

LITERATURE
For additional information on Intel products in the U.S. or Canada, call Intel's Literature Center at
(800) 548-4725 or write to:

INTEL LITERATURE SALES
P.O. Box 7641
Mt. Prospect, IL 60056-7641

To order literature outside of the U.S. and Canada contact your local sales office.

Additional information about Intel products is available on Intel's web site: http://www.intel.com.

CURRENT DATABOOKS

Product line databooks contain datasheets, application notes, article reprints, and other design information.
All databooks can be ordered individually, and most are available in a pre-packaged set in the U.S. and Can­
ada. Databooks can be ordered in the U.S. and Canada by calling TAB/McGraw-Hili at 1-800-822-8158;
outside of the U.S. and Canada contact your local sales office.

Intel Order
Title Number ISBN

SET OF NINE DATABOOKS (Available in U.S. and Canada) 231003 NlA

CONTENTS LISTED BELOW FOR INDIVIDUAL ORDERING:

EMBEDDED MICROCONTROLLERS 270646 1-55512-248-5

EMBEDDED MICROPROCESSORS 272396 1-55512-249-3

FLASH MEMORY (2 volume set) 210830 1-55512-250-7

i960® PROCESSORS AND RELATED PRODUCTS 272084 1-55512-252-3

NETWORKING 297360 1-55512-256-6

OEM BOARDS, SYSTEMS AND SOFTWARE 280407 1-55512-253-1

PACKAGING 240800 1-55512-254-X

PENTIUM® AND PENTIUM PRO PROCESSORS AND RELATED 241732 1-55512-251-5
PRODUCTS

PERIPHERAL COMPONENTS 296467 1-55512-255-8

ADDITIONAL LITERATURE: (Not included in databook set)

AUTOMOTIVE PRODUCTS 231792 1-55512-257-4

COMPONENTS QUALITY/RELIABILITY 210997 1-55512-258-2

EMBEDDED APPLICATIONS (1995/96) 270648 1-55512-179-9

MILITARY 210461 N/A

SYSTEMS QUALITY/RELIABILITY 231762 1-55512-046-6

A complete set of this information is available on CD-ROM through Intel's Data on Demand program, order
number 240897. For information about Intel's Data on Demand ask for item number 240952.

Jan uary 1996
Order Number: 000900-001

I

Intel Application Support Services

World Wide Web [URL: http://www.intel.comll
Intel's Web site now contains technical and product information that is available 24 hours a day! Also visit Intel's site
for financials, history, current news and events, job opportunities, educational news and much, much more!

FaxBack*
Technical and product information are available 24 hours a day! Order documents containing:

• Product Announcements • Design! Application Recommendations

• Product Literature • Stepping/Change Notifications

• Intel Device Characteristics • Quality and Reliability Information

Information on the following subjects are available:

• Microcontroller and Flash • Development Tools

• OEM Branded Systems • Quality and Reliability/Change Notification

• Multibus and iRMX SoftwarelBBS listing • MicroprocessorlPClIPeripheral

• Multimedia • Intel Architecture Labs

To use FaxBack (for Intel components and systems), dial (800) 628-2283 or 916-356-3105 (U.S.lCanadalAPAC/Japan)
or +44{O] 1793-496646 (Europe) and follow the automated voice-prompt. Document orders will be faxed to the fax
number you specify. For information on how the Intel Application Support team can help you, order our Customer Ser­
vice Agreement, document #1201. Catalogs are updated as needed, so call for the latest information!

Bulletin Board System (BBS)
To use the Intel Application BBS (components and systems), dial (503) 264-7999 or (916) 356-3600 (U.S.lCana­
dalAPAC/Japan) or +44{O] 1793-432955 (Europe). The BBS will support 1200-19200 baud rate modem. Typical
modem configuration: I4.4K baud rate, No Parity, 8 Data Bits, 1 Stop Bit.

CompuServe Just type 'Go Intel'
Intel maintains several forums where people come together to meet their peers, gather information, share discoveries
and debate issues. For more information about service fees and access, call CompuServe at 1-800-848-8199 or
614-529-1340 (outside the U.S.). The INTELC forum is set up to support designers using various Intel components.

General Information Help Desk
Dial 1-800-628-8686 or 916-356-7599 (U.S. and Canada) between 5 a.m. and 5 p.m. PST for help with Intel products.
For customers not in the U.S. or Canada, please contact your local distributor.

Intel Literature Centers
U.S.

u.s. (from overseas)

England

Intel Distributors

+ 1-800-548-4725

+ 1-708-296-9333

+44{0} 1793431155

France

Germany

Japan (fax only)

+44{ O} 1793 421777

+44{0} 1793421333

+81{0} 120478832

Check the back of an Intel data book or request one of the following distributor listing FaxBack documents: #4083 (U.S.
Eastern Time Zone), #4084 (U.S. Central Time Zone), #4085 (Mountain Time Zone), #4086 (U.S. AIaskalPacific Time
Zone), #4209 (Europe) or #4403 (Canada).

'Other brands and names are the property of their respective owners.

January 1996
Order Number: 000901-001

I

Pentium® Pro Family
Developer's Manual

Volume 3:
Operating System Writer's Guide

NOTE: The Pentium® Pro Family Developer's Manual consists ofthree
books: Specifications, Order Number 242690; Programmer's Reference

Manual, Order Number 242691; and the Operating System Writer's Guide,
Order Number 242692.

Please refer to all three volumes when evaluating your design needs.

1996

I

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not
intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

The Pentium'"' Pro processor may contain design defects or errors known as errata. Current characterized errata are available on request.

"Third-party brands and names are the property of their respective owners.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be obtained from:

Intel Corporation
P.O. Box 7641

Mt. Prospect, tL 60056-7641

or call 1-800-879-4683

COPYRIGHTClINTEL CORPORATION 1996

I

TABLE OF CONTENTS
PAGE

TABLE OF FIGURES xvi

TABLE OF TABLES . .. xix

CHAPTER 1
ABOUT THIS MANUAL
1.1. OVERVIEW OF THE PENTIUM® PRO FAMILY DEVELOPER'S MANUAL,

1.2.

1.3.
1.3.1.
1.3.2.
1.3.3.
1.3.4.
1.3.5.
1.3.6.
1.4.

VOLUME3 .. 1-1
OVERVIEW OF THE PENTIUM® PRO PROGRAMMER'S REFERENCE
MANUAL ... 1-3
NOTATIONAL CONVENTIONS .. 1-4

Bit and Byte Order ... 1-4
Reserved Bits and Software Compatibility 1-5
I nstruction Operands ... 1-5
Hexadecimal and Binary Numbers 1-6
Segmented Addressing ... 1-6
Exceptions ... 1-6

RELATED LITERATURE ... 1-7

CHAPTER 2
SYSTEM ARCHITECTURE OVERVIEW
2.1.
2.1.1.
2.1.2.
2.1.3.
2.1.4.
2.1.5.
2.1.6.
2.1.7.
2.2.
2.3.
2.4.
2.4.1.
2.4.2.
2.4.3.
2.4.4.
2.5.
2.5.1.
2.6.
2.6.1.
2.6.2.
2.6.3.
2.6.4.
2.6.5.
2.6.6.
2.6.7.

OVERVIEW OF THE SYSTEM-LEVEL ARCHITECTURE 2-1
Global and Local Descriptor Tables 2-3
System Segments, Segment Descriptors, and Gates 2-3
Task State Segments and Task Gates 2-4
Interrupt and Exception Handling 2-4
Memory Management .. 2-4
System Registers ... 2-5
Other System Resources ... 2-6

MODES OF OPERATION .. 2-6
SYSTEM FLAGS AND FIELDS IN THE EFLAGS REGISTER 2-7
MEMORY-MANAGEMENT REGISTERS 2-10

Global Descriptor Table Register (GDTR) 2-10
Local Descriptor Table Register (LDTR) 2-10
I DTR Interrupt Descriptor Table Register 2-11
Task Register (TR) ... 2-11

CONTROL REGISTERS .. 2-11
CPUID Qualification of Control Register Flags 2-16

SYSTEM INSTRUCTION SUMMARY 2-16
Loading and Storing System Registers 2-17
Verifying of Access Privileges 2-17
Loading and Storing Debug Registers 2-19
Invalidating Caches and TLBs 2-19
Controlling the Processor .. 2-20
Reading Performance Monitoring and Time Stamp Counters 2-20
Reading and Writing Model-Specific Registers 2-21

v

TABLE OF CONTENTS intet
PAGE

CHAPTER 3
PROTECTED-MODE MEMORY MANAGEMENT
3.1. MEMORY MANAGEMENT OVERVIEW 3-1
3.2. USING SEGMENTS ... 3-3
3.2.1. Flat Model ... 3-3
3.2.2. Protected Flat Model ... 3-4
3.2.3. Multi-Segment Model. .. 3-4
3.2.4. Paging and Segmentation ... 3-5
3.3. PHYSICAL ADDRESS SPACE. .. 3-6
3.4. LOGICAL AND LINEAR ADDRESSES. .. 3-6
3.4.1. Segment Selectors .. 3-7
3.4.2. Segment Registers .. 3-8
3.4.3. Segment Descriptors ... 3-9
3.4.3.1. Code and Data Segment-Descriptor Types 3-12
3.5. SYSTEM SEGMENT-DESCRIPTOR TYPES 3-14
3.5.1. Segment Descriptor Tables ... 3-15
3.6. PAGING (VIRTUAL MEMORY) 3-17
3.6.1. Paging Options .. 3-18
3.6.2. Page Tables and Directories .. 3-18
3.6.2.1. Linear Address Translation (4-KByte Pages) 3-19
3.6.2.2. Linear Address Translation (4-MByte Pages) 3-20
3.6.2.3. Mixing 4-KByte and 4-MByte Pages 3-20
3.6.3. Base Address of the Page Directory 3-21
3.6.4. Page-Directory and Page-Table Entries 3-21
3.6.5. Not Present Page-Directory and Page-Table Entries 3-25
3.7. TRANSLATION LOOKASIDE BUFFERS (TLBS) 3-26
3.8. PHYSICAL ADDRESS EXTENSION. .. 3-27
3.8.1. Linear Address Translation With Extended Addressing Enabled

(4-KByte Pages) ... 3-27
3.8.2. Linear Address Translation With Extended Addressing Enabled

(2-MByte Pages) ... 3-28
3.8.3. Accessing the Full Extended Physical Address Space With the

Extended Page Table Structure 3-28
3.8.4. Page-Directory and Page-Table Entries With Extended Addressing Enabled .. 3-30
3.9. MAPPING SEGMENTS TO PAGES 3-33

CHAPTER 4
PROTECTION
4.1. ENABLING AND DISABLING SEGMENT AND PAGE PROTECTION. 4-1
4.2. FIELDS AND FLAGS USED FOR SEGMENT-LEVEL AND PAGE-LEVEL

4.3.
4.4.
4.4.1.
4.5.
4.6.

4.6.1.
4.7.
4.8.

4.8.1.

vi

PROTECTION .. 4-2
LIMIT CHECKING .. 4-4
TYPE CHECKING .. 4-5

Null Segment Selector Checking4-6
PRIVILEGE LEVELS .. 4-6
PRIVILEGE LEVEL CHECKING WHEN ACCESSING
DATA SEGMENTS 4-8

Accessing Data in Code Segments 4-9
PRIVILEGE LEVEL CHECKING WHEN LOADING THE SS REGISTER 4-10
PRIVILEGE LEVEL CHECKING WHEN TRANSFERRING PROGRAM
CONTROL BETWEEN CODE SEGMENTS 4-10

Direct Calls or Jumps to Code Segments 4-11

I

4.8.1.1.
4.8.1.2.
4.8.2.
4.8.3.
4.8.4.
4.8.5.
4.8.6.
4.9.
4.10.
4.10.1.
4.10.2.
4.10.3.
4.10.4.
4.10.5.
4.11.
4.11.1.
4.11.2.
4.11.3.
4.11.4.
4.11.5.
4.12.

TABLE OF CONTENTS

PAGE

Accessing Nonconforming Code Segments 4-11
Accessing Conforming Code Segments 4-13

Gate Descriptors .. 4-13
Call Gates .. 4-14
Accessing a Code Segment Through a Call Gate 4-15
Stack Switching. 4-18
Returning from a Called Procedure 4-20

PRIVILEGED INSTRUCTIONS 4-21
POINTER VALIDATION ... 4-22

Checking Segment Type Compatibility (Access Rights) 4-22
Checking ReadlWrite Rights 4-23
Checking That the Pointer Offset Is Within Limits 4-23
Checking Caller Access Privileges 4-24
Checking Alignment. 4-26

PAGE-LEVEL PROTECTION ... 4-26
Page Protection Flags .. 4-26
Restricting Addressable Domain 4-27
Page Type ... 4-27
Combining Protection of Both Levels of Page Tables 4-28
Overrides to Page Protection 4-28

COMBINING PAGE AND SEGMENT PROTECTION 4-29

CHAPTERS
INTERRUPT AND EXCEPTION HANDLING
5.1. INTERRUPT AND EXCEPTION OVERViEW 5-1
5.2. EXCEPTION AND INTERRUPT VECTORS 5-2
5.3. EXCEPTION CLASSIFICATIONS 5-4
5.4. PROGRAM OR TASK RESTART. 5-4
5.5. ENABLING AND DISABLING INTERRUPTS 5-5
5.5.1. Handling Multiple NMls .. 5-5
5.5.2. Masking Maskable Interrupts .. 5-5
5.5.3. Masking Debug Exceptions. 5-6
5.5.4. Masking Exceptions and Interrupts When Switching Stacks 5-7
5.6. PRIORITY AMONG SIMULTANEOUS EXCEPTIONS AND INTERRUPTS 5-7
5.7. INTERRUPT DESCRIPTOR TABLE (lOT) 5-7
5.8. lOT DESCRIPTORS ... 5-9
5.9. EXCEPTION- AND INTERRUPT HANDLING 5-11
5.9.1. Exception- or Interrupt-Handler Procedures . 5-11
5.9.1.1. Flag Usage By Exception- or Interrupt-Handler Procedure 5-12
5.9.1.2. Protection of Exception- and Interrupt-Handler Procedures. 5-14
5.9.2. Interrupt Tasks .. 5-14
5.10. ERROR CODE .. 5-15
5.11. MACHINE CHECK ARCHITECTURE 5-16
5.12. EXCEPTION REFERENCE .. 5-17

Interrupt O-Divide Error Exception (#DE) 5-18
Interrupt 1-Debug Exception (#DB) 5-19
Interrupt 2-NMI Interrupt 5-20
Interrupt 3-Breakpoint Exception (#BP) 5-21
Interrupt 4-0verflow Exception (#OF) .. 5-22
Interrupt 5-BOUND Range Exceeded Exception (#BR) 5-23
Interrupt 6-lnvalid Opcode Exception (#UD) .. 5-24

I
vii

TABLE OF CONTENTS

PAGE

Interrupt 7-Device Not Available Exception (#NM) 5-25
Interrupt 8-Double Fault Exception (#DF) 5-27
Interrupt 9-CoProcessor Segment Overrun 5-29
Interrupt 10-lnvalid TSS Exception (#TS) 5-30
Interrupt 11-Segment Not Present (#NP) 5-32
Interrupt 12-Stack Fault Exception (#SS) 5-34
Interrupt 13-General Protection Exception (#GP) 5-36
Interrupt 14-Page Fault Exception (#PF) 5-39
Interrupt 16-Floating-Point Error Exception (#MF) 5-42
Interrupt 17-Alignment Check Exception (#AC) 5-44
Interrupt 18-Machine Check Exception (#MC) 5-46
Interrupts 32 to 255-Software Interrupts or Responses to the
INTR# Signal ... 5-47

CHAPTER 6
TASK MANAGEMENT
6.1. TASK-MANAGEMENT OVERVIEW 6-1
6.1.1. Task Structure .. 6-1
6.1.2. Task State ... 6-2
6.1.3. Executing a Task .. 6-3
6.2. TASK MANAGEMENT DATA STRUCTURES 6-3
6.2.1. Task State Segment (TSS) .. 6-4
6.2.2. TSS Descriptor ... 6-6
6.2.3. Task Register .. 6-7
6.2.4. Task Gate Descriptor ... 6-8
6.3. TASK SWITCHING .. 6-10
6.4. TASK LINKING .. 6-13
6.4.1. Use of Busy Flag To Prevent Recursive Task Switching 6-14
6.4.2. Modifying Task Linkages ... 6-15
6.5. TASK ADDRESS SPACE ... 6-15
6.5.1. Mapping Tasks to the Linear and Physical Address Spaces 6-16
6.5.2. Task Logical Address Space .. 6-16
6.5.3. 16-Bit Task State Segment ... 6-18

CHAPTER 7
MULTIPLE PROCESSOR MANAGEMENT
7.1. LOCKED ATOMIC OPERATIONS 7-1
7.1.1. Guaranteed Atomic Operations 7-2
7.1.2. Bus Locking .. 7-3
7.1.2.1. Automatic Bus Locking ... 7-3
7.1.2.2. Software Controlled Bus Locking 7-4
7.1.3. Effects of a Locked Operation on Internal Processor Caches 7-5
7.2. MEMORY ORDERING ... 7-5
7.2.1. Strengthening or Weakening the Processor-Order Model. 7-7
7.3. SERIALIZING INSTRUCTIONS. .. 7-8
7.4. ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC) 7-9
7.4.1. APIC Bus ... 7-10
7.4.2. Valid Interrupts .. 7-11
7.4.3. Interrupt Sources ... 7-11
7.4.4. Bus Arbitration Overview ... 7-11

viii

I

int"et TABLE OF CONTENTS

PAGE

The Local APIC Block Diagram 7-12
Interrupt Destination and APIC ID 7-15

Physical Destination Mode 7-15
Logical Destination Mode 7-15
Flat Model ... 7-16
Cluster Model .. 7-16
Arbitration Priority ... 7-17

Interrupt Distribution Mechanisms 7-17
Local Vector Table ... 7-18
Interprocessor and Self Interrupts 7-20
Interrupt Acceptance ... 7-25

Interrupt Acceptance Decision Flow Chart 7-25
Task Priority Register .. 7-26
Processor Priority Register (PPR) 7-27
Arbitration Priority Register (APR) 7-27
Spurious Interrupt ... 7-28
End-Of-Interrupt (EOI) ... 7-28

Local APIC State .. 7-28
Spurious-Interrupt Vector Register 7-29
Local APIC Initialization .. 7-29
Local APIC State After Power-Up Reset. 7-30
Local APIC State After a Software (INIT) Reset 7-30
Local APIC State After INIT-Deassert Message 7-30

Local APIC Version Register 7-30
APIC Bus Arbitration Mechanism and Protocol 7-31

Bus Message Formats ... 7-31
APIC Bus Status Cycles. .. 7-35

Error Handling .. 7-36
Timer ... 7-37
Software Visible Differences Between the Local APIC and the 82489DX 7-38
Performance Related Differences between the Local APIC and the 82489DX. 7-38
New Features Incorporated in the Pentium@ Pro Processor Local APIC 7-38

7.4.5.
7.4.6.
7.4.6.1.
7.4.6.2.
7.4.6.3.
7.4.6.4.
7.4.6.5.
7.4.7.
7.4.8.
7.4.9.
7.4.10.
7.4.10.1.
7.4.10.2.
7.4.10.3.
7.4.10.4.
7.4.10.5.
7.4.10.6.
7.4.11.
7.4.11.1.
7.4.11.2.
7.4.11.3.
7.4.11.4.
7.4.11.5.
7.4.12.
7.4.13.
7.4.13.1.
7.4.13.2.
7.4.14.
7.4.15.
7.4.16.
7.4.17.
7.4.18.
7.5.
7.5.1.
7.5.2.
7.5.3.
7.5.4.
7.5.5.
7.5.6.
7.5.7.
7.5.7.1.
7.5.7.2.
7.5.7.3.

MULTIPLE PROCESSOR (MP) INITIALIZATION PROTOCOL. 7-39
MP Protocol Goals ... 7-39
Protocol Requirements and Restrictions 7-39
MP Protocol Nomenclature .. 7-39
Error Detection During the MP Initialization Protocol. 7-40
Error Handling During the MP Initialization Protocol 7-41
MP Initialization Protocol Algorithm 7-41
Two-Processor Bootup Handshake Protocol Sequence With Examples 7-42

Boot Strap Processor's (BSP's) Sequence of Events 7-42
AP's Sequence of Events following Start-Up IPI. 7-44
Program the L1NTO and L1NT1 Inputs 7-45

CHAPTER 8
PROCESSOR MANAGEMENT AND INITIALIZATION
8.1. INITIALIZATION OVERViEW .. 8-1
8.1.1. Processor State After Reset .. 8-1
8.1.2. Processor Built-In Self Test (BIST) 8-2
8.1.3. Model and Stepping Information 8-3
8.1.4. First Instruction Executed .. 8-4
8.2. FPU INITIALIZATION .. 8-4

I
ix

TABLE OF CONTENTS

PAGE

8.2.1. Configuring the FPU Environment. 8-5
8.2.2. Setting the Processor for FPU Software Emulation 8-6
8.3. CACHE ENABLING ... 8-6
8.4. MODEL SPECIFIC REGISTERS (MSRS) 8-7
8.5. MEMORY TYPE RANGE REGISTERS (MTRRS). .. 8-7
8.6. SOFTWARE INITIALIZATION FOR REAL-ADDRESS MODE OPERATION 8-8
8.6.1. Real-Address Mode IDT .. 8-8
8.6.2. NMllnterrupt Handling ... 8-8
8.7. SOFTWARE INITIALIZATION FOR PROTECTED MODE OPERATION 8-9
8.7.1. Protected-Mode System Data Structures 8-9
8.7.2. Initializing Protected-Mode Exceptions and Interrupts 8-10
8.7.3. Initializing Paging ... 8-10
8.7.4. Initializing Multitasking ... 8-11
8.8. MODE SWITCHING .. 8-11
8.8.1. Switching to Protected Mode .. 8-11
8.8.2. Switching Back to Real-Address Mode 8-12
8.9. INITIALIZATION AND MODE SWITCHING EXAMPLE 8-14
8.9.1. Assembler Usage .. 8-16
8.9.2. STARTUP.ASM Listing .. 8-16
8.9.3. MAIN.ASM Source Code ... 8-26
8.9.4. Supporting Files .. 8-27

CHAPTER 9
SYSTEM MANAGEMENT MODE (SMM)
9.1.
9.2.
9.3.

9.3.1.
9.3.1.1.
9.4.
9.4.1.
9.4.2.
9.5.
9.6.
9.7.
9.8.
9.9.
9.10.
9.10.1.
9.11.
9.11.1.
9.12.
9.12.1.

SYSTEM MANAGEMENT MODE OVERViEW 9-1
SYSTEM MANAGEMENT INTERRUPT (SMI) 9-2
SWITCHING BETWEEN SMM AND THE OTHER PROCESSOR
OPERATING MODES ... 9-2

Entering SMM .. 9-2
Exiting From SMM .. 9-2

SMRAM .. 9-3
SMRAM State Save Map .. 9-4
SMRAM Caching .. 9-6

SMI HANDLER EXECUTION ENVIRONMENT 9-6
EXCEPTIONS AND INTERRUPTS WITHIN SMM 9-8
NMI HANDLING WHILE IN SMM 9-9
USING THE FPU IN SMM .. 9-9
SMM REVISION IDENTIFIER ... 9-9
AUTO HALT RESTART ... 9-10

Executing the HL T Instruction in SMM 9-11
5MBASE RELOCATION .. 9-11

Relocating SMRAM to an Address Above 1 MByte 9-12
I/O INSTRUCTION RESTART .. 9-12

SMM Multiple Processor Considerations 9-13

CHAPTER 10
DEBUGGING AND PERFORMANCE MONITORING
10.1. OVERVIEW OF THE DEBUGGING SUPPORT FACILITIES 10-1
10.2. DEBUG REGISTERS ... 10-2
10.2.1. Debug Address Registers (DRO-DR3) 10-4
10.2.2. Debug Registers DR4 and DR5 10-4
10.2.3. Debug Status Register (DR6) 10-4

x

I

10.2.4.
10.2.5.
10.3.
10.3.1.
10.3.1.1.
10.3.1.2.
10.3.1.3.
10.3.1.4.
10.3.1.5.
10.3.2.
10.4.
10.4.1.
10.4.2.
10.4.3.
10.4.4.
10.4.5.
10.5.
10.6.
10.6.1.
10.6.2.
10.6.3.
10.6.4.
10.6.5.

TABLE OF CONTENTS

PAGE

Debug Control Register (DR7). .. 10-5
Breakpoint Field Recognition. .. 10-6

DEBUG EXCEPTIONS .. 10-7
Debug Exception (#DB)-Interrupt Vector 1 10-8

Instruction-Breakpoint Exception Condition 10-8
Data Memory and I/O Breakpoint Exception Conditions. 10-9
General-Detect Exception Condition. .. 10-9
Single-Step Exception Condition 10-9
Task-Switch Exception Condition 10-10

Breakpoint Exception (#BP)-Interrupt Vector 3 10-10
LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING 10-11

DebugCtlMSR Register. .. 10-11
Last Branch and Last Exception MSRs 10-12
Monitoring Branches, Exceptions, and Interrupts .. 10-13
Single-Stepping on Branches, Exceptions, and Interrupts 10-13
Initializing Last Branch or Last Exception/Interrupt Recording 10-13

TIME-STAMP COUNTER ... 10-14
PERFORMANCE MONITORING COUNTERS 10-14

PerfEvtSelO and PerfEvtSel1 MSRs 10-15
PerfCtrO and PerfCtr1 MSRs. .. 10-16
Starting and Stopping the Performance-Monitoring Counters. 10-17
Event and Time-Stamp Monitoring Software. .. 10-17
Monitoring Counter Overflow. .. 10-18

CHAPTER 11
MEMORY CACHE CONTROL
11.1. INTERNAL CACHES, TLBS, AND BUFFERS 11-1
11.2. CACHING TERMINOLOGy .. 11-3
11.3. METHODS OF CACHING AVAILABLE 11-4
11.3.1. Choosing A Memory Type. .. 11-5
11.4. CACHE CONTROL PROTOCOL. .. 11-5
11.5. CACHE CONTROL .. 11-6
11.5.1. Precedence of Cache Controls .. 11-8
11.5.2. Preventing Caching ... 11-10
11.6. CACHE MANAGEMENT INSTRUCTIONS 11-10
11.7. SELF-MODIFYING CODE .. 11-11
11.8. IMPLlCITCACHING ... 11-11
11.9. INVALIDATING THE TRANSLATION LOOKASIDE BUFFERS (TLBS) 11-12
11.10. WRITE BUFFER .. 11-12
11.11. MEMORYTYPERANGEREGISTERS(MTRRS) 11-13
11.11.1. MTRR Feature Identification. .. 11-14
11.11.2. Setting Memory Ranges with MTRRs .. 11-15
11.11.2.1. MTRRdefType Register 11-15
11.11.2.2. Fixed Range MTRRs .. 11-16
11.11.2.3. Variable Range MTRRs 11-17
11.11.3. Example Base and Mask Calculations .. 11-19
11.11.4. Range Size and Alignment Requirement. .. 11-20
11.11.4.1. MTRR Precedences. .. 11-20
11.11.5. MTRR Initialization .. 11-21
11.11.6. Remapping Memory Types. .. 11-21
11.11.7. MTRR Maintenance Programming Interface 11-22
11.11.7.1. MemTypeGetO Function 11-22

I
xi

TABLE OF CONTENTS

11.11.7.2.
11.11.B.
11.11.9.

PAGE

MemTypeSetO Function .. 11-23
Multiple-Processor Considerations 11-25
Large Page Size Considerations 11-26

CHAPTER 12
8086 EMULATION
12.1. REAL-ADDRESS MODE .. 12-1
12.1.1. Address Translation in Real-Address Mode 12-3
12.1 .2. Registers Supported in Real-Address Mode 12-4
12.1.3. Instructions Supported in Real-Address Mode 12-4
12.1.4. Interrupt and Exception Handling 12-5
12.2. VIRTUAL-BOB6 MODE .. 12-B
12.2.1. Enabling Vi rtual-BOB6 Mode .. 12-B
12.2.2. Structure of a Virtual-BOB6 Task 12-B
12.2.3. Paging of Virtual-BOB6 Tasks 12-9
12.2.4. Protection within a Virtual-BOB6 Task 12-10
12.2.5. Entering Virtual-BOB6 Mode .. 12-10
12.2.6. Leaving Virtual-BOB6 Mode .. 12-11
12.2.7. Sensitive Instructions ... 12-12
12.2.B. Virtual-BOB6 Mode I/O .. 12-12
12.2.B.1. I/O-Port-Mapped I/O ... 12-12
12.2.B.2. Memory-Mapped I/O ... 12-13
12.2.B.3. Special I/O Buffers .. 12-13
12.3. INTERRUPT AND EXCEPTION HANDLING IN VIRTUAL-BOB6 MODE 12-13
12.3.1. Method 1 Interrupt and Exception Handling 12-17
12.3.1.1. Handling a Virtual-8086 Mode Interrupt or Exception Through

12.3.1.2.

12.3.1.3.

12.3.2.
12.3.3.
12.3.4.
12.3.5.
12.4.

a Protected-Mode Trap or Interrupt Gate 12-17
Handling a Virtual-80B6 Mode Interrupt or Exception With the
B086 Program Interrupt or Exception Handler 12-19
Handling a Virtual-80B6 Mode Interrupt or Exception Through
a Task Gate ... 12-19

Methods 2 or 3 Interrupt and Exception Handling 12-20
Method 4 Interrupt and Exception Handling 12-20
Method 5 Interrupt and Exception Handling 12-20
Method 6 Interrupt and Exception Handling 12-21

PROTECTED MODE VIRTUAL INTERRUPTS 12-23

CHAPTER 13
MIXING 16-BIT AND 32-BIT CODE
13.1. DEFINING 16-BIT AND 32-BIT CODE MODULES 13-2
13.2. MIXING 16-BIT AND 32-BIT OPERATIONS WITHIN A CODE MODULE 13-3
13.3. SHARING DATA AMONG MIXED-SIZE CODE SEGMENTS 13-4
13.4. TRANSFERRING CONTROL AMONG MIXED-SIZE CODE SEGMENTS 13-4
13.4.1. Code-Segment Pointer Size .. 13-5
13.4.2. Stack Management for Control Transfer 13-5
13.4.2.1. Controlling the Operand-Size Attribute For a Call 13-6
13.4.2.2. Passing Parameters With a Gates 13-B
13.4.3. I nterrupt Control Transfers ... 13-B
13.4.4. Parameter Translation ... 13-8
13.4.5. Writing Interface Procedures .. 13-9

xii

I

TABLE OF CONTENTS

PAGE

CHAPTER 14
CODE OPTIMIZATION
14.1. ADDRESSING MODES AND REGISTER USAGE 14-1
14.2. ALIGNMENT .. 14-2
14.2.1. Code Alignment. .. 14-2
14.2.2. Data Alignment .. 14-3
14.3. PREFIXED OPCODES .. 14-3
14.4. OPERAND AND REGISTER USAGE 14-3
14.5. INTEGER INSTRUCTION SELECTION 14-4

CHAPTER 15
INTEL ARCHITECTURE COMPATIBILITY
15.1. RESERVED BITS .. 15-1
15.2. SERIALIZING INSTRUCTIONS 15-2
15.3. INITIALIZATION AND RESET .. 15-2
15.3.1. Integer Unit Initialization on Power-Up or Reset. .. 15-2
15.3.2. FPU Initialization on Power-Up or Reset. .. 15-4
15.3.3. Intel486™ SX Processor and Intel487™ SX Math Coprocessor Initialization.. 15-4
15.4. CONTROL REGISTERS .. 15-6
15.4.1. New Pentium® Pro Processor Control Flags. .. 15-6
15.4.2. New Pentium® Processor Control Register and Flags. 15-6
15.4.3. New Intel486™ Processor Control Register Flags .. 15-7
15.5. MEMORY MANAGEMENT FACILITIES 15-7
15.5.1. New Memory Management Control Flags. .. 15-8
15.5.1.1. Physical Memory Addressing Extension. .. 15-8
15.5.1.2. Global Pages 15-8
15.5.1.3. Larger Page Sizes .. 15-8
15.5.2. Cache Control Flags on the Pentium® Pro, Pentium®, and Intel486™

15.5.3.
15.5.4.
15.6.
15.6.1.
15.6.2.
15.6.3.
15.6.4.
15.6.5.
15.7.
15.7.1.
15.7.2.
15.7.3.
15.7.4.
15.7.5.
15.7.6.
15.8.
15.8.1.
15.8.2.
15.8.3.
15.9.
15.9.1.
15.9.2.
15.9.3.

I

Processors ... 15-8
Descriptor Types and Contents. .. 15-9
Changes in Segment Descriptor Loads 15-10

DEBUG FACILITIES ... 15-10
Differences in Debug Register DR6 15-10
Differences in Debug Register DR7. .. 15-10
Debug Registers DR4 and DR5 15-11
Test Registers .. 15-11
Recognition of Breakpoints. .. 15-11

EXCEPTIONS ... 15-11
New Pentium® Pro Processor Exception Conditions 15-12
New Pentium® Processor Exceptions and/or Exception Conditions 15-12
New Intel486™ Processor Exception 15-13
New Intel386™ Processor Exceptions and/or Exception Conditions 15-13
Machine-Check Architecture 15-13
Priority OF Exceptions. .. 15-14

INTERRUPTS .. 15-14
Interrupt Propagation Delay. .. 15-14
NMllnterrupts ... 15-14
IDT Limit ... 15-14

TASK SWITCHING AND TSS 15-15
Pentium® Pro and Pentium® Processor TSS 15-15
TSS Selector Writes 15-15
Order of ReadsIWrites to The TSS .. 15-15

xiii

TABLE OF CONTENTS intet
PAGE

15.9.4. Using A 16-Bit TSS with 32-Bit Constructs 15-15
15.9.5. Differences in I/O Map Base Addresses 15-15
15.10. CACHE MANAGEMENT ... 15-16
15.10.1. Self Modifying Code with Cache Enabled 15-17
15.11. PAGING .. 15-18
15.11.1. Pentium® Pro and Pentium® Processor Paging 15-18
15.11.2. Intel486™ Processor Paging 15-18
15.11.3. Enabling and Disabling Paging 15-18
15.12. STACK OPERATIONS .. 15-19
15.12.1 . Selector Pushes and Pops .. 15-19
15.12.2. Error Code Pushes .. 15-19
15.12.3. Fault Handling Effects on the Stack 15-19
15.12.4. Interlevel RET/IRET From a 16-Bit Interrupt or Call Gate 15-19
15.13. MIXING 16- AND 32-BIT SEGMENTS 15-20
15.14. SEGMENT AND ADDRESS WRAPAROUND 15-20
15.14.1. Segment Wraparound .. 15-21
15.15. WRITE BUFFERS AND MEMORY ORDERING 15-21
15.16. BUS LOCKING. .. 15-22
15.17. BUS HOLD ... 15-23
15.18. TWO WAYS TO RUN INTEL 286 PROCESSOR TASKS 15-23
15.19. MODEL-SPECIFIC EXTENSIONS TO THE INTEL ARCHITECTURE 15-23
15.19.1. Model-Specific Registers .. 15-23
15.19.2. RDMSR and WRMSR Instructions 15-24
15.19.3. Memory Type Range Registers 15-24
15.19.4. Machine Check Exception and Architecture 15-25
15.19.5. Performance Monitoring Counters 15-25

CHAPTER 16
MACHINE CHECK ARCHITECTURE
16.1.
16.2.
16.3.
16.3.1.
16.3.1.1.
16.3.1.2.
16.3.1.3.
16.3.2.
16.3.2.1.
16.3.2.2.
16.3.2.3.
16.3.2.4.
16.3.3.

16.4.
16.5.
16.6.
16.6.1.
16.6.2.
16.6.3.
16.7.
16.7.1.
16.7.2.
16.7.3.

xiv

MACHINE CHECK EXCEPTIONS AND ARCHITECTURE 16-1
COMPATIBILITY WITH PENTIUM® PROCESSOR 16-1
MACHINE CHECK MSRS ... 16-1

Machine Check Global Control MSRs 16-2
MCG_CAP MSR ... 16-2
MCG_STATUS MSR ... 16-3
MCG_CTL MSR ... 16-4

Error-Reporting Register Banks 16-4
MCLCTL MSR .. 16-4
MCLSTATUS MSR .. 16-5
MCLADDR MSR .. 16-6
MCLMISC MSR ... 16-7

Mapping of the Pentium® Processor Machine-Check Errors to the
Pentium® Processor Machine-Check Architecture 16-7

MACHINE CHECK AVAILABILITY 16-7
MACHINE CHECK INITIALIZATION 16-7
INTERPRETING THE MCA ERROR CODES 16-8

Simple Error Codes ... 16-9
Compound EriCr Codes .. 16-9
Interpreting the Machine-Check Error Codes for External Bus Errors 16-11

GUIDELINES FOR WRITING MACHINE CHECK SOFTWARE 16-14
Machine Check Exception Handler 16-14
Pentium® Machine-Check Exception Handling 16-16
Logging Correctable Machine Check Errors 16-16

I

APPENDIX A
OPCODE MAP

TABLE OF CONTENTS

PAGE

A1. KEY TO ABBREVIATIONS ... A-1
A.2. CODES FOR ADDRESSING METHOD A-1
A3. CODES FOR OPERAND TYPE .. A-2
A.4. REGISTER CODES ... A-3
A.5. OPCODE LOOK-UP EXAMPLES A-3
A5.1 . One-Byte Opcode Integer Instructions A-3
A.5.2. Two-Byte Opcode Integer Instructions A-3
A5.3. Escape Opcodes ... A-4
A5.3.1. OPCODES WITH MODRIM BYTES IN THE OOH Through BFH RANGE ... A-4
A5.3.2. OPCODES WITH MODR/M BYTES OUTSIDE THE OOH through

BFH RANGE .. A-4
Opcodes Determined by Bits 5,4,3 of Mod RIM Byte A-9
Escape Opcodes with 08 as First Byte A-9
Escape Opcodes with 09 as First Byte A-10
Escape Opcodes with DA as First Byte A-11
Escape Opcodes with DB as First Byt A-12
Escape Opcodes with DC as First Byte A-13
Escape Opcodes with DO as First Byte A-15
Escape Opcodes with DE as First Byte A-16
Escape Opcodes with OF As First Byte A-17

APPENDIX B
PERFORMANCE MONITORING COUNTERS

APPENDIX C
MODEL-SPECIFIC REGISTERS (MSRS)

I
xv

intet

TABLE OF FIGURES

Figure 1-1.
Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.
Figure 3-5.
Figure 3-6.
Figure 3-7.
Figure 3-8.
Figure 3-9.
Figure 3-10.
Figure 3-11.
Figure 3-12.
Figure 3-13.
Figure 3-14.

Figure 3-15.

Figure 3-16.
Figure 3-17.
Figure 3-18.

Figure 3-19.

Figure 3-20.

Figure 3-21.

Figure 3-22.

Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 4-4.
Figure 4-5.
Figure 4-6.

Figure 4-7.
Figure 4-8.
Figure 4-9.
Figure 4-10.
Figure 4-11.
Figure 4-12.
Figure 5-1.

xvi

PAGE

Bit and Byte Order .. 1-4
System-Level Registers and Data Structures 2-2
Transitions Among the Processor's Operating Modes 2-7
System Flags in the EFLAGS Register 2-8
Memory Management Registers 2-10
Control Registers .. 2-12
Segmentation and Paging .. 3-2
Flat Model ... 3-4
Protected Flat Model. .. 3-4
Multi-Segment Model .. 3-5
Logical Address to Linear Address Translation 3-7
Segment Selector ... 3-7
Segment Registers .. 3-8
Segment Descriptor .. 3-10
Segment Descriptor When Segment-Present Flag Is Clear 3-11
Global and Local Descriptor Tables 3-16
Pseudo-Descriptor Format 3-17
Linear Address Translation (4-KByte Pages) 3-19
Linear Address Translation (4-MByte Pages) 3-20
Format of Page-Directory and Page-Table Entries for 4-KByte Pages
and 32-Bit Physical Addresses 3-22
Format of Page-Directory Entries for 4-MByte Pages and
32-Bit Addresses .. 3-23
Format of a Page-Table or Page-Directory Entry for a Not-Present Page ... 3-26
Register CR3 Format When the Physical Address Extension is Enabled ... 3-27
Linear Address Translation With Extended Physical Addressing Enabled
(4-KByte Pages) ... 3-29
Linear Address Translation With Extended Physical Addressing Enabled
(2-MByte Pages) ... 3-30
Format of Page Directory Pointer Table, Page Directory, and Page Table
Entries for 4-KByte Pages and 36-Bit Extended Physical Addresses 3-31
Format of Page Directory Pointer Table and Page Directory Entries for
2-MByte Pages and 36-Bit Extended Physical Addresses 3-32
Memory Management Convention That Assigns a Page Table to Each
Segment ... 3-33
Descriptor Fields Used for Protection 4-3
Protection Rings .. 4-7
Privilege Check for Data Access 4-8
Examples of Accessing Data Segments From Various Privilege Levels4-9
Privilege Check for Control Transfer Without Using a Gate4-11
Examples of Accessing Conforming and Nonconforming Code Segments
From Various Privilege Levels 4-12
Call Gate Descriptor .. 4-14
Call Gate Mechanism ... 4-15
Privilege Check for Control Transfer with Call Gate 4-16
Example of Accessing Call Gates At Various Privilege Levels4-17
Stack Switching During an Interprivilege-Level Call 4-19
Use of RPL to Weaken Privilege Level of Called Procedure 4-25
Relationship of the I DTR and I DT 5-9

I

Figure 5-2.
Figure 5-3.
Figure 5-4.
Figure 5-5.
Figure 5-6.
Figure 5-7.
Figure 6-1.
Figure 6-2.
Figure 6-3.
Figure 6-4.
Figure 6-5.
Figure 6-6.
Figure 6-7.
Figure 6-8.
Figure 6-9.
Figure 7-1.
Figure 7-2.
Figure 7-3.
Figure 7-4.
Figure 7-5.
Figure 7-6.
Figure 7-7.
Figure 7-8.
Figure 7-9.
Figure 7-10.
Figure 7-11.
Figure 7-12.
Figure 7-13.
Figure 7-14.
Figure 7-15.
Figure 7-16.
Figure 7-17.
Figure 7-1.
Figure 8-1.
Figure 8-2.
Figure 8-3.
Figure 8-4.

Figure 8-5.

Figure 8-6.
Figure 9-1.
Figure 9-2.
Figure 9-3.
Figure 9-4.
Figure 9-5.
Figure 10-1.
Figure 10-2.
Figure 10-3.
Figure 11-1.
Figure 11-2.
Figure 11-3.

I

TABLE OF FIGURES

PAGE

IDT Gate Descriptors .. 5-10
Interrupt Procedure Call .. 5-12
Stack Usage on Calls to Interrupt and Exception Handling Routines. 5-13
Interrupt Task Switch . 5-15
Error Code .. 5-16
Page Fault Error Code . 5-40
Structure of a Task ... 6-2
32-Bit Task State Segment (TSS) 6-5
TSS Descriptor . 6-6
Task Register ... 6-8
Task Gate Descriptor ... 6-9
Task Gates Referencing the Same Task 6-10
Nested Tasks .. 6-13
Overlapping Linear-to-Physical Mappings .. 6-17
16-BitTSS Format. .. 6-18
Write Ordering in Multiple-Processor Systems 7-6
1/0 APICand Local APICs in Multiple Processor Systems 7-10
Local APIC Structure .. 7-13
Local APIC ID Register ... 7-15
Logical Destination Register (LDR) 7-16
Destination Format Register (DFR) 7-16
Local Vector Table (LVT) 7-19
Interrupt Command Register (lCR) 7-21
IRR, ISR and TMR Registers 7-25
Interrupt Acceptance Flow Chart for the Local APIC 7-26
Task Priority Register (TPR) 7-27
EOI Register , 7-28
Spurious Interrupt Vector Register (SVR) 7-29
Local APIC Version Register 7-31
Error Status Register (ESR) 7-36
Divide Configuration Register 7-37
Initial Count and Current Count Registers 7-37
SMP System ... 7-41
Contents of CRO Register after Reset . 8-2
Processor Type and Signature in the EDX Register after Reset 8-4
Processor State After Reset. 8-14
Constructing Temporary GDT and Switching to Protected Mode
(Lines 162-172 of List File) 8-24
Moving the GDT, IDT and TSS from ROM to RAM
(Lines 196-261 of List File) 8-25
Task Switching (Lines 282-296 of List File) 8-26
SMRAM Usage .. 9-4
SMM Revision Identifier .. 9-10
Auto HALT Restart Field. 9-10
5MBASE Relocation Field 9-11
1/0 Instruction Restart Field 9-12
Debug Registers. .. 10-3
DebugCtlMSR Register. .. 10-11
PerfEvtSelO and PerfEvtSel1 Registers 10-15
Internal Caches in the Pentium® Pro Processor 11-1
Cache-Control Mechanisms Available in the Pentium® Pro Processor. 11-7
Mapping Physical Memory With MTRRs 11-13

xvii

TABLE OF FIGURES

Figure 11-4.
Figure 11-5.
Figure 11-6.
Figure 12-1.
Figure 12-2.
Figure 12-3.
Figure 12-4.
Figure 12-5.
Figure 13-1.
Figure 15-1.
Figure 16-1.
Figure 16-2.
Figure 16-3.
Figure 16-4.
Figure 16-5.
Figure 16-6.

xviii

PAGE

MTRRcap Register .. 11-15
MTRRdefType Register .. 11-16
MTRRphysBasen and MTRRphysMaskn Variable-Range Register Pair ... 11-18
Real-Address Mode Address Translation 12-3
Interrupt Table (IDT) in Real-Address Mode 12-6
Entering and Leaving Virtual-8086 Mode 12-11

Interrupt Redirection Bit Map in TSS 12-14
Privilege Level a Stack After Interrupt or Exception in Virtual-8086 Mode .. 12-18
Stack after Far 16- and 32-Bit Calls 13-7
liD Map Base Address Differences 15-16
Machine Check MSRs .. 16-2
MCG_CAP Register .. 16-3
MCG_STATUS Register. .. 16-3
MCLCTL Register ... 16-4
MCi_ST ATUS Register .. 16-5
Machine Check Bank Address Register 16-6

I

I

Table 2-1.
Table 2-2.
Table 3-1.
Table 3-2.
Table 3-3.
Table 4-1.
Table 4-2.
Table 5-1.
Table 5-2.
Table 5-3.
Table 5-4.
Table 5-5.
Table 5-6.
Table 6-1.
Table 6-2.
Table 7-1.
Table 7-2.
Table 7-3.
Table 7-4.
Table 7-5.
Table 7-6.
Table 7-7.
Table 7-8.
Table 8-1.
Table 8-2.

Table 8-3.

Table 8-4.
Table 8-5.
Table 8-6.
Table 9-1.
Table 9-2.
Table 9-3.
Table 9-4.
Table 10-1.
Table 10-2.
Table 11-1.

Table 11-2.
Table 11-3.
Table 11-4.
Table 11-5.
Table 11-6.
Table 12-1.
Table 12-2.
Table 13-1.
Table 15-1.
Table 15-2.

TABLE OF TABLES
PAGE

Action Taken for Different Combinations of EM, MP and TS 2-14
Summary of System Instructions 2-18
Code and Data Segment Types 3-13
System Segment and Gate Descriptor Types 3-15
Page Sizes and Physical Address Sizes 3-19
Privilege Check Rules for Call Gates4-16
Combined Page Directory and Page Table Protection 4-28
Protected Mode Exceptions and Interrupts 5-3
Priority Among Simultaneous Exceptions and Interrupts 5-8
Interrupt and Exception Classes 5-27
Conditions for Generating a Double Fault 5-28
Invalid TSS Conditions .. 5-30
Alignment Requirements by Data Type 5-44
Exception Conditions Checked During a Task Switch 6-12
Effect of a Task Switch on Busy Flag, NT Flag, and Link Field 6-14
Local APIC Register Address Map 7-14
Valid Combinations for the APIC Interrupt Command Register 7-24
EOI Message (14 Cycles) .. 7-32
Short Message (21 Cycles) 7-33
Non-Focused Lowest Priority Message (34 Cycles) 7-34
APIC Bus Status Cycles Interpretation 7-35
Types of Boot Phase IPls .. 7-40
Boot Phase IPI Message Format 7-40
Pentium® Pro Processor State Following Reset 8-2
FPU State Following Power-Up or Reset and the FINIT/FNINIT
Instructions .. 8-5
Recommended Settings of EM and MP Flags on Intel Architecture
Processors . 8-5
Software Emulation Settings of EM, MP, and NE Flags 8-6
Main Initialization Steps in STARTUP.ASM Source Listing 8-15
Relationship Between BLD Item and ASM Source File 8-28
SMRAM State Save Map ... 9-4
Processor Register Initialization in SMM 9-7
Auto HALT Restart Flag Values 9-11
1/0 Instruction Restart Field Values 9-13
Breakpointing Examples ... 10-7
Debug Exception Conditions 10-8
Characteristics of the Caches, TLBs, and Write Buffer in the First Version
of the Penti um® Pro Processor 11-2
MESI Cache Line States ... 11-6
Cache Operating Modes ... 11-8
Effective Memory Type Depending on MTRR, PCD, and PWT Settings 11-9
MTRR Memory Types and Their Properties 11-14
Address Mapping for Fixed-Range MTRRs 11-17
Real-Address Mode Exceptions and Interrupts 12-7
Interrupt and Exception Handling Methods While in Virtual-8086 Mode ... 12-15
Characteristics of 16-Bit and 32-Bit Code Modules 13-1
Processor State Following Power-Up or Reset 15-2
FPU State Following Power-Up or Reset 15-4

xix

TABLE OF TABLES

Table 15-3.

Table 15-4.
Table 15-5.

Table 16-1.
Table 16-2.
Table 16-3.
Table 16-4.
Table 16-5.
Table 16-6.
Table 16-7.
Table B-1.
Table C-1.

xx

PAGE

Recommended Values of the FP Related Bits for Intel486™ SX
Microprocessor/I ntel487™ SX Math Coprocessor System 15-5
EM and MP Flag Interpretation 15-5
Cache Mode Differences Between the Pentium® Pro Processor, Pentium®,
and Intel486™ Processors 15-9
Simple Error Codes .. 16-9
General Forms of Compound Error Codes 16-9
Encoding for TT (Transaction Type) Sub-Field 16-10
Level Encoding for LL (Memory Hierarchy Level) Sub-Field 16-10
Encoding of Request (RRRR) Sub-Field 16-10
Encodings of PP, T, and II Sub-Fields 16-11
Encoding of MCLSTATUS Register for External Bus Errors 16-11
Performance Monitoring Counters B-1
Model-Specific Registers (MSRs) C-1

I

1
About This Manual

I

intet

CHAPTER 1
ABOUT THIS MANUAL

The Pentium® Pro Family Developer's Manual, Volume 3: Operating System Writer's Guide
(Order Number 242692) is part of a three-volume set that describes the architecture, program­
ming environment, and hardware features of the Pentium® Pro processor. The other two manuals
in this set are as follows:

•

•

Pentium® Pro Family Developer's Manual, Volume 2: Programmer's Reference Manual,
(Order Number 242691)

Pentium® Pro Family Developer's Manual, Volume 1: Specifications (Order Number
242690)

The Pentium® Pro Family Developer's Manual, Volume 2 and the Pentium® Pro Family Devel­
oper's Manual, Volume 3 describe the architecture and programming environment of the
Pentium Pro processor. The Pentium® Pro Family Developer's Manual, Volume 2 describes the
basic programming environment and the instructions set of the processor. It is aimed at applica­
tion programmers who are writing programs to run under existing operating systems or execu­
tives. The Pentium® Pro Family Developer's Manual, Volume 3 describes the operating system
support environment of the processor, including memory management, protection, task manage­
ment, interrupt and exception handling, and system management mode. Both manuals provide
Intel Architecture compatibility information.

1.1. OVERVIEW OF THE PENTIUM®pRO FAMILY DEVELOPER'S
MANUAL, VOLUME 3

The contents of this manual are as follows:

Chapter 1 - About the Manual. Gives an overview of this manual and the Pentium® Pro
Family Developer's Manual, Volume 2. It also describes the notational conventions in these
manuals and lists related Intel manuals and documentation of interest to programmers and hard­
ware designers.

Chapter 2 - System Architecture Overview. Describes the modes of operation of the
Pentium Pro processor and those processor features used to build operating systems and execu­
tives, including the system-oriented registers and data structures and the system-oriented
instructions. The steps necessary for switching between real-address and protected modes are
also identified.

Chapter 3 - Protected-Mode Memory Management. Describes the data structures, registers,
and instructions that support segmentation and paging and explains how they can be used to
implement a "flat" (unsegmented) memory model or a segmented memory model.

I
1-1

ABOUT THIS MANUAL int:et

Chapter 4 - Protection. Describes the Pentium Pro processor's support for page and segment
protection. This chapter also explains the implementation of privilege rules, stack switching,
pointer validation, user and supervisor modes.

Chapter 5 - Interrupt and Exception Handling. Describes the basic interrupt mechanisms
of the Pentium Pro processor, shows how interrupts and exceptions relate to protection, and
describes how the processor handles each exception type.

Chapter 6 - Task Management. Describes how the Pentium Pro processor supports multi­
tasking with context-switching operations and inter-task protection.

Chapter 7 - Multiple Processor Management. Describes the instructions and flags that
support multiple processors with shared memory, memory ordering, and the advanced program­
mable interrupt controller (APIC).

Chapter 8 - Processor Management and Initialization. Defines the state of the processor
and floating-point unit after reset initialization. This chapter also explains how to set up the
processor for real-address mode operation and protected mode operation, and how to switch
between modes.

Chapter 9 - System Management Mode (SMM). Describes the Pentium Pro processor's
implementation of system management mode (SMM), which can be used to implement power
management functions.

