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CHAPTER 1
COMPONENT INTRODUCTION

The Pentium® Pro microprocessor is the next generation in the Intel386™, Intel486™, and Pen-
tium family of processors. The Pentium Pro processor implements a Dynamic Execution micro-
architecture — a unique combination of multiple branch prediction, data flow analysis, and
speculative execution while maintaining binary compatibility with the 8086/88, 80286,
Intel386, Intel486, and Pentium processors. The Pentium Pro processor integrates the second
level cache, the APIC, and the memory bus controller found in previous Intel processor families
into a single component, as shown in Figure 1-1.

CT e § .......................... .E
Intel486 ) i i Pentium Pro ;
4—p| or Pentium® [€¢—Pp Pentium Pro ! Processor |
Processor Processor | < > i L2
{ Cache i
Bus A X Cache !
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| Cache A .Y i Pentium Pro Processor
Controller R { APIC |{Bus Interface Unit
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I I I !
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Figure 1-1. The Pentium® Pro Processor Integrating the CPU, L2 Cache, APIC and Bus
Controller

A significant new feature of the Pentium Pro processor, from a system perspective, is the built-
in direct multi-processing support. In order to achieve multi-processing for up to four processors
and maintain the memory and I/O bandwidth to support them, new system designs are needed
which consider the additional power requirements and signal integrity issues of supporting up
to eight loads on a high speed bus.

The Pentium Pro processor may be upgraded by a future OverDrive® processor and matching
voltage regulator module described in Chapter 17, OverDrive® Processor Socket Specification.

Since increasing clock frequencies and silicon density can complicate system designs, the Pen-
tium Pro processor integrates several system components which alleviate some of the previous
system requirements. The second level cache, cache controller, and Advanced Programmable
Interrupt Controller (APIC) are some of the components that existed in previous Intel processor
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family systems which are integrated into this single component. This integration results in the
Pentium Pro processor bus more closely resembling a symmetric multi-processing (SMP) sys-
temn bus rather than a previous generation processor-to-cache bus. This added level of integration
and improved performance results in higher power consumption and a new bus technology. This
means it is more important than ever to ensure adherence to the specifications contained in this
document.

The Pentium Pro processor may contain design defects or errors known as errata. Current char-
acterized errata are available upon request.

1.1. BUS FEATURES

The design of the external Pentium Pro processor bus enables it to be “multiprocessor ready.”
Bus arbitration and control, cache coherency circuitry, an MP interrupt controller and other sys-
tem-level functions are integrated into the bus interface.

To relax timing constraints, the Pentium Pro processor implements a synchronous, latched bus
protocol to enable a full clock cycle for signal transmission and a full clock cycle for signal in-
terpretation and generation. This latched protocol simplifies interconnect timing requirements
and supports higher frequency system designs using inexpensive ASIC interconnect technology.
The Pentium Pro processor bus uses low-voltage-swing GTL+ I/O buffers, making
high-frequency signal communication easier.

All output pins are actually implemented in the Pentium Pro processor as I/O buffers. This buffer
design complies with IEEE 1149.1 Boundary Scan Specification, allowing all pins to be sam-
pled and tested. An output only buffer is used only for TDO, which is not sampled in the bound-
ary scan chain. A pin is an output pin when it is not an input for normal operation or FRC.

Most of the Pentium Pro processor cache protocol complexity is handled by the processor. A
non-caching I/O bridge on the Pentium Pro processor bus does not need to recognize the cache
protocol and does not need snoop logic. The I/O bridge can issue standard memory accesses on
the Pentium Pro processor bus, which are transparently snooped by all Pentium Pro processor
bus agents. If data is modified in a Pentium Pro processor cache, the processor transparently pro-
vides data on the bus, instead of the memory controller. This functionality eliminates the need
for a back-off capability that existing I/O bridges require to enable cache writeback cycles. The
memory controller must observe snoop response signals driven by the Pentium Pro processor
bus agents, absorb writeback data on a modified hit, and merge any write data.

The Pentium Pro processor integrates memory type range registers (MTRRs) to replace the ex-
ternal address decode logic used to decode cacheability attributes.

The Pentium Pro processor bus protocol enables a near linear increase in system performance
with an increase in the number of processors. The Pentium Pro processor interfaces to a multi-
processor system without any support logic. This “glueless” interface enables a desktop system
to be built with an upgrade socket for another Pentium Pro processor.

The external Pentium Pro processor bus and Pentium Pro processor use a ratio clock design that
provides modularity and an upgrade path. The processor internal clock frequency is an n/2 mul-
tiple of the bus clock frequency where n is an integer equal to or greater than 4 but only certain
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bus and processor frequency combinations are supported. Additional combinations are reserved
by this specification to provide future upgrade paths. See Section 9.2., “Clock Frequencies and
Ratios” for the bus and processor frequencies and combinations.

The ratio clock approach reduces the tight coupling between the processor clock and the external
bus clock. For a fixed system bus clock frequency, Pentium Pro processors introduced later with
higher processor clock frequencies can use the same support chip-set at the same bus frequency.
Aninvestment in a Pentium Pro processor chip-set is protected for a longer time and for a greater
range of processor frequencies. The ratio clock approach also preserves system modularity, al-
lowing the system electrical topology to determine the system bus clock frequency while pro-
cess technology can determine the processor clock frequency.

The Pentium Pro processor bus architecture provides a number of features to support high reli-
ability and high availability designs. Most of these additional features can be disabled, if neces-
sary. For example, the bus architecture allows the data bus to be unprotected or protected with
an error correcting code (ECC). Error detection and limited recovery are built into the bus
protocol.

A Pentium Pro processor bus can contain up to four Pentium Pro processors, and a combination
of four other loads consisting primarily of bus clusters, memory controllers, I/O bridges, and
custom attachments.

In a four-processor system, the data bus is the most critical resource. To account for this situa-
tion, the Pentium Pro processor bus implements several features to maximize available bus
bandwidth including pipelined transactions in which bus transactions in different phases over-
lap, an increase in transaction pipeline depth over previous generatlons, and support for defer-
ring a transaction for later completion .

The Pentium Pro processor bus architecture is therefore adaptable to various classes of systems.
In desktop multiprocessor systems, a subset of the bus features can be used. In server designs,
the Pentium Pro processor bus provides an entry into low-end multiprocessing offering linear
increases in performance as CPUs are added to scale performance upward allowing Pentium Pro
processor systems to be superior for applications that would otherwise indicate a downsized
solution.

1.2. BUS DESCRIPTION

The Pentium Pro processor bus is a demultiplexed bus with a 64-bit data path and a 36-bit
address path. This section provides more details on the bus features introduced in the preceding
section:

o [Ease of system design
e Efficient bus utilization
e Multiprocessor ready

e Dataintegrity
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1.2.1. System Design Aspects

The Pentium Pro processor bus clock and the Pentium Pro processor internal execution clock
run at different frequencies, related by a ratio. Section 9.2., “Clock Frequencies and Ratios” pro-
vides more information about bus frequency and processor frequency.

The Pentium Pro processor bus uses GTL+. The GTL+ low voltage swing reduces both power
consumption and electromagnetic interference (EMI). The low voltage swing GTL+ I/O buffers
also enable direct drive by ASICs and make high-frequency signal communication easier and
cheaper to implement.

The Pentium Pro processor bus is a synchronous, latched bus. The bus protocol latches all inputs
on the bus clock rising edge, which are used internally in the following cycle. The Pentium Pro
processor and other bus agents drive outputs on the bus clock rising edge. The bus protocol
therefore provides a full cycle for signal transmission and an agent also has a full clock period
to determine its output.

1.2.2. Efficient Bus Utilization

The Pentium Pro processor bus supports multiple outstanding bus transactions. The transaction
pipeline depth is limited to the smallest depth supported by any agent (processors, memory, or
1/0). The Pentium Pro processor bus can be configured at power-on to support a maximum of
eight outstanding bus transactions depending on the amount of buffering available in the system.
Each Pentium Pro processor is capable of issuing up to four outstanding transactions.

The Pentium Pro processor bus enables transactions with long latencies to be completed at a lat-
er time using separate deferred reply transactions. The same Pentium Pro processor bus agent or
other Pentium Pro processor bus agents can continue with subsequent reads and writes while a
slow agent is processing an outstanding request.

1.2.3. Multiprocessor Ready

The Pentium Pro processor bus enables multiple Pentium Pro processors to operate on one bus,
with no external support logic. The Pentium Pro processor requires no separate snoop generation
logic. The processor I/0O buffers can drive the Pentium Pro processor bus in an MP system.

The Pentium Pro processors and bus support a MESI cache protocol in the internal caches. The
cache protocol enables direct cache-to-cache line transfers with memory reflection.

The Pentium Pro processors and bus support fair, symmetric, round-robin bus arbitration that
minimizes overhead associated with bus ownership exchange. An I/O agent may generate a high
priority bus request.



Intel® COMPONENT INTRODUCTION

1.2.4. Data Integrity

The Pentium Pro processor bus provides parity signals for address, request, and response sig-
nals. The bus protocol supports retrying bus requests.

The Pentium Pro processor bus supports error correcting code (ECC) on the data bus and has
correction capability at the receiver.

The Pentium Pro processor supports functional redundancy checking (FRC), similar to that of
the Pentium processor. FRC support enables the Pentium Pro processor to be used in high data-
integrity, fault-tolerant applications. In addition, two Pentium Pro processors can be configured
at power-on as an FRC pair or a multiprocessor-ready pair.

1.3. SYSTEM OVERVIEW

Figure 1-2 illustrates the Pentium Pro processor system environment, containing multiple pro-
cessors (MP), memory, and I/O. This particular architectural view is not intended to imply any
implementation trade-offs.

Pentium Pro
Processor
Agent 3

Pentium Pro

Pentium Pro
Processor

Pentium® Pro

Processor
Agent 2

Processor
Agent 0

Agent 1

High Speed I/O
Interface

Memory
Interface

System Interface

Figure 1-2. Pentium® Pro Processor System Interface Block Diagram
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Up to four Pentium Pro processors can be gluelessly interconnected on the Pentium Pro proces-
sor bus. These agents are bus masters, capable of supporting all the features described in this
document. The interface to the remainder of the system is represented by the high-speed I/O in-
terface and memory interface blocks. The memory interface block represents a path to system
memory capable of supporting over 500 Mbytes/second data bandwidth. The high-speed I/O in-
terface block provides a fast path to system I/O. Various implementations of these two blocks
can provide different cost vs. performance trade-offs. For example, more than one memory in-
terface or high-speed I/O interface may be included.

An MP system containing more than four Pentium Pro processors can be created based on clus-
ters that each contain four processors. Such a system can use cluster controllers that connect
Pentium Pro processor buses to a global memory bus. The Pentium Pro processor bus provides
appropriate protocol support for building external caches and memory directory-based systems.

1.4. TERMINOLOGY CLARIFICATION

Some key definitions and concepts are introduced here to aid the understanding of this
document.

A #” symbol after a signal name refers to an active low signal. This means that a signal is in
the active state (based on the name of the signal) when driven low. For example, when FLUSH#
is low a flush has been requested. When NMI is high, a Non-maskable interrupt has occurred.
In the case of lines where the name does not imply an active state but describes part of a binary
sequence (such as address or data), the ‘#’ symbol implies that the signal is inverted. For
example, D[3:0] = ‘HLHL’ refers to a hex ‘A’, and D#[3:0] = ‘LHLH’ also refers to a hex
‘A’. (H= High logic level, L= Low logic level)

Pentium Pro processor bus agents issue transactions to transfer data and system information.
A bus agent is any device that connects to the processor bus including the Pentium Pro proces-
sors themselves.

This specification refers to several classifications of bus agents.

e Central Agent. Handles reset, hardware configuration and initialization, special transac-
tions, and centralized hardware error detection and handling.

o I/0 Agent. Interfaces to I/O devices using I/O port addresses. Can be a bus bridge to
another bus used for I/0 devices, such as a PCI bridge.

e Memory Agent. Provides access to main memory.
A particular bus agent can have one or more of several roles in a transaction.
e Requesting Agent. The agent that issues the transaction.

o Addressed Agent. The agent that is addressed by the transaction. Also called the Target
Agent. A memory or I/O transaction is addressed to the memory or I/O agent that
recognizes the specified memory or I/O address. A Deferred Reply transaction is addressed
to the agent that issued the original transaction. Special transactions are considered to be
issued to the central agent.
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e Snooping Agent. A caching bus agent that observes (“snoops”) bus transactions to
maintain cache coherency.

e Responding Agent. The agent that provides the response on the RS[2:0]# signals to the
transaction. Typically the addressed agent.

Each transaction has several phases that include some or all of the following phases.

e Arbitration Phase. No transactions can be issued until the bus agent owns the bus. A
transaction only needs to have this phase if the agent that wants to drive the transaction
doesn’t already own the bus. Note that there is a distinction between a symmetric bus
owner and the actual bus owner. The actual bus owner is the one and only bus agent that is
allowed to drive a transaction at that time. The symmetric bus owner is the bus owner
unless the priority agent owns the bus.

e Request Phase. This is the phase in which the transaction is actually issued to the bus. The
request agent drives ADS# and the address in this phase. All transactions must have this
phase.

e Error Phase. Any errors that occur during the Request Phase are reported in the Error
Phase. All transactions have this phase (1 clock).

e Snoop Phase. This is the phase in which cache coherency is enforced. All caching agents
(snoop agents) drive HIT# and HITM# to appropriate values in this phase. All memory
transactions have this phase.

e Response Phase. The response agent drives the transaction response during this phase.
The response agent is the target device addressed during the Request Phase unless a
transaction is deferred for later completion. All transactions have this phase.

e Data Phase. The response agent drives or accepts the transaction data, if there is any. Not
all transactions have this phase.

Other commonly used terms include:

A request initiated data transfer means that the request agent has write data to transfer. A re-
quest initiated data transfer has a request initiated TRDY# assertion.

A response initiated data transfer means that the response agent must provide the read data to
the request agent.

A snoop initiated data transfer means that there was a hit to a modified line during the snoop
phase, and the agent that asserted HITM# is going to drive the modified data to the bus. This is
also called an implicit writeback because every time HITM# is asserted, the addressed memory
agent knows that writeback data will follow. A snoop initiated data transfer has a snoop initiated
TRDY# assertion.

There is a DEFER# signal that is sampled during the Snoop Phase to determine if a transaction
can be guaranteed in-order completion at that time. If the DEFER# signal is asserted, only two
responses are allowed by the bus protocol during the Response Phase, the Deferred Response
or the Retry Response. If the Deferred Response is given, the response agent must later complete
the transaction with a Deferred Reply transaction.
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1.5. COMPATIBILITY NOTE

In this document, some register bits are Intel Reserved. When reserved bits are documented,
treat them as fully undefined. This is essential for software compatibility with future processors.
Follow the guidelines below:

1. Do not depend on the states of any undefined bits when testing the values of defined
register bits. Mask them out when testing.

2. Do not depend on the states of any undefined bits when storing them to memory or another
register.

3. Do not depend on the ability to retain information written into any undefined bits.

4. When loading registers, always load the undefined bits as zeros.
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CHAPTER 2
PENTIUM® PRO PROCESSOR
ARCHITECTURE OVERVIEW

The Pentium Pro processor has a decoupled, 12-stage, superpipelined implementation, trading
less work per pipestage for more stages. The Pentium Pro processor also has a pipestage time
33 percent less than the Pentium processor, which helps achieve a higer clock rate on any given
process.

The approach used by the Pentium Pro processor removes the constraint of linear instruction se-
quencing between the traditional “fetch” and “execute” phases, and opens up a wide instruction
window using an instruction pool. This approach allows the “execute” phase of the Pentium Pro
processor to have much more visibility into the program’s instruction stream so that better
scheduling may take place. It requires the instruction “fetch/decode” phase of the Pentium Pro
processor to be much more intelligent in terms of predicting program flow. Optimized schedul-
ing requires the fundamental “execute” phase to be replaced by decoupled “dispatch/execute”
and “retire” phases. This allows instructions to be started in any order but always be completed
in the original program order. The Pentium Pro processor is implemented as three independent
engines coupled with an instruction pool as shown in Figure 2-1.

Retire
Unit

Instruction
Pool

Figure 2-1. Three Engines Communicating Using an Instruction Pool
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2.1.  FULL CORE UTILIZATION

The three independent-engine approach was taken to more fully utilize the CPU core. Consider
the code fragment in Figure 2-2:

rl <= mem [r0] /* Instruction 1 */
r2 <= rl + r2 /* Instruction 2 */
r5 <= r5 + 1 /* Instruction 3 */

r6 <= r6 - r3 /* Instruction 4 */

Figure 2-2. A Typical Code Fragment

The first instruction in this example is a load of r1 that, at run time, causes a cache miss. A tra-
ditional CPU core must wait for its bus interface unit to read this data from main memory and
return it before moving on to instruction 2. This CPU stalls while waiting for this data and is thus
being under-utilized.

To avoid this memory latency problem, the Pentium Pro processor “looks-ahead” into its instruc-
tion pool at subsequent instructions and will do useful work rather than be stalled. In the exam-
ple in Figure 2-2, instruction 2 is not executable since it depends upon the result of instruction
1; however both instructions 3 and 4 are executable. The Pentium Pro processor executes in-
structions 3 and 4 out-of-order. The results of this out-of-order execution can not be committed
to permanent machine state (i.e., the programmer-visible registers) immediately since the orig-
inal program order must be maintained. The results are instead stored back in the instruction
pool awaiting in-order retirement. The core executes instructions depending upon their readiness
to execute, and not on their original program order, and is therefore a true dataflow engine. This
approach has the side effect that instructions are typically executed out-of-order.

The cache miss on instruction 1 will take many internal clocks, so the Pentium Pro processor
core continues to look ahead for other instructions that could be speculatively executed, and is
typically looking 20 to 30 instructions in front of the instruction pointer. Within this 20 to 30
instruction window there will be, on average, five branches that the fetch/decode unit must cor-
rectly predict if the dispatch/execute unit is to do useful work. The sparse register set of an Intel
Architecture (IA) processor will create many false dependencies on registers so the dispatch/ex-
ecute unit will rename the IA registers into a larger register set to enable additional forward
progress. The retire unit owns the programmer’s A register set and results are only committed
to permanent machine state in these registers when it removes completed instructions from the
pool in original program order.

Dynamic Execution technology can be summarized as optimally adjusting instruction execution
by predicting program flow, having the ability to speculatively execute instructions in any
order, and then analyzing the program’s dataflow graph to choose the best order to execute
the instructions.

2-2 I
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2.2. THE PENTIUM® PRO PROCESSOR PIPELINE

In order to get a closer look at how the Pentium Pro processor implements Dynamic Execution,
Figure 2-3 shows a block diagram including cache and memory interfaces. The “Units” shown
in Figure 2-3 represent stages of the Pentium Pro processor pipeline.

System Bus L2 Cache

Bus Interface Unit

L1 ICache L1 DCache

Instruction
Pool

Figure 2-3. The Three Core Engines Interface with Memory via Unified Caches
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The FETCH/DECODE unit: An in-order unit that takes as input the user program
instruction stream from the instruction cache, and decodes them into a series of micro-
operations (pops) that represent the dataflow of that instruction stream. The pre-fetch is
speculative.

The DISPATCH/EXECUTE unit: An out-of-order unit that accepts the dataflow stream,
schedules execution of the pops subject to data dependencies and resource availability and
temporarily stores the results of these speculative executions.

The RETIRE unit: An in-order unit that knows how and when to commit (“retire””) the
temporary, speculative results to permanent architectural state.

The BUS INTERFACE unit: A partially ordered unit responsible for connecting the three
internal units to the real world. The bus interface unit communicates directly with the L2
(second level) cache supporting up to four concurrent cache accesses. The bus interface
unit also controls a transaction bus, with MESI snooping protocol, to system memory.

2.2.1. The Fetch/Decode Unit

Figure 2-4 shows a more detailed view of the Fetch/Decode Unit.

+ From BIU
ICache |- Next_IP BIU - Bus Interface Unit
ID - Instruction Decoder
' + BTB - Branch Target Buffer
MIS - Microcode Instruction
> BTB Sequencer
RAT - Register Alias Table

ROB - ReOrder Buffer

ID

4 MIS
(x3)

| RAT To
—> —> Instruction

Allocate Pool (ROB)

Figure 2-4. Inside the Fetch/Decode Unit
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The ICache is a local instruction cache. The Next_IP unit provides the ICache index, based on
inputs from the Branch Target Buffer (BTB), trap/interrupt status, and branch-misprediction in-
dications from the integer execution section.

The ICache fetches the cache line corresponding to the index from the Next_IP, and the next line,
and presents 16 aligned bytes to the decoder. The prefetched bytes are rotated so that they are
justified for the instruction decoders (ID). The beginning and end of the IA instructions are
marked.

Three parallel decoders accept this stream of marked bytes, and proceed to find and decode the
IA instructions contained therein. The decoder converts the IA instructions into triadic pops (two
logical sources, one logical destination per pop). Most IA instructions are converted directly into
single pops, some instructions are decoded into one-to-four pops and the complex instructions
require microcode (the box labeled MIS in Figure 2-4). This microcode is just a set of prepro-
grammed sequences of normal pops. The pops are queued, and sent to the Register Alias Table
(RAT) unit, where the logical IA-based register references are converted into Pentium Pro pro-
cessor physical register references, and to the Allocator stage, which adds status information to
the pops and enters them into the instruction pool. The instruction pool is implemented as an
array of Content Addressable Memory called the ReOrder Buffer (ROB).

This is the end of the in-order pipe.

2.2.2. The Dispatch/Execute Unit

The dispatch unit selects pops from the instruction pool depending upon their status. If the status
indicates that a pop has all of its operands then the dispatch unit checks to see if the execution
resource needed by that pop is also available. If both are true, the Reservation Station removes
that pop and sends it to the resource where it is executed. The results of the pop are later returned
to the pool. There are five ports on the Reservation Station, and the multiple resources are
accessed as shown in Figure 2-5.

I 2-5
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RS RS - Reservation Station
R BU - Execution Unit
FEU - Hoating Point EU
POI‘tO:: IEU IEU - Integer EU
< JEU- Junp EU
Tofrom <= JEU AGU- Address Generation Unit
Instruction Port 1—3| IEU | ROB - ReOrder Buffer
Pool (ROB) <
Port 2—31 400 1 5o
R)I‘t3,4:: AUy Store
-

Figure 2-5. Inside the Dispatch/Execute Unit

The Pentium Pro processor can schedule at a peak rate of 5 pops per clock, one to each resource
port, but a sustained rate of 3 pops per clock is typical. The activity of this scheduling process is
the out-of-order process; pops are dispatched to the execution resources strictly according to
dataflow constraints and resource availability, without regard to the original ordering of the
program.

Note that the actual algorithm employed by this execution-scheduling process is vitally impor-
tant to performance. If only one pop per resource becomes data-ready per clock cycle, then there
is no choice. But if several are available, it must choose. The Pentium Pro processor uses a pseu-
do FIFO scheduling algorithm favoring back-to-back pops.

Note that many of the pops are branches. The Branch Target Buffer will correctly predict most
of these branches but it can’t correctly predict them all. Consider a BTB that is correctly predict-
ing the backward branch at the bottom of a loop; eventually that loop is going to terminate, and
when it does, that branch will be mispredicted. Branch pops are tagged (in the in-order pipeline)
with their fall-through address and the destination that was predicted for them. When the branch
executes, what the branch actually did is compared against what the prediction hardware said it
would do. If those coincide, then the branch eventually retires, and most of the speculatively ex-
ecuted work behind it in the instruction pool is good.

But if they do not coincide, then the Jump Execution Unit (JEU) changes the status of all of the
pops behind the branch to remove them from the instruction pool. In that case the proper branch
destination is provided to the BTB which restarts the whole pipeline from the new target address.
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2.2.3. The Retire Unit

Figure 2-6 shows a more detailed view of the Retire Unit.

¢ To/from DCache

— MIU

RS - Reservation Station
MIU - Memory Interface Unit
RRF - Retirement Register File

RRF

From To v
Instruction Pool

Figure 2-6. Inside the Retire Unit

The retire unit is also checking the status of pops in the instruction pool. It is looking for pops
that have executed and can be removed from the pool. Once removed, the original architectural
target of the pops is written as per the original IA instruction. The retirement unit must not only
notice which pops are complete, it must also re-impose the original program order on them. It
must also do this in the face of interrupts, traps, faults, breakpoints and mispredictions.

The retirement unit must first read the instruction pool to find the potential candidates for retire-
ment and determine which of these candidates are next in the original program order. Then it
writes the results of this cycle’s retirements to both the Instruction Pool and the Retirement Reg-
ister File (RRF). The retirement unit is capable of retiring 3 pops per clock.

