I
02 01 DO

R C1 I CO I

I
I CHANNEL SELECT

SEE MODE REGISTER I

REQUEST SERVICE
o = REMOVE REQUEST
1 = ASSERT REQUEST

4-843

290164-.39

290164-40

I

I:!

IJ

82370

Read Format: Software Requests Pending

07 06 05 04 03 02 01 DO 1 = REQUEST PENDING

I X I x I x I x I SR3 I SR21 SRlI SRO I

I L CHANNEL 0(4) REQUEST

CHANNEL 1 (5) REQUEST

CHANNEL 2(6) REQUEST

CHANNEL 3(7) REQUEST

Mask, Set/Reset Register Individual Channel Mask (write only)

Port Addresses- Channels 0-3-{)OOAH

Channels 4-7-00CAH

07 06 05 04 03 02 01 DO

I x I x I x x I x M I Cl I CO I

I
I I CHANNEL SELECT

SEE MODE REGISTER I

MASK SET BIT
o = CLEAR MASK
1 = SET MASK

Mask Read/Write Register Group Channel Mask (read/write)

Port Addresses- Channels 0-3-{)OOFH

Channels 4-7-00CFH

07 06 05 04 03 02 01 DO

CHANNELO(4) MASK BIT

~--CHANNEL 1(5) MASK BIT

'------ CHANNEL 2(6) M~SK BIT

...... ------ CHANNEL 3(7) MASK BIT

MASK BIT = 0 - CHANNEL ENABLED
= 'I - CHANNEL DISABLED

290164-41

290164-42'

290164-43

inter 82370

Status Register Channel Process Status (read only)

Port Addresses- Channels 0-3-000SH

Channels 4-7-00CSH

07 06 05 04 03 02 01 DO

I R3 I R2 I Rl I RO I TC3 I TC2 I TCI I TCO I

I

Bus Size Register Set Data Path Width (write only)

Port Addresses- Channels 0-3-001SH

Channels 4-7-00DSH

L CHANNEL 0(4) EXPIRED

CHANNEL 1 (5) EXPIRED

CHANNEL 2(6) EXPIRED

CHANNEL 3(7) EXPIRED
1 = EXPIRED

CHANNEL 0(4) REQUEST

CHANNEL 1 (5) REQUEST

CHANNEL 2(6) REQUEST

CHANNEL 3(7) REQUEST
1 = REQUEST PENDING

07 06 05 04 03 D2 01 DO

L RBS11RBSO I TBSI j TBSO I 0 I 0 I Cl I co I

I I CHANNEL SELECT

290164-44

SEE MODE REGISTER I

Bus Size Encoding:
00 = Reserved by Intel 10 = 16-bit Bus
01 = 32-bit Bus· 11 = a-bit Bus .

TARGET BUS SIZE

REQUESTER BUS SIZE
290164-45

·If programmed as 32-bit bus width, the corresponding device will be accessed in two 16-bit cycles pro.vided that the data is
aligned within word boundary.

Chaining Register (read/write)

Port Addresses- Channels 0-3-0019H
Channels 4-7-00D9H

WRITE FORMAT: SET CHAINING MODE

D7 D6 05 D4 D3 D2 Dl DO

o o o I 0 o I CH I Cl I CO I

I I CHANNEL SELECT
SEE MODE REGISTER I

L-____ CHAINING ENABLE BIT
o = DISABLE CHAINING MODE
1 = ENABLE CHAINING MODE

290164-46

inter 82370

REAO FORMAT: CHANNEL INTERRUPT STATUS

07 06 05 04 03 02 01 00

CHANNEL 0(4) BASE EMPTY

1.-__ CHANNEL 1(5) BASE EMPTY

'------ CHANNEL 2(6) BASE EMPTY

..... ----- CHANNEL 3(7) BASE EMPTY
290164-47

3.8 8237 A Compatibility

The register arrangement of the 82370 DMA Con­
troller is a superset of the 8237A DMA Controller.
Functionally the 82370 DMA Controller is very differ­
ent from the 8237 A. Most of the functions of the
8237 A are performed also by the 82370. The follow­
ing discussion points out the differences between
the 8237 A and the 82370.

- The 8237A is limited to transfers between 110 and
memory only (except in one special case, where two
channels .can be used to perform memory-to-memo­
ry transfers). The 82370 DMA Controller can transfer
between any combination of memory and liD. Sev­
eral . other features of the 8237 A are enhanced or
expanded in the 82370 and other features are add­
ed.

The 8237 A is an 8-bit only DMA device. For pro­
gramming compatibility, all ofthe 8-bit registers are
preserved in the 82370. The 82370 is programmed
via 8-bit registers. The address registers in the
82370 are 24-bit registers in order to support the
80376's 24-bit bus. The Byte Count Registers are
24-bit registers, allowing support of larger data
blocks than possible with the 8237 A.

All of the 8237A's operating modes are supported
by the 82370 (except the cumbersome two-channel
memory-to-memory transfer). The 82370 performs
memory-to-memory transfers using only one chan­
nel. The 82370 has the added features of buffer
pipelining (Buffer Chaining Process) and program­
mable priority levels.

The 82370 also adds the feature of address regis­
ters for both destination and source. These address­
es may .be incremented, decremented, or held con­
stant, as required by the application of the individual
channel. This allows any combination of destination
and source device.

Each DMA channel has associated with it a Target
and a Requester. In the 8237A, the Target is the
device which can be accessed by the address regis­
ter, the Requester is the device which is accessed
by the DMA Acknowledge signals and must be an
liD device.

4.0 PROGRAMMABLE INTERRUPT
CONTROLLER (PIC)

4.1 Functional Description

The 82370 Programmable Interrupt Controller (PIC)
consists of three enhanced 82C59A Interrupt Con­
trollers. These three controllers together provide 15
external and 5 internal interrupt request inputs. Each
external request input can be cascaded with an ad­
ditional 82C59A slave controller. This scheme al­
lows the 82370 to support a maximum of 120
(15 x 8) external interrupt request inputs.

Following one or more interrupt requests, the 82370
PIC issues an interrupt signal to the 80376. When
the 80376 host processor responds with an interrupt
acknowledge signal, the PIC will arbitrate between
the pending interrupt requests and place the inter­
rupt vector. associated with the highest priority pend­
ing request on the data bus.

The major enhancement in the 82370 PIC over the
82C59A is that each of the interrupt request inputs
can be individually programmed with its own inter­
rupt vector,.allowing more flexibility in interrupt vec­
tor mapping.

4 .. 1.1 INTERNAL BLOCK DIAGRAM

The block diagram of the 82370 Programmable In­
terrupt Controller is shown in Figure 4-1. Internally,

inter 82370

the PIC consists of three 82C59A banks: A, Band C.
The three banks are cascaded to one another: C is
cascaded to B, B is cascaded to A. The INT output
of Bank A is used externally to interrupt the 80376.

Bank A has nine interrupt request inputs (two are
unused), and Banks Band C have eight interrupt
request inputs. Of the fifteen external interrupt re­
quest inputs, two are shared by other functions. Spe­
cifically, the Interrupt Request 3 input (IR03#) can
be used as the Timer 2 output (TOUT2 #). This pin
can be used in three different ways: IR03 # input
only, TOUT2# output only, or using TOUT2# to
generate an IR03# interrupt request. Also, the In­
terrupt Request 9 input (IR09#) can be used as
OMA Request 4 input (OREO 4). Typically, only
IR09 # or ORE04 can be used at a time.

IRQI6#
IRQI7#
IRQI8#
IROI9#
IRQ20#
IRQ21#
IRQ22#
IRQ23#

TOUTO(IRQ 8#)-r-
DREQ4/IRQ9#

(IRQ10#) 4
IRQ.ll#
IRQI2#
IRQI3#
IRQI4#
IRQ15#

Oll)-f:::
1#)-
.5#)-H

TOUT3#(IRO
CHAINING (IRQ

ICW2 (IRQ 1

TOUT2#/IRQ3#
SW Req TC (IRQ

NOT
NOT

PEFAULT (IRQ

(IRQ2#) 4

4#)_
USED--+
USED--+
7#)_

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0
1
1.5

4.1.2 INTERRUPT CONTROLLER BANKS

All three banks are identical, with the exception of
the IR01.5 on Bank A. Therefore, only one bank will
be discussed. In the 82370 PIC, all external requests
can be cascaded into and each interrupt controller
bank behaves like a master. As compared to the
82C59A, the enhancements in the banks are:

- All interrupt vectors are individually programma­
ble. (In the 82C'59A, the vectors must be pro­
grammed in eight consecutive interrupt vector lo­
cations.)

- The cascade address is provided on the Data
Bus (00-07). (In the 82C59A, three dedicated
control signals (CASO, CAS1, CAS2) are used for
master/slave cascading.)

INTERRUPT
~ BANK

C

INTERRUPT .!!!! BANK
B

2 INTERRUPT

f---+ 3 BANK
4 A
5
6
7

INT
(OUTPUT)

290164-48

Figure 4-1. Interrupt Controller Block Diagram

4-847

82370

The block diagram of a bank is shown in Figure 4-2.
As can be seen from this figure, the bank consists of
six major blocks: the Interrupt Request Register
(IRR), the In-Service Register (ISR), the Interrupt
Mask Register (IMR), the Priority Resolver (PR), the
Vector Registers (VR), and the Control Logic. The
functional description of each block is included be­
low.

INTERRUPT REQUEST (IRR) AND
IN·SERVICE REGISTER (ISR)

The interrupts at the Interrupt Request (IRQ) input
lines are handled by two registers in cascade, the
Interrupt Request Register (IRR) and t!:le In-Service
Register (ISR). The IRR is used to store aU interrupt
levels which are requesting serVice; and the ISR is
used to store all interrupt levels which are being
serviced.

PRIORITY RESOLVER (PR)

This logic block determines the priorities of tHe bits
set in the IRR. The highest priority is selected and
strobed into the corresponding bit of the ISR during
an Interrupt Acknowledge cycle.

OSC
-r-

741'109

I
PR

~J Q

.- K_
ClR

J
-r-

~

~~ lOOk 74F"379 J
~-. 10' lQ

7~1: 20 '2Q

IN4148

474

11"~ r--- 3D 3Q l-

r- 40
4Q

G

INTERRUPT MASK REGISTER (IMR)

The IMR stores the bits which mask the interrupt
lines to be masked (disabled). The IMR operates on
the IRR. Masking of a higher priority input will not
affect the interrupt request lines of lower priority.

VECTOR REGISTERS (VR)

This block contains a set of Vector Registers, one
for each interrupt request line, to store the pre-pro­
grammed interrupt vector number. The correspond­
ing vector number will be driven onto the Data Bus
of the 82370 during the Interrupt Acknowledge cy­
cle.

CONTROL LOGIC

The Control Logic coordinates the overall operations
of the other internal blocks within the same bank .
.This logic will drive the Interrupt Output signal (INT)
HIGH when one or more unmasked interrupt inputs
are active (LOW). The INT output signal goes direct­
.Iy to the 80376 (in bank A) ,or to another bank to
which this bank is cascaded (see Figure 4-1). Also,

ClK2

,

ClK

82370

RESET CPURST

I
-r-

10k 74121

~ RIC B

0.01 J.lF"::t..
Q~ C Al A2

I

'"
RESET

80376
74F"32

n-
290164-A7,

Figure 4-2. Interrupt Bank Block Diagram

4-848

82370

this logic will recognize an Interrupt Acknowledge
cycle (via M/IO#, DIC# and WIR# signals). During
this bus cycle; the Control Logic will enable the cor­
responding Vector Register to drive the interrupt
vector onto the Data Bus.

In bank A, the Control Logic is also responsible for
handling the special ICW2 interrupt request input
(IRQ1.5) ..

4.2 Interface Signals

4.2.1 INTERRUPT INPUTS

There are 15 external Interrupt Request inputs and 5
internal Interrupt Requests. The external request in­
puts are: IRQ3#, IRQ9#, IRQ11# to IRQ23#. They
are shown in bold arrows in Figure 4-1. All IRQ in­
puts 'are active LOW and they can be programmed
(via a control bit in the Initialization Command Word
1 (ICW1)) to be either edge-triggered or level-trig­
gered. In order to be recognized as a valid interrupt
request, the interrupt input mUft be active (LOW) un­
til the first INTA cycle (see Bus Functional Descrip­
tion). Note that all 15 external Interrupt Request in­
puts have weak internal pull-up resistors.

As mentioned earlier, an 82C59A can be cascaded
to each external interrupt input to expand the inter­
rupt capacity to a maximum of 120 levels. Also, two
of the interrupt inputs are dual functions: IRQ3# can
be used as Timer 2 output (TOUT2#) and IRQ9#
can be used as DREQ4 input. IRQ3# is a bidirec­
tional dual function pin. This interrupt request input is
wired-OR with the output of Timer 2 (TOUT2#). If
only IRQ3 # function is to be used, Timer 2 should
be programmed so that OUT2 i.s LOW. Note that
TOUT2 # can also be used to generate an interrupt
request to IRQ3# input.

The five internal interrupt, requests . serve special
system functions. They are shown in Table 4-1. The
following paragraphs describe these interrupts.

Table 4·1. 82370 Internal Interrupt Requests

Interrupt Request Interrupt Source

IRoo# Timer 3 Output (TOUTS)
IRQ8# Timer 0 Output (TOUTO)
IRQ1# DMA Chaining Request
IRQ4# DMA Terminal Count
IRQ1.5# ICW2 Written

TIMER 0 AND TIMER 3 INTERRUPT REQUESTS

IRQ8# and IRoo# interrupt requests are initiated
by the output of Timers 0 and 3, respectively. Each
of these requests is generated by an edge-detector
flip-flop.

The flip-flops are activated by the following condi­
tions:

Set - Rising edge of timer output (TOUT);

Clear - Interrupt acknowledge for this request; OR
Request is masked (disabled); OR Hard­
ware Reset.

CHAINING AND TERMINAL COUNT INTER~UPTS

These interrupt requests are generated by the
82370 DMA Controller. The chaining request
(IRQ1 #) indicates that the DMA Base Register is
not loaded. The Terminal Count request (IRQ4#) in­
dicates that a software DMA request was cleared.

ICW2 INTERRUPT REQUEST

Whenever an Initialization Control Word 2 (ICW2) is
written to a Bank, a speciallCW2 interrupt request is
generated. The interrupt will be cleared when the
newly programmed ICW2 Register is read. This in­
terrupt request is in Bank A at level 1.5. This inter­
rupt request is internally, ORed with the Cascaded
Request from Bank B and is always assigned a high­
er priority than the Cascaded Request.

This special interrupt is provided to support compati­
bility with the original 82C59A..A detailed descript~on
of this interrupt is discussed in the Programming
section. '

DEFAULT INTERRUPT (lRQ7#)

During an Interrupt Acknowledge cycle, if there is no
active pending request, the PIC will automatically
generate a default vector. This vector corresponds
to the IRQ·7 # vector in bank A.

4.2.2 INTERRUPT OUTPUT (INT)

The INT output pin is taken directly from bank A.
This signal should be tied to the Maskable Interrupt
Request (INTR) of the 80376. When this signal is
active (HIGH), it indicates that one or more internall
external interrupt requests are pending. The 80376
is expected to respond with an interrupt acknowl­
edge cycle.

4.3 Bus Functional Description

The INT output of bank A will be activated as a result
of any unmasked interrupt request. This may be a
non-cascaded or cascaded request. After the PIC
has driven the INT signal HIGH, the 80376 will re­
spond by performing two interrupt acknowledge cv,­
cles. The timing diagram in Figure 4-3 shows a tyPI­
cal interrupt acknowledge process between' the
82370 and the 80376 CPU.

4-849

I;

j
I·

intJ 82370

PREVIOUS
CYCLE

INTERRUPT ACKNOWLEDGE
CYCLE 1 (5 WAIT STATES)

IDLE
, (4 BUS STATES)

INTERRUPT ACKNOWLEDGE
CYClE2 (5 WAIT STATES)

u n u u u u u u n n n n n u u u u u u
ClK

READY#

SEE NOTE

00-07 ~--t--i---t--+--1~-t1:l:~~~--i---~-t--1---~-t--1---t1~::~:)-
SEE NOTE
I I
290.164-49

NOTE:
What is actually driven on the Data Bus depends on if the current interrupt request is a Slave Request.

INTA Cycle 1 INTA Cycle 2
NON-SLAVE REQUEST
SLAVE REQUEST

OOH Vector
Slave Address High Impedence'

• Slave will place a vector at this time.

Figure 4·3. Interrupt Acknowledge Cycle

After activating the INT signal, the 82370 monitors
the status lines (M/IO#, D/C#, W/R#) and waits
for the 80376 to initiate the first interrupt acknowl­
edge cycle. In the 80376 environment, two succes­
sive interrupt acknowledge cycles .. (INTA) marked by
M/IO#=LOW, D/C#=LOW, and W/R#=LOW
are performed. During the first INTA cycle, the PIC
will. determine the highest priority request. Assuming
this interrupt input has no external Slave Controller
cascaded to it, the 82370 will drive the Data· Bus
with OOH in the first INTA cycle. During the second
INTA cycle, the 82370 PIC will drive the Data Bus
with the corresponding pre-programmed interrupt
vector.

If the PIC determines (from the ICW3) that this inter­
rupt input has an external Slave Controllercascaded
to it, it will drive the Data Bus with the specific Slave
Cascade' Address (instead of OOH) during the first
INTA cycle. This Slave Cascade Address is the pre­
programmed content in the corresponding Vector
Register. This means that no Slave Address should
be chosen to be OOH. Note that the Slave Address
and Interrupt Vector are different interpretations of
the same thing. They are both the contents of the
programmable Vector Register. During the second
INTA cycle, the Data Bus will be floated so that the
external Slave Controller can drive its interrupt vec­
tor on the bus. Since the Slave Interrupt Controller
resides on the system bus, bus transceiver enable

. and direction control logic must take this into consid­
eration.

In order to have a successful interrupt service, the
interrupt request input must be held valid (LOW) until
the beginning of the first interrupt acknowledge cy­
cle. If there is no pending interrupt request when the
first INTA cycle is generated, the PIC will generate a
default vector, which is the IRQ7 vector (Bank A,
level 7).

According to the Bus Cycle definition of the 80376,
there will be four Bus Idle States between the two
interrupt acknowledge cycles. These'idle bus cycles
will be initiated by the 80376. Also, during each inter­
rupt acknowledge cycle, the internal Wait State Gen­
erator of the 82370 will automatically generate the
required number of wait states for internal delays.

4.4 Modes of Operation

A variety of modes and commands are available for
controlling the 82370 PIC. All of them are program­
mable; that is, they may be changed dynamically un­
dersoftware control. In fact, each bank dan be pro­
grammed individually to operate in different modes.
With these modes and commands, many possible
configurations are conceivable, giving the· user
enough versatility for almost any interrupt controlled
application.

This section is not intended to show how the 82370
PIC can be programmed. Rather, it describes the
operation in different modes.

4-850

inter 82370

4.4.1 END-Of-INTERRUPT

Upon completion of an interrupt service routine, the
interrupted bank needs to be notified so its ISR can
be updated. This allows the PIC to keep track of
which interrupt levels are in the process of being
serviced and their, ,relative priorities. Three different
End-Of-Interrupt (EOI) formats are available. They
are: Non-Specific EOI Command, Specific EOI' Com­
mand, and Automatic EOI Mode. Selection of which
EOI to use is dependent upon the interrupt opera­
tions the user wishes to perform.

If the 82370 is NOT programmed in the Automatic
EOI Mode, an EOI command must be issued by the
80376 to the specific 82370 PIC Controller Bank.
Also, if this controller bank is cascaded to another
internal bank, an EOI command must also be sent to
the bank to which this bank is cascaded. For exam­
ple, if an interrupt request of Bank C in the 82370
PIC is serviced, an EOI should be written into Bank
C, Bank B and Bank A If the request comes from an
external interrupt controller cascaded to BankC,
then an EOI should be written into the external con­
troller as well.

