Order Number: 230786-001 |/

SOFTWARE HANDBOOK

1984

Intel Corporation makes no warranty for the use of its products and assumes no
responsibility for any errors which may appear in thisdocument nor does it make a
commitment to update the information contained herein.

Intel software products are copyrighted by and shall remain the property of Intel
Corporation. Use, duplication or disclosure is subject to restrictions stated in
Intel’s software license, or as defined in ASPR 7-104.9(a) (9). Intel Corporation
assumes no responsibility for the use of any circuitry other than circuitry
embodied in an Intel product. No other circuit patent licenses are implied.

No part of this document may be copied or reproduced in any form or by any
means without the prior written consent of Intel Corporation.

The following are trademarks of Intel Corporation and may only be used to identify
Intel products:

BITBUS, COMMputer, CREDIT, Data Pipeline, GENIUS, i,1, ICE, iCS, iDBP,
iDIS, 2ICE, iLBX, im, iIMMX, Insite, Intel, intel, intglBOS, Intelevision,
intgligent Identifier, intgligent Programming, Intellec, Intellink, iOSP, iPDS,
iSBC, iSBX, iSDM, iSXM, Library Manager, MCS, Megachassis, MICRO-
MAINFRAME, MULTIBUS, MULTICHANNEL, MULTIMODULE, Plug-A-
Bubble, PROMPT, Promware, QUEST, QUEX, Ripplemode, RMX/80, RUPI,
Seamless, SOLO, SYSTEM 2000, and UPI, and the combination of ICE, iCS,
iRMX, iSBC, MCS, or UPI and a numerical suffix.

The following are trademarks of the companies indicated and may only be used to
identify products of the owners.

CP/M is a trademark of Digital Research, Inc.

DEC, DEC-10, DEC-20, PDP-11, DECnet, DECwriter, RSTS, and VAX are
trademarks of Digital Equipment Corporation.

MDS is an ordering code only and is not used as a product name or trademark.
MDS® is a registered trademark of Mohawk Data Sciences Corporation.
Microsoft is a trademark of Microsoft, Inc.

© Intel Corporation, 1983

ntel

Table of Contents

CHAPTER 1
" OVERVIEW
a8 To 18 o3 (.
CHAPTER 2 .
OPERATING SYSTEMS
INtrOdUCHION Lot i i i i e i ettt i e
8080/8085 Microprocessor Family
DATA SHEET
Digital Research Inc. CP/M 2.2 Operating Systemc.coviiiirinnineennnnnn,
8086/8088 Microprocessor Family
DATA SHEETS
iIRMX 86 Operating Systemuiiiiiiiiiiiiiiiiii i iiieiteiieenenneeanns
iRMX 88 Real-Time Multitasking Executive iiiiiiiiiiiiiiiienniennn.
Preconfigured iRMX 86 Operating Systemoiiiiiiiiiiiiiiiiiiiiierinnne
iOSP 86 iAPX 86/30 and iAPX 88/30 Support Packagecevvveevvnnenannn.
iMMX 800 MULTIBUS Message Exchange Softwarecovveiniinnnennnn.
FACT SHEET ’
XENIX 286 Operating SYStemMSouvuentteeieeieeenereraraearananaearannnns

APPLICATION NOTE
AP-130 Using Operating Systems Processor’s to Simplify Microcomputer Designs
ARTICLE REPRINTS
AR-236 Let Operating Systems Aid in Component Designscooviivnuenn.
AR-286 Software That Resides in SiliCOniviiiiiiiiiiiiiniiiniienannenes.
AR-287 Putting Real-Time Operating SystemstoWorkcooiiiiniee.
AR-288 Intel's Matchmaking Strategy: Marry iRMX Operating
System With Hardwarecooiiiiiiiiiiiiiiiiiiiiiinenasnsseseeennans
AR-289 iRMX 86 Has Functionality, Configurabilityciiiiiiien.

CHAPTER 3

TRANSLATORS AND UTILITIES FOR PROGRAM DEVELOPMENT

) [0 (e T ¥ o3« o o 1 P
MCS®-80/85 Microprocessor Family
DATA SHEETS .
PL/M 80 High Level Programming Languageccooiiiiiinnnienenerennnnnens
FORTRAN 80 8080/8085 ANS FORTRAN 77 Intellec Resident Compiler
Microsoft, Inc. MACRO-80 Utility Software Packageccoivviiiiinenn
Microsoft, Inc. BASIC-80 Interpreter Software Package00oenn
Microsoft, Inc. Pascal-80 Software Packagecociiiiiiineeniiiiiinnaenns
iAPX 86, 88 Software Development Packages for Series I//PDS
iAPX 86/88/186/188/286 Microprocessor Family
DATA SHEETS
PL/M 86/88/186/188 Software Packagecooviveniininnnn. N
Pascal 86/88 Software PaCKageieeeviiiieiiaenieiienneeannncennneeees
FORTRAN 86/88 Software Packagec..iiiiiiiiriernnniinninneneaseens
C-86 C Compiler forthe 8086oviiiimiiteenieeninennneeeennnenennnenns
8087 Software SUpport Packageciviiviiiiiiiiiiiniennneriiesaeionons
8087 SUPPOIt LiDrary ... tir et itiiiit ittt aiariaaaeenaeranentenaneans
8089 I0P Software SUppPOrt Packageceevviieiiiieniiieenanernnnenennnenns
iAPX 286 Software Development Packageoiiiiiiiiiiiiiiiiiniiiiinnens
JAPX 286 Evaluation Packageoovvniiiiieirninniiinaianeaesoscsenntannnases
PL/M 286 Software Packagecceeeiiitinrnineeeenenannoneesooacennonnnas
VAX/VMX Resident iAPX 86/88/186 Software Development Packages
iSDM 86 System Debug Monitorc.coviiiieiiiiiniiieiiiiiiiiniienionns
iSDM 286 iAPX 286 System Debug Monitorc..ociiiiiiiiiiiiiiiiiiiiiiin,
FACT SHEETS
IRMX LBNQUAGES .+ . vtittitit it iitenteaneranaaieoneateaneseesuosneoeeanecnnnns
IRMX Operating SysStemsttt iiiiieiiiiianitieeiteeeneeiateeeaneeannanns
XENIX LANQUAGES .« .vtttntintiittitinneaneaiaeataneeneenesnceeseasenennnes N

g

Single Chip Microcontroller Software
DATA SHEETS

2920 Software Support Packagecoveeiiiiiiiiiiirtiiiinieiiiiesciiaeinns 3-94
MCS-48 Diskette-Based Software SupportPackagec.ovvviiininnnneeneennns 3-105
8051 Software Development Package
PL/M 51 SOftWAreovvieiiiiiiiiiiiiiiiireinneeesnnnneens
MCS-96 Software Support Package
CHAPTER 4
PRODUCTIVITY TOOLS AND COMMUNICATION SOFTWARE
[} (e o 11 T3 { e o TR 41
Program Development and Management Tools
‘DATA SHEETS
PSCOPE High-Level Program DebUgQgerccviiuutteiinneerinnrnanesnnneens 4-2
Program Management TOOISovuiiiniiiiiiiiiiiiiiiiiiiiiiiiiiineeannnens 4-7
ISIS-I1 Software TOOIDOXciiiiieii et et te e ttataaaaaaaaanaanns 4-10
8086 Software TOOIDOXvuvnrneneneneeennerernennnnnns e 4-12
AEDIT TexXt EditOriiiiiiii ittt iiiiiiiiteseeeennesoesesocaannnnnns .. 4414
CREDIT CRT-Based Text Editorcoiuiiiiineiiiiiiiiiiiiiiieneennnnennnens 4-16
Communication Software
DATA SHEETS
Mainframe Link for Distributed Developmentcoiiiiiiiiiiiiiiiiieennn, 4-20
Intel Asynchronous Communications Linkcoviiiiiiiiiiiiiiienennnnnnnss . 4-23
INA 960 Network SOftWarecouuiiiiiiiiinenrenneietnnnereneenannennaens 4-26
NDS-IElectronic Mailoiiiiiiiiiiiiiieiiieenneeeenaeeanneeanneannaans 4-38
CHAPTER 5
SYSTEM AND APPLICATIONS SOFTWARE
FACT SHEETS
XENIX Productivity Software TOOIScoiiiiiiiiiiiiiiiiiiiiiiiiiiiiinannnn, 51
iTPS Transaction Processing Systems Terminal Application
Processing System (iTAPS)coiiiiiiiiiiiii ittt teetiannaeennsnnnns 5-9
iTPS Transaction Processing Systems Communicationscvciivevinnnn. 5-12
System 2000 Database Management System Sperry (Univac) 1100 Series 5-16
CHAPTER 6
COMPONENT SOFTWARE
DATA SHEETS
80130/80130-2 iAPX 86/30, 88/30, 186/30, 188/30 iRMX 86
Operating System ProCeSSOrSvvveueerennereennneeeennereancoaesnns 6-1
80150/80150-2 iAPX 86/50, iAPX 88/50, 186/50, 188/50 CP/M 86
Operating System Processorscoiiiiiiiiiiiiiiiiienieieeiaennn, 6-23
CHAPTER 7
. USER LIBRARY
' LT [1Te3 (o T 74
User Library
Insite User's Program Libraryc.ociiiuiiiiiiiiiiiiiiiiiiiiiineeennnenneens 7-2
Insite Submittal Requirementsccoieiiiiiiiiiiiiiiiiiiiiiiiiii e, 7-3
Insite Index of Programciiiiiiiiiiiiiiiiiii it i PR 7-5
APPENDIX A
Software Standards i e e A-1
APPENDIX B
SoftWare SUPPOIt i i i i ittt i ity B-1

Software Handbook | 1

Overview

%

intel

SOFTWARE HANDBOOK OVERVIEW

Welcome to the Intel Software Handbook. This handbook is a complete guide to the software products and
services offered by Intel.

Intel's software products follow the open systems strategy that allows Intel products to be purchased at the
customers’ desired level of integration. Hence these products are available for component, board, or systems
applications. This open systems philosophy is backed by software standards that insure that the software can
operate at numerous levels of integration. These software standards are described in the appendix.

Software for Intel's products is available both from intel and from Independent Software Vendors (ISVs). For a
complete listing of software available from ISVs, see the Intel Yellow Pages which is published annually by Intel.
This handbook describes software products that are available through Intel, consisting of Intel-developed and
ISV-developed products. Products that are offered by Intel have all been evaluated and tested to meet Intel’s
quality standard. They are backed by an extensive support organization described in the appendix.

Operating Systems

intel

OPERATING SYSTEMS

INTRODUCTION

The ability to convert advanced microprocessor technology into solutions for modern day problems begins with
effective and efficient designs for new hardware products and architecture. However, a most critical elementin
the success of any microcomputer solution is the availability of a high quality, reliable operating system.
Without this software counterpart, the technological advances cannot be fully implemented, nor their benefits
fully realized.

The classic role of the microcomputer operating system can be outlined by viewing its major functions and
purposes. The functions of the microcomputer operating system are threefold: 1) to manage system resources
and the allocation of these resources to users; 2) to provide automatic functions such as initialization and
start-up procedures; and 3) to provide an efficient, straightforward and consistent method for user programs to
interface with the hardware subsystems, including a simple and friendly human interface. Typically, the
operating systems have one of two main purposes. First, they can be used to develop a new software system
that runs on another machine. These systems are usually large and fairly sophisticated. ISIS and *XENIX are
examples of such developmental operating systems. The second purpose for microcomputer operating
systems is directed toward the execution of software programs for targeted application. The largest number of
operating systems are of this type, including the RMX systems. The most critical requirement is for these
systems to be effective and efficient since they are usually small, fast systems dedicated to a specific real-time
application.

This rather neat and simple categorization of microcomputer operating systems, which has been useful in the
past, is quickly becoming blurred. The rapid developments in microcomputer technology have increased the
power and decreased the cost of microcomputers, allowing them to become applicable to the solution of a
broader variety and more sophisticated set of problems. Microcomputer systems must increasingly provide
such capabilities as multiprogramming, multitasking, multiprocessing, networking, as well as scheduling and
priority determination. As systems become more complex, they must still remain responsive to real-time
applications. Operating systems must be able to capitalize on the trends toward placing more and more
software into silicon. This trend is blurring the distinction between the hardware and software subsystems.
Microcomputer systems are also evolving to encompass both the developmental and target application
purposes into one system.

These dramatic changes in technology place additional demands on operating systems. We see operating
systems undergoing changes to consider the need for: 1) modularity and ease of configurability;
2) evolutionary, not revolutionary, path of growth; and 3) standardization in languages, networks and the
operating system itself. The first need is required to allow the system to be a powerful development tool yet
configurable to more specialized applications. The last two items are needed to provide protection of a firm’s
software investment, including the option to move toward silicon software.

The operating systems and executives in this section are state-of-the-art microcomputer systems that have
taken to task the challenges posed by advancing microprocessor technology. These operating systems offer
the widest range of solutions with the highest quality and most future-oriented software available today.
Consequently, our customers can select the appropriately optimized option to achieve their price/performance
goals and give them time-to-market advantage over their competitors.

*XENIX is a trademark of Microsoft Corp.

241

DIGITAL RESEARCH INC.
CP/M* 2.2 OPERATING SYSTEM

= High-performance, single-console
operating system

= Simple, reliable file system matched to
microcomputer resources

= Table-driven architecture allows field

= More than 1,000 commercially available
.compatible software products

= General-purpose subroutines and
table-driven data-access algorithms
provide a truly universal data

reconfiguration to match a wide variety management system
of disk capacities and needs = Upward compatibility from all previous
= Extensive documentation covers all versions

facts of CP/M applications

CP/M 2.2 is a monitor control program for microcomputer system and application uses on intel 8080/8085-based
microcomputer (see the CP/M-86 * Operating System data sheet for information on CP/M for intel 8086/8088-
based systems). CP/M provides a general environment for program execution, construction, storage, and
editing, along with the program assembly and check-out facilities.

The CP/M monitor provides rapid access to programs through a comprehensive file management package. The
file subsystem supports a named file structure, allowing dynamic allocation of file space as well as sequential
and random file access. Using this system, a large number of distinct programs can be stored in both source-
and machine-executable form.

CP/M also supports a powerful context editor, Intel-compatible assembler, and debugger subsystems. Nearly all
personal software programs can be bought configured to run under CP/M, several of which are available from

Intel.

FEATURES

CP/M is logically divided into four distinct modules:

- BIOS—Basic /0 System

—Provides primitive operations for access to disk
drives and interface to standard peripherals
(teletype, CRT, paper tape reader/punch, bubble
memory, and user-defined peripherals)

—Allows user modification for tailoring to a particu-
lar hardware environment

BDOS—Basic Disk Operating System

—Provides disk management for one to sixteen disk
drives containing independent file directories

—Implements disk allocation strategies for fully
dynamic file construction and minimization of
head movement across the disk

—Uses less than 4K of memory allowing plenty of
memory space for applications programs

—Uses less than 4K of memory

—Makes programs transportable from system to
system

—Entry points include the following primitive
operations which can be programmatically
accessed:

SEARCH Look for a particular disk file by
name
OPEN Open a file for further operations
CLOSE Close a file after processing
RENAME Change the name of a particular file
READ Read a record from a particular file
WRITE Write a record to a particular file
SELECT Select a particular disk drive fo

further operations :

©INTEL CORPORATION, 1983 2-2

MAY 1963
ORDER NUMBER:210268-003

intel

DIGITAL RESEARCH, INC.
CP/M 2.2 -

CCP—Console Command Processor

—Provides primary user interface by reading and
interpreting commands entered through the
console

—Loads and transfers control to transient programs,
such as assemblers, editors, and debuggers

—Processes built-in standard commands including:

ERA Erase specified files

DIR List file names in the directory
REN Rename the specified file

SAVE Save memory contents in a file
TYPE Display the contents of a file on

the console

TPA—Transient Program Area

—Holds programs which are loaded from the disk
under command of the CCP

—Programs created under CP/M can be checked out
by loading and executing these programs in
the TPA

—User programs, loaded into the TPA, may use the
CCP area for the program'’s data area

—Transient commands are specified in the same
manner as built-in commands

—Additional commands can be easily defined by the
user

—Defined transient commands include:

PIP Peripheral Interchange Program
—implements the basic media transfer
operations necessary to load, print,
punch, copy, and combine disk files;
PIP also performs various
reformatting and concatenation
functions. Formatting options include
parity-bit removal, case conversion,
Intel hex file validation, subfile
extraction, tab expansion, line number
generation, and pagination

ED Text Editor—allows creation and
modification of ASCII files using
extensive context editing commands:
string substitution, string search,
insert, delete and block move; ED
allows text to be located by context,
line number, or relative position with a
macro command for making extensive
text changes with a single command
line

ASM Fast 8080 Assembler—uses standard
Intel mnemonics and pseudo
operations with free-format input, and
conditional assembly features

DDT Dynamic Debugging Tool—contains
an integral assembler/disassembler
module that lets the user patch.and
display memory in either assembler
mnemonic or hexadecimal form and
trace program execution with full -
register and status display;
instructions can be executed between
breakpoints in real-time, or run fully
monitored, one instruction at a time

Allows a group of CP/M commands to
be batched together and submitted to
the operating system by a single
command

STAT Lists the number of bytes of storage
remaining on the currently iogged
disks, provides statistical information
about particular files, and displays or
alters device assignments

Converts Intel hex format to absolute
binary, ready for direct load and
execution in the CP/M environment
SYSGEN Creates new CP/M system disks for
back-up purposes
MOVCPM Provides regeneration of CP/M
systems for various memory
configurations and works in
conjunction with SYSGEN to provide
additional copies of CP/M

SUBMIT

LOAD

BENEFITS

—Easy implementation on any computer configura-
tion which uses an Intel 8080/8085 Central Pro-
cessing Unit (see the CP/M-86 data sheet for CP/M
applications on the iAPX86 CPU)

—iPDS version supports bubble memory option as
an additional diskette drive. Also allows diskette
duplication with a single drive

—Extensive selection of CP/M-compatible programs
allows production and support of a comprehen-
sive software package at low cost

—Field programmability for special-purpose operat-
ing system requirements

—Upward compatibility from previous versions of
CP/M release 1

AFN-02111C

intel

'DIGITAL RESEARCH, INC.
CP/M 2.2

—Provides field spécification of one to sixteen logi-

cal dyrives, each containing up to eight megabytes

—Files may contain up to 65,536 records of 128 bytes
each but may not exceed the size of any single disk

—Each disk is designed for 64 distinct files—more
directory entries may be allocated if necessary

—Individual users are physically separated by user
numbers, with facilities for file copy operations
from one user area to another

—Relative-record random-access functions provide
direct access to any of the 65,536 records of an
eight-megabyte file

SPECIFICATIONS

Hardware Required

—Model 800 with 720 kit

—DS 235 kit or MDS 225 with 720 kit (integral drive
supported except as system boot device)

—iPDS Personal Development System
Optional:
RAM up to 64K
—Additional floppy disk drives
—Single density via 201 controller

—Bubble memory and optional Shugart 460 54"
disk drive for iPDS

Documentation Package

Title

CP/M 2.2 documentation consisting
of 7 manuals:
An Introduction to CP/M Features
and Facilities
CP/M 2.2 User’s Guide
CP/M Assembler (ASM) User's
Guide
CP/M Dynamic Debugging Tool
(DDT) User's Guide
ED: A Context Editor for the CP/M
Disk System User’s Manual
CP/M 2 Interface Guide
CP/M 2 Alteration Guide

Shipping Media

(Specify by Alpha Character when ordering.)
A—single density (IBM 3740/1 compatible)
B—double density

F—double-sided, double density 5%” floppy (iPDS
format)

Order Code Product Description

CP/M (Control Program for

See Price List Microcomputers) is a disk-based
operating system for the Intel
8080/8085-based systems. CP/M
provides a general environment for
program development, test, execution
and storage. CP/M storage is available
via a comprehensive, named-file
structure supporting both sequential
and random access. CP/M support
tools include a Text Editor, a
debugger, and an 8080/8085
assembler.

SUPPORT:

Intel offers several levels of support for this product, depending on the system configuration in which it is used.
Please consult the price list for a detailed description of the support options available.

An Intel Software License required.
*CP/M is a registered trademark of Digital Research, Inc.

*CP/M-86, MP/M, CP/NET and MP/NET are trademarks of Digital Research, inc.

AFN-02111C

intel

iRMX™ 86
OPERATING SYSTEM

s Real-time processor management for
time-critical iAPX 86 and iAPX 88
applications

" = On-target system development with
Universal Development Interface (UDI)

a Configurable system size and function
for diverse application requirements

= All iRMX™ 86 code can be (P)ROM’ed
to support totally solid state designs

= Compatible operating system services

s Multi-terminal support with multi-user
human interface

= Broad range of device drivers included
for industry standard MULTIBUS®
peripheral controllers

= Expandable to multi-processor systems
with iMMX™ 800 Message Exchange
Software

= Extendable to iAPX 286 systems with
iRMX™ 286R option

= Powerful utilities for interactive

for iAPX 86/30 and 88/30 Operating i
configuration and real-time debugging

System Processors (iOSP™ 86)

The iRMX™ 86 Operating System is an easy-to-use, real-time, multi-tasking and multi-programmming software
system designed to manage and extend the resources of iSBC® 86 and iSBC 88 Single Board Computers, as well
as other iAPX 86- and iAPX 88-based microcomputers. iRMX 86 functions are available in silicon with the iAPX 86/30
and 88/30 Operating System Processors, in a user configurable software package, and fully integrated into the
SYSTEM 86/300 Family of Microcomputer Systems. The Operating System provides a number of standard interfaces
that allow iRMX 86 applications to take advantage of industry standard device controllers, hardware components,
and a multitude of software packages developed by Independent Software Vendors (ISVs). Many high-performance
features extend the utility of iRMX 86 Systems into applications such as data collection, transaction processing, and
process control where immediate access to advances in VLSI technology is paramount. These systems may deliver
real-time performance and explicit control over resources; yet also support applications with multiple users needing
to simultaneously access terminals. The configurable layers of the System provide services ranging from interrupt
management and standard device drivers for many sophisticated controllers, to data-file maintenance commands
provided by a comprehensive multi-user human interface. By providing access to the standard Universal Develop-
ment Interface (UDI) for each user terminal, Original Equipment Manufacturers (OEMs) can pass program development
and target application customization capabilities to their users.

APPLICATTON
ﬂmc 10 SYSTE 04p
B 649

NUCLEUS

USER APPLICATIONS

iRMX™ 86 VLSI Operating System

The fokowing are trademarks of Intel Corporation and may be used only to describe Intel products Intel, ICE, IMMX, IOSP, IRMX, 1ISBC, iSBX, 1ISXM, MULTIBUS, MULTICHANNEL and MULTIMODULE
intel C no for the use of any circuitry other than circuitry embodied in an Intel product No other circuit patent licenses are implied

INTEL CORPORATION, 1983

January, 1983
Order Number - 210885-001

2-5

iRMX™ 86

The iRMX 86 Operating System is a complete set of
system software modules that'provide the resource
management functions needed by computer systems.
These management functions allow Original Equipment
Manufacturers (OEMs) to best use resources available
in microcomputer systems while getting their products
to market quickly, saving time and money. Engineers
are relieved of writing complex system software and can
concentrate instead on their application software.

This data sheet describes the major features of the
iRMX 86 Operating System. The benefits provided to
engineers who write application software and to users
who want to take advantage of improving microcomputer
price and performance are explained. The first section
outlines the system resource management functions of
the Operating System and describes several system
calls. The second section gives a detailed overview of
iRMX 86 features aimed at serving both the iRMX 86
system designer and programmer, as well as the end
users of the product into which the Operating System
is incorporated.

FUNCTIONAL DESCRIPTION

To take best advantage of iAPX 86 and 88 micropro-
cessors in applications where the computer is required
to perform many functions simulitaneously, the iRMX 86
Operating System provides a multiprogramming envi-
ronment in which many independent, multi-tasking ap-
plication programs may run. The flexibility of independent
environments allows application programmers to sep-
arately manage each application’s resources during both
the development and test phases.

The resource management functions of the iRMX 86
System are supported by a number of configurable soft-
ware layers. While many of the functions supplied by the
innermost layer, the Nucleus, are required by all sys-
tems, all other functions are optional. The I/0 systems,
for example, need not be included in systems having no
secondary storage requirement. Each layer provides
functions that encourage application programmers to
use modular design techniques which aid in quick de-
velopment of easily maintainable programs.

The components of the iRMX 86 Operating System pro-
vide both implicit and explicit management of system
resources. These resources include processor sched-
uling, up to one megabyte of system memory, up to 57
independent interrupt sources, all input and output de-
vices, as well as directory and data files contained on
mass storage devices and accessed by a number of in-
dependent users. Management of each of these system
resources and how the resources can be shared between
multiple processors and users is discussed in the follow-
ing sections.

2-6

Process Management

To implement multi-tasking application systems, pro-
grammers require a method of managing the different
processes of their application, and for allowing the pro-
cesses to communicate with each other. The Nucleus
layer of the iRMX 86 System provides a number of facilities
to efficiently manage these processes, and to effectively
communicate between them. These facilities are provided
by system calls that manipulate data structures called
tasks, jobs, semaphores, regions, and mailboxes. The
iRMX 86 System refers to these structures as “‘objects”.

Tasks are the basic element of all applications built on
the iRMX 86 Operating System. Each task is an entity
capable of executing CPU instructions and issuing sys-
tem calls in order to perform a function. Tasks are char-
acterized by their register values (including those of an
optional 8087 Numeric Processor Extension), a priority
between 0 and 255, and the resources associated with
them.

Each iRMX 86 task in the system is scheduled for oper-
ation by the iRMX 86 nucleus. Figure 1 shows the five
states in which each task may be placed, and some ex-
amples of how a task may move from one state to an-
other. The iRMX 86 nucleus ensures that each task is
placed in the correct state, defined by the events in its
external environment and by the task issuing system
calls. Each task has a priority to indicate its relative im-
portance and need to respond to its environment. The
nucleus guarantees that the highest priority ready-to-run
task is the task that runs.

Jobs are used to define the operating environment of
a group of tasks. Jobs effectively limit the scope of an
application by collecting all of its tasks and other objects
into one group. Because the environment for execution
of an application is defined by an iRMX 86 job, separate
applications can be efficiently developed by separate
development teams.

The iRMX 86 Operating System provides two primary
techniques for real-time event synchronization in multi-
task applications: regions and semaphores.

Regions are used to restrict access to critical sections
of code and data. Once the iRMX 86 Operating System
gives a task access to resources guarded by a region,
no other tasks may make use of the resources, and the
task is given protection against deletion and suspension.
Regions are typically used to protect data structures from
being simultaneously updated by multiple tasks.

Semaphores are used to provide mutual exclusion be-
tween tasks. They contain abstract “‘units” that are sent
between the tasks, and can be used to implement the
cooperative sharing of resources.

Order Number 210885-001

iRMX™ 86

(NON EXISTENT)
()

READY

(5) 9)

@ A Y]

@) (6)

ASLEEP

RUNNING

]

8)

SUSPENDED

(4]

9) (5)

ASLEEP
SUSPENDED

Ium

(NON EXISTENT)

NOTES:
(1) Task s created

(2) Task becomes highest prionty ready task
(3) Task gets pre-empted by one with higher priority
(4) Task calls SLEEP or task waits at an exchange

(5) Task sleep period has ended, message was sent to
waiting task or wait has ended

(6) Task calls SUSPEND on self
(7) Task suspended by other than self

(8) Task suspended by other than self or a resume that
did not bring suspension depth to zero

(9) Task was resumed by other task
(10) Task I1s deleted

Figure 1. Task State Diagram

Multi-tasking applications must communicate information
and share system resources among cooperating tasks.
The iRMX 86 Operating System assigns a unique 16-bit
number, called a token, to each object created in the
System. Any task in possession of this token is able to
access the object. The iRMX 86 Nucleus allows tasks
to gain access to objects, and hence system resources,
at run-time with two additional mechanisms: mailboxes
and object directories.

Mailboxes are used by tasks wishing to share objects
with other tasks. A task may share an object by sending
the object’s token via a mailbox. The receiving task can
check to see if a token is there, or can wait at the mailbox
until a token is present.

Object Directories are also used to make an object
available to other tasks. An object is made public by cata-
loging its token and name in a directory. In this manner,

2-7

any task can gain access to the object by knowing its
name, and job environment that contains the directory.

Three example jobs are shown in Figure 2 to demon-
strate how two tasks can share an object that was not
known to the programmers at the time the tasks were
developed. Both Job ‘A’ and Job ‘B’ exist within the en-
vironment of the ‘Root Job’ that forms the foundation of
all iRMX 86 systems. Each job possesses a directory in
which tasks may catalog the name of an object. Sema-
phore ‘RS’, for example, is accessable by all tasks in the
system, because its name is cataloged in the directory
of the Root Job. Mailbox ‘AN’ can be used to transfer
objects between Tasks ‘A2’ and ‘A3’ because its token
is accessable in the object directory for Job ‘A’

Table 1 lists the major functions of the iRMX 86 Nucleus
that manage system processes.

SYSTEM ROOT JOB

JoB B

TASK B1

JOB A

TASK At

MAILBOX
TASK A2 TASK B2
MAIL- AA

& BOXES » SEMAPHORE

TASK A3

OBJECT DIRECTORY
MAILBOX AM
MAILBOX AN
TASK A3

OBJECT DIRECTORY
TASK B2

OBJECT DIRECTORY
MAILBOX RM JOB A
SEMAPHORE RS JJOB B
TASK B2

Figure 2. Object Directories

Memory Management

Each job in an iRMX 86 System defines the amount of
the one megabyte of addressable memory to be used
by its tasks. The iRMX 86 Operating System manages
system memory and allows jobs to share this critical re-
source by providing another object type: segments.

Segments are contiguous pieces of memory, between
16 Bytes and 64K Bytes in length, that exist within the
environment of the job in which they were created. Seg-
ments form the fundamental piece of system memory
used for task stacks, data storage, system buffers, loading
programs from secondary storage, passing information
between tasks, etc.

Order Number 210885-001

intel

iIRMX™ 86

Table 1. Process Management System Calls

' System Call Function Performed
RQ$CREATE$JOB Creates an environment for a number of tasks and other objects, as well as creating an
initial task and its stack.
RQ$DELETE$JOB Deletes a job and all the objects currently defined within its bounds. All memory used

RQ$OFFSPRING
RQ$CATALOGS$OBJECT
RQ$SUNCATALOGSOBJECT
RQ$LOOKUPSOBJECT

RQ$GETS$TYPE
RQ$CREATESMAILBOX

RQ$DELETESMAILBOX
RQ$SENDSMESSAGE

RQ$RECEIVESMESSAGE

RQ$DISABLESDELETION
RQSENABLESDELETION

RQ$FORCESDELETE
RQ$CREATESTASK
RQ$DELETE$TASK

RQ$SUSPENDSTASK
RQ$RESUMESTASK

RQ$SLEEP
RQ$GETSTASKSTOKENS
RQSETPRIORITY
RQGETPRIORITY
RQ$CREATESREGION
RQ$DELETESREGION
RQ$ACCEPT$CONTROL
RQ$RECEIVESCONTROL

RQ$SENDSCONTROL
RQ$CREATE$SEMAPHORE
RQ$DELETE$SEMAPHORE
RQ$SENDSUNITS
RQ$RECEIVESUNITS

is returned to the job from which the deleted job was created.

Provides a list of all the current jobs created by the specified job.
Enters a name and token for an object into the object directory of a job.
Removes an object’s token and its name from a job’s object directory.

Returns a token for the object with the specified name found in the object directory of
the specified job.

Returns a code for the type of object referred to by the specified token.

Creates a mailbox with queues for waiting tasks and objects with FIFO or PRIORITY
discipline.

Deletes a mailbox.

Sends an object to a specified mailbox. If a task is waiting, the object is passed to the
appropriate task according to the queuing discipline. If no task is waiting, the object is
queued at the mailbox.

Attempts to receive an object token from a specified mailbox. The calling task may
choose to wait for a specified number of system time units if no token is available.

Prevents the deletion of a specified object by increasing its disable count by one.

Reduces the disable count of an object by one, and if zero, enables deletion of that
object.

7
Forces the deletion of a specified object if the disable count is either 0 or 1.
Creates a task with the specified priority and stack area.

Deletes a task from the system, and removes it from any queues in which it may be
waiting.

Suspends the operation of a task. If the task is already suspended, its suspension
depth is increased by one.

Resumes a task. If the task had been suspended multiple times, the suspension depth
is reduced by one, and it remains suspended.

Causes a task to enter the ASLEEP state for a specified number of system time units.
Gets the token for the calling task or associated objects within its environment.
Dynamically alters the priority of the specified task.

Obtains the current priority of a specified task.

Creates a region, with an associated queue of FIFO or PRIORITY ordering discipline.
Deletes the specified region if it is not currently in use.

Gains control of a region only if the region is immediately available.

Gains control of a region. The calling task may specify the number of system time

, units it wishes to wait if the region is not immediately available.

Relinquishes control of a region.

Creates a semaphore.

Deletes a semaphore.

Increases a semaphore counter by the specified number of units.

Attempts to gain a specified number of units from a semaphore. If the units are not
immediately available, the calling task may choose to wait.

Order Number 210885-001

2-8

intel

iRMX™ 86

The example in Figure 2 also demonstrates when in-
formation 1s shared between Tasks ‘A2’ and ‘A3’; ‘A2’
only needs to create a segment, put the information in
the memory allocated, and send it via the Mailbox ‘AM’
using the RQ$SEND$SMESSAGE system call (see Table
1).Task ‘A3’ would get the message by using the RQ$
RECEIVE$SMESSAGE system call. The Figure also shows
how the receiving task could signal the sending task by
sending an acknowledgement via the second Mailbox
‘AN’.

Each job is created with both maximum and minimum
limits set for its memory pool. Memory required by all
objects and resources created in the job is taken from
this pool. If more memory is required, a job may be al-
lowed to borrow memory from the pool of its containing
job (the job from which it was created). In this manner,
initial jobs may efficienty allocate memory to jobs they
subsequently create, without exactly knowing their re-
quirements.

The iRMX 86 Operating System supplies other memory
managment functions to search specific address ranges
for available memory. The System performs this search
at system initialization, and can be configured to ignore
non-existent memory and addresses reserved for /O
devices and other application requirements.

Table 2 lists the major system calls used to manage the
system memory.

Interrupt Management

Real-time systems, by their nature, must' respond to
asynchronous and unpredictable events quickly. The
iRMX 86 Operating System uses interrupts and the event-
driven nucleus described earlier to give real-time response
to events. Use of a pre-emptive scheduling technique
ensures that the servicing high priority events always
take precedence over other system activities.

The iRMX 86 Operating System gives applications the
flexibility to optimize either interrupt response time or
interrupt response capability by providing two tiers of In-
terrupt Management. These two distinct tiers are man-
aged by Interrupt Handlers and Interrupt Tasks.

Interrupt Handlers are the first tier of interrupt service.
For small, simple functions, interrupt handlers are often
the most efficient means of responding to an event. They
provide faster response than interrupt tasks, but must
be kept simple since interrupts (except the iAPX 86 and
88 non-maskable interrupt) are masked during their exe-
cution. When extended interrupt service.is required, in-
terrupt handlers ‘‘signal’ a waiting interrupt task that,
in turn, performs more complicated functions.

Interrupt Tasks are distinct tasks whose priority is associ-
ated with a hardware interrupt level. They are permitted

2-9

to make any iRMX 86 system call. While an interrupt task
is servicing an interrupt, interrupts of lower priority are
not allowed to pre-empt the system.

Table 3 shows the iRMX 86 System Calls provided to
manage interrupts.

INTERRUPT MANAGEMENT EXAMPLE

Figure 3 illustrates how the iRMX 86 Interrupt System
may be used to output strings of characters to a printer.
In the example, a mailbox named ‘PRINT’ is used by all
tasks in the system to queue messages to be printed.
Application tasks put the characters in segments that are
transmitted to the printer interrupt service task via the
PRINT Mailbox. Once printing is complete, the same inter-
rupt task passes the messages on to another application
via the FINISHED Mailbox so that an operator message
can be displayed.

PRINT
MAILBOX

—
CALLTO
RQSRECEIVE

SMESSAGE

| {ITI) PRINTER ..l

PRINTER
DATA

PRINTER
INTERRUPT
TASK

{

EXTERNAL
INTERRUPT

)

CALLTO
RQSSENDS
MESSAGE

FINISHED
MAILBOX

PRINTER
INTERRUPT
HANDLER

CALLTO
RQSSIGNALSINTERRUPT

iRMX™

86 SYSTEM

Figure 3. Interrupt Management Example

BASIC I/O SYSTEM

The Basic /O System (BIOS) provides the direct access
to I/O devices needed by real-time applications. The
BIOS allows /O functions to overlap other system func-
tions. In this manner, application tasks make asynchro-
nous calls to the iRMX 86 BIOS, and proceed to perform
other activities. When the I/O request must be completed
before an application can continue, the task waits at a
mailbox for the resuit of the operation.

Some system calls provided by the BIOS are listed in
Table 4.

The Basic I/0 System communicates with peripheral de-
vices through device drivers. These device drivers provide
the System with four basic functions needed to control
and communicate with devices: Initialize I/O, Finish /O,
Queue I/0, and Cancel I/0. Using the device driver in-
terface, users of non-standard devices may write custom
drivers compatible with the 1/0 System.

Order Number 210885 001

intel

iRMX™ 86

Table 2. Memory Management System Calls

System Call Function Performed
RQ$CREATESSEGMENT Dynamically allocates a memory segment of the specified size.
RQ$DELETE$SEGMENT Deletes the specified segment by deallocating the memory.
RQGETPOOLSATTRIBUTES - | Returns attributes such as the minimum and maximum, as well as current snze of
the memory in the environment of the calling task’s job.

RQ$GETS$SIZE Returns the size (in bytes) of a segment.

RQ$SETSPOOLSMIN Dynamically changes the minimum memory requirements of the job environment
containing the calling task.

Table 3. Interrupt Management System Calls

System Call Function Performed
RQ$SETSINTERRUPT Assigns an interrupt handler and, if desired, an interrupt task to the specified interrupt
level. Usually the calling task becomes the interrupt task.
RQ$RESETS$INTERRUPT Disables an interrupt level, and cancels the assignment of the mterrupt handler for that
. level. If an interrupt task was assigned, it is deleted.
RQ$GETS$LEVEL Returns the number of the highest priority interrupt level currently being processed. '
RQ$SIGNALSINTERRUPT Used by an interrupt handler to signal the associated interrupt task that an interrupt has
occurred.
RQSWAITSINTERRUPT Used by an interrupt task to SLEEP until the associated interrupt handler signals the
occurrence of an interrupt.
*| RQSEXIT$SINTERRUPT Used by an interrupt handler to relinquish control of the System.
RQ$ENABLE Enables the hardware to accept interrupts from a specified level.
RQ$DISABLE Disables the hardware from accepting interrupts at or below a specified level.
Table 4. Key BIOS I/0 Management System Calls
System Call Function Performed
RQ$ASATTACHSFILE Creates a Connection to an existing file. N
RQ$ASCHANGESACCESS Changes the types of accesses permitted to the specified user(s) for a specific file.
RQ$ASCLOSE Closes the Connection to the specified file so that it may be used again, or so that
the type of access may be changed.
RQ$ASCREATESDIRECTORY Creates a Named File used to store the names and locations of other Named Files.
RQ$ASCREATESFILE Creates a data file with the specified access rights.
RQ$ASDELETESCONNECTION | Deletes the Connection to the specified file.
RQ$ASGETSFILESSTATUS Returns the current status of a specified file.
RQ$ASOPEN Opens a file for either read, write, or update access.
RQ$ASREAD Reads a number of bytes from the current position in a specified file.
‘RQSASSEEK Moves the current data pointer of a Named or Physical file.
RQ$ASWRITE Writes,a number of bytes at the current position in a file.
RQSWAITSIO Synchronizes a task with the I/O System by causing it to wait for I/O operation

results.

Order Number 210885-001

2-10

intel

iRMX™ 86

The iRMX 86 Operating System includes a number of
device drivers to allow applications to use standard
USART serial communication devices, multiple CRTs
and keyboards, bubble memories, diskettes, disks, a
Centronics-type parallel printer, and many of Intel’s
iSBC and iSBX™ device controllers (see Table 9). If an
application requires use of a non-standard device, users
need only write a device driver to be included with the
BIOS, and access it as if it were part of the standard
system. For most random-access devices, this job is
further simplified by using standard routines provided
with the System. Use of this technique ensures that ap-
plications can remain device independent.

MULTI-TERMINAL SUPPORT

The iRMX 86 Terminal Support provides line editing and
terminal control capabilities. The Terminal Support com-
municates with devices through simple drivers that do
only character I/O functions. Dynamic terminal recon-
figuration is provided so that attributes such as terminal
type and line speed may be changed without modifying
the application or the Operating System. Dynamic con-
figuration may be typed in, generated programmatically
or stored in a file and copied to a terminal I/O connection.

The iRMX 86 Terminal Support provides automatic trans-
lation of control characters to specific control sequences
for each terminal. This translation enables applications
‘using standard control characters to function with non-
standard terminals. The translation requirements for each
terminal can be stored in terminal description files and
copied to a connection, as described above.

DISK I/0 PERFORMANCE

Table 5 shows iRMX 86 performance obtained using the
iSBC 215 Winchester Disk and iSBX 218 Diskette Con-
trollers under the specified conditions.

Each device driver can be used to interface to a number
of separate and, in some cases, different devices (See
Figure 4). The iSBC 215 Device Driver, supplied with the
system, is capable of supporting the iSBC 215 Winchester
Disk Controller, the iSBC 220 SMD Disk Controller, and
the iSBX 218 Flexible Disk Controller (when mounted
on an iSBC 215 board). Each device controller may, in
turn, control a number of separate device units. In addi-
tion, each driver may control a number of like device
controllers. This capability allows the use of large storage
systems with a minimum of 1/O system code to write or
maintain.

EXTENDED 1/0 SYSTEM

The iRMX 86 Extended I/O System (EIOS) adds a number
of /O management capabilities to simplify access to

2-11

files. Whereas the BIOS provides users with the basic
system calls needed for direct management of /O re-
sources, many users prefer to have the system perform
all the buffering and synchronization of /O requests auto-
matically. The EIOS allows users to access I/O devices
without having to write procedures for buffering data, or
to specify particular devices with constant device names.

By performing device buffering automatically, the iRMX
86 EIOS optimizes accesses to disks and other devices.
Often, when an application task asks the System to READ
a portion of a file, the System is able to respond immedi-
ately with the data it has read in advance of the request.
Similarly, the EIOS will not delay a task for writing data
to a device unless it is specifically told to, or if its output
buffers are filied.

Logical file and device names are provided by the EIOS
to give applications complete file and device indepen-
dence. Applications may send data to the ‘line printer’
(:LP:) without needing to know which specific device will
be used as the printer. This logical name may, in fact,
not be a printer at all, but it could be a disk file that is
later scheduled for printing.

The EIOS uses the functions provided by the BIOS to
synchronize individual I/O requests with results returned
by device drivers. Most EIOS system calls are similar to
the BIOS calls, except that they appear to suspend the
operation of the calling task until the I/O requests are
completed.

Table 5. BIOS Typical Performance

Average
Character Throughput
Function Bytes per Second*

Winchester Disk | Diskette
Single File Read 42,000 15,800
Two File Read !
(Same Device) 56,600 5,700
Single File Write 23,800 5,400
Two File Wnite
(Different Devices) 36,200 6,900
Read/Write Two Files
(Different Devices) 38,900 6,000

* These measurements were made in the following environment:
Entire IRMX™ 86 operating system and application code and data
located in on-board RAM of a 8-MHz ISBC® 86/30 Single Board
Computer. Named files, each with a file size of 128 KBytes, were
used with a device and volume granularity of 1 KBytes and six 1
KByte buffers. The disk interleave factor was 2. The iSBC 215
Winchester Controller was attached to two 20-Mbyte drives, and
supported the ISBX™ 218 Diskette Controller that, in turn, was at-
tached to two double density 8'' diskette drives. This performance
1, to a large part, restricted by the mechanical speed of the devices.

