Intel APPLICATION AP-130
NOTE |

March 1982

John Wharton is currently the Technical Director of Applications Research, Sunnyvale, California. Please direct any
questions or comments to your local FAE (field applications engineer).

CP/M and CP/M-86 are trademarks of Digital Research Incorporated.

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may
appear in this document nor does it make a commitment to update the information contained herein.

The following are trademarks of Intel Corporation and may only be used to identify Intel Products:

BXP, CREDIT, i, ICE, iCS, im, IMMX, Insite, Intel, intcl, Intelevision,
Intellec, iOSP, iRMX, iSBC, iSBX, Library Manager, MCS,
Megachassis, Micromainframe, Micromap, Multimodule,
Plug-A-Bubble, PROMPT, RMX/80, System 2000 and UPI.

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered trademark of
Mohawk Data Sciences Corporation.

*MULTIBUS is a patented Intel bus.

Additional copies of this manual or other Intel literature may be obtained from:

Intel Corporation

Literature Department SV3-3
3065 Bowers Avenue

Santa Clara, CA 95051

¢ INTEL CORPORATION, 1982

Using Operating System Contents
Firmware Components

. . INTRODUCTION i, 1
TO Slsmpllfy Hardware EVOLUTION OF PROCESSOR EXTENSIONS 2
and ftware DeSIQH Real-Time Operating Systems 2

SYSTEM HARDWARE DESIGN 5
Basic Functional Blocks 5
80130 Pin Functions ..., 6
Additional System Requirements 9
Timing Considerations, 10
Example System Design ool 12

APPLICATION SOFTWARE DEVELOPMENT 12
Hardware Initialization 13
Simple TimeDelaysc.oouiiiiii i 15
Stepper Motor Control 15
Real-Time Interrupt Processing 15
Mutual EXCIUSIONooiiei i .17
Intertask Communication 18
Segments, Messages, and Mailboxes 19
Console Command Interpreter 20
Initialization Task i i 21
Code Translation i, 22

SOFTWARE CONFIGURATION AND INTEGRATION 22
Configuring OSP SupportCode 23
Linking and Locating ApplicationJobs 24
Creating the RootJob iiat. 25
Programming EPROMS ool 26

SUMMARY ... e 27

APPENDIX A. EXAMPLE SYSTEM SCHEMATICS A-1

APPENDIX B. SOURCE CODE LISTINGS B-1

APPENDIXC. SYSTEM MEMORYMAP C-1

APPENDIX D. SUPPORT CODE LOCATEMAP D-1

APPENDIX E. APPLICATION JOB LOCATEMAP E-1

APPENDIX F. ROOT JOB LOCATEMAP F-1

il AFN-02058A

MAr-iov

INTRODUCTION

Intel recently introduced a new set of extensions to its
microprocessor product line. The iAPX 86/30 and
iAPX88/30 Operating System Processors (OSPs) aug-
ment the general-purpose instruction set of the well-
known 8086/8088 architecture to include common,
real-time, operating system capabilities. A single
device, the 80130 Operating System Firmware compo-
nent (OSF), now provides hardware support for func-
tions previously relegated to software.

The 80130 introduces new concepts in the areas of both
hardware and software. At first glance, traditional
component-level hardware designers could feel some-
what intimidated by the esoteric concepts and un-
familiar buzzwords encountered in the software world.
Even the experts in conventional operating system
(OS) design may initially find it strange that what used
to be “‘soft’’ software routines are now cast in silicon.

This application note is intended for readers at both
levels. The first section reviews the development of
processor extensions in general and operating system
firmware in particular. Later sections should help you
understand what a real-time operating system can do,
how the 80130 provides these capabilities, and how to

design system hardware and software to take advantage
of such features.

The note also documents a complete (albeit simple)
system, including schematics and listings. The reader
may wish to reconstruct this system to get started with
OSPs. Finally, a step-by-step description of the so-
called ‘‘configuration” process shows how physical
system parameters are incorporated into the software
as the software is ‘‘installed” in memory. Through-
out the note are a number of ‘‘exercises’”’—questions
relating to concepts just presented. Please take a
few moments to think about these questions before
reading on.

The reader need not have worked with operating sys-
tems previously, though such background would be
helpful. The reader should also know something about
microprocessor hardware—at a minimum, how the
8086 or 8088 devices operate. For simplicity, most of the
software examples are written in PL/M-86, so the
reader should be familiar with PL./M-80 or some other
block-structured language. Finally, be forewarned that
the configuration steps make use of several ISIS utility
programs, including EDIT, SUBMIT, ASM86,
LINK86, and LOC86. Readers who wish to brush up on
any of the above should consult the appropriate Intel
reference manuals.

Vss 11 —/ 40 :] Vee
014]2 39 [apt1s
AD13 [: 3 38 :] BHE
o1z [4 a7 7
Aot s 36 e
apto[|s 35 :] IRS
AD9 [: 7 al ma
aos [s 33 []ms
a07[]9 32 [m2
Aps [10 0130 g []
Aps [11 30 [o
AD4 [: 12 29[] Nt

AD3 E 13 28 : s2
AD2 [14 7 [7]&

AD1 E 15 26 j S0

Do [16 25 [] Ack

memcs [17 [|Tm
iocs [1s 23 [svsick

CLK |: 19 22 : DELAY

Vss: 20 21 :I BAUD

MAX MAX
“ooe 'soss

VSS[_: 1 N 40 3 Vee

aota[] 2 39 :] AD15

ao13[] a8 [] avers

apr2[] s 37[] ap171s4

aon [s 36 [] ataiss

apto[s a5 [] ateiss

aps[7 34 [] eress7 (HigH)

as[|8 33 [] mNiwix

a7(Je o w[]

AD6 10 8088 3t RQ/GTO
O 8088 [] AaiaTo

apos [11 30 [] RaGTi
apa [] 12 29 [] toek
aos [13 »[|m
AD2 D 14 27 [&

ao1 [%]
oo [] 16 5[Jaso
NMI E 17 24 j as1
INTR [: 18 23]TST
ck []19 22 [] neaoy

Vss E 20 2 :| RESET

Figure 1. 8086 and 80130 Pinout Diagrams

1

AFN-02058A

AP-130

EVOLUTION OF PROCESSOR
EXTENSIONS

In the early days of microcomputing (circa 1974), things
were simple. The first microprocessors comprised just
the central processing unit of a simple computer. Sys-
tems built up from these processors were generally
small, dedicated-purpose device controllers—often
replacing the random logic of an earlier design. The
system designer had responsibility for the development
of the hardware and all application software.

Semiconductor technology has progressed rapidly
since then. Devices have become more sophisticated,
as have the applications in which they are used. System
functions today are more complex than they used to be,
and are demanding more in the way of both system
hardware and software.

To help designers cope with this complexity, semicon-
ductor vendors are building increasingly more
“‘functionality’’ into their standard product lines.
Whereas the general arithmetic functions of the 8080
and 8085 were limited to addition and subtraction of
eight-bit unsigned (ordinal) values, for example, the
Intel® 8088 and 8086 now add, subtract, multiply, or
divide eight- or 16-bit, signed or unsigned variables
—an obvious improvement.

The evolution of floating-point arithmetic provides an-
other example of technology growth. Initially, design-
ers of numeric and process-control systems each
developed the floating-point arithmetic routines they
needed. Intel eased this task considerably in 1977 when
it introduced a standard floating-point format and a
floating-point arithmetic software library, FPAL-80. In
1978, the iSBC 310 High-Speed Mathematics Unit im-
plemented these same functions with dedicated hard-
ware and executed them an order-of-magnitude faster.

The 8231A Arithmetic Processor Unit (introduced in
1979) provided similar functionality in one chip at much
lower cost. To accommodate the needs of today’s
world, the Intel RealMath™ software standard and the
8087 numeric coprocessor perform 80-bit floating-point
arithmetic for high-performance 8088 and 8086
systems.

This evolution of floating-point hardware illustrates two
recurring themes in the microcomputer industry. First,
there is a natural trend toward componentization:

1. New applications reveal a need for new types of
functionality (in this case, floating-point arithmetic).

2. As common requirements become evident, vendors
develop software to serve these needs.

3. Specialized hardware is developed to support the
established functions more simply and effectively
than software alone.

In time, everything ends up in silicon.

The second theme is this: different functions should be
implemented in different ways to fit the customer’s
needs. ‘‘Universal’” requirements—Ilike 16-bit
multiplication—are best incorporated into the CPU.
Functions needed only by certain applications—like
high-speed, extended-precision square roots—should
be provided as optional Processor Extensions so that
their expense is incurred only by those who need them.
In keeping with this philosophy, Intel currently offers
several processor extension products (see ‘‘What’s in a
Name?”’).

What'’s in a Name?

The 80130 Operating System Firmware (OSF) device is
only the latest member of an extremely flexible family
of Intel microprocessors. Its siblings include the 8086
and 8088 Central Processing Units (CPUs), the 8089 I/0
Processor (IOP), and a floating-point math coproces-
sor, the 8087 Numeric Processor Extension (NPX).
These individual standard components may be mixed
and matched in numerous ways to create combinations
optimized for widely varying applications.

To make it easier to discuss the most common con-
figurations, Intel has defined an ‘*‘Advanced Processor
Series”” (IAPX) numbering scheme, something akin to
those used in the minicomputer and mainframe worlds.
The 8086 CPU by itself, for instance, is called the iAPX
86/10. The 8086/8087 combination is dubbed the iAPX
86/20. An 8086/80130 pair has the name iAPX 86/30. The
8086, 8087, and 80130 together would form an iAPX
86/40.

When each of these combinations uses an 8088 in lieu
of the 8086, each of the numbers above substitutes
*“88” for the ““86’". An 8088 teamed with an 80130 is
therefore called the iAPX 88/30. Finally, adding an 8089
to any system changes the final zero to a one. So, an
iAPX 88/41 system would be one using the 8088/8087/
8089/80130 chip set.

Real-Time Operating Systems

Let’s turn our attention now to the subject of micro-
computer operating system software—an area steadily
growing in importance. The trends toward standardized
functions with specialized implementations will be-
come evident.

AFN-02058A

AP-130

But first, what is an operating system? The phrase
means different things to different people. In 20 words
or less: An OS is a tool, a set of programs or routines
which reduce and simplify the problem of managing
system resources. (Well, 21, actually . . .)

Most microcomputer programmers have encountered
single-user diskette operating systems, Intel’s ISIS-II®,
and CP/M® and CP/M-86® from Digital Research Incor-
porated among them. In essence, an OS of this sortis a
collection of run-time subroutines which perform
device I/O operations and give application programs
access to a disk-based file system. Along with these are
routines to supervise the loading and execution of ap-
plication programs. Historically, this type of OS is
oriented toward user-interactive applications: software
development, business computing, and the like.

In the mainframe world, the goal of an operating system
is to use expensive equipment as efficiently as possible.
Batch processing systems ensure that programs waste
as little CPU time as possible, though each monopolizes
the CPU until it has completed. A time-sharing OS
allots short periodic “‘slices’” of time to each of several
independent users, during which each has access to the
CPU, memory, and other system resources.

A step above the traditional time-sliced OS are ‘‘real-
time, multitasking operating systems.”” But what is a
‘“‘real-time’’ application? (‘‘Don’t all programs execute
in real time?’")

A real-time system is one in which the CPU must do
many different things (tasks), all more-or-less simulta-

neously. Unlike the sequential time-sharing of
mainframe OSs, though, the tasks are prioritized. Low-
priority tasks are preempted if any of higher priority
have work to do. The higher-priority task then runs
until it must wait for some external event to occur or no
longer needs the CPU for some other reason. Thus, the
CPU services tasks in their order of importance.

A computer controlling factory machinery, for in-
stance, might perform five separate tasks:

1. Monitor input switches to detect emergency condi-
tions, determine intended operating mode, or update
indicator lights showing machine status;

2. Drive a stepper motor to position a tool;
3. Keep track of the time of day;

4. Send output to the console (e.g., CRT), either in
response to explicit commands or as part of some
other task;)

5. Read and process characters entered from a console
keyboard.

These tasks seem largely unrelated, though the first few
may be more important to system operation
than the others. Let’s consider some alternate
ways to accomplish thése functions with today’s
microcomputers.

Conceptually, the most straightforward approach might
be to dedicate a separate computer to each. The pro-
gram for each would then be quite simple: an initializa-
tion phase followed by an endless loop performing the
dedicated function. Algorithms for the first four tasks

MONITOR STATUS CONTROL MOTOR

INITIALIZE CURRENT SET INITIAL
STATUS MOTOR POSITION

are flowcharted in Figure 2.

Y

DELAY TIME INTER-
VAL CORRESPONDING
TO SAMPLING RATE

!

READ STATE OF
INPUT SIGNALS

!

WRITE MACHINE
STATUS TO INDI-
CATOR LIGHTS

L

WAIT UNTIL ONE
STEP TIME HAS
EXPIRED

1S
MOTOR AT DESIRED
POSITION?

STEP IN APPRO-
PRIATE DIRECTION

]

INITIALIZE COUNTERS INITIALIZE CONSOLE
WITH CURRENT TIME INTERFACE DEVICE
DELAY ONE WAIT UNTIL A
SECOND MESSAGE IS READY
INCREMENT TIME- OUTPUT MESSAGE
OF-DAY COUNTERS TO CONSOLE

Figure 2. Flowcharts for Concurrent Machine-Tool Tasks

3

AFN-02058A

AP-130

What’s wrong with this approach? Ignoring cost, the
need for multiple CPUs becomes physically unrealistic
for more than a few tasks—60, say, or 600. And tasks
are rarely fully independent; note that the switches
monitored by task 1 could affect task 2, and that tasks 4
and 5 interact with the rest of the system in as yet
undefined ways. So, some sort of communications
would have to be set up between the micros.

Exercise 1. Suppose five tasks are all interrelated.
How many communications channels would have
to be set up between different processors? If each
channel requires two dedicated communication

chips, how would the number of peripheral
devices compare with the number of CPUs?

In each task, the CPU spends most of its time waiting
for time to pass or for something to happen. One CPU
would be able to implement all five tasks if its time were
properly divided among them. An alternate approach,
then, might be for a single processor to attend to each
task in turn, performing the actions called for by each.
Figure 3 shows a flowchart for this scheme. Only one
CPU is required and the tasks can communicate be-
tween themselves and share physical resources like the
console.

COMBINED TASKS

!

INITIALIZE CURRENT
STATUS

:

SET INITIAL MOTOR
POSITION

l

INITIALIZE COUNTERS
WITH TIME

!

INITIALIZE CONSOLE
INTERFACE

C D,

HAS
STATUS SAMPLING
INTERVAL
EXPIRED?

READ STATE OF
INPUT SIGNALS

WRITE MACHINE STATUS
TO INDICATOR LIGHTS

HAS
STEPPING INTERVAL
EXPIRED?

IS
MOTOR AT DESIRED
POSITION?

STEP IN APPRO-
PRIATE DIRECTION

HAS
ONE SECOND
EXPIRED?

INCREMENT TIME-
OF-DAY COUNTERS

ARE
ANY MESSAGES
READY?

OUTPUT MESSAGE
TO CONSOLE

Figure 3. Machine-Tool Tasks Implemented Via Polling Scheme

4

AFN-02058A

AP-130

The problem here is the heavy interaction between
tasks. Before it can be serviced, an important task may
have to wait for many other less critical tasks to com-
plete. This imposes a constraint that each task release
the CPU as quickly as possible. Also, lumping tasks
together obscures the boundaries between them. In-
itialization sequences must be grouped with each other,
rather than with the sections of code affected. Adding to
or deleting any task may affect the others. It’s not clear
how to structure the program such that programmers
could cooperate on such a program.

Moreover, the various tasks can interfere with each
other. Suppose on a given pass through the processor
loop, three tasks each send one new character of a
message to the console display screen. The resulting
output would be most interesting.

The third, and optimal approach, would be one which
combined the advantages of the first two approaches,
while avoiding the pitfalls. Each function of the overall
system could be designed, written, and tested sepa-
rately, as in the first approach, yet all the software
would run on a single computer system as in the
second. Tasks could therefore communicate with each
other easily, and share peripherals such as CRTs. This
multitask control and communication function could be
performed largely through software.

The key is finding a way to properly budget CPU time
between the various tasks. Early pioneers of complex,
real-time, control system design found that they needed
special routines, apart from the application tasks them-
selves, to supervise the execution of application tasks.
It was (at best) an inconvenience for so many engineers
to independently define, design, document, test and
debug software with the same general purpose. At
worst, schedules slipped or projects were cancelled for
the lack of reliable executive software.

To help avoid these hazards and free up the designers to
concentrate on more immediate goals, Intel developed
iRMX 80, the first real-time, multitasking, executive
operating system for microprocessors. iRMX 86 was
introduced to the 16-bit world two years later in 1980.

Because of the critical real-time nature of such operat-
ing systems, they require certain hardware capabilities
in the host system, such as special timer logic clocked at
certain frequencies to measure the passing of time, and
interrupt controllers to monitor assorted asynchronous
events. Combine all this with a handful of memory
chips to house just the OS software, and the address
decode and control logic needed by all of the above, and
you’ll find you need the equivalent of a single-board
computer system just to support a multitasking
environment.

Until now, that is. The current trend is to integrate OS
software and hardware functions into silicon. Intel’s
iAPX 432 32-bit MicroMainframe™ system does this
within the CPU. For the 16-bit world, however, Intel
provides a separate chip, the 80130, which contains
operating system firmware as well as timer and inter-
rupt control functions.

What is the 80130 OSF? It is an extremely sophisticated
integrated circuit, fabricated using Intel’s high-
performance HMOS technology, which contains over
160,000 devices. In one 40-pin package (Figure 4), the
80130 combines several timers, multiple-mode inter-
rupt control logic, and a large control store memory
—plus buffers, decoders and the like—to form the in-
tegrated heart of a multitasking operating system.
Compared with the iRMX 86 Nucleus, for example, the
80130 replaces an 8259A PIC, an 8253 PIT, a special
oscillator, 16K bytes’ worth of memory, and associated
control logic.

The 80130 operates in conjunction with the 8086 CPU.
Together, the two chips are called the iAPX 86/30 OSP.
The same device may be paired just as easily with an
8088 forming the iAPX 88/30. From here on, though,
references to the 8086 or “‘host processor’ apply to
both CPUs. Due to the high speed of HMOS, the 80130
currently runs at system clock rates up to 8 MHz with-
out inserting any wait states. Firmware in the 80130
supports the 35 primitive functions listed in Table 1.
Many of these are discussed in Chapter IV.

SYSTEM HARDWARE DESIGN

The 80130 supports a wide range of system architec-
tures, from compact to quite complex. Most, however,
have in common the functional blocks represented in
Figure 5. After a brief review of iAPX 86/30 systems in
general, we’ll examine 80130 requirements in greater
detail.

Basic Functional Blocks

In addition to the 80130, the central processing ‘‘core’
of a typical OSP system would include an 8088 or 8086
operating in maximum mode, an 82843A clock
generator, and an 8288 system controller, all connected
according to the standard rules. More on the 80130-
specific interconnects later.

Address latches (e.g., 8282s or 8283s) are generally
needed to demultiplex the processor address bus for
standard memory devices and for memory and I/O
device-select logic. The number (from zero to three
octal latches) depends on the host processor,
memories, and the addressing scheme employed. Data

AFN-02058A

AP-130

Table 1. Operating System Primitives Supported by 80130

Task Management

Interrupt Management

Send Message
Receive Message
Create Mailbox
Delete Mailbox

Suspend Task Set Interrupt
Resume Task Signal Interrupt
Sleep Reset Interrupt
Create Task Enter Interrupt
Delete Task Wait Interrupt
Set Priority Exit Interrupt
Get Task Tokens Enable
Disable
Get Level
Intertask Communications and Synchronization Free M y M. /System Partitioning

Create Segment
Delete Segment
Create Job

Mutual Exclusion Control
Receive Control
Accept Control
Send Control
Create Region
Delete Region

Misc. Support
Signal Exception
Get Type
Disable Deletion
Enable Deletion
Set O.S. Extension
Get Exception Handler
Set Exception Handler

transceivers (8286s or 8287s) may also be needed for
increased bus buffering.

