
APPLICATION
NOTE

AP-106

September 1980

AFN-l0550A

Intel l"orporatlon maKes no warranty Tor me use OT ItS proauCls ana assumes no responslOlllty Tor any errors wnlcn
may appear in this document nor does it make a commitment to update the information contained herein.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication or
disclosure is subject to restrictions stated in Intel's software license, or as defined in ASPR 7-104.9 (a) (9). Intel Cor­
poration assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No
other circuit patent licenses are implied.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent
of Intel Corporation.

The following are trademarks of Intel Corporation and may only be used to identify Intel products:

BXP Intelevision MULTIBUS*
CREDIT Intellec MULTIMODULE
i iSBC PROMPT
ICE iSBX Promware
ICS Library Manager RMX
im MCS UPI
Insite Megachassis ~Scope
Intel Micromap

and the combinations of ICE, iCS, iSBC, MCS or RMX and a numerical suffix.

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered trademark of
Mohawk Data Sciences Corporation.

*MULTIBUS is a patented Intel bus.

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

INTEL CORPORATION, 1980 AFN-01300A-1

Multiprogramming with
the iAPX88 and iAPX86
Microsystems

Contents

Introduction

What is Multiprogramming?

General System Requirements 2

iAPX 86 and iAPX 88 Architectural Features 3
Segmentation 3
Segment Registers and Usage 4
Semaphores 7

The 9 Chip Multiprogramming System 8
System Overview 9
Hardware Description 9
Software Description 10
Adding More Users 20
Variant Considerations 20

Conclusions 20

Appendix A
Considerations for Programs with
Multiple Code and Data Segments 21

Appendix B
Multiuser Tiny Basic Operating System
Program Listing 25

AFN-10550A

inter AP-106

INTRODUCTION

An engineer, faced with the assignment of developing
a multiprogrammed microprocessor based system,
need no longer be concerned about the enormity of the
task. The new technology and architecture available
in today's microprocessors are directed at supporting
the basic requirements of these systems. In particu­
lar, Intel's iAPX 86 and iAPX 88 microprocessors and
support chips will handle this task very efficiently.
The purpose of this Application Note is to provide a
description of various system requirements for
multi-programming and to show how to use the
capabilities of the iAPX 86 and iAPX 88 to meet those
requirements. As a demonstration of the applicabil­
ity of the iAPX 86 and iAPX 88 architecture, a mul­
tiuser system with Tiny BASIC was created around
the iAPX 88. More about this system will be dis­
cussed later. For additional information on the iAPX
86 and iAPX 88, the reader is referred to the 8086
Family Users Manual.

WHAT IS MULTIPROGRAMMING?

In any software group, around any desk, you can hear
the ~~buzz" words: multiprogramming, multitasking,
multiprocessing, multi-, multi-, multi. A single
phrase which will cover all of those buzz words is con­
current processing, which is simply the ability of a
system to process more than one function at a time.
Multiprogramming, then, is a form of concurrent pro­
cessing featuring the ability of the system to allow
more than one user to access the system's resources at
the same apparent time. This does not mean that
more than one program is being executed simulta­
neously; that would require more than one processor
and would be multiprocessing. Multiprogramming
implies that a processor's time and resources are
being divided in such a way that more than one pro­
gram is executing in the system. If the system is
executing much faster than the real time require­
ments of any program, it appears to an outside ob­
server that all programs are executing simulta­
neously. What is actually occurring in the system is
that the microprocessor, after an initial start-up se­
quence, will execute one of the programs and after
~~ "-__ ~ _.£':_"- ______ L ____ 11: ______ "-: _____ :11 _______ _
::;Vll1t::: t.Y}.It::: Vi llUt:::ITU}.It. vr }.IVlllll~ rVUt.lllt:::, Will }.Irm.:e::;::;

another. (Figure 1). Note this differs from a batch
processing environment in which each program runs
to completion before the next program starts execu­
tion. The interrupt or polling routine will save the
state of the machine for the current program and then
determine who is going to get service next. It will
then restore the previously saved state of the next
program to receive service and begin processing this
program. Mter this user has received service for some

period of time, the sequence is repeated with a dif­
ferent user. During each context switch, pointers and
other required information relevant to the current
user are saved and the system proceeds to identify the
next user. If there is only one user on the system, that
program may get virtually all of the processor's time
and resources.

For our design example, a terminal based environ­
ment, the input and output are being performed by
the operator at human speed, which is extremely slow
relative to the speed of the microprocessor. Most of
the processor's time in a single-user system is spent
waiting for the operator to enter the required infor­
mation, or for an output device to display the infor­
mation being sent by the processor. The ratio of effec­
tive computer time usage to computer wait time can
be very small. Multiprogramming takes advantage of
this relatively large amount of wait time by using it
to execute a request from one of the other concurrent
users. Of course, as the number of users on the system
increases, the response time (i.e., the amount of time
it takes for the computer to respond to a specific re­
quest from an operator) will become longer and
longer until it reaches some ~~unacceptable" limit. In
order to maximize the number of users which may ac­
ceptably use the system concurrently, the operating
system may be ~~tailored" to a particular type of
application.

The operating system is the ~~master program" which
keeps track of what the system is doing and what it
needs to do next. It will handle all of the input and
output functions such as disk read and write routines,
terminal input and output, etc. The operating system
also controls the use of system resources, (i.e. alloca­
tion of memory to a user) as well as housekeeping as­
sociated with switching from one user to another. For
example, as a user requests access to a specific pro­
gram, the requested program and/or data is loaded
into the user's work area. The operating system not
only loads the requested program, but also may
monitor the program's use as dictated by the
operator.

Imagine a small accounting system which provides
limited service to two or three users. In addition, it
has a programmer who maintains the existing pro-
_ _____________ 11 __ _____ :.L: __ ___________ ,,"- ____ -: ____ "-: __
granl::; a::; well a::; wruIHg Hew vue::;. fit. ctuy ~IVt:::Ut.l111t:::

during the day, there could be up to four users on the
system at the same time, each doing a different task.
It is the responsibility of the operating system to
ensure that each user's programs and data get loaded
and that each user gets the needed service without
interfering with the needs of the other users. The in­
tent of this note is to discuss the capabilities of the
iAPX 86 and iAPX 88 which support this type of con­
current processing.

AFN-10550A

Intel AP-106

IN ITIALIZA nON
SAVE CONTEXT FOR TASK SWITCH
CURRENT PROGRAM INTERRUPT

SELECT NEXT
PROGRAM TO RUN

INITIALIZE/REINITIALIZE
FOR SELECTED PROGRAM

PROGRAM PROGRAM • • • PROGRAM
N-1

PROGRAM

N

t'(' I

INITIALIZATION &
PROG

S~~T~H I
PROG

SEQUENCE SWITCH
N

('

Figure 1. Simple Multiprogrammed System

GENERAL SYSTEM REQUIREMENTS

For a system to provide programming services to
more than one user (program) at a time, it needs some
method of parti tioning the system resources among
the users and some method of controlling access to
those resources. This requires, from a simplistic view,
an operating system which will monitor the user's re­
quests for resources, control allocation of resources
and switch the machine state from one user to
another.

The primary resources to be shared in the system are
the CPU and system memory. To maximize the ef­
ficiency and throughput of the system, it is desirable
to allow multiple programs and associated data to re­
side in memory concurrently and switch from one
user to another by minimal reloading of the system
context. Optimally then, the system will support a
simple mechanism for not only allocating areas of
memory to each program but also guaranteeing the
programs will not violate each others address spaces.
This requires that the mechanism for specifiying the

2

currently active (accessible) areas of memory be de­
coupled (separated) from the general CPU based re­
sources available to the programmer. Strongly asso­
ciated with this is the requirement for the system to
support position independent programs, i.e. pro­
grams which will operate correctly regardless of
where they are loaded into memory. If the programs
are not position independent, then specific programs
must reside in specific areas of memory forcing the
system to either save and reload memory during task
switches or not allow a user to run until the appropri­
ate areas of memory are available.

Another desirable attribute of the system is the
ability to support reentrant programs. This capabil­
i ty allows a single copy of a program to be shared by
more than one user. This reduces the amount of
memory required to support each user by eliminating
the need for separate copies for each user or prevent­
ing one user from waiting until the program is avail­
able for his use. This concept is particularly applica­
ble to system library routines available to all users in
the system.

AFN-10550A

AP-106

The system also needs to support a mechanism for al­
locating system resources which cannot be shared
(such as peripherals or non-reentrant programs)
among the various users. For example, if the system
has more users on the system than printers available
to print reports, the system needs some method of al­
locating the printers as the users request their ser­
vice assuming that each printer is allocated to no
more than one user at a time.

In order to share the system, we need a method of de­
termining when it is time to start processing another
user's program. This is usually provided by an exter­
nal interrupt which is input through the hardware
interrupt structure of the microprocessor. The exter­
nal event technique prevents one of the users from
monopolizing all of the processor's time, keeping the
other users from getting service. An alternate
method would be to allow each user to execute until
service from the operating system (usually for 110) is
required.

When the system is interrupted, it needs some
method of determining who gets to use the system
next thus allowing the amount of time the processor
has available to execute programs to be allocated
among the various users on the system.

APX 86 AND iAPX 88
ARCHITECTURAL FEATURES

Intel's iAPX 86 and iAPX 88 directly support many of
the features required for multiprogrammed applica­
tions. The architectural capabilities of the family
stem from the register structure, large memory
address space, almost unlimited interrupts, a power­
ful segmentation scheme and addressing structures
which support reentrant and relocatable programs.
The segmentation scheme allows the processor to
provide capabilities such as program sharing,
dynamically relocatable code and functionally parti­
tioning memory among multiple users with a degree
of protection implemented directly by the CPU.

Segmentation

Segmentation is the partitioning of a program and its
data into specific elements called segments. Basi­
cally, segments are assigned to logical (and often var­
iable length) elements (i.e. code or data) and should
not be confused with the term ~~page" which is typi­
cally associated with a fixed length area of memory.
U sing segmentation, a programmer may assign
modules of his program to the segments, and his data

3

structures to additional segments (Figure 2). All ref­
erences to a specific logical element (either program
or data) are made relative to the appropriate seg­
ment. Assuming that the user's program does not
specifically modify the segment registers, the operat­
ing system may place each segment anywhere in
available memory and the program will still function
proper ly. This concept of posi tion independence be­
comes very important in multiuser systems where
the number of users and the number of different pro­
grams in the system varies over time. As a user be­
gins to initiate tasks in the system, the operating sys­
tem will allocate specific areas in memory for the re­
quired segments. As more and more users enter the
system they also are given system resources with
which to execute their programs. Using segmenta­
tion, it doesn't matter what areas in memory the
segments are assigned because the programs refer­
ence the data and programs relative to the associated
segments. If the programmer breaks the data and
programs into different segments, they may be lo­
cated separately anywhere in memory. This method
provides efficient utilization of the system memory
resources since memory is only allocated for the
specific segment size. The concept of segmentation
also provides a degree of isolation between users in
the system if all program and data references are re­
stricted to their own segments. The ability to sepa­
rate code and data into separate segments supports
the concept of shared programs by allowing each in­
vocation of a single program to reference only data
and temporary variables relative to the data and
stack segments of the current active user. Segmenta­
tion is a powerful concept which, up to this time, has
been available only in larger computers such as minis
and mainframes. Note that in other architectures,

MODULE CODE

MODULE DATA

PROCESS
STACK

PROCESS DATA

SYSTEM DATA

MODULE DATA

MODULE CODE

MONOLITHIC LINEAR
ADDRESS SPACE

I MODULE DATA I
I MODULE CODE I

PROCESS DATA

I SYSTEM DATA I
t\.

:-) =SE=G":":'M=EN=T:-:":AT=IO=-:!V

MODULE DATA

INDEPENDENT ADDRESS SPACES

Figure 2. Segmented Address Space Partitioning

AFN-10550A

Intel AP-106

the notion of position independent data is supported
through the use of based addressing where a base reg­
ister resource is used to identify the location of data
and all references are made'rel~ti.ye/to the base regis­
ter. The primary drawbacK with this approach is its
restriction on the flexibility with which based
addressing can be used, particularly when dealing
with data structures and arrays. The concept of seg­
mentation allows defining the position (within mem­
ory) of the structure without consuming the base reg­
ister resource (Figure 3). This concept is supported
directly by the CPU architecture of the iAPX 86 and
iAPX 88.

Segment Registers and Usage

The iAPX 86 and iAPX 88 concepts o~ segmentation
define four types of segments: Code Segments, Data
Segments, Stack Segments, and Extra Segments.
Each is associated with a CPU based segment regis­
ter which points to the currently active (being acces­
sed) segment of each type.

Each segment register is 16 bits and defines the start­
ing address of the segment within the iAPX 86's or
•• ~';T nn'
........... JIo. vv ..., V.I.'&'\...-a..i."""Ouuj' ""'-' UUU.1. \.....k:).,:) 0PU\..I\'; • .J.. J..1~ .!)(jE::).lJ...1.C.1.1 J!:)

can start on any 16 byte boundary and may vary from
16 to 64K bytes in length with length resolution on 16
byte boundaries. This implementation optimizes
memory usage by allowing the segment size to be de­
fined within 15 bytes of the size of the logical element
the segment contains. The segment size assigned to
each element is independent of other segment defini­
tions and allows supporting anywhere from sixty­
four thousand 16 byte segments to sixteen 64K byte
segments within the one megabyte address space.

To reference memory, the value in the segment regis­
ter selected for a specific memory reference is auto­
matically multiplied by 16 by appending a suffix of
four binary zeros, and is added to an offset address
specified for each access (Figure 4). The result is a
20-bit address which may be used to access anywhere
wi thin the one megabyte of directly addressable
memory. The data operand offset address calculation
is determined by the selected or implied addressing
mode given in the instruction. The available modes
allow for greater flexibility in the manipulation of
data structures than possible with other types of ar­
chitectures (ref. 8086 Family Users Manual).

Since the offset address is 16 bits in length, programs
that are: (a) less than 64K bytes of code (the maxi­
mum segment size); (b) do not change the segment
register values and, (c) reference data contained
within single data and extra segments (up to 128K

4

os · · · B

dC A MODULE
DATA STRUCTURE

· · ·
OTHER MODULE DATA

MODULE DATA SEGMENT

NOTE:

ACCESS TO A SPECIFIC ELEMENT OF THE DATA STRUCTURE IS

ACHIEVED WITH DS + B(BASE) ~ I (INDEX) - d (DISPLACEMENT)

Figure 3. Four Component Addressing Usage

15

IOFFSET
~ __ OF_F_SE_T_~ ADDRESS

I
I

: ADDER

I
I
I
I
I
I

~ __ ~~ __ -;O PHYSICAL

ADDRESS
'--------~ LATCH

Figure 4. Address Generation with Segment
Registers

bytes of static data), are considered directly relocata­
ble and isolatable from other programs in the system.
Considerations for programs which extend beyond a
single code segment or two data segments are shown
in Appendix 1. The system, therefore, has four seg­
ment registers: one to define the data, one to define
the stack, one to define the code, and an extra seg­
ment which can be used to specify another data seg­
ment or global (shared) system data. Since the iAPX
86 and iAPX 88 support based stack segment relative
addressing for access to operands on the stack, the
stack is typically used for dynamic allocation of
workspace and storage of temporary variables in ad­
dition to parameter passing during procedure invoca­
tion. The technique of dynamic allocation of memory
for temporary space reduces the need for static data
space resulting in more efficient use of memory.
U sing the stack for dynamic data provides support for
reentrant procedures as demonstrated in Figure 5.

