
intel~

© INTEL CORPO RATION,1982

APPLICATION
NOTE

AP-130

March 1982

ORDER NUMB MARCH 1982
ER: 210295-001

John Wharton is currently the Technical Director of Applications Research, Sunnyvale, California. Please direct any
questions or comments to your local FAE (field applications engineer).

CP/M and CP/M-B6 are trademarks of Digital Research Incorporated.

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may
appear in this document nor does it make a commitment to update the information contained herein.

The following are trademarks of Intel Corporation and may only be used to identify Intel Products:

BXP, CREDIT. i. ICE. iCS. im , iMMX. Insite, Intel, intel, Intelevision,
Intellec, iOSp, iRMX, iSBC, iSBX, Library Manager, MCS,
Megachassis, Micromainframe, Micromap, Multimodule,
Plug-A-Bubble, PROMPT. RMX/80, System 2000 and UPI.

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered trademark of
Mohawk Data Sciences Corporation .

• MUL TIBUS is a patented Intel bus.

Additional copies of this manual or other Intel literature may be obtained from:

c INTEL CORPORATION, 1982

Intel Corporati on
Literature Department SV3-3
3065 BowersAvenue
Santa Clara, CA 95051

ii

Using Operating System
Firmware Components

To Simplify Hardware
and Software Design

Contents

INTRODUCTION

EVOLUTION OF PROCESSOR EXTENSIONS 2

Real-Time Operating Systems 2

SYSTEM HARDWARE DESIGN 5

Basic Functional Blocks 5
80130 Pin Functions. 6
Additional System Requirements 9
Timing Considerations 10
Example System Design 12

APPLICATION SOFTWARE DEVELOPMENT 12

Hardware Initialization 13
Simple Time Delays 15
Stepper Motor Control 15
Real-Time Interrupt Processing 15
Mutual Exclusion 17
Intertask Communication 18
Segments, Messages, and Mailboxes. 19
Console Command Interpreter 20
Initialization Task 21
Code Translation 22

SOFTWARE CONFIGURATION AND INTEGRATION 22

Configuring OSP Support Code 23
Linking and Locating Application Jobs 24
Creating the Root Job 25
Programming EPROMS 26

SUMMARy ... 27

APPENDIX A. EXAMPLE SYSTEM SCHEMATICS A-1

APPENDIX B. SOURCE CODE LISTINGS B-1

APPENDIXC. SYSTEM MEMORY MAP C-1

APPENDIX D. SUPPORT CODE LOCATE MAP D-1

APPENDIX E. APPLICATION JOB LOCATE MAP E-1

APPENDIX F. ROOT JOB LOCATE MAP F-1

iii AFN-02058A

INTRODUCTION

Intel recently introduced a new set of extensions to its
microprocessor product line. The iAPX 86/30 and
iAPX88/30 Operating System Processors (OSPs) aug­
ment the general-purpose instruction set of the well­
known 8086/8088 architecture to include common,
real-time, operating system capabilities. A single
device, the 80130 Operating System Firmware compo­
nent (OSF), now provides hardware support for func­
tions previously relegated to software.

The 80130 introduces new concepts in the areas of both
hardware and software. At first glance, traditional
component-level hardware designers could feel some­
what intimidated by the esoteric concepts and un­
familiar buzzwords encountered in the software world.
Even the experts in conventional operating system
(OS) design may initially find it strange that what used
to be "soft" software routines are now cast in silicon.

This application note is intended for readers at both
levels. The first section reviews the development of
processor extensions in general and operating system
firmware in particular. Later sections should help you
understand what a real-time operating system can do,
how the 80130 provides these capabilities, and how to

Vss Vee

AD14 AD15

AD13 BHE

AD12 IR7

AD11 IR6

AD10 IRS

AD. IR4

ADe IR3

AD7 IR2

AD6 IR1

ADS IRO

AD4 INT

AD3 52

AD2 51

AD1 SO

ADO ACK

MEMeS LlR

IOCS SYSTICK

ClK DELAY

Vss BAUD

design system hardware and software to take advantage
of such features.

The note also documents a complete (albeit simple)
system, including schematics and listings. The reader
may wish to reconstruct this system to get started with
OSPs. Finally, a step-by-step description of the so­
called "configuration" process shows how physical
system parameters are incorporated into the software
as the software is "installed" in memory. Through­
out the note are a number of "exercises"-questions
relating to concepts just presented. Please take a
few moments to think about these questions before
reading on.

The reader need not have worked with operating sys­
tems previously, though such background would be
helpful. The reader should also know something about
microprocessor hardware-at a minimum, how the
8086 or 8088 devices operate. For simplicity, most of the
software examples are written in PLlM-86, so the
reader should be familiar with PLlM-80 or some other
block-structured language. Finally, be forewarned that
the configuration steps make use of several ISIS utility
programs, including EDIT, SUBMIT, ASM86,
LINK86, and LOC86. Readers who wish to brush up on
any of the above should consult the appropriate Intel
reference manuals.

MAX I MAX I MODE MODE
8086 8088

Vee

AD14 A015

A013 A16/S3

AD12 AD17/S4

AD11 AlB/55

AD10 A191S6

AD. BHE/57 (HIGH)

ADe MN/Mx

AD7 AD

AD6 RQ/GfQ

ADS RO/GT1

AD4 LOCK

AD3 S2

AD2 51

AD1 SO

ADO 050

NMI 051

INTR TEST

CLK READY

Vss RESET

Figure 1. 8086 and 80130 Pinout Diagrams

AFN-0205eA

AP-130

EVOLUTION OF PROCESSOR
EXTENSIONS

In the early days of micro computing (circa 1974), things
were simple. The first microprocessors comprised just
the central processing unit of a simple computer. Sys­
tems built up from these processors were generally
small, dedicated-purpose device controllers-often
replacing the random logic of an earlier design. The
system designer had responsibility for the development
of the hardware and all application software.

Semiconductor technology has progressed rapidly
since then. Devices have become more sophisticated,
as have the applications in which they are used. System
functions today are more complex than they used to be,
and are demanding more in the way of both system
hardware and software.

To help designers cope with this complexity, semicon­
ductor vendors are building increasingly more
"functionality" into their standard product lines.
Whereas the general arithmetic functions of the 8080
and 8085 were limited to addition and subtraction of
eight-bit unsigned (ordinal) values, for example, the
Intel® 8088 and 8086 now add, subtract, multiply, or
divide eight- or 16-bit, signed or unsigned variables
-an obvious improvement.

The evolution of floating-point arithmetic provides an­
other example of technology growth. Initially, design­
ers of numeric and process-control systems each
developed the floating-point arithmetic routines they
needed. Intel eased this task considerably in 1977 when
it introduced a standard floating-point format and a
floating-point arithmetic software library, FPAL-80. In
1978, the iSBC 310 High-Speed Mathematics Unit im­
plemented these same functions with dedicated hard­
ware and executed them an order-of-magnitude faster.

The 8231A Arithmetic Processor Unit (introduced in
1979) provided similar functionality in one chip at much
lower cost. To accommodate the needs of today's
world, the Intel RealMath™ software standard and the
8087 numeric coprocessor perform 80-bit floating-point
arithmetic for high-performance 8088 and 8086
systems.

This evolution of floating-point hardware illustrates two
recurring themes in the microcomputer industry. First,
there is a natural trend toward componentization:

I. New applications reveal a need for new types of
functionality (in this case, floating-point arithmetic).

2. As common requirements become evident, vendors
develop software to serve these needs.

2

3. Specialized hardware is developed to support the
established functions more simply and effectively
than software alone.

In time, everything ends up in silicon.

The second theme is this: different functions should be
implemented in different ways to fit the customer's
needs. "Universal" requirements-like 16-bit
multiplication-are best incorporated into the CPU.
Functions needed only by certain applications-like
high-speed, extended-precision square roots-should
be provided as optional Processor Extensions so that
their expense is incurred only by those who need them.
In keeping with this philosophy, Intel currently offers
several processor extension products (see "What's in a
Name?").

What's in a Name?

The 80130 Operating System Firmware (OSF) device is
only the latest member of an extremely flexible family
of Intel microprocessors. Its siblings include the 8086
and 8088 Central Processing Units (CPUs), the 8089110
Processor (lOP), and a floating-point math coproces­
sor, the 8087 Numeric Processor Extension (NPX).
These individual standard components may be mixed
and matched in numerous ways to create combinations
optimized for widely varying applications.

To make it easier to discuss the most common con­
figurations, Intel has defined an "Advanced Processor
Series" (iAPX) numbering scheme, something akin to
those used in the minicomputer and mainframe worlds.
The 8086 CPU by itself, for instance, is called the iAPX
86110. The 8086/8087 combination is dubbed the iAPX
86/20. An 8086/80130 pair has the name iAPX 86/30. The
8086, 8087, and 80130 together would form an iAPX
86/40.

When each of these combinations uses an 8088 in lieu
of the 8086, each of the numbers above substitutes
"88" for the "86". An 8088 teamed with an 80130 is
therefore called the iAPX 88/30. Finally, adding an 8089
to any system changes the final zero to a one. So, an
iAPX 88/41 system would be one using the 8088/80871
8089/80130 chip set.

Real-Time Operating Systems

Let's turn our attention now to the subject of micro­
computer operating system software-an area steadily
growing in importance. The trends toward standardized
functions with specialized implementations will be­
come evident.

AFN-02058A

AP-130

But first, what is an operating system? The phrase
means different things to different people. In 20 words
or less: An OS is a tool, a set of programs or routines
which reduce and simplify the problem of managing
system resources. (Well, 21, actually ...)

Most microcomputer programmers have encountered
single-user diskette operating systems, Intel's ISIS-II®,
and CP/M® and CP/M-86® from Digital Research Incor­
porated among them. In essence, an OS of this sort is a
collection of run-time subroutines which perform
device 110 operations and give application programs
access to a disk-based file system. Along with these are
routines to supervise the loading and execution of ap­
plication programs. Historically, this type of OS is
oriented toward user-interactive applications: software
development, business computing, and the like.

In the mainframe world, the goal of an operating system
is to use expensive equipment as efficiently as possible.
Batch processing systems ensure that programs waste
as little CPU time as possible, though each monopolizes
the CPU until it has completed. A time-sharing OS
allots short periodic "slices" of time to each of several
independent users, during which each has access to the
CPU, memory, and other system resources.

A step above the traditional time-sliced OS are "real­
time, multitasking operating systems." But what is a
"real-time" application? ("Don't all programs execute
in real time?")

A real-time system is one in which the CPU must do
many different things (tasks), all more-or-less simulta-

neously. Unlike the sequential time-sharing of
mainframe OSs, though, the tasks are prioritized. Low­
priority tasks are preempted if any of higher priority
have work to do. The higher-priority task then runs
until it must wait for some external event to occur or no
longer needs the CPU for some other reason. Thus, the
CPU services tasks in their order of importance.

A computer controlling factory machinery, for in-.
stance, might perform five separate tasks:

1. Monitor input switches to detect emergency condi­
tions, determine intended operating mode, or update
indicator lights showing machine status;

2. Drive a stepper motor to position a tool;

3. Keep track of the time of day;

4. Send output to the console (e.g., CRT), either in
response to explicit commands or as part of some
other task;

5. Read and process characters entered from a console
keyboard.

These tasks seem largely unrelated, though the first few
may be more important to system operation
than the others. Let's consider some alternate
ways to accomplish these functions with today's
microcomputers.

Conceptually, the most straightforward approach might
be to dedicate a separate computer to each. The pro­
gram for each would then be quite simple: an initializa­
tion phase followed by an endless loop performing the
dedicated function. Algorithms for the first four tasks
are flowcharted in Figure 2.

Figure 2. Flowcharts for Concurrent Machine-Tool Tasks

3 AFN-02058A

AP-130

What's wrong with this approach? Ignoring cost, the
need for multiple CPUs becomes physically unrealistic
for more than a few tasks-60, say, or 600, And tasks
are rarely fully independent; note that the switches
monitored by task 1 could affect task 2, and that tasks 4
and 5 interact with the rest of the system in as yet
undefined ways, So, some sort of communications
would have to be set up between the micros,

Exercise 1. Suppose five tasks are all interrelated.
How many communications channels would have
to be set up between different processors? If each
channel requires two dedicated communication

chips, how would the number of peripheral
devices compare with the number of CPUs?

In each task, the CPU spends most of its time waiting
for time to pass or for something to happen. One CPU
would be able to implement all five tasks if its time were
properly divided among them. An alternate approach,
then, might be for a single processor to attend to each
task in turn, performing the actions called for by each.
Figure 3 shows a flowchart for this scheme. Only one
CPU is required and the tasks can communicate be­
tween themselves and share physical resources like the
console.

READ STATE OF
INPUT SIGNALS

WRITE MACHINE STATUS
TO INDICATOR LIGHTS

STep IN APPRO·
PRIATE DIRECTION

INCREMENT TIME­
OF-DAY COUNTERS

OUTPUT MESSAGE
TO CONSOLE

Figure 3. Machine-Tool Tasks Implemented Via Polling Scheme

4 AFN-02058A

A"'-l~U

The problem here is the heavy interaction between
tasks. Before it can be serviced, an important task may
have to wait for many other less critical tasks to com­
plete. This imposes a constraint that each task release
the CPU as quickly as possible. Also, lumping tasks
together obscures the boundaries between them. In­
itialization sequences must be grouped with each other,
rather than with the sections of code affected. Adding to
or deleting any task may affect the others. It's not clear
how to structure the program such that programmers
could cooperate on such a program.

Moreover, the various tasks can interfere with each
other. Suppose on a given pass through the processor
loop, three tasks each send one new character of a
message to the console display screen. The resulting
output would be most interesting.

The third, and optimal approach, would be one which
combined the advantages of the first two approaches,
while avoiding the pitfalls. Each function ofthe overall
system could be designed, written, and tested sepa­
rately, as in the first approach, yet all the software
would run on a single computer system as in the
second. Tasks could therefore communicate with each
other easily, and share peripherals such as CRTs. This
multitask control and communication function could be
performed largely through software.

The key is finding a way to properly budget CPU time
between the various tasks. Early pioneers of complex,
real-time, control system design found that they needed
special routines, apart from the application tasks them­
selves, to supervise the execution of application tasks.
It was (at best) an inconvenience for so many engineers
to independently define, design, document, test and
debug software with the same general purpose. At
worst, schedules slipped or projects were cancelled for
the lack of reliable executive software.

To help avoid these hazards and free up the designers to
concentrate on more immediate goals, Intel developed
iRMX 80, the first real-time, multitasking, executive
operating system for microprocessors. iRMX 86 was
introduced to the l6-bit world two years later in 1980.

Because of the critical real-time nature of such operat­
ing systems, they require certain hardware capabilities
in the host system, such as special timer logic clocked at
certain frequencies to measure the passing of time, and
interrupt controllers to monitor assorted asynchronous
events. Combine all this with a handful of memory
chips to house just the as software, and the address
decode and control logic needed by all of the above, and
you'll find you need the equivalent of a single-board
computer system just to support a multitasking
environment.

5

Until now, that is. The current trend is to integrate as
software and hardware functions into silicon. Intel's
iAPX 432 32-bit MicroMainframe™ system does this
within the CPU. For the 16-bit world, however, Intel
provides a separate chip, the 80130, which contains
operating system firmware as well as timer and inter­
rupt control functions.

What is the 80130 OSF? It is an extremely sophisticated
integrated circuit, fabricated using Intel's high­
performance HMOS technology, which contains over
160,000 devices. In one 40-pin package (Figure 4), the
80130 combines several timers, multiple-mode inter­
rupt control logic, and a large control store memory
-plus buffers, decoders and the like-to form the in­
tegrated heart of a multitasking operating system.
Compared with the iRMX 86 Nucleus, for example, the
80130 replaces an 8259A PIC, an 8253 PIT, a special
oscillator, 16K bytes' worth of memory, and associated
control logic.

The 80130 operates in conjunction with the 8086 CPU.
Together, the two chips are called the iAPX 86/30 aSP.
The same device may be paired just as easily with an
8088 forming the iAPX 88/30. From here on, though,
references to the 8086 or "host processor" apply to
both CPUs. Due to the high speed of HMOS , the 80130
currently runs at system clock rates up to 8 MHz with­
out inserting any wait states. Firmware in the 80130
supports the 35 primitive functions listed in Table 1.
Many of these are discussed in Chapter IV.

SYSTEM HARDWARE DESIGN

The 80130 supports a wide range of system architec­
tures, from compact to quite complex. Most, however,
have in common the functional blocks represented in
Figure 5. After a brief review of iAPX 86/30 systems in
general, we'll examine 80130 requirements in greater
detail.

Basic Functional Blocks

In addition to the 80130, the central processing "core"
of a typical asp system would include an 8088 or 8086
operating in maximum mode, an 82843A clock
generator, and an 8288 system controller, all connected
according to the standard rules. More on the 80130-
specific interconnects later.

Address latches (e.g., 8282s or 8283s) are generally
needed to demultiplex the processor address bus for
standard memory devices and for memory and 110
device-select logic. The number (from zero to three
octal latches) depends on the host processor,
memories, and the addressing scheme employed. Data

AFN-02058A

AP-130

Table 1. Operating System Primitives Supported by 80130

Task Management
Suspend Task
Resume Task
Sleep
Create Task
Delete Task
Set Priority
Get Task Tokens

Intertask Communications and Synchronization
Send Message
Receive Message
Create Mailbox
Delete Mailbox

Mutual Exclusion Control
Receive Control
Accept Control
Send Control
Create Region
Delete Region

transceivers (8286s or 8287s) may also be needed for
increased bus buffering.

Any complete microprocessor system must also have
some combination ofI/O peripherals and memory, col­
lectively indicated by the box labeled "Local Re­
sources." As we shall see, some of the system RAM
and ROM (or EPROM) must be reserved for OSP itself.
Additional logic decodes the latched address lines to
generate chip-select signals for the memory and I/O
devices.

This note only discusses simple, single-processor sys­
tems. More sophisticated architectures may incor­
porate a multimaster system bus, in addition to a local
processor bus. This would require additional system
controllers, address latches, and bus transceivers for
bus isolation, and address mapping logic (not shown) to
select between the various busses, enable the respec­
tive transceivers, generate a System Ready signal, and
so forth. For design information on such techniques,
refer to application note AP-67 in theiAPX 86,88 User's
Manual.

6

Interrupt Management
Set Interrupt
Signal Interrupt
Reset Interrupt
Enter Interrupt
Wait Interrupt
Exit Interrupt
Enable
Disable
Get Level

Free Memory Management/System Partitioning
Create Segment
Delete Segment
Create Job

Misc. Support
Signal Exception
Get Type
Disable Deletion
Enable Deletion
Set O. S. Extension
Get Exception Handler
Set Exception Handler

80130 Pin Functions

Back to the 80130. Certain pins on the 80130 (inparticu­
lar, AD15-ADO) attach directly to the CPU. The AD
pins are bidirectional, accepting addresses from the
host and returning instructions or data. By monitoring
the system clock and status signals, S2-S0, the 80130
can decode the processor status internally and respond
automatically to the appropriate bus cycles. The BHE
input lets the 80130 determine the width of data trans­
fers and distinguishes an 8088 host from an 8086. If you
refer back to Figure 1, you'll notice that these 80130 pin
assignments were selected to simplify P. C. board
layout.

Because of the 80 130's location on the CPU side of any
latches or data transceivers (on what is sometimes
called the "pin bus"), the transceivers (if used) must be
disabled when the 80130 is driving the processor bus.
Whenever the 80130 is responding to any type of bus
cycle, it generates anACK signal. As Figure 4 suggests,
one way to avoid contention is to simply disable the
transceivers whenACK is active. ACK can also be used
to prevent the insertion of wait states.