2.2.4. The Bus Interface Unit

Figure 2-7 shows a more detailed view of the Bus Interface Unit.
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Figure 2-7. Inside the Bus Interface Unit

There are two types of memory access: loads and stores. Loads only need to specify the memory
address to be accessed, the width of the data being retrieved, and the destination register. Loads
are encoded into a single pop.

Stores need to provide a memory address, a data width, and the data to be written. Stores there-
fore require two pops, one to generate the address, and one to generate the data. These pops must
later re-combine for the store to complete.

Stores are never performed speculatively since there is no transparent way to undo them. Stores
are also never re-ordered among themselves. A store is dispatched only when both the address
and the data are available and there are no older stores awaiting dispatch.

A study of the importance of memory access reordering concluded:

o Stores must be constrained from passing other stores, for only a small impact on
performance.

o Stores can be constrained from passing loads, for an inconsequential performance loss.

e Constraining loads from passing other loads or stores has a significant impact on
performance.

The Memory Order Buffer (MOB) allows loads to pass other loads and stores by acting like a
reservation station and re-order buffer. It holds suspended loads and stores and re-dispatches
them when a blocking condition (dependency or resource) disappears.

2.3. ARCHITECTURE SUMMARY

Dynamic Execution is this combination of improved branch prediction, speculative execu-
tion and data flow analysis that enables the Pentium Pro processor to deliver its superior
performance.
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CHAPTER 3
BUS OVERVIEW

This chapter provides an overview of the Pentium Pro processor bus protocol, transactions, and
bus signals. The Pentium Pro processor supports two other synchronous busses, APIC and
JTAG. It also has PC compatibility signals and implementation specific signals. This chapter
provides a functional description of the Pentium Pro processor bus only. For the Pentium Pro
processor bus protocol specifications, see Chapter 4, Bus Protocol. For details on the Pentium
Pro processor bus transactions, see Chapter 5, Bus Transactions and Operations. For the full
Pentium Pro processor signal specifications, see Appendix A, Signals Reference and Table 11-2.

3.1.  SIGNAL AND DIAGRAM CONVENTIONS

Signal names use uppercase letters, such as ADS#. Signals in a set of related signals are distin-
guished by numeric suffixes, such as AP1 for address parity bit 1. A set of signals covering a
range of numeric suffixes is denoted as AP[1:0], for address parity bits 1 and 0. A # suffix indi-
cates that the signal is active low. A signal name without a # suffix indicates that the signal is
active high.

In many cases, signals are mapped one-to-one to physical pins with the same names. In other
cases, different signals are mapped onto the same pin. For example, this is the case with the ad-
dress pins A[35:3]#. During the first clock of the Request Phase, the address signals are driven.
The first clock is indicated by the lower case a, or just the pin name itself: Aa[35:3]#, or
A[35:3}#. During the second clock of the Request Phase other information is driven on the re-
quest pins. These signals are referenced either by their functional signal names DID[7:0]#, or by
using a lower case b with the pin name: Ab[23:16]#. Note also that several pins have configu-
ration functions at the active to inactive edge of RESET#.

The term asserted implies that a signal is driven to its active level (logic 1, FRCERR high, or
ADS# low). The term deasserted implies that a signal is driven to its inactive level (logic 0,
FRCERR low, or ADS# high). A signal driven to its active level is said to be active; a signal
driven to its inactive level is said to be inactive.

In timing diagrams, square and circle symbols indicate the clock in which particular signals of
interest are driven and sampled. The square indicates that a signal is driven in that clock. The
circle indicates that a signal is sampled in that clock.

All timing diagrams in this specification show signals as they are driven asserted or deasserted
on the Pentium Pro processor bus. There is a one-clock delay in the signal values observed by
bus agents. Any signal names that appear in lower case letters in brackets {rcnt} are internal sig-
nals only, and are not driven to the bus. Upper case letters that appear in brackets represent a
group of signals such as the Request Phase signals {REQUEST}. The timing diagrams some-
times include internal signals to indicate internal states and show how it affects external signals.
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When signal values are referenced in tables, a 0 indicates inactive and a 1 indicates active. 0 and
1 do not reflect voltage levels. Remember, a # after a signal name indicates active low. An entry
of 1 for ADS# means that ADS# is active, with a low voltage level.

3.2. SIGNALING ON THE PENTIUM® PRO PROCESSOR BUS

The Pentium Pro processor bus supports a synchronous latched protocol. On the rising edge of
the bus clock, all agents on the Pentium Pro processor bus are required to drive their active out-
puts and sample required inputs. No additional logic is located in the output and input paths be-
tween the buffer and the latch stage, thus keeping setup and hold times constant for all bus
signals following the latched protocol. The Pentium Pro processor bus requires that every input
be sampled during a valid sampling window on a rising clock edge and its effect be driven
out no sooner than the next rising clock edge. This approach allows one full clock for inter-
component communication and at least one full clock at the receiver to compute a response.

Figure 3-1 illustrates the latched bus protocol as it appears on the bus. In subsequent descrip-
tions, the protocol is described as “B# is asserted in the clock after A# is observed active”, or
“B# is asserted two clocks after A# is asserted”. Note that A# is asserted in T1, but not observed
active until T2. The receiving agent uses T2 to determine its response and asserts B# in T3. Oth-
er agents observe B# active in T4.

The square and circle symbols are used in the timing diagrams to indicate the clock in which
particular signals of interest are driven and sampled. The square indicates that a signal is driven
(asserted, initiated) in that clock. The circle indicates that a signal is sampled (observed, latched)
in that clock.
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Figure 3-1. Latched Bus Protocol

Any signal names that appear in brackets {} are internal signals only, and are not driven to the
bus. The timing diagrams sometimes include internal signals to indicate internal state and show
how it affects external signals. All timing diagrams in this specification show bus signals as they
are driven asserted or deasserted on the Pentium Pro processor bus. Internal signals are shown
to change state in the clock that they would be driven to the bus if they were external signals.
Internal signals actually change state internally one clock earlier.

Signals that are driven in the same clock by multiple Pentium Pro processor bus agents exhibit
a “wired-OR glitch” on the electrical-low-to-electrical-high transition. To account for this situ-
ation, these signal state transitions are specified to have two clocks of settling time when deas-
serted before they can be safely observed. The bus signals that must meet this criteria are:
BINIT#, HIT#, HITM#, BNR#, AERR#, BERR#.
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3.3. PENTIUM® PRO PROCESSOR BUS PROTOCOL OVERVIEW

Bus activity is hierarchically organized into operations, transactions, and phases.

An operation is a bus procedure that appears atomic to software even though it may not be atom-
ic on the bus. An operation may consist of a single bus transaction, but sometimes may involve
multiple bus transactions or a single transaction with multiple data transfers. Examples of com-
plex bus operations include: locked read/modify/write operations and deferred operations.

A transaction is the set of bus activities related to a single bus request. A transaction begins with
bus arbitration, and the assertion of ADS# and a transaction address. Transactions are driven to
transfer data, to inquire about or change cache state, or to provide the system with information.

A transaction contains up to six phases. A phase uses a specific set of signals to communicate a
particular type of information. The six phases of the Pentium Pro processor bus protocol are:

e Arbitration

e Request
e Error
e Snoop

e Response
e Data

Not all transactions contain all phases, and some phases can be overlapped.

3.3.1. Transaction Phase Description

Figure 3-2 shows all of the Pentium Pro processor bus transaction phases for two transactions
with data transfers.
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Figure 3-2. Pentium® Pro Processor Bus Transaction Phases

When the requesting agent does not own the bus, transactions begin with an Arbitration Phase,
in which a requesting agent becomes the bus owner.

After the requesting agent becomes the bus owner, the transaction enters the Request Phase. In
the Request Phase, the bus owner drives request and address information on the bus. The Re-
quest Phase is two clocks long. In the first clock, ADS# is driven along with the transaction ad-
dress and sufficient information to begin snooping and memory access. In the second clock, the
byte enables, deferred ID, transaction length, and other transaction information are driven.

Every transaction’s third phase is an Error Phase which occurs three clocks after the Request
Phase begins. The Error Phase indicates any parity errors triggered by the request.

Every transaction that isn’t cancelled because an error was indicated in the Error Phase has a
Snoop Phase, four or more clocks from the Request Phase. The snoop results indicate if the ad-
dress driven for a transaction references a valid or modified (dirty) cache line in any bus agent’s
cache. The snoop results also indicate whether a transaction will be completed in-order or may
be deferred for possible out-of-order completion.

Every transaction that isn’t cancelled because an error was indicated in the Error Phase has a
Response Phase. The Response Phase indicates whether the transaction has failed or succeeded,
whether transaction completion is immediate or deferred, whether the transaction will be retried,
and whether the transaction contains a Data Phase. The valid transaction responses are:

e Normal Data
e Implicit Writeback
e No Data

o Hard Failure
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e Deferred
e Retry

If the transaction does not have a Data Phase, that transaction is complete after the Response
Phase. If the request agent has write data to transfer or is requesting read data, the transaction
has a Data Phase which may extend beyond the Response Phase.

Not all transactions contain all phases, not all phases occur in order, and some phases can be
overlapped.

e All transactions that are not cancelled in the Error Phase have the Request, Error, Snoop,
and Response Phases.

e Arbitration can be explicit or implicit. The Arbitration Phase only needs to occur if the
agent that is driving the next transaction does not already own the bus.

e The Data Phase only occurs if a transaction requires a data transfer. The Data Phase can be
absent, response initiated, request initiated, snoop initiated, or request and snoop initiated.

o The Response Phase overlaps with the beginning of the Data Phase for read transactions.
o The Response Phase (TRDY#) triggers the Data Phase for write transactions.

In addition, since the Pentium Pro processor bus supports bus transaction pipelining, phases
from one transaction can overlap phases from another transaction, see Figure 3-2.

3.3.2. Bus Transaction Pipelining and Transaction Tracking

The Pentium Pro processor bus architecture supports pipelined transactions in which bus trans-
actions in different phases overlap. The Pentium Pro processor bus may be configured to support
a maximum of 1 or 8 outstanding transactions simultaneously. Each Pentium Pro processor is
capable of issuing up to four outstanding transactions.

In order to track transactions, all bus agents must track certain transaction information. The
transaction information that must be tracked by each bus agent is:

o Number of transactions outstanding

o What transaction is next to be snooped

e What transaction is next to receive a response

e If the transaction was issued to or from this agent

This information is tracked in a queue called an In-order Queue (I0Q). All bus agents maintain
identical In-order Queue status to track every transaction that is issued to the bus. When a trans-
action is issued to the bus, it is also entered in the IOQ of each agent. The depth of the smallest
10Q is the limit of how many transactions can be outstanding on the bus simultaneously. Be-
cause transactions receive their responses and data in the same order as they were issued, the
transaction at the top of the IOQ is the next transaction to enter the Response and Data Phases.
A transaction is removed from the IOQ after the Response Phase is complete or after an error is
detected in the Error Phase. The simplest bus agents can simply count events rather than imple-
ment a queue.
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Other, agent specific, bus information must be tracked as well. Note that not every agent needs
to track all of this additional information. Examples of additional information that might be
tracked follow.

Request agents (agents that issue transactions) might track:
e How many more transactions this agent can still issue?
e Is this transaction a read or a write?

e Does this bus agent need to provide or accept data?

Response agents (agents that can provide transaction response and data) might track:
e Does this agent own the response for the transaction at the top of the I0Q?

e Does this transaction contain an implicit writeback data and does this agent have to receive
the writeback data?

o If the transaction is a read, does this agent own the data transfer?

o If the transaction is a write, must this agent accept the data?

o Availability of buffer resources so it can stall further transactions if it needs to.
Snooping agents (agents with a cache) might track:

o If the transaction needs to be snooped.

e If the Snoop Phase needs to be extended.

e Does this transaction contain an implicit writeback data to be supplied by this agent?

e How many snoop requests are in the queue.

Agents whose transactions can be deferred might track:

e The deferred transaction and its agent ID.

e Auvailability of buffer resources.

This transaction information can be tracked by implementing multiple queues or one all encom-
passing In-order Queue. This document refers to these internal queue(s) as the Transaction
Queues (TQ), unless the In-order Queue is specifically being referenced. Note that the IOQ

is completely visible from the bus protocol, but the Transaction Queues use internal state
information.

3.3.3. Bus Transactions

The Pentium Pro processor bus supports the following types of bus transactions.
e Read and write a cache line.

e Read and write any combination of bytes in an aligned 8-byte span.
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o Read and write multiple 8-byte spans.

e Read a cache line and invalidate it in other caches.

e Invalidate a cache line in other caches.

e /O read and write.

o Interrupt Acknowledge (requiring a 1 byte interrupt vector).

e Special transactions are used to send various messages on the bus. The special transaction
for the Pentium Pro processor are:

— Shutdown
— Flush
— Halt
— Sync
— Flush Acknowledge
— Stop Clock Acknowledge
— SMI Acknowledge
— Branch trace message (providing an 8-byte branch trace address)
e Deferred reply to an earlier read or write that received a deferred response.

Specific descriptions of each transaction can be found in Chapter 5, Bus Transactions and
Operations.

3.3.4. Data Transfers

The Pentium Pro processor bus distinguishes between memory and /0 transactions.

Memory transactions are used to transfer data to and from memory. Memory transactions ad-
dress memory using the full width of the address bus. The Pentium Pro processor can address
up to 64 Gbytes of physical memory.

I/0O transactions are used to transfer data to and from the I/O address space. The Pentium Pro
processor limits I/O accesses to a 64K + 3 byte I/O address space. I/O transactions use A[16:3]#
to address I/O ports and always deassert A[35:17]#. A16# is zero except when the first three
bytes above the 64KByte address space are accessed (I/0 wraparound). This is required for com-
patibility with previous Intel processors.

The Pentium Pro processor bus distinguishes between different transfer lengths.
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3.3.4.1. LINE TRANSFERS

A line transfer reads or writes a cache line, the unit of caching in a Pentium Pro processor sys-
tem. On the Pentium Pro processor this is 32 bytes aligned on a 32-byte boundary. While a line
is always aligned on a 32-byte boundary, a line transfer need not begin on that boundary. For a
line transfer on the Pentium Pro processor, A[35:3]# carry the upper 33 bits of a 36-bit physical
address. Address bits A[4:3]# determine the transfer order, called burst order. A line is trans-
ferred in four eight-byte chunks, each of which can be identified by address bits 4:3. The chunk
size is 64-bits. Table 3-1 specifies the transfer order used for a 32-byte line, based on address
bits A[4:3]# specified in the transaction’s Request Phase.

Table 3-1. Burst Order Used For Pentium® Pro Processor Bus Line Transfers

Requested 1st Address 2nd Address 3rd Address 4th Address
A[4:3]# Address Transferred Transferred Transferred Transferred
(binary) (hex) (hex) (hex) (hex) (hex)
00 0 0 8 10 18
01 8 8 0 18 10
10 10 10 18
11 18 18 10 8 0

Note that the requested read data is always transferred first. Unlike the Pentium processor, which
always transfers writeback data address O first, the Pentium Pro processor transfers writeback
data requested address first.

3.3.4.2. PART LINE ALIGNED TRANSFERS

A part-line aligned transfer moves a quantity of data smaller than a cache line but an even mul-
tiple of the chunk size between a bus agent and memory using the burst order. A part-line trans-
fer affects no more than one line in a cache.

A 16-byte transfer on a 64-bit data bus with a 32-byte cache line size is a part-line transfer, where
a chunk is eight bytes aligned on an eight-byte boundary. All chunks in the span of a part-line
transfer are moved across the data bus. Address bits A[4:3]# determines the transfer order for
the included chunks, using the burst order specified in Table 3-1 for line transfers.

A 16-byte aligned transfer requires two data transfer clocks on a 64-bit bus. Note that the Pen-
tium Pro processor will not issue 16-byte transactions.

3.3.4.3. PARTIAL TRANSFERS

On a 64-bit data bus, a partial transfer moves from 0-8 bytes within an aligned 8-byte span to or
from a memory or I/O address. The byte enable signals, BE[7:0]#, select which bytes in the span
are transferred.
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The Pentium Pro processor converts non-cacheable misaligned memory accesses that cross 8-
byte boundaries into two partial transfers. For example, a non-cacheable, misaligned 8-byte read
requires two Read Data Partial transactions. Similarly, the Pentium Pro processor converts I[/O
write accesses that cross 4-byte boundaries into 2 partial transfers. I/O reads are treated the same
as memory reads.

On the Pentium Pro processor, I/O Read and I/O Write transactions are 1 to 4 byte partial trans-
actions.

3.4. SIGNAL OVERVIEW

This section describes the function of the Pentium Pro processor bus signals. In this section, the
signals are grouped according to function.

In many cases, signals are mapped one-to-one to physical pins with the same names. In other
cases, different signals are mapped onto the same pin. For example, this is the case with the ad-
dress pins A[35:3]#. During the first clock of the Request Phase, the address signals are driven.
The first clock is indicated by the lower case a, or just the pin name itself: Aa[35:3]#, or
A[35:3]4#. During the second clock of the Request Phase, other information is driven on the re-
quest pins. These signals are referenced either by their functional signal names DID[7:0]#, or by
using a lower case b with the pin name: Ab[23:16]#. Note that several pins also have configu-
ration functions at the active to inactive transition of RESET#.

3.4.1. Execution Control Signals

Table 3-2. Execution Control Signals

Pin/Signal Name Pin/Signal Mnemonic Number
Bus Clock BCLK 1
Initialization INIT#, RESET# 2
Flush FLUSH# 1
Stop Clock STPCLK# 1
Interprocessor Communication and Interrupts PICCLK, PICD[1:0]#, LINT[1:0] 5

The BCLK (Bus Clock) input signal is the Pentium Pro processor bus clock. All agents drive
their outputs and latch their inputs on the BCLK rising edge. Each Pentium Pro processor de-
rives its internal clock from BCLK by multiplying the BCLK frequency by a multiplier deter-
mined at configuration. See Chapter 9, Configuration for configuration specifications.

The RESET# input signal resets all Pentium Pro processor bus agents to known states and in-
validates their internal caches. Modified or dirty cache lines are NOT written back. After RE-
SET# is deasserted, each Pentium Pro processor begins execution at the power on reset vector
defined during configuration. On observing active RESET#, all bus agents must deassert their
outputs within two clocks. Configuration parameters are sampled on the clock following the
sampling of RESET# inactive. (Two clocks following the deassertion of RESET#.)

3-10 I



Intel ® BUS OVERVIEW

The INIT# input signal resets all Pentium Pro processor bus agents without affecting their inter-
nal (L1 or L2) caches or their floating-point registers. Each Pentium Pro processor begins exe-
cution at the address vector as defined during power on configuration. INIT# has another
meaning on RESET#’s active to inactive transition: if INIT# is sampled active on RESET#’s ac-
tive to inactive transition, then the Pentium Pro processor executes its built-in self test (BIST).

If the FLUSH# input signal is asserted, the Pentium Pro processor bus agent writes back all in-
ternal cache lines in the Modified state (L1 and L2 caches) and invalidates all internal cache
lines (L1 and L2 caches). The flush operation puts all internal cache lines in the Invalid state.
After all lines are written back and invalidated, the Pentium Pro processor drives a special trans-
action, the Flush Acknowledge transaction, to indicate completion of the flush operation. The
FLUSH# signal has a different meaning when it is sampled asserted on the active to inactive
transition of RESET#. If FLUSH# is sampled asserted on the active to inactive transition of RE-
SET#, then the Pentium Pro processor tristates all of its outputs. This function is used during
board testing.

The Pentium Pro processor supplies a STPCLK# pin to enable the processor to enter a low pow-
er state. When STPCLK# is asserted, the Pentium Pro processor puts itself into the stop grant
state, issues a Stop Grant Acknowledge special transaction, and optionally stops providing in-
ternal clock signals to all units except the bus unit and the APIC unit. The processor continues
to snoop bus transactions while in stop grant state. When STPCLK# is deasserted, the processor
restarts its internal clock to all units and resumes execution. The assertion of STPCLK# has no
effect on the bus clock.

The PICCLK and PICD[1:0]# signals support the Advanced Programmable Interrupt Controller
(APIC) interface. The PICCLK signal is an input clock to the Pentium Pro processor for syn-
chronous operation of the APIC bus. The PICD[1:0]# signals are used for bidirectional serial
message passing on the APIC bus.

LINTI[1:0] are local interrupt signals, also defined by the APIC interface. In APIC disabled
mode, LINTO defaults to INTR, a maskable interrupt request signal. LINT1 defaults to NMI, a
non-maskable interrupt. Both signals are asynchronous inputs. In the APIC enable mode, LINTO
and LINT1 are defined with the local vector table.

LINT[1:0] are also used along with the A20M# and IGNNE# signals to determine the multiplier
for the internal clock frequency as described in Chapter 9, Configuration.
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3.4.2. Arbitration Phase Signals

This signal group is used to arbitrate for the bus.

Table 3-3. Arbitration Phase Signals

Pin/Signal Name Pin Mnemonic Signal Mnemonic Number
Symmetric Agent Bus Request BRI[3:0]# BREQ[3:0]# 4
Priority Agent Bus Request BPRI# BPRI# 1
Block Next Request BNR# BNR# 1
Lock LOCK# LOCKi# 1

Up to five agents can simultaneously arbitrate for the bus, one to four symmetric agents (on
BREQ[3:0]4#) and one priority agent (on BPRI#). Pentium Pro processors arbitrate as symmetric
agents. The priority agent normally arbitrates on behalf of the I/O subsystem (I/O agents) and
memory subsystem (memory agents).

Owning the bus is a necessary condition for initiating a bus transaction.

The symmetric agents arbitrate for the bus based on a round-robin rotating priority scheme. The
arbitration is fair and symmetric. After reset, agent O has the highest priority followed by agents
1, 2, and 3. All bus agents track the current bus owner. A symmetric agent requests the bus by
asserting its BREQn# signal. Based on the values sampled on BREQ[3:0]#, and the last sym-
metric bus owner, all agents simultaneously determine the next symmetric bus owner.

The priority agent asks for the bus by asserting BPRI#. The assertion of BPRI# temporarily
overrides, but does not otherwise alter the symmetric arbitration scheme. When BPRI# is sam-
pled active, no symmetric agent issues another unlocked bus transaction until BPRI#is sampled
~ inactive. The priority agent is always the next bus owner.

BNR# can be asserted by any bus agent to block further transactions from being issued to the
bus. It is typically asserted when system resources (such as address and/or data buffers) are
about to become temporarily busy or filled and cannot accommodate another transaction. After
bus initialization, BNR# can be asserted to delay the first bus transaction until all bus agents are
initialized.

The assertion of the LOCK# signal indicates that the bus agent is executing an atomic sequence
of bus transactions that must not be interrupted. A locked operation cannot be interrupted by an-
other transaction regardless of the assertion of BREQ[3:0]# or BPRI#. LOCK# can be used to
implement memory-based semaphores. LOCK# is asserted from the first transaction’s Request
Phase through the last transaction’s Response Phase.
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3.4.3.

The request signals transfer request information, including the transaction address. A Request
Phase is two clocks long beginning with the assertion of ADS#, the Address Strobe signal, as
shown in Table 3-4.

Request Signals

Table 3-4. Request Signals

Pin Name Pin Mnemonic Signal Name Signal Mnemonic Number
Address Strobe ADS# Address Strobe ADS# 1
Request Command | REQ[4:0]# Request’ REQa[4:0]# 5

Extended Request? REQb[4:0]#
Address A[35:3]# Address’ Aa[35:3)# 33
Debug (optional)? Ab[35:32]#
Attributes? ATTR[7:0J# or
Ab[31:24]#
Deferred ID? DID[7:0}# or
Ab[23:16]#
Byte Enables? BE[7:0}# or
Ab[15:8]#
Extended Functions? EXF[4:0]# or
Ab[7:3]#
Address Parity AP[1:0]# Address Parity AP[1:0]# 2
Request Parity RP# Request Parity RP# 1

NOTES:

1. These signals are driven on the indicated pin during the first clock of the Request Phase (the clock in
which ADS# is driven asserted). -

2. These signals are driven on the indicated pin during the second clock of the Request Phase (the clock
after ADS# is driven asserted).

The assertion of ADS# defines the beginning of the Request Phase. The REQa[4:0]# and
Aa[35:3]# signals are valid in the clock that ADS# is asserted. The REQb[4:0]#, ATTR[7:0}4#,
DID[7:0], BE[7:0]#, and the EXF[4:0]# signals are all valid in the clock after ADS# is asserted.
RP# and AP[1:0]# are valid in both clocks of the Request Phase. The LOCK# signal from the
Arbitration Phase is asserted in the clock that ADS# is asserted for a bus locked operation.