AFN-10550A

AP-106

I----------tl HIGH ADDRESSES

BP 8 J""--P-A-R-A-M-ET-E-R-1---;r

GH

ADDRESSES

PARAMETER 1

PARAMETER 2

OLD CS

OLDIP

STACK AT PROCEDURE ENTRY

SP (TOS)

BP-6

BP 8

BP 10

BP -12

PARAMETER 2

OLD CS

OLDIP

OLD BP BP

OLD CX

OLD BX

OLD FLAGS

LOCAL 1

LOCAL 2

LOCAL 3 SP (TOS)

LOW ADDRESSES

STACK FOLLOWING PROCEDURE PROLOG

Figure Sa. Stack Image for Reentrant Procedure

EXAMPLE PROC FAR ;MUST BE ACTIVATED BY
INTERSEGMENT CALL

;PROCEDURE PROLOG
PUSH BP
MOV BP, SP
PUSH CX
PUSH BX
PUSHF
SUB SP,6
;END OF PROLOG

;PROCEDURE BODY

;SAVE BP
;ESTABLISH BASE POINTER
;SAVE CALLER'S

REGISTERS
; AND FLAGS
;ALLOCATE 3 WORDS LOCAL STORAGE

MOV CX, [BP+81 ;GET ELEMENT COUNT
MOV BX, [BP+6] ;GET OFFSET OF 1ST ELEMENT
;PROCEDURE CODE GOES HERE
;FIRST PARAMETER CAN BE ADDRESSED:
; [BX]
;LOCAL STORAGE CAN BE ADDRESSED:
; [BP-8), [BP-101, [BP-121
;END OF PROCEDURE BODY

;PROCEDURE EPILOG
ADD SP,6
POPF
POP BX
POP CX
POP BP
;END OF EPILOG

;PROCEDURE RETURN
RET 4

;DE-ALLOCATE LOCAL STORAGE
;RESTORE CALLER'S

REGISTERS
AND
FLAGS

;DISCARD 2 PARAMETERS

;ASSUME ARRAY __ 1 IS INITIALIZED

;CALL "EXAMPLE", PASSING ARRAY __ 1, THAT IS, THE NUMBER OF
;ELEMENTS
; IN THE ARRAY, AND THE LOCATION OF THE FIRST ELEMENT.

MOV AX,SIZE ARRAY __ 1
PUSH AX
MOV AX,OFFSET ARRAY _.1
PUSH AX
CALL EXAMPLE

Figure 5b. Reentrant Procedure "EXAMPLE"
Using the Stack

U sing the segment registers, the system can provide
each user not only a separate memory space for his
data, but also an individual program area. By chang­
ing the segment registers, the processor may define
which program is executing with which data. By
specifying different segment values, users may exe­
cute different programs. In this way, one user can ac­
cess a BASIC interpreter while another is using a

5

FORTRAN compiler and a third is using something
different. This becomes very useful in large systems
where there will be more than one user executing
concurrently. The basic system context which must
be saved and restored to transition from one user to
another consists only of the CPU registers and does
not require reinitialization of memory or off chip ad­
dress translation devices.

With regard to multiuser environments, segmenta­
tion not only provides the ability to partition the
memory space, but also allows the system to change
the areas in memory being accessed by a specific pro­
gram by changing the segment registers before enter­
ing the program. Most iAPX 86 and iAPX 88 micro­
processor instructions (all except those which
specifically modify the segment registers or pass con­
trol of the processor to an area outside the current
code segment) access memory relative to the current
values of the segment registers. When the operating
system wants to move the user to a different area, it
only needs to move the program or data and change
the appropriate segment register values (Figure 6).
The program will continue execution unaffected by
the relocation. Using this method, as new users enter
the system, their programs are loaded into available
memory areas by the operating system. W-hen a pro­
gram is invoked, the operating system will set the
segment registers based on where the program and
data are located. This also allows the operating sys­
tem to reformat the allocation of rnernory and
minimize memory fragmentation as users enter and
leave the system. This provides the system with
position-independent programs because the users are
not dependent on executing at a specific memory
location.

AFN-105SOA

AP-106

BEFORE RELOCATION AFTER RELOCATION

STACK
SEGMENT

I
,.-- cs

SS

CS

SS

EXTRA r--- f-- DS DS ~
SEGMENT

ES ES f--

DATA CODE
SEGMENT SEGMENT

STACK
SEGMENT

DATA
SEGMENT

CODE EXTRA
SEGMENT SEGMENT

Figure 6. Dynamic Code Relocation

The ability to relocate programs anywhere in mem­
ory also facilitates the use of multiple ~master' pro­
grams by the system. The programs which are re­
quested may be loaded into any user's workspace and
not be dependent upon being in a specific location to
be useable. In this manner, each user may have his
own copy of a program while each program simulta­
neously resides in any number of locations.

Alternatively, by setting the code segments of two
users to the same value, they will both access a single
copy of the same program. Of course, in order for the
program to execute correctly, it must be reentrant.
This implies that as a user is accessing the program,
the program cannot be self-modifying and the data
the program accesses (including temporary variables
defined within the program) must be uniquely de­
fined and private for each user accessing the pro­
gram. The reentrant program is independent of the
users accessing it and is accessible to any number of
users, independent of the user's status.

6

U sing this concept, a program executed by more than
one user such as a BASIC interpreter or a COBOL
compiler may be written so that it always looks for
specific pointers or values in locations relative to the
active user's data, stack or extra segment registers.
When a user wants to invoke this program, the
operating system sets the segment registers to point
to the user's workspace before initiating execution for
this user. When the shared program accesses the
memory, it would access the current user's memory.

The ability to have one program process several
users' data by merely changing the appropriate seg­
ment register (usually the Data and extra segments)
simplifies the implementation of multi-user pro­
grams. In order for several users to access the same
program, it does not need to be duplicated in each
user's workspace (Figure 7). As long as the program is
reentrant, once the program has been loaded into sys­
tem memory, any user may access the program by
setting the Code Segment and instruction pointer to
the entry point of that program.

AFN-10550A

AP-106

USER #1 .,;;"_UII~I"1 USER #2 --'"

CS I I CS

SS SS

DS STACK DS

ES - SEGMENT I ES -

DATA
SEGMENT

STACK
SEGMENT

EXTRA
SEGMENT

DATA
SEGMENT

EXTRA
_I SEGMENT I

Figure 7. Single Copy of a Program Shared by Mu!tip!e Users

Semaphores

The system, in addition to the features described ear­
lier, needs some method of allocating resources
(memory and external devices or peripherals) when
the number of users on the system may exceed the
number of system resources available. The system
needs the ability to reserve a device or area in mem­
ory for a given user and to prevent other users from
accessing the resource until the first user releases.
I t wouldn't work too well if after the first half of a bal­
ance sheet was printed, the system started to print a
program listing. The purpose of semaphores is to con­
trol access to resources, providing a mechanism for a
single user to gain access to the resource and allowing
other users to determine easily whether the resource
is available or not. There are several instructions
available to the iAPX 86 and iAPX 88 user which will
help him program semaphores into his system. They
will be discussed in the following examples. One
method of implementing a semaphore is to reserve a
byte for each resource for which access must be con­
trolled. The byte will contain information as to
whether a device is being used by someone or whether
it is available for use. When a user wishes to reser\l"e a
specific resource he checks to see ifit is available and
ifit is, a value specifying that the resource is busy is
loaded into its semaphore. The user may then access
or gain control of the resource. When someone else
wishes to see if the resource is available, all he need
do is test the semaphore value and see if the resource
is available. If not available (busy), the user must

7

wait until the resource becomes available. When the
user controlling the resource is done, he must reset
the busy indication in the semaphore to allow others
to gain control of the resource.

Even in systems that use semaphores to allocate sys­
tem resources, problems may still arise if the operat­
ing system is not programmed properly. For example,
imagine a system which has one printer. In order to
specify if the printer is being used or not, the system
uses a byte in memory. When the system allocates the
printer to a user, it places a 1 in the byte to tell other
users that the printer is already allocated. Another
user may see if the printer is busy by reading the byte
and seeing if it is a 1. If not, the printer is available
for use.

N ow assume that User 2 and User 4 are both setting
up reports to run on the printer. User 2 is currently
being processed. He tests the byte which will tell him
if the printer is busy or not and finds that the printer
is not busy. He now knows that the printer is avail­
able and is about to reserve the printer for his report.
But, before he can store the appropriate value in the
byte telling the other users that the printer is busy,
he gets interrupted and User 4 begins operations.

When User 4 checks the semaphore to see if there is a
report already running on the printer by seeing if the
semaphore has a value of 1, it finds that the printer is
still available. User 2 did not change the value of the
semaphore yet; he was interrupted too soon. So, User

AFN-10550A

AP-106

4 sets the semaphore to a 1 to tell the other users that
the printer is busy and begins to print his report on
the printer. Eventually the processor returns to User
2. Now, User 2 has already checked the semaphore
and ~~knows" that the printer is available so he now
loads the semaphore with a 1. (This was also done by
User 4 when he took the printer but was not re­
checked by User 2 when he returned.) What follows is
two different reports being merged as both users send
information to the printer.

Within a multiprogrammed single processor en­
vironment, there are several methods of dealing with
this problem. One is to disable the interrupts before
User 2 tries to find an available printer. If this were
done then he wouldn't be interrupted until he had
had a chance to specify that the printer was in use by
loading the semaphore with a 1. After this was done,
the interrupts would then be enabled. However, in
many systems it is undesirable to allow a user to
modify the interrupt system and this method may not
be acceptable. Another method, probably easier for
the programmer to implement, is to use the iAPX 861
iAPX 88 XCHG (Exchange) instruction when pro­
gramming this situation. The instruction exchanges
the value in one of the operands with the other
operand (Figure ~).]:i'or User ~ to check the status 01

BUSY(1)

GET
SEMAPHORE

& SET

MOV AL,1

WAIT: XCHG AL, SEMAPHORE

TEST AL,AL
JNZ WAIT

[
USE J' RESOURCE ~

SET
SEMAPHORE
"AVAILABLE"

MOV SEMAPHORE,O

Figure 8. Semaphore Test and Set for Single
Processor-Multiprogrammed
Environment

8

the printer, he would first load a register with a 1,
specifying that the printer is busy. This value is then
exchanged with the value in the semaphore. If any­
one interrupts User 2 after the exchange, they will
find a 1 in the semaphore and they will know that the
printer is busy. User 2, on the other hand, may exam­
ine the byte loaded into the register from the
semaphore to see if the printer is available. If the
printer was already assigned, User 2 would have ex­
changed a 1 with a 1, the semaphore would have been
left the same and User 2, after checking the value in
the register, would know that it was busy. If User 2
finds a 0 in the register, he knows that the printer is
not busy and that it is now assigned to him. He has al­
ready indicated that the printer is being used so he
does not need to reload the semaphore with a 1. Since
the exchange operation is a single uninterruptable
operation of reading and setting the semaphore, the
problem in the previous example is avoided.

In a multiprocessor environment, an additional
mechanism is required which will prohibit one pro­
cessor from accessing the data bus while another pro­
cessor is in the middle of the exchange operation. If
both processors attempt to access the semaphore at
the same time, one or the other may get erroneous re­
sults. While a multiuser system with only one pro­
cessor will be interrupted only on an instruction
boundary, in a multiprocessor environment, access to
the bus is commonly shared on bus cycle boundaries.
To allow the programmer or system designer to
prevent other processors from gaining control of the
bus during the exchange with semaphore operation,
the iAPX 86 and iAPX 88 have a bus lock feature.
LOCK is a special one-byte instruction prefix which
will cause the processor to emit a bus-lock signal for
the duration of the instruction that the LOCK
precedes. The prefix may be placed before any pro­
cessor instruction. Using the prefix bus arbitration
circuitry will lock out all other processors for the du­
ration of the instruction. The programmer may then
protect any critical data areas from outside modifica­
tion until the processor has had a chance to complete
the operation being performed.

THE 9-CHIP MULTIPROGRAMMING
SYSTEM

To show the performance and architectural
capabilities of the iAPX 86 and iAPX 88 in a multi­
programming environment, a small system was devel­
oped around the iAPX 88 microprocessor. The iAPX
88 system is based on an 8-bit bus CPU with the full
programmer visable architecture of the 16 bit bus
iAPX 86. This includes full object code compatibility
between the iAPX 86 and iAPX 88 as well as 16 bit

AFN-10550A

AP-106

data types, 1 megabyte address space and addressing
modes. The advantage of the iAPX 88 in small sys­
tems such as the one we will discuss, is compatibility
with the multiplexed bus memory and peripheral de­
vices of the 8085 Family. As a result, this system uses
nine chips to provide all of the system clock signals,
I/O ports, interrupt signals, user workspace, and
operating system. In this case, the multiprogram­
ming system is a multiple user Tiny BASIC Inter­
preter. Written originally to demonstrate the 8085,
the code was converted to execute on the iAPX 88
using CONV86. CONV86 is available as part of the
general set of iAPX 86/iAPX 88 software develop­
ment tools and converts 8080/8085 code to iAPX 86/
iAPX 88. The iAPX 88 Tiny BASIC Interpreter is a
reentrant program to allow multiple users.

System Overview

The software structure for the system is shown in
Figure 9 and consists of a simple 0 .S., Tiny Basic and
work space for each user. The O.S. handles terminal
I/O and time sharing of Tiny Basic between users.
Each user is allocated a separate stack, temporary
variable work space, I/O line buffer and BASIC pro­
gram area. The physical address space for each user is
defined by the contents of the segment registers.

TERMINALS

O.S.

TINY

BASIC

SEGMENT
REGISTERS

USER
1

VARIABLES
STACK

WORKSPACE

VARIABLES

STACK
WORKSPACE

Figure 9. Multiuser System Structure

9

The O.s. is effectively an interrupt handler for timer
interrupts used for I/O. During each interrupt, the
current users machine state is saved on his stack, the
stack and data segments are switched to the next user
and a return is executed. The return restores the ma~
chine state for the next user from his stack and re­
turns to Tiny Basic execution for the next user. Be­
tween the saving of machine status for one user and
restoring status for the next user, the O.S. performs
pending terminal I/O.

The Tiny Basic program transfers control to the O.S.
to perform I/O. This suspends Tiny Basic execution
for the current user until the O.S. completes the re­
quested I/O. Upon completion of the I/O, the O.S. will
return control to Tiny Basic for this user. Tiny Basic
makes no distinction between users and references
all data relative to the current data and stack seg­
ment register values. Both users have the same
values for the code segment register values. Both
users have the same values for the code segment with
the individual IP values depending on each users
execution sequence.

Hardware Description

The total system consists of: an iAPX 88 microproces­
sor; 8284 Clock Generator to provide the clock signals
to the processor and a programmable timer; 8155-2 to
provide 256 bytes of RAM, 20 I/O lines and the pro­
grammable timer used to generate interrupts; two
8755A-2's which provide additional I/O lines as well
as the EPROM where the BASIC Interpreter pro­
grams and the operating systems are stored; and two
8185's which provide 2K-bytes of RAM for the users'
workspace. Communications between the user ter­
minals and the processor board is accomplished with
a 75189 and 75188 for level conversion from TTL to
EIA standards.

The 8284, driven by a crystal, provides the clock
signal for the iAPX 88 and the programmable timer
on the 8155-2. The ~uggested crystal, 15 MHz, will
provide a 5 MHz signal to the microprocessor and a
2.5 MHz signal to the timer/counter. The 8284 also
provides the system reset to the processor and the
other chips.

The 8155-2 provides the system with 256 words of
RAM and is connected directly to the iAPX 88 multi­
plexed bus. The systern uses the programmable timer
on the 8155-2 to generate the baud rate interrupt
signals to the processor. The timer output is con­
nected to the non-maskable interrupt pin on the pro­
cessor. When an interrupt is generated, the processor
enters the interrupt routine which performs the

AFN-10550A

AP-106

proper input and output sequences for communica­
tion with the terminals and switches from one user to
the other for execution of Tiny BASIC. The timer
count is set during the initialization sequence to
count to a specified value. When it reaches this value,
an interrupt signal is sent and the timer begins
counting again. Since this timer is set in software, the
baud rate is software programmable. In addition to
the timer, the 8155-2 provides two programmable
8-bit I/O ports and one 6-bit I/O port.

The 8755A-2 is a 2K-byte EPROM. Two of these chips
were used to provide enough space for the operating
system and the Tiny BASIC Interpreter. In the final
system, approximately 60%of the total EPROM
memory was used; the remaining space is available to
expand the capabilities of Tiny BASIC or to increase
the number of users the system can handle. Like the
8155-2, the 8755A-2 is directly compatible with the
iAPX 88's multiplexed bus. In addition to the
EPROM there are two 8-bit programmable I/O ports
on the chip. Each line in the 8-bit port is individually
programmable to be either an input or an output line.
Two I/O lines on one of the 8755A-2's provide the I/O
for one of the terminals. Two lines on the 8155-2
provide the communications to the other terminal.

The other chip used in the system is the Intel 8185.
This chip is a lK-byte RAM device. Two were de­
signed into the system to allow each user 1K-bytes of
memory for program and workspace while generat­
ing and executing BASIC programs. This chip, like
the others, is compatible with the iAPX 88 multi­
plexed bus. Additional space to facilitate larger pro­
grams or increasing the number of users can be ac­
commodated by increasing the number of 8185's in
the system.

All of the chips used in this system are directly com­
patible with the 5 MHz iAPX 88 system bus. There­
fore, no latches or data bus transceivers are needed in
the system. Linear select techniques were used to
select all devices and eliminate address decode logic.
Figure 10 shows a functional diagram of the nine­
chip system. To implement multiple users, the
TIMER-IN line on the 8155-2 was wired to the PCLK
line on the 8284 and, the TIMER-OUT line was wired
to the non-maskable interrupt line on the iAPX 88.
The timer was set to operate the terminals at 300
baud.

