80960MC Hardware Designer’s
Reference Manual

j i
Order Number: 271079-002

intel

LITERATURE

To order Intel Literature or obtain literature pricing information in the U.S. and Canada call or write Intel
Literature Sales. In Europe and other international locations, please contact your local sales office or
distributor.

INTEL LITERATURE SALES In the U.S. and Canada
P.0. BOX 58130 call toll free
SANTA CLARA, CA 95052-8130 (800) 548-4725

CURRENT HANDBOOKS

Product line handbooks contain data sheets, application notes, article reprints and other design information.

TITLE LITERATURE
ORDER NUMBER
COMPLETE SET OF HANDBOOKS 231003
(Available in U.S. and Canada only)
AUTOMOTIVE PRODUCTS HANDBOOK 231792
(Not included in handbook set)
COMPONENTS QUALITY/RELIABILITY HANDBOOK 210997
EMBEDDED CONTROL APPLICATIONS HANDBOOK 270648
8-BIT EMBEDDED CONTROLLER HANDBOOK 270645
16-BIT EMBEDDED CONTROLLER HANDBOOK 270646
32-BIT EMBEDDED CONTROLLER HANDBOOK 270647
MEMORY COMPONENTS HANDBOOK 210830
MICROCOMMUNICATIONS HANDBOOK 231658
MICROCOMPUTER PROGRAMMABLE LOGIC HANDBOOK 296083
MICROPROCESSOR AND PERIPHERAL HANDBOOK 230843
(2 volume set)
MILITARY PRODUCTS HANDBOOK 210461
(2 volume set. Not included in handbook set)
OEM BOARDS AND SYSTEMS HANDBOOK 280407
PRODUCT GUIDE 210846
(Overview of Intel’s complete product lines)
SYSTEMS QUALITY/RELIABILITY HANDBOOK 231762
INTEL PACKAGING OUTLINES AND DIMENSIONS 231369
(Packaging types, number of leads, etc.)
LITERATURE PRICE LIST (U.S. and Canada) 210620

(Comprehensive list of current Intel Literature)
INTERNATIONAL LITERATURE GUIDE E00029

80960MC HARDWARE DESIGNER’S REFERENCE MANUAL
2ND REVISION - TECHNICAL CORRECTIONS

CHAPTER 3

Figure 3-9, Output frequency corrected to reflect divide by 2 and divide by 4 and part number of
counter corrected

“Two 80960MC Processors On The L-Bus” section Logical Processor numbers were reversed

CHAPTER 7

“AP-Bus Signal Timing” section rewritten to emphasize critical system timing requirements

CHAPTER 8

“INIT-Ram Recognition” section

Mapping of WAY 0 and WAY 1 corrected

Figure 8-3 corrected to reflect LAD Addresses

Figures 8-4 through 8-8 extensively revised to clarify CLK1A timing

“IAC Support of the BXU” section rewritten for clarity

Tables 8-7 through 8-9 and Figures 8-16 through 8-20 revised to reflect correct system timing

CHAPTER 12

Rewritten for added clarity

CHAPTER 14

“BXU Initialization” and “Module Shadowing” sections rewritten
Figure 14-11 added

APPENDIX

Table A-4 corrected
Table A-7 corrected
FT-1 Register description corrected and clarified

intel

U.S. and CANADA LITERATURE ORDER FORM

NAME:

COMPANY:

ADDRESS:

CITY: STATE: ZIP:
COUNTRY:

PHONE NO.: {)

ORDER NO. TITLE QTY. PRICE TOTAL
LI T T [[] X =
LT TTT] X =
LT T TT] X -
LIl T] X -
LI T[] X =
LI T[] X =
LI T T TT] X =
LT T[] X =
LI T T[] >< _
LT TTT] X =

Subtotal

Must Add Your

Local Sales Tax

Postage: add 10% of subtotal > Postage
Total

Pay by check, money order, or include company purchase order with this form ($100 minimum).We also
accept VISA, MasterCard or American Express. Make payment to Intel Literature Sales. Allow 2-4 weeks
for delivery.

OVISA [OMasterCard [0 American Express Expiration Date

Account No.

Signature

Mail To: Intel Literature Sales International Customers outside the U.S. and Canada
P.O. Box 58130 should use the International order form or contact their local
Santa Clara, CA 95052-8130 Sales Office or Distributor.

For phone orders in the U.S. and Canada
Call Toll Free: (800) 548-4725

Prices good until 12/31/89.

Source HB

intel

INTERNATIONAL LITERATURE ORDER FORM

NAME:

COMPANY:

ADDRESS:

CITY: STATE: ZIP:
COUNTRY:

PHONE NO.: {)

ORDER NO. ' TITLE QTY. PRICE TOTAL
LIT T 1T x_ =
LI T T TT] x -
LI T T] X -
LTI T X =
LI LTI X -
HEEEEE X =
HEEEEN X =
HEEEEN X =
HEEEEE X —
LIT T[T X =

Subtotal
Must Add Your
Local Sales Tax
Total
PAYMENT

Cheques should be made payable to your local Intel Sales Office (see inside back cover.)

Other forms of payment may be available in your country. Please contact the Literature Coordinator at your
local Intel Sales Office for details.

The completed form should be marked to the attention of the LITERATURE COORDINATOR and returned
to your local Intel Sales Office.

intel

80960MC
HARDWARE DESIGNER’S
REFERENCE MANUAL

June 1989

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may
appear in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.
Contact ybUr local sales officé to obtain the latest specifications before placing your order.
The followmg are trademarks of |nte| Corporatlon and may only be. used to |dent|1y intel products:

376 386 387 486 4-SITE, Above ACES51, ACE96 ACE186 ACE196, ACE960,

:+ ‘BITBUS, COMMputer, CREDIT, Data Pipeline, ETOX; Genius, 1, 1486, i860, ICE,

~ iCEL, ICEVIEW, iCS, iDBP, iDIS, 12ICE; iLBX, iMDDX, iMMX, Inboard, Insite, Intel,
intgl, Intel386, intelBOS, Intel Certified, Intelevision, intgligent Identifier, intgligent
Programming, Intellec, Intellink, iOSP, iPDS, iPSC, iRMK, iRMX, iSBC, iSBX, iSDM,
iSXM, Library Manager, MAPNET, MCS, Megachassis, MICROMAINFRAME,
MULTIBUS, MULTICHANNEL, MULTIMODULE, MultiSERVER, ONCE, OpenNET,
OTP, PROMPT, Promware, QUEST, QueX, Quick-Erase, Quick-Pulse Programming,
Ripplemode, RMX/80, RUPI, Seamless, SLD, SugarCube, UPI, and VLSIiCEL, and
the combination of ICE, iCS, iRMX, iSBC, iSBX, iSXM, MCS, or UPI and a numerical
suffix.

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered trademark of Mohawk
Data Sciences Corporation.

MULTIBUS is a patented Intel bus.
CHMOS and HMOS are patented processes of intel Corp.

Intel Corporation and Intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its FASTPATH trade-
mark or products.

Additional copies of this manual or other Intel literature may be obtained from:
Intel Corporation
: Literature Sales
P.O. Box 58130
Santa Clara, CA 95052-8130

©INTEL CORPORATION 1989

intel

CUSTOMER SUPPORT
INTEL’S COMPLETE SUPPORT SOLUTION WORLDWIDE

Customer Support is Intel’s complete support service that provides Intel customers with hardware support, software
support, customer training, consulting services and network management services. For detailed information contact
your local sales offices.

After a customer purchases any system hardware or software product, service and support become major factors in
determining whether that product will continue to meet a customer’s expectations. Such support requires an inter-
national support organization and a breadth of programs to meet a variety of customer needs. As you might expect,
Intel’s customer support is quite extensive. It can start with assistance during your development effort to network
management. 100 Intel sales and service offices are located worldwide — in the U.S., Canada, Europe and the Far
East. So wherever you’re using Intel technology, our professional staff is within close reach.

HARDWARE SUPPORT SERVICES

Intel’s hardware maintenance service, starting with complete on-site installation will boost your productivity from
the start and keep you running at maximum efficiency. Support for system or board level products can be tailored
to match your needs, from complete on-site repair and maintenance support economical carry-in or mail-in factory
service.

Intel can provide support service for not only Intel systems and emulators, but also support for equipment in your
development lab or provide service on your product to your end-user/customer.

SOFTWARE SUPPORT SERVICES

Software products are supported by our Technical Information Phone Service (TIPS) that has a special toll free
number to provide you with direct, ready information on known, documented problems and deficiencies, as well as
work-arounds, patches and other solutions.

Intel’s software support consists of two levels of contracts. Standard support includes TIPS (Technical Information
Phone Service), updates and subscription service (product-specific troubleshooting guides and; COMMENTS
Magazine). Basic support consists of updates and the subscription service. Contracts are sold in environments which
represent product groupings (e.g., iRMX® environment).

CONSULTING SERVICES

Intel provides field system engineering consulting services for any phase of your development or application effort.
You can use our system engineers in a variety of ways ranging from assistance in using a new product, developing
an application, personalizing training and customizing an Intel product to providing technical and management
consulting. Systems Engineers are well versed in technical areas such as microcommunications, real-time applica-
tions, embedded microcontrollers, and network services. You know your application needs; we know our products.
Working together we can help you get a successful product to market in the least possible time.

CUSTOMER TRAINING

Intel offers a wide range of instructional programs covering various aspects of system design and implementation.
In just three to ten days a limited number of individuals learn more in a single workshop than in weeks of self-study.
For optimum convenience, workshops are scheduled regularly at Training Centers worldwide or we can take our
workshops to you for on-site instruction. Covering a wide variety of topics, Intel’s major course categories include:
architecture and assembly language, programming and operating systems, BITBUS™ and LAN applications.

NETWORK MANAGEMENT SERVICES

Today’s networking products are powerful and extremely flexible. The return they can provide on your investment
via increased productivity and reduced costs can be very substantial.

Intel offers complete network support, from definition of your network’s physical and functional design, to imple-
mentation, installation and maintenance. Whether installing your first network or adding to an existing one, Intel’s
Networking Specialists can optimize network performance for you.

TABLE OF CONTENTS

PART |
SINGLE PROCESSOR HARDWARE DESIGN
CHAPTER 1
INTRODUCTION TO THE 80960MC MICROPROCESSOR
Architectural Attributes for Embedded cOmMPULINGccocceviriieiinieiriennrecree e 1-1
IaT- T 1] (o] (=3 =1 (o o OSSO 1-1
Large General Purpose Register Setsc..cccccvviiiiriiniinenii et ae e e 1-2
Small Number of Addressing MOdEScccecervireriiinieieere e s s e e 1-2
Simplified INStruUCtion FOrMatcccviiiiiiiiese e e 1-3
Overlapped EXECULIONccue ettt st seete et et e e st sttt sttt ene st sne e e aneensesasans 1-3
Minimum CYClE OPEIAtiONcccceviiriiiirrierieiece ettt e sr e e b ereesbeesbaesbees 1-4
Additional 80960MC Architectural ENhanCcementscccuvveeiieiineeicennineenineese e sne e 1-4
Floating-point OPErationc.ivceeierenirieeeseniese st ree ettt s e a st e are e e e sae s e reene 1-4
Debug Capabilitiesccocveiiiieeiiririee et 1-4
MUItItaSKING PrOgramscocvuiciineriencsiese ettt e s st st e 1-5
Memory ManagemeENntcccirceeiiiinienere sttt et reenre s 1-5
Interprocess COMMUNICAHIONccevirieieirieciise e seec e sre e te s e re b sreen e saesreeeeeeenes 1-5
MUIIPIE PrOCESSOISveviieetieniieeree et sttt r et s s e b s s ba e be e b e enrens 1-5
Standard Bus INTEIfACEccuiiiiiiiii et bbb e 1-6
Inter-Agent Communication/Coprocessor Capabilitiesc.cuveriverrennieiinniennesreeesiece s neenens 1-6
SUMIMEIY ..cueeititeteire ettt st e e st s et et e s e s b e e sesee s s e s e e e ebear et an s seeneebebanaeseeaesbansbenresbeanensnnns 1-6
CHAPTER 2
80960MC SYSTEM ARCHITECTURE
Overview of a Single Processor System ArchiteCtureccecviririnenncnsc et 2-1
80960MC Processor and the L-BUSccecveiiiiiiinncie e 2-1
Memory REQUIrEMENEScoiiirieiiieecie ettt s et sb e s e s e e ba e ens 2-2
TLO T L1 (=T 1= o= RO ST PRPOR 2-3
SUMIMAIY ..ttt ee ettt ae et r e et e e e e s e e e e e s be e eae e e ebees e te s sbaneebeneesseseesenseaessnnsesanansansrns 2-3
CHAPTER3
THE 80960MC PROCESSOR AND THE LOCAL BUS
Overview of the B09B0MOC L-BUSccccervirireririinnsesesierieseesesesesessesessssessessessssessessasaensesseseens 3-1
BasiC L-BUS StALEScceeeiieeiecce et e s 3-1
L-BUS SigNal GrOUDS ...vcuivieiiiiiiirecreeiee et se e s st ebe st st st s m et sa e s bae s sbe e s ene 3-3
ADArESS/DALAovieiiiieiiieee e et e ere e ae e r e st er e ae et 3-3
L0731 o] OO O TSROSO 3-4
L-BUS TranSaCHONSoieeiieiiicrii ettt st st st s a e e st e s s e shn e s 3-6
(07 1o o QS 1o o - USRS 3-7
Read TranSaCHONc.ciiereeie ettt et e ettt sn e s r e e e nnens 3-8
L R I = T T ot (1o o PSR SSRSRN 3-9
BUPSt TranSaCtioNS ...c.cviceieececircee et sttt et st sea e sae e st ns 3-11
TIMING GENEIALION ...ttt ettt sttt ae bt sa e e eae e e et e se e e ereeneeneen
Clock Generation
ATDIFALION ...evieie ettt sttt e b e b gt h e sttt e s e be e e naeae s
Single 80960MC Processor on the L-BUSc.cceiemrennccienerrceneeene e 3-14
1] €21 I D =T | - L3 1 OO RSO 3-14

iii

intgl TABLE OF CONTENTS

ArbItration TiMING ..ccveecveereeiee i s e e s se s n s s r e snenane 3-16
Two 80960MC Processors on the L-BUScccccceviienirincinniicnicei e 3-17
Bus States for TWo 80960MC ProCESSOrSc.covuereerierererieeienieissrses e sreseesneeeens 3-18
Arbitration Timing for Two 80960MC Processors on the L-Busccocceeveeviirvecrennne 3-18
Bus Exchange Example Between Two 80960MC ProCcessorscioeeveerrreiresersiennas 3-20
A Peripheral Device As the Default Bus Master...........ccccoivenivnnicns bl e 3721
Inter-Agent CommuNICAtION (IAC)ooueeuereeiieiineeie ettt et s e 3-22
OVverview Of IAC OPErationsSccceivvieeriireiiriisiteeseesetesseessaesresseessessssessesssesssesssaesssesssesss 3-22
Hardware Requirements for IAC MESSAJEScccvveeruiriierieiiinieneesiesreesee st sseseesesscesnens 3-22
MeESSAGE BUFFEIScouveeeeieieiir ettt r s eae s 3-22
O o 1 N I T o o SR 3-23
External Priority REQISIErccooiieiiieeeeeeeeeee ettt e e 3-24
External Priority and IAC MESSAJEScoccerueriiiririininieneeite et s 3-24
L1 (=T (1T o) O 3-24
INTEITUPE SIGNAIS ...ttt bbb e st 3-25
Interrupt Control REGISTENcccoiivceiriieieieerieee et 3-26
Using the Four Direct Interrupt Pinscccoovveiiiiiiieniinceciene Gresesseerieri e asins 3-26
Using an External Interrupt CONtrollercoeevveriieiiininiciiiicinieci e 3-27
Using IAC Requests for INterruptscccevveinininniiiiinircn e 3-28
SYNCAIONIZANON ...ttt ettt s st s sne s e e ens 3-28
RESET and INitializationc.coveeiiriiiieececec i e 3-29
RESET Timing ReqUIremMeNtscccoceiveiiininiiiniiiiii ittt s 3-29
RESET Timing GENerationccocceevinmiiiiiiiiiisssssee s enes 3-29
L1121 721 o o TSP SRRSO 3-30
ETOr SIGNAISeeeeieeeeeeeee ettt sttt sn e ea e sree et e e saeesane e 3-32
51011010 T L O OO 3-33
CHAPTER 4
MEMORY INTERFACE
Basic MeMOTY INtEITACEc..icieiiiiieeeieteet ettt sttt s ee s 4-1
Data TIrANSCEIVELScevvireeeriertiecierieeierteete sttt st esae st s st eresht e be bt e e e e s st et eneebesesaneaesnensenn 4-1
Address Latch/DemultipleXer ...t 4-3
AAreSS DECOTETcneiieeeieeccitesete ettt s e e st e s s e s s ab e e e sbe e s eatessneaesseeaensessenneanss 4-3
BUISE LOGIC «.veviiieieiestie sttt ste e sttt ettt s s et ste e ese e as e b e et e sneeense e saesnresnnee 4-3
TimIiNG CONIOl LOGIC ...eeecveeieriueinieeienie ettt st e e e e sre e st esan e s smeesnee s 4-5
Byte Enable LatChc.ccoociiiiiiiieceeeee e snesnnesneeene i 4D
SRAM INTEITACE ...veveeieiieiteeteese sttt s e se st e s b see s s e e b e e e e enesneeent 4-6
SRAM INEIfACE LOGIC ..cuveuveueeneriirereeieieeeie ettt st st resresresee e sen et sre s b e e e e et ad 4-6
SRAM Timing CoNSIErationsc.ccevivieininiieniieset et sn s s 4-6
DRAM CONIOIIEEueeeeiieeeteeecetee ettt st e be s s sr e s 4-10
AAAress MitIDIEXETcoueeirieriiieieieee ettt s s sresrene 4-11
Refresh INterval TimMercooieiiieieeeeeee st 4-11
Y1 o) (=T O PSP 4-12
DRAM Timing and Controlocueiieiiieiieeieiriee et eese e s e sse s te s er s emeesaee s 4-12
Timing Considerations for the DRAM CONtrollerccoveveeeieiienineineienenend e 4-15
DRAM INtEIEAVINGeiiiiieiiiiniieeieree ittt e e s 4-17
SUMMANY .ot R SN SO UT Y 4-17

intel TABLE OF CONTENTS

CHAPTER 5
/O INTERFACE
Interfacing to 8-bit and 16-bit Peripheralscccoooeiiiiirenimiiiee e 5-1
General SYStem INEIACEcccv ettt et aeenreens 5-1
Data TrANSCEOIVETScoeruiriiiieiiiieee ettt sttt ese st e sre s b b e st s et ebenesbeeaesnesbesrens 5-3
Address Latch/DemUIIPIEXETcc.eovivierieiiiriererer ettt s 5-3
AAAreSS DECOENeeeiiiiirteriiei ettt sttt b e b r et e e bt et e e b e aeeatene 5-3
B o1 To @7 T a1 14T T o RSP 5-3
1/0 Interface Design EXAMPIEScouicuiiiiiriiiie et ettt 5-4
M8259A Programmable Interrupt CONtrollerccevereeiiniiinineese et 5-5
INEEITACE ..o ettt bbb bt e ne e e s 5-5
OPEIALION ...ttt sttt s et a b e et et s e e bt e b ekt st nr e s e e e e e eennenaan 5-7
82586 Local Area Network Coprocessor EXamplecccceecirceeneineeneesenmcenen e 5-7
1) =10 = To! R OSSOSO 5-10
OPEIAHION ...ttt ettt s a et b e bt s he s besae b e bt sber e st en e e e enrenens 5-11
M82786 Graphics Coprocessor EXampleccocceeeeirirerieenieneeneniesee e nree s 5-12
INEEITAICE ... ettt e e sttt eb et et e 5-12
OPEBIALION ...ttt sttt s et e en e s re et an 5-15
SUMMAIY ettt et e b e st e e e et e st e s e s e e e et e s eesbe st e enseseeeasenaeentesnneseeseenensnsnnessnsanesens 5-16
PART Il
MULTIPROCESSOR DESIGN
CHAPTER 6
80960MC MULTIPROCESSOR SYSTEM ARCHITECTURE
Overview of a Multiprocessor System ArChiteCturec.ccoceciriinnnieiencene e 6-1
THE L-BUS .ttt sttt sttt s et st e v s e et e s ae e b see e teene e nesbaearabeeneesseeanenrnens 6-1
The Advanced ProCeSSOr BUSc...civeiirienii ettt sttt et see e 6-2
The BXU COMPONENEcveuiiieiiieicerieie ettt et se e e bs e bbb nn e 6-3
The AP-BUS INTEIACEcoeiieirie e 6-3
L-BUS INtEIACE ...ttt sttt et e e e 6-3
Cache Directory and Control LOGICcccerereruerereriiieeeeeneeenie s eeesseeeeenas 6-3
Memory Support LOgiCccccvveeviereenenienine TR e rere et st ra e te e e re st e reeae 6-4
IAC SUPPOIE LOGIC .eouveereiicieierieresese st esee s e stesee e e ss et e s s e s se s e sneantesresnaneseneeseeenen see 6-4
FL@ TN o =1 1= (o] o T I T 1o S PSR RRPR 6-4
Fault TOIErance SUPPOItc.ceeeeriiiree ettt e 6-5
Modes Of OPErationccceciiiriiieecie et 6-5
System CONfIQUIALIONSc..ceiirirceie ettt e st s re b st se e s saeeneesseeneeas 6-5
ACHVE MOTUIE ... nr e nn e 6-6
PasSiVe MOAUIEccciiiiiiic e e e 6-6
ACHVE/PASSIVE MOAUIEo.eeiniiiiiie ettt et a e rene 6-6
System IMPHCAtIONSoeeeeee et st ae e s e e e 6-6
SUMMANY ..ottt et e e st et ese e e seea e e s s e s e seemeeasesaeeabe s s esbesabesbe et s seneenreenaanrans 6-7
CHAPTER 7
ADVANCED PROCESSOR BUS
AP-BUS OVEIVIBW ...ttt sttt e sttt b e st e aeese s ene s sessesneeenesmeasaneneas 7-1
AP-BUS TOPOIOGY ...eeueiiiiieieerieiteeiese e sttt st st e e e se et e eba e e e sseeeresseesasseneeaseeasesnnensensenns 7-2
AP-BUS Signal GrOUPSccvieeiiiciiiieciiini et s et sbe s s e s 7-3
Packet SigNal GrOUPccueverieirieereeenie ettt sre e e bbb e en s sneennne 7-3
Transaction Control Signal GrOUPceceeoieuirreieeiseerene et sreeenes 7-4

intel TABLE OF CONTENTS

Error Signal GroUpcoeeeiieiiiiinee e s s 7-4
Synchronization and Initialization Signal Groupcccccciereeiienieniecin e 7-4
Bus Signal SUMMANYcoiiiiiiin ittt ne s 7-5
Non-AP-Bus Module SUpport SIgnalsccceverernenierieerienne et sn e s nneas 7-5
MemOry OrganizZationcccciiirrerrie e e st s b e e e ne s 7-6
BUS TranSaCHONSviiiiiictce et e e 7-7
Transaction SPECIfICAtioNccoceecererircerre e e s 7-8
Request Packets and Accepted Replies ... 7-10
Read Data TranSfer ...ttt et et snees 7-11
Read Byte and Read DoubIe-Bytec..cccveririnininiciienn e 7-13
Write Data TranSfer......oocieveeriin it 7-13
Read-Modify-WIItecccccviriiiiiiiii 7-15
Refused Reply Packetsc.cconvennne et eete— et et et et e h b et saeenRe s aresensaeesraenenreenten 7-16
YO I = 1gT=F Ve o] ORI 7-17
7Y O T 1 OSSO RSP 7-17
IAC AAAress FOIMALScccveeueeieenrerier s creerr e st e st e e et ae st sns e st smt et see et e e e e e neneeneas 7-17
IAC Message (IAC Type 001 1B) .. 7-18
Register Request Using a Logical Address (IAC Type 0010g)ccocvvevvieneininiinnnuennnas 7-19
Register Request Using a Physical Address (IAC Type 0100g)cocovuvnniienvinnnnennas 7-20
Register Request From the L-Bus (IAC Type 0000;)ccccvvureinninrnsnnninisinesiennnens 7-21
Identify Device Order (IAC Type 0111) v 7-22
Summary of IAC Transactionscovvevcrnniiicci s s 7-23

AP-BUS ProtOCO!viiiiiiiiiscicieenie st st ae s st s n e ab e s eaesann e an

Yo - 11 o] o [OOSR
Arbitration Process
Arbitration Example

Reply Orderingccocovevinevinnnne

Bus Sequencingcccceevrieenienne

AP-Bus Signal Timing

General AP-Bus Timing

AP-Bus Timing Considerationsc.ccuvviiiiniininiissn e 7-34

S TU L1 T3 0T U SO PPURORRARON 7-34

CHAPTER 8

AP-BUS INTERFACE USING THE BXU ,

BXU FUNCHONAI OVEIVIEWeeuiiriiieeii e seein s sessse s s e st s s nesmee s e sesnesraan 8-1
Major Logical Unitsc.ccouvmerereniccnncnnns e bbb e 8-2
MOdES Of OPEIALIONSccveeviiciirieieeeere et rerr et s e e be s s e s e e sresaesressaneesseenseneas 8-2

ProCeSSOr MOEcoucereiieieiir et e s 8-2
MEMOTY MOGE ...t e st e e nae e 8-2
Register and Command SUMMANYcccecriririiecrinne s e e e 8-4

AP-BUS INTEITACE ...oveiieieiiet et s e e e e e bt st sen e sre b e 8-4
Memory Address RECOGNItIONc.cccoieirinriinicrcre e e 8-4
Guidelines for Recognizer Programmingccoveriiiemiimiiniinenssrecsss e 8-9
Module (Address) INterleavingc.ccceivererreneesinneneersn e e 8-10

L-BUS INBITACE ...veieeeceeie ettt s e e e e s e e e s bt e et 8-11
Memory Address ReCognition ..o e 8-11
INIT-RAM RECOGNIION ...ttt sttt s s e 8-11
Private Memory Recognitioncceciiiininiiiiiinieicce i e 8-12
L-Bus and AP-BuUS CONVEISIONScoceieuiiiiririeriieninecnnst b sse s s 8-13
Byte and Double Byte Operationsc..ccceierenieeiinienisinreensereiscs e 8-13
BMW OPEIAtIONSveivieiiiiitiicieiser ettt te s st e st e s e e st e s e s e sae s ssre s ese e s s e e s neesst e saresnaennbnsnsens 8-13

vi

intal TABLE OF CONTENTS

Write Acknowledge and No-Acknowledgement IAC Replles .. 8-14
Bad-ACCESS REPIIESocvevuiirieeiiiiirireiieeet et este st see e st e s e s e e sr e s e e e saeeeenns 8-14
Partial Write Operationscccceeeeeieniiicrirrenirse st e st s seste s senesaeeeesnead 8-14
Use of READY During Normal Memory Operationsceceveerererienmisrnneennesesessenseseeanss 8-15
Use of READY During Special Memory Operationscccccocvvererneesnineioiesieennsneecsesnens 8-15
The Cache Directory and Control LOGICcovrieririeriieiriieteiecieseeseses e ssee e saireesnsaeeseesseesses 8-15
Overview of Cache Memory OPerationcccccveeerrircerenneesrinreneesies e esessessesnesseesiensens 8-15
Basic Structure of the Cache Memory ...t i 8-16
Cache Configuration and Controlcccccceiiiienecrninescer e 8-18
D11 Yo (o] O PO PRSPPSO 8-19
Operation With MUItIpIE BXUScocciiiriiiirieiirirt et eere s see e eese e e saesenesnesanens 8-19
(0701311711 1oV OO ORRTN 8-19
SRAM INEMACEcoiereeiiieireeirtere st ses e sb e st s et et r e 8-20
SRAM SUPPOI LOGIC ..evereenirerieeseritriesesercessesresieesesesseesaes e s ssesaassesss e essesnesssasnnens 8-21
AAAreSS LOGIC «..eveeneiriiineiiiecee ettt e st n s 8-21

SRAM Chip-Select LOGICcoctrreieieriineereeteirteseses s se e s e esessraesne s e e saeeeesaesneens 8-21

SRAM Interface Signal TIMINGScccecverirmreirirerineeree e e e s sre s seessrens 8-22

Cache Fill SEQUENCE ...ttt e s 8-25
Reaction to @ Bad-ACCESS REPIYc.ceeceiirieriirsiereter sttt s s saeseeenneeas 8-25
MEMOTY SUPPOI ...ttt trieeeeee et et sre et este st e be st as et s s b e s e st e tesae e e saeeneesrasasataseensassaennessena 8-27
ATDITFALION ... e e e 8-27
Normal Operation SUPPOMtcccociiiiiiiieiierere et et er s ene e 8-27
RMW LOCKScoerriereereenteicree ettt s s e sre s st e b e st b sbesaseenesassnssenens 8-27
Other Memory Support FacCilitiesccoveriiiiiniiciic s 8-28

IAC SUPPOTt Of the BXU ..ottt st st eae e st sae e see s s s sessa e e esenens 8-28
IAC Address RECOGNIHIONcccovuiriiriierriitincene ettt st eressessreseneeserens 8-28
Local Register Request to BXUs on the L-Bus (Type 0000)cccccuemerinrerienennnnen. 8-29
Register Request Using a Logical Address (Type 00105)ccccovrirciimnnssivnnninennns 8-30
Register Request Using a Physical Address (Type 0100)ccceeveerienenienniciniinnanene 8-30

Identify Device Order (TYype 0111,) wecviiieeiiiceccenr s 8-31

IAC Message (TYpe 00115) i 8-31

IAC MESSaQe SUPPOILcouiiiitiici it a s s 8-32
Normal Operation ... 8-32
Interaction with the RegiSters ..ot 8-33

1/O PrefetCh LOGIC ...cvovuieiirie e eeiescente et ee st ste st stesae st s me s e asae st e s s ane e e seeseassanneennsnes 8-34
SigNal DEfiNItIONcocveiieriiiieiete et s sr st e e 8-35
Registers and Commands of the /O Prefetch Unitcccocceviieininccnnienicececeseeeee 8-35
Start-Channel CommMaNdcccviverirrinineeeee e saennes 8-36
Prefetch Data BUferscceciiiieicrinece et 8-37

Normal Operationc.cceeerieinieneice e e 8-37

S 1= (1] o 2 8-37

Startup .o OO 8-37

Data TranSfer ...t e 8-37
Diagnostic SUPPOrt FUNCHONScccoiiiiiiiiiit ettt see s s s srn s sesssne s 8-38
Cache TESHNGcooeeieeiiee e s 8-38
EXternal SRAM ...t 8-38

BXU Dir€Ctory LOGICcoierueeuerreraseerereaseesnesseeseeserssescessessssssessessenssessssssssessseesssssasionss 8-39

L-Bus Interface TeStiNgcceerererrrerrreene e reeeessee s ereereere et e e e e aneenes 8-39
BXU TIMING .ottt s e st s sttt s ese s s emsae et s b e e e s snnnnnens 8-39
MemOry REQUESLSoociiiiiiicicctire it s b 8-40
Outbound Read REQUESLScccivirverririieieeee et 8-40
Outbound Write REQUESTEScccverveiiieieeiine et e s 8-41

vii

intel TABLE OF CONTENTS

Outbound RMW-Read Requests
Outbound RMW-Write Requests
Access Time for Cacheable Requests

IAC ReqUESLScovvirieriniiiiiiciices i denesshethasbrssenss

I/O Prefetch Request............ccccevueneenee heesanrraend TN SO USTE
System CONfIQUIALIONSccuevveriiieeeirieeereie et e e sreena s et s e e s e srn s e esnens

“ACtVE MOAUIE ...t Vitiaserseivbas ki debersaesbensrsesanestinensast -

PasSiVe MOGUIEcocueeriieieriintic e e e st e

ACtive/Passive MOQUIEcoceiirriieineiteciee e st e st
SUMMAIY ..ttt e e s e e e st s e s s b e ssa s s b s sae s sbeense s sanaensessntesabessanessbtsnbesdansnenns
CHAPTER 9 v

MEMORY AND /O INTERFACE USING THE BXU

Basic Memory Interface ... 9-1

FL@ B 4] (=T 4 =T T O U SO PP UP PRI 9-2
General I/O Interface for a Passive Module ... 9-4
I/O Interface for an Active/Passive Moduleccoveriinirnnni eriesideasensiesesnesssrsissssaeneies 9-5