Order Number 210885-001

iRMX™ 86

APPLICATION SOFTWARE
TASK TASK TASK TASK TASK TASK TASK TASK TASK TASK TASK
N 7 !
A N 1 N AN .
L._VL_N._.: C._.zL\ L) (D i
-]
1
| I'| sTrREAm
i 1l FLE
PHYSICAL NAMED i 1
FILE FILE ! 1) DRIVER
DRIVER DRIVER
TREAM STREAM
FILE FILE
- - a o L
iSBC" !
215 isBC* || DEVICE
DEVICE 254 |l DRIVER
DRIVER |
- u L a
iSBX™ 1SBC”
218 215 .
DEVICE DEVICE 1s8e e .
CONT- CONT-
ROLLER ROLLER
gz'ﬂw 7/ T TN H-H
UN- Q*
CONN. | CONN. CONNECTED FILE |FiLe FILE FILE
DEVICE | DEVICE DEVICE FILE Y MBYTE BUBBLE
UNIT UNIT UNIT CONN. DEVICE UNITS | CONNECTED DEVICE UNIT
CONDUITS REPRESENT DEVICE CONNECTIONS
WIRES IN CONDUITS REPRESENT FILE CONNECTIONS

Figure 4. Device Driver and Controller Relationships

File Management

The iRMX 86 Operating System provides three distinct
types of files to ensure efficient management of both pro-
gram and data files: Named Files, Physical Files, and
Stream Files. Each file type provides access to I/O de-
vices through the standard device drivers mentioned
earlier. The same device driver is used to access physical
and named files for a given device.

NAMED FILES

Named files allow users to access information on second-
ary storage by referring to a file with its ASCIl name. The
names of files stored on a device are stored in special
files called directories. As directories are themselves
named files, the iRMX 86 File System allows directories
to contain the names of other directories. Figure 5 illus-
trates the resulting hierarchical file structure. This struc-
ture is useful for isolating file names to particular user
applications, and for tailoring system data to the require-
ments of users and applications sharing storage devices.
Using different branches on the directory tree, different
users do not have to coordinate in naming their files to
ensure unique names.

2-12

Whenever a request is made involving a file name, the
System will search the appropriate directory in order to
find the necessary information about the file’s size, ac-
cess rights, and specific location on the storage device.

The iRMX 86 BIOS uses an efficient format for writing
the directory and data information into secondary stor-
age. This standard iRMX 86 format is fully compatible
with the ISO Media standard, and other Intel systems
such as the iRMX 88 Operating System. This structure
enables the system to directly access any byte in a file,
often without having to do additional I/O to access space
allocation information. The maximum size of an individual
file is 232 (4.3 billion) bytes.

EASE OF ACCESS

The hierarchical file structure is provided to isolate and
organize collections of named files. To give operators
fast and simple access to any level within the file tree,
an ATTACHFILE command is provided. This command
allows operators to give a logical name to a point in the
tree so that a long sequence of characters need not be
typed each time a file is referred to.

Order Number 210885-001

iRMX™ 86

DEPT 1J

DEPT 3]

BILL
TOM

SUE
BILL

BILL TOM GEORGE l

HARRY

sm—l

SIM-SOURCE TEST-DATA
SIM-OBJECT TEST OBJECT

|

mHnlm

S

A

SIM SIM

TEST OBJECT
SOURCE OBJECT .

TEST DATA

BATCH 1
BATCH 2

BATCH-1 BATCH 2

>

= NAMED
DATA FILE

Figure 5. Hierarchical Named File Structure

ACCESS PROTECTION

Access to each Named File is protected by the rights
assigned to each user by the owner of the file. Rights
to read, append, update, and delete may be selectively
granted to other users of the system. In general, users
of Named Files are classified into one of three categories:
User, Group, and World. Users and Groups are used
when different programmers and programs need to share
information stored in a file. The World classification is
used when rights are to be granted to all who can use
the system.

PHYSICAL FILES

Physical Files allow more direct device access than
Named Files. Each Physical File occupies an entire de-
vice, treated as a single stream of individually accessable
bytes. No access control is provided for Physical Files
as they are typically used for such applications as driving
a printing device, translating from one device format to
another, driving a paper tape device, and controlling
analog mechanisms.

STREAM FILES

Stream Files provide apdlications with a method of using
iRMX 86 file management methods for data that does
not need to go into secondary storage. Stream Files act
as direct channels, through system memory, from one
task to another. These channels are very useful to pro-

2-13

grams, for example, wishing to preserve file and device
independence allowing data sent to a printer one time,
to a disk file another time, and to another program on
a different occasion.

BOOTSTRAP AND APPLICATION LOADERS

Two utilities are supplied with the System to load pro-
grams and data into system memory from secondary
storage devices:

The iRMX 86 Bootstrap Loader can be configured to
a size of less than 600 bytes of P(ROM), and is typically
used to load the initial system from the system disk into
memory, and begin its execution.

The Application Loader is typically used by application
programs already running in the system to load additional
programs and data from any secondary storage device.
The Human Interface layer, for example, uses the Appli-
cation Loader to load the non-resident Human Interface
Commands. The Application Loader is capable of loading
both relocatable and absolute code, as well as program
overlays.

Human Interface

The flexibility of the interface between computer con-
trolled machines and their users often determines the
usability and ultimate success of thé machines. Table 12
lists iIRMX 86 Human Interface functions giving users

Order Number 210885-001

intel

iRMX™ 86

and applications simple access to the file and system
management capabilities described earlier. The process,
interrupt, and memory managment functions described
earlier, are performed automatically for Human Interface
users.

MULTI-USER ACCESS

Using the multi-terminal support provided by the BIOS,
the iRMX 86 Human Interface can support several si-
multaneous users. The real-time nature of the system
is maintained by providing a priority for each user, and

using the event-driven iRMX 86 Nucleus to schedule tasks.

High-performance interrupt response is guaranteed even
while users interact with various application packages.
For example, multi-terminal support allows one person
to be using the iRMX 86 Editor, while another.compiles
a FORTRAN 86 or PASCAL 86 program, while several
others load and access applications.

Each terminal attached to the iRMX 86 muiti-user Human
Interface is automatically associated with a user, a mem-
ory pool, and an initial program to run when the terminal
is connected. This association is made using a file that
may be changed at any time. Changes are effective the
next time the system is initialized.

The initial program specified for each terminal can be
a special application program, a custom Human Inter-
face, or the standard iRMX 86 Command Line Inter-
preter (CLI). For example, you may choose to use the
Microsoft Basic Interpreter as this initial program. After
system start-up, each terminal user would be able to run
the interpreter without asking for it to be loaded. From
the BASIC interpreter an operator, for example, could run
a data collection program, written in BASIC, that com-
municates with several laboratory instruments, and prints
charts and reports based on certain test results. When
finished entering, changing, or running a BASIC program,
the terminal would remain in BASIC for the next user.

Specifying an application program as a terminal’s initial
program makes the interface between operators and the
computer system much simpler. Each operator need only
be aware of the function of a particular application; not
needing to interact with any unfamiliar functions also
available on his application system.

Specifying the standard iRMX 86 Human Interface CLI
as the initial program enables users of the terminals to
access all iRMX 86 functions. This CLI makes it easy to
manage iRMX 86 files, load and execute Intel-supplied
and custom programs, and submit command files for
later execution.

Table 6. iRMX™ Real-Time Performance

Real-Time Execution
Function Time (msec)
.SUSPEND TASK 0.45
INTERRUPT LATENCY 0.20
(to Handler) (Max)
INTERRUPT LATENCY 0.03
(to Handler) (Typical)
CONTEXT SWITCH CAUSED 0.68
BY INTERRUPT (Max)
SEND MESSAGE 0.30
(no context switch) :
SEND MESSAGE 057
(with context switch) L
SEND CONTROL ‘ 0.19
(no context switch) .
SEND CONTROL 0.50
(with context switching) ’
RECEIVE CONTROL 0.25
(no waiting) i

Context switch time is the time between executing in the context of
a task, and the first instruction to execute in the context of another
task.

These times were measured using an 8 MHz ISBC® 86/30 Single Board
Computer wigh the standard configuration supported by the Precon-
figured System, and all program and data stored in on-board dynamic
RAM.

2-14

SYSTEM BUFFERS
AND DATA

APPLICATION CODE

OPERATOR
CONSOLE
APPLICATIONS

COMMON
UTILITIES

BACKGROUND
APPLICATION

RAM
HUMAN INTERFACE

EIOS

FLOPPY
DISK
DRIVER

WINCHESTER
BiOS DISK
DRIVER

NUCLEUS

PROM { BOOTSTRAP LOADER

BUILDING SECURITY
SYSTEM

SYSTEM
BUFFERS
DATA

an |

16K BYTES
APPLICATION CODE

PROM
SK BYTES NUCLEUS CODE

10SP 86 INTERFACE

80130 OSF

DATA COMMUNICATION
CONTROLLER

Figure 6. Typical iRMX™ 86 Configurations

Order Number 210885-001

iRMX™ 86

CONTROLLER f §§
DEVICES .

Y el W

1) el

Joes Joe

CONTROLLER
DEVICES

CONTROLLERl OPERATOR

(__J

iRMX™ 86

HYBRID
APPLICATION IRMX'™ 86 SYSTEM

1IRMX™ 86 MDS
SYSTEM SYSTEM

MULTIPROGRAMMING SPECTRUM

(__oerowa)

FLEXIBILITY - -~ LANGUAGE
PERFORMANCE DEVELOPMENT TOOLS
\ FEATURES STRUCTURED DESIGN I
Y EXECUTION DEVELOPMENT 7
ENVIRONMENT ENVIRONMENT
FEATURE OVERVIEW software package to divide and coordinate various system

The iRMX 86 Operating System is well suited to serve
the demanding needs of real-time applications executing
on complex microprocessor systems. The iRMX 86 Sys-
tem also provides many tools and features needed by
real-time system developers and programmers. The fol-
lowing sections describe features useful in both the de-
velopment and execution environments. The description
of each feature outlines the advantages given to hard-
ware and software engineers concerned with overall
system cost, expandability with custom and industry
standard options, and long-term maintenance of iIRMX
86-based systems. The development environment fea-
tures also describe the ease with which the iRMX 86
Operating System can be moorporated into overall system
designs.

Execution Environment Features

REAL-TIME PERFORMANCE

The iRMX 86 Operating System is designed to offer the
high performance, multi-tasking functions required by
real-time systems. Designers can make use of the latest
VLSI devices such as the 8087 Numeric Processor Ex-
tension, and the 80130 Operating System Firmware
Component to improve their system cost/performance
ratio, or the iIMMX™ 800 MULTIBUS® Message Exchange

2-15

activities among multiple processors. Typical iRMX 86
system performance characteristics are shown in Table 6.

Many real-time systems require high-performance oper-
ation. To meet this requirement, all of iRMX 86 (except
for the Human Interface commands) can be put into zero
wait-state P(ROM). This approach eliminates the possi-
bility of disk access times slowing down performance,
while allowing system designers to take advantage of
high performance memory devices.

CONFIGURABILITY

The iRMX 86 Operatmg System is configurable by system
layer, and by system call within each layer. In addition,
all the I/O port addresses used by the System are con-
figurable by the user. This flexibility gives designers the
freedom to choose configurations of hardware and soft-
ware that best suit their size and functional requirements.
Two example configurations are shown in Figure 6.

Most configuration options are selected during system
design stages. Others may be selected during system
operation. For example, the amount of memory devoted
to queues within a Mailbox can be specified at the time
the Mailbox is created. Devoting more memory to the
Mailbox allows more messages to be transmitted to other
tasks without having to degrade system performance to
allocate additional memory dynamically.

Order Number 210885001

intel

iRMX™ 86

The chart shown in Table 7 indicates the actual memory
size required to support these different configurations
of the iRMX 86 System. Systems requiring only Nucleus
level functions may require no more than 13 KBytes for
the Operating System (Use of the iAPX 86/30 requires
only 4K Bytes of RAM). Other applications, needing /O
management functions, may select portions of additional
layers that fit their needs and size constraints.

This configurability also applies to the Terminal Handler
and Debugger layers. They need be included only when
the iRMX 86 Debugger is needed (usually only during
system development) or when a serial terminal interface
is needed in a system that otherwise doesn’t need an
/0 System.

MULTI-PROCESSING

The resources provided by a single processor are often
not enough to perform certain functions. With the standard
interfaces provided by the iMMX 800 MULTIBUS Message
Exchange package, the iRMX 86 Operating System sup-
ports a loosely-coupled multi-processing environment.
Tasks running on one processor may communicate with
tasks running on other processors, even if they operate
under different operating systems. The iIMMX 800 soft-
ware is capable of sending messages over the MULTIBUS
to tasks operating under either the iRMX 80 8-bit Multi-
Tasking Executive, the iRMX 88 Executive, or the iRMX
86 Operating System. Using this message exchange
mechanism, applications may increase their system per-
formance quite easily, improve overall interrupt response,
gain access to the iSBC 550 Ethernet Controller, and
leave room for future product enhancements.

MULTI-USER ACCESS

Many real-time systems must provide a varety of users
access to system control functions and collected data.

i

The iRMX 86 System provides easy-to-use support for
applications to access multiple terminals. It also enables
multiple and different users to access different applica-
tions concurrently.

Figure 7 illustrates a typical iRMX 86 application simul-
taneously supporting multi-terminal data collection and
real-time environments. Shown is a group of terminals
used by’machinists on a shop floor to communicate with
a job management program, a building security system
that constantly monitors energy usage requirements, a
system operator console capable of accessing all system
functions, and a group of terminals in the Production
Engineering department used to monitor job costs while
developing new device control specifications and instruc-
tions. The iISBC 544 Intelligent Terminal Interface sup-
ports multiple user terminals without degrading system
performance to handle character 1/O.

SYSTEM
CONSOLE g ‘
TERMINALS

\SBC" 534 -—Q

¢ MULTIBUS >
CUSTOM S8C 544 [}
=

INTERFACE
. DATA
[CuentsT] g COLLECTION
AIR g
CONDITIONER g

1ISBC 86/30

TERMINALS
Figure 7. Multi-Terminal and Multi-User
Real-Time System

Table 7. iRMX™ 86 Configuration Size Chart -

Min. ROMable Max. Data
System Layer Size Size Size
Bootstrap Loader 0.5K 1.5K B6K*
Nucleus 10.5K 24K 2K
BIOS 26K 78K 1K
Application Loader 4K 10K 2K
EIOS 10.5K 12.5K 1K
Human Interface 22K 22K 15K
uDI 11K 11K 0
Terminal Handler 3K 3K 0.3K
Debugger 28.5K 28.5K 1K
Human Interface Commands 116K
Interactive Configuration Utility 308K

* Usable by System after bootloading.

.

2-16

Order Number 210885-001

intel

iRMX™ 86

EXTENDABILITY

The iRMX 86 Operating System provides three means
of extensions. This extendability is essential for support
of OEM and volume end user value added features. This
ability is provided by: user-defined operating system calls,
user-defined objects (similar to Jobs, Tasks, etc.), and
the ability to add functions later in the product life cycle.
The modular, layered structure of the System easily fa-
cilitates later additions to iRMX 86 applications. User-
defined objects are supported by the functions listed in
Table 8.

Using standard iRMX 86 system calls users may define
custom objects, enabling applications to easily manip-
ulate commonly used structures as if they were part of
the original operating system.

EXCEPTION HANDLING

The System includes predefined exception handlers for
typical I/O and parameter error conditions. The error
handling mechanism is both configurable and extendable.

SUPPORT OF STANDARDS

The iRMX 86 Operating System supports the many hard-
ware and software standards needed by most application
systems to ensure that commonly available hardware
and software packages may be interfaced with a mini-
mum of cost and effort. The iRMX 86 System supports
the iSBC family of products built on the Intel MULTIBUS
(IEEE Standard 796), and a number of standard software
interfaces such as the UDI and the common device driver
interface (See Figure 8). The procedural interfaces of

Table 8. User Extension System Calls

System Call Function Performed
RQ$CREATE$COMPOSITE Creates a custom object built of previously defined objects.
RQ$DELETE$SCOMPOSITE Deletes the custom object, but not the various objects from which it was built.
RQS$INSPECT$COMPOSITE Returns a list of Token Identifiers for the component objects from which the specified

composite object is built.
RQ$SALTER$COMPOSITE Replaces a component object of a composite object
RQ$SCREATESEXTENSION Creates a new type of object and assigns a mailbox used for collecting these objects
when they are deleted.
RQ$DELETESEXTENSION Deletes an extension definition.
o
[FORTRAN [BASIC
[easca [coso
SOFTWARE
APPLICATIONS INTEL
SUPPORT | LANGUAGES ,_Av,fé‘.}’,&“gs APPLICATIONS
SOFTWARE ARCHITECTURE INTERFACE
IVERSAL RUN TIME
LANGUAGE N enrace UMY NTERFacE
SUPPORT o)
ANSI
10
ST SUPPORT | WINCHESTER
RESOURCE | .
MANAGEMENT
MULTIPROCESSING
SUPPORT
MULTIPROCESSING SYSTEMS BUS
MULTIBUS®
* ETHERNET 13 a registered trademark of Xerox Corp

Figure 8. iRMX™ 86 Standard Interfaces

2417

Order Number 210885 001

intel

iRMX™ 86

the UDI, a software analogy to the MULTIBUS, ‘are listed
in Table 10.

The Operating System includes support for the proposed
|EEE 80-bit extended real-variable format of the 8087
Numeric Data Processor, the IEEE 796 (MULTIBUS)
hardware interface, and the Intel Universal Run-time In-
terface (URI). Other standards such as the iMMX 800
MULTIBUS Message Exchange, and an Ethernet* com-
munication interface, are supported by optional software
packages available to run on the iRMX 86 System.

SPECTRUM OF CPU PERFORMANCE

The iRMX 86 System supports 8086 and 8088 based
systems directly at a variety of processor clock speeds.
With the iRMX 286R Operating System option, com-
pletely compatible systems can be built around the iAPX
286 processor. By choosing the appropriate CPU, de-
signers can select from a wide range of performance
without having to change application software.

COMPONENT LEVEL SUPPORT

The iRMX 86 System may be tailored to support specific
hardware configurations. In addition to system memory,
only an iAPX 86 or iAPX 88 microprocessor, an 8259A
Programmable Interrupt Controller, and either an 8253
or 8254 Programmable Interval Timer are required. In
addition, the iRMX 86 Operating System may be used
to augment the functions of the 80130 Operating System
Firmware Component that not only provides these hard-
ware functions, but eliminates the need for approximately
14 KBytes of the iRMX 86 Nucleus code (see Figure 6).
For systems requiring extended mathematics capability,
an 8087 Numeric Data Processor may be added to per-
form these functions up to 100 times faster than equivalent
software. For applications servicing more than 8 inter-
rupt sources, additional 8259A’s may be configured as
slave controllers.

BOARD LEVEL SUPPORT

The iRMX 86 Operating System includes device drivers
to support a broad range of MULTIBUS device controllers.
The particular boards and types of devices supported are
listed in Table 9. The device controllers all adhere to in-
dustry standard electrical and functional interfaces.

In addition to the on-CPU board terminal drivers, the
iRMX 86 BIOS includes two iSBC board-level device
drivers to support multiple terminal interfaces:

The iSBC 544 Intelligent Four-Channel Terminal
Interface Device Driver provides support for multi-
ple controllers each supporting up to 4 standard
RS232 terminals. The iSBC 544 driver takes ad-
vantage of an on-board 8085 processor to greatly
reduce the system processor time required for ter-

* Ethernet I1s a trademark of Xerox Corporation.

i

2-18

minal I/O by locally managing input and output
buffers. The iSBC 544 firmware provided with the
operating system can off-load the system CPU by
as much as 75%. '

The iSBC 534 Four-Channel USART Controller
Device Driver also provides support for muitiple
controller boards each supporting up to 4 standard
RS232 terminals.

Table 9. Supported Devices

iSBC® Device
Controller - Supported Devices

iSBC® 86,88 Serial Port to CRT, Parallel Port to
Centronics-type Printer, Interval
Timer, and Interrupt Controller

1ISBC® 204 Single Density Diskette

1ISBC® 206 Cartridge-type Hard Disk

iSBC® 208 Single & Double Density,
Single & Double Sided,
8" & 5.25" Diskette

iSBC® 215 Standard Winchester Disks

iSBC® 220 Standard Storage Module Disks

iSBC® 254 Bubble Memory Board

iSBC® 534,544 4-Channel.Serial Ports to CRTs,
Modems

iSBX™ 218 Single & Double Density, Single
& Double Sided, 8" & 5.25" Disk-
ette (When used on an iSBC® 215
Winchester Controller)

iSBX™ 270 Black and White CRT’s and full
ASCII keyboards

Development Environment Features

The iRMX 86 Operating System supports the efficient
utilization of programming time by providing important
tools for program development. Some of the tools neces-
sary to develop and debug real-time systems are included
with the Operating System. Others, such as language
compilers, are available from Intel and from leading In-
dependent Software Vendors.

LANGUAGES

The iRMX 86 Operating System supports a group of 31
standard system calls known as the Universal Develop-
ment Interface (UDI). Figure 8 shows that the additional
features of this standard interface provide iRMX 86 sys-
tems the capability of using many compilers and lan-
guage translators. These include the iAPX 86 and 88
Macro Assembler, and the Pascal 86/88, PL/M 86/88,
and FORTRAN 86/88 compilers available from Intel. They
also include a number of other Intel development tools,

Order Number 210885-001

ntel

iRMX™ 86

and language translators and utilities available from other
software vendors. A subset of the UDI System Calls pro-
vides another standard interface called the Universal
Runtime Interface (URI). The URI calls are those required
to execute a compiled program, while the full set of UDI

calls is required to run a compiler.

These standard software interfaces (the URI and the UDI)
ensure that users of the iRMX 86 Operating System may
transport their applications to future releases of the iRMX
86 Operating System and other Intel and independent
vendor software products. The calls available in the URI
and UDI are shown in Table 10.

Table 10. URI and UDI System Calls

System Call

Function Performed

Memory Management:
DQS$ALLOCATE

DQS$FREE
DQ$GETS$SIZE*
DQS$RESERVES$IOSMEMORY*

File Management:
DQS$ATTACH

DQ$CHANGES$ACCESS*
DQ$CHANGESEXTENSION
DQS$CLOSE

DQ$CREATE

DQ$DELETE

DQS$SDETACH

DQ$OPEN
DQS$GETSCONNECTIONSSTATUS*
DQS$FILESINFO*

DQ$READ

DQ$RENAME*

DQ$SEEK

DQS$TRUNCATE
DQSWRITE

Process Management:
DQSEXIT

DQ$OVERLAY*
DQ$SPECIAL

DQS$TRAPSCC

Exception Handling:
DQGETEXCEPT30N$HANDLER

DQ$DECODESEXCEPTION
DQ$TRAPSEXCEPTION

Application Assistance:
DQ$DECODESTIME

DQGETSARGUMENT*

DQGETSYSTEMSID*
DQ$GETSTIME"
DQ$SWITCH$BUFFER

Creates a Segment of a specified size.
Returns the specified segment to the System.
Returns the size of the specified Segment.
Reserves memory to OPEN and ATTACH files.

Creates a Connection to a specified file.

Changes the user access rights associated with a file or directory
Changes the extension of a file name in-memory

Closes the specified file Connection

Creates a Named File.

Deletes a Named File.

Closes a Named File and deletes its Connection.

Opens a file for a particular type of access

Returns the current status of the specified file Connection
Returns data about a file Connection

Reads the next sequence of bytes from a file.

Renames the specified Named File

Moves the position pointer of a file.

Truncates a file.

Writes a sequence of bytes to a file.

Exits from the current application job.
Causes the specified overlay to be loaded

Performs special I/O related functions on terminals with special control
features.

Captures control when CNTRL/C s typed.

Returns a pointer to the program currently being used to process errors.
Returns a short description of the specified error code
Identifies a custom exception processing program for a particular type of error

Returns system time and date in binary and ASCII character format.

Returns the next argument from the character string used to invoke the ap-
plication program

Returns the name of the underlying operating system supporting the UDI.
Returns the current time of day as kept by the underlying operating system.
Selects a new buffer from which to process commands.

Calls available only through the UDI

Order Number 210885 001

2-19

ntel

iRMX™ 86

LA

The high performance of the iIRMX 86 Operating System
enhances the throughput of compilers and other.develop-
ment utilities. Table 11 indicates the average performance
of typical development environment functions operating
in the same configuration described in Table 5.

Table 11. Development Environment Performance

Average
Function Execution Time

Directory Command

(S Format with 25 files) 5.3 sec
Load the COPY Commana 1.2 sec
Copy a 1K Byte File

(Winchester to Winchester) 1.0 sec
Copy a 16K Byte File 1.7 sec
Copy a 64K Byte File 3.9 sec
Copy a 1K Byte File

(Winchester to Diskette) 1.4 sec
Compile PL/M 86 393 Ipm
Compile PASCAL 86 453 lpm

Program

TOOLS

Certain tools are necessary for the development of mi-
crocomputer applications. The IRMX 86 Human Interface
includes many of these tools as non-resident commands.
‘They can be included on the system disk of an applica-
tion system, and brought into memory when needed to
perform functions as listed in Table 12.

Table 12. Major Human Interface Utilities

Command Function

BACKUP Copy directories and files from one
device to another.

COPY Copy one or more files to one or
more destination files.

CREATEDIR Create a directory file to store the
names of other files.

DIR List the names, sizes, owners, etc.
of the files contained in a directory.

ATTACHFILE Give a logical name to a specified
location in a file directory tree.

PERMIT Grant or rescind user access to a
file.

RENAME Change the name of a file.

SUBMIT Start the processing of a series of
commands stored in a file.

SUPER Change operator’s ID to that of the
System Manager with global access
rights and privileges.

2-20

Table 12. Major Human Interface Utilities (Con't.)

Command Function
TIME Set the system time-of-day clock.
VERIFY Verify the structure of an iRMX™ 86

Named File.volume, and check for
possible disk data errors.

INTERACTIVE CONFIGURATION UTILITY

The iRMX 86 Operating System is designed to provide
OEMs the ability to configure for specific system hard-
ware and software requirements. The Interactive Con-
figuration Utility (ICU) builds iRMX 86 configurations by
asking appropriate questions and making reasonable
assumptions. It runs on either an Intellec® Series |l De-
velopment System or iRMX 86 System supporting the UDI
and a hard disk. Table 13 lists the hardware and support
software requirements of different iRMX 86 develop-
ment system environments.

Table 13. iRMX™ 86 Development Environment

Intellec® Series I
MDS 313 PL/M 86/88 Compiler
One hard disk and one diskette drive

iRMX™ 86 Preconfigured System
iRMX™ 860 Utility
iRMX™ 863 PL/M 86/88 Compiler
iSBC® 957B Monitor
448K Bytes of RAM
5M Byte On-Line Storage and one double-density
diskette drive

SYSTEM 86/330 Microcomputer System
Basic configuration

Figure 9 shows one of the many screens displayed during
the process of defining a configuration. It shows the ab-
breviations for each choice on the left, a more complete
description with the range of possible answers in the
center, and the current (sometimes default) choice on
the right. The bottom of the screen shows three changes
made by the operator (lower case lettering), and a request
for help on the Exception Mode question. In response
to a request for help, the ICU displays an additional
screen outlining possible choices and some overall sys-
tem effects. .

The ICU requests only information required as a result
of previous choices. For example, if no Extended 1/O
System functions are required, the ICU will not ask any
further questions about the EIOS. Once a configuration
session is complete, the operator may save all the infor-
mation in a file. Later, when small changes are neces-

Order Number 210885-001

intal

iRMX™ 86

sary, this file can be modified. A completely new session
is not required.

execution are accessable from a terminal connected di-
rectly to the iAPX 86 or 88 system.

Nucleus

(ASC) All Sys Calls [Yes/No] Yes
(V) Parameter Validation [Yes/No] Yes
(ROD) Root Object Directory Size [0 - 0FFOh] 0014H
(MTS) Minimum Transfer Size [0 - OFFFFH] 0040H
(DEH) Default Exception Handler [Yes/No/Deb/Use] Yes
(NEH) Name of Ex Handier Obyect Module {1 - 32chs]

(EM) Exception Mode [Never/Program/Environ/All] Never
(NR) Nucleus in ROM [Yes/No] No

Enter Changes [Abbreviations 7/ = new-value] ASC=N
pv=no

rod=48

em?

Figure 9. ICU Screen for iRMX™ 86 Nucleus

REAL-TIME DEBUGGING TOOLS

The iRMX 86 Operating System supports three distinct
debugging environments: Static, Dynamic, and Post-
Mortem. While the iRMX 86 Operating System does
support a multi-user Human Interface, these real-time
debugging aids are usually most useful in a single-user
environment where modifications made to the system
cannot affect other users.

The static debugging aid is the iISBC 957B Monitor (in-
cluded in the first shipment of some iRMX 86 options).
The Monitor provides a basic debugging capability for
both system and application code. The iRMX 86 Debug-
ger provides a dynamic system debugging tool for testing
and debugging real-time systems. The Debugger allows
programmers to stop and inspect one task while the rest
of the system continues to operate. The iRMX 86 Crash/
Dump Analyzer enables programmers to inspect a sys-
tem’s structure after a problem has caused it to stop nor-
mal operation. Each of these debugging facilities are
described below.

iSBC® 957B Monitor

The iSBC 957B Monitor can be used either as a stand-
alone monitor for static debugging and system start-up,
or as a communication link to an Intellec Development
System. A number of PROMSs are included along with the
necessary cables to control a hardware configuration
such as is pictured in Figure 10. All programs necessary
for the Intellec system and the target system are included.
Configuration tools for users wishing to support different
hardware configurations are also included.

Debugging of any iAPX 86 or 88 application is accom-
plished in an interactive manner via either of the two ter-
minals shown in Figure 10. If an Intellec Development
System is not present, all debugging instructions neces-
sary to view and modify register and memory contents,
set execution breakpoints and provide single instruction

iAPX 86-, 88-
BASED BOARD

COMPONENT

SIDE INTELLEC

SERIES
MODEL 210

P1 PARALLEL

UP/DOWN LOAD

0

PARALLEL

upp
PORT CHANNEL

SWOU(d)
HOLINOW

P2 SERIAL

PORT SERIAL

CH UTTY

L1] seraL ch2

Figure 10. Typical iISBC® 957B Configuration

iRMX™ 86 Debugger

The iRMX 86 Debugger runs as part of an iRMX 86 ap-
plication. It may be used at any time during program de-
velopment, or may be integrated into an OEM system
to aid in the discovery of latent errors. The Debugger can
be used to search for errors in any task, even while the
other tasks in the system are running. The iRMX 86 De-
bugger communicates with the developer via a terminal
handler that supports full line editing.

System Crash/Dump Analyzer

The often difficult job of debugging real-time applications
is made much simpler with the System Crash/Dump
Analyzer. The analyzer allows program developers to
record system memory for later analysis even if the sys-
tem has halted. This analysis lists such vital information
as which jobs have active tasks, which system queues
contain which tasks, and what segments contain which

"~ data.

2-21

The information used by the Analyzer is obtained from
a copy of iRMX 86 data structures after a fault has caused
an unexpected halt (crash). The processor also may be
halted deliberately to perform a system analysis. The
system information is created by a two-step process:

1. Transferring an image of iRMX 86 system memory
to a disk file on an Intellec Series Il Microcomputer
Development system.

. Later printing an analyzed and formatted printout
description of the state of the system.

Figure 11 shows a portion of a Crash/Dump Analyser
display for an iRMX 86 Mailbox. The display identifies
the mailbox by its token and shows its key attributes.
This information is followed by a list of tokens for objects
(if any) queued at the mailbox.

Order Number 210885-001

iRMX™ 86

%
L e e L L L T
%
% Mailbox report, token = 4AA4 PRIORITY
% QUEUE
L R CEETTEREREEER
%

Containing Job 4840 Queue discipline PRI

Task queue head 0000 Objectqueue head 4A83

Obectcachedepth 3¢ o TASKS WAITING

Objectqueve 4BADJ4ASIG 4BADJMATFG 4BADJIAAGFG

4BADJ/4AGDG 4BADJ/4AGBG 4B4DJ/4AGIG
JFOR G FOR SEGMENT
CONTAINING JOB ON QUEUE

Figure 11. Mailbox Analysis Report

The analysis displays all the mailboxes (among other
things) which exist within each job. Thus a user might
learn critical information by observing a number of ob-
jects different from that expected.

Performance problems can be identified under some
circumstances. Noticing that certain mailboxes frequently
have many objects queued may suggest an increase in
the high performance cache size for the mailbox to im-
prove its throughput, or give the designer cause to in-
vestigate the receiving task operation to see why the
queue is so large.

The analyzer automatically checks for system inconsis-
tencies such as corrupted data structures, incorrect object
types, and stack overflow. Reports of such problems ac-
company the reports on specific system objects.

PARAMETER VALIDATION

Some iRMX 86 System Calls require parameters that
may change during the course of developing iRMX 86
applications. The iRMX 86 Operating System includes
an optional set of routines to validate these parameters
to ensure that correct numeric values are used, and that
correct object types are used where the System expects
to manipulate an object. For systems based only on the
iRMX 86 Nucleus, these routines may be removed to im-
prove the performance and code size of the System once
the development phase is completed.

PRECONFIGURED SYSTEM

A ready-to-run, multi-user, Preconfigured System is in-
cluded in each iRMX 86 KIT. its configuration supports

the full complement of devices shown in Figure 12. The
shaded area of the Figure represents the minimum hard-
ware required by the start-up system. Other combinations
of the devices, up to the full compliment shown, that
support additional on-line storage are also possible. The
Preconfigured System includes all iRMX 86 System Calls
and the complete Universal Development Interface (UDI).
The UDI supports Intel High-Level Languages and many
applications available from Intel and many Independent
Software Vendors.

L]
SYSTEM
- CONSOLE

TERMINALS

] i 1SBC" 534 —g
= - luLmsus® Ce i
|

1SBX™ 218] |

. 1s8C" |215 |

it

FLOPPIES

iS8C’

FLOPPIES

ool

WINCHESTERS

Figure 12. Pre-Configured iRMX™ 86 System

The Preconfigured System is intended to aid the initial
use of iRMX 86 features. Any 8086-based system currently
supporting an iRMX 86 environment with a double den-
sity diskette may simply plug in the start-up system and
run. Further, this start-up system may be used to run the
ICU (if-a Winchester disk is attached to the system) to
develop custom configurations such as those pictured
in Figure 7. As shipped, the Human Interface supports
a single user terminal. However, the Preconfigured Sys-
tem user terminal file may be altered easily to support
from two to five users. |

This System is also available as a separate product (order
code RMX 86PC E) for'those iRMX 86 users that do not
require the ability to tailor their system to custom hard-
ware and software configurations. The SYSTEM 86/300
Family of Microcomputer Systems also provide users
immediate access to programming tools and system ap-
plications with a ready-to-load preconfigured iRMX 86
Operating System.

SPECIFICATIONS

Supported Software Products

iRMX 286R iRMX 86-compatible Operating System

extension for iAPX 80286

2-22

IRMX 860

iRMX 86 Development Utilities

Package including the iAPX 86 and 88

Linker, Locater, Macro Assembler,

Librarian, and the iRMX 86 Editor
iRMX 861

PASCAL 86/88 Compiler

Order Number 210885-001

intel

iRMX™ 86

iRMX 862 FORTRAN 86/88 Compiler

iRMX 863 PL/M 86/88 Compiler

iRMX 864 TX Screen-oriented Editor

iMMX 800 MULTIBUS Message Exchange soft-
ware package for iRMX 80, 86, and 88
application systems

iOSP 86 Support Package for iAPX 86/30 and

88/30 Operating System Processors

Supported Hardware Products

COMPONENTS

iAPX 86 and 88 Microprocessors
iAPX 286 Microprocessors (with iRMX 286R)
8087 Numeric Data Processor Extension

iAPX 86/30 (80130) Operating System Firmware
Component (with iOSP 86)

8253 and 8254 Programmable Interval Timers
8259A Programmable Interrupt Controller
8251A USART

8255 Programmable Parallel Interface

iSBC® MULTIBUS® BOARD AND SYSTEM PRODUCTS

iSBC 86/12A, 86/05, 86/14, 86/30, 88/25, and 88/40
Single Board Computers

iSBC 286/10 Single Board Computer (With iRMX 286R)

iSBC 204 Diskette Controller

iSBC 206 Hard Disk Controller

iSBC 208 Diskette Controller

iSBC 215 Winchester Disk Controller .

iSBC 220 SMD Disk Controller

iSBC 254 Bubble Memory System

iSBC 534 4-Channel Terminal Interface

iSBC 544 Intelligent 4-channel Terminal Interface and
Controller

iSBX 218 Diskette Controller (with iISBC 215)

iSBX 350 Parallel Port (Centronics-type Printer Interface)
iSBX 351 Serial Communications Port

iSBX 270 CRT, Light Pen and Keyboard Interface
SYSTEM 86/330 Computer System

SYSTEM 86/380 Computer System

Available Literature

The iRMX 86 Documentation Set is comprised of follow-
ing reference manuals. Each is also be available under
the order numbers shown.

A}
Introduction to the iRMX 86 Operating System
(9803124-04)
iRMX 86 Operator’s Manual (144523-001)
Master Index for iRMX 86 Release 5 Documentation
(145015-001)

Getting Started With The Release 5 iRMX 86 System
(145073-001)

.iRMX 86 Installation Guide (9803125-05)

2-23

iRMX Configuration Guide (9803126-05)
iRMX 86 Nucleus Reference Manual (9803122-04)

iRMX 86 Terminal Handler Reference Manual
(143324-002)

iRMX 86 Debugger Reference Manual (143323-002)

IRMX 86 Basic I/O System Reference Manual
(9803123-05)

IRMX 86 Loader Reference Manual (143318-002)

IRMX 86 Extended I/O System Reference Manual
(143308-002)

IRMX 86 Human Interface Reference Manual
(9803202-003)

Guide to Writing Device Drivers for the iRMX 86 and
iRMX 88 I/0O Systems (142926-004)

IRMX 86 Programming Techniques (142982-003)

User’s Guide For The ISBC 9578 1APX 86, 88 Interface
and Execution Package (143979-002)

iRMX 86 Disk Verification Utility Reference Manual
(144133-002)

Runtime Support Manual for iAPX 86, 88 Applications
(121776-002)

IRMX 86 Crash Analyzer Reference Manual
(144522-001)
OPTIONAL REFERENCE MATERIALS

Edit Reference Manual (143587-002)
Guide to Using iRMX 86 Languages (142907-001)

APPLICATION NOTES

Ap Note 86 — iRMX 86 Realtime Multitasking
Operating System

Ap Note 130 — Using Operating System Processors to
Simplify Microcomputer Designs

TRAINING COURSES

Introduction to the iRMX 86 Operating System
Advanced iRMX 86 Operating System Concepts

CUSTOMER SEMINARS

Contact Local Intel Sales Office for details on available
video-tape and slide presentations.

Order Number 210885 001

intel

iRMX™ 86

ORDERING INFORMATION

The iRMX 86 Operating System is available under a
number of different licensing options as noted here. Ex-
cept for source listings (available on microfiche) all options
are provided on either single or double density ISIS-for-
matted diskettes, or on double density iRMX 86-formatted
diskettes. I1SIS-format diskettes may be used on Intel
Intellec Development Systems. The iRMX 86-format may
be used on any iRMX 86-based system supporting the
appropriate compilers and development environment.

The OEM license options listed here allow users to incor-
porate the iRMX 86 Operating System into their appli-
cations. Each use requires payment of an Incorporation
Fee.

Order Code Description

RMX 86 KIT ARO: Single density OEM license.

RMX 86 KIT BRO: Double density OEM license.

’

RMX 86 KIT ERO: Double density iRMX 86-Format
OEM license for use on iRMX
86-based environments.

Other licensing options include prepayment of all future
incorporation fees, single use rights for a single machine,
use at a second development site, one-year support serv-
ice extensions, the right to make copies for additional
development systems, and source listing materials.

Each option includes 90 days of support service that
provides a periodic NEWSLETTER, Software Problem
Report Service, and copies of System updates that occur
during this period. Except for source listings, all initial
licenses include the iISBC 957B iAPX 86 and 88 System
Monitor, and a complete set of iRMX 86 Documentation.

As with all Intel software, purchase of any of these options
requires the execution of a standard Intel Master Soft-
ware License. The specific rights granted to users depend
on the specific option and the License signed.

2-24

intel

iIRMX™ 88 :
REAL-TIME MULTITASKING EXECUTIVE

s Event-driven multitasking executive s Supports component or iISBC™-based
software supports iSBC® 86/05, system generation through Interactive
86/12A, 86/14, 86/30, 88/25, 88/40, Configuration Utility
88/45 or iAPX 86, 88 based applications = 1/0 system provides compatible

= Small, high-performance, PROMable iRMX™ 86 files and device independent
executive supports high sample rates /0 interface

m Provides simple, intertask communica- s 1/O system supports the User Run-time
tions and synchronization Interface (URI) for PL/IM, PASCAL and

= Supports the 8087 Numeric FORTRAN coded application tasks
Processor Extension (NPX) for s Memory management of full megabyte
arithmetic applications ' iAPX 86, 88 memory

The iRMX 88 Real-Time Multitasking Executive is a small, event-driven single-user executive system. Designed
for dedicated computer applications using iSBC 86/05, 86/12A, 86/14, 86/30, 88/25, 88/40, 88/45 or iAPX
86, 88 custom products, the modular software package provides real-time application support for PASCAL,
FORTRAN, PL/M and assembler coded tasks. Application tasks utilize intertask communications, synchronous
1/0 control, priority-based resource allocation and file support for the iSBC 204, 206, 208, 215/218, and
220 Disk Controllers, and the iSBC 254 Bubble Memory product.

The small, high performance iRMX 88 Executive can be located in EPROM or bootstrapped into RAM
memory. The iRMX 88 Executive offers features that are suitable for performance-critical process control
applications, production test stand units, sophisticated laboratory analysis, instrumentation, specialized
data acquisition systems or monitoring stations. The iRMX 88 design, based upon the iRMX 80 Real-Time
Executive, offers iRMX 80-like interfaces for those 8-bit applications which are upgrading to 16-bit solu-
tions for the 1 Megabyte addressing, expanded application functions, and higher performance data sam-
pling requirements.

TERMINAL
HANDLER

USER TASK

iRMX™ 88
NUCLEUS

FREE SPACE

MANAGER
USER
APPLICATION

Figure 1. Module Representation

BOOTSTRAP
LOADER

The f g are of intel Cor and may be used only to describe Intel products Intel, CREDIT, index, Insite, Intellec, Library Manager. Megachassis,
Micromap, MULTIBUS, PROMPT, UPI, uScope, Promware, MCS, ICE, iIRMX, 1SBC, 1SBX, MULTIMODULE and 1CS Intel Cor no for the use of any
circuitry other than circuitry embodied in an Intel product No other circuit patent licenses are imphed

© INTEL CORPORATION, 1981 October, 1981

Order Number: 143130-002
2-25

l N

intel

IRMX™ 88

FUNCTIONAL DESCRIPTION

The IRMX 88 Real-Time Multitasking Executive
Software package provides facilities for executing
tasks concurrently, managing resources and serv-
icing asynchronous events to users of Intel's
single board computers and custom iAPX 86,
88-based products. The foundation modules sup-
port real-time dedicated computer applications
with priority-based task scheduling, interrupt
dispatching, real-time clock control with 1 ms
resolution, multiple event monitoring and control,
and file services for flexible, hard, Winchester,
SMD disk units and bubble memory devices. The
software package includes the primary modules:
Nucleus, Free Space Manager, Terminal Handler,
1/0 System and Bootstrap Loader. The Interactive
Configuration Utility (ICU) executes on a Series lli
Intellec System, or iRMX 86 Operating System
with a Universal Development Interface (UDI).

FEATURE OVERVIEW

Event-Driven Multitasking

The iRMX 88 Executive provides a control software
foundation calied a Nucleus. The iRMX 88 Nucleus
provides two major functions: first, the facility for
concurrent task execution; secondly, the facility
for handling simultaneous asynchronous events.

The structured multitasking environment permits
segmenting of the application tasks. The number
of tasks, managed by the Nucleus, is limited only
by the available 1 Megabyte memory space. The
tasks are prioritized such that the highest-ranked '
task is executing, e.g., an alarm event preempts

the lower priority executing task. The Nucleus -

supports 255 priority levels.

Since internal or external events (interrupts) occur
randomly, the Nucleus synchronizes the event
with a task. The Nucleus supports either an inter-
rupt service routine or an interrupt task. The inter-
rupt service routine offers high-speed perform-

. ance flexibility since it masks all interrupts and

supports burst-rate data sample gathering. The in-
terrupt task is useful for lower frequency inter-
rupts, masking only lower priority interrupts. -

Small High-Performance Executive

The iRMX 88 Executive software utilizes a simple,
straightforward architecture which minimizes the
memory requirements, as shown in Table 1. in ad-
dition, the modules are designed to be totally
EPROM resident for those systems where mass
storage devices cannot be used because of the
danger of contamination.

