
APPLICATION

NOTE

AP-618

December 1995

Software Concerns of
Implementing a Resident
Flash Disk

KIRK BLUM

TECHNICAL MARKETING ENGINEER

Order Number: 292173-001

Information in this document is provided in connection with Intel products. Intel assumes no liability whatsoev-
er, including infringement of any patent or copyright, for sale and use of Intel products except as provided in
Intel’s Terms and Conditions of Sale for such products.

Intel retains the right to make changes to these specifications at any time, without notice. Microcomputer
Products may have minor variations to this specification known as errata.

*Other brands and names are the property of their respective owners.

²Since publication of documents referenced in this document, registration of the Pentium, OverDrive and
iCOMP trademarks has been issued to Intel Corporation.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your
product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel
literature, may be obtained from:

Intel Corporation
P.O. Box 7641
Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

COPYRIGHT © INTEL CORPORATION, 1995

SOFTWARE CONCERNS OF IMPLEMENTING
A RESIDENT FLASH DISK

CONTENTS PAGE

PURPOSE ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 1

INTRODUCTION ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 1

SYSTEM REQUIREMENTS ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 2

WHY DO I NEED SOFTWARE FOR
FLASH? ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 4

FTL IS IT! ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 4

FTL FUNCTIONAL OVERVIEW: WHAT
IS A FLASH TRANSLATION
LAYER? ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 5

WHERE DOES FTL FIT IN THE
SOFTWARE SCHEME? ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 5

Block Device Driver ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 5

BIOS Interception Driver ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 6

FTL FUNCTIONAL DETAILSÐTHE
GUTS OF THE BEAST ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 7

FTL Format Overview ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 7

Erase Unit Header and Block Allocation
Information ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 8

Virtual Block Map ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 10

Replacement Pages ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 11

SOCKET SERVICESÐWHAT IS IT AND
WHY DO I NEED TO USE IT? ÀÀÀÀÀÀÀÀÀÀ 12

Implementation Issue: Real-Mode Flash
Memory Sliding Window ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 12

Low Level: FTL Socket Services
Subset ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 14

FTL Socket Services: The CODE ÀÀÀÀÀÀÀÀÀÀ 14

BOOT ISSUES ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 15

FTL AVAILABILITYÐI WANT IT,
WHERE CAN I GET IT? ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 16

CONTENTS PAGE

CONCLUSION ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 16

RELATED INTEL DOCUMENTATION ÀÀÀÀ 16

REVISION HISTORY ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 16

APPENDIX A FTL Availability ÀÀÀÀÀÀÀÀÀ A-1

APPENDIX B PC Card Socket
Services Descriptions and Function
Numbers ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ B-1

APPENDIX C Bit Twiddling ÀÀÀÀÀÀÀÀÀÀÀÀ C-1

APPENDIX D Related Third Party
Documentation ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ D-1

APPENDIX E Code Listings ÀÀÀÀÀÀÀÀÀÀÀ E-1

FIGURES

Figure 1. Intel486TM SX ULP Evaluation
Board ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 2

Figure 2. FTL Sector Relocation ÀÀÀÀÀÀÀÀÀÀÀ 5

Figure 3. FTL Block Device Driver
Software Layers ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 6

Figure 4. Typical FTL Overhead
Organization ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 7

Figure 5. Erase Unit Organization ÀÀÀÀÀÀÀÀÀÀ 8

Figure 6. BAM Example ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 10

Figure 7. Virtual Block Map Example ÀÀÀÀÀ 11

Figure 8. PC Card Software Suite
General Layout ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 12

Figure 9. M-System’s FTL Software
Layers ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 12

Figure 10. Real-Mode Sliding Window ÀÀÀÀÀ 13

TABLES

Table 1. Erase Unit Header Fields ÀÀÀÀÀÀÀÀÀ 9

Table 2. BAM Status Values ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 9

AP-618

PURPOSE

The purpose of this Ap-Note is to detail the software
aspects of implementing an Intel Resident Flash Array
(RFA) as a Resident Flash Disk (RFD) in an embed-
ded system with commercially available Flash Transla-
tion Layer (FTL) software.

An RFD can help mitigate many issues that constrain
the storage subsystem for embedded systems. Those is-
sues include:

Embedded systems must operate in harsh environ-
ments; they are dropped, banged, vibrated, over-
heated, etc.:

Ð A Flash RFD is rugged and non-volatile because
it is solid-state and has no moving parts.

Embedded systems must have high performance:

Ð A Flash RFD, because it is basically memory,
not rotating magnetic media, has extremely fast
access capability.

Embedded systems can be battery operated and
must be low power:

Ð A Flash RFD is very low power as it is silicon
and has no motors to spin, or servos to move.
The standby/deep dower-down mode current
draw of a flash part is typically measured in mi-
cro-amps (mA).

Embedded systems may be limited in size:

Ð A Flash RFD requires very little board space
and is tiny compared to even the smallest hard
drive.

Embedded systems tend to be price sensitive:

Ð A Flash RFD is relatively inexpensive.

Embedded systems have to be very flexible:

Ð A Flash RFD is adaptable to just about ANY
situation.

For the purposes of this document, we will use a ‘‘real-
life’’ example based on the Intel ‘‘Ultra Low Power’’
(ULP) Intel486TM SX Processor Evaluation Board and
M-Systems TrueFFS* FTL flash software for DOS.

Familarity with the PCMCIA PC Card Standard is
helpful for understanding the software pieces of our ex-
ample. Please see the Reference section for information
on contacting PCMCIA in order to obtain a copy of
‘‘The Standard.’’

INTRODUCTION

The exacting requirements for today’s embedded proc-
essor platform market makes extreme demands upon
all of the associated embedded sub-systems. Among
those are the data and code storage functions. Intel’s
Flash components are well suited to implement a ruggi-
dized, low-power, low-cost storage system, in the form
of a Resident Flash Disk (RFD).

