intgl. APPLICATION AP.48

NOTE

January 1979

9800904

AP-49

INTRODUCTION

The Intel® MCS-48 family of microcomputers marked
the first time an eight bit computer with program
storage, data storage, and l/O facilities was available on
a single LS| chip. The performance of the initial
processors in the family (the 8748 and the 8048) has
been shown to meet or exceed the requirements of most
current applications of microcomputers. A new member
of the family, however, has been recently introduced
which promises to allow the use of the single chip
microcomputer in many application areas which have
previously required a multichip solution. The In-
tel® 8049 virtually doubles processing power available
to the systems designer. Program storage has been in-
creased from 1K bytes to 2K bytes, data storage has
been increased from 64 bytes to 128 bytes, and process-
ing speed has been increased by over 80%. (The 2.5
microsecond instruction cycle of the first members of
the family has been reduced to 1.36 microseconds.)

It is obvious that this increase in performance is going
to result in far more ambitious programs being written
for execution in a single chip microcomputer. This ar-
ticle will show how several program modules can be
designed using the 8049. These modules were chosen
to illustrate the capability of the 8049 in frequently en-
countered design situations. The modules included are
full duplex serial /0, binary multiply and divide routines,
binary to BCD conversions, and BCD to binary conver-
sion. It should be noted that since the 8049 is totally
software compatible with the 8748 and 8048 these
routines will also be useful directly on these proc-
essors. In addition the algorithms for these programs
are expressed in a program design language format
which should allow them to be easily understood and
extended to suit individual applications with minimal
problems.

FULL DUPLEX SERIAL
COMMUNICATIONS

Serial communications have always been an important
facet in the application of microprocessors. Although
this has been partially due to the necessity of con-
necting a terminal to the microprocessor based system
for program generation and debug, the main impetus
has been the simple fact that a large share of micro-
processors find their way into end products (such as in-
telligent terminals) which themselves depend on serial
communication. When it is necessary to add a serial link
to a microprocessor such as the Intel® MCS-85 or 86 the
solution is easy; the Intel® 8251A USART or 8273 SDLC
chip can easily be added to provide the necessary pro-
tocol. When it is necessary to do the same thing to a
single chip microcomputer, however, the situation
becomes more difficult.

Some microcomputers, such as the Intel 8048 and 8049
have a complete bus interface built into them which
allows the simple connection of a USART to the proc-
essor chip. Most other single chip microcomputers,
although lacking such a bus, can be connected to a
USART with various artificial hardware and software
constructs. The difficulty with using these chips,

intgl.

however, is more economic than technical; these same
peripheral chips which are such a bargain when coupled
to a microprocessor such as the MCS-85 or 86, have a
significant cost impact on a single chip microcomputer
based system. The high speed of the 8049, however,
makes it feasible to implement a serial link under soft-
ware control with no hardware requirements beyond two
of the I/O pins already resident on the microcomputer.

There are many techniques for implementing serial /O
under software control. The application note “Applica-
tion Techniques for the MCS-48 Family” describes
several alternatives suitable for half duplex operation.
Full duplex operation is more difficult, however, since it
requires the receive and transmit processes to operate
concurrently. This difficulty is made more severe if it is
necessary for some other process to also operate while
serial communication is occurring. Scanning a keyboard
and display, for example, is a common operation of
single chip microcomputer based system which might
have to occur concurrently with the serial receive/trans-
mit process. The next section will describe an algorithm
which implements full duplex serial communication to
occur concurrently with other tasks. The design goal
was to allow 2400 baud, full duplex, serial communica-
tion while utilizing no more than 50% of the available
processing power of the high speed 8049 microcom-
puter.

The format used for most asynchronous communication
is shown in Figure 1. It consists of eight data bits with a
leading ‘START’ bit and one or more trailing ‘STOP’ bits.
The START bit is used to establish synchronization be-
tween the receiver and transmitter. The STOP bits en-
sure that the receiver will be ready to synchronize itself
when the next start bit occurs. Two stop bits are nor-
mally used for 110 baud communication and one stop
bit for higher rates.

START sTOP
BIT D1 D2 D3 D4 D5 D6 D7 D8 BIT

Figure 1.

The algorithm used for reception of the serial data is
shown in Figure 2. It uses the on board timer of the 8049
to establish a sampling period of four times the desired
baud rates. For 2400 baud operation a crystal frequency
of 9.216 MHz was chosen after the following calculation:

f = 480N(2400)(4)
where 480 is the factor by which the crystal fre-
quency is divided within the processor
to get the basic interrupt rate
2400 is the desired baud rate
4 is the required number of samples per
bit time
N is the value loaded into the MCS-48
timer when it overflows

intel.

The value N was chosen to be two (resulting in f=9.216
MH2z) so that the operating frequency of the 8049 could
be as high as possible without exceeding the maximum
frequency specification of the 8049 (11 MHz).

i

i START OF RECEIVE ROUTINE

; 2===ss=zesscozmszzzos—cs

1 IF RECEIVE FLAG=O THEN
;2 IF SERIAL INPUT=GPACE THEN

i3 RECEIVE FLRG:=1
i3 BYTE FINISHED FLAG: =0
2 ENDIF

+1 ELSE SINCE RECEIVE FLAG=1 THEN
i2 IF SYNC FLAG=0 THEN
i3 IF SERIAL INPUT=SPACE THEN

id SYNC FLAG:=1
i4 DATA: =89K
i4 SHMPLE CNTR:=4
i3 ELSE SINCE SERIAL INPUT=MARK THEN
i4 RECEIVE FLAG. =8
i3 ENDIF
72 ELSE SINCE SYNC FLAG=1 THEN
i3 SAMPLE COUNTER:=SAMPLE COUNTER-1
i3 IF SAMPLE COUNTER=0 THEN
i4 SAMPLE COUNTER: =4
i4 IF BYTE FINISHED FLAG=8 THEN
i5 CARRY:=SERIAL INPUT
i9 SHIFT DATA RIGHT WITH CARRY
;5 IF CARRY=1 THEN
6 OKDATR: =DATA
i6 IF DATA RERDY FLAG=0 THEN
7 BYTE FINISHED FLAG=1
i6 ELSE
7 BYTE FINISHED FLAG: =1
i7 OVERRUN FLAG:=1
i6 ENDIF
5 ENDIF
4 ELSE SINCE BYTE FINISHED FLAG=1 THEN
9 IF SERIAL INPUT=MARK THEN
6 DATA READY FLAG:=1
35 ELSE SINCE SERIAL INPUT=SPACE THEN
i6 ERROR FLAG:=1
9 ENDIF
i) RECEIVE FLRG:=0
i3 SYNC FLAG =8
4 ENDIF
i3 ENDIF
;2 ENDIF
i1 ENDIF
Figure 2

The timer interrupt service routine always loads the
timer with a constant value. In effect the timer is used to
generate an independent time base of four times the re-
quired baud rate. This time base is free running and is
never modified by either the receive or transmit pro-
grams, thus allowing -both of them to use the same
timer. Routines which do other time dependent tasks
(such as scanning keyboards) can also be called periodi-
cally at some fixed multiple of this basic time unit.

The algorithm shown in Figure 2 uses this basic clock
plus a handful of flags to process the serial input data.

All mnemonics copyrighted © Intel Corporation 1979.

AP-49

Once the meaning of these flags are understood the
operation of the algorithm should be clear. The Receive
Flag is set whenever the program is in the process of
receiving a character. The Synch Flag is set when the
center of the start bit has been checked and found to be
a SPACE (if aMARK is detected at this point the receiver
process has been triggered by a noise pulse so the pro-
gram clears the Receive Flag and returns to the idle
state). When the program detects synchronization it
loads the variable DATA with 80H and starts sampling
the serial line every four counts. As the data is received
it is right shifted into variable DATA, after eight bits
have been received the initial one set into DATA will
result in a carry out and the program knows that it has
received all eight bits. At this point it will transfer all
eight bits to the variable OKDATA and set the Byte
Finished Flag so that on the next sample it will test for a
valid stop bit instead of shifting in data. If this test is
successful the Data Ready Flag will be set to indicate
that the data is available to the main process. If the test
is unsuccessful the Error Flag will be set.