Chapter 10 - Debugging and Performance Monitoring. Describes the debugging registers
and other debug features of the Pentium Pro processor. This chapter also describes the time­
stamp counter and the performance monitoring counters.

Chapter 11 - Memory Cache Control. Describes the general concept of caching and the
specific mechanisms used by the Pentium Pro processor's internal caches. This chapter also
describes the memory type range registers (MTRRs) and how they can be used to map memory
types of physical memory.

Chapter 12 - 8086 Emulation. Describes the real-address and virtual-8086 modes of the
Pentium Pro processor.

Chapter 13 - Mixing 16-Bit and 32-Bit Code. Describes how to mix 16-bit and 32-bit code
modules within the same program or task.

Chapter 14 - Code Optimization. Discusses general optimization techniques for program­
ming in the Intel Architecture environment.

Chapter 15 - Intel Architecture Compatibility. Describes the differences between 8086, the
Intel 286, Inte1386™, Inte1486™, Pentium, and Pentium Pro processors. This chapter covers the
system architecture of the Intel Architecture processors.

Chapter 16 - Machine Check Architecture. Describes the processor's machine check
architecture.

Appendix A - Opcode Map. Gives an opcode map for the Pentium Pro processor instruction
set.

Appendix B - Performance-Monitoring Counters. Lists the events that can be counted with
the performance-monitoring counters and the codes used to select these events.

1-2

I

ABOUT THIS MANUAL

Appendix C - Model Specific Registers (MSRs). Lists the MSRs available in the Pentium
Pro processor and their functions.

1.2. OVERVIEW OF THE PENTIUM® PRO PROGRAMMER'S
REFERENCE MANUAL

The contents of the Pentium® Pro Family Developer's Manual, Volume 2 are as follows:

Chapter 1-About the Manual. Gives an overview of the Pentium® Pro Family Developer's
Manual, Volume 2 and thePentium® Pro Family Developer's Manual, Volume 3. It also describes
notation conventions used in these manuals and lists related Intel manuals and documentation
of interest to programmers and hardware designers.

Chapter 2 - Introduction to the Intel Pentium® Pro Processor Family. Introduces the Intel
Pentium Pro processor family and gives an overview of the new features found in these
processors.

Chapter 3 - Program Execution Environment. Introduces the models of memory organiza­
tion, defines the data types, presents the register set used by applications, introduces the stack,
explains string operations, defines the parts of an instruction, explains address calculations, and
introduces interrupts and exceptions as they apply to application programming.

Chapter 4 - Procedure Calls, Interrupts, and Exceptions. Describes the mechanisms
provided for making procedure calls and for servicing interrupts and exceptions.

Chapter 5 - Data Types and Addressing Modes. Describes the data types and addressing
modes recognized by the processor.

Chapter 6 - Instruction Set Summary. Gives an overview of all the Pentium Pro processor
instructions except those executed by the processor's floating-point unit. The instructions are
presented in functionally related groups. This chapter also gives an overview of the instruction
format commonly used by assemblers.

Chapter 7 - Floating-Point Unit. Gives an overview of the Pentium Pro processor's floating­
point unit, including the floating-point registers and data types; gives an overview of the
floating-point instruction set; and describes the processor's floating-point arithmetic facilities.

Chapter 8 - InputJOutput. Describes the processor's 110 architecture, including 110 port
addressing, the 110 instructions, and the 110 protection mechanism.

Chapter 9 - Processor Identification and Feature Determination. Describes how to deter­
mine the CPU type and the features that are available in the processor.

Chapter 10 - Intel Architecture Compatibility. Describes the programming differences
between the Intel 286, Inte1386, Intel486, Pentium, and Pentium Pro processors.

Chapter 11 - Instruction Set Reference. Describes each of the Pentium Pro processor in­
structions in detail, including an algorithmic description of operations, the effect on flags, the
effect of operand- and address-size attributes, and the exceptions that may be generated. The
instructions are arranged in alphabetical order.

I
1-3

ABOUT THIS MANUAL

Appendix A - EFLAGS Cross Reference. Summaries how the Pentium Pro processor
instructions affect the flags in the EFLAGS register.

Appendix B - EFLAGS Condition Codes. Summarizes how the conditional jump, move, and
byte set on condition code instructions use the condition code flags (OF, CF, ZF, SF, and PF) in
the EFLAGS register.

Appendix C - Floating-Point Exceptions Summary. Summarizes the exceptions that can be
raised by floating-point instructions.

1.3. NOTATIONAL CONVENTIONS

This manual uses special notation for data-structure formats, for symbolic representation of
instructions, and for hexadecimal numbers. A review of this notation makes the manual easier
to read.

1.3.1. Bit and Byte Order

In illustrations of data structures in memory, smaller addresses appear toward the bottom of the
figure; addresses increase toward the top. Bit positions are numbered from right to left. The
numerical value of a set bit is equal to two raised to the power of the bit position. The Pentium
Pro processor is a "little endian" machine; this means the bytes of a word are numbered starting
from the least significant byte. Figure 1-1 illustrates these conventions.

1-4

Highest 31
Address

Data Structure
24 23 16 15 8 7

Byte 3 Byte 2 Byte 1 Byte 0

o Bit offset
28

24
20
16
12
8

4
0 Lowest

Address

+
Byte Offset

Figure 1-1. Bit and Byte Order

I

ABOUT THIS MANUAL

1.3.2. Reserved Bits and Software Compatibility

In many register and memory layout descriptions, certain bits are marked as reserved. When bits
are marked as reserved, it is essential for compatibility with future processors that software treat
these bits as having a future, though unknown, effect. The behavior of reserved bits should be
regarded as not only undefined, but unpredictable. Software should follow these guidelines in
dealing with reserved bits:

•

•
•
•

Do not depend on the states of any reserved bits when testing the values of registers which
contain such bits. Mask out the reserved bits before testing.

Do not depend on the states of any reserved bits when storing to memory or to a register.

Do not depend on the ability to retain information written into any reserved bits.

When loading a register, always load the reserved bits with the values indicated in the
documentation, if any, or reload them with values previously read from the same register.

NOTE

Avoid any software dependence upon the state of reserved Pentium Pro
processor register bits. Depending upon the values of reserved register bits
will make software dependent upon the unspecified manner in which the
processor handles these bits. Depending upon reserved values risks incompat­
ibility with future processors.

1.3.3. Instruction Operands

When instructions are represented symbolically, a subset of the assembly language for the
Pentium Pro processor is used. In this subset, an instruction has the following format:
label: mnemonic argumentl, argument2, argument3

where:

•
•

•

A label is an identifier which is followed by a colon.

A mnemonic is a reserved name for a class of instruction opcodes which have the same
function.

The operands argument1, argument2, and argument3 are optional. There may be from zero
to three operands, depending on the opcode. When present, they take the fonn of either
literals or identifiers for data items. Operand identifiers are either reserved names of
registers or are assumed to be assigned to data items declared in another part of the
program (which may not be shown in the example).

When two operands are present in an arithmetic or logical instruction, the right operand is the
source and the left operand is the destination.

For example:

LOADREG: MOV EAX, SUBTOTAL

I
1-5

ABOUT THIS MANUAL int:et

In this example LOADREG is a label, MOV is the mnemonic identifier of an opcode, EAX is
the destination operand, and SUBTOTAL is the source operand. Some assembly languages put
the source and destination in reverse order.

1.3.4. Hexadecimal and Binary Numbers

Base 16 (hexadecimal) numbers are represented by a string of hexadecimal digits followed by
the character H (for example, F82EH). A hexadecimal digit is a character from the following set:
0, 1,2, 3,4, 5, 6, 7, 8,9, A, B, C, D, E, and F.

Base 2 (binary) numbers are represented by a string of Is and Os, sometimes followed by the
character B (for example, IOlOB). The "B" designation is only given in situations where confu­
sion as to the type of number might arise.

1.3.5. Segmented Addressing

The processor uses byte addressing. This means memory is organized and accessed as a
sequence of bytes. Whether one or more bytes are being accessed, a byte address is used to
address memory. The memory that can be addressed with a byte address is called an address
space.

The processor also supports segmented addressing. This is a form of addressing where a
program may have many independent address spaces, called segments. For example, a program
can keep its code (instructions) and stack in separate segments. Code addresses would always
refer to the code space, and stack addresses would always refer to the stack space. The following
notation is used to specify a byte address within a segment:

Segment-register: Byte-address

For example, the following segment address identifies the byte at offset FF79H in the segment
pointed by the DS register:

DS:FF79H

The following segment address identifies an instruction address in the code segment. The CS
register points to the code segment and the EIP register contains the offset of the instruction in
the segment.

CS:EIP

1.3.6. Exceptions

An exception is an event that typically occurs when an instruction causes an error. For example,
an attempt to divide by zero generates an exception. However, some exceptions, such as break­
points, occur under other conditions. Some types of exceptions may provide error codes. An
error code reports additional information about the error. An example of the notation used to
show an exception and error code is shown below.

#PF(fault code)

1-6

I

ABOUT THIS MANUAL

This example refers to a page-fault exception under conditions where an error code naming a
type of fault is reported. Under some conditions, exceptions which produce error codes may not
be able to report an accurate code. In this case, the error code is zero, as shown below for a
general-protection exception.

#GP(O)

See Chapter 5, Interrupt and Exception Handling, for a list of exception mnemonics and their
descriptions.

1.4. RELATED LITERATURE

The following books contain additional material related to Intel processors:

•
•

•
•

•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•

I

Pentium® Processor BIOS Writer's Guide, Order Number 242692.

AP-485, Intel Processor Identification with the CPUID Instruction, Order Number
241618.

Pentium® Processor Data Book, Order Number 241428.

82496 Cache Controller and 82491 Cache SRAM Data Book For Use With the Pentium®
Processor, Order Number 241429.

Intel486™ Microprocessor Data Book, Order Number 240440.

Intel486TM Processor Hardware Reference Manual, Order Number 240552.

Intel486TM DX Processor Programmer's Reference Manual, Order Number 240486.

Intel486™ SX CPUlInteI487TM SX Math CoProcessor Data Book, Order Number 240950.

Intel486TM DX2 Microprocessor Data Book, Order Number 241245.

Intel486™ Microprocessor Product Brief Book, Order Number 240459.

Inte1386TM Processor Hardware Reference Manual, Order Number 231732.

Intel386TM DX Processor Programmer's Reference Manual, Order Number 230985.

Intel386™ SX Processor Programmer's Reference Manual, Order Number 240331.

Intel386TM Processor System Software Writer's Guide, Order Number 231499.

Intel386TM High-Performance 32-Bit CHMOS Microprocessor with Integrated Memory
Management, Order Number 231630.

376 Embedded Processor Programmer's Reference Manual, Order Number 240314.

80387 DX User's Manual Programmer's Reference, Order Number 231917.

376 High-Performance 32-Bit Embedded Processor, Order Number 240182.

Inte1386™ SX Microprocessor, Order Number 240187.

Microprocessor and Peripheral Handbook (Vol. 1), Order Number 230843.

AP-500, Optimizations for Intel's 32-Bit Processors, Order number 241799.

1-7

System Architecture
Overview

I

2

CHAPTER 2
SYSTEM ARCHITECTURE OVERVIEW

The Pentium Pro processor (like the other 32-bit members of the Intel Architecture family of
processors) provides extensive support for operating-system and system-development software.
This support is part of the processor's system-level architecture and includes features to assist in
the following operations:

•
•
•
•
•
•
•
•

Memory management

Protection of software modules

Multi tasking

Exception and interrupt handling

Multiprocessing

Cache management

Hardware resource and power management

Debugging and performance monitoring

This chapter provides a brief overview of the processor's system-level architecture; a detailed
description of each part of this architecture given in the following chapters. This chapter also
describes the system registers that are used to set up and control the processor at the system level
and gives a brief overview of the processor's system-level (operating system) instructions.

Many of the system-level architectural features of the processor are used only by system
programmers. Application programmers may need to read this chapter, and the following chap­
ters which describe the use of these features, in order to understand the hardware facilities used
by system programmers to create a reliable and secure environment for application programs.

2.1. OVERVIEW OF THE SYSTEM-LEVEL ARCHITECTURE

The Pentium Pro processor's system architecture consists of a set of registers, data structures,
and instructions designed support basic system-level operations such as memory management,
interrupt and exception handling, task management, and control of multiple processors (multi­
processing). Figure 2-1 provides a generalized summary of the system registers and data
structures.

I
2-1

SYSTEM ARCHITECTURE OVERVIEW

2-2

EFLAGS Register
1 1

c§ontrol RegisterSg=~

CR2
CR1
CRO

Task Register
1 1

Linear Address ..
Segment Selector
- - - - ..

Global Descriptor
Table (GDT)

I Segment Sel. ~ -

Interrupt
Vector

ITSS Seg. Sel. ~ -

Interrupt Descriptor
Table (IDT)

Interru t Gate LTD Desc.

Task Gate - - - -1~Dr;1
Local Descriptor

Table (LDT)

Call Gate L" Se. Desc.
Segment Selector

I ~ - Call Gate

D Code, Data or
Stack Segment

Task State
Segment (TSS)

Current- - "---'--,
TSS

Current- - ..,-::----'---,
TSS

L _ _ _ _ _ _ ..,-=---:---,
Current- - ~_....J.......,

TSS

Linear Address Space Linear Address

Linear Addr. J

0

Dir I Table I Offset I

Page Dk""",y I G'Tab~ Page BtB ~Phy.~I_'. -----"1 P . Dir. Ent P . Tbl. Ent L
-ThiS page mapping example IS for 4 KByte pages

and the normal 32-bit physical address size.

Figure 2-i. System-Level Registers and Data Structures

I

SYSTEM ARCHITECTURE OVERVIEW

2.1.1. Global and local Descriptor Tables

When operating in protected mode, all memory accesses pass through either the global
descriptor table (GDT) or the (optional) local descriptor table (LDT). These tables contain
entries called segment descriptors. A segment descriptor provides the base address of a segment
and access rights, type, and usage information. Each segment descriptor has a segment selector
associated with it. The segment selector provides an index into the GDT or LDT (to its associ­
ated segment descriptor), a global/local bit (that determines whether the segment selector points
to the GDT or the LDT), and access rights information.

To access a byte in a segment, both a segment selector and an offset must be supplied. The
segment selector provides access to the segment descriptor for the segment (in the GDT or
LDT). From the segment descriptor, the processor obtains the base address of the segment in the
linear address space. The offset then provides the location of the byte relati ve to the base address.
This mechanism can be used to access any valid code, data, or stack segment in the GDT or LDT,
provided the segment is accessible from the current privilege level (CPL) at which the processor
is operating. (The CPL is defined as the protection level of the currently executing code
segment.)

In Figure 2-1 the solid arrows indicate a linear address and the dashed lines indicate a segment
selector. For simplicity, many of the segment selectors are shown as direct pointers to a segment.
However, the actual path from a segment selector to its associated segment is always through the
GDTorLDT.

The linear address of the base of the GDT is contained in the GDT register (GDTR); the linear
address of the LDT is contained in the LDT register (LDTR).

2.1.2. System Segments, Segment Descriptors, and Gates

Besides the code, data, and stack segments that make up the execution environment of a program
or procedure, the system architecture also defines two system segments: the task state segment
(TSS) and the LDT. (The GDT is not considered a segment because it is not accessed by means
of a segment selector and segment descriptor.) Each of these segment types has a segment
descriptor defined for it.

The system architecture also defines a set of special segment descriptors called gates (the call
gate, interrupt gate, trap gate, and task gate) that provide protected gateways to system proce­
dures and handlers that operate at different privilege levels than application programs and
procedures. For example, a CALL to a call gate provides access to a procedure in a code segment
that is at the same or numerically lower privilege level (more privileged) than the current code
segment. To access a procedure through a call gate, the calling procedure must supply the
segment selector of the call gate. The processor than performs an access rights check on the call
gate, comparing the CPL with the privilege level of the call gate and destination code segment.
If access to the destination call gate is allowed, the processor gets the segment selector for the
destination code segment and an offset into that code segment from the call gate. If the call
requires a change in privilege level, the processor also switches to the stack for that privilege
level. (The segment selector for the new stack is obtained from the TSS for the currently running
task.) Gates also facilitate transitions between 16-bit and 32-bit code segments, and vice versa.

I
2-3

SYSTEM ARCHITECTURE OVERVIEW

2.1.3. Task State Segments and Task Gates

The TSS defines the state of the execution environment for a task. It includes the state of the
general-purpose registers, the segment registers, the EFLAGS register, the EIP register, and
segment selectors and stack pointers for three stack segments (one stack each for privilege levels
0, 1, and 2). It also includes the segment selector for the LDT associated with the task and the
page table base address.

All program execution in protected mode happens within the context of a task, called the current
task. The segment selector for the TSS for the current task is stored in the task register. The
simplest method of switching to a task is to make a call or jump to the task. Here, the segment
selector for the TSS of the new task is given in the CALL or IMP instruction. In switching tasks,
the processor performs the following actions:

1. Stores the state of the current task in the current TSS.

2. Loads the task register with the segment selector for the new task.

3. Accesses the new TSS through a segment descriptor the GDT.

4. Loads the state of the new task from the new TSS into the general-purpose, segment,
LDTR, CR3 (page table base address), EFLAGS, and EIP registers.

5. Begins execution of the new task.

A task can also be accessed through a task gate. A task gate is similar to a call gate, except that
it provides access (through a segment selector) to a TSS rather than a code segment.

2.1.4. Interrupt and Exception Handling

External interrupts, software interrupts, and exceptions are handled thorough the interrupt
descriptor table (IDT). The IDT contains a collection of segment descriptors, which provide
access to interrupt and exception handlers. Like the GDT, the IDT is not a segment. The linear
address of the base of the IDT is contained in the IDT register (IDTR).

The segment descriptors in the IDT can be of the interrupt-, trap-, or task-gate type. To access
an interrupt or exception handler, the processor must first receive an interrupt vector (interrupt
number) from internal hardware, an external interrupt controller, or from software by means of
an INT, INTO, INT3, or BOUND instruction. The interrupt vector provides an index into the
IDT to a segment descriptor. If the selected segment descriptor is an interrupt gate or a trap gate,
the associate handler procedure is accessed in a manner very similar to calling a procedure
through a call gate. If the descriptor is a task gate, the handler is accessed through a task switch.

2.1.5. Memory Management

The system architecture supports either direct physical addressing of memory or virtual memory
(through paging). When physical addressing is used, a linear address is treated as a physical
address. When paging is used, all the code, data, stack, and system segments and the GDT and
IDT can be paged, with only the most recently accessed pages being held in physical memory.

2-4

I

intet SYSTEM ARCHITECTURE OVERVIEW

The location of pages (or page frames as they are sometimes called in the Intel Architecture) in
physical memory is contained in two system data structures (a page directory and a page table),
both of which reside in physical memory (see Figure 2-1). An entry in a page directory contains
the physical address of the base of a page table, access rights, and memory management infor­
mation. An entry in a page table contains the physical address of a page frame, access rights, and
memory management information. The base physical address of the page directory is contained
in control register CR3.

To use this paging mechanism, a linear address is broken into three parts, providing separate
offsets into the page directory, the page table, and the page frame.

A system can have a single page directory or several. For example, each task can have its own
page directory.

2.1.6. System Registers

To assist in initializing the processor and controlling system operations, the system architecture
provides system flags in the EFLAGS register and several system registers:

• The system flags and IOPL field in the EFLAGS register control task and mode switching,
interrupt handling, instruction tracing, and access rights. See Section 2.3., "System Flags
and Fields in the EFLAGS Register" for a description of these flags.

• The control registers (CRO, CR2, CR3, and CR4) contain a variety of flags and data fields
for controlling system-level operations. See Section 2.5., "Control Registers" for a
description of these flags.

•

•

•

•

The debug registers (not shown in Figure 2-1) allow the setting of breakpoints for use in
debugging programs and systems software. See Chapter 10, Debugging and Performance
Monitoring, for a description of these registers.

The GDTR, LDTR, and IDTR registers contain the linear addresses and sizes (limits) of
their respective tables. See Section 2.4., "Memory-Management Registers" for a
description of these registers.

The task register contains the linear address and size of the TSS for the current task. See
Section 2.4., "Memory-Management Registers" for a description of this register.

Model specific registers (not shown in Figure 2-1).

The model-specific registers (MSRs) are a group of registers available primarily to operating­
system or executive procedures (that is, code running at privilege level 0). These registers control
items such as the debug extensions, the performance monitoring counters, the machine check
architecture, and the memory type ranges (MTRRs). The number and functions of these registers
may change, depending on the model of the processor in the Pentium Pro processor family. See
Section 8.4., "Model Specific Registers (MSRs)" for more information about the MSRs and
Appendix C, Model-Specific Registers (MSRs), for a complete list of the MSRs.

Most systems restrict access to all system registers (other than the EFLAGS register) by appli­
cation programs. Systems can be designed, however, where all programs and procedures run at
the most privileged level (privilege level 0), in which case application programs are allowed to
modify the system registers.

I
2-5

SYSTEM ARCHITECTURE OVERVIEW

2.1.7. Other System Resources

Besides the system registers and data structures described in the previous sections, the system
architecture provides the following additional resources:

•
•
•

Operating system instructions (see Section 2.6., "System Instruction Summary").

Performance monitoring counters (not shown in Figure 2-1).

Internal caches and buffers (not shown in Figure 2-1).

The performance monitoring counters are event counters that can be programmed to count
processor events such as the number of instructions decoded, the number of interrupts received,
or the number of cache loads. See Section 10.6., "Performance Monitoring Counters", for more
information about these counters.

The processor provides several internal caches and buffers. The caches are used to store both
data and instructions. The buffers are used to store things like decoded addresses to system and
application segments and write operations waiting to be performed. See Chapter 11, Memory
Cache Control, for a detailed discussion of the processor's caches and buffers.

2.2. MODES OF OPERATION

The Pentium Pro processor supports three operating modes and one quasi-operating mode:

•

•

•

•

Protected mode. This is the native operating mode of the processor. In this mode all
instructions and architectural features are available, providing the highest performance and
capability. This is the recommended mode for all new applications and operating systems.

Real-address mode. This operating mode provides the programming environment of the
Intel 8086 processor, with a few extensions (such as the ability to switch to protected or
system management mode).

System management mode (SMM). The system management mode (SMM) is a standard
architectural feature in all Intel Architecture processors, beginning with the Inte1386 SL
processor. This mode provides an operating system or executive with a transparent
mechanism for implementing power management and OEM differentiation features. SMM
is entered through activation of an external system interrupt pin (SMI#), which generates a
system management interrupt (SMI). In SMM, the processor switches to a separate address
space while saving the context of the currently running program or task. SMM-specific
code may then be executed transparently. Upon returning from SMM, the processor is
placed back into its state prior to the SMI.

Virtual-8086 mode. In protected mode, the processor supports a quasi-operating mode
known as virtual-8086 mode. This mode allows the processor execute 8086 software in a
protected, multi-tasking environment.

Figure 2-2 shows how the processor moves among these operating modes.

2-6

I

SYSTEM ARCHITECTURE OVERVIEW

Reset

Real Mode

Reset or
PE=O

PE=1

Protected Mode

VM=1

Virtual-SOS6
Mode

Reset
or

RSM

SMI#

RSM

SMI#

RSM

System
Management

Mode

Figure 2-2. Transitions Among the Processor's Operating Modes

The processor is placed in real-address mode following power-up or a reset. Thereafter, the PE
flag in control register CRO controls whether the processor is operating in real-address or
protected mode (see Section 2.5., "Control Registers"). Only a single instruction (one that loads
the CRO register) is required to switch between real-address mode and protected mode.

The VM flag in the EFLAGS register determines whether the processor is operating in protected
mode or virtual-8086 mode. Transitions between protected mode and virtual-8086 mode are
generally carried out as part of a task switch or a return from and interrupt or exception handler
(see Section 12.2.5., "Entering Virtual-8086 Mode").

The processor switches to SMM whenever it receives an SMI while the processor is in real­
address, protected, or virtual-8086 modes. Upon execution of the RSM instruction, the
processor always returns to the mode it was in when the SMI occurred.

2.3. SYSTEM FLAGS AND FIELDS IN THE EFLAGS REGISTER

The system flags and IOPL field of the EFLAGS register control 110, maskable interrupts,
debugging, task switching, and the virtual-8086 mode (see Figure 2-3). An application program
should ignore these system flags and should not attempt to change their state.

The functions of the status flags and IOPL are as follows:

TF Trap (bit 8). Set to enable single-step mode for debugging; clear to disable single-step
mode. In single-step mode, the processor generates a debug exception after each
instruction, which allows the execution state of a program to be inspected after each
instruction. If an application program sets the TF flag using a POPF, POPFD, or IRET
instruction, a debug exception is generated after the instruction that follows the POPF,
POPFD, or IRET instruction.

I
2-7

SYSTEM ARCHITECTURE OVERVIEW

IF

IOPL

NT

RF

2-8

31 222120191817161514131211 10 9 8 7 6 5 4 3 2 1 0

'c.:>{" V V : Ii .
ReserVed (sett()0) I I I A V RON 0 0 0 ITS Z II A:O P 1 C

.....• ".:,OpFCMF T p FFFFFF···Fi··F F

". '," L

ID-ldem"",'oo Flag I I i
VIP-Virtual Interrupt Pending
VIF-Virtual Interrupt Flag
AC-Alignment Check ----------'
VM-Virtual 8086 Mode --------'
RF-Resume Flag ------------'
NT-Nested Task Flag -----------'
IOPL-I/O Privilege Level --------------"
IF-Interrupt Enable Flag --------------'
TF-Trap Flag -------------------'

Reserved

Figure 2-3. System Flags in the EFLAGS Register

Interrupt enable (bit 9). Controls the response of the processor to maskable interrupt
requests. Set to respond to maskable interrupts; cleared to inhibit maskable interrupts.
The IF flag does not effect the generation of exceptions or nonmaskable interrupts
(NMI interrupts). The CPL, IOPL, and the state of the VME flag in control register
CR4 determine whether the IF flag can be modified by the CLI, ST!, POPF, POPFD,
and IRET instructions.

I/O privilege level field (bits 12 and 13). Indicates the 110 privilege level (IOPL) of
the currently running program or task. The CPL of the currently running program or
task must be less than or equal to the IOPL to access the 110 address space. This field
can only be modified by the POPF and IRET instructions when operating at a CPL of
o. See Chapter 8 in the Pentium® Pro Family Developer's Manual, Volume 2 for more
information on the relationship of the IOPL to 110 operations.

The IOPL is also one of the mechanisms that controls the modification of the IF flag
and the handling of interrupts in virtual-8086 mode when the virtual mode extensions
are in effect (the VME flag in control register CR4 is set).

Nested task (bit 14). Controls the chaining of interrupted and called tasks. The
processor sets this flag on calls to a task initiated with a CALL instruction, an interrupt,
or an exception. It examines and modifies this flag on returns from a task initiated with
the IRET instruction. The flag can be explicitly set or cleared with the POPFIPOPFD
instructions; however, changing to the state of this flag can generate unexpected excep­
tions in application programs. See Section 6.4., "Task Linking" for more information
on nested tasks.

Resume (bit 16). Controls the processor's response to instruction-breakpoint condi­
tions. When set, this flag temporarily disables debug exceptions (#DE) from being
generated for instruction breakpoints detected for the next instruction; although,

I

SYSTEM ARCHITECTURE OVERVIEW

other exception conditions can cause an exception to be generated. The processor
automatically clears this flag after the instruction has been successfully executed,
except after an IRET instruction and a JMP, CALL, or INTn instructions that cause a
task switch. The processor sets this flag prior to calling an exception handler for any
exception except a debug exception and prior to calling an interrupt handler when a
string instruction has been interrupted. Software can also set this flag by setting it in
the EFLAGS image saved on the stack and then executing an IRET instruction. The RF
flag is not affected by the POPF and POPFD instructions.

The primary function of the RF flag is to allow the restarting of an instruction following
a debug exception that was caused by an instruction breakpoint condition. Here,
debugger software sets this flag in the EFLAGS image on the stack prior to returning
to the interrupted program, to prevent the instruction breakpoint from causing another
debug exception. See Section 10.3.1.1., "Instruction-Breakpoint Exception Condition"
for more information on the use of this flag.

VM Virtual SOS6 mode (bit 17). Set to enable virtual-8086 mode; clear to return to
protected mode. See Section 12.2.1., "Enabling Virtual-8086 Mode" for a detailed
description of the use of this flag to switch to virtual-8086 mode.

AC Alignment check (bit IS). Set this flag and the AM bit in the CRO register to enable
alignment checking of memory references; clear the AC flag and/or the AM bit to
disable alignment checking. An alignment-check exception is generated when refer­
ence is made to an unaligned operand, such as a word at an odd byte address or a
doubleword at an address which is not an integral multiple of four. Alignment-check
exceptions are generated only in user mode (privilege level 3). Memory references that
default to privilege level 0, such as segment descriptor loads, do not generate this
exception even when caused by instructions executed in user-mode.

VIF

VIP

ill

I

The alignment-check exception can be used to check alignment of data. This is useful
when exchanging data with other processors, which require all data to be aligned. The
alignment-check exception can also be used by interpreters to flag some pointers as
special by misaligning the pointer. This eliminates overhead of checking each pointer
and only handles the special pointer when used.

Virtual Interrupt (bit 19). Contains a virtual image of the IF flag. The processor only
recognizes this flag when the VME flag in control register CR4 is set and the IOPL is
less than 3. See Section 12.3.5., "Method 6 Interrupt and Exception Handling" for
detailed information about the use of this flag.

Virtual interrupt pending (bit 20). Set by software to indicate that an interrupt is
pending; cleared to indicate that no interrupt is pending. This flag is used in conjunc­
tion with the VIF flag. The processor reads this flag but never modifies it. The
processor only recognizes this flag when the VME flag in control register CR4 is set
and the IOPL is less than 3. See Section 12.3.5., "Method 6 Interrupt and Exception
Handling" for detailed information about the use of this flag.

Identification (bit 21). The ability of a program or procedure to set or clear this flag
indicates support for the CPUID instruction.

2-9

SYSTEM ARCHITECTURE OVERVIEW

2.4. MEMORY-MANAGEMENT REGISTERS

The processor provides four memory-management registers (GDTR, LDTR, IDTR, and TR)
that specify the locations of the data structures which control segmented memory management
(see Figure 2-4). Special instructions are provided for loading and storing these registers.

GOTR

IOTR

Task
Register

LOTR

2.4.1.

47

System Segment
15 Registers 0

System Table Registers
1615 0

Base Address Limit

Base Address Limit

Segment Descriptor Registers (Automatically Loaded)
Attributes ,------------------,------------------"-----,,

Seg. Sel. 32-bit Linear Base Address 32-bit Segment Limit

Seg. Sel. 32-bit Linear Base Address 32-bit Segment Limit

Figure 2-4. Memory Management Registers

Global Descriptor Table Register (GDTR)

The GDTR register holds the 32-bit base address and 16-bit segment limit for the GDT. The base
address specifies the linear address of byte 0 ofthe GDT; the segment limit specifies the number
of bytes in the table. The LGDT and SGDT instructions load and store the GDTR register,
respectively. On power up or reset of the processor, the base address is set to the default value
of 0 and the limit is set to FFFFH. A new base address must be loaded into the GDTR as part of
the processor initialization process for protected mode operation. See Section 3.5.1., "Segment
Descriptor Tables" for more information on the base address and limit fields.

2.4.2. Local Descriptor Table Register (LDTR)

The LDTR register holds the 16-bit segment selector, 32-bit base address, 32-bit segment limit,
and descriptor attributes for the LDT. The base address specifies the linear address of byte 0 of
the LDT segment; the segment limit specifies the number of bytes in the segment. See Section
3.5.1., "Segment Descriptor Tables" for more information on the base address and limit fields.

The LLDT and SLDT instructions load and store the segment selector part of the LDTR register,
respectively. The segment that contains the LDT must have a segment descriptor in the GDT.
When the LLDT instruction loads a segment selector in the LDTR, the base address, limit, and
descriptor attributes from the LDT descriptor are automatically loaded into the LDTR.

When a task switch occurs, the LDTR is automatically loaded with the segment selector and
descriptor for the LDT for the new task. The contents of the LDTR are not automatically saved
prior to writing the new LDT information into the register.

On power up or reset of the processor, the segment selector and base address are set to the default
value of 0 and the limit is set to FFFFH.

2-10

I

SYSTEM ARCHITECTURE OVERVIEW

2.4.3. IDTR Interrupt Descriptor Table Register

The IDTR register holds the 32-bit base address and 16-bit segment limit for the IDT. The base
address specifies the linear address of byte a of the IDT; the segment limit specifies the number
of bytes in the table. The LIDT and SIDT instructions load and store the IDTR register, respec­
tively. On power up or reset of the processor, the base address is set to the default value of a and
the limit is set to FFFFH. The base address and limit in the register can then be changed as part
of the processor initialization process. See Section 5.7., "Interrupt Descriptor Table (IDT)" for
more information on the base address and limit fields.

2.4.4. Task Register (TR)

The task register holds the 16-bit segment selector, 32-bit base address, 32-bit segment limit, and
descriptor attributes for the TSS of the current task. It references a TSS descriptor in the GDT.
The base address specifies the linear address of byte a of the TSS; the segment limit specifies
the number of bytes in the TSS. (See Section 6.2.3., "Task Register" for more information about
the task register.)

The LTR and STR instructions load and store the segment selector part of the task register,
respectively. When the LTR instruction loads a segment selector in the task register, the base
address, limit, and descriptor attributes from the TSS descriptor are automatically loaded into
the task register. On power up or reset of the processor, the base address is set to the default value
of a and the limit is set to FFFFH.

2.5. CONTROL REGISTERS

The control registers (CRa, CRI, CR2, CR3, and CR4) determine operating mode of the
processor and the characteristics of the currently executing task (see Figure 2-5).

•

•
•

I

CRO-Contains system control flags that control operating mode and states of the
processor.

CRI-Reserved.

CR2-Contains the page fault linear address (the linear address that caused a page fault).

2-11

SYSTEM ARCHITECTURE OVERVIEW

•

31

31 1211

Page Directory Base

31

9 8 7 6 5 4 3 2 1 a

PPM P PDT P V
C G CAS E S V M CR4
E E E E E DIE

5 4 3 2 a

a

~ _______________ p_a_g_e_F_a_u_lt_L_in_e_a_rA_d_d_r_es_s ________________ ~I CR2

31

CR1

31 30 2930 1918171615 6 5 4 3 2 1 a

1:,1 Reserved

Figure 2-5. Control Registers

CR3--Contains the physical address of the base of the page directory and two flags (PCD
and PWT). This register is also known as the page directory base register (PDBR). Only
the 20 most-significant bits of the page directory base address are specified; the lower 12
bits of the address are assumed to be O. The page directory must thus be aligned to a page
(4-KB yte) boundary. The PCD and PWT flags control caching of the page directory in the
processor's internal data caches (they do not control TLB caching of page directory
information.)

When using the physical address extension, the CR3 register contains the base address of
the page directory pointer table (see Section 3.8., "Physical Address Extension").

• CR4--Contains a group of flags that enable several architectural extensions.

When operating in protected mode, application programs (running at privilege levels 1,2, or 3)
are prevented from loading the control registers. Application programs can read these registers,
however. For example, an application might need to read register CRO to determine if an FPU is
present. Forms of the MOV instruction allow these registers to be loaded from or stored to the
general-data· registers.

A program should not attempt to change any of the reserved bit positions. Reserved bits should
always be set to the value previously read.

2-12

I

SYSTEM ARCHITECTURE OVERVIEW

The functions of the flags in the control registers are as follows:

PO

CD

NW

AM

WP

NE

I

Paging (bit 31 of CRO). Enables paging when set; disables paging when clear. When
paging is disabled, all linear addresses are treated as physical addressed. The PO flag
has no effect if the PE flag (bit 0 of register CRO) is not also set; in fact, setting the PO
flag when the PE flag is clear causes a general-protection exception (#OP) to be gener­
ated. See Section 3.6., "Paging (Virtual Memory)" for a detailed description of the
processor's paging mechanism.

Cache Disable (bit 30 of CRO). Prevents caching for the whole of physical memory in
the processor's internal caches (Ll and L2) when set; enables caching when clear.
When this flag is set, cache read misses do not cause cache line fills, but cache read
hits result in reads from the cache; cache write misses do not result in cache writes,
but cache write hits cause a write-back to memory and corresponding cache line
invalidation. To prevent the processor from accessing its caches, the caches must be
invalidated so that no cache hits can occur (see Section 11.5.2., "Preventing Caching").
When this flag is set, the PCD and PWT flags in register CR3 and in page-directory and
page-table entries are ignored; when the CD flag is clear, the PCD and PWT flags in
control register CR3 and the in the page-directory and page-table entries can override
caching of pages, page tables, and page directories. See Chapter 11, Memory Cache
Control, for detailed information on caching.

Not Write-through (bit 29 of CRO). Disables write-throughs and cache invalidation
cycles when clear; enables write-throughs that hit the cache and invalidation cycles
when set. See Chapter 11, Memory Cache Control, for detailed information on caching.

Alignment Mask (bit 18 of CRO). Enables automatic alignment checking when set;
disables alignment checking when clear. Alignment checking is performed only when
the AM flag is set, the AC flag in the EFLAOS register is set, the CPL is 3, and the
processor is operating in either protected or virtual-8086 mode.

Write Protect (bit 16 of CRO). Inhibits supervisor-level procedures from writing into
user-level pages when set; allows supervisor-level procedures to write into read-only
user-level pages when clear. This flag facilitates implementation of the copy-on-write
method of creating a new process (forking) used by operating systems such as UNIX.

Numeric Error (bit 5 of CRO). Enables the standard mechanism for reporting FPU
errors when set; disables the standard mechanism when clear. When the NE flag is clear
and the IGNNE# input is asserted, FPU errors are ignored. When the NE flag is clear
and the IONNE# input is deasserted, an unmasked FPU error causes the processor to
stop instruction execution immediately before executing the next waiting floating-point
instruction or WAIT/FWAIT instruction and assert the FERR# pin to generate an
external interrupt. The FERR# pin is intended to drive an input to an external interrupt
controller (the FERR# pin emulates the ERROR# pin of the Intel287™ and Inte1387™
DX math coprocessors). The NE flag, IGNNE# pin, and FERR# pin are used with
external logic to implement PC-style error reporting. (See "Software Exception
Handling" in Chapter 7, Floating-Point Unit, of the Pentium® Pro Family Developer's
Manual, Volume 2 for more information about this flag.)

2-13

SYSTEM ARCHITECTURE OVERVIEW

ET Extension Type (bit 4 of CRO). Reserved in the Pentium Pro and Pentium processors.
(In the Pentium Pro processor, this flag is hardcoded to 1.) In the Inte1386 and Inte1486
processors, setting this flag indicates support ofInte1387 DX math coprocessor instruc­
tions when set.

TS Task Switched (bit 3 of CRO). Allows the saving of FPU context on a task switch to
be delayed until the FPU is actually accessed by the new task. The processor sets this
flag on every task switch and tests it when interpreting floating-point arithmetic
instructions.

EM

2-14

• If the TS flag is set, a device-not-available exception (#NM) is raised prior to the
execution of a floating-point instruction.

• If the TS flag and the MP flag (also in the CRO register) are both set, an #NM
exception is raised prior to the execution of floating-point instruction or a
WAIT/FWAIT instruction.

Table 2-1 shows the actions taken for floating-point and WAITIFWAIT instructions
based on the settings of the TS, EM, and MP flags.

Table 2-1. Action Taken for Different Combinations of EM, MP and TS

CRD Flags Instruction Type

EM MP TS Floating-Point WAIT/FWAIT

0

0

0

0

1

1

1

1

0 0 Execute Execute

0 1 #NM Exception Execute

1 0 Execute Execute

1 1 #NM Exception #NM Exception

0 0 #NM Exception Execute

0 1 #NM Exception Execute

1 0 #NM Exception Execute

1 1 #NM Exception #NM Exception

The processor does not automatically save the context of the FPU on a task switch.
Instead it sets the TS flag, which causes the processor to raise an #NM exception when­
ever it encounters a floating-point instruction in the instruction stream for the new task.
The fault handler for the #NM exception can then be used to save the context of the
FPU and clear the TS flag with the CLTS instruction. If the task never encounters a
floating-point instruction, the FPU context is never saved.

Emulation (bit 2 of CRO). Indicates that the processor does not have an internal or
external FPU when set; indicates an FPU is present when clear. When the EM flag is
set, execution of a floating-point instruction generates a device-not -available exception
(#NM). This flag must be set when the processor does not have an internal FPU or is
not connected to a math coprocessor. If the processor does have an internal FPU,
setting this flag would force all floating-point instructions to be handled by software

I

MP

PE

PCD

PWT

VME

PVI

I

SYSTEM ARCHITECTURE OVERVIEW

emulation. Table 8-3 shows the recommended setting of this flag, depending on the
Intel Architecture processor and FPU or math coprocessor present in the system. Table
2-1 shows the interaction of the EM, MP, and TS flags.

Monitor Coprocessor (bit 1 of CRO). Controls the interaction of the WAIT (or
FWAIT) instruction with the TS flag (bit 3 of CRO). If the MP flag is set, a WAIT
instruction generates a device-not-available exception (#NM) if the TS flag is set. If the
MP flag is clear, the WAIT instruction ignores the setting of the TS flag. Table 8-3
shows the recommended setting of this flag, depending on the Intel Architecture
processor and FPU or math coprocessor present in the system. Table 2-1 shows the
interaction of the MP, EM, and TS flags.

Protection Enable (bit 0 of CRO). Enables protected mode when set; enables real­
address mode when clear. This flag does not enable paging directly. It only enables
segment-level protection. To enable paging, both the PE and PO flags must be set. See
Section 8.8., "Mode Switching" for information using the PE flag to switch between
real and protected mode.

Page-level Cache Disable (bit 4 of CR3). Controls caching of the current page direc­
tory. When the PCD flag is set, caching of the page-directory is prevented; when the
flag is clear, the page-directory can be cached. This flag affects only the processor's
internal caches (both L I and L2). The processor ignores this flag if paging is not used
(the PO flag in register CRO is clear) or the CD (cache disable) flag in CRO is set. See
Chapter 11, Memory Cache Control, for more information about the use of this flag.
See Section 3.6.4., "Page-Directory and Page-Table Entries" for a description of a
companion PCD flag in the page-directory and page-table entries.

Page-level Writes Transparent (bit 3 of CR3). Controls the write-through or write­
back caching policy of the current page directory. When the PWT flag is set, write­
through caching is enabled; when the flag is clear, write-back caching is enabled. This
flag affects only the internal caches (both Ll and L2). The processor ignores this flag
if paging is not used (the PO flag in register CRO is clear) or the CD (cache disable)
flag in CRO is set. See Section 1l.S., "Cache Control" for more information about the
use of this flag. See Section 3.6.4., "Page-Directory and Page-Table Entries" for a
description of a companion PCD flag in the page-directory and page-table entries.

Virtual-8086 Mode Extensions (bit 0 of CR4). Enables interrupt- and exception­
handling extensions in virtual-8086 mode when set; disables the extensions when clear.
Use of the virtual mode extensions can improve the performance of virtual-8086 appli­
cations by eliminating the overhead of calling the virtual-8086 monitor to handle inter­
rupts and exceptions that occur while executing an 8086 program and, instead,
redirecting the interrupts and extensions back to the 8086 programs handlers. It also
provides hardware support for a virtual interrupt flag (VIF) to improve reliability of
running 8086 programs in multitasking and multiple processor environments. See
Section 12.3., "Interrupt and Exception Handling in Virtual-8086 Mode" for detailed
information about the use of this feature.

Protected-Mode Virtual Interrupts (bit 1 of CR4). Enables hardware support for a
virtual interrupt flag (VIF) in protected mode when set; disables the VIF flag in
protected mode when clear. See Section 12.4., "Protected Mode Virtual Interrupts" for
detailed information about the use of this feature.

2-15

SYSTEM ARCHITECTURE OVERVIEW

TSD Time Stamp Disable (bit 2 of CR4). Restricts the execution of the RDTSC instruction
to procedures running at privilege level 0 when set; allows RDTSC instruction to be
executed at any privilege level when clear.

DE Debugging Extensions (bit 3 of CR4). References to debug registers DR4 and DRS
cause an undefined opcode (#UD) exception to be generated when set; when clear,
processor aliases references to registers DR4 and DRS for compatibility with software
written to run on earlier Intel Architecture processors. See Section 10.2.2., "Debug
Registers DR4 and DRS" for more information on the function of this flag.

PSE Page Size Extensions (bit 4 of CR4). Enables 4-MByte pages when set; restricts pages
to 4 KBytes when clear. See Section 3.6.1., "Paging Options" for more information
about the use of this flag.

PAE Physical Address Extension (bit 5 of CR4). Enables paging mechanism to reference
36-bit physical addresses when set; restricts physical addresses to 32 bits when clear.
See Section 3.8., "Physical Address Extension" for more information about the phys­
ical address extension.

MCE Machine Check Enable (bit 6 of CR4). Enables the machine check exception when
set; disables the machine check exception when clear. See Chapter 16, Machine Check
Architecture, for more information about the machine check exception and machine
check architecture.

PGE Page Global Enable (bit 7 of CR4). Enables the global page feature when set; disables
the global page feature when clear. The global page feature allows frequently used or
shared pages to be marked as global to all users (done with the global flag, bit 8, in a
page-directory or page-table entry). Global pages are not flushed from the translation­
lookaside buffer (TLB) on a task switch or a write to register CR3. See Section 3.7.,
"Translation Lookaside Buffers (TLB s)" for more information on the use of this bit.

PCE Performance-monitoring Counter Enable (bit 8 of CR4). Enables execution of the
RDPMC instruction for programs or procedures running at any protection level when
set; RDPMC instruction can be executed only at protection level 0 when clear.

2.5.1. CPUID Qualification of Control Register Flags

The VME, PVI, TSD, DE, PSE, PAE, MCE, PGE, and PCE flags in control register CR4 are
model specific. All of these flags (except the PCE flag) can be qualified with the CPUID instruc­
tion to determine if they are implemented on the processor before they are used.

2.6. SYSTEM INSTRUCTION SUMMARY

The system instructions handle system-level functions such as loading system registers,
managing the cache, managing interrupts, or setting up the debug registers. Many of these
instructions can be executed only by operating-system or executive procedures (that is, proce­
dures running at privilege level 0). Others can be executed at any privilege level and are thus
available to application programs. Table 2-2 lists the system instructions and indicates whether
they are available and useful for application programs.

2-16

I

SYSTEM ARCHITECTURE OVERVIEW

These instructions are describe in detail in Chapter 11 of the Pentium® Pro Family Developer's
Manual, Volume 2.

2.6.1. Loading and Storing System Registers

The GDTR, LDTR, IDTR, and TR registers each have a load and store instruction for loading
data into and storing data from the register:

LGDT (Load GDTR Register)

SGDT (Store GDTR Register)

LIDT(Load IDTR Register)

SIDT(Load IDTR Register

LLDT (Load LDT Register)

SLDT (StoreLDT Register)

LTR (Load Task Register)

STR (Store Task Register)

Loads the GDT base address and limit into the GDTR
register.

Stores the GDT base address and limit in memory.

Loads the IDT base address and limit into the IDTR
register.

Stores the IDT base address and limit in memory.

Loads the LDT segment selector and segment descriptor
into the LDTR.

Stores the LDT segment selector in memory.

Loads segment selector and segment descriptor for a TSS
into the task register.

Store the segment selector for the current task in memory.

The LMSW (load machine status word) and SMSW (store machine status word) instructions
operate on bits 0 through 15 of control register CRO. These instructions are provided for compat­
ibility with the 16-bit Intel 286 processor. Program written to run on 32-bit Intel Architecture
processors should not use these instructions. Instead, they should access the control register CRO
using the MOV instruction.

The CLTS (clear TS bit in CRO) instruction is provided for use in handling a device-not-avail­
able exception (#NM) that occurs when the processor attempts to execute a floating-point
instruction when the TS flag is set. This instruction allows the TS flag to be cleared after the
FPU context has been saved, preventing further #NM exceptions. See Section 2.5., "Control
Registers" for more information about the TS flag.

The control registers (CRO, CRl, CR2, CR3, and CR4) are loaded with the MOV instruction.
This instruction can load a control register from a general-purpose register or store the contents
of the control register in a general-purpose register.

2.6.2. Verifying of Access Privileges

The processor provides several instructions for examining segment selectors ·and segment
descriptors to determine if access to their associated segments is allowed. These instructions
duplicate some of the automatic access rights and type checking done by the processor, thus
allowing operating-system or executive software to prevent exceptions from being generated.

I
2-17

SYSTEM ARCHITECTURE OVERVIEW

Table 2-2. Summary of System Instructions

Useful to Protected from
Instruction Description Application? Application?

LLDT Load LOT Register No Yes

SLOT Store LOT Register No No

LGOT Load GOT Register No Yes

SGOT Store GOT Register No No

LTR Load Task Register No Yes

STR Store Task Register No No

L10T Load lOT Register No Yes

SlOT Store lOT Register No No

MOV Load and store control registers No Yes

SMSW Store MSW Yes No

LMSW Load MSW No Yes

CLTS Clear TS bit in CRO No Yes

ARPL Adjust RPL Yes1 No

LAR Load Access Rights Yes No

LSL Load Segment Limit Yes No

VERR Verify for Reading Yes No

VERW Verify for Writing Yes No

MOV Load and store debug registers No Yes

INVO Invalidate cache, no writeback No Yes

WBINVO Invalidate cache, with writeback No Yes

INVLPG Invalidate TLB entry No Yes

HLT Halt Processor No Yes

LOCK (Prefix) Bus Lock Yes No

RSM Return from system management mode No Yes

ROMSR Read Model-Specific Registers No Yes

WRMSR Write Model-Specific Registers No Yes

ROPMC Read Performance Monitoring Counter Yes Yes2

ROTSC Read Time Stamp Counter Yes Yes2

NOTES:

1. Useful to application programs running at a CPL of 1 or 2.

2. The TSO and PCE flags in control register CR4controi access to these instructions by application
programs running at a CPL of 3.

2-18

I

SYSTEM ARCHITECTURE OVERVIEW

The ARPL (adjust RPL) instruction adjusts the RPL (requestor privilege level) of a segment
selector to match that of the procedure or program that supplied the segment selector. See
Section 4.10.4., "Checking Caller Access Privileges" for a detailed explanation of the function
and use of this instruction.

The LAR (load access rights) instruction verifies the accessibility of a specified segment and
loads the access rights information from the segment's segment descriptor into a general­
purpose register. Software can then examine the access rights to determine if the segment type
is compatible with its intended use. See Section 4.10.1., "Checking Segment Type Compatibility
(Access Rights)" for a detailed explanation of the function and use of this instruction.

The LSL (load segment limit) instruction verifies the accessibility of a specified segment and
loads the segment limit from the segment's segment descriptor into a general-purpose register.
Software can then compare the segment limit with an offset into the segment to determine
whether the offset lies within the segment. See Section 4.10.3., "Checking That the Pointer
Offset Is Within Limits" for a detailed explanation of the function and use of this instruction.

The VERR (verify for reading) and VERW (verify for writing) instructions verify if a selected
segment is readable or writable, respectively, at the CPL. See Section 4.10.2., "Checking
Read/Write Rights" for a detailed explanation of the function and use of this instruction.

2.6.3. loading and Storing Debug Registers

The internal debugging facilities in the processor are controlled by a set of 8 debug registers
(DRO through DR7). The MOV instruction allows setup data to be loaded into and stored from
these registers.

2.6.4. Invalidating Caches and TlBs

The processor provides several instructions for use in explicitly invalidating its caches and TLB
entries. The INVD (invalidate cache with no writeback) instruction invalidates all data and
instruction entries in the internal caches and TLBs and sends a signal to the external caches indi­
cating that they should be invalidated also.

The WBINVD (invalidate cache with writeback) instruction performs the same function as the
INVD instruction, except that it writes back any modified lines in its internal caches to memory
before it invalidates the caches. After invalidating the internal caches, it signals the external
caches to write back modified data and invalidate their contents.

The INVLPG (invalidate TLB entry) instruction invalidates (flushes) the TLB entry for a spec­
ified page.

I
2-19

SYSTEM ARCHITECTURE OVERVIEW

2.6.5. Controlling the Processor

The HLT (halt processor) instruction stops the processor until an enabled interrupt, BINIT, or
RESET signal is received. (The NMI and SMI interrupts are always enabled.) The processor
generates a special bus cycle to indicate that the halt mode has been entered. Hardware may
respond to this signal in a number of ways. An indicator light on the front panel may be turned
on. An NMI interrupt for recording diagnostic information may be generated. Reset initializa­
tion may be invoked.

The LOCK prefix invokes a locked (atomic) read-modify-write operation when modifying a
memory operand. This mechanism is used to allow reliable communications between processors
in multiprocessor systems. In the Pentium Pro processor, the locking operation is handled with
either a cache lock or bus lock. If a memory access is cacheable and affects only a single cache
line, a cache lock is invoked and the system bus and the actual memory location in system
memory are not locked during the operation. Here, other Pentium Pro processors on the bus
write-back any modified data and invalidate their caches as necessary to maintain system
memory coherency. If the memory access is not cacheable and/or it crosses a cache line
boundary, the processor's LOCK# signal is asserted and the processor does not respond to
requests for bus control during the locked operation.

The RSM (return from SMM) instruction restores the processor (from a context dump) to the
state it was in prior to an system management mode (SMM) interrupt.

2.6.6. Reading Performance Monitoring and Time Stamp
Counters

The RDPMC (read performance monitoring counter) and RDTSC (read time-stamp counter)
instructions allow an application program to read the processors performance monitoring and
time-stamp counters, respectively.