A RFD is basically a Resident Flash Array (RFA),
which is one or more flash components typically de-
signed onto the base system, used with software to
make it operate as a drive.

The flash that comprises the RFD has the unique capa-
bility of non-volatility (like ROM) combined with in-
place erase and write (similar to RAM). With the prop-
er software, Intel Flash can function as a solid-state
disk drive, without exhibiting the disadvantages inher-
ent in a rotating/magnetic-media drive. In general, as
well as for the purposes of this Ap-Note, the proper
software is FTL. Although there are quite a few sources
for FTL, we base our example on M-System’s1

TrueFFS* FTL2. Please keep in mind that though the
details of the implementation will be specific to
TrueFFS, the general concepts and functions will apply
to virtually any of the available FTLs or other flash
managers and/or flash filing systems. This also applies
for the example target platform. For our example, the
specific target platform is the Intel Ultra Low Power
(ULP) 486 SX Evaluation Board. However, the general
concepts presented here will apply to virtually any em-
bedded system.

1M-Systems provides a full range of Turn-key FlashDisk solutions that
uses TrueFFS, are plug and play and uses Intel advanced Flash com-
ponents. These solutions include ISA Bus and PC104 FlashDisks,and
the DiskOnChip* which is a Plug & Play FlashDisk module in a stan-
dard 28/32 pin DIP JEDEC compatible package.

2Some of the information in this document is taken from M-System’s
TrueFFS documentation.

1

AP-618

SYSTEM REQUIREMENTS

We are using the ULP 486 SX for our example because
it is a high performance demo platform which exhibits
characteristics that are pertinent to a wide range of em-
bedded applications. Its compact size, high-degree of
functionality, high performance, extreme flexibility,
availability of many development environments and op-

erating systems, and PC desktop/notebook compatibil-
ity make it easily adapted to the many and varied re-
quirements placed on embedded systems. It also con-
tains a considerable quantity and variety of flash, in-
cluding a simple RFD which is well suited for use with
M-Systems TrueFFS FTL. Figure 1 shows the general
layout of the ULP 486 SX

292173–1

Figure 1. Intel486TM SX ULP Evaluation Board

2

AP-618

The following chart gives an operational overview of our target embedded platform. Included is an assessment of
how our specific features might apply to a different implementation.

Item This Specific Example Your Application

Processor: Intel486TM SX ULP (80x86) Any processor can be used, however a version
of FTL for your particular processor will be
required.

Flash: RFD- 1 x Intel 28F008 Varies. Could be an RFD based on any variety
or quantity of Intel Flash components, or it
could be a Flash Card plugged into a PC Card
socket.

Flash Media Manager: FTL (M-System’s TrueFFS*) Any FTL. The low level routines of the FTL you
select will probably be different but will have
similar requirements and functions.

Operating system: DOS-FAT A ‘‘sector’’ based filing system of some sort is
required for most FTLs. The FTL typically
needs to be ‘‘ported’’ to your specific operating
system (if other than DOS).

Other Flash: PC Card Socket (Cirrus 6710) Varies. A typical system will usually only
implement a single ‘‘variety’’ of flash. A PC
Card socket accepts flash in a Flash Card.

XD Simm (not covered) Varies. If your application would benefit from
execute in place (XIP) on the memory bus, then
you might consider using this style of flash.
Please contact your Intel representative for
more information on XIP and Intel XD Flash.

Low Level FTL Interface: Socket Services Like Interface Varies depending on the particular FTL you
decide to implement in your design. However,
most of the elements of, and all of the
functionality described here in the Socket
Services like routines, are typically required in
the low level routines of any flash undertaking.

3

AP-618

WHY DO I NEED SOFTWARE FOR
FLASH?

One of the unique characteristics of flash technologies
is the typical requirement that a flash cell be erased
before it can be written.3 For Intel Flash, generally,4 a
flash cell starts as erased to a 1 (one), and can be writ-
ten/programmed to become a 0 (zero). Early flash
chips were organized such that the entire chip was
erased at one time (called ‘‘bulk erase’’). Newer flash
chips are organized into erase blocksÐtypically
64 KBytes5 in size. Arranging the flash chip into erase
blocks provides a mechanism for software to manage
the data stored on the chip. Keep this in mind, as there
will be a quiz later.

Traditional data storage programs, such as DOS and
other file systems, are designed to update or rewrite
data in place. Here is a specific example: think of how
DOS deals with the File Allocation Table (FAT) when
you write a file. It takes a specific sector on the media
and rewrites it with the new or changed data concern-
ing the file. Add or change a file and the sector gets
changed. The same sector or sectors are constantly re-
written with new or different FAT data. This is a rea-
sonable mode of operation for rotating magnetic media
but at odds with the basic operation of flash. Another
difference between drives and flash is the traditional
drive sector (512 bytes is typical) tends to be quite a
number of bits smaller than the typical flash block.

Flash management software can solve these issues in a
number of ways, two of which follow:

1. When rewriting any sector (512 bytes of data typi-
cal), the flash manager can perform the following
steps:

a. Save off the rest of the ‘‘good data’’ stored in the
larger (64 KB typical) flash erase unit. This will be
comprised of the other valid ‘‘sectors’’ in the flash
block. It will have to put the good data ‘‘some-
where’’ else such as a spare flash block.

b. Next, erase the current block where the data
wants to be rewritten.

c. Write in the new data.

d. Restore the rest of the good data from the tempo-
rary storage.

e. Finally clear out the temporary storage location
(i.e. erase the spare flash block).

Whew, this sure looks and sounds tedious and highly
inefficient! No matter what the style of flash, a purely
erase before write type flash management scheme is def-
initely NOT the best overall performance solution.