Any complete microprocessor system must also have

some combination of I/O peripherals and memory, col-

lectively indicated by the box labeled ‘‘Local Re-
sources.”” As we shall see, some of the system RAM
and ROM (or EPROM) must be reserved for OSP itself.
Additional logic decodes the latched address lines to
generate chip-select signals for the memory and I/O
devices.

This note only discusses simple, single-processor sys-
tems. More sophisticated architectures may incor-
porate a multimaster system bus, in addition to a local
processor bus. This would require additional system
controllers, address latches, and bus transceivers for
bus isolation, and address mapping logic (not shown) to
select between the various busses, enable the respec-
tive transceivers, generate a System Ready signal, and
so forth. For design information on such techniques,
refer to application note AP-67 in the iAPX 86,88 User’s
Manual.

80130 Pin Functions

Back to the 80130. Certain pins on the 80130 (in particu-
lar, AD15-AD0) attach directly to the CPU. The AD
pins are bidirectional, accepting addresses from the
host and returning instructions or data. By monitoring
the system clock and status signals, S2-S0, the 80130
can decode the processor status internally and respond
automatically to the appropriate bus cycles. The BHE
input lets the 80130 determine the width of data trans-
fers and distinguishes an 8088 host from an 8086. If you
refer back to Figure 1, you’ll notice that these 80130 pin
assignments were selected to simplify P.C. board
layout.

Because of the 80130’s location on the CPU side of any
latches or data transceivers (on what is sometimes
called the ‘‘pin bus”’), the transceivers (if used) must be
disabled when the 80130 is driving the processor bus.
Whenever the 80130 is responding to any type of bus
cycle, it generates an ACK signal. As Figure 4 suggests,
one way to avoid contention is to simply disable the
transceivers when ACK is active. ACK can also be used
to prevent the insertion of wait states.

AFN-02058A

AP-130

r-—— - T eT e e T M
| OPERATING SYSTEM UNIT |
! |
| I
D0O-7
| | 7
: PROGRAMMABLE ;
I INTERRuPT | INTERRUPT INPUTS
| |
P
' [
| | T
| KERNEL ! INTERRUPT OUT
| CONTROL X
! STORE |
! — '
| |
| SYSTEM 4 SYSTEM
| TIMER |
| > |
| I
| |
| D8-15 |
I:“J> DELAY H—> DELAY
: K TIMER i
I > |
! I
I |
! |
| BAUD RATE . D RATE
| GENERATOR 1 BAU
!) |
! I
b= e e — - —4=-a-----—=————— -
| I
| |
| <_ —— cLock
|
| 3
| DATA BUS
TATUS
N BUFFER < INTERFACE C]I N
<—Z—>» & AND a
| ADDRESS CONTROL bk Bus conTROL
ADDRESS/ | LATCH)
DATA BUS | |
. » LOCAL
! [INTERRUPT
i_ CONTROL UNIT _} (LIR)

Figure 4. 80130 Internal Block Diagram

Additional pins on the 80130 include eight interrupt-
request inputs. Internal interrupt control logic provides
many of the functions of the 8259A. During system
configuration (Chapter V), each of the eight may be
individually defined as a direct level-sensitive or edge-
triggered interrupt request, or each may be cascaded
with a standard 8259A in slave mode.

The INT output must be connected to the host CPU to
inform it of an enabled interrupt request. In very large
systems with multiple, cascaded interrupt controllers,
Local Interrupt Request (LIR) indicates to the bus
contention logic whether a requesting slave is local, or
must be accessed via a multimaster bus.

The 80130 also contains dedicated timer logic to provide
the OS time base, which is output on SYSTICK.
Software operating in conjunction with the 81030 as-
sumes one of the interrupt inputs (INT2 in this case) is

driven by SYSTICK, so this connection must be made
externally. Routines within the 80130 initialize and per-
form all bit-level control of the interrupt and timer
logic, according to options and parameters specified
during the configuration process. Freeing the program-
mers from this tedium allows them to devote more
thought to solving their own unique problems.

An additional, independent timer generates a user-
programmable, square-wave output signal called
BAUD to clock an off-chip USART.

Since the 80130 displays some of the characteristics of
both memory and I/O, it requires chip-select signals for
both the memory (MEMCS) and I/O (I0OCS) address
spaces. These are discussed at length below. Finally,
Intel has reserved one output pin (called “DELAY"")
for use in future designs. Leave it unconnected iniAPX
86/30 systems.

AFN-02058A

V85020-N4V

+5

8284A Voo 5 CLK [\
(A1) CLK cLK s - (CONTROL BUS) _ CONTROL
READY oy - . l/ SIGNALS
+5 . 3
b ALE |
o —>| STB
BHE BHE BHE
A19 8282 Ao
= A%) | Al
At6 o * JLocat (ON-BOARD)
8086 _—10E RESOURCES
(A2) e
—>{s18 (PROM, PERIPHERALS, RAM
N.C.-{ RD ACCORDING TO APPLICATION)
Ncast ADIS 8282 [| Ass
n.c.aso i L (ks | | o
nefrock A% \r TV s
N.C.HRO/GT1 L
N.Cc.{ RO/GTO =5
NMI
TEST 8282 || '\ Ar-A
(A6) 770 LOCAL (+8YS)
INT GND MAX — / - hH / LAy (rsYS) D15-D0
LleE | PN
5 DTR
T_ INT DEN
v I
cik AcK . H
80130 \}
(A7) L T
A19-A16 .
SHE oF
BAE | A
] ADDRESS 8286
82 DECODE (A8)
50 LOGIC D8
NC. UR [2JAEK ats-as
TO SERIAL INT. <——] BAUD T
NC. DELAY Efm
—{ sysTick
ATY A7-a4 (A9)
MEMCS A4 Do
INT7
INTE
INTS
PERIPHERALS N4 ppts (ADDITIONAL BUFFERING REQUIRED
w1 PROCESSOR DATA BUS \FOR MULTI-MASTER SYSTEM)
—»{ INT2
——31INT1
—|INTo
vss_vss

|

8289 A
(A10)
SYSTEM
CONTROL
8288
(A11)
J
8283 h
(A12)
8293 SYSTEM
(A13) ADDRESS
8283
(A14))
T
OE
8287
(A15)
SYSTEM
DATA
T BUS
OE

8287
(A18)

-

e

Figure 5. Basic iAPX 86/30 Microcomputer System Block Diagram

ogl-dv

AP-130

Additional System Requirements

The OSP requires a certain amount of off-chip memory
for its own operation. The system must provide at least
1K bytes of RAM at address 00000H for the CPU
interrupt vectors, plus another 1500, bytes for OSP
system variables, data structures, stacks, and the like.
This RAM may reside anywhere in the 8086 megabyte
address space, although it is often contiguous with the
interrupt vector up front. Application tasks must each
have their own stack, so allow at least an additional 300
bytes of RAM for each.

Any iAPX 86 system must have ROM or EPROM at the
upper end of memory to hold the CPU restart vector.
About 3400 more bytes are consumed by code to initial-
ize and access the OSP. This code is generated auto-
matically from libraries on a diskette provided with a
product called the iAPX 86/30 and iAPX 88/30 Operat-
ing System Processor Support Package (iOSP 86).
Space left in the initialization EPROMs is available for
application tasks.

As code is being written, the system designer should
count on another 1500 bytes of code from the support

libraries being added to his application during the link-
ing and system configuration steps. These memory re-
quirements are shown in Figure 6. In practice, the
separate blocks in this figure would be grouped together
for more efficient use of RAM and EPROM chips.

The 80130 occupies a 16K-byte block of addresses in the
host-processor memory space, so external logic should
decode address bits Ajg-A;4 to generate MEMCS.
Similiarly, the timer and interrupt control logic occupy
a 16-byte block of addresses in the I/O space; at least
some of the bits A;5-A4 must be decoded to generate
I0CS. The 80130 decodes all the lower-order address
bits (14 for memory, four for I/O internally).

Firmware in the 80130 leaves a great deal of flexibility in
decoding the chip-select signals, to be compatible with
whatever decode logic is already present in the system.
The I/O starting address may be on any 16-byte bound-
ary in the full CPU I/O space. The memory block has
only two restrictions; the off-chip initialization and in-
terface code memory must be placed immediately
above the MEMCS block, so the 80130 may not occupy
the extreme top of memory, nor may the 80130 reside at
address 00000H since this area is reserved for interrupt
vectors.

OFFFFOH

[T

MUST BE
CONTIGUOUS

400H

iAPX 86/30 SYSTEM MEMORY REQUIREMENTS

POWER ON-LOCATION

80130 INITIALIZATION AND CONFIGURATION
CODE (ROM/EPROM)

16K FOR 80130 ON 16K BOUNDARY

} 1.5K CODE BYTES SYSTEM INITIALIZATION (ROM/EPROM)

1.5K RAM BYTES FOR IAPX 86/30 STACK AND DATA (RAM)

1K BYTES
RESERVED FOR
INTERRUPTS (RAM)

Figure 6.

9

Operating System Processor System Memory Requirements

AFN-02058A

AP-130

Timing Requirements

System timing analysis is often the most tedious part of
digital hardware design. This discussion can be rela-
‘tively short, though, because the 80130 timing is quite
simple: by design, the part is compatible with the timing
of the host processor. Since it interfaces directly with
the CPU pins, traditional set-up, hold, and access times
no longer matter.

There are really only two areas of concern in analyzing
the timing of most OSP systems, both of which relate to
the user-generated chip-select signals. Figure 7 il-
lustrates the relevant timing signals of a standard 8086
four-state Read cycle (memory or I/0O), along with the
timing responses of the 80130. I/O Write cycle timing is
the same. (Full timing diagrams are part of the respec-
tive data sheets.)

The first concern is that MEMCS and IOCS must be
active early in a memory or I/O cycle if the 80130 is to

respond during T3 . In each case, the chip-select signals
must be active Tcgep, before the end of state Ty,
Assuming wait states aren’t desired, addresses
generated by the CPU must propagate through the ad-
dress latches and be decoded during T; or T,.

How much time does this leave the decode logic? As
we’ll see, ample.

By convention, T¢y sy is the delay from the start of
T; until address information is valid on the CPU pins;
Tivov is the propagation delay through an 8282 latch;
and Tggey, is the 80130 chip-select set-up time. The
mnemonic Ty cg represents the chip-select logic prop-
agation delay, after the latch outputs are stable. The
sum of these four delays must be less than two system
clock cycles, reduced by the clock transition time.

Terav + Tivov + Toves + Tescr = Terer + Tenen
Toves = Terer + Terer = Terav = Tivov — TescL
= 12§ +125 - 60 - 30 — 20 (nsec.)
= 140 nsec.

™

ToieH
f———————

TSVCH

} T3 |
W

T4

TCLSH I TSHCL

\ I

TASCH TCLAH
F—

(BHE, A,5-A, VALID
BHE, AD;5-ADo

TCHCS

TCLVE
\

Ack TSACK

MEMCS, 10CS
TCHDH
WRITE CYCLE ’ TDSCL ¢
K ADDRESS VALID XW WRITE DATAVALID |
AD,5-AD,
—] ’4— TCSAK | -]
AcK
TSACK \
READ CYCLE Loy TCLDX TCHAK{
] FLOAT FLOAT
AD.<—AD, x ADDRESSVALD }—— —(READ DATAVALID |\ fLoaT
15° 0 — ’

Figure 7. Operating System Processor Timing Diagrams

10

AFN-02058A

AP-130

The propagation delay numbers plugged into the equa-
tion are worst-case values from the appropriate Intel
data sheets. The CPU is an 8086-2 operating at 8 MHz.
This means the address decode logic must produce
stable CS outputs within 140 nanoseconds.

Exercise 2. Using standard, low-power Schottky
TTL, does it make sense for a circuit to take
longer than 140 nsec. to decode 6 program or 12
I/O address bits? Even if the rather liberal setup
specs are not met, the 80130 would still work fine.
Wait states would be needed until the chip-select
signal was active, however, so performance
would degrade some.

The second point of concern relates to ready signal
timing. The 80130’s acknowledge output signal, ACK,
can be used to control the CPU’s ready signal. For this
case, the chip-select signal must be active early in a
memory or I/O cycle to allow activation of ACK early
enough to prevent wait states. There are two schemes
for implementing ready signals; ‘‘normally ready’’ and
“‘normally not ready.”’ (For more details, refer to AP-
67, ‘8086 System Design.’’) Chip-select timing is more
critical in some ‘‘normally not ready”’ systems.

In a “normally not ready’’ design, acknowledge signals
are generated when each resource is accessed. The
individual acknowledgements are combined to form a
system-wide ready signal which is synchronized by the
8284A clock generator via the RDY and AEN inputs.
The 8284A can be strapped to accept asynchronous
ready signals (asynchronous operation) or to accept
synchronous ready signals (synchronous operation).
Synchronous 8284A operation provides more time for
address latch propagation and chip-select decoding. In
addition, inverting ACK off chip produces an active-
high ready signal compatible with the 8284A RDY in-
puts, which have shorter set-up requirements than
AEN inputs. (As a side benefit, a NAND gate used like
this can combine ACK with the active-low acknowl-
edge signals from other parts of the system.) Based on
these assumptions, the time available for address latch
propagation and chip-select decoding at 8 MHz is:

Terav + Toves + Tesak + Rriver = Terer + Tercn
Toves = 2 Terer = Teav — Tesak — Trivew
250 - 60 - 110 - 35

=
= 45 nsec.

The circuit in Figure 8 which uses Schottky TTL com-
ponents leaves about 15 nsec. to produce MEMCS from

8288

RDY1

ASYNC
READY

80130
8086
cPU ALE OSF
A19 8D~ 8Q 61 Y7po—
Ats ™ 70 G28 ::g:
MEMORY
A17 6D 6Q G2A YAD—) pEcODE
A16 5D 5Q c Yp—
20—
AD15 4 4Q B vyijo—
AD14 3D 3Q A YOIO | MEMCS
745373 745138 KCK
Q
READY

V
cc AENA
8284A

O SYSTEM
ACKNOWLEDGE

Figure 8. High-Speed Address Decoding Circuit

11 AFN-02058A

AP-130

the high-order address bits—more than enough for the
745138 one-of-eight decoder shown.

Granted, this does not leave much leeway to fully
decode the I/O address bits. A 12-input NAND gate on
ADI15-AD4 could be used, introducing only a single
propagation delay but forcing the I/O register block to
start at OFFFOH. Incomplete decoding is also legal: it is
safe to drive IOCS with the (latched) AD15 signal di-
rectly, provided all other ports in the system are dis-
abled when this bit is low. In this case, the effective
address of the I/O block (which must be specified dur-
ing the system configuration step) could be 0000H, or
any other multiple of 16 between 0000H and 7FFOH.

Again, the OSP system will still operate even if the
memory or I/O decoding is slow. The acknowledge
signal returned to the host CPU would just be delayed
accordingly, so unnecessary wait states would be in-
serted in access cycles, but the 80130 would not mal-
function. Only rarely does the OSP access resources in
its I/O space. Even if slow decode logic were to insert
several wait states into every I/O cycle, the overall
effect on system performance would be insignificant.

A few words of caution, though. If the 8284A is strap-
ped for synchronous operation, external circuitry must
guarantee that ready-input transitions don’t violate the
latch set-up requirements. Also, the chip-select signal
must not remain low so long after the address changes
that the 80130 could respond to a non-80130 access
cycle.

Exercise 3. Suppose the typical timing values for
a particular decoder would easily meet the ready-
input set-up requirements presented above for
asynchronous 8284 A operation, but pathological
worst-case figures were just a little slow. Could
that circuit still be used safely in most applica-
tions? What would happen if the worst-case com-
bination of worst-case conditions ever actually
did occur? These occasional extra wait states
would probably not cause a hard system failure.

Exercise 4. Earlier it was mentioned that the ac-
knowledge signal could also be used to avoid bus
contention. Prove that with any decode logic
which meets the above requirements, ACK would
disable the bus transceivers before the host CPU
samples the bus.

Example System Design

Appendix A includes full schematics for a complete
iAPX 86/30 system providing considerable function-
ality with only 27 chips. In addition to the OSP, the

12

system has 4K bytes of 2114 RAM (with sockets for
another 4K), from 8K to 32K bytes of 2732A or 2764
EPROM, an 8251 A USART operating at 9600 baud, and
an 8255A Programmable Peripheral Interface with 24
parallel I/O lines. Eight of the inputs read logic values
off DIP switches; eight outputs drive small LEDs. Four
more outputs connect to the coil drivers of a four-phase
stepper motor. A layout diagram of the prototype ap-
pears in Figure 9.

The system is even simpler than the discussion of
“typical’’ requirements implied. The 8086 direct-bus
drive capability is adequate to make the data trans-
ceivers unnecessary. (To equalize the bus loading, the
8255A is connected to the upper half of the bus.) Ad-
dress decoding logic was minimized by making the
high-order address bits ‘‘don’t-cares.”” Moreover, the
part count could have been reduced to 16 using an 8088
and multiplexed-bus 8185 RAMs and 8755A EPROMs.
(The reader may be surprised to learn that, except for
wire-wrapping mistakes, the prototype system hard-
ware worked when it was first powered up. The author
certainly was!)

APPLICATION SOFTWARE
DEVELOPMENT

Like other well-structured programs, application
software to run on the iAPX 86/30 is written as a num-
ber of separate procedures or subroutines. In conven-
tional programs, though, execution begins with a
section of code (the program body) at the outermost
level. The program calls application procedures, which
may call other procedures, but which eventually run to
completion and return to the program body.

In an OSP application, though, there is no ‘‘outermost
level” in the traditional sense; rather, the procedures
are started, suspended, and resumed as situations war-
rant under the control of the OSP. The term ‘‘task”
refers to the execution of such a procedure in this way.
While an instruction stream is suspended, the OSP
keeps track of the task state (instruction counter, CPU
register contents, etc.) so that it may be resumed later.

Each task is assigned a relative priority by the program-
mer, on a scale of 0 (high priority) to 255 (low). Tasks
with higher (numerically lower) priority are given pref-
erential treatment by the OSP; the task actually control-
ling the CPU at any given instant will be the one with the
highest priority which is not waiting for some event to
occur. (If all this sounds confusing, examples coming
later may help.)

A task which operates independent of other tasks can
be written without knowing anything about the others.

AFN-02058A

AF-15V

[L

RESET 8086 8288 BYTE1
B1 D1]| [e1] [m] [n
LS s| s
73A 130 |139

— g282 L
82848 ME2 |
LSQ4 2732/ 2102 BYIEW
D2 - 2764 2764 12
F2 H2
| L]
8282 HI Lo BYTL-_EO
80130 Lso2 | E°]
B4 D3
— F4 H4
8282 BYTE 0
Lsos | B4 - Low 1a
D4
D
- 2732/ 2732]
2764 2764
1

16X 2114

L

RESISTORS SWITCHES

8255A

i) i \
k2| [z
L L]
k] [
1489

8251A
L] L] [
k| [1488

Figure 9. Example System Prototype Layout

This makes it easy to divide a very large programming
job among a team of programmers, each writing the
code for some of the tasks. Moreover, a task need not
even know if other tasks exist. They may be tested and
debugged before others have even been written. As an
application evolves, new tasks may be added or un-
necessary ones removed without affecting the rest.