The transmit algorithm is shown in Figure 3. It is exe-
cuted immediately following the receive process. It is a
simple program which divides the free running clock
down and transmits a bit every fourth clock. The variable
TICK COUNTER is used to do the division. The Transmit-
ting Flag indicates when a character transmission is in
progress and is also used to determine when the START
bit should be sent. The TICK COUNTER is used to deter-
mine when to send the next bit (TICK COUNTER MOD-
ULO 4 = 0) and also when the STOP bits should be sent
(TICK COUNTER = 9 4). After the transmit routine com-
pletes any other timer based routines, such as a key-
board/display scanner or a real time clock, can be
executed.

;START OF TRANSMIT ROUTINE

H

i

34 TICK COUNTER:=TICK COUNTER+
i1 IF TICK COUNTER MOD 4=8 THEN
i2 I TRANSHITTING FLAG=1 THEN

i3 IF TICK COUNTER=00 1010 88 BINARY THEN
i4 TRANSMITTING FLAG:=¢
i3 ELSE IF TICK COUNTER=90 1081 80 BINARY THEN
4 SEND END MARK
4 TRANSHITTING FLAG:=8
i3 ELSE SINCE TICK COUNTEROTHE ABOVE COUNT THEN
i4 SEND NEXT BIT
i3 ENDIF
i2 ELSE SINCE TRANSMITTING FLAG=9 THEN
i3 IF TRANSHMIT REQUEST FLAG=1 THEN
i4 XMTBYT: =NXTBYT
4 TRANSHIT REQUEST FLAG:=8
4 TRANSMITTING FLAG:=1
i4 TICK COUNTER:=8
4 SEND SYNC BIT (SPACE)
i3 ENDIF
;2 ENDIF
71 ENDIF
Figure 3

AP-49

Figure 4 shows the complete receive and transmit pro-

grams as they are implemented in the instruction set of was used to test the algorithm.

intgl.

the 8049. Also included in Fig. 4 is a short routine which

IS14-1T MCS-48/UPT-41 MACRD ASSEMBLER, Y2 @

Los el

8920 C5

[s

SEQ

[T L T U N T [U [T B [T I [N T T S TR 1]

LTI T TR R U TR 1)

SOURCE STRTEMENT
1 ik ROV A
2% *
Ik THIS PROGRAM TESTS THE FULL L4FLEY COMMUNICATION SUFTWRRE *
4% *
S YRRk ok ARk R R e o
6.
7 $INCLUDEC -F1 URTEST PRLY
2
3. STRRT OF TEST POUTINE
10 Zzz=zz=zz==ssssssssss
1.
12 .
12 .
14
15 :
16 1 ERROR COUNT =@
17 +1 REFERT
18 ;% PATTERN =8
19 :2 INIVIALIZE TIMER
I CLEAR FLAGEYTE
212 FLAGL=MARK
&2 :2 PEPERT
2243 IF TRANSHIT REQUEST FLAG=A THEN
24 .4 NATBYTE : =PATTERN
25 ;4 TRANSMIT REQUESY FLAG=1
26 5% ENDIF
2733 IF DATA RERDY FLAG=1 THEN
28 4 PATTERN . =OKDATR
29 4 DRTR PERDY FLAG =@
M2 ENDIF
X2 UNTIL ERROR FLRG OR OVERRUN FLAG
Rt INCPEMENT ERRUR CIRINT
22 i1 INTIL FOREVER
34 EDF
39 FETECT

ORG 8

37 +1 SELECT REGISTER BANK @

SEL FED

3% :1 6070 TEST

MF TEST
INCLUDE (. F1 - URRT)

RSYNCHRONDUS RECEIVE/TRANSMIT ROUTINE

THIS ROUTINE RECEIVES SERIAL CODE USING FIN T@ AS RXD
AND CONCURRENILY TRANSMITS USING PIN P27

NOTE. ’

THIS ROUTINE MSES FLAG 1 TO BUFFER THE TRANGMITTED

Figure 4

All mnemonics copyrighted © Intel Corporation 1978.

0a28
8921
22
8822

77 WNATBY EQU 234 , CONTAINS THE NEXY BYTE T0 BE TRANSMITYED
78 $SEJECT

AP-49
SEQ SCURCE STRTEMENT
= 5@ :1 DATA LINE THIS ELIMINRTES THE JITTER THAT
= 51 .1 WOULD RE CRUSED BY YRRIATIONS IN THE RECEIVE
= 52 .4 TIMING. NO OTHER PROGRAM MAY USE FLAG 1 WHILE
= 53 .1 THE TIMER INTERRUPT IS ENABLED
= 94
= 5%
= 56
= 57 .
= 5.
= 99 FEGISTER ASSIGNMENTS-BANKL
= B0
= Bl
= 62
= £2 ATEMP ERU RY i USED TO SAYE ACCUMULAYOR CONTENTS LURING INTERRUPT
= &4 FLOBYT EQU RE i CONTRINS YAR10US FLAGS USED 10 CONTROL THE RECEIVE
= &5 i AND TRANSMIT PROCESS. SEE CONSTANT DEF INITIONS FOR
= 66 i THE MEANING OF ERCH BIT
= 67 SAMCTR EQU L) : SAMPLE COUNTER FOR THE RECIEVE MROCESS
= 68 TCKOTR EQU R4 i SAMPLE COUNTEP FOP THE TRANSMIT PROCESS
= 63 REGE ERY L] i LSED &S POINTER REGISTER
= 7R
= 71 PAM ASSIGHMENTS
= 72 ssss=zsszsssexe
= 73
= 74 MOKDAT EQ) L RECEIVE RETURNS VALID DRATA IN THIS BYIE
= 75 MDHTR EQU 21K + RECEIVE ACCUMULATES DATA IN THIS BYTE
= 76 MXMTBY EQU 2 : CONTRINS BYTE BEING TRANSHITTED

93 DROYFL EWU @34 i SHOULD BE RESET BY MAIN PROGRAM WHEN DATA IS ACUEPTED

= 79

= 89:

= 8- CONSTANTS

= B2 ss==s=z=os

= 83

= 34 THE FOLLOWING CONSTANTS ARE USED TO ACCESS THE FLAG BITS CONTHINED

= 85 IN REGISTER FLGEYT

= 36

= 37 RCVFLG EQU B1H i SET WHEN START BI1 IS FIRST DETELTED

= 83 i RESET WHEN RECEIVE PROCESS IS COMPLETE

= 89 SYNFLG EQU g2H i SET WHEN STRRT BIT IS VERIFIED

= R ; RESET WHEN RECEIVE PROCESS IS COMPLETE

= 91 BYFNFL EQU 84H i RESET WHEN STRRT BIT 15 FIRST DETECTED

= 92 + SET WHEN THE EIGHT DRTA BITS HAYE ALL BEEN KECEIVED
= %M ;i SET BY RECEIVE PROCESS WHEN 5TOP BIT(S) ARE VERIFIED
= 95 ERRFLG EQU 18H i SHOULD BE PESET BY MAIN FROGRAM WHEN SRMPLED

s % i SET BY RECEIYE PROCESS IF R FRAMING EKROR IS DETECTED
= 97 TRRGFL EQV 204 « TESTED BY MRIN PROGRAM TO DETERMINE IF RERDY 1D

= 98 i TRANSMIT A NEW BYTE-SET TO INDICATE THAT NXTBYT

= 9 i HAS BEEM LDADED

= 1689 ; PESET BY TRANSMIT PROCESS KHEN BYTE IS HRCCEPTED

= 161 TRNGFL EQU 484 SET WHEN TRANSMISSION OF A BYTE STARTS
RESET WHEN STOP BIT IS5 TRANSHITTED
= 103 OVRUIN EQU 80H i SET BY RECEIVE PROCESS WHEN OVERUN OCCURRS

= 104 i SHOULD BE RESET BY MAIN PRUGRAM WHEN SRMPLED

n
8

Figure 4 (continued)

All mnemonics copyrighted © Intel Corporation 1979.