2. When rewriting a sector it can:

a. Write the updated data to another free/erased
portion of the flash.

b. Then point a lookup entry, or translation table to
the other location in flash

c. Finally, the old portion of flash is marked as
‘‘dirty’’ or deleted for later clean-up.

The second method is what, in general, the FTL soft-
ware does for flash. This is the most write efficient,
highest performance and most highly recommended
method for handling flash.

FTL IS IT!

Flash Translation Layer is a robust, widely accepted,
industry standard flash manager. It is widely available
from a multitude of sources. Its function is to take disk
drive specific software requests and convert/translate
them to flash media accesses. It handles flash blocks by
creating small, virtual, sector-sized (usually 512 byte)
blocks out of the larger flash blocks. Additionally, FTL
handles the ‘‘special needs’’ of flash such as handling
the special read, write, and erase requirements that
flash technology exhibits. Also, many, if not all, of the
varieties of FTL offer a boot solution. This makes the
operating system loadable from flash as if it were

3See the section on Bit Twiddling for the exception to this ‘‘rule’’.

4Current flash technology (for example i28F008 and i28F016) uses 1
flash cell per bit. Intel has announced a technology that in the near
future will be able to represent more bits per flash cell using a technol-
ogy known as Multi-Level Cell or MLC. The concepts presented here
may not all apply to MLC technology.

5Flash block size and organization may vary from component to com-
ponent- please refer to the data-sheet for the particular flash compo-
nent you are using. In general, RFA/RFD implementations use Intel
FlashFileTM components (i28F008, i28F016, etc.) which are organized
in symmetrical 64KB and 128KB erase blocks. Boot Block compo-
nents can be used but pose extra burdens on the erase and write
routines in order to adapt to the non-symmetrical erase units present
in the components.

4

AP-618

loading from a more common bootable device such as a
floppy or hard disk (more on this in a later section).

In the next section, we will describe generally how FTL
works.

FTL FUNCTIONAL OVERVIEW: WHAT
IS A FLASH TRANSLATION LAYER?

As we have said, FTL is a sector based flash manager
that provides logical to physical sector translation.
Thus the name Flash Translation Layer. FTL performs
sector mapping to allow Flash to appear as a drive-like,
sectored, rewrite ‘‘in place’’ type storage media. While
the host file system sees the Flash card or resident
Flash array (RFA) as a continuous sectored medium,
FTL relocates these sectors transparently to the operat-
ing system, and tracks the logical-to-physical relation-
ship. Figure 2 provides a simplified graphical represen-
tation of the sector translation and relocation that oc-
curs with FTL. The MAP reference in the diagram is
explained in greater details in the ‘‘FTL Functional De-
tails’’ section of this document.

This logical-to-physical mapping allows the Operating
System to concern itself with only file operations. Be-
cause the O/S already oversees these file operations, the
FTL solution can provide compatibility with existing

applications and media utilities while presenting a small
code footprint. Of important note here is the fact that
FTL is able to relocate sectors to any position in the
Flash media, making large Flash blocks appear as
smaller erasable sectors. This is basically what FTL
does to earn its keep.

WHERE DOES FTL FIT IN THE
SOFTWARE SCHEME?

FTL, for the most part, needs to intercept the data
store/retrieve requests somewhere between the software
wanting to talk to the drive and the low level routines
that specifically read or write data to the drives. In a
x86 PC like system, and on other types of platforms,
there are typically two logical places to grab the drive
access routines in order to handle the drive requests
actually being serviced by flash. Each has its advan-
tages and disadvantages which we will discuss.

Block Device Driver

One of the most common ways to intercept the normal
drive handlers is to have the operating system load a
Block Device Driver which inserts itself in the lower
levels of the operating system. M-System’s FTL
TFFS.COM and TFFSCS.COM are two examples of a

292173–2

Figure 2. FTL Sector Relocation

5

AP-618

FTL Block Device Driver. The major advantage to us-
ing the Block Device Driver approach is that it is spe-
cific to the operating system and therefore can have
better knowledge about how the filing system works.
Because it knows how the operating system works, it
can use performance enhancement tricks specific to
that operating system. One such trick used by M-Sys-
tem’s TrueFFS DOS FTL driver is a technique called
‘‘FAT Snooping.’’ This allows the FTL to monitor
writes to the File Allocation Table to know when DOS
has deleted a sector thus allowing the FTL to perform
clean-up more efficiently.

The major disadvantages to grabbing the drive control
at this level are:

Ð The driver must be operating system specific. This
requires that a new driver be developed for each
operating system. (Hmmm, this is also an advan-
tage- let’s not go into an explanation on the inher-
ent duality of nature!)

Ð You cannot boot from the flash as, typically, the
device drivers, including the FTL block device driv-
ers, are loaded AFTER the operating system starts.
You can’t read from the flash to boot as the driver
has to be loaded by the operating system you are
trying to load. We will go into more boot issues in
the next section, as well as later in this paper.

Ð Software that bypasses the operating system to talk
to the low level Int13h BIOS routines OR talks di-
rectly to the drive controller hardware will not
work with a flash/FTL type drive.

Figure 3 gives a general layout of this layered approach,
where FTL works with the existing File System to con-
trol the Flash media.

292173–3

Figure 3. FTL Block Device

Driver Software Layers

BIOS Interception Driver

The other location to intercept drive requests in order
to have flash handle the data is in the lowest levels of
the system itself. In the vast majority of systems, that
lowest level software is something known as BIOS.
BIOS stands for Basic Input/Output System. It pro-
vides the services to handle the lowest level interface
tasks to the various standard I/O systems like drives,
serial ports, parallel ports, keyboard, etc. In x86 PC-
like systems, the INT13h handler is the one responsible
for servicing the system drives (HDD and FD) and it is
this software vector that needs to be intercepted
by an FTL. M-Systems provides a driver called
TFFSBIOS.EXB which is loaded as an Expansion
ROM and intercepts INT13h.