NON-SPECifiC EOI COMMAND

A Non-Specific EOI command sent from the 80376
lets the 82370 PIC bank know when a service rou­
tine has been completed, without specification of its
exact interrupt level. The respective interrupt bank
automatically determines the interrupt level and re­
sets the correct bit in the ISA.

To take advantage of the Non-Specific EOI, the in­
terrupt bank must be in a mode of operation in which
it can predetermine its in-service routine levels. For
this reason, the Non-Specific EOI command should
only be used when the most recent level acknowl­
edged and serviced is always the highest priority lev­
el (Le. in the Fully Nested Mode structure to be de­
scribed below). When the interrupt bank receives a
Non-Specific EOI command, it simply resets the
highest priority ISR bit to indicate that the highest
priority routine in service is finished.

Special consideration should be taken when decid­
ing to use the Non-Specific EOI command. Here are
two operating conditions in which it is best NOT
used since the Fully Nested Mode structure will be
destroyed:

- Using the Set Priority command within an inter­
rupt service routine.

- Using a Special Mask Mode.

These conditions are covered in more detail in their
own sections, but are listed here for reference.

4-851

SPECifiC EOI COMMAND

Unlike a Non-Specific EOI command which automat­
ically resets the highest priority ISR bit, a Specific
EOI command specifies an exact ISR bit to be reset.
Anyone of the IRQ levels of an interrupt bank can
be specified in the command.

The Specific EOI command is needed to, reset the
ISR bit of a completed service routine whenever the
interrupt bank is not able to automatically determine
it. The Specific EOI command can be used in all
conditions of operation, including those that prohibit
Non-Specific EOI command usage mentioned
above.

AUTOMATIC EOI MODE

When programmed in the Automatic EOI Mode, the
80376 no longer needs to issue a command to notify
the interrupt bank it has completed an interrupt rou­
tine. The interrupt bank accomplishes this by per­
forming a Non-Specific EOI automatically at the end
of the second INTA cycle.

Special consideration should be taken when decid­
ing to use the Automatic EOI Mode because it may
disturb the Fully Nested Mode structure. In the Auto­
matic EOI Mode, the ISR bit of a routine in service is
reset right after it is acknowledged, thus leaving no
designation in the ISR that a service routine is being
executed. If any interrupt request within the same
bank occurs during this time and interrupts are en­
abled, it will get serviced regardless of its priority.
Therefore, when using this mode, the 80376 should
keep its interrupt request input disabled during exe­
cution of a service routine. By doing this, higher pri­
ority interrupt levels will be serviced only after the
completion of a routine in service. This guideline re­
stores the Fully Nested Mode structure. However, in
this scheme, a routine in service cannot be interrupt­
ed since the host's interrupt request input is dis­
abled.

4.4.2 INTERRUPT PRIORITIES

The 82370 PIC provides various methods for arrang­
ing the interrupt priorities of the interrupt request in­
puts to suit different applications. The following sub­
sections explain these methods in detail.

4.4.2.1 fully Nested Mode

The Fully Nested Mode of operation is a general pur­
pose priority mode. This mode supports a multi-level
interrupt structure in which all of the Interrupt Re­
quest (IRQ) inputs within one bank are arranged
from highest to lowest.

82370

Unless otherwise programmed, the Fully Nested
Mode is entered by default upon initialization. At this
time, IRQO# is assigned the highest priority
(priority=O) and IRQ7# the lowest (priority = 7).
This default priority can be changed, as will be ex­
plained later in the Rotating Priority Mode.

When an interrupt is acknowledged, the highest pri­
ority request is determined from the Interrupt Re­
quest Register (IRR) and its vector is placed on the
bus. In addition, the corresponding bit in the In-Serv­
ice Register (ISR) is set to designate the routine in
service. This ISR bit will remain set until the 80376
issues an End Of Interrupt (EOI) command immedi­
ately before returning from the service routine; or
alternately, if the Automatic End Of Interrupt (AEOI)
bit is set, the ISR bit will be reset at the end of the
second INTA cycle.

While the ISR bit is set, all further interrupts of the
same or lower priority are inhibited. Higher level in­
terrupts can still generate an interrupt, which will be
acknowledged only if the 80376 internal interrupt en­
able flip-flop has been reenabled (through software
inside the current service routine). .

4.4.2.2 Automatic Rotation-Equal Priority
Devices

Automatic rotation of priorities serves in applications
where the interrupting devices are, of equal priority

within an interrupt bank. In this kind of environment,
once a device is serviced, all other equal priority pe­
ripherals should be given a chance to be serviced
before the original device is serviced again. This is
accomplished by automatically assigning a device
the lowest priority after being serviced. Thus, in the
worst case, the device would have to wait until all
other peripherals connected to the same bank are
serviced before it is serviced again.

There are two methods of accomplishing automatic
rotation. One is used in conjunction with the Non­
Specific EOI command and the other is used with
the Automatic EOI mode. These two methods are
discussed below.

ROTATE ON NON-SPECIFIC EOI COMMAND

When the Rotate On Non-Specific EOI command is
issued, the highest ISR bit is reset as in a normal
Non-Specific EOI command. However, after it is re­
set, the corresponding Interrupt Request (IRQ) level
is assigned the lowest priority. Other IRQ priorities
rotate to' conform to the Fully Nested Mode based
on the newly assigned low priority.

Figure 4-4 shows how the Rotate On Noli-Specific
EOI command affects the interrupt priorities. As­
sume the IRQ priorities were assigned withlRQO the
highest and IRQ7 the lowest. IRQ6 and IRQ4 are

IS7 IS6 IS5 IS4 IS3 IS2 lSI ISO

ISR STATUS

PRIORITY

LOWEST PRIORITY

ISR STATUS

PRIORITY

IS7 IS6 155 154 153 152

HIGHEST PRIORITY

(BEFORE
COMMAND)

HIGHEST PRIORITY

151 ISO

(AFTER
COMMAND)

LOWEST PRIORITY

Figure 4-4. Rotate On Non-Specific EOI Command

4-852

290164-50

290164-51

intJ 82370

already in service but neither is completed. Being
the higher priority routine, IRQ4 is necessarily the
routine being executed. During the IRQ4 routine, a
rotate on Non-Specific EOI command is executed.
When this happens, Bit 4 in the ISR is reset. IRQ4
then becomes the lowest priority and IRQ5 becomes
the highest.

ROTATE ON AUTOMATIC EOI MODE

The Rotate On Automatic EOI Mode works much
like the Rotate On Non-Specific EOI Command. The
main difference is that priority rotation is done auto­
matically after the second INTA cycle of an interrupt
request. To enter or exit this mode, aRotate-On-Au­
tomatic-EOI Set Command and Rotate-On-Automat­
ic-EOI Clear Command is provided. After this mode
is entered, no other commands are needed as in the
normal Automatic EOI Mode. However, it must be
noted again that when using any form of the Auto­
matic EOI, Mode, special consideration should be
taken. The guideline presented in the Automatic EOI
Mode also applies here.

4.4.2.3 Specific Rotation-Specific Priority

Specific rotation gives the user versatile capabilities
in interrupt controlled operations. It serves in those
applications in which a specific device's interrupt pri­
ority must be altered. As opposed to Automatic Ro­
tation which will automatically set priorities after
each interrupt request is serviced, specific rotation is
completely user controlled. That is, the user selects
which interrupt level is to receive the lowest or the
highest priority. This can be done during the main
program or within interrupt routines. Two specific ro-

tation commands are available to the user: Set Prior­
ity Command and Rotate On Specific EOI Com-
mand. .

SET PRIORITY COMMAND

The Set Priority Command allows the programmer to
assign an IRQ level the lowest priority. All other in­
terrupt levels will conform to the Fully Nested Mode
based on the newly assigned low priority.

ROTATE ON SPECIFIC EOI COMMAND

The Rotate On Specific EOI Command is literally a
combination of the Set Priority Command and the
Specific' EOI Command. Like the Set Priority Com­
mand, a specified IRQ level is assigned lowest priori­
ty. Like the Specific EOI Command, a specified level
will be reset in the ISA. Thus, this command accom­
plishes both tasks in one single command.

4.4.2.4 Interrupt Priority Mode Summary

In order to simplify understanding the many modes
of interrupt priority, Table 4-2 is provided to bring out
their summary of operations.

4.4.3 INTERRUPT MASKING

VIA INTERRUPT MASK REGISTER

Each bank in the 82370 PIC has an Interrupt Mask
Register (IMR) which enhances interrupt control ca-

Table 4-2. Interrupt Priority Mode Summary

Interrupt
Operation Effect On Priority After EOI

Priority
Summary

Mode Non-Specificl Automatic Specific

Fully-Nested Mode IRQO # - Highest Priority No change in priority. Not Applicable.
IRQ7 # - Lowest Priority Highest ISR bit is reset.

Automatic Rotation Interrupt level just Highest ISR bit is reset Not Applicable.
(Equal Priority Devices) serviced is the lowest and the corresponding

priority. level becomes the lowest

Other priorities rotate to priority.

conform to Fully-Nested
Mode.

Specific Rotation User specifies the Not Applicable. As described under
(Specific Priority Devices) lowest priority level. "Operation Summary".

Other priorities rotate to
conform to Fully-Nested
Mode.

4-853

I:

intJ 82370

pabilities. This IMR allows individual IRQ masking.
When an IRQ is masked, its interrupt request is dis­
abled until it is unmasked. Each bit in the 8-bit IMR
disables one interrupt channel if it is set (HIGH). Bit
o masks IRQO, Bit 1 masks IRQ1 and so forth.
Masking an IRQ channel will only disable the corre­
sponding channel and does not affect the others'
operations.

The IMR acts only on the output of the IRR. That is,
if an interrupt occurs while its IMR bit is set, this
request is not "forgotten". Even with an IRQ input
masked, it is still possible to set the IRR. Therefore,
when the IMR bit is reset, an interrupt request to the
80376 will then be generated, providing that the IRQ
request remains active. If the IRQ request is re­
moved before the IMR is reset, the Default Interrupt
Vector (Bank A, level 7) will be generated during the
interrupt acknowledge cycle.

SPECIAL MASK MODE

In the Fully Nested Mode, all IRQ levels of lower
priority than the routine in service are inhibited. How­
ever, in some applications, it may be desirable to let
a lower priority interrupt request to interrupt the rou­
tine in service. One method to achieve this is by
using the Special Mask Mode. Working in conjunc­
tion with the IMR, the Special. Mask Mode enables
interrupts from all levels except the level in service.
This is usually done inside an interrupt service rou­
tine by masking the level that is in service and then
issuing the Special Mask Mode Command. Once the
Special Mask Mode is enabled, it remains in effect
until it is disabled.

4.4.4 EDGE OR LEVEL INTERRUPT
TRIGGERING

Each bank in the 82370 PIC can be programmed
independently for either edge or level sensing for the

82370
D(0;:z4

interrupt request signals. Recall that all IRQ inputs
are active LOW. Therefore, in the edge triggered
mode, an active edge is defined as an input tran­
sition from an inactive (HIGH) to active (LOW) state.
The interrupt input may remain active without gener­
ating another interrupt. During level triggered mode,
an interrupt request will be recognized by an active
(LOW) input, and there is no need for edge detec­
tion. However, the interrupt request must be re­
moved before the EOI Command is issued, or the
80376 must be disabled to prevent a second false
interrupt from occurring.

In either modes, the interrupt request input must be
active (LOW) during the first INTA cycle in order to
be recognized. Otherwise, the Default Interrupt Vec­
tor will be generated at level 7 of Bank A.

4.4.5 INTERRUPT CASCADING

As mentioned previously, the 82370 allows for exter­
nal Slave interrupt controllers to be cascaded to any
of its external interrupt request pins. The 82370 PIC
indicates that an external Slave Controller is to be
serviced by putting the contents of the Vector Regis­
ter associated with the particular request on the
80376 Data Bus during the first INTA cycle (instead
of OOH during a non-slave service). The external log­
ic should latch the vector on the Data Bus using the
INTA status signals and use it to select the external
Slave Controller to be serviced (see Figure 4-5). The
selected Slave will then respond to the second INT A
cycle and place its vector on the Data Bus. This
method requires that if external Slave Controllers
are used in the system, no vector should be pro­
grammed to OOH.

Since the external Slave Cascade Address is provid­
ed on the Data Bus during INTA cycle 1., an external
latch is required to capture this address for the Slave
Controller. A simple scheme is depicted in Figure
4-5 below.

POSITIVE
EDGE

MASTER/SLAVE
FLIP-FLOP CASCO -7)

IN OUT f-+TO SLAVE
8259',

ClK

DATA BUS I .~
INTA# '--((FROM BUS CONTROllER)

lATCH HERE
290164-52

Figure 4-5. Slave Cascade Address Capturing

4-854

inter 82370

4.4.5.1 Special Fully Nested Mode

This mode will be used where cascading is em­
ployed and the priority is to be conserved within
each Slave Controller. The Special Fully Nested
Mode is similar to the "regular" Fully Nested Mode
with the following exceptions:

- When an interrupt request from a Slave Control­
ler is in service, this Slave Controller is not
locked out from the Master's priority logic. Fur­
ther interrupt requests from the higher priority
logic within the Slave Controller will be recog­
nized by the 82370 FlIC and will initiate interrupts
to the 80376. In comparing to the "regular" Fully
Nested Mode, the Slave Controller is masked out
when its request is in service and no higher re­
quests from the same Slave Controller can be
serviced.

- Before exiting the interrupt. service routine, the
software has to check whether the interrupt serv­
iced was the only request from the Slave Con­
troller. This is done by sending a Non-Specific
EOI Command to the Slave Controller and then
reading its In Service Register. If there are no
requests in the Slave Controller, a Non-Specific
EOI can be sent to the corresponding 82370 PIC
bank also. Otherwise, no EOI should be sent.

4.4.6 READING INTERRUPT STATUS

The 82370 PIC provides several ways to read differ­
ent status of each interrupt bank for more flexible
interrupt control operations. These include polling
the highest priority pending interrupt request and
reading the contents of different interrupt status reg­
isters.

4.4.6.1 Poll Command

The 82370 PIC supports status polling operations
with the Poll Command. In a Poll Command, the
pending interrupt request with the highest priority
can be determined. To use this command, the INT
output is not used, or the 80376 interrupt is disabled.
Service to devices is achieved by software using the
Poll Command.

This mode is useful if there is a routine command
common to several levels so that the INTA se­
quence is not needed. Another application is to use
the Poll Command to expand the number of priority
levels.

Notice that the ICW2 mechanism is not supported
for the Poll Command. However, if the Poll Com­
mand is used, the programmable Vector Registers
are of no concern since no INTA cycle will be gener­
ated.

4.4.6.2 Reading Interrupt Registers

The contents of each interrupt register (IRR, ISR,
and IMR) can be read to update the user's program
on the present status of the 82370 PIC. This can be
a versatile tool in the decision making process of a
service routine, giving the user more control over
interrupt operations.

The reading of the IRR and ISR contents can be
performed via the Operation Control Word 3 by us­
ing a Read Status Register Command and the con­
tent of IMR can be read via a simple read operation
of the register itself.

4.5 Register Set Overview

Each bank of the 82370 PIC consists of a set of 8-bit
registers to control its operations. The address map
of all the registers is shown in Table 4-3 below.
Since all three register sets are identical in functions,
only one set will be described.

Functionally, each register set can be divided into
five groups. They are: the four Initialization Com­
mand Words (ICW's), the three Operation Control
Words (OCW's), the Pollllnterrupt Request/In-Serv­
ice Register, the Interrupt Mask Register, and the
Vector Registers. A description of each group fol­
lows.

4-855

inter 82370

Table 4·3. Interrupt Controller Register Address Map

Port Access Register Description Address

20H Write Bank B ICW1, OCW2, or OCW3
Read Bank B Poll, Request or In-Service

Status Register
21H Write Bank B ICW2, ItW3, ICW4, OCW1

Read Bank B Mask Register
22H Read BankB ICW2
2SH Read/Write IROS Vector Register
29H Read/Write IR09 Vector Register
2AH Read/Write Reserved
2BH Read/Write IR011 Vector Register
2CH Read/Write IR012 Vector Register
20H Read/Write IR013 Vector Register
2EH Read/Write IR014 Vector Register
2FH Read/Write IR015 Vector Register

AOH Write Bank C ICW1,OCW2, or OCW3
Read Bank C Poll, Request or In-Service

Status Register
A1H Write Bank C ICW2, ICW3, ICW4, OCW1

Read Bank C Mask Register
A2H Read BankC ICW2
ASH Read/Write IR016 Vector Register
A9H Read/Write IR01? Vector Register
AAH Read/Write IR01S Vector .Register
ABH Read/Write IR019 Vector Register
ACH Read/Write IR020 Vector Register
AOH Read/Write IR021 Vector Register
AEH Read/Write IR022 Vector Register
AFH Read/Write· IR023 Vector Register

30H Write Bank A ICW1, OCW2, or OCW3
Read Bank A Poll, Request or In-Service

Status Register
31H Write Bank A ICW2, ICW3, ICW4, OCW1

Read Bank A Mask Register
32H Read BanklCW2
3SH Read/Write IROO Vector Register
39H Read/Write IR01 Vector Register
3AH Read/Write IR01.5 Vector Register
3BH Read/Write IR03 Vector Register
3CH Read/Write IR04 Vector Register
30H Read/Write Reserved
3EH Read/Write Reserved
3FH Read/Write IRO? Vector Register

4-856

62370

4.5.1 INITIALIZATION COMMAND WORDS (ICW)

Before normal operation can begin, the 82370 PIC
must be brought to a known state. There are four
8·bit Initialization Command Words .in each interrupt
bank to setup the necessary conditions and modes
for proper operation. Except for the second com·
mand word (ICW2) which is a read/write register, the
other three are write·only registers. Without going
into detail of the bit definitions of the command
words, the following subsections give a brief de·
scription of what functions each command word
controls.

ICW1

The ICW1 has three major functions. They are:

- To select between the two IRQ input triggering
modes (edge· or level·triggered);

- To designate whether or not the interrupt bank is
to be used alone or in the cascade mode. If the
cascade mode is desired, the interrupt bank will
accept ICW3 for further cascade mode program·
mingo Otherwise, no ICW3 will be accepted;

- To determine whether or not ICW4 will be issued;
that is, if any of the ICW4 operations are to be
used.

ICW2.

ICW2 is provided for compatibility with the 82C59A
only. Its contents do not affect the operation of the
interrupt bank in any way. Whenever the ICW2 of
any of the three banks is written into, an interrupt is
generated from bank. A at level 1.5. The interrupt
request will be cleared after the ICW2 register has
been read by the 80376. The user is expected to
program the corresponding vector register or to use
it as an indicator that an attempt was made to alter
the contents. Note that each ICW2 register has dif·
ferent. addresses fo~ read and write. operations.

ICW3

The interrupt bank will only accept an ICW3 if pro·
grammed in the external cascade mode (as indicat·
ed in ICW1). ICW3 is used for specific programming
within the cascade mode. The bits in' ICW3 indicate
which interrupt request inputs have a Slave cascad·
ed to them. This will. subsequently affect the inter·
rupt vector generation during the interrupt acknowl·
edge cycles as described previously.

ICW4

The ICW4 is accepted only if it was selected in
ICW1. This command word register serves two func·
tions:

- To select either the Automatic EOI mode or soft·
ware EOI mode;

- To select if the Special Nested mode is to be
used in conjunction with the cascade mode.

4.5.2 OPERATION CONTROL WORDS (9(:W)

Once. initialized by the ICW~s, the interrupt banks will
be operating in the Fully Nested Mode by default
and they are ready to accept interrupt requests.
However, the operations of each interrupt bank can
be further controlled or modified by the use of
OCW's.Three OCW's are available for programming
various modes and commands. Note that all OCW's
are 8·bit write·only registers.

