intel . AP-618

APPLICATION
NOTE

Software Concerns of
Implementing a Resident
Flash Disk

KIRK BLUM
TECHNICAL MARKETING ENGINEER

December 1995

Order Number: 292173-001



Information in this document is provided in connection with Intel products. Intel assumes no liability whatsoev-
er, including infringement of any patent or copyright, for sale and use of Intel products except as provided in
Intel’s Terms and Conditions of Sale for such products.

Intel retains the right to make changes to these specifications at any time, without notice. Microcomputer
Products may have minor variations to this specification known as errata.

*Other brands and names are the property of their respective owners.

TSince publication of documents referenced in this document, registration of the Pentium, OverDrive and
iCOMP trademarks has been issued to Intel Corporation.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your
product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel
literature, may be obtained from:

Intel Corporation
P.O. Box 7641
Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

COPYRIGHT © INTEL CORPORATION, 1995



SOFTWARE CONCERNS OF IMPLEMENTING
A RESIDENT FLASH DISK

CONTENTS PAGE
PURPOSE ...........c..ccoiiiiiiiiiii... 1
INTRODUCTION ........................... 1
SYSTEM REQUIREMENTS ................ 2
WHY DO | NEED SOFTWARE FOR

FLASH? ... ..o 4
FTLISIT! ... 4

FTL FUNCTIONAL OVERVIEW: WHAT
IS A FLASH TRANSLATION

LAYER? ... ... 5
WHERE DOES FTL FIT IN THE

SOFTWARE SCHEME? ................. 5
Block Device Driver ........................ 5
BIOS Interception Driver .................... 6
FTL FUNCTIONAL DETAILS—THE

GUTSOF THEBEAST .................. 7
FTL Format Overview ...................... 7
Erase Unit Header and Block Allocation

Information ......... ...l 8
Virtual Block Map ......................... 10
ReplacementPages ....................... 11
SOCKET SERVICES—WHAT IS IT AND

WHY DO INEED TOUSE IT? .......... 12
Implementation Issue: Real-Mode Flash

Memory Sliding Window ................. 12
Low Level: FTL Socket Services

Subset ... 14
FTL Socket Services: The CODE .......... 14
BOOTISSUES ..................cooiiaen. 15
FTL AVAILABILITY—I WANT IT,

WHERE CANIGETIT? ................ 16

CONTENTS
CONCLUSION ...............coeoiinne, 16
RELATED INTEL DOCUMENTATION .... 16
REVISION HISTORY ..................... 16
APPENDIX A FTL Availability ......... A-1

APPENDIX B PC Card Socket
Services Descriptions and Function

Numbers .............................. B-1
APPENDIX C Bit Twiddling ............ C-1
APPENDIX D Related Third Party

Documentation ....................... D-1
APPENDIX E Code Listings ........... E-1
FIGURES
Figure 1. Intel486™ SX ULP Evaluation

Board ...l 2
Figure 2. FTL Sector Relocation ........... 5
Figure 3. FTL Block Device Driver

Software Layers ................. 6
Figure 4. Typical FTL Overhead

Organization ..................... 7
Figure 5. Erase Unit Organization .......... 8
Figure 6. BAMExample .................. 10
Figure 7. Virtual Block Map Example ..... 11
Figure 8. PC Card Software Suite

General Layout ................. 12
Figure 9. M-System’s FTL Software

Layers ...l 12
Figure 10. Real-Mode Sliding Window ..... 13
TABLES
Table 1. Erase Unit Header Fields ......... 9

Table 2. BAM Status Values ............... 9






intgl.

PURPOSE

The purpose of this Ap-Note is to detail the software
aspects of implementing an Intel Resident Flash Array
(RFA) as a Resident Flash Disk (RFD) in an embed-
ded system with commercially available Flash Transla-
tion Layer (FTL) software.

An RFD can help mitigate many issues that constrain
the storage subsystem for embedded systems. Those is-
sues include:

® Embedded systems must operate in harsh environ-
ments; they are dropped, banged, vibrated, over-
heated, etc.:

— A Flash RFD is rugged and non-volatile because
it is solid-state and has no moving parts.

® Embedded systems must have high performance:

— A Flash RFD, because it is basically memory,
not rotating magnetic media, has extremely fast
access capability.

® Embedded systems can be battery operated and
must be low power:

— A Flash RFD is very low power as it is silicon
and has no motors to spin, or servos to move.
The standby/deep dower-down mode current
draw of a flash part is typically measured in mi-
cro-amps (uA).

® Embedded systems may be limited in size:

— A Flash RFD requires very little board space
and is tiny compared to even the smallest hard
drive.

® Embedded systems tend to be price sensitive:
— A Flash RFD is relatively inexpensive.
® Embedded systems have to be very flexible:

— A Flash RFD is adaptable to just about ANY
situation.

For the purposes of this document, we will use a “real-
life” example based on the Intel “Ultra Low Power”
(ULP) Intel486T™ SX Processor Evaluation Board and
M-Systems TrueFFS* FTL flash software for DOS.

AP-618

Familarity with the PCMCIA PC Card Standard is
helpful for understanding the software pieces of our ex-
ample. Please see the Reference section for information
on contacting PCMCIA in order to obtain a copy of
“The Standard.”

INTRODUCTION

The exacting requirements for today’s embedded proc-
essor platform market makes extreme demands upon
all of the associated embedded sub-systems. Among
those are the data and code storage functions. Intel’s
Flash components are well suited to implement a ruggi-
dized, low-power, low-cost storage system, in the form
of a Resident Flash Disk (RFD).

A RFD is basically a Resident Flash Array (RFA),
which is one or more flash components typically de-
signed onto the base system, used with software to
make it operate as a drive.

The flash that comprises the RFD has the unique capa-
bility of non-volatility (like ROM) combined with in-
place erase and write (similar to RAM). With the prop-
er software, Intel Flash can function as a solid-state
disk drive, without exhibiting the disadvantages inher-
ent in a rotating/magnetic-media drive. In general, as
well as for the purposes of this Ap-Note, the proper
software is FTL. Although there are quite a few sources
for FTL, we base our example on M-System’sl
TrueFFS* FTL2. Please keep in mind that though the
details of the implementation will be specific to
TrueFFS, the general concepts and functions will apply
to virtually any of the available FTLs or other flash
managers and/or flash filing systems. This also applies
for the example target platform. For our example, the
specific target platform is the Intel Ultra Low Power
(ULP) 486 SX Evaluation Board. However, the general
concepts presented here will apply to virtually any em-
bedded system.

1M-Systems provides a full range of Turn-key FlashDisk solutions that
uses TrueFFS, are plug and play and uses Intel advanced Flash com-
ponents. These solutions include ISA Bus and PC104 FlashDisks,and
the DiskOnChip* which is a Plug & Play FlashDisk module in a stan-
dard 28/32 pin DIP JEDEC compatible package.

2Some of the information in this document is taken from M-System’s
TrueFFS documentation.



AP-618

SYSTEM REQUIREMENTS

We are using the ULP 486 SX for our example because
it is a high performance demo platform which exhibits
characteristics that are pertinent to a wide range of em-
bedded applications. Its compact size, high-degree of
functionality, high performance, extreme flexibility,
availability of many development environments and op-

intgl.

erating systems, and PC desktop/notebook compatibil-
ity make it easily adapted to the many and varied re-
quirements placed on embedded systems. It also con-
tains a considerable quantity and variety of flash, in-
cluding a simple RFD which is well suited for use with
M-Systems TrueFFS FTL. Figure 1 shows the general
layout of the ULP 486 SX

cn

jrw g

: ?d%DOD
ssosee |:|:]:]- ‘ﬁ:‘ 'Z!::

grinkn -

0 [

292173-1

Figure 1. Intel486™ SX ULP Evaluation Board



in‘tel . AP-618

The following chart gives an operational overview of our target embedded platform. Included is an assessment of
how our specific features might apply to a different implementation.

Item This Specific Example Your Application
Processor: Intel486™ SX ULP (80x86) Any processor can be used, however a version
of FTL for your particular processor will be
required.
Flash: RFD- 1 x Intel 28F008 Varies. Could be an RFD based on any variety

or quantity of Intel Flash components, or it
could be a Flash Card plugged into a PC Card
socket.

Flash Media Manager: FTL (M-System’s TrueFFS*) Any FTL. The low level routines of the FTL you
select will probably be different but will have
similar requirements and functions.

Operating system: DOS-FAT A “sector” based filing system of some sort is
required for most FTLs. The FTL typically
needs to be “ported” to your specific operating
system (if other than DOS).

Other Flash: PC Card Socket (Cirrus 6710) | Varies. A typical system will usually only
implement a single “variety” of flash. A PC
Card socket accepts flash in a Flash Card.

XD Simm (not covered) Varies. If your application would benefit from
execute in place (XIP) on the memory bus, then
you might consider using this style of flash.
Please contact your Intel representative for
more information on XIP and Intel XD Flash.

Low Level FTL Interface: | Socket Services Like Interface | Varies depending on the particular FTL you
decide to implement in your design. However,
most of the elements of, and all of the
functionality described here in the Socket
Services like routines, are typically required in
the low level routines of any flash undertaking.




AP-618

WHY DO | NEED SOFTWARE FOR
FLASH?

One of the unique characteristics of flash technologies
is the typical requirement that a flash cell be erased
before it can be written.3 For Intel Flash, generally,4 a
flash cell starts as erased to a 1 (one), and can be writ-
ten/programmed to become a O (zero). Early flash
chips were organized such that the entire chip was
erased at one time (called “bulk erase”). Newer flash
chips are organized into erase blocks—typically
64 KBytes> in size. Arranging the flash chip into erase
blocks provides a mechanism for software to manage
the data stored on the chip. Keep this in mind, as there
will be a quiz later.

Traditional data storage programs, such as DOS and
other file systems, are designed to update or rewrite
data in place. Here is a specific example: think of how
DOS deals with the File Allocation Table (FAT) when
you write a file. It takes a specific sector on the media
and rewrites it with the new or changed data concern-
ing the file. Add or change a file and the sector gets
changed. The same sector or sectors are constantly re-
written with new or different FAT data. This is a rea-
sonable mode of operation for rotating magnetic media
but at odds with the basic operation of flash. Another
difference between drives and flash is the traditional
drive sector (512 bytes is typical) tends to be quite a
number of bits smaller than the typical flash block.

Flash management software can solve these issues in a
number of ways, two of which follow:

1. When rewriting any sector (512 bytes of data typi-
cal), the flash manager can perform the following
steps:

a. Save off the rest of the “good data” stored in the
larger (64 KB typical) flash erase unit. This will be
comprised of the other valid ““sectors” in the flash
block. It will have to put the good data “‘some-
where” else such as a spare flash block.

3See the section on Bit Twiddling for the exception to this “rule”.

4Current flash technology (for example i28F008 and i28F016) uses 1
flash cell per bit. Intel has announced a technology that in the near
future will be able to represent more bits per flash cell using a technol-
ogy known as Multi-Level Cell or MLC. The concepts presented here
may not all apply to MLC technology.

5Flash block size and organization may vary from component to com-
ponent- please refer to the data-sheet for the particular flash compo-
nent you are using. In general, RFA/RFD implementations use Intel
FlashFile™ components (i28F008, i28F016, etc.) which are organized
in symmetrical 64KB and 128KB erase blocks. Boot Block compo-
nents can be used but pose extra burdens on the erase and write
routines in order to adapt to the non-symmetrical erase units present
in the components.

4

intgl.

b. Next, erase the current block where the data
wants to be rewritten.

c. Write in the new data.

d. Restore the rest of the good data from the tempo-
rary storage.

e. Finally clear out the temporary storage location
(i.e. erase the spare flash block).

Whew, this sure looks and sounds tedious and highly
inefficient! No matter what the style of flash, a purely
erase before write type flash management scheme is def-
initely NOT the best overall performance solution.

2. When rewriting a sector it can:

a. Write the updated data to another free/erased
portion of the flash.

b. Then point a lookup entry, or translation table to
the other location in flash

c. Finally, the old portion of flash is marked as
“dirty” or deleted for later clean-up.

The second method is what, in general, the FTL soft-
ware does for flash. This is the most write efficient,
highest performance and most highly recommended
method for handling flash.

FTL IS IT!