The advantages to this approach are:

Ð Boot capableÐthe BIOS uses INT13h BIOS calls
to boot so if the FTL/flash device is set up as one of
the standard boot drives then the OS will look to
the FTL partition on the flash to try and boot.

Ð Software that bypasses the operating system and in-
terfaces directly to the low level BIOS INT13h rou-
tines will still work on flash.

Disadvantages:

Ð Flash Software must be present in non-volatile
memory such as system BIOS flash. This is more
complicated to deal with than a driver stored on a
disk drive and loaded to memory.

Ð No performance tricks such as snooping can be per-
formed as we do not know what will be accessing
us.

Ð The software that accesses the drive must be ‘‘well
behaved’’ in order for the interception to work.
Software that tries to talk directly to a HDD con-
troller will NOT work even with a BIOS Intercept
driver.

Now that we have seen the Why and Where FTL
works, let’s take a look at the specific details of HOW it
performs its magic.

6

AP-618

FTL FUNCTIONAL DETAILSÐTHE
GUTS OF THE BEAST

In these sections, in reasonable technical depth, we will
describe the details of the FTL structures as defined by
the industry standard FTL specification (available from
PCMCIA).

FTL Format Overview

When a FTL format occurs, all of the FTL overhead,
such as the Virtual Block Maps (VBMs), FAT table,
Root Dir Entries, and any other structures, is put in the

first two logical blocks. Figure 4 illustrates how multi-
ple flash chips in a flash array might be organized with
the FTL structures after a format.

When writing a new sector or changing an existing one,
FTL looks for available (erased) flash in the form of an
unallocated Read/Write Block, writes the data, and
sets up the pointers and maps accordingly. Sectors con-
taining valid data for a specific file can be scattered
anywhere on the flash memory in this fashion. You
never know exactly where the data will go physically in
the flash, but rest assured that you will definitely get it
back when you ask for it.

292173–4

Figure 4. Typical FTL Overhead Organization

7

AP-618

Erase Unit Header and Block
Allocation Information

For allocation purposes, each Erase Unit is evenly di-
vided into arrays of Read/Write Blocks of equal size.
For the purposes of DOS, and also to appear more

‘‘drive-like’’, the Read/Write blocks tend to be 512
bytes in length. You can also think of them as sector
sized.

Figure 5 illustrates the multiple Read/Write Block per
Erase Unit concept.

292173–5

Figure 5. Erase Unit Organization

8

AP-618

The size of a Read/Write block is the same as a virtual
block as viewed by FAT. A Read/Write block used to
store a FTL overhead structure is called a Control
Unit. The BAM, VBM, EUH, etc. all reside in various
Control Units. The first Read/Write block of each
Erase Unit is a Control Unit which contains the Erase
Unit Header (EUH) for that Erase Unit. It includes
specific information about the Erase Unit and global
information about the format of the FTL partition. Ta-
ble 1 details the contents of a typical EUH.

Table 1. Erase Unit Header Fields

Offset Field

0 LinkTarget Tuple

5 DataOrganization Tuple

15 Number of Transfer Units

16 Erase Count

20 Logical Erase Unit (LUN) Number

22 Read/Write (sector) Size

23 Erase Unit Size(in log2 form)

24 First Physical Erase Unit of Start of Partition

26 Number of Erase Units

28 Formatted Size

32 First Virtual Map Address on the Media

36 Number of Virtual Map Pages

38 Flags

39 Code

40 Serial Number

44 Alternate Erase Unit Header Offset

48 BAM Offset

52 Reserved

Each Erase Unit also contains allocation information
for all of the Read/Write Blocks within the unit.

For each Read/Write Block, a 4-byte value tracks the
block’s current state. This is the case for all Read/
Write blocks in that Erase Unit. This section, com-
prised of one or more Control Units, is located right
after the EUH Control unit and is called the Block
Allocation Map or BAM. At any point in time, a
Read/Write Block in an Erase Unit may be free, delet-
ed, bad or allocated. Table 2 details the exact status
values used to indicate those states.

Table 2. BAM Status Values

Value Meaning

FFFFFFFF Free

00000000 Deleted

00000070 Bad

00000030 Control

xxxxxx40 Data of Map Page

xxxxxx60 Replacement Page

In Figure 6, we show an example of what a BAM might
look like after the FTL partition has been used.

9

AP-618

292173–6

Figure 6. BAM Example

The BAM entries for Virtual Block Maps are negative
numbered in contrast to the BAMs for Virtual Block
data which are positive numbered. This is the only way
to distinguish between the two. In the example in Fig-
ure 6, the 00000440 in the BAM is the virtual block
data number 2 (each block is 200 hex bytes) while the
FFFFFE40 BAM entry is the last page of the VBM.

The number of Control Units used depends on the size
of the BAM which depends on the ratio of Erase Unit
size to the Read/Write block size

Virtual Block Map

The FTL uses a data structure known as the Virtual
Block Map (VBM) to map requests for sectors from the

higher level software layers to the flash. The file system
thinks it is requesting physical sectors but through
FTL, they are actually virtual sectors, also known as
Virtual Blocks. FTL maps the Virtual Block requests
through the VBM to obtain a logical address. The phys-
ical address on the flash is then determined from the
logical address and the data is returned to the filing
system.

The VBM is comprised of an array of 32-bit entries,
each of which represents a logical address on the media
where a Virtual Block’s data is stored. The Virtual
Block number requested by the higher level software
layer is used as an index into this array. Please see
Figure 7 for an example of a VBM.