The modes and operations controlled by the OCW's
are:

- Fully Nested Mode;

- Rotating Priority Mode;

- Special Mask Mode;

- Poll Mode;

- EOI Commands;

- Read Status Commands.

OCW1

OCW1 is used solely for masking operations. It pro·
vides a direct link to the Internal Mask Register
(IMR). The 80376 can write to this OCW register to
enable or disable the interrupt inputs. Reading the
pre·prOgrammed mask can be done via the Interrupt
Mask Register which will be discussed shortly.

OCW2

OCW2 is used to select End·Qf·lnterrupt, Automatic
Priority Rotation, and Specific Priority Rotation oper·
ations. Associated commands and modes of these
operations are selected using the different combina­
tions of bits in OCW2.

Specifically, the OCW2 is used to:

- Designate an interrupt level (0-7) to be used to
reset a specific ISR bit or to set a specific priori·
ty. This function can be enabled or disabled;

- Select which software EOI command (if any) is to
be executed (i.e. Non-Specific or Specific EOI);

- Enable one of the priority rotation operations (i.e.
Rotate On Non-Specific EOI, Rotate On Auto­
matic EOI, or Rotate On Specific EOI).

4·857

:intJ 82370

OCW3

There are three main categories of operation that
OCW3 controls. They are summarized as follows:
- To select and execute the Read Status Register

Commands, either reading the Interrupt Request
Register (IRR) or the In-Service Register (ISR);

- To issue the Poll Command. The Poll Command
will override a Read Register Command· if both
functions are enabled simultaneously;

- To set or reset the Special Mask Mode.

4.5.3 POLUINTERRUPT REQUEST IIN·SERVICE
STATUS REGISTER

As the name implies, this 8-bit read-only register has
multiple functions. Depending on the command is­
sued in the OCW3, the content of this registerre­
flects the result of the command executed. For a
Poll Command, the register read contains the binary
code of the highest priority level requesting service
(if any). For a Read IRR Command, the register con­
tent will show the current pending interrupt te­
quest(s). Finally, for a Read ISR Command, this reg­
ister will specify all interrupt levels which are being
serviced.

4.5.4 INTERRUPT MASK REGISTER (IMR)

This is a read-only 8-bit register which, when read,
will specify all interrupt levels within the same bank
that are masked.

4.5.5 VECTOR REGISTERS (VR)

Each interrupt request input has an 8-bit readlwrite
programmable·vector'register associated with it. The
registers should be programmed to contain the inter­
rupt vector for the corresponding request. The con­
tents of the Vector Register will be placed on the
Data Bus during the INTA cycles as descr,ibed previ"
ously.

4.6 Programming

Programming the 82370 PIC is accomplished by us­
ing two types of command words: ICW's and
oew's. All modes and commands explained in the
previous sections are programmable using the
ICW's and OCW's. The ICW's are issued from the
80376 in a sequential format and are used to setup
the banks in the 82370 PIC in an initial state of oper-,
ation. The OCW's are issued as needed to vary and
control the 82370 PIC's operations.

Both ICW's and OCW's are sent by the 80376 to the
interrupt banks via the Data Bus. Each bank distin­
guishes between the different ICW's and OCW's by
the 1/0 address map, the sequence they are issued
(ICW~s only), and by some dedicated bits among the
ICW's and OCW's.

An example of programming the 82370 interrupt
controllers is given in Appendix C (Programming the
82370 Interrupt Controllers).

All three interrupt banks are programmed in a similar
way. Therefore, only a single bank will be described
in .the following sections.

4.6.1 INITIALIZATION (ICW)

Before normal operation can begin, each bank must
be initialized by programming a sequence of two to
four bytes written into the ICW's.

Figure 4-6 shows the initialization flow for an inter­
rupt bank. Both ICW1 and ICW2 must be issued for
any form of operation. However, ICW3 and ICW4 are
used only if deSignated in ICW1. Once initialized, if
any programming changes within the ICW's are to
be made, the entirelCW sequence must be repro­
grammed, not just an individual ICW.

Note that although the ICW2's in the 82370 PIC do
not effect the Bank's operation, they still must be
programmed in order to preserve the compatibility
with the 82C59A. The contents programmed are not
relevant to the overall operations of the interrupt
banks. Also, whenever one of the three ICW2's is
programmed, an interrupt leval 1.5 in Bank A will be
generated~ This interrupt request' will be . cleared
upon reading of the ICW2 registers. Since the three
ICW2's share the same inten:upt level ari9 the sys~
tem may not know the origin of the interrupt, all three
ICW2's must be read.

4~858

82370

*ICW2 vector address must be programmed now.

(ICW2 INTERRUPT GENERATED)

(ALLOW SERVICING
OF ICW2 INTERRUPT)

290164-53

Other vector addresses may be programmed via ICW2 interrupt service routine.

Figure 4·6. Initialization Sequence

Certain internal setup conditions occur automatically
within the interrupt bank after the first ICW (ICW1)
has been issuech· These are:

- The edge sensitive circuit is reset, which means
that following initialization, an interrupt request
input must make a HIGH-to-LOW transition to
generate an interrupt;

- The Interrupt Mask Register (IMR) is cleared;
that is, all interrupt inputs are enabled;

- IRQ? input of each bank is assigned priority ?
(lowest);

- Special Mask Mode is cleared and Status Read
is set to IRR;

- If no ICW4 is needed, then no Automatic-EOI is
selected.

4.6.2 VECTOR REGISTERS (VR)

Each interrupt request input has a separate Vector
Register. These Vector Registers are used to store
the pre-programmed vector number corresponding
to their interrupt sources. In order to guarantee prop­
er interrupt handling, all Vector Registers must be .
programmed with the. predefined vector numbers.
Since an interrupt request will be generated whenev­
er an ICW2 is written during the initialization se­
quence, it is important that the Vector Register of
IRQ1.5 in Bank A should be initialized and the inter­
rupt service routine of this vector is set up before the
ICW's are written.

4-859

82370

4.6.3 OPERATION CONTROL WORDS (OCW)

After the ICW's are programmed, the operations of
each interrupt controller bank can be changed by
writing into the OCW's as explained before. There is
no special programming sequence required for the
OCW's. Any OCW may be written at any time in or­
der to change the mode of or to perform certain op­
erations on the interrupt banks.

4.6 •. 3.1 Read Status and Poll Commands (OCW3)

Since the reading of IRR and ISR status as well as
the result of a Poll Command are available on the
same read-only Status Register, a special Read
Status/Poll Command must be issued before the
Poll/Interrupt Request/In-Service Status Register is
read. This command can be specified by writing the
required control word into OCW3. As mentioned ear­
lier, if both the Poll Command and the Status Read
Command are enabled simultaneously, the Poll
Command will override the Status Read. That is, af­
ter the command execution, the Status Register will
contain the result of the Poll Command.

4.7 Register Bit Definition

INITIALIZATION COMMAND WORD 1 (ICW1)

Note that for reading IRR and ISR, there is no need
to issue a ·Read Status Command to the OCW3 ev­
ery time the IRR or ISR is to be read. Once a Read
Status Command is received by the interrupt bank, it
"remembers" which register is selected. However,
this is not true when the Poll Command is used.

In the Poll Command, after the OCW3 is written, the
82370 PIC treats the next read to the Status Regis­
ter as an interrupt acknowledge. This will set the ap­
propriate IS bit if there is a request and read the
priority level. Interrupt Request input status remains
unchanged from the Poll Command to the Status
Read.

In addition to the above read commands, the Inter­
rupt Mask Register (IMR) can also be read. When
read, this register reflects the contents of the pre­
programmed OCW1 which contains information on
Which interrupt request(s) is(are) currently disabled.

07 06 05 04 03 02 01 DO

I x I x I x I 1 I LTIM I x I SNGq IC4 I

I ~
~ o - NO ICW4 NEEDED

1 - ICW4 NEEDED
o - EDGE TRIGGERED
1 - LEVEL TRIGGERED

INITIALIZATION COMMAND WORD 2 (ICW2)

o - EXTERNAL CASCADE
(ICW3 NEEDED)

1 - NO EXTERNAL CASCADE
(ICW3 NOT NEEDED)

CONTENT IS NOT RELEVANT TO THE ACTUAL
Oi>ERATION OF THE BANK BUt CAN BE: READ

BY THE INTERRUPT SERVICE ROUTINE TO
DETERMINE WHERE THE INTERRUPT VECTORS

OF EACH BANK START.

4-860

290164-55

290164-54

inter 82370

INITIALIZATION COMMAND WORD 3 (ICW3)

ICW3 for Bank A:

ICW3 for Bank B:

ICW3 for BankC:

07 06 05 0403 02 01 DO

I 0 o I 0 I 0 Istololo!
: - NO SLAVE CASCADED TO BANK A
1 - THERE IS A SLAVE CASCADED

TO TOUT2H/IRQ3H PIN

07 06 05 04 03 02 01 DO

o - NO CASCADED REQUEST TO IRQN
1 - THERE IS A CASCADED REQUEST

CONNECTED TO .lRQN (I.E. THE
CORRESPONDING INTERRUPT
REQUEST INPUTS)

07 06 05 04 03 02 01 DO

o - NO CASCADED REQUEST TO IRQN
1 - THERE IS A CASCADED REQUEST

CONNECTED TO IRQN

INITIALIZATION COMMA'ND WORD 4 (ICW4) .

07 06 05 D4 03· 02 01 DO

10-_ ... 0 = NORMAL EOI
1 =AUTOMATIC EOI

2901&1-56

2901&1-57

2901&1-58

\
L... _______ + O=NOT SPECIAL FULLY NESTED MODE

1 = SPECIAL FULLY NESTED MODE

4·861

290164-59

l
i.:\ ...

'II

i1
II
I·

intJ 82370

OPERATION CONTROL WORD 1 (OCW1)

07 06 05 04 03 02 01 DO

'--_-. MI =,1 t.fASK SET (INTERRUPT DISABLED)
MI = 0 t.fASK RESET (INTERRUPT ENABLED)

290164-60

OPERATION CONTROL WORD 2 (OCW2)

D7 06 05 04 D3 D2 01 DO

R I SL I EOI

I I I
o o L2 '~" I lm,"~l~

TO BE ACTED UPON 1 NON-SPECIFIC EOI COMMAND
1 SPECIFIC EOI COMt.fAND
1 ROTATE ON NON-SPECIFIC EOI
o ROTATE ON AUTO-EOI MODE (SET)
o ROTATE 01'4 AUTO-EOI MODE (CLEAR)

o
o
1
1
o
1
1
o

o
1
o
o
o
1
1
1

1 ROTATE ON SPECIFIC EOI (L2-LO USED)
o SET PRIORITY (L2-LO USED)
o NO OPERATION

OPERATION CONTROL WORD 3 (OCW3)

D7 06 05 04 D3 02 Dl DO

ESt.ft.f St.ft.f RIS
o 0 NO ACTION o NO ACTION
o 1 NO ACTION 1 - POLL COMMAND 1 NO ACTION
1 0 RESET SPECIAL MASK 0- NO POLL COMt.fAND o READ IR REG.
1 1 SET SPECIAL MASK 1 READ IS REG.

290164-61

290164-62

ESMM - Enable Special Mask Mode. When this bit is set to 1, it enables the SMM bit to set or reset the
Special Mask Mode. When this bit is set to 0, SMM bit becomes don't care.

SMM - Special Mask Mode. If ESMM = 1 and SMM = 1, the interrupt controller bank will enter Special Mask
Mode. If ESMM = 1 and SMM == 0, the bank will revert to normal mask mode. When ESMM = 0, SMM
has no effect.

4-862

inter 82370

POLL/INTERRUPT REQUEST/IN-SERVICE STATUS REGISTER

Poll Command Status

Interrupt Request Status

NOTE:

D7 DS D5 D4 D3 D2 D1 DO

0- NO PENDING INTERRUPT
1 - PENDING INTERRUPT

BINARY CODE Of
THE HIGHEST PRIORITY
LEVEL REQUESTING

D7 DS D5 D4 D3 D2 D1 DO

IIRQ711RQSIIRQ511RQ411RQ311RQ211RQ1 IIRQO I
If IRQ BIT IS, 0 - NO REQUEST

290164-63

1 - REQUEST PENDING
290164-64

Although all Interrupt Request inputs are active LOW, the internal logical will invert the state of the pinsso that when there
is a pending interrupt request at the input, the corresponding IRQ bit will be set to HIGH in the Interrupt Request Status
register.

In-Service Status

D7 DS D5 D4 D3 D2 D1 DO

IIS7 IIs6 1155 IIs4 IIs3 IIs2 liS 1 I ISO I

If IS BIT IS: 0 - NOT IN-SERVICE
1 - REQUEST IS IN-SERVICE

290164-65

VECTOR REGISTER (VR)

8-BIT VECTOR NUMBER
290164-66

4-863

82370

Table 4-4. Register Operational Summary

Operational
Description

Fully Nested Mode
Non-specific EOI Command
Specific EOI Command
Automatic EOI Mode
Rotate On Non-Specific

EOICommand
Rotate On Automatic

EOI Mode
Set Priority Command
Rotate On Specific

EOICommand
Interrupt Mask Register
Special Mask Mode
Level Triggered Mode
Edge Triggered Mode
Read Register Command, IRR
Read Register Command, ISR
Read IMR
Poll Command
Special Fully Nested Mode

4.8 Register Operational Summary

For ease of reference, Table 4-4 gives a summary of
the different operating modes .and commands with
their corresponding registers.

5.0 PROGRAMMABLE INTERVAL
TIMER

5.1 Functional Description

The 82370 contains four independently Programma­
ble Interval Timers: Timer 0-3. All four timers are
functionally compatible to the Intel 82C54. The first
three timers (Timer 0-2) have specific functions.
The fourth timer, Timer 3, is a general purpose timer.
Table 5-1 depicts the functions of each timer. A brief
description of each timer's function follows.

Timer

0
1

2

3

Table 5-1. Programmable
Interval Timer Functions

Output Function

IR08 Event Based IR08 Generator
TOUT1/REH Gen. Purpose/DRAM

Refresh Req.
TOUT2/IR03# Gen. Purpose/Speaker

OutlIR03#
TOUT3# Gen. PurposellROO

Generator

Command Bits Words

OCW-Default
OCW2 EOI
OCW2 SL, EOI, LO-L2

ICW1,ICW4 IC4,AEOI
OCW2 EOI

OCW2 R, SL, EOI

OCW2 LO-L2
OCW2 R,SL, EOI

OCW1 MO-M7
OCW3 ESMM,SMM
ICW1 LTIM
ICW1 LTIM

OCW3 RR,RIS
OCW3 RR,RIS

IMR MO-M7
OCW3 P

ICW1,ICW4 IC4,SFNM

TIMER O-Event Based Interrupt Request 8
Generator

Timer 0 is intended to be used as an Event Counter.
The output of this timer will generate an Interrupt
Request 8 (IR08) upon a rising edge of the timer
output (TOUTO). Normally, this timer is used to im­
plement a time-of-day clock or system tick. The Tim­
er 0 output is not available as an external signal.

TIMER 1-General Purpose/DRAM Refresh
Request

The output of Timer 1, TOUT1, can be used as a
general purpose timer or as a DRAM Refresh Re­
quest signal. The rising edge of this output creates a
DRAM refresh request to the 82370 DRAM Refresh
Controller. Upon reset, the Refresh Request func­
tion is disabled, and the output pin is the Timer 1
output.

TIMER 2--General Purpose/Speaker OutllRQ3 #

The Timer 2 output, TOUT2 #, could be used to sup­
port tone generation to an external speaker. This pin
is a bidirectional signal. When used as an input, a
logic LOW asserted at this pin will generate an Inter- .
rupt Request 3 (IR03#) (see Programmable Inter­
rupt Controller).

4-864

82370

DATA BUFFER OUTO
4

8- BIT • c!c COUNTER 0

INTERNAL BUS
LOGIC

~

OUT 1
COUNTER 1

~

CONTROL
GATE WORD

REGISTER I

OUT2
COUNTER 2

~

CONTROL OUT3 --+ WORD COUNTER 3
REGISTER II ~

CLKIN

1 EDGE I IR08
'I DETECTOR I (INTERN AL)

1 EDGE REFRESH I
'I DETECTOR CONTROLLER

REF#

I REFI/
2-TO-l
1 MUX

f-+TOUT1/R TOUT1
o select

EF#

L-~EFENA
OPEN COLLECTOR (INTERN

BLE
AL) - TOUT2#/ - ! IR03#

TO IR03# (INTERNAL)

J EDGE I IROO

I DETECTOR I (INTERNA L)

4- TOUT3#

290164-67

Figure 5-1; Block Diagram of Programmable Interval Timer

TIMER 3-General Purpose/Interrupt Request 0
Generator

The output of Timer 3 is fed to an edge detector and
generates an Interrupt Request 0 (I ROO) in the
82370. The inverted output of this timer (TOUT3#)
is also available as an .external signal for general
purpose use.

5.1.1 INTERNAL ARCHITECTURE

The functional block diagram of the Programmable
Interval Timer section is shown in Figure 5-1. Follow­
ing isa description of each block.

DATA BUFFER & READ/WRITE LOGIC

This part of the Programmable Interval Timer is used
to interface the four timers to the 82370 internal bus.
The Data Buffer is· for transferring commands and
data between the 8-bit internal bus and the timers.

The Read/Write Logic accepts inputs from the inter­
nal bus and generates signals to control other func"
tional blocks within the timer section.

CONTROL WORD REGISTERS I & II

The Control Word Registers are write-only registers.
They are used to control the operating modes of the
timers. Control Word Register I controls Timers 0, 1
and 2, and Control Word Register II controls Timer
3. Detailed description of the Control Word Regis­
ters will be included in the Register Set Overview
section.

COUNTER 0, COUNTER 1, COUNTER 2,
COUNTER 3

Counters 0, 1, 2, and 3 are the major parts of Timers
0, 1, 2, and 3, respectively. These four functional
blocks are identical in operation, so only a single
counter will be described. The internal block dia­
gram of one counter is shown in Figure 5-2:

4-865

i,
I

82370

GATEn
eLK n OUT n

290164-68

Figure 5-2. Internal Block Diagram of a Counter

The four counters share a common clock input
(ClKIN), but otherwise are fully independent. Each
counter is programmable to operate in a different
mode.

Although the Control Word Register is shown in the
figure, it is not part of the counter itself. Its pro­
grammed contents are· used to control the opera­
tions of the counters.

The Status Register, when latched, contains the cur­
rent contents of the Control Word Register and
status of the output and Null Count Flag (see Read
Back Command).

The Counting Element (CE) is the actual counter. It
is a i6-bit presettable synchronous down counter.

The Output latches (Ol) contain two 8-bit latches
(OlM and Oll). Normally, these latches "follow'!
the content of the CEo OlM contains the most signif­
icant byte of the counter and Oll contains the least
significant byte. If the Counter latch Command is
sent to the counter, Ol will latch the present count
untU read by the 80376 and then return to follow the
CEo One latch at a time is enabled by the timer's
Control logic. to drive the internal bus. This is how
the i6-bit Counter communicates over the 8-bit in­
ternal bus. Note that CE cannot be read. Whenever
the count is read, it is one of the Ol's that is being
read.

When a new count is written into the counter, the
value will be stored in the Count Registers (CR), and
transferred to CEo The transferring of the contents
from CR's to CE is defined as "loading" of the coun­
ter. The Count Register contains two 8-bit registers:
CRM (which contains the most significant byte) and
CRl (which contains the least significant byte). Simi­
lar to the Ol's, the Control logic allows one register
at a time to be loaded from the 8-bit internal bus.
However, both bytes are transferred from the CR's
to the CE simultaneously. Both CR's are cleared
when the Counter is programmed. This way, .if the
Counter has been programmed for one byte count
(either the most Significant or the least significant
byte only), the other byte will be zero. Note that CE
cannot be written into directly. Whenever a count is
written, it is the CR that is being written.·

As shown in the diagram, the Control logic consists
of three signals: ClKIN, GATE, and. OUT. ClKIN
and GATE will be discusSed in detail in the section
that follows .. OUT is the internal output 9f the coun­
ter. The external outputs of some timers (TOUT) are
the inverted version of OUT (see TOUTi, TOUT2#,
TOUT3 #). The state of OUT depends on the mode
of operation of the timer.