The number of tasks in an application may need to be
quite large. The number of tasks allowed in one applica-
tion is essentially unlimited, as is the number of other
objects—regions, mailboxes, segments, and the like.
(The term ‘“‘object’ relates to different types of data
structures maintained internally by the OSP.) Each ob-
ject is internally identified by a unique 16-bit ‘‘token,”
which means the theoretical maximum total is over
65,000. The more pragmatic issue of physical memory
consumption limits the number of simultaneous concur-
rent tasks to ‘‘only’’ several thousand.

(When a number of tasks cooperate to accomplish some
common goal, the collection of tasks is referred to as an
application ‘‘job.” The OSP also allows for an unlimited
number of application jobs, though only one is il-
lustrated in the example discussed here. A second
similar machine, with different status switches, a differ-

13

ent motor, and a different console might make up a
second job.)

All OSP application jobs must have one special in-
itialization task (often called INIT$TASK) just to get
started; this one may, in turn, create other tasks as it
executes. The initialization task for this example is
discussed at the end of this chapter.

Hardware Initialization

The life of any task can be broken into three phases:
start-up, execution, and termination, The start-up
phase initializes variables, data structures, and other
objects needed by the task. During the execution phase
the task performs its useful work. Depending on the
application, this may be a single sequence of actions, or
aloop executed repeatedly. When the task completes, it
must terminate itself so as not to use any more CPU
time. One or more phases may be omitted. For exam-
ple, some tasks are intended to execute ‘‘forever,” in
which case the termination phase is not required.

“This life cycle is suggested by Example 1, a segment of

code called HARDWARESINIT$TASK. This task first

AFN-02058A

AP-130

programs the 80130 internal timer logic to generate a
square-wave cycle on the BAUD pin every 52 system
clock cycles, which corresponds to a system console
data rate of 9600 baud. The task then sets the system’s
8255A PPI and 8251A USART devices to operate in the
desired modes, and outputs a short sign-on message to
the CRT. For the sake of reader’s unfamiliar with the
protocol for interfacing with the 8251A, simple input
and output routines (C$IN and C$OUT) are reproduced
in Example 2.

INITSTASK: JRE;
DECLARE HARDSINITSEXCEPT$CODE WORD;
DECLARE PARAM$51 (#) BYTE DATA (40H, 8DH, OOH., 40H, 4EH, 27H);
DECLARE PARAMS$S1$INDEX BYTE;
DECLARE SIGNSONSMESSAGE (#) BYTE DATA
LF, “iAPX 86/30 HARDWARE INITIALIZED’.CR.LF);
DECLARE SIONSONSINDEX BYTE;

QUTPUT (PP I$CMD)=90H;
OUTPUT(TIMERSCMD)=0B&H;
OUTPUT (BAUDSTIMER)=33;
OUTPUT (BAUDSTIMER) =0;
DO PARAMSS1$INDEX=0 TO (SIZE(PARAM$51)-1);

OUTPUT (CMD$51)=PARAM$51 (PARAM$S51$INDEX) ;

END; /#0F USART INITIALIZATION DO-LOOP#/
DO SIGNONS INDEX=0 TO (SIZE(SIGN$ONSMESSAGE)-1);

CALL CS$OUT(SIGN$SONSMESSAGE (SIGN$ONSINDEX))

END; /#0F SIGN-ON DO-LOOP#/
CALL RQ$RESUMESTASK(INIT$TASK$TOKEN, @HARDS INIT$EXCEPTSCODE);
CALL RQS$DELETE$TASK (O, @HARD$ INITSEXCEPT$CODE);
END HARDWARESINITS$TASK:

/#GENERATES 9600 BAUD FROM 5 MHZ#/

Example 1. System Hardware Initialization Task

C$0UT: PROCEDURE (CHAR);
DECLARE CHAR BYTE:
DO WHILE C(INPUT(STAT$51) AND O1H)=0;
/~ NOTHING %/

DUTPUT (CHAR‘5 1)=CHAR;
END C$OUT;

C$IN: PROCEDURE BYTE;
DO WHILE (INPUT(STAT$51) AND 02H)=0;
/% NOTHING #/
END;
RETURN INPUT(CHAR$51);
END CS$IN;

Example 2. Simple 8251A Input and Output
Routines

The baud timer should be initialized by a code sequence
like that shown here. The 80130 logic is actually com-
patible with the initialization sequence which would be
needed to configure timer 2 of an 8253A as a program-
mable rate generator. The baud rate parameter loaded
into the timer is simply the system clock frequency
divided by the desired output frequency. No other
timers should be affected by user programs.

When the hardware has been initialized, the task
calls an operating system procedure called RQ$
RESUMESTASK. This signals the OSP that the task’s
start-up phase has completed, and that the initialization
task (which in this case suspended itself after creating
HARDSINIT$TASK) may continue. Since its function
is hardware initialization only, HARDSINIT$TASK
has no execution phase per se. It terminates by calling

14

the procedure RQSDELETES$TASK, suicidally
specifying itself as the task to be deleted.

Exercise 5. Beginners may make two common
programming errors when developing OSP tasks.
The first is when a task deletes itself without ever
resuming the suspended task that created it. The
second is to not terminate a task properly, with the
result that the processor executes a return in-
struction when the task’s work is done. (However,
execution of the task did not originate with a call
from the OS.) As with all computers, an OSP will
do exactly what it is told. How do you suppose the
system would react in each case? (Hint: only one
of the two failure modes is predictable.)

You may have noticed three things from this short ex-
ample and Table 1. First, every OSP call begins with
the letters RQ. (PL/M compilers totally ignore dollar
signs within symbols; they serve only to split long sym-
bol names to make them easier for humans to read.) The
letters RQ don’t mean anything in particular; their pur-
pose is to make sure OSP routine names don’t conflict
with any user symbols. These particular letters were
chosen to be compatible with the historical naming
convention used by iRMX 86. It may be useful, though,
to think of RQ as an abbreviation for REQUEST, imply-
ing that the OSP provides useful services at the bidding
of application code.

The second thing to notice is that the OSP routine
names imply pretty well what each routine does. On the
one hand, long procedure names take a little longer to
type; on the other, they make code listings much easier
to read and understand. In effect, the long names help
make OSP code self-documenting. The long names
shouldn’t hinder code development; rarely can pro-
grammers think faster than they can type. If they could,
programmer productivity would be measured in
thousands of lines per day.

The third thing is that the last parameter in every OSP
system call points to a word in which the OSP proce-
dure will return an exception code to the application
task. The procedure will return a non-zero exception
code in this word if it cannot do its job correctly. This
does not always imply that an error occurred; some-
times it just means another task isn’t ready to cooperate
yet. Sometimes an exception value indicates whether
the OSP request was processed immediately or delayed
for some reason. In fact, some OSP routines are guaran-
teed never to return a non-zero exception code, yet the
pointer is still required for the sake of consistancy. For
a full explanation of the other parameters for the OSP
procedures and details on what the different exception
codes mean, consult the iAPX 86/30, 88/30 User’s
Manual .

AFN-02058A

AP-130

To illustrate how the OSP procedures are used, the
following code examples implement the machine con-
troller tasks introduced earlier. Appendix B puts all the
code examples together, though not in the exact order
discussed. Be Forewarned: the examples border on
trivial. They are in this note to demonstrate how to call
system routines with as few lines of code as possible,
not to tax the capabilities of the OSP. In fact, none of the
tasks even check for exception codes returned by the
OSP, under the naive assumption that nothing will go
wrong in a debugged program. If you're interested in
more elaborate software examples, consult application
notes AP-86 and AP-110. These notes focus specifically
on iRMX 86, but their methods and much of the code
apply equally to the OSP systems.

Simple Time Delays

The STATUSS$TASK routine simply monitors eight
switches through an input port, and updates eight
LEDs with a pattern determined by the switch settings
and task status. Specifically, the LEDs display the bit-
wise Exclusive-OR function of the inputs and an eight-
bit software counter maintained by the task. This action
will repeat twice per second. The task does nothing
between iterations.

The RQ$SLEEP routine gives application tasks a way
to release the CPU when it is not needed. Any task
calling this routine is “‘put to sleep” for the amount of
time it specifies (from 1 to 65,000 SYSTICK intervals),
releasing the CPU to service other tasks in the mean-
time. After the requested time has transpired, the OSP
task will reawaken the task and resume its execution,
provided a more important task is not then executing.

The 80130 timer logic generates the fundamental Sys-
tem Tick by dividing the system clock frequency by
two, then subdividing that frequency by a 16-bit value
specified during the configuration process. The period
used here is 5 msec., which would result in an 5§ MHz
system by dividing the 2.5 MHz internal frequency by
12,500.

Exercise 6: At this rate, what’s the longest nap
that would result from a single call to
RQ$SLEEP? How could this duration be
extended?

PL/M listings for the complete STATUS$TASK routine
appear in Example 3.

15

STATUS$TASK: PROCEDURE;

DECLARE STATUS$COUNTER BYTE;

DECLARE STATUSSEXCEPT$CODE WORD;

STATUS$COUNTER=0;

CALL RQ$RESUMESTASK(INITSTASK$STOKEN, @STATUSSEXCEPT$CODE)

DO FOREVER;
OUTPUT(PPI$B)=INPUT(PPI$A) XOR STATUS$COUNTER;
STATUS$COUNTER=STATUS$COUNTER+1;
CALL RQ$SLEEP (100, @STATUSSEXCEPT$CODE)

END STATUS$TASK;

Example 3. Status Polling and Reporting Task

Stepper Motor Control

Conceptually, a stepper motor consists of four coils
spaced evenly around a rotating permanent magnet. By
energizing the coils in various combinations, the mag-
net can be induced to align itself with the coils, individu-
ally or in pairs. A microcomputer can make a stepper
motor rotate, step-by-step, in either direction, by emit-
ting appropriate coil control signal patterns at intervals
corresponding to the step rate.

The stepper-motor sequencer (Example 4) is an embel-
lished version of STATUS$TASK. The OSP calls are
intermixed with a few more statements of application
code, and the task uses global variables as delay
parameters. The reader may wish to adapt the com-
mand interpreter task at the end of this chapter to let the
operator modify (read: ‘‘play with’’) these parameters
to adjust the motor speed as the program runs.

DECLARE CW$STEP$DELAY BYTE,
CCW$STEP$DELAY BYTE,
CW$PAUSESDELAY BYTE,
CCW$PAUSESDELAY BYTE:

MOTOR$TASK: PROCEDURE;
DECLARE MOTOR$EXCEPT$CODE WORD:
DECLARE MOTOR$POSITION BYTE,
MOTOR$PHASE BYTE;
DECLARE PHASE$CODE (4) BYTE
DATA (00000101B, 00000110B, 00001010B, 00001001B);
CW$STEPS$SDELAY=50; /#INITIAL STEP DELAYS = 1/4 SECOND#*/
CCW$STEP$DELAY=50;

CW$PAUSESDELAY=200; /#PAUSES AFTER ROTATION = 1 SECOND#/
CCW$PAUSES$DELAY=200;

CALL RQ$RESUMESTASK (INIT$TASK$TOKEN, @MOTORSEXCEPT$CODE)
DO FOREVER;:

DO MOTOR$POSITION=0 TO 100

MOTOR$PHASE=MOTOR$POSITION AND OOO3H:

OUTPUT (PP I$C)=PHASE$CODE (MOTORS$PHASE) ;

CALL RQ$SLEEP (CW$STEPS$DELAY, @MOTORS$EXCEPT$CODE);
END:

CALL RQ$SLEEP (CW$PAUSESDELAY, @MOTORSEXCEPT$CODE);

DO MOTOR$POSITION=0 TO 100;
MOTOR$PHASE=(100~MOTOR$POSITION) AND OOO3H;
OUTPUT(PPI$C)=PHASE$CODE (MOTORSPHASE) ;

CALL RQ$SLEEP (CCW$STEP$DELAY, @MOTOR$EXCEPTSCODE),
END;
CALL RQ$SLEEP (CCW$PAUSESDELAY, @MOTORSEXCEPT$CODE);

END;
END MOTORS$TASK;

Example 4. Stepper-Motor Controller Task

Real-Time Interrupt Processing

The 80130 supports a two-tiered hierarchy of interrupt
processing. The lower-level tier corresponds to the

AFN-02058A

AP-130

traditional concept of hardware interrupt servicing; a
routine called an ‘‘Interrupt Handler”’ is invoked by the
80130 internal interrupt control logic for immediate
response to asynchronous external events. A short
routine like this might, for example, move one charac-
ter from a USART to a buffer. Interrupt handlers oper-
ate with lower-priority interrupts disabled, so it is a
good idea to keep these routines as quick as possible.

‘‘Interrupt Tasks,’’ on the other hand, are higher-level
tasks which sit idle until ‘“‘released’’ by an interrupt
handler. The task then executes along with other active
tasks, under the control of the OSP. Such a task should
be used to perform slower but less time-critical pro-
cessing when occasions warrant, such as when the
aforementioned buffer is full. Moving such additional
processing outside the hardware-invoked interrupt
handler reduces the worst-case interrupt processing
time.

This hierarchy also decreases interrupt latency. Most
OSP primitives execute in their own, private
‘‘environment’’ (e.g., with their own stack and data
segments) rather than that of the calling task. Interrupt
handlers, on the other hand, run in the same environ-
ment as the interrupted task. (In fact, the 80130
primitives may themselves be interrupted!) Leaving the
CPU segment registers unchanged minimizes software
overhead and interrupt response time, but also means
that interrupt handlers may not call certain OS
routines. An interrupt task, on the other hand, is in-
itiated and suspended by the OSP itself, with no such
restrictions.

Let’s see how these capabilities would be used. The
time delays introduced by the RQ$SLEEP call are only
as accurate as the crystal frequency from which they
are ultimately derived. This may not be exact enough
for critical time-keeping applications, since oscillators
vary slightly with temperature and power fluctuation.

To keep track of the time of day, the example system
uses a 60-Hz A.C. signal as its time base. (Most power
utility companies carefully regulate line frequency to
exactly 60 Hz, averaged over time.) A signal from the
power supply is made TTL-compatible to drive one of
the 80130 interrupt request pins. An interrupt handler
responds to the interrupts, keeping track of one
second’s worth of A.C. cycles. An interrupt task counts
the seconds by incrementing a series of variables.

Example 5 illustrates the former routine. AC$
HANDLER simply increments a variable on each 60-
Hz interrupt. Upon reaching 60, it clears the counter
and signals TIME$TASK (Example 6).

16

DECLARE AC$CYCLE$COUNT BYTE;

AC$HANDLER: PROCEDURE INTERRUPT 59;
DECLARE ACSEXCEPT$CODE WORD;

/#VECTOR FOR BO130 INT3#/

CALL RQGSENTER$INTERRUPT(ACS$INTERRUPTS$LEVEL, @RACSEXCEPT$CODE);
AC$CYCLE$SCOUNT=ACS$CYCLE$COUNT+1;
IF AC$CYCLES$COUNT >= &0
THEN DO;
AC$CYCLESCOUNT=0;
CALL RG$SIGNALSINTERRUPT (AC$INTERRUPTSLEVEL.,
@ACSEXCEPT$CODE)

END;
ELSE CALL RG$EXITS$INTERRUPT(AC$INTERRUPTS$LEVEL,

@ACSEXCEPT$CODE) ;
END ACS$HANDLER;

Example 5. 60-Hz A.C. Interrupt Handler

In its initialization phase, TIME$TASK sets up the
interrupt handler by calling the RQ$SETS$
INTERRUPT routine. The body of TIME$TASK (the
execution phase) is just a series of nested loops count-
ing hours, minutes, and seconds. When TIME$TASK
calls RQSWAITSINTERRUPT inside its inner-most
loop, the OSP suspends execution of the task until
AC$SHANDLER signals that another second’s worth
of A.C. cycles has elapsed. Thus, interrupt handlers
can serve to ‘‘pace’ interrupt tasks. After a day,
TIMES$TASK completes and deletes itself.

DECLARE SECOND$COUNT BYTE,
MINUTES$COUNT BYTE,
HOUR$COUNT BYTE;

TIME$TASK: PROCEDURE;
DECLARE TIMESEXCEPT$CODE WORD;

AC$CYCLE$COUNT=0;

CALL RQGSETINTERRUPT(ACSINTERRUPTSLEVEL, O1H,
INTERRUPT$PTR (AC$HANDLER), DATASEGADDR. BASE,
@TIMESEXCEPT$CODE);

CALL RQ$RESUMES$TASK (INIT$TASK$TOKEN, @TIMESEXCEPT$CODE);

DO HOUR$COUNT=0 TO 23;

DO MINUTE$COUNT=0 TO 59;
DO SECOND$COUNT=0 TO 59;
CALL RQ$SWAIT$INTERRUPT(AC$INTERRUPTSLEVEL,
@TIME$EXCEPT$CODE)
IF SECOND$COUNT MOD 5 = O
THEN CALL PROTECTEDCRTOUT(BEL);
END; /% SECOND LOOP */
END; /% MINUTE LOOP #/
END; /# HOUR LOOP #/
CALL RQ$RESET$INTERRUPT (AC$INTERRUPTS$LEVEL,
@TIMESEXCEPTS$CODE)
CALL RQG$DELETE$TASK (O, @TIMESEXCEPT$CODE);
END TIMESTASK:

Example 6. Interrupt Task to Maintain Time of Day

Exercise 7: The time maintained by TIME$TASK
is consistently wrong, unless the system resets at
midnight. Aside from that, how much error would
accumulate per month had TIME$TASK paced its
inner loop by calling RQ$SLEEP if the system
oscillator was 00.01% off? How does this com-
pare with a cheap digital watch? How much error
will accumulate from the 60-Hz time base
described?

TIMESTASK incorporates another gimmick: every five
seconds it sends an ASCII “BEL” character (07H) to
the console to make it beep, by calling a routine called
PROTECTED$OUTPUT. This lead-in gives us a
chance to discuss OSP provisions for task synchroniza-
tion and mutual exclusion.

AFN-02058A

AP-130

Mutual Exclusion

Whenever system resources (e.g., the console) are
shared among multiple concurrent tasks, the software
designer must be aware of the potential for conflicts. In
single-threaded (as opposed to multitasking) programs,
the easiest way to transmit characters is by calling a
console output routine (written by the user or supplied
by the OS) which outputs the character code.
(Remember the examples following the hardware in-
itialization routine?)

This approach presents two problems in a multitasking
system. One is efficiency: a high-priority task could
hang up the whole system while it waits for a printer
solenoid to energize, induce a magnetic field, accelerate
the hammer, contact a daisy-wheel spoke, move it up to
the ribbon, and press them both against the paper. This
waste of time is termed ‘‘busy waiting,”” and should
always be avoided. By OSP standards, even 1/30 of a
second can seem interminable; if the printer is other-
wise occupied, the whole system could shut down
indefinitely.

Aside from efficiency, though, there is a more serious
synchronization problem here. Assume Task A has a
higher priority than Task B. Task A is asleep. Task B
calls a subroutine to poll the USART and transmit a
character. The USART becomes ready. When this is
detected, the subroutine prepares to output the charac-
ter to the USART

Time out! Task A just woke up and starts running. Task
A wants to transmit its own character. It calls its own
output routine, checks the USART, finds it available,
sends it a new character, and goes back to sleep
(or suspends itself, or awaits another interrupt—
whatever).

Now Task B continues. It ‘“‘knows’’ the USART is
available, having dutifully monitored it earlier. Task B’s
character goes out to the USART. The USART goes out
to lunch. (In practice, the USART will probably just
transmit corrupted data; still, its operating require-
ments have been violated.)

In Task B’s output routine, the sequence of statements
from when the peripheral is found to be ready to when
the next character is written constitutes a ‘‘critical
region” (a.k.a. “‘critical section’’ or ‘‘non-interruptable
sequence’’). Recognizing such regions and handling
them correctly is an important concern in any multi-
tasking system, so the OSP provides several facilities
—interrupt control, regions and mailboxes—to help
handle general synchronization and mutual exclusion
problems. Which one to choose depends on the
circumstance.