10

AP-618

292173–7

Figure 7. Virtual Block Map Example

The VBM is subdivided into pages. Each page of the
VBM is the same size as a Virtual sector of the FAT file
system. Since each entry in the VBM is 4 bytes, each
page holds (Virtual Blocks/4) number of entries, and
from that we can figure out how much virtual space
each map represents and how many pages we need to
map the whole virtual space.

Space is always reserved on the media to store a VBM
large enough to track the allocation of all the Virtual
Blocks on the flash. However, when the flash is format-
ted, the FTL may choose to keep only a portion of the
VBM on the media, and store the rest of it in RAM.
The amount of VBM stored on the media is indicated
by the FirstVMAddress field of the Erase Unit Header
(see Table 1). If the first VMAddress is set to 0, the
FTL maintains all of the VBM entries on the media. If
the FirstVMAddress exceeds the FormattedSize, none
of the VBM entries are maintained on the media by the
FTL.

When all or a portion of the VBM is not maintained on
the media, it has to be reconstructed in RAM every
time the system is booted up running FTL, or, as in the
case of a PC Card slot with flash cards, every time a

card is re-inserted. FTL uses the BAM information to
fill out the entries of the VBM in RAM.

If a VBM entry is all ones, the Virtual Block does not
exist on the media. If it is all zeroes, the logical address
of the Virtual Block is described on a Replacement
Page.

Replacement Pages

Each page of the Virtual Block Map may have a Re-
placement Page. Values in a Replacement Page over-
ride entries in the original VBM pages. Replacement
pages are allocated from free Read/Write Blocks in any
Erase Unit. The FTL locates allocated Replacement
Pages by scanning the block allocation information on
the media. This scan may be performed when the media
is inserted in the host system or when a VBM entry of
zero is encountered. Replacement Pages cannot them-
selves be replaced. The block allocation information en-
try for a Replacement page uses the same virtual ad-
dress as the original VBM page. FTL distinguishes be-
tween the two by looking at the last byte of the entry:
40H for VBM pages and 60H for Replacement Pages.

11

AP-618

SOCKET SERVICESÐWHAT IS IT
AND WHY DO I NEED TO USE IT?

The lowest level of our example RFD software solution
is a PC Card-like Socket Services (SS) subset. The illus-
tration in Figure 8 gives a general overview of the de-
tails of the full PC Card standard software layers.

292173–8

Figure 8. PC Card Software Suite General Layout

The Socket Services (SS) standard gives an industry
recognized, standardized, interface method for other
software (i.e. the FTL core) to interact with the low
level routines. This separation of the low level routines
from the other PC Card software allows the often dif-
ferent and hardware specific portion of the code to be
cleanly separated from the (mostly) unchanging higher
level functions. Please refer to Appendix B for a listing
of the full PC Card Socket Services functions for refer-
ence.

Other FTL implementations may organize the low level
interface differently than the SS interface we describe
here but will typically have similar requirements, and
utilize similar sorts of functions. The following figure 9
illustrates the software layers for our specific imple-
mentation.

292173–9

Figure 9. M-System’s FTL Software Layers

Implementation Issue: Real-Mode
Flash Memory Sliding Window

There is a technical requirement of the example FTL
that is difficult to describe but relatively easy to imple-
ment. It is something called a real-mode sliding win-
dow to the RFD. ‘‘A real-mode sliding what?’’ you
might be asking yourself right now. Basically, this a
method for accessing the flash memory of the RFD
that is mapped ‘‘somehow’’ into the lower one mega-
byte region of memory. That region is known as the
real-mode, or DOS memory region. Typically, some
form of hardware such as the main system chipset, spe-
cial logic (like a PLD), or a combination of the two,
will cause the RFD to be accessible in a real-mode part

12

AP-618

of memory. That part of memory is usually in the upper
memory block (UMB) region (A000:0 FFFF:F) start-
ing in the D000 page. For the ULP platform, a special
capability of the Cirrus Logic PicoPower Redwood
chipset is used along with logic in a Xilinx PLD to do
just that. ‘‘But wait a minute, what about the sliding
part??’’ Ahhh, here is the tricky part. The flash memo-
ry size of the RFD is usually quite large in order to
implement a reasonable size flash drive. The range of
RFD sizes will normally start at a minimum one mega-
byte, single 28F008 8 megabit FlashFile component.
The ULP RFD is this exactly. If we were to map the
entire RFD into real-mode memory, the one megabyte
of flash memory would take up the ENTIRE real-mode
range leaving no room for DRAM, operating system
(DOS), video RAM, system BIOS, other BIOS, etc!
The trick is to only map into real-mode a small portion
of the flash, or window, and then move the window
around to be able to access the entire address range of
the flash RFD. This concept is similar to the LIM/
EMM memory scheme. Our example FTL is quite hap-
py with a minimum 4 kilobyte window into the flash
and will work well with that size or whatever the hard-
ware is capable of supplying. The ULP logic controlled
window can be programmed for 16K, 32K, or 64K
windows but for the ULP implementation, we have set-
tled on using 16K windows in order to conserve the
UMB area. A window control register is used to pick
where in the flash we are looking. The exact operation
of the ULP registers will be discussed in detail in a
following section.

IMPORTANT:

It is important to remember to exclude the real-mode
UMB flash window from use by a memory manager.
The window will not work if a memory manager, such
as EMM386, has paged DRAM into the memory
space needed by the sliding window!

The following Figure 10 attempts to illustrate the con-
cept of the real-mode sliding window.

292173–10

Figure 10. Real-Mode Sliding Window

The real-mode sliding window is the most common
flash mapping technique as it eliminates the difficulties
of accessing protected mode addresses from a DOS
driver. In theory, accessing a RFD that is mapped in
protected mode is possible, however, the majority of
FTL solutions including the M-Systems FTL are limit-
ed to operating strictly from real-mode. If your micro-
controller, embedded system and/or operating system
enjoys the ability to address flash memory in a directly
mapped, linear fashion, then the examples of window-
ing in the code listings that follow do not apply to you.