AFN'02058A

AP-130

r----------------------------------~

I OPERATING SYSTEM UNIT I
I I
I

00-7 I
I I
I

[I 7

I
PROGRAMMABLE I INTERRUPT I

I LOGIC I INTERRUPT INP urs
I I
I I
I I INTERRUPT OUT
I KERNEL I
I CONTROL I

I
STORE I

I I
I

2
I

:
SYSTEM ~ SYSTEM

TIMER I

:
I

.~
I

:
I

08-15 I
I C-

DELAY DELAY

I
TIMER I

I I
I I

:
I r- BAUDRA

I BAUD RATE
GENERATC':lA

: /1
I

TE

f-------------- ------- -- --------------j
I I
I <-- r I CLOCK

I
I DATA BUS ~ 16 I BUFFER INTERFACE

STATUS

< , & AND

~6USCO I ADDRESS CONTROL

ADDRESSI I LATCH
NTROL

DATA BUS I ~ LOCAL
I ! INTERAU PT
I CONTROL UNIT I (CTA} L __________________________________ ~

Figure 4. 80130 Internal Block Diagram

Additional pins on the 80130 include eight interrupt­
request inputs. Internal interrupt control logic provides
many of the functions of the 8259A. During system
configuration (Chapter V), each of the eight may be
individually defined as a direct level-sensitive or edge­
triggered interrupt request, or each may be cascaded
with a standard 8259A in slave mode.

The INT output must be connected to the host CPU to
inform it of an enabled interrupt request. In very large
systems with multiple, cascaded interrupt controllers,
Local Interrupt Request (UR) indicates to the bus
contention logic whether a requesting slave is local, or
must be accessed via a multimaster bus.

The 80130 also contains dedicated timer logic to provide
the OS time base, which is output on SYSTICK.
Software operating in conjunction with the 81030 as­
sumes one of the interrupt inputs (INT2 in this case) is

7

driven by SYSTICK, so this connection must be made
externally. Routines within the 80130 initialize and per­
form all bit-level control of the interrupt and timer
logic, according to options and parameters specified
during the configuration process. Freeing the program­
mers from this tedium allows them to devote lIjore
thought to solving their own unique problems.

An additional, independent timer generates a user­
programmable, square-wave output signal called
BAUD to clock an off-chip USART.

Since the 80130 displays some of the characteristics of
both memory and 110, it requires chip-select signals for
both the memory (MEMCS) and I/O (IOCS) address
spaces. These are discussed at length below. Finally,
Intel has reserved one output pin (called "DELAY")
for use in future designs. Leave it unconnected in iAPX
86/30 systems.

AFN-G205M

+5

r
I

8284A Vee " ClK t..
(Al)ClK :: ClK SOl--,--

52- (CONTROL BUS) CONTROL

Il' lID SIGNALS READY READY 8288
V 5- ROY1 RESeT f-- (Aa)

f~
RESET

~q......r-
AEA2 STB

liHi! tI I BHE
~

BHE

-=- AEN1 RDY2 AI. 8.82 A" I

P
(AO) A\6 AI.

~~
V LOCAL (ON·BOARD)

8086 RESOURCES
(A')

- 'Srii""" (PROM, PERIPHERALS, RAM
N.C. liD t.. "

ACCORDING TO APPLICATION)

N.C. OSl AD15 '\ 8 ... A" I

n!~
A' N.C. OSO I

rY I--ADO l- V
N.C, LOCK

N.C. RQJGn

N.C RQ/GTO

~~ f
NMI

" TEST I---
MDI

A7-AO LOCAL (+5Y5) INTGND MAX ~:'6) I-- V READY 015-00 ...
I -<"'>-I ~ -f~

l- I-- I-
co

StiNT

ACK 1
Dl/R

:=r--,
L.... ~rii I--

80130

"'" 7- ~ -;:----(A1)
A1B-A16

I-~OE !-BHE ~ DIS

.. ltt- ADDRESS '\ 8 ...
DECODe

:~AS
r--'- (AS) Y

Silr'r- LOGIC

~~ N.C.- DR • Al

TO SERIAL INT. -+-- BAUD :r- ~-r--
OE N.C.- DELAY iOCS t--- F~ r- SVSTlCK A7 A7-A4 MfilCS ~ Ii.

- I- INT7 "'l
- ~ INT6

c;~:--w--" - IHTS

0-PERIPHERALS - f- INT4
ADI15 - f- INT3 PROCESSOR DATA BUS FOR MULTI-MASTER SYSTE

4 INT2 ADO f\r - INTl .- 1NTOVSS vss

y

Figure 5. Basic iAPX 86/30 Microcomputer System Block Diagram

~
~

}

SYSTEM
CONTROL
BUS

SYSTEM
ADDRESS
BUS

SYSTEM
DATA
BUS

AP-130

Additional System Requirements

The OSP requires a certain amount of off-chip memory
for its own operation. The system must provide at least
lK bytes of RAM at address OOOOOH for the CPU
interrupt vectors, plus another 150Oto bytes for OSP
system variables, data structures, stacks, and the like.
This RAM may reside anywhere in the 8086 megabyte
address space, although it is often contiguous with the
interrupt vector up front. Application tasks must each
have their own stack, so allow at least an additional 300
bytes of RAM for each.

Any iAPX 86 system must have ROM or EPROM at the
upper end of memory to hold the CPU restart vector.
About 3400 more bytes are consumed by code to initial­
ize and access the OSP. This code is generated auto­
matically from libraries on a diskette provided with a
product called the iAPX 86/30 and iAPX 88/30 Operat­
ing System Processor Support Package (iOSP 86).
Space left in the initialization EPROMs is available for
application tasks.

As code is being written, the system designer should
count on another 1500 bytes of code from the support

libraries being added to his application during the link­
ing and system configuration steps. These memory re­
quirements are shown in Figure 6. In practice, the
separate blocks in this figure would be grouped together
for more efficient use of RAM and EPROM chips.
The 80130 occupies a 16K-byte block of addresses in the
host-processor memory space, so external logic should
decode address bits A19-A14 to generate MEMCS.
Similiarly, the timer and interrupt control logic occupy
a 16-byte block of addresses in the 110 space; at least
some of the bits A15-~ must be decoded to generate
IOCS. The 80130 decodes all the lower-order address
bits (14 for memory, four for I/O internally).

Firmware in the 80130 leaves a great deal of flexibility in
decoding the chip-select signals, to be compatible with
whatever decode logic is already present in the system.
The I/O starting address may be on any 16-byte bound­
ary in the full CPU 110 space. The memory block has
only two restrictions: the off-chip initialization and in­
terface code memory must be placed immediately
above the MEMCS block, so the 80130 may not occupy
the extreme top of memory, nor may the 80130 reside at
address OOOOOH since this area is reserved for interrupt
vectors.

iAPX 86/30 SYSTEM MEMORY REQUIREMENTS

OFFFFOH

MUST BE
CONTIGUOUS

400H

x

POWER ON-LOCATION

80130 INITIALIZATION AND CONFIGURATION
CODE (ROM/EPROM)

16K FOR 80130 ON 16K BOUNDARY

I-'-'-.J...W-'-'-'-I } 1.5K CODE BYTES SYSTEM INITIALIZATION (ROM/EPROM)

P~~"I } 1.5K RAM BYTES FOR IAPX 86/30 STACK AND DATA (RAM)

=} 1K BYTES
RESERVED FOR
INTERRUPTS (RAM)

Figure 6. Operating System Processor System Memory Requirements

9 AFN-Q2058A

AP-130

Timing Requirements

System timing analysis is often the most tedious part of
digital hardware design. This discussion can be rela­
tively short, though, because the 80130 timing is quite
simple: by design, the part is compatible with the timing
of the host processor. Since it interfaces directly with
the CPU pins, traditional set-up, hold, and access times
no longer matter.

There are really only two areas of concern in analyzing
the timing of most OSP systems, both of which relate to
the user-generated chip-select signals. Figure 7 il­
lustrates the relevant timing signals of a standard 8086
four-state Read cycle (memory or 110), along with the
timing responses of the 80130. 110 Write cycle timing is
the same. (Full timing diagrams are part of the respec­
tive data sheets.)

The first concern is that MEMCS and IOCS must be
active early in a memory or 110 cycle if the 80130 is to

T4 n T2

I
.. TCHCL TelCH I

/ ---' elK

respond during T3 . In each case, the chip-select signals
must be active TCSCL before the end of state T2 .

Assuming wait states aren't desired, addresses
generated by the CPU must propagate through the ad­
dress latches and be decoded during Tl or T2 .

How much time does this leave the decode logic? As
we'll see, ample.

By convention, TCLA V is the delay from the start of
Tl until address information is valid on the CPU pins;
Trvov is the propagation delay through an 8282 latch;
and TCSCL is the 80130 chip-select set-up time. The
mnemonic Tovcs represents the chip-select logic prop­
agation delay, after the latch outputs are stable. The
sum of these four delays must be less than two system
clock cycles, reduced by the clock transition time.

T CLAV + T1VOV + Tovcs + TCSCL ,,; TCLCL + T CLCL

Tovcs ,,; T CLCL + T CLCL - T CLAV - T1VOV - TCSCL
,,; 125 + 125 - 60 - 30 - 20 (nsee.)
,,; 140 nsee.

I T3 I T4

TW

/
,

I ,TeHSV_

1

TSVCH TCLCL TClS'::1 F -----I
52,51. $0

\ I / /
I~AseH·1 R

BHE, A15-AO VALID X-----
15-ADo BHE, AD

TCSCL

4
- / ,toes MEMes

I
E CYCLE I TDSCL TCHDH

1 'II
WRIT

- -
ADDRESS VALID XJIJJIX WRITE DATA VALID I I s-ADo

rTCSAK 1-1 I.--TCSAK -j
eK

~ J TSACK
I

~ ~ o CYCLE 1--1 TeLDV

-X ADDRESS VALID
FLOAT FLOAT

AD,
READ DATA VALID -

AD,

A

REA

I TCLVE

Ae K
TSACK \ ~

Figure 7. Operating System Processor Timing Diagrams

10 AFN-02058A

AP-130

The propagation delay numbers plugged into the equa­
tion are worst-case values from the appropriate Intel
data sheets. The CPU is an 8086-2 operating at 8 MHz.
This means the address decode logic must produce
stable CS outputs within 140 nanoseconds.

Exercise 2. Using standard, low-power Schottky
TTL, does it make sense for a circuit to take
longer than 140 nsec. to decode 6 program or 12
110 address bits? Even if the rather liberal setup
specs are not met, the 80130 would still work fine.
Wait states would be needed until the chip-select
signal was active, however, so performance
would degrade some.

The second point of concern relates to ready signal
timing. The 80130's acknowledge output signal, ACK,
can be used to control the CPU's ready signal. For this
case, the chip-select signal must be active early in a
memory or I/O cycle to allow activation of ACK early
enough to prevent wait states. There are two schemes
for implementing ready signals; "normally ready" and
"normally not ready." (For more details, refer to AP-
67, "8086 System Design.") Chip-select timing is more
critical in some "normally not ready" systems.

8086
CPU

A19

A18

A17

A16

AD15

AD14

READY

Vee

8288

ALE

80 G SQ

70 70

60 60

50 50

40 40

30 30

748373

READY
-

Gl

In a "normally not ready" design, acknowledge signals
are generated when each resource is accessed. The
individual acknowledgements are combined to form a
system-wide ready signal which is synchronized by the
8284A clock generator via the RDY and AEN inputs.
The 8284A can be strapped to accept asynchronous
ready signals (asynchronous operation) or to accept
synchronous ready signals (synchronous operation).
Synchronous 8284A operation provides more time for
address latch propagation and chip-select decoding. In
addition, inverting ACK off chip produces an active­
high ready signal compatible with the 8284A RDY in­
puts, which have shorter set-up requirements than
AEN inputs. (As a side benefit, a NAND gate used like
this can combine ACK with the active-low acknowl­
edge signals from other parts of the system.) Based on
these assumptions, the time available for address latch
propagation and chip-select decoding at 8 MHz is:

TCLAV + Tovcs + TCSAK + RR1VCL ~TCLCL + TCLCL
Tovcs :5 2 TCLCL - TCLAV - TCSAK - TR1VCL

~ 250 60 110 35
~ 45 nsec.

The circuit in Figure 8 which uses Schottky TTL com­
ponents leaves about 15 nsec. to produce MEMCS from

80130
OSF

G2B }.-G2A DECODE
C

A MEMCS

74$138
ACK

74S SYSTEM 00
ACKNOWLEDGE

Figure 8. High-Speed Address Decoding Circuit

11 AFN-02058A

AP-130

the high-order address bits-more than enough for the
74S138 one-of-eight decoder shown.

Granted, this does not leave much leeway to fully
decode the 110 address bits. A 12-input NAND gate on
AD15-AD4 could be used, introducing only a single
propagation delay but forcing the 110 register block to
start at OFFFOH. Incomplete decoding is also legal: it is
safe to drive IOCS with the (latched) ADI5 signal di­
rectly, provided all other ports in the system are dis­
abled when this bit is low. In this case, the effective
address of the 110 block (which must be specified dur­
ing the system configuration step) could be OOOOH, or
any other multiple of 16 between OOOOH and 7FFOH.

Again, the OSP system will still operate even if the
memory or I/O decoding is slow. The acknowledge
signal returned to the host CPU would just be delayed
accordingly, so unnecessary wait states would be in­
serted in access cycles, but the 80130 would not mal­
function. Only rarely does the OSP access resources in
its 110 space. Even if slow decode logic were to insert
several wait states into every I/O cycle, the overall
effect on system performance would be insignificant.

A few words of caution, though. Ifthe 8284A is strap­
ped for synchronous operation, external circuitry must
guarantee that ready-input transitions don't violate the
latch set-up requirements. Also, the chip-select signal
must not remain low so long after the address changes
that the 80130 could respond to a non-80130 access
cycle.

Exercise 3. Suppose the typical timing values for
a particular decoder would easily meet the ready­
input set-up requirements presented above for
asynchronous 8284A operation, but pathological
worst-case figures were just a little slow. Could
that circuit still be used safely in most applica­
tions? What would happen if the worst-case com­
bination of worst-case conditions ever actually
did occur? These occasional extra wait states
would probably not cause a hard system failure.

Exercise 4. Earlier it was mentioned that the ac­
knowledge signal could also be used to avoid bus
contention. Prove that with any decode logic
which meets the above requirements, ACK would
disable the bus transceivers before the host CPU
samples the bus.

Example System Design

Appendix A includes full schematics for a complete
iAPX 86/30 system providing considerable function­
ality with only 27 chips. In addition to the OSp, the

12

system has 4K bytes of 2114 RAM (with sockets for
another 4K), from 8K to 32K bytes of 2732A or 2764
EPROM, an 8251A USARToperating at 9600 baud, and
an 8255A Programmable Peripheral Interface with 24
parallel 110 lines. Eight of the inputs read logic values
off DIP switches; eight outputs drive small LEDs. Four
more outputs connect to the coil drivers of a four-phase
stepper motor. A layout diagram of the prototype ap­
pears in Figure 9.

The system is even simpler than the discussion of
"typical" requirements implied. The 8086 direct-bus
drive capability is adequate to make the data trans­
ceivers unnecessary. (To equalize the bus loading, the
8255A is connected to the upper half of the bus.) Ad­
dress decoding logic was minimized by making the
high-order address bits "don't-cares." Moreover, the
part count could have been reduced to 16 using an 8088
and multiplexed-bus 8185 RAMs and 8755A EPROMs.
(The reader may be surprised to learn that, except for
wire-wrapping mistakes, the prototype system hard­
ware worked when it was first powered up. The author
certainly was!)

APPLICATION SOFTWARE
DEVELOPMENT

Like other well-structured programs, application
software to run on the iAPX 86/30 is written as a num­
ber of separate procedures or subroutines. In conven­
tional programs, though, execution begins with a
section of code (the program body) at the outermost
level. The program calls application procedures, which
may call other procedures, but which eventually run to
completion and return to the program body.

In an OSP application, though, there is no "outermost
level" in the traditional sense; rather, the procedures
are started, suspended, and resumed as situations war­
rant under the control of the OSP. The term "task"
refers to the execution of such a procedure in this way.
While an instruction stream is suspended, the OSP
keeps track of the task state (instruction counter, CPU
register contents, etc.) so that it may be resumed later.

Each task is assigned a relative priority by the program­
mer, on a scale of 0 (high priority) to 255 (low). Tasks
with higher (numerically lower) priority are given pref­
erential treatment by the OSP; the task actually control­
ling the CPU at any given instant will be the one with the
highest priority which is not waiting for some event to
occur. (If all this sounds confusing, examples coming
later may help.)

A task which operates independent of other tasks can
be written without knowing anything about the others.

AFN-02058A

AI""-I",U

RESISTORS SWITCHES
RESET B086 8288 BYTE 1 8255A LEOs

D B1

~ -~~DDDDD
M1

DD~ 'LS
73A

8284A

0 D ~ .~ ~ D'DDD
~ DOG"DDDD --80130

B' 1489

[J DB D [J
~D· ~[]DDD 1488

[J
2732/ 2732/ \ I
2764 2764 l6X 2114

Figure 9. Example System Prototype Layout

This makes it easy to divide a very large programming
job among a team of programmers, each writing the
code for some of the tasks, Moreover, a task need not
even know if other tasks exist. They may be tested and
debugged before others have even been written. As an
application evolves, new tasks may be added or un­
necessary ones removed without affecting the rest.

The number of tasks in an application may need to be
quite large. The number of tasks allowed in one applica­
tion is essentially unlimited, as is the number of other
objects-regions, mailboxes, segments, and the like.
(The term "object" relates to different types of data
structures maintained internally by the aSp.) Each ob­
ject is internally identified by a unique 16-bit "token,"
which means the theoretical maximum total is over
65,000. The more pragmatic issue of physical memory
consumption limits the number of simultaneous concur­
rent tasks to "only" several thousand.

(When a number oftasks cooperate to accomplish some
common goal, the collection of tasks is referred to as an
application "job." The asp also allows for an unlimited
number of application jobs, though only one is il­
lustrated in the example discussed here. A second
similar machine, with different status switches, a differ-

13

ent motor, and a different console might make up a
second job.)

All asp application jobs must have one special in­
itialization task (often called INIT$TASK) just to get
started; this one may, in turn, create other tasks as it
executes. The initialization task for this example is
discussed at the end of this chapter.

Hardware Initialization

The life of any task can be broken into three phases:
start-up, execution, and termination, The start-up
phase initializes variables, data structures, and other
objects needed by the task. During the execution phase
the task performs its useful work. Depending on the
application, this may be a single sequence of actions, or
a loop executed repeatedly. When the task completes, it
must terminate itself so as not to use any more CPU
time. One or more phases may be omitted. For exam­
ple, some tasks are intended to execute "forever," in
which case the termination phase is not required.

'This life cycle is suggested by Example I, a segment of
code called HARDWARE$INIT$TASK. This task first

AFN-02Q58A

AP·130

programs the 80130 internal timer logic to generate a
square-wave cycle on the BAUD pin every 52 system
clock cycles, which corresponds to a system console
data rate of 9600 baud. The task then sets the system's
8255A PPI and 825lA USART devices to operate in the
desired modes, and outputs a short sign-on message to
the CRT. For the sake of reader's unfamiliar with the
protocol for interfacing with the 8251A, simple input
and output routines (C$IN and C$OUT) are reproduced
in Example 2.

HARDWAREsINITsTASK: PROCEDURE;
DECLARE HARD$INIT.EXCEPTtCODE WORD;
DECLARE PARAMS~l <*) BYTE DATA (40H, SOH. OOH, 40H, 4EH, 27H);
DECLARE PARAM':5aINDEX BYTE;
DECLARE SIQNSON.MESSAGE <*l BYTE DATA

(CR. LF, 'iAPX B"/30 HARDWARE INITIALIZED', CR, LFli
DECLARE SIGN$ONSINDEX BYTE;

OUTPUT(pp I.eHO) III~OHl
OUTPUT (TIMER.eHO) "'OB6H;
aUTPUTCBAUO$T1MER)-33i I*GENERATES 9600 BAUD FROM 5 MHZ*!
OUTPUT (BAUD$T IMER) =0;
DO PARAMSSUINDEX""O TO (SI ZE(PARAM$51)-1);

OUTPUT(CHD.51)""'PARAMS51 <PARAM51INDEX);
END; I*OF USART INITIALIZATION CO-LOOP*/

DO SIGNSONSINDEX""O TO <SIZE<SIGNSON$MESSAGE)-l);
CALL C$OUT (SIGNSONSMESSAGE (SIGNONINDEX));
END; I*OF SIGN-ON DO-LOQP*I

CALL RG$RESUMEsTASK C INIT$TASK$rOKEN, @HARDsINITsEXCEPT$CDDE);
CALL RO$DELETEsTASKCO. I.!HARDsINITsEXCEPT$CODE);
END HARDWARESINIT.TASK;

Example 1. System Hardware Initialization Task

CsDUT: PROCEDURE (CHAR);
DECLARE CHAR BYTEJ
DO WHILE (INPUT(STATS51) AND 01H)=O;

1* NOTHING *1
END;

OUTPUT (CHARS51) -CHAR;
END C$OUT;

CSIN: PROCEDURE BYTE;
00 WHILE (INPUT(STATS51) AND 02H)~O;

1* NOTHING *1
END;

RETURN INPUTCCHARS51»)
END CSINJ

Example 2. Simple 8251A Input and Output
Routines

The baud timer should be initialized by a code sequence
like that shown here. The 80130 logic is actually com­
patible with the initialization sequence which would be
needed to configure timer 2 of an 8253A as a program­
mable rate generator. The baud rate parameter loaded
into the timer is simply the system clock frequency
divided by the desired output frequency. No other
timers should be affected by user programs.