The processor has two 40-bit performance counters that record either the occurrence of events
or the duration of events. The events that can be monitored include the number of instructions
decoded, number of interrupts received, of number of cache loads. Each counter can be set up
to monitor a different event, using the system instruction WRMSR to set up values in the model­
specific registers PerfEvtSelO and PerfEvtSell. The RDPMC instruction loads the current count
in counter 0 or 1 into the EDX:EAX registers.

The time-stamp counter is a model specific 64-bit counter that is reset to zero each time the
processor is reset. If not reset, the counter is guaranteed to not wrap around for 10 years.
The RDTSC instruction loads the current count of the time-stamp counter into the
EDX:EAX registers.

See Section 10.6., "Performance Monitoring Counters" and Section 10.5., "Time-Stamp
Counter" for more information about the performance monitoring and time stamp counters.

2-20

I

SYSTEM ARCHITECTURE OVERVIEW

2.6.7. Reading and Writing Model-Specific Registers

The RDMSR (read model-specific register) and WRMSR (write model-specific register) allow
the processor's 64-bit model-specific registers (MSRs) to be read and written to, respectively.
The MSR to be read or written to is specified by the value in the ECX register. The RDMSR
instructions reads the value from the specified MSR into the EDX:EAX registers; the WRMSR
writes the value in the EDX:EAX registers into the specified MSR. See Section 8.4., "Model
Specific Registers (MSRs)" for more information about the MSRs.

I
2-21

Protected-Mode
Memory
Management

I

3

CHAPTER 3
PROTECTED-MODE MEMORY MANAGEMENT

This chapter describes the Pentium Pro processor's protected-mode memory management facil­
ities, including the physical memory requirements, the segmentation mechanism, and the paging
mechanism. See Chapter 4, Protection, for a description of the processor's protection mecha­
nism. See Chapter 12, 8086 Emulation, for a description of memory addressing protection in
real-address and virtual-8086 modes.

3.1. MEMORY MANAGEMENT OVERVIEW

The memory management facilities of the Pentium Pro processor are divided into two parts:
segmentation and paging. Segmentation provides a mechanism of isolating individual code,
data, and stack modules so that multiple programs (or tasks) can run on the same processor
without interfering with one another. Paging provides a mechanism for implementing a conven­
tional demand-paged, virtual-memory system where sections of a program's execution environ­
ment are mapped into physical memory as needed. When operating in protected mode, some
form of segmentation must be used. There is no mode bit to disable segmentation. The use of
paging, however, is optional.

These two mechanisms (segmentation and paging) can be configured to support simple single­
program (or single-task) systems, multitasking systems, or multiple processor systems that used
shared memory.

As shown in Figure 3-1, segmentation provides a mechanism for dividing the processor's
address space (called the linear address space) into smaller protected address spaces called
segments. Segments can be used to hold the code, data, and stack for a program or to hold system
data structures (such as a TSS or LDT). If more than one program is running on a processor, each
program can be assigned its own set of segments. The processor then enforces the boundaries
between these segments and insures that one program does not interfere with the execution of
another program by writing into the other program's segments. The segmentation mechanism
also allows typing of segments so that the operations that may be performed on a particular type
of segment can be restricted.

All of the segments within a system are contained in the processor's linear address space. To
locate a byte in a particular segment, a logical address (sometimes called a far pointer) must be
provided. A logical address consists of a segment selector and an offset. The segment selector
is a unique identifier for a segment. Among other things it provides an offset into a descriptor
table (such as the global descriptor table, GDT) to a data structure called a segment descriptor.
Each segment has a segment descriptor, which specifies the size of the segment, the access rights
and privilege level for the segment, the segment type, and the location of the first byte of the
segment in the linear address space (called the base address of the segment). The offset part of
the logical address is added to the base address for the segment to locate a byte within the
segment. The base address plus the offset thus forms a linear address in the processor's linear
address space.

I
3-1

PROTECTED-MODE MEMORY MANAGEMENT

Logical Address
(or Far Pointer)

t
Segment
Selector Offset

I
~

Global Descriptor
Table (GDT)

Segment
Descriptor r--

Linear Address
I Space

Segment

Linear Address
Dir I Table I Offset I

I
I

Page Table

, ------ Page Directory

l[Lin. Addr. f---

I" Entry
--~-- ... Entry

Segment~ \ Base Address

---- Page

intet

Physical
Address
Space

Page

-C Phy. Addr.
- - - --

1------ Segmentation ------+-------Paging----------I

Figure 3-1. Segmentation and Paging

If paging is not used, the linear address space of the processor is mapped directly into the phys­
ical address space of processor. The physical address space is defined as the range of addresses
that the processor can generate on its address bus.

Because multitasking computing systems commonly define a linear address space much larger
than it is economically feasible to contain all at once in physical memory, some method of
"virtualizing" the linear address space is needed. This virtualization of the linear address space
is handled through the processor's paging mechanism.

Paging supports a "virtual memory" environment where a large linear address space is simulated
with a small amount of physical memory (RAM and ROM) and some disk storage. When using
paging, each segment is divided into pages (ordinarily 4 KBytes each in size), which are stored
either in physical memory or on the disk. The operating system or executive maintains a page
directory and a set of page tables to keep track of the pages. When a program (or task) attempts
to access an address location in the linear address space, the processor uses the page directory
and page tables to translate the linear address into a physical address and then performs the
requested operation (read or write) on the memory location. If the page being accessed is not

3-2

I

PROTECTED-MODE MEMORY MANAGEMENT

currently in physical memory, the processor interrupts execution of the program, reads the page
into physical memory from the disk, and then continues executing the program.

When paging is implemented properly in the operating-system or executive, the swapping of
pages between physical memory and the disk is transparent to the correct execution of a
program. Even programs written for 16-bit Intel Architecture processors can be paged (transpar­
ently) when they are run in virtual-8086 mode.

3.2. USING SEGMENTS

The segmentation mechanism provided in the Pentium Pro processor can be used to implement
a wide variety of system designs. These designs range from flat models that make only minimal
use of segmentation to protect programs to multi-segmented models that employ segmentation
to create a robust operating environment in which multiple programs and tasks can be executed
reliably.

The following sections give several examples of how segmentation can be employed in a system
to improve memory management performance and reliability.

3.2.1. Flat Model

The simplest memory model for a system is the "flat model," in which the operating system and
application programs have access to a continuous, unsegmented address space. To implement a
flat model with the Pentium Pro processor, at least two segment descriptors must be created, one
for code references and one for data references (see Figure 3-2). Both of these segments,
however, are mapped to the entire linear address space: that is, both segment descriptors have
the same base address value of 0 and the same segment limit of 4 GBytes. By setting the segment
limit to 4 GBytes, the segmentation mechanism is kept from generating exceptions for out of
limit memory references, even if no physical memory resides at a particular address. ROM
(EPROM) is generally located at the top of the physical address space, because the processor
begins execution at FFFF _FFFOH. RAM (DRAM) is placed at the bottom of the address space
because the initial base address for the DS data segment after reset initialization is O.

To the greatest extent possible, this flat model hides the segmentation mechanism of the archi­
tecture from both the system designer or the application programmer. This model might be used
when porting a UNIX-type operating system to a Pentium Pro processor, because UNIX oper­
ating systems commonly implement protection through the paging mechanism and do not use
segmentation.

I
3-3

PROTECTED-MODE MEMORY MANAGEMENT

3.2.2.

Segment
Registers

Linear Address Space
(or Physical Memory)

Code FFFFFFFFH

Code and Data Segment ~=:=:==k: Descriptors Not Present

DS L -
~==~I----"
~=ES~~

~==:=:==~V

I Access I r Limit Data and
I Base Address Stack o

Figure 3-2. Flat Model

Protected Flat Model

The protected flat model is like the flat model, except the segment limits are set to include only
the range of addresses for which physical memory actually exists (see Figure 3-3). A general­
protection exception (#GP) is then generated on any attempt to access non-existent memory.
This model provides a minimum level of hardware protection against some kinds of program
bugs.

3.2.3.

Segment
Registers

'--__ C_S_--'~

~=:=:~~

I
I

I
I ~=DS~~

:===:=:==~V

Segment
Descriptors

Access I Limit

Base Address

Access I Limit

Base Address

Linear Address Space
(or Physical Memory)

Code FFFFFFFFH

Not Present

Memory 1/0

f--------
Data and

Stack

o

Figure 3-3. Protected Flat Model

Multi-Segment Model

A multi-segment model (such as the one shown in Figure 3-4) uses the full capabilities of the
segmentation mechanism to provided hardware enforced protection of code, data structures, and
programs and tasks. Here, each program (or task) is given its own table of segment descriptors

3-4

I

PROTECTED-MODE MEMORY MANAGEMENT

and its own segments. The segments can be completely private to their assigned programs or
shared among programs. Access to all segments and to the execution environments of individual
programs running on the system is controlled by hardware.

Segment
Registers

CS

SS

DS

ES

FS

GS

Figure 3-4. Multi-Segment Model

Linear Address Space
(or Physical Memory)

Stack

Code

Data

Data

Data

Data

Here, access checks used can protect not only against referencing an address outside the limit of
a segment, but also against performing disallowed operations in certain segments. For example,
if code segments can be designated as read-only segments, hardware can be used to prevent
writes into code segments. The access rights information created for segments can also be used
to set up protection rings or levels. Protection levels can be used to protect operating-system
procedures from unauthorized access by application programs.

3.2.4. Paging and Segmentation

Paging can be used with any of the segmentation models described in Figures 3-2 and 3-3. When
paging is used, the linear address space in which segments are mapped is mapped to physical
memory through the processor's paging mechanism (as shown in Figure 3-1) instead of directly.

I
3-5

PROTECTED-MODE MEMORY MANAGEMENT

The paging mechanism offers several page-level protection facilities that can be used with or
instead of the segment-protection facilities. For example, when using paging, read-write protec­
tion can be enforced on a page-by-page basis. The paging mechanism also provides two-level
user-supervisor protection that can also be specified on a page-by-page basis.

3.3. PHYSICAL ADDRESS SPACE

In protected mode, the Pentium Pro processor provides a normal physical address space of 4
GBytes (232 bytes). This is the address space that the processor can address on its address bus.
This address space is flat (unsegmented), with addresses ranging continuously from 0 to
FFFFFFFFH. This physical address space can be mapped to read-write memory, read-only
memory, and memory mapped I/O. The memory mapping facilities describe in this chapter can
be used to divide this physical memory up into segments and/or pages.

The Pentium Pro processor also supports an extension of the physical address space to 236 bytes
(64 GBytes), with a maximum physical address of FFFFFFFFFH. This extension is invoked
with the physical address extension (PAE) flag, located in bit 5 of control register CR4. (See
Section 3.8., "Physical Address Extension" for more information about extended physical
addressing.)

3.4. LOGICAL AND LINEAR ADDRESSES

At the system-architecture level in protected mode, the processor uses two stages of address
translation to arrive at a physical address: logical-address translation and linear address space
paging.

Even with the minimum use of segments, every byte in the processor's address space is accessed
with a logical address. A logical address consists of a 16-bit segment selector and a 32-bit offset
(see Figure 3-5). The segment selector identifies the segment the byte is located in and the offset
specifies the location of the byte in the segment relative to the base address of the segment.

The processor translates every logical address into a linear address. A linear address is a 32-bit
address in the processor's linear address space. Like the physical address space, the linear
address space is a flat (unsegmented), 232-byte address space, with addresses ranging from 0 to
FFFFFFFH. The linear address space contains all the segments and system tables defined for a
system.

To translate a logical address into a linear address, the processor does the following:

1. Uses the offset in the segment selector to locate the segment descriptor for the segment in
the GDT or LDT.

2. Checks the access rights and range of the segment to insure that the segment is accessible
and that the offset is within the limits of the segment.

3. Adds the base address of the segment from the segment descriptor to the offset to form a
linear address.

3-6

I

PROTECTED-MODE MEMORY MANAGEMENT

15 0 31 0
Logical I Seg. Selector I 1,.=.:-----::OC"Ctt,...se--:t-----11

Address l.
Descriptor Table

._s_eg_m_e_n_t -' Base Address .~ ~~ _DescriPtor

31
I Linear Address

o
I

Figure 3-5. Logical Address to Linear Address Translation

If paging is not used, the processor maps the linear address directly to a physical address (that
is, the linear address goes out on the processors address bus). If the linear address space is paged,
a second level of address translation is used to translate the linear address into a physical
address. Page translation is described in Section 3.6., "Paging (Virtual Memory)".

3.4.1. Segment Selectors

A segment selector is a 16-bit identifier for a segment (see Figure 3-6). It does not point directly
to the segment, but instead points to the segment descriptor that defines the segment. A segment
selector contains the following items:

Index (Bits 3 through 15). Selects one of 8192 descriptors in the GDT or LDT. The
processor multiplies the index value by 8 (the number of bytes in a segment
descriptor) and adds the result to the base address of the GDT or LDT (from
the GDTR or LDTR register, respectively).

TI (table indicator) flag

I

(Bit 2). Specifies the descriptor table to use: clearing this flag selects the GDT;
setting this flag selects the current LDT.

15 3 2 1 0

Index IT I RPL I

Table Indicator ~ i
O=GDT
1 = LDT

Requestor Privilege Level (RPL)

Figure 3-6. Segment Selector

3-7

PROTECTED-MODE MEMORY MANAGEMENT in1et

Requestor Privilege Level (RPL)
(Bits 0 and 1). Specifies the privilege level of the selector. The privilege level
can range from 0 to 3, with 0 being the most privileged level. See Section 4.5.,
"Privilege Levels" for a description of the relationship of the RPL to the CPL
ofthe executing program ortask and the descriptor privilege level (DPL) of the
descriptor the segment selector points to.

The first entry of the GDT is not used by the processor. A segment selector that points to this
entry of the GDT (that is, a segment selector with an index of 0 and the TI flag set to 0) is used
as a "null segment selector." The processor does not generate an exception when a segment
register (other than the CS or SS registers) is loaded with a null selector. It does, however,
generate an exception when a segment register holding a null selector is used to access memory.
A null selector can be used to initialize unused segment registers. Loading the CS or SS register
with a null segment selector causes a general-protection exception (#GP) to be generated.

Segment selectors are visible to application programs as part of a pointer variable, but the values
of selectors are usually assigned or modified by link editors or linking loaders, not application
programs.

3.4.2. Segment Registers

To reduce address translation time and coding complexity, the processor provides registers for
holding up to 6 segment selectors (see Figure 3-7). Each of these segment registers support a
specific kind of memory reference (code, stack, or data). For virtually any kind of program
execution to take place, at least the code segment (CS), data segment (DS), and stack segment
(SS) registers must be loaded with valid segment selectors. The processor also provides three
additional data segment registers (ES, FS, and GS), which can be used to make additional data
segments available to the currently executing program or task.

Visible Part Hidden Part

Segment Selector Base Address, Limit, Access Information CS

SS
�----------------~------------------------~

OS
~-------------+------------------------~

ES
~--------------~---------------------------I

FS
~--------------~------------------------~

GS

Figure 3-7. Segment Registers

For a program to access a segment, the segment selector for the segment must have been loaded
in one of the segment registers. So, although a system can define thousands of segments, only 6
can be available for immediate use. Other segments can be made available by loading their
segment selectors into these registers during program execution.

3-8

I

PROTECTED-MODE MEMORY MANAGEMENT

Every segment register has a "visible" part and a "hidden" part. When a segment selector is
loaded into the visible part of a segment register, the processor also loads the hidden part of the
segment register with the base address, segment limit, and access control information from the
segment descriptor pointed to by the segment selector into. The information cached in the
segment register (visible and hidden) allows the processor to translate addresses without taking
extra bus cycles to read the base address and limit from the segment descriptor. In systems in
which multiple processors have access to the same descriptor tables, it is the responsibility of
software to reload the segment registers when the descriptor tables are modified. If this is not
done, an old segment descriptor cached in a segment register might be used after its memory­
resident version has been modified.

Two kinds of load instructions are provided for loading the segment registers:

1. Direct load instructions such as the MaY, pop, LDS, LES, LSS, LGS, and LFS instruc­
tions. These instructions explicitly reference the segment registers.

2. Implied load instructions such as the far pointer versions of the CALL, IMP, and RET
instructions and the IRET, INTn, INTO and INT3 instructions. These instructions change
the contents of the CS register (and sometimes other segment registers) as an incidental
part of their operation.

The MaY instruction can also be used to store visible part of a segment register in a general­
purpose register.

3.4.3. Segment Descriptors

A segment descriptor is a data structure in a GDT, LDT, or IDT that provides the processor with
the size and location of a segment, as well as access control and status information. Segment
descriptors are typically created by compilers, linkers, loaders, or the operating system or exec­
utive, but not application programs. Figure 3-8 illustrates the general descriptor format for all
types of segment descriptors.

The flags and fields in a segment descriptor are as follows:

Segment limit field

I

Specifies the size of the segment. The processor puts together the two segment
limit fields to form a 20-bit value. The processor interprets the segment limit in
one of two ways, depending on the setting of the G (granularity) flag:

If the granularity flag is clear, the segment size can range from 1 byte to 1
MByte, in byte increments.

• If the granularity flag is set, the segment size can range from 4 KBytes to
4 GBytes, in 4-KByte increments.

The processor uses the segment limit in two different ways, depending on
whether the segment is an expand-up or an expand-down segment. See Section
3.4.3.1., "Code and Data Segment-Descriptor Types" for more information
about segment types. For expand-up segments, the offset in a logical address
can range from 0 to the segment limit. Offsets greater than the segment limit

3-9

PROTECTED-MODE MEMORY MANAGEMENT

31

generate general-protection exceptions (#GP). For expand-down segments, the
segment limit has the reverse function; the offset can range from the segment
limit to the FFFFFFFFH or FFFFH, depending on the setting of the B flag.
Offsets less than the segment limit generate general-protection exceptions.
Decreasing the value segment limit field for an expand-down segment allo­
cates new memory at the bottom of the segment's address space, rather than at
the top.

242322 212019 1615141312 11 B 7 o

D A Seg. D
Base 31:24 G I o v Limit p p S Type Base 23:16 4

B L 19:16 L

31 1615 0

1~ _____ B_a_s_e_A_dd_r_e~ __ 1_5_:0_0 ______ ~I _______ s_e_gm __ en_t_Li_m_it_1_5:_00 ______ ~lo
AVL-Available for use by system software
BASE-Segment base address
D/B-Default operation size (0 = 16-bit segment; 1 = 32-bit segment)
DPL-Descriptor privilege level
G-Granularity
LlMIT-8egment Limit
P-Segment present
S-Descriptor type (0 = system; 1 = application)
TYPE-8egment type

Figure 3-8. Segment Descriptor

Base address fields

Type field

3-10

Defines the location of byte 0 of the segment wi thin the 4-GB yte linear address
space. The processor puts together the three base address fields to form a single
32-bit value. Segment base addresses should be aligned to 16-byte boundaries
to allow programs to maximize performance by aligning code and data on
16-byte boundaries; however, such alignment is not required.

Indicates the segment or gate type and specifies the kinds of access that can be
made to the segment and the direction of growth. The interpretation of this field
depends on whether the descriptor type flag specifies an application (code or
data) descriptor or a system descriptor. The encoding of the type field is
different for code, data, and system descriptors (see Figure 4-1). See Section
3.4.3.1., "Code and Data Segment-Descriptor Types" for a description of how
this field is used to specify code and data segment types.

I

PROTECTED-MODE MEMORY MANAGEMENT

S (descriptor type) flag
Specifies whether the segment descriptor is for a system segment (S flag is
clear) or a code or data segment (S flag is set).

DPL (descriptor privilege level) field
Specifies the privilege level of the segment. The privilege level can range from
o to 3, with 0 being the most privileged level. The DPL is used to control access
to the segment. See Section 4.5., "Privilege Levels" for a description of the
relationship of the DPL to the CPL of the executing program or task and the
RPL of a segment selector.

P (segment-present) flag
Indicates whether the segment is present in memory (set) or not present (clear).
If this bit is clear, the processor generates a segment-not-present exception
(#NP) when a segment selector that points to the segment descriptor is loaded
into a segment register. Memory management software can use this bit to
control which segments are actually loaded into physical memory at a given
time. It offers a control in addition to paging for managing virtual memory.

Figure 3-9 shows the format of a segment descriptor when the segment-present
flag is clear. When this bit is clear, the operating system or executive is free to
use the locations marked "Available" to store its own data, such as information
regarding the whereabouts of the missing segment.

31 161514131211 8 7 0

I ~ ____ Ma_ilab,_e __ ~H~~I~,I_~_e~1 _M_aila_ble~14

r ~' _______________________ Av_a_ila_b_le ______________________ ~Olo
Figure 3-9. Segment Descriptor When Segment-Present Flag Is Clear

D (default operation size)/B (default stack size) flag

I

Performs different functions depending on whether the segment descriptor is
an executable code segment, an expand-down data segment, or a data segment
used as a procedure stack. (This flag should always be set to 1 for 32-bit code
and data segments and to 0 for 16-bit code and data segments.)

• Executable code segment. The D flag indicates the default length for
linear addresses and operands. If the flag is set, 32-bit addresses and 32-bit
or 8-bit operands are assumed; if it is clear, 16-bit addresses and 16-bit or
8-bit operands are assumed. An instruction prefix can be used to select an
operand size other than the default.

3-11

PROTECTED-MODE MEMORY MANAGEMENT intet
• Expand-down data segment. The D flag specifies the upper bound of the

segment. If the flag is set, the upper bound is FFFFFFFFH (4 GBytes); if
the flag is clear, the upper bound is FFFFH (64 KBytes).

Data segment used as a stack segment (pointed to by the SS register).
For stack segments this flag is called the B (default stack size) flag. The B
flag specifies the size of the stack pointer register (ESP), which implicit
stack operations use to address the stack. If the flag is set, the 32-bit ESP
register is used, allowing stack pointers of up to 32-bit; if the flag is clear,
the 16-bit SP register is used, allowing stack pointers of up to 16-bits. The
operand-size of an instruction (such as a MOV instruction) determines the
size of the ESP register when writing directly to the register.

G (granularity) flag
Determines the scaling of the segment limit field. When the granUlarity flag is
clear, the segment limit is interpreted in byte units; when flag is set, the
segment limit is interpreted in 4-KByte units. (This flag does not affect the
granularity of the base address; it is always byte granular.) When the granu­
larity bit is set, the twelve least significant bits of an offset are not tested when
checking the offset against the segment limit. For example, when the granu­
larity bit is set, a limit of 0 results in valid offsets from 0 to 4095.

Available and reserved bits

3.4.3.1.

Bit 20 of the second doubleword of the segment descriptor is available for use
by system software; bit 21 is reserved and should always be set to o.

CODE AND DATA SEGMENT-DESCRIPTOR TYPES

When the S (descriptor type) flag in a segment descriptor is set, the descriptor is for either a code
or a data segment. The highest order bit of the type field (bit 11 of the second double word of
the segment descriptor) then determines whether the descriptor is for a data segment (clear) or
a code segment (set).

For data segments, the three low-order bits of the type field (bits 8, 9, and 10) are interpreted as
accessed (A), write-enable (W), and expansion-direction (E). See Table 3-1 for a description of
the encoding of the bits in the type field for code and data segments. Data segments can be read­
only or read/write segments, depending on the setting of the write-enable bit.

Stack segments are data segments which must be read/write segments. Loading the SS register
with a segment selector for a non-writable data segment generates a general-protection excep­
tion (#GP). If the size of a stack segment needs to be changed dynamically, the stack segment
can be an expand-down data segment (expansion-direction flag set). Here, dynamically
changing the segment limit causes stack space to be added to the bottom of the stack. If the size
of a stack segment is intended to remain static, the stack segment may be either an expand-up or
expand-down type.

The accessed bit indicates whether the segment has been accessed since the last time the oper­
ating-system or executive cleared the bit. The processor sets this bit whenever it loads a segment
selector for the segment into a segment register. The bit remains set until explicitly cleared. This
bit can be used both for virtual memory management and for debugging.

3-12

I

PROTECTED-MODE MEMORY MANAGEMENT

Table 3-1. Code and Data Segment Types

Type Field

11 10 9 8 Descriptor
Decimal E W A Type Description

0 0 0 0 0 Data Read·Only
1 0 0 0 1 Data Read·Only, accessed
2 0 0 1 0 Data ReadIWrite
3 0 0 1 1 Data ReadiWrite, accessed
4 0 1 0 0 Data Read-Only, expand-down
5 0 1 0 1 Data Read-Only, expand-down, accessed
6 0 1 1 0 Data ReadiWrite, expand·down
7 0 1 1 1 Data ReadIWrite, expand-down, accessed

C R A

8 1 0 0 0 Code Execute-Only
9 1 0 0 1 Code Execute-Only, accessed
10 1 0 1 0 Code Execute/Read
11 1 0 1 1 Code Execute/Read, accessed
12 1 1 0 0 Code Execute-Only, conforming
13 1 1 0 1 Code Execute-Only, conforming, accessed
14 1 1 1 0 Code Execute/Read-Only, conforming
15 1 1 1 1 Code Execute/Read-Only, conforming, accessed

For code segments, the three low-order bits of the type field are interpreted as accessed (A), read
enable (R), and conforming (C). Code segments can be execute-only or execute/read, depending
on the setting of the read-enable bit. An execute/read segment might be used, when constants or
other static data have been placed with instruction code in a ROM. Here, data can be read from
the code segment either by using an instruction with a CS override prefix or by loading a
segment selector for the code segment in a data-segment register (the DS, ES, FS, or GS regis­
ters). In protected mode, code segments are not writable.

Code segments can be either conforming or non-conforming. A transfer of execution into a
more-privileged conforming segment allows execution to continue at the current privilege level.
A transfer into a non-conforming segment at a different privilege level results in a general­
protection exception (#GP), unless a call gate or task gate is used (see Section 4.8.1., "Direct
Calls or Jumps to Code Segments" for more information on conforming and non-conforming
code segments). System utilities that do not access protected facilities and handlers for some
types of exceptions (such as, divide error or overflow) may be loaded in conforming code
segments. Utilities that need to be protected from less privileged programs and procedures
should be placed in non-conforming code segments.

All data segments are nonconforming, but unlike code segments, data segments can be accessed
by procedures or programs operating at numerically higher privilege levels (less privileged)
without using a call or task gate.

The processor may update the Type field when a segment is accessed, even if the access is a read
cycle. If the descriptor tables have been put in ROM, it may be necessary for hardware to prevent
the ROM from being enabled onto the data bus during a write cycle. It also may be necessary to
return the READY# signal to the processor when a write cycle to ROM occurs, otherwise

I
3-13

PROTECTED-MODE MEMORY MANAGEMENT

the cycle will not terminate. These features of the hardware design are necessary for using
ROM-based descriptor tables with the Inte1386 DX processor, which always sets the Accessed
bit when a segment descriptor is loaded. The Pentium Pro, Pentium, and Intel486 processors,
however, only set the accessed bit if it is not already set. Writes to descriptor tables in ROM can
be avoided by setting the accessed bits in every descriptor.

3.5. SYSTEM SEGMENT-DESCRIPTOR lYPES

When the S (descriptor type) flag in a segment descriptor is clear, the descriptor type is a system
descriptor. The processor recognizes the following types of system descriptors:

•
•
•
o

•
•

Local descriptor table (LDT) segment descriptor.

Task state segment (TSS) descriptor.

Call gate descriptor.

Task gate descriptor.

Interrupt gate descriptor.

Trap gate descriptors.

These descriptor types fall into two categories: system segment descriptors and gate descriptors.
System segment descriptors point to system segments (LDT and TSS segments); gate descrip­
tors point to gates (call, task, interrupt, and trap), which hold pointers to procedure entry points
in code segments. Table 3-2 shows the encoding of the type field for system segment and gate
descriptors.

For more information on the system segment descriptors, see Section 3.5.1., "Segment
Descriptor Tables" and Section 6.2.2., "TSS Descriptor"; for more information on the gate
descriptors, see Section 4.8.2., "Gate Descriptors", Section 5.8., "IDT Descriptors", and Section
6.2.4., "Task Gate Descriptor".

3-14

I

PROTECTED-MODE MEMORY MANAGEMENT

Table 3-2. System Segment and Gate Descriptor Types

Type Field

Decimal 11 10 9 8 Description

0 0 0 0 0 Reserved

1 0 0 0 1 16-Bit TSS (Available)

2 0 0 1 0 LDT

3 0 0 1 1 16-Bit TSS (Busy)

4 0 1 0 0 16-Bit Call Gate

5 0 1 0 1 Task Gate

6 0 1 1 0 16-Bit Interrupt Gate

7 0 1 1 1 16-Bit Trap Gate

8 1 0 0 0 Reserved

9 1 0 0 1 32-Bit TSS (Available)

10 1 0 1 0 Reserved

11 1 0 1 1 32-Bit TSS (Busy)

12 1 1 0 0 32-Bit Call Gate

13 1 1 0 1 Reserved

14 1 1 1 0 32-Bit Interrupt Gate

15 1 1 1 1 32-Bit Trap Gate

3.5.1. Segment Descriptor Tables

A segment descriptor table is an array of segment descriptors (see Figure 3-10). A descriptor
table is variable in length and can contain up to 8192 (213) 8-byte descriptors. There are two
kinds of descriptor tables:

•
•

The global descriptor table (GDT)

The local descriptor tables (LDT)

There is one GDT for all programs and tasks in the system and one LDT for each separate task
being run. If the operating system allows, some or all tasks can share the same LDT. The system
also can be set up with no LDTs; all programs and tasks will then use the GDT.

The GDT is not a segment itself; instead, it is a data structure in the linear address space. The
base linear address and limit of the GDT must be loaded into the GDTR register (see Section
2.4., "Memory-Management Registers"). The base addresses of the GDT should be aligned on
an eight-byte boundary to yield the best processor performance. The limit value for the GDT is
expressed in bytes. As with segments, the limit value is added to the base address to get the
address of the last valid byte. A limit value of 0 results in exactly one valid byte. Because
segment descriptors are always 8 bytes long, the GDT limit should always be one less than an
integral multiple of eight (that is, 8N - 1).

I
3-15

PROTECTED-MODE MEMORY MANAGEMENT intet

Global Local
Descriptor Descriptor

Table (GDT) Table (LDT)

I t ~
I ITI I TI =0 TI = 1

Segment
Selector

56 56

48 48

40 40

32 32

24 24

-
16 16

8 8

First Descriptor in
GDT is Not Used 0 0

GDTR Register ~ LDTR Register

I Limit 1 Limit

Base Address Base Address t------
Seg. SeLl

Figure 3-10. Global and Local Descriptor Tables

The first descriptor in the GDT is not used by the processor. A segment selector to this "null
descriptor" does not generate an exception when loaded into a data segment register (DS, ES,
FS, or GS), but it always generates a general-protection exception (#GP) when an attempt is
made to access memory using the descriptor. By initializing the segment registers with this
segment selector, accidental reference to unused segment registers can be guaranteed to generate
an exception.

The LDT is located in a system segment of the LDT type. The GDT must contain a segment
descriptor for the LDT segment. If the system supports multiple LDTs, each must have a sepa­
rate segment selector and segment descriptor in the GDT. The segment descriptor for an LDT
can be located anywhere in the GDT. See Section 3.5., "System Segment-Descriptor Types"
information on the LDT segment descriptor type.

An LDT is accessed with its segment selector. To eliminate address translations when accessing
the LDT, the segment selector, base linear address, limit, and access rights of the LDT are stored
in the LDTR register (see Section 2.4., "Memory-Management Registers").

3-16

I

PROTECTED-MODE MEMORY MANAGEMENT

When the GDTR register is stored (using the SGDT instruction), a 48-bit "pseudo-descriptor"
is stored in memory (see Figure 3-11). To avoid alignment check faults in user mode (privilege
level 3), the pseudo-descriptor should be located at a doubleword address (that is, an address that
is 0 MOD 4). This causes the processor to store an aligned word, followed by an aligned double­
word. User-mode programs normally do not store pseudo-descriptors, but the possibility of
generating an alignment check fault can be avoided by aligning pseudo-descriptors in this way.
The same alignment should be used when storing the IDTR register using the SIDT instruction.
When storing the LDTR or task register (using the SLTR or STR instruction, respectively), the
pseudo-descriptor should be located at an odd word address (that is, an address that is 2 MOD 4).

47 16 15 0

I Base Address I Limit I

Figure 3-11. Pseudo-Descriptor Format

3.6. PAGING (VIRTUAL MEMORY)

When operating in protected mode, the Pentium Pro processor can map a linear address directly
into a large physical address space (for example, an address space composed of several gigabytes
of RAM) or indirectly (using paging) into a smaller physical address space (RAM) and disk
storage. This latter method of mapping linear addresses is commonly referred to as virtual
memory or demand-paged virtual memory.

When paging is used, the processor divides the linear address space into fixed-size pages (gener­
ally 4 KBytes in length) that can be mapped into physical memory and/or disk storage. When a
program or task references a logical address in memory, the processor translates the address into
a linear address and then uses its paging mechanism to translate the linear address into a corre­
sponding physical address. If the page containing the linear address is not currently in physical
memory, the processor generates a page-fault exception (#PF). This exception directs the
operating system to load the page from disk storage into physical memory (perhaps writing
different page from physical memory out to disk in the process), then restart the instruction that
generated the exception. The information that the processor uses to map linear addresses into the
physical address space and to generate page fault exceptions (when necessary) is contained in
page directories and page tables stored in memory.

Paging is different from segmentation through its use of fixed-size pages. Unlike segments,
which usually are the same size as the code or data structures they hold, pages have a fixed size.
If segmentation is the only form of address translation which is used, a data structure which is
present in physical memory will have all of its parts in memory. If paging is used, a data structure
can be partly in memory and partly in disk storage.

To minimize the number of bus cycles required for address translation, the most recently
accessed page-directory and page-table entries are cached in the processor in devices called
translation lookaside buffers (TLBs). The TLBs satisfy most requests for reading the current
page directory and page tables without requiring a bus cycle. Extra bus cycles occur only when
the TLBs do not contain a page table entry, which typically happens when a page has not been
accessed for a long time. See Section 3.7., "Translation Lookaside Buffers (TLBs)" for more
information on the TLBs.

I
3-17

PROTECTED·MODE MEMORY MANAGEMENT

3.6.1. Paging Options

Paging is controlled by three flags in the processor's control registers:

• PG (paging) flag, bit 31 of CRO.

• PSE (page size extensions) flag, bit 4 of CR4.

• PAE (physical address extension) flag, bit 5 of CR4).

The PG flag enables the page-translation mechanism. The operating system or executive usually
sets this flag during processor initialization. The PG flag must be set if the processor's page­
translation mechanism is to be used to implement a demand-paged virtual memory system or if
the operating system is designed to run more than one program or task in virtual-8086 mode.

The PSE flag enables 4-MByte pages (or 2-MByte pages when the PAE flag is set). When this
flag is clear, the more common page length of 4 KBytes is used. See Section 3.6.2.2., "Linear
Address Translation (4-MByte Pages)" and Section 3.8.2., "Linear Address Translation With
Extended Addressing Enabled (2-MByte Pages)" for more information about the use of the PSE
flag.

The PAE flag enables 36-bit physical addresses. This physical address extension can only be
used when paging is enabled. It relies on page directories and page tables to reference physical
addresses above FFFFFFFFH. See Section 3.8., "Physical Address Extension" for more infor­
mation about the physical address extension.

3.6.2. Page Tables and Directories

The information that the processor uses to translate linear addresses into physical addresses
(when paging is enabled) is contained in four data structures:

•

•

•
•

Page directory-An array of 32-bit page-directory entries contained in a 4-KByte page. Up
to 1024 page-directory entries can be held in a page directory.

Page table-An array of 32-bit page-table entries contained in a 4-KByte page. Up to 1024
page-table entries can be held in a page table. (Page tables are not used for 2-MByte or
4-MByte pages. These page sizes are mapped directly from one or more page directories.)

Page-A 4-KByte, 2-MByte, or 4-MByte flat address space.

Page Directory Pointer Table-An array of four 64-bit entries, each of which points to a
page directory. This data structure is only used when the physical address extension is
enabled (see Section 3.8., "Physical Address Extension").

These tables provide access to either 4-KByte or 4-MByte pages when normal 32-bit physical
addressing is being used and to either4-KByte or 2-MByte pages when extended (36-bit) phys­
ical addressing is being used. Table 3-3 shows the page size and physical address size obtained
from various settings ofthe paging control flags.

3-18

I

PROTECTED-MODE MEMORY MANAGEMENT

Table 3-3. Page Sizes and Physical Address Sizes

PAE Flag, Physical
PG Flag, CRO CR4 PSE Flag, CR4 PS Flag, PDE Page Size Address Size

0 X X X - Paging Disabled

1 0 0 X 4 KBytes 32 Bits

1 0 1 0 4 KBytes 32 Bits

1 0 1 1 4 MBytes 32 Bits

1 1 X 0 4 KBytes 36 Bits

1 1 X 1 2 MBytes 36 Bits

3.6.2.1. LINEAR ADDRESS TRANSLATION (4-KBVTE PAGES)

Figure 3-12 shows the page directory and page table hierarchy when mapping linear addresses
to 4-KByte pages. The entries in the page directory point to page tables, and the entries in a page
table point to pages in physical memory. This paging method can be used to address up to 220

pages, which spans a linear address space of 232 bytes (4 GBytes).

To select the various table entries, the linear address is divided into three sections:

•

•

•

I

Page directory entry-Bits 22 through 31 provide an offset to an entry in the page
directory. The selected entry provides the base physical address of a page table.

Page table entry-Bits 12 through 21 of the linear address provide an offset to an entry in
the selected page table. This entry provides the base physical address of a page in physical
memory.

Page offset-Bits 0 through 11 provides an offset to a physical address in the page.

Linear Address
31 22 21 12 11 o
I Directory I Table I Offset I

I j }'12 4-KByte Page

)'10 / /10 Page Table L-.. Physical Address

Page Directory

--. Page Table Entry t---~

-----. Di rectory Entry -------..

€I CR3 (PDBR) I
1024 PDE * 1024 PTE = 220 Pages

Figure 3-12. Linear Address Translation (4-KByte Pages)

3-19

PROTECTED-MODE MEMORY MANAGEMENT

Memory management software has the option of using one page directory for all programs and
tasks, one page directory for each task, or some combination of the two.

3.6.2.2. LINEAR ADDRESS TRANSLATION (4-MBYTE PAGES)

Figure 3-12 shows how a page directory can be used to map linear addresses to 4-MByte pages.
The entries in the page directory point to page tables, and the entries in a page table point to
pages in physical memory. This paging method can be used to map up to 1024 pages into a
4-GByte linear address space.

The 4-MByte page size is selected by setting the PSE flag in control register CR4 and setting the
page size (PS) flag in a page-directory entry (see Figure 3-14). With these flags set, the linear
address is divided into two sections:

•

•

Page directory entry-Bits 22 through 31 provide an offset to an entry in the page
directory. The selected entry provides the base physical address of a
4-MByte page.

Page offset-Bits 0 through 21 provides an offset to a physical address in the page .

31
Linear Address

22 21

Directory I Offset

,------J //22

/ 10 Page Directory
~

~ Directory Entry

o
I

4-MByte Page

Physical Address

~I 1024 PDE = 1024 Pages
~ CR3 (PDBR) I

Figure 3-13. Linear Address Translation (4-MByte Pages)

3.6.2.3. MIXING 4-KBYTE AND 4-MBYTE PAGES

When the PSE flag in CR4 is set, both page tables for 4-KByte pages and 4-MByte pages can
be accessed from the same page directory. If the PSE flag is clear, only page tables for 4-KByte
pages can be accessed (regardless of the setting of the PS flag in a page-directory entry).

A typical example of mixing 4-KByte and 4-MByte pages is to place the operating system or
executive's kernel in a large page to reduce TLB misses and thus improve overall system perfor­
mance. The processor maintains 4-MByte page entries and 4-KByte page entries in separate
TLBs. So, placing often used code such as the kernel in a large page, frees up 4-KByte-page
TLB entries for application programs and tasks and for infrequently used utilities.

3-20

I

PROTECTED-MODE MEMORY MANAGEMENT

3.6.3. Base Address of the Page Directory

The physical address of the current page directory is stored in the CR3 register (also called the
page directory base register or PDBR). (See Figure 2-5 and Section 2.5., "Control Registers" for
more information on the PDBR.) If paging is to be used, the PDBR must be loaded as part of the
processor initialization process (prior to enabling paging). The PDBR can then be changed
either explicitly by loading a new value in CR3 with a MOV instruction or implicitly as part of
a task switch. (See Section 6.2.l., "Task State Segment (TSS)" for a description of how the
contents of the CR3 register is set for a task.)

There is no present bit in the PDBR for the page directory. The page directory may be not­
present (paged out of physical memory) while its associated task is suspended, but the operating
system must ensure that the page directory indicated by the PDBR image in a task's TSS is
present in physical memory before the task is dispatched. The page directory must also remain
in memory as long as the task is active.

3.6.4. Page-Directory and Page-Table Entries

Figure 3-14 shows the format for the page-directory and page-table entries when 4-KByte
pages and 32-bit physical addresses are being used. Figure 3-14 shows the format for the
page-directory entries when 4-MByte pages and 32-bit physical addresses are being used. See
Section 3.8., "Physical Address Extension" for the format of page-directory and page-table
entries when the physical address extension is being used.

The functions of the flags and fields in these entries are as follows:

Page base address, bits 12 through 32

I

(Page-table entries for 4-KByte pages.) Specifies the physical address of the
first byte of a 4-KByte page. The bits in this field are interpreted as the 20 most­
significant bits of the physical address, which forces pages to be aligned on
4-KByte boundaries.

(Page-directory entries for 4-KB yte page tables.) Specifies the physical address
of the first byte of a page table. The bits in this field are interpreted as the 20
most-significant bits of the physical address, which forces page tables to be
aligned on 4-KByte boundaries.

(Page-directory entries for 4-MByte pages.) Specifies the physical address of
the first byte of a 4-MByte page. Only bits 22 through 32 of this field are used
(and bits 12 through 21 are reserved). The base address bits are interpreted as
the 11 most-significant bits of the physical address, which forces pages to be
aligned on 4-MByte boundaries.

3-21

PROTECTED-MODE MEMORY MANAGEMENT

3-22

31

31

Page-Directory Entry (4-KByte Page Table)

1211 9 8.7 6 5 432 1 0

Page-Table Base Address

Available for system programmer's use ~ II
Global page (Ignored) --------------'. .
Page size (0 indicates 4 KBytes) -----------'
Reserved (set to 0) ----------------'
Accessed --------------------'
Cache disabled -------------------'
Write-through ---------------------'
User/Supervisor ------------~---
Read/Write __________________ ---.J

Present-------------------------l

Page-Table Entry (4-KByte Page)

1211 9 8 7 6 5 4 32 1 0

Page Base Address

Available for system programmer's use ~
Global page -----------------'
Reserved (set to 0) ----------------"
Dirty ------------------'
Acoossed--------------------'
Cache disabled ------------------'
Write-through ------------------'
User/Supervisor ---------------------"
Read/Write ----------------------'
Present-------------------------l

Figure 3-14. Format of Page-Directory and Page-Table Entries for 4-KByte Pages
and 32-Bit Physical Addresses

I

31

PROTECTED-MODE MEMORY MANAGEMENT

Page-Directory Entry (4-MByte Page)

22 21 1211 9 8 7 6 5 4 32 1 0

Page Base Address Reserved

Available for system programmer's use ~ II
Global page ---------------' .
Page size (1 indicates 4 MBytes)-----------'
Dirty---------------------'
Accessed --------------------'
Cache disabled -------------------'
Write-through --------------------'
User/Supervisor --------------------'
ReadlWrite -------------------'
Present ----------------------'

Figure 3-15. Format of Page-Directory Entries for 4-MByte Pages and 32-Bit Addresses

Present (P) flag, bit 0

I

Indicates whether the page or page table being pointed to by the entry is
currently loaded in physical memory. When the flag is set, the page is in phys­
ical memory and address translation is carried out. When the flag is clear, the
page is not in memory and, if the processor attempts to access the page, it
generates a page fault exception (#PF).

The processor does not set or clear this flag; it is up to the operating system or
executive to maintain the state of the flag.

If the processor generates a page-fault exception, the operating system gener­
ally needs to carry out the following operations:

1.

2.

3.

4.

Copy the page from disk storage into physical memory.

Load the page address into the page-table or page-directory entry and set
its present flag. Other bits, such as the dirty and accessed bits, may also
be set at this time.

Invalidate the current page table entry in the TLB (see Section 3.7.,
"Translation Lookaside Buffers (TLBs),' for a discussion of TLBs and
how to invalidate them).

Return from the page fault handler to restart the interrupted program or
task.

3-23

PROTECTED-MODE MEMORY MANAGEMENT

Read/write. (RIW) flag, bit 1
Specifies the read-write privileges for a page or group of pages (in the case of
a page-directory entry that points to a page table). When this flag is clear, the
page is read only; when the flag is set, the page can be read and written into.
This flag interacts with the VIS flag and the WP flag in register CRa. See
Section 4.11., "Page-Level Protection" for a detail discussion of the use of
these flags.

Userlsupervisor (VIS) flag, bit 2
Specifies the user-supervisor privileges for a page or group of pages (in the case
of a page-directory entry that points to a page table). When this flag is clear,
the page is assigned the supervisor privilege level; when the flag is set, the page
is assigned the user privilege level. This flag interacts with the RIW flag and
the WP flag in register CRa. See Section 4.11., "Page-Level Protection" for a
detail discussion of the use of these flags.

Page-level write-through (PWT) flag, bit 3
Controls the write-through or write-back caching policy of individual pages or
page tables. When the PWT flag is set, write-through caching is enabled for the
associated page or page table; when the flag is clear, write-back caching is
enabled for the associated page or page table. The processor ignores this flag if
paging is not used (the PG flag in register CRa is clear) or the CD (cache
disable) flag in CRa is set. See Section 11.5., "Cache Control" for more infor­
mation about the use of this flag. See Section 2.5., "Control Registers" for a
description of a companion PWT flag in control register CR3.

Page-level cache disable (peD) flag, bit 4
Controls the caching of individual pages or page tables. When the PCD flag is
set, caching of the associated page or page table is prevented; when the flag is
clear, the page or page table can be cached. This flag permits caching to be
disabled for pages that contain memory-mapped 110 ports or that do not
provide a performance benefit when cached. The processor ignores this flag
(assumes it is set) if paging is not used (the PG flag in register eRa is clear) or
the CD (cache disable) flag in CRa is set. See Chapter 11, Memory Cache
Control, for more information about the use of this flag. See Section 2.5.,
"Control Registers" for a description of a companion PCD flag in control
register CR3.

Accessed (A) flag, bit 5

3-24

Indicates whether a page or page table has been accessed (read from or written
to) when set. Memory management software typically clears this flag when a
page or page table is initially loaded into physical memory. The processor then
sets this flag the first time a page or page table is accessed. This bit is a "sticky"
flag, meaning that once set, the processor does not implicitly clear it. Only soft­
ware can clear this flag. The accessed and dirty flags are provided for use by
memory management software to manage the transfer of pages and page tables
into and out of physical memory.

I

PROTECTED-MODE MEMORY MANAGEMENT

Dirty (D) flag, bit 6
Indicates whether a page has been written to when set. (This flag is not used in
page-directory entries.) Memory management software typically clears this
flag when a page is initially loaded into physical memory. The processor then
sets this flag the first time a page is accessed for a write operation. This bit is
"sticky," meaning that once set, the processor does not implicitly clear it. Only
software can clear this bit. The dirty and accessed flags are provided for use by
memory management software to manage the transfer of pages and page tables
into and out of physical memory.

Page size (PS) flag, bit 7
Determines the page size. This flag is only used in page-directory entries.
When this flag is clear, the page size is 4 KBytes and the page-directory entry
points to a page table. When the flag is set, the page size is 4 MBytes for normal
32-bit addressing (and 2 MBytes if extended physical addressing is enabled)
and the page-directory entry points to a page. If the page-directory entry points
to a page table, all the pages associated with that page table will be 4-KByte
pages.

Global (G) flag, bit 8
Indicates a global page when set. When a page is marked global and the page
global enable (PGE) flag in register CR4 is set, the page-table or page-directory
entry for the page is not invalidated in the TLB when register CR3 is loaded or
a task switch occurs. This flag is provided to prevent frequently used pages
(such as pages that contain kernel or other operating system or executive code)
from being flushed from the TLB. Only software can set or clear this flag. For
page-directory entries that point to page tables, this bit is ignored and the global
characteristics of a page are set in the page table entries. See Section 3.7.,
"Translation Lookaside Buffers (TLBs)" for more information about the use of
this flag.

Reserved and available-to-software bits

3.6.5.

In a page-table entry, bit 7 is reserved and should be set to 0; in a page-directory
entry that points to a page table, bit 6 is reserved and should be set to O. For
both types of entries, bits 9, 10, and 11 are available for use by software. (When
the present bit is clear, bits 1 through 31 are available to software.) When the
PSE and PAE flags in control register CR4 are set, the processor generates a
page fault if reserved bits are not set to O.

Not Present Page-Directory and Page-Table Entries

When the present flag is clear for a page-table or page-directory entry, the operating system or
executive may use the rest of the entry for storage of information such as the location of the page
(see Figure 3-16).

I
3-25

PROTECTED-MODE MEMORY MANAGEMENT

31 o

Available to Operating System or Executive o

Figure 3-16. Format of a Page-Table or Page-Directory Entry for a Not-Present Page

3.7. TRANSLATION LOOKASIDE BUFFERS (TLBS)

The processor stores the most recently used page-directory and page-table entries in on-chip
caches called translation lookaside buffers or TLBs. The Pentium Pro and Pentium processors
have separate TLBs for the data and instruction caches. Also, the Pentium Pro processor main­
tains separate TLBs for 4-KByte and 4-MByte page sizes. The CPUID instruction can be used
to determine the sizes of the TLBs provided in the Pentium Pro processor.

Most paging is performed using the contents of the TLBs. Bus cycles to the page directory and
page tables in memory are performed only when the TLBs do not contain the translation infor­
mation for a requested page.

The TLBs are inaccessible to application programs and tasks (privilege level greater than 0); that
is, they cannot invalidate TLBs. Only, operating system or executive procedures running at priv­
ilege level of 0 can invalid TLBs or selected TBL entries. Whenever a page-directory or page­
table entry is changed (including when the present bit is set to zero), the operating-system must
immediately invalidate the corresponding entry in the TLB so that it can be updated the next time
the entry is referenced.

All of the TLBs are automatically invalidated any time the CR3 register loaded. The CR3
register can be loaded in either of two ways:

• Explicitly, using the MOV instruction, for example:

MOV CR3, EAX

where the EAX register contains an appropriate page directory base address.

• Implicitly by executing a task switch, which automatically changes the contents of the CR3
register.

The INVLPG instruction is provided to invalidate a specific page-table entry. Normally, this
instruction invalidates only an individual TLB entry; however, in some cases, it may invalidate
more than the selected entry and may even invalidate all of the TLBs.

The page global enable (PGE) flag in register CR4 and the global (G) flag in a page-directory
or page-table entry (bit 8) can be used to prevent frequently used pages from being automatically
invalidated in the TLBs on a task switch or a load of register CR3. (See Section 3.6.4., "Page­
Directory and Page-Table Entries" for more information about the global flag.) When the
processor loads a page-directory or page-table entry for a global page into a TLB, the entry will
remain in the TLB indefinitely. The only way to deterministically invalidate global page entries
is to clear the PGE flag and then invalidate the TLBs.

3-26

I

PROTECTED-MODE MEMORY MANAGEMENT

3.8. PHYSICAL ADDRESS EXTENSION

The physical address extension (PAE) flag in register CR4 enables an extension of physical
addresses in the Pentium Pro processor from 32 bits to 36 bits. The processor provides 4 addi­
tional address line pins to accommodate the additional address bits. This option can only be used
when paging is enabled (that is, when both the PG flag in register CRO and the PAE flag in
register CR4 are set).

When the physical address extension is enabled, the processor allows two sizes of pages:
4-KByte and 2-MByte. As with 32-bit addressing, both page sizes can be addressed within the
same set of paging tables (that is, a page-directory entry can point to either a 2-MByte page or
a page table that in tum points to 4-KByte pages). To support the 36-bit physical addresses, the
following changes are made to the paging data structures:

•

•

•

•

The paging table entries are increased to 64 bits to accommodate 36-bit base physical
addresses. Each 4-KByte page directory and page table can thus have up to 512 entries.

A new table, called the page directory pointer table, is added to the linear-address
translation hierarchy. This table has 4 entries of 64-bits each, and it lies above the page
directory in the hierarchy. With the physical address extension mechanism enabled, the
processor supports up to 4 page directories.

The 20-bit page-directory base address in register CR3 is replaced with a 27-bit page­
directory-pointer-table base address (see Figure 3-17). This field provides the 27 most­
significant bits of the physical address of the first byte of the page directory pointer table,
which forces the table to be located on a 32-byte boundary.

31 o

I Page Directory Pointer Table Base Address

Figure 3-17. Register CR3 Format When the Physical Address Extension is Enabled

Linear address translation is changed to allow mapping 32-bit linear addresses into the
larger physical address space.

3.8.1. Linear Address Translation With Extended Addressing
Enabled (4-KByte Pages)

Figure 3-12 shows the page-directory-pointer, page-directory, and page-table hierarchy when
mapping linear addresses to 4-KByte pages with extended physical addressing enabled. This
paging method can be used to address up to 220 pages, which spans a linear address space of 232

bytes (4 GBytes).

I
3-27

PROTECTED-MODE MEMORY MANAGEMENT

To select the various table entries, the linear address is divided into three sections:

•

•

•

•

Page-directory-pointer-table entry-Bits 30 and 31 provide an offset to one ofthe 4 entries
in the page directory pointer table. The selected entry provides the base physical address of
a page directory.

Page-directory entry-Bits 21 through 29 provide an offset to an entry in the selected page
directory. The selected entry provides the base physical address of a page table.

Page-table entry-Bits 12 through 21 provide an offset to an entry in the selected page
table. This entry provides the base physical address of a page in physical memory.