AP-49

Loc OBl

FFTF

80a7 1668
6303 53
BeBA 05
Goae: AF

@aar; 23FE
880k 62

HI0F 7615
8611 9AVF
BaLx #417
8815 3A38

8847 FE
w3 1224

1A 3664

8010 FE
9010 43681

881F 33FB
#0921 RE
8022 #464

024 23R

SEQ SOURCE STRTEMENT

P

9 MARK EDU H + USED TD GENERATED A MARK
SPACE EQU NOT 88H ; LSED TO GENERATE A SPACE
1 STPETS EQL a i CONTROLS THE NIRBER OF S10P BITS
: + 8 GENERATES OME STOP BN
1 GENERRTES TWO 510P BITS

b pen XY

Iz

5

e e g

[s
|y Y
P

L T TR T TS TR TR TR TR TR 1}
[l e o
Ya s B
Jarl = 7'}
[
o
3
—

STRRT OF FECEIVE/TRANSMIT INTERRUPT SERVICE ROUTINE

=
I3

EER

ol e

ORG BE97H

122 ;4 ENTER INTERRUPT MODE
123 TISR- JTF URRT

=124 RETR

= 125 URRT: SEL RBL

= 126 .1 SRYE ACCUMILATOR COMTENTS
=127 nov ATEMP. R

= 128 ;1 RELOAD TIMER

=129 Moy A: $TIHCNY

=132 mo T#

=131

=132 OUTPUT TXD BUFFER (F1) TO TXD I/0 LINE ¢P27)
=133

=134 ;

=135 JF1 OMARK

= 136 OSPACE- ANL F2. #3PACE

=137 e RCYG9

= 138 DMARK ORL P2, BNARK

=139

=148 ; START OF RECEIVE ROUTINE
=141

=142 ;

= 1432 ;1 IF RECEIVE FLAG=2 THEN

= 144 RCYEA8. MOV A, FLGBYT

= 145 Jsa RCVB18

= 146 ;2 IF SERIAL INPUT=SFACE THEN
= 147 J1e MIT

=145 ;2 RECEIVE FLRG:=1

=149 Moy A, FLGBYT

=15 ORL R #RCYFLG

=151 ;2 BYTE FINISHED FLAG:=8
=492 ANL A, #NOT BYFNFL
=153 .2 ENDIF

= 154 Moy FLGBYT. A

=155 i i

=136 ;1 ELSE SINCE RECEIVE FLAG=1 THEN
=157 ;2 IF SYNC FLAG=0 THEN

= 158 RCYAA. JR1 RCYA39

159 ;¢ IF SERIAL INPUT=SPACE THEN

Figure 4 (continued)

All mnemonics copyrighted © Intel Corporation 1979.

intgl.

AP-49

LOC 0BY SEQ SOURCE STRTEMENT
8826 3633 = 160 1 RCY829
=161 i 4 SYNC FLRG =1
wa2e 4302 = Lo ORL R, #SYNFLG
2820 HE = 163 MOY FLGEYT. A
=164 -4 DATR:=83H
Wik BE2l = 163 M R@, $MDATA
w0 BRLR = 156 Mo @RD. ¥56H
=167 4 SAMPLE CNTR =4
o = 168 MY SANMCTR. #4
8921 9464 = 169 b3 AMIT
=17 . X ELSE SINCE SERIAL INPUT=MARK THEN
=171 ;4 RECEIVE FLAG =@
8a33 SIFE = 172 RCV829: ANL A SNDT RCVFLG
=173 :3 ENDIF
8835 RE =14 HOY FLGEYT. A
Q136 #d64 =179 I KHIT
=178 ;2 ELSE SINCE SYNC FLRG=1 THEN
=477 .2 SAMPLE COUNTER =SAMFLE COUNTER-1
8925 EDE4 = 178 RCYEZR- DJNZ SAMCTR, XMIT
=173 .2 IF SEMPLE COUNYER=8 THEN
=180 ;4 SAMPLE COUNTER =4
BA3A BDG4 =181 Mo SAMCTR, #4
=182 i4 IF BYTE FINISHED FLAG=8 THEN
easC 5259 =182 Je2 RCvese
@aze 97 = 184 CLR ¥
=185 ;% CARRY - =SERTHL INPLN
BO3F 2642 =185 INTE@ RCYR48
wad1 w7 = 187 CPL C
@942 BS24 = 188 RCVMG. MOV Ré. $MURTR
@344 Fa = 189 Moy R. #RA
=138 :5 SHIFT OATR R1GHT NITH CRARRY
8345 &7 =13 RRC R
846 AR =192 Moy RO, R
=193 35 IF CARRY=1 THEN
0947 E664 =134 INC EMIT
=195 ;6 DKDATA - =DATA
8845 BS29 = 1% mov RO. $4OKDAT
L] = 19¢ Moy #ra. A
=192 ;¢ IF DATA RERDY FLAG=4 THEN
884C FE =199 L R FLGBYT
8840 7254 = 200 Je3 RCVB43
=201 .7 BYTE FINISHED FLRG=1
BB4F 434 = 282 ORL R, SEYFNFL
8851 AE = HOv FLGBYT.A
8352 B4ed = 2084 P XMIT
=285 ;6 ELSE
= 206 7 BYTE FINISHED FLAG:=1
=207 :7 OVERRUN FLRG. =1
= 208 RCVB4S:
=209 i, L4 R: FLGBYT
8854 4334 =219 ORL A #CBYFNFL OR OVRUND
9856 AE =21 HoY FLGBYT. 8
=212 ;6 ENDIF
= 21355 ENDIF
8957 B4o4 =214 e mrr

Figure 4 (continued)

All mnemonics copyrighted © Intel Corporation 1979.

AP-49

W59 265F

Ag5e 4398
8850 A461

HasF 4318

906
806

vd -
#y
D

2064 1T

8063 2342
BHET SO
3362 9697

a36h FE
BaEB 37
#9eC D23s

BACE 2324
a7 T
Ba71 967

887 RS
2474 B3

[T N T T T TR TR TS [T 1}

T T T T T T T T L LI T T LU OO T T LT LI LU LI LI AN T T T T T (I T L L L UL

14
bl

™ Mo Po BD
SIS
o3 =3 oh

@ 0

PR3 PP
S e

}oisd Ld gL

r P P PR
)

]

r
)
“w

248

262
283
264
265
266
267
268
269

RO RGO W

Figure 4 (continued)

SOURCE STRTEMENT
i4 ELZE SINCE BYTE FINISHED FLRG=1 THEN
S IF SERIAL INPUT=MARK THEN
RCYA3H: INT@ RCYBER
i6 DATA READY FLAG: =1
oL A $DRDYFL
Rt 4 k(Y79
i ELSE SINCE SERIARL INPUT=SPACE THEN
£ ERROR FLAG.=1
 RCVER: ORL R: #ERRFLG
i3 ENDIF
5 RECEIVE FLRG.=@
S SYNC FLAG:=8
PCYa7. ANL A. #NOTCSYNFLG DR RCYFLGY
moy FLGBYT. A
4 ENDIF
i2 ENDIF
i2 ENDIF
+1 ENDIF
$EJECT
; START OF TRAMSMIT ROUTINE
i1
: TRANSHITTER OUTPUT BIT IS P2-7
+1 TICK COUNTER.=TICK COUNTER+1
AMIT. INC TCKCTR
i1 IF TICK COUNTER MOD 4=8 THEN
g A, #83H
ANL R, TCKCTR
NG FETURN
;2 IF TRANSMITTING FLAG=1 THEN
MoV R, FLGBYT
CPL A
JB6 KMTR49
IF STPRTS E@ 1
i3 IF TICK COUNTER=0A 1819 8@ EINARY THEN
Hoy R, #28H + CONDITIUNAL ASSEMBLY
XRL R TCKCTR i
N2 XMT010
4 TRANSMITTING FLAG: =9
MOY A, FLGBYT i
ANL A #NOT TRNGFL
noy FLGBYT. A ;
e RETURN ;
ENDIF
s ELSE IF TICK COUNTER=09 1621 92 BINARY THEN
#MT918: MOV R, #24H
KRL R: TCKCTR
m2 “MTa2a
4 SEND END MARK
LR Fi i SET FLAGL TO MARK
CPL F1
IF STPBTS EO @
id TRANSMITTING FLAG =9

All mnemonics copyrighted © Intel Corporation 1979.