When the hardware has been initialized, the task
calls an operating system procedure called RQ$
RESUME$TASK. This signals the OSP that the task's
start-up phase has completed, and that the initialization
task (which in this case suspended itself after creating
HARD$INIT$TASK) may continue. Since its function
is hardware initialization only, HARD$INIT$TASK
has no execution phase per se. It terminates by calling

14

the procedure RQ$DELETE$TASK, suicidally
specifying itself as the task to be deleted.

Exercise 5. Beginners may make two common
programming errors when developing OSP tasks.
The first is when a task deletes itself without ever
resuming the suspended task that created it. The
second is to not terminate a task properly, with the
result that the processor executes a return in­
struction when the task's work is done. (However,
execution ofthe task did not originate with a call
from the OS.) As with all computers, an asp will
do exactly what it is told. How do you suppose the
system would react in each case? (Hint: only one
of the two failure modes is predictable.)

You may have noticed three things from this short ex­
ample and Table 1. First, every OSP call begins with
the letters RQ. (PLIM compilers totally ignore dollar
signs within symbols; they serve only to split long sym­
bol names to make them easierfor humans to read.) The
letters RQ don't mean anything in particular; their pur­
pose is to make sure asp routine names don't conflict
with any user symbols. These particular letters were
chosen to be compatible with the historical naming
convention used by iRMX 86. It may be useful, though,
to think ofRQ as an abbreviation for REQUEST, imply­
ing that the OSP provides useful services at the bidding
of application code.

The second thing to notice is that the asp routine
names imply pretty well what each routine does. an the
one hand, long procedure names take a little longer to
type; on the other, they make code listings much easier
to read and understand. In effect, the long names help
make asp code self-documenting. The long names
shouldn't hinder code development; rarely can pro­
grammers think faster than they can type. If they could,
programmer productivity would be measured in
thousands of lines per day.

The third thing is that the last parameter in every asp
system call points to a word in which the asp proce­
dure will return an exception code to the application
task. The procedure will return a non-zero exception
code in this word if it cannot do its job correctly. This
does not always imply that an error occurred; some­
times it just means another task isn't ready to cooperate
yet. Sometimes an exception value indicates whether
the asp request was processed immediately or delayed
for some reason. In fact, some asp routines are guaran­
teed never to return a non-zero exception code, yet the
pointer is still required for the sake of consistancy. For
a full explanation of the other parameters for the asp
procedures and details on what the different exception
codes mean, consult the iAPX 86/30, 88/30 User's
Manual.

AFN~02058A

AP-130

To illustrate how the OSP procedures are used, the
following code examples implement the machine con­
troller tasks introduced earlier. Appendix B puts all the
code examples together, though not in the exact order
discussed. Be Forewarned: the examples border on
trivial. They are in this note to demonstrate how to call
system routines with as few lines of code as possible,
not to tax the capabilities of the OSp. In fact, none of the
tasks even check for exception codes returned by the
OSp, under the naive assumption that nothing will go
wrong in a debugged program. If you're interested in
more elaborate software examples, consult application
notes AP-86 and AP-11 O. These notes focus specifically
on iRMX 86, but their methods and much of the code
apply equally to the OSP systems.

Simple Time Delays

The STATUS$TASK routine simply monitors eight
switches through an input port, and updates eight
LEDs with a pattern determined by the switch settings
and task status. Specifically, the LEDs display the bit­
wise Exclusive-OR function of the inputs and an eight­
bit software counter maintained by the task. This action
will repeat twice per second. The task does nothing
between iterations.

The RQ$SLEEP routine gives application tasks a way
to release the CPU when it is not needed. Any task
calling this routine is "put to sleep" for the amount of
time it specifies (from 1 to 65,000 SYSTICK intervals),
releasing the CPU to service other tasks in the mean­
time. After the requested time has transpired, the OSP
task will reawaken the task and resume its execution,
provided a more important task is not then executing.

The 80130 timer logic generates the fundamental Sys­
tem Tick by dividing the system clock frequency by
two, then subdividing that frequency by a 16-bit value
specified during the configuration process. The period
used here is 5 msec., which would result in an 5 MHz
system by dividing the 2.5 MHz internal frequency by
12,500.

Exercise 6: At this rate, what's the longest nap
that would result from a single call to
RQ$SLEEP? How could this duration be
extended?

PLiM listings for the complete STATUS$TASK routine
appear in Example 3.

15

STATUS$TASK: PROCEDURE;
DECLARE STATUS$COUNTER BYTE;
DECLARE STATUStliEXCEPTSCOOE WORD;

STATUS$CQUNTER=O;
CALL RG$RESUMEsTASK(INIT.TASK$TOKErN. C!STA"rUS$ExCEPT$CODE);
DO FOREVER;

OUTPUT(PPUB)=INPUT(PPl$Al XOR stATUS$COUNTER;
ST ATU5SCQUNTER=STATUS$COUNTE:R+ 1 ;
CALL RG$SLEEP (100.@STATUS$EXCEPHiCODE);
ENOl

END STATUSHASK;

Example 3. Status Polling and Reporting Task

Stepper Motor Control

Conceptually, a stepper motor consists of four coils
spaced evenly around a rotating permanent magnet. By
energizing the coils in various combinations, the mag­
net can be induced to align itself with the coils, individu­
ally or in pairs. A microcomputer can make a stepper
motor rotate, step-by-step, in either direction, by emit­
ting appropriate coil control signal patterns at intervals
corresponding to the step rate.

The stepper-motor sequencer (Example 4) is an embel­
lished version of STATUS$TASK. The OSP calls are
intermixed with a few more statements of application
code, and the task uses global variables as delay
parameters. The reader may wish to adapt the com­
mand interpreter task at the end ofthis chapter to let the
operator modify (read: "play with") these parameters
to adjust the motor speed as the program runs.

DECLARE CW$STEP$DELAY BYTE,
CCW$STEP$oE::LAY BYTE,
CW$PAUSE$OELAY BYTE,
CCW$PAUSE$DELAY BYTE;

MOToR$TASK PROCEDURE)
DECLARE MOTOR$EXcEPT$CODE WORD)
DECL.ARE· MOTOR$POSITION BYTE,

MOTOR$PHASE BYTE;
DECL.ARE PHASE$CODE (4) BYTE

DATA (0000010113,0000011013, OOOOlOlOB, 00001001B);

CW$STEP<iOELAY=SO; I*INITIAL. STEP DELAYS'" 1/4 St:.COND,1t1
CC W$STEP$DELA Y= '50;
CW$PAUSE$DELAY=;:;!OO) I*PAUSES AFTER ROTATION'" 1 SECQNO*I
CCW$PAUSE$OELAY=200i
CALL RG$RESUMEnASK< INIT$TASK$TOKEN, Il:M010R$EXCEPT$CODE j;
DO FOREVER)

DO MOTOR$PQSITION=O TO 100)
MOTOR$PHASE"'MoTOR$POsI'fION AND 0003H)
OUTPUT (PP I$e) =PHASE$CODE (MoTOR$PHASE l;
CALL RG$SLEEP <CW$ST~P$DELAY, @MorOR$EXCEPT$CODEJ;
END!

CALL RG$SLEEP (CW$PAUSE$OELAY, Il:MOTtJR$EXeEPT$CClDE»)
00 MOToR$PosIfION=O TO 100)

MOTDR$PHASE=(100~MOTOR$POSITION) AND Ooo3Hi
OUTPUT (PP I.t) "PHASE$CODE (MoTOR$PHASe:);
CALL RG$SLEEP (CCW$STEP$DELAY, (!MOTQR$EXCEI"!$COOE),
END!

CALL Rei$SLEEP (CCW$PAUSE.DELAY, Il:MOTOR!IlEXCEPT$COOE);
ENDi

END MotoR$ TASK;

Example 4. Stepper-Motor Controller Task

Real-Time Interrupt Processing

The 80130 supports a two-tiered hierarchy of interrupt
processing. The lower-level tier corresponds to the

AFN·02058A

AP-130

traditional concept of hardware interrupt servicing; a
routine called an "Interrupt Handler" is invoked by the
80130 internal interrupt control logic for immediate
response to asynchronous external events. A short
routine like this might, for example, move one charac­
ter from a USART to a buffer. Interrupt handlers oper­
ate with lower-priority interrupts disabled, so it is a
good idea to keep these routines as quick as possible.

"Interrupt Tasks," on the other hand, are higher-level
tasks which sit idle until "released" by an interrupt
handler. The task then executes along with other active
tasks, under the control of the aSp. Such a task should
be used to perform slower but less time-critical pro­
cessing when occasions warrant, such as when the
aforementioned buffer is full. Moving such additional
processing outside the hardware-invoked interrupt
handler reduc.es the worst-case interrupt processing
time.

This hierarchy also decreases interrupt latency. Most
asp primitives execute in their own, private
"environment" (e.g., with their own stack and data
segments) rather than that of the calling task. Interrupt
handlers, on the other hand, run in the same environ­
ment as the interrupted task. (In fact, the 80130
primitives may themselves be interrupted!) Leaving·the
CPU segment registers unchanged minimizes software
overhead and interrupt response time, but also means
that interrupt handlers may not call certain as
routines. An interrupt task, on the other hand, is in­
itiated and suspended by the asp itself, with no such
restrictions.

Let's see how these capabilities would be used. The
time delays introduced by the RQ$SLEEP call are only
as accurate as the crystal frequency from which they
are ultimately derived. This may not be exact enough
for critical time-keeping applications, since oscillators
vary slightly with temperature and power fluctuation.

To keep track of the time of day, the example system
uses a 60-Hz A.C. signal as its time base. (Most power
utility companies carefully regulate line frequency to
exactly 60 Hz, averaged over time.) A signal from the
power supply is made TTL-compatible to drive one of
the 80130 interrupt request pins. An interrupt handler
responds to the interrupts, keeping track of one
second's worth ofA.C. cycles. An interrupt task counts
the seconds by incrementing a series of variables.

Example 5 illustrates the former routine. AC$
HANDLER simply increments a variable on each 60-
Hz interrupt. Upon reaching 60, it clears the counter
and signals TIME$TASK (Example 6).

16

DECLARE AC$CYCLE$CQUNT BYTE;

AC$HANDLER PROCEDURE INTERRUPT 59; I*VECTOR FOR 80130 INT3*1
DECLARE AC$EXCEPT$CODE WORD;

CALL Ra$ENTER$INTERRUPT<AC$INTERRUPH'LEVEL, (!AC$EXCEPT$CODE);
ACSCYCLESCQUNT=AC ,CYCLE$COUNT + 1;
IF AC$CVCLE$CDUNT >= 60

THEN 00;
AC$CYCLE$COUNT=Qj
CALL RG$SIGNAL$INTERRUPT (AC$INTERRUPT$LEVEL,

(!ACSEXCEPT$CODE) ;
END;

ELSE CALL RG$EX I T$INTERRUPT (AC .. INTERRUPT$LEVEL,
IlACSEXCEPn;CODE) ,

END AC SHANDLER i

Example 5. 6o-Hz A.C. Interrupt Handler

In its initialization phase, TIME$TASK sets up the
interrupt handler by calling the RQSET
INTERRUPT routine. The body ofTIME$TASK (the
execution phase) is just a series of nested loops count­
ing hours, minutes, and seconds. When TIME$TASK
calls RQ$WAIT$INTERRUPT inside its inner-most
loop, the asp suspends execution of the task until
AC$HANDLER signals that another second's worth
of A.C. cycles has elapsed. Thus, interrupt handlers
can serve to "pace" interrupt tasks. After a day,
TIME$TASK completes and deletes itself.

DECLARE SECOND$COUNT BYTe,
MINUTE$COUNT BYTE,
HOUR$COUNT BYTE;

TIME$TASK PROCEDURE,
DECLARE TIME$EXCEPT$CODE WORD;

AC$CYCLE$COUNT=O;
CALL RG$SEHINTERRUPT(AC$INTERRUPT$LEVEL,OlH,

I NTERRUPT$PTR (AC$HANDLER), DATASEGADDR _ BASE,
@TIME$EXCEPT$CODE);

CALL RG$RESUME$TASK(INIT$TASK$TOKEN, (HIME$EXCEPT$CODE);
00 HDUR$COUNT=O TO 23;

DO MINUTEtCOUNT=O TO 59;
DO SECOND$CQUNT=O TO 59;

CALL RG$WAIT$INTERRUPT (AC$INTERRUPl$LEVEL,
@TIME$EXCEPT$CODE);

IF SECOND$COUNT MOD 5 '" 0
THEN CALL PROTECTEDCRTQUT (BEL) i

END; 1* SECOND LOOP '~I
ENDi 1* MINUTE L,QOP *1

END; 1* HOUR LOOP *1
CALL RQ$RESET$INTERRUPT (AC$INTERRUPT$LEVEL,

@TIME$EXCEPT$CODE);
CALL RG$DELETE$TASK (0, @TIME$EXCEPT$CODE)i
END TIME$TASK;

Example 6. Interrupt Task to Maintain Time of Day

Exercise 7: The time maintained byTIME$TASK
is consistently wrong, unless the system resets at
midnight. Aside from that, how much error would
accumulate per month had TIME$TASK paced its
inner loop by calling RQ$SLEEP if the system
oscillator was 00.01% off? How does this com­
pare with a cheap digital watch? How much error
will accumulate from the 60-Hz time base
described?

TIME$TASK incorporates another gimmick: every five
seconds it sends an ASCII "BEL" character (07H) to
the console to make it beep, by calling a routine called
PRaTECTED$OUTPUT. This lead-in gives us a
chance to discuss asp provisions for task synchroniza­
tion and mutual exclusion.

AFN-02058A

AP-130

Mutual Exclusion

Whenever system resources (e.g., the console) are
shared among mUltiple concurrent tasks, the software
designer must be aware of the potential for conflicts. In
single-threaded (as opposed to multitasking) programs,
the easiest way to transmit characters is by calling a
console output routine (written by the user or supplied
by the OS) which outputs the character code.
(Remember the examples following the hardware in­
itialization routine?)

This approach presents two problems in a multitasking
system. One is efficiency: a high-priority task could
hang up the whole system while it waits for a printer
solenoid to energize, induce a magnetic field, accelerate
the hammer, contact a daisy-wheel spoke, move it up to
the ribbon, and press them both against the paper. This
waste of time is termed "busy waiting," and should
always be avoided. By OSP standards, even 1130 of a
second can seem interminable; if the printer is other­
wise occupied, the whole system could shut down
indefinitely.

Aside from efficiency, though, there is a more serious
synchronization problem here. Assume Task A has a
higher priority than Task B. Task A is asleep. Task B
calls a subroutine to poll the USART and transmit a
character. The USART becomes ready. When this is
detected, the subroutine prepares to output the charac­
ter to the USART

Time out! TaskAjust woke up and starts running. Task
A wants to transmit its own character. It calls its own
output routine, checks the USART, finds it available,
sends it a new character, and goes back to sleep
(or suspends itself, or awaits another interrupt­
whatever).

Now Task B continues. It "knows" the USART is
available, having dutifully monitored it earlier. Task B's
character goes out to the USART. The USART goes out
to lunch. (In practice, the USART will probably just
transmit corrupted data; still, its operating require­
ments have been violated.)

In Task B's output routine, the sequence of statements
from when the peripheral is found to be ready to when
the next character is written constitutes a "critical
region" (a.k.a. "critical section" or "non-interruptable
sequence"). Recognizing such regions and handling
them correctly is an important concern in any multi­
tasking system, so the OSP provides several facilities
-interrupt control, regions and mailboxes-to help
handle general synchronization and mutual exclusion
problems. Which one to choose depends on the
circumstance.

17

Exercise 8: In this example, would it be better if
Tasks A and B shared a single output routine, so
that only one section of code sent data to the
USART? Convince yourself that the same (or
worse!) problems could still arise.

Sometimes critical sections can be protected by just
disabling interrupts at appropriate points in the applica­
tion software. To maintain the integrity of an iAPX
86/30 system, application code must never execute the
STI, CLI, or HLT instructions (ENABLE, DISABLE,
or HALT statements in PUM), nor can it access the
interrupt control logic directly. Instead, the interrupt
status should be controlled with the OSP
RQ$ENABLE and RQ$DISABLE procedures;
routines should be halted via RQ$SUSPEND or
RQ$WAIT$INTERRUPT .

Back to TIME$TASK: we want to transmit BELs to the
console every five seconds. The console output task
will be transmitting other characters. A "clever" pro­
grammer may recognize that this will lead to a critical
section and analyze the situation as follows:

1. A hazard would arise if TIME$TASK sends out a
beep when CONSOLEOUTTASK is using the
USART;

2. TIME$TASK will only execute after being signaled
by ACHANDLER;

3. ACHANDLER only reponds to an external
interrupt.

"Therefore, all CONSOLEOUTTASK has to do to
be safe is disable the 60-Hz interrupt around its output
routine."

Not quite. There are still potential hazards. Suppose
CRTOUTTASK has the same priority as
TIME$TASK. TIME$TASK may already have been
signaled by ACHANDLER and be ready to run when
CRTOUTTASK completes. An otherwise unrelated
event-another interrupt, for instance-could mo­
mentarily suspend CRTOUTTASK during the criti­
cal region withA.C. interrupts disabled. When the OSP
returns to that level, it might resume with
TIME$TASK, not CRT$OUT$TASK. This could lead
to the same malfunctions as before, so disabling 60-Hz
interrupts didn't help. This series of worst-case as­
sumptions is admittedly convoluted, but the resulting
sporadic errors are among the hardest of all bugs to
squash.

The problem is that this attempted solution involves too
much interaction between tasks, making it confusing
and error-prone. Even if some scheme of priority-level
assignments and task interactions could be made to
work, later modifications or simple additions to the job

AFN-02058A

AP-130

could cause bugs to reappear. (The analogy of an unex­
ploded time bomb comes to mind.)

A simpler solution would be one corresponding more
closely with the problem. Accordingly, the OSP sup­
ports several primitives just to supervise and control
access to critical regions.

One of the OSP "data types" is a data structure called a
"Region," which can be used by application code to
control access to a shared port or some other resource.
A task wishing access to the resource should call the
OSP procedure RQ$RECEIVE$CONTROL before
trying to access that resource; when done it must call
RQ$SEND$CONTROL.

The OSP keeps track of which regions are in use. As
long as a region is busy (i.e., has been entered but not
yet exited), the OSP will prevent other tasks from enter­
ing the region by putting them to sleep. The OSP keeps a
queue of all tasks waiting for the busy region. When the
region later becomes available (i.e., when the task con­
trolling the region calls RQ$SEND$CONTROL), one
of the sleeping tasks-either the highest priority or the
most patient-will be awakened, granted control of the
region, and sent on its way. (When a region is created
the OSP is told whether to awaken tasks waiting for th~
region based on their priority or how long they
have been waiting.) Effectively, a call to RQ$
RECEIVE$CONTROL will not return to the applica­
tion task until the resource in question becomes
available.

The PROTECTEDCRTOUTPUT (Example 7) dem­
onstrates this protocol. The routine is declared
reentrant which means (by definition) the routine may
be interrupted and restarted safely. A reentrant routine
may be shared by a number of tasks, instead of replicat­
ing the same code throughout the application.