Now let’s take a look at the requirements for the FTL
socket services.

13

AP-618

Low Level: FTL Socket Services
Subset

The Socket Services required for our example is a sim-
ple subset of the PC Card standard socket services. As
you have seen before, Figure 3 shows the typical soft-
ware layers of FTL and Figure 9 shows our reference
software’s specific layers. For the socket services/low
level driver layer, there are only 11 functions out of the
full PC Card standard 30 valid functions (refer to ap-
pendix B) that you need to support for the M-System’s
FTL. The required functions are as follows:

Name Number Description

GetAdapterCount (80h) Returns the number
of adapters supported
by all Socket Services
handlers in the host
system. Also used to
determine if one or
more Socket Services
handlers are installed.

GetSocket (8Dh) Returns the current
configuration of the
socket identified by
the input parameters.

GetSSInfo (83h) Returns the version/
compliance level of
the Socket Services
interface supporting
the adapter as
specified by the input
parameters. It also
identifies the adapters
serviced by the
handler.

GetStatus (8Fh) Returns the current
status of the card,
socket, controls and
indicators for the
socket identified by
the input parameters.

GetWindow (88h) Returns the current
configuration of the
window specified by
the input parameters.

InquireAdapter (84h) Returns information
about the capabilities
of the adapter
specified by the input
parameters.

Name Number Description

InquireSocket (8Ch) Returns information
about the capabilities of
the socket specified by
the input parameters.

InquireWindow (87h) Returns information
about the capabilities of
the window specified by
the input parameters.

SetPage (8Bh) Configures the page
specified by the input
parameters. Only valid
for memory windows.
This service is
unsupported by PC
Card-32.

SetSocket (8Eh) Sets the current
configuration of the
socket identified by the
input parameters.

SetWindow (89h) Sets the configuration of
the window specified by
the input parameters.

FTL Socket Services: The CODE

In this section, we will give you the details of, and
where to look for listings of the important parts of the
actual code. This code, or a reasonable facsimile there-
of, was used to implement the socket services for M-
Systems FTL on the ULP Evaluation board. Please be
aware that because the board also contains a Cirrus
Logic 6710 Socket Controller, some of the code may be
specific to it. The PC Card implementation of the ULP
board does not fall into the scope of this Ap-Note, so
we will be conveniently ignoring any such code here.

On the ULP board, the page register for sliding window
control is located at I/O address 1096. The Window
size and enable register is located at I/O address 2096.
Watch for references to these ports as they will be im-
portant! Your design will probably locate these control
ports in a differnt I/O location with different meanings
for the bits. There is additional ‘‘flash’’ control logic
handled by the PicoPower Redwood chipset. Within
the chipset functions, there is advanced memory han-
dling and address range decoder functions that are used
to cause the RFA flash memory window to appear in
the upper memory block (high memory range) of the
system memory. The custom logic mentioned before
handles sliding the window to the flash.

14

AP-618

The code listings can be found in Appendix E. Due to
the volatile nature of software, most likely the listings
printed in this Ap-Note will NOT be the most current
revision. The full, and current version of the code for
this socket services portion of the flash software is
available with the ULP Evaluation Kit.

BOOT ISSUES

As we promised earlier in this document, we will now
face the issues involved with booting and how they re-
late to flash. The ULP Evaluation Board has the ability
to boot from floppy disk, hard disk drive, flash RFD,
or a PC Card. This necessarily places burdens on both
the system as well as the software supporting the flash
capabilities of the board (i.e., FTL/SS). The system
BIOS, through the use of the BIOS Setup can control
what device will be the primary boot device. When
flash is the boot device, the following issues need to be
handled.

The FTL software must load before boot and typically
using the previously discussed INT13h interception
method. In order to do this, both the FTL socket serv-
ices and the FTL itself must load BEFORE the boot is
attempted. This is accomplished by storing the software
on the system as an option/expansion BIOS. When an
x86 PC-like system is starting up, the system BIOS will
go out into the UMB and search for code that has the
signature (AA55) and proper checksum (zero-sum) of
an option/expansion BIOS. The M-System TFFSBIOS
code includes utilities to do this in their Integrators
TrueFFS FTL package (see the TFFSBIOS Integrator’s
Guide, TFFSBIOS.DOC, included on the M-Systems
disk). Because the ULP uses an Intel Boot Block for the
system BIOS, it is a simple matter to store the FTL
‘‘Expansion BIOS’’ or ‘‘Option’’ code in an appropriate
spot in memory. For the ULP board, the FTL Socket
Services can be found at C800–C8FF. The SS code is
approximately 4 KB and is designed to execute in place
and as such only requires a small amount of RAM (1K)
for its data segment. The FTL itself, in the form of M-
System’s TFFSBIOS, is located at C900–CFFF. Ver-
sion 3.2.10 and lower are not specifically designed to
execute in place and as such must be copied to DRAM
for execution. During the TFFSBIOS code initializa-
tion, the code image and data segment are copied to the
top of real mode memory (640K memory region) along
with the data segment for the socket services. The sys-
tem’s available memory size indicator is appropriately
decreased. The combined TFFSBIOS image, buffers,

and data segments take a total of 36 KB–40 KB off of
the top of memory. For version 3.2.20 and higher of
TFFSBIOS, the code has been designed to operate in
place (or execute-in-place) from the flash itself (or a
‘‘shadowed’’ version in Shadow Ram). In this case, only
the data segments (including buffers) for TFFSBIOS
and the socket services need occupy system ram. The
combined requirements total up to approximately 12K
taken off the top of memory.