Page offset-Bits 0 through 11 provide an offset to a physical address in the page.

3.8.2. Linear Address Translation With Extended Addressing
Enabled (2-MByte Pages)

Figure 3-12 shows how a page-directory-pointer table and page directories can be used to map
linear addresses to 2-MByte pages. This paging method can be used to map up to 2048 pages (4
page-directory-pointer-table entries times 512 page-directory entries) into a 4-GByte linear
address space.

The 2-MByte page size is selected by setting the PSE flag in control register CR4 and setting the
page size (PS) flag in a page-directory entry (see Figure 3-14). With these flags set, the linear
address is divided into three sections:

•

•

•

Page-directory-pointer-table entry-Bits 30 and 31 provide an offset to an entry in the page
directory pointer table. The selected entry provides the base physical address of a page
directory.

Page directory entry-Bits 21 through 29 provide an offset to an entry in the page
directory. The selected entry provides the base physical address of a 2-MByte page.

Page offset-Bits 0 through 20 provides an offset to a physical address in the page.

3.8.3. Accessing the Full Extended Physical Address Space With
the Extended Page Table Structure

The page table structure described in the previous two sections allows up to 4 GBytes of the
64 GByte extended physical address space to be addressed at one time. Additional 4-GByte
sections of physical memory can be addressed in either of two way:

•

3-28

Change the pointer in register CR3 to point to another the page directory pointer table,
which in turn points to another set of page directories and page tables ..

Change entries in the page directory pointer table to point to other page directories, which
in tum point to other sets of page tables.

I

I

PROTECTED-MODE MEMORY MANAGEMENT

Linear Address
31 30 29 21 20 12 11 o

Directory Pointer ~I I Directory I Table I Offset I
I

I
/ 12 4-KByte Page

Page Table ---.. Physical Address

Page Directory)"9
}'9

~ Page Table Entry
/2

~~ Directory Entry

Page Directory
Pointer Table

4 PDPTE * 512 PDE * 512 PTE = 220 Pages

Dir. Pointer Entry -

£.i CR3 (PDBR) I
Figure 3-18. Linear Address Translation With Extended Physical Addressing Enabled

(4-KByte Pages)

3-29

PROTECTED-MODE MEMORY MANAGEMENT

31 3029
Linear Address

21 20
Directory -----..1

Pointer I Directory I Offset

//9
Page Directory

Page Directory
Pointer Table

//2

---.. Directory Entry

----. Dir. Poi nter Entry

o
I

)'21 2-MByte Page

~ Physical Address

£; eR3 (PDBR) I
4 PDPTE * 512 PDE = 2048 Pages

Figure 3-19. Linear Address Translation With Extended Physical Addressing Enabled
(2-MByte Pages)

3.8.4. Page-Directory and Page-Table Entries With Extended
Addressing Enabled

Figure 3-20 shows the format for the page-directory-pointer-table, page-directory, and
page-table entries when 4-KByte pages and 36-bit extended physical addresses are being
used. Figure 3-21 shows the format for the page-directory-pointer-table and page-directory
entries when 2-MByte pages and 36-bit extended physical addresses are being used. The func­
tions of the flags in these entries are the same as described in Section 3.6.4., "Page-Directory
and Page-Table Entries". The major differences in these entries are as follows:

•
•
•
•

3-30

A page-directory-pointer-table entry is added.

The size of the entries are increased from 32 bits to 64 bits.

The maximum number of entries in a page directory or page table is 512.

The base physical address field in each entry is extended to 24 bits.

I

PROTECTED-MODE MEMORY MANAGEMENT

Page Directory Pointer Table Entry
63 3635 32

Reserved (set to 0)

31

Page Directory Base Address

Page Directory Entry (4-KByte Page Table)
63 3635 32

Reserved (set to 0)

31

Page Table Base Address

Page Table Entry (4-KByte Page)
63 3635 32

Reserved (set to 0)

31

Page Base Address

Figure 3-20. Format of Page Directory Pointer Table, Page Directory, and Page Table
Entries for 4-KByte Pages and 36-Bit Extended Physical Addresses

The base physical address in an entry specifies the following, depending on the type of entry:

•

•

•

I

Page-directory-pointer-table entry-the physical address of the first byte of a
4-KByte page directory

Page-directory entry-the physical address of the first byte of a 4-KByte page table or a
2-MByte page.

Page-table entry-the physical address of the first byte of a 4-KByte page.

3-31

PROTECTED-MODE MEMORY MANAGEMENT

Page Directory Pointer Table Entry
63 3635 32

, '. '. ;.Reserved(setto (» ";::"'1 1 . " ... ; •.•..•. '............. Base .. ;.;:>,. Addr.

31

Page Directory Base Address

Page Directory Entry (2-MByte Page)
63

31

Page Base Address

.: ""

Reserved (setto 0) ; ,
3635 32

·'.;1 Base 1 .• ". Addr ..

Figure 3-21. Format of Page Directory Pointer Table and Page Directory Entries for
2-MByte Pages and 36-Bit Extended Physical Addresses

For all table entries (except for page-directory entries that point to 2-MByte pages), the bits in
the page base address are interpreted as the 24 most-significant bits of a 36-bit physical address,
which forces page tables and pages to be aligned on 4-KB yte boundaries. When a page-directory
entry points to a 2-MByte page, the base address is interpreted as the 15 most-significant bits of
a 36-bit physical address, which forces pages to be aligned on 2-MByte boundaries. .

The page size (PS) flag (bit 7) in a page-directory entry determines if the entry points to a page
table or a 2-MByte page. When this flag is clear, the entry points to a page table; when the flag
is set, the entry points to a 2-MByte page. This bit allows 4-KByte and 2-MByte pages to be
mixed within one set of paging tables.

Access (A) and dirty (D) flags (bits 5 and 6) are provided for table entries that point to pages.

Bits 9, 10, and 11 in all the table entries for the physical address extension are available for use
by software. (When the present bit is clear, bits 1 through 63 are available to software.) All bits
in Figure 3-14 that are marked reserved or ° should be set to ° by software and not accessed by
software. When the PSE and PAE flags in control register CR4 are set, the processor generates
a page fault (#PF) if reserved bits in page-directory and page-table entries are not set to 0, and
it generates a general-protection exception (#GP) if reserved bits in a page-directory-pointer­
table entry are not set to 0.

3-32

I

PROTECTED-MODE MEMORY MANAGEMENT

3.9. MAPPING SEGMENTS TO PAGES

The segmentation and paging mechanisms provide in the Pentium Pro processor support a wide
variety of approaches to memory management. When segmentation and paging is combined,
segments can be mapped to pages in several ways. To implement a flat (unsegmented)
addressing environment, for example, all the code, data, and stack modules can be mapped to
one or more large segments (up to 4-GBytes) that share same range of linear addresses (see
Figure 3-2). Here, segments are essentially invisible to applications and the operating-system or
executive. If paging is used, the paging mechanism can map a single linear address space
(contained in a single segment) into virtual memory. Or, each program or task can have its own
large linear address space (contained in its own segment), which is mapped into virtual memory
through its own page directory and set of page tables.

Segments can be smaller than the size of a page. If one of these segments is placed in a page
which is not shared with another segment, the extra memory is wasted. For example, a small data
structure, such as a I-byte semaphore, occupies 4K bytes if it is placed in a page by itself. If
many semaphores are used, it is more efficient to pack them into a single page.

The Intel Architecture does not enforce correspondence between the boundaries of pages and
segments. A page can contain the end of one segment and the beginning of another. Likewise, a
segment can contain the end of one page and the beginning of another.

Memory-management software may be simpler and more efficient if it enforces some alignment
between page and segment boundaries. For example, if a segment which can fit in one page is
placed in two pages, there may be twice as much paging overhead to support access to that
segment.

One approach to combining paging and segmentation that simplifies memory-management soft­
ware is to give each segment its own page table, as shown in Figure 3-22. This convention gives
the segment a single entry in the page directory which provides the access control information
for paging the entire segment.

I

Page Frames

LDT Page Directory Page Tables I I
U I I PTE

PTE

r PTE

I I Seg. Descript. ~ PDE
Seg. Descript. ~ PDE -

J I
PTE
PTE

Figure 3-22. Memory Management Convention That Assigns a Page Table to Each
Segment

3-33

4
Protection

I

CHAPTER 4
PROTECTION

In protected mode, the Pentium Pro processor provides a protection mechanism that operates at
both the segment level and the page level. This protection mechanism provides the ability to
limit access to certain segments or pages based on privilege levels (four privilege levels for
segments and two privilege levels for pages). For example, critical operating-system code and
data can be protected by placing them in more privileged segments than those that contain appli­
cations code. The processor's protection mechanism will then prevent application code from
accessing the operating-system code and data in any but a controlled, defined manner.

Segment and page protection can be used at all stages of software development to assist in local­
izing and detecting design problems and bugs. It can also be incorporated into end-products to
offer added robustness to operating systems, utilities software, and applications software.

When the protection mechanism is used, each memory reference is checked to verify that it satis­
fies various protection checks. All checks are made before the memory cycle is started; any
violation results in an exception. Because checks are performed in parallel with address transla­
tion, there is no performance penalty. The protection checks that are performed fall into the
following categories:

•
•
•
•
•

Limit checks.

Type checks.

Restriction of addressable domain.

Restriction of procedure entry-points.

Restriction of instruction set.

All protection violation results in an exception being generated. See Chapter 5, Interrupt and
Exception Handling, for an explanation ofthe exception mechanism. This chapter describes the
protection mechanism and the violations which lead to exceptions.

The following sections describe the protection mechanism available in protected mode. See
Chapter 12, 8086 Emulation, for information on protection in real-address and virtual-8086
mode.

4.1. ENABLING AND DISABLING SEGMENT AND PAGE
PROTECTION

Setting the PE flag in register CRO causes the processor to switch to protected mode, which in
turn enables the segment protection mechanism. Once in protected mode, there is no control bit
for turning the protection mechanism on or off. The part of the segment protection mechanism
that is based on privilege levels can be disabled while still in protected mode by assigning a

I
4-1

PROTECTION

privilege level of 0 (most privileged) to all segment selectors and segment descriptors. This
action disables the privilege level protection barriers between segments, but other protection
checks such as limit checking and type checking are still carried out.

Page level protection is automatically enabled when paging is enabled (by setting the PG flag in
register CRO). Here again there is no mode bit for turning off page-level protection once paging
is enabled. However, page level protection can be disabled by performing the following
operations:

•
•

Clear the WP flag in control register CRO.

Set the read/write (R/w) and user/supervisor (U/S) flags for each page-directory and page­
table entry.

This action makes each page a writable, user page, which in effect disables page-level
protection.

4.2. FIELDS AND FLAGS USED FOR SEGMENT-LEVEL AND
PAGE-LEVEL PROTECTION

The processor's protection mechanism uses the following fields and flags in the system data
structures to control access to segments and pages:

•

•

•

•

•

•

•

•

System/application (S) flag-(Bit 12 in the second doubleword of a segment descriptor.)
Determines if the segment descriptor is for an application segment (code or data) or a
system segment.

Type field-(Bits 8 through 11 in the second double word of a segment descriptor.)
Determines the type of code, data, or system segment.

Limit field-(Bits 0 through 15 of the first doubleword and bits 16 through 19 of the
second doubleword of a segment descriptor.) Determines the size of the segment.

Descriptor privilege level (DPL) field-(Bits 13 and 14 in the second double word of a
segment descriptor.) Determines the privilege level and accessibility of the segment.

RPL field. (Bits 0 and 1 of any segment selector). Determines the privilege level of a
segment selector.

CPL field. (Bits 0 and 1 of the CS segment register). Indicates the privilege level of the
currently executing program or procedure. The term current privilege level (CPL) refers to
the setting of this field.

User/supervisor (U/S) flag. (Bit 2 of a page-directory or page-table entry). Determines the
type of page: user or supervisor.

Read/write (R/W) flag. (Bit 1 of a page-directory or page-table entry). Determines the type
of access allowed to a page: read only or read-write.

Figure 4-1 shows the location of the S flag, type field, limit field, and DPL field in the data, code,
and system segment descriptors; Figure 3-6 shows the location of the RPL (or CPL) field in a
segment selector (or the CS register); and Figure 3-14 shows the location of the U/S and RIW
flags in the page-directory and page-table entries.

4-2

I

PROTECTION

Many different styles of protection schemes can be implemented with these fields and flags.
When the operating system creates a descriptor, it places values in these fields and flags in
keeping with the particular protection style chosen for an operating system or executive. Appli­
cation program do not generally access or modify these fields and flags.

The following sections describe how the processor uses these fields and flags to perform the
various categories of checks described in the introduction to this chapter.

I

Data Segment Descriptor
31 242322212019 1615141312 11 8 7 o

A Limit D Type
Base 31:24 G B o V 19:16

p p

1 0IElwIA
Base 23:16

L L
4

31 1615 0

1~ _______ B_a_se_A_d_d_re_s_s_1_5:_0_0 ______ ~ _______ s_eg_m_e_n_t_Li_m_it_1_5_:o_o ____ ~lo
Code Segment Descriptor

31 242322212019 1615141312 11 8 7 o

A Limit D Type
Base 31:24 G D 0 V P P Base 23:16

L 19:16 L 1 lic lRIA
4

31 1615 0

1L-______ B_a_se_A_d_d_re_~ __ 1_5:_0_0 ____ ~~I ________ s_eg_m_e_n_t_Li_m_it_1_5_:0_0 ____ ~lo
System Segment Descriptor

31 2423222120 19 1615141312 11 8 7 o

Limit D
Base 31:24 G 0 19:16 p p 0 Type Base 23:16

L
4

31 1615 0

1L-______ B_a_se_A_d_d_re_s_s_1_5:_00 ______ ~I ________ s_eg_m_e_n_t_Li_m_n_1_5_:0_0 ____ ~lo
A Accessed
B Big
C Conforming
D Default
DPL Descriptor Privilege Level

D Reserved

E
G
R
LIMIT
W
P

Expansion Direction
Granularity
Readable
Segment Limit
Writable
Present

Figure 4-1. Descriptor Fields Used for Protection

4-3

PROTECTION

4.3. LIMIT CHECKING

The limit field of a segment descriptor prevents programs or procedures from addressing
memory locations outside the segment. The effective value of the limit depends on the setting
of the G (granularity) flag (see Figure 4-1). For data segments, the limit also depends on the E
(expansion direction) flag and the D (default address and operand size) flag. The E flag is one
of the bits in the type field when the segment descriptor is for a data segment type.

When the G flag is clear (byte granularity), the effective limit is the value of the 20-bit limit field
in the segment descriptor. Here, the limit ranges from 0 to FFFFFH (1 MByte). When the G flag
is set (4-KByte page granularity), the processor scales the value in the limit field by a factor of
212. In this case, the effective limit ranges from OFFFH (4 KBytes) to FFFFFFFFH (4 GBytes).
Note that when scaling is used (G flag is set), the lower 12 bits of a segment offset (address) are
not checked against the limit; however, if the segment limit is 0, offsets 0 through 4095 are still
valid.

For all types of segments except expand-down data segments, the value of the effective limit is
one less than the size, in bytes, of the segment. The processor causes a general-protection excep­
tion any time an attempt is made to access the following addresses in a segment:

•
•
•
•

A byte at an offset greater than the effective limit.

A word at an offset greater than the (effective-limit - 1)

A doubleword at an offset greater than the (effective-limit - 3)

A quadword at an offset greater than the (effective-limit -7)

For expand-down data segments, the segment limit has the same function but is interpreted
differently. Here, the range of valid offsets is from (effective-limit + 1) to FFFFFFFFH if the D
flag is set and from (effective-limit + 1) to FFFFH if the D flag is clear. An expand-down
segment has maximum size when the segment limit is O.

Limit checking catches programming errors such as runaway code, runaway subscripts, and
invalid pointer calculations. These errors are detected when they occur, so identification of the
cause is easier. Without limit checking, these errors could overwrite code or data in another
segment.

In addition to checking segment limits, the processor also checks descriptor table limits. The
GDTR and IDTR registers contain 16-bit limit values that the processor uses to prevent
programs from selecting a segment descriptors outside the respective descriptor tables. The
LDTR and task registers contain 32-bit segment limit value (read from the segment descriptors
for the current LDT and TSS, respectively). The processor uses these segment limits to prevent
accesses beyond the bounds of the current LDT and TSS. See Section 3.5.1., "Segment
Descriptor Tables" for more information on the GDT and LDT limit fields; see Section 5.7.,
"Interrupt Descriptor Table (lDT)" for more information on the IDT limit field; and see Section
6.2.3., "Task Register" for more information on the TSS segment limit field.

4-4

I

PROTECTION

4.4. TYPE CHECKING

Segment descriptors contain type information in two places:

•
•

The S (system/application) flag.

The type field.

The processor uses this information to detect programming errors that result in a program or
procedure's attempt to use a segment or gate in an incorrect or unintended manner.

The S flag indicates whether a segment descriptor is an application type or a system type. The
type field provides 4 additional bits for use in defining various types of code, data, and system
descriptors. Table 3-1 shows the encoding of the type field for code and data descriptors; Table
3-2 shows the encoding of the field for system descriptors.

The processor examines type information at various times while operating on segment selectors
and segment descriptors. The following list gives examples of typical operations where type
checking is performed. This list is not exhaustive.

•

•
•

•

I

When a segment selector is loaded into a segment register. Certain segment registers
can contain only certain descriptor types, for example:

The CS register only can be loaded with a selector for a code segment.

Segment selectors for code segments that are not readable or for system segments
cannot be loaded into data-segment registers (DS, ES, FS, and GS).

Only segment selectors of writable data segments can be loaded into the SS register.

When a segment selector is loaded into the LDTR or task registers.

When instructions access segments whose descriptors are already loaded into
segment registers. Certain segments can be used by instructions only in certain predefined
ways, for example:

No instruction may write into an executable segment.

No instruction may write into a data segment if it is not writable.

No instruction may read an executable segment unless the readable flag is set.

When an instruction operand contains a segment selector. Certain instructions can
access segment or gates of only a particular type, for example:

A far CALL or far JMP instruction can only access a segment descriptor for a
conforming code segment, nonconforming code segment, call gate, task gate, or TSS.

The LLDT instruction must reference a segment descriptor for an LDT.

The LTR instruction must reference a segment descriptor for a TSS.

The LAR instruction must reference a segment descriptor for an LDT, TSS, call gate,
task gate, code segment, or data segment.

4-5

PROTECTION

The LSL instruction must reference a segment descriptor for a LDT, TSS, code
segment, or data segment.

IDT entries must be interrupt or trap gates.

5. During certain internal operations. For example:

4.4.1.

On a task switch, the processor automatically checks that the segment descriptor for
the task being switched to is a TSS or task gate descriptor.

On a procedure call through a call gate, trap gate, or interrupt gate, the processor
automatically checks that the segment descriptor being pointed to by the gate is a code
segment.

On a jump through a call gate, the processor checks the segment selector in the call
gate descriptor to insure that it is for a code segment.

On a call or jump through a task gate, the processor checks the segment selector in the
task gate descriptor to insure that it is for a TSS.

On an IRET return from a task, the processor checks the back link field in the current
TSS (a segment selector) to ensure that it points to a TSS.

Null Segment Selector Checking

Attempting to load a null segment selector (see Section 3.4.1., "Segment Selectors") into the CS
or SS segment register generates a general-protection exception (#GP). A null segment selector
can be loaded into the DS, ES, FS, or GS register, but any attempt to access a segment through
one of these registers when it is loaded with a null segment selector results in a #GP exception
being generated. Loading unused data-segment registers with a null segment selector is a useful
method of detecting accesses to unused registers and/or preventing unwanted accesses to data
segments.

4.5. PRIVILEGE LEVELS

The processor's segment protection mechanism recognizes 4 privilege levels, numbered from 0
to 3. The greater numbers mean lesser privileges. Figure 4-2 shows how these levels of privilege
can be interpreted as rings of protection. The center (reserved for the most privileged code, data,
and stacks) is used for the segments containing the critical software, usually the kernel of an
operating system. Outer rings are used for less critical software. (Systems that use only 2 of the
4 possible privilege levels should use levels 0 and 3.)

4-6

I

PROTECTION

Protection Rings

Operating
System -----.J--I--f---F---;

Kernel

Operating System
Services -=---\--\.-~~

Applications -------"...:::-l~

Figure 4-2. Protection Rings

The processor uses privilege levels to prevent a program or task operating at a lesser privilege
level from accessing a segment with a greater privilege, except under controlled situations.
When the processor detects a privilege level violation, it generates a general-protection excep­
tion (#GP).

To carry out privilege-level checks between code modules and data segments, the processor
recognizes the following three types of privilege levels:

•

•

•

I

Curreut privilege level (CPL). The CPL is the privilege level of the currently executing
program or task. It is stored in bits 0 and 1 of the CS and SS segment registers. Normally,
the CPL is equal to the privilege level of the code segment from which instructions are
being fetched. The processor changes the CPL when program control is transferred to a
code segment with a different privilege level. The CPL is treated slightly differently when
accessing conforming code segments. Conforming code segments can be accessed from
any privilege level, and the CPL is not changed when the processor accesses a conforming
code segment that has a different privilege level than the CPL.

Descriptor privilege level (DPL). The DPL is the privilege level of a segment or gate. It is
stored in the DPL field of the segment descriptor for the segment or gate. The DPL
generally is interpreted as the numerically lowest privilege level that a program or task can
have to be allowed to access the segment. For example, if the DPL of a segment is 1, only
programs running at a CPL of 0 or 1 can access the segment. For call gates, the DPL is
interpreted as the numerically highest privilege level the currently executing program or
task can be at and still be able to access call gate.

Requestor privilege level (RPL). The RPL is an override privilege level that is assigned to
segment selectors. It is stored in bits 0 and 1 of the segment selector. The processor checks
the RPL along with the CPL to determine if access to a segment is allowed. Even if the
program or task requesting access to a segment has sufficient privilege to access the
segment, access is denied if the RPL is not of sufficient privilege level. That is, if the RPL

4-7

PROTECTION in1:et

of a segment selector is greater than the CPL, the RPL overrides the CPL, and vice versa.
See Section 4.10.4., "Checking Caller Access Privileges" for a description of the purpose
and typical use of the RPL.

Privilege levels are checked when the segment selector of a segment descriptor is loaded into a
segment register. The checks used for data access differ from those used for transfers of program
control among code segments; therefore, the two kinds of accesses are considered separately in
the following sections.

4.6. PRIVILEGE LEVEL CHECKING WHEN ACCESSING
DATA SEGMENTS

To access operands in a data segment, the segment selector for the data segment must be loaded
into the data-segment registers (DS, ES, FS, or GS) and into the stack segment register (SS).
(Segment registers can be loaded with the MOV, POP, LDS, LES, LFS, LGS, and LSS instruc­
tions). Before the processor loads a segment selector into a segment register, it performs a priv­
ilege check (see Figure 4-3) by comparing the privilege levels of the currently running program
or task (the CPL), the RPL of the segment selector, and the DPL of the segment's segment
descriptor. The processor loads the segment selector into the segment register if the DPL is
greater than or equal to both the CPL and the RPL. Otherwise, a general-protection fault is
generated and the segment register is not loaded.

CS Register

CPL

Segment Selector
For Data Segment

D

iRPLI

I
~

ata Segment Descriptor Privilege
Check

IDPLI

I I

Figure 4-3. Privilege Check for Data Access

Figure 4-4 shows three programs, running at different privilege levels, each attempting to access
the same data segment.

4-8

Program A is able to access the data segment using segment seleclor A, because the CPL
of program A and the RPL of segment selector A are both numerically lower than (more
privileged) than the DPL of the data segment.

I

•

•

PROTECTION

Program B is not able to access the data segment using segment selector B (dotted line),
because the CPL of program B and the RPL of segment selector B are both numerically
greater than (less privileged) than the DPL of the data segment.

Program C should be able to access the data segment because its CPL is numerically less
than the DPL of the data segment. However, the RPL of segment selector B is numerically
greater than the DPL of the data segment, so access is not allowed. If program C were to
use segment selector A to access the data segment, access would be allowed.

progra~H Seg. Sel. B RPL
ICPL

II Lowest Privilege ;(

D

Data
Segment

IoPL

progr~m A Lr Seg. Sel. A RPL I
ICPL

m Highest Privilege

Program C I
rm1

Figure 4-4. Examples of Accessing Data Segments From Various Privilege Levels

As demonstrated in the previous examples, the addressable domain of a program or task varies
as its CPL changes. When the CPL is 0, data segments at all privilege levels are accessible; when
the CPL is 1, only data segments at privilege levels 1 through 3 are accessible; when the CPL is
3, only data segments at privilege level 3 are accessible. The RPL of a segment selector can
always override the addressable domain of a program or task.

4.6.1. Accessing Data in Code Segments

In some instances it may be desirable to access data structures that are contained in a code
segment. The following methods of accessing data in code segments are possible:

•

•

I

Load a data-segment register with a segment selector for a nonconforming, readable, code
segment.

Load a data-segment register with a segment selector for a conforming, readable, code
segment.

4-9

PROTECTION in1et

• Use a code-segment override prefix (CS) to read a readable, code segment whose selector
is already loaded in the CS register.

The same rules for access to data segments apply to method 1. Method 2 is always valid because
the privilege level of a conforming code segment is effectively the same as the CPL, regardless
of its DPL. Method 3 is always valid because the DPL of the code segment selected by the CS
register is the same as the CPL.

4.7. PRIVILEGE LEVEL CHECKING WHEN LOADING THE SS
REGISTER

Privilege level checking also occurs when the SS register is loaded with the segment selector for
a stack segment. Here all privilege levels related to the stack segment must match the CPL; that
is, the CPL, the RPL of the stack segment selector, and the DPL of the stack segment descriptor
must be the same. If the RPL and DPL are not equal to the CPL, a general-protection exception
(#GP) is generated.

4.8. PRIVILEGE LEVEL CHECKING WHEN TRANSFERRING
PROGRAM CONTROL BETWEEN CODE SEGMENTS

To transfer program control from one code segment to another, the segment selector for the
destination code segment must be loaded into the code-segment register (CS). As part of this
loading process, the processor performs various limit, type, and privilege checks. If these checks
are successful, the CS register is loaded, program control is transferred to the new code segment,
and program execution begins at the instruction pointed to by the EIP register.

Program control transfers are carried out with the JMP, CALL, RET, INTn, and IRET instruc­
tions, as well as by the exception and interrupt mechanisms. Exceptions and interrupts are
special cases discussed in Chapter 5, Interrupt and Exception Handling. This chapter discusses
only the JMP, CALL, and RET instructions.

A JMP or CALL instruction can reference another code segment in any of four ways:

•
•

•

•

The target operand points the segment descriptor of another code segment.

The target operand points to a call gate descriptor, which in turn points to a segment
selector for another code segment.

The target operand points to a TSS, which in tum points to a segment selector for another
code segment.

The target operand points to a task gate, which turn points to a TSS, which in tum points to
a segment selector for another code segment.

The following sections describe first two types of references. See Section 6.3., "Task Switching"
for information on transferring program control through a task gate and/or TSS.

4-10

I

PROTECTION

4.8.1. Direct Calls or Jumps to Code Segments

The near forms of the IMP, CALL, and RET instructions transfer program control within the
current code segment, so privilege-level checks are not performed. The far forms of the IMP and
CALL instruction transfer control to other code segments, so the processor does perform privi­
lege-level checks.

When transferring program control to another code segment without going through a call gate,
the processor examines four kinds of privilege level and type information (see Figure 4-5):

•

•

•
•

The CPL (privilege level of the calling procedure, that is, the procedure making the call or
jump).

CS Register

CPL

Segment Selector
For Code Segment

IRPL

I
~

Destination Code
Privilege Segment Descriptor

IDPLllcl
I

Check

I I

Figure 4-5. Privilege Check for Control Transfer Without Using a Gate

The DPL of the segment descriptor for the destination code segment that contains the
called procedure.

The RPL of the segment selector of the destination code segment

The conforming (C) flag in the segment descriptor for the destination code segment, which
determines whether the segment is a conforming (C flag is set) or nonconforming (C flag is
clear) code segment. (See Section 3.4.3.1., "Code and Data Segment-Descriptor Types" for
more information about this flag.)

The rules that the processor uses to check the CPL, RPL, and DPL depends on the setting of the
C flag, as described in the following sections.

4.8.1.1. ACCESSING NONCONFORMING CODE SEGMENTS

When accessing nonconforming code segments, the CPL of the calling procedure must be equal
to the DPL of the destination code segment; otherwise, the processor generates a general-protec­
tion exception (#GP).

I
4-11

PROTECTION intet

For, example, in Figure 4-4, code segment B is a nonconforming code segment. Therefore, a
procedure in code segment A can call a procedure in code segment B, because they are at the
same privilege level (the CPL of code segment A is equal to the DPL of code segment B).
However, a procedure in code segment C cannot call a procedure in code segment B, because
the two code segments are at different privilege levels.

Code
Segment C --\ Seg. Sel. C I RPL ~ ____ ,

IcPL I

ID Lowest Privilege
I
I

""
Code Code

Segment A --\ Seg. Sel. A I RPL ~ Segment B

IcPL IoPL
I Nonconforming

Code Segment

D

m Highest Privilege

--

Code
Segment 0

rPe1
Conforming

Code Segment

Figure 4-6. Examples of Accessing Conforming and Nonconforming Code Segments
From Various Privilege Levels

The RPL of the segment selector that points to a nonconforming code segment has a limited
effect on the privilege check. The RPL must be less than or equal to the CPL of the calling proce­
dure for a successful control transfer to occur. So, in the example in Figure 4-4, the RPL of
segment selector A could legally be set to 0, 1, or 2, but not to 3.

When the segment selector of a nonconforming code segment is loaded into the CS register, the
privilege level field is not changed; that is, it remains at the CPL (which is the privilege level of
the calling procedure). This is true, even if the RPL of the segment selector is different from the
CPL.

4-12

I

PROTECTION

4.8.1.2. ACCESSING CONFORMING CODE SEGMENTS

When accessing conforming code segments, the CPL of the calling procedure may be equal to
or greater than the DPL of the destination code segment; the processor generates a general­
protection exception (#GP) only if the CPL is less than the DPL. (The segment selector RPL for
the destination code segment is not checked if the segment is a conforming code segment.)

In the example in Figure 4-4, code segment D is a conforming code segment. Therefore, calling
procedures in both code segment A and C can access code segment D, because they both have
CPLs that are greater than or equal to the DPL of the conforming code segment. For
conforming code segments, the DPL represents the numerically lowest privilege level that
a calling procedure may be at to successfully make a call to the code segment.

When program control is transferred to a conforming code segment, the CPL does not change,
even if the DPL of the destination code segment is less than the CPL. This situation is the only
one where the CPL may be different from the DPL of the current code segment. Also, since the
CPL does not change, no stack switch occurs.

Conforming segments are used for code modules such as math libraries and exception handlers,
which support applications but do not require access to protected system facilities. These
modules are part of the operating system or executive software, but they can be executed at
numerically higher privilege levels (less privileged levels). Keeping the CPL at the level of a
calling code segment when switching to a conforming code segment prevents an application
program from accessing nonconforming code segments while at the privilege level (DPL) of a
conforming code segment.

Most code segments are nonconforming. For these segments, program control can be transferred
only to code segments at the same level of privilege, unless the transfer is carried out through a
call gate, as described in the following sections.

4.8.2. Gate Descriptors

To provide controlled access to code segments with different privilege levels, the processor
provides special set of descriptors called gate descriptors. There are four kinds of gate
descriptors:

•
•
•
•

Call gates

Trap gates

Interrupt gates

Task gates

Task gates are used for task switching and are discussed in Chapter 6, Task Management. Trap
and interrupt gates are special kinds of call gates used for calling exception and interrupt
handlers. The are described in Chapter 5, Interrupt and Exception Handling. This chapter is
concerned only with call gates.

I
4-13

PROTECTION

4.8.3. Call Gates

Call gates facilitate controlled transfers of program control between different privilege levels.
They are typically used only in operating systems or executives that use the privilege-level
protection mechanism. Call gates are also useful for transferring program control between 16-bit
and 32-bit code segments, as described in Section 13.4., "Transferring Control Among Mixed­
Size Code Segments".

Figure 4-7 shows the format of a call gate descriptor. A call gate descriptor may reside in the
GDT or in an LDT, but not in the interrupt descriptor table (IDT). It performs five functions:

•
•
•
•

•

It specifies the code segment to be accessed.

It defines an entry point for a procedure in the specified code segment.

It specifies the privilege level required to access a procedure.

If a stack switch occurs, it specifies the number of optional parameters to be copied
between stacks.

If defines the size of values to be pushed onto the target stack: l6-bit gates force l6-bit
pushes and 32-bit gates force 32-bit pushes.

31 161514131211 8 7 6 5 4 o

D Type Paramo Offset in Segment 31 :16 p p

o 1111010
000 Count

L
4

31 1615 0

L-_______ se_g_m_e_nt_s_e_le_ct_o_r ______ ~ ______ O_ff_s_et_in_S_e_g_m_e_nt_1_5_:0_0 ____ ~lo
DPL Descriptor Privilege Level
P Segment Present

Figure 4-7. Call Gate Descriptor

The segment selector field in a call gate specifies the code segment to be accessed. The offset
field specifies the entry point in the code segment. This entry point is generally to the first
instruction of a specific procedure. The DPL field indicates the privilege level of the call gate,
which in turn is the privilege level required to access the selected procedure. The P flag indicates
whether or not the code segment being pointed to by the call gate is present in memory. The
parameter count field indicates the number of parameters to copy from the calling procedures
stack to the new stack if a stack switch occurs (see Section 4.8.5., "Stack Switching"). The
parameter count specifies the number of words for 16-bit call gates and doublewords for 32-bit
call gates.

4-14

I

PROTECTION

4.8.4. Accessing a Code Segment Through a Call Gate

To access a call gate, a far pointer to the gate is provided as a target operand in a CALL or JMP
instruction. The segment selector from this pointer identifies the call gate (see Figure 4-8); the
offset from the pointer is required, but not used or checked by the processor. (The offset can be
set to any value.)

Far Pointer to Call Gate

I Segment Selector I I Offset

Required but not used by processor

Descriptor Table

Offset I I
,--- Segment Selector I Offset

~ Base I I I Base

+ Base I

Pro cedure
Entry POint

Figure 4-8. Call Gate Mechanism

I

Call Gate
Descriptor

Code Segment
Descriptor

When the processor has accessed the call gate, it uses the segment selector from the call gate to
locate the segment descriptor for the destination code segment. (This segment descriptor can be
in the GDT or the LDT.) It then combines the base address from the code segment descriptor
with the offset from the call gate to form the linear address of the procedure entry point in the
code segment.

As shown in Figure 4-9, four different privilege levels are used to check the validity of a
program control transfer through a call gate:

•
•
•
•

The CPL (current privilege leve1).

The RPL (requestor's privilege level) of the call gate's segment selector.

The DPL (descriptor privilege level) of the call gate descriptor.

The DPL of the segment descriptor of the destination code segment.

The C flag (conforming) in the segment descriptor for the destination code segment is also
checked.

I
4-15

PROTECTION

CS Register

CPL

Call Gate
Segment Descriptor

iRPL
~

Call Gate Privilege

I DPLI
Check

I I

Destination Code
Segment Descriptor

lDPLI

L

Figure 4-9. Privilege Check for Control Transfer with Call Gate

The privilege checking rules are different depending on whether the call was initiated with a
CALL or a JMP instruction, as shown in Table 4-1.

Table 4-1. Privilege Check Rules for Call Gates

Instruction Privilege Check Rules

CALL CPL ~ call gate DPL; RPL ~ call gate DPL

Destination conforming code segment DPL ~ CPL

Destination nonconforming code segment DPL ~ CPL

JMP CPL ~ call gate DPL; RPL ~ call gate DPL

Destination conforming code segment DPL ~ CPL

Destination nonconforming code segment DPL = CPL

The DPL field of the call gate descriptor specifies the numerically highest privilege level from
which a calling procedure can access the call gate; that is, to access a call gate, the CPL of a
calling procedure must be equal to or less than the DPL of the call gate. orexample, in Figure
4-12, call gate A has a DPL of 3. So calling procedures at all CPLs (0 through 3) can access this
call gate, which includes calling procedures in code segments A and B. Call gate B has a DPL
of 2, so only calling procedures at a CPL or 0, 1, or 2 can access call gate B. The dotted line
shows that a calling procedure in code segment A cannot access call gate B.

4-16

I

PROTECTION

I co~ ~ Call
Gate A Segm~ Seg. Sel. A I RPL ~ ____ ,

IoPL CPL I

&J Lowest Privilege

I

I

/

Code Call
Segment B -l Seg. Sel. B J RPL -----. GateB -

IcPL IoPL
m

Code
Segment C

jcPL

D
No Stack Stack Switch

m Highest Privilege

Switch Occurs

Code
Segment 0

IoPL
Conforming

Code Segment

Occurs
--

Code
Segment E

IoPL
Nonconforming
Code Segment

Figure 4-10. Example of Accessing Call Gates At Various Privilege Levels

The RPL of the segment selector to a call gate must satisfy the same test as the CPL of the calling
procedure; that is, the RPL must be less than or equal to the DPL of the call gate. In the example
in Figure 4-12, a calling procedure in code segment C can access either call gate A or call gate
B using segment selector B. However, if segment selector A was used, only call gate A could be
accessed.

If the privilege checks between the calling procedure and call gate are successful, the processor
then checks the DPL of the code segment descriptor against the CPL of the calling procedure.
Here, the privilege check rules vary between CALL and JMP instructions. Only CALL instruc­
tions can use call gates to transfer program control more privileged (numerically lower privilege
level) nonconforming code segments; that is, to nonconforming code segments with a DPL less
than the CPL. A JMP instruction can use a call gate only to transfer program control to a noncon­
forming code segment with a DPL equal to the CPL. CALL and JMP instruction can both
transfer program control to a more privileged conforming code segment; that is, to a conforming
code segment with a DPL less than or equal to the CPL.

If a call is made to a more privileged (numerically lower privilege level) nonconforming desti­
nation code segment, the CPL is lowered to the DPL of the destination code segment and a stack
switch occurs (see Section 4.8.5., "Stack Switching"), If a call or jump is made to a more priv­
ileged conforming destination code segment, the CPL is not changed and no stack switch occurs.

I
4-17

PROTECTION

Call gates allow a single code segment to have procedures that can be accessed at different priv­
ilege levels. For example, an operating system located in a code. segment may have some
services which are intended to be used by both the operating system and application software
(such as procedures for handling character I/O). Call gates for these procedures can be set up
that allow access at all privilege levels (0 through 3). More privileged call gates (with DPLs of
o or 1) can then be set up for other operating system services that are intended to be used only
by the operating system (such as procedures that initialize device drivers).

4.8.5. Stack Switching

Whenever a call gate is used to transfer program control to a more privileged nonconforming
code segment (that is, when the DPL of the nonconforming destination code segment is less than
the CPL), the processor automatically switches to the procedure stack for the destination code
segment's privilege level. This stack switching is carried out to prevent more privileged proce­
dures from crashing due to insufficient stack space. It also prevents the data on the less privileged
(numerically higher privilege level) stack from being read or manipulated by a more privileged
procedure (a procedure operating at a numerically lower privilege level).

Each task running on a Pentium Pro processor must define 4 procedure stacks: one for applica­
tions code (running at privilege level 3) and one each for the privilege levels 2, 1, and O. Each of
these stacks is located in a separate segment and is identified with a segment selector and an
offset into the stack segment (a stack pointer).

The segment selector and stack pointer for the privilege level 3 stack is located in the SS and
ESP registers, respectively, when privilege-Ievel-3 code is being executed and is automatically
stored on the called procedure's stack when a stack switch occurs.

Pointers to the privilege level 0, 1, and 2 stacks are stored in the TSS for the currently running
task (see Figure 6-2). Each of these pointers consists of a segment selector and a stack pointer
(loaded into the ESP register). These initial pointers are strictly read-only values. The processor
does not change them while the task is running. They are used only to create new stacks when
calls are made to more privileged levels (numerically lower privilege levels). These stacks are
disposed of when a return is made from the called procedure. The next time the procedure is
called, a new stack is created using the initial stack pointer. (The TSS does not specify a stack
for privilege level 3 because the processor does not allow a transfer of program control from a
procedure running at a CPL of 0, 1, or 3 to a procedure running at aCPL of3, except on aretum.)

The operating system is responsible for creating stacks and stack-segment descriptors for all the
privilege levels to be used and for loading initial pointers for these stacks into the TSS. Each
stack must be read/write accessible (as specified in the type field of its segment descriptor) and
must contain enough space (as specified in the limit field) to hold the following items:

• The contents of the SS, ESP, CS, and EIP registers for the calling procedure.

•
•

4-18

The parameters and temporary variables required by the called procedure .

The EFLAGS register and error code, when implicit calls are made to an exception or
interrupt handler.

I

PROTECTION

(If the operating system does not use the processor's multitasking mechanism, it still must create
at least one TSS for this stack-related purpose.)

When a procedure call through a call gate results in a change in privilege level, the processor
performs the following steps to switch stacks and begin execution of the called procedure at a
new privilege level (see Figure 4-11):

l. Uses the DPL of the destination code segment (the new CPL) to select a pointer to the new
stack (segment selector and stack pointer) from the TSS.

2. Reads the segment selector and stack pointer for the stack to be switched to from the
current TSS. Any limit violations detected while reading the stack segment selector, stack
pointer, or stack segment descriptor cause a TSS exception to be generated.

3. Temporarily saves the current values of the SS and ESP registers.

4. Loads the segment selector and stack pointer for the new stack in the SS and ESP registers.

5. Pushes the temporarily saved values for the SS and ESP registers (for the calling procedure
onto the new stack.

6. Copies the number of parameter specified in the parameter count field of the call gate from
the calling procedure's stack to the new stack.

Calling Procedure's Stack Called Procedure's Stack

Calling SS

Parameter 1 Calling ESP

Parameter 2 Parameter 1

Parameter 3 ~ ESP Parameter 2

Parameter 3

Calling CS

Calling EIP ~ESP

Figure 4-11. Stack Switching During an Interprivilege-Level Call

7. Pushes the return instruction pointer (the current contents of the CS and EIP registers) onto
the new stack. If the count is 0, no parameters are copied.

8. Loads the segment selector for the new code segment and the new instruction pointer from
the call gate into the CS and EIP registers, respectively, and begins execution of the called
procedure.

I
4-19

PROTECTION

See the description of the CALL instruction in Chapter 11, Instruction Set Reference, in the
Pentium® Pro Family Developer's Manual, Volume 2 for a detailed description of the privilege
level checks and other protection checks that the processor performs on a far call through a call
gate.

The parameter count field in a call gate specifies the number of data items (up to 31) that the
processor should copy from the calling procedure's stack to the stack of the called procedure. If
more than 31 data items need to be passed to the called procedure, one of the parameters can be
a pointer to a data structure, or the saved contents of the SS and ESP registers may be used to
access parameters in the old stack space. The size of the data items passed to the called proce­
dure depends on the call gate size, as described in Section 4.8.3., "Call Gates".

4.8.6. Returning from a Called Procedure

The RET instruction can be used to perform a near return, a far return at the same pri vilege level,
and a far return to a different privilege level. This instruction is intended to execute returns from
procedures that were called with a CALL instruction. It does not support retums from a JMP
instruction.

A near return only transfers program control within the current code segment; therefore, the
processor performs only a limit check. When the processor pops the return instruction pointer
from the stack into the EIP register, it checks that the pointer does not exceed the limit of the
current code segment.

On a far return at the same privilege level, the processor pops both a segment selector for the
code segment being returned to and a return instruction pointer from the stack. Under normal
conditions, these pointers should be valid, because they were pushed on the stack by the CALL
instruction. However, the processor performs privilege checks to detect situations where the
current procedure might have altered the pointer or failed to maintain the stack properly.

A far return that requires a privilege-level change is only allowed when returning to a less priv­
ileged level (that is, the DPL of the return code segment is numerically greater than the CPL).
The processor uses the RPL field from the CS register value saved for the calling procedure (see
Figure 4-11) to determine if a return to a numerically higher privilege level is required. If the
RPL is numerically greater (less privileged) than the CPL, a return across privilege levels
occurs.

The processor performs the following steps when performing a far return to a calling procedure:

1. Checks the RPL field of the saved CS register value to determine if a privilege level change
is required on the return.

2. Loads the CS and EIP registers with the values on the called procedure's stack.

3. (If the return requires a privilege level change.) Loads the SS and ESP registers with the
values on the called procedure's stack. The values of the SS and ESP registers for the
called procedure are discarded. Any limit violations detected while loading the stack
segment selector or stack pointer cause a general-protection exception (#GP) to be
generated.

4-20

I

PROTECTION

4. Adjusts the value in the ESP registers by the number of bytes indicated in the RET
instruction. The resulting ESP value is not checked against the limit of the stack segment.
If the ESP value is beyond the limit, that fact is not recognized until the next stack
operation.

5. (If the return requires a privilege level change.) Checks the contents of the DS, ES, FS, and
GS segment registers. If any of these registers refer to segments whose DPL is less than the
new CPL (excluding conforming code segments), the segment register is loaded with a null
segment selector.

See the description of the RET instruction in Chapter 11, Instruction Set Reference, of the
Pentium® Pro Family Developer's Manual, Volume 2 for a detailed description of the privilege
level checks and other protection checks that the processor performs on a far return.

4.9. PRIVILEGED INSTRUCTIONS

Some of the system instructions (called "privileged instructions" are protected from use by
application programs. The privileged instructions control system functions (such as the loading
of system registers). They can be executed only when the CPL is 0 (most privileged). If one of
these instructions is executed when the CPL is not 0, a general-protection exception (#GP) is
generated. The following system instructions are privileged instructions:

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

I

LGDT -Load GDT register.

LLDT -Load LDT register.

LTR-Load task register.

LIDT -Load IDT register.

MOV CRn-Load and store control registers.

LMSW-Load machine status word.

CLTS-Clear task-switched flag in register CRO.

MOV DRn-Load and store debug registers.

INVD-Invalidate cache, without writeback.

WBINVD-Invalidate cache, with write back.

INVLPG-Invalidate TLB entry.

HLT -Halt processor.

RDMSR-Read Model-Specific Registers

WRMSR-Write Model-Specific Registers

RDPMC-Read Performance Monitoring Counter

RDTSC-Read Time Stamp Counter

4-21

PROTECTION

The PCE and TSD flags in register CR4 (bits 4 and 2, respectively) enable to RDPMC and
RDTSC instructions, respectively, to be read at any CPL.

The LLDT, SLDT, LTR, STR, LSL, LAR, VERR, VERW, and ARPL instructions can only be
executed in protected mode. Attempting to execute these instructions while in real-address or
virtual-8086 mode will result in an invalid opcode (#UD) exception being generated.

4.10. POINTER VALIDATION

When operating in protected mode, the processor validates all pointers to enforce protection
between segments and maintain isolation between privilege levels. Pointer validation consists of
the following checks:

1. Checking if the segment type is compatible with its use.

2. Checking read/write rights

3. Checking if the pointer offset exceeds the segment limit.

4. Checking if the supplier of the pointer is allowed to access the segment.

5. Checking the offset alignment.

The processor automatically performs first, second, and third checks during instruction execu­
tion; software must assist in performing the fourth check. The fifth check (offset alignment) is
performed automatically if alignment checking is tumed on. Offset alignment does not affect
isolation of privilege levels.

4.10.1. Checking Segment Type Compatibility (Access Rights)

When the processor accesses a segment using a far pointer, it performs an access rights check
on the segment descriptor pointed to by the far pointer. This check is performed to determine if
type and privilege level (DPL) of the segment descriptor are compatible with the operation to be
performed. For example, when making a far call in protected mode, the segment descriptor type
must be for a conforming or nonconforming code segment, a call gate, a task gate, or a TSS.
Then, if the call is to a non-conforming code segment, the DPL of the code segment must be
equal to the CPL, and the RPL of the code segment's segment selector must be less than or equal
to the DPL. If type or privilege level are found to be incompatible, the appropriate exception is
generated.

To prevent type incompatibility exceptions from being generated, software can check the access
rights of a segment descriptor using the LAR (load access rights) instruction. The LAR instruc­
tion specifies the segment selector for the segment descriptor whose access rights are to be
checked and a destination register. If the segment descriptor is readable, the LAR instruction
performs the following operations:

1. If the segment selector points to a segment descriptor that is beyond descriptor table limit
(GDT or LDT), the destination register is not modified and the ZF flag is cleared.

2. Determines if the segment selector is null.

4-22

I

PROTECTION

3. Checks that the segment descriptor is a code, data, LDT, call gate, task gate, or TSS
segment descriptor type.

4. If the segment is not a conforming code segment, checks if the segment descriptor is
visible at the CPL (that is, if the CPL and the RPL of the segment selector are less than or
equal to the DPL).

5. If the privilege level and type checks are true, loads the second doubleword of the segment
descriptor into the destination register (masked by the value OOFxFFOOH) and sets the ZF
flag in the EFLAGS register. If the segment selector is not visible at the current privilege
level or is an invalid type for the LAR instruction, the instruction does not modify the
destination register and clears the ZF flag.

Once loaded in the destination register, software can preform additional checks on the access
rights information.

4.10.2. Checking ReadlWrite Rights

The VERR (verify for reading) and VERW (verify for writing) instructions determine whether
a code or data segment can be read or written to, respectively. These instructions perform the
same operation that the processor performs when it loads the DS, ES, FS or GS register.

Both these instructions specify the segment selector for the segment being checked. The VERR
instruction sets the ZF flag in the EFLAGS register if the segment is visible at the CPL and read­
able; the VERW sets the ZF flag if the segment is visible and writable. (Code segments are never
writable.) If the segment selector points to a segment descriptor that is beyond its descriptor
table limit (GDT or LDT), the ZF flag is cleared.

4.10.3. Checking That the Pointer Offset Is Within Limits

When the processor accesses any segment it performs a limit check to insure that the offset is
within the limit of the segment. Software can perform this limit check using the LSL (load
segment limit) instruction. Like the LAR instruction, the LSL instruction specifies the segment
selector for the segment descriptor whose limit is to be checked and a destination register. If the
segment descriptor is readable, the LSL instruction performs the following operations:

1. If the segment selector points to a segment descriptor that is beyond its descriptor table
limit (GDT or LDT), the destination register is not modified and the ZF flag is cleared.

2. Checks that the segment descriptor is a code, data, LDT, or TSS segment descriptor type.

3. If the segment is not a conforming code segment, checks if the segment descriptor is
visible at the CPL (that is, if the CPL and the RPL of the segment selector less than or
equal to the DPL).

I
4-23

PROTECTION

4. If the privilege level and type checks are true, loads the unscrambled limit from the
segment selector into the destination register and sets the ZF flag in the EFLAGS register.
(If the segment selector is not visible at the current privilege level or is an invalid type for
the LSL instruction, the instruction does not modify the destination register and clears the
ZF flag.

Once loaded in the destination register, software can compare the segment limit with the offset
of a pointer.

4.10.4. Checking Caller Access Privileges

The requestor's privilege level (RPL) field of a segment selector is intended to carry the privilege
level of a calling procedure (the calling procedure's CPL) to a called procedure. The called
procedure then uses the RPL to determine if access to a segment is allowed. The RPL is said to
"weaken" the privilege level of the called procedure to that of the RPL.

Operating-system procedures typically use the RPL to prevent less privileged application
programs from accessing data located in more privileged segments. When an operating-system
procedure (the called procedure) receives a segment selector from an application program (the
calling procedure), it sets the segment selector's RPL to the privilege level of the calling proce­
dure. Then, when the operating system uses the segment selector to access its associated
segment, the processor performs privilege checks using the calling procedure's privilege level
(stored in the RPL) rather than the numerically lower privilege level (the CPL) of the operating­
system procedure. The RPL thus insures that the operating system does not access a segment on
behalf of an application program unless that program itself has access to the segment.

Figure 4-12 shows an example of how the processor uses the RPL field. In this example, an
application program (located in code segment A) passes segment selector B (which points to a
data segment B) to the operating system (located in code segment C). The segment selector is
passed as a parameter on the stack. Before passing the segment selector, the application program
sets the RPL of the segment selector to its current privilege level (which in this example is 2).
To determine whether the operating system can access data segment B, the processor compares
the CPL (taken from code segmentC's DPL), the RPL of segment selector B, and the DPL of
data segment B. Since the RPL is greater than the DPL, access to data segment B is denied. The
processor's protection mechanism thus protects data segment B from access by the operating
system, because application program's privilege level (represented by the RPL of segment
selector B) is greater than the DPL of data segment B.

4-24

I

BJ Lowest Privilege

Code
Segment A

CPL

II Application Program

Passed as a
parameter on

the stack.

Call Gate

Access I
notJ

allowed
I

PROTECTION

D I

m Highest Privilege

-----------r--r---------

Code
Operating Segment C

System
'--_..J...::..D"",PL::.J Access

allowed

Data
Segment B

DPL

Figure 4-12. Use of RPL to Weaken Privilege Level of Called Procedure

Now assume that instead of setting the RPL of segment selector B to 2, the application program
sets the RPL to O. The operating system can now access data segment B, because its CPL and
the RPL of segment selector B are both equal to the DPL of data segment B. Because the appli­
cation program is able to change the RPL of a segment selector to any value, it can potentially
use a procedure operating at a numerically lower privilege level to access a protected data struc­
ture. This ability to lower the RPL of a segment selector breaches the processor's protection
mechanism.

Because a called procedures cannot rely on the calling procedure to set the RPL correctly, oper­
ating-system procedures (executing at numerically lower privilege-levels) that receive segment
selectors from numerically higher privilege-level procedures need to test the RPL ofthe segment
selector to determine if it is at the appropriate level. The ARPL (adjust requested privilege level)
instruction is provided for this purpose. This instruction adjusts the RPL of one segment selector
to match that of another segment selector.