Loc oBJ SEQ SOURCE. STRTEMENT
8075 FE =278 Hov R, FLGBYT ; CONDITIONAL ASSEMBLY
8976 53BF =2 L A #NOT TRNGFL ;
9078 RE =272 L4 FLGBYT. A i
8979 8457 =i Iy RETURN i
=274 ENDIF
=275 :3 ELSE SINCE TICK COUNTER{YTHE RBOVE COUNT THEN
=27 4 SEND NEXT BIT
078 Bg22 = 277 XMT@20: Wiy PO, #NTBY
8970 F@ =278 LY A RO
897E &7 =279 RRC A
BarF e = 289 Mo 0. R
9928 AS =281 CLR F1 i FLRG 1 WILL BE USED TO BUFFER TXD
3881 E697 = 262 INC RETURN ; GO TO RETURN POINT IF TXD=SPACE (@)
8983 85 =283 £rL Fi 5 ELSE COMPLEMENT FLAG 1 TO A MARK
8984 8497 = 284 P RETURN
= 2853 ENDIF
=286 ;2 ELSE SINCE TRANSMITTING FLAG=8 THEN
= 287 ;3 IF TRANSHIT REQUEST FLAG=1 THEN
BB86 B297 = 283 XMTe48: JBS RETURN FLAG BYTE THERE
=289 4 KMTBYT =NXTBYT
8A83 BR22 = 290 MoV PR, ¥MNXTBY
BASR FG =2 H¥ R, @RO
2038 B822 =292 MOV . BHXMTRY
845D A9 = 293 Moy 8r9. A
=294 4 TRANSMIT REQUEST FLAG:=8
@88k FE =295 My R, FLGBYT
WABF S30F = 2% ANL A, #N0T TRRGFL
=297 ;4 TRANSMITTING FLAG =1
Ba%1 4348 =298 ORL A RTRNGFL
8693 FE =299 Moy FLGBYT. A
= 300 ;4 TICK COUNTER =0
8894 BCAG =301 Y TEKCTR. 49
=38 ;4 SEND SYNC BIT (SPRCED
809 RS = 362 CLR F1 i SET FLAG 1 TO CRUSE R SPACE
=384 ;2 ENDIF
=205,2 ENMIF
= 386 .1 ENDIF
= 367 RETURN:
= 283 i1 RESTORE ACCUMULATOR
8897 FF = 289 Moy A, RTEMF
8a92 93 =318 RETR
311 $EJECT
2
313 START OF TEST ROUTINE
314 ; Ssssessssmosssossssss
315 ¢
81489 316 ORG 81804
FFFE 317 TIMCHT EQU -2
13 313 MFLGBY EW 1EH
oD 315 MSAMCT EQU 1DH
81C 320 MTCKCT EQU 1CH
321
aag7 322 ERRCNT EQU R7
2003 X PATT EQU R6
324 ;

Figure 4 (continued)

AP-49

All mnemonics copyrighted © Intel Corporation 1979.

AP-49

Lo oes

0109 BFOd

8182 BE0Q

8104 23FE
19 62
8167 55
8108 25

9189 BB1E
8108 Bogs

8100 AS
016E BS

816F BBIE
e111 Fe
8112 B224

0114 B9
8116 FE
o117 A1

8118 35

8119 Fo
811 4328
611c RO
811D 25
B11E 1622
#120 2424
8122 1408

8124 Fe
8123 3?7
8126 7233

8128 B520
#12A F1
8128 AE

e42c 35

812D Fo

SEQ SOURCE STATEMENT
325
326 ;
327 i1 ERROR COUNT:=8
328 TEST: MOV ERRCNT. %9
329 i1 REPEAT
338 TLOP:
321 ;2 PATTERN.=@
332 MOV PATT, 408
33352 INITIALIZE TIMER
34 Mov A, #TIMCNT
335 Moy TR
336 SIRT T
R7 EN TCNTIL
38 :2 CLEAR FLAGBYTE
339 Moy RO, #NFLGBY
348 Moy @R, %0
341 :2 FLAGL=MARK
242 CLp Fi
343 P F1
344 ;2 REPERT
345 TILOP: .
346 ;3 IF TRANSMIT REQUEST FLRG=0 THEN
347 MY RO, #FLGRY
348 MoV A, #RD
349 JBS TREC
350 ;4 NYTBYTE :=PATTERN
351 L1 RL. #MNXTBY
352 HoY A, PATT
352 nov 8RLA
34 ;4 TRANSMIT REQUEST FLAG=1
355 DIS TONTI 5 LOCK OUT TIMER INTERRUPY
3% 5 S0 THAT MUTUAL EXCLUSION IS MAINTHINED WHILE
357 i 1HE FLAG BNTE 15 BEING MODIFIED
358 MOY fi. @R
359 ORL As $TRROFL
360 mov R0, A
361 EN TONTL
362 JTF TESTH
363 Jup TREC .
364 TESTR: CALL UART ; CALL UART BECAUSE TIMER UVEKFLOWED DURING LOCKOUT
65 ;3 ENDIF
366 i3 IF DATA READY FLAG=1 THEN
367 TREC:
368 noy . #RE
363 CPL A
378 JB3 TRECE
374 PATTERN: =0KDATA
372 My R1, #MOKDAT
N MOV AR
74 MoV PATT.A
375 4 DATR READY FLAG:=@
376 DIS TONTI 5 LOCK QUT TIMER INTERRUPT
37 + 50 THAT MUTURL EXCLUSION 1S MAINTIANED WHILE
378 ; THE FLAG BYTE IS BEING MODIFIED
379 MoV A R0 ‘

Figure 4 (continued)

All mnemonics copyrighted © Intel Corporation 1979.

10

in‘tel . AP-49

L o) SEQ SOURCE SYRTEMENT
#12E S3F7 380 A A, #NOT URDYFL
8120 A9 381 L 8r9, A
813 25 38 EN TCNTI
8122 1636 383 JTF TESTB
#134 2438 384 Bl g TRECE
8136 1498 385 TESTE: CALL UART ; CALL UART IF TIMER OVERFLOWED DURING LOCKOUT
386 TRECE:
387 32 ENDIF
388 ;2 LNTIL ERROR FLAG UR DVERRUN FLAG
136 Fo 389 Mo R GRO
#1329 5398 39 ANL A $COVRUN OR ERRFLG)
8138 C6oF 33 R 11LoP
392 ;2 INCREMENT ERROR COUNT
813D 1F 393 e ERRCNT
394 ;1 UNTIL FOREVER
B13E 2482 39 JHP TLOP
396 EOF
397 END
USER SYMBOLS

ATEMP @9G7 BYFNFL 8834 DRDYFL ©0B8 ERRCNT 80@7 ERRFLG 9816 FLGBYT baBe HARK 8833 NDRTR 9821
NFLGBY @A1E MNXTBY 8223 MOKDRT 9020 MSAMCT 201D MTCKCT 891C MXMTBY 0&z2 OHARK 9813 OSPACE @811
OVRUN @w@ PATT 0996 RCVEOR 8017 KOVALA @824 RCVAZD @933 RCVE2D @638 RCVA4E G842 kCV4S dus4
RCYE50 8835 RCVOGE 8OSF RCYOPH @061 VFLG @331 REG@ @880 RETURN 8897 OSHMCTR oB8S SPHCE FFYF
STPBTS 9099 SYNFLG Gp@2 TCKCTR wggd TEST 9188 TESTR 8122 1ESTR wils TILOF @i8F VIMONT FFHE
TISR @ap7 TLOP 8192 TREC @124 TRECE @133 TRNGFL 8840 TRROFL 0628 URRT odim NI oeed
KMTLD BEE KMTB2O 807B XKMTO4O 2886

ASSEMBLY COMPLETE. NO ERRORS

Figure 4 (continued)

Ali mnemonics copyrighted © Intel Corporation 1979.

