Intel® Itanium® 2 Processor
Reference Manual

For Software Development and Optimization

May 2004

Order Number: 251110-003

THIS DOCUMENT IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,
FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR
SAMPLE.

Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or otherwise, to any
intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no
liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties
relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are
not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The Pentium, Itanium and I1A-32 architecture processors may contain design defects or errors known as errata which may cause the product to deviate
from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-
548-4725, or by visiting Intel's web site at http://www.intel.com.

Intel, Itanium, Pentium, and VTune are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other
countries.

Copyright © 2002-2004, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

2 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

intgl.

Contents

1 ADOUL thiS IMANUAL.eiieiiieiie et e e e e e e e s e er e e e e ee e e e e e enrnneeeeeeeas
1.1 OVBIVIBW ..ttt ettt e e e e ettt e et ee e e e e et abe e be e e eeaaeeeaaeennnbeaneeanaens

1.2 (610 01 (=T 4] K< TP TP TP PT TP PPTRTRRTRN

1.3 BIC=10 01T o] [0 |2 RPN

1.4 Related DOCUMENTATION.....cceiiiiieiii ittt ee e

2 Itanium® 2 Processor ENNANCEMENESoeueeeeeeeeeeeeeeeeeeeeee s seseeseses s s en s
2.1 Implemented INSEIUCLIONSovvviieiiie e

2.2 Functional Units and ISSUE RUIES............cooiiiiiiiii i

2.3 OPEration LAtENCIESueeiiiiiiiiiiiiiitiiie ettt e et e e sbaae e e e

2.4 Data OPEIALIONSveveeiiiitiiee ettt ettt e e et e s ebb e e e ne s

2.4.1 Data Speculation and the ALAT ...

A S O - Y - W A [T T]2 0= o |

2.4.3 CoNtrol SPECUIALIONevveiiieiiiiieis i

25 V1T g Y = = U o] o YA

2.6 (2] = Vol o T8 = (=T o3 1T} o AP

2.7 INStruction PrefetChing..........cooii i

2.8 A A (=Tt Ui To] TN = =

3 Functional Units and ISSUE RUIESiiiiiiiiiiicie e
3.1 EXECULION MOUEI..... .ttt e e e e e

3.2 Number and Types of Functional UNitS.............oooiiiiiiiiiiii e

3.3 Instruction Slot to Functional Unit Mapping...........ccovuviiiieiieee e eccciiiiieeee e e

3.3.1 EXecUtion WIdLh oo

3.3.2 DiISPErsal RUIESuuiiiiiiiiieic e

3.3.3 SplitIssue and Bundle TYPESccuuiiiiiiiiiiiiiiiiiiee et

4 LatenCiesS ANd BYPASSES ...ccceiiuuriiieiiiiiiieeei ittt ie e sttt ee ettt e ettt e e e st b e e e st e e n e e e e
4.1 Control and Data Speculation Penalties.ccoeeeiiiiiie e

4.2 Branch Related Latencies and Penaltiescooeiiiiiiiiiiiiieec e

4.3 Latencies for OS Related INSTUCHIONS........coiiiiiiiiiiiiieiieeee e

5 (D= e W O] o =T = 11T] o U URPPRTR
5.1 Data Speculation and the ALATuviieiiii i

5.1.1 Allocation/Replacement POlICYcccoeeeiiieiie i

5.1.2 Rules and Special CasesScccccuuriiiiiiieeee et ee e e e st aae e ae e

5.2 Speculative and Predicated LOadS/StOreSccovvieevvieiiiiiieeie e e e

5.3 FI0atiNg-POINt LOAUSooiiitiiiiiiiiiiiice ettt

5.4 Data Cache Prefetching and Load HiNtS ..o

5.4.1 Ifetch Implementationciiiiiiinie i

5.4.2 Load Temporal Locality Completers..........cc.vvvvvvriiiiiiiiniiiiiie e ee e ee e e

5.5 D= 1= B AN 1o |10 =1 o | P ERRRRR

5.6 WIItE COAIESCING ..evveeieiiieiee ettt e st e e e e ee e ennbeeeee e e

5.6.1 WC Buffer Eviction ConditioNSeeeviiieeoiiiiiiiiiiiinieie e

5.6.2 WC Buffer Flushing BEhavViorcoeiiiiiiiiiiiiiieie e

5.7 Register StaCk ENQINEooviiiiieiiiesce s

5.8 FC INSIIUCTIONS ...ttt e e e e e et eeeeeee e e s e e ennes

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

MEMOIY SUDSYSIEM ...ttt ee e e e e e e et e e e aea e e e e e e e nananes 45
6.1 Translation Lookaside BUFfers..........ccooe i 46
6.1.1 INSIIUCHON TLBS ...coiiiiiiiiieieiieti ettt e e e e e e e e e e e e e e e e bbb b e 46
(ST A B = | = N I N =2 46
6.2 Hardware Page WalKET ... e 47
6.3 CaChe SUMMATY ... et eae e e 48
6.4 First-Level INStruction Cachec.coivviiiiiii i 48
6.5 Instruction Stream BUfEEoo i 49
6.6 First-Level Data CacChecccooiiiiiiiiiiicceeeeee ettt 49
L 700 A 1 3N 0 = Yo [50
(SN S I B] (o] £ N 50
6.6.3 L1D Load and Store ConsiderationsScuceeeieeeeiriiieeeeereiieeeeeeeevennnns 51
B.6.4 LID MISSES ...ccoeiiieeieeie ettt e et e e e e e e e e e e e e e e e e e eeeeeeee e et 52
6.7 Second-Level Unified CaChe..........ouuuiiiiiiiii e 53
6.7.1 LID REQUESES IO L2 ..uuuiiiiiiiiiiie e 54
T I © 7.4 © 54
B.7.3 L2 CANCEIS ...coveeeiieeeeee e s 56
6.7.4 L2 RECITCUIALIE ...t e 57
(I ST |V 1= T ¢ g T VA @ o =1 41T 58
6.7.6 L2 Instruction Prefetch FIFOciiiiiiiii e 58
6.7.7 L2 Load and Store ConsiderationsS...........cccceeeeeeeeiiiieeeeeeiieiirc e 59
6.8 System BUS/L3 INTErACHONSvvviiiiiieiiiiei et 59
6.9 Third-Level Unified CaChE........ccooviiieiiieeeee e e 60
B6.10 SYSEEIM BUS ...t 61
Branch Instructions and Branch PrediCtioncceviiiiiieeiiiccceeeee e 63
7.1 Branch Prediction HiNtS......ooooiii et ee e 64
7.2 INAIrECE BIANCINES ...t e e e eeeeeaaes 64
7.3 Perfect LOOP PrediCtion ..o e e e e e e ae e e e e ee e e aaennees 65
INSErUCION PrefetChiNg e e e e e e e 67
8.1 Streaming PrefetChing..........eeeeeieiccee 67
8.2 o LT S 1= =3 (o T T 68
8.3 PrefetCh FIUSh HINTS ..o e e e e ee s 69
8.4 B (=l oL 5] 1 (0110 o TR 69
Optimizing for the IANIUM® 2 PIOCESSON ...t 71
9.1 HINtS fOr SChEAUIING ...ceeeiiiiiiie e 71
9.2 Optimal Use Of eoee e 71
9.3 Data StrEAMING ...ttt e ettt e e e e e e e e e e e eaeae b aeeeeaaeaaens 72
9.3.1 Floating-Point Data Streamscccccoveiiiiiii i 72
9.3.2 Integer Data SIrEaMScovi i 73
9.3.3 Store Data StreamMS........oceiieiiiii e e e 73
9.4 Control and Data SPeCUlAtioNoooiuiiiiiiiii e 74
9.5 Known L2 Miss Bundle Placement..........ccoooveeiiiiiiie e 74
9.6 Avoid Known L2 Cancel and Recirculate ConditionScccvveeeiiiiiiiiiieeeeeeenn, 74
9.7 INSrUCtioN BUNAIINGeeviiiiiiiiicccs e e 74
9.8 BIranCRES ..o e 75
9.8.1 Single Cycle BranChes.........ccccevuiiieiiiii et 75
9.8.2 Perfect LOOP PrediCtionocuuiiiiiiiiee e 75
9.8.3 BranCh TarQetS.....cceiii ettt ea e 75

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

11

12

Performance MONITOMINGi it ee e e e e e s bbb e e e eas 77
020 R 10 To [8 o 1 o o FOR PP TP OPOPPPPPRPN 77
10.2 Performance Monitor Programming MOdelS...........coevviiiiiiiiiieeiree e 77
10.2.1 Workload CharaCterizationcueeeeeiiiciiiieeiieeee e s e eesseneeereee e e e 78
10.2.2 PrOFilING ceeeeeiieieie e 81
10.2.3 Event QUalificationcouviiiiiiiiiiciiiie e 83
10.2.4 REFEIENCESetiiiieiieei et e e 88
10.3 Performance MONItOr STALEccoiiiiiiiiiiiiiiiie e 88
10.3.1 Performance Monitor Control and Accessibility........ccccccovvviiiiiiienennnn. 91
10.3.2 Performance Counter REQISLErS.......ccuuuiiiiiiiiie e 92
10.3.3 Performance Monitor Overflow Status Registers (PMCO0,1,2,3)............. 94
10.3.4 Opcode Match Check (PMCB8,9,15)cooiiiiiiiiiiiiiiieee e 94
10.3.5 Instruction Address Range MatChingcccccoovveeiiiiiiiiiiiiicc e, 97
10.3.6 Data Address Range Matching (PMC13).......ccccoeeiiiiiiiiiiieeeeeeeeieene 99
10.3.7 Event Address Registers (PMC10,11/PMD0,1,2,3,17) cvvvevvveeeeeeeiannnns 100
10.3.8 Data EAR (PMC11, PMD2,3,17) .cceeeeiiicciiiieineeeee e e e e seiieeeenaae e e e 103
10.3.9 Branch Trace BUferooiiiiiiiiiiiiee e 107
10.3. 10 INEEITUPTES ..ottt e e e e e e e e e e e e e e e aaeeeeeeeeneeaeennnes 112
10.3.11 Processor Reset, PAL Calls, and Low Power State...........ccccccceeeeeenn. 112
Performance MONITOr EVENTS........ooiiiiieee ettt e e e e e e 115
5 R 1 1 0 To [8 o 1 o o FOR PP UUPTP TP 115
11.2 Categorization Of EVENTSiiiiii et s e e e e e e e aeaaaaaeeaaees 115
11.3 BASIC EVENIS...ciiiiiiiiiie e 116
11.4 Instruction DiSpersal EVENTS........cooiiiiiiiiiiie e 117
11.5 Instruction EXECULION EVENTScuuiiiiiiiieiiisiiiieeiie et e e e e e e e 117
N G S = 1| I Y= o | S PEPPPRPR 118
11.7 BranCh EVENScouiiiiiiiii ettt ettt e et e e e e e e e e s e nnnnnees 119
0 T |V =T 0 0 To T YA o 11T = U) RPN 120
11.8.1 L1 Instruction Cache and Prefetch EVENtS..........cccccevvviiiiiniiiiiieennnis 122
11.8.2 L1 Data Cache EVENLScccoveiiiiiiiiiiee et 123
11.8.3 L2 Unified Cache EVENLSc.uueuiiiiiiieeeiie et 125
11.8.4 L3 CAChE EVENLS ..ccoi ittt a e 129
11.9 SYSIEM EVENTS ...ttt 130
L1100 TLB EVENES ...uiiiiiiiiiiiie sttt sttt et e e et ee e e e e e et e e e e ennnee s 130
1111 SYStemM BUS EVENLS ...oeuiii et 132
11,12 RSE EVENES .ottt e e e e e e e e e e e aeaaeeeeeeaees 135
11.13 Performance Monitors Ordered by Event Codeccoocviieeiiiiiiee i 136
11.14 Performance Monitor EVENt LiSt.........cooiiiiiiiiiiiiiiiiiee e 142
Model-Specific and Optional FEATUIEScovi e 191
12,1 MemOry AIHDULESoeiiiiieiiii e 191
12.2 Purge Behavior Of PIC.E ... e 191
12.3 Data Debug Break............uuiuiiiiiiiiis e 191
12,4 CPUID VAIUESeeeiiii ittt ettt sttt e ba e e nneeee s 191
ltanium® 2 Processor PIPEIING .o 193
Al (0] £ 0= 1] = 193
A2 PIPEIINE STAQGES ..oii i e 193
A.2.1 IPG STAGE ..ot e 193
A.2.2 ROT STAGE ... ittt a e s a e ennnee s 194
A.2.3 EXP STAGE ...ttt e 194

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 5

Figures

A3
A4

6-1
10-1
10-2
10-3
10-4
10-5
10-6
10-7
10-8
10-9
10-10
10-11
10-12
10-13

10-14
10-15
10-16
10-17
10-18
10-19
10-20
10-21
10-22
10-23
10-24
10-25
11-1
A-1

A.2.4 REN STAGE ..ottt sttt sttt ae e e enraee s 194
A25 REG STAQE .ot iiiiiii ittt 194
F N T = S - To [J PRSP 194
F N A B | o S - To [S UUPRR PR 194
A.2.8 WRB STAJE ..ooieiiiiiiiitt et 194
Instruction BUFfEr (IB) ...t 195
MICTO-PIPEIINES ...ttt e e e e e e e e aaaeees 195
A4l FPU MICIO-PIPEINE ... 195
A.4.2 L1ID MiCro-PipeliNe.....cccooiiiiii i e 195
A43 L2 MICro-Pipelineccoeeiiiiiiiiiie e 195
Three Level Cache Hierarchy of the [tanium® 2 ProCeSSOrovvevvveeeeereenenn, 45
Time-Based SampPliNgcccciiiiiiriie e e e 78
ltanium® Processor Family Cycle ACCOUNtING...........c.ooeveveeeeeeierereeiseseeseseneses 80
Event Histogram by Program COUNTETeiiiiiiiiiiiniiiiiee e 81
ltanium® 2 Processor Event Qualification ..., 84
Instruction Tagging Mechanism in the Itanium® 2 Processorcovveevcevveeennn. 85
SiNGlEe ProCeSS MONITOKcovveiiieiiieieiiise e ss e s e e e e e e e e e e e e ee e e e ereaae e e ereeannar s 87
MUILIPIE ProCeSS MONITONiiiiii ittt ie e ee sttt ee e e e e e e s s et areeeaeee e e s e ennnnes 87
SYSLEM Wi MONITOT ...cooiiiiiiii it 88
ltanium® 2 Processor Performance Monitor Register Modecccoeverennne. 90
Processor Status Register (PSR) Fields for Performance Monitoring 91
ltanium® 2 Processor Generic PMC Registers (PMC4,5,6,7) c..coveiieiiiieeieeneeeen, 92
ltanium® 2 Processor Generic PMD Registers (PMD4,5,6,7) ..coveeveviiieeeeeieeeen, 93
ltanium® 2 Processor Performance Monitor Overflow Status Registers

(PMC0,1,2,3) c.eiie ettt ettt ettt s sttt e e et e e e et ae e et ae e e e e e e ennte e e e e ennnns 94
Opcode Match Registers (PMC8,9)uiiiiiiiiiiiiiiiiiiiieeit e 95
Opcode Match Configuration Register (PMC15).........ccovvviiviiveieiiiiic e, 95
Instruction Address Range Configuration Register (PMC14).......ccccceveeeevieneenennn. 97
Memory Pipeline Event Constraints Configuration Register (PMC13).............. 100
Instruction Event Address Configuration Register (PMCL10)ccccveeeiviinennnn. 101
Instruction Event Address Register Format (PMDO,1)cccouvveeiiiiiieeeniinnen. 101
Data Event Address Configuration Register (PMC11)ccoevivivviivevievnnnnnn. 103
Data Event Address Register Format (PMD2,3,17)ccooeeiiiieiiiiiiieeieiieeiieeieeins 104
Branch Trace Buffer Configuration Register (PMC12)..........cocooevviviviiviiveieeiens 108
Branch Trace Buffer Register Format (PMD8-15, where PMC5.ds == 0)........ 109
Branch Trace Buffer Register Format (PMD8-15, where PMC,.ds == 1)........ 109
Branch Trace Buffer Index Register Format (PMD16)cccccvveeiiiiieienninenn. 111
Event Monitors in the Itanium® 2 Processor Memory Hierarchy....................... 121
Core Pipeline of the ItANIUM® 2 PrOCESSON.......veveeeeeeeeeeeeeeeeee oo ee e, 193

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

11
2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
3-1
3-2
3-3
3-4
4-1
4-2
4-3
4-4
5-1
5-2
5-3
5-4
5-5
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
7-1
8-1
8-2
10-1

10-2
10-3
10-4
10-5

10-6
10-7
10-8

10-9

10-10
10-11
10-12
10-13

Definition TabIe ..o 13
Itanium® 2/ Itanium Processors Operation Latenciesccccccecvcieviiininineeneeenenn. 19
L1l CaChe DiffErENCES......c.vviieii ittt 20
L1D Cache DiffEerENCES ...cuvviieiee ettt ar e e e e e e e 21
L2 Unified Cache DIfferenCes. ... 21
L3 CaChe DiffErENCESeeeiiiiiiiee ettt e e 21
INStruction TLB DifferEnNCeSuuiiiiiiiiiiiie e 22
Data TLB DIffEr&NCEScuvieiiiiiee e 22
Branch Prediction Latencies (in CYCIES)uuvvveeeiiiiiiciieee e 23
A-Type INStruction Port Mappingcuueeeiiieeieeeieiie e 27
I-Type INStruction POrt Mappingueeueeireeieeai e e e e e 27
M-Type INStruction Port Mappingccccveueeeiieeieaeie et 27
Dual 1ISSUE BUNAIE TYPES ...ttt e e e s e e e e e e e e e e e ae e e e aeeaeaanenees 30
Speculative Load ReCovery LateNCIESuuruicirieiiieeeeeieeieeeeeee e e 33
Branch Prediction LateNCIeS..........uvii i 33
Execution with Bypass Latency SUMMAIYcoocueeiiiiiiieeiniiiieeeseee e 34
Latencies for OS Related INStrUCHONSuieiiiiiiaiiiiee e 35
ALAT ENtry COMPATISON SIZESuueiiiiiiiiieaeaii ittt ee e e et e e e e e e e eaanes 37
Early and Late Deferral ..o 39
Control Speculation PENaltIESuuvuuriiiiie i 39
Processor Cache HiNtS.........oooiiiiiiiiiiiiie e e 41
Itanium® 2 Processor WCB EViction CONGItioNSc.oveerueeereeeereeeeeeeereens 43
Itanium® 2 Processor Virtual MEMOrY SUPPOI ...t 45
Major Features of Instruction and Data TLBS.........ccccueeeiiiiiiiiiiieeeeeeee 46
Best Case HPW Penalties.........cooi i 47
L= Tod 0TI 00 12 > oY 48
Store to Load Forwarding Penalties............uveeveieieiiiiiciiiiiecee e 52
L2 ISSUE PriOMIES eeeeieeieeie e ettt ettt e e e e e e et eeeaeeeaeeeas 59
Effective Release OPerations.............uuueiiiiiieiiiiaii e e e 59
System Bus/L3 Requests and Final L2 State............cceevveeeiiiiiiiiniiiieiieeeeeeen 60
Branch Prediction LatenCi€S..........c.uuiiiiiiiiiie et 63
Summary of Streaming Prefetch ACHONS ... 68
Prefetch MeChaniSMS......ovuuiiii e e 68
Average Latency per Request and Requests per Cycle

Calculation EXamPIE..........uuueiniiiiieis e ei e s 79
Itanium® 2 Processor EARs and Branch Trace BUFfer...........c.cccocovovecveevveeennnn. 82
Itanium® 2 Processor Event QUAlification MOESc.oeeveeeeveeeeeeereeeeree e 86
Itanium® 2 Processor Performance Monitor Register Set..............cocoovveverernne. 89
Performance Monitor PMC Register Control Fields

(PMCA4,5,6,7,0,11,12) c.eeuiiiiiiiiieeeeieeie ettt sttt e st e e e st e e e s nenae e e e 91
Itanium® 2 Processor Generic PMC Register Fields (PMC4,5,6,7)ccccvvveenees 92
Itanium® 2 Processor Generic PMD Register FieldS........ccccccv v, 93
Itanium® 2 Processor Performance Monitor Overflow Register Fields (

[Y T 0 20) PR 94
Opcode Match Register Fields (PMCB8,9).......ccccoiiiiiiiiiiiieeeeeee e 95
Opcode Match Configuration Register Fields (PMC15)cccccccovvevivinviiienneenenn, 96
Itanium® 2 Processor Instruction Address Range Check by Instruction Set....... 97
Instruction Address Range Configuration Register Fields (PMC14) 98
Memory Pipeline Event Constraints Fields (PMC13)ccccceeiviiiiienniiiieeeeeee, 99

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 7

10-14
10-15
10-16
10-17
10-18
10-19
10-20

10-21
10-22
10-23
10-24
10-25
10-26
10-27
10-28

111

11-2

11-3

11-4

11-5

11-6

11-7

11-8

11-9

11-10
11-11
11-12
11-13
11-14
11-15
11-16
11-17
11-18
11-19
11-20
11-21
11-22
11-23
11-24
11-25
11-26
11-28
11-29
11-30
11-31
11-32
11-33
11-34
11-35
11-36

Instruction Event Address Configuration Register Fields (PMC10) 101
Instruction EAR (PMC10) umask Field in Cache Mode (PMC10.ct="1Xx) 102
Instruction EAR (PMDQO,1) in Cache Mode (PMC10.Ct="1X)ccceevvevrrrrrrennns 102
Instruction EAR (PMC10) umask Field in TLB Mode (PMC10.ct=00)............... 102
Instruction EAR (PMDO,1) in TLB Mode (PMC210.Ct="00)evveeriurrreeeiiinnnn. 103
Data Event Address Configuration Register Fields (PMC11)ccccevieeeeeennn. 103
Data EAR (PMC11) Umask Fields in Data Cache Mode

(Y Lot e I 4 T Yo [T 00) PR 104
PMD2,3,17 Fields in Data Cache Load Miss Mode (PMC11.mode=00)........... 105
Data EAR (PMC11) Umask Field in TLB Mode (PMC10.ct=01)c.ceeeenneen. 106
PMD2,3,17 Fields in TLB Miss Mode (PMC11.mode='01)........ccccccceveeeeerrrannnns 106
PMD2,3,17 Fields in ALAT Miss Mode (PMC11.mode="1X)ccccceerreeeerrriennns 107
Branch Trace Buffer Configuration Register Fields (PMC12)cccccvvvvvnvnnnen. 108
Branch Trace Buffer Register Fields (PMD8-15)cccooviviiiviiiiieiieeeeeeeeisiinens 110
Branch Trace Buffer Index Register Fields (PMD16).........ccccoovvveeeeiiiiieeeeennen, 111
Information Returned by PAL_PERF_MON_INFO for the ltanium® 2

[(0 Tt 1SS o] 113
Performance Monitors for BasiC EVENES..........cccoovieiiiiiiiiii e 116
Derived Monitors for BasiC EVENTSoovvvvviviiiiiiiiiiicie e eeeeeeeeeeeeeeeeveens 116
Performance Monitors for Instruction Dispersal Events...........ccccceeiiiiiieeennee. 117
Performance Monitors for Instruction Execution Eventscccccovvvieeeeeennnnnn. 118
Derived Monitors for Instruction Execution EVENntsc.coocvvvvieeieiviiiiieeeeeeene, 118
Performance Monitors for Stall EVENtS............ieiiiiiiieiiien e 119
Performance Monitors for Branch EVENLScccocovviiiiiiii i, 120
Performance Monitors for L1 Instruction Cache and Prefetch Events. 122
Derived Monitors for L1 Instruction Cache and Prefetch Events 123
Performance Monitors for L1 Data Cache Events........ccccoooovvvvieeiiieiiiiiiieeeeee, 123
Performance Monitors for L1D Cache Set 0cooevevviiiiieiiiiiiiiiieeeeeeeee e, 124
Performance Monitors for L1D Cache Set 1ccooovovviiiieiiiiiiiiiiiieeeeeeee e, 124
Performance Monitors for L1D Cache Set 2cooovevvviiieiiiiiiiiie e, 124
Performance Monitors for L1D Cache Set 3ccccoeeeiiiiieieiiiiiiieieeieeeeeeeeeeeeeeeieans 124
Performance Monitors for L1D Cache St 4ooooevvvevieeiiiiiiieiie e 125
Performance Monitors for L2 Unified Cache Events............ccccceveeeiviiiieeeeeneenen, 125
Derived Monitors for L2 Unified Cache EVentSccoeeeiiiiiiiiiieieiecieeeeeeeee, 126
Performance Monitors for L2 Cache Set O........cooeeeviiiiiiiiiiiiiiieeeeeeeeee e, 127
Performance Monitors for L2 Cache Set L......cccoooveiiiiiiiiiiiiiiiin e, 127
Performance Monitors for L2 Cache Set 2........cviiiiiieiiiiiiieieieeeeeeeeeeeeeeeeeeieand 127
Performance Monitors for L2 Cache Set 3........cciviiiiiiieiiiiiieeieeeeeeeeeeeeeeeeeead 128
Performance Monitors for L2 Cache Set 4........coooeeveiiieiiiiiiiiiieeeeeeeee e, 128
Performance Monitors for L2 Cache Set5......cccoveviiiiiiieiiiiiiiiie e, 128
Performance Monitors for L3 Unified Cache Events...........cccccceeeeeiviiiiiiieeeenen, 129
Derived Monitors for L3 Unified Cache EventScccooeeveiiiiiiiniicieciee e, 129
Performance Monitors for System EVENtS..........cccccviviiiiriiee e ccecceieeeee e 130
Performance Monitors for TLB EVENTScocuuveiieiiieiiee e e e 131
Derived Monitors for TLB EVENLSvuiiiiiieiiieie et 131
Performance Monitors for System BuS EVENLScoooiiiiiiiiiiiiiiiieieeeees 132
Derived Monitors for System BusS EVENLS...........uvuiiiiiiiii e 133
Conventions for System Bus TranSactionsccceeeeeviieeeievev e 135
Bus Events by SNO0P RESPONSE.....cuiiiiieeiiiiiiciiiiiieeereeeeee s s eesieraereee s eeeeeesanees 135
Performance Monitors for RSE EVENLScovivveii i 135
Derived Monitors for RSE EVENLSooiiiiiiiiiiiceeeeeeee e 136
All Performance Monitors Ordered by Code ..., 136

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

11-37
11-38
11-39
11-40
11-41
11-42
11-43
11-44
11-45
11-46
11-47
11-48
11-49
11-50
11-51
11-52
11-53
11-54
11-55
11-56
11-57
11-58
11-59
11-60
11-61
11-62
11-63
11-64
11-65
11-66
11-67
11-68
11-69
11-70
11-71
11-72
11-73
11-74
11-75
11-76
11-77
11-78
11-79
11-80
11-81
11-82
11-83
11-84
11-85
11-86
11-87

Unit Masks for ALAT_CAPACITY_MISS.....ccooiiieiiieee e
Unit Masks for BACK_END_BUBBLEcccceiiiiiiiiie e
Unit Masks for BE_BR_MISPREDICT_DETAIL......ccccceviviieeeiiiieie e
Unit Masks for BE_EXE_BUBBLEccoivviiiiiiiiiiiiieeeece e eee e
Unit Masks for BE_FLUSH_BUBBLE...........cccoiiiiiiiiiiieeiee e
Unit Masks for BE_L1D _FPU_BUBBLE..........ccccccciiiiiiiieiiie e
Unit Masks for BE_LOST _BW_DUE_TO_FEccccccceiiiiiieeiiie e
Unit Masks for BE_RSE_BUBBLEcccccociiiiiiiiieee e
Unit Masks for BR_MISPRED_DETAIL ...ccccoiiiiiiiiiiiieeeeiiiie e
Unit Masks for BR_MISPREDICT _DETAILZ........ccoiviiiiiiiiiiieeee e evivenee e
Unit Masks for BR_PATH_PRED........c..uuuiiiiiiiieii e
Unit Masks for BR_PATH _PRED2..........uouuiiiiiiicie e,
UNit Masks fOr BUS _ALL.......ouuiiiiiiiiiicies et
Unit Masks for BUS_BACKSNP_REQccciiiiiiiiiiiee st
Unit Masks fOr BUS 1O ..o e e e e e e e e e e e e ae e e e eaeaaeananes
Unit Masks for BUS_LOCKcouuiiiiiiiiiie ettt
Unit Masks for BUS_MEMORYcooiiiiiiiiiii et
Unit Masks for BUS_MEM_READ.........cooiiiiiiaiiieeieeeee e
Unit Masks for BUS _RD_DATA ...t es e ee e aaean
Unit Masks for BUS_RD 1Ocooiiiiiiieieees e e e ee e ae e
Unit Masks for BUS_RD_PRTL....uuuuuuiiiiisieieie s eeeeee e
Unit Masks for BUS_SNOOPS.........coooiiiiiiiieee et
Unit Masks for BUS_SNOOPS HITM......cuiiiiiiiiiiiiiiiiiieieeee e
Unit Masks for BUS_SNOOP_STALL _CYCLES.......ccccooiieiiieeeeiiiieieeee e
Unit Masks for BUS_WR_WBoouiiiiiiiiiiiiiis et e e ee e ae e e e e e eae e aaeananns
Unit Masks for ENCBR_MISPRED_DETAIL......cccoiiiiiiiiiiiiiee e
Unit Masks for EXTERN_DP_PINS_0_TO_3 ..o
Unit Masks for EXTERN_DP_PINS 4 TO 5 ..o e e
Unit Masks for FE_BUBBLE............uuuiiiiiieeeiiieiiiiiiee et ean e ae e e e eees
Unit Masks for FE_LOST _BWt e e
Unit Masks for IA64_INST_RETIREDcccoiiiiiiieiiiiie et
Unit Masks for IA64_TAGGED_INST_RETIRED..........ccccuveeiiiiie e
Unit Masks for IDEAL_BE_LOST_BW_DUE_TO_FE......cccccccoiiiieiiiiiieieeee,
Unit Masks for INST_CHKA_LDC_ALAT ...t
Unit Masks for INST_FAILED _CHKA _LDC_ALAT ..o
Unit Masks for INST_FAILED CHKS_RETIRED........cccccciiiiiiiiiiiieeieeiee e
Unit Masks for ITLB_MISSES _FETCHccccciiiiiiiie e
Unit Masks for LID_READ_MISSESccooiiiiiieiiiee e
Unit Masks for LLII_ PREFETCH_STALLcccoiiiiiiiiee e
Unit Masks for L2_BAD_LINES _SELECTED........cccccciiviiieee e ieciieiiieeee e
Unit Masks for L2_BYPASSt e e
Unit Masks for L2_DATA_REFERENCES ...
Unit Masks for L2 FILLB FULLoouiiviiiiiiic i s e e ee e eee e
Unit Masks for L2 FORCE_RECIRCccoiiiiiiiiiiiiiie e
Unit Masks for L2_GOT_RECIRC_IFETCH......ccooiiiiiiiiiiiiie e
Unit Masks for L2_IFET_CANCELS.........coooii e
Unit Masks for L2_ISSUED_RECIRC_IFETCHcccciieeiiiiiiiiiiiireeee e
Unit Masks for L2_L3ACCESS CANCELccciiiiiiiiiiiiiiieeee e
Unit Masks for L2 OPS _ISSUEDcuuiuiiiiiiiiii i
Unit Masks for L2_OZDB_FULL.......ccccuiiiiiiiiie e
Unit Masks for L2_OZQ_CANCELSO..........uuuuiiiiiiieie et ee e eeeeee e

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

10

11-88
11-89
11-90
11-91
11-92
11-93
11-94
11-95
11-96
11-97
11-98
12-1
12-2
12-3
12-4
A-1

A-3

Unit Masks for L2_OZQ_CANGCELSLcocciiiiieiieeiee e 180
Unit Masks for L2_OZQ_CANCELS2ccviiiiiiiieeee et 181
Unit Masks for L2 OZQ FULL.........uuuuuiiiiiiiiis i 182
Unit Masks for L2_STORE_HIT_SHAREDcccccciviiiiiiene e 183
Unit Masks for L2_VICTIMB_FULLuuiiiiiiiiiiiiiiie e 183
Unit Masks for L3 READSooiieeiiee st r et 184
Unit Masks for L3 WRITEScoooiiiieec s e e e e e ee e e eaeens 185
Unit Masks for MEM_READ_CURRENTccoiiiiiiiiiiiee e 186
Unit Masks for RSE_REFERENCES_RETIREDcccccceviieiiiiinneccieeeien 188
Unit Masks for SYLL_NOT_DISPERSEDcccoocciiiiiiiiiiie e 189
Unit Masks for SYLL_OVERCOUNTouiiiiiiiiiiiiiiieiee e e e 190
ltanium® 2 Processor CPUID Register 3 Values.......cccoviiiiiiiiiiiiiiiiee e 192
ltanium® 2 Processor Family and Model Values.........ccccoooiiiiiiiiiieiieeeens 192
ltanium® 2 Processor CPUID Register 4 Values........cccoeeeveieieiiiieeeeieeieeeeeeees 192
Encoding of IA-32 CPUID Cache Return Valuesccccooeeeevieiiiieiiiiieeiieeieeieas 192
FPU PIPEIINE ...eeiiiiie ettt et e e e e 195
LAD MICIO-PIPEIINEeeiiiiee et 195
L2 MICIO-PIPEIINE ...ttt e e e e e s 195

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

intgl.

Revision History

I?\livririi)g? Description Date
-001 Public release of the document. June 2002
-002 Refresh to incorporate new Itanium® 2 processor with up to 6M L3 cache | April 2003

models.
-003 Reféelsh to incorporate new Itanium® 2 processor with up to 9M L3 cache | May 2004
models.

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

11

12

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

intel.

About this Manual 1

1.1

Overview

The Intel® Itanium® 2 processor is the second implementation of the Intel® Itanium® architecture.
There have now been three generations of the Itanium 2 processor, which can be identified by their
unique CPUID model values. For simplicity of documentation, throughout this document we will
group all processors of like model together. Table 1-1 lists out the varieties of the Itanium 2
processor that are available along with their grouping.

Table 1-1. Definition Table

Processor Abbreviation

Intel® Itanium® 2 Processor 900 MHz with 1.5 MB L3 Cache

0 — - Itanium 2 Processor (up to 3 MB L3 cache)
Intel™ Itanium™ 2 Processor 1.0 GHz with 3 MB L3 Cache

Low Voltage Intel® Itanium® 2 Processor 1.0 GHz with 1.5 MB
L3 Cache

Intel® Itanium® 2 Processor 1.40 GHz with 1.5 MB L3 Cache

Intel® Itanium® 2 Processor 1.40 GHz with 3 MB L3 Cache

Intel® Itanium® 2 Processor 1.60 GHz with 3 MB L3 Cache Itanium 2 Processor (up to 6 MB L3 cache)

Intel® Itanium® 2 Processor 1.30 GHz with 3 MB L3 Cache

Intel® Itanium® 2 Processor 1.40 GHz with 4 MB L3 Cache

Intel® Itanium® 2 Processor 1.50 GHz with 6 MB L3 Cache

Low Voltage Intel® Itanium® 2 Processor 1.20 GHz with 3 MB
L3 Cache

Intel® Itanium® 2 Processor 1.60 GHz with 3 MB L3 Cache

Intel® Itanium® 2 Processor 1.60 GHz with 3 MB L3 Cache for _
533MHz DP Platforms Itanium 2 Processor (up to 9 MB L3 cache)

Intel® Itanium® 2 Processor 1.50 GHz with 4 MB L3 Cache

Intel® Itanium® 2 Processor 1.60 GHz with 6 MB L3 Cache

Intel® Itanium® 2 Processor 1.70 GHz with 9 MB L3 Cache

The Itanium 2 processors with up to 9 MB L3 cache will have varieties capable of running with
system bus speeds of 400 MHz, 533 MHz, and 667 MHz. For complete details on the current
offerings please refer to the datasheets at http://devel oper.intel .com/design/Itanium?2/.

This document describes how the Itanium 2 processor implements features of the Itanium
architecture, aswell as specific features of the Itanium 2 processor that are relevant to performance
tuning, compilation, and assembler programming. Unless otherwise stated, all of the restrictions,
rules, sizes, and capacities described in this document apply specifically to the Itanium 2 processor
and may not apply to other implementations of the Itanium architecture.

General understanding of processor components and explicit familiarity with Itanium instructions
are assumed. This document is not intended to be used as an architectural reference for the ltanium
architecture. For more information on the Itanium architecture, consult the Intel® Itanium®
Architecture Software Developer’s Manual.

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 13

About this Manual In'te|®

1.2

1.3

14

Contents

Chapter 2, “Itani um® 2 Processor Enhancements” compares the Itanium processor and the
Itanium 2 processor, highlighting some of the considerations that should be taken when optimizing
for the Itanium 2 processor.

Chapter 3, “Functional Units and Issue Rules’ describes the number and type of available
functional units, instruction issue rules, and heuristics for efficient instruction scheduling based
upon machine resources and issue rules.

Chapter 4, “Latencies and Bypasses’ describes |atencies and bypasses for execution of the different
instruction types on the Itanium 2 processor.

Chapter 5, “Data Operations’ describes considerations for data operations such as speculative or
predicated loads or stores, floating-point loads, and prefetches. Data alignment considerations are
also discussed.

Chapter 6, “Memory Subsystem” provides an overview of the memory subsystem hierarchy on the
Itanium 2 processor.

Chapter 7, “Branch Instructions and Branch Prediction” describes how hints for branch prediction
and instruction prefetch are implemented on the Itanium 2 processor.

Chapter 8, “Instruction Prefetching” describes how prefetching is implemented on the Itanium 2
processor.

Chapter 9, “Optimizing for the Itanium® 2 Processor” is asummary that draws conclusions from
important points noted in earlier chapters.

Chapter 10, “Performance Monitoring” discusses performance monitoring registers and
implementations specific to the Itanium 2 processor.

Chapter 11, “ Performance Monitor Events’ summarizes the Itanium 2 processor events and
describes how to compute commonly used performance metrics.

Chapter 12, “Model-Specific and Optional Features’ discusses |tanium 2 processor model-specific
behavior, such as executing CPUID instructions.

Terminology

The following definitions are for terms that will be used throughout this document:

Dispersal The process of mapping instructions within bundles to
functional units.

Bundlerotation The process of bringing new bundles into the two-bundle
issue window.

Split issue Instruction execution when an instruction does not issue at

the same time as the instruction immediately before it.

Advanced load addresstable (ALAT) The ALAT holdsthe state necessary for advanced load and
check operations.

Translation lookaside buffer (TLB) The TLB holds virtual to physical mappings.

Virtual hash pagetable (VHPT) The VHPT isan extension of the TLB hierarchy, which
residesinthevirtual memory space, isdesigned to enhance
virtual address trandlation performance.

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

inte|® About this Manual

Hardware page walker (HPW) The HPW isthe third level of addresstrandation. Itisan
engine that performs page look-ups from the VHPT and
seeks opportunitiesto insert translationsinto the processor

TLBs.
Register stack engine (RSE) The RSE moves registers between the register stack and
the backing store in memory.
Event addressregisters (EARS) The EARsrecordtheinstruction and dataaddresses of data
cache misses.
1.4 Related Documentation

The reader of this document should also be familiar with the material and concepts presented in the
following documents:

e Intel® Itanium® Architecture Software Devel oper’s Manual, Volume 1. Application
Architecture

* Intel® Itanium® Architecture Software Developer's Manual, Volume 2: System Architecture

* Intel® Itanium® Architecture Software Devel oper’s Manual, Volume 3: Instruction Set
Reference

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 15

About this Manual

16

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

intel.

Itanium® 2 Processor Enhancements 2

2.1

2.2

2.3

This chapter outlines the major differences between the Itanium 2 processor and the Itanium
processor. Thisis not an exhaustive list, so areference to more details accompanies each topic.

Implemented Instructions

The Itanium 2 processor implements the 64-bit long branch instruction (br |) instruction directly
in hardware. Thisinstruction was not implemented in the Itanium processor. It allows programmers
to direct abranch to an address that uses al 64 address hits. Details on the br | instruction can be
found in Volume 2 of the Intel® Itanium® Architecture Software Developer’s Manual. There are
some branch prediction performance implications associated with the br | instruction which are
noted in Chapter 7, “Branch Instructions and Branch Prediction.”

Functional Units and Issue Rules

In general, the Itanium 2 processor has more functional units than the Itanium processor.

* |n particular, the Itanium 2 processor has six arithmetic logic units (ALUS) to perform
arithmetic operations, compares, most multimediainstructions, etc. The Itanium processor can
only issue four of these types of instructions per cycle.

¢ The Itanium 2 processor has four memory ports allowing two integer |oads and two integer
stores per cycle. The Itanium processor has two memory ports.

¢ The Itanium 2 processor can issue one SIMD floating-point (FP) instruction per cycle. The
I tanium processor can issue two SIMD FP instructions per cycle.

¢ Under certain conditions, the Itanium 2 processor can issue |-type instructions to memory
functional units, thusincreasing the number of template pair types which can be issued in one
cycle. For the Itanium processor, I-type instructions will only be issued to integer functional
units.

¢ The Itanium 2 processor scoreboards multi-cycle operations such asfirst-level instruction
cache (L1D) misses, multimedia, and floating-point operations.

This means that when an integer operation uses the result of a multimedia operation and the
integer operation is not scheduled to cover the latency, the dependent instruction group will
wait until the multimedia datais available.

A predicated off operation, with a use of a scoreboarded operand, will stall the issue group for
one cycle if the predicate was generated in the previous cycle. A predicated off instruction
with predicates generated two or more cycles earlier will not incur pipeline stalls even when
operands are scoreboarded.

Operation Latencies

On the Itanium 2 processor, most latencies are the same or shorter than on the Itanium processor
with afew exceptions, i.e., memory latencies are shorter, floating-point latencies are shorter. A few
more bypasses exist which remove some asymmetries. Table 2-1, “Itanium® 2/ |tanium Processors

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 17

ltanium® 2 Processor Enhancements |nte|®

2.4

24.1

24.2

18

Operation Latencies” shows latencies for both the Itanium 2 processor and the Itanium processor.
The areas of difference are indicated by non-shaded boxes. The two different latency numbers are
separated by aforward-slash or */'. When reading from left to right, the first latency humber
corresponds to the Itanium 2 processor and the second number corresponds to the Itanium
processor.

Data Operations

Data Speculation and the ALAT

The Itanium 2 processor advanced load addresstable (ALAT) isfully associative while the Itanium
processor ALAT is two-way associative.

Onthe Itanium processor, al d. ¢ which missesthe ALAT causes a10-cycle pipeline flush. On the
Itanium 2 processor, the penalty is 8 cycles.

On the Itanium processor, if achk. a, chk. s, or f chkf fails, an operating system (OS) handler
will be invoked through atrap handler to steer execution to the recovery code at the location
specified inthetarget field of thechk. a/ chk. s/ f chkf instruction. On the Itanium 2 processor,
hardware will usually perform the resteer without operating system intervention. This reduces the
resteer cost from approximately 200 cycles to 18 cycles. If any of the following conditions are not
met, the Itanium 2 processor will trap to the OSto servicethe chk. a/ chk. s/ f chkf:

psr.ic=1
psr.it =1
psr.ss=0
psr.tb=0

If achk. a follows a store within the same cycle, the chk. a will alwaysfail on the Itanium
processor. On the Itanium 2 processor, a 12-bit address compare against ALAT entries will occur.
See Section 5.1, “Data Speculation and the ALAT” for more details.

Data Alignment

The Itanium processor can support misaligned integer accesses within 16-byte blocks; however, the
Itanium 2 processor supports misaligned integer accesses within 8-byte blocks. Section 5.5, “Data
Alignment” has greater detail on misaligned access support for the Itanium 2 processor.

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

|nte|® Itanium® 2 Processor Enhancements

Consumer

Load
Store
Addr

Multi- Store
media Data

Adder: add, cmp, tbit, 1/(1-2)!
addp4, shladd,
shladdp4, sum,
logical ops, 64-bit
immed. moves, movl,
post-inc ops
(includes post-inc
stores, loads,
Ifetches)

Multimedia

geftf

setf

Fmac: fma, fms,
fnma, fpma, fpms,
fpnma, fadd, fnmpy,
fsub, fpmpy, fpnmpy,
fmpy, fnorm, xma,
frcpa, fprepa, frsqgrta,
fpsqgrta, fevt, fpevt

Fmisc: fselect, fcmp,
fclass, fmin, fmax,
famin, famax, fpmin,
fpmax, fpamin,
fpcmp, fmerge, fmix,
fsxt, fpack, fswap,
fand, fandcm, for,
fxor, fomerge, fneg,
fnegabs, fpabs,
fpneg, fpnegabs

Producer

INT side predicate
write: cmp, tbit, tnat

FP side predicate
write: fcmp

FP side predicate
write: frcpa, fprepa,
frsqrta, fpsqrta

Int Load?

FP Load?®

IEU2: move_from_br,
alloc

Move to/from cr,ar?

Move to pr

Move indirect®

1. On the Itanium® processor, the address computation instruction must be in an M-slot type to avoid an extra cycle of latency.

2. N depends upon which level of cache is hit. For the Itanium processor, N=2 for L1D, N=6 for L2, N=21 for L3. For the Itanium 2 processor, N=1 for
L1D, N=5 for L2, N=(12-15) for L3. These are minimum latencies.

3. M depends upon which level of cache is hit. For the Itanium processor, M=8 for L2 and M=24 for L3. For the Itanium 2 processor, M=5 for L2 and
M=(12-15) for L3. These are minimum latencies. The “+1” entries indicate one cycle is needed for format conversion.

4. Best-case values of C range from 2 to 35 cycles depending upon registers accessed. EC and LC accesses are 2 cycles. FPSR and CR accesses
are 10-12 cycles.

5. Best-case values of D range from 6 to 35 cycles depending upon indirect registers accessed; Iregs pkr and rr accesses are faster at 6 cycles.

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 19

ltanium® 2 Processor Enhancements |nte|®

2.4.3

2.5

Control Speculation

The Itanium 2 processor implements features intended to increase the performance of applications
by decreasing the cost for incorrect control speculation. There are two parts of the solution for the
Itanium 2 processor:

* Thefirst part allows speculative load operations (Thisincludes| f et ch without the . f aul t
completer.) to abort and set aNaT bit at the time of a datatrand ation lookaside buffer (TLB)
miss. In contrast, the Itanium processor would wait for the hardware page walker (HPW)
operation to complete the walk before setting the NaT hit.

* Thesecond part dlowsfor achk. s instruction (also for af chkf / chk. a instruction) to
branch directly to the fix-up code without involving the OS. The Itanium processor faultson a
chk. s, chk. a, or f chkf instruction and requests that the OS branch to the fix-up code.

Thus, deferrals on the Itanium 2 processor occur quickly and the branch to fix-up code occurs
quickly.

The deferral at data TLB missisturned off inside interrupt handlers (when PSR. i s = 1), which
alowsl d. s and| f et ch instructionsto complete a TLB walk and possibly return data. Clearing
thedcr . dmbit will also prevent speculative operations from deferring at data TLB miss. Fast
deferral requiresthe dcr . dmbit to be set. Refer to Section 5.2, “ Speculative and Predicated
Loadg/Stores’ for more information.

Memory Hierarchy

Both the Itanium microarchitecture and the Itanium 2 microarchitecture incorporate a three-level
cache structure. In general, line sizes of the Itanium 2 processor are twice as large as those of the
Itanium processor. Also, latencies of the Itanium 2 processor are shorter that those of the Itanium
processor. The third-level cache (L 3) of the Itanium 2 processor ison-chip and runs at a higher core
frequency, which results in amuch shorter latency. The Itanium 2 processor has atwo-level TLB
design for both instruction and data, while the Itanium processor has a single-level instruction
TLB. The Itanium 2 processor’s TLBs are larger. The following tables list some of the differences
in caches and TLBs. Details can be found in Chapter 6, “Memory Subsystem.”

Table 2-2. L1l Cache Differences

Size Line Size Associativity Latency
Itanium® Processor 16 KB 32 bytes 4-way 1cycle
Itanium® 2 Processor | 16 KB 64 bytes 4-way 1cycle
(up to 3MB L3 cache)
Itanium® 2 Processor | 16 KB 64 bytes 4-way 1cycle
(up to 6MB L3 cache)
Itanium® 2 Processor | 16 KB 64 bytes 4 way 1 cycle
(up to 9MB L3 cache)

20

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

intgl.

Table 2-3. L1D Cache Differences

Itanium® 2 Processor Enhancements

Size Line Size Associativity Latency Write Policies
16 KB 32 bytes 4-way 2 cycles Write through,
Itanium® Processor No write
allocate
itanium® 2 Processor 16 KB 64 bytes 4-way 1 cycle Write through,
(up to 3MB L3 cache) No write
allocate
itanium® 2 Processor 16 KB 64 bytes 4-way 1 cycle Write through,
(up to 6MB L3 cache) No write
allocate
ltanium® 2 Processor 16 KB 64 bytes 4-way 1 cycle Write through,
No write
(up to 9MB L3 cache) allocate
Table 2-4. L2 Unified Cache Differences
. . . S Integer Floating-point Write
Size Line Size Associativity Latency Latency Policies
itanium® Processor 96 KB 64 bytes 6-way Minimum of 6 Minimum of 9 Write back,
cycles cycles Write allocate
Itanium® 2 Processor 256 KB 128 bytes 8-way Minimum of 5 Minimum of 6 | Write back,
(up to 3MB L3 cache) cycles cycles Write allocate
itanium® 2 Processor 256 KB 128 bytes 8-way Minimum of 5 Minimum of 6 | Write back,
(up to 6MB L3 cache) cycles cycles Write allocate
Itanium® 2 Processor 256 KB 128 bytes 8-way Minimum of 5 Minimum of 6 | Write back,
(up to 9MB L3 cache) cycles cycles Write allocate
Table 2-5. L3 Cache Differences
Size Line Size Associativity Integer Floating-point Bandwidth
Latency Latency
itanium® Processor 4 MB or 2MB, | 64 bytes 4-way Minimum of 21 | Minimum of 24 | 16 bytes/cycle
off chip cycles cycles
Itanium® 2 Processor 1.5MBor3 128 bytes 4-ways per Minimum of 12 | Minimum of 13 | 32 bytes/cycle
(up to 3MB L3 cache) MB, on chip MB cycles cycles
itanium® 2 Processor 1.5 MB, 3 MB, | 128 bytes 4-ways per Minimum of 14 | Minimum of 15 | 32 bytes/cycle
(up to 6MB L3 cache) 4 MB, or 6MB, MB cycles cycles
P on chip
Itanium® 2 Processor 3 MB,4MB, 6 | 128 bytes 2-ways per Minimum of 14 | Minimum of 15 | 32 bytes/cycle
MB, or 9MB, MB cycles cycles
(up to 9MB L3 cache) on chip

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

21

Itanium® 2 Processor Enhancements

Table 2-6. Instruction TLB Differences

(up to 9MB L3 cache)

Hierarchy Size Associativity
|tanium® Processor 1level: ITLB 64-entry Full
Itanium® 2 Processor 2levels: L1 ITLB, L2 ITLB | 32-entry, 128-entry | Full, Full
(up to 3MB L3 cache)
Itanium® 2 Processor 2levels: L1 ITLB, L2 ITLB 32-entry, 128-entry | Full, Full
(up to 6MB L3 cache)
Itanium® 2 Processor 2levels: L1 ITLB, L2 ITLB 32-entry, 128-entry | Full, Full

Table 2-7. Data TLB Differences

. . L Penalty for Missing
Hierarchy Size Associativity First Level DTLB
L ® 2 levels: L1 DTLB, 32-entry, 96-entry Direct, Full 10 cycles
Itanium™ Processor L2 DTLB
Itanium® 2 Processor 2 levels: L1 DTLB, 32-entry, 128-entry | Full, Full 2 cycles
(up to 3MB L3 cache) L2DTLB
Itanium® 2 Processor 2 levels: L1 DTLB, 32-entry, 128-entry | Full, Full 2 cycles
(up to 6MB L3 cache) L2DTLB
Itanium® 2 Processor 2 levels: L1 DTLB, 32-entry, 128-entry | Full, Full 2 cycles
(up to 9MB L3 cache) L2DTLB

2.6

Branch Prediction

The magjor differences in the Itanium 2 processor and the Itanium processor branch prediction
support are:

* | atencies

* br p instructions areignored for branch prediction, i.e., the br p. i np isnot required to

achieve zero-bubble branches.

¢ |ndirect branch targets are predicted from the source branch register rather than from a
hardware table.

* Possible reduced prediction of BBB bundles due to prediction encoding.

* Morerobust method for prediction structure repair after a mispredicted return.

¢ Hardware implementation of the br | (64-bit relative branch) instruction.

* Settingar. ec = 1isnot required for perfect loop prediction.

Full details can be found in Section 7, “ Branch Instructions and Branch Prediction.”

22

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

intgl.

Itanium® 2 Processor Enhancements

Table 2-8. Branch Prediction Latencies (in cycles)

2.7

2.8

Itanium® 2 Processor Itanium® Processor
Correctly Predicted Taken IP-relative Branch 0 1
Correctly Predicted Taken Indirect Branch 2 0
Correctly Predicted Taken Return Branch 1 1
Last Branch in Perfect Loop Prediction 0 2
Misprediction Latency 6+ 9

Instruction Prefetching

The Itanium 2 processor has an improved implementation of streaming and hint prefetching. See
Chapter 8, “Instruction Prefetching” for more details.

|A-32 Execution Layer

IA-32 Execution Layer (IA-32 EL) is anew technology that executes 1A-32 applications on
Itanium architecture-based systems. Previously, support for 1A-32 applications on [tanium
architecture-based platforms has been achieved using hardware circuitry on the Itanium 2
processors. |A-32 EL will enhance this capability.

IA-32 EL isa software layer that is currently shipping with Itanium architecture-based operating
systems and will convert 1A-32 instructionsinto ltanium instructions via dynamic translation.
Further details on operating system support and functionality of 1A-32 EL can be found at
http://www.intel .com/products/server/processors/server/itanium2/index.htm.

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 23

ltanium® 2 Processor Enhancements |nte|®

24

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

intel.

Functional Units and Issue Rules 3

3.1

3.2

This chapter describes the number and type of available functional units, instruction issue rules,
and heuristics for efficient instruction scheduling based upon machine resources and issue rules.

Execution Model

The Itanium 2 processor issues and executes instructions in assembly order, so programmer
understanding of stal conditionsis essential for generating high performance assembly code.

In general, when an instruction does not issue at the same time as the instruction immediately
before it, instruction execution is said to have split issue. When a split issue condition occurs, all
instructions after the split point stall one or more clocks, even if there are sufficient resources for
some of them to execute. Common causes of split issue in the Itanium 2 processor are:

* Anexplicit stop is encountered.
* There are insufficient machine resources of the type required to execute an instruction.

* Instructions have not been placed in accordance with issue rules on the Itanium 2 processor.

The Itanium 2 processor issues instructionsin the order defined by the static schedule. Care should
be taken by the code generator to avoid register dependencies within an issue group. The Itanium 2
processor does not insert implicit stop bits to break WAW hazards; thus, a WAW hazard between
loads and stores will result in an 8-cycle penalty if the predicates are true. Other WAW hazards,
such as those due to ALU operations, will result in non-deterministic results and also consider
predicates.

Once instructions are issued as a group, they will proceed as a group through the pipeline. If one
instruction in the issue group has a stall condition, the whole group will stall. This stall will also
stall all instructions behind it (younger) in the pipeline.

Number and Types of Functional Units

Although parallel instruction groups may extend over an arbitrary number of bundles and contain
an arbitrary number of each instruction type, the Itanium 2 processor has finite execution
resources. If aparallel instruction group contains more instructions than there are available
execution units, the first instruction for which an appropriate unit cannot be found will cause a split
issue and break the parallel instruction group.

The front-end of the Itanium 2 processor pipeline can fetch up to two bundles per cycle and the
back-end of the pipeline can issue as many as two bundles per cycle. Given that there are 3
instructions per bundle, the Itanium 2 processor can be considered a six instruction issue machine.
For more on details on the pipeline, see Appendix A, “Itani um® 2 Processor Pi peline.”

The Itanium 2 processor has alarge number of functional units of various types. This allows many
combinations of instructionsto be issued per cycle. Since only six instructions may issue per cycle,
only aportion of the Itanium 2 processor’s functional units described below will be used each
cycle.

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 25

Functional Units and Issue Rules In'te|®

3.3

26

Note:

There are six general-purpose ALU units (ALUOQ, 1, 2, 3, 4, 5), two integer units (10, 1), and one
shift unit (ISHIFT, used for general purpose shifts and other specia instructions). A maximum of
six of these types of instructions can be issued per cycle.

The Data Cache Unit (DCU) contains four memory ports. Two ports are generally used for load
operations; two are generally used for store operations. A maximum of four of these types of
instructions can be issued per cycle. The two store ports can support a special subset of the
floating-point load instructions.

There are six multimedia functional units (PALUO, 1, 2, 3, 4, 5), two parallel shift units

(PSMUQ, 1), one parallel multiply unit (PMUL), and one population count unit (POPCNT). These
handle multimedia, parallel multiply, and the popcnt instruction types. At most, one prrul or
popcnt instruction may beissued per cycle. However, the [tanium 2 processor may issue up to six
PALU instructions per cycle.

There are four floating-point functional units: two FMAC units to execute floating-point
multiply-adds and two FMISC units to perform other floating-point operations, such asf cnp,
f mer ge, etc. A maximum of two floating-point operations can be executed per cycle.

There are three branch units enabling three branches to be executed per cycle.

All of the computational functional unitsare fully pipelined, so each functional unit can accept one
new instruction per clock cyclein the absence of other types of stals. System instructions and
access to system registers may be an exception.

Instruction Slot to Functional Unit Mapping

Each fetched instruction is assigned to a functional unit through an issue port. The numerous
functional units share a smaller number of issue ports. There are 11 issue ports: eight for
non-branch instructions and three for branch instructions. They are labeled MO, M1, M2, M3, 10,
11, FO, F1, BO, B1, and B2. The process of mapping instructions within bundlesto functiona units
iscalled dispersal.

An instruction’s type and position within the issue group define to which issue port the instruction
isassigned. An instruction is mapped to a subset of the issue ports based upon the instruction type
(i.e,, ALU, Memory, Integer, etc.). Then, based on the position of the instruction within the
instruction group presented for dispersal, the instruction is mapped to a particular issue port within
that subset.

Table 3-1, “A-Type Instruction Port Mapping,” Table 3-2, “1-Type Instruction Port Mapping,” and
Table 3-3, “M-Type Instruction Port Mapping” show the mappings of instruction typesto ports and
functional units. Section 3.3.2 describes the sel ection of the particular port based upon instruction
position.

Shading in the following tables indicates the instruction type can be issued on the port(s).

A-typeinstructions can beissued on al M and | ports (MO-M3 and 10 and 11). I-type instructions
canonly issueto 10 or I11. Thel ports are asymmetric so some I-type instructions can only issue on
port 10. M ports have many asymmetries: some M-type instructions can issue on all ports; some can
only issue on M0 and M1; some can only issue on M2 and M3; some can only issue on MO; some
can only issue on M2.

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

intgl.

Table 3-1. A-Type Instruction Port Mapping

Table 3-2.

Table 3-3.

Functional Units and Issue Rules

Instruction Description Examples Ports
Type
Al-A5 ALU add, shladd MO-M3, 10, 11
A4, A5 Add Immediate addp4, add| MO-M3, 10, 11
A6, A7, A8 Compare cmp, cmp4 MO-M3, 10, 11
A9 MM ALU pcmpll |2 4] MO-M3, 10, 11
Al0 MM Shift and Add pshladd2 MO-M3, 10, 11
I-Type Instruction Port Mapping
Instruction . I Port
Type Description Examples
11 MM Multiply/Shift pmpy2.[l | r],
pmpyshr2{.u}
12 MM Mix/Pack mix_[l |2]4]0]r
pmin, pmax
13, 14 MM Mux mux1, mux2
15 Variable Right Shift shr{.u] =ar,ar
pshr[2 | 4] =ar,ar
16 MM Right Shift Fixed pshr[2 | 4] =ar,c
17 Variable Left Shift shi{.u] =ar,ar
pshli[2 | 4] =ar,ar
18 MM Left Shift Fixed pshi[2 | 4] =ar,c
19 MM Popcount popcnt
110 Shift Right Pair shrp
111-117 Extr, Dep extr{.u}, dep{.z}
Test Nat tnat
119 Break, Nop break.i, nop.i
120 Integer Speculation Check chk.s.i
121-28 Move to/from BR/PR/IP/AR mov =[br | pr|ip | ar]
mov [br | pr|ip | ar]=
129 Sxt/Zxt/Czx Sxt, zxt, czx
M-Type Instruction Port Mapping
Instruction o Memory Port
Type Description Examples
MO | M1 | M2 | M3
M1, 2,3 Integer Load Idsz, Id8.fill
M4, 5 Integer Store stsz, st8.spill
M6, 7, 8 Floating-point Load Idffsz, Idffsz.s, Idf.fill
Floating-point Advanced Load Idffsz.a, Idffsz.c.[cIr | nc]
M9, 10 Floating-point Store stffsz, stf.spill

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 27

Functional Units and Issue Rules

Table 3-3. M-Type Instruction Port Mapping (Continued)

3.3.1

28

intel.

Instruction

Memory Port

M1 M2

M3

Type Description Examples "
M11, 12 Floating-point Load Pair Idfpfsz
M13, 14, 15 | Line Prefetch Ifetch
M16 Compare and Exchange cmpxchgsz.[acq | rel]
M17 Fetch and Add fetchaddsz.[acq | rel]
M18 Set Floating-point Reg setf.[s | d | exp | sig}
M19 Get Floating-point Reg getf.[s | d | exp | sig}
M20, 21 Speculation Check chk.s{.m}
M22, 23 Advanced Load Check chk.a[clr | nc]
M24 Invalidate ALAT invala
Mem Fence, Sync, Serialize fwb, mf{.a}, srlz.[d | i],
sync.li
M25 RSE Control flushrs, loadrs
M26, 27 Invalidate ALAT invala.e
M28 Flush Cache, Purge TC Entry fc, ptc.e
M29, 30, 31 | Move to/from App Reg mov{.m} ar=
mov{.m} =ar
M32, 33 Move to/from Control Reg mov Cr=, mov =cr
M34 Allocate Register Stack Frame alloc
M35, 36 Move to/from Proc. Status Reg mov psr.[l | um]
mov =psr.[l | m]
M37 Break, Nop.m break.m, nop.m
M38, 39, 40 | Probe Access probe.[r | w].{fault}
M41 Insert Translation Cache itc.[d | i]
M42, 43 Move Indirect Reg mov ireg=, move =ireg,
Insert TR itr.[d | i]
Ma4 Set/Reset User/System Mask sum, rum, ssm, rsm
M45 Purge Translation Cache/Reg ptc.[d |i|g|ga]
M46 Virtual Address Translation tak, thash, tpa, ttag

Execution Width

When dispersing instructions to functional units, the Itanium 2 processor views, at most, two

bundles at atime with no special alignment requirements. This text refers to these bundles asthe
first and second bundles. A bundle rotation causes new bundlesto be brought into the two-bundle
window of instructions being considered for issue. Bundle rotations occur when all the instructions

within a bundle are issued. Either one or two bundles can be rotated depending on how many

instructions were issued.

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Functional Units and Issue Rules

Dispersal Rules

The Itanium 2 processor hardware makes no attempt to reorder instructions to avoid stalls. Thus,
the code generator must be careful about the number, type, and order of instructions within a
parallel instruction group to avoid unnecessary stalls. The use of predicates has no effect on
dispersal — al instructions are dispersed in the same fashion whether predicated true, predicated
false, or unpredicated. Similarly, nop instructions are dispersed to functional units asif they were
normal instructions. The dispersal rulesfor execution units vary according to slot type; i.e., I, M, F,
B, or L. Therulesfor the different dot types are described bel ow.

Dispersal Rulesfor F Slot I nstructions
* AnF dotinstruction in the first bundle mapsto FO.
* AnF dotinstruction in the second bundle mapsto F1.

* A SIMD FP instruction essentially maps to both FO and F1. See Section 3.3.3 for more
information on SIMD FP issue rules.

Dispersal Rulesfor B Slot Instructions

¢ Each B dlot instruction inan MBB or BBB bundle maps to the corresponding B unit. That is, a
B dlot instruction in the first position of the template is mapped to BO; in the second position, it
is mapped to B1; and in the third position, it is mapped to B2.

* TheB instruction in an MIB/MFB/MMB bundle mapsto BOif itisabr p or nop. b anditis
the first bundle, otherwise it maps to B2.

* For purposes of dispersal, break. b istreated like a branch.
Dispersal Rulesfor L Slot Instructions

* AnMLX bundle uses ports equivaent to an MFI bundle. If the MLX bundleisthefirst bundle,
the L slot instruction mapsto FO. Otherwise, it mapsto F1. However, there is no conflict when
the MLX template isissued with an MMF or MIF bundle and the FopisaSIMD FP
instruction.

Dispersal Rulesfor | Slot I nstructions

* Theingtruction in the first | slot of the two-bundle issue group will issue to 10. The second
| slot instruction will issueto I 1.

¢ |f the second | slot instruction can only map to an 10 port, see Table 3-2, an implicit stop will
be inserted and the second | slot instruction will be issued in the next cycle. Thus, an 10-only
instruction should be placed inthefirst | slot of abundle pair. Only one 10-only instruction can
be issued per cycle.

* Aninstructioninan | slot will not necessarily beissued to an | port. If the first two | slot
instructions have been issued to the | ports, and an additional | slot instruction in the issue
group contains A-type instructions as listed in Table 3-1, and M ports are available; these
instructions will be mapped to available M ports. This allows the potential dual issue of the
MII-MI1 bundle pair. Thisis new to the Itanium 2 processor and is not true on the Itanium
processor.

* For the MLI template, the | slot instruction is always assigned to port 10 if it isin the first
bundle or it isassigned to port 11 if it isin the second bundle. Thus, the bundle pair M1I-MLI
can never dual issue.

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 29

Functional Units and Issue Rules Inte|®

Dispersal Rulesfor M Slot | nstructions

On the Itanium 2 processor, M dlot instructions are grouped into four subtypes (see Table 3-3):
* Load subtype, which can beissued on either MO or M1 or both (e.g., integer load, sync)

* Store subtype, which can be issued on either M2 or M3 or both (e.g., integer store, al | oc,
getf)

¢ Generic subtype, which can be issued on any of the four M ports (e.g., ALU, floating-point
|oad)

* Specid instructions, which can be issued on only M2 port (e.g., get f , mov to AR)

Theissue logic can reorder M slot instructions between different subtypes but cannot reorder
instructions within the same subtypes. For instance, within an issue group an integer store can
precede an integer load without causing a split issue. The store will be mapped to M2 and the load
to MO since the two instructions were from different subtypes.

However, if astore precedesaget f, the store will be issued to M2 and a split issue will occur
because the get f must issue on M2. Instructions within the same subtype cannot be reordered.
Therefore, the code scheduler should placetheget f instruction before the store to ensure the
get f instruction is mapped to M2 and the store is mapped to M3 to avoid port oversubscription.

Dispersal becomes more complicated when generic subtype instructions early in the issue group
consume M ports. Thereisno encompassing ruleto cover these cases. It isrecommended that the
morerestrictive subtypes get scheduled first in theissue group. Example 3-1 and Example 3-2
demonstrate some of the dispersal possihilities.

Note: M, isageneric subtype, M is an integer load, and Mg is a store subtype instruction.
Example 3-1. MpAM| | - MgM, |
The bundle pair MAM | - MM gets mapped to ports M2 MO 10 - M3 M1 11.

Thefirst generic subtype instruction mapped to M2 causes the M g instruction to be mapped to M 3.
If Mgisaget f instruction, a split issue will occur.

Example 3-2. MAMAl - MsMAl

The bundle pair MAMal - MgM 51 gets mapped to ports MO M1 10 - M2 M3 11, which allows Mg
to get the more favorable M2 port.

Table 3-4 shows the combination bundle types that the Itanium 2 processor can dual issue
(indicated by the shaded areas). Rows contain first bundle pair; columns contain second.

Table 3-4. Dual Issue Bundle Types

Mil MLI MMI MFI MMF MIB MBB BBB MMB MFB

Ml
MLI
MMI
MFI
MMF
miB!
MBB

30 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

|nte|® Functional Units and Issue Rules

Table 3-4. Dual Issue Bundle Types (Continued)

Ml MLI MMI MFI MMF MIB MBB BBB MMB MFB

BBB
MMB
MFB

1. The B must be nop.b or brp

Note: Floating-point loads are generic subtype instructions. As such, the Itanium 2 processor can issue up
to four per cycle. This capability is availableto all normal and speculative floating-point loads of
all sizes. Advanced floating-point loads, load pair instructions, and check load instructions are not
generic and must issue on the two load ports while the floating-point stores only issue to the two
store ports.

3.3.3 Split Issue and Bundle Types

Because there is an increased number of functional unitsin the Itanium 2 processor and | slot
instructions can sometimes issue to M ports, many bundle pairs can dual issue. Resource
oversubscription rarely occurs. Reasons that bundle pairs would not dual issue are explicit stops
and dispersal problems mentioned in the previous section. In addition, there are several Itanium 2
processor-specific (rather than architectural) special casesthat will cause split issue. These specific
cases are listed below:

* Branches
— BBB/MBB Always splitsissue after either of these bundles.

— MIB/MFB/MMB Splits issue after any of these bundles unless the B slot contains a
nop. b orabr p instruction. A br instruction aways introducesan
implicit stop bit for these bundle types.

— MIB BBB Splitsissue after the first bundle in this pair from B port
oversubscription.

e SIMD FP

— Only one FP instruction can issue per cycleif theinstruction isan SIMD FP instruction.
For instance, for the bundle pair MF,l MFI, where F isa SIMD FP operation, there will
be an implicit stop between the M and F instructions of the second bundle, even if the F
instructionisanop. f .

— Similarly, for the bundle pair MFI M Fol, there will be an implicit stop between the M and
F, instructions of the second bundle since the F, instruction must issue to the FO port and
thefirst F instruction has already mapped to FO.

— One case which might seem to cause a split issue, but does not, is the bundle pair MF,|
MLX. Even though the L slot acts like it maps to an F port, these two bundles can dual
issue.

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 31

Functional Units and Issue Rules In'te|®

32

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

intel.

Latencies and Bypasses 4

4.1

This chapter describes latencies and bypasses for execution of the different instruction typeson the
Itanium 2 processor.

In general, integer instructions have one cycle of latency, floating-point instructions have four
cycles of latency, multimediainstructions have two cycles of latency, and L1 cache hits have one
cycle of latency. However, due to asymmetric bypasses, there are many special cases that need to
be listed separately.

Control and Data Speculation Penalties

The Itanium 2 processor can compute the address of the recovery code from the offset in the

chk. a/chk. s/ f chkf instruction without having to trap to the OSfault handler. The speculative
load recovery latencies listed in Table 4-1 are approximations based upon the time difference
between the chk. s/chk. a/ f chkf retirement and the completion of first instruction of the
fix-up code. These latencies do not include possible cache or TLB latencies, the cost of recovery
code itself, or the final branch at the end of the recovery code. Also, the cost of the recovery code
itself is not included. Further information on advanced loads can be found in Section 5.1, “Data
Speculation and the ALAT.”

Table 4-1. Speculative Load Recovery Latencies

4.2

Instruction Latency (cycles)
chk.a, both int and fp (ALAT hit), chk.s (no NaT/NatVal) 0
chk.a, both int and fp (ALAT miss), chk.s (NaT/NatVal) 18
Id*.c, Idf*.c (ALAT hit, L1/L2 hit) 0
Id*.c, ldf*.c (ALAT miss, L1/L2 hit) 8

Branch Related Latencies and Penalties

Table 4-2 describes latencies for branch operations and branch related flushes. See Section 7,
“Branch Instructions and Branch Prediction” for more detailed information.

Table 4-2. Branch Prediction Latencies

Branch Type Whether Prediction Target Prediction Front-end Bubbles
IP-relative Correct Correct 0
IP-relative Correct Incorrect 1/6t
Return Correct Correct 1
Return Correct Incorrect 6

1. The 6-cycle penalty is for IP-relative branches that cross a 40-bit boundary. Loop branches that are mispredicted take 7 cycles.
These incur a full branch mispredict penalty.

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 33

Latencies and Bypasses In‘te|®

Table 4-3. Execution with Bypass Latency Summary

Consumer (across)
Producer (down)

Adder: add, cmp, thit, addp4,
shladd, shladdp4, sum, logical
ops, 64-bit immed. moves,
movl, post-inc ops (includes
post-inc stores, loads,
Ifetches)

Multimedia’

thash, ttag, tak, tpa, probe®
getf?

setf?

Fmac: fma, fms, fnma, fpma,
fpms, fpnma, fadd, fnmpy,
fsub, fpmpy, fonmpy, fmpy,
fnorm, xma, frcpa, fprcpa,
frsqrta, fpsqrta, fevt, fpevt

Fmisc: fselect, fcmp, fclass,
fmin, fmax, famin, famax,
fpmin, fpmax, fpamin, fpcmp,
fmerge, fmix, fsxt, fpack,
fswap, fand, fandcm, for, fxor,
fpmerge, fneg, fnegabs, fpabs,
fpneg, fpnegabs

Integer side predicate write:
cmp, tbit, tnat

FP side predicate write: fcmp

FP side predicate write: frcpa,
fprepa, frsqrta, fpsqrta

Integer Load®

FP Load*

IEU2: move_from_br, alloc
Move to/from CR or AR®
Move to pr

Move indirect®

1. Since these operations are performed on the L1D, they interact with the L1D and L2 pipelines. These are the minimum latencies but they could be
much larger because of this interaction.

2. Since these operations are performed on the L1D, they interact with the L1D and L2 pipelines. These are the minimum latencies which could be
much larger because of this interaction.

3. N depends upon which level of cache is hit: N=1 for L1D, N=5 for L2, N=12-15 for L3, N=~180-225 for main memory. These are minimum latencies
and are likely to be larger for higher levels of cache.

4. M depends upon which level of cache is hit: M=5 for L2, M=12-15 for L3, M=~180-225 for main memory. These are minimum latencies and are likely
to be larger for higher levels of cache. The +1 in all table entries denotes one cycle needed for format conversion.

5. Best case values of C range from 2 to 35 cycles depending upon the registers accessed. EC and LC accesses are 2 cycles, FPSR and CR accesses
are 10-12 cycles.

6. Best case values of D range from 6 to 35 cycles depending upon the indirect registers accessed. Iregs pkr and rr are on the faster side being 6 cycle
accesses.

7. It should be noted that the multimedia type includes 11-19, A9, A10, and only the cmp4 from A8 instructions as listed in Table 3-1 and Table 3-2.

4.3 Latencies for OS Related Instructions

Table 4-4 lists the latencies for accesses to the CR, AR, and KR registers and the serialization
|atencies associated with many driver or OS operations, such as virtual address creation.

34 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

intgl.

Table 4-4. Latencies for OS Related Instructions

Latencies and Bypasses

READ Form WRITE Form
Rgrgli;éer Instruction Latency Instruction Use Latency | srlz.d | srlz.i
GR mov r1=r3 int op 1
mov rl=immz22 int op 1
mov rl=imm64 int op 1
FP mov f1=f3 fp op 4
PSR mov rl=psr 12 mov psr=r2 6 17
mov rl=psr.um 12 mov psr.um=r2 int op 5
P mov rl=ip 2 READ ONLY
PR mov rl=pr 2 mov pr=r2 int op 1
mov pr.rot=r2 int op 1
BR mov rl=br 2 mov br=r2 branch 7
mov br.ret=r2 return 7
AR mov rl=ar.krO 12 mov ar.kr0=r2 read kr 1
mov rl=ar.rsc 12 mov ar.rsc=r2 loadrs 14
mov rl=ar.bsp 12 READ
ONLY
mov rl=ar.bspstore 12 mov ar.bspstore=r2 flushrs 14
mov rl=ar.rnat 5 mov ar.rnat=r2 flushrs 3
mov rl=ar.ccv 11 mov ar.ccv=r2 cmpxchg 1
mov rl=ar.unat 5 mov ar.unat=r2 1d8.fill 6
mov rl=ar.fpsr 12 mov ar.fpsr=r2 fmac 7
mov rl=ar.itc 36 mov ar.itc=r2 read itc 1
mov rl=ar.pfs 2 mov ar.pfs=r2 alloc 1
return 0
mov rl=ar.lc 2
mov rl=ar.ec 2
CR mov r2=cr.dcr 12 mov cr.dcr=r2 6 17
mov r2=cr.itm 36 mov cr.itm=r2 35
mov r2=cr.iva 2 mov cr.iva=r2 7
mov r2=cr.pta 5 mov cr.pta=r2 6 17
mov r2=cr.gpta 5 mov cr.gpta=r2 0 11
mov r2=cr.ipsr 12 mov cr.ipsr=r2 6
mov r2=cr.isr 2 mov cr.isr=r2 7
mov r2=cr.iip 2 mov cr.iip=r2 7
mov r2=cr.ifa 5 mov cr.ifa=r2 6
mov r2=cr.itir 5 mov cr.itir=r2 6
mov r2=cr.iipa 2 mov cr.iipa=r2 7
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 35

Latencies and Bypasses

Table 4-4. Latencies for OS Related Instructions (Continued)
READ Form WRITE Form

ReT%Iipséer Instruction Latency Instruction Use Latency | srlz.d | srlz.i
mov r2=cr.ifs 12 mov cr.ifs=r2 11
movV r2=cr.iim 2 mov cr.iim=r2 1
mov r2=cr.iha 5 mov cr.iha=r2 6
mov r2=cr.lid 36 mov cr.lid=r2 35
MmOV r2=Cr.ivr 36 READ ONLY
mov r2=cr.tpr 36 mov cr.tpr=r2 35
mov r2=cr.eoi 36 mov Cr.eoi=r2 35
mov r2=cr.irr0 36 READ ONLY
mov r2=cr.irrl 36 READ ONLY
MOV r2=Cr.irr2 36 READ ONLY
moV r2=cr.irr3 36 READ ONLY
mov r2=cr.itv 36 mov cr.itv=r2 35
mov r2=cr.pmv 36 mov cr.pmv=r2 35
mov r2=cr.cmcv 36 mov cr.cmcv=r2 35
mov r2=cr.Irr0 36 mov cr.Irr0=r2 35
mov r2=cr.Irrl 36 mov cr.lrrl=r2 35

IR mov from cpuid[r0] 36 READ ONLY
mov from dbr[r0] 36 mov to dbr[r3] 1
mov from ibr[r0] 36 mov to ibr[r3] 46
mov from pkr[rO] 5 mov to pkr[r3] 11 22
mov from pmc[r0] 36 mov to pmc(r3] 35 46
mov from pmd[r0] 36 mov to pmd[r3] 35 46
mov from rr[r0] 5 mov to rr[r3] 11 22

36 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

intel.

Data Operations)

5.1

Note:

This chapter describes considerations for data operations such as speculative or predicated |oads or
stores, floating-point loads, and prefetches. Load hints, data alignment, and write coalescing
considerations are al so discussed.

Data Speculation and the ALAT

The family of instructions composed of | d. a/l df . a/l df p. a,l d.c/1df.c/Idfp.c,and
chk. a provide the capability to dynamically disambiguate memory addresses between loads and
stores. Architecturally, thel d. ¢ and chk. a instructions have a 0-cycle latency to consuming
instructions. Thisallowsthel d. ¢/ | df . ¢/ | df p. c/chk. a and the corresponding consuming
instruction to be scheduled in the same cycle. However, if al d. ¢/ 1 df . ¢/ 1 df p. ¢/ chk. a
missesin the ALAT, additional latency isincurred. Also, an advance load activates the scoreboard
for the target register in order to ensure correct operation in the event of aL1D miss.

Ald.c,ldf.c, orldfp.c that missesthe ALAT initiates an L1 cache access. Other
instructions in the issue group will be re-executed. Thisis an 8-cycle penalty that will affect all
operations issued since the check load, whether there was a consumer in the same issue group or
not. The consumer will be exposed to any additional cache latency (i.e., if the check load is found
in the L1 then the penalty will be only 8 cycles). However, if the check load isin the L2, the user
will see greater latency.

A chk. a that missesinthe ALAT executes abranch to recovery code. On the Itanium 2 processor,
the branch target can be computed from the offset contained in the chk. a instruction in most
instances. This avoids the trap to the operating system that is done on the Itanium processor. The
cost of achk. a that missesin the ALAT isat least 18 cyclesto branch to recovery code, plusthe
cost of the recovery code, plusthe return. The actual resteer to fix up code occurs within 10 cycles,
however there are at least 8 cycles for the first instruction of the fix up codeto complete. The

8 cycles will increase when the branch to fix up code missesthe L2 ITLB or L1l and other cache
levels.

The Itanium 2 processor ALAT has 32 entries and is fully associative. Each entry contains the
register number, type, and the lower 20 bits of the physical address. The address is used to compare
against potentially conflicting stores while the register index and type support the check operation.
Since only partial addresses are saved in the ALAT, it is possible to have afalse conflict if astore
and an ALAT entry had different addresses yet shared the same lower 20 bits of physical address.
In addition, if al d. c or chk. a follows a store too closdly, the ALAT address comparison will be
done on fewer than 20 bits of physical address. Thisis aresult of the minimum 4K page size
support and the need for both store and check addresses to be fully translated to accomplish the
20-bit physical address comparison. Table 5-1 lists the distances and comparison sizes.

Table5-1,1 d. c dsoimplies!| df . ¢ and | df p. c.

Table 5-1. ALAT Entry Comparison Sizes

Distance Comparison Size
st and Id.c in same cycle 12-bit
st precedes Id.c by 1cycle 12-bit
st precedes Id.c by more than 1 cycles 20-bit

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 37

Data Operations

Table 5-1. ALAT Entry Comparison Sizes (Continued)

Distance Comparison Size
st and chk.a in same cycle 12-bit
st precedes chk.a by 1 cycle 12-bit
st precedes chk.a by more than 1 cycles 20-bit

Note: On the Itanium processor, if astore and chk. a occur in the same cycle, the chk. a will always
fail, but thisis not the case for the Itanium 2 processor.

51.1 Allocation/Replacement Policy

When anew entry is added in the ALAT, the following is the priority listing of which entry is
replaced:

* The entry with the same register number as the new entry.
* Thefirstinvalid entry.
* A vadidentry isreplaced based upon advancing pointers associated with ports MO and M 1.

This approximates afirst-in - first-out (FIFO) algorithm.

51.2 Rules and Special Cases

The following rules and special cases should be noted:

¢ The Itanium architecture definition prohibits scheduling al d. a and | d. ¢ inthe same cycle

if both instructions have the same target register. Similarly, | d. a and chk. a cannot be
scheduled in the same cycle if they have the same target register. However, separation by one
or more cycleswill give normal ALAT behavior. A similar situation istrue for | df . a and

| df p. a.

A faulting | d. a will not writeto the ALAT. Such faults arelisted in Volume 3: Instruction Set
Reference of the Intel® Itanium® Architecture Software Devel oper’s Manual and include,
among others, Data Page Not Present, Data TLB, and Unaligned Data Reference faults. In
these situations, a subsequent corresponding | d. ¢ or chk. a will definitely missin the
ALAT.

If both an ALAT set and ALAT invalidate instruction occur in the same cycle, the ALAT set
will not occur. For instance, if achk. a. clr rxandrx = |d. a[addr] occurinthe
same cycle, the address of thel d. a[addr] will not be entered in the ALAT.

5.2 Speculative and Predicated Loads/Stores

Memory operations with speculative inputs behave in the following manner:

38

* For anormal load/store whose source register contains a NaT value, aregister NaT

consumption fault will occur.

* For aspeculative load whose source register containsa NaT value, the NaT bit is set and azero

value will be returned.

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Data Operations

The Itanium 2 processor supports two deferral behaviors: early and late. The behavior of

specul ative memory operations depends on several factors such as interrupt state, deferral control
registers, and processor configuration. Early deferral mode is enabled through PAL procedure
PAL_PROC_SET_FEATURES. The effects of thiswill be maintained until the system is rebooted
and the processor returns to the default late deferral behavior. Table 5-2 lists the requirements to
enable early deferral.

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Table 5-2. Early and Late Deferral
Early Deferral Enabled | psr.ic | dcr.dm | Deferral Mode
Yes 0 0 Late
Yes 0 1 Early
Yes 1 0 Late
Yes 1 1 Late
No X X Late
Table 5-3 shows the latency, according to deferral mode, that a speculative load may incur before
returning data or eventually setting the destination NaT bit. The cost of each exception deferral
ranges from one cycle to several cycles depending to the latency of the HPW. These HPW-rel ated
penalties cannot be scheduled around and affect every instruction in the issue group. Also, it is
possible for the exception causing a deferral to not be resolved when the exception is deferred.
Thus, the deferral stall may be seen each time through aloop where the chk. s isnot reached.
Table 5-3. Control Speculation Penalties
Result Hit/Miss Penalty (early deferral) Penalty (late deferral)
Return Valid Data L1 DTLB Hit 1 1
L2 DTLB Hit 4 + L2 latency 4 + L2 latency
VHPT Hit 5 (no HPW walk) 20 + L2 latency
Set NaT Bit NaT Source 1 1
L1 DTLB Hit 2 2
L2 DTLB Hit 2 or4 + L2 latency 2 or 4+ L2 latency
VHPT Hit 5 (no HPW walk) 22 or 2 + L2 latency
VHPT Miss 5 (no HPW walk) 20 + L2 latency
VHPT Fault 5 (no HPW walk) 17 + L2 latency
Note: Speculative loads are not limited to | d. s instructions. | f et ch instructions are normally

speculative and behave similarly to| d. s instructions with the exception that they never set aNaT
bit or return data. An | f et ch instruction may be made non-speculative with the . f aul t
compl eter.

The advantage of early deferral is that speculative operations complete with low latency. The
latency is at best three cycles for an early deferred | d. s as seen by a dependent operation. Thisis
important in situations where the code generator is aggressivein its specul ation and the chances of
the speculative operation actually hitting in the data TLB islow. Since early deferral does not
initiate a VHPT walk by the HPW, even valid requests may fault since they are not in the L2
DTLB.

39

Data Operations In'te|)

5.3

5.4

5.4.1

40

Note:

Floating-Point Loads

Floating-point loads are not cached in the L1D and are instead processed directly by the L2. The
limited size and bandwidth of the L 1D makes caching this data unprofitable. It is expected that FP
memory accesses can more easily be scheduled to cover the additional latency of the L2.

Floating-point loads incur an extra clock of latency over integer accesses to accommodate format
conversion. Therefore, a floating-point load takes 6 cyclesif it hitsin L2. Note also, that the FP
load pair instructions (both double-precision and single-precision) also access the L2 cache, so the
latency for aload pair instruction isalso 6 cycles assuming that it isan L2 hit.

Data Cache Prefetching and Load Hints

The architecture provides two software mechanismsto control when and where datais loaded. The
| f et ch instruction isused to explicitly prefetch datainto the L1D, L2, or L3 caches. To facilitate
more datalocality, temporal hints can be used to control the level of the cache hierarchy into which
loaded datais placed.

Ifetch Implementation

The Itanium 2 processor implementation of | f et ch isasfollows:

¢ | fetch. none iscompleted only if there are no exceptions. Exceptions are not reported.
Section 5.2 contains information on the behavior of | f et ch instructions that encounter
memory management faults.

e | fetch. faul t iscompleted whether or not there is an exception. If thereis an exception, it
israised to the OS to complete the operation. A TLB missis resolved as with anormal load.

¢ Ifthel f et ch missesinL1D but hitsinthe L2, the L1D cache is alocated based on the
| f et ch temporal hint. | f et ch instructions have the same temporal locality behavior as
integer loads.

e Alllf et chtypeswhich missin thefirst level data TLB and hit in the second level data TLB
will stall the main pipeline and fill the first level data TLB as anormal load operation. The
behavior of thel f et ch inthe event of an L2 DTLB miss depends on the use of the early or
late deferral modes described in Section 5.2. In early deferral mode, thel f et ch aborts with
an L2 DTLB miss. In late deferral mode, thel f et ch will initiate an HPW access. If the
accessfails, thel f et ch will abort. However, itisonly thel f et ch. f aul t instruction that
will initiate a HPW access when it misses both data TL Bs.

* Anlfetch. excl appearsasa store to other cache levels and the system bus. This means
that these operations will place alinein the M state within the caches. Do not use the. excl
completer unlessthere isahigh probability that the datawill truly be modified. Otherwise, the
cache will evict unmodified data to the cache structures and eventually to memory.

* Anl f et ch to an uncacheable memory location will not reach the L 2 cache as required by the
architecture.

Thel f et ch instruction appears as a load operation without a specific data return to the core. As
such, many of the limitations that normal |oads experience anywhere in the memory hierarchy will
affect thel f et ch instruction as well. Exceptions are noted and are provided with the intent that
they will makel f et ch instructions easier for the compiler to use in realizing performance.

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Load Temporal Locality Completers

Data Operations

The Itanium architecture uses memory locality hints for managing the data cache hierarchy. On the
Itanium 2 processor, four types of memory locality hintsareimplemented: t 1, nt 1, nt 2 and nt a.
The Itanium 2 processor does not support a non-temporal buffer; instead, non-temporal L2

accesses are adlocated in L2 with biased replacement. The implementation is as follows:

¢ t 1 hintisfor normal accesses. On aload, thelineisalocated in L1D, L2, and L3. On astore,

thelineisallocated in L2 and L3, but not L1D.

* Forloadswithnt 1 hint, thelineisonly alocated in L2 and L3. In addition, the lineis biased
to bereplaced inthe L2. Thisis achieved by not updating the L2 LRU bits. Note that by doing
so, the line has a higher probability of being replaced, though it is not guaranteed to be
replaced next.

¢ Loadswith nt 2 hint are implemented in the same manner as loads with nt 1 hint.

* For loads and storeswith nt a hint, thelineis only allocated and biased to be replaced in L2.
Thelineisnot allocated into L 3.

Table 5-4 listshow L1D, L2, and L3 handle line allocation and LRU update for different hints.

Note that:

¢ L 1D iswritethrough and does not support FP |oads and stores.
¢ Thevalid bit updatein the L 1D cache and the LRU bits update in the L 3 cache are independent

of the hint bits. Only the update of the L2 LRU is biased to mimic the behavior of a
non-temporal buffer.

Table 5-4. Processor Cache Hints

L1D L2 L3
Access Hint Alloc! | UpdateLRU | | UpdateLRU | | UpdateLRU
Bits? Bits? Bits?
t1l Yes Yes Yes Yes Yes Yes
ntl No No Yes Yes Yes Yes
Ifetch
nt2 No No Yes No Yes Yes
nta No No Yes No No No
t1l Yes Yes Yes Yes Yes Yes
Integer load? ntl No No Yes Yes Yes Yes
nta No No Yes No No No
t1l No No Yes Yes Yes Yes
Integer store3
nta No No Yes No No No
t1l No No Yes Yes Yes Yes
FP load ntl No No Yes No Yes Yes
nta No No Yes No No No
tl No No Yes Yes Yes Yes
FP store
nta No No Yes No No No
1. Alloc indicates an entry is allocated in that level of the cache on a cache miss.
2. Integer Load and FP Load - only t1, ntl, and nta attributes are allowed.
3. Integer Store and FP store - only t1 and nta are allowed.
Note: Other instruction/hint combinations are not alowed by the Itanium architecture.
Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 41

Data Operations

54.2.1

5.5

42

Note:

General Descriptions of Hints

Memory locality hints are described below:

. hone: Theload deliversthe data and isloaded into both L1D and L2.

. nt 1: This hint means non-temporal locality in the first cache level capable of holding the
referenced data. The Itanium architecture suggests this hint indicates that the load should
deliver the data and the line should not be allocated in the first level caches. For the Itanium 2
processor, this hint will cause the line not to be allocated to the L1D on an integer cache miss.
If itisaready in the L1D cache, it will not be deallocated.

. nt 2: This hint means non-tempora locality in the second cache level capable of holding the
instruction. For the Itanium 2 processor, this hint will cause integer accessesto the line to be
allocated in L2; however, the LRU information will not be updated for theline (i.e., it will be
the next line to be replaced in the particular set). If it isalready in the L2 cache, it will not be
deallocated.

. nt a: This hint means non-temporal locdity in all levels of the cache hierarchy. For the
Itanium 2 processor, this hint will cause the line to be allocated in L2; however, the LRU
information will not be updated for the line (i.e., it will be the next line to be replaced in the
particular set). This line will not be allocated in the L3 cache. If present in any cache, it will
not be deall ocated from that cache, although sometimes lines are deallocated for coherency
reasons.

Thereis no way to allocate only in L3 and not impact L2, even withan| f et ch instruction.

The one-way allocation for non-temporal L2 data may lead to displacement of L2 data for a
temporary data stream since the non-temporal data may be quickly replaced. A single L2 way holds
32KB. This may be large enough for asingle. nt stream, but an attempt to use two non-temporal
streams may cause one stream to displace the other.

Data Alignment

The Itanium 2 processor implementation supports arbitrarily aligned load and store accesses,
except for integer accesses that cross 8-byte boundaries and any accesses that cross 16-byte
boundaries.

If psr. ac =1, dl unaligned memory referenceswill fault.

If psr. ac =0, these rules must be followed to avoid faults:

Integer loads and stores must be aligned within an 8-byte aligned window.
All FP 4-byte and 8-byte load operations can be unaligned within a 16-byte aligned window.

All FP load pairs must be naturally aligned; i.e., singles on an 8-byte alignment, doubles on a
16-byte alignment, | dpr . 8 on a 16-byte alignment.

All FP 10-byte loads can be unaigned within a 16-byte window.

FP fill/spill instructions must be aligned within a 16-byte aligned window.

FP stores can be unaligned within a 16-byte aligned window.

Semaphores (cnpxchg, xchg, f et chadd) must be restricted to natural alignment.
All uncacheable (UC, WC) accesses which cross an 8-byte boundary will fault.

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

5.6.1

Data Operations

Write Coalescing

For increased performance of uncacheable references to frame buffers, previous generation 1A-32
processors defined the write coalescing (WC) memory type. WC allows streams of data writes to
be combined into asingle, larger bus write transaction. The Itanium 2 processor fully supports
write coalescing as defined by the | ntel® Pentium® 11 processor. Like the Pentium 111 processor, the
Itanium 2 processor WC loads are performed directly from memory and not from the coal escing
buffers.

The Itanium 2 processor has a separate two-entry, 128-byte buffer (WCB) that is used for WC
accesses exclusively. Each bytein the line hasavalid bit. If all valid bits are true, then thelineis
said to be full and will be evicted by the processor.

WC Buffer Eviction Conditions

To ensure consistency with memory, the WCB is flushed on the following conditions (both entries
are flushed). Table 5-5 shows the eviction conditions when the processor is operating in the
Itanium system environment:

Table 5-5. Itanium® 2 Processor WCB Eviction Conditions

5.6.2

Eviction Condition Itanium® Instructions
Memory fence (mf) mf
Memory release ordering (op.rel) st.rel, cmpxchg.rel, fetchadd.rel, ptc.g

Architectural Conditions for WCB Flush

Flush cache (fc) hit on WCB yes
Flush write buffers (fwb) yes
Any UC load no?!
Any UC store no?
UC load or ifetch hits WCB no?
UC store hits WCB nol!
WC load/ifetch hits WCB no

WC store hits WCB no?

1. Itanium® architecture doesn’t require the WC buffers to be coherent with respect to UC
load/store operations.

2. A WC store which hits in the WCB updates that entry if it is not full. If it is full, a check is made
if that entry is older or younger than the other WCB entry. If it is younger, the older WCB entry
is flushed out (even if it is not full). The younger WCB entry is flushed afterwards. If the WCB
entry is the oldest, it is flushed by itself.

WC Buffer Flushing Behavior

As mentioned previoudly, the Itanium 2 processor WCB contains two entries. The WC entries are
flushed in the same order asthey are alocated. That is, the entries are flushed in written order. This
flushing order applies only to a “well-behaved” stream. A “well-behaved” stream writes one WC
entry at atime and does not write the second WC entry until the first oneisfull. Thisimplies that
the addresses of the WC stores monotonically increase. A store with release semantics should be
used to force aflush of a partia line before starting on the next line.

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 43

Data Operations In'te|)

5.7

5.8

44

In the absence of platform retry or deferral, the flushing rule implies that the WCB entries are
aways flushed in a program written order for a“well-behaved” stream, even in the presence of
interrupts. For example, consider the following scenario: if software issues a“well-behaved”
stream, but is interrupted in the middle, one of the WC entries could be partialy filled. The WCB
(including the partialy filled entry) could be flushed by the OS kernel code or by other processes.
When the interrupted context resumes, it sends out the remaining line and then moves on to fill the
other entry. Note that the resumed context could be interrupted again in the middle of filling up the
other entry, causing both entriesto be partially filled when the interrupt occurs.

For streams that do not conform to the above “well-behaved” rule, the order in which the WC
buffer isflushed is random.

WCB eviction is performed for full lines by asingle 128-bit bus transaction. For partidly full lines,
the WCB is evicted using 1-8, 16, or 32-byte transactions with the proper enables. The flushing

will issue the largest data transactions allowed by a continuous and aligned set of write coalescing
data. When flushing, WC transactions are given the highest priority of al externd bus operations.

Register Stack Engine

The Itanium 2 processor register stack engine (RSE) only operatesin lazy mode (ar . r sc. node
=0). All other mode configurations are ignored.

A maximum of two loads or two stores can be performed by the RSE in each cycle, but not both
loads and stores at the same time.

Generally, it is assumed that the RSE loads and stores will hit in the L1D cache and the L1D is
capable of holding RSE cache linesin L1D.

FC Instructions

Thef ¢ instruction will invalidate a specified cache line from all levels of the cache hierarchy. In
the Itanium 2 processor, each f ¢ will invalidate 128 bytes corresponding to the L3 cache line size.
Since both the L1l and L1D have line sizes of 64 bytes, asinglef ¢ instruction can invalidate two
lines.

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

intel.

Memory Subsystem 6

The Itanium 2 processor memory system has athree-level cache structure: a first-level instruction
cache (L1l), afirst-level data cache (L1D), a unified second-level cache (L2), and a unified
third-level cache (L3).

The following sections contain detailed information on the workings of the L1D, L2, L3, and
system bus. Thisinformation is presented to give a basis for the optimization recommendations.
However, it is necessary to give enough understanding to recognize bottlenecks that are not
specifically covered in this document. Chapter 9, “Optimizing for the Itanium® 2 Processor”

provides some important suggestionsin optimizing for the Itanium 2 processor memory
subsystem.

Figure 6-1. Three Level Cache Hierarchy of the ltanium® 2 Processor

Itanium® 2 Processor

32GB | L116KB
» 64 Byte Line
1 Cycle
Memory | 6.4 GB System L39MB | 32GB | L2256 KB
y Bus ; .
< > <128 Byte Line« »1128 Byte Line
and /0 Control 14+ Cycle 5+ Cycle 32 GB
Logic » L1D 16 KB
64 Byte Line
=16 GB 1 Cycle

001228b

The Itanium 2 processor employs atwo-level TLB for both instruction and data references:. the
first-level instruction TLB (L1 ITLB) and the second-level instruction TLB for instructions, and
thefirst-level data TLB (L1 DTLB) and the second-level data TLB.

The Itanium 2 processor implements all the features of the Itanium architecture requirements for

virtual memory support. Table 6-1 lists the specific parameters of the Itanium 2 processor
implementation.

Table 6-1. Itanium® 2 Processor Virtual Memory Support

Virtual Memory Itanium® 2 Processor Implementation
Page Size 4K, 8K, 16K, 64K, 256K, 1M, 4M, 16M, 64M, 256M, 1G, and 4G bytes
Physical Address 50 Bits
Virtual Address 64 Bits
Region Registers 8 registers with 24 bits in each register
Prot_ection Key 16 registers with 24 bits in each register
Registers

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 45

Memory Subsystem In'te|®

6.1

Table 6-2.

6.1.1

6.1.2

46

Translation Lookaside Buffers

Table 6-2 shows the major features of the TLBs of the Itanium 2 processor. The capabilities of the
instruction and data TL Bs are approximately equivalent. Thefirst level TLBsare closely tied to the
first level instruction and data caches. Thisis necessary to support the single cycle access for the
L1 caches and comes at the price that afirst level TLB missforcesafirst level cache miss.

Major Features of Instruction and Data TLBs

Instruction TLBs Data TLBs
Structures L1ITLB, L2 ITLB L1 DTLB, L2 DTLB
Number of Entries 32,128 32,128
Associativity Full, Full Full, Full
Penalty for First Level Miss | 2 cycles 4 cycles

Instruction TLBs

TheL1ITLB has 32 fully associative entries and is dual ported. One port is used exclusively for
regular instruction fetches and LRU updates. The second port is shared among instruction
prefetches, snoops, and TLB purges. The L1 ITLB contains sufficient information, region registers,
and protection keys, such that it does not need to be a strict subset of the larger L2 ITLB.

Whenan L1 ITLB pagetrandation is replaced, al entriesinthe L1l cache from the victimized
page are invalidated. The victim entry is determined using true LRU. The L1 ITLB directly
supports only a 4K B-page size. Other page sizes are indirectly supported by allocating additional
L1 ITLB entries as each 4KByte segment of the larger page is referenced.

TheL2ITLB has 128 fully associative entries and is single ported. Up to 64 entries of the L2 ITLB
can be assigned as trand ation registers (TRs). TRs are effectively trandations locked into the L2
ITLB and are therefore not subject to LRU replacement policy. The L2 ITLB directly supports
page sizes of 4KB, 8KB, 16KB, 64KB, 256KB, 1MB, 4MB, 16MB, 64MB, 256MB, 1GB, and
4GB.

TheL1ITLB and L2 ITLB are accessed in parallel for demand fetchesto reducean L1 ITLB miss
(and associated L 11 cache miss) penalty. These parallel accesses do not update the L2 ITLB LRU
values. If aninstruction access missesinthe L1 ITLB, but hitsinthe L2 ITLB, the first-level
instruction cache access will have two cycles of penalty (in parallel with the second-level cache
latency) to transfer the page information fromthe L2 ITLB tothe L1 ITLB. Sincean L1 ITLB miss
resultsin an L1l cache miss, the penalty will likely be greater as the instruction must be accessed
from higher-level caches or the system memory.

Data TLBs

TheL1 DTLB has 32 fully associative entries and is dud ported. Only two ports are required
because it supports only integer load operations. Unlikethe L1 ITLB, the L1 DTLB lacks
protection and page attribute information. Consequently, the L1 DTLB is accessed in parallel with
the DTLB and must be a strict subset of the second-level DTLB for an L1D hit.

When an L1 DTLB pagetrandation is replaced, al entriesin the L1D from the victimized page are

invalidated. The L1 DTLB has afixed page size of 4KB. Larger page sizes are supported by
alocating additional L1 DTLB entries as a4KB portion of the larger page.

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

6.2

Memory Subsystem

The L2 DTLB has 128 fully associative entries and four ported. The four ports are needed to allow
all combinations of integer loads, stores and floating-point loads to be looked up in parallel. The
integer loadsrely onthe L2 DTLB for protection and page attribute information. The other
accesses get virtud to physical mapping, protection, and page attributes from the L2 DTLB.

Up to 64 entries of the L2 DTLB can be assigned as TRs. TRs are effectively trandations locked
into the L2 DTLB and are therefore not subject to LRU replacement policy. The L2 DTLB directly
supports page sizes of 4KB, 8KB, 16KB, 64KB, 256KB, 1MB, 4MB, 16MB, 64MB, 256MB,
1GB, and 4GB.

Stores or floating-point accesses that missthe L1 DTLB incur no penalty froman L1 DTLB miss.
Integer loads that missthe L1 DTLB but hit the L2 DTLB incur a 4-cycle penalty (in addition to
the L2 cache latency) to transfer fromthe L2 DTLB tothe L1 DTLB. Also, aload access that
missesthe L1 DTLB will not hitinthe L1D.

Hardware Page Walker

The HPW is the third level of address trandation. The HPW is an engine that performs page
look-ups from the virtual hash page table (VHPT). Whenan L2 DTLB or L2 ITLB missis
encountered, the HPW will access (as necessary) the L 2 cache, the L3 cache, and finally memory
to obtain the page entry. If the HPW cannot locate the page entry in the L2, the L3, or memory, an
interruption is generated and a software handler is called to complete the translation (unless the
requesting instruction defers the exception). The HPW will accept a new instruction TLB miss
when processing adata TLB miss (and visa versa); however, the HPW will not process them at the
same time. The requests are effectively serialized.

Cache accesses must wait for TLB resolution to complete:
® L1D accessesboth L1 DTLB and L2 DTLB in pardlel.

* L1l accessesonly requirean L1 ITLB lookup (an L2 ITLB lookup is required upon an L1
ITLB miss).

¢ L2/L3dataaccessonly requirean L2 DTLB lookup.
e L2/L3instruction accessesonly requirean L2 ITLB lookup.

Whenan L2 DTLB or L2 ITLB miss occurs, an HPW lookup is performed. This HPW walk may
be aborted at any time. For non-speculative memory requests, when the HPW aborts or cannot
successfully map the virtual address, afault israised. For speculative memory requests, the actual
request is aborted and the | d. s will set the NaT bit. The minimum penalty for going to the HPW
issummarized in Table 6-3. A HPW lookup does not look in or cause afill of the L1D cache.

SinceanL2DTLB or L2 ITLB missalso impliesamissinthe L1D or L1I, the penalty shownin
Table 6-3 has the best case L2 cache latency added to the HPW walk latency.

Table 6-3. Best Case HPW Penalties

Event Penalty in Cycles
Hitin L2 25
Miss in L2, hitin L3 31
Miss in both L2 and L3 20 + Main memory Latency
(System dependent)

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 47

Memory Subsystem

Table 6-3. Best Case HPW Penalties (Continued)

6.3

Event

Penalty in Cycles

HPW Abort

OS trap/abort

HPW mapping failed

OS trap/abort

Cache Summary

Table 6-4 summarizes the key parameters of the on-chip caches of the Itanium 2 processor.

Table 6-4. Cache Summary

6.4

48

write - 1 cycle

write - 1 cycle

write - 1 cycle

L1l L1D L2 L3

Size 16 KB 16 KB 256 KB up to 9 MB
Associativity 4-way 4-way 8-way 18 or 12-way
Line size 64 Bytes 64 Bytes 128 Bytes 128 Bytes
Latency 1 cycle 1 cycle Minimum 5 cycles Minimum 14 or 12

integer load use. cycles load use.

Minimum 6 cycles

floating-point load

use.

7 cycles with 6 cycle

stall penalty in ROT

stage for instruction

load use.
Tag Read 2/ cycle 4/ cycle 4/ cycle 1/cycle
Bandwidth
Data Read 1 X 32B/cycle 2 X 8B/ cycle 2x16B/cycle + 2x | 1x32B/cycle
Bandwidth 8Bl
Data banks n/a 8 bytes/bank 16 bytes/bank n/a

(store only)
Write Bandwidth | n/a 2 x 8B/ cycle 4 x 16B/ cycle 1x32B/cycle
Fill Bandwidth 64 bytes 64 bytes 128 bytes 128 bytes in 4
assembly 2 cycles assembly 2 cycles assembly 4 cycles cycles

Outstanding
Misses

7 prefetches

8 unique lines

16 unique lines

22 (16 read shared
with L2, 6 write)

Line Size

64 Bytes

64 Bytes

128 Bytes

128 Bytes

1. The L2 read bandwidth is 48 bytes/cycle because the L2 can complete 2| df pd and 2 integer loads at a time. Any combination
of 4 floating-point and integer returns may also complete every cycle.

First-Level Instruction Cache

Thefirst-level instruction cache (L11) isa 16KB, four-way set associative, physically addressed
cache with a 64-byte line size. Lower virtual address bits 11:0, which represent the minimum
virtual page, are never transated and are used for cache indexing. The L1l can fill a 64-byteline
once every two cycles. It blocks on-demand fetch misses but is non-blocking for prefetch misses
allowing up to seven to be outstanding to the L2 cache.

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

6.5

6.6

Memory Subsystem

The L1l can sustain arate of 32-byte reads per cycle to support a fetch rate of two bundles per
cycle. Thefront-end always fetches aligned 32-byte bundle pairsfrom the L 11. If abranch pointsto
the middle rather than the beginning of a 32-byte bundle pair, only the second bundle will be
fetched. Therefore, branch targets must be on aligned 32-byte boundaries to achieve maximum
fetch bandwidth from the L1I.

Thetag array is dual-ported: one port is dedicated to instruction demand fetches, the other is shared
between cache snoops and instruction prefetches. Cache snoops have priority over prefetches. The
data array isdual ported, onefor reading, onefor fills. Additionally, specia effort has been madeto
allow L1l reads and fills to occur simultaneously, thus there are few events that can keep an L1l
miss from eventually writing into the L 1I.

Instruction Stream Buffer

The Itanium 2 processor instruction stream buffer (1SB) islocated between the L1l and the L2
caches. It serves as alinefill buffer for the L1l and assists in instruction prefetching. The ISB
contains eight 64-byte cache lines or 8 double bundle pairs of instructionsand is fully associative.

L1l lines returned from the L2, whether demand misses or prefetches, are all stored inthe ISB. If a
returned cache lineis a demand miss, it will be forwarded to the instruction pipeline and may be
moved into the L1I. The cache line remainsin the ISB until an idle period where can drain into the
L1l. The ISB entry may be victimized or invalidated before this move occurs preventing the L1l
fill from occurring. The L1l supports both reads and fills at the same time, hence their ISB entries
empty quickly into the L1l and few I SB victimizations or invalidations will occur.

The ISB is accessed in parallel with the L1l. An ISB hit has the same latency as an L1l hit. If the
target line hits both the I1SB and the L 1I, the matching line in the ISB isinvalidated.

First-Level Data Cache

The first-level data cache (L1D) isamulti-ported, 16KB, four-way set associative,
physically-addressed cache with a 64-byte line size. The L1D is non-blocking and in-order. L ower
virtual address bits 11:0, which represent the minimum virtual page, are never trandated and are
used for cache indexing.

The L1D is designed such that there are two dedicated load ports and two dedicated store ports.
These ports are fixed, but the issue logic can rearrange loads and stores within an issue group to
ensure they issue to the appropriate memory port. The load ports are dual ported, meaning that any
two load addresses can be read from the memory in parallel without conflict. Stores, however,
access the L1D data array in 8 groups that are 8 bytes wide. Stores do have the potential for
conflicts, but the store buffer coalescing hardware limits the impact such conflicts have on
performance.

The access latency of the L1D isone cycle unless the use is for an address of another load
operations (i.e., pointer chasing) in which caseit istwo cycles. The L1D enforces a write-through,
with no write-allocate policy. All stores will go to the L2 cache whether they hit or missin the
L1D. If astore hitsinthe L1D, the datais kept in astore buffer until the data arrays become
available to update the L1D. These store buffers are capable of merging store data and forwarding
it to later loads with restrictions. The L1D allocates on load misses according to temporal hints,
load type, and available resources.

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 49

Memory Subsystem In'te|®

6.6.1

6.6.2

50

The L1D is highly integrated into the integer data path. All integer loads must go through the L 1D
to return data to the integer register file/bypass network. Consequently, integer L1D misses, after
being serviced by L2, L3, or memory, also use the L1D datapath to the integer register file and
block any core load that may require the same L 1D data path.

Floating-point loads do not accessthe L1D. This alows them to issue on any of the four memory
ports with minimal restrictions. Floating-point load-pairs and any floating-point loads with ALAT
interactions can only be dispersed on the load ports. Despite the fact that | f et ch instructions do
not deliver datato the core, they can only be issued on the two load ports because they may cause
an L1D fill and that capability is only provided on the two |oad memory ports.

An unaligned datareference exception will beraised if an unaligned integer |oad crosses an 8-byte
boundary. See Section 5.5, “Data Alignment” for more details about alignment support.

L1D Loads

When a core load request gets accessto the L1D, it will accessthe L1D tag and data arrays at the
same time. Rotators at the output of the L1D data array provide support for both little and big
endian accesses aswell as some unaligned accesses without penalty. A virtual to physical mapping
must beinthe L1 DTLB and L1D tagsfor aload request to beaL1D hit. If theload isamissor is
forced to missthe L1D, then the request is passed on to the L2 when there are sufficient resources.
The miss may result in aL 1D fill depending on resources and cache hints. At minimum, all L1D
misses eventually update the target register. Floating-point loads and ordered operations are forced
to missthe L1D, but will not cause an L1D fill.

The L1D has resources for up to 8 outstanding L 1D fill-requests to the L2. If more than 8 misses
are outstanding, the subsequent misses will be passed to the L2, but will not resultinan L1D fill. If
two or more accesses missthe L1D and are accessing the same L 1D line, only one will request an
L 1D fill but will be passed to the L2 cache to be satisfied.

L1D Stores

All store requests are passed to the L2 cache since the L1D is a write through cache. A store that
misses the L1D has no effect on the L1D. However, if the storeis a hit, the L1D must update the
data array so that later loads can see the new data. To support this, the store data is read from the
source register and staged down the L 1D pipeline. Each store pipeline (M2/M 3) has independent
store buffers and control logic.

When the dataisready to update the L1D dataarray, it is allowed to do so provided there are no
conflicts. Other operations writing the data array at the same time, such asan L1D fill, aload
accessing the same 8-byte bank, or a store to the same bank, may prevent the needed update. In this
case, the store data is moved to a backup buffer and waits for the array to become available. The
store buffer can coalesce younger stores accessing the same L1D 8-byte wide data bank. If the
backup buffer cannot update the dataarray and is heeded by anew store that it cannot coalesce, the
L1D pipeline will stall to create an opportunity for the backup buffer to drain.

Given thisorganization, it may be better for stores targeting the same group to issue down the same
L1D pipeline. For example, it would be better to have al accesses to bank 0 to issue down M2 and
al accessesto bank 1 to issue down M3. Thus, when it comestime to update the array, M2 and M3
will not conflict and will be allowed to update without delay.

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

6.6.3.1

6.6.3.2

6.6.3.3

Memory Subsystem

L1D Load and Store Considerations

Some memory requests may affect each other even when separated in time. This section covers
some possibleload/load, load/store, store/load, and store/store interactionsfor both the L1D hit and
miss cases. Each discussion will have a summary and a suggested solution.

Load/Load Conflicts

L oad regquests that hit in the L1D have no conflicts with each other because the L1D istrue dual
ported. However, aload request that misses the L 1D may have conflicts at the L2 due to bank
conflicts. If low latency is needed, special care should be taken to avoid loads in the same issue
group that access the same L2 bank, i.e., A[7:4] should be unique for L2 bound accesses.

A less obvious load/load conflict can occur when aload iswaiting to issue to the L1D, but is
preempted by an older load returning from the L2/L 3 or system bus. Here, the older load is given
priority and the younger load must wait. These events are difficult to predict and hence difficult to
schedule around. However, the L2 cache will only take the M1 port if thereis only one integer load
to returnin acycle. Thus, aconflict can be avoided by not using the M1 port for loads. This should
not be done if it adds to the critical path.

This same conflict may exist between loads and special requests that use the L2 data paths to get
information to the core. These arethe pr obe, t hash,tt ag,t pa, andt ak instructions.

Load/Store Conflicts

A load and store conflict has very different implications depending on which occurs first, the load
or the store. Despite the fact that issue groups are inherently parallel, loads and stores are ordered
according to position in the issue group.

When aload precedes a store and the load is a hit, there are no conflicts. However, there are
significant implications when the load precedes the store and they are both L 1D misses. In this
case, the load will missthe L1D and likely request an L1D fill. The store, if it is seen by the L1D
before the fill associated with the load, will be an L1D miss. As such, the store will invalidate the
L 1D associated fill buffer entry and stop the L1D fill from occurring. Thisis necessary because
there is no opportunity for the store to update the incoming data before the L 1D fill. The Itanium 2
processor must ensure that alater load sees an earlier store, so thefill is cancelled and the merge of
the store with the cache line is taken care of by the L2. If the fill occurs before the store, then the
fill completes and a normal store update of the L1D is done. These statements are true if the load
and store share A[49:6] (afull L1D cacheline).

One method to avoid thisissueisto place a use of the load result before a conflicting store. This
ensures that the dataisfilled into the L1D. Once the L1D isfilled, the store updates the L 1D and
proceeds on to the L2 cache. This suggestion may not be appropriate for single |oad accesses or
when the L1D lineis not accessed again after a conflicting store.

Store/Load Conflicts

When a store precedes aload, the store data must be seen by the load. In the case where the
requests are L1D misses, the L2 ensures this occurs. When the operations are L1D hits, the
response to the load depends on the common address bits and how many cycles separate the store
and load.

Table 6-5 shows the different store/load penalties. The penalty may depend on whether the load
accesses the same data as the store, a subset of the store’s data, or is completely independent of the
store.

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 51

Memory Subsystem

Table 6-5. Store to Load Forwarding Penalties

6.6.3.4

6.6.3.5

6.6.4

52

intel.

Store Precedes Load

Loads Accesses Bytes
Completely Within Store

Load Accesses Bytes
Partially Within Store

Address Comparison

0 cycles 17 cycles 17 cycles 11:2
1 cycle 3 cycles 5 cycles 11:2
2 cycles 3 cycles 3 cycles 49:2
3 cycles 1 cycle 3 cycles 49:2

The 5 and 17 cycle penalties are due both to the load being forced to miss the L1D and to the load
and store facing L 2 conflict conditions. The 3 and 1 cycle penalties are dueto the L1D recirculating
the load request until the distance between the load and store exceeds 3 cycles. Thisalowstime for
the L1D to update the data array with the store data and allow the load to proceed asif there was no
store.

To avoid store/load conflicts, the store and load must be separated by more than 3 cycles. If more
than 3 cycles separation is difficult to achieve, then ensure at least 1 cycle separation.

Integer and Floating-Point Access Interactions

Floating-point loads and stores are passed directly to the L2 and bypass the L 1D. If afloating-point
store occursto alinewhichisresident inthe L1D cache, that L1D linewill be invalidated. Thiscan
cause problems when integer and floating-point data share the same L 1D cache line. Thisis
possible when both integer and floating-point data exist in the stack or as part of the same data
structure. Suppose that both an integer value and a floating-point value share the same 64-byte
aligned block. An integer load will bring the lineinto the L1D. A later floating-point store will
writeto L2 and invalidate the L1D line. Thus, a subsequent load of the integer value will missthe
L1D.

Thismay be mitigated by bringing the line back into the L1D through an| f et ch after issuing the
storeor by using . nt 1 hints on the integer accesses to keep them from filling the L1D and
scheduling them for L2 latency.

Store/Store Conflicts

The L1D istrue dual ported for loads, but only pseudo-dual ported for stores; two stores cannot
update the exact same location in the data array at the same time (see Section 6.6.2, “L 1D Stores”).
The store buffer design, with coalescing, prevents most store/store conflictsfor L1D store hits. The
exception isthat two stores cannot update the same L 1D bank at the same time. Should there be a
conflict, the younger store will move into a store buffer and may later update the L 1D data array
without impacting the L1D pipeline. However, if the store buffer is unavailable, the L1D will stall
until the store buffer is drained. The conflict does not exist if either of the two stores misses the
L1D. Note that the two stores do not need to access the same L 1D cache line to conflict.

L1D Misses

When an L 1D request misses, it is passed on to the L2 once the L 2 has sufficient resources
available to hold the new request. The resourcesinclude at least an L2 OzQ entry and an L2 Data
entry. A L2 Dataentry must be available for a store to be accepted, but aload does not requirea L2
Dataentry. If either the L2 OzQ or Dataisfull, the operations and every other operation in the issue
group will stall until these resources are made available.

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

6.6.4.1

6.6.4.2

6.7

Memory Subsystem

The L2 control logic reserves some L2 OzQ entries to ensure that when arequest is allowed to
leavethe L1D pipeline, thereisan L2 OzQ entry available for it. Thelogic reservesfour entries for
every cycle of ambiguity which isthree cycles. The result is that in some instances, such as
streaming, only about 20 of the 32 L2 OzQ entries are available. The Itanium 2 processor only
stallsthe L1D pipdine when the L2 isfull and there isarequest in the L1D that needsto go to the
L2

L1D Forced Misses

There are some load instructions that are forced to missthe L1D. A floating-point load will always
misstheL1D. An ordered load (I d. acq) isallowed to hitinthe L1D, but if it does missthe L1D,
al subsequent loads, regardless of address or ordering constraints, will be forced to missthe L1D
until the L2 indicates that the ordered load is visible.

L1D Forced Invalidates

Just as some operations are forced to miss the L1D, some operations will invalidate the L1D. A
floating-point store will invalidate the L1D if it isa L 1D hit. Semaphoreswill also invalidate the
L1D if they hit in the L1D to ensure that ordering is maintained.

Second-Level Unified Cache

The second-level unified cache (L2) cacheisaunified, 256 KByte, 8-way set-associative cache
with aline size of 128 bytes. The L2 tags are true four ported and are accessed as part of the L1D
pipeline. The L2 employs write-back and write-allocate policies. The integer access latency to the
L2is5, 7, 9 or greater cycles. Floating-point accesses take 6, 8, 10, or greater cycles, which

includes the floating-point conversion stage. An L1I missthat hitsin the L2 and usesthe L2
5-cycle bypass incurs a 7-cycle latency with a 6-cycle stall penalty.

The L2 cache is non-blocking and out of order. All memory operations that access the L2 (L1D
misses and all stores) check the L2 tags and allocate into a 32 entry queuing structure called the L2
0zQ. All storesrequire one of the 24 L2 data entries to hold data to eventually update the L2 data
array. The operations issue, up to four at atime, to accessthe L2 data array when conflicts are
resolved and resources are available. L 11 instruction misses are also sent to the L 2, but are stored in
the Instruction Prefetch FIFO (1PF). The L2 OzQ and I PF requests arbitrate for access to the data
array and the L3/system bus.

The L2 data array has 16 banks which are each 16 bytes wide. This allows for multiple
simultaneous accesses provided each access is to a different bank. Floating-point loads may issue
from the L2 OzQ and access the L2 data array four at atime since the L2 has four datapaths to the
FP units and register file. The L2 does not have direct datapaths to the integer units and register
file; integer loads deliver dataviathe L1D, which has two datapathsto the integer unitsand register
file. Stores may issue from the L2 OzQ and access the L2 data array four at a time provided they
are dl to different banks.

Thefill path width from the L2 to the L1D and the L1l is 32 bytes. Thefill bandwidth from the L3
or memory to the L2 is 32 bytes per cycle. Four 32-byte quantities are accumulated in the L2 fill
buffers, then the 128-byte cache line is written into the L2 in one cycle, thus updating both tag and
data arrays. Note that an NRU algorithm is used for cache line replacement.

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 53

Memory Subsystem In'te|®

6.7.1

6.7.2

6.7.2.1

6.7.2.2

54

The L2 cacheis not inclusive of the L1D and L1l caches. The L2 maintains state information for
each line, tracking if the data stored is modified (M), exclusive (E), shared (S), invalid (1), or
pending update (P). Thisallowsthe L2 to use the MESIP protocol to maintain cache coherency and
track victimized lines.

L1D Requests to L2

Every cycle, the L 1D may issue up to four requests to the L2. These requests may be L1D
|oad/store misses, L2 recirculates, L 2 fills, instruction fetches, or snoops. The L2 tags are true four
ported and are part of the L1D pipeline. Thisallowsall four L 1D load or store requests to access
the L2 tags and determine if they are an L2 hit or miss before being allocated into the L2 queuing
structures. Thisfeature allows L2 missesto be identified and quickly passed on to the system
bug/L 3. It also lowers the latency of L2 hit requests.

All L1D load, store, semaphore requests are placed in the L2 OzQ. All L1l instruction misses,
which are issued through the L 1D to the L2, are placed in the | PF where they arbitrate against the
L2 OzQ for accessto the L2 data arrays and the system bus/L 3. Other requests coming from the
L 1D such as snoops and fills are transitory and are not queued.

Read (load) operations of the L2 data array occur three cycles before awrite (store) of the L2 data
array. This timing relationship becomes important when determining load/store data array
conflicts.

The L2 provides 16 fill buffers to track L2 misses. Each L2 miss may result in modified data
eviction. The L2 provides 16 victim buffersto hold victim data; however, only 6 L2 victims may be
outstanding at atime.

L2 0zQ

The non-blocking nature of the L2 is made possible by the L2 OzQ. This structure holds up to 32
operations that cannot be satisfied by the L1D. Theseinclude all stores, semaphores, uncacheable
accesses, L 1D load misses, and L 1D unresolved conflict cases. The L2 cache design requires fewer
than 32 L2 OzQ entries to hold the maximum number of L1D requestsin conflict-free cases.
However, there are many conflict cases within the L2. These cases may increase request lifetimes
inthe L2 OzQ. Thus, the additiona entries allow the L 1D pipeline to continue to service hitsand
make additional requests of the L2 while the L2 resolves the conflicts. The conflicts increase the
L2 latency and make L2 latency prediction impossible.

L2 OzQ Allocation and Deallocation

The L2 OzQ control logic allocates up to four contiguous entries per cycle starting from the last
entry allocated the previous cycle. If there are too few entries available, the L1D pipelineis stalled
to prohibit any additional operations being passed to the L2. Requests are removed from the L2
0zQ when they complete at the L 2 - that is when a store updates the data array, when aload returns
correct datato the core, or when an L2 miss request is accepted by the system bus/L 3.

L2 OzQ Behavior

The L2 OzQ control logic enforces architectural ordering requirements; and in instances where the
architecture allows, operations may complete out of order. An operation blocked due to conflict or
issue restrictions does not block younger operations from completing. Thisalowsfor high

resource utilization within the L 2 resulting in a performance benefit. Additionally, the out-of-order

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

6.7.2.3

Memory Subsystem

issue alows the L2 to quickly recover from circumstances where the L2 control logic was
temporarily not able to retire requests.

The out-of-order and non-blocking nature of the L2 OzQ has the effect of removing any time

rel ationships between operations. For example, if the code generator separates two operations by
4 cycles, they will appear 4 cycles apart inthe L1D pipeline. However, conflicts may keep the first
operation from issuing immediately and forceit to wait in the L2 OzQ. This situation may result in
the second operation actually completing in the L2 before the first operation, assuming no ordering
restraints, despite their 4 cycles of separation in the code stream.

The latencies of the L2 hit accesses are typically 5, 7, or 9+ cycles. These several latencies arise
from the fact that some operations can issue and accessthe L2 data array at different times
depending on the resources required and what preceded the request. The lower latencies come from
allowing L1D request to access the L2 data array before they are alocated in the L2 OzQ. These
arethe 5- and 7-cycle L2 OzQ bypass. All latencies listed as 9+ are for operations that cannot take
these bypasses and must allocate into the L2 OzQ and then later issue from the L2 OzQ to access
the L2 data array.

5- and 7-Cycle Bypass

New L 1D requests may take the 5-cycle bypass of the L2 OzQ and issue directly to the L2 data
array provided there are no conflicts with older operations in the L2 OzQ. This bypass may be
granted to the entire issue group provided there are no conflicts within the issue group. If aconflict
occurs, the older request will take the bypass while the younger requests may not. Semaphores will
never take a5 or 7 cycle bypass and have a minimum latency of 9 cycles.

L2 bank conflicts will be discussed in Section 6.7.3, but they are used here in an example of how
the L2 re-orders request to give the lowest possible latency. Conflicts typically are due to multiple
requests for the same L 2 data array (bank conflict). Consider the an L 1D request (issue) group
below:

Idfs f20 = [0x004] (L2 Bank 0)
ldfs f21 = [0x008] (L2 Bank 0)
ldfs f22 = [0x00c] (L2 Bank 0)
I dfs f23 = [0x010] (L2 Bank 1)

Thefirst load will take the 5-cycle bypass. The bank conflict between the first and second load will
prohibit the second and third loads from taking the 5-cycle bypass. The fourth load will also take
the 5-cycle bypass since there is no bank conflict with the older requests or architectural ordering
requirements.

When arequest is kept from taking the 5-cycle bypass, the next choice isthe 7-cycle bypass. The
bank conflict between thefirst and second load will keep the second and third load from taking the
5 or 7-cycle bypass.

The situation becomes more complicated when the instructions above are followed by more
instructions to be satisfied by the L2. Consider the issue group of loads from the previous example
which isimmediately followed by the following issue group of loads:

ldfs f25 = [0x014] (L2 Bank 1)

| dfs f26 = [0x018] (L2 Bank 1)

I dfs f27 [0x01c] (L2 Bank 1)

| df s f28 = [0x020] (L2 Bank 2)

In this example, the f20 and 25 loads take the 5-cycle bypass. The f21, 22, and f23 loads will try
to take the 7-cycle bypass. However, before they can take the bypass, the new request group with
25, 126, f27, and 28 comes aong. In thisissue group, f25 and 128 take the 5-cycle bypass. Doing

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 55

Memory Subsystem In'te|®

6.7.2.4

6.7.3

56

so blocks the older issue group from taking the 7-cycle bypass. Those requests must then issue
from the L2 OzQ. Thisincreases their minimum latency from 6 to 12 cycles. The latencies of the
operations would be as follows (noted in parenthesis after the load):

I dfs f20 = [0x004] (6)

ldfs f21 = [0x008] (12)

I dfs f22 = [0x00c] (13)

I dfs f23 = [0x010] (6)

Idfs 25 = [0x014] (6)

| dfs f26 = [0x018] (13)

I dfs f27 = [0x01lc] (14)

I dfs f28 = [0x020] (6)

L2 OzQ Issue

Every cycle the L2 OzQ searches for requests to issue to the L2 data array (L2 hits), the system
bus/L 3 (L2 misses), or back to the L 1D for another L2 tag lookup (recirculate). See Section 6.7.3
for more information on L2 cancel conditions and Section 6.7.4 for more information on L2
recirculate conditions.

The L2 canissue up to four L2 hit accesses per cycle provided there are no conflicts among them or
among earlier issued operations. The conflictsfor L2 hitsinclude L 2 data array banks, register port,
L1D fill, and ordering. In the case of the L1D fill, only one such load may issue. Also, sincethe L2
usesthe L1D register return paths for loads, only two loads can issue per cycle.

The L2 can issue only one access to the system bus/L3 at atime. An L2 missin the same L1D
request group asan L 2 hit should be on the MO port to have the shortest L3 latency. If the missison
another port, its latency will increase dightly.

The system bus/L 3 control logic will then either accept or reject the request based on system
bus/L 3 resources and conflict cases. Once the request is accepted, it may be removed from the L2
0zQ. The L2 OzQ pipelines L2 miss requests; it does not wait for the system bus/L 3 to accept a
request before issuing another request.

L2 Cancels

The L2 cancels generally apply only to requests taking a5 or 7 cycle L2 OzQ bypass. Thisis
because in most cases, the issue logic considers the conflict cases and holds off issue until the
conflict is resolved. The best example of holding off issue from the L2 OzQ are bank conflicts. All
the information needed to avoid all possible issue time conflicts may not be available and some L2
0zQ issued requests must be later cancelled and re-issued. When an operation taking a bypass gets
canceled, it will re-issue from the L2 OzQ since the bypasses are only available to L 1D request
groups. When an L2 OzQ request isissued and then later cancelled, itslatency will increase by four
cycles.

The cancel logic may also cancel or block issue in more instances than expected due to issue logic
simplification or unavailable information. For example, requests that are recirculated will be
included in cancel/block calculations for other instructions considered for issue, or the issue logic
will try to issue up to four requests that need to recircul ate even though it cannot recirculate more
than one request.

A 5or 7 cycle bypassis more likely to be canceled for P3 operations because it is the youngest in
the issue group and due to events external to the L2 such as System Bus/L 3 returns and snoop
requests. PO requests are the least likely to be canceled because these are the oldest instructionsin
the issue group.

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

6.7.3.1

6.7.3.2

6.7.4

Memory Subsystem

There are many reasons to cancel or block L2 OzQ issue. The reasons are placed into two
categories: those that are predictably avoidable and those that are not.

Predictably Avoidable Cancel Conditions

L2 Dataarray conflicts: The data array has 16-byte wide banks. Bits 7:4 of the address determine
the bank. Any requests with the same bank, regardless of cache line, are candidates for a bank
conflict. Any L1D request group with multiple loads targeting the same bank will see the younger
requests cancelled or the L2 OzQ issue blocked. This also applies to multiple stores targeting the
same bank.

Since L2 loads and stores access the L2 data array at different times, aload and store in the same
reguest group cannot have bank conflicts; however, thereis potential for load and store bank
conflicts between entirely different L1D request groups. Store requests access the data array three
cycles after aload would. This meansthat a store issued at time X may block or cancel aload that
would issue at time X+3 if they both access the same L2 bank.

The following examples show how the conflict logic considersthe L2 data array accesstime to
determine bank conflicts. The following two examples do not have bank conflicts:

1d8 r20 = [0x008] ;;

I d8 r21 = [0x010]

and:
st8 [0x008] = r20
I d8 r21 = [0x010]

However, the following example shows abank conflict between the store and the last load, but not
between any other requests. :

st8 [0x000] =r0 ;;

1d8 r19 = [0x000] ;;

1 d8 r20 [0x008] ;;

| d8 r22 = [0x120]

Bank conflictsdue to L1D fill requirements are slightly less predictable. These bank conflictsarise
from the fact that an L 1D fill requires 64 bytes of data and hence, four banks at atime.
Additionally, the data path to the L1D can only support one fill every two cycles. These are not
predictable because not all L1D misseswill request an L1D fill. Section 6.6.1 has more information
on which reguests can require an L1D fill.

Unpredictably Avoidable Cancel Conditions

There are some bank conflicts that are generally unpredictable. These events are tightly coupled
with the unpredictable events of system bus and L3 data returns. The unpredictable cancel
conditions may result in unexplained L2 latency increases.

L2 Recirculate

The L2 OzQ will need to recircul ate requests whenever the request does not have aclear indication
of hit or miss, or the required resources to complete an L2 miss are unavailable.

The most predictable reason for arequest to recirculate is that the request missesalinethat is
aready being serviced by the system bus/L 3, but has not yet returned to the L2. The L2 only retires
L2 hitsand primary L2 missesto an L2 line. It does not retire multiple L2 miss requests; additional
misses remain in the L2 OzQ and recirculate until the tag lookup returns a hit. The request then

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 57

Memory Subsystem In'te|®

6.7.4.1

6.7.5

6.7.6

58

issues from the L2 OzQ and returns data (for aload) or updates the array (for a store) as a normal
L2 hit request.

Ifetch and Recirculation

There is one significant exception to this secondary L2 miss recirculate condition. | f et ch
instructions have been optimized to avoid allocation in the L2 OzQ if they meet the following
criteria:

* Secondary accessto an L2 miss.

¢ Will not fill the L1D.

Sincethesel f et ch instructions are not allocated into the L2 OzQ, they cannot recirculate. The
only way to guarantee that an | f et ch instruction will not fill the L1D isto place temporal hints
suchas.nt1,.nt2,or.nta.

Memory Ordering

Itanium architecture memory ordering requires that a request with acquire semantics must reach
visibility before any other younger operation. A request with release semantics must not reach
visibility before older operations.

The L2 issue logic enforces the architectura release ordering semantic by blocking issue of a
release request until it isthe oldest operation in the L2 OzQ. The issue logic may issue a release
operation that is not the oldest, but then cancel and re-issue.

If the ordered operation is not an L2 hit, the L2 control logic can speculatively make a system
bus/L 3 request of the line or transform the request to a prefetch. If the other L2 OzQ entries
proceeding the ordered request do not conflict, the prefetch will have the benefit of starting the
access early without violating ordering requirements. If there are conflicts, the request is re-issued
to ensure proper ordering.

Since the L2 is responsible for maintaining architectural ordering, all loads that are in the shadow
of al d. acq must be seen by the L2. Thus, they are forced to missthe L1D until thel d. acq has
achieved visibility.

L2 Instruction Prefetch FIFO

The Instruction Prefetch FIFO (IPF) isan 8 entry queue to hold L1l requests. Up to seven of these
eight entries may contain prefetch requests. One slot is always reserved for ademand request. Just
like the L2 OzQ, the IPF can have requests that are L2 hits, L2 misses, bank conflicts, or
recirculates. The |PF faces the same issue restrictions for each of these requests as the L2 OzQ
does. However, unlike the L2 OzQ hit requests, only one IPF L2 hit may be issued to the L2 data
array per cycle. Thisis dueto the fact that all IPF requests will return datato the L 11 cache and the
data path back to the L 1l can only support one fill per cycle.

Since the L2 supports both instruction and data accesses, all L2 issue control logic chooses among
instruction and data requests according to Table 6-6.

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

intgl.

Table 6-6.

6.7.7

6.7.7.1

Table 6-7.

6.8

Memory Subsystem

L2 Issue Priorities

Priority Request

Demand Instruction Fetch (IPF)

Demand Instruction Fetch (7 cycle bypass)

Data (L2 OzQ)

Data (7 cycle bypass)

Prefetch Instruction Fetch (IPF)

Prefetch Instruction Fetch (7 cycle bypass)

N Ol W[N]

Data (7 cycle bypass)

L2 Load and Store Considerations

Some memory requests may affect each other even when separated in time. This sections covers
some possible load/load, |oad/store, store/load, and store/store interactions for both the L2 cache.
Since the L2 OzQ allows out of order issuing, the L2 OzQ will re-order requeststo fully utilize the
L2 dataarraysin satisfying requests. Asaresult, any static timing placein the code stream may not
have the desired result on L2 behavior, however there are still actions the code generator can take
to increase performance.

Effective Releases

The L2 cache deals with load/store, store/load, and store/store conflicts by ensuring that the issue
order in the L2 OzQ is the same as the program order of the operations. The L2 control logic
leverages the architectural ordering mechanismsthat already exist to address the possible conflicts.

When the L2 OzQ accepts a new request, it checks the physical address bit 49:2 against all older
incomplete requestsin the L2 OzQ. If amatch exists and a conflict results, the control logic applies
architectural release semantics to the incoming request. Thisis called effective release. The
effective release association remains until the operation completes and causes the L 2 issue and
conflict logic to cancel the request until it isthe oldest request in the L2 OzQ.

Table 6-7 summarizes the addresses and operation types that can experience an effective release.

Effective Release Operations
Incoming Matching Effective
Request Request Release

Load Load No
Load Store Yes
Store Load Yes
Store Store Yes

System Bus/L3 Interactions

All requests that the L2 cannot satisfy reach the system bus/L 3 as a Read Line (RL) or Read For
Ownership (RFO) request. The RL request is used for code and common load operations. The L2
may receive thelinein M, E, or Sfor RL requests depending on L 3 state or the snoop response
provided on the system bus. The RFO request indicates the L2 intends to modify the line to store

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 59

Memory Subsystem In'te|®

data. Storesaswell as| f et ch. excl and| d. bi as instructionsresult in Read For Ownership
requests. These requests will waysexist inthe M statein L2. Table 6-8 summarizes this behavior.

Table 6-8. System Bus/L3 Requests and Final L2 State

6.9

60

L3 State System Bus
L3/System Bus Request L2 Request
S E M HIT No Hit
Read Line Code Read S E M S
Data Read S E M S
Read For Ownership store Miss M M M
Ifetch.excl Miss M M M n/a
Id.bias Miss M M M

The L2 may make partial line requests of the system bus, but thisisonly for UC attribute accesses
and is not part of this discussion because they are neither coherent nor a concern for performance.

The L2 will make one RL or RFO to the system bus/L 3 per cycle. Each of these requests will have
adirty victim associated with it when the L2 way chosen for victimizationisinthe M state. The L2
issues a request to the system bus/L3 and then later confirms the request. This protocol existsto
alow issuing requeststo the system bus/L 3 that are later cancelled and/or recirculated. The L2 may
make a request, but will not confirm arequest if there are insufficient resources available. The L2
will not issue two requests to the same L2 line. A request that is not confirmed will wait at least
four cycles beforeit isissued again.

The system bus/L3 will decide if the request is accepted and inform the L2 based on address
conflicts, available resources to support the read request and the associated dirty victim. The L2
will then deallocate the request from the L2 OzQ if the system bus/L 3 accepts the request. An L2
reguest may be rejected (see Section 6.10). A rejected request will wait at least four cycles beforeit
isissued again.

When the system bug/L 3 isready to deliver datato the L2, it will be indicated to the L2 and the L2
will prepare to receive the data. The datareturns come 32 bytes (achunk) at atime from the system
bus/L 3 with the critical chunk first. L3 returns have higher priority than system bus data returns
and come consecutively. In many instances, an L2 miss may also cause an L1D fill. Sincethe L1D
line width isonly 64 bytes, there is sufficient datato cause an L 1D fill when only two chunks have
been received from the system bus or L3. These requests must access the L1D pipeline and may
block core requests from entering the L1D pipeline during that cycle. If there aretwo L 1D fillsfor
an L2 miss, another fill will occur when the last two chunks have been received by the L2.

Third-Level Unified Cache

The third-level unified cache (L3) isaunified, 9 MByte, 18-way set associative cache with a
128-byte line size. Some versions of Itanium 2 processor may have L3 cache sizes of 6, 4, 3, or
1.5 MByte. Latencies and set-associativity may vary between the different cache sizes and models.
See Chapter 2 for exact latency and set-associativity numbers. These caches are alikein all other
respects.

All L3 accesses are for the entire 128 byte line — no partial line accesses are supported. The access

latency is 12, 14, or more cycles. This latency depends on how quickly the L2 issues the request
and the activity of the L3 at the time of the request.

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

6.10

Memory Subsystem

On the Itanium 2 processor, L3 accesses are fully pipelined and thus have a much higher effective
bandwidth than the L3 on the Itanium processor. The L3 tag array is single ported and is pipelined
to allow anew tag access every cycle. The L3 data array is also single ported, but requires up to
four cyclesto transfer afull line of datato the L2 cache or to the system busin the case of an L3
dirty victim.

The L3 is non-blocking and has an 8-entry queue to support multiple outstanding requests. This
queue orders requests and prioritizes them among tag read/write and data read/write to achieve the
highest performance given the operations required.

System Bus

The Itanium 2 processor with 3M and 6M L 3 cache system bus operates at 200 MHz and is
comprised of multiple sub-busses for various functions, such as address/request, snoop, response,
data, and defer. The data busis 128 bits wide and operates source synchronously, achieving a peak
bandwidth of 400 million memory transactions or 6.4 GB per second. The Itanium 2 processor with
9M L 3 cache has multiple system bus speed options - 200 MHz, 266 MHz, and 333 MHz. The
operating frequency is the only change in the system bus. These faster speeds now allow a peak
bandwidth of 8.5 GB and 10.6 GB per second.

The system bus control logic is an In Order Queue (10Q) and an Out of Order Queue (00Q),
which tracks all transactions pending compl etion on the system bus. The 10Q tracks the in-order
phases of areguest and isidentical to al processors. The OOQ contents hold only a processors
requests that are deferred. The IOQ can hold 8 entries while the OOQ can hold 18 requests which
allows for amaximum of 19 transactions to be outstanding on the system bus from asingle
Itanium 2 processor.

L2 requests that have not been completed (i.e., have not accessed the L3 nor completed a data
phase on the system bus) are maintained in structures of the following sizes:

* 16 outstanding read requests from L 2.
* 6 outstanding dirty writeback requests from L2.

* 6 outstanding L3 writebacks (i.e., replacement of a dirty line) to be serviced by the main
memory.

¢ A combination of 16 outstanding L 3 writebacks or L3 castouts (i.e., replacement of a clean
line depending on the coherence mechanism, this might incur memory traffic) to be serviced
by the main memory.

* Two 128-byte coalescing buffers to support WC stores.

Read transactions (this includes store instructions that miss the L2) are placed in one of the 16 bus
request queues (BRQs). Each of these may then be sent to the L3 to see if the L3 can satisfy the
request. In the case where the request is also an L3 miss, the request is scheduled to generate a
system bus request (either Bus Read Line or Bus Read Invalidate Linefor stores). When the system
bus responds with the data, the line iswritten to the L2 and L3 based on its temporal locality hints
and type of access.

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 61

Memory Subsystem

62

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

intel.

Branch Instructions and Branch

Prediction

7

Table 7-1.

The Itanium 2 processor employs both static and dynamic methods for branch prediction. For static
branch prediction, the Itanium 2 processor uses the hint completers from the branch instructions.
For dynamic prediction, the Itanium 2 processor uses several hardware structures.

This chapter describes how branch prediction affects software execution. The front-end instruction
fetching is decoupled from the back-end instruction execution through an 8-bundle instruction
buffer. For more detail regarding the instruction buffer, see Appendix A, “Itani um® 2 Processor
Pipeline.” Throughout this chapter, the term ‘bubble’ refersto cycles for which the front-end
cannot deliver useful data, because the penalty may never translate to alossin performance if there
is another event blocking the back-end from retiring instructions. In the case where the back-end is
waiting for the front-end, the penalty isa stall.

Table 7-1, “Branch Prediction Latencies’ summarizes branch prediction latencies for the Itanium 2
processor. Notice that in the case of a correctly predicted IP-relative branch, thereis no front-end
bubble.

Branch Prediction Latencies

Branch Type Whether Prediction Target Prediction Penalty
IP-relative Correct Correct 0 Front-end bubbles
IP-relative Correct Incorrect 1 Front-end bubble
Return Correct Correct 1 Front-end bubble
Return Correct Incorrect 6+ Pipeline stalls
Indirect Correct Correct 2 Front-end bubbles
Indirect Correct Incorrect 6+ Pipeline stalls®
Loop Incorrect N/A 7+ Pipeline stalls?
Any type Incorrect N/A 6+ Pipeline stalls®

1. The + refers to the fact that some branches may cause the front-end to stall. This is only for incorrectly predicted short (up to
16 bundles) forward branches. The additional latency will be at most 8 cycles and may be less depending on how many
branches were seen by the front-end after the mispredicted branch was seen by the front-end.

The branch prediction microarchitecture in the Itanium 2 processor is significantly different from
that of the Itanium processor. Branch prediction is closely tied to the L1l cache which allows for
the zero bubbl e resteer.

Single-cycle branches experience a stall once every two cycles (i.e., a one-cycle loop takes four
cyclesto makethreeiterations). Single-cycle loops should be avoided. It is also possible that astall
may occur if several branches are encountered in succession. For example, if the front-end sees a
branch every cyclefor 3 cycles, one cycle of stall may occur.

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 63

Branch Instructions and Branch Prediction |nte|®

7.1

7.2

64

Branch Prediction Hints

Information about branch behavior can be provided to the processor to improve branch prediction.
This information can be encoded through branch hints as part of abranch instruction. Branch hints
do not affect the functiona behavior of the program and may be ignored by the processor.

Only hints specified within a branch instruction are used for branch prediction. Hints on the br p or
nmov br instructions are ignored by the branch predictor.

For the Itanium 2 processor, branch hintsare . spt k, . spnt,. dpt k, or. dpnt (sp=static
prediction, dp=dynamic prediction, t k=taken, nt =not taken). The terms “static” and “dynamic”
hints refer to the code generator’s confidence in the branch behavior. For example, . spt k means
the code generator is very sure that the branch will be taken, whereas. dpt k means that the code
generator thinks the branch will be taken, but it is not so confident.

The impact of these branch hints depends on other branches in the two-bundle window and other
branch information maintained in the processor. The consequenceisthat abranch with a. dpnt
hint may be predicted taken the first time seen. The processor will quickly recover from this and
correctly predict this branch in the future.

Theuse of . dpxx isrecommended as default, unlessthe loopisact op or cl oop inwhich case
. SpXX is recommended.

The .spxx hint isalso important for very short, 1 or 2 cycle, loops. With static prediction hints,
these loops will not wait for the machine to generate a new hint prediction, but will instead use the
take or not-taken from the static hint. If dynamic hints are used in the short loops, the processor
may stall each iteration that the branch prediction requires updating.

The branch prediction hints have a an anomalous behavior when used in .bbb bundles. Normally,
the branch hints of each branch instruction will effect only that specific branch. However, a.bbb
bundle will always use the branch hints provided on the slot 0 branch for the slot 1 and slot 2
branches. There are afew waysto avoid this. Thefirst isto break up the .bbb bundle into two other
bundles. Unfortunately, this may not be good for code density and other solutions such asusing a
.dpxx hint or a.spxx with a.clr completer on the slot 0 branch should be considered.

Indirect Branches

The predicted targets of indirect branches, other than returns, are extracted from the source branch
register of the indirect branch rather than from a hardware table. This has several implications.

There is aways a penalty for indirect branches on the Itanium 2 processor. A two-cycle front-end
bubble is seen for a correctly predicted indirect branch. An incorrect taken/not taken or address
predictionis 6 or more pipeline stalls. The address prediction is based on the contents of the branch
register referenced by the branch as seen by the front-end. An in-flight update to the branch register
will not be seen by the front-end and the predicted target may be wrong. Correct target prediction
requires that the branch register write precede the indirect branch by several cycles. This distance
varies since the front and back-ends of the pipelines are decoupled. A code generator can minimize
the impact of thisin the following ways:

* Separate the write and indirect branch by at least 6 front-end L 1l cache accesses.

* Add an additiona write to the branch register above the true branch register writer to hint the
target.

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

7.3

Branch Instructions and Branch Prediction

* Usedifferent branch registersfor each indirect branch instance to minimize conflicts with
other indirect branches.

Perfect Loop Prediction

In many cases, the perfect loop predictor can correctly predict the back-edge branch of a counted
loop, i.e., cl oop or ct op type branches, including the fall-through instance, aswell as the loop
back iterations. Unlike the Itanium processor, the Itanium 2 processor does not need br p to
accomplish this.

The Itanium 2 processor uses the PLP only for the final iteration of the loop. Theinitial loop
predictions are decided on dynamic or static information based on the hints used.

If the last branch of aloop is predicted correctly, there might still be aone- or two-cycle bubble in
order to get this correct prediction. The smaller the number of loop iterations, the more likely itis
that there will be atwo-bubble resteer. Conversely, the larger the loop iteration, the morelikely it is
that there will be a zero-bubble resteer. The PLP uses the current valuesof ar . | ¢ and ar . ec for
prediction, so any writers to these registers should be well ahead of the counted |oop branch to
assure correct prediction.

In some instances, the Itanium processor required that ar . ec be set to 1 for correct prediction.
The Itanium 2 processor does not have this same requirement and actually expectsar . ec =0
when there is no epilog.

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 65

Branch Instructions and Branch Prediction |nte|®

66

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

intel.

Instruction Prefetching 38

8.1

The Itanium 2 processor supports several forms of instruction prefetching. Instruction prefetch is
defined to be the act of moving instruction cache lines from higher levels of cache or memory into
L 1I. Streaming prefetching initiates hardware prefetching of the next cache lines, either sequential
or at thetarget of predicted taken branches. Hint prefetching allows software to specify a particular
ling, or lines, to be prefetched. On the Itanium 2 processor, it is expected that instruction
prefetching will be an effective way to reduce instruction cache misses since the code generator has
awide degree of control over the prefetch agent and the Itanium 2 processor cache design
specifically considered prefetching.

Streaming Prefetching

Streaming prefetching isinitiated by using the . many completer on branch instructions. If the
front-end processes a branch with a. many completer, the prefetch engine will continuously issue
prefetch requests, at one request per cycle, for subsequent instruction lines, into the prefetch
pipeline. The prefetch request is checked against the L1l and the L1 ITLB. If it hitsinthe L1 ITLB
and missesin the L1I, the request is sent to the L2, otherwise it is discarded. Thelines are
prefetched starting at the branch target plus 64 or 128 bytes (depending on the alignment of the
branch target). Streaming prefetching continues until one of the following stop conditions occurs:

* A predicted-taken branch is encountered by the front-end
* A branch misprediction occurs

* A br p instruction without the . i np completer is encountered by the front-end®

The L1l cache design allows both fill and lookupsto occur at the same time. Thus, the lifetime of a
request in the ISB istypically very small. This allows the prefetch engine to prefetch instructions
with little chance that the line will get overwritten beforeit is used. If the branch is predicted taken
by the front-end, prefetching will be initiated in the front-end. If the branch isincorrectly predicted
not-taken by the front-end, prefetching will beinitiated by the back-end when the prediction is
corrected. However, if the opposite case occurs, i.e., the branch isincorrectly predicted taken in the
front-end, prefetching will be terminated and it will NOT be restarted when the back-end corrects
the prediction. Finally, if the branch isincorrectly predicted-taken by the front-end, prefetching
will be terminated when the prediction is corrected by the back-end.

A .many prefetch stream may be halted by an L1l TLB miss. The event does not cancel the
prefetch, but suspends the prefetch until the L11 TLB fill completes at which point the prefetch
continues until stopped from one of the reasons described above.

1. A br p instruction suggests that an associated br.many is around the corner. The assumption isthat the prefetch engine has already prefetched

past the br.many, and additional prefetches would be useless. The reason that a brp.imp does not terminate prefetching is related to Itanium

®

processor code. In the Itanium processor, brp.imp instructions are used to predict branches and might not have any association with abr.many.

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 67

Instruction Prefetching In'te|®

Table 8-1.

8.2

68

Table 8-2.

Summary of Streaming Prefetch Actions
Predicted Taken Predicted Not-Taken

Actually Taken Any current streaming prefetch is stopped in the | Any current streaming prefetch is

front-end. stopped in the back-end.

If the branch has a .many completer, a new If the branch has a .many completer, a

stream is started by the front-end. new stream is started in the back-end.
Actually Any current streaming prefetch is stopped in the | No effect on any current streaming
not-Taken front-end. Itis NOT restarted when the prefetch.

misprediction is detected. A new stream in NOT started.

If branch has a .many completer, a new stream
is started in the front-end. It is terminated when
the misprediction is detected by the back-end.

Hint Prefetching

Hint prefetching isinitiated with the br p or rov br instructions. Unlike the Itanium processor,
the Itanium 2 processor prefetch initiation does not affect branch prediction state. However, it has
this same restriction as the Itanium processor: br p instructions must be on the last instruction slot
(dlot 2) of abundle in order to be processed; otherwise, it isignored. br p instructions have no
associated branch prediction effects. Table 8-2 illustrates the prefetching mechani sms associated
with the branch hints.

Prefetch Mechanisms

Branch Hint Prefetch Mechanism
brp.(sptk,loop,dptk).few Normal prefetch of 1 cache line generated.
brp.(sptk,loop,dptk).many Prefetches 2 cache lines from target.

brp.(sptk,loop,dptk).imp.few Flushes prefetch virtual address buffer (PVAB) and prefetches 1 cache line.

brp.(sptk,loop,dptk).imp.many | Flushes prefetch virtual address buffer (PVAB) and prefetches 2 cache lines.

move_to_br.(sptk,dptk).few All other fields ignored, prefetches 1 cache line.

.many hint Streaming prefetches triggered off predicted taken IP-relative branches.

A . f ewcompleter will prefetch one-half or one L2 line, depending on the alignment of the
associated branch target, and a. many completer will prefetch 1.5 or 2 L2 lines, depending on the
alignment of the associated branch target. Hint prefetches are sent to the 8-entry prefetch virtua
address buffer (PVAB). Up to 2 hint prefetches can be sent to the PVAB in each cycle.

In agiven cycle, if the prefetch pipelineisnot stalled and if abr . many is not active, a prefetch
request isremoved from the PVAB. The prefetch request isthen checked against the L1l andthe L1
ITLB. If it hitsinthe L1 ITLB and missesinthe L1l, itissent to L2, otherwiseit is discarded. The
intent isto use hint prefetches to prefetch the first “chunk” of instructions at the target of a branch
and to use streaming prefetching to prefetch the subsequent instructions. In order to fully hide the
latency of an L2 hit, ahint prefetch should precede a branch by 9 fetch cycles. If abr . many is
preceded by abr p. many, there will be some overlap between the prefetches generated by the two
instructions. While this overlap is wasteful, there is benefit in having more lines prefetched earlier
(as opposed to presaging the br . many by abr p. f ew). br p. f ew prefetches might be useful in
conjunction with streaming prefetches as described in Section 8.1.

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

8.4

Instruction Prefetching

Prefetch Flush Hints

Certain forms of br p instruction have the side effect of flushing the contents of the PVAB and
possibly the prefetch pipeline. These are provided to give the compiler some control over the state
of prefetching.

* brp. few i nmp-will removeall br p. f ewprefetchesfromthe PVAB (but not any already in
the prefetch pipeline).

* brp.exit.inp-will removeal prefetches from the PVAB and those in the prefetch
pipeline, and additionally will stop the streaming prefetch engine (and therefore will stop
br. many, br p. many and br p. exi t prefetching).

* brp.* - (br pwithout the. i np completer) will cancel any streaming prefetches initiated by
abr . many instruction.The intent is to alow the compiler to stop abr . many from
prefetching too far.

The flushing side effect isin addition to the normal behavior of these prefetch instructions. Note
that flushing a prefetch once it reaches the pipeline may not be effective (i.e., the prefetch may till
be issued to the L2 and beyond).

The brl Instruction

The Itanium 2 processor implements the br | instruction that provides 64-bit relative branches.
These long relative branch instructions have less cost than in the Itanium processor, but they are
higher cost than the short relative branch br instructions. Specifically, the branch prediction
mechanisms in the Itanium 2 processor do not calculate the predicted target correctly for br |
instructions unless the target is set when the L1l cache lineisallocated. Thus, if abr | prediction
target is aliased with another branch in the bundle pair, the target will be incorrect and the branch
will see afull branch mispredict penalty and it will not be fixed.

Thebr | instruction is much more efficient than multiple short jumps despite this cost. However,
The linker should place br | instructions only where they are specifically needed.

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 69

Instruction Prefetching In'te|®

70

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

intel.

Optimizing for the
ltanium® 2 Processor 9

9.1

9.2

This chapter isasummary of conclusions that can be drawn from important points noted in earlier
chapters. These guidelines are not applicable in al situations and profiling should be used to guide
the use of optimizations.

Hints for Scheduling

Observing the following heuristics whenever possible will minimize the chances of implicit stops
or unexpected dispersal related stalls:

¢ Schedule the most restricted instructions early in the bundle. This lessens the chance that a
generic subtype instruction will consume a port which is needed by a later more restricted
instruction.

* Insome cases, placing A-typeinstructionsin | slots rather than M slots might achieve denser
bundling. If thisis done, place any I-typeinstructions (which must go in | slots) earlier in the
issue group when possible. This way, the later instructionsin | dots can be issued to available
M ports. Since not al processors support this (such as the Itanium processor), it is preferable to
place A-typeinstructionsin M sots.

* Mot floating-point load types can be issued to any of the four memory ports, not just MO and
M1. Control speculation-related (advanced and check) and pair floating-point loads are the
exceptions which can only be issued to ports M0 and M 1. When scheduling a mix of FP loads,
advanced FP loads, integer loads, and | f et ch instructions, ensure that regular FP loads are
scheduled late in the issue group so that if necessary, they can beissued to the M2 and M3
ports. Thisfreesthe MO and M1 portsneeded by | f et ch instructions or more restrictive load
types.

¢ Avoidusing nop. f . It risksunintended stalls due to outstanding long latency instructions. For
example, awrite to FPSR is a multiple-cycle operation. Any floating-point operation,
including anop. f , will stall until the write is completed.

* On the Itanium processor, MFl was a commonly used template to facilitate dual issue. There
are many other dual issue template pairs on the Itanium 2 processor so using thistemplate
should no longer be necessary.

Optimal Use of Ifetch

Thel f et ch instruction is key to achieving good performance on the Itanium 2 processor in many
memory-related situations. | f et ch allowsthe L1D to often be a hit for integer data. This has the
benefit of allowing the L1D cacheto filter requeststo the L2. Many L2 conflicts can be avoided by
ensuring integer loads hit in the L1D and thus, never are seen by the L2. The fewer requeststhe L2
sees, the fewer requests conflict.

| f et ch instructions require careful use. Carelessly placing | f et ch instructions may lower
performance. Refer to Chapter 6, “Memory Subsystem” for details regarding the Itanium 2
processor cache structures. The following guidelines were developed with regard to the memory
subsystem:

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 71

Optimizing for the Itanium® 2 Processor Inte|®

9.3

9.3.1

72

* The maximum number of outstanding | f et ch operationsto L3 or memory, the sum of both
data and instruction requests, may not exceed 16.

¢ | f et ch instructions are restricted to only memory ports MO and M1 while FP loads (not
| df pd or | df ps) can beissued on any of the four memory ports. Therefore, when mixing
| f et ch instructionswith FPloads, | f et ch instructions should be scheduled early in issue
groups. For example, if two FP loadsand an | f et ch areto be scheduled in the same cycle,
thel f et ch should be scheduled in the first bundle so that it will be issued on one of thefirst
two memory ports. If the two FP loads are scheduled first, the hardware will insert an implicit
stop beforeissuing thel f et ch instruction.

* Theltanium 21 f et ch. excl instruction will bring datainto the L2 cacheinthe M state.
The. excl completer should only be used when the data brought in by the | f et ch will
shortly be modified by store instructions.

¢ Theltanium 21 f et ch instructions will not bring the datainto the cache if aDTLB entry
providing trandlation and protection information is not available. To ensurethel f et ch
instruction completes a HPW walk and possibly generates a TLB translation or protection
fault, the. f aul t completer should be used. Since there may be high cost associated with
these events, the. f aul t completer should not be used for specul ative addresses.

¢ | f et ch instructions may have effectsin the cache hierarchy that make their use high cost.
These effects include:

— Acquiring L2 resources such asthe L2 OzQ.

— Arbitration for access to the L2 data arrays and thus becoming a candidate for an L 2 bank
conflict.

— Recirculation of thel f et ch in the case of a secondary L2 miss.

The effects of the L2 recirculate for a secondary L2 miss can be mitigated by placing. nt
completersonthel f et ch. The. nt hintskeepthel f et ch from causing an L1D fill and allows
thel f et ch to be removed from the L2 OzQ.

Inthecasewherean| f et ch hitsthe L2, it takes L2 OzQ resources, causes other request to
cancel, and may get canceled itself asif it actually reads the L2 data array regardless of the. nt
hint or actual need to fill the L1D.

Applying.nt hintsto| f et ch reguests also reduces the L2 banks required to satisfy thel f et ch
to only 1 bank. For temporal | f et ch instructions 4 banks may be required and such| f et ch
requests may have significantly increased probability of causing L2 bank conflicts.

Data Streaming

There are several methods to handle long, high-bandwidth data streams. This section lists severa
possible solutions and discusses some of the benefits and costs of each.

Floating-Point Data Streams

Floating-point dataresidesin the L2 cache. Here, thel f et ch. f aul t . nt 1 instruction should be
issued only once per L2 cache line for the source, andthel f et ch. faul t . excl . nt1
instruction should be issued only once per L2 cache line for the destination. The. f aul t
completer is used to ensure that the data enters into the cache hierarchy, even if it resultsinan L2
DTLB miss or VHPT miss. The. nt 1 completer ensures that the floating-point data will not
displace dataresidinginthe L1D. The. nt 1 completer also allowsan| f et ch instruction thatisa

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

9.3.2

9.3.3

Optimizing for the Itanium® 2 Processor

secondary L2 missto avoid alocation in the L2 OzQ. Thisis important for situations where the
design of the data streaming code cannot avoid additional requests to an L2 line without
performance loss. The. excl completer for the destination stream will ensure the datais ready to
be modified.

When datais accessed as an L 2 hit, care should be taken to avoid L2 bank conflicts among request
groups. Thisis necessary to ensure L2 5- and 7-cycle bypasses are available. Latency is not
generally a concern for floating-point code, however, in streaming situations, the lifetime of an
operation in the L2 OzQ coupled with the size of the OzQ may cause core stalls from the L2
control logic to think the OzQ is full. A lower latency means a shorter lifetime in the OzQ and
effectively more OzQ entries are available.

Integer Data Streams

Integer data streams are more complicated than floating-point streams because, in some instances,
getting the datainto the L1D will be important for performance. Streaming from the L1D presents
several problems. First, each load operation requires integer register return resources even if it
missesin the L1D. This makes it difficult for L1D misses to return data to the register file without
impacting the flow of new L1D misses. Second, each fill operation will take an additional cycle to
complete. Third, the need to fill the L1D eliminates an opportunity for the L2 OzQ to remove
secondary L2 miss| f et ch instructions. Thisissignificant becausethe L1D line sizeis half of the
L2sandonel f et ch per L1D line will result in at least one secondary L2 miss access for every
L2 line thus limiting L2 OzQ throughput.

One approach would be to use three separate | f et ch instructions. Anl fetch. fault.ntl
would bring the data into the L2. Later, when the dataisinthe L2, | f et ch. f aul t instructions
can hit in the L2 cache and bring the datainto the L1D. This makesthe | f et ch instructions
asymmetric and requires several load memory slots.

An optimization to the three| f et ch approach above would use only two separate

| f et ch. faul t instruction, but stage them such that the first will bring datainto L2 and the
L1D. Then, when the L2 isfilled from the first request, the second | f et ch can bring the datainto
the L1D without being asecondary L2 miss(theL2isfilled sothel f et ch isan L2 hit). Thisfrees
an additional load memory slot and makesthel f et ch instructions re-usable.

An outstanding L1D fill may beinvalidated by astoreto the sameline. Using | f et ch instructions
for even small data streams can result in a significant performance increase provided thel f et ch
fillsthe L1D before the store to the lineis seen.

Also, since dl loadsthat hit inthe L1D never adlocateinto the L2 OzQ, using | f et ch instructions
to ensure an L1D hit may also help performance by limiting L2 OzQ to only store data and

| f et ch requests. Thisrelieves pressure on the limited OzQ resources and reduces the possibility
of conflicts among OzQ entries.

Store Data Streams

Since store instructions are always seen by the L2, there is no benefit to bringing store destination
datainto the L1D. There are many benefitstousingan| f et ch. f aul t . excl . nt 1 completer
for destination streams. For instance, the. nt 1 hint allows secondary L2 missesto be removed and
the core is not slowed by the L1D fills. Also, the. excl hint ensuresthat the L2 datais ready to
receive the store data.

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 73

Optimizing for the Itanium® 2 Processor Inte|®

9.4

9.5

9.6

9.7

74

Control and Data Speculation

The Itanium 2 processor reduces the costs associated with control and data speculation in the
ALAT viafast deferral and low latency fix up. As such, additional performance may be realized by
tuning the code generation to aggressively use speculation. Some speculation considerations are
specific to the Itanium processor and do not apply to the Itanium 2 processor. If speculation is more
aggressive, then more callsto fix up code will be encountered. For the Itanium processor, the fix up
code was often moved to cold pages very far from the actual speculation. The heuristic for placing
fix up code near or far from the point of speculation should be revisited and include profile
information in the decision matrix.

Known L2 Miss Bundle Placement

Given the Itanium 2 processor design, it is slightly better to put instructions which are known to
miss the L2 cache on memory port O (allocate the first memory op in the issue group). Thiswill
alow, when possible, a specul ative request to be made to L 3. If the memory request that needs to
gotoL2isinM1, M2, or M3, then they will need to wait until they can be reissued out of the L2
0zQ.

Avoid Known L2 Cancel and Recirculate Conditions

The most predictable L2 cancel isan L2 bank conflict. These can be avoided by carefully
organizing L 2 accesses or by bringing the datainto the L1D with an| f et ch instruction and
avoiding the L2 entirely.

The most predictable L2 recirculateisfor secondary L2 miss accesses. These can be avoided by
using thel f et ch instruction to bring datainto the L2. Only | f et ch instructions that do not fill
L1D are not counted as a secondary access. If an| f et ch isthe primary L2 missand aload is the
secondary L2 miss, then the load will still need to recirculate, as it must eventually return data to
the core. It isimportant to schedule L2 miss| f et ch instructionsfar in front of the load to avoid
this situation.

Instruction Bundling

The Itanium 2 processor can completely issue almost all bundle template combinations. Provided
the ILP isavailable, closing the correct bundling and instruction scheduling may benefit
performance. There are two concerns here. First, place more restrictive instructions early in the
issue group and, where possible, transform restrictive instructions. The simple instruction nop. i
must issue to an | port, however, an add can issue on either an M or | port. Thenop. i should be
scheduled early to ensure it receives its needed | port. An alternative would be to replace the
nop. i with aninstruction that is effectively anop (suchasadd r3=r0, r 3) whichcanissue
on either an | or M port.

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

9.8.1

9.8.2

9.8.3

Optimizing for the Itanium® 2 Processor

Branches

The following branch and branch prediction related optimization suggestions are covered in detail
in Chapter 7, “Branch Instructions and Branch Prediction.” They are summarized here.

Single Cycle Branches

The Itanium 2 processor cannot support single cycle loop branches without some penalty in some
iterations of the loop. Unroll the loop to at least two cyclesto get expected performance. This may
come at asmall cost to code size.

Perfect Loop Prediction

Also, perfect loop prediction only predicts the final iteration of the loop. As such, the Itanium 2
processor considers the branch hintsin predicting the branches. The Itanium 2 processor requires
ar . ec tobeset correctly (i.e., if thereis no epilogue, set ar . ec=0 not to 1 as the Itanium
processor expected).

Branch Targets

Branch targets should be aligned on 32-byte boundaries to ensure that the front-end can deliver two
bundles per cycle to the back-end.

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 75

Optimizing for the Itanium® 2 Processor Inte|®

76

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

intel.

Performance Monitoring 10

10.1 Introduction

This chapter defines the performance monitoring features of the Itanium 2 processor. The
Itanium 2 processor provides four 48-bit performance counters, 100+ monitorable events, and
several advanced monitoring capabilities. This chapter outlines the targeted performance monitor
usage models, defines the software interface and programming model, and lists the set of
monitored events.

The Itanium architecture incorporates architected mechanisms that allow software to actively and
directly manage performance critical processor resources such as branch prediction structures,
processor data and instruction caches, virtual memory trandlation structures, and more. To achieve
the highest performance levels, dynamic processor behavior can be monitored and fed back into the
code generation process to better encode observed run-time behavior or to expose higher levels of
instruction level parallelism. On the Itanium 2 processor, we expect to measure the behavior of
real-world Itanium architecture-based applications and operating systems as well as mixed 1A-32
and Itanium architecture-based code. These measurements will be critical for understanding the
behavior of compiler optimizations, the use of architectural features such as speculation and
predication, or the effectiveness of microarchitectura structures such asthe ALAT, the caches, and
the TLBs. These measurements will provide the data to drive application tuning and future
processor, compiler, and operating system designs.

The remainder of the document is split into the following sections:

¢ Section 10.2, “Performance Monitor Programming Models’ discusses how performance
monitors are used, and presents various I tanium 2 processor performance monitoring
programming models.

* Section 10.3, “Performance Monitor State” defines the Itanium 2 processor specific
PMC/PMD performance monitoring registers.

* Chapter 11, “Performance Monitor Events’ gives an overview of the Itanium 2 processor
event list.

10.2 Performance Monitor Programming Models

This section introduces the Itanium 2 processor performance monitoring features from a
programming model point of view and describes how the different event monitoring mechanisms
can be used effectively. The Itanium 2 processor performance monitor architecture focuses on the
following two usage models:

¢ Workload Characterization: Thefirst step in any performance analysisisto understand the
performance characteristics of the workload under study. Section 10.2.1, “Workload
Characterization” discusses the Itanium 2 processor support for workload characterization.

* Profiling: Profiling is used by application developers and profile-guided compilers.
Application developersareinterested in identifying performance bottlenecks and relating them
back to their code. Their primary objective isto understand which program location caused
performance degradation at the module, function, and basic block level. For optimization of
data placement and the analysis of critical loops, instruction level granularity is desirable.
Profile-guided compilers that use advanced Itanium architectural features such as predication

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 77

Performance Monitoring IntQI ®

10.2.1

10.2.1.1

and speculation benefit from run-time profile information to optimize instruction schedul es.
The Itanium 2 processor supportsinstruction level statistical profiling of branch mispredicts
and cache misses. Details of the Itanium 2 processor’s profiling support are described in
Section 10.2.2, “Profiling.”

Workload Characterization

Thefirst step in any performance analysisis to understand the performance characteristics of the
workload under study. There are two fundamental measures of interest: event rates and program
cycle break down.

* Event Rate Monitoring: Event rates of interest include average retired instructions per clock,
data and instruction cache missrates, or branch mispredict rates measured across the entire
application. Characterization of operating systems or large commercial workloads (e.g., OLTP
analysis) requires a system-level view of performance relevant events such as TLB miss rates,
VHPT walks/second, interrupts/second, or bus utilization rates. Section 10.2.1.1, “Event Rate
Monitoring” discusses event rate monitoring.

* Cycle Accounting: The cycle breakdown of aworkload attributes a reason to every cycle
spent by a program. Apart from a program'’s inherent execution latency, extra cycles are
usually due to pipeline stalls and flushes. Section 10.2.1.4, “ Cycle Accounting” discusses
cycle accounting.

Event Rate Monitoring

Event rate monitoring determines event rates by reading processor event occurrence counters
before and after the workload is run, and then computing the desired rates. For instance, two basic
Itanium 2 processor events that count the number of retired Itanium instructions
(IA64_INST_RETIRED.u) and the number of elapsed clock cycles (CPU_CYCLES) allow a
workload's instructions per cycle (IPC) to be computed as follows:

* IPC = (IA64_INST_RETIRED.uy - IA64_INST_RETIRED.u) / (CPU_CYCLES; -
CPU_CYCLESy)

Time-based sampling is the basis for many performance debugging tools [V Tune™, gprof,
WIinNT]. As shown in Figure 10-1, time-based sampling can be used to plot the event rates over
time, and can provide insightsinto the different phases that the workload moves through.

Figure 10-1. Time-Based Sampling

78

A

Event Rate

T ‘O |1 T —
t t
P

Sample Interval

Time

On the Itanium processor, many event types, €.g., TLB misses or branch mispredicts are limited to
arate of one per clock cycle. These are referred to as “single occurrence” events. However, in the
Itanium 2 processor, multiple events of the same type may occur in the same clock. We refer to
such events as “multi-occurrence” events. An example of a multi-occurrence events on the

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

10.2.1.2

10.2.1.3

Performance Monitoring

Itanium 2 processor is data cache read misses (up to two per clock). Multi-occurrence events, such
as the number of entries in the memory request queue, can be used to the derive average number
and average latency of memory accesses. The next two sections describe the basic Itanium 2
processor mechanisms for monitoring single and multi-occurrence events.

Single Occurrence Events and Duration Counts

A single occurrence event can be monitored by any of the Itanium 2 processor performance
counters. For al single occurrence events, a counter isincremented by up to one per clock cycle.
Duration counters that count the number of clock cycles during which a condition persists are
considered “single occurrence” events. Examples of single occurrence events on the Itanium 2
processor are TL B misses, branch mispredictions, and cycle-based metrics.

Multi-Occurrence Events, Thresholding, and Averaging

Eventsthat, due to hardware parallelism, may occur at rates greater than one per clock cycle are
termed “multi-occurrence” events. Examples of such events on the Itanium 2 processor are retired
instructions or the number of live entriesin the memory request queue.

Thresholding capabilities are available in the Itanium 2 processor’s multi-occurrence counters and
can be used to plot an event distribution histogram. When a non-zero threshold is specified, the
monitor isincremented by one in every cycle in which the observed event count exceeds that
programmed threshold. This allows questions such as “ For how many cycles did the memory
request queue contain more than two entries?’ or “During how many cycles did the machine retire
more than three instructions?’ to be answered. This capability allows microarchitectural buffer
sizing experiments to be supported by real measurements. By running a benchmark with different
threshold values, a histogram can be drawn up that may help to identify the performance “knee” at
acertain buffer size.

For overlapping concurrent events, such as pending memory operations, the average number of
concurrently outstanding reguests and the average number of cyclesthat requests were pending are
of interest. To calculate the average number or latency of multiple outstanding requestsin the
memory queue, we need to know the total number of requests (Nqtg) and the number of live
requests per cycle (njjy/cycle). By summing up the live requests (ny;,/cycle) using a
multi-occurrence counter, Xnyy is directly measured by hardware. We can now calculate the
average number of requests and the average latency as follows:

* Average outstanding requests/cycle = 2n;;/ At
* Average latency per request = Znjjye / Nigta

An example of this calculation is given in Table 10-1 in which the average outstanding
requests/cycle = 15/8 = 1.825, and the average latency per request = 15/5 = 3 cycles.

Table 10-1. Average Latency per Request and Requests per Cycle Calculation Example

Time [Cycles] 1 2 3 4 5 6 7 8

Requests In 1 1 1 1 1 0 0 0

Requests Out 0 0 0 1 1 1 1 1

oy 1 2 3 3 3 2 1 0
e

SNjive 1 3 6 9 12 14 15 15

Ntotal 1 2 3 4 5 5 5 5

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 79

Performance Monitoring IntQI ®

10.2.1.4

The Itanium 2 processor provides the following capabilities to support event rate monitoring:
* Clock cycle counter.
* Retired instruction counter.
* Event occurrence and duration counters.

* Multi-occurrence counters with thresholding capability.

Cycle Accounting

While event rate monitoring counts the number of events, it does not tell us whether the observed
events are contributing to a performance problem. A commonly used strategy is to plot multiple
event rates and correlate them with the measured IPC rate. If alow IPC occurs concurrently with a
peak of cache miss activity, chances are that cache misses are causing a performance problem. To
eliminate such guess work, the Itanium 2 processor provides a set of cycle accounting monitors,
that break down the number of cyclesthat are lost due to various kinds of microarchitectural
events. As shown in Figure 10-2, this lets us account for every cycle spent by a program and
therefore provides insight into an application’s microarchitectural behavior. Note that cycle
accounting is different from simple stall or flush duration counting. Cycle accounting is based on
the machine's actual stall and flush conditions, and accounts for overlapped pipeline delays, while
simple stall or flush duration counters do not. Cycle accounting determines a program’s cycle
breakdown by stall and flush reasons, while simple duration counters are useful in determining
cumulative stall or flush latencies.

Figure 10-2. Itanium® Processor Family Cycle Accounting

80

Inherent Program Data Access Branch | Fetch

Execution Latency Cycles Mispredicts Stalls Other Stalls
30% 20% 15% 10% 25%
[100% Execution Time >

001229

The Itanium 2 processor cycle accounting monitors account for all major single and multi-cycle
stall and flush conditions. Overlapping stall and flush conditions are prioritized in reverse pipeline
order, i.e., delaysthat occur later in the pipe and that overlap with earlier stage delays are reported
as being caused later in the pipeline. The six back-end stall and flush reasons are prioritized in the
following order:

1. Exception/Interruption Cycle: cycles spent flushing the pipe due to interrupts and exceptions.
2. Branch Mispredict Cycle: cycles spent flushing the pipe due to branch mispredicts.

3. Data/lFPU Access Cycle: memory pipeline full, data TLB stalls, load-use stalls, and access to
floating-point unit.

4. Execution Latency Cycle: scoreboard and other register dependency stalls.
5. RSE Active Cycle: RSE spill/fill stall.

6. Front-end Stalls: stalls due to the back-end waiting on the front-end.
Additiona front-end stall counters are available which detail seven possible reasonsfor afront-end
stall to occur. However, the back-end and front-end stall events should not be compared since they
are counted in different stages of the pipeline.

For details, refer to Section 11.6, “Stall Events.”

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

10.2.2.1

Performance Monitoring

Profiling

Profiling is used by application developers, profile-guided compilers, optimizing linkers, and
run-time systems. Application devel opers are interested in identifying performance bottlenecks and
relating them back to their source code. Based on profile feedback devel opers can make changesto
the high-level algorithms and data structures of the program. Compilers can use profile feedback to
optimize instruction schedules by employing advanced Itanium architectural features such as
predication and speculation.

To support profiling, performance monitor counts have to be associated with program locations.
The following mechanisms are supported directly by the Itanium 2 processor’s performance
monitors:

¢ Program Counter Sampling

* Miss Event Address Sampling: Itanium 2 processor event address registers (EARS) provide
sub-pipeline length event resolution for performance critical events (instruction and data
caches, branch mispredicts, and instruction and data TL Bs).

¢ Event Qualification: constrains event monitoring to a specific instruction address range, to
certain opcodes or privilege levels.

These profiling features are presented in the next three subsections.

Program Counter Sampling

Application tuning tools like [V Tune, gprof] use time-based or event-based sampling of the
program counter and other event counters to identify performance critical functions and basic
blocks. As shown in Figure 10-3, the sampled points can be histogrammed by instruction
addresses. For application tuning, statistica sampling techniques have been very successful,
because the programmer can rapidly identify code hot spotsin which the program spends a
significant fraction of its time, or where certain event counts are high.

Figure 10-3. Event Histogram by Program Counter

Event
Frequency

Examples:
Cache

- Address Space >

Program counter sampling points the performance anaysts at code hot spots, but does not indicate
what caused the performance problem. Inspection and manual analysis of the hot-spot region along
with afair amount of guess work are required to identify the root cause of the performance
problem. On the Itanium 2 processor, the cycle accounting mechanism (described in

Section 10.2.1.4, “Cycle Accounting™) can be used to directly measure an application’s
microarchitectural behavior.

The Itanium architectural interval timer facilities (ITC and ITM registers) can be used for
time-based program counter sampling. Event-based program counter sampling is supported by a
dedicated performance monitor overflow interrupt mechanism described in detail in Section 7.2.2
“Performance Monitor Overflow Status Registers (PMC[0]..PMC[3])” in Volume 2 of the ntel®
Itanium® Architecture Software Devel oper’s Manual.

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 81

Performance Monitoring IntQI ®

10.2.2.2

To support program counter sampling, the Itanium 2 processor provides the following mechanisms:
* Timer interrupt for time-based program counter sampling.
* Event count overflow interrupt for event-based program counter sampling.

¢ Hardware-supported cycle accounting.

Miss Event Address Sampling

Program counter sampling and cycle accounting provide an accurate picture of cumulative
microarchitectural behavior, but they do not provide the application developer with pointers to
specific program elements (code locations and data structures) that repeatedly cause
microarchitectural “miss events’. In a cache study of the SPEC92 benchmarks, [Lebeck] used
(trace based) cache miss profiling to gain performance improvements of 1.02 to 3.46 on various
benchmarks by making simple changes to the source code. Thistype of analysis requires
identification of instruction and data addresses related to microarchitectural “miss events’ such as
cache misses, branch mispredicts, or TLB misses. Using symbol tables or compiler annotations
these addresses can be mapped back to critical source code elements. Like Lebeck, most
performance analysts in the past have had to capture hardware traces and resort to trace driven
simulation.

Due to the superscalar issue, deep pipelining, and out-of-order instruction completion of today’s
microarchitectures, the sampled program counter value may not be related to the instruction
address that caused a miss event. On a Pentium processor pipeline, the sampled program counter
may be off by two dynamic instructions from the instruction that caused the miss event. On a
Pentium® Pro processor, this distance increases to approximately 32 dynamic instructions. On the
Itanium 2 processoar, it is approximately 48 dynamic instructions. If program counter sampling is
used for miss event address identification on the Itanium 2 processor, a miss event might be
associated with an instruction almost five dynamic basic blocks away from where it actually
occurred (assuming that 10% of all instructions are branches). Therefore, it is essential for
hardware to precisely identify an event’s address.

The Itanium 2 processor provides aset of event address registers (EARS) that record the instruction
and data addresses of data cache misses for loads, the instruction and data addresses of data TLB
misses, and the instruction addresses of instruction TLB and cache misses. A four deep branch
trace buffer captures sequences of branch instructions. Table 10-2 summarizes the capabilities
offered by the Itanium 2 processor EARs and the branch trace buffer. Exposing miss event
addresses to software allows them to be monitored either by sampling or by code instrumentation.
This eliminates the need for trace generation to identify and solve performance problems and
enabl es performance analysis by a much larger audience on unmodified hardware.

Table 10-2. Itanium® 2 Processor EARs and Branch Trace Buffer

82

Event Address Register Triggers On What is Recorded

Instruction Cache Instruction fetches that miss Instruction Address
the L1 instruction cache Number of cycles fetch was in flight
(demand fetches only)

Instruction TLB (ITLB) Instruction fetch missed L1 Instruction Address
ITLB (demand fetches only) Who serviced L1 ITLB miss: L2 ITLB VHPT

or software

Data Cache Load instructions that miss L1 | Instruction Address

data cache Data Address

Number of cycles load was in flight.

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

intgl.

Performance Monitoring

Table 10-2. Itanium® 2 Processor EARs and Branch Trace Buffer (Continued)

10.2.3

Event Address Register Triggers On What is Recorded
Data TLB Data references that miss Instruction Address
(DTLB) L1 DTLB Data Address

Who serviced L1 DTLB miss: L2 DTLB,
VHPT or software

Branch Branch Outcomes Branch Instruction Address
Trace Branch Target Instruction Address
Buffer Mispredict status and reason

The Itanium 2 processor EARSs enable statistical sampling by configuring aperformance counter to
count, for instance, the number of data cache missesor retired instructions. The performance
counter value is set up to interrupt the processor after a predetermined number of events have been
observed. The data cache event address register repeatedly captures the instruction and data
addresses of actual data cache load misses. Whenever the counter overflows, miss event address
collection is suspended until the event address register is read by software (this prevents software
from capturing a miss event that might be caused by the monitoring software itself). When the
counter overflows, aninterrupt is delivered to software, the observed event addresses are collected,
and a new observation interval can be setup by rewriting the performance counter register. For
time-based (rather than event-based) sampling methods, the event address registers indicate to
software whether or not a qualified event was captured. Statistical sampling can achieve arbitrary
event resolution by varying the number of events within an observation interval and by increasing
the number of observation intervals.

Event Qualification

On the Itanium 2 processor, performance monitoring can be confined to a subset of all events. As
shown in Figure 10-4 events can be qualified for monitoring based on an instruction address range,
aparticular instruction opcode, a data address range, an event-specific “unit mask” (umask), the
privilege level and instruction set the event was caused by, and the status of the performance
monitoring freeze bit (PMC.fr).

¢ Itanium Instruction Address Range Check: The Itanium 2 processor allows event monitoring
to be constrained to a programmable instruction address range. This enables monitoring of
dynamically linked libraries (DLLS), functions, or loops of interest in the context of alarge
I tanium-based application. The Itanium instruction address range check is applied at the
instruction fetch stage of the pipeline and the resulting qualification is carried by the
instruction throughout the pipeline. This enables conditional event counting at alevel of
granularity smaller than dynamic instruction length of the pipeline (approximately 48
instructions). The Itanium 2 processor’s instruction address range check operates only during
I tanium-based code execution, i.e., when PSR. i s is zero. For details, see Itanium Opcode
Match and Address Range Check Registers (PMCg o).

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 83

Performance Monitoring IntQI ®

84

Figure 10-4. Itanium® 2 Processor Event Qualification

. Itanium® Instruction Is Itanium instruction pointer
— i
Instruction Address Address Range Check in IBR range?

Instruction Opcode — Itanium Instruction — Does Itanium opcode match?
Opcode Match

Itanium Data Address
Data Address —» Range Check >
(Memory Operations Only)

Is Itanium data address
in DBR range?

Event —» Event Spefic "Unit Mask" — Did event happen and qualify?

Current Privilege Executing at monitored

Level Privilege Level Check privilege level?
Current Instruction : Executing in monitored
Set (Itanium or |1A-32) Instruction Set Check instruction set?
Performance Monitor o
Event Count Freeze — Is event monitoring enabled?

Freeze Bit (PMC,,.fr)

i

YES, all of the above are true;
this event is qualified.

000987a

¢ [tanium Instruction Opcode Match: The Itanium 2 processor provides two independent

Itanium opcode match registers each of which match the currently issued instruction
encodings with a programmabl e opcode match and mask function. The resulting match events
can be selected as an event type for counting by the performance counters. This allows
histogramming of instruction types, usage of destination and predicate registers as well as
basic block profiling (through insertion of tagged NOPs). The opcode matcher operates only
during Itanium-based code execution, i.e., when PSR. i s is zero. Details are described in
Section 10.3.4.

Itanium Data Address Range Check: The Itanium 2 processor allows event collection for
memory operationsto be constrained to a programmable data address range. This enables
selective monitoring of data cache miss behavior of specific data structures. For details, see
Section 10.3.6.

Event Specific Unit Masks. Some events allow the specification of “unit masks” to filter out
interesting events directly at the monitored unit. As an example, the number of counted bus
transactions can be qualified by an event specific unit mask to contain transactions that
originated from any bus agent, from the processor itself, or from other 1/0 bus masters. In this
case, the bus unit uses a three-way unit mask (any, self, or 1/O) that specifies which
transactions are to be counted. In the Itanium 2 processor, events from the branch, memory and
bus units support a variety of unit masks. For details, refer to the event pages in Chapter 11,
“Performance Monitor Events.”

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

10.2.3.1

Figure 10-5. Instruction Tagging Mechanism in the ltanium® 2 Processor

Performance Monitoring

* Privilege Level: Two bits in the processor status register are provided to enable selective

process-based event monitoring. The Itanium 2 processor supports conditional event counting
based on the current privilege level; this allows performance monitoring software to break
down event countsinto user and operating system contributions. For details on how to
constrain monitoring by privilege level refer to Section 10.3.1, “ Performance Monitor Control
and Accessibility.”

Instruction Set: The Itanium 2 processor supports conditiona event counting based on the
currently executing instruction set (Itanium or 1A-32) by providing two instruction set mask
bitsfor each event monitor. This allows performance monitoring software to break down event
countsinto Itanium and 1 A-32 contributions. For details, refer to Section 10.3.1, “ Performance
Monitor Control and Accessibility.”.

Performance Monitor Freeze: Event counter overflows or software can freeze event
monitoring. When frozen, no event monitoring takes place until software clears the monitoring
freeze bit (PM C,.fr). This ensures that the performance monitoring routines themselves, e.g.,
counter overflow interrupt handlers or performance monitoring context switch routines, do not
“pollute” the event counts of the system under observation. For detailsrefer to Section 7.2.4 of
Volume 2 of the Intel® Itanium™ Architecture Software Developer’s Manual.

Combining Opcode Matching, Instruction, and Data Address Range

Check

The Itanium 2 processor allows various event qualification mechanisms to be combined by
providing the instruction tagging mechanism shown in Figure 10-5.

Itanium® Itanium Data
Opcode Address Range
Matcher Check
(PMCg, PMC,) (DBRs, PMC;) Event Select (PMC,.es)
Itanium Tag(PMC[8]) DBRRange Tag [
Instruction
Address Memory |
Range Event,
Check
PMC,,) ! .
Privilege Level Mask
Instruction Set Ma;k
IBRRange Tag (PMC;.plm, PMC,.ism)
- > Level &
ltanium i Instruction Set ™
Opcode
> Check
Matcher Taa(PMC
(PMC,, PMC,,) g(PMC,) Counter
(PMD))

000988b

During Itanium instruction execution (PSR. i s is zero), the instruction address range check is
applied first. The resulting address range check tag (IBRRangeTag) is passed to two opcode
matchers that combine the instruction address range check with the opcode match. Each of the two
combined tags (Tag(PMCg) and Tag(PMCy)) can be counted as aretired instruction count event
(for details refer to event description “1A64 TAGGED INST_RETIRED” on page 11-165).

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

85

Performance Monitoring

intel.

One of the combined |tanium address range and opcode match tags, Tag(PM Cg), qualifies all
downstream pipeline events. Eventsin the memory hierarchy (L1 and L2 data cache and data TLB
events can further be qualified using a data address DBRRangeTag).

Assummarized in Table 10-3, data address range checking can be combined with opcode matching
and instruction range checking on the Itanium 2 processor. Additional event qualifications based
on the current privilege level and the current instruction set can be applied to all events and are
discussed in Section 10.2.3.2, “Privilege Level Constraints’ and Section 10.2.3.3, “Instruction Set

Constraints.”

Table 10-3. Itanium® 2 Processor Event Qualification Modes

Opcode Match Instruction Data Address
P Enable Opcode Address Range Check
Event Qualification Modes PMCc.ibrpo- Matching Range Check | [PMCj3.enable-dbrp#
Lo " PMCq Enable PMC5.dbrp#]
P PMC,4.ibrp0 | (mem pipe events only)
Unconstrained Monitoring X Oxffff_ffff_ffff_ffff X [1,11] or [0,xX]
(all events)
Instruction Address Range X Oxffff_ffff_ffff_fffe 0 [1,00]
Check Only
Opcode Matching Only 1 Desired X [1,01]
Opcodes
Data Address Range Check X Oxffff_ffff_ffff_ffff X [1,10]
Only
Instruction Address Range 1 Desired 0 [1,01]
Check and Opcode Opcodes
Matching
Instruction and Data X Oxffff_ffff_ffff_fffe 0 [1,00]
Address Range Check
Opcode Matching and Data 1 Desired X [1,00]
Address Range Check Opcodes

10.2.3.2 Privilege Level Constraints

Performance monitoring software cannot always count on context switch support from the
operating system. In general, this has made performance analysis of asingle processin a
multi-processing system or a multi-process workload impossible. To provide hardware support for
thiskind of analysis, the Itanium architecture specifiesthree global bits (PSR.up, PSR.pp, DCR.pp)
and a per-monitor “privilege monitor” bit (PMC;.pm). To break down the performance
contributions of operating system and user-level application components, each monitor specifies a
4-bit privilege level mask (PMC;.plm). The mask is compared to the current privilege level in the
processor status register (PSR.cpl), and event counting is enabled if PMC;.plm[PSR.cpl] is one.
The Itanium 2 processor performance monitors control is discussed in Section 10.3.1,
“Performance Monitor Control and Accessibility.”

PMC registers can be configured as user-level monitors (PMC;.pm is0) or system-level monitors
(PMC;.pmis 1). A user-level monitor is enabled whenever PSR.up is one. PSR.up can be
controlled by an application using the sum/rum instructions. This allows applications to

enabl e/disable performance monitoring for specific code sections. A system-level monitor is
enabled whenever PSR.pp is one. PSR.pp can be controlled at privilege level 0 only, which alows
monitor control without interference from user-level processes. The pp field in the default control
register (DCR.pp) is copied into PSR.pp whenever an interruption is delivered. This allows events
generated during interruptions to be broken down separately: if DCR.pp is O, events during
interruptions are not counted; if DCR.pp is 1, they are included in the kernel counts.

86 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

10.2.3.3

Performance Monitoring

As shown in Figure 10-6, Figure 10-7, and Figure 10-8, single process, multi-process, and
system-level performance monitoring are possible by specifying the appropriate combination of
PSR and DCR bits. These bits allow performance monitoring to be controlled entirely from a
kernel level device driver, without explicit operating system support. Once the desired monitoring
configuration has been setup in aprocess processor status register (PSR), “regular” unmodified
operating context switch code automatically enables/disables performance monitoring.

With support from the operating system, individual per-process breakdown of event counts can be
generated as outlined in the performance monitoring chapter of the Intel® 1tanium® Architecture
Software Developer’s Manual.

Instruction Set Constraints

On the Itanium 2 processor, monitoring can additiona ly be constrained based on the currently
executing instruction set as defined by PSR. i s. This capability is supported by the four generic
performance counters, as well as the opcode matching and instruction and data event address
registers. However, the branch trace buffer only supports Itanium-based code execution. When
Itanium architecture only features are used, the corresponding PMC register instruction set mask
(PMC;.ism) should be set to Itanium architecture only (01) to ensure that events generated by

I A-32 code do not corrupt the Itanium 2 processor event counts.

Figure 10-6. Single Process Monitor

Figure 10-7. Multiple Process Monitor

y
Useftlevel, cpl|=3 Userrlevel, cp| =3 Useftlevel, cplj= 3
(Application) (Application) (Mpplicatiory)
Kerngl-level, cpl = 0 Kerng-level, cpl = 0 Kerngl-level, cpgl = 0
(09) (0S) (0S)
Interrypt-level, dpl = 0 Interryipt-level, gpl = 0 Interrypt-level, gpl =0
Handlers) Handlers Fandlers)
A
ProcA | ProcB | ProcC Proc A | ProcB | Proc C Proc A | ProcB | Proc C

PSRp .up =1, others 0 PSRy .up =1, others 0 PSRy .pp = 1, others 0
PMC.pm=0 PMC.pm =0 PMC.pm=1
PMC.plm = 1000 PMC.plm = 1001 PMC.plm = 1001
DCR.pp=0 DCR.pp=0 DCR.pp=1

000989

Usef-level, cpllF 3 Usef-level, cpl § 3 Usefr-level, cp| ¥ 3
(Application)) (Application)) (Application)
I
Kernel-level, cgl = 0 Kernel-level, cglE 0 Kerngl-level, cpl|= 0
(0S) (0S) (0S)
I
Interrypt-level, gpl = 0 Interrypt-level, ¢pl = 0 Interryipt-level, ¢gl = 0
Handlers) Handlers) Handlers,
| N
ProcA | ProcB | ProcC Proc A ' ProcB | Proc C ProcA | ProcB | ProcC
PSRa/g.up = 1, others 0 PSRa/g.Up = 1, others 0 PSRa/g.pp = 1, others 0
PMC.pm =0 PMC.pm =0 PMC.pm=1
PMC.plm = 1000 PMC.plm = 1001 PMC.plm = 1001
DCR.pp=0 DCR.pp=0 DCR.pp=1

000990

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 87

Performance Monitoring IntQI ®

Figure 10-8. System Wide Monitor

10.2.4

10.3

88

\
User-level, cpl|=3 Usef-level, cpl|=3 User-level, cpl|=3
(Application (Application) (Application
) A
Kerngl-level, cdl = 0 Kerngl-level, cgl =0 Kerngl-level, cgl =0
(0s) (0s) (0S)
Interrypt-level, cpl =0 Interrypt-level, cpl =0 Interrypt-level, cpl =0
Handlers) Handlers) Handlers)
.\ .|
Proc A | ProcB | ProcC ProcA | ProcB | ProcC ProcA | ProcB | ProcC
AllPSR.up=1 AllPSR.up=1 AllPSR.pp=1
PMC.pm=1 PMC.pm =0 PMC.pm=1
PMC.plm = 1000 PMC.plm = 1001 PMC.plm = 1001
DCR.pp=0 DCR.pp=0 DCR.pp=1
000991
References

* [gprof] S.L. Graham S.L., PB. Kessler and M.K. McKusick, “gprof: A Call Graph Execution
Profiler”, Proceedings SIGPLAN’ 82 Symposium on Compiler Construction; SIGPLAN
Notices; Vol. 17, No. 6, pp. 120-126, June 1982.

* [Lebeck] Alvin R. Lebeck and David A. Wood, “ Cache Profiling and the SPEC benchmarks:
A Case Study”, Tech Report 1164, Computer Science Dept., University of Wisconsin -
Madison, July 1993.

¢ [VTune] Mark Atkins and Ramesh Subramaniam, “PC Software Performance Tuning”, IEEE
Computer, Vol. 29, No. 8, pp. 47-54, August 1996.

* [WIinNT] Russ Blake, “Optimizing Windows NT(tm)”, Volume 4 of the Microsoft “Windows
NT Resource Kit for Windows NT Version 3.51", Microsoft Press, 1995.

Performance Monitor State

Two sets of performance monitor registers are defined. Performance Monitor Configuration (PMC)
registers are used to configure the monitors. Performance Monitor Data (PMD) registers provide
data values from the monitors. This section describes the Itanium 2 processor performance
monitoring registers which expands on the Itanium architectural definition. Asshownin

Figure 10-9 the Itanium 2 processor provides four 48-hit performance counters (PMC/PMDy 5 6 7
pairs), and the foll owing model-specific monitoring registers: instruction and data event address
registers (EARs) for monitoring cache and TLB misses, a branch trace buffer, two opcode match
registers, and an instruction address range check register.

Table 10-4 defines the PMC/PMD register assignments for each monitoring feature. The interrupt
status registers are mapped to PMCy 1 » 3. The four generic performance counter pairs are assigned
to PMC/PMD, 56 7. The event address registers and the branch trace buffer are controlled by three
configuration registers (PM Ci10,11,12)- Captured event addresses and cache miss latencies are
accessible to software through five event address data registers (PM Do,1.23,17) and abranch trace
buffer (PMDg_1¢). On the Itanium 2 processor, monitoring of some events can additionally be
constrained to a programmabl e instruction address range by appropriate setting of the instruction
breakpoint registers (IBR) and the instruction address range check register (PM C,3) and turning on
the checking mechanism in the opcode match register (PMCg o) Two opcode match registers

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitoring

(PMCg o) and an opcode match configuration register (PMC,5) allow monitoring of some eventsto
be qualified with a programmabl e opcode. For memory operations, events can be qualified by a
programmable data address range by appropriate setting of the data breakpoint registers (DBRS)
and the data address range configuration register (PMCyy).

Table 10-4. Itanium® 2 Processor Performance Monitor Register Set

Monitorin Configuration Data
Feature 9 Registers Registers Description
(PMC) (PMD)
Interrupt Status | PMCq 1 5 3 none See Section 10.3.3, “Performance Monitor Overflow
Status Registers (PMCO0,1,2,3).”
Event Counters | PMCy 56,7 PMDy 56,7 See Section 10.3.2, “Performance Counter Registers.”
Opcode PMCg g 15 none See Section 10.3.4, “Opcode Match Check
Matching (PMC8,9,15).”
Instruction EAR | PMCqq PMDg ; See Section 10.3.7.1, “Instruction EAR (PMC10,
PMDO,1).”
Data EAR PMCq, PMD; 317 See Section 10.3.8, “Data EAR (PMC11, PMD2,3,17).”
Branch Trace PMC;, PMDg_ 14 See Section 10.3.9.2, “Branch Trace Buffer Reading.”
Buffer
Instruction PMC,4 none See Section 10.3.5, “Instruction Address Range
Address Range Matching.”
Check
Memory Pipeline | PMC3 none See Section 10.3.6, “Data Address Range Matching

Event
Constraints

(PMC13).”

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

89

Performance Monitoring IntQI ®

Figure 10-9. Itanium® 2 Processor Performance Monitor Register Mode

Performance Counter

Overflow Status Registers Processor Status Register
63 0 63 0
pmc, PSR
pmc,
pmc, .
pmc, Default Control Register
63 0
Clo DCR
Performance Counter Performance Counter Performance Monitor
Configuration Registers Data Registers Vector Register
63 0 63 0 63 0
pme, pme, Crrg PMV
pmc, pmc;
pmc; pmc,
pmc, pmc, Itanium® Architecture
Generic Register Set
Itanium Opcode/Address Instruction/Data Event
Range Match Registers Address Data Registers Itanium® 2 Processor
63 0 63 0 Implementation-
pmcg pmc, instr Specific Register Set
pmc, pmc, '
pmc,
Configuration Registers: pmc, data
Instruction/Data Event Address pmc,,
63 0
pmMCy, instr. Branch Trace
pmc,, data Buffer Registers
63 0
pmcg
Branch Trace Buffer pmc,
63 0 | | '

mee [
- pme []
mew [

Opcode Match PMCs

63 0

pmes []

Instruction/Data Address
Range Check
63 0
pmc,, instr.
data

000992b

20 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitoring

Performance Monitor Control and Accessibility

In order to use performance monitor features, the power to the PMU should be turned on by setting
PMC,.enableto 1. At reset, this bit will be set. To provide power savings, this bit can be cleared to
turn off the clocksto all PMDs, PMCs (with the exception of PMC,), and other non-critical
circuitry.

Once the power isturned on, event collection is controlled by the Performance Monitor
Configuration (PMC) registers and the processor status register (PSR). Four PSR fields (PSR.up,
PSR.pp, PSR.cpl and PSR.sp) and the performance monitor freeze bit (PMC,.fr) affect the
behavior of all performance monitor registers.

Per-monitor control is provided by three PMC register fields (PMC;.plm, PMC;.ism, and
PMC;.pm). Instruction set masking based on PMC;.ism is a ltanium 2 processor model-specific
feature. Event collection for amonitor is enabled under the following constraints on the Itanium 2
processor:

Moni tor Enable; =(not PMZ.fr) and PMG. pln{ PSR cpl] and ((not PMG.isn[PSR is]) or
(PMG =12)) and ((not (PMG.pm and PSR up) or (PMG.pm and PSR. pp))

Figure 10-10 defines the PSR control fields that affect performance monitoring. For a detailed
definition of how the PSR bits affect event monitoring and control accessibility of PMD registers,
please refer to Section 3.3.2 and Section 7.2.1 of Volume 2 of the Intel® Itanium® Architecture
Software Developer’s Manual.

Table 10-5 defines per monitor controls that apply to PMCy 5 67.10,11,12- AS defined in Table 10-4,
“tanium® 2 Processor Performance Monitor Register Set,” each of these PMC registers controls
the behavior of its associated performance monitor data registers (PMD). The Itanium 2 processor
model -specific PM D registers associated with instruction/data EARs and the branch trace buffer
(PMDg 1 238-17) can be read only when event monitoring is frozen (PMCo.fr is one).

Figure 10-10. Processor Status Register (PSR) Fields for Performance Monitoring

31 30 29 28 27 26 25 24 23 22 21 20 19 18 1716 15 14 13121110 9 8 7 6 5 4 3 2 1 O

oo o] oihe

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
other ‘is‘ cpl ‘

yyyyy

Field Bits Description

plm 3:0 Privilege Level Mask - controls performance monitor operation for a specific privilege level.
Each bit corresponds to one of the 4 privilege levels, with bit 0 corresponding to privilege
level 0, bit 1 with privilege level 1, etc. A bit value of 1 indicates that the monitor is enabled at
that privilege level. Writing zeros to all plm bits effectively disables the monitor. In this state,
the Itanium 2 processor will not preserve the value of the corresponding PMD register(s).

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 91

Performance Monitoring IntQI ®

10.3.2

11111

(Continued)

Field Bits Description

pm 6 Privileged monitor - When 0, the performance monitor is configured as a user monitor and
enabled by PSR.up. When PMC.pm is 1, the performance monitor is configured as a
privileged monitor, enabled by PSR.pp, and PMD can only be read by privileged software.
Any read of the PMD by non-privileged software in this case will return 0.

NOTE: In PMC, this field is implemented in bit [4].

ism 25:24 | Instruction Set Mask - controls performance monitor operation based on the current
instruction set. The instruction set mask applies to PMC, 5 6 7 10,11 but not to PMC .

00: monitoring enabled during Itanium and IA-32 instruction execution (regardless of PSR.is)
10: bit 24 low enables monitoring during Itanium instruction execution (when PSR.is is zero)
01: bit 25 low enables monitoring during IA-32 instruction execution (when PSR.is is one)
11: disables monitoring

NOTE: In PMC, this is implemented in [15:14]. PMC,, does not have this field.

Performance Counter Registers

The Itanium 2 processor provides four generic performance counters (PMC/PMD, 5 6 7 pairs). The
implemented counter width on the Itanium 2 processor is 48 bits ([47] indicates overflow
condition). More than the Itanium processor, PMC/PMD pairs on the Itanium 2 processor are
symmetrical, i.e., nearly all event types can be monitored by all counters. There are exceptions
within some of the cache counters. See Section 11.8.2, “L 1 Data Cache Events” and Section 11.8.3,
“L2 Unified Cache Events’ for more information. These counters can track events whose
maximum per-cycle event increment is up to seven.

Figure 10-11 and Table 10-6 define the layout of the Itanium 2 processor Performance Counter
Configuration Registers (PMC, 56 7)- The main task of these configuration registersis to select the
events to be monitored by the respective performance monitor data counters. Event selection (es)
and unit mask (urmask) fieldsin the PMC registers perform the selection of these events. The rest
of thefields in PMCs specify under what conditions the counting should be done (pl m pmi sm,
by how much the counter should be incremented (t hr eshol d), and what need to be done if the
counter overflows (ev, oi).

Figure 10-11. Itanium® 2 Processor Generic PMC Registers (PMCy56,7)

63 28 27262524 23 22 20 19 16 15 87 6 5 4 3 0
PMCy 567 reserved --- |ism| ena | thres- | umask es igpm|oijev| plm
ble | hold
36 2 2 1 3 4 8 11 11 4

Table 10-6. Itanium® 2 Processor Generic PMC Register Fields (PMCy456,7)

92

Field Bits Description

plm 3.0 Privilege Level Mask. See Table 10-5 “Performance Monitor PMC Register Control
Fields (PMC4,5,6,7,0,11,12).”

ev 4 External visibility - When 1, an external notification (BPM pin strobe) is provided
whenever the counter overflows. External notification occurs regardless of the setting of
the oi bit (see below). On the Itanium 2 processor, PMC, external notification strobes
the BPMO pin, PMC;5 strobes the BPM1 pin, PMCgq strobes the BPM2 pin, and PMC+
strobes the BPM3 pin.

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

intgl.

Performance Monitoring

Table 10-6. ltanium® 2 Processor Generic PMC Register Fields (PMC, 5 6 7) (Continued)

Field

Bits

Description

oi

Overflow interrupt - When 1, a Performance Monitor Interrupt is raised and the
performance monitor freeze bit (PMC.fr) is set when the monitor overflows. When 0, no
interrupt is raised and the performance monitor freeze bit (PMCy.fr) remains
unchanged. Counter overflows generate only one interrupt. Setting the corresponding
PMC bit on an overflow will be independent of this bit.

pm

Privilege Monitor. See Table 10-5 “Performance Monitor PMC Register Control Fields
(PMC4,5,6,7,0,11,12).”

es 15:8 Event select - selects the performance event to be monitored.
Itanium 2 processor event encodings are defined in Chapter 11, “Performance Monitor
Events.”

umask 19:16 | Unit Mask - event specific mask bits (see event definition for details)

threshold | 22:20 | Threshold -enables thresholding for “multi-occurrence” events.
When threshold is zero, the counter sums up all observed event values. When the
threshold is non-zero, the counter increments by one in every cycle in which the
observed event value exceeds the threshold.

enable 23 PMC, Only. Enables use of the PMUs. A 1 must be written for the PMUs to function.
Power up value is 1.

ism 25:24 | Instruction Set Mask. See Table 10-5 “Performance Monitor PMC Register Control
Fields (PMC4,5,6,7,0,11,12).”

27:26 | Must write 0 for proper PMU operation.

ignored 63:28 | Read zero, Writes ignored.

Figure 10-12 and Table 10-7 defines the layout of the Itanium 2 processor Performance Counter
Data Registers (PMD, 56 7). A counter overflow occurs when the counter wraps (i.e., acarry out
from bit 46 is detected). Software can force an external mterruptlon or external notification after N
events by preloading the monitor with a count val ue of 2*7 - N. Note that bit 47 is the overflow bit
and must be initialized to 0 whenever thereis aneed to initialize the register.

When accessible, software can continuously read the performance counter registers PMD 56 7
without disabling event collection. Any read of the PMD from software without the appropriate
privilege level will return 0 (See“plm” in Table 10-6). The processor ensures that software will see
monotonically increasing counter values.

Figure 10-12. Itanium® 2 Processor Generic PMD Registers (PMDy4 56,7)

PMDy 56,7

63 48 47 46 0
sxt47 ‘ ov ‘ Count
16 1 47

Table 10-7. ltanium® 2 Processor Generic PMD Register Fields

Field Bits Description
sxt47 63:48 | Writes are ignored, Reads return the value of bit 47, so count values appear as sign
extended.
ov 47 Overflow bit (carry out from bit 46).
NOTE: Writes to initialize the PMD should write 0 to this bit.
count 46:0 Event Count. The counter is defined to overflow when the count field wraps (carry out
from bit 46).

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 93

Performance Monitoring IntQI ®

10.3.3

Performance Monitor Overflow Status Registers (PMCg 1 5 3)

As previously mentioned, the Itanium 2 processor supports four performance monitoring counters.
The overflow status of these four countersisindicated in register PMCg. As shown in Figure 10-13
and Table 10-8 only PMCy[7:4,0] bits are populated. All other overflow bitsareignored, i.e., they
read as zero and ignore writes.

Figure 10-13. Itanium® 2 Processor Performance Monitor Overflow Status Registers

(PMCp1,23)
63 8 7 6 5 4 3 2 1 0

‘ reserved (PMCyp) overflow‘ rsv. ‘fr‘
4

‘ reserved (PMC,)

‘ reserved (PMC,)

‘ reserved (PMC3)

Table 10-8. Itanium® 2 Processor Performance Monitor Overflow Register Fields (PMCq1.23)

10.3.4

94

Register Field Bits Description

PMCy fr 0 Performance Monitor “freeze” bit - When 1, event monitoring is disabled.
When 0, event monitoring is enabled. This bit is set by hardware
whenever a performance monitor overflow occurs and its corresponding
overflow interrupt bit (PMC.oi) is set to one. SW is responsible for clearing
it. When the PMC.oi bit is not set, then counter overflows do not set this

bit.
PMC, ignored 31 Read zero, Writes ignored.
PMC, overflow 74 Event Counter Overflow - When bit n is one, indicate that the PMDn

overflowed. This is a bit vector indicating which performance monitor
overflowed. These overflow bits are set on their corresponding counters
overflow regardless of the state of the PMC.oi bit. Software may also set
these bits. These bits are sticky and multiple bits may be set.

PMCy, ignored 63:8 Read zero, Writes ignored.

PMC; 53 ignored 63:0 Read zero, Writes ignored.

Opcode Match Check (PMCg g 15)

The Itanium 2 processor allows event monitoring to be constrained based on the instruction address
and/or Itanium encoding (opcode) of an instruction. Registers PMC,5 and PMC,4 (Section 10.3.5,
“Instruction Address Range Matching”) are used to enable these features. Registers PMCg g allow
configuring these features. For memory related events, the appropriate bits must be set in PM Ciato
enable this feature. Please refer to Section 10.3.6, “Data Address Range Matching (PMC13)” for
details. Unlike in the Itanium processor, the opcode matcher in the Itanium 2 processor operates
during both Itanium-based and | A-32 code execution. When operating in | A-32 mode it checks for
Itanium opcodes.

Figure 10-14 and Table 10-9 describe the fields of PMCg g registers. Figure 10-15 and Table 10-10
describes the register PMC;5. All combinations of bits [63:60] are supported. To match A-slot
instruction, set bits [63:62] to 11. To match all instruction types, bits[63:60] should be set to 1111.
To ensure that all events are counted independent of the opcode matcher, all mifb and all mask bits
of PMCg g should be set to one (al opcodes match).

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Inte|® Performance Monitoring

PMCg only qualifies the event IA64_TAGGED_INST_RETIRED. The Itanium 2 processor’s
opcode congtraint for IA64_TAGGED_INST_RETIRED event ANDs PMCgq results with IBRP;
and I1BRP5; matches and PM Cg results with IBRg and IBRP, matches. PM Cg, however, constrains
other downstream events as well. To ensure that all events are counted independent of the opcode
matcher, bit[63:60] and bit [29:3] should be set to al ones.

Figure 10-14. Opcode Match Registers (PMCg g)

63 62 61 60 59 33 32 30 29 3 2 1 0
mii|f|b match rsv mask --inviig_

ad
11 1 1 27 3 27 11 1

Table 10-9. Opcode Match Register Fields (PMCg o)

Field Bits Width Description

ig_ad 0 1 Ignore Instruction Address Range Checking. If set to 1, all instruction
addresses are considered for events. If 0, IBRs 0-1 will be used for
address constraints.

NOTE: This bit is ignored in PMC.

inv 1 1 Invert Range Check. If set to 1, the address ranged specified by IBRO-1 is
inverted. Effective only when ig_ad bit is set to 0.

NOTE: This bit is ignored in PMCg.

2 1 Must write 1 for proper PMU operation.

mask 29:3 27 Bits that mask Itanium® instruction encoding bits

[15:3] mask bits for opcode bits[12:0]

[29:16] mask bits for opcode bits[40:27]

If mask bit is set to 1, the corresponding opcode bit is not used for opcode

matching
rsv 32:30 |3 Reserved bits
match 59:33 27 Opcode bits against which Itanium instruction encoding to be matched

[45:33]: match bits for opcode bits[12:0]
[59:46]: match bits for opcode bits[40:27]

b 60 1 If 1: match if opcode is an B-slot
f 61 1 If 1: match if opcode is an F-slot
i 62 1 If 1: match if opcode is an I-slot

m 63 1 If 1: match if opcode is an M-slot

Figure 10-15. Opcode Match Configuration Register (PMC5)

63 4 3 2 1 0
reserved ibrp3jibrp2|ibrpl|ibrp0

pmc | pmc |pmc9pmc8

1 1 1 1

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 95

Performance Monitoring IntQI ®

96

Table 10-10. Opcode Match Configuration Register Fields (PMCys)

Note:

Field Bits Description

ibrp0-pmc8 0 1: PMU events will not be constrained by opcode

0: PMU events (including 1A64_TAGGED_INST_RETIRED.00) will be
opcode constrained by PMCg

ibrp1-pmc9 1 1:1A64_TAGGED_INST_RETIRED.O01 won't be constrained by opcode

0: IA64_TAGGED_INST_RETIRED.01 will be opcode constrained by
PMCq

ibrp2-pmc8 2 1:1A64_TAGGED_INST_RETIRED.10 won't be constrained by opcode

0: IA64_TAGGED_INST_RETIRED.10 will be opcode constrained by
PMCg

ibrp3-pmc9 3 1: IA64_TAGGED_INST_RETIRED.11 won't be constrained by opcode

0: IA64_TAGGED_INST_RETIRED.11 will be opcode constrained by
PMCq

For opcode matching purposes, an Itanium instruction is defined by two items: the instruction %/pe
“itype” (one of M, I, F or B) and the 42-bit encoding “enco{ 41:0}” defined the | ntel® Itanium
Architecture Software Devel oper’s Manual . Each instruction is evaluated against each opcode
match register (PMCg o) asfollows:

Match(PMG) = (inmatch(itype, PMG.nmifb) AND ematch(enco, PMG . mat ch, PMC . nask))

Where:

imatch(itype, PMC[i].mfb) = (itype=M AND PMC[i].m OR (itype=I AND PMC[i].i) OR
(itype=F AND PMC[i].f) OR (itype=B AND PMC[i].b)

emat ch(enco, mat ch, mask) = AND p-49. 27 ((enco{b}=match{b-14}) OR mask{b-14}) AND
b-12..0 ((enco{b}=match{b}) OR mask{b})

This function matches encoding bits{40:27} (major opcode) and encoding bits{ 12:0} (destination
and qualifying predicate) only. Bits{26:13} of the instruction encoding are ignored by the opcode
matcher.

The IBRP matches are advanced with the instruction pointer to the point where opcodes are being
dispersed. The matches from opcode matchers are ANDed with the IBRP matches at this point.

This produces two opcode match events that are combined with the instruction range check tag
(IBRRangeTag, see Section 10.3.5, “Instruction Address Range Matching”) as follows:
Tag(PMCg) = Match(PMZ) and | BRRangeTag

Tag(PMCg) Mat ch(PMCy) and | BRRangeTag

As shown in Figure 10-5 the two tags, Tag(PMCg) and Tag(PMCy), are staged down the processor
pipeline until instruction retirement and can be selected as aretired instruction count event (see
event description “IA64_TAGGED_INST_RETIRED” on page 11-165). In thisway, a
performance counter (PMC/PMDy 5 ¢ 7) can be used to count the number of retired instructions
within the programmed range that match the specified opcodes.

The opcodes dispersed to different pipelines are compared to PM Cg; the opcode match is further

qualified by a number of user configurable bits (please refer to definition of PMCy5 in this
document) and ANDed with IBRPO match before being distributed to different places.

Register PM C;5 must contain the predetermined value of OxfffffffO. If software modifies any bits
not listed in Table 10-10 processor behavior is not defined.

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitoring

Instruction Address Range Matching

The Itanium 2 processor allows event monitoring to be constrained to arange of instruction
addresses. The four architectural Instruction Breakpoint Register Pairs IBRPy_3 (IBRg_17) can be
used to specify the desired address range. Once programmed this restriction would be applied to all
events. In the Itanium 2 processor, registers PM Cg 14 Specify how the resulting address match is
applied to the performance monitors. With the exception of IA64 INST_RETIRED and prefetch
events, IBRP, isthe only IBR pair used and will be considered the default for this section. For
memory related events, the appropriate bits must be set in PMC45 to enable this feature. Please
refer to Section 10.3.6, “Data Address Range Matching (PMC13)” for details.

Figure 10-16 and Table 10-12 describe the fields of register PMC, 4. Instruction address range
checking is controlled by the “ignore address range check” bit (PM Cg.ig_ad and PM C14.ibrp0).
When PMCg.ig_ad is one (or PMCy4.ibrp0 isone), all instructions are tagged regardless of IBR
settings. I1n this mode, events from both 1A-32 and Itanium-based code execution contribute to the
event count. When both PMCg.ig_ad and PM C, 4.ibrp0 are zero, the instruction address range
check based on the IBR settings is applied to all Itanium code fetches. In this mode, 1A-32
instructions are never tagged, and, as aresult, events generated by | A-32 code execution are
ignored. Table 10-11 defines the behavior of the instruction address range checker for different
combinations of PSR. i s and PMCg.ig_ad or PMCy,4.ibrp0.

Table 10-11. Itanium® 2 Processor Instruction Address Range Check by Instruction Set

PSR.is
PMCg.ig_ad OR L ®)
PMC,4.ibrp0 0 (Itanium™) 1 (1A-32)
0 Tag only Itanium instructions if they match | DO NOT tag any IA-32 operations.
IBR range.
1 Tag all Itanium and 1A-32 instructions. Ignore IBR range.

The processor compares every Itanium instruction fetch address |P{63:0} against the addressrange
programmed into the architectural instruction breakpoint register pair IBRP,. Regardless of the
value of the instruction breakpoint fault enable (IBR x-bit), the following expression is evaluated
for the Itanium 2 processor’s IBRP:

IBRmatch = match(1P, | BRy. addr, |BR;. mask, |BR;.plm

The events which occur before the instruction dispersal stage will fire only if this qualified match
(IBRmatch) istrue. This qualified match will be ANDed with the result of Opcode Matcher PMCqg
and further qualified with more user definable bits (see Table 10-12) before being distributed to
different places. The events which occur after instruction dispersal stage, will use this new
qualified match (ibrp0-pmc8 match).

Figure 10-16. Instruction Address Range Configuration Register (PMC14)

63 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
reserved fine reserjibrp3jreserjibrp2reseribrplreser|ibrpO|reser

ved ved ved ved ved

50 1 2 1 2 1 2 1 2 1 1

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 97

Performance Monitoring IntQI ®

Table 10-12. Instruction Address Range Configuration Register Fields (PMC1,4)

10.3.5.1

98

Field Bits Description

ibrp0 1 1: No constraint

0: Non-prefetch PMU events (IA64_TAGGED_INST_RETIRED.00
included) will be constrained by IBRPg

ibrpl 4 1: No constraint

0: Prefetch PMU events (IA64_TAGGED_INST_RETIRED.O1
included) will be constrained by IBRP{

ibrp2 7 1: No constraint

0: Non-prefetch PMU events (IA64_TAGGED_INST_RETIRED.10
included) ill be constrained by IBRP,

ibrp3 10 1: No constraint

0: Non-prefetch PMU events (IA64_TAGGED_INST_RETIRED.11
included) will be constrained by IBRP3

fine 13 Enable arbitrary range checking (non power of 2)
1. IBRPg , and IBRP; 3 are paired as lo/hi limit bits
0: Normal mode

This bit provides this capability. If set to 1, ibrp0 (lower limit) and
ibrp2 (upper limit) are paired together; So are ibrpl (lower limit) and
ibrp3(upper limit). Bits [63:12] of upper and lower limits need to be
exactly the same but could have any value. Bits[11:0] of upper limit
needs to be greater than bits[11:0] of lower limit. If an address falls in
between the upper and lower limits then a match will be signaled for
both of the ibr pairs used (ibrp0 and ibrp2 will signals matches at the
same time).

NOTE: The mask bits programmed in IBRs 1,3,5,7 for bits [11:0]

have no effect in this mode.

IBRP, match is generated in the following fashion. Note that unless fine mode is used, arbitrary
range checking cannot be performed since the mask bits are in powers of 2. In fine mode, two IBR
pairs are used to specify the upper and lower limits of arange within a page (the upper bits of lower
and upper limits must be exactly the same).

I f PMCq4. Fi ne=0, |BRmatchO = match[IP(63:0), |BRO(63:0), |BRL(55:0)]
El se, IBRmatchO0 = match[I P(63:12), |BR0(63:12), IBR1(55:12)] and [IP(11:0) >
I BRO(11:0)] and [IP(11:0) < IBR4(11:0)]
| BRadr mat chO = | BRmat chO

ibrp0 match = (PMC8.ign or PMCl14.i brp0) or (1BRadnmatchO and match[PSR. cpl,
| BRL(59:56)])

Theinstruction range check tag (IBRRangeTag) considers the IBR address ranges only if
PMCg.ig_ad, PMCy,4.ibrp0 and PSR. i s areadll zero and if none of the IBR x-bits or PSR.db are
Set.

In order to allow simultaneous use of some IBRs for Performance Monitoring and the others for

debugging (the architected purpose of these registers), separate mechanisms are provided for
enabling | BRs and the x-bit should be cleared to 0 for the IBRP which is going to be used for PMU.

Use of IBRPO For Instruction Address Range Check — Exception 1

The address range constraint for prefetch eventsis on the target address of these events rather than
the address of the prefetch instruction. Therefore IBRP; must be used for constraining these events.

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Note:

10.3.5.2

10.3.6

Performance Monitoring

Calculation of IBRP; match is the same as that of IBRPy match with the exception that we use
|BR2’3’6 instead of IBR0,1,4'

Register PMC,,4 must contain the predetermined value Oxdb6. If software modifies any bits not
listed in Table 10-12 processor behavior isnot defined. It isillegal to have PMC43[48:45]=0000
and PMCg[0]=0 and ((PMC4[2:1]=10 or 00) or (PMC14[5:4]=10 or 00)); this produces
inconsistenciesin tagging I-side eventsin L1D and L 2.

Use of IBRPO For Instruction Address Range Check — Exception 2

The Address Range Constraint for IA64 TAGGED _INST_RETIRED event usesall four IBR
pairs. Calculation of IBRP, match is the same as that of IBRPy match with the exception that
IBRy 5 (in non-fine mode) are used instead of IBR,. Calculation of IBRP3 match isthe same as that
of IBRP; match with the exception that we use IBRg 7 (in non-fine mode) instead of IBR; 3.

Data Address Range Matching (PMC;53)

For instructions that reference memory, the Itanium 2 processor allows event counting to be
constrained by data address ranges. The 4 architectural Data Breakpoint Registers (DBRs) can be
used to specify the desired address range. Data address range checking capability is controlled by
the Memory Pipeline Event Constraints Register (PMC,3).

Figure 10-17 and Table 10-11 describe the fields of register PMC,3 When enabled ([1,x0] in the
bits corresponding to one of the 4 DBRsto be used), data address range checking is applied to
loads, stores, semaphore operations, and thel f et ch instruction.

Table 10-13. Memory Pipeline Event Constraints Fields (PMC;3)

Field Bits Description

cfg dbrp0 4:3 These bits determine whether and how DBRP should be used for

constraining memory pipeline events (where applicable).

00: IBR/Opc/DBR - Use IBRPy/PMCg and DBRP, for constraints (i.e.,
they will be counted only if their Instruction Address, opcodes and
Data Address matches the IBRPy programmed into these registers).
01: IBR/Opc - Use IBRPy/PMCg for constraints

10: DBR - Only use DBRP for constraints

11: No constraints

NOTE: When used in conjunction with “fine” mode (see PMC14
description), only the lower bound DBR Pair (DBRPO or DBRP1)
config needs to be set. The upper bound DBR Pair config should be
left to no constraint. So if IBRPO,2 are chosen for “fine” mode,

cfg_dbrp0 needs to be set according to the desired constraints but
cfg_dbrp2 should be left as 11 (No constraints).

cfg dbrpl 12:11 These bits determine whether and how DBRP; should be used for
constraining memory pipeline events (where applicable); bit for bit

these match those defined for DBRP,.

These bits determine whether and how DBRP, should be used for
constraining memory pipeline events (where applicable); bit for bit
these match those defined for DBRP.

These bits determine whether and how DBRP 3 should be used for
constraining memory pipeline events (where applicable); bit for bit
these match those defined for DBRPO.

cfg dbrp2 20:19

cfg dbrp3 48, 28:27

0 - No constraints
1 - Constraints as set by cfg dbrp0.

Enable dbrp0 45

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 99

Performance Monitoring IntQI ®

Table 10-13. Memory Pipeline Event Constraints Fields (PMC,3) (Continued)

Field Bits Description
Enable dbrpl 46 0 - No constraints
1 - Constraints as set by cfg dbrpl
Enable dbrp2 47 0 - No constraints
1 - Constraints as set by cfg dbrp2
Enable dbrp3 48 0 - No constraints
1 - Constraints as set by cfg dbrp3

Figure 10-17. Memory Pipeline Event Constraints Configuration Register (PMC,3)

Note:

10.3.7

100

63 49 48 47 46 45 44 29 28 27 26 21 20 19 18 13 12 11 10 5 4 3 2 0
reser | enable reserved cfg | reser | cfg | reser | cfg | reser | cfg |reser
ved dbrp dbrp| ved (dbrp2] ved |dbrp| ved dbrpO ved

3210 3 1
15 1 1 1 1 16 2 6 2 6 2 6 2 3

DBRP, match is generated in the following fashion. Arbitrary range checking is not possible since
the mask bits are in powers of 2. Although it is possible to enable more than one DBRP at atime
for checking, it is not recommended. The resulting four matches are combined with PSR.db to form
asingle DBR match:

DBRRangeMat ch = ((DBRRangeMat chO or DBRRangeMat chl or DBRRangeMat ch2 or
DBRRangeMat ch3) and (not PSR. db))

Events which occur after amemory instruction gets to the EXE stage will fire only if this qualified
match (DBRP, match) is true. The data addressis compared to DBRP,; the address match is
further qualified by a number of user configurable bitsin PMC 5 before being distributed to
different places. DBR matching for performance monitoring ignores the setting of the DBR r,w,
and plm fields.

In order to alow simultaneous use of some DBRsfor Performance Monitoring and the others for
debugging (the architected purpose of these registers), separate mechanisms are provided for
enabling DBRs and the r/w-bit should be cleared to 0 for the DBRP which is going to be used for
the PMU.

Register PM C;3 must contain the predetermined value 0x2078fefefefe. If software modifies any
bits not listed in Table 10-11 processor behavior is not defined. It isillegal to have
PMC13[48:45]=0000 and PMCg[0]=0 and ((PMC14[2:1]=10 or 00) or (PMC1,[5:4]=10 or 00));
this producesinconsistencies in tagging I-side eventsin L1D and L 3.

Event Address Registers (PMCqg 11/PMDg 1 2317)

This section defines the register layout for the Itanium 2 processor instruction and data event
addressregisters (EARs). Sampling of six events is supported on the Itanium 2 processor:
instruction cache and instruction TLB misses, data cache load misses and data TLB misses, ALAT
misses, and front-end stalls. The EARs are configured through two PMC registers (PMCy 11)-
EAR specific unit masks allow software to specify event collection parameters to hardware.
Instruction and data addresses, operation latencies and other captured event parameters are
provided in five PMD registers (PMDy 1 » 3 17). The instruction and data cache EARSs report the
latency of captured cache events and allow |atency thresholding to qualify event capture. Event
address dataregisters (PMDy 1 5 3 17) contain valid data only when event collection is frozen
(PMCo.frisone). Reads of PMDy 1 , 3 17 While event collection is enabled return undefined values.

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Inte|® Performance Monitoring

10.3.7.1 Instruction EAR (PMC;g, PMDg 1)
The instruction event address configuration register (PMC,) can be programmed to monitor either
L1 instruction cache or instruction TLB miss events. Figure 10-18 and Table 10-14 detail the
register layout of PMCy. Table describes the associated event address data registers PMDy ;.

Figure 10-18. Instruction Event Address Configuration Register (PMC,)

63 16 15 14 13 12 11 5 4 3 0
reserved ‘ ism ‘ ct ‘ umask ‘pm‘ pim
2 2 1 4
Table 10-14. Instruction Event Address Configuration Register Fields (PMC,)
Field Bits Description
plm 3.0 See Table 10-5, “Performance Monitor PMC Register Control Fields
(PMC4,5,6,7,0,11,12)"
pm 4 See Table 10-5, “Performance Monitor PMC Register Control Fields
(PMC4,5,6,7,0,11,12)"
umask 11:5 Selects the event to be monitored
12:5 If [13] = ‘1 then [12:5] are used for umask
ct 13:12 cache_tlb bit. Instruction EAR selector. Select instruction cache or TLB stalls
if =1x: Monitor demand instruction cache misses
NOTE: ISB hits are not considered misses.
PMDy ; register interpretation (see Table 10-16, “Instruction EAR
(PMDO,1) in Cache Mode (PMC10.ct="1x)")
if =01: Nothing monitored
if =00: Monitor L1 instruction TLB misses
PMDy ; register interpretation (see Table 10-16, “Instruction EAR
(PMDO,1) in Cache Mode (PMC10.ct="1x)")
ism 15:14 See Table 10-5, “Performance Monitor PMC Register Control Fields
(PMC4,5,6,7,0,11,12)"
ignored 31:16 Will each return value of bits[15:0] when read
47:32
Figure 10-19. Instruction Event Address Register Format (PMDy ;)
63 5 4 2 10
‘ Instruction Cache Line Address (PMDy) ‘ rsv. ‘ stat ‘
59 3 2
63 13 12 11 0
‘ reserved (PMD,) ‘ov latency ‘
51 1 12

When the cache tlb-bit (PMC,.ct) is set to zero, instruction cache misses are monitored. When it
is set to one, instruction TLB misses are monitored. The interpretation of the umask field and
performance monitor data registers PMD 1 depends on the setting of this bit and is described in
Section 10.3.7.2, “Instruction EAR Cache Mode (PMC10.ct="1x)" for instruction cache
monitoring and in Section 10.3.7.3, “Instruction EAR TLB Mode (PMC10.ct=00)" for instruction
TLB monitoring.

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 101

Performance Monitoring IntQI ®

10.3.7.2 Instruction EAR Cache Mode (PMC4j.ct="1x)

When PMCy.ct is 1x, the instruction event address register captures instruction addresses and
access latencies for L1 instruction cache misses. Only misses whose latency exceeds a
programmabl e threshold are captured. The threshold is specified as afour bit umask field in the
configuration register PMC, . Possible threshold values are defined in Table 10-15.

Table 10-15. Instruction EAR (PMC,g) umask Field in Cache Mode (PMCqg.ct="1x)

umask Latency Threshold umask Latency Threshold
Bits 12:5 [CPU Cycles] Bits 12:5 [CPU Cycles]

OLXXXXXX >0 (All L1 Misses) 11100000 >=256

11111111 >=4 || >=512

11111110 >=8 11000000 >=1024

11111100 >=16 || >=2048

11111000 >=32 10000000 >=4096

-------- >=64 other undefined

11110000 >=128 00000000 RAB hit

(All L1 misses which hit in RAB)

Asdefined in Table 10-16, the address of the instruction cache line missed the L 1 instruction cache
isprovided in PMDy,. If no qualified event was captured, the valid bitin PMDg is zero. The latency
of the captured instruction cache missin CPU clock cyclesis provided in the latency field of
PMD;. In cache mode, the TLB miss bit of PMDy, is undefined.

Table 10-16. Instruction EAR (PMDg 1) in Cache Mode (PMCq.ct="1x)

Register Field Bits Description

PMDO stat 1:0 Status

x0: EAR did not capture qualified event
x1: EAR contains valid event data

Instruction Cache 63:5 Address of instruction cache line that caused cache miss
Line Address

PMD, latency 11:0 Latency in CPU clocks
overflow 12 If 1, latency counter has overflowed one or more times

before data was returned

10.3.7.3 Instruction EAR TLB Mode (PMC,q.ct=00)

When PMC,.ct is* 00, the instruction event address register captures addresses of instruction TLB
misses. The unit mask allows event address collection to capture specific subsets of instruction
TLB misses. Table 10-17 summarizes the instruction TLB umask settings. All combinations of the

mask bits are supported.
Table 10-17. Instruction EAR (PMC,g) umask Field in TLB Mode (PMC,q.ct=00)
ITLB Miss Type PMC.umask[7:5] Description
— 000 Disabled; nothing will be counted
L2TLB xx1 L1 ITLB misses which hit L2 TLB
VHPT X1x L1 Instruction TLB misses that hit VHPT

102 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

intgl.

Performance Monitoring

Table 10-17. Instruction EAR (PMC,g) umask Field in TLB Mode (PMC;,.ct=00) (Continued)

ITLB Miss Type

PMC.umask[7:5]

Description

FAULT

1xx

Instruction TLB miss produced by an ITLB Miss Fault

ALL

111

Select all L1 ITLB Misses

NOTE: All combinations are supported.

Asdefined in Table 10-18 the address of the instruction cache line fetch that missed the L1 ITLB is
provided in PMDg. The stat bit [1] indicates whether the captured TLB miss hit in the VHPT or
required servicing by software. If no qualified event was captured, the valid bit in PMDg reads
zero. In TLB mode, the latency field of PM D1 is undefined.

Table 10-18. Instruction EAR (PMDg 1) in TLB Mode (PMC;.ct="00)

10.3.8

Register Field Bits Description
PMDy stat 1.0 Status Bits
00: EAR did not capture qualified event
01: L1 ITLB miss hitin L2 ITLB
10: L1 ITLB miss hitin VHPT
11: L1 ITLB miss produced an ITLB Miss Fault
Instruction Cache 63:5 Address of instruction cache line that caused TLB miss
Line Address
PMD, latency 11:2 Undefined in TLB mode

Data EAR (PMCy1, PMD, 3 17)

The data event address configuration register (PMCy;) can be programmed to monitor either L1
data cache load misses, FP loads, L1 data TLB misses, or ALAT misses. Figure 10-20 and

Table 10-19 detail the register layout of PMC,4. Figure 10-21 describes the associated event
address data registers PM D, 5 17. The mode bits in configuration register PMC,; select data cache,
data TLB, or ALAT monitoring. The interpretation of the umask field and registers PMD; 3 17
depends on the setting of the mode bits and is described in Section 10.3.8.1, “Data Cache Load
Miss Monitoring (PMC11.mode=00)" for data cache load miss monitoring, Section 10.3.8.2, “Data
TLB Miss Monitoring (PMC11.mode="01)" for data TLB monitoring, and Section 10.3.8.3,
“ALAT Miss Monitoring (PMC11.mode="1x)" for ALAT monitoring.

Figure 10-20. Data Event Address Configuration Register (PMCq;)

63 26 25 24 23 20 19 16 15 9 8 7 6 5 4 3 0
reserved. ‘ ism ‘ reserved ‘ umask ‘ reserved ‘mode‘pm‘ rsv. ‘ plm
38 2 4 4 7 2 1 2 4

Table 10-19. Data Event Address Configuration Register Fields (PMC,,)

Field Bits Description
plm 3:0 See Table 10-5 “Performance Monitor PMC Register Control Fields
(PMC4,5,6,7,0,11,12).”
pm 6 See Table 10-5 “Performance Monitor PMC Register Control Fields
(PMC4,5,6,7,0,11,12)."

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 103

Performance Monitoring

intel.

Table 10-19. Data Event Address Configuration Register Fields (PMC;,) (Continued)

Field

Bits

Description

mode

8:7

Data EAR mode selector:

‘00: L1 data cache load misses and FP loads
‘01: L1 data TLB misses

‘1x: ALAT misses

umask

19:16

Data EAR unit mask

mode 00: data cache unit mask (definition see Table 10-20, “Data EAR (PMC11) Umask
Fields in Data Cache Mode (PMC11.mode=00)")

mode 01: data TLB unit mask (definition see Table 10-22, “Data EAR (PMC11) Umask
Field in TLB Mode (PMC10.ct=01)")

ism

25:24

See Table 10-5 “Performance Monitor PMC Register Control Fields
(PMC4,5,6,7,0,11,12)."

Figure 10-21. Data Event Address Register Format (PMD; 3 17)

63 4 3 2 1 0
‘ Instruction Address (PMD7) ‘vl ‘bn‘ slot ‘
60 1 1 2
63 62 61 15 14 13 12 0
‘ reserved (PMD3) ‘ stat ‘ov‘ latency ‘
2 50 12

63

Data Address (PMD,)

10.3.8.1

64

Data Cache Load Miss Monitoring (PMC;;.mode=00)

If the Data EAR is configured to monitor data cache load misses, the umask is used as aload
latency threshold defined by Table 10-20.

Asdefined in Table 10-22, the instruction and data addresses as well as the load latency of a
captured data cache load miss are presented to software in three registers PMD,, 5 17. If no qualified
event was captured, the valid bit in PMD3 is zero.

HPW accesses will not be monitored. set f and reads from ccv will not be monitored. If an L1D
cachemissisnot at least 7 clocks after a captured miss, it will not be captured. Semaphore
instructions and floating-point loads will be counted.

Table 10-20. Data EAR (PMC41) Umask Fields in Data Cache Mode (PMC;;.mode=00)

umask Throehold Jumask Threehold
[CPU Cycles] [CPU Cycles]

0000 >= 4 (Any latency) 0110 >= 256

0001 >=8 0111 >=512

0010 >=16 1000 >=1024

0011 >= 32 1001 >= 2048

0100 >= 64 1010 >= 4096

0101 >=128 1011. 1111 No events are captured.

104

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

intgl.

Performance Monitoring

Table 10-21. PMD; 3 17 Fields in Data Cache Load Miss Mode (PMC;;.mode=00)

10.3.8.2

Register Fields Bit Range Description
PMD, Data Address 63:0 64-bit virtual address of data item that caused miss
PMD5 latency 12:0 Latency in CPU clocks
overflow 13 Overflow - If 1, latency counter has overflowed one or more

times before data was returned

stat 15:14 Status bits;
00: No valid information in PMD2,17 and rest of PMD3
01: Valid information in PMD2,3 and may be in PMD17

NOTE: These bits should be cleared before the EAR is

reused.
PMD, - slot 1:0 Slot bits; If “.vI” is 1, the Instruction bundle slot of memory
instruction
bn 2 Bundle bit; If “.vI” is 1 this indicates which of the executed
bundles is associated with the captured miss
vl 3 Valid bit;

0: Invalid Address (EAR did not capture qualified event)
1: EAR contains valid event data

NOTE: This bit should be cleared before the EAR is reused

Instruction Address | 63:4 Virtual address of the first bundle in the 2-bundle dispersal
window which was being executed at the time of the miss. If
“.bn” is 1 then the second bundle contains memory
instruction and 16 should be added to the address.

The detection of data cache load misses requires aload instruction to be tracked during multiple
clock cyclesfrom instruction issue to cache miss occurrence. Since multiple loads may be
outstanding at any point in time and the Itanium 2 processor data cache miss event address register
can only track asingleload at atime, not all data cache load misses may be captured. When the
processor hardware captures the address of aload (called the monitored load), it ignores all other
overlapped concurrent loads until it is determined whether the monitored load turnsout tobean L1
data cache miss or not. If the monitored |oad turns out to be a cache miss, its parameters are latched
into PM D, 3 17. The processor randomizes the choice of which load instructions are tracked to
prevent the same data cache load miss from always being captured (in aregular sequence of
overlapped data cache load misses). While this mechanism will not always capture al data cache
load misses in a particular sequence of overlapped loads, its accuracy is sufficient to be used by
statistical sampling or code instrumentation.

Data TLB Miss Monitoring (PMC4;.mode="01)

If the Data EAR is configured to monitor data TLB misses, the umask defined in Table 10-23
determines which data TLB misses are captured by the Data EAR. For TLB monitoring, all
combinations of the mask bits are supported.

As defined in Table 10-23 the instruction and data addresses of captured DTLB misses are
presented to softwarein PMD ;7. If no qualified event was captured, the valid bitin PMD reads
zero. When programmed for data TLB monitoring, the contents of the latency field of PM D5 are
undefined.

Both load and store TLB misses will be captured. Some unreached instructions will also be
captured. For example, if aload missesin L1DTLB but hitsin L2 DTLB and isin an instruction
group after ataken branch, it will be captured. Stores and floating-point operations never missin
L1DTLB but could missthe L2 DTLB or fault to be handled by software.

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 105

Performance Monitoring IntQI ®

Note: PMC,, must be 0 in this mode; else the wrong IP for misses coming right after a mispredicted
branch.

Table 10-22. Data EAR (PMC41) Umask Field in TLB Mode (PMC;,.ct=01)

L1DTLB Miss PMC.umask[19:16] Description
Type
- 000x Disabled; nothing will be counted
L2DTLB XX1x L1 DTLB misses which hit L2 DTLB
VHPT XIxx L1 DTLB misses that hit VHPT
FAULT 1xxx Data TLB miss produced a fault
ALL 111x Select all L1 DTLB Misses
NOTE: All combinations are supported.

Table 10-23. PMD, 3 17 Fields in TLB Miss Mode (PMC;;.mode="01)

Register Field Bit Range Description
PMD, Data Address 63:0 64-bit virtual address of data item that caused miss
PMD3 latency 12:0 Undefined in TLB Miss mode

ov 13 Undefined in TLB Miss mode

stat 15:14 Status

00: invalid information in PMD2,17 and rest of PMD3

01: L2 Data TLB hit
10: VHPT hit
11: Data TLB miss produced a fault

NOTE: These bits should be cleared before the EAR is

reused.
PMD, slot 1.0 Slot bits; If “.vI” is 1, the Instruction bundle slot of memory
instruction.
bn 2 Bundle bit; If “.vI” is 1 this indicates which of the executed
bundles is associated with the captured miss
vl 3 Valid bit;

0: Invalid Address (EAR did not capture qualified event)
1: EAR contains valid event data

NOTE: This bit should be cleared before the EAR is
reused.

Instruction Address 63:4 Virtual address of the first bundle in the 2-bundle
dispersal window which was being executed at the time of
the miss. If “.bn” is 1 then the second bundle contains
memory instruction and 16 should be added to the
address.

106 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

10.3.8.3

Note:

Performance Monitoring

ALAT Miss Monitoring (PMC4;.mode="1x)

As defined in Table 10-24, the address of the instruction (failing chk. a and | d. ¢) causing an
ALAT missis presented to software in PMD7. If no qualified event was captured, the valid bit in
PMD45 reads zero. When programmed for ALAT monitoring, the latency field of PMD3 and the
contents of PMD,, are undefined.

PMC,, must be 0 in this mode; else the wrong IP for misses coming right after a mispredicted
branch.

Table 10-24. PMD; 3 17 Fields in ALAT Miss Mode (PMC;;.mode="1x)

10.3.9

Register Field Bit Range Description
PMD, Data Address 63:0 Undefined in ALAT Miss Mode
PMD3 latency 12:0 Undefined in ALAT Miss mode

ov 13 Undefined in ALAT Miss mode
stat 15:14 Status bits;

00: No valid information in PMD,, ;7 and rest of PMD3
01: Valid information in PMD; 3 and may be in PMD;7

NOTE: These bits should be cleared before the EAR is

reused.
PMD; -, slot 1:0 Slot bits; If “.vI" is 1, the Instruction bundle slot of memory
instruction
bn 2 Bundle bit; If “.vI” is 1 this indicates which of the executed
bundles is associated with the captured miss
vl 3 Valid bit;

0: Invalid Address (EAR did not capture qualified event)
1: EAR contains valid event data

NOTE: This bit should be cleared before the EAR is
reused.

Instruction Address 63:4 Virtual address of the first bundle in the 2-bundle
dispersal window which was being executed at the time of
the miss. If “.bn” is 1 then the second bundle contains
memory instruction and 16 should be added to the
address.

Branch Trace Buffer

The branch trace buffer provides information about the outcome of the most recent Itanium branch
instructions and their predictions and outcomes. The Itanium 2 branch trace buffer configuration
register (PMC;,) defines the conditions under which branch instructions are captured, and allows
the trace buffer to capture specific subsets of branch events. The branch trace buffer operates only
during Itanium-based code execution, i.e.,, when PSR. i s iszero. When running |A-32 I1SA, the
branch trace buffer is not updated.

In every cyclein which aqualified Itanium branch retires, its source bundle address and slot
number are written to the branch trace buffer. The branches target address is written to the next
buffer location. If the target instruction bundleitself contains a qualified Itanium branch, the
branch trace buffer either records a single trace buffer entry (with the b-bit set) or makes two trace
buffer entries: one that records the target instruction as a branch target (b-bit cleared), and another
that records the target instruction as a branch source (b-bit set). Asaresult, the branch trace buffer
may contain a mixed sequence of the branches and targets.

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 107

Performance Monitoring IntQI ®

10.3.9.1 Branch Trace Buffer Collection Conditions

The branch trace buffer configuration register (PMC;,) defines the conditions under which branch
instructions are captured. These conditions are given in Figure 10-22 and Table 10-25, which refer
to conditions associated with the branch prediction. These conditions are;

* Whether the target of the branch should be captured or additional information about the
prediction should be captured.

* The path of the branch (not taken/taken), and

* Whether or not the branch path was mispredicted.

* Whether or not the target of the branch was mispredicted.
¢ What type of branch should be captured.

Figure 10-22. Branch Trace Buffer Configuration Register (PMC;5)
63 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved ‘ brt ‘ppm‘ ptm‘ tm ‘ds‘pm‘ rsv. ‘ plm
2 2 2 2 1

48 4

Table 10-25. Branch Trace Buffer Configuration Register Fields (PMC5)

Field Bits Description

plm 3:0 See Table 10-5, “Performance Monitor PMC Register Control Fields
(PMC4,5,6,7,0,11,12)"

pm 6 See Table 10-5, “Performance Monitor PMC Register Control Fields
(PMC4,5,6,7,0,11,12)"

ds 7 Data selector:
1: capture info about branch predictions
0: capture branch target

tm 9:8 Taken Mask:

11: all ltanium® branches

10: Taken Itanium branches only

01: Not Taken Itanium branches only
00: No branch is captured

ptm 11:10 Predicted Target Address Mask:

11: capture branch regardless of target prediction outcome
10: branch target address predicted correctly

01: branch target address mispredicted

00: No branch is captured

ppm 13:12 Predicted Predicate Mask:

11: capture branch regardless of predicate prediction outcome
10: branch predicted branch path (taken/not taken) correctly
01: branch mispredicted branch path (taken/not taken)

00: No branch is captured

brt 15:14 Branch Type Mask:

11: only non-return indirect branches captured
10: only return branches will be captured

01: only IP-relative branches will be captured
00: all branches are captured

108 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Inte|® Performance Monitoring

To summarize, an Itanium branch and its target are captured by the trace buffer if the following
equation is true:

(not PSR.is)
and ((tm 1] - branch taken)
or (tn{0] - branch not taken)
)
and ((ptni1l] - hardware predicted target address correctly)
or (ptnf0] - hardware m spredicted target address)
)
and ((ppnri 1] - hardware predicted the branch path correctly)
or (ppnf0] - hardware m spredicted the branch path)

)

and (not (not ptn{1l] and ptni0] and not ppn{1] and ppni0])
) - hardware m spredicted path AND target
and (not ds

)

To captureall correctly predicted Itanium branches, the Itanium 2 branch trace buffer configuration
settings in PMC,, should be: ds=0, tm=11, ptm=10, ppm=10, brt=00.

Either branches whose path was mispredicted can be captured (ds=0, tm=11, ptm=11,
ppm=01,brt=00) or branches with a target misprediction (ds=0, tm=11, ptm=01, ppm=11,brt=00)
can be captured, but not both. A setting of ds=0, tm=11, ptm=01, ppm=01, brt=00 will result in an
empty buffer. If abranch’s path is mispredicted, no target prediction is recorded.

Instruction Address Range Matching (Section 10.3.5, “Instruction Address Range Matching”) and
Opcode Matching (Section 10.3.4, “Opcode Match Check (PMC8,9,15)") may also be used to
constrain what is captured in the Branch Trace Buffer.

10.3.9.2 Branch Trace Buffer Reading

Figure 10-23. Branch Trace Buffer Register Format (PMDg_15, where PMC4,.ds == 0)

63 4 3 2 1 O
Address ‘ slot ‘mp‘ b ‘
60 2 1 1

Figure 10-24. Branch Trace Buffer Register Format (PMDg_15, where PMC4,.ds == 1)

63 61 60 41 40 4 3 2 1 0
‘ Addr ‘ Prediction Detail ‘ Address ‘ slot ‘mp‘ b
3 20 37 2 11

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 109

Performance Monitoring IntQI ®

Table 10-26. Branch Trace Buffer Register Fields (PMDg_15)

Field Bit Range Description

b 0 Branch Bit
1: contents of register is a branch instruction
0: contents of register is a branch target or contains branch prediction detail

mp 1 Mispredict Bit
if b=1 and mp=1: mispredicted branch (due to target or predicate misprediction)
if b=1 and mp=0: correctly predicted branch

if b=0 and mp=1: valid target address
if b=0 and mp=0: invalid branch trace buffer register

slot 3:2 if b=0: undefined

if b=1: Slot index of first taken branch instruction in bundle
00: Itanium Slot 0 branch/target

01: Itanium Slot 1 branch/target

10: Itanium Slot 2 branch/target

11: this was a not taken branch

Address 63:4 if b=1: 60-bit bundle address of Itanium branch instruction
if ds=0 and b=0: 60-bit target bundle address of Itanium branch instruction

if ds=1 and b=0: Upper 3 bits and lower 37 bits of the bundle address of Itanium®
branch instruction and the lower 20 bits of the L1 IBR associated with the captured
branch

The eight branch trace buffer registers PMDg 45 provide information about the outcome of a
captured branch sequence. The branch trace buffer registers (PMDg_15) contain valid data only
when event collection is frozen (PMCy.fr is one). While event collection is enabled, reads of
PMDg_5 return undefined values. The registers follow the layout defined in Figure 10-23,

Figure 10-24, and Table 10-26 contain the address of either a captured branch instruction (b-bit=1)
or a branch target (b-bit=0) or branch prediction details. For branch instructions, the mp-bit
indicates a branch misprediction. A branch trace register with a zero b-bit and a zero mp-bit
indicates an invdid branch trace buffer entry. The slot field captures the slot number of the first
taken Itanium branch instruction in the captured instruction bundle. A slot number of 3 indicates a
not-taken branch. The target address bundle of abranchto IA-32 (br . i a) isrecorded. An 1A-32
JMPE branch instruction and its Itanium target are not recorded.

In every cyclein which aqualified Itanium branch retirest, its source bundle address and slot
number are written to the branch trace buffer. If within the next clock, the target instruction bundle
contains a branch that retires and meets the same conditions, the address of the second branch is
stored. Otherwise, either the branches' target address (PM C,,.ds=0) or details of the branch
prediction (PCM ;,.ds=1) are written to the next buffer location. As aresult, the branch trace buffer
may contain a mixed sequence of the branches and targets.

In order to be ableto record moreinformation in the trace buffer, there are two cases which will not
have the branch target/prediction history recorded:

* Taken | P-relative branches with PMC12.ds ==
* Not-Taken branches with PMC12.ds ==

The Itanium 2 branch trace buffer isa circular buffer containing the last four to eight qualified
Itanium branches. The Branch Trace Buffer Index Register (PMD ;) defined in Figure 10-25 and
Table 10-27 identify the most recently recorded branch or target. In every cyclein which a
qudified branch or target is recorded, the branch buffer index (bbi) is post-incremented. After 8
entries have been recorded, the branch index wraps around, and the next qualified branch will

1. Insome cases, the Itanium® 2 processor branch trace buffer will capture the source (but not the target) address of an excepting branch
instruction. This occurs on trapping branch instructions as well asfaulting br . i a, br eak. b and multi-way branches.

110 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Inte|® Performance Monitoring

overwritethefirst trace buffer entry. The wrap condition itself isrecorded in the full bit of PMDqg.
The bbi field of PM D¢ defines the next branch buffer index that is about to be written. The
following formula computes the last written branch trace buffer PMD index from the contents of
PM DlG:

|ast-written-PM D-index = 8+ ([(8* PMD g full) + (PMCyg.bbi - 1)]% 8)

If both the full bit and the bbi field of PMD4¢ are zero, no qualified branch has been captured by
the branch trace buffer. The full bit gets set the every time the branch trace buffer wraps from
PMD;5 to PMDg. Once set, the full bit remains set until explicitly cleared by software, i.e., itisa
sticky bit. Software can reset the bbi index and the full bit by writing to PMD4g.

Figure 10-25. Branch Trace Buffer Index Register Format (PMD1g)
63 36 35 32 31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 2 0

reserved pmd|pmd|pmd |pmd |pmd|pmd|pmd jpmd8full bbi
15|14 |13 |12 | 11 | 10| 9 ext
ext | ext | ext | ext | ext | ext | ext

28 4 4 4 4 4 4 4 4 1 3

Table 10-27. Branch Trace Buffer Index Register Fields (PMD4g)

Field Bit Range Description

bbi 2:0 Branch Buffer Index [Range 0.7 - Index 0 indicates PMDg]
Pointer to the next branch trace buffer entry to be written
if full=1: points to the oldest recorded branch/target

if full=0: points to the next location to be written

full 3 Full Bit (sticky)
if full=1: branch trace buffer has wrapped
if full=0: branch trace buffer has not wrapped

pmd8 ext 7:4 bit[7:6] Not used

bit[5] (bruflush):

If PMD8.bits[1:0] = 11,

1 = back-end mispredicted the branch and the pipeline was flushed by it
0 = no pipeline flushes are associated with this branch

bit[4] (b1):

ifb=1

1 = branch was from bundle 1, add 0x1 to PMD8.bits[63:4]
0 = branch was from bundle 0

pmd9 ext 11:8 Same as above for PMD9

pmd10 ext 15:12 Same as above for PMD10
pmd1l ext 19:16 Same as above for PMD11
pmd12 ext 23:20 Same as above for PMD12
pmd13 ext 27:24 Same as above for PMD13
pmd14 ext 31:28 Same as above for PMD14
pmd15 ext 35:32 Same as above for PMD15

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 111

Performance Monitoring IntQI ®

10.3.10

10.3.10.1

10.3.11

112

Interrupts

As mentioned in Table 10-6, each one of registers PMD 4 5 g 7 Will cause an interrupt if the
following conditions are al true:

* PMC,.0i=1 (i.e, overflow interrupt is enabled for PMD;) and PMD; overflows. Note that there
isonly one interrupt line that will be raised regardless of which PMC/PMD set meets this
condition.

Thisinterrupt isan “Externa Interrupt” with Vector= 0x3000 and will be recognized only if the
following conditions are true:

* PMV.m=0 and PMV.vector is set up correctly; i.e., Performance Monitor interrupts are not
masked and a proper vector is programmed for this interrupt by executing a*“ mov
Ccr73=r2".

¢ PSR.i =1 and PSR.ic=1; i.e, interruptions are unmasked and interruption collection is enabled
in the Processor Status Register by executing either the“ssm i mi or “nov psr. | =r2”
instruction.

* TPR.mmi=0 (i.e., all external interrupts are not masked) and TPR.mic is avaue that the
priority classthat Performance Monitor Interrupt belongs to are not masked. For example if
we assign vector 0xD2 to the Performance Monitor Interrupt, according to Table 5-7 “ Interrupt
Priorities, Enabling, and Masking”in Volume 2 of the Intel® Itanium® Architecture Software
Developer’s Manual, it will be priority class 13. So any value lessthan 13 for TPR.mic is okay
for recognizing thisinterrupt. A “nov cr 66=r 1” will write to this register.

* There are no higher priority faults, traps, or external interrupts pending.

Interrupt Service routine needsto read I VR register “nov r 1=cr 65” in order to figure out the
highest priority external interrupt which needs to be serviced.

Before returning from interrupt service routine, the Performance Monitor needs to be initialized
such that the interrupt will be cleared. This could be done by clearing the PM C.oi and/or
re-initializing the PM D which caused the interrupt (you will know this by reading PMCp). In
addition to this, all bits of PMC need to be cleared if further monitoring needs to be done.

External Events

As mentioned in theTable 10-6, each PMD will cause an external event on the BPM# pin if the
following conditions are al true: Currently the signal will reflect the value of the overflow bit of
the PMD [47]. Meaning once it made a0 to 1 transition, it will make a 1 to O transition either when
the PMD was re-written with bit W=0 or when PMD overflows one more time.

* PMCi.ev=1 (i.e, external event isenabled for PMD;) and PMD; overflows (read bit 47 of
PMD;=1). This pin will stay high as long as these conditions are true.

* BPM[5:0] are bidirectional processor pins allocated for debug and performance monitor. The
exact method of enabling these pinsisnot known at thistime. But there will be away to
determine their direction (in versus out) and which information will show up on them (output)
or how the information will be used (input).

Processor Reset, PAL Calls, and Low Power State

Processor Reset: On processor hardware reset bitsoi and ev of all PMC registers are zero, and
PMV.m is set to one. This ensures that no interrupts are generated, and events are not externally
visible. On reset, PAL firmware ensures that the instruction address range check, the opcode
matcher and the data address range check are initialized asfollows:

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Inte|® Performance Monitoring

PMCg o = Oxffffffffffffffff, (match all opcodes)
PMC,3 = 0x2078fefefefe, (no memory pipeline event constraints)

PMC,,4 = 0xdb6, (no instruction address range constraints)
PMC,5 = OxfffffffO, (no opcode match constraints)

All other performance monitoring related state is undefined.

Table 10-28. Information Returned by PAL_PERF_MON_INFO for the Itanium® 2

Processor
S ®
PAL_PERF_MON_INFO . ltanium®2
- = = Description Processor Specific
Return Value
Value
PAL_RETIRED 8-bit unsigned event type for counting the number of 0x08
untagged retired Itanium instructions
PAL_CYCLES 8-bit unsigned event type for counting the number of 0x12
running CPU cycles
PAL_WIDTH 8-bit unsigned number of implemented counter bits 48
PAL_GENERIC_PM_PAIRS | 8-bit unsigned number of generic PMC/PMD pairs 4
PAL_PMCmask 256-bit mask defining which PMC registers are Ox3FFF
populated
PAL_PMDmask 256-bit mask defining which PMD registers are OX3FFFF
populated
PAL_CYCLES_MASK 256-bit mask defining which PMC/PMD counters can 0xFO
count running CPU cycles (event defined by
PAL_CYCLES)
PAL_RETIRED_MASK 256-bit mask defining which PMC/PMD counters can 0xFO
count untagged retired Itanium instructions (event
defined by PAL_RETIRED)

PAL Call: Asdefined inthein Volume 2 of the Intel® Itanium® Architecture Software Devel oper’s
Manual, the PAL call PAL_PERF_MON_INFO provides software with information about the
implemented performance monitors. The Itanium 2 processor specific values are summarized in
Table 10-28.

Low Power Sate: On the Itanium 2 processors, PAL_HALT_LIGHT selectively freezes specific
performance monitoring events in order to preserve them prior to powering down the processor.
Below isalist of performance monitors that will continue to be monitored while all others are
frozen:

e BUS ALL.IO

e BUS ALL.ANY

* BUS DATA_CYCLE

« BUS |0.10

* BUS IO.ANY

* BUS LOCK.ANY

* BUS MEMORY.EQ 128BYTE.IO

* BUS MEMORY.EQ 128BYTE.ANY
* BUS MEMORY.LT 128BYTE.IO

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 113

Performance Monitoring

114

BUS MEMORY.LT_128BYTE.ANY
BUS MEMORY.ALL_128BYTE.IO
BUS MEMORY.ALL_128BYTE.ANY
BUS MEM_READ.BIL.IO

BUS MEM_READ.BIL.ANY
BUS MEM_READ.BRL.IO

BUS MEM_READ.BRL.ANY
BUS MEM_READ.BRIL.IO
BUS MEM_READ.BRIL.ANY
BUS MEM_READ.ALL.IO

BUS MEM_READ.ALL.ANY

BUS RD_DATA.IO

BUS RD_DATA.ANY

BUS RD_10.10

BUS RD_IO.ANY

BUS RD_PRTL.IO

BUS RD_PRTL.ANY

BUS SNOOPS.IO
BUS_SNOOPSANY

BUS SNOOPS HITM.ANY

BUS SNOOP _STALL_CYCLESANY
BUS WR_WB.EQ 128BYTE.IO
BUS WR_WB.EQ 128BYTE.ANY
BUS WR_WB.CCASTOUT.ANY
BUS WR_ WB.ALL.IO

BUS WR_WB.ALL.ANY
L1l_PURGE
MEM_READ_CURRENT.IO
MEM_READ_CURRENT.ANY

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

intel.

Performance Monitor Events 11

11.1 Introduction

This chapter describes the architectural and microarchitectural events measurable on the Itanium 2
processor through the performance monitoring mechanisms described earlier in Chapter 10. The
early sections of this chapter provide a categorized high-level view of the event list, grouping
logically related events together. Computation (either directly by a counter in hardware or
indirectly asa“derived” event) of common performance metricsis also discussed. Each directly
measurable event is then described in greater detail in the alphabetized list of all processor events
in Chapter 11, “ Categorization of Events.”

The Itanium 2 processor is capable of monitoring numerous events. The majority of events can be
selected as input to any of the PMD,4_7 by programming bit [15:8] of the corresponding PMC to the
hexadecimal values shown in the “event code” field of the event list. Please refer to Section 11.8.2
and Section 11.8.3 for events that have more specific requirements.

11.2 Categorization of Events

Performance related events are grouped into the following categories:
* Basic Events: Clock cycles, retired instructions (Section 11.3)
¢ |nstruction Dispersal Events: Instruction decode and issue (Section 11.4)

¢ |nstruction Execution Events: I nstruction execution, dataand control speculation, and memory
operations (Section 11.5)

¢ Stall Events: Stall and execution cycle breakdowns (Section 11.6)
* Branch Events: Branch prediction (Section 11.7)

* Memory Hierarchy: Instruction and data caches (Section 11.8)

¢ System Events. Operating system monitors (Section 11.9)

¢ TLB Events: Instruction and data TLBs (Section 11.10)

¢ System Bus Events: (Section 11.11)

* RSE Events. Register Stack Engine (Section 11.12)

Each section listed above includes a table providing information on directly measurable events.
The section may also contain a second table of eventsthat can be derived from those that are
directly measurable. These derived events may simply rename existing events or present stepsto
determine the value of common performance metrics. Derived events are not, however, discussed
in the systematic event listing in Section 11.14.

Directly measurable events often use the PM C.umask field (See Section 10.3.2, “Performance
Counter Registers’) to measure acertain variant of the event in question. Symbolic event names for
such events include a period to indicate use of the umask, specified by four bitsin the detailed
event description (x's are for don't-cares).

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 115

Performance Monitor Events

intel.

The summary tables in the subsequent sections define events by specifying the following

attributes:

¢ Symbol Name - Symbolic name used to denote this event.

¢ Event Code - Hexadecimal valueto program into bits[15:8] of the appropriate PM C register in
order to measure this event.

* |AR - Can this event be constrained by the Instruction Address Range registers?
* DAR - Can thisevent be constrained by the Data Address Range registers?
* OPC - Can thisevent by constrained by the Opcode Match registers?

* Max Inc/Cyc - Maximum Increment Per Cycle or the maximum value this event may be
increased by each cycle.

* Description - Brief description of the event.

11.3

Basic Events

Table 11-1 summarizes two basic execution monitors. The CPU_CY CLES event can be used to
break out separate or combined Itanium architecture/l A-32 cycle counts by constraining the
PMC/PMD based on the currently executing instruction set. The Itanium 2 retired instruction
count, IA64 INST_RETIRED, includes predicated true instructions and nop instructions, but
excludes RSE operations.

Table 11-1. Performance Monitors for Basic Events

Event 11D1o Max
Symbol Name AlA|lP Description
Code Inc/Cyc
R|R| C

CPU_CYCLES 0x12 | N[N[N 1 CPU Cycles
IA64_INST_RETIRED 0x08 |Y|N|Y 6 Retired Itanium® Instructions
IA32_INST_RETIRED 0x59 | N[N[N 2 IA-32 Instructions Retired
IA32_ISA_TRANSITIONS 0x07 | N|N|N 1 Itanium to/from 1A-32 ISA Transitions

Table 11-2.

Derived Monitors for Basic Events

Symbol Name

Description

Equation

IA64_IPC

Average Number of Itanium®
Instructions Per Cycle During
Itanium-based Code Sequences

IA64_INST_RETIRED / CPU_CYCLES

IA32_IPC

Average Number of |A-32
Instructions Per Cycle During
IA-32 Code Sequences

IA32_INST_RETIRED / CPU_CYCLES

AVG_CPT

Average Number of Cycles per
ISA Transition

CPU_CYCLES / (ISA_TRANSITIONS * 2)

AVG_IA32_IPT

Average Number of I1A-32
Instructions per ISA Transition

IA32_INST_RETIRED / (IA32_ISA_TRANSITIONS / 2)

AVG_IAB4_IPT

Average Number of Itanium
Instructions per ISA Transition

IA64_INST_RETIRED / (IA32_ISA_TRANSITIONS / 2)

116

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

intgl.

11.4

Performance Monitor Events

Instruction Dispersal Events

Instruction cache lines are delivered to the execution core and dispersed to the Itanium 2 processor
functional units. The Itanium 2 processor can issue, or disperse, 6 instructions per clock cycle. In
other words, the Itanium 2 processor can issue to 6 instruction slots (or syllables). The following
events are intended to give users an idea of how effectively instructions are dispersed and why they
are not dispersed at full capacity. There are five reasons for not dispersing at full capacity. Oneis
measured by DISP_STALLED. For every clock that dispersal is stalled, dispersal takes a hit of
6-syllables. The other four reasons are measured by SYLL _NOT_DISPERSED. Due to the way
the hardwareisdesigned, SYLL_NOT_DISPERSED may contain an overcount dueto implicit and
explicit bits; although this number should be small, SYLL_OVERCOUNT will provide an accurate
count for it.

The relationship between these eventsis as follows:

* 6*(CPU_CYCLES-DISP_STALLED) = INST_DISPERSED +
SYLL_NOT _DISPERSED.ALL - SYLL_OVERCOUNT.ALL

Table 11-3. Performance Monitors for Instruction Dispersal Events

11.5

1{D|O
Symbol Name E\g%n; AlA|P In?/?:x c Description
R|R|C y
DISP_STALLED 0x49 | N|N|N 1 Number of cycles dispersal stalled
INST_DISPERSED Ox4d | Y| N[N 6 Syllables dispersed from REN to REG
stage
SYLL_NOT_DISPERSED Ox4e |Y|N|[N 5 Syllables not dispersed
SYLL_OVERCOUNT Ox4f | Y| N[N 2 Syllables overcounted

Instruction Execution Events

Retired instruction counts, IA64_TAGGED_INST_RETIRED and NOPS_RETIRED, are based on
tag information specified by the address range check and opcode match facilities. A separate event,
PREDICATE_SQUASHED_ RETIRED, is provided to count predicated off instructions.

The FP monitors listed in the table capture dynamic information about pipeline flushes and
flush-to-zero occurrences due to floating-point operations. The FP_OPS_RETIRED event counts
the number of retired FP operations.

As Table 11-4 describes, monitors for control and data speculation capture dynamic run-time
information: the number of failed chk. s instructions (INST_FAILED_CHKS_RETIRED.ALL),
the number of advanced load checks and check loads (INST_CHKA _LDC_ALAT.ALL), and
failed advanced load checks and check loads (INST_FAILED CHKA LDC ALAT.ALL) asseen
by the ALAT. The number of retired chk. s instructionsis monitored by the

IA64_ TAGGED_INST_RETIRED event, given the appropriate opcode mask. Since the Itanium 2
processor ALAT is updated by operations on mispredicted branch paths, the number of advanced
load checks and check loads need an explicit event (INST_CHKA_LDC_ALAT.ALL).

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 117

Performance Monitor Events Inte|®

Table 11-4. Performance Monitors for Instruction Execution Events

Symbol Name I(E:\g%net /:: E E In't\:/l/?:);c Description
ALAT_CAPACITY_MISS 0x58 |Y|Y|Y 2 ALAT Entry Replaced
FP_FAILED_FCHKF 0x06 |Y|N|N 1 Failed fchkf
FP_FALSE_SIRSTALL 0x05 |Y|N|N 1 SIR stall without a trap
FP_FLUSH_TO_ZERO 0x0b | Y[N[N 2 FP Result Flushed to Zero
FP_OPS_RETIRED 0x09 |Y|N|N 8 Retired FP operations
FP_TRUE_SIRSTALL 0x03 |Y|N|N 1 SIR stall asserted and leads to a trap
IA64_TAGGED_INST_RETIRED 0x08 |Y|N|Y 6 Retired Tagged Instructions
INST_CHKA_LDC_ALAT 0x56 |Y|Y|Y 2 Advanced Check Loads
INST_FAILED_CHKA_LDC_ALAT ox57 |Y|Y|Y 1 Failed Advanced Check Loads
INST_FAILED_CHKS_RETIRED 0x55 | N| N[N 1 Failed Speculative Check Loads
LOADS_RETIRED Oxcd YIY|Y 4 Retired Loads
MISALIGNED_LOADS_RETIRED Oxce |Y|Y|Y 4 Retired Misaligned Load Instructions
MISALIGNED_STORES_RETIRED oxd2 |Y|Y]|Y 2 Retired Misaligned Store Instructions
NOPS_RETIRED 0x50 |Y|N|Y 6 Retired NOP Instructions
PREDICATE_SQUASHED_RETIRED | 0x51 |Y|N]|Y 6 Instructions Squashed Due to

Predicate Off
STORES_RETIRED oxdl |Y Y 2 Retired Stores
UC_LOADS_RETIRED Oxcf |[Y|Y]|Y 4 Retired Uncacheable Loads
UC_STORES_RETIRED 0xd0 |Y|Y|Y 2 Retired Uncacheable Stores

Table 11-5. Derived Monitors for Instruction Execution Events

11.6

118

Symbol Name Description Equation

ALAT_EAR_EVENTS Counts the number of ALAT DATA_EAR_EVENTS
events captured by EAR

CTRL_SPEC_MISS_RATIO Control Speculation Miss Ratio INST_FAILED_CHKS_RETIRED.ALL /
IA64_TAGGED_INST_RETIRED][chk.s]

DATA_SPEC_MISS_RATIO | Data Speculation Miss Ratio INST_FAILED_CHKA_LDC_ALATALL /
INST_CHKA_LDC_ALATALL

Stall Events

Itanium 2 processor stall accounting is separated into front-end and back-end stall accounting.
Back-end and front-end events should not be compared since they are counted in different stages of
the pipeline.

The back-end can be stalled due to five distinct mechanisms: FPU/L1D, RSE, EXE,
branch/exception or the front-end. BACK_END_BUBBLE provides an overview of which
mechanisms are producing stalls while the other back-end counters provide more explicit
information broken down by category. Each timethereis astall, abubbleisinserted in only one
location in the pipdine. Each time there is aflush, bubbles are inserted in all locationsin the

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitor Events

pipeline. With the exception of BACK_END_BUBBLE, the back-end stall accounting events are
prioritized in order to mimic the operation of the main pipe (i.e., priority form highto low isgiven
to: BE_ FLUSH_BUBBLE.XPN, BE_FLUSH BUBBLE.BRU, L1D_FPU stalls, EXE stalls, RSE
stalls, front-end stalls). This prioritization guarantees that the events are mutually exclusive and
only the most important cause, the one latest in the pipeline, is counted.

The Itanium 2 processor’s front-end can be stalled due to seven distinct mechanisms. FEFLUSH,
TLBMISS, IMISS, branch, FILL-RECIRC, BUBBLE, IBFULL (listed in priority from high to
low). The front-end stalls have exactly the same effect on the pipeline so their accounting is
simpler.

During every clock, the back-end pipeline has either abubble or it retires 1 or more instructions,
CPU_CYCLES=BACK_END_BUBBLE.Al + (IA64_INST_RETIRED >= 1). To further
investigate bubbles occurring in the back-end of the pipeline the following equation holds true:
BACK_END_BUBBLE.dl = BE_RSE_BUBBLE.al + BE_EXE_BUBBLE.AI +

BE L1D_FPU_BUBBLE.al + BE_ FLUSH BUBBLE.all + BACK_END BUBBLE.fe.

Each of the stall events (summarized in Table 11-6) take a umask to choose among several
available sub-events. Please refer to the detailed event descriptionsin Section 11.14 for alist of
available sub-events and their individual descriptions.

Table 11-6. Performance Monitors for Stall Events

11.7

Event 11DIo Max
Symbol Name AlA|lP Description
Code Inc/Cyc
R|R|C
BACK_END_BUBBLE 0x00 | N| N[N 1 Full pipe bubbles in main pipe
BE_EXE_BUBBLE 0x02 | N|N|N 1 Full pipe bubbles in main pipe due to
Execution unit stalls
BE_FLUSH_BUBBLE 0x04 | N| N[N 1 Full pipe bubbles in main pipe due to
flushes
BE_L1D_FPU_BUBBLE Oxca | N|N|N 1 Full pipe bubbles in main pipe due to
FP or L1D cache
BE_LOST_BW_DUE_TO_FE 0x72 | N| N[N 2 Invalid bundles if BE not stalled for
other reasons
BE_RSE_BUBBLE 0x01 | N| N[N 1 Full pipe bubbles in main pipe due to
RSE stalls
FE_BUBBLE 0x71 | N| N[N 1 Bubbles seen by FE
FE_LOST_BW 0x70 |N|N|N 2 Invalid bundles at the entrance to 1B
IDEAL_BE_LOST_BW_DUE_TO_FE 0x73 | N| N[N 2 Invalid bundles at the exit from IB

Branch Events

Note that for branch events, retirement means a branch was reached and committed regardless of
its predicate value. Details concerning prediction results are contained in pairs of monitors. For
accurate misprediction counts, the following measurement must be taken:

BR_MISPRED_DETAIL.[umask] - BR_MISPRED_DETAIL 2.[umask]

By performing this calculation for every umask, one can obtain atrue value for the
BR_MISPRED_DETAIL event.

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 119

Performance Monitor Events Inte|®

The method for obtaining the true value of BR_PATH_PRED is dightly different. When thereis
more than one branch in abundle and one is predicted as taken, all the higher number ports are
forced to a predicted not taken mode without actually knowing the their true prediction.

The true OKPRED_NOTTAKEN predicted path information can be obtained by ca culating:

BR_PATH_PRED.[branch type] . OKPRED_NOTTAKEN - BR_PATH_PRED2.[branch
type] UNKNOWNPRED_NOTTAKEN using the same “branch type” (ALL, IPREL,
RETURN, NRETIND) specified for both events.

Similarly, the true MISPRED_TAKEN predicted path information can be obtained by calculating:

BR_PATH_PRED.[branch type]. MISPRED_TAKEN - BR_PATH_PREDZ2.[branch
type] UKNOWNPRED_TAKEN using the same “branch type” (ALL, IPREL, RETURN,
NRETIND) selected for both events.

BRANCH_EVENT countsthe number of events captured by the Branch Trace Buffer (also known
as Branch EARS). For detailed information on the Branch EARSs please refer to Section 10.3.9,
“Branch Trace Buffer”.

Table 11-7. Performance Monitors for Branch Events

11.8

120

Event |DIOo Max
Symbol Name Code AlA|lP Inc/Cve Description
RIR|C y
BE_BR_MISPRED_DETAIL 0x61 |Y|N|Y 1 BE branch misprediction detail
BRANCH_EVENT 0x11 |Y|[N|Y 1 Branch Event Captured
BR_MISPRED_DETAIL 0x5b | Y| N|Y 3 FE Branch Mispredict Detall
BR_MISPRED_DETAIL2 0x68 |Y|N|Y 2 FE Branch Mispredict Detail
(Unknown path component)
BR_PATH_PRED 0x54 |Y Y 3 FE Branch Path Prediction Detall
BR_PATH_PRED2 Ox6a |Y|N|Y 2 FE Branch Path Prediction Detail
(Unknown prediction component)
ENCBR_MISPRED_DETAIL 0x63 |Y|[N]|Y 1 Number of encoded branches retired

Memory Hierarchy

This section summarizes events related to the Itanium 2 processor’s memory hierarchy. The
memory hierarchy events are grouped as follows:

* L1 Instruction Cache and Prefetch Events (Section 11.8.1)
* L1 Data Cache Events (Section 11.8.2)

* L2 Unified Cache Events (Section 11.8.3)

* L3 Cache Events (Section 11.8.4)

An overview of the Itanium 2 processor’s three level memory hierarchy and its event monitorsis
shown in Figure 11-1. The instruction and the data stream work through separate L1 caches. The
L1 data cache is awrite-through cache. A unified L2 cache serves both the L1 instruction and data
caches, and is backed by alarge unified L 3 cache. Events for individual levels of the cache
hierarchy are described in the following three sections.

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Inte|® Performance Monitor Eve

Figure 11-1. Event Monitors in the Itanium® 2 Processor Memory Hierarchy

nts

BUS

? L3_MISSES

L3

L3_REFERENCES

L3_WRITE_REFERENCES(d) L3_READ_REFERENCES(d)

L2_WB_REFERENCES(d) L3_STORE_REFERENCES(d) L3_INST_REFERENCES(d)

L3_DATA_READ_REFERENCES(d)

L2_MISSES

L2

L2_REFERENCES

L2_DATA_REFERENCES L2_INST_REFERENCES(d)

ISB_BUNPAIRS_IN

L1D_READ_MISSES L2_INST_PREFETCHES

L2 |INST_DEMAND_READS

L1l_FILLS
L1D ISB - L1l
(write through) -
4* ITLB_MISSES_FETCH
Store Buffer [%
VHPT Walker |, ITLB

i

L2DTLB_MISSES

ITLB_INSERTS_HPW
L1DTLB
DTLB_INSERTS_HPW
L1DTLB_MISSES '
-
> L2DTLB
L1I_PREFETCHES L1l_READS

DATA_REFERENCES

Processor Pipeline

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

121

Performance Monitor Events Inte|®

11.8.1 L1 Instruction Cache and Prefetch Events

Table 11-8 describes and summarizes the events that the Itanium 2 processor provides to monitor
L1 instruction cache demand fetch and prefetch activity. Theinstruction fetch monitors distinguish
between demand fetch, L11_READS, and prefetch activity, L1l _PREFETCHES. The amount of
data returned from the L2 to the L1 instruction cache and the Instruction Streaming Buffer is
monitored by two events, L1l FILLS and ISB_LINES IN. TheL1ll EAR_EVENTS monitor
counts how many instruction cache or L1 TLB missesare captured by the instruction event address
register.

The L1 instruction cache and prefetch events can be qualified by the instruction address range
check, but not by the opcode matcher. Since instruction cache and prefetch events occur early in
the processor pipeline, they include events caused by speculative, wrong-path instructions as well
as predicated-off instructions. Since the address range check is based on speculative instruction
addresses rather than retired instruction addresses, event counts may be inaccurate when the range
checker is confined to address ranges smaller than the length of the processor pipeline (see
Section 10.3.5, “Instruction Address Range Matching” for details).

L1l_EAR_EVENTS countsthe number of events captured by the Itanium 2 processor’sinstruction

EARs. Please refer to Section 10.3.7, “Event Address Registers (PMC10,11/PMDO,1,2,3,17)" for
more detailed information about the instruction EARSs.

Table 11-8. Performance Monitors for L1 Instruction Cache and Prefetch Events

Symbol Name I(E:\g%net ,lA 2 S In't\:/l/?:);c Description
R|R|C
ISB_BUNPAIRS_IN 0x46 | Y| N[N 1 Bundle pairs written from L2 into FE
L1l_EAR_EVENTS 0x43 | Y|N|N 1 Instruction EAR Events
L1l_FETCH_ISB_HIT 0x66 | Y| N[N 1 “Just-in-time” instruction fetch hitting
in and being bypassed from ISB
L1l_FETCH_RAB_HIT 0x65 | Y|N|N 1 Instruction fetch hitting in RAB
L1I_FILLS 0x41 |Y|[N|N 1 L1 Instruction Cache Fills
L1l_PREFETCHES 0x44 | Y| N[N 1 L1 Instruction Prefetch Requests
L2_INST_DEMAND_READS 0x42 | Y[N[N 1 L1 Instruction Cache and ISB Misses
L1l_PREFETCH_STALL 0x67 | N[N[N 1 Why prefetch pipeline is stalled?
L1l_PURGE Ox4b | Y|N|N 1 L1ITLB purges handled by L1l
L1l_PVAB_OVERFLOW 0x69 NI N[N 1 PVAB overflow
L1l_RAB_ALMOST_FULL 0x64 | N| N[N 1 Is RAB almost full?
L1l_RAB_FULL 0x60 N| N| N 1 Is RAB full?
L1l_READS 0x40 |Y|N|N 1 L1 Instruction Cache Reads
L1l_SNOOP Oxda |Y|Y|Y 1 Snoop requests handled by L1I
L1l_STRM_PREFETCHES 0x5f | Y| N[N 1 L1 Instruction Cache line prefetch
requests
L2_INST_PREFETCHES 0x45 | Y[N[N 1 L2 Instruction Prefetch Requests

122 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

intgl.

Performance Monitor Events

Table 11-9. Derived Monitors for L1 Instruction Cache and Prefetch Events

11.8.2

Symbol Name Description Equation
ISB_LINES_IN Number of cache lines written ISB_BUNPAIRS_IN/4
from L2 (and beyond) into the
front-end
L1l_DEMAND_MISS_RATIO L1l Demand Miss Ratio L2_INST_DEMAND_READS /
L1l_READS
L1l_PREFETCH_MISS_RATIO | L1l Prefetch Miss Ratio L2_INST_PREFETCHES/
L1l_PREFETCHES
L1l_REFERENCES Number of L1 Instruction Cache | L1l_READS + L1l_PREFETCHES
reads and fills

L1 Data Cache Events

Table 11-10 lists the Itanium 2 processor’s L 1 data cache monitors. As shown in Figure 11-1, the
write-through L 1 data cache services cacheable loads, integer and RSE loads, check loads and
hinted L2 memory references. DATA_REFERENCES is the number of issued data memory
references.

L1 datacachereads (L1D_READS) and L1 datacache misses (L1D_READ_MISSES) monitor the
read hit/miss rate of the L1 data cache. RSE operations are included in all data cache monitors, but
are not broken down explicitly. The DATA_EAR_EVENTS monitor counts how many data cache
or DTLB misses are captured by the data event address register. Please refer to Section 10.3.8,
“DataEAR (PMCL11, PMD2,3,17)” for more detailed information about the data EARS.

L 1D cache events have been divided into five sets. Eventsfrom different sets of L1D Cache events
cannot be measured at the same time. Each set is selected by the event code programmed into
PMCS5 (i.e., if you want to measure any of the eventsin this set, one of them needs to be measured
by PMD5). There are no limitations on umasks. Monitors belonging to each set are explicitly
presented in the following sections.

Table 11-10. Performance Monitors for L1 Data Cache Events

Event 11D1o Max
Symbol Name AlA|lP Description
Code Inc/Cyc
R|R|C
DATA_EAR_EVENTS oxe8 |Y|Y|Y 1 L1 Data Cache EAR Events
L1D_READS_SETO Ooxc2 |Y|Y|Y 2 L1 Data Cache Reads
DATA_REFERENCES_SETO oxc3 |Y|Y|Y 4 Data memory references issued to
memory pipeline
L1D_READS_SET1 Oxcd |Y|Y|Y 2 L1 Data Cache Reads
DATA_REFERENCES_SET1 oxc5 |Y|Y|Y 4 Data memory references issued to
memory pipeline
L1D_READ_MISSES oxc7 |Y|Y|Y 2 L1 Data Cache Read Misses

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 123

Performance Monitor Events Inte|®

11.8.2.1 L1D Cache Events (Set 0)

Table 11-11. Performance Monitors for L1D Cache Set 0

Event 1|DIo Max
Symbol Name Code AlA|lP Inc/Cve Description
R|R|C y
L1DTLB_TRANSFER OxcO |Y|Y|Y 1 L1DTLB misses hitin L2DTLB for
access counted in L1D_READS
L2DTLB_MISSES Oxcl |Y|Y|Y 4 L2DTLB Misses
L1D_READS_SETO Oxc2 |Y Y 2 L1 Data Cache Reads
DATA_REFERENCES_SETO oxc3 |Y|Y|Y 4 Data memory references issued to
memory pipeline

11.8.2.2 L1D Cache Events (Set 1)

Table 11-12. Performance Monitors for L1D Cache Set 1

I1|D|O
Symbol Name Event AlA|P Max Description
Code Inc/Cyc

R|R|C
L1D_READS_SET1 oxcd |Y|Y|Y 2 L1 Data Cache Reads
DATA_REFERENCES_SET1 oxc5 |Y|Y|Y 4 Data memory references issued to

memory pipeline

L1D_READ_MISSES oxc7 |Y|Y|Y 2 L1 Data Cache Read Misses

11.8.2.3 L1D Cache Events (Set 2)

Table 11-13. Performance Monitors for L1D Cache Set 2

I1|D|O
Event Max A
Symbol Name Code AlA|lP Inc/Cyc Description
R|R|C
BE_L1D_FPU_BUBBLE Oxca | N|N|N 1 Full pipe bubbles in main pipe due to
FP or L1D cache
11.8.24 L1D Cache Events (Set 3)
Table 11-14. Performance Monitors for L1D Cache Set 3
I1|D|O
Event Max A
Symbol Name Code AlA|lP Inc/Cyc Description
RIR|C
LOADS_RETIRED Oxcd |Y|Y|Y 4 Retired Loads
MISALIGNED_LOADS_RETIRED Oxce |Y|Y|Y 4 Retired Misaligned Load Instructions
UC_LOADS_RETIRED Oxcf Y Y|Y 4 Retired Uncacheable Loads

124 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

intgl.

11.8.2.5

Table 11-15. Performance Monitors for L1D Cache Set 4

11.8.3

Table 11-16. Performance Monitors for L2 Unified Cache Events

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

L1D Cache Events (Set 4)

Performance Monitor Events

Event 11DIo Max
Symbol Name Code AlA|lP Inc/Cve Description
R|R|C y
MISALIGNED_STORES_RETIRED oxd2 |Y|Y|Y 2 Retired Misaligned Store Instructions
STORES_RETIRED oxdl |[Y|Y|Y 2 Retired Stores
UC_STORES_RETIRED Oxd0 |Y|Y|Y 2 Retired Uncacheable Stores

L2 Unified Cache Events

Table 11-16 summarizes the events available to monitor the Itanium 2 processor L2 cache.

L 2 cache events have been divided into 6 sets. Only events within a set (or non-L2 events) can be
measured at the same time. Each set is selected by the event code programmed into PMCA4 (i.e., if
you want to measure any of the eventsin this set, one of them needs to be measured by PMD4).
Within a set, certain events can only be measured by PM D4. There may also be some limitations on
umasks in which the prime event (the L2 event using PMDA4) will dictate the umask for certain
companion L2 events. These will be noted by set. Monitors belonging to each set are explicitly

presented in the following sections.

I |D|O
Event Max S
Symbol Name Code Al AP Inc/Cyc Description
R|R|C
L2_BAD_LINES_SELECTED 0xb9 |Y|Y|Y 4 Valid line replaced when invalid line is
available
L2_BYPASS 0xb8 |Y|Y|Y 1 Count bypass
L2_DATA_REFERENCES 0xb2 |Y|Y|Y 4 Data RD/WR access to L2
L2_FILLB_FULL Oxbf | N|N|N 1 L2D Fill buffer is full
L2_FORCE_RECIRC Oxbd |Y|Y|Y 4 Forced recirculates
L2_GOT_RECIRC_IFETCH Oxba |Y|Y|Y 1 Instruction fetch recirculates received
by L2D
L2_GOT_RECIRC_0OzZQ_ACC Oxb6 |Y|Y|Y 1 Counts number of OZQ accesses
recirculated back to L1D
L2_IFET_CANCELS 0xal0 [Y|Y]|Y 1 Instruction fetch cancels by the L2
xab,
Oxa9,
Oxad
L2_ISSUED_RECIRC_IFETCH 0xb9 |Y|Y|Y 1 Instruction fetch recirculates issued
by L2D
L2_ISSUED_RECIRC_0OZQ_ACC oxb5 |[Y|Y]|Y 1 Count the number of times a
recirculate issue was attempted and
not preempted
L2_L3ACCESS_CANCEL O0xb0 |Y|Y|Y 1 Canceled L3 accesses
L2_MISSES Oxcb |Y|Y|Y 1 L2 Misses
L2_OPS_ISSUED 0xb8 |Y|Y]|Y 4 Different operations issued by L2D
L2_0OzDB_FULL Oxbd | N|N|N 1 L2D OZ data buffer is full

125

Performance Monitor Events

Table 11-16. Performance Monitors for L2 Unified Cache Events (Continued)

1|D|O
Symbol Name E\g%n; Al A Inl(\:/l/%x c Description
R|R|C y
L2_0ZQ_ACQUIRE 0xa2,0 [N[N| N 1 Clocks with acquire ordering attribute
xa6,0x existed in L2 OZQ
aa,0xa
e
L2_0ZQ_CANCELSO Oxa0 |[Y|Y|Y 4 L2 OZQ cancels
L2_0OZQ_CANCELS1 Oxac |Y|Y]|Y 4 L2 OZQ cancels
L2_0ZQ_CANCELS2 Oxa8 |Y|Y|Y 4 L2 OZQ cancels
L2_0ZQ FULL Ooxbc |[N|N|N 1 L2D OZQ is full
L2_0ZQ_RELEASE 0xa3,0 | N|N| N 1 Clocks with release ordering attribute
xa7,0x existed in L2 OZQ
ab,0xaf
L2_REFERENCES Oxbl |[Y|Y|Y 4 Requests made from L2
L2_STORE_HIT_SHARED Oxba |Y|Y]|Y 2 Store hit a shared line
L2_SYNTH_PROBE 0xb7 |Y|Y|Y 1 Synthesize Probe
L2_VICTIMB_FULL Oxbe |N|N|N 1 L2D victim buffer is full

Table 11-17. Derived Monitors for L2 Unified Cache Events

Symbol Name

Description

Equation

L2_DATA_RATIO

Ratio of Data requests made to
L2

L2_DATA_REFERENCES.L2_ALL/
L2_REFERENCES

L2_DATA_READS

L2 Data Read Requests

L2_DATA_REFERENCES.L2_DATA_RE
ADS

L2_DATA WRITES

L2 Data Write Requests

L2_DATA REFERENCES.L2 DATA_W
RITES

L2_INST_REFERENCES

Instruction requests made to L2

L2_INST_DEMAND_READS +
L2_INST_PREFETCHES

L2_INST_FETCHES

Requests made to L2 due to
demand instruction fetches

L2_INST_DEMAND_READS +
L2_INST_PREFETCHES

L2_MISS_RATIO

Percentage of L2 Misses

L2_MISSES/L2_REFERENCES

L2_RECIRC_ATTEMPTS

Number of times the L2 issue
logic attempted to issue a
recirculate.

L2_ISSUED_RECIRC_OZQ_ACC +
L2_0ZQ_CANCELS2.DIDNT_RECIRC

A metric of interestisL2_MISS_RATIO; note that semaphores might cause this metric to be larger
than 100% due to the fact that a semaphore will be counted oncein L2 REFERENCES but may
cause more than one L2_MISSES due to the cache line being snooped out and re-requested from
the bus. This can be repeated many times until forward progress continues. Some level of error
should be expected in thismetric because L2 MISSESand L2_REFERENCES arelined upintime
only for 5 cycle bypasses. (One can get around this problem by using the nf . a instruction
followed by async. i followedby asrl z. i instruction before reading the counters).

126

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

|nte|® Performance Monitor Events

11.8.3.1 L2 Cache Events (Set 0)
Either one of the L2 OZQ CANCELS* eventsor L2 IFET_CANCELS must be measured by

PMD4. These events use the same umask. Only 1 of the3L2_0ZQ CANCELS* eventscan be
measured at any onetime.

Table 11-18. Performance Monitors for L2 Cache Set O

Event 11DIO Max
Symbol Name Code AlA|P Inc/Cyc Description
R|R| C
L2_IFET_CANCELS 0xal0 [Y|Y]|Y 1 Instruction fetch cancels by the L2.
xab5,0x
a9,0xa
d
L2_0ZQ_ACQUIRE 0xa2,0 [N|N| N 1 Clocks with acquire ordering attribute
xa6,0x existed in L2 OZQ
aa,0xa
e
L2_0ZQ_CANCELSO Oxa0 |Y|Y|Y 4 L2 OZQ cancels
L2_0ZQ_CANCELS1 Oxac |Y|Y|Y 4 L2 OZQ cancels
L2_0ZQ_CANCELS2 Oxa8 |Y|Y|Y 4 L2 OZQ cancels
L2_0OZQ_RELEASE 0xa3,0 [N|N| N 1 Clocks with release ordering attribute
xa7,0x existed in L2 OZQ
ab,0xaf

11.8.3.2 L2 Cache Events (Set 1)

L2 L3ACCESS CANCEL must be measured by PMDA4.

Table 11-19. Performance Monitors for L2 Cache Set 1

Event 11DI0o Max
Symbol Name AlA|P Description
Code Inc/Cyc
R|R|C
L2_DATA_REFERENCES O0xb2 |Y|Y|Y 4 Data read/write access to L2
L2_L3ACCESS_CANCEL 0xb0 |Y|Y]|Y Canceled L3 accesses
L2_REFERENCES Oxbl |Y|Y|Y 4 Requests made from L2
11.8.3.3 L2 Cache Events (Set 2)
L2_FORCE_RECIRC must be measured by PMDA4.
Table 11-20. Performance Monitors for L2 Cache Set 2
1|D|O
Symbol Name Event Al AP Max Description
Code Inc/Cyc
R|R|C
L2_FORCE_RECIRC Oxbd |Y|Y|Y 4 Forced recirculates
L2_ISSUED_RECIRC_0OZQ_ACC Oxb5 |Y|Y|Y 1 Count number of times a recirculate
issue was attempted and not
preempted
L2_GOT_RECIRC_OzQ_ACC Oxb6 |Y|Y|Y 1 Counts number of OZQ accesses
recirculated back to L1D
L2_SYNTH_PROBE Ooxb7 |Y|Y|Y 1 Synthesized probe

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 127

Performance Monitor Events Inte|®

11.8.3.4 L2 Cache Events (Set 3)

L2 BAD_LINES SELECTED, L2_BYPASS, and L2_STORE_HIT_SHARED share the same

umask.
Table 11-21. Performance Monitors for L2 Cache Set 3
I1|D|O
Symbol Name Event AlA|lP Max Description
Code Inc/Cyc
R|R|C
L2_BAD_LINES_SELECTED 0xb9 |Y|Y|Y 4 Valid line replaced when invalid line is
available
L2_BYPASS O0xb8 |[Y|Y|Y 1 Count bypass
L2_STORE_HIT_SHARED Oxba |Y|Y|Y 2 Store hit a shared line

11.8.3.5 L2 Cache Events (Set 4)
Either one of L2_OPS_ISSUED, L2_ISSUED_RECIRC_IFETCH, or
L2 GOT_RECIRC_IFETCH must be measured by PMD4. These three events share the same
umask.

Table 11-22. Performance Monitors for L2 Cache Set 4

Event |DIo Max
Symbol Name Al AP Description
Code Inc/Cyc
R|R|C
L2_GOT_RECIRC_IFETCH Oxba |Y|Y|Y 1 Instruction fetch recirculates received
by L2D
L2_ISSUED_RECIRC_IFETCH 0xb9 |Y|Y]|Y 1 Instruction fetch recirculates issued
by L2D
L2_OPS_ISSUED 0xb8 |Y|Y|Y 4 Different operations issued by L2D

11.8.3.6 L2 Cache Events (Set 5)

Either oneof L2_0ZQ FULL, L2 OZDB_FULL, L2 VICTIMB_FULL,orL2 FILLB_FULL
must be measured by PM D4. These four events share the same umask.

Table 11-23. Performance Monitors for L2 Cache Set 5

I1|D|O
Symbol Name Event AlA|P Max Description
Code Inc/Cyc

R|R|C
L2_0ZQ _FULL Ooxbc |[N|N|N 1 L2D 0OZQ is full
L2_0OzDB_FULL Oxbd N| N[N 1 L2D OZ data buffer is full
L2_VICTIMB_FULL Oxbe | N[N[N 1 L2D victim buffer is full
L2_FILLB_FULL Oxbf | N| N[N 1 L2D Fill buffer is full

128 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

intgl.

11.8.4

L3 Cache Events

Performance Monitor Events

Table 11-24 summarizes the directly-measured L 3 cache events. An extensive list of derived events

isprovided in Table 11-25.

Table 11-24. Performance Monitors for L3 Unified Cache Events

Event 11DIo Max
Symbol Name AlA|lP Description
Code Inc/Cyc
R|R|C

L3_LINES_REPLACED Oxdf | N|N|N 1 L3 Cache Lines Replaced
L3_MISSES Oxdc |Y|Y|Y 1 L3 Misses
L3_READS Oxdd |[Y|Y]|Y 1 L3 Reads
L3_REFERENCES Oxdb |Y|Y|Y 1 L3 References
L3_WRITES Oxde Y Y|Y 1 L3 Writes

Table 11-25. Derived Monitors for L3 Unified Cache Events

Symbol Name

Description

Equation

L3_DATA_HITS

L3 Data Read Hits

L3 _READS.DATA_READ.HIT

L3_DATA_MISS_RATIO

L3 Data Miss Ratio

(L3_READS.DATA_READ.MISS +
L3_WRITES.DATA_WRITE.MISS) /
(L3_READS.DATA_READ.ALL +
L3_WRITES.DATA_WRITE.ALL)

L3_DATA_READ_MISSES

L3 Data Read Misses

L3_READS.DATA_READ.MISS

L3_DATA_READ_RATIO

Ratio of L3 References that are
Data Read References

L3_READS.DATA_READ.ALL /
L3_REFERENCES

L3_DATA_READ_REFEREN
CES

L3 Data Read References

L3_READS.DATA_READ.ALL

L3_INST_HITS

L3 Instruction Hits

L3_READS.INST_FETCH.HIT

L3_INST_MISSES

L3 Instruction Misses

L3_READS.INST_FETCH.MISS

L3_INST_MISS_RATIO

L3_READS.INST_FETCH.MISS /
L3_READS.INST_FETCH.ALL

L3_INST_RATIO

Ratio of L3 References that are
Instruction References

L3_READS.INST_FETCH.ALL/
L3_REFERENCES

L3_INST_REFERENCES

L3 Instruction References

L3_READS.INST_FETCH.ALL

L3_MISS_RATIO

Percentage Of L3 Misses

L3_MISSES/L3_REFERENCES

L3_READ_HITS

L3 Read Hits

L3_READS.READS.HIT

L3_READ_MISSES

L3 Read Misses

L3_READS.READS.MISS

L3_READ_REFERENCES

L3 Read References

L3_READS.READS.ALL

L3_STORE_HITS

L3 Store Hits

L3_WRITES.DATA_WRITE.HIT

L3_STORE_MISSES

L3 Store Misses

L3_WRITES.DATA_WRITE.MISS

L3_STORE_REFERENCES

L3 Store References

L3_WRITES.DATA_WRITE.ALL

L2 WB_HITS

L2 Writeback Hits

L3_WRITES.L2_ WB.HIT

L2_WB_MISSES

L2 Writeback Misses

L3_WRITES.L2_WB.MISS

L2_WB_REFERENCES

L2 Writeback References

L3_WRITES.L2_WB.ALL

L3_WRITE_HITS

L3 Write Hits

L3_WRITES.ALL.HIT

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

129

Performance Monitor Events Inte|®

Table 11-25. Derived Monitors for L3 Unified Cache Events (Continued)

Symbol Name Description Equation
L3_WRITE_MISSES L3 Write Misses L3_WRITES.ALL.MISS
L3_WRITE_REFERENCES L3 Write References L3_WRITES.ALL.ALL

11.9 System Events

The debug register match events count how often the address of any instruction or data breakpoint
register (IBR or DBR) matches the current retired instruction pointer
(CODE_DEBUG_REGISTER_MATCHES) or the current data memory address
(DATA_DEBUG_REGISTER_MATCHES). CPU_CPL_CHANGES counts the number of
privilege level transitions due to interruptions, system calls (epc), returns (demoting branch), and
r fi instructions.

Table 11-26. Performance Monitors for System Events

Event 11D1o Max
Symbol Name AlA|lP Description
Code Inc/Cyc
R|R| C
CPU_CPL_CHANGES 0x13 NIN|N|1 Privilege Level Changes
DATA_DEBUG_REGISTER_FAULT 0x52 NIN|[N|1 Fault due to data debug reg. Match to

load/store instruction

DATA_DEBUG_REGISTER_MATCH Oxc6 |Y|Y]|Y 1 Data debug register matches data

ES address of memory reference
EXTERN_DP_PINS_0_TO_3 0x% | N|N|N 1 DP pins 0-3 asserted
EXTERN_DP_PINS 4 TO_5 0x9f N| N| N 1 DP pins 4-5 asserted
SERIALIZATION_EVENTS 0x53 | N[N[N 1 Number of srlz.l instructions

Table 11-27. Derived Monitors for System Events

Symbol Name Description Equation

CODE_DEBUG_REGISTER_ | Code Debug Register Matches IA64_TAGGED_INST_RETIRED
MATCHES

11.10 TLB Events

The Itanium 2 processor instruction and data TLBs and the VHPT walker are monitored by the
events described in Table 11-28

L1ITLB_REFERENCES and L1DTLB_REFERENCES are derived from the respective
instruction/data cache access events. Note that ITLB_ REFERENCES does not include prefetch
requests made to the L1l cache (L1l_PREFETCH_READS). Thisis because prefetches are
cancelled when they missin the ITLB and thus do not trigger VHPT walks or software TLB miss
handling. ITLB_MISSES FETCH and L2DTLB_MISSES count TLB misses.
ITLB_INSERTS HPW and DTLB_INSERTS HPW count the number of instruction/data TLB
inserts performed by the VHPT walker.

130 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

In

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

tel.

Table 11-28. Performance Monitors for TLB Events

Performance Monitor Events

I|D|O
Event Max .
Symbol Name Code AlA|P Inc/Cyc Description
RIR| C
DTLB_INSERTS_HPW Oxc9 |Y|Y|Y 4 Hardware Page Walker Installs to
DTLB
DTLB_INSERTS_HPW_RETIRED Ox2c |Y|Y|Y 4 VHPT entries inserted into DTLB by
the Hardware Page Walker
HPW_DATA_REFERENCES 0x2d 4 Data memory references to VHPT
L2DTLB_MISSES Oxcl 4 L2DTLB Misses
L1ITLB_INSERTS_HPW 0x48 1 L1ITLB Hardware Page Walker
Inserts
ITLB_MISSES_FETCH 0x47 1 ITLB Misses Demand Fetch
L1DTLB_TRANSFER 0xc0 1 L1DTLB misses that hitin the
L2DTLB for accesses counted in
L1D_READS

Table 11-29. Derived Monitors for TLB Events

Symbol Name

Description

Equation

L1DTLB_EAR_EVENTS

Counts the number of LIDTLB
events captured by the EAR

DATA_EAR_EVENTS

L2DTLB_MISS_RATIO

L2DTLB miss ratio

L2DTLB_MISSES /
DATA_REFERENCES_SETO or
L2DTLB_MISSES /
DATA_REFERENCES_SET1

L1DTLB_REFERENCES

L1DTLB References

DATA_REFERENCES_SETO or
DATA_REFERENCES_SET1

L1ITLB_EAR_EVENTS

Provides information on the
number of L1ITLB events
captured by the EAR. This is a
subset of L1I_EAR_EVENTS

L1l_EAR_EVENTS

L1ITLB_MISS_RATIO

L1ITLB miss ratio

ITLB_MISSES_FETCH.L1ITLB /
L1I_READS

L1ITLB_REFERENCES

L1ITLB References

L1I_READS

LIDTLB_FOR_L1D_MISS_R
ATIO

Miss Ratio of LIDTLB servicing
the L1D

L1DTLB_TRANSFER /
L1D_READS_SETO or
L1DTLB_TRANSFER /
L1D_READS_SET1

The Itanium 2 processor has 2 data TLBs called L1IDTLB and L2DTLB (alsoreferredto asDTLB
or L2DTLB). These TLBsarein parallel and the L2DTLB isthe larger and slower of the two.The
possible actions for the combination of hits and missesin these TLBs are outlined bel ow:

e LIDTLB_hit=0, L2DTLB_hit=0: If enabled, HPW kicksin and inserts atranslation into one

or both TLBs.

e LIDTLB_hit=0, L2DTLB_hit=1: If floating-point, no action is taken; else atransfer is made
from L2DTLB to L1DTLB.

e LIDTLB hit=1, L2DTLB_hit=0: If enabled, HPW kicksin and inserts atranslation into one

or both TLBs.

e LIDTLB_hit=1, L2DTLB_hit=1: No action is taken.

131

Performance Monitor Events Inte|®

When a memory operation goes down the memory pipeline, DATA_REFERENCES will count it.
If the trandation does not exist in the L2DTLB, then L2DTLB_MISSES will count it. If the HPW
isenabled, then HPW_DATA REFERENCES will count it. If the HPW finds the datain VHPT, it
will insertitinthe LADTLB and L2DTLB (as needed). If the tranglation existsinthe L2DTLB, the
only case that some work is doneiswhen translation does not exist inthe LIDTLB. If the operation
isserviced by the L1D (seeL1D_READS description), LIDTLB_TRANSFER will count it. For
the purpose of calculating the TLB miss ratios, VHPT memory references have been excluded from
the DATA_REFERENCES event and provided VHPT_REFERENCES for the situations where one
might want to add them in.

Due to the TLB hardware design, there are some corner cases, where some of these events will
show activity even though the instruction causing the activity never reaches retirement (they are
marked so). Since the processor is stalled even for these corner cases, they are included in the
counts and as long as all eventsthat are used for calculating a metric are consistent with respect to
this issue, fairly accurate numbers are expected.

11.11 System Bus Events

Table 11-30 lists the system bus transaction monitors. Many of the listed bus events take a umask
that qualifies the event by initiator. For all bus events, when “per cycles’ is mentioned, CPU clock
cycles are inferred rather than bus clock cycles unless otherwise specified. Numerous derived
events have been included in Table 11-31.

Table 11-30. Performance Monitors for System Bus Events

1{D|O
Symbol Name I(E:\g%n; AlA|lP In'(\:/l/?:x c Description
R|R|C y
BUS_ALL 0x87 N{N|N 1 Bus Transactions
BUS_BRQ_LIVE_REQ_HI 0x9¢ | N|N|N 2 BRQ Live Requests (two
most-significant-bit of the 5-bit
outstanding BRQ request count)
BUS_BRQ_LIVE_REQ_LO 0x9b | N|N|N 7 BRQ Live Requests (three
least-significant-bit of the 5-bit
outstanding BRQ request count)
BUS_BRQ_REQ_INSERTED 0x9d NI N[N 1 BRQ Requests Inserted
BUS_DATA_CYCLE 0x88 | N|N|N 1 Valid data cycle on the Bus
BUS_HITM 0x84 | N[N[N 1 Bus Hit Modified Line Transactions
BUS_IO 0x90 | N|N|N 1 1A-32 Compatible 10 Bus
Transactions
BUS_IOQ_LIVE_REQ_HI 0x98 | N|N|N 2 In-order Bus Queue Requests (two
most-significant-bit of the 4-bit
outstanding 10Q request count)
BUS_IOQ_LIVE_REQ_LO 0x97 | N| N[N 3 In-order Bus Queue Requests (two
least-significant-bit of the 4-bit
outstanding 10Q request count)
BUS_LOCK 0x93 | N[N[N 1 1A-32 Compatible Bus Lock
Transactions
BUS_BACKSNP_REQ 0x8e | N|N|N 1 Bus Back Snoop Requests
BUS_MEMORY 0x8a | N|N|N 1 Bus Memory Transactions
BUS_MEM_READ 0x8b | N| N[N 1 Full Cache line D/l memory RD, RD
invalidate, and BRIL

132 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

In

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

tel.

Performance Monitor Events

Table 11-30. Performance Monitors for System Bus Events (Continued)

1|D|O
Symbol Name Event AlA|lP Max Description
Code Inc/Cyc
R|R|C
BUS_MEM_READ_OUT_HI 0x94 | N|N|N 2 Outstanding memory RD transactions
BUS_MEM_READ_OUT_LO 0x95 |N|N|N 7 Outstanding memory RD transactions
BUS_OOQ_LIVE_REQ_HI 0x9a | N| N[N 2 Out-of-order Bus Queue Requests
(two most-significant-bit of the 4-bit
outstanding OOQ request count)
BUS_OOQ_LIVE_REQ_LO 0x99 N| N| N 7 Out-of-order Bus Queue Requests
(three least-significant-bit of the 4-bit
outstanding OOQ request count)
BUS_RD_DATA 0x8c 1 Bus Read Data Transactions
BUS_RD_HIT 0x80 1 Bus Read Hit Clean Non-local Cache
Transactions
BUS_RD_HITM 0x81 N| N| N 1 Bus Read Hit Modified Non-local
Cache Transactions
BUS_RD_INVAL_ALL_HITM 0x83 N[N| N 1 Bus BRIL Burst Transaction Results
in HITM
BUS_RD_INVAL_HITM 0x82 | N[N|N 1 Bus BIL Transaction Results in HITM
BUS_RD_IO 0x91 | N|[N|N 1 IA-32 Compatible 10 Read
Transactions
BUS_RD_PRTL 0x8d |N|N|N 1 Bus Read Partial Transactions
BUS_SNOOPQ_REQ 0x96 N| N|N 7 Bus Snoop Queue Requests
BUS_SNOOPS 0x86 |N|N|N 1 Bus Snoops Total
BUS_SNOOPS_HITM 0x85 | N| N[N 1 Bus Snoops HIT Modified Cache Line
BUS_SNOOP_STALL_CYCLES 0x8f N[N[N 1 Bus Snoop Stall Cycles (from any
agent)
BUS_WR_WB 0x92 | N| N[N 1 Bus Write Back Transactions
MEM_READ_CURRENT 0x89 N| N|N 1 Current Mem Read Transactions On
Bus

Table 11-31. Derived Monitors for System Bus Events

Symbol Name

Description

Equation

BIL_HITM_LINE_RATIO

BIL Hit to Modified Line Ratio

BUS_RD_INVAL_HITM /
BUS_MEMORY or
BUS_RD_INVAL_HITM /
BUS_RD_INVAL

BIL_RATIO

BIL Ratio

BUS_RD_INVAL / BUS_MEMORY

BRIL_HITM_LINE_RATIO

BRIL Hit to Modified Line Ratio

BUS_RD_INVAL_BST_HITM/
BUS_MEMORY or
BUS_RD_INVAL_BST_HITM/
BUS_RD_INVAL

BUS_ADDR_BPRI

Bus transactions used by IO
agent.

BUS_MEMORY.*.10

BUS_BRQ_LIVE_REQ

BRQ Live Requests

BUS_BRQ_LIVE_REQ HI*8 +
BUS_BRQ_LIVE_REQ_LO

133

Performance Monitor Events

Table 11-31. Derived Monitors for System Bus Events (Continued)

Symbol Name

Description

Equation

BUS_BURST

Full cache line memory
transactions (BRL, BRIL, BWL)

BUS_MEMORY.EQ_128BYTE.*

BUS_HITM_RATIO

Bus Modified Line Hit Ratio

BUS_HITM / BUS_MEMORY or
BUS_HITM / BUS_BURST

BUS_HITS_RATIO

Bus Read Hit to Shared Line
Ratio

BUS_RD_HIT /BUS_RD_ALL or
BUS_RD_HIT / BUS_MEMORY

BUS_IOQ_LIVE_REQ

Inorder Bus Queue Requests

BUS_IOQ_LIVE_REQ HI*4 +
BUS_IOQ_LIVE_REQ_LO

BUS_IO_CYCLE_RATIO

Bus I/0 Cycle Ratio

BUS_IO / BUS_ALL

BUS_IO_RD_RATIO

Bus I/0 Read Ratio

BUS_RD_IO /BUS_IO

BUS_MEM_READ_OUTSTA
NDING

Number of outstanding memory
RD transactions

BUS_MEM_READ_OUT HI*8 +
BUS_MEM_READ_OUT_LO

BUS_00Q_LIVE_REQ

Out-of-order Bus Queue
Requests

BUS_0OQ_LIVE_REQ HI* 8+
BUS_OOQ_LIVE_REQ_LO

BUS_PARTIAL

Less than cache line memory
transactions (BRP, BWP)

BUS_MEMORY.LT_128BYTE.*

BUS_PARTIAL_RATIO

Bus Partial Access Ratio

BUS_MEMORY.LT_128BYTE /
BUS_MEMORY

BUS_RD_ALL

Full cache line memory read
transactions (BRL)

BUS_MEM_READ.BRL.*

BUS_RD_DATA_RATIO

Cacheable Data Fetch Bus
Transaction Ratio

BUS_RD_DATA/BUS_ALL or
BUS_RD_DATA / BUS_MEMORY

BUS_RD_HITM_RATIO

Bus Read Hit to Modified Line
Ratio

BUS_RD_HITM/BUS_RD_ALL or
BUS_RD_HITM/BUS_MEMORY

BUS_RD_INSTRUCTIONS

Full cache line instruction
memory read transactions (BRP)

BUS_RD_ALL - BUS_RD_DATA

BUS_RD_INVAL

0 byte memory read-invalidate
transactions (BIL)

BUS_MEM_READ.BIL.*

BUS_RD_INVAL_BST

Full cache line read-invalidate
transactions (BRIL)

BUS_MEM_READ.BRIL.*

BUS_RD_INVAL_BST_MEM
ORY

Bus Read Invalid Line in Burst
transactions (BRIL) satisfied by
memory

BUS_RD_INVAL_BST -
BUS_RD_INVAL_BST_HITM

BUS_RD_INVAL_MEMORY

Bus Read Invalidate Line
transactions (BIL) satisfied from
memory

BUS_RD_INVAL -
BUS_RD_INVAL_HITM

BUS_RD_INVAL_BST_HITM

Bus Read Invalidate Line in Burst
transactions (BRIL) resulting in
HITMs

BUS_RD_INVAL_ALL_HITM -
BUS_RD_INVAL_HITM

BUS_RD_PRTL_RATIO

Bus Read Partial Access Ratio

BUS_RD_PRTL /BUS_MEMORY

BUS_WB_RATIO

Writeback Ratio

BUS_WR_WB / BUS_MEMORY or
BUS_WR_WB / BUS_BURST

CACHEABLE_READ_RATIO

Cacheable Read Ratio

(BUS_RD_ALL +
BUS_MEM_READ.BRIL) /
BUS_MEMORY

Table 11-32 defines the conventions that will be used when describing the Itanium 2 processor
system bus transaction monitorsin this section as well as the individual monitor descriptionsin
Section 11.14, “Performance Monitor Event List”.

134 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

intgl.

Performance Monitor Events

Table 11-32. Conventions for System Bus Transactions

Name Description
BRC Memory Read Current (128 byte transactions). Reads without changing state.
BRL Memory Read (64 byte bursts). Includes code fetches and data loads from WB memory.
BRIL Memory Read & Invalidate (64 byte bursts). Also known as read for ownership (RFO).
BIL Memory Read & Invalidate (O byte sized transaction). Caused by flush cache (f ¢) instruction only.
BWL Memory Write (64 byte bursts). Explicit writebacks/coalesced writes.
BRP Partial Memory Reads (<64 byte transactions). Typically, uncacheable reads.
BWP Partial Memory Write (<64 byte transactions). Typically, uncacheable writes.
IORD Partial 10 Read (<64 byte transactions). Uncacheable read to 10 port space.
IOWR Partial 10 Write (<64 byte transactions). Uncacheable write to 10 port space.

Other transactions besides those listed in Table 11-32 include Deferred Reply, Specid
Transactions, Interrupt, Interrupt Acknowledge, and Purge TC. Note that the monitors will count if
any transaction gets a retry response from the priority agent.

To support the analysis of snoop traffic in a multiprocessor system, the Itanium 2 processor
provides local processor and remote response monitors. The local processor snoop events
(BUS_SNOOPS_HITM, BUS_SNOOPS and BUS_SNOOPQ_REQ) monitor inbound snoop
traffic. The remote response events (BUS RD_HIT, BUS RD_HITM, BUS RD_INVAL_HITM
and BUS RD _INVAL_ALL_HITM) monitor the snoop responses of other processors to bus
transactions that the monitoring processor originated. Table 11-33 summarizes the remote snoop
events by bus transaction.

Table 11-33. Bus Events by Snoop Response

11.12

Remg;essgﬁgzssor BRL BIL BRIL
HIT BUS_RD_HIT nla nla
HITM BUS_RD_HITM | BUS_RD_INVAL_HITM | BUS_RD_INVAL_BST_HITM
ALL BUS_RD_ALL BUS_RD_INVAL BUS_RD_INVAL
RSE Events

Register Stack Engine events are presented in Table 11-34. The number of current/dirty registers
are split among three monitors since there are 96 physical registers in the Itanium 2 processor.

Table 11-34. Performance Monitors for RSE Events

Event 11DI0o Max
Symbol Name AlA|lP Description
Code Inc/Cyc
R|R|C

RSE_CURRENT_REGS_2_TO_0 0x2b | N| N|N 7 Current RSE registers
RSE_CURRENT_REGS_5 TO_3 Ox2a | N[N|N 7 Current RSE registers
RSE_CURRENT_REGS_6 0x26 | N| N[N 1 Current RSE registers
RSE_DIRTY_REGS_2 TO_0 0x29 | N| N[N 7 Dirty RSE registers

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 135

Performance Monitor Events

Table 11-34. Performance Monitors for RSE Events (Continued)

1|D|O
Symbol Name E:\(/)%n; AlA|lP Inl(\:/l/%x c Description
RIR|C y
RSE_DIRTY_REGS_5_TO_3 0x28 |N|IN|N 7 Dirty RSE registers
RSE_DIRTY_REGS_6 0x24 | N[N[N 1 Dirty RSE registers
RSE_EVENT_RETIRED 0x32 | N[N[N 1 Retired RSE operations
RSE_REFERENCES_RETIRED 0x20 |Y|Y|Y 2 RSE Accesses
Table 11-35. Derived Monitors for RSE Events
Symbol Name Description Equation

RSE_CURRENT_REGS

Current RSE registers before an
RSE_EVENT_RETIRED
occurred

RSE_CURRENT_REGS_6* 64 +
RSE_CURRENT _REGS_ 5 TO 3*8+
RSE_CURRENT_REGS 2 TO 0

RSE_DIRTY_REGS

Dirty RSE registers before an
RSE_EVENT_RETIRED
occurred

RSE_DIRTY_REGS 6 * 64 +
RSE_DIRTY_REGS 5 TO_3*8+
RSE_DIRTY_REGS_2_TO_0

RSE_LOAD_LATENCY_
PENALTY

Counts the number of cycles we
have stalled due to retired RSE
loads. (Every time RSE.BOF
reaches RSE.storereg and RSE
has not issued all of the loads
necessary for the fill.)

BE_RSE_BUBBLE.UNDERFLOW

RSE_AVG_LOAD_LATENCY

Average latency for RSE loads

RSE_LOAD_LATENCY_PENALTY /
RSE_REFERENCES_RETIRED.LOAD

RSE_AVG_CURRENT_REGS

Average number of current
registers

RSE_CURRENT_REGS /
RSE_EVENT_RETIRED

RSE_AVG_DIRTY_REGS

Average number of dirty registers

RSE_DIRTY_REGS /
RSE_EVENT_RETIRED

RSE_AVG_INVALID_REGS

Average number of invalid
registers. Assumes number of
clean registers is always 0.

96 - (RSE_DIRTY_REGS +
RSE_CURRENT_REGS) /
RSE_EVENT_RETIRED

11.13 Performance Monitors Ordered by Event Code

Table 11-36 presents all of the performance monitors provided in the Itanium 2 processor ordered

by their event code.

Table 11-36. All Performance Monitors Ordered by Code

Event 11Dl Max
Symbol Name AlA|lP Description
Code Inc/Cyc
R|R|C
BACK_END_BUBBLE 0x00 | N|N|N 1 Full pipe bubbles in main pipe
BE_RSE_BUBBLE 0x01 | N|[N|[N 1 Full pipe bubbles in main pipe due to

RSE stalls

BE_EXE_BUBBLE

0x02 | N| N[N 1

Full pipe bubbles in main pipe due to
Execution unit stalls

FP_TRUE_SIRSTALL

0x03 | Y[N[N 1

SIR stall asserted and leads to a trap

136 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

intgl.

Performance Monitor Events

Table 11-36. All Performance Monitors Ordered by Code (Continued)
Symbol Name E\g%n; é E E In'(\:/l/acl:?c Description
BE_FLUSH_BUBBLE 0x04 | N| N[N 1 Full pipe bubbles in main pipe due to
flushes
FP_FALSE_SIRSTALL 0x05 |Y|N|N 1 SIR stall without a trap
FP_FAILED_FCHKF 0x06 |Y|N|N 1 Failed fchkf
1A32_ISA_TRANSITIONS 0x07 N| N| N 1 Itanium to/from 1A-32 ISA Transitions
IA64_INST_RETIRED 0x08 |Y|N|Y 6 Retired Itanium Instructions
I1A64_TAGGED_INST_RETIRED 0x08 |Y|N|Y 6 Retired Tagged Instructions
FP_OPS_RETIRED 0x09 |Y|N|[N 4 Retired FP operations
FP_FLUSH_TO_ZERO OxOb | Y|N|N 2 FP Result Flushed to Zero
BRANCH_EVENT 0x11 |Y|N|Y 1 Branch Event Captured
CPU_CYCLES 0x12 N[N[N 1 CPU Cycles
CPU_CPL_CHANGES 0x13 | N| N[N 1 Privilege Level Changes
RSE_REFERENCES_RETIRED 0x20 |Y|Y|Y 2 RSE Accesses
RSE_DIRTY_REGS_6 0x24 | N| N[N 1 Dirty RSE registers
RSE_CURRENT_REGS_6 0x26 | N| N[N 1 Current RSE registers
RSE_DIRTY_REGS_5 _TO_3 0x28 | N|N|N 7 Dirty RSE registers
RSE_DIRTY_REGS_2 TO 0 0x29 | N|[N|N 7 Dirty RSE registers
RSE_CURRENT_REGS_5 TO_3 Ox2a | N[N|N 7 Current RSE registers
RSE_CURRENT_REGS_2_TO_0 0x2b | N|N|N 7 Current RSE registers
DTLB_INSERTS_HPW_RETIRED Ox2c |Y|Y|Y 4 VHPT entries inserted into DTLB by
HW PW
HPW_DATA_REFERENCES ox2d |Y|Y]|Y 4 Data memory references to VHPT
RSE_EVENT_RETIRED 0x32 | N[N|N 1 Retired RSE operations
L1l_READS 0x40 |Y|N|N 1 L1 Instruction Cache Reads
L1I_FILLS 0x41 |Y|N|N 1 L1 Instruction Cache Fills
L2_INST_DEMAND_READS 0x42 | Y|N|N 1 L1 Instruction Cache and ISB Misses
L1l_EAR_EVENTS 0x43 | Y|N|N 1 Instruction EAR Events
L1I_PREFETCHES 0x44 | Y| N[N 1 L1 Instruction Prefetch Requests
L2_INST_PREFETCHES 0x45 |Y|N|N 1 L2 Instruction Prefetch Requests
ISB_BUNPAIRS_IN Ox46 | Y| N|N 1 Bundle pairs written from L2 into FE
ITLB_MISSES_FETCH 0x47 | Y| N|N 1 ITLB Misses Demand Fetch
L1ITLB_INSERTS_HPW 0x48 | Y|N|N 1 L1ITLB Hardware Page Walker
Inserts
DISP_STALLED 0x49 | N| N[N 1 Number of cycles dispersal stalled
L1l_SNOOP Ox4a |Y|Y|Y 1 Snoop requests handled by L1I
L1l_PURGE Ox4b | Y| N|N 1 L1ITLB purges handled by L1l
INST_DISPERSED 0x4d |Y|N|N 6 Syllables Dispersed from REN to
REG stage
SYLL_NOT_DISPERSED Ox4e |Y|N|[N 5 Syllables not dispersed

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 137

Performance Monitor Events

138

Table 11-36. All Performance Monitors Ordered by Code (Continued)
Symbol Name E:\(/)%n; ,5\ 2 I('-? In'(\:/l/acl:);c Description
R|R|C
SYLL_OVERCOUNT ox4f | Y| N|N 2 Syllables overcounted
NOPS_RETIRED 0x50 |Y|[N]|Y 6 Retired NOP Instructions
PREDICATE_SQUASHED_RETIRED 0x51 |Y[N|Y 6 Instructions Squashed Due to
Predicate Off
DATA_DEBUG_REGISTER_FAULT 0x52 | N{N|N 1 Fault due to data debug reg. Match to
load/store instruction
SERIALIZATION_EVENTS 0x53 | N[N[N 1 Number of srlz.I instructions
BR_PATH_PRED 0x54 |Y|N|Y 3 FE Branch Path Prediction Detail
INST_FAILED_CHKS_RETIRED 0x55 | N|N|N 1 Failed Speculative Check Loads
INST_CHKA_LDC_ALAT 0x56 |Y|Y|Y 2 Advanced Check Loads
INST_FAILED_CHKA_LDC_ALAT 0x57 |Y|Y|Y 1 Failed Advanced Check Loads
ALAT_CAPACITY_MISS 0x58 |Y|Y|Y 2 ALAT Entry Replaced
IA32_INST_RETIRED 0x59 | N| N[N 2 IA-32 Instructions Retired
BR_MISPRED_DETAIL 0x5b | Y| N|Y 3 FE Branch Mispredict Detall
L1l_STRM_PREFETCHES 0x5f Y| N| N 1 L1 Instruction Cache line prefetch
requests
L1l_RAB_FULL 0x60 NI N| N 1 Is RAB full?
BE_BR_MISPRED_DETAIL 0x61 |Y|N|Y 1 BE branch misprediction detail
ENCBR_MISPRED_DETAIL 0x63 |Y|[N]|Y 1 Number of encoded branches retired
L1l_RAB_ALMOST_FULL 0x64 | N| N[N 1 Is RAB almost full?
L1l_FETCH_RAB_HIT 0x65 | Y| N[N 1 Instruction fetch hitting in RAB
L1l_FETCH_ISB_HIT 0x66 | Y[N[N 1 “Just-in-time” instruction fetch hitting
in and being bypassed from ISB
L1l_PREFETCH_STALL 0x67 | N N 1 Why prefetch pipeline is stalled?
BR_MISPRED_DETAIL2 0x68 Y N|Y 2 FE Branch Mispredict Detail
(Unknown path component)
L1l_PVAB_OVERFLOW 0x69 1 PVAB overflow
BR_PATH_PRED2 Ox6a 2 FE Branch Path Prediction Detall
(Unknown prediction component)
FE_LOST_BW 0x70 2 Invalid bundles at the entrance to IB
FE_BUBBLE 0x71 1 Bubbles seen by FE
BE_LOST_BW_DUE_TO_FE 0x72 2 Invalid bundles if BE not stalled for
other reasons
IDEAL_BE_LOST_BW_DUE_TO_FE 0x73 2 Invalid bundles at the exit from IB
BUS_RD_HIT 0x80 1 Bus Reaq Hit Clean Non-local Cache
Transactions
BUS_RD_HITM 0x81 | N|[N|N 1 Bus Read Hit Modified Non-local
Cache Transactions
BUS_RD_INVAL_HITM 0x82 1 Bus BIL Transaction Results in HITM
BUS_RD_INVAL_ALL_HITM 0x83 1 Bus BIL or BRIL Transaction Results

in HITM

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

|nte|® Performance Monitor Events

Table 11-36. All Performance Monitors Ordered by Code (Continued)

1|D|O
Symbol Name Event AlA|lP Max Description
Code Inc/Cyc
R|R|C
BUS_HITM 0x84 | N|N|N 1 Bus Hit Modified Line Transactions
BUS_SNOOPS_HITM 0x85 | N|N|N 1 Bus Snoops HIT Modified Cache Line
BUS_SNOOPS 0x86 | N| N[N 1 Bus Snoops Total
BUS_ALL 0x87 N| N| N 1 Bus Transactions
BUS_DATA_CYCLE 0x88 | N|N|N 1 Valid data cycle on the Bus
MEM_READ_CURRENT 0x89 N| N| N 1 Current Mem Read Transactions On
Bus
BUS_MEMORY Ox8a | N| N[N 1 Bus Memory Transactions
BUS_MEM_READ Ox8b | N| N[N 1 Full Cache line D/l memory RD, RD
invalidate, and BRIL
BUS_RD_DATA 0x8c | N|N|N 1 Bus Read Data Transactions
BUS_RD_PRTL 0x8d | N| N[N 1 Bus Read Partial Transactions
BUS_BACKSNP_REQ Ox8e | N|N|N 1 Bus Back Snoop Requests
BUS_SNOOP_STALL_CYCLES 0x8f | N[N|N 1 Bus Snoop Stall Cycles (from any
agent)
BUS_IO 0x90 | N| N[N 1 IA-32 Compatible IO Bus
Transactions
BUS_RD_IO 0x91 |N|N|N 1 IA-32 Compatible 10 Read
Transactions
BUS_WR_WB 0x92 | N| N[N 1 Bus Write Back Transactions
BUS_LOCK 0x93 | N| N[N 1 1A-32 Compatible Bus Lock
Transactions
BUS_MEM_READ_OUT_HI 0x94 |N|N|N 2 Outstanding memory RD transactions
BUS_MEM_READ_OUT_LO 0x95 | N|N|N 7 Outstanding memory RD transactions
BUS_SNOOPQ_REQ 0x96 | N| N[N 7 Bus Snoop Queue Requests
BUS_IOQ_LIVE_REQ_LO 0x97 N| N| N 3 Inorder Bus Queue Requests (two
least-significant-bit of the 4-bit
outstanding 10Q request count)
BUS_I0Q_LIVE_REQ_HI 0x98 N[N| N 2 Inorder Bus Queue Requests (two
most-significant-bit of the 4-bit
outstanding 10Q request count)
BUS_OOQ_LIVE_REQ_LO 0x99 | N| N[N 7 Out-of-order Bus Queue Requests
(three least-significant-bit of the 4-bit
outstanding OOQ request count)
BUS_OOQ_LIVE_REQ_HI 0x9a |N|N|N 2 Out-of-order Bus Queue Requests
(two most-significant-bit of the 4-bit
outstanding OOQ request count)
BUS_BRQ_LIVE_REQ_LO 0x9b | N|[N|N 7 BRQ Live Requests (three
least-significant-bit of the 5-bit
outstanding BRQ request count)
BUS_BRQ_LIVE_REQ_HI 0x9c N| N| N 2 BRQ Live Requests (two
most-significant-bit of the 5-bit
outstanding BRQ request count)
BUS_BRQ_REQ_INSERTED 0x9d | N|[N|N 1 BRQ Requests Inserted
EXTERN_DP_PINS_0_TO_3 0x9% | N|N|N 1 DP pins 0-3 asserted

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 139

Performance Monitor Events

140

Table 11-36. All Performance Monitors Ordered by Code (Continued)
1|D|O
Symbol Name E:\(/)%n; AlA|lP Inl(\:/l/%x c Description
R|R|C y
EXTERN_DP_PINS_4_TO_5 0x9f | N| N[N 1 DP pins 4-5 asserted
L2_0OZQ_CANCELSO 0xa0 |Y|Y]|Y 4 L2 OZQ cancels
L2_IFET_CANCELS 0xal0 [Y|Y]|Y 1 Instruction fetch cancels by the L2.
xab,0x
a9,0xa
d
L2_0ZQ_ACQUIRE 0xa2,0 [N N| N 1 Clocks with acquire ordering attribute
xa6,0x existed in L2 OZQ
aa,0Oxa
e
L2_0ZQ_RELEASE 0xa3,0 [N[N| N 1 Clocks with release ordering attribute
xa7,0x existed in L2 OZQ
ab,0xaf
L2_0ZQ_CANCELS2 0xa8 |Y|Y]|Y 4 L2 OZQ cancels
L2_0ZQ_CANCELS1 Oxac |Y|Y]|Y 4 L2 OZQ cancels
L2_L3ACCESS_CANCEL 0xb0 |Y|Y|Y 1 Canceled L3 accesses
L2_REFERENCES Oxbl Y Y|Y 4 Requests made from L2
L2_DATA_REFERENCES 0xb2 |Y|Y|Y 4 Data read/write access to L2
L2_FORCE_RECIRC Oxb4 |Y|Y]|Y 4 Forced recirculates
L2_ISSUED_RECIRC_0OzZQ_ACC Oxb5 |Y|Y|Y 1 Count number of times a recirculate
issue was attempted and not
preempted
L2_GOT_RECIRC_0OZQ_ACC Oxb6 |Y|Y|Y 1 Counts number of OZQ accesses
recirculated back to L1D
L2_SYNTH_PROBE 0xb7 |Y|Y]|Y 1 Synthesized Probe
L2_BYPASS O0xb8 |[Y|Y|Y 1 Count bypass
L2_OPS_ISSUED 0xb8 |Y|Y|Y 4 Different operations issued by L2D
L2_ISSUED_RECIRC_IFETCH 0xb9 |Y|Y|Y 1 Instruction fetch recirculates issued
by L2D
L2_BAD_LINES_SELECTED 0xb9 |Y|Y|Y 4 Valid line replaced when invalid line is
available
L2_GOT_RECIRC_IFETCH Oxba |Y|Y]|Y 1 Instruction fetch recirculates received
by L2D
L2_STORE_HIT_SHARED Oxba |Y Y 2 Store hit a shared line
TAGGED_L2_DATA_RETURN_POR Oxbb |Y|Y|Y 1 Tagged L2 Data Return Ports 0/1
T
L2_0zZQ_FULL Oxbc |N|N|N 1 L2D 0OzQ is full
L2_0OzDB_FULL Oxbd NI N[N 1 L2D OZ data buffer is full
L2_VICTIMB_FULL Oxbe N{N|N 1 L2D victim buffer is full
L2_FILLB_FULL Oxbf | N| N[N 1 L2D Fill buffer is full
L1DTLB_TRANSFER OxcO0 |Y|Y|Y 1 L1DTLB misses that hit in the
L2DTLB for accesses counted in
L1D_READS
L2DTLB_MISSES Oxcl |Y|Y|Y 4 L2DTLB Misses

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

In

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

tel.

Performance Monitor Events

Table 11-36. All Performance Monitors Ordered by Code (Continued)

Symbol Name E\g%n; é E E In'(\:/l/acl:?c Description
L1D_READS_SETO oxc2 |Y|Y|Y 2 L1 Data Cache Reads
DATA_REFERENCES_SETO oxc3 |Y|Y|Y 4 Data memory references issued to

memory pipeline
L1D_READS_SET1 Oxcd | Y|Y|Y 2 L1 Data Cache Reads
DATA_REFERENCES_SET1 oxc5 |Y|Y|Y 4 Data memory references issued to
memory pipeline
DATA_DEBUG_REGISTER_MATCH oxc6 |Y|Y|Y 1 Data debug register matches data
ES address of memory reference
L1D_READ_MISSES 0xc7 2 L1 Data Cache Read Misses
DATA_EAR_EVENTS 0xc8 1 L1 Data Cache EAR Events
DTLB_INSERTS_HPW 0xc9 Y 4 Hardware Page Walker Installs to
DTLB
BE_L1D_FPU_BUBBLE Oxca | N|N|N 1 Full pipe bubbles in main pipe due to
FP or L1 dcache
L2_MISSES Oxcb |Y|Y|Y 1 L2 Misses
LOADS_RETIRED Oxed |Y|[Y|Y 4 Retired Loads
MISALIGNED_LOADS_RETIRED Oxce |Y|Y|Y 4 Retired Misaligned Load Instructions
UC_LOADS_RETIRED oxcf |Y|Y|Y 4 Retired Uncacheable Loads
UC_STORES_RETIRED 0xd0 |Y|Y|Y 2 Retired Uncacheable Stores
STORES_RETIRED Ooxdl |Y|Y|Y 2 Retired Stores
MISALIGNED_STORES_RETIRED o0xd2 |Y|Y|Y 2 Retired Misaligned Store Instructions
L3_REFERENCES Oxdb |[Y|Y]|Y 1 L3 References
L3_MISSES Oxdc |Y|Y|Y 1 L3 Misses
L3_READS Oxdd |[Y|Y]|Y 1 L3 Reads
L3_WRITES Oxde |Y|Y|Y 1 L3 Writes
L3_LINES_REPLACED Oxdf | NI N[N 1 L3 Cache Lines Replaced

141

Performance Monitor Events Inte|®

11.14

142

Note:

Performance Monitor Event List

This section enumerates Itanium 2 processor performance monitoring events.

Events that can be constrained by an Instruction Address Range can only be constrained by | BRPO
unless otherwise noted.

ALAT_CAPACITY_MISS

« Title: ALAT Entry Replaced
« Category: Instruction Execution IAR/DAR/OPC: Y/YIY
* Event Code: 0x58, Max. Inc¢/Cyc: 2

« Definition: Provides information on the number of times an advanced load (1 d. a, | d. as,
| df p.aorl df p. as)ormissingl d. c. nc displaced avalid entry inthe ALAT which did not
have the same register id or replaced the last one to two invalid entries.

Table 11-37. Unit Masks for ALAT_CAPACITY_MISS

Extension P'\/I[E'gl:l]r%?Sk Description
bxx00 (* nothing will be counted *)
INT bxx01 Only integer instructions
FP bxx10 Only floating-point instructions
ALL bxx11 Both integer and floating-point instructions

BACK_END_BUBBLE

« Title: Full Pipe Bubblesin Main Pipe
« Category: Stall Events IAR/DAR/OPC: N/N/N
* Event Code: 0x00, Max. Inc¢/Cye: 1

« Definition: Counts the number of full-pipe bubblesin the main pipe stalled due to any of 5
possible events (FPU/L 1D, RSE, EXE, branch/exception or the front-end). One event unit mask
further constrains this event and allows for some detailsin order to facilitate collecting all
information with four counters.

Table 11-38. Unit Masks for BACK_END_BUBBLE

Extension Pl\ll[(lz'glf%?Sk Description
ALL bxx00 Front-end, RSE, EXE, FPU/L1D stall or a pipeline flush due
to an exception/branch misprediction
FE bxx01 Front-end
L1D_FPU_RSE bxx10
— bxx11 (* nothing will be counted *)

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

BE_BR_MISPRED_DETAIL

Performance Monitor Events

« Title: Back-end Branch Misprediction Detail
« Category: Branch Events |AR/DAR/OPC: Y/IN/Y

* Event Code: 0x61, Max. In¢/Cyc: 1

« Definition: Countsthe number of branches retired based on the prediction result, Back-end
mispredictions of stg, rot, or pfs. These predictions are per bundle rather than per branch.

* NOTE: These events are counted only if there are no path mispredictions associated with
branches because path misprediction guarantees stg/rot/pfs misprediction.

Table 11-39. Unit Masks for BE_BR_MISPREDICT_DETAIL

Extension PM[(l:éL:TZS?Sk Description
ANY bxx00 Any back-end mispredictions
STG bxx01 Only back-end stage mispredictions
ROT bxx10 Only back-end rotate mispredictions
PFS bxx11 Only back-end pfs mispredictions for taken branches

BE_EXE_BUBBLE

« Title: Full Pipe Bubblesin Main Pipe due to Execution Unit Stalls
« Category: Stall Events IAR/DAR/OPC: N/N/N

* Event Code: 0x02, Max. In¢/Cyc: 1

« Definition: Counts the number of full-pipe bubbles in the main pipe due to stalls caused by the

Execution Unit.

* NOTE: The different causesfor thisevent are not prioritized because there is no need to do so
(causes are independent and several of them fire at the same time, they all should be counted).

Table 11-40. Unit Masks for BE_EXE_BUBBLE

Extension PN{?&TZS?SI(Description

ALL b0000 Was stalled by exe

GRALL b0001 Back-end was stalled by exe due to GR/GR or GR/load
dependency

FRALL b0010 Back-end was stalled by exe due to FR/FR or FR/load
dependency

PR b0011 Back-end was stalled by exe due to PR dependency

ARCR b0100 Back-end was stalled by exe due to AR or CR dependency

GRGR b0101 Back-end was stalled by exe due to GR/GR dependency

CANCEL b0110 Back-end was stalled by exe due to a canceled load

BANK_SWITCH b0111 Back-end was stalled by exe due to bank switching.

ARCR_PR_CANCEL_BANK b1000 ARCR, PR, CANCEL or BANK_SWITCH

— b1001-b1111 | (* nothing will be counted *)

143

Performance Monitor Events

144

BE_FLUSH_BUBBLE

« Title: Full Pipe Bubblesin Main Pipe due to Flushes.
« Category: Stall Events IAR/DAR/OPC: N/N/N

* Event Code: 0x04, Max. Inc¢/Cyec: 1

« Definition: Counts the number of full-pipe bubblesin the main pipe due to flushes.

* NOTE: XPN ishigher priority than BRU.

Table 11-41. Unit Masks for BE_FLUSH_BUBBLE

Extension PM[(l:éL:JJr_Tg]"Sk Description
ALL bxx00 Back-end was stalled due to either an exception/interruption
or branch misprediction flush
BRU bxx01 Back-end was stalled due to a branch misprediction flush
XPN bxx10 Back-end was stalled due to an exception/interruption flush
bxx11 (* nothing will be counted *)

BE_L1D_FPU BUBBLE

* Title: Full Pipe Bubblesin Main Pipe dueto FP or L1D Cache
* Category: Stall Events/L1D Cache Set 2 |AR/DAR/OPC: N/N/N

« Event Code: Oxca, Max. In¢/Cye: 1

« Definition: Counts the number of full-pipe bubblesin the main pipe due to stalls caused by

either floating-point unit or L1D cache.

*NOTE: Thisisarestricted set 2 L1D Cache event. In order to measure this event, one of the
eventsin this set must be measured by PMD5. The different causes for this event are not
prioritized because there is no need to do so (causes are independent and several of them fire at
the sametime, they all should be counted).

Table 11-42. Unit Masks for BE_L1D_FPU_BUBBLE

. PMC.umask _—
Extension [19:16] Description

ALL b0000 Back-end was stalled by L1D or FPU

FPU b0001 Back-end was stalled by FPU.

L1D b0010 Back-end was stalled by L1D. This includes all stalls caused
by the L1 pipeline (created in the L1D stage of the L1
pipeline which corresponds to the DET stage of the main
pipe).

L1D_FULLSTBUF b0011 Back-end was stalled by L1D due to store buffer being full

L1D_DCURECIR b0100 Back-end was stalled by L1D due to DCU recirculating

L1D_HPW b0101 Back-end was stalled by L1D due to Hardware Page Walker

— b0110 (* count is undefined *)

L1D_FILLCONF b0111 Back-end was stalled by L1D due a store in conflict with a
returning fill.

L1D_DCS b1000 Back-end was stalled by L1D due to dcs requiring a stall

L1D_L2BPRESS b1001 Back-end was stalled by L1D due to L2 Back Pressure

L1D_TLB b1010 Back-end was stalled by L1D due to L2DTLB to L1DTLB
transfer

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

intgl.

Performance Monitor Events

Table 11-42. Unit Masks for BE_L1D_FPU_BUBBLE (Continued)

: PMC.umask L
Extension [19:16] Description

L1D_LDCONF b1011 Back-end was stalled by L1D due to architectural ordering
conflict

L1D_LDCHK b1100 Back-end was stalled by L1D due to load check ordering
conflict.

L1D_NAT b1101 Back-end was stalled by L1D due to L1D data return
needing recirculated NaT generation.

L1D_STBUFRECIR b1110 Back-end was stalled by L1D due to store buffer cancel
needing recirculate.

L1D_NATCONF b1111 Back-end was stalled by L1D due to Id8.ill conflict with

st8.spill not written to unat.

BE_LOST_BW_DUE_TO_FE
« Title: Invalid Bundlesif BE Not Stalled for Other Reasons.
 Category: Stall Events IAR/DAR/OPC: N/N/N

* Event Code: 0x72, Max. Inc/Cyec: 2
« Definition: Counts the number of invalid bundles at the exit from Instruction Buffer only if

Back-end is not stalled for other reasons.

* NOTE: Causesfor lost bandwidth are prioritized in the following order from high to low for this
event: FEFLUSH, TLBMISS, IMISS, PLP, BR_ILOCK, BRQ, BI, FILL_RECIRC, BUBBLE,
IBFULL, UNREACHED. The prioritization implies that when several stall conditions exist at
the same time, only the highest priority one will be counted. There are two cases where a bundle
is considered “unreachable’. When bundle 0 contains a taken branch or bundle O isinvalid but
has | P[4] set to 1, bundle 1 will not be reached.

Table 11-43. Unit Masks for BE_LOST_BW_DUE_TO_FE

Extension PM[(l:éL:TZS?Sk Description
ALL b0000 Count regardless of cause
FEFLUSH b0001 Only if caused by a front-end flush
— b0010 (* count is undefined *)
— b0011 (* illegal selection *)
UNREACHED b0100 Only if caused by unreachable bundle
IBFULL b0101 (* meaningless for this event *)
IMISS b0110 Only if caused by instruction cache miss stall
TLBMISS b0111 Only if caused by TLB stall
FILL_RECIRC b1000 Only if caused by a recirculate for a cache line fill operation
Bl b1001 Only if caused by branch initialization stall
BRQ b1010 Only if caused by branch retirement queue stall
PLP b1011 Only if caused by perfect loop prediction stall
BR_ILOCK b1100 Only if caused by branch interlock stall
BUBBLE b1101 Only if caused by branch resteer bubble stall
— b1110-b1111 | (*illegal selection *)

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 145

Performance Monitor Events Inte|®

146

BE_RSE_BUBBLE

« Title: Full Pipe Bubblesin Main Pipe due to RSE Stalls
« Category: Stall Events IAR/DAR/OPC: N/N/N
* Event Code: 0x01, Max. Inc¢/Cye: 1

« Definition: Counts the number of full-pipe bubbles in the main pipe due to stalls caused by the
Register Stack Engine.

* NOTE: AR _DEP hasahigher priority than OVERFLOW, UNDERFLOW and LOADRS.
However, thisis the only prioritization implemented. In order to count OVERFLOW,
UNDERFLOW or LOADRS, AR_DEP must be false.

Table 11-44. Unit Masks for BE_RSE_BUBBLE

Extension PM[(félzjjr_ns?Sk Description
ALL bx000 Back-end was stalled by RSE
BANK_SWITCH bx001 Back-end was stalled by RSE due to bank switching
AR_DEP bx010 Back-end was stalled by RSE due to AR dependencies
OVERFLOW bx011 Back-end was stalled by RSE due to need to spill
UNDERFLOW bx100 Back-end was stalled by RSE due to need to fill
LOADRS bx101 Back-end was stalled by RSE due to loadrs calculations
— bx110-bx111 | (* nothing will be counted *)

BRANCH_EVENT

« Title: Branch Event Captured
« Category: Branch Events | AR/DAR/OPC: Y/IN/Y
* Event Code: Ox11, Max. Inc/Cyc: 1

« Definition: Countsthe number of branch bundles retired which match the constraints of PMC12
(defined under “ Performance Monitor Control Registers’).

BR_MISPRED_DETAIL

« Title: FE Branch Mispredict Detail
« Category: Branch Events | AR/DAR/OPC: Y/N/Y
* Event Code: 0x5b, Max. Inc/Cyc: 3

« Definition: Counts the number of branches retired. All 16 values for PMC.umask are valid in
order to provide information based on prediction result (mispredicted path or target address by
front-end), and branch type.

Table 11-45. Unit Masks for BR_MISPRED_DETAIL

: PMC.umask N
Extension [19:16] Description
ALL.ALL_PRED b0000 All branch types, regardless of prediction result
ALL.CORRECT_PRED b0001 All branch types, correctly predicted branches (outcome and
target)
ALL.WRONG_PATH b0010 All branch types, mispredicted branches due to wrong
branch direction

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

|nte|® Performance Monitor Events

Table 11-45. Unit Masks for BR_MISPRED_DETAIL (Continued)

: PMC.umask L
Extension [19:16] Description

ALL.WRONG_TARGET b0011 All branch types, mispredicted branches due to wrong target
for taken branches

IPREL.ALL_PRED b0100 Only IP relative branches, regardless of prediction result

IPREL.CORRECT_PRED b0101 Only IP relative branches, correctly predicted branches
(outcome and target)

IPREL.WRONG_PATH b0110 Only IP relative branches, mispredicted branches due to
wrong branch direction

IPREL.WRONG_TARGET b0111 Only IP relative branches, mispredicted branches due to
wrong target for taken branches

RETURN.ALL_PRED b1000 Only return type branches, regardless of prediction result

RETURN.CORRECT_PRED b1001 Only return type branches, correctly predicted branches
(outcome and target)

RETURN.WRONG_PATH b1010 Only return type branches, mispredicted branches due to
wrong branch direction

RETURN.WRONG_TARGET b1011 Only return type branches, mispredicted branches due to
wrong target for taken branches

NRETIND.ALL_PRED b1100 Only non-return indirect branches, regardless of prediction
result

NRETIND.CORRECT_PRED b1101 Only non-return indirect branches, correctly predicted
branches (outcome and target)

NRETIND.WRONG_PATH b1110 Only non-return indirect branches, mispredicted branches
due to wrong branch direction

NRETIND.WRONG_TARGET b1111 Only non-return indirect branches, mispredicted branches
due to wrong target for taken branches

BR_MISPRED_DETAIL2

« Title: FE Branch Mispredict Detail (Unknown Path Component)
« Category: Branch Events |AR/DAR/OPC: Y/N/Y
« Event Code: 0x68, Max. Inc/Cyc: 2

« Definition: Thisevent goeswith BR_MISPRED_DETAIL event based on prediction result and
branch type

*NOTE: For accurate misprediction counts the following measurement must be taken:
BR_MISPRED_DETAIL.[umask] - BR_MISPRED_DETAIL2.[Jumask]

By performing this calculation for every umask, one can obtain atrue value for the
BR_MISPRED_DETAIL event.

Table 11-46. Unit Masks for BR_MISPREDICT_DETAIL2

: PMC.umask -

Extension [19:16] Description
ALL.ALL_UNKNOWN_PRED b0000 All branch types, branches with unknown path prediction
ALL.UNKNOWN_PATH_ b0001 All branch types, branches with unknown path prediction
CORRECT_PRED and correctly predicted branch (outcome & target)
ALL.UNKNOWN_PATH_ b0010 All branch types, branches with unknown path prediction
WRONG_PATH and wrong branch direction
— b0011 (* nothing will be counted *)

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 147

Performance Monitor Events

148

intel.

Table 11-46. Unit Masks for BR_MISPREDICT_DETAIL2 (Continued)

Extension

PMC.umask
[19:16]

Description

IPREL.ALL_UNKNOWN_
PRED

b0100

Only IP relative branches, branches with unknown path
prediction

IPREL.UNKNOWN_PATH_ b0101 Only IP relative branches, branches with unknown path

CORRECT_PRED prediction and correctly predicted branch (outcome & target)

IPREL.UNKNOWN_PATH_ b0110 Only IP relative branches, branches with unknown path

WRONG_PATH prediction and wrong branch direction

— b0111 (* nothing will be counted *)

RETURN.ALL_UNKNOWN_ b1000 Only return type branches, branches with unknown path

PRED prediction

RETURN.UNKNOWN_PATH_ b1001 Only return type branches, branches with unknown path

CORRECT_PRED prediction and correctly predicted branch (outcome & target)

RETURN.UNKNOWN_PATH_ b1010 Only return type branches, branches with unknown path

WRONG_PATH prediction and wrong branch direction

— b1011 (* nothing will be counted *)

NRETIND.ALL_UNKNOWN_ b1100 Only non-return indirect branches, branches with unknown

PRED path prediction

NRETIND.UNKNOWN_PATH b1101 Only non-return indirect branches, branches with unknown

_CORRECT_PRED path prediction and correctly predicted branch (outcome &
target)

NRETIND.UNKNOWN_PATH b1110 Only non-return indirect branches, branches with unknown

_WRONG_PATH path prediction and wrong branch direction

— b1111 (* nothing will be counted *)

BR_PATH_PRED

 Title: FE Branch Path Prediction Detail

« Category: Branch Events, IAR/DAR/OPC: Y/N/Y
* Event Code: 0x54, Max. Inc/Cyec: 3

« Definition: Countsthe number of branches retired based on branch direction (taken/not taken),
branch predication and branch type. All 16 values for PM C.umask are valid.

Table 11-47. Unit Masks for BR_PATH_PRED

. PMC.umask _—
Extension [19:16] Description
ALL.MISPRED_NOTTAKEN b0000 All branch types, incorrectly predicted path and not taken

branch

ALL.MISPRED_TAKEN b0001 All branch types, incorrectly predicted path and taken
branch

ALL.OKPRED_NOTTAKEN b0010 All branch types, correctly predicted path and not taken
branch

ALL.OKPRED_TAKEN b0011 All branch types, correctly predicted path and taken branch

IPREL.MISPRED_ b0100 Only IP relative branches, incorrectly predicted path and not

NOTTAKEN taken branch

IPREL.MISPRED_TAKEN b0101 Only IP relative branches, incorrectly predicted path and

taken branch

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

|nte|® Performance Monitor Events

Table 11-47. Unit Masks for BR_PATH_PRED (Continued)

: PMC.umask -
Extension [19:16] Description

IPREL.OKPRED_NOTTAKEN b0110 Only IP relative branches, correctly predicted path and not
taken branch

IPREL.OKPRED_TAKEN b0111 Only IP relative branches, correctly predicted path and
taken branch

RETURN.MISPRED_ b1000 Only return type branches, incorrectly predicted path and

NOTTAKEN not taken branch

RETURN.MISPRED_TAKEN b1001 Only return type branches, incorrectly predicted path and
taken branch

RETURN.OKPRED _ b1010 Only return type branches, correctly predicted path and not

NOTTAKEN taken branch

RETURN.OKPRED_TAKEN b1011 Only return type branches, correctly predicted path and
taken branch

NRETIND.MISPRED _ b1100 Only non-return indirect branches, incorrectly predicted path

NOTTAKEN and not taken branch

NRETIND.MISPRED_TAKEN b1101 Only non-return indirect branches, incorrectly predicted path
and taken branch

NRETIND.OKPRED_ b1110 Only non-return indirect branches, correctly predicted path

NOTTAKEN and not taken branch

NRETIND.OKPRED_TAKEN b1111 Only non-return indirect branches, correctly predicted path
and taken branch

BR_PATH_PRED2

« Title: FE Branch Path Prediction Detail (Unknown Pred Component)
« Category: Branch Events |AR/DAR/OPC: Y/IN/Y

* Event Code: Ox6a, Max. Inc/Cyc: 2

* Definition: Thisevent goes with BR_PATH_PREDICTION event.

* NOTE: When thereis more than one branch in a bundle and oneis predicted astaken, all the
higher number ports are forced to a predicted not taken mode without actually knowing the their
true prediction.

Thetrue OKPRED_NOTTAKEN predicted path information can be obtained by calculating:

BR_PATH_PRED.[branch type]. OKPRED_NOTTAKEN - BR_PATH_PRED2.[branch
type] UNKNOWNPRED_NOTTAKEN using the same “branch type” (ALL, IPREL, RETURN,
NRETIND) specified for both events.

Similarly, the true MISPRED_TAKEN predicted path information can be obtained by
calculating:

BR_PATH_PRED.[branch type] MISPRED_TAKEN - BR_PATH_PRED2.[branch
type]. UKNOWNPRED_TAKEN using the same “branch type” (ALL, IPREL, RETURN,
NRETIND) selected for both events.

Table 11-48. Unit Masks for BR_PATH_PRED2

: PMC.umask S
Extension [19:16] Description
ALL.UNKNOWNPRED_NOT b00x0 All branch types, unknown predicted path and not taken
TAKEN branch (which impacts OKPRED_NOTTAKEN)
ALL.UNKNOWNPRED_ b00Ox1 All branch types, unknown predicted path and taken branch
TAKEN (which impacts MISPRED_TAKEN)

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 149

Performance Monitor Events

150

intel.

Table 11-48. Unit Masks for BR_PATH_PRED?2 (Continued)

Extension

PMC.umask
[19:16]

Description

IPREL.UNKNOWNPRED_
NOTTAKEN

b01x0

Only IP relative branches, unknown predicted path and not
taken branch (which impacts OKPRED_NOTTAKEN)

TAKEN

IPREL.UNKNOWNPRED_ b01x1 Only IP relative branches, unknown predicted path and
TAKEN taken branch (which impacts MISPRED_TAKEN)
RETURN.UNKNOWNPRED_ b10x0 Only return type branches, unknown predicted path and not
NOTTAKEN taken branch (which impacts OKPRED_NOTTAKEN)
RETURN.UNKNOWNPRED_ b10x1 Only return type branches, unknown predicted path and
TAKEN taken branch (which impacts MISPRED_TAKEN)
NRETIND.UNKNOWNPRED_ b11x0 Only non-return indirect branches, unknown predicted path
NOTTAKEN and not taken branch (which impacts
OKPRED_NOTTAKEN)
NRETIND.UNKNOWNPRED_ b11x1 Only non-return indirect branches, unknown predicted path

and taken branch (which impacts MISPRED_TAKEN)

BUS ALL
« Title: Bus Transactions

 Category: Frontside Bus IAR/DAR/OPC: N/N/N
« Event Code: 0x87, Max. In¢/Cyc: 1
* Definition: Counts the number of bus transactions.

Table 11-49. Unit Masks for BUS_ALL

: PMC.umask .
Extension [19:16] Description
— bxx00 (* nothing will be counted *)

10 bxx01 Non-CPU priority agents
SELF bxx10 Local processor
ANY bxx11 CPU or non-CPU (all transactions).

BUS_BACKSNP_REQ

« Title: Bus Back Snoop Requests
 Category: Frontside Bus IAR/DAR/OPC: N/N/N
* Event Code: 0x8e, Max. In¢/Cye: 1
« Definition: Counts the number of bus back snoop me requests accepted by the bus unit.

Table 11-50. Unit Masks for BUS_BACKSNP_REQ

: PMC.umask N
Extension [19:16] Description
— bxx00 (* nothing will be counted *)

THIS bxx01 Counts the number of bus back snoop me requests
— bxx10 (* nothing will be counted *)
— bxx11 (* nothing will be counted *)

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitor Events

BUS_BRQ_LIVE_REQ_HI

« Title: BRQ Live Requests (upper two hits)

« Category: Frontside Bus IAR/DAR/OPC: N/N/N
* Event Code: 0x9c, Max. Inc/Cyc: 2

* Definition: Countsthe number of live read requestsin BRQ. The ltanium 2 processor can have a
total of 16 per cycle. The upper 2 bits are stored in this counter (bits 4:3).

*NOTE: If aread request hasavictim, it is also entered in the BRQ (as writeback). This event
will count 1 aslong asaread or itsvictim isin BRQ (net effect isthat due to avictim, the life of
read in BRQ is extended).

BUS_BRQ_LIVE_REQ_LO

« Title: BRQ Live Requests (lower three bits)
« Category: Frontside Bus IAR/DAR/OPC: N/N/N
* Event Code: 0x9b, Max. In¢/Cyc: 7

* Definition: Countsthe number of live read requestsin BRQ. The ltanium 2 processor can have a
total of 16 per cycle. The lower 3 bits are stored in this counter (bits 2:0).

*NOTE: If aread request hasavictim, it is also entered in the BRQ (as writeback). This event
will count 1 aslong asaread or itsvictim isin BRQ (net effect isthat due to avictim, the life of
read in BRQ is extended).

BUS_BRQ_REQ_INSERTED

« Title: BRQ Requests Inserted

« Category: Frontside Bus IAR/DAR/OPC: N/N/N

* Event Code: 0x9d, Max. In¢/Cyc: 1

« Definition: Counts the number of requests which areinserted into BRQ.

*NOTE: Entriesmade into BRQ dueto L2 victims (caused by read, fc, cc) are not counted.

BUS_DATA_CYCLE

« Title: Valid Data Cycle on the Bus

« Category: Frontside Bus IAR/DAR/OPC: N/N/N

e Event Code: 0x88, Max. Inc/Cye: 1

« Definition: Counts the number of BUS Clocks which had avalid data cycle on the bus.

BUS_HITM

« Title: Bus Hit Modified Line Transactions
« Category: Frontside Bus |AR/DAR/OPC: N/N/N
* Event Code: 0x84, Max. Inc/Cye: 1

« Definition: Counts the number of transactions with HITM asserted (i.e., transaction was
satisfied by some other processor’s modified line).

«NOTE: Thisisequivalent to: BUS RD_INVAL_ALL_HITM + BUS_RD_HITM.

BUS_IO

« Title: IA-32 Compatible IO Bus Transactions

« Category: Frontside Bus IAR/DAR/OPC: N/N/N

e Event Code: 0x90, Max. Inc/Cye: 1

« Definition: Counts the number of 1A-32 1/O transactions.

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 151

Performance Monitor Events Inte|®

Table 11-51. Unit Masks for BUS_10

Extension PM[(l:éL:JES?Sk Description
— bxx00 (* nothing will be counted *)
10 bxx01 Non-CPU priority agents
SELF bxx10 Local processor
ANY bxx11 CPU or non-CPU (all transactions).

BUS I0Q LIVE_REQ HI

« Title: Inorder Bus Queue Requests (upper two bits)
 Category: Frontside Bus IAR/DAR/OPC: N/N/N
* Event Code: 0x98, Max. Inc¢/Cyec: 2

« Definition: Counts the number of live in-order bus requests. The Itanium 2 processor can have a
total of 8 per cycle. The upper two bits are stored in this counter.

BUS_IOQ_LIVE_REQ_LO

« Title: Inorder Bus Queue Requests (lower two bits)

 Category: Frontside Bus IAR/DAR/OPC: N/N/N

* Event Code: 0x97, Max. Inc¢/Cye: 3

« Definition: Counts the number of live in-order bus requests. The Itanium 2 processor can have a

total of 8 per cycle. The lower two bits are stored in this counter.
BUS_LOCK
* Title: 1A-32 Compatible Bus Lock Transactions
 Category: Frontside Bus IAR/DAR/OPC: N/N/N
* Event Code: 0x93, Max. Inc¢/Cye: 1
« Definition: Counts the number of 1A-32 buslock transactions.

Table 11-52. Unit Masks for BUS_LOCK

Extension PM[%?E?SI(Description
— bxx00 (* nothing will be counted *)
— bxx01 (* illegal selection *)
SELF bxx10 Local processor
ANY bxx11 CPU or non-CPU (all transactions).
BUS_MEMORY

« Title: Bus Memory Transactions
« Category: Frontside Bus IAR/DAR/OPC: N/N/N
* Event Code: 0x8a, Max. In¢/Cye: 1

« Definition: Counts the number of bus memory transactions (i.e memory-read-invalidate,
reserved-memory-read, memory-read, and memory-write transactions).

152 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

In

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

tel.

Table 11-53. Unit Masks for BUS_MEMORY

Performance Monitor Events

: PMC.umask .
Extension [19:16] Description

— b00xx (* nothing will be counted *)

— b0100 (* nothing will be counted *)

EQ_128BYTE.IO b0101 Number of full cache line transactions (BRL, BRIL, BWL)
from non-CPU priority agents

EQ_128BYTE.SELF b0110 Number of full cache line transactions (BRL, BRIL, BWL)
from local processor

EQ_128BYTE.ANY b0111 Number of full cache line transactions (BRL, BRIL, BWL)
from CPU or non-CPU (all transactions).

— b1000 (* nothing will be counted *)

LT_128BYTE.IO b1001 Number of less than full cache line transactions (BRP, BWP)
from non-CPU priority agents

LT_128BYTE.SELF b1010 Number of less than full cache line transactions (BRP, BWP)
local processor

LT_128BYTE.ANY b1011 Number of less than full cache line transactions (BRP, BWP)
CPU or non-CPU (all transactions).

— b1100 (* nothing will be counted *)

ALL.IO b1101 All bus transactions from non-CPU priority agents

ALL.SELF b1110 All bus transactions from local processor

ALL.ANY b1111 All bus transactions from CPU or non-CPU (all
transactions).

BUS_MEM_READ

« Title: Full Cache Line D/l Memory RD, RD Invalidate, and BRIL
« Category: Frontside Bus IAR/DAR/OPC: N/N/N

* Event Code: 0x8b, Max. In¢/Cyc: 1

* Definition: Counts the number of full cache-line (128-byte) data/code memory read (BRL), full
cache-line memory read-invalidate (BRIL), and 0-byte memory read-invalidate (BIL)

transactions.

Table 11-54. Unit Masks for BUS_MEM_READ

: PMC.umask s
Extension [19:16] Description

— b0000 (* nothing will be counted *)

BIL.IO b0001 Number of BIL 0-byte memory read invalidate transactions
from non-CPU priority agents

BIL.SELF b0010 Number of BIL 0-byte memory read invalidate transactions
from local processor

BIL.ANY b0011 Number of BIL 0-byte memory read invalidate transactions
from CPU or non-CPU (all transactions).

— b0100 (* nothing will be counted *)

BRL.IO b0101 Number of full cache line memory read transactions from
non-CPU priority agents

153

Performance Monitor Events Inte|®

154

Table 11-54. Unit Masks for BUS_MEM_READ (Continued)

: PMC.umask o
Extension [19:16] Description

BRL.SELF b0110 Number of full cache line memory read transactions from
local processor

BRL.ANY b0111 Number of full cache line memory read transactions from
CPU or non-CPU (all transactions).

b1000 (* nothing will be counted *)

BRIL.IO b1001 Number of full cache line memory read invalidate
transactions from non-CPU priority agents

BRIL.SELF b1010 Number of full cache line memory read invalidate
transactions from local processor

BRIL.ANY b1011 Number of full cache line memory read invalidate
transactions from CPU or non-CPU (all transactions).

— b1100 (* nothing will be counted *)

ALL.IO b1101 All memory read transactions from non-CPU priority agents

ALL.SELF b1110 All memory read transactions from local processor

ALL.ANY b1111 All memory read transactions from CPU or non-CPU (all
transactions).

BUS_MEM_READ_OUT_HI

« Title: Outstanding Memory Read Transactions (upper 2 bits)
 Category: Frontside Bus IAR/DAR/OPC: N/N/N
« Event Code: 0x94, Max. In¢/Cyc: 2

« Definition: Counts the number of memory read transactions outstanding. The Itanium 2
processor can have atotal of 16 of this event per cycle. The upper two bits are stored in this
counter. For the purpose of this event, amemory read access is assumed outstanding from the
time aread request isissued on the FSB until the first chunk of read datais returned to L 2.

* NOTE: Uncacheables (or anything else which doesn't access the L 3) are not tracked. Thisis
intended to be used along with BUS MEM_READ [all,self] for average system memory latency.

BUS_MEM_READ_OUT_LO

« Title: Outstanding Memory Read Transactions (lower 3 bits)
« Category: Frontside Bus |AR/DAR/OPC: N/N/N
« Event Code: 0x95, Max. In¢/Cyc: 7

* Definition: Counts the number of memory read transactions outstanding. The Itanium 2
processor can have atotal of 16 of this event per cycle. The lower three bits are stored in this
counter. For the purpose of this event, a memory read access is assumed outstanding from the
time aread request isissued on the FSB until the first chunk of read datais returned to L 2.

* NOTE: Uncacheables (or anything else which doesn't access the L 3) are not tracked. Thisis
intended to be used along with BUS_MEM_READ [all,self] for average system memory latency.

BUS_OOQ_LIVE_REQ_HI

« Title: Out-of -order Bus Queue Requests (upper 2 bits)
« Category: Frontside Bus IAR/DAR/OPC: N/N/N
* Event Code: 0x9a, Max. In¢/Cye: 2

« Definition: Counts the number of live deferred (out-of-order) bus requests. The Itanium 2
processor can have atotal of 18 of this event per cycle. The upper two bits are stored in this

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitor Events

counter (bits 4:3). This event increments every CPU clock cycle. The counter is incremented by
the number of live deferred transactions at that time.

*NOTE: BUS O0OO_LIVE_REQ/CPU_CYCLES event will be anindication of average number
of outstanding deferred transactions per CPU clock.

BUS_OOQ LIVE_REQ LO

* Title: Out-of-order Bus Queue Requests (lower 3 bits)
 Category: Frontside Bus IAR/DAR/OPC: N/N/N
« Event Code: 0x99, Max. In¢/Cyc: 7

« Definition: Counts the number of live deferred (out-of-order) bus requests. The Itanium 2
processor can have atotal of 18 of thisevent per cycle. The lower three bits are stored in this
counter (bits 2:0). This event increments every CPU clock cycle. The counter is incremented by
the number of live deferred transactions at that time.

*NOTE: BUS OOO _LIVE _REQ/CPU_CY CLES event will be an indication of average number
of outstanding deferred transactions per CPU clock.

BUS_RD_DATA

* Title: Bus Read Data Transactions
« Category: Frontside Bus |AR/DAR/OPC: N/N/N
e Event Code: 0x8c, Max. In¢/Cye: 1

« Definition: Counts the number of full-cache-line (128-byte) data memory read transactions
(BRL).

Table 11-55. Unit Masks for BUS_RD_DATA

Extension PM[(ljéL:J{?S?Sk Description
bxx00 (* nothing will be counted *)
10 bxx01 Non-CPU priority agents
SELF bxx10 Local processor
ANY bxx11 CPU or non-CPU (all transactions).
BUS_RD_HIT

 Title: Bus Read Hit Clean Non-local Cache Transactions
« Category: Frontside Bus |AR/DAR/OPC: N/N/N
e Event Code: 0x80, Max. Inc/Cye: 1

« Definition: Counts the number of bus reads that hit a clean line in another processor’s cache
(impliesHIT and BRL).

BUS RD HITM
* Title: Bus Read Hit Modified Non-local Cache Transactions
« Category: Frontside Bus |AR/DAR/OPC: N/N/N

* Event Code: 0x81, Max. Inc¢/Cyc: 1

« Definition: Countsthe number of bus reads that hit amodified line in another processor’s cache
(impliesHITM and BRL).

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 155

Performance Monitor Events Inte|®

BUS_RD_INVAL_ALL_HITM

e Title: Bus BRIL and BIL Transaction Resultsin HITM
« Category: Frontside Bus |AR/DAR/OPC: N/N/N
* Event Code: 0x83, Max. Inc¢/Cyec: 1

* Definition: Countsthe number of busread invalidate line transactions (impliesBRIL or BIL and
HITM) which are satisfied from a remote processor only.

BUS_RD_INVAL_HITM

 Title: BusBIL Transaction Resultsin HITM
« Category: Frontside Bus IAR/DAR/OPC: N/N/N
* Event Code: 0x82, Max. Inc¢/Cyec: 1

« Definition: Counts the number of bus read invalidated line transactions for which HITM was
asserted (implies BIL and HITM) and the transaction was satisfied from another processor’s
cache.

BUS_RD_IO

* Title: 1A-32 Compatible 10 Read Transactions

 Category: Frontside Bus IAR/DAR/OPC: N/N/N

* Event Code: 0x91, Max. In¢/Cyc: 1

« Definition: Counts the number of 1A-32 1/O read transactions.

Table 11-56. Unit Masks for BUS_RD_IO

Extension PM[(l:éL:J%?Sk Description
— bxx00 (* nothing will be counted *)
10 bxx01 Non-CPU priority agents
SELF bxx10 Local processor
ANY bxx11 CPU or non-CPU (all transactions).

BUS RD_PRTL

« Title: Bus Read Partia Transactions

 Category: Frontside Bus IAR/DAR/OPC: N/N/N
« Event Code: 0x8d, Max. Inc¢/Cye: 1

« Definition: Countsthe number of less-than-full-cache-line (0,8,16,32, and 64 byte) memory read
transactions (BRP).

Table 11-57. Unit Masks for BUS_RD_PRTL

Extension PM[S_:él:JJr_Té?Sk Description
— bxx00 (* nothing will be counted *)
10 bxx01 Non-CPU priority agents
SELF bxx10 Local processor
ANY bxx11 CPU or non-CPU (all transactions).

156 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitor Events

BUS_SNOOPQ_REQ

« Title: Bus Snoop Queue Requests
« Category: Frontside Bus IAR/DAR/OPC: N/N/N
* Event Code: 0x96, Max. In¢/Cyc: 7

« Definition: Counts the number of live snoop responses. This event increments every CPU clock
cycle. The amount that counter isincremented is the number of outstanding snoop responses at
that time.

BUS_SNOOPS

* Title: Bus Snoops Total

 Category: Frontside Bus IAR/DAR/OPC: N/N/N

* Event Code: 0x86, Max. In¢/Cyc: 1

« Definition: Counts the number of bus snoop requests on the bus.

Table 11-58. Unit Masks for BUS_SNOOPS

Extension PM[(l:él:J]r:%iaSk Description
— bxx00 (* nothing will be counted *)
10 bxx01 Non-CPU priority agents
SELF bxx10 Local processor
ANY bxx11 CPU or non-CPU (all transactions).

BUS_SNOOPS_HITM

* Title: Bus Snoops HIT Modified Cache Line
 Category: Frontside Bus IAR/DAR/OPC: N/N/N
* Event Code: 0x85, Max. In¢/Cyc: 1

« Definition: Countsthe number of bus snoop requests from remote processors that hit amodified
linein the local processor.

Table 11-59. Unit Masks for BUS_SNOOPS_HITM

Extension P'\A[g_:él:]]r_%?s'(Description
— bxx00 (* nothing will be counted *)
— bxx01 (* illegal selection *)
SELF bxx10 Local processor
ANY bxx11 CPU or non-CPU (all transactions).

BUS_SNOOP_STALL_CYCLES

* Title: Bus Snoop Stall Cycles (from any agent)
« Category: Frontside Bus IAR/DAR/OPC: N/N/N
* Event Code: 0x8f, Max. Inc/Cyec: 1

« Definition: Counts the number of bus clocks FSB is stalled for snoop (this is twice the number
of busclocks HIT and HITM are asserted at the same time).

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 157

Performance Monitor Events Inte|®

Table 11-60. Unit Masks for BUS_SNOOP_STALL_CYCLES

Extension PNl[(ljélzj:rLTg]"Sk Description
— bxx00 (* nothing will be counted *)
— bxx01 (* illegal selection *)
SELF bxx10 Local processor
ANY bxx11 CPU or non-CPU (all transactions).
BUS WR_WB

« Title: Bus Write Back Transactions
 Category: Frontside Bus IAR/DAR/OPC: N/N/N
* Event Code: 0x92, Max. Inc¢/Cye: 1

« Definition: Counts the number of write-back memory write transactions (BWL writes dueto
M-state line write-backs and coal esced writes).

Table 11-61. Unit Masks for BUS_WR_WB

. PMC.umask N
Extension [19:16] Description

— b00xx (* nothing will be counted *)

— b0100 (* nothing will be counted *)

EQ_128BYTE.IO b0101 Non-CPU priority agents/Only cache line transactions with
write back or write coalesce attributes will be counted.

EQ_128BYTE.SELF b0110 Local processor/Only cache line transactions with write back
or write coalesce attributes will be counted.

EQ_128BYTE.ANY b0111 CPU or non-CPU (all transactions)./Only cache line
transactions with write back or write coalesce attributes will
be counted.

— b1000 (* nothing will be counted *)

— b1001 (* illegal selection *)

CCASTOUT.SELF b1010 Local processor/Only 0-byte transactions with write back
attribute (clean cast outs) will be counted

CCASTOUT.ANY b1011 CPU or non-CPU (all transactions)/Only 0-byte transactions
with write back attribute (clean cast outs) will be counted

— b1100 (* nothing will be counted *)

ALL.IO b1101 Non-CPU priority agents

ALL.SELF b1110 Local processor

ALL.ANY b1111 CPU or non-CPU (all transactions).

CPU_CPL_CHANGES

* Title: Privilege Level Changes

» Category: System Events |AR/DAR/OPC: N/N/N

* Event Code: 0x13, Max. Inc¢/Cye: 1

« Definition: Counts the number of privilege level changes.

158 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitor Events

CPU_CYCLES

« Title: CPU Cycles

« Category: Basic Events IAR/DAR/OPC: N/N/N
* Event Code: 0x12, Max. Inc¢/Cye: 1

« Definition: Counts the number of clock cycles.

DATA_DEBUG_REGISTER_FAULT

« Title: Fault Due to Data Debug Reg. Match to L oad/Store Instruction
* Category: System Events|AR/DAR/OPC: N/N/N
e Event Code: 0x52, Max. Inc¢/Cye: 1

« Definition: Counts the number of times we take afault due to one of data debug registers
matching aload or store instruction.

DATA_DEBUG_REGISTER_MATCHES

* Title: Data Debug Register Matches Data Address of Memory References.
« Category: System Events|AR/DAR/OPC: Y/YIY
« Event Code: 0xc6, Max. In¢/Cye: 1

« Definition: Counts the number of times the data debug register matches the data address of a
memory reference. Thisis the OR function the 4 DBR matches. Registers DBRO-7, PSR, DCR,
PMC13 affect this event. It does not include commits which means that it might have noise.

DATA_EAR_EVENTS

* Title: L1 Data Cache EAR Events

* Category: L1 DataCache IAR/DAR/OPC: Y/Y/IY

e Event Code: 0xc8, Max. Inc/Cye: 1

* Definition: Countsthe number of L1 Data Cacheor LADTLB or ALAT events captured by EAR.

DATA_REFERENCES_SETO

« Title: Data Memory References I ssued to Memory Pipeline
 Category: L1 Data Cache/L1D Cache Set 0 |AR/DAR/OPC: Y/Y/IY
* Event Code: 0xc3, Max. Inc¢/Cyec: 4

« Definition: Countsthe number of datamemory references issued into memory pipeline (includes
check loads, uncacheabl e accesses, RSE operations, semaphores, and floating-point memory
references). The count includes wrong path operations but excludes predicated off operations.
This event does not include VHPT memory references.

* NOTE: Thisisarestricted set 0 L1D Cache event. In order to measure this event, one of the
eventsin this set must be measured by PMD5.

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 159

Performance Monitor Events Inte|®

160

DATA_REFERENCES_SET1

« Title: Data Memory References Issued to Memory Pipeline
« Category: L1 Data Cache/L1D Cache Set 1 |AR/DAR/OPC: Y/YIY
* Event Code: 0xcb, Max. In¢/Cye: 4

« Definition: Countsthe number of data memory referencesissued into memory pipeline (includes
check loads, uncacheable accesses, RSE operations, semaphores, and floating-point memory
references). The count includes wrong path operations but excludes predicated off operations.
This event does not include VHPT memory references.

* NOTE: Thisisarestricted set 1 L1D Cache event. In order to measure this event, one of the
events in this set must be measured by PMD5.

DISP_STALLED

* Title: Number of Cycles Dispersal Stalled

 Category: Instruction Dispersal Events |AR/DAR/OPC: N/N/N

« Event Code: 0x49, Max. In¢/Cyc: 1

« Definition: Counts the number of cycles dispersd was stalled due to flushes or back-end
pipeline stalls.

DTLB_INSERTS_HPW

« Title: Hardware Page Walker Insertsto DTLB

* Category: TLB IAR/DAR/OPC: Y/YIY

« Event Code: 0xc9, Max. In¢/Cye: 4

« Definition: Counts the number of VHPT entriesinserted into DTLB by Hardware Page Walker.

* NOTE: Thiswill include misses which the DTLB did not squash even though the instructions
causing the miss did not get to retirement.

DTLB_INSERTS_HPW_RETIRED

« Title: VHPT Entries Inserted into DTLB by the Hardware Page Walker

« Category: TLB IAR/DAR/OPC: Y/Y/IY

« Event Code: 0x2c, Max. Inc/Cye: 4

« Definition: Counts the number of VHPT entriesinserted into DTLB by Hardware Page Walker

*« NOTE: Thiswill not include misses which the DTLB did not squash even though the
instructions causing the miss did not get to retirement. The difference between this event and
DTLB_INSERTS HPW isthe amount of potentially unnecessary insertsinto DTLB.

ENCBR_MISPRED_DETAIL

« Title: Number of Encoded Branches Retired
 Category: Branch Events IAR/DAR/OPC: Y/N/Y
« Event Code: 0x63, Max. Inc¢/Cye: 3

« Definition: Counts the number of branches retired only if thereis a branch on port BO (i.e.,
encoded branch).

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

|nte|® Performance Monitor Events

Table 11-62. Unit Masks for ENCBR_MISPRED_DETAIL

: PMC.umask -
Extension [19:16] Description

ALL.ALL_PRED b0000 All encoded branches, regardless of prediction result

ALL.CORRECT_PRED b0001 All encoded branches, correctly predicted branches
(outcome and target)

ALL.WRONG_PATH b0010 All encoded branches, mispredicted branches due to wrong
branch direction

ALL.WRONG_TARGET b0011 All encoded branches, mispredicted branches due to wrong
target for taken branches

— b0100 (* nothing will be counted *)

— b0101 (* nothing will be counted *)

— b0110 (* nothing will be counted *)

— b0111 (* nothing will be counted *)

OVERSUB.ALL_PRED b1000 Only those which cause oversubscription, regardless of
prediction result

OVERSUB.CORRECT_ b1001 Only those which cause oversubscription, correctly

PRED predicted branches (outcome and target)

OVERSUB.WRONG_PATH b1010 Only those which cause oversubscription, mispredicted
branches due to wrong branch direction

OVERSUB.WRONG_ b1011 Only those which cause oversubscription mispredicted

ARGET branches due to wrong target for taken branches

ALL2.ALL_PRED b1100 All encoded branches, regardless of prediction result

ALL2.CORRECT_PRED b1101 All encoded branches, correctly predicted branches
(outcome and target)

ALL2.WRONG_PATH b1110 All encoded branches, mispredicted branches due to wrong
branch direction

ALL2.WRONG_TARGET b1111 All encoded branches, mispredicted branches due to wrong
target for taken branches

EXTERN _DP_PINS 0 TO 3
* Title: DP Pins 0-3 Asserted

« Category: System Events |AR/DAR/OPC: N/N/N
* Event Code: 0x9e, Max. Inc/Cyec: 1
« Definition: Counts the number of bus clocks external DP pins O through 3 were asserted.

Table 11-63. Unit Masks for EXTERN_DP_PINS_0_TO_3

Extension P'\/I[(lzét:]{'%?s'k Description
— b0000 (* nothing will be counted *)
PINO bxxx1 Include pin0 assertion
PIN1 bxx1x Include pinl assertion
PIN2 bx1xx Include pin2 assertion
PIN3 b1xxx Include pin3 assertion

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 161

Performance Monitor Events Inte|®

162

EXTERN_DP_PINS 4 TO 5

« Title: DP Pins 4-5 Asserted

« Category: System Events IAR/DAR/OPC: N/N/N

* Event Code: Ox9f, Max. In¢/Cyc: 1

« Definition: Counts the number of bus clocks external DP pins 4 and 5 were asserted.

Table 11-64. Unit Masks for EXTERN_DP_PINS_4 TO 5

; PMC.umask .
Extension [19:16] Description
— bxx00 (* nothing will be counted *)
PIN4 bxxx1 Include pin4 assertion
PIN5 bxx1x Include pin5 assertion
FE_BUBBLE

« Title: Bubbles Seen by FE
* Category: Stall Events |AR/DAR/OPC: N/N/N
* Event Code: 0x71, Max. In¢/Cyc: 1

« Definition: Counts the number of bubbles seen by front-end. This event is another way of
looking at the FE_LOST_BW event.

* NOTE: Causesfor stall are prioritized in the following order from high to low for this event:
FEFLUSH, TLBMISS, IMISS, BRANCH, FILL_RECIRC, BUBBLE, IBFULL. The
prioritization implies that when several stall conditions exist at the same time, only the highest
priority one will be counted.

Table 11-65. Unit Masks for FE_BUBBLE

Extension PM[%?ES?SI(Description
ALL b0000 Count regardless of cause
FEFLUSH b0001 Only if caused by a front-end flush
— b0010 (* count is undefined *)
GROUP1 b0011 BUBBLE or BRANCH
GROUP2 b0100 IMISS or TLBMISS
IBFULL b0101 Only if caused by instruction buffer full stall
IMISS b0110 Only if caused by instruction cache miss stall
TLBMISS b0111 Only if caused by TLB stall
FILL_RECIRC b1000 Only if caused by a recirculate for a fill operation
BRANCH b1001 Only if caused by any of 4 branch recirculates
GROUP3 b1010 FILL_RECIRC or BRANCH
ALLBUT_FEFLUSH_ b1011 ALL except FEFLUSH and BUBBLE
BUBBLE
ALLBUT_IBFULL b1100 ALL except IBFULL
BUBBLE b1101 Only if caused by branch bubble stall
— b1110-b1111 | (* nothing will be counted *)

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitor Events

FE_LOST_BW

« Title: Invalid Bundles at the Entrance to IB

« Category: Stal Events IAR/DAR/OPC: N/N/N

* Event Code: 0x70, Max. In¢/Cyc: 2

« Definition: Counts the number of invalid bundles at the entrance to Instruction Buffer.

* NOTE: Causesfor lost bandwidth are prioritized in the following order from high to low for this
event: FEFLUSH, TLBMISS, IMISS, PLP, BR_ILOCK, BRQ, BI, FILL_RECIRC, BUBBLE,
IBFULL, UNREACHED. The prioritization implies that when several stall conditions exist at
the same time, only the highest priority one will be counted. There are two cases where a bundle
is considered “unreachable”. When bundle 0 contains a taken branch or bundle O isinvalid but
has 1P[4] set to 1, bundle 1 will not be reached.

Table 11-66. Unit Masks for FE_LOST_BW

Extension PM[(lzét:Tz;Sk Description
ALL b0000 Count regardless of cause
FEFLUSH b0001 Only if caused by a front-end flush
— b0010 (* count is undefined *)
— b0011 (* illegal selection *)
UNREACHED b0100 Only if caused by unreachable bundle
IBFULL b0101 Only if caused by instruction buffer full stall
IMISS b0110 Only if caused by instruction cache miss stall
TLBMISS b0111 Only if caused by TLB stall
FILL_RECIRC b1000 Only if caused by a recirculate for a cache line fill operation
BI b1001 Only if caused by branch initialization stall
BRQ b1010 Only if caused by branch retirement queue stall
PLP b1011 Only if caused by perfect loop prediction stall
BR_ILOCK b1100 Only if caused by branch interlock stall
BUBBLE b1101 Only if caused by branch resteer bubble stall
— b1101-b1111 | (*illegal selection *)

FP_FAILED_FCHKF

« Title: Failed fchkf

« Category: Instruction Execution | AR/DAR/OPC: Y/N/N

« Event Code: 0x06, Max. In¢/Cyc: 1

« Definition: Counts the number of times the fchkf instruction failed.

FP_FALSE_SIRSTALL

« Title: SIR Stall Without a Trap
* Category: Instruction Execution | AR/DAR/OPC: Y/N/N
« Event Code: 0x05, Max. Inc/Cye: 1

« Definition: Counts the number of times SIR (Safe Instruction Recognition) stall is asserted and
does not lead to atrap.

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 163

Performance Monitor Events Inte|®

164

FP_FLUSH_TO_ZERO

« Title: FP Result Flushed to Zero

« Category: Instruction Execution IAR/DAR/OPC: Y/N/N

* Event Code: 0x0Ob, Max. Inc¢/Cyc: 2

« Definition: Counts the number of times a near zero result is flushed to zero in FTZ mode.

FP_OPS_RETIRED

« Title: Retired FP Operations
* Category: Instruction Execution |AR/DAR/OPC: Y/N/N
« Event Code: 0x09, Max. Inc¢/Cyc: 4

« Definition: Provides information on number of retired floating-point operations, excluding all
predicated off instructions. Thisis aweighted sum of basic floating-point operations. To count
how often specific opcodes are retired, use IA64 TAGGED _INST_RETIRED.

* NOTE: The following weights are used:
Counted as4 ops. f pma, f prs, and f pnna

Countedas2 ops. f pma, f pnma (f2=f0),fma, fns, fnma, fprcpa, fprsarta,
fprpy, fpmax, fpanmin, fpamax, fpcnp, fpcvt

Countedaslop:fns, frma, fnma (f2=f0orf4=f1), fnpy, fadd, fsub, frcpa,
frsgrta, fmn, fmax, famn, famax, fpmn, fcvt.fx, fcnp

FP_TRUE_SIRSTALL

* Title: SIR Stall Asserted and Leadsto aTrap
« Category: Instruction Execution IAR/DAR/OPC: Y/N/N
« Event Code: 0x03, Max. In¢/Cyc: 1

« Definition: Counts the number of times SIR (Safe Instruction Recognition) stall is asserted and
leadsto atrap.

HPW_DATA_REFERENCES

« Title: Data Memory Referencesto VHPT

« Category: L1 DataCache IAR/DAR/OPC: Y/YIY

* Event Code: 0x2d, Max. In¢/Cyc: 4

* Definition: Counts the number of data memory referencesto VHPT.

*« NOTE: If HPW isenabled all thetime, thisevent and L2DTLB_MISSES are equivalent. If
HPW is disabled al the time, this event should count 0. Thiswill include missesthe L2DTLB
did not squash even though the instructions causing the miss did not get to retirement.

IA32_INST_RETIRED

« Title: IA-32 Instructions Retired

« Category: Basic events IAR/DAR/OPC: N/N/N

« Event Code: 0x59, Max. In¢/Cyc: 2

« Definition: Counts the number of |A-32 instructions retired.

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitor Events

IA32_ISA_TRANSITIONS

 Title: ltanium to/from |A-32 |SA Transitions
« Category: Basic events IAR/DAR/OPC: N/N/N
* Event Code: 0x07, Max. In¢/Cyc: 1

« Definition: Countsthe number of timesinstruction set transitions from Itanium to |A-32 or from
1A-32 to Itanium (Number of times PSR.is bit toggles).

IA64_INST_RETIRED
* Title: Retired |tanium Instructions

- Category: Basic Events IAR/DAR/OPC: Y/IN/Y
* Event Code: 0x08, Max. In¢/Cyc: 6

« Definition: Counts the number of retired instructions excluding hardware generated RSE
operations and instructions that were predicated off. This event includes all non-branch
instructions which reached retirement with a true predicate and all branches regardless of
predicate. Thisisa sub event of IA64_ TAGGED_INST_RETIRED.

*NOTE: MLX bundleswill be counted as no more than two instructions. Make sure that the
corresponding registers are setup such that nothing will be constrained by the IBRP-PMC
combination of interest (power up default is no constraints).

An example of non-default setup follows:

Let's say we want to use IBRP2-PMC8 for measuring IA64_INST_RETIRED in PMD4. The
following bits need to be programmed to make this happen.

PMC4.umask = xx10
PMC14.1BRP2 = 1 (PMC14 is also known as |PF_IBRC)

PMC15.IBRP2_PMC8 =1 (PMC15isalso known as ISD_DEBUGTAG). Note that PMC8 can
still be used for the IBRPO_PM C8 umask.

Table 11-67. Unit Masks for IA64_INST_RETIRED

- PMC.umask L
Extension [19:16] Description
THIS bxx00 Retired Itanium Instructions

IA64_TAGGED_INST_RETIRED

« Title: Retired Tagged Instructions

 Category: Instruction Execution | AR/DAR/OPC: Y/N/Y

« Event Code: 0x08, Max. Inc/Cyc: 6

« Definition: Counts the number of retired instructions, excluding hardware generated RSE
operations and instructions that were predicated off, that match the Instruction Address
Breakpoint (IBRs) and Opcode Match register settings (PMC8,9). This event includes all
non-branch instructions which reached retirement with atrue predicate and all branches

regardless of predicate. See Section 10.3.5, “Instruction Address Range Matching” for more
details about how to program different registers.

* NOTE: MLX bundleswill be counted as no more than two instructions.

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 165

Performance Monitor Events

Table 11-68. Unit Masks for IA64_TAGGED_INST_RETIRED

: PMC.umask .
Extension [19:16] Description

IBRPO_PMCS8 bxx00 Instruction tagged by Instruction Breakpoint Pair 0 and
opcode matcher PMC8. Code executed with PSR.is=1 is
included.

IBRP1_PMC9 bxx01 Instruction tagged by Instruction Breakpoint Pair 1 and
opcode matcher PMC9. Code executed with PSR.is=1 is
included.

IBRP2_PMC8 bxx10 Instruction tagged by Instruction Breakpoint Pair 2 and
opcode matcher PMC8. Code executed with PSR.is=1 is not
included.

IBRP3_PMC9 bxx11 Instruction tagged by Instruction Breakpoint Pair 3 and
opcode matcher PMC9. Code executed with PSR.is=1 is not
included.

IDEAL_BE LOST BW _DUE _TO_FE
« Title: Invalid Bundles at the Exit From IB

 Category: Stall Events|AR/DAR/OPC: N/N/N
* Event Code: 0x73, Max. Inc¢/Cye: 2

« Definition: Counts the number of invalid bundles at the exit from Instruction Buffer regardiess
of whether Back-end is stalled for other reasons or not.

* NOTE: Causesfor lost bandwidth are prioritized in the following order from high to low for this
event: FEFLUSH, TLBMISS, IMISS, PLP, BR_ILOCK, BRQ, BI, FILL_RECIRC, BUBBLE,
IBFULL, UNREACHED. The prioritization implies that when several stall conditions exist at
the same time, only the highest priority one will be counted. There are two cases where abundle
is considered “unreachable”. When bundle 0 contains a taken branch or bundle O isinvalid but
has 1P[4] set to 1, bundle 1 will not be reached.

Table 11-69. Unit Masks for IDEAL_BE_LOST_BW_DUE_TO_FE

Extension Pl\/l[clzélﬁne?Sk Description
ALL b0000 Count regardless of cause
FEFLUSH b0001 Only if caused by a front-end flush
— b0010 (* count is undefined *)
— b0011 (* illegal selection *)
UNREACHED b0100 Only if caused by unreachable bundle
IBFULL b0101 (* meaningless for this event *)
IMISS b0110 Only if caused by instruction cache miss stall
TLBMISS b0111 Only if caused by TLB stall
FILL_RECIRC b1000 Only if caused by a recirculate for a cache line fill operation
BI b1001 Only if caused by branch initialization stall
BRQ b1010 Only if caused by branch retirement queue stall
PLP b1011 Only if caused by perfect loop prediction stall
BR_ILOCK b1100 Only if caused by branch interlock stall

166 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

intgl.

Performance Monitor Events

Table 11-69. Unit Masks for IDEAL_BE_LOST_BW_DUE_TO_FE (Continued)

: PMC.umask L
Extension [19:16] Description
BUBBLE b1101 Only if caused by branch resteer bubble stall

b1101-b1111

(* illegal selection *)

INST_CHKA_LDC_ALAT

« Title: Retired chk. a and | d. ¢ Instructions
« Category: Instruction Execution |AR/DAR/OPC: Y/Y/Y
* Event Code: 0x56, Max. In¢/Cyc: 2

« Definition: Provides information on the number of all advanced check load (chk. a) and check
load (I d. c) instructions that reach retirement.

*NOTE: Faulting chk. a will be counted even if an older sibling faults.

Table 11-70. Unit Masks for INST_CHKA_LDC_ALAT

Extension P'\/I[(lzét:]{'%?s'k Description
— bxx00 (* nothing will be counted *)
INT bxx01 Only integer instructions
FP bxx10 Only floating-point instructions
ALL bxx11 Both integer and floating-point instructions

INST_DISPERSED

« Title: Number of Syllables Dispersed from REN to REG
« Category: Instruction Dispersal Events |AR/DAR/OPC: Y/N/N
* Event Code: 0x4d, Max. In¢/Cyc: 6

« Definition: Countsthe number of syllables dispersed from REName to the REGister pipe stage
in order to approximate those dispersed from ROTate to EXPand.

INST_FAILED_CHKA_LDC_ALAT

* Title: Failled chk. a and| d. ¢ Instructions
« Category: Instruction Execution | AR/DAR/OPC: Y/YIY
e Event Code: 0x57, Max. Inc/Cye: 1

« Definition: Provides information on the number of failed advanced check load (chk. a) and
check load (I d. ¢) instructions that reach retirement.

*NOTE: Although at any given time, there could be 2 failing chk. a or | d. c, only thefirst one
is counted.

Table 11-71. Unit Masks for INST_FAILED_CHKA_LDC_ALAT

] PMC.umask _—
Extension [19:16] Description
— bxx00 (* nothing will be counted *)
INT bxx01 Only integer instructions

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

167

Performance Monitor Events

Table 11-71. Unit Masks for INST_FAILED_CHKA_LDC_ALAT (Continued)

168

: PMC.umask o
Extension [19:16] Description
FP bxx10 Only floating-point instructions
ALL bxx11 Both integer and floating-point instructions

INST_FAILED_CHKS_RETIRED

« Title: Failed chk. s Instructions
« Category: Instruction Execution |AR/DAR/OPC: N/N/N
* Event Code: 0x55, Max. Inc¢/Cye: 1
« Definition: Provides information on the number of failed speculative check instructions

(chk. s).

Table 11-72. Unit Masks for INST_FAILED_CHKS_RETIRED

Extension P'\A[i:élfjr%?k Description
— bxx00 (* nothing will be counted *)
INT bxx01 Only integer instructions
FP bxx10 Only floating-point instructions
ALL bxx11 Both integer and floating-point instructions

ISB_BUNPAIRS_IN

* Title: Bundle Pairs Written from L2 into FE
* Category: L1 Instruction Cache and prefetch IAR/DAR/OPC: Y/N/N
« Event Code: 0x46, Max. In¢/Cyc: 1

« Definition: Provides information about the number of bundle pairs (32 bytes) written from L2
(and beyond) into the front-end.

«NOTE: Thiseventisqualified with IBRPO if the cache line was tagged as a demand fetch and
IBRP1 if the cache line was tagged as a prefetch match.

ITLB_MISSES_FETCH

« Title: Instruction Translation Buffer Misses Demand Fetch

* Category: TLB IAR/DAR/OPC: Y/N/N

* Event Code: 0x47, Max. Inc¢/Cye: 1
« Definition: Counts the number of ITLB misses for demand fetch.

Table 11-73. Unit Masks for ITLB_MISSES_FETCH

. PMC.umask —
Extension [19:16] Description
— bxx00 (* nothing will be counted *)

L1ITLB

bxx01

All misses in L1ITLB will be counted. even if L1ITLB is not
updated for an access (Uncacheable/nat page/not present
page/faulting/some flushed), it will be counted here.

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

|nte|® Performance Monitor Events

Table 11-73. Unit Masks for ITLB_MISSES FETCH (Continued)

: PMC.umask -
Extension [19:16] Description
L2ITLB bxx10 All misses in L1ITLB which also missed in L2ITLB will be
counted.
ALL bxx11 All tlb misses will be counted. Note that this is not equal to
sum of the L1ITLB and L2ITLB umasks because any access
could be a miss in L1ITLB and L2ITLB.

L1IDTLB_TRANSFER

e Title: LIDTLB Missesthat Hit inthe L2DTLB for Accesses Counted in L1D_READS
 Category: TLB/L1D Cache Set 01 AR/DAR/OPC: Y/YIY
e Event Code: 0xc0, Max. In¢/Cye: 1

* Definition: Counts the number of timesan L1DTLB miss hitsin the L2DTLB for an access
counted in L1D_READS.

*NOTE: Thisisarestricted set 0 L1D Cache event. In order to measure this event, one of the
eventsin this set must be measured by PMD5. In code sequence a;b if “a" takes an exception and
“b” requires an L2DTLB->L1DTLB transfer, the transfer is performed but not counted in this
event. Thisis necessary to remain consistent with L1D_READS which will not count “b”
because it is not reached.

L1D_READS_SETO

« Title: L1 Data Cache Reads (Set 0)
« Category: L1 Data Cache/L 1D Cache Set 0 IAR/DAR/OPC: Y/Y/IY
* Event Code: 0xc2, Max. In¢/Cye: 2

« Definition: Counts the number of data memory read references issued into memory pipeline
which are serviced by L1D (only integer loads), RSE loads, L 1-hinted loads (L 1D returns data if
it hitsin L1D but does not do afill) and check loads (I d. c¢). Uncacheable reads, VHPT |oads,
semaphores, floating-point loads, and | f et ch instructions are not counted here because L1D
does not handle these. The count includes wrong path operations but excludes predicated off
operations.

* NOTE: Thisisarestricted set 0 L1D Cache event. In order to measure this event, one of the
eventsin this set must be measured by PMD5. Only ports 0 and 1 are measured.

L1D_READS_SET1

« Title: L1 Data Cache Reads (Set 1)
 Category: L1 Data Cache/L1D Cache Set 11AR/DAR/OPC: Y/Y/IY
* Event Code: 0xc4Max. Inc¢/Cyc: 2

« Definition: Counts the number of data memory read references issued into memory pipeline
which are serviced by L1D (only integer loads), RSE loads, L 1-hinted loads (L 1D returns data if
it hitsin L1D but does not do afill) and check loads (I d. c¢). Uncacheable reads, VHPT |oads,
semaphores, floating-point loadsand | f et ch instructions are not counted here because L1D
does not handl e these. The count includes wrong path operations but excludes predicated off
operations.

* NOTE: Thisisarestricted set 1 L1D Cache event. In order to measure this event, one of the
eventsin this set must be measured by PMD5. Only ports O and 1 are measured.

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 169

Performance Monitor Events Inte|®

L1D_READ_MISSES

« Title: L1 Data Cache Read Misses
« Category: L1 Data Cache/L1D Cache Set 1 |AR/DAR/OPC: Y/YIY
* Event Code: 0xc7, Max. In¢/Cye: 2

* Definition: Counts the number of L1 Data Cache read misses. L1 Data Cache is write through;
therefore write misses are not counted. The count only includes misses caused by references
counted by L1D_READS event. It will include L1D misses which missed the ALAT but not
those which hit in the ALAT. Semaphores are not handled by L1D and are not included in this
count

* NOTE: Thisisarestricted set 1 L1D Cache event. In order to measure this event, one of the
eventsin this set must be measured by PMD5. Only ports 0 and 1 are measured.

Table 11-74. Unit Masks for L1D_READ_MISSES

. PMC.umask _—
Extension [19:16] Description
ALL bxxx0 All L1D read misses will be counted.
RSE_FILL bxxx1 Only L1D read misses caused by RSE fills will be counted

L1ITLB_INSERTS_HPW

« Title: L1ITLB Hardware Page Walker Inserts

* Category: TLB IAR/DAR/OPC: Y/N/N

* Event Code: 0x48, Max. Inc¢/Cyec: 1

« Definition: Counts the number of L 1ITLB inserts done by Hardware Page Walker.

L1l_EAR_EVENTS

* Title: Instruction EAR Events

« Category: L1 Instruction Cache and Prefetch IAR/DAR/OPC: Y/N/N

« Event Code: 0x43, Max. In¢/Cyc: 1

« Definition: Counts the number of L1 Instruction Cache or L1ITLB events captured by EAR.

L1l FETCH_ISB_HIT

* Title: “Just-In-Time" Instruction Fetch Hitting In and Being Bypassed from 1SB
e Category: L1 Instruction Cache and Prefetch, IAR/DAR/OPC: Y/N/N
« Event Code: 0x66, Max. In¢/Cyc: 1

« Definition: Provides information about an instruction fetch hitting in and being bypassed from
the I SB (Instruction Streaming Buffer). It will not count “critical bypasses,” i.e., anytime the
pipeline has to stall waiting for data to be delivered from L2. It will count “just-in-time
bypasses,” i.e., when instruction datais delivered by the L2 in time for the instructions to be
consumed without stalling the front-end pipe.

*« NOTE: Demand fetches which hit the ISB at the same time as they are being transferred to the
Instruction Cache (1 cycleswindow) will not be counted because they haveto betreated as cache
hitsfor the purpose of branch prediction. Thisevent is qualified with IBRPOif the cache line was
tagged as a demand fetch and IBRP1 if the cache line was tagged as a prefetch match.

170 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitor Events

L1l_FETCH_RAB_HIT

« Title: Instruction Fetch Hitting in RAB

« Category: L1 Instruction Cache and Prefetch IAR/DAR/OPC: Y/N/N

* Event Code: 0x65, Max. In¢/Cyc: 1

* Definition: Provides Information about instruction fetch hitting in the RAB.

«NOTE: Thiseventisqualified with IBRPO if the cache line was tagged as a demand fetch and
IBRP1 if the cache line was tagged as a prefetch match.

L1I_FILLS

« Title: L1 Instruction Cache Fills
« Category: L1 Instruction Cache and Prefetch IAR/DAR/OPC: Y/N/N
* Event Code: 0x41, Max. In¢/Cye: 1

* Definition: Provides information about the number of linefills from ISB to the L1 Instruction
Cache (64-byte chunks).

*NOTE: Thiseventisqualified with IBRPO if the cache line was tagged as a demand fetch or
IBRPL1 if the cache line was tagged as a prefetch match. It isimpossible for this event to fire if
the corresponding entry isnot in L1ITLB

L1l_PREFETCHES

« Title: L1 Instruction Prefetch Requests
 Category: L1 Instruction Cache and Prefetch IAR/DAR/OPC: Y/N/N
« Event Code: 0x44, Max. In¢/Cyc: 1

« Definition: Providesinformation about the number of issued L1 cache line prefetch requests (64
bytes/line). The reported number includes streaming and non-streaming prefetches (hits and
missesin L1 Instruction Cache are both included).

«NOTE: Thiseventisqualified with IBRP1

L1l_PREFETCH_STALL

« Title: Prefetch Pipeline Stalls

« Category: L1 Instruction Cache and Prefetch IAR/DAR/OPC: N/N/N

e Event Code: 0x67, Max. Inc/Cye: 1

« Definition: Provides Information on why the prefetch pipelineis stalled.

Table 11-75. Unit Masks for L1I_PREFETCH_STALL

Extension PM[(l:éL:J{%]aSk Description
— bxx00-bxx01 | (* nothing will be counted *)
FLOW bxx10 Number of clocks flow is not asserted
ALL bxx11 Number of clocks prefetch pipeline is stalled

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 171

Performance Monitor Events Inte|®

172

L1l_PURGE

e Title: L1ITLB Purges Handled by L1l
« Category: L1 Instruction Cache and Prefetch IAR/DAR/OPC: Y/N/N
* Event Code: 0x4b, Max. Inc¢/Cyec: 1

« Definition: Providesinformation on the number of L1ITLB purgeshandled by L1l. Thiseventis
caused by apurgeinstruction, global purge from the bus cluster, insertsinto L2ITLB. It isnot the
same as column invalidates which are done on L1ITLB.

L1l_PVAB_OVERFLOW

« Title: PVAB Overflow

 Category: L1 Instruction Cache and Prefetch IAR/DAR/OPC: N/N/N

* Event Code: 0x69, Max. Inc¢/Cye: 1

« Definition: Provides Information about the Prefetch Virtual Address Buffer overflowing.

L1l RAB_ALMOST_FULL

* Title: IsRAB Almost Full?

« Category: L1 Instruction Cache and Prefetch IAR/DAR/OPC: N/N/N

* Event Code: 0x64, Max. Inc/Cyc: 1

* Definition: Provides Information about Read Address Buffer being almost full.

L1l RAB_FULL

 Title: ISRAB Full?

 Category: L1 Instruction Cache and Prefetch IAR/DAR/OPC: N/N/N
« Event Code: 0x60, Max. In¢/Cyc: 1

« Definition: Provides Information about Read Address Buffer being full.

L1l_READS

e Title: L1 Instruction Cache Reads
 Category: L1 Instruction Cache and Prefetch IAR/DAR/OPC: Y/N/N
« Event Code: 0x40, Max. Inc¢/Cye: 1

« Definition: Provides information about the number of demand fetch reads (i.e., all accesses
regardless of hit or miss) to the L1 Instruction Cache (32-byte chunks).

*« NOTE: Demand fetches which have an L1ITLB miss, and L1l cache miss, and collide with a
fill-recirculate to icache, will not be counted in this event even though they will be counted in
L2 INST_DEMAND_READS.

L1l_SNOOP

« Title: Snoop Requests Handled by L1l
« Category: L1 Instruction Cache and Prefetch IAR/DAR/OPC: Y/IY/Y
* Event Code: Ox4a, Max. Inc¢/Cye: 1

« Definition: Providesinformation on the number of snoop requests (64-byte granular) handled by
L1l.

* NOTE: Each“fc” instruction will produce 1 snoop request to L 11 after it goes out on the bus.
Although each IA32 store will produce 1 snoop request to L1, it will be counted here as many
times asitisrecirculated in L1D because it is busy doing more important things. If IFR snoop
pipeline is busy when L1D sends the snoop to I FR, this event will count more than once for the

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitor Events

same snoop. A victimized line will also produce a snoop. Some bus transactions al so can cause
L1l snoops.

L1l_STRM_PREFETCHES

« Title: L1 Instruction Cache Line Prefetch Requests
 Category: L1 Instruction Cache and Prefetch IAR/DAR/OPC: Y/N/N
« Event Code: 0x5f, Max. In¢/Cyc: 1

« Definition: Provides Information about the number of L1l cache line prefetch requests (64
bytes/line) which go through prefetch pipeline (i.e., hit or missin L1l cacheisnot factored in) in
streaming mode only (initiated by br . many).

*NOTE: Thiseventisqualified with IBRP1.

L2 _BAD_LINES_SELECTED

* Title: Valid Line Replaced When Invalid Line Is Available
« Category: L2 Unified Cache/L2 Cache Set 3 |AR/DAR/OPC: Y/YIY
* Event Code: 0xb9, Max. In¢/Cyc: 4

« Definition: Counts the number of timesavalid line was sel ected for replacement when an
invalid line was available.

*NOTE: Thisisarestricted set 3 L2 Cache event. In order to measure this event, one of the
eventsin this set must be measured by PMD4. Shares Event Code with
L2 ISSUED_RECIRC_IFETCH.

Table 11-76. Unit Masks for L2 BAD_LINES _SELECTED

: PMC.umask L
Extension [19:16] Description
ANY bOxxx Valid line replaced when invalid line is available
L2 BYPASS

* Title: Count L2 Bypasses

« Category: L2 Unified Cache/L2 Cache Set 3|AR/DAR/OPC: Y/YIY
e Event Code: 0xb8, Max. Inc/Cye: 1

« Definition: Counts the number of times a bypass occurred.

* NOTE: Thisisarestricted set 3 L2 Cache event. In order to measure this event, one of the
eventsin this set must be measured by PMD4. Shares Event Code with L2_OPS _ISSUED.

Table 11-77. Unit Masks for L2_BYPASS

Extension P'\A[g_:é?]r_%iaSK Description
L2_DATAl1l b0000 Count only L2 data bypasses (L1D to L2A)
L2_DATA2 b0001 Count only L2 data bypasses (L1W to L2I)
L3 _DATAl1l b0010 Count only L3 data bypasses (L1D to L2A)
— b0011 (* nothing will be counted *)
L2_INST1 b0100 Count only L2 instruction bypasses (L1D to L2A)
L2_INST2 b0101 Count only L2 instruction bypasses (L1W to L2I)

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 173

Performance Monitor Events Inte|®

Table 11-77. Unit Masks for L2_BYPASS (Continued)

: PMC.umask o
Extension [19:16] Description
L3_INST1 b0110 Count only L3 instruction bypasses (L1D to L2A)
— b0111 (* nothing will be counted *)

L2_DATA_REFERENCES

 Title: Data Read/Write Accessto L2
 Category: L2 Unified Cache/L2 Cache Set 1 IAR/DAR/OPC: Y/YIY
* Event Code: 0xb2, Max. In¢/Cyc: 4

« Definition: Counts the number of requests made to L2 due to a data read and/or write accesses.
The reported count is the number of requests prior to cache line merging. Semaphore operations
are counted as one read and one write.

* NOTE: Thisisarestricted set 1 L2 Cache event. In order to measure this event, one of the
events in this set must be measured by PMDA4.

Table 11-78. Unit Masks for L2 DATA_REFERENCES

Extension Pl\/l[clzélf%?k Description
— bxx00 (* nothing will be counted *)
L2_DATA_READS bxx01 Count only data read and semaphore operations.
L2_DATA_WRITES bxx10 Count only data write and semaphore operations
L2_ALL bxx11 Count both read and write operations (semaphores will
count as 2)

L2DTLB_MISSES

e Title: L2DTLB Misses
« Category: TLB/L1D Cache Set 0 |AR/DAR/OPC: Y/Y/IY
« Event Code: Oxcl, Max. Inc/Cye: 4

* Definition: Counts the number of L2DTLB misses (which isthe same as references to HPW;
DTLB_HIT=0) for demand requests.

*NOTE: Thisisarestricted set 0 L1D Cache event. In order to measure this event, one of the
events in this set must be measured by PMD5. If HPW is enabled all the time, this event and
HPW_DATA_REFERENCES are equivalent. Thiswill include missesthe L2DTLB did not
squash even though the instructions causing the miss did not get to retirement.

L2_FILLB_FULL

e Title: L2 Fill Buffer IsFull

« Category: L2 Unified Cache IAR/DAR/OPC: N/N/N

* Event Code: Oxbf, Max. In¢/Cyc: 1

« Definition: Counts the number of times L2 Fill Buffer isfull.

* NOTE: Thisisarestricted set 5 L2 Cache event. In order to measure this event, one of the
events in this set must be measured by PMDA4.

174 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

intgl.

Table 11-79. Unit Masks for L2_FILLB_FULL

Performance Monitor Events

Extension

PMC.umask
[19:16]

Description

THIS

b0000

L2 Fill buffer is full

b0001-b1111

(* count is undefined *)

L2_FORCE_RECIRC

« Title: Forced Recircul ates

« Category: L2 Unified Cache/L2 Cache Set 2 |AR/DAR/OPC: Y/IY/IY
« Event Code: 0xb4, Max. In¢/Cyc: 4

« Definition: Countsthe number of L2 ops forced to recircul ate, with the exception of
SNP_OR_L3. SNP_OR_L 3 will measure the number of times L2 ops are forced to recircul ate.
Anywhere from 0-32 ops can be affected by this one. All categories with the exception of
SMC_HIT, TRAN_PERF, and SNP_OR_L 3 occur at theinsertion into the OZQ. SMC _HIT is
when an ifetch is about to be written into the IPFQ and is forced to recircul ate because thereisan
outstanding store to the same address. SNP_OR_L 3 iswhen an existing OZQ entry is forced to
recircul ate because an incoming request matched its address or an accessisissued to the L3/BC
which will fill the same way/index thisOZQ _ENTRY has “hit” in. TRAN_PREF is when an
existing OZQ accessis transformed into a prefetch.

*NOTE: Thisisarestricted set 2 L2 Cache event. This event must be measured by PMD4.

Table 11-80. Unit Masks for L2_FORCE_RECIRC

: PMC.umask .
Extension [19:16] Description

ANY b0000 Count forced recirculates regardless of cause. SMC_HIT,
TRAN_PREF & SNP_OR_L3 will not be included here.

SMC_HIT b0001 Count only those caused by SMC hits due to an ifetch and
load to same cache line or a pending WT store

L1w b0010 Count only those caused by forced limbo

— b0011 (* nothing will be counted *)

TAG_NOTOK b0100 Count only those caused by L2 hits caused by in flight
snoops, stores with a sibling miss to the same index, sibling
probe to the same line or a pending sync.ia instruction

TRAN_PREF b0101 Count only those caused by transforms to prefetches

SNP_OR_L3 b0110 Count only those caused by a snoop or L3 issue

— b0111 (* nothing will be counted *)

VIC_PEND b1000 Count only those caused by an L2 miss with pending victim

FILL_HIT b1001 Count only those caused by an L2 miss which hit in the fill
buffer.

IPF_MISS b1010 Caused by L2 miss when instruction prefetch buffer miss
already existed

VIC_BUF_FULL b1011 Count only those caused by an L2 miss with victim buffer full

0ZQ_MISS b1100 Caused by an L2 miss when an OZQ miss already existed

SAME_INDEX b1101 Caused by an L2 miss when a miss to the same index
already existed

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 175

Performance Monitor Events Inte|®

Table 11-80. Unit Masks for L2 FORCE_RECIRC (Continued)

: PMC.umask o
Extension [19:16] Description
FRC_RECIRC b1110 Caused by an L2 miss when a force recirculate already
existed
— b1111 (* nothing will be counted *)

L2_GOT_RECIRC_IFETCH

* Title: Instruction Fetch Recircul ates Received by L2

 Category: L2 Unified Cache/L2 Cache Set 4 |AR/DAR/OPC: Y/YIY

« Event Code: Oxba, Max. In¢/Cye: 1

« Definition: Counts the number of instruction fetch recircul ates received by L2.

* NOTE: Thisisarestricted set 4 L2 Cache event. In order to measure this event, one of the
eventsin this set must be measured by PMD4. Shares Event Code with
L2 STORE_HIT_SHARED.

Table 11-81. Unit Masks for L2_GOT_RECIRC_IFETCH

: PMC.umask .
Extension [19:16] Description
ANY b1xxx Instruction fetch recirculates received by L2

L2_GOT_RECIRC_OZQ_ACC

« Title: Counts OZQ Accesses Recirculated to L1D

 Category: L2 Unified Cache IAR/DAR/OPC: Y/Y/Y

« Event Code: 0xb6, Max. In¢/Cyc: 1

« Definition: Counts number of OZQ accesses successfully recirculated to L1D.

* NOTE: Thisisarestricted set 2 L2 Cache event. In order to measure this event, one of the
eventsin this set must be measured by PMD4.

L2_IFET_CANCELS

« Title: Instruction Fetch Cancels by the L2.

« Category: L2 Unified Cache/L2 Cache Set 0 |AR/DAR/OPC: Y/YIY
« Event Code: Oxal,0xab,0xa9,0xad, Max. In¢/Cye: 1

* Definition: Counts the number of total instruction fetch cancels by L2

* NOTE: Thisisarestricted set 0 L2 Cache event. In order to measure this event, one of the
L2 OZQ_CANCEL events or this event must be measured by PMDA4.

Table 11-82. Unit Masks for L2 _IFET_CANCELS

Extension PM[Clzél:JinB?SK Description
ANY b000x Total instruction fetch cancels by L2
BYPASS b001x ifetch cancels due to bypassing
DIDNT_RECIR b0100 ifetch cancels because it did not recirculate
RECIR_OVER_SUB b0101 ifetch cancels because of recirculate oversubscription

176 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

|nte|® Performance Monitor Events

Table 11-82. Unit Masks for L2_IFET_CANCELS (Continued)

Extension P'\A[(]'_"élfjr_%i“k Description
ST_FILL_WB b0110 ifetch cancels due to a store or fill or write back
DATA_RD b0111 ifetch/prefetch cancels due to a data read
PREEMPT b10xx ifetch cancels due to preempts
CHG_PRIO b1100 ifetch cancels due to change priority
IFETCH_BYP b1101 Due to ifetch bypass during last clock
— b1110-b1111 | (* nothing will be counted *)

L2_INST_DEMAND_READS

« Title: L2 Instruction Demand Fetch Requests
« Category: L1 Instruction Cache and Prefetch IAR/DAR/OPC: Y/N/N
* Event Code: 0x42, Max. Inc/Cye: 1

« Definition: Counts the number of instruction requeststo L2 due to L 11 demand fetch misses.
This event counts the number of demand fetches that miss both the L 11 and the | SB regardless of
whether they hit or missin the RAB.

*NOTE: If ademand fetch does not havean L1ITLB miss, L2 INST_ DEMAND_READS and
L1l_READSIineup intime. If ademand fetch does not have an L2ITLB miss,
L2 INST_ DEMAND_READSfollows L1l READSby 3-4 clocks (unless aflushed iwalk is
pending ahead of it; which will increase the delay until the pending iwalk is finished). If demand
fetchhasan L2ITLB miss, the skew between L2 INST_ DEMAND_READSandL1l_READSIis
not deterministic.

L2_INST_PREFETCHES

« Title: L2 Instruction Prefetch Requests
« Category: L1 Instruction Cache and prefetch IAR/DAR/OPC: Y/N/N
* Event Code: 0x45, Max. In¢/Cyc: 1

« Definition: Provides information about the number of prefetch requestsissued to the unified L2
cache. The reported number includes streaming and non-streaming prefetches.

*NOTE: Thiseventisqualified with IBRP1.

L2_ISSUED_RECIRC_IFETCH

« Title: Instruction Fetch Recirculates Issued by L2

* Category: L2 Unified Cache/L2 Cache Set 4 IAR/DAR/OPC: Y/YIY

* Event Code: 0xb9, Max. In¢/Cyc: 1

* Definition: Counts the number of instruction fetch recirculatesissued by L2.

* NOTE: Thisisarestricted set 4 L2 Cache event. In order to measure this event, one of the
eventsin this set must be measured by PMD4. Shares Event Code with
L2 BAD_LINES SELECTED.

Table 11-83. Unit Masks for L2_ISSUED_RECIRC_IFETCH

: PMC.umask -
Extension [19:16] Description
ANY b1xxx Instruction fetch recirculates issued by L2

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 177

Performance Monitor Events Inte|®

178

L2_ISSUED_RECIRC_0OZQ_ACC

« Title: Count Number of Times a Recirculate Issue Was Attempted and Not Preempted
« Category: L2 Unified Cache IAR/DAR/OPC: Y/IY/IY
* Event Code: Oxb5, Max. Inc¢/Cye: 1

« Definition: Counts the number of times arecirculate was attempted that didn't get preempted by
afill/confirm/evervalid (fill/confirm tag updates have higher priority) or by an older sibling
issuing arecirculate (only one recirculate can be sent per clock). This value can be added to
L2 OZQ CANCELS*.DIDNT_RECIRC for the total number of timesthe L2 issue logic
attempted to issue arecirculae.

* NOTE: Thisisarestricted set 2 L2 Cache event. In order to measure this event, one of the
eventsin this set must be measured by PMDA4.

L2_L3ACCESS_CANCEL

* Title: Canceled L3 Accesses
 Category: L2 Unified Cache/L2 Cache Set 1 |AR/DAR/OPC: Y/Y/IY
« Event Code: 0xb0, Max. In¢/Cyc: 1

« Definition: Counts the number of canceled L3 accesses. A unit mask, as specified in the
following table, narrows this event down to a specific reason for the cancel.

*NOTE: Thisisarestricted set 1 L2 Cache event. This event must be measured by PMD4.

Table 11-84. Unit Masks for L2_L3ACCESS_CANCEL

- PMC.umask .
Extension [19:16] Description

— b0000 (* nothing will be counted *)

SPEC L3 BYP b0001 Speculative L3 bypasses

FILLD_FULL b0010 Filld being full

— b0011 (* count is undefined *)

— b0100 (* nothing will be counted *)

UC_BLOCKED b0101 Uncacheable blocked L3 Accesses

INV_L3_BYP b0110 Invalid L3 bypasses

EBL_REJECT b1000 ebl rejects

ANY b1001 Count cancels due to any reason. This umask will count
more than the sum of all the other umasks. It will count
things that weren't committed accesses when they reached
L1w, but the L2 attempted to bypass them to the L3 anyway
(speculatively). This will include accesses made repeatedly
while the main pipeline is stalled and the L1d is attempting
to recirculate an access down the L1d pipeline. Thus, an
access could get counted many times before it really does
get bypassed to the L3. It is a measure of how many times
we asserted a request to the L3 but didn't confirm it.

DFETCH b1010 Data fetches

IFETCH b1011 Instruction fetches

— b1100-b1111 | (* nothing will be counted *)

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitor Events

L2 MISSES

 Title: L2 Misses

« Category: L2 Unified Cache IAR/DAR/OPC: Y/YIY
* Event Code: Oxcb, Max. Inc/Cye: 1

* Definition: Counts the number of L2 cache misses (in terms of the number of L2 cache line
requests sent to L 3). It includes misses caused by instruction fetch/prefect and data read/write
operations. It does not include L1 misses to uncacheable or write-coalescing addresses.

L2_OPS_ISSUED

* Title: Operations |ssued By L2
« Category: L2 Unified Cache/L2 Cache Set 4 IAR/DAR/OPC: Y/IY/Y
* Event Code: 0xb8, Max. In¢/Cyc: 4

« Definition: Counts the number of operationsissued by L2 as specified by the operation type (i.e
operations which were valid in the L 2 pipe stage. So even if they are canceled later on, they will
be counted. Fires only for operations which hitin L2; i.e., OzQ is handling them).

* NOTE: Thisisarestricted set 4 L2 Cache event. In order to measure this event, one of the
eventsin this set must be measured by PMD4. Shares Event Code with L2 _BY PASS.

Table 11-85. Unit Masks for L2_OPS_ISSUED

Extension PM[(l:él:Jlng?Sk Description
INT_LOAD b1000 Count only valid integer loads
FP_LOAD b1001 Count only valid floating-point loads
RMW b1010 Count only valid read_modify_write stores
STORE b1011 Count only valid non-read_modify_write stores
NST_NLD b1100 Count only valid non-load, no-store accesses
— b1101-b1111 | (* nothing will be counted *)

L2_0zDB_FULL

* Title: L2 OZ Data Buffer IsFull

« Category: L2 Unified Cache/L2 Cache Set 5 |AR/DAR/OPC: N/N/N
e Event Code: Oxbd, Max. Inc¢/Cye: 1

« Definition: Counts the number of times L2 Oz Data Buffer is full.

* NOTE: Thisisarestricted set 5 L2 Cache event. In order to measure this event, one of the
eventsin this set must be measured by PMDA4.

Table 11-86. Unit Masks for L2_0zZDB_FULL

PMC.umask

Extension [19:16]

Description

THIS b0000 L2 OZ Data Buffer is full
— b0001-b1111 | (* countis undefined *)

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 179

Performance Monitor Events Inte|®

L2_0ZQ_ACQUIRE

« Title: Clocks With Acquire Ordering Attribute Existed in L2 OZQ
« Category: L2 Unified Cache/L2 Cache Set 0 |AR/DAR/OPC: N/N/N
* Event Code: 0xa2,0xab,0xaa,0xae, Max. In¢/Cyc: 1

« Definition: Counts the number of clocks entries with “acquire” ordering attribute existed in the
L2 OZ Queue.

* NOTE: Thisisarestricted set 0 L2 Cache event. In order to measure this event, one of the
events in this set must be measured by PMDA4.

L2_0ZQ_CANCELSO

« Title: L2 OZQ Cancels (Late or Any)
 Category: L2 Unified Cache/L2 Cache Set 0 1AR/DAR/OPC: Y/YIY
« Event Code: 0xa0, Max. Inc/Cye: 4

* Definition: Counts the number of total L2 OZ Queue Cancels (regardless of reason) or L2 OZ
Queue Cancels due to a specific reason (based on umask).

*NOTE: Thisisarestricted set 0 L2 Cache event. Only 1 of the3 L1 OZQ_CANCEL events
may be measured at any given time. In order to measure this event, either L2 IFET_CANCELS
or this event must be measured by PMD4.

Table 11-87. Unit Masks for L2_0ZQ_CANCELSO

Extension P'\/I[(l:élf%?Sk Description
ANY bx000 Counts the total OZ Queue cancels
LATE_SPEC_BYP bx001 Counts the late cancels caused by speculative bypasses
LATE_RELEASE bx010 Counts the late cancels caused by releases
LATE_ACQUIRE bx011 Counts the late cancels caused by acquires
LATE_BYP_EFFRELEASE bx100 Counts the late cancels caused by L1D to L2A bypass

effective releases

— bx101-bx111 | (* nothing will be counted *)

L2_0ZQ _CANCELS1

« Title: L2 OZQ Cancels (Specific Reason Set 1)
 Category: L2 Unified Cache/L2 Cache Set 0 |AR/DAR/OPC: Y/YIY
« Event Code: Oxac, Max. In¢/Cyc: 4

« Definition: Counts the number of total L2 OZ Queue Cancels dueto a specific reason (based on
umask).

* NOTE: Thisisarestricted set 0 L2 Cache event. Only 1 of the3 L1 OZQ_CANCEL events
may be measured at any given time. In order to measure this event, either L2 IFET_CANCELS
or this event must be measured by PMD4.

Table 11-88. Unit Masks for L2_0ZQ_CANCELS1

: PMC.umask o
Extension [19:16] Description
REL b0000 Caused by release
BANK_CONF b0001 Bank conflicts

180 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

tel.

Performance Monitor Events

Table 11-88. Unit Masks for L2_0ZQ_ CANCELS1 (Continued)

Extension P'\A[(l;é?]r_%i“k Description
L2D_ST_MAT b0010 A store match in L2D
— b0011 (* nothing will be counted *)
SYNC b0100 Caused by sync.i
HPW_IFETCH_CONF b0101 A ifetch conflict (canceling HPW?)
CANC_L2M_ST b0110 Caused by a canceled store in L2M
L1 FILL_CONF b0111 An L1 fill conflict
ST_FILL_CONF b1000 A store fill conflict
ccv b1001 A ccv
SEM b1010 A semaphore
L2M_ST_MAT b1011 A store match in L2M
MFA b1100 A memory fence instruction
L2A_ST_MAT b1101 A store match in L2A
L1DF_L2M b1110 L1D fill in L2M
ECC b1111 ECC hardware detecting a problem

L2_0ZQ_CANCELS2

* Title: L2 OZQ Cancels (Specific Reason Set 2)

« Category: L2 Unified Cache/L2 Cache Set 0 IAR/DAR/OPC: Y/YIY
* Event Code: Oxa8, Max. Inc/Cye: 4
« Definition: Counts the number of total L2 OZ Queue due to a specific reason (based on umask).

*NOTE: Thisisarestricted set 0 L2 Cache event. Only 1 of the3 L1 OZQ CANCEL events
may be measured at any given time. In order to measure this event, either L2 IFET_CANCELS

or this event must be measured by PMDA4.

Table 11-89. Unit Masks for L2_0ZQ_CANCELS2

Extension

PMC.umask
[19:16]

Description

RECIRC_OVER_SUB

b0000

Caused by a recirculate oversubscription

CANC_L2C_ST b0001 Caused by a canceled store in L2C

L2C_ST_MAT b0010 A store match in L2C

SCRUB b0011 32/64 byte HPW/L2D fill which needs scrub

ACQ b0100 Caused by an acquire

READ_WB_CONF b0101 A write back conflict (canceling read?)

OZ_DATA_CONF b0110 An OZ data conflict

— b0111 (* nothing will be counted *)

L2FILL_ST_CONF b1000 An L2fill and store conflict in L2C

DIDNT_RECIRC b1001 Caused because it did not recirculate

WEIRD b1010 Counts the cancels caused by attempted 5-cycle bypasses

for non-aligned accesses and bypasses blocking
recirculates for too long

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

181

Performance Monitor Events Inte|®

182

Table 11-89. Unit Masks for L2_0ZQ_ CANCELS2 (Continued)

Extension PM[(]'_"él:er_%?Sk Description
— b1011 (* nothing will be counted *)
OVER_SUB b1100 Oversubscription
CANC_L2D_ST b1101 Caused by a canceled store in L2D
— b1110 (* nothing will be counted *)
D_IFET b1111 A demand ifetch
L2_0ZQ FULL

* Title: L2 OZQ IsFull

« Category: L2 Unified Cache/L2 Cache Set 5 |AR/DAR/OPC: N/N/N
* Event Code: Oxbc, Max. In¢/Cye: 1

« Definition: Counts the number of times L2D Oz Queueisfull.

* NOTE: Thisisarestricted set 5 L2 Cache event. In order to measure this event, one of the
events in this set must be measured by PMDA4.

Table 11-90. Unit Masks for L2_0ZQ_FULL

PMC.umask

Extension [19:16]

Description

THIS b0000 L2D OZQ is full

— b0001-b1111 | (* count is undefined *)

L2_0ZQ RELEASE

« Title: Clocks With Release Ordering Attribute Existed in L2 OZQ
 Category: L2 Unified Cache/L2 Cache Set 0l AR/DAR/OPC: N/N/N
« Event Code: 0xa3,0xa7,0xab,0xaf Max. In¢/Cye: 1

« Definition: Counts the number of clocks entries with “release” ordering attribute existed in the
L2 OZ Queue.

* NOTE: Thisisarestricted set 0 L2 Cache event. In order to measure this event, one of the
eventsin this set must be measured by PMD4.

L2_REFERENCES

« Title: Requests Made To L2
* Category: L2 Unified Cache/L2 Cache Set 1 |AR/DAR/OPC: Y/Y/Y
* Event Code: 0xbl, Max. In¢/Cyc: 4

« Definition: Counts the number of requests (data reads, data writes, instruction fetches and
instruction prefetches) made from L 2.

*NOTE: Thisisarestricted set 1 L2 Cache event. In order to measure this event, one of the
eventsin this set must be measured by PMDA4. Prefetches which are promoted to fetches are only
counted once. Instruction fetches to the second half of aline will not be counted if the fetch for
thefirst half is already counted. All secondary misses are counted for data references. A
semaphore operation will be counted only once here. Only requests which are entered into the
0OZQ are counted here; i.e., recirculated operations will not be recounted. Uncacheable/WC
accesses will not be counted. FROM_CCV, SETF, CCV, PTC_GPTC_GA, FWB, MF, MFA,
SYNCI, SYNCIA, PTCM, FC, CC operations are excluded.

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitor Events

L2_STORE_HIT_SHARED

« Title: Store Hit a Shared Line

« Category: L2 Unified Cache/L2 Cache Set 3|AR/DAR/OPC: Y/Y/IY
* Event Code: Oxba, Max. Inc/Cyc: 2

« Definition: Counts the number of times a store hit a shared line.

* NOTE: Thisisarestricted set 3 L2 Cache event. In order to measure this event, one of the
eventsin this set must be measured by PMD4. Shares Event Code with
L2 GOT_RECIRC IFETCH.

Table 11-91. Unit Masks for L2_STORE_HIT_SHARED

PMC.umask

[19:16] Description

Extension

ANY bOXxxx Store hit a shared line

L2_SYNTH_PROBE

* Title: Synthesized Probe
 Category: L2 Unified Cachel AR/DAR/OPC: Y/YIY
* Event Code: Oxb7Max. In¢/Cye: 1

« Definition: Counts the number of synthesized probes. A synthesized probe indicates that L2
received afill from the bus cluster withaMESI state of | or P indicating that thefill was hit by an
in-flight snoop. As such, L2 needs to “ synthesize” a probe response back to the bus cluster once
the line has been “used once”. For forward progress, L2 won't send the response until it has used
the line once.

*NOTE: Thisisarestricted set 2 L2 Cache event. In order to measure this event, one of the
eventsin this set must be measured by PMD4.

L2_VICTIMB_FULL

« Title: L2D Victim Buffer Is Full

« Category: L2 Unified Cache/L2 Cache Set 5 |AR/DAR/OPC: N/N/N
* Event Code: Oxbe, Max. Inc/Cye: 1

* Definition: Counts the number of times L2D Victim Buffer isfull.

* NOTE: Thisisarestricted set 5 L2 Cache event. In order to measure this event, one of the
eventsin this set must be measured by PMDA4.

Table 11-92. Unit Masks for L2_VICTIMB_FULL

PMC.umask

[19:16] Description

Extension

THIS b0000 L2D victim buffer is full

— b0001-b1111 | (* countis undefined *)

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 183

Performance Monitor Events Inte|®

184

L3_LINES_REPLACED

« Title: L3 Cache Lines Replaced
« Category: L3 Unified Cache IAR/DAR/OPC: N/N/N
* Event Code: Oxdf, Max. In¢/Cyc: 1

« Definition: Counts the number of valid L3 lines (dirty victims) that have been replaced.
Exclusive clean/shared and clean castouts may also be counted depending on platform specific
Settings.

L3_MISSES

* Title: L3 Misses

 Category: L3 Unified Cache IAR/DAR/OPC: Y/Y/IY

« Event Code: Oxdc, Max. In¢/Cye: 1

« Definition: Counts the number of L3 cache misses. Includes misses caused by instruction fetch,
data read/write, L2 write backs and the HPW.

L3_READS

* Title: L3 Reads

 Category: L3 Unified Cache IAR/DAR/OPC: Y/Y/IY

* Event Code: Oxdd, Max. In¢/Cyc: 1

« Definition: Counts the number of L3 cache read accesses.

Table 11-93. Unit Masks for L3_READS

Extension PM[%L:T%?SK Description

— b0000 (* nothing will be counted *)

DINST_FETCH.HIT b0001 L3 Demand Instruction Fetch Hits

DINST_FETCH.MISS b0010 L3 Demand Instruction Fetch Misses

DINST_FETCH.ALL b0011 L3 Demand Instruction References

— b0100 (* nothing will be counted *)

INST_FETCH.HIT b0101 L3 Instruction Fetch and Prefetch Hits

INST_FETCH.MISS b0110 L3 Instruction Fetch and Prefetch Misses

INST_FETCH.ALL b0111 L3 Instruction Fetch and Prefetch References

— b1000 (* nothing will be counted *)

DATA_READ.HIT b1001 L3 Load Hits (excludes reads for ownership used to satisfy
stores)

DATA_READ.MISS b1010 L3 Load Misses (excludes reads for ownership used to
satisfy stores)

DATA_READ.ALL b1011 L3 Load References (excludes reads for ownership used to
satisfy stores)

— b1100 (* nothing will be counted *)

ALL.HIT b1101 L3 Read Hits

ALL.MISS b1110 L3 Read Misses

ALL.ALL b1111 L3 Read References

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitor Events

L3 _REFERENCES

« Title: L3 References

« Category: L3 Unified Cache IAR/DAR/OPC: Y/YIY
* Event Code: Oxdb, Max. In¢/Cyec: 1

« Definition: Countsthe number of L3 accesses. Includes instruction fetch/prefetch, data
read/write and L2 write backs.

L3_WRITES

* Title: L3 Writes

« Category: L3 Unified Cache IAR/DAR/OPC: Y/YIY

* Event Code: Oxde, Max. Inc/Cye: 1

« Definition: Counts the number of L3 cache write accesses.

Table 11-94. Unit Masks for L3_WRITES

Extension PM[(ljéL:J{?S?Sk Description

— b00xx (* nothing will be counted *)

— b0100 (* nothing will be counted *)

DATA_WRITE.HIT b0101 L3 Store Hits (excludes L2 write backs, includes L3 read for
ownership requests that satisfy stores)

DATA_WRITE.MISS b0110 L3 Store Misses (excludes L2 write backs, includes L3 read
for ownership requests that satisfy stores)

DATA_WRITE.ALL b0111 L3 Store References (excludes L2 write backs, includes L3
read for ownership requests that satisfy stores)

— b1000 (* nothing will be counted *)

L2_WB.HIT b1001 L2 Write Back Hits

L2_WB.MISS b1010 L2 Write Back Misses

L2_WB.ALL b1011 L2 Write Back References

— b1100 (* nothing will be counted *)

ALL.HIT b1101 L3 Write Hits

ALL.MISS b1110 L3 Write Misses

ALL.ALL b1111 L3 Write References

LOADS_RETIRED

* Title: Retired Loads
« Category: Instruction Execution/L1D Cache Set 31AR/DAR/OPC: Y/YIY
* Event Code: Oxcd, Max. In¢/Cye: 4

« Definition: Counts the number of retired loads, excluding predicated off loads. The count
includes integer, floating-point, RSE, semaphores, VHPT, uncacheabl e loads and check loads
(I d. ¢) which missed in ALAT and L1D (because thisis the only time this |ooks like any other
load).

* NOTE: Thisisarestricted set 3 L1D Cache event. In order to measure this event, one of the
eventsin this set must be measured by PMD5.

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 185

Performance Monitor Events Inte|®

MEM_READ_CURRENT

e Title: Current Mem Read Transactions On Bus

« Category: Frontside Bus |AR/DAR/OPC: N/N/N

* Event Code: 0x89, Max. Inc¢/Cyec: 1

« Definition: Counts the number of current memory read transactions (BRC) on the bus.

Table 11-95. Unit Masks for MEM_READ_CURRENT

Extension P'v'[(l:élf%?Sk Description
— bxx00 (* nothing will be counted *)
10 bxx01 Non-CPU priority agents
— bxx10 (* illegal selection *)
ANY bxx11 CPU or non-CPU (all transactions).

MISALIGNED_LOADS_RETIRED

« Title: Retired Misaligned Load I nstructions
« Category: Instruction Execution/L1D Cache Set 3|AR/DAR/OPC: Y/Y/Y
* Event Code: OxceMax. Inc¢/Cye: 4

« Definition: Counts the number of retired misaligned load instructions, excluding those that were
predicated off. It includes integer, floating-point loads, semaphores and check loads (I d. ¢)
which missed in ALAT and L1D (the only time thislooks like any other load).

* NOTE: If amisaligned load takes a trap then it will not be counted here since only retired loads
are counted. PSR. ac = 0 and not crossing the 0-7 or 8-15 byte boundary is the only timeit will
not trap. Thisisarestricted set 3 L1D Cache event. In order to measure this event, one of the
eventsin this set must be measured by PMD5.

MISALIGNED_STORES_RETIRED

« Title: Retired Misaligned Store I nstructions
« Category: Instruction Execution/L1D Cache Set 4 |AR/DAR/OPC: Y/YIY
« Event Code: 0xd2, Max. In¢/Cyc: 2

« Definition: Countsthe number of retired misaligned store instructions, excluding those that were
predicated off. It includesinteger, floating-point, semaphores and uncacheabl e stores. Predicated
off operations are not counted.

* NOTE: If amisaligned storetakesatrap thenit will not be counted here since only retired stores
are counted. PSR. ac = 0and not crossing the 0-15 byte boundary of aWB pageisthe only time
it will not trap. Thisisarestricted set 4 L1D Cache event. In order to measure this event, one of
the eventsin this set must be measured by PMD5. Only ports 2 and 3 are counted.

NOPS_RETIRED

« Title: Retired NOP Instructions
 Category: Instruction Execution |AR/DAR/OPC: YN/Y
« Event Code: 0x50, Max. In¢/Cyc: 6

« Definition: Provides information on number of retired nop. i , nop. m and nop. b,nop. f
instructions, excluding nop instructions that were predicated off.

186 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitor Events

PREDICATE_SQUASHED_RETIRED

« Title: Instructions Squashed Due to Predicate Off
« Category: Instruction Execution | AR/DAR/OPC: Y/N/Y
* Event Code: 0x51, Max. In¢/Cyc: 6

* Definition: Providesinformation on number of instructions squashed due to a false qualifying
predicate. Includes all non-B-syllable instructions which reached retirement with afase
predicate.

RSE_CURRENT REGS 2 TO 0

« Title: Current RSE Registers (Bits 2:0)
* Category: RSE Events IAR/DAR/OPC: N/N/N
* Event Code: 0x2b, Max. In¢/Cyc: 7

« Definition: Countsthe number of current RSE registers before an RSE_ EVENT_RETIRED
occurred. The Itanium 2 processor can have atotal of 96 per cycle. Thelowest 3 bitsare stored in
this counter (bits 2:0).

RSE_CURRENT_REGS_5_TO_3

« Title: Current RSE Registers (Bits 5:3)
 Category: RSE Events |AR/DAR/OPC: N/N/N
« Event Code: 0x2aMax. Inc/Cyc: 7

* Definition: Counts the number of current RSE registers before an RSE_ EVENT_RETIRED
occurred. The Itanium 2 processor can have atotal of 96 per cycle. The middle 3 bits are stored
in this counter (bits 5:3).

RSE_CURRENT_REGS_6

* Title: Current RSE Registers (Bit 6)
* Category: RSE Events IAR/DAR/OPC: N/N/N
* Event Code: 0x26, Max. Inc¢/Cyc: 1

* Definition: Counts the number of current RSE registers before an RSE_EVENT_RETIRED
occurred. The Itanium 2 processor can have atotal of 96 per cycle. The highest 1 bit isstored in
this counter (bit 6).

RSE_DIRTY_REGS 2 TO 0

« Title: Dirty RSE Registers (Bits 2:0)

« Category: RSE Events IAR/DAR/OPC: N/N/N
* Event Code: 0x29, Max. In¢/Cye: 7

« Definition: Counts the number of dirty RSE registers before an RSE_ EVENT_RETIRED
occurred. The Itanium 2 processor can have atotal of 96 per cycle. Thelowest 3 bitsare stored in
this counter (bits 2:0).

RSE_DIRTY_REGS 5 TO_3

« Title: Dirty RSE Registers (Bits 5:3)

* Category: RSE Events IAR/DAR/OPC: N/N/N
« Event Code: 0x28, Max. Inc/Cye: 7

« Definition: Counts the number of dirty RSE registers before an RSE_EVENT_RETIRED
occurred. The Itanium 2 processor can have atotal of 96 per cycle. The middle 3 bits are stored
in this counter (bits 5:3).

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 187

Performance Monitor Events Inte|®

188

RSE_DIRTY_REGS_6

« Title: Dirty RSE Registers (Bit 6)

« Category: RSE Events | AR/DAR/OPC: N/N/N
* Event Code: 0x24, Max. Inc¢/Cyec: 1

* Definition: Counts the number of dirty RSE registers before an RSE_EVENT_RETIRED
occurred. The Itanium 2 processor can have atotal of 96 per cycle. The highest one bit is stored
in this counter (bit 6).

RSE_EVENT_RETIRED

« Title: Retired RSE Operations
 Category: RSE Events |AR/DAR/OPC: N/N/N
* Event Code: 0x32, Max. Inc¢/Cye: 1

« Definition: Counts the number of retired RSE operations (i.e., al | oc,br.ret,br.cal |,
loadrs, flushrs, cover, and rfi - s;e NOTE). Thisevent isan indication of when instructions which
affect the RSE are retired (which may or may not cause activity to memory subsystem).

« NOTE: Theonly time 2 RSE events can be retired in 1 clock are flushrs/call or flushrg/return
bundles. These corner cases are counted as 1 event instead of 2 since this event is used to
calculate the average number of current/dirty/invalid registers. rfi instructions will be included
only if ifsvalid=1; which can be set either by using the cover instruction prior to the rfi, or
explicitly setting the valid bit.

RSE_REFERENCES_RETIRED

* Title: RSE Accesses
* Category: RSE Events IAR/DAR/OPC: Y/YIY
« Event Code: 0x20, Max. In¢/Cyc: 2

« Definition: Counts the number of retired RSE loads and stores (Every time RSE.bof reaches
RSE.storereg; otherwise known as mandatory eventsincluding rnat fills & spills). Thisevent is
an indication of when RSE causes activity to memory subsystem.

* NOTE: Privilegelevel for DBR tagsis determined by the RSC register; but privilege level for
IBR tagsis determined by PSR.cpl. RSE traffic which is caused by rfi will be tagged by the
target of ther fi .

Table 11-96. Unit Masks for RSE_REFERENCES_RETIRED

Extension PM[?élfzs?Sk Description
— bxx00 (* nothing will be counted *)
LOAD bxx01 Only RSE loads will be counted.
STORE bxx10 Only RSE stores will be counted.
ALL bxx11 Both RSE loads and stores will be counted.

SERIALIZATION_EVENTS

 Title: Number of srlz.i Instructions
« Category: System Events IAR/DAR/OPC: N/N/N
* Event Code: 0x53, Max. Inc¢/Cye: 1

« Definition: Counts the number of srlz.i instructions (because it causes a microtrap and an
xpnflush fires).

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

Performance Monitor Events

STORES_RETIRED

« Title: Retired Stores
« Category: Instruction Execution/L1D Cache Set 4 IAR/DAR/OPC: Y/YIY
* Event Code: 0xdl, Max. In¢/Cyc: 2

« Definition: Counts the number of retired stores, excluding those that were predicated off. The
count includes integer, floating-point, ssmaphore, RSE, VHPT, uncacheabl e stores.

* NOTE: Thisisarestricted set 4 L1D Cache event. In order to measure this event, one of the
eventsin this set must be measured by PMD5. Only ports 2 and 3 are counted.

SYLL_NOT_DISPERSED

« Title: Syllables Not Dispersed
« Category: Instruction Dispersal Events |AR/DAR/OPC: Y/N/N
« Event Code: 0Ox4e, Max. In¢/Cye: 5

« Definition: Counts the number of syllables not dispersed dueto all reasons except stalls. A unit
mask can break this down to 1 of 4 possible components.

Table 11-97. Unit Masks for SYLL_NOT_DISPERSED

. PMC.umask _—
Extension [19:16] Description

EXPL bxxx1 Count syllables not dispersed due to explicit stop bits. These
consist of programmer specified architected S-bit and
templates 1 and 5. Dispersal takes a 6-syllable (3-syllable)
hit for every template 1/5 in bundle 0(1). Dispersal takes a
3-syllable (0 syllable) hit for every S-bit in bundle 0(1)

IMPL bxx1x Count syllables not dispersed due to implicit stop bits. These
consist of all of the non-architected stop bits (asymmetry,
oversubscription, implicit). Dispersal takes a 6-syllable
(3-syllable) hit for every implicit stop bits in bundle 0(1).

FE bx1xx Count syllables not dispersed due to front-end not providing
valid bundles or providing valid illegal templates. Dispersal
takes a 3-syllable hit for every invalid bundle or valid illegal
template from front-end. Bundle 1 with front-end fault, is
counted here (3-syllable hit).

MLI b1xxx Count syllables not dispersed due to MLI bundle and
resteers to non-0 syllable. Dispersal takes a 1 syllable hit for
each MLI bundle. Dispersal could take 0-2 syllable hit de
pending on which syllable we re-steer to. Bundle 1 with
front-end fault which is split, is counted here (0-2 syllable
hit).

ALL b1111 Count all syllables not dispersed. NOTE: Any combination
b0000-b1111 is valid.

SYLL_OVERCOUNT

« Title: Number of Overcounted Syllables.

« Category: Instruction Dispersal Events |AR/DAR/OPC: Y/N/N
« Event Code: O0x4f, Max. Inc¢/Cyc: 2

« Definition: Counts the number of syllables which were overcounted in explicit and/or implicit
stop bits portion of SYLL_NOT_DISPERSED.

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 189

Performance Monitor Events Inte|®

190

Table 11-98. Unit Masks for SYLL_OVERCOUNT

Extension P'\/I[(lzélffgSk Description
— bxx00 (* nothing will be counted *)
EXPL bxx01 Only syllables overcounted in the explicit bucket
IMPL bxx10 Only syllables overcounted in the implicit bucket
ALL bxx11 Syllables overcounted in implicit & explicit bucket

UC_LOADS_RETIRED

« Title: Retired Uncacheable L oads
« Category: Instruction Execution/L1D Cache Set 3IAR/DAR/OPC: Y/Y/IY
* Event Code: OxcfMax. In¢/Cye: 4

« Definition: Counts the number of retired uncacheable |oad instructions, excluding those that
were predicated off. It includes integer, floating-point, semaphores, RSE, and VHPT |oads, and
check loads (I d. ¢) which missed in ALAT and L1D (the only time thislooks like any other
load).

* NOTE: Thisisarestricted set 3 L1D Cache event. In order to measure this event, one of the
events in this set must be measured by PMD5.

UC_STORES_RETIRED

« Title: Retired Uncacheable Stores
 Category: Instruction Execution/L1D Cache Set 4 IAR/DAR/OPC: Y/Y/IY
« Event Code: 0xdO, Max. In¢/Cyc: 2

« Definition: Counts the number of retired uncacheable store instructions. It includes integer,
floating-point, RSE, and uncacheable stores. (only on ports 2 and 3).

* NOTE: Thisisarestricted set 4 L1D Cache event. In order to measure this event, one of the
eventsin this set must be measured by PMD5.

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

intgl.
Model-Specific and
Optional Features 12

This chapter describes model-specific features for the Itanium 2 processor.

12.1 Memory Attributes

Uncacheable Exported (UCE) is an optional feature of the Itanium architecture. The Itanium 2
processor supports WB, UC, and WC memory attributes. The UCE memory attributeis also
supported, except with semaphore operations. Semaphore operations to a UCE page will fault.
Otherwise, a UCE memory attribute can be used, but will behave asa UC attribute.

For moreinformation regarding UCE behavior, pleaserefer to Section 4.4, “Memory Attributes’ of
the Intel® Itanium® Architecture Software Devel oper’s Manual, Volume 2: System Architecture.

12.2 Purge Behavior of ptc.e

Purge behavior is model-specific. The Itanium 2 processor supports the following page sizes for
purges or inserts:

* 4K, 8K, 16K, 64K, 256K, 1M, 4M, 16M, 64M, 256M, 1G, and 4G.

A pt c. e will cause al trandlation caches of all data and instruction TLB levelsto be flushedin a
single iteration.

12.3 Data Debug Break

The architecture gives freedom with the data debug break behavior. The Itanium 2 processor takes
adata debug break fault on any memory access that crosses a 16 byte boundary when data
breakpoints are enabled. This break occurs without regard to any addresses currently in the data
debug break registers.

12.4 CPUID Values

On the Itanium 2 processor, the CPUID register contains the following processor identification
information:

¢ CPUID registers 0 and 1 specify avendor name, in ASCI|, for the processor implementation.
* CPUID register 2 isan ignored register (reads from this register return zero).

¢ CPUID register 3 contains several fields indicating version information related to the
processor implementation. Table 12-1 and Table 12-2 specify the definitions of each field. For
revision information, please see the Itanium 2 processor specification.

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 191

Model-Specific and Optional Features Inte|®

* CPUID register 4 provides general application-level information about processor features. As
shownin Table 12-3, it isa set of flag bitsused to indicate if agiven featureis supported in the
processor model.

Table 12-1. Itanium® 2 Processor CPUID Register 3 Values

192

Bit Field Value Description
7:0 0x04 Number of supported CPUID registers
15:8 — Processor revision

23:16 — Processor model
31:24 — Processor family
39:32 0x00 Architectural revision
63:40 0x00 Reserved

Table 12-2. Itanium® 2 Processor Family and Model Values

Family Model Description
0x07 0x00 Itanium® Processor
Oox1f 0x00 Itanium 2 Processor (up to 3MB L3 cache
Ooxaf 0x01 Itanium 2 Processor (up to 6MB L3 cache)
Ooxaf 0x02 Itanium 2 Processor (up to 9MB L3 cache)

Table 12-3. Itanium® 2 Processor CPUID Register 4 Values

Field Bits Description

Ib 0 Indicates brl instruction is implemented; OS does not need to
emulate it.

sd 1 Processor implements spontaneous deferral (see Section 5.5.5,
“Deferral of Speculative Load Faults” of the Intel® Itanium®
Architecture Software Developer’s Manual, Volume 2: System
Architecture.

ao 2 Processor implements 16-byte atomic operations (see “ld—Load”,
“st—Store”, and “cmpxchg—Compare and Exchange” instructions
in Volume 3: Instruction Set Reference of the Intel® Itanium®
Architecture Software Developer’s Manual.

rv 63:3 Reserved.

Table 12-4 provides information on how to decode return values of the |A-32 CPUID instruction

for the Itanium 2 processor’s caches.

Table 12-4. Encoding of 1A-32 CPUID Cache Return Values

Return Value Cache Description
0x67 L1D: 16KB 4-way, 64B line size
ox77 L1l: 16KB 4-way, 64B line size
Ox7e L2: 256KB 8-way, 128B line size
0x8d L3: 3MB 12-way, 128B line size

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

intel.

itanium® 2 Processor Pipeline A

A.l

The core pipelineis eight stages deep, with some ather micropipelines working asynchronously to
the core pipeline.

Core Pipeline

The core pipeline is separated into afront-end (FE) and a back-end (BE). The FE and BE are
separated by an instruction buffer (1B).

Figure A-1. Core Pipeline of the Itanium® 2 Processor

A.2

A21

IPG ROT | g p- EXP REN | REG | EXE | DET | WRB

Front-End (FE) Back-End (BE)

Instruction Buffer (I1B)

The core pipeline consists of eight stages:
IPG: Instruction pointer generation
ROT: instruction rotation
EXP: Instruction template decode, expand, and disperse
REN: Rename (for register stack and rotating registers) and decode
REG: Register file read
EXE: ALU execution
DET: Last stage for exception detection
WRB: Write back

Pipeline Stages

IPG STAGE

The Instruction Pointer Generation (IPG) stage delivers an instruction pointer tothe L1l. Thevalue
of the instruction pointer may come from one of several places: corrected target or fall through
address (to correct branch misprediction), the address of exception handler in case of exceptions,
static and dynamically predicted addresses, or the next sequential address. During this stage, the
L1, 1SB, and L1 ITLB are accessed.

The L1l to IPG interface aways aligns the bundle-pair on even bundle (i.e., 32 byte) address
boundaries. A branch that targets a bundle on an odd boundary bundle will fetch the bundle-pair
from the lower even-bundle address. As a consequence, only 1 useful bundle (instead of the
maximum of two) will be delivered to IPG at such a branch target.

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 193

ltanium® 2 Processor Pipeline Inte|®

A.2.2 ROT STAGE

The Rotate (ROT) stage reads out the four ways of the instruction cache array and the I1SB dataand
selects the correct way. Fetched instructions are rotated in order to align them for usein the EXP
stage. Thisisnecessary since the instruction disperse and decode unit in the EXP stage will look at
two bundles to decide whether to issue zero, one, or two bundles from the rotation buffer.
Therefore, thereis a need to properly align the instructions in the rotation buffer since the decode
unit always assumes that bundle O contains the leading instruction.

A.2.3 EXP STAGE

The Expand (EXP) stage decodes instruction templates and disperses up to 6 instructions to
functional units. Due to resource constraints (such constraints are discussed in the next section),
some fetched bundles may not get fully dispatched. These fetched but not dispatched bundles are
“pushed back” into the IB. The number of bundles consumed by the EXP stage is fed back to the
rotate buffer to determine which bundles to be presented to EXP stage the next cycle.

A.2.4 REN STAGE

The Rename (REN) stage trandates virtual registers into physical registers by adding their values
to the stack frame base and the rotating register base. Instruction decoding also occurs at this stage.

A.2.5 REG Stage

The Register Read (REG) stage delivers operandsto all execution units. The dataread isfed into a
set of bypass muxes. There are two levels of bypass muxes. Data read from the register files and
results from the DET and WRB stage are sent to the early bypass. Data generated from the current
EXE stage and load data is fed into the late bypass muxes. Register and dynamic resource hazards
aredetected and issue is stalled if necessary. RSE |oads and stores are injected in the pipelinein the
REG stage.

A.2.6 EXE Stage

The Execution (EXE) stageisthe ALU execution stage. Single cycle latency operations feed results
to the late bypass muxes by the end of this stage, for use by subsequent integer ALU operations.

A.2.7 DET Stage

The Detection (DET) stageisthe last stage where exception detection can occur. By the end of the
DET stage, al potential exceptions are known in time to kill the write back of architectural state.
Branch validation for incorrect branch direction is also handled at this stage. If abranchis
mispredicted, (either because the prediction of predicate iswrong or the predicted target addressis
wrong), the actua resteer of the next |P address occurs at this stage. So abranch misprediction can
cause six cycles of pipeline bubbles.

A.2.8 WRB Stage

The Write Back (WRB) stage writes results back to register files. Once an instruction compl etes the
WRB stage, it is guaranteed to update the architectural processor-state.

194 Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

A.4

A4l

Itanium® 2 Processor Pipeline

Instruction Buffer (IB)

The main pipeline is decoupled between the ROT and EXP pipeline stages. The first two stages
belong to the Front-End (FE), and the remaining six stages are the Back-End (BE). The Instruction
Buffer (1B), a decoupling queue, links together the FE and the BE. This IB can hold 4 bundle-pairs
(24 ingtructions). With the I B, the FE and the BE can work independently. Hence, instruction cache
miss delays and taken branch penalties may be hidden by execution stalls incurred in the BE.

Micro-Pipelines

FPU Micro-Pipeline

The FPU pipelineis four stages deep (FP1 to FP4), with write back performed in the fifth stage
(FWB). The FPU isfully pipelined. Inthe FP1 stage, an early examination of the numeric operands
is performed to determine if the instruction can be numeric exception free.

Table A-1. FPU Pipeline

A.4.2

Core Pipeline | REG | EXE |DET |WRB
FPU Pipeline FP1 |FP2 |FP3 |FP4 |FWB

L1D Micro-Pipeline

Inthe L1M stage, the L1 data, tag and the L1 DTLB are accessed in parallel and deliver datato the
execution units.

Table A-2. L1D Micro-Pipeline

A.4.3

Core Pipeline REN | REG | EXE DET | WRB
L1D Pipeline L1l L1M L1D WRB

L2 Micro-Pipeline

Thefirst stageisused for L2 TLB accesses. The L2A stage arbitrates for the data array accesses.
Demand fetches for instructions have the highest priority, followed by loads and prefetches. Data
array access occursin the L2M stage. The L2D stage is for way selection, and data delivery. The
L2C stageis used for correction of ECC errors and for error detection.

Table A-3. L2 Micro-Pipeline

Core Pipeline REG |EXE |DET |WRB
L2 Pipeline L2L L2A L2Mm L2D L2C L2w

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization 195

ltanium® 2 Processor Pipeline Inte|®

196

Intel® Itanium® 2 Processor Reference Manual For Software Development and Optimization

	About this Manual 1
	1.1 Overview
	1.2 Contents
	1.3 Terminology
	1.4 Related Documentation

	Itanium® 2 Processor Enhancements 2
	2.1 Implemented Instructions
	2.2 Functional Units and Issue Rules
	2.3 Operation Latencies
	2.4 Data Operations
	2.4.1 Data Speculation and the ALAT
	2.4.2 Data Alignment
	2.4.3 Control Speculation

	2.5 Memory Hierarchy
	2.6 Branch Prediction
	2.7 Instruction Prefetching
	2.8 IA-32 Execution Layer

	Functional Units and Issue Rules 3
	3.1 Execution Model
	3.2 Number and Types of Functional Units
	3.3 Instruction Slot to Functional Unit Mapping
	3.3.1 Execution Width
	3.3.2 Dispersal Rules
	3.3.3 Split Issue and Bundle Types

	Latencies and Bypasses 4
	4.1 Control and Data Speculation Penalties
	4.2 Branch Related Latencies and Penalties
	4.3 Latencies for OS Related Instructions

	Data Operations 5
	5.1 Data Speculation and the ALAT
	5.1.1 Allocation/Replacement Policy
	5.1.2 Rules and Special Cases

	5.2 Speculative and Predicated Loads/Stores
	5.3 Floating-Point Loads
	5.4 Data Cache Prefetching and Load Hints
	5.4.1 lfetch Implementation
	5.4.2 Load Temporal Locality Completers

	5.5 Data Alignment
	5.6 Write Coalescing
	5.6.1 WC Buffer Eviction Conditions
	5.6.2 WC Buffer Flushing Behavior

	5.7 Register Stack Engine
	5.8 FC Instructions

	Memory Subsystem 6
	6.1 Translation Lookaside Buffers
	6.1.1 Instruction TLBs
	6.1.2 Data TLBs

	6.2 Hardware Page Walker
	6.3 Cache Summary
	6.4 First-Level Instruction Cache
	6.5 Instruction Stream Buffer
	6.6 First-Level Data Cache
	6.6.1 L1D Loads
	6.6.2 L1D Stores
	6.6.3 L1D Load and Store Considerations
	6.6.4 L1D Misses

	6.7 Second-Level Unified Cache
	6.7.1 L1D Requests to L2
	6.7.2 L2 OzQ
	6.7.3 L2 Cancels
	6.7.4 L2 Recirculate
	6.7.5 Memory Ordering
	6.7.6 L2 Instruction Prefetch FIFO
	6.7.7 L2 Load and Store Considerations

	6.8 System Bus/L3 Interactions
	6.9 Third-Level Unified Cache
	6.10 System Bus

	Branch Instructions and Branch Prediction 7
	7.1 Branch Prediction Hints
	7.2 Indirect Branches
	7.3 Perfect Loop Prediction

	Instruction Prefetching 8
	8.1 Streaming Prefetching
	8.2 Hint Prefetching
	8.3 Prefetch Flush Hints
	8.4 The brl Instruction

	Optimizing for the Itanium® 2 Processor 9
	9.1 Hints for Scheduling
	9.2 Optimal Use of lfetch
	9.3 Data Streaming
	9.3.1 Floating-Point Data Streams
	9.3.2 Integer Data Streams
	9.3.3 Store Data Streams

	9.4 Control and Data Speculation
	9.5 Known L2 Miss Bundle Placement
	9.6 Avoid Known L2 Cancel and Recirculate Conditions
	9.7 Instruction Bundling
	9.8 Branches
	9.8.1 Single Cycle Branches
	9.8.2 Perfect Loop Prediction
	9.8.3 Branch Targets

	Performance Monitoring 10
	10.1 Introduction
	10.2 Performance Monitor Programming Models
	10.2.1 Workload Characterization
	10.2.2 Profiling
	10.2.3 Event Qualification
	10.2.4 References

	10.3 Performance Monitor State
	10.3.1 Performance Monitor Control and Accessibility
	10.3.2 Performance Counter Registers
	10.3.3 Performance Monitor Overflow Status Registers (PMC0,1,2,3)
	10.3.4 Opcode Match Check (PMC8,9,15)
	10.3.5 Instruction Address Range Matching
	10.3.6 Data Address Range Matching (PMC13)
	10.3.7 Event Address Registers (PMC10,11/PMD0,1,2,3,17)
	10.3.8 Data EAR (PMC11, PMD2,3,17)
	10.3.9 Branch Trace Buffer
	10.3.10 Interrupts
	10.3.11 Processor Reset, PAL Calls, and Low Power State

	Performance Monitor Events 11
	11.1 Introduction
	11.2 Categorization of Events
	11.3 Basic Events
	11.4 Instruction Dispersal Events
	11.5 Instruction Execution Events
	11.6 Stall Events
	11.7 Branch Events
	11.8 Memory Hierarchy
	11.8.1 L1 Instruction Cache and Prefetch Events
	11.8.2 L1 Data Cache Events
	11.8.3 L2 Unified Cache Events
	11.8.4 L3 Cache Events

	11.9 System Events
	11.10 TLB Events
	11.11 System Bus Events
	11.12 RSE Events
	11.13 Performance Monitors Ordered by Event Code
	11.14 Performance Monitor Event List

	Model-Specific and Optional Features 12
	12.1 Memory Attributes
	12.2 Purge Behavior of ptc.e
	12.3 Data Debug Break
	12.4 CPUID Values

	Itanium®�2 Processor Pipeline A
	A.1 Core Pipeline
	A.2 Pipeline Stages
	A.2.1 IPG STAGE
	A.2.2 ROT STAGE
	A.2.3 EXP STAGE
	A.2.4 REN STAGE
	A.2.5 REG Stage
	A.2.6 EXE Stage
	A.2.7 DET Stage
	A.2.8 WRB Stage

	A.3 Instruction Buffer (IB)
	A.4 Micro-Pipelines
	A.4.1 FPU Micro-Pipeline
	A.4.2 L1D Micro-Pipeline
	A.4.3 L2 Micro-Pipeline