Overview of an Active/Passive Module with the M8259A Guveriendaesitonneinsiiinnbennennans 9-6
The IAC Generator 9-7
Interconnectionccccceceviveninicnieccnennen, w9-7
LI L1114 T TP UU RPN 9-8
IAC Generator DESIgNccceviiiiiiiniiiinie e s 9-9
State Diagram ... 9-10

SUMMAY i essae s re e e sae s e s e e e sae dadbas s Febe e e s rnbe e sae s s e babr e e e eenedas 9-13

PART Il

FAULT-TOLERANT SYSTEM DESIGN

CHAPTER 10

"FUNDAMENTAL CONCEPTS OF FAULT HANDLING

A Model for Fault Handlingc....icerieneneeesesecceneeeeene et

80960 Fault Handling Approach ,

Fault Tolerance Implementation for a 80960 Systemcccocceviveivininniinninces s e 10-5
VLS REPHCALIONevieieeeiie ettt st st s s esa s sre e s ne s e sanas 10-5
Confinement and Detectioncicevevininiicicccrr e eedretsensivens 10-6
The Reporting and RECOVErY CYCIEcoviriiiiiiirnin et st ...10-7
Fault Recovery Configuration EXamples ...t 10-9

Basic Configuration ... e e 10-9
FRC Configurationicocoieireiieneneeie ittt et st 10-9
QMR CoNfIGUIALION ...co.ecvirieiierieereee et st sr e sb e n e e e e s s ene s s 10-11

Latent FAUILScoueeeeererce et et sa e e e e 10-12

Scope of 80960 Fault-Tolerant System Design ...t 10-13

L1012 gF= T S O ST 10-13

CHAPTER 11

CONFINEMENT AREAS/DETECTION MECHANISMS

CoNfINEMENE AFBASccueutititetice ettt e bbb s s 11-1

The AP-Bus ConfinemMeNnt Areacceieererieireninereerie et s st sn e enes 11-2
Pty ..o s 11-2
Signal Duplication (OptioNal)cccoerrrerierieerireieese et s seeas 11-2
BUS TiME-OULSooueuiiieerieeeee et et et naas 11-2

viii

intgl TABLE OF CONTENTS

Module ConfiNeMENt ArEacccecueeiivirieirine ettt st et bbb s ens 11-3
Functional Redundancy Checkingcccuminmeniinmnininnennesiinnesinsenees AR 11-3
Physical CONNECLIONccccverririiinenrenresreneesine s sseseesdseessessessssessssreness AT 11-3
FRC Operation and SEtUPcccceerrerieninieneniineeseneesessesssesseesassessssesessasnsosessnneas 11-6
Example of Operation Using Confinement Areas............cccevveerivnieiveniniinnns bsenresersavibennissenenns 11-6
SUMMANY ..ottt sttt st b e sa s b b e st et s et s et be e enesbs st et are st saeseneaeentanns 11-8
CHAPTER 12
ERROR REPORTING
Topology of the Reporting Networkcccevererrenieiicene e et sne e 12-1
Error Reporting ProtOCOL.........ccceeiriiiriirecteirecsenieseetsee s s e ssessesseses e ssess e e ssasssassessssssassesanas 12-2
BERL,-BERL, TiMiNGcovetiietietettetstte st bbb 12-2
Phase One o? the Error Reporting SeQUENCEccceceeiniereintniennininneeeee e 12-5
Phase Two of the Error Reporting Sequencecccevvriiniiicnenicncnncnescieer e 12-7
Error Message FOMALcoovvceeiiierenniier ettt sa s sn et sean e s s sresan 12-8
TYPES Of ErTOr REPOISooirieeieriiieiicetenerte s eseeresaessesss st esaesre st s s sss et s e stssesse st esassassensensansanns 12-10
EFrOr PrOMHES ...ooveeerieieeseeeceeecsce sttt se e sa e at st s e se st a e be e 12-10
Error Types for Different Detection Mechanismsc.ccccuvceveeierinenieninenennesesesnneens 12-13
Using Commands to Generate Error Repomsccccecueverenieneeciencneninicnennse Seeseessenennins 12-13
Error REPOI LOQ ... coviiiiiiiiririe sttt sesea e s sra et stsaa st s et n e seennennans 12-14
Error Reporting DIiagnOSHCScccoiiviiriirciiiiirieiecsiese s se s e s sse st s saessesse e s s sre s e e e e seenes 12-15
BERL,-BERL,, Error Detection ...t e 12-15
Fault ']'o|erant LOGIC ettt sttt e e ettt DRSS 12-16
Control and ACCESSIDIlIYccervirerriniriirenieisre e ee e s 12-16
Parity LOGIC ..eeeeriieerineeriesreinenecte e ssestes e s e saeseessese e e ees e saesassnssnssesnesesesbbbessasss12-16
FRC LOGIC ...ceuteuteuiriireeneeniestrtnietest s sessssae e st esaesne st asassassassessessastssensesessesessessassissessans 12-17
BUS TiME-OUt LOGICcviririiiiiiiiiniinniinne st sr e de st sres st e e sn s e sssesane 12-17
Error Reporting LOGICcouvuiviiiiiiceiiiieest e b see et ssnens 12-17
Handling Errors in the Fault-Tolerant LOGICcccueererinrrieniivenneneneereneseeseniesseeesessesenns 12-17
SUMMATY .ottt sr e st sre e e s s e e e s e sb e s et s e s e e e e sesbassabe s esesbenseneabessateseessassaseensess 12-19
CHAPTER 13
RECOVERY
TYPBS Of EITOTS ..ottt sttt s e sttt s na s 13-1
Transient Errors 13-1
Permanent Errors 13-3
Unsafe Error Decision : 13-3
REtrY SEQUENCE ...ttt s e ae st s ae s s e st sae e b s sae s esa et sasssassesaeestobens 13-3
REtry OPerationc.ccocvereriiniineniinieceneesrese e e s e s e sse st ste s s s e sae e st e sn e s e e s e bansbesnes 13-3
Special Considerations for the Retry FUNCHONccecevrerniincieniniicnneneneeeeeenenien. 13-4
Completion of OPErationsceceeeciineivnrineniinrenienieeresinseeberesssssseseesesessesseenes deveeeene 13-4
Multi-Word Outbound Read REQUESLScccevieniiviineninieidvc i 13-4
Cache Considerations With Retryccecevereivenireninnnneniessenises s seseseesneseesenes 13-5
Permanent Error DECISIONcc.vcvieuiinrieninrinieen ettt ess s aesas e sessensssnsessensenas 13-5
Resource RECONFIGUIALIONccceuieiiuiereeriierireiisesienes e e ssestssesessessesssns e ssestssasesaessnssesansaseneen 13-5
REAUNAANCYcoceiiiiiiiiicceire et resre st e e s s e s s sae e s ssaens veressnesnsneseesnnas 13-6
Processor Module Shadowingiciveiienicieninineeesesisseresesesressesssiesessessesessnionsenes 13-6
Marrying Processor Modules Using Another Moduleccceeviieiiennnieneniiienennene 13-7
Processor Module RECOVENYccccuvierieenereenesieesieneesseessessessesssssesssssessesssnenissssens 13-11
Actions by the Failed MOdUIEc..coceeeriiiiiiceninine st eseesanens 13-11
Actions by the Partner MOdUIEcccccirreeriniiiviciis i sbesees e sadearine 13-12
MEMOTY MOQUIE ...ttt sre st e aesa e e e s et e b e e ebaebe st e e sbe e sesaneaesrnenes 13-12
Response 10 Error REPOMScccccirierriiniienincsieeeecreseestees e se e ersrassessesesaeenas 13-12

intel TABLE OF CONTENTS

Memory Controller INErfacec..coccevivveicineiiesesrestre s sre e nees 13-13

Restoring Failed Memory LOCatioNScccoverineriinenieecccinineee e 13-14

Failures in Partial Write Operationsccccoevirireneninicnnnninsne et 13-14

Memory Module ShadOWingc.ccccerieeiiieiiieninseeirenescee e sesiesaes e et essessessnessessenas 13-15

Memory Module Marfiagecccevevereriiiciiniceiiee ettt s eesaeseeans 13-15

BUS SWItCHING ..cueeeiiiieiee ettt e 13-16

BUS RECOVETY ...ttt st san et e s st ss e sra e e e e snaa e eens 13-18

Actions by the Failed BUSc.coeeiriineeiiiirecreesesn e 13-18

Actions by the Back-UP BUSccoeverieriirireieeeces ettt saa e s 13-19

Requests to a Failed BUScccccevverieecnceeeeceeeeeeee [T PSRRI 13-20

IAC Operations After @ Bus SWItChc.cceeiiiereriinceirenerce e 13-20

AHach-Bus COmMMANcocecviiiiiiircnt et e st 13-21

Communication BetWEen BUSESccceeviiivenreneiesiininreseseesesesese s ssssssseeesneenes 13-22

Memory Range Recognition COnSiderationscccveeeeeereneerereesinnesenensivnseseens 13-23

MemOory CONSIAEIAtIONScccueeveirireriercie et erre s e ereereessessaeseaesiaessnesseesssessesnnns 13-25

Cache CONSIAErAtiONScccerveereireerereriereestereesesstesseeseesseessesaesres e s st essesbeessenssennens 13-25

1/O Prefetch ConSiderationsc.coeueeeereniescnienenenc sttt sse e s s sene 13-26

FRC SPUING .ecveeeeeeeiierenesereeie sttt rees s sttt s s et ess e e e sba st essenessnsanan 13-26

Software CONSIAEIAtONSc.cceeririeririeierirerietee ettt st es s saes e s b sasbsbasaerasnas 13-28

SUMMETY ..ottt te et e s et e s b s e st e st asease e st sbesbasbesessastanessabansanesnaraeesentens 13-29
CHAPTER 14

INITIALIZATION

BXU INIfI@HZAHION ...coveeeriiiieeeee ettt et s et sb et st aa e e e ene s 14-1

Default Initialization Phasecoceevrererniieiinireseseeetesteetee et st 14-1

Clock Phase Synchronization and RESET Timingc..coceeeerenennenenneneseesesreneenns 14-2

Pins Sampled During Default Initializationcccceeciiviicinnininineniceneceeceene 14-3

AP-BUS Parameterscccccciieeriiinrinenecrisineeseeseese st sssesssesses e sssssessesstsnssssesnesssesnes 14-3

L-Bus and Module Parameterscccovcevereisiunniinenienneesneeseesesneseessesaessesseessessnsssenns 14-3

Loading Parameters.........cccocevvevererenennenieseseneeneeseeseenens ettt s aenns 14-4

BXU State at the End of RESETcccoeiiniiiiieecneetece et ee e seesaesesnasees 14-4

1deNtifICAtioN PRASEcecerieiiieiieerieriric ettt sttt b e s s e see s et n 14-5

Parameterization PRASEeecieiriiiiieriniie st sts et se e st sse e sas e s sada e e snn s 14-7

Special COM ProtOCOLccccuiieriieteiteseseete st eeresre e e e e s e e s se e e s sessessessnessssseatennesaeonns 14-7

Cold and Warm Reset DISHNCHONcccovueereriiniirenreneieseeceseee sttt ses e e seesnens 14-9

MOAUIE ShAAOWINGcvuieriiieirieireie ettt sttt ettt e st st esn s s e s stenseans 14-11

Marrying a Primary/Shadow Pair Using a Special Agentcccceceeereecrierennvencsiecnnnnens 14-11

Special AGENt OVEIVIEWcccuevueeieiiieieisiecieesieseeeeesteeeeseseeesssessesseenessaessasssssasaasssassessenns 14-12

QMR Initialization EXAMPIEccecveeeeneriieniniiieenesceses e et se s aesaese e e ssessesessasssesesnesas 14-17

Local BXU Parameterizationc.ccoceeeevriseenenieninesesesesesiessessesseessessestasessaseassessesans 14-18

Identification Phase and Primary/Shadow Marriagec.coceecvevinceennnicennee fnsresesnnnesaens 14-20

BXU Identification ASSIGNMENT ...ov.vrvitii e 14-20

Initializing the BXUs in the 1/0 Primary/Shadow UNitscccvvverieniecnrenennnenieenenne 14-22

Initializing the 1/O Primary-Elect BXU 0n AP-BUS;,coooeurieieririrciecaes 14-22

Initializing the 1/O Shadow-Elect BXU on AP- Bus BRSO TR 14-23

Initializing the I/O Primary-Elect and Shadow- EIect BXUs on AP-Bus;c.ccceerennes 14-24

Initializing the /O Primary-Elect BXU 0n AP-BUS,ccoeuiiciiiiiniiniisiicniencnnes 14-25

Initializing the 1/0 Shadow-Elect BXU on AP- Bus .. 14-26

Initializing the 1/O Primary-Elect and Shadow- Elect BXUs on AP- BUS, .o 14-27

Processor Primary-Elect and Shadow-Elect MAITiageccceevververceiovennivennueneesenseenne 14-27

Register Summary of the BXUs in the Sample Configurationc..cocceveevenenenrrcenserienenne 14-31

Register SUMMary of PPcc.coiii s 14-34

intal TABLE OF CONTENTS

Register SUMMary of PS,cooiiieieeri e s 14-35
Register SUMMary of JOP | ... 14-37
Register Summary of I/OS ..o 14-39
Register SUMmMary of PP, ..o 14-41
Register SUMmary of PS, ..o 14-43
Register SUMmary of OP, ..o 14-45
Register Summary of /OS, ..o 14-47
SUMMAY .eetiiitieeiiiciie ettt sae et sabesae e s e e s b e aasee s bt st e e sseesdaesseessesasaeasesanesansesanennessanessnseesns 14-49

CHAPTER 15
FAULT-TOLERANT I/O CONSIDERATIONS

OVEBIVIEW ...ttt ettt s e e bt bt e s et e et e se e s bt s bt e e e s b e s s b e e mesne e s r e e abeen s e s bessneenan s 15-1

Fault-Tolerant 1/O SYSIEMcoi ittt 15-2
[S (O3 o 1 ST T PR 15-2
Passive Interface CirCUItcoccoviiriiieiiiii e e 15-2
SYNCRIONIZEL ..ttt e be et e bt s bt sr e e e e e saes e sare s nne s eneennee s 15-3
7@ IS Y1 (=1 1 [SOPUPRUSR OV PRI 15-4
LO7eT 4T o E- T | (o] L= OO T PPN 15-5
DESIGN ISSUES ...ccuvieeiiiiiiieeie sttt s sr st bb e st sr et s eba s sasesme e st e e snn e s sreeeenneas 15-5

QIMB /O ettt et e e e b e b ettt she st e Rt et e en e e s £ e saEn et s e sanesRe e e e enes 15-6

Handling Interrupts in Fault-Tolerant SYSIEmMScccvviiiiiiiecir e 15-6

SUMMANY .ottt ettt e s e st e e be e e ebeeae e saseeeeae s aeeshesabenseaseshesbesmeareemaeanssbeneesresbaeanesens 15-9

APPENDIX A
BXU REGISTERS AND COMMANDS
Descriptions of the Registers and Commandsccceeviiriinininninineeer e A-8

FIGURES

1-1. LOCAI REGISIOr SO ...ttt et e en e e s ne s
. GlODAI REGISIEr SOteeeiciiiece ettt s be et te e nesn e enesneaene
. Basic 80960MC System Configurationceccveiecvireeniiresienenenree e s e snessne s
. BaSIC L-BUS StABSooveeeiieiiieiis s st e e
. L-BUS SigNal GrOUPSccveecieiriiiiiereeieeiiessnes et s s st e sb e es st sn e s b s sa e sna s e smnesnes
. Byte Enable Timing Diagramcccccviririerernieninieieseees e s seesssne e e
. Clock RelationShipsccceeiiririiiriiinernt e s
. 80960MC Processor Read TranSactionccccciirieniniiiinninicsns i s
. 80960MC Processor Write TranSactionccccecevererinenienesrcneseseseses s

. 80960MC Processor Burst Read Transactioncccccviverviiniriniissnnseeneesesceee e ssvesnee

. 80960MC Processor Burst Write Transactionc..cooceoevevinirmncinnneesisnseresnsscennn
Clock Generation GiFCUILcoererrerieiircese et e s

. Clock TiIming WavefOrMSeceerierieeririieieesee et ere st se s s e sa s seseesmeessesnesnee e

. L-Bus States with Arbitrationcccvevivinirieninesceee s

. Arbitration Timing Diagram for a Bus Masterc.cccevvennnne
. Arbitration Connection Between Two 80960MC Processors
. L-Bus States for Secondary Bus Mastercccoirvinininininnicinncnin s
. Arbitration Timing Diagram for an SBMcccceciiiriiininiin e
. Example of a Bus Exchange Transactioncoccecereinereninincnie e
. Forced Relinquishment Timing Diagram for an SBM ...
. Example Flow Chart for an IAC Operationcceevreereeiienreeniesieesuesresseesseneeseesseeseeseenns
. DAL WOIAS ...ttt sne e e s sn e e nar s
. Physical Address Interpretation for IAC MESSAgesSccoveerrrmineinnnininiincsses
. Interrupt Control REGISIENc.couiiiireeeircer ettt s

NN b a a2 0O NOOYTOPAPWON—=—=DN

- O0OOWONOOIPAWN—-O"

Xi

intel TABLE OF CONTENTS

3-22. Timing Diagram for Interrupt Acknowledge Transactionc.ccccuevevrisivncnnniinine S 3-27
3-23. RESET Timing DIagramcoceeccererierreniiiiniesreseeeeseeseeseesasesessueesssseesnesseenenss s

3-24. Asynchronous RESET Circuit s .

3-25. Diagram for RESET Timing Generationccceeniinncnninnni e 3-29
3-26. Synchronous RESET CirCuitccocverieeiiiiiiiiiniic ettt 3-30
3-27. Initialization FIOW CRart ..ottt sr et ke 3-31
3-28. RESET Signal Timing Relationshipccoeeoeriireririereeee et eeenne e 3-32
4-1. Simplified Block Diagram for Memory Interface LOGICcccoeeererciinminine e 4-2
4-2. BUrst LOGIC FIOW Chartcceieiieiiiienre et nnea 4-4
4-3. Memory Timing Control Block Diagramcccovviiiiiiiiiniin s 4-5
4-4. Logic Diagram for SRAM INterfaceccciiviveenneniese e e seieene I 4-7
4-5. Critical Timing Path for SRAM Read Operatlon .. 4-8
4-6. Critical Timing Path for SRAM Write Transactioncccccveceeniennnnncisieneceneeerenenis e 4-9
4-7. DRAM Controller BIOCK Diagramccocevereeriereeiniimnnetsiie et sesessessesnes 4-11
4-8. Flow Chart for DRAM Timing and Control LOGICcccveevvrciiinininicicreeinnn e 4-13
4-9. Timing Diagram for Two-word DRAM Read Transactionccccvvevininninnnnicncsinsinene, 4-15
4-10. Timing Diagram for Two-word DRAM Write Transactioncccccervniniiiincincnenneenn 4-16
5-1. SIMPIified 1/O INtEITACEevieeeierieiesteeere ettt b e s ne e se e e be e e 5-2
5-2. 1/0 Timing Control BIOCK Diagramccccecerierinineiinnecrissesisneese s beessesse e snens 5-4
5-3. Block Diagram for MB259A INEIfACEcccociiviiieimiieiiinceer et 5-6
5-4. LAN Stationcc.cceeuee. eereerrere e r e st e e anie Veseeeeeenas S e ivee e saeseneeas 5-8
5-5. Block Diagram for LAN Controller INterfaceccoveeerererieierne e 5-9
5-6. Byte Enable Generation CirCUitccoeeeereierenneie e 5-10
5-7. Operational Flow Diagram for M82586 INterfaceccccecererereinrercneisecneeesesceseee e 5-11
5-8. Block Diagram for M82786 Interfacecccceeviiinicniiiinnns SN 5-14
5-9. Operational Flow Diagram for M82786 Interface CirCuitcoceverrererimeienicsseeseneeeeenens 5-15
6-1. Basic 80960MC System Configurationcececriiereiinienicnesi e e 6-1
6-2. TYPES Of MOAUIEScoveeeieeeiie ittt sbe s s e e e saee s e 6-5
7-1. AP-BUS TOPOIOGY ...eecvvruriiriiirieenteneerassereeseessesseessetesaessesesssensnsssessesseiesanssansessnessesaessessssens 7-2
7-2. AP-BUS AICHItECIUIE ..ottt et sn s s e e st e b 7-3
7-3. Request Packet Organizationcoeeceiererienine et s sne e 7-7
7-4. Reply Packet Organizationccoeeceririinneeenerircertrseeses et essesseesre e s e se e svesssessesressesnas 7-8
7-5. 1AC AdAress FOIMALc.cereriieiieieniieree ettt e e e s e et ne e e s 7-18
7-6. Address Format for IAC Message Transactioncceeeennieiiesion st s 7-19
7-7. Address Format to Access a Register Using a Logical ADdressccocvvevminiecisinnnencnnns 7-20
7-8. Address Format to Access a Register Using a Physical Addresscccoceveenennnne e 7-21
7-9. Address Format to Access a Register From the L-Busc.cccociveiinininicnninnne ereent e 7-22
7-10. Address Format to Identify @ DeVICEccicervirieiinceieieni st e
7-11. AP-BUS ProtOCOIceciiiieiririiere ettt et
7-12. Arbitration Exampleccccevneiennnenniece e et e feereerrereneasanies :
7-13. BUS SEUEBNCING ..c.vemerieitiietert ettt bbb st sn e
7-14. AP-Bus Signal TIMiNGcc..cooeerierinnininnmresee e everrerarrersrersare e s s nrberenean et enares
7-15. AP-Bus Timing for Group ONne SigNalSc.cceceriimrirnsieene et
7-16. AP-Bus Timing for Group TWO SignalScccierireeiriie e reeee e e s

8-1. Address Recognizer Functional Diagram.............c.iceeueine ieeeen Serrisntsennsesndee e st e s aeenaensnesrees
8-2. Address Recognizer EXamPIEccoceereereirirneeienrisiene s seneesiseeseensesaenns e

8-3. An Example of a Cache Directory Configuration

8-4. External Logic for Cache Interface EXampleccccecereintionneeiicnicniece e

8-5. Signal Timing for 3/6 Read Access Timing (Fast Read Mode)cccccvverinrninncriecnene 8-23
8-6. Signal Timing for 4/10 Read Access Timing (Slow Read Mode)ccceverniriniienineenee 8-23
8-7. Signal Timing for 3/6 Write Access Timing (Fast Write Mode)cccceevreriiinnnnnnias v 8-24
8-8. Signal Timing for 4/10 Write Access Timing (Slow Write Mode) i 8224

Xii

intgl TABLE OF CONTENTS

0
-11.
-12.
-13.
-14.
-15.
-16.
-17.
-18.
-19.
-20.
21,

-7. Error Message SequeNnCingcccovevreereeneiiieniensdsbivenninens
-1. Recovery Procedurecccvveiiieiieninnies i,
-2. Primary/Shadow Modules with One System Bus

-9, System VuInerability After RECONFIGUIALION -.o....o.ooooooeooeeeresssserseeeereessessseeeseereereessesss 132

. Cache Fill 3/6 ACCESS TIMINGccoivuimiiiiiiiiirecteee et e
Cache Fill 3/6 Access Timing (Continued)c.ccciveiirneniensienenionsd SETIN SO PR e
IAC Address Match Conditions for IAC Type 0000c.cocoeiiivemiiiininins e
IAC Address Match Conditions for IAC Type 001 0 reeseenrieeraeeaeenannes -
IAC Address Match Conditions for IAC Type 01 00 et e
IAC Address Match Conditions for IAC Type 01 11 eererseessarsaserarnasenanssasadoesaesanevasases e
IAC Address Match Conditions for IAC Type 0011 desnersiobe ’
Typical Read Timing Diagramcccccivivinininntineneincereie e
Typical Write or Cache Write (Hit or Miss) Timing Dlagram
Typical RMW-Read Timing Diagramc.ccccovvevveeniivnvennnnnne.

Typical Cache Read Miss Timing Diagramccccccveevevieneniencnniennnes
I/0 Prefetch Read with Buffer Fill Timing Dlagram
Types of ModUIEScccocevirieninirr e feesersenneessesasessesseassabisess i shaniebnnens

. Memory Interface LogiC t0 the BXUccccoeriiniiiiiiieneieeieniees e el

. Simplified Block Diagram for Memory Interface Logic to the BXU . :

. Overview of the /O Interfacecccecvevernieiinienicnne it

. Simplified General System Interfacec....cooeeevineivieinininienceceee. :

. Address Format for the Interrupt IACccoomiiiiiiiii e e et

. Data Word for the Interrupt IAC ..o et eediibienessanesasnenaanene

. Block Diagram for Interface Circuitcccceevveverricniencncnninlen :

. Timing Diagram for a Single-Word IAC Messagec..c.......

. Block Diagram for IAC Generatorccccoveeeiviines i eeasiaid

. State Diagram for IAC Generatorc.ccceeeeevcvercieesveinnninns i

. Fault Handling Model ... il LI

. The 80960 Architectures Separation of Hardware and Software Layers-....iiciiaivinen.

. VLSI REPHCAION ..cuee ettt sttt A

. The Reporting and Recovery State Diagramcccceveivvenniensennncivciisinnesdindiviiihin e :

. Fault-Tolerant Alternativesccoceveevevrenenennenciieent SRR bt

. Example of a Basic Fault-Tolerant Designcccccvrivnenicienienenes

. Self-Healing Multiprocessor Configurationcoceveeieenenniinenc e

. QMR Configurationcccceverererierenrenieneniniennens :

. Fault Tolerance Confinement Areasc.....lis ‘

. Functional Redundancy Checkingc.cccuviiriiiniiiiiiens et siiesdin e cnne e

. Dual Arbitration Network for Each AP-BUSccccvveinineivecnenciennnt RS

. Single Arbitration Network for Each AP-BUScccecveviniivininenn ; 11-

. Confinement Area Operationc.ccccoerveierieeneennens PRI

. Error Reporting Periodccoeevverinceieniiene st .

. Timing for the Start of an Error Reportccccoeevvevreeviinnniicennin

. Error Report Propagation for Phase One.......... Midhereres e e s aaenienid Hreses

. The Timing of the Error Report Propagationcccceceeueeen. e

. Simultaneous Error Reportingc..ccccvvervivienneiinsinniniiioiens

. Error Report Propagation for Phase TWOccececeeencnnenee

—_

'y

'y

—

-

5 Ll
WWNHRDNDDN

—

—

—

NNV ALDDUD

. Example of Married Processor Modulescccceevceniviieannnnne
- Memory ModUIEScccvieuirieiieireee et

-5. Primary/Shadow BXUs with TWo AP BUSEScccccveiniiniivinniinnin
-6. Permanent Bus Error RECOVENYccceieiinieniecsiinei i
-7. System Connection to POPQUE and SSBUSYcccvvviniindinicion i i

. Bus Recovery IUStrationcccceceiiiiiinsinicicccc e

xiii

intel TABLE OF CONTENTS

14-1, RESET TiMING 1veevieeerieriiiesieiris st st se e st ssn s snesatesaesras e ssaessssaessnesaessns 14-2
14-2. How the ldentlfy Device Order Specifies a Particular BXU ..o 14-6
14-3. Data Field for the Identify Device Order ..,....ccccvviirinininiiiiiii e 14-6
14-4. COM Pin ProtoCO|occeveiiueiniin ittt e s s s s stesinssessaessnasnens 14-8
14-5. COM Register Loading by Using the COM Pinc.cccivivieviinincninnieeenessineeeenes 14-9
14-6. RC NetWOrk for VREFcccooiiieiirperitcisrestsi s e ensene 14-10
14-7. Relationship Between VREF and RESET ...vvveereerensesersseseeessssesesesesssssessssesesssessseesssssens 14-10
14-8. Marrying a Primary/Shadow Pair Using a Special Agentc.ccvvvniinniiinenenienn 14-11
14-9. SpeCial AGENE LOGIC ..vicirviriiiiiiiieriisritii ettt st sr e et sre e s s 14-13
14-10. Contents of the “Restart-Processor’ IAC ..o 14-14
14-11. Address Format for the Restart IACcoiiviiiin 14-14
14-12. IAC Generation LOGICccvvmiriiriiniiriniiiiiire st 14-14
14-13. Modified State Diagram for IAC GENeratorccceevveervernnnrenr s esesse s 14-15
14-14. Configuration for Examplec.ccoeeniviiiineneiennae Ereeree e s 14-17
15-1. Synchronous /O JNErface ...ttt e 15-1
15-2. Asynchronous /O INtEIACEcovveirieeieirecr e 15-3
15-3. SYNchronization CirCUILccccueivriiriiiieniiire e sanssaneas 15-4
15-4. Synchronization Circuit EXamPIEc..ccoveeiieineiieiciceniese et s 15-5
15-5. Alternative to @ QMR /O SYSLEMcoviiiiiiiiii e s 15-7
15-6. /0O Example of Soft QMR 1/O Systemcccccvvvviiiiiniiicni e 15-8
A-1. AP-Control Register COMENtSsccoiveiiineiininin s A-8
A-2. AP-Mask and AP-Match Register COntentsccvvvreininniniinsin e A-10
A-3. Arbitration-1D Register CONENLSccccviiriirieirrirrere i st res e s A-12
A-4. Bus-Error-ID Register COMENLSccceviriereiiiiiniins sttt A-15
A-5. Cache-Configuration Register CoNtentsccvveererieiie i A-17
A-6. Cache-Test Register CONENESccecueiireriirerecine st s A-21
A-7. COM RegiSter CONMENES ...eccveirreiiirriiiire s siiirnsre e s see s s et ses e sasesaesnes A-23
A-8. Component-Specifier Register CONtentsc..cccniiiiiiniiniiiiic A-24
A-9. Error-Log Register CONENEScccceviveriniirininriesesesresse e se e e eees e s sn e seesesseenesresns A-26
A-10. Error-Record Register CONtENESccivvveiviiiiiiineinns e ssne e s ssnenens A-28
A-11. FRC RegiSter CONENLSccevviriirniciniieieene st s A-29
A-12. FRC-Splitting-Control Register CONteNntscccecvernriiinninnnisi e A-30
A-13, FT1 Register CONENESccueiciiiiiiriceireesiercie st sesr e aesee s sne s saassressesanee e A-32
A-14, FT2 RegiSter CONMENLSccvrievrereririiesinesit e eiesnsr st ssb s s s e s s ennssanes A-34
A-15. LBI-Control Register CONeNtSccccvvvririinieniisincc et A-37
A-16. Local-Bus-Test Register Contentsccccvceiiiininniniinniini e A-40
A-17. Lock Register CONENESvvviieiiiiiriiiine e e A-42
A-18. Logical-ID Register CONENTSccvveriirieerienieneneennsrenie e seeseessesseseeses s sesenssesesnesseses A-44
A-19. L-Bus Mask and Match Register Contentscccovevviviiiniininniinninenees A-45
A-20. Maxtime Register CONtENESvviviiieiniiince e e
A-21. Module-Error-ID Register Contents

A-22. Physical-ID RegiSter CONENLSccveeiruiiiiitininiieteeene st s e sesneseens
A-23. Prefetch-Control Register Contents

A-24. Private Memory Mask and Match Register Contentscocoovcneniiiininnninnncccnninnne, A-54
A-25. Processor-Priority Register CONteNnts ... A-55
A-26. QMR Register CONMBNESccccvvviiiriineeiie et A-57
A+27. Spouse-ID Register CONENEScoccvvieririeiiiiiniirees ettt A-62
A-28. System-Bus-ID Register CONtENESccvvevvireiiniiniinceserenee b A-64
A-29. Test-Detection Register Contents ...t A-66
A-30. Test-Type Register CONENLSccccevsiviiiiiiiiesirneen et s A-69
TABLES ‘

3-1. SIZE Signal DECOAINGcovveivtiieiiieriiiirrisisrrenteeeses e srneeesses s e s sse s s snesrnsnesresbesseses 3-4

Xiv

intel TABLE OF CONTENTS

3-2. Byte Enable Signal DeCOMINgcccuciirerierrirteese st sttt 3-5
3-3. SUMMAry Of L-BUS SIGNQAIScveeieirieieiieeeicee ettt et e s ne e es 3-7
3-4. Combination of BuS Masterscecoiriiiiiiieee e 3-15
4-1. Byte Enable Signal DeCOTINGccvveriiiiiiinieritiiir ettt te st esre et be e sae s e sn e e 4-6
7-1. AP-BUS Signal SUMMAIYccovticiiiiiiiieeincre et 7-5
7-2. Specification Encodings for Packets ... 7-9
7-3. Memory Block Data for Read EXamplecccooorieiiineniiencssnnnnnes 7-12
7-4. Read-Request PacKet ..o e 7-12
7-5. Read-Reply PACKELcociiiiiiiiiiiieiieeee sttt et sttt a s creesre s e e e e e 7-12
7-6. Memory Block Data Before Write Operation ...t 7-14
7-7. Write-RequUeSt PACKE!ocoviiiiiieei et 7-14
7-8. Write-Acknowledge PaCKEtccoveiiiiiieiiecein et 7-15
7-9. Memory Block Data After WHLEcoueeceieie et 7-15
7-10. Summary of M82965 IAC TranSactionsc.ccevieerrereencrieere e 7-24
7-11. Value of the Arbitration-ID Register for Agents in the Exampleocoeveviiiiniienienns 7-27
8-1. Summary of BXU Modes Of OPerationcoocueeiiriiinninnee et 8-3
8-2. Summary of BXU Registers and COmmMandsccocverererenenicnneneeenisnee e 8-5
8-3. MBO9BOMC REQIStEr MAPcuovviiiiiiieecrctrre e s s 8-7
8-4. RMW LOCK MAP ..ottt ettt et 8-28
8-5. Prefetch Signal DECOTINGceevirriuirireireeesieerses e se st rte et se e s e b essessaeeneeens 8-35
8-6. 1/0 PrefetCh Unit.......cccoiiiiiii s s 8-36
8-7. Memory Request ACCESS TiMEcccoiiiriiiirieee ettt ee st sae e s ere s 8-40
8-8. Access Time for Cacheable REQUESLSccovcriiiicciineneccrc s 8-42
8-9. IAC Request ACCESS TIME ..ottt e e e 8-43
8-10. ACCESS RESIIHCHONS ...ttt s 8-47
9-1. State FUNCHONS ..ottt et e s 9-12
10-1. Exercising Latent FAUIScoueriiiiirine et s 10-13
12-1. Error Types for Detection MeChanisSmscoceierrrnirieiinintesee e 12-14
13-1. Bus Recovery Effects on INterleavingc.ccooceirenncenenenene e 13-24
13-2. Cache State Change Caused by Bus SWItCh ..., 13-25
13-3. FRC Splitting Control Bits Statecccceverieririiiiir e 13-27
14-1. System-Bus-ldentification ASSIGNMENLSccocrirrirniriie et 14-4
14-2. Modified State FUNCHONS ..ot 14-16
14-3. Summary of identification Values of Each BXU on AP-Bus; ..o, 14-32
14-4. Summary of identification Values of Each BXU on AP-BUS,ccccevveiiiicininiiincinnn, 14-33
A-1. Summary of BXU Registers and Commandscccccrerierniiiniininiencnnes s A-2
A-2. MB0960 ReGIiStEr MAPcceeiiiiiieiiiiieieee ettt e e e s s s A-4
A-3. Interleave-Control Bit Settings for Different Configurationsccoceeecinievninnecennen A-11
A-4. Mapping of ARB3-ARBO0 10 the Drive Bitsccccecierieiininee e A-13
A-5. TIMING SEIECHONSeiiieiriiierite et e et et ss s b sane s A-18
A-6. BXU Cache CoNnfIQUIAtIONScceereiieeveereresesereesiesiessessesesssssessesssnsesessessassessssssessesesssens A-19
A-7. Address Mapping for Different Configurationsc.ccccormneieiinncenn e A-19
A-8. SRAM AAress LINEScc.eeiruerieriininiiesresieese s cees st e ne e sne st se s s nssre s

A-9. Interpretation of Error-Count Value

A-10. Interleave-Control Bit Settings for Different Configurationsc.cccconinininiinicinnee A-38
A-11. BXU-MOAE SEINGS ...cveruirririireeiriecie e srceteseeseesresie e sre s e e e e e sncreennesnnens pevenens A-38
A-12. RMW LOCK MaPPINGcocviiririeieiiriiiinciese s s e s A-42
A-13. Addresses for Match and Mask Registers ... A-45
A-14. Determination of Which BXU Responds to IAC Type 0010,ccccevvineniniinncsnisnnininnnnns A-59
A-15. Determination of Which BXU Replies to Requestscccovriviiniivinciiniinicsniiicies A-60
A-16. Parity-Test Bits Versus Parity Tree Corruptedccoomeeiiineninrinieenenceieceseeseeseeeens A-67
A-17. Settings for Test-Type Fieldcccoiviiiiciniiiirc s A-70

XV

PREFACE

This manual serves as the definitive hardware reference guide for system designs using the 80960MC
processor. Hardware designers can use this manual as a guideline for developing microprocessor
systems. Readers of this manual should be familiar with the operating principles of microprocessors
and with the 80960MC data sheet.

This manual presents the 80960MC system design from a hardware perspective. Other information
on the software architecture, instruction set, and programming of the 80960MC processor can be
found in the 80960MC CPU Programmer’s Reference Manual.

Together with the 80960MC Hardware Designer’s Reference Manual, these publications provide a
complete description of the 80960MC system for hardware and software designers.

MANUAL ORGANIZATION

The manual is divided into three parts. Part I describes a single processor hardware design using the
80960MC processor with the local bus. Part II discusses a multiprocessor design using 80960MC
processors and BXUs with the Advance Processor bus (AP-bus). Finally, Part III describes fault-
tolerant system design.

There are 15 chapters and an appendix. The first five chapters describe how to build a hardware
system using a single 80960MC processor.
* Chapter 1 briefly introduces the 80960MC component architecture.

* Chapter 2 presents an overview of the 80960MC hardware system design, which includes
a system configuration illustrating the various components that constitute an 80960MC
system.

* Chapter 3 describes the local bus and the interface to the 80960MC processor. This chapter
includes detailed signal descriptions and discusses timing generation, arbitration, interrupt
handling, and initialization.

* Chapter 4 discusses techniques for designing memory subsystems.

* Chapter 5 presents guidelines on how to interface I/O devices to the local bus

The next four chapters describe how to build a multiprocessor hardware system using the Advanced
Processor bus.

* - Chapter 6 provides an overview of a 80960MC multiprocessor system.

* Chapter 7 focuses on the AP-bus. It describes the AP-bus transactions, AP-bus protocol,
and AP-bus signal timing.

* Chapter 8 shows how to interface to the AP-bus by using the BXU. This chapter includes a
description of the BXU, diagnostic support functions, performance evaluation, and system
considerations.

XVii

Inte| PREFACE

*

Chapter 9 presents guidelines on the memory and I/O interface to a BXU.

The final six chapters present guidelines for fault-tolerant designs.

*

Chapter 10 presents an overview fault-tolerant design using the 80960MC processor and
the BXU.

Chapter 11 describes confinement areas and detection mechanisms used in 80960 fault-
tolerant designs.

Chapter 12 discusses the error reporting mechanism used in 80960 fault-tolerant designs.
Chapter 13 explains the recovery mechanism.

Chapter 14 shows how to initialize a fault-tolerant system and provides a system initializa-
tion example.

Chapter 15 provides guidelin' on how to design fault-tolerant I/O subsystems.

Appendix A contains the descriptions of the registers and commands of the BXU.

Wherever appropriate, design examples are included in the chapters. These designs are based upon
functional 80960MC boards and systems, and are simplified for ease of understanding. The
simplified versions of these designs have not been tested except for the figures that show part
numbers.

NOTATION CONVENTIONS
This manual uses the following style conventions.

*

Integer numbers are presented in decimal notation unless otherwise indicated by the
subscript “H” for hexadecimal or “B” for binary.

An active low signal is represented by a line over the signal name. For example, READY is
an active low signal.

Names of bits, address and data fields, and registers of the BXU are noted by a serif italics
typeface (e.g., the Access bit, the Component-ID field, or the Prefetch-Control register).

Names of other items that do not refer to registers of the BXU, such as cache parameters,
are noted by a sans serif italics typeface (e.g. the tag, address block, or way).

For the appendix, the name of the particular register or command described is listed on the
page headings.

xviii

Introduction to the
80960MC Microprocessor

CHAPTER 1
INTRODUCTION TO THE 80960MC MICROPROCESSOR

The 80960MC is the military version of the 80960 family, designed especially for high reliability
embedded applications. Atan operating frequency of 20 MHz, this high performance processor can
sustain an instruction execution rate of seven and one-half million instructions per second (MIPS),
and burst rates of 20 MIPS*. The 80960MC processor enhances embedded system performance by
integrating special features to eliminate the need for additional peripheral devices and the associated
software overhead. For example, the 80960MC processor offers an on-chip floating-point process-
ing unit, a memory management unit with virtual memory addressability, an improved interrupt
handling capability, and support for multiple processors, multitasking, debugging, and tracing.

This chapter describes the architectural attributes and enhancements of the 80960MC processor for
embedded computing.

ARCHITECTURAL ATTRIBUTES FOR EMBEDDED COMPUTING

For over a decade, Intel has designed a large variety of 8 and 16 bit microcontrollers to fit the needs
of embedded applications. Based on this experience, several architectural attributes shared by both
microcontrollers and microprocessors, have been implemented that benefit embedded applications
and enhance microprocessor performance. Because the 80960MC processor incorporates these at-
tributes (listed below) in its architecture, embedded applications are easy to design, perform well, and
get to market fast.

* Simple load/store design

» Large general-purpose register sets

* Boolean and bit-field instructions

¢ Small number of operations and addressing modes
« Simplified instruction format

¢ Minimum cycle operation

Load/Store Design

In the 80960 family architecture, operations are register-to-register, with only LOAD and STORE
instructions accessing memory. This attribute simplifies the instruction set and shortens cycle time.

The 80960MC processor uses LOAD and STORE instructions ‘to access memory. It further
minimizes accesses to memory by providing a 512-byte, direct-mapped instruction cache. When a
memory access is required, the processor can perform a burst transaction that accesses up to four data
words with one word transferred every clock cycle. ‘

* DEC VAX 11/780 equals 1 MIP.

intel nTRODUCTION TO THE 80960MC MICROPROCESSOR

Large General-Purpose Register Sets

Because the instructions operate on operands within registers, the 80960 family uses many registers.
The 80960MC processor features large, versatile register sets. For maximum flexibility, each
processor provides thirty-two 32-bit registers and four 80-bit floating-point registers.

There are two types of general-purpose registers: local and global. The processor automatically
accesses the 16 local registers when a procedure call is performed. Multiple sets of local registers
are stored on-chip to further increase the efficiency of this register set, as shown in Figure 1-1. The
register cache holds up to four local register frames, which means that up to three procedure calls can
be made without having to access the procedure stack resident in memory.

REGISTER
CACHE
ONE OF FOUR
LOCAL
REGISTER SETS
— LOCAL REGISTER SET
'< ‘ ' Ris
<
Ry
271079-568 31 ' 0

Figure 1-1: Local Register Set

The 20 global registers retain their contents across procedure boundaries. The global registers con-
sist of sixteen 32-bit registers (G, through G,) and four 80-bit registers (FP, through FP), as shown
in Figure 1-2. While all registers can be used for floating-point operations, the 80-bit registers are
used for accumulation of extended precision results.

Small Number of Addressing Modes

The 80960 family uses relatively few addressing modes to facilitate a fast, simple interpretation by
the control engine. The 80960MC processor provides simple, fast addressing modes, as well as a few
complex addressing modes to allow optimization for code density.

intel INTRoDUCTION TO THE 80960MC MICROPROCESSOR

Simplified Instruction Format

A simplified instruction format eases the hardwired decoding of instructions, which again speeds
control paths. The 80960MC processor’s instruction formats are simple and word aligned; all
instructions are one word long except for one class that uses the subsequent word as a 32-bit
displacement. To further enhance performance, the instructions do not cross word boundaries. This
feature eliminates a pipeline stage (that would have to align instructions) and decreases instruction
execution time.

GLOBAL REGISTERS
Gys
Go
31 o
FLOATING POINT REGISTER®
Py’
FP,’
79 0
NOTE:
‘ANY REGISTER CAN BE USED FOR FLOATING-POINT OPERATIONS. THE 80-BIT
REGISTERS ARE PROVIDED FOR EXTENDED PRECISION ACCUMULATION.
271079-57

Figure 1-2: Global Register Set

Overlapped Execution

To optimize performance, the 80960MC processor overlaps instruction execution by means of write
buffering and register score boarding. Write buffering allows a write instruction to proceed as soon
as it is placed in the buffer. It does not have to wait for the actual write operation to occur on the
L-bus.

Similarly, register scoreboarding is a design technique that allows the 80960MC to continue
execution of instructions when it encounters a LOAD instruction. When the LOAD instruction

1-3

intal INTRODUCTION TO THE 80960MC MICROPROCESSOR

begins, the 80960MC sets a scoreboard bit on the target register. After the target register is loaded
with data, the processor resets the bit. While the data is being retrieved, additional instructions that
do not reference the target register can be executed. The 80960MC ensures. that these additional
instructions do not reference the target register by checking the scoreboard bit transparently .(no
software required). The scoreboard bit is a “safety feature” that protects the user in the event that the
compiler attempts to use a register that is not yet loaded. Thus, the scoreboard feature reduces the
effect of slow memory speed and provides a useful tool for optimizing procedures.

Minimum Cycle Operation

The 80960MC processor executes most of the core instructions in a single clock cycle. For these
instructions, the 80960MC processor uses hardwired logic rather than microcode to execute the
instruction.

The 80960MC also supports a number of important multicycle instructions, such as 32-bit multiply
and divide instructions. These auxiliary functions require more than one clock cycle because it is
more efficient to use microcode than hardwired logic. On the other hand, the integration of these
functions on-chip eliminates much software overhead and the negative effects on code density that
would be otherwise required. Thus, the additional functionality of the 80960MC enhances overall
system performance while keeping code size small.

ADDITIONAL 80960MC ARCHITECTURAL ENHANCEMENTS

The 80960MC incorporates useful features such as on-chip floating-point processing, multiproces-
sing capabilities, hardware multitasking, interprocess communication, virtual memory, and debug-
ging functions that support breakpoint instructions, tracing, procedures, branches,etc.

FIoating-Poiht Operation

The on-chip floating-point unit of each processor improves the performance of floating-point
calculations by eliminating bus overhead used to transfer operands to a coprocessor. The processor
provides hardware support for both mandatory and recommended portions of IEEE standard 754 for
floating-point arithmetic, exponential, logarithmic, and other transcendental functions. By integrat-
ing the floating-point unit on-chip, the 80960MC processor reduces the overall chip count for a
system, decreases power consumption, and increases overall performance and reliability.

Debug Capabilities

The processor provides extensive system debug capabilities, an important feature for embedded
computing where the ability to instrument an application may be limited. The 80960MC processor
allows breakpoint instructions that stop program execution on various events, such as procedure
calls, or certain instructions. Another debug facility traces the activity of the processor while it is
executing a program. Tracing is done by recording the addresses of instructions that cause trace

14

intel INTRODUCTION TO THE 80960MC MICROPROCESSOR

events to occur. For example, a trace event can occur on the execution of a specific instruction,
branch, or procedure call. To ensure that the 80960MC is operating properly, the processor performs
a self-test when it is reset. If the self-test is successful, the 80960MC begins operation, otherwise
it enters the stopped state.

Multitasking Programs

The 80960MC processor supports hardware multitasking, interprocess communication, and multiple
processor configurations. The 80960MC processor offers several hardware functions designed to
support multitasking programs. One unique feature, called self-dispatching, allows a processor to
switch itself automatically among scheduled tasks. When self-dispatching is used, the operating
system only needs to place the task in a common interprocessor scheduling queue.

Memory Management

For multitasking applications that require software protection and a large address space, the
80960MC processor provides a memory management unit. To ensure the highest level of
performance possible and reduce chip count, the memory management unit and translation look-
aside buffer are integrated on the chip.

Interprocess Communication

The 80960MC processor supports interprocess.communication by using hardware recognized data
structures, called communication ports and semaphores. These ports are used to exchange messages
and parameters between processes. The 80960MC handles the message passing automatically once
the ports are set up by the programmer.

Multiple Processors

The 80960MC processor offers several functions to coordinate the actions of multiple processors.
First, the processors can pass messages to each other to initiate actions such as flushing a cache,
stopping or starting another processor, or preempting a task. Second, a set of synchronization
instructions help maintain the coherency of shared memory. These instructions permit several
processors to modify memory at the same time while maintaining data integrity.

The self-dispatching mechanism of the 80960MC previously described provides another means of
support for multiple processor applications. This mechanism, in addition to being used in single-
processor systems, provides the means to increase the performance of a system by simply adding
Pprocessors.

Finally, the 80960MC processors synchronize themselves automatically when they perform system
operations. A protocol is defined for multiprocessing that provides a low level set of operations. For
example, binding a task to a processor means locking the task control block.

1-5

INtel INTRODUCTION TO THE 80960MC MICROPROCESSOR

STANDARD BUS INTERFACE

The advanced features of the 80960MC processor are implemented using a performance-optimized
bus interface. The processor uses a high bandwidth local bus (L-bus) that consists of two standard
signal groups: a 32-bit multiplexed address/data path and control signals for data transactions.
Because of the large amount of caching, the L-bus supports burst transactions that transfer up to four
successive data words. Transactions on the L-bus can use 8, 16, and 32 bit data types and address up
to4 Giga(G) bytes of physical memory. Bus arbitration can be accomplished by simply using the hold
request/hold acknowledge protocol.

INTER-AGENT COMMUNICATION/COPROCESSOR CAPABILITIES

The 80960MC processor offers a flexible way to manage interrupts. It accepts interrupts in one of
three ways: by communicating with an external interrupt controller using the standard Interrupt/
Interrupt Acknowledge signals, by activating the on-chip interrupt controller, or by accepting an
Inter-Agent Communication (IAC) message. This allows the 80960MC to act as a coprocessor on
a shared bus with another CPU.

SUMMARY

The 80960MC processor optimizes embedded system performance by using a new 32-bit architec-
ture. The 80960 family architecture includes a load/store design, large general purpose register sets,
fast addressing modes, a simplified instruction format, and minimized instruction execution cycles.

To further enhance system performance, the 80960MC processor provides floating-point operation,
interrupt controller capabilities, debug functions, multitasking, memory management, interprocess
communication, and multiple processor capability. By integrating these functions on-chip, the
80960MC reduces the power requirements and overall chip count for a system.

As aresult of the 80960 architecture, the 80960MC processor provides unprecedented performance.
For a speed selection of 16 MHz, it can sustain an instruction execution rate of over six million MIPS
and burst rates of 16 MIPS, speeds comparable to that of super minicomputers. The high instruction
execution rates are made possible through a innovative design that incorporates an on-chip
instruction cache with burst-transfer capability.

1-6

80960MC System Architecture 9

e

CHAPTER 2
80960MC SYSTEM ARCHITECTURE

This chapter illustrates the flexibility and power of the 80960MC system architecture using the
advanced 32-bit 80960MC processor. It examines system configurations from a general perspective
to explain the design concepts. Subsequent chapters describe the details of the system design.

OVERVIEW OF A SINGLE PROCESSOR SYSTEM ARCHITECTURE

The central processing module, memory module, and I/O module form the natural boundaries for the
hardware system architecture. The modules are connected together by the high bandwidth 32-bit
multiplexed L-bus, which can transfer data at a maximum sustained rate of 42 Mega(M) bytes per
second for an 80960MC processor operating at 16 MHz.

Figure 2-1 shows a simplified block diagram of a possible system configuration. The heart of this
system is the 80960MC processor, which fetches program instructions, executes code, manipulates
stored information, and interacts with 1/O devices. The high bandwidth L-bus connects the
80960MC processor to memory and I/O devices. The 80960MC processor stores system data,
instructions and programs in the local ROM and RAM memory. By accessing various peripheral
devices through the I/O interface, the 80960MC processor directly supports communication with
other ancillary subsystems.

80960MC Processor and the L-Bus

The 80960MC processor performs bus operations using multiplexed address and data signals and
provides all the necessary control signals. For example, standard Intel control signals are provided,
such as Address Latch Enable (ALE), Address/Data Status (ADS), Write/Read command (W/R),
Data Transmit/Receive (DT/R), and Data enable (DEN). The 80960MC processor also generates
byte enable signals that specify which bytes on the 32-bit data lines are valid for the transfer.

The L-bus supports burst transactions, which access up to four data words at a maximum rate of one
word per clock cycle. The 80960MC processor uses the two low-order address lines to indicate how
many words are to be transferred. The 80960MC processor performs burst transactions to load the
on-chip 512-byte instruction cache to minimize memory accesses for instruction fetches. Burst
transactions can also be used for data accesses.

To transfer control of the bus to an external bus master, the 80960MC processor provides two
arbitration signals: hold request (HOLD) and hold acknowledge (HLDA). After receiving HOLD,
the processor grants control of the bus to an external bus master by asserting HLDA.

The 80960MC processor provides a flexible interrupt structure by using an on-chip interrupt
controller, an external interrupt controller, or both. The type of interrupt structure is specified by an
internal interrupt vector register. For a system with multiple processors, another method is available,
called inter-agent communication (IAC) where a processor can interrupt another processor by
sending an IAC message.

intl 80960MC SYSTEM ARCHITECTURE

Complete details of the L-bus and bus operations are discussed in Chapter 3.

80960MC
PROCESSOR

EPROM

RAM

$

:

MEMORY

CONTROLLER

L-BUS

170 INTERFACE

:

]

170 DEVICE
(SLAVE)

170 DEVICE
(BUS MASTER)

271079-58B

Figure 2-1: Basic 80960MC System Configuration

Memory Requirements

The system memory can consist of a memory controller, Erasable Programmable Read Only
Memory (EPROM), and static or dynamic Random Access Memory (RAM). The memory controller
first conditions the L-bus signals for memory operation. It demultiplexes the address and data lines,
generates the chip select signals from the address, detects the start of the cycle for burst mode

operation, and latches the byte enable signals.

The memory controller generates the control signals for EPROM, SRAM, and DRAM. In particular,
it provides the control signals, multiplexed row/column address, and refresh control for dynamic
RAMs. The controller can be designed to accommodate the burst transaction of the 80960MC

2-2

intal 80960MC SYSTEM ARCHITECTURE

processor by using the static column mode or nibble mode features of the dynamic RAM. Inaddition
to supplying the operation signals, the controller generates the READY signal to indicate that data
can be transferred to or from the 80960MC processor.

Chapter 4 provides design guidelines for the memory controller.

1/0 Interface

I/O components can be configured to allow the 80960MC processor to use most of its clock cycles
for computational and system management activities. Time consuming tasks can be off-loaded to
specialized slave-type components, such as the M8259 A Programmable Interrupt Controller. Some
tasks may require a master-type component, such as the 82586 Local Area Network Control.

The interface circuit performs several functions. It demultiplexes the address and data lines,
generates the chip select signals from the address, produces the I/O read or I/O write command from
the processor’s W/R signal, latches the byte enable signals, and generates the READY signal.
Because these functions are the same as some of the functions of the memory controller, the same
logic can be used for both interfaces. For master-type peripherals that operate on a 16-bit data bus,
the interface circuit translates the 32-bit data bus to a 16-bit data bus.

The 80960MC processor uses memory-mapped addresses to access I/O devices. This allows the CPU
to use many of the same instructions to exchange information for both memory and peripheral
devices. Thus, the powerful memory-type instructions can be used to perform 8-, 16-, and 32-bit data
transfers.

Chapter 5 describes design guidelines for the I/O interface by examining representative design
examples.

SUMMARY

The basic hardware system configuration is modular and flexible. The processor, memory, and
1/O form natural boundaries in the basic hardware system architecture. The high-bandwidth L-bus
that supports burst transfers is used for the data path between the 80960MC processor and other
system devices.

This chapter presented an overview for basic hardware system design. The next three chapters
discuss the details of the architecture’s local bus, memory and I/O interface to the L-bus.

2-3

The 80960MC Processor
and the Local Bus

CHAPTER 3
THE 80960MC PROCESSOR AND THE LOCAL BUS

The 32-bit multiplexed local bus (L-bus) connects the 80960MC processor to memory and I/O and
forms the backbone of any 80960MC processor based system. This high bandwidth bus provides
burst-transfer capability allowing up to four successive 32-bit data word transfers ata maximum rate
of one word every clock cycle. In addition to the L-bus signals, the 80960MC processor uses other
signals to communicate to other bus masters. This chapter, which describes these signals and the
associated operations, follows the outline shown below:

» L-bus states and their relationship to each other

« L-bus signal groups, which consist of address/data and control
* L-bus read, write, and burst transactions

* L-bus timing analyses and timing circuit generation

» Related L-bus operations such as arbitration, interrupt, and reset operations

OVERVIEW OF THE 80960MC L-BUS

The L-bus forms the data communication path between the various components in a basic 80960MC
hardware system. The 80960MC processor utilizes the L-bus to fetch instructions, to manipulate
information from both memory and I/O devices, and to respond to interrupts. To perform these
functions at a high data rate, the 80960MC processor provides a burst mode, which transfers up to
four data words at a maximum rate of one 32-bit word per clock cycle. The 80960MC L-bus has the
following features:

¢ 32-bit multiplexed address/data path
» High data bandwidth relative to the speed selection of the 80960MC processor

« Four byte enables and a four-word burst capability that allow transfers from 1 to 16 bytes in
length

e Support for TTL latches and buffers.

BASIC L-BUS STATES

The L-bus has five basic bus states: idle (T,), address (T,), data (T,), recovery (T), and wait (T).
During system operation, the 80960MC processor continuously enters and exits different bus states
as shown in Figure 3-1. This state diagram assumes that only one bus master resides on the L-bus.

The local bus occupies the idle (T,) state when no address/data transfers are in progress. When a new
request is received, the L-bus enters the T, state to transmit the address.

Following a T state, the L-bus enters a T, state to transmit or receive data on the address/data lines

provided that the data is ready (indicated by the assertion of READY at the input of the processor).

3-1

intel THE s0960MC MICROPROCESSOR AND THE LOCAL BUS

If the data is not ready, the L-bus enters a T, state and remains in this state until data is ready. T,
states may be repeated as many times as necessary to allow sufficient time for the memory or I/O
device to respond.

READY-BURST

NEW REQUEST
’ NOT READY
READY-BURST
NO REQUEST \
READY-NO BURST

REQUEST PENDING

NO REQUEST READY-NO BURST

T, — IDLE STATE READY — READY ASSERTED

T.— ADDRESS STATE NOT READY — READY NOT ASSERTED

T,— DATA STATE BURST — MULTIPLE WORD ACCESS IN PROGRESS
T, — RECOVERY STATE NO BURST — MULTIPLE WORD ACCESS DONE, OR A
T.— WAIT STATE ONE-WORD ACCESS

271079-598

Figure 3-1: Basic L-Bus States

After a data word is transferred in a non-burst transaction, the L-bus exits the T, or T state and enters
the recovery (T,) state. In the case of a burst transaction, the local bus will exit the T, or T state and
re-enter the T, state to transfer the next data word. Once all data words have been transferred in a
burst transaction (up to four), the L-bus enters the T state to allow devices on the L-bus to recover.

3-2

intel THE s0960MC MICROPROCESSOR AND THE LOCAL BUS

When the recovery state is complete the L-bus will enter the T, state if no new request is pending.
If a request is pending, the L-bus will enter the T, state to transmit the new address.

L-BUS SIGNAL GROUPS

Signals on the L-bus, shown in Figure 3-2, consist of two basic groups: address/data, and control.
A description of both of these signal groups is provided in this section.

LOCAL BUS a

ADDRESS DATA (32 LINES)

A
< >
v CONTROL (12 LINES)

271079-60

Figure 3-2: L-Bus Signal Groups

Address/Data

The address/data signal group consists of 32 bi-directional active high lines. These signals are
multiplexed to serve a dual purpose depending upon the bus state.

LAD, -LAD, LOCAL ADDRESS/DATA,, through LOCAL ADDRESS/DATA)) rep-
resent the address signals on the L-bus during the T state. LAD, is the least
significant bit, and LAD, is the most significant address bit. LAD,, through
LAD, contain a physical word address. LAD, and LAD specify the number
of data words to transfer within a burst transaction. The address/data signals
float to a high impedance state when the L-bus is not acquired.

During the T, state LAD, and LAD, represent the SIZE signals indicate
whether one, two, three, or four words are transferred during the current
transaction. These signals are valid during the T state of the L-bus. The
encoding of the LAD, and LAD, signals to represent the size of a burst
transaction is shown in Table 3-1.

LOCAL ADDRESS/DATA,, through LOCAL ADDRESS/DATA rep-
resent the data signals on the L-bus during the T, and T states. LAD, is the
least significant bit, and LAD,, is the most significant databit. The address/
data signals float to a high impedance state when the L-bus is not acquired.

3-3

intel

THE 80960MC MICROPROCESSOR AND THE LOCAL BUS

Control

Table 3-1: SIZE Signal Decoding

Word Selection LAD, LAD,
1 Word Low Low
2 Words Low High
3 Words High Low
4 Words High High

The control signal group consists of 12 signals that control the transfer of data. These signals can
be used to control data buffers, address latches, and other standard interface logic.

ALE

ADS

DT/R

DEN

The ADDRESS LATCH ENABLE is an active low signal that can be used
to latch the address from the 80960MC processor. ALE is asserted during
the T, state and deasserted before the beginning of the T, state. The ALE
signal floats to a high impedance state when the L-bus is not acquired.

ADDRESS STATUS is an active low signal that is driven by the 80960MC
processor to indicate an address state. ADS is asserted during every T, state
and deasserted during the following T, and T, states. For a burst transaction,
ADS is asserted again every T, and T state where READY was asserted in

the prior cycle. The ADS signal is an open drain output.

DATA TRANSMIT/RECEIVE indicates the direction of data flow to or
from the local bus. For a read operation or an interrupt acknowledgement,
DT/R is low during the T, T, and T states to indicate that data flows into
the 80960MC processor. For a write operation, DT/R is high during the T,

» and T states to indicate that data flows from the 80960MC processor
DT/R never changes states when DEN is asserted.

DATA ENABLE is an active-low signal that can be used to enable data
transceivers. DEN is asserted during all T, and T, states. The DEN line is
an open drain output of the 80960MC processor.

THE WRITE/READ signal instructs a memory or I/O device to write or
read data on the L-bus. The 80960MC processor asserts W/R during a T,
state. The signal remains valid during subsequent T, and T, states. WRi is
an open drain output of the 80960MC processor.

THE BYTE ENABLE output signals of the 80960MC processor specify

which bytes (up to four) on the 32-bit data bus are transferred during the
transaction. Table 3-2 shows the decoding scheme for these signals.

3-4

intel

THE 80960MC MICROPROCESSOR AND THE LOCAL BUS

Table 3-2 : Byte Enable Signal Decoding

Byte Enable Signal Address Line Selection
BE, LAD;-LAD,
BE, LAD,s-LAD,
BE, LAD,s-LAD,¢
BE, LAD;,-LAD,,

The byte enable signals are valid from the 80960MC processor before data
is transferred, as shown in Figure 3-3 (assumes no wait states). The byte
enable signals that are valid for the first data word are specified during the
T, state. For a four-word burst transaction, the byte enable signals that are
valid for the second word are asserted during the first data state (T,), for the
third word during the second data state (T,), and for the fourth word during
the third data state (T). The byte enable signals are undefined during the
last data state (T,,) of the last word transferred.

ADDRESS

)0(DATA,).(DATA,).(DATA,)o(DATA,

7
BE’s,

BE’s, X_?E-s, BE’s,

N _QZ/ NV,

|/ I

271079-61

Figure 3-3: Byte Enable Timing Diagram

Although not shown in the diagram, the byte enable s1gnals of each word are
latched internally by the 80960MC processor and remain valid during every
data or wait state until READY is applied. After READY is applied the byte
enable signals change during the next T state or become undefined for the
last data transfer.

The 80960MC processor asserts only adjacent byte enables. For example,
the 80960MC processor does not perform a bus operation with only BE and
BE active. The Byte Enable lines are open drain outputs.

3-5

intel THE s0ssomMe MICROPROCESSOR AND THE LOCAL BUS

READY :The READY signal indicates that the data on the L-bus can be sampled
. . (read) or removed (write) by the 80960MC processor. If READY is not
asserted following the T, state or in between T states, a T, state is generated.

READY ‘s an active-low input signal to the 80960MC processor.

LOCK : Bus LOCK prevents other bus masters from gaining control of the L-bus
during a bus operation. It is activated by certain 80960MC processor op-
erations and instructions.

The 80960MC processor uses the bus LOCK signal when it performs a
RMW memory operation. When the processor performs a RMW-Read
operation, it asserts the LOCK signal during the T, state and holds LOCK
asserted. If the LOCK signal was already asserted, the processor waits until
this signal is deasserted before performing the RMW-Read operation. The
processor deasserts the LOCK signal during the T, state when it performs
a RMW-Write operation.

The 80960MC processor also asserts the LOCK signal during the interrupt
acknowledge sequence. LOCK is an input and an open drain output signal
from the 80960MC processor.

CACHE The CACHE signal specifies whether the data is cacheable. If the
80960MC processor asserts CACHE during the T, state, then the data is
cacheable. The CACHE signal is undefined during the T ,and T, states. The
CACHE signal floats to a high impedance state when the L-bus is not
acquired.

Table 3-3 summarizes the L-bus signals.

Additional pins are used by the 80960MC processor to control the execution of instructions and to
interface to other bus masters. These pins include the arbitration, interrupt, error, and reset signals.
Each of these signal groups are explained in separate sections.

L-BUS TRANSACTIONS

The 80960MC processor uses the L-bus signals to perform transactions in which data is transferred
between the CPU and another component. During a transaction, the 80960MC processor can transfer
up to four words of data to enhance system throughput. This is especially useful when loading cache
memory. ' : i

3-6

intel

THE 80960MC MICROPROCESSOR AND THE LOCAL BUS

Table 3-3: Summary Of L-Bus Signals

Signal Signal Active Type of
Group Symbol Signal Function State Direction Output
Local Address
Address/ (LAD4,-LAD,) 32-bit word address T. (0] 3-state
Data
Size Specifies number of ~
(LAD,-LAD,) words to transfer T. 0 3-state
(LA&?_'EADO) 32-bit data To T /0 3-state
Control ALE Emabl(laast ::dress T, o 3-state
ADS Identiﬁe:tz?eaddress Ta’Td“)'Twm o Open drain
DT/R Contrals dection of 1 1, T T,) Open drain
Enables data .
DEN transceiver/latch To Tw o Open drain
W/R Write/read command T Ts T, (o} Open drain
Specifies which data @T @ .
BE:-BE, bytes to transfer T, 19T, o] Open drain
Indicates data is
READY ready to transfer To Tw : -
LOCK Locks bus Any I/0 Open drain
Indicates cacheable ~
Cache ‘ transaction Ta (o] 3-state
NOTES:

1. Active after the first assertion of READY for a burst transaction.
2. Active except for the last transfer.

Clock Signal

The 80960MC hardware system typically uses two clock signals, CLK2 and CLK, to synchronize
the transitions between L-bus states. CLK2 is the clock input to the 80960MC and is double the
specified processor frequency. CLK is an optional clock signal derived through external logic to
provide a convenient reference of L-bus cycles and can be used to drive peripheral devices. CLK
is one-half the frequency of CLK?2, and is neither an input nor an output of the 80960MC processor.
The convention utilized throughout this manual is CLK is low during the first half of the bus cycle
and high during the second half. Figure 3-4 shows the relationship between the system CLK2 and
CLK.

3-7

intel e s0960mMC MICROPROCESSOR AND THE LOCAL BUS

- BUS > | BUS > BUS
STATE STATE >

STATE

-— T, ——— | —— Ty —— | —— T, ———|

CLK2

" CLK -

271079-62

Figure 3-4: Clock Relationships

Read Transaction

Figure 3-5 shows a typical timing diagram for a read transaction (for exact timings, see the 80960MC
processor data sheet). The following sequence of events explains the flow of the timing diagram. For
simplicity, no wait states are shown.

1. The 80960MC procéséor generaites several signalsbduring the T, state.

It transmits the address on the address/data lines. LAD, and LAD, specify a single word
transaction.

+ Itasserts ALE.

+ Itasserts ADS. »

» Itasserts Eﬁs-ﬁo to specify which bytes are used when reading the data word.
+ It brings W/R low to denote a read operation. '

+ Itbrings DT/R low.

2. During the T, state, several actions occur.

+ The 80960MC processor asserts DEN. DEN can be used to enable data transceivers.
READY is asserted by external timing logic and data is transmitted from the storage
devices. IfREADY is not asserted, the L-bus willentera T state. The T state is repeated,
until READY is asserted.

+ The 80960MC processor reads the data on the address/data lines.

3. The T, state follows the data state. This allows the system components adequate time (one
processor clock cycle) to remove their outputs from the bus before the 80960MC processor
generates the next address on the address/data lines.

intel THE s0960MC MICROPROCESSOR AND THE LOCAL BUS

CLK2

CLK

LAD,,-
LAD,

DT/R

O
m
Z

READY

271079-63

Figure 3-5: 80960MC Processor Read Transaction

Write Transaction

Figure 3-6 shows a typical timing diagram for a write transaction with one wait state. The following
sequence of events explains the flow of the timing diagram.

1. Sirﬁilar to the read transaction, the 80960MC processor generates several signals during the Ta
state.

+ It transmits the address on the address/data lines. LAD, and LAD, specify a single word
transaction.

e Itasserts ALE.
o Itasserts ADS.
o Itasserts ﬁ;-ﬁo to specify which bytes are used when writing the data word.

intel

THE 80960MC MICROPROCESSOR AND THE LOCAL BUS

+ It brings W/R high to denote a write operation.

« Itbrings DT/R

high.

During the T , State, several actions occur.
» The 80960MC places the data on the address/data lines.

¢ The 80960MC processor asserts DEN. DEN can be used to enable data transceivers.

« READY is not asserted by external timing logic. Consequently, data is held on the LAD

lines.

During the T state READY is asserted and the data is written to the storage device. Note that

W/R, DT/R, and DEN remain constant until the bus state after READY is asserted.

The T, state follows the wait state.

T, T, Tu T
e NN\ A\
cak N\ /S /S /=
CAp” 7177 ADDRESS DATA 7
AE N/ (L
s TN\ ___ |/
BE.BE, /X VaLD X777 777 77X 7777777777 7777777777,
wR |/ N
o1/R 77777777 X777
BEN /|
RERDY 777777 7777777777 N7\ L7777,

271079-64

Figure 3-6: 80960MC Processor write Transaction

3-10

iNntel THE s0960MC MICROPROCESSOR AND THE LOCAL BUS

Burst Transactions

The 80960MC processor supports burst transactions that read or write up to four words (16
contiguous bytes) at amaximum rate of one word every L-bus cycle. The byte enable signals are valid
foreach word to allow partial-word write operations to contiguous bytes within a word. The CACHE
output signal during a T, state applies to all words of a burst transaction. :

Aburstread or write transaction is similar to a single word read or write operation. Itdiffers primarily
in the number of data words transferred: the basic transaction always transfers one data word, the
burst transaction transfers up to four data words. Fora burst transaction, the byte enable signals are
applied during the T, state, and subsequently during every T, or T state before the data word is
transferred. Figure 3-7 shows the timing for a three-word burst read transaction-without wait states,
Figure 3-8 shows the timing for a two-word burst write transaction with a wait state occurring during
the transfer of the first word. Note that the byte enable signals remain constant until the data state
after READY is asserted. : -

CLK T\ / \ /
tﬁg;"z /7 X ADDRESS
ALE 7/ ZZ& /

BE,-BE, Zm(vap | X vauo | X vaup | X/ //// /ST

Wi T\ . B
OT/R 777777777/ - . 2777, /
DEN \ [T777777777,
RERSY 777777777770777770 | L7770 | LT777N | LTT777707,

271079-65

Figure 3-7: 80960MC Processor Burst Read Transaction

intal THE s0960MC MICROPROCESSOR AND THE LOCAL BUS

:
:
:
:
:

§
5
g
m
a
o
2
>
S
3
N7

E

BE.-BE, 77772X_Vvaib | X ALID L ALK
WR AL/ //
oT/R ¥/ NLLLL
DEN KZN v//4

READY /AL | L LI | 77

271079-66B

Figure 3-8: 80960MC Processor Burst Write Transaction

TIMING GENERATION

In an 80960MC processor-based system, timing signals must be generated for the clock and reset
inputs. To generate these signals, logic should be utilized to minimize skew and maintain the rise
and fall times as short as possible. This section describes a typical circuit that synthesizes the clock
signal. RESET timing generation is discussed in the “RESET AND INITIALIZATION” section of
this chapter.

Clock Generation

Figure 3-9 shows an example of a clock generator that produces two clock pulses, one double the
frequency of the other with the skew between the pulses in the range of 1 to 3 ns. This particular circuit
produces a 32-MHz clock at a 50% duty cycle. The circuit design consists of four devices: an
oscillator, a pulse shaping network, a synchronous up/down counter, and a NAND gate driver. The
output of the 64-MHz hybrid clock oscillator connects to the pulse shaping network (two NAND
gates in series), which in turn feeds into the clock input of the up/down counter. This counter
produces a 32-MHz CLK?2 output signal and a 16-MHz CLK output signal. Because the outputs of

3-12

intel THE s0960MC MICROPROCESSOR AND THE LOCAL BUS

the counter are synchronous, the skew between CLK?2 and CLK is typically less than2 ns. To provide
adequate signal margin and maintain fast rise and fall times, the two clock signals are conditioned
by the NAND gate driver. The timing waveforms of the clock circuit are shown in Figure 3-10.

If the opposite phase CLK is preferred, the U/D pin can be connected to V...

Vee

Vee Vee 10K

LOAD

CLK

n D c
u/D v
54AS1000) ENP e

¢—OJENT 10K
COUNTER

. 64 MHz
OSCILLATOR

Q, | 32MHz CLK 2

Qs 16MHz CLK

o0 w »

54AS 1804
v

271079-2328 SAF169A

Figure 3-9: Clock Generation Circuit

CLK,,

CLK2

R VY A W

271079-67

Figure 3-10: Clock Timing Waveforms

3-13

intel THE s0960MC MICROPROCESSOR AND THE LOCAL BUS

The hybrid clock oscillator typically requires 50 ms to stabilize after power is applied. The 80960MC
processor cannot begin to execute instructions until after the clock and V.. have reached their DC
and AC specifications. The RESET signal can be used to control the start of the CPU execution when
power is applied. This is discussed in the “RESET AND INITIALIZATION” section of this chapter.

ARBITRATION

When multiple bus masters exist, an arbitration protocol is used to exchange control of the bus. The
protocol assumes that there are two bus masters: one that controls the bus by default, and the other
that requests control of the bus when it performs an operation, such as a DMA controller. More than
two bus masters may exist on the L-bus, but this requires external arbitration logic. However, no
more than two 80960MC processors may reside on an L-bus. ‘

This section examines bus arbitration, bus states, and timing diagrams for different combinations of
two bus masters, as shown in Table 3-4.

Single 80960MC Processor On The L-Bus

For the first case, the 80960MC processor controls the L-bus, and a master I/O peripheral, such as
a DMA controller, requests control of the bus. The 80960MC processor and the I/O peripheral
exchange control of the bus with two signals: the hold request (HOLD) and hold acknowledge
(HLDA) signals. ‘

HOLD is an input signal of the 80960MC processor, which indicates that the master I/O peripheral
is requesting control of the L-bus. When HOLD is asserted, the 80960MC processor surrenders
control of the bus after it completes the current bus transaction. The 80960MC processor
acknowledges transfer of control of the L-bus to the requesting bus master by asserting HLDA.

State Diagram

Figure 3-11 shows the state diagram for an L-bus with two bus masters: an 80960MC processor, and
an 1/O peripheral device. This state diagram includes a hold state (T,) in addition to the five basic
states described in the “BASIC L-BUS STATES” section of this chapter. The 80960MC processor
enters the T, state when it surrenders control of the bus. It can enter the T, state from the T, T, T,
or T state. When the 80960MC processor regains control of the L-bus, it enters the T, state if anew
request is pending or a T, state if no new request is pending.

3-14

intel

THE 80960MC MICROPROCESSOR AND THE LOCAL BUS

Table 3-4: Combination of Bus Masters

Bus Master Combination
Bus Master that Controls the Bus Bus Master that Requests
by Default Control of the Bus
Case 1 80960MC processor 1/0 device
Case 2 80960MC processor 80960MC processor
Case 3 1/O device 80960MC processor

3-15

intel

THE 80960MC MICROPROCESSOR AND THE LOCAL BUS

—

REQUEST PENDING-
NO HOLD /

HOLD NO REQUEST-

NO HOLD

NO REQUEST-
NO HOLD

READY-BURST

READY-
NO BURST-
NO HOLD

READY-
NO BURST-
HOLD

NEW REQUEST
NOT READY
NO REQUEST- READY. /
NO HOLD NO BURST-
NO HOLD
REQUEST PENDING- READY.
NO BURST-
NO HOLD N

T, - IDLESTATE READY - READY ASSERTED
T, — ADDRESS STATE NOT READY - READY NOT ASSERTED
T, — DATASTATE BURST — MULTIPLE WORD ACCESS IN PROCESS
T, - RECOVERY STATE NO BURST - MULTIPLE WORD ACCESS DONE, OR A
T, — WAIT STATE ONE-WORD ACCESS
T, — HOLD STATE « = LOGICAL “AND” FUNCTION 271079-68B
Figure 3-11: L-Bus States with Arbitration
Arbitration Timing

Figure 3-12 shows the arbitration timing diagram. The initial “T” state representsa T,, T, T ,or T,
state of a previous transaction as specified in the L-bus state diagram shown in Figure 3-11. The
80960MC processor receives arequest to relinquish control of the bus when HOLD is asserted. After
the 80960MC processor completes the current transaction, it responds to this request by floating the

intel THE s0960MC MICROPROCESSOR AND THE LOCAL BUS

three-state output signals and deasserting the open drain output signals. The HLDA output signal,
however, remains active and is asserted as the 80960MC processor enters a T, state. During the T,
state, the CPU ignores all input signals except HOLD and RESET. When the HOLD input signal
is deasserted, the 80960MC processor exits the T, state, deasserts HLDA, and enters a T state if a
request is pending or a T, state if no request is pending.

CLK2

CLK

HOLD

HLDA

271079-69

Figure 3-12: Arbitration Timing Diagram For A Bus Master

Two 80960MC Processors On The L-Bus

For the next case, two 80960MC processors reside on the L-bus. During initialization, Local
Processor Number Zero (LPNO) is designated as the Primary Bus Master (PBM), and Local
Processor Number One (LPN1) is designated as the Secondary Bus Master (SBM). The exchange
protocol that is used guarantees that neither device is kept off the bus indefinitely.

The 80960MC processors use two pins for bus arbitration: the HOLD input pin, and the HLDA
output pin. However, these input and output pins are interpreted differently for the Secondary Bus
Master. When the SBM is initialized, the pin normally used for the HOLD input signal is interpreted
as the Hold Acknowledge Request (HLDAR) input signal. The assertion of HLDAR indicates that
the PBM relinquished control of the L-bus. Similarly, the HLDA output signal of the SBM is
interpreted as the hold request (HOLDR) output signal. The SBM asserts HOLDR to request
acquisition of the L-bus. Thus, bus arbitration between two 80960MC processors can be accom-
plished by connecting HOLD of the PBM to HOLDR of the SBM, and HLDA of the PBM to the
HLDAR of the SBM, as shown in Figure 3-13.

When using the connection shown in Figure 3-13, a delay must be inserted between the input and
output signals because the minimum output float delay, (shown as T9 in the 80960MC Data Sheet),
is less than the minimum hold time of the input signals, (shown as T11 in the 80960MC Data Sheet).
The delay time necessary to meet the specified input setup and hold times can be calculated by using
the following equation:

T11(min) - T9(min) < Delay < 2xT1(min) - T12(min) - T6(max)

3-17

intel THE s0960MC MICROPROCESSOR AND THE LOCAL BUS

The “T” numbers used in the above equation refer to timing parameters listed in the 80960MC Data
Sheet. Consult the data sheet for actual timing values. :

- ' HLDAR °
HOLD | DELAY (HOLDA)
PRIMARY BUS SECONDARY BUS
MASTER MASTER
»| HOLDR
HLDA DELAY o)

271079-70

Figure 3-13: Arbitration Connection Between Two 80960MC Processors

Bus States For Two 80960MC Processors

The state diagram for the SBM is shown in Figure 3-14. Because there are two 80960MC processors,
the LOCK signal is included in the state diagram. The SBM requests control of the L-bus by asserting
HOLDR and subsequently enters the hold request (T,) state provided that the bus is not locked
(locked means that the PBM is 0urrently executing a Read- Modify -Write operation and has asserted
the LOCK signal). The SBM remains in the T, state until it acquires control of the L-bus by receiving
HLDAR. The SBM returns to the T, state and deasserts HOLDR if the PBM asserts LOCK to execute
a Read-Modify-Write operation.

The SBM gains control of the bus when HLDAR is asserted provided that the bus is not locked. After
gaining control of the L-bus, the SBM performs the requested transaction and, if necessary, enters
aT,_ state. Atthe end of a transaction, the SBM goes to the T state and deasserts HOLDR for at least
one) processor clock cycle to allow another peripheral bus master to gain access if needed. If another
request is pending, the SBM enters the T, state and asserts HOLDR provided the bus is not locked.

If no request is pending the SBM returns to the T, state. The PBM never forces the SBM off the bus.

Arbitration Timing for Two 80960MC Processors on the L-Bus

Figure 3-15 shows the timing diagram for acquiring and relinquishing the L-bus by a SBM. The SBM
enters into the Hold Request (T,) state and asserts the HOLDR signal. It remains in the T, state until
HLDAR is asserted, which indicates that the SBM has gained control of the L-bus. Atthe end of the
transaction, the SBM enters the T, state and deasserts HOLDR. Except for HOLDR, the output
signals of the SBM go into a high impedance state or are deasserted for the case of open-drain outputs.

intel THE s0960MC MICROPROCESSOR AND THE LOCAL BUS

READY-BURST

NOT
HLDAR-
NOT LOCKED READY
NoT LOCKED NOT READY
READY-BURST
READY-
NO BURST
NEW REQUEST-
NEW REQUEST- .
NOT LOCKED NOT LocKED\ READY-NO BURST
LOCKED
NO
REQUEST
+LOCKED
NO

REQUEST

+ LOCKED
T, - IDLE STATE READY - READY ASSERTED
T, - ADDRESS STATE NOT READY - READY NOT ASSERTED
T, - DATASTATE LOCKED - LOCK ASSERTED BY ANOTHER BUS MASTER AND
T, - RECOVERY STATE RMW OPERATION PENDING FOR SECONDARY BUS MASTER
T,, - HOLD REQUESTSTATE HLDAR - HOLD ACKNOWLEDGE REQUESTED (REQUEST FOR BUS

GRANTED)
BURST - MULTIPLE WORD ACCESS IN PROGRESS
NOBURST - MULTIPLE WORD ACCESS DONE, OR A sr079718
ONE-WORD ACCESS 71

Figure 3-14: L-Bus States For Secondary Bus Master

3-19

intel THE s0960MC MICROPROCESSOR AND THE LOCAL BUS

CLK2 —
CLK _
HOLDR -

HLDAR

271079-72B

Figure 3-15: Arbitration Timing Diagram For SBM

Bus Exchange Example Between Two 80960MC Processors

Figure 3-16 shows an example of bus arbitration between a PBM and a SBM using the arbitration
signals. Each bus master performs a one-word read and a two-word write transaction to demonstrate
the fastest possible bus exchanges.

PBM BUS
STATE T, Tq Th Ty T, Tw T. Tq Tq

T
SBg‘Tg‘T‘g W T T, T T T T T, T, T. T. T, T, T T

CLK2
CLK

LAD, -
LAD,

W/R

PBM ALE

SBM ALE

READY

SBM
HOLDR

PBM
HOLD

PBM
HLDA

SBM
HLDAR

271079-73B

Figure 3-16: Examble of a Bus Exchange Transaction

3-20

intel THE 80960MC MICROPROCESSOR AND THE LOCAL BUS

While the PBM is performing a read transaction, the SBM requests control of the L-bus by asserting
HOLDR and entering the T, state. It remains in this state until the PBM grants the request by
asserting HLDA after the read transaction is completed. After granting the request, the PBM enters
the Th state and remains in this state until its HOLD signal is deasserted. When the SBM completes
the read transaction, it deasserts HOLDR and gives control back to the PBM.

The PBM now performs a two-word write transaction after deasserting the HLDA. The SBM
requests control of the bus again by asserting the HOLDR signal and enters the T, state. When the
PBM completes the two-word write transaction, it grants the request by asserting HLDA and enters
the T, state. The SBM receives the signal on the HLDAR input and performs a two-word write
transaction. When the SBM completes the transaction, the control of the L-bus is transferred to the
PBM, and both the PBM and the SBM enter the T, state.

A Peripheral Device As The Default Bus Master

Another case exists where a peripheral device controls the L-bus, and the 80960MC processor
requests control of the bus to perform operations. This alternative is not advisable because it hinders
system performance. The exchange protocol is identical to the one described in the previous section.
The 80960MC processor is a SBM and uses two pins for bus arbitration: the HOLDR input pin and
the HLDAR output pin. The state diagram is similar to the one shown in Figure 3-14. The lock
conditions are not used for this case, however.

The peripheral device grants control of the L-bus by asserting HLDAR when the SBM requests use
of the L-bus. The peripheral device can obtain control of the L-bus again by deasserting HLDAR.
If this occurs, the 80960MC processor surrenders control of the bus after it completes the current
transaction, as shown in Figure 3-17. At that time, the 80960MC processor deasserts the HOLDR
signal and places the other output signals into a high impedance state or a deasserted open drain level.
The 80960MC processor may request access to the L-bus by asserting HOLDR again.

CLK2

CLK

HLDAR

HOLDR

271079-74

Figure 3-17: Forced Relinquishment Timing Diagram For A SBM

3-21

intel THE s0960MC MICROPROCESSOR AND THE LOCAL BUS

INTER-AGENT COMMUNICATION (IAC)

The IAC mechanism gives 80960MC processors the capability to send and receive messages to one
another.and to other bus agents. The IAC mechanism is essentially a NON-MASKABLE interrupt
with pre-defined service routines. These routines are implemented in the 80960MC processor and
are used to perform control functions such as purging the instruction cache, setting breakpoint
registers, or stopping and starting the processor. By using IAC messages, external devices can
remotely control the 80960MC. This allows easy integration of the 80960MC into system
environments.

IAC messages can also be used to generate interrupts that behave exactly the same as hardwired
interrupts. Since the interrupt vector is encoded in the IAC message, any of the 248 possible interrupt
service routines can be invoked. For further information on IAC message definitions see the
80960MC Programmer’s Reference Manual.

Overview Of IAC Operations

Figure 3-18 shows a typical example of an IAC operation. In this case, an external processor gains
control of the 80960MC by using an IAC operation. The external processor performs two functions:
it writes the message in a buffer, called the message buffer; and it asserts the TAC pin of the 80960MC
processor. Upon receipt of the TAC signal, the 80960MC processor stops executing its current
process and performs a four-word burst read of the message buffer. After completing the read
operation, the 80960MC processor automatically performs a one-word write operation to a pre-
defined address to acknowledge the receipt of the message. The 80960MC processor then proceeds
to perform the required action. When an IAC sender and recipient are the same physical processor
(i.e. an 80960MC sending an IAC to itself), no L-bus activity is required. This allows software to
move dataor address’s over the L-bus during the same bus cycle that itis executing the IAC, therefore
increasing the effective throughput of the system.

Hardware Requirements For IAC Messages

To use the external IAC feature of the 80960MC, the following items are needed: a four-word
Message Buffer RAM mapped to a reserved address to store the message, IAC notification logic to
assert the TAC pin of the 80960MC, and decoding logic to deassert the IAC pin on command from
the 80960MC.

Message Buffers

Each 80960MC processor that receives an IAC message must have four 32-bit words of message
buffer. This buffer can use special hardware or a reserved area in RAM. For proper operation of the
buffer, two requirements must be met: the receiving 80960MC must be able to read this buffer at
FF000010,, if the receiving 80960MC’s Local Processor Number (LPN) is equal to zero (see the
“RESET AND INITIALIZATION” section of this chapter for details of the LPN), or at FF000030,,
if the LPN is equal to one; and the sending processor must be able to write to this buffer.

3-22

intel THE s0960MC MICROPROCESSOR AND THE LOCAL BUS

JAC PIN NO

ASSERTED?

READ MESSAGE BUFFER
WITH FOUR-WORD BURST

\

i

WRITE TO A PRE-DEFINED ADDRESS
TO ACKNOWLEDGE RECEIPT OF MESSAGE

\

i

PERFORM REQUEST

271079-75

Figure 3-18: Example Flow Chart For An IAC Operation

IAC Pin Logic

When the IAC message buffer receives a message, IAC notification logic asserts the IAC pin and

keepsitasserted. After the 80960MC processor reads the IAC message, it performs a one-word write
to address FFOOO0O0O0H if its LPN is zero, or FFO00020H if its LPN is one. This reserved address
serves two functions: it causes external logic to deassert the IAC pin, and it maps to a register that
contains the current processor priority. The 80960MC expects to write its priority into a 5-bit field
of address FFO00000 if its LPN is zero, or FF000020 if its LPN is one. To set the priority, the
processor performs a one-word write operation in the form shown in Figure 3-19. The priority is
contained in bit20-bit16, and bit3 is asserted to indicate that the priority is changed. It is necessary
to use bit3 as aqualifier to distinguish priority write operations from IAC message acknowledgments,

which use the same reserved address.

otk b PIP [P [P P B g g

%@@%%@%%%%%%@%%%@%%&@%%
@%&%%@%m%mmmﬂmu@&&w%w%w%

(e]

POy Y 1Y

(=l=] B3

ACKNOWLEDGE IAC MESSAGE
SET PRIORITY

SET PRIORITY AND
ACKNOWLEDGE IAC MESSAGE

271079-76B

Figure 3-19: Data Words

3-23

INgl THE 80960MC MICROPROCESSOR AND THE LOCAL BUS

If the low order three bits of the data word have a value of 100B (see Figure 3-19), the external logic
should deassert the IAC pin on completion of the write operation.

EXTERNAL PRIORITY REGISTER

The 80960MC keeps track of the current priority (a value between 0 and 31) at which it is executing.
This priority is used to decide whether or not to service interrupts -- higher priority interrupts are
serviced, others are posted for later servicing. In some system designs it may be desirable to have
this priority visible outside of the processor. To allow this, the 80960MC provides IAC message
support for an external priority register mapped to address FFO00000 if its LPN is zero, or FF000020
if its LPN is one. Whenever the priority of the 80960MC changes, the contents of this register are
automatically updated (if enabled).

This feature may be enabled in two steps. If the Write External Priority bit is set in the PRCB (see
the 80960MC Programmer’s Reference Manual), then the external priority register is updated as a
result of a process switch, an interrupt not caused by an IAC message, or the execution of a MODPC
instruction (modify process controls). If external IAC messages are enabled, then the external
priority register is also updated whenever a result of an IAC is to change processor priority.

External Priority And IAC Messages

The external priority register can be used to filter JAC messages. Since the processor always services
the TAC pin (i.e., it is non-maskable), a low priority IAC message can interrupt a high priority task.
To prevent this, a system can associate a priority with each IAC message. This priority can then be
compared to the priority stored in the external priority register and used to decide whether or not to
accept the IAC message. One way to associate a priority with an IAC message is to encode the
message priority into the IAC message destination address as shown in Figure 3-20. The range of
reserved addresses shown in Figure 3-20 have been set aside for this purpose.

31 2423 1413 98 43210
Dlafalafalafofofxfxxfx{x]x[x]xx|xjoJojt1]t1]o[x[x|x[x[x[ofofoo]
— S——
I L PriORITY
ADDRESS OF RECEPIENT
271079-77

Figure 3-20: Physical Address Interpretation For IAC Messages

INTERRUPTS

The 80960MC processor responds to external events occurring at arbitrary times by means of an
interrupt signal. Various sources, which include hardware components and special software
instructions, generate an interrupt signal that can suspend execution of the 80960MC processor’s
current instruction stream. Hardware-generated interrupts are discussed in this section. For
complete information on software-generated interrupts, see the 80960MC Programmers Reference
Manual.

3-24

intel THE s0960MC MICROPROCESSOR AND THE LOCAL BUS

The 80960MC architecture provides a flexible interrupt structure. The processor can be interrupted
using any of the three methods shown below:

* Receiptof a signal on any of the four direct interrupt input signal lines (INT INT,, INT,, and
INT,)

» Receipt of a signal on the interrupt request (INTR) line to obtain an external interrupt vector

« Receipt of an IAC message from a processor program or external source.

The choice of the method is determined by the setting in the on-chip Interrupt Control Register.
Interrupt signals can occur during any bus state regardless of which method is implemented.

This section provides details on the multiplexed interrupt pins, the three interrupt methods, the
Interrupt Control register, synchronization, and interrupt latency.

Interrupt Signals

The interrupt signals are multiplexed on four pins of the 80960MC processor: INTOIIAC INT,INT,/
INTR, and INT /INTA The on-chip Interrupt Control register determines how these pins are used
(see “Interrupt Control Register” section of this chapter).

INT,/IAC This pin multiplexes the Interrupt, and Inter-agent Communication
(IAC) request input signals. The 80960MC processor interprets this input
signal as either INT or TAC. The INT, signal indicates a request for
interrupt service when it is asserted. The TAC signal denotes that an TAC
message is waiting when it is asserted.

INT, The Interrupt, input signal indicates a request for interrupt service when it
is asserted.
INT,/INTR This pin multiplexes the Interrupt, and Interrupt Request input signals.

The 80960MC processor interprets this input signal as either INT, or INTR.
The INT, signal indicates a request for interrupt service when it is asserted.
The INTR signal indicates an interrupt request from an external interrupt
controller. The 80960MC processor responds with an interrupt-acknowl-
edge sequence. To ensure an interrupt, the INTR signal must remain
asserted until the first cycle of the interrupt-acknowledge transaction.

INT,/INTA This pin multiplexes the Interrupt, input signal and Interrupt Acknowl-
edge output signal. The 80960MC processor uses this pin as the INT, input
signal or as the INTA output signal. The Interrupt Control Register setting
selects either the combination of INTR/INTA or INT2/INT,. The INT,
input signal indicates a request for interrupt service when it is asserted.
INTA acknowledges the interrupt request from an external interrupt con-
troller. The INTA signal is latched by the 80960MC processor and remains
valid during the T, state and, if required, T, states. This signal is an open
drain output.

3-25

intel THE s0960MC MICROPROCESSOR AND THE LOCAL BUS

Interrupt.Control Register

The 80960MC processor uses a 32-bit, on-chip Interrupt Control Register to define the function of
the multiplexed interrupt pins. This 32-bit Interrupt Control Register allocates eight bits for each of
the four direct interrupt signals (INT,, INT,, INT,, and INT,). The eight bits contain the vector
number for each interrupt signal, as shown in Figure 3-21. The vector number is automatically read
when one of the interrupt si signals (INT INT,, INT,, and I_N—T3) is activated. For example, when an
interrupt is signaled on INT,, the 8096OMC processor uses bit,-bit, of the Interrupt Control register
as the vector number.

- 31 24 23) 16 15 8 7 (/] BIT NUMBER

INT, I l © N, I INT, I
VECTon vscron ~€—VECTOR VECTOR 271079-78

Figure 3-21: Interrupt Control Register

The 80960MC processor uses the data field correspondmg to INT to determine identification of the
INTO/IAC input pin; a value of 00,, signifies the TAC function. If the data field corresponding to INT,
has a value of 00,,, the 80960MC C processor interprets the INT,/INTR pin as the INTR input s1gna1
and the INT,/INTA pin as the INTA output signal. In other words this setting specifies that the
80960MC processor should use these two. pins for communication with an external interrupt
controller. When used with an external interrupt controller, the data field corresponding to INT,
should be set to FF,,. If the functlons of INTR and INTA are selected, the direct interrupt pins INT,

and INT, can still be used.

The on-chip Interrupt Control register may be read and written by the Synchronous Load (synld) and
Synchronous Move (synmov) instructions at the address FF000004,, (see the 80960MC Programmer’s
Reference Manual). The value of the data fields in the Interrupt Control register is FF000000,, after
initialization. This settmg specifies that the four interrupt pins functlon as INTA, INTR, INT and
TAC. ‘

Usmg The Four Direct Interrupt Pins.

The 80960MC [C processor can be mterrupted by asserting any of the four interrupt input signals (I (IN
INT, INT,, INT)« If the signals are simultaneously asserted, the 80960MC assumes that INT has
the highest priority, followed by INT , INT,, and INT,. Software should follow this convention when
programming the Interrupt Control register. When the interrupt input signals are asserted, the
80960MC processor utilizes a vector number specified by the Interrupt Control register as an index
to an entry in the interrupt table located in memory. For complete software information on this topic,
see the 80960MC Programmer’s Reference Manual.

.3-26

intal THE s0960MC MICROPROCESSOR AND THE LOCAL BUS

Using An External Interrupt Controller

The 80960MC processor can communicate with an external interrupt controller by performing an
interrupt acknowledge sequence using the INTR and INTA signals. Figure 3-22 shows an example
of the timing of an interrupt acknowledge sequence using the M8259 A Programmable Interrupt Con-
troller.

INTR is asserted by the M8259A and remains asserted until the 80960MC processor activates the
INTA signal for the first time. When the 80960MC processor receives an interrupt request, the CPU
completes the current transaction (or comes to some interruptible point), and asserts INTA. INTA
remains valid through the Ta, T, and T states. The first assertion of INTA triggers the M8259A to
resolve priority among its interrupt requests.

INTERRUPT INTERRUPT
PREVIOUS <.Acmown.emusm, 5 Bué";.fnis) — > |«———ACKNOWLEDGMENT —
OYCLE CYCLE 2
CLK 2
CLK
INTR
LAD,,
LAD,

READY

271079-79B

Figure 3-22: Timing Diagram For Interrupt Acknowledge Transaction

To compensate for the timing of the M8259A, the 80960MC processor inserts five Ti states before
-asserting the INTA again to read the interrupt vector. Figure 3-22 shows READY asserted without
a wait state during the first Interrupt Acknowledgement cycle and with one wait state during the
second Interrupt Acknowledgement cycle. In practice, the M8259A would require about four wait

3-27

intel THE s0960MC MICROPROCESSOR AND THE LOCAL BUS

states in both cycles. The address during the Ta state for both interrupt acknowledge cycles is
FFFFFFFC,. For more details, see the “M8259A Programmable Interrupt Controller” section in
Chapter 5.

41
[€— CLOCK —»
CYCLES A EDGE

SR AU W el b o
_/

RESET i

271079-80

Figure 3-23: RESET Timing Diagram

The 80960MC processor services the interrupt according to its priority. If the interrupt has higher
priority than the current activity, the 80960MC processor services it immediately. Otherwise, after
reading the interrupt vector, the 80960MC processor posts the interrupt vector in the interrupt table.
Typically, the 80960MC processor responds within 5 us for an interrupt with higher priority than the
current process (assuming CLK?2 at 32 MHz). If the interrupt has lower priority than the current
activity, the interrupt is serviced when its priority is higher than the priority of the subsequent activity
of the 80960MC processor.

Using IAC Requests For Interrupts

The 80960MC processor can also be interrupted by an IAC message. The 80960MC processor can
send IAC messages to itself by using one of the Synchronous Move instructions. Because this
message does not utilize the L-bus when sent to the same processor, no special hardware is required.
More details on IAC messages are provided in the 80960MC Programmer’s Reference Manual.

Synchronization

The INT,IAC, INT,, INT,/INTR, and INT, input signals can be either synchronous or asynchronous
to the system clock (CLK2). To properly preset the interrupt signals for synchronous operation,
INT/IAC,INT,, INT,/INTR, and INT, must be deasserted for at least one processor clock cycle and
asserted for at least one processor clock cycle. These signals may be deasserted and asserted
individually.

If the interrupt signals are asynchronous to CLK2, the 80960MC processor internally synchronizes
them. For the CPU to recognize the asynchronous interrupt input signals, they must be preset by
deasserting them for at least two processor clock cycles, and then asserting them for at least two
processor clock cycles. These signals may be deasserted and asserted individually.

3-28

intel THE s0960MC MICROPROCESSOR AND THE LOCAL BUS

RESET AND INITIALIZATION

The system RESET signal provides an orderly way to start or restart the 80960MC processor. When
the 80960MC processor detects the low-to-high transition of RESET, it terminates all external
activities and places the output pins in the high impedance state or deasserted condition. When the
RESET signal falls low again, the 80960MC processor begins the initialization process and later
starts fetching instructions from a specific address.

RESET Timing Requirements

To properly reset the 80960MC processor to aknown state, the low-to-high transition of RESET must
be asserted relative to any rising edge of CLK?2 and remain asserted for at least 41 CLK?2 cycles, as
shown in Figure 3-23. RESET must be deasserted after the rising edge of CLK?2, but prior to the next
rising edge of CLK?2. This establishes the nextrisingedge of CLK2 as edge A (the startof abuscycle).

— RESET TO
D Q > cpu

SYNC

USER RESET ——>1 D Q

o T>c

Figure 3-24: Asychronous RESET Circuit

\i
o

271079-81

RESET Timing Generation

The RESET input signal to the 80960MC processor can easily be generated by implementing a
synchronization circuit comprised of two D-type flip-flops, as shown in Figure 3-24.

CLK2

CLK

USER RESET

SYNC

CPU RESET

271079628

Figure 3-25: Diagram for RESET Timing Generation

3-29

intel THE s0960Mc MICROPROCESSOR AND THE LOCAL BUS

» RESET TO

USER RESET —>»1. D CPU

ol

) CLK-.—-—>> c

271079-83

Figure 3-26: Synchronous RESET Circuit

The user RESET signal is synchronized with the rising edge of the CLK signal by applying CLK to
the clock input of both ﬂip-ﬂops. To protect against a metastable user RESET signal, the output of
the first flip-flop, SYNC, is applied to the input of the second flip-flop. The output of the second flip-
flop results in a processor RESET signal. The timing diagram for these > signals is shown in Figure
3-25. CLK or CLK2 can be used instead of CLK in Figure 3-24. Using CLK to clock the flip-flops
provides a CKL2 edge A correspondmg to the rising edge of CLK. Although the system architecture
permlts CLK?2 and CLK to rise together at edge A, the convention used throughout this document
is as shown in Figure 3- 25

This preceding circuit assumed an asynchronous user RESET signal. If the user RESET signal is
synchronous with the CLK signal, it can be implemented as shown in Figure 3-26. In this case,
however, the output from the first flip-flop is used to generate the processor RESET signal rather than
being routed to the input of the second flip-flop.

Initialization

The initialization sequence of events is shown in Figure 3-27. When RESET is deasserted after a
minimum of 41 CLK2 cycles, several actions take place: two input pins are sampled, the FAILURE
output signal (see next section for the pin description) is asserted, and the self-test is performed.

When RESET is deasserted, the 80960MC processor samples the signals residing on the WT_O/I_K@
and the BADAC input pins (see the next section for the pin description of BADAC). At this time,
these pins are interpreted as the Local Processor Number (LPN) and Startup (STARTUP) signals,

respectively. A high voltage level input at the, INT pin defines the 80960MC as the Primary Bus
Master (PBM), Local Processor Number Zero (LPNO), alow voltage level defines the 80960MC as
the Secondary Bus Master (SBM), Local Processor Number One (LPN1). During initialization of
a uni-processor system, the 80960MC should always be assigned as the Primary Bus Master. The
STARTUP input pin indicates whether the 80960MC processor performs initialization (high voltage
level) or not (low voltage level). The STARTUP signal is used to allow one or more processors to
perform the active initialization. The RESET signal timing relationships are shown in Figure 3-28.

Besides sampling the two input pins, the 80960MC processor asserts the FAILURE output signal a
few cycles after RESET is deasserted. The FAILURE signal remains asserted while the CPU
performs the self-test. If a failure is detected during the self-test, FAILURE remains asserted and
the CPU enters the stopped state where the processor does nothing. At this time all outputs from the
80960MC will be disabled (high-impedance or deasserted). If the self-test completes successfully,
the CPU deasserts the FAILURE signal.

3-30

intgl

THE 80960MC MICROPROCESSOR AND THE LOCAL BUS

d l DEASSERT RESET |
READ Y
INITIALIZATION | sAMPLE LPN AND START-uP INPUT PINS |
PARAMETERS
- ASSERT EMLURE]
| PERFORM SELF-TEST' |
PERFORM VES
SELF-TEST ERROR?
NO
g | DEASSERT FAILURE |
NO
INITIALIZATION
PROCESSOR
PERFORM
SYSTEM CHECK

IREAD 8 WORDS FROM PHYSICAL ADDRESS 0]

| PERFORM cHECKSUM ON THE 8 worDs |

-
f'
CHECKSUM
CORRECT ?
PREPARE FOR
OPERATION 1 ves
| seTup For THE FIRsT INsTRUCTION |
L | cLEAR ANY LATCHED INTERRUPT siGNALS |

| EXECUTE FIRST INSTRUCTION |

ENTER STOPPED STATEI

ENTER STOPPED STATEJ

ASSERT FAILURE |

[EnTeR sToPPED STATE]

271079-84

Figure 3-27: Initialization Flow Chart

3-31

intel THE s0960MC MICROPROCESSOR AND THE LOCAL BUS

CLOCK EDGES
41 CLOCK A B C DA

ol \ \ [/ L
CPU \
RESET <
OUTPUTS 4
A 1\ T
iNT,/IAC AND BADAC iNT,/IAC AND BADAC LATCHED INTERRUPT
MUST BE SET PRIOR TO MUST BE HELD BEYOND SIGNALS CLEARED PRIOR
THIS CLOCK EDGE. THIS CLOCK EDGE. TO FIRST INSTRUCTION.

271079-85

Figure 3-28: RESET Signal Timing Relationship

An 80960MC processor that is designated as the initialization processor proceeds by doing a
checksum test of eight words fetched from memory at physical address 0000 0000H to ensure that
the memory and L-bus are operating properly. If the checksum is incorrect, the FAILURE signal is
re-asserted and the 80960MC processor enters the stopped state. After a successful checksum test,
the 80960MC processor uses some of the previously fetched words as addresses to initial data
structures. Complete details are provided in the 80960MC Programmer’s Reference Manual.

Just prior to executing the first instruction, the 80960MC processor clears any latched interrupt
signals.

ERROR SIGNALS

The 80960MC processor incorporates an input signal (BADAC) for notification of an error condition
in the system, and provides an output signal (FAILURE) for notification of an error within the
Processor.

BADAC When asserted, the Bad Access input signal indicates to the processor that
an unrecoverable error occurred during the current data transfer. If,
however, BADAC was asserted after a Synchronous Move or Synchronous
Load instruction, the error is recoverable. The 80960MC processor samples
the BADAC input signal during the cycle following the one when the last
READY is asserted. ‘

FAILURE The Failure signal indicates that an error occurred during initialization. The
80960MC processor always asserts FAILURE after the activation of the
RESET signal. If a failure is detected during a self-test, FAILURE remains

3-32

intel THE s0960MC MICROPROCESSOR AND THE LOCAL BUS

asserted. Otherwise, the processor deasserts FAILURE after a successful
self-test is performed. If the initial memory checksum is incorrect, the
initialization process re-asserts FAILURE a second time, and keeps it
asserted. FAILURE is an open drain output signal.

SUMMARY

The L-bus is a high speed 32-bit multiplexed bus with burst-transfer capability and is designed to
operate with the high performance 80960MC processor. The L-bus consists of two signal groups:
address/data, and control. These signal groups are utilized by the 80960MC processor to perform
read, write, and burst transactions.

The arbitration, interrupt, and reset operations are related to the L-bus transactions. The arbitration
operation transfers control of the L-bus to another bus master. Three methods are available to handle
interrupts: by invoking the on-chip interrupt controller, by employing an external interrupt controller
using the INTR/INTA signals, or by using an IAC message. The reset function sets the 80960MC
processor to aknown internal state after it successfully completes the self-test. These operations offer
power and flexibility to hardware system design using the 80960MC processor.

This chapter focused on the L-bus and its relationship with the 80960MC processor. The next two
chapters develop guidelines on interfacing memory and peripheral devices into the L-bus hardware
system.

3-33

Memory Interface

CHAPTER 4
MEMORY INTERFACE

The high-speed L-bus architecture has many features that enhance high-performance designs. In
particular, the burst-transfer feature allows up to four successive 32-bit data word transfers at a
maximum rate of one word every processor clock cycle. This chapter outlines approaches for
memory designs that use these features, describes memory design considerations, analyzes the
timing, and lists a number of useful examples. The concepts illustrated by these examples apply to
a wide variety of memory system implementations.

BASIC MEMORY INTERFACE

Figure 4-1 shows the major logic blocks of a memory interface circuit. The data transceivers buffer
the data to compensate for any slow devices that may be connected to the 80960MC processor. The
address latches demultiplex the address/data signals from the 80960MC processor and latch the
address. The address decoder selects the appropriate memory device from the latched address. To
accommodate a memory burst transaction, the burst logic decrements the word count, increments the
local address lines 3 and 2 (LAD, and LAD,), and generates a CYCLE-IN-PROGRESS signal. The
timing control generates a READY signal and other specific signals required by a particular memory
device. The byte enable latch stores the byte enable signals.

Although not part of the basic memory interface, the DRAM controller, SRAM interface, DRAM,
SRAM, and EPROM are included in Figure 4-1 for completeness. In a hardware system the DRAM,
SRAM, and EPROM are typically located in separate subsystems.

Although the memory interface circuit can be designed using programmable logic, gate arrays, or
other custom logic, the examples use standard components wherever possible to illustrate the design
concepts.

Data Transceivers

Standard 8-bit transceivers can be used to provide isolation and additional drive capability for the
L-bus. Transceivers can be used to prevent bus contention that can occur if some memories are slow
to remove data from the L-bus after aread operation. For example, if a write operation follows aread
operation, the 80960MC processor may drive the L-bus before a slow device has removed its output
data, potentially causing a current spike on the power and ground lines. Transceivers, however, can
be omitted if the data float time of the device is short enough and the load does not exceed the
80960MC device specifications.

The data transceivers can be controlled by two signals from the 80960MC processor: data transmit/
receive (DT/R) and data enable (DEN). DT/R indicates the direction of data flow and DEN enables
the transceivers.

4-1

4

}-v 2anbiy

9160 aoejse)u| A1owayy Joj weibeiq %019 paydwis

DATA
TRANSCEIVERS

G

LAD,-LAD,
ADDRESS
LE LATCHES

G

Q

DRAM

80960MC ADDRESS E"_"ﬂffl——‘ __
PROCESSOR DECODER DRAM-CS RS,
> DRAM WE
3| CONTROLLER
LAD,-LAD, DRAMA,-DRAMA,
> BURST p, l DRAM-RDY
> LOGIC \ -
| '3
ADS | CYCLE-IN-PROGRESS
) i
TIMING <
CONTROL ~ -
READY READY -
W/R > SRAM-WE
> SRAM-OE
| Y
-
> BYTE — i
—_— BE BRE SRAM OE,-OF ﬁ
BE,-BE =)»| ENABLE BE,-BE, »q ©OE-OE,
e . LATCH INTERFACE WE,-WE, | >
cLK2 i

SRAM

| 271079-86

P

JOV4HILNI AHOWIN

intel MEMORY INTERFACE

Address Latch/Demultiplexer

Conventional transparent latches can be used to demultiplex the address/data lines of the 80960MC
processor and to hold the address constant during the memory operation. The latch is controlled by
the ALE signal from the 80960MC processor. ALE passes through an inverter, so that when ALE
goes low, the address flows through the latch. The low-to-high transition of ALE can be used to latch
the address. The output enable of the latch can be tied to ground. The lower four address lines (LAD,-
LAD,) are latched by the burst logic.

Address Decoder

The 80960MC processor accesses both memory and I/O devices by supplying a 32-bit address and
aread/write command. The address decoder determines which particular memory or I/O device is
selected by decoding the address lines. The following discussion focuses on memory selection, and
the “Address Decoder” section in Chapter 5 discusses I/O device selection using memory-mapped
I/O techniques.

The memory address can be divided into regions where one region can apply to EPROM or ROM,
another to RAM, and another to the I/O registers. In a 80960MC-based system the ROM address
space is likely to start at address 0000 0000H because the CPU begins execution at this address. The
RAM or I/O regions can start at any other address in the 4G-byte address range except for addresses
FF000000H through FFFFFFFFH, which the 80960MC processor reserves for inter-agent commu-
nication.

Because of the large address range of the 80960MC processor, the address can be divided into word
address bits and chip select bits. Typically the higher-order address bits are decoded to generate the
selection signal for ROM, RAM, or I/O devices.

The address decoder can be located either before or after the address latches. Usually, it is placed
after the latches, so that the chip-select signal does not need to be latched. Figure 4-1 shows the
address decoder placed after the address latches.

Burst Logic

To enhance system performance, the 80960MC processor performs burst transactions that transfer
up to four data words at a maximum rate of one word every clock cycle. A DRAM controller can
be designed that takes advantage of the burst-transfer capability by using the static column mode or
nibble mode features of the DRAM (see the “DRAM Controller” section of this chapter. This DRAM
controllerrequires asignal, called CYCLE-IN-PROGRESS, to identify the start and end of amemory
cycle. The burst logic generates the CYCLE-IN-PROGRESS signal.

Figure 4-2 shows the flow chart for the burst logic. If ADS is low and DEN is high, then the burst
logic latches LAD, through LAD, and asserts the CYCLE-IN-PROGRESS signal. The burst logic
checks the SIZE signals (LAD, and LAD,). If the value of the SIZE signals equal zero, then the burst
logic runs one memory cycle, and terminates the CYCLE-IN-PROGRESS signal. If the value of the

4-3

intel MEMORY INTERFACE

SIZE signals do not equal zero, the burst logic runs one memory cycle, increments the latched
address’s A, and A, to point to the next 32-bit word, and decrements the SIZE value. When this is
finished, the burst logic checks the value of the SIZE signals again.

SAMPLE ADS
AND DEN

<
<

Y

LATCH LAD,-LAD,
AND ASSERT
CYCLE-IN-PROGRESS.

DEASSERT
CYCLE-IN-PROGRESS

R

SIZE = 0? RUN ONE CYCLE

L
>

NO

RUN ONE CYCLE.
DECREMENT SIZE.
INCREMENT A -A,

]

271079-87

Figure 4-2 Burst Logic Flow Chart

The burst logic can be used with EPROM, SRAM, DRAM memories. However, it cannot be used
inthe DRAM static column or nibble modes, because they do not support burst transactions. Because
the 80960MC processor ensures that a burst transaction cannot exceed four words or cross a 16-byte
boundary, incrementing A, and A, after a single data word transfer makes the burst transfer
transparent to the memory devices.

4-4

intel MEMORY INTERFACE

Timing Control Logic

The timing control logic accommodates memory devices that cannot transfer information at the
maximum bus rate by inserting wait states until the data becomes available. The timing control logic
consists of a counter and timing logic, as shown in Figure 4-3. The counter produces a 4-bit binary
count. The count begins when the CYCLE-IN-PROGRESS signal is asserted. The timing logic
asserts READY at the appropriate time based upon the count, the EPROM-CS, and the SRAM-CS
signals. For abursttransfer, READY resets the counter to properly time a READY signal for the next
data transfer. When CYCLE-IN-PROGRESS is deasserted, the clock counting is terminated.

Because the timing of DRAM is more complicated, the DRAM controller generates a DRAM-RDY
signal to the timing control logic. In addition, the clock count, the W/R command, and SRAM-CS
signal can also be used to generate SRAM-WE and SRAM-OE signals.

COUNT,
COUNTER | COUNT, » READY
CYCLE-IN- Count,>| TMNS | srawoe
PROGRESS | START CYCLE 2 LOGIC SRAM-
CLK2 —> COUNT, ——> SRAM-WE
wW/R } +
EPROM-CS
SRAM-CS
DRAM-RDY 271079-88B
Figure 4-3: Memory Timing Control Block Diagram
Byte Enable Latch

The byte enable latch holds the byte enable signals constant until the DRAM controller or SRAM
interface uses the signals. As mentioned in the “L-Bus Signal Groups” section in Chapter 3, the byte
enable signals specify which bytes (up to four) on the 32-bit data bus are transferred during the data
cycle. Each individual byte enable signal selects eight data lines as shown in Table 4-1.

The byte enable signals are valid from the 80960MC processor before data is transferred. These
signals are asserted during the address cycle for the first data word transfer; they are asserted again
during the first data cycle for the second word transfer; the second data cycle for the third word
transfer; and the third data cycle for the fourth word transfer.

45

intal MEMORY INTERFACE

The ALE signal can be used to latch the first byte enable signals. READY can be used with the A
edge of CLK or CLK2 to latch the other byte enable signals for each word.

Table 4-1: Byte Enable Signal Decoding

Byte Enable Signal LAD Line Selection
BE, LAD,-LAD,
BE, LAD,s-LAD,
BE, LAD,3-LAD,¢
BE, LAD,,-LAD,,

‘SRAM INTERFACE

The basic memory interface can be used in conjunction with the SRAM interface to read and write
to SRAM. This section describes the SRAM interface and examines the timing.

SRAM Interface Logic

The SRAM interface logic uses the latched byte enable signals, the SRAM-OE, and the SRAM-WE
signals to generate four output enable signals (SRAM-OE, through SRAM-OE) and four write
enable signals (SRAM-WE, through SRAM-WE), as shown in Figure 4-4. These signals allow the
80960MC processor to write to the data byte that is specified by the byte enable signals. SRAMs with
separate OE and CS signals require only one OE signal per bank since the 80960MC ignores
unrequested bytes in read operations.

SRAM Timing Considerations

This section analyzes the critical timing paths of the SRAM control signals. From the critical path,
the timing equations can be derived to determine the memory access time for no wait state operation.

When evaluating critical timing paths, the timing calculations should use worst-case data sheet
parametric specifications, rather than typical specifications. By using worst-case timing values,
reliable operation is assured over all variations in temperature, voltage, and individual device
characteristics. These timing values are determined by assuming the maximum propagation delay to
latch an address, select a memory device, and pass through data buffers and transceivers. '

Figure 4-5 shows the critical timing path for a one-word SRAM read operation. The diagram consists
of three time periods: the address setup period (T,), the memory response period (T,), and the
data return period (T,). Note that the timing for the read command and output control signals does

taset:

not enter into the critical timing path.

4-6

intel MEMORY INTERFACE

BE.
® 9 Do———- SRAM-OE,’
BE, O
RAM-OE,"
1 }_ s ’
BE, 9 SRAM-OE,"
+—a e
BE, O
BE, Do—- SRAM-OE,"
[camm @
SRAM-OE
—9 SRAM-WE,
—q
0
SRAM-WE,
| g
+ 9 Do—— SRAM-WE,
9 Do——— SRAM-WE,
O
SRAM-WE
*SRAMS WITH SEPARATE OE AND CS REQUIRE ONLY ONE OE SIGNAL PER BANK.
271079-89

Figure 4-4: Logic Diagram for SRAM Interface

During the T et period, the 80960MC processor outputs a valid address that is latched on the low-
to-high transition of the ALE signal. The address decoder generates the SRAM-CS signal from the
latched address and the Timing Control/SRAM Interface logic subsequently generates the OF
signals. During the T __ period the SRAM responds to the commands and signals and retrieves the
data. The access time of the memory determines the duration of the T period. T___can be varied
in increments of clock cycles by delaying the READY signal.

The data must be available at the address/data pins of the CPU before the end of the data state. The
T, PETiOd must take into account the setup time requirement of the 80960MC processor and the
throughput delay of a data transceiver.

4-7

intgl | MEMORY INTERFACE

OUTPUT SRAM CPU DATA
ENABLE ACCESS SETUP TIME
DELAY TIME
Taddrset I Tmem '—‘>| Tdataset
SRAM READ CYCLE

271079-90

Figure 4-5: Critical Timing Path for SRAM Read Operation

For a no wait state operation, the data transfer word must be completed in two system clock (CLK)
cycles. The minimum time period for a no wait state operation (T) can be determined by
using equation 1.

mem-no-wait = ZCLK b Taddrset - Tdataset (I)
where: T = Memory access time for no wait state operation

2CLK = Two system clock (CLK) cycles

T et = Maximum delay to valid address
+ Maximum throughput delay of address latch
+ Maximum delay to generate chip select
+ Maximum delay to generate SRAM-OE_

T jucaset = Maximum delay through data transceiver

+ Maximum data setup time of CPU

A similar analysis can be done for burst transactions. Equation 1 can be used to determine the access
time for no wait state operation of the first word. For subsequent words, equation 2 can be used. In
this equation, the address setup time is replaced by delay in the burst logic to change the address
(T,,..)- Inthis case, the data transfer of each subsequent word must be completed in one system clock
(CLK) cycle (no address state). The minimum access time for a no wait state operation (T___ .3
can be determined by using the lesser value of equation 1 or equation 2.

4-8

intel MEMORY INTERFACE

T =CLK-T,

burst

T

dataset

2

mem-no-wait

where: T = Memory access time for no wait state operation

mem-no-wait

CLK = One system clock (CLK) cycles

T

burst

= Maximum delay to change the address

= Maximum delay through data transceiver
+ Maximum data setup time of CPU

dataset

The memory access time can be extended by delaying the READY signal and adding wait states.

The timing analysis described for a SRAM read operation can be used for EPROM timings. If
EPROMs are only used to store initialization programs, they are seldom accessed compared to
memory devices used to store program data or instructions. Consequently, the addition of wait states
during the read cycle does not affect overall system performance.

Figure 4-6 shows the critical timing path for an SRAM write operation. The diagram consists of two
time periods: the address setup period (T, .) and the memory response period (T__).

addrset mem

MEMORY
WRITE
CYCLE

TIME

'CHIP SELECT

AND WRITE
ENABLE

DELAY

VALIEDss
> ADDRI
DELAY

SRAM DATA
SETUP AND

VALID DATA
DELAY HOLD TIMES

Taddraat >l Tmem

- SRAM WRITE CYCLE

271079-91

Figure 4-6: Critical Timing Path for SRAM Write Transaction

During the T, . period, the 80960MC processor outputs a valid address that is latched on the low-
to-high transition of ALE. The address decoder generates the SRAM-CS signal from the latched
address and the Timing Control/SRAM Interface logic subsequently generates the Write Enable
(WE) signals.

4-9

intel MEMORY INTERFACE

During the T, period the SRAM responds to the commands and writes the data. The access time

of the memory determines the duration of the T, period. T can be varied in increments of clock
cycles by delaying the READY signal.

Two timing paths should be considered during the T__ _period: the path where data is supplied to the
memory, and the path that monitors the memory write cycle time. The first path takes into account
the time for the 80960MC processor to generate valid data, the throughput delay of a data transceiver,
and the data setup and hold time requirements of the memory devices. The second path is the memory
write cycle specification. The longer of the two paths is the critical timing path.

By examining the timing path required to write to the SRAM, equation 3 can be derived which
determines SRAM write cycle time for no wait state operation. The memory cycle time is determined
by the lesser value of equation 1 (read) or equation 3 (write).

T =2CLK-T

mem-no-wait addrset (3)
where: T __ .+ => Maximum delay to valid data
+ Maximum throughput delay of data transceiver
-+ Maximum data setup and hold times of memory
2CLK = Two system clock (CLK) cycles |
| T et = Maximum délay to valid address

+ Maximum throughput delay of address latch
+ Maximum delay to generate chip select
+ Maximum delay to generate write enable

The memory access time for either memory reads or memory writes can be extended by delaying the
READY signal and generating wait states.

DRAM CONTROLLER

This section provides design guidelines for a DRAM controller. Many DRAMs offer static column
mode and Column Address Strobe (CAS) before Row Address Strobe (RAS) refresh features. This
section shows guidelines on how to use these features with the burst capability of the 80960MC
processor to significantly enhance system throughput.

The DRAM controller multiplexes the address into a row and column address, performs the refresh
operation, arbitrates between a refresh request and memory request, and generates the necessary
control signals for the DRAM. To implement these functions, the memory controller uses an address
multiplexer, arbiter, refresh interval timer, and DRAM timing and control as shown is Figure 4-7.

A standard VLSI DRAM contfoller can be used, but it typically degrades system performance.

4-10

intel

MEMORY INTERFACE

Address Multiplexer

The address multiplexer divides the DRAM address into a row and column address. The proper
selection of a row or column address is accomplished by the row/column select signal (ROW/COL)

from the DRAM timing and control circuit.

Refresh Interval Timer

The refresh interval timer periodically generates a refresh request (REF-REQ) by counting enough
bus cycles to equal the refresh interval period. Since a refresh request is processed after a completed
operation, the refresh period must take into account the time required to perform a bus operation, as
well as the DRAM refresh specification. For example, a IM-bit DRAM that requires 512 refresh
cycles within 8 ms needs arefresh cycle every 15.6 us. To meet the DRAM specification, the refresh
interval timer must generate a refresh request in less than 15.6 us to compensate for any required time

to complete the operation with wait states.

L-BUS]
kboness I — 2> DRAMA;DRAMA,
ADDRESS ROW/COL
MULTIPLEXER

DRAM-CS ———f

ARBITER
CYCLE-IN- MEM /ﬁ?
PROGRESS
CLK2 >

REF-ACK
REF-REQ
REFRESH
P INTERVAL
TIMER
L)
B___E., —_— > RAS,
BE, DRAM - C_Aég
BE, ‘ CONTROL > CAS,
WRe— oas.
DRAM-RDY @——— | peas

271079-92B

Figure 4-7: DRAM Controller Block Diagram

4-11

intel MEMORY INTERFACE

After the REF-REQ signal is generated, the arbiter sends a refresh acknowledge signal REF-ACK
back to the interval timer to assure that refresh occurred before generating another REF-REQ.

Arbiter

DRAM controller uses an arbiter to decide whether a memory cycle or refresh cycle is performed.
In a synchronous design, arbitration is easily performed because memory and refresh cycle requests
never occur at or near the same time.

The arbiter monitors memory cycle requests and refresh requests. The arbiter detects a DRAM
memory request by decoding two signals: DRAM-CS and CYCLE-IN-PROGRESS. The REF-REQ
signal indicates that a refresh cycle must be performed. The arbiter arbitrates between a memory
cycle or refresh cycle and generates a Memory/Refresh (MEM/REF) signal. The DRAM timing and
control block uses the MEM/REEF signal to start the generation of the control signals.

When a refresh cycle is performed, the arbiter sends a REF-ACK signal to the refresh timer, which
uses this signal to begin another count cycle.

DRAM Timing and Control

The DRAM timing and control circuit is the final logic block and core of the DRAM controller. The
functions of this circuit include the following:

+ Generating the DRAM control signals (RAS, CAS, and WE) with the proper timing relation-
ships during system operation

* Generating the DRAM-RDY signal
e Performing the refresh function by asserting CAS before RAS

e Performing several warm-up cycles required by the DRAM when power is first applied.

The DRAM timing and control logic can be designed to take advantage of the burst-transfer
capability of the 80960MC processor by implementing static column mode or nibble mode. With
nibble mode, a multiplexed address is applied to the DRAM, and up to four bits of data are quickly
transferred by successively toggling the CAS pulse. The DRAM timing and control logic can be
designed to provide the successive CAS pulses by using the CYCLE-IN-PROGRESS and
DRAM-RDY signals.

Static column mode can also be used to take advantage of the burst capability of the DRAM. Static
column mode allows fast access to the bits located in the selected row of the DRAM simply by
changing the column address after the first access.

Figure 4-8 shows a flow chart for the DRAM timing and control logic using static column mode. The
DRAM timing and control circuit receives a refresh request or a memory request on the MEM/REF
and CYCLE-IN-PROGRESS input signals. For a memory request, the DRAM timing and control
determines whether a read or a write operation is desired from the W/R signal from the 80960MC
processor.

MEMORY INTERFACE

SAMPLE MEM/REF AND
CYCLE-IN-PROGRESS
INPUTS

Y

MEMORY CYCLE MEMORY REFRESH CYCLE
OR REFRESH
CYCLE?
READ READ OR
WRITE?
Y A Y
ASSERT CAS,-CAS,
1. GENERATE ROW 1. GENERATE ROW ! D3
ADDRESS __ ADDRESS . BEFORE RAS,
2. ASSERT RAS, 2. ASSERT RAS, AND WE
3. GENERATE COLUMN 3. GENERATE COLUMN
ADDRESS __ ___ ADDRESS __ ____
4. ASSERT CAS;-CAS, 4. ASSERT CAS,-CAS,
5. ASSERT DRAM-RDY 6. ASSERT DRAM-RDY

. |
>

ANOTHER
WORD?

ANOTHER
WORD?

1. CHANGE COLUMN
ADDRESS
2. ASSERT DRAM-RDY

. DEASSERT CAS,-CAS,

. CHANGE COLUMN
ADDRESS __ ____

. ASSERT CAS;-CAS,

. ASSERT DRAM-RDY

W N

Y

| DEASSERT RAS AND CAS,-CAS, TO END CYCLE

-+ 271079-93

Figure 4-8: Flow Chart For DRAM Timing and Control Logic

4-13

intel MEMORY INTERFACE

For a read operation, the DRAM timing and control l logic performs several functions: it brings
ROW/COL high to select a row address _1£_gsserts RAS it brings ROW/COL low to select the
column address; it asserts CAS through CAS, (derived from the four latched byte enable signals);
and it generates a DRAM- RDY signal. The 5[%AM RDY signal causes the burst logic to increment
the address and the 80960MC processor to read the data word.

After completing these functions the DRAM timing and control logic samples the CYCLE-IN-
PROGRESS to determine whether to transfer-another data word. If so, the DRAM timing and control
_o_gl_c maintains the ROW/COL srgn_al_low to select the new column address, deasserts and asserts

CAS, through CAS to observe the CAS precharge specification of the DRAM, and generates another
DRAM-RDY. The DRAM timing and control logic repeats the procedure until all the data words
are transferred Then the DRAM timing and control logic deasserts RAS

For a write operation, the DRAM timing and control logic performs similar functions on the first
‘word: it asserts WE; it brings ROW/COL high to select a row address; it asserts RAS ; o> it brings
ROW/COL low to select the column address; it asserts CAS, through CAS (derived from the four
latched byte enable signals); and it generateda DRAM-RDY 51gnal The DRAM-RDY signal causes
the burst logic to increment the address and 1nforms the 80960MC processor by asserting READY

that the data word was written.

After completing these functions the DRAM t1m1ng and control logic samples the CYCLE-IN-
PROGRESS to determine whether the 80960MC wants to transfer another data word. If so, the
DRAM timing and control loglc maintding the ROW/COL signal low to select the new column
address, deasserts and asserts CAS through CAS to observe the CAS precharge specification of the
DRAM. and generates another Dk M-RDY. The DRAM timing and control logic repeats the
procedure until all the data words are transferred. Then the DRAM timing and control logic deasserts
RAS,.

Although only one RAS signal is required, four CAS signals (CAS,-CAS,) are generated to enable
each byte of the L-bus. These CAS signals are generated by the byte enable decoder and correspond
to the byte enable signals of the 80960MC processor. For example, CAS which is mapped directly
from BE selects the least-significant data byte (LAD,-LAD).

A single WE control signal and four CAS signals ensure that only those DRAM bytes selected for
a write cycle are enabled. All other data bytes maintain their outputs in the high-impedance state.
A common design error is to use a single-CAS control signal and four WE control signals, using the
WE signals to write the DRAM bytes selectively in write cycles that use fewer than 32 bits. Although
the selected bytes are written correctly, the unselected bytes are enabled for aread cycle. These bytes
outputtheir data to the unselected bytes of the data bus while the data transceivers output data to every
bit of the data bus. When the two devices srmultaneously output data to the same bus, bus contention
occurs. ,

The refresh function can be performed by asserting the CAS signal before asserting RAS. The CAS
before RAS refresh feature eliminates the need for an external refresh address counter. When the
CAS pulse is activated prior to the assertion of the RAS pulse, the DRAM automatically performs
arefresh cycle on one row by employing an on-chip address counter. Upon completion of the refresh

4-14

intel

MEMORY INTERFACE

cycle, the address counter is automatically incremented. The MEM/REF signal from the arbiter can
be used by the DRAM timing and control logic block to initiate a CAS before RAS refresh cycle.

Besides generating the RAS, CAS, and WE signals, the DRAM timing and control logic generates
a number of warm-up cycles for the DRAM after reset by issuing several refresh requests.

Timing Considerations For The DRAM Controller

Figure 4-9 shows a typical example of a timing diagram for a two-word read transaction that uses
static column mode; similarly, Figure 4-10is a typical example for atwo-word write transaction. The
example assumes a memory access time that requires two wait states (T,) for.the initial data word
and one wait for the second data word.

CLK2

CLK
LAD,,-LAD,
DATA TO
TRANSCEIVER
BE,-BE,

W/R

CYCLE-IN-
PROGRESS

Figure 4-9: Timing Diagram for Two-word Read Transaction .

The critical timing areas for both read and write transactions are noted by circled numbers in the

diagrams, which are enumerated below.

1. The delay for the CPU to generate a valid address.

2. The delay for
signal.

the DRAM timing and control logic to generate the CYCLE-IN-PROGRESS

4-15

intel MEMORY INTERFACE

3. Thedelay to generate the DRAM row address: This time includes the address latch throughput
delay, the multiplexer throughput delay, and the address driver delay. :
The delay to generate RAS, which includes the delay to generate the DRAM-CS signal.
The row address hold time after the high-to-low transition of RAS.
The time required to generate the multiplexer control signal (ROW/COL) after the row address
hold time is satisfied. P
The time required to switch from a row to column address plus any driver delays.
The delay to generate and drive the CAS signals.
For aread transaction, the throughput delay of the data transceivers. For a write transaction, the
delay by the CPU to generate valid data.
10. For a read transaction, the data setup time of the CPU. For a write transaction, the throughput
delay of the data transceivers.
11. The time required to increment and drive the column address.
12. For a write transaction only, the delay time to bring CAS high (terminate the CAS pulse for the
first data byte), to precharge the CAS pulse (required by the DRAM), and to assert CAS again.
13. The RAS precharge time, which must be satisfied before another memory cycle can begin.
. T, T, Tq
CLK2
LAD,-LAD, 7/ 7% Aooress | 7%]
~
ot @
BE,-BE,
w/R -
CYCLE:-IN-
PROGRESS .
DRAM A: 4 G
mlod |
RAS W\
ROW/COL ¥\
CAS
DRAM:
RDY

Figure 4-10: Timing Diagram for Two-word DRAM Write Transaction

4-16

intl MEMORY INTERFACE

DRAM Interleaving

Because the DRAM consists of dynamic nodes, a row precharge time is required to recharge the
nodes after every memory cycle. This time must be included in the timing evaluation, as noted by
the example. To avoid the precharge time delay of the DRAM, the memory array can be arranged
so that each subsequent memory access is most likely to be directed to a different bank. In this
configuration, wait time between accesses is not required because while one bank of DRAMs
performs the current access, another bank precharges and is ready to perform the next access
immediately.

If DRAMs are interleaved (i.e., arranged in multiple banks so that adjacent addresses are in different
banks), the DRAM precharge time can be masked for most accesses. With two banks of DRAMs,
one for even 32-bit addresses and one for odd 32-bit addresses, all sequential 32-bit accesses can be
completed without waiting for the DRAM to precharge.

Even when random accesses are made, two DRAM banks allow 50 percent of back-to-back accesses
to be made without waiting for the DRAMs to precharge. The precharge time is also masked when
the 80960MC processor has no bus accesses to be performed. During these idle bus cycles, the most
recently accessed DRAM bank can precharge so that the next memory access to either bank can begin
immediately.

SUMMARY

The memory interface circuit allows the 80960MC processor to communicate with the memory
devices. The basic memory interface logic can be divided into six blocks: the data transceivers, the
address latches, the address decoder, the burstlogic, the DRAM timing and control logic, and the byte
enable latch. The DRAM controller and SRAM interface complete the memory interface circuit. The
DRAM controller can be designed to take advantage of the 80960MC processor’s burst capability
to enhance system performance.

This chapter focused on the design guidelines for the memory interface design to the 80960MC

processor. Chapter 5 develops guidelines on designing peripheral devices in the single-processor
hardware system.

417

I/O Interface 5

CHAPTER 5
I/0 INTERFACE

The 80960MC processor supports 8, 16, 32-bit I/O devices by mapping them into its 4 G-byte
memory address space. This chapter describes the design considerations for the interface between
the 80960MC processor and I/O components. Several examples illustrate the design concepts.

INTERFACING TO 8-BIT AND 16-BIT PERIPHERALS

The 80960MC processor accesses I/O devices by using a memory-mapped address. Consequently,
memory-type instructions can be used to perform input/output operations. For example, the
80960MC processor’s LOAD and STORE instructions can directly support 8-bit and 16-bit data
moves to or from I/O peripherals. The instructions include those listed below.

¢ Load Ordinal Byte (reads a byte)

» Load Ordinal Short (reads 16-bit data)
e Store Ordinal Byte (writes a byte)

e Store Ordinal Short (writes 16-bit data)

These instructions perform the transfer on the data bits specified by the two low-order lines of the
effective address. See the 80960MC Programmer’s Reference Manual for complete details.

GENERAL SYSTEM INTERFACE

In a typical 80960MC processor system design, a number of slave I/O devices can be controlled
through a general system interface. Other I/O devices, particularly those capable of controlling the
L-bus, can use the general system interface, but may require additional logic to isolate the bus. This
section describes the general system interface and assumes that the 80960MC processor does not
perform burst transactions to the I/O devices.

Figure 5-1 shows the major logic blocks of the general system interface. Standard 8-bit data
transceivers add drive capability, provide bus isolation, and prevent bus conflicts that may occur with
slow I/O components. The address latch demultiplexes the address/data lines and holds the address
stable throughout the L-bus transaction. The address decoder generates the I/O chip-select signals
from the latched address lines. The timing control block provides the READY signal to the
80960MC processor and the I/O read and I/O write command. '

This basic interface circuit is quite similar to the one used in the basic memory interface described
in Chapter 4. For most systems the same data transceivers, address decoders, and address latches can
be used to access both memory and I/O devices. The timing control logic can be implemented to
accommodate both memory and I/O devices.

5-1

80960MC
PROCESSOR

" ADS

®
i Itel I/0 INTERFACE
LAD,,-LAD, DATA
DATA
DT/R | pir TRANSCEIVERS
DEN G
ADDRESS
LATCHES
& o > L
o) LA
LOWER

—» ADDRESS LINES

USED TO SELECT
1/0 REGISTERS

W/R

READY <

INT, |-

ADDRESS
DECODER
170-CS
> (1/0 CHIP
SELECT LINES)
Y
|————> I/ORD
TIMING
CONTROL

———> 1I/0 WR

INT, -t

INT,/INTR

INTERRUPT PINS

INT,/INTA

HOLD |

Y

HLDA

ARBITRATION

CLK2

— PINS

271079-96

5-2

Figure 5-1: Simplified I/O Interface

intgl /O INTERFACE

Data Transceivers

Standard 8-bit transceivers can be used to provide isolation and additional drive capability for the L-
bus. Transceivers prevent bus contention that can occur if some devices are slow to remove data from
the data bus after a read cycle. For example, if an I/O write cycle follows a I/O read cycle, the
80960MC processor may drive the L-bus before a slow device has removed its outputs from the bus,
potentially causing a current spike. Transceivers, however, can be omitted if the data float time of
the device is short enough and the load does not exceed the 80960MC device specifications.

The data transceiver can be controlled by two signals from the 80960MC processor: Data Transmit/
Receive (DT/R) and Data Enable (DEN). DT/R indicates the direction of data flow and DEN enables
the transceivers.

Address Latch/Demultiplexer

Standard transparent latches can be used to demultiplex the address/data lines of the 80960MC
processor. The latch is controlled by the ALE signal from the 80960MC processor. The ALE signal
passes through an inverter, such that when ALE goes low, the address flows through the latch. The
low-to-high transition of ALE can be used to latch the address.

If only slave-type peripherals are used in a system, the output enable of the latches can always remain
active by connecting it to ground. For systems with DMA devices, the output enable can be used to
permit the DMA device to drive a common address bus.

Address Decoder

The address decoder determines which particular I/O device is selected by decoding the address. The
I/O address can be any address in the 4 Gbyte address range except for the upper 16 Mbytes (addresses
FF000000,, through FFFFFFFE,), which the 80960MC processor reserves for inter-agent commu-
nication and internal I/O. Typically, a small range of address bits are reserved for accessing 1/0
devices by defining certain higher-order address bits as an I/O access.

As an example, consider a 32-bit address: A, through A , could indicate an I/O access when A, is
set to zero, and A, -A , are set to one; A , through A, could then be used to specify a particular 1/O
device; and A, through A, can be used to access up to 8 registers of the I/O component. A and A
are not used by the I/O device. This particular scheme selects up to 1,024 devices, while using only

32K bytes of the available 4 Gbytes of address space.

The address decoder can be located either before or after the address latches. Usually, it is placed
after the latches, so that the chip-select signal does not need an additional latch.

Timing Control Logic

The timing control logic accommodates I/O devices that cannot transfer information at the maximum
bus rate by inserting Wait States until the data becomes available. The timing control logic consists

5-3

intel /O INTERFACE

of a counter and timing logic, as shown in Figure 5-2. The counter produces a 4-bit binary count.
The count is started at the beginning of the operation (determined by ADS and DEN) and is stopped
by the READY signal. The timing logic asserts the READY signal, the I/O write command {/o-
WR), and the I/O read command (I/O-RD) based upon the clock count, the I/O chip select signal
(I/O-CS), and the W/R command.

READY -«
DEN ; COUNT,
COUNTER COUNT,
= > TIMING J—
ADS START CYCLE COUNT, LOGIC t———» |/0-RD
COUNT, p———3> |/0-WR
CLK2 > >
_ A4
W/R
1/0-CS
271079-97B

Figure 5-2: /0 Timing Control Block Diagram

For many peripherals, the timing logic can be programmed to assert READY at the appropriate count
forthe selected device. Specific I/O chip select signals can be used to indicate how many clock cycles
to wait before asserting READY.

For some I/O peripherals, particularly bus masters, READY cannot be determined by counting clock
cycles. For these I/O devices, READY can be supplied by the device and passed on to 80960MC
processor.

The timing control block can assert the I/O-RD or I/O-WR signal for I/O devices based upon the clock
count. The timing for these signals can be selected for the slowest device to simplify the logic circuit
or can be customized for each individual peripheral device to maximize performance.

I/0 INTERFACE DESIGN EXAMPLES

The general system interface shown in Figure 5-1 can be used to connect the 80960MC processor
to many slave peripherals. The following list includes some common peripherals compatible with
this interface:

* MB8259A Programmable Interrupt Controller

o MB8253, M8254 Programmable Interval Timer
+ MB82510, Asynchronous Serial Controller

* MS8274 Multi-Protocol Serial Controller

5-4

intel /0 INTERFACE

» M8255 Programmable Peripheral Interface
¢ 82586 LAN Coprocessor (not offered in a MIL-STD-883C version)
¢ MB82786 Graphics Coprocessor

This section provides guidelines and design considerations for interfacing the 80960MC processor
to different types of 1/O configurations. Specifically, three design examples are examined. The
MB8259A design example shows how to interface the 80960MC processor to a slave-type peripheral
device. The 82586 design example shows how a 16-bit bus master reads and writes to the 80960MC
processor’s system memory. The M82786 design example shows how the 80960MC processor can
read or write to graphics memory using a 16-bit data bus.

M8259A Programmable Interrupt Controller

The M8259A Programmable Interrupt Controller is designed for use in interrupt-driven microcom-
puter systems, where it manages up to eight independent interrupts. The M8259A handles interrupt
priority resolution and returns an 8-bit vector to the 80960MC processor during an interrupt-
acknowledge cycle. Intel Application Note AP-59 contains detailed information on configurations
of the M8259A.

Interface

Figure 5-3 shows the connection of the 80960MC processor to a single M8259A Interrupt Controller.
This circuit consists of the general system interface plus a bidirectional buffer. The example assumes
that several interrupt requests occur at the same time so that priority resolution is required.

The data lines from the M8259A are not directly aligned to the 80960MC processor because of the
difference in priority resolution between the devices. Although both devices use an 8-bit interrupt
vector, the 80960MC processor implicitly defines the priority by dividing the interrupt vector by.
eight. The M8259A defines the priority in the lower three bits of the interrupt vector. Furthermore,
the highest priority vector of the 80960MC processor has a value of 31 in the upper five bits of the
interrupt vector. Whereas, the highest priority interrupt of the M8259A has a value of 0 in the lower
three bits of the interrupt vector. .

To resolve the priority difference, the interrupt vector from the M8259A can be inverted and rotated
left by three bits as shown by the data alignment between the 80960MC processor and M8259A in
Figure 5-3. Rotating the data bits in this manner provides two advantages: the interrupt table for the
M8259A can be located by contiguous addresses, and the upper two most significant bits of the
interrupt vector remain free to group interrupt vectors if additional M8259As are needed.

Care must be exercised, however, when programming the registers of the M8259A. For example,
assume that the second initialization command word (ICW2 register) of the M8259A requires a data
byte value of 00011111,. To transfer the correct information, the 80960MC processor needs to write
a data word with the value of 00000111, because this word is rotated left three places and inverted.

9-g

soepIelU| VESZEIN 10} weibeiqg ¥oolg :g-g enbiy

BIDIRECTIONAL
BUFFER

GBA GAB

A,
A,
As

3
A,

A,

»1 D,

D,

D,

l«—> 1D,
j«<——>|D,

D,

D,
D,

CLK2 —&

LAD,,-LAD, D,-D, D,
D,
DT/R | DIR D, |=
DEN G D,
DATA D,
TRANSCEIVER = D,
D,
Ds
ADDRESS
_ LATCHES
ALE LE
G Q
A,
80960MC
PROCESSOR
ADDRESS
DECODER
8259A-CS
ADS TMING VO-WR
READY CONTROL
W/R 1/0-RD
[
INTA
INTR

INT

M8
PROGRAMMABLE

INTA

IR;-IR, *

259A

INTERRUPT
CONTROLLER

271079-98B

JOV4H3LNI O/l

intel /O INTERFACE

Operation

The M8259A starts the interrupt cycle by generating an interrupt request (INT) to the 80960MC
processor, which receives the signal at the INTR input pin. This assumes the Interrupt Control
register of the 80960MC processor is set to accommodate an external interrupt controller.

When the 80960MC processor comes to a breakpoint in its execution, it asserts the INTA signal
twice. The first INTA signal acknowledges the interrupt request and causes the M8259A to prioritize
the interrupt requests it received up to this point. The INTA, together with the M8259A-CS, are
applied to the timing control logic to generate a READY signal.

The 80960MC processor automatically asserts the second INTA signal five clock cycles after the
assertion of READY. Afterthe second assertion of INTA, the 80960MC processorreads the interrupt
vector from the M8259A.

The bidirectional buffer inverts and passes the 8-bit vector to the 80960MC processor with the
appropriate lines rearranged. The output enable signal for the data buffer is controlled by INTA for
this operation. After the data transfer is completed, the timing control circuit generates a second
READY signal to terminate the interrupt acknowledge cycle.

The same circuitry can be used to read or write to the M8259A registers. In this case, the 80960MC
processor selects the M8259A through a memory-mapped address. Local address line 2 (A,) selects
one of two internal registers of the M8259A. The I/O read or I/O write command is generated by the
timing control circuit. The data passes through the bidirectional data buffer to or from the selected
register of the M8259A.

The direction of data flow through the buffer is controlled by three logic gates shown in Figure
5-3. For an I/O write operation, the I/O Write command and M8259A-CS signal control the output
enable signal of the bidirectional buffer. Similarly, for a read operation, the I/O Read command and
the M8259A-CS signal control the output enable signal of the buffer. After the data is transferred,
the timing control circuit asserts READY.

82586 Local Area Network Coprocessor Example

The 82586 (not offered in a MIL-STD-883C version) is an intelligent, high-performance commu-
nications controller designed to perform most tasks required for controlling access to a local area
network (LAN), such as Ethernet or Starlan. In many applications, the 82586 is the communication
manager for a station connected to a LAN controller. Such a station usually includes a host CPU,
shared memory, a Serial Interface Unit, a transceiver, and LAN controller link, as shown in Figure
5-4. The 82586 performs all functions associated with data transfer between the shared memory and
the LAN link, including:

* Framing
¢ Link management

e Address filtering

5-7

intel /0 INTERFACE

¢ Error detection

¢ Data encoding

¢ . Network management
¢ Direct memory access
e Buffer chaining

¢ High-level (user) command interpretation

MEMORY AND
MEMORY CONTROLLER

CHANNEL

| “
ATTENTION '
80960MC PROCESSOR)) COaPzFISOBgELSASNOR
INTERRUPT
SERIAL
INTERFACE

82501 ETHERNET
SERIAL INTERFACE .

TRANCEIVER®
CABLE

82C502 ETHERNET
TRANSCEIVER CHIP

IEEE 802.3/ETHERNET LINK I .

271079-99 -

Figure 5-4: Lan Station

5-8

@

1/0 INTERFACE

The 82586 has two interfaces: a 16-bit bus interface and a network interface to the Serial Interface
Unit. The bus interface is described here. For detailed information on using the 82586, refer to the

Local Area Networking Component User’s Manual.

P 2
4001-620122 « 1o
°38-38 3838
HOLV1
S92 319YN3 03g-t3g
Wvua 2 aLsg
Y3TI0HINOD
AHON3N
AQH-WYHO
um u/m
TOHLNOD Agvay
ONINLL sav
T
SSIYO0U-NI-IT1IAD
‘v 21901
v isHng
‘avi-"avi
um ay
2 y3gooaa HOSS3004d
2 SO-WVd gs3ayaav Onossos
ELL}
sSng $S3¥aav
o
30V4HIINI n v
RTES °
N3a S3HOLV =
ss3yaav
HOSS3ID0HJ0D
NV
98528
9 N3g
Hia y/1a
SHINIFOSNVHL
XVA/NIN ¥/1a viva
‘avi-'avi
W ‘av-'av | < v
23, vaH vaH
QI0H Q10H

Figure 5-5: Block Diagram For LAN Controller Interface

5-9

intel /0 INTERFACE

Interface - .

There are several ways to design an interface between the 82586 and the 80960MC processor. The
chosen design example shows how to interface the 82586 using a shared bus. In this example, the
82586 operates in minimum mode at one-half the processor clock frequency.

The primary function of the interface circuit is to allow the 82586 to read and write 16-bit data using
the 32-bit L-bus. This is accomplished by adding the high-order address lines and translating the 16-
bit data lines to the 32-bit data lines by using byte enable signals.

Figure 5-5 shows the 82586 interface circuit, which includes the DRAM controller (see the “DRAM
Controller” section in Chapter 4. This interface uses the general system interface circuit plus other
logic units that specifically pertain to the 82586: the LAN data transceivers, the byte enable
converter, and the LAN address latches. These logic blocks are highlighted by the shaded boxes.

D,
S —D=
? ' ’ Do._ E,

Figure 5-6: Byte Enable Generation Circuit

The LAN data transceivers connect 16 data lines from the 82586 to both the upper and lower 16 bits
of the L-bus. The data transfer is controlled by converting A , A, and the BHE to four byte enable
signals as shown in Figure 5-6. A1 selects between the upper and lower 16-bit data lines; A, selects
the lower data byte for either the upper or lower 16-bit data lines; and the byte high enable signal
(BHE) selects the upper data byte for either the upper or lower 16-bit data lines. Data flows through
the buffers when the appropriate byte enable signal is asserted. The direction of the data flow is
controlled by the DT/R signal of the 82586.

The LAN address latches are used to demultiplex AD, through AD . The address lines and BHE are
latched by the ALE signal from the 82586. The upper address]mes (A,, through A) are generated
by hardware programmable DIP switches.

5-10

intel /O INTERFACE

The 82586 begins operation when the Channel Attention (CA) input signal is asserted. This signal
is generated by gating the write command and 82586 chip select signal.

INTERFACE CIRCUIT GENERATES CA

\J
82586 REQUESTS CONTROL OF THE L-BUS

80960MC GRANTS CONTROL OF THE BUS BY ASSERTING

HLDA, WHICH DISABLES THE OUTPUTS OF THE 80960MC

ADDRESS LATCHES, AND ENABLES THE OUTPUTS OF THE
82586 ADDRESS LATCHES

Y

82586 GENERATES A 16-BIT ADDRESS, A 16-BIT DATA
WORD, AND CONTROL SIGNALS FOR THE INTERFACE
CIRCUIT AND MEMORY CONTROLLER

INTERFACE CIRCUIT GENERATES HIGH-ORDER ADDRESS

LINES AND CONTROLS THE DATA FLOW TO OR FROM THE

DRAM CONTROLLER. BYTE ENABLE SIGNALS DETERMINE
WHICH DATA LINES ARE USED

Y

DRAM CONTROLLER TERMINATES OPERATION
WITH DRAM-RDY

Y

82586 RETURNS CONTROL OF THE BUS TO THE 80960MC

271079-102

Figure 5-7: Operational Flow Diagram for 82586 Interface

Operation

| The interaction between the 82586 and the 80960MC processor is described below and is summa-
rized in Figure 5-7.

* The80960MC processor invokes the 82586 by supplying amemory-mapped address and a write
command. The memory-mapped address results in a 82586-CS signal, which is gated with a

intel /0 INTERFACE

write command to produce the CA signal.

» The 82586 responds by generating a hold request and waits for HLDA.

e The 80960MC processor asserts HLDA, which enables the outputs of the LAN address latches
and disables the outputs of the address latches next to the 80960MC processor. The HLDA
signal also gives control of the L-bus to the 82586.

» After the 82586 takes control of the bus, it generates a 16-bit address (AD,, through ADO), an
ALE signal, and a BHE signal. The upper address lines are provided by the programmable DIP
switches to produce an address on the L-bus.

e A and A (from the 82586), and BHE are decoded to generate four byte enable signals (E
through B_Eo). DEN enables the output of the byte enable converter.

+ DT/ from the 82586 controls the direction of the data flow through the buffers.
e The read or write signal from the 82586 is applied to the DRAM controller.
* The 82586 accesses DRAM by using the DRAM controller.

« The DRAM-RDY is asserted by the DRAM controller. This action enables the output of the
LAN data transceiver and terminates the 82586 memory cycle. The timing control logic passes
the DRAM-RDY signal as the READY signal to the 82586.

e The 82586 deasserts HOLD and the 80960MC processor deasserts HLDA. The 80960MC
processor regains control of bus.

M82786 Graphics Coprocessor Example

The M82786 is a high performance graphics coprocessor that provides high quality text and
advanced display control. It provides full support for graphics primitives at up to 25 million pixels
per second and bit-mapped text up to 25 thousand characters per second. This graphics processor
supports advanced features such as hardware windows, zooming, panning, and scrolling. Intel
Application Note AP-259 and Application Note AP-270 contain detailed information on 82786.

When using the M82786, it may be necessary for the 80960MC processor to write to graphics
memory. The interface design example illustrates how the 80960MC processor can transfer a 32-
bit data word to the 16-bit data bus of the M82786.

Interface

There are several ways to design an interface between the M82786 and the 80960MC processor. In
this example, the 80960MC processor reads or writes to graphics memory by accessing the M82786
through the interface logic circuit. This example assumes that the M82786 operates in the slave
mode, and that the 80960MC processor does not perform burst transfers. The 80960MC processor
only performs burst transfers for instructions that specify accesses for more than one word or for
instruction fetches.

5-12

intal /O INTERFACE

The interface circuit translates a 32-bit data bus to a 16-bit data bus by dividing the data lines into
the upper and lower 16 bits and sequencing the data transmission. When the 80960MC processor
writes to graphics memory, the bidirectional transceivers sequence the lower and the upper data bits
of the L-bus to the 16-bit data bus of the M82786.

The process is reversed when the 80960MC processor reads from graphics memory. The bidirec-
tional transceivers form a 32-bit data word by latching the first 16-bit data word on the lower data
lines, routing the next 16 bits to the upper data lines, and then passing the 32-bit data word on the L-
bus.

Figure 5-8 shows the details of the graphics controller interface circuit. This interface uses the general
system interface circuit plus the following logic units: the bidirectional transceivers, the data buffer
control, the data bus controller, and the address translator. Theselogic blocks are highlighted by the
shaded boxes.

The bidirectional transceivers pass data to (from) a 32-bit data bus from (to) a 16-bit data bus. Data
is sequenced through the transceivers by the control signals generated by the data buffer controller.

The data buffer control logic generates the signals that operate and sequence the bidirectional
transceivers. The direction signal for data flow through the transceivers is derived from the W/R
signal of the 80960MC processor. The data buffer control logic generates four output enable signals:
GAB, enables the outputs on the B side for the lower 16 bits; GBA enables the outputs on the A side
for the lower 16 bits; GAB,, enables the outputs on the B side for the higher 16 bits; and GBA enables
the outputs on the A side for the higher 16 bits. These output enable signals are derived from the byte
enable signals and are asserted when the slave enable signal (SEN) is activated by the M82786.

The select lines for the bidirectional transceivers allow data to flow from either the latched data or
the input pins. These lines, which are not shown, can be hardwired.

The data bus controller provides the read (RD) and write (WR) commands, memory or I/O signal
(M/10), and a READY signal. This circuit generates two read or write commands for every 32-bit
data transfer to or from the 80960MC processor (one for each 16-bit data transfer). The data bus
controller starts counting clock cycles when the M82786-CS and CYCLE-IN-PROGRESS signals
are asserted. At the proper time (based upon clock counts), it asserts the read/write command. The
data bus controller produces READY after receiving the SEN signal from the M82786. READY
resets the count, and another read/write command is generated.

The address translator performs four functions: it converts the four byte enable signals to A, A, and
BHE; it increments A, after receiving READY | for the first 16-bit transfer; it generates the clock
signal (GBA,) that latches the first 16-bit data word in the bidirectional transceivers when the
80960MC processor performs a read operation; and it generates the READY signal for the CPU.

Notshownis the cycle detector circuit that generates the CY CLE-IN-PROGRESS signal. This signal
can be generated by using the circuit similar to the one shown in Figure 5-2. The start of the cycle
can be detected by gating the ADS and DEN signals. The end of the cycle can be indicated by
READY.

5-13

y1-g

1IN2.1D @oBIAYY] J8[j013u0) Salydels) :g-g ainbi4

LAD,,-LAD,

DT/R

ALE

80960MC
PROCESSOR

W/R

READY

DEN |

DIR
G

DATA
TRANSCEIVERS

LE

2]

ADDRESS
LATCHES

Q

CYCLE-IN-
PROGRESS

ADDRESS
DECODER

82786-CS

D,s-D,

82786
GRAHPICS
COPROCESSOR

£
3

AR,

ﬂg

Y

BYTE
ENABLE
LATCH

B
R
|

CLK2

ﬁ|??

MEMORY

DATA

271079-103B

JOV4HILNI O/l

|nte| /O INTERFACE

80960MC GENERATES ADDRESS
AND DATA

FIRST 16-BIT
T

INTERFACE CIRCUIT GENERATES
CS, RD (OR WR), BHE, AND M/I0

M82786 RECOGNIZES CS BY
ASSERTING SEN

READ OPERATION WRITE OPERATION

INTERFACE CIRCUIT CONTROLS DATA FLOW: | INTERFACE CIRCUIT CONTROLS DATA FLOW!
GENERATES READY, — GENERATES READY,

— LATCHES DATA ON LOWER 16 BITS WITH — ENABLES OUTPUT FOR DATA ON LOWER
CLOCK SIGNAL (CBA,) 16 BITS

— INCREMENTS ADDRESS A, — INCREMENTS ADDRESS A,

M82786 DEASSERTS SEN

SECOND 16-BIT

DATA BUS CONTROLLER GENERATES
RD (OR WR), BHE, AND M/I0 .

M82786 RECOGNIZES CS BY
ASSERTING SEN

READ OPERATION WRITE OPERATION

INTERFACE CIRCUIT CONTROLS DATA FLOW: INTERFACE CIRCUIT CONTROLS DATA FLOW.

— GENERATES READY, — GENERATES READY, :

— ENABLES OUTPUT FOR LOWER AND — ENABLES OUTPUT FOR DATA ON HIGHER
HIGHER 16 BITS 16 BITS

INTERFACE CIRCUIT GENERATES
READY FOR 80960MC AND
M82786 AND DEASSERTS SEN

Figure 5-9: Operational Flow Diagram for M82786 Interface Circuit

Operation

The interaction between the M82786 and the 80960MC processor is summarized in Figure 5-9. The
operation is divided into two 16-bit data movements for either a read or write operation.

intel /O INTERFACE

The 80960MC processor generates a memory-mapped address and data for the desired graphics
memory location. It accesses the M82786 by triggering the interface circuit to generate the chip
select signal and several operational signals: the read (RD) or write (WR) command, BHE, and the
memory or I/0 (M/IO) s1gnal The M82786 begins the memory operatlon after it completes the
current graphics processing activity. The M82786 acknowledges that it is performmg a memory
operation by asserting SEN.

After the M82786 asserts SEN, it begins a 16-bit memory read or write operation by translating the
address inputs (A, through A) to a multiplexed DRAM address, and generating the DRAM control
signals. Note that A and A are derived from the byte enable signals.

For a read operation, the data bus controller uses SEN to generate the READY,, signal. The assertion
of READY , causes the address translator to increment A, and to generate GﬁA which latches the
lower 16 data bits on the B inputs of the bidirectional transceivers to the A 51de

Similarly, for a write operation, the data bus controller uses SEN to generate the READY signal. The
assertion of READY causes the address translator to increment A . The data buffer control uses SEN
and the byte enable signals to produce GAB, , which enable the outputs for the lower 16 data bits of
the bidirectional transceivers.

The M82786 then deasserts SEN and the transfer of the first 16 data bits is complete. To transfer the
second 16 data bits, the interface circuit requests another memory operation by generating RD (or
WR), BHE, and M/IO (CS is already asserted). After it completes the current graphics processing
activity, the M82786 begins the memory operation and asserts SEN. -

For a read operation, the data bus controller uses SEN to generate the READY signal. The data
buffer control uses SEN to assert GBA and GBA, , which enable the outputs for the higher and lower
16 data bits.

For a write operation, the data bus controller uses SEN to generate the READY signal. The data
buffer control uses SEN and the byte enable signals to produce GAB,;, which enable the outputs for
the higher 16 data bits of the bidirectional transceivers. ‘ '

The address translator generates READY for the 80960MC processor from the second READY | to
terminate the data transfer to the graphics memory.

SUMMARY

The 80960MC processor supports 8-bit, 16-bit, and 32-bit I/O interfaces. A general system interface
circuit can be designed that connects to many slave-type peripherals. This interface can be expanded
to accommodate a bus master peripheral or a 32-bit to 16-bit data bus translator. These interfaces
were illustrated by three design examples.

5-16

80960MC Multiprocessor
System Architecture

CHAPTER 6
80960MC MULTIPROCESSOR SYSTEM ARCHITECTURE

This chapter illustrates the flexibility of the 80960MC system architecture using the advanced 32-
bit 80960MC processor and the 82965 Bus Extension Unit (BXU) in a multiprocessor design.
System configurations are examined from a general perspective to highlight overall the design
concepts. The details of system design are discussed in subsequent chapters.

OVERVIEW OF A MULTIPROCESSOR SYSTEM ARCHITECTURE

Modules form the natural boundaries for the hardware system architecture, as shown in Figure 6-1.
Each module consists of components attached to its own local bus (L-bus). The modules are
interconnected by a high bandwidth 32-bit multiplexed and packetized Advanced Processor (AP)
bus, which transfers data at a peak rate of 42M bytes per second at 16 MHz. The 82965 Bus Extension
Unit (BXU) provides the gateway between the L-bus and AP-bus, and performs several other
functions, such as supporting an optional L-bus cache.

CPUMODULE E MEMORY MODULE /O MODULE

80960MC MEMORY SLAVE 1/0

AND
ey CONTROLLER DEVICE

271079-105B

Figure 6-1: Basic 80960MC System Configuration

The L-bus

The L-bus is used to connect the components within the module, which may include processors,
memory arrays, and peripherals. In a multiprocessor system, each module contains an L-bus, which
is typically confined to a single board.

As described in the detail in chapter 3, the 32-bit L-bus is a high bandwidth, multiplexed bus which
supports burst transactions, and can access up to four data words at a maximum rate of one word every

6-1

mtel 80960MC MULTIPROCESSOR SYSTEM ARCHITECTURE

buscycle. The L-bus consists of two groups of signals: address/data and control. The bus has a single
fixed timing, although bus transactions can be lengthened through the use of the READY signal(to
insert wait states).

The L-bus protocol permits both primary and secondary bus masters to coexist on the bus. The
secondary bus master must obtain use of the L-bus from the bus master through the use of the HOLDR
and HLDAR signals. In a multiprocessor environment, a BXU is always used as a master in a
memory module and is often used as a slave in a processor module.

Complete details of the L-bus and bus operations are discussed in Chapter 3.

The Advanced Processor Bus

The AP-bus connects the 80960MC processor modules to system memory modules and I/O modules.
The AP-bus is a synchronous, packetized, 32-bit wide bus. Synchronous refers to the fact that all
components in the system, including 80960MC processors and BXUs must be driven by the same
clock. Itis considered a packetized bus, because read and write transactions are encoded in pairs of
request and reply packets.

The AP-bus is composed of four signal groups: 1) packet signals consisting of 32 multiplexed
address/data lines and 6 packet specification lines, 2) transaction control signals, 3) error signals, and
4) synchronization and initialization signals.

A request packet flows from the requester to the server and a reply packet flows from the server to
the requester. A request and reply packet may be separated in time to allow other transactions to use
the bus in the intervening period. Thus, the AP-bus protocol supports pipelining of request packets
to enhance bus utilization. Three transactions can be outstanding on the bus at any given time.

Bus arbitration is decentralized and all bus agents monitor the bus activity. The bus supports fault
tolerance by providing two bits of interlaced parity for the 38 packet signals, and two error report
lines that are used to inform all system components when an error occurs.

The topmost 16M bytes in the 32-bit address space of tﬁe bus are mapped (to coincide with the L-
bus) for special bus transactions called Inter-Agent Communications (IACs). IACs are used for
communication between 80960MC processors and for accessing the internal registers of the BXUs.

The BXU is the only component that directly attaches to the AP-bus, and it contains all necessary
bus interface logic. BXUs connect to each other in the form of a matrix to allow orderly growth in
the system by the addition of AP buses or modules. An 80960MC system may have up to 32 logical
modules (the practical limitation may be 20 modules because of electrical limitations) and four AP-
buses.

A more detailed discussion of the AP-bus is contained in Chapter 7.

6-2

'ntel 80960MC MULTIPROCESSOR SYSTEM ARCHITECTURE

The BXU Component

The 80960MC processor and the 82965 BXU are the central components in the multiprocessor
system architecture. The BXU interconnects the L-bus and the AP-bus and implements the following
functions:

1. Translation of L-bus requests from the 80960MC processor to request packets on the AP-bus.
2. Support for cache on the L-bus

3. A prefetch function for processors
4

Support for the interface to a memory subsystem

The BXU contains seven logic blocks: the AP-Bus Interface logic, the L-Bus Interface logic, Cache
Support logic, Memory Support logic, IAC Support logic, I/O Prefetch logic, and Fault Tolerance
logic.

The AP-Bus Interface

The AP-bus interface of the BXU provides the AP-bus signals. The AP-bus interface performs
several AP-bus functions: arbitration, pipeline monitoring, address recognition, and AP-bus signal
generation. The AP-bus interface provides a set of registers that allow software to define the address
ranges and modes of operation.

If the system design uses multiple AP-buses, then each module uses an individual BXU to interface
to each of the AP-bus’s. The AP-bus interface of each BXU provides address recognizers that can
be set to a predefined range of addresses. The AP-bus address space can be interleaved over two or
four BXUs to enhance system performance.. Up to three accesses from the module may be pending
on any pair of AP-buses.

The L-Bus Interface

The L-bus interface provides a direct interface between the BXU and the L-bus. The L-bus interface
can be programmed to act as either a bus master or bus slave. The address recognizers of the L-bus
interface support multiple memory address ranges. When there is more than one BXU on the L-bus,
each L-bus interface coordinates the activity of the BXUs to provide efficient operation with multiple
AP-buses. In this case, the address recognizers of the L-bus interface may be set.up to support
interleaving between multiple AP-buses. This ensures that AP-bus utilization is shared approxi-
mately equally among the AP-buses in the system.

Cache Directory and Control Logic

The L-bus cache reduces the AP-bus traffic and increases overall system performance. The AP-bus
traffic is reduced because the cache effectively diverts many system memory accesses to local

6-3

intel s0960MC MULTIPROCESSOR SYSTEM ARCHITECTURE

memory accesses. Forexample, when aread access is located in the cache memory, the BXU services
that request directly from the cache, without generating corresponding bus cycles on the system bus.
This boosts the system’s performance because the cache can provide data to the requester on the
L-bus much faster than requests that are serviced over a AP-bus by a memory module.

The BXU provides the cache directory, the control logic, and the coherency logic. The coherency
logic ensures that 80960MC processor uses the most recent data that is in global memory.

The data storage resides on the L-bus in external SRAM components to allow access to a large cache.
This memory is configured as a two-way set associative cache.

Memory Support Logic

The BXU provides specific support facilities for memory modules. The control of a memory module
is done jointly between the BXU and a memory controller. The BXU provides the signals for the
AP-bus interface and access to specific registers maintained by the memory controller. The memory
controller is responsible for the detailed timing, control, and direct interfacing of the memory
components. Normally the memory components are DRAMS, but other memory types can be
supported as well.

IAC Support Logic

IAC messages are used by 80960MC processors to communicate interrupts and other information
on the AP-bus. Because the 80960MC processors are not directly attached to the AP-bus, the BXUs
act as the receivers for IAC messages on behalf of the 80960MC processors in their module.

The BXU provides two registers for each of the two processors that can reside in a module. These
registers store the data message and indicate the priority of the message. When an IAC message is
received for one of the processors, the BXU checks the priority of the message and the status of the
message data storage. Based on this information, the message is either accepted or rejected.

I/0 Prefetch Logic

The I/O Prefetch logic of the BXU increases bandwidth and decreases latency for I/O accesses. Two
prefetch channels handle the sequential I/O data transfers. Each channel contains two 16-byte
buffers. - After an I/O channel is initialized by receipt of a start command, the requests are serviced
by the channel prefetch buffers.

As data is requested from one of the buffers, the BXU automatically prefetches the next data block,
and stores it in the other buffer. The prefetch function provides a significant increase in I/O
performance because the data requests are handled immediately from the prefetch buffers.

6-4

intal 80960MC MULTIPROCESSOR SYSTEM ARCHITECTURE

Fault Tolerance Support

In fault-tolerant systems with two or four AP-buses, the BXUs in amodule operate in pairs as backup
components for each other. . For example, if an AP-bus fails, the BXU for that bus isolates itself from
the failed bus, while the backup BXU services the requests directed to the failed module. This action
of the BXU allows duplicate AP-buses to guard against single bus failures. To provide backup
capabilities, each BXU tracks the accesses that are handled by its partner BXU. The BXU provides
this fault tolerance logic, which is described in Part III of this manual.

Modes of Operation

The BXU has two modes of operation: PROCESSOR MODE or MEMORY MODE. When
Processor mode is selected, the BXU can operate as a L-bus master or slave. In this mode, the BXU
supports the cache, I/O prefetch, and IAC message functions. When Memory mode is selected, the
BXU always operates as a bus master and generates the required L-bus signals. :

A more detailed discussion of the BXU is contained in Chapter 8.

SYSTEM CONFIGURATIONS

A multiprocessor 80960MC based system is composed of a set of modules connected to AP-buses.
Figure 6-2 shows three types of modules: active, passive, and the combination of an active and
passive (active/passive). These three types of modules are used to build a multiprocessor system.

CTIVE/PASSIVE ACTIVE/PASSIVE

MEMORY
AND 8ogemc MASTER I/0
ONTROLLER

SLAVE I/0

“JCONTROLLER

271079-1068

Figure 6-2: Types of Modules

6-5

|ntel 80960MC MULTIPROCESSOR SYSTEM ARCHITECTURE

Active Module

The active module consists of at least one 80960MC processor,an 82965 BXU, and the L-bus. Private
or cache memory may be attached tothe L-bus in thls module. The BXU translates the L-bus signals
to AP-bus 51gnals

Inthe active-modules, the L-bus traffic flows either on the L-bus to its resources (cache, etc) or flows
through the BXU onto the AP-bus. No request packets, however, flow from the AP-bus through the
BXU to the L-bus.

For TAC transactions, the BXU acts as an extension of the _processors. The BXU informs the
processor of the impending IAC transaction by asserting the IAC pin of the 80960MC processor.

In an active module, the BXU is set to the Processor Mode. When operating in this mode, the BXU
does not need control of the bus, and consequently, does not need to arbitrate for control of the L-
bus.

Passive Module

The passive module consists of memory or a slave I/O device, the BXU, and the L-bus. The L-bus
connects the BXU to the memory orI/O device. The BXU translates AP-bus signals to L-bus signals.

In the passive modules, all L-bus requests originate from a bus master (generally, the 80960MC
processor) of an active module via the AP-bus. Bus traffic flows from the bus master through the
requesting BXU attached to the active module, onto the AP-bus, and finally through the serving BXU
attached to the passive module. For this case, the serving BXU (attached to the passive module) is
set in the Memory Mode and acts as a bus master. Slave I/O devices can be accessed by using
memory-mapped addresses that are not within the IAC address space.

Active/Passive Module

Active/passive modules contain processors and memory, or master and slave I/O devices. ‘This type
of module can access a passive module, and has limited access to other Active/Passive modules.

System Implivcatipns

The active and active/passive modules in a system are connected to all system buses. . Passive
modules may be connected to a subset of the system buses. For example, if the system design uses
four AP-buses; the active and active/passive modules will be connected to all four AP-buses;
whereas, the pass1ve module may be connected to any or all of the AP-buses. Guidelines for the
configurations are given below:

» Eachmodule can be connected to as many as four system AP- buses Each system bus connection
requires at least one BXU.

6-6

lntel 80960MC MULTIPROCESSOR SYSTEM ARCHITECTURE

« Eachmodule can supportup to two 80960MC processors (limited by the BXU’s support for IAC
messages). The number of other components is only limited by the electrical and physical
constraints of the module implementation.

* Logical addressing allows up to 32 modules for every system, although electrical considerations
may limit the practical number of modules to 20.

SUMMARY

The basic hardware system configuration has been designed to be both modular and flexible. It is
comprised of active, passive, and active/passive modules that form natural system boundaries. The
high-bandwidth AP-bus is used for the data path between the modules. Each module contains a BXU,
which interfaces directly to the AP-bus and L-bus. To accomplish this task, the BXU contains seven
logic blocks.

This chapter presented an overview for basic hardware system design. The next three chapters
discuss the details of the AP-bus, the BXU, and the memory and I/O interface.

6-7

Advanced Processor Bus 7

CHAPTER 7
ADVANCED PROCESSOR BUS

Efficient bus utilization is essential in a multiprocessing system. A simple and efficient approach to
building an 80960MC processor interconnect system is to use the Advanced Processor bus (AP-bus)

The AP-bus protocol divides bus transactions into request and reply packets. Up to three request
packets can be outstanding on the AP-bus before a reply packet must be received. In this way, the
AP-bus reduces bus occupancy and increases the performance of 80960MC multiprocessor systems.

This chapter describes the AP-bus operation and covers the topics shown below.

* Anoverview of the AP-bus topology and description of the AP-bus signals
* Memory organization and AP-bus transactions including memory and IAC transactions

e AP-bus protocol and signal timing

AP-BUS OVERVIEW

The AP-bus forms the data communication path between the system modules. Access to the AP-bus
is made possible by the BXU. The 80960MC processor utilizes the AP-bus to fetchinstructions and
to manipulate information from both memory and 1/O devices. The AP-bus has the following
features: ’

e 32-bit multiplexed address/data path
e High data bandwidth
» Four-word burst capability

e Highbus utilization by suppofti"ng up to three outstanding requests at one time with intermixed
requests and replies.

e Transparent arbitration that allows the addition/removal of bus agents without modifying any
hardware.

¢ Interlaced parity

The AP-bus is a synchronous packet bus that consists of several signal groups - packet signals that
include 32 multiplexed address/data lines and six packet specification lines, transaction control
signals, error signals, and synchronization and initialization signals. ‘A transactlon on the bus is
separated into a request packet that flows from the requester to the server and a reply packet that flows
from the server to the requester.

A request and reply may be separated in time to allow other transactions to use the bus in the
mtervemng period. This provides a pipeline feature that enhances bus ut111zat10n Bus arbitration
is decentralized and all bus agents monitor the bus activity. The AP-bus supports fault tolerance by
providing interlaced parity over the address and packet specification lines, 51gna1 duplication on the
transaction control lines, and a bus timer used to monitor the AP-bus for non-response to an

7-1

intgl ADVANCED PROCESSOR BUS

outstanding request. Redundant error report lmes are prov1ded to inform all system components
when an error occurs.

AP-Bus, Topology

Flgure 7- 1 shows a typlcal system conflguratlon that uses two AP-buses (up to four AP- buses are
allowed). The BXU provides the interface between the L-bus and the AP-bus. The BXU contains
several programmable registers, which control its operation. See Chapter 8 for a detailed description
of the BXU programmable register array.

MEMORY AND
80960MC MODULE SLAVE /0
CONTROLLER

t REQLI;I)E(%TING SERVING BXU SERVING BXU

REQUESTING

271079-107

Figure 7-1: AP-Bus Topology

Each BXU (bus agent) has three identification values: logical, physical, and bus. All the bus agents
within the same logical module have the same logical identification value, which is assigned by the
system software. This value is stored in the Logical Identifi ication (Logical-ID) register of the BXU
(see Appendlx A for the description of the Logical-ID register). ‘Each BXU on a particular bus has
aunique physwaI 1dent1flcat10n asmgned during 1n1t1ahzat10n Each bus has a unique identification
value (zero through three).

There are two types of agents: requesting and serving. The requesting agents are the BXUs attached
to the active or actlve/passwe modules. These BXUs translate the 80960MC processor signals to the
AP-bus signals. The serving BXU receives the AP-bus’ signals, performs the desired functions, and
passes the data back to the requesting 80960MC processor. Bus agents do not initiate any AP-bus
operations; they 51mp1y carry out the operations. spe01fled by the 80960MC processor.

7-2

intel ADVANCED PROCESSOR BUS

AP-BUS SIGNAL GROUPS

Figure 7-2 shows the four AP-bus signal groups: packet (address/data and specification lines),
transaction control, error, and synchronization and initialization. This section presents general
definitions of the AP-bus signal groups. Complete details of the signal descriptions and relationships
are provided in subsequent sections.

ADVANCED PROCESSOR BUS

PACKET (38 LINES)
>
<'L TRANSACTION CONTROL (5 LINES)
>
< ERROR (4 LINES)
D
< SYNCHRONIZATION AND INITIALIZATION (2 LINES)
271079-108

Figure 7-2: AP-Bus Signal Groups

Packet Signal Group

The Packet signal group consists of 38 bidirectional lines that transmit the address, data, and
transaction type. The address and data signals are multiplexed.

SPEC,-SPEC, The Specification signals define the packet type and other parameters
required for the bus transaction. Details of these signals are described in the
“Bus Transaction” section of this chapter. These active low signals are open
drain outputs of the BXU.

&l
O

-A

o

The system Address/Data,, through system Address/Data represent the
address signals on the AP-bus during the address cycle and data signals on
the AP-Bus during data cycles. AD, is the most significant bit and AD, is
the least significant bit. These active low signals are open drain outputs of
the BXU.

7-3

intel ADVANCED PROCESSOR BUS

Transaction Control Signal Group

The Transaction control signal group consists of 5 bidirectional signals that control the sequencing
of packets on the AP-bus. They are the four arbitration signals (ARB -ARB) and a signal that can
defer a reply packet (RPYDEF).

ARB,-ARB, The four Arbitration signals determine which agent gains exclusive access
to drive the AP-bus. Each of these signals must be common to all BXUs on
agiven AP-bus. The arbitration signals precede the address/data signals by
one and one-half clock cycles. These active low signals are open drain
outputs of the BXU.

RPYDEF The Reply Deferral signal permits a serving BXU to defer sending a reply
packet. Details for the use of this signal are in the “Reply Ordering” section
of this chapter. This active low signal is an open drain output of the BXU.

Error Signal Group

The AP-bus incorporates two sets of signals to indicate an error has occurred. One set passes
indications of errors to other BXUs, and the other set performs parity checking on the AP-bus packet
signals. Although both are an integral part of a complete fault-tolerant support package, they may
also be used in a non-fault-tolerant system implementation.

CHK -CHK, The Check signals provide interlaced even parity for the SPEC,-SPEC and
AD, -AD lines. These active low signals are open drain outputs of the
BXU.

BERL -BERL, The Bus Error report line signals indicate that an error has been detected

in the system. These active low signals are open drain outputs of the BXU.

Synchronization and Initialization Signal Group

The synchronization signal (CLK2) provides the capability for all AP-bus agents to operate with the
proper timing relative to each other. The initialization signal (RESET) brings all AP-bus agents to
a consistent state.

CLK2 The System Clock provides the fundamental timing and synchronization for
all transactions performed by the AP-bus agents. The clock rate is twice the
frequency of a bus cycle. Forexample, if the bus cycle frequency is 16 MHz,
then the CLK2 frequency is 32 MHz.

RESET The assertion of the Reset signal forces all AP-bus agents to reset and
synchronize. After the first system clock period begins, all bus agents
remain in synchronization. The assertion of the RESET signal is the only
method available to synchronize all the bus agents for proper operation.

7-4

intel

ADVANCED PROCESSOR BUS

Bus Signal Summary

Table 7-1 shows the summary of the AP-bus signals.

Table 7-1: AP-Bus Signal Summary

Signal Group Symbol Function
Packet SPEC,-SPEC, Specify the type of packet
AD,,-AD, 32-bit address
AD,,-AD, 32-bit data
Transaction ARB;-ARB, Arbitrate for AP-bus access
Control
REPDEF Defers reply packet
Error CHK,-CHK, Provide parity checks
BERL,-BERL, Indicate AP-bus error
Synchronization CLK2 Clock signal (double the bus frequency)
and Initialization
RESET Resets bus agent to a known state

NON AP-BUS MODULE SUPPORT SIGNALS

These signals are point-to-point connections and are not considered part of the AP-bus. The INITID

and COM signals are valid during initialization, and the MODCHK, BOUT, COM, and V

signals

REF

are required for fault tolerant designs to detect the source of an error. POPQUE and SSBUSY are used
to co-ordinate activities between AP-Buses within a multiple bus system.

INITID

MODCHK

BOUT

The Initialization Identification signal provides a way to access a single
BXU during initialization. The INITID pin of the BXU is physically
connected to one of the 32 AP-Bus address/data lines. The INITID signal
together with “Identify Device Order” IAC provide a unique address for the
bus agent during initialization.

The Module Check signal is used in fault-tolerant system design and is
described in detail in Chapter 11.

The Bus Output Control signal, when asserted, indicates that a bus agent
is driving the AP-bus. This signal is used in fault-tolerant system design and
is described in detail in Chapter 11.

7-5

intl ADVANCED PROCESSOR BUS

COM The Communication signal is used to load information into a BXU as part
of the initialization sequence or to inform external logic that the component
has failed. This signal is not involved in any aspect of the AP-bus operation,
but is provided to simplify loading board-dependent information into the
BXU. The COM signal is also used to indicate external errors in fault-
tolerant system designs. Complete details of this signal are provided in the
“Serial COM Protocol” section of Chapter 14.

Vier The Voltage Reference pin provides a stable voltage reference for the AP-
bus input buffers of the BXU. External hardware must provide a nominal
2.0V on the VREF pin (see the M82965 BXU data sheet for the exact
specification) during normal operation. The VREF pin is used to distinguish
between a cold RESET (memory of errors cleared) and a warm RESET
(memory of errors retained). Complete details about this signal are provided
in Chapter 14.

POPQUE The Pop Queue signal is used in fault tolerant system design and is
described in Chapter 13.

SSBUSY The Subsystem Busy signal is used to coordinate activity between AP-
buses within a system. It is described in Chapter 13.

MEMORY ORGANIZATION

The AP-bus provides a four gigabyte address range to access memory and memory-mapped devices.
The address range is accessible in four word blocks (each 32 bit word contains four 8- bit bytes). By
organizing memory in this manner, the entire 4 Gbyte address range is logically accessible on word
boundaries starting at address 0000 0000,,. The memory address (with the 4 least significant bits =
0) present on the AP-Bus during the address cycle points to the first word within the block boundary.
The source BXU can specify individual bytes within a word during a write transaction data cycle by
encoding “BYTE MARKS” on the AP-Bus SPEC lines.

A single AP-bus transaction can access a maximum of four words and cannot cross the boundary of
ablock. To achieve the lowest number of memory cycles for a transaction, single word accesses must
be word aligned (least two significant bits = 0). A transaction may read or write a contiguous string
of one to sixteen bytes of data within the block. The 80960MC processor will break any program’s
request of more than 16 bytes or accesses that would have necessitated crossing a block boundary
into multiple transactions.

The uppermost 16 Mbyte addresses of the 4 Gbyte address space are reserved for IACs; direct
communication between bus agents (see the “IAC Transaction” section in this chapter). This specific
set of memory-mapped addresses is recognized by all AP-bus agents to facilitate interagent message
communications. IACs are used for system functions, such as initialization, access to registers in the
AP-bus agents, and interrupt handling.

7-6

intgl ADVANCED PROCESSOR BUS

BUS TRANSACTIONS

AP-bus agents communicate with each other by exchanging packets of information. A packet is a
sequential group of bus cycles that contains information on the type of operation, the address
location, and the number of data bytes to transfer. Two packets, arequest and reply, form an AP-
bus transaction.

Arequest packet initiates an AP-bus transaction, and the reply packet completes the transaction. The
request packet specifies three items: the type of operation, the location of the requested device, and
the number of data bytes. The request packet includes data if a write operation is performed. The
reply packet responds to the request packet by indicating the status of the action requested. For aread
operation, the reply packet also responds with the requested data.

Figure 7-3 shows the different types of request packets. The request packets are divided into two
basic groups of operations: a read group that transfers data to the 80960MC processor, and a write
group that transfers data from the 80960MC processor. Each group contains specific operations,
such as read word(s) or Read Modify Write (RMW) operations. The read byte or read double-byte
operations are optimized for memory-mapped I/O devices to facilitate the interface to an 8-bit or 16-
bitbus. The RMW operations are used to perform “Atomic Accesses”. Inan Atomic Access the BXU
guarantees that once a processor begins a read-modify-write operation on a set of memory locations,
it is allowed to complete the operation before another processor is allowed to access the same
location. The specification lines are used to indicate which function is performed. Complete details
of the specific operations are described in this section.

REQUEST PACKET
1 A
READ WRITE
pumee READ 1 WORD peeees WRITE 1 WORD
e READ 2 WORDS == WRITE 2 WORDS
pume READ 3 WORDS pe——= WRITE 3 WORDS
pes READ 4 WORDS pmm= WRITE 4 WORDS
== RMW-READ 1 WORD puemen RMW-WRITE 1 WORD
pem== RMW-READ 2 WORDS === RMW-WRITE 2 WORDS
peemeee RMW-READ 3 WORDS pe= RMW-WRITE 3 WORDS
pusnee RMW-READ 4 WORDS e RMW-WRITE 4 WORDS
pr—em= READ BYTE
fmeme READ DOUBLE BYTE 271076-109

Figure 7-3: Request Packet Organization

7-7

intel ADVANCED PROCESSOR BUS

The reply packets are also divided into two basic status groups that indicate acceptance or refusal of
the requested operation, as listed in Figure 7-4. Each group contains specific responses, which are
discussed in this section.

REPLY PACKETS
ACCEPTED REFUSED
b READ REPLY 1 WORD b REISSUE
b= READ REPLY 2 WORDS = NO-ACKNOWLEDGMENT (NACK)
= READ REPLY 3 WORDS b BAD-ACCESS
= READ REPLY 4 WORDS
== WRITE-ACKNOWLEDGE (ACK) 271078110

Figure 7-4: Reply Packet Organization

Transaction Specification

To convey the type of operation, the request and reply packets use the SPEC SPEC lines. The six
active low SPEC lines indicate the type of operation or status during the first bus cycle. On
subsequent bus cycles, these lines are interpreted differently: for write operations, SPEC, SPEC are
used to indicate which data byte is valid; and for read operations, SPEC and SPEC lines are set to
a value of one to indicate a read transaction.

The specification lines are divided into four data fields. These signals apply only during the first
bus cycle.

REQUEST/(SPEC,)
This bitidentifies the packet type. When it is low, this bit indicates the packet
is arequest packet. When it is high, it indicates the packet is a reply packet.
MULTICYCLE (SPEC))

When it is asserted, this bit indicates that the packet occurs in one bus cycle.

CYCLE COUNT (SPEC,-SPEC,)
These bits along with the REQUEST and MULTICYCLE bits specify the
length of the packet.

OPERATION/STATUS (SPEC,-SPEC))
These two bits identify the specific operation or status conveyed by the
packet.

intel ADVANCED PROCESSOR BUS

Table 7-2 shows the relationship between the encoded SPEC lines and the specific operation of the
request or reply packet during the first bus cycle. Note that the encoded SPEC lines do not use all
the possible combinations. The values that are not encoded are unused and reserved for future
product enhancements. Table 7-2 also shows the number of bus cycles and the number of words
requested or transferred for a particular packet.

Table 7-2: Specification Encodings for Packets

Specification Lines
(SPEC,"SPEC,) Number of
Packet | Category Function Binary Hexi- cgé'.:a Rov::;::od
Decimal (Transferred)
5 4 3 2 1 o] Eauw
Request | Read Read 1 word 1 0 0 0O o0 O 20 1 1
Read 2 words 1 0 0 1 0 0 24 1 2
Read 3 words i1 0 1 0 0 O 28 1 3
Read 4 words 1 0 1 1.0 O 2C 1 4
RMW-Read 1 word i 0 0 0 o0 1 21 1 1
RMW-Read2words | 1 0 0 1 0 1 25 1 2
RMW-Read3words {1 0 1 0 0 1 29 1 3
RMW-Read4words | 1 0 1 1 0 1 2D 1 4
Read byte 1 0 0 0 1 O 22 1 0.25
Read double byte 1 0 0 0 1 1 23 1 0.5
Write Write 1 word 1 1 0 0 0 O 30 2 (1)
Write 2 words 1 i1 0 1 0 O 34 3 2)
Write 3 words 1 1 1 0 0 O 38 4 3)
Write 4 words 1 1 1 1 0 o0 3C 5 (4)
RMW-Writetword | 1 1 0 0 0 1 31 2 (1)
RMW-Write 2 words | 1 1 0 1 o0 1 35 3 (2)
RMW-Write 3 words | 1 1 1 0 0 1 39 4 3)
RMW-Write 4 words | 1 1 1 1 0o 1 3D 5 4)

7-9

intel ADVANCED PROCESSOR BUS

Table 7-2: Specification Encodings for Packets (cont.)

Specification Lines
(SPEC,-SPEC,) Number of
K Cat Functi Bus Words
Packet ategory unction Binary ' Hexi- Cycles Requested
Decimal (Transferred)
5 4 3 2 1 o] Equv
Reply Accepted Read reply 1 word 0 0 0 1 1 0 06 1 1)
Readreply2words {0 1 0 O 1 0 12 2 @
Readreply3words | 0 1 0 1 1 0 16 3 3)
Readreply4words |0 't 1 0 1 0 1A 4 (4)
Write-Acknowledge | 0 0 0 0 1 0 02 1 N/A
Refused Reissue o 0o 1 1 1 1 OF 1 N/A
No-Acknowledgment | 0 0 1 0 1t 0 0A 1 N/A
Bad-access o o 1 o 1 1 0B 1 N/A

NOTE: Binary 1 indicates that the referenced SPEC line is asserted (i.e., driven low).

After the first bus cycle, the SPEC lines represent other information for the write and read operations.
For a write operation, four of the SPEC lines are used to specify which data bytes to write during the
current bus cycle (see the “Write Data Transfer” section of this chapter for more details). For aread
operation, three SPEC lines are used to indicate that data is being transferred (see the “Read Data
Transfer” section for more details).

Request Packets and Accepted Replies

Data is transferred on the AP-bus by request and reply packets. A write-request packet transfers data
from the requesting agent to the serving agent. A read-reply packet transfers data from the serving
agent to the requesting agent.

A word (32-bits) is the basic unit of measure for a data transfer, although individual data bytes (8 bits)
can be transferred in a write request packet. Individual data bytes are transferred during a write
operation by using four SPEC lines after the first bus cycle as byte marks. For a read operation, the
entire data word is transferred and the 80960MC processor extracts the desired data bytes.

7-10

intel ADVANCED PROCESSOR BUS

The write-request packets or the read-reply packets transfer up to four words of data on the AD lines
in two to five bus cycles depending on the amount of data to transfer (a four-word write-request is
five bus cycles long - one bus cycle to transmit the address and four bus cycles to transmit the data).
For multiple word data accesses that do not start at word boundaries (i.e., Word-Byte), the BXU
may require an additional cycle to properly align the data bytes before transferring them onto the AP-
bus. The following examples of read and write packet transactions contained in this section illustrate
details of these functions.

Read Data Transfer
The following sequence of events occurs during a read operation:

* An 80960MC processor initiates a read operation on the L-bus by issuing a read command,
supplying an address, and designating how many words to read through the SIZE signals.

« The requesting bus agent (BXU) translates these signals into a read-request packet on the AP-
bus.

» The serving bus agent retrieves the data from the memory or I/O device and sends a read-reply
packet to the requesting bus agent.

* The requesting bus agent receives the data and transfers it to the L-bus, thus completing the
cycle.

The read transaction transfers one to four words of data. The address in the read-request packet points
to the first data word to be read. Read transactions transfer a single word (Byte,, Byte,, Byte,, and
Byte,) in one bus cycle. Additional words require additional bus cycles.