Real-time microcomputer solutions require the
recognition of interrupts. The performance of the
system is with respect to data sample rates, If there
is no activity in progress when an interrupt occurs,
the time to handle that interrupt is dependent on
the number of instructions executed, e.g., 52
microseconds interrupt latency time on an iSBC
86/12A board. Most real-time solutions have multi-
ple events occurring and background operations in
progress. Seldom does a background task have
critical sections of code which cannot be interrupted.

Intertask Communications

The iRMX 88 Nucleus provides a simple, easy-to-
use intertask communications mechanism based
upon a message. Messages are transferred be-
tween tasks with two basic procedure calls, a send
(RQSEND) and a wait (RQWAIT). Task “‘A” requests
the Nucleus to RQSEND the pointer to a message
buffer to Task “B” (see Figure 2). The Nucleus con-
trols the message flow by activating the higher-
priority Task B, or queuing the message if a lower-
priority Task B is not waiting for the message. The
receiving task does an RQWAIT to get the mes-
sage pointer and can now access the data which
may be for synchronization or real-time control
operations.

Table 1. iRMX™ 88 Module Memory Requirements

FREE 1/10 SYSTEM
MODULE | NUCLEUS | [oIMINEL | space — - —
‘ MANAGER | PHYSICAL** | NAMED** | BOOTSTRAP
EPROM*
(K bytes) 4.0 2.5 1.5 20.0 32.0 1.5
* amount of code configured in EPROM; all numbers are approximate
** includes one 3K byte device driver (named file plus physical file is 34.0K bytes)
*** includes an 0.5K byte device driver

2-26

AFN-01708A

ntel

iRMX™

88

TASK A

TASK ENTRY POINT

INITIALIZE TASK

PERFORM FUNCTION

INITIALIZE OPERATION (RQSEND)
(SEND MESSAGE)

WAIT FOR RESPONSE (RQWAIT)

TASK B

TASK ENTRY POINT

INITIALIZE TASK

WAIT FOR MESSAGE (RQWAIT)
FROM TASK A

PERFORM FUNCTION

SEND RESPONSE (RQSEND)
TO TASK A

Figure 2. Intertask Communications

Numeric Data Processor

The iRMX 88 Nucleus fully supports the 8087
Numeric Processor Extension (NPX) functions for
high-speed arithmetic functions of real-time ap-
plications. High-performance numeric processing
applications, which utilize 8-, 16-, 32- and 64-bit in-
tegers, 32-, 64- and 80-bit floating point or 18-digit
BCD operations, are accelerated up to 100 times
over a iAPX 86, 88 software soiution. The NPX
functions, including trigonometric, logarithmic
and exponential functionals, are essential in
scientific, engineering, navigational or military ap-
plications.

Nucleus Primitives

The Nucleus performs other functions as shown in
Table 2, in addition to the message communica-
tions management. Some primitives like CREATE
TASK and DELETE TASK allow dynamic crea-
tion/deletion of tasks during run-time. This
dynamic capability allows the Nucleus tables to

Table 2. Nucleus Primitives

NAME FUNCTION
ACCEPT Accept a message from specified exchange. Returns message ad-
dress if availabie, zero otherwise.
CREATE TASK Create task by building new Task Descriptor based on specified

CREATE EXCHANGE
DISABLE INTERRUPT
DELETE EXCHANGE
DELETE TASK
ENABLE INTERRUPT

END INTERRUPT

INTERRUPT SEND
RESUME
SEND

SET INTERRUPT

SUSPEND TASK
WAIT

Static Task Descriptor.

Create exchange at specified RAM address.
Disable specified interrupt level.

Delete specified exchange.

Delete the task specified.

Initialize' message portion of the Interrupt Exchange Descriptor
associated with the specified interrupt level (the first time called
only), and enable specified interrupt level.

Signals specific end-of-interrupt for the specified interrupt exchange
in a user-supplied interrupt service routine.

Send an interrupt message to the specified interrupt exchange.
Resume a task that has previously been suspended.

Send the message located-at “msg-addr” to the exchange specified
by “exch-addr.”

Set interrupt vector address. An interrupt is to be serviced by the
user-supplied routine starting at the address, thus bypassing
Nucleus interrupt software.

Suspend execution of the task specified by the Task Descriptor.

Wait at the specified exchange until a message is available or tjme
limit expires. Return address of system timeout message or user
message.

AFN 01708A

2-27

intel

iRMX™ 88

expand and accommodate infrequently used tasks
which are loaded into memory from a mass
storage device.

Interactive System Generation

The iRMX 88 Executive is constructed in a’

thoroughly modular manner with the full range of
facilities being offered in library modules. By
selecting the appropriate features and combining
them with the user-written application tasks the
generated system is tailored to the application’s
requirements minimizing memory overhead for
unused features.

An Interactive Configuration Utility provides a
query-based tool that configures the iRMX
88-based application. Responding to questions
from the ICU utility program executing on a Series
11l Intellec Microcomputer Development System or
an iRMX 86-based system, the user quickly tailors
the real-time application system.

1/0 System

The iRMX 88 I/O System provides an extensive
facility for device-independent 1/0. Through a
series of supplied iRMX 86 compatible device
drivers, the 1/0 System supports a wide-range of
iSBC peripheral controliers. Custom peripheral

controllers are supported through user-written ,

device drivers which are integrated with the 1/0
System at system configuration time. The device-
independent nature of the system allows use of
different devices without application redesign.

The I/0 System (I0S) procedures manage real-time
file operations supporting both sequential and
random access (see Table 3). The |IOS maximizes
system throughput by allowing multiple disk
operations to proceed in parallel. For example,

files can be “double buffered” so that the task can
be processing data in one buffer while the 10S is
filing another.

The 10S provides access to two types of files:

* Named Files allow applications to refer to col-
lections of bytes (files) by using a name. These
names are cataloged in a directory which allows
files to be accessed by different tasks.

¢ Physical Files allow applications to make a
physical connection to a storage device.
Typically used for simple devices such as
printers, terminals or sequential data logging
where file structures are not necessary.

The file types are a compatible subset of the iRMX
86 Basic /0 System with a flat (non-hierarchical)
directory.

Bootstrap Loader

The iRMX 88 I0S has a Bootstrap Loader which
loads a file from mass storage into system
memory. The configurable Bootstrap Loader loads
the file from a specific device, automatically from
the first-ready device of a designated device list,
or accepts the file name from a terminal. Storing
the system software on disk allows easier future
changes to the application system.

Run-Time Interface

The iRMX 88 Executive provides the User Run-time
Interface (URI). This URI interface, in addition to
encompassing the /O System services, provides
additional functionality for tasks. The additional
functionality includes a trap function and memory
management routines which provide the run-time
foundation for PASCAL-86, FORTRAN-86, or
PL/M-86 coded application tasks.

Table 3. 1/0 System Services

SERVICE FUNCTION
Data Transfer CLOSE Closes a file connection.
Services OPEN Opens a file connection for access.
- READ Reads a number of bytes from a file.
SEEK Seeks to the indicated position within a file.
TRUNCATE Truncates a file. ‘
WRITE Writes a number of bytes to that file.
File Connection ATTACH Attaches to a file connection.
Services CREATE Creates a file and returns a file connection.
CONNECTION STATUS Returns the file connection status.
DELETE Marks the file for deletion. '
DETACH Detaches a file connection.
RENAME Renames an existing file.
Volume Preparation FORMAT Formats the disk for files.

2-28

AFN-01706A

intel

iRMX™ 88

SPECIFICATIONS

Intellec® System Configuration and
Generation Requirements

Series |l Intellec Microcomputer Development
System with UDI support and a minimum of 2
diskette drives.

iRMX™-Based Configuration and
Generation Requirements

iRMX 86-based system with UDI support and a
minimum of 2 diskette drives.

Supported Harc!ware

iSBC™ SUPPORTED MICROCOMPUTERS

iSBC 86/05 Board
iSBC 86/12A Board
iSBC 86/14 Board
iSBC 86/30 Board
iSBC 88/25 Board
iSBC 88/40 Board
iSBC 88/45 Board

MASS STORAGE

iSBC 204 Flexible Diskette Controller
iSBC 206 Flexible Disk Controller
iSBC 208 Flexibie Disk Controller
iSBC 215A Winchester Disk Controller
iSBC 215B Winchester Disk Controller
iSBC 220 SMD Disk Controller

iSBC 254 Bubble Memory Board

MULTIMODULE™ BOARDS

iSBX 218 Flexible Disk Controller (when used with
the iSBC 215 Controller)
iSBC 337 Numeric Data Processor

iSBX 351 Serial /0 Board

CUSTOM IAPX 86, 88-BASED SYSTEMS
REQUIREMENTS

8253 or 8254 Programmable Interval Timer
8259A Programmable Interrupt Controller

8251A USART or iSBX 351 board (when the Ter-
minal Handler is configured into the system).

8087 Numeric Processor Extension (when NPX
tasks are configured into the system).

Reference Manuals (supplied)

143238 — Introduction to the iRMX 80/88 Real-
Time Multitasking Executives

143241 — iRMX 88 Installation Instructions
143232 — iRMX 88 Reference Manual

142603 — iRMX 80/88 interactive Configuration
User’s Guide

142926 — Guide to Writing Device Drivers for the
iRMX 86 and iRMX 88 I/0 Systems

AFN-01708A

2-29

mtel IRMX™ 88
ORDERING INFORMATION Part Number Description
. RMX 88 ABY Single Density ISIS media. In-
Part Number Description cludes incorporation fee '
RMX 88 A licensed product which in- buyout.
D, Froo Shace Manager RMX 88 BBY Double Density ISIS media. In-
and I/O System object modules. g:"?:t incorporation fee
Package also includes UDI- yout.
compatible Interactive Config- RMX 88 DBY Single Density RMX-86 media.
uration Utility program for Includes incorporation fee
system generation and a com- buyout.
g':c'g is:élzgg‘sa:x?m;‘gghase RMX 88 AWX One year Single Density ISIS
Customer Training Course media update service.
credit. RMX 88 BWX One year Double Density ISIS
RMX 88 ARO Single Density ISIS media. Re- media update service.
quires derivative work incor- RMX 88 DWX One year Single Density
poration fee. RMX-88 media update service.
RMX 88 BRO Double Density I1SIS media. Re- RMX 88 LST Human readable source listings
quires derivative work incor- . for iRMX 88 software.
poration fee. RMX 88 LWX Update service for human
RMX 88 DRO Single Density RMX-86 media. readable source listings.
Requires derivative work incor- RMX 88 RF Incorporation fee.

poration fee.

2-30

intal :
PRECONFIGURED iRMX™ 86
OPERATING SYSTEM

= Ready-to-run Preconfigured iRMX™ 86
Operating System for iSBC® systems

= Direct support for Intel on-target
compilers and development tools

a Simple program load and debug with
Bootstrap and Monitor in 2732A
EPROMs

s Device drivers included for diskettes,
Winchester hard disks, serial
terminal interface, and parallel Ime
printer

= Efficient realtime multitasking
scheduler with 255 priority levels

= Complete support of 8087 numeric
processor extension

= Direct support of independent
software vendor compilers and
applications

= A complete, high-performance,
execution engine for UDI applications

The Intel Preconfigured iRMX 86 Operating System is a flexible, realtime, and multitasking system which
is configured to run on a low-cost, iSBC 86-based hardware system. The iRMX 86 Operating System is
designed to provide a structured and efficient environment for many time- and performance-critical appli-
cations such as factory automation, business data and text processing, medical electronics, data commu-
nications and process control. The Preconfigured System provides this environment without requiring
specific hardware and software configurations. Based on the UDI software interface architecture for op-
tional compilers and interpreters, the iRMX 86 PC System supports development of sophisticated applica-
tions using the target hardware. A ready-to-use comprehensive human interface provides advanced ser-
vices including creating and maintaining a hierarchical file system, entering the debug monitor and
backing-up diskette volumes.

C

J FORTRAN

BASIC

PASCAL cosoL

SOFTWARE
VENDOR
LANGUAGES

APPLICATIONS
SUPPORT

INTEL
LANGUAGES

APPLICATIONS

SOFTWARE INTERFACE ARCHITECTURE

UNIVERSAL RUN-TIME
INTERFACE
(URy

LANGUAGE

UNIVERSAL DEVELOPMENT
SUPPORT INTERFAC

woy

STANDARD l/O INTERFACES

CEE
FLOATING
POINT

RESOURCE REAL TIME NUCLEUS

MANAGEMENT

MULTIPROCESSING SYSTEMS BUS
MULTIBUS

* ETHERNET is 2 registerad 1rademark of Xeros Corp

Figure 1. IRMX™ 86 PC Support for Standard Interfaces

and may be used only to describe Intel products Intel, CREDIT, index, Insite, Intellec, Library Manager, Megachasss,
for the use of any

The g are of Intel Corp
Micromap, MULTIBUS, PROMPT, UPI, xScope, Promware, MCS, ICE, IRMX, 1SBC, 1ISBX, MULTIMODULE and ICS Intel C no

circultry other than circuitry embodied in an intel product No other circuit patent licenses are implied

© INTEL CORPORATION, 1982

March, 1982
Order Number: 210422-001

2-31

intel

iRMX™ 86 PC

The Preconfigured iRMX 86 Operating System is a

‘These commands are especially useful for manag-

complete set of system software modules that are -

ready-to-run in a simple MULTIBUS system con-
sisting of an iISBC 86 computer, memory, and a
diskette controlier board. All the features of the
iRMX 86 Operating System are provided along with
a bootstrap monitor to load the system diskette in-
to the system.

The Preconfigured iRMX 86 System provides both
implicit and explicit management of system
resources. These resources include the processor’s
time and registers, up to one megabyte of system
memory, independent interrupt sources, all input and
output devices, as well as directory and data files
contained on diskettes or 8” Winchester disks.

FUNCTIONAL DESCRIPTION

In applications where computers are required to
perform many functions simultaneously, the iRMX
86 Operating System provides a multiprogram-
ming environment in which many independent,
and optionally multitasking, applications may run.
Each application environment may be treated sep-
arately to allow application programmers the flex-
ibility to separately manage each application’s
resources. A complete description of the iRMX 86
Operating System can be found in the iRMX 86
Data Sheet (Order Number: 210330).

User Commands

The iRMX 86 PC System provides a number of
powerful tools necessary for the development of
microcomputer applications. They are included on
the system disk and brought into memory when
needed to perform the functions listed in Table 1.

ing user programs and data stored on diskettes.

File Management

The iRMX 86 PC file management system allows
users to access information on diskettes by refer-
ring to a file with its ASCII name. The names of
files stored on a disk are catalogued in special
files called directories. As directories are them-
selves named files, the iRMX 86 file system allows
directories to contain the names of other direc-
tories. This leads to a hierarchical file structure as
illustrated in Figure 2. This structure is useful for
isolating file names of particular applications, and
for tailoring the system’s data to the requirements
of users and applications sharing storage devices.

$

IlL

WORK SYSTEM PROG

L

FILE

IRMX™ 86

uoi

DIRECTORY

© coPY DIR (OTHER)

URXSML URXCOM URXLRG
L8 LB LB

ol
-EXT

Figure 2. IRMX™ 86 PC System Disk Directory Tree

Table 1. IRMX™ 86 PC Commands

Command Function
ATTACHDEVICE Gives a logical name to a specific disk, CRT, or Printer device
BACKUP Copy directories and files from one device to another
COPY Copy one or more files to one or more destin,ation files
CREATEDIR Create a directory file to store the names of other files
DATE Set the system calendar
DELETE Delete a file or directory
DEBUG Enter the System Monitor
DETACHDEVICE | Remove a device from the system
DIR List the names, sizes, owners, etc. of the files contained in a directory
FORMAT Prepare a new diskette volume for use
RENAME Change the name of a file
RESTORE Recreates a volume saved by BACKUP
SUBMIT Start the processing of a series of commands stored in a file
TIME Set the system time-of-day clock
VERIFY Verify the structure of an iRMX 86 Named File volume, and check for possible disk data errors

AFN-02202A

2-32

intel

iRMX™ 86 PC

Figure 2 also shows the structure of the direc-
tories on the iRMX 86 PC system diskette. It con-
tains all the programs and commands that make
up the iRMX 86 PC System. Users may add other
files and directories anywhere in the structure.
Whenever an operator makes a request to use one
of these files, the System will search the appro-
priate directory tree in order to find the necessary
information about the file’s size, access rights,
and specific location on the diskette. Applications
may also refer to a specific file or group of files by
specifying the directory from which to start the
search.

Standard Interfaces

The iRMX 86 PC System supports a group of 31
easy-to-use standard system calls known as the

Universal Development Interface (UDI). Figure 1
shows how this interface provides iRMX 86
systems the capability of using many compilers
and language translators. The'se include the iAPX
86 and 88 Macro Assembler, and the PASCAL
86/88, PL/M 86/88, and FORTRAN 86/88 compilers
available from Intel. They also include a number of
other Intel development tools, and language trans-
lators and applications available from indepen-
dent software vendors.

The standard UDI software interface establishes a
path to future Intel software products and opens
the door to a host of compilers, interpreters, and
application programs available from independent
software vendors. These UDI calls are easy-to-use
and are listed in Table 2. A more complete list of all
the system calls provided by the iRMX 86 PC
System can be found in the iRMX 86 Data Sheet.

Table 2. UDI System Calls

System Call

Function Performed

Memory Management:

DQS$ALLOCATE B
DQ$FREE

DQS$SGET$SIZE
DQ$RESERVE$10$MEMORY

File Management:
DQS$ATTACH
DQ$CHANGESEXTENSION
DQ$CLOSE
DQ$CREATE
DQ$DELETE
DQS$DETACH
DQ$OPEN

DQS$READ
DQ$RENAME
DQ$SEEK
DQ$TRUNCATE
DQ$WRITE
DQS$FILESINFO
DQ$CHANGES$ACCESS

Process Management:

DQSEXIT
DQGETCONNECTIONS$STATUS
DQ$OVERLAY

DQ$SPECIAL

Exception Handling:
DQ$GETSEXCEPTION$SHANDLER
DQ$DECODES$EXCEPTION

Creates a segment of a specified size for use by the application.

Returns the specified segment to the system:
Returns the size of the specified segment.
Reserves memory for use by I/O operations.

Creates a connection to a specified file.
Changes or adds an extension to a file name.
Closes the specified file connection.

Creates a Named File for use by the application.
Deletes a Named File.

Closes a file and deletes its connection.
Opens a file for a particular type of access.
Reads the next sequence of bytes from a file.
Renames the specified Named File.

Moves the current position pointer of a file.
Truncates a file.

Writes a sequence of bytes to a file.

Returns information about the specified file.
Changes the access rights of the specified file.

Exits from the current application job.
Returns the current status of the specified file' connection.
Causes the specified overlay to be loaded.

Performs special /O related functions on terminals with special control

features.

Returns a pointer to the program currently being used to process errors.

Returns a short description of the specified error code.

2-33

AFN 02202A

intel

iIRMX™ 86 PC

Table 2. UDI System Calls (con’t.)

System Call

Function Performed

Exception Handiirlg (con’t.)

DQ$TRAPSEXCEPTION
error.

DQ$TRAP$CC

Application Assistance:

Identifies a custom exception processing program for a particular type of

Identifies a custom handler for processing CNTL/C keyboard inputs.

Returns the next argument from the character string used to invoke the

Returns the name of the underlying operating system supporting the UDI.
Returns the current time of day as kept by the underlying operating

Selects a new buffer from which to process commands.
Returns date and time in ASCIl characters.

DQ$GETSARGUMENT

application program.
DQGETSYSTEMSID
DQ$GETS$TIME

system.
DQ$SWITCH$BUFFER
DQ$DECODESTIME

Simple System Start-Up

The iRMX 86 PC system includes a comprehensive
Monitor and Bootstrap Loader in four 2732A
EPROMSs. These programs have been configured
to support the hardware shown in Figure 3. As
shown, the Monitor is capable of communicating
with an Intellec Microcomputer Development
System. This communications link can be used to
transfer programs and data between an iRMX 86
System and the Intellec Development System.

This start-up system provides a perfect environ-
ment for the development and efficient execution
of applications programs. When these programs
require different I/O devices or a different software
configuration, they can be moved to any other

iRMX 86 System directly. The iRMX 86 PC System
includes a separate diskette with the complete set
of iRMX 86 multitasking system call declarations for
those programmers requiring more function than is
supplied by the UDI.

Debugging Aids

The iRMX 86 PC System includes a System
Monitor that provides the capability of debugging
one task at a time. The monitor includes instruc-
tions for examining and modifying the contents of
all 8086 and 8087 registers, setting system break-
points, single-stepping, examining and modifying
system memory, executing CPU /O, and disas-
sembling program instructions.

INTELLEC®
DEVELOPMENT
SYSTEM

PARALLEL

2732A EPROMS
(WITH BOOTSTRAP
LOADER AND
MONITOR)

BACKPLANE WITH
MULTIBUS”
CONNECTORS

FLEXIBLE DISK CONTROLLER

PROCESSOR BOARD

LINE PRINTER

CHASSIS/POWER
SUPPLY

VIDEO TERMINAL

MEMORY BOARD(S)

Figure 3. Hardware Contiguration of PC System

2-34

AFN-02202A

intel

iRMX™ 86 PC

SPECIFICATIONS

Optional Intel® Software Products

iRMX 86 Fully configurable iRMX 86 Realtime
Operating System

iRMX 86 Development Utilities Pack-
age including the iAPX 86 and 88
Linker, Locater, and Macro Assembler,
Librarian, and the iRMX 86 Editor

PASCAL 86/88 Compiler for execution
on iRMX 86 Systems

FORTRAN 86/88 Compiler for execu-
tion on iRMX 86 Systems

PL/M 86/88 Compiler for execution on
iRMX 86 Systems

i{APX 86 System Monitor and Micro-
computer Development System Com-
munications Link

iRMX 860

iRMX 861
iRMX 862
iRMX 863

iSBC 957B

Supported Hardware Products

iSBC® MULTIBUS® PRODUCTS

iSBC 86/12A, 86/14, and 86/30 Single Board Com-
puters

iSBC 208 Flexible Disk Controller

PERIPHERAL DEVICE
CRT — RS232 at 9600 Baud
Printer — Centronics-type Parallel Interface

Diskettes — 2 to 4 Single- or Double-Density,
Single- or Double-Sided

Memory Requirements

200K Bytes to support applications less than 16K
Bytes. '

384K Bytes to support Intel’s PASCAL 86 Com-
piler.

256K Bytes to support Microsoft’s Basic Inter-
preter and a 32K Byte user program and data
space.

Reference Material
iRMX 86 Operating System Data Sheet (210330)

Getting Started with the iRMX 86 System
(144340-001) (Included in PC System Package)

Introduction to the iRMX 86 Operating System
(9803124-03)

iRMX 86 Installation Guide (9803125-04)
iRMX 86 Configuration Guide (9803126-04)
iRMX 86 NUCLEUS Reference Manual (9803122-03)

iRMX 86 Terminal Handler Reference Manual
(143324-01)

iRMX 86 Debugger Reference Manual (143323-01)

iRMX 86 Basic I/O System Reference Manual
(9803123-04)

iRMX 86 Loader Reference Manual (143318-01)

iRMX 86 Extended I/O System Reference Manual
(143318-001)

iRMX 86 Human Interface Reference Manual
(9803202-002)

iRMX 86 System Programmer’s Reference Manual
(142721-003)

Guide to Writing Device Drivers for the iRMX 86
and iRMX 88 I/O Systems (142926-003)

iRMX 86 Programming Techniques (142982-002)

User's Guide for the iSBC 857B iAPX 86,88 Inter-
face and Execution Package (143979-002)

iRMX 86 Disk Verification Utility Reference Manual
(144133-001)

iRMX 86 Pocket Reference (142861-002)
Edit Reference Manual (143587-001)

Runtime Support Manual for iAPX 86,88 Applica-
tions (121776-001)

Guide to Using iRMX 86 Languages (143907-001)

Reference material may be ordered from any intel
sales representative, distributor office, or from
Intel Literature Department, 3065 Bowers Avenue,
Santa Clara, CA 95051.

Training Courses
Introduction to the iRMX 86 Operating System

"iRMX 86 1/0 System Concepts

2-35

AFN 02202A

intel

ORDERING INFORMATION

The iRMX 86 PC System is provided on a double-
density, iRMX 86 compatible system diskette (for-
mat type E). The iRMX 86 PC System is shipped
with a comprehensive users’ manual (‘“Getting
Started With The iRMX 86 System), Bootloader and
Monitor EPROMSs, and the complete iRMX 86 Inter-
face Libraries contained on a second diskette. A
full year of Intel Support Level D (Software Problem
Report Service) is included. This Intel copyrighted
system is licensed as a single-use software product
as defined by Intel’s Master Software Licenses.

Order Code Description

RMX 86PC E Complete Preconfigured iRMX
86 Operating System with inter-
face libraries, bootstrap monitor,
and user documentation.

2-36

|ntJ
iOSP™ 86

IAPX 86/30 AND iAPX 88/30 SUPPORT PACKAGE

s Development and run-time support for = Compatible with Intel PL/M 86/88,

iAPX 86/30 and 88/30 Operating PASCAL 86/88, FORTRAN 86/88, and
System Processors iAPX 86/88 ASSEMBLER
a Supports (P)ROM or RAM based
= Total iRMX™ 86 Operating System system

software compatibility s Complete system initialization aids

s Extendable with iRMX™ 86 Operating = Complete system configuration aids
System calls = OSP Interactive Configuration Utility

The Intel iOSP 86 Support Package for the iAPX 86/30 and 88/30 Operating System Processors contains a
comprehensive set of easy-to-use tools necessary to develop (P)ROM or RAM-based applications that use
the 80130 Operating System Firmware component. All of the system initialization and run-time facilities
are provided in libraries that may be configured to specific requirements, and linked to application pro-
grams written in either iAPX 86 or iAPX 88 Assembler or a high level programming language such as
PASCAL 86 and PL/M 86. The iOSP 86 Package provides users with the basic initialization and interface
routines needed to build application software based on the fundamental operating system functions of the
iAPX 86/30 and 88/30 Operating System Processors. The iOSP 86 Package also enables users to add higher
level I/O functions from the fully compatible iRMX 86 Operating System, or to form custom, real-time
systems.

The g are of Intel Ci and may be used only to describe Intel products Intel, CREDIT, Index, Insite, intellec, Library Manager, Megachass:s,
Micromap, MULT!BUS PROMPT, UPI, uScope, Promware, MCS, ICE, IRMX, 1ISBC, 1ISBX, MULTIMODULE, I0SP and ICS Intel Corporation assumes no responsibility for the use of
any circuitry other than circuitry embodied in an Intel product No other circuit patent licenses are ?rﬂphed .

INTEL CORPORATION, 1981 October, 1981
‘ Order Number: 210236-001
2-37

intel

iOSP™ 86

FUNCTIONAL DESCRIPTION

The iAPX 86/30 and iAPX 88/30 Operating System .

Processors (OSPs) provide an easy-to-use founda-
tion on which many real-time applications may be
built. They provide the functions and system sup-
port needed to implement both simple and com-
plex applications that require multlple tasks to run
concurrently (see Figure 1). These services are
made possible by the addition of the five new data
types integrated into the 80130 Operating System
Firmware (OSF) component. The 80130 OSF ex-
tends the basic data types of the CPU (integer,
byte, character, etc.) by adding new system data
types (JOB’s, TASK’s, MAILBOX’s, SEGMENT'’s,
and REGION's), and extensive timer, interrupt,
memory, and error management designed to give
real-time response to multitasking and multi-
programming applications. As shown in the sec-
ond half of the figure, other operating system func-
tions such as mass storage I/O services and an
easy-to-use Human Interface can be added easily,
by using modules from the complete operating
system services of the iRMX 86 Operating System.
The iOSP 86 Support Package provides both an in-
terface between application software and the
Operating System Processors, and development
tools designed to make the implementation and
initialization of real-time, multitasking systems
much simpler.

The iOSP 86 Support Package provides system
developers with the configuration options necessary
to tailor the iAPX 86/30 and 88/30 Operating System
Processors to custom applications. Central to the en-
tire configuration process is the OSP Interactive
Configuration Utility (OSPICU). This utility is an easy-
to-use tool which allows you to make configuration
decisions by responding to screen-oriented displays.
Using the ICU, users can form easy-to-use initializa-

tion routines, and support code. The interface
libraries form a simple interface between application
software and the operating system primitives of the
80130 OSF component. The various configuration
options include:

Memory and I/O Addressing

The 80130 OSF requires a 16K byte block of
memory address space to be reserved for accessing
internal functions. The iOSP 86 Support Package
is used to specify the base address of the 80130
and the beginning of the initialization routines.

All Interrupt and Timer management of the OSF is

‘controlled via a reserved 16-byte /O address block

that may be selected by the user. In addition, from
1 to 7 slave 8259A interrupt controllers can be
specified in order to provide the system with up to
57 priority interrupt sources. The OSF baud rate
generator may also be configured to support an
optional terminal interface.

Extending the 80130 OSF

The 80130 OSF allows users to add their own
operating system extensions. These extensions
may take advantage of the detailed and efficient
intertask communication and synchronization
primitives already provided by the 80130, and/or
may utilize custom functions tailored to specific
applications. The Support Package also enables
users to extend the OSF with the extensive ser-
vices of Intel’s iIRMX 86 Operating System, thereby
allowing applications to grow without having to
change or alter application software already writ-
ten, or having to write other operating system soft-
ware. Use of the 80130 with the iRMX 86 Operating
system greatly reduces the amount of memory
needed for the iRMX 86 Nucleus layer, and enables
applications to take advantage of the increased

MULTITASKING, REAL-TIME
APPLICATION SOFTWARE

COMPLEX
APPLICATION SOFTWARE

COMPILERS

HUMAN INTERFACE
ElOS

BASIC /0 SYSTEM

IRMX™ 86 NUCLEUS

1OSP™ 86 INTERFACE LIBRARIES

iOSP™ 86 INTERFACE LIBRARIES

8086

8087
OR 80130
(OPTIONAL) 8088

8086

8087
OR 80130
(OPTIONAL) 8088

Figure 1. Structure of Typical Systems

AFN-02085A

2-38

intel

iOSP™ 86

performance and reduced size requirements in-
herent in the iAPX 86/30 and 88/30 VLSI Operating
System Processors. As each of the services pro-
vided by the 80130 is completely iRMX 86-compat-
ible, applications have an automatic upward path
to support complete file systems and multiple pro-
cessor environments.

Application Interfaces

Two interface libraries are included in the iOSP 86
Support Package. The first allows programmers to
write application software modules in the Com-
pact Model of computation supported by Intel’s
compilers. The second provides an interface to
program segments written in either the Medium or
Large Models.

The interface libraries provide the means of ac-
cessing all of the primitives supported by the
Operating System Processors. With this interface,
and all the memory management primitives of the
OSPs, applications have full access to 1M byte of
memory, and all of the addressing modes of the
CPU.

The iAPX 86/30 and 88/30 OSPs allow applications’

to take full advantage of the Compact, Medium,
and Large models of computation afforded by the
segment model of the CPU’s.

These libraries are fully compatible with object
modules produced by the MACRO 86/88
Assembler, and the PASCAL 86/88 and FORTRAN
86/88 and PL/M 86/88 Compilers.

Application Initialization

The iOSP 86 Support Package provides for the con-
figuration of the system Root JOB, and all user ap-
plication JOB’s that require initialization when the
system is started. The user may also specify the

configuration of the interrupt system (including
slave 8259A interrupt controllers) and the clock
rate used for system timing. These choices are
automatically programmed into the various
devices when the system is initialized.

Parameter Validation

Parameter validation is a configurable option of an
OSP-based system. The OSP can check the
Parameters of the Primitive that you invoke either
on a system-wide basis or on a per job basis.

Operating System Calls

The 80130 OSF performs a total of 37 operating
system primitives all of which are completely com-
patible with the equivalent iRMX 86 Operating
System calls. The iOSP 86 Support Package pro-
vides user-level interfaces to these primitives to
enable applications to create, delete, control, and
exchange the new data types provided by the 80130
OSF. in general, these interfaces allow application
software to manage all of the resources of an iAPX
86/30 or 88/30 OSP (and an optional 8087 Numeric
Processor Extension) system via any of the 37
system calls shown in Figure 2.

Required Development Hardware

Use of the iOSP 86 Support Package requires an
Intel MDS Development System which supports

" Series lil (either single or double density diskettes)

or any iRMX 86 system supporting a standard floppy
diskette drive and the iRMX 860 Assembler, Linker,
and Locator Package. Use of the 80130 requires only
a minimal system including either the iAPX 86/30
or 88/30 Operating System Processor, and enough
system memory to contain the application programs
and initialization and interface software provided in
the iOSP 86 Support Package.

JOB GROUP

CALL RQSCREATESJOB

TASK GROUP

CALL RQSCREATESTASK
CALL RQSDELETESTASK
CALL RO$SSUSPENDSTASK
CALL RQSRESUMESTASK
CALL RQSSLEEP

CALL ROSGETSTASKSTOKENS
CALL RQSSETSPRIORITY

MAILBOX GROUP

CALL RQSCREATESMAILBOX
CALL ROSDELETESMAILBOX
CALL ROSSENDSMESSAGE
CALL RQSRECEIVESMESSAGE

SEGMENT GROUP

CALL ROSCREATESSEGMENT
CALL RQSDELETESSEGMENT

REGION GROUP

CALL ROSCREATESREGION

INTERRUPT MANAGEMENT GROUP

CALL RQOSSETSOSSEXTENSION
CALL RQSSETSINTERRUPT
CALL ROSENTERSINTERRUPT
CALL RQSEXITSINTERRUPT
CALL ROSWAITSINTERRUPT
CALL RQSSIGNALSINTERRUPT

CALL RSDELETESREGION CALL ROSRESETSINTERRUPT
CALL ROSSENDSCONTROL
CALL ROSENABLE
CALL ROSRECEIVESCONTROL
CALL ROSACCEPTSCONTROL CALL ROSDISABLE
CALL ROSGETSLEVEL

OBJECT MANAGEMENT GROUP

CATALOG OJBECT

LOOKUP OBJECT

CALL RQSDISABLESDELETION
CALL RQSENABLESDELETION
CALL RQSGETSTYPE

ERROR CONTROL GROUP

CALL ROSSETSEXCEPTION
CALL ROSSIGNALSEXCEPTION
CALL ROSGETSEXCEPTION

Figure 2. Operating System Primitives

AFN 02085A

2-39

intel iOSP™ 86

ORDERING INFORMATION

Each of the ordering options listed below include all
the necessary initialization and interface procedures
needed to use the iAPX 86/30 and iAPX 88/30
Operating System Processors. Purchase of the iOSP
86 Package requires verification of an Intel Master
Software License. Each package also includes an
iOSP 86 User’s Manual (Document Number
145393-001), and a one-year update service.

Part Number "
OSP 86 A

osP 86 B

OSP 86 E

Description

iOSP 86 Support Package con-
tained on an ISIS-Il compat-
ible, single density diskette.

iOSP 86 Support Package con-
tained on an ISIS-ll compat-
ible, double density diskette.

iOSP 86 Support Pacﬁage con-
tained on an iRMX 86 format,
double density diskette.

2-40

intel | |
iMMX™ 800
MULTIBUS® MESSAGE EXCHANGE SOFTWARE

= Supports use of multiple processors s Helps solve critical response-time
on the MULTIBUS® system bus problems

n Increases total system throughput s Includes Ethernet device driver

= Implements Intel-standard multi- s Provides hardware-independent appli-
processing protocol cation interface

= Supports combination of 8- and 16-bit = Supports iRMX™ 80, iRMX™ 86, and
boards in one design iRMX™ 88 applications

The iMMX MULTIBUS Message Exchange provides an Open Multiprocessing System. It allows tasks-
executing on separate processors to communicate by sending messages. By providing an off-the-shelf
implementation of the MULTIBUS Interprocessor Protocol, it cuts many man-months off the typical devel-
opment schedule. Loosely coupled multiprocessing makes multiple-microcomputer applications simple:
programs request message transfer by means of a small set of systems calls — the iMMX software takes
care of providing reliable message transfer via shared MULTIBUS memory.

The iMMX product is open to high-performance applications, encourages modular design practices, and
supports multiple operating systems. By making it easy to use multiple processors it increases total
system thoroughput and allows processing power to be optimized for both I/O handling and data process-
ing. Once an initial application design is complete, it can be easily enhanced by adding new tasks and/or
processors. The iMMX product allows the engineer to choose from a wide range of 8- and 16-bit iSBC
microcomputers — from the iSBC 80/24 board to the iSBC 86/30 single board computer. The net resultis a
combination of performance and flexibility that meets the needs of a diverse set of multiple-micro-
computer applications.

)

4\\
MULTIBUS® BUS 7‘/
Vv

/
P
/
AN
N

N

oL >
V2SS

Figure 1. iMMX 800 Real-Time Executive Interface

The g are of intel C and may be used only to describe Intel products Intel, ICE, IMMX, IRMX, 1ISBC, 1SBX, 1ISXM, MULTIBUS, MULTICHANNEL,
MULTIMODULE and iICS$ intei C assumes no resp y for the use of any circuitry other than circuitry embodied in an Intel product No other circuit patent licenses
are imphed * ETHERNET 1s a trademark of Xerox Corporation

© INTEL CORPORATION, 1982 August, 1982

Order Number 143875-003

2-41

intel

iMMX™ 800

FUNCTIONAL DESCRIPTION
Open Multiprocessing System

OPEN TO HIGH PERFORMANCE APPLICATIONS

The iMMX supports high performance applica-
tions in two ways. First, it increases the total
system thoroughput by allowing multiple pro-
cessors to be easily incorporated in an applica-
tion. Second, critical response time requirements
can be met by placing computing power closge to
each critical input. Application programmers can
concentrate on added-value functions while iMMX
software takes care of variable length transfers,
shared memory management, mutual exclusion,
interprocessor interrupts, and hardware details.

OPEN TO MODULAR DESIGN

By supporting modular design, iMMX software
provides four key benefits. First, each hardware
module can be selected or designed according to
needs of a subsystem; the iIMMX 800 software
takes care of the integration. Second a whole
range of products can be created from a few hard-
ware/software modules. Third, the breadth of pro-
ducts available for the industry-standard MULTIBUS
dramatically reduces the amount of custom-
design work required to complete a system. Finally,
as customers, new markets, or competition re-

quires, performance can be enhanced or new
features can be added by adding new modules.

OPEN TO MULTIPLE OPERATING SYSTEMS

iMMX software supports both standard Intel iRMX
operating systems and custom systems. Off-the-
shelf support is provided for iRMX 80, iRMX 86,
and iRMX 88 applications — allowing the engineer
to choose the best match for each problem. In ad-
dition, the underlying MULTIBUS Interprocessor
Protocol (MIP) is completely specified so that
custom operating systems and other subsystems
can be integrated with iRMX-based subsystems.

Loosely-Coupled Multiprocessing

The iMMX 800 software supports loosely-coupled
multiprocessor systems. The software interface is
composed of simple, easy-to-use, modules. By
supporting the addressing, data transfer, control,
and memory management functions, the software
as shown in Figure 2, divides the operation into
three functions: the virtual interface, the logical
protocol, and the physical protocol.

The virtual interface is the application task’s ac-
cess to the iMMX services. Using this interface, a
task can request a connection to a particular port.
Using the connection, the task can request that
messages be transferred to the task(s) that are re-
questing messages from the same port.

DEVICE A DEVICE B
1
VIRTUAL
TASK A INTERFACE TASK B
iMMX LOGICAL iMMX
<~ ~ proTocOL — >
FACILITY FACILITY
~—_ PHYSICAL ___—%]

PROTOCOL

J\X

MULTIBUS® BUS

AN
/

i
~

7/

Figure 2. Inter-Device Task-to-Task Communications

2-42

intel

iMMX™ 800

The logical protocol supports a message manager
function. The Message Manager prepares the
message for delivery to a specific destination port
based on the connection specified. In addition,
the logical protocol returns status information
about the transfer.

The physical protocol is implemented by VLS| and
associated circuitry. This level of protocol includes
data flow control, mutual exclusion mechanics,
address recognition and interactive signalling re-
quirements.

iMMX software supports four different inter-device
signalling mechanisms: MULTIBUS interrupts,
memory-mapped interrupts, I/O-port-mapped inter-
rupts and polling.

iRMX™ Uniform Interface

The iMMX 800 software provides a uniform inter-
face across all iRMX based software environ-
ments. The iIMMX software services are provided
as a set of tasks, system procedures, and interrupt
drives.

Support is supplied for the iAPX 86/88-based
microcomputers that support the iRMX 86 and the
iRMX 88 Operating Systems. In addition, software
support is provided Intel 8085-based products via
the iRMX 80 Operating System. Table 1 shows the
code size requirements of each of the iMMX con-
figurations. Table 2 gives a complete list of the
boards that are supported.

Table 1. iMMX 800 Software Memory
Requirements

Executive K Bytes
iRMX™ 80 Operating System 3 7K Bytes
iRMX™ 88 Operating System

128K support 4.8K Bytes

1MB support

“Compact” 5.5K Bytes
‘Large” 6 3K Bytes
iRMX™ 86 Operating System 6 6K Bytes

Table 2. Supported Single Board

Computers
iRMX™ 80 iRMX™ 88 iRMX™ 86
Operating Operating Operating
System System System
iSBC® 80/24 iSBC® 86/05 iSBC® 86/05
iSBC® 80/30 iSBC® 86/12A iSBC® 86/12A
1ISBCE® 544 iSBC® 86/14 iSBC® 86/14
iSBC® 569 iSBC® 86/30 iSBC® 86/30
iSBC® 88/25 iSBC® 88/25
iSBC* 88/40 iSBC*® 88/40
iSBC* 88/45 iSBC® 88/45

Message Transfer Mechanism’

iMMX multiprocessing is based on a message-
passing model. Tasks on each processor commun-
icate with each other by sending and receiving
messages to and from ports.

Table 3 shows five iMMX system calls: Find Port,
Activate Port, Transfer Message, Deactivate Port
and Lose Port.

Shared Memory Space

The iMMX software manages the message pass-
ing in such a way that a task that receives a
message can address it even if the message
originated in the private memory of another pro-
cessor. This means that, when appropriate, the
message is copied into memory that can be ad-
dressed by the receiver.

Interprocessor Protocol Architecture

The Intel MULTIBUS Interprocessor Protocol (MIP)
specifies an architecture by which processes ex-
ecuting on different MULTIBUS single board com-
puters can communicate with one another in a
reliable, controlled manner within that system. A
system can consist of a heterogeneous set of pro-
cessors, executing a heterogeneous set of real-
time executives and application software.

Based on a simple internal structure, the MIP
specification defines a functional consistency
across several product lines and provides the

Table 3. System Calls

Function Name Description
FIND PORT CQFIND Find a port and return a connection-1D
ACTIVATE PORT CQACTV Activate a port for receiving messages from other tasks
TRANSFER MESSAGE CQXFER: Transfer a message to a port identified by the connection-ID.
DEACTIVATE PORT CQDACT Deactivate port. Further messages are returned to the sender
LOSE CQLOSE Loses a connection to a port

2-43

intel

iMMX™ 800

means to support efficient operation in multiple
processor environments.

Ethernet Device Driver

The iMMX 800 package provides an iSBC 550
Ethernet Communications Controller device
driver. This device driver uses iMMX routines to
communicate to the iSBC 550 contoller (see
Figure 3). This same approach can be used to write
other iRMX 88 and 86 device drivers.

1SBC ¥ 86/12A
BOARD

1SBC * 86/12A
BOARD
1SBC ¥ 550

BOARD

1SBC * 550
BOARD

IRMX * 86
APPLICATION

IRMX * 86
APPLICATION

ETHERNET *

Figure 3. Ethernet Communications

SPECIFICATIONS
iSBC™ Supported Hardware

SINGLE BOARD COMPUTERS

iSBC 80/24
iSBC 80/30
iSBC 86/05
iSBC 86/12A
iSBC 86/14
iSBC 86/30
iSBC 88/25

iSBC 88/40
iSBC 88/45

INTELLIGENT CONTROLLERS

iSBC 544 (Communications)

iSBC 569 (Digital)

iSBC 550 (Communications)
via Ethernet driver

Reference Manual (Supplied)

iMMX 800 MULTIBUS Message Exchange
Reference Manual .

ORDERING INFORMATION

Description

The iMMX 800 MULTIBUS Message Exchange
Software is a licensed product that provides users
of Intel Single Board Computers using the iRMX
80, iRMX 86, and iRMX 88 Operating Systems a
standardized, memory-based, task-to-task com-
munication protocol. This protocol provides the
fundamental capabilities needed to exchange data
between multiple 8-bit and 16-bit microcomputers
residing on the same MULTIBUS system bus.

Part Number Description

MMX 800 ARO Single Density Media. Re-
quires incorporation fee for
each derivative work.