PROTECTEOSCRT$OUT PROCEDURE (CHAR) REENTRANT;
DECLARE CHAR BYTE;
DECLARE CRT$EXCEPTSCODE WORD;
CALL RQ$RECE I VE$CONTROL (CRT$REGION$TOK.EN, @CRT$EXCEPTSCODE);
DO WHILE (INPUT(STAT$51) AND 01Hl=O;

1* NOTHING 'It/
ENOl

OUTPUT (CHAR$51) =CHARi
CALL RQ'SEND$CONTROL (@CRT$EXCEPTSCODE);
END PROTECTEOCRTQUT i

Example 7. CRT Output Routine Protected by
Region Protocol

As a concession to simplicity, PROTECTED$
CRT$OUTPUT does use a form of the busy waiting
method described earlier. The maximum delay at 9600

18

baud is only one millisecond, however, much shorter
than a system tick. Besides, tasks performing character
I/O will all have low priority levels, so the OSP would
just delay them if anything more urgent comes up.

Exercise 9: Decide whether this explanation is a
feeble attempt at rationalization, or a well­
justified engineering trade-off.

Inter-Task Communication

But what if a high priority task must output a string of
characters, or the peripheral response time is too long?
Busy-waiting may not be acceptable. Alternatively, the
output routine could buffer the data and service the
USART within an interrupt routine. Another would be
to simply pass the data off to a special (low-priority)
output task and continue.

Tasks pass information to each other via something
called a "message." A message may be the token for
any type of OSP object, but the most common and most
flexible type is called a "memory segment." In our
example, segments will be used to carry strings of
ASCII characters between tasks, so we'll examine seg­
ments first. Message formats are defined by the individ­
ual application programmer-make sure the sending
and receiving tasks assume the same format!

A memory segment is just a section of contiguous-sys­
tem RAM allocated (set aside) by the OSP at the re­
quest of an executing task. The OSP keeps track of a
free memory "pool," which is initially all unused RAM
in the system. When a task needs some RAM, it tells the
RQ$CREATE$SEGMENT procedure how much it
wants. The OSP finds a suitable memory block in the
pool, and returns a 16-bit token defining its location. (If
not enough memory is available, the procedure returns
an exception code.)

The token is the base portion of pointer to the first
usable byte of the segment, with the offset portion
assumed to be zero. (The token values for all other
objects have no physical significance.) Knowing this,
it's possible to access elements of the segment as the
application warrants.

The subroutine in Example 8 shows how to request a
segment and construct a message. PRINT$TIME sends
the ASCII values of the time-of-day counters
(maintained in TIME$TASK) to the CRT output task
described later. The message format adopted for these
examples will consist of a byte giving the message

AFN.()2058A

AP-130

length, followed by that number of ASCII characters.
Figure 10 shows this format.

PR I NT$TOD PROCEDURE;
DECLARE TOO$MESSAGE$TOKEN WORD;
DECLARE TOO$EXCEPT$CODE WORD)
DECLARE TOD$SEGMENT$OFFSET WORD,

TDO!flSEGMENT$BASE WORD;
DECLARE TOD$SEGMENT$PNTR POINTER AT (@TOD$SEGMENT$QFFSE[,i
DECLARE TOO$TEMPLATE (28) BYTE

DATA (27, 'THE TIME IS NOW I'll'!: mm. 55. ',CR, LFl;
DECLARE TDO$STRING BASED TOO$SEGMENT$PNTR (28) BYTE,
DECLARE TOO$STRING$lNDEX BYTE;

TOD$MESSAGE$TOKEN==RG$CREATE$SEGMENT (28, @TDO$EXCEpnCOOE);
TOD$SEGMENT$BASE=TOD$MESSAGE$TOKEN;
TOO$SEGMENT$DFF'SET=Oi
DO rOO'$STRING$lNDEX=O TO 27;

TOO.STR I NG (TOD$STR I NG. I NDE X) =
TOD$ TEMPLATE (TOD$STR I NG' INDEX) ;

END;
TOO$STRING(17)=ASCI]$CODE(HDUR$COUNT /10);
TOD.STRING(18)=>ASCI I$CODE(HOUR$COUNT MOD 10);
TOD$STRING(20)=ASC I I$CODE (MINUTE$COUNf 110),
TOD$STRING(21)=ASC I I$CODE(MINUTE$COUNT MOD 10) i
TOD$STR ING (23) ""ASC I I$CODE (SECOND.COUNT 110) ;
TOD$STR ING(24) =ASC I I.CODE (SECOND.COUNT MOD 10);
CALL RG$SEND$MESSAGE (CRT.MAILBOX$TOKEN,

TOD.MESSAGE$TOKEN, 0, (HOD$EXCEPT$CODE),
RETURN,
END PR INT$TOD,

Example 8. Subroutine to Send Time-of-Day
Message to Output Task

We're coding PRINT$TIME here (see Example 8),
while TIME$TASK is fresh in our minds. It will actually
be called by (and is therefore considered a part of)
KEYBOARD$TASK. Note that while tasks are written
as individual procedures, they need not be fully self­
contained: outside procedures should be used to help
organize and structure the code.

The first thing PRINT$TIME does is have the OSP
create a segment of suitable length, and copies a
"message template" into the segment, byte by byte.
Then it converts the TIME$TASK counter values to
ASCII, filling in blanks in the template. Finally, it sends
the token for the message to the CRT mailbox.

To repeat, these examples are intended to illustrate use
of the OSP routines assuming minimum familiarity with
PL/M. Better programming practices might take advan­
tage of PUM literals, structures and the array
LENGTH function to build the message, rather than
the inflexible constants shown here. Some of these
techniques are suggested by PRINT$STATUS
(Example 9), which indicates the binary status of the
input switches.

PRINT$STATUS: PROCEDURE,
DECLARE STATUS$MESSAGESTOKEN WORD.
DECL.ARE STATUS.EXCEP,TSCODE WORD;
DECL.ARE STATUS$SEGMENnOFFSET WORD,

STATUS$SEGMENT$BASE WORD;
DECL.ARE STATUS$SEGMENT$PNTR POINTER

AT (@STATUS$SEGMENTSOFFSET) J

DECLARE STATUSHEMPLATE (40) BYTE DATA
(39, 'THE SWITCHES ARE NOW SET TO .B',CR,LF),

DECL.ARE STATUS$STRING BASED STATUS$SEGMENT$PNTR (40) BYTE,
DECLARE STATUS$STRING$INDEX BYTE,
DECLARE BIT$PATTERN BYTE;

ST ATUS$MESSAGESTOKEN=RGSCREATESSEGMENT (40,
@:STATUSSEXCEPT$CODE),

STATUS$SEGMENTSI3ASE=STATUSSMESSAGE$TOKEN,
STATUSSSEGMENT$OFFSET=Oi
DO STATUS$STRING$INDEX=O TO 39,

STATUS$STR ING (STATUSSSTR ING$INDEX)=
ST ATUS$TEMPLATE (ST ATUS$STR ING$ INDEX l i

END.
B I HiPATTERN=1 NPUT (PP I$A l)
DO STATUS$STRING$lNDEX=29 TO 36;

ST ATUS$STR I NG (ST ATUS.STR ING$I NDE Xl'"
ASCII$CODE(J3IT$PATTERN AND 01Hli

BITSPATTERN=ROR (BIT$PATTERN, 1 l,
END,

CALL RG$SEND$MESSAGE (CRTSMAILJ30X$TOKEN,
STATUS$MESSAGE$TOKEN, 0, @STATUS$EXCEPT$CQDE);

END PRINT$STATUS;

Example 9. Subroutine to Send Status Report
Message to Output Task

Exercise 10: One input port is read by both
STATUS$TASK and PRINT$STATUS. Does this
constitute a shared resource? A critical region?

Exercise 11: PRINT$TIME reads the counts
maintained by TIME$TASK, but doesn't alter
them. Forced mutual exclusion is generally
mandatory when multiple tasks perform
read/modify/write sequences on a given variable.
Can PRINT$TIME make TIME$TASK malfunc'
tion? What about the opposite case? If this failure
mode was deemed unacceptable, how could it be
protected?

Mailboxes

The data in a message doesn't actually move or get
copied from source to destination when the message is
sent; this would be too slow with long messages.
Rather, the OSP "carries" the message's token from
task to task via a data structure cleverly termed a
mailbox. If one task must send messages to another, a
mailbox must be created to hold them. The sender calls
the RQ$SEND$MESSAGE to put a message
token into the mailbox. If the receiver isn't ready for
the message yet, the OSP puts the message token
into an ordered queue. When the receiver calls RQ$

OFFSET= 10 11 12 13 14 1S 16 17 18 19 20 21 22 23 24 25 26 27

127 1 T 1 'H· I 'E· I sp I '1" I .,' I·M·I 'E' I sp I·'· I 's·1 sp I 'N' I ,0·1 'W I sp I·'· 1.2.1 ',. 1.3' I '4·1 I '5' I ,.·1 I CR I LF I
LSEGMENT STARTING ADDRESS = TOD$MESSAGE$TOKEN:OOOOH

Figure 10. Message Formats Expected by Output Task

19 AFN·0205BA

AP-130

RECEIVE$MESSAGE later, the OSP will give it the
tokens one at a time.

What happens if a task tries to receive a message when
the mailbox is empty? (This is quite possible, since
tasks do run asynchronously.) What token would the
OSP return?

In the simple case ... it doesn't! Instead of returning
right away with no data, the OSP will wait until data is
available. In the meantime, the OSP puts the receiving
task to sleep, remembering that it is waiting for a
message at that mailbox. The next time a message is
sent to that mailbox, the OSP will awaken the receiving
task, give it the token, and-if its priority is high
enough-resume its execution. Alternatively, receiving
tasks may elect to not wait ifthe mailbox is empty, or to
wait only a specified time.

Many tasks may actually send and receive messages
through a single mailbox, with messages being queued
in tbe order that the RQ$SEND$MESSAGE calls are
executed. The OSP also maintains a list oftasks waiting
to receive messages from an empty mailbox, analogous
to the queued tasks waiting for region control. As each
message is sent to the mailbox, it is passed immediately
to a waiting task, either the one waiting the longest or
the one with the highest priority (likewise determined
by a parameter specified when the mailbox is created).

Exercise U: Under what conditions could a mail­
box's message queue contain messages waiting to
be received, while the task queue contains tasks
waiting for messages? Ignore the possibility that
this may hllPpen momentarily during the imple­
mentation of either routine. If you think of any
such circumstances, please contact the author.

Example 10 shows a task which prints the messages
sent above. Upon receiving a message token,
CRTOUTTASK determines the message length from
the first two bytes, and sequentially prints each element
of the string through the PROTECTEDCRT
OUTPUT routine explained earlier. When done, the
segment containing the message is deleted, returning its
RAM to the free-memory pool.

A few words are in order about the segment accessing
techniques demonstrated here. PLlM-86 has a special
data type, called a "pointer," used to indirectly access
other PLiM variables. OSP application programs must
be compiled with the "compact" or "large" model spe­
cified. This tells the compiler to implement pointers as
32-bit double words corresponding to the two parts
(base:offset) of the 8086 machine-segmented address­
ing scheme. PLlM-86 tries to shield the programmer

20

CRTDUTTASiot, PROCEDURE,
DECLARE MESSAGE$LENGTH BYTE;
DECLARE MESSAGE$TOKEN WORD;
DECLARE RESPONSE$TOKEN WORD;
DECLARE MESSAGE$EXCEPT$CODE WORDi
DECLARE MES5AGE$SEQMENT$OFFSET WORD,

MES5AGE$SEGMENT$BASE WORD;
DECLARE MESSAGE$SEQMENT$PNTR POINTER AT

(@ME55AGE$SEGMENT$OFFSET) i

DECLARE MESSAGESSTRING$CHAR BASED MESSAGE$SEGMENT$PNTR BYTE,

CALL RG$RESUME,:$TASK (INIT$TASK$TOKEN, @ME55AGE$EXCEPT$CODEJ,
DO FOREVER;

MESSAGE$ TQKEN=R Q$RECE I VE$ME55AGE (C RT$MA I LBOX $ TO~EN, OFFFFH,
@RESPONSESTOKEN, <!MESSAGE$EXCEPT$CODE);

MESSAGE$5EGMENT$OFFSET=O;
MESSAGE$SEGMENT$BASE=MESSAGE$TOKEN,
MESSAGE$LENGTH=MESSAGE$STR I NG$CHAR;
DO MES5AGE$SEGMENT$OFFSET=1 TO MESSAGE$LENGTH;

CALL PROTECTEDCRTOUT (MESSAGE$STR ING$CHAR);
END;

CALL RG$DELETE$SEGMENT (MESSAGE$TOKEN, @MESSAGE$EXCEPT$CODE);
END; 1* OF FOREVER-LOOP *1

END CRT$OUT'liTASK;

Example 10. Task to Transmit Messages
to the CRT

from the details, yet at times the two parts must be
manipulated separately (for instance, to access data in
an OSP segment knowing only the segment token/base
value).

To get around this, these examples assign a pair of word
variables to the same address as a PLiM pointer vari­
able. Each representation is then an alias for the other.
To determine the base or offset value of an item of data,
load the pointer variable with a pointer to the item and
then reference the appropriate field of the overlayed
pair of word variables. To "build" an arbitrary pointer,
assign computed values to the base and offset fields and
then access the data item via the composite pointer.

Exercise 13: PLiM 86 does not have built-in func­
tions to separate the high and low-order words of a
pointer variable. Does this seem to be a weakness
in the language? Bear in mind that the machine
representation for pointers varies depending on
which programming model is specified at compila­
tion time. When the "small" model is selected, the
compilers take advantage of a 16-bit pointer
representation for faster and more compact code.

Console Command Interpreter

If a system has a console keyboard, it's probably used
to accept and interpret operator commands. For this
demonstration system, the lowest priority of all tasks is
a simple-minded routine which polls the USART until a
character has been received, and immediately echoes it
by calling-you guessed it!-PROTECTED
CRTOUTPUT. Thus, the keyboard is "alive"; it
responds immediately to keystrokes, so the operator
can type whatever nonsense he desires while every­
thing else is going on.

Ten of the keys (digits 0 through 9), invoke special
commands which illustrate interactions between the

AFN~02058A

AP-130

mUltiple tasks. Commands 0 and 1 print out the time
and status messages; the rest suspend and resume
various tasks, as shown by Table 2. The code for
COMMAND$TASK appears in Example 11.

Initialization Task

Now that the application tasks have been written, we
can write the initialization task.

All applications require a special type of task to initial­
ize system variables and peripherals and create tasks
and other objects used by the application. It, too, is
written as a PL/M procedure, and can thus be divided
conceptually into the same three phases.

Example 12 shows such a task for the demonstration
system. The first thing INIT$TASK does is determine
the base address of the job data segment by assigning
pointer DATASEGPTR with its own address. Next it
calls the RQGETTASK$TOKENS routine, which
tells the task what token value the OSP assigned it at
run time. It then initializes the system peripherals by
creating the hardware initialization task discussed
above; this code could have been integrated into
INIT$TASK itself just as easily. During its own
"execution" phase, INIT$TASK calls routines to
create the OSP data structures shared by the applica­
tion tasks: the REGION controlling access to the
USART, and the MAILBOX repository for output mes­
sages. INIT$TASK creates the application tasks them­
selves by calling RQ$CREATE$TASK.

Though not always required, it is common practice for
the overall initialization task to suspend itself after
creating each offspring, to let the newborn task get
started. Under this convention, each offspring task
must resume the initialization task by calling the

COMMAND.TASK: PROCEDURE;
DECLARE CONSOLE'CHAR EYTE.
DECLARE COHMAND,EXCEPTsCODE WORD.

CALL RG$RESUMESTASK(INIT.TASK.TOKEN, I!COMI'1ANDsEXCEPT$CODE) i
DO FOREVERi

CDNSOLE'CHAR=C$IN AND 7FHi
CALL PROTECTED.CRTtOUT (CONSOLE'CHAR) i
IF CONSOLESCHAR=CR

THEN CALL PROTECTEDsCRnOUT(LF);
IF (CONSOLE$CHAR >= '0') AND (CONSOLE.CHAR <:= '9')

END;

THEN DDi
CALL PROTECTED$CRTsOUT (eR) i

CALL PROTECTED'CRT$OUT(LF);
DO CASE (CONSOLE.CHAR-/Q')i

CALL PRINT.TODi
CALL PRINT.STATUS.
CALL RG.SUSPEND.TASK (CRT.QUT$TASK.TOKEN,

C!CQMMANDSEXCEPT.CODE) J

CALL RO.RESUME.TASK(CRTsOUT$TASK$TOKEN.
@COMMANO$EXCEPT$COOE);

CALL RO$DISABLE (AC$INTERRUPT$LEVEL.
@COMMAND$EXCEpnCODE);

CALL ROSENAI3LE(AC$INTERRUPT$LEVEL,
I!COMMANO.EXCEPT$CODE) ;

CALL RO$SUSPENDSTASK (MOTOR$TASKSTOKEN,
(tCOMMANOsEXCEPT$CODE) ;

CALL RO.RESUME.TASK (MOTOR.TASKHDKEN,
@COMMANOSEXCEPT.CODE);

CALL RG$SUSPEND$TASK (STATUSSTASKSTOKEN,
I!COMMANPsEXCEP1$CODE) ;

CALL RG.RESUME.TASK (STATUSSTASK.TOKEN,
(!CQMMANDSEXCEPT$CODE) ;

END; 1* OF CASE-LIST '*1
ENDl 1* OF COMMAND PROCESSING *1

END COMMAND.TASK;

Example 11. Task to Accept and Process Keyboard
Commands

INIT.TASK: PROCEDURE PUBLICi
DECLARE INIT'EXCEPT$CODE WORDi

DATASSEGSPTR=\UNIT.TASK.TOKENi I*LOAD DATA SEGMENT BASE*I
CRTSMAILBOXHOKEN=RO$CREATE$MAILBOX (O •. @INIT$EXCEPTSCQOE)i
CRT$REGIONsTOKEN=ROSCREATESREGION (0. (!INITSEXCEPT$CODE) j

IN r 1$T ASK" TOKEN""RG$GET$ TASKnOKENS (0. \! I N I UEXCEPT$CODE) j

HARDWARESINITSTASKsTOKEN"'RG$CREATE$TASK
(110. <!HARDWARESINITSTASK. DATASSEQ$ADOR. BASE. 0, 300,
o.@JNlnEXCEPT.CODE);

CAll RO$SUSPENDsTASK (0. (tINI TsEXCEPT$CODE»)
STATUS$TASKSTOKEN=RG$CREATE$TASK(110, @STATUSSTASK,

DATA$SEG.ADDR, BASE. 0, 3oo. 0. @INIT'EXCEPTsCODE)i
CALL ROsSUSPEND.TASK(D, <!INIT$EXCEpHiCODE);
MOTOR'$TASK$TOKEN=RGsCREATE.TASK(110. IIMOTORSTASK,

DATASEGADDR. BASE. 0, 300. 0. (tINITsEXCEPTSCODE) i
CALL RG$SUSPEND$TAS~ (0. IUNIT.EXCEPHiCODE) i
TIME.TASK$TOKEN=RG$CREATEsTASKC 1:20, @:TIMESTASK,

DATAs9EG$ADDR. BASE. 0, 300. O.@:INIT'EXCEPT$CDDE);
CALL RG$SUSPEND$TASK(O. IIJNIT.EXCEPT$CDDE);
CRT$QUTSTA5K$TOKEN=RGSCREATE$TASK (120. @eRTSOUTSTASK,

DATASEGACDR. BASE, 0. 300, 0. t,uNIT$EXCEPTSCDDE);
CALL RGSSUSPENDSTASK(O. @IN!TSEXCEPTsCODE);
COMMAND$TASK$TOKEN""RO$CREATE'TASK (130. @COMMAND$TASK.