Flash Translation Layer is a robust, widely accepted,
industry standard flash manager. It is widely available
from a multitude of sources. Its function is to take disk
drive specific software requests and convert/translate
them to flash media accesses. It handles flash blocks by
creating small, virtual, sector-sized (usually 512 byte)
blocks out of the larger flash blocks. Additionally, FTL
handles the “special needs” of flash such as handling
the special read, write, and erase requirements that
flash technology exhibits. Also, many, if not all, of the
varieties of FTL offer a boot solution. This makes the
operating system loadable from flash as if it were



intgl.

loading from a more common bootable device such as a
floppy or hard disk (more on this in a later section).

In the next section, we will describe generally how FTL
works.

FTL FUNCTIONAL OVERVIEW: WHAT
IS A FLASH TRANSLATION LAYER?

As we have said, FTL is a sector based flash manager
that provides logical to physical sector translation.
Thus the name Flash Translation Layer. FTL performs
sector mapping to allow Flash to appear as a drive-like,
sectored, rewrite “in place” type storage media. While
the host file system sees the Flash card or resident
Flash array (RFA) as a continuous sectored medium,
FTL relocates these sectors transparently to the operat-
ing system, and tracks the logical-to-physical relation-
ship. Figure 2 provides a simplified graphical represen-
tation of the sector translation and relocation that oc-
curs with FTL. The MAP reference in the diagram is
explained in greater details in the “FTL Functional De-
tails” section of this document.

This logical-to-physical mapping allows the Operating
System to concern itself with only file operations. Be-
cause the O/S already oversees these file operations, the
FTL solution can provide compatibility with existing

AP-618

applications and media utilities while presenting a small
code footprint. Of important note here is the fact that
FTL is able to relocate sectors to any position in the
Flash media, making large Flash blocks appear as
smaller erasable sectors. This is basically what FTL
does to earn its keep.

WHERE DOES FTL FIT IN THE
SOFTWARE SCHEME?

FTL, for the most part, needs to intercept the data
store/retrieve requests somewhere between the software
wanting to talk to the drive and the low level routines
that specifically read or write data to the drives. In a
x86 PC like system, and on other types of platforms,
there are typically two logical places to grab the drive
access routines in order to handle the drive requests
actually being serviced by flash. Each has its advan-
tages and disadvantages which we will discuss.

Block Device Driver

One of the most common ways to intercept the normal
drive handlers is to have the operating system load a
Block Device Driver which inserts itself in the lower
levels of the operating system. M-System’s FTL
TFFS.COM and TFFSCS.COM are two examples of a

\ 12
15
~ ® 17

DOS
Sector #

FTL MAP
(VPM, VBM,
and BAM)

Example:
DOS requests
sector 14- FTL map

M—— | q points to R/W Blocl
10 " 13 14 21 for the data.

RW RW 2 | RIW 3
Block 1| Sec 6 | Sec 19
| Sector 12|

RW 5 |RW &

RIW 7
free Sec 0 | deleted

MAP

- Physical location
in FLASH

292173-2

Figure 2. FTL Sector Relocation



AP-618

FTL Block Device Driver. The major advantage to us-
ing the Block Device Driver approach is that it is spe-
cific to the operating system and therefore can have
better knowledge about how the filing system works.
Because it knows how the operating system works, it
can use performance enhancement tricks specific to
that operating system. One such trick used by M-Sys-
tem’s TrueFFS DOS FTL driver is a technique called
“FAT Snooping.” This allows the FTL to monitor
writes to the File Allocation Table to know when DOS
has deleted a sector thus allowing the FTL to perform
clean-up more efficiently.

The major disadvantages to grabbing the drive control
at this level are:

— The driver must be operating system specific. This
requires that a new driver be developed for each
operating system. (Hmmm, this is also an advan-
tage- let’s not go into an explanation on the inher-
ent duality of nature!)

— You cannot boot from the flash as, typically, the
device drivers, including the FTL block device driv-
ers, are loaded AFTER the operating system starts.
You can’t read from the flash to boot as the driver
has to be loaded by the operating system you are
trying to load. We will go into more boot issues in
the next section, as well as later in this paper.

— Software that bypasses the operating system to talk
to the low level Int13h BIOS routines OR talks di-
rectly to the drive controller hardware will not
work with a flash/FTL type drive.

Figure 3 gives a general layout of this layered approach,
where FTL works with the existing File System to con-
trol the Flash media.

Native File System
(e.g. DOS FAT)

1y

FTL Driver

Low Level Driver

Ay

Flash Hardware

292173-3

Figure 3. FTL Block Device
Driver Software Layers

intgl.

The other location to intercept drive requests in order
to have flash handle the data is in the lowest levels of
the system itself. In the vast majority of systems, that
lowest level software is something known as BIOS.
BIOS stands for Basic Input/Output System. It pro-
vides the services to handle the lowest level interface
tasks to the various standard I/O systems like drives,
serial ports, parallel ports, keyboard, etc. In x86 PC-
like systems, the INT13h handler is the one responsible
for servicing the system drives (HDD and FD) and it is
this software vector that needs to be intercepted
by an FTL. M-Systems provides a driver called
TFFSBIOS.EXB which is loaded as an Expansion
ROM and intercepts INT13h.

BIOS Interception Driver

The advantages to this approach are:

— Boot capable—the BIOS uses INT13h BIOS calls
to boot so if the FTL/flash device is set up as one of
the standard boot drives then the OS will look to
the FTL partition on the flash to try and boot.

— Software that bypasses the operating system and in-
terfaces directly to the low level BIOS INT13h rou-
tines will still work on flash.

Disadvantages:

— Flash Software must be present in non-volatile
memory such as system BIOS flash. This is more
complicated to deal with than a driver stored on a
disk drive and loaded to memory.

— No performance tricks such as snooping can be per-
formed as we do not know what will be accessing
us.

— The software that accesses the drive must be “well
behaved” in order for the interception to work.
Software that tries to talk directly to a HDD con-
troller will NOT work even with a BIOS Intercept
driver.

Now that we have seen the Why and Where FTL
works, let’s take a look at the specific details of HOW it
performs its magic.



intgl.

FTL FUNCTIONAL DETAILS—THE
GUTS OF THE BEAST

In these sections, in reasonable technical depth, we will
describe the details of the FTL structures as defined by
the industry standard FTL specification (available from
PCMCIA).

FTL Format Overview

When a FTL format occurs, all of the FTL overhead,
such as the Virtual Block Maps (VBMs), FAT table,
Root Dir Entries, and any other structures, is put in the

AP-618

first two logical blocks. Figure 4 illustrates how multi-
ple flash chips in a flash array might be organized with
the FTL structures after a format.

When writing a new sector or changing an existing one,
FTL looks for available (erased) flash in the form of an
unallocated Read/Write Block, writes the data, and
sets up the pointers and maps accordingly. Sectors con-
taining valid data for a specific file can be scattered
anywhere on the flash memory in this fashion. You
never know exactly where the data will go physically in
the flash, but rest assured that you will definitely get it
back when you ask for it.

Erase Unit Header Erase Unit Header Erase Unit Header Erase Unit Header
Block Allocation Block Allocation Block Allocation Block Allocation
Map (BAM) Map (BAM) Map (BAM) Map (BAM)
Virtual Block Map MBR, PBR, FAT,
(VBM) RootDirEntry
File Area File Area
File Area File Area (random) (random)
(random) (random)
Chip 1 Chip 2 Chip 3 Chip 4 Etc.
292173-4

Figure 4. Typical FTL Overhead Organization




AP-618

Erase Unit Header and Block
Allocation Information

For allocation purposes, each Erase Unit is evenly di-
vided into arrays of Read/Write Blocks of equal size.
For the purposes of DOS, and also to appear more

sized.

Figure 5 illustrates the multiple Read/Write Block per
Erase Unit concept.

Erase Unit

Erase Unit

Erase Unit

Erase Unit

Read/Write

Block

Read/Write

Block

Read/Write

Block

Read/Write

Block

Read/Write

Block

Read/Write

Block

292173-5

Figure 5. Erase Unit Organization

intgl.

“drive-like”, the Read/Write blocks tend to be 512
bytes in length. You can also think of them as sector




intgl.

The size of a Read/Write block is the same as a virtual
block as viewed by FAT. A Read/Write block used to
store a FTL overhead structure is called a Control
Unit. The BAM, VBM, EUH, etc. all reside in various
Control Units. The first Read/Write block of each
Erase Unit is a Control Unit which contains the Erase
Unit Header (EUH) for that Erase Unit. It includes
specific information about the Erase Unit and global
information about the format of the FTL partition. Ta-
ble 1 details the contents of a typical EUH.

Table 1. Erase Unit Header Fields

Offset Field

0 LinkTarget Tuple

5 DataOrganization Tuple

15 | Number of Transfer Units

16 |Erase Count

20 |Logical Erase Unit (LUN) Number

22 |Read/Write (sector) Size

23 |Erase Unit Size(in log2 form)

24 | First Physical Erase Unit of Start of Partition

26 | Number of Erase Units

28 |Formatted Size

32 |First Virtual Map Address on the Media

36 |Number of Virtual Map Pages

38 |[Flags

39 |[Code

40 | Serial Number

44 | Alternate Erase Unit Header Offset

48 |BAM Offset

52 |Reserved

AP-618

Each Erase Unit also contains allocation information
for all of the Read/Write Blocks within the unit.

For each Read/Write Block, a 4-byte value tracks the
block’s current state. This is the case for all Read/
Write blocks in that Erase Unit. This section, com-
prised of one or more Control Units, is located right
after the EUH Control unit and is called the Block
Allocation Map or BAM. At any point in time, a
Read/Write Block in an Erase Unit may be free, delet-
ed, bad or allocated. Table 2 details the exact status
values used to indicate those states.

Table 2. BAM Status Values

Value Meaning
FFFFFFFF Free
00000000 Deleted
00000070 Bad
00000030 Control
XXXXXX40 Data of Map Page
XXXXXX60 Replacement Page

In Figure 6, we show an example of what a BAM might
look like after the FTL partition has been used.



AP-618

Erase Unit Header

Block Allocation Map

Free blocks, virtual
blocks, virtual block
map pages, and
replacement pages

00000030 FTL Control Structure
00000030 FTL Control Structure
00000440 Virtual Block 2
00000000 (Sd”e”lz::j‘)jed Data
FFFFFE40 Page -1 of VBM
0002A440 Virtual Block 152h
FFFFFFFF Free
FFFFFA60 Page -3 of VBM
00000000 (S;eﬁ;":defed Data

And so on...

292173-6

Figure 6. BAM Example

The BAM entries for Virtual Block Maps are negative
numbered in contrast to the BAMs for Virtual Block
data which are positive numbered. This is the only way
to distinguish between the two. In the example in Fig-
ure 6, the 00000440 in the BAM is the virtual block
data number 2 (each block is 200 hex bytes) while the
FFFFFE40 BAM entry is the last page of the VBM.

The number of Control Units used depends on the size

of the BAM which depends on the ratio of Erase Unit
size to the Read/Write block size

Virtual Block Map

The FTL uses a data structure known as the Virtual
Block Map (VBM) to map requests for sectors from the

10

higher level software layers to the flash. The file system
thinks it is requesting physical sectors but through
FTL, they are actually virtual sectors, also known as
Virtual Blocks. FTL maps the Virtual Block requests
through the VBM to obtain a logical address. The phys-
ical address on the flash is then determined from the
logical address and the data is returned to the filing
system.

The VBM is comprised of an array of 32-bit entries,
each of which represents a logical address on the media
where a Virtual Block’s data is stored. The Virtual
Block number requested by the higher level software
layer is used as an index into this array. Please see
Figure 7 for an example of a VBM.



]
|n AP-618
®
Erase Unit Header
Block Allocation Map
000A0600 Logical Address A06Q0
Virtual Block Data,
Virtual Map Pages, and 000C0800 Logical Address C0800
Replacement Pages
00000000 gse Replacement Page
ntry
0000CC0O0 Logical Address CCOO
And so on...
292173-7

Figure 7. Virtual Block Map Example

The VBM is subdivided into pages. Each page of the
VBM is the same size as a Virtual sector of the FAT file
system. Since each entry in the VBM is 4 bytes, each
page holds (Virtual Blocks/4) number of entries, and
from that we can figure out how much virtual space
each map represents and how many pages we need to
map the whole virtual space.

Space is always reserved on the media to store a VBM
large enough to track the allocation of all the Virtual
Blocks on the flash. However, when the flash is format-
ted, the FTL may choose to keep only a portion of the
VBM on the media, and store the rest of it in RAM.
The amount of VBM stored on the media is indicated
by the FirstVMAddress field of the Erase Unit Header
(see Table 1). If the first VMAddress is set to O, the
FTL maintains all of the VBM entries on the media. If
the FirstVMAddress exceeds the FormattedSize, none
of the VBM entries are maintained on the media by the
FTL.