MMX 800 BRO Double Density Media. Re-

quires incorporation fee for *
each derivative work.

2-44

MMX 800 ABY Single Density Media. Includes
incorporation fee buyout.

MMX 800 BBY Double Density Media. Includes
incorporation fee buyout.

MMX 800 AWX Single Density Media. Update
service for an additional year.

MMX 800 BWX Double Density Media. Update

' service for an additional year.

MMX 800 LST Human readable source
listings for the iMMX 800 soft-
ware modules.

MMX 800 LWX Extends source listing up-

dates for an additional year.

ntel

XENIX - 286
OPERATING
SYSTEMS

¢ Fully licensed version of the UNIX}
operating system optimized for the Intel

iAPX 286 processor

© Fastest microprocessor implementation
of UNIX, fastest floating point perform-

anceona microprocessor

® Important commercial OEM
enhancements

© Supports multiple levels of integration:

components, boards and systems

® Supported by Intel’s worldwide post-
sales service and support organizations

VL

*XENIX 1s a trademark of Microsoft Corporation
1UNIX s a trademark of Bell Laboratories

© INTEL CORPORATION, SEPTEMBER 1983

2-45

ORDER NUMBER 230752 001

C COMPILER
DEBUGGER

ating System
ation of Bell

ght 7 UNIX operating
PK 286 processor.

des not only all the
NIX Version 7,
nhancements from }
d Intel that meet the needs
ogfinercial OEM (Original

!t Manufacturer).

‘ Th Best Fouhdation for
ilding OEM Solutions

NIX 286 provides the OEM with a
complete software base on which to build
(' value-added functionality. It includes the
operating system, the C language, text
processors, development tools, system
accounting and security features, and

commercial enhancements that make it

the optimum foundation for OEM appli-

cation software
solutions.

XENIX:

Portable,

Flexible,
Powerful

XENIX has beconte
the industry-standard
microcomputer operat-
ing system for inter-
active, multi-user
applications. It has
gained wide popu-
larity in applications
such as distributed
data processing, busi-
ness data processing,
word processing, software
development, scientific and
engineering applications, and
graphics.
<4
Because of its standardization,
XENIX is portable to a variety of
hardware and therefore able to run
an even wider variety of software.

SOFTWARE- "V
DEVELOPMENT TO

XENIX is also an extremely powerful
operating system, providing the applica-
tions programmer with a wealth of de-
velopment tools and utilities for bringing
OEM products to market quickly.

XENIX 286: Faster than any
other UNIX on a Micro

XENIX 286 stands'head and shoulders
above other microprocessor versions of
UNIX, because it runs on the fastest,
most advanced microprocessor on the

F""""

market: the Intel iAPX 286. As the first
UNIX operating system derivative op-
timized for the iAPX 286, XENIX 286
alone can take full advantage of the
80286's unique features:

On-chip memory management
and protection is a key advantage

of XENIX 286 over other microprocessor
UNIX implementations. On-chip mem-
ory management reduces the overhead in
accessing system memory as compared
to the usual separate memory manage-
ment unit. With memory management
functionality right on the chip, the
operating system works more smoothly
and efficiently.

Advanced microprocessor
architecture provides pipeline
processing, wherein a continual flow of
instructions is kept in the CPU queue,
results in throughput several times faster
than the fastest competing
MiCroprocessor.

Fast floating point processing

is due to XENIX 286 support of the Intel
iAPX 287 math coprocessor. Floating
point processing delivers throughput that
is an order of magnitude faster than
non-floating point processing. Extra high
processing speeds are needed in applica-
tions such as data base processing, com-
mercial data reduction and graphics.

2.0x
XENIX on iSBC® 286/
1.5x
CODATA @ 8 MHz —
1.0x
ONYX @ 4 MHz ———
0.5x ALTOS @ 5 MHz
FORTUNE @ 6 MHz

(4 4 4 LY

Fastef, More Reliable Still
When Teamed with Other
Intel Systems Components

The throughput enhancements in

the XENIX 286 software are pushed

to even greater speeds by special
hardware architecture in Intel’s systems
and board products.

ITHTTTITTTTITTIIITTIIII A1/ h i s s

2-46

MULTIBUS® System Architec-
ture 1s the industry-standard system
bus. It accommodates any of the special-
purpose Intel iSBC® boards, as well as
standard peripherals, for easy system
expansion.

iLBX™ (Local Bus Exchange)

is an Intel hardware innovation that
increases the amount of local memory
accessible by the operating system to sig-
nificantly improve system throughput.

Error Correction Circuitry (ECC)
automatically detects and corrects soft
errors in RAM. This on-board, self-
correction facility reduces errors and
further underscores data integrity.

A Faster Operating System
Means Market Leadership

The combination of the industry’s most
widely accepted operating system for
multi-user, interactive applications with
the industry’s fastest and most advanced
microprocessor gives the OEM a far
superior price/performance ratio than is

(42 0127

See Intel benchmark series order no 230676-001

available through other options. The re-
sult for the OEM: market leadership due
to the ability to more attractively price
products based on superior performance.

ATT

(4 4
MICROSOFT

4 4

BERKELEY

[4

INTEL

(' £ /

XENIX 286 combines UNIX technology from thesd

XENIX 286: The Best of
Everything

The XENIX 286 Operating System con-
tains the best of many vendors” UNIX/
XENIX development efforts during the
last ten years (see Figure above). We
have taken the best features of many
UNIX versions—ease of use, flexibility,
performance, security, reliability—and
added our own enhancements (not the
least of which is compatibility with the
iAPX 286) to make XENIX 286 the op-
timum software development tool for the
commercial OEM.

Superior Data Reliability and
Integrity

XENIX 286 contains enhancements to
provide extremely high data reliability
and integrity, particularly important to
the OEM who is adding value to a systcm
product. The following enhancements in
XENIX 286 contribute to uniformly reli-
able data at all stages of application
development.

Automatic disk recovery is an
improvement of the UNIX file system
that allows automatic recovery of the file
system in the event of unexpected system
shutdown.

organizations.

Record and file locks arbitrate
multiple-access requests to the same re-
cord or file, allowing the programmer to
extend locks to a single record, group of
records or the entire file. This is im-
portant in multi-user applications to pre-
vent two or more users accessing and
updating the same information
simultaneously.

XENIX System Analysis Test
(XSAT) is a complete hardware-
software diagnostic package included
with all Intel integrated system products.
XSAT provides a total analysis of a
XENIX-based system, ensuring reliabil-
ity even after the OEM conflgures new
drivers into the system.

Tools for Easy System
Configuration

In addition to increased data relia-
bility measures, XENIX 286 has P
been functionally enhanced for
easier system configuration.
An interactive configura-
tion utility allows the

user to specify device
drivers, disk buffers,
memory size, etc., making
it easy for the OEM to meet uniq
design requirements, XENIX 28|
includes over six device drivers for hig]
speed controllers.

SIS NNNSNS

2-47

Friendlier Interface

The standard UNIX human interface has
been enhanced in XENIX 286, with the

+ addition of vi, a full-screen editor, for
easier and faster application
development.

The XENIX C shell augments the capa-
bilities of the standard UNIX shell with
the ability to maintain histories of in-
voked processes and provide the alias
feature, saving re-keying of often-used
commands.

Intel’s Open Systems
Approach

Intel believes that system components —
hardware or software— should be fully
compatible with other family members at
any level of integration and open to fu-
ture VLSI advancements. XENIX 286
was designed to be part of the Open
Systems concept.

Portability from Chip to
Board to System

Intel’s XENIX 286 Operating System 18
available for and fully compatible across
Intel component, board and system de-
signs, something that no other XENIX
version offers.

Such portability gives OEMs the flexi-

bility to choose the most appropriate and

profitable level of integration for their

applications. Component-level integra-
tion allows the OEM to meet unique

design requirements; board and

system-level integration afford re-

duced time to market.

There is no loss in
software development
investment as your
needs change, since
f. you can port XENIX-
B based applications from the
* chip to the system level or
¢ even from one Intel processor to
* another. For instance, code de-
W veloped on XENIX 86 can be fully
ported to a XENIX 286 system.

Open to Still Greater
Configurability through
Third-Party Software and
Hardware

XENIX 286 users can tap into an exten-
sive base of existing third-party lan-
guages and application packages for
almost endless versatility in system con-
figurability. There are hundreds of such
packages available today with many
more on the way.

Worldwide Support and
Service

XENIX 286 customers can take advan-
tage of Intel’s worldwide staff of trained
hardware and software engineers in con-

tracting for application design assistance.

A liberal warranty, including software
updates and a technical newsletter, fol-
lows the sale. Once the warranty expires
customers can choose from a variety of
support contracts.

Intel offers complete training on the
XENIX 286 Operating System as well as
the iAPX 286 processor and associated
hardware.

Intel, The Technological
Leader...

Intel is committed to pushing the fron-
tiers of VLSI design to their ultimate
limits. In the process, we move our
customers along the technology curve

Gl i

without interruptions in application
development or expensive mid-stream
architecture changes.

Intel started the micro revolution with the
4004 and has been the market leader with
every generation of advanced processors
since.

Systems and system software are a

natural for us: who better knows the
pieces and how to make them work
together?

...In Total Solutions

The XENIX 286 Operating System fully
exploits the iAPX 286, the fastest and
most sophisticated microprocessor on the
market. No other processor/operating
system combination will give OEMs a
faster and more economical path to get-
ting systems and applications on the
market.

Intel has always been first with the latest
and most advanced VLSI and now with
system software tailor-made for Intel
VLSI.-Because we re there first, our
customers are first in their respective
markets with state-of-the-art OEM and
end-user products.

AV A A A A AR AR X ENIX 286

2-48

Specifications

The XENIX 286 Operating System includes the following utilities, commands and subroutines:

System Documen- File and String Math Utilities Software System Text
Administration tation Manipulation and Sub- Development Status Processing
Boot Utilities learn basename Routines Libraries asktime and Editors
UNIX code manuals cat abs adb date checker
ac cd cabs arcv df col
accton i chgrp ceil awk du creek
ar :Sul;:e‘:hlcs chmod cos ctags file deroff
clri graph chown cosh false iostat ed
config 1 cmp dc gets 1 eqn
plot
dcheck spline comm exp Id Ic ex
dump copy fabs lorder Is look
dumpdir cp floor make ps ms
finger Language crypt hypot mkstr pwd negn
fsck as dd log nm pstat nroff
haltsys be diff3 rand od quot prep
icheck cb egrep sin printenv tty ptx
mkconf cc fgrep sinh prof who refer
login :?X . find srand SCCS+ rev
mkfs int grep tan size : sed
mknod mé4 head* tanh strings .Ig”?lr:t‘g:al'lt?llnt?es spell
mount ranlib In strip disable t300
ncheck ratfor mkdir Program time enable t300s
newgrp . mknod Execution tr Ipr 45
passwd Communica- more* truct tbl
restore tion and mv a true pr troff
: chon . stty
sa Networking m h units tabs typo
sddate calendar rmdir :2ho Xstr termea vi*
settime cu sed yacc P
shutdown mail sort expr €es tset
kill y vpr Miscellaneous

su mesg sum nice backgammon
sync rmail split nohup cal
tar uuep tail* read fortune
touch uux tr h h
tp wall tsort s angman

. . sleep quiz
umoung write uniq tee sems
XSAT we test units

wait wump
Intel XENIX Operating System Enhancement » Berkeley UNIX 4 1 BSD Enhancement 4+ Belll UNIX System Il

XENIX 286 includes support for the following Intel Documentation

Systems, single board computers and processors.

® System 286/310
® System 286/380

® iSBC® 286/10 Processor Board

—16mb of addressing

—On-chip memory protection

New CX Series RAM board

—ECC (Error Correction Circuitry)

—iLBX™ (Local Bus Extension)

® iSBC 215 Winchester Controller

® iSBX 218 Floppy Controller

® iSBC 534 Serial I/O Expansion Board

¢ iSBC 544 Intelligent Serial I/O Expansion Board

® 80286 Central Processor
® 80287 Fast Floating Point Processor

XENIX Operating System Documentation Includes:

® XENIX Fundamentals

® XENIX Installation Guide
® XENIX Operating Guide
® XENIX Reference Manual

® XENIX Software Development Manual

® XENIX Text Processing Manual

Industry Standard Text Books

The C Programming Language, Kernigan & Ritchie
A User Guide to the UNIX System, Yates and Thomas

2-49

intel

Ordering Information

XNX 286 H XENIX Object Software (8" double side, double density)
XNX 286K XENIX Object Software (5%" double-sided, double density)
XNX 286 RO Software License Rights Extension

XNX 286 RF Software Incorporation Fee

173258 XENIX Documentation Package

CTW 14PP XENIX Customer Training

SPRTECHREP XENIX Support Subscription Services

HOTLINE XENIX Hotline Phone Service

SP86 330 XINSTALL XENIX Software Installation

CONSULT-FIELD XENIX Onsite Field Consulting

CONSULT-LT XENIX Onsite Field Consulting for extended time periods.

2-50

intal

APPLICATION
NOTE

AP-130

March 1982

©INTEL CORPORATION, 1982

2-51

AP-130

INTRODUCTION

Intel recently introduced a new set of extensions to its
microprocessor product line. The iAPX 86/30 and
iAPX88/30 Operating System Processors (OSPs) aug-
ment the general-purpose instruction set of the well-
known 8086/8088 architecture to include common,
real-time, operating system capabilities. A single
device, the 80130 Operating System Firmware compo-
nent (OSF), now provides hardware support for func-
tions previously relegated to software.

The 80130 introduces new concepts in the areas of both
hardware and software. At first glance, traditional
component-level hardware designers could feel some-
what intimidated by the esoteric concepts and un-
familiar buzzwords encountered in the software world.
Even the experts in conventional operating system
(OS) design may initially find it strange that what used
to be ‘*soft’’ software routines are now cast in silicon.

This application note is intended for readers at both
levels. The first section reviews the development of
processor extensions in general and operating system
firmware in particular. Later sections should help you
understand what a real-time operating system can do,
how the 80130 provides these capabilities, and how to

design system hardware and software to take advantage
of such features.

The note also documents a complete (albeit simple)
system, including schematics and listings. The reader
may wish to reconstruct this system to get started with
OSPs. Finally, a step-by-step description of the so-
called ‘‘configuration” process shows how physical
system parameters are incorporated into the software
as the software is “‘installed”’ in memory. Through-
out the note are a number of ‘‘exercises’’—questions
relating to concepts just presented. Please take a
few moments to think about these questions before
reading on.

The reader need not have worked with operating sys-
tems previously, though such background would be
helpful. The reader should also know something about
microprocessor hardware—at a minimum, how the
8086 or 8088 devices operate. For simplicity, most of the
software examples are written in PL/M-86, so the
reader should be familiar with PL./M-80 or some other
block-structured language. Finally, be forewarned that
the configuration steps make use of several ISIS utility
programs, including EDIT, SUBMIT, ASM86,
LINKS86, and LOC86. Readers who wish to brush up on
any of the above should consult the appropriate Intel
reference manuals.

2-52 .

AFN-02058A

AP-130

AD14 E
AD13 [:
AD12 E
AD11 E
AD10 [:
avs [
AD8 E
AD7 :
AD§ E
ADS E
AD4 E

~ AD3 [:
. AD2 [j
AD1 E
ADO [:
MEMCS [_—_
o [
CLK E
Vss E

28

27

26

25

24

Vss C
ao1a [
a1z [
ao12 [

" aon [
aot0 [
aps [
aos []
ao7 [
aos [

ADS :

apa [

a3 []

Aoz []

ap1]

aoo [

i [
e [

ek [

Vss E

N @ 0 & W N -

8086
8088
cPU

31

30

29

28

27

26

25

MAX MAX
MODE MODE
8086 8088

j Vee
[] a0t

[] atersa
1 ao171ss
] avess
[araise

j BHE/S7 (HIGH)

:] MN/MX

-8,

RQ/GT0

Figure 1. 8086 and 80130 Pinout Diagrams

AFN-02058A

AP-130

EVOLUTION OF PROCESSOR
EXTENSIONS

In the early days of microcomputing (circa 1974), things

were fsimple. The first microprocessors comprised just

the central processing unit of a simple computer. Sys-
tems built up from these processors were generally
small, dedicated-purpose device controllers—often
replacing the random logic of an earlier design. The
system designer had responsibility for the development
of the hardware and all application software.

Semiconductor technology has progressed rapidly
since then. Devices have bécome more sophisticated,
as have the applications in which they are used. System
functions today are more complex than they used to be,
and are demanding more in the way of both system
hardware and software.

To help designers cope with this complexity, semicon-
ductor vendors are building increasingly more
“‘functionality”’ into their standard product lines.
Whereas the general arithmetic functions of the 8080
and 8085 were limited to addition and subtraction of
eight-bit unsigned (ordinal) values, for example, the
Intel® 8088 and 8086 now add, subtract, multiply, or
divide eight- or 16-bit, signed or unsigned variables
—an obvious improvement.

The evolution of floating-point arithmetic provides an-
other example of technology growth. Initially, design-
ers of numeric and process-control systems each
developed the floating-point arithmetic routines they
needed. Intel eased this task considerably in 1977 when
it introduced a standard floating-point format and a
floating-point arithmetic software library, FPAL-80. In
1978, the iSBC 310 High-Speed Mathematics Unit im-
plemented these same functions with dedicated hard-
ware and executed them an order-of-magnitude faster.

The 8231A Arithmetic Processor Unit (introduced in
1979) provided similar functionality in one chip at much
lower cost. To accommodate the needs of today’s
world, the Intel RealMath™ software standard and the
8087 numeric coprocessor perform 80-bit floating-point
arithmetic for high-performance 8088 and 8086
systems. . .

This evolution of floating-point hardware illustrates two
recurring themes in the microcomputer industry. First,
there is a natural trend toward componentization:

1. New applications reveal a need for new types of
functionality (in this case, floating-point arithmetic).

2. As common requirements become evident, vendors
develop software to serve these needs.

3. Specialized hardware is developed to support the
established functions more simply and effectively
than software alone.

In time, everything ends up in silicon.

The second theme is this: different functions should be
implemented in different ways to fit the customer’s
needs. ‘‘Universal’’ requirements—like 16-bit
multiplication—are best incorporated into the CPU.
Functions needed only by certain applications—like
high-speed, extended-precision square roots—should
be provided as optional Processor Extensions so that
their expense is incurred only by those who need them.
In keeping with this philosophy, Intel currently offers
several processor extension products (see ‘““What’sina
Name?”’).

What'’s in a Name?

The 80130 Operating System Firmware (OSF) device is
only the latest member of an extremely flexible family
of Intel microprocessors. Its siblings include the 8086
and 8088 Central Processing Units (CPUs), the 8089 /O
Processor (IOP), and a floating-point math coproces-
sor, the 8087 Numeric Processor Extension (NPX).
These individual standard components may be mixed
and matched in numerous ways to create combinations
optimized for widely varying applications.

To make it easier to discuss the most common con-
figurations, Intel has defined an ‘‘Advanced Processor
Series’’ (iIAPX) numbering scheme, something akin to
those used in the minicomputer and mainframe worlds.
The 8086 CPU by itself, for instance, is called the iAPX
86/10. The 8086/8087 combination is dubbed the iAPX
86/20. An 8086/80130 pair has the name iAPX 86/30. The
8086, 8087, and 80130 together would form an iAPX
86/40.

When each of these combinations uses an 8088 in lieu
of the 8086, each of the numbers above substitutes
‘88" for the ““86”. An 8088 teamed with an 80130 is
therefore called the iAPX 88/30. Finally, adding an 8089
to any system changes the final zero to a one. So, an
iAPX 88/41 system would be one using the 8088/8087/
8089/80130 chip set.

Real-Time Operating Systems

Let’s turn our attention now to the subject of micro-
computer operating system software—an area steadily
growing in importance. The trends toward standardized
functions with specialized implementations will be-
come evident.

AFN-02058A

AP-130

But first, what is an operating system? The phrase
means different things to different people. In 20 words
or less: An OS is a tool, a set of programs or routines
which reduce and simplify the problem of managing
system resources. (Well, 21, actually . . .)

Most microcomputer programmers have encountered
single-user diskette operating systems, Intel’s ISIS-II®,
and CP/M® and CP/M-86® from Digital Research Incor-
porated among them. In essence, an OS of this sortis a
collection of run-time subroutines which perform
device I/O operations and give application programs
access to a disk-based file system. Along with these are
routines to supervise the loading and execution of ap-
plication programs. Historically, this type of OS is
oriented toward user-interactive applications: software
development, business computing, and the like.

In the mainframe world, the goal of an operating system
is to use expensive equipment as efficiently as possible.
Batch processing systems ensure that programs waste
as little CPU time as possible, though each monopolizes
the CPU until it has completed. A time-sharing OS
allots short periodic “‘slices’ of time to each of several
independent users, during which each has access to the
CPU, memory, and other system resources.

A step above the traditional time-sliced OS are “real-
time, multitasking operating systems.”” But what is a
‘“real-time’" application? (‘‘Don’t all programs execute
in real time?”’)

A real-time system is one in which the CPU must do
many different things (tasks), all more-or-less simulta-

neously. Unlike the sequential time-sharing of
mainframe OSs, though, the tasks are prioritized. Low-
priority tasks are preempted if any of higher priority
have work to do. The higher-priority task then runs
until it must wait for some external event to occur or no
longer needs the CPU for some other reason. Thus, the
CPU services tasks in their order of importance.

A computer controlling factory machinery, for in-
stance, might perform five separate tasks:

1. Monitor input switches to detect emergency condi-
tions, determine intended operating mode, or update
indicator lights showing machine status;

2. Drive a stepper motor to position a tool;
3. Keep track of the time of day;

4. Send output to the console (e.g., CRT), either in
response to explicit commands or as part of some
other task;

5. Read and process characters entered from a console
keyboard.

These tasks seem largely unrelated, though the first few
may be more important to system operation
than the others. Let’s consider some alternate
ways to accomplish these functions with today’s
microcomputers.

Conceptually, the most straightforward approach might
be to dedicate a separate computer to each. The pro-
gram for each would then be quite simple: an initializa-
tion phase followed by an endless loop performing the
dedicated function. Algorithms for the first four tasks
are flowcharted in Figure 2.

‘ MONITOR STATUS ’

‘ CONTROL MOTOR ’

KEEP TRACK OF TIME CONSOLE OUTPUT

!

WRITE MACHINE
STATUS TO INDI-
CATOR LIGHTS

iS
MOTOR AT DESIRED.
POSITION?

STEP IN APPRO-
PRIATE DIRECTION

INITIALIZE CURRENT SET INITIAL INITIALIZE COUNTERS INITIALIZE CONSOLE
STATUS MOTOR POSITION WITH CURRENT TIME INTERFACE DEVICE
A
DELAY TIME INTER- WAIT UNTIL ONE DELAY ONE WAIT UNTIL A
VAL CORRESPONDING STEP TIME HAS SECOND MESSAGE IS READY
TO SAMPLING HATF EXPIRED
INCREMENT TIME- OUTPUT MESSAGE
READ STATE OF _ OF-DAY COUNTERS TO CONSOLE
INPUT SIGNALS .

—

L

I

L

Figure 2. Flowcharts for Concurrent Machine-Tool Tasks

AFN-02088A

AP-130

What'’s wrong with this approach? Ignoring cost, the
need for multiple CPUs becomes physically unrealistic
for more than a few tasks—60, say, or 600. And tasks
are rarely fully independent; note that the switches
monitored by task 1 could affect task 2, and that tasks 4
and § interact with the rest of the system in as yet
undefined ways. So, some sort of communications
would have to be set up between the micros.

Exercise 1. Suppose five tasks are all interrelated.
How many communications channels would have
to be set up between different processors? If each
channel requires two dedicated communication

chips, how would the number of peripheral
devices compare with the number of CPUs?

In each task, the CPU spends most of its time waiting
for time to pass or for something to happen. One CPU

would be able to implement all five tasks if its time were

properly divided among them. An alternate approach,
then, might be for a single processor to attend to each
task in turn, performing the actions called for by each.
Figure 3 shows a flowchart for this scheme. Only one
CPU is required and the tasks can communicate be-
tween themselves and share physical resources like the
console.

(COMBINE'D TASKS)
‘

INITIALIZE CURRENT
STATUS

l

SET INITIAL MOTOR
POSITION

l

INITIALIZE COUNTERS
WITH TIME

!

INITIALIZE CONSOLE
INTERFACE

HAS

READ STATE OF
INPUT SIGNALS

WRITE MACHINE STATUS
TO INDICATOR LIGHTS

HAS
STEPPING INTERVAL
EXPIRED?

1S
MOTOR AT DESIRED
POSITION?

STEP IN APPRO-
PRIATE DIRECTION

HAS
ONE SECOND
EXPIRED?

INCREMENT TIME-

YES OF-DAY COUNTERS |

OUTPUT MESSAGE
TO CONSOLE

Figure 3. Machine-Tool Tasks Implemented Via Polling Scheme

AFN-02058A

AP-130

The problem here is the heavy interaction between
tasks. Before it can be serviced, an important task may
have to wait for many other less critical tasks to com-
plete. This imposes a constraint that each task release
the CPU as quickly as possible. Also, lumping tasks
together obscures the boundaries between them. In-
itialization sequences must be grouped with each other,
rather than with the sections of code affected. Adding to
or deleting any task may affect the others. It’s not clear
how to structure the program such that programmers
could cooperate on such a program.

Moreover, the various tasks can interfere with each
other. Suppose on a given pass through the processor
loop, three tasks each send one new character of a
message to the console display screen. The resulting
output would be most interesting.

The third, and optimal approach, would be one which'

combined the advantages of the first two approaches,
while avoiding the pitfalls. Each function of the overall
system could be designed, written, and tested sepa-
rately, as in the first approach, yet all the software
would run on a single computer system as in the
second. Tasks could therefore communicate with each
other easily, and share peripherals such as CRTs. This
multitask control and communication function could be
performed largely through software.

The key is finding a way to properly budget CPU time
between the various tasks. Early pioneers of complex,
real-time, control system design found that they needed
special routines, apart from the application tasks them-
selves, to supervise the execution of application tasks.
It was (at best) an inconvenience for so many engineers
to independently define, design, document, test and
debug software with the same general purpose. At
worst, schedules slipped or projects were cancelled for
the lack of reliable executive software,

To help avoid these hazards and free up the designers to
concentrate on more immediate goals, Intel developed
iRMX 80, the first real-time, multitasking, executive
operating system for microprocessors. iRMX 86 was
introduced tothe 16-bit world two years later in 1980.

Because of the critical real-time nature of such operat-
ing systems, they require certain hardware capabilities
in the host system, such as special timer logic clocked at
certain frequencies to measure the passing of time, and
interrupt controllers to monitor assorted asynchronous
events. Combine all this with a handful of memory
chips to house just the OS software, and the address
decode and control logic needed by all of the above, and
you’ll find you need the equivalent of a single-board
computer system just to support a multitasking
environment.

Until now, that is. The current trend is to integrate OS
software and hardware functions into silicon. Intel’s
iAPX 432 32-bit MicroMainframe™ system does this
within the CPU. For the 16-bit world, however, Intel
provides a separate chip, the 80130, which contains
operating system firmware as well as timer and inter-
rupt control functions.

What is the 80130 OSF? It is an extremely sophisticated
integrated circuit, fabricated using Intel’s high-
performance HMOS technology, which contains over
160,000 devices. In one 40-pin package (Figure 4), the
80130 combines several timers, multiple-mode inter-
rupt control logic, and a large control store memory
—plus buffers, decoders and the like—to form the in-
tegrated heart of a multitasking operating system.
Compared with the iRMX 86 Nucleus, for example, the
80130 replaces an 8259A PIC, an 8253 PIT, a special
oscillator, 16K bytes’ worth of memory, and associated
control logic.

The 80130 operates in conjunction with the 8086 CPU.
Together, the two chips are called the iAPX 86/30 OSP.
The same device may be paired just as easily with an
8088 forming the iAPX 88/30. From here on, though,
references to the 8086 or ‘‘host processor’” apply to
both CPUs. Due to the high speed of HMOS, the 80130
currently runs at system clock rates up to 8 MHz with-
out inserting any wait states. Firmware in the 80130
supports the 35 primitive functions listed in Table 1.
Many of these are discussed in Chapter IV.

SYSTEM HARDWARE DESIGN ’

The 80130 supports a wide range of system architec-
tures, from compact to quite complex. Most, however,
have in common the functional blocks represented in
Figure 5. After a brief review of iAPX 86/30 systems in
general, we’ll examine 80130 requirements in greater
detail.

Basic Functional Blocks

In addition to the 80130, the central processing ‘‘core’
of a typical OSP system would include an 8088 or 8086
operating in maximum mode, an 82843A clock
generator, and an 8288 system controller, all connected
according to the standard rules. More on the 80130-
specific interconnects later.

Address latches (e.g., 8282s or 8283s) are generally
needed to demultiplex the processor address bus for
standard memory devices and for memory and I/O
device-select logic. The number (from zero to three
octal latches) depends on the host processor,
memories, and the addressing scheme employed. Data

AFN-02058A

AP-130

Table 1. Operating System Primitives:Supported by 80130

Task Management
Suspend Task
Resume Task
Sleep
Create Task
Delete Task
Set Priority
Get Task Tokens

Interrupt Management
. Set Interrupt
Signal Interrupt
Reset Interrupt
Enter Interrupt
Wait Interrupt
Exit Interrupt
Enable ¢
Disable
Get Level

Intertask Communications and Synchronization
Send Message
Receive Message

Free Memory Management/System Partitioning
Create Segment
Delete Segment

Send Control
Create Region
Delete Region

Create Mailbox Create Job
Delete Mailbox

Mutual Exclusion Control Misc. Support
Receive Control Signal Exception
Accept Control Get Type

Disable Deletion
Enable Deletion

Set O.S. Extension
Get Exception Handler
Set Exception Handler

transceivers (8286s or 8287s) may also be needed for
increased bus buffering.

Any complete microprocessor system must also have
some combination of I/O peripherals and memory, col-
lectively indicated by the box labeled ‘‘Local Re-
sources.”” As we shall see, some of the system RAM
and ROM (or EPROM) must be reserved for OSP itself.
Additional logic decodes the latched address lines to
generate chip-select signals for the memory and I/O
devices.

This note only discusses simple, single-processor sys-
tems. More sophisticated architectures may incor-
porate a multimaster system bus, in addition to a local
processor bus. This would require additional system
controllers, address latches, and bus transceivers for
bus isolation, and address mapping logic (not shown) to
select between the various busses, enable the respec-
tive transceivers, generate a System Ready signal, and
so forth. For design information on such techniques,
refer to application note AP-67 in the iAPX 86,88 User’s
Manual.

80130 Pin Functions

Back to the 80130. Certain pins on the 80130 (in particu-
lar, AD15-AD0) attach directly to the CPU. The AD
pins are bidirectional, accepting addresses from the
host and returning instructions or data. By monitoring
the system clock and status signals, S2-50, the 80130
can decode the processor status internally and respond
automatically to the appropriate bus cycles. The BHE
input lets the 80130 determine the width of data trans-
fers and distinguishes an 8088 host from an 8086. If you
refer back to Figure 1, you’ll notice that these 80130 pin
assignments were selected to simplify P.C. board
layout.

Because of the 80130’s location on the CPU side of any
latches or data transceivers (on what is sometimes
called the ““‘pin bus”’), the transceivers (if used) must be
disabled when the 80130 is driving the processor bus.
Whenever the 80130 is responding to any type of bus
cycle, it generates an ACK signal. As Figure 4 suggests,
one way to avoid contention is to simply disable the
transceivers when ACK is active. ACK can also be used
to prevent the insertion of wait states.

AFN-02058A

AP-130

rr—r—r—r——F7""—"7""7"7"+77 e T 1
\ OPERATING SYSTEM UNIT |
| |
| |
| D07 \
1 l 7
: PROGRAMMABLE
INTERRUPT
| Logie | INTERRUPT INPUTS
| v |
| |
| |
| KERNEL | wTERRUPT OUT
| CONTROL . I
| STORE |
! — {
|
| SYSTEM H——» SYSTEM
| TIMER |
[> !
|
| |
i D8-15 |
DELAY H—> DELAY
: K P TIMER i
| > |
| |
| |
| |
| BAUD RATE A
| GENERATOR i BAUD RATE
l > |
| |
—————— - = - |
| |
| |
! <‘_J le—— cLock
! 3
| DATA BUS
Q T,
<:I'5>! BUFFER INTERFACE <?3:| STATUS
& AND 4
1 ADDRESS < CONTROL Lh—r Bus conTROL
ADDRESS/ | LATCH T
DATA B
US| ! o LocaL
| | INTERRUPT
L CONTROL UNIT _JI (LIR)

Figure 4. 80130 Internal Block Diagram

Additional pins on the 80130 include eight interrupt-
request inputs. Internal interrupt control logic provides
many of the functions of the 8259A. During system
configuration (Chapter V), each of the eight may be
individually defined as a direct level-sensitive or edge-
triggered interrupt request, or each may be cascaded
with a standard 8259A in slave mode.

The INT output must be connected to the host CPU to
inform it of an enabled interrupt request. In very large
systems with multiple, cascaded interrupt controllers,
Local Interrupt Request (LIR) indicates to the bus
contention logic whether a requesting slave is local, or
must be accessed via a multimaster bus.

The 80130 also contains dedicated timer logic to provide
the OS time base, which is output on SYSTICK.
Software operating in conjunction with the 81030 as-
sumes one of the interrupt inputs (INT2 in this case) is

driven by SYSTICK, so this connection must be made
externally. Routines within the 80130 initialize and per-
form all bit-level control of the interrupt and timer
logic, according to options and parameters specified
during the configuration process. Freeing the program-
mers from this tedium allows them to devote more
thought to solving their own unique problems.

An additional, independent timer generates a user-
programmable, square-wave output signal called
BAUD to clock an off-chip USART.

Since the 80130 displays some of the characteristics of
both memory and /O, it requires chip-select signals for
both the memory (MEMCS) and I/O (I0CS) address
spaces. These are discussed at length below. Finally,
Intel has reserved one output pin (called “DELAY"’)
for use in future designs. Leave it unconnected in iAPX
86/30 systems.

V8S020-NJV

09-¢

+5

Voo s_gu(J\
LK k] & (CONTROL BUS) e) sonrroL
READY 8268 /
ESET (A3)
ALE
1——» STB
BHE BHE BHE
Al9 N| 8282 > Ao
A9 | A
a6) o i CcAL (ON-BOARD)
*(’ggf OE RESOURCES
(PROM, PERIPHERALS, RAM
ACCORDING TO APPLICATION)
N.C.-{ RD J\
A
NC.Jas1 ADIS A
N.c.-{ aso Abo /
N.C.- LOCK -
N.c.{Ra/GT1
N.c. ra/GTo
NMI }\
gl 7‘2\:? Arho g SYS)
INT GND MAX - - / u E%b“ YS) 1500
— — =)— — —
DT/R
+5T_ DEN
INT
b , i S
> ctk AcK — H
80130
(A7) Sl T
AIF-AT6
BHE OE
BHE ok
8286
§2 DECODE (A8)
50 LOGIC D8
N.C. R . BIMBEK ars-a8
TO SERIAL INT ~———] BAUD =
T T e sase
| 7V (a9)
M MK araa K
INT?
INTS
INTS
INT4
PERIPHERALS AD15 ADDITIONAL BUFFERING REQUIRED)
INT3 1 PROCESSOR DATA BUS \(FOR MOLTLMASTER SYSTEND
Lofintz ADO
——f INT1
— »fINT
‘vss_vss N

1ol Ol

8289 ({'—:>‘
(A10)
SYSTEM
CONTROL
BUS
8288 >
(A1)
P
8283 3
(A12) >
8293 SYSTEM
(A13) ADDRESS
BUS
8283 >
(A14))
T
OE
8287
(A15)
SYSTEM
DATA
T BUS
OE
8287
(A16)

Figure 5. Basic iAPX 86/30 Microcomputer System Block Diagram

o€l-dv

AP-130

Additional System Requirements

The OSP requires a certain amount of off-chip memory
for its own operation. The system must provide at least
1K bytes of RAM at address 00000H for the CPU
interrupt vectors, plus another 1500,, bytes for OSP
system variables, data structures, stacks, and the like.
This RAM may reside anywhere in the 8086 megabyte
address space, although it is often contiguous with the
interrupt vector up front. Application tasks must each
have their own stack, so allow at least an additional 300
bytes of RAM for each. -

Any iAPX 86 system must have ROM or EPROM at the
upper end of memory to hold the CPU restart vector.
About 3400 more bytes are consumed by code to initial-
ize and access the OSP. This code is generated auto-
matically from libraries on a diskette provided with a
product called the iAPX 86/30 and iAPX 88/30 Operat-
ing System Processor Support Package (iOSP 86).
Space left in the initialization EPROMs is available for
application tasks.

As code is being written, the system designer should
count on another 1500 bytes of code from the support

libraries being added to his application during the link-
ing and system configuration steps. These memory re-
quirements are shown in Figure 6. In practice, the
separate blocks in this figure would be grouped together
for more efficient use of RAM and EPROM chips.

The 80130 occupies a 16K-byte block of addresses in the
host-processor memory space, so external logic should
decode address bits Ajg-Ay4 to generate MEMCS.
Similiarly, the timer and interrupt control logic occupy
a 16-byte block of addresses in the I/O space; at least
some of the bits A;5-A4 must be decoded to generate
IOCS. The 80130 decodes all the lower-order address
bits (14 for memory, four for I/O internally).

Firmware inthe 80130 leaves a great deal of flexibility in
decoding the chip-select signals, to be compatible with
whatever decode logic is already present in the system.
The /O starting address may be on any 16-byte bound-
ary in the full CPU /O space. The memory block has
only two restrictions: the off-chip initialization and in-
terface code memory must be placed immediately
above the MEMCS block, so the 80130 may not occupy
the extreme top of memory, nor may the 80130 reside at
address 00000H since this area is reserved for interrupt
vectors.

OFFFFOH

i

MUST BE
CONTIGUOUS

)

400H

iAPX 86/30 SYSTEM MEMORY REQUIREMENTS

POWER ON-LOCATION

80130 INITIALIZATION AND CONFIGURATION
CODE (ROM/EPROM)

16K FOR 80130 ON 16K BOUNDARY

} 1.5K CODE BYTES SYSTEM INITIALIZATION (ROM/EPROM)

1.5K RAM BYTES FOR IAPX 86/30 STACK AND DATA (RAM)

1K BYTI
RESERVED FOR
INTERRUPTS (RAM)

Figure 6. Operating System Processor System Memory Requirements

AFN-02088A

AP-130

Timing Requirements

System timing analysis is often the most tedious part of
digital hardware design. This discussion can be rela-
tively short, though, because the 80130 timing is quite
simple: by design, the part is compatible with the timing
of the host processor. Since it interfaces directly with
the CPU pins, traditional set-up, hold, and access times
no longer matter. '

_ There are really only two areas of concern in analyzing
the timing of most OSP systems, both of which relate to
the user-generated chip-select signals. Figure 7 il-
lustrates the relevant timing signals of a standard 8086
four-state Read cycle (memory or I/O), along with the
timing responses of the 80130. I/O Write cycle timing is
the same. (Full timing diagrams are part of the respec-
tive data sheets.)

The first concern is that MEMCS and IOCS must be
active early in a memory or /O cycle if the 80130 is to

respond during T3. In each case, the chip-select signals
must be active Tggey, before the end of state T,
Assuming wait states aren’t desired, addresses
generated by the CPU must propagate through the ad-
dress latches and be decoded during Ty or Ty.

How much time does this leave the decode logic? As
we’ll see, ample.

By convention, Tcp,av is the delay from the start of
T; until address information is valid on the CPU pins;
Tivov is the propagation delay through an 8282 latch;
and Tcgcy, is the 80130 chip-select set-up time. The
mnemonic Ty cg represents the chip-select logic prop-
agation delay, after the latch outputs are stable. The
sum of these four delays must be less than two system
clock cycles, reduced by the clock transition time.

Tcrav + Tivov + Toves + Tescr = Tever + Teron

Toves = Tewer + Terer — Terav — Tivov — Tescn
=125 +12§5 - 60 - — 20 (nsec.)
= 140 nsec.

T4 hal

T3 | Ta

T™w
Y e) VRN A U A R A W
oLk : \ ‘
TeHSV | TSVCH TeLoL TcLsH ‘ TSHCL
s2, 51,50 { ‘ /
 TASCH TeLAH
| |
_ BHE, A,5-Aq VALID X _____
BHE, AD 5-AD,
rﬂ—» TCHCS
MEMCS, 1005 \ / -
WRITE CYCLE ‘ ToSCL TCHDH
ADDRESS VALID X”Xﬂx WRITE DATAVALID | ’—

AD,5-AD, -

—’f l""cs“ |- ‘4— TCSAK
AcK \
TSACK \ /
TeLox TCHAKI
READ CYCLE ooy |
I Aoon;ss VALID)} FLOAT { FLOAT
AD,5-AD,) { mEapoaTAvALD
[Teue
— TCHEH
AcK

TSACK \ <_./———

Figure 7. Operating System Processor Timing Diagrams

2-62

AFN-02058A

AP-130

The propagation delay numbers plugged into the equa-
tion are worst-case values from the appropriate Intel
data sheets. The CPU is an 8086-2 operating at 8 MHz.
This means the address decode logic must produce
stable CS outputs within 140 nanoseconds.

Exercise 2. Using standard, low-power Schottky
TTL, does it make sense for a circuit to take
longer than 140 nsec. to decode 6 program or 12
I/O address bits? Even if the rather liberal setup
specs are not met, the 80130 would still work fine.
Wait states would be needed until the chip-select:
signal was active, however, so performance
would degrade some.

The second point of concern relates to ready signal
timing. The 80130’s acknowledge output signal, ACK,
can be used to control the CPU’s ready signal. For this
case, the chip-select signal must be active early in a
memory or I/O cycle to allow activation of ACK early
enough to prevent wait states. There are two schemes
for implementing ready signals; ‘‘normally ready’’ and |
‘“‘normally not ready.” (For more details, refer to AP-
67, ‘8086 System Design.’”) Chip-select timing is more
critical in some ‘‘normally not ready’’ systems.

In a “‘normally not ready”’ design, acknowledge signals
are generated when each resource is accessed. The
individual acknowledgements are combined to form a
system-wide ready signal which is synchronized by the
8284A clock generator via the RDY and AEN inputs.
The 8284A can be strapped to accept asynchronous
ready signals (asynchronous operation) or to accept
synchronous ready signals (synchronous operation).
Synchronous 8284A operation provides more time for
address latch propagation and chip-select decoding. In
addition, inverting ACK off chip produces an active-
high ready signal compatible with the 8284A RDY in-
puts, which have shorter set-up requirements than
AEN inputs. (As a side benefit, a NAND gate used like
this can combine ACK with the active-low acknowl-
edge signals from other parts of the system.) Based on
these assumptions, the time available for address latch
propagation and chip-select decoding at 8 MHz is:

Tcrav + Toves + Tesak + Rraver = Terer + Tenen
Toves =2 Terer — Terav — Tesak — Traven

= 250 - 60 - 110 - 35

= 45 nsec.

The circuit in Figure 8 which uses Schottky TTL com-
ponents leaves about 15 nsec. to produce MEMCS from

8288

ASYNC
READY

80130
%0:3 / ALE OSF
A19 8% sa a1 vIp—
° Y6 O—
At ™ 70f———Cc:. [}
R~ | memory
A7 6 6Q G2A V4 D~ Decooe
ate c ¥
o sa 20—
AD15 4 40 B viPb—
AD14 3 sa A volo- -0 MEMCS
745373 745138 AR
READY .
[748
RDY1 74S SYSTEM

; Yoo AEW1 o—]
l 8284A

EDGE

Figure 8. High-Speed Address Decoding Circuit
2-63

AFN-02088A

-AP-130

the high-order address bits—more than enough for the
74S138 one-of-eight decoder shown.

Granted, this does not leave much leeway to fully
decode the I/O address bits. A 12-input NAND gate on
AD15-AD4 could be used, introducing only a single
propagation delay but forcing the I/O register block to
start at OFFFOH. Incomplete decoding is also legal: it is
safe to drive TOCS with the (latched) AD15 signal di-
rectly, provided all other ports in the system are dis-
abled when this bit is low. In this case, the effective
address of the I/O block (which must be specified dur-
ing the system configuration step) could be 0000H, or
any other multiple of 16 between 0000H and 7FFOH.

Again, the OSP system will still operate even if the
memory or I/O decoding is slow. The acknowledge
signal returned to the host CPU would just be delayed
accordingly, so unnecessary wait states would be in-
serted in access cycles, but the 80130 would not mal-
function. Only rarely does the OSP access resources in
its I/O space. Even if slow decode logic were to insert
several wait states into every /O cycle, the overall
effect on system performance would be insignificant.