DATA$SEGSADDR. BASE, 0, 300, 0, @INIT'$EXCEPT$CODE);
CALL RGSSUSPEND$TASK (0. (!INIT$EXCEPT$COOE);
CALL RGSENOsIN!TsTASK;
CALL RG'$DELETEsTASK(O. @INlTsEXCEPTSCODE);
END INIT'$TASKi

Example 12. Task to Initialize System Software

Table 2. Special Console Commands

Key Function

0 Send Time-of-day message to CRT.
I Send status update message to CRT.
2 Suspend CRT output task. The asp will automatically save messages to the task

in the CRT mailbox queue.
3 Resume CRT output task. Queued messages will be displayed.
4 Disable 60-Hz interrupt-driven time base. Time-of-day clock will stop.
5 Enable 60-Hz time base to resume clock execution.
6 Suspend motor control task. Motor will stop.
7 Resume motor control task. Note that if task was suspended 17 times, it must be

resumed 17 times.
8 Suspend status polling task. Lights indicating system status will freeze in current state.
9 Resume status polling task.

21 AFN·02058A

AP-130

RQ$RESUME$TASK routine when its own local in­
itialization is complete. This convention is called
synchronous initialization; its purpose is to ensure that
each task is allowed to complete its own start-up phase
before the next task is created. Otherwise, there's a risk
that higher-priority tasks created later could start exe­
cuting before earlier tasks were ready for them, with (at
best) unpredicatable results.

When all the tasks have been created, INIT$TASK has
served its purpose. It must then call RQ$SEND$
INIT$TASK. This short procedure (actually self­
contained in an OSP Support Package interface library,
not built into the 80130) tells the OSP that all the off­
spring tasks have been created for a given job. At this
point, INIT$TASK could continue with non-initializa­
tion activities. The code for KEYBOARD$TASK might
have been implemented here, for example. Since this
example has nothing more to do, INIT$TASK deletes
itself with a final call to RQ$DELETE$TASK.

Code Translation

That's all, folks. Mix together the above code frag­
ments, declare literals and global variables, and com­
pile until done (about four minutes). The source file
name selected for this example is AP130.PLM. The
compiler will produce two files: an annotated source
listing (named AP130.LST) reproduced in toto in Ap­
pendix B, and a relocatable object file (AP130.0BJ)
which will be used in the installation procedure dis­
cussed next.

High-Level Parameter Passing
Conventions

Well-designed programs generally rely on subprograms
("procedures" in PUM terminology) for often­
repeated instruction sequences, or to perform
machine-level operations within High-Level Language
programs. PUM-86 and other Intel high-level languages
use a standard set of conventions to pass parameters
and results between procedures; assembly language
programmers are advised to adhere to these conven­
tions for software compatibility.

Before calling a subroutine or function, input
parameters must be pushed sequentially onto the stack,
in the order (left-to-right) they appear in the procedure
parameter list. When eight-bit parameters are pushed,
the high-order byte associated with them is undefined.
Thirty-two-bit pointer values are pushed in two steps,
offset word before base word. The stack "grows"
down, so the left-most parameter will have highest­
numbered address.

22

Functions which return a byte or word value (i.e., typed
procedures) do so in the CPU AL or AX registers.
Pointers are returned through the ES:AX register pair.
The PUM Programming Manual explains these con­
ventions more fully.

One way to see how an assembly language routine
would interface with PUM is to first write a dummy
PLiM procedure using the same parameter sequence as
the desired assembly language routine. Compile this
procedure with the compiler CODE switch set. The
listing will then include the appropriate assembly lan­
guage instruction sequence, and may be followed as a
pattern for the final routine.

SOFTWARE CONFIGURATIONS &
INTEGRATION

When the application code has been written and com­
piled, the hardest part of program development is over.
Before the code may be executed, though, the OSP
must be told various things about the system hardware
environment, desired software options, application job
characteristics, and so forth.

This information is conveyed during a multi-phase se­
quence of steps collectively called the Configuration
process. Though the process is somewhat lengthy and
time-consuming, it is also very "mechanical"; the per­
son doing the work does not need to understand any of
the application code or even know what it does. Nor­
mally, configuration would be performed by a techni­
cian or a single member of the programming team, aided
by appropriate SUBMIT command files. This chapter
shows the full configuration and installation process for
the demonstration system. For more details, refer to
the asp User's Manual.

The three phases of the configuration are:

1. Generating, linking, and locating OSP support code
required for the EPROM immediately above the
80130 address space;

2. Linking and locating the object file for the applica­
tion job developed in Section IV;

3. Creating, linking, and locating a short module
(called the Root Job) which initializes the OSP and
application jobs when system is reset.

Finally, of course, the absolute code resulting from each
phase must be programmed into EPROMs or loaded
into a test system before it can be executed.

Before starting, though, it is beneficial to draw up a
memory map for host system hardware, to determine
what sections of memory are available. This map will be
filled in as each module is linked and located.

AFN-02058A

AP-130

The prototype system memory space has two areas of
interest: addresses OOOOOH through OIFFFH contain
RAM, while OFCOOOH through OFFFFFH contain
EPROM. Since the CPU uses the first IK bytes of RAM
for the CPU interrupt pointers, and the last 16 bytes for
the restart sequence, these areas should be recorded on
the map. For reference purposes, Figure 11 also indi­
cates that addresses OF8000H through OFBFFFH
enable the 80130 firmware. All this is shown in
Figure 11.

Generating the OSP Support Code

The OSP support code "customizes" the OSP firmware
for a particular hardware environment, initializes the
system, and supports extended software capabilities.

EPROM
(2x2764)

RAM

MEMORY MODULE

[.~~.m~"

80130 MEMORY SPACE

8086 INTERRUPT VECTOR

To define the hardware environment, the user creates a
source file which invokes a series of Intel-supplied
macros. Parameters for these macros specify the 80130
I/O base address, SYSTICK .interval (in system clock
cycles), and how the interrupt request pins will be used.

For instance, the code example in Figure 12 defines the
prototype system hardware. This source file must be
assembled, linked with several libraries from the OSP
support disk, and located to produce the actual OSP
support code. Figure 13 shows the actual sequence of
commands needed. The DATA starting address speci­
fied within the LOC86 parameter list (00400H) is the
first free byte of system RAM (see Figure 11); the
CODE address (OF8000H) is simply the 80130 firmware
starting address.

STARTING ENDING
ADDRESS ADDRESS

OFFFF:O OFFFF:F

OFCOO:O

OF800:0 OFIlFF:F

01FF:F

0000:0 003F:F

APPLICATION JOIl STARTING ADDRESS: ____ _

ROOT JOIl STARTING ADDRESS: _______ ~

Figure 11. Example System Memory Map

$TITLE(80130 DEVICE CDNFIGURATION TABLE>
NAMEODEVCF

$INCLUDE{ Fl NDEVCF. MAC)

%MASTEr~_PIC(80130, 2000H, 0, 0)

%TIMER (80130, 2008H, 28H, 12500)

; NDP _SUPPORT (ENCODED_LEVEL)

END

Figure 12. 80130 Device Configuration Table

23 AFN-02058A

AP·130

FO:ASMB6 :Fl:SUP130.A86 PRINT(Fl:SUP130,LST) ERRORPRINT '?(
MACRO<SO) PAGEWIDTH(132)

FO. LINK86 8(
Fl"OSX_LIBWSX86,OSXCNF), ~,

Fi NUC1. LIB(NBEGINl,
. F1 ODEVCF,DBJ, 81
Fi OSX. LIB, :!(
Fi NUC1. LIB,
Fl OSX, LItL
F1 NUC2. LIB,
Fl' DSX. LIB,
Fl' NUC4. LIB,

. Fl QSX. LIB,
: FI" NURSLV. LIB,
Fl: OSX. LIB

TO Fl SUP130. LNK MAP PRINT(Fl SUP130. MP1) NAME(I"IINIMAL 80130)

: FO: LOC86 ~,

Fl: SUP130. LNK TO : Fl: SUP130 MAP PRINT(Fi: SUP130. MP2) 8C(3) Ii,
SEGSIZE(STACK(Q» &:
ADDRESSES(CLASSES (CODE (OFBQOQH), DATA (OQ4QOH) \) &
ORDER (CLASSES(DATA, STACK»
OB~JECTCONTROLS (NOLINES, NOCOMMENTS, NOSYMBOLS)

Figure 13. Support Code Configuration Commands

A reliable and relatively straightforward way to per­
form this step is to create a file containing the exact
command sequence shown in Figure 13 and execute
this file using the SUBMIT utility program. Of course,
the example assumes SUBMIT, ASM86, LINK86,
and LOC86 are all on drive :FO:, and that the various
libraries have been copied from the support disk to
drive :Fl:.

(An alternate, support-code configuration scheme lets
the user modify the OSP software characteristics in
special situations. A programmer working with iRMX
86, for instance, may wish to augment the OSP
firmware to support all the iRMX Nucleus primitives.
This would be done by editing and assembling file
OTABLE.A86 to select from a menu of software op­
tions, and modifying the linkage step slightly to include
one of the iRMX 86 libraries. The OSP built-in features
are more than sufficient for the purposes of this note,
though, so only the first approach is illustrated.)

Appendix D reproduces the Locate map file produced
during this phase. Near the end of file SUP130.MP2 is a
table of memory usage, showing that the last bytes of
RAM and ROM consumed are OOA6: FR and OFC61:
FR, respectively. Update Figure 11 with this informa­
tion. (The final version of the demonstration-system
memory map appears in Appendix C.) This phase
needn't be repeated unless the system hardware char­
acteristics change.

24

Application Code Configuration

After compiling the application job, it must be linked
with a library of interface routines from the support
diskette, and located within available memory. Use
RPIFC.LIB or RPIFL.LIB, depending on whether the
job was compiled with the Compact or Large software
model. Figure 14 is a command sequence file suggested
for this purpose. Again, the starting addresses specified
for LOC86 are taken from the system memory map.

Whenever the support code is reconfigured, check
SUP130.MP2 to see if its memory needs have changed.
If so, the application-job-configuration command file
will need to be edited. This is still a lot simpler (not to
mention more reliable) than retyping the whole se­
quence each time application jobs are revised. Readers
familiar with the capabilities of the SUBMIT program
may prefer to represent these variables by parameters,
such that they may be easily specified each time the
command file is invoked.

As in the first phase, examine the locate map
("AP130.MP2", reproduced in Appendix E) after the
application code has been configured and update the
memory map. Also, note the segment and offset values
assigned to the initialization task. These will be needed
later.

AFN-02058A

AP-130

Creating the Root Job

By now, all of the code needed to execute the applica­
tion program has been prepared and is ready to run
-except it has no way to get it started! The OSP hard­
ware and system data structures must be initialized
before INIT$TASK can be created. A short module
called the Root Job performs this function.

Figure 15 is the Root Job source file for the demonstra­
tion system, dubbed RJB 130.A86. It consists of just five
macro calls. The %JOB macro defines certain charac­
teristics of the application job; for a full description see
the asp User's Manual. One ofthese parameters is the
initialization-task starting address (noted in the last
step), which will likely change with each iteration of the
application software.

The process closely resembles the one which produced
the OSP support code. First, determine various system
characteristics. Then create a file defining these charac­
teristics as macro input parameters. Finally, assemble,
link, and locate the file to produce the final code.

The two %SAB macros define "System Address
Blocks"-sections of the overall memory space which
the OSP should not consider "free space." Note that
the first invocation blocks off the RAM addresses con­
sumed so far in the memory map, plus an extra 140H
bytes reserved for the Root Job initialization stack.

SUBMIT FILE TO LINK APPLICATION JOB TO INTERFACE LIORA:RY
AND LOCATE RESULTING OUTPUT.
REVISED 10/23/81 - JHW

LINK86 :Fl:AP130.QBJ, :Fl:RPIFC.LIB TO :Fl:AP130.LNK
MAP PRINT<: Fl: AP130. MPl)

LOC86 :Fl:AP130.LNK TO :Fl:AP130 8.:
ORDER (CLASSES(DATA, STACK, MEMORY» &:
SEGSIZE (STACK (0» &;

ADDRESSES <CLASSES (DATA (OOA70H), 8.:
CODE (OFC620H») 8.:

MAP PRINT (:F1:AP130. MP2) &.
OBJECTCDNTRDLS (NOLINES, NOCOMMENTS, NOPU8LICS. NQSYMBOLS)

OH86 :F1;AP130 TO Fl:AP130.H86

COPY :Fl:AP130.MPl TO :LP:

COPY: Fl AP130. MP2 TO LP:

Figure 14. Job Configuration Commands

; SOURCE PROGRAM DEFINING CHARACTERISTICS OF ROOT -.JOB FOR
; AP-130 DEMONSTRATION PROGRAM (JHW - 10/25/81)

$INCLUDE<: Fl: CTABlE. MAC)

%SAB(Q, Ooco, U)
,-SAB (0200, FFFF, U)
7.JOB<O, OCOH, 100H, OFFFFH, OFFFFH, 1. 0: 0,1. 0,100, OFC62: 06B5, 0, 0: 0, 200H, 0>
r.osx (OFBOOOH, N)
Y.SYSTEM(FBOQ, 0, 4, N, N, 1)

END

Figure 15. Root Job Configuration File

25 AFN-02058A

AP-130

(After completing this phase, examine RJB130.MP2 to
confirm that 140H is the correct number.) The second
%SAB invocation excludes addresses 02000H through
OFFFFFH, all of which is non-RAM, either EPROM,
80130 firmware, or non-existent. The %SYSTEM
macro defines system-wide software parameters.

Figure 16 is a command file to translate, link, and locate
the root job. Once again, the LOC86 parameters come
from Figure 11. The listings produced during this phase
are reproduced in Appendix F. The final memory map
appears in Appendix C.

EPROM Programming

We are now ready to program EPROMs with the pro­
gram modules linked and located above. Intel's Univer­
sal PROM Programmer (UPP) and a control program
called the Universal Prom Mapper (UPM) will be used
in this step. Particular commands to the UPM will vary
with program size, memory location, and EPROM type,
but the general sequence should resemble that shown
here.

The first step is to invoke UPM and initialize the pro­
gramming system, following a command sequence
similar to that in Figure 17. The example system incor­
porates two 2764 devices, so 16K bytes of memory
buffer are cleared.

Next, all the final code modules produced above (e.g.,
SUP130, AP130, and RJB130) must be loaded into the

UPM memory buffer. The three commands in Figure 18
perform this function.

When the final system is reset, execution must branch
into the root job initialization sequence. When the abso­
lute code modules have finished loading, manually
patch a jump instruction into the buffer area corres­
ponding to the CPU reset vector. The opcode for the
8086 or 8088 intersegmentjump is OEAH; the instruc­
tion's address field must contain the address assigned to
label RQ$START$ADDRESS (read from the root job
locate map), the 16-bit segment offset (low byte first)
followed by the segment base address (ditto). The UPM
CHANGE command should be used to make this
patch, as illustrated in Figure 19.

The UPM memory buffer now contains a complete
image of the code needed for the system EPROMs. Up
until now, all software-related steps-source code
preparation, translation, linking and locating-have
been the same for 8086- or 8088-based systems. At this
point, however, the software installation procedures
diverge slightly.

Recall that the 8086 fetches instructions 16 bits at a
time, from coordinated pairs ofEPROMs. One contains
only even-numbered program bytes, the other, odd. To
separate the linear UPM buffer into high- and low-order
bytes for iAPX 86/30 designs, use the UPM STRIP
command as shown in Figure 20.

Now "burn" the EPROMs with the PROGRAM com­
mand in Figure 21.

LINK AND LOCATE THE iRMX 86 ROOT JOB

t10DIFIED FOR TWO-DRIVE OPERATION
REVISED 10/25 - JHW

ASM86 fI: RJB130. A86 MACRO(75)

LINK86
. fl: CT'oot. lib (root),

f1 RJD130.obJ'
fl: croot. lib

TO 'fl:RJD130.1nk
MAP PRINT(f!1:RJB130.mpl)

LOC86 : H: RJB130. Ink
TO Fl RJB1::JO
MAP PRINT(:fl:RJB13Q.mp2) i!<
OC(noli, nopl. noem, nosb) &
PC(noli. pI, noem, nosb) &
SEGSI ZE (stac k (0))
ORDER (c lasses (data, stac k I memory»
ADDRESSES(classes (c ode (OFDIBOH),

data(QOADOH»)

OH86 Fl:RJB130 TO Fl:RJB130. H86

COPY Fl RJB 130. LST TO . L.P·

C()PY :Fl:RJB130.MPl TO :LP:

COpy Fl RJB130. MP2 TO : Lp·

Figure 16. Root Job Configuration Commands

26 AFN-02058A

AP-130

flUlrom 0 to 3fffh with Oflh

Figure 17. UPM Initialization Sequence

... ad 86hex flle : ": 8up130. h86lrom 0 to 3fffh start OIcOOOh
read 86hex fila: ": ap130. h86 lrom 0 to 3fffh start OIcOOOh
... ad 86h •• flle : 11 : ~b130. h86lrom 0 to 3fffh s\art OIcOOOh

Figure 18. UPM Commands to Load Hex Flies

change 3ffOh=Oeah, 11h, OOh, 18h, Oldh

Figure 19. UPM Command to Patch Restart Vector

strip low lrom 0 to 3Hlh into 4000h
strip hllrom 0 to 3fffh Into 6000h

Figure 20. UPM Commands to Strip High and Low Bytes

program from 4000h to Sfffh start 0

program from BOOOh to 71Hh start 0
exit

Figure 21, UPM Commands to Program EPROMs

To save some trouble, the UPM invocation and all com­
mands except the manual patch can be combined into a
SUBMIT command file. Replace the CHANGE com­
mand with a control-E character so the operator can
adjust the starting address for the iteration. Also place
control-Es before each PROGRAM step to give the
operator time to socket the next memory device.

SUMMARY

The development of the 80130 marks a major milestone
in the evolution of microcomputer systems. For the
first time, a single VLSI device integrates the hardware
facilities and operating system firmware needed by
real-time multitasking applications. The 80130 offers
the system hardware designer the advantages of higher
integration-reduced device count, smaller boards,
greater reliability-along with faster design cycles and
optimal system performance.

The 80130 gives the software engineer built-in support
for 35 standard operating system primitives. Applica­
tion problems may now be solved at a higher level than

27

before. It is now possible for concurrent tasks to be
dispatched, memory segments <;illocated, and messages
relayed through mailboxes nearly as easily as sub­
routines, dynamic variables, and I/O ports were used in
the past. In effect, Jobs, Tasks, Segments, Mailboxes,
and Regions become new OSP data types, manipulated
entirely by firmware in the 80130.

Yet despite standardizing these functions, the OSP does
not restrict the user's flexibility. The device can accom­
modate a variety of hardware environments, and both
the hardware and software capabilities are desired.

ACKNOWLEDGEMENTS

The author would like to thank Peter Pederson for
designing and implementing the demonstration system
breadboard discussed in this note, Pam Johnson for her
assistance in typing the manuscript, and Hal Kop,
Lionel Smith, George Alexy, Chuck McMinn, and
Sandy Wharton for their help in reviewing the drafts
and providing many thoughtful comments and
criticisms.

AFN-D2058A

AP-130

APPENDIX A
EXAMPLE SYSTEM SCHEMATICS

A-1 AFN·O~058A

Yce
r--------------------------------------1------------------r===~===o----------_t------_r--~rR .. EiSE£Tr-~AA;~;7~~ I IN PORT I

100kU ,---------t-----------+-------, II!ee+ ~LK; ~ I- N.C. I(! PB~7 ==> lOUT PORT I
I I L ~ K E CLR f-Yee r--+-I-~"CS 8l

1,---t-----H-lI~RES ~ RDY1 j.I elK CD)10 r+ A1 1> PCO-7 -N.C.

~ ~ CLK : AEN1r>GND =~'~OW~C~--~======~~======~;;~;;~=======t=f~~1F~~~~~Aiio RESET~ 11,;~'MF RESET RDY2 r>Vee Vec'- CEN IORC RD -'" -

READY so MRDC " L... ___ -..I ~ ~
.L PCLK AEN2~GND GND.- AEN AIOWC ~ WR DO.7-..!o~1V

ru--o-----r---""',f-f-off -_t-j---It~_! ___ C_SY_~_I~ ... S.. ! r::! AM=~ -'"-_-+-+ __ -J>o-f'N.C.- L ~ c~
510n ~_ 510n GND ~ r ~-

2<MHz CLK GND __ OE mSTB ...