Software Description

In addition to the BASIC Interpreter, three programs
were needed to provide the multiuser capabilities.
The first was an initialization routine which is in­
voked after system reset. The next was the

10

Character-In/Character-Out routine which is used to
communicate with the user's terminal. The last was
the Interrupt routine. This routine is called each time
the 8155-2 sends an interrupt to the processor.

The two EPROM chips are selected between
addresses FFOOOH and FFFFFH, each having 2K­
bytes of memory. These were placed at upper memory
since the system accesses addresses FFFFOH from
system rest. When this address (FFFFOH) is placed
on the address bus, the chip corresponding to FF800H
to FFFFFH is activated. The two 8185 RAM chips are
selected when addresses between 1000H and 17FFH
are placed on the address bus. The first addresses
(1000H to 13FFH) are used to hold the data and pro­
grams for User 1. The second addresses are used to
hold the data and programs for the second user. The
256-bytes of RAM in the 8155-2 are used by the
operating system for information it requires that is
not directly associated with either of the users. The
8155-2 RAM is selected by addresses OH to FFH and
contains the interrupt vector table. The vector table
contains the addresses of the routines the system will
execute if the user attempts to divide by zero or when
the 8155-2 sends an interrupt signal. These addresses
are loaded in~o the in~errupt vector table during the
eAeCULIU.l.l UI Ll1e 1111 LH:ll1;t;C:1LIUll1 (JULIue IUl1UW UI~ I el::ieL.

An address map of system memory is shown in Fig­
ure 11.

FFFF F

FFOOO

017FF

01400
013FF

01000

;1"

;L.:
OOOFF

OOOOC
OOOOB

00000

INITIALIZATION

INTERRUPT ROUTINE

UNUSED

TINY BASIC

UNUSED

"

USER 2

USER 1

UNUSED ,L-

O.S. VARIABLES

INTERRUPT VECTOR TABLE

Figure 11. Memory Map

AFN-10550A

AP-106

Vee

140 Vee

t; MN/Mx

~SSO
0.2.!! HlDA

on: DT/R

ol§. DEN

~INTA
~ A16/S3

oE A17IS4

01§. A18/S5

~ A19/S6

NMI--.ll NMI

~ INTR

~HOlD
~TEST
~GND
~GND

~
8088

8284
'DIODE IS 1N914

11

A15~3~9 __ ~ __ ---------------------------------A15

A14 2 A14

A13 3 A13

A12 4 A12
A11 5 A11

Al0 6 A10

M7 M

A8 8 A8

AD7 9 AD7

AD6 10 AD6

AD5 11 AD5

AD4 12 AD4

AD3: 13 AD3

AD2 14 AD2

AD1 15 AD1

AOO 16 AOO
AD 32 REI

WR 29 WR

ALE 25 ALE

101M 28 101M

RESET 21 RESET

CLK 19 ClK

READY ~

READyrL­

RESET 1-'1.::..0 ---'

C LK ~8,---____ ---,

Vee

>
~10K

ROY 2 ~6,--______ ,

PClK ~ PClK

OSC~
FIC~

AENI ~
RDY1 ~

AEN2 ~
GND~

"

\

J

Vee

18 f
,....! ADO Vee REI
~ AD1

WR ~ AD2
.....1 AD3
.2 AD4

6 ADS
7 AD6
8 AD7 8185

10 A8
11 A9 (USER

12 CE2
PROG)

13 CE1
14 cs
15 ALE

GND

.g
Vee

18f

.....l ADO Vee
AD

~ AD1
WR ~ AD2

~ AD3
~ AD4
~ ADS

7 AD6
8 AD7 8185 10

11
A8
A9 (USER

12 CE2 PROG)
13

CE1 14 CS
15 ALE

GND

.g

~
~~

I

1L
~

V (TOP OF
LMEMORY)

4~
~ ADO Vee lOR REI L
~ :g~ lOW ll-
.12 AD3 ALE J.1...
1§. AD4 101M J-

1~~~17~ADS CE2~2~H+~
I ~++t+f-,,18~ AD6 RESET rL-

1.r++-i-++r1"'i9 AD7
I ~++1-++~2,:.t1 A8 CE11-'1-+t+f-t,-=-=

I ~+t1f-ttt+f"",22~ A9 V DD ..,,5'---tt+rt-----1f+--V ec
e+t-+++++++ip.23"'4 A 10

~+++t++f++-;.t3 ClK 8755A-2
.-+++1-++-+++++11-6, READY

Jl. ADO
~AD1

........ll AD2
~AD3
~AD4
~AD5

L.-----:-:
18::iAD6

L.-____ -=19~ AD7
1...-__ -:'2"'i1 A8

22 A9

Vss

.go

RD~
IOW~
AlE~
IO/M~
CE2 ... 2=--__ -+----J

RESET ri-----
CE1 r-:1 ___ ---J

VDD~Vee
L.-_____ .:::23"'fA 1 0

L-----"'4~ ClK 8755A-2
.---------~~READY

24 PAO Vss PB7 33

Figure 10. Schematic of 9 Chip 8088 Multiuser Tiny Basic System

c.B ADO
~AD1
~ AD2
~AD3
~AD4

----J.J ADS
L------'-'18:tAD6

'--____ ...!.19,AD7
1...-__:.1-'-41 ALE

Vee AD ~
WR]JL

IO/ML­
cr!..­

RESET ±--

8155-2

NMI~ TIMER OUT

PClK~ TIMER ClK
Vss

PB71L-.

PAO.ll

-b0

J
75188,\/

12

AFN-10550A

AP-106

First, the initialization routine (Figure 12) sets up
the data segment registers so that they point to the
data and program area reserved for User 1. The
routine then resets all data and program pointers
which are reserved for User 1. These pointers and
data areas are used by the BASIC Interpreter in
keeping track of the processing being done by User 1.
This includes pointers which address the beginning
and the end of the BASIC program, the data var­
iables, and the information required to perform the
I/O with the terminal. After the data and pointers
have been initialized for User 1, the routine moves
this information into the data and pointer area re­
served for User 2, thus initializing the system for the
second user. Usage of each user memory space is
given in Figure 13.

After the routine has initialized the pointers for both
users, it sets up the interrupt vector table. The first
entry points to the error routine which will be called

SET SEGMENT REGISTERS = 0
(USER 1'S MEMORY)

FILL USER 1'S DATA AND PROGRAM
AREA WITH o's

SET UP INTERRUPT VECTOR FOR
DIVIDE BY ZERO ERROR

SET UP INTERRUPT VECTOR FOR
INTERRUPT ROUTINE

INITIALIZE liO PORTS

SEND STOP BITS

INITIALIZE USER 2'5 STACK

SET TIMER TO INTERRUPT 900
TIMES PER SECOND

Figure 12. Initialization Routine

13

if the user attempts to divide by zero. The second
entry is the location of the TIMER-OUT routine
which will be invoked when the timer sends an inter­
rupt to the NMI input. After the interrupt vectors are
initialized, the iAPX 88 initializes the I/O ports
which are used to communicate with the two termi­
nals. Since each bit of each port may be programmed
as either input or output, they must be defined by the
system before they may be used. After the lines are
programmed for their defined purpose (one input and
one output line for each user), the system outputs a
high signal to each of the output ports, sending a
STOP bit. This STOP bit will remain valid until the
BASIC Interpreter is ready to send a message or data
to the user's terminal.

The system software consists of an operating system
that handles terminal I/O and sharing CPU process­
ing intervals between the users. There is a single
shared user program (Tiny BASIC), and stack and
workspaces for each user. To initialize both users
with Tiny BASIC, the reset initialization procedure
initializes User 2's stack to point to the starting
address of Tiny BASI C, sets up the stack extra and
data segment register to point to User 1's stack and
workspace, enables the 8155 timer for baud rate gen­
eration and transfer control to Tiny BASIC for User
1. The CPU then continues to execute Tiny BASIC on
behalf of User 1 until a timer interrupt occurs. The
interrupt transfers control to the operating system
which performs the proper I/O, switches to the next
user's segments and returns to the next user. Note
the state of the machine for User 1 is saved on his
stack. Since User 2's stack was initialized to point to
the start of Tiny BASIC, the system now begins
executing Tiny BASIC on behalf of User 2. For each
interrupt, the operating system may return to either
user by loading the proper segment values and re­
turning to where that user had previously been
interrupted.

The programmable timer is initialized so that it will
generate 900 interrupts per second. The system sam­
ples the incoming data from the terminal three times

at 300 baud. The system samples each bit three times
so that the accuracy of the input may be improved.
When the system jumps to START (beginning of Tiny
BASIC) for each user, the BASIC Interpreter will
print ~~OK" on the terminal and wait for the user to
begin entering data on the terminal. For the BASIC
to print ~~OK" on the screen, and to monitor the input
from the user's terminal, the program uses the
Character-IniCharacter-Out routine in Tiny BASIC.

Intel AP-106

A B C D E F

1000 BLl
I

BL2
I

ZERO I Ml IpOLO RJCJ I CURRENT 1 Z STKGUS STK-

1010 -INP I LOPVAR I LOPINC I LOPLMT I LOPLN LOPPT I RANPNT TXTUNF

1020

1030

1040

1050

1060

1070

1080

1090

VARBGN

j BUFFER

VARIABLE DATA IS STORED HERE.

INPUT BUFFER. AS A LINE IS ENTERED, IT GOES
HERE. WHEN RET IS ENTERED, THE LINE IS
INTERPRETED.

10AO I STACKP IINCYCI OUT I WORDOUT I BYTE I STA - CON-
CYC IN TUS NT

lOBO

12FF

1300

BITSS I TXTBGN

TXTEND

"' ... ,

USER'S BASIC PROGRAM IS STORED IN TXTBGN TO
TXTEND.

1300 13FF IS RESERVED FOR THE USER'S STACK.

13FF ~I __ ~

MEMORY 1000 101E ARE COUNTERS AND POINTERS USED BY TINY BASIC.

MEMORY 10A7 10Bl IS USED BY THE OPERATING SYSTEM. A DESCRIPTION OF THOSE
FIELDS FOLLOWS: SEE FIGURE 13b.

STACKP -STACK POINTER SAVE AREA FOR THIS USER.

STATUS
BiT

7
6
5 NOT USED
4
3
2 START BIT RECEIVED

INPUT MODE
OUTPUT MODE

OUTCYC -NUMBER OF OUTPUT BITS OF THE CURRENT BYTE WHICH
HAVE BEEN OUTPUT.

CONNT -COUNT OF CYCLES IN THE CURRENT OUTPUT OR INPUT
CYCLE. THE PROCESSOR INTERRUPTS 3 TIMES FOR EACH

BIT BEING INPUT OR OUTPUT. THIS VARIABLE IS USED TO
DEFINE WHEN A NEW BIT IS COMING IN OR SUPPOSED TO
GO OUT.

WORDOUT - THE BYTE BEING OUTPUT WITH THE ACCOMPANYING START
AND STOP BITS ARE STORED IN THIS AREA.

BYTEIN -THE INCOMING BITS FROM THE TERMINAL ARE ASSEMBLED
HERE UNTIL ALL 8 ARE RECEIVED.

INC;:_Y~_I,,~ -NUMBER OF INPUT BITS WHICH HAVE BEEN RECEIVED
AFTER THE START BIT.

~ITS$ - THE RESULTS FROM THE BIT SAMPLING ON INPUT ARE
STORED HERE. AFTER THE 31NPUT CYCLES, THE VALUE IN THE
MOST SIGNIFICANT BIT IS THE VALUE WHICH OCCURRED
MOST OFTEN.

Figure 13. Definition of each User's Me~ry Space

The Character-In/Character-Out routines are very
simple. Figure 14a is the sequence for a user to enter
and exit I/O while figure 14b is a more detailed flow­
chart for the CI and CO routines. The Character-In
routine (CI) sets the count of bits received (lNCY­
CLE) to zero and sets the status (STATUS) for this
user to a 2 so that the interrupt routine will know
that this user's program is waiting for something to
be input on the user's terminal. It pushes onto the
user's stack all of the registers and segment registers
as if the user had been interrupted, then transfers

14

control to a wait loop in the operating system. It will
loop like this until the timer issues an interrupt.
When in the I/O routines for a specific user, the sys­
tem is waiting for a user to input data or waiting for
the proper timing to output bits to the user's termi­
nal, and will not process that user's program. This ef­
fectively suspends the user's execution until the user
requested I/O is complete. When the system has com­
pleted the I/O (read a character from the terminal or
output one to the terminal), the user's stack for the
completed operation is modified so that the operating

AFN-l0550A

AP-106

TINY BASIC I/O HANDLER

I
iNiTiAliZE USER STATUS FOR

INPUT OR OUTPUT

SET RETURN ADDRESS ON THE STACK
TO THE I/O IDLE WAIT LOOP

TRANSMIT OR} I
RECEIVE A I

CHARACTER

1/0 COMPLETE} I
CONTINUE l
T'T

AS1C
i

I I

SET RETURN ADDRESS ON THE STACK
TO 1/0 COMPLETE IN TINY BASIC

Figure 14a. Sequence for a User to Enter and Exit I/O

system will return to the calling program. While one
user is doing I/O, the other is able to process nor­
mally, and the processor will give virtually all of its
time to the other user.

After the current user is in the I/O mode, the pro­
cessor attempts to identify who should receive service
next. If either of the users is not in an I/O mode, he
will receive the control of the processor. Ifboth of the
u~ers are in an I/O mode, the system will loop until an
interrupt occurs.

The OUTPUT routine works in the same manner as
the INPUT routine. The character to be output to the
user's terminal is formatted with the appropriate
START and STOP bits and is stored in the user's
memory (WORDOUT). The status byte (STATUS) is
set to indicate to the interrupt routine that this user
is going to be outputting a byte to the terminal. After

15

the user's memory is initialized to perform the output
to the terminal, his stack is set, as in the CI case, to
loop at IORTI until the whole byte has been sent to
the terminal. The actual input and output of inform a­
tion to and from the terminal is accomplished by the
Interrupt routine.

The interrupt routine is called each time the timerl
counter on the 8155-2 reaches the count assigned in
the Initialization routine. This count may be modified
so that the system can run at any desired baud rate.
To determine what the count should be, divide the
number of clock cycles (2,500,000) by three times the
desired baud rate.

Since the software must handle each bit in the serial
I/O stream and samples at 3x the baud rate to elimi­
nate synchronization problems, 300 baud was chosen

AFN-10550A

AP-106

CI

~
SET BiT COUNT

TO ZERO (INCVC)

~
SET STATUS 2

(INPUT MODE)

I
+

SET UP STACK TO
RETURN TO 10RTI

~
SAVE REGISTERS AND
DETERMINE WHO IS TO

GET SERVICE NEXT

~
RETURN TO
NEXT USER

(10RTI)

WAiT FOR
INTERRUPT

I

C co

1
SAVE CHARACTER TO BE

OUTPUT (SAVE ON THE
USER'S STACK)

~
APPEND START AND
STOP BITS, SAVE IN

OUTWORD

~
SET BIT COUNT (OUTCVC)

TO 0 AND STATUS 1
(OUTPUT MODE)

J

Figure 14b. Character In/Character Out Routines

to provide reasonable I/O speeds and accuracy while
avoiding impacting performance for individual users
in the multi-user environment.

When the user is interrupted, the interrupt issued by
the timer causes the processor to automatically save
the flags and the return address onto the interrupted
user's stack. This enables the system to tell where to
return when it is that user's turn to be processed. The
interrupt routine then saves all of the registers for
the user. When the system returns to the user, it will
have the same values in all of the registers so that the
program can continue as if it had never been
interrupted.

After all of the registers have been saved, the actual
processing of the interrupt can begin. The interrupt
routine has two functions. The first is to perform the
proper inputs and outputs for the BASIC Interpreter.
The second is to identify who is to get service the next
time that the processor begins to execute a user's

16

program. Note that if neither user is performing I/O,
the interrupt service routine simply switches users
(Figure 15).