MULTIPLY ALGORITHMS of code size or execution time is important, however, it
Most microcomputer programmers have at one time or is necessary to be reasonably familiar with the multipli-
another implemented a multiply routine as part of a catnor, process so that appropriate optimizations for the
larger program. The usual procedure is to find an algo- machine being used can be made.

rithm that works and modify it to work on the machine To understand how multiplication operates in the binary
being used. There is nothing wrong with this approach. number system, consider the muitiplication of two four
If engineers felt that they had to reinvent the wheel bit operands A and B. The “ones and zeros” in A and B
every time a new design is undertaken, that’s probably represent the coefficients of two polynomials. The
what most of us would be doing—designing wheels. If operation Ax B can be represented as the following
the efficiency of the multiply algorithm, either in terms multiplication of polynomials:

A3*23 + A2*2? + A2 + A0*2°
X B3*2® + B2°2? + B12 + B0*2°

+ BOA3*2® + BO0A2'22 + BOA1*2' + B0A0*2°
+ B1A3*2* 4+ B1A2*2® + B1A1*22 4+ B1A0*2'
+ B2A325 + B2A2*2* + B2A1*2® + B2A0*2?
+B3A3*2® + B3A2'25 + B3A1*2* + B3A0*2®

11

A

12

P-49

The sum of all these terms represents the product of A
and B. The simplest multiply algorithm factors the
above terms as follows:

A*B=B0*(A)*2+ B1*(A)*2' + B2*(A)* 22 + B3*(A)*2°

Since the coefficients of B (i.e., B0, B1, B2, and B3) can
only take on the binary values of 1 or 0, the sum of the
products can be formed by a series of simple adds and
multiplications by two. The simplest implementation of
this would be:

MULTIPLY:
PRODUCT =0
IF BO=1 THEN PRODUCT: = PRODUCT + A
IF B1=1 THEN PRODUCT: = PRODUCT + 2*A
IF B2=1 THEN PRODUCT: = PRODUCT + 4*A
IF B3=1 THEN PRODUCT:= PRODUCT + 8*A
END MULTIPLY

In order to conserve memory, the above straight line
code is normally converted to the following loop:

MULTIPLY:
PRODUCT: =0
COUNT:=4
REPEAT
IF B[0)]=1 THEN PRODUCT:=PRODUCT + A ENDIF
A:=2"A
B:=B2
COUNT: = COUNT -1
UNTIL COUNT:=0
END MULTIPLY

The repeated multiplication of A by two (which can be
performed by a simple left shift) forms the terms 2*A,
4*A, and 8*A. The variable B is divided by two (per-
formed by a simple right shift) so that the least signifi-
cant bit can always be used to determine whether the
addition should be executed during each pass through
the loop. It is from these shifting and addition opera-

intgl.

tions that the “shift and add” algorithm takes its com-
mon name.

The “shift and add” algorithm shown above has two
areas where efficiency will be lost if implemented in the
manner shown. The first problem is that the addition to
the partial product is double precision relative to the
two operands. The other problem, which is also related
to double precision operations, is that the A operand is
double precision and that it must be left shifted and
then the B operand must be right shifted. An examina-
tion of the “longhand” polynomial multip ication will
reveal that, although the partial product is indeed dou-
ble precision, each addition performed is only single
precision. It would be desirable to be able to shift the
partial product as it is formed so that only single preci-
sion additions are performed. This would be especially
true if the partial product could be shifted into the “B”
operand since one bit of the partial product is formed
during each pass through the loop and (happily) one bit
of the “B” operand is vacated. To do this, however, it is
necessary to modify the algorithm so that both of the
shifts that occur are of the same type.

To see how this can be done one can take the basic
multiplication equation already presented:

A*B=B0*(A*2%+ B1*(A*2") + B2*(A*2%) + B3*(A*2Y)
and factoring 2* from the right side:

A*B=2B0*(A*2" %+ B1*(A*279)
+B2*(A*273+B3*A"27)]

This operation has resulted in a term (within the
brackets) which can be formed by right shifts and adds
and then multiplied by 2* to get the final result. The
resulting algorithm, expanded to form an eight by eight
multipiication, is shown in figure 5. Note that although
the result is a full sixteen bits, the algorithm only per-
forms eight bit additions and that only a single sixteen
bit shift operation is involved. This has the effect of
reducing both the code space and the execution time
for the routine.

ISIS-1T MCS-48/UPI-41 MACRO RSSEMBLER, V2.8

Loc oBJ SER SOURCE STATEMENT

1 $MACROFILE

2 $INCLUDEC :F1 MPYS. HED)
= 3
= 4k *
= 9% HPY8XS *
= Bk *
= §ix *
= 9 THIS UTILITY PROVIDES AN 8 BY 8 UNSIGNED MULTIPLY *
= 18 ;% AT ENTRY: *
= 11 ik A = LOKER EIGHT BITS OF DESTINATION OPERAND *
= 12 % XA= DON‘T CARE *
= 13 % Ri= POINTER TQ SOURCE OPERRND (MULTIPLIER) IN INTERNAL MEMEORY *

Figure 5

All mnemonics copyrighted © Intet Corporation 1979.

g

#gaz pees

2@05 2R
Bua7 57
8803 67
8393 2R
ABRR 67
0008 EBA4
8mab 33

a 6ouwon LU U T TR [I [

[T VR | R | I R TR TR

L T T T (N [| S T T T S L T { N T U LA L}

SOURCE STRATEMENT
14 ;# *
15 i* AT EXIT. *
16 i ¥ A = LOMER EIGHT RITS OF RESULT *
17 i #AR= UPPER EIGHT BITS OF RESULY *
18 i# C = SET IF OVERFLOW ELSE CLEARED *
19 i % *
28 i kAR
21
22 i
23 SINCLUDEC FL MPYS POL)
24 i1 MPYSXS.
€9 +1 MULTIFLICANDL 15-81 =3
25 +1 COUNT =8
&7 i1 REFEAT

R EQu R2
COUNT EQU 3
ITNT ERU R4
DIGPR EQV 2
$EJECT
SINCLUDE (1 HPYE)
i1 MPY8KZ:
MFYSHS .
+1 WULTIPLICANDL15-81.=9
nov XA, %08
i1 COUNT: =8
Moy COUNT, #8
i1 REPEAT
MPYSLP
;2 IF MULTIPLICAND(@1=8 THEN BEGIN
JB2 APYSA
i3 MULTIPLICAND : =MULTIPLICAND/2
XCH A. XA
LR c
RRC A
XCH R %R
RRC ft
DINZ COUNT.MPYSLP
FET
i2 ELSE

IF MULTIPLICANDL@1=68 THEM BEGIN
MULTTFLICANG =HULTIPLICAND/2

ELSE

MULTIPLICAMCL 15-8 3 =MALTIPLICANDT 15-5 #MULTIPLIER
MULTTRLICAND =ML TIPLICAND 2

ENDIF

TOUNT =COUNT-1
UNTIL COUNT=8

END MP2HS

Figure 5 (continued)

AP-49

All mnemonics copyrighted © Intel Corporation 1979.

13

AP-49

7352 CUUNT-=COUNT-1
&3 .1 UNTIL COUNT=Q

Loc gl SEQ SOURCE STRTEMENT
= 6% MPYSA:
= 8543 MALTIPLICANDL 15-87: =MULTIPLICHNDL 15-8 MMULTIPLIER
B0E 2R =78 XCH A XA
200F 61 =7 ADD . 8R1
w1 67 = RRC H
811 2R = 72 ®CH R XA
82 67 = 74 RRC A
13 EER4 = 7 DINZ COUNT. MPYSLF
Wi R = 7 RET
= 772 MILTIPLICAND - =MULTIPLICAND. ¢
= 78:2 ENDIF

£1 ;1 END MPVSHE
%2 ENG

USER SYMBOLE
COUNT Q@22 DIGRPR amiz JONT send

RESEMBLY COMPLETE. NO ERFORS

MPYSR WAOE MPYSLF @84

MPYSKE wlgw AR [

All mnemonics copyrighted © Intel Corporation 1979.