The example in Figure 4-12 demonstrates how the ARPL instruction is intended to be used.
When the operating-system receives segment selector B from the application program, it uses
the ARPL instruction to compare the RPL of the segment selector with the privilege level of the
application program. If the RPL is less than application program's privilege level, the ARPL
instruction changes the RPL of the segment selector to match the privilege level ofthe applica­
tion program. Using this instruction thus prevents a procedure running at a numerically higher

I
4-25

PROTECTION

privilege level from accessing numerically lower privilege-level (more privileged) segments by
lowering the RPL of a segment selector.

Note that the privilege level of the application program can be determined by reading the RPL
field of the segment selector for the application-program's code segment. This segment selector
is stored on the stack as part of the call to the operating system. The operating system can copy
the segment selector from the stack into a register for use as an operand for the ARPL
instruction.

4.10.5. Checking Alignment

When the CPL is 3, alignment of memory references can be checked by setting the AM flag in
the CRO register and the AC flag in the EFLAGS register. Unaligned memory references
generate alignment exceptions (#AC). The processor does not generate alignment exceptions
when operating at privilege level 0, 1, or 2.

4.11. PAGE-LEVEL PROTECTION

Page-level protection can be used alone or applied to segments. When page-level protection is
used with the flat memory model, it allows supervisor code and data (the operating system or
executive) to be protected from user code and data (application programs). It also allows pages
containing code to be write protected. When the segment- and page-level protection are
combined, page-level read/write protection allows more protection granularity within segments.

With page-level protection (as with segment-level protection) each memory reference is checked
to verify that protection checks are satisfied. All checks are made before the memory cycle is
started, and any violation prevents the cycle from starting and results in a page-fault exception
being generated. Because checks are performed in parallel with address translation, there is no
performance penalty.

The processor performs two page-level protection checks:

•
•

Restriction of addressable domain (supervisor and user modes) .

Page type (read only or read/write) .

Violations of either of these checks results in a page-fault exception being generated. See
Chapter 5, "Interrupt 14-Page Fault Exception (#PF)" for an explanation of the page-fault
exception mechanism. This chapter describes the protection violations which lead to page-fault
exceptions.

4.11.1. Page Protection Flags

Protection information for pages is contained in two flags in a page-directory or page-table entry
(see Figure 3-14): the read/write flag (bit 1) and the user/supervisor flag (bit 2). The protection
checks are applied to both first- and second-level page tables (that is page directories and page
tables).

4-26

I

PROTECTION

4.11.2. Restricting Addressable Domain

The page-level protection mechanism allows restricting access to pages based on two privilege
levels:

•

•

Supervisor mode (U/S flag is O)-(Most privileged) For the operating system or executive,
other system software (such as device drivers), and protected system data (such as page
tables).

User mode (U/S flag is l)-(Least privileged) For application code and data.

The segment privilege levels map to the page privilege levels as follows. If the processor is
currently operating at a CPL of 0, 1, or 2, it is in supervisor mode; if it is operating at a CPL of
3, it is in user mode. When the processor is in supervisor mode, it can access all pages; when in
user mode, it can access only user-level pages.

4.11.3. Page Type

The page-level protection mechanism recognizes two page types:

•
•

Read-only access (RIW flag is 0).

Read/write access (RIW flag is 1).

When the processor is in supervisor mode and the WP flag in register CRO is clear (its state
following reset initialization), all pages are both readable and writable (write-protection is
ignored). When the processor is in user mode, it can write only to user-mode pages that are
read/write accessible. User-mode pages which are read/write or read-only are readable; super­
visor-mode pages are neither readable nor writable from user mode. A page-fault exception is
generated on any attempt to violate the protection rules.

The Pentium Pro, Pentium, and Intel486 processors allow user-mode pages to be write-protected
against supervisor-mode access. Setting the WP flag in register CRO enables supervisor-mode
sensitivity to user-mode, write-protected pages.

The supervisor write-protect feature is also useful for implementing the copy-on-write strategy
used by some operating systems, such as UNIX, for task creation (also called forking or
spawning). When a new task is created, it is possible to copy the entire address space of the
parent task. This gives the child task a complete, duplicate set of the parent's segments and
pages. An alternative strategy, copy-on-write, saves memory space and time by mapping the
child's segments and pages to the same segments and pages used by the parent task. A private
copy of a page gets created only when one of the tasks writes to the page. By using the WP flag,
the supervisor can detect an attempt to write to a user-level page, and can copy the page at that
time.

I
4-27

PROTECTION

4.11.4. Combining Protection of Both Levels of Page Tables

For anyone page, the protection attributes of its page-directory entry (first-level page table) may
differ from those of its page-table entry (second-level page table). The processor checks the
protection for a page in both its page-directory and the page-table entries. Table 4-2 shows the
protection provided by the possible combinations of protection attributes when the WP flag is
clear.

Table 4-2. Combined Page Directory and Page Table Protection

Page Directory Entry Page Table Entry Combined Effect

Privilege Access Type Privilege Access Type Privilege Access Type

User Read-Only User Read-Only User Read-Only

User Read-Only User Read-Write User Read-Only

User Read-Write User Read-Only User Read-Only

User Read-Write User Read-Write User Read/Write

User Read-Only Supervisor Read-Only Supervisor Read/Write*

User Read-Only Supervisor Read-Write Supervisor Read/Write*

User Read-Write Supervisor Read-Only Supervisor Read/Write*

User Read-Write Supervisor Read-Write Supervisor Read/Write

Supervisor Read-Only User Read-Only Supervisor Read/Write*

Supervisor Read-Only User Read-Write Supervisor Read/Write*

Supervisor Read-Write User Read-Only Supervisor Read/Write*

Supervisor Read-Write User Read-Write Supervisor Read/Write

Supervisor Read-Only Supervisor Read-Only Supervisor Read/Write*

Supervisor Read-Only Supervisor Read-Write Supervisor Read/Write*

Supervisor Read-Write Supervisor Read-Only Supervisor Read/Write*

Supervisor Read-Write Supervisor Read-Write Supervisor Read/Write

NOTE:

* If the WP flag of GRO is set, the access type is determined by the R/w flags of the page-directory and
page-table entries.

4.11.5. Overrides to Page Protection

The following types of memory accesses are checked as if they are privilege-level 0 accesses,
regardless of the CPL at which the processor is currently operating:

•
e

4-28

Access to segment descriptors in the GDT, LDT, or IDT.

Access to an inner-privilege-level stack during an inter-privilege-level call or a call to in
exception or interrupt handler, when a change of privilege level occurs.

I

PROTECTION

4.12. COMBINING PAGE AND SEGMENT PROTECTION

When paging is enabled, the processor evaluates segment protection first, then evaluates page
protection. If the processor detects a protection violation at either the segment level or the page
level, the memory access is not carried out and an exception is generated. If an exception is
generated by segmentation, no paging exception is generated.

Page-level protections cannot be used to override segment-level protection. For example, a code
segment is by definition not writable. If a code segment is paged, setting the RfW flag for the
pages to read-write does not make the pages writable. Attempts to write into the pages will be
blocked by segment-level protection checks.

Page-level protection can be used to enhance segment-level protection. For example, if a large
read-write data segment is paged, the page-protection mechanism can be used to write-protect
individual pages.

I
4-29

Interrupt and
Exception Handling

I

5

CHAPTER 5
INTERRUPT AND EXCEPTION HANDLING

This chapter describes the processor's interrupt and exception handling mechanism, when oper­
ating in protected mode. Most of the information provided here also applies to the interrupt and
exception mechanism used in real-address or virtual-8086 mode. See Chapter 12,8086 Emula­
tion, for a description of the differences in the interrupt and exception mechanism for real­
address and virtual-8086 mode.

5.1. INTERRUPT AND EXCEPTION OVERVIEW

Interrupts and exceptions are forced transfers of execution to a procedure or task. The procedure
or task is called a handler. Interrupts typically occur at random times during the execution of a
program, in response to signals from hardware. They are used to handle events external to the
processor, such as requests to service peripheral devices. Software can also generate interrupts
by executing the INT n instruction. Exceptions occur when the processor detects an error condi­
tion while executing an instruction, such as division by zero. The processor detects a variety of
error conditions including protection violations, page faults, and internal machine faults.

The processor's interrupt and exception handling mechanism allows interrupts and exceptions
to be handled transparently to application programs and the operating system or executive.
When an interrupt is received or an exception is detected, the currently running procedure or
task is automatically suspended while the processor executes an interrupt or exception handler.
When execution of the handler is complete, the processor resumes execution of the interrupted
procedure or task. The resumption of the interrupted procedure or task happens without loss of
program continuity, unless recovery from an exception was not possible or an interrupt caused
the currently running program to be terminated.

The processor receives interrupts from three sources and exceptions from two sources:

•

I

Interrupts

Non-maskable interrupts (NMls). These interrupts are received on the processor's
NMI# input pin. The processor does not provide a mechanism to prevent non­
maskable interrupts.

Maskable interrupts. These interrupts are received either at the processor's INTR#
(interrupt) pin from an external, system-based interrupt controller (8259A) or as a
serial message on the LINT[1 :0] pins from a system-based I/O APIC. The processor
does not act on maskable interrupts unless the IF (interrupt-enable) flag in the
EFLAGS register is set.

Software-generated interrupts. These are generated by INT n instruction. The
processor does not provide a mechanism for masking interrupts generated in this
manner.

5-1

INTERRUPT AND EXCEPTION HANDLING

• Exceptions

Processor-detected exceptions. These are generated when the processor detects
program and machine errors. They are further classified asfaults, traps, and aborts.

Software-generated exceptions. The INTO, INT3, BOUND, and INTn instructions
generate exceptions. (The INTn instruction generates an exception when an exception
vector number as an operand.) These instructions allow checks for specific exception
conditions to be performed a specific points in the instruction stream. For example, the
INT3 instruction causes a breakpoint exception to be generated.

This chapter describes the processor's interrupt and exception handling mechanism, when oper­
ating in protected mode. A detailed description of the exceptions and the conditions that cause
them to be generated is given at the end of this chapter. See Chapter 12, 8086 Emulation, for a
description of the interrupt and exception mechanism for real-address and virtual-8086 mode.

5.2. EXCEPTION AND INTERRUPT VECTORS

The processor associates an identification number, called a vector, with each interrupt and
exception. Table 5-1 shows the assignment of exception and interrupt vectors. This table also
gives the interrupt or exception type of each exception, indicates whether an error code is saved
on the stack for an exception, and gives the source of the exception or interrupt.

The NMI interrupt and the exceptions are assigned vectors in the range 0 through 31. Not all of
these vectors are currently used by the processor. Unassigned vectors in this range are reserved
for possible future uses. Do not use the reserved vectors.

The vectors in the range 32 to 255 are provided for maskable interrupts, generated either by
asserting the INTR pin or by sending interrupt messages over the APIC bus. External interrupt
controllers (such as Intel's 8259A Programmable Interrupt Controller) deliver one of these
vectors to the processor on the system bus during its interrupt-acknowledge cycle. Any vectors
in the range 32 through 255 are legal.

The INT n instruction can be used to generate an interrupt or exception from within software,
by using a vector number as an operand. For example, the INT 35 instruction forces an implicit
call to the interrupt handler for interrupt 35.

5·2

I

INTERRUPT AND EXCEPTION HANDLING

Table 5-1. Protected Mode Exceptions and Interrupts

Interrupt or
Vector Exception

No. Description Type Error Code Source

0 Divide Error (#DE) Fault No DIV and IDIV instructions.

1 Debug (#DB) FaulVTrap No Any code or data reference.

2 NMI Interrupt Non- No External interrupt.
Maskable

3 Breakpoint (#BP) Trap No INT3 instruction.

4 Overflow (#OF) Trap No INTO instruction.

5 BOUND Range Exceeded (#BR) Fault No BOUND instruction.

6 Invalid Opcode (#UD) Fault No UD2 instruction or reserved
opcode.

7 Device Not Available (#NM) Fault No Floating-point or
WAIT/FWAIT instruction.

8 Double Fault (#DF) Abort Yes (Zero) Any instruction that can
generate an exception, an
NMI, or an INTR.

9 CoProcessor Segment Overrun Fault No Floating-point instruction.
(reserved) Pentium® Pro processor does

not generate this exception.

10 Invalid TSS (#TS) Fault Yes Task switch or TSS access.

11 Segment Not Present (#NP) Fault Yes Loading segment registers or
accessing system segments.

12 Stack Fault (#SS) Fault Yes Stack operations and SS
register loads.

13 General Protection (#GP) FaulVTrap Yes Any memory reference and
other protection checks.

14 Page Fault (#PF) Fault Yes Any memory reference.

15 (Intel reserved. Do not use.) No

16 Floating-Point Error (#MF) Fault No Floating-point or
WAIT/FWAIT instruction.

17 Alignment Check (#AC) Fault Yes (Zero) Any data reference in
memory.

18 Machine Check (#MC) Abort Model Model dependent.
Dependent

19-31 (Intel reserved. Do not use.)

32- Maskable Interrupts Maskable External interrupt or INT n
255 instruction.

I
5-3

INTERRUPT AND EXCEPTION HANDLING

5.3. EXCEPTION CLASSIFICATIONS

Exceptions are classified asfaults, traps, or aborts depending on the way they are reported and
whether the instruction that caused the exception can be restarted with no loss of program or task
continuity.

Faults A fault is an exception that can generally be corrected and that, once corrected,
allows the program to be restarted with no loss of continuity. When a fault is
reported, the processor restores the machine state to the state prior to the begin­
ning of execution of the faulting instruction. The return address (saved contents
of the CS and EIP registers) for the fault handler points to the faulting instruc­
tion, rather than the instruction following the faulting instruction.

Traps A trap is an exception that is reported immediately following the execution of
the trapping instruction. Some traps allow execution of a program or task to be
continued without loss of program continuity; others do not. The return address
for the trap handler points to the instruction to be executed after the trapping
instruction.

Aborts An abort is an exception that does not always report the precise location of the
instruction causing the exception and does not allow restart of the program or
task that caused the exception. Aborts are used to report severe errors, such as
hardware errors and inconsistent or illegal values in system tables.

5.4. PROGRAM OR TASK RESTART

To allow restarting of program or task following the handling of an exception or an interrupt, all
exceptions except aborts are guaranteed to report the exception on a precise instruction
boundary, and all interrupts are guaranteed to be taken on an instruction boundary.

For fault-class exceptions, thereturn instruction pointer that the processor saves when it gener­
ates the exception points to the faulting instruction. So, when a program or task is restarted
following the handling of a fault, the faulting instruction is restarted (re-executed). Restarting
the faulting instruction is commonly used to handle exceptions that are generated when access
to an operand is blocked. The most common example of a fault is a page-fault exception(#PF)
that occurs when a program or task references an operand in a page that is not in memory. When
a page-fault exception occurs, the exception handler can load the page into memory and resume
execution of the program or task by restarting the faulting instruction. To insure that this instruc­
tion restart is handled transparently to the currently executing program or task, the processor
saves the necessary registers and stack pointers to allow it to restore itself to its state prior to the
execution of the faulting instruction.

For trap-class exceptions, the return instruction pointer points to the instruction following the
trapping instruction. If a trap is detected during an instruction which transfers execution, the
return instruction pointer reflects the transfer. For example, if a trap is detected while executing
a JMP instruction, the return instruction pointer points to the destination of the JMP instruction,
not to the next address past the JMP instruction. Most trap exceptions allow program or task
restart with no loss of continuity. For example, the overflow exception is a trapping exception.
Here, the return instruction pointer points to the instruction following the INTO instruction that

5-4

I

INTERRUPT AND EXCEPTION HANDLING

tested the OF (overflow) flag in the EFLAGS register. The trap handler for this exception
resolves the overflow condition. Upon return from the trap handler, program or task execution
continues at the next instruction following the INTO instruction.

The abort-class exceptions do not support reliable restarting of the program or task. Abort
handlers generally are designed to collect diagnostic information about the state of the processor
when the abort exception occurred and then perform a graceful system shutdown.

Interrupts rigorously support restarting of interrupted programs and tasks without loss of conti­
nuity. The return instruction pointer saved for an interrupt points to the next instruction to be
executed at the instruction boundary where the processor took the interrupt. If the instruction
just executed has a repeat prefix, the interrupt is taken at the end of the current iteration with the
registers set to execute the next iteration.

The ability of the processor to speculatively execute instructions does not affect the taking of
interrupts by the processor. Interrupts are taken at instruction boundaries located during the
retirement phase of instruction execution; so, they are always taken in the "in-order" instruction
stream. See Chapter 2, Introduction to the Intel Pentium® Pro Processor, in the Pentium® Pro
Family Developer's Manual, Volume 2 for more information about the Pentium Pro processor's
rnicroarchitecture and its support for out-of-order instruction execution.

5.5. ENABLING AND DISABLING INTERRUPTS

The processor inhibits the generation of some interrupts, depending on the state of processor and
of the IF and RF flags in the EFLAGS register, as described in the following sections.

5.5.1. Handling Multiple NMls

While an NMI interrupt handler is executing, the processor disables additional calls to the NMI
handler until the next IRET instruction is executed. This blocking of subsequent NMIs prevents
stacking up calls to the NMI handler. It is recommended that the NMI interrupt handler be
accessed through an interrupt gate to disable maskable interrupts (see Section 5.5.2., "Masking
Maskable Interrupts").

5.5.2. Masking Maskable Interrupts

The IF flag can disable the servicing of maskable interrupts received on the processor's INTR#
pin or through the local APIC (see Section 5.1., "Interrupt and Exception Overview"). When the
IF flag is clear, maskable interrupts are ignored; when the IF flag is set, maskable interrupts are
serviced. As with the other flags in the EFLAGS register, the processor clears the IF flag in
response to a hardware reset.

The IF flag can be set or cleared with the STI (set interrupt-enable flag) and CLI (clear interrupt­
enable flag) instructions, respectively. These instructions may be executed only if the CPL is an
equal to or less than the IOPL. A general-protection exception (#GP) is generated if they are
executed when the CPL is greater than the IOPL. (The effect of the IOPL on these instructions

I
5-5

INTERRUPT AND EXCEPTION HANDLING

is modified slightly when the virtual mode extension is enabled by setting the VME flag in
control register CR4, see Section 12.3., "Interrupt and Exception Handling in Virtual-8086
Mode".)

The IF flag is also affected by the following operations:

•

•

The PUSHF instruction stores all flags on the stack, where they can be examined and
modified. The POPF instruction can be used to load the modified form back into the
EFLAGS register.

Task switches and the POPF and IRET instructions load the EFLAGS register; therefore,
they can be used to modify the setting of the IF flag.

• When an interrupt is handled through an interrupt gates, the IF flag is automatically clear,
which disables maskable interrupts.

See the descriptions of the CLI, STI, PUSHF, POPF, and IRET instructions in Chapter 11,
Instruction Set Reference, of the Pentium® Pro Family Developer's Manual, Volume 2 for a
detailed description of the operations these instructions are allowed to perform on the IF flag.

5.5.3. Masking Debug Exceptions

The RF (resume) flag in the EFLAGS register controls the response of the processor to instruc­
tion-breakpoint conditions (see the description of the RF flag in Section 2.3., "System Flags and
Fields in the EFLAGS Register"). Its primary function is to prevent the processor from gener­
ating a debug exception (#DB) due to an instruction-breakpoint condition on a return from an
exception or interrupt handler. When an exception occurs (other than a debug exception caused
by an instruction-breakpoint condition) or when an interrupt occurs during a string instruction,
the processor sets the RF flag in the EFLAGS image it that stores on the exception or interrupt
handler's stack. Upon returning from the exception or interrupt handler and restoring the
EFLAGS register from the image on the stack, the processor ignores instruction-breakpoint
conditions for the duration of the next instruction (although it does respond to other debug
exception conditions).

(The processor clears the RF flag following the successful completion of every instruction,
except after the IRET instruction and after lMP, CALL, or INT n instructions that cause a task
switch. Therefore, the RF flag remains set for no more than one instruction, the one executed
immediately after the IRET or the task switch.)

When the processor generates a debug exception in response to an instruction-breakpoint condi­
tion, it does not set the RF flag in the EFLAGS image that it pushes onto the exception handler's
stack. This action gives the exception handler the option of disabling the instruction breakpoint
or setting the RF flag in the EFLAGS image on the stack to cause the instruction breakpoint to
be ignored on a return from the exception handler. If the handler neither disables the instruction
breakpoint nor sets the RF flag in the EFLAGS image, the processor will respond to the same
instruction-breakpoint condition and generate another debug exception upon returning from the
exception handler. This time, however, the processor automatically sets the RF flag to prevent
further looping on the instruction-breakpoint condition.

5-6

I

INTERRUPT AND EXCEPTION HANDLING

5.5.4. Masking Exceptions and Interrupts When Switching
Stacks

To switch to a different stack segment, software often uses a pair of instructions, for example:

MOV SS, AX

MOV ESP, StackTop

If an interrupt or exception occurs after the segment selector has been loaded into the SS register
but before the ESP register has been loaded, these two parts of the logical address into the stack
space are inconsistent for the duration of the interrupt or exception handler.

To prevent this situation, the processor inhibits interrupts, debug exceptions, and single-step trap
exceptions after either a MOV to SS instruction or a POP to SS instruction, until the instruction
boundary following the next instruction is reached. General-protection faults may still be gener­
ated. If the LSS instruction is used to modify the contents of the SS register (which is the recom­
mended method of modifying this register), this problem does not occur.

5.S. PRIORITY AMONG SIMULTANEOUS EXCEPTIONS AND
INTERRUPTS

If more than one exception or interrupt is pending at an instruction boundary, the processor
services them in a predictable order. Table 5-2 shows the priority among classes of exception
and interrupt sources. While priority among these classes is consistent throughout the architec­
ture, exceptions within each class are implementation-dependent and may vary from processor
to processor. The processor first services a pending exception or interrupt from the class which
has the highest priority, transferring execution to the first instruction of the handler. Lower
priority exceptions are discarded; lower priority interrupts are held pending. Discarded excep­
tions are re-generated when the interrupt handler returns execution to the point in the program
or task where the exceptions and/or interrupts occurred.

5.7. INTERRUPT DESCRIPTOR TABLE (lOT)

The interrupt descriptor table (IDT) associates each exception or interrupt vector with a gate
descriptor for the procedure or task used to services the associated exception or interrupt. Like
the GDT and LDTs, the IDT is an array of 8-byte gate descriptors (in protected mode). Unlike
the GDT, the first entry of the IDT may contain a descriptor. To form an index into the IDT, the
processor scales the exception or interrupt vector by eight (the number of bytes in a gate
descriptor). Because there are only 256 interrupt or exception vectors, the IDT need not contain
more than 256 descriptors. It can contain fewer than 256 descriptors, because descriptors are
required only for the interrupt and exception vectors that may occur.

I
5-7

INTERRUPT AND EXCEPTION HANDLING

Table 5-2. Priority Among Simultaneous Exceptions and Interrupts

Priority Descriptions

1 (Highest) Hardware Reset and Machine Checks
- RESET
- Machine Check

2 Trap on Task Switch
- T flag in TSS is set

3 External Hardware Interventions
- FLUSH
- STOPCLK
-SMI
-INIT

4 Traps on the Previous Instruction
- Breakpoints
- Debug Trap Exceptions (TF flag set or data/l-O breakpoint)

5 External Interrupts
- NMllnterrupts
- Maskable Interrupts

6 Faults from Fetching Next Instruction
- Code Breakpoint Fault
- Code Segment Limit Violation
- Code Page Fault

7 Faults from Decoding the Next Instruction
- Instruction length> 15 bytes
- Illegal Opcode
- Coprocessor Not Available

8 (Lowest) Faults on Executing an Instruction
- Floating-point exception
- Overflow
- Bound error
-Invalid TSS
- Segment Not Present
- Stack fault
- General Protection
- Data Page Fault
- Alignment Check

The base addresses of the IDT should be aligned on an 8-byte boundary to maximize perfor­
mance of cache line fills. The limit value is expressed in bytes and is added to the base address
to get the address of the last valid byte. A limit value of 0 results in exactly 1 valid byte. Because
IDT entries are always eight bytes long, the limit should always be one less than an integral
multiple of eight (that is, 8N - 1).

The IDT may reside anywhere in the linear address space. As shown in Figure 5-1, the processor
locates the lDT using the lDTR register. This register holds both a 32-bit base address and 16-bit
limit for the IDT.

5-8

I

INTERRUPT AND EXCEPTION HANDLING

IOTR Register
47 16 15 o

I lOT Base Address I lOT Limit

I

1. Interrupt ffi-----. Descriptor Table (lOT)
f----(Gate for

Interrupt #n (n-1)*8

<

Gate for
Interrupt #3 1 6

Gate for
Interrupt #2 8

Gate for
Interrupt #1 o

31 o

Figure 5-1. Relationship of the IDTR and IDT

The LIDT (load IDT register) and SIDT (store IDT register) instructions load and store the
contents of the IDTR register, respectively. The LIDT instruction loads the IDTR register with
the base address and limit held in a memory operand. This instruction can be executed only
when the CPL is O. It normally is used by the initialization code of an operating system when
creating an IDT. An operating system also may use it to change from one IDT to another. The
SIDT instruction copies the base and limit value stored in IDTR to memory. This instruction can
be executed at any privilege level.

If a vector references a descriptor beyond the limit of the IDT, a general-protection exception
«#GP) is generated.

5.S. lOT DESCRIPTORS

The IDT may contain any of three kinds of gate descriptors:

•
•
•

Task gate descriptor

Interrupt gate descriptor

Trap gate descriptor

Figure 5-2 shows the format of task gate, interrupt gate, and trap gate descriptors. The task gate
in an IDT is the same as the task gate in the GDT or an LDT. An interrupt and task gates are very
similar to call gates, and they are used for the same purpose.

I
5-9

INTERRUPT AND EXCEPTION HANDLING

31

Task Gate
1615141312 8 7 o

H 11"" , .. ~ '"I
· .. 4

1·············<····················· ...

:."::" .. "" .. :"
...• : ...

;'.'."'"

31 1615 o

TSS Segment Selector

I 10

Interrupt Gate
31 1615141312 8 7 5 4 0

'----_O_ffset_31 .. _16 _--,--,-H -...J11,--0 D_1 _1 °.l--I 0 _0 0--,-1 ~I'
31 1615 o

~ ______ S_e_g_m_e_nt_S_e_le_c_to_r ______ ~ ___________ 0ff __ se_t_1_5._.0 ________ ~Io
31

31

Trap Gate
1615141312 8 7 5 4 0

Offset 31 .. 16 H 11,·, "1 0 0011·

1615 0

Segment Selector
I ~15 .. 0 10

DPL
Offset
P
Selector
D

Descriptor Privilege Level
Offset to procedure entry point
Segment Present bit
Segment Selector for destination code segment
Size of gate: 1 = 32 bits; 0 = 16 bits

D Reserved

Figure 5-2. lOT Gate Descriptors

Calls to exception- or interrupt-handler procedures through an interrupt or trap gate are handled
the same, except for the way the processor handles the IF flag in the EFLAGS register (see
Section 5.9.1.1., "Flag Usage By Exception- or Interrupt-Handler Procedure").

5-10

I

INTERRUPT AND EXCEPTION HANDLING

5.9. EXCEPTION- AND INTERRUPT HANDLING

The processor handles calls to exception- and interrupt-handlers the same way that it handles
calls with a CALL instruction to a procedure or a task. When responding to an exception or inter­
rupt, the processor uses the exception or interrupt vector as an index to a descriptor in the IDT.
If the index points to an interrupt gate or trap gate, the processor calls the exception or interrupt
handler in a manner similar to a CALL to a call gate. If index points to a task gate, the processor
executes a task switch to the exception- or interrupt-handler task in a manner similar to a CALL
to a task gate.

5.9.1. Exception- or Interrupt-Handler Procedures

An interrupt gate or trap gate references an exception- or interrupt-handler procedure that runs
in the context of the currently executing task (see Figure 5-3). The segment selector for the gate
points to a segment descriptor for an executable code segment in either the GDT or the current
LDT. The offset field of the gate descriptor points to the beginning of the exception- or interrupt­
handling procedure.

When the processor performs a call to the exception- or interrupt-handler procedure, it saves
the current states of the EFLAGS register, CS register, and EIP register on the stack (see Figure
5-4). (The CS and EIP registers provide a return instruction pointer for the handler.) If an excep­
tion causes an error code to be saved, it is pushed on the stack after the EIP value.

If the handler procedure is going to be executed at the same privilege level as the interrupted
procedure, the handler uses the current stack.

If the handler procedure is going to be executed at a numerically lower privilege level, a stack
switch occurs. When a stack switch occurs, a stack pointer for the stack to be returned to is also
saved on the stack. (The SS and ESP registers provide a return stack pointer for the handler.)
The segment selector and stack pointer for the stack to be used by the handler is obtained from
the TSS for the currently executing task. The processor copies the EFLAGS, SS, ESP, CS, EIP,
and error code information from the interrupted procedure's stack to the handler's stack.

To return from an exception- or interrupt-handler procedure, the handler must use the IRET (or
IRETD) instruction. The IRET instruction is similar to the RET instruction except that it restores
the saved flags into the EFLAGS register. The IOPL field of the EFLAGS register is restored
only if the CPL is O. The IF flag is changed only if the CPL is less than or equal to the IOPL.
See "IRETIIRETD-Interrupt Return" in Chapter 11, Instruction Set Reference, of the Pentium®
Pro Family Developer's Manual, Volume 2 for the complete operation performed by the IRET
instruction.

I
5-11

INTERRUPT AND EXCEPTION HANDLING

Destination
IDT Code Segment

Interrupt
Offset Procedure

Interrupt -----.. Interrupt or ~I
~ Vector Trap Gate f---

---..
Segment Selector

GDTor LDT

Base
Address

L---. Segment
Descriptor

Figure 5-3. Interrupt Procedure Call

If a stack switch occurred when calling the handler procedure, the IRET instruction switches
back to the interrupted procedures stack on the return.

5.9.1.1. FLAG USAGE BY EXCEPTION- OR INTERRUPT-HANDLER
PROCEDURE

When accessing an exception- or interrupt handler through either an interrupt gate or a trap gate,
the processor clears the TF flag in the EFLAGS register after it saves the contents of the
EFLAGS register on the stack. (On calls to exception and interrupt handlers, the processor also
clears the VM, RF, and NT flags in the EFLAGS register.) Clearing the TF flag prevents instruc­
tion tracing from affecting interrupt response. A subsequent IRET instruction restores the TF
(and VM, RF, and NT) flags to the values in the saved contents of the EFLAGS register on the
stack.

5-12

I

INTERRUPT AND EXCEPTION HANDLING

Stack Usage on Exception or
Interrupt Procedure Call With

No Privilege-Level Change

Interrupted and Handler
Procedures' Stack

EFLAGS

Calling CS

Calling EIP

Error Code
ESP after

~ Call to Handler 1--------1

Stack Usage on Exception or
Interrupt Procedure Call With

Interrupted Privilege-Level Change Handler
Procedure's Stack Procedure's Stack

Calling SS

Calling ESP

EFLAGS

Calling CS

Calling EIP

ESP before
~ Call to Handler

ESP after
Call to Handler-----"

Calling SS

Calling ESP

Calling EFLAGS

Calling CS

Calling EIP

Error Code

Figure 5-4. Stack Usage on Calls to Interrupt and Exception Handling Routines

The only difference between an interrupt gate and a trap gate is the way the processor handles
the IF flag in the EFLAGS register. When accessing an exception- or interrupt-handling proce­
dure through an interrupt gate, the processor clears the IF flag to prevents other interrupts from
interfering with the current interrupt handler. A subsequent IRET instruction restores the IF flag
to its value in the saved contents of the EFLAGS register on the stack. Accessing a handler
procedure through a trap gate does not affect the IF flag.

I
5-13

INTERRUPT AND EXCEPTION HANDLING intet

5.9.1.2. PROTECTION OF EXCEPTION- AND INTERRUPT-HANDLER
PROCEDURES

The privilege-level protection for exception- and interrupt-handler procedures is similar to that
for ordinary procedure calls. The processor does not permit an exception or interrupt to transfer
execution to a procedure in a less privileged code segment (numerically greater privilege level).
An attempt to violate this rule results in a general-protection exception (#GP). The protection
mechanism for exception- and interrupt-handler procedures is different in the following ways:

•

•

Because interrupt and exception vectors have no RPL, the RPL is not checked on implicit
calls to exception and interrupt handlers.

If an interrupt is generated with an INTn instruction, the interrupt or trap gate privilege
level must allow access to the gate at the current privilege level. That is, for the INTn,
INT3, and INTO instruction, CPL must be less than or equal to the DPL of the gate.

Because exceptions and interrupts generally do not occur at predictable times, these privilege
rules effectively imposes restrictions on the privilege levels at which exception and interrupt
handling procedures can run. Either of the following techniques can be used to avoid privilege­
level violations.

•

•

The exception or interrupt handler can be placed in a conforming code segment. This
technique can be used for handlers that only need to access data available on the stack (for
example, divide error exceptions). If the handler needs data from a data segment, the data
segment needs to be accessible from privilege level 3, which would make it unprotected.

The handler can be placed in a code segment with privilege level O. This handler would
always run, regardless of the CPL that the interrupted program or task is running at.

5.9.2. Interrupt Tasks

When an exception- or interrupt handler is accessed through a task gate in the IDT, a task switch
results. Handling an exception or interrupt with a separate task offers two advantages:

• The entire context of the interrupted program or task is saved automatically.

• The handler can be isolated from other tasks by giving it a separate address space. This is
done by giving it a separate LDT.

A task gate in the IDT references a TSS descriptor in the GDT (see Figure 5-5). A switch to the
handler task is handled in the same manner as an ordinary task switch (see Section 6.3., ''Task
Switching"). The link between the handler task and the interrupted task is stored in the link field
of the handler task's TSS. If an exception caused an error code to be generated, this error code
is copied to the stack of the new task.

When exception- or interrupt-handler tasks are used in an operating system, there are actually
two mechanisms that can be used to dispatch tasks: the software scheduler (part of the operating
system) and the hardware scheduler (part of the processor's interrupt mechanism). The software
scheduler needs to accommodate interrupt tasks which may be dispatched when interrupts are
enabled.

5-14

I

Interrupt
Vector

--.

L---.

lOT

Task Gate

TSS Selector

GOT

TSS Descriptor

INTERRUPT AND EXCEPTION HANDLING

I---

TSS
Base

TSS for Interrupt­
Handling Task

Address

Figure 5-5. Interrupt Task Switch

5.10. ERROR CODE

When an exception condition is related to a specific segment, the processor pushes an error code
onto the stack of the exception handler (whether it is a procedure or task). The error code has
the format shown in Figure 5-6. The error code resembles a segment selector; however, instead
of a TI flag and RPL field, the error code contains 3 flags:

EXT

IDT

I

External event (bit 0). When set, indicates that an event external to the
program caused the exception.

Descriptor location (bit 1). When set, indicates that the index portion of the
error code refers to a gate descriptor in the IDT; when clear, indicates that the
index refers to a descriptor in the GDT or the current LDT.

5-15

INTERRUPT AND EXCEPTION HANDLING

TI GDTILDT (bit 2). Only used when the IDT flag is clear. When set, the TI flag
indicates that the index portion of the error code refers to a segment or gate
descriptor in the LDT; when clear, it indicates that the index refers to a
descriptor in the current GDT.

31 3 2 1 0

I Reserved I I TI·I~I,I~E I Segment Selector Index I ~ I

Figure 5-6. Error Code

The segment selector index field provide an index into the IDT, GDT, or current LDT to the
segment or gate selector being referenced by the error code. In some cases the error code is null
(Le., all bits in the lower word are clear).

The format of the error code is different for page-fault exceptions (#PF), see Chapter 5, "Inter­
rupt 14-Page Fault Exception (#PF)".

The error code is pushed on the stack as a doubleword or word (depending on the default inter­
rupt, trap, or task gate size). To keep the stack aligned for doubleword pushes, the upper half of
the error code is reserved. Note that the error code is not popped when the IRET instruction is
executed to return from an exception handler.

Error codes are not pushed on the stack for exceptions that are generated with the INTR# pin or
the INTn instruction, even if an error code is normally produced for those exceptions.

5.11. MACHINE CHECK ARCHITECTURE

The Pentium Pro processor's machine check architecture provides a mechanism for detecting
and reporting on hardware (machine) errors. It consists of a set of model-specific registers
(MSRs) for setting up machine checking and recording any machine-check errors that are
detected. The processor signals the detection of a machine check error by generating a machine­
check exception (#MC). Chapter 16, Machine Check Architecture, gives a detailed description
of the machine check architecture. See Chapter 5, "Interrupt 18-Machine Check Exception
(#MC)" for information about the machine-check exception.

5-16

I

INTERRUPT AND EXCEPTION HANDLING

5.12. EXCEPTION REFERENCE

The following sections describe conditions which generate exceptions. They are arranged in the
order of vector numbers. The information contained in these sections are as follows:

Exception Class

Description

Error Code

Saved Instruction Pointer

Program State Change

I

Indicates whether the exception class is a fault, trap, or abort
type. Some exceptions can be either a fault or trap type,
depending on the when the error condition is detected.

Gives a general description of the purpose of the exception type.
It also describes how the processor handles the exception.

Indicates whether an error code is saved for the exception. If one
is saved, the contents of the error code are described.

Describes which instruction the saved (or return) instruction
pointer points to. It also indicates whether the pointer can be used
to restart a faulting instruction.

Describes the effects of the exception on the state of the currently
running program or task and the possibilities of restarting the
program or task without loss of continuity.

5-17

INTERRUPT AND EXCEPTION HANDLING

Interrupt O-Divide Error Exception (#DE)

Exception Class Fault.

Description

Indicates the divisor operand for a DIY or IDlY instruction is 0 or that the result cannot be repre­
sented in the number of bits specified for the destination operand.

Error Code

None.

Saved Instruction Pointer

Saved contents of CS and EIP registers point to the instruction that generated the exception.

Program State Change

A program-state change does not accompany the divide error, because the exception occurs
before the faulting instruction is executed.

5-18

I

INTERRUPT AND EXCEPTION HANDLING

Interrupt 1-0ebug Exception (#OB)

Exception Class Trap or Fault. The exception handler can distinguish between traps or
faults by examining the contents of the DR6 register and other debug
registers.

Description

Indicates that one or more of several debug-exception conditions has been detected. Whether the
exception is a fault or a trap depends on the condition, as shown below:

Exception Condition Exception Class

Instruction fetch breakpoint Fault

Data write breakpoint Trap

Data read or write breakpoint Trap

I/O read or write breakpoint Trap

General detect condition (in conjunction with in-circuit emulation) Fault

Single-step Trap

Task-switch Trap

See Chapter 10, Debugging and Performance Monitoring, for detailed information about the
debug exceptions.

Error Code

None. An exception handler can examine the debug registers to determine which condition
caused the exception.

Saved Instruction Pointer

Fault-Saved contents of CS and EIP registers point to the instruction that generated the
exception.

Trap-Saved contents of CS and EIP registers point to the instruction following the instruction
that generated the exception.

Program State Change

Fault-A program-state change does not accompany the debug exception, because the excep­
tion occurs before the faulting instruction is executed.

Trap-A program-state change does not accompany the debug exception, because the exception
occurs before the faulting instruction is executed. Here, all of the program-state changes
required by the instruction do occur before the exception is generated.

I
5-19

INTERRUPT AND EXCEPTION HANDLING

Interrupt 2-NMI Interrupt

Exception Class Trap.

Description

The non-maskable interrupt (NMI) is generated externally by asserting the processor's NMI#
pin. This interrupt causes the NMI interrupt handler to be called.

Error Code

None.

Saved Instruction Pointer

The processor always takes an NMI intenupt on an instruction boundary. The saved contents of
CS and EIP registers point to the next instruction to be executed at the point the interrupt is
taken. See Section 5.4., "Program or Task Restart" for more information about when the
processor takes NMI interrupts. .

Program State Change

The instruction executing when an NMI interrupt is received is completed before the NMI is
generated. A program or task can thus be restarted upon returning from an intenupt handler
without loss of continuity, providing the interrupt handler saves the state of the processor before
handling the interrupt restores the processor's state prior to a return.

5-20

I

intet INTERRUPT AND EXCEPTION HANDLING

Interrupt 3-Breakpoint Exception (#BP)

Exception Class Trap.

Description

Indicates that a breakpoint instruction (lNT3) was executed, causing a breakpoint trap to be
generated. Typically, a debugger sets a breakpoint by replacing the first opcode byte of an
instruction with the opcode for the INT3 instruction. (The INT3 instruction is one byte long,
which makes it easy to replace an opcode in a code segment in RAM with the breakpoint
opcode.) The operating system or a debugging tool can use a data segment mapped to the same
physical address space as the code segment to place an INT3 instruction in places where it is
desired to call the debugger.

With the Pentium Pro, Pentium, Inte1486, and Inte1386 processors, it is more convenient to set
breakpoints with the debug registers. See Section 10.3.2., "Breakpoint Exception (#BP)-Inter­
rupt Vector 3", for information about the breakpoint exception.

The breakpoint (#BP) exception can also be generated by executing the INTn instruction with
an operand of3. The action of this instruction (INT 3) is slightly different than that of the INT3
instruction (see "INTnlINTOIINT3-Call to Interrupt Procedure" in Chapter 11, Instruction Set
Reference, of the Pentium® Pro Family Developer's Manual, Volume 2).

Error Code

None.

Saved Instruction Pointer

Saved contents of CS and EIP registers point to the instruction following the INT3 instruction.

Program State Change

Even though the EIP points to the instruction following the breakpoint instruction, the state of
the program is essentially unchanged because the INT 3 instruction does not affect any register
or memory locations. The debugger can thus resume the suspended program by replacing the
INT 3 instruction that caused the breakpoint with the original opcode and decrementing the
saved contents of the EIP register. Upon returning from the debugger, program execution
resumes with the replaced instruction.

I
5-21

INTERRUPT AND EXCEPTION HANDLING

Interrupt 4-0verflow Exception (#OF)

Exception Class Trap.

Description

Indicates that an overflow trap occurred when an INTO instruction was executed. The INTO
instruction checks the state of the OF flag in the EFLAGS register. If the OF flag is set, an over­
flow trap is generated.

Some arithmetic instructions (such as the ADD and SUB) perform both signed and unsigned
arithmetic. These instructions set the OF and CF flags in the EFLAGS register to indicate signed
overflow and unsigned overflow, respectively. When performing arithmetic on signed operands,
the OF flag can be tested directly or the INTO instruction can be used. The benefit of using the
INTO instruction is that if the overflow exception is detected, an exception handler can be called
automatically to handle the overflow condition.

Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction following the INTO
instruction.

Program State Change

Even though the EIP points to the instruction following the INTO instruction, the state of the
program is essentially unchanged because the INTO instruction does not affect any register or
memory locations. The debugger can thus resume the program execution upon returning from
the overflow exception handler.

5-22

I

INTERRUPT AND EXCEPTION HANDLING

Interrupt 5-BOUND Range Exceeded Exception (#BR)

Exception Class Fault.

Description

Indicates that a BOUND-range-exceeded fault occurred when a BOUND instruction was
executed. The BOUND instruction checks a signed array index against signed limits upper and
lower bounds of the array. If the array index is not within the bounds of the array, a BOUND­
range-exceeded fault is generated.

Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the BOUND instruction that generated the
exception.

Program State Change

A program-state change does not accompany the bounds-check fault, because the operands for
the BOUND instruction are not modified. Returning from the BOUND-range-exceeded excep­
tion handler causes the BOUND instruction to be restarted.

I
5-23

INTERRUPT AND EXCEPTION HANDLING

Interrupt 6-lnvalid Opcode Exception (#UD)

Exception Class Fault.

Description

Indicates that the processor did one of the following things:

• Attempted to execute an invalid or reserved opcode.

• Attempted to execute an instruction with an operand type that is invalid for its accompa­
nying opcode; for example, the source operand for a LES instruction is not a memory
location.

• Executed a UD2 instruction.

• Detected a LOCK prefix that precedes an instruction that may not be locked or one that
may be locked but the destination operand is not a memory location.

• Attempted to execute an LLDT, SLDT, LTR, STR, LSL, LAR, VERR, VERW, or ARPL
instruction while in real-address or virtual-8086 mode.

• Attempted to execute the RSM instruction when not in SMM mode.

This exception is not generated until an attempt is made to retire the result of executing the
invalid instruction; that is, decoding and speculatively attempting to execute of an invalid
opcode does not generate this exception.

The opcodes D6 and FI are undefined opcodes that are reserved by Intel. These opcodes, even
though undefined, do not generate an invalid opcode exception.

The UD2 instruction is guaranteed to generate an invalid opcode exception.

Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the exception.

Program State Change

A program-state change does not accompany an invalid-opcode fault, because the invalid
instruction is not executed.

5-24

I

INTERRUPT AND EXCEPTION HANDLING

Interrupt 7-Device Not Available Exception (#NM)

Exception Class Fault.

Description

Indicates one of the following things:

The device-not-available fault is generated by either of two conditions:

• The processor executed a floating-point instruction while the EM flag of register CRO was
set.

•

•

The processor executed a floating-point instruction while the TS flag of register CRO was
set.

The processor executed a WAIT or FWAIT instruction while the MP and TS flags of
register CRO were set.

The EM flag is set when the processor does not have an internal floating-point unit. An excep­
tion is then generated each time a floating-point instruction is encounter, allowing an exception
handler to call floating-point instruction emulation routines.

The TS flag indicates that a context switch (task switch) has occurred since the last time a
floating-point instruction was executed, but that the context of the FPU was not saved. When
the TS flag is set, the processor generates a device-not-available exception each time a floating­
point instruction is encountered. The exception handler can then save the context of the FPU
before it executes the instruction. See Section 2.5., "Control Registers" for more information
about the TS flag.

The MP flag in control register CRO is used along with the TS bit to determine if WAIT or
FWAIT instructions should generate a device-not-available exception. It extends the function of
the TS flag to the WAIT and FWAIT instructions, giving the exception handler an opportunity
to save the context of the FPU before the WAIT or FWAIT instruction is executed. This flag is
provided primarily for use with the Intel 286 and Inte1386 DX processors. For programs running
on the Pentium Pro, Pentium, or Intel486 DX processors, or the Intel487 SX coprocessors, the
MP flag should always be set; for programs running on the Intel486 SX processor, the MP flag
should be clear.

Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the floating-point instruction or the
WAIT/FWAIT instruction that generated the exception.

I
5-25

INTERRUPT AND EXCEPTION HANDLING

Program State Change

A program-state change does not accompany a device-not-available fault, because the instruc­
tion that generated the exception is not executed.

If the EM flag is set, the exception handler can then read the floating-point instruction pointed
to by the EIP and call the appropriate emulation routine.

If the MP and TS flags are set or the TS flag alone is set, the exception handler can save the
context of the FPU, clear the TS flag, and continue execution at the interrupted floating-point or
WAIT/FWAIT instruction.

5-26

I

INTERRUPT AND EXCEPTION HANDLING

Interrupt a-Double Fault Exception (#DF)

Exception Class Abort.

Description

Indicates that the processor detected a second exception while calling an exception handler for
a prior exception. Normally, when the processor detects another exception while trying to call
an exception handler, the two exceptions can be handled serially. If, however, the processor
cannot handle them serially, it signals the double-fault exception. To determine when two faults
need to be signalled as a double fault, the processor divides the exceptions into three classes:
benign exceptions, contributory exceptions, and page faults (see Table 5-3).

Table 5-3. Interrupt and Exception Classes

Class Vector Number Description

Benign Exceptions and Interrupts 1 Debug Exception
2 NMI Interrupt
3 Breakpoint
4 Overflow
5 BOUND Range Exceeded
6 Invalid Opcode
7 Device Not Available
9 Coprocessor Segment Overrun
16 Floating-Point Error
17 Alignment Check
18 Machine Check
All INTn
All INTR#

Contributory Exceptions 0 Divide Error
10 Invalid TSS
11 Segment Not Present
12 Stack Fault
13 General Protection

Page Faults 14 Page Fault

Table 5-4 shows the various combinations of exception classes that cause a double fault to be
generated. A double-fault exception falls in the abort class of exceptions. The program or task
cannot be restarted or resumed. The double-fault handler can be used to collect diagnostic infor­
mation about the state of the machine and/or, when possible, to shut the machine down grace­
fully or restart the machine.

I
5-27

INTERRUPT AND EXCEPTION HANDLING

Table 5-4. Conditions for Generating a Double Fault

Second Exception

First Exception Benign Contributory Page Fault

Benign Handle Exceptions Handle Exceptions Handle Exceptions
Serially Serially Serially

Contributory Handle Exceptions Generate a Double Fault Handle Exceptions
Serially Serially

Page Fault Handle Exceptions Generate a Double Fault Generate a Double Fault
Serially

An segment or page fault encountered while prefetching instructions is outside the domain of
Table 5-4.

If another exception occurs while attempting to call the double-fault handler, the processor
enters shutdown mode. This mode is similar to the state following execution of an HLT instruc­
tion. In this mode, the processor stops executing instructions until an NMI interrupt, hardware
reset, or INIT is received. The processor generates a special bus cycle to indicate that it has
entered shutdown mode. Software designers may need to be aware of the response of hardware
to receiving this signal. For example, hardware may turn on an indicator light on the front panel,
generate an NMI interrupt to record diagnostic information, or invoke reset initialization.

If the shutdown occurs while the processor is executing an NMI interrupt handler, then only a
hardware reset can restart the processor.

Error Code

Zero. The processor always pushes an error code of 0 onto the stack of the double-fault handler.

Saved Instruction Pointer

The saved contents of CS and EIP registers are undefined.

Program State Change

A program-state following a double-fault exception is undefined. The program or task cannot
be resumed or restarted. The only available action of the double-fault exception handler is to
collect context information for use in diagnostics and shut down or reset the processor.

5-28

I

INTERRUPT AND EXCEPTION HANDLING

Interrupt 9-CoProcessor Segment Overrun

Exception Class Abort. (Intel reserved; do not use. The processor does not generate
this exception.)

Description

Indicates that an Inte1386 CPU-based systems with an Inte1387 math coprocessor detected a
page or segment violation while transferring the middle portion of an Inte1387 math coprocessor
operand. The Pentium Pro, Pentium, and Intel486 processors do not generate this exception;
instead, this condition is detected with a general protection exception (#GP), interrupt 13.

Error Code

None.

Saved Instruction Pointer

The saved contents of CS and ElP registers point to the instruction that generated the exception.

Program State Change

A program-state following a coprocessor segment-overrun exception is undefined. The program
or task cannot be resumed or restarted. The only available action of the double-fault exception
handler is to save the instruction pointer and reinitialize the FPU using the FNINIT instruction.

I
5-29

INTERRUPT AND EXCEPTION HANDLING

Interrupt 1 O-Invalid TSS Exception (#TS)

Exception Class Fault.

Description

Indicates that a task switch was attempted that referenced an invalid TSS. It also indicates that
a stack segment selector obtained from a TSS was beyond the GDT or LDT limit, did not point
to a writable data segment, did not have the proper RPL value, or did not reference a segment
descriptor with the proper DPL value. Table 5-5 shows the conditions that will cause an invalid­
TSS exception to be generated. In general, these invalid conditions result from protection viola­
tions for the TSS descriptor, the LDT that contains the TSS descriptor, or the stack, code, or data
segments referenced by the TSS.

Table 5-5. Invalid TSS Conditions

Error Code Index Invalid Condition

TSS segment selector index TSS segment limit less than 67H

LDT segment selector index Invalid LDT or LDT not present

Stack segment selector index Stack segment selector exceeds descriptor table limit

Stack segment selector index Stack segment is not writable

Stack segment selector index Stack segment DPL not compatible with CPL

Stack segment selector index Stack segment selector RPL not compatible with CPL

Code segment selector index Code segment selector exceeds descriptor table limit

Code segment selector index Code segment is not executable

Code segment selector index Non-conforming code segment DPL not equal to CPL

Code segment selector index Conforming code segment DPL greater than CPL

Data segment selector index Data segment selector exceeds descriptor table limit

Data segment selector index Data segment not readable

This exception can generated either in the context of the original task or in the context of the
new task. Until the processor has completely verified the presence of the new TSS, the exception
is generated in the context of the original task. Once the existence of the new TSS is verified,
the task switch is considered complete. Any invalid-TSS conditions detected after this point are
handled in the context of the new task. (A task switch is considered complete when the TR
register is loaded with the segment selector for the new TSS and, if the switch is due to a proce­
dure call or interrupt, the link field of the new TSS references the old TSS.)

To insure that a TSS is available to process dIe exception, the invalid-TSS exception handler
must be a task called using a task gate.

5-30

I

INTERRUPT AND EXCEPTION HANDLING

Error Code

An error code containing the segment selector index for the segment descriptor that caused the
violation is pushed onto the stack of the exception handler. If the EXT flag is set, it indicates that
the exception was caused by an event external to the currently running program (for example, if
an external interrupt handler using a task gate attempted a task switch to an invalid TSS).

Saved Instruction Pointer

If the exception condition was detected before the task switch was carried out, the saved
contents of CS and EIP registers point to the instruction that invoked the task switch. If the
exception condition was detected after the task switch was carried out, the saved contents of CS
and EIP registers point to the first instruction of the new task.

Program State Change

The ability of the invalid-TSS handler to recover from the fault depends on the error condition
than causes the fault. See Section 6.3., "Task Switching" for more information on the task switch
process and the possible recovery actions that can be taken.

If an invalid TSS exception occurs during a task switch, it can occur before or after the commit­
to-new-task point. If it occurs before the commit point, no program state change occurs. If it
occurs after the commit point (when segment descriptor information for the new segment selec­
tors have been loaded in the segment registers), the processor will load all the state information
from the new TSS before it generates the exception. During a task switch, the processor first
loads all the segment registers with segment selectors from the TSS, then checks their contents
for validity. If an invalid TSS exception is discovered, the remaining segment registers are
loaded but not checked for validity and therefore may not be usable for referencing memory. The
invalid TSS handler should not rely on being able to use the segment selectors found in the CS,
SS, DS, ES, FS, and OS registers without causing another exception. The exception handler
should load all segment registers before trying to resume the new task; otherwise, general­
protection exceptions (#OP) may result later under conditions that make diagnosis more diffi­
cult. There are three ways to handle this situation:

•

•

•

I

Handle the invalid TSS exception with a task. The task switch back to the interrupted task
causes the processor to check the registers as it loads them from the TSS.