In performing the inputs and outputs for the BASIC
interpreter, it is imperative that the signals sent to
the terminals and the checks for incoming data occur
at the same point in time for each interrupt cycle.
Doing this will ensure the accuracy of the data as it is
read from the terminal and will ensure that the out­
put is at the proper baud rate. To get the I/O to occur
at the same time in the interrupt cycle, the processor
must always perform the same steps. If the system is
required to first check the status of the users and then
perform the appropriate operation depending on the
status found, the processor would be going through
different steps, depending upon whether the user was
in an INPUT mode, an OUTPUT mode, or a regular
processing mode. This in turn would cause the I/O to
come at different points in the interrupt routine. To
allow the system to perform the I/O at the same time

AFN-10550A

AP-106

SAVE THIS USER'S STACK POINTER
IN STACKP (TEMPORARY STORAGE IN

THIS USER'S CONTROL VARIABLES)

GET SEGMENT ADDRESS OF THIS
USER'S DATA AND STACK SEGMENTS

SWITCH TO NEXT USER'S
DATA AND STACK SEGMENTS

LOAD STACK POINTER FROM
NEXT USER'S STACKP TEMPORARY

STORAGE

RETURN TO NEXT USER

Figure 15. Sequence to Switch Between Users

in each interrupt cycle, the processor always per­
forms input as soon as all of the registers of the
current user have been saved. It doesn't check to see if
the user is in an INPUT mode; it doesn't really mat­
ter. It then takes the data received from the input and
saves it for future processing. Later on, after perform­
ing the time critical I/O functions, the processor will
look at the status (STATUS) for each user to see if
each user is in an INPUT mode. If the user is in an
input mode, the processor will use the data received.
If the user is not in an input mode, the data will be
ignored.

After it has performed the inputs and saved the data,
the processor performs the two outputs, one for each
user. Again, it does not check to see if the terminal is
in OUTPUT mode; it always outputs something to
the terminal. If a user is not in the OUTPUT mode,
the processor will send a STOP bit to the terminal.
The system uses each user's status byte (STATUS) to
generate the STOP bit if the user is not in OUTPUT
mode or to leave the data the same if the user is in
OUTPUT mode. In either case, the steps followed to
output a bit to the terminal are always the same to
keep the timing signals constant.

It may be interesting to see how the processor outputs
either a stop bit or the next bit of data. This process­
ing is done in the OUTWORD subroutine (Figure 16).
The first thing the routine does is check to see if it is
time to send another bit. Since the processor is inter­
rupting three times for each bit being sent, the output
should only be changed every third interrupt.
CONNT is a variable used to count the bit cycle. Each

17

time the count in CONNT reaches 3 it is changed
back to a o. Each time the OUTWORD routine sees a
o in CONNT it outputs the next bit to the terminal.

The first three lines of OUTWORD are checking this
count to see if it is time to send another bit. If not, it
jumps around the code where the bit is generated and
outputs to the terminal. If it is time, the processor
loads the output character to the accumulator. The
next bit of the character is transferred from the regis­
ter to the terminal, low order bit first, one bit every
CONNT interval.

OUTPUT ONE
BIT EVERY 3RD

CYCLE

NO

SENDS STOP
BIT IF NOT IN

OUTPUT MODE

GET WORD TO BE OUTPUT
FROM USER'S MEMORY

SET BL REGISTER ' 0 IF IN
OUTPUT MODE, ' 1 IF NOT

"OR" ACCUMULATOR (WORD TO BE
OUTPUT) WITH BL REGISTER

OUTPUT THE NEXT BIT

SHIFT THE BYTE ONCE TO THE
RIGHT. PREPARE THE BYTE FOR

THE NEXT OUTPUT.

INCREMENT THE BIT CYCLE

~
~

YES
SET 0

Figure 16. Output Data Processing

AFN-10550A

AP-106

After the appropriate value has been output to the
port, the value of the byte being output is shifted to
the right one bit, preparing the field for the next time
a bit is to be sent to the terminal.

Once the proper outputs have been made to the ter­
minals, the processor begins checking the status of
each user and taking appropriate action. !fthe user is
in OUTPUT mode, CONNTis checked to see if a new
bit wasjust output to the terminal. Ifit was, the count
of bits sent to the terminal (OUTCYC) is in­
cremented. For each character the BASIC Inter­
preter wants to send to the terminal, 10 bits must be
output. This includes the 8 bits of data in the byte
plus a START bit and at least one STOP bit. When the
routine has output the full 10 bits, the user status
code is reset to 0 so that the processor will know that
the user is no longer in the OUTPUT mode. Next the
user's stack is modified so that it will return to the
calling program rather than the wait loop.

If the user is not in an OUTPUT mode the system
checks to see ifhe is in an INPUT mode and results in
entering the INBYTE routine (Figure 17). If he is in
an INPUT mode the system checks to see if the user
has received a START bit from the terminal. If the

~J. P.. nm,,~m 1 .. ·J J1 J 1
1o..oi..'-.J_..IIt. ... o,J f, "' b ... v 1o.....,; Ji...r..."' i....II.oI..'-', '-' J:-I\At.1t".. "''-' \"..0

from the terminal is tested for a START bit. If it is not,
the processor ignores the input and continues to wait
until a START bit has been received. When a START
bit is finally received, the user status (STATUS) is set
to indicate the START bit has been received. CONNT
is also initialized so that the input will be received
and interpreted correctly.

If the user is not waiting for a START bit and is in
INPUT mode, the input received from the terminal is
valid data. For each interrupt cycle the processor
performs an input at the beginning and one more
when it determines that it is in an INPUT mode.
These two inputs are performed for each of the three
cycles, giving six data inputs from which to deter­
mine the value of the bit being sent by the terminal.

The variable BITSS is initialized to OOFFH. (It is
stored as a 2-byte word). As each of the inputs is
received from the terminal, the value in BITSS is
shifted to reflect the data received. If the data re­
ceived is a 1, BITSS is shifted left once. If the data
received is a 0, the value in BITSS is shifted right
once. After all six inputs have been checked and
BITSS has been shifted accordingly, the value which
occurred most often will be indicated by the high
order byte of BITSS. The newly received bit is OR'd
into BYTE IN. After this sequence has occurred eight
times, the bit which was entered first will be in bit 0
and the subsequent entries will follow. Once the
whole byte has been received, the user's stack is

18

modified so that the return address, is updated to
return to the Character-In routine rather than the
wait loop. Here, the value assembled in BYTE IN is
placed in the accumulator and the system returns to
the program where the Character-In routine was
called.

After the interrupt routine has checked all of the I/O
and has performed the appropriate action concerning
the users' modes, the system determines which user
is to receive service next. It first looks at User 1. It
checks to see ifhe is in an INPUT or OUTPUT mode.
If User 1 is in either, the system will not start User 1
but will automatically begin processing for User 2. (If
User 2 is also in an I/O mode, the system will loop
until the next interrupt from the timer.) If User 1 is
not in an I/O mode, the system checks User 2's status.
If User 2 is in an I/O mode, the system will automat­
ically give User 1 service next. If neither of the users
are in an I/O mode, the system will return to the user
who has waited the longest for service. This is accom­
plished by examining who was executing when the
system was last interrupted, and then setting the
segment registers to the other user. In this way, the
system is shared between both users. If one of the
users must wait while in an 110 routine, then his time
allocatlOn IS gIven to tne otner user untIl Lhe user
waiting in the 110 routine has completed the 110.

The system changes users by performing an Exclu­
sive OR of 40H with the segment register of the user
who was first given service. After the system deter­
mines who will be serviced next, it restores the new
user's segment registers and then restores the regis­
ters and flags which were pushed onto the stack.
Thus, the user's status is restored before the inter­
rupt return. The system performs an IRET (Interrupt
RE'furn) which restores the flags to their original
value and returns control to the interrupted program.
With all of the registers and flags restored, it appears
to the BASIC Interpreter user as if there had never
been an interrupt and processing will continue
normally.

As long as the BASIC Interpreter references all data
relative to the segment registers and does not change
the segment registers (is reentrant), the system will
handle the two users without difficulty. If the pro­
gram attempts to change the segment registers, then
User 1 may interfere with User 2's data or programs,
or vice-versa.

U sing this type of operating system, the Tiny BASIC
used here could be replaced with any other program
which is reentrant. Since all of the users use the same
"master" program, there is no need to move one pro­
gram out when the users change; the system only
needs to save the registers of the current user on the

AFN-10550A

intJ

INCREMENT
COUNT OF BITS

OUTPUT

SET USER'S
STACK TO RETURN

TO CORT

SET UP SEGMENT
REGISTERS TO POINT

TO USER 1'S
MEMORY

AP-106

SET STATUS SO
PROCESSOR KNOWS

START BIT HAS
BEEN RECE!VED

YES

Figure 17. Inbyte Routine to Assemble Input from the Terminal

19

NO

NO

SHIFT
BITSS
RIGHT

INPUT BIT FROM
USER'S TERMINAL

AGAIN

SHIFT BITSS RIGHT IF
BIT = OR LEFT IF

BIT = 0

GET HIGH ORDER BIT
OF BITSS AND SHIFT
RIGHT ONTO BYTEIN

AFN-105SOA

AP-106

user's stack before it attempts to go on to the next
user. Code for these functions are included in Appen­
dix 2. The complete multiuser Tiny BASIC program
is available through INSITE, the Intel Users
Software Library.

Adding More Users

With BASIC or any other "master" program set up
this way, it is a simple job to change the operating
system so that it will support more than two users.
The system, as currently written, assumes that each
of the users has a 300-baud terminal and a specific
amount of memory available for his data and BASIC
programs. These are the areas that someone who de­
sires to add more users to the system will have to
modify. The Initialization routine, which initializes
the stack of User 2 and the I/O ports which communi­
cate with the terminals, will also have to initialize
the stack and the I/O ports of any additional termi­
nals. This means that more memory will be required
or that the existing memory will need to be sub­
divided among the number of allowable users. Also,
of the remaining 48 I/O lines which are not currently
being used, two lines for each additional terminal
WIll be assIgned tor communlcatlOns. 11 the memory
boundaries are changed, one of the pointers in BASIC
which defines the size of the buffers will have to be
modified to reflect the new size of the buffers.

The Initialization routine will, as it does now, go to
the "master" program's START for the first user.
When the first user is interrupted or begins I/O, the
system would need some method of determining
whose turn it is to receive service. This process could
be handled much like the present routine. After the
system finds out who is not in an I/O routine, it will
process the user who has been waiting the longest for
service by restoring that user's registers, and return­
ing to that user. If all users are in an I/O mode, it will
loop until the next interrupt. As soon as the first user
finishes with the I/O routine, the system will con­
tinue to process that user's program until other users
also continue execution. Then the system will switch
users as before.

The Interrupt routine, which now performs the I/O
for only two users, would need to perform the inputs
and outputs for each additional user, and assemble
input or disassemble output as they are received or
sent. As long as there are remaining I/O lines and
enough memory for each of the users, any number of
new terminals could theoretically be added to the sys­
tem if user response time is not a major consideration,
and as long as the interrupt routine can complete
execution before the next timeout interrupt occurs.

20

Variant Considerations

With the extra I/O lines, and additional ROM space
not used by the BASIC Interpreter or the operating
system, there are other features which could be added
to the system if desired. A printer could be added to
the system with a special output routine to tell the
processor that the user's program is trying to output
to the printer instead of the terminal. This would
allow the user to generate hard-copy reports or pro­
gram listings. To do this, would require addition of
commands to the BASIC Interpreter so that the user
who desires to print on the printer can do so in his
BASIC program. The BASIC Interpreter would also
need to provide a method where the user could check
to see if the printer is available. Some type of
semaphore is required so that the other users can tell
if the printer is in use, and reserve it for their use ifit
is available.

The Interrupt routine would then be changed so that
it would give the proper output signals to the printer,
both when in use and when idle. The type of output to
be sent depends upon the type of printer and the
signals the printer expects. Also, the initialization
rOlltinp wOll1(l npp(l to hp mo(linp(l ~o th:::lt it W01l1(l

send the proper initialization signals to the printer
when the system is reset.

Since there are multiple lines available on the I/O
ports, other types of peripherals could be added to the
system as long as there are methods by which the
users could request and release the devices and there
is enough room in the BASIC Interpreter to add the
commands to allow the BASI C programs to access the
device.

CONCLUSIONS

Admittedly, we have shown a relatively simple
example of a multi programmed system with most of
the system complexity evolving around totally
software driven, simultaneous I/O for both users. It is
just this point, however, which is noteworthy. The
basic architectural characteristics of the iAPX 86 and
iAPX 88 allowed us to simply (almost trivially) im­
plement the reentrant Tiny BASIC interpreter and
the operating system primatives for time multiplex­
ing use of the interpreter between two separate users.
In a similar vein, the architecture also supports the
capabilities of dynamic relocation and controlled ac­
cess to critical regions which would be required by
more sophisticated systems. With the addition of
operating system capa bilities for memory allocation
and management, loader and file I/O a more general
purpose system could be developed.

AFN-10550A

intJ AP-106

APPENDIX A

CONSIDERATIONS FOR PROGRAMS WITH
MULTIPLE CODE AND DATA SEGMENTS

21 AFN-10550A

AP-106

To extend the concepts of relocatability to programs
which consist of multiple code and data segments, the
iAPX 86 and iAPX 88 support the ability to transfer
control indirectly through memory and load data
segment addresses from memory based tables. These
capabilities may be implemented in various ways
depending upon the characteristics of the code
generators, load modules and loader. The basics of
any implementation are: .

1) Transfer of control to all external procedures or
labels must be indirect through memory.

CODE SEGMENT

JMP FAR CS: I NEXTC SI

------ ----~------------

NEXTCS:
CS OF NEXT

2) References to each data segment must be preceded
by loading the data segment register from a table
containing the location of each segnlent in memory.

The tables must be constructed by the loader at load
time of the program and data, and maintained by the
operating system if the segments are relocated. The
location of the tables are implementation dependent.
If programs are RAM based, the tables may be ap­
pended to the code segments and accessed relative to
those segments, each segment maintaining its own
table of data segments and external code rE'l'~rences
(Figure A.l).

CODE SEGMENT

NEXT:

LOS BX. CS: IDATASEGI r-------
MOV AX. IBXI

-

POINTER
TABLE

IP OF NEXT
DATASEG:

}-
-----------~------------

I

DATA
SEGMENT

OS

OFFSET

--

POINTER
TABLE

Figure A 1. Table of Pointers to other Code and Data Segments associated with each Code Segment

23 AFN-10550A

inteJ AP-106

An alternate technique (Figure A.2) would allow a
single table to be constructed for use by all code seg­
ments and contain the location of all code and data
segments. If the programs reserve use of the extra
segment for containing this table, the loader and O.S.
need maintain only one table rather than one within
each code segment. Another benefit of this approach
allows the code segments to be in ROM without fixing
their location in memory for all possible instances of
their use. This is particularly applicable to library
routines that will be used in a variety of end applica­
tions. A transfer of program control would then re­
quire loading the code segment and instruction
pointer values from the ES based table. The dis­
placement into the table is specified in the control
transfer instruction and therefore, must be specified

CODE SEGMENT

JMP FAR ES: [NEXTCS)

EXTRA SEGMENT
POINTER TABLE

I}-: CS OF NEXT

IP OF NEXT

LNExTe,
~

~~

DATASEG ; OS

OFFSET

during linkage or preparation of load modules.
Likewise, the location of each data segment must
explicitly be loaded with the LDS instruction. The
LDS instruction must reference the table in the ES
segment and contain the displacement to the appro­
priate data segment address.

These techniques support programs and data which
are relocatable at load time but not necessarily
dynamically relocatable (i.e., operation is suspended,
code and data are relocated and execution resumes).
Since stack based return addresses and pointers are
real addresses, dynamic relocation of code or data
based on these techniques would require fixing up
stack resident segment values, in addition to jump
tables, before resuming task execution.

CODE SEGMENT

Nt:XI:

r--- LOS BX, ES: [DATASEG)

MOV AX, [BX)

DATA
SEGMENT

Figure A2. Common Table of Pointers

24 AFN-10550A

intel' AP-106

APPENDIX B

MONITOR LISTINGS

25 AFN-10550A

MACR.O ASSEMBLER

LOC OBJ

0002
0000
0001
0007
FOOO
FOOl
F002
F003
0001
0005

MTBASC

LINE

1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389 +1

AP-106

SOURCE

CODE SEGMENT WORD PUBLIC 'CODE'

EQUATES FOR MULTIUSER OPERATING SYSTEM

INPORT EQU 0002H
PORTCNT EQU OOOOOH
INOUT EQU 001H
BITS EQU 7
OUTPT2 EQU OFOOOH
INPRT2 EQU OFOOlH
OUTDR EQU OF002H
INDR EQU OF003H
OUTPORT EQU OOOlH
TIMHI EQU 5

$EJ

27

; 8155 PORT B ADDRESS (INPUT).
;8155 PORT CONTROL REGISTER ADDRESS.
iCONFIGURATION DATA FOR 8155 PORTS.

i8755A PORT A ADDRESS (OUTPUT).
i 8755A PORT B ADDRESS (INPUT>.
i8755A PORT A DIRECTION CONTROL REG ADDRESS.
i 8755A PORT B DIRECTION CONTROL REG ADDRESS.
;8155 PORT A ADDRESS (OUTPUT).
iADDRESS OF 8155 TIMER.