:~:~~ A16-A191-..,A;-!,!:;-6-';A~,9;------"""" H ..----. =:~~ g uSAPPIIC~).PCCcsSSIt---------J -
GND­
GND­
GND-

NMI i
TEST
MN/Mx

BHE BHE ~ OR4CSi----------..,
~ I-- '--- Zl OR3CSi-----..,

~E ~ I1GN~~~ r-MEMCS~ :r-
INTR ADO'AD15,:D~AD1~: ~ ~t-3---' r-- IOCS I) ERoCSr--

11' - frr ~~~ ~ 7>c:~
CLK BHE~ .. ~ M II - I"" '-- - ~ ~ = f--".; ADDRESS-BUS .1. ;'--'-'-L..J.....J...----'-'-'--<-f=r:=--------j'

GND- :~; ~~ --/ '" r----,
GN~'; IR1 ~ S2~ I Y _ ... !: !: !: I >~ !:

----- IR2 ~ BAUD L-------------~~+_I--t-H!: .. 'L----~~Lf_f_~__t~~ ~ r;;.:;: 1R3 MEMCSf*-------f r r _r - I ~;; __ ;;
GND IR< KloiCc:ss·(4-------j L--
GND IRS 1,1. --'\ ,-- '---
GND+ IR6 ADO-AD1. AD~AD1' ,-- - '-- I--
GND+ IR7

L....-.- SYSTICK y

OATA-BUS

Figure A-1. Example System Schematics

»
'U
w
o

AP-130

I
G1

1
EN1G Vee ~+s

A11 2 S1A EN2G
15

A12 3 S1B S2A 14

ERleS 4 IYO S2B 13

= 5 IVl 2YO 12 CRleS
ER3CS 6 IY2 2V1 11 OR2es

= 7 IV3 2Y2 10 DR3eS
11

GNr GNO 2V3 9 3
OR4CS

03 03

12
13

AO
1

2

•
03

12
11

13 D4 10
9

F1

A15
1

EN1G Vee ~+5
A13

2
S1A EN2G

15

A14
3

S1B S2A ~A14?
r---1 IVO ;;i S2B ~A15

(80130)= IV1 § 2VO
12

USARTCS 6 IY2 III 2Y1 11 LEPCS (2764)

PIOPCS 7 Iva 2Y2 10 MEMCS (80130)

r
GNO

2Y3 9 MEPCS (2764)

Figure A·1. Example System Schematics (continued)

A-3 AFN-02058A

AP-130

APPENDIX B
SOURCE CODE LISTINGS

6-1 AFN-02058A

AP-130

ISIS-Il Pl..Il'I-86 V2.0 COl1PILATION OF MODULE DEM0130
OBJECT MOrnJLE PLACED IN :Fl:API30. OBJ
COMPILER INVOKED BY' PLM86 :Fl:API30.PLM DATE(12/21l

4

5

6

7

8

]00

]01

$DEBUG COMPACT ROM TITL.E('AP-130 APPENDIX B

DEI'IO$130: DO;

1* SYSTEM-WIDE LITERAL DECLARATIONS: *1

DE:CL.ARE FOREVER LITERAL.LY 'WHILE 01H';

1* lIO PORT DEFINITIONS: *1

DECLARE CHAR$51 LITERALLY '4000H',
CMD$51 LITERALLY '4002H',
STAT$51 L.ITERAL.LY '4002H';

DECLARE PPI$A L.ITERALLY '6001H',
PPI$B L.ITERALLY '6003H',
PPI$C LITERALLY '6005H',
PPI$CMD LITERALLY '6007H',
PPI$STAT LITERALLY '6007H';

DECL.ARE T II'1ER$CMD LI TERALL Y '200EH',
BAUD$TIMER LITERALLY '200CH';

12/21/81')

DECLARE AC$INTERRUPT$LEVEL LITERALLY '00111000B';

DECLARE CR LITERALLY 'ODH',
LF LITERALLY 'OAH',
BEL LITERALLY '07H';

DECLARE ASCII$CODE (16) BYTE DATA ('0123456789ABCDEF');

$EJECT

$INCLUDE (:Fl:NUCLUS. EXT)
$SAVE NOLIST
$INCLUDE (:Fl:NEXCEPLITI
$save nolist

1* GLOBAL VARIABLE DECLARATIONS: *1

DECLARE DATASEGPTR POINTER,
DATASEGADDR STRUCTURE (OFFSET WORD, BASE WORD)

AT (@DATASEGPTR);

DECl_ARE HARDWARE$INIT$TASK$TOKEN WORD,
STATUS$TASK$TOKEN WORD,
MOTOR$TASK$TOKEN WORD,
TIME$TASK$TOKEN WORD,
AC$HANDLER$TOKEN WORD,
CRTOUTTASK$TOKEN WORD,
COMMAND$TASK$TOKEN WORD,
INIT$TASK$TOKEN WORD;

DECLARE CRT$MAILBOX$TOKEN WORD,
CRT$REGION$TOKEN WORD;

8-2 AFN-02058A

']02
3C<3 2
30·Q 2

30;" :3
306 2
30 7 2

3m;
3()9 ;~

31 (\ ::3
]1 ! ~2

31:'2
,.,

3 1 :3
3 1 ·1 -,
3 1 ""

,.,
3 1 6 -,
3 1 7 ~2

:3 1 EI -,

3 1 '.,/ -,
'::;;;:0 .,
'''J~') 1 ;.z
~322

:]';.1::3 ,.:~

:,;,:':4 J
.", .? :7 ,3

~·2b -,
2.7 -,

.::;.?~3 :3
:-:;;~Cf -,

~.

J:.lO "'j

3:3 1 ;..~

332
33:) ;.2
3::'14 c.:'

33 ~) 2
3:36 -,
~3:::~ '7 ~:

:33f3 :1
J:.lS' :J
340 -, ...)

34 1 -,
3'1·:.:'- ''')

AP-130

$EJECT

1* CODE EXAMPLE 2. SIMPLE CRT INPUT AND OUTPUT ROUTINES. *1

CS(JUT: PROCEDURE C CHAR I ,
DECLARE CHAR BYTE,
DO WHILE CINPUTCSTAT$51) AND 0IH)=O,

1* NOTHING *1
END,

OUTPUTCCHARS51)=CHAR,
END CS(JUT,

CSIN: PROCEDURE BYTE,
DO WHILE CINPUTCSTATS51) AND 02H)=O,

i* NOTHING *1
END,

RETURN INPUTCCHARS51),
END CSIN,

$~:JECT

1* CODE EXAMPLE I. HARDWARE INITIALIZATION TASK. *1

HARDWARESINIT$TASK: PROCEDURE,
DECL.ARE HARDSINIT$EXCEPTSCODE WORD,
DECL.ARE PARAMS51 e*1 BYTE DATA C40H.8DH.00H.40H.4EH.27HI,
DECLP,RE PARAMS51SINDEX BYTE,
DECL.ARE SIGNSONSMESSAGE C*I BYTE DATA

eCHo L.P". 'iAPX 86/30 HARDWARE INITIAL.IZED'. CR. LFI,
DECL.ARE SIGNSONSINDEX BYTE,

OUTPUTCPPISCMD)=90H,
OUTPUTCTIMERSCMD)=OB6H,
OUTPUTCBAUD$TIMER)=33, I*GENERATES 9600 BAUD FROM 5 MHZ*I
OUTP~rCBAUD$TIMER)=O,

DO PARAM51INDEX-0 TO CSIZECPARAMS511-1I,
OUTPUT (CMDS51 I =PARAMS51 (PARAMS51 $INDEX),
END, I*OF USART INITIALIZATION DO-LOOP*I

DO SIGNSONSINDEX=O TO (SIZECSIGN$ONSMESSAGEI-1I,
CI\L.L. C$OUT C SIGNSONSMESSAGE C SIGNSON$INDEX I I,
END, I*OF SIGN-ON DO-LOOP*I

CAL.L. RQ$RESUMESTASKCINITSTASK$TOKEN.@HARD$INITSEXCEPTSCODEI'
CALL RGSDEL.ETE$TASKCO.@HARDSINITSEXCEPTSCODEI,
END HARm.JARE$INITSTASK,

~iEJECl

i* CODE EXAMPL.E 3. STATUS POLLING AND REPORTING TASK. *1

STATUS$TASI~ PROCEDURE,
DECLARE STATUS$COUNTER BYTE,
DECL.ARE STATUSSEXCEPTSCODE WORD,

STATUS$COUNTER-O,
CAL.L. RG$RESUMESTASKeINITSTASKSTOKEN.@STATUSSEXCEPT$CODEI,
DO FOREVER,

OUTPUTeppI$B)=INPUTepPISA) XOR STATUS$COUNTER,
5TATUS$COUNTER-STATUS$COUNTER+l,
CAL.L. RGSSL.EEPC100.@STATUSSEXCEPTSCODEI,
END;

END STATUS$TA5K,

B-3 AFN-02058A

343

344
345 2
346 "

347 ;;~

348 2
349 2
350 "

3::">1. :;~

352 2
353 2
354 3
355 4-
356 4
357 4-
:358 4-
359 3
:360 3
361 4
362 4
363 4
364 4
365 3
366 3
367 2

368

:369
370 ,?

37] 2
J72 2
37:3 ~~

375]

376 3

377 3
378 ,.,

379 ~2

AP·130

$EJECT

1* CODE EXAMPLE 4. STEPPER MOTOR CONTROL TASK. *1

DECLARE CW$STEP$DELAY BYTE,
CCW$STEP$DELAY BYTE,
CW$PAUSE$DELAY BYTE,
CCW$PAUSE$DELAYBYTE;

MOTOR$TASK: PROCEDURE;
DECLARE MOTOR$EXCEPT$CODE WORD;
DECLARE MOTOR$POSITION BYTE,

MOTOR$PHASE BYTE;
DECLARE PHASE$CODE (4) OYTE

DATA (00000101B,000001100, 000010100,000010010);

CW$STEP$DELAY=50;
CCW$STEP$DELAY=50;

I*INITIAL STEP DELAYS = 114 SECOND~'I

CW$PAUSE$DELAY=200; I*PAUSES AFTER ROTATION = 1 SECOND*I
CCW$PAUSE$DEI_AY=200 ;
CALL RQ$RESUME$TASK(INIT$TASK$TOKEN,@MOTOR$EXCEPT$CODE);
DO FOREVER;

DO MOTOR$POSITION=O TO 100;
MOTOR$PHASE=MOTOR$POSI nON AND 0003H;
OUTPUT(PPI$C)=PHASE$CODE(MOTOR$PHASE);
CALL RQ$SLEEP(CW$STEP$DELAY,@MOTOR$EXCEPT$CODE);
END;

CALL RQ$SLEEP(CW$PAUSE$DEL.AY,@MOTOR$EXCEPT$CODE);
DO MOTOR$POSITION=O TO 100;

MOTOR$PHASE=(100-MOTOR$POSITION) AND 0003H;
OUTPUT(PPI$C)=PHASE$CODE(MOTOR$PHASE);
CALL RQ$SLEEP(CCW$STEP$DELAY,@MOTOR$EXCEPT$CODE);
EI\ID;

CALL RQ$SLEEP(CCW$PAUSE$DELAY,@MOTOR$EXCEPT$CODE);
EI\ID;

END MOTOR$TASK;

$E,')ECT

i* CODE EXAMPLE 5. INTERRUPT HANDLER TO TRACK 60 HZ INPUT. *1

DECLARE AC$CYCLE$COUNT OYTE;

AC$HANDL.ER: PROCEDURE INTERRUPT 59;
DECLARE AC$EXCEPT$CODE WORD;

I*VECTOR FOR 80:t30 INT3*1

CALL. RQ$ENTER$INTERRUPT(AC$INTERRUPT$L.EVEL,@AC$EXCEPT$CODE);
AC$CYCLE$COUNT=AC$CYCLE$COUI\IT+l;
IF AC$CYCLE$COUI\IT >= 60

THEI\I DO;
AC$CYCLE$COUNT=O;
CALL. RQ$SIGNAL$II\ITERRUPT(AC$INTERRUPT$LEVEL,

@AC$EXCEPT$CODE);
END;

ELSE CAL.L RQ$EX IT$INTERRUPT (AC$INTERRUPT$LEVEL,
@.AC$EXCEPT$CODE);

END AC$HANDLER;

8-4 AFN-02058A

380
381 2
382 -,
3(~3 2
384 ~~

38S 3
38o!> ;2

387 :2
'388 2

369

390
391 2

392 :2
393 ;2

~l94 ;;J
cl95 2
39o!> 3
397 4
398 5

399 5

401 5
402 4
40::3 ::3
404 2

405 :2
40o!> 2

AP·130

$EJECT

1* CODE EXAMP~E 7, PROTECTED CRT OUTPUT SUBROUTXNE, *1

PROTECT~DCRTOUT: PROCEDURE (CHAR) REENTRANT,
DEC~ARE CHAR BYTE,
DEC~ARE CRT$EXCEPT$CODE WORD,
CAL~ RG$RECEXVE$CONTROL(CRTSREGION$'TOKEN,@CRT$EXCEPT$CODE),
DO WHI~E (INPUT(STAT$lIl) AND 01H)"'O,

1* NOTHING *1
E::NDJ

OUlPUT(CHAR$51)=CHARJ
CAL.L RG$SE::ND$CONTROL (<tCRT$EXCEPT$CODE) I
END PROTECTEDCRTOUT,

$E,.IECT

i* CODE EXAMP~E 6, INTERRUF'T TASK TO MONITOR C~OCK TIME, *1

DEC~ARE SECOND$COUNT BYTE,
MINUTE$COUNT BYTE,
HOUR.COUNT BYTE,

TIME$TASK: PROCEDURE,
DECLARE TIME$EXCEPT$CODE WORD,

AC$CVC~E$COUNT=OI
CAL.L RGSETINTERRUPi(AC'INTERRUPi$~EVE~,OlH,

t NiER R UI" T$PTR (AC $HANO~ER), OATA$SEQ$AODtiL BASe:,
@TIME$EXCEPT$COPE>I

CA~L RGSRESUME$TASK<INIT$TASKStOKEN,@TIME$EXCEPT$COOE)1
DO HOUR$COUNT=O TO 23,

DO MINUiE$COUNT=O TO 59,
DO SECOND.COUNT-OTO $9,

cA~~ RG$WAIT$IN'TERRUPT<AC$INTERRUpts~EVEL,
@TIME.EXCEPT$CbDE) ,

I~ SECOND$COUNT MOP 5 .. 0
THEN CALL PROTECTEPCRTQUT(BEL.) ,

END, 1* SECOND ~OOP */
END, 1* MINUT~ LOOP *1

END, 1* HOUR ~OOP *1
CALL RGSRESET$lNTERRUPT(ACsINTERRUPT$LEVEL,

@11ME$EXCEP1$COOE),
CAL~ RG$DE~ETE$TASK(O,@TIME$EXCEPT$CODE)J
END rtMEsrASK,

8·5

407
408 2
409 2
410 "' ~

411. ;:~

41 ;;; 2

41 :.~ '"

,>14 ~?

415 ~~

416 2
~·17 2
418 2
41" '3

420 3
4·21 '" ..
4''")'")
~~ 2

423 ;!
424 2
425 2
~l26 2
427 2

4~;B 2
4:;:~9 2

430
4:ll. t:..~

432 2
433 • c

434 -,

iJ.::35 " c.

436 ,..".

4J7 2
43(~ "' c-.

439 /:' ..
44·0 -,
441 ~

442 ;;?
44:] 3

444 :3
44:; --,

<.

44t.~ 2
447 3

44B 3
449 :3
4fiO 2

4:51 2

Ap·130

$EJECT

1* CODE EXAt1PLE 8. SUBROUTINE TO CREATE TIME-OF-DAY MESSAGE. *1

PRINT$TOD: PROCEDURE;
DECLARE TOD$MESSAGE$TOKEN WORD;
DECLARE TOD$EXCEPT$CODE WORD;
DECLARE TOD$SEGMENT$OFFSET WORD.

TOD$SEGMENT$BASE WORD;
DECL.ARE TOD$SEGMENT$PNTR POI NTER AT «HOD$SEGMENT$OFFSET>;
DECLARE TOD$TEMPLATE (28) BYTE

DATA (27. 'THE TIME IS NOW hh: mm: 55. '. CR. LF);
DECLARE TOD$STRING BASED TOD$SEGMENT$PNTR (28) BYTE;
DECLARE TOD$STRING$INDEX BYTE;

TOD$MESSAGE$TOKEN=RQ$CREATE$SEGMENT(28.@TOD$EXCEPT$CODE);
TOD$SEGMENT$BASE=TOD$MESSAGE$TOKEN;
TOD$SEGMENT$OFFSET=O;
DO TOD$STRING$INDEX=O TO 27;

TOD$STRING(TOD$STRING$INDEX)=
TOD$TEMPLATE (TOD$STRING$INDEX);

END;
TOD$STRING(17)=ASCII$CODE(HOUR$COUNT/IO);
TOD$STRING(18)=ASCII$CODE(HOUR$COUNT MOD 10);
TOD$STRING(20)=ASCII$CODE(MINUTE$COUNT/I0);
TOD$STRING(21)=ASCII$CODE(MINUTE$COUNT MOD 10);
TOD$STRING(23)=ASCII$CODE(SECOND$COUNT/I0);
TOD$STRING (24) =ASC I I$CODE (SECOND$COUNT MOD 10);
CALL RQ$SEND$MESSAGE(CRT$MAILBOX$TOKEN.

TOD$MESSAGE$TOKEN.O.@TOD$EXCEPT$CODE);
RETURN;
END PR I NT$TOD;

1* CODE EXAMPLE 9. SUBROUTINE TO CREATE SWITCH STATUS MESSAGE. *1

PRINT$STATUS: PROCEDURE;
DECLARE STATUS$MESSAGE$TOKEN WORD;
DECLARE STATUS$EXCEPT$CODE WORD;
DECLARE STATUS$SEGMENT$OFFSET WORD •

STATUS$SEGMENT$BASE WORD;
DECLARE STATUS$SEGMENT$PNTR POINTER

AT (@STATUS$SEGMENT$OFFSET);
DECLARE STATUS$TEMPLATE (40) BYTE DATA

(39. 'THE SWITCHES ARE NOW SET TO B'.CR.L . .F);

DECLARE STATUS$STRING BASED STATUS$SEGMENT$PNTR (40) BYTE;
DECLARE STATUS$STRING$INDEX BYTE;
DECLARE BIT$PATTERN BYTE;

STATUS$MESSAGE$TOKEN=RQ$CREATE$SEGMENT(40.
G!STATUS$EXCEPT$CODE) ;

STATUS$SEGMENT$BASE=STATUS$MESSAGE$TOKEN;
STATUS$SEGMENT$OFFSET=O;
DO STATUS$STRING$INDEX=O TO 39;

STATUS$STRING(STATUS$STRINGUNDEX)=
STATUS$TEMPLATE(STATUS$STRING$INDEX);

END;
BIT$PATTERN-INPUT(PPI$A);
DO STATUS$STRING$INDEX=29 TO 36;

STATUS$STRING(STATUS$STRING$INDEX)=
ASCII$CODE(BIT$PATTERN AND 01H);

BIT$PATTERN=ROR(BIT$PATTERN,l);
END;

CALL RQ$SEND$MESSAGE(CRT$MAILBOX$TOKEN.
STATUS$MESSAGE$TOKEN,O,@STATUS$EXCEPT$CODE);

END PRINT$STATUS;

8-6 AFN-02058A

45;2
45:3 2
454 ;.~

4 ~5 ~j c.

4~?:~', '"
~"' ?