When all or a portion of the VBM is not maintained on
the media, it has to be reconstructed in RAM every
time the system is booted up running FTL, or, as in the
case of a PC Card slot with flash cards, every time a

card is re-inserted. FTL uses the BAM information to
fill out the entries of the VBM in RAM.

If a VBM entry is all ones, the Virtual Block does not
exist on the media. If it is all zeroes, the logical address
of the Virtual Block is described on a Replacement
Page.

Replacement Pages

Each page of the Virtual Block Map may have a Re-
placement Page. Values in a Replacement Page over-
ride entries in the original VBM pages. Replacement
pages are allocated from free Read/Write Blocks in any
Erase Unit. The FTL locates allocated Replacement
Pages by scanning the block allocation information on
the media. This scan may be performed when the media
is inserted in the host system or when a VBM entry of
zero is encountered. Replacement Pages cannot them-
selves be replaced. The block allocation information en-
try for a Replacement page uses the same virtual ad-
dress as the original VBM page. FTL distinguishes be-
tween the two by looking at the last byte of the entry:
40H for VBM pages and 60H for Replacement Pages.

11



AP-618

SOCKET SERVICES—WHAT IS IT
AND WHY DO | NEED TO USE IT?

The lowest level of our example RFD software solution
is a PC Card-like Socket Services (SS) subset. The illus-
tration in Figure 8 gives a general overview of the de-
tails of the full PC Card standard software layers.

File System

1

Card Services
Clients/Enablers

2

Card Services

1

Socket Services

Socket Controller

%%

=

N

292173-8

intgl.

Other FTL implementations may organize the low level
interface differently than the SS interface we describe
here but will typically have similar requirements, and
utilize similar sorts of functions. The following figure 9
illustrates the software layers for our specific imple-
mentation.

File System
DOS

1

M-System TrueFFS FTL

Flash Memory Technology
Driver (MTD)

Socket Services
(TrueFFS FTL
Subset)

]

Cirrus Logic
6710 Socket
Controller

Redwood Chipset
and Custom Logic
RFD Control

Figure 8. PC Card Software Suite General Layout

The Socket Services (SS) standard gives an industry
recognized, standardized, interface method for other
software (i.e. the FTL core) to interact with the low
level routines. This separation of the low level routines
from the other PC Card software allows the often dif-
ferent and hardware specific portion of the code to be
cleanly separated from the (mostly) unchanging higher
level functions. Please refer to Appendix B for a listing
of the full PC Card Socket Services functions for refer-
ence.

12

y/////////,,,I/////////////,

Intel 28F008 B d /
2 " RFA/RFD e g
Yrvnmmnnnit),

292173-9

QAN

Figure 9. M-System’s FTL Software Layers

Implementation Issue: Real-Mode
Flash Memory Sliding Window

There is a technical requirement of the example FTL
that is difficult to describe but relatively easy to imple-
ment. It is something called a real-mode sliding win-
dow to the RFD. “A real-mode sliding what?” you
might be asking yourself right now. Basically, this a
method for accessing the flash memory of the RFD
that is mapped “somehow” into the lower one mega-
byte region of memory. That region is known as the
real-mode, or DOS memory region. Typically, some
form of hardware such as the main system chipset, spe-
cial logic (like a PLD), or a combination of the two,
will cause the RFD to be accessible in a real-mode part



intgl.

of memory. That part of memory is usually in the upper
memory block (UMB) region (A000:0 FFFF:F) start-
ing in the D000 page. For the ULP platform, a special
capability of the Cirrus Logic PicoPower Redwood
chipset is used along with logic in a Xilinx PLD to do
just that. “But wait a minute, what about the sliding
part??” Ahhh, here is the tricky part. The flash memo-
ry size of the RFD is usually quite large in order to
implement a reasonable size flash drive. The range of
RFD sizes will normally start at a minimum one mega-
byte, single 28F008 8 megabit FlashFile component.
The ULP RFD is this exactly. If we were to map the
entire RFD into real-mode memory, the one megabyte
of flash memory would take up the ENTIRE real-mode
range leaving no room for DRAM, operating system
(DOS), video RAM, system BIOS, other BIOS, etc!
The trick is to only map into real-mode a small portion
of the flash, or window, and then move the window
around to be able to access the entire address range of
the flash RFD. This concept is similar to the LIM/
EMM memory scheme. Our example FTL is quite hap-
py with a minimum 4 kilobyte window into the flash
and will work well with that size or whatever the hard-
ware is capable of supplying. The ULP logic controlled
window can be programmed for 16K, 32K, or 64K
windows but for the ULP implementation, we have set-
tled on using 16K windows in order to conserve the
UMB area. A window control register is used to pick
where in the flash we are looking. The exact operation
of the ULP registers will be discussed in detail in a
following section.

IMPORTANT:
It is important to remember to exclude the real-mode
UMB flash window from use by a memory manager.
The window will not work if a memory manager, such
as EMM386, has paged DRAM into the memory
space needed by the sliding window!

The following Figure 10 attempts to illustrate the con-
cept of the real-mode sliding window.

AP-618
FO0O0 (top of
real-mode
RFD Flash memory)
Memory
Array
j r D000 Upper
—==bdoo] Nb-mmme--- Memory
1 Sliding Window :>' Stiding Window ! Block of
! Real-Mode
Memory
292173-10

Figure 10. Real-Mode Sliding Window

The real-mode sliding window is the most common
flash mapping technique as it eliminates the difficulties
of accessing protected mode addresses from a DOS
driver. In theory, accessing a RFD that is mapped in
protected mode is possible, however, the majority of
FTL solutions including the M-Systems FTL are limit-
ed to operating strictly from real-mode. If your micro-
controller, embedded system and/or operating system
enjoys the ability to address flash memory in a directly
mapped, linear fashion, then the examples of window-
ing in the code listings that follow do not apply to you.

Now let’s take a look at the requirements for the FTL
socket services.

13



AP-618

Low Level: FTL Socket Services
Subset

The Socket Services required for our example is a sim-
ple subset of the PC Card standard socket services. As
you have seen before, Figure 3 shows the typical soft-
ware layers of FTL and Figure 9 shows our reference
software’s specific layers. For the socket services/low
level driver layer, there are only 11 functions out of the
full PC Card standard 30 valid functions (refer to ap-
pendix B) that you need to support for the M-System’s
FTL. The required functions are as follows:

Name Number Description

GetAdapterCount| (80h) |Returns the number
of adapters supported
by all Socket Services
handlers in the host
system. Also used to
determine if one or
more Socket Services

handlers are installed.

GetSocket (8Dh) | Returns the current
configuration of the
socket identified by

the input parameters.

GetSSinfo (83h) |Returns the version/
compliance level of
the Socket Services
interface supporting
the adapter as
specified by the input
parameters. It also
identifies the adapters
serviced by the

handler.

GetStatus (8Fh) | Returns the current
status of the card,
socket, controls and
indicators for the
socket identified by

the input parameters.

GetWindow (88h) | Returns the current
configuration of the
window specified by

the input parameters.

Returns information
about the capabilities
of the adapter
specified by the input

InquireAdapter (84h)

parameters.

14

intgl.

Description

Number
(8Ch)

Name

Returns information
about the capabilities of
the socket specified by
the input parameters.

InquireSocket

Returns information
about the capabilities of
the window specified by
the input parameters.

InquireWindow | (87h)

SetPage (8Bh) |Configures the page
specified by the input
parameters. Only valid
for memory windows.
This service is
unsupported by PC

Card-32.

Sets the current
configuration of the
socket identified by the
input parameters.

SetSocket (8Eh)

SetWindow (89h) | Sets the configuration of
the window specified by

the input parameters.

FTL Socket Services: The CODE

In this section, we will give you the details of, and
where to look for listings of the important parts of the
actual code. This code, or a reasonable facsimile there-
of, was used to implement the socket services for M-
Systems FTL on the ULP Evaluation board. Please be
aware that because the board also contains a Cirrus
Logic 6710 Socket Controller, some of the code may be
specific to it. The PC Card implementation of the ULP
board does not fall into the scope of this Ap-Note, so
we will be conveniently ignoring any such code here.

On the ULP board, the page register for sliding window
control is located at 1/0O address 1096. The Window
size and enable register is located at I/0O address 2096.
Watch for references to these ports as they will be im-
portant! Your design will probably locate these control
ports in a differnt I/0 location with different meanings
for the bits. There is additional “flash” control logic
handled by the PicoPower Redwood chipset. Within
the chipset functions, there is advanced memory han-
dling and address range decoder functions that are used
to cause the RFA flash memory window to appear in
the upper memory block (high memory range) of the
system memory. The custom logic mentioned before
handles sliding the window to the flash.



intgl.

The code listings can be found in Appendix E. Due to
the volatile nature of software, most likely the listings
printed in this Ap-Note will NOT be the most current
revision. The full, and current version of the code for
this socket services portion of the flash software is
available with the ULP Evaluation Kit.

BOOT ISSUES

As we promised earlier in this document, we will now
face the issues involved with booting and how they re-
late to flash. The ULP Evaluation Board has the ability
to boot from floppy disk, hard disk drive, flash RFD,
or a PC Card. This necessarily places burdens on both
the system as well as the software supporting the flash
capabilities of the board (i.e., FTL/SS). The system
BIOS, through the use of the BIOS Setup can control
what device will be the primary boot device. When
flash is the boot device, the following issues need to be
handled.

The FTL software must load before boot and typically
using the previously discussed INT13h interception
method. In order to do this, both the FTL socket serv-
ices and the FTL itself must load BEFORE the boot is
attempted. This is accomplished by storing the software
on the system as an option/expansion BIOS. When an
x86 PC-like system is starting up, the system BIOS will
go out into the UMB and search for code that has the
signature (AAS5S5) and proper checksum (zero-sum) of
an option/expansion BIOS. The M-System TFFSBIOS
code includes utilities to do this in their Integrators
TrueFFS FTL package (see the TFFSBIOS Integrator’s
Guide, TFFSBIOS.DOC, included on the M-Systems
disk). Because the ULP uses an Intel Boot Block for the
system BIOS, it is a simple matter to store the FTL
“Expansion BIOS” or “Option” code in an appropriate
spot in memory. For the ULP board, the FTL Socket
Services can be found at C800—C8FF. The SS code is
approximately 4 KB and is designed to execute in place
and as such only requires a small amount of RAM (1K)
for its data segment. The FTL itself, in the form of M-
System’s TFFSBIOS, is located at C900—CFFF. Ver-
sion 3.2.10 and lower are not specifically designed to
execute in place and as such must be copied to DRAM
for execution. During the TFFSBIOS code initializa-
tion, the code image and data segment are copied to the
top of real mode memory (640K memory region) along
with the data segment for the socket services. The sys-
tem’s available memory size indicator is appropriately
decreased. The combined TFFSBIOS image, buffers,

AP-618

and data segments take a total of 36 KB—40 KB off of
the top of memory. For version 3.2.20 and higher of
TFFSBIOS, the code has been designed to operate in
place (or execute-in-place) from the flash itself (or a
“shadowed” version in Shadow Ram). In this case, only
the data segments (including buffers) for TFFSBIOS
and the socket services need occupy system ram. The
combined requirements total up to approximately 12K
taken off the top of memory.

Once the FTL code is recognized and loaded by the
BIOS, the flash drive still typically needs to operate as a
drive letter that will normally be interrogated by the
system BIOS for a boot image. If there are no other
“hard drives” installed in the system, this is not a prob-
lem as TFFSBIOS automatically grabs the first avail-
able “hard drive” spot which just happens to be the
usual boot “hard drive.” If another hard drive exists is
the system, and you want to boot from the FTL flash
drive, then special intervention is required. Fortunately,
the M-Systems utilities give you an option to force the
FTL drive to be drive C: (moving the other hard drives
up a spot) and therefore making the FTL flash drive
function normally in the boot sequence.