Use the MOV or the PUSH and POP instructions on all data segment registers. Each POP
instruction causes the processor to check the new contents of the segment register.

Check the saved contents of each data segment register in the TSS, simulating the test that
the processor makes when it loads a segment register.

5-31

INTERRUPT AND EXCEPTION HANDLING

Interrupt 11-Segment Not Present (#NP)

Exception Class Fault.

Description

Indicates that the present flag of a segment or gate descriptor is clear. The processor can generate
this exception during any of the following operations:

•

•

•
•

While attempting to load CS, DS, ES, FS, or as registers. [Detection of a not-present
segment while loading the SS register causes a stack fault exception (#SS) to be
generated.] This situation can occur while performing a task switch.

While attempting to load the LDTR using an LLDT instruction. Detection of a not-present
LDT while loading the LDTR during a task switch operation causes an invalid-TSS
exception (#TS) to be generated.

When executing the LTR instruction and the TSS is marked not present.

While attempting to use a gate descriptor or TSS that is marked segment-not-present, but is
otherwise valid.

An operating system typically uses the segment-not-present exception to implement virtual
memory at the segment level. If the exception handler loads the segment and returns, the inter­
rupted program or task resumes execution.

A not-present indication in a gate descriptor, however, does not indicate that a segment is not
present (because gates do not correspond to segments). The operating system may use the
present flag for gate descriptors to trigger exceptions of special significance to the operating
system.

Error Code

An error code containing the segment selector index for the segment descriptor that caused the
violation is pushed onto the stack of the exception handler. If the EXT flag is set, it indicates that
the exception resulted from an external event (NMI or INTR) that caused an interrupt, which
subsequently referenced a not-present segment. The IDT bit is set if the error code refers to an
IDT entry (e.g., an INT instruction referencing a not-present gate).

Saved Instruction Pointer

The saved contents of CS and EIP registers normally point to the instruction that generated the
exception. If the exception occurred while loading segment descriptors for the segment selectors
in a new TSS, the CS and EIP registers point to the first instruction in the new task. If the excep­
tion occurred while accessing a gate descriptor, the CS and EIP registers point to the instruction
that invoked the access (for example a CALL instruction that references a call gate).

5-32

I

INTERRUPT AND EXCEPTION HANDLING

Program State Change

If the segment-not-present exception occurs as the result of loading a register (CS, DS, SS, ES,
FS, GS, or LDTR), a program-state change does accompany the exception, because the register
is loaded. Recovery from this exception is possible by simply loading the missing segment into
memory and setting the present flag in the segment's segment descriptor.

If the segment-not-present exception occurs while accessing a gate descriptor, a program-state
change does not accompany the exception. Recovery from this exception is possible merely by
setting the present flag in the segment's segment descriptor.

If a segment-not-present exception occurs during a task switch, it can occur before or after the
commit-to-new-task point. If it occurs before the commit point, no program state change occurs.
If it occurs after the commit point, the processor will load all the state information from the new
TSS (without performing any additional limit, present, or type checks) before it generates the
exception. The segment-not-present exception handler should thus not rely on being able to use
the segment selectors found in the CS, SS, DS, ES, FS, and GS registers without causing another
exception. (See the Program State Change Chapter 5, "Interrupt lO-Invalid TSS Exception
(#TS)" for additional information on how to handle this situation.)

I
5-33

INTERRUPT AND EXCEPTION HANDLING

Interrupt 12-Stack Fault Exception (#SS)

Exception Class Fault.

Description

Indicates that one of the following stack related conditions was detected:

•

•

A limit violation is detected during an operation that refers to the SS register. Operations
that can cause a limit violation include stack-oriented instructions such as POP, PUSH,
CALL, RET, IRET, ENTER, and LEAVE, as well as other memory references which
implicitly or explicitly use the SS register (for example, MOV AX, [BP+6] or MOV AX,
SS:[EAX+6]). The ENTER instruction generates this exception when there is not enough
stack space for allocating local variables.

A not-present stack segment is detected when attempting to load the SS register. This
violation can occur during the execution of a task switch, a CALL instruction to a different
privilege level, a return to a different privilege level, an LSS instruction, or a MOV or POP
instruction to the SS register.

Recovery from this fault is possible by either extending the limit of the stack segment (in the
case of a limit violation) or loading the missing stack segment into memory (in the case of a not­
present violation.

Error Code

If the exception is caused by a not-present stack segment or by overflow of the new stack during
an inter-privilege-level call, the error code contains a segment selector to the segment which
caused the exception. Here, the exception handler can test the present flag the segment
descriptor pointed to determine the cause of the exception. For a normal limit violation (on a
stack segment already in use) the error code is set to O.

Saved Instruction Pointer

The saved contents of CS and EIP registers generally point to the instruction that generated the
exception. However, when the exception results from attempting to load a not-present stack
segment during a task switch, the CS and EIP registers point to the first instruction of the new
task.

Program State Change

A program-state change does not generally accompany a stack-fault exception, because the
instruction that generated the fault is not executed. Here, the instruction can be restarted after
the exception handler has corrected the stack fault condition.

When a stack-fault exception occurs during a task switch, the segment registers may not be
usable for addressing memory. During a task switch, the selector values are loaded before the
descriptors are checked. If a stack exception is generated, the remaining segment registers not

5-34

I

INTERRUPT AND EXCEPTION HANDLING

have been checked. The stack fault handler should not expect to use the segment selectors found
in the CS, SS, DS, ES, FS, and GS registers following a stack-fault exception without causing
another exception. The exception handler should check all segment registers before trying to
resume the new task; otherwise, general protection faults may result later under conditions that
are more difficult to diagnose.

If a stack fault occurs during a task switch, it can occur before or after the commit-to-new-task
point. If it occurs before the commit point, no program state change occurs. If it occurs after the
commit point, the processor will load all the state information from the new TSS (without
performing any additional limit, present, or type checks) before it generates the exception. The
stack fault handler should thus not rely on being able to use the segment selectors found in the
CS, SS, DS, ES, FS, and GS registers without causing another exception. (See Chapter 5,
"Interrupt lO-Invalid TSS Exception (#TS)" for additional information on how to handle
this situation.)

I
5-35

INTERRUPT AND EXCEPTION HANDLING

Interrupt 13-General Protection Exception (#GP)

Exception Class Fault.

Description

Indicates that the processor detected one of a class of protection violations called "general­
protection violations." The conditions that cause this exception to be generated comprise all the
protection violations that do not cause other exceptions to be generated (such as, invalid-TSS,
segment-not-present, stack-fault, or page-fault exceptions). The following conditions cause
general-protection exceptions to be generated:

•
•
•
•
•
•

•
•

•

•

•

•

•

•
•

•

5-36

Exceeding the segment limit when accessing the CS, DS, ES, FS, or GS segments.

Exceeding the segment limit when referencing a descriptor table.

Transferring execution to a segment that is not executable.

Writing to a code segment or a read-only data segment.

Reading from an execute-only code segment.

Loading the SS register with a segment selector for a read-only segment (unless the
selector comes from a TSS during a task switch, in which case an invalid-TSS exception
occurs).

Loading the SS, DS, ES, FS, or GS register with a segment selector for a system segment.

Loading the DS, ES, FS, or GS register with a segment selector for an execute-only code
segment.

Loading the SS register with the segment selector of an executable segment or a null
segment selector.

Loading the CS register with a segment selector for a data segment or a null segment
selector

Accessing memory using the DS, ES, FS, or GS register when it contains a null segment
selector.

Switching to a busy task during a call or jump to a TSS or a return to a TSS initiated with
an IRET instruction.

Using a segment selector on task switch that points to a TSS descriptor in the current LDT.
TSS descriptors can only reside in the GDT.

Violating any of the privilege rules described in Chapter 4, Protection.

Exceeding the instruction length limit of 15 bytes (this only can occur when redundant
prefixes arc placcd bcfore an instruction).

Loading the CRO register with a set PG flag (paging enabled) and a clear PE flag
(protection disabled).

I

•
•

•

•
•

•
•
•

•
•

•

•
•

INTERRUPT AND EXCEPTION HANDLING

Loading the CRO register with a set NW flag and a clear CD flag.

Referencing an entry in the IDT (following an interrupt or exception) that is not an
interrupt, trap, or task gate.

Attempting to access an interrupt or exception handler through an interrupt or trap gate
from virtual-8086 mode when the handler's DPL is greater than O.

Attempting to write a 1 into a reserved bit of CR4.

Attempting to execute a privileged instruction when the CPL is not equal to 0 (see Section
4.9., "Privileged Instructions" for a list of privileged instructions).

Writing to a reserved bit in an MSR.

Accessing a gate that contains a null segment selector.

Executing the INTn instruction when the CPL is greater than the DPL of the referenced
interrupt, trap, or task gate.

The segment selector in a call, interrupt, or trap gate does not point to a code segment.

The segment selector operand in the LLDT instruction is a local type (TI flag is set) or
does not point to a segment descriptor of the LDT type.

The segment selector operand in the LTR instruction is local or points to a TSS that is not
available.

The target code segment selector for a call, jump, or return is null.

If the PAE flag in control register CR4 is set and the processor detects any reserved bits in
a page-directory-pointer-table entry set to 1. These bits are checked during a write to
control registers CRO, CR3, or CR4 that causes a reloading of the page-directory-pointer­
table entry.

A program or task can be restarted following any general-protection exception. If the exception
occurs while attempting to call an interrupt handler, the interrupted program can be restartable,
but the interrupt may be lost.

Error Code

The processor pushes an error code onto the exception handler's stack. If the fault condition was
detected while accessing a segment descriptor, the error code contains a segment selector to the
descriptor; otherwise, the error code is O. The source of the selector in an error code may be any
of the following:

•
•
•

An operand of the instruction.

A selector from a gate which is the operand of the instruction.

A selector from a TSS involved in a task switch.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the exception.

I
5-37

INTERRUPT AND EXCEPTION HANDLING

Program State Change

In general, a program-state change does not accompany a general-protection exception, because
the invalid instruction or operation is not executed. An exception handler can be designed to
correct all of the conditions that cause general-protection exceptions and restart the program or
task without any loss of program continuity.

If a general-protection exception occurs during a task switch, it can occur before or after the
commit-to-new-task point. If it occurs before the commit point, no program state change occurs.
If it occurs after the commit point, the processor will load all the state information from the new
TSS (without performing any additional limit, present, or type checks) before it generates the
exception. The general-protection exception handler should thus not rely on being able to use
the segment selectors found in the CS, SS, DS, ES, FS, and GS registers without causing another
exception. (See the Program State Change section of Chapter 5, "Interrupt IO-Invalid TSS
Exception (#TS)" for additional information on how to handle this situation.)

5-38

I

INTERRUPT AND EXCEPTION HANDLING

Interrupt 14-Page Fault Exception (#PF)

Exception Class Fault.

Description

Indicates that, with paging enabled (the PG flag in the CRO register is set), the processor detected
one of the following conditions while using the page-translation mechanism to translate a linear
address to a physical address:

•

•

The P (present) flag in a page-directory or page-table entry needed for the address
translation is clear, indicating that a page table or the page containing the operand is not
present in physical memory.

The procedure does not have sufficient privilege to access the indicated page (for example,
a procedure running in user mode attempts to access a supervisor-mode page).

The exception handler can recover from page-not-present conditions and restart the program or
task without any loss of program continuity. It can also restart the program or task after a privi­
lege violation, but the problem that caused the privilege violation may be uncorrectable.

Error Code

Yes (special format). The processor provides the page fault handler with two items of informa­
tion to aid in diagnosing the exception and recovering from it:

•

I

An error code on the stack. The error code for a page fault has a format different from that
for other exceptions (see Figure 5-7). The error code tells the exception handler three
things:

The P flag indicates whether the exception was due to a not-present page (0) or to
either an access rights violation or the use of a reserved bit (1).

The W/R flag indicates whether the memory access that caused the exception was a
read (0) or write (1).

The U/S flag indicates whether the processor was executing at user mode (1) or
supervisor mode (0) at the time of the exception.

The RSVD flag indicates that the processor detected Is in reserved bits of the page
directory, when the PSE or PAE flags in control register CR4 are set to 1.

5-39

INTERRUPT AND EXCEPTION HANDLING

•

31 4 3 2 1 0

Reserved

P 0 The fault was caused by a non-present page.
1 The fault was caused by a page-level protection violation.

W/R 0 The access causing the fault was a read.
1 The access causing the fault was a write.

UlS 0 The access causing the fault originated when the processor
was executing in supervisor mode.

1 The access causing the fault originated when the processor
was executing in user mode.

RSVD 0 The fault was caused by reserved bits set to 1 in a page directory
1 The fault was not caused reserved bit violation.

Figure 5-7_ Page Fault Error Code

The contents of the CR2 register. The processor loads the CR2 register with the 32-bit
linear address that generated the exception. The page-fault handler can use this address to
locate the corresponding page directory and page table entries. If another page fault occurs
during execution of the page fault handler, the handler will push the contents of the CR2
register onto the stack.

If a page fault is caused by a page-level protection violation, the access and dirty flags in the
page directory are set when the fault occur. The access flag in the page table is only set if there
are no page-level protection violations or if a read/write violation occurs.

Saved Instruction Pointer

The saved contents of CS and EIP registers generally point to the instruction that generated the
exception. If the page-fault exception occurred during a task switch, the CS and EIP registers
may point to the first instruction of the new task (as described in the following "Program State
Change" section).

Program State Change

A program-state change does not normally accompany a page-fault exception, because the
instruction that causes the exception to be generated is not executed. After the page-fault excep­
tion handler has corrected the violation (for example, loaded the missing page into memory),
execution of the program or task can be resumed.

When a page-fault exception is generated during a task switch, the program-state may change,
as follows. During a task switch, a page-fault exception can occur during any of following
operations:

5-40

I

•
•
•

•

INTERRUPT AND EXCEPTION HANDLING

While writing the state of the original task into the TSS of that task.

While reading the GDT to locate the TSS descriptor of the new task.

While reading the TSS of the new task to check the types of segment descriptors from the
TSS.

While reading the LDT of the new task to verify the segment registers stored in the new
TSS.

In the last two cases the exception occurs in the context of the new task. The instruction pointer
refers to the first instruction of the new task, not to the instruction which caused the task switch
(or the last instruction to be executed, in the case of an interrupt). If the design of the operating
system permits page faults to occur during task-switches, the page-fault handler should be called
through a task gate.

If a page fault occurs during a task switch, it can occur before or after the commit-to-new-task
point. If it occurs before the commit point, no program state change occurs. If it occurs after the
commit point, the processor will load all the state information from the new TSS (without
performing any additional limit, present, or type checks) before it generates the exception. The
page fault handler should thus not rely on being able to use the segment selectors found in the
CS, SS, DS, ES, FS, and GS registers without causing another exception. (See the Program State
Change section in Chapter 5, "Interrupt lO-Invalid TSS Exception (#TS)" for additional infor­
mation on how to handle this situation.)

Additional Exception Handling Information

Special care should be taken to ensure that a page fault does not cause the processor to use an
invalid stack pointer (SS:ESP). Software written for 16-bit Intel Architecture processors often
use a pair of instructions to change to a new stack, for example:

MOV SS, AX

MOV SP, StackTop

When executing this code on one of the 32-bit Intel Architecture processors, it is possible to get
a page fault after the segment selector has been loaded into the SS register but before the ESP
register has been loaded. At this point, the two parts of the stack pointer (SS:ESP) are inconsis­
tent. The new stack segment is being used with the old stack pointer.

The processor does not use the inconsistent stack pointer if the page-fault handler switches to a
well defined stack (that is, the handler is a task or a more privileged procedure). However, if the
page fault occurs at the same privilege level and in the same task as the page-fault handler, the
processor will attempt to use the stack indicated by the inconsistent stack pointer.

In systems that use paging and handle page faults within the faulting task (with trap or interrupt
gates), software executing at the same privilege level as the page fault handler should initialize
a new stack by using the LSS instruction rather than a pair of MOV instructions, as describe
earlier in this note. When the page fault handler is running at privilege level 0 (the normal case),
the problem is limited to procedures or tasks that run at privilege level 0, typically the kernel of
the operating system.

I
5-41

INTERRUPT AND EXCEPTION HANDLING

Interrupt 16-Floating-Point Error Exception (#MF)

Exception Class Fault.

Description

Indicates that the FPU has detected a floating-poi nt-error exception. The NE flag in the register
CRO must be set for an interrupt 16, floating-point-error exception to be generated. (See Section
2.5., "Control Registers" for a detailed description of the NE flag.)

While executing floating-point instructions, the FPU detects and reports six types of floating­
point errors:

•

•
•
•
•
•

Invalid operation (#1)

Stack overflow or underflow (#IS)

Invalid arithmetic operation (#JA)

Divide-by-zero (#Z)

Denormalized operand (#D)

Numeric overflow (#0)

Numeric underflow (#U)

Inexact result (precision) (#P)

For each of these error types, the FPU provides a flag in the FPU status register and a mask bit
in the FPU control register. If the FPU detects a floating-point error and the mask bit for the error
is set, the FPU handles the error automatically by generating a predefined (default) response and
continuing program execution. The default responses have been designed to provide a reason­
able result for most floating-point applications.

If the mask for the error is clear and the NE flag in register CRO is set, the FPU does the
following:

1. Sets the necessary flag in the FPU status register

2. Waits until the next "waiting" floating-point instruction or WAITIFWAIT instruction is
encountered in the program's instruction stream. (The FPU checks for pending floating­
point exceptions on "waiting" instructions prior to executing them. All the floating-point
instructions except the FNINIT, FNCLEX, FNSTSW, FNSTSW AX, FNSTCW,
FNSTENV, and FNSAVE instructions are "waiting" instructions.)

3. Generates an internal error signal that cause the processor to generate a floating-point-error
exception.

5-42

I

INTERRUPT AND EXCEPTION HANDLING

All of the floating-point-error conditions can be recovered from. The floating-point-error excep­
tion handler can determine the error condition that caused the exception from the settings of the
flags in the FPU status word. See Section 7.7.3., "Software Exception Handling" in Chapter 7,
Floating-Point Unit, of the Pentium® Pro Family Developer s Manual, Volume 2 for more infor­
mation on handling floating-paint-error exceptions.

Error Code

None. The FPU provides its own error information.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the floating-point or WAITIFWAIT instruc­
tion that was about to be executed when the floating-point-error exception was generated. This
is not the faulting instruction in which the error condition was detected. The address of the
faulting instruction is contained in the FPU instruction pointer register. See Section 7.3.7., "The
Floating-Point Instruction and Data Pointers" in Chapter 7, Floating-Point Unit, of the
Pentium® Pro Family Developers Manual, Volume 2 for more information about information
the FPU saves for use in handling floating-point-error exceptions.

Program State Change

A program-state change generally accompanies a floating-point-error exception because the
handling of the exception is delayed until the next waiting floating-point or WAIT/FWAIT
instruction following the faulting instruction. The FPU, however, saves sufficient information
about the error condition to allow recovery from the error and re-execution of the faulting
instruction if needed.

In situations where non-floating-point instructions depend on the results of a floating-point
instruction, a WAIT or FWAIT instruction can be inserted in front of a dependent instruction to
force a pending floating-point-error exception to be handled before the dependent instruction is
executed. See Section 7.9., "Floating-Point Exception Synchronization" in Chapter 7, Floating­
Point Unit, of the Pentium® Pro Family Developer's Manual, Volume 2 for more information
about synchronization of floating-point-error exceptions.

I
5-43

INTERRUPT AND EXCEPTION HANDLING

Interrupt 17-Alignment Check Exception (#AC)

Exception Class Fault.

Description

Indicates that the processor detected an unaligned memory operand when alignment checking
was enabled. Alignment checks are only carried out in data (or stack) segments (not in code or
system segments). An example of an alignment-check violation is a word stored at an odd byte
address, or a doubleword stored at an address that is not an integer multiple of 4. Table 5-6 lists
the alignment requirements various data types recognized by the processor.

Table 5-6. Alignment Requirements by Data Type

Data Type Address Must Be Divisible By

Word 2

Doubleword 4

Single Real 4

Double Real 8

Extended Real 8

Segment Selector 2

32-bit Far Pointer 2

48-bit Far Pointer 4

32-bit Pointer 4

GDTR, IDTR, LDTR, or Task Register Contents 4

FSTENV/FLDENV Save Area 4 or 2, depending on operand size

FSAVE/FRSTOR Save Area 4 or 2, depending on operand size

Bit String 2 or 4 depending on the operand-size attribute.

To enable alignment checking, the following conditions must be true:

• AM flag in CRO register is set.

• AC flag in the EFLAGS register is set.

• The CPL is 3 (protected mode or virtual-8086 mode).

Alignment-check faults are generated only when operating at privilege level 3 (user mode).
Memory references that default to privilege level 0, such as segment descriptor loads, do not
generate alignment-check faults, even when caused by a memory reference made from privilege
level 3.

5-44

I

INTERRUPT AND EXCEPTION HANDLING

Storing the contents of the GDTR, IDTR, LDTR, or task register in memory while at privilege
level 3 can generate an alignment-check fault. Although application programs do not normally
store these registers, the fault can be avoided by aligning the information stored on an odd word­
address.

FSAVE and FRSTOR instructions generate unaligned references which can cause alignment­
check faults. These instructions are rarely needed by application programs.

Error Code

Yes (always zero).

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the exception.

Program State Change

A program-state change does not accompany an alignment-check fault, because the instruction
is not executed.

I
5-45

INTERRUPT AND EXCEPTION HANDLING

Interrupt 18-Machine Check Exception (#MC)

Exception Class Abort.

Description

Indicates that the processor detected an internal machine error. The machine check exception is
model-specific, available only on the Pentium Pro and Pentium processors. The implementation
of the machine check exception is different on the Pentium Pro and Pentium processors, may not
be compatible with future Intel Architecture processors. (Use the CPUID instruction to deter­
mine whether this feature is present.)

The machine check exception and machine check architecture is discussed in detail in Chapter
16, Machine Check Architecture.

Error Code

None. Error information is provide by machine-check MSRs.

Saved Instruction Pointer

If the EIPV flag in the MCG_STATUS MSR is set, the saved contents of CS and EIP registers
are directly associated with the error that caused the machine-check exception to be generated;
if the flag is clear, the saved instruction pointer may not be associated with the error (see Section
16.3.1.2., "MCG_STATUS MSR").

Program State Change

A program-state change always accompanies a machine-check exception. If the machine-check
mechanism is enabled (the MCE flag in control register CR4 is set), a machine-check exception
results in an abort; that is, information about the exception can be collected from the machine
check MSRs, but the program cannot be restarted. If the machine-check mechanism is not
enabled, a machine-check exception causes the processor to enter the shutdown state.

5-46

I

INTERRUPT AND EXCEPTION HANDLING

Interrupts 32 to 255-Software Interrupts or Responses to the
INTR# Signal

Exception Class No applicable.

Description

Indicates that the processor did one of the following things:

• Executed an INTn instruction, where the instruction operand is one of the vector numbers
from 32 through 255.

• Responded to an interrupt request at the INTR# pin, when the pin is associated with one of
the interrupt vectors from 32 through 255.

Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that follows the INTn instruc­
tion or instruction following the instruction on which the INTR# signal occurred.

Program State Change

A program-state change does not accompany interrupts generated by the INTn instruction or the
INTR# signal. The INTn instruction generates the interrupt within the instruction stream. When
the processor receives an INTR# signal, it commits all state changes for all previous instructions
before it responds to the interrupt; so, program execution can resume upon returning from the
interrupt handler.

I
5-47

6
Task Management

I

CHAPTER 6
TASK MANAGEMENT

This chapter describes the Pentium Pro processor's task management facilities. These facilities
are only available when the processor is running in protected mode.

6.1. TASK-MANAGEMENT OVERVIEW

A task is a unit of work that a processor can dispatch, execute, and suspend. It can be used to
execute a program, a task or process, an operating-system service utility, an interrupt or excep­
tion handler, or a kernel or executive utility.

The Pentium Pro processor provides a mechanism for saving the state of a task, for dispatching
tasks for execution, and for switching from one task to another. When operating in protected
mode, all processor execution takes place from within a task. Even simple applications must
define at least one task. More complex systems can use the processor's task management facil­
ities to support multitasking applications.

6.1.1. Task Structure

A task is made up of two parts: a task execution space and a task state segment (TSS). The task
execution space consists of a code segment, a stack segment, and one or more data segments
(see Figure 6-1). If an operating system or executive uses the processor's privilege-level protec­
tion mechanism, the task execution space also provides a separate stack for each privilege level.

The TSS specifies the segments that make up the task execution space and provides a storage
place for task state information. In multitasking systems, the TSS also provides a mechanism for
linking tasks.

A task is identified by the segment selector for its TSS. When a task is loaded into the processor
for execution, the task's segment selector and the base address and limit for the TSS are loaded
into the task register (see Section 2.4.4., "Task Register (TR)").

If paging is implemented for the task, the base address of the page directory used by the task is
loaded into control register CR3.

I
6-1

TASK MANAGEMENT

Code I ~
Segment

Task State - Data

I Segment I Segment

(TSS)
- Stack .. Segment

- (Priv. Level 3)
-

StackSeg. I
Priv. Level 0

'--- Stack Seg. J
L-...j Priv. Level 1

Task Register - Stack

I I Segment

CR3 (Priv. Level 2)

Figure 6-1. Structure of a Task

6.1.2. Task State

The following items define the state of the currently executing task:

• The task's current execution space, defined by the segment selectors in the segment
registers (CS, DS, SS, ES, FS, and GS).

•
•
•
•
•
•
•
•
•

The state of the general-purpose registers.

The state of the EFLAGS register.

The state of the EIP register.

The state of control register CR3.

The state of the task register.

The state of the LDTR register.

The I/O map base address and I/O map (contained in the TSS).

Stack pointers to the privilege 0, 1, and 2 stacks (contained in the TSS).

Link to previously executed task (contained in the TSS).

Prior to dispatching a task, all of these items are contained in the task's TSS, except the state of
the task register. Also, the complete contents of the LDTR register are not contained in the TSS,
only the segment selector for the LDT.

6-2

I

TASK MANAGEMENT

6.1.3. Executing a Task

Software or the processor can dispatch a task for execution in one of the following ways:

• A explicit call to a task with the CALL instruction.

•
•
•

A explicit jump to a task with the JMP instruction.

An implicit call (by the processor) to an interrupt-handler task.

An implicit call to an exception-handler task.

All of these methods of dispatching a task identify the task to be dispatched with a segment
selector that points either to a task gate or the TSS for the task.

When a task is dispatched for execution, a task switch automatically occurs between the
currently running task and the dispatched task. During a task switch, the execution environment
of the currently executing task (called the task's state or context) is saved in its TSS and execu­
tion of the task is suspended. The context for the dispatched task is then loaded into the processor
and execution of that task begins as the instruction pointed to by the newly loaded EIP register.

If the currently executing task (the calling task) called the task being dispatched (the called task),
the segment selector for the calling task is stored in the TSS of the called task to provide a link
back to the calling task.

For all Intel architecture processors, tasks are not recursive. A task cannot call or jump to itself.

Interrupts and exceptions can be handled with a task switch to a handler task. Here, the processor
not only can perform a task switch to handle the interrupt or exception, but it can automatically
switch back to the interrupted task upon returning from the interrupt- or exception-handler task.
This mechanism can handle interrupts that occur during interrupt tasks.

As part of task switch, the processor can also switch to another LDT, allowing each task to have
a different logical-to-physical address mapping. This protection facility helps isolate tasks and
prevents them from interfering with one another. The page directory base register (CR3) also is
reloaded on a task switch, allowing each task to have its own set of page tables.

Use of task management facilities for handling multitasking applications is optional. Multi­
tasking can be handled in software, with each software defined task executed in the context of a
single Pentium Pro processor task.

6.2. TASK MANAGEMENT DATA STRUCTURES

The processor defines four data structures for handling task related activities:

•
•
•
•

I

Task state segment (TSS).

Task gate descriptor.

TSS descriptor.

Task register.

6-3

TASK MANAGEMENT

When operating in protected mode, a TSS and TSS descriptor must be created for at least one
task, and the segment selector for the TSS must be loaded into the task register (using the LTR
instruction).

6.2.1. Task State Segment (TSS)

The processor state information needed to restore a task is saved in a system segment called the
task state segment (TSS). Figure 6-2 shows the format of a TSS for tasks designed for 32-bit
CPUs. (Compatibility with 16-bit Intel 286 processor tasks is provided by a different kind of
TSS, see Figure 6-9). The fields of a TSS are divided into two main categories: dynamic fields
and static fields.

The processor updates the dynamic fields when a task is suspended during a task switch. The
following are dynamic fields:

General-purpose register fields
State of the EAX, ECX, EDX, EBX, ESP, EBP, ESI, and ED! registers prior to
the task switch.

Segment selector fields
State of the ES, CS, SS, DS, FS, and GS registers prior to the task switch.

EFLAGS register field
State of the EFAGS register prior to the task switch.

EIP (instruction pointer) field
State of the EIP register prior to the task switch.

Link (to previous task) field
Contains the segment selector for the TSS of the previous task (updated on a
task switch only when a return is expected).

The processor reads the static fields, but does not normally change them. These fields are set up
when a task is created. The following are static fields:

LDT segment selector field
Contains the segment selector for the task's LDT.

CR3 control register field
Contains the base physical address of the page directory to be used by the task.
Control register CR3 is also known as the page directory base register (PDBR).

Privilege level-O, -1, and -2 stack pointer fields
These stack pointers consist of a logical address made up of the segment
selector for the stack segment (SSO, SS I, and SS2) and an offset into the stack
(ESPO, ESP1, and ESP2).

T (debug trap) flag (byte 100, bit 0)

6-4

When set, the T flag causes the processor to raise a debug exception when
a task switch occurs (see Section 10.3.1.5., "Task-Switch Exception
Condition").

I

31 15

110 Map Base Address

LOT Segment Selector

GS

FS

OS

SS

CS

ES

EOI

ESI

EBP

ESP OS

EBX SS

EOX

ECX

EAX

EFLAGS

EIP

CR3 (POBR)

.,.
'.'

' .. :', SS2

ESP2

',"
'.,,' • ,',',>" SS1

ESP1

,.' ,.,' SSO

ESPO
,

, Previous Task Link

D Reserved bits. Set to O.

Figure 6-2. 32-Bit Task State Segment (TSS)

TASK MANAGEMENT

o
IT 100

96

92

88

84

80

76

72

68

64

60

56

52

48

44

40

36

32

28

24

20

16

12

8

4

o

110 map base address field

I

Contains a 16-bit offset from the base of the TSS to the 110 permission bit map
and interrupt redirection bitmap. When present, these maps are stored in the
TSS at higher addresses. The 110 map base address points to the beginning of
the 110 permission bit map and the end of the interrupt redirection bit map.
See Chapter 8, Input/Output, in the Pentium® Pro Family Developer's
Manual, Volume 2 for more information about the 110 permission bit map. See
Section 12.3., "Interrupt and Exception Handling in Virtual-8086 Mode" for
a detailed description of the interrupt redirection bit map.

6-5

TASK MANAGEMENT

If paging is used, care should be taken to avoid placing a page boundary within the part of the
TSS that the processor reads during a task switch (the first 104 bytes). If a page boundary is
placed within this part of the TSS, the pages on either side of the boundary must be present at
the same time. Also, if paging is used, the pages corresponding to the previous task's TSS, the
current task's TSS, and the descriptor table entries for each should be marked as present and
read/write.

6.2.2. TSS Descri plor

The TSS, like all other segments, is defined by a segment descriptor. Figure 6-3 shows the
format of a TSS descriptor. TSS descriptors may only be placed in the GDT; they cannot be
placed in an LDT or the IDT. An attempt to access a TSS using a segment selector with its TI
flag set (which indicates the current LDT) causes a general-protection exception (#GP) to be
generated. A general-protection exception is also generated if an attempt is made to load a
segment selector for a TSS into a segment register.

TSS Descriptor
31 242322212019 1615141312 11 8 7 o

A Limit D Type
Base 31:24 GO o v 19:16

p p

o 1101811

Base 23:16
L L

4

31 1615 0

L-_____ B_a_se_A_d_d_re_ss __ 15_:0_o ______ ~i _______ s_eg_m_e_nt_L_im_i_t1_5_:0_0 ____ ~lo
AVL Available for use by system software
B Busy bit
BASE Segment Base Address
DPL Descriptor Privilege Level
G Granularity
LIMIT Segment Limit
P Segment Present
TYPE Segment Type

Figure 6-3. TSS Descriptor

The busy flag (B) in the type field indicates whether the task is busy. A busy task is currently
running or waiting to run. A type field with a value of lOOlB indicates an inactive task; a value
of lOl1B indicates a busy task. Tasks are not recursive. The processor uses the busy flag to
detect an attempt to call a task whose execution has been interrupted. To insure that there is only
one busy flag is associated with a task, each TSS should have only one TSS descriptor that points
to it.

The base, limit, and DPL fields and the granularity and present flags have functions similar to
their use in data-segment descriptors (see Section 3.4.3., "Segment Descriptors"). The limit field
must have a value equal to or greater than 67H, one byte less than the minimum size of a TSS.

6-6

I

TASK MANAGEMENT

Attempting to switch to a task whose TSS descriptor has a limit less than 67H generates an
invalid-TSS exception (#TS). A larger limit is required if an I/O permission bit map is included
in the TSS. An even larger limit would be required if the operating system stores additional data
in the TSS. The processor does not check for a limit greater than 67H on a task switch; however,
it does when accessing the I/O permission bit map or interrupt redirection bit map.

Any program or procedure with access to a TSS descriptor (that is, whose CPL is equal to or less
than the DPL of the TSS descriptor) can dispatch the task with a call or ajump. In most systems,
the DPLs of TSS descriptors should be set to values less than 3, so that only privileged software
can perform task switching. However, in multitasking applications, DPLs for some TSS descrip­
tors can be set to 3 to allow task switching at the application (or user) privilege level.

6.2.3. Task Register

The task register holds the 16-bit segment selector, 32-bit base address, 32-bit segment limit, and
descriptor attributes for the TSS of the current task (see Figure 2-4). It references a TSS
descriptor in the GDT. Figure 6-4 shows the path the processor uses to accesses the TSS.

The task register has both a visible part (that can be read and changed by software) and an invis­
ible part (that is maintained by the processor and is inaccessible by software). The segment
selector in the visible portion points to a TSS descriptor in the GDT. The processor uses the
invisible portion of the TR register to cache the base linear address, limit value, and segment
attributes from the TSS descriptor. Caching these values in a register makes execution of the task
more efficient, because the processor does not need to fetch these values from memory to refer­
ence the TSS of the current task.

The LTR (load task register) and STR (store task register) instructions load and read the visible
portion of the task register. The LTR instruction loads a segment selector (source operand) into
the task register that points to a TSS descriptor in the GDT, and then loads the invisible portion
of the task register with information from the TSS descriptor. This instruction is a privileged
instruction that may be executed only when the CPL is O. The LTR instruction generally is used
during system initialization to put an initial value in the task register. Afterwards, the contents
of the task register are changed implicitly when a task switch occurs.

The STR (store task register) instruction stores the visible portion of the task register in a
general-purpose register or memory.

On power up or reset of the processor, the segment selector and base address are set to the default
value of 0 and the limit is set to FFFFH.

I
6-7

TASK MANAGEMENT

TSS

\: ~

Visible Part Invisible Part
Task

Selector Base Address I Segment Limit I Register

GDT

TSS Descriptor
-

0

Figure 6-4. Task Register

6.2.4. Task Gate Descriptor

A task gate descriptor provides an indirect, protected reference to a task. Figure 6-5 shows the
format of a task gate descriptor. A task gate descriptor can be placed in the GDT, an LDT, or the
IDT.

The TSS segment selector field of a task gate descriptor points to a TSS descriptor in the GDT.
The RPL in this segment selector is not used.

The DPL of a task gate descriptor controls access to the descriptor during a task switch. When
a program or procedure makes a call or jump to a task through a task gate, the CPL and the RPL
of the task gate's segment selector must be less than or equal to the DPL of the task gate
descriptor. (Note that when a task gate is used, the DPL of the destination TSS descriptor is not
used.)

6-8

I

TASK MANAGEMENT

31 161514131211 8 7 0

H
D

1,1'1;1,1 I· p
L

31 1615 0

TSS Segment Selector
,

1 0

DPL Descriptor Privilege Level
P Segment Present
TYPE SegmentType

D Reserved

Figure 6-5. Task Gate Descriptor

A task can be accessed either through a task gate descriptor or a TSS descriptor. Both of these
structures are provided to satisfy the following needs:

•

•

•

The need for a task to have only one busy flag. Because the busy flag for a task is stored in
the TSS descriptor, each task should have only one TSS descriptor. There may, however, be
several task gates that reference the same TSS descriptor.

The need to provide selective access to tasks. Task gates fill this need, because they can
reside in an LDT and can have a DPL that is different from the TSS descriptor's DPL. A
program or procedure that does not have sufficient privilege to access the TSS descriptor
for a task in the GDT (which usually has a DPL of 0) may be allowed access to the task
through a task gate with a higher DPL. Task gates give the operating system greater
latitude for limiting access to specific tasks.

The need for an interrupt or exception to be handled by an independent task. Task gates
may also reside in the IDT, which. allows interrupts and exceptions to be handled by
handler tasks. When an interrupt or exception vector points to a task gate, the processor
switches to the specified task.

Figure 6-6 illustrates how a task gates in an LDT and a task gate in the IDT can both point to the
same task.

I
6-9

TASK MANAGEMENT

LDT GDT TSS

Task Gate
~

TSS Descriptor t----

IDT

Task Gate -

Figure 6-6. Task Gates Referencing the Same Task

6.3. TASK SWITCHING

The processor transfers execution to another task in any of four cases:

•

•

•
•

6-10

The current program, task, or procedure executes a IMP or CALL instruction to a TSS
descriptor in the GDT.

The current program, task, or procedure executes a IMP or CALL instruction to a task gate
descriptor in the GDT or the current LDT.

An interrupt or exception vector points to a task gate descriptor in the IDT.

The current task executes an IRET when the NT flag in the EFLAGS register is set.

I

TASK MANAGEMENT

The JMP, CALL, and IRET instructions, as well as interrupts and exceptions, are all generalized
mechanisms for redirecting a program. The referencing of a TSS descriptor or a task gate (when
calling or jumping to a task) or the state of the NT flag (on a task return) determines whether a
task switch occurs.

The processor performs the following operations when switching to a new task:

1. Checks that the current task is allowed to switch to the new task. Data-access privilege
rules apply to JMP and CALL instructions. The CPL of the current task and the RPL of the
segment selector for the new task must be less than or equal to the DPL of the TSS
descriptor or the task gate being referenced. Exceptions, interrupts, and the IRET
instruction are permitted to switch tasks regardless of the DPL of the destination task gate
or TSS descriptor.

2. Checks that the TSS descriptor of the new task is marked present and has a valid limit
(greater than or equal to 67H). Errors restore any changes made in the processor state when
an attempt is made to execute the error-generating instruction. This lets the return address
for the exception handler point to the error-generating instruction, rather than the
instruction following the error-generating instruction. The exception handler can fix the
condition which caused the error, and restart the task. The intervention of the exception
handler can be completely transparent to the application program.

3. Checks that the old TSS, new TSS, and all segment descriptors used in the task switch are
paged into system memory.

4. Saves the state ofthe current task. The processor finds the base address of the current TSS
in the task register and then copies the states of the following registers into the current
TSS: all the general-purpose registers, all the segment registers, the EFLAGS register, and
the instruction pointer register (EIP).

NOTE

At this point, if all checks and saves have been carried out successfully, the
processor commits to the task switch. If an unrecoverable error occurs in
steps 1 through 4, the processor does not complete the task switch. If an
unrecoverable error occurs after the commit point (in steps 6 and 7), the
processor completes the task switch (without performing additional access
and segment availability checks) and generates the appropriate exception
prior to beginning execution of the new task. If exceptions occur after the
commit point, the exception handler must finish the task switch itself before
allowing the processor to begin executing the task. See Chapter 5, "Interrupt
lO-Invalid TSS Exception (#TS)" for more information about the affect of
exceptions on a task when they occur after the commit point of a task switch.

5. Loads the task register with the segment selector to the new task's TSS descriptor, sets the
new task's busy flag, and sets the TS flag in control register CRO. The segment selector is
obtained either as the operand of the JMP or CALL instruction or from a task gate.

I
6-11

TASK MANAGEMENT

6. Loads the new task's state from its TSS and begins executing the new task. The registers
loaded are the LDTR register, the PDBR (control register CR3), the EFLAGS register, the
EIP register, the general-purpose registers, and the segment registers are all loaded with the
state of the new task. Any errors detected in this step occur in the context of the new task.
To an exception handler, the first instruction of the new task appears not to have been
executed.

The state of the currently executing task is always saved when a successful task switch occurs.
If the task is resumed, execution starts with the instruction pointed to by the saved EIP value,
and the registers are restored to the values they held when the task was suspended.

When switching tasks, the privilege level of the new task does not inherit its privilege level from
the suspended task. The new task begins executing at the privilege level specified in the CPL
field of the CS register, which is loaded from the TSS. Because the tasks are isolated by their
separate address spaces and TSSs and because privilege rules control access to a TSS, software
does not need to perform explicit privilege checks on a tasks switch.

Table 6-1 shows the exception conditions that the processor checks for when switching tasks. It
also shows the exception that is generated for each check if an error is detected and the segment
that the error code references. (The order of the check in the table is the order used in the
Pentium Pro processor. This order is model specific and may be different for other Intel Archi­
tecture processors.) Exception handlers designed to handle these exceptions may be subject to
recursive calls if they attempt to reload the segment selector that generated the exception. The
cause of the exception (or the first of multiple causes) should be fixed before reloading the
selector.

The TS (task switched) flag in the control register CRO is set every time a task switch occurs.
System software uses the TS flag to coordinate the operations of the integer unit with the
floating-point unit. The TS flag indicates that the context of the floating-point unit may be
different from that of the current task. See Section 2.5., "Control Registers" for a detailed
description of the function and use of the TS flag.

Table 6-1. Exception Conditions Checked During a Task Switch

Error Code
Condition Checked Exception1 Reference2

Segment selector for a TSS descriptor references #GP New Task's TSS
the GOT.

TSS descriptor is present in memory. #NP New Task's TSS

TSS descriptor is not busy. #TS (for IRET); #GP Task's back-link TSS
(for JMP, CALL, INT)

TSS segment limit greater than or equal to 108. #TS New Task's TSS

Registers are loaded from the values in the TSS

LOT segment selector of new task is valid 3. #TS New Task's LOT

Code segment OPL matches segment selector RPL. #TS New Code Segment

SS segment selector is valid 2 #TS New Stack Segment

Stack segment is present in memory #SF New Stack Segment

6-12

I

TASK MANAGEMENT

Table 6-1. Exception Conditions Checked During a Task Switch (Contd.)

Stack segment DPL matches CPL #TS New stack segment

LDT of new task is present in memory #TS New Task's LDT

CS segment selector is valid 3. #TS New Code Segment

Code segment is present in memory #NP New Code Segment

Stack segment DPL matches selector RPL #TS New Stack Segment

DS, ES, FS, and GS segment selectors are valid 3. #TS New Data Segment

DS, ES, FS, and GS segments are readable #TS New Data Segment

DS, ES, FS, and GS segments are present in memory #NP New Data Segment

DS, ES, FS, and GS segment DPL greater than or #TS New Data Segment
equal to CPL (unless these are conforming segments)

NOTES:

1. #NP is segment-not-present exception, #GP is general-protection exception, #TS is invalid-TSS excep­
tion, and #SF is stack-fault exception.

2. The error code contains an index to the segment descriptor referenced in this column.

3. A segment selector is valid if it is in a compatible type of table (GDT or LDT), occupies an address within
the table's segment limit, and refers to a compatible type of descriptor (for example, a segment selector in
the CS register only is valid when it points to a code segment descriptor).

6.4. TASK LINKING

The link field of the TSS and the NT flag in the EFLAGS register are used to return execution
to the previous task. The NT flag indicates whether the currently executing task is nested within
the execution of another task, and the link field of the current task's TSS holds the TSS selector
for the higher-level task in the nesting hierarchy, if there is one (see Figure 6-7).

Top Level Nested More Deeply Currently Executing
Task Task Nested Task Task

TSS TSS TSS EFLAGS

NT=1

D NT=1 NT=1

Link

Figure 6-7. Nested Tasks

I
6-13

TASK MANAGEMENT

When a call, jump, interrupt, exception causes a task switch, the processor copies the segment
selector for the current TSS into the link field of the TSS for the new task, and then sets the NT
flag in the EFLAGS register. The NT flag indicates that the link field of the TSS has been loaded
with a saved TSS segment selector. If software uses an IRET instruction to suspend the new task,
the processor uses the value in the link field and the NT flag to return to the previous task; that
is, if the NT flag is set, the processor performs a task switch task specified in the link field.

Table 6-2 summarizes the uses of the busy flag (in the TSS segment descriptor), the NT flag, and
the link field during task switching. Note that the NT flag may be modified by software
executing at any privilege level. It is possible for a program to set its NT flag and execute an
IRET instruction, which would have the effect of invoking the task specified in the link field of
the current task's TSS. To keep spurious task switches from succeeding, the operating system
should initialize the link field for every TSS it creates.

Table 6-2. Effect of a Task Switch on Busy Flag, NT Flag, and Link Field

Effect of CALL
Effect of JM P Instruction or Effect of IRET

Field instruction Interrupt Instruction

Busy flag of new task Flag is set. Must have Flag is set. Must have No change. Must be set.
been clear before. been clear before.

Busy flag of old task Flag is cleared. No change. Flag is Flag is cleared.
currently set.

NT flag of new task No change. Flag is set. No change.

NT flag of old task No change. No change. Flag is cleared.

Link field of new task. No change. Loaded with selector No change.
for old task's TSS.

Link field of old task. No change. No change. No change.

6.4.1. Use of Busy Flag To Prevent Recursive Task Switching

The B (busy) flag in the TSS segment descriptor prevents re-entrant task switching. Only one
context can be saved for a task (which is the context saved in the TSS); therefore, a task may
only be called once before it terminates. The chain of nested suspended tasks may grow to any
length, due to multiple interrupts, exceptions, jumps, and calls. The B flag prevents a task from
being called if it is in this chain.

The processor manages the B flag as follows:

1. When switching to a task, the processor sets the B flag of the new task.

2. When switching from a task, the processor clears the busy flag of the old task if that task is
not to be placed in the chain that is, the instruction causing the task switch is a IMP or
IRET instruction). If the task is placed in the chain, its busy flag remains set.

3. When switching to a task, the processor generates a general-protection exception (#GP) if
the busy flag of the new task is already set.

6-14

I

TASK MANAGEMENT

ill this manner the processor prevents recursive task switching by preventing a task from
switching to itself or to any task in a nested chain of tasks.

The B flag may be used in mUltiprocessor configurations, because the processor asserts a bus
lock when it sets or clears the B flag. This lock keeps two processors from invoking the same
task at the same time. (See Section 7.1.2.1., "Automatic Bus Locking" for more information
about setting the B flag in a multiprocessor applications.)

6.4.2. Modifying Task Linkages

ill situations where it is necessary to remove a task from a chain of linked tasks, use the following
procedure to remove the task:

1. Disable interrupts.

2. Change the link field in the TSS of the pre-empting task (that is, the task that suspended the
task to be removed). It is assumed that the pre-empting task is the next task (newer task) in
the chain from the task to be removed. The link field should be changed to point to the TSS
of the next oldest task in the chain or to an even older task in the chain.

3. Clear the B flag in the TSS segment descriptor for the task being removed from the chain.
If more than one task is being removed from the chain, the busy flag for each task being
remove must be cleared.

4. Enable interrupts.

6.5. TASK ADDRESS SPACE

The address space for a task consists of the segments that the task can access. These segments
include the code, data, stack, and system segments referenced in the TSS and any other segments
accessed by the task code. These segments are mapped into the processor's linear address space,
which is in tum mapped into the processor's physical address space (either directly or through
paging).

The LDT segment field in the TSS can be used to give each task its own LDT. Giving a task its
own LDT allows the task address space to be isolated from other tasks by placing the segment
descriptors for all the segments associated with the task in the tasks LDT.

It also is possible for several tasks to use the same LDT. This is a simple and memory-efficient
way to allow some tasks to communicate with or control each other, without dropping the
protection barriers for the entire system.

Because all tasks have access to the GDT, it also is possible to create shared segments accessed
through segment descriptors in this table.

If paging is enabled, the CR3 register (PDBR) field in the TSS allows each task can also have
its own set of page tables for mapping linear addresses to physical addresses. Or, several tasks
can share the same set of page tables.

I
6-15

TASK MANAGEMENT

6.5.1. Mapping Tasks to the Linear and Physical Address Spaces

Tasks can be mapped to the linear address space and physical address space in either of two
ways:

•

•

One linear-to-physical address space mapping is shared among all tasks. When paging is
not enabled, this is the only choice. Without paging, all linear addresses map to the same
physical addresses. When paging is enabled, this form of linear-to-physical address space
mapping is obtained by using one page directory for all tasks. The linear address space
may exceed the available physical space if demand-paged virtual memory is supported.

Each task has its own linear address space that is mapped to the physical address space .
This form of mapping is accomplished by using a different page directory for each task.
Because the PDBR (control register CR3) is loaded on each task switch, each task may
have a different page directory.

The linear address spaces of different tasks may map to completely distinct physical addresses.
If the entries of different page directories point to different page tables and the page tables point
to different pages of physical memory, then the tasks do not share any physical addresses.

With either method of mapping task linear address spaces, the TSSs for all tasks must lie in a
shared area of the physical space, which is accessible to all tasks. This mapping is required so
that the mapping of TSS addresses does not change while the processor is reading and updating
the TSSs during a task switch. The linear address space mapped by the GDT also should be
mapped to a shared area of the physical space; otherwise, the purpose of the GDT is defeated.
Figure 6-8 shows how the linear address spaces of two tasks can overlap in the physical space
by sharing page tables.

6.5.2. Task Logical Address Space

Mapping the linear address spaces of tasks to a shared physical address space does not allow
sharing of data among tasks. To share data, tasks must also map the logical addresses of the task
to the linear addresses that are mapped to the shared physical address space. There are three
ways to create shared logical-to-physical address-space mappings:

6-16

I

•

•

•

I

TASK MANAGEMENT

TSS Page Directories Page Tables Page Frames

I
Task A

I TaskATSS Page

~I Task A

I PTE Page
PTE

PDBR ----. PDE ---.. PTE

I
Task A

I PDE - Page
Shared PT

I
Shared

I Page
PTE ~

~ PTE I Shared

I TaskB TSS Page

I
TaskB

I Page
PDBR ----. PDE - PTE r-----J

PDE ----. PTE

I
TaskB

I Page

Figure 6-8. Overlapping Linear-to-Physical Mappings

Through the segment descriptors in the GDT. All tasks must have access to the segment
descriptors in the GDT. If some segment descriptors in the GDT point to segments in the
linear-address space that are mapped into an area of the physical-address space common to
all tasks, then all tasks can share the data and code in those segments.

Through a shared LDT. Two or more tasks can use the same LDT if the LDT fields in their
TSSs point to the same LDT. If some segment descriptors in a shared LDT point to
segments that are mapped to a common area of the physical address space, the data and
code in those segments can be shared among the tasks that share the LDT. This method of
sharing is more selective than sharing through the GDT, because the sharing can be limited
to specific tasks. Other tasks in the system may have different LDTs that do not give them
access to the shared segments.

Through segment descriptors in distinct LDTs that are mapped to common addresses in the
linear address space. If this common area of the linear address space is mapped to the same
area of the physical address space for each task, these segment descriptors permit the tasks
to share segments. Such segment descriptors are commonly called aliases. This method of
sharing is even more selective than those listed above, because, other segment descriptors
in the LDTs may point to independent linear addresses which are not shared.

6-17

TASK MANAGEMENT

6.5.3. 16-Bit Task State Segment

The Pentium Pro processor also recognizes a 16-bit TSS format like the one used in Intel 286
processors (see Figure 6-9). It is supported for compatibility with software written to run on
earlier Intel Architecture processors.

15 0

Task LOT Selector 42

OS Selector 40

SS Selector 38

es Selector 36

ES Selector 34

01 32

SI 30

BP 28

SP 26

BX 24

OX 22

ex 20

AX 18

FLAG Word 16

IP (Entry Point) 14

SS2 12

SP2 10

SS1 8

SP1 6

SSO 4

SPO 2

Previous Task Link 0

Figure 6-9. 16-Bit TSS Format

6·18

I

Multiple Processor
Management

I

7

CHAPTER 7
MULTIPLE PROCESSOR MANAGEMENT

The Pentium Pro processor provides several mechanisms for managing and improving the
performance of multiple processors connected to the same system bus. These mechanisms
include:

•
•

•
•

A secondary cache (level 2 cache) that is tightly coupled to the processor.

Bus locking and/or cache coherency management for performing atomic operations on
system memory.

Serializing instructions.

Advance programmable interrupt controller (APIC) located on the processor chip.

These mechanisms are particularly useful in symmetric-multiprocessing systems; however, they
can also be used in applications where a Pentium Pro processor and a special-purpose processor
(such as a communications, graphics, or video processor) share the system bus.

The main goals of these multiprocessing mechanisms are as follows:

•

•

•

•

To maintain system memory coherency-When two or more processors are attempting
simultaneously to access the same address in system memory, some communication
mechanism or memory access protocol must be available to promote data coherency and,
in some instances, to allow one processor to temporarily lock a memory location.