DIVIDE ALGORITHMS

In order to understand binary division a four bit opera-
tion will again be used as an example. The following
algorithm will perform a four by four division:

DIVIDE:
IF 16*DIVISOR> = DIVIDEND THEN
SET OVERFLOW ERROR FLAG
ELSE
IF 8*DIVISOR> = DIVIDEND THEN
QUOTIENT[3]: = 1
DIVIDEND: = DIVIDEND — 8*DIVISOR
ELSE
QUOTIENT[3]): = 0
ENDIF
IF 4*DIVISOR> = DIVIDEND THEN
QUOTIENT[2]: = 1
DIVIDEND: = DIVIDEND — 4*DIVISOR
ELSE
QUOTIENT[2]: =0
ENDIF
IF 2*DIVISOR> = DIVIDEND THEN
QUOTIENT[1]: = 1
DIVIDEND: = DIVIDEND - 2*DIVISOR
ELSE
QUOTIENT[1]): =0
ENDIF
IF 1*DIVISOR> = DIVIDEND THEN
QUOTIENT[O]: = 1
DIVIDEND: = DIVIDEND — 1*DIVISOR
ELSE
QUOTIENT[0}: = 0
ENDIF
ENDIF
END DIVIDE

14

The algorithm is easy to understand. The first test asks
if the division will fit into the dividend sixteen times. If it
will, the quotient cannot be expressed in only four bits
so an overflow error flag is set and the divide algorithm
ends. The algorithm then proceeds to determine if eight
times the divisor fits, four times, etc. After each test it
either sets or clears the appropriate quotient bit and
modifies the dividend. To see this algorithm in action,
consider the division of 15 by 5:

00001111 (15)
- 01010000 (16*5)

Doesn’t fit—no overflow

00001111 (15)
— 00101000 (8*5)
Doesn't fit—Q[3]=0
00001111 (15)
— 00010100 (4*5)

Doesn’t fit—Q[2]=0

00001111 (15)
- 00001010 (2*5)

00000101 Fits—Q[1] =1
00000101 (15-2*5)

~ 00000101 (15)
00000000 Fits—Q[0]=1

The result is Q= 0011 which is the binary equivalent of
3—the correct answer. Clearly this algorithm can (and
has been) converted to a loop and used to perform divi-
sions. An examination of the procedure, however, will
show that it has the same problems as the original mul-
tiply algorithm,

intgl.

The first problem is that double precision operations are
involved with both the comparison of the division with
the dividend and the conditional subtraction. The
second problem is that as the quotient bits are derived
they must be shifted into a register. In order to reduce
the register requirements, it would be desirablie to shift
them into the divisor register as they are generated
since the divisor register gets shifted anyway. Unfor-
tunately the quotient bits are derived most significant
bits first so doing this will form a mirror image of the
quotient—not very useful.

Both of these problems can be solved by observing that
the algorithm presented for divide will still work if both
sides of all the “equations” involving the dividend are
divided by sixteen. The looping algorithm then would
proceed as follows:

DIVIDE:
QUOTIENT: =0
COUNT:=4
DIVIDEND: = DIVIDEND/16
IF DIVISOR> = DIVIDEND THEN
OVERFLOW FLAG:=1
ELSE
REPEAT
DIVIDEND: = DIVIDEND*2
QUOTIENT: = QUOTIENT*2
IF DIVISOR> = DIVIDEND THEN
QUOTIENT: = QUOTIENT + 1/*SET QUOTIENT([0]*/
DIVIDEND: = DIVIDEND - DIVISOR
ENDIF
COUNT: = COUNT -1
UNTIL COUNT=0
ENDIF
END DIVIDE

AP-49

When this algorithm is implemented on a computer
which does not have a direct compare instruction the
comparison is done by subtraction and the inner loop of
the algorithm is modified as follows:

-«

REPEAT
DIVIDEND: = DIVIDEND*2
QUOTIENT: = QUOTIENT*2
DIVIDEND: = DIVIDEND - DIVISOR
IF BORROW =0 THEN
QUOTIENT: = QUOTIENT + 1
ELSE
DIVIDEND: = DIVIDEND + DIVISOR
ENDIF
COUNT:=COUNT -1
UNTIL COUNT=0

-

An implementation of this algorithm using the 8049 in-
struction set is shown in figure 6. This routine does an
unsigned divide of a 16 bit quantity by an eight bit quan-
tity. Since the multiply algorithm of figure 5 generates a
16 bit result from the multiplication of two eight bit
operands, these two routines complement each other
and can be used as part of more complex computations.

I515-11 MOS-43/UP1-41 MACRO ASSEMBLER. Y2 8

L o8] SEO SOURCE STATEMENT

1 $MACROFILE

2 $FINCLUDEC F1 DIVIS. HEL)
=T, kA
ER I *
= 5 DIViE *
= Rk *
= 7
= R* *
= 9% THIS UTILITY PROVIDES AN 16 BY 8 UNSIGNED DIVIDE *
= 18 ¥ AT ENTRY: *
= 11 % R = LOWER EIGHT BITS OF DESTINATION OPERAND *
= 12 % ¥A= UPPEP EIGHT BITS iF DIVIDEND *
= 13 % R1= FOINTER TO DIVISOR IN INTERNAL MEMORY *
= 14 :» *
= 15 :¥ AT EXIT: *
= 16 % A = LOWER EIGHT BITS OF RESULY *
= 17 5% #A= FEMAINDER *

Figure 6

Al mnemonics copyrighted © Inte! Corporation 1979.

15

AR £1 B ADD

RESTORE DIVIDEND

A: 8R1

[
AP-49 |n‘te| .
LoC OBy 234 SOURCE STATEMENT
= 18 ;% C = SET IF OVERFLOW ELZE CLEARED *
= 194 x
= 29 N Aok bk kb
2
27 FINCLUDECF1:BIVIE POLY
= 2401 PIVIS
= i1 COUNT =2
= 4 DIVIDENDD1S-%2): =0IVIDENDE 15-2)-DIYISOK
B +1 IF BORROM= THEN /% IT FiTS+/
= 28:2 SET OVERFLOM FLAG
= 29 :1 ELSE
= Wk RESTORE DIVIDEND
= 34 .2 PEPERT
o 3 OIYIDEND : =DIVIDEND¥2
= 2 OUGTIENT =QUOTIENT*2
= 2 DIVIDENDL 15-81: =0 IVIDENDL 19-8 1-DIYI50F
= s IF BORRM=1 THEN
= 4 RESTORE C1%1DEND
s 3 ELSE
= 4 QUOTIENTIR] =1
= 397 EMDIF
= 4T LOUNT - =COUNT-1
= 41 :2 INTIL COUNT=@
= 42 :2 CLEAR OVERFLOW FLAG
= 43 :1 ENDIF
= 44 .1 ENDOIYIOE
45 .
4€
47 .
42
[45 ¥4 EQU k2
A3 SR COUNT EAU k3
51
52 $EJECT
53 SINCLUDEC F1:b1V16>
= 54,1 DIVi6.
QB 2h = 55 DIVIE: ACH R. ¥A : ROUTINE WORKS MOSTLY WITH EINS 15-8
= S i1 COUNT:=8
a1 BeaR = 5 MY COUNT. #2
= 58 .1 DIVIDENI{15-27 =DIVIDENDL 15-23 ;D IYISO0R
poaz 37 = 58 CPL]
e 51 = &R AR A @Ry
vaas 37 = 61 CFL A
= €2 i1 IF BORROW=R THEN /+ [T FI1S#/
4095 FEOR = 63 n SIVIR
= £4:2 SET OVERFLOW FLAG
aiE " = A5 CPL C
Y 4424 = k& Tip DIVIB

712 REFEAT
1 :

DIYIDEND : =DI¥IDEND+2

Figure 6 (continued)

All mnemonics copyrighted © Intel Corporation 1979.