The last major boot issue, (and fairly obvious once you
think about it), is the need for a bootable format to exist
on the flash from which you are going to boot. The
actual requirement is for a master boot record with val-
id boot information to exist in logical sector O of the
boot device. This is accomplished in a similar fashion to
formatting a hard drive or floppy disk to be bootable.
Let’s assume the flash in the RFD has never been for-
matted or has been totally or partially erased. All that
is required is to boot up the ULP board normally from
another boot device (i.e. a bootable floppy) then invoke
the M-System’s format utility TFORMAT /1 (/1 as-
sumes the RFD has been selected as the primary
“boot” flash device and is therefore acting as socket 1
out of 2. Use /2 if the RFD is operating secondary to
flash in the PC Card socket.) After the FTL format has
been laid down on the flash by TFORMAT, it is advis-
able to reboot the system from the floppy in order for
the system to recognize the “new” valid FTL drive.
Next, a bootable master boot record has be created on
the flash. This is accomplished with the operating sys-
tem disk FORMAT utility, making sure to specify that
you wish to transfer the system to the “disk”. For DOS,
use: FORMAT /S d: where d: is the drive letter of the
FTL flash drive. With a properly formatted and boot
image enabled FTL drive as the primary drive, a nor-
mal boot can then occur from the flash RFD or Flash
Card.

15



AP-618

FTL AVAILABILITY—I WANT IT,
WHERE CAN | GET IT?

“Man, this FTL software sounds GREAT! It will do
exactly what I want to do on my system! Where can I
get it?” This is a very astute question. There are quite a
number of sources for commercially supported FTL.
The FTLs from each of the vendors has unique charac-
teristics. Pricing, performance, adaptability, etc. vary
from version to version. Please see Appendix A for a
listing of the most popular FTL vendors. As stated be-
fore, M-Systems is the creator of the specific FTL upon
which this document is based.

ADDITIONAL INFORMATION

intgl.
CONCLUSION

The general benefits of flash in an embedded system,
and especially a resident flash array operating as a drive
with FTL software, are quite obvious. The wide avail-
ability and market acceptance of the FTL standard
(FTL Is It!) makes the implementation and use of flash
in this way a simple matter. And although concepts
presented here were presented on a specific platform
with a specific set of features, the concepts do apply to
virtually any system that needs this kind of capability.
With some thought, and a little development work, you
too can soon be enjoying the advantages of flash and
FTL.

References
Order Number Document
290429 28F008SA 8-Mbit (1-Mbit x 8) FlashFile™ Memory Datasheet
272731 Embedded Ultra-Low Power Intel486™ SX Processor Datasheet
272755 Embedded Ultra-Low Power Intel486™ GX Processor Datasheet
292157 AP-605, Implementing a Resident Flash Disk with an Intel386™ EX
Embedded Processor
272324 AP-477, Low Voltage Embedded Design
Contact Intel/ Ultra Low Power Intel486™ SX Evaluation Board Reference Guide/User’s
Distribution Sales Office Manual

General Information Hotline

US/Canada: 1 (800) 628-8686 or (916) 356-7599
Japan/APAC: (916) 356-7599
Europe: +440 793-69-6776

Literature Orders:

US/Canada:
International:

1 (800) 548-4725

Please contact your local Intel office

BBS: (916) 356-3600 or +4401793-496340

FaxBack*:

Revision History

1(800) 628-2283 or (916) 356-3105

Number

Description

-001 Original Version

16



intgl.

APPENDIX A
FTL AVAILABILITY

M-SYSTEMS

TrueFFS* (v3.2 and up are FTL)
4655 Old Ironsides Dr. Suite #200
Santa Clara, CA 95054

(408) 654-5820
FAX: (408) 654-9107

System Soft Corporation

SS FTL
313 Speen St.
Natick, MA 01760
(508) 651-0088
FAX: (508) 651-8188

SCM Microsystem, Inc.

S-FTL (v3.0 and up are FTL)
131 Albright Way.
Los Gatos, CA 95030

(408) 370-4888
FAX: (408) 370-4880

Datalight, Inc.

CardTrick FTL
307 N. Olympic Ave. Suite 200
Arlington, WA 98223

(206) 435-8086
FAX: (206) 435-0253

AP-618

A-1






in‘tel . AP-618

APPENDIX B
PC CARD SOCKET SERVICES
DESCRIPTIONS AND FUNCTION NUMBERS

AccessConfigurationSpace (A2h)
This function is for CardBus. It provides an interface for Card Services to read and write values in the CardBus
configuration space.

Acknowledgelnterrupt (9Eh)
Returns information about which socket(s) on the adapter specified by the input parameters has had a change in
status.

GetAccessOffsets (A1h)

Fills the indicated buffer with an array of offsets for adapters using register-based, I/O port access to PC Card
memory address space. Used for adapter-specific, low-level, optimized PC Card access routines.

Cards that use memory windows, directly mapped into the system memory space do not support this function.

GetAdapter (85h)
Returns the current configuration of the specified adapter.
GetAdapterCount (80h)

Returns the number of adapters supported by all Socket Services handlers in the host system. Also used to determine
if one or more Socket Services handlers are installed.

GetEDC (96h)

Returns the current configuration of the EDC (Error Detect and Correct) generator specified by the input parame-
ters.

GetPage (84h)

Returns the current configuration of the page specified by the input parameters. Only valid for memory windows
(WS__IO is reset for the window).

GetSetPriorHandler (9Fh)
Gets, or replaces the entry point of a prior handler for the Adapter specified by the input parameters.
GetSetSSAddr (AOh)

Returns code and data area descriptions and provides a way to pass mode-specific data area descriptors to a Socket
Services handler.

GetSocket (8Dh)
Returns the current configuration of the socket identified by the input parameters.
GetSSInfo (83h)

Returns the version / compliance level of the Socket Services interface supporting the adapter specified by the input
parameters. It also identifies the adapters serviced by the handler.

GetStatus (8Fh)
Returns the current status of the card, socket, controls and indicators for the socket identified by the input parame-
ters.

GetVendorInfo (9Dh)
Returns information about the vendor implementing Socket Services for the adapter specified in the input parame-
ters.

GetWindow (88h)
Returns the current configuration of the window specified by the input parameters.



AP-618 in‘tel .

InquireAdapter (84h)

Returns information about the capabilities of the adapter specified by the input parameters.
InquireEDC (95h)

Returns the capabilities of the EDC generator specified by the input parameters.
InquireSocket (8Ch)

Returns information about the capabilities of the socket specified by the input parameters.
InquireWindow (87h)

Returns information about the capabilities of the window specified by the input parameters.
PauseEDC (99h)

Pauses EDC generation on a configured and in-use EDC generator specified by the input parameters.
ReadEDC (9ch)

Reads the EDC value computed by the EDC generator specified in the input parameters.
ResetSocket (90h)

Resets the PC Card in the socket and returns socket hardware to its power-on default state.
ResumeEDC (94h)

Resumes EDC generation on a configured and paused EDC generator specified by the input parameters.
SetAdapter (86h)

Sets the configuration of the specified adapter.

SetEDC (97h)

Sets the configuration of the EDC generator specified by the input parameters.

SetPage (8Bh)

Configures the page specified by the input parameters. Only valid for memory windows. This service is unsupported
by PC Card-32.

SetSocket (8Eh)

Sets the current configuration of the socket identified by the input parameters.

SetWindow (89h)

Sets the configuration of the window specified by the input parameters.

StartEDC (98h)

Starts a previously configured EDC generator specified by the input parameters.

StopEDC (9Bh)

Stops EDC generation on a configured and functioning EDC generator specified by the input parameters.
VendorSpecific (AEh)

As the name implies, this service is vendor specific. It is reserved for vendors to add proprietary extensions to the
Socket Services interface.



intgl.

AP-618

APPENDIX C
BIT TWIDDLING

An interesting capability of Intel Flash, in general, is that a flash byte or word can be “written” as many times as you
wish without having to first erase it and without affecting the component’s lifetime. You might be thinking “Now
wait just a minute here! You just said I have erase flash before I write.” That is only necessary only for a certain
circumstance: when you need any bits to change from a zero to a one. However, you can rewrite flash as long as bits
are being changed from 1 to zero, or are not changing at all. The following example illustrates the point:

Flash
Flash Byte Byte
What (hex) (Binary) OK or Fail
Flash byte Erase: FF 11111111
11 11
Flash byte write to AAh: AA 10101010 OK
{
Flash byte write to A8h A8 10101000 OK!
1
Flash byte write to 28h 28 00101000 OK!
1l

Flash byte write to 00h
Flash byte write to 01h

00 00000000 OKI
0 00000000 FAIL

Erase is required to rewrite this flash byte to anything other than 00h.

C-1






in‘tel . AP-618

APPENDIX D
RELATED THIRD PARTY DOCUMENTATION

M-Systems TrueFFS User’s Manual

M-Systems
4655 Old Ironsides Dr. Suite #200
Santa Clara, CA 95054
(408) 654-5820
FAX: (408) 654-9107

PT86C768 & PT86C718 “Redwood” Chipset Manual

Cirrus Logic / PicoPower
3100 West Warren Ave.
Fremont, CA 94538

(510) 623-8300
FAX: (510) 252-6020

PC Card Standard

PCMCIA

2635 North 1st Street

San Jose, California 95134
(408) 433-2273

FAX: (408) 433-9558

D-1






APPENDIX E
CODE LISTINGS

AP-618

$Log: SS.ASM $§
Revision 1.4 1995/09/08 12:55:56 mgianopulos
InitSocketServices() - Bug fix when booting from PCIC slot.

; Added option to boot from RFA only:InitSocketServices()

& GetBootDevice() .
Revision 1.1 1995/08/30 09:25:57
Initial revision

July/Aug. 1995 Mark Gianopulos - Intel Corp.
Modified for 486sx(TM) ULP RFA & PCMCIA Socket

Rev 3.3 28 Feb 1994 10:41:26
Fixed ResetSocket bug

Rev 3.2 08 Sep 1993 21:18:14
Version 2.01

Rev 3.1 01l Sep 1993 11:31:06

Rev 3.0 21 Jul 1993 11:38:34
Speed & IRQ additions

Rev 1.4 25 Jun 1993 12:47:34
No window, Step B, and other changes

Rev 1.3 30 Mar 1993 10:42:38
GetVersion change

Rev 1.2 07 Mar 1993 16:58:14
Power table correction

Rev 1.1 18 Jan 1993 11:44:04
SS Ver 2.0 final draft

Rev 1.0 12 Jan 1993 16:08:48

Initial revision.

PAGE 78, 132
TITLE SS.ASM

292173-11

E-1



AP-618 intel o

COMMENT

/******************************************‘k**************************

Title: Intel ULP 486sx RFA Socket Services

Copyright (c) 1995 Intel Corp.

Author: Amir Ban
M-Systems, Ltd.

co-author: Mark Gianopulos
Intel Corp.

Copyright (C) by M-Systems Ltd. 1992. All rights reserved.

************************************************************************/

.486
INCLUDE SSDEFS.INC ; global definitions
INCLUDE RFA.INC
INCLUDE PCIC.INC
INCLUDE VER.INC ; version number
ASSUME CS:NOTHING, DS:NOTHING, ES:NOTHING
ABSO SEGMENT AT 0OH PUBLIC USElé6 ; Zero page definition for
vectors
ABSO ENDS
DGROUP GROUP _TEXT, _DATA, _INIT
; --- Subroutine definitions
_TEXT SEGMENT BYTE PUBLIC 'CODE' USEl6
EXTRN pGetWindow:NEAR
EXTRN pSetWindow:NEAR
EXTRN  pGetPage:NEAR
EXTRN pSetPage:NEAR
EXTRN pGetSocket :NEAR
EXTRN pSetSocket :NEAR
EXTRN pGetStatus:NEAR
EXTRN pResetSocket :NEAR
EXTRN rGetWindow:NEAR
EXTRN rSetWindow:NEAR
EXTRN rGetPage :NEAR
EXTRN rSetPage :NEAR
EXTRN rGetSocket :NEAR
EXTRN rSetSocket :NEAR
EXTRN rGetStatus:NEAR
_TEXT ENDS

292173-12

E-2



in‘tel . AP-6

18

COMMENT

/********************************************************************

Customization Definitions
**********************************************************************/

DISPATCH_ENTRY STRUC ; Flash Entry dispatch table
pFunction DW ? ; Pointer to function

DISPATCH_ENTRY ENDS
R Equates
NO_OF PAGES EQU 1
NO_OF_EDCS EQU 0 ; no support for EDCs
BOOT_PCIC EQU 0
BOOT_RFA EQU 1
BOOT_RFA_ONLY EQU 2
BOOT_OTHER EQU 3
_DATA SEGMENT PARA PUBLIC 'DATA' USEl6

PUBLIC NoOfAdapters

PUBLIC NoOfWindows
NoOfAdapters DB 2 ; No. of installed adapters
NoOfWindows DB 2 ; No. of installed windows
NoOfSockets DB 2 ; No. of installed sockets

PUBLIC RfaSocketNo

PUBLIC PcicSocketNo
RfaSocketNo DB 0 ; Socket number assigned to RFA
PcicSocketNo DB 0 Socket number assigned to PCIC

BootDevice DB 2 System startup boot device

Use BOOT_XXX equates only

~e N

PUBLIC MemWndCaps
PUBLIC Fastest
WindowCharsTable LABEL NEAR

MemWndCaps DW 0000000011001111b ; Capabilities (see SS document-
InquireWindow)

MinWinBase DW ? ; Minimum base address (4K blocks)
MaxWinBase DW ? ; Maximum base address (4K blocks)
MinWinSize DW 4 ; 16K, Minimum window size (4K
blocks)

MaxWinSize DW 4 ; 16K, Maximum window size (4K
blocks)

RegGran DW 1 ; 4K, Window size granularity
RegBase DW 4 ; 16K, Base address alignment
CardOffAlign DW 1 ; Card offset alignment

Slowest DB 4 ; 100ns, Slowest access speed
Fastest DB 4 ; 100ns, Fastest access speed
WindowTableLength = $§ - WindowCharsTable

RoutineAddress DW ?