4-866

82370

5.2 Interface Signals

5.2.1 ClKIN

CLKIN is an input signal used by all four timers for
internal timing reference. This signal can be inde­
pendent of the 82370 system clock, CLK2. In the
following discussion, each "CLK Pulse" is defined
as the time period between a rising edge and a fail­
ing edge, in that order, of CLKIN.

During the rising edge of CLKIN, the state of GATE
is sampled. All new counts are loaded and counters
are decremented on the falling edge of CLKIN.

5.2.2 TOUT1, TOUT2#, TOUT3#

TOUT1, TOUT2 # and TOUT3 # are the external
output signals of Timer 1, Timer 2 and Timer 3, re­
spectively. TOUT2# and TOUT3# are the inverted
signals of their respective counter outputs, OUT.
There is no external output for Timer O.

If Timer 2 is to be used as a tone generator of a
speaker, external buffering must be used to provide
sufficient drive capability.

The Outputs of Timer 2 and 3 are dual function pins.
The output pin of Timer 2 (TOUTU /IR03 #), which
is a bidirectional open-collector signal, can also be
used as interrupt request input. When the interrupt
function is enabled (through the Programmable In­
terrupt Controller), a LOW on this input will generate
an Interrupt Request 3# to the 82370 Programma­
ble Interrupt Controller. This pin has a weak internal
pull-up resistor. To use the IR03# function, Timer 2
should be programmed so that OUT2 is LOW. Addi­
tionally, OUT3 of Timer 3 is connected to an edge
detector which will generate an Interrupt Request 0
(I ROO) to the 82370 after the rising edge of OUT3
(see Figure 5-1).

5.2.3 GATE

GATE is not an externally controllable signal. Rath­
er, it can be software controlled with the Internal
Control Port. The state of GATE is always sampled
on the rising edge of CLKIN. Depending on the
mode of operation, GATE is used to enable/disable
counting or trigger· the start of an operation.

For Timer 0 and 1, GATE is always enabled (HIGH).
For Timer 2 and 3, GATE is connected to Bit 0 and
6, respectively, of an Internal Control Port (at ad­
dress 61 H) of the 82370. After a hardware reset, the
state of GATE of Timer 2 and 3 is disabled (LOW).

5.3 Modes of Operation

Each timer can be independently programmed to
operate in one of six different modes. Timers are
programmed by writing a Control Word into the Con­
trol Word Register followed by an Initial Count (see
Programming).

The following are defined for use in describing the
different modes of operation.

CLK Pulse- A rising edge, then a falling edge, in
that order, of CLKIN.

Trigger- A rising edge of a timer's GATE input.

Timer/Counter Loading- The transfer of a count
from Count Register
(CR) to Count Element
(CE).

5.3.1 MODE O-INTERRUPT ON TERMINAL
COUNT

Mode 0 is typically used for event counting. After the
Control Word is written, OUT is initially LOW, and will
remain LOW until the counter reaches zero. OUT
then goes HIGH and remains HIGH until a new
count or a new Mode 0 Control Word is written into
the counter.

In this mode, GATE=HIGH enables counting;
GATE = LOW disables counting. However, GATE
has no effect on OUT.

After the Control Word and initial count are written to
a timer, the initial count will be loaded on the next
CLK pulse. This CLK pulse does not decrement the
count, so for an initial count of N, OUT does not go
HIGH until N + 1 CLK pulses after the initial count is
written.

If a new count is written to the timer, it will be loaded
on the next CLK pulse and counting will continue
from the new count. If a two-byte count is written,
the following happens:

1. Writing the first byte disables counting, OUT is set
LOW immediately (Le. no CLK pulse required).

2. Writing the second byte allows the new coLlnt to
be loaded on the next CLK pulse.

This allows the counting sequence to be synchroniz­
ed by software. Again, OUT does not go HIGH until
N + 1 CLK pulses after the new count of N is written.

4-867

II:

82370

CW.10 LSB.4,...-_________ _

WRITELJU

CLK

GATE -----------------

OUT ~_ ________ ~

CW-l0 LS8-3,...-_________ _

WRITE LJU

CLK

GATE

OUT ::JL.. _______ --Jr-
I ~ I ~~ I

WRITE

CLK

GATE ----------------

OUT =-::JL.. _______ --Jr-
ININININI I~I~~I

290164-69

NOTES:
The following conventions apply to all mode timing diagrams.
1. Counters are programmed for binary (not BCD) counting and for reading/writing least significant byte (LSB) only.
2. The counter is always selected (CS# always low).
3. CW stands for "Control Word"; CW = 10 means a control word of 10, Hex is written to the counter.
4. LSB stands for "Least significant byte" of count.
5. Numbers below diagrams are cbunt values.
The lower number is the least significant byte.
The upper number is the most significant byte. Since the counter is programmed to read/write LSB only, the most
significant byte cannot be read.
N stands for an undefined count.
Vertical lines show transiticns between count values.

Figure 5-3. Mode 0

If an initial count is written while GATE is lOW, the
counter will be loaded on the next ClK pulse. When
GATE goes HIGH, OUT will go HIGH N ClK pulses
later; no ClK pulse is needed to load the counter as
this has already been done.

5.3.2 MODE 1-GATE RETRIGGERABLE
ONE-SHOT

In this mode, OUT will be initially HIGH. OUT will go
lOW on the ClK pulse following a trigger to start the

one-shot operation. The OUT signal will then remain
lOW until the timer reaches zero. At this point, OUT
will stay HIGH until the next trigger comes in. Since
the state of GATE signals of Timer 0 and 1 are inter­
nally setto HIGH.

After writing the Control Word and initial count, the
timer is considered "armed". A trigger results in
loading the timer and setting OUT lOW on the next
ClK pulse. Therefore, an initial count of N will result
in a one-shot pulse width of N ClK cycles. Note

4-868

intJ 82370·

CW_12 ~SB_3

WIi l..Jl..Jr------------
ClK

GATE ------in---------~n-----

OUT =::J
INININININI:I

L­
~I~I~~I:I~I

CW-12 lSB-3r--___________ _

WI! l....Jl..J
ClK

GATE -------;n----ln----------

.elK

GATE -------;n --------i n------
OUT

I N I N I N I N I N I ~ I ~ I : I == I =~ I
290164-70

Figure 5-4. Mode 1

that this one·shot operation is retriggerable; i.e. OUT
will remain lOW for N ClK pulses after every trigger.
The one-shot operation can be repeated without re­
writing the same count into the timer.

If a new count is written to the timer during a one­
shot operation, the current one-shot pulse width will
not be affected until the timer is retriggered: This is
because loading of the new count to CE will occur
only when the one-shot is triggered.

5.3.3 MODE 2-RATE GENERATOR

This mode is a divide-by-N counter. It is typically
used to generate a Real Time Clock interrupt. OUT
will initially be HIGH. When the initial count has dec-

remented to 1, OUT goes lOW for one ClK pulse,
then OUT goes HIGH again. Then the timer reloads
the initial count and the process is repeated. In other
words, this mode is periodic since the same se­
quenceis repeated itself indefinitely. For an initial .
count of N, the sequence repeats every N ClK cy­
cles.

S.imilar to Mode 0, GATE = HIGH enables counting,
where GATE = lOW disables counting. If GATE
goes lOW during an output pulse (lOW), OUT is set
HIGH immediately. A trigger (rising edge on GATE)
will reload the timer with the initial count on the next
ClK pulse. Then, OUT will go lOW (for one ClK
pulse) N ClK pulses after the new trigger. Thus,
GATE can be used to synchronize the timer.

4-869

intJ 82370

CW=14 lSB=3

WRITE LrLJ
ClK

GATE

OUT

I N I ~ I N I N I 0 0 0 0 0 0
3 2 3 2 1 3

CW=14 lSB=3

WRITE LJLJ
ClK

GATE LJ
OUT ==.J Lr

ININININI:I~I~I: ~I~I:I

WRITE

ClK

GATE

OUT~

I N I N I N I N I ~
NOTE:

o
3

o
3

290164-71

A GATE transition should not occur one clock prior to terminal count.

Figure 5·5. Mode 2

After writing· a Control Word and initial count, the
timer will be loaded on the next ClK pulse. OUT
goes lOW (for one ClK pulse) N ClKpulses after
the initial count is written. This is another way the
timer may be synchronized by software.

Writing a new count while counting does not affect
the current counting sequence· because the new
count will not be loaded until the end of the current
counting cycle. If a trigger is received after writing a

new count but before the end of the current period,
the timer will be loaded with the new count on the
next ClK pulse after the trigger, and counting will
continue with the new count.

5.3.4 MODE 3-SQUARE WAVE GENERATOR

Mode 3 is typically used for Baud Rate generation.
Functionally, this mode is similar to Mode 2 except

4-870

inter 82370

for the duty cycle of OUT. In this mode, OUT will be
initially HIGH. When half of the initial count has ex­
pired, OUT goes low for the remainder of the count.
The counting sequence will be repeated, thus this
mode is also periodic. Note that an initial count of N
results in a square wave with a period of N ClK
pulses.

The GATE input can be used to synchronize the tim­
er. GATE=HIGH enables counting; GATE=lOW
disables counting. If GATE goes lOW while OUT is
lOW, OUT is set HIGH immediately (Le. no ClK
pulse is required). A trigger reloads the timer with the
initial count on the next ClK pulse.

After writing a Control Word and initial count, the
timer will be loaded on the next ClK pulse. This al­
lows the timer to be synchronized by software.

Writing a new count while counting does not affect
the current counting sequence. If a trigger is re­
ceived after writing a new count but before the end
of the current half-cycle of the square wave, the tim­
er will be loaded with the new count on the next ClK
pulse and counting will continue from the new count.
Otherwise, the new count will be loaded at the end
of the current half-cycle.

4-871

There is a slight difference in operation depending
on whether the initial count is EVEN or ODD. The
following description is to show exactly how this
mode is implemented.

EVEN COUNTS:

OUT is initially HIGH. The initial count is loaded on
one ClK pulse and is decremented by two on suc­
ceeding ClK pulses. When the count expires (decre­
mented to 2), OUT changes to lOW and the timer is
reloaded with the initial count. The above process is
repeated indefinitely.

ODD COUNTS:

OUT is initially HIGH. The initial count minus one
(which is an even number) is loaded on one ClK
pulse and is decremented by two on succeeding
ClK pulses. One ClK pulse after the count expires
(decremented to 2), OUT goes lOW and the timer is
loaded with the initial count minus one again. Suc­
ceeding ClK pulses decrement the count by two.
When the count expires, OUT goes HIGH immedi­
ately and the timer is reloaded with the initial count
minus one. The above process is repeated indefi­
nitely. So for ODD counts, OUT will HIGH or
(N+ 1)/2 counts and lOW for (N-1)/2 counts.

,,'
I,

82370

CLK

OATE -------------------

OUT

CW.l. L •. I~--------------
WIIITILJU

CLK

OATE ---------------------

---r-------,
OUT

CW_1' L.B.4
~ITE l..JLji-.--------'----..,..--

CLK

OATE

OUT

1 N 1 N 1 N 1 N 1 :1 : 1 : 1 : 1 : 1 : 1 : 1 I: 1 : 1
290164-72

NOTE:
A GATE transition should not occur one clock prior to terminal count.

Figure 5-6. Mode 3

5.3.5 MODE 4-INITIAL COUNT TRIGGERED
STROBE

This mode allows a strobe pulse to be generated by
writing an initial count to the timer. Initially, OUT will
be HIGH. When a new initial count is written into the
timer, the counting sequence will begin. When the

After writing the Control Word and initial count, the
timer will be loaded on the next elK pulse. This elK
pulse does not decrement the count, so for an initial
count of N, OUT does not strobe lOW until N + 1
elK pulses after initial count is written.

. initial count expires (decremented to 1), OUT will go
lOW for one elK pulse and then go HIGH again.

Again, GATE=HIGH enables counting .while
GATE == lOW disables counting. GATE has no ef-
fect on OUT. .

If a new count is written during counting, it will be
loaded in the next elK pulse and counting will con­
tinue from the new count.

4-872

inter 82370

CW=18 lSB=3
WRITE LI""1-.j-------------

ClK

GATE

OUT :=J
I N I N I N I N I

o
2

u
o I 0 I FF I FF I FF I 1 0 FF FE FD

CW=18 lSB=3r-___________ _

WRITE LI""1-.j

ClK

GATE

OUT :=J Lr
I N I N I N I N I ~ I ~ I ~ I ~ o I 0 I FF I 1 0 FF

WRITE

ClK

GATE ------------------

OUT :=J
I N I N I N I N I ~ I ~ I ~ I ~

290164-73

Figure 5-7. Mode 4

If a two-byte count is written, the following will occur:

1. Writing the first byte has no effect on counting.

2. Writing the second byte allows the new count to
be loaded on the next CLK pulse.

OUT will strobe LOW N + 1 CLK pulses after the
new count of N is written. Therefore, when the
strobe pulse will occur after a trigger depends on the
value of the initial count loaded.

5.3.6 MODE 5-GATE RETRIGGERABLE
STROBE

Mode 5 is very similar to Mode 4 except the count
sequence is triggered by the gate signal instead of

by writing an initial count. Initially, OUT will be HIGH.
Counting is triggered by a rising edge of GATE.
When the initial count has expired (decremented to
1), OUT will go LOW for one CLK pulse and then go
HIGH again.

After loading the Control Word and initial count, the
Count Element will not be loaded until the CLK pulse
after a trigger. This CLKpulse ·does not decrement
the count. Therefore, for an initial count of N, OUT
does not strobe LOW until N + 1 eLK pulses after a
trigger.

4-873

82370

CW.1A lS8=3 ___________ _

WRITELJLJ

ClK

GATE -------1 rr--------ln..=..=
OUT

I N I N I N I N I N I

CWe 1A lS8=3,..... __________ _,_---

WRITE LJLJ

ClK

GATE ---------1~------------

OUT~ LJ
I N I N I N I N I N I N I ~ I ~ o I 0 I FF I 1 0 FF

WRITE

ClK

GATE --------vr---------',n-----
OUT =..J u·

I N I N I N I N I N I ~ I ~ I ~ I ~ I ~~I ~~ I
290164-74

Figure 5-8. ModeS

The cQunting sequence is retriggerable. Every trig,
ger will result in the timer being. loaded with the initial
count on the next elK pulse.

5.3.7 OPERATION COMMON TO ALL MODES

If the new count is written during counting, the cur­
rent counting sequence will not be. affected. If a trig­
ger occurs after the new count is written but before
the current count expires, the timer will be loaded
with the. new count on the next elK pulse. and a new
count sequence wi.1I start from there.

5.3.7.1 GATE

The GATE input is always sampled on. the rising
edge of elKIN. In Modes 0, 2, 3 and 4, the GATE
input is level sensitive: The logic level is sampled on
the rising edge of elKIN. In Modes t, 2, 3 and 5, the
GATE input is rising edge sensitive. In these modes,

4-874

82370

Summary of Gate Operations

Mode GATE LOW or Going LOW

0 Disable count
1 No Effect

2 1. Disable count
2. Sets output HIGH

immediately
3 1. Disable count

2. Sets output HIGH
immediately

4 Disable count
5 No Effect

a rising edge of GATE (trigger) sets an edge sensi­
tive flip-flop in the timer. The flip-flop is reset imme~
diately after it is sampled. This way, a trigger will be
detected no matter when it occurs; i.e. a HIGH logic
level does not have to be maintained until the next
rising edge of ClKiN. Note that in Modes 2 and 3,
the GATE input is both edge and level sensitive.

5.3.7.2 Counter

New counts are loaded and counters, are decre­
mented on the falling edge of ClKIN. The largest
possible initial count is O. This is equivalent to 20016
for binary counting and 10**4 for BCD counting.

Note that the counter does not stop when it reaches
zero. In Modes 0, 1, 4 and 5, the counter 'wraps
around' to the highest count: either FFFF Hex for
binary counting or 9999 for BCD counting, and con­
tinues counting. Modes 2 and 3 are periodic. The
counter reloads itself with the initial count and con­
tinues counting from there.

The minimum and maximum initial count in each
counter depends on the mo<;le of operation. They
are summarized below.

Mode Min Max

0 1 0
1 1 0
2 2 0
3 2 0
4 1 0
5 1 0

5.4 Register Set Overview

The Programmable Interval Timer module of the
82370 contains a set of six registers. The port ad­
dress map of these registers is shown in Table 5-2.

GATE Rising HIGH

No Effect Enable count
1. Initiate count No Effect
2. Reset output

after next clock
Initiate count Enable count

Initiate count Enable count

No Effect Enable count
Initiate count No Effect

Table 5-2. Timer Register Port Address Map

Port Address Description

40H Counter 0 Register (read/write)
41H Counter 1 Register (read/write)
42H Counter 2 Register (read/write)
43H Control Word Register I

(Counter 0, 1 & 2) (write-only)

44H Counter 3 Register (read/write)
45H Reserved
46H Reserved
47H Control Word Register II

(Counter 3) '(write-only)

5.4.1 COUNTER 0, 1, 2, 3 REGISTER

These four 8-bit registers arefl,mctionally identical.
They are used to write the initial'count value into the
respective timer. Also, they can be used to read the
latched count value of a timer. Since thEW are 8-bit
registers, reading and writing' of the 16-bitinitial
count must follow the count format specified in the
Control Word Registers; i.e. least significant byte
only, most significant byte only, or least significant
byte then most significant byte (see Programming).

5.4.2 CONTROL WORD REGISTER I & II

There are two Control Word Registers associated
with the Timer section. One of the two registers
(Control Word Register'l) is used to control the oper­
ations of Counters 0, 1 and 2 and the other (Control
Word Register II) is for Counter 3. The major func­
tions of both Control Word Registers are listed be­
low:'

4-875

"nt"",r I •• -e- 82370

- Select the timer to be programmed.

- Define which mode the selected timer is to oper-
ate in.

- Define the' count s~quenc&' i.e. if the selected
timer is to count as Ii Binary Counter or a Binary
Coded Decimal (BCD) Counter. .

- Select the byte access sequence during timer
read/write operations; i.e. least significant byte
only, most significant only, or least significant
byte first, then most significant byte.

Also, the Control Word Registers can be pro­
grammed to perform a Counter latch Command or a
Read Back Command which will be described later.

5.5 Programming

5.5.1 INITIALIZATION

Upon power-up or reset, the state of all timers is
undefined. The mode, count value, and output of all
timers. are random. From this point on, how each
timer operates is determined solely by how it is pro­
grammed. Each til11er must be. programmed before it
can be used. Since the outputs of some timers can
generate interrupt signals to the 82370, all timers
should be initialized to a known state.

Cbunters are, programmed by writing a Control Word
into their respective Control Word Registers. Then,
an Initial Count can be written into the correspond­
ing Count Register. In general, the programming pro­
cedure is very flexible. Only two conventions need to
be remembered:

1. For each timer, the Control Word must be written
bElfore the initial count is written.

2. The 16-bit initial count' must follow the count for­
mat specified in the Control Word (least significant
byte only, most significant byte only, or least signifi­
cant byte first, foliowed by most significant byte) ..

Since the two Control Word Registers and the four
Counter Registers have separate addresses, and
each timer can be individually selected by the appro­
priate Control Word Register, no special instruction
sequence is required. Anyprogrammin~ sequence
that follows the conventiOnS above is acceptable.

A new initial count may be written to a timer at any
time without affecting the timer's programmed mode
many way. Count sequence will be affected as de­
scribed in the Modes of Operation section. Note that
the new count must follow the programmed count
format.