AFN-10550A

AP-106

MACRO ASSEI'IELER !'1TBto,SC

L_OC OBJ LINE SOURCE

J.390
1391 THIS ROUTINE INITIALIZES VARIABLES FOR EACH USER
1392 INCLUDING STACK AREAS AND STATE CONDITIONS.
1393
1394

FB3F B8----- R 1395 INI T: MOV AX, DGROUP ; INITIALIZE AX TO O.
FB42 8ED8 1396 MOV DS, AX ; INITIALI ZE DATA, STACK AND EXTRA SEGMENTS
FB44 8ECO 1397 MOV ES,AX ;TO MEMORY LOCATION O.
FB4b 8EDO 1398 MOV SS,AX
FB48 BCFF13QO R 1399 MOV SP,OFFSET(STK)
FB4C BFOOlO 1400 MOV Dr. lOOOH ; SET DI TO USERl VARIABLE AREA.
FB4F B91FOO 1401 MoV ex, lFH
FB52 F3 1402 REP SToSB ; CLEAR CONTROL VAR I1I,BLI:::S.
FB:?3 AA
FB54 8926A710 R 1403 MOV STACKP,SP ; INITIALIZE COpy OF STACK POINTER.
FB58 FFOE0610 R 1404 DEC M1
FB5C BE0010 1405 MOV sr. 1000H
FB5F BFOO14 1406 MOV DI. 1400H ; AX = OFFSET FOR USER 2.
FB62 B91FOO 1407 MoV CX, lFH
FB65 F3 1408 REP MoVSB ; COPY USER1 VARIABLES INTO USER2
FB66 A4

1409 ; CONTROL VARIABLE STORAGE SPACE
1410
1411
1412 INITIALIZE INTERRUPT VECTOR TABLE
1413

FBb7 2EC706000088F5 R 1414 MoV CGRoUP: DZO, OFFSET GHoW ; DIVIDE BY ZERO INTERRUPT
FB6E 2EC7060200---- R 1415 MoV CGROUP: DZS,CODE
FB75 2EC7060BOOOAFC R 1416 MOV CGRoUP: TOO, OFFSET TIMOUT ; TIMER INTERRUPT.
FB7C 2EC7060AOO---- R 1417 MOV CGRoUP:ToS,CODE

1418
1419 +1 $EJ

28 AFN-10550A

intJ

i'1ACRCl t~SSEiViBLE]~

FB83 BAOOOO
FD86 3001

re8S EE-.
Ft189 3A0100
FB8C BOFF

FBElE' E:E
FB8F- BA03FO
FB92 33CO

FB94 EE
FB9S 4.t,

FB96 GOFF

FB98 EE
FIF;"I9 4A
FB9A 4/,
FB9B EE

FB9C 284000
FB"'F' aEDO
FBA1 BCFF1390
FBA5 8ED8
FBA"? BECO
FBA9 33CO
FBAB BBD8
FBAD 88C8
FBAF 8BDO
FBBl 8BE8
FBB3 8BFO
FBBS 8BF8
FEB7 9C
FBB8 OE
FBB9 2890F5
FBBC 50
FBBD E8BBOI

R

R

t'"lTBASC

LINE

1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467

SOURCE

1468 +1 $E-J

AP-106

INITIALIZE THE 1/0 PORTS FOR TERMINAL 1/0

MOV DX,PORTCNT
MOV AL, INOUT

OUT DX,AL
MOV DX,OUTPORT
MOV AL,OFFH

OUT DX,AL
MOV DX, INDR
XOR AX,AX

OUT DX,AL
DEC DX

MOV AL,OFFH

OUT DX,AL
DEC DX
DEC DX
OUT DX,AL

; LOAD ADDR OF 8155 COMMAND REG.
; CONFIGURE PORTS: PA=OUTPUT.

PB=INPUT.

; LOAD ADDR OF 8155 PORT A.
; LOAD PORT WITH FFH TO BEGIN
; TRANSMITTING STOP BITS TO THIS
; TERMINAL.

; SET UP USER2'S 1/0 PORTS ON THE 8755A.
; ZERO OUT AX TO ESTABLISH PORT B
; AS AN I.NPUT PORT.
; OUTPUT TO PORT B CONTROL REGISTER.
;AD-JUST DX TO INITIALIZE THE PORT A
; CONTROL REGISTER.
; MAKE AL ALL ONES TO ESTABLISH PORT A
; AS AN OUTPUT PORT.
; OUTPUT TO PORT A CONTROL REGISTER.

; SET DX TO THE ADDRESS OF PORT A.
; OUTPUT STOP BITS TO THE TERMINAL.

INITIALIZE REGISTERS FOR USERI AND THE STACK FOR USER2

MOV AX,040H ; SET AX TO USER2 SEGMENT VALUE.
MOV SS,AX ; LOAD SEGMENT REGISTERS FOR USER2
MOV SP,OFFSET(STK)
MOV DS,AX
MOV ES,AX
XOR AX,AX ; CLEAR AX AND INITIALIZE REGISTERS
MOV BX,AX ;FOR USER2.
MOV CX,AX
MOV DX,AX
MOV BP,AX
MOV SI,AX
MOV 01. AX
PUSHF , INITALIZE FLAG IMAGE FOR USER2
PUSH CS , INITIALIZE CODE AND IP VALUES
MOV AX, OFFSET (CGROUP: START)
PUSH AX iTO POINT TO THE START OF TINY BASIC
CALL SVREG ,GO PUSH ALL REGISTERS ONTO USER2'S

i STACK AND SWITCH TO USER1'S STACK.
;THIS MECHANISM INITIALIZES THE REGISTERS
;FOR USER1 AND INITIALIZES THE STACK FOR
, USER2.

29 AFN-10550A

MACRO /\SSEi"lBLER rnBASC

LlJC OBJ LINE SOURCE

1469
1470
1471
1472
1473
1474

FI3CO BA0500 1475
FBC3 BOCA 1476

1477
FEC5 EE 1478
FBC6 4A 1479
FEC7 SODA 1480
FBC9 EE 1481
FBCA 33D2 1482
FBCC BOC1 1483
FBCE EE 1484
FBCF E9BEF9 1485

1486
1487 +1 $EJ

AP-106

INITIALIZATION OF THE 8155 TIMER

MOV DX, TIMHI
MOV AL. OCAH

OUT DX,AL
DEC DX
MOV AL,ODAH
OUT DX,AL
XOR DX,DX
MOV AL,OCIH
OUT DX,AL
JMP START

30

; SET TIMER COUNT AND MODE IN THE 8155 TIMER.
;MODE=4 (11, AUTO RELOAD AND SINGLE PULSE
; OUTPUT ON TERMINAL COUNT) AND COUNT=OADAH.
; SET HIGH BYTE.

; SET LOW BYTE TIME DELAY = 1. I11MS.

;SET PORT CONTROL TO START COUNTING.

;JUMP TO TINY BASIC TO START EXECUTION FOR
; USER 1.

AFN-10550A

MACRO ASSEI'lBLER

LOC OBJ

FBD2 B002
FBD4 C606A9100090
FBDA A2AE10
FBDD 9C
FBDE OE
FBDF B8E9FB

FBE2 50
FBE3 E89S01
FBE6 EB5E90
FBE9 EBFE
FBES AOAD10

FBEE C3

FBEF 50
FBFO ODOOOF

FBF3 D1EO

FBF5 A3ABIO

FBF8 C606AA100090
FBFE C606AF100090
FC04 BOOI
FC06 EBD2

FC08 58
FC09 C3

R
R

R

R

R

R
R

MTBASC

LINE

1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513

SOURCE

Cl :

COMP:

IORTI:
CIRT:

1514 CO:
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526 CaRT:
1527
1528
1529
1530
1531 +1 $E-J

AP-106

CHARACTER INPUT AND CHARACTER OUTPUT ROUTINES

THESE ROUTINES TRANSFER THE USER INTO INPUT OR OUTPUT MODE
AND SUSPENDS TINY BASIC EXECUTION FOR THIS USER
UNTIL THE liD IS COMPLETE.

MOV AL 2
MOV INCYCL 0
MOV STATUS,AL
PUSHF
PUSH CS

iSET INPUT MODE STATUS.
i RESET INPUT CYCLES.
i SAVE STATUS.
iSET UP STACK FOR IRET.

MOV AX,OFFSET(CGROUP: IORTI) iFORCE USER TO RETURN TO IORTI
iUNTIL INPUT IS COMPLETE.

PUSH AX
CALL SVREG
-JMP USER?
-JMP IORTI
MOV AL,BYTEIN

RET

PUSH AX
OR AX,OFOOH

SAL AX, 1

MOV WORDOT,AX

MOV OUTCYC, °
MOV CONNT,O
MOV AL 1
JMP COMP

POP AX
RET

31

iSAVE REGISTERS FOR NORMAL RETURN.
i GO SWITCH TO OTHER USER.
iLOOPS TO ITSELF UNTIL TIMEROUT.
iRETURNS HERE WHEN CI HAS 7 BITS, LEAVE
i CHARACTER IN AL.
iRETURN TO TINY BASIC FOR THIS USER WHEN
iTHE CHARACTER IS RECEIVED.

i SAVE REG I STERS
iPUT STOP BITS IN WITH THE CHARACTER TO
i TO BE OUTPUT.
iSHIFT LEFT TO SET UP START BIT (0) IN
iTHE LOW ORDER BIT POSITION.
iTRANSFER CHARACTER TO TEMPORARY STORAGE
iFOR OUTPUT TO THE TERMINAL.
iRESET OUTCYCLES AND BIT COUNT.

iSET STATUS TO OUTPUT MODE.
iGO SAVE STATUS, SETUP STACK FOR IRET
iTO IORTI AND SWITCH TO THE OTHER USER.
i STORE THE AX REG.
iRETURN TO TINY BASIC FOR THIS USER WHEN
iTHE CHARACTER HAS BEEN TRANSMITTED.

AFN-l0550A

~1ACRO ASSE"'BLER

R

R

R

R

R

I'lTBASC

LINE

1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566

1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585

AP-106

SOURCE

THIS IS THE TIMER INTERRUPT SERVICE ROUTINE WHICH
PERFORMS TERMINAL INPUT AND OUTPUT AND MULTIPLEXES
THE CPU TIME BETWEEN THE TWO USERS.

TIMOUT: CALL SVREG
MOV OX, INPORT
IN AL,DX
MOV AH,AL
MOV OX, INPRT2
IN AL,DX
PUSH AX

MOV CX,AX
MOV DX,OUTPORT
CALL OUTWORD
MOV STACKP,SP
MOV DX,OUTPT2
MOV AX,00040H
MOV SS,AX

MOV ES,AX
MOV DS,AX
MOV SP,STACKP
CALL OUTWORD
MOV OX, INPRT2

CALL INBYTE
POP CX
MOV CL,CH
MOV OX, INPORT
CALL INBYTE

USER?: MOV AL,STATUS
AND AL 03H
JZ CKU2

MOV AX,00040H
JMP PRETl

CKU2: MOV AL,STATS2
AND AL 03H
JZ SWUS
XOR AX,AX
JMP PRETl

SWUS: MOV AX,CS:STACKS
XOR AX,0040H

PRET1: MOV SS,AX
MOV DS,AX
MOV SP,STACKP

32

iSAVE REGISTERS OF CURRENT USER.

iGET INPUT FROM USER1.
i SAVE IN AH.

iGET INPUT FROM USER2.
iSAVE SAMPLES FROM BOTH USERS FOR SECOND
i SAMPLE TIME.
i INPUT DATA, SAVE IN CX

iOUTPUT BIT FOR USER 1
; SAVE USER1 STACK POINTER.
iLOAD 110 ADDRESS FOR USER2 OUTPUT.
iSWITCH TO USER2.
; SET STACK, DATA AND EXTRA SEGMENTS TO
i USER2.

iLOAD USER2 STACK POINTER.
iOUTPUT BIT FOR USER 2
iTAKE SECOND INPUT DATA SAMPLE FOR
iUSER2. CX HAS FIRST SAMPL~.
i ASSEMBLE INPUT.
iRESTORE FIRST SAMPLE TAKEN FOR USERI.
iRESTORE PORT l'S BYTE.
iTAKE SECOND SAMPLE FOR USERl.
i ASSEMBLE INPUT.

iCHECK USER 1 STATUS.

;JUMP IF USERI NOT IN CO OR CI,
i CHECK USER 2.
iUSER 1 IN CO OR CI, SET SEGMENTS
iFOR USER2 SINCE USERl IS IN 110.
iCHECK USER 2 STATUS.

iJUMP IF USER2 ALSO IS NOT IN CO OR CI.
iBOTH USERS IN 110, DEFAULT TO USER1.

iSWITCH USERS: GET CURRENT STACK SEGMENT.
i SWITCH STACKS.
iLOAD SEGMENT REGISTERS.

AFN-10550A

intel' AP-1 06

1'1ACRO ASSEMBLER MTBASC

LOC DB,) LINE SOURCE

FC6E 1F 1586 PDP DS JRESToRE USERS MACHINE STATE FOR TINY
FC6F 07 1587 PDP ES J BASIC EXECUTION.
FC70 5D 1588 PDP BP
FC71 5F 1589 PDP DI
FC72 5E 1590 PDP SI
FC73 5A 1591 PDP DX
FC74 59 1592 PDP CX
FC75 5B 1593 PDP BX
FC76 58 1594 POP AX
Fe77 CF 1595 IRET ; RETURN TO TINY BASIC FOR ACTIVE USER

1596 joR IORTI IF BOTH USERS ARE IDLE (IN liD).
1597
1598 +1 $EJ

33 AFN-10550A

MACRD f\SSEMBLER

LOC DBJ

FC78 AOAF10
FC7B 2403
FC7D 7514
FC7F A1AB10
FC82 8AIEAEI0
FC86 80CBFE
FG89 F6D3
FC8B OAC3
FC8D EE
FC8E D1F8
FC90 A3AI310
FC93 FE06AFI0
FC97 803EAF1003
F"C9C 750b
FC9E C606AF100090

FCA4 C3

FCA!';· 8A1EAE10
FCA9 8AFB
FCAB 80E301
FCAE 743A
FCBO 803EAFI000
FCBS 7520
FCB7 FE06AAI0
FCBB 803EAAI00A

FCCO 7515

FCC2 C606AE100090
FCC8 BB08FC
FCCB 8926A710

FCCF 83C416
FCD2 53

FCD3 8B26A710
FCD7 59

FCD8 8926A710
FCDC 33CO
FCDE 8EDO
FCEO BEDB
FCE2 BECO
FCE4 BB26A710
FCE8 51
FCE9 C3

R

R
R

R
R
R

R

R

R

R
R

R
R
R

R

R

R

"1TBASC

LINE

1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633

1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
164B
1649
1650
1651
1652

SOURCE

AP-106

THIS ROUTINE OUTPUTS THE CHARACTERS TO THE
TERMINAL A BIT AT A TIME. IF NO CHARACTERS ARE BEING
TRANSMITTED, A STOP BIT IS SENT.

OUTWORD MOV AL,CONNT iONLY OUTPUT EVERY 3RD CYCLE.
AND AL,03H
JNZ OUT!
MOV AX,WORDOT
MOV BL,STATUS
OR BL,OFEH
NOT BL
OR AL,BL
OUT DX,AL
SAR AX, 1
MOV WORDOT,AX

i NOT ON THIS CYCLE.
i LOAD WORD OUT.
i LOAD STATUS BYTE.

i FORCE THE
iLOW ORDER BIT TO BE A STOP BIT
i IF NOT IN CO ROUTINE.
iSHIFT FOR NEXT BIT TO OUTPUT.
iSAVE FOR NEXT BIT TIME.

OUT 1 • INC CONNT i INCREMENT COUNT.
CMP CONNT,3
JNE OTRT
MOV CONNT, 0

iJUMP IF STILL TRANSMITTING THIS BIT.
iRESET COUNT IF EGUAL TO 3. CONNT=O

OTRT' RET
i INDICATES TIME TO BEGIN TRANSMITTING
i THE NEXT BIT.

THIS ROUTINE CONSTRUCTS THE BIT RECEIVED AND
ASSEMBLES THE BITS INTO CHARACTERS.

INBYTE. MOV BL,STATUS
MOV BH,BL

i LOAD STATUS.
i AND SAVE FOR LATER.
iTEST FOR OUTPUT STATUS.