A few words of caution, though. If the 8284A is strap-
ped for synchronous operation, external circuitry must
guarantee that ready-input transitions don’t violate the
latch set-up requirements. Also, the chip-select signal
must not remain low so long after the address changes
that the 80130 could respond to a non-80130 access
cycle. :

Exercise 3. Suppose the typical timing values for
a particular decoder would easily meet the ready-
input set-up requirements presented above for
asynchronous 8284A operation, but pathological
worst-case figures were just a little slow. Could
that circuit still be used safely in most applica-
tions? What would happen if the worst-case com-
bination of worst-case conditions ever actually
did occur? These occasional extra wait states
would probably not cause a hard system failure.

Exercise 4. Earlier it was mentioned that the ac-
knowledge signal could also be used to avoid bus
contention. Prove that with any decode logic
which meets the above requirements, ACK would
disable the bus transceivers before the host CPU
samples the bus.

Example System Design

Appendix A includes full schematics for a complete
iAPX 86/30 system providing considerable function-
ality with only 27 chips. In addition to the OSP, the

system has 4K bytes of 2114 RAM (with sockets for
another 4K), from 8K to 32K bytes of 2732A or 2764
EPROM, an 8251 A USART operating at 9600 baud, and
an 8255A Programmable Peripheral Interface with 24
parallel I/O lines. Eight of the inputs read logic values
off DIP switches; eight outputs drive small LEDs. Four
more outputs connect to the coil drivers of a four-phase
stepper motor. A layout diagram of the prototype ap-
pears in Figure 9.

The system is even simpler than the discussion of
‘“typical’”’ requirements implied. The 8086 direct-bus
drive capability is adequate to make the data trans-
ceivers unnecessary. (To equalize the bus loading, the

' 8255A is connected to the upper half of the bus.) Ad-

dress decoding logic was minimized by making the
high-order address bits ‘‘don’t-cares.’” Moreover, the
part count could have been reduced to 16 using an 8088
and multiplexed-bus 8185 RAMs and 8755A EPROMs.
(The reader may be surprised to learn that, except for
wire-wrapping mistakes, the prototype system hard-
ware worked when it was first powered up. The author
certainly was!)

| APPLICATION SOFTWARE

DEVELOPMENT

Like other well-structured programs, application
software to run on the iAPX 86/30 is written as a num-
ber of separate procedures or subroutines. In conven-
tional programs, though, execution begins with a
section of code (the program body) at the outermost
level. The program calls application procedures, which
may call other procedures, but which eventually run to
completion and return to the program body.

In an OSP application, though, there is no ‘‘outermost
level” in the traditional sense; rather, the procedures
are started, suspended, and resumed as situations war-
rant under the control of the OSP. The term ‘‘task’
refers to the execution of such a procedure in this way.
While an instruction stream is suspended, the OSP
keeps track of the task state (instruction counter, CPU
register contents, etc.) so that it may be resumed later.

Each task is assigned a relative priority by the program-
mer, on a scale of 0 (high priority) to 255 (low). Tasks
with higher (numerically lower) priority are given pref-
erential treatment by the OSP; the task actually control-
ling the CPU at any given instant will be the one with the
highest priority which is not waiting for some event to
occur. (If all this sounds confusing, examples coming
later may help.)

A task which operates independent of other tasks can
be written without knowing anything about the others.

AFN-02058A

AP-130

RESISTORS SWITCHES
RESET 8086 8288 BYTE1 8255A LEDs
B1 1 Fl m] [w] [w] [«] o M1

Ls Ls

73A 139

—" g282 IS N S R N By

8284A ez |
84 Lsas | B2 BYTE1

Lsa4 2732/ 2732/ o

D2 2764 2764 2] [2] [x2] [2
F2 H2

8282 HI o | — =— — =
80130 so2 | B2 BOED —
LS02 B [w] [ws] [
B4 D3 1489
8251A
— 1 ' Ha L1 L1 L]
’%2. BYTE 0
LSD:S - Low w] [9a] [xa] [e 1488
’ D

L1 L —— LJ L J L |
2732 2732 \. ”
2764 2704 16X2114

)

Figure 9. Example System Prototype Layout

This makes it easy to divide a very large programming
job among a team of programmers, each writing the
code for some of the tasks. Moreover, a task need not
even know if other tasks exist. They may be tested and
debugged before others have even been written. As an
application evolves, new tasks may be added or un-
necessary ones removed without affecting the rest.

The number of tasks in an application may need to be
quite large. The number of tasks allowed in one applica-
tion is essentially unlimited, as is the number of other
objects—regions, mailboxes, segments, and the like.
(The term ‘“‘object’ relates to different types of data
structures maintained internally by the OSP.) Each ob-
ject is internally identified by a unique 16-bit ‘‘token,”
which means the theoretical maximum total is over
65,000. The more pragmatic issue of physical memory
consumption limits the number of simultaneous concur-
rent tasks to ‘“‘only’’ several thousand.

(When a number of tasks cooperate to accomplish some
common goal, the collection of tasks is referred to as an
application ‘‘job.”” The OSP also allows for an unlimited
number of application jobs, though only one is il-
lustrated in the example discussed here. A second
similar machine, with different status switches, a differ-

2-65

ent motor, and a different console might make up a
second job.)

All OSP application jobs must have one special in-
itialization task (often called INIT$TASK) just to get
started; this one may, in turn, create other tasks as it
executes. The initialization task for this example is
discussed at the end of this chapter.

Hardware Initialization

The life of any task can be broken into three phases:
start-up, execution, and termination, The start-up
phase initializes variables, data structures, and other
objects needed by the task. During the execution phase
the task performs its useful work. Depending on the
application, this may be a single sequence of actions, or
aloop executed repeatedly. When the task completes, it
must terminate itself so as not to use any more CPU
time. One or more phases may be omitted. For exam-
ple, some tasks are intended to execute ‘‘forever,” in
which case the termination phase is not required.

This life cycle is suggested by Example 1, a segment of
code called HARDWARESINIT$TASK. This task first

AFN-02088A

AP-130

programs the 80130 internal timer logic to generate a
square-wave cycle on the BAUD pin every 52 system
clock cycles, which corresponds to a system console
data rate of 9600 baud. The task then sets the system’s
8255A PPI and 8251 A USART devices to operate in the
desired modes, and outputs a short sign-on message to
the CRT. For the sake of reader’s unfamiliar with the
protocol for interfacing with the 8251A, simple input
and output routines (C$IN and C$OUT) are reproduced
in Example 2.

HARDWARESINITSTASK PROCEDURE.
DECLARE HARDSINITSEXCEPTS$CODE WORD.
DECLARE PARAMSS1 (#) BYTE DATA (40H, BDH, OOH, 40H, 4EH, 27H),
DECLARE PARAMS318INDEX BYTE,
DECLARE SIONSONSMESSAGE (#) BYTE DATA
(CR, LF, "1APX 8&6/30 HARDWARE INITIALIZED’,CR,LF),
DECLARE SIONSONSINDEX BYTE,
OUTPUT (PP I8CMD) =90H,
OUTPUT (TIMERSCMD) =0B&H;
OUTPUT (BAUDSTIMER)=33; /#GENERATES 9600 BAUD FROM 5 MHZ®/
DOUTPUT (BAUDST IMER) =0,
DO PARAMS$S1$INDEX=0 TO (SIZE(PARAM$51)-1),
OUTPUT(CMD$51) =PARAMS 51 (PARAMSS1$INDEX),
END; /#0F UBART INITIALIZATION DO-LOOP#/
DO SIGN$ONSINDEX=0 TCO (SIZE(SIONSONSMESSAGE)-1),
CALL CS$OUT(SIONSONSMESSACE (SIGNSON$INDEX)),
END, /#0F SIGN-ON DO-LOOP#*/
CALL RGSRESUMESTASK(INIT$TASK$TOKEN, @HARDS INITSEXCEPT$CODE),
CALL RG$DELETES$TASK (O, @HARDSINITSEXCEPTSCODE),
END HARDWARESINITSTASK;

Example 1. System Hardware Initialization Task

C$0UT PROCEDURE (CHAR),
DECLARE CHAR BYTE,
DO WHILE (INPUT(STAT$31) AND O1H)=0O,
/% NOTHING #/

ND;
OUTPUT (CHAR®31) =CHAR:
END CsOUT;

CSIN PROCEDURE BYTE,

DO WHILE (INPUT(STAT$51) AND O2H)=0,
/% NOTHING %/
END,

RETURN INPUT(CHAR®$51),

END CSIN,

Example 2. Simple 8251A Input and Output

Routines

The baud timer should be initialized by a code sequence
like that shown here. The 80130 logic is actually com-
patible with the initialization sequence which would be
needed to configure timer 2 of an 8253A as a program-
mable rate generator. The baud rate parameter loaded
into the timer is simply the system clock frequency
divided by the desired output frequency. No other
timers should be affected by user programs.

When the hardware has been initialized, the task
calls an operating system procedure called RQ$
RESUMES$TASK. This signals the OSP that the task’s
start-up phase has completed, and that the initialization
task (which in this case suspended itself after creating
HARDSINIT$TASK) may continue. Since its function
is hardware initialization only, HARDSINIT$TASK
has no execution phase per se. It terminates by calling

the proceduré RQSDELETES$TASK, suicidally
specifying itself as the task to be deleted.

Exercise 5. Beginners may make two common
programming errors when developing OSP tasks:
The first is when a task deletes itself without ever
resuming the suspended task that created it. The
second is to not terminate a task properly, with the
result that the processor executes a return in-
struction when the task’s work is done. (However,
execution of the task did not originate with a call
from the OS.) As with all computers, an OSP will
do exactly what it is told. How do you suppose the
system would react in each case? (Hint: only one
of the two failure modes is predictable.)

You may have noticed three things from this short ex-
ample and Table 1. First, every OSP call begins with
the letters RQ. (PL/M compilers totally ignore dollar
signs within symbols; they serve only to split long sym-
bol names to make them easier for humans to read.) The
letters RQ don’t mean anything in particular; their pur-
pose is to make sure OSP routine names don’t conflict
with any user symbols. These particular letters were
chosen to be compatible with the historical naming
convention used by iRMX 86. It may be useful, though,
to think of RQ as an abbreviation for REQUEST, imply-
ing that the OSP provides useful services at the bidding
of application code.

The second thing to notice is that the OSP routine
names imply pretty well what each routine does. On the
one hand, long procedure names take a little longer to
type; on the other, they make code listings much easier
to read and understand. In effect, the long names help
make OSP code self-documenting. The long names
shouldn’t hinder code development; rarely can pro-
grammers think faster than they can type. If they could,
programmer productivity would be measured in
thousands of lines per day.

The third thing is that the last parameter in every OSP
system call points to a word in which the OSP proce-
dure will return an exception code to the application
task. The procedure will return a non-zero exception
code in this word if it cannot do its job correctly. This
does not always imply that an error occurred; some-
times it just means another task isn’t ready to cooperate
yet. Sometimes an exception value indicates whether
the OSP request was processed immediately or delayed
for some reason. In fact, some OSP routines are guaran-
teed never to return a non-zero exception code, yet the
pointer is still required for the sake of consistancy. For
a full explanation of the other parameters for the OSP
procedures and details on what the different exception
codes mean, consult the iAPX 86/30, 88/30 User’s
Manual .

AFN-02058A

AP-130

To illustrate how the OSP procedures are used, the
following code examples implement the machine con-
troller tasks introduced earlier. Appendix B puts all the
code examples together, though not in the exact order
discussed. Be Forewarned: the examples border on
trivial. They are in this note to demonstrate how to call
system routines with as few lines of code as possible,
not to tax the capabilities of the OSP. In fact, none of the
tasks even check for exception codes returned by the
OSP, under the naive assumption that nothing will go
wrong in a debugged program. If you're interested in
more elaborate software examples, consult application
notes AP-86 and AP-110. These notes focus specifically
on iRMX 86, but their methods and much of the code
apply equally to the OSP systems.

Simple Time Delays

The STATUSS$TASK routine simply monitors eight
switches through an input port, and updates eight
LEDs with a pattern determined by the switch settings
and task status. Specifically, the LEDs display the bit-
wise Exclusive-OR function of the inputs and an eight-
bit software counter maintained by the task. This action
will repeat twice per second. The task does nothing
between iterations.

The RQ$SLEEP routine gives application tasks a way
to release the CPU when it is not needed. Any task
calling this routine is ‘“‘put to sleep’’ for the amount of
time it specifies (from 1 to 65,000 SYSTICK intervals),
releasing the CPU to service other tasks in the mean-
time. After the requested time has transpired, the OSP
task will reawaken the task and resume its execution,
provided a more important task is not then executing.

The 80130 timer logic generates the fundamental Sys-
tem Tick by dividing the system clock frequency by
two, then subdividing that frequency by a 16-bit value
specified during the configuration process. The period
used here is 5 msec., which would result in an 5 MHz
system by dividing the 2.5 MHz internal frequency by
12,500.

Exercise 6: At this rate, what’s the longest nap
that would result from a single call to
RQS$SSLEEP? How could this duration be
extended?

PL/M listings for the complete STATUS$TASK routine
appear in Example 3.

STATUSSTASK PROCEDURE,

DECLARE STATUSSCOUNTER BYTE,

DECLARE STATUSSEXCEPTS$CODE WORD:

STATUSSCOUNTER=0,

CALL RQSRESUMESTASK (INITSTASKS$TOKEN, @STATUSSEXCEPTSCODE),

DO FOREVER.
OUTPUT(PPI$B)=INPUT(PPI$A) XOR STATUSSCOUNTER.
STATUSSCOUNTER=STATUSSCOUNTER+1,
CALL RGS$SLEEP (100, @STATUSSEXCEPTSCODE),

END,
END STATUSSTASK,

Example 3. Status Polling and Reporting Task

Stepper Motor Control

Conceptually, a stepper motor consists of four coils
spaced evenly around a rotating permanent magnet. By
energizing the coils in various combinations, the mag-
net can be induced to align itself with the coils, individu-
ally or in pairs. A microcomputer can make a stepper
motor rotate, step-by-step, in either direction, by emit-
ting appropriate coil control signal patterns at intervals
corresponding to the step rate.

The stepper-motor sequencer (Example 4) is an embel-
lished version of STATUS$TASK. The OSP calls are
intermixed with a few more statements of application
code, and the task uses global variables as delay
parameters. The reader may wish to adapt the com-
mand interpreter task at the end of this chapter to let the
operator modify (read: ‘“‘play with’’) these parameters
to adjust the motor speed as the program runs.

DECLARE CW$STEP$DELAY BYTE.
CCW$STEP$DELAY BYTE,
CWSPAUSESDELAY BYTE.
CCWSPAUSESDELAY BYTE,

MOTOR$TASK PROCEDURE,
DECLARE MOTORSEXCEPT$CODE WORD,
DECLARE MOTOR$POSITION BYTE,
MOTOR$PHASE BYTE.
DECLARE PHASES$CODE (4) BYTE
DATA (00000101B, 000001108, 000010108, 000010018).
CW$STEP$DELAY=50, /#INITIAL STEP DELAYS = 1/4 SECOND*/
CCWSSTEPSDELAY=50,
CW$PAUSESDELAY=200)
CCW$PAUSESDELAY=200,
CALL RQGSRESUMESTASK (INIT$TASK$TOKEN, @MOTORSEXCEPT$CODE)
DD FOREVER)
DO MOTORSPOSITION=0 TO 100,
MOTORSPHASE=MOTOR$POSITION AND OOO3H,
OUTPUT (PPI$C)=PHASES$CODE (MOTOR$PHASE) ,
CALL RG$SLEEP (CW$STEP$DELAY, @MOTOR$EXCEPT$CODE)

/#PAUSES AFTER ROTATION = 1 SECOND*

CALL RG$SLEEP (CW$SPAUSESDELAY: @MOTORSEXCEPT$CODE) .,

DO MOTOR$POSITION=0 TO 100,
MOTORSPHASE=(100-MOTOR$POSITION) AND OQO3H,
OUTPUT (PP I$C)=PHASE$CODE (MOTORS$PHASE) ,

CALL RQ$SLEEP (CCW$STEPS$DELAY, @MOTOR$EXCEPT$CODE),
END;
CALL RQG$SLEEP (CCW$PAUSESDELAY, @MOTORSEXCEPT$CODE),

END,
END MOTORSTASK,

Example 4. Stepper-Motor Controller Task

Real-Time Interrupt Processing

The 80130 supports a two-tiered hierarchy of interrupt
processing. The lower-level tier corresponds to the

AFN-02088A

AP-130

traditional concept of hardware interrupt servicing; a
routine called an “‘Interrupt Handler”’ is invoked by the
80130 internal interrupt control logic for immediate
response to asynchronous external events. A short
routine like this might, for example, move one charac-
ter from a USART to a buffer. Interrupt handlers oper-
ate with lower-priority interrupts disabled, so it is a
good idea to keep these routines as quick as possible.

“‘Interrupt Tasks,”’ on the other hand, are higher-level
tasks which sit idle until “‘released”’ by an interrupt
handler. The task then executes along with other active
tasks, under the control of the OSP. Such a task should
be used to perform slower but less time-critical pro-
cessing when occasions warrant, such as when the
aforementioned buffer is full. Moving such additional
processing outside the hardware-invoked interrupt
handler reduces the worst-case interrupt processing
time.

This hierarchy also decreases interrupt latency. Most
OSP primitives execute in their own, private
‘“‘environment’’ (e.g., with their own stack and data
segments) rather than that of the calling task. Interrupt
handlers, on the other hand, run in the same environ-
ment as the interrupted task. (In fact, the 80130
primitives may themselves be interrupted!) Leaving the
CPU segment registers unchanged minimizes software
overhead and interrupt response time, but also means
that interrupt handlers may not call certain OS
routines. An interrupt task, on the other hand, is in-
itiated and suspended by the OSP itself, with no such
restrictions.

Let’s see how these capabilities would be used. The
time delays introduced by the RQ$SLEEP call are only
as accurate as the crystal frequency from which they
are ultimately derived. This may not be exact enough
for critical time-keeping applications, since oscillators
vary slightly with temperature and power fluctuation.

To keep track of the time of day, the example system
uses a 60-Hz A.C. signal as its time base. (Most power
utility companies carefully regulate line frequency to
exactly 60 Hz, averaged over time.) A signal from the
power supply is made TTL-compatible to drive one of
the 80130 interrupt request pins. An interrupt handler
responds to the interrupts, keeping track of one
second’s worth of A.C. cycles. An interrupt task counts
the seconds by incrementing a series of variables.

Example 5 illustrates the former routine. AC$
HANDLER simply increments a variable on each 60-
Hz interrupt. Upon reaching 60, it clears the counter
and signals TIME$TASK (Example 6).

2-68

DECLARE ACSCYCLESCOUNT BYTE:

ACSHANDLER® PROCEDURE INTERRUPT 39; /%VECTOR FOR 80130 INT3#/
DECLARE ACSEXCEPTS$CODE WORD. s
CALL RG$ENTER$INTERRUPT (ACS INTERRUPT$LEVEL, @AC$EXCEPT$CODE),
ACSCYCLESCOUNT=ACSCYCLESCOUNT+1,
IF ACSCYCLESCOUNT >= &0
THEN DOs
ACSCYCLESCOUNT=0,
CALL RQG$SIONALSINTERRUPT(ACSINTERRUPTSLEVEL,
@ACSEXCEPTS$CODE),

END,
ELSE CALL RGSEXITSINTERRUPT(ACSINTERRUPTSLEVEL,

@ACSEXCEPTS$CODE);
END ACSHANDLER:

Example 5. 60-Hz A.C. Interrupt Handler

-«

"In its initialization phase, TIME$TASK sets up the

interrupt handler by calling the RQSET
INTERRUPT routine. The body of TIME$TASK (the
execution phase) is just a series of nested loops count-
ing hours, minutes, and seconds. When TIMESTASK
calls RQSWAITSINTERRUPT inside its inner-most
loop, the OSP suspends execution of the task until
ACSHANDLER signals that another second’s worth
of A.C. cycles has elapsed. Thus, interrupt handlers
can serve to ‘‘pace’ interrupt tasks. After a day,
TIMESTASK completes and deletes itself.

DECLARE SECONDSCOUNT BYTE,
MINUTESCOUNT BYTE,
HOURSCOUNT BYTE,

TIMESTASK ' PROCEDURE,
DECLARE TIMESEXCEPTSCODE WORD,

ACS$CYCLESCOUNT=0,
CALL RG$SETSINTERRUPT(ACSINTERRUPTSLEVEL, O1H,
INTERRUPTSPTR (ACSHANDLER), DATASSEGS$ADDR BASE,
@TIMESEXCEPTSCODE),
CALL RQSRESUMESTASK(INITSTASKSTOKEN, @TI NE’EXCEP T$CODE) ,
DO HOURS$COUNT=0 TO 23,
DO MINUTE$COUNT=0 TO 59;
DO SECONDSCOUNT=0 TO 59,
CALL RGS$SWAITSINTERRUPT(ACSINTERRUPTSLEVEL,
@TIMESEXCEPT$CODE),
IF SECONDSCOUNT MOD 5 = O
THEN CALL PROTECTEDSCRT$OUT(BEL).
END;
END,

/# SECOND LOOP */
/% MINUTE LOOP #/
/% HOUR LOOP %/
CALL RO‘RESET‘ INTERRUPT (AC$ INTERRUPTSLEVEL,
@TIMESEXCEPTS$CODE),
CALL RGS$DELETESTASK(O, @TIMESEXCEPT$CODE),
END TIMESTASK,

Example 6. Interrupt Task to Maintain Time of Day

Exercise 7: The time maintained by TIME$TASK
is consistently wrong, unless the system resets at
midnight. Aside from that, how much error would
accumulate per month had TIMESTASK paced its
inner loop by calling RQ$SLEEP if the system
oscillator was 00.01% off? How does this com-
pare with a cheap digital watch? How much error
will accumulate from the 60-Hz time base
described?

TIMES$TASK incorporates another gimmick: every five
seconds it sends an ASCII “BEL” character (07H) to
the console to make it beep, by calling a routine called
PROTECTEDSOUTPUT. This lead-in gives us a
chance to discuss OSP provisions for task synchroniza-
tion and mutual exclusion.

AP-130

Mutual Exclusion

Whenever system resources (e.g., the console) are
shared among multiple concurrent tasks, the software
designer must be aware of the potential for conflicts. In
single-threaded (as opposed to multitasking) programs,
the easiest way to transmit characters is by calling a
console output routine (written by the user or supplied
by the OS) which outputs the character code.
(Remember the examples following the hardware in-
‘itialization routine?)

This approach presents two problems in a multitasking
system. One is efficiency: a high-priority task could
hang up the whole system while it waits for a printer
solenoid to energize, induce a magnetic field, accelerate
the hammer, contact a daisy-wheel spoke, move it up to
the ribbon, and press them both against the paper. This
waste of time is termed ‘‘busy waiting,”” and should
always be avoided. By OSP standards, even 1/30 of a
second can seem interminable; if the printer is other-
wise occupied, the whole system could shut down
indefinitely.

Aside from efficiency, though, there is a more serious
synchronization problem here. Assume Task A has a
higher priority than Task B. Task A is asleep. Task B
calls a subroutine to poll the USART and transmit a
character. The USART becomes ready.*When this is
detected, the subroutine prepares to output the charac-
ter to the USART

Time out! Task A just woke up and starts running. Task
A wants to transmit its own character. It calls its own
output routine, checks the USART, finds it available,
sends it a new character, and goes back to sleep
(or suspends itself, or awaits another interrupt—
whatever).

Now Task B continues. It “knows’’ the USART is
available, having dutifully monitored it earlier. Task B’s
character goes out to the USART. The USART goes out
to lunch. (In practice, the USART will probably just
transmit corrupted data; still, its operating require-
ments have been violated.)

In Task B’s output routine, the sequence of statements
from when the peripheral is found to be ready to when
the next character is written constitutes a ‘‘critical
region” (a.k.a. ‘‘critical section’ or ‘‘non-interruptable
sequence’’). Recognizing such regions and handling
them correctly is an important concern in any multi-
tasking system, so the OSP provides several facilities
—interrupt control, regions and mailboxes—to help
handle general synchronization and mutual exclusion
problems. Which one to choose depends on the
circumstance.

Exercise 8: In this example, would it be better if
Tasks A and B shared a single output routine, so
that only one section of code sent data to the
USART? Convince yourself that the same (or
worse!) problems could still arise.

Sometimes critical 'sections can be protected by just
disabling interrupts at appropriate points in the applica-
tion software. To maintain the integrity of an iAPX
86/30 system, application code must never execute the
STI, CLI, or HLT instructions (ENABLE, DISABLE,
or HALT statements in PL/M), nor can it access the
interrupt control logic directly. Instead, the interrupt
status should be controlled with the OSP
RQSENABLE and RQ$DISABLE procedures;
routines should be halted via RQ§SUSPEND or
RQ$WAITSINTERRUPT.

Back toTIMES$TASK: we want to transmit BELSs to the
console every five seconds. The console output task
will be transmitting other characters. A “‘clever” pro-
grammer may recognize that this will lead to a critical
section and analyze the situation as follows:

1. A hazard would arise if TIME$TASK sends out a
beep when. CONSOLESOUTS$TASK is using the
USART;

2. TIMESTASK will only execute after being signaled
by ASCSHANDLER;

3. ASCSHANDLER only reponds to an external
interrupt.

“Therefore, all CONSOLE$OUTS$TASK has to do to

be safe is disable the 60-Hz interrupt around its output
routine."”’

Not quite. There are still potential hazards. Suppose
CRTSOUTS$TASK has the same priority as
TIMESTASK. TIME$TASK may already have been
signaled by ASCSHANDLER and be ready to run when

" CRT$OUTS$TASK completes. An otherwise unrelated

event—another interrupt, for instance—could mo-
mentarily suspend CRTSOUTS$TASK during the criti-
cal region with A.C. interrupts disabled. When the OSP
returns to that level, it might resyme with
TIMES$TASK, not CRTSOUTSTASK. This could lead
to the same malfunctions as before, so disabling 60-Hz
interrupts didn’t help. This series of worst-case as-
sumptions is admittedly convoluted, but the resulting
sporadic errors are among the hardest of all bugs to
squash.

The problem is that this attempted solution involves too
much interaction between tasks, making it confusing
and error-prone. Even if some scheme of priority-level
assignments and task interactions could be made to
work, later modifications or simple additions to the job

AFN-02068A

AP-130

could cause bugs to reappear. (The analogy of an unex-
ploded time bomb conies to mind.)

A simpler solution would be one corresponding more
closely with the problem. Accordingly, the OSP sup-
ports several primitives just to supervise and control
access to critical regions.

One of the OSP ‘“data types”’ is a data structure called a
““Region,” which can be used by application code to
control access to a shared port or some other resource.
A task wishing access to the resource should call the
OSP procedure RQSRECEIVE$CONTROL before
trying to access that resource; when done it must call
RQS$SEND$CONTROL.

The OSP keeps track of which regions are in use. As
long as a region is busy (i.e., has been entered but not
yet exited), the OSP will prevent other tasks from enter-
ing the region by putting them to sleep. The OSPkeeps a
queue of all tasks waiting for the busy region. When the
region later becomes available (i.e., when the task con-
trolling the region calls RQSSENDSCONTROL), one
of the sleeping tasks—either the highest priority or the
most patient—will be awakened, granted control of the
region, and sent on its way. (When a region is created,
the OSP is told whether to awaken tasks waiting for the
region based on their priority or how long they
have been waiting.) Effectively, a call to RQ$
RECEIVE$CONTROL will not return to the applica-
tion task until the resource in question becomes
available.

The PROTECTEDCRTOUTPUT (Example 7) dem-
onstrates this protocol. The routine is declared
reentrant which means (by definition) the routine may
be interrupted and restarted safely. A reentrant routine
may be shared by a number of tasks, instead of replicat-
ing the same code throughout the application.

PROTECTEDSCRTSOUT PROCEDURE (CHAR) REENTRANT,
DECLARE CHAR BYTE)
DECLARE CRT$EXCEPTSCODE WORD,
CALL RGSRECEIVESCONTROL (CRTSREGIONSTOKEN, @CRTSEXCEPT$CODE)
DO WHILE (INPUT(STAT$31) AND O1H)=0,
/% NOTHING #/

OUTPUT (CHAR$51) =CHAR ;

CALL RQ$SEND$CONTROL (QCRTSEXCEPT$CODE),
END PROTECTEDSCRTOUT;

Example 7. CRT Output Routine Protected by
Region Protocol

As a concession to simplicity, PROTECTEDS$
CRT$OUTPUT does use a form of the busy waiting
method described earlier. The maximum delay at 9600

baud is only one millisecond, however, much shorter
than a system tick. Besides, tasks performing character
I/O will all have low priority levels, so the OSP. would
just delay them if anything more urgent comes up.

Exercise 9: Decide whether this explanation is a
feeble attempt at rationalization, or a well-
- justified engineering trade-off.

Inter-Task Communication

But what if a high priority task must output a string of
characters, or the peripheral response time is too long?
Busy-waiting may not be acceptable. Alternatively, the
output routine could buffer the data and service the
USART within an interrupt routine. Another would be
to simply pass the data off to a special (low-priority)
output task and continue.

Tasks pass information to each other via something
called a ‘“‘message.” A message may be the token for
any type of OSP object, but the most common and most
flexible type is called: a ‘‘memory segment.” In our
example, segments will be used to carry strings of
ASCII characters between tasks, so we’ll examine seg-
ments first. Message formats are defined by the individ-
ual application programmer—make sure the sending
and receiving tasks assume the same format!

A memory segment is just a section of contiguous-sys-
tem RAM allocated (set aside) by the OSP at the re-
quest of an executing task. The OSP keeps track of a
free memory ‘‘pool,”” which is initially all unused RAM
in the system. When a task needs some RAM, it tells the
RQ$SCREATES$SEGMENT procedure how much it
wants. The OSP finds a suitable memory block in the
pool, and returns a 16-bit token defining its location. (If
not enough memory is available, the procedure returns
an exception code.)

The token is the base portion of pointer to the first
usable byte of the segment, with the offset portion
assumed to be zero. (The token values for all other
objects have no physical significance.) Knowing this,
it’s possible to access elements of the segment as the
application warrants.

The subroutine in Example 8 shows how to request a
segment and construct a message. PRINT$TIME sends

‘the ASCII values of the time-of-day counters

(maintained in TIME$TASK) to the CRT output task
described later. The message format adopted for these
examples will consist of a byte giving the message

AFN-02058A

AP-130

L]

length, followed by that number of ASCII characters.

Figure 10 shows this format.

PRINTSTOD PROCEDURE;
DECLARE TODSMESSAGE$TOKEN WORD.
DECLARE TODSEXCEPT$CODE WORD.
DECLARE TODSSEGMENTSOFFSET WORD,
TODSSEGMENTSBASE WORD.
DECLARE TODSSEQGMENTSPNTR POINTER AT (@TODSSEGMENTSOFFSET),
DECLARE TODSTEMPLATE (28) BYTE
DATA (27, ‘THE TIME IS NOW hh'mm =s ‘. C
DECLARE TOD$STRING BASED YOD’SEGHENTCFNTR (28) BVTE
DECLARE TOD$STRINGSINDEX BYTE.

TOl TOl
TC T$BASE=T(
TODSSEGMENT$OFFSET=0,
DO TOD$STRINGSINDEX=0 TO 27,
TOD$STRING(TODSSTRINGS INDEX)=

T(28, @TOD$EXCEPT$CODE) ,

TOKEN.

TODSTEMPLATE(TOD$STRINGS INDEX),

END,
TOD$STRING (17)=ASCIISCODE (HOURSCOUNT/10),
TODS$STRING (18)=ASCII$CODE (HOURSCOUNT MOD 10).
TODSSTRING (20)=ASCII$CODE (MINUTESCOUNT/10) .
TODSSTRING(21)=ASCII$CODE(MINUTESCOUNT MOD 10),
TODSSTRING (23)=ASCI I$CODE (SECOND$COUNT/10), N
TODSSTRING (24)=ASC11$CODE (SECONDSCOUNT MOD 10).
CALL RG$SENDSMESSAGE (CRTSMAILBOXSTOKEN,

TODSMESSAGESTOKEN, O, @TODSEXCEPT$CODE) »
RETURN;
END PRINTS$TOD,

Example 8. Subroutine to Send Time-of-Day
Message to Output Task

We'’re coding PRINT$STIME here (see Example 8),
while TIMESTASK is fresh in our minds. It will actually
be called by (and is therefore considered a part of)
KEYBOARDSTASK. Note that while tasks are written
as individual procedures, they need not be fully self-
contained: outside procedures should be used to help
organize and structure the code.

The first thing PRINT$TIME does is have the OSP
create a segment of suitable length, and copies a
‘““message template’’ into the segment, byte by byte.
Then it converts the TIME$TASK counter values to
ASCII, filling in blanks in the template. Finally, it sends
the token for the message to the CRT mailbox.

To repeat, these examples are intended to illustrate use
of the OSP routines assuming minimum familiarity with
PL/M. Better programming practices might take advan-
tage of PL/M literals, structures and the array
LENGTH function to build the message, rather than
the inflexible constants shown here. Some of these
techniques are suggested by PRINT$STATUS
(Example 9), which indicates the binary status of the
input switches.

PRINT$STATUS' PROCEDURE;

DECLARE STATUSSMESSAGESTOKEN WORD:

DECLARE STATUSSEXCEPTSCODE WORD:

DECLARE STATUSSSEGMENTSOFFSET WORD,
STATUSSSEGMENTSBASE WORD;

DECLARE STATUSSSEOMENTSPNTR POINTER
AT (@STATUSSSEGMENTSOFFSET),

DECLARE STATUSSTEMPLATE (40) BYTE DATA
(39, ‘'THE SWITCHES ARE NOW SET TO CR,LF),

DECLaRE STATUSSSTRING BASED STATUS‘SEGHENT‘PNTR (40) BYTE,

DECLARE STATUSSSTRINGSINDEX BYTE:

DECLARE BITSPATTERN BYTE;

BTATL

TO! T T(40,
RSTATUSSEXCEPTS$CODE),
STATL T TATL TOKEN,
STATUSSSEGMENTSOFFSET=0; *
DO STATUSSSTRINGSINDEX=0 TO 39,
STATUSSSTRING (STATUSSSTRINGSINDEX)=
STATUSSTEMPLATE(STATUSSSTRINGSINDEX)

END,

BIT$PATTERN=INPUT(PPIS$A),

DO STATUSSSTRINOSINDEX=29 TO 3éi :
STATUSSSTRING (STATUSSSTRINGSINDEX)=

ASCIISCODE(BITSPATTERN AND OiH),

BIT$PATTERN=ROR(BITSPATTERN, 1),
END,

CALL RQ$SENDSMESSAGE (CRT$MAILBOX$TOKEN,
STATUSSMESSAGESTOKEN, 0, @STATUSSEXCEPT$CODE) .

END PRINTS$STATUS,

Example 9. Subroutine to Send Status Report
Message to Output Task

Exercise 10: One input port is read by both
STATUSS$TASK and PRINT$STATUS. Does this
constitute a shared resource? A critical region?

Exercise 11: PRINT$TIME reads the counts
maintained by TIME$TASK, but doesn’t alter
them. Forced mutual exclusion is generally
mandatory when multiple tasks perform
read/modify/write sequences on a given variable.
Can PRINTS$TIME make TIME$TASK malfunc-
tion? What about the opposite case? If this failure
mode was deemed unacceptable, how could it be
protected?

Mailboxes

The data in a message doesn’t actually move or get
copied from source to destination when the message is
sent; this would be too slow with long messages.
Rather, the OSP ‘‘carries” the message’s token from
task to task via a data structure cleverly termed a
mailbox. If one task must send messages to another, a
mailbox must be created to hold them. The sender calls
the RQSSENDS$MESSAGE to put a message
token into the mailbox. If the receiver isn’t ready for
the message yet, the OSP puts the message token
into an ordered queue. When the receiver calls RQ$

OFFSET= 0 1 2 3 4 5 6 7 8 9 10 1

12

13

14 15 16 17 18 19 20 21 22 23 24 25 26 27

Lol [ulelm[r]][w]elw]r]s]w[w]o]w]n]w]z]|s]e]]e]w] on]rr]

SEGMENT STARTING ADDRESS = TOD$MESSAGESTOKEN:0000H

Figure 10. Message Formats Expected by Output Task

2-1

AFN-02058A

AP-130

RECEIVESMESSAGE later, the OSP will give it the
tokens one at a time.

What happens if a task tries to receive a message when
the mailbox is empty? (This is quite possible, since
tasks do run asynchronously.) What token would the
OSP return?

In the simple case . . . it doesn’t! Instead of returning
right away with no data, the OSP will wait until data is
available. In the meantime, the OSP puts the receiving
task to sleep, remembering that it is waiting for a
message at that mailbox. The next time a message is
sent to that mailbox, the OSP will awaken the receiving
task, give it the token, and—if its priority is high
enough—resume its execution. Alternatively, receiving

tasks may elect to not wait if the mailbox is empty, or to

wait only a specified time.

Many tasks may actually send and receive messages
through a single mailbox, with messages being queued
in the order that the RQ$SEND$MESSAGE calls are
executed. The OSP also maintains a list of tasks waiting
to receive messages from an empty mailbox, analogous
to the queued tasks waiting for region control. As each
message is sent to the mailbox, it is passed immediately
to a waiting task, either the one waiting the longest or
the one with the highest priority (likewise determined
by a parameter specified when the mailbox is created).

Exercise 12: Under what conditions could a mail-
box’s message queue contain messages waiting to
be received, while the task queue contains tasks
waiting for messages? Ignore the possibility that
this may happen momentarily during the imple-
mentation of either routine. If you think of any
such circumstances, please contact the author.

Example 10 shows a task which prints the messages
sent above. Upon receiving a message token,
CRT$OUTSTASK determines the message length from
the first two bytes, and sequentially prints each element
of the string through the PROTECTEDSCRTS$
OUTPUT routine explained earlier. When done, the
segment containing the message is deleted, returning its
RAM to the free-memory pool.

A few words are in order about the segment accessing
techniques demonstrated here. PL/M-86 has a special
data type, called a ‘‘pointer,”” used to indirectly access
other PL/M variables. OSP application programs must
be compiled with the ‘‘compact” or ‘‘large’’ model spe-
cified. This tells the compiler to implement pointers as
32-bit double words corresponding to the two parts
(base:offset) of the 8086 machine-segmented address-
ing scheme. PL/M-86 tries to shield the programmer

2-72

CRTSOUTSTASK PROCEDURE,

DECLARE MESSAGESLENGTH BYTE:

DECLARE MESSAGESTOKEN WORD:

DECLARE RESPONSESTOKEN WORD:

DECLARE MESSAGESEXCEPTSCODE WORD;

DECLARE MESSAGESSEGMENTSOFFSET WORD,
MESSAGESSECMENTSBASE WORD;

DECLARE MESSAGESSEOMENTSPNTR POINTER AT
(@MESSAGES$SEGMENTSOFFSET) .,

DECLARE TRI BASED

TSPNTR BYTE:

CALL RQSRESUMESTASK (INITS$TASKS$TOKEN, @MESSAGESEXCEPT$CODE),
DO FOREVER;

T IVESH (CRTSMAILBOX$TOKEN, OFFFFH,
@RESPONSES$TOKEN, @MESSAGESEXCEPT$CODE) ;
MESSAQESSECMENTSOFFSET=0,

T TOKEN,
TR
TENTSOFFSET=1 TO ENGTH:
CALL PROTECTEDSCRTSOUT (MESSAGESSTRINGSCHAR))
END;

’

CALL RQGSDELET 1ENT
END, /# OF FOREVER
END CRTSOUTSTASK:

TOKEN, XCEPTS$CODE).,

¢
~LOOP %/

Example 10. Task to Transmit Messages
to the CRT

from the details, yet at times the two parts must be
manipulated separately (for instance, to access data in
an OSP segment knowing only the segment token/base
value).

To get around this, these examples assign a pair of word
variables to the same address as a PL/M pointer vari-
able. Each representation is then an alias for the other.
To determine the base or offset value of an item of data,
load the pointer variable with a pointer to the item and
then reference the appropriate field of the overlayed
pair of word variables. To “‘build” an arbitrary pointer,
assign computed values to the base and offset fields and
then access the data item via the composite pointer.

Exercise 13: PL/M 86 does not have built-in func-
tions to separate the high and low-order words of a
pointer variable. Does this seem to be a weakness
in the language? Bear in mind that the machine
representation for pointers varies depending on
which programming model is specified at compila-
_tion time. When the ‘‘small” model is selected, the
compilers take advantage of a 16-bit pointer
representation for faster and more compact code.

Console Command Interpreter

If a system has a console keyboard, it’s probably used
to accept and interpret operator commands. For this
demonstration system, the lowest priority of all tasks is
a simple-minded routine which polls the USART until a
character has been received, and immediately echoes it
by calling—you guessed it!—PROTECTED
$CRTSOUTPUT. Thus, the keyboard is ‘‘alive”; it
responds immediately to keystrokes, so the operator
can type whatever nonsense he desires while every-
thing else is going on.

Ten of the keys (digits 0 through 9), invoke special
commands which illustrate interactions between the

AFN-02058A

AP-130

multiple tasks. Commands 0 and 1 print out the time
and status messages; the rest suspend and resume
various tasks, as shown by Table 2. The code for
COMMANDSTASK appears in Example 11.

Initialization Task

Now that the application tasks have been written, we
can write the initialization task.

All applications require a special type of task to initial-
ize system variables and peripherals and create tasks
and other objects used by the application. It, too, is
written as a PL/M procedure, and can thus be divided
conceptually into the same three phases.

Example 12 shows such a task for the demonstration
system. The first thing INIT$TASK does is determine
the base address of the job data segment by assigning
pointer DATA$SEGS$PTR with its own address. Next it
calls the RQSGET$TASK$TOKENS routine, which
tells the task what token value the OSP assigned it at
run time. It then initializes the system peripherals by
creating the hardware initialization task discussed
above; this code could have been integrated into
INIT$STASK itself just as easily. During its own
‘‘execution’’ phase, INIT$TASK calls routines to
create the OSP data structures shared by the applica-
tion tasks: the REGION controlling access to the
USART, and the MAILBOX repository for output mes-
sages. INIT$TASK creates the application tasks them-
selves by calling RQSCREATES$STASK.