If a timer is previously programmed to read/write
two-byte counts, the following precaution applies. A
program must· not· transfEtrcontrol . between writing
the first and second byte to another routine which
also writes into the same timer. Otherwise, the read!
write will result in incorrect count.

Whenever a Control Word is written to a timer, all
control logic for that'timer(s) is immediately reset
(i.e. no ClK pulse is required). Also, the correspond­
ing output in, TOUT" ,goes to a known initial state.

5.5.2 READ OPERATION

Three methods are available to read the current
count as well as the status of each timer. They are:
Read Counter Registers, Counter Latch Command
and Read Back Command. Below is a description of
these methods.

READ COUNTER REGISTERS

The current count of a timer can be read by perform­
ing a read operation on the corresponding Counter
Register. The only restriction of this read operation
is that the ClKIN of the timers must be inhibited by
using external logic. Otherwise, the count may be in
the process of changing when it is read, giving an
undefined result. Note that since all four timers are
sharing the same ClKIN signal, inhibiting ClKIN to
read a timer will unavoidably disable the other timers
also. This may prove to be impractical. Therefore, it
is suggested that either the Counter latch Com­
mand or the Read Back Command can be used to
read the current count of a timer.

Another alternative is to temporarily disable a timer
before· reading its Counter Register by using the
GATE input. Depending on the, mode of. operation,
GATE = lOW will disable the counting operation.
However, this option is available on Timer 2 and 3
only, since the GATE signalso~ the other two timers
are internally enabled all the time.

COUNTER LATCH COMMAND

A Counter Latch Command will be. executed when­
ever a special Control Word is written into a Control
Word Register. TWb bits written into the Control
Word Registerdistinguish this command from a 'reg­
ular' Control Word (see Register Bit Definition). Also,
two other bits in the Control Word will select which
counter is to be latched.

Upon execution of this command, the selected
counter's Output Latch (Ol) latches the count at the
time the Counter Latch Command is received. This

4-876

inter 82370

count is held in the latch until it is read by the 80376,
or until the timer is reprogrammed. The count is then
unlatched automatically and the OL returns to "fol­
lowing" the Counting Element (CE). This allows
reading the contents Of the counters "on the fly"
without affecting counting in progress. Multiple
Counter Latch Commands may be used to latch
more than one counter. Each latched count is held
until it is read. Counter Latch Commands do not af­
fect the programmed mode of the timer in any way.

If a counter is latched, and at some time later, it is
latched again before the prior latched count is read,
the second Counter Latch Command is ignored. The
count read will then be the count at the time the first
command was issued.

In any event, the latched count must be read ac­
cording to the programmed format. Specifically,if
the timer is programmed for two-byte counts, two
bytes. must be read. However, the two bytes do not
have to be read right after the other. Read/write or
programming operations of other timers may be per­
formed between them.

Another feature of this Counter Latch Command is
that read and write operations of the same timer
may be interleaved. For example, if the timer is pro­
grammed for two-byte counts, the following se­
quence is valid.

1. Read least significant byte.

2. Write new least significant byte.

3. Read most significant byte.

4. Write new most significant byte.

If a· timer is programmed to read/write twc-byte
counts, the following precaution applies. A program
must not transfer control between reading the first
and second byte to another routine which also reads
from that same timer. Otherwise, an incorrect count
will be read.

READ BACK COMMAND

The Read Back Command is another special Com­
mand Word operation which allows the user to read

'the current count value and/or the status of the se­
lected timer(s). Like the Counter Latch Command,
two bits in the Command Word identify this as a
Read Back Command (see Register Bit Definition).

The Read Back Command may be used to latch
multiple counter Output Latches (OL's) by selecting
more than one timer within a Command Word. This
single command is functionally equivalent to several
Counter Latch Commands, one for each counter to

be latched. Each counter's latched count will be
held until it is read by the 80376 or until the timer is
reprogrammed. The counter is automatically un­
latched when read, but other counters remain
latched until they are read. If multiple Read Back
commands are issued to the same timer without
reading the count, all but the first are ignored; i.e. the
count read will correspond. to the very first Read
Back Command issue,d.

As mentioned previously, the Read Back Command
may also be used to latch status information of the
selected timer(s). When this function is enabled, the
status of a timer can be read from the Counter Reg­
ister after the Read Back Command is issued. The
status information of a timer includes the following:

1. Mode of timer:

This allows the user to check the mode of opera­
tion of the timer last programmed.

2. State of TOUT pin of the timer:

This allows the user to monitor the counter's out­
put pin via software, possibly eliminating some
hardware from a system.

3. Null Count/Count available:

The Null Count Bit in the status byte indicates if
the last count written to the Count Register (CR)
has been loaded into the Counting Element (CE).
The exact time this happens depends on the
mode of the timer and is described in the Pro­
gramming section. Until the count is loaded into
the Counting Element (CE), it cannot be read from
the timer. If the count is latched or read before
this occurs, the count value will not reflect the
new count just written.

If multiple status latch operations of the timer(s) are
performed without reading the status, all but the first
command are ignored; i.e. the status read in will cor­
respond to the first Read Back Command issued.

Both the current count and status of the selected
timer(s) may be latched simultaneously by enabling
both functions in a single Read Back' Command.
This is functionally the same as issuing two separate
Read Back Commands at once. Once again, if multi­
ple read commands are issued to latch both the
courit and status of a timer, all but the first command
will be ignored.

If both count and status of a timer are latched, the
first read operation of that timer will return the
latched status, regardless of which was latched first.
The next one or two (if two count bytes are to be
read) read operations return the latched count. Note
that subsequent read operations on the Counter
Register will return the unlatched count (like the first
read method discussed).

4-877

ir1tef
5.6 Register Bit Definitions

COUNTER 0,1,2,3 REGISTER (READ/WRITE)

Port Address Description

40H Counter 0 Register (read/write)
41H Counter 1 Register (read/write)
42H Counter 2 Register (read/write)
44H Counter 3 Register (read/write)
45H Reserved
46H Reserved

Control Word Register I

07 06 05

SELECT COUNTER:
00 SELECT COUNTER 0
01 SELECT COUNTER 1
10 SELECT COUNTER 2
11 READ BACK COMMAND

FOR COUNTER 0-2

04

07

READ/WRITE:

03

06

02

00 COUNTER LATCH COMMAND
01 REAO/WRITE LSB BYTE ONLY
10 REAO/WRITE MSB BYTE ONLY

05 04 03

01 00

0- 16-BIT BINARY
COUNTER

1 - BCD COUNTER
(4 DECADES)

11 REAO/WRITE LSB. THEN MSB BYTE

MODE:
000 MODE 0
001 MODE 1
Xl0 MODE 2
Xl1 MODE 3
100 MODE 4
101 MODE 5

290164-76

82370

02

Note that these 8-bit registers are' for writing and
reading of one byte .. of the 16-bit count value, either
the most significant or the least significant byte.

CONTROL WORD REGISTER I & II (WRITE- .
ONLY)

Port Address Description

43H Control Word Register I
(Counter 0, 1,2 (write-only)

47H Control Word Register II
(Counter 3) (write-only)

01 lo~
LSB OF COUNT BYTE

MSB OF COUNT BYTE
290164-75

Control Word Register II

07 06 05

SELECT COUNTER:
00 SELECT COUNTER 3
01 RESERVED
10 RESERVED
11 READ BACK COMMAND

FOR COUNTER 3

04

READ/WRITE:

03 02

00 COUNTER LATCH COMMAND
01 READ/WRITE LSB BYTE ONLY
10 READ/WRITE MSB BYTE ONLY

01 DO

0-16-BIT BINARY
COUNTER

1 - BCD COUNTER
(4 DECADES)

11 READ/WRITE LSB. THEN MSB BYTE

MODE:
000 MODE 0
001 MODE 1
Xl0 MODE 2
Xll MODE 3
100 MODE 4
101 MODE 5

290164-77

4-878

82370

COUNTER LATCH COMMAND FORMAT

(Write to Control Word Register)

07 06 05 04 03 02 01 DO

00 COUNTER 0 (OR 3)
01 COUNTER 1
10 COUNTER 2
1 t REAO BACK COMMAND

x I x

READ BACK COMMAND FORMAT

(Write to Control Word Register)

07

STATUS FORMAT

06 05 04 03 02 01

o '- LATCH COU NT
1 - DO NOT LATCH

COUNT

0- LATCH STATUS
1 - DO NOT LATCH

STATUS

0.,. COUNTER NOT
SELECTED

1 - COUNTER IS
SELECTED

(Returned from Read Back Command)

07 06 05 04 03

0- COUNT AVAILABLE
FOR READING

1 - NULL COUNT

4-879

02 01

290164-78

DO

DO

COUNTER
MODE

I
I:

290164-79

290164-80

inter 82370

6.0 WAIT STATE GENERATOR

6.1 Functional Description

The 82370 contains a programmable Wait State
Generator which can generate a pre-pr()grammed
number of wait states during both CPU and DMA
initiated bus cycles. This Wait State Generator is ca­
pable of generating 1 to 16 wait states in non-pipe­
lined mode, and 0 to 15 wait· states in pipelined
mode. Depending on the bus cycle type and the two
Wait State Control inputs (WSC 0-1), a pre-pro­
grammed number of wait states in the selected Wait
State Register will be generated.

The Wait State Generator can also be disabled to
allow the use of devices capable of generating their
own READY # Signals. Figure 6-1 is a block diagram
of the Wait State Generator.

6.2 Interface Signals

The following describes the interface signals which
affect the operation of the Wait State Generator.
The READY #, WSCO and WSC1 signals are inputs.
READYO# is the ready output signal to the host
processor.

6.2.1 READY #

READY # is an active LOW input Signal which indi­
cates to the 82370 the completion of a bus cycle. In
the Master mode (e.g. 82370 initiated DMA transfer),
this signal is monitored to determine whether a pe­
ripheral or memory needs wait states inserted in the
current bus cycle. In the Slave mode, it is used (to.
gether with the ADS# signal) to trace CPU buscy­
cles to determine if the curre~t cycle. is pipelined.

6.2.2 READVOil!

READYO# (Ready Out#) is an active LOW output
signal and is the output ofthe Wait State Generator.
The /')umber of wait states generated depends on
the WSC(O-1) inputs. Note that special cases are
handled· for access to the 82370 internal registers
and for the Refresh cycles. For 82370 internal regis­
ter access, READYO# will be delayed to take into
the command recovery time of the register. One or
more wait states will be generated in a pipe lined cy­
cle. During refresh, the number of wait states will be
determined by the· preprogrammed value in the Re­
fresh Wait State Register.

In the simplest cOnfiguration, READYO# can be
connected to the READY # input of the 82370 and
the 80376 CPU. This is, however, not always the
case. If external circuitry is to control the READY #
inputs as well, additional logic will be required (see
Application Issues).

6.2.3 WSC(O-1)

These two Wait State Control inputs, together with
the M/IO# input, select one of the three pre-pro­
grammed 8.bit Wait State Registers which deter­
mines the number of wait states to be generated.
The most significant half of the three Wait State
Registers corresponds to memory accesses, the
least significant half to 1/0 accesses. The combina­
tion WSC(O-1) = 11 disables the Wait State Gener­
ator.

INTERNAL WAIT STATE

WSCO
WSCI

M/IO#

REQUIREMENT --...,

07 04 03 00

REGISTER MEMORY 0 I/o 0

SELECT
MEMORY 1 I/O 1 LOGIC

MEMORY 2 I/O 2

(RESERVED) R~FRESH ADS#,
READY#

PROGRAMMABLE WAIT STATE
REGISTERS

Figure 6·1. Wait State Generator Block Diagram

4-880

290164-81

82370

I 6.3 Bus Function

6.3.1 WAIT STATES IN NON-PIPE LINED CYCLE.

The timing diagram of two typical non·pipelined cy·
cles with 82370 generated wait states is shown in
Figure 6·2. In this diagram, it is assumed that the
internal registers of the 82370 are not addressed.
During the first T2 state of each bus cycle, the Wait
State Control and the M/IO# inputs are sampled to
determine which Wait State Register (if any) is se·
lected. If the WSC inputs are active (i.e. not both are
driven HIGH), the pre·programmed number of wait
states corresponding to the selected Wait State
Register will be requested. This is done by driving
the READYO# output HIGH during the end of each
T2 state.

The WSC (0-1) inputs need only be valid during the
very first T2 state of each non·pipelined cycle. As a
general rule, the WSC inputs are sampled on the
rising edge of the next clock (82384 CLK) after the
last state when ADS# (Address Stat\ls) is asserted.

The number of wait states generated depends on
the type of bus cycle, and the number of wait states
requested. The various combinations are discussed
below.

1. Access the 82370 internal registers: 2 to 5 wait
states; depending upon the specific register ad·
dressed. Some pack·to-back sequences to the Inter·
rupt Controller will require 7 wait states.

T1 T2 T2

ClK2

elK

2. Interrupt Acknowledge to the 82370: 5 wait states.

3. Refresh: As programmed in the Refresh Wait
State Register (see Register Set Overview). Note
that if WCS (0-1) = 11, READYO# will stay inac­
tive.

4. Other bus cycles: Depending on WCS (0-1) and
M/IO# inputs, these inputs select a Wait State Reg·
ister in which the number of wait states will be equal
to the pre·programmed wait state count in the regis­
ter plus' 1, The Wait State Register selection is de­
fined as follows (Table 6·1).

Table 6-1. Walt State Register Selection

M/IO# WSC(O-1) Register Selected

0 00 WAIT REG 0 (I/O half)
0 01 WAIT REG 1 (I/O half)
0 10 WAIT REG 2 (110 half)
1 00 WAIT REG 0 (MEM half)
1 01 WAIT REG 1 (MEM half)
1 10 WAIT REG 2 (MEM half)
X 11 Wait State Gen, Disabled

The Wait State Control signals. WSC(0-1), can be
generated with the address decode and the Readl
Write control signals as shown in Figure 6-3.

T1 T2 T2 T2

A(1-23) ~----+-----~-----w------~----+-----~-----w M/IOH

BlE#. BHE# t~~-:-~-~-~-~)~B-:-:-:-)--~----------~'I'~a-~-B-~-B~+~C-:-:-)-.. t~-----------~---------.. -+'I" WSC(O-1)

ADS#

READYO#

TWO. WAIT STATES
·290164-82

Figure 6-2. Walt States In Non-Pipelined Cycles

4·881

I '. ...

inter 82370

Figure 6-3. WSC (0-1) Generation

Note that during HALT and SHUTDOWN, the nurn·
ber of wait states will depend on the WSC (0-1)
inputs, which will select the memory half of one of
the Wait State Registers (see CPU Reset and Shut­
down Detect).

6.3.2 WAIT STATES IN PIPELINED CYCLES

The timing diagram of two typical pipelined cycles
with 82370 generated wait states is shown in Figure
6-4. Again, in this diagram, it is assumed that the
82370 internal registers are not addressed. As de­
fined in the timing of the 80376 processor, the Ad­
dress (A1-23), Byte Enable (BHE#, BLE#), and
other control signals (M(IO#, ADS#) are asserted
one T-state earlier than in a non-pipelined cycle; i.e.
they are asserted at T2P. Similar to the non-pipe­
lined case, the Wait State Control (WSC) inputs are
sampled in the middle of the state after the last state
the ADS # Signal is asserted. Therefore, the WSC
inputs should be asserted during the T1 P state of
each pipelined cycle (which is one T-state earlier
than in the non-pipelined cycle).

Tlp T2 T2p

ClK2

ClK

A(! - 23)
1.1/10#

BlE#.BHE#
WSC(O-l)

ADS#

READY#

READYO#

ONE WAIT STATE

The number of wait states generated. in a pipe lined
cycle is selected in a similar manner as in the non­
pipelined case. discussed in the previous section.
The only difference here is that the actual number of
wait states generated will be one less than that of
the non-pipe lined cycle. This is done automatically
by the Wait State Generator. .

6.3.3 EXTENDING AND EARLY TERMINATING
BUS CYCLE

The 82370 allows external logic to either add wait
states or cause early termination of a bus cycle by
controlling the READY# input to the 82370.andthe
host processor. A possible configuration is shown in
Figure 6-5.

80376

READY#

EXTERNAL READY#
(EARLY TERMINATION) 82370

'-"1-.--1 READYO#

L-----------t READY#

290164-85

Figure 6-5. External 'READY' Control Logic

T1p T2 T2 T2p

TWO WAIT STATES
290164-84

Figure 6-4. Wait States in Pipelined Cycles

4-882

inter 82370

The EXT. ROY if (External Ready) Signal of Figure 6-
5 allows external devices to cause early termination
of a bus cycle. When this signal is asserted LOW,
the output of the circuit will also go LOW (even
thou9h the READYOiF of the 82370 may still be
HIGH). This output is fed to the READY if input of
the 80376 and the 82370 to indicate the completion
of the current bus cycle.

Similarly, the EXT. NOT READY (External Not
Ready) signal is used to delay the READY if input of
the processor and the 82370. As long as this signal
is driven HIGH, the output of the circuit will drive the
READY if input HIGH. This will effectively extend the
duration· of a bus cycle, However, it is important to

T1 T2 T1

CLK2

CLK

note that if the two-level logic is not fast enough to
satisfy the READY if setup time, the OR gate should
be eliminated. Instead, the 82370 Wait State Gener­
ator can be disabled by driving both WSC (0-1)
HIGH. In this case, the addressed memory or 1/0
device should activate the external READY if input
whenever it is ready to terminate the current bus
cycle.

Figures 6-6 and 6-7 show the timing relationships of
the ready signals for the early termination and exten­
sion of the bus cycles. Section 6-7, Application Is­
sues, contains a detailed timing analysis of the ex­
ternal circuit.

T2 T2 T2 Tx

A(1-23) ~ ____ +-____ ~ ____ -+ ______ ~ ____ +-____ ~ ____ ~
M/IO#

BLE#,BHE# I'---+---'I'---+---~---+---'I'---~
ADS#

READYO#
TWO WAIT STATES

290164-86

Figure 6-6. Early Termination of Bus Cycle By 'READY if'

T1 T2 T2 T2 T2 Tx Tx

CLK2

eLK

A(l - 23) 11-----+------+------+------1----111------1------+
M/IO#

BLE#, BHE# I'---+---+---+---~---'l'----+----+-
ADS#

READYO#

290164-87

Figure 6-7. Extending Bus Cycle .by 'READY if'

4-883

82370

Due to the following implications. it should be noted
that early termination, of bus cycles in which ~2370
internal,registers are accessed is not recommended.

-1. Erroneous data, may be read from or Written into
the addre,ssedregister. '

2. The 82370 must be allowed to recover either be­
fore HLDA (Hold Acknowledge) is asserted or before
another bus cycle into an 82370 internal ,register is
initiated. '

The recovery time, .in clock periods, equals the, re­
maining wait states that were avoided plus 4.

6.4 Register Set Overview

Altogether, there are four 8-bit internal registers as­
sociated with the Wait State Genertor. The port ad­
dress map of these registers is shown, below in .Ta-
ble 6-2. A detailed description of each follows. -

Table 6·2. Register, Address Map

Port Address DescriptIon,

72H Wait State Reg 0 (read/write)
73H Wait State Reg 1 (read/write)
74H Wait State Reg 2 (read/write)
75H Ref. Waif State Reg (read/write)

WAIT STATE REGISTER 0,1,,2

These three8-bit read/write registers are functional­
ly identical. They are used to store the pre-pro- I

grammed wait state count. One half of each register
contains the wait state count ,for I/O accesses while
the other half contains the count for memory ac-

Note ,that ,the Refresh Wait State Register is not se­
lected by the WSC, inPuts. It will automatically be
chosen whenever a, DRAM Jefresb cycle occurs. If
the Wait State Generator is disabled during the re­
fresh'cycle (WSC (0-1) = 11), READYO# will stay
inactive and the'Refresh Wait State Register 'isig.
nored,

6.5 Programming

Using the Wait State Generator is relatiVely straight­
forward. No sp~cial programming sequence, is, re­
quired. In order to ensure the expected number of
wait states will be generated WhEIn a register is se­
lected, the registers to be, used must be pro­
grammed after power-up by writing the appropriate
wait state count into each register. Note that upon,
,hardware reset, all Wait State Registers are initial­
ized with the ,value FFH, giving the maximum num­
ber of wait states possible. Also, each register can
be ,read to check the wait state count previously
stored in the register.