17

Exercise 8: In this example, would it be better if
Tasks A and B shared a single output routine, so
that only one section of code sent data to the
USART? Convince yourself that the same (or
worse!) problems could still arise.

Sometimes critical sections can be protected by just
disabling interrupts at appropriate points in the applica-
tion software. To maintain the integrity of an iAPX
86/30 system, application code must never execute the
STI, CLI, or HLT instructions (ENABLE, DISABLE,
or HALT statements in PL/M), nor can it access the
interrupt control logic directly. Instead, the interrupt
status should be controlled with the OSP
RQ$ENABLE and RQ$DISABLE procedures;
routines should be halted via RQ$SUSPEND or
RQSWAITSINTERRUPT.

Back toTIME$TASK: we want to transmit BELs to the
console every five seconds. The console output task
will be transmitting other characters. A ‘‘clever’’ pro-
grammer may recognize that this will lead to a critical
section and analyze the situation as follows:

1. A hazard would arise if TIME$TASK sends out a
beep when CONSOLE$OUTS$TASK is using the
USART;

2. TIMESTASK will only execute after being signaled
by ASCSHANDLER;

3. ASC$HANDLER only reponds to an external
interrupt.

““Therefore, all CONSOLE$OUTS$TASK has to do to
be safe is disable the 60-Hz interrupt around its output
routine.”

Not quite. There are still potential hazards. Suppose
CRT$OUTS$TASK has the same priority as
TIMESTASK. TIME$TASK may already have been
signaled by ASCSHANDLER and be ready to run when
CRT$OUTSTASK completes. An otherwise unrelated
event—another interrupt, for instance—could mo-
mentarily suspend CRT$SOUTS$TASK during the criti-
cal region with A.C. interrupts disabled. When the OSP
returns to that level, it might resume with
TIMES$TASK, not CRTSOUT$TASK. This could lead
to the same malfunctions as before, so disabling 60-Hz
interrupts didn’t help. This series of worst-case as-
sumptions is admittedly convoluted, but the resulting
sporadic errors are among the hardest of all bugs to
squash.

The problem is that this attempted solution involves too
much interaction between tasks, making it confusing
and error-prone. Even if some scheme of priority-level
assignments and task interactions could be made to
work, later modifications or simple additions to the job

AFN-02058A

AP-130

could cause bugs to reappear. (The analogy of an unex-
ploded time bomb comes to mind.)

A simpler solution would be one corresponding more
closely with the problem. Accordingly, the OSP sup-
ports several primitives just to supervise and control
access to critical regions.

One of the OSP ‘‘data types’ is a data structure called a
“‘Region,” which can be used by application code to
control access to a shared port or some other resource.
A task wishing access to the resource should call the
OSP procedure RQSRECEIVE$SCONTROL before
trying to access that resource; when done it must call
RQ$SEND$CONTROL.

The OSP keeps track of which regions are in use. As
long as a region is busy (i.e., has been entered but not
yet exited), the OSP will prevent other tasks from enter-
ing the region by putting them to sleep. The OSP keeps a
queue of all tasks waiting for the busy region. When the
region later becomes available (i.e., when the task con-
trolling the region calls RQ$SEND$CONTROL), one
of the sleeping tasks—either the highest priority or the
most patient—will be awakened, granted control of the
region, and sent on its way. (When a region is created,
the OSP s told whether to awaken tasks waiting for the
region based on their priority or how long they
have been waiting.) Effectively, a call to RQ$
RECEIVE$CONTROL will not return to the applica-
tion task until the resource in question becomes
available.

The PROTECTEDCRTOUTPUT (Example 7) dem-
onstrates this protocol. The routine is declared
reentrant which means (by definition) the routine may
be interrupted and restarted safely. A reentrant routine
may be shared by a number of tasks, instead of replicat-
ing the same code throughout the application.

PROTECTEDCRT0UT: PROCEDURE (CHAR) REENTRANT;
DECLARE CHAR BYTE;
DECLARE CRTS$EXCEPT$CODE WORD;
CALL RQ$RECEIVE$CONTROL (CRT$REGION$TOKEN, @CRT$EXCEPT$CODE);
DO WHILE (INPUT(STAT$51) AND O1H)=0;
/% NOTHING #/
END;
OUTPUT (CHAR$51) =CHAR;
CALL RQG$SEND$CONTROL (RCRT$EXCEPT$CODE)
END PROTECTEDCRTOUT:

Example 7. CRT Output Routine Protected by
Region Protocol

As a concession to simplicity, PROTECTEDS$
CRT$OUTPUT does use a form of the busy waiting
method described earlier. The maximum delay at 9600

18

baud is only one millisecond, however, much shorter
than a system tick. Besides, tasks performing character
I/O will all have low priority levels, so the OSP would
just delay them if anything more urgent comes up.

Exercise 9: Decide whether this explanation is a
feeble attempt at rationalization, or a well-
justified engineering trade-off.

Inter-Task Communication

But what if a high priority task must output a string of
characters, or the peripheral response time is too long?
Busy-waiting may not be acceptable. Alternatively, the
output routine could buffer the data and service the
USART within an interrupt routine. Another would be
to simply pass the data off to a special (low-priority)
output task and continue.

Tasks pass information to each other via something
called a “‘message.” A message may be the token for
any type of OSP object, but the most common and most
flexible type is called a ‘‘memory segment.”’ In our
example, segments will be used to carry strings of
ASCII characters between tasks, so we’ll examine seg-
ments first. Message formats are defined by the individ-
ual application programmer—make sure the sending
and receiving tasks assume the same format!

A memory segment is just a section of contiguous-sys-
tem RAM allocated (set aside) by the OSP at the re-
quest of an executing task. The OSP keeps track of a
free memory “‘pool,”” which is initially all unused RAM
in the system. When a task needs some RAM, it tells the
RQ$CREATESSEGMENT procedure how much it
wants. The OSP finds a suitable memory block in the
pool, and returns a 16-bit token defining its location. (If
not enough memory is available, the procedure returns
an exception code.)

The token is the base portion of pointer to the first
usable byte of the segment, with the offset portion
assumed to be zero. (The token values for all other
objects have no physical significance.) Knowing this,
it’s possible to access elements of the segment as the
application warrants.

The subroutine in Example 8 shows how to request a
segment and construct a message. PRINT$TIME sends
the ASCII values of the time-of-day counters
(maintained in TIME$TASK) to the CRT output task
described later. The message format adopted for these
examples will consist of a byte giving the message

AFN-02058A

AP-130

length, followed by that number of ASCII characters.
Figure 10 shows this format.

PRINTTOD: PROCEDURE;:

DECLARE TOD$SMESSAGE$TOKEN WORD;

DECLARE TODSEXCEPT$CODE WORD:

DECLARE TOD$SEGMENT$OFFSET WORD,
TOD$SEGMENTSBASE WORD:

DECLARE TOD$SEGMENT$PNTR POINTER AT

DECLARE TOD$TEMPLATE (28) BYTE
DATA (27, 'THE TIME IS NOW hh:mm:ss. ', CR.LF);

DECLARE TOD$STRING BASED TOD$SEGMENT$PNTR (28) BYTE:

DECLARE TOD$STRING$INDEX BYTE:

(@TOD$SEGMENTS$OFFSE)

TOD TOI REAT! T(28, @TODSEXCEPT$CODE) ;
TOD$SEGMENT$BASE=TOD$MESSAGE$TOKEN;
TOD$SEGMENT$0FFSET=0;
DO TOD$STRING$INDEX=0 TO 27;

TOD$STRING (TOD$STRINGS INDEX)=

TOD$TEMPLATE (TOD$STRINGS INDEX) ;

END;
TOD$STRING(17)=ASCII1$CODE (HOURSCOUNT/10);
TOD$STRING (18)=ASCII$CODE (HOUR$COUNT MOD 10);
TOD$STRING(20)=ASCII$CODE (MINUTESCOUNT/10);
TOD$STRING(21)=ASCII$CODE (MINUTE$COUNT MOD 10);
TOD$STRING (23)=ASCII$CODE (SECOND$COUNT/10);
TOD$STRING (24)=ASCI1$CODE (SECOND$COUNT MOD 10);
CALL RO$SEND$MESSAGE (CRT$MAILBOX$STOKEN,

TOD$MESSAGES$TOKEN, O, @TODSEXCEPT$CODE) i
RETURN;
END PRINT$TOD;

Example 8. Subroutine to Send Time-of-Day
Message to Output Task

We're coding PRINT$TIME here (see Example 8),
while TIME$TASK is fresh in our minds. It will actually
be called by (and is therefore considered a part of)
KEYBOARDS$TASK. Note that while tasks are written
as individual procedures, they need not be fully self-
contained: outside procedures should be used to help
organize and structure the code.

The first thing PRINT$TIME does is have the OSP
create a segment of suitable length, and copies a
‘“‘message template” into the segment, byte by byte.
Then it converts the TIME$TASK counter values to
ASCII, filling in blanks in the template. Finally, it sends
the token for the message to the CRT mailbox.

To repeat, these examples are intended to illustrate use
of the OSP routines assuming minimum familiarity with
PL/M. Better programming practices might take advan-
tage of PL/M literals, structures and the array
LENGTH function to build the message, rather than
the inflexible constants shown here. Some of these
techniques are suggested by PRINT$STATUS
(Example 9), which indicates the binary status of the
input switches.

PRINT$STATUS: PROCEDURE:
DECLARE STATUS$SMESSAGES$TOKEN WORD:
DECLARE STATUSSEXCEPT$CODE WORD:
DECLARE STATUS$SEGMENT$OFFSET WORD.
STATUS$SEGMENT$BASE WORD:
DECLARE STATUSS$SEGMENTSPNTR POINTER
AT (@STATUS$SEGMENTSOFFSET) ;-
DECLARE STATUSSTEMPLATE (40) BYTE DATA
(39, ‘'THE SWITCHES ARE NOW SET TO
DECLARE
DECLARE
DECLARE

B’,CR,LF);
STATUS$STRING BASED STATUS$SEGMENTSPNTR (40) BYTE;
STATUSSSTRING$ INDEX BYTE;

BIT$PATTERN BYTE;

STATUS$MESSAGES$TO REAT E
@STATUSSEXCEPT$CODE) i
STATL T TATU!
STATUS$SEGMENT$0FFSET=0;
DO STATUS$STRING$INDEX=0 TO 39;
STATUS$STRING (STATUS$STRINGS INDEX)=
STATUSSTEMPLATE (STATUS$STRINGSINDEX)

T(40,

TOKEN;

BIT$PATTERN=INPUT(PPI$A);

DO STATUS$STRINGSINDEX=29 TO 36i
STATUSSSTRING(STATUS$STRINGSINDEX)=

ASCIISCODE(BIT$PATTERN AND O1H);

BIT$PATTERN=ROR(BIT$PATTERN, 1);
END;

CALL RG$SEND$MESSAGE (CRT$MAILBOX$TOKEN,
STATUSSMESSAGESTOKEN, 0, @STATUSSEXCEPT$CODE)

END PRINT$STATUS;

Example 9. Subroutine to Send Status Report
Message to Output Task -

Exercise 10: One input port is read by both:
STATUS$TASK and PRINT$STATUS. Does this
constitute a shared resource? A critical region?

Exercise 11: PRINT$STIME reads the counts
maintained by TIME$TASK, but doesn’t alter :
them. Forced mutual exclusion is generally
mandatory when multiple tasks perform
read/modify/write sequences on a given variable.
Can PRINT$TIME make TIME$TASK malfunc-
tion? What about the opposite case? If this failure
mode was deemed unacceptable, how could it be
protected?

Mailboxes

The data in a message doesn’t actually move or get
copied from source to destination when the message is
sent; this would be too slow with long messages.
Rather, the OSP ‘‘carries’” the message’s token from
task to task via a data structure cleverly termed a
mailbox. If one task must send messages to another, a
mailbox must be created to hold them. The sender calls
the RQSSENDSMESSAGE to put a message
token into the mailbox. If the receiver isn’t ready for
the message yet, the OSP puts the message token
into an ordered queue. When the receiver calls RQ$

OFFSET= 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
|27 |"r' l‘"' E | sp l T I Ny ‘E lsp I o e | o | 'l‘o'T‘WJ | v l.z, l . I @ | @ I o I - I @ l lcn LLFl
A T STARTING = TODSME! STOKEN:0000H

Figure 10. Message Formats Expected by Output Task

19

AFN-02058A

AP-130

RECEIVESMESSAGE later, the OSP will give it the
tokens one at a time.

What happens if a task tries to receive a message when
the mailbox is empty? (This is quite possible, since
tasks do run asynchronously.) What token would the
OSP return?

In the simple case . . . it doesn’t! Instead of returning
right away with no data, the OSP will wait until data is
available. In the meantime, the OSP puts the receiving
task to sleep, remembering that it is waiting for a
message at that mailbox. The next time a message is
sent to that mailbox, the OSP will awaken the receiving
task, give it the token, and—if its priority is high
enough—resume its execution. Alternatively, receiving
tasks may elect to not wait if the mailbox is empty, or to
wait only a specified time.

Many tasks may actually send and receive messages
through a single mailbox, with messages being queued
in the order that the RQSSEND$MESSAGE calls are
executed. The OSP also maintains a list of tasks waiting
to receive messages from an empty mailbox, analogous
to the queued tasks waiting for region control. As each
message is sent to the mailbox, it is passed immediately
to a waiting task, either the one waiting the longest or
the one with the highest priority (likewise determined
by a parameter specified when the mailbox is created).

Exercise 12: Under what conditions could a mail-
box’s message queue contain messages waiting to
be received, while the task queue contains tasks
waiting for messages? Ignore the possibility that
this may happen momentarily during the imple-
mentation of either routine. If you think of any
such circumstances, please contact the author.

Example 10 shows a task which prints the messages
sent above. Upon receiving a message token,
CRT$OUTSTASK determines the message length from
the first two bytes, and sequentially prints each element
of the string through the PROTECTEDS$CRTS$
OUTPUT routine explained earlier. When done, the
segment containing the message is deleted, returning its
RAM to the free-memory pool.

A few words are in order about the segment accessing
techniques demonstrated here. PL/M-86 has a special
data type, called a ‘“‘pointer,” used to indirectly access
other PL/M variables. OSP application programs must
be compiled with the ‘‘compact” or ‘‘large’’ model spe-
cified. This tells the compiler to implement pointers as
32-bit double words corresponding to the two parts
(base:offset) of the 8086 machine-segmented address-
ing scheme. PL/M-86 tries to shield the programmer

20

CRT$0UT$TASK:

PROCEDURE;

MESSAGE$LENGTH BYTE;

MESSAGES$TOKEN WORD;

RESPONSE$TOKEN WORD;

DECLARE MESSAGE$EXCEPT$CODE WORD:

DECLARE MESSAGE$SEGMENT$OFFSET WORD.
MESSAGE$SEGMENT$BASE WORD;:

DECLARE MESSAGES$SEGMENT$PNTR POINTER AT
(@MESSAGES$SEGMENTS$OFFSET)

DECLARE MESSAGE$STRING$CHAR BASED MESSAGE$SEGMENT$PNTR BYTE;

DECLARE
DECLARE
DECLARE

CALL RQ$RESUME$TASK(INIT$TASK$TOKEN, @MESSAGES$EXCEPT$CODE);
DO FOREVER;
MESSAGE$TOKEN=RQ$RECE I VE$MESSAGE (CRT$MAILBOX$TOKEN, OFFFFH,
@RESPONSES$TOKEN, @MESSAGESEXCEP T$CODE) ;
MESSAGE$SEGMENT$OFFSET=0;

T TOKEN:
MESSAGE$LENGTH=MESSAGE$STRING$CHAR:
Do T$OFFSET=1 TO SLENGTH;
CALL PROTECTEDCRT0UT (MESSAGE$STRING$CHAR);
END;

ND;
CALL RQGS$DELET NT ¢
END; /% OF FOREVER-LOOP %/
END CRTSOUTTASK;

TOKEN, $EXCEPT$CODE)

Example 10. Task to Transmit Messages
to the CRT

from the details, yet at times the two parts must be
manipulated separately (for instance, to access data in
an OSP segment knowing only the segment token/base
value).

To get around this, these examples assign a pair of word
variables to the same address as a PL/M pointer vari-
able. Each representation is then an alias for the other.
To determine the base or offset value of an item of data,
load the pointer variable with a pointer to the item and
then reference the appropriate field of the overlayed
pair of word variables. To “‘build’’ an arbitrary pointer,
assign computed values to the base and offset fields and
then access the data item via the composite pointer.

Exercise 13: PL/M 86 does not have built-in func-
tions to separate the high and low-order words of a
pointer variable. Does this seem to be a weakness
in the language? Bear in mind that the machine
representation for pointers varies depending on
which programming model is specified at compila-
tion time. When the ‘‘small’’ model is selected, the
compilers take advantage of a 16-bit pointer
representation for faster and more compact code.

Console Command Interpreter

If a system has a console keyboard, it’s probably used
to accept and interpret operator commands. For this
demonstration system, the lowest priority of all tasks is
a simple-minded routine which polls the USART until a
character has been received, and immediately echoes it
by calling—you guessed it!—PROTECTED
$CRTSOUTPUT. Thus, the keyboard is ‘“‘alive’; it
responds immediately to keystrokes, so the operator
can type whatever nonsense he desires while every-
thing else is going on.

Ten of the keys (digits 0 through 9), invoke special
commands which illustrate interactions between the

AFN-02058A

AP-130

multiple tasks. Commands 0 and 1 print out the time
and status messages; the rest suspend and resume
various tasks, as shown by Table 2. The code for
COMMANDSTASK appears in Example 11.

Initialization Task

Now that the application tasks have been written, we
can write the initialization task.

All applications require a special type of task to initial-
ize system variables and peripherals and create tasks
and other objects used by the application. It, too, is
written as a PL/M procedure, and can thus be divided
conceptually into the same three phases.

Example 12 shows such a task for the demonstration
system. The first thing INIT$TASK does is determine
the base address of the job data segment by assigning
pointer DATA$SEGS$PTR with its own address. Next it
calls the RQSGET$TASK$TOKENS routine, which
tells the task what token value the OSP assigned it at
run time. It then initializes the system peripherals by
creating the hardware initialization task discussed
above; this code could have been integrated into
INIT$TASK itself just as easily. During its own
‘‘execution’ phase, INIT$TASK calls routines to
create the OSP data structures shared by the applica-
tion tasks: the REGION controlling access to the
USART, and the MAILBOX repository for output mes-
sages. INIT$TASK creates the application tasks them-
selves by calling RQSCREATESTASK.