Once the FTL code is recognized and loaded by the
BIOS, the flash drive still typically needs to operate as a
drive letter that will normally be interrogated by the
system BIOS for a boot image. If there are no other
‘‘hard drives’’ installed in the system, this is not a prob-
lem as TFFSBIOS automatically grabs the first avail-
able ‘‘hard drive’’ spot which just happens to be the
usual boot ‘‘hard drive.’’ If another hard drive exists is
the system, and you want to boot from the FTL flash
drive, then special intervention is required. Fortunately,
the M-Systems utilities give you an option to force the
FTL drive to be drive C: (moving the other hard drives
up a spot) and therefore making the FTL flash drive
function normally in the boot sequence.

The last major boot issue, (and fairly obvious once you
think about it), is the need for a bootable format to exist
on the flash from which you are going to boot. The
actual requirement is for a master boot record with val-
id boot information to exist in logical sector 0 of the
boot device. This is accomplished in a similar fashion to
formatting a hard drive or floppy disk to be bootable.
Let’s assume the flash in the RFD has never been for-
matted or has been totally or partially erased. All that
is required is to boot up the ULP board normally from
another boot device (i.e. a bootable floppy) then invoke
the M-System’s format utility TFORMAT /1 (/1 as-
sumes the RFD has been selected as the primary
‘‘boot’’ flash device and is therefore acting as socket 1
out of 2. Use /2 if the RFD is operating secondary to
flash in the PC Card socket.) After the FTL format has
been laid down on the flash by TFORMAT, it is advis-
able to reboot the system from the floppy in order for
the system to recognize the ‘‘new’’ valid FTL drive.
Next, a bootable master boot record has be created on
the flash. This is accomplished with the operating sys-
tem disk FORMAT utility, making sure to specify that
you wish to transfer the system to the ‘‘disk’’. For DOS,
use: FORMAT /S d: where d: is the drive letter of the
FTL flash drive. With a properly formatted and boot
image enabled FTL drive as the primary drive, a nor-
mal boot can then occur from the flash RFD or Flash
Card.

15

AP-618

FTL AVAILABILITYÐI WANT IT,
WHERE CAN I GET IT?

‘‘Man, this FTL software sounds GREAT! It will do
exactly what I want to do on my system! Where can I
get it?’’ This is a very astute question. There are quite a
number of sources for commercially supported FTL.
The FTLs from each of the vendors has unique charac-
teristics. Pricing, performance, adaptability, etc. vary
from version to version. Please see Appendix A for a
listing of the most popular FTL vendors. As stated be-
fore, M-Systems is the creator of the specific FTL upon
which this document is based.

CONCLUSION

The general benefits of flash in an embedded system,
and especially a resident flash array operating as a drive
with FTL software, are quite obvious. The wide avail-
ability and market acceptance of the FTL standard
(FTL Is It!) makes the implementation and use of flash
in this way a simple matter. And although concepts
presented here were presented on a specific platform
with a specific set of features, the concepts do apply to
virtually any system that needs this kind of capability.
With some thought, and a little development work, you
too can soon be enjoying the advantages of flash and
FTL.

ADDITIONAL INFORMATION

References

Order Number Document

290429 28F008SA 8-Mbit (1-Mbit x 8) FlashFileTM Memory Datasheet

272731 Embedded Ultra-Low Power Intel486TM SX Processor Datasheet

272755 Embedded Ultra-Low Power Intel486TM GX Processor Datasheet

292157 AP-605, Implementing a Resident Flash Disk with an Intel386TM EX
Embedded Processor

272324 AP-477, Low Voltage Embedded Design

Contact Intel/ Ultra Low Power Intel486TM SX Evaluation Board Reference Guide/User’s
ManualDistribution Sales Office

General Information Hotline

US/Canada: 1 (800) 628-8686 or (916) 356-7599
Japan/APAC: (916) 356-7599
Europe: a440 793-69-6776

Literature Orders:

US/Canada: 1 (800) 548-4725
International: Please contact your local Intel office

BBS: (916) 356-3600 or a4401793-496340
FaxBack* : 1(800) 628-2283 or (916) 356-3105

Revision History

Number Description

-001 Original Version

16

AP-618

APPENDIX A
FTL AVAILABILITY

M-SYSTEMS

TrueFFS* (v3.2 and up are FTL)
4655 Old Ironsides Dr. Suite Ý200
Santa Clara, CA 95054

(408) 654-5820
FAX: (408) 654-9107

System Soft Corporation

SS FTL
313 Speen St.
Natick, MA 01760

(508) 651-0088
FAX: (508) 651-8188

SCM Microsystem, Inc.

S-FTL (v3.0 and up are FTL)
131 Albright Way.
Los Gatos, CA 95030

(408) 370-4888
FAX: (408) 370-4880

Datalight, Inc.

CardTrick FTL
307 N. Olympic Ave. Suite 200
Arlington, WA 98223

(206) 435-8086
FAX: (206) 435-0253

A-1

AP-618

APPENDIX B
PC CARD SOCKET SERVICES

DESCRIPTIONS AND FUNCTION NUMBERS

AccessConfigurationSpace (A2h)
This function is for CardBus. It provides an interface for Card Services to read and write values in the CardBus
configuration space.

AcknowledgeInterrupt (9Eh)
Returns information about which socket(s) on the adapter specified by the input parameters has had a change in
status.

GetAccessOffsets (A1h)
Fills the indicated buffer with an array of offsets for adapters using register-based, I/O port access to PC Card
memory address space. Used for adapter-specific, low-level, optimized PC Card access routines.
Cards that use memory windows, directly mapped into the system memory space do not support this function.

GetAdapter (85h)
Returns the current configuration of the specified adapter.

GetAdapterCount (80h)
Returns the number of adapters supported by all Socket Services handlers in the host system. Also used to determine
if one or more Socket Services handlers are installed.

GetEDC (96h)
Returns the current configuration of the EDC (Error Detect and Correct) generator specified by the input parame-
ters.