Individual bytes can be read, but only if the 80960MC processor extracts the desired data bytes and
ignores the others. The BXU does not have the capability to fragment a word, and thus will always
place a whole word on the L-bus. To read a string of data bytes that cross a word boundary within
a block requires additional bus cycles, even if only two data bytes are requested. For example, if the
desired data string is Word -Byte, and Word -Byte, two bus cycles are required because two words
are read: one to read Word, and the other to read Word,. In this case, the 80960MC receives both
words and extracts the bytes desired.

The following example depicts the data movement for a typical read transaction. Assume that an
80960MC processor needs to read three words from a single block in memory located at 0000 0040,
Table 7-3 shows the memory block organization with the letters A through P representing 16
individual data bytes of the four words. This transaction is comprised of a one cycle request packet
and a 3-cycle reply packet.

The requesting bus agent places arequest packet on the AP-bus, as shown in Table 7-4. The single-
cycle request packet specifies that a three-word read operation is requested at location 0000 0040,,.
The serving bus agent uses the read-request packet to read three words from the specified block of
memory. The four byte word is the basic unit of transfer.

intel ADVANCED PROCESSOR BUS

Table 7-3: Memory Block Data for Read Example

Byte, _Byte, Byte, Byte,
Word, P (o) N M
Word, L K J |
Word, H G F E
Word, D C B A*

NOTE: * Address 0000 0040, points to this location.
Letters represent one data byte.

Table 7-4: Read-Request Packet

Specification Lines Address/Data Lines
5 4 3 2 1 0 Byte, Byte, Byte, Byte,
Bus Cycle, 1 0 1 0 0 0 00, 00, 00, 40,,

The transaction is completed by a three-cycle read-reply packet that contains.the requested
information. Table 7-5 shows the alignment of the data bytes with respect to the AD lines in the reply
packet. Because three words are read, the transaction requires three bus cycles: the first bus cycle
contains the data word of the original address, the second and third bus cycles follow with the second
and third data words. During the first bus cycle SPEC.-SPEC; contain the binary code 010110,

mdlcatmg a“READ REPLY 3 WORD PACKET”. Durmg the second and third bus cycles, SPEC;

remams deasserted, SPEC and SPEC remain asserted and SPEC SPEC,, and SPEC are “don’ t
cares”

Table 7-5: Read-Reply Packet

Specification Lines Address/Data
5 4 3 2 1 0 Byte, Byte, Byte, Byte,
Bus Cycle, 0 1 0 1 1 0 D Cc . B A
Bus Cycle, 0 1 X X 1 X H G F E
Bus Cycle, 0 1 X X 1 X L K J |

NOTES:
1. Capital letters represent one data byte.
2. “x” means ‘‘don’t care.”

7-12

intal ADVANCED PROCESSOR BUS

Read Byte and Read Double-Byte

The read byte or read double-byte are special request packets that can facilitate memory-mapped
operations to peripheral devices on an 8-bit or 16-bit bus attached to a BXU on an I/O module. By
specifying whether an access to a memory-mapped device is a byte or double-byte, the serving bus
agent on the AP-bus can formulate a proper request its L-Bus.

The read-byte request accesses a byte in a single cycle by using the two low-order AP-bus address
bits to point to the requested data byte. The data byte is transferred in its normal location on the AD
lines of the AP-bus. The read double-byte accesses any two-byte string within a block of address
space. If the address points at the last byte of a word, then two bus cycles are required to transfer the
two bytes as they overlap a word boundary.

Both of these special packets are useful when the serving bus agent interfaces to either an 8-bit or
16-bit local bus. For normal memory accesses (i.e., for non-memory-mapped accesses), these
request packets operate like the read-request packet.

Write Data Transfer

The following sequence of events that occur during a write operation, are similar to a read operation,
except that the data flows from the source agent.

e An 80960MC processor initiates a write operation on its L-bus by issuing a write command,
supplying an address, and designating how many words to write.

e The requesting bus agent (BXU) translates these signals into a write-request packet on the AP-
bus and sends the data to the serving bus agent.

« The serving bus agent receives the data from the requesting bus agent and sends commands on
its L-bus attached to write to the appropriate memory or I/O location.

¢ The serving bus agent sends a reply packet thus completing the cycle.

The write transaction transfers one to four words of data, with the capability to write to individual
databytes. The write-request packet transfers a single word in two bus cycles, a double word in three
bus cycles, etc. The first cycle transmits the operation and address and, subsequent cycles transmit
the data and the byte identification. To write a string of data bytes that cross a word boundary within
a block requires additional bus cycles; one for each word boundary crossed.

Because the write transaction modifies individual data bytes, the write-request packet must include
information on which bytes to alter. After the first bus cycle, the packet contains this byte
information on four SPEC lines (SPEC,-SPEC)), which are byte mark signals during this time. Each
byte mark corresponds to a data byte: byte Mark (SPEC) represents Byte , byte Mark, (SPEC,)
represents Byte,, byte Mark, (SPEC,) represents Byte and byte Mark, (SPEC) represents Byte
The desired data byte is written by asserting the appropriate byte mark. After the first bus cycle,
SPEC, remains asserted to indicate that data is transferred for this write request.

7-13

intel ADVANCED PROCESSOR BUS

The following example depicts the data movement for a typical write transaction.: In this example,
the 80960MC processor writes to six bytes starting at memory location 0000 0041, which is located
in memory block 0000 0040,,. Table 7-6 shows the memory block organization with the letters A
through P representing 16 individual data bytes. This transaction comprises of a three cycle write
packet and a one cycle reply (ack or nack) packet. '

Table 7-6: Memory Block Data Before Write Operation

Byte, Byte, Byte, ‘ Byte,
Word, P (0] N M
Word, L K J |
Word, H G F E
Word, D Cc B A

NOTE: Letters represent one data byte.

The three-cycle write-request packet is generated by the requesting bus agent. Table 7-7 illustrates
the “WRITE-2-WORDS” command, the desired address, and the alignment of data byte marks and
data on the AP-bus. The first cycle defines the specific operation and transmits the word aligned
address. During the second bus cycle, the BXU transfers the data bytes of Word, (U, V, and W),
which are designated by the byte marks. During the third bus cycle, the designated data bytes of
Word, (X, Y, and Z) are transferred.

Table 7-7: Write-Request Packet

Specification Lines Address/Data
5 | a | 3| 2] 1| o] Byte, | Byte, | Byte, | Byte,
Bus Cycle, 1 1 0 1 0 0 00, 00, 00, 40,
Bus Cycle, 1 1 1 1 0 X w v U —
BusCycle, | 1 [0 [1 | 1] 1] x - z Y X

NOTES:

1. Capital letters represent one data byte.
2. “x" means ‘“‘don’t care.”

3. “—'" means no.change to current value.

The serving agent sends a write acknowledge reply packet that signifies completion of the transaction
as shown in Table 7-8.- The updated memory block organization is shown in Table 7-9.

7-14

intel ADVANCED PROCESSOR BUS

Table 7-8: Write-Acknowledge Packet

Specification Lines Address/Data
5 4 3 2 1 0 Byte, Byte, Byte, Byte,
Bus Cycle, 0 0 0 0 1 0 Undefined

Table 7-9: Memory Block Data After Write

Byte, Byte, Byte, Byte,
Word, P (o} N M
Word, L K J |
Word, H V4 Y X
Word, w \" U A

NOTE: Letters represent one data byte.

Read-Modify-Write

The Read-Modify-Write (RMW) functions allow the AP-bus agents to read and modify data at a
given location as a single indivisible action. The AP-bus protocol defines a RMW-READ packet to
indicate the start of an indivisible operation and a RMW-WRITE packet to denote the termination
of this action.

In the memory mode, the BXU provides two to four RMW locks with timeouts. Four locks are
available if the module is not interleaved with other modules, and two locks if it is interleaved. The
serving BXU in a memory module locks one quarter of its available memory (up to 1 Gbyte),
whenever a RMW-READ is accepted into the module and AP address bits 6 and 4 match its address
segment. Any other RMW-READ packets addressing this segment are rejected. This Block of
memory is available, however, for any other type of memory operation by any bus. For example, the
source agent may make additional read or write memory accesses, but not RMW accesses.

The RMW-READ packet can be answered with one of two reply packets: the READ-REPLY or
REISSUE-REPLY. The read-reply packet returns the requested data and indicates that the lock for
the appropriate Block was set. The reissue-reply packet indicates that the lock is already set and that
the requesting agent must attempt the operation later. No data is returned with a reissue-reply packet.

The RMW-WRITE packet writes data and removes the lock. This packet is equivalent to a normal
write-request packet except that it resets the lock for the selected memory location. The write-
acknowledge reply packet indicates that the lock has been removed.

7-15

intl ADVANCED PROCESSOR BUS

Four independent lock timers are provided in the BXU to ensure a malfunctioning agent cannot
initiate alock and deny other agents access to the system memory. The timer for a particular segment
starts when its lock is asserted, and should never timeout in normal system operations. If however,
a lock timeout occurs, its associated lock will be removed. The duration of the timeout is between
4096 and 8192 clock cycles.

When using the RMW operations, certain conventions must be observed by the bus agents.

1. The purpose of a RMW operation is to construct indivisible transactions. These operations
should not be used to directly lock a memory data structure. The lock must be restricted to a short
duration operation. In general, this means that an agent performing an indivisible sequence must
guarantee that it does not suspend operation or handle an interrupt without first terminating the
indivisible sequence. '

2. All agents sharing a data structure or communication signal must use the same location as the
starting point for their RMW operators. If the locations are not the same, the conflicting
operations are not correctly sequenced (blocked).

3. Any single agent may have only a single RMW operation outstanding at any given time.

Refused Reply Packets

Besides the various reply packets that accept a request, there are three reply packets that refuse a
request packet. They are the reissue, no-acknowledgement, and bad-access replies. Each of these
reply packets elicit different responses from the requesting bus agent.

The REISSUE reply packet, which was briefly described in the “Read-Modify-Write” section,
indicates that the serving agent was unable to reply at the prescribed time because of temporary
conditions. There is no problem that prevents a successful access if the request packet is sent at a
later time. The reissue reply packet is transmitted in response to a RMW-READ packet when
memory is already locked, or for a request packet directed to a memory-mapped I/O device where
the attached I/O bus is temporarily blocked.

The NO-ACKNOWLEDGEMENT reply packet (NACK) indicates that the request packet cannot
be completed. The requesting agent must determine how to respond to this condition. NACK reply
packets are used exclusively for IAC messages. For example, the NACK reply packet is issued in
response to an IAC request if the serving agent has insufficient buffer space, or if the request packet
does not have high enough priority. Complete details are discussed in the following “IAC
transaction” section.

The BAD-ACCESS reply causes the requesting agent to terminate a transaction. One possible cause
of aBAD-ACCESS simply is the transaction exceeded the bus timeout period. The requesting agent
terminates its own transaction with a bad-access reply to remove the request packet from the AP-bus.
The bad-access reply can be used for a variety of situations to indicate problems with the request
packet. When the bad-access reply is encountered, the requesting processor should not try the access
again.

7-16

intel ADVANCED PROCESSOR BUS

The BAD-ACCESS reply signifies a failed access and is a valid reply to any request packet. The
accessed address should be considered unavailable. The source agent must determine the appropriate
recovery from this condition.

IAC TRANSACTIONS -

An Interagent Communication (IAC) is a mechanism to facilitate communication between the
80960MC processors. All bus agents recognize a specific set of memory-mapped addresses (the
uppermost 16M of the 4G-byte address range) as an IAC transaction.

IACrequests are splitinto two major groups: message and register requests. Message IACs provide
amethod for one processor to communicate with another processor. The register-request IACs allow
direct communication to the registers in the BXU.

The information represented within a specific IAC address is: an FF,; in the uppermost eight bits (high
order byte) are an IAC identification (function); the remaining 24 bits define the type of IAC, the
Module Destination, L-Bus Destination, and the Internal Destination in the BXU.

IAC Flow

The 80960MC processor originates the IAC transaction by writing to a reserved memory-mapped
address (top 16 Mbyte) on its L-bus. The BXU that is attached to the 80960MC processor’s L-bus
recognizes that address as an IAC request, and responds by performing the requested action itself or
by passing the IAC request to another BXU via the message passing AP-bus. IAC’s always originate
on an L-Bus. If an IAC message is transmitted on the AP-bus, the IAC request flows from an L-bus,
onto the AP-bus, and then to another L-bus, which is its final destination.

The 80960MC processor can be connected to a maximum of four AP-buses through four BXUs, but
only the AP-bus designated as the message bus during initialization transmits the IAC message. The
BXUs that coexist on both the L-bus and the message AP-bus handle the IAC transactions generated
by the 80960MC processors.

IAC Address Formats

The IAC is defined by a 32-bit memory-mapped address, which contains the following five address
fields: IAC identification, module destination, L-bus destination, IAC type, and internal destination,
asshownin Figure 7-5. The IAC identification field provides a way to designate the memory-mapped
address as an IAC transaction. When this field is equal to FF;, an IAC transaction occurs. The module
destination field specifies which specific BXU residing on the AP-bus responds to the IAC request.
The L-bus destination field specifically identifies which of four possible BXU’s residing on the
processors local bus will either act on the request or propagate it onto the AP-Bus. The IAC type field
specifies the type of IAC transaction. The multipurpose internal destination field specifies various
commands, BXU register addresses, or IAC message priorities.

7-17

intal * ADVANCED PROCESSOR BUS

1AC MODULE al i | INTERNAL
IAC ADDRESS FIELD | \peNTIFICATION | DESTINATION | @ | TYPE DESTINATION
IAC ADDRESS BIT
31 2423 16151413 109)
NOTE:
1. L-BUS DESTINATION.
271079-111

Figure 7-5: IAC Address Format

The 80960MC processor can initiate the six types of IAC transactions listed below. In addition, the
80960MC processor can reserve address space on the L-bus for its own use. This section provides
the details for each of the following IAC transactions.

+ TAC Message (IAC Type 0011,)

» Register request using a logical address (IAC Type 0010,)

* Register request using a physical address (IAC Type 0100;)

* Register request to BXUs on the L-bus (IAC Type 0000;)

» Identify device order (IAC Type 0111))

» Private L-bus space for the 80960MC processor (IAC Type 1111))

IAC access type 1111 reserves address space on the L-bus for the 80960MC processors exclusive
use. All addresses of this access type are ignored by the BXU. This allows the 80960MC processor
to perform interrupt acknowledge handshakes, etc.

IAC Message (IAC Type 0011})

This IAC transaction passes messages to and from the 80960MC processors. Figufe 7-6 shows the
IAC message address format.

The IAC identification field is equal to FF,, to indicate that this is an IAC transaction.

The module destination field is separated into two categories: the unit-identification bits (six bits
labeled UUUUUU), and a processor-identifier bit (labeled N). The low order bit in the module
destination field is not used and can be any value (indicated by the shaded area).

To specify the module destination of a message, a logical identification number is assigned to the six
high-order bits of the module destination field. The logical identification number, located in the
Logical-ID register of the BXU, is assigned by software and must uniquely identify alogical module.

7-18

intel ADVANCED PROCESSOR BUS

INTERNAL
DESTINATION

Irleleleleloolole

IAC MODULE
IAC ADDRESS FIELD | \neNTIFICATION | DESTINATION

IAC ADDRESS BIT |11 1'H1(1|1]1 u[ulu]uMu[N
31 2423

NOTE:
1. L-BUS DESTINATION. 271079-112B

Figure 7-6: Address Format for IAC Message Transaction

Because two processors can reside on the L-bus, the processor-identifier bit(N) provides a way to
select which of the two processors connected to the destination BXU will receive the IAC message.
The serving BXU uses the Processor-Priority register associated with destination processor to
determine which actions to execute in response to the IAC message.

The L-bus destination field is not used.
The IAC type field is set to 0011, to indicate that this is an “IAC message”.

The internal destination field is used to communicate the priority of the IAC message. The five bits
labeled PPPPP are used by the BXU to determine whether the IAC is accepted or rejected. There are
thirty-one levels of priority; PPPPP=0 is the lowest priority and PPPPP=31 is the highest priority.
The four low-order bits of this field are set to zero to align the address on a 16-byte boundary because
the IAC message can be up to 16 bytes long. The high order bit in this field is not used and can be
any value (indicated by the shaded area).

Register Request Using a Logical Address (IAC Type 0010,)

This IAC transaction allows the 80960MC processor to access a register in a BXU using the logical
address of amodule. This type of IAC transaction is used primarily in fault-tolerant systems where
multiple components operate as a single logical unit (see Part III for complete details). Figure 7-7
shows the address format for this IAC transaction.

The IAC identification field is equal to FF,, to indicate that this is an IAC transaction.

The module destination field is separated into two categories: the unit-identification bits (six bits
labeled UUUUUU), and an access bit (labeled A). The low order bit in the module destination field
is not used and can be any value (indicated by the shaded area).

7-19

intel ADVANCED PROCESSOR BUS

IAC MODULE al| IAC INTERNAL
IAC ADDRESS FIELD | \nenTiFICATION | DESTINATION @1 TYPE DESTINATION
S 10000 10N 0 00 A0k ANaaaaaaas|
. ‘ ' 2423 16151413 109 .
NOTE:
1. L-BUS DESTINATION. 271078113

Figure 7-7: Address Format to Access a Register Using a Logical Address

To specify the module destination, a logical identification number is assigned to the six high-order
bits of the module destination field. The logical identification number, located in the Logical-ID
register of the BXU, is assigned by software and must uniquely identify a logical module.

The purpose of the access bit is to allow testing the fault tolerant circuitry in a single BXU, even
though that BXU may be part of a module that consists of two or four identical BXU’s with the same
logical address. When the access bit is asserted, the Access-Register will be used to determine which
of the individual agents of the single logical module will respond to the IAC. This bit is used for the
testing and start up of fault-tolerant system designs, and is described in detail in Chapter 12.

The L-bus destination field (labeled BB) indicates which BXU on the L-bus passes the IAC request
to the AP-bus for multiple bus configurations. The BXUs are identified by the ID of the AP-bus to
which they are attached. The combination of the L-bus destination field and the module destination
field uniquely identifies one bus agent as the destination of the IAC request.

The IAC type field is set to 0010, to specify that this IAC transaction accesses a register in a BXU
using a logical address.

The internal destination field specifies a particular command or register of the BXU. The two low-
order bits on the AP-bus are equal to zero because all register and command addresses are word
aligned. The data written into a register is typically one word long, and can access only one
register/command per transaction. The data word sent with a command is ignored by the destination
BXU. The IAC request must match the register/command size for a valid request. If the request is
invalid, the serving BXU will respond with a NACK reply packet. The BXU ignores the byte enable
signals on all IAC requests.

Register Request using a Physical Address (IAC Type 0100,)

This IAC transaction allows the 80960MC processor to access a register in a BXU using a physical
address. This type of IAC transaction permits access to bus agents before the final logical
configuration is established. Figure 7-8 shows the address format for this IAC transaction.

The IAC identification field is equal to FF,, to indicate that this is an IAC transaction.

7-20

intel ADVANCED PROCESSOR BUS

IAC MODULE a IAC INTERNAL
IAC ADDRESS FIELD IDENTIFICATION DESTINATION 8| TvPe DESTINATION

IAC ADDRESS BIT 1J1]1M1—M1l1 K‘c‘c‘clclc \B o]1|olo nlnlnlnlnln]n'n\ok
31 2423 16151413 109)

NOTE:
1. L-BUS DESTINATION.

271079-114

Figure 7-8: Address Format to Access a Register Using a Physical Address

The Module Destination field is separated into two categories: a class identification (labeled K), and
a component identification (labeled CCCCC). The class ID is set during manufacturing, and is used
to distinguish a BXU from other future AP-Bus components. The class ID for a BXU is zero.

The BXU compares the value of the module destination field to the value in its Physical-ID register
(see Appendix A for the description of the Physical-ID register). If amatch occurs, the BXU responds
to the JAC memory-mapped address. The two low order bits in the module destination are not used
and can be any value (indicated by the shaded area).

The L-bus destination field (labeled BB) indicates which BXU on the L-bus passes the IAC request
to the AP-bus for multiple bus configurations. The BXUs are identified by the ID of the AP-bus to
which they are attached. The combination of the L-bus destination field and the module destination
field uniquely identifies one bus agent as the destination of the IAC request.

The IAC type field is set to 0100;, to specify that this IAC transaction accesses a register in the BXU
by using a physical address.

The internal destination field specifies a particular command or register of the BXU. The two low-
order bits on the AP-bus are equal to zero because all register and command addresses are word
aligned. The data written into a register is typically one word long, and can access only one register/
command per transaction. The data word sent with a command is ignored by the destination BXU.
The IAC request must match the register/command size for a valid request. If the request is invalid,
the serving BXU will respond with a NACK reply packet. The BXU ignores the byte enable signals
on all IAC requests.

Register Request On the L-Bus (IAC Type 0000,)

This IAC transaction is provided for initialization purposes. It gives the 80960MC processor access
to the message-control registers of the BXU on the L-bus. Figure 7-9 shows the address format for
this JAC transaction.

The IAC identification field is equal to FF,, to indicate that this is an IAC transaction.

7-21

intel ADVANCED PROCESSOR BUS

‘ IAC MODULE IAC INTERNAL
IAC ADDRESS FIELD IDENTIFICATION DESTINATION TYPE DESTINATION
“IAC ADDRESS BIT 5 0]0]0'0 R|RIRJR|R|R1R(R[JO
31 2423 16 151413 109 0

NOTE:
1. L-BUS DESTINATION.

271079-115

Figure 7-9: Address Format to Access a Register From the L-Bus

The module and L-bus destination fields are not used because the IAC transaction remains on the L-
bus and does not propagate onto the AP-bus. A write operation using this IAC will write data to all
BXU s residing on the L-Bus. A read operation is performed only by the message BXU in a multiple
AP-bus configuration, unless the access is to the IAC message buffer. In this case, the 80960 will
read data from the BXU whose IAC Message-Data-Validbit in its corresponding Processor-Priority
register is set. Normally, this is the message BXU, but may be another BXU under certain error
conditions.

The IAC type field is set to 0000, to specify that this IAC transaction accesses a register of a BXU
on the processors local bus.

The internal destination field specifies a particular command or register of the BXU. The two low-
order bits on the AP-bus are equal to zero because all register and command addresses are word
aligned. The data written into a register is typically orie word long, and can access only one register/
command per transaction. The data word sent with a command is ignored by the destination BXU.
The IAC request must match the register/command size for a valid request. If the request is invalid
the BXU will return a BADAC instead of a READY on the L-bus. The BXU ignores the byte enable
signals on all IAC requests.

ldehtify Device Order (IAC Type 0111,)

Identify Device Order is a special IAC that supports initialization of the system. This IAC is used
to assign logical and physical identification values to a particular BXU. Complete details are
provided in Chapter 14. Figure 7-10 shows the address format for this type of IAC transaction.

The IAC identification field is equal to FF,, to indicate that this is an IAC transaction.

The module destination field is not used for this type of transaction. To determine the component
destination, this IAC uses the Initialization Identification (INITID) pin on the BXU, which is tied to
one of the AP-bus address/data lines. This IAC request is transmitted to all the BXUs on a specific
AP bus. The individual BXU addressed by this IAC is determined by asserting one (and only one)

7-22

intel ADVANCED PROCESSOR BUS

of the thirty-two bits in the first data word. If the asserted AD line is physically connected to the
BXU’s INITID pin, that BXU will accept the IAC. All other BXU’s will ignore this IAC transaction.
(See Chapter 14 for complete details.)

IAC MODULE o IAC INTERNAL
IAC ADDRESS FIELD Q1 TYPE DESTINATION

IDENTIFICATION DESTINATION

IAC ADDRESS BIT
31 2423 16151413 109

NOTE:
1. L-BUS DESTINATION.
271079-116

Figure 7-10: Address Format to Identify a Device

The addressed BXU does not send a reply packet to this type of IAC. Consequently, a time-out error
is always generated by the requesting BXU. The time-out error causes the requesting BXU to
terminate the transaction by generating a BAD-ACCESS reply packet on the AP-bus and asserting
the BADAC pin on L-bus. The bad-access reply is used to clear the AP-bus pipeline.

The L-bus destination field (labeled BB) indicates which BXU on the L-bus passes the IAC request
to the AP-bus for multiple bus configurations. The BXUs are identified by the ID of the AP-bus to
which they are attached.

The IAC type field is set to 0111, to specify that this IAC transaction is an identify device order IAC.
The internal destination field is not used.

To guarantee correct operation, the addressed BXU must either be idle or processing an Identify
Device Order IAC from its L-bus. Incorrect operation results if the addressed BXU is processing a
memory reference or another type of IAC. This restriction is required because of the special address
recognition and register loading that occurs as a result of this IAC.

Summary of IAC Transactions

The 80960 architecture’s interagent communications is implemented with two general types of
IAC’s, register request IAC’s and message passing IAC’s. The register request IAC’s allow a CPU
to access any BXU in the system by its logical or physical address. The message passing IAC’s
facilitate communication between multiple CPU’s and bus agents in multiprocessing and fault
tolerant system implementations. A summary of the five data fields contained ineach IAC is shown
in Table 7-10.

7-23

intel ADVANCED PROCESSOR BUS

Table 7-10: Summary of M82965 IAC Transactions

IAC Module LB IAC Internal
Fields Ident. Dest. D Type Dest.
Addresses 3 2 2 1 1 110 0
IAC Type 1 4 3 6 3 0|9 (o]
Register Request IAC’s:
CPU » BXU Reg Req'st on L-Bus IERRERERE LA e 0000 RRRRRRRROO
CPU » BXU Reg Req’st (Logical Addr) 11111111 vuuuuuat BB 0010 RRRRRRRROO
CPU » BXU Reg Req’st (Physical Addr) T pccccc+* BB 0100 RRRRRRRROO
Message IAC’s:
IAC Message IRRRERERE UUUUUUN® ' 0011 *PPPPPOO0OO
Identify Device Order 11111111 LA AR A BB 0111 LA AR AL R
CPU Private L-Bus Space 11111111 AR AR R AR ‘e 1111 (ARRRRRE R
LEGEND:
Neumonic Definition
A Access bit
B L-Bus destination (0-3)
C Component ident no. (0-31)
N Processor identifier bit
P IAC priority (0-31)
R BXU command or register
u Unit identification no.

Don’t care (0 or 1)

AP-BUS PROTOCOL

The Advances Processor Bus (AP-Bus) protocol provides a method to process transactions in an
efficient and orderly manner. Figure 7-11 presents an overview on how the AP-bus agents (BXUs)
handle transactions packets on the AP-bus. When the bus agent receives signals from an 80960MC
processor that require use of the AP-bus, the bus agent arbitrates for access to the AP-bus by using
the four bi-directional, open-drain arbitration signals (ARB,, ARB,, ARB , and ARBO). The arbi-
tration occurs during a group of bus cycles called a time-slice period.

As aresult of the arbitration, the BXUs enter a grant queue. The grant queue can hold up to four
bus requests from the bus agents. Arbitration is suspended if the grant queue contains four requests.
It resumes when there are fewer than four requests in the queue. This queue operates on a First-In
First-Out(FIFO) basis. Thus, the first request to enter the grant queue is the first to exit the grant
queue. Once the agent exits the grant queue, it gains access to the AP-bus to perform a bus transaction.

By separating bus transactions into a request packet and a reply packet, transactions can be pipelined
to maximize the bus bandwidth. After the bus agent puts a request packet on the bus and enters the
transaction into the AP-bus pipeline, it waits for the reply packet. While an agent waits for a reply,
other agents can gain access to the bus. The AP-bus protocol permits a maximum of three outstanding
requests (transactions pending) in the AP-bus pipeline. Transactions are removed from the pipeline
when the corresponding reply packet is received by the requesting agent. A new request packet can
enter the pipeline when a slot becomes available.

7-24

intal ADVANCED PROCESSOR BUS

AGENTS REQUESTING REPLY PACKETS FOR
CONTROL OF BUS OUTSTANDING TRANSACTIONS
A \

ARBITRATION REPLY ORDERING
AGENTS ASSIGNED TO

GRANT QUEUE

BUS SEQUENCING
271079-117

Figure 7-11: AP-Bus Protocol

The reply ordering process controls the order in which the reply packets are sent over the AP-bus.
The BXU’s bus sequencing control determines when the request packet is placed on the AP-bus and
when to send a reply packet. The AP-bus protocol assures that no agent is locked from access to the
bus.

Arbitration

The bus agents arbitrate among themselves to obtain access to the AP-bus. The arbitration process
uses the ARB,-ARB, signals and the Arbitration-ID register of the BXUs during a time-slice period
to place the bus agents in order in the grant queue (see Appendix A for the description of the
Arbitration-ID register). The following sections describe the details of the arbitration process and
illustrates the process with an example.

Arbitration Process

Arbitration for the AP-Bus is accomplished by using the ARB -KR_EO signals and the Arbitration-
ID register of the BXU during the time-slice period. The Kﬁﬁo signal is common to all BXUs on
the same AP-bus, the ARB, signal is common to all BXUs on the same AP-bus, and so forth. All
the BXUs on the AP-bus continuously monitor the arbitration signals.

The time-slice period consists of a variable number of clock cycles. The time-slice period begins
when the BXU’s sense that all of the ARB signals are deasserted. The time-slice period is divided
into a maximum of 16 time-step intervals to sequence the requesting agents into the grant queue.
When all the requesting agents are placed in the grant queue, the time-slice period ends.

7-25

intel ADVANCED PROCESSOR BUS

The Arbitration-ID register of the BXU specifies which time-steps the agent asserts its ARB lines
during a time-slice period. The grant queue order is established by having the bus agents arbitrate
at different time-step intervals during the time-slice period.

The Arbitration-ID register, which must be set to a unique value during the initialization process,
contains two fields: a Drive field and Count field. The Count field determines the time-step interval
in which the BXU asserts the arbitration line specified by the Drive field. For example, with a count
value of 0000, the BXU asserts the arbitration line specified by the Drive field during the first time-
step interval. For a count value of 1111, the BXU asserts the specified arbitration line during the
sixteenth time-step interval. A maximum of three agents can arbitrate in a single time-step interval,
but the agents are placed in the grant queue individually (the arbitration winner goes into the queue).

The Drive field determines which of the three low order arbitration lines(m -ARB ,) are asserted
during the time-step interval specified by the Count field. The Drive field 1nd1cates the agent’s
priority in that time-step interval: the ARB line has the highest priority, followed by ARB then
ARB For example, consider three agents w1th the same count value, the agent asserting ARB is
placed in the grant queue first, followed by the agent asserting ARB and then by the agent assertmg
ARB In this case, one agent asserted ARB for two cycles, another asserted ARB, for three cycles.
The agent that asserted ARB was placed i m the grant queue during the last cycle of the time-step
interval.

All agents that are not arbitrating during the first time-step interval, but need access to the AP-Bus,
will assert ARB Assertion of ARB indicates that additional time-step intervals are required in the
current time- shce period. ARB3 w111 remain asserted as long as any bus agent has not gained access
to the grant queue. For example, assume that the Arbitration-ID register specifies that the bus agent
asserts ARB , during the fifteenth time-step interval. This agent asserts ARB, during the first time-
step interval and keeps it asserted until the fifteenth time-step interval.

All agents requesting the AP-bus must be ready to arbitrate in the first cycle of a time-slice period
to be included in that time-slice period. Any agent that requires the AP-bus after the beginning of
the time-slice period must wait until the next time-slice period. The duration of the time-slice period
depends upon several factors: the number of agents requesting the AP-bus, the depth of the grant
queue, and the count specification in the Arbitration-ID register.

During a time-slice period, all of the BXUs are placed in proper order in the grant queue. A maximum
of three bus agents can enter the grant queue during any given time-step interval. The grant queue
contains four entries. When the grant queue is full, arbitration is automatically suspended and the
arbitration lines are held constant. In this case, the time-step interval can be stretched beyond the
normal maximum of three cycles by a full grant queue. Arbitration resumes when an agent’s request
enters a pipeline slot, creating an open slot in the grant queue.

Arbitration Example

The following arbitration example illustrates a typical sequence of events during the arbitration
process. The bus agents vie for control of the AP-bus by arbitrating during the time-slice period. As

7-26

intel ADVANCED PROCESSOR BUS

aresultof the arbitration, the agents’ bus requests are assigned to the grant queue in the order specified
by their respective Arbitration-ID registers. The agents enter the AP-Bus pipeline from the grant
queue on a first-in first-out (FIFO) basis. When all the agents have been are assigned to the grant
queue, the time-slice period ends.

The following example shows how seven different bus agents (labeled A, B, C,; D, <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>