_DATA ENDS
292173-13

E-3



AP-618 ‘tel
®

TEXT SEGMENT BYTE PUBLIC 'CODE' USEl6

P Flash Entry point dispatch table, contains pointer to

function :

B and whether media check needs to be performed.

SSDispatch DISPATCH ENTRY <GetAdapterCount> ; 80
DISPATCH_ENTRY <NotImplemented> ; 81
DISPATCH_ENTRY <NotImplemented> ; 82
DISPATCH_ENTRY <GetSSInfo> ; 83
DISPATCH_ENTRY <InquireAdapter> ; 84
DISPATCH_ENTRY <GetAdapter> ; 85
DISPATCH_ENTRY <SetAdapter> ; 86
DISPATCH_ENTRY <InquireWindow> ; 87
DISPATCH_ENTRY <GetWindow> ; 88
DISPATCH_ENTRY <SetWindow> ; 89
DISPATCH_ENTRY <GetPage> ; 8a
DISPATCH_ENTRY <SetPage> ; 8b
DISPATCH_ENTRY <InquireSocket> ; 8c
DISPATCH ENTRY <GetSocket> ; 8d
DISPATCH_ENTRY <SetSocket> ; 8e
DISPATCH_ ENTRY <GetStatus> ; 8f
DISPATCH_ENTRY <ResetSocket> ; 90
DISPATCH_ENTRY <NotImplemented> ;91
DISPATCH_ENTRY <NotImplemented> ;92
DISPATCH_ENTRY <NotImplemented> ;93
DISPATCH_ENTRY <NotImplemented> ;94
DISPATCH_ENTRY <NotImplemented> 7 95
DISPATCH_ENTRY <NotImplemented> ; 96
DISPATCH_ENTRY <NotImplemented> ;97
DISPATCH_ENTRY <NotImplemented> ; 98
DISPATCH_ENTRY <NotImplemented> ;99
DISPATCH_ENTRY <NotImplemented> i 9a
DISPATCH_ENTRY <NotImplemented> : 9
DISPATCH_ENTRY <NotImplemented> ; 9c
DISPATCH_ENTRY <GetVendorInfo> ; 9d
DISPATCH_ENTRY <NotImplemented> ; e
DISPATCH_ENTRY <GetSetPriorHandler> ; 9f
DISPATCH_ENTRY <GetSetSSAddr> ; a0

NUM_Functions = ($ - OFFSET SSDispatch) / TYPE DISPATCH_ENTRY

Implementor DB 'HEB_SS '

SocketCharsTable LABEL NEAR

DW 1 ; Interface-type support (memory)
DD 0 ; IRQ levels inverting IREQ line
DD 0 ; IRQ levels not inverting IREQ

line

SocketTableLength = $§ - SocketCharsTable
292173-14

E-4



intel . AP-618

AdapterCharsTable LABEL NEAR

DW 0 ; Capabilities (individual)

DW 0 ; Active high IRQ levels

DW 08h ; - required by SysSoft Card
Services

DD 0 ; Active low IRQ levels

PowerManagementTable LABEL NEAR

DW 0 ; No entries - assume required pwr
exists
AdapterTableLength = $ - AdapterCharsTable
VendorInfo LABEL NEAR
DB 'Intel ULP Eval Board SS', 0
VendorInfolength = $ - VendorInfo
PAGE
COMMENT

/******************************‘k**************************************

Procedure: GetAdapterCount
Entry: No significant registers
Exit: [AL] = Number of adapters supported

[CX] = 'SS' (Socket Services id)

***********************************************************************/

GetAdapterCount PROC NEAR

ASSUME CS:_TEXT, DS:DGROUP, ES:NOTHING
MOV AL, NoOfAdapters ; One adapter

MOV CX, 'Ss'

CLC

RET

GetAdapterCount ENDP

292173-15

E-5



AP-618

intgl.

COMMENT

PAGE

Procedure:
Entry:

Exit:

/*********************************************************************

GetSSInfo

[AL] = Adapter

[AX] = 0 (Version 1.0 compatibility)

[BX] = Socket Services version number

[CH] = Number of adapters supported by handler
[CL] = First adapter supported by handler

*****************'k*************’k*************************************/

GetSSInfo PROC NEAR

ASSUME CS:_ TEXT, DS:DGROUP, ES:NOTHING

MOV BX, PCMCIA_COMPLIANCE ; PCMCIA SS Release

MOV CH, 1 ; This SS supports only One

adapter

MOV CL, NoOfAdapters ; first adapter number

DEC CL ; = total system adapters - 1

XOR AX, AX ; Return success (resets [CF])

RET
GetSSInfo ENDP

292173-16

E-6



L}
1a] AP-618
®
PAGE
COMMENT
/*********************************************************************
Procedure: InquireAdapter
Entry: [AL] = Adapter
[ES]:[DI] = Pointer to buffer for adapter
characteristics
and power management tables
Exit: [BH] = Number of windows
[BL] = Number of sockets
[CX] = Number of EDCs
[ES]:[DI] = Unchanged
********************‘k*************************************************/
InquireAdapter PROC NEAR
ASSUME CS:_TEXT, DS:DGROUP, ES:NOTHING
MOV CX, AdapterTableLength
MOV ES:[DI + 2], CX ; return wDatalength
CMP CX, ES:[DI] ; do we need to truncate?
JB IA2
MOV CX, ES:[DI] ; yes, truncate returned
data
IA2:
PUSH SI
PUSH DI
MOV SI, OFFSET DGROUP:AdapterCharsTable
ADD DI, 4
REP MOVSB ; copy AdapterCharsTable to ES:DI
POP DI
POP SI
MOV BH, NoOfWindows
MOV BL, NoOfSockets
MOV CX, NO_OF EDCS
XOR AH, AH ; Return success (resets [CF])
RET
InquireAdapter ENDP
292173-17

E-7



AP-618 |n

PAGE
COMMENT

/*********************************************************************

Procedure: GetAdapter
Entry: [AL] = Adapter
Exit: [DH] = Adapter State:

Bit 0 Reduced power consumption
Bit 1 State information preserved
[DI] = IRQ level used for status change interrupts

**********************************************************************/

GetAdapter PROC NEAR
ASSUME CS:_TEXT, DS:DGROUP, ES:NOTHING

XOR DH, DH
XOR DI, DI

XOR AH, AH ; Return success (resets [CF])
RET

GetAdapter ENDP

PAGE
COMMENT

/‘k********************************************************************

Procedure: SetAdapter

Entry: [AL] = Adapter
[DH] = Adapter State:
Bit O Reduced power consumption
Bit 1 State information preserved
[DI] = IRQ level used for status change interrupts

Exit: All registers preserved

***********************************************************************/

SetAdapter PROC NEAR

ASSUME CS:_TEXT, DS:DGROUP, ES:NOTHING
XOR AH, AH ; Return success (resets [CF])
RET

SetAdapter ENDP
292173-18

E-8



In AP-618
®
PAGE
COMMENT
M EEEEEEEEEREREEEEEEEEEE S S S R R R R R R R R e
Procedure: InquireWindow
Entry: [AL] = Adapter
[BH] = Window
[ES]:[DI] = Pointer to buffer for window characteristics
Exit: [BL] = Capabilities:
Bit 0 Common memory
Bit 1 Attribute memory
Bit 2 I/0 space
Bit 7 Wait supported
[CX] = Bit-map of assignable sockets
[ES]:[DI]) = buffer filled with window characteristics
LR R EE RS EE SRR RS R R b I b S T S e e S U S S
InquireWindow PROC NEAR
ASSUME CS:_TEXT, DS:DGROUP, ES:NOTHING
CMP BH, NoOfWindows
JB w2
MOV AH, BadWindow
STC
RET
IW2:
CMP BH, PCIC_WINDOW
JNE IW3
; PCIC Window Characteristics (Window 1, Socket ?)
MOV MinWinBase, pMinWinBase
MOV MaxWinBase, pMaxWinBase
MOV BL, 3 ; Common & Attribute memory
XOR CX, CX
MOV CL, PcicSocketNo ; window available for this socket
INC CX ; CX = PcicSocketNo + 1
JMP IwW4
IW3:
; RFA Window Characteristics (Window 0, Socket ?)
MOV MinWinBase, rMinWinBase
MOV MaxWinBase, rMaxWinBase
MOV BL, 1 ; Common memory only
XOR CX, CX
MOV CL, RfaSocketNo ; window available for this socket
INC CX ; CX = RfaSocketNo + 1
IW4:
PUSH CX
MOV CX, WindowTableLength
MOV ES:[DI + 2], CX
CMP CX, ES:[DI]
JB IwS
MOV CX, ES:[DI}
292173-19

E-9



AP-618

IWS5:

COMMENT

GetWindow

GW2:

GW3:

GW4:

GetWindow

Entry:

Exit:

PUSH SI

PUSH DI

MOV SI, OFFSET DGROUP:WindowCharsTable

ADD DI, 4

REP MOVSB

POP DI

PoP SI

POP CX

XOR AH, AH ; Return success (resets [CFJ])
RET

InquireWindow ENDP

PAGE

Procedure:

PROC

ASSUME

CMP
JB

MOV
STC
RET

CMP
JNE

CALL
JMP

CALL

RET

ENDP

akkkkkkkhkhkh bk hhhkhhkhh ok h kA h kh ko h A F ok kA kA kI A Ak khkkhdkhh kb kkkhhkxrk

GetWindow

[AL] = Adapter
[BH] = Window

[BL] = Socket
[CX] = Window size
[DH] = Window state:
Bit 0 Memory or I/O
Bit 1 Disabled or enabled
Bit 2 8-bit path or 16-bit path
Bit 3 Subdivided into pages
[DL} = Access speed
[DI] = Window base address

EEE RS SR SRR R SRS S S SRRt EEEEEEEEERE R EE R R R

NEAR
CS:_TEXT, DS:DGROUP, ES:NOTHING

BH, NoOfWindows

GW2
AH, BadWindow

BH, PCIC_WINDOW
GW3

pGetWindow
GwW4

rGetWindow

292173-20

E-10




L}
|n'te| AP-618
®
PAGE
COMMENT
ISR SRR SRR RERRE RS R RS o R e A AR R 1
Procedure: SetWindow
Entry: [AL] = Adapter
[BH] = Window
[BL] = Socket
[CX] = Window size
[DH] = Window state:
Bit 0O Memory or I/O
Bit 1 Disabled or enabled
Bit 2 8-bit path or 16-bit path
Bit 3 Subdivided into pages/EISA I/0 mapping
Bit 4 EISA common I/O accesses
{DL] = Access speed
[DI] = Window base address
Exit: All registers preserved
LRSS SRR SRS E MR EEE LSS EEEE e R R R R R R I I S R
SetWindow PROC NEAR
ASSUME CS:_TEXT, DS:DGROUP, ES:NOTHING
CMP BH, NoOfWindows
JB SW2
MOV AH, BadWindow
STC
RET
SW2:
; Check for wvalid socket
CMP BL, NoOfSockets
JB SW3
MOV AH, BadSocket
STC
RET
SW3:
CMP BH, PCIC_WINDOW
JNE SW4
CALL pSetWindow
JMP SW5
SW4:
CALL rSetWindow
SW5:
RET
SetWindow ENDP
292173-21

E-11



AP-618

COMMENT

GetPage

GP2:

GP3:

GP4:

GP5:

GetPage

PAGE

Procedure: GetPage

Entry: [AL] = Adapter
[BH] = Window
[BL] = Page

Exit: [DL] = Page state

Bit 0 Common space or attribute space
Bit 1 Disabled or enabled
[DI] = Memory card offset (4 KByte units)

PROC NEAR

ASSUME CS: TEXT, DS:DGROUP, ES:NOTHING
CMP BH, NoOfWindows

JB GP2

MOV AH, BadWindow

STC

RET

CMP BL, NO_OF_PAGES

JB GP3

MOV AH, BadPage

STC

RET

CMP BH, PCIC_WINDOW
JNE GP4

CALL pGetPage
JMP GP5

CALL rGetPage
RET

ENDP

IR R R R e R R R B B e R R E s

LR RS R R R R R R EREREE SRR R R R SR R R R R R R R s & DY

292173-22

E-12



intel . AP-618

PAGE

COMMENT

R SRR EEEEEEREERER RS R L e

Procedure: SetPage

Entry: [AL] = Adapter
[BH] = Window
[BL] = Page
{DL] = Page state

Bit 0 Common space or attribute space
Bit 1 Disabled or enabled
Bit 2 WP - Write protection

[DI] = Memory card offset (4 KByte units)

Exit: All registers preserved

LR E e EE R e AR EER R SRR R R R R o I S R

SetPage PROC NEAR
ASSUME CS:_TEXT, DS:DGROUP, ES:NOTHING
CMP BH, NoOfWindows
JB Sp2
MOV AH, BadWindow
STC
RET

SP2:
CMP BL, NO_OF_PAGES
JB SP3
MOV AH, BadPage
STC
RET

SP3:
CMP BH, PCIC_WINDOW
JNE SP4

CALL pSetPage

JMP SP5
SP4:

CALL rSetPage
SP5:

RET
SetPage ENDP

292173-23




AP-618

COMMENT

I R R g e e ]

Procedure: InquireSocket

Entry: {AL] = Adapter
[BL] = Socket
[ES]:[DI] = Pointer to Socket Characteristics

Exit: [BH] = Status Change Interrupt Capabilities
Bit 0 Write Protect Change

Bit 1 Card Lock Change

Bit 2 Ejection Request

Bit 3 Insertion request

Bit 4 Battery dead change
Bit 5 Battery warning change
Bit 6 Ready change

Bit 7 Card detect change
[DH] = Status Change reporting capabilities:
Bit O Write Protect Change

Bit 1 Card Lock Change

Bit 2 Ejection Request

Bit 3 Insertion request

Bit 4 Battery dead change
Bit 5 Battery warning change
Bit 6 Ready change

Bit 7 Card detect change
[DL] = Control and indicators capabilities
Bit 0 Write protect status

Bit 1 Card lock status
Bit 2 Motorized card ejection
Bit 3 Motorized card ejection
Bit 4 Card lock
Bit 5 Battery status
Bit 6 Busy status
Bit 7 XIP status
[ES]:[DI] = Unchanged

LR SRR RS SRR SRR e SRl R R R R R R

InquireSocket PROC NEAR
ASSUME CS:_TEXT, DS:DGROUP, ES:NOTHING

CMP BL, NoOfSockets

JB IS2
MOV AH, BadSocket
STC
RET
I82:
PUSH CX
MOV CX, SocketTableLength
MOV ES:[DI + 2], CX
CMP CX, ES:[DI]
JB IS3
MOV CX, ES:[DI]
IS3:
PUSH SI

292173-24

E-14




L}
|n'te| AP-618
®
PUSH DI
MOV SI, OFFSET DGROUP:SocketCharsTable
ADD DI, 4
REP MOVSB
POP DI
POP SI
POP CX
MOV BH, O
MOV DH, 80h ; Report card detect (always inserted)
MOV DL, O
XOR AH, AH ; Return success (resets [CF])
RET
InquireSocket ENDP
292173-25

E-15



AP-618 |n

SRR R e R R R R R T T

Procedure: GetSocket

1]

Entry: [AL] Adapter
[BL] = Socket

Exit: [BH] = Status change interrupt mask
Bit 0 Write Protect Change

Bit 1 Card Lock Change
Bit 2 Ejection Request
Bit 3 Insertion request
Bit 4 Battery dead change
Bit 5 Battery warning change
Bit 6 Ready change
Bit 7 Card detect change
[CH] = VCC level
[CL] = VPPl & VPP2 levels
[DH] = Socket state

Bit 0 Write Protect Change

Bit 1 Card Lock Change

Bit 2 Ejection Request

Bit 3 Insertion request

Bit 4 Battery dead change
Bit 5 Battery warning change
Bit 6 Ready change

Bit 7 Card detect change
[DL] = Control and indicators state

Bit 0 Write protect status
Bit 1 Card lock status

Bit 2 Motorized card ejection
Bit 3 Motorized card ejection
Bit 4 Card lock

Bit 5 Battery status

Bit 6 Busy status

Bit 7 XIP status

[DI] = IRQ level steering/Interface type

LR AR R RS R RS R R R R R R R e L R DY

GetSocket PROC NEAR

ASSUME CS: _TEXT, DS:DGROUP, ES:NOTHING
CMP BL, NoOfSockets
JB GS2
MOV AH, BadSocket
STC
RET

GS2:
CMP BL, PcicSocketNo
JNE GS3
CALL pGetSocket
JMP GS4

GS3:
CALL rGetSocket

GS4:

RET
GetSocket ENDP
292173-26

E-16



In o AP-618

ko k kA kA Ak d ko hk ok hhkh Ak kI hh h A A I I Ak h ok hh Ak ok kA kT kA r kA kdhkkhhkkkkhdhkkkdx

Procedure: SetSocket
Entry: [AL] = Adapter
[BL] = Socket

Exit: [BH] = Status change interrupt mask
Bit 0 Write Protect Change
Bit 1 Card Lock Change
Bit 2 Ejection Request
Bit 3 Insertion request
Bit 4 Battery dead change
Bit 5 Battery warning change
Bit 6 Ready change
Bit 7 Card detect change

CH] = VCC level
CL] = VPPl & VPP2 levels
[DH] = Socket state

Bit 0O Write Protect Change
Bit 1 Card Lock Change

Bit 2 Ejection Request

Bit 3 Insertion request

Bit 4 Battery dead change
Bit 5 Battery warning change
Bit 6 Ready change

Bit 7 Card detect change

[DL] = Control and indicators state
Bit 0 Write protect status

Bit 1 Card lock status
Bit 2 Motorized card ejection
Bit 3 Motorized card ejection
Bit 4 Card lock
Bit 5 Battery status
Bit 6 Busy status
Bit 7 XIP status
[DI] = IRQ level steering/Interface type
Exit: All register preserved
Fhhkdhhkdhdhhhhkrdhkdrhhdhhhdhdbhhdhdbhdrhdhdkdrdr b rrdh b drrdrrdhbhhd bk hdkhhokbdhdhkhhdrhd o
SetSocket PROC NEAR
ASSUME CS: _TEXT, DS:DGROUP, ES:NOTHING
CMP BL, NoOfSockets
JB SS2
MOV AH, BadSocket
STC
RET
SS2:
CMP BL, PcicSocketNo
JNE SS3
CALL pSetSocket
JMP SS4
$S83:
CALL rSetSocket
SS4:
RET
SetSocket ENDP

292173-27

E-17



AP-618 in‘tel .

Akkkhhkkkhkhhkxhhhhhhkkhhhhhhdhhhhhkhhhhhxhhhdhhhhhrhkhrhdrhdhhdhhddhrrhrkrrxkdxdk

Procedure: GetStatus
Entry: [AL] = Adapter
[BL}] = Socket
Exit: [BH] = Current card state:

Bit O Write protect

Bit 1 Card Locked

Bit 2 Ejection Request
Bit 3 Insertion Request
Bit 4 Battery dead

Bit 5§ Battery low

Bit 6 Card ready

Bit 7 Card detected
[DH] = Socket state
[DL) Control and indicator state
[DI] IRQ level steering/Interface type

Fhdkdhkkddhdhddhhhh b bk bbbk rhhh bk ko h Ak ko hkd bk h kA kA A A bk khhkhhhdhhdhh ok ko k ok hkkx o

GetStatus PROC NEAR
ASSUME CS:_TEXT, DS:DGROUP, ES:NOTHING

CMP BL, NoOfSockets

JB GC2
MOV AH, BRadSocket
STC
RET
GC2:
CMP BL, PcicSocketNo
JNE GC3
CALL pGetStatus
JMP GC4
GC3:
CALL rGetStatus
GC4:
RET
GetStatus ENDP

292173-28

E-18



In AP-618
®
N*********************************************************************
Procedure: ResetSocket
Entry: [AL] = Adapter
[BL] = Socket
Exit: All registers preserved
*********Jr-k*************************************************************N
ResetSocket PROC NEAR
ASSUME CS:_TEXT, DS:DGROUP, ES:NOTHING
CMP BL, NoOfSockets
JB RS2
MOV AH, BadSocket
STC
RET
RS2:
CMP BL, PcicSocketNo
JNE RS3
CALL pResetSocket
JMP RS4
RS3:
XOR AH, AH ; Return success (resets [CF])
RS4:
RET
ResetSocket ENDP
~*********************************************************************
Procedure: GetVendorInfo
Entry: [AL] = Adapter
[BL] = Type
[ES]:[DI] = Vendor info buffer
Exit: [DX] = Vendor Release
*************************************************************************,\,
GetVendorInfo PROC NEAR
ASSUME CS: TEXT, DS:DGROUP, ES:NOTHING
CMP BL, O
JNE GV1
PUSH CX
MOV CX, VendorInfoLength
MOV ES:[DI + 2], CX
CMP CX, ES:[DI]
JB GV3
MOV CX, ES:[DI]
GV3:
PUSH SI
PUSH DI
MOV SI, OFFSET DGROUP:VendorInfo
ADD DI, 4
REP MOVSB
POP DI
POP SI
POP CX
GV1l:
MOV DX, VENDOR VERSION ; Qur version no.
XOR AH, AH ; Return success (resets [CF])
RET
GetVendorInfo ENDP
292173-29

E-19



AP-618 |n

VR R e R e e

Unimplemented Socket Services

***********************************************************************/

NotImplemented PROC NEAR

ASSUME CS: TEXT, DS:NOTHING, ES:NOTHING
MoV A¥, UnsupportedFunction

STC

RET

NotImplemented ENDP

VAR R A R R R R R R R R R R R e R R T P ey

Procedure: _SocketServices
Purpose: Main entry point of Socket Services
Entry: [AH] = Function, starting at 80h

Others vary by function

Exit: [CF] = Status
If [CF] set, [AX] = error
Others vary by function
*************************************~A-********************************‘k**/

PUBLIC _SocketServices

_SocketServices PROC  FAR

ASSUME CS:_TEXT, DS:DGROUP, ES:NOTHING
AND AH, 7Fh
CMP AH, NUM_ Functions ; Valid request ?
JB So0S2 ; Yes, continue
MOV AX, UnsupportedFunction ; No, invalid command
STC ; Set carry bit to indicate error
RET
So0S82:
PUSH AX
PUSH BX
XOR AL, AL
XCHG AH, AL
ADD AX, AX
MOV BX, AX
ADD BX, OFFSET DGROUP:SSDispatch ; Add base address of tbl
MOV AX, CS:[BX.pFunction]
MoV RoutineAddress, AX
POP BX
POP AX
CALL [RoutineAddress] ; Perform requested function
; AX contains error code from function
RET
_SocketServices ENDP
_TEXT ENDS

292173-30

E-20



L}
|n'te| AP-618
®
_INIT SEGMENT BYTE PUBLIC 'INIT' USEl6
ASSUME CS:DGROUP, DS:DGROUP, ES:NOTHING
EXTRN PcicInit:NEAR
EXTRN RfaInit:NEAR
szSignonMsg DB CR, LF
DB 'Intel ULP 486sx (TM) Evaluation Board PCMCIA '
DB sPCMCIA_COMPLIANCE, ' Socket Services Interface.', CR,
LF
DB '(C) Copyright 1992, M-Systems Ltd.', CR, LF
DB '(C) Copyright 1995, Intel Corporation, Version '
DB SVENDOR_VERSION, CR, LF
DB LF
DB EOS
szBbortMsg DB CR, LF
DB 'Initialization aborted.', CR, LF
DB EOS
szPressKeyMsg DB CR, LF
DB 'Press any key to continue ... ', CR, LF
DB EOS
szLongDelay DB 'Hard Disk Drive detected!', CR, LF
DB 'This will cause a 45 second delay. Please wait...'
DB CR, LF
DB CR, LF
DB EOS
szSelectBootDevice DB ' Select Boot Device', CR, LF, LF
DB ! 1) PCMCIA Slot + RFA', CR, LF
DB ! 2) RFA + PCMCIA Slot', CR, LF
DB ' 3) RFA only', CR, LF
DB CR, LF
DB ' Enter a number: '
DB EOS
szResponsel DB 1
DB CR, LF
DB EOS
szResponse2 DB '2°
DB CR, LF
DB EOS
szResponse3 DB '3
DB CR, LF
DB EOS
szCrLf DB CR, LF
DB EOS
292173-31

E-21



AP-618

S EEE KKK IR KK KK I KKK KKK KKK KAK I A I I I I AR KA I IR I I AR I A I Ak kA XA Ak kK kA * KKK

Procedure: _InitSocketServices
Purpose: Do first-time initialization
Entry: [AL] = Adapter no.