RSST:

BRET:

AND BL,01H
JZ CKIN
CMP CONNT,O
JNZ BRET
INC OUTCYC
CMP OUTCYC, 10

JNE BRET

iUSER IN OUTPUT MODE.
iRETURN IF STILL TRANSMITTING THIS BIT.
i INCREMENT NUMBER OF BITS TRANSMITTED.
iTEST IF ALL HAVE BEEN SENT INCLUDING
iSTART AND STOP BITS.
iRETURN IF STILL TRANSMITTING THIS

MOV STATUS,OOH i IF ALL BITS HAVE BEEN TRANSMITTED,
MOV BX,OFFSETCCGROUP:CORT) iRESET STATUS AND MODIFY THE
MOV STACKP,SP iUSERS STACK TO RETURN TO CORT AND TINY

iBASIC RATHER THAN THE WAIT LOOP AT IORTI.
ADD SP,22
PUSH BX

MOV SP,STACKP
POP CX

MOV STACKP,SP
XOR AX,AX
MOV SS,AX
MOV DS,AX
MOV ES,AX
MOV SP.STACKP
PUSH CX
RET

34

iMOFIFY IP ON THE STACK TO RETURN TO
i PROPER ROUTINE.
iRESTORE STACK POINTER.
iSAVE IP SO IT CAN BE RESTORED AFTER
; STACK SWITCH.

; SWITCH TO USERI IN CASE THIS WAS USER2.

iRESTORE RETURN ADDRESS
i AND RETURN.

AFN-10550A

AP-106

11ACRO ASSEi'1BLER MTBASC

L.DC OI3J LINE SOURCE

1653
1654 THESE ROUTINES ARE USED BY INBYTE TO CONTRUCT
1655 THE INPUT CHARACTERS.
1656

FCEA 8ADF 1657 CKIN MOV BL,BH ; SEE IF IN INPUT MODE.
FeEC 80[]O2 1658 AND BL,02H
FCEF 74E6 1659 JZ BRET ; RETURN IF NOT IN INPUT MODE.
FCF1 80E704 1660 AND BH,04H ; SEE IF STILL WAITING FOR START BIT.
FCF4 7468 1661 JZ WAITST ; JMP IF STILL WAITING.
FCF6 80E1BO 1662 AND CL,80H ; TEST THE BIT SAMPLED THE FIRST TIME.
FCF9 7407 1663 JZ CK1 ; IF BIT-IN IS A 0, SHIFT LEF-T
FCFB D10EA510 R 1664 ROR BITSS, 1 ; ELSE SHIFT BYTE RIGHT.
FCFF EBO;)'10 1665 JMP CK2
FD02 DI06A510 R 1666 CK1 : ROL BITSS, 1
FD06 EC 1667 CK2 IN AL DX ; TAKE A SECOND SAMPLE.
FD07 2480 1668 AND AL,80H ; TEST IT AND SHIFT BITSS RIGHT OR
FD09 7407 1669 JZ CK3 ; LEFT ACCORDINGLY.
FDOB D10FA510 R 1670 ROR BITSS, 1
FDOF EBO;j90 1671 JMP CK4
FD12 D10(~,A510 R 1e-/,'.2 CK3: ROL BITSS, 1
FD16 FE06AF10 R 1672 CK4 INC CONNT ; UP COUNT BY 1-
FD1A 803EAF1003 R 1674 CMP CONNT,3 ; TEST IF DONE SAMPLING THIS BIT t...:INDOW.
FD1F 75B6 1675 JNZ BRET ; IF NOT THIRD COUNT, WAIT FOR MORE
FD21 C606AF100090 R 1676 MOV CONNT,O ; ELSE RESET CONNT.
FD27 AIA510 R 1677 MOV AX,BITSS ;BRING IN VOTE.
FD2A C706A510FFOO R 1678 MOV BITSS,OOFFH ; RESET VOTE COUNTER.
FD30 80E480 1679 AND AH,80H ; SAVE THE RESULTING BIT
FD33 D02EAD10 R 1680 SHR BYTE!N, 1 ; MAKE ROOM FOR NEXT BIT.
FD37 0826AD10 R 1681 OR BYTEIN,AH ; OR ON NEXT BIT (MAJORITY RULE).
FD3B FE06A910 R 1682 INC INCYCL ; ALL BITS IN?
FD3F 80:3EA91009 R 1683 CMP INCYCL,9
FD44 7591 1684 JNE BRET ; JUMP IF NOT AND WAIT FOR MORE.
FD46 C606A9100090 R 1685 MOV INCYCL,O ; ALL RECEIVED, RESET INCYCLE.
FD4C 8026AD107F90 R 1686 AND BYTEIN,7FH ; PREPARE BYTE IN FOR RETURN TO PROGRAM
FD52 C606AE100090 R 1687 MOV STATUS, ° ; RESET STATUS
FD5S BBEBFB R 1688 MOV BX,OFFSET(CGROUP:CIRT) ; SET BX TO RETURN LOCATION C IRT.
FD5B E96DFF 1689 JMP RSST ;GO MODIFY STACK FOR PROPER RETURN.
FD5E 80E180 1690 WAITST: AND CL,80H ; SEE IF THIS IS A START BIT
FDb1 7403 1691 JZ SETST
FD63 E971FF 1692 JMP BRET ; NO START BIT
FD66 C606AE1OO690 R 1693 SETST: MOV STATUS, 6 ; START BIT FOUND, SET STATUS TO INPUT MODE.
FD6C C606AF100190 R 1694 MOV CONNT, 1 ; SET COUNT AS IF ° HAS BEEN ENTERED (IT HAS)
FD72 C706A510FEOl R 1695 MOV BITSS,OlFEH ; INITIALIZE BIT SAMPLE WORD.
FD78 E95CFF 1696 JMP BRET

1697 +1 $EJ

35 AFN-10550A

FD"7B 891EOOIO
FD7F 5B
FD80 50
FD81 FF360010
FDes 51
FD86 52
FDfl7 56
F08S 57
F089 55
FD8A 06
FOBB IE
FD8C B926A710
FD90 BCDI
FD92 33CO
FD94 BEDO
FD96 SEeo
FD9B BEDS
FD9A BS;;'6A710
FD9E 2E890EOCOO
FDA3 53
FDA4 C3
FDA5

R

R

R

R

MTBASC

LINE

1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726

AP-106

SOURCE

THIS ROUTINE SAVES THE STATE OF THE MACHINE FOR
THE CURRENT USER AND RETURNS TO USERI.

SVREG MoV ELI,BX
POP BX
PUSH AX
PUSH BLl
PUSH CX
PUSH OX
PUSH SI
PUSH 01
PUSH BP
PUSH ES
PUSH OS
MoV STACKP,SP
MoV CX,SS
XoR AX,AX
MoV SS,AX
MoV ES,AX
MOV DS,AX
MoV SP,STACKP
MoV CS: STACKS, CX
PUSH BX
RET

LSTRoM LABEL BYTE
CODE ENDS

; SAVE THE RETUNE ADDRESS ON THE STACK
; IN THE BX REGISTER.
; SAVE THE CURRENT MACHINE STATE.

; SAVE THE STACK POINTER.

; SWITCH TO USER 1.
; LOAD SEGMENT REGISTERS.

iLOAD THIS USERS STACK POINTER
; SAVE PREVIOUS USERS STACK SEGMENT.
iRESToRE THE RETURN ADDRESS.
; AND RETURN.

1727 +1 $EJ

36 AFN-10550A

MACRO ASSEMBLER

LaC OBJ

FFFO
FFFO EA3FFB------

1000
1 000 -~,-~,-,,?

1 002 ?-~r~<'"

1004 0000
1006 FFFF
1008 00
1009 00
100A 0000
looe 00
1000 0000
lOOF
100F 0000
1011 0000
1013 0000
1015 0000
1017 0000
1019 0000
101B 90F5
101D BOlO

1020

1020 (52
??
)

1054 (1
??

R

R
R

MTBASC

LINE

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775

1776

AP-106

SOURCE

COME HERE AFTER RESET AND JUMP TO INITIALIZATION.

CODE1 SEGMENT WORD PUBLIC 'CODE'
ORG OFFFOH

JMP FAR PTR INIT
CODEI ENDS

; JUMP TO INIT

DATA STRUCTURE DEFINITION

THIS SECTION DEFINES THE DATA STUCTURE WHICH CONTAINS THE
VARIABLES AND CONTROL INFORMATION FOR EACH USER IN THE SYSTEM.
NOTE THE STRUCTURE IS DEFINED ONLY ONCE SINCE ALL OFFSETS ARE
FORMED RELATIVE TO THE SEGMENT REGISTERS WHICH ARE TRANSPARENT
TO THE USERS. THIS DEFINITION SERVES AS A TEMPLATE FOR CONTRUCTING
THE OFFSETS USED, AND IS REPLICATED FOR EACH USER.

DATA SEGMENT WORD PUBLIC 'DATA'
ORG 1000H iTINY BASIC VARIABLES.
BLl DW ?
BL2 DW ?
ZERO DW 0
M1 DW -1
POLO DB 0
RICI DB 0
CURRNT DW 0
Z DB 0
STKGOS DW 0
VARNXT LABEL WORD
STKINP DW 0
LOPVAR DW 0
LOP INC DW 0
LOPLMT DW 0
LOPLN DW 0
LOPPT DW 0
RANPNT DW CGROUP:START
TXTUNF DW DGROUP:TXTBGN

DATA ENDS

DATA2 SEGMENT WORD 'DATA'
ORG 01020H

VARBGN DB 2*26 DUP (?)

DB 1 DUP (?)

;O.S. VARIABLES FOR EACH USERS 1/0.

1777 +1 $EJ

37 AFN-10550A

~iACRO liSSEl'lBLER I"1TBASC

LOC O13J LINE

1055 (80 1778
,,-: .. -::,

10AS 1779
10AS ':.'-:.,.-::,.:.' 1780
10A7 "-:,.-.... -.... ":. 1781
10A9 '")-",:=' 1782
10AA .-).-... 1783
10AB '??'?? 1784
lOAD ."').-... 1785
10AE .-: .. -... 1786
lOAF ,:.,.-;. 1787
14AE 1788
14AE -"")","":. 1789

1790
1791
1792

1300 1793
1300 1794
1300 (255 1795

.~) "~l

13FF 1796
1797
1798

FB3F 1799

ASSEMBLY COMPLETE, NO ERRORS FOUND

AP-106

SOURCE

BUFFER DB 80 DUP (?) iLINE BUFFER FOR CRT lID.

BUFEND
BITSS
STACKP
INCYCL
OUTCYC
WORDOT
BYTEIN
STATUS
CONNT

STATS2
DATA2

STACK

STKLMT

STK

STACK
END

LABEL BYTE
DW ?
DW ?
DB ?
DB ?
DW ~,

DB ?
DB ?
DB ?
ORG 14AEH
DB ?
ENDS

iSAMPLE STORAGE FOR INCOMING BIT RECOGNITION.
iUSER STACK POINTER WHEN IDLE.
i INPUT BIT COUNT.
iSERIAL OUTPUT BIT COUNT.
iSTORAGE FOR CHARACTERS BEING DISASSEMBLED.
iSTORAGE FOR CHARACTERS BEING ASSEMBLED.
i 1/0 MODE STATUS.
iBIT INPUT SAMPLE OR OUTPUT TIMING COUNT.

i lID MODE STATUS FOR USER 2.

SEGMENT WORD STACK 'STACK'
ORG 01300H
LABEL BYTE
DB OFFH DUP (?)

LABEL

ENDS
INIT

WORD

38 AFN-10550A

intJ
3065 Bowers Avenue
Santa Clara, California 95051
Tel: (408) 987-8080
TWX: 910-338-0026
TELEX: 34-6372

ALABAMA

Intel Corp.
303 Williams Avenue, S.w.
Suite 1422
Huntsville 35801
Tel: (205) 533-9353

ARIZONA

Intel Corp.
10210 N. 25th Avenue, Suite 11
Phoenix 85021
Tel: (602) 997-9695

BFA
4426 North Saddle Bag Trail
Scottsdale 85251
Tel: (602) 994-5400

CALIFORNIA

Intel Corp.
7670 Opportunity Rd.
Suite 135
San Diego 92111
Tel: (714) 268-3563

Intel Corp.'
2000 East 4th Street
Suite 100
Santa Ana 92705
Tel: (714) 835-9642
TWX: 910-595-1114

Intel Corp.'
5530 Corbin Avenue
Suite 120
Tarzana 91356
Tel. (213) 986-9510
TWX: 910-495-2045

~nte~ Corp. '"
3375 Scott Blvd.
Santa Clara 95051
Tel: (408) 987-8086
TWX: 910-339-9279

910-338-0255

Earle Associates, Inc.
4617 Ruffner Street
Suite 202
San Diego 92111
Tel: (714) 278-5441

Mac-I
P.O. Box 1420
Cupertino 95014
Tel: (408) 257-9880

Mac-I
558 Valley Way
Calaveras Business Park
Milpitas 95035
Tel: (408) 946-8885

Mac-I
P.O. Box 8763
Fountain Valley 92708
Tel: (714) 839-3341

Mac-I
1321 Centinela Avenue
Suite 1
Santa Monica 90404
Tel: (213) 829-4797

Mac-I
20121 Ventura Blvd., Suite 240E
Woodland Hills 91364
Tel: (213) 347-5900

COLORADO

Intel Corp.'
650 S. Cherry Street
Suite 720
Denver 80222
Tel: (303) 321-8086
TWX: 910-931-2289

CONNECTICUT

Intel Corp.
Peacock Alley
36 Padanaram Road
Danbury 06810
Tel: (203) 792-8366
TWX: 710-456-1199

flORIDA

Intel Corp.
1001 NW. 62nd Street, Suite 406
Ft. Lauderdale 33309
Tel: (305) 771·0600
TWX: 510-956-9407

u.s. AND CANADIAN SALES OFFICES

FLORIDA (cont.)

Intel Corp.
5151 Adanson Street, Suite 203
Orlando 32804
Tel: (305) 628-2393
TWX: 810-853-9219

GEORGIA

Intel Corp.
3300 Holcomb Bridge Rd.
Norcross 30092

ILLINOIS

Intel Corp:
2550 Golf Road, Suite 815
Rolling Meadows 60008
Tel: (312) 981-7200
TWX: 910-651-5881

Technical Representatives
1502 North Linde Street
Bloomington 61701
Tel: (309) 829-8080

INDIANA

Intel Corp.
9101 Wesleyan Road
Suite 204
Indianapolis 46268
Tel: (317) 299-0623

IOWA

Technical Representatives, Inc.
St. Andrews Building
1930 St. Andrews Drive N.E.
Cedar Rapids 52405
Tel: (319) 393-5510

KANSAS

Intel Corp.
9393 W. 110th St., Ste. 265
Overland Park 66210
Tel: (913) 642-8080

Technical Representatives, Inc.
8245 Nieman Road, Suite 100
Lenexa 66214
Tel: (913) 888-0212, 3, & 4
TWX: 910-749-6412

Technical Representatives, Inc.
360 N. Rock Road
Suite 4
Wichita 67206
Tel: (316) 681-0242

MARYLAND

Intel Corp.'
7257 Parkway Drive
Hanover 21076
Tel: (301) 796-7500
TWX: 710-862-1944

Mesa Inc.
16021 Industrial Dr.
Gaithersburg 20760
Tel: (301) 948-4350

MASSACH USETTS

Intel Corp.'
27 Industrial Ave.
Chelmsford 01824
Tel: (617) 667-8126
TWX: 710-343-6333

EMC Corp.
381 Elliot Street
Newton 02164
Tel: (617) 244-4740
TWX: 922531

MICHIGAN

Intel Corp:
26500 Northwestern Hwy.
Suite 401
Southfield 48075
Tel: (313) 353-0920
TWX: 810·244-4915

iiiiNNESOTA

Intel Corp.
7401 Metro Blvd.
Suite 355
Edina 55435
Tel: (612) 835-6722
TWX: 910-576-2867

MiSSOURi

Intel Corp.
502 Earth City Plaza
Suite 121
Earth City 63045
Tel: (314) 291-1990

Technical Representatives. Inc.'
502 Earth City Plaza
Suite 201
Earth City 63045
Tel: (314) 291-0001

Technical Representatives, Inc.'
VSW Bldg. Suite 560
406 W. 31st Street
Kansas City 64111
Tel: (816) 756-3575
TWX: 910-771-0025

NEW JERSEY

Intel Corp.'
Raritan Plaza
2nd Floor
Raritan Center
Edison 08817
Tel: (201) 225-3000
TWX: 710-480-6238

NEW MEXICO

BFA Corporation
1704 Moon N.E., Suite 7
Las Cruces 87112
Tel: (505) 523-0601
TWX: 910-983-0543