GetPage (8Ah)
Returns the current configuration of the page specified by the input parameters. Only valid for memory windows
(WSÐIO is reset for the window).

GetSetPriorHandler (9Fh)
Gets, or replaces the entry point of a prior handler for the Adapter specified by the input parameters.

GetSetSSAddr (A0h)
Returns code and data area descriptions and provides a way to pass mode-specific data area descriptors to a Socket
Services handler.

GetSocket (8Dh)
Returns the current configuration of the socket identified by the input parameters.

GetSSInfo (83h)
Returns the version / compliance level of the Socket Services interface supporting the adapter specified by the input
parameters. It also identifies the adapters serviced by the handler.

GetStatus (8Fh)
Returns the current status of the card, socket, controls and indicators for the socket identified by the input parame-
ters.

GetVendorInfo (9Dh)
Returns information about the vendor implementing Socket Services for the adapter specified in the input parame-
ters.

GetWindow (88h)
Returns the current configuration of the window specified by the input parameters.

B-1

AP-618

InquireAdapter (84h)
Returns information about the capabilities of the adapter specified by the input parameters.

InquireEDC (95h)
Returns the capabilities of the EDC generator specified by the input parameters.

InquireSocket (8Ch)
Returns information about the capabilities of the socket specified by the input parameters.

InquireWindow (87h)
Returns information about the capabilities of the window specified by the input parameters.

PauseEDC (99h)
Pauses EDC generation on a configured and in-use EDC generator specified by the input parameters.

ReadEDC (9ch)
Reads the EDC value computed by the EDC generator specified in the input parameters.

ResetSocket (90h)
Resets the PC Card in the socket and returns socket hardware to its power-on default state.

ResumeEDC (9Ah)
Resumes EDC generation on a configured and paused EDC generator specified by the input parameters.

SetAdapter (86h)
Sets the configuration of the specified adapter.

SetEDC (97h)
Sets the configuration of the EDC generator specified by the input parameters.

SetPage (8Bh)
Configures the page specified by the input parameters. Only valid for memory windows. This service is unsupported
by PC Card-32.

SetSocket (8Eh)
Sets the current configuration of the socket identified by the input parameters.

SetWindow (89h)
Sets the configuration of the window specified by the input parameters.

StartEDC (98h)
Starts a previously configured EDC generator specified by the input parameters.

StopEDC (9Bh)
Stops EDC generation on a configured and functioning EDC generator specified by the input parameters.

VendorSpecific (AEh)
As the name implies, this service is vendor specific. It is reserved for vendors to add proprietary extensions to the
Socket Services interface.

B-2

AP-618

APPENDIX C
BIT TWIDDLING

An interesting capability of Intel Flash, in general, is that a flash byte or word can be ‘‘written’’ as many times as you
wish without having to first erase it and without affecting the component’s lifetime. You might be thinking ‘‘Now
wait just a minute here! You just said I have erase flash before I write.’’ That is only necessary only for a certain
circumstance: when you need any bits to change from a zero to a one. However, you can rewrite flash as long as bits
are being changed from 1 to zero, or are not changing at all. The following example illustrates the point:

Flash

Flash Byte Byte

What (hex) (Binary) OK or Fail

Flash byte Erase: FF 1 1 1 1 1 1 1 1

v v v v

Flash byte write to AAh: AA 1 0 1 0 1 0 1 0 OK!

v

Flash byte write to A8h A8 1 0 1 0 1 0 0 0 OK!

v

Flash byte write to 28h 28 0 0 1 0 1 0 0 0 OK!

v v

Flash byte write to 00h 00 0 0 0 0 0 0 0 0 OK!

Flash byte write to 01h 0 0 0 0 0 0 0 0 0 FAIL

Erase is required to rewrite this flash byte to anything other than 00h.

C-1

AP-618

APPENDIX D
RELATED THIRD PARTY DOCUMENTATION

M-Systems TrueFFS User’s Manual

M-Systems
4655 Old Ironsides Dr. Suite Ý200
Santa Clara, CA 95054

(408) 654-5820
FAX: (408) 654-9107

PT86C768 & PT86C718 ‘‘Redwood’’ Chipset Manual

Cirrus Logic / PicoPower
3100 West Warren Ave.
Fremont, CA 94538

(510) 623-8300
FAX: (510) 252-6020

PC Card Standard

PCMCIA
2635 North 1st Street
San Jose, California 95134

(408) 433-2273
FAX: (408) 433-9558

D-1

AP-618

APPENDIX E
CODE LISTINGS

292173–11

E-1

AP-618

292173–12

E-2

AP-618

292173–13

E-3

AP-618

292173–14

E-4

AP-618

292173–15

E-5

AP-618

292173–16

E-6

AP-618

292173–17

E-7

AP-618

292173–18

E-8

AP-618

292173–19

E-9

AP-618

292173–20

E-10

AP-618

292173–21

E-11

AP-618

292173–22

E-12

AP-618

292173–23

E-13

AP-618

292173–24

E-14

AP-618

292173–25

E-15

AP-618

292173–26

E-16

AP-618

292173–27

E-17

AP-618

292173–28

E-18

AP-618

292173–29

E-19

AP-618

292173–30

E-20

AP-618

292173–31

E-21

AP-618

292173–32

E-22

AP-618

292173–33

E-23

AP-618

292173–34

E-24

AP-618

292173–35

E-25

AP-618

292173–36

E-26

AP-618

292173–37

E-27

AP-618

292173–38

E-28

AP-618

292173–39

E-29

AP-618

292173–40

E-30

AP-618

292173–41

E-31

AP-618

292173–42

E-32

AP-618

292173–43

E-33

AP-618

292173–44

E-34

AP-618

292173–45

E-35

AP-618

292173–46

E-36

AP-618

292173–47

E-37