Though not always required, it is common practice for
the overall initialization task to suspend itself after
creating each offspring, to let the newborn task get
started. Under this convention, each offspring task
must resume the initialization task by calling the

COMMAND$TASK: PROCEDURE;
DECLARE CONSOLE$CHAR BYTE;
DECLARE COMMAND$EXCEPT$CODE WORD;:

CALL RQ$RESUMESTASK(INIT$TASK$TOKEN, @COMMANDSEXCEPT$CODE) ;
DO FOREVER;
CONSOLE$CHAR=C$IN AND 7FH;
CALL PROTECTEDCRT0OUT (CONSOLE$CHAR)
IF CONSOLE$CHAR=CR
THEN CALL PROTECTEDSCRTOUT(LF);
IF (CONSOLESCHAR >= ‘0’) AND (CONSOLE$CHAR <= ‘9°‘)
THEI i

CALL PROTECTEDCRTOUT(CR);
CALL PROTECTEDCRTOUT(LF);
DO CASE (CONSOLE$CHAR-'0’);
CALL PRINT$TOD;
CALL PRINT$STATUS;
CALL RQG$SUSPENDS$TASK (CRT$OUTSTASK$TOKEN,
@COMMANDSEXCEPT$CODE)
CALL RG$RESUMESTASK(CRT$0UTSTASKS$TOKEN,
@COMMANDSEXCEPT$CODE) i
CALL RG$DISABLE(ACSINTERRUPTS$LEVEL.,
@COMMANDSEXCEPT$CODE) ;
CALL RQGS$ENABLE(AC$INTERRUPTS$LEVEL.
@COMMANDSEXCEPT$CODE) 5
CALL RQ$SUSPEND$TASK (MOTOR$TASK$TOKEN,
@COMMANDSEXCEPT$CODE) ;
CALL RQ$RESUMESTASK (MOTOR$TASK$TOKEN,
@COMMANDSEXCEPT$CODE) i
CALL RQ$SUSPEND$TASK (STATUS$TASK$TOKEN,
@COMMANDSEXCEPT$CODE) ;
CALL RQ$RESUMESTASK(STATUSS$TASK$TOKEN,
@COMMANDSEXCEPT$CODE) ;
END; /% OF CASE-LIST #/
END; /% OF COMMAND PROCESSING #/

END;
END COMMAND$TASK,

Example 11. Task to Accept and Process Keyboard
Commands

INIT$TASK: PROCEDURE PUBLIC;
DECLARE INITS$EXCEPT$CODE WORD:

DATASSEG$PTR=RINIT$TASK$TOKEN; /#LOAD DATA SEGMENT BASE#*/

CRT$MAILBOX$TOKEN=RQ$CREATESMAILBOX (0, RINIT$EXCEPT$CODE) ;

CRT$REG ION$ TOKEN=RQ$CREATESREGION(O, @INITSEXCEPT$CODE);

INIT$TASK$ TOKEN=RGSCETTASKSTOKENS (O, @INIT$EXCEPT$CODE) ;

HARDWARES$INIT$ TASK$ TOKEN=RQ$CREATESTASK
(110, @HARDWARESINITSTASK, DATASSEQ$ADDR. BASE, 0, 300,
0, @INIT$EXCEPT$CODE);

CALL RQ$SUSPEND$TASK (0, RINIT$EXCEPT$CODE);

STATUS$TASK$ TOKEN=RQ$CREATE$TASK (110, @STATUSSTASK,
DATA$SEGS$ADDR. BASE, 0, 300, 0, @INIT$EXCEPT$CODE);

CALL RQ$SUSPEND$TASK(O, RINIT$EXCEPT$CODE);

MOTOR$TASK$TOKEN=RQ$CREATESTASK (110, @MOTORSTASK,
DATASEGADDR. BASE, 0, 300, 0, @INIT$EXCEP T$CODE))

CALL RQ$SUSPEND$TASK (0, @INIT$EXCEPT$CODE)

TIME$TASK$TOKEN=RQ$CREATESTASK (120, @TIME$TASK,
DATASEGADDR. BASE, 0, 300, 0, RINITSEXCEPT$CODE)

CALL RQ$SUSPEND$TASK (O, @INITSEXCEPT$CODE):

CRTSOUT$TASK$TOKEN=RQ$CREATES$TASK (120, RCRT$OUTSTASK,
DATASSEGS$ADDR. BASE, 0, 300, 0, @INIT$EXCEPT$CODE) ;

CALL RG$SUSPEND$TASK (0, @INITS$EXCEPT$CODE);

COMMAND$TASK$ TOKEN=RQ$CREATES$TASK (130, @COMMANDS$TASK,
DATASEGADDR. BASE, 0, 300, 0, @INIT$EXCEPT$CODE) ;

CALL RQ$SUSPEND$TASK (0, @INIT$EXCEPT$CODE);

CALL RQSENDSINITSTASK:

CALL RQ$DELETE$TASK (0, @INIT$SEXCEPT$CODE)

END INITS$TASK;

Example 12. Task to Initialize System Software

Table 2. Special Console Commands

Key Function

0 Send Time-of-day message to CRT.

1 Send status update message to CRT.

2 Suspend CRT output task. The OSP will automatically save messages to the task
in the CRT mailbox queue.

3 Resume CRT output task. Queued messages will be displayed.

4 Disable 60-Hz interrupt-driven time base. Time-of-day clock will stop.

5 Enable 60-Hz time base to resume clock execution.

6 Suspend motor control task. Motor will stop.

7 Resume motor control task. Note that if task was suspended 17 times, it must be
resumed 17 times.)

8 Suspend status polling task. Lights indicating system status will freeze in current state.

9 Resume status polling task.

21

AFN-02058A

AP-130

RQSRESUMES$TASK routine when its own local in-
itialization is complete. This convention is called
synchronous initialization; its purpose is to ensure that
each task is allowed to complete its own start-up phase
before the next task is created. Otherwise, there’s arisk
that higher-priority tasks created later could start exe-
cuting before earlier tasks were ready for them, with (at
best) unpredicatable results.

When all the tasks have been created, INIT$TASK has
served its purpose. It must then call RQ$SEND$
INIT$TASK. This short procedure (actually self-
contained in an OSP Support Package interface library,
not built into the 80130) tells the OSP that all the off-
spring tasks have been created for a given job. At this
point, INITSTASK could continue with non-initializa-
tion activities. The code for KEYBOARDSTASK might
have been implemented here, for example. Since this
example has nothing more to do, INIT$TASK deletes
itself with a final call to RQSDELETES$TASK.

Code Translation

That’s all, folks. Mix together the above code frag-
ments, declare literals and global variables, and com-
pile until done (about four minutes). The source file
name selected for this example is AP130.PLM. The
compiler will produce two files: an annotated source
listing (named AP130.LST) reproduced in toto in Ap-
pendix B, and a relocatable object file (AP130.0BJ)
which will be used in the installation procedure dis-
cussed next.

High-Level Parameter Passing
Conventions

Well-designed programs generally rely on subprograms
(‘‘procedures’’ in PL/M terminology) for often-
repeated instruction sequences, or to perform
machine-level operations within High-Level Language
programs. PL/M-86 and other Intel high-level languages
use a standard set of conventions to pass parameters
and results between procedures; assembly language
programmers are advised to adhere to these conven-
tions for software compatibility.

Before calling a subroutine or function, input
parameters must be pushed sequentially onto the stack,
in the order (left-to-right) they appear in the procedure
parameter list. When eight-bit parameters are pushed,
the high-order byte associated with them is undefined.
Thirty-two-bit pointer values are pushed in two steps,
offset word before base word. The stack ‘‘grows”
down, so the left-most parameter will have highest-
numbered address.

22

Functions which return a byte or word value (i.e., typed
procedures) do so in the CPU AL or AX registers.
Pointers are returned through the ES: AX register pair.
The PL/M Programming Manual explains these con-
ventions more fully.

One way to see how an assembly language routine
would interface with PL/M is to first write a dummy
PL/M procedure using the same parameter sequence as
the desired assembly language routine. Compile this
procedure with the compiler CODE switch set. The
listing will then include the appropriate assembly lan-
guage instruction sequence, and may be followed as a
pattern for the final routine.

SOFTWARE CONFIGURATIONS &
INTEGRATION

When the application code has been written and com-
piled, the hardest part of program development is over.
Before the code may be executed, though, the OSP
must be told various things about the system hardware
environment, desired software options, application job
characteristics, and so forth.

This information is conveyed during a multi-phase se-
quence of steps collectively called the Configuration
process. Though the process is somewhat lengthy and
time-consuming, it is also very ‘‘mechanical’’; the per-
son doing the work does not need to understand any of
the application code or even know what it does. Nor-
mally, configuration would be performed by a techni-
cian or a single member of the programming team, aided
by appropriate SUBMIT command files. This chapter
shows the full configuration and installation process for
the demonstration system. For more details, refer to
the OSP User’s Manual.

The three phases of the configuration are:

1. Generating, linking, and locating OSP support code
required for the EPROM immediately above the
80130 address space;

2. Linking and locating the object file for the applica-
tion job developed in Section IV;

3. Creating, linking, and locating a short module
(called the Root Job) which initializes the OSP and
application jobs when system is reset.

Finally, of course, the absolute code resulting from each
phase must be programmed into EPROMs or loaded
into a test system before it can be executed.

Before starting, though, it is beneficial to draw up a
memory map for host system hardware, to determine
what sections of memory are available. This map will be
filled in as each module is linked and located.

AFN-02058A

AP-130

The prototype system memory space has two areas of
interest: addresses 00000H through 01FFFH contain
RAM, while 0OFCO00H through OFFFFFH contain
EPROM. Since the CPU uses the first 1K bytes of RAM
for the CPU interrupt pointers, and the last 16 bytes for
the restart sequence, these areas should be recorded on
the map. For reference purposes, Figure 11 also indi-
cates that addresses OF8000H through 0FBFFFH
enable the 80130 firmware. All this is shown in
Figure 11.

Generating the OSP Support Code

The OSP support code ‘‘customizes’’ the OSP firmware
for a particular hardware environment, initializes the
system, and supports extended software capabilities.

To define the hardware environment, the user creates a
source file which invokes a series of Intel-supplied
macros. Parameters for these macros specify the 80130
I/O base address, SYSTICK interval (in system clock
cycles), and how the interrupt request pins will be used.

For instance, the code example in Figure 12 defines the
prototype system hardware. This source file must be
assembled, linked with several libraries from the OSP
support disk, and located to produce the actual OSP
support code. Figure 13 shows the actual sequence of
commands needed. The DATA starting address speci-
fied within the LOC86 parameter list (00400H) is the
first free byte of system RAM (see Figure 11); the
CODE address (OF8000H) is simply the 80130 firmware
starting address.

STARTING ENDING
_ MEMORY MODULE ADDRESS ADDRESS
8086 RESTART VECTOR OFFFF:0 | OFFFFF
EPROM
(2x2764)
0FC00:0
80130 MEMORY SPACE OF800:0_| OFBFFF
[OIFFF
RAM
8086 INTERRUPT VECTOR 0000:0 | O03FF
APPLICATION JOB STARTING ADDRESS:
ROOT JOB STARTING ADDRESS:

Figure 11. Example System Memory Map

NAMEODEVCF
$INCLUDE (: F1: NDEVCF. MAC)

ZMASTER _PIC(80130, 2000H. 0, 0)

END

%TIMER (80130, 2008H, 28H, 12500)

i NDP_SUPPORT (ENCODED_LEVEL)

$TITLE(B80130 DEVICE CONFIGURATION TABLE)

i SLAVE_PIC(SLAVE_TYPE, BASE_PORT, EDGE_VS_LEVEL, MASTER_LEVEL)

Figure 12. 80130 Device Configuration Table

23

AFN-02058A

AP-130

MACRO(B0) PAGEWIDTH(132)

FO: LINKBG %

F1:08X. LIB(OSX86, OSXCNF),

:F1:NUC1. LIB(NBEGIN), &%

: F1: ODEVCF. OBJ, &

:F1:08X. LIB, &

F1:NUCL. LIB, 2
2

F1:08X. LIB, E
tF1:NUC2. LIB, b2
F1:08X. LIB, &
F1:NUC4. LIB, %
:F1°0SX. LIB, &
:F1:NURSLV. LIB,

w5

F1:08X. LIB

:FO: LOCB6
SEGSIZE(STACK(0))

ORDER (CLASSES (DATA, STACK))

FO:ASMB6 :F1:S5UP130. AB6 PRINT(:F1:8SUP130. LST) ERRORPRINT 2

TO :F1:SUP130. LNK MAP PRINT(F1:5UP130. MP1) NAME(MINIMAL 80130)

:F1:8UP130. LNK TO :F1:SUP130 MAP PRINT(:F1: SUPlBO MP") 8C(3) &

ADDRESSES (CLASSES (CODE (OFB000H) , DATA(O0400H))) &

&

OBJECTCONTROLS (NOL INES, NOCOMMENTS, NOSYMBOLS)

Figure 13. Support Code Configuration Commands

A reliable and relatively straightforward way to per-
form this step is to create a file containing the exact
command sequence shown in Figure 13 and execute
this file using the SUBMIT utility program. Of course,
the example assumes SUBMIT, ASM86, LINKS6,
and LOCS86 are all on drive :F0:, and that the various
libraries have been copied from the support disk to
drive :F1:.

(An alternate, support-code configuration scheme lets
the user modify the OSP software characteristics in
special situations. A programmer working with iRMX
86, for instance, may wish to augment the OSP
firmware to support all the iRMX Nucleus primitives.
This would be done by editing and assembling file
0TABLE.A86 to select from a menu of software op-
tions, and modifying the linkage step slightly to include
one of the iRMX 86 libraries. The OSP built-in features
are more than sufficient for the purposes of this note,
though, so only the first approach is illustrated.)

Appendix D reproduces the Locate map file produced
during this phase. Near the end of file SUP130.MP2 is a
table of memory usage, showing that the last bytes of
RAM and ROM consumed are 00A6: FH and OFC61:
FH, respectively. Update Figure 11 with this informa-
tion. (The final version of the demonstration-system
memory map appears in Appendix C.) This phase
needn’t be repeated unless the system hardware char-
acteristics change.

Application Code Configuration

After compiling the application job, it must be linked
with a library of interface routines from the support
diskette, and located within available memory. Use
RPIFC.LIB or RPIFL.LIB, depending on whether the
job was compiled with the Compact or Large software -
model. Figure 14 is a command sequence file suggested
for this purpose. Again, the starting addresses specified
for LOC86 are taken from the system memory map.

Whenever the support code is reconfigured, check
SUP130.MP2 to see if its memory needs have changed.
If so, the application-job-configuration command file
will need to be edited. This is still a lot simpler (not to
mention more reliable) than retyping the whole se-
quence each time application jobs are revised. Readers
familiar with the capabilities of the SUBMIT program
may prefer to represent these variables by parameters,
such that they may be easily specified each time the
command file is invoked.

As in the first phase, examine the locate map
(*‘AP130.MP2”, reproduced in Appendix E) after the
application code has been configured and update the
memory map. Also, note the segment and offset values
assigned to the initialization task. These will be needed
later.

AFN-02058A

AP-130

Creating the Root Job

By now, all of the code needed to execute the applica-
tion program has been prepared and is ready to run
—except it has no way to get it started! The OSP hard-
ware and system data structures must be initialized
before INIT$TASK can be created. A short module
called the Root Job performs this function.

The process closely resembles the one which produced
the OSP support code. First, determine various system
characteristics. Then create a file defining these charac-
teristics as macro input parameters. Finally, assemble,
link, and locate the file to produce the final code.

Figure 15 is the Root Job source file for the demonstra-
tion system, dubbed RIB130.A86. It consists of just five
macro calls. The %JOB macro defines certain charac-
teristics of the application job; for a full description see
the OSP User’s Manual. One of these parameters is the
initialization-task starting address (noted in the last
step), which will likely change with each iteration of the
application software.

The two %SAB macros define ‘‘System Address
Blocks’’—sections of the overall memory space which
the OSP should not consider “free space.’”’ Note that
the first invocation blocks off the RAM addresses con-
sumed so far in the memory map, plus an extra 140H
bytes reserved for the Root Job initialization stack.

REVISED 10/23/81 - JHW

i SUBMIT FILE TO LINK APPLICATION JOB TO INTERFACE LIBRARY
i AND LOCATE RESULTING OUTPUT.

LINK86 :F1:AP130.0BJ, :F1:RPIFC.LIB TO :F1:AP130. LNK %
MAP PRINT(:F1:AP130. MP1)

LOC86 :F1:AP130.LNK TO :F1:AP130
ORDER (CLASSES(DATA, STACK, MEMORY))
SEGSIZE (STACK (0))
ADDRESSES (CLASSES (DATA (O0A70H).
CODE (OFC620H)))
MAP PRINT (:F1:AP130. MP2)
OBJECTCONTROLS (NOLINES, NOCOMMENTS, NOPUBL ICS, NOSYMBOLS)

R

OHB86 :F1:AP130 TO :F1:AP130. H8&

COPY :F1:AP130.MP1 TO :LP:

COPY :F1:AP130.MP2 TO :LP:

Figure 14. Job Configuration Commands

; SOURCE PROGRAM DEFINING CHARACTERISTICS OF ROOT JOB FOR
i AP-130 DEMONSTRATION PROGRAM (JHW - 10/25/81)

$INCLUDE(: F1: CTABLE. MAC)

%SAB (0, 00C0, U)

%SAB (0200, FFFF, U)

%JOB (0, OCOH, 100H, OFFFFH, OFFFFH, 1, 0: 0, 1, 0, 100, OFC62: 06B5, 0, 0: 0, 200H, 0)
%0SX (OFBOOOH, N)

%SYSTEM(FB800, 0, 4, N, N, 1)

END

Figure 15. Root Job Configuration File

25

AFN-02058A

AP-130

(After completing this phase, examine RIB130.MP2 to
confirm that 140H is the correct number.) The second
%SAB invocation excludes addresses 02000H through
OFFFFFH, all of which is non-RAM, either EPROM,
80130 firmware, or non-existent. The %SYSTEM
macro defines system-wide software parameters.

Figure 16 is a command file to translate, link, and locate
the root job. Once again, the LOC86 parameters come
from Figure 11. The listings produced during this phase
are reproduced in Appendix E The final memory map
appears in Appendix C.

EPROM Programming

We are now ready to program EPROMs with the pro-
gram modaules linked and located above. Intel’s Univer-
sal PROM Programmer (UPP) and a control program
called the Universal Prom Mapper (UPM) will be used
in this step. Particular commands to the UPM will vary
with program size, memory location, and EPROM type,
but the general sequence should resemble that shown
here.

The first step is to invoke UPM and initialize the pro-
gramming system, following a command sequence
similar to that in Figure 17. The example system incor-
porates two 2764 devices, so 16K bytes of memory
buffer are cleared.

Next, all the final code modules produced above (e.g.,
SUP130, AP130, and RIB130) must be loaded into the

UPM memory buffer. The three commands in Figure 18
perform this function.

When the final system is reset, execution must branch
into the root job initialization sequence. When the abso-
lute code modules have finished loading, manually
patch a jump instruction into the buffer area corres-
ponding to the CPU reset vector. The opcode for the
8086 or 8088 intersegment jump is OEAH; the instruc-
tion’s address field must contain the address assigned to
label RQ$START$ADDRESS (read from the root job
locate map), the 16-bit segment offset (low byte first)
followed by the segment base address (ditto). The UPM
CHANGE command should be used to make this
patch, as illustrated in Figure 19.

The UPM memory buffer now contains a complete
image of the code needed for the system EPROMs. Up
until now, all software-related steps—source code
preparation, translation, linking and locating—have
been the same for 8086- or 8088-based systems. At this
point, however, the software installation procedures
diverge slightly.

Recall that the 8086 fetches instructions 16 bits at a
time, from coordinated pairs of EPROMs. One contains
only even-numbered program bytes, the other, odd. To
separate the linear UPM buffer into high- and low-order
bytes for iAPX 86/30 designs, use the UPM STRIP
command as shown in Figure 20.

Now “‘burn’’ the EPROMs with the PROGRAM com-
mand in Figure 21.

LINK AND LOCATE THE iRMX 86 ROOT JOB.