,.,

""'fl ~2

,1,'.09 .<:;,

460 ,.,
,+c, 1 ~2

"-16~;! 3

46:3 -,
46,t '".,
46~j "'
466 :J
467 4
168 4
/.l·t,;'? :~l

·170]
ij"'r 1 ~2

472
47:3 -,

<:,'..,

474 r.::

4'/.:> d.
476 2
4"17 :::1
478 3
i>79 ::3

4.')1 3

48] 4
4El4 '+
4f)~'; '1
41016 0,
487 :>
48B ~j

·189 5

490 c;;,

491 5

49~2 5

49:1 5

494 5

495 5

496 5
497 4
498 3
499 2

Ap·130

I·' CODE EXAI'IPLE 10. TASK TO RECEIVE MESSAGES AND TRANSMIT THEM TO CRT. *1

CRTOUTTASK PROCEDURE;
DECLARE MESSAGE$LENGTH BYTE;
DECLARE MESSAGE$TOKEN WORD;
DECLARE RESPONSE$TOKEN WORD;
DECLARE MESSAGE$EXCEPT$CODE WORD;
DECl.ARE MESSAGE$SEGMENT$OFFSET WORD,

MESSAGE$SEGMENT$BASE WORD;
DECL.ARE MESSAGE$SEGMENT$PNTR POINTER AT (@MESSAGE$SEGMENT$OFFSET);
DECL.ARE MESSAGE$STR ING$CHAR BASED MESSAGE$SEGMENT$PNTR BYTE;

CAL.L RG$RESUME$TASK (INIT$TASK$TOKEN, @MESSAGE$EXCEPT$CODE);
DO FOREVER;

MESSAGE$TOKEN=RG$RECEIVE$MESSAGE(CRT$MAILBOX$TOKEN,OFFFFH,
@RESPONSE$TOKEN,@MESSAGE$EXCEPT$CODE);

MESSAGE$SEGMENT$OFFSET=O;
MESSAGE$SEGMENT$BASE=MESSAGE$TOKEN;
11ESSAGE$LENGTH=MESSAGE$STR I NG$CHAR;
DO 11ESSAGE$SEGMENT$OFFSET=1 TO MESSAGE$LENGTH;

CAL.L PROTECTEDCRTOUT(MESSAGE$STRING$CHAR);
END;

CALL RQ$DELETE$SEGMENT(MESSAGE$TOKEN,@MESSAGE$EXCEPT$CODE);
END; 1* OF FOREVER-LOOP *1

END CRT.OUT.TASK;

$EJECT

1* CODE EXAMPLE 11. TASK TO POLL KEYBOARD AND PROCESS COMMANDS. *1

COMMAND.TASK: PROCEDURE;
DECLARE CONSOLE$CHAR BYTE;
DECLARE COMMAND$EXCEPT$CODE WORD;

CALL RQ$RESUME$TASK(INIT$TASK$TOKEN,@COMMAND$EXCEPT$CODE);
DO FOREVER;

CONSOLE$CHAR=C$IN AND 7FH;
CAL.L. PROTECTEDCRTOUT(CONSOLE$CHAR);
IF CONSOLE.CHAR=CR

THEN CALL PROTECTEDCRTOUT(LF);
IF (CONSOLE$CHAR)= '0') AND (CONSOLE.CHAR (= '9')

END;

THEN DO;
CAL.L PROTECTEDCRTOUT(CR);
CALL PROTECTEDCRTOUT(LF);
DO CASE (CONSOLE$CHAR-'O');

CALL PR INT$TOD;
CALL PRINT$STATUS;
CALL RQ$SUSPEND$TASK(CRTOUTTASK.TOKEN,

@COMMAND$EXCEPT$CODE);
CALL RQ$RESUME$TASK(CRTOUTTASK$TOKEN,

@COMMAND$EXCEPT$CODE);
CALL RG$DISABLE(AC$INTERRUPT$LEVEL,

@COMMAND$EXCEPT$CODE);
CAL.L RG$ENABLE(AC$INTERRUPT$LEVEL,

@COMMAND$EXCEPT$CODE);
CALL RG$SUSPEND$TASK(MOTOR.TASK$TOKEN,

@COMMAND$EXCEPT$CODE);
CALL RQ.RESUME$TASK(MOTOR$TASK$TOKEN,

@COMMAND$EXCEPT$CODE);
CALL RQ$SUSPEND$TASK(STATUS$TASK$TOKEN,

@COMMAND$EXCEPT$CODE);
CALL RQ$RESUME$TASK(STATUS$TASK$TOKEN,

@COMMAND$EXCEPT$CODE);
END; 1* OF CASE-LIST *1

END; 1* OF COMMAND PROCESSING *1

END COMMAND$TASK;

6-7 AFN-02058A

500 1.
501 2

~,O;2 2
503 2
,;04 ;2

505 2
:;06 ~~

50? .,
e.

5(}i3 2

5()\:y ~~

510 2

51 1 ;;~

51 ~~ 2

513 2
514 2

515 2
516 2

517 2
5113 2
519 ;2

520 ~~

521.

AP-130

$EJECT

1* CODE EXAMPLE 12. TASK TO INITIALIZE OSP SOFTWARE. *1

INIT$TASK: PROCEDURE PUBLICl
DECLARE INIT$EXCEPT$CODE WORDl

DATASEGPTR=@INIT$TASK$TOKENl I*LOAD DATA SEGMENT BASE*I
CRT$MAILBOX$TOKEN=RG$CREATE$MAILBOX(O.@INIT$EXCEPT$CODEll
CRT$REGION$TOKEN=RG$CREATE$REGION (0, @INlT$EXCEPT$CODE) l
INIT$TASK$TOKEN=RGGETTASK$TOKENS(O.@INIT$EXCEPT$CODEII
HARDWARE$INIT$TASK$TOKEN=RG$CREATE$TASK

(110,@HARDWARE$INIT$TASK,DATASEGADDR.BASE,0,300,
O,@INIT$EXCEPT$CODE)l

CALL RG$SUSPEND$TASK(O,@INIT$EXCEPT$CODE)l
STATUS$TASK$TOKEN=RG$CREATE$TASK(110.@STATUS$TASK.

DATASEGADDR. BASE,0,300,O,@INIT$EXCEPT$CODE)l
CALL RG$SUSPEND$TASK(O,@INIT$EXCEPT$CODEIl
MOTOR$TASK$TOKEN=RG$CREATE$TASK(110,@MOTOR$TASK,

DATASEGADDR. BASE.0.300,0.@INIT$EXCEPT$CODEIl
CALL RG$SUSPEND$TASK(O.@INIT$EXCEPT$CODEll
TIME$TASK$TOKEN=RG$CREATE$TASK(120.@TIME$TASK.

DATASEGADDR. BASE.0.300.0,@INIT$EXCEPT$CODEll
CALL RG$SUSPEND$TASK(O.@INIT$EXCEPT$CODEll
CRlOUTlASK$lOKEN=RG$CREATE$TASK(120.@CRT$OUT$TASK.

DATASEGADDR. BASE,0,300,O,@INIT$EXCEPT$CODE)l
CAl_L RG$SUSPEND$TASK (0, @INIT$EXCEPT$CODEl l
COMMAND$TASK$TOKEN=RG$CREATE$TASK(130,@COMMAND$TASK.

DATASEGADDR.BASE,0.300,0,@INIT$EXCEPT$CODEll
CALL RG$SUSPEND$TASK(O,@INIT$EXCEPT$CODEll
CALL RGENDINIT$TASKl
CALL RG$DELETE$TASK(O,@INIT$EXCEPT$CODE)l
END INlT$TASKl

END DEMO$130l

MODULE INFORMATION:

'" 084CH
OOOOH
0052H
0026H

CODE AREA SIZE
CONSTANT AREA SIZE
VARIABLE AREA SIZE =
MAXIMUM STACK SIZE =
848 LINES READ ° PROGRAM ERROR(S)

END OF PL/M-'86 COMPILATION

21240
OD

820
380

6-8 AFN-02056A

APPENDIXC
SYSTEM MEMORY MAP

C-1 AFN-02058A

Ap·130

EXAMPLE SYSTEM MEMORY MAP

MEMORY MODULE

EPROM
(2x2764)

RAM

(
8086 RESTART VECTOR
ROOT JOB CODE AREA

APPLICATION JOB CODE AREA

OSP SUPPORT CODE AREA

S0130 MEMORY SPACE

(FREE SYSTEM RAM)

ROOT JOB DATA AREA

APPLICATION JOB DATA AREA

OSP SUPPORT DATA AREA

SOS6 INTERRUPT VECTOR

STARTING ENDING
ADDRESS ADDRESS

OFFFF:O OFFFF:F
OFD1S:0 OFD36:6

OFC62:0 OFD17:B

OFCoo:o OFC61:F

OFSOO:O OFBFF:F

OOCO:O 01FF:F

OOAD:O OOBF:F

00A7:0 OOAC:l

0040:0 00A6:F

0000:0 003F:F

INITIALIZATION TASK STARTING ADDRESS: FC62:06B5

ROOT JOB STARTING ADDRESS: __ -,F,-,D,.,l",S:",OO,,-l,-,l __ _

C-2 AFN-0205BA

AP-130

APPENDIX D
SUPPORT CODE LOCATE MAP

0-1 AFN-02058A

ISIS"~II M(;S~'86 LOCAT'E'R, VI.;{ fNVOKED)Jv

FO: LOC8Q
·Fl:SUP130.LNK TO Fl:SUP130 MAP PRINT(:Fl:SUP130.MP2) 6C(3)
SEGSIZE(STACK(O))
ADDRESSES(CLASSES (CODE (OF8000H), DATA (00400H) i)
ORDER (CLASSES(DATA, STACK))
OBJECTCQNTROLS (NOLINES, NOCDr1MENTS, NOSYMQOLS)
WARNING 26: DECREASING SIZE OF SEGMENT

SEGMENT STACK

SYMBOL TABLE OF MOPULE MINIMAL 801JO
READ FROM FILE: Fl SUP 1:)0. LNK -
WRITTEN TO FILE Fl:SUPI30

BASE OFFSET TYPE SyMBOL BASE OFFSET TYPE SYMBOL

0040H
0040H

0040H

004o'H
0040H

Q040H

0040H

0040H
0040H
0040H
0040H
0040H
FeOOH

F800H
FBOOH
FBOOH
F800H
FBOOH

F800H
FSOOH
F800H

F800H

FSQOH

FSOOH

FBOOH

FaOOH

FBOOH

FBOOH

FBOOH

F800H

F800H

FBOOH

OOOOH
014BH

Ol52H

OlSBH
015EH

Ol64H

0178H

OlEAH
OlEPH
020BH
023EH
0249H
45CCH

4556H
4538H
4529H
45lAH
450BH

44FCH
44E"DH
4400H

435CH

4336H

40BlH

40A2H

40BAH

40~CH

4058H

4049H

4Q3AH

402BH

401CH

PUB
PUB

PUB

PUB
PUB

PUB

PUB

PUB
PUB
PUB
PUB
PUB
PUB

PUB
PUB
PUB
PUB
PUB

PUB
PUB
PUB

PUB

PUB

PUB

PUB

PUB

PUB

PUB

PUB

PUB

PUB

PUB

INTERRUPTTASKVEC
INTERRORENTRY

EXTENSIONLISTROO
-T

ROOT JOBTOKEN
NDP _INTERRUPT~_LE

-V!;L_VAR
TASK_WAITING_FLA

-OS
SIQNAL_G

FILLCHAR
INTMASK
IMR_PORT
PIC_INFO
CLOCK_OFF
NDP _INTERRUPT _LE

-VEL
G£TDESCRPOINTER
OVERFLOW
KINITIALIZE
KCREATERIS:GIONNS
INITNDP

EOI_ROUTINE
COMMON_ERROR
SYSTEMEXCEPTIQNH

-ANDLER
INIT _INTERNAL_RE

-GIONS
NENTRY

RGS I GNAL I NTERR UP
-T BODY

RGENTER INTERRUPT
- BODY

RGSIGNALINTERRUP
-T

RGEX ITINTERRUPT

NUNLOCKNS

NOPENNS

NLOCKNS

NCLOSENS

DELETEOB~JECT

0040H
0040H

0040H

0040H
0040H

0040H

0040H

0040H
0040H
0040H
0040H
0040H
F800H

F800H
PBOOH
FBOOH
F800H
F8QOH

F800H
peOOH
F80QH

P800H

FBOOH

FeOOH

P800H

F800H

FeOOH

peOOH

F800H

peOOH

FBOOH

F800H

Ol20H
014CH

0154H

Ol5AH
Ol60H

Ol66H

01,EBH

01EBH
OlF6H
02lA"H
0247H
024AH
45C2H

4567H
4533H
4524H
45l5H
4506H

44F7H
44EBH
4472H

434EH

40FEH

40ACH

409DH

40eOH

4062H

4053H

4044H

4035H

4026H

400AH

PUB
PUB

PUB

PUB
PUB

PUB

PUB

PUB
PUB
PUB
PUB
PUB
PUB

PUB
PUB
PUB
PUB
PUB

PUB
PUB
PUB

PUB

PUB

PUB

PUB

PUB

PUB

PUB

PUB

PUB

PUB

OEP AUL T _HANDLER
SYSTEt1EXCEPTIONH

-ANDLERPTR
DELETION_OBJECT _

-BASE
MINTRANSSIZE
PARAM_VALIDATIoN

-_VECTOR
REG I ON_TOKEN_TAB

-LE
KERNEL_FLAG

NUM_SLAVES
D I SABLEMA5K
EDI_PORT
CLOCK_SP£;:C_EOI
CLOCK_LEVEL
VALIDATE_PARAMS_

-BODY _DUMMY
GETPOINTER
NENTRY _BODY
KENABLELEVELNS
KCREATEOBJECTNS
INITIALIZE

DIVIDEBYZERQ
CLOCKENTRY _BODY
INITIALIZE_TIMER

NOP _INTERRUPT _HA
-NDLER
INITIALI ZENUCLEU

-8
RGGETLEVEL_BOOY

RGOISABLE_BODY

RGQETLEVEL

R(lOISABLE

NUNLOCK

NOPEN

NLOCK

NCLOSE

COPYRIGHT

FSOOH 4000H PUB INIT _NUCLEUS_JUM FC50H 0004H PUB IMR_START
-P

FC5CH OOOFH PUB INIT _CMDl
FC5CH 0012H PUB INIT _CMD4_MASTER

FC5CH OOlOH pua INIT _CM05_MASTER
FC61H OOOEH PUB SLAVE_TABLE

FC61H 0005H PUB CLOCK_O_PORT
FC61H OOOBH PUB C.,...CLOCK_SPEC_EOI

FC61H 0007H PUB CLOCK COUNT
FC61H OOOCH Pt,lB C_CLOCK_ON

FeOOH 4576H PUB LEVEL7 _HANDLER F800H 4574H PUB FARAM_VALIDATION
-_PATH

l'1EMORY MAP OF MODULE MINIMAL 80130
READ FROM FILE :Fl:SUPl30.LNK
WRITTEN TO FILE :Fl;SUPl30

SEGMENT MAP

START

OOOOOH
00400H
009FOH
OOAOOH
OQAlQH
OOA20H
OOA30H
OOA40H
OOA50H

STOP

003FFH
009EFH
009FFH
OOAOFH
OOAIFH
OOA2FH
OOA3PH
OOA4FH
OOA5FH

LENGTH AL I GN NAME

0400H A
05FOH W
OOlOH G
OOlOH G
QDlOH G
DOlOH G
OOIOH G
OOlOH G
OOIOH G

(ABSOLUTE)
DATA
INTVEC_REG_SEG
EXT REG SEG
JOB:REG:SEG
SEM_REG_SEG
MAIL._REG_SEG
oD_REG_SEG
POOL._REG_SEG

CLASS

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

0-2

BASE OFFSET TYPE SYMBOL

0040H
0040H

0040H

Q040H
0040H

0040H

0040H

0040H
0040H
0040H
0040H
0040H
FSOOH

F800H
F800H
F800H
F800H
F800H

F800H
FBOOH
F800H

FBOQH

F800H

F800H

FBOOH

FBOOH

FBOOH

F800H

FBOOH

FBOOH

F800H

FeOOH

0144H
OlSOH

0156H

OlSCH
Ol62H

Ol76H

OlE9H

OlECH
OlFFH
022CH
024BH
05DOH
4542H

453DH
452EH
45lFH
4510H
450lH

44F2H
44E3H
43AEH

433FH

40B6H

40A7H

4094H

4076H

405DH

404EH

403FH

4030H

4021H

4000H

PUB
PUB

PUB

PUB
PUB

PUB

PUB

PUB
PUB
PUB
PUB
PUB
PUB

PUB
PUB
PUB
PUB
PUB

PUB
PUB
PUB

PUB

PUB

PUB

PUB

PUB

PUB

PUB

PUB

PUB

PUB

PUB

FC5CH OOOEH PUB

FC5CH 00llH rUB
FC61H OOQ3H PUB

PC61H OOOAH PUB
PC61H 0009H PUB

READYLISTROQT
DELET I ONT ASK TOKE

• .. N
SYSTEMPDOL TOKEN

LAST _NDP _TASK
REGIONyLAGS

SIGNAL_O_INDEX

ACTIVATE_SIGNAL_
-G

OLD_SLAVE_NUM
LEVEL_SET _TABLE
ISR_PORT
CLOCK_ON
END_OF _DATA
GETDESCRTOKEN

SCANI'1EMORY
KSUSPEND
KENABLELEVEL
KCREATEOBJECT
FINISHINITIALIZA

-TION
DECODE_LEVEL
ARRAYBOUNDS
INITIALI ZE_P ICS

CLOCKENTRY

RGWAITINTERRUPT _
-BODY

ROEXITINTERRUPT _
-BODY

RGWAITINTERRUPT

RGENTER INTERRUPT

NUNLOCK_DELET I ON
-_OBJECT

NDPEN_DELETION_O
-BJECT

NLOCK DELETION a
-BJECT - -

NCLOSE_DELETION_
·'·OBJECT

DELETERUNN I NGT AS
-K

NBEGIN

AFN-02058A

OOA60H OOA6FH D010H

OOA70H f.)OA'lOH ooaOH w
OOA70H OOA7QH OOOOH G
F8000H FC5CDftoI 45CEH W
F(;SCEH FC~D2H 0OO5H W
FC5D4H FC5E5H OD1;;;!H W
FC5E6H FCBP7H OO12H W
FC5FSH FC609H 0012H W
F'C60AH FC612H QOQ9H B
f:'C~13H FC61CH OOOAH B
F'C61 EH FC61EH OOOOH W