6.6 Register Bit Definition

WAIT STATE REGISTER 0, 1, 2

Port Address Description

72H Wait State Register 0 (read/write)
73H Wait State Register 1 (read/write)
74H Wait State Register 2 (read/write)

cesses. The to,tal number of wait states generated I/o WAIT
will depend on the type of bus cycle. For a non-pipe- STATE COUNT

lined cycle, the actual number of wait states request­
,ed is equal to the wait state count plus 1. For a
pipelined cycle, the number of wait states will be
equal to the wait state count in the selected register. ,REFR,ESH WAIT STATE, REGISTER
Therefore, the Wait State Generator is capable of
generating 1 to 16 wait states 'in non-pipelined Port Address: 75H (Re,ad/Write)
mode, and 0 to 15 wait states inpipelined mode.

Note that the minimum wait state count in each reg­
ister is O. This is equivalent to 0 wait states for a
pipelined cycle and 1 wait state fOl'a~non,pipelined ~-;.....-........ -+ REF'RESH WAIT
cycle.

REFRESH WAIT STATE REGISTER -

Similar to the Wait Siate Registers discussed above, '
this 4-bit register is used to store the number of wait
states to be generated during a DRAM refresh cycle.

4-884

STATE COUNT

290164-89

inter 82370

6.7 Application Issues

6.7.1 EXTERNAL 'READY' CONTROL LOGIC

As mentioned in section 6.3.3. wait state cycles gen­
erated by the 82370 can be terminated early or e~­
tended longer by means of additional external logic
(see Figure 6-5). In order to ensure that the
READY # input timing requirement of the 80376 and
the 82370 is satisfied. special care must be taken
when designing this external control logic. This sec­
tion addresses the design requirements.

A simplified block diagram of the externa,l logic along
with the READY # timing diagram is shown in Figure
6"8. The purpose is to determine the maximum delay

time allowed in the external control logic in order to
satisfy the READY # setup time.

First, it will be assumed that the 80376 is running at
16 MHz (Le. CLK2 is 32 MHz). Therefore, one bus
state (two CLK2 periods) will be equivalent to
62.5 ns. According to the ACspecifications of the
82370 the maximum delay time for valid READYO#
signal 'is 31 ns after the rising edge of CLK2 in the
beginning of T2 (for non-pipelined cycle) or T2P (for
pipelined cycle). Also, the minimum READY # setup
time of the 80376 and the 82370 should be 19 ns
before the rising edge of CLK2 at the beginning of
the next bus state. This limits the total delay time for
the external READY # control logic to be 12.5 ns
(62.5-31-19) in order to meet the READY # setup
timing reqUirement.

EXT. READY# EXT. NOT READY

80376-16
82370

,

READY
READY# CONTROL I~ READYO#

t LOGIC

READY#

~--------~----A--------~------~

CLK2

READYO# -+------..... ---1r-' '------t----t--

290164-90
A = PHil + PH12 = 62.5ns
8 = Maximum READYO# Valid Delay = 35 ns
C = READY # Setup Time = 20 ns . .
D = Maximum Ready Control Logic Delay = A· 8 "C = 7.5 ns

Figure 6·8. 'READY' Timing Consideration

4-885

I.

82370

7.0 DRAM REFRESH CONTROLLER

7.1 FunctionalDescription

The 82370 DRAM Refresh Contrbllerconsists of a
24"bit Refresh Address Counter and . Refresh Re­
quest logic for DRAM refresh operations (see Figure
7-1); TIMER 1 can be used asa trigger signal to the
DRAM Refresh Request logic. The Refresh Bus Size
can be programmed to be 8-or 16-bitwide. Depend­
ing on the Refresh Bus Size, the Refresh Address
Counter will be incremented with the appropriate val­
ue after every refresh cycle. The internal logic of the
82370 will give the Refresh operation the highest
priority in the bus control arbitration process. Bus
control is not released and re-requested if the 82370
is already a bus master.

7.2 Interface Signals

7.2.1 TOUTlIREF#

The dual function output pin of TIMER 1
(TOUT1/REF#) can be programmed to generate
DRAM Refresh signal. If this feature is enabled, the
rising edge of TIMER 1 output (TOUT1#.) will trigger
the DRAM Refresh Request logic. After some delay
for gaining access of the bus, the 82370 DRAM Con­
troller will generate a DRAM Refresh signal by driv­
ing REF # output lOW. This signal is cleared after
the refresh cycle has taken place, or by a hardware
reset.

TO
(lNTE

un
RNAL) DRAM

REFRESH
CONTROLLER

If the DRAM Refresh feature is disabled, the
TOUT1 IREF # output pin is simply the TIMER 1 out­
put. Detailed information of how TIMER 1 operates
is discussed . ill section 6-Programmable Interval
Timer, and will not be repeated here.

7.3 Bus Function

7.3.1 ARBITRATION

In order to ensure data integrity of the DRAMs, the
82370 gives the DRAM Refresh signal the highest
priority in the arbitration logic. It allows DRAM Re­
fresh to . interrupt DMA in progress in order to per­
form the DRAM Refresh cycle. The DMA service will
be resumed after the refresh is done.

In case of a DRAM Refresh during a DMA process,
the cascaded device will be requested to get off the
bus. This is done by de-asserting the EDACK signal.
Once DREQn goes inactive, the 82370 will perform
the refresh operation. Note that the DMA controller
does not completely relinquish the system bus dur­
ing refresh. The Refresh Generator simply "steals"
a bus cycle between DMA accesses.

Figure 7-2 shows the timing diagram of a Refresh
Cycle. Upon expiration of TIMER 1, the 82370 will try
to take control of the system bus by asserting
HOLD. As soon as the 82370 see HlDA go active,
the DRAM· Refresh Cycle will be carried out by acti­
vating the REF # signal as well as the address and
control signals on the system bus (Note that REF #
will not be active until two ClK periods HlDA is as­
serted). The address bus will contain the 24-bit ad-

INTERNAL
DMA

HANDSHAKE DMA
CONTROLLER HEDGE } DETECTOR

I 24-BIT ~
ARBITRATION

LOGIC
ADDRESS
COUNTER

J TO DMA
CONTROLLER

I
24- BIT (INTERNAL)

2-TO-1
REFRESH

REF# ADDRESS
1 MUX

Toun
o select TOUn/REF#

f
REFRESH ENABLE (INTERNAL)

290164-91

Figure 7-1. DRAM Refresh ContrOller

4-886

82370

dress currently in the Refresh Address Counter. The
control signals are driven the same way as in a
Memory Read cycle. This "read" operation is com­
plete when the READY # signal is driven lOW.
Then, the 82370 will relinquish the bus by de-assert­
ing HOLD. Typically, a Refresh Cycle without wait
states will take five bus states to execute. If "n" wait
states are added, the Refresh Cycle will last for five
plus "n" bus states.

How often the Refresh Generator will initiate a re­
fresh cycle depends on the frequency of ClKIN as
will as TIMER 1's programmed mode of operation.
For this specific application, TIMER 1 should be pro­
grammed to operate in Mode 2 to generate a con­
stant clock rate. See section 6-Programmable In­
terv~1 Timer for more information on programming
the timer. One DRAM Refresh Cycle will be generat­
ed each time TIMER 1 expires (when TOUT1 chang­
es from lOW to HIGH).

The Wait State Generator can be used to insert wait
states during a refresh cycle. The 82370 will auto­
matically insert the desired number of wait states as
programmed in the Refresh Wait State Register (see
Wait State Generator).

Tx Tx TI

ClK2

ClK

HOLD -+O---...Jf

7.4 Modes of Operation

-7.4.1 WORD SIZE AND REFRESH ADDRESS
COUNTER

The 82370 supports 8- and 16-bit refresh cycle. The
bus width during a refresh cycle is programmable
(see Programming). The bus size can be pro­
~rammed '1a the Refresh Control Register (see Reg­
Ister Overview). If the DRAM bus size is 8- or 16.-bits,
the Refr~sh Address Counter will be incremented by
1 or 2, respectively.

The Refresh Address Counter"is cleared by a hard,
ware reset.

7.5 Register Set Overview

The Refresh Generator has two internal registers to
control its operation. They are the Refresh Control
Register and the Refresh Wait State Register. Their
port address map is shown in Table 7-1 below.

T1 T2

HlDA

A(I-23).MjIOD +---+----li!-.....:(~--t--{==:::t==::::j_--+ BLED. DjCD
WjRD.BHED

TOUT1

REFD ;----+---+---+---1
~--+---.JI

Figure 7-2. 82370 Refresh Cycle

4-887

290164-92

]'
~
II

!

I

I
i :~

If

82370

Table 7-1 •. Register Address Map .

Port Address Description

1CH Refresh Control Reg. (read/write)
75H Ref. Wait State Reg. (read/write)

The Refresh Wait State Register is not part of the
Refresh Generator. It is only used to program the
number of wait states to be inserted during a refresh
cycle. This register is discussed in detailed in section
7 (Wait State Generator) and will not be repeated
here.

REFRESH CONTROL REGISTER

This2-bit register serves two functions. First; it is
used to enable/disable the DRAM Refresh function
output. If disabled, the output of TIMER 1 is simply
used as a general purpose timer. The second func­
tion of this register is to program the DRAM bus size
for the refresh operation. The programmed bus size
also determines how the Refresh Address Counter
will be incremented after each refresh operation ..

7.6 Programming

Upon hardware reset, the DRAM Refresh function is
disabled (the Refresh Control Register is cleared).
The following programming steps are needed before
the Refresh Generator can be used. Since the rate '
of refresh· cycfes'depends on how TIMER 1 is pro­
grammed, this timer must beiriitialized with the de~
sired mode of operation as well 'as the correct
refresh interval' (see Programming Interval Timer).
Whether or not 'wait states are to be generated dur­
ing a refresh cycle, the Refresh Wait State Register
'must also be programmed with the appropriate val­
ue. Then, the DRAM Refresh feature must be en­
abled and the DRAM bus width should be defined.
These can be done in one step by writing the appro-

priate control word into the Refresh Control Register
(see Register Bit Definition). After these steps are
done, the refresh operation will automatically be in­
voked by the Refresh Generator upon expiration of
Timer 1.

In addition to the above programming steps, it
should be ndted that after reset, although the
TOUT1/REF# becomes the Time 1 output, the
state of this pin in undefined. This is because the
Timer module has not been initialized yet. Therefore,
if.this output is used 'as a DRAM Refresh signal, this
pin should be disqualified by external logic until the
Refresh function is enabled. One simple solution is
to logically AND this output with HLDA, since HLDA
should not be active after. reset.

7.7 Register Bit Definition

REFRESH CONTROL REGISTER

Port Address: 1 CH (Read/Write)

8.0 RELOCATION REGISTER AND
ADDRESS DECODE

8.1 Relocation Register

All the integrated peripheral devices in the 82370
are controlled by a set of internal registers. These
registers span a total of 256 consecutive address
locations (although not all the 256 locations are
used). The 82370 provides a Relocation Register
which allows the user to map this set of internal reg­
istersinto,either the memory or I/O address space.
The function of the Relocation Register is to .define
the base address of the internal register set of the
82370 as well as if the registers are to be memory­
or I/O-mapped. The format of the Relocation Regis­
ter is depicted in Figure 9-1. .

00 REF'. DISABLED
01 INTEL RESERVED
10 BUS SIZE = 16
11 BUS SIZE =8

290164-93

4-888

inter 82370

D7 D6 D5 D4 D3 D2 D1 DO

FOR I/O MAPPED:A15-A9
FOR MEMORY MAPPED: A23-A 16

o -I/O MAPPED
1 -MEMORY

MAPPED
290164-94

Port Address: 7FH (Read/Write)

Figure 8-1. Relocation Register

Note that the Relocation Register is part of the inter.
nal register set of the 82370. It has a port address of
7FH. Therefore, any time the content of the Reloca­
tion Register is changed, the physical location of this
register will also be moved. Upon reset of the 82370,
the content of the Relocation Register will be
cleared. This implies that the 82370 will respond to
its I/O addresses in the range of OOOOH to OOFFH.

8.1.1 I/O-MAPPED 82370

As shown in the figure, Bit 0 of the Relocation Regis­
ter determines whether the 82370 registers are to be
memory-mapped or I/O mapped. When Bit 0 is set
to '0', the 82370 will respond to I/O Addresses. Ad­
dress signals BHE#, BLE#, A1-A7 will be used to
select one of the internal registers to be accessed.
Bit 1 to Bit 7 ofthe Relocation Register will corre­
spond to A9 to A 15 of the Address bus, respectively.
Together with A8 implied to be '0', A15 to A8 will be
fully decoded by the 82370. The following shows
how the 82370 is mapped into the I/O address
space.

Example

Relocation Register = 11001110 (OCEH)

82370 will respond to I/O address range from
OCEOOH to OCEFFH.

Therefore, this I/O mapping mechanism allows the
82370 internal registers to be located on any even,
contiguous, 256 byte boundary of the system I/O
space.

8.1.2 MEMORY-MAPPED 82370

When Bit 0 of the Relocation Register is set to '1',
the 82370 will respond to memory addresses. Again,

Address signals BHE#, BLE#, A1-A7 will be used
to select one of the internal registers to be ac­
cessed. Bit 1 to Bit 7 of the Relocation Register will
correspond to A17-A23, respectively. A16 is as­
sumed to be '0', and A8-A 15 are ignored. Consider
the following example.

Example

Relocation Register = 10100111 (OA7H)

The 82370 will respond to memory addresses in
the range of A6XXOOH to A60XXFFH (where 'X' is
don't care).

This scheme implies that the internal registers can
be located in any even, contiguous, 2**16 byte page
of the memory space.

8.2 Address Decoding

As mentioned previously, the 82370 internal regis­
ters do not occupy the entire contiguous 256 ad­
dress locations. Some of the locations are 'unoccu­
pied'. The 82370 always decodes the lower 8 ad­
dress signals (BHE#, BLE#, A1-A7) to determine if
anyone of its registers is being accessed. If the ad­
dress does not correspond to any of its registers, the
82370 will not respond. This allows external devices
to be located within the 'holes' in tne 82370 address
space. Note that there are several unused address­
es reserved for future Intel peripheral devices.

8.3 Chip-Select (CHPSEL #)

The Chip-Select signal (CHPSEL/) will go active
when the 82370 is. addressed in a Slave bus

4-889

I

I

82370

CLK2

ADS#

82370
NOT ACCESSED

T1 T2 11

82370
ACCESSED- 2 WAiT STATES

T2 T2 T2

CHPSEL# t:==~~~rt---K~~~~+---+---.,.
READY#

290164-95

Figure 8·2. CHPSEL# Timing

cycle (either read or write), or in an interrupt ac­
knowledge cycle in which the 82370 will drive the
Data Bus. For a given bus cycle, CHPSEL# be­
comes active and valid in the first T2 (in a non-pipe­
lined cycle) or in 11 P (in a pipelined cycle). It will
stay valid until the cycle is terminated by READY #
driven active. As CHPSEL# becomes valid well be­
fore the 82370 drives the Data Bus, it can be used to

, control the transceivers that connect the local CPU
bus to the system bus. The timing diagram of
CHPSEL# is shown in Figure 8-2.

9.0 CPU RESET AND SHUTDOWN
DETECT

The 82370 will activate the CPURST signal to reset
the host processor when one of the following condi­
tions occurs:

- 82370 RESET is active;

- 82370 detects a 80376 Shutdown cycle (this fea~
ture can be disabled);

- CPURST software command is issued to 80376.

Whenever the CPURST signal is activated, the
82370 will reset its own hiternal Slave-Bus state ma­
chine.

9.1 Hardware Reset

Following a hardware reset, the 82370 will assert its
CPURST output to reset the host processor. This
output will stay active for as long as the RESET input
is active; During a hardware reset, the 82370 iriternal
registers will be initialized as defined in. the corre­
sponding functional description~.

9.2 Software Reset

CPURST can be generated by writing the following
bit pattern into 82370 register location 64H.

07 DO
1111XXXO

The. Write operation into this port is considered as
an 82370 access and the internal Wait State Gener­
ator will al,ltomatically determine the required num­
ber of wait states. The CPURST will be active follow­
ing the completion of the Write cycle to this port.
This Signal will last for 62 CLK2 periods. The 82370
should not be accessed until the CPURSTis deacti­
vated.

This internal· port is WritEi~Only and the 82370 will
not respond to a Read operation to this location.
Also, during a software reset command, the 823?0
will reset its Slave-Bus state machine: However, Its
internal registers remain unchanged. This allows the
operating system to distinguish a 'warm' reset by
reading any 82370 internal register previously pro­
grammed for a non-default value. The Diagnostic
registers can be used for this purpose (see Internal
Control and Diagnostic Ports).

9.3 Shutdown Detect

The 82370 is constantly monitoring the Bus Cycle
Definition signals (M/!IO#, D/C#, W/R#) and is
able to detect when the 80376 is ina Shutdown bus
cycle. Upon detection of a processor shutdown, the
82370 will activate the CPURST output for 62 C~K2
periods to reset the host processor. This signal is
generated after the Shutdown cycle is terminated by
the READY # Signal.

4-890

inter 82370

Although the 82370 Wait State Generator will not
automatically respond to a Shutdown (or Halt) cycle,
the Wait State Control inputs (WSCO, WSC1) can be
used to determine the number of wait states in the
same manner as other non-82370 bus cycles.

This Shutdown Detect feature can be enabled or dis­
abled by writing a control bit in the Internal Control
Port at address 61 H (see Internal Control and Diag­
nostic Ports). This feature is disabled upon a hard­
ware reset of the 82370. As in the case of Software
Reset, the 82370 will reset its Slave-Bus state ma­
chine but will not change any of its internal register
contents.

10.0 INTERNAL CONTROL AND
DIAGNOSTIC PORTS

10.1 Internal Control Port

The format of the Internal Control Port of the 82370
is shown in Figure 10-1. This Control Port is used to
enable/disable the Processor Shutdown Detect
mechanism as well as controlling the Gate inputs of
the Timer 2 and 3. Note that this is a Write-Only port.
Therefore, the 82370 will not respond to a read op­
eration to this port. Upon hardware reset, this port
will be cleared; i.e., the Shutdown Detect feature
and the Gate inputs of Timer 2 and 3 are disabled.

Port Address: 61H (Write only)

10.2 Diagnostic Ports

Two 8-bit read/write Diagnostic Ports are provided
in the 82370. These are two storage registers and
have no effect on the operation of the 82370. They
can be used to store checkpoint data or error codes
in the power-on sequence and in the diagnostic
service routines. As mentioned in the CPU RESET
AND SHUTDOWN DETECT section, these Diagnos­
tic Ports can be used to distinguish between 'cold'
and 'warm' reset. Upon hardware reset, both Diag­
nostic Ports are cleared. The address map of these
Diagnostic Ports is shown in Figure 10-2.

Port Address

Diagnostic Port 1 (Read/Write) 80H
Diagnostic Port 2 (Read/Write) 88H

Figure 10-2. Address Map of Diagnostic Ports

11.0 INTEL RESERVED I/O PORTS

There. are nineteen I/O ports in the 82370 address
space which are reserved for Intel future peripheral
device use only. Their address locations are: 10H,
12H, 14H, 16H, 2AH, 3DH, 3EH, 45H, 46H, 76H,
77H, 7DH, 7EH, CCH, CDH, DOH, D2H, D4H, and
D6H. These addresses should not be used in the
system since the 82370 will respond to read/write
operations to these locations and bus contention
may occur if any peripheral is assigned to the same
address location.