The REQa[4:0]# and the REQb[4:0]# signals identify the transaction type as defined by Table
3-5. Note that partial memory read/write transactions can be locked on the bus by asserting
the LOCK# signal. Transactions are described in detail in Chapter 5, Bus Transactions and
Operations.
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Table 3-5. Transaction Types Defined by REQa#/REQb# Signals

REQa[4:0]# REQbI[4:0]#
Transaction 4 3 5 1 0 4 3 2 1 0

Deferred Reply 0 0 0 0 0 X X X X X
Rsvd (Ignore) 0 0 0 0 1 X X X X X
Interrupt Acknowledge 0 1 0 0 0 DSZ# X 0 0
Special Transactions 0 1 0 0 0 DSZ# X 0 1
Rsvd (Central agent response) 0 1 0 0 0 DSZ# X 1 X
Branch Trace Message 0 1 0 0 1 DSz# X 0 0
Rsvd (Central agent response) 0 1 0 0 1 DSz# X 0 1
Rsvd (Central agent response) 0 1 0 0 1 DSz# X 1 X
1/0 Read 1 0 0 0 0 DSz# X LEN#
1/0 Write 1 0 0 0 1 DSZ# X LEN#
Rsvd (Ignore) 1 1 0 0 X DSZz# X xj X
Memory Read & Invalidate ASZ# 0 1 0 DSZ# X LEN#
Rsvd (Memory Write) ASZ# 0 1 1 DSZ# X LEN#
Memory Code Read ASZ# 1 D/C#=0 0 DSZz# X LEN#
Memory Data Read ASZ# 1 D/C#=1 0 DSZ# X LEN#
Memory Write ASZi# 1 W/WB#=0 1 DSZ# X LEN#
(may not be retried)
Memory Write (may be retried) ASZ# 1 W/WB#=1 1 DSZz# X LEN#

NOTES:

1. All commands must determine response ownership with REQa.

2. For the Pentium® Pro processor, x implies “don’t care.”

3. Al memory commands must be snooped.

4. Special Transactions are encoded by the byte enables. See Table 3-10.

5. D/C# indicates data or code. 0 = Code, 1 = Data.

6. W/WB# = 0 indicates writeback, W/WB# = 1 indicates write.

7. ASZ# indicates address bus size. See Table 3-6.

8. LEN# indicates the length of the data transfer. See Table 3-7.

9. REQaO# active indicates the bus agent will have to provide write data and must have a TRDY#.

[ —Y
- O
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. REQat# or REQa2# active indicate that the transaction is to memory.

DSZ# is driven by the initiator and ignored by the responder. For the Pentium Pro processor, DSZ# =
00.
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Table 3-6. Address Space Size

ASZ[1:0]# Memory Address Space Observing Agents
0 0 32-bit 32 & 36 bit agents
0 1 36-bit 36 bit agents only
1 0 Reserved None
1 1 Reserved None

If the memory access is within the 0-to-(4GByte -1) address space, ASZ[1:0]# must be 00B. If
the memory access is within the 4Gbyte-to-(64GByte -1) address space, ASZ[1:0]# must be
01B. All observing bus agents that support the 4Gbyte (32 bit) address space must respond to
the transaction only when ASZ[1:0]# equals 00B. All observing bus agents that support the
64GByte (36- bit) address space must respond to the transaction when ASZ[1:0]# equals 00B or
01B.

Table 3-7. Length of Data Transfer

LEN[1:0]# Length BE[7:0]#
0 0 0-8-bytes Specify granularity
0 1 16-bytes All active
1 0 32-bytes All active
1 1 Reserved

The LEN[1:0]# signals determine the length of the transfer. The Pentium Pro processor will not
issue a request for a 16 byte data transfer.

In the clock that ADS# is asserted, the Aa[35:3]# signals provide a 36-bit, active-low
address as part of the request. The Pentium Pro processor physical address space is 23°bytes
or 64-Gigabytes (64 Gbyte). Address bits 2, 1, and 0 are mapped into byte enable signals
for 0 to 8 byte transfers.

The address signals are protected by the AP[1:0]# pins. AP1# covers A[35:24]#, APO# covers
A[23:3]#. AP[1:0]# must be valid for two clocks beginning when ADS# is asserted. A parity
error detected on AP[1:0}# is indicated in the Error Phase. A parity signal on the Pentium Pro
processor bus is correct if there are an even number of electrically low signals in the set consist-
ing of the covered signals plus the parity signal. Parity is computed using voltage levels, regard-
less of whether the covered signals are active high or active low.

The Request Parity pin RP# covers the request pins REQ[4:0]# and the address strobe, ADS#.
RP# must be valid for two clocks beginning when ADS# is asserted. A parity error detected on
RP# is indicated in the Error Phase.

In the clock after ADS# is asserted, the A[35:3]# pins supply cache attribute information, a
deferred ID, the byte enables and other information regarding the transaction. Specifically,
the following signals are supported: ATTR[7:0]#, DID[7:0]#, BE[7:0]#, and EXF[4:0]#. The
description for these signals follows.
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The ATTR[7:0]# pins describe the cache attributes. They are driven based on the Memory Type
Range Register attributes and the Page Table attributes as described in Table 3-8. See Chapter 6,
Range Registers for a description of the memory types.

Table 3-8. Memory Range Register Signal Encoding

ATTR[7:0]# Memory Type Description
00000000 uc UnCacheable
00000100 wC Write-combining
00000101 WT . WriteThrough
00000110 WP WriiteProtect
00000111 WB WriteBack
All others Reserved

The DID[7:0]# signals contain the request agent ID on bits DID[6:4]#, the transaction ID on
DID[3:0]#, and the agent type on DID[7]#. Symmetric agents use an agent type of 0. All priority
agents use an agent type of 1. Every deferrable transaction (DEN# asserted) issued on the Pen-
tium Pro processor bus which has not been guaranteed completion will have a unique Deferred
ID. After one of these transactions passes its Snoop Result Phase without DEFER# asserted, its
Deferred ID may be reused. During a deferred reply transaction, the Deferred ID of the agent
that deferred the original transaction is driven instead of an address.

Table 3-9. DID[7:0]# Encoding
DID[7]# DID[6:4]# DID[3:0]#

Agent Type Agent ID Transaction ID

The Byte Enables BE[7:0]# are used to determine which bytes of data should be transferred if
the data transfer is less than 8 bytes wide. BE7# applies to D[63:56], BEO# applies to D[7:0].
The byte enables are also used for special transaction encoding (see Table 3-10).
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Table 3-10. Special Transaction Encoding on Byte Enables

Special Transaction Byte Enables[7:0]#
Shutdown 0000 0001
Flush 0000 0010
Halt 0000 0011
Sync 0000 0100
Flush Acknowledge 0000 0101
Stop Grant Acknowledge 0000 0110
SMI Acknowledge 0000 0111
Reserved all other encodings

The Extended Functions, EXF[4:0]#, supported are listed in Table 3-11.

Table 3-11. Extended Function Pins

Extended Function Pin Extended Function Signal Function
EXF4# SMMEM# Accessing SMRAM space
EXF3# SPLCK# Split Lock
EXF2# Reserved
EXF1# DEN# Defer Enable
EXFO# Reserved

EXF4# (SMM Memory) is asserted by the Pentium Pro processor if the processor is in System
Management Mode and indicates that the processor is accessing a separate “shadow” memory,
the SMRAM. Each memory or I/O agent must observe this signal and only accept a transaction
involving SMRAM if the agent provides the SMRAM.

EXF3# (Split Lock) is asserted to indicate that a locked operation is split across 32-byte bound-
aries for writeback memory or 8-byte boundaries for uncacheable memory. Note that SPLCK#
is asserted for the first transaction in a locked operation only.

EXF1# is asserted if the transaction can be deferred by the responding agent. EXF14# is always
deasserted for the transactions in a locked operation, deferred reply transactions, and bus Write-
back Line transactions.
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3.4.4. Error Phase Signals

The Error Phase signal group (see Table 3-12) contains signals driven in the Error Phase. This
phase is one clock long and always begins three clocks after the Request Phase begins (3 clocks
after ADS# is asserted).

Table 3-12. Error Phase Signals
Type Signal Names Number
Address Parity Error AERR# 1

The AERR# driver can be enabled or disabled as part of the power on configuration (see Chapter
9, Configuration). If the AERR# driver of all bus agents is disabled, request and address parity
errors are ignored and no action is taken by the Pentium Pro processor bus agents. If the AERR#
driver of at least one bus agent is enabled, the agents observing a Request Phase check the Ad-
dress Parity signals (AP[1:0]#) and assert AERR# in the Error Phase if an address parity error
is detected. AERR# is also asserted if an RP# parity error is detected in the Request Phase.

AERR# must not be asserted by an agent for an upper address parity error (AP1#) when the
transaction address is not in the address range of the agent. Thus 32-bit agents must ignore mem-
ory transactions unless ASZ[1:0]# = 00B. 36-bit agents must ignore memory transactions unless
ASZ[1:0]# = 00B or 01B.

The Pentium Pro processor supports two modes of response when the AERR# driver is enabled.
This is the “AERR# observation” which may be configured at power-up. AERR# observation
configuration must be consistent between all bus agents. If AERR# observation is disabled,
AERR# is ignored and no action is taken by the bus agents. If AERR# observation is enabled
and AERR# is sampled asserted, the request is cancelled. In addition, the request agent may re-
try the transaction at a later time up to its retry limit. The Pentium Pro processor has a retry limit
of 1, after which the error becomes a hard error as determined by the initiating processor.

If a transaction is cancelled by AERR# assertion, then the transaction is aborted, removed from
the In-order Queue and there are no further valid phases for that transaction. Snoop results are
ignored if they cannot be cancelled in time. All agents reset their rotating ID for bus arbitration
to the state at reset (such that bus agent O has highest priority).

3.4.5. Snoop Signals

The snoop signal group (see Table 3-13) provides snoop result information to the Pentium Pro
processor bus agents in the Snoop Phase. The Snoop Phase is four clocks after a transaction’s
Request Phase begins (4 clocks after ADS# is asserted), or the 3rd clock after the previous snoop
results, whichever is later.
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Table 3-13. Snoop Signals

Type Signal Names Number
Keeping a Non-Modified Cache Line HIT# 1
Hit to a Modified Cache Line HITM# 1
Defer Transaction Completion DEFER# 1

On observing a Request Phase (ADS# active) for a memory access, all caching agents are re-
quired to perform an internal snoop operation and appropriately return HIT# and HITM# in the
Snoop Phase. HIT# and HITM# are be used to indicate that the line is valid or invalid in the
snooping agent, whether the line is in the modified (dirty) state in the caching agent, or whether
the Snoop Phase needs to be extended. The HIT# and HITM# signals are used to maintain cache
coherency at the system level. A caching agent must assert HIT# and deassert HITM# in the
Snoop Phase if the agent plans to retain the line in its cache after the snoop. Otherwise, unless
the caching agent wishes to stall the Snoop Phase, the HIT# signal should be deasserted. The
requesting agent determines the highest permissible cache state of the line using the HIT# signal.
If HIT# is asserted, the requester may cache the line in the Shared state. If HIT# is deasserted,
the requester may cache the line in the Exclusive or Shared state. Multiple caching agents can
assert HIT# in the same Snoop Phase.

A snooping agent asserts HITM# if the line is in the Modified state. After asserting HITM#, the
agent assumes responsibility for writing back the modified line during the Data Phase (this is
called an implicit writeback).

The memory agent must observe HITM# in the Snoop Phase. If the memory agent observes
HITM# active, it relinquishes responsibility for the data return and becomes a target for the im-
plicit cache line writeback. The memory agent must merge the cache line being written back
with any write data and update memory. The memory agent must also provide the implicit write-
back response for the transaction.

The Pentium Pro processor and bus supports self snooping. Self snooping means that an
agent can snoop its own request and drive the snoop result in the Snoop Phase. The Pentium
Pro processor uses self-snooping to resolve certain boundary conditions associated with
bus-lock operations that hit Modified cache lines, and conflicts associated with page table
aliasing. Because the Pentium Pro processor uses self-snooping, the memory agent must
always provide support for implicit writebacks, even in uniprocessor systems.

If HIT# and HITM# are sampled asserted together in the Snoop Phase, it means that a caching
agent is not ready to indicate snoop status, and it needs to stall the Snoop Phase. The snoop sig-
nals (HIT#, HITM#, and DEFER#) are sampled again two clocks later. This process continues
as long as the stall state is sampled. The snoop stall is provided to stretch the completion of a
snoop as needed by any agent that needs to block further progress of snoops.

The DEFER# signal is also driven in the Snoop Phase. DEFER# is deasserted to indicate that
the transaction can be guaranteed in-order completion. An agent asserting DEFER# ensures
proper removal of the transaction from the In-order Queue by generating the appropriate
response. There are three valid responses when DEFER# is sampled asserted (and HITM# is
sampled deasserted): the deferred response, implying that the operation will be completed at a
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later time; a retry response, implying that the transaction should be retried; or a hard error
response.

HITM# overrides DEFER# to determine the response type. DEFER# may still affect a locked
operation. See Chapter 5, Bus Transactions and Operations for details.

The requesting agent observes HIT#, HITM#, and DEFER# to determine the line’s final state in
its cache. DEFER# inactive enables the requesting agent to complete the transaction in order and
make the transition to the final cache state. A transaction with DEFER# active (and HITM# in-
active) can be completed with a deferred reply transaction (and a delayed transition to final
cache state) or can be retried.

3.4.6. Response Signals

The response signal group (see Table 3-14) provides response information to the requesting
agent in the Response Phase. The Response Phase of a transaction occurs after the Snoop Phase
of the same transaction, and after the Response Phase of a previous transaction. Also, if the
transaction includes a data transfer, the data transfer of a previous transaction must be complete
before the Response Phase for the new transaction is entered.

Table 3-14. Response Signals

Type Signal Names Number
Response Status RS[2:01# 3
Response Parity RSP# 1
Target Ready (for writes) TRDY# 1

Requests initiated in the Request Phase enter the In-order Queue, which is maintained by every
agent. The response agent is the agent responsible for completing the transaction at the top of
the In-order Queue. The response agent is the agent addressed by the transaction.

For write transactions, TRDY# is asserted by the response agent to indicate that it is ready to
accept write or writeback data. For write transactions with an implicit writeback, TRDY#
is asserted twice, first for the write data transfer and then again for the implicit writeback
data transfer.

The response agent asserts RS[2:0]# to indicate one of the valid transaction responses indicated
in Table 3-15.
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Table 3-15. Transaction Response Encodings

RS2# RS1# RSO# Description and Required Snoop Result

0 0 0 Idle state. (The RS[2:0]# pins must be driven inactive after being
sampled asserted)

0 0 1 Retry response.

0 1 0 Deferred response. The data bus is used only by a writing agent.

0 1 1 Reserved.

1 0 0 Hard failure response.

1 0 1 No Data response.

1 1 0 Implicit writeback response. A snooping agent will transfer writeback
data on the data bus. Memory agent must merge writeback data
with any transaction data and provide the response. (HITM#=1)

1 1 1 Normal data response

The RS2#, RS1#, and RS0# signals must be interpreted together and cannot be interpreted
individually.

The RSP# signal provides parity for RS[2:0]#. RSP# must be valid on all clocks, not just re-
sponse clocks. A parity signal on the Pentium Pro processor bus is correct if there are an even
number of low signals in the set consisting of the covered signals plus the parity signal. Parity
is computed using voltage levels, regardless of whether the covered signals are active high or
active low.

3.4.7. Data Phase Signals

The data transfer signals group (see Table 3-16) contains signals driven in the Data Phase. Some
transactions do not transfer data and have no Data Phase. A Data Phase ranges from one to four
clocks of actual data being transferred. A cache line transfer takes four data transfers on a 64-bit
bus. A transfer can contain waitstates which extends the length of the Data Phase. Read trans-
actions have zero or one Data Phase, write transactions have zero, one or two Data Phases.

Table 3-16. Data Phase Signals

Type Signal Names Number
Data Ready DRDY# 1
Data Bus Busy DBSY# 1
Data D[63:0]# 64
Data ECC Protection DEP[7:0]# 8
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DRDY# indicates that valid data is on the bus and must be latched. The data bus owner asserts
DRDY# for each clock in which valid data is to be transferred. DRDY# can be deasserted to
insert wait states in the Data Phase.

DBSY# is used to hold the bus before the first DRDY# and between DRDY# assertions for a
multiple clock data transfer. DBSY# need not be asserted for single clock data transfers if no
wait states are needed.

During deferred reply transactions, the agent that initiates the deferred reply provides the re-
sponse for the transaction. If there is data to transfer, it is transferred with the same protocol as
read data (in other words, no TRDY# is needed).

The D[63:0]# signals provide a 64-bit data path between bus agents. For a partial transfer, in-
cluding I/0 Read and I/O Write, the byte enable signals, BE[7:0]# determine which bytes of the
data bus will contain the valid data.

The DEP[7:0]# signals provide optional ECC (error correcting code) covering D[63:0]#. As de-
scribed in Chapter 9, Configuration, the Pentium Pro processor data bus can be configured with
either no checking or ECC. If ECC is enabled, then DEP[7:0]# provides valid ECC for the entire
data bus on each data clock, regardless of which bytes are enabled. The error correcting code
can correct single bit errors and detect double bit errors.

3.4.8. Error Signals

The error signals group (see Table 3-17) contains error signals that are not part of the Error
Phase.

Table 3-17. Error Signals

Type Signal Names Number
Bus Initialization BINIT# 1
Bus Error BERR# 1
Internal Error IERR# 1
FRC Error FRCERR 1

BINIT# is used to signal any bus condition that prevents reliable future operation of the bus.
Like the AERR# pin, the BINIT# driver can be enabled or disabled as part of the power-on con-
figuration (see Chapter 9, Configuration). If the BINIT# driver is disabled, BINIT# is never as-
serted and no action is taken by the Pentium Pro processor on bus errors.

Regardless of whether the BINIT# driver is enabled, the Pentium Pro processor bus agent sup-
ports two modes of operation that may be configured at power on. These are the BINIT# obser-
vation and driving modes. If BINIT# observation is disabled, BINIT# is ignored and no action
is taken by the processor even if BINIT# is sampled asserted. If BINIT# observation is enabled
and BINIT# is sampled asserted, all bus state machines are reset. All agents reset their rotating
ID for bus arbitration, and internal state information is lost. L1 and L2 cache contents are not
affected. BINIT# observation and driving must be enabled for proper Pentium Pro processor
operation.
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A machine-check exception may or may not be taken for each assertion of BINIT# as configured
in software.

The BERR# pin is used to signal any error condition caused by a bus transaction that will not
impact the reliable operation of the bus protocol (for example, memory data error, non-modified
snoop error). A bus error that causes the assertion of BERR# can be detected by the processor,
or by another bus agent. The BERR# driver can be enabled or disabled at power-on reset. If the
BERR# driver is disabled, BERR# is never asserted. If the BERR# driver is enabled, the Pen-
tium Pro processor may assert BERR#.

A machine check exception may or may not be taken for each assertion of BERR# as configured
at power on. The Pentium Pro processor will always disable the machine check exception by
default.

If a Pentium Pro processor detects an internal error unrelated to bus operation, it asserts IERR#.
Forexample, a parity errorin an L1 or L2 cache causes a Pentium Pro processor to assert IERR#.
A machine check exception may or may not be taken for each assertion of IERR# as configured
with software.

Two Pentium Pro processors may be configured as an FRC (functional redundancy checking)
pair. In this configuration, one processor acts as the master and the other acts as a checker, and
the pair operates as a single, logical Pentium Pro processor. If the checker Pentium Pro processor
detects a mismatch between its internally sampled outputs and the master Pentium Pro proces-
sor’s outputs, the checker asserts FRCERR. FRCERR observation can be enabled at the master
processor with software. The master enters machine check on an FRCERR provided that Ma-
chine Check Execution is enabled.

The FRCERR signal is also toggled during the Pentium Pro processor’s reset action. A Pentium
Pro processor asserts FRCERR one clock after RESET# transitions from its active to inactive
state. If the Pentium Pro processor executes its built-in self test (BIST), then FRCERR is assert-
ed throughout that test. When BIST completes, the Pentium Pro processor desserts FRCERR if
BIST succeeds and continues to assert FRCERR if BIST fails. If the Pentium Pro processor does
not execute the BIST action, then it keeps FRCERR asserted for less than 20 clocks and then
deasserts it.

3.4.9. Compatibility Signals

The compatibility signals group (see Table 3-18) contains signals defined for compatibility with-
in the Intel architecture processor family.

Table 3-18. PC Compatibility Signals

Type Signal Names Number
Floating-Point Error FERR# 1
Ignore Numeric Error IGNNE# 1
Address 20 Mask A20M# 1
System Management Interrupt SMI# 1
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The Pentium Pro processor asserts FERR# when it detects an unmasked floating-point error.
FERR# is included for compatibility with systems using DOS-type floating-point error
reporting.

If the IGNNEH# input signal is asserted, the Pentium Pro processor ignores a numeric error and
continues to execute non-control floating-point instructions. If the IGNNE# input signal is deas-
serted, the Pentium Pro processor freezes on a non-control floating-point instruction if a previ-
ous instruction caused an error.

If the A20M# input signal is asserted, the Pentium Pro processor masks physical address bit 20
(A20#) before looking up a line in any internal cache and before driving a memory read/write
transaction on the bus. Asserting A20M# emulates the 8086 processor’s address wraparound at
the one Mbyte boundary. A20M# must only be asserted when the processor is in real mode.
A20M# is not used to mask external snoop addresses.

The IGNNE# and A20M# signals are valid at all times. These signals are normally not guaran-
teed recognition at specific boundaries. However, to guarantee recognition of A20M#, and the
trailing edge of IGNNE# following an I/O write instruction, these signals must be valid in the
Response Phase of the corresponding I/O Write bus transaction.

The A20M# and IGNNE# signals have different meanings during a reset. A20M# and IGNNE#
are sampled on the active to inactive transition of RESET# to determine the multiplier for the
internal clock frequency, as described in Chapter 9, Configuration.

System Management Interrupt is asserted asynchronously by system logic. On accepting a Sys-
tem Management Interrupt, the Pentium Pro processor saves the current state and enters SMM
mode. It issues an SMI Acknowledge Bus transaction and then begins program execution from
the SMM handler.

3.4.10. Diagnostic Signals

Table 3-19. Diagnostic Support Signals

Type Signal Names Number
Breakpoint Signals BP[3:2]# 2
Performance Monitor BPM[1:0]# 2
Boundary Scan/Test Access TCK, TDI, TDO, TMS, TRST# 5

The BP[3:2]# signals are the System Support group Breakpoint signals. They are outputs from
the Pentium Pro processor that indicate the status of breakpoints.

The BPM[1:0J# signals are more System Support group breakpoint and performance monitor
signals. They are outputs from the Pentium Pro processor that indicate the status of breakpoints
and programmable counters used for monitoring Pentium Pro processor performance.
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The diagnostic signals group shown in Table 3-19 provides signals for probing the Pentium Pro
processor, monitoring Pentium Pro processor performance, and implementing an IEEE 1149.1
boundary scan.

PM[1:0]# are the Performance Monitor signals. These signals are outputs from the Pentium Pro
processor that indicate the status of four programmable counters for monitoring Pentium Pro
processor performance.

TCK is the Test Clock, used to clock activity on the five-signal Test Access Port (TAP). TDI is
the Test Data In signal, transferring serial test data into the Pentium Pro processor. TDO is the
Test Data Out signal, transferring serial test data out of the Pentium Pro processor. TMS is used
to control the sequence of TAP controller state changes. TRST# is used to asynchronously ini-
tialize the TAP controller.

3.4.11. Power, Ground, and Reserved Pins

The Pentium Pro processor bus and Pentium Pro processor dedicate many pins to power and
ground signals. Refer to Chapter 15, Mechanical Specifications for the pin assignment.
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CHAPTER 4
BUS PROTOCOL

This chapter describes the protocol followed by bus agents in a transaction’s six phases. The
phases are:

o Arbitration Phase
o Request Phase

e Error Phase

o Snoop Phase

o Response Phase

e DataPhase

4.1. ARBITRATION PHASE

A bus agent must have bus ownership before it can initiate a transaction. If the agent is not the
bus owner, it enters the Arbitration Phase to obtain ownership. Once ownership is obtained, the
agent can enter the Request Phase and issue a transaction to the bus.

4.1.1. Protocol Overview

The Pentium Pro processor bus arbitration protocol supports two classes of bus agents: symmet-
ric agents and priority agents.

The symmetric agents support fair, distributed arbitration using a round-robin algorithm. Each
symmetric agent has a unique Agent ID between zero and three assigned at reset. The algorithm
arranges the four symmetric agents in a circular order of priority: 0, 1, 2, 3, 0, 1, 2, etc. Each
symmetric agent also maintains a common Rotating ID that reflects the symmetric Agent ID of
the most recent bus owner. On every arbitration event, the symmetric agent with the highest pri-
ority becomes the symmetric owner. Note that the symmetric owner is not necessarily the overall
bus owner. The symmetric owner is allowed to enter the Request Phase provided no other action
of higher priority is preventing the use of the bus.