[DX] = BIOS Expansion segment (0 = not applicable)
[ES]:[DI] = 8-Character implementation name buffer

Exit: [AX] = status

Locate Adapter and establish Adapter Data
Install Socket Services

KH KK I K I I E I KKK KX I IR KK I A KKK KKK KKK I FH I IR K AR A KA I A F I I I Ak hhkkh ok kx /

PUBLIC _InitSocketServices
_InitSocketServices PROC  NEAR

ASSUME CS:DGROUP, DS:DGROUP, ES:NOTHING
PUSH DX
INC AL

MOV NoOfAdapters, AL

MOV DX, OFFSET DGROUP:szSignonMsg
CALL PrintMsg

PROTO1_BUGFIX
CALL _GetBootDevice

CMP AL, BOOT_PCIC
JNE Initl

MOV PcicSocketNo, 0
MOV RfaSocketNo, 1
MOV NoOfSockets, 2
MOV NoOfWindows, 2
JMP Init2

Initl:
MOV RfaSocketNo, 0
MOV PcicSocketNo, 1
MOV NoOfSockets, 2
MOV NoOfWindows, 2
CMP AL, BOOT_RFA_ONLY
JNE Init2
MOV PcicSocketNo, -1
MOV NoOfSockets, 1
MOV NoOfWindows, 1
JMP Init3

Init2:

; (3) Initialize Socket Services
CALL PcicInit
JNC Init3

292173-32

E-22




|n AP-618
®
MOV DX, OFFSET DGROUP:szAbortMsg
CALL PrintMsg
MOV DX, OFFSET DGROUP:szPressKeyMsg
CALL PressKey ; Wait for acknowledgement
POP DX
RET
Init3:
CALL RfaInit
POP DX
; Copy Implementor string into ES:DI buffer
PUSH SI
PUSH CX
MOV cX, 8
MOV SI, OFFSET DGROUP:Implementor
REP MOVSB
POP CX
POP ST
XOR AX, AX ; Return success (resets [CF])
RET
_InitSocketServices ENDP
COMMENT
/-k*******************************************************************‘k
Procedure: _GetBootDevice
Purpose: Determine which device is primary boot device.
(i.e. IDE hard drive, RFA, or PCMCIA slot
Exit: [AL] = BOOT_xxx (boot device)
**-k************-k****-k-k******‘k*******************************************/
PUBLIC _GetBootDevice
_GetBootDevice PROC  NEAR
ASSUME CS:DGROUP, DS:DGROUP, ES:NOTHING
; Does IDE Hard drive exist?
PUSH ES
MOV AX, ABSO ; Point to ABSO segment
MOV ES, AX
MOV AL, ES:HardDrive
POP ES
CMP AL, O
JE GBD2
; Yes!
292173-33

E-23



AP-618 iN
MOV DX, OFFSET DGROUP:szLongDelay
CALL PrintMsg
MOV AL, BOOT_OTHER
JMP GBD3 ; leave
GBD2:
; No! Hard drive does not exist, therefore
; prompt for boot device (RFA or PCMCIA Slot)
MOV DX, OFFSET DGROUP:szSelectBootDevice
CALL PrintMsg
GBD6:
XOR AH, AH
INT 16h ; Read character from keyboard buffer
OR AL, AL
Jz GBD5
MOV DX, OFFSET DGROUP:szResponsel ; Echo character
CMP AL, 31h
JE GBD7
MOV DX, OFFSET DGROUP:szResponse2
CMP AL, 32h
JE GBD7
MOV DX, OFFSET DGROUP:szResponse3
GBD7:
CALL PrintMsg
MOV DX, OFFSET DGROUP:szCrLf
CALL PrintMsg
AND AX, 00OFh
DEC AL
CMP AL, BOOT_OTHER
JAE GBD6
JMP GBD3
GBD5:
Send Function key back to keyboard buffer for BIOS to process
CMP AH, 3Ch ; F2 key?
JINE GBD6
MOV AH, 05
XOR CL, CL
MOV CH, 3Ch
INT 16éh
GBD3:
RET

_INIT

_GetBootDevice ENDP

ENDS

END

292173-34

E-24




intgl.

AP-618

;
; Revision 1.
;

;  July/Aug.

PAGE

.486

INCLUDE
INCLUDE

DGROUP
_DATA

EXTRN
EXTRN

MemCardOffset

DATA

$Log: RFA.ASM $

1 1995/08/30 09:25:06

Initial revision

78, 132

TITLE RFA.ASM

COMMENT R R R R R R R R e R R R R R e 3

SSDEFS.INC
RFA.INC

ASSUME CS:NOTHING,

1995 Mark Gianopulos - Intel Corp.
; Created for 486sx(TM) ULP RFA & PCMCIA Socket

RFA Specific functions for ULP Socket Services

Title: RFA.ASM

Purpose:

Author: Mark Gianopulos
Intel Corporation

Copyright (C) by Intel 19

95. All rights reserved.

R RS SRS R RS SRS SRR SRR R R R R R R R R R R R R R b R R R

; global definitions

DS :NOTHING, ES:NOTHING

GROUP _TEXT, _DATA, INIT

SEGMENT PARA PUBLIC

RfaSocketNo:BYTE
Fastest:BYTE

bw 2

ENDS

'DATA'

USE16

s5s.asm
; Ss.asm

; Current card offset (can't read
; page register)

292173-35

E-25



]
AP-618 |n‘te| .
TEXT SEGMENT BYTE PUBLIC 'CODE' USEl6

; Proc SetWindowBaseAddr

; Desc: Sets the RFA system window

; to the value specified in BX

; I: BX - contains C8, DO, D4, D8, or DC

; Trashes: AX, BX, DX

SetWindowBaseAddr PROC NEAR
SHR BX, 2 ; DO ==> 34 (bitsl4-bits2l)
MOV BH, 80h ; enable GPCS2#, (bits22-bits23)
CLI ; Must not be interrupted
IODELAY
MOV DX, REDWOOD_INDEX ; Set base address
MOV AX, WINDOW_BASE_REG
ouT DX, AX
IODELAY
MOV DX, REDWOOD_DATA
MOV AX, BX
ouT DX, AX
IODELAY
MOV DX, REDWOOD INDEX ; Enable base address
MOV AX, WINDOW BASE EN REG
ouT DX, AX
IODELAY
MOV DX, REDWOOD_DATA

; MOV AX, 3FFCh ; assumes 64K windows only!

H MOV AX, 3FFEh ; assumes 32K windows only!
MOV AX, 3FFFh ; assumes 16K windows only!
ouT DX, AX
STI
RET

SetWindowBaseAddr ENDP

292173-36

E-26



In ® AP-618

; Proc: GetWindowBaseAddr

; Desc: Returns the RFA system window

; address in 4K units. (ie: C8, DO, D4, D8, or DC)
; O: AX - returns address in AX register

; Trashes: AX, DX

GetWindowBaseAddr PROC NEAR

ASSUME CS:_TEXT, DS:DGROUP, ES:NOTHING
CLI ; Must not be interrupted
IODELAY

MOV DX, REDWOOD_INDEX ; Get base address
MOV AX, WINDOW_BASE REG

ouT DX, AX

IODELAY

IN AX, REDWOOD DATA

STI

AND AX, O03FFh ; mask out top 6 bits
SHL AX, 2 ; 34 ==> DO

RET

GetWindowBaseAddr ENDP

COMMENT ~**kkdxhkkkhkkhh ke h bk h kb ok h Ak ok h Ak F kA Ak h kA Xk h A Ak A A A A dkkk h Ak Fkhhkkk kK&

Procedure: rGetWindow

Entry: [AL] = Adapter
[BH] = Window

Exit: [BL] = Socket
[CX] = Window size
[DH] = Window state:
Bit 0 Memory or I/O
Bit 1 Disabled or enabled
Bit 2 8-bit path or 16-bit path
Bit 3 Subdivided into pages
[DL] = Access speed
[DI] = Window base address
Kk khkhhh bk hkhhkhhkhd A dhdkhdhhh ko kd kT hhdhhhhhhhkhhh bk hhhhhhhhhhd b hhrk kA A hd kK hdkdh ko
PUBLIC rGetWindow
rGetWindow PROC NEAR
ASSUME CS:_TEXT, DS:DGROUP, ES:NOTHING

; [BL] = Socket
MOV BL, RfaSocketNo

; [DI] = Window base address
call GetWindowBaseAddr ; returned in AX as 4K unit
MOV DI, AX

; [CX] = Window size

MOV DX, WINDOW_SIZE REG

IN AL, DX

PUSH AX ; save register contents

292173-37

E-27



AP-618 iN

NOT AL ; complement

AND AL, 03h ; mask off all but bits 0 and 1
INC AL ; add 1

MOV CL, AL ; save in cl (shift factor)

MOV AX, 01 ; bit to be shifted (2,4,8,16)
SHL AL, CL

MOV CX, AX

; [DH] = Window state

POP AX ; restore register

MOV DH, 0O ; 8bit + disabled + mem

TEST AL, 04h

Jz rGW6

OR DH, 10b ; 8bit + enabled + mem
rGW6:

; [DL] = Access speed

MOV DL, Fastest
XOR AH, AH ; Return success (resets [CF])

RET
rGetWindow ENDP

COMMENT ~**dhdkhkdhhhdhhkh kb kb kh h ok ko h kA h ok Ak ok ok h ok ok ok khhhkhk ok h ks k ko hkhhkkhkkkkkkx k&

Procedure: rSetWindow
Entry: [AL] = Adapter
[BH] = Window

[BL] = Socket
[CX] Window size
[DH] Window state:
Bit 0 Memory or I/O
Bit 1 Disabled or enabled
Bit 2 8-bit path or 16-bit path
Bit 3 Subdivided into pages/EISA I/0 mapping
Bit 4 EISA common I/O accesses

[DL] = Access speed
[DI] = Window base address
Exit: All registers preserved

R R R R R R s R R Y Y

PUBLIC rSetWindow
rSetWindow PROC NEAR

ASSUME CS:_TEXT, DS:DGROUP, ES:NOTHING
CMP BL, RfaSocketNo

JE rSwl

MOV AH, BadSocket

STC

RET

rSwWl:
; Check for valid window size
MOV AH, WINDOW_SIZE_ 08K
CMP cX, 2 B 8K
JE rSw4
MOV AH, WINDOW_SIZE 16K

292173-38

E-28



|n AP-618
®

CMP CX, 4 ; 16K
JE r3w4
MoV AH, WINDOW_SIZE 32K
CMP CX, 8 5 32k
JE rsSwé
MoV AH, WINDOW_SIZE_64K
CMP CX, 10h ; 64K
JE rsSw4
CMP Cc¥, 0 H 64K - MAX (WORD)
JE rSwé
MOV AH, BadSi:ze
STC
RET

rSW4:
; Set new window size
PUSH DX
MOV DX, WINDOW_SIZE_REG
IN AL, DX
AND AL, OFCh ; Clear bits 0,1
OR AL, AH ; assign bits 0,1
ouT DX, AL
POP DX
; Check for valid Window Base address
CMP DI, rMinWinBase
JB rSW5
CMP DI, rMaxWinBase
JBE rSWé

rSwW5:
MOV AH, BadOffset
STC
RET

rSWeé:
; Set new window base address
PUSH DX
MOV BX, DI
call SetWindowBaseAddr
POP DX
; Check for valid window state
CMP DH, O ; Memory, disabled, 8bit, 1lpage
JE rSW7
CMP DH, 2 ; Memory, enabled, 8bit, lpage
JE rSW8
MOV AH, BadAttribute
STC
RET

rSwWw7: ; disable window
PUSH DX
MoV DX, WINDOW_ENABLE_REG
IN AL, DX
AND AL, OFBh ; clear bit 3
ouT DX, AL
POP DX
JMP rsSwo