07 06 05 04 03 02 01 DO

. 290164-96

Figure 10-1.lnteri1al Control Port

,:,1,
i\,;

".
I"

82370

12.0 PACKAGE THERMAL
SPECIFICATIONS

calculated from the 8jcand8ja from the following
equations:

TJ = Te + P*/lle

TA = Tj - P*/lja

Tc = Ta + P*[/lja - /ljd

The intel 82370 Integrated System Peripheral is
specified· for operation when case· temperature is
within the range of O·C to 78·Cfor the ceramic
132-pin PGA package, and 68·C for the 100"pin
plastic package. The c:ase temperature may be mea­
sured in any environment, to determine whether the
82370 is within specified· operating range. The case
temperature should be measured at the center of
the top surface opposite the pins.

The ambient temperature is guaranteed. as long as
T c is not violated. The ambient temperature can be

Values for 8ja and 8jc are given in Table 12 .. 1 for the
1 OO~lead fine pitch. 8ja is giv~n at various airflows.
Table 12.2 shows the maximum Ta allowable (with­
out exceeding Tel at various airflows. Note that Ta
can be improved further by attaching "fins" or a
"heat sink" tothe package. P is calculated using the
maximum hot Icc.

Table 12.1 82370 Package Thermal Characteristics
Thermal Resistances ("C/Watt) 8Jc and 8Ja

I I I 3 I 3 I
Package 8Jc

81a Versus Airflow-ft3/min (m3/sec)

0 ·200 400 600 800 1000
(0) (1.01) (2.03) (3.04) (4.06) (5.07)

100L Fine Pitch 7 33 27 24 21 18 17

132LPGA 2 21 17 14 12 11 10

Table 12.282370 Maximum Allowable Ambient
Temperature at Various Airflows

Package 8Jc

1 OOL Fine Pitch 7

132LPGA 2

100L PQFP Pkg:
Tc = Ta + P'(Bja -Bjd
Tc = 63 + 220 mA(33 - 7)
T c = 63 + 220 mA(26)
Tc = 63 + 5.72
Tc = 68.7

I I I 3 I 3 I
Ta(c) Versus Airflow-ft3/min (m3/sec)

0
(0)

63

74

200 400 600 800
(1.01) (2.03) (3.04) (4.06)

74 79 85

83 88 93

132L PGA Pkg:
Tc = Ta + P'(Bja - Bjd
Tc = 74 + 220 mA(21 - 2)
Tc = 74 + 220 mA(19)
Tc = 74 + 4.18
Tc = 78.2

4-892

91

97

1000
(5.07)

92

99

inter 82370

13.0 ELECTRICAL SPECIFICATIONS

82370 D.C. Specifications Functional Operating Range:
Vcc = 5.0V ± 10%; TCASE = O°C to 78°C for 132-pin PGA, O°C to 68°C for 100·pin plastic

Symbol Parameter Description Min Max Units Notes

VIL Input Low Voltage -0.3 0.8 V (Note 1)

VIH Input High Voltage 2.0 Vcc + 0.3 V

VILC CLK2 Input Low Voltage -0.3 0.8 V (Note 1)

VIHC CLK2 Input High Voltage VCC - 0.8 VCC + 0.3 V

VOL Output Low Voltage
IOL = 4mA: 0.45 V

A1-23, 00-15, BHE#, BLE#
IOL = 5mA: 0.45 V

All Others

VOH Output High Voltage

IOH = -1 mA A23-A1, 015-00, BHE#, BLE# 2.4 V (Note 5)

IOH = -0.2mA A23-A1, 015-00, BHE#, BLE# Vce - 0.5 V (Note 5)

IOH = -0.9mA All Others 2.4 V (Note 5)

IOH = -0.18 mA All Others Vcc - 0.5 V (Note 5)

III Input Leakage Current ±15 p,A
All Inputs Except:

IRQ11#-IRQ23#
EOP#, TOUT2/IRQ3#
OREQ4I1RQ9#

ILl1 Input Leakage Current 10 -300 p,A 0< VIN < VCC
Inputs: (Note 3)

IRQ11#-IRQ23#
EON, TOUT2/IRQ3
OREQ4/IRQ9

ILO Output Leakage Current ±15 p,A 0< VIN < Vcc

Icc Supply Current (CLK2 = 32 MHz) 220 mA (Note 4)

CI Input CapaCitance 12 pF (Note 2)

CCLK CLK2 Input Capacitance 20 pF (Note 2)

NOTES:
1. Minimum value is not 100% tested.
2. fc = 1 MHz; sampled only.
3. These pins have weak internal pullups. They sould not be left floating.
4. Icc is specified with inputs driven to CMOS levels, and outputs driving CMOS loads. Icc may be higher if inputs are driven
to TTL levels, or if outputs are driving TTL loads.
5. Tested at the minimum operating frequency of the part.

4-893

I
I,:

82370

CLK2 [2V

OV-----~--~~~~---~----

3.0V ~:+r---I--....,~~

LEGEND:
A-Maximum output delay specification
8-Minimum output delay specification
C-Minimum input setup specification
D-Minimum input hold specification

290164-97

Figure 13-1. Drive Levels and Measurement Points for A.C. Specification

82370 A.C. Specifications These A.C. timings are tested at 1.5V thresholds, except as noted.
Functional Operating Range: Vee = 5.0V ± 1 0%; TeASE = O°C to 7SoC for 132-pin PGA, O°C to 6SoC for
100-pin plastic

Symbol Parameter Description Min Max Units Notes

Operating Frequency 1/(t1 a x 2) 4 16 MHz

t1 CLK2 Period 31 125 ns

t2a CLK2 High Time 9 ns At2.0V
t2b CLK2 High Time 5 ns At Vee - O.SV
t3a CLK2 Low Time 9 ns At2.0V
t3b CLK2 Low Time 7 ns AtO.SV
t4 CLK2 Fall Time 7 ns Vee- O.SV to O.SV
t5 CLK2 Rise Time 7 ns O.SV to Vee - O.SV

t6 A1-A23, BHE#, BLE# 4 36 ns CL = 120 pF
EDACKO-EDACK2 Valid Delay

t7 A1-A23, BHE#, BLE# 4 40 ns (Note 1)
EDACKO-EDACK3 Float Delay

tS A 1-A23, BHE #, BLE # Setup Time 6 ns
t9 A 1-A23, BHE #, BLE # Hold Time 4 ns

t10 W/R#, M/IO#, D/C# Valid Delay 4 33 ns CL = 75 pF
t11 W/R#, MIIO#, D/C# Float Delay 4 35 ns (Note 1)

4-S94

intJ 82370

82370 A.C. Specifications These A.C. timings are tested at 1.5V thresholds, except as noted.
Functional Operating Range: Vee = 5.0V ± 10%; TeASE = O°C to 7SoC for 132-pin PGA, O°C to 68°C for
100-pin plastic (Continued)

Symbol Parameter Description Min Max Units Notes

t12 W/R#, M/IO#, O/C# Setup Time 6 ns
t13 W/R#, M/IO#, O/C# Hold Time 4 ns

t14 ACS# Valid Delay 6 33 ns CL = 50pF
t15 ADS # Float Delay 4 35 ns (Note 1)

t16 ADS # Setup Time 21 ns
t17 AOS# Hold Time 4 ns

t18 Slave Mode 00-015 Read Valid 3 46 ns CL = 120pF
t19 Slave ModE! 00-015 Read Float 6 35 ns (Note 1)

t20 Slave Mode 00-015 Write Setup 31 ns
t21 Slave Mode 00-015 Write Hold 26 ns

122 Master Mode 00-015 Write Valid 4 40 ns CL = 120pF
t23 Master Mode 00-015 Write Float 4 35 ns (Note 1)

124 Master Mode 00-015 Read Setup S ns
t25 Master Mode 00-015 Read Hold 6 ns

126 READY # Setup Time 19 ns
127 READY # Hold Time 4 ns

128 WSCO-WSC1 Setup Time 6 ns
129 WSCO-WSC1 Hold Time 21 ns

t30 . RESET Setup Time 13 ns
t31 RESET Hold Time 4 ns

t32 REAOYO# Valid Delay 4 31 ns CL = 25pF

t33 CPURST Valid Delay (Falling Edge Only) 2 18 ns CL = 50pF

t34 HOLD Valid Delay 5 33 ns CL = 100pF

t35 HLOA Setup Time 21 ns
t36 HLOA Hold Time .6 ns

t37a EOP # Setup (Synchronous) 21 ns
t38a EOP# Hold (Synchronous) 6 ns

t37b EOP# Setup (Asynchronous) 11 ns
t38b EOP# Hold (Asynchronous) 11 ns

t39 EOP# Valid Delay (Falling Edge Only) 5 38 ns CL = 100pF
t40 EOP # Float Delay 5 40 ns (Note 1)

t41a OREQ Setup (Synchronous) 21 ns
t42a OREQ Hold (Synchronous) 4 ns

t41b OREQ Setup (Asynchronous) 11 ns
t42b OREQ Hold (Asynchronous) 11 ns

t43 INT Valid Delay from IRQn 500 ns

t44 NA# Setup Time 5 ns
t45 NA# Hold Time 15 ns

4-895

82370

82370 A.C. Specifications These AC. timings are tested at 1.5V thresholds, except as noted.
Functional Operating Range: Vee = 5.0V ± 10%; T CASE· = OOC to 78·C for 132-pin PGA, O·C to 68·C for
100-pin plastic (Continued) .

Symbol Parameter Description Min Max Units Note.

t46 ClKIN Frequency DC 10 MHz
t47 ClKIN High Time 30 ns 2.0V
t48 ClKIN low Time 50 ns 0.8V
t49 ClKIN Rise Time 10 ns 0.8Vto 3.7V
t50. ClKIN Fall Time 10 ns 3.7Vto 0.8V

TOUT1 # lREF # Valid Delay
t51 from ClK2 (Refresh) 4 36 ns CL = 120pF
t52 from ClKIN (Timer) 3 93 ns CL = 120pF

t53 TOUT2# Valid Delay 3 93 ns CL = 120pf
(from ClKIN, Falling Edge Only)

t54 TOUT2 # Float Delay 3 36 ns (Note 1)

t55 TOUT3# Valid Delay 3 93 ns CL = 120pF
(from ClKIN)

t56 CHPSEl# Valid Delay 1 35 ns CL = 25pF

NOTE:
1. Float condition occurs when the maximum output current becomes less than ILO in magnitude. Float delay is not tested.
For testing purposes, the float condition occurs when the dynamic output driven voltage changes with current loads.

290164-98
Cl Indicates all parasitic capacitances.

290164-99

Figure 13-2. A.C. Test Load Figure 13-3 .

4-896

82370

INPUT SET - UP AND HOLD TIMING (CONT.~

Tx
PHil PHI2 PHil PHI2 PHil PHI2

CLK2

NA#

WSC(O-l)

PHil PHI2 PHil PHI2 PHil PHI2

CLK2

A(1-A23). BHE#. BLE# -------{::::C:::::::::::::::t::::=*-----
W/R#. M/IO#. D/C# -------{:::::t::::::::::=::::::::j~----

READY# --------1:::!::::}--..... ------------
A~#--------1::::c::::~--------------

HLDA--------1:::!::::~-------------~

0(0-15) (DMA Read) --..;,.-----i::::t::::}--------------
0(0-15) (CPU Write) --------1:::l::::}--------------

EOP#--------1:::l::::}-----~--------

DREQ(0-7) -~~-----1::!::}---~----------
290164-AO

Figure 13-4. Input Setup and Hold Timing

4-897

82370

Tx

'ClK2 .' ~.31 . T30. PHlx ,. PHI2. '. PHil '. PHI2

RESET- '. . '

.' _--------------'.' Hold. Setup . .

Tx

ClK2 .
'. ~.I PHI 2.

r- T33 MIN.
CPURST. .

ClK2

AI - 23. BHE#. BlE#

AI - 23. BHE#. BlE#
EDACK(O-2)

AI - 23. BHE#. BlE#

ADS#

ADS#

ADS#

HOLD

CHPSEl#

. .1-T33 MAX.
290164-Al

Figure 13-S.Reset Timing

Tx Tx Tx

-J ~~~

-

-I~
JOOC
1-

T6Max - TeMln

xxx
~ T6Max - T7Mln

~XX'x
,-...

T7Max
~ T14Mln

,xxx
T14Max - T14Mln

:XXX ,-
T14Max - T15Mln ,-

:XXX
:-,

T15Max - T34Mln

,///1
T34Max I r-t56Mln

ii\\\\\.
I

T56Max

Figure 13-6. Address Output Delays

4.898

'11111

290164-A2

inter 82370

Tx Tx
PHil PHI2 PHil PHI2 PHil PHI2

~
I'

D(O-15)(CPU READ)

i+----In9t.4ox

D(O-15)(Dt.4A WRITE)

D(O-15)(Dt.4A WRITE)

D(O-15)(Dt.4A WRITE)

T23t.4ox
290164-A3

Figure 13-7. Data Bus Output Delays

Tx Tx Tx

CLK2

PHil I PHI2 PHil I' PHI2 I PHil I PHI2

~~
f-'-oo nOt.4'n -WjR#. t.4jIO#.DjC# xxx --

nOt.4ox
I----- nlt.4'n -WjR#. t.4jIO#.DjC# "xX

nlt.4ox
I----- nOt.4'n

m -W jR#. t.4jIO#.DjC#

nOt.4ox
f-'-oo T32t.4'n -READYO# XXX

T32t.4ox
f-'-oo T39t.4'n

EOP# :XXX
T39t.4ox

~ T40t.4'n
EOP#

'i/ill
T40t.4ox

~ T5lt.4'n -REF# XXX - T5lt.4ox
290164-A4

Figure 13-8. Control Output Delays

4·899

infef 82370

eLKIN

TOUT1

------~~~------~----
TOUT2# ---------+-n-~

TOUT2# ________ -+~

roUT3# ________ -+~~~~~----------------------
r----....-...rT55t.tax

290164-A5

Figure 13·9. Timer Output Delays

14.0 REVISION HISTORY

This 82370 data sheet. version -002. contains updates and improvements to previous versions. A revision
summary is listed here for your convenience.

The sections significantly revised since version ·001 are:
- Section 12.0 Electrical Characteristics renumbered Section 13.0.

- Section 12.0 Package Thermal Specifications added.

- Section 13.0 Electrical Specifications updated TeASE. VOH. Icc. T33. T39. Figure 13.6.

- AppendixC. Programming the 82370 Interrupt Controllers. added.

- Appendix D. System Notes. added.

- Section 14.0 Revision History added.

4-900

inter 82370

APPENDIX A
PORTS LISTED BY ADDRESS

Port Address
Description (HEX)

00 Read/Write DMA Channel 0 Target Address, AO-A 15
01 Read/Write DMA Channel 0 Byte Count, BO-815
02 Read/Write DMA Channel 1 Target Address, AO-A 15
03 R.ead/Write DMA Channel 1 Byte Count, 80-B15
04 Read/Write DMA Channel 2 Target Address, AO-A 15
05 Read/Write DMA Channel 2 Byte Count, 80-B15
06 Read/Write DMA Channel 3 Target Address, AO-A 15
07 Read/Write DMA Channel 3 Byte Count, BO-B15
08 Read/Write DMA Channel 0-3 Status/Command I Register
09 Read/Write DMA Channel 0-3 Software Request Register
OA Write DMA Channel 0-3 Set-Reset Mask Register
OB Write DMA Channel 0-3 Mode Register I
OC Write Clear Byte-Pointer FF
00 Write DMA Master-Clear
OE Write DMA Channel 0-3 Clear Mask Register
OF Read/Write DMA Channel 0-3 Mask Register
10 Intel Reserved
11 Read/Write DMA Channel 0 Byte Count, 816-B23
12 Intel Reserved
13 Read/Write DMA Channel 1 Byte Count, 816-823
14 Intel Reserved
15 Read/Write DMA Channel 2 Byte Count, 816-823
16 Intel Reserved
17 Read/Write DMA Channel 3 Byte Count, 816-823
18 Write DMA Channel 0-3 Bus Size Register
19 Read/Write DMA Channel 0-3 Chaining Register
1A Write DMA Channel 0-3 Command Register II
1B Write DMA Channel 0-3 Mode Register II
1C Read/Write Refresh Control Register
1E Reset Software Request Interrupt
20 Write Bank B ICW1, OCW2 or OCW3

Read Bank B Poll, Interrupt Request or In-Service
Status Register

21 Write Bank B ICW2, ICW3, ICW4 or OCW1
Read Bank B Interrupt Mask Register

22 Read Bank B ICW2
28 Read/Write IR08 Vector Register
29 Read/Write IR09 Vector Register
2A Reserved

4-901

82.370

Port Address
Description

(HEX)

2B Read/Write IROn Vector Register
2C Read/Write IR012Vector Register
20 Read/Write IR013 Vector Register
2E Read/Write IR014 Vector Register
2F Read/Write IR015 Vector Register
30 Write Bank A ICW1, DCW2 or DCW3

Read Bank A Poll, Interrupt Requestor In-Service
Status Register

31 Write Bank A ICW2, ICW3, ICW4 or DCW1
Read Bank A Interrupt Mask Register

32 Read Bank A ICW2
38 Read/Write IROO Vector Register
39 Read/Write IR01 Vector Register
3A Read/Write IR01.5 Vector Register
3B Read/Write IR03 Vector Register
3C Read/Write IR04 Vector Register
3D Reserved
3E Reserved
3F Read/Write IR07 Vector Register
40 Read/Write Counter 0 Register
41 Read/Write Counter 1 Register,
42 Read/Write Counter 2 Register
43 Write Control Word Register I-Counter 0, 1, 2
44 Read/Write Counter 3 Register
45 Reserved
46 Reserved
47 Write Word Register II-Counter 3
61 Write Internal Control Port
64 Write CPU Reset Register (Data-1111 XXXOH)
72 Read/Write Wait State Register 0
73 Read/Write Wait State Register 1
74 Read/Write Wait State Register 2
75 Read/Write Refresh Wait State Register
76 Reserved
77 Reserved
70 Reserved
7E Reserved
7F Read/Write Relocation Register
80 Read/Write Internal Diagnostic Port 0
81 Read/Write DMA Channel 2 Target Address, A 16-A23
82 Read/Write DMA Channel 3 Target Address, A16-A23
83 Read/Write DMA Channel 1 Target Address, A16-A23
87 Read/Write DMA Channel 0 Target Address, A16-A23
88 Read/Write Internal Diagnostic Port 1
89 Read/Write DMA Channel 6 Target Address, A16-A23
8A Read/Write DMA Channel 7 Target Address, A 16-A23
8B Read/Write DMA Channel 5 Target Address, A 16-A23
8F Read/Write DMA Channel 4 Target Address, A16-A23

inter 82370

Port Address Description
(HEX)

.90 Read/Write DMA Channel 0 Requester Address, AO-A 15
91 Read/Write DMA Channel 0 Requester Address,A16-A23
92 Read/Write DMA Channel 1 Requester Address, AO-A 15
93 Read/Write DMA Channel 1 Requester Address, A16-A23
94 Read/Write DMA Channel 2 Requester Address, AO-A 15
95 Read/Write DMA Channel 2 Requester Address, A 16-A23
96 Read/Write DMA Channel 3 Requester Address, AO-A 15
97 Read/Write DMA Channel 3 Requester Address, A16-A23
98 Read/Write DMA Channel 4 Requester Address, AO-A15
99 Read/Write DMA Channel 4 Requester Address, A 16-A23
9A Read/Write DMA Channel 5 Requester Address, AO-A 15
9B Read/Write DMA Channel 5 Requester Address, A 16-A23
9C Read/Write DMA Channel 6 Requester Address, AO-A 15
90 Read/Write DMA Channel 6 Requester Address, A 16-A23
9E Read/Write DMA Channel 7 Requester Address, AO-A 15
9F Read/Write DMA Channel 7 Requester Address, A16-A23
AO Write Bank C ICW1, OCW2 or OCW3