16

| |
Intel AP-49
®
L OB SER SQIURCE STRTEMENT
= 742 QUOTIENT =0UOTTENT#:
waac 97 = 75 {LR C
Wb R = 7% SCH H AR
DARE F7 = 77 PLC A
B0OF 2R = 8 HECH [
A F? = 79 RLE R
M1 ESLR = 38 JINC GIVIE
5} e = & LR A
914 A1 = a2 ADD: A 8RL
8915 37 = 23 CPL A
g816 0429 = 94 kil CIVIC
= &85 .7 OIVIDENDL 15-31: =DIYIDENDL 15-8 1-DIYISOR
M 37 = % DIVIE: PL 3]
M1y £l = & RO . #RY
BatR 37 = 82 CRL A
= 293 IF EORROM=1 THEN
a4 £A20 = W NG DiYIC
= Mg FESTORE CIVIDEND
b 61 ER. 74 ROp A BRL
ME 9421 = 93 e GIVID
= 9T ELSE
= 35 DIVIC
= %4 GUOTIENT(B]) =1
B3:A 1A = 97 ING R
= 9| ENDIF
= 933 CIINT =COUNT-1
=1 .2 UNTIL COUNT=8
wazi EEDT = {91 DIVID- DINZ UOUNT. DIYILP
= a2 .2 CLzAR OVERFLOM FLRG
e iy = 163 LR I
= 1684 .1 ENDIF
= 189 .1 SHDDIVIDE
a4 e = 1 [T A ¥R
025 82 = 197 RET
188 EMND
LSER SYMBOLS
CONT veaz Divie 30me UIVIe 29ee DiYiE w324 DIVIC 6a20 DIVID 9821 DIVIE ©813 DIVILP 989
AESEMELY COFLETE, MO ERRIRS

Figure 6 (continued)

All mnemonics copyrighted © Intel Corporation 1979.
BINARY AND BCD CONVERSIONS

The conversion of a binary value to a BCD (binary coded
decimal) number can be done with a very straight-
forward algorithm:

CONVERT_TO_BCD:
BCDACCUM: =0
COUNT: = PRECISION
REPEAT
BIN:=BIN * 2
BCD:=BCD * 2+ CARRY
COUNT:=COUNT -1
UNTIL COUNT=0
END CONVERT_TO_BCD

The variable BCDACCUM is a BCD string used to ac-
cumulate the result; the variable BIN is the binary num-
ber to be converted. PRECISION is a constant which
gives the length, in binary bits of BIN. To see how this
works, assume that BIN is a sixteen bit value with the
most significant bit set. On the first pass through the
loop the multiplication of BIN will result in a carry and
this carry will be added to BCD. On the remaining
passes through the loop BCD will be multiplied by two
15 times. The initial carry into BCD will be multiplied by
215 or 32678, which is the “value” of the most significant
bit of BIN. The process repeats with each bit of BIN
being introduced to BCDACCUM and then being scaled
up on successive passes through the loop. Figure 7
shows the implementation of this algorithm for the
8049.

17

AP-49

1515-11 WC5-43/UP1-41 MACR] RSSEMBLER, V2 @

Lc o)

AR 28

cER SOURCE STRTEMEN)

1 $MACROFILE

2 SINCLUDE(F1 CONBLD HED
= [FAdh+ *
= 4.+ *
= 5k CONBCD *
= bk *
= 7
= §;:¢ *
= 9% THIS UTILITY CONVERTS R 16 BIT BINARY YALUE 10 BLD *
= 19 . % AT ENTRY *
= 11 = LOMER EIGHT BITS OF BINARY YALLE *
= 12 5% %A= UPFER EIGHT BINS OF BINRRY VALUE *
= 13 % R@= PRINTER T2 A FACKED BCD SIRING *
= 14 % *
= 15 5% HT EXIT ¥
= 16 ¥ A = UHDEF INED *
= 17 ix “R= |NDEF INED *
= 13 0¥ C = SET IF QVERFLOW ELSE LLERRED ¥
= 19 % *
= 2 bk Rk .

21

2

[T TR U TR TR T T TR)

[T T (R TR TR TR 1}

€2 $INCLUDE(‘F1:CONBCD. PDLY
24 4 CONVERT.TO_BCD

25 ;1 BLDRCC =

26 .1 COUNT =16

&7 1 REPEAT

22 .2 BIN:=BIN#2

292 BCD. =BCO*2+CARRY

38 ;2 IF CARRY FROM BCDRCE GOTO ERROR EXIT
32 COUNT:=COUNT-1

321 UNTIL COUNT=9
32 :4 END CONVERT_TO_BCD

23 COUNT
40 TENT
41

42 DIGPR
43

20 e
EQu k3
EQU k4

m
=
=
[N

44 SEJECT
45 FINCLUDE? :F1- CONBCE)

4€ .
47 TEMPL
48

SET [

49 1 CONVERT_TOUBCE

S} CNECD

o
b

51 ;i1 BCORCC =@

“CH A. k8

Figure 7

All mnemonics copyrighted © Intel Corporation 1979.

18

intal.

L Bl
anal Ry
Aen: ecaz
L U
a7 13
298¢ £ORS

A BELR

iR Hl
e 19
4T ECL?
WRLE FO

aF Fe4
21 ERAC
gz 97
24 83
USER SYMBOLS

BCODNA S80S
TENPL B2QS

HSSEMELY COMPLETE,

5ED SOURLE 5 TRTENENT
= & n RLA
_—r 4K AR
= 55 it ICNT, WDIGRR
= 56 BCDGOR MOV WRL #ER
= a mo R
= o= DN IENT.BCTCOR
= S5 1 COUNT s
= G MY LOUNT. #16
= €1 .1 REPERT
= £2 BIIGOB.
= 3.7 BIN=RINGZ
= 44 e«
= 45 R R
= %A AH AYA
= &7 MEC A
= £ SCH AR
= K9z END =BLDW2HCHRRY
) XK ARE
= My RLA
= ¥H ARG
=7 WY IONT. SDIGPR
= 7 WY TEMPL.R
= TS ECOOC MOV R.@RY
= 7 HODC R, BRL
=7 DR A
=78 WY @RLA
= 7 W
= DINZ IONT.BCLOC
=9 wyY ATERPL
= §2.2 IF CARRY FROM BCORCC GOTO ERROR EXIT
— I BLOCOD
= 842 COUNT =COUNT-1
= 85 51 UNTIL COUNT=B
= 5 DINZ COUNT, BEDCOB
=5 R = . CLEPR CARRY TO INDICRTE NORMAL TERMINATION
= &R :1 END CONVERT_TILBLD
= 29 RIOOOD RET
PN N

BLOCOE 983C BCOCOD 0924

HR g2

N0 ERRORS

BCDOC 98ty CNBCD @Aee COUNT 9003 DIGPR 8683

Figure 7 (continued)

AP-49

IENT 6uo4

All mnemonics copyrighted © Intel Corporation 1979.

19

AP-49

The conversion of a BCD value to binary is essentially
the same process as converting a binary value to BCD.

CONVERT_TO_BINARY
BIN:=0
COUNT: =DIGNO
REPEAT
BCDACCUM: = BCDACCUM * 10
BIN:=10 * BIN + CARRY DIGIT
COUNT:=COUNT -1
UNTIL COUNT=0
END CONVERT_TO_BINARY

The only complexity is the two multiplications by ten.
The BCDACCUM can be multiplied by ten by shifting it
left four places (one digit). The variable BIN could be
multiplied using the multiply algorithm already dis-
cussed, but it is usually more efficient to do this by mak-

intgl.