The priority agent(s) has higher priority than the symmetric owner. Once the priority agent ar-
bitrates for the bus, it prevents the symmetric owner from entering into a new Request Phase un-
less the new transaction is part of an ongoing bus locked operation. The priority agent is allowed
to enter the Request Phase provided no other action of higher priority is preventing the use of
the bus.

Pentium Pro processors are symmetric agents. The priority agent normally arbitrates on behalf
of the I/O and possibly memory subsystems.
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Besides the two classes of arbitration agents, each bus agent has two actions available that act
as arbitration modifiers: the bus lock and the request stall.

The bus lock action is available to the current symmetric owner to block other agents, including
the priority agent from acquiring the bus. Typically a bus locked operation consists of two or
more transactions issued on the bus as an indivisible sequence (this is indicated on the bus by
the assertion of the LOCK# pin). Once the symmetric bus owner has successfully initiated the
first bus locked transaction it continues to issue remaining requests that are part of the same in-
divisible operation without releasing the bus.

The request stall action is available to any bus agent that is unable to accept new bus transactions.
By asserting a signal (BNR#) any agent can prevent the current bus owner from issuing new
transactions.

In summary, the priority for entering the Request Transfer Phase, assuming there is no bus stall
or arbitration reset event, is:

1. The current bus owner retains ownership until it completes an ongoing indivisible bus
locked operation.

2. The priority agent gains bus ownership over a symmetric owner.

3. Otherwise, the current symmetric owner as determined by the rotating priority is allowed
to generate new transactions.

4.1.2. Bus Signals
The Arbitration Phase signals are BREQ[3:0]#, BPRI#, BNR#, and LOCK#.

BREQ[3:0]# bus signals are connected to the four symmetric agents in a rotating manner as
shown in Figure 4-1. This arrangement initializes every symmetric agent with a unique Agent
ID during power-on configuration. Every symmetric agent has one input/output pin, BRO#, to
arbitrate for the bus during normal operation. The remaining three pins, BR1#, BR2#, and BR3#,
are input only and are used to observe the arbitration requests of the remaining three symmetric
agents.

At reset, the central agent is responsible for asserting the BREQO# bus signal. BREQ[3:1]#
remain deasserted. All Pentium Pro processors sample BR[3:1]# on the active to inactive tran-
sition of RESET# to determine their arbitration IDas follows :

o The BRI1#, BR2#, and BR3# pins are all inactive on Agent 0.
e Agent 1 has BR3# active.
e Agent 2 has BR2# active.
e Agent3has BRI# active.

The BPRI# signal is an output from the priority agent by which it arbitrates for the bus owner-
ship and an input to the symmetric agents. The LOCK# and BNR# signals are bi-directional sig-
nals bused among all agents. The current bus owner uses LOCK# to define an indivisible bus
locked operation. BNR# is used by any bus agent to stall further request phase initiation.
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Figure 4-1. BR[3:0]# Physical Interconnection

4.1.3. Internal Bus States

In order to maintain a glueless MP interface, some bus state is distributed and must be tracked
by all agents on the bus. This section describes the bus state that needs to be tracked internally
by Pentium Pro processor bus agents.

4.1.3.1. SYMMETRIC ARBITRATION STATES

As described before, each symmetric agent must maintain a two-bit Agent ID and a two-bit
Rotating ID to perform distributed round-robin arbitration. In addition, each symmetric agent
must also maintain a symmetric ownership state bit that describes if the bus ownership is being
retained by the current symmetric owner (“busy” state) or being returned to a state where no
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symmetric agent currently owns the bus (“idle” state). The Pentium Pro processor will enter the
idle state after AERR#, BINIT# and RESET#. The notion of idle state enables a shorter, two-
clock arbitration latency from bus request to its ownership. The notion of busy state enables bus
parking but increases arbitration latency to a minimum of four clocks due to a handshake with
the current symmetric owner. Bus parking means that the current bus owner maintains bus own-
ership even if it currently does not have a pending transaction. If a transaction becomes pending
before that bus owner relinquishes bus ownership, it can drive the transaction without having to
arbitrate for the bus. The Pentium Pro processor implements bus parking.

4.1.3.1.1. AgentID

An agent’s Agent ID is determined at reset and cannot change without the assertion of RESET#.
The Agent ID is unique for every symmetric agent.

4.1.3.1.2. Rotating ID

The Rotating ID points to the agent that will be the lowest priority agent in the next arbitration
event with active requests, (this is the Agent ID of the current symmetric bus owner). All sym-
metric agents maintain the same Rotating ID. The Rotating ID is initialized to 3 at reset. It is
assigned the Agent ID of the new symmetric owner after an arbitration event so that the new
owner becomes the lowest priority agent on the next arbitration event.

4.1.3.1.3. Symmetric Ownership State

The symmetric ownership state is reset to idle on an arbitration reset. The state becomes busy
when any symmetric agent completes the Arbitration Phase and becomes symmetric owner. The
state remains busy while the current symmetric owner retains bus ownership or transfers it to a
different symmetric agent on the next arbitration event. When the state is busy, the Rotating ID
is the same as the symmetric owner Agent ID. When the state is idle, the Rotating ID is the same
as the last symmetric owner Agent ID. Note that the symmetric ownership state refers only to
the symmetric bus owner. The priority agent can have actual physical ownership of the request
bus, even while the state is busy and there is also a symmetric bus owner.

4.1.3.2. REQUEST STALL PROTOCOL

Any bus agent can stop all agents from issuing transactions via the BNR# (block next request)
pin. This is typically done when the agent has one free request buffer remaining and cannot rely
on the In-order Queue depth limit to sufficiently limit the number of transactions initiated on the
bus. BNR# can be used to stall transactions for a user-defined amount of time, or it can be used
to throttle the frequency of the transactions issued to the bus. BNR# can also be used to prevent
any transactions from being issued after RESET# or BINIT# to block transactions while bus
agents initialize themselves. For debugging, performance monitoring, or test purposes, an agent
can assert BNR# to issue one transaction to the bus at a time (no pipelining). When stalling the
bus, the stalling condition must be able to clear without requiring access to the bus.
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4.1.3.2.1. Request Stall States

The request stall protocol can be described using three states: The “free” state in which transac-
tions can be driven to the bus normally, one every 3 clocks, the “stalled” state in which no trans-
actions are driven to the bus, and the “throttled” state in which one transaction may be driven to
the bus. The throttled state is a temporary state which will transition to either free or stalled at
the next sample point.

If BNR# is always active when sampled, then no transactions are driven to the bus because all
agents remain in the stalled state.

To get to the free state where transactions are driven normally to the bus (a maximum of one
ADS# every three clocks), BNR# must be sampled inactive on two consecutive sample points.

The existence of the throttled state enables one transaction to be sent to the bus every time BNR#
is sampled deasserted. When the processor is in the throttled state, one transaction can be driven
to the bus. The throttled state is a temporary state.

4.1.3.2.2. BNR# Sampling

BNR# is deasserted with RESET# and BINIT#. After RESET#, BNR# is first sampled 2 clocks
after RESET# is sampled deasserted. After BINIT#, BNR# is first sampled 4 clocks after
BINIT# is sampled asserted. BNR# is a wired-OR signal and must not be driven active for two
consecutive clocks, if it is asserted in one clock, it must be deasserted in the next clock.

BNR# has two sampling modes. It is sampled every other clock while in the stalled or throttled
state, and it is sampled in the third clock after ADS# is sampled asserted in the free state.

BNR# must be driven active only during a valid sampling window and should be deasserted in
the following clock. Bus agents must ignore BNR# in the clock after a valid sampling window.

41.4. Arbitration Protocol Description

This section describes the arbitration protocol using examples. For reference, Section 4.1.5.,
“Symmetric Agent Arbitration Protocol Rules” through Section 4.1.7., “Bus Lock Protocol
Rules” list the rules.

4.1.4.1. SYMMETRIC ARBITRATION OF A SINGLE AGENT AFTER RESET#

Figure 4-2 illustrates bus arbitration initiated after a reset sequence. BREQ[3:0]#, BPRI#,
LOCK#, and BNR# must be deasserted during RESET#. (BREQO# is asserted 2 clocks before
RESET# is deasserted for initialization reasons as described in Section 4.1.2., “Bus Signals”.)
Symmetric agents can begin arbitration after BIST and MP initialization by driving the
BREQ[3:0]# signals. Once ownership is obtained, the symmetric owner can park on the bus as
long as no other symmetric agent is requesting it. The symmetric owner can voluntarily release
the bus to idle.
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Figure 4-2. Symmetric Arbitration of a Single Agent After RESET#

RESET# is asserted in T1, which is observed by all agents in T2. This signal forces all agents to
initialize their internal states and bus signals. In T3 or T4, all agents deassert their arbitration
request signals BREQ[3:0]#, BPRI# and arbitration modifier signals BNR# and LOCK#. The
symmetric agents reset the ownership state to idle and the Rotating ID to three (so that bus agent
0 has the highest symmetric priority after RESET# is deasserted).

In T9, after BIST and MP initialization, agent 1 asserts BREQ1# to arbitrate for the bus. In T10,
all agents observe active BREQ1# and inactive BREQ[0,2,3]#. During T10, all agents determine
that agent 1 is the only symmetric agent arbitrating for the bus and therefore has the highest pri-
ority. As a result, in T11, all agents update their Rotating ID to “1”, the Agent ID of the new
symmetric owner and its ownership state to busy, indicating that the bus is busy.

Starting from T10, agent 1 continually monitors BREQIO0,2,3}4# to determine if it can park on the
bus. Since BREQ[0,2,3]# are observed inactive, it continues to maintain bus ownership by keep-
ing BREQ1# asserted.

In T16, agent 1 voluntarily deasserts BREQ1# to release bus ownership, which is observed by
all agents in T17. In T18 all agents update the ownership state from busy to idle. This action re-
duces the arbitration latency of a new symmetric agent to two clocks on the next arbitration
event.
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4.1.4.2. SIGNAL DEASSERTION AFTER BUS RESET

Figure 4-3 illustrates how signals are deasserted after a bus reset. This relaxed deassertion pro-
tocol gives all bus agents time to initialize. Since agents must deassert bus signals in response to
both BINIT# and RESET#, agents will respond to both reset assertions in the same fashion.

1 2 3 4 5
CLK r\gr\_z[_\#’\;’_\d
BINIT# I\ /
BNR# /
wire-or signals /
other signals /

Figure 4-3. Signal Deassertion After Bus Reset

On observation of the start of the reset event, all bus signals must be deasserted as indicated in
Figure 4-3. This event is the deasserted to asserted transition of RESET# or BINIT#. In T1 the
first agent asserts BINIT#. In T2 all agents sample RESET# or BINIT# active. In response to
observing BINIT# active in T2 any agent driving BINIT# from the first or second clock must
deassert BINIT# in T4 (see Chapter 8, Data Integrity for details on the BINIT# protocol). Also
in T4, at the latest, all agents must deassert the wired-or control signals HIT#, HITM#, AERR#,
BERR# and BNR#.

In TS, BINIT#, BNR#, HIT#, HITM#, AERR# and BERR# may have invalid signal level due
to wired-or glitches. T5 is the latest that an agent can deassert all other non wired-or bus signals.
In T6 all signals should have a valid inactive level.

All bus signals are sampled two clocks after the end of the reset event. This event for RESET#
is sampling the asserted to deasserted transition. For BINIT#, this event is the fourth clock of
BINIT# assertion. BNR# must be asserted in the clock after the end of reset event, if the agent
intends to block ADS#.

All bus drivers must be aware of potential wired-or glitches due to power on configuration. If a
signal could be driven due to power on configuration, a driver must wait one additional cycle
after the end of the reset event before the signal can be asserted for normal operation.
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4.1.4.3. DELAY OF TRANSACTION GENERATION AFTER RESET

Figure 4-4 illustrates how transactions can be prevented from being issued to the bus after reset
in order to give all bus agents time to initialize. Note that symmetric arbitration is not affected
by the state of BNR#.
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Figure 4-4. Delay of Transaction Generation After Reset

Figure 4-4 is identical to Figure 4-2 except that BNR# is sampled asserted at its first sampling
point in T8. This keeps the request stall state in the stalled state(S) where no transactions are
allowed to be generated. Note that this does not affect the arbitration event starting with
BREQ1# assertion in T7. Agent 1 wins symmetric ownership in T8, even though no transactions
may be generated.

BNR#is sampled deasserted in its next two sampling points and the request stall state transitions
through the throttled state(T) in T11 to the free state(F) in T13. Transactions can be issued by
agent 1 in any clock starting from T11 through T15.
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4.1.4.4. SYMMETRIC ARBITRATION WITH NO LOCK#

Figure 4-5 illustrates arbitration between two or more symmetric agents while LOCK# and
BPRI# stay inactive. Because LOCK# and BPRI# remain inactive, bus ownership is determined
based on a Rotating ID and bus ownership state. The symmetric agent that wins the bus releases
it to the other agent as soon as possible (the Pentium Pro processor limits it to one transaction,
unless the outstanding operation is locked). The symmetric agent may re-arbitrate one clock af-
ter releasing the bus. Also note that when a symmetric agent n issues a transaction to the bus,
BREQ~r# must stay asserted until the clock in which ADS# is asserted.
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Figure 4-5. Symmetric Bus Arbitration with no LOCK#

In T1, all arbitration requests BREQ[3:0]# and BPRI# are inactive. The bus is not stalled by
BNR#. The Rotating ID is 3 and bus ownership state is idle(I). Hence, the round-robin arbitra-
tion priority is 0,1,2,3.

In T2, agent 0 and agent 1 activate BREQO# and BREQ1# respectively to arbitrate for the bus.
In T3, all agents observe inactive BREQ[3:2]# and active BREQ[1:0]#. Since the Rotating ID is
3, during T3, all agents determine that agent O has the highest priority and is the next symmetric
owner. In T4, all agents update the Rotating ID to zero and the bus ownership state to busy(B).

I 4-9
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Since BPRI# is observed inactive in T3 and the bus is not stalled, in T4, agent O can begin a new
Request Phase. (If BPRI# has been asserted in T3, the arbitration event, the updating of the Ro-
tating ID, and ownership states would not have been affected. However, agent 0 would not be
able to drive a transaction in T4). In T4, agent O initiates request phase Oa.

In response to active BREQ1# observed in T3, agent 0 deasserts BREQO# in T4 to release bus
ownership. Since it has another internal request, it immediately reasserts BREQO# after one
clock in T5.

In TS5, all symmetric agents observe BREQO# deassertion, the release of bus ownership by the
current symmetric owner. During T5, all symmetric agents recognize that agent 1 now remains
the only symmetric agent arbitrating for the bus. In T6, they update the Rotating ID to 1. The
ownership state remains busy.

Agent 1 assumes bus ownership in T6 and generates request phase 1a in T7 (three cycles from
request Oa). In response to active BREQO# observed in T5, agent 1 deasserts BREQ1# in T7
along with the first clock of the Request Phase and releases symmetric ownership. Meanwhile,
agent 2 asserts BREQ2# to arbitrate for the bus. In T8, all agents observe inactive BREQ14#, the
release of ownership by the current symmetric owner. Since the Rotating ID is one, and
BREQO#, BREQ?2# are active, all agents determine that agent 2 is the next symmetric owner. In
T9, all agents update the Rotating ID to 2. The ownership state remains busy.

In T10, (three cycles from request 1a) agent 2 drives request 2a. In response to active BREQO#
observed in T9, agent 2 deasserts BREQ2# in T10. In T11 all agents observe inactive BREQ2#
and active BREQO#. During T11, they recognize that agent O is the only symmetric agent arbi-
trating for the bus. In T12, all agents update the Rotating ID to 0. The ownership state remains
busy.

In T12, agent 0 assumes bus ownership. In T13 agent O initiates request 0b (three cycles from
request 2a). Because no other agent has requested the bus, agent O parks on the bus by keeping
its BREQO# signal active.

4.1.4.5. SYMMETRIC BUS ARBITRATION WITH NO TRANSACTION
GENERATION

Figure 4-6 is a modification of Figure 4-5 to illustrate what happens if an agent n asserts
BREQ~r#, but does not drive a transaction. Note that once bus ownership is requested by an agent
by asserting its BREQn# signal, BREQn# must not be deasserted until bus ownership is gained
by agent n. Bus agent n need not drive a transaction, however bus ownership must be acquired.
Notice that since transaction 2a is not driven that transaction Ob can be driven sooner than it was
in Figure 4-5.
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Figure 4-6. Symmetric Arbitration with no Transaction Generation

This figure is the same as Figure 4-5 up until T9.

In T9, the clock that bus agent 2 wins bus ownership, bus agent 2 deasserts BREQ2# because
the need to drive the transaction was removed (for example, on the Pentium Pro processor, if a
transaction is pending to writeback a replaced cache line and it gets snooped, HITM# will be
asserted and the line will be written out as an implicit writeback. The pending transaction to
writeback the line gets cancelled).

In T10, all agents observe an inactive BREQ2# and an active BREQO#. During T10 they recog-
nize that agent O is the only symmetric agent arbitrating for the bus. In T11, all agents update
the Rotating ID to 0. The ownership remains busy and agent O initiates request Ob. Because no
other agent has requested the bus, agent O parks on the bus by keeping its BREQO# signal active.

4.1.4.6. BUS EXCHANGE AMONG SYMMETRIC AND PRIORITY AGENTS
WITH NO LOCKi#

Figure 4-7 illustrates bus exchange between a priority agent and two symmetric agents. A sym-
metric agent relinquishes physical bus ownership to a priority agent as soon as possible. A max-
imum of one unlocked ADS# can be generated by the current symmetric bus owner in the clock
after BPRI# is asserted because BPRI# has not yet been observed. Note that the symmetric bus
owner (Rotating ID) does not change due to the assertion of BPRI#. BPRI# does not affect sym-
metric agent arbitration, or the symmetric bus owner. Finally, note that in this example BREQO#
must remain asserted until T12 because transaction Ob has not yet been driven. An agent can not
drive a transaction unless it owns the bus in the clock in which ADS# is to be driven for that
transaction.
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Figure 4-7. Bus Exchange Among Symmetric and Priority Agent with no LOCK#

In Figure 4-7, before T1, agent 0 owns the bus. The Rotating ID is zero, the ownership state is
busy.

In T3, the priority agent asserts BPRI# to request bus ownership. In T4, agent 0, the current own-
er, issues its last request Oa. In T4, all symmetric agents observe BPRI# active, and guarantee no
new unlocked request generation starting in T5.

In T3, the priority agent observes inactive ADS# and inactive LOCK# and determines that it may
not gain request bus ownership in T5 because the current request bus owner might issue one last
request in T4. In TS, the priority agent observes inactive LOCK# and determines that it owns the
bus and may begin issuing requests starting in T7, four clocks from BPRI# assertion and three
clocks from previous request generation.

The priority agent issues two requests, I/Oa, and I/Ob, and continues to assert BPRI# through
T10. In T10, the priority agent deasserts BPRI# to release bus ownership back to the symmetric
agents. In T10, agent 1 asserts BREQ1# to arbitrate for the bus.

In T11, agent O, the current symmetric owner observes inactive BPRI# and initiates request Ob
in T13 (three clocks from previous request.) In response to active BREQ1#, agent O deasserts
BREQO# in T13 to release symmetric ownership. In T14 all symmetric agents observe inactive
BREQO#, the release of ownership by the current symmetric owner. Since BREQ1# is the only
active bus request they assign agent 1 as the next symmetric owner. In T15 symmetric agents
update the Rotating ID to one the Agent ID of the new symmetric owner.
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SYMMETRIC AND PRIORITY BUS EXCHANGE DURING LOCK#

Figure 4-8 illustrates an ownership request made by both a symmetric and a priority agent during
an ongoing indivisible sequence by a symmetric owner. When this is the case, LOCK# takes pri-
ority over BPRI#. That is, the symmetric bus owner does not give up the bus to the priority agent
while it is driving an indivisible locked operation. Note that bus agent 1 can hold bus ownership
even though BPRI# is asserted. Like the BREQ[3:0]# signals, if the priority agent is going to
issue a transaction, BPRI# must not be driven inactive until the clock in which ADS# is driven

asserted.
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Figure 4-8. Symmetric and Priority Bus Exchange During LOCK#

Before T1, agent 0 owns the bus. In T1, agent O initiates the first transaction in a bus locked op-
eration by asserting LOCK# along with request Oa. Also in T1, the priority agent and agent 1
assert BPRI# and BREQI1# respectively to arbitrate for the bus. Agent O does not deassert
BREQO# or LOCK# since it is in the middle of a bus locked operation.

In T7, agent O initiates the last transaction in the bus locked operation. At the request’s success-
ful completion the indivisible sequence is complete and agent O deasserts LOCK# in T11. Since
BREQ1# is observed active in T10, agent 0 also deasserts BREQO# in T11 to release symmetric
ownership.

The deassertion of LOCK# is observed by the priority agent in T12 and it begins new-request
generation from T13. The deassertion of BREQO# is observed by all symmetric agents and they
assign the symmetric ownership to agent 1, the agent with active bus request. In T13, all sym-
metric agents update the Rotating ID to one, the Agent ID of the new symmetric owner.
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Since agent 1 observed active BPRI# in T12, it guarantees no new request generation beginning
T13. In T13, the priority agent deasserts BPRI#. In T15, three clocks from the previous request
and at least two clocks from BPRI# deassertion agent 1, the current symmetric owner issues
request la.

4.1.4.8. BNR# SAMPLING

This section illustrates how BNR# is sampled by all agents, and how the stall protocol is imple-
mented. Figure 4-9 illustrates BNR# sampling as it begins after the processor is brought out of
reset. Figure 4-10 illustrates how BNR# is sampled once the stall protocol state machine
reaches the free state. Section 4.1.3.2., “Request Stall Protocol” may be useful as reference
when reading this section.
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Figure 4-9. BNR# Sampling After RESET#

RESETH# is asserted in T1, and observed by all agents in T2. In T3 or T4, BNR# must be deas-
serted and the request stall state is initialized to the stalled state.

In T5, RESET# is driven inactive, and in T6, RESET# is sampled inactive. Any agent that re-
quires more time to initialize its bus unit logic after reset is allowed to delay transaction gener-
ation by asserting BNR# in T7. In T7, the clock after RESET# is sampled inactive, BNR# is
driven to a valid level. In T8, two clocks after RESET# is sampled inactive, BNR# is sampled
active, causing the processor to remain in the stalled state in T9.

Because the processor is in the stalled state, BNR# is sampled every 2 clocks. BNR# is sampled
asserted again in T10, so the state remains stalled. In T12, BNR# is sampled inactive. In T13,
the request stall state transitions to the throttled state. One transaction can be issued to the bus
in the throttled state, so ADS# is driven active in T13. In the throttled state, BNR# continues to
be sampled every other clock.
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In T14, BNR# is again sampled asserted, so the state transitions to stalled in T15 and no further
transactions are issued. In T16, BNR# is sampled deasserted, which causes the state machine to
transition to throttled in T17. In T18, BNR is again sampled deasserted, which transitions the
state machine to free in T19. BNR# is not sampled again until after ADS#, RESET#, or BINIT#.
A transaction may be issued in T17 or any time after.

Once the request stall state moves into the free state, BNR# sampling no longer occurs
every other clock, it occurs 3 clocks after ADS# is driven asserted. Figure 4-10 illustrates
this occurrence.
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Figure 4-10. BNR# Sampling After ADS#

In T1, the request stall state is in the throttled state and a transaction is issued. BNR# is sampled
every other clock. BNR# is sampled asserted in T2, so the request-stall state transitions to the
stall state in T3 and no further transactions are issued. BNR# sampling continues every other
clock.

In T4, BNR# is sampled deasserted, so the throttled state is entered again in T5, and a transaction
isissued. In T6, BNR# is sampled deasserted again, so the request-stall state machine moves into
the free state in T7. BNR# sampling changes to the 3rd clock after ADS# is sampled active.

In T8 (3 clocks after the last ADS# is driven), another Request Phase is driven. In T9, 3 clocks
after the last ADS# is sampled active, BNR# is again sampled. Because BNR# is sampled deas-
serted, the state remains free in T10. ADS# could have been driven asserted in T11, but a trans-
action was not internally pending in time, so a new transaction is driven to the bus in T12.

BNR# is sampled again in T12 (3 clocks after the last ADS# was sampled active). BNR# is sam-
pled asserted, so in T13, the request stall state transitions to the stalled state, and BNR# sampling
returns to every other clock. Note that the ADS# driven in T12 is the last time a transaction can
be driven to the bus after BNR# is sampled active.

In T14, BNR# is sampled deasserted so the request stall state transitions to throttled in T15. In
T16, BNR# is again sampled deasserted, so the state transitions to free in T17 (not shown).
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4.1.5. Symmetric Agent Arbitration Protocol Rules

4.1.5.1. RESET CONDITIONS

On observation of active RESET# or BINIT#, all BREQ[3:0]# signals must be deasserted in one
or two clocks. On observation of active AERR# (with AERR# observation enabled), all
BREQ[3:0]# signals must be deasserted in the next clock. All agents also re-initialize Rotating
ID to three and ownership state to idle. Based on this situation, the new arbitration priority is
0,1,2,3 and there is no current symmetric owner.