To maintain cache consistency-When one processor accesses data cached in another
processor, it must not receive incorrect data. If it modifies data, all other processors that
access that data must receive the modified data.

To allow predictable ordering of writes to memory-In some circumstances, it is important
that memory writes be observed externally in precisely the same order as programmed.

To distribute interrupt handling among a group of processors-When several processors
are operating in a system in parallel, it is useful to have a centralized mechanism for
receiving interrupts and distributing them to available processors for servicing.

Cache consistency is discussed in Chapter 11, Memory Cache Control. Bus and memory
locking, serializing instructions, memory ordering, and the processor's internal APIC are
discussed in the following sections.

7.1. LOCKED ATOMIC OPERATIONS

The Pentium Pro processor, as with earlier 32-bit Intel Architecture processors, supports locked
atomic operations on locations in system memory. These operations are typically used to
manage shared data structures (such as semaphores, segment descriptors, system segments, or

I
7-1

MULTIPLE PROCESSOR MANAGEMENT

page tables) in which two or more processors may try simultaneously to modify same field or
flag. The processor uses three interdependent mechanisms for carrying out locked atomic
operations:

• Guaranteed atomic operations.

• Bus locking, using the LOCK# signal and the LOCK instruction prefix.

• Cache coherency protocols that insure that atomic operations can be carried out on cached
data structures.

These mechanisms are interdependent in the following ways. Certain basic memory transactions
(such as reading or writing a byte in system memory) are always guaranteed to be handled atom­
ically. That is, once started, the processor guarantees that the operation will be completed before
another processor or bus agent is allowed access to the memory location. The processor also
supports bus locking for performing selected memory operations (such as a read-modify-write
operation in a shared area of memory) that typically need to be handled atomically, but are not
automatically handled this way. Because frequently used memory locations are often cached in
a processor's Ll or L2 caches, atomic operations can often be carried out inside a processor's
caches without asserting the bus lock. Here the processor's cache coherency protocols insure
that other processors that are caching the same memory locations are managed while atomic
operations are performed on cached memory locations.

7.1.1. Guaranteed Atomic Operations

The Pentium Pro processor guarantees that the following basic memory operations will always
be carried out atomically:

•
•
•
•
•
•

Reading or writing a byte.

Reading or writing a word aligned on a 16-bit boundary.

Reading or writing a doubleword aligned on a 32-bit boundary.

Reading or writing a quadword aligned on a 64-bit boundary.

16-bit accesses to uncached memory locations that fit within a 32-bit data bus

16-,32-, and 64-bit accesses to cached memory that fit within a 32-Byte cache line

For compatibility with other 32-bit Intel Architecture processors (the Inte1386, Inte1486, and
Pentium processors), software should assume that only the following memory accesses are guar­
anteed to be handled atomically:

•
•
•

7-2

8-bit accesses on any boundary

16-bit accesses on a 16-bit boundary

32-bit accesses on a 32-bit bOllildary

I

MULTIPLE PROCESSOR MANAGEMENT

Accesses to cacheable memory that are split across bus widths, cache lines, and page boundaries
are not guaranteed to be atomic by the Pentium Pro processor. The processor provides bus
control signals that permit external memory subsystems to make split accesses atomic; however,
non-aligned data accesses will seriously impact the performance of the processor and should be
avoided where possible.

7.1.2. Bus Locking

The processor provides a LOCK# signal that it asserts automatically during certain critical
memory operations to lock the system bus. While this output signal is asserted, requests from
other processor's or bus agents for control of the bus are ignored. It is the responsibility of the
hardware designer to make this signal available to control memory accesses among processors.

Software can specify other occasions when the LOCK# signal should be asserted by prepending
the LOCK prefix to an instruction. Here, if the area of memory being accessed is cached, the
LOCK# signal is generally not asserted; instead, locking is only applied to the processor's cache
(see Section 7.1., "Locked Atomic Operations").

7.1.2.1. AUTOMATIC BUS LOCKING

The operations on which the processor automatically asserts the LOCK# signal are as follows:

•
•

•

I

When executing an XCHG instruction that references memory.

When setting the B (busy) flag of a TSS descriptor. The processor tests and sets the busy
flag in the type field of the TSS descriptor when switching to a task. To insure that two
processors do not switch to the same task simultaneously, the processor asserts the LOCK#
signal while testing and setting this flag.

When updating segment descriptors. When loading a segment descriptor, the processor
will set the accessed flag in the segment descriptor if the flag is clear. During this
operation, the processor asserts LOCK# so that the descriptor will not be modified by
another processor while it is being updated. For this action to be effective, operating­
system procedures that update descriptors should use the following steps:

Use a locked operation to modify the access-rights byte to indicate that the segment
descriptor is not-present, and specify a value for the type field that indicates that the
descriptor is being updated.

Update the fields of the segment descriptor. (This operation may require several
memory accesses; therefore, locked operations cannot be used.)

Use a locked operation to modify the access-rights byte to indicate that the segment
descriptor is valid and present.

Note that the Inte1386 DX processor always updates the accessed flag in the segment
descriptor, whether it is clear or not. The Pentium Pro, Pentium, and Intel486 processors
only update this flag if it is not already set.

7-3

MULTIPLE PROCESSOR MANAGEMENT

• When updating page-directory and page-table entries. When updating page-directory
and page-table entries, the processor uses locked cycles to set the accessed and dirty flag
int he page-directory and page-table entries.

7.1.2.2. SOFTWARE CONTROLLED BUS LOCKING

To explicitly lock the bus, software can use the LOCK prefix with the following instructions
when they are used to modify a memory location. An invalid-opcode exception (#UD) is gener­
ated when the LOCK prefix is used with any other instruction or when no write operation is
made to memory (that is, when the destination operand is in a register).

•
•
•
•

•

The bit test and modify instructions (BTS, BTR, and BTC).

The exchange instructions (XADD, CMPXCHG, and CMPXCHG8B).

The LOCK prefix is automatically assumed for XCHG instruction.

The following single-operand arithmetic and logical instructions: INC, DEC, NOT, and
NEG.

The following two-operand arithmetic and logical: ADD, ADC, SUB, SBB, AND, OR,
andXOR.

A locked instruction is guaranteed to lock only the area of memory defined by the destination
operand, but may be interpreted by the system as a lock for a larger memory area.

Software should access semaphores (shared memory used for signalling between multiple
processors) using identical addresses and operand lengths. For example, if one processor
accesses a semaphore using word access, other processors should not access the semaphore
using byte access.

The integrity of a bus lock is not affected by the alignment of the memory field. The LOCK#
signal is asserted for as many bus cycles as necessary to update the entire operand. However, it
is recommend that locked accesses be aligned on their natural boundaries for better system
performance:

•
•
•
•

Any boundary for an 8-bit access (locked or otherwise).

16-bit boundary for locked word accesses.

32-bit boundary for locked doubleword access.

64-bit boundary for locked quadword access.

Locked operations are serializing. They wait for all previous instructions to complete. Locked
operations are atomic with respect to all other memory operations and all externally visible
events. Only instruction fetch and page table accesses can pass locked instructions.

Locked instructions can be used to synchronize data written by one processor and read by
another processor. Locked instructions cannot be used to insure that data written will be fetched
as instructions.

7-4

I

intet MULTIPLE PROCESSOR MANAGEMENT

7.1.3. Effects of a Locked Operation on Internal Processor
Caches

If the area of memory being locked during a locked operation is cached in the processor that is
performing the locking operation as write-back memory and is completely contained in a cache
line, the processor may not assert the LOCK# signal on the bus. Instead, it will modify the
memory location internally and allow it's cache coherency mechanism to insure that the opera­
tion is carried out atomically. The cache coherency mechanism automatically prevents two or
more processors that have cached the same area of memory from simultaneously modifying data
in that area.

7.2. MEMORY ORDERING

The Pentium Pro processor uses a memory ordering model defined as processor ordering to
maintain consistency in the order data is read (loaded) and written (stored) in a program and the
order the processor actually carries out the reads and writes. Processor ordering is a form of
write ordering that can be defined as "write ordered with store-buffer forwarding." It can be
characterized as follows.

In a single-processor system for memory regions defined as write-back cacheable, the following
ordering rules apply:

1. Reads can be carried out speculatively and in any order.

2. Reads can pass buffered writes, but the processor guarantees program correctness if the
write is to the same memory location as the read.

3. Writes to memory are always carried out in program order.

4. Writes can be buffered.

5. Writes are not performed speculatively; they are only performed for instructions that have
actually been executed.

6. Data writes can be forwarded within the processor.

7. Reads or writes cannot pass (be carried out ahead of) I/O instructions, locked instructions,
or serializing instructions.

The second rule allows a read to pass a write. However, if the write is to the same memory loca­
tion as the read, the processor's internal "snooping" mechanism will detect the conflict and
update the already cached read before the processor executes the instruction that uses the value.

The sixth rule constitutes an exception to an otherwise write ordered model. It is provided to
improve prefetch accuracy and performance. It is used in situations where the processor is
attempting to read a memory location that is currently held in the processor's store buffer,
waiting to be written to memory. Here, the processor is allowed to read the value from the store
buffer ahead of other writes, even though the processor carries out the actual writes in program
order. Another way to view this capability is to say that the Pentium Pro processor is strongly
ordered in itself, meaning that if it immediately reads a memory location that it has just written
to, it is guaranteed to read the last value that it wrote.

I
7-5

MULTIPLE PROCESSOR MANAGEMENT

In a multiple-processor system, the following ordering rules apply:

•
•
•

Individual processors use the same ordering rules as in a single-processor system.

Writes by a single processor are observed in the same order by all processors.

Writes from all the processors on the system bus can be observed in different orders.

Figure 7-1 illustrates the latter rule. Here, three processors are all performing three writes to the
same memory locations CA, B, and C). Individually, the processors perform the writes in the
same program order, but because of bus arbitration and other memory access mechanisms, the
order that the three processors write the individual memory locations can differ each time the
respective code sequences are executed on the processors.

Order of Writes From Individual Processors

Processor #1 Processor #2 Processor #3
Each processor . .
is guaranteed to ~ I Wr~te A1 Wr~te A.2 Write A3

perform writes ~ Wr~te B.1 Wr~te B.2 Write B.3

;'prog",mo""c. WC"L.WT2r._~C'

Order of Actual Writes From
All Processors to Memory

with respect to Write B.1
individual processors. Write A.2 Writes from all

Writes are in order ~ Write A1 -

Write A.3 processors are
Write C.1 ~ not guaranteed
Write B.2 to occur in a
Write C.2 particular order.
Write B.3
Write C.3-

Figure 7-1. Write Ordering in Multiple-Processor Systems

The processor-ordering model described in this section is virtually identical to that used by the
Pentium and Inte1486 processors. The only enhancement in the Pentium Pro processor is the
added support for speculative reads and store-buffer forwarding, when a read passes a write to
the same memory location.

7·6

I

MULTIPLE PROCESSOR MANAGEMENT

7.2.1. Strengthening or Weakening the Processor-Order Model

The Pentium Pro processor provides several mechanisms for strengthening or weakening the
processor-order model to handle special programming situations. These mechanisms include:

•

•

The 1/0 instructions, locking instructions, the LOCK prefix, and serializing instructions
force strong ordering on the processor.

The memory type range registers (MTRRs) can be used to strengthen or weaken memory
ordering for specific area of physical memory.

These mechanisms can be used as follows.

Memory mapped devices and other VO devices on the bus are often sensitive to the order of
writes to their VO buffers. VO instructions can be used to (the IN and OUT instructions) impose
strong write ordering on such accesses as follows. Prior to executing an VO instruction, the
processor waits for all previous instructions in the program to complete and for all buffered
writes to drain to memory. Only instruction fetch and page tables walks can pass VO instructions
on the Pentium Pro processor. Execution of subsequent instructions do not begin until the
processor determines that the VO instruction has been completed.

Synchronization mechanisms in mUltiple-processor systems may depend upon a strong
memory-ordering modeL Here, a program can use a locking instruction such as the XCHG
instruction or the LOCK prefix to insure that a read-modify-write operation on memory is
carried out atomically. Locking operations typically operate like VO operations in that they wait
for all previous instructions to complete and for all buffered writes to drain to memory.

Program synchronization can also be carried out with serializing instructions (see Section 7.3.,
"Serializing Instructions"). These instructions are typically used at critical procedure or task
boundaries to force completion of all previous instructions before a jump to a new section of
code or a context switch occurs. Like the VO and locking instructions, the processor waits until
all previous instructions have been completed and all buffered writes have been drained to
memory before executing the serializing instruction.

The MTRRs define the cache characteristics for specified areas of physical memory. The
following are two examples of how memory types set up with MTRRs can be used strengthen
or weaken memory ordering:

•

•

I

The uncached (UC) memory type forces a strong-ordering model on memory accesses.
Here, all reads and writes to the UC memory region appear on the bus and out-of-order or
speCUlative accesses are not performed. This memory type can be applied to an address
range dedicated to memory mapped VO devices to force strong memory ordering.

For areas of memory where weak ordering is acceptable, the write back (WB) memory
type can be chosen. Here, reads can be performed speculatively and writes can be buffered
and combined. For this type of memory, cache locking is performed on atomic (locked)
operations that do not split across cache lines, which helps to reduce the performance
penalty associated with the use of the typical synchronization instructions, such as XCHG,
that lock the bus during the entire read-modify-write operation. With the WB memory
type, the XCHG instruction locks the cache instead of the bus if the memory access is
contained within a cache line.

7-7

MULTIPLE PROCESSOR MANAGEMENT

It is recommended that software written to run on the Pentium Pro processor assume the
processor-ordering model or a weaker memory-ordering model. The Pentium Pro processor
does not implement stronger memory-ordering models, except when using the UC memory
type. Despite the fact that the Pentium Pro, Pentium, and Intel486 processors support processor
ordering, Intel does not guarantee that future processors will support this model. To make soft­
ware portable to future processors, it is recommended I/O, locking, and/or serializing instruc­
tions be used to synchronize access to shared areas of memory in mUltiple-processor systems.
Also, software should not depend on processor ordering in situations where the system hardware
does not support this memory-ordering model.

7.3. SERIALIZING INSTRUCTIONS

After executing certain instructions the processor serializes instruction execution. Serialization
means that all modifications to flags, registers, and memory by previous instructions are
completed before the next instruction is fetched and executed and all buffered writes have
drained to memory. For example, when a new value is loaded into control register CRO to enable
protected mode, the processor always performs a serialization operation before it fetches and
executes subsequent instructions in the instruction stream. This operation insures that subse­
quent instructions are executed with protection enabled.

It is important to note that executing of serializing instructions on the Pentium Pro processor
constrains speculative execution, because the results of speculatively executed instructions are
discarded.

The following instructions are serializing instructions:

•

•

Privileged serializing instructions-MOV (to control register), MOV (to debug register),
WRMSR, INVD, INVLPG, WBINVD, LGDT, LLDT, LIDT, and LTR.

Non-privileged serializing instructions-CPUID, IRET, and RSM.

The CPUID instruction can be executed at any privilege level to serialize instruction execu­
tion with no effect on program flow, except that the EAX, EBX, ECX, and EDX registers
are modified.

Nothing can pass a serializing instruction, and serializing instructions cannot pass any other
instruction (read, write, instruction fetch, or I/O).

When the processor serializes instruction execution, it ensures that all pending memory transac­
tions are completed, including writes stored in its store buffer, before it executes the next
instruction.

The following additional information is worth noting regarding serializing instructions:

•

7-8

The processor does not writeback the contents of modified data in its data cache to external
memory when it serializes instruction execution. Software can force modified data to be
written back by executing the WBINVD instruction, which is a serializing instruction. It
should be noted that frequent use of the WBINVD instruction will seriously reduce system
performance.

I

•

•

•

MULTIPLE PROCESSOR MANAGEMENT

When an instruction is executed that enables or disables paging (that is, changes the PG
flag in control register CRO), the instruction should be followed by a jump instruction. The
target instruction of the jump instruction is fetched with the new setting of the PG flag (that
is, paging is enabled or disabled), but the jump instruction itself is fetched with the
previous setting. The Pentium Pro processor does not require the jump operation following
the move to register CRO (because any use of the MOV instruction in the Pentium Pro
processor to write to CRO is completely serializing). However, to maintain backwards and
forward compatibility with code written to run on other Intel architecture processors, it is
recommended that the jump operation be performed.

Whenever an instruction is executed to change the contents of CR3 while paging is
enabled, the next instruction is fetched using the translation tables that correspond to the
new value of CR3. Therefore the next instruction and the sequentially following instruc­
tions should have a mapping based upon the new value of CR3. (Global entries in the
TLBs are not invalidated, see Section 11.9., "Invalidating the Translation Lookaside
Buffers (TLBs)".)

The Pentium Pro processor uses branch-prediction techniques to improve performance by
prefetching the destination of a branch instruction before the branch instruction is
executed. Consequently, instruction execution is not generally serialized when a branch
instruction is executed.

7.4. ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER
(APIC)

The Pentium Pro processor contains an Advanced Programmable Interrupt Controller (APIC),
referred to in the following sections as the local APIC. The local APIC performs two main func­
tions for the processor:

•

•

It processes local external interrupts that the processor receives at its interrupt pins and
local internal interrupts that software generates.

In multiple processor systems, it communicates with an external I/O APIC chip. The
external 110 APIC receives external interrupt events from the system and interprocessor
interrupts from the processors on the system bus and distributes them to the processors on
the system bus. The 110 APIC is part of Intel's system chip set.

Figure 7-2 shows the relationship of the local APICs on the processors in a multiple processor
(MP) system and the 110 APIC. The local APIC controls the dispatching of interrupts (to its
associated processor) that it receives either locally or from the 110 APIC. It provides facilities
for queuing, nesting and masking of interrupts. It handles the interrupt delivery protocol with its
local processor and accesses to APIC registers, and also manages interprocessor interrupts and
remote APIC register reads. A timer on the local APIC allows local generation of interrupts, and
local interrupt pins permit local reception of processor-specific interrupts. The local APIC can
be disabled (in hardware or software) and used in conjunction with a standard 8259A-style inter­
rupt controller.

I
7-9

MULTIPLE PROCESSOR MANAGEMENT

The I/O APIC is responsible for receiving interrupts generated by I/O devices and distributing
them among the local APICs by means of the APIC Bus. The I/O APIC manages interrupts using
either static or dynamic distribution schemes. Dynamic distribution of interrupts allows routing
of interrupts to the lowest priority processors. It also handles the distribution of interprocessor
interrupts and system-wide control functions such as NMI, INIT, SMI and start-up-interpro­
cessor interrupts. Individual pins on the 110 APIC can be programmed to generate a specific,
prioritized interrupt vector when asserted. The I/O APIC also has an 8259A-compatible mode.

The Pentium Pro processor's APIC is an architectural subset of the Intel 82489DX external
APIC. The differences are described in Section 7.4.16., "Software Visible Differences Between
the Local APIC and the 82489DX".

Processor #1 Processor #2 Processor #3

CPU CPU CPU

Local APIC Local-APIC Local APIC

Inte
Local t
rrupts

Local t
Interrupts

Local t
Interrupts

APIC Bus

I I/O APIC I
External tt

Interrupts I/O Chip Set

Figure 7-2. 1/0 APIC and Local APICs in Multiple Processor Systems

The following sections focus on the local APIC, and its implementation in the Pentium Pro
processor. Contact Intel for the information on 110 APIC.

7.4.1. APIC Bus

All 110 APIC and local APICs communicate through the APIC bus (a 3-line inter-APIC bus).
Two of the lines are open-drain (wired-OR) and are used for data transmission; the third line is
a clock. The bus and its messages are invisible to software and are not classed as architec­
tural (that is, they may change in future implementations without having any effect on
software compatibility).

7-10

I

MULTIPLE PROCESSOR MANAGEMENT

7.4.2. Valid Interrupts

The local and I/O APICs support 240 distinct vectors in the range of 16 to 255. Interrupt priority
is implied by its vector, according to the following relationship:

priority = vector / 16

One is the lowest priority and 15 is the highest. Vectors 16 through 31 are reserved for exclusive
use by the processor. The remaining vectors are for general use. The processor's local APIC
includes an in-service entry and a holding entry for each priority level. To avoid losing inter­
rupts, software should allocate no more than 2 interrupt vectors per priority.

7.4.3. Interrupt Sources

The local APIC can receive interrupts from the following sources:

•
•
•

•

•
•

Interrupt pins on the processor chip, driven by locally connected I/O devices.

A bus message from the I/O APIC, originated by an I/O device connected to the I/O APIC.

A bus message from another processor's local APIC, originated as an interprocessor
interrupt.

The local APIC's programmable timer or the error register, through the self-interrupt
generating mechanism.

Software, through the self-interrupt generating mechanism.

The Pentium Pro processor's performance-monitoring counters.

The local APIC services the I/O APIC and interprocessor interrupts according to the information
included in the bus message (such as vector, trigger type, interrupt destination, etc.). Interpreta­
tion of the processor's interrupt pins and the timer-generated interrupts is programmable, by
means of the local vector table (LVT). To generate an interprocessor interrupt, the source
processor programs its interrupt command register (ICR). The programming of the ICR causes
generation of a corresponding interrupt bus message. See Section 7.4.8., "Local Vector Table"
and Section 7.4.9., "Interprocessor and Self Interrupts" for detailed information on program­
ming the LVT and ICR, respectively.

7.4.4. Bus Arbitration Overview

Being connected on a common bus (the APIC bus), the local and I/O APICs have to arbitrate for
permission to send a message on the APIC bus. Logically, the APIC bus is a wired-OR connec­
tion, enabling more than one local APIC to send messages simultaneously. Each APIC issues its
arbitration priority at the beginning of each message, and one winner is collectively selected
following an arbitration round. At any given time, a local APIC's the arbitration priority is a
unique value from 0 to 15. The arbitration priority of each local APIC is dynamically modified
after each successfully transmitted message to preserve fairness. See Section 7.4.13., "APIC Bus
Arbitration Mechanism and Protocol" for a detailed discussion of bus arbitration.

I
7-11

MULTIPLE PROCESSOR MANAGEMENT

Section 7.4.1., "APIC Bus" describes the existing arbitration protocols and bus message
formats, while Section 7.4.9., "Interprocessor and Self Interrupts" describes the INIT level de­
assert message, used to resynchronize all local APICs' arbitration IDs. Note that except for start­
up (see Section 7.4.8., "Local Vector Table"), all bus messages failing during delivery are auto­
matically retried. The software should avoid situations in which interrupt messages may be
"ignored" by disabled or nonexistent "target" local APICs, and messages are being resent
repeatedly.

7.4.5. The Local APIC Block Diagram

Figure 7 -3 gives a functional block diagram for the local APIC. Software interacts with the local
APIC by reading and writing its registers. The registers are memory-mapped to the processor's
physical address space, and for each processor they have an identical address space of 4 KBytes
starting at address FEEOOOOOH. The register address allocation scheme is shown in Table 7-1.
Register offsets are aligned on 128-bit boundaries. All registers must be accessed using 32-bit
loads and stores. Wider registers (64-bit or 256-bit) are defined and accessed as independent
multiple 32-bit registers.

7-12

I

I

-

-
LINT 0/1_

I

Version Register

Timer

Current Count
Register

Initial Count
Register

Divide Configuration
Register

Local Vec Table

Timer

Local
Interrupts 0,1

Performance
Monitoring Counters

Error

t
Interrupt Command

Register

APICID
Register

Logical Destination
Register

Destination Format
Register

MULTIPLE PROCESSOR MANAGEMENT

DATAIADDR INTA EXTINT INTR

I-~

-.--~

-

-

-

c ~ I EOI Register I ,------

.. .1 Task Priority I 1 Register

t .. ~ Prioritizer ~

r----F-~----, I 15 1 I

I ITlslRI V - -IT I SiR V I I

I TMR, ISR, IRR Registers I
L __ ----------- __ J

IT I RI V - - - - - -1 T I R V I

Software Transparent Registers

Vec[3:0] Register
&TMR Bn Select

I Arb.ID I
Register

I Vector
Decode I

t
I

~ Processor I Acceptance
Priority Logic

INI T,
I, NM

SMI

~ Dest. Mode
& Vector

I APIC Bus
Send/Receive Logic

t
APIC Serial Bus

Figure 7-3. Local APIC Structure

7-13

MULTIPLE PROCESSOR MANAGEMENT

Table 7-1. Local APIC Register Address Map

Address Register Name Software Read/Write

FE EO OOOOH Reserved

FE EO 0010H Reserved

FEEO 0020H Local APIC ID Register Read/write

FE EO 0030H Local APIC Version Register Read only

FE EO 0040H Reserved

FE EO 0050H Reserved

FEEO 0060H Reserved

FEEO 0070H Reserved

FE EO OOSOH Task Priority Register Read/Write

FE EO 0090H Arbitration Priority Register Read only

FEEO OOAOH Processor Priority Register Read only

FEEO OOBOH EOI Register Write only

FE EO OOCOH Reserved

FE EO OODOH Logical Destination Register ReadlWrite

FEEO OOEOH Destination Format Register Bits 0-27 Read only. Bits
2S-31 ReadlWrite

FE EO OOFOH Spurious Interrupt Vector Register Bits 0-3 Read only. Bits
4-9 ReadlWrite

FEEO 0100H through ISR 0-255 Read only
FEEO 0170H

FE EO 01S0H through TMR 0-255 Read only
FEEO 01FOH

FEEO 0200H through IRR 0-255 Read only
FEEO 0270H

FE EO 02S0H Error Status Register Read only

FEEO 0290H through Reserved
FEEO 02FOH

FEEO 0300H Interrupt Command Reg. 0-31 Read/Write

FE EO 0310H Interrupt Command Reg. 32-63 Read/Write

FEEO 0320H Local Vector Table (Timer) Read/Write

FE EO 0330H Reserved

FEEO 0340H Performance Counter LVT ReadlWrite

FEEO 0350H Local Vector Table (UNTO) Read/Write

FEEO 0360H Local Vector Table (U NT1) Read/Write

FEEO 0370H Local Vector Table (Error) Read/Write

7-14

I

MULTIPLE PROCESSOR MANAGEMENT

Table 7-1. Local APIC Register Address Map (Contd.)

Address Register Name Software Read/Write

FEEO 0380H Initial Count Register for Timer Read/Write

FEEO 0390H Current Count Register for Timer Read only

FEEO 03AOH through Reserved
FEEO 03DOH

FEEO 03EOH Timer Divide Configuration Register Read/Write

FEEO 03FOH Reserved

7.4.6. Interrupt Destination and APIC ID

The destination of an interrupt can be one, all, or a subset of the processors in the system. The
sender specifies the destination of an interrupt in one of two destination modes: physical or
logical.

7.4.6.1. PHYSICAL DESTINATION MODE

In physical destination mode, the destination processor is specified by its local APIC ID. This
ID is matched against the local APIC's actual physical ID, which is stored in the local APIC ID
register (see Figure 7-4). Either a single destination (the ID is 0 through 14) or a broadcast to all
(the ID is 15) can be specified in physical destination mode. Note that in this mode, up to 15 the
local APICs can be individually addressed. An ID of all Is denotes a broadcast to all local
APICs. The APIC ID register is loaded at power up by sampling configuration data that is driven
onto lines All # and A12# and lines BRO# through BR3# of the system bus. The ID portion can
be read and modified by software.

31 2827 2423 o

Reserved I APIC ID I Reserved

Address: OFEEO 0020H
Value after reset: 0000 OOOOH

Figure 7-4. Local APIC 10 Register

7.4.6.2. LOGICAL DESTINATION MODE

In logical destination mode, message destinations are specified using an 8-bit message destina­
tion address (MDA). The MDA is compared against the 8-bit logical APIC ID field of the APIC
logical destination register (LDR), see Figure 7-5.

I
7-15

MULTIPLE PROCESSOR MANAGEMENT

31 2423

Logical APIC 10 I

Address: OFEEO OOOOH
Value after reset: 0000 OOOOH

Reserved

Figure 7-5. Logical Destination Register (LDR)

o

Destination fonnat register (DFR) defines the interpretation of the logical destination informa­
tion (see Figure 7-6). The DFR register can be programmed forJlat model or cluster model inter­
rupt delivery modes.

31 28 o

Model Reserved (All 1 s)

Address: OFEEO OOEOH
Value after reset: FFFF FFFFH

Figure 7-6. Destination Format Register (DFR)

7.4.6.3. FLAT MODEL

For the flat model, bits 28 through 31 of the DFR must be programmed to 1111. The MDA is
interpreted as a decoded address. This scheme allows the specification of arbitrary groups of
local APICs simply by setting each APIC's bit to 1 in the corresponding LDR. In the flat model,
up to 8 local APICs can coexist in the system. Broadcast to all APICs is achieved by setting all
8 bits ofthe MDA to ones.

7.4.6.4. CLUSTER MODEL

For the cluster model, the DFR bits 28 through 31 should be programmed to 0000. In this model,
there are two basic connection schemes: flat cluster and hierarchical cluster.

In the flat cluster connection model, all clusters are assumed to be connected on a single APIC
bus. Bits 28 through 31 of the MDA contains the encoded address of the destination cluster.
These bits are compared with bits 28 through 31 of the LDR to determine if the local APIC is
part of the cluster. Bits 24 through 27 of the MDA are compared with Bits 24 through 27 of the
LDR to identify individual local APIC unit within the cluster. Arbitrary sets of processors within
a cluster can be specified by writing the target cluster address in bits 28 through 31 of the MDA
and setting selected bits in bits 24 through 27 of the MDA, corresponding to the chosen members
of the cluster. In this mode, 15 clusters (with cluster addresses of 0 through 14) each having 4
processors can be specified in the message. The APIC arbitration ID, however, supports only
15 agents, and hence the total number of processors supported in this mode is limited to 15.

7·16

I

MULTIPLE PROCESSOR MANAGEMENT

Broadcast to all local APICs is achieved by setting all destination bits to one. This guarantees a
match on all clusters, and selects all APICs in each cluster.

In the hierarchical cluster connection model, an arbitrary hierarchical network can be created by
connecting different flat clusters via independent APIC buses. This scheme requires a cluster
manager within each cluster, responsible for handling message passing between APIC buses.
One cluster contains up to 4 agents. Thus 15 cluster managers, each with 4 agents, can form a
network of up to 60 APIC agents. Note that hierarchical APIC networks requires a special
cluster manager device, which is not part of the local or the 110 APIC units.

7.4.6.5. ARBITRATION PRIORITY

Each local APIC is given an arbitration priority of from 0 to 15 upon reset. The 110 APIC uses
this priority during arbitration rounds to determine which local APIC should be allowed to
transmit a message on the APIC bus when multiple local APICs are issuing messages. The local
APIC with the highest arbitration priority wins access to the APIC bus. Upon completion of an
arbitration round, the winning local APIC lowers its arbitration priority to 0 and the losing local
APICs each raise theirs by 1. In this manner, the 110 APIC distributes message bus-cycles
among the contesting local APICs.

The current arbitration priority for a local APIC is stored in a 4-bit, software-transparent arbi­
tration ill (Arb ill) register. During reset, this register is initialized to the APIC ill number
(stored in the local APIC ID register). The INIT-deassert command resynchronizes the arbitra­
tion priorities of the local APICs by resetting Arb ill register of each agent to its current APIC
ill value.

7.4.7. Interrupt Distribution Mechanisms

The APIC supports two mechanisms for selecting the destination processor for an interrupt:
static and dynamic. Static distribution is used to access a specific processor in the network.
Using this mechanism, the interrupt is unconditionally delivered to all local APICs that match
the destination information supplied with the interrupt. The following delivery modes fall into
the static distribution category: fixed, SMI, NMI, EXTINT, and start-up.

Dynamic distribution assigns incoming interrupts to the lowest priority processor, which is
generally the least busy processor. It can be programmed in the LVT for local interrupt delivery
or the ICR for bus messages. Using dynamic distribution, only the "lowest priority" delivery
mode is allowed. From all processors listed in the destination, the processor selected is the one
whose current arbitration priority is the lowest. The latter is specified in the arbitration priority
register (APR), see Section 7.4.10.4., "Arbitration Priority Register (APR)". If more than one
processor shares the lowest priority, the processor with the highest arbitration priority (the
unique value in the Arb ill register) is selected.

In lowest priority mode, if ajocus processor exists, it may accept the interrupt, regardless of its
priority. A processor is said to be the focus of an interrupt if it is currently servicing that interrupt
or if it has a pending request for that interrupt.

I
7-17

MULTIPLE PROCESSOR MANAGEMENT

7.4.8. Local Vector Table

The local APIC contains a local vector table (LVT), specifying interrupt delivery and status
information for the locally interrupts. The information contained in this table includes the inter­
rupt associated vector, delivery mode, status bits and other data as shown in Figure 7-7. The LVT
incorporates four 32-bit entries. Entry 0 corresponds to the timer, entries 1 and 2 belong to the
two local interrupt pins, and entry 3 is for the error interrupt.

The fields in the LVT are as follows:

Vector

Delivery Mode

7-18

Interrupt vector number.

Defined only for local interrupt entries 1 and 2 and the performance
counter. The timer and the error status register (ESR) generate only edge
triggered maskable interrupts to the local processor. The delivery mode
field does not exist for the timer and error interrupts. The performance
counter LVT may be programmed with a Deliver Mode equal to Fixed or
NMI only. Note that certain delivery modes will only operate as intended
when used in conjunction with a specific Trigger Mode. The allowable
delivery modes are as follows:

000 (Fixed)

100 (NMI)

111 (ExtlNT)

Delivers the interrupt, received on the local
interrupt pin, to the processor as specified in the
corresponding LVT entry. The trigger mode can be
edge or level. Note, if the processor is not used in
conjunction with an 110 APIC, the fixed delivery
mode may be software programmed for an edge­
triggered interrupt, but the Pentium Pro processor
implementation will always operate in a level­
triggered mode.

Delivers the interrupt, received on the local inter­
rupt pin, to the processor as an NMI interrupt. The
vector information is ignored. The NMI interrupt
is treated as edge-triggered, even if programmed
otherwise. Note that the NMI may be masked. It is
the software's responsibility to program the LVT
mask bit according to the desired behavior of
NMI.

Delivers the interrupt, received on the local inter­
rupt pin, to the processor and responds as if the
interrupt originated in an externally connected
(8259A-compatible) interrupt controller. A spe­
cial INTA bus cycle corresponding to ExtlNT, is
routed to the external controller. The latter is ex­
pected to supply the vector information. When the
delivery mode is ExtINT, the trigger-mode is
level-triggered, regardless of how the APIC trig­
gering mode is programmed. The APIC architec­
ture supports only one ExtINT source in a system,
usually contained in the compatibility bridge.

I

I

31

Timer

Mask
asked 0: NotM

1: Maske d

31

UNTO

LlNT1

ERROR

PCINT

18 17 16 15

I I I
TimerMOde~
0: One-shot
1: Periodic

Interrupt Input
Pin Polarity

Remote
IRR

Trigger Mode

O'E~·~l 1: Level

17

" ...:.:..

,,' ,:',

" ,:',

,,'

MULTIPLE PROCESSOR MANAGEMENT

1312 11 8 7 o

I Vector

Address: FEEO 0 320H
OOH Value after Reset: 0001 00

Delivery Status
0: Idle
1: Send Pending

n
Delivery Mode
000: Fixed
100: NMI
111: ExtiNT
All other combinations
are Reserved

1~ 8 7 0

Vector

Vector

Vector

Vector

16 15 14 13 12

D Reserved
Address: FEEO 0350H
Address: FEEO 0360H
Address: FE EO 0370H
Address: FEEO 0340H

Value After Reset: 0001 OOOOH

Figure 7-7. Local Vector Table (LVT)

7-19

MULTIPLE PROCESSOR MANAGEMENT

Delivery Status (read only)
Holds the current status of interrupt delivery. Two states are defined:

o (Idle) There is currently no activity for this interrupt, or
the previous interrupt from this source has been
accepted.

1 (Send Pending)
Indicates that the interrupt has been injected, but
the APIC has not yet completely accepted it.

Interrupt Input Pin Polarity
Specifies the polarity of the corresponding interrupt pin: (0) active high or
(1) active low.

Remote Interrupt Request Register (IRR) Bit

Trigger Mode

Mask

Timer Mode

Used for level triggered interrupts only; its meaning is undefined for edge
triggered interrupts. For level triggered interrupts, the bit is set when the
logic of the local APIC accepts the interrupt. The remote IRR bit is reset
when an EOI command is received from the processor.

Selects the trigger mode for the local interrupt pins when the delivery
mode is Fixed: (0) edge sensitive and (1) level sensitive. When the
delivery mode is NMI, the trigger mode is always level sensitive; when the
delivery mode is ExtINT, the trigger mode is always level sensitive. The
timer and error interrupts are always treated as edge sensitive.

Interrupt mask: (0) enables injection of the interrupt and (1) inhibits injec­
tion of the interrupt.

Selects the timer mode: (0) one-shot and (1) periodic (see Section 7.4.15.,
"Timer").

7.4.9. Interprocessor and Self Interrupts

A processor generates interprocessor interrupts by writing into the interrupt command register
(ICR) of its local APIC (see Figure 7-8). The processor may use the ICR for self interrupts or
for interrupting other processors (for example, to forward device interrupts originally accepted
by it to other processors for service). In addition, special inter-processor interrupts (IPI) such as
the start-up IPI message, can only be delivered using the ICR mechanism. ICR-based interrupts
are treated as edge triggered even if programmed otherwise.

All fields of the ICR are read-write by software with the exception of the delivery status field,
which is read-only. Writing to the 32-bit word that contains the interrupt vector causes the inter­
rupt message to be sent. The ICR consists of the following fields.

Vector

7-20

The vector identifying the interrupt being sent. If the delivery mode is
remote read, then the vector field contains bits 11 through 4 (8 bits) of the
register address to be read from the remote local APIC unit. The local­
APIC register addresses are summarized in Table 7-1.

I

MULTIPLE PROCESSOR MANAGEMENT

63 5655 32

I Destination Field I Reserved

31 2019181716151413121110 8 7 o
Reserved I I I I I I I! I Vector

Destination Shorthand ~
00: Des!. Field

01: Self
10: All I ncl. Self
11: All Excl. Self

Reserved

Address: FEEO 031 OH
Value after Reset: OH

L Delivery Mode
000: Fixed
001: Lowest Priority
010: SMI
011: Reserved
100: NMI
101: INIT
110: Start Up
111: Reserved

'--~~- Destination Mode
0: Physical
1: Logical

'--------- Delivery Status
0: Idle
1: Send Pending

'----------- Level
o = De-assert
1 = Assert

'--------- Trigger Mode
0: Edge
1: Level

Figure 7-8. Interrupt Command Register (ICR)

Delivery Mode Specifies how the APICs listed in the destination field should act upon
reception of the interrupt. Note that all interprocessor interrupts behave as
edge triggered interrupts (except for INIT level de-assert message) even if
they are programmed as level triggered interrupts.

I

000 (Fixed) Deliver the interrupt to all processors listed in the
destination field according to the information pro­
vided in the ICR. The fixed interrupt is treated as
an edge-triggered interrupt even if programmed
otherwise.

001 (Lowest Priority)
Same as fixed mode, except that the interrupt is
delivered to the processor executing at the lowest
priority among the set of processors listed in the
destination.

7-21

MULTIPLE PROCESSOR MANAGEMENT

Destination Mode

7-22

010 (SMI)

011 (Reserved)

100 (NMI)

101 (INIT)

(The vector field must be set to OOB.) Only the
edge trigger mode is allowed. The vector field
must be programmed to zero.

Deli vers the interrupt as an NMI interrupt to all
processors listed in the destination field. The vec­
tor information is ignored. NMI is treated as an
edge triggered interrupt even if programmed oth­
erwise.

Delivers the interrupt as an INIT signal to all pro­
cessors listed in the destination field. As a result,
all addressed APICs will assume their INIT state.
As in the case of NMI, the vector information is
ignored, and INIT is treated as an edge triggered
interrupt even if programmed otherwise.

101 (INIT Level De-assert)
(The trigger mode must also be set to 1 and level
mode to 0.) Sends a synchronization message to
all APIC agents to set their arbitration IDs to the
values of their APIC IDs. Note that the INIT inter­
rupt is sent to all agents, regardless of the destina­
tion field value. However, at least one valid
destination processor should be specified. For fu­
ture compatibility, the software is requested to use
a broadcast-to-all ("all-ind-self' shorthand, as de­
scribed below).

110 (Start-Up) Sends a special message between processors in a
multiple-processor system. For details refer to the
Pentium® Pro Family Developer's Manual, Vol­
ume 1. The Vector information contains the start­
up address for the multiple-processor boot-up pro­
tocol. Start-up is treated as an edge triggered inter­
rupt even if programmed otherwise.

Start-Up Interrupts are not automatically retried by the
source APIC upon failure in delivery of the mes­
sage. It is up to the software to decide whether a
retry is needed in the case of failure, and issue a
retry message accordingly.

Selects either (0) physical or (1) logical destination mode.

I

Delivery Status

Level

Trigger Mode

MULTIPLE PROCESSOR MANAGEMENT

Indicates the delivery status:

o (Idle) Means that there is currently no activity for this
interrupt.

1 (Seud Pending)
Indicates that the interrupt has been injected, but
its delivery is temporarily delayed due to APIC
bus being busy or the inability of the receiving
APIC unit to accept the interrupt at that time.

For INIT level de-assert delivery mode the level is O. For all other modes
the level is 1.

Used for the INIT level de-assert delivery mode only.

Destination Shorthand

I

Indicates whether a shorthand notation is used to specify the destination of
the interrupt and, if so, which shorthand is used. Destination shorthands do
not use the 8-bit destination field, and can be sent by software using a
single write to the lower 32-bit part of the APIC interrupt command
register. Shorthands are defined for the following cases: software self
interrupt, interrupt to all processors in the system including the sender,
interrupts to all processors in the system excluding the sender.

00: (destination field, no shorthand)

01: (self)

The destination is specified in bits 56 through 63
of the ICR.

The current APIC is the single destination of the
interrupt. This is useful for software self inter­
rupts. The destination field is ignored. See Table
7-2 for description of supported modes. Note that
self interrupts do not generate bus messages.

10: (all including self)
The interrupt is sent to all processors in the system
including the processor sending the interrupt. The
APIC will broadcast a message with the destina­
tion field set to FH. See Table 7-2 for description
of supported modes.

11: (all excluding self)
The interrupt is sent to all processors in the system
with the exception of the processor sending the in­
terrupt. The APIC will broadcast a message using
the physical destination mode and destination
field set to FH.

7-23

MULTIPLE PROCESSOR MANAGEMENT

Destination This field is only used when the destination shorthand field is set to "dest
field". If the destination mode is physical, then bits 56 through 59 contain
the APIC ID. In logical destination mode, the interpretation of the 8-bit
destination field depends on the DFR and LDR ofthe local APIC Units.

Table 7-2 shows the valid combinations for the fields in the interrupt control register.

Table 7-2. Valid Combinations for the APIC Interrupt Command Register

Trigger Valid! Destination
Mode Destination Mode Delivery Mode Invalid Shorthand

Edge Physical or Logical Fixed, Lowest Priority, NMI, Valid Dest. Field
SMI, INIT, Start-Up

Level Physical or Logical Fixed, Lowest Priority, NMI 1 Dest. field

Level Physical or Logical INIT 2 Dest. Field

Level x SMI, Start-Up Invalid3 x

Edge x Fixed Valid Self

Level x Fixed 1 Self

x x Lowest Priority, NMI, INIT, Invalid3 Self
SMI, Start-Up

Edge x Fixed Valid All inc Self

Level x Fixed 1 All inc Self

x x Lowest Priority, NMI, INIT, Invalid3 All inc Self
SMI, Start-Up

Edge x Fixed, Lowest Priority, NMI, Valid All excl Self
INIT, SMI, Start-Up

Level x Fixed, Lowest Priority, NMI 1 All excl Self

Level x SMI, Start-Up Invalid3 All excl Self

Level x INIT 2 All excl Self

NOTES:

1. Valid. Treated as edge triggered if Level = 1 (assert), otherwise ignored.

2. Valid. Treated as edge triggered when Level = 1 (assert); when Level = 0 (deassert), treated as "INIT
Level Deassert" message. Only INIT level deassert messages are allowed to have level = deassert. For
all other messages the level must be "assert."

3. Invalid. The behavior of the APIC is .undefined.

7-24

I

MULTIPLE PROCESSOR MANAGEMENT

7.4.10. Interrupt Acceptance

Three 256-bitread-only registers (the IRR, ISR, and TMR registers) are involved in the interrupt
acceptance logic (see Figure 7-9). The 256 bits represents the 256 possible vectors. Because
vectors 0 through 15 are reserved, so are bits 0 through 15 in these registers. The functions of
the three registers are as follows:

TMR (trigger mode register)

255

Upon acceptance of an interrupt, the corresponding TMR bit is cleared for
edge triggered interrupts and set for level interrupts. If the TMR bit is set,
the local APIC sends an EOI message to all 110 APICs as a result of soft­
ware issuing an EOI command (see Section 7.4.10.6., "End-Of-Interrupt
(EOI)" for a description of the EOI register).

1615 o

r-----------------------------------~--:-:-:-:-:-:-:--~I::: Reserved TMR L-__________________________________ ~ __________ ~

Addresses: IRR FEEO 0200H - FEEO 0270H
ISR FEEO 0100H - FE EO 0170H
TMR FEEO 0180H - FEEO 10FOH

Value after reset: OH

Figure 7-9. IRR, ISR and TMR Registers

IRR (interrupt request register)
Contains the active interrupt requests that have been accepted, but not yet
dispensed by the current local APIC. A bit in IRR is set when the APIC
accepts the interrupt. The IRR bit is cleared, and a corresponding ISR bit
is set when the INTA cycle is issued.

ISR (in-service register)

7.4.10.1.

Marks the interrupts that have been delivered to the processor, but have
not been fully serviced yet, as an EOI has not yet been received from the
processor. The ISR reflects the current state of the processor interrupt
queue. The ISR bit for the highest priority IRR is set during the INTA
cycle. During the EOI cycle, the highest priority ISR bit is cleared, and if
the corresponding TMR bit was set, an EOI message is sent to all 110
APICs.

INTERRUPT ACCEPTANCE DECISION FLOW CHART

The process that the APIC uses to accept an interrupt is shown in the flow chart in Figure 7-10.
The response of the local APIC to the start-up IPI is explained in the Pentium® Pro Family
Developer's Manual, Volume 1.

I
7-25

MULTIPLE PROCESSOR MANAGEMENT

Figure 7-10. Interrupt Acceptance Flow Chart for the Local APIC

7.4.10.2. TASK PRIORITY REGISTER

Task priority register (TPR) provides a priority threshold mechanism for interrupting the
processor (see Figure 7-11). Only interrupts whose priority is higher than that specified in the
TPR will be serviced. Other interrupts are recorded and are serviced as soon as the TPR value
is decreased enough to allow that. This enables the operating system to block temporarily
specific interrupts (generally low priority) from disturbing high-priority tasks execution. The
priority threshold mechanism is not applicable for delivery modes excluding the vector infor­
mation (that is, for ExtINT, NMI, SMI, INIT, INIT-Deassert, and Start-Up delivery modes).

7-26

I

MULTIPLE PROCESSOR MANAGEMENT

31

Address: FEEO 0080H
Value after reset: OH

Reserved

87

Figure 7-11. Task Priority Register (TPR)

Task
Priority

o

The Task Priority is specified in the TPR. The 4 most-significant bits of the task priority corre­
spond to the 16 interrupt priorities, while the 4 least-significant bits correspond to the sub-class
priority. The TPR value is generally denoted as x:y, where x is the main priority and y provides
more precision within a given priority class. When the x-value of the TPR is 15, the APIC will
not accept any interrupts.

7.4.10.3. PROCESSOR PRIORITY REGISTER (PPR)

The processor priority register (PPR) is used to determine whether a pending interrupt can be
dispensed to the processor. Its value is computed as follows:

IF TPR[7:4] ;?: ISRV[7:4]
THEN

PPR[7:0] = TPR[7:0]
ELSE

PPR[7:4] = ISRV[7:4] AND PPR[3:0] = 0

Where ISRV is the vector of the highest priority ISR bit set, or zero if no ISR bit is set. The PPR
format is identical to that of the TPR. The PPR address is FEEOOOAOH, and its value after reset
is zero.

7.4.10.4. ARBITRATION PRIORITY REGISTER (APR)

Arbitration priority register (APR) holds the current, lowest-priority of the processor, a value
used during lowest priority arbitration (see Section 7.4.l3., "APIC Bus Arbitration Mechanism
and Protocol"). The APR format is identical to that of the TPR. The APR value is computed as
the following.

IF (TPR[7:4] ;?: IRRV[7:4]) AND (TPR[7:4] > ISRV[7:4])
THEN

APR[7:0] = TPR[7:0]
ELSE

APR[7:4] = max(TPR[7:4] AND ISRV[7:4], IRRV[7:4]), APR[3:0]=O.

Here, IRRV is the interrupt vector with the highest priority IRR bit set or cleared (if no IRR bit
is set). The APR address is FEEO 0090H, and its value after reset is O.

I
7-27

MULTIPLE PROCESSOR MANAGEMENT

7.4.10.5. SPURIOUS INTERRUPT

A special situation may occur when a processor raises its task priority to be greater than or equal
to the level of the interrupt for which the processor INTR signal is currently being asserted. If
at the time the INTA cycle is issued, the interrupt that was to be dispensed has become masked
(programmed by software), the local APIC will return a spurious interrupt vector to the
processor. Dispensing the spurious interrupt vector does not affect the ISR, so the handler for
this vector should return without an EO!.

7.4.10.6. END-OF-INTERRUPT (EOI)

During the interrupt serving routine, software should indicate acceptance of lowest-priority,
fixed, timer, and error interrupts by writing an arbitrary value into its local APIC end-of-inter­
rupt (EO!) register (see Figure 7-12). This is an indication for the local APIC it can issue the
next interrupt, regardless of whether the current interrupt service has been terminated or not.
Note that interrupts whose priority is higher than that currently in service, do not wait for the
EOI command corresponding to the interrupt in service.

31

Address: OFEEO OOBOH
Value after reset: OH

Figure 7-12. EOI Register

o

Upon receiving end-of-interrupt, the APIC clears the highest priority bit in the ISR and selects
the next highest priority interrupt for posting to the CPU. If the terminated interrupt was a level­
triggered interrupt, the local APIC sends an end-of-interrupt message to all I/O APICs. Note that
EOI command is supplied for the above two interrupt delivery modes regardless of the interrupt
source (that is, as a result of either the I/O APIC interrupts or those issued on local pins or using
the ICR). For future compatibility, the software is requested to issue the end-of-interrupt
command by writing a value of OH into the EOI register.

7.4.11. Local APIC State

All local APICs are initialized in a software-disabled state after power-up. A software-disabled
local APIC unit responds only to self-interrupts and to INIT, NMI, SMI, and start-up messages
arriving on the APIC Bus. The operation oflocal APICs during the disabled state is as follows:

• For the INIT, NMI, SMI, and start-up messages, the APIC behaves normally, as if fully
enabled.

•

7-28

Pending interrupts in the IRR and ISR registers are held and require masking or handling
by the CPU.

I

•

•

•

•

MULTIPLE PROCESSOR MANAGEMENT

A disabled local APIC does not affect the sending of APIC messages. It is software's
responsibility to avoid issuing ICR commands if no sending of interrupts is desired.

Disabling a local APIC does not affect the message in progress. The local APIC will
complete the reception/transmission of the current message and then enter the disabled
state.

A disabled local APIC automatically sets all mask bits in the LVT entries. Trying to reset
these bits in the local vector table will be ignored.

A disabled local APIC listens to all bus messages in order to keep its arbitration ID
synchronized with the rest of the system.

7.4.11.1. SPURIOUS-INTERRUPT VECTOR REGISTER

Software can enable or disable a local APIC at any time by programming bit 8 of the spurious­
interrupt vector register (SVR), see Figure 7-13. The functions of the fields in the SVR are as
follows:

31

Spurious Vector

APIC Enable

10 9 8 7 4 3 0

Reserved

Focus Processor Checking ------:J
0: Enabled
1: Disabled APIC Enabled Spurious Vector

0: APIC SW Disabled
1: APIC SW Enabled

Address: FEEO OOFOH
Value after reset: 0000 OOFFH

Figure 7-13. Spurious Interrupt Vector Register (SVR)

Released during an INTA cycle when all pending interrupts are masked or
when no interrupt is pending. Bits 4 through 7 of the this field are
programmable by software, and bits 0 through 3 are hardwired to logical
ones. Software writes to bits 0 through 3 have no effect.

Allows software to enable (1) or disable (0) the local APIC.

Focus Processor
Checking

Determines if focus processor checking is enabled during the lowest
priority delivery: (0) enabled and (1) disabled.

7.4.11.2. LOCAL APIC INITIALIZATION

On a hardware reset, the processor and its local APIC are initialized simultaneously. The local
APIC obtains its physical ID at the falling edge of the RESET# signal by sampling 6 lines on
the system bus (the BR[3:0]) and cluster ID[1:0] lines) and stores this value into the APIC ID
register.

I
7·29

MULTIPLE PROCESSOR MANAGEMENT

7.4.11.3. LOCAL APIC STATE AFTER POWER-UP RESET

The state of local APIC registers and state machines after a power-up reset are as follows:

•

•
•
•
•

•
•
•

The following registers are all reset to 0: the IRR, ISR, TMR, ICR, LDR, and TPR
registers; the holding registers; the timer initial count and timer current count registers; the
remote register; and the divide configuration register.

The DFR register is reset to allIs.

The LVT register entries are reset to 0 except for the mask bits, which are set to Is.

The local APIC version register is not affected.

The local APIC ID and Arb ID registers are loaded from processor input pins (the Arb ID
register is set to the APIC ID value for the local APIC).

All internal state machines are reset.

APIC is software disabled (that is bit 8 of the SVR register is set to 0).