MODIFIED FOR TWO-DRIVE OPERATION
REVISED 10/25 - JHW

ASM86 : £1:RJB130. AB& MACRO(75)

LINKBSE

tRJUB130. ob .
rcroot. 1ib

LOCB6 : £1:RJUB130. Ink
TO :F1:RJB130

MAP PRINT(: f1:RJB130. mp2)
nocm, nosb)
nocm,

OC(noli, nopl,
PCinoli, pl,
SEGSIZE(stack(Q))

ORDER(classes(data,
ADDRESSES(classes(code (OFD18OH),

OHB&
COPY :F1:RJB130. LST TO
COPY :F1:RJB130. MP1 TO

COPY :F1:RJB130. MP2 TO

rcroot. lib(root),

: £1:RJDB130. Ink
PRINT(: £1:RJB130. mp1)

:F1:RJB130 TO :F1:RJB130. HBé
P
LR

tLP:

cEee

nosb)

o E PR

stack, memory)) L3
&

data(00ADOH)))

Figure 16. Root Job Configuration Commands

26

AFN-02058A

AP-130

fill from 0 to 3ffth with Otfh

Figure 17. UPM Initialization Sequence

read 86hex file : f1: sup130. h86 from 0 to 3fffh start 0fc000h
read 86hex file : f1: ap130. h86 from 0 to 3fffh start 0fc000h
read 86hex file : f1 : rjb130. h86 from 0 to 3fffh start 0fc000h

Figure 18. UPM Commands to Load Hex Files

change 3ffO0h=0eah, 11h, Q0h, 18h, 0fdh

Figure 19. UPM Command to Patch Restart Vector

strip low from 0 to 3ftfh into 4000h
strip hi from 0 to 3fffh into 6000h

Figure 20. UPM Commands to Strip High and Low Bytes

program from 4000h to 5ffth start 0
pnl:gram from 6000h to 7fffh start 0
exit

Figure 21. UPM Commands to Program EPROMs

To save some trouble, the UPM invocation and all com-
mands except the manual patch can be combined into a
SUBMIT command file. Replace the CHANGE com-
mand with a control-E character so the operator can
adjust the starting address for the iteration. Also place
control-Es before each PROGRAM step to give the
operator time to socket the next memory device.

SUMMARY

The development of the 80130 marks a major milestone
in the evolution of microcomputer systems. For the
first time, a single VLSI device integrates the hardware
facilities and operating system firmware needed by
real-time multitasking applications. The 80130 offers
the system hardware designer the advantages of higher
integration—reduced device count, smaller boards,
greater reliability—along with faster design cycles and
optimal system performance.

The 80130 gives the software engineer built-in support
for 35 standard operating system primitives. Applica-
tion problems may now be solved at a higher level than

27

before. It is now possible for concurrent tasks to be
dispatched, memory segments allocated, and messages
relayed through mailboxes nearly as easily as sub-
routines, dynamic variables, and I/O ports were used in
the past. In effect, Jobs, Tasks, Segments, Mailboxes,
and Regions become new OSP data types, manipulated
entirely by firmware in the 80130.

Yet despite standardizing these functions, the OSP does
not restrict the user’s flexibility. The device can accom-
modate a variety of hardware environments, and both
the hardware and software capabilities are desired.

ACKNOWLEDGEMENTS

The author would like to thank Peter Pederson for
designing and implementing the demonstration system
breadboard discussed in this note, Pam Johnson for her
assistance in typing the manuscript, and Hal Kop,
Lionel Smith, George Alexy, Chuck McMinn, and
Sandy Wharton for their help in reviewing the drafts
and providing many thoughtful comments and
criticisms.

AFN-02058A

AP-130

APPENDIX A
EXAMPLE SYSTEM SCHEMATICS

A1 AFN-02058A

[

V8S020-N4V

~N
Vee»{d 2 a
100k ck § af—ne. o PBO7
- —_— N
Vee»K @ CLR F-(vcc cs @
r RES g RDY1 J ok @ | | 8 —»{a1 > pco7}—nc.
€L p{CLK @ AEN1{«GND g iowc (A0
F RESET RDY2|wVcc Vcc+{CEN _IORC RD
RESET ——{PCLK AEN2 f< GND GND>{AEN AIOWC WR D0-7KCADS-AD15
= = READY »{s0 MRDC S
X1 FIC S1 AmMwC NeC—Q 2
x2 CSYNC s2 ALE B a 3 CK
CLR §, K
GND 4
51003 Hum S0 prg—— >
2 o GND->{OE S
— = L > READY]
REseT A16-A19[A16-Al9 > s cs TXD FED— @
o BHE RESET
ND NMI 8 So}—i CLK
GND—f»{TEST ° &1 GND g AP —z]
ND —t>-] MN/MX sz >{OE STBj= WR 2 5sR|e—GND
—CcD > ——
A\ 8 (T:;m CTs|=—GND
| nTR ADO-ADISE ADO-AD15 L RXC
\l v D0-7 K ADO-AD7 =
>oE stBj< i »|»
el cLk BHE |« 2 J 2
INT 50 f—- 8 AL
GND»IR0 & §7 > > » > >
GND»{IRT 2 s2 2 = = x 2
> >
2 S BAUD 2 z 2 z Z
60 Hz> IR3 MEMCS|
GND>{IR4 iocs I—
GND] IR5 A A —
GND >{IR6 L
15 D
oND iy ADO-ADIS ADO-AD1S
SYSTICK \ v
A\ /A, A\ /A, A\ /A,
Cs WE CS WE |4 CS WE
T_’(E WE| CS WE [« CS WE
{cs Wwe CS WE I »>|CS WE
blos we & el e W
A ~|cs W ~(Cs _WE
2 2 1 2
2 2 =
H H H
1/01-1/04 101-1/04 1/01-1/04
AD8-AD15 ADO-AD7 ADO-AD7 AD8-AD15 ADB-AD15
DATA-BUS

Figure A-1. Example System Schematics

0€l-dv

AP-130

61
Hene voe fous
At 21s1a ENzG S
A2 Usie saafd
ERTCS Hivo 3 s8f2
ERZCS Slivi @ 2vof2 ORICS
ER3CS £ 12 8 2v1 n OR2CS
ERaCS Tliva 2v2 |12 OR3CS
U GNT—"J GnD 2val® OR4CS 3
1
LI
WRBC
AMWC
F1
A15 Uenie vece—ss
A13 2ls1a enaG S
ata sie st -
—Hivo ¥ sBPE—a1s
(80130) IOCS Slivi & 2voli2
USART CS Slve 8 oy PGS (2764
PIOPCS iva 2v2 12 WMEMCS (80130)
_L—a‘ o 2vafd WEPCS (2764)
-

Figure A-1. Example System Schematics (continued)

A-3

AFN-02058A

AP-130

APPENDIX B
SOURCE CODE LISTINGS

B-1 AFN-02058A

AP-130

ISIS-I1 PlL./M-B6 V2.0 COMPILATION OF MODULE DEMO130
OBJECT MODULLE PLACED IN :F1:AP130. OBJ
COMPILER INVOKED BY® PLMB6 :F1l:AP130.PLM DATE(12/21)

$DEBUG COMPACT ROM TITLE(’AP-130 APPENDIX B - 12/21/817%)
1 DEMO%$130: DO;
/% SYSTEM-WIDE LITERAL DECLARATIONS: #/
2 i DECLARE FOREVER LITERALLY ‘WHILE O1H’;
/# 1/0 PORT DEFINITIONS: #/
2 1 DECLARE CHAR#51 LITERALLY ‘4000H‘,
CMD$51 LITERALLY ‘4002H7,
STAT$51 LITERALLY ‘4002H7;
4 1 DECLARE PPI%$A LITERALLY ‘6001H’,
PPI$B LITERALLY ‘&6003H’,
PPI$C LITERALLY ‘60035H’,

PPI$CMD LITERALLY ‘&007H’,
PPI$SSTAT LLITERALLY ‘6007H’;"

5 1 DECLARE TIMER®CMD LITERALLY ‘200EH’,

BAUDSTIMER LITERALLY ‘200CH’;
) 1 DECLARE AC$INTERRUPT$LEVEL LITERALLY ‘00111000B’;
7 1 DECLARE CR LITERALLY ‘ODH’,

LF LITERALLY ‘OAH’,
BEL. LITERALLY ‘O7H’;

8 1 DECLARE ASCII#CODE (16) BYTE DATA (’012345678%ABCDEF ‘)i

SEJECT

$INCLUDE (:F1:NUCLUS. EXT)
= $SAVE NOLIST
$INCLUDE (. F1:NEXCEP.LIT)
$save nolist

i

/% GLOBAL VARIABLE DECLARATIONS: #*/

299 1 DECLARE DATA$SEGHPTR POINTER,
DATASSEGHADDR STRUCTURE (OFFSET WORD, BASE WORD)
AT (@DATASSEG$PTR);

200 1 DECL.ARE HARDWARESINIT$TASKETOKEN WORD

STATUSSTASK$TOKEN WORD,
MOTOR$TASKSTOKEN WORD,
TIME$TASK$TOKEN WORD,
ACSHANDLERSTOKEN WORD,
CRTHOUTSTASKSTOKEN WORD,
COMMAND$TASKSTOKEN WORD,
INITSTASK$TOKEN WORD;

301 1 DECLARE CRT$MAILBOX$TOKEN WORD,
CRT$REGION$TOKEN WORD;

B-2 AFN-02058A

AP-130

$EJECT

/% CODE EXAMPLE 2. SIMPLE CRT INPUT AND OUTPUT ROUTINES. #/

C$0UT: PROCEDURE (CHAR);
DECLARE CHAR BYTE:
DO WHILE (INPUT(STAT®$51) AND O1H)=0;
/% NOTHING %/

P

305 3 END;
304 2 OUTPUT(CHAR$51)=CHAR;
307 2 END C$0UT;

C4IN: PROCEDURE BYTE;
DO WHILE (INPUT(STAT#51) AND 02H)=0;
/% NOTHING %/

1

310 3 END;
311 2 RETURN INPUT(CHAR%$51);
31z 2 END CSHIN;
SEJECT
/% CODE EXAMPLE 1. HARDWARE INITIALIZATION TASK. */
12 1 HARDWARE$INIT$TASK: PROCEDURE;
214 2 DECLARE HARD$INIT$EXCEPT$CODE WORD;
31% e DECLARE PARAM$51 (#) BYTE DATA (40H, 8DH, OOH, 40H, 4EH, 27H);
31¢& 2 DECLARE PARAM$D1$INDEX BYTE:
317 e DECLARE SIGN®ON$MESSAGE (%) BYTE DATA
(CR, LF, "iAPX 86/30 HARDWARE INITIALIZED’, CR,LF);
318 2 DECLARE SIGNONINDEX BYTE;
2 OUTPUT (PP I$CMD) =90H;
2 OUTPUT (TIMER$CMD) =0B&H;
2 OUTPUT (BAUD$TIMER)=33; /#GENERATES 9600 BAUD FROM 5 MHZ#/
2 QUTPUT(BAUD$TIMER)=0;
el DO PARAM$S51$INDEX=0 TO (SIZE(PARAM$51)-1);
2 OUTPUT(CMD$51)=PARAM$51 (PARAM$S51$INDEX) ;
. END; /#0F USART INITIALIZATION DO-LOOP#*/

é DO SIGNONSINDEX=0 TO (SIZE(SIGN$ONSMESSAGE)-1);

3 Cal.l. CHOUT(SIGNSONSMESSAGE (SIGNSONSINDEX))
3 END; /#0F SIGN-ON DO-LOOP#/
2 CALL ROSRESUMESTASK(INIT$TASK$TOKEN, @HARDSINITS$EXCEPT$CODE) i
2 CALL RA$DELETE$TASK(O, GHARD$INITSEXCEPT$CODE);
2 END HARDWARE$INIT$TASK;
SEJECT
/# CODE EXAMPLE 3. STATUS POLLING AND REPORTING TASK. */
362 1 ETATUS$TASK: PROCEDURE;
323 2 DECLARE STATUS$COUNTER BYTE;
224 2 DECLARE STATUS$EXCEPT$CODE WORD:;
2 STATUSSCOUNTER=0;
e 2 CALL RQO$RESUMESTASK(INITSTASKSTOKEN, @STATUSSEXCEPT$CODE) ;
e 2 DO FOREVER;
528 3 OUTPUT(PPIS$B)=INPUT(PPI$A) XOR STATUSHCOUNTER;
339 3 STATUS$COUNTER=STATUS$COUNTER+1;
240 3 CALL RQ%$SLEEP (100, @STATUSSEXCEPT$CODE) ;
341 3 END;
342 2 END STATUS$TASK,

B-3 AFN-02058A

AP-130

344
345
346

347

348
349
350
351
352
253
354
355
356
357
358
359
3460
361
362
363
364
365
366
367

356%
370

271
arva
373

TS
37E

376

LV

"

LR LE RN)

P

NWWeprrPLWPAEILEILR

) e

i

nnn

(ARG

w

$EJECT
/% CODE EXAMPLE 4. STEPPER MOTOR CONTROL TASK. #/

DECLARE CW$STEP$DELAY BYTE,
CCW$STEP$DELAY BYTE,
CW$PAUSE$DEL.AY BYTE,
CCW$PAUSE$DELAY BYTE;

MOTOR$TASK: PROCEDURE;
DECLARE MOTOR$EXCEPT$CODE WORD:;
DECLARE MOTOR$POSITION BYTE,
MOTOR$PHASE BYTE;
DECLARE PHASE$CODE (4) BYTE
DATA (00000101B, 000001108, 000010108, 00001001B);

CW$STEP$DELAY=50; /*INITIAL STEP DELAYS = 1/4 SECOND#*/
CCW$STEP$DELAY=50;
CW$PAUSES$DELAY=200; /#PAUSES AFTER ROTATION = 1 SECOND:*/

CCWHPAUSESDELAY=200;
CALL RQ$RESUME$TASK(INIT$TASK$TOKEN, @MOTORSEXCEPT$CODE) ;
DO FOREVER;

DO MOTOR$POSITION=0 TO 100;
MOTOR$PHASE=MOTOR$POSITION AND OOQO03H:
OUTPUT(PPI$C)=PHASE$CODE (MOTOR$PHASE) ;

CALL RQ$SLEEP (CW$STEP$DELAY, @MOTOR$EXCEPT$CODE) ;
END;

CALL RQ$SLEEP(CW$PAUSE$DELAY, @MOTOR$SEXCEPT$CODE);

DO MOTOR$POSITION=0 TO 100;
MOTOR$PHASE=(100-MOTOR$POSITION) AND OOO3H:
OUTPUT(PPI%$C)=PHASE$CODE (MOTOR$PHASE);

CALL RQ$SLEEP (CCW$STEP$DELAY, @MOTORSEXCEPT$CODE)
END;
CALL RQ$SLEEP (CCW$PAUSE$DELAY, @MOTOR$EXCEPT$CODE) ;
END;
END MOTOR$TASK;

$SEJECT
/% CODE EXAMPLE 5. INTERRUPT HANDLER TO TRACK 60 HZ INPUT. #/
DECLARE AC$CYCLE$COUNT BYTE;

AC$HANDLER: PROCEDURE INTERRUPT 59; /#VECTOR FOR 80130 INT3#/
DECL.ARE ACSEXCEPT$CODE WORD;

CALL RQ$ENTER$INTERRUPT(AC$INTERRUPT$LEVEL, @ACSEXCEPT$CODE);
ACSCYCLESCOUNT=ACSCYCLE$COUNT+1;
IF AC$CYCLE$COUNT = 60
THEN DO;
ACSCYCLE$COUNT=0;
CALL RQ$SIGNALSINTERRUPT(AC$INTERRUPT$LEVEL.,

CACSEXCEPT$CODE)
END;
ELSE CALL RQ$EXITSINTERRUPT(AC$INTERRUPT$LEVEL,
@AC$SEXCEPT4CODE) ;

END AC$HANDLER;

AFN-02058A

AP-130

380
381
382
283
384

385
286
387
368

389

390
391

392
393

394
395
3%6
397
398

399

401
402
403
404

405
406

LS g

"

[ARA AN

By

R

g GhORA

RWH G

LA

SEJECT
/# CODE EXAMPLE 7. PROTECTED CRT OUTPUT SUBROUTINE. %/

PROTECTEDCRT0UT: PROCEDURE (CHAR) REENTRANT;
DECLARE CHAR BYTE;
DECLARE CRTS$EXCEPT$CODE WORD:
CALL RG$RECEIVESCONTROL (CRTSREGIONSTOKEN, @CRTSEXCEPTSCODE);
DO WHILE C(INPUT(STAT$51) AND O1H)=0;
/% NOTHING %/
END;
QUTPUT (CHAR$51) =CHAR;
CALL RO$SENDSCONTROL (@CRTSEXCEPT$CODE);
END PROTECTEDCRT0UT;

SEJECT
/% CODE EXAMPLE & INTERRUPT TASK TO MONITOR CLOGK TIME. #/

DECLARE SECOND$COUNT BYTE,
MINUTESCOUNT BYTE,
HOURSCOUNT BYTE;

TIME$TASK: PROCEDURE;
DECLARE TIMESEXCEPT$CODE WORD;

ACSCYCLESCOUNT=0;

CALL RG$SETSINTERRUPT(AC$INTERRUPTSLEVEL, O1H,
INTERRUPT$P TR (ACSHANDLER), DATASSECSADDR. BASE,
@TIMESEXCEPT$CODE); o

CALL RO$RESUMESTASK (INITSTASKS$TOKEN, @TIMESEXCEPTSCODE):

DO HOUR$COUNT=0 TO 23;

DO MINUTESCOUNT=0 TO 59;
DO SECOND$COUNT=0 TO 59; ‘
CALL RASWAITHINTERRUPT(ACSINTERRUPTSLEVEL.,
@TIMESEXCEPT$CODE);
1F SECONDSCOUNT MOD % = O
THEN CALL PROTECTEDCRTOUT(BEL);
END; /% SECOND LOOP %/
END; - /# MINUTE LOOP #/
END; /% HOUR LOOP #/
CALL RO$RESET$INTERRUPT(ACSINTERRUPTSLEVEL.,
@TIMESEXCEPTSCODE)
CALL RQG$DELETE$TASK (0, @TIMESEXCEPTSCODE);
END TIMES$TABK:

B-5 AFN-02088A

AP-130

407
408
409
410

411
412

413
A414

415
41é
417
418
419

420
421
422
423
424
42%
426
427

428
429

430
431
432
433

434

434
437
458

429

240
441
442
443

444
445
444
447

448
449
450

3R P P3P

0 ny

WM

WP E

PR

HERW R

p3)

ny

R P3RS

R

nNw WRRs W L3 PSRRI

R

$SEJECT

/%

CODE EXAMPLE 8. SUBROUTINE TO CREATE TIME-OF-DAY MESSAGE.

PRINT$TOD: PROCEDURE:

/#

DECLARE TOD$MESSAGE$TOKEN WORD;
DECLARE TOD$EXCEPT$CODE WORD;
DECLARE TOD$SEGMENT$0FFSET WORD,
TOD$SEGMENT$BASE WORD;
DECLARE TOD$SEGMENT$PNTR POINTER AT (@TOD$SEGMENTSOFFSET);
DECLARE TODSTEMPLATE (28) BYTE
DATA (27, ‘THE TIME IS NOW hh:mm:ss. *, CR,LF);
DECL.ARE TOD$STRING BASED TOD$SEGMENT$PNTR (28) BYTE:
DECLARE TOD$STRING®INDEX BYTE:

TOD$MESSAGE$ TOKEN=RQ$CREATE$SEGMENT (28, @TOD$SEXCEPT$CODE) ;
TOD$SEGMENT$BASE=TOD$MESSAGCE$TOKEN;
TOD$SEGMENT$0OFFSET=0;
DO TOD$STRING$INDEX=0 TO 27;
TOD$STRING(TOD$STRINGSINDEX) =
TOD$TEMPLATE(TOD$STRING®INDEX);
END; '
TOD$STRING(17)=ASCII$CODE (HOUR$COUNT/10);
TOD$STRING (18)=ASCII$CODE (HOUR$COUNT MOD 10);
TODSSTRING(20)=ASCII$CODE(MINUTE$COUNT/10);
TODSSTRING(21)=ASCII$CODE(MINUTE$COUNT MOD 10);
TOD$STRING (23)=ASCII$CODE(SECOND$COUNT/10);
TOD$STRING(24)=ASCII$CODE(SECOND$COUNT MOD 10);
CALL RQ$SEND$MESSAGE(CRTHMAILBOX$TOKEN,
TOD$MESSAGESTOKEN, O, @TODSEXCEPT$CODE) ;
RETURN;
END PRINT$TOD;

SEJECT
CODE EXAMPLE 9. SUBROUTINE TO CREATE SWITCH STATUS MESSAGE.