Read Bank C Poll, Interrupt Request or In-Service
Status Register

A1 Write Bank C ICW2, ICW3, ICW4 or OCW1
Read Bank C Interrupt Mask Register

A2 Read Bank C ICW2
A8 Read/Write IRQ16 Vector Register
A9 Read/Write IRQ17 Vector Register
AA Read/Write IRQ18 Vector Register
AB Read/Write IRQ19 Vector Register
AC Read/Write IRQ20 Vector Register
AD Read/Write IRQ21 Vector Register
AE Read/Write IRQ22 Vector Register
AF Read/Write IRQ23 Vector Register
CO Read/Write DMA Channel 4 Target Address, AO-A15
C1 Read/Write DMA Channel 4 Byte Count, BO-B15
C2 Read/Write DMA Channel 5 Target Address, AO-A15
C3 Read/Write DMA Channel 5 Byte Count, BO-B15
C4 Read/Write DMA Channel 6 Target Address, AO-A15
C5 Read/Write DMA Channel 6 Byte Count, BO-B15
C6 Read/Write DMA Channel 7 Target Address, AO-A 15
C7 Read/Write DMA Channel 7 Byte Count, BO-B15
C8 Read DMA Channel 4-7 Status/Command I Register
C9 Read/Write DMA Channel 4-7 Software Request Register
CA Write DMA Channel 4-7 Set-Reset Mask Register
CB Write DMA Channel 4-7 Mode Register I
CC Reserved
CD Reserved
CE Write DMA Channel 4-7 Clear Mask Register
CF Read/Write DMA Channel 4-7 Mask Register
DO Intel Reserved
D1 Read/Write DMA Channel 4 Byte Count, B16-B23
D2 Intel Reserved
D3 Read/Write DMA Channel 5 Byte Count, B16-B23

4·903

82370

Port Address
Description (HEX)

04 Intel Reserved
05 Read/Write OMA Channel 6 Byte Count, B16-B23
06 Intel Reserved
07 Read/Write OMA Channel 7 Byte Count, B16-B23
08 Write OMA Channel 4-7 Bus Size Register
09 Read/Write OMA Channel 4-7 Chaining Register
OA Write OMA Channel 4-7 Command Register II
DB Write OMA Channel 4-7 Mode Register"

4-904

inter 82370
i

APPENDIX B
PORTS LISTED BY FUNCTION

Port Address
Description

(HEX)

DMA CONTROLLER

OD Write DMA Master·Clear
OC Write DMA Clear Byte·Pointer FF

08 Read/Write DMA Channel 0-3 Status/Command I Register
C8 Read/Write DMA Channel 4-7 Status/Command I Register
1A Write DMA Channel 0-3 Command Register II
DA Write DMA Channel 4-7 Command Register II

OB Write DMA Channel 0-3 Mode Register I
CB Write DMA Channel 4-7 Mode Register I ,

1B Write DMA Channel 0-3 Mode Register II
DB Write DMA Channel 4-7 Mode Register II

09 Read/Write DMA Channel 0-3 Software Request Register
C9 Read/Write DMA Channel 4-7 Software Request Register
1E Reset Software Request Interrupt

OE Write DMA Channel 0-3 Clear Mask Register
CE Write DMA Channel 4-7 Clear Mask Register
OF Read/Write DMA Channel 0-3 Mask Register
CF Read/Write DMA Channel 4-7 Mask Register
OA Write DMA Channel 0-3Set·Reset Mask Register
CA Write DMA Channel 4-7 Set·Reset Mask Register

18 Write DMA Channel 0-3 Bus Size Register
D8 Write DMA Channel 4-7 Bus Size Register

19 Read/Write DMA Channel 0-3 Chaining Register
D9 Read/Write DMA Channel 4-7 Chaining Register

00 Read/Write DMA Channel 0 Target Address, AO-A15
87 Read/Write DMA Channel 0 Target Address, A 16-A23
01 Read/Write DMA Channel 0 Byte Count, BO - B 15
11 Read/Write DMA Channel 0 Byte Count, B16-B23
90 Read/Write DMA Channel 0 Requester Address, AO-A 15
91 Read/Write DMA Channel 0 Requester Address. A16-A23

4-905

inter 82370

Port Address
(HEX)

Description

DMA CONTROLLER (Continued) .' ,

02 Read/Write OMA Channel 1 Target Address, AO-A 15
83 Read/Write OMA Channel 1 Target Address, A 16-A23
03 Read/Write OMA Channel 1 Byte Count,. BO-B15
13 Read/Write OMA Ct)annel1 Byte Count, B16-B23
92 Read/Write OMA Channel 1 Requester Address, AO-A 15
93 Read/Write OMA Channel 1 Requester Address, A 16-A23

04
81
05
15
94

'95

06
82
07
17
96
91

CO
8F
C1
01
98
99

C2
8B
C3
03
9A
9B

C4
89
C5
05
9C
90

C6
8A
C7
07
9E
9F

Read/Write OMA Channel 2 Target Address, AO-A15
Read/Write OMA Channel 2 Target Address, A 16-A23
Read/Write OMA Channel 2 Byte Count, BO-B15
Read/Write OMA Channel 2 Byte Count, 816-B23
Read/Write OMA ChanMI 2 Requester Address, AO-A 15
Read/Write OMA Channel 2 Requester Address, A16-A23

Read/Write OMA Channel 3 Target Address, AO-A 15
Read/Write OMA Channel 3 Target Address, A 16-A23
Read/Write OMA Channel 3 Byte Count, BO-B 15 .
Read/Write OMA Channel 3 Byte Count, B16-B23
Read/Write OMA Channel 3 Requester Address, AO-A 15
Read/Write OMA Channel 3 Requester Address, A 16-A23

Read/Write OMA Channel 4 Target Address, AO-A 15
Read/Write OMA Channel 4 Target Address, A 16-A23
Read/Write OMA Channel 4 Byte Count, BO-B15
Read/Write OMA Channel 4 Byte Count, B16-B23
Read/Write OMA Channel 4 Requester Address, AO-A 15
Read/Write OMA Channel 4 Requester Address, A 16-A23

Read/Write OMA Channel 5 Target Address, AO-A 15
Read/Write' OMA Channel 5 Target Address, A 16-A23
Read/Write OMA Channel 5 Byte Count, BO-B 15
Read/Write OMA Channel 5 Byte Count, B16-B23
Read/Write DMA Channel 5 Requester Address, AO-A 15
Read/Write OMA Channel 5 Requester Address, A16-A23

Read/Write OMA Channel 6 Target Address, AO-A 15
Read/Write OMA Channel 6 Target Address, A 16-A23
ReadlWrite OMA Channel 6 Byte Count, BO-B 15
Read/Write OMA Channel 6 Byte Count, B16-B23
Read/Write OMA Channel 6 Requester Address, AO-A15
Read/WriteOMA Channel 6 Requester Address,A16";A23

. Read/Write OMA Channel? Target Address, AO-A 15
Read/Write OMA Channel 7 Target Address, A 16-A23
Read/Write OMA Channel 7 Byte Count, BO-B15
Read/Write OMA Channel 7 Byte C,ount, B16-B23
Read/Write Or./lA Channel 7 Requester Address, AO-A 15
Read/Write OMA Channel 7 Requester Address, A16-A23

4-906

inter
Port Address

(HEX)

INTERRUPT CONTROLLER

20

21

22
28
29
2A
2B
2C
20
2E
2F

AO

A1

A2
A8
A9
AA
AB
AC
AD
AE
AF

30

31

32
38
39
3A
3B
3C
3D
3E
3F

82370

Description

Write Bank B ICW1, OCW2 or OCW3
Read Bank B Poll, Interrupt Request or In~Service
Status Register
Write Bank B ICW2, ICW3, ICW4 or OCW1
Read Bank B Interrupt Mask Register
Read Bank B ICW2
Read/Write IRQ8 Vector Register
Read/Write IRQ9 Vector Register
Reserved
Read/Write IRQ11 Vector Register
Read/Write IRQ12 Vector Register
Read/Write IRQ13 Vector Register
Read/Write IRQ14 Vector Register
Read/Write IRQ15 Vector Register

Write Bank C ICW1, OCW2 or OCW3
Read Bank C Poll, Interrupt Request or In-Service
Status Ftegister
Write Bank CICW2, ICW3, ICW40r OCW1
Read Bank C Interrupt Mask Register
Read. Bank C ICW2
Read/Write IRQ16 Vector Register
Read/Write IRQ17 Vector Register
Read/Write IRQ18 Vector Register
Read/Write IRQ19 Vector Register
Read/Write IRQ20 Vector Register
Read/Write IRQ21 Vector Register
Read/Write IRQ22 Vector Register
Read/Write IRQ23 Vector Register

Write Bank A ICW1, OCW2 or OCW3
Read Bank A Poll, Interrupt Request or Iri~Service
Status Register
Write Bank A ICW2, ICW3, ICW4 or OCW1
Read Bank A Interrupt Mask Register
Read Bank A ICW2
Read/Write IRQO Vector Register
Read/Write IRQ1 Vector Register
Read/Write IRQ1.5 Vector Register
Read/Write IRQ3 Vector Register
Read/Write IRQ4 Vector Register
Reserved
Reserved
Read/Write IRQ7 Vector Register

4-907

I
1

!
j'
,

intJ 82370

Port Address Description (HEX)

PROGRAMMABLE INTERVAL TIMER

40 R.ead/Write Counter 0 Register
41 Read/Write Counter 1 Register
42 Read/Write Counter 2 Register
43 Write Control Word Register I-Counter 0, 1, 2
44 Read/Write Counter 3 Register
47 Write Word Register II-Counter 3

CPU RESET

64 Write CPU Reset Register (Data-1111 XXXOH)

WAIT STATE GENERATOR

72 Read/Write Wait State Register 0
73 Read/Write Wait State Register 1
74 Read/Write Wait State Register 2
75 Read/Write Refresh Wait State Register

DRAM REFRESH CONTROLLER

1C Read/Write Refresh Control Register

INTERNAL CONTROL AND DIAGNOS'TIC PORTS

61 Write Internal Control Port
80 Read/Write Internal Diagnostic Port 0
88 .. Read/Write Internal Diagnostic Port 1

RELOCATION REGISTER

7F Read/Write Relocation Register

INTEL RESERVED PORTS

10 Reserved
12 Rese.rved
14 Reserved
16 Reserved
2A Reserved
3D Reserved
3E Reserved
45 Reserved
46 Reserved
76 Reserved
77 Reserved
70 Reserved
7E Reserved
CC Reserved
CD Reserved
DO Reserved
02 Reserved
04 Reserved
06 Reserved

4-908

inter 82370

APPENDIX C
PROGRAMMING THE 82370 INTERRUPT CONTROLLERS

This Appendix describes two methods of programming and initializing the Interrupt Controllers of the 82370. A
simple interrupt service routine is also shown which provides compatibility with the 82C59 Interrupt Controller.

The two methods of programming the 8237° Interrupt Controllers are needed to provide simple initialization
procedures in different software environments. For new applications, a simple initialization and programming
sequence can be used. For PC-DOS or other applications which expect 8259s, an interrupt handler for
initialization traps must be provided. Once the handler is in place, all three 82370 Interrupt Controller banks
can be programmed or initialized in the same manner as an 8259.

The ICW2 interrupt is generated by the 82370 when writing the ICW2 command to any of the interrupt
controller banks. This interrupt is supplied to provide compatibility to existing code that expects to be program­
ming 82C59s. The ICW2 value is stored in the ICW2 register of the associated bank, but is ignored by the
controller. It is the responsibility of the ICW2 interrupt handler to read the ICW2 register and use its value to
program the individual vector registers accordingly.

NEW APPLICATIONS

New applications do not generally require compatibility with previous code, or at least the code is usually easily
modifiable. If the application fits this description, then the ICW2 interrupt can be ignored. This is done by
initializing the interrupt controller as ne~essary, and before enabling CPU interrupts, removing the ICW2
interrupt request by reading the ICW2 register. Listing 1 shows the code for doing this for bank A. The same
procedure can be used for the other banks.

4-909

;i
',I
I"

i

!

inter 82370

Listing 1.
Initialization of an 82370 Interrupt Controller Bank

Without ICW2 Interrupts .

cli ;disable all interrupts

;initial~ze controller logic
mov al,lCWl ;begin sequence
out 30h,al
moval,ICW2 ;send dummy,ICW2
out 3lh,al
mov. al,ICW3 ;send ICW3 if necessary
out 3lh,al
mov al,ICW4 ;send ICII14
out 3lh,al

mov al,BANK_A_MASK
out, 3lh,al

;program vector registers

mov al,ICW2
out 38h,al
mov al,ICW2+l
out 39h,al
mov al,ICW2_VECTOR
out 3Ah,al
mov al,IOW2+3
out 3Bh,al
mov al,IOW2+4
out 3Ch,al
mov al,ICW2+7
out 3Fh,al

;write to mask register (OCII11)

;I~QO

;IRQl

;IRQ1.5 (probably never used'in
; this,system)

;IRQ3

;IRQ4

;IRQ7

;remove ICW2 interrupt request

in al,3lh

in al,32h

;return to calling program

;read mask register to work around
; A-step errata

;read ICW2 register to clear
interrupt request

sti ;re-enable interrupts
ret

4-910

82370

OLD APPLICATIONS

In applications where 8259 compatibility is required, the ICW2 interrupt handler must be invoked whenever an
interrupt controller is initialized (ICW1-ICW2-ICWn sequence). The handler's purpose is to read the ICW2
value from the ICW2 read register and write the appropriate sequence of vectors to the vector registers. Listing
2 shows the typical initialization sequence (this is not changed from the 8259), and the required initialization for
operation of the ICW2 interrupt handler. Listing 2 shows the ICW2 interrupt handler.

Listing 2.
Initialization of Bank A for ICW2 Interrupts

eli ;disable all interrupts

;initialize controller logic

mov al,ICWl ;begin sequence
out 30h,al
mov al,ICW2 ;send dummy ICW2
out 31h,al

.******* ,
mov
out

al,ICW3
31h,al

;send ICW3 if necessary
note that using ICW3 for
cascading bank B is not required
and will affect the way EOIs are
required for nesting. It is
advised that ICW3 not be used.

;*******

mov al,ICW4
out ;31h,al

;send ICW4

mov al,Bank_A_Mask ;write to mask register (OCWl=7Bh)
out 31h,al ;don't mask off IRQ1.5 or Default

interrupt (IRQ7)

;program necessary vector registers

mov al,ICW2_VECTOR ;IRQl.5
out 3Ah,al

mov al,IRQ7_DEFAULT_VECTOR
out3Fh,al

;remove ICW2interrupt request for bank A

1n al,31h

in al.32h

;read mask register to work around
; A-step errata

;read ICW2 register to clear
; interrupt request

;at this point install interrupt call vector for ICW2, if
;not already done somewhere else in the code

stl ;re-enable interrupts

4-911

inter

push ax
push ex
push dx

service bank B

in al,2lh

in al,22h
mov ex,8
mov dx,28h

out
inc
inc
loop

dx,al
al
dx
BANK_B_LOOP

;service bank C

in al,OAlh

in al,OA2h
mov cx,8
mov dX,OA8h

out dX,al
inc al
inc dx
loop BANK_C_LOOP

pop dx
pop cx
pop ax
iret

82370

Listing 3.
ICW2 Interrupt Service Routine

proc near

;save registers

tread mask register for A-step errata

tread ICW2
;count vectors
;point to vectors

;wri te vector
;next vector
;next vector I/O address

tread mask register for A-step errata

tread ICW2
;count vectors
.;point to vectors

;write vector
;next vector
;next vector i/o address

;restore registers

;return

4-912

intJ 82370 ~@W~OO©~ OOOw:@rrulMl~"iiO@OO

Table 1. Interrupt Controller Registers

Bank A: ~ II

30H write ICW1, OCW2, OCW3
read Poll, IRR, ISR

31H write ICW2, ICW3, ICW4, OCWl
read IMR

32H read ICW2 read register
3SH read/write IRQO vector
39H read/write IRQl vector
3AH read/write IRQ1.5 vector
3BH read/write IRQ3 vector
3CH read/write IRQ4 vector
3DH RESERVED
3EH RESERVED
3FH read/write IRQ7 vector

Bank B:
20H write ICW1, OCW2, OCW3

read Poll, IRR, ISR
21H write ICW2, ICW3, ICW4, OCWl

read IMR
22H read ICW2 read register
2SH read/write IRQS vector
29H read/write IRQ9 vector
2AH RESERVED
2BH read/write IRQll vector
2CH read/write IRQ12 vector
2DH read/write IRQ13 vector
2EH read/write IRQ14 vector
2FH read/write IRQ15 vector

Bank C:

AOH write ICW1, OCW2, OCW3
read Poll, IRR, ISR

A1H write ICW2, ICW3, ICW4, OCWl
read IMR

A2H read ICW2 read register

ASH read/write IRQ1S vector
A9H read/write IRQ17 vector
AAH read/write IRQ1S vector
ABH read/write IRQ19 vector
ACH read/write IRQ20 vector
ADH read/write IRQ2l vector
AEH read/write IRQ22 vector
AFH read/write IRQ,23 vector

4-913

1. BHE# IN MASTER MODE.

82370

APPENDIX D
SYSTEM NOTES

In Master Mode, BHE# wi" be activated during DMA to/from 8.-bit devices residing at even locations when
the remaining byte count is greater than 1.

For example, if an 8-bit device is located at 00000000 Hex and the number of bytes to be transferred is > 1,
the first address/BHE # combination wi" be 00000000/0. In some systems this will cause the bus controller
to perform two 8-bit accesses, the first to 0000000 Hex and the second to 00000001 Hex. However, the
82370's DMA will only read/write one byte. This mayor may not cause a problem in the system depending
on what is located at 00000001 Hex.

Solution:

There are two solutions if BH # active is unacceptable. Of the two, number 2 is the cleanest and most
recommended.

1. If there is an 8-bit device that uses DMA located at an even address, do not use that address + 1. The
limitation of this solution is that the user must have complete control over what addresses wi" be used in
the end system.

2. Do not allow the Bus Controller to split cycles for the DMA.

2. RESET OUTPUT OF 82370:

The 80376 requires its RESET line to be active for 80 clock cycles. The 82370 generates holds the RESET
line active for 62 clock cycles.

The following design example shows how the user can extend the active high of the RESET line to 80 clock
cycles.

Extending the RESET Output of the 82370

This section describes a hardware solution for using the 82370's CPURST output and the software reset
command to cause the 80376 to enter into a self-test.

The 80376 requires two simultaneous events in order to initiate the self-test sequence. The RESET input of
the processor must be held active for. at least 80 CLK2 periods and the BUSY # input must be low 8 CLK2
periods prior to and 8 CLK2 periods subsequent to RESET going inactive.

A system which does not have an 80387SX will simply have the BUSY # input to the 80376 tied low. A system
which contains the 80387SX will require extra logic between the BUSY # output of the 80387SX and the
BUSY # input of the 80376 in order to force self-test on reset. The extra ,.BUSY# logic required will not be
described here.

The 82370 CPURST output is intended to be retimed with faster TTL components in order to meet the RESET
input setup time requirements of the 80376 and 80387SX. This requires a 74F379 (quad flip-flop with enable)
or equivalent. The flip-flops required are described in TECHBIT (Ed Grochowski, April 10, 1987).

The 82370 does not meet the RESET pulse duration requirements for causing self-test of the 80376 when a
software reset command is issued to the 82370. The 82370 provides a RESET pulse width of. 62 CLK2
periods, the 80376 requires 80 CLK2 periods as mentioned earlier.

In order to cause the 80376 to do a self-test after a software reset, the CPURST output pulse of the 82370
must be lengthened. Figure 1 shows a circuit which will do this.