When a reset condition is generated by the activation of BINIT#, BREQn# must remain deas-
serted until 4 clocks after BINIT# is driven inactive. The first BREQ# sample point is 4 clocks
after BINIT# is sampled inactive.

When the reset condition is generated by the activation of RESET#, BREQn# as driven by sym-
metric agents must remain deasserted until 2 clocks after RESET# is driven inactive. The first
BREQ# sample point is 2 clocks after RESET# is sampled inactive. For power-on configuration,
the system interface logic must assert BREQO# for at least two clocks before the clock in which
RESET# is deasserted. BREQO# must be deasserted by the system interface logic in the clock
after RESET# is sampled deasserted. Agent 0 must delay BREQO# assertion for a minimum
of three clocks after the clock in which RESET# is deasserted to guarantee wire-or glitch
free operation.

When a reset condition is generated by AERR#, all agents except for a symmetric owner that
has issued the second or subsequent transaction of a bus-locked operation must keep BREQn#
inactive for a minimum of four clocks. The bus owner » that has issued the second or subsequent
transaction of bus locked operation must activate its BREQn# two clocks from inactive
BREQr#. This approach ensures that the locked operation remains indivisible.

4.1.5.2. BUS REQUEST ASSERTION

A symmetric agent n can activate BREQn# to arbitrate for the bus provided the reset conditions
described in Section 4.1.5.1., “Reset Conditions” are satisfied. Once activated, BREQn# must
remain active until the agent becomes the symmetric owner. Becoming the symmetric owner is
a precondition to entering the Request Phase.

4.1.5.3. OWNERSHIP FROM IDLE STATE

When the ownership state is idle, a new arbitration event begins with activation of at least one
BREQ[3:0J#. During the next clock, all symmetric agents assign ownership to the highest pri-
ority symmetric agent with active bus request. In the following clock, all symmetric agents up-
date the Rotating ID to the new symmetric owner Agent ID and the ownership state to busy. The
new symmetric owner may enter the Request Phase as early as the clock the Rotating ID is
updated.
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4.1.5.4. OWNERSHIP FROM BUSY STATE

When the ownership state is busy, the next arbitration event begins with the deassertion of
BREQn# by the current symmetric owner.

4.1.5.4.1. Bus Parking and Release with a Single Bus Request

When the ownership state is busy, bus parking is an accepted mode of operation. The symmetric
owner can retain ownership even if it has no pending requests, provided no other symmetric
agent has an active arbitration request.

[T 1]

The symmetric owner “n” may eventually deassert BREQn# to release symmetric ownership
even when other requests are not active. When the owner deasserts BREQn#, all agents update
the ownership state to idle, but maintain the same Rotating ID.

4.1.5.42. Bus Exchange with Multiple Bus Requests

When the ownership state is busy, on observing at least one other BREQm# active, the current
symmetric owner n can hold the bus for back-to-back transactions by simply keeping BREQn#
active. This mechanism must be used for bus-lock operations and can be used for unlocked op-
erations, with care to prevent other symmetric agents from gaining ownership. (The Pentium Pro
processor limits the number of additional unlocked requests to one.)

A new arbitration event begins with deactivation of BREQn#. On observing release of owner-

“ship by the current symmetric owner, all agents assign the ownership to the highest priority sym-
metric agent arbitrating for the bus. In the following clock, all agents update the Rotating ID to
the new symmetric owner Agent ID and maintain bus ownership state as busy.

A symmetric agent n shall deassert BREQn# for a minimum of one clock.

4.1.6. Priority Agent Arbitration Protocol Rules

4.1.6.1. RESET CONDITIONS

On observation of active RESET# or BINIT#, BPRI# must be deasserted in one or two clocks.
On observation of active AERR# (with AERR# observation enabled), BPRI# must be deasserted
in the next clock.

When the reset condition is generated by the activation of BINIT#, BPRI# must remain deas-
serted until 4 clocks after BINIT# is driven inactive. The first BPRI# sample point is 4 clocks
after BINIT# is sampled inactive.

When reset condition is generated by AERR#, the priority agent must keep BPRI# inactive for
a minimum of four clocks unless it has issued the second or subsequent transaction of a locked
operation. The priority owner that has issued the second or subsequent transaction of a locked
operation must activate its BPRI# two clocks from inactive BPRI#. This ensures that the locked
operation remains indivisible.
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4.1.6.2. BUS REQUEST ASSERTION

The priority agent can activate BPRI# to seek bus ownership provided the reset conditions de-
scribed in Section 4.1.6.1., “Reset Conditions” are satisfied. BPRI# can be deactivated at any
time.

On observing active BPRI#, all symmetric agents guarantee no new non-locked requests are
generated.

4.1.6.3. BUS EXCHANGE FROM AN UNLOCKED BUS

If LOCK# is observed inactive in two clocks after BPRE# is driven asserted, the priority agent
has permission to drive ADS# four clocks after BPRI# assertion. The priority agent can further
reduce its arbitration latency by observing the bus protocol and determining that no other agent
could drive a request. For example, Arbitration latency can be reduced by to two clocks by ob-
serving ADS# active and LOCK# inactive on the same clock BPRI# is driven asserted or it can
be reduced to three clocks by observing ADS# active and LOCK# inactive in the clock after
BPRI# is driven asserted.

4.1.6.4. BUS RELEASE

The priority agent can deassert BPRI# and release bus ownership in the same cycle that it gen-
erates its last request. It can keep BPRI# active even after the last request generation provided it
can guarantee forward progress of the symmetric agents. When deasserted, BPRI# must stay in-
active for a minimum of two clocks.

4.1.7. Bus Lock Protocol Rules

4.1.7.1. BUS OWNERSHIP EXCHANGE FROM A LOCKED BUS

The current symmetric owner n can retain ownership of the bus by keeping the LOCK# signal
active (even if BPRI# is asserted). This mechanism is used during bus lock operations. After the
lock operation is complete, the symmetric owner deasserts LOCK# and guarantees no new re-
quest generation until BPRI# is observed inactive.

On asserting BPRI#, the priority agent observes LOCK# for the next two clocks to monitor
request bus activity. If the current symmetric owner is performing locked requests (LOCK#
active), the priority agent must wait until LOCK# is observed inactive.

4.2. REQUEST PHASE

After completion of the Arbitration Phase, an agent is allowed to enter the Request Phase. This
phase is used to initiate new transactions on the bus, and lasts for two consecutive clocks. During
the first clock, the information required to snoop a transaction and start a memory access be-
comes available. During the next clock, complete information required for the entire transaction
becomes available.
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4.2.1. Bus Signals

The Request Phase bus signals are ADS#, A[35:3]#, REQa[4:0]#, REQb[4:0]#, ATTR[7:0]#,
DID[7:0]#, BE[7:0]#, EXF[4:0]#, AP[1:0]#, and RP#. In addition, the LOCK# signal is driven
during this phase. Request Phase signals are bused among all agents. Since information is car-
ried during two clocks, the first clock is identified with the suffix a and the second clock is iden-
tified with the suffix b. For example, RPa# and RPb#.

4.2.2. Request Phase Protocol Description

The Request Phase occurs when a transaction is actually issued to the bus. ADS# is asserted
and the transaction information is driven. Figure 4-11 shows the Request Phase of several
transactions.
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Figure 4-11. Request Generation Phase

In T1, only one bus agent (agent 0) drives a request for the bus. In T2, BREQ[3:0]#, BPRI# and
BNR# are sampled and it is determined that BREQO# becomes the bus owner in T3.

In T3, agent O drives a transaction by asserting ADS#. Also in T3, A[35:3]#, REQa[4:0]#,
AP[1:0]# and RP# are driven valid. REQaO# indicates that the transaction is a write transaction.

In T4, the second clock of the Request Phase, the rest of the transaction information is driven
out on the following signals: REQb[4:0]#, ATTR[7:0]#, DID[7:0]#, BE[7:0]#, and EXF[4:0]#.
AP[1:0]#, and RP# remain valid in this clock.

When a transaction is driven to the bus, the internal state must be updated in the clock after
ADS# is observed asserted. Therefore, in T5 the internal request count {rcnt} is incremented by
one.
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In T6, agent O issues another transaction, and in T8, the internal state is updated appropriately.

In the series of clocks indicated in the diagram by T10, five more transactions become outstand-
ing (this status is indicated by the {rcnt}). In T13, the 8th transaction is issued as indicated on
the bus by ADS# assertion in T13. In T15, the {rcnt} is incremented to 8, the highest possible
value for {rcnt}. No additional transactions can be issued until a response is given for
transaction 0.

4.2.3. Request Phase Protocol Rules

4.2.3.1. REQUEST GENERATION

The Request Phase is always one clock of active ADS# followed by one clock of inactive ADS#.
There is always an idle clock between request phases for bus turnaround. Address, command,
and parity information is transferred on the first two clocks on pins A[35:3]#, REQ[4:0]#, and
AP[1:0}# and RP#. Refer to Chapter 3, Bus Overview for a description of which signals are driv-
en on these pins. Although LOCK# is part of the Arbitration Phase, it is driven during the first
clock of the Request Phase. AP[1:0]# and RP# are valid during a valid Request Phase.

On observation of a new request, the transaction counts including {rcnt} and {scnt} are updated
with the new transaction.

4.2.3.2. REQUEST PHASE QUALIFIERS

The Request Phase for a new transaction may be initiated when:

o The agent contains one or more pending requests.

e The agent owns the bus as described in the Arbitration Phase section.

o The internal request count state is less than the maximum number of entries in the I0Q.

o The bus is not stalled. In other words, the Request Stall state (as described in Section 4.1.,
“Arbitration Phase”) is free or throttled.

o The preceding transaction’s Request Phase is complete. In other words, ADS# is observed
inactive on the previous clock.

4.3. ERROR PHASE

Receiving agents use the Error Phase to indicate parity errors in Request Phase. Parity is checked
during valid Request Phase (One clock active ADS# followed by one clock inactive ADS#) on
AP[1:0]# and RP# signals.

If the request parity is enabled in the power-on configuration as described in Chapter 9, Config-
uration, then the agent checks parity in the two clocks. If transaction cancellation due to AERR#
is enabled (AERR# observation) in the power-on-configuration and AERR# is observed active
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during Error Phase, then all agents remove the transaction from their In-order Queue, cancel
subsequent transaction phases, remove bus requests, and reset their bus arbiters. Reset of the bus
arbiters enables errors in the Arbitration Phase to be corrected. The transaction may be retried.

4.3.1. Bus Signals

The only signal driven in this state is AERR#. AERR# is bused among all agents.

44. SNOOP PHASE

In the Snoop Phase, all caching agents drive their snoop results and participate in coherency res-
olution. The agents generate internal snoop requests for all memory transactions. An agent is
also allowed to snoop its own bus requests and participate in the Snoop Phase along with other
bus agents. The Pentium Pro processor snoops its own transactions. The snoop results are driven
on HIT# and HITM# signals in this phase.

In addition, during the Snoop Phase, the memory agent or I/O agent drives DEFER# to indicate
whether the transaction is committed for completion immediately or if the commitment is
deferred.

The results of the Snoop Phase are used to determine the final state of the cache line in all agents
and which agent is responsible for completion of Data Phase and Response Phase of the current
transaction.

4.41. Snoop Phase Bus Signals

The bus signals driven in this phase are HIT#, HITM# and DEFER#. These signals are bused
among all agents. The requesting agent uses the HIT# signal to determine the permissible cache
state of the line. The HITM# signal is used to indicate what agent will provide the requested da-
ta. The DEFER# signal indicates whether the transaction will be committed for completion im-
mediately or if the commitment is deferred.

The results of combinations of HIT# and HITM# signal encodings during a valid Snoop Phase
is shown in Table 4-1.

Table 4-1. HIT# and HITM# During Snoop Phase

Snoop Result HIT# HITM#
CLEAN o 0
MODIFIED 0 1
SHARED 1 0
STALL 1 1

NOTE:
1. O indicates inactive, 1 indicates active.
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The CLEAN result means that at the end of the transaction, no other caching agent will retain
the addressed line in its cache, and that the requesting agent can store the cache line in any state
(Modified, Exclusive, Shared or Invalid).

The MODIFIED result means that the addressed line is in the modified state in an agent on the
Pentium Pro processor bus. The agent that “owns” the line will writeback the line to memory.
The requesting agent will pick the line off the bus as it is written back.

The SHARED result means that addressed line is valid in the cache of another agent on the Pen-
tium Pro processor bus, but that it is not modified. The requesting agent therefore can store the
cache line in the shared state only.

The STALL result means that the all agents on the Pentium Pro processor bus are not yet ready
to provide a snoop result, and that the Snoop Phase will be stalled for another 2 clocks. Any
agent on the bus may use the STALL state on any transaction as a stall mechanism.

4.4.2. Snoop Phase Protocol Description

This section describes the Snoop Phase using examples.

4.4.2.1. NORMAL SNOOP PHASE

Figure 4-12 illustrates a four-clock Snoop Result Phase for pipelined requests. The snoop results
are driven four clocks after ADS# is asserted and at least three clocks from the Snoop Phase of
a previous transaction. Note that no snoop results are stalled and the maximum request genera-
tion rate is one request every three clocks.
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Figure 4-12. Four-Clock Snoop Phase
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In T1, there are no transactions outstanding on the bus and {scnt} is 0. In T2, transaction 1 is
issued. In T4, as a result of the transaction driven in T2, {scnt} is incremented.

In TS, transaction 2 is issued. In T6, which is four clocks after the corresponding ADS# in T2,
the snoop results for transaction 1 are driven. In T7, {scnt} is incremented indicating that there
are two transactions on the bus that have not completed the Snoop Phase. Also in T7, the snoop
results for transaction 1 are observed. As a result, in T8, {scnt} is decremented.

In T8, the third transaction is issued. Two clocks later in T10, {scnt} is incremented. In T11,
{scnt} is decremented because the snoop results from transaction 2 are observed in T10.

In T13, the snoop results for transaction 3 are observed and in T14 {scnt} is again decremented.

4.4.2.2. STALLED SNOOP PHASE

Figure 4-13 illustrates how a slower snooping agent can delay the Snoop Phase if it is unable to
deliver valid snoop results within four clocks after ADS# is asserted. The figure also illustrates
that the snoop phase of subsequent trasactions are also stalled and occur two clocks late due to
the stall of transaction one’s snoop phase.
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Figure 4-13. Snoop Phase Stall Due to a Slower Agent

Transactions 1, 2 and 3 are initiated with ADS# activation in T2, T5, and T8.

The Snoop Phase for transaction 1 begins in T6 four clocks from ADS#. All agents capable of
driving valid snoop response in four clocks drive appropriate levels on the snoop signals HIT#,
HITM#, and DEFER#. A slower agent that is unable to generate a snoop response in four clocks
asserts both HIT# and HITM# together in T6 to extend the Snoop Phase. Note that if the Snoop

I 4-23



BUS PROTOCOL "Ttel o

Phase is extended, {scnt} is not decremented. Because the Snoop Phase is extended, the value
of DEFER# is a “don’t care”.

On observing active HIT# and HITM# in T7, all agents determine that the transaction’s Snoop
Phase is extended by two additional clocks through T8. In T8, the slower snooping agent is ready
with valid snoop results and needs no additional Snoop Phase extensions. In T8, all agents drive
valid snoop results on the snoop signals. In T9, all agents observe that HIT# and HITM# are not
asserted in the same clock and determine that the valid snoop results for transaction 1 are avail-
able on the snoop signals.

The Snoop Phase for transaction 2 begins in T11, three clocks from Snoop Phase of transaction
1 or four clocks from Request Phase of transaction 2, whichever is later. Since the Snoop Phase
for transaction 2 is not extended, the Snoop Phase for transaction 2 completes in one clock.

The Snoop Phase for transaction 3 begins in T14, the later of three clocks from Snoop Phase of
transaction 2, and four clocks from Request Phase of transaction 3. Since the Snoop Phase for
transaction 3 is not extended, the Snoop Phase for transaction 3 completes in one clock.

For the example shown, the Snoop Phase is always six clocks from the Request Phase due to the
initial Snoop Phase stall from Transaction 1. However, the maximum request generation rate is
still one request every three clocks.

4.4.3. Snoop Phase Protocol Rules

This section will list the Snoop Phase protocol rules for reference.

4.4.3.1. SNOOP PHASE RESULTS

During a valid Snoop Phase (as defined below), snoop results are presented on HIT#, HITM#,
and DEFER# signals for one clock. If the snooping agent contains a MODIFIED copy of the
cache line, then HITM# must be asserted. If the snooping agent does not assert HITM# and it
plans to retain a SHARED copy of the cache line at the end of the Snoop Phase, it must assert
HIT#. HIT# and HITM# are asserted together to indicate that the agent is requesting a STALL.
All non-memory accesses will indicate CLEAN or STALL. DEFER# must be asserted by an ad-
dressed memory or I/O agent if the agent is unable to guarantee in-order completion of the re-
quested transaction.

The results of the Snoop Phase require specific behavior from the addressed and snooping agents
for future phases of the transaction. The agent asserting HITM# normally must writeback the
modified cache line. The addressed agent must accept the writeback line from the snooping
agent, merge it with any write data, and drive an implicit writeback response.

If HITM# is inactive, the agent asserting DEFER# must reply with a deferred or retry response
for the transaction. Only the addressed agent can assert DEFER#. The requesting agent must not
begin another order-dependent transaction until either DEFER# is sampled deasserted in the
Snoop Phase, or the deferred transaction receives a successful completion via a deferred reply
or a retry.
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For all transactions with LOCK# inactive, HITM# active guarantees in-order completion. Dur-
ing unlocked transactions, HITM# overrides the assertion of DEFER#.

If DEFER# is asserted during the Snoop Phase of a locked operation, the locked operation is pre-
maturely aborted. During the first transaction of a locked operation, if HITM# and DEFER# are
active together, the transaction completes with cache line writeback and implicit writeback re-
sponse, but the request agent must begin a new locked operation starting from a new Arbitration
Phase (BREQn# of the requesting agent must be deasserted if a symmetric agent issued the
locked operation). The assertion of DEFER# during the second or subsequent transaction of a
locked operation is a protocol violation. If DEFER# is asserted and HITM# is not asserted, a
Retry Response is driven in the Response Phase to force a retry of the entire locked operation.

4.4.3.2. VALID SNOOP PHASE

The Snoop Phase for a transaction begins 4 clocks after ADS# is driven asserted or 3 clocks after
the snoop results of the previous transaction are driven, whichever is later.

4.4.3.3. SNOOP PHASE STALL

A slow snooping agent can request a two-clock STALL in a valid Snoop Phase by activating both
HIT# and HITM#. In the case of a STALL, snoop results are sampled again 2 clocks after the
previous sample point. This process continues as long as the STALL state is sampled. When
stalling the bus, the stalling condition must be able to clear without requiring access to the bus.

4.4.3.4. SNOOP PHASE COMPLETION

If no STALL is requested during the valid Snoop Phase, the Snoop Phase is completed in the
clock after the snoop results are driven.

4.4.3.5. SNOOP RESULTS SAMPLING

Snoop Results are sampled during the valid snoop phase. Bus agents must ignore Snoop Results
in the clock after a valid sampling window.

4.5. RESPONSE PHASE

4.5.1. Response Phase Overview

A transaction enters the Response Phase when it is at the head of the In-order Queue. The agent
responsible for the response is referred to as the response agent. The agent decoded by the ad-
dress in the Request Phase determines the response agent for the transaction.

After completion of the Response Phase, the transaction is removed from the In-order Queue.
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4.5.1.1. BUS SIGNALS

The Response Phase signals are TRDY#, RS[2:0]#, and RSP#. These signals are bused. RSP#
provides parity support only for RS[2:0]#. The transaction response is encoded on the RS[2:0]#
signals. TRDY# is only asserted for transactions with write or writeback data to transfer. The
response encodings are indicated in Table 4-2.

Table 4-2. Response Phase Encodings

Response RS2# RS1# RSO0#
Idle o' 0 0
Retry 0 0 1
Deferred 0 1 0
reserved 0 1 1
Hard Failure 1 0 0
No data 1 0 1
Implicit Writeback 1 1 0
Normal Data 1 1 1

NOTE:
1. O indicates inactive, 1 indicates active.

There is no single response strobe signal. The response value is Idle until the response is driven.
A response is driven when any one of RS[2:0]# is asserted.

4.5.2. Response Phase Protocol Description

The Response Phase is described in this section using examples. The rules for the Response
Phase are listed in the next section for reference.

4.5.2.1. RESPONSE FOR A TRANSACTION WITHOUT WRITE DATA

Figure 4-14 shows several transactions that have no write or writeback data to transfer. There-
fore the TRDY# signal is not asserted. The DBSY# signal is observed in this phase because if
there is read data to transfer, DBSY# must be sampled inactive before the response for transac-
tion n can be driven (this ensures that any data transfers from transaction n-1 are complete before
the response is driven for transaction n).
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Figure 4-14. RS[2:0}# Activation with no TRDY#

Three transactions are issued in clocks T1, T4, and T7. None of these transactions have write
data to transfer as indicated by the REQa0# signal.

The Snoop Phase for each transaction indicates that no implicit writeback data will be trans-
ferred and the response agent indicated by the address will provide the transaction response and
the read data if there is any.

Because the transactions have no write or implicit writeback data, the TRDY# signal is not
asserted.

The rent indicates that the In-order Queue is empty. The ADS# for transaction 1 is driven in T1.
The snoop results for transaction 1 are driven four clocks later in T5 (observed in T6). Note that
the Response and Data Phases for transaction n-1 have to be complete before the response for
transaction n can be driven. Since transaction 1 is at the top of the IOQ and DBSY# is inactive
in T6, RS[2:0]# can be driven for transaction 1 in T7, two clocks after the snoop results are driv-
en. Transaction 1 is removed from the I0Q after T8, and transaction 2 is now at the top of the
I0Q. The rent is not decremented in T9 because transaction 3 was issued in the same clock that
transaction 1 received its response.

Transaction 2 is issued to the bus in T4 (three clocks after Transaction 1). The snoop results for
transaction 2 are driven four clocks later in T8. Transaction 2 is at the top of the I0Q. RS[2:0]#
for transaction 2 is driven two clocks later in T10 because DBSY# and RS[2:0]# were sampled
deasserted in T9.

The response for transaction 3 cannot be driven two clocks after the snoop results are driven in
T11 because DBSY# is asserted in T11. DBSY# is sampled deasserted in T13 and RS[2:0]# for
transaction 3 is driven in T14.

The response driven for each of these transactions is the Normal Data Response.
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4.5.2.2. WRITE DATA TRANSACTION RESPONSE

Figure 4-15 shows a transaction with a simple request initiated data transfer. A request initiated
data transfer means that the request agent issuing the transaction has write data to transfer. Note
that TRDY# is always asserted after the response for transaction n-1 is driven and before the
transaction response for transaction  is driven.
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Figure 4-15. RS[2:0]# Activation with Request Initiated TRDY#

Before T1, the IOQ is empty. A write transaction as indicated by active ADS# and REQaO# is
issued in T1.

Since the Response Phase for the previous transaction is complete, the Response Phase for trans-
action 1 can begin with the assertion of TRDY# as early as T4, 3 clocks after ADS# is asserted.
In T4, DBSY# is observed inactive on the clock TRDY# is asserted and TRDY# had previously
been inactive for 3 clocks, so the TRDY# agent is allowed to deassert TRDY# within one clock
as a special optimization. Data is driven the clock after TRDY# is sampled and the data bus is
free. TRDY# need not be deasserted until the response is driven.

The snoop results are driven in T5 and sampled in T6.

Since RS[2:0]# is deasserted in T6, TRDY# has been asserted and deasserted, and the snoop re-
sults were observed in T6, the response for the transaction is driven on RS[2:0]# in T7. Notice
even if TRDY# is only asserted for one clock, the response may still be asserted when TRDY#
is deasserted (assuming snoop results have been observed). Because this is a simple write trans-
action the response driven is the No Data Response.
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4.5.2.3. IMPLICIT WRITEBACK ON A READ TRANSACTION

Figure 4-16 shows a read transaction with an implicit writeback. TRDY# is asserted in this op-
eration because there is writeback data to transfer. Note that the implicit writeback response
must be asserted exactly one clock after valid TRDY# assertion is sampled. That is, TRDY# is
sampled active and DBSY# is sampled inactive.
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Figure 4-16. RS[2:0]# Activation with Snoop Initiated TRDY#

A transaction is issued in T1. The REQaO# pin indicates a read transaction, so TRDY# is as-
sumed not needed for this transaction.