PRINT$STATUS: PROCEDURE;

DECLARE STATUSSMESSAGE$TOKEN WORD;
DECLARE STATUS$EXCEPT$CODE WORD;
DECLARE STATUS$SEGMENT®OFFSET WORD,
STATUS$SEGMENT$BASE WORD;
DECLARE STATUS$SEGMENT$PNTR POINTER
AT (@STATUSSSEGMENT$OFFSET)
DECLARE STATUSSTEMPLATE (40) BYTE DATA
(39, ‘THE SWITCHES ARE NOW SET TO B’,CR: LF);
DECLARE STATUS$STRING BASED STATUS$SEGMENT$PNTR (40) BYTE;
DECLARE STATUSSSTRING®INDEX BYTE;
DECLARE BIT$PATTERN BYTE;

STATUSSMESSAGES TOKEN=RQ$CREATESSEGMENT (40,
@STATUSSEXCEPT$CODE) ;
STATUSSSEGMENTHBASE=STATUSSMESSAGE$TOKEN;
STATUSSSEGMENTSOFFSET=0;
DO STATUS$STRING$INDEX=0 TO 39;
STATUSSSTRING (STATUSSSTRINGSINDEX) =
STATUSSTEMPLATE(STATUS$STRINGSINDEX) ;
END;
BIT$PATTERN=INPUT(PPI%$A);
DO STATUS$STRING$INDEX=29 TO 36;
STATUSSSTRING (STATUS$STRINGSINDEX)=
ASCIISCODE(BIT$PATTERN AND O1H);
BIT$PATTERN=ROR(BIT$PATTERN, 1);
END;
CALL RQ$SEND$MESSAGE (CRT$MAILBOX$TOKEN,
STATUSSMESSAGESTOKEN, O, @STATUSSEXCEPT$CODE) ;
END PRINT$STATUS;

B-6

#/

*/

AFN-02058A

AP-130

472
473

474

475
476
a7y
478
479

483
484
4835
486
487
488

489

494
495
4G¢6
497
498
499

[ARAI-NY]

SEJECT

/% CODE EXAMPLE 10. TASK TO RECEIVE MESSAGES AND TRANSMIT THEM TO CRT

CRT$0OUT$TASK: PROCEDURE;
DECL.ARE MESSAGE$LENGTH BYTE;
DECL.ARE MESSAGE$TOKEN WORD;
DECL.ARE RESPONSE$TOKEN WORD;
DECL.ARE MESSAGE$EXCEPT4CODE WORD:;
DECL.ARE MESSAGE$SEGMENT$OFFSET WORD,

MESSAGE$SEGMENT$BASE WORD;

DECLARE MESSAGE$SEGMENTSPNTR POINTER AT (@MESSAGE$SEGMENT$OFFSET);
DECL.ARE MESSAGE$STRING$CHAR BASED MESSAGE$SEGMENT$PNTR BYTE;

CALL RA$RESUMESTASK (INIT$TASKETOKEN, @MESSAGE$EXCEPT$CODE) ;
DO FOREVER;

END

$SEJECT

MESSAGES$TOKEN=RQ$RECEIVE$MESSAGE (CRT$MAILBOX$TOKEN, OFFFFH,
@RESPUONSESTOKEN, @MESSAGE$EXCEPT$CODE);
MESSAGE$SEGMENT$0FFSET=0;
MESGAGE$SEGMENT$BASE=MESSAGESTOKEN;
MESSAGE$SLENG TH=MESSAGESSTRINGSCHAR;
DO MESSAGE$SEGMENT$OFFSET=1 TO MESSAGESLENGTH;
CALL PROTECTED$CRT®QUT(MESSAGE$STRING®CHAR);

END;
CALL RA$DELETE$SEGMENT (MESSAGE$TOKEN, @MESSAGESEXCEPT$CODE)
END; /% OF FOREVER-LOOQP %/
CRTHOUTSTASK,

/# CODE EXAMPLE 11. TASK TO POLL KEYBOARD AND PROCESS COMMANDS. #/

COMMAND$TASK: PROCEDURE;
DECLARE CONSOLE$CHAR BYTE;
DECLARE COMMAND$EXCEPT$CODE WORD;

CALL RQ$RESUMESTASK (INIT$TASK$TOKEN, @COMMANDSEXCEPT$CODE) ;
DO FOREVER;

END

CONSOLE$CHAR=C$IN AND 7FH;
CaALL PROTECTEDCRT0OUT (CONSOLE$CHAR);
IF CONSOLE#CHAR=CR
THEN CALL PROTECTEDCRTOUT(LF);
IF (CONSOLE$CHAR >= ‘0’) AND (CONSOLE$CHAR <= ‘9')
THEN DO;
CALL PROTECTEDCRT0QUT(CR);
CALL PROTECTED®CRT®OUT(LF);
DO CASE (CONSOLE®CHAR-'0’);
CALL PRINT$TOD:
CALL PRINT$STATUS:
CALL RQ$SUSPEND$TASK (CRT$OUTHTASK$TOKEN,
@COMMANDS$EXCEPTSCODE) ;
CALL RQ$RESUME$TASK (CRT$OUTHTASKETOKEN,
@COMMANDSEXCEPT$CODE) ;
CALL RQA$DISABLE(AC$INTERRUPTSLEVEL.,
@COMMANDS$EXCEPT$CODE) ;
CALL RQG$ENABLE(AC$INTERRUPT$LEVEL,
@COMMANDSEXCEPT$CODE);
CALL RQA$SUSPEND$TASK (MOTOR$TASK$TOKEN,
@COMMANDSEXCEPT$CODE) ;
CALL RQ$RESUME$TASK (MOTOR&TASK$TOKEN,
@COMMAND$EXCEPT$CODE);
CALL RQ$SUSPEND$TASK (STATUSHTASK$TOKEN,
@COMMANDSEXCEPT$CODE) ;
CALL RQ$RESUME$TASK (STATUSSTASKETOKEN,
@COMMAND$EXCEPT$CODE) ;

END; /% OF CASE-LIST #/
END; /# OF COMMAND PROCESSING #/
END;
COMMAND$TASK;

*/

B-7 AFN-02058A

AP-130

500
501

502
503
504
05
5086

913
$14

515
916

917
518
519
520

R RIS R Py =

LA ry B2 nn

iS4

P RS

BY PRI PRI M

SEJECT

CODE EXAMPLE 12, TASK TO INITIALIZE OSP SOFTWARE. #/

INIT$TASK: PROCEDURE PUBLIC;

DECLARE INIT$EXCEPT$CODE WORD:

DATA$SECSPTR=QINITHTASK$TOKEN; /#L0OAD DATA SEGMENT BASE*/

CRT$MAILBOX$TOKEN=RQ$CREATESMAILBOX (0, @INIT$EXCEPT$CODE);

CRTHREGION$TOKEN=RQ$CREATESREGION(O, @INITSEXCEPT$CODE) ;

INIT$TASK$ TOKEN=RQCETTASK$TOKENS (0, @INIT$EXCEPT$CODE) ;

HARDWARESINI T#TASK$ TOKEN=RQ$CREATESTASK
(110, @HARDWARE$INIT$TASK, DATASEGADDR. BAGE, 0, 300,
0, @INIT$EXCEPT#CODE);

CALL RQE$SUSPEND$TASK (0, @INITSEXCEPT$CODE)

STATUBSTASKS TOKEN=RQ$CREATESTASK (110, @STATUSSTABK,
DATASEGADDR. BASE, 0, 300, 0, @INIT$EXCEPT$CODE) ;

CALL RQ$SUSPEND$TASK (0, @INIT$EXCEPT$CODE);

MOTOR$TASK$TOKEN=RQSCREATESTASK (110, @MOTORSTASK,
DATASSEG$ADDR. BASE, 0, 300, 0, @INITSEXCEPT$CODE) ;

CALL RQ$SUSPEND$TASK (0, @RINITSEXCEPT®CODE) ;

TIME$TASK$ TOKEN=RQ$CREATESTASK (120, @TIME$TASK,
DATASEGADDR. BASE, 0, 300, 0, @INITSEXCEP T$CODE) ;

CALL RQ$SUSPEND$TASK(O, @INITSEXCEPT$CODE);

CRT$0OUT$TASK$TOKEN=RQ$CREATES$TASK (120, @CRTSOUTSTASK,
DATASEGADDR. BASE, 0, 300, 0, @INITSEXCEPT$CODE) ;

CALL RQ$SUSPEND$TASK(0, @INIT$EXCEPTSCODE)

COMMAND$TASK$TOKEN=RQ$CREATES$TASK (130, @QCOMMAND$TASK,
DATASEGADDR. BASE, 0, 300, 0, @INIT$EXCEPT$CODE)

CALL RQ$SUSPEND$TASK(0, @INIT$EXCEPTSCODE) ;

CALL RQSENDSINIT$TASK;

CALL RQ4$DELETE$TASK(O, @INITSEXCEPT$CODE)

END INIT$TASK;

END DEMO%130;

MODULE INFORMATION:

CODE AREA SIZE
CONSTANT AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
848 LINES READ
0 PROGRAM ERROR(S)

084CH 2124D

=

= 0000H oD
= 0052H 82D
= 0026H 38D

END OF PL/M-8& COMPILATION

B-8

AFN-02058A

AP-130

APPENDIX C
SYSTEM MEMORY MAP

C-1 AFN-02058A

AP-130

EXAMPLE SYSTEM MEMORY MAP

EPROM
(2x2764)

S‘E\RTING ENDING

MEMORY MODULE ADDRESS ADDRESS
8086 RESTART VECTOR OFFFF:0 | OFFFF:F
ROOT JOB CODE AREA OFD18:0 | OFD36:6
APPLICATION JOB CODE AREA 0FC62:0 | OFD17:B
OSP SUPPORT CODE AREA 0FC00:0 | OFC61:F
80130 MEMORY SPACE 0F800:0 | OFBFF:F
[(FREE SYSTEM RAM) 00C0:0 O1FF:F
ROOT JOB DATA AREA 00AD:0 | 00BF:F
APPLICATION JOB DATA AREA 00A7:0 | O0AC:1
OSP SUPPORT DATA AREA 0040:0 00A6:F
8086 INTERRUPT VECTOR 0000:0 003F:F

INITIALIZATION TASK STARTING ADDRESS: __FC62:06B5

ROOT JOB STARTING ADDRESS:

FD18:0011

AFN-02058A

AP-130

APPENDIX D
SUPPORT CODE LOCATE MAP

D-1 AFN-02058A

AP-13U

ISIS~II MCS-86 LOCATER, V1.2
:FO:LOCBG

INVOKED BY

&

:F1:8UP130 MAP PRINT(Fl'SUPlBO’MPf_—’)

:F1:SUP120. LNK TO SC(3) &
SEGSIZE(STACK(0)) &
ADDRESSES(CLASSES (CODE (OFB000H) » DATA(Q0400H))) &

ORDER (CLASSES (DATA, STACK)) &

OBJECTCONTROLS (NOL INES, NOCOMMENTS, NOSYMBOLS)
WARNING 26 DECREASING SIZE OF SEGMENT
SEGMENT: STACK

SYMBOL TABLE OF MODULE MINIMAL_B80130
READ FROM FILE :F1:SUP130. LNK
WRITTEN TO FILE :F1:SUP130

BASE OFFSET TYPE SYMBOL BASE OFFSET TYPE SYMBOL
0040H O000OH PUB INTERRUPTTASKVEC 0040H 0120H PUB DEFAULT_HANDLER
0040H O0148BH PUB INTERRORENTRY 0040H O014CH PUB SYSTEMEXCEPTIONH
~ANDLERPTR
0040H 0152H PUB EXTENSIONLISTROO 0040H 0154H PUB DELETION_OBJECT_
-T -BASE
0040H 0158H PUB ROOTJOBTOKEN 0040H O015AH PUB MINTRANSSIZE
0040H O15EH PUB NDP_INTERRUPT_LE 0040H 0160H PUB PARAM_VALIDATION
~VEL_VAR ~_VECTOR
0040H 0164H PUB TASK_WAITING_FLA 0040H 014&H PUB REGION_TOKEN_TAB
-68 -LE
0040H 0178H PUB SIONAL_Q 0040H O1EBH PUB KERNEL_FLAG
0040H O1EAH PUB FILLCHAR 0040H O1EBH PUB NUM_SLAVES
0040H O1EDH PUB INTMASK 0040H O1F&6H PUB DISABLEMASK
0040H O0208H PUB IMR_PORT 0040H O21AH PUB EOI_PORT
0040H O23EH PUB PIC_INFO 0040H 0247H PUB CLOCK_SPEC_EOI
0040H 02494 PUB CLOCK_OFF 0040H O024AH PUB CLOCK_LEVEL
FBOOH 45CCH PUB NDP_INTERRUPT_LE FBOOH 45C2H PUB VALIDATE_PARAMS_
~VEL ~BODY_DUMMY
FBOOH 4556H PUB GETDESCRPOINTER FBOOH 4567H PUB GETPOINTER
FBOOH 4538H PUB OVERFLOW FBOOH 4533H PUB NENTRY_BODY
FBOOH 4529H PUB KINITIALIZE FBOOH 4524H PUB KENABLELEVELNS
FBOOM 451AH PUB KCREATEREGIONNS FBOOH 4515H PUB KCREATEOBJECTNS
FB0OH 4S0BH PUB INITNDP FBOOH 4506H PUB INITIALIZE
FBOOH 44FCH PUB EOI_ROUTINE FBOOH 44F7H PUB DIVIDEBYZERO
FBOOH 44EDH PUB COMMON_ERROR FBOOH 44E8H PUB CLOCKENTRY_BODY
FBOOH 44DOH PUB SYSTEMEXCEPTIONH FBOOH 4472H PUB INITIALIZE_TIMER
~ANDLER
FBOOH 435CH PUB INIT_INTERNAL_RE FBOOH 434EH PUB NDP_INTERRUPT_HA
~GIONS ~NDLER
FBOOH 4336H PUB NENTRY FBOOH 4OFEH PUB INITIALIZENUCLEU
-8
FBOOH 40B1H PUB RGSIGNALINTERRUP FBOOH 40ACH PUB RGGETLEVEL_BODY
~T_BODY
FBOOH 40A2H PUB RGENTERINTERRUPT FBOOH 409DH PUB RGDISABLE_BODY
-_BODY
FBOOH 408AH PUB RGSIGNALINTERRUP FBOOH 4080H PUB RGGETLEVEL
-T
FBOOH 406CH PUB RGEXITINTERRUPT FBOOH 4062H PUB RGDISABLE
FB800H 4058H PUB NUNLOCKNS FBOOH 4053H PUB NUNLOCK
FBOOH 4049H PUB NOPENNS FBOOH 4044H PUB NOPEN
FBOOH 403AH PUB NLOCKNS FBOOH 4035H PUB NLOCK
FBOOH 402BH PUB NCLOSENS FBOOH 4026H PUB NCLOSE
FBOOH 401CH PUB DELETEOBJECT FBOOH 400AH PUB COPYRIGHT
FB0OH 4000H PUB INIT_NUCLEUS_JUM FC5DH 0004H PUB IMR_START
-P
FC5CH OOOFH PUB INIT_CMD1 FC5CH 0010H PUB INIT_CMD5_MASTER
FC5CH 0012H PUB INIT_CMD4_MASTER FC61H OOOEH PUB SLAVE_TABLE
FC61H O000SH PUB CLOCK_O_PORT FC61H 0007H PUB CLOCK_COUNT
FC61H OOOBH PUB C_CLOCK_SPEC_EOI FC61H O00OCH PUB .C_CLOCK_ON
FBOOH 4576H PUB LEVEL7_HANDLER FBOOH 4574H PUB PARAM_VALIDATION
- _PATH
MEMORY MAP OF MODULE MINIMAL_80130
READ FROM FILE :F1:SUP130. LNK
WRITTEN TO FILE :F1:SUP130
SEGMENT MAP
START sTOP LENGTH ALIGN NAME cLASS
00000H OO3FFH 0400H A (ABSOLUTE)
00400H OO9EFH O5FOH W DATA DATA
O009FOH OO9FFH 0010H G INTVEC_REG_SEG DATA
00AOOH OOAOFH 0010H € EXT_REG_SEG DATA
00A10H 00ALFH 0010H G JOB_REG_SEG DATA
00A20H ~ OOAZFH 0010H G SEM_REG_SEG DATA
00A30H OOA3FH 0010H G MAIL_REG_SEG DATA
O0A40H OOA4FH 0010H G OD_REG_SEG DATA
O0ASOH OOASFH 0010H G POOL_REG_SEG DATA

BASE

0040H
0040H

0040H

0040H
0040H

0040H
0040H
0040H
0040H
0040H
0040H
0040H
FBOOH
FBOOH
FBOOH
FBOOH
FB800H
FBOOH
F800H
F800OH
F800H
F800H
FBOOH
F800H
FBOOH
F800H
FBOOH
F800H
F800H
FBOOH
FBOOH

FBOOH
FCSCH

FCS5CH
FC&1H

FC61H
FC61H

OFFSET

0144H
0150H

0156H

015CH
0162H

0176H
O1E9H
01ECH
O1FFH
022CH
0248H
05DOH
4542H
453DH
452EH
451FH
4510H
4501H
44F2H
44E3H
43AEH
433FH
40B&H
40A7H
4094H
4076H
405DH
404EH
403FH
4030H
4021H

4000H
O00EH

0011H
0003H

000AH
0009H

TYPE SYMBOL

PUB
PUB

PUB

PUB
PUB

PUB
PUB
PUB
PUB
PUB
PUB
PUB
PUB
PUB
PUB
PUB
PUB
PUB
PUB
PUB
PUB
PUB
PUB
PUB
PUB
PUB
PUB
PUB
PUB
PUB
PUB
PUB
PUB

PUB
PUB

PUB
PUB

READYLISTROOT
DELETIONTASKTOKE

SYSTEMPOOL TOKEN

LAST_NDP_TASK
REGION_FLAGS

SIGNAL_Q_INDEX

ACTIVATE_SIONAL.