The spurious interrupt vector register is initialized to FFH.

7.4.11.4. LOCAL APIC STATE AFTER A SOFTWARE (INIT) RESET

An INIT reset of the processor is delivered to the local APIC as a bus message. It has the same
effect on the local APIC as the power-up reset, except that the APIC ID and Arb ID registers are
not affected. The local APIC asserts the INIT signal to its processor, which begins the initializa­
tion process in the local APIC.

7.4.11.5. LOCAL APIC STATE AFTER INIT-DEASSERT MESSAGE

An INIT-disassert message has no affect on the state of the APIC, other than to reload the arbi­
tration ID register with the value in the APIC ID register.

7.4.12. Local APIC Version Register

The local APIC contains a hardwired version register, which software can use to identify the
APIC version (see Figure 7-15). In addition, the version register specifies the size ofLVT used
in the specific implementation. The fields in the local APIC version register are as follows:

Version

Max LVT Entry

7-30

The version numbers of the local APIC or an external 82489DX APIC
controller:

lXH

OXH

local APIC.

82489DX.

20H through FFH reserved.

Shows the number of the highest order LVT entry. For the Pentium Pro
processor, having 5 LVT entries, the Max LVT number is 4.

I

MULTIPLE PROCESSOR MANAGEMENT

31 24 23

Reserved Max. LVT
Entry

Value after reset: OOON OOVVH
V = Version, N = # of LVT entries
Address: FEEO 0030H

1615 87

Reserved Version

Figure 7-14. Local APIC Version Register

7.4.13. APIC Bus Arbitration Mechanism and Protocol

o

Because only one message can be sent at a time on the APIC bus, the 110 APIC and local APICs
employ a "rotating priority" arbitration protocol to gain permission to send a message on the
APIC bus. One or more APICs may start sending their messages simultaneously. At the begin­
ning of every message, each APIC presents the type of the message it is sending and its current
arbitration priority on the APIC bus. This information is used for arbitration. After each arbitra­
tion cycle (within an arbitration round, only the potential winners keep driving the bus. By the
time all arbitration cycles are completed, there will be only one APIC left driving the bus. Once
a winner is selected, it is granted exclusive use of the bus, and will continue driving the bus to
send its actual message.

After each successfully transmitted message, all APICs increase their arbitration priority by l.
The previous winner (that is, the one that has just successfully transmitted its message) assumes
a priority of 0 (lowest). An agent whose arbitration priority was 15 (highest) during arbitration,
but did not send a message, adopts the previous winner's arbitration priority, incremented by 1.

Note that the arbitration protocol described above is slightly different if one of the APICs issues
a special End-Of-Interrupt (EOI). This high-priority message is granted the bus regardless of its
sender's arbitration priority, unless more than one APIC issues an EOI message simultaneously.
In the latter case, the APICs sending the EOI messages arbitrate using their arbitration priorities.

If the APICs are set up to use "lowest priority" arbitration (see Section 7.4. 7., "Interrupt Distri­
bution Mechanisms") and multiple APICs are currently executing at the lowest priority (the
value in the APR register), the arbitration priorities (unique values in the Arb ID register) are
used to break ties. All 8 bits of the APR are used for the lowest priority arbitration.

7.4.13.1. BUS MESSAGE FORMATS

The APICs use 4 types of messages: EOI message, short message, non-focused lowest priority
message, and remote read message. The purpose of each type of message and its format are
described below.

EOI Message. Local APICs send 14-cycle EOI messages to the 110 APIC to indicate that a level
triggered interrupt has been accepted by the processor. This interrupt, in turn, is a result of soft­
ware writing into the EOI register of the local APIC. Table 7-3 shows the cycles in an EOI
message.

I
7-31

MULTIPLE PROCESSOR MANAGEMENT

The checksum is computed for cycles 6 through 9. It is a cumulative sum of the 2-bit (Bit 1 :BitO)
logical data values. The carry out of all but the last addition is added to the sum. If any APIC
computes a different checksum than the one appearing on the bus in cycle 10, it signals an error,
driving lIon the APIC bus during cycle 12. In this case, the APICs disregard the message. The
sending APIC will receive an appropriate error indication (see Section 7.4.14., "Error
Handling") and resend the message. The status cycles are defined in Table 7-6.

Short Message. Short messages (21-cycles) are used for sending fixed, NMI, SMI, INIT, start­
up, ExtINT and lowest-priority-with-focus interrupts. Table 7-4 shows the cycles in a short
message.

Table 7-3. EOI Message (14 Cycles)

Cycle Bit1 BitO

1 1 1 11 = EOI

2 ArblD3 0 Arbitration ID bits 3
through 0

3 ArblD2 0

4 ArblD1 0

5 ArblDO 0

6 V7 V6 Interrupt vector V7 - VO

7 V5 V4

8 V3 V2

9 V1 VO

10 C C Checksum for cycles
6-9

11 0 0

12 A A Status Cycle 0

13 A1 A1 Status Cycle 1

14 0 0 Idle

If the physical delivery mode is being used, then cycles 15 and 16 represent the APIC ID and
cycles 13 and 14 are considered don't care by the receiver. If the logical delivery mode is being
used, then cycles 13 through 16 are the 8-bit logical destination field. For shorthands of "all­
inc1-self' and "all-exc1-self," the physical delivery mode and an arbitration priority of 15
(DO:D3 = 1111) are used. The agent sending the message is the only one required to distinguish
between the two cases. It does so using internal information.

When using lowest priority delivery with an existing focus processor, the focus processor iden­
tifies itself by driving 10 during cycle 19 and accepts the interrupt. This is an indication to other
APICs to terminate arbitration. If the focus processor has not been found, the short message is
extended on-the-fly to the non-focused lowest-priority message. Note that except for the EOI
message, messages generating a checksum or an acceptance error (see Section 7.4.14., "Error
Handling") terminate after cycle 21.

7-32

I

MULTIPLE PROCESSOR MANAGEMENT

Table 7-4. Short Message (21 Cycles)

Cycle Bit1 BitO

1 0 1 01 = normal

2 ArblD3 0 Arbitration ID bits 3 through 0

3 ArblD2 0

4 ArblD1 0

5 ArblDO 0

6 DM M2 DM = Destination Mode

7 M1 MO M2-MO = Delivery mode

8 L TM L = Level, TM = Trigger Mode

9 V7 V6 V7-VO = Interrupt Vector

10 V5 V4

11 V3 V2

12 V1 VO

13 D7 D6 D7 -DO = Destination

14 D5 D4

15 D3 D2

16 D1 DO

17 C C Checksum for cycles 6-16

18 0 0

19 A A Status cycle 0

20 A1 A1 Status cycle 1

21 0 0 Idle

NOD-Focused Lowest Priority Message. These 34-cycle messages (see Table 7-5) are used in
the lowest priority delivery mode when a focus processor is not present. Cycles 1 through 20 are
same as for the short message. If during the status cycle (cycle 19) the state of the (A:A) flags
is lOB, a focus processor has been identified, and the short message format is used (see Table
7-4). If the (A:A) flags are set to OOB, lowest priority arbitration is started and the 34-cycles of
the non-focused lowest priority message are competed. For other combinations of status flags,
refer to Section 7.4.13.2., "APIC Bus Status Cycles".

I
7-33

MULTIPLE PROCESSOR MANAGEMENT

Table 7-5. Non-Focused Lowest Priority Message (34 Cycles)

Cycle BitO Bit1

1 0 1 01 = normal

2 ArblD3 0 Arbitration ID bits 3 through 0

3 ArblD2 0

4 ArblD1 0

5 ArblDO 0

6 DM M2 DM = Destination mode

7 M1 MO M2-MO = Delivery mode

8 L TM L = Level, TM = Trigger Mode

9 V7 V6 V7-VO = Interrupt Vector

10 V5 V4

11 V3 V2

12 V1 VO

13 D7 D6 D7-DO = Destination

14 D5 D4

15 D3 D2

16 D1 DO

17 C C Checksum for cycles 6-16

18 0 0

19 A A Status cycle 0

20 A1 A1 Status cycle 1

21 P7 0 P7 - PO = Inverted Processor Priority

22 P6 0

23 P5 0

24 P4 0

25 P3 0

26 P2 0

27 P1 0

28 PO 0

29 ArblD3 0 Arbitration ID 3 -0

30 ArblD2 0

31 ArblD1 0

32 ArblDO 0

33 A2 A2 Status Cycle

34 0 0 Idle

7-34

I

MULTIPLE PROCESSOR MANAGEMENT

Cycles 21 through 28 are used to arbitrate for the lowest priority processor. The processors
participating in the arbitration drive their inverted processor priority on the bus. Only the local
APICs having free interrupt slots participate in the lowest priority arbitration. If no such APIC
exists, the message will be rejected, requiring it to be tried at a later time.

Cycles 29 through 32 are also used for arbitration in case two or more processors have the same
lowest priority. In the lowest priority delivery mode, all combinations of errors in cycle 33 (A2
A2) will set the "accept error" bit in the error status register (see Figure 7-15). Arbitration
priority update is performed in cycle 20, and is not affected by errors detected in cycle 33. Only
the local APIC that wins in the lowest priority arbitration, drives cycle 33. An error in cycle 33
will force the sender to res end the message.

7.4.13.2. APIC BUS STATUS CYCLES

Certain cycles within an APIC bus message are status cycles. During these cycles the status flags
(A:A) and (A1:AI) are examined. Table 7-6 shows how these status flags are interpreted,
depending on the current delivery mode and existence of a focus processor.

Table 7-6. APIC Bus Status Cycles Interpretation

Delivery Focus Status
Mode Processor AA Comments

Fixed, EOI Not Applicable 0 0 CSOK

1 1 CS Error
1 0 Error
0 1 Error

NMI,SMI, Not Applicable 0 0 CSOK
INIT, ExtINT,
Start-Up

1 1 CS Error
1 0 Error
0 1 Error

Lowest No 0 0 CS OK, no focus
Priority

Yes 1 0 CS OK, focus
1 1 CS Error
0 1 Error

NOTE:
• Status: A2 A2 flags (relevant for lowest priority arbitration only)

1 0 Accept
1 1 Error
o X Error

I

Status
A1 A1

1 0
1 1
0 X

0 0
0 0
0 0

1 0
1 1
0 X

0 0
0 0
0 0

1 1

1 0
OX

0 0
0 0
0 0

Comments

Accepted
Retry
Accept Error

Accepted
Error
Error

Do lowest priority
arbitration'
End and Retry
Error

7-35

MULTIPLE PROCESSOR MANAGEMENT

7.4.14. Error Handling

The local APIC sets flags in the error status register (ESR) to record all the errors that is detects
(see Figure 7-15). The ESR is a read/write register and is reset after being written to by the
processor. A write to the ESR must be done just prior to reading the ESR to allow the register to
be updated. An error interrupt is generated when one of the error bits is set. Error bits are cumu­
lative. The ESR must be cleared by software after unmasking of the error interrupt entry in the
LVT is performed (by executing back-to-back a writes). If the software, however, wishes to
handle errors set in the register prior to unmasking, it should write and then read the ESR prior
or immediately after the unmasking.

31

I··
876543210

Reserved
III 1111 I I

Illegal Register Address ____ ---'I II I
Received Illegal Vector .
Send Illegal Vector -----------'
Reserved----------------'
Receive Accept Error -------------'
Send Accept Error ----------------'
Receive CS Error ---------------'
Send CS Error -------------------'

Address: FE EO 0280H
Value after reset: OH

Figure 7-15. Error Status Register (ESR)

The functions of the ESR flags are as follows:

Send CS Error

Receive CS Error

Send Accept Error

Receive Accept Error

Send Illegal Vector

Receive Illegal Vector

Illegal Reg. Address

7-36

Set when the local APIC detects a check sum error for a message
that was sent by it.
Set when the local APIC detects a check sum error for a message
that was received by it.
Set when the local APIC detects that a message it sent was not
accepted by any APIC on the bus.
Set when the local APIC detects that the message it received was not
accepted by any APIC on the bus, including itself.
Set when the local APIC detects an illegal vector in the message that
it is sending on the bus.
Set when the local APIC detects an illegal vector in the message it
received, including an illegal vector code in the local vector table
interrupts and self-interrupts from ICR.
Set when the processor is trying to access a register that is not
implemented in the Pentium Pro processor local APIC register
address space (that is, within FEEOOOOOH through FEE003FFH).

I

MULTIPLE PROCESSOR MANAGEMENT

7.4.15. Timer

The local APIC unit contains a 32-bit programmable timer for use by the local processor. This
timer is configured through the timer register in the local vector table (see Figure 7-7). The time
base is derived from the processor's bus clock, divided by a value specified in the divide config­
uration register (see Figure 7-16). After reset, the timer is initialized to zero. The timer supports
one-shot and periodic modes. The timer can be configured to interrupt the local processor with
an arbitrary vector.

31

Address: FEEO 03EOH
Value after reset: OH

Reserved

4 3 2 1 a

Divide Value (bits 0,1 and 3)~
000: Divide by 2
001: Divide by4
010: Divide by 8
011: Divide by 16
100: Divide by 32
101: Divide by 64
110: Divide by 128
111: Divide by 1

Figure 7-16. Divide Configuration Register

The timer is started by programming its initial-count register, see Figure 7-17. The initial count
value is copied into the current-count register and count-down is begun. After the timer reaches
zero in one-shot mode, an interrupt is generated and the timer remains at its 0 value until repro­
grammed. In periodic mode, the current-count register is automatically reloaded from the initial­
count register when the count reaches 0 and the count-down is repeated. If during the count­
down process the initial-count register is set, the counting will restart and the new value will be
used. The initial-count register is read-write by software, while the current-count register is read
only.

31

I

Initial Count

Current Count

Address: Initial Count FEEO 0380H
Current Count FEEO 0390H

Value after reset: OH

Figure 7-17. Initial Count and Current Count Registers

a

7-37

MULTIPLE PROCESSOR MANAGEMENT

7.4.16. Software Visible Differences Between the Local APIC and
the 82489DX

The following local APIC features differ in their definitions from the 82489DX features:

•

•

•

•

•

In the local APIC does not clear any registers. It sets the mask bits in the local vector tables
and ceases accepting the bus messages except for INIT, SMI, NMI, remote read and start­
up. In the 82489DX, when the local unit is disabled by resetting the bit 8 of the spurious
vector register, all the internal registers including the IRR, ISR and TMR are cleared and
the mask bits in the local vector tables are set to logical ones. In the disabled mode,
82489DX local unit will accept only the reset deassert message.

In the local APIC, NMI and INIT (except for INIT deassert) are always treated as edge
triggered interrupts, even if programmed otherwise. In the 82489DX these interrupts are
always level triggered.

In local APIC, the interrupts generated through ICR messages are always treated as edge
triggered (except INIT Deassert). In the 82489DX, the ICR can be used to generate either
edge or level triggered interrupts.

Logical Destination register the local APIC supports 8 bits, where it supports 32 bits for
the 82489DX.

APIC ID register is 4 bits wide for the local APIC and 8 bits wide for the 82489DX.

7.4.17. Performance Related Differences between the Local APIC
and the 82489DX

For the 82489DX, in the lowest priority mode, all the target local APICs specified by the desti­
nation field participate in the lowest priority arbitration. Only those local APICs which have free
interrupt slots will participate in the lowest priority arbitration.

7.4.18. New Features Incorporated in the Pentium®pro Processor
Local APIC

The local APIC in the Pentium Pro processor has the following new features not found in the
82489DX.

•
•
•
•
•

•

7-38

The local APIC supports cluster addressing in logical destination mode.

Focus processor checking can be enabled/disabled in the local APIC.

Interrupt input signal polarity can be programmed in the local APIC.

The local APIC supports SMI through the ICR and I/O redirection table.

The local APIC incorporates an error status register to log and report errors to the
processor.

The local APIC incorporates an additional local vector table entry to handle performance
counter interrupts.

I

MULTIPLE PROCESSOR MANAGEMENT

7.5. MULTIPLE PROCESSOR (MP) INITIALIZATION PROTOCOL

The following sections describe an MP initialization protocol that the Pentium Pro processor
executes in both single- or multiple-processor system. The MP protocol uses the message
passing capabilities of the processor's local APIC to dynamically determine a boot strap
processor (BSP). The algorithm used essentially implements a "race for the flag" mechanism
using the APIC bus for atomicity.

7.5.1. MP Protocol Goals

The primary goals of the MP protocol are as follows:

•

•
•

To permit sequential or controlled booting of mUltiple processors (from 2 to 4) with no
dedicated system hardware. The initialization algorithm is not limited to 4 processors; it
can support supports from 1 to 15 processors in a multi-clustered system when the APIC
busses are tied together. Larger systems are not supported.

To be able to initiate the MP protocol without the need for a dedicated signal.

To provide fault tolerance. No single processor is geographically designated the BSP. The
BSP is determined dynamically during initialization.

7.5.2. Protocol Requirements and Restrictions

The MP protocol imposes the following requirements and restrictions on the system:

•

•

•

•

An APIC clock (APICLK) must be provided on all system based on the Pentium Pro
processor.

All interrupt mechanisms must be disabled for the duration of the MP protocol algorithm.
That is, requests generated by interrupting devices must not be seen by the local APIC unit
(on board the processor) until the completion of the algorithm.

The MP protocol should be initiated only after a hardware reset. After completion of the
protocol algorithm, a flag is set in the APIC base MSR of the BSP (APIC_BASE.BSP) to
indicate that it is the BSP. This flag is cleared for all other processors. If a processor or the
complete system is subject to an INIT sequence (either through the INIT# pin or an INIT
IPI), then the MP protocol is not re-executed. Instead, each processor examines its BSP
flag to determine whether the processor should boot or wait for a STARTUP IPI.

If the processor needs to participate in the protocol after an INIT sequence, the APIC
should be enabled prior to the INIT. This is not a requirement for the BSP.

7.5.3. MP Protocol Nomenclature

Table 7-7 describes the interrupt-style abbreviations that will be used through out the remaining
description of the protocol. These IPIs do not define new interrupt messages. They are messages
that are special only by virtue of the time that they exist (that is, before the RESET sequence is
complete).

I
7-39

MULTIPLE PROCESSOR MANAGEMENT

Table 7-7. Types of Boot Phase IPls

Message Type Abbreviation Description

Boot Inter- BIPI An APIC serial bus message that Symmetric Multi-Processing
Processor Interrupt (SMP) agents use to dynamically determine a BSP after reset.

Final Boot Inter FIPI An APIC serial bus message that the SSP issues before it fetches
Processor Interrupt from the reset vector. This message has the lowest priority of all

boot phase IPls. When a SSP sees an FIPI that it issued, it
fetches the reset vector because no other boot phase IPls can
follow an FIPI.

Startup I nter- SIPI Used to send a new reset vector to a Application Processor (non-
Processor Interrupt BSP) processor in an MP system.

Table 7-8 describes the various fields of each boot phase IPI.

Table 7-8. Boot Phase IPI Message Format

Destination Destination Trigger Destination Delivery Vector
Type Field Shorthand Mode Level Mode Mode (Hex)

SIPI Not used All including Edge Deassert Don't Care Fixed 40 to 4E*
self (000)

FIPI Not used All including Edge Deassert Don't Care Fixed 10 to 1 E
self (000)

SIPI Used All allowed Edge Assert Physical or StartUp OOto FF
Logical (110)

NOTE:

• For all Pentium'" Pro processors.

For BIPI and FIPI messages, the lower 4 bits of the vector field are equal to the APIC ID of the
processor issuing the message. The upper 4 bits of the vector field of a BIPI or TIPI can be
thought of as the "generation ID" of the message. All processors that run symmetric to a Pentium
Pro processor will have a generation ID ofOlOOB or 4H. BIPIs in a system based on the Pentium
Pro processor will therefore use vector values ranging from 40H to 4EH (4FH can not be used
because FH is not a valid APIC ID).

7.5.4. Error Detection During the MP Initialization Protocol

Errors may occur on the APIC bus during the MP initialization phase. These errors may be tran­
sient or permanent and can be caused by a variety of failure mechanisms (for example, broken
traces, soft errors during bus usage, etc.). All serial bus related errors will result in an APIC
checksum or acceptance error.

The occurrence of an APIC error causes a processor shutdown.

7-40

I

MULTIPLE PROCESSOR MANAGEMENT

7.5.5. Error Handling During the MP Initialization Protocol

The MP initialization protocol makes the following assumptions:

•

•

•

If any errors are detected on the APIC bus during execution of the MP initialization
protocol, all processors will shutdown.

In a system that conforms to Intel architecture guidelines, a likely error (broken trace,
check sum error during transmission) will result in no more than one processor booting.

The MP initialization protocol will be executed by processors even if they fail their BIST
sequences.

7.5.6. MP Initialization Protocol Algorithm

The MP initialization protocol algorithm (using the APIC bus) is based on the fact that one and
only one message is allowed to exist on the APIC bus at a given time and that once the message
is issued, it will complete (APIC messages are atomic). Another feature of the APIC architecture
that is used in the initialization algorithm is the existence of a round-robin priority mechanism
between all agents that use the APIC bus.

The MP initialization protocol algorithm performs the following operations in a SMP system
(see Figure 7-1):

1. After completing their internal BISTs, all processors start their MP initialization protocol
sequence by issuing BIPIs to "all including self' (at time t=O). The four least significant
bits of the vector field of the IPI contain each processor's APIC ID. The APIC hardware
observes the BNR# (block next request) and BPRI# (priority-agent bus request) pins to
guarantee that the initial BIPI is not issued on the APIC bus until the BIST sequence is
complete for all processors in the system.

I

Pentiul11" Pro
Processor A

t=O t=1

t t
I BIPLA I

System (CPU) Bus

Pentium Pro
Processor B

Pentium Pro
Processor C

APIC Bus

t=2 t=3

t t
BIPLB I BIPLC I BIPLD

Serial Bus Activity

Figure 7-1. SMP System

Pentium Pro
Processor D

t=4 t=5

t t
I FIPI I

7-41

MULTIPLE PROCESSOR MANAGEMENT

2. When the first BIPI completes (at time t=I), the APIC hardware (in each processor)
propagates an interrupt to the processor core to indicate the arrival of the BIPI.

3. The processor compares the four least significant bits of the BIPI's vector field to the
processor's APIC ID. A match indicates that the processor should be the BSP and continue
the initialization sequence. If the APIC ID fails to match the BIPIs vector field, the
processor is essentially the "loser" or not the BSP. The processor then becomes an
application processor and should enter a "wait for SIP!" loop.

4. The winner (the BSP) issues an PIPI. The PIPI is issued to "all including self' and is
guaranteed to be the last IPI on the APIC bus during the initialization sequence. This is due
to the fact that the round-robin priority mechanism forces the winning APIC agent's (the
BSPs) arbitration priority to O. The PIPI is therefore issued by a priority 0 agent and has to
wait until all other agents have issued their BIPI's. When the BSP receives the PIPI that it
issued (t=5), it will start fetching code at the reset vector (Intel architecture address).

5. All application processors (non-BSP processors) remain in a halted state until woken up by
SIPIs issued by the BSP.

7.5.7. Two-Processor Bootup Handshake Protocol Sequence
With Examples

The following example shows the protocol for booting two Pentium Pro processors in a
multiple-processor system and initializing their APICs.

The following constants and data definitions are used in this document code examples. They are
based on the addresses of the APIC registers as defined in Table 7-1.

ICR_LOW EQU OFEEOO300H

ICR_HI EQU OFEE00310H

SVR EQU OFEEOOOFOH

APIC_ID EQU OFEEOOO20H

LVT3 EQU OFEEOO370H

APIC_ENABLED EQU lOOH

BOOT_ID DW ?

SECOND_ID DW ?

7.5.7.1. BOOT STRAP PROCESSOR'S (BSP'S) SEQUENCE OF EVENTS

1. The BSP boots at standard Intel Architecture address and executes until ready to activate
the second processor.

2. Initialization software should execute the CPUID instruction to determine if the processor
is a "GenuineIntel." The values of EAX and EDX should be saved into a configuration
RAM space for use later.

7-42

I

MULTIPLE PROCESSOR MANAGEMENT

3. The following operation can be used to detect the second processor:

Set a timer before sending the start-up IPI to the second processor (AP). In the APs initial­
ization routine, it should write a value into memory indicating its presence. The BSP can
then use the timer expiration to check if something has been written into memory. If the
timer expires and nothing has been written into memory, the AP is not present or some
error has occurred.

4. Load start-up code for the AP to execute into a 4-KByte page in the lower 1 MByte of
memory.

5. Switch to protected mode (to access APIC address space above 1 MByte) or change the
APIC base to less than 1 MByte and insure it is mapped to an uncached (UC) memory
type.

6. Determine the BSP's APIC ID from the local APIC ID register.
MOV ESI, APIC_ID; address of local APIC ID register
MOV EAX, [ESI]

AND EAX, OFOOOOOOH; zero out all other bits except APIC ID

MOV BOOT_ID, EAX; save in memory

Save the ID in the configuration RAM (optional).

7. Determine APIC ID of the AP and save it in the configuration RAM (optional).

MOV EAX, BOOT_ID

XOR EAX, 100000H; toggle lower bit of ID field (bit 24)
MOV SECOND_ID, EAX

8. Convert the base address of the 4-KByte page for the AP's bootup code into 8-bit vector.
The 8-bit vector defines the address of a 4-KByte page in the real-address mode address
space (l-MByte space). For example, a vector of OBDH specifies a start-up memory
address of OOOBDOOOH.

Steps 9 and 10 are used if the programmer wants to use the LVT APIC error handling entry
to deal with unsuccessful delivery of the start-up IPI.

9. Enable the local APIC by writing to spurious vector register (SVR). This is required to do
APIC error handling via the local vector table.

MOV ESI, SVR ; address of SVR
MOV EAX, [ESI]

OR EAX, APIC_ENABLED; set bit 8 to enable (0 on reset)
MOV [ESI], EAX

10. Program LVT3 (APIC error interrupt vector) of the local vector table with an 8-bit vector
for handling APIC errors

I

MOV ESI, LVT3
MOV EAX, [ESI]

AND EAX, FFFFFFOOH; clear out previous vector

OR EAX, OOOOOOxxH; xx is the 8-bit vector for APIC error

; handling.
MOV [ESI], EAX

7-43

MULTIPLE PROCESSOR MANAGEMENT

11. Write APIC ICRH with address of the AP's APIC.

MOV ESI, ICR_HI ; address of ICR high dword
MOV EAX, [ESI] ; get high word of ICR
AND EAX, OFOFFFFFFH; zero out ID Bits
OR EAX, SECOND_ID; write ID into appropriate bits - don't

; affect reserved bits
MOV [ESI], SECOND_ID; write upgrade ID to destination field

12. Initialize the memory location into which the AP will write to signal it's presence.

13. Set the timer with an appropriate value (-100 milliseconds).

14. Write APIC ICRL to send a start-up IPI message via the APIC.

MOV ESI, ICR_LOW; write address of ICR low dword
MOV EAX, [ESI] ; get low dword of ICR
AND EAX, OFFFOFSOOH; zero out delivery mode and vector fields
OR EAX, 000006xxH; 6 selects delivery mode 110 (StartUp IPI)

MOV [ESI], EAX

xx should be vector of 4kb page as
; computed in Step S.

15. Wait for timer interrupt or AP signal appearing in memory

16. If necessary, reconfigure the APIC and continue with the remaining system diagnostics as
appropriate.

7.5.7.2. AP'S SEQUENCE OF EVENTS FOLLOWING START-UP IPI

If the AP's APIC is to be used for symmetric multiprocessing, the following steps must be taken
(executed by the other processors after receiving SIPIs):

1. Switch to protected mode to access the APIC addresses.

2. Initialize the local APIC by writing to bit 8 of the SVR register and programming its LVT3
for error handling.

3. Configure the APIC as appropriate.

4. Enable interrupts.

5. (Optional) Execute the CPUID instruction and write the results into the configuration
RAM or update the multiple-processor specification table entries.

6. Write into the memory location that is being used to signal to the BSP that the AP is
executing.

7. Continue execution i.e. self configuration, MP Specification Configuration table
completion or execute a HLT instruction and wait for an IPI from the operating system.

7-44

I

MULTIPLE PROCESSOR MANAGEMENT

7.5.7.3. PROGRAM THE L1NTO AND L1NT1 INPUTS

The following procedure describes how to program the LINTO# and LINTl # local APIC pins
on a processor after multiple processors have been booted and initialized. In this example,
LINTO# is programmed to be an ExtINT pin and LINTl # is programmed to be an NMI pin.

The following constants are defined:

LVTl

LVT2

LVT3

SVR

EQU OFEE00350H

EQU OFEE00360H

EQU OFEE00370H

EQU OFEEOOOFOH

l. Mask 8259 interrupts.

2. Enable APIC via SVR (spurious vector register) if not already enabled.

MOV ESI, SVR ; address of SVR
MOV EAX, [ESIl
OR EAX, APIC_ENABLED; set bit 8 to enable (0 on reset)
MOV [ESIl, EAX

3. Program LVTl as an ExtINT which delivers the signal to the INTR signal of all processors
cores listed in the destination as an interrupt that originated in an externally connected
interrupt controller.

MOV ESI, LVTl
MOV EAX, [ESIl
AND EAX, OFFFE58FFH; mask off bits 8-10, 12, 14 and 16

OR EAX, 700H Bit 16=0 for not masked, Bit 15=0 for edge
triggered, Bit 13=0 for high active input
polarity, Bits 8-10 are 111b for ExtINT

MOV [ESIl, EAX Write to LVT1

4. Program LVT2 as NMI which delivers the signal on the NMI signal of all processor cores
listed in the destination.

I

MOV ESI,
MOV EAX,
AND EAX,
OR EAX,

LVT2

[ESIl
OFFFE58FFH; mask off bits 8-10 and 15
000000400H; Bit 16=0 for not masked, Bit 15=0 edge

triggered, Bit 13=0 for high active input
; polarity, Bits 8-10 are 100b for NMI

MOV [ESIl, EAX ; Write to LVT2
;Unmask 8259 interrupts and allow NMI.

7-45

Processor
Management and
Initialization

I

8

CHAPTER 8
PROCESSOR MANAGEMENT AND

INITIALIZATION

This chapter describes the facilities provided for managing processor wide functions and for
initializing the processor. The subjects covered include: processor initialization, FPU initializa­
tion, processor configuration, feature determination, mode switching, the model-specific regis­
ters (MSRs), and the memory type range registers (MTRRs).

8.1. INITIALIZATION OVERVIEW

Following power-up or an assertion of the RESET# pin, the processor performs a hardware
initialization of the processor (known as a hardware reset) and an optional built-in self test
(BIST). A hardware reset sets the processor's registers to a known state and places the processor
in real-address mode. It also invalidates the internal caches, translation lookaside buffers (TLBs)
and the branch target buffer (BTB). The processor will then execute the multiple processor
initialization protocol across the APIC bus (see Section 7.5., "Multiple Processor (MP) Initial­
ization Protocol" for more details). From this point, the processor that becomes the bootstrap
processor (BSP) immediately starts executing software-initialization code the current code
segment beginning at the offset in the EIP register. The software-initialization code performs
additional system-specific initialization of the processor's registers and loads system data struc­
tures such as the IDT and GDT into memory. When the necessary data structures are loaded into
memory, the initialization code can then switch the processor to protected mode and begin
executing an initial operating-system task and/or an application program.

The floating-point unit (FPU) is also initialized to a known state during hardware reset. FPU
software initialization code can then be executed to perform operations such as setting the preci­
sion of the FPU and the exception masks. No special initialization of the FPU is required to
switch operating modes; the FPU operates the same regardless of whether the processor is oper­
ating in protected, real-address, or virtual-8086 mode.

Asserting the INIT# pin on the processor invokes a similar response to a hardware reset. The
major difference is that during an INIT, the internal caches, MSRs, or FPU state are left
unchanged (although, the TLBs and BTB are invalidated as with a hardware reset). An INIT
provides a method for switching from protected to real-address mode while maintaining the
contents of the internal caches.

8.1.1. Processor State After Reset

Table 8-1 shows the state of the flags and other registers following power-up. The state of
control register CRO following reset is 60000010H (see Figure 8-1). In this state, the processor
is in real-address mode with paging disabled.

I
8-1

PROCESSOR MANAGEMENT AND INITIALIZATION

8.1.2.

,---- Paging disabled: 0

I

r Caching disabled: 1

I
Not write-through disabled: 1

~ Alignment check disabled: 0
I I Write-protect disabled: 0

31302928 1918171615 6 5 4 3 2 1 0

.1~[I~"I~I'I*I*1
External FPU_e_rr_o_r r_e_po_rt_i_ng_:_o _________ I---'111
(Not used): 1 .
No task switch: 0
FPU instructions not trapped: 0 ---------------'
WAIT/FWAIT instructions not trapped: 0
Real-address mode: 0 ------------------'

B Reserved

Figure 8-1. Contents of CRO Register after Reset

Processor Built-In Self Test (BIST)

Hardware may request that the BIST be performed at power-up. If the BIST is performed, it
takes about 5.5 million clock periods to complete on the Pentium Pro processor. (This clock
count is model-specific and Intel reserves the right to change the exact number of periods
without notification.)

The EAX register is clear (OH) if the processor passed the BIST. A non-zero value in the EAX
register after the BIST indicates that a processor fault was detected. If the BIST is not requested,
the contents of the EAX register after a hardware reset is OH.

Table 8-1. Pentium® Pro Processor State Following Reset

Register RESET INIT

EFLAGS1 0OOOOOO2H 0OOOOOO2H

EIP OOOOFFFOH OOOOFFFOH

CRO 60000010H Note 2

CR2ICR3/CR4 OOOOOOOOH OOOOOOOOH

CS selector = FOOOH selector = OFOOOH
base = FFFFOOOOH base = FFFFOOOH
limit = FFFFH limit = FFFFH
AR = Present, RIW, Accessed AR = Present, RIW, Accessed

8-2

I

PROCESSOR MANAGEMENT AND INITIALIZATION

Table 8-1. Pentium® Pro Processor State Following Reset (Contd.)

Register RESET INIT

SS,DS, ES, FS,GS selector = 0000 selector = 0000
base = OOOOH base =OOOOH
limit = FFFFH limit = OFFFFH
AR = Present, RIW, Accessed AR = Present, RIW, Accessed

EDX 000006xxH 000006xxH

EAX 03 0

EBX, ECX, ESI, EDI, EBP, ESP OOOOOOOOH OOOOOOOOH

LDTR, Task Register selector = OOOOH selector = OOOOH
base = OOOOOOOOH base = OOOOOOOOH
limit = FFFFH limit = FFFFH
AR = Present, RIW AR = Present, RIW

GDTR,IDTR base = OOOOOOOOH base = OOOOOOOOH
limit = FFFFH limit = FFFFH
AR = Present, RIW AR = Present, RIW

DRO, DR1, DR2, DR3 OOOOOOOOH OOOOOOOOH

DR6 FFFFOFFOH FFFFOFFOH

DR7 00000400H 00000400H

Time Stamp Counter 0 Unchanged

Perf. Counters and Event Select 0 Unchanged

All Other MSRs Undefined Unchanged

Data and Code Cache, TLBs Invalid Invalid

Fixed MTRRs Disabled Unchanged

Variable MTRRs Disabled Unchanged

Machine Check Architecture Undefined Unchanged

APIC Enabled Unchanged

NOTES:

1. The 10 most-significant bits of the EFLAGS register are undefined following a reset. Software should not
depend on the states of any of these bits.

2. The CD and NW flags are unchanged, bit 4 is set to 1, all other bits are cleared.

3. If Built-In Self Test (BIST) is invoked, EAX is 0 only if all tests passed.

8.1.3. Model and Stepping Information

Following a hardware reset, the EDX register contains component identification and revision
information (see Figure 8-2). The device ID field is set to the value 6H, 5H, 4H, or 3H to indicate
a Pentium Pro, Pentium, Inte1486, or Inte1386 processor, respectively. Different values may be
returned for the various members of these Intel Architecture families. For example the Inte13 86
SX processor returns 23H in the device ID field. Binary object code can be made compatible
with other Intel processors by using this number to select the correct initialization software.

I
8-3

PROCESSOR MANAGEMENT AND INITIALIZATION

31 14 131211 8 7 43 0

Processor Type _I 1
Family (011 OB for the Pentium® Pro Processor Familyr----------J
Model (Beginning with 0001"Ijt-'------------------'

L: .·1 Reserved

Figure 8-2. Processor Type and Signature in the EDX Register after Reset

The stepping ID field contains a unique identifier for the processor's stepping ID or revision
level. The upper word of EDX is reserved following reset.

8.1.4. First Instruction Executed

The first instruction that is fetched and executed following a hardware reset is located at physical
address FFFFFFFOH. This address is 16 bytes below the uppermost physical address of the
Pentium Pro processor. The EPROM containing the software-initialization code must be located
at this address.

The address FFFFFFFOH is beyond the l-MByte addressable range of the processor while in
real-address mode. The processor is initialized to this starting address as follows. The CS
register has two parts: the visible segment selector part and the hidden base address part. In real­
address mode, the base address is normally formed by shifting the l6-bit segment selector value
4 bits to the left to produce a 20-bit base address. However, during a hardware reset, the segment
selector in the CS register is loaded with FOOOH and the base address is loaded with
FFFFOOOOH. The starting address is thus formed by adding the base address to the value in the
EIP register (that is, FFFFOOOO + FFFOH = FFFFFFFOH).

The first time the CS register is loaded with a new value after a hardware reset, the processor
will follow the normal rule for address translation in real-address mode (that is, [CS base address
= CS segment selector * 16]). To insure that the base address in the CS register remains
unchanged until the EPROM based software-initialization code is completed, the code must not
contain a far jump or far call (which would cause the CS selector value to be changed).

8.2. FPU INITIALIZATION

Software-initialization code can determine the whether the processor contains or is attached to
an FPU by using the CPUID instruction. The code must then initialize the FPU and set flags in
control register CRO to reflect the state of the FPU environment.

A hardware reset places the Pentium processor FPU in the state shown in Table 8-2. This state
is different from the state the processor is placed in when executing an FINIT or FNINIT instruc-

8-4

I

PROCESSOR MANAGEMENT AND INITIALIZATION

tion (also shown in Table 8-2). If the FPU is to be used, the software-initialization code should
execute an FINITIFNINIT instruction following a hardware reset. These instructions, tag all
data registers as empty, clear all the exception masks, set the TOP-of-stack value to 0, and select
the default rounding and precision controls setting (round to nearest and 64-bit precision).

Table 8-2. FPU State Following Power-Up or Reset and the FINIT/FNINIT Instructions

FPU Register Power-Up or Reset FINIT/FNINIT Instruction

STO through ST7 +0.0 Unchanged

FPU Control Word 0040H 037FH

FPU Status Word OOOOH OOOOH

Tag Word 5555H FFFFH

Oata Operand Segment Selector OOOOH OOOOH

Oata Operand Pointer OOOOOOOOH OOOOOOOOH

CS Segment Selector OOOOH OOOOH

Instruction Pointer OOOOOOOOH OOOOOOOOH

If the processor is reset by asserting the INIT# pin, the FPU state is not changed.

8.2.1. Configuring the FPU Environment

Initialization code must load the appropriate values into the MP, EM, and NE flags of control
register eRO. These bits are cleared on hardware reset of the processor. Figure 8-3 shows the
suggested settings for these flags, depending on the Intel Architecture processor being initial­
ized. Initialization code can test for the type of processor present before setting or clearing these
flags.

Table 8-3. Recommended Settings of EM and MP Flags on Intel Architecture Processors

EM MP NE Intel Architecture Processor

1 0 1 Intel486™ SX, Intel386™ OX, and Intel386 SX processors only,
without the presence of a math coprocessor.

0 1 1 Pentium® Pro, Pentium, Intel486 OX, and Intel386 OX
processors, and Intel487™ SX, Intel387™ OX, and Intel387 SX
math coprocessors.

The EM flag determines whether floating-point instructions are executed by the FPU (EM is
cleared) or generate a device-not-available exception (#NM) so that an exception handler can
emulate the floating-point operation (EM = 1). Ordinarily, the EM flag is cleared when an FPU
or math coprocessor is present and set if they are not present. If the EM flag is set and no FPU,
math coprocessor, or floating-point emulator is present, the system will hang when a floating­
point instruction is executed.

I
8-5

PROCESSOR MANAGEMENT AND INITIALIZATION intet

The MP flag determines whether WAITIFWAIT instructions react to the setting of the TS flag.
If the MP flag is clear, WAITIFWAIT instructions ignore the setting of the TS flag; if the MP
flag is set, they will generate a device-not-available exception (#NM) if the TS flag is set. Gener­
ally, the MP flag should be set for processors with an integrated FPU and clear for processors
without an integrated FPU and without a math coprocessor present. However, an operating
system can choose to save the floating-point context at every context switch, in which case there
would be no need to set the MP bit.

Table 2-1 shows the actions taken for floating-point and WAITIFWAIT instructions based on the
settings of the EM, MP, and TS flags.

The NE flag determines whether unmasked floating-point exceptions are handled by generating
a floating-point error exception (NE is set) or through an external interrupt (NE is cleared).
Normally, this flag is set. In systems where an external interrupt controller is used to invoke
numeric exception handlers (such as DOS-based systems), the NE bit should be cleared.

8.2.2. Setting the Processor for FPU Software Emulation

Setting the EM flag causes the processor to generate a device-not-available exception (#NM)
and trap to a software exception handler whenever it encounters a floating-point instruction.
Setting this flag has two functions:

•

•

It allows floating-point code to run on an Intel processor that neither has an integrated FPU
or is connected to an external math coprocessor.

It allows floating-point code to be executed using a special floating-point emulator,
regardless of whether an FPU or math coprocessor is present.

To emulate floating-point instructions, the EM, MP, and NE flag in control register CRO should
be set as shown in Table 8-4.

Table 8-4. Software Emulation Settings of EM, MP, and NE Flags

eRO Bit Value

EM

MP o

NE

Regardless of the value of the NE bit, the Intel486 SX processor generates a device-not-avail­
able exception (#NM) upon encountering any floating point instruction.

a3. CACHEENABUNG
The Pentium Pro processor contains two internal caches: level 1 (Ll) and level 2 (L2). These
caches are enabled by clearing the CD flag in control register CRO. (It is set during a hardware
reset.) Because all cache lines are invalid following reset initialization, it is not necessary to
invalidate the cache before enabling caching.

8-6

I

PROCESSOR MANAGEMENT AND INITIALIZATION

Depending on the hardware and operating system or executive requirements, additional config­
uration of the processor's caching facilities will probably be required. The NW flag in control
register CRO controls whether write-through or write-back caching is used. Page-level caching
can be controlled with the PCD and PWT flags in page-directory and page-table entries. The
memory type range registers (MTRRs) control the caching characteristics of the regions of phys­
ical memory. See Chapter 11, Memory Cache Control, for detailed information on configuration
of the caching facilities in the Pentium Pro processor and system memory.

8.4. MODEL SPECIFIC REGISTERS (MSRS)

The Pentium Pro processor contains a large number of model-specific registers (MSRs). These
registers are by definition implementation specific; that is, they are not guaranteed to be
supported on future Intel Architecture processors and/or to have the same functions. The MSRs
are provided to control a variety of hardware- and software-related features, including:

•
•
•

•

Debug extensions (see Section 10.4., "Last Branch, Interrupt, and Exception Recording").

The performance-monitoring counters (see Section 10.6., "Performance Monitoring Counters").

The machine-check exception capability and its accompanying machine-check architecture
(see Chapter 16, Machine Check Architecture).

The MTRRs (see Section lLl1., "Memory Type Range Registers (MTRRs)").

The MSRs can be read and written to using the RDMSR and WRMSR instructions, respectively.

When performing software initialization of the Pentium Pro processor, many of the MSRs will
need to be initialized to set up things like performance monitoring events, run-time machine
checks, and memory types for physical memory.

The list of available MSRs is given in Appendix C, Model-Specific Registers (MSRs). The refer­
ences earlier in this section show where the functions of the various groups of MSRs are
described in this manual.

8.5. MEMORY lYPE RANGE REGISTERS (MTRRS)

Memory type range registers allow a particular type of caching mechanism (or no caching) to
be specified in system memory for selected physical address ranges. They allow memory
accesses to be optimized for various types of memory such as RAM, ROM, frame buffer
memory, and memory-mapped 110 devices.

In general, initializing the MTRRs is normally handled by the software initialization code or
BIOS and is not an operating system or executive function. At the very least, all the MTRRs
must be cleared to 0, which selects the uncached (UC) memory type. See Section 11.11.,
"Memory Type Range Registers (MTRRs)" for detailed information on the MTRRs.

I
8-7

PROCESSOR MANAGEMENT AND INITIALIZATION in1et

8.6. SOFTWARE INITIALIZATION FOR REAL-ADDRESS MODE
OPERATION

Following a hardware reset (either through a power-up or the assertion of the RESET# pin) the
processor is placed in real-address mode and begins executing software initialization code from
physical address FFFFFFFOH. Software initialization code must first set up the necessary data
structures for handling basic system functions, such as a real-mode IDT for handling interrupts
and exceptions. If the processor is to remain in real-address mode, software must then load addi­
tional operating-system or executive code modules and data structures to allow reliable execu­
tion of application programs in real-address mode.

If the processor is going to operate in protected mode, software must load the necessary data
structures to operate in protected mode and then switch to protected mode. The protected mode
data structures that must be loaded are described in Section 8.7., "Software Initialization for
Protected Mode Operation".

8.6.1. Real-Address Mode IDT

In real-address mode, the only system data structure that must be loaded into memory is the IDT
(also called the "interrupt vector table"). By default, the address of the base of the IDT is phys­
ical address OH. This address can be changed by using the LlDT instruction to change the base
address value in the IDTR. Software initialization code needs to load interrupt- and exception­
handler pointers into the IDT before interrupts can be enabled.

The actual interrupt- and exception-handler code can be contained either in EPROM or RAM;
however, the code must be located within the I-MByte addressable range of the processor in
real-address mode. If the handler code is to be stored in RAM, it must be loaded along with the
IDT.

8.6.2. NMI Interrupt Handling

The NMI interrupt is always enabled (except when multiple NMIs are nested). If the IDT and
the NMI interrupt handler need to be loaded into RAM, there will be a period of time following
hardware reset when an NMI interrupt cannot be handled. During this time, hardware must
provide a mechanism to prevent an NMI interrupt from halting code execution until the IDT and
the necessary NMI handler software is loaded. Here are two examples of how NMIs can be
handled during the initial states of processor initialization:

•

•

8-8

A simple 'IDT and NMI interrupt handler can be provided in EPROM. This allows an NMI
interrupt to be handled immediately after reset initialization.

The system hardware can provide a mechanism to enable and disable NMIs by passing the
NMI# signal through an AND gate controlled by a flag in an I/O port. Hardware can clear
the flag when the processor is reset, and software can set the flag when it is ready to handle
NMI interrupts.

I

PROCESSOR MANAGEMENT AND INITIALIZATION

8.7. SOFTWARE INITIALIZATION FOR PROTECTED MODE
OPERATION

The Pentium Pro processor is placed in real-address mode following a hardware reset. At this
point in the initialization process, some basic data structures and code modules must be loaded
into physical memory to support further initialization of the processor, as described in Section
8.6., "Software Initialization for Real-Address Mode Operation". Before the processor can be
switched to protected mode, the software initialization code must load a minimum number of
'protected mode data structures and code modules into memory to support reliable operation of
the processor in protected mode. These data structures include the following:

•
•
•
•
•
•

•

A protected-mode IDT.

AGDT.

An optional TSS.

An optional LDT.

If paging is to be used, at least one page directory and one page table.

A code segment that contains the code to be executed when the processor switches to
protected mode.

One or more code modules that contain the necessary interrupt and exception handlers.

Software initialization code must also initialize the following system registers before the
processor can be switched to protected mode:

•
•
•

•

The memory type range registers (MTRRs).

TheGDTR.

(Optional.) The IDTR. This register can also be initialized immediately after switching to
protected mode, prior to enabling interrupts.

Control registers CRI through CR4.

With these data structures, code modules, and system registers initialized, the processor can be
switched to protected mode by loading control register CRO with a value that sets the PE flag
(bit 0).

8.7.1. Protected-Mode System Data Structures

The contents of the protected-mode system data structures loaded into memory during software
initialization, depend largely on the type of memory management the protected-mode operating­
system or executive is going to support: flat, flat with paging, segmented, or segmented with
paging.

To implement a flat memory model without paging, software initialization code must at a
minimum load a GDT with one code and one data segment descriptor. A null descriptor in the
first GDT entry is also required. The stack can be placed in a normal read/write data segment,

I
8-9

PROCESSOR MANAGEMENT AND INITIALIZATION

so no descriptor for the stack is required. A flat memory model with paging also requires a page
directory and at least one page table (see Section 8.7.3., "Initializing Paging").

Before the GDT can be used, the base address and limit for the GDT must be loaded into the
GDTR register using an LGDT instruction.

A multi-segmented model may require additional segments for the operating system, as well as
segments and LDTs for each application program. LDTs require segment descriptors in the
GDT. Some operating systems allocate new segments and LDTs as they are needed. This
provides maximum flexibility for handling a dynamic programming environment. However,
many operating systems use a single LDT for all tasks, allocating GDT entries in advance. An
embedded system, such as a process controller, might pre-allocate a fixed number of segments
and LDTs for a fixed number of application programs. This would be a simple and efficient way
to structure the software environment of a real-time system.

8.7.2. Initializing Protected-Mode Exceptions and Interrupts

Software initialization code must at a minimum load a protected-mode IDT with gate descriptor
for each exception vector that the processor can generate. If interrupt or trap gates are used, the
gate descriptors can all point to the same code segment, which contains the necessary exception
handlers. If task gates are used, one TSS and accompanying code, data, and task segments are
required for each exception handler called with a task gate.

If hardware allows interrupts to be generated, gate descriptors must be provided in the IDT for
one or more for the interrupt handlers.

Before the IDT can be used, the base address and limit for the IDT must be loaded into the IDTR
register using an LIDT instruction. This operation is typically carried out immediately after
switching to protected mode.

8.7.3. Initializing Paging

Paging is controlled by a mode flag. If the PG flag in control register CRO controls paging. When
this flag is clear (its state following a hardware reset), the paging mechanism is turned off; when
it is set, paging is enabled. Before setting the PG flag, the following data structures and registers
must be initialized:

•

•

•

Software must load at least one page directory and one page table into physical memory.
The page table can be eliminated if the page directory contains a directory entry pointing to
itself. Here, the page directory and page table reside in the same page.

Control register CR3 (also called the PDBR register) is loaded with the physical base
address of the page directory.

(Optional) Software may provide one set of code and data descriptors in the GDT or in an
LDT for supervisor mode and another set for user mode.

With this paging initialization complete, paging can be enabled and the processor can be
switched to protected mode at the same time by loading of control register CRO with the PG and
PE flags set.

8-10

I

PROCESSOR MANAGEMENT AND INITIALIZATION

8.7.4. Initializing Multitasking

If the multitasking mechanism is not going to be used and changes to more privileged (numeri­
cally lower privilege levels) segments are not allowed, it is not necessary load a TSS into
memory or to initialize the task register.

If the multitasking mechanism is used or changes to more privileged segments are allowed, soft­
ware initialization code must load at least one TSS and an accompanying TSS descriptor. (A
TSS is required to change privilege levels because pointers to the privileged-level 0, 1, and 2
stack segments and the stack pointers for these stacks are obtained from the TSS.) TSS descrip­
tors must not be marked as busy when they are created; they should be marked busy by the
processor only as a side-effect of performing a task switch. As with descriptors for LDTs, TSS
descriptors reside in the GDT.

After the processor has switched to protected mode, the LTR instruction can be used to load a
segment selector for a TSS descriptor into the task register. This instruction marks the TSS
descriptor as busy, but does not perform a task switch. The processor can, however, use the TSS
to locate pointers to privilege-level 0, 1, and 2 stacks. The segment selector for the TSS must be
loaded before software performs its fIrst task switch in protected mode, because a task switch
copies the current task state into the TSS.

After the LTR instruction has been executed, further operations on the task register are
performed by task switching. As with other segments and LDTs, TSSs and TSS descriptors can
be either pre-allocated or allocated as needed.

8.8. MODE SWITCHING

To use the processor in protected mode, a mode switch must be performed from real-address
mode. Once in protected mode, software generally does not need to return to real-address mode.
To run software written to run in real-address mode (8086 mode), it is generally more convenient
to run the software in virtual-8086 mode, than to switch back to real-address mode.

8.8.1. Switching to Protected Mode

Before switching to protected mode, a minimum set of system data structures and code modules
must be loaded into memory, as described in Section 8.7., "Software Initialization for Protected
Mode Operation". Once these tables are created, software initialization code can switch into
protected mode.

Protected mode is entered by executing a MOV CRO instruction that sets the PE flag in the CRO
register. (In the same instruction, the PG flag in register CRO can be set to enable paging.)
Execution in protected mode begins with a CPL of O.

The 32-bit Intel Architecture processors have slightly different requirements for switching to
protected mode. To insure upwards and downwards code compatibility with all 32-bit Intel
Architecture processors, it is recommended that the following steps be performed:

I
8-11

PROCESSOR MANAGEMENT AND INITIALIZATION

1. Disable interrupts. A CLI instruction disables maskable (INTR) interrupts. NMI interrupts
can be disabled with external circuitry. (Software must guarantee that no exceptions or
interrupts are generated during the mode switching operation.)

2. Execute the LGDT instruction to load the GDTR. register with the base address of the
GDT.

3. Execute a MaV CRO instruction that sets the PE flag (and optionally the PG flag) in
control register CRO.

4. Immediately following the Mav CRO instruction, execute a far JMP or far CALL
instruction. (This operation is typically a far jump or call to the next instruction in the
instruction stream.)

The JMP or CALL instruction immediately after the MaV CRO instruction changes the
flow of execution and in effect empties the processor of instructions prefetched in real­
address mode.

The code for the MaV CRO instruction and the