BIN=10* BIN=(2) * (5) * (BIN)=2* (2 * 2+ 1) * BIN

ing the following substitution:

This implies that the value 10 * BIN can be generated by
saving the value of BIN and then shifting BIN two places
left. After this the original value of BIN can be added to
the new value of BIN (forming 5 * BIN) and then BIN can
be multiplied by two. It is often possible to implement
the multiplication of a value by a constant by using such
techniques. Figure 8 shows an 8049 routine which con-
verts BCD values to binary. This routine differs slightly
from the algorithm above in that the BCD digits are read,
and converted to binary, two digits at a time. Protection
has also been added to detect BCD operands which, if
converted, would yield binary values beyond the range
of the result.

ISIZ-T1 MCS-42/UPT-41 MACRO ASSEMELER. V2 @

L oer SE6 SOURCE STATEMENT

1 $MACROFTLE

2 SINCLUDEL F1:CONBIN HED)
= 48 *
= Six CONRIN *
= 6% *
= 7
= R *
= G THIS UTILITY CONVERTS A € DIGIT BCD VALUE TO BINARY *
= 18 .+ AT ENTRY" ¥
= 11 % R= POINTER TO A PACKED BCE STRING *
= 12 % *
= 125# AT EXIT: *
= 14 i# A = LOKER EIGHT BITS OF THE BINARY RESULY *
= 15 % = UPPER EIGHT BITZ OF THE BINARY RESULT *
= 16 % C = SET IF QVERFLOW ELSE CLEARED *
= 17 % *
= 18 23

18 ;

o

21 $INCLUDE(F1:CONRIN, POL)

22

22

24 i1 CONVERT_TO_BINARY

25 i1 POINTER®: =POINTER+D1GITPRIR-1

1 COUNT-=DIGITPAIR
&7 i1 BIN:=@

2% i1 REPERT

BIN =BIN+1R

BIN-=EIN#1Q

[L L T T S VRN [N [N | B 1Y
o
=l

2

2
2 BIN:=BIN+HEM(RRILT-4]
2

BIN =BINHNEM R 3-8]

All mnemonics copyrighted © Intel Corporation 1979,

Lo oeJ

#6903 F8
aan1 90z
8283 HB

8004 B8O

a6 27
8307 RA

wieg 142t
RA8H Fe2A

aaal Fa
BUEE 47
BOeF 530F
oett &b
a2 2R
9813 1208
8815 2A
ae15 FeeA

w3 1428
B61R F&2A

aB1C AD
41D Fo
WRLE S3AF
98za &b
a2l 2R

T T T L L LU LT O LT L L T I LA T LT (I T | S Ty VS T L N S T T T T (AT R | LN LI L)

Erd
2R

9.

48 :

41
42
42

44 :

45

4 .

47
43
49
59
H

R R R S e
EV I R e R R

£ 2

- EDURTES
“R EfM R2
COUNT EQU o
ICNT EQU R4
DIGPR EQD 3
SEJECT
$INCLUDEC F1:CONBIND
TEMPL SET &)
TEMPZ SET ke
+1 CONVERT_TO_BINARY
CONBIN:
1 POINTER®: =FOINTERB+DIGITPAIR-1
Moy A, kA
A0 R: #DYPR-1
MOy R@. R
+1 COUNT:=DIGITPRIR
nav COUNT, #0IGPR
i1 BIN =R
CLE A
oy AR A
+1 REFERT
CCNBLP:
EIN:=BINx18
CALL CONBiS
I CONBER
i2 BIN =BIN#MEMCRS(7-41
e TEMPL. Rt
"oy A, @R
SHRF A
BNL R, $isFH
ALD A, TERFL
XCH R %A
AUDC R 409
#CH R XA
N CUNGER
i2 BIN =RIN#R
CRLL CONBL9
AN CONBER
:Z BIN =BIN+MEM(RE3[3-8]
v TEMPL.A
noy R. 2R0
ANL . #3FH
ADD A, TEHF1
#EH]

SOURCE STATEMENT

POTNTERD: =POINTERE-1
COUNT : =COLNT-1

I3 .1 UNTIL COUNT=R

3% 1 END CONYERT.TO_BINARY

AP-49

All mnemonics copyrighted © Intel Corporation 1979.

21

AP-49
LoC 0g) SEQ SOURCE STATEMENT
2922 134 = &8 ADDC A, %89
8424 2A = 89 XCH]
005 He2h = % Ic CONBER
= 91 ;2 POINTER®.=POINTER@-1
w27 08 = R DEC r8
= 93 :2 COUNT.=COUNT-1
= 94 i1 UNTIL COUNT=9
8823 EBBR = 95 DINZ COUNT. CONBLP
= 96 ;1 END CONVERT_TO_BINARY
@97A €3 = 97 CDNEER. PET
= 98 $EJECT
= 99 ;
= 1M
=161 UTILITY 7O MULTIPLY BIN EY 10
=162 : _ CARRY WILL BE SET IF OVERFLOW OCCURS
=102
9328 AD = 184 CONB1D. MOV TENFL.A SAYE A
[= 165 XCH AR SAVE XA
8920 AE = 1086 MY TEMNPZ, R
B92E 2R = 167 XCH A ¥R
=108
Wk 97 =189 CLR c
eaze F7 = 118 PLC fA i BIN:=BIN#2
Be1 2R =111 XCH A. XA
8932 F7 = 112 RLC R
32 2R =113 WH s ¥R
P934 Fede =114 JC CONBLE ; ERROR ON OVERFLOW
=115
36 F7 = 116 RLC R i RIN:=BINs4
9937 2R = 117 XCH R XA
33 F7 = 118 RLC]
2939 2h = 119 XCH R XR
@36 Fode =128 I CONBIE ; ERROR ON OVERFLOW
=121
easc & =122 ADD A, TEMFL ;i BIN:=BINsS
2ezb 2a =123 XCH A %R
9a3E TE =124 ARODC A TEMP2
vasF 2R =125 ACH A ¥R
9040 Fhdb = 126 Jc CONBLE : ERROR ON OVERFLOW
=127
8242 F7 = 128 RLC R i BIN:=BIN*10
0242 2R =129 XCH f: KA
@944 F7 =138 RLC A
8845 28 = 131 XCH A. XA
=132
8846 83 = 133 CONBLE: RET
=134
=135
136 END
USER SYMBOLS
CONE1@ @A2E CONBIE 8846 CONBER 82R COMBIN 9000 CONBLF @998 COUNT 8882 DIGPR 8483 ICNT
TEMPL 0685 TEMF2 @885 VA #0092

ASSEMELY COMPLETE, NO ERROPS

All mnemonics copyrighted © Intel Corporation 1979.

22

intgl.

CONCLUSION

The design goals of the full duplex serial communica-
tions software were realized; if transmission and recep-
tion are occurring concurrently, only 42 percent of the
real time available to the 8049 will be consumed by the
serial link. This implies that an 8049 running full duplex
serial /0 will still outperform earlier members of the
family running without the serial I/O requirement. It is
also possible to run this program in an 8048 or 8748 at
1200 baud with the same 42 percent CPU utilization.

The execution times for the other routines that have
been discussed have been summarized in Table 1. All of
these routines were written to maintain maximum use-
ability rather than minimum code size or execution time.
The resulting execution times and code size are there-
fore what the user can expect to see in a real applica-
tion. The results that were obtained clearly show the ef-
ficiency and speed of the 8049. The equivalent times for
the 8048 are also shown. It is clear that the 8049 repre-
sents a substantial performance advantage over the
8048. Considering, in most applications, that the 8048 is

AP-49

the highest performance microcomputer available to
date, the performance advantage of the 8049 should
allow the cost benefits of a single chip microcomputer
to be realized in many applications which up until now
have required too much ‘“‘computer power"” for a single
chip approach.

EXECUTION TIME
(MICROSECONDS)

BYTES 8049 8048
MPY8 21 109 200
DIV 16 37 183 MIN 335 MIN
204 MAX 375 MAX
CONBCD 36 733 1348
CONBIN 70 388 713

Table 1. Program Performance

23