-a
OLD_SLAVE_NUM
LEVEL_SET_TABLE
1SR_PORT
CLOCK_ON
END_QOF_DATA
GETDESCRTOKEN

SCANMEMORY
KSUSPEND
KENABLELEVEL
KCREATEOBJECT
FINISHINITIALIZA
-TION
DECODE_LEVEL
ARRAYBOUNDS
INITIALIZE_PICS

CLOCKENTRY

RGWAITINTERRUPT
—-BODY

RGEXITINTERRUPT_
-~BODY

RGWAITINTERRUPT

RGENTERINTERRUPT

NUNLOCK_DELETION
~_OBUECT

NOPEN_DELETION_O
~BJECT

NLOCK_DELETION_O
~BJUECT

NCLOSE_DELETION_
~OBUECT

DELETERUNNINGTAS
-K

NBEGIN

AFN-02058A

AP-130

00AGOH OOAGFH 0010H G DELETION_REG_S DATA | LAST RAM BYTE USED
-EG

QOAT7OH DOATOH 0000H W BTACK STACK

00A7OH OOA7OH 0000H G 7?7SEG

FBOOOH FCSCDH 45CEH W CODE CODE

FCSCEH FCSD2H 0005H W PIC_CNF_SEG CODE

FCSDAH FCBESH 00124 W _IMR_PORT CODE

FOSEAH FCHF7H 0012H W _EOI_PORT CODE

FCS5FBH FCOO09H 0012H W _ISR_READ_PORT CODE

FC60AH FCO12H 0009H B _PIC_INFD CODE

FC613H FC6ICH O0DAH B TIMER_CNF_SEG CODE

EC61EH FCOIEH 0000H W CSEG CODE

FC&1EH FCOIFH 0002H W SLAVE_SEG CODE rd-———--—- LAST EPROM BYTE USED

FCO20H FC6ROH 0000H W MEMORY MEMORY

GROUR MAP

ADDRESS GROUP OR SEGMENT NAME
00400H DGROUP

INTVEC_REG_SEG
EXT_REG_SEG
JOB_REG_BEG
SEM_REG_SEG
MAIL_REG_SEG
0D_REG_SEG
PODL_REG_SEG
DELETION_REG_SEG

FBOOOH CGROUP
CODE
PIC_CNF_SEG
_IMR_PORT
TEOI_PORT
TISR_READ_PORT
TPIC_INFO
TIMER_CNF_SEG
CSEG

SLAVE_SEG

AFN-02058A

AP-130

APPENDIX E
APPLICATION JOB LOCATE MAP

E-1 AFN-02058A

AP-130

ISIS-II MCS-86 LOCATER,

V1.2 INVOKED BY:

LOCB6 :F1:AP130.LNK TO :F1:AP130 &
ORDER (CLASSES (DATA, STACK, MEMORY)) %
SEGSIZE (STACK (0)) %
ADDRESSES (CLASSES (DATA (QOA7OH), &
CODE (OFC&20H))) &
MAP PRINT (:F1:AP130. MP2) I
OBJECTCONTROLS (NOL INES, NOCOMMENTS, NOPUBLICS, NOSYMBOLS)
WARNING 26: DECREASING SIZE OF SEGMENT
SEGMENT: STACK
SYMBOL TABLE OF MODULE DEMO130
READ FROM FILE :F1:AP130. LNK
WRITTEN TO FILE :F1:AP130
BASE OFFSET TYPE SYMBOL BASE OFFSET TYPE SYMBOL
FC&2H OB3AH PUB RGENDINITTASK FC6ZH OBICH PUB _N_C_RETURN_40
FC62H OBOOH PUB RQ_N_C_RETURN_20 FC62H OAE4H PUB RQ_N_C_RETURN_ 14
FC62H OACBH PUB RQ_N_C_RETURN_ 12 FC&ZH OAACH PUB RQ_N_C_RETURN_ 10
FC62H O0A90H PUB RQ_N_C_RETURN 8 FC62H 0A74H PUB RG_N_C_RETURN_&
FC62H O0ASBH PUB RQG_N_C_RETURN_4 FC62H OA3EM PUB RQERROR
FC62H OA2BH PUB RQGGETLEVEL FC&42H OAOEM PUB RQSIGNALEXCEPTIO
N
FC62H O9FOH PUB RGWAITINTERRUPT FC62H O9DAH PUB RGSIGNAL INTERRUP
ot
FC62H O09D4H PUB RQDELETESEMAPHOR FCb2H O9CEM PUB RQDELETEMAILBOX
-E
FC62H O9BBH PUB RGEXITINTERRUPT FC62H 09B2H PUB RQUNCATALOGOBUEC
T
FC62H O9ACH PUB RGSENDUNITS FCo2H O09A6H PUB RQSUSPENDTASK
FC62H O9AOH PUB RGSETPRIORITY FC42H 099AH PUB RGSETPOOLMIN
FC62H 0994H PUB RQGSETOSEXTENSION FC&42H O98EH PUB RGSENDMESSAGE
FC62H O988H PUB RQSLEEP FCé2H 0982H PUB RQGSETINTERRUPT
FC62H 097CH PUB RGSETEXCEPTIONHA FCo2H 0976H PUB RQSENDCONTROL.
~NDLER
FCo2H O0970H PUB RQRECEIVEUNITS FC62H 096AH PUB RQRESUMETASK
FC62H 0938H PUB RGRECEIVEMESSAGE FC42H 09324 PUB RGRESETINTERRUPT
FC62H 092CH PUB RGRECEIVECONTROL FC62H 0926H PUB RQOFFSPRING
FC62H O0920H PUB RGLODKUPOBJECT FC62H 091AH PUB RGINSPECTCOMPOSI
~TE
FC62H 0914H PUB RQGGETTASKTOKENS FC62H O90EM PUB RQGETTYPE
FC62H 0908H PUB RQGETSIZE FC62H 0902H PUB RGEETPRIORITY
FC62H OBFCH PUB RGGETPOOLATTRIB FC62H OBF6H - PUB - RGGETEXCEPTIONHA
-MDLER
FC642H OBFOH PUB RQFORCEDELETE FCé2H OBEAM PUB RQGENABLE
FC62H OBDAH PUB RQGENTER INTERRUPT FC62H OBCEM PUB RQGENABLEDELETION
FC62H OBCBH PUB RGDELETETASK FC62H OBC2H PUB RGDELETESEGMENT
FC62H OBACH PUB RGDISABLE FC62H OBAGH PUB RQGDELETEREGION
FC62H OBAOH PUB RGDELETEJOB FCo62H O0B9AH PUB RQDELETEEXTENSIO
-N
FC62H O894H PUB RGDISABLEDELETIO FC&2H OBBEM PUB RQDELETECOMPOSIT
-N -E
FC62H 0888H PUB RQCREATETASK FCo62H OBB2H PUB RQCREATESEMAPHOR
-E
FC62H OB7CH PUB RGCREATESEGMENT FC62H 0B76H PUB RQCREATEREGION
FCb2H OB70H PUB RGCATALOGOBJECT FC62H 0B6AH PUB RQGCREATEMAILBOX
FC62H OB64H PUB RGCREATEJOB FC62H. OBSEH PUB RQCREATEEXTENSIO
. -N
FC62H O0B858H PUB RQGCREATECOMPOSIT FC&2H O0B52H PUB RQGALTERCOMPOSITE
-E
FC62H OBACH PUB RGACCEPTCONTROL FC62H O6BSH PUB INITTASK
DEMO130: SYMBOLS AND LINES
FD17H OQOCH SYM MEMORY FC&2H ODOOM SYM ASCIICODE
00A7H ©0000H SYM DATABEGPTR 00A7H OOOOH SYM DATASEGADDR
00A7H O004H SYM HARDWAREINITTASK 00A7H 000&H SYM STATUSTASKTOKEN
~TOKEN
O0A7H O0OBH SYM MOTORTASKTOKEN O0A7H OOOAH SYM TIMETASKTOKEN
OOA7H OOOCH SYM ACHANDLERTOKEN ODA7H ODOEH SYM CRTOUTTASKTOKEN
O0A7H 0010H SYM COMMANDTASKTOKEN 00A7H 0012H SYM INITTASKTOKEN
J0A7H O014H SYM CRTMAILBOXTOKEN O0A7H 0016H SYM CRTREGIONTOKEN
FC62H O0O0BAH. SYM COUT STACK QOO4H SYM CHAR
FC&62H OOALH SYM CIN FC&62H OOB9H SYM HARDWAREINITTASK
00A7H ©0018H SYM HARDINITEXCEPTCO FC&2H OO010H SYM PARAMS1
~DE
O0A7H 0040H SYM PARAMS1INDEX FCo2H O0016H SYM SIGNONMESSAGE
00A7H 0041H SYM SIGNONINDEX FC62H O13BH SYM STATUSTASK
00A7H 0042H SYM STATUSCOUNTER 00A7H O01AH SYM STATUSEXCEPTCODE
00A7H 0043H SYM CWSTEPDELAY 00A7H 0044H SYM CCWSTEPDELAY
00A7H 0045H SYM CWPAUSEDELAY O0A7H ©0046H SYM CCWPAUSEDELAY
FCé2H O172H SYM MOTORTASK - 00A7H 0O1CH SYM MOTOREXCEPTCODE
00A7H 0047H SYM MOTORPOSITION 00A7H 0048H SYM MOTORPHASE
FC62H O039H SYM PHASECODE 00A7H 0049H SYM ACCYCLECOUNT
FC&aH O0256H SYM ACHANDLER 00A7H OO1EH SYM ACEXCEPTCODE
FC62H 029CH SYM PROTECTEDCRTOUT STACK 000&H BYM CHAR
STACK 0002H SYM CRTEXCEPTCODE 00A7H ©004AH SYM SECONDCOUNT
O0A7H O04BH SYM MINUTECOUNT 00A7H 004CH SYM HOURCOUNT
FC62H O2CFH SYM TIMETASK 00A7H 0020H BYM TIMEEXCEPTCOUDE
FC62H O38BH SYM PRINTTOD 00A7H 0022H SYM TODMESSAGETOKEN
O0A7H 0024H SYM TODEXCEPTCODE 00A7H O0026H SYM TODSEGMENTOFFSET
O0A7H ©0028H SYM TODSEGMENTBASE 00A7H ©0026H SYM TODSEGMENTPNTR
FC62H 003DH SYM TODTEMPLATE O0A7H 0026H BAS TODSTRING
00A7H 004DH SYM TODSTRINGINDEX FC&2H 0489H SYM PRINTSTATUS
Q0A7H 002AH SYM STATUSMESSAGETOK 00A7H ©002CH SYM STATUSEXCEPTCODE
~EN ’

AFN-02058A

AP-130

O0A7H
00A7H
00A7H

Q0A7H
O0A7H
00A7H

00A7H
00A7H

FCo2H

00A7H

00A7H
FC62H
FCé62H
FCo62H
FC62H
FCé2H
FC62H
FC&62H
FC&2H
FCo62H
FC62H
FCo2H
FC62H
FC&2H
FC&62H
FC&2H
FCéo2H
FCo2H
FC&62H
FC62H
FC&2H
FC&2H
FC&2H
FC&62H
FC&2H
FC62H
FC&62H
FCo2H
FC&62H
FCo62H
FCo62H
FC62H
FC&2H
FC62H
FCo62H
FC62H
FC62H
FC62H
FC&2H
FCée2H
FCo62H
FCé62H
FC&62H
FC&2H
FC62H
FC&2H
FCo2H
FC&2H
FC&2H
FC&62H
FCo2H
FC62H
FC62H
FC&62H
FC&62H
FC&62H
FC&2H
FCé2H
FC&62H
FC62H
FC62H
FCé2H
FCé62H
FC62H
FC62H
FCo2H
FC62H
FC&62H
FC62H
FC&2H
FC62H
FCéez2H
FCo2H
FC62H
FC62H
FC&2H
FC&62H
FC&62H

002EH
002EH
OO0R2EH

0Q04FH
0050H
Q034H

0038H
0038H

O5AFH

003CH

003EH
0087H
0096H
00A1H
OOBOH
Q0B9H
OOBCH
00C8H
O0D1H
OOEFH
010CH
011FH
0139H
013EH
0150H
015CH
0146DH
0172H
017AH
0184H
0196H
01ASH
O1BDH
01D6H
O1F5H
020FH
0228H
023BH
0259H
0270H
027DH
028DH
029CH
02ACH
02BBH
02CAH
02D2H
02F3H
030FH
032DH
034EH
035DH
036FH
0389H
03BEH
03A7H
O3BEH
03D%9H
040EH
0440H
0472H
0489H
048CH
O4ASH
04BCH
04D7H
O4EEH
O50FH
052DH
0532H
053FH
0560H
0573H
0592H
05SAAH
05AFH
O5BFH
05C9H
05DAH
05F4H
0600H
0616H
062CH
064CH
066CH
068CH
06BOH
06BS5SH

SYM
SYM
BAS

SYM
SYM
SYM

sYM
SYM
SYM

SYM

sSYM
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN

STATUSSEGMENTOFF
~SET

STATUSSEGMENTPNT
-R

STATUSSTRING

BITPATTERN
MESSAGELENGTH
RESPONSETOKEN

MESSAGESEGMENTOF
~-FSET

MESSAGESEGMENTPN
-TR

COMMANDTASK

COMMANDEXCEPTCOD
-E

INITEXCEPTCODE
304

306
308
310
312
319
321
323
325
327
329
331
335
337
339
341
344
349
351
353
ass
357
359
361
363
365
367
371
373
a7e
378
380
384
386
388
392
394
396
398
400
402
404
406
415
417
419
421
423
425
427
429
439
441
443
445
447
449
451
460
462
464
466
468
470
472
476
478
480
483
485
487
489
491
493
495
498
500

00A7H
FCo2H
00A7H
FC62H
00A7H
00A7H
00A7H
00A7H

00A7H

0030H
0059H
Q04EH
052FH
0032H
0036H
003AH
0038H

0051H

sYM

sYM
SYM
sYM
sYM
SYM
BAS

SYM

STATUSSEGMENTBAS
-E
STATUSTEMPLATE

STATUSSTRING INDE
=X

CRTOUTTASK
MESSAGETOKEN
MESSAGEEXCEPTCOD

-E
MESSAGESEGMENTBA

-SE
MESSAGESTRINGCHA

CONSOLECHAR

[Fcean oeBSH svm

INITTASK |«&———— INITIALIZATION TASK STARTING ADDRESS

FC62H
FC62H
FC&2H
FC62H
FCo62H
FC&62H
FC&62H
FC&62H
FC&2H
FCé62H
FC&62H
FCo62H
FC&2H
FC&2H
FC&62H
FCo2H
FC62H
FC62H
FC&62H
FC&2H
FC62H
FC&62H
FC&62H
FC62H
FC62H
FC&62H
FC62H
FC&62H
FCo62H
FC&2H
FC&2H
FC&2H
FCo62H
FC&62H
FC62H
FC62H
FCo2H
FCoe2H
FC62H
FC&2H
FCé62H
FCo62H
FC62H
FCo62H
FC62H
FC62H
FC&62H
FCo62H
FCé62H
FCo2H
FC&2H
FC&62H
FCo62H
FC&62H
FC&2H
FC&2H
FC62H
FC62H
FCo2H
FC&62H
FC&2H
FC62H
FC62H
FCé2H
FC62H
FCo62H
FC62H
FCo2H
FCa2H
FC62H
FC62H
FC62H
FC62H
FCo2H
FC62H
FC&62H
FC62H
FC62H

0084H
0093H
009DH
00A4H
00B3H
O0B9H
00C2H
00CEH
O0E4H
OOF8H
O116H
012CH
013BH
0143H
0150H
0160H
0170H
0173%H
O17FH
018%9H
0196H
O1BOH
O1CDH
O1E6H
0202H
O21FH
0238H
0256H
0266H
0278H
028AH
027AH
O2A0H
02B8H
o2C2H
02CFH
02D7H
0300H
031EH
033AH
0354H
03&66H
037CH
038BH
039FH
03ADH
03DOH
O3F5H
0427H
0459H
0487H
0489H
045DH
04ABH
O4CEH
O4DFH
050BH
0518H
052FH
053FH
055AaH
0568H
0588H
059DH
05ADH
05B2H
05BFH
05DOH
OSEOH
O5FAH
0610H
061CH
063CH
065CH
067CH
069CH
06B3H
06B8BH

LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN

302
305
307
309
311

313
320
322
324
326
328
330
33z
336
338
340
342
348
350
as2
354
356
358
360
362
364
366
369
372
ars
377
379
383
285
3g7
390
393
395
397
399
401
403
405
407
416
418
420
422
424
426
428
430
440
44z
444
446
448
450
as2
461
463
465
467
465
471
475
477
479
481

484
486
488
490
492
494
496
499
502

E-3

AFN-02058A

AP-130

FCé2H 06C4H LIN 503 FC62H 06DSH LIN 504
FC62H O06E&6H LIN 505 FC62H O06F6H LIN 506
FCé2H O071FH LIN 507 FC62H 072CH LIN 508
FCé62H O0755H LIN 509 FC62H 0762H LIN 510
FC62H O0O78BH LIN 511 FC62H 0798H LIN 512
FC62H 07CiH LIN 513 FC62H O7CEH LIN 514
FC62H O7F7H LIN 515 FC62H 0804H LIN 516
FC62H 082DH LIN 517 FC62H 083AH LIN 518
FC62H 083DH LIN 519 FC62H 084AH LIN 520

FC62H 0084H LIN 521
MEMORY MAP OF MODULE DEMO130
READ FROM FILE :F1:AP130. LNK
WRITTEN TO FILE :F1:AP130

SEGMENT MAP

START STOP LENGTH ALIGN NAME CLASS

00A70H 0OAC1H 0052H W DATA DATA Jag———— LAST DATA BYTE OF APPLICATION JOB
00ACZH 00AC2H 0000H W STACK STACK
00ADOH 00ADOH 0000H G TPSEG
[Fceaon Fp178H OB5CH W CODE CODE |«¢———— LAST CODE BYTE OF APPLICATION JOB
FD17CH FD17CH 0000H W MEMORY MEMORY
GROUP MAP

ADDRESS GROUP OR SEGMENT NAME
FC620H CGROUP

CODE
00A70H DGROUP

DATA

E-4 AFN-02058A

AP-130

APPENDIX F
ROOT JOB LOCATE MAP

F-1 AFN-02058A

AP-130

1518=<11 MCS-86 LOCATER, V1.2 INVOKED BY:
LOCBG : £1:RJB130. Ink)
T0 (F1!RJB130 &
MAP PRINT(: £1:RUB130. mpR) %
OCtnbli, hopl, noecm tHosb) &
PC(noli, pl, nocm nosb) &
BEGSBIZE(stack(0)) &
ORDER({classesldata; stack, memory)) &
ADDRESSES (k1dsseslcode (OFDIBOH), &
data(O0ADOH)))
WARNING 26: DECREASING S1ZE OF SEGMENT
SEGMENT: STACK

SYMBOL TABLE OF MODULE ROOT

READ FROM FILE :F1:RUB130: LNK

WRITTEN TO FILE :F1:RJUB130

BASE OFFSET TYPE SYMBOL BASE OFFSET TYPE SYMBOL

FD1BH 01BOH PUB NUC_INIT_ENTRY FDiBH 01844 PUB CODEDATA

[FD18H_ 0011H PUB_RGSTARTADDRESS |~ ROOT JOB STARTING ADDRESS FD18H 0010M PUB INTERROR

FDIBH OVOOH PUB CRASH FD1BH O002AH PUB RGRODTJOBVERSION
FD1BH O030H PUB RODTTASK FD18H O010CH PUB SYSTEMSUICIDE
FDIBH 01184 PUB RGCREATEJOB FD18H O11EM PUB RGGETTASKTOKENS
FD18H O01R4H PUB ROBUSPENDTASK FD18B4 012AH PUB RQ_N_C_RETURN_6
FD1BM Oi4s6H PUB RA_N_E_RETURN_40 FD18H 0162H PUB RQERROR

00ADH OOOOH PUB JUBNUMBER OOADH 0002H PUB ROOTTASKSTATUS

MEMORY MAP OF MODULE ROUT
READ FROM FILE :F1:RUB130. LNK
WRITTEN TO FILE :F1:RJB130

MODULE START ADDRESS PARAGRAPH = FD18M OFFSET = 0011H
SEGMENT MAP

START sTOP LENGTH ALIGN NAME CLASS
O0ADOH 00AD3H 0004H W DATA DATA
loowtm OOBFFH 0l2CH W INIT_STACK s‘mcn}q—-—-— LAST DATA BYTE OF ROOT JOB
0OCOOH O0COOH 0000H W STACK STACK
OOCOOH DOCOOH 0000H @ 7?78EG
FD1BOH FD339H O1BAH W CODE CODE
FD33AH FD345H 000CH W SAB_DESCRIPTOR CODE
-5

FD346H FD366H 0021H w _g_J_DESCRIFTﬂR CODE ¢ LAST CODE BYTE OF ROOT JOB

FD36BH FD36BH 0O000H W MEMORY MEMORY

GROUP MAP

ADDRESS GROUP OR SEGMENT NAME
Q0ADOH DGROUP

DATA
FDi8BOH COROUP -
CODE
SAB_DESCRIPTORS
U_J_DESCRIPTORS

F-2 AFN-02058A

intel

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, CA 95051 (408) 987-8080

Printedin U.S.A./T-520/20K /0282/CP JL