Though not always required, it is common practice for
the overall initialization task to suspend itself after
creating each offspring, to let the newborn task get
started. Under this convention, each offspring task
must resume the initialization task by calling the

COMMANDSTASK PROCEDURE,
DECLARE CONSOLESCHAR BYTE,
DECLARE COMMANDSEXCEPTS$CODE WORD:

CALL RQG$RESUMESTASK (INIT$TASK$TOKEN, @COMMANDSEXCEPT$CODE),
DO FOREVER. v
CONSOLE$CHAR=C$IN AND 7FH;
CALL PROTECTEDSCRTSOUT(CONSOLES$CHAR),
If CONSOLE$CHAR=CR
THEN CALL PROTECTEDSCRT$OUT(LF),
IF (CONSOLESCHAR >= ‘O‘) AND (CONSOLESCHAR <= ‘9’)
THEN DO, ‘
CALL PROTECTEDSCRTS$OUT(CR),
CALL PROTECTEDSCRTSOUT(LF),
DO CASE (CONSOLESCHAR-‘0‘),
CALL PRINTS$TOD.
CALL PRINTSSTATUS,
CALL RQG$SUSPENDS$TASK(CRTSOUTSTASKSTOKEN,
@COMMANDSEXCEPT$CODE),
CALL RQ$RESUMESTASK(CRTSOUT$TASKS$TOKEN,
@COMMANDSEXCEPT$CODE) ,
CALL RQGS$DISABLE(AC$INTERRUPT$LEVEL,
@COMMANDS$EXCEPT$CODE) ,
CALL RG$ENABLE(ACS INTERRUPTSLEVEL.,
@COMMANDSEXCEP T$CODE) ,
CALL RQ$SUSPENDS$TASK (MOTORSTASK$STOKEN,
@COMMANDSEXCEP T$CODE) »
CALL RQSRESUMESTASK (MOTORSTASK$TOKEN,
@COMMANDSEXCEPT$CODE) »
CALL RG$SUSPENDS$TASK(STATUS$TASKSTOKEN,
@COMMANDSEXCEP T$CODE) ,
CALL RQGSRESUMESTASK (STATUSSTASKSTOKEN,
@COMMANDSEXCEPT$CODE) ,
END, /% OF CASE-LIST %/
END: /% OF COMMAND PROCESSING #/

END,
END COMMANDS$TASK,"

Example 11. Task to Accept and Process Keyboard
Commands

INIT$TASK PROCEDURE PUBLIC,
DECLARE INITS$EXCEPT$CODE WORD,

DATASSEGSPTR=@INITSTASK$TOKEN, /#LOAD DATA SEGMENT BASE#/
CRTSMAILBOX$TOKEN=RQ$CREATESMAILBOX(0, @INIT$EXCEPT$CODE) ,
CRT$SREGIONS TOKEN=RQ$CREATESREGION(O, RINITSEXCEPT$CODE),
INIT$TASK$TOKEN=RQCETTASKSTOKENS (O, @INIT$EXCEPT$CODE),
HARDWARES INIT$TASK$ TOKEN=RQ$CREATESTASK
(110, @HARDWARESINIT$TASK, DATASSEQSADDR BASE, 0, 300,
0, @INITSEXCEPT$CODE),
CALL RQG$SUSPENDSTASK (0, RINITSEXCEPTSCODE))
STATUSSTASKSTOKEN=RGSCREATES$TASK (110, @8TATUSSTASK,
DATASSEGSADDR BASE., 0, 300, 0, @INITSEXCEPTSCODE))
CALL RQ$SUSPENDS$TASK (0, @INIT$EXCEPT$CODE),
MOTORS$TASK$TOKEN=RQSCREATESTASK (110, @MOTORSTASK,
DATA$SEGS$ADDR BASE, 0, 300, 0, @INIT$EXCEPT$CODE),
CALL RQ$SUSPENDS$TASK (0, @INIT$EXCEPT$CODE),
TIMESTASKSTOKEN=RGSCREATESTASK (120, @TIMES$TASK,
DATASSEGADDR BASE, 0, 300, 0, @ NIT$EXCEPT$CODE),
CALL RQ$SUSPEND$TASK (0, @INIT$EXCEPT$CODE),
CRT$OUTS$TASK$TOKEN=RQSCREATESTASK (120, @CRTSOUTSTASK,
DATASSEG$ADDR BASE, 0, 300, 0, @INIT$EXCEPT$CODE),
CALL RQ$SUSPEND$TASK (0, @INIT$EXCEPT$CODE),
COMMAND$TASK$TOKEN=RA$CREATESTASK (130, @COMMANDSTASK,
DATASEGADDR BASE, O, 300, O, @INIT$EXCEPT$CODE) »
CALL RQ$SUSPENDSTASK (O, @INITSEXCEPT$CODE),
CALL RQSENDSINITSTASK,
CALL RQ$DELETES$TASK(O, @INIT$EXCEPT$CODE),
END INITSTASK,

Example 12. Task to Initialize System Software

Table 2. Special Console Commands

Key Function

0 Send Time-of-day message to CRT.
Send status update message to CRT.

2 Suspend CRT output task. The OSP will automatically save messages to the task
in the CRT mailbox queue.

3 Resume CRT output task. Queued messages will be displayed.

4 Disable 60-Hz interrupt-driven time base. Time-of-day clock will stop.

5 Enable 60-Hz time base to resume clock execution.

6 Suspend motor control task. Motor will stop.

7 Resume motor control task. Note that if task was suspended 17 times, it must be
resumed 17 times. ’

8 Suspend status polling task. Lights indicating system status will freeze in current state.

9 Resume status polling task.

AFN-02058A

AP-130

RQSRESUMESTASK routine when its own local in-
itialization is complete. This convention -is called
synchronous initialization; its purpose is to ensure that
each task is allowed to complete its own start-up phase
before the next task is created. Otherwise, there’s arisk
that higher-priority tasks created later could start exe-
cuting before earlier tasks were ready for them, with (at
best) unpredicatable results.

When all the tasks have been created, INIT$TASK has
served its purpose. It must then call RQ$SENDS$
INIT$TASK. This short procedure (actually self-
contained in an OSP Support Package interface library,
not built into the 80130) tells the OSP that all the off-
spring tasks have been created for a given job. At this
point, INIT$STASK could continue with non-initializa-
tion activities. The code for KEYBOARDS$TASK might
have been implemented here, for example. Since this
example has nothing more to do, INITSTASK deletes
itself with a final call to RQSDELETE$TASK.

Code Translation

That’s all, folks. Mix together the above code frag-
ments, declare literals and global variables, and com-
pile until done (about four minutes). The source file
name selected for this example is AP130.PLM. The
compiler will produce two files: an annotated source
listing (named AP130.LST) reproduced irn foto in Ap-
pendix B, and a relocatable object file (AP130.0BJ)
which will be used in the installation procedure dis-
cussed next.

High-Level Parameter Passing
Conventions

Well-designed programs generaily rely on subprograms
(‘“‘procedures’’ in PL/M terminology) for often-
repeated instruction sequences, or to perform
machine-level operations within High-Level Language
programs. PL/M-86 and other Intel high-level languages
use a standard set of conventions to pass parameters
and results between procedures; assembly language

- programmers are advised to adhere to these conven-
tions for software compatibility.

Before calling a subroutine or function, input
parameters must be pushed sequentially onto the stack,
in the order (left-to-right) they appear in the procedure
parameter list. When eight-bit parameters are pushed,
the high-order byte associated with them is undefined.
Thirty-two-bit pointer values are pushed in two steps,
offset word before base word. The stack ‘‘grows”
down, so the left-most parameter will have hlghest-
numbered address.

Functions which return a byte or word value (i.e., typed
procedures) do so in the CPU AL or AX registers.
Pointers are returned through the ES: AX register pair.
The PL/M Programming Manual explains these con-
ventions more fully.

One way to see how an assembly language routine
would interface with PL/M is to first write a dummy
PL/M procedure using the same parameter sequence as
the desired assembly language routine. Compile this
procedure with the compiler CODE switch set. The
listing will then include the appropriate assembly lan-
guage instruction sequence, and may be followed as a
pattern for the final routine.

SOFTWARE CONFIGURATIONS &
INTEGRATION

When the application code has been written and com-
piled, the hardest part of program development is over.
Before the code may be executed, though, the OSP
must be told various things about the system hardware
environment, desired software options, application job
characteristics, and so forth.

This information is conveyed during a multi-phase se-
quence of steps collectively called the Configuration
process. Though the process is somewhat lengthy and
time-consuming, it is also very ‘“mechanical’’; the per-
son doing the work does not need to understand any of
the application code or even know what it does. Nor-
mally, configuration would be performed by a techni-
cian or a single member of the programming team, aided

. by appropriate SUBMIT command files. This chapter

274

shows the full configuration and installation process for
the demonstration system. For more detaﬂs, refer to
the OSP User’s Manual.

The three phases of the configuration are:

1. Generating, linking, and locating OSP support code
,required for the EPROM immediately above the

80130 address space;

. Linking and locating the object file for the applica-
tion job developed in Section IV;

. Creating, linking, and locating a short module
(called the Root Job) which initializes the OSP and
application jobs when system is reset.

Finally, of course, the absolute code resulting from each
phase must be programmed into EPROMs or loaded
into a test system before it can be executed.

Before starting, though, it is beneficial to draw up a
memory map for host system hardware, to determine
what sections of memory are available. This map will be
filled in as each module is linked and located.

AP-130

The prototype system memory space has two areas of
interest: addresses 00000H through 01FFFH contain
RAM, while OFC000H through OFFFFFH contain
EPROM. Since the CPU uses the first 1K bytes of RAM
for the CPU interrupt pointers, and the last 16 bytes for
the restart sequence, these areas should be recorded on
the map. For reference purposes, Figure 11 also indi-
cates that addresses OF8000H through OFBFFFH
enable the 80130 firmware. All this is shown in
Figure 11.

Generating the OSP Support Code

The OSP support code ‘‘customizes’’ the OSP firmware
for a particular hardware environment, initializes the
system, and supports extended software capabilities.

To define the hardware environment, the user creates a
source file which invokes a series of Intel-supplied
macros. Parameters for these macros specify the 80130
I/O base address, SYSTICK interval (in system clock
cycles), and how the interrupt request pins will be used.

For instance, the code example in Figure 12 defines the
prototype system hardware. This source file must be
assembled, linked with several libraries from the OSP
support disk, and located to produce the actual OSP
support code. Figure 13 shows the actual sequence of
commands needed. The DATA starting address speci-
fied within the LOC86 parameter list (00400H) is the
first free byte of system RAM (see Figure 11); the
CODE address (OF8000H) is simply the 80130 firmware
starting address.

STARTING ENDING

_ MEMORY MODULE ADDRESS ADDRESS
8086 RESTART VECTOR OFFFF:0 | OFFFF:F
EPROM
(2x2764)
L 0FC00:0
80130 MEMORY SPACE 0F800:0_| OFBFF:F
[OIFFF
RAM
[8086 INTERRUPT VECTOR 0000:0 | O003F:F

APPLICATION JOB STARTING ADDRESS:
ROOT JOB STARTING ADDRESS:

~ Figure 11. Example System Memory Map

NAMEODEVCF
$INCLUDE(F1 NDEVCF MAC)

ZMASTER_PIC (80130, 2000H. 0, 0)

%TIMER (80130, 2008H, 28H. 12500)
» NDP_SUPPORT(ENCODED_LEVEL)

END

$TITLE(80130 DEVICE CONFIGURATION TABLE)

»SLAVE_PIC(SLAVE_TYPE, BASE_PORT, EDGE_VS_LEVEL, MASTER LEVEL)

Figure 12. 80130 Device Configuration Table

2-75

AFN-02038A

AP-130

MACRO(B0) PAGEWIDTH(132)

FO LINKBG &

F1 0SX LIB(OSX86, OSXCNF),
F1 NUC1 LIB(NBEGIN),
F1 ODEVCF OB,

F1 0SX LIB,
F1 NUC1 LIB,
F1.08X LIB,
F1.NUC2 LIB,
*F1 0SX LIB,
F1 NUC4 LIB,
F1 0SX LIB,
F1.NURSLV LIB
F1 0SX LIB

fo ol o

B
FO LOC8&
SEGSIZE(STACK(0))

ORDER (CLASSES (DATA, STACK))

FO ASMB6 'F1'SUP130 AB6 PRINT(F1 SUP130 LST) ERRORPRINT ¥

TO F1 SUP130 LNK MAP PRINT(Fi SUP130 MP1) NAME(MINIMAL_80130)

F1 SUP130 LNK TO F1 SUP130 MAP PRINT(F1 SUPISO MPZ) 8C(3) &
« ADDRESSES(CLASSES (CODE(OF8000H), DATA(O0400H))) . &
&

OBJECTCONTROLS (NOL INES, NOCOMMENTS, NOSYMBOLS)

1

Figure 13. Support Code Configuration Commands

A reliable and relatively straightforward way to per-
form this step is to create a file containing the exact
command sequence shown in Figure 13 and execute
this file using the SUBMIT utility program. Of course,
the example assumes SUBMIT, ASM86, LINKS86,
and LOCS86 are all on drive :F0:, and that the various
libraries have been copied from the support disk to
drive :F1:. _

(An alternate, support-code configuration scheme lets
the user modify the OSP software characteristics in
special situations. A programmer working with iRMX
86, for instance, may wish to augment the OSP
firmware to support all the iRMX Nucleus primitives.
This would be done by editing and assembling file
0TABLE.A86 to select from a menu of software op-
tions, and modifying the linkage step slightly to include
one of the iRMX 86 libraries. The OSP built-in features
are more than sufficient for the purposes of this note,
though, so only the first approach is illustrated.)

Appendix D reproduces the Locate map file produced
during this phase. Near the end of file SUP130.MP2is a
table of memory usage, showing that the last bytes of
RAM and ROM consumed are 00A6: FH and OFC61:
FH, respectively. Update Figure 11 with this informa-
tion. (The final version of the demonstration-system
memory map appears in Appendix C.) This phase
needn’t be repeated unless the system hardware char-
acteristics change.

Application Code Configuration

After compiling the application job, it must be linked
with a library of interface routines from the support
diskette, and located within available memory. Use
RPIFC.LIB or RPIFL.LIB, depending on whether the
job was compiled with the Compact or Large software
model. Figure 14 is a command sequence file suggested
for this purpose. Again, the starting addresses specified
for LOC86 are taken from the system memory map.

Whenever the support code is reconfigured, check
SUP130.MP2 to see if its memory needs have changed.
If so, the application-job-configuration command file

* will need to be edited. This is still a lot simpler (not to

mention more reliable) than retyping the whole se-
quence each time application jobs are revised. Readers
familiar with the capabilities of the SUBMIT program
may prefer to represent these variables by parameters,
such that they may be easily specified each time the
command file is invoked.

As in the first phase, examine the locate map
(“AP130.MP2”’, reproduced in Appendix E) after the
application code has been configured and update the
memory map. Also, note the segment and offset values
assigned to the initialization task. These will be needed
later.

AFN-02058A

AP-130

Creating the Root Job

By now, all of the code needed to execute the applica-
tion program has been prepared and is ready to run
—except it has no way to get it started! The OSP hard-
ware and system data structures must be initialized
before INITSTASK can be created. A short module
called the Root Job performs this function.

The process closely resembles the one which produced
the OSP support code. First, determine various system
characteristics. Then create a file defining these charac-
teristics as macro input parameters. Finally, assemble,
link, and locate the file to produce the final code.

Figure 15 is the Root Job source file for the demonstra-
tion system, dubbed RIB130.A86. It consists of just five
macro calls. The %JOB macro defines certain charac-
teristics of the application job; for a full description see
the OSP User’s Manual. One of these parameters is the
initialization-task starting address (noted in the last
step), which will likely change with each iteration of the
application software.

The two %SAB macros define ‘‘System Address
Blocks”’—sections of the overall memory space which
the OSP should not consider ‘‘free space.’”” Note that
the first invocation blocks off the RAM addresses con-
sumed so far in the memory map, plus an extra 140H
bytes reserved for the Root Job initialization stack.

B SUBMIT FILE TO LINK APPLICATION JOB TO INTERFACE LIBRARY

. AND LOCATE RESULTING OUTPUT

’ REVISED 10/23/81 - JHW

LINKB6 F1 AP130.0BJ, F1-RPIFC LIB TO F1.AP130 LNK
MAP PRINT(F1-AP130 MP1)

LOCB& F1 AP130 LNK TO :F1 AP130
ORDER (CLASSES(DATA, STACK, MEMORY))
SEGSIZE (STACK (0))
ADDRESSES (CLASSES (DATA (00A70H),
CODE (OFC&20H)))
AP130 MP2)
(NOLINES, NOCOMMENTS, NOPUBL ICS. NOSYMBOLS)

TrePOe

MAP PRINT (F1
OBJECTCONTROLS
OHB& F1 AP130 TO F1 AP130. HB6
COPY F1 AP130 MP1 TO 'LP:

COPY F1 AP130 MP2 TO LP

Figure 14. Job Configuration Commands

:SDURCE PROGRAM DEFINING CHARACTERISTICS OF ROOT JOB FOR
» AP-130 DEMONSTRATION PROGRAM (JHW - 10/23/81)

$INCLUDE(F1 CTABLE MAC)

%SAB (0, 00C0O, U)

%SAB (0200, FFFF, U)

%JOB (0, OCOH, 100H, OFFFFH, OFFFFH, 1,0 0, 1, 0, 100, OFC42' 06B35, 0, O 0, 200H, 0)
%0SX (OFBOOOH, N)

%SYSTEM(F800, 0, 4, N, N, 1)

'

END

Figure 15. Root Job Configuration File
277
AFN-02058A

AP-130

(After completing this phase, examine RJB130.MP2 to
confirm that 140H is the correct number.) The second
%SAB invocation excludes addresses 02000H through
OFFFFFH, all of which is non-RAM, either EPROM,
80130 firmware, or non-existent. The %SYSTEM
macro defines system-wide software parameters.

Figure 16 is a command file to translate, link, and locate
the root job. Once again, the LOC86 parameters come
from Figure 11. The listings produced during this phase
are reproduced in Appendix F. The final memory map
appears in Appendix C.

EPROM Programming

We are now ready to program EPROMs with the pro-
gram modules linked and located above. Intel’s Univer-
sal PROM Programmer (UPP) and a control program
called the Universal Prom Mapper (UPM) will be used
in this step. Particular commands to the UPM will vary
with program size, memory location, and EPROM type,
but the general sequence should resemble that shown
here.

The first step is to invoke UPM and initialize the pro-
gramming system, following a command sequence
similar to that in Figure 17. The example system incor-
porates two 2764 devices, so 16K bytes of memory
buffer are cleared.

Next, all the final code modules produced above (e.g.,
SUP130, AP130, and RJB130) must be loaded into the

UPM memory buffer. The three commands in Figure 18
perform this function.

When the final system is reset, execution must branch
into the root job initialization sequence. When the abso-
lute code modules have finished loading, manually
patch a jump instruction into the buffer area corres-
ponding to the CPU reset vector. The opcode for the

_ 8086 or 8088 intersegment jump is OEAH; the instruc-

tion’s address field must contain the address assigned to
label RQ$STARTSADDRESS (read from the root job
locate map), the 16-bit segment offset (low byte first)
followed by the segment base address (ditto). The UPM
CHANGE command shguld be used to make this
patch, as illustrated in Figure 19.

The UPM memory buffer now contains a complete
image of the code needed for the system EPROMs. Up -
until now, all software-related steps—source code
preparation, translation, linking and locating—have
been the same for 8086- or 8088-based systems. At this
point, however, the software installation procedures
diverge slightly.

Recall that the 8086 fetches instructions 16 bits at a
time, from coordinated pairs of EPROMs. One contains
only even-numbered program bytes, the other, odd. To
separate the linear UPM buffer into high- and low-order

" bytes for iAPX 86/30 designs, use the UPM STRIP

command as shown in Figure 20.

Now ““burn” the EPROMs with the PROGRAM com-
mand in Figure 21.

LINK8E

f1 RJUB130 oby,
f£1 croot lib

LOC86 £1 RUB130 1nk

TO F1 RJBLI30

LINK AND LGCA}E THE 1RMX 86 ROOT JOB

MODIFIED FOR TWO-DRIVE OPERATION
REVISED 10/25 - JHW

’
ASMB& f1 RUB130 AB6& MACRO(75)

£1 croot lib(root),

T0 £1 RJUDB130 1nk
MAP PRINT(£1 RJB130 mp1)

MAP PRINT(1 RJB130 mp2)
nocm; nosb)

PR E

0OC(nol:, nopl,
PC(nol1, pl, nocm, nosb)
SEGSIZE(stack(0))
ORDER(classes(data, stack, memory)) &
ADDRESSES(classes(code (OFD180H), &
data(00ADOH)))

LodE i o o

OHB& F1 RJUB130 TO F1 RUB130 HB6
COPY F1 RJB130 LST TO LP
COPY F1 RJUB130 MP1 TO LP

COPY F1 RJB130 MP2 TO LP
’

Figure 16. Root Job Configuration Commands
2-78
AFN-02058A

AP-130

fill from 0 to 3ffth with Ofth

Figure 17. UPM Initialization Sequence

read 86hex file : f1: sup130. h86
read 86hex file : f1: ap130. h86 from O to 3fffh start 0fc000h
read 86hex file : 11 : rjb130. h8é

m O to 3ftth start 0fc000h

Figure 18. UPM Commands to Load Hex Files

change 3ff0h=0eah, 11h, 00h, 18h, Ofdh

Figure 19. UPM Command to Patch Restart Vector

strip low from 0 to 3fffh into 4000h
strip hi from 0 to 3fffh into 6000h

Figure 20. UPM Commands to Strip High and Low Bytes

program from 4000h to 5ftth start 0
program from 6000h to 7ffth start 0
exit

Figure 21. UPM Commands to Program EPROMs

To save some trouble, the UPM invocation and all com-
mands except the manual patch can be combined into a
SUBMIT command file. Replace the CHANGE com-
mand with a control-E character so the operator can
adjust the starting address for the iteration. Also place
control-Es before each PROGRAM step to give the
operator time to socket the next memory device.

SUMMARY

The development of the 80130 marks a major milestone
in the evolution of microcomputer systems. For the
first time, a single VLSI device integrates the hardware
facilities and operating system firmware needed by
real-time multitasking applications. The 80130 offers
the system hardware designer the advantages of higher
integration—reduced device count, smaller boards,
greater reliability—along with faster design cycles and
optimal system performance.

The 80130 gives the software engineer built-in support
for 35 standard operating system primitives. Applica-
tion problems may now be solved at a higher level than

before. It is now possible for concurrent tasks to be
dispatched, memory segments allocated, and messages
relayed through mailboxes nearly as easily as sub-
routines, dynamic variables, and I/O ports were used in
the past. In effect, Jobs, Tasks, Segments, Mailboxes,
and Regions become new OSP data types, manipulated
entirely by firmware in the 80130.

Yet despite standardizing these functions, the OSP does
not restrict the user’s flexibility. The device can accom-
modate a variety of hardware environments, and both
the hardware and software capabilities are desired.

ACKNOWLEDGEMENTS

The author would like to thank Peter Pederson for
designing and implementing the demonstration system
breadboard discussed in this note, Pam Johnson for her
assistance in typing the manuscript, and Hal Kop,
Lionel Smith, George Alexy, Chuck McMinn, and
Sandy Wharton for their help in reviewing the drafts
and providing many thoughtful comments and
criticisms.

AFN-02060A

AP-130

APPENDIX A
EXAMPLE SYSTEM SCHEMATICS

2-80

AFN-02058A

V8S0Z0-N4Y

18-2

R

= ST
Vee{d 2 @
100k02 I—Do—c ck § af—nc I Siasd OUT PORT]
J Vec»{x CLRpVcc cs g
r RES @ RDY1 >cLK At PCO-7 —N.C.
L p1CLK £ AEN1f«GND owc A0
uF RESET RDY2jwvcc Vcc>{CEN _iORC RD
RESET PCLK AEN2 |« GND GND>]AEN AIOWC| WR Do-7 KCADS-AD15
- 1 READY H
x1 FIC NC—HQ 2
x2 CSYNC a Jox
aND CLR g K
S1003 e eno-»|GE sTB z
g [
= = .| Li»ireapy
REseT ACA19L ATGAT9 > g e o cs ™ _EDDJ
» BHE BRE M RESET
GND NML 2 50— & CLK R
GND—-{TEST ¥ 51 ~—GND [— B g P
GND: MN/MX S$2 ->{10E STB; g WE =3 DSA j«—GND
A MEMCS ﬁ icD > |
10CS ™ CT15je—aGND
AD0-AD15 [ADO-AD1S xq P° §
> INTR \ —{LEPCS o RXC
. 4 ~{nepcs © Do-7
—{OE STB 3 4’}
] CLK BHE = e >
INT 50 = :> 8 ADDRESS-BUS A H
GND»IR0 &7 » » »
GND IRt 2 §2 3 > >
IR2 ©_ BAUD 3 2 2
60 Hz»|IR3 MEMCS|
GND»IR4 10Cs
GND = IRS 1 N -
GND »]IR6 —
GNDaJir; ADO-ADIS[ADO-AD1S
SYSTICK \ v A A
7 1"
WE s WE
WE CS WE
WE {Cs we
»ICS WE
H £
2
- : -
1/01-1/04
ADO-AD7 ADO-AD7
DATA-BUS

Figure A-1. Example System Schematics

0€l-dv

AP-130

MRDC

&
Uente voe po-+s
At 24g1a EN2G S
A12 s sl
ERTCS Hivo ¥ s .
ERZCS : 1 g 2v0 :: ORICS
ERICS w2 8 ave onzcs
ERACS Zliva 2v2 10 OR3CS
(! em:L—' G 2vaf® OR4CS B
13 1
a0—2 i 2 ome
8
D&t
9
F
At5 Uene vecPous
a13 21 ENZG‘E——%
Al s saaPt—ane
5-——‘- o ¥ sasfd A15
(80130) IOCS 5t ; 2vo 12
USART C$ Slive 8 2v1fd LEPCS (2764)
FIOPCS ; w3 2v2 ;“ MEMCS (80130)
.I._ GND 2v3k MEPCS (2764)
-

Figure A-1. Example System Schematics (continued)

2-82

AFN-02058A

AP-130

APPENDIX B ,
SOURCE CODE LISTINGS

2-83

AFN-02058A

. . AP-130 o

ISIS-11 PL/M-86 V2.0 COMPILATION OF MODULE DEMO130
OBJECT MODULE PLACED IN :F1:AP130.0BJ)
COMPILER INVOKED BY® PLMB6 :F1:AP130. PLM DATE(12/21)

$DEBUG COMPACT ROM TITLE(’AP-130 APPENDIX B -~ 12/21/81°)
1 DEMO%$130: DO;
/# SYSTEM-WIDE LITERAL DECLARATIONS: #/
2 1 DECLARE FOREVER LITERALLY ‘WHILE O1H‘:
/# 1/0 PORT DEFINITIONS: #/
3 1 DECLARE CHAR$51 LITERALLY ‘4000H‘, '
CMD$51 LITERALLY ‘4002H°,
STAT$51 LITERALLY ‘4002H°;
4 1 DECLARE PPI%$A LITERALLY ‘&6001H’,
PPI$B LITERALLY ‘&6003H’,
PPI$C LITERALLY ‘6005H’,

PPI$CMD LITERALLY ‘6007H’,
PPI$STAT L.ITERALLY ‘6007H';

5) DECLARE TIMER$CMD L.ITERALLY ‘200EH’,

BAUD$TIMER LITERALLY ’‘200CH’;
é 1 ‘ DECLARE AC$INTERRUPTSLEVEL LITERALLY ‘00111000B’;
7 1 DECLARE CR LITERALLY ‘ODH‘,

LF LITERALLY ‘OAH’,
BEL LITERALLY ‘O7H’;

8 1 DECLARE ASCfIﬁCODE (16) BYTE DATA (‘0123456789ABCDEF’);

SEJECT

$INCLUDE (.F1:NUCLUS. EXT)
= $SAVE NOLIST

$INCLUDE (:F1:NEXCEP.LIT)
= $save nolist

/# GLOBAL VARIABLE DECLARATIONS: */

299 1 DECLARE DATA$SEGSPTR POINTER,
DATASEGADDR STRUCTURE (OFFSET WORD, BASE WORD)
AT (@DATASSEGS$PTR):

300 1 DECLARE HARDWARE$INIT$TASKETOKEN WORD,

STATUS$TASK$TOKEN WORD,
MOTORSTASK$TOKEN WORD.
TIME$TASK$TOKEN WORD,

. ACHSHANDLERSTOKEN WORD,
CRT$OUTSTASK4TOKEN WORD,
COMMAND$ TASK$TOKEN WORD, '
INITS$TASK$TOKEN WORD:

301 L DECLARE CRT#$MA1LBOX$TOKEN WORD,
CRT$REGIONSTOKEN WORD;

2-84

AFN-02058A

AP-130

ao2
303
304

305
306
307

308
309

310
311
312

313
314
315
316
317

318

319
320
az1
322
323
204
223
‘26
27
328
329
330
331

332
333
334

335
236
337
338
339
340
341
342

o= LVRN A [

NRW

LR MV SN

[VARARSEAEARHE IRV AN A]

[R

LERARARARARIE AN V]

SEJECT
/# CODE EXAMPLE 2. SIMPLE CRT INPUT AND QUTPUT ROUTINES. #/

Cs0UT. PROCEDURE (CHAR);
DECLARE CHAR BYTE;
DO WHILE (INPUT(STAT$51) AND O1H)=0;
/% NOTHING #/
END;
OUTPUT (CHAR$51) =CHAR;
END\ C$0UT;

C$IN° PROCEDURE BYTE,
DO WHILE C(INPUT(STAT$51) AND O2H)=0:
/% NOTHING #/
END;
RETURN INPUT(CHAR$51);
END C$IN;

SEJECT
/% CODE EXAMPLE 1. HARDWARE INITIALIZATION TASK. #/

HARDWARESINIT$TASK: PROCEDURE;
DECLARE HARDSINIT$EXCEPT$CODE WORD;
DECL.ARE. PARAM$51 (#) BYTE DATA (40H, 8DH, OOH, 40H, 4EH, 27H);
DECLARE PARAM$S14INDEX BYTE;
DECLARE SIGN$ONSMESSAGE (#) BYTE DATA
(CR, LF, “iAPX 86/30 HARDWARE INITIALIZED’,CR,LF);
DECLARE SIGNONINDEX BYTE:

QUTPUT (PP I4CMD)=90H;
OQUTPUT(TIMER$CMD) =0B&H;
QUTPUT(BAUD$TIMER)=33; /#GENERATES 9600 BAUD FROM 5 MHZ#/
QUTPUT (BAUD$TIMER) =0;
DO PARAM$S51$INDEX=0 TO (SIZE(PARAM$51)-1);
OUTPUT(CMD%$51)=PARAM$51 (PARAM51INDEX);
END, /#0F USART INITIALIZATION DO-LOOP*/
DO SIGN$SONSINDEX=0 TO (SIZE(SIGNONSMESSAGE)~-1);
CAlLL CSOUT(SIGNSONSMESSAGE (SIGNSONSINDEX));
END; /#0F SIGN-ON DO-LOOP*/
CALL RQA$SRESUMESTASK (INITSTASK$TOKEN, @GHARDS INITSEXCEPT$CODE);
CALL RQ$DELETE$TASK (0, @HARD$INITSEXCEPT$CODE);
END HARDWARES$INITSTASK;

$SEJECT

/# CODE EXAMPLE 3. STATUS POLLING AND REPORTING TASK. */

STATUS$TASK PROCEDURE:
DECLARE STATUS$COUNTER BYTE;
DECLARE STATUS$EXCEPT$CODE WORD;

STATUSSCOUNTER=0; .
CALL RQ$RESUMESTASK(INIT$TASK$TOKEN, @STATUSSEXCEPT$CODE);
DO FOREVER,
OUTRPUT(PPI$B)=INPUT(PPI$A) XOR STATUS$COUNTER:
STATUSSCOUNTER=STATUS$COUNTER+1;
CALL RQ$SLEEP (100, @STATUSSEXCEPT$CODE)
END;
END STATUS$TASKI

2-85

AP-130

343

344
345
346

347

348
349
350
351
352
353
354
355
356
357
358
359
3460
361
362
363
364
365
366
367

368

349
370

271
372
373

375
376

377
378

379

LI A VR

NMUWHPPPPLUURRDPLANNRNRUND

-

o=

[E T (S 7% B 4 I8 S T (VA)]

$EJECT
/# CODE EXAMPLE 4. STEPPER MOTOR CONTROL TASK. */

DECLARE CW$STEP$DELAY BYTE,
CCW$STEP$DELAY. BYTE,
CWSPAUSESDELAY BYTE,
CCWsPAUSESDELAY BYTE;

MOTOR$TASK: PROCEDURE;
DECLARE MOTORSEXCEPT$CODE WORD;
DECLARE MOTOR$POSITION BYTE,
MOTORSPHASE BYTE;
DECLARE PHASE$CODE (4) BYTE
DATA (00000101B; 00000110B, 000010108, 00001001B);

CW$STEP$DELAY=50; /#INITIAL STEP DELAYS = 1/4 SECOND#/
CCW$STEP$DELAY=50;

CW$PAUSE$DELAY=200; /#PAUSES AFTER ROTATION = 1 SECOND*/
CCWS$PAUSESDELAY=200;

CALL RQ$RESUMESTASK(INIT$TASK$TOKEN, @MOTOR$EXCEPT4CODE) ;
DO FOREVER;

DO MOTOR$POSITION=0 TO 100;

MOTOR$PHASE=MOTOR$POSITION AND OOO3H;

OUTPUT (PP I$C)=PHASE$CODE (MOTOR$PHASE);

CALL RG$SLEEP (CW$STEP$DELAY, @MOTOR$EXCEPT$CODE);
END; .

CALL RQ$SLEEP (CW$PAUSE$DELAY, @MOTOR$SEXCEPT$CODE);

DO MOTOR$POSITION=0 TO 100; .
MOTOR$PHASE=(100-MOTOR$POSITION) AND OOQO3H:
OUTPUT(PPI%$C)=PHASE$CODE (MOTOR$PHASE) ;

CALL RQ$SLEEP(CCW$STEP$DELAY, @MOTOR$EXCEPT$CODE);
END; \

cALL ROSSLEEP(CCNiPAUSEﬁDELAYl@MDTDRsEXCEPTsCDDE);

END;

END MOTOR$TASK; -

$SEJECT

/% CODE EXAMPLE 5. INTERRUPT HANDLER TO TRACK 60 HZ INPUT. %/

DECLARE AC$CYCLES$COUNT BYTE;

AC$HANDLER: PROCEDURE INTERRUPT 59; /#VECTOR FOR 80130 INT3#/
DECLARE ACSEXCEPT$CODE WORD;

CALL RQ$SENTERSINTERRUPT(ACHINTERRUPT$LEVEL, @ACSEXCEPT$CODE)
ACECYCLE$COUNT=ACSCYCLE$COUNT+1;
IF AC$CYCLE$COUNT >= &0
THEN DO;
AC$CYCLE$COUNT=0;
CALL. RAG$SIGNALSINTERRUPT(ACSINTERRUPTSLEVEL.,
@ACSEXCEPT$CODE);
END;
ELSE CALL RQ$EXIT$INTERRUPT(ACHINTERRUPT$LEVEL,
@ACSEXCEPT$CODE);
END AC$HANDLER;

2-86
AFN-02058A

AP-130

380
381
382
383
384

385
386
387
388

389

390
391

392
393

324
395
396
397
398

399

401
402
403
404

405
406

LIS IS NI

PR W

nWwew u adInm N -

o

$EJECT
/# CODE EXAMPLE 7. PROTECTED CRT OUTPUT SUBROUTINE. #/

PROTECTEDCRT0UT: PROCEDURE (CHAR) REENTRANT;
DECLARE CHAR BYTE:
DECLARE CRT$EXCEPT$CODE WORD;
CALL ROSRECEIVE$CONTROL (CRT$REGIONSTOKEN, @CRTSEXCEPTSCODE);
DO WHILE (INPUT(STAT$351) AND 01H)=0;
/# NOTHING #/
END;
OUTPUT (CHAR$51)=CHAR;
CALL RQ$SEND$CONTROL(@CRTSEXCEPT$CODE);
END PROTECTEDCRT0OUT;

$EJECT

/# CODE EXAMPLE 6. INTERRUPT TASK TO MONITOR CLOCK TIME. +#/

DECLARE SECOND$COUNT BYTE,
MINUTE$SCOUNT BYTE,
HOUR$COUNT BYTE;

TIME$TASK: PROCEDURE;
DECLARE TIMESEXCEPT$CODE WORD:

ACSCYCLE$COUNT=O0;

CALL RQSSETINTERRUPT(ACSINTERRUPTSLEVEL, O1H,
INTERRUPT$P TR (AC$HANDLER), DATASSEC$ADDR. BASE,
@TIMESEXCEPT$CODE);

CALL RQ$RESUME$TASK(INIT$TASKSTOKEN, @TIMESEXCEPT$CODE);

DO HOUR$COUNT=0 TO 23;

DO MINUTE$COUNT=0 TO 59;
DO SECOND$COUNT=0 TO 59;
CALL RA$SWAITSINTERRUPT(ACSINTERRUPTS$LEVEL,
@TIMESEXCEPT$CODE);
IF SECOND$COUNT MOD 5 = O
THEN CALL PROTECTEDCRTOUT(BEL);

END; /# SECOND LOOP %/
END; /# MINUTE LOOP =/
END, /% HOUR LOOP 3/
CALL RQG$RESET$INTERRUPT(AC$INTERRUPTSLEVEL.,
@TIMESEXCEPT$CODE);

CALL RQS$DELETE$TASK(O, @TIMESEXCEPT$CODE);
END TIME$TASK;

2-87

AFN-02058A

AP-130

407
408
409
410

411
412

413
414

4195
416
417
418
419

420
421
422
423
424
425
426
427

428
429

430
431
432
433

434

435

436
437
438

440
441
442
443

444
445
444
447

448
449
4%0

RN RN

o

wpuun

PR W

NN

PI DI NY

L)

LU] n

n

N WL W

n

$SEJECT

/#

CODE EXAMPLE 8. SUBROUTINE TO CREATE TIME-OF-DAY MESSAGE.

PRINT$TOD: PROCEDURE;

DECLARE TOD$MESSAGE$TOKEN WORD;
DECLARE TOD$EXCEPT$CODE WORD:
DECLARE TODS$SEGMENT$OFFSET WORD.,
TOD$SEGMENT$BASE WORD;
DECLARE TODS$SEGMENT$PNTR POINTER AT (@TOD$SEGMENT$OFFSET);
DECLARE TOD$TEMPLATE (28) BYTE
DATA (27, ‘THE TIME IS NOW hh:mm:ss. /, CR,LF);
DECLARE TOD$STRING BASED TOD$SEGMENT$PNTR (28) BYTE;
DECLARE TOD$STRING$INDEX BYTE:

TOD$MESSAGE$TOKEN=RQ$CREATE$SEGMENT (28, @TOD$EXCEPT$CODE);

TOD$SEGMENT$BASE=TOD$MESSAGE® TOKEN;

TOD$SEGMENT$0FFSET=0;

DO TOD$STRINGSINDEX=0 TO 27;
TOD$STRING (TOD$STRING$INDEX)=

TOD$TEMPLATE(TOD$STRINGSINDEX);

END;

TOD$STRING (17)=ASCII$CODE (HOUR$COUNT/10);

TOD$STRING(18)=ASCII$CODE (HOUR$COUNT MOD 10);

TOD$STRING (20)=ASCII$CODE (MINUTE$COUNT/10);

TODS$STRING (21)=ASCII$CODE(MINUTE$COUNT MOD 10);

- TOD$STRING (23)=ASCII$CODE(SECOND$COUNT/10);

TOD$STRING (24)=ASCII$CODE (SECOND$COUNT MOD 10);

CALL RQ$SEND$MESSAGE (CRT$MAILBOX$TOKEN,
TOD$MESSAGES$TOKEN, 0, @TOD$EXCEPT$CODE) ;

RETURN;

END PRINT$TOD;

$SEJECT
/# CODE EXAMPLE 9. SUBROUTINE TO CREATE SWITCH STATUS MESSAGE.

PRINT$STATUS: PROCEDURE;

DECLARE STATUS$MESSAGE$TOKEN WORD:;
DECLARE STATUSSEXCEPT$CODE WORD;
DECLARE STATUS$SEGMENT$OFFSET WORD,
STATUSSSEGMENT$BASE WORD:
DECLARE STATUS$SEGMENT$PNTR POINTER
AT (@STATUS$SEGMENT$OFFSET);
DECLARE STATUSSTEMPLATE (40) BYTE DATA
(39, ‘THE SWITCHES ARE NOW SET TO B‘)CR,LF);
DECLARE STATUS$STRING BASED STATUS$SEGMENT$PNTR (40) BYTE;
DECLARE STATUS$STRING$INDEX BYTE;
DECLARE BIT$PATTERN BYTE;

STATUS$MESSAGE$TOKEN=RQ$CREATE$SEGMENT (40,
@STATUSSEXCEPT$CODE);
STATUS$SEGMENT$BASE=STATUS$MESSAGE$TOKEN;
STATUS$SEGMENT$0FFSET=0;
DO STATUSSSTRING$INDEX=0 TO 39;
STATUS$STRING(STATUS$STRINGSINDEX)=
STATUSSTEMPLATE(STATUS$STRINGS$INDEX);
END;
BIT$PATTERN=INPUT(PPI$A);
DO STATUS$STRINGSINDEX=29 TO 36;
STATUSS$STRING (STATUS$STRINGSINDEX)=
ASCII4CODE(BIT$PATTERN AND O1H);
BIT$PATTERN=ROR(BIT$PATTERN, 1);
END;
CALL RQ$SEND$MESSAGE (CRT$MAILBOX$TOKEN.
STATUS$SMESSAGES$TOKEN, 0, @STATUSSEXCEPT$CODE);
END PRINT$STATUS; :

2-88

#/

*/

AFN-02058A

AP-130

$SEJECT

/% CODE EXAMPLE 10. TASK TO RECEIVE MESSAGES AND TRANSMIT THEM TO CRT. #/

452 1 CRT$0UT$TASK- PROCEDURE;
453 2 DECL.ARE MESSAGES$LENGTH BYTE;
454 2 DECLARE MESSAGE$TOKEN WORD;
454 a DECLARE RESPONSE$TOKEN WORD;
456 2 DECLARE MESSAGES$EXCEPT$CODE WORD:
457 2 DECLARE MESSAGE$SEGMENT$OFFSET WORD,
MESSAGE$SEGMENT$BASE WORD;
458 2 DECLARE MESSAGES$SEGMENT$PNTR POINTER AT (@MESSAGE$SEGMENTSOFFSET);
459 2 DECL.ARE MESSAGE$STRING$CHAR BASED MESSAGE$SEGMENT$PNTR BYTE;
440 2 CALL RQ$RESUME$TASK (INIT$TASK$TOKEN, @MESSAGE$SEXCEPT$CODE) ;
441 2 DO FOREVER;
462 3 MESSAGE$TOKEN=RQ$RECE IVE$MESSAGE (CRT$MAILBOX$TOKEN, OFFFFH,
@RESPONSE$TOKEN, @MESSAGE$EXCEPT$CODE) ;
463 3 MESSAGE$SEGMENT$OFFSET=0;
44 3 MESSAGE$SEGMENT$BASE=MESSAGES$TOKEN;
465 3 MESSAGESLENGTH=MESSAGE$STRINGSCHAR
466 3 DO MESSAGE$SEGMENTSOFFSET=1 TO MESSAGESLENGTH:
467 4 CALL PROTECTEDCRTOUT (MESSAGE$STRINGS$CHAR);
468 4 END,
4&9 3 CALL RQS$DELETE$SEGMENT (MESSAGESTOKEN, @MESSAGESEXCEPTSCODE);
470 3 END; /# OF FOREVER-LOOP %/
471 2 END CRT$0OUTS$TASK; :
$SEJECT
/# CODE EXAMPLE 1i. TASK TO POLL KEYBOARD AND PROCESS COMMANDS. #/
472 1 COMMAND$TASK: PROCEDURE;
473 2 DECLARE CONSOLE$CHAR BYTE;
474 o DECLARE COMMANDS$EXCEPT$CODE WORD;
475 2 CALL RO$RESUMESTASK(INITS$TASK$TOKEN, @COMMANDSEXCEPT$CODE);
476 2 DO FOREVER;
477 3 CONSOLE$CHAR=C$IN AND 7FH;
478 2 CALL PROTECTED$CRTSOUT (CONSOLESCHAR);
479 3 IF CONSOLE$CHAR=CR
THEN CALL PROTECTEDCRTOUT(LF);
481 3 IF (CONSOLE$CHAR >= ‘0‘) AND (CONSOLE$CHAR <= ‘97)
THEN DO;
483 4 CALL PROTECTEDCRTOUT(CR);
484 4 CALL PROTECTED$CRT#OUT(LF);
485 4 DO CASE (CONSOLE$CHAR-’0'),
486 9 .CALL PRINTS$TOD;
487 5 CALL PRINT$STATUS;
488 5 CALL RG$SUSPEND$TASK(CRT$OUTS$TASKSTOKEN,
@COMMAND$EXCEPT#CODE);
489 5 CALL RG$RESUME$TASK (CRTOUTTASK$TOKEN,
@COMMANDSEXCEPT$CODE) ;
490 5 CALL RG$DISABLE(AC$INTERRUPT$LEVEL,
@COMMANDSEXCEPT$CODE);
491 5 CALL RQ$ENABLE(ACSINTERRUP T$LEVEL.,
@COMMANDSEXCEPT$CODE) ;
492 5 CALL RQ$SUSPEND$TASK (MOTOR$TASK$TOKEN,
@COMMANDSEXCEPT®CODE);
493 5 CALL RQ$RESUMES$TASK (MOTOR$TASK$TOKEN,
@COMMANDSEXCEPT®CODE)
494 5 CALL RQG$SUSPEND$TASK(STATUSSTASK$TOKEN,
@COMMANDS$EXCEPTSCODE) ;
4935 S CALL RQ$RESUMES$TASK(STATUS$TASK$TOKEN
@COMMANDSEXCEPT$CODE) ;
496 5 END; /% OF CASE-LIST %/
497 4 END; /# OF COMMAND PROCESSING #/
498 3 END;
499 2

¥ END COMMANDS$TASK;

2-89
AFN-02088A

AP-130

500
501

502
503
504
508
506

S07
508

509
510

911
512
513
514

5195
516

517
518
519
520

521

MPRUNN e

n

LVJRLNIN (VTN % B (VI VIR N G B VI A T SN

-

$SEJECT

CODE EXAMPLE 12. TASK TO INITIALIZE OSP SOFTWARE. %/

INIT$TASK: PROCEDURE PUBLIC;

DECLARE INIT$EXCEPT$CODE WORD;:

DATASSEGS$PTR=QINITS$TASKSTOKEN; /#L.OAD DATA SEGMENT BASBE#/
CRT$MAILBOX$TOKEN=RQ$CREATE$MAILBOX (0, @INIT$EXCEPT$CODE);
CRTSREGIONSTOKEN=RQ$CREATESRECION(O, RINITSEXCEPT$CODE);
INIT$TASK$TOKEN=RQ$CETS$TASK$TOKENS (0, @INIT$EXCEPT$CODE); ..
HARDWARE$INIT$TASK$TOKEN=RA$CREATESTASK
(110, @HARDWARES$INIT$TASK, DATASSEC$ADDR. BASE, 0, 300,
0, @RINIT$EXCEPT$CODE);
CALL RQ$SUSPEND$TASK(O, @INITSEXCEPT$CODE);
STATUSS$TASKSTOKEN=RQSCREATES$TASK (110, @STATUSSTASK,
DATASEGADDR. BASE, 0, 300, 0, @ INITSEXCEPT$CODE) ;
CALL RQ$SUSPENDS$TASK (0O, @INITSEXCEPT$CODE):
MOTOR$STASK$ TOKEN=RQ$CREATE$TASK (110, @MOTOR$TASK,
DATASEGADDR. BASE, 0, 300, 0, @INIT$EXCEPT$CODE);
CALL RQ$SUSPEND$TASK (0, @INIT$EXCEPTSCODE) ;
TIME$TASK$TOKEN=RQ$CREATES$TASK (120, @TIME$TASK,
DATASEGADDR. BASE, 0, 300, 0, @INIT$EXCEPT$CODE);
CALL RQ$SUSPENDS$TASK(O, @INITSEXCEPT$CODE);
CRT$0OUT$TASK$TOKEN=RQSCREATES$TASK (120, @CRT$OUTSTASK,
DATA$SEGS$ADDR. BASE, 0, 300, 0, @INITSEXCEPT$CODE) ;
CALL RQA$SUSPENDS$TASK (O, @RINITSEXCEPT$CODE);
COMMAND$TASK$TOKEN=RQ$CREATE$TASK (130, @COMMANDSTASK,
DATASEGADDR. BASE, 0, 300, 0, @INIT$EXCEPT4CODE);
CALL RQ$SUSPEND$TASK (0, @INITSEXCEPT$CODE);
CALL RQSEND$INIT$TASK;
CALL RQ$DELETE$TASK(O, @RINITSEXCEPT$CODE);
END INITSTASK;

END DEMO%130;

MODULE INFORMATION.

CODE AREA SIZE
CONSTANT AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
848 LINES READ
O PROGRAM ERROR(S)

084CH 2124D

=

= 0000H oD

= Q0092H 82D

= 0026H 38D :

END OF PL/M-B6 COMPILATION

2-90

AFN-02058A

AP-130

APPENDIX C
SYSTEM MEMORY MAP

2-91
AFN-02088A

AP:130

EXAMPLE SYSTEM MEMORY MAP
- STARTING ENDING
__MEMORY MODULE ADDRESS ADDRESS
s | 8086 RESFART VECTOR OFFFF:0 | OFFFF:F
ROOT JOB CODE AREA OFD18:0 | OFD36:6
EPROM .
(2x2764) | | APPLICATION JOB CODE AREA OFC62:0 | OFD17:B
| | OSP SUPPORT CODE AREA OFC00:0 | OFC61:F
80130 MEMORY SPACE O0F800:0 | OFBFF:F
1 (FREE SYSTEM RAM) 00€0:0 | OIFF:F
ROOT JOB DATA AREA 00AD:0 | 00BF:F
RAM APPLICATION JOB DATA AREA 00A7:0 | 00AC:1
OSP SUPPORT DATA AREA 0040:0 00A6:F
| 8086 INTERRUPT VECTOR 0000:0 003F:F

INITIALIZATION TASK STARTING ADDRESS: __FC62:06B5

ROOT JOB STARTING ADDRESS: FD18:0011

2-92

AFN-02058A

AP-130

~ APPENDIX D
SUPPORT CODE LOCATE MAP

2-93

AFN-02088A

AP-130

ISIS-11 MCS-86 LOCATER,
FO LOCB&
F1 SUP130 LNK TO F1 SUP130 MAP PRINT(F1 5UP130 MP2) SC(3) & .
SEGSIZE(STACK(0))
ADDRESSES (CLASSES (CODE (OF8000H) , DATA(Q0400H))) &
ORDER (CLASSES(DATA, STACK))
OBJECTCONTROLS (NOL INES, NOCOMMENTS, NOSYMBOLS)
WARNING 26 DECREASING SIZE OF SEGMENT

SEGMENT STACK

V1 2 INVOKED BY

SYMBOL TABLE OF MODULE MINIMAL_80130
READ FROM FILE F1 SUP130 LNK
WRITTEN TO FILE F1 SUP130

BASE OFFSET TYPE SYMBOL BASE OFFSET TYPE SYMBOL
0040H OOOOH PUB INTERRUPTTASKVEC 0040H ©0120H PUB DEFAULT_HANDLER
0040H 0148H PUB INTERRORENTRY 0040H ©014CH PUB SYSTEMEXCEPTIONH
~ANDLERPTR
0040H 0152H PUB EXTENSIONLISTROO 0040H ©0154H PUB DELETION_OBJECT_
-T - -BASE
0040H 0158H PUB ROOTJOBTOKEN 0040H O015AH PUB MINTRANSSIZE
0040H O15EH PUB NDP_INTERRUPT_LE 0040H O0160H PUB PARAM_VALIDATION
-VEL_VAR ~_VECTOR
0040H 0164H PUB TASK_WAITING_FLA O040H 0166H PUB REGION_TOKEN_TAB
-68 -LE
0040H 0178H PUB SIGNAL_G O040H O1EBH PUB KERNEL_FLAG
0040H O1EAH PUB FILLCHAR 0040H O1EBH PUB NUM_SLAVES
0040H OI1EDH PUB INTMASK 0040H O1F6H PUB DISABLEMASK
0040H 0208H PUB IMR_PORT 0040H OR1AH PUB EOI_PORT
0040H OR23EH PUB PIC_INFO 0040H 0247H PUB CLOCK_SPEC_EOI
0040H O0249H PUB CLOCK_OFF 0040H 024AH PUB . CLOCK_LEVEL
FBOOH 43CCH PUB NDP_INTERRUPT_LE FBOOH 45C2H. PUB VAL IDATE_PARAMS_
-VEL ~BODY_DUMMY
FBOOH 4556H PUB GETDESCRPOINTER FBOOH 4567H PUB GETPOINTER
FBOOH 4538H PUB OVERFLOW FBOOH 4533H PUB NENTRY_BODY
FBOOH 4529H PUB KINITIALIZE FBOOH 4524H PUB KENABLELEVELNS
FBOOH 451AH PUB KCREATEREGIONNS FBOOH 4515H PUB KCREATEOBJECTNS
FBOOH 450BH PUB INITNDP FBOOH 4504H PUB INITIALIZE
FBOOH 44FCH PUB EOI_ROUTINE FBOOH 44F7H PUB DIVIDEBYZERO
FBOOH 44EDH PUB COMMON_ERROR FBOOH 44EBH PUB CLOCKENTRY_BODY
FBOOH 44DOH PUB SYSTEMEXCEPTIONH FBOOH 4472H PUB INITIALIZE_TIMER
~ANDLER
FBOOH 435CH PUB INIT_INTERNAL_RE FBOOH 434EM PUB NDP_INTERRUPT_HA
-GIONS ~NDLER
FBOOH 4336H PUB NENTRY FBOOH 40FEH PUB INITIALIZENUCLEU
-8
FBOOH 40B1H PUB RGSIGNALINTERRUP FBOOH 40ACH PUB RQGETLEVEL_BODY
~T_BODY
FBOOH 40A2H PUB RGENTERINTERRUPT FBOOH 409DH PUB RGDISABLE_BODY
~_BODY
FBOOH 408AH PUB RGSIGNALINTERRUP FBOOH 4080H PUB RQGGETLEVEL
-T
FBOOH 406CH PUB RQEXITINTERRUPT FBOOH 4062H PUB RGDISABLE
FBOOH 4058H PUB NUNLOCKNS FBOOH 4053H PUB NUNLOCK
FBOOH 4049H PUB NOPENNS FBOOH 4044H PUB NOPEN
FBOOH 403AH PUB NLOCKNS FBOOH 4035H PUB NLOCK
FEOOH 402BH PUB NCLOSENS FBOOH 4026H PUB NCLOSE
FBOOM 401CH PUB DELETEOBJUECT FBOOH 400AH PUB COPYRIGHT
FBOOH 4000H PUB INIT_NUCLEUS_JUM, FCSDH O004H PUB IMR_START
FCSCH OOOFH PUB INIT_CMD1 FCSCH O010H PUB INIT_CMD5_MASTER
FCSCH 0012H PUB INIT_CMD4_MASTER FCo61H OOOEH PUB SLAVE_TABLE
FC61H O000SH 'PUB CLOCK_O_PORT FC61H O007H PUB CLOCK_COUNT
FC61H OOOBH PUB C_CLOCK_SPEC_EOI FC61H OOOCH PUB C_CLOCK_ON
FBOOH 4576H PUB LEVEL7_HANDLER FBOOH 4574H PUB PARAM_VALIDATION
~_PATH
MEMORY MAP OF MODULE MINIMAL_B80130
READ FROM FILE .F1 SUP130 LNK
WRITTEN TO FILE F1 SUP130
SEGMENT MAP
START STOP LENGTH ALIGN NAME cLASS
00000H OO3FFH 0400H A (ABSOLUTE)
00400H ODFEFH 05FOH W DATA DATA
009FOH OO9FFH 0010H G INTVEC_REG_SEG DATA
OOAOOH DOAOFH 0010H G EXT_REG_SEG DATA
O0A10H OOA1FH 0010H 6 JOB_REG_SEG DATA
O0AZ0H OOAZ2FH 0010H G SEM_REG_SEG DATA
OO0A30H QOA3FH 0010H 6 MAIL_REG_SEG DATA
OOA4OH OOA4FH 0010H G OD_REG_SEG DATA
00ASOH OOASFH 0010H € PODL_REG_SEG DATA
2-94

BASE

0040H
0040H

0040H

0040H
0040H

0040H

0040H

!
0040H

0040H
0040H
0040H
0040H
FBOOH

FBOOH
FB0OH

FB0OH
F800H

FBOOH
FBOOH
FB00H
FB800H
F800H
F800H
FBOOH
FBOOH
FBOOH
FBOOH
FBOOH
FBOOH
FBOOH

F800H
FCSCH

FCSCH
FC&1H

FC61H
FCo1H

OFFSET

0144H
0150H

0156H

015CH
0162H

0176H
O1E9H
01ECH
O1FFH
022CH
0248H
0SDOH
45424
433DH
452EH
451FH
4510H
4501H
44F2H
44E3H
43AEH
433FH
40B&H
40A7H
4098H
4076H
405DH
404EH
403FH
4030H
4021H

4000H
O00OEH

0011H
0003H

O00AH
0009H

TYPE SYMBOL

PUB
PUB

PUB

PUB
PUB

PUB
PUB
PUB
PUB
PUB
PUB
PUB
PUB
PUB
PUB
PUB
PUB
PUB
PUB
PUB
PUB
PUB
PUB
PUB
PUB
PUB
PUB
PUB
PUB
PUB

PUB
PUB

PUB
PUB

PUB
PUB

READYLISTROOT
DELETIONTASKTOKE

N
SYSTEMPOOLTOKEN

LAST_NDP_TASK
REGION_FLAGS

SIGNAL_G_INDEX
ACTIVATE_SIGNAL _

OLD_SLAVE_NUM
LEVEL_SET_TABLE
1SR_PORT
CLOCK_ON
END_OF_DATA
GETDESCRTOKEN

SCANMEMORY
KSUSPEND
KENABLELEVEL
KCREATEOBJECT
FINISHINITIALIZA

~TION

‘DECODE_LEVEL
ARRAYBOUNDS
INITIALIZE_PICS

CLOCKENTRY

RGWAITINTERRUPT
DY
RGEXITINTERRUPT
-BODY
RAGWAITINTERRUPT
RGENTERINTERRUPT

NUNLOCK_DELETION
~_OBJECT
NOPEN_DELETION_O
-BJECT
NLOCK_DELETION_O
~BJECT
NCLOSE_DELETION_
~OBJECT
DELETERUNNINGTAS
-K
NBEGIN

AFN-02058A

AP-130

O0AG0H OOAGFH ~ 0010H G DELETION_REG_S DATA|
L o ‘}4— LAST RAM BYTE USED

O0A7OH OOA7OH 0000H W STACK STACK
OO0A70H OOA7OH 0000H € ~7SEG

FBOOOH FCSCDH 45CEH W CODE CODE
FCSCEH FCSD2H 0005H W PIC_CNF_SEG CODE
FCSDAH FCSESH 0012H W _IMR_PORT CODE
FCSEGH FCSF7H 0012H W _EOI_PORT CODE
FCSFBH FC609H 0012H W _ISR_READ_PORT CODE
FC60AH FCoO12H 0009H B _PIC_INFO CODE
FC613H FCH1CH O00AH B TIMER_CNF_SEG CODE
FC&1EH FC61EH O000H W CSEG CODE
[Feeien FCGIFH . C J2H W SLAVE_SEG “CODE [<————— LAST EPROM BYTE USED
FC620H FCHR0H Q000H W MEMORY MEMORY
GROUP MAP

ADDRESS GROUP OR SEGMENT NAME

00400H DGROUP
DATA
INTVEC_REG_SEG
EXT_REG_SEG
JOB_REG_SEG
SEM_REG_SEG
MAIL_REG_SEG
ODb_REG_SEG
PODL_REG_SEG
DELETION_REG_SEG

FBOOOH CGROUP
CODE
PIC_CNF_SEG
_IMR_PORT
_EOI_PORT
_ISR_READ_PORT
“PIC_INFO
TIMER_CNF_SEG
csEe

SLAVE_SEG

2-95

AFN-02088A

AP-130

'APPENDIX E
APPLICATION JOB LOCATE MAP

296

AFN-02058A

AP-130

ISIS-II MCS-86 LOCATER,

LOCB6 F1 AP130 LNK TO F1 AP130

ORDER (CLASSES(DATA, STACK, MEMORY))

SEGSIZE (STACK (0))

ADDRESSES (CLASSES (DATA (0OOA70H).

SEGMENT

V1 2 INVOKED BY

CODE (OFC620H)))
MAP PRINT (F1 AP130 MP2)
OBJECTCONTROLS (NOLINES, NOCOMMENTS, NOPUBLICS, NOSYMBOLS)

WARNING 26

DECREASING SIZE OF SEGMENT
STACK

SYMBOL TABLE OF MODULE DEMO130
READ FROM FILE F1 AP130.LNK
WRITTEN TO FILE F1 AP130

BASE

FC&2H
FC&2H
FCo&2H
FC62H
FC62H
FCo2H

Fcez2H
FCo62H
FC&a2H

FC62H
FCo62H
FC62H
FC&62H
FC62H

FC&62H
FC&2H
FCo2H
FCo2H

FC62H
FC62H
FC62H

FC&2H
FCo2H
FC62H
FCo2H
FCo2H
FCo2H
FCo2H
FC&62H
FCo62H
FCo2H
FC&62H

FC62H

DEMO130

FD17H
00A7H
00A7H

00A7H
00A7H
00A7H
D0A7H
FCo62H
FCo2H
OOA7H

00A7H
O0A7H
Q0A7H
O0A7H
00A7H
FcéaH
00A7H
FC62H
FCo62H
FCoe2H
STACK
00A7H
FC&62H
FCo62H
O0A7H
00A7H
FCo62H
00A7H
00A7H

OFFSET

0B3AH
OBOOH
0ACBH
0AFOH
OA58H
0A28H

O9FOH
09D4H
O9B8H

09ACH
09A0H
0994H
0988H
097CH

0970H
0?38H
092CH
0920H

0914H
0908H
08FCH

08FOH
08D4H
08CcaH
0BACH
0BAOH

0894H
0888H

087CH
0870H
0864H

0858H
0B4ACH

0000H
0004H

0008H
000CH
0010H
0014H
0084H
00A1H
0018H

0040H
0041H
0042H
0043H
0045H
0172H
0047H
0Q03%H
0256H
029CH
0002H
004BH
02CFH
038BH
0024H
0028H
003DH
004DH
002AH

SYMBOLS
000CH 8YI

TYPE SYMBOL

PUB
PUB
PUB
PUB
PUB
PUB

PUB
PUB

PUB

PUB
PUB
PUB
PUB
PUB

PUB
PUB
PUB
PUB

PUB
PUB
PUB

PUB
PUB
PUB
PUB
PUB

PUB
PUB

PUB
PUB
PUB

PUB

PUB

M
8YM
SYM

sYM
SYM
SYM
SYM
SYM
SYM
SYM

8YM
SYM
SYM
SYM
SYM
SYM
SYM
SYM
SYM
SYM
SYM
SYM
SYM
SYM
SYM
SYM
SYM
8YM
SYM

RGENDINITTASK
RG_N_C_RETURN_20
_C_RETURN_12
_C_RETURN_8
_N_C_RETURN_4
RGGETLEVEL

RGWAITINTERRUPT

RGDELETESEMAPHOR
-E
RGEXITINTERRUPT

RQSENDUNITS
RQSETPRIORITY
RQSETOSEXTENSION
RGSLEEP
RGSETEXCEPTIONHA
—NDLER
RQRECEIVEUNITS
RGRECEIVEMESSAGE
RQRECEIVECONTROL
RQLOOKUPOBJECT

ROGGETTASKTOKENS
RGGETSIZE
RQGETPOOLATTRIB

RQFORCEDELETE
RGENTERINTERRUPT
RQDELETETASK
RGDISABLE
RGDELETEJOB

RGDISABLEDELETIO
~N
RQCREATETASK

RQCREATESEGMENT
RGCATALOGOBJECT
RGCREATEJOB

RQCREATECOMPOSIT
~E
RGACCEPTCONTROL

AND LINES

MEMORY
DATASEGPTR
HARDWARE INITTASK
~TOKEN
MOTORTASKTOKEN
ACHANDLERTOKEN
COMMANDTASKTOKEN
CRTMAILBOXTOKEN
couT
HARDINITEXCEPTCO
-DE

PARAMS51 INDEX
SIGNONINDEX
STATUSCOUNTER
CWSTEPDELAY
CWPAUSEDELAY
MOTORTASK
MOTORPOSITION
PHASECODE
ACHANDLER
PROTECTEDCRTOUT
CRTEXCEPTCODE
MINUTECOUNT
TIMETASK
PRINTTOD
TODEXCEPTCODE
TODSEGMENTBASE
TODTEMPLATE
TODSTRINGINDEX
STATUSMESSAGETOK
-EN

BASE

FCo2H
FCé2H
FC62H
FC62H
FC&62H
FC62H

FC&2H
FC62H
FC&2H

FC62H
FC&2H
FC&2H
FC62H
FCo6aH

FC62H
FCé62H
FCo62H
FC62H

FC62H
FC62H
FCo62H

FC62H
FC62H
FC&2H
FC62H
FC62H

FC62H
FC62H

FC62H
FC62H
FCa2H

FC&62H

FCo62H

FCé62H
00A7H
00A7H

Q0A7H
00A7H
00A7H
00A7H
STACK
FC&62H
FCo2H

FC&2H
FC62H
O0A7H
00A7H
O0A7H
00A7H
Q0A7H
00A7H
00A7H
STACK
00A7H
00A7H
00A7H
00A7H
00A7H
00A7H
O0A7H
FCoe2H
O0A7H

OFFSET TYPE

OB1CH
OAE4H
QAACH
OA74H
OA3EH
0AOEH

09DAH
09CEH
09B2H

09ALH
099AH
098EH
0982H
0976H

096AH
0932H
0926H
091AH

090EH
0702H
O8F&6H

OBEAH
08CEH
08C2H
0BA6H
087AH

O8BEH
0882H

0876H
086AH
085EH

0852H

06B5H

0000H
0000H
0006H

000AH
O00EH
0012H
0016H
0004H
OOB%H
0010H

001&6H
013BH
Q01AH
0044H
0046H
001CH
0048H
004FH
001EH
0006H
004AH
004CH
0020H
0022H
0026H
0026H
0026H
0489H
002CH

PUB
PUB
PUB
PUB
PUB
PUB

PUB
PUB
PUB

PUB
PUB
PUB
PUB
PUB

PUB
PUB
PUB
PUB

PUB
PUB
PUB

PUB
PUB
PUB
PUB
PUB

PUB

PUB
PUB
PUB

PUB
PUB

sYM
8sYM
SYM

8YM
SYM
SYM
sSYM
8sYM
8YM
sYM

SYM
sYM
sYM
SYM
SYM
8SYM
SYM
sYM
sYM
sYM

.8YM

sYM
sYM
8sYM
SYM
SYM
BAS
SYM
sYM

TR

SYMBOL

RG_N_C_RETURN_40
RQ_N_C_RETURN_14
RG_N_C_RETURN_10
RG_N_C_RETURN_&
RGERROR
RQSIGNALEXCEPTIO

-N
RQSIGNAL INTERRUP

-T

RAQDELETEMAILBOX

RGUNCATALOGOBJEC
T

RQSUSPENDTASK
-RQSETPOOLMIN
RQSENDMESSAGE
RASET INTERRUPT
RQSENDCONTROL

RQRESUMETASK
RAGRESETINTERRUPT
RQOFFSPRING
RQINSPECTCOMPOSI
-TE
RQGETTYPE
RQGETPRIORITY
RQGETEXCEPTIONHA
-NDLER
RQENABLE
RGENABLEDELETION
RQDELETESEGMENT
RQDELETEREGION
RGDELETEEXTENSIO
=N
RQDELETECOMPOSIT

-E
RQCREATESEMAPHOR

~E
RQCREATEREGION
RQCREATEMAILBOX
RQCREATEEXTENSIO

-N
RQALTERCOMPOSITE

INITTASK

ASCIICODE
DATASEGADDR
STATUSTASKTOKEN

TIMETASKTOKEN
CRTOUTTASKTOKEN
INITTASKTOKEN
CRTREGIONTOKEN
CHAR

HARDWARE INITTASK
PARAMS1

SIGNONMESSAGE
STATUSTASK
STATUSEXCEPTCODE
CCWSTEPDELAY
CCWPAUSEDELAY
MOTOREXCEPTCODE
MOTORPHASE
ACCYCLECOUNT
ACEXCEP TCODE
CHAR
SECONDCOUNT
HOURCOUNT
TIMEEXCEPTCODE
TODMESSAGETOKEN,
TODSEGMENTOFFSET
TODSEGMENTPNTR
TODSTRING
PRINTSTATUS
STATUSEXCEPTCODE

2-97

AFN-02058A

AP-130

00A7H
00A7H
00A7H

00A7H
00A7H
00A7H

Q0A7H
00A7H

FCo2H

00A7H

00A7H
FCo62H
FCo62H
FCo2H
FCo2H
FCo2H
FCé62H
FCo62H
FC&62H
FC62H
FC&62H
FCo62H
FCo62H
FC62H
FC62H
FCo62H
FC&2H
FCo62H
FCé2H
FC&62H
FCé2H
FC&2H
Fcé2H
FCo62H
FC62H
FC62H
FC62H
FC62H
FCo2H
FCo2H
FC62H
FC62H
FC62H
FCo2H
FC62H
FCcéeaH
FC&2H
Fcé2H
FC&62H
FCo62H
FC62H
FC62H
FC62H
FCo62H
FCcoaH
FC&2H
FCo2H
FCo2H
FC&2H
FCé62H
FC&62H
FCé&2H
FCo2H
FCo2H
FC62H
FCo2H
FC62H
FC&2H
FCo62H
FC&2H
FC62H
FC&2H
FCe2H
FCé62H
FC62H
FC&2H
FC62H
FC&62H
FC62H
FCo62H
FCo2H
FC62H
FCo2H
FC62H
FCo2H
FC&2H
FCo2H
FCo2H

Q02EH
O02EH
002EH

0Q04FH
0050H
0034H

0038H
0038H

OBAFH

QO3CH

003EH
0087H
0096H
00ALH
00BOH
00B9H
OO0BCH
00C8H
00D1H
O0EFH
010CH
O11FH
0139H
O013EH
0130H
015CH
016DH
0172H
017AH
0184H
0196H
01A5H
01BDH
01D&H
O1F5H
020FH
0228H
023BH
0259H
0270H
027DH
028DH
029CH
02ACH
02BBH
02CAH
0=2D2H
O2F3H
030FH
032DH
O34EH
O35DH
036FH
0389H
03BEH
03A7H
O3BEH
03D9H
040EH
0440H
0472H
0489H
048CH
04A5H
04BCH
04D7H
O04EEH
OSOFH
052DH
0532H
O053FH
0560H
0873H
0592H
05AAH
0S5AFH
O5BFH
OSCHH
O5DAH
OSF4H
0600H
0616H
062CH
064CH
066CH
068CH
06BOH
06B3H

SYM
SYM
BAS

SYM
SYM
SYM

SYM
8SYM
SYM

SYM

SYM
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN

STATUSSEGMENTOFF
-8ET

STATUSSEGMENTPNT
~R

STATUSSTRING

BITPATTERN
MESSAGELENGTH
RESPONSETOKEN

MESSAGESEGMENTOF
-FBET
MESSAGESEGMENTPN
=-TR

COMMANDTASK

COMMANDEXCEPTCOD
-E .

INITEXCEPTCODE
304

306
308
310
312
319
az1
323
325
a7
329
331
335
337
339
341
344
349
as1
353
355
357
359
361
363
365
367
371
373
a7e
are
380
384
ass
388
a2
394
.396
398
400
402
404
406
415
417
419
421
423
423
427
429
439
441
443
445
447
449
451
460
462
464
466
468
470
472
476
478
480
483
485
487
489
491
493
495
498
500

Q0A7H
FcoaH
00A7H
FC&2H
00A7H
00A7H
O0A7H
00A7H

00A7H

0030H
0059H
OO4EH
052FH
0032H
0036H
003aH
0038H

0051H

8YM STATUSSEGMENTBAS
-E
8YM STATUSTEMPLATE

SYM STATUSSTRINGINDE
=X

SYM CRTOUTTASK

8YM MESSAGETOKEN

8YM MESSAGEEXCEPTCOD
~E

8YM MESSAGESEGMENTBA
-SE

BAS)MESSAGESTRINGCHA
~R

SYM CONSOLECHAR

JFcean osBSH SYM INITTASK ja———— INITIALIZATION TASK STARTING ADDRESS

FC&2H
FCé62H
FC62H
FCé62H
FC&2H
FC&62H
FC62H
FC&2H
FCo62H
FC62H
FCo62H
FCo2H
FC&62H
FC&2H
FCo62H
FCo62H
FCé62H
FCo62H
FC62H
FCo2H
FCé2H
FC&2H
FCo62H
FC62H
FCo&2H
FCo62H
FCo2H
FCo2H
FCo2H
FCé2H
FCé2H
FCo2H
FC&2H
FC&62H
FC&6RH
FCo62H
FCo2H
FC&62H
FCo62H
FC&2H
FCe2H
FC62H
FC62H
FC&2H
FC62H
FC62H
FCo2H
FC62H
FCo2H
FCo2H
FC62H
FC&62H
FCoaH
FCé62H
FCo62H
FC62H
FCo62H
FCo62H
FC62H
FCo2H
FC62H
FChaH
FCo62H
FCo2H
FCo62H
FCo62H
FC62H
FCoO2M
FCa2H
FCo62H
FC62H
FCo2H
FCé2H
FCo2H
FCé62H
FCé62H
FC62H
FCé2H

0084H
0093H
009DH
00A4H
OO0B3H
OOBPH
00C2H
OOCEH
0OE4H
OOFBH
0116H
012CH
013BH
0143H
0150H
0160H
0170H
0175H
017FH
0189H
0196H
01BOH
O1CDH
O1E&H
0202H
021FH
0238H
0256H
0266H
0278H
028AH
0274H
02A0H
02B8H
02C2H
02CFH
02D7H
0300H
031EH
033AH
0354H
0366H
037¢CH
038BH
039FH
03ADH
03DOH
O3FSH
0427H
0459H
0487H
0489H
049DH
04ABH
04CEH
04DFH
050BH
0518H
052FH
053FH
055AH
0568H
0588H
059DH
05ADH
05B2H
OSBFH
05DOH
09EOH
O5FAH
0610H
b661CH
063CH
065CH
067CH
069CH
06B3H
06BSH

LIN 302
LIN 305
LIN 307
LIN 309
LIN 311
LIN 313
LIN 320)
LIN 322
LIN 324
LIN 326
LIN 328
LIN 330
LIN 332
LIN 336
LIN 338
LIN 340
LIN 342
LIN 348
LIN 350
LIN 352
LIN 354
LIN 356
LIN 358
LIN 360
LIN 362
LIN 364
LIN 366
LIN 369
LIN 372
LIN 375
LIN 377
LIN 379
LIN 383
LIN 385
LIN 387
LIN 390
LIN 393
LIN 395
LIN 397
LIN 399
LIN 401
LIN 403
LIN 405
LIN 407
LIN 416
LIN 418
LIN 420
LIN 422
LIN 424
LIN 426
LIN 428
LIN 430
LIN 480
LIN | 442
LIN 444
LIN 446
LIN 448
LIN 450
LIN 452
LIN 461
LIN 463
LIN 465
LIN 867
LIN 469
LIN 471
LIN 475
LIN 477
LIN 479
LIN 481
LIN 484
LIN 486
LIN 488
LIN 490
LIN 492
LIN 494
LIN 496
LIN 499
LIN 502
2-98

AFN-02058A

AP-130

FC62H 06C4H LIN 503 FC62H O06DSH LIN 504
FC62H O0&E&H LIN 505 , FC62H O06F&6H LIN 506
FC62H O71FH LIN 507 FC62H 072CH LIN 508
FC&62H O755H LIN 509 FC62H 0762H LIN 510
FCé2H O78BH LIN 511 FC62H 0798H LIN 512
FC62H O7C1H LIN 513 FC62H O7CEH LIN 514
FC62H O7F7H LIN 515 FC62H 0B804H LIN 516
FC62H 082DH LIN 517 FC62H OB3AH LIN 518
FC62H O0B83DH LIN 519 FC62H OB4AH LIN 520

FC62H O00B4H LIN 521
MEMORY MAP OF MODULE DEMO130
READ FROM FILE F1 AP130 LNK
WRITTEN TO FILE F1 AP130

SEGMENT MAP

START STOP LENGTH ALIGN NAME CLASS

[ooa70H 0oACtH 0052H W DATA DATA |ag———— LAST DATA BYTE OF APPLICATION JOB
O0AC2H OOAC2H 0000H W STACK STACK

O0OADOH OOADOH 0000H G ~"SEG

[T:cz,aon FD17BH OBSCH W CODE CODE]4——— LAST CODE BYTE OF APPLICATION JOB
FD17CH FD17CH O00OH W MEMORY MEMORY

GROUP MAP

ADDRESS GROUP OR SEGMENT NAME
FC620H CGROUP

CODE
00A70H DGROUP

DATA

2-99

AP-130

APPENDIX F
ROOT JOB LOCATE MAP

2-100
AFN-02058A

AP-130

ISIS~I1 MCS-84 LOCATER, Vi 2 INVOKED BY

LOC86 f1 RJUB130 1nk &
TO .F1 RJUB130 &
MAP PRINT(£1'RJUB130 mp2) &
0C(noli, nopl, nocm, nosb) %
PCt(noli, pl, nocm, nosb) &
SEGSIZE(stack(0)) &
ORDER(classes(data. stack, memory)) &
ADDRESSES(cla (code(OFD180OH) . &

data(QOADOH)))

WARNING 26 DECREASING SIZE OF SEGMENT
SEGMENT STACK

SYMBOL TABLE OF MODULE ROOT

READ FROM FILE F1 RJUB130 LNK

WRITTEN TO FILE F1 RJUB130

BASE OFFSET TYPE SYMBOL BASE OFFSET TYPE SYMBOL

FD1BH O180H PUB NUC_INIT_ENTRY FD18H 0184H PUB CODEDATA

—
[FpieH ©0011H PUB RQGSTARTADDRESS jeg—— ROOT JOB STARTING ADDRESS FDi18H 0010H PUB INTERROR

FD18H OOQ0OH PUB CRASH FD18H O002AH PUB RGROOTJOBVERSION
FD18H OO030H PUB ROOTTASK FD18H 010CH PUB SYSTEMSUICIDE
FDiBH 01184 PUB RQCREATEJOB FDi18H O11EH PUB RQGETTASKTOKENS
FD1BH 01244 PUB RQSUSPENDTASK FDi8H O12AH PUB RG_N_C_RETURN_6
FD1BH 0146H PUB RG_N_C_RETURN_40 FD1BH 0162H PUB RQGERROR

O0ADH 0000H PUB JOBNUMBER O0ADH 0002H PUB ROOTTASKSTATUS

MEMORY MAP OF MODULE ROOT
READ FROM FILE F1 RJB130 LNK
WRITTEN TO FILE F1 RJB130

MODULE START ADDRESS PARAGRAPH = FD18H OFFSET = 0011H
SEGMENT MAP

START sTOP LENGTH ALIGN NAME cLASS
00ADOH OOADIH O004H W DATA DATA
[coapan OOBFFH G12CH W INIT_STACK STACK|a——— LAST DATA BYTE OF ROOT JOB
00COOH 0OCOOH 0000H W STACK STACK
00COOH OOCOOH 0000H € ~78EG
FD18OH FD339H 01BAH W CODE CODE
FD33AH FD34SH 000CH W SAB_DESCRIPTOR CODE
-5

lFD:MéH FD366H 0021H W —\SJ_J_DESCRIPTOR CODE I < LAST CODE BYTE OF ROOT JOB

FD368H FD3&8H 0000H W MEMORY MEMORY

GROUP MAP

ADDRESS GROUP OR SEGMENT NAME
00ADOH DGROUP

DATA
FD180H CGROUP

col

DE
SAB_DESCRIPTORS
U_J_DESCRIPTORS

2-101

intel armce AR-236

REPRINT

November, 1982

from C Design — 1982, 1ssue; C jght 1982 by Ci Design F Co. Order Number: 210812-001

SYSTEM DESIBN, SUFTIAGE

LET OPERATING SYSTEMS
AID IN COMPONENT

DESIGNS

The iRMX 86 operating system processor package offers
hardware designers a set of thoroughly tested software
primitives upon which to build present and future custom

hardware designs

by George Heider

integrating standard and custom hardware, soft-
ware, and packaging. Microprocessors and other
very large scale integration components are replacing
much custom hardware with larger, more powerful
standard hardware modules. Microprocessors lead to
powerful systems, but they often require complex
system management software. While this complex soft-
ware often comprises one third or less of the final
system software, it may require two thirds or more of
the storage development effort. Worse, bugs in system
management software sometimes do not show up until
late in development or after the product is at the
customer’s site.
One solution to this problem is to employ standard

c omponent users build application systems by

management software such as operating systems. More _

complex, multifunction applications in a realtime
environment benefit greatly from operating systems.
Examples of these applications include file subsystems,
public automatic branch exchange (PABX) systems, and
transaction processing systems. But implementing

George Heider is a senior applications engineer at
Intel’s OEM Microcomputer Systems Div, 5200 NE
Elam Young Pkwy, Hillsboro, OR 97123. He works
primarily with 16-bit software applications, including
the iRMX 86 operating system. Previous experience
includes telecommunications systems engineering,
microprocessor systems, microprocessor operating
system development, and disk storage system
software. Mr Heider holds an MS in computer science
Jrom the University of California, Santa Barbara and
a BSEE from Oregon State University.

Computer Design ¢ September, 1982

Fig 1 irRMX operating system architecture. Kernel consists
of primitives also implemented in hardware in iAPX 86/30 and
iAPX 88/30 OSP.

operating system functions in a component design requires
new software tools, education, and expertise. Also, these
functions are often specific to the particular design, so tools
and expertise developed for one application are not suitable
for subsequent designs.

These problems are directly addressed by the Intel iAPX
86/30 and iAPX 88/30 operating system processors (OSP) and
the iRMX* 86 operating system. The iRMX 86 is a full-
featured, realtime multitasking operating system for iAPX
86 or iAPX 88 based systems. The Intel OSP implements the
iRMX 86 kernel functions in hardware consisting of an iAPX
86 or iAPX 88 central processor coupled with an operating
system firmware (OSF) component, the Intel 80130. The
OSF extends the base iAPX 86 and iAPX 88 architecture by
adding 37 operating system primitive instructions to the
base iAPX 86 or iAPX 88 instruction set; systems can be
built directly on the OSP. System implementation time is
thus decreased by having fully debugged operating system
functions in hardware. Further capabilities can be added by

iRMX™ is a trademark of Intel Corp

!

2103

Iﬂtelﬁ AR-236
extending the set of the OSP primitives TABLE 1
or by integrating portions of the iRMX
86 on top of the OSP. OSP primitives ,
“ Primitive Description
Operating system architecture JoB
The iRMX 86 architecture shown in CREATE JOB Creates a job partition including memory pool, task list,
Fig 1 consists of the nucleus and and stack area.
layers for the basic input/output TASK

(1/0) system, extended 1/0 system, CREATE TASK
application loader, and human
interface. The system also provides
a debugger, a terminal handler, a
bootstrap loader, and a patch
facility.

While the nucleus is the lowest
layer of the operating system, fun-
damental system functions are
handled by the nucleus kernel,
which is the core of any operating
system. The kernel controls memory
allocation, allocates processor
resources,. communicates between
processes, and manages interrupts.
In the Intel OSP these functions are
implemented in hardware. (OSP
functions are described in Table 1;
additional functions supported by
the iRMX 86 nucleus are shown in

- Table 2.) Software development can

DELETE TASK

SUSPEND TASK

RESUME TASK

SLEEP

INTERRUPT
SET PRIORITY

-SET INTERRUPT

4 RESET INTERRUPT Disables an interrupt level; cancels interrupt handler;
be based on either the OSP or the deletes interrupt task for level if assigned.
iRMX 86, allowing software develop- GET LEVEL Returns number of, the interrupt level for highest priority

ment to proceed in parallel with
hardware development.

In addition to the operating system
primitives, the OSP contains timers
and interrupt control logic expandable
from 8 to 57 interrupt levels. The
timers include a system clock, Re-
served delay timer, and baud rate
generator. The 40-pin OSP has bus buf-
fers and demultiplex logic, which
allows it to interface directly to the
iAPX 86 or iAPX 88 multiplexed bus.
The OSP can be located at any 16 byte

ENABLE
DISABLE

address boundary in the 1M-byte :::E;::PTION
system address space. Application in- HANDLER

terface to OSP stepping and revision
levels is independent. A block diagram

GET TASK TOKENS

EXIT INTERRUPT
SIGNAL INTERRUPT

WAIT INTERRUPT

ENTER INTERRUPT

GET EXCEPTION

SIGNAL EXCEPTION

Creates a task with specified environment and priority.
Task is created in ready state. Checks for insufficient

y available within ing job.
Deletes a task from system as well as from any queues
it is awaiting. Task’s state and stack segment are
deallocated.

Suspends a task (changes its status to suspended) or

i task’s suspension count by 1. A sleeping task
may also be suspended and will awaken suspended
unless resumed. N

Decreases suspension count of a task by 1. If at that
point count is reduced to O, task state is made ready. If
it was suspend-asleep, it is put back o sleep.

Puts task in asleep state; up to 10 ms units can be
specified.

Gives token for a task or task’s job partition.

. Changes task’s priority to value passed in primitive.

Assigns an interrupt handler to a level. Task that makes
this call is made interrupt task for same level, unless call
indicates there is no interrupt task.

interrupt handler currently in operation (several interrupt
handlers can be operating).

Completes interrupt processing and sends end of
interrupt signal to hardware.

Invokes interrupt task assigned to a level from that
level's interrupt handler.

Suspends interrupt task state pending a signal interrupt
from an interrupt handler. Used by an interrupt task to
signal its readiness to service an interrupt.

Sets data segn{ent base for an interrupt handler.
Enables external interrupt level.
Disables an external interrupt level.

Reads location and exception handling mode of current
OSP exception handler for a task.

Establishes location and ption handling mode of
current OSP exception handler for task.

Notifies t OSP ption handler of pti

of the 80130 is shown in Fig 2.

Minimum hardware: requirements for the iRMX 86
operating system shown in Fig 3 are 1.8k bytes of random
access ‘memory (RAM), about 16k bytes of kernel code
memory, and integrated circuits. By comparison, the OSP
shown in Fig 4 still requires 1.8k bytes of RAM, but does
not require the kernel code, the programmable interrupt
controller, or the programmable interrupt timer. These are
all replaced by the OSP. Approximately 1k bytes of required
system configuration code are not shown in Figs 3 and 4.

Kernel functions

Since it defines system architecture, application requests
for system operations like interrupt management and
memory allocation must go through the kernel. These

Computér Design ¢ Sep 1982

requests are made by system calls, or primitives, which
are comparable to subroutine calls for system actions.
Since the kernel manages much of the system hardware,
the application code need not concern itself with many
hardware details. This independence is not absolute,
however: system hardware or resources not managed by
the kernel still require application code.

Basic kernel concepts can be explained using a general
purpose system (Fig 5). Input data can be characters,
analog signals, or digital signals; processing can be
numerical analysis, editing, spectrum analysis, process
control algorithms, or virtually any other transforma-
tion. Processed data must be sent to an interrupt driven
output device—a display, a communications line,

- 2-104

®
I'Ite| AR-236

system initialization. The input task
requests each buffer, or memory
segment, from the kernel by making
the kernel system call ‘‘create seg-
Primitive Description ment”’ with 128 bytes. If a larger
SEGMENT buffer is needed, the create segment

CREATE SEGMENT

DELETE SEGMENT

ENABLE DELETION

DISABLE DELETION

MAILBOX
CREATE MAILBOX

DELETE MAILBOX

SEND MESSAGE
RECEIVE MESSAGE

REGION
CREATE REGION

DELETE REGION
ACCEPT CONTROL

RECEIVE CONTROL

SEND CONTROL

OTHER
SET OS EXTENSION

GET TYPE

Dynamically allocates area of memory of specified length
in 16-byte paragraph units up to 64k-byte maximum (eg,
for use as buffer). Returns location token for segment
allocated.

Deallocates memory segment indicated by parameter
token.

Allows deletion of system data type value indicated by
location token.

Prevents deletion of system data type value indicated by
location token.

Creates a mailbox with specified task queuing discipline.
Returns location token.

Deletes a mailbox and returns its memory. If tasks are
waiting for mailbox, they are awakened (ie, their state I1s
made ready) with appropriate exception condition. If
messages are waiting for tasks, they are discarded

Sends message segment to mailbox.

Task is ready to receive message at mailbox. Task is
placed on mailbox task queue. Task can wait for
response indefinitely, wait (generally 10 ms) units, or
not wait. When complete, primitive returns to task the
location token of message segment received.

Creates region data type value, specifying queuing
disciphne. Returns token for region.

Deletes region if the region Is not in use.

Gains control of region if region immediately available,
but does not wait if not available.

Same prnimitive as accept control but task that performs
it may elect to wait.

Relinquishes region.

Links new primitive with kernel.
Gives system type code of a system data type.

'

call needs a larger value for the size
parameter. When the buffer is full,
the input task gives the segment to
the process task. When the buffer is
no longer needed, it can be returned
to the system memory pool by a
‘‘delete segment’’ system call.
Because the kernel dynamically
manages memory allocation and
buffer access, no additional code
for these functions is necessary.

Communication and synchronization
through mailboxes

The sample system needs a dis-
patching algorithm to send the
segments from task to task. Such an
algorithm can be written without an
operating system. For example, the
input task can fill a buffer and call
the process task. When the process
task finishes, it can call the output
task; the output task can finish with

. the buffer and return. When control

returns to the input task, system
processing for that buffer is com-
plete. Another method is to have a
polling task occasionally check if
buffers are ready to be sent to other
tasks. Both methods are inefficient
and rigid, requiring that each task
finish processing data in each buffer
before another task can run.

With an operating system, the
buffers can be sent from task to task
through ‘‘mailboxes’’—places
where tasks can send or receive
data. (See Fig 6.) Task A sends a
message (segment) to mailbox 1 and
specifies mailbox 2 as a return
mailbox. Task A then waits for a
return message at mailbox 2. Task B
receives the message (segment) from
mailbox 1, then sends a return
message with status to mailbox 2.

control hardware, or mass storage. In this general pur-
pose system, input, process, and output are the only
functions, or tasks, that make up the system.

Buffer management .
Assume input data will be placed into 128-byte buffers
by the input task. Without help from the operating
system, the buffers must be prelocated in RAM. Soft-
ware is needed to manage the buffers, which must be
given to the tasks_in the correct sequence and returned
“for reuse when empty. If the buffers are too small, or if
RAM is moved, the software must handle these changes.
If an operating system or OSP is used, the locations
and sizes of RAM are made known to the kernel during

Computer Design * September, 1982

Task A receives the return message, which contains task
B status, and synchronizes the two tasks.

In general, each task optains a segment, modifies its
contents, sends the segment to the next task, and waits
for another segment. The input task first gets a segment
using ‘‘create segment.’” When the segment is full, the
input task uses the kernel call ‘‘send message”’ to send
the segment to mailbox A. The process task uses the
‘“‘receive message’’ system call to wait at mailbox A for
the segment. The process task receives the segment, pro-
cesses the data, puts the new data in the segment, and
sends the segment to mailbox B. The process task then
waits at mailbox A for the next segment from the input
task. The output task takes the segment from mailbox B

2-105

intel

AR-236

CATALOGING SYSTEM
DATA TYPES
CATALOG OBJECT

UNCATALOG OBJECT

LOOKUP OBJECT

| NEW SYSTEM
DATA TYPES
CREATE EXTENSION

DELETE EXTENSION
CREATE COMPOSITE

DELETE COMPOSITE
INSPECT COMPOSITE

ALTER COMPOSITE

SEMAPHORES
CREATE SEMAPHORE

DELETE SEMAPHORE
SEND UNITS
RECEIVE UNITS

OTHER
PRIMITIVES
GET PRIORITY

FORCE DELETE
GET SIZE
ADDITIONAL JOB

PRIMITIVES
OFFSPRING

GET POOL ATTRIBUTES

SET POOL MINIMUM
DELETE JOB

TABLE 2

Additional primitives supported by the iRMX 86 nucleus

Catalogs system data type token under name given
by task in job partition directory.

Removes name and token from job partition
directory.

Uses name to find token cataloged in job partition
directory.

Notifies kernel of new system data type code for
new system data type.

Removes system data type code and deletes alt
composite system data types with that system data
type code.

Creates new system data type from hist of current
system data types and system data type code
received from create extension.

Deletes new system data type.

Gives list of system data types that form new
system data type.

Changes list of system data types that form new
system data type.

Creates semaphore system data type.
Deletes semaphore, system data type
Task adds a number of units to semaphore.

Task asks for a number of units from semaphore
Task can wait for response indefinately, wait
(generaily 10 ms), or not wait. *

Gives priority level of task.

Deletes system data type even if disabled delete has
been called for system data type.

Gives byte size of memory segment.

Returns child job partitions created by a task in
parent job partition.

Gives memory pool attrnibutes of job partition, .
including pool minimum, pool maximum, initial size, _
number of bytes used, and number of bytes
available. .

Changes poool minimum for job partition.
Deletes job partition and returns its memory to parent
job partition. .

appear, an error routine can alert
the system operator that processing
has stopped.

The mailbox method has several
advantages over synchronization
algorithms and polling tasks. The
entire process is synchronized by the
availability of data in segments,
eliminating the need for algorithms
and extra code; the same process
applies whether the tasks operate at
the same or different speeds. Also,
burst input or output rates can be
handled by adding buffers. For in-
stance, if too much data arrives for
the process or output tasks to handle
immediately, the input task fills
multiple buffers and passes them to
mailbox A. The process task takes
each segment in turn. After pro-
cessing is completed, the segments
are all sent to mailbox C, and the
process waits for the next burst of
data. The only interfaces between
the tasks are mailboxes and seg-
ments, so tasks can be easily re-
placed or added to the processing
loop; the same scheme works for
larger or smaller segments.

Tasks and task scheduling

Tasks are independent bodies of
executing code, initialized and
scheduled by the kernel. Therefore,
tasks must have iRMX 86 parameters
like priority, initial memory
resources, entry address, and other
iRMX 86 data. A task is like an
expanded subroutine managed by
an operating system. The actual
application code is written much the
same as it is without an operating
system except that requests are
made using kernel calls. .

Even though the system’s multi-
ple independent tasks appear to run
simultaneously, only one task
actually runs at one time. Some
method of scheduling is needed to
decide which task receives control of
the system processor; this sched-

and outputs the data. The output task has two choices:
it can either delete the segment, letting the input task
create more segments, or it can send the segment to
mailbox C. After sending or deleting the segment, the
output task waits at mailbox B for the next segment
from the process task. If the output task sent the seg-
ment to mailbox C, the input task segments from the
output task, synchronizing the input task with the out-
put task. If the output task deleted the segment, the
input task creates a new segment and waits for input
data.” The entire process runs continuously, synchro-
nized by mailboxes and segment availability. Addi-
tionally, the tasks can elect to wait for a specified
amount of time at mailboxes, and if no segments

¢ P Design * P

, 1982

uling depends on the task priority. Since data coming
into a system must not be missed, the input task has the
highest priority. Data going out of the system are next in
importance, so the output task has second priority; the
sequential process task has the lowest priority. The
scheduling algorithm is simple—the highest priority task
that is ready to run will get control of the processor.
This is an example of preemptive priority. In this case,
ready to run mieans that a task is complete—it has a seg-
ment to fill and data coming in (input task), data to pro-
cess (process task), or data to output (output task). For
instance, if input data arrives when the process task is
running and the input task has a buffer waiting for data,
the input task will preempt the process task to receive

2-106

AR-236

i e
e X
! o0 1o [
! rrocrammasie & 7"
— -
! v I R K{uuuumm INPUTS
] N L0GIC L -
\ ! | INTERRUPT QUT
| ' [}
1] werneL ! i
hoconmor ke | t
| STORE - :o AISTEM
H :
| D8 10 15| :
' |
! DELAY
|
|
[}
] BAUD RATE
i i
! ; !
PRSP A R R "
| K:' - clock
DATA -5
6 | w7 WrERRAce 5 Saius
K.—J—-‘: D
‘(,'1'35‘3353 Amé:s I i&o fg;lcomnm

0 K ’ _
[} | INTERRUPI
[CONTROLUNT, e

Fig 2 30130 firmware component performs clock and
interrupt control functions, and supplies operating system
primitives.

the data. If the input task is not running and the hard-
ware driven by the output task is ready to output
another data value, the output task will receive control
of the processor.

Since the operating system schedules the tasks, each
task is designed as though it has sole control of the pro-
cessor. Tasks make system calls such as receive message,
which may cause another task to run because no
message is waiting. In addition, interrupts will likely
cause a different task to run. Fhe kernel can schedule
the tasks because only interrupts or system calls can
cause a higher priority task to become ready, and both
of these are handled by the kernel. Thus any time an
interrupt occurs or asystem call is made, the kernel runs
the highest priority task that is ready. The tasks are
written without any code to manage scheduling. The
kernel scheduling is general purpose, so adding new
tasks to the system does not require modifying the

scheduling functions. A system with work balanced
among the tasks runs as though all tasks perform
simultaneously.

The net result of task scheduling is that the system
runs as fast as it can. When data come in, the input task
will always get control of the processor. The output task
will execute whenever it has data to send and the input
task is not running. The process task will run whenever
it has data and no other tasks are running. Also, tuning
the system is easier with the standardized mailbox inter-
faces: slower tasks can be easily removed and replaced

. with faster tasks, and remaining tasks will not be
affected.

In a multitasking system, multiple independent tasks
execute concurrently. Buffer transfers occur through
mailboxes rather than through a direct interface to
tasks, and system functions not related to the primary
data processing functions can be handled by other tasks.
For example, a supervisory task that monitors a system
console for operator requests can be added to the system
at a lower priority than the process task. No changes to
any scheduling algorithm would be required.

Interrupt management
The iRMX 86 kernel and the OSP provide two classes of
interrupt management: interrupt handlers and interrupt
tasks. An interrupt handler is a short procedure whose
only function is to respond to the interrupt as quickly as
possible. All interrupts become disabled in order to let
the interrupt handler execute at top speed. Interrupt
handlers can make only a few system calls. In the
sample system, the interrupt procedure receives a data
value, places it in a buffer, and returns. When the
buffer is full, the interrupt handler notifies the interrupt
task. Typical response time for an 8-MHz iAPX 86 pro-
cessor, from the time an interrupt occurs until the inter-
rupt handler gets control is 30 to 50 us. In the unlikely
event of a worst-case time, response time is about 160 us.
Higher priority interrupts are enabled when an inter-
rupt handler gets control, is 30 to 50 us. In the unlikely
task uses a mailbox to pass the full buffer on to the next
task. Since both interrupts and tasks have priorities
assigned to them, the kernel uses the task priority to

8253
PROGRAMMABLE KERNEL PROGRAM DATA
INTERVAL MEMORY MEMORY MEMORY
ﬁ D }_l TIMER
o 1APX 86/10 ﬁ] E
DRIVER [CLOCK BUS ¢ SYSTEM BUS
oY APX 88/10 ' INTERFACE [\ ﬁ,>
INTERRUPT ﬁ
8259
: £ PERIPHERAL
INTERRUPT
CONTROLLER

i)

INTERRUPT LINES

U

Fig 3 irMX 86 hardware requirements. Operating system processor fits into basic hardware system
for irMX 36 and brings with it functions of kernel memory, 82594 programmable interrupt controller,

and 8253 programmable interrupt timer.

s

Computer Design * September, 1982

2-107

I’\tel® AR-236
—— —
| 1APX 86/10 I
CLOCK OR . PROGRAM DATA
| 1APX 88/10 l MEMORY MEMORY
)“ l:] l‘l : INTERRUPT STATUS |
8284A | . I
s W K swmes >
DRIVER | INTERFACE
ROY I
: INTERRUPT STATUS |
| | J
L— 5} cLock 80130 INTERRUPT PERIPHERAL
| REQUESTS
1 Acxnowenc
BAUD RATE DELAY SYSTEM 1APX 86/30. 88/30
TIMER TIMER TIMER

Fig 4 Basic hardware system with iAPX OSP. OSP replaces kernel code, programmable interrupt

controller, and programmable interval timer.

v

determine if interrupts should be disabled or enabled. If
the task priority is higher than an interrupt priority, that
interrupt is disabled while the task is running. A priority
level can be given to a task that disables all, some, or
none of the interrupts: ie, defining a task that is more
important than all interrupts (initialization task), more
important than some interrupts (input task), or less im-
portant than all interrupts (processing task).

Multiprogramming

System parameters in a component system are normally
well defined: RAM locations are fixed, code addresses
are known, and address and 1/0 ports are specified.
Application code usually depends on these parameters.
If the system changes, substantial alterations are often
needed in the application code. However, if an iRMX 86
operating system is used, the kernel is made aware of
system resources during system configuration. System
configuration assigns these resources to ‘‘jobs.”’

Jobs do not do work but instead serve as resource
boundaries, containing tasks that accomplish system
functions. Many component applications systems,
including the sample system, will have only one job. All
system resources are given to the job and all tasks are
contained there. When the system is initialized, the job
is created and control is passed to the first task in

the job.
PROCESS | oureut | oureur
TASK TASK DATA

Fig S General purpose system consists of 3 basic functions.
Application code receives data, places data in buffer, then
processes it. Processed data are sent to interrupt driven
output devices.

INPUT INPUT
DATA TASK
—

Computer Design ¢ September, 1982

Multiprogramming occurs when a system has two or
more jobs. The system boundaries provided by jobs
confine errors and define limits for system resources
such as memory. These boundaries limit the effect of
one job on another. For instance, the system debugger is
a separate job. During development, the sample pro-
cessing system would look like Fig 7. After develop-
ment, the debugger would be removed, leaving only the
application system. The job environment of the process-
ing system is not affected by adding or removing the
debugger. The overall system will, of course, be affected

'
#
3‘(.‘\“ Q\(/y[
TASK A TASK B
\% g‘.‘\“
MAILBOX
2
@
MAILBOX
MAILBOX MAILBOX
INPUT PROCESS 0 QUTPUT | OUTPUT
TASK sk [~ . TASK | DATA
’ (b)

Fig 6 Mailboxes allow intertask communication by
providing places to send and receive messages (a).
Synchronization is easy since tasks can poll a mailbox and
wait for messages. Mailboxes also form interfaces between
tasks in application system (b) so tasks can be easily added"
or removed without changing code.

2-108

ntel

AR-236

because removing the debugger will

cause more,system resources to be

available for other jobs.

The jobs, tasks, segments, and
mailboxes are part of a large set of
system data types which are data
structures managed by the operating
system. System data types are manip-

DEBUGGER

MAILBOX

MAILBOX MAILBOX
INPUT INPUT PROCESS B QUTPUT § OUTPUT
DATA TASK TASK TASK DATA

ulated only through system calls,

@

which enforce the rules that govern
their use. Together system data
types and system calls form the appli-

(b
APPLICATION SYSTEM

cation interface to the operating
system. This interface provides not
only a good boundary for error

Fig 7 Job structure for development provides distinct boundaries so that a
debugger (a) or other piece of development software can be used during system
development and later removed without disturbing application job (b).

detection and debugging, but also common architecture
that can be carried from application to application.

Debugging
The iRMX 86 operating system has a debugger that inter-
prets and uses system data types, and manipulates them
to control the system. For example, the processing flow
in the sample system can be halted by the debugger
when a segment is sent to mailbox A. Data flow through
the system can be traced by halting or breakpointing the
system as the segment goes from mailbox to mailbox.
Debugging is further aided by the modularity of the
tasks and jobs. Modules limit error effects; the inter-
faces between the modules are well defined; and the
modules are easily inserted or removed. A standard
system debugger can be used for all applications,
avoiding the need to develop specific diagnostic tools.

Conclusion

Multiprogramming and multitasking promote applica-
tion code modularity, allowing applications to be
created by adding new functions to old software. The
same scheduling and kernel interfaces work for systems
with only a few tasks, or systems with many tasks per-
forming multiple processes. An entirely new process can
be added to the example by adding more tasks. If the
new and existing processes have nothing in common, the
new process can be in a different job. If both processes
can share general purpose tasks, such as output, the new

process can be in the same job and use the mailbox
interfaces to send data to one output task. If system
designers are careful, they can design systems whose
functions can be added in the field. Thus, expensive
custom software will not have to be rewritten for each
new application.

Users with a wide range of applications will find that
this approach allows them to implement a corres-
ponding range of capabilities, expanding an OSP based
system up to a high level human interface. A complete
iRMX 86 operating system includes extensive 1/0
capabilities, a debugger, an application loader, a
bootstrap loader, and integrated user console functions.
Such a system can perform general purpose processing
and still provide all iRMX 86 facilities. With these
features, one operating system can be used for current
projects and expanded for future ones, minimizing soft-
ware learning curves for new applications.

Bibliography

Introduction to the iRMx 8 Operating System, no 9803124,
Intel Corp, Santa Clara, Calif, 1982

iRMX 86 Nucleus Reference Manual, no 903122, Intel Corp,
Santa Clara, Calif, 1981

Using the iRMx 86 Operating System on iApx 86 Component
Designs, Application Note AP110, Intel Corp, Santa Clara,
Calif, 1981

J. Zarella, Operating Systems Concepts and Principles,
Microcomputer Applications, Suisun City, Calif, 1979

2-109

intel ARTICLE . AR-286

" REPRINT

0‘0
|)
&
<Y
¢ &
> \&?
O
O\\ 09\ S
| e"‘f t}«"‘
9 Q e é\b::\

March/April 1983. Copyright® 1983.

intel

AR-286

Software That Resides in Silicon -

Ron Slamp and Jim Person, Intel Corporation

casting of software in silicon implies that the software

cannot be changed; yet software does and must change.
For example, it must be possible to alter a microprocessor
operating system so that the system will support different hard-
ware and software designs, as well as accommodate new hard-
ware components and applications. And if the software has
been committed to silicon, then a way must exist to overcome
any bugs that are discovered later.

s ilicon software sounds like a contradiction in terms. The

Design Considerations

Silicon software consists of two kinds of code: on-chip code
and off-chip code (see Figure 1). In a typical case, some of the
off-chip code works closely with the on-chip code, and 1s devel-
oped as part of the silicon software package. This special off-
chip (or **support’’) code might contain initialization, interface,
system, and version update codes. For silicon software to
tolerate change and be usable in more than one system, the
on-chip code must have three qualities: position independence,
configuration independence and stepping independence.

Position Independence

Because the most advanced microprocessors address at least
1 megabyte of memory, system software that resides in silicon
must work right regardless of its location in memory. Absolute
addresses in the read-only, on-chip code or data restricts the
configuration of the system. Because the on-chip code recog-
nizes only offsets, absolute addresses are unacceptable. On-
chip code cannot presume to know the location of any code or
data, it can only presume to know the structure of the data
which it accesses. It cannot know, except relatively, where in
memory it (or any other code) resides. If the on-chip code is to
be position independent, then any absolute addresses needed
by the on-chip code must be obtained via the processor’s
registers. .

Position independence is not a new concept; in fact, it is
rather an obvious requirement for silicon software. Compilers
and relocatable assemblers allow linking and locating, thus
making it easier to produce position-independent code. But
most of these tools can also produce code that is not position
independent. Silicon software developers need to be aware of
the position-independence requirement throughout the design,
implementation and test phases for their products.

Contiguration Independence

The second requirement for silicon-resident software is that
the on-chip code must not depend on the underlying hardware
and software configuration of the system. Instead, the on-chip
code must have indirect access to other code or data, and must
then check the run-time data to deduce the system
configuration.

On-Chip Code Oft-Chip Code
r Al
;" I | Other Code
|
| Support |
Software

Silicon | |

Software | 1
| System Memory
! !
b4

FIGURE 1. Silicon software is divided into on-chip code and off-
chip code. The off-chip code either directly supporis the
on-chip code or other appl code.

Because of the read-only nature of silicon software, con-
stants can cause problems when they are located within the
on-chip code. Values representing a hardware device must not
reside on-chip if that device can be located anywhere in the
system, or when values support several devices having similar
functions but different programming interfaces. Indirect access
is necessary for all values that vary depending on the configura-
tion of the system.

Stepping Independence

Stepping independence is an expansion of configuration in-
dependence, and is perhaps the most elusive of the
requirements to be met by software intended for residence in
silicon. A “'step” is an updated version of the on-chip code. The
on-chip code and the off-chip code must remain compatible,
regardless of changes in either of them. Stepping independence
exists when all versions of the on-chip code work with all
versions of the off-chip code.

If stepping independence is taken into consideration when
the silicon software is developed, then provisions can be made
for the subsequent additions of options without changing the
on-chip code. Otherwise, the static nature of the on-chip code
might make it impossible to add options. Although configura-
tion independence can be designed into software from the start,
stepping independence can be achieved only if a system’s exist-
g silicon software does not include features that prevent it.

One type of data that is likely to change between steps is the
value representing the size of a data area. If the software is to be
stepping independent, it cannot know the sizes of the data areas
accessed by on-chip code prior to run time. (No problems arise
if on-chip and off-chip code agree on the size of the data area.)

But what happens if the on-chip code is not from the same
version of the product as the off-chip code, and if the size of the
data area has changed between versions? If the size of the data
area is defined by a constant in the on-chip code, then that area
might be smaller than the off-chip code expects it to be. This
misunderstanding can lead to disaster as the off-chip code reads
and writes beyond the data area.

2-111

VLSI DESIGN March/April 1983

210341-004

intel ,

AR-286

" This problem is solved when the on-chip code ascertains the
size of the data area from off-chip data. Thus, the size of the
data areas for the system becomes a configuration option.

Getting the Bugs Out of Silicon Software

Every large program contains bugs. Designers usually
remove bugs by modifying the program to correct the problem,
and then discarding the old program. However, a program in
silicon cannot be modified without stepping the component.
And even so, it is undesirable to discard the outdated
component. . .

Software designed for silicon should include a facility for
fixing bugs in on-chip code. One way to fix an on-chip bug is to
prevent access to the routine containing the bug. A correct
version of the routine is provided off-chip, and program execu-
tion is forced to branch to the off-chip version whenever the
routine is invoked. Modular programming practices during de-
velopment help reduce the cost of such off-chip duplication.

This on-chip bug-fix works well over time. Each component
step has an associated collection of bug-fix modules. The col-
lection is updated for each new version of the product, as
component steps fix known bugs. During system configuration,
the user specifies which component step is being used; the fixes
for that step are included automatically in the off-chip code.
Because of this facility, one step looks just like another to the
user.

Intel's OSF: A Software Component

The Operating System Firmware (OSF) component consists
of several hardware modules (see Figure 2). These modules
provide two functions that are essential to operating systems:
interrupts and timers. The OSF modules include a Control
Store (16K bytes of fast ROM) to contain the silicon software,
three programmable interval timers, an eight-input program-
mable interrupt controller, a bus interface, control logic, a data
buffer, and address latch logic.

The 80130: The iRMX™ 86 Kernel in Silicon

Intel’s first software-on-silicon product is the 80130. It pro-
vides a functional subset of the iRMX™ 86 Nucleus, which is
the heart of the iRMX 86 operating system (OS). The iRMX 86
OS is a real-time, multi-tasking, multiprogramming operating
system intended for 16-bit microprocessor designs. The iRMX
86 family of standard software modules includes a nucleus, a
stand-along terminal handler, a stand-alone debugger, an asyn-
chronous I/O system, a synchronous I/O system, a loader, a
human interface, and options required for real-time applica-
tions. The nucleus manages the creation and dynamic deletion
of all system architectural features (tasks, program environ-
ments, memory segments, data-communication rhanagers,
etc.). It also schedules tasks, based on priority, interrupt man-

g t, memory m nent, validation of parameters,
management of exceptional conditions, and co-processor
support.

How the 80130 Satisties
the Silicon Software Criteria

The iRMX 86 Nucleus provides both the on-chip and off-chip
codes needed to implement the operating system. The on-chip
code resides in the 16K-byte ROM space of the 80130. It is the
main portion of the Nucleus code, and includes the kernel of the

8088 i s
Clock or 'rogram Data
ooos\ i Memory Memory
nterrupt__ Status |
B
% niorace Sy Bus
Interrupt_ Status. |
CSLR
Clock OSF Interrupt Peripheral
Reavests
Acknowiedge |
Baud-Rate Delay System
TerT P er

FIGURE 2.The OSF component works with systems that use the
iAPX 86, 88, 186, or 188 microprocessor. Close coupling of the
CPU and the OSF allows maximum zero-wait-state performance
of the OSF software.

On-Chip Code Otf-Chip Code
1 T 1

User Execution

i1
| Sohware |

80130 I Request for
Kernel | setup 0S Service
Control L. __ ! Environment
Store T~— |

[

PR —

FIGURE 3. The position-independent intertace supplies data
location and run-time values, and starts on-chip execution ot
the software.

operating system and the primitives, which are present in the
basic 80130 configuration. The off-chip code is stored in exter-
nal RAM or ROM. It consists of initialization code, and code
that either cannot be position independent or cannot be known
before a given system is configured.

Position independence is guaranteed if entry to the on-chip
code is possible only through an interface in the off-chip code
that sets up the necessary registers. The off-chip position-
independence interface (see Figure 3) provides an absolute
data location and begins on-chip execution by the silicon-
resident code. All run-time values can be determined based on
the data location. On-chip execution gives the processor a
location in the on-chip code from which other on-chip locations
can be calculated.

It was relatively easy to make the 80130 configuration inde-
pendent, because (like most operating-system kernels) it con-
tains only general-purpose functions. The off-chip code
contains all the drivers for particular peripheral chips. The
Interactive Configuration Utility integrates the drivers with the
80130.

The interface between the off-chip and on-chip codes
remains stable across component steps. The stepping-
independence interface (see Figure 4) resides on the chip, and
is a map of the on-chip code. This interface gives the off-chip
code indirect access to all on-chip ‘‘publics’ (e.g., externally
accessible routines, modules, and labels). It is also a chart that
routes execution to the proper on-chip location. The off-chip
code uses an index of this chart to specify which public should

2112

VLSI DESIGN March/April 1983

210341-004

AR-286

On-Chip Code Oft-Chip Code
r 1T 1

80130 Support o

Kerne | Software | Execution
|

Target l
| N\am

Offset -Up

—

Return M | |

ted through the on-chip
P g P which provides compati-
bility between on-chip and off-chip code. Because the
intart stays stant, the ext 1 vaf.
also stays constant, while the on-chip OFFSET changes to
point to the new location of the on-chip code.

FIGURE 4. All on-chip are

be accessed. The index of a given routine remains the same
across component steps, even though the actual address (offset
into the component) of the public has changed. For different
versions of the on-chip and off-chip codes to work correctly, all
access from outside the component must be routed through the
stepping-independence interface.

The 80150: CP/M-86* in Silicon

Intel’s decision to implement CP/M-86 operating system in
silicon (the 80150) raised a different design problem. With the
80130, Intel only had to deal with Intel-designed software. Code
design, implementation, extensions, corrections, support, and
the subsequent effect on the end user were all under Intel’s
control. The selection of an independent software system such
as CP/M-86 (a product of Digital Research, Inc.) introduced
new factors into the implementation.

The CP/M-86 Architecture

The CP/M-86 operating system consists of three modules.
The Console Command Processor (CCP) handles command
line processing, and executes built-in utilities. The Basic Disk
Operating System (BDOS) performs logical disk 1/0, including
disk reading and writing, directory management, and sector
allocation. The Basic Input/Output System (BIOS), which con-
tains the configuration-dependent code and data, also provides
I/0 for specific peripheral chips.

CP/M-86 is a single-user, single-tasking operating system
written in position-dependent code. The 80150 contains the
entire CP/M-86 operating system; for many configurations, it
requires no off-chip code. Intel’s goal was to use the
configuration-independent CCP and BDOS elements as a base,
and add to them a BIOS that supported a variety of peripheral
components but was still configuration independent.

The 80150 BIOS supports the following two functional con-
figuration options:

1. A preconfigured-mode system, for which the system de-
signer needs to do no operating-system code development
or extension.

2. A configurable-mode system, for which the designer makes
a selection from among the Intel drivers supplied, and
makes changes as required to meet hardware needs.

, The 80150 BIOS includes drivers for the following chips:

*CP/M-86 1s a trademark of Digital Research, Inc

tegi,” tozem©
ccP ccP
Code Code
ccp
Data
BDOS
Code
BDOS
Code
BIOS
BDOS Code
Data
+2500
CCP
BIOS Constants and messages
Code
BDOS
Constants and messages
I
/\/ Constants and messages
16-byte cold-boot
initialization
+16K
(@) (b)

FIGURE 5. (a) The standard disk-based CP/M-86 module is one
long structure containing both code and data. (b) Intel
reorganized the basic CP/M-86 architecture totit the operating
system into the 80150 OS tirmware component.

8251A Universal Asynchronous Receiver/Transmitter
» (UART)

8274 Multi-Protocol Serial Controller (MPSC)

8255A Programmable Parallel Interface (PPI)

8275 Floppy-Disk Controller

8237 Direct Memory Access (DMA) Controller

If the 80150 is used as a co-processor with the iAPX 186 or
the 188, then the on-chip peripherals of these processors
(DMA, timers, interrupt controller, chip-select logic) are also
used.

Configuration independence is achieved via the Configura-
tion Block (CB), with which whole BIOS drivers, data struc-
tures, and built-in utilities can be selected independently by the
system integrator.

CP/M-86 Transtormations

Intel and Digital Research together addressed the issues of
position dependence and intermixed code, data, buffers, and
stacks. The CCP and BDOS were reorganized to consolidate
code and to use the 80150's ROM space efficiently.

CP/M-86 was originally developed using an 8080 model struc-
ture. The use of this structure implied that the code and data
groups would overlap, as they do in the classical 8080-based
CP/M design. Each module contained set-aside buffer areas,
and included separate data stacks. Therefore, all variable areas

2-113

VLSI DESIGN March/April 1983

210341-004

AR-286

*
cce
Constants and Messages

BDOS
Constants and Messages

BIOS
Constants and Messages

Address-BDOS
Address-BIOS < ~—

—
Addresses of user entry points ~ T —— —
)

CONIN
GONOUT 3

CONST > I~

~
AUXST NN

Disk read
Disk write

Efror messages
lnbut/outpu(control blocks
CRT

Start of BIOS

\

W

BIOS code

ccP Keyboard
Variables, Buffer Printer
and Stack Disk
Disk-parameter header
BDOS Disk-parameter block
Variables, Buffer Disk-skew tables
and Stack
BIOS —
— BIOS stack
Vanables, Butfer - 16-disk-drive disk-parameter headers
and Stack All disk-parameter blocks
Check vectors
\ Allocation vectors
N Track/sector disk buffers
)
(a) (b)

(©)

FIGURE 6. The Configuration Block (CB) recontigures the 80150 for specitic haxdwcre systems. a) 'l‘he CB constants read
down from the 80150, and variables used at run-time. b) The BIOS portion of the CB dent data.

c)These add provide

and stack areas had to be removed from code that would reside
in ROM.

Figure 5(a) shows the general structure of the original CCP
and BDOS. Although a natural separation between code and
data is clear, Digital Research did not distinguish between
constants, literal messages, and pure scratch storage.

Intel’s first step in the transformation of CP/M-86 was to
group all variables within each module, including buffers and
stacks. We then placed this data grouping at the end of the
constants and literal messages for each of the CCP and BDOS
modules.

The new structure (Figure 5(b)) includes all code, constants,
and internal messages, as well as a 16-byte initial-program- load
(IPL) boot resident in the 16K-byte OSF ROM: We removed all
variables from the body of CP/M-86, and put them in an exter-
nal RAM-based structure.

Second, the implementation of CP/M via the Intel 8086
**small model’" (separate code and data segments) rather than
via the 8080 model (intermixed code and data), meant that the
necessary additional variable data space would be available at
80150 execution time. The segmented architecture of the iAPX
86 family made this implementation easy, because separate
CPU registers were available for data and code addresses. As
part of the BIOS initialization, we moved the constant data
structures for the CCP, BDOS, and BIOS to the base of a
RAM-resident Configuration Block (CB). An additional
amount of RAM equivalent to the total variable space was also
allocated and preset to zero. This 8086 **small-model " transfor-
mation not only made it easy to separate code and data, but also

to the 80150 on-chip code, to alter execution paths for different con!lgumuons and steppings.

made the code more efficient and eliminated approxxmately
2100 bytes.

We achieved configuration and stepping independence via
the off-chip RAM-based Configuration Block. Figure 6(a)
shows the overall structure of the CB as constructed during
BIOS initialization. During initialization, the 80150 BIOS
copies the CCP, BDOS, and BIOS constant and literal struc-
tures into the Configuration Block, and appends additional

- space for variable and scratch-pad storage. Even the location of

the CB is alterable, based on the address stored in locations
0:3FE-3FF.

Figure 6(b) shows expanded portions of the CB. The data
area contains pointers that can be changed to select custom
off-chip code instead of the standard on-chip code. The entire
BIOS can be replaced. (The BIOS code insert in Figure 6(c) and
the various code labels are reflected back to the CB.) Complete
1/0 control block structures are provided for each CP/M logical
device, including CRT, keyboard, list, auxiliary, and disk. The
control block includes port addresses, protocol support, and
other default data needed to detect and control the status of
each peripheral. Figure 6(b) also expands the systems tables
and buffers created for disk support.

The addresses in Figure 6(b) indicate how stepping indepen-
dence is achieved. Any off-chip routines changed by the user
can be selected by altering the address of the CB. If Intel
updates an on-chip routine, the address in the CB is updated
automatically when the 80150 copies its constant structures
into the CB. As explained above, full stepping independence is
maintained, because any ROM changes can also be imple-

2-114

VLS| DESIGN March/April 1983

210341-004

intel ~

AR-286

mented off-chip b}; having the address in the CB point to an
off-chip patch. (The CB contains BDOS entry points (shown in
Figure 6(b)) that make this change possible.)

The Contiguration-Independent Interface

Use of the predefined configuration requires that the 80150 be
installed at the top of the 8086 memory address space (FC00:0).
The 16-byte internal hardware boot is activated at all POWER
ON and hardware resets, and passes control to the 80150. The
80150 initialization sequence uses this positioning to indicate
the default hardware configuration (floppy disk, printer port,
serial console, or auxiliary port). Each device has predefined
port addresses, interrupt assignments, and protocols. The
iAPX 186 or 188 CPU supports programmable chip-selection
and the on-chip DMA drives the floppy disk controller.

If the configuration must be altered, or if the BIOS code
needs revision, the 80150 can be installed on any 16K code
boundary except at the very top or bottom of memory. A
PROM that contains off-chip code and data for a user’s particu-
lar configuration is also installed at the top of memory.

The 80150 initializes the default system hardware tables,
then calls an EPROM to complete or revise the existing data in
the off-chip CB RAM area. At this point, the CB contains the
addresses that select either on-chip or off-chip code. When the
configuration is complete, control is returned to the 80150. The
80150 completes the CP/M initialization, displaying the familiar
CP/M **A” sign-on.

Conclusion

Converting software to silicon is not new. But redesigning
software to consist of on-chip ROM code and configurable

RAM data is somewhat more innovative. One silicon-related
specter that haunts software designers is the fear of
*‘committing code before its time.”’ But software designers can
never expect to produce bug-free code the first time. And sys-
tem designers cannot always predict the capabilities or the
implementation requirements of peripheral devices that have
yet to be built. Nevertheless, software designers who use the
general silicon-implementation strategies of position indepen-
dence and configuration independence, and who provide for
stepping independence, can create standard silicon hardware
without fear of component obsolescence. =]

About the Authors

Ron Slamp received the A S. degree in
software technology from Portland Commu-
nity College, and gained much of his skill in
electronics at Clark Community College in
Vancouver, Washington. He has worked n
Intel’s OEM Module Operation in Haw-
thorne, Oregon since 1978 and 1s currently
the project leader for component software.

Jim Person received the B.S degree in math-
ematics in 1962 from the University of
Arizona. He was the engineering project
manager at Intel for the 80150 “*CP/M-on-a-
chip.™

2-115

210341-004

REPRINT

IM 'ARTICLE AR-287

&
&
<
oR
O &
& L
0§‘°$°
Gl S
W
. o 0& sl;é'}(\
O XN S
& ﬂg &5
g

p 2-116 210341-004
March 24, 1983, Copyright© 1983. McGraw-Hill Inc. All nights reserved

ntel

AR-287

SPECIAL REPORT

Punching in for real-time jobs
in industry, R&D, and offices,
operating systems use special
software structures to squeeze
better-than-ever performance
out of 16-bit microprocessors

by Stephen Evanczuk, Software Editor

OA special class of operating systems is hard at
work in the 16-bit microsystem world. For controlling
environmental processes, acquiring data at high
speed, or even handling transactions at a commer-
cial bank, these operating systems contain mecha-
nisms that enable them to respond rapidly to exter-
nal events and. that differentiate them from the more
familiar general-purpose operating systems.

In fact, all the operating systems for 16-bit micro-
processors respond in a reasonable period of time.
But the general-purpose, or developmental, operating
systems like CP/M, Bell Laboratories’ Unix, and MS-
DOS are intended for standard programming activi-
ties like editing, compiling, and file management
[Electronics, March 24, 1982, p. 113]. As such, they
lack certain software structures needed for reliable
control of processes producing data at a high speed.

Real-time operating systems tend to fall into two
general categories—multipurpose and embedded, re-
flecting the type of hardware they run on. Multipur-
pose real-time systems are typically built around full-
fledged microcomputer systems with terminal,
keyboard, plenty of system memory, and mass stor-
age. Furthermore, in process-control or data-acquisi-
tion applications, some special-purpose hardware is
usually included in these systems to serve equipment
or high-speed data input operations. Besides the fa-
miliar applications for research and development,
transaction-processing environments are an’example
of situations needing multipurpose real-time systems.

No doubt the largest class in volume because of
their growing use in consumer items, embedded sys-
tems are minimal hardware systems, often just one-
chip microprocessors that control limited parts of a
larger system. Programmers ordinarily employ a spe-
cial development system to create the software,
which is loaded into the target system for use and
ideally is never seen again.

To meet the needs of these two classes of appli-
cations, real-time operating systems come in three
flavors for 16-bit microprocessors. Serving multipur-
pose real-time systems, one type—discussed in the

first part of this report (see p. 106)—includes all the
software development support found in their general-
purpose counterparts. Furthermore, many can be
stripped of the layers needed in the developmental
environment and placed in programmable read-only
memory for use in an embedded system.

For those who swear by Unix, the group of Unix-
based operating systems discussed in the second
part (see p. 111) may mean no need to swear at it in
real-time applications. A growing number of vendors
are starting to convert this admittedly non-real-time
operating system into versions that can be used to
handle external processes. Although the industry is
cautious, if not downright skeptical, of real-time ver-
sions of Unix, the fact that C—the language of
Unix—is so highly regarded for use in real-time appli-
cations may help swing this group into the forefront.

The potential for distributed-control systems based
on embedded microprocessors hinges largely on the
availability of high-performance real-time operating
systems that can be plugged into the application with
the same ease as an integrated circuit. Called silicon
software, these operating systems discussed in the
last part (see p.114) have been designed to be
stored in read-only memory. Providing a fixed set of
system calls, they present programmers with a con-
sistent set of high-level commands to perform the
low-level functions usually built from scratch.

Building system-level software from scratch has
long been the hallmark of real-time programmers,
even a mark of honor. Fortunately, however, the in-
creased acceptance of ready-made operating sys-
tems using well-understood algorithms (described in
the first part) is helping to replace this software “ran-
dom logic” with rather more standardized packages.

On still another level, the unique responsiveness
and throughput demonstrated by real-time operating
systems is a truly user-friendly feature. For this rea-
son, these systems should find their way into less
obvious real-time applications, such as transaction
processing, word processing, and personal work sta-
tions for office automation.

2-117

Electronics/March 24, 1983

210341-004

AR-287

[0 Whatever environment it finds itself in, the function of
an operating system is the efficient management of
shared resources by a number of users, whether these are
human beings accessing a computer through terminals or
programs vying for a single central processing unit. In
fact, the degree of sophistication of an operating system
is reflected by the number and types of physical re-
sources it manages and by the fineness of control it
exercises in their management. And operating systems
targeted for control of the external environment must
wrestle with the most demanding resource of all—time.
The degree of care with which such software is designed
to manage time is what determines its suitability for the
real-time environment.

Schedulers and queues

Two critical aspects of the real-time environment are
the random nature of physical events and the simulta-
neous occurrence of physical processes. Consequently,
interrupt handling and multitasking are primary attri-
butes of a real-time operating system. In fact, it might be

EXECUTING
PROCESS
.) TASK WAITING
. TO EXECUTE
[::] E i RELATIVE
PRIORITY
(a) ROUND-ROBIN SCHEDULING
EXECUTING
PROCESS
/ RELATIVE
PRIORITY
2 4 5 ..
(b) PRIORITY-BASED PREEMPTIVE SCHEDULING

1. Priorities. In round-robin scheduling (a), tasks (or processes) take
equal turns executing, while a higher-priority task will supersede a
lower-priority one in priority-based preemptive scheduling (b) Most
schedulers employ some combination of these techniques.

Algorithms starin
multipurpose systems

argued that the mechanism for handling multitasking—
the scheduler—is the heart of the operating system. The
rest of the operating system lies atop this kernel and
serves the specific demands of the application
environment.

In particular, the lists, or queues, and their managers
that surround the scheduler are constructed to deal with
the different physical resources supported by the operat-
ing system. Thus, one queue may contdin those tasks
(processes, or programs in the course of being run) that
are ready to execute on the processor, another queue
may be tasks waiting for access to input/output hard-
ware, and another queue may contain tasks waiting for
some specified event to occur.

In any multitasking operating system, the scheduler
uses the queues as input. Its output, on the other hand, is
a single task that has been activated and allowed to
execute on the central processing unit. The scheduling
algorithm in large part defines the operating system.

In one system, the scheduler may simply select a task
on a first-come, first-served basis, allowing it to run until
completion or, until some specified period of time has
elapsed. This type of relatively primitive algorithm was
commonly used in mainframe computers running simple
batch-oriented operating systems.

In a slightly more sophisticated operating system that
can be used interactively through terminals, the schedul-
er may select tasks on a round-robin basis and permit
each of them to run for a specified period.of time (Fig.
1). Once the task exceeds its time slice, it is placed at the
end of the queue and forced to wait until all other tasks
have had a chance to execute.

Round-robin scheduling with equal time slices is ade-
quate if every task is no more important than any other
task. However, if some are considered to possess a higher
priority, then a more sophisticated scheduling algorithm
must be used—one that recognizes that some tasks are
more important, but that no task should be excluded
from using the CPU.

One solution is the use of several queues, where the
length of the time slice is related to the priority of
elements in the queue. In this case, the scheduler would
allow all tasks in each queue of a different priority to
execute on the CPU, but lower-priority tasks would be
given less time.

A further refinement permits higher-priority tasks to
suspend a running task. This technique, called preemp-
tive scheduling, is an important feature for real-time
environments, in which the delayed execution of a high-
priority task could have disastrous results, rather than
simply disappointing the user.

In scheduling algorithms, tasks may exist in a number
of logical states, depending on their readiness to run. In
the Versatile Real-Time Executive (VRTX) from Hunter

2-118

Blectronics/March 24, 1983

210341-004

ntel

AR-287

& Ready Inc., Palo Alto, Calif., for example, tasks are
driven through four possible states by external events, by
other tasks and system utilities, or by their own system
calls (Fig. 2). For example, an executing task may delete
itself—in which case it enters a dormant state—or may
cause itself to be blocked either explicitly through a call
to suspend itself or implicitly through a call to perform
some I/0 function. On the other hand, once suspended, a
task may reschedule itself through a system call, or -an
external real-time event may bring the task back into the
ready queue.

Recognizing the importance of scheduler design, at
least one software vendor has made it easier for real-time
users to build systems around a prepared kernel. Upited
States Software of Portland, Ore., is offering a basic
scheduler that assembles into less than 100 bytes of ob-
ject code for the target microprocessor [Electronics, Nov.
17, 1982, p.206). Furthermore, in anticipation of real-
time systems targeted for specific application areas, U. S.
Software supplies a list of design notes detailing exten-
sions to the basic kernel.

Ancther use for queues

In addition to having queues serving the scheduler
directly, most systems use them as the preferred means
of associating a task with a required resource. For exam-
ple, one capability commonly found in real-time operat-
ing systems is the ability to suspend a task for a specified
period of time. Typically, the operating system contains a
special queue for this function. Each element in the
queue is a task in a suspended state. Associated with
each task is a counter that contains the number of clock
ticks remaining until it should be reactivated. |

For example, in iRMX-86 from Intel Corp., Santa
Clara, Calif., the counters keep track of the incremental
time remaining with respect to the previous element in
the queue, rather than the total time remaining before

SUSPENDED
TASK

EXECUTING

PROCESS

DORMANT
TASK

2. Task states. As one task (or process) runs, others may be in
various states of readiness. In Hunter & Ready’s VRTX, for example,
tasks can be ready (able to runimmediately), suspended (waiting for a
resource), or dormant (deleted by a system call).

the task may be reactivated. Thus at each clock tick only
the counter in the element at the head of the queue need
be decremented, rather than every counter in every queue
element. This method takes longer to insert new elements
into the queue and so requires slightly higher overhead
for insertion than when the total time is maintained by
each counter; however, that overhead is more than offset
by the time saved by updating only a single counter.

Real-time environments pose a special set of problems
for resource allocation. Besides all the more familiar
problems of scheduling, a real-time operating system
must maintain reliable behavior under extremes of load
when it is driven by a high rate of external stimuli. From
the system user’s point of view, thé system must main-
tain a predictable level of response and throughput.

In an interactive environment, users sitting at termi-
nals measure response as the time the system needs to
react to a keystroke. In general, system response is the
time that the system needs to detect and collect data
from some external stimulus. Throughput, in an interac-
tive environment, is seen as the number of users able to

utilize the installation simultaneously. In a more general

real-time environment, throughput is the rate at which
the system is able to collect, process, and store data.

In fact, although response and throughput share some
common software elements, operating-system designers
will invariably find themselves forced to make choices
that will tend to optimize one at the expense of the other.
Often, the interrupt-handling requirements of a real-time
operating system force this choice.

Interrupt processing is hardware and software integra-
tion at its most demanding (see ‘“Handling hardware
interrupts,” p. 108). To handle interrupts, operating sys-
tems often place layers of software between the user and
the microprocessor in order to allow different levels of
performance and capability.

Intel’s RMX-86 is a typical example of distinct levels
of software used to perform basic interrupt processing.
At the lowest level, an interrupt handler works intimate-
ly with the hardware to execute some operation, such as
sending a message character by character to a printer.
Code for interrupt handlers is kept compact and simple,
since system interrupts are disabled during their opera-
tion. The higher level, called the interrupt task,