iFC61EH I-C61FH OQ02H

FC620H FC62QH OOOOH W

GROVP MAP

AODR ~ss GROUP OR SEGMENT NAME
004QOH DGRO\JP

OATA
INTVEC_REG_SEG
EXT,_REG SEG
JO~ REG_6EG
SEM_REG_SEG
MAJL_REG._8~G
OD_REG_SEG
POOL_REG_SEG
DELETlON~REG_9EG

F8000H CGROUP
CODE
PIC _CNF _SEG

IMR PORT
=::EO I ')1 ORT
_ISR_REAP_PClRT

PIC lNFO
~~~~"_CNF _.~Q 

AP·130 

DE;:LET ION_REG_.S DATA LAST RAM !lYlE USeD -EG 

STACK STACK 
??SEG 
CODE CODE 
PIC ~_CNF ~SEG CODE 

IMR FlORT CODE 
::::EOr:::~PORT CODE 
_ISR~~Re;AD_PORT CODE 
_PIC~ INFO CODE 
TIMER_CNF _.SEG CODE 
CSEG CODE:;: 

SLAVE __ SEG CODEl-- LAST EPROM BYlIl USED 

MEMORV MEr10RV 

0-3 AFf'I·0205BA 





AP-130 

APPENDIX E 
APPLICATION JOB LOCATE MAP 

E-1 AFN-02058A 



AP-130 

rSIS-II MC5-86 LOG~ TER, VI. 2 INVOKED BY; 
LOC8~ : P1: AP130. LNK TO : Fl: AP130 

ORDER (CLASSES(DATA, STACK, MEMORY» 
SEGSIZE (STACK CO) ) 
ADDRESSES (CLASSES (DATA (OQA70H), 

CODE (OFC620H» ) 
MAP PRINT (:Fl:AP13Q.MP2) 
OBJECTCONTROLS ~ NOLINES, NQCOMMENTS. NOFUBLICS, NOSYMBOLS) 

WARNING 26: DECREASING SIZE OF SEGMENT 
SEGMENT: STACK 

SYMBOL TASLE OF MODULE OEM0130 
READ FROM FILE : P1: AP130. LNK 
WRITTEN TO FILE ; Fl: AP130 

EASE OFFSET TYPE SYMBOL BASE OFFSET TYPE. SYM60L 

FC62H OB3AH PUB RQENDINITTASK FC62H cB1CH PUB RG_N.,.C ._RETUHN_ 40 
FC62H OBOOH PUB RG,...N_C_RETURN __ 20 FC61<!H OAE4H PUB RG_N_.c _.RET URN_14. 
FC62H OACBH PUB RG_N_C_RETURN_12 FC62H OAACH PUB RG N C RETURN 10 
FC62H OA90H PUB RG_N_C_RETURN_B FC62H OA74H PUB RG::::N:=C::::RETURN::::6 
FC62H QA:;)8H PVB RG~~N_C_.RETURN~ 4 FC62H OA3EH PUB ROERROR 
FC62H OA28H PUB RGGETLEVEL FC62H CAOEH PUB ROSIGNAl.EXCEPTIO 

--N 
FCb2H 09FOH PUB RGWAITINTERRUPT FC62H 09DAH PUB RGS I GNAt. I NTERRUP 

-·T 
FC62H 0904H PUB RGDE;LETESEMAPHOR FC62H 09CEH PUB RoDELETEMAILI3QX 

-E 
FC62H 0913BH PUB RGEXITINTERRUPT FC62H 0982H PUB ROUNC AT ALDGD13 JEC 

--T 
FC6:;;!H 09ACH PUB ROSENOUNITS FC62H 09A6H PUB RGSiJSPENOTASK 
FC62H 09AOH PUB RGSETPR lOR lTV FC62H 099AH PUB RQSETPOOl,.MIN 
FC62H 0994H PUB RGSETOSEXTENSION FC62H 096EH PUB ROSENDMESSAGE 
FC62H 0988H PUB ROBLEEP FC62'H 0982H PUB ROSETINTERRUPT 
FC62H 097CH PUB ROSETE X C eP T I ONHA FC62H 0976H PUB RGSENOCONTROL 

-NDLER 
FC62H 0970H PUB RQRECEIVEUNITS FC62H 096AH PUB RORE5UMETASK 
FC62H 0939H PUB RGRECEIVEMESSAGE FC62H 0932H PUB RORE!:SETINTE;RRUPT 
FC62H 092CH PU~ RGRECEIVECONTROL FC62H 0926H PUB ROOFFSPR ING 
FC62H 0920H PUB RGLOOKVPOBJECT FC62H 091AH PUB ROINSPECTCOMPOSI 

···TE 
FC62H 0914H PUB ROGETT ASK TOKENS FC62H 090EH pua RQGETTYPE 
FC62H 090BH PUB RQGETSIZE FC62H 0902H PUB ROGETPR I OR I TV 
FC62H oaFCH PUB RQGETPOOLATTRIB FC62H oaF6H eVB R GGETE XCEP T IONHA 

"NDLER 
FC62H 08FOH PUB ROFORCEDE;LETE FC62H OBEAH PUB RGENABLE 
FC62H 0804H PUB RGENTER lNTERRUPT FC62H oseEH PUB RGENABLEDELETION 
FC62H OBeaH PUB RGDEJ,..,ETET ASK FC62H OBC2H PUB RGDELETESEGMENT 
FC62H OBACH PUB RGDISABLE FC62H OBA6H PUB RODELETEREG ION 
FC62H 08AOH PUB RGDELETE.)OI3 FC62H 089AH PUB ROOELETEEXTENSIQ 

-N 
FC62H 0894H PUB RGDISABLEPEL,.ETIO FC62H OBBEH PUB RODELETECOMPOS I T 

-N -E 
FC62H OBaSH PUB RGCREATETASK FC62H OBe2H PUB RGCREATESEMAPHOR 

··E 
FC62H oa7CH PUB RGCREATESEQMENT FC62H OB76H PUB ROCREATEREGION 
FC62H 0870H PUB RQCATALOGOI3JECT FC62H OabAI-! PUB RGCREATEMAIUIOX 
FC62H 0864H PUB RQCREATEJOB FC62H 08SE;H PUB RQCREATEEXTENsro 

-N 
FC62H 08SSH PUB R()CREATECCMPOSIT FC62H OS:;)iii!H PUB RGAL TERCQMPOSI TE 

-E 
FC62H 084CH PUB RGACCEPTGONTROL FCb~H 06BSH PUB INITTASK 

~EMOI30: SYMBOLS AND LINES 
FD17H OODCH BYM MEMORY FC62H OOOOH SYM ASCI ICODE 
00A7H OOOOH SYM DATASEGPTR OOA7H OOOOH SYM DATASEGAPDR 
OOA7H 0004H SYM HARDWAREINITTASK 00A7H 0006H SYM STATUSTASKTOKEN 

-TOKEN 
OOA7H 0008H SYM MOTQRTASK TOKEN OOA7H QaOAH SYM TIMETASKTOKEN 
OOA7H OOOCH SYM ACHANDL,ERTOKEN OOA7H OOOEH BYM CRTQUTTASKTOKEN 
OOA7H OOlOH SYM COMt1ANDTASKTOKEN OOA7H OOl2H SYM I N I TT ASK TOKEN 
')OA7H OOl4H SYM CRTMAILBOXTOKEN OOA7H OOl6H SYM CRTREG I ONTOKEN 
FC62H 0084H SYM COUT STACK 0OO4H SYM CHAR 
FC62H OOAlH SYM CIN FC62H OOJ39H BYM HARDWAREINITTASK 
OOA7H OOl8H SYM HPtRDINITE;XCEPTCO FC6~H OOlaH SYM PARAM51 

-DE 
00A7H 0040H SYM PARAMSl INDEX FC62H QDloH 9YM S I GNONMESSAGE 
DOA7H 004lH SYM SIGNONINDEX FC62H 013BH SyM 6TATUSTASK 
OOA7H 0042H SYM STATUSCOUI\ITER OOA7H OOlAH SYM STATUSEXCEPTCODE 
OOA7H 0043H BYM CWSTEPDELAV OOA7H OQ44H BYM CCWSTEPDELAV 
OOA7H D04SH SYM CWPAUSEDEL,AY DOA7H 0046H BYM CCWPAUSEDELAY 
FC62H 0172H SY" MOTORTASK OOA7H OOlCH BYM MOTORE"XCEPTCODE 
OOA7H 0047H SYM MOTORPOSITlON OOA7H 0048H SVM MOTORPHASE 
FC62H 0039H BYM PHASECqDE 00A7H 0049H SYM ACCYCLECOUNT 
FC62H 0256H SYM ACHANDLER 00A7H 001EH SYM ACEXCEPTC;ODE 
FC62H 0~9CH SYM PROTECTEDCRTOUT STACK 0006H BYM CHAR 
STACK 0OO2H SYM CRTEXCEPTCODE OOA7H 004AH SYM Sf;CONOCQUNT 
00A7H 004BH $YM MINUTECOUNT OOA7H 004CH SYM HOURCQUNT 
FC62H 02CFH BYM TIMEi'ASK 00A7H 0020H SYM TIMEEXCEPTCODE 
FC62H 03813H SYM PRINTTOO 00A7H 0022H BYM TPDMESSAGETOKEN 
OOA7H 0024H SYM TODEXCEPTCODE OOA7H 0026H SyM TODSEGMENTOFFSET 
OOA7H OO;28H SYM TODSEGMENTBASE OOA7H 0026H BYM TODSEGMENTPNTR 
FC62H 003DH BYM TODTEMPLA1'E OOA7H Q026H BAS TODSTRING 
OOA7H 004DH SYM TODSTR r NG INDEX FC62H 0489H SYM PRINTSTATUS 
QOA7H 002AH BYM STATUSMESSAGETOK OOA7H OO~CH SVM STATUSEXCEPTCODE 

-EN 

E-2 AFN-02058A 



Ap·130 

OOA7H 002EH SYM STATUSSEGMENTOFF OOA7H 0030H SYM STATUSSEGMENTBAS 
-SET -E 

OOA7H 002EH SYM ST ATUSSEGMENTP NT FC62H 0059H SYM STATUS TEMPLATE 
-R 

OOA7H 002EH ,AS STATUSSTR I f-lG OOA7H 004EH SYM STATUSSTR INGINOE 
-X 

OOA7H 004FH SYM BITPATTERN FC62H 052FH SYM CRTOUTTASK 
OOA7H 0050H SYM MESSAGELENGTH OOA7H 0032H SYM MESSAGETDKEN 
OOA7H 0034H SYM RESPONSE TOKEN OOA7H 0036H SYM MESSAQEEXCEPTCQD 

-E 
OOA7H 0038H SYM MESSAGESEGMENTOF OOA7H 003AH SYM MESSAGESEGMENTBA 

-FSET -SE 
OOA7H 0038H SYM MESSAGESEGMENTPN OOA7H 0038H 'AS MESSAGESTR INGCHA 

-TR -R 
FC62H 05AFH SYM COMMANOTASK OOA7H 0051H SYM CONSOLECHAR 

OOA7H Q03CH SYM COMMANDEXCEPTCOD IFC62H 06B5H SYM INITTASK j.-- INITIALIZATION TASK STARTING ADDRESS 
-E 

OOA7H 003EH SYM INITEXCEPTCODE FC62H 0084H LIN 302 
FC62H OQ87H LIN 304 FC62H 0093H LIN 305 
FC62H OQ96H LIN 306 FC62H 009DH LIN 307 
FC62H OOAlH LIN 308 FC62H OOA4H LIN 309 
FC62H OOaOH LIN 310 FC62H OOB3H LIN 311 
FC62H OOB9H LIN 312 FC62H OOS9H LIN 313 
FC62H OOaCH LIN 319 FC62H OOC2H LIN 320 
FC62H OOCBH LIN 321 FC62H OOCEH LIN 322 
FC62H OODlH LIN 323 FC62H OOE4H LIN 324 
FC62H OOEFH LIN 325 FC62H OO!="SH LIN 326 
FC62H OlOCH LIN 327 FC62H Ol16H LIN 328 
FC62H 011FH LIN 329 FC62H Ol2CH LIN 330 
FC62H 0139H LIN 331 FC62H Ol3SH LIN 332 
FC62H Ol3EH LIN 335 FC62H Ol43H LIN 336 
FC62H OlSOH LIN 337 FC62H Ol50H LIN 338 
FC62H OlSCH LIN 339 FC62H Ol60H LIN 340 
FC62H 016DH LIN 341 FC62H Ol70H LIN 342 
FC62H o 17.:2H LIN 344 FC62H 0175H LIN 348 
FC62H Ol7AH LIN 349 FCe.2H Ol7FH LIN 350 
FC62H 01B4H LIN 351 FC62H 0189H LIN 352 
FC62H 0196H LIN 353 FC62H Ol96H LIN 354 
FC62H OtA5H LIN 355 FC62H DlSCH LIN 356 
FC62H 01BDH LIN 357 FC62H 01CDH LIN 358 
FC62H 01D6H LIN 359 FC62H 01E6H LIN ::::160 
FC62H 01F5H LIN 361 FC62H 0202H LIN :362 
FC62H 020FH LIN 363 FC62H 02lFH LIN 364 
FC62H 0228H LIN 365 FC62H 0238H LIN 366 
FC62H 02313H LIN 367 FC62H 02'56H LIN 369 
FC62H 0259H LIN 371 FC62H 0266H LIN 372 
FC62H 0270H LIN 373 FC62H 0278H LIN 375 
FC62H 027DH LIN 376 FC62H 02BAH LIbl 377 
FC62H 028DH LIN 378 FC62H 029AH LIN 379 
FC6~lH 029CH LIN 380 FG62H 02AOH LIN 383 
FC62H 02ACH LIN 384 FC62H 02B8H LIt4 385 
FC62H 02BBH LIN 386 FC62H 02C2H LIN 387 
FC62H 02CAH LIN 388 FC62H 02CFH LIN 390 
FC62H 02D21-1 LIN 392 FC62H 0207H LIN 393 
FC62H 02F3H LIN 394 FC62H 0300H LIN 395 
FC62H 030FH LIN 396 FC62H 031EH LIN 397 
FC62H 032DH LIN 398 FC62H 033AH LIN 399 
FC62H 034EH LIN 400 FC62H 0354H LIN 40.1 
FC62H 035DH LIN 402 FC62H 0366H UN 403 
FC62H 036FH LIN 404 FC62H 037CH LIN 40:5 
FC62H 0389H LIN 406 FC62H 038BH LIN 407 
FC62H 038EH LIN 415 FC62H 039FH LIN 416 
F'C62H 03A7H LIN 417 FC62H 03ADH LIN 4.18 
FC62H 0313EH LIN 419 FC62H 0300H LIN 420 
FC62H 03D9H LIN 421 FC62H 03F5H LIN 422 
FC62H 040EH LIN 423 FC62H 0427H LIN 424 
FC62H 0440H UN 425 FC62H 0459H LIN 426 
FC62H 0472H LIN 427 FC62H 0487H LIN 428 
FC62H 0489H LIN 429 FC6::;!H 0489H LIN 4:30 
FC62H 048CH LIN 439 FC62H 049IlH LIN 440 
FC62H 04A5H LIN 441 FC62H 04A13H LIN 44;;:: 
FC62H 04BCH LIN 443 FC62H 04CEH LIN 444 
FC62H 0407H l.IN 445 FC62H 04DFH LIN 446 
FC62H 04EEH LIN 447 FC62H O~OBH L.IN 448 
FC62H 050FH LIN 449 FC62H 0518H LIN 450 
FC62H 0520H LIN 451 FC62H 052FH LIN 452 
FC62H 0532H LIN 460 FC62H 053FH LIN 461 
FC62H 053FH LIN 462 FC62H 055AH LIN 463 
FC62H 0560H LIN 464 FC62H 0568H LIN 465 
FC62H 0573H LIN 466 FC62H O'588H LIN 467 
FC62H 0592H LIN 468 FC62H 059DH LIN 469 
FC62H 05AAH LIN 470 FC62H O:;'ADH LIN 471 
FC62H 05AFH LIN 472 FC62H 05Il2H L.IN 475 
FC62H 05BFH LIN 476 FC62H 05BFH LIN 4/7 
FC62H OSC9H LIN 478 FC62H O~DOH LIN 4'79 
FC62H O:;DAH LIN 480 FC62H O~EOH LIN 481 
FC62H 05F4H LIN 483 FC62H 05FAH LIN 484 
FC62H 0600H LIN 485 FC62H 06l0H LIN 486 
FC62H 0616H LIN 487 FC62H 061CH LIN 488 
FC62H 062CH LIN 489 FC62H 063CH LIN 490 
FC62H 064CH LIN 491 FC62H 065CH L.IN 492 
FC62H 066CH LIN 493 FC62H 067CH LIN 494 
FC62H 068CH LIN 495 FC62H 069CH LIN 496 
FC62H 06EOH LIN 498 FC62H 06133H LIN 499 
FC62H 06BSH LIN 500 FC62H 06D8H LIN 50;;! 

E-3 AFN-02058A 



AP-130 

FC62H 06C4H LIN 503 FC62H 0605H LIN 504 
FC62H 06E6H LIN 505 FC62H 06F6H LIN SOb 
FC62H 071FH LIN 507 FC62H 072CH LIN SOB 
FC62H 0755H LIN 509 FC62H 0762H LIN 510 
FC62H 07SaH LIN 511 FC62H 0798H LIN 512 
FC62H 07C1H LIN 513 FC62H 07CEH LIN 514 
FC62H 07F7H LIN 515 FC62H OB04H LIN 516 
FC62H 082DH LIN 517 FC62H OS:'lAH LIN 518 
FC62H 083DH LIN 519 FC62H 084AH LIN 520 
FC62H 0084H LIN 521 

MEMORY MAP OF MODULE DEMD13Q 
READ FROM FILE : Fl: AP130. LNK 
WRITTEN TO FILE Fl:AP130 

SEGMENT MAP 

START STOP LENGTH ALIGN NAME CLASS 

100A70H DOAC IH 0052H W DATA '---_____________________ O_A_T--'A f..c--- LAST DATA BYTE OF APPLICATION JOB 

OOAC2H OQAC2H OOOOH STACK STACK 
OOADQH OOADOH OOOOH ':"?SEG 

I FC620H FD17BH OB5CH CODE '--____________________ CO_D_E ..... j.-- LAST CODE BYTE OF APPLICATION JOB 

FD17CH FD17CH OOOOH W MEMORY MEMORY 

GROUP MAP 

ADDRESS GROUP OR SEGMENT NAME 
FC620H CGROUP 

CODE 
OOA70H DGROUP 

DATA 

E-4 AFN-02058A 



AP·l3U 

APPENDIX F 
ROOT JOB LOCATE MAP 

F-1 AFN-02058A 



ISiS-II M~S·Sb LOCAtER, VI. 2 INVOKED BY: 
LtlC86 : H~ AllB130. ink & 

to :Fl:RJBI30 ~. 
MAP ~RtNf(: fi: RJU~O. mp2l • 
OC(l'Ioli. hopt, nQctI'I. tio!ib) Ii! 
PC(floli, pI, tiDem, 1'10sb' &I 
S~~SItE( .to" (0)) ~ 
ORDr~(claliSl!.(dtita, staC"k, mfotn01'Y» & 
ADDRESSES(tl ... h«Od.(O~OIBOHl, & 

doita (OOAOOH» ) 
WARNING 26: OECREASING SIZE OF SE~MENT 

S~GMENr: StACK 

SYMBOL TABeE DF' MODULE ;'00. 
READ FRdM FILE: PI: RJJI~O! LNK 
WRIrTEN TO neE: PI: RJB.30 

MSE OFFSET TYPE SyMBOL 

FOleH O.ISOH PUB NUC_INIt _ENtRV 

BASE: 

FoiSH 

AP-13D 

OFFSET tYPE SYMOOL 

01S4H PUB CODEDAfA 

IFDISI-! OOIIH PUB RQSrARTADDRESS ~ ROOr JOB SrARflNG ADORESS F'018H 

FDlElH ooooH PUB CRASH 
FDISH OMOH PUB ROOTtASK 
F'IHsH 011eH PUB RGC~EA'r(!t",bB 
FOISH 0124H pus RQSUSPENotASK 
FOISH 0146H PUB RQ_N3~~STURN_40 
OOADH OOOdH pus JonNUMS~;' 

'1EMORY MAe OF MOOUL.E ROOT 
READ FROM FILS: n: RJSI30. LNK 
WRIiTEN to F'ILE :F1:R-.JB1:ld 

FDI8H 002AH PUB 
FOISH OlotH PuB 
~D18H 011EH PU~ 
~OleH 012AH PUB 
"DISH 0162H PUb 
OOADH ooo2H PUS 

MODULE stMT ADO~liis9 PARAQRAPH = ~DI8H O~FSET '" OOIIH 
SEQH~Nr HAP 

START SToP L.ENGTH AL I GN NMIE CLASS 

OOADoH 00A03H 0004H w bAtA bATA 

RQAOOT -.lOBVE-:RS I ON 
SYSTEMSUICItlE 
RGGE'rtAsK tTJKENS 
R() ...... N,~_C_RET\JRN_6 
RQERRoR 
~oorTASKS1'ATUS 

OOIOH PUB 

IOOAO~H ODS""H O!~CH W INn_STACK stACK I~ LAST OATA BYTE OF ROOT JOB 

OOCOOH OOCOOH OOoOH W STACK STACK 
oOtaoH OOCOOH OOOOH G 7?SEQ 
~0180H "03~~H OIBAH W cdo~ CODE 
F03~AH I'0345H OM~H w SAS_OESCRIPTOR CODE 

-8 

!='D346H F0:366H 0021 H W _~ _J _OEseR I PTO~ CODE 1<It-~- LAST CODE BYfE OF ROOT JOB 

OOOOH w MEMOAy 

GROUP HAP 

ADDREsS GROUP OR SEGMENT NAMS 
OOAOOH DGRIlUP 

DAtA 
FOiSOH OOROUP 

CODe: 
SAa_O~SCRIPTORS 
U~J_OEt~CAII>'ORS 

MEHORY 

F·2 

INTERROR 

AFN-02058A 





INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, CA 95051 (408) 987-8080 

Printed in U.S.A./T-520/20K/0282/CP JL 