But snoop results observed in T6 indicate that an implicit writeback will occur (HITM# is as-
serted), therefore a TRDY# assertion is needed. Since the response for the previous transaction
is complete, and no request initiated TRDY# assertion is needed, TRDY# for the implicit write-
back is asserted in T7. (TRDY# assertion due to an implicit writeback is called a snoop initiated
TRDY#.) Since DBSY# is observed inactive in T7, TRDY# can be deasserted in one clock in
T8, but need not be deasserted until the response is driven on RS[2:0]#.

In T9, one clock after the observation of active TRDY# with inactive DBSY# for the implicit
writeback, the Implicit Writeback Response must be driven on RS[2:0]# and the data is driven
on the data bus. This makes the data transfer and response behave like both a read (for the re-
questing agent) and a write (for the addressed agent).
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4.5.2.4. IMPLICIT WRITEBACK WITH A WRITE TRANSACTION

Figure 4-17 shows a write transaction combined with a hit to a modified line that requires an im-
plicit writeback. This operation has two data transfers and requires two assertions of TRDY#.
The first TRDY# is asserted by the receiver of the write data whenever it is ready to receive the
write data. Once active TRDY# and inactive DBSY# is observed, the first TRDY# is deasserted
to allow the second TRDY#. The second TRDY# is asserted by the receiver whenever it is ready
to receive the writeback data. The second TRDY# may be deasserted when active TRDY# and
inactive DBSY# is sampled or when the response is driven on RS[2:0]#. One clock after obser-
vation of active TRDY# (and inactive DBSY#) for the implicit writeback, the implicit writeback
response is driven on RS[2:0]# at the same time data is driven for the implicit writeback.
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Figure 4-17. RS[2:0]# Activation After Two TRDY# Assertions

In T1, a write transaction is issued as indicated by active ADS# and REQaO#. At this point, the
transaction appears to be a normal write transaction, so TRDY# is asserted 3 clocks later in T4.
TRDY# is deasserted in TS. Since DBSY# was observed inactive in T4, TRDY# can be deas-
serted in one clock as a special optimization to allow a faster implicit writeback TRDY#.

In TS, the snoop results are driven, and in T6, they are observed. In T7, TRDY# is asserted again
for the implicit writeback. TRDY# can be asserted immediately because the TRDY# for the re-
quest initiated data transfer was already deasserted.

In T9, one clock after observation of active TRDY# with inactive DBSY# for the implicit write-
back, TRDY# must be deasserted and the implicit writeback response is driven on RS[2:0]#.

Since DBSY# was observed active in T7, but inactive in T8, TRDY# is deasserted in T9.
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4.5.3. Response Phase Protocol Rules

4.5.3.1. REQUEST INITIATED TRDY# ASSERTION

A request initiated transaction is a transaction where the request agent has write data to transfer.

The addressed agent asserts TRDY# to indicate its ability to receive data from the request
agent intending to perform a write data operation. Request initiated TRDY# for transaction
“n” is asserted:

o When the transaction has a write data transfer,
o aminimum of 3 clocks after ADS# of transaction “n”, and

e a minimum of 1 clock after RS[2:0]# active assertion for transaction “n-1”. (After the
response for transaction #-1 is driven).

4.5.3.2. SNOOP INITIATED TRDY# PROTOCOL

The response agent asserts TRDY# to indicate its ability to receive the modified cache line from
a snooping agent. Snoop Initiated TRDY# for transaction “n” is asserted when:

o the transaction has an implicit writeback data transfer indicated in the Snoop Result Phase.

o in the case of a request initiated transfer, the request initiated TRDY# was asserted and
then deasserted (TRDY# must be deasserted for at least one clock between the TRDY# for
the write and the TRDY# for the implicit writeback),

e atleast 1 clock has passed after RS[2:0]# active assertion for transaction “n-1" (after the
response for transaction n-1 is driven).

4.5.3.3. TRDY# DEASSERTION PROTOCOL

The agent asserting TRDY# can deassert it as soon as it can ensure that TRDY# deassertion
meets following conditions.

o TRDY# may be deasserted when inactive DBSY# and active TRDY# are observed for one
clock.

e TRDY# can be deasserted within one clock if DBSY# was observed inactive on the clock
TRDY# is asserted and the deassertion is at least three clocks from previous TRDY#
deassertion.

e TRDY# does not need to be deasserted until the response on RS[2:0]# is asserted.

o TRDY# for a request initiated transfer must be deasserted to allow the TRDY# for an
implicit writeback.
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4.534.  RS[2:0]# ENCODING

Valid response encodings are determined based on the snoop results and the following request:

o Hard Failure is a valid response for all transactions and indicates transaction failure. The
requesting agent is required to take recovery action.

o Implicit Writeback is a required response when HITM# is asserted during the Snoop
Phase. The snooping agent is required to transfer the modified cache line. The memory
agent is required to drive the response and accept the modified cache line.

o Deferred Response is only allowed when DEN# is asserted in the Request Phase and
DEFER# (with HITM# inactive) is asserted during Snoop Phase. With the Deferred
Response, the response agent promises to complete the transaction in the future using the
Deferred Reply transaction.

o Retry Response is only allowed when DEFER# (with HITM# inactive) is asserted during
the Snoop Phase. With the Retry Response, the response agent informs the request agent
that the transaction must be retried.

o Normal Data Response is required when the REQ[4:0]# encoding in the Request Phase
requires a read data response and HITM# and DEFER# are both inactive during Snoop
Phase. With the Normal Data Response, the response agent is required to transfer read data
along with the response.

e No Data Response is required when no data will be returned by the addressed agent and
DEFER# and HITM# are inactive during the Snoop Phase.

4.535.  RS[2:0#, RSP# PROTOCOL

The response signals are normally in idle state when not being driven active by any agent. The
response agent asserts RS[2:0]# and RSP# for one clock to indicate the type of response used
for transaction completion. In the next clock, the response agent must drive the signals inactive
to the idle state.

Response for transaction “n” is asserted when the following are true:
e Snoop Phase for transaction “n” is observed.

o RS[2:0]# for transaction “n-1" were asserted to an active response state and then sampled
inactive in the idle state (the response for transaction “n” is driven no sooner than three
clocks after the response for transaction “n-17) .

e If the transaction contains a write data transfer, TRDY# deassertion conditions have been
met.

e If the transaction contains an implicit writeback data transfer, snoop initiated TRDY# is
asserted for transaction “n” and TRDY# is sampled active with inactive DBSY#.

e DBSY#is observed inactive if RS[2:0]# response is Normal Data Response.
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e A response that does not require the data bus (no data response, deferred response, retry
response, or hard failure response) may be driven even if DBSY# is active due to a
previous transaction.

On observation of active RS[2:0]# response, the Transaction Queues are updated and {rcnt} is
decremented.

4.6. DATA PHASE

4.6.1. Data Phase Overview

During the Data Phase, data is transferred between different bus agents. Data transfer responsi-
bilities are negotiated between bus agents as the transaction proceeds through various phases.
Based on the Request Phase, a transaction either contains a “request-initiated” (write) data trans-
fer, a “response-initiated” (read) data transfer, or no data transfer. On a modified hit during the
Snoop Phase, a “snoop-initiated” data transfer may be added to the request or substituted from
the response in place of the “response-initiated” data transfer. On a deferred completion re-
sponse in the Response Phase, “response-initiated” data transfer is deferred.

4.6.1.1. BUS SIGNALS
The bus signals driven in this phase are D[63:0]#, DEP[7:0]#, DRDY#, and DBSY#.
All Data Phase signals are bused.

4.6.2. Data Phase Protocol Description

4.6.2.1. SIMPLE WRITE TRANSFER

Figure 4-18 shows a simple write transaction (request-initiated data transfer). Note that the data
is transferred before the response is driven.
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Figure 4-18. Request Initiated Data Transfer

The write transaction is driven in T1 as indicated by active ADS# and REQa(O#. TRDY# is driven
3 clocks later in T4. The No Data response is driven in T7 after inactive HITM# sampled in T6
indicates no implicit writeback.

In the example, the data transfer only takes one clock, so DBSY# is not asserted.

TRDY# is observed active and DBSY# is observed inactive in T5. Therefore the data transfer
can begin in T6 as indicated by DRDY# assertion. Note that since DBSY# was also observed
inactive in T4, the same clock that TRDY# was asserted, TRDY# can be deasserted in T6. Refer
to Section 4.5.3.3., “TRDY# Deassertion Protocol” for further details.

RS[2:0]# is driven to No Data Response in T7, two clocks after the snoop phase.

4.6.2.2. SIMPLE READ TRANSACTION

Figure 4-19 shows a simple read transaction (response-initiated data transfer). Note that the data
transfer begins in the same clock that the response is driven on RS[2:0]#.
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Figure 4-19. Response Initiated Data Transfer

A read transaction is driven in T1 as indicated by the ADS# and REQaO# pins. Because the trans-
action is a read and HITM# indicates that there will be no implicit writeback data, TRDY# is not
asserted for this transaction.

The response for this transaction is driven on RS[2:0]# in T7, two clocks after the snoop results
are driven in TS. For read transactions (response initiated data transfers), the data transfer must
begin in the same clock that the response is driven.

4.6.2.3. IMPLICIT WRITEBACK

Figure 4-20 shows a simple implicit writeback (snoop-initiated data transfer) occurring during
a read transfer transaction. Note that wait states can be added into the data transfer by the deas-
sertion of DRDY#. Note also that the data transfer for the implicit writeback must begin on the
same clock that the response is driven on RS[2:0]#.
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Figure 4-20. Snoop Initiated Data Transfer

A transaction is issued to the bus in T1. REQaO# indicates that the transaction does not have
write data to transfer. The snoop results driven in T5 indicate that an implicit writeback will be
driven.

The response agent may assert TRDY# as early as T7, the clock after the snoop results are sam-
pled. In T8, TRDY# is sampled asserted while DBSY# is sampled deasserted. Therefore, the
snoop agent begins the data transfer in T9 with the assertion of DRDY#, DBSY#, and valid
data. Note, TRDY# must be deasserted in T9. Refer to Section 4.5.3.3., “TRDY# Deasser-
tion Protocol” for further details.

DBSY# must stay active at least until the clock before the last data transfer to indicate that more
data is coming. DRDY# is driven active by the snooping agent to indicate that it has driven valid
data. To insert waitstates into the data transfer, DRDY# is deasserted.

The response agent must drive the response on RS[2:0]# in T9, the clock after the active TRDY#
for an implicit writeback and inactive DBSY# is sampled. Note that the response must be driven
in the same clock that the data transfer begins. This makes the data transfer and response behave
like both a read (for the requesting agent) and a write (for the addressed agent).

4.6.2.4. FULL SPEED READ PARTIAL TRANSACTIONS

Figure 4-21 shows steady-state behavior with full speed Read Partial Transactions. DBSY# is
deasserted since the single chunk is transferred immediately. Note that there are no bottlenecks
to maintaining this steady-state.
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Figure 4-21. Full Speed Read Partial Transactions

4.6.2.5. RELAXED DBSY# DEASSERTION

DBSY# may be left asserted beyond the last DRDY# assertion. The data bus is released one
clock after DBSY# is deasserted, as shown in Figure 4-22. This figure also shows how the re-
sponse for transaction 2 may be driven even though DBSY is still active for the Data Phase of
transaction 1 because transaction 2 does not require the data bus. Because agent 1 deasserts
DBSY#in T13 and it is sampled inactive by the other agents in T14, DBSY# and data are driven
for transaction 3 in T15.
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Figure 4-22. Relaxed DBSY# Deassertion

4.6.2.6. FULL SPEED READ LINE TRANSFERS (SAME AGENT)

Figure 4-23 shows the steady-state behavior of Read Line Transactions with back-to-back read
data transfers from the same agent. Consecutive data transfers may occur without a turn-around
cycle only if from the same agent. Note that DBSY# must be asserted in the same clock that the
response is driven on RS[2:0]# if the response is the Normal Data Response. This means that
DBSY# must be deasserted before the response can be driven.
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Figure 4-23. Full Speed Read Line Transactions

Read Line transactions are issued to the bus at full speed. TRDY# is not asserted because the
transactions are reads and the snoop results indicate no implicit writeback data transfers.

The response and data transfers for transaction 1 occur in T7, the clock after the snoop results
are sampled. The data is transferred in 4 consecutive clocks.

DBSY# is asserted for transaction 1 in T7 and remains asserted until T10, the clock before the
last data transfer. A special optimization can be made because the same agent drives both data
transfers. Since the response agent knows that DBSY# will be deasserted in T10 and it owns the
next data transfer, it can drive the next response and data transfer in T11, one clock after DBSY#
deassertion.

Note that no waitstates are inserted by the single addressed/responding agent. The back end of
the bus will eventually throttle the front end in this scenario, but full bus bandwidth is attainable.

4.6.2.7. FULL SPEED WRITE PARTIAL TRANSACTIONS

Figure 4-24 shows the steady-state behavior of the bus with full speed Write Partial
Transactions.
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Figure 4-24. Full Speed Write Partial Transactions

In the example, the data transfer only takes one clock, so DBSY# is not asserted.

Write Partial Transactions are driven at full speed. The first transaction occurs on an idle bus and
looks just like the simple write case in Figure 4-18. TRDY# is driven 3 clocks later in T4. The
Normal No Data response is driven in T7 after inactive HITM# sampled in T6 indicates no im-
plicit writeback. TRDY# is observed active and DBSY# is observed inactive in T5. Therefore
the data transfer can begin in T6 as indicated by DRDY# assertion.

The TRDY# for transaction 2 must wait until the response for transaction 1 is sampled. TRDY#
is asserted the cycle after RS[2:0]# is sampled. Because the snoop results for transaction 2 have
been observed in T9, the response may be driven on RS[2:0]# in T10. TRDY# is sampled with
DBSY# deasserted in T10 and data is driven in T11.

There are no bottlenecks to maintaining this steady state.

4.6.2.8. FULL SPEED WRITE LINE TRANSACTIONS (SAME AGENTS)

Figure 4-25 shows the steady-state behavior of the bus with full speed Write Line Transactions
with data transfers from the same request agent to the same addressed agent.Data transfers may
occur without a turn-around cycle only if from the same agent.
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Figure 4-25. Full Speed Write Line Transactions

Write Line Transactions are driven at full speed. The first transaction occurs on an idle bus.
TRDY# is delayed until TS to arrive at steady-state quicker for this example. The Normal No
Data response can be driven in T7 after inactive HITM# sampled in T6 indicates no implicit
writeback (it is driven in T8 in this example). TRDY# is observed active and DBSY# is observed
inactive in T6. Therefore the data transfer can begin in T7 as indicated by DRDY# assertion.

TRDY# for transaction 2 can be driven the cycle after RS[2:0]# is driven, if RS[2:0]# and
TRDY# both come from the same target. A special optimization can be made when the same
agent drives both request-initiated data transfers. Since in T10 the request agent is driving DB-
SY# deasserted, has sampled TRDY# asserted for transaction 2, and owns the data transfer for
transaction 2, it can drive the next data transfer in T11, one clock after DBSY# deassertion.

In T11, the target samples TRDY# active and DBSY# inactive and accepts the data transfer start-
ing in T12. Because the snoop results for transaction 2 have been observed in T9, the target is
free to drive the response in T12.

Note that no waitstates are inserted by the requesting agent. The back end of the bus will even-
tually throttle the front end in this scenario, but full bus bandwidth is attainable. The Pentium
Pro processor will always insert a turn-around cycle between write data transfers.
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4.6.3. Data Phase Protocol Rules

4.6.3.1. VALID DATA TRANSFER

All Data Phase bus signals; DBSY#, DRDY#, D[63:0]#, and DEP[7:0]# are driven by the agent
responsible for data transfer. Multi-clock data transfers begin with assertion of DBSY# and com-
plete with deassertion of DBSY# no sooner than one clock prior to the last data transfer. Single-
clock and single-chunk data transfers are not required to assert DBSY#. The Request Phase and
the Snoop Phase determine the number of valid data transfer chunks, which range from 0 - 4
chunks in the Pentium Pro processor. A valid data chunk on D[63:0]# and valid parity on
DEP[7:0]# is indicated by DRDY# assertion in that clock.

4.6.3.2. REQUEST INITIATED DATA TRANSFER

When REQa0# is active during the Request Phase of the transaction, the transaction contains a
request initiated data transfer. The request agent may not send any data in response to TRDY#
if the transaction length is zero. Request initiated data transfer for transaction “n” begins only
after transaction “n” reaches the top of the In-order Queue. On the first clock after TRDY# is
observed active and DBSY# is observed inactive, the request agent may begin Valid Data Trans-
fer (as defined above).

The request agent may also begin Valid Data Transfer on the same clock TRDY# is observed
active and DBSY# is observed inactive if it can predict this event one cycle earlier. This only
occurs when the request agent creates the event by driving the Valid Data Transfer for the pre-
vious transfer while the target is asserting TRDY#.

4.6.3.3. SNOOP INITIATED DATA TRANSFER

When HITM# is active during Snoop Phase of the transaction, the transaction contains snoop
initiated data transfer. Snoop initiated data transfer for transaction “a” begins only after transac-

tion “n” reaches the top of the In-order Queue and Request initiated data transfer, if any, is com-
plete. Response Initiated Data Transfer

‘When HITM# is observed inactive during Snoop Phase and the Request Phase contains a request
for return of read data, the transaction contains response initiated data transfer.
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CHAPTER 5
BUS TRANSACTIONS AND OPERATIONS

This chapter describes in detail the bus transactions and operations supported by the Pentium
Pro processor bus.

5.1. BUS TRANSACTIONS SUPPORTED

Figure 5-1 lists the different bus transactions.

All Bus Transactions

|

Memory Vo

Other
Read data: Mem Read 1/0 Read Interrupt Acknowledge
Mem (Read) Invalidate Line
Write data: Mem Write 1/0 Write Branch Trace Message
Deferred: Deferred Reply
No Data: Shutdown
Flush
Halt

SP’”C
Flush Acknowledge
Stop Grant Acknowledge

SMI Acknowledge

Figure 5-1. Bus Transactions

The transactions classified as read data transactions normally expect a response initiated data
transfer from the agent addressed by the transaction. This is indicated by a Normal Data
Response in the Response Phase of the transaction. If no bytes are enabled, then a No Data Re-
sponse is returned by the addressed agent.

The transactions classified as write data transactions require request-initiated data transfer and
are identified by REQa[0]#. All responses except Normal Data Response are allowed. The target
asserts TRDY#. Implicit Writeback Responses may also occur and send additional snoop initi-
ated data.
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The transactions classified as deferred transactions may or may not send data in normal opera-
tion. It will return what is expected from the original transaction, unless the Snoop Result Phase
indicates that data will return when not expected (HITM#).

The transactions classified as no data transactions require no data transfer. All responses except
Normal Data Response and Implicit Writeback Response are allowed.

The transactions classified as memory transactions are cache-coherent and require snooping.
All responses are allowed.

The transactions classified as I/O transactions are not snooped. All responses except implicit
writeback are allowed.

The transactions classified as other transactions are not snooped. All responses are allowed.

5.2. BUS TRANSACTION DESCRIPTION

This section describes each bus transaction in detail. In all tables, a “1” denotes an active level,
and a “0” denotes an inactive level. Most transactions have a DSZ[1:0]# field, which is used
to support agents with different data width. Currently agents with only 64 bit data width are
supported.

DSZ[1:0]# Data Bus Width
0 0 64 bit Data Bus
0 1 . Reserved
1 X Reserved

5.2.1. Memory Transactions (see Table A-9)

An agent issues memory transactions to read or write data from memory address space. The ad-
dressed agent is the agent primarily responsible for completion of the transaction. Besides the
request initiator and the addressed agent, all caching agents are required to snoop a memory
transaction.

The memory transactions are indicated using the following request encodings:

REQa[4:0]# REQb[4:0]#
read & 0 1 W/R#=0
invalidate
rsvd 0 1 W/R#=1
read ASZ[1:0]# 1 X W/R#=0 DSZ[1:0]# rsvd LEN[1:0]#
write 1 X W/R#=1
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ADb[15:3]# are used to encode additional information about the transaction as follows:

Ab[15:8]# Ab[7:3]#
BE[7:0]# SMMEM# L SPLCK# rsvd DEN# rsvd

The ASZ[1:0]# signals are used to support agents with different memory addressing capability
to coexist on the same bus. The bits indicate what address range is being addressed as shown in
the table below. If a reserved range is indicated, then Snooping Agents and Responding agents
must ignore this transaction.

ASZ[1:0]# Address Range Observing Agents
0 0 0 <= A[35:3]# < 4 GB 32 & 36 bit agents
0 1 4 GB <= A[35:3]# < 64 GB 36 bit agents

1 X Reserved None

The remaining three bits in the REQa[2:0]# field support identification of different types of
memory transactions.

The LEN[1:0]# signals are used to indicate the length of the memory transaction. It indicates
how much data will be transferred over the bus. The Pentium Pro processor will issue O - 8 byte
and 32 byte memory transactions. Response to reserved encodings should be the largest transfer
size supported.

LEN[1:0]# Transaction Length
0 0 0 - 8 bytes
1 16 bytes
1 0 32 bytes
1 1 Reserved

BE[7:0]# is used in conjunction with LEN[1:0}#. If 8 bytes or more are to be transferred, then
BE[7:0]# indicates that all bytes are enabled. If less than 8 bytes are to be transferred, then
BE[7:0]# indicates which bytes. Transaction lengths of less than 8 bytes may have any combi-
nation of byte enables. If no bytes are enabled, then no data is transferred (in the absence of an
Implicit Writeback). A zero byte-count transfer is indicated by BE[7:0]# = 00000000B and an
eight or more byte transfer is indicated by BE[7:0]# = 11111111B

Zero length requests (LEN= 00B and BE = 00H) for read transactions are modeled after the
Memory (Read) Invalidate transaction. Response must be No Data Response in the absence of
HITM# or DEFER# assertion.
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For write transactions, TRDY# assertion is required, even when no request-initiated data is being
transferred. This simplifies this rare special case (Pentium Pro processor will not issue this
transaction). The request agent must not assert DRDY# in response to TRDY#.

SMMEM# is asserted while the requestor is in System Management Mode (see Section
5.2.3.6.7., “SMI Acknowledge”). SPLCK# indicates an atomic split locked operation (see
Section 5.3.4.1., “[Split] Bus Lock”). DEN# indicates that this transaction is deferrable (see
Section 5.3.3., “Deferred Operations™).

Request Initiator Responsibilities

A 32 bit address request initiator must always assert ASZ[1:0]# = 00 when making a memory
transaction request and drive a valid 32 bit address on A[31:3]# pins. If parity is enabled it must
also drive correct parity for A[23:3]# on APO# and A[31:24]# on AP1#. (See Section 3.4.3.,
“Request Signals”.)

A 36 bit address request initiator must assert ASZ[1:0]# = 01B when making a memory trans-
action request between 4G and 64G-1 and ASZ[1:0]# = 00B when making a memory transaction
request between 0 to 4G-1. It also must drive a valid 36 bit address on A[35:2]# pins at all times.
If parity is enabled it must drive correct parity for A[23:3]# on APO# and A[35:24]# on AP1#.

A 64 bit data request initiator must always assert DSZ[1:0]# = 00B when making a memory
transaction request.

All request initiators issue the required encodings on REQ[2:0]# and LEN[1:0}# pins to request
the proper transaction. All reserved encodings are always driven inactive.

Addressed Agent Responsibilities

A 32 bit address memory agent must ignore all memory transaction requests besides ASZ[1:0]#
= 00B. Whenever ASZ[1:0]# = 00B it must be capable of responding to the transaction.

A 36 bit address memory agent must ignore all memory transaction requests besides ASZ[1:0]#
= 01 and 00. Whenever ASZ[1:0]# = 00B it must be capable of filtering the A[35:32]# signals
from the address if they are not guaranteed to be in the inactive state.

A 64 bit data addressed agent must ignore the DSZ[1:0}# field. All addressed agents currently
defined must obey reserved field restrictions. L3 Cache agents use ATTR[7:0]# to determine
cache line allocation policy.

All addressed agents must observe the snoop results presented in the snoop phase and modify
their ownerships towards transaction completion if HITM# or DEFER# is asserted by a snoop-
ing agent. These special cases are described in greater detail in later subsections of this chapter.
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5.2.1.1. MEMORY READ TRANSACTIONS

REQa[2:0]#
code read 1 D/C#=0 0
data read 1 D/C#=1

Memory Read Transactions perform reads of memory or memory-mapped I/0. REQa[1]# indi-
cates whether the read is for code or data. This can be used to make cache coherency assump-
tions (see Chapter 7, Cache Protocol).