292173-39

E-29



AP-618 |n'te| o
rSW8: ; enable window
PUSH DX
MOV DX, WINDOW_ENABLE REG
IN AL, DX
OR AL, 04h ; set bit 3
our DX, AL
POP DX
rSWo:
; Check for valid access speed
CMP DL, 04 ; must be 100ns speed
JE rSwW1lo
MOV AH, BadSpeed
STC
RET
rSwW1lo:
XOR AH, AH ; Return success (resets [CF])
RET
rSetWindow ENDP
292173-40

E-30



intQI o AP-618

COMMENT ~* %k kkhhkhkk ok ok hhk ok ok ok ko h h ko ok kA A A kA * h kA h ko kA Ak ko kA A FF kA Ak k kX khk k&

Procedure: rGetPage
Entry: [AL] = Adapter
[BH] = Window
[BL] = Page
Exit: [DL] = Page state

Bit 0 Common space or attribute space
Bit 1 Disabled or enabled
[DI] = Memory card offset (4 KByte units)
e R R R R R SRS R SRS SRS SSRSeER e SE SRR R e R EEE R R I I B I e
PUBLIC rGetPage
rGetPage PROC NEAR
ASSUME CS:_TEXT, DS:DGROUP, ES:NOTHING

; [DL] = Page state
MOV DX, WINDOW_ENABLE REG

IN AL, DX
MOV DL, 00h ; 'wp + disabled + common
TEST AL, 04h
JZ rGP4
MOV DL, 02h ; set enabled bit
rGP4:
; [DI] = Memory card offset (4 KByte units)
MOV DI, MemCardOffset
XOR AH, AH ; Return success (resets [CF])
RET
rGetPage ENDP

COMMENT ~***kkkkdhkhhhhhhhhhhkhrkhhhdhhkkh bk kkhdkk ok k ok ok ok dok bk gk d ook ok sk ok ok ok ok ko ek k% ok

Procedure: rSetPage

Entry: [AL] = Adapter
[{BH] = Window
{BL] = Page
[DL] = Page state
Bit 0 Common space or attribute space
Bit 1 Disabled or enabled
Bit 2 WP - Write protection
[DI] = Memory card offset (4 KByte units)
Exit: All registers preserved

B R R R S L X

PUBLIC rSetPage

rSetPage PROC NEAR
ASSUME CS:_TEXT, DS:DGROUP, ES:NOTHING
; [DL] = Page state
; Check for valid page state
CMP DL, 00 ; common, disabled, !WP
JE rSP4
CMP DL, 02 ; common, enabled, !WP
JE rSP5
MOV AH, BadAttribute
STC

292173-41

E-31



AP-618 iN
RET
rSP4: ; disable window
MOV DX, WINDOW_ENABLE REG
IN AL, DX
AND AL, OFBh ; clear bit 3
ouT DX, AL
JMP rSPé
rSP5:
; enable window
MoV DX, WINDOW_ENABLE_REG
IN AL, DX
OR AL, 04h ; set bit 3
ouT DX, AL
rSP6:
; [DI} = Memory card offset (4 KByte units)
; 0) Save new offset in global variable
MOV MemCardOffset, DI
i 1) Determine window size and save multiplier in cl
MOV DX, WINDOW_SIZE REG
IN AL, DX ; a) read window size
NOT AL ; b) complement
AND AL, 03h ; ¢) mask off all but bits 0 and 1
INC AL ; d) add 1
MOV CL, AL ; e) save in cl (shift factor)
MOV CH, AL ; f) save in ch (shift factor)
; 2) Calculate Page value, store in AL
MOV AX, DI
XOR AH, AH ; highest value is 00FE
SHR AL, CL ; c) Divide offset by WinSize/4K
; 3) Swap the page (AL) bits from low to high
; i.e. 0000 0001 ==> 1000 0000
; BL == i, AL == page, AH == fpage
XOR BL, BL ; for loop counter i=0, for (i=0;;)
rSP7:
MOV CL, BL
MOV bL, 1
SHL DL, CL ; (1 << 1)
TEST AL, DL ; 1f ((page & (1 << i)) !'= 0)
Jz rSP8
MOV DL, 7
SUB DL, CL i (7 - 1)
MoV CL, DL
MOV DL, 1
SHL DL, CL ;1 << (7 - 1)
OR AH, DL ; fpage |= 1 << (7 - 1);
rSP8:
INC BL ; for (;:i++)
CMP BL, 8 ; for (;i<8;)
JB rSp7
; 4) Output the right page number
MOV CL, CH ; restore shift factor from 1.f
SHR AH, CL ; fpage >> i
292173-42

E-32




In o AP-618

MOV AL, AH

MOV DX, WINDOW_PAGE_REG
ouT DX, AL

XOR AH, AH ; Return success (resets [CF])
RET
rSetPage ENDP

COMMENT ~* %k kkkkkhkkkh bk hkh kb khkhhkhh ok h ko khhk ok hh kA kkFhhkkhhkkkhkdhkhkkhkkk k&

Procedure: rGetSocket

Entry: [AL] = Adapter
[BL] = Socket

Exit: [BH] = Status change interrupt mask
Bit 0 Write Protect Change

Bit 1 Card Lock Change

Bit 2 Ejection Request

Bit 3 Insertion request

Bit 4 Battery dead change
Bit 5 Battery warning change
Bit 6 Ready change

Bit 7 Card detect change

[CH] = VCC level
[CL] = VPPl & VPP2 levels
[DH] = Socket state

Bit 0 Write Protect Change
Bit 1 Card Lock Change

Bit 2 Ejection Request

Bit 3 Insertion request

Bit 4 Battery dead change
Bit 5 Battery warning change
Bit 6 Ready change

Bit 7 Card detect change
[DL] = Control and indicators state
Bit 0 Write protect status

Bit 1 Card lock status

Bit 2 Motorized card ejection
Bit 3 Motorized card ejection
Bit 4 Card lock

Bit 5 Battery status

Bit 6 Busy status

Bit 7 XIP status

[DI] = IRQ level steering/Interface type

LA SRR R R R R R R R Rl e R R S

PUBLIC rGetSocket
rGetSocket PROC NEAR

ASSUME CS:_TEXT, DS:DGROUP, ES:NOTHING
; [BH] = Status change interrupt mask

MOV BH, O ; none
; [CH] = VCC level

MOV CH, O ; no pwrentry
; [CL] = VPP1 & VPP2 levels

MOV CL, 0 ; no pwrentry

; [DH] = Socket state
292173-43

E-33



AP-618 iN

MOV DH, O ; no states to report

; [DL] = Control and indicators state
MOV DL, O ; none

; [DI] = LowByte=IRQ level steering/HiByte=Interface type
MOV DI, 0100h ; No IRQ's, memory only
XOR AH, AH ; Return success (resets [CF])
RET

rGetSocket ENDP

COMMENT ~**dh ok ko ok ko ko kA ko h kA ko h h Ak hh ok ok kA ko kA h ok ko k Ak kA Ak hhh ko h kA kkhkkk kA k ok h k&

Procedure: rSetSocket
Entry: [AL] = Adapter
[BL] = Socket
Exit: [BH] = Status change interrupt mask

Bit 0 Write Protect Change

Bit 1 Card Lock Change

Bit 2 Ejection Request

Bit 3 Insertion request

Bit 4 Battery dead change
Bit 5 Battery warning change
Bit 6 Ready change

Bit 7 Card detect change
[CH] = VCC level
[CL] VPPl & VPP2 levels
[DH] = Socket state

Bit 0 Write Protect Change
Bit 1 Card Lock Change

Bit 2 Ejection Request

Bit 3 Insertion request

Bit 4 Battery dead change
Bit 5 Battery warning change
Bit 6 Ready change

Bit 7 Card detect change

[DL] = Control and indicators state

Bit 0 Write protect status
Bit 1 Card lock status

Bit 2 Motorized card ejection
Bit 3 Motorized card ejection
Bit 4 Card lock

Bit 5 Battery status

Bit 6 Busy status

Bit 7 XIP status

[DI] = IRQ level steering/Interface type

Exit: All register preserved
LR EE R R RS SRR RS SRR R Rt o b b 2 S S i e S

PUBLIC rSetSocket
rSetsSocket PROC NEAR

ASSUME CS:_TEXT, DS:DGROUP, ES:NOTHING
XOR AH, AH ; Return success (resets [CF])
RET

rSetSocket ENDP

292173-44

E-34



intgl.

AP-618

Exit:

rGetStatus

rGetStatus
_TEXT

_INIT

Procedure:

Entry:

COWENT Ak hkhkdd ok kkdhhhhhk bk dhd ko kA kkhhh ko hr kb kdhkhhhdrhhhdhdhhdhhdhdhdhdhddr

rGetStatus
[AL] = Adapter
[BL] = Socket
[BH] = Current card state:
Bit O Write protect
Bit 1 Card Locked
Bit 2 Ejection Request
Bit 3 Insertion Request
Bit 4 Battery dead
Bit 5 Battery low
Bit 6 Card ready
Bit 7 Card detected
[DH] = Socket state
[DL] = Control and indicator state
[DI] = IRQ level steering/Interface type

Fkhkkhhkhkhdhhdhhhhdrhdhhdh bk d bk d b dhddFr Ak dhdhhdhdhrdrhdhdhhhhkdhhdhhhhbddhrrddhdhhodh o

PUBLIC rGetStatus

PROC
ASSUME

; [BH]
MOV

; [DH]
MOV

i [DL]
MOV

; [DI]
MOV

XOR
RET

ENDP

ENDS

NEAR
CS:_TEXT, DS:DGROUP, ES:NOTHING

= Status change interrupt mask
BH, 80h ; card inserted

= Socket state
DH, 0 ; no states to report

= Control and indicators state
DL, O ; none

= LowByte=IRQ level steering/HiByte=Interface type
DI, 0100h ; No IRQ's, memory only

AH, AH ; Return success (resets [CF))

SEGMENT BYTE PUBLIC 'INIT' USEl6

ASSUME

CS:DGROUP, DS:DGROUP, ES:NOTHING

292173-45

E-35



AP-618 iN

COMMENT /***hkhhkhhhkhkhhkhhk ke k ok ok ok ok h ok ok ok kA Ak Ak ok k ok khhh ok hk ok ok kk ke ke kA A Ak Ak kkdk k& % & %

Procedure: RfaInit

Purpose: Do first-time initialization for RFA
Entry: nothing

Exit: [AX] = status

Initialize chip set and configure window for RFA
*****************************************************************************/
PUBLIC RfaInit
RfaInit PROC NEAR

ASSUME CS:DGROUP, DS:DGROUP, ES:NOTHING
PUSH BX
PUSH DX
; 0) Setup REDWOOD Registers
CLI ; Must not be interrupted
IODELAY
MOV DX, REDWOOD_ INDEX
MoV AX, REDWOOD_PS_REG3 ; 112h
ouT DX, AX
IODELAY
MOV DX, REDWOOD_ DATA
IN AX, DX
OR AX, 4

ouT DX, AX

IODELAY

MOV DX, REDWOOD INDEX

MOV AX, REDWOOD_PS_REGl ; 110h
oUT DX, AX

IODELAY

MOV DX, REDWOOD_DATA
IN AX, DX

OR AX, 0100h

ouT DX, AX

STI

; 1) Disable FlashROMdisk (RFA)

MOV DX, WINDOW_ENABLE_REG
IN AL, DX
AND AL, OFBh ; clear bit 3

ouT DX, AL

; 2) Configure system window base address
MOV BX, rMinWinBase
call SetWindowBaseAddr

; 3) Configure system window size
MOV DX, WINDOW_SIZE REG
IN AL, DX
AND AL, OFCh ; Clear bits 0,1
OR AL, WINDOW_SIZE_16K ; assign bits 0,1

292173-46

E-36



L}
N AP-618
®

ouT DX, AL

; 4) Configure page address (card address 0)
MOV MemCardOffset, 0
MOV AL, O
MoV DX, WINDOW_PAGE_REG
ouT DX, AL

; 5) Enable FlashROMdisk (RFA)
MOV DX, WINDOW_ENABLE_ REG
IN AL, DX
OR AL, 04h ; set bit 3
ouT DX, AL
POP DX
POP BX
XOR AX, AX ; Return success (resets [CF])
RET

RfaInit ENDP

_INIT ENDS
END

292173-47

E-37