BFA Corporation
3705 Westerfield, N.E.
Albuqueraue 87111
Tel: (505) 292·1212
TWX: 910-989·1157

NEW YORK

Intel Corp.'
300 Motor Pkwy.
Hauppauge 11787
Tel: (516) 231·3300
TWX: 510-227-6236

Intel Corp.
80 Washington St.
Poughkeepsie 12601
Tel: (914) 473-2303
TWX: 510-248-0060

Intel Corp:
2255 Lyell Avenue
Lower Floor East Suite
Rochester 14606
Tel: (716) 254-6120
TWX: 510-253-7391

Measurement Technology, Inc.
159 Northern Boulevard
Great Neck 11021
Tel: (516) 482-3500

T-Squared
4054 Newcourt Avenue
Syracuse 13206
Tel: (315) 463-8592
TWX: 710-541-0554

T-Squared
2 E. Main
Victor 14564
Tel: (716) 924-9101
TWX: 510-254-8542

NORTH CAROLINA

Intel Corp.
154 Huffman Mill Rd.
Burlington 27215
Tel: (919) 584-3631

OHiO

Intel Corp.'
6500 Poe Avenue
Dayton 45415
Tel: (513) 890-5350
TWX: 810-450-2528

Intel Corp:
Chagrin-Brainard Bldg., No. 300
28001 Chagrin Blvd.
Cleveland 44122
Tel: (216) 464-2736
TWX: 810-427-9298

September 1980

OREGON

Intel Corp.
10700 S.W. Beaverton
Hillsdale Highway
Suite 324
Beaverton 97005
Tel: (503) 641-8086
TWX: 910-467-8741

PENNSYLVANIA

Intel Corp.'
275 Commerce Dr.
200 Office Center
Suite 300
Fort Washington 19034
Tel: (215) 542·9444
TWX: 510-661-2077

Intel Corp.'
201 Penn Center Boulevard
Suite 301W
Pittsburgh 15235
Tel: (412) 823-4970

Q.E.D. Electronics
300 N. York Road
Hatboro 19040
Tel: (215) 674-9600

TEXAS

Intel Corp.'
2925 L.B.J. Freeway
Suite 175
Dallas 75234
Tel: (214) 241-9521
TWX: 910-860-5617

Intel COip. '"
6420 Richmond Ave.
Suite 280
Houston 77057
Tel: (713) 784-3400
TWX: 910-881·2490

Industrial Digital Systems Corp.
5925· Sovereign
Suite 101
Houston 77036
Tel: (713) 988-9421

Intel Corp.
313 E. Anderson Lane
Suite 314
Austin 78752
Tel: (512) 454-3628

WASHINGTON

Intel Corp.
Suite 114, Bldg. 3
1603 116th Ave. N.E.
Bellevue 98005
Tel (206) 453-8086
TWX: 910·443·3002

WISCONSIN

Intel Corp.
150 S. Sunnyslope Rd
Brookfield 53005
Tel: (414) 784·9060

CANADA

Intel Semiconductor Corp.'
Suite 233, Bell Mews
39 Highway 7, Bells Corners
Ottawa, Ontario K2H 8R2
Tel: (613) 829-9714
TELEX: 053-4115

Intel Semiconductor Corp.
50 Galaxy Blvd.
Unit 12
Rexdale, Ontario
M9W 4Y5
Tel (.l,16) 67 5.2 105
TELEX: 06983574

Multilek, Inc.'
15 Grenfell Crescent
Ottawa, Ontario K2G OG3
Tel: (613) 226-2365
TELEX 053·4585

Muiiilek, Inc.
Toronto
Tel: (416) 245-4622

Multilek, Inc.
Montreal
Tel: (514) 481·1350

• Field Application Location

il1tel
3065 Bowers Avenue
Santa Clara, California 95051
Tel: (408) 987-8080
TWX: 910-338-0026
TELEX: 34-6372

ALABAMA

tHamiltonlAvnet Electronics
4812 Commercial Drive NW.
Huntsville 35805
Tel: (205) 837-7210

tPioneerlHuntsville
1207 Putman Drive NW
Huntsville 35805
Tel: (205) 837-9033
TWX: 810-726-2197

ARIZONA

tHamilton/Avnet Electronics
2615 S. 21st Street
Phoenix 85034
Tel: (602) 275-7851

tWyle Distribution Group
8155 N. 24th Avenue
Phoenix 85021
Tel: (602) 995-9185
TWX: 910-951-4282

CALIFORNIA

Arrow Electronics, Inc.
9511 Ridge Haven Court
San Diego 92123
Tel: (714) 565-4800

Arrow Electronics, Inc.
720 Palomar Avenue
Sunnyvale, California 94086
Tel: (408) 739-3011
TWX: 910-339-9371

tAvnet Electronics
350 McCormick Avenue
Costa Mesa 92626
Tel: (714) 754-6051
TWX: 910-595-1928

Hamilton/Avnet Electronics
1175 Bordeaux Dr.
(".,_ ,_''":'. "."01':'

Tel: (408) 743-3300
TWX: 910-339-9332

tHamilton/Avnet Electronics
8917 Complex Drive
San Diego 92123
Tel: (714) 571-7923
TWX: 910-335-1216

tHamilton/Avnet Electronics
10912 W. Washington Blvd.
Culver City 90230
Tel: (213) 558-2193
TWX: 910-340-6364 or 7073

tHamilton Electro Sales
3170 Pullman Street
Costa Mesa 92626
Tel: (714) 641-4100
TWX: 910-595·2638

tWyle Distribution Group
124 Maryland Street
EI Segundo 90245
Tel: (213) 322-3826
TWX: 910-348-7140 or 7111

tWyle Distribution Group
9525 Chesapeake Dr.
San Diego 92123
Tel: (714) 565-9171
TWX: 910-335-1590

tWyle Distribution Group
3000 Bowers Avenue
Santa Clara 95052
Tel: (408) 727-2500
TWX: 910-338-0451 or 0296

Wyle Distribution Group
17872 Cowan Avenue
Irvine 92714
Tel: (714) 641-1611

COLORADO

tWyle Distribution Group
6777 E. 50th Avenue
Commerce City 80022
Tel: (303) 287-9611
TWX: 910-931-0510

tHamilton/Avnet Electronics
8765 E. Orchard Road
Suite 708
Englewood 80111
Tel: (303) 534-1212
TWX: 910-931-0510

u.s. AND CANADIAN DISTRIBUTORS

COLORADO (cont.)

Wyle Distribution Group
451 E. 124th Avenue
Thornton 80241
Tel: (303) 457-WYLE
TWX: 910-931-0510

CONNECTICUT

t Arrow Electronics
12 Beaumont Road
Wallingford 06512
Tel: (203) 265-7741
TWX: 710-476-0162

tHamiltonlAvnet Electronics
Commerce Industrial Park
Commerce Drive
Danbury 06810
Tel: (203) 797-2800
TWX: 710-456-9974

tHarvey Electronics
112 Main Street
Norwalk 06851
Tel: (203) 853-1515
TWX: 710-468-3373
TWX: 710-393-6770
FLORIDA

t Arrow Electronics
1001 NW. 62nd Street
Suite 108
Ft. Lauderdale 33309
Tel: (305) 776-7790
TWX: 510-955-9456

tArrow Electronics
115 Palm Bay Road, NW
Suite 10, Bldg. 200
Palm Bay 32905
Tel: (305) 725-1480
TWX: 510-959-6337

tHamiltonlAvnet Electronics
6800 Northwest 20th Ave.
rt. Lauoeroale JJJI.I'::!

Tel: (305) 971-2900
TWX: 510-955-3097

Hamilton/Avnet Electronics
3197 Tech_ Drive North
SI- Petersburg 33702
Tel: (813) 576-3930
TWX: 810-863-0374

tPioneer/Orlando
6220 S. Orange Blossom Trail
Suite 412
Orlando 32809
Tel: (305) 859-3600
TWX: 810-850-0177

GEORGIA

Arrow Electronics
2979 Pacific Drive
Norcross 30071
Tel: (404) 449-8252
TWX: 810-757-4213

tHamilton/Avnet Electronics
6700 1-85 Access Road, No. 11
Suite 1E
Norcross 30071
Tel: (404) 448-0800

ILLINOIS

Arrow Electronics
492 Lunt Avenue
P.O. Box 94248
Schaumburg 60172
Tel: (312) 893-9420
TWX: 910-222-1807

tHamilton/Avnet Electronics
3901 No. 25th Avenue
Schiller Park 60176
Tel: (312) 678-6310
TWX: 910-227-0060

Pioneer/Chicago
1551 Carmen Drive
Elk Grove 60007
Tel: (312) 437-9680
TWX: 910-222-1834

INDIANA

tHamiltonlAvnet Electronics
485 Gradle Drive
Carmel 46032
Tel: (317) 844-9333

Pioneerllndiana
6408 Castleplace Drive
Indianapolis 46250
Tel: (317) 849-7300
TWX: 810-260-1794

KANSAS

tHamilton/Avnet Electronics
9219 Quivira Road
Overland Park 66215
Tel: (913) 888-8900

tComponent Specialties, Inc.
8369 Nieman Road
Lenexa 66214
Tel: (913) 492-3555

MARYLAND

Arrow Electronics, Inc_
4801 Benson Avenue
Baltimore 21227
Tel: (301) 247-5200

tHamiltonlAvnet Electronics
7235 Standard Drive
Hanover 21076
Tel: (301) 796-5684
TWX: 710-862-1861

tPioneerlWashington
9100 Gaither Road
Gaithersburg 20760
Tel: (301) 948-0710
TWX: 710-828-0545

MASSACHUSETTS

tHamilton/Avnet Electronics
en T_ .• ,'C' .. ~I-$: __ "_ .. I

Woburn 01801
Tel: (617) 273-7500
TWX: 710-393-0382

tArrow Electronics
96D Commerce Way
Woburn 01801
Tel: (617) 933-8130
TWX: 710-393-6770

Harvey/Boston
44 Hartwell Ave.
Lexington 02173
Tel: (617) 861-9200
TWX: 710-326-6617

MICHIGAN

tArrow Electronics
3810 Varsity Drive
Ann Arbor 48104
Tel: (313) 971-8220
TWX: 810-223-6020

t Pioneerl M ic hig an
13485 Stamford
Livonia 48150
Tel: (313) 525-1800
TWX: 810-242-3271

tHamilton/Avnet Electronics
32487 Schoolcraft Road
Livonia 48150
Tel: (313) 522-4700
TWX: 810-242-8775

MINNESOTA

t Arrow Electronics
5230 W. 73rd Street
Edina 55435
Tel: (612) 830-1800
TWX: 910-756-2726

tlndustrial Components
5229 Edina Industrial Blvd.
Minneapolis 55435
Tel: (612) 831-2666
TWX: 910-756-3153

t Hamilton/Avnet Electronics
7449 Cahill Road
Edina 55435
Tel: (612) 941-3801
TWX: 910-576-2720

September 1980

MISSOURI

tHamiltonlAvnet Electronics
13743 Shoreline Ct.
Earth City, 63045
Tel: (314) 344-1200
TWX: 910-762-0606

NEW HAMPSHIRE

t Arrow Electronics
1 Perimeter Drive
Manchester 03103
Tel: (603) 668-6968
TWX: 710-220-1684

NEW JERSEY

tArrow Electronics
Pleasant Valley Avenue
Moorestown 08057
Tel: (215) 928-1800
TWX: 710-897-0829

t Arrow Electronics
285 Midland Avenue
Saddle Brook 07662
Tel: (201) 797-5800
TWX: 710-998-2206

tHamiltonlAvnet Electronics
1 Keystone Ave.
Bldg. 36
Cherry Hill 08003
Tel: (609) 424-0100
TWX: 710-897-1405

tHarvey Electronics
45 Route 46
Pinebrook 07058
Tel: (201) 227-1262
TWX: 710-734-4382

HamiltonlAvnet Electronics
10 Industrial Road
Fairfield 07006
Tel: (201) 575-3390
I WA: 11U-/J4-44Jb

NEW MEXICO

tAliiance Electronics Inc.
11030 Cochiti S.E.
Albuquerque 87123
Tel: (505) 292-3360
TWX: 910-989-1151

tHamiltonlAvnet Electronics
2524 Baylor Drive, S.E.
Albuquerque 87119
Tel: (505) 765-1500

NEW YORK

tArrow Electronics
3000 South Winton Road
Rochester 14623
Tel: (716) 275-0300
TWX: 510-253-4766

t Arrow Electronics
7705 Maltlage Drive
Liverpool 13088
Tel: (315) 652-1000
TWX: 710-545-0230

Arrow Electronics
20 Oser Avenue
Hauppauge 11787
Tel: (516) 231-1000
TWX: 510-227-6623

tHamiitonlAvnet Electronics
333 Metro Park
Rochester 14623
Tel: (716) 475-9130
TWX: 510-253-5470

tHamiltonlAvnet Electronics
16 Corporate Circle
E. Syracuse 13057
Tel: (315) 437-2641

tHamiltonlAvnet Electronics
5 Hub Drive
Melville, Long Island 11746
Tel: (516) 454-6000
TWX: 510-252-0893

tMicrocomputer System Technical Demonstrator Centers

3065 Bowers Avenue
Santa Clara, California 95051
Tel: (408) 987·8080
TWX: 910·338·0026
TELEX: 34·6372

NEW YORK (cont.)

Harvey Electronics
P.O. Box 1208
Binghampton 13902
Tel: (607) 748·8211
TWX: 510·252·0893

t Harvey Electronics
60 Crossways Park West
Woodbury 11797
Tel: (516) 921·8700
TWX: 510·221·2184

H arveyl Roc heste r
840 Fairport Park
Fairport 14450
Tel: (716) 381·7070
TWX: 510·253·7001

NORTH CAROLINA

Arrow Electronics
938 Burke Street
Winston·Salem 27102
Tel: (919) 725·8711
TWX: 510·922·4765

Pioneer/Carolina
106 Industrial Ave.
Greensboro 27406
Tel: (919) 273·4441
TWX: 510·925·1114

tHamilton/Avnet Electronics
2803 Industrial Drive
Raleigh 27609
Tel: (919) 829·8030

OHIO

Arrow Electronics
7620 McEwen Road
Centerville 45459
Tel: (513) 435-5563
TWX: 810-459·1611

Arrow Electronics
6238 Cochran Rd.
Solon 44139
Tel: (216) 248·3990
TWX: 810-427·9409

Arrow Electronics
10 Knollcrest Dr.
Cincinnati 45237
Tel: (513) 761·5432
TWX: 810·461·2670

tHamilton/Avnet Electronics
954 Senate Drive
Dayton 45459
Tel: (513) 433·0610
TWX: 910-340-2531

tHamilton/Avnet Electronics
4588 Emery Industrial Parkway
Warrensville Heights 44128
Tel: (216) 831·3500
TWX: 810·427·9452

t Pioneerl Dayton
1900 Troy Street
Dayton 45404
Tel: (513) 236·9900
TWX: 810-459·1622

tPioneer/Cleveland
4800 E. 131st Street
Cleveland 44105
Tel: (216) 587·3600
TWX: 810·422·2210

OKLAHOMA

tComponents Specialties, Inc.
7n n r AnoLL. 1:'1. ___ .1-

I ~'v c VlIJ ..:llllCt:a

Tulsa 74145
Tel: (918) 664·2820
TWX: 910-845·2215

OREGON

t Almac/Stroum Electronics
8022 SW. Nimbus, Bldg. 7
Beaverton 97005
Tel: (503) 641·9070

tHamilton/Avnet Electronics
6024 SW Jean Rd.
Bldg. C, Suite 10
Lake Oswego 97034
Tel: (503) 635·7848

u.s. AND CANADIAN DISTRIBUTORS

PENNSYLVANIA

tArrow Electronics
4297 Greensburg Pike
Suite 3114
Pittsburgh 15221
Tel: (412) 351~400c

Pioneer/Pittsburgh
259 Kappa Drive
Pittsburgh 15238
Tel: (412) 782·2300
TWX: 710·795-3122

Pioneer/Delaware Valley
261 Gibraltar Road
Horsham 19044
Tel: (215) 674·4000
TWX: 510-665·6778

TEXAS

Arrow Electronics
13715 Gamma Road
Dallas 75234
Tel: (214) 386·7500
TWX: 910-861-5495

Arrow ElectroniCS, Inc.
10700 Corporate Drive, Suite 100
Stafford 77477
Tel: (713) 491·4100

Component Specialties Inc.
8222 Jamestown Drive
Suite 115
Austin 78758
Tel: (512) 837-8922
TWX: 910-874·1320

tComponent Specialties, Inc.
10807 Shady Trail, Suite 101
Dallas 75220
Tel: (214) 357-6511
TWX: 910-861·4999

tComponent Specialties, Inc.
8585 Commerce Park Drive, suite 590
Houston 77036
Tel: (713) 771·7237
TWX: 910-881·2422

Hamilton/Avnet Electronics
2401 Rutland
Austin 78758
Tel: (512) 837-8911

tHamilton/Avnet Electronics
2111 W. Walnut Hill Lane
Irving 75062
Tel: (214) 661·4111
TWX: 910-860·5371

tHamilton/Avnet Electronics
3939 Ann Arbor Drive
Houston 77063
Tel: (713) 780·1771

UTAH

tHamilton/Avnet Electronics
1585 West 2100 South
Salt Lake City 84119
Tel: (801) 972·2800

WASHINGTON

tAlmac/Stroum Electronics
5811 Sixth Ave. South
Seattle 98108
Tel: (206) 763-2300
TWX: 910-444-2067

Arrow Electronics, Inc.
Electronics Distribution Division
1059 Andover Park East
Tukwiia 98188
Tel: (206) 575-0907

tHamilton/Avnet Electronics
14212 N.E. 21st Street
Bellevue 98005
Tel: (206) 453-5844

WASHINGTON (cont.)

tWyle Distribution Group
;750 132nd Avenue NE
Bellevue 98005
Tel: (206) 453-8300
T\AIV. n-tn A AI') "lIl: c­
I W',,"/'\.. v IV· v-L;.}c:U

WISCONSIN

tArrow Electronics
430 W. Rawson Avenue
Oak Creek 53154
Tel: (414) 764-6600
TWX: 910-338-0026

tHamilton/Avnet Electronics
2975 Moorland Road
New Berlin 53151
Tel: (414) 784-4510
TWX: 910·262·1182

CANADA

ALBERTA

tL.A. Varah Ltd.
4742 14th Street N.E.
Calgary T2D 6L7
Tel: (403) 230·1235
TWX: 018·258·97

Zentronics
9224 27th Avenue
Edmonton T6N 1 B2
Tel: (403) 463·3014

Zentronics
3651 21st N.E.
Calgary T2E 6T5
Tel: (403) 230-1422

BRITISH COLUMBIA

tL.A. Varah Ltd.
2077 Alberta Street
Vancouver V5Y 1 C4
Tel: (604) 873·3211
TWX: 610-929·1068

Zentronics
550 Cambie St.
Vancouver V6B 2N7
Tel: (604) 688·2533
TWX: 04·5077·89

MANITOBA

L.A. Varah
1·1832 King Edward Street
Winnipeg R2R ON1
Tel: (204) 633·6190
TWX: 07·55·365

Zentronics
590 Berry St.
Winnipeg R3H OS1
Tel: (204) 775-8661

ONTARIO

tHamilton/Avnet Electronics
3688 Rexwood Road, Units G & H
Mississauga L4V 1 M5
Tel: (416) 677·7432
TWX: 610·492·8860

tHamilton/Avnet Electronics
1735 Courtwood Crescent
Ottawa K2C 3J2
Tel: (613) 226·1700
TWX: 053-4971

tL.A. Varah, Ltd.
505 Kertora .A.vertlJe
Hamilton L8E 3P2
Tel: (416) 561·9311
TWX: 061-8349

tZentronics
141 Catherine Street
Ottawa K2P 1 C3
Tel: (613) 238-6411
TWX: 053·3636

t Zentronics
1355 Meyerside Drive
M ississauga, Ontario L5T 1 C9
Tel: (416) 676·9000
Telex: 06-983-657

September 1980

QUEBEC

tHamilton/Avnet Electronics
2670 Sabourin Street
St. Laurent H4S 1 M2
Tel: (514) 331·6443
TWX: 610·421·3731

Zentronics
5010 Pare Street
Montreal H4P 1 P3
Tel: (514) 735·5361
TWX: 05·827·535

tMicrocomputer System Technical Demonstrator Centers

3065 Bowers Avenue INTERNATIONAL SALES AND MARKETING OFFICES
Santa Clara, California 95051
Tel: (408) 987-8080
TWX: 910-338-0026
TELEX: 34-6372

INTERNATIONAL DISTRIB UTORSI REPRESENTATIVES

ARGENTINA

Micro Sistemas S.A
9 De Julio 561
Cordoba
Tel 54-51-32-880
TELEX 51837 BICCO

AUSTRALIA

A.J.F. Systems & Components Pty Ltd
310 Queen Street
Melbourne
Victoria 3000
Tel:
TELEX

Warburton Franki
Corporate Headquarters
372 Eastern Valley Way
Chatswood, New South Wales 2067
Tel 407-3261
TELEX: AA 21299

AUSTRIA

Bacher Elektronische Geraete GmbH
Rotenmulgasse 26
A 1120 Vienna
Tel (0222) 83 63 96
TELEX, (01) 1532

Reklrsch Elektronlk Geraete GmbH
Llchtensteinstrasse 97
Al000 Vienna
Tel (222) 347646
TELEX 74759

BELGIUM

jnelco Belgium S.A
Ave. des CroIx de Gue're 94
B1120 Brussels
Tel (02) 21601 60
TELEX 25441

Icotron S.A
0511-Av. Mutlnga 3650
6 Andar
Ptrltuba-Sao Paulo
Tel: 261-0211
TELEX (011) 222 ICO BR

CHILE

DIN
Av. VIC Mc kenna 204
Castlla 6055
Santiago
Tel 227 564
TELEX 3520003

CHINA

C.M Technologies
525 University Avenue
SUite A-40
Palo Alto, CA 94301

COLOMBIA

International Computer Machines
Carrera 7 No_ 72-34
Apdo-Aereo 19403
Bogota 1
Tel: 211-7282
TELEX: 713141NCO

CYPRUS

Cyprus Eltrom Electronics
PO Box 5393
Nicosia
Tel: 21-27982

DENMARK

STL-Lyngso Komponent A,'S
Ostmarken 4
DK,2860 So borg
Tel (01) 67 0077
TELEX 22990

ScandinaVian Semiconductor
SUPPlY AiS
Nannasgade 18
DK-2200 Copenhagen
Tel 101) 83 50 90
TELEX 19037

FINLAND

Oy Fintronic AB
Melkonkatu 24 A
SF-00210
Helsinki 21
Tel 0-692 6022
TELEX 124224 Ftron SF

FRANCE

Celdis SA"
53, Rue Charles Frerot
F-94250 Gentilly
Tel (1) 581 0020
TELEX 200 485

Feutrier
Rue des Trois Glorieuses
F-42270 SI. Priest-en-Jarez
Tel: (77) 74 67 33
TELEX: 300021

Metrologle"
La Tour d'Asnleres
4, Avenue Laurent Cely
92606-Asnieres
Tel: 791 4444
TELEX: 611 448

Tekelec Airtronlc"
Cite des Bruyeres
Rue Carle Vernet
F-92310 Sevres
Tel: (1)5347535
TELEX. 204552

GERMANY

Electronic 2000 Vertriebs Gm:J'1
Neumarkter Strasse 75
D-8000 Munich 80
Tel: (089) 434061
TELEX 522561

Jermyn GmbH
Postlilch 1180
LJ-bUII l.,amoerg
Tel (06434) 231
TELEX: 484426

Kontron Elektronlk GmbH
Breslauerstrasse 2
8057 Eching B
D-8000 Munich
Tel: (89) 319,011
TELEX 522122

Neye Enatechnik GmbH
Schillerstrasse 14
D-2085 Quickborn-Hamburg
Tel: (04106) 6121
TELEX: 02-13590

GREECE

American Technical Enterprises
POBox 156
Athens
Tel: 30-1-8811271

30-1-8219470

HONG KONG

Schmidt & Co.
28/F Wing on Center
Connaught Road
Hong Kong
Tel: 5-455-644
TELEX: 74766 Schmc Hx

INDIA

Micronic Devices
104/109C, Nirmal Industrial Estate
Sion (E)
Bombay 400022, India
Tel 486-170
TELEX 011-5947 MDEV IN

ISRAEL

Eastronlcs Ltd."
11 Rozanis Street
PO. Box 39300
Tel Aviv 61390
Tei 475151
TELEX 33638

ITALY

Eledra 3S SPA"
Vlale Elvezla, 18
120154 Milan
Tel (02) 3493.041·318544'
TELEX. 332332

JAPAN

Asahl Electronics Co Ltd
KMM Bldg. Room 407
2-14-1 Asano, Kokura
Klta-Ku, Kltokyushu City 802
Tel (093) 511-6471
TELEX AECKY 7126-16

Hamilton-Avnet Electronics Japan Ltd
YU and YOU Bldg 1-4 Horidome,Cho
Nlhonbashi
Tel: (03) 662-9911
TELEX 2523774

Ryoyo Electric Corp
Konwa Bldg
1-12-22, Tsukiji, 1-Chome
Chuo-Ku, Tokyo 104
Tel: (03) 543-7711

Tokyo Electron Ltd,
No, 1 Higashikata-Machi
Midori-Ku, Yokohama 226
Tel: (045) 471-8811
TELEX: 781-4473

KOREA

Koram Digital
Room 909 Woonam Bldg
7, 1-KA Bongre-Dong
Chung-Ku Seoul
Tel 23-8123
TELEX K23542 HANSINT

Leewood International, Inc
CPO Box 4046
112-25, SOkong-Dong
Chung-Ku, Seoul 100
Tel. 28-5927
CABLE "LEEWOOD' Seoul

MEXICO

Proveedora Electronlca, S.A (Proesa!
Prol Moctezuma Ote 24
vOl HOllleru ue 1 erle,u::,
Apdo. Postal 21·139
MexIco 21, D.F
TELEX 017-72402 SAULME

NETHERLANDS

Inelco Nether. Comp Sys BV
Turfstekerstraat 63
Aalsmeer 1431 D
Te I (2977) 28855
TELEX 14693

Koning & Hartman
Koperwerf 30
2544 EN Den Haag
Tel (70) 210.101
TELEX 31528

NEW ZEALAND

W K. McLean Ltd
P.O. Box 18-065
Glenn Innes, Auckland,
Tel 587-037
TELEX NZ2763 KOSFY

NORWAY

Nordlsk Elektronik (Norge) AIS
Postollice Box 122
Smedsvingen 4
1364 Hvalstad
Tel: 02786210
TELEX: 17546

PORTUGAL

Dltram
Componentes E Electronica LDA
Av, Miguel Bombarda, 133
Lisboa 1
Tel (19) 545313
TELEX 14347 GESPIC

SINGAPORE

General Engineers Associates
Blk 3, 1003-1008, 10th Floor
P S A ~lJlti·Storey Comp1e't
Telok BlangahlPasir Panjang
Singapore 5
Tel 271-3163
TELEX. RS23987 GENERCO

September 1980

SOUTH AFRICA

ElectroniC Building Elements
Pine Square
18th Street
Hazelwood, Pretoria 0001
Tel 789 221
TELEX 30181SA

SPAIN

Interlace S.A
Ronda San Pedro 22, 3'
Barcelona 10
Tel. 301 7851
TWX. 51508

ITT SESA
Miguel Angel 16
Madrid 10
Tel (1) 4190957
TELEX 27707127461

SWEDEN

AB Gosta Backstrom
Box 12009
10221 Stockholm
Tel (08) 541080
TELEX 10135

Nordlsk Electronlk AB
Box 27301
S-10254 Stockholm
Tel (08) 635040
TELEX 10547

SWITZERLAND

Industrade AG
Gemsenstrasse 2
Postcheck 80 - 21190
CH-8021 ZUrich
Tel (01) 60 22 30
TELEX. 56788

Taiwan Automation Co."
3d Floor # 75, Section 4
Nanking East Road
Taipei
Tel 771-0940
TELEX 11942 TAIAUTO

TURKEY

Turkelek ElectroniCS
Apapurk Boulevard 169
Ankara
Tel. 189483

UNITED KINGDOM

Com way Microsystems Ltd
Market Street
68-Bracknell, Berkshire
Tel, (344) 51654
TELEX 847201

G.E.C. Semiconductors Ltd
East Lane
North Wembley
Middlesex HA9 7PP
Tel: (01)904-9303/908-4111
TELEX: 28817

Jermyn Industries
Vestry Estate
Sevenoaks, Kent
Tel (0732) 501.44
TELEX: 95142

Rapid Recall, Ltd
6 Soho Mills Ind. Park
Wooburn Green
Bucks, England
Tel (6285) 24961
TELEX 849439

S,ntrom Electronics Ltd "
ArkWright Road 2
Reading, Berkshire RG2 OLS
Tel (0734) 85464
TE'LEX: 847395

VENEZUELA

Componentes y Circultos
Electronicos TTLCA C A

Apar1ado 3223
Caracas 101
Tel 718-100
TELEX 21795 TELET!POS

"Field Application Location

3065 Bowers Avenue INTERNATIONAL SALES AND MARKETING OFFICES
Santa Clara, California 95051
Tei: (408) 987-8080
TWX: 910-338-0026
TELEX: 34-6372

INTEL® MARKETING OFFICES

AUSTRALIA

Intel Semiconductor Pty., ltd.
Suite 2, Level 15, North Point
100 Miller Street
North Sydney, NSW, 2060
Tel: 450-847
TELEX: AA 20097

BELGIUM

Intel Corporation SA
Rue du Moulin a Papier 51
Boite 1
B-1160 Brussels
Tel: (02) 660 30 10
TELEX: 24814

DENMARK

Intel Denmark AIS'
Lyngbyvej 32 2nd Floor
DK-21oo Copenhagen East
Tel: (01) 182000
TELEX: 19567

FINLAND

Intel Finland OY
Sentnerikuja 3
SF - 00400 Helsinki 40
Tel: (0) 558531
TELEX: 123 332

FRANCE

Intel Corporation, S.A.R.l.'
5 Place de la Balance
Silic 223
94528 Rungis Cedex
Tel: (01) 687 22 21
TELEX: 270475

GERMANY

Intel Semiconductor GmbH'
Seid!strasse 27
8000 Muenchen 2
Tel: (089) 53 891
TELEX: 523 177

Intel Semiconductor GmbH
Mainzer Strasse 75
6200 Wiesbaden 1
Tel: (06121) 700874
TELEX: 04186183

Intel Semiconductor GmbH
Wernerstrasse 67
P.O. Box 1460
7012 Fellbach
Tel: (0711) 580082
TELEX: 7254826

Intel Semiconductor GmbH
Hohenzollern Strasse 5
3000 Hannover 1
Tel: (0511) 327081
TELEX: 923625

Intel Semiconductor GmbH
Oberrathstrasse 2
4000 Duesseldorf 30
Te!: (0211) 651054-6
TELEX: 8586977

HONG KONG

Intel Semiconductoi Ltd.
99-105 Des Voeux Rd., Central
18F, Unit B
Hong Kong
Tel: 5-450-847
TELEX: 63869

ISRAEL

Intel Semiconductor ltd.'
P.O. Box 2404
Haifa
Tel: 972/452 4261
TELEX: 92246511

ITALY

Intel Corporation Italia, S.p.A.
Corso Sempione 39
1-20145 Milano
Tel: 2/34.93287
TELEX: 311271

JAPAN

Intel Japan K.K.'
Flower Hill-Shinmachi East Bldg.
1-23-9, Shin machi, Setagaya-ku
Tokyo 154
Tel: (03) 426-9261
TELEX: 781-28426

NETHERLANDS

Intel Semiconductor B.V.
Cometongebouw
Westblaak 106
3012 Km Rotterdam
Tel: (10) 149122
TELEX: 22283

NORWAY

Intel Norway AIS
P.O. Box 92
Hvamveien 4
N-2013
Skjetten
Tel: (2) 742420
TELEX: 18018

September 1980

SWEDEN

Intel Sweden A.B.'
Box 20092
Alpvagen 17
S-16120 Bromma
Tel: (08) 98 53 90
TELEX: 12261

SWITZERLAND

Intel Semiconductor A.G.
Forchstrasse 95
CH 8032 Zurich
Tel: 1-554502
TELEX: 557 89 ich ch

UNITED KINGDOM

Intel Corporation (U.K.) ltd.'
5 Hospital Street
Nantwich, Cheshire CW5 5RE
Tel: (0270) 62 65 60
TELEX: 36620

Intel Corporation (U.K.) ltd.
Dorcan House
Eldine Drive
Swindon, Wiltshire SN3 3TU
Tel: (0793) 26101
TELEX: 444447 INT SWN

• Field Application Location

int I~ ... e.e
INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, CA 95051 (408) 987-8080

Printed in U.S.A./T -45/1 080/1 OK CBM 0 LR SW