5.2.1.2. MEMORY WRITE TRANSACTIONS

REQa[2:0]#
may not be retried 1 W/WB#=0 1
may be retried 1 W/WB#=1 1

Memory Write Transactions perform writes to memory or memory-mapped I/O. REQa[ 1]# in-
dicates whether the write transaction is a writeback and may not be retried. REQa[1]# asserted
indicates that the write transaction may be retried. REQa[1]# is asserted by a non-cacheable
(DMA) agent to write data to memory. The Pentium Pro processor asserts REQa[1]# when writ-
ing through the cache and when evicting a full Write Combining Buffer. This transaction is
snooped and can receive an Implicit Writeback Response. When REQa[1]# is deasserted, no
agent may assert DEFER# to retry the transaction. A writeback caching agent must deassert
REQa[1]# when writing back a modified cache line to memory. If deasserted and this transaction
hits a valid line in a snooping cache, a cache coherency violation has occurred.

5.2.1.3. MEMORY (READ) INVALIDATE TRANSACTIONS

REQa[2:0}¢
Memory (Read) Invalidate | 0 | 1 | 0

An agent issues a Read Invalidate Transaction to satisfy an internal cache line fill and obtain ex-
clusive ownership of the line. All snooping agents will invalidate the line addressed by this trans-
action. A Read Invalidate transaction has BE[7:0]# = FFH and LEN[1:0]# = 10B. Note that if
the issuing agent already has the line in the shared state, it need only invalidate the line in other
caches to allow a transition to the exclusive state. In this case the requesting agent issues a zero
length transaction (BE[7:0]# = O0H and LEN[1:0]# = 00) indicating that no data is required.
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5.2.1.4. RESERVED MEMORY WRITE TRANSACTION

REQal[2:0]#
Reserved Memory Write I 0 1 1

This transaction is reserved, and must not be issued by any bus agents. Future bus agents may
use this encoding. Current memory agents and snooping agents must treat this transaction as a
Memory Write Transaction.

5.2.2. 1/0 Transactions

An agent issues an I/O transaction to read or write an I/O location. The addressed agent is the
agent primarily responsible for completion of the I/O transaction. I/O transaction may be de-
ferred in the snoop phase by any agent as described in the later subsection.

The I/O transactions are indicated using the following request encodings:

REQa[4:0]# REQb[4:0]4#
read 1 0 0 0 W/R#=0
write |1 0 0 0 | WR#=1 DSZ[1:0}# rsvd LEN([1:0]
Ab[15:8]# Ab[7:3}#
BE[7:0]# SMMEM# | SPLCK#=0 | revd | DEN# | revd

I/0 transactions have similar request fields to memory transactions. However, the address space
is always 64K+3 bytes!. Therefore, A[35:17]# will always be zero. A[16]# is zero except when
the first three bytes above the 64Kbyte space are accessed (I/O wraparound). BE[7:0]# will al-
ways indicate at most 4 bytes when issued by the Pentium Pro processor.

The LEN[1:0]# signals are identical to the memory transactions, and are used to indicate the
length of the I/O transaction. It indicates how much data will be transferred over the bus. Re-
sponse to reserved encodings should be the largest transfer size supported.

! The Pentium® Pro processor is backwards compatible with previous implementations of the Intel Architecture I/0
space. A[16]# is active whenever an I/O access is made to 4 bytes from addresses OFFFDH, OFFFEH, or OFFFFH.
A[16}# is also active when an I/O access is made to 2 bytes from address OFFFFH.
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LEN[1:0]# Transaction Length
0 0 0 - 8 bytes
0 1 16 bytes
1 0 32 bytes
1 1 Reserved

BE[7:0]# is used in conjunction with LEN[1:0]#. If 8 bytes or more are to be transferred, then
BE[7:0]# indicates that all bytes are enabled. If less than 8 bytes are to be transferred, then
BE[7:0]# indicates which bytes. Transaction lengths of less than 8 bytes may have any combi-
nation of byte enables. If no bytes are enabled, then no data is transferred. The Pentium Pro pro-
cessor will always assert 1 to 4 consecutive byte enables. I/O reads that lie within 8-byte
boundaries but cross 4-byte boundaries are issued as one transaction, but I/O writes that lie with-
in 8-byte boundaries but cross 4-byte boundaries are split into two transactions.

Zero length requests (LEN= 00B and BE = 00H) for read transactions are modeled after Memory
transactions. Response must be No Data Response in the absence of DEFER# assertion.

For write transactions, TRDY# assertion is required, even though no request-initiated data is be-
ing transferred. This simplifies this rare special case (Pentium Pro processor will not issue this
transaction). The request agent must not assert DRDY# in response to TRDY#.

5.2.2.1. REQUEST INITIATOR RESPONSIBILITIES

The request initiator must assert W/R# if the transaction is an I/O Write, and must deassert W/R#
signal if the transaction is an I/O Read. A 64 bit request initiator must always issue DSZ[1:0]#
= 00B. The reserved fields are driven inactive. '

5.2.2.2. ADDRESSED AGENT RESPONSIBILITIES

The addressed I/0 agent must ignore reserved fields. It must also ignore DSZ[1:0]#

5.2.3. Non-memory Central Transactions

These transactions are issued by a bus agent to create special bus message. It is the responsibility
of the central agent in the system to capture these transactions. All non-memory central transac-
tion define Ab[15:8]# (BE[7:0]#) as an additional command encoding field. The central agent
responds with No Data Response, RS[2:0]# = 101, for all non-memory central transactions, ex-
cept for the Interrupt Acknowledge transaction which is covered in Section 5.2.3.4., “Interrupt
Acknowledge Transaction”.
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REQa[4:0]# REQb[4:0]#
read 0 1 0 0 W/R#=0
write 0 1 0 0 W/R#=1 DSZ[1:0]# rsvd X X
Ab[15:8]# Ab[7:3]#
X SMMEM# l SPLCK#=0 rsvd [ DEN# rsvd

These transactions drive REQa[OJ#active if request initiated data is being sent. The Central
Agent will then drive TRDY#.

5.2.3.1. REQUEST INITIATOR RESPONSIBILITIES

Generate the request with valid encodings. The reserved fields are driven inactive.

5.2.3.2. CENTRAL AGENT RESPONSIBILITIES

Generate response for all encodings including all reserved encodings. Return data as necessary

5.2.3.3. OBSERVING AGENT RESPONSIBILITIES

Observing agents must decode the entire request field and determine if they are required to take
any action. Of course, any agent may stall the Snoop Result Phase to delay completion.

5.2.3.4. INTERRUPT ACKNOWLEDGE TRANSACTION

A processor agent issues an Interrupt Acknowledge Transaction in response to an interrupt from
an 8259A or similar interrupt controller. The response agent (normally the I/O agent) must per-
form whatever handshaking the interrupt controller requires. For example, an I/O agent inter-
faced to an 8259A interrupt controller must issue two locked-interrupt-acknowledge cycles to
the 8259A to process one Interrupt Acknowledge Transaction it receives from a Pentium Pro
processor. The I/0 agent returns the interrupt vector generated by the 8259A to the processor as
a single data-cycle response on D[7:0]#. D[63:8]# are undefined. Note that the BE[7:0]# field
reflects this. The address Aa[35:3]# signals are reserved and can be driven to any value.

REQa[0]}# REQb[1:0]# Ab[15:8]#

0 0 i 0 01

5-8 |
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5.2.3.5. BRANCH TRACE MESSAGE

Branch Trace Messages produce 64 bits of data. If execution tracing is enabled, an agent issues
a Branch Trace Message transaction for branches taken. The address Aa[35:3]# is reserved and
can be driven to any value. D[63:32]# contain the linear address of the target. D[31:0]# contain
either the address of the first byte of the branch instruction or the address of the instruction im-
mediately following the branch. If the instruction does not complete normally, then D[31:0]#
will contain the address of the branch instruction itself. If the instruction completes normally,
then D[31:0]# will contain the address of the instruction immediately following the branch. The
BE[7:0]# field reflects that data will be valid on all bytes of the data bus. It is the responsibility
of the Central Agent to assert TRDY# and the response for this transaction. If a different agent
is responsible for storage, it must capture the data from the bus.

REQa[0]# REQb[1:0]# Ab[15:8]#
1 0 0 FF

5.2.3.6. SPECIAL TRANSACTIONS

These transactions are used to indicate to the system some rare events. The address Aa[35:3]#
is undefined and can be driven to any value.

REQa[0]# REQb[1:0]# Ab[15:8]#
0 0 1 00-07
Special Transaction Ab[15:8]#
NOP 0000 0000
Shutdown 0000 0001
Flush 0000 0010
Halt 0000 0011
Sync 0000 0100
Flush Acknowledge 0000 0101
Stop Clock Acknowledge 0000 0110
SMI Acknowledge 0000 0111
Reserved all others

5-9
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5.2.3.6.1. Shutdown

An agent issues a Shutdown Transaction to indicate that it has detected a severe software error
that prevents further processing. The Pentium Pro processor issues a Shutdown Transaction if
any other exception occurs while the processor is attempting to call the double fault handler. The
internal caches remain in the same state unless a snoop hits a modified line. The following table
describes how Pentium Pro processor reacts to various events while in the Shutdown state.

Event Immediate Action Final State
INTR Ignore Shutdown
NMI NMI Handler Entry Do not return to Shutdown on IRET

INIT# Reset Handler Do not return to Shutdown
RESET# Reset Handler Do not return to Shutdown
STPCLK# STPCLK Acknowledge Return to Shutdown on ISTPCLK

SMi# SMI Handler Entry Return to Shutdown on RSM'
FLUSH# FLUSH Acknowledge Return to Shutdown Immediately

ADS# Snoop Results Return to Shutdown Immediately

BINIT# MCA Handler Entry Do not return to Shutdown
HardFail MCA Handler Entry Do not return to Shutdown
FRCERR MCA Handler Entry Do not return to Shutdown

NOTE:

1. Shutdown transaction may be reissued by the Pentium® Pro processor.

5.2.3.6.2. Flush

An agent issues a Flush Transaction to indicate that it has invalidated its internal caches without
writing back any modified lines. If the software using the instruction requires other Pentium Pro
processors to also be flushed, it must do so via APIC IPIs. The Pentium Pro processor generates
this transaction on executing an INVD instruction.

5.2.3.6.3. Halt

A processor issues a Halt Transaction to indicate that it has executed the HLT instruction and
stopped program execution. The following table describes how Pentium Pro processor reacts to
various events while in the Halt state.

5-10 I
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Event Immediate Action Final State
INTR Interrupt Handler Entry Do not return to Halt on IRET
NMI NMI Handler Entry Do not return to Halt on IRET
INIT# Reset Handler Do not return to Halt
RESET# Reset Handler Do not return to Halt
STPCLK# STPCLK Acknowledge Return to Halt on !ISTPCLK
SMI# SMI Handler Entry Optionally return to Halt on RSM based on a
bit setting in SMRAM
FLUSH# FLUSH Acknowledge Return to Halt Immediately
ADS# Snoop Results Return to halt Imnmediately
BINIT# MCA Handler Entry Do not return to Halt
HardFail MCA Handler Entry Do not return to Halt
FRCERR MCA Handler Entry Do not return to Halt
5.2.3.6.4. Sync

An agent issues a Sync Transaction to indicate that it has written back all modified lines in its
internal caches to memory and then invalidated its internal caches. If software wants to guaran-
tee that other processors are also synchronized, it must do so via APIC IPIs. The Pentium Pro
processor generates a Sync Transaction on executing a WBINVD instruction.

5.2.3.6.5. Flush Acknowledge

A caching agent issues a Flush Acknowledge Transaction when it has completed a cache sync,
and flush operation in response to an earlier FLUSH# signal activation. If FLUSH# pin is bussed
to N agents, the Central Agent must expect N Flush Acknowledge transactions.

5.2.3.6.6. Stop Grant Acknowledge
An agent issues a Stop Grant Acknowledge Transaction when it enters Stop Grant mode.

The agent continues to respond to RESET#, BINIT#, ADS#, and FLUSH# while in Stop Grant
mode. The Pentium Pro processor powers down its caches in the Stop Grant mode to minimize
its power consumption and generates a delayed snoop response on an external bus snoop
request.

5.2.3.6.7. SMI Acknowledge

An agent issues an SMI Acknowledge Transaction when it enters the System Management
Mode handler. SMMEM# (Ab[7]#) is first asserted at this entry point. It remains asserted for all
transactions issued by the agent. An agent issues another SMI Acknowledge Transaction when
itexits the System Management Mode handler. SMMEM# (Ab[7]#) is first deasserted at this exit
point.
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The SMI Acknowledge Transaction can be observed by the bridge agents to determine when an
agent enters or exits SMM mode.

5.2.4. Deferred Reply Transaction

An agent issues a Deferred Reply Transaction to complete an earlier transaction for which the
response was deferred. The Deferred Reply Transaction may return data to complete an earlier
Memory Read, I/O Read, or Interrupt Acknowledge Transaction, or it may simply indicate the
completion of an earlier Memory Write, I/O Write, or Invalidate Transaction (note that the data
transfer for a memory write or I/O write takes place in the data phase of the earlier transaction).
After being deferred, the Invalidate Transaction may have hit a modified line on another bus,
which will cause the Deferred Reply Transaction to return data.

REQal[4:0J# REQb[4:0]#
0 l 0 | 0 | 0 | 0 X | X | X l X i X
Ab[15:8]# _ Ab[7:3]#
XX X | sPLok#=0 | rsvd | DEN#=0 | rsvd

The deferring agent is both the requesting agent and the responding agent for the Deferred Reply
Transaction. The addressed agent is the agent which issued the original transaction.

5.2.4.1. REQUEST INITIATOR RESPONSIBILITIES (DEFERRING AGENT)

This transaction uses the address bus to return the Deferred ID, which was sent with the original
request on DID[7:0]#. The Deferred ID is returned on address Aa[23:16]# signals. The deferring
agent will not place a unique ID onto Ab[23:16]#, since DEN# is deasserted.

Aa[23:16]# Ab[23:16]#
DIDI[7:0}# (original) XX

See Section 5.3.3., “Deferred Operations” for Deferred ID generation.

The ownership transfer of a cache line transferred from the deferring agent to the original re-
questing agent takes place during Snoop Result Phase of this transaction. Since this transaction
is not snooped, HIT# and HITM# signals are used by the requesting agent. For a Deferred Reply
resulting from a Memory Read Data Line Transaction, the deferring agent must assert HIT# in
the deferred reply’s Snoop Result Phase if the original requesting agent should place the line in
the Shared state. If the original requester does not observe HIT# active, it may place the line in
Exclusive state. For a Deferred Reply resulting from a Memory Invalidate Transaction which hit
a modified line on another bus, the deferring agent must echo the HITM# in the Snoop Result
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Phase of the Deferred Reply (the Snoop Result Phase indicates all changes in the length of data
returned).

The deferring agent may assert DEFER# in the Snoop Result Phase of the Deferred Reply to
retry the original transaction.

A Deferred Reply may receive any response except a Deferred Response. The response must fol-
low the protocol illustrated in Chapter 4, Bus Protocol. If a Retry Response is received, then the
addressed agent will retry the original transaction.

5.2.4.2. ADDRESSED AGENT RESPONSIBILITIES (ORIGINAL REQUESTOR)

The addressed agent is the agent which issued the original transaction. It must decode the
DID[7:0]# returned on Aa[23:16]# and match it with a previously deferred transaction. At the
Snoop Result Phase of the Deferred Reply, the original requestor’s transaction is in the exact
same state as the Snoop Result phase for a non-deferred transaction (with DEN# assumed deas-
serted). HIT#/HITM#/DEFER# are used as in the original transaction. It must accept any re-
turned data and complete the original transaction as if it were not deferred. It must make the
appropriate snoop state transition at the Snoop Result Phase of the Deferred Reply, and must re-
issue the original transaction if a Retry Response is received.

5.2.5. Reserved Transactions

These transaction encodings are reserved. No agent should take any action when they are seen.
They should be completely ignored.

REQa[4:0]#
0 0 0 0 1
1 1 0 0 X

5.3. BUS OPERATIONS

This section describes bus operations. A bus operation is a bus procedure that appears atomic to
software even though it might not appear atomic on the bus. The operations discussed in this sec-
tion are those that have multiple transactions (such as locked operations) or those that have po-
tential multiple data transfers (implicit writebacks).

5.3.1. Implicit Writeback Response

In response to any memory transaction, each caching agent issues an internal snoop operation.
If the snoop finds the accessed line in the Modified state in a writeback cache, then the caching
agent asserts HITM# in the Snoop Phase. The caching agent that asserted HITM# writes back
the Modified line from its cache during snoop-initiated Data Phase. This data transfer is called
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an implicit writeback. The response for a transaction that contains an implicit writeback is the
Implicit Writeback response.

5.3.1.1. MEMORY AGENT RESPONSIBILITIES

On observing HITM# active in the Snoop Phase, the addressed memory agent remains the re-
sponse agent but changes its response to an implicit writeback response.

If the transaction contains a request-initiated data transfer, it remains responsible for TRDY# as-
sertion to indicate that the write data transfer can begin.

Since the transaction contains a snoop-initiated data transfer, (modified line writeback) the
memory agent asserts a snoop initiated TRDY# once it has a free cache line buffer to receive the
modified line writeback (after the TRDY# assertion and deassertion for the request initiated
TRDY# is complete, if there was a request initiated data transfer).

Precisely two clocks from active TRDY# and inactive DBSY#, the Memory Agent drives the im-
plicit writeback response synchronized with the DBSY# assertion from the snooping agent for
the implicit writeback data transfer of the snoop agent.

If the snooped transaction is a write request, the memory agent is responsible for merging the
write data with the writeback cache line. The memory agent then updates main memory with the
latest cache line data. If the snooped transaction writes a full cache line, then there may or may
not be implicit writeback data. If DBSY# is not asserted precisely two clocks from active
TRDY# and inactive DBSY#, then there is no implicit writeback data.

5.3.1.2. REQUESTING AGENT RESPONSIBILITIES

The requesting agent picks up snoop responsibility for the cache line after observing the trans-
action’s Snoop Phase.

The requesting agent always observes the Response Phase to determine if the snoop-initiated
Data Phase contains additional data beyond what was requested:

o If the original request is a Part Line Read Transaction, then the requester obtains the
needed data from the first 64-bit critical chunk (as defined by the burst order described in
Chapter 3, Bus Overview).

o If the original request is a Read Line or Read Invalidate Line Transaction, then the
requester absorbs the entire line.

o If the original request is an Invalidate Line Transaction and the line is modified in another
cache, then the requester updates its internal cache line with the updated cache line
received in the snoop-initiated Data Phase.

o If the original Invalidate Line Transaction receives a Deferred Reply, a HITM# in the
Snoop Result Phase indicates data will return, and the requesting agent updates its internal
cache with the data.
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5.3.2. Transferring Snoop Responsibility

A requesting agent picks up snoop responsibility for the cache line after observing a transac-
tion’s Snoop Phase. When a requesting agent accepts snoop responsibility for a cache line and
immediately drops that responsibility in response to a subsequent transaction, it is allowed to use
the cache line exactly once for internal use, before performing an implicit writeback.

Figure 5-2 illustrates the effect of response agent responsibility pickup on an outstanding Inval-
idation Transaction (Read Invalidate Line, or an Invalidate Line Transaction). It also illustrates
that a cache line can be returned in response to an Invalidate Line Transaction if two competing
agents request ownership of a Shared cache line simultaneously.
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Figure 5-2. Response Responsibility Pickup Effect on an Outstanding Invalidation
Transaction

In T1, the requesting agent P1 asserts ADS# and drives the {REQUEST} group to issue Invali-
date Request 1. In T4, a different requesting agent, P2, asserts ADS# and intends to drive the
{REQUEST]} group to issue Invalidation request 2 to the same cache line. However, the snoop
of Invalidate Request 1 will invalidate the shared line in P2, forcing P2 to instead issue Read In-
validate Request 2, to the same cache line.

I 5-15



BUS TRANSACTIONS AND OPERATIONS Inte|®

In TS, P1 observes request 2 and notes that the request is to the same cache line for which it is
expecting ownership in T6. In T6, P1 observes inactive DEFER# and confirms that the transac-
tion has been committed for in-order completion.

If P1 changes the state of the cache line to M (as opposed to E/I), then P1 asserts HITM# in T8
to indicate that it has the cache line in the Modified state. In T8, P1 receives a successful com-
pletion response for request 1. P1 recognizes that it has promised the cache line to a different
agent. It completes its internal cache line update and gets ready to return the line to P2.

In T9, the memory agent observes HITM# and asserts TRDY# in T10 in response to the HITM#.
In response in T12, the memory agent asserts implicit writeback response and P1 asserts DB-
SY#. From T12 to T15, P1 drives the implicit cache line data on the data bus. Agent P2 recog-
nizes that the Read Invalidate request is given an implicit writeback response. It receives the new
data associated with the cache line, updates its cache line, and then resumes operation.

Similar to this example, when an Invalidate Line Transaction receives a deferred response, the
corresponding Deferred Reply Transaction may or may not contain data depending on the race
condition. If the Deferred Reply Transaction does not contain data, the deferred reply agent as-
serts a No Data Response. If the Deferred Reply Transaction contains data, the deferred reply
agent asserts HITM# in the Snoop Phase of the Deferred Reply Transaction and asserts an Im-
plicit Writeback response. The original request initiator recognizes that a modified cache line is
being returned and receives the new cache line and updates its internal storage. Memory is not
updated with the Implicit Writeback data of a Deferred Reply Transaction.

5.3.3. Deferred Operations

During the Request Phase, an agent can define Defer Enable (DEN#) to indicate if the transac-
tion can be given Deferred Response.

When the flag is inactive, the transaction must not receive a Deferred Response. Certain trans-
actions must always be issued with the flag inactive. Transactions in a bus-locked operation, De-
ferred Reply transactions, and Writeback transactions fall in this category. Transaction-latency
sensitive agents may also use this feature to guarantee transaction completion within a restricted
latency. In-order completion of a transaction is indicated by an inactive DEFER# signal or an
active HITM# signal during the Snoop Phase, followed by normal completion or implicit write-
back response in the Response Phase.

When Defer Enable (DEN#) is inactive, the transaction may be completed in-order or possibly
retried, but it cannot be deferred. All transactions may be completed in order. The only transac-
tions that may not be retried are explicit writeback transactions (REQa[2:0]# = 101B) and locked
transactions subsequent to the first transaction in a locked sequence. The retry feature is avail-
able for use by any bus agent incapable of supporting Deferred Response. These transactions
may either be completed in-order (DEFER# inactive or HITM# active during the Snoop Phase
followed by normal completion response), or they must be retried (DEFER# active and HITM#
inactive during the Snoop Phase followed by a Retry Response during the Response Phase).

When Defer Enable (DEN#) is active, the transaction may be completed in-order, or it may be
retried or deferred. A deferred transaction is indicated by asserting DEFER# (with HITM# in-
active) during the Snoop Phase followed by Deferred Response in the Response Phase.
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For every transaction, only one agent is allowed to assert DEFER#. Normally it is the responsi-
bility of the agent addressed by the transaction. When the addressed agent always guarantees in-
order completion, the responsibility can be given to a unique third party agent who can assert
DEFER# on behalf of the addressed agent. Both agents must then agree on how to complete the
transaction and which agent will drive the response.

A deferred or retry response removes the transaction from the In-order Queue. On a retry re-
sponse, it is the responsibility of the requesting agent to initiate the transaction repeatedly until
the transaction either receives a deferred or in-order completion response. On a deferred re-
sponse, the response agent must latch the Deferred ID, DID[7:0]# issued during the Request
Phase. After the response agent completes the original request, it must issue a matching De-
ferred Reply Bus Transaction. The Deferred Reply transaction’s Request Phase must begin at
least one clock after the Response Phase for the original transaction. The Deferred ID, available
during the original transaction’s Request Phase, is used as the address in the Deferred Reply
Transaction’s Request Phase.

A Deferred ID contains eight bits, divided into two four-bit fields. The Deferred ID is transferred
on pins Ab[23:16]# (signals DID[7:0]#) in the second clock of the original transaction’s Request
Phase. Ab[23:20]# contain the request agent ID, which is unique for every agent. Ab[19:16]#
contains a request ID, assigned by the request agent based on its internal queue (typically a
queue index). Up to sixteen different agents can allow deferred responses. Up to sixteen deferred
responses can be pending for each of the sixteen agents. An agent that supports more than six-
teen outstanding deferred requests can use multiple agent IDs. The Pentium Pro processor limits
the number of outstanding deferred transactions to 4.

The deferred response agent uses the Deferred Reply Transaction phase to transfer completion
status of the deferred transaction. The Deferred ID is driven on address Aa[23:16]# during the
Deferred Reply Transaction’s Request Phase. The final cache state after completion of the De-
ferred Reply for a Read Line Transaction is indicated by the HIT# signal. For a Deferred Reply
resulting from a Memory Invalidate Transaction which hit a modified line on another bus, the
deferring agent must echo the HITM# in the Snoop Result Phase of the Deferred Reply in order
to return unexpected data (the Snoop Result Phase indicates all changes in the length of data re-
turned). During the response phase, the appropriate response is driven to indicate completion
status of the transaction.

Agents can use the deferred response mechanism when an operation has significantly greater la-
tency than the normal in-order response. The deferred response mechanism can be used to im-
plement non-blocking bridge components between the Pentium Pro processor bus and a system
bus to maintain concurrency with guaranteed forward progress.

Deferred transactions enter the In-order Queue in the same way as all other transactions. ADS#
for a deferred reply may be asserted no sooner than one cycle after RS[2:0]# is asserted for the
original transactions that has been deferred.

5.3.3.1. RESPONSE AGENT RESPONSIBILITIES

A response agent willing to give a deferred response must maintain an internal deferred reply
pool with up to n entries. At the time it wishes to give a deferred response, the response agent
must assign an entry for the transaction in the deferred reply pool and store the Deferred ID
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available during the request phase of the transaction. After the transaction’s Response Phase has
been driven, it must become a request bus owner and initiate a Deferred Reply Transaction using
the Deferred ID as the address. It must also reclaim free queue entries in the deferred reply pool.

5.3.3.2. REQUESTING AGENT RESPONSIBILITIES

A requesting agent must assume that every outstanding transaction issued with an asserted Defer
Enable (DEN#) flag in the Request Phase may receive a deferred response. Therefore, it must
maintain an internal outstanding transaction queue and ID with the same size as its ability to
pipeline new requests. During the Deferred Reply Transaction, it must compare the reply ad-
dress with all Deferred IDs in its outstanding transaction queue. On an ID match, the requesting
agent can retire the original transaction from its outstanding transaction queue and complete the
operation.

Figure 5-3 illustrates a deferred response followed by the corresponding Deferred Reply for a
read operation.
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Figure 5-3. Deferred Response Followed by a Deferred Reply to a Read Operation

InT1, the requesting agent asserts ADS# and drives the {REQUEST} group to issue a Read Line
request. In T5, the Snoop Phase, the addressed agent determines that the transaction cannot be
completed in-order and hence asserts DEFER#. Since HITM# is observed inactive in T6, in T7
the addressed agent returns a deferred response by asserting the proper encoding on RS[2:0]#.
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Before T9, the addressed response agent obtains the data required in the original request. In T9,
the original response agent issues a Deferred Reply Transaction, using the value latched from
the DID[7:0]# signals in the original transaction as the address. In T13, the response agent drives
a valid level on the HIT# signal to indicate the final cache state of the returned line. The original
requestor picks up snoop responsibility. In T15, it drives normal completion response and also
begins the Data Phase.

In T10, the original requesting agent observes the Deferred Reply Transaction. It matches the
DID[7:0]# to the Deferred ID stored with the original request in its outstanding transaction
queue. The original requesting agent observes the final state of the returned cache line in T14.
In T16, it observes the transaction response and removes the transaction from the outstanding
transaction queue and the In-order Queue. This completes the entire deferred operation
sequence.

5.3.4. Locked Operations

Locked operations provide a means of synchronization in a multiprocessor environment. They
guarantee indivisible sequencing between multiple memory transactions.

A locked instruction is guaranteed to lock the area of memory defined by the destination oper-
and. In addition, a lock’s integrity is not affected by the memory operand’s alignment.

In previous generation processors, lock semantics were implemented with a [split] bus lock. This
approach, although sufficient to guarantee indivisibility, is not always necessary or efficient in a
writeback caching agent. During bus lock, other agents are prevented from issuing bus transac-
tions. In multiprocessing systems, it is desirable to reduce the data bus bandwidth demands of
locked operations, so the Pentium Pro processor implements cache locks. Cache locks allow
locked operations to take place in the cache without tying up the bus.

A locked operation in the Intel386 and Intel486 architecture involves an indivisible read-
modify-write operation on the lock variable. Based on the memory type and alignment of the
lock variable, a locked operation is carried out using one of three options:

Cache Lock. When the lock variable is in a writeback-cacheable (WB) memory range and the
lock variable is contained in one cache line, the locked operation can be executed by:
1) executing any bus transactions necessary to bring the line into the Exclusive or Modified
cache state, and 2) executing the locked read-modify-write sequence in the cache, placing the
line in the Modified state.

[Split] Bus Lock. When the lock variable cannot use a cache lock (due to attribute conflicts) or
crosses an 8-byte boundary, the locked operation is issued on the Pentium Pro processor bus. The
bus is locked during the entire read-modify-write sequence to guarantee indivisibility.

Some implementations might use a bus lock or split lock even when a cache lock is allowed.
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5.3.4.1. [SPLIT] BUS LOCK

All variables that cannot be cache locked are locked using the standard [split] bus lock operation.
A Pentium Pro processor [split] bus locked operation (read-modify-write or RMW) involves 1
or 2 memory read transactions followed by 1 or 2 memory write transactions to the same ad-
dress. When any agent issues a RMW operation, it asserts the LOCK# signal in the Request
Phase and keeps it active during the entire Lock Operation. In a split bus locked operation, the
agent asserts Split Lock (SPLCK#) in the first transaction to indicate a split operation. During a
RMW operation the agent always deasserts Defer Enable (DEN#) for all transactions in the op-
eration. The first transaction of the RMW operation may have DEFER# asserted, which will re-
try the entire RMW operation (regardless of the response). No transaction in the RMW operation
after the first read transaction may have DEFER# asserted.

The RMW Operation is successfully completed when the agent successfully completes all mem-
ory transactions. Successful completion occurs when the last transaction of the RMW operation
passes its Error Phase. The requestor retains ownership of the bus by keeping LOCK# active un-
til the last transaction successfully completes. The RMW Operation is prematurely aborted and
retried if the first read transaction receives an AERR# assertion in the Error Phase or DEFER#
assertion in the Snoop Phase. After a premature abortion, the agent issuing the lock operation
must ignore any data returned during Data Phase, deassert LOCK#, re-arbitrate for the bus
(deassert its BREQn# signal if active) and reissue the first transaction.

During the memory read transactions, if other writeback cache agents contain the variable in
Modified state, they supply the data via the implicit writeback mechanism. If the lock variable
is contained in Modified state inside the requestor, it performs self-snooping after the locked
transaction is issued on the bus and evicts the cache line via the implicit writeback mechanism.
As explained in Chapter 4, Bus Protocol, if DEFER# assertion is not over-ridden by HITM# as-
sertion, the agent asserting DEFER# must drive a Retry Response in the Response Phase to force
a retry. If DEFER# assertion is overridden by HITM# assertion, the responding agent drives an
implicit writeback response, and the Data Phase completes with an implicit writeback from the
snooping agent. In either case, the lock sequence is aborted and retried.

The entire RMW Operation fails if any one of the bus locked transactions receives a hard error/
deferred response or AERR# assertion beyond the retry limit of the agent, or if any one of the
second to fourth transactions receives DEFER# assertion. These are protocol violations. As ex-
plained in Chapter 4, Bus Protocol, AERR# assertion causes an arbitration reset sequence. If
AERR# gets asserted on the second to fourth transaction within the retry limit of the agent, the
retrying agent must be guaranteed bus ownership to guarantee indivisibility of the lock opera-
tion. The bus protocol requires the retrying agent to arbitrate for the bus two clocks before all
other agents.
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" CHAPTER 6
RANGE REGISTERS

6.1. INTRODUCTION

The Pentium Pro processor Memory Type Range Registers (MTRRs) are model specific regis-
ters specifying the types of memory occupying different physical address ranges. Some of this
information was available to previous Intel processors via external bus signals (for example,
KEN# and WB/WT#).

Because Pentium Pro processors on a particular Pentium Pro processor bus share the same mem-
ory address space, all Pentium Pro processors on a Pentium Pro processor bus must have iden-
tical range register contents. The Pentium Pro processor cache protocol assumes that different
caching agents (different Pentium Pro processors) agree on the memory type and cache at-
tributes of each memory line. MTRR updates are permitted only if all caches have been flushed
before and after the update.

As described in following sections, the memory types affect both instruction execution and
cache attributes.

6.2. RANGE REGISTERS AND PENTIUM® PRO PROCESSOR
INSTRUCTION EXECUTION

The Pentium Pro processor supports out-of-order and speculative instruction execution. Out-of-
order execution enables the processor to execute an instruction even if previous instructions in
the execution stream have not completed or executed. Speculative execution enables the proces-
sor to execute an instruction that may or may not be part of the execution stream (such as an
instruction following a conditional branch), so long as the processor can undo the instruction’s
effect if it is not part of the execution stream.

Some memory types should not be accessed by out-of-order or speculative accesses. For exam-
ple, loading from an address used for memory-mapped I/O can have side effects, such as clear-
ing the loaded value from an I/O controller’s buffer. Such an instruction should not be executed
speculatively, but only if it is definitely part of the Pentium Pro processor’s execution stream. If
side effects of loads must take place in a certain sequence, then such loads should not be execut-
ed out-of-order either.

The memory types in the Pentium Pro processor’s range registers can be used to block out-of-
order or speculative accesses to memory ranges, in addition to controlling cache attributes. The
two uses are not independent of each other; any memory type that blocks out-of-order or spec-
ulative accesses is also non-cacheable.

The Pentium Pro processor architecture defines memory types where speculative and out of or-
der execution is safe (in other words, can be undone in case of misprediction). The same memory
types are also extended to support different cacheability policies such as writeback, and
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writethrough. The memory types are defined for specific address ranges based on range regis-
ters. The memory types currently defined, are shown in Table 6-1. The Pentium Pro processor
drives the memory type to the Pentium Pro processor bus in the second clock of the Request
Phase on the ATTR[3:0]# (attribute) pins.

RANGE REGISTERS

Table 6-1. Pentium® Pro Processor Architecture Memory Types

ATTRI[7:0]#
Encoding

Mnemonic

Name

Description

00000000

uc

uncacheable

Not cached. All reads and writes appear on the bus.
Reads and writes can have side effects, therefore no
speculative accesses are made to UC memory.

UC memory is useful for memory-mapped I/O.

00000100

WC

write-combining

Reads are not cached. Writes can be delayed and
combined. They are also weakly ordered resulting in
substantially higher write throughput. Reading WC
memory cannot have side effects and speculative
reads are allowed.

WC memory is useful for applications such as linear
frame buffers.

00000101

WT

write-through

Cacheable memory for which all writes are written
through to main memory.

Writing WT memory never causes a cache fill of an
invalid cache line and either invalidates or updates a
valid cache line.

00000110

WP

write-protected

Cacheable memory for which reads can hit the cache
and read misses cause cache fills, but writes bypass
the cache entirely.

00000111

WwB

writeback

Cacheable memory for which write misses allocate
cache lines and writes are performed entirely in the
cache whenever possible.

WB memory is useful for normal memory, providing
the best performance and the least bus traffic for
many applications.

All others

Reserved

Attempting to write a reserved value into a memory
type field of an MTRR signals a #GP(0) fault and
does not update the MTRR.
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6.3. MEMORY TYPE DESCRIPTIONS

This section provides detailed descriptions of the Pentium Pro processor’s memory types: UC,
WC, WT, WP, and WB.

6.3.1. UC Memory Type

The UC (uncacheable) memory type provides an uncacheable memory space. The processor’s
accesses to UC memory are executed in program order, without reordering. Accesses to other
memory types can pass accesses to UC memory.

6.3.2. WC Memory Type

The WC (write-combining) memory type provides a write-combining buffering strategy for
write operations, useful for frame buffers.

Writes to WC memory can be buffered and combined in the processor’s write-combining buffers
(WCB). The WCBs are viewed as a special-purpose outgoing write buffers, rather than a cache.

The WCBs are written to memory to allocate a different address, or they are written to memory
after leaving an interrupt, or executing a serializing, locked, or I/O instruction. There are no or-
dering constraints on the writing of WCBs to memory.

The Pentium Pro processor uses line size WCBs. WCB to memory writes use a single Memory
Write Transaction (W/WB# = 1) of 32 bytes if all WCB bytes are valid. If all WCB bytes are not
valid, the valid bytes are written to memory using a series of <= 8 byte Memory Write Transac-
tions. Such a series of transactions can be issued in any order regardless of the program order in
which the write data was generated. Therefore, WC memory is a weakly ordered memory type.
A particular Memory Write Transaction can write discontiguous bytes within an 8-byte span.
External hardware that supports the WC memory type must support such writes.

6.3.3. WT Memory Type

The WT (write-through) memory type reads data in lines and caches read data, but maps all
writes to the bus, while updating the cache to maintain cache coherency.

Writes directed at WT memory can be split across 32-byte and 8-byte boundaries, but are never
combined.

The Pentium Pro processor implementation of writes to WT memory updates valid lines in the
L1 data cache and invalidates valid lines in the L2 cache and in the L1 code cache.
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6.3.4. WP Memory Type

The WP (write-protected) memory type is used for cacheable memory for which reads can hit
the cache and read misses cause cache fills, while writes bypass the cache entirely. WP memory
can be viewed as a combination of WT memory for reads and UC (nonexistent) memory for
writes.

Note that the WP memory type only protects lines in the cache from being updated by writes. It
does not protect main memory.

6.3.5. WB Memory Type

The WB (writeback) memory type is writeback memory that is cacheable in any cache. The WB
memory type is processor-ordered. The WB memory type is the most cacheable and the highest
performance memory type, and is recommended for all normal memory.

6-4 I
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CHAPTER 7
CACHE PROTOCOL

The Pentium Pro processor and Pentium Pro processor bus support a high performance cache
hierarchy with complete support for cache coherency. The cache protocol supports multiple
caching agents (processors) executing concurrently, writeback caching, and multiple levels of
cache.

The cache protocol’s goals include performance and coherency. Performance is enhanced by
multiprocessor support, support for multiple cache levels, and writeback caching support. Co-
herency (or data consistency) guarantees that a system with multiple levels of cache and memory
and multiple active agents presents a shared memory model in which no agent ever reads stale
data and actions can be serialized as needed.

A line is the unit of caching. In the Pentium Pro processor, a line is 32 bytes of data or instruc-
tions, aligned on a 32-byte boundary in the physical address space. A line can be identified by
physical address bits A[35:5].

The cache protocol associates states with lines and defines rules governing state transitions.
States and state transitions depend on both Pentium Pro processor-generated activities and ac-
tivities by other bus agents (including other Pentium Pro processors).

7.1.  LINE STATES

Each line has a state in each cache. There are four line states, M (Modified), E (Exclusive),
S (Shared), and I (Invalid). The Pentium Pro processor cache protocol belongs to a family of
cache protocols called MESI protocols, named after the four line states. A line can have different
states in different agents, though the possible combinations are constrained by the protocol. For
example, a line can be Invalid in cache A and Shared in cache B.

A memory access (read or write) to a line in a cache can have different consequences depending
on whether it is an internal access, by the Pentium Pro processor or another bus agent containing
a cache, or an external access, by another Pentium Pro processor or some other bus agent.

The four states are defined as follows:

— I (Invalid)
The line is not available in this cache. An internal access to this line misses the cache
and can cause the Pentium Pro processor to fetch the line into the cache from the bus
(from memory or from another cache).

— S (Shared)
The line is in this cache, contains the same value as in memory, and can have the
Shared state in other caches. Internally reading the line causes no bus activity.
Internally writing the line causes a Write Invalidate Line transaction to gain ownership
of the line.
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— E (Exclusive)
The line is in this cache, contains the same value as in memory, and is Invalid in all
other caches. Internally reading the line causes no bus activity. Internally writing the
line causes no bus activity, but changes the line’s state to Modified.

— M (Modified)
The line is in this cache, contains a more recent value than memory, and is Invalid in
all other caches. Internally reading or writing the line causes no bus activity.

A line is valid in a cache if it is in the Shared, Exclusive, or Modified state.

7.2. MEMORY TYPES, AND TRANSACTIONS

A number of bus and processor transactions can cause a line to transition from one state to an-
other. The transaction being executed, a line’s present state, snoop results, and memory range
attributes combine to determine a line’s new state and coherency-related bus activity (such as
writebacks). This section describes the snoop result signals, memory types, and transaction
types, the overall state transition diagram, and the possible final states for different bus
transactions.

7.2.1. Memory Types: WB, WT, WP, and UC

Each line has a memory type determined by the Pentium Pro processor’s range registers and con-
trol registers, described in Chapter 6, Range Registers. For caching purposes, the memory type
can be writeback (WB), write-through (WT), write-protected (WP), or un-cacheable (UC).

A WB line is cacheable and is always fetched into the cache if a miss occurs. A write to a WB
line does not cause bus activity if the line is in the E or M states.

A WT line is cacheable but is not fetched into the cache on a write miss. A write to a WT line
goes out on the bus. For the Pentium Pro processor, a WT hit to the L1 cache updates the L1
cache. A WT hit to L2 cache invalidates the L2 cache.

A WP line is also cacheable, but a write to it cannot modify the cache line and the write always
goes out on the bus. A WP line is not fetched into the cache on a write miss. For the Pentium
Pro processor, a WP hit to the L2 cache invalidates the line in the L2 cache.

An UC line is not put into the cache. A UC hit to the L1 or L2 cache invalidates the entry.

7.2.2. Bus Operations

In this chapter, the bus transactions described in Chapter 5, Bus Transactions and Operations are
classified into the following generic groups for ease of presentation:

BRL (Bus Read Line). A Bus Read Line transaction is a Memory Read Transaction for a full
cache line. This transaction indicates that a requesting agent has had a read miss.
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BRP (Bus Read Part-line). A Bus Read Part-line transaction indicates that a requesting agent
issued a Memory Read Transaction for less than a full cache line.

BLR (Bus Locked Read). A Bus Locked Read transaction indicates that a requesting agent is-
sued a bus locked Memory Read Transaction. For the Pentium Pro processor, this will be for <=
8 bytes.

BWL (Bus Write Line). A Bus Write Line transaction indicates that a requesting agent issued
a Memory Write Transaction for a full cache line. This transaction indicates that a requesting
agent intends to write back a Modified line or an I/O agent intends to write a line to memory.

BWP (Bus Write Part-line). A Bus Write Part-line transaction indicates that a requesting agent
issued a Memory Write Transaction for less than a full cache line.

BLW (Bus Locked Write). A Bus Locked Write transaction indicates that a requesting agent
issued a bus locked Memory Write Transaction. For the Pentium Pro processor, this will be for
<= 8 bytes.

BRIL (Bus Read Invalidate Line). A Bus Read Invalidate Line transaction indicates that a re-
questing agent issued a Memory (Read) Invalidate Transaction for a full cache line. The request-
ing agent has had a read miss and intends to modify this line when the line is returned.

BIL (Bus Invalidate Line). A Bus Invalidate Line transaction indicates that a requesting agent
issued a Memory (Read) Invalidate Transaction for O bytes. The requesting agent contains the
line in S state and intends to modify the line. In case of a race condition, the response for this
transaction can contain an implicit writeback.

Implicit Writeback: A Response to Another Transaction. An implicit writeback is not an in-
dependent bus transaction. It is a response to another transaction that requests the most up-to-
date data. When an external request hits a Modified line in the local cache or buffer, an implicit
writeback is performed to provide the Modified line and at the same time, update memory.

7.2.3. Naming Convention for Transactions

The memory-access transaction names and abbreviations contain up to six components as
follows:

B=Bus, I=Internal, or omitted

A=Any, CL=Cache Locked, L=[split] Locked
R=Read, W= Write

I=Invalidate, or omitted

C=Code, D=Data, or omitted

S

L=Line, P=Partial, or omitted

All cache state transitions with respect to Internal requests assume that the DEFER# signal sam-
pled in the Snoop Result Phase is inactive. If DEFER# is sampled active and HITM# is inactive,
then no cache state transition is made. If the transaction receives a deferred response, the actual
cache state transition by the receiver is made during the Snoop Result Phase of the deferred reply
transaction. Cache state transitions associated with “bus” requests ignore the DEFER# signal.
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CHAPTER 8
DATA INTEGRITY

The chapter has been updated from the EBS 3.0 to simplify and clarify the Data Integrity
features of the Pentium Pro processor bus, as well as updating the Pentium Pro processor
implementation.

The Pentium Pro processor and the Pentium Pro processor bus incorporate several advanced data
integrity features to improve error detection, retry, and correction. The Pentium Pro processor
bus includes parity protection for address/request signals, parity or protocol protection on most
control signals, and ECC protection for data signals. The Pentium Pro processor provides the
maximum possible level of error detection by incorporating functional redundancy checking
(FRC) support.

The Pentium Pro processor data integrity features can be categorized as follows:

o Pentium Pro processor internal error detection

o Level 2 (L2) cache and Core-to-L2 cache-interface error detection and limited recovery
o Pentium Pro processor bus error detection and limited recovery

e Pentium Pro processor bus FRC support

In addition, the Pentium Pro processor extends the Pentium processor’s data integrity features
in several ways to form a machine check architecture. Several model specific registers are de-
fined for reporting error status. Hardware corrected errors are reported to registers associated
with the unit reporting the error. Unrecoverable errors cause the INT 18 machine check excep-
tion, as in the Pentium processor.

If machine check is disabled, or an error occurs in a Pentium Pro processor bus agent without
the machine check architecture, the Pentium Pro processor bus defines a bus error reporting
mechanism. The central agent can then be configured to invoke the exception handler via an in-
terrupt (NMI) or soft reset (INIT#).

The terminology used in this chapter is listed below:
e Machine Check Architecture (MCA)

e Machine Check Exception (MCE)

e Machine Check Enable bit (CR4.MCE)

e Machine Check In Progress (MCIP)
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8.1. ERROR CLASSIFICATION

The Pentium Pro architecture uses the following error classification. An implementation may al-
ways choose to report an error in a more severe category to simplify its logic.

o Recoverable error (RE): The error can be corrected by a retry or by using ECC infor-
mation. The error is logged in the MCA hardware.

e Unrecoverable error (UE): The error cannot be corrected, but it only affects one agent.
The memory interface logic and bus pipeline are intact, and can be used to report the error
via an exception handler.

o Fatal error (FE): The error cannot be corrected and may affect more than one agent. The
memory interface logic and bus pipeline integrity may have been violated, and cannot be
reliably used to report the error via an exception handler. A bus pipeline reset is required of
all bus agents before operation can continue. An exception handler may then proceed.

8.2. PENTIUM® PRO PROCESSOR BUS DATA INTEGRITY
ARCHITECTURE

The Pentium Pro processor bus’s major address and data paths are protected by ten check bits,
providing parity or ECC. Eight ECC bits protect the data bus. Single-bit data ECC errors are au-
tomatically corrected. A two-bit parity code protects the address bus. Any address parity error
on the address bus when the request is issued can be optionally retried to attempt a correction.

Two control signal groups are explicitly protected by individual parity bits: RP# and RSP#. Er-
rors on most remaining bus signals can be detected indirectly due to a well-defined bus protocol
specification that enables detection of protocol violation errors. Errors on a few bus signals can-
not be detected without the use of FRC mode.

An agent is not required to support all data integrity features, as each feature is individually en-
abled through the power-on configuration register. See Chapter 9, Configuration of the Pentium
Pro processor EBS 3.0.

8.2.1. Bus Signals Protected Directly

Most Pentium Pro processor bus signals are protected by parity or ECC. Table 8-1 shows which
signals protect which signals, what phases the protection is valid in, and what effect the address
size (ASZ[1:0]#) has on the protected signals.
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Table 8-1. Direct Bus Signal Protection

Signal Protects Phase ASZ[1:0]# | ASZ[1:0]# Address range
RP# ADS#,REQ[4:0]# Request X X -
AP[0]# A[23:3]# Request X X -
AP[1]# A[31:24]# Request 0 0 0 <= Address < 4GB
A[35:24)# Request 0 1 4GB <= Address < 64GB
Reserved Request 1 X Reserved
RSP# RS[2:0]# All X X -
DEP[7:0]# D[63:0}# Data X X -

Address/Request Bus Signals. A parity error detected on AP[1:0]# or RP# is reported or
retried based on the following options defined by the power-on configuration:

— AERR# driver disabled.
The agent detecting the parity error ignores it and continues normal operation. This
option is normally used in power-on system initialization and system diagnostics.

— AERR# driver enabled, AERR# observation disabled.
The agent detecting the parity error asserts the AERR# signal during the Error Phase.
This signal can be trapped by the central agent and be driven back to one of the
processors as NMI.

— AERR# driver enabled, AERR# observation enabled.

The agent detecting the parity error asserts the AERR# signal during the Error Phase.
All bus agents must observe AERR# and on the next clock reset bus arbiters and abort
the erroneous transaction by removing the transaction from the In-Order Queue and
cancelling all remaining phases associated with the transaction. The first n AERR#s to
any request are logged by the initiator as recoverable errors. (n is an agent-determined
retry limit chosen by the Pentium Pro processor to be 1.) The initiator retries the
canceled request up to n more times. On a subsequent AERR# to the same request, the
requesting agent reports it as a unrecoverable error.

Response Signals. A parity error detected on RSP# should be reported by the agent
detecting the error as a fatal error.

Data Transfer Signals. The Pentium Pro processor bus can be configured with either no
data-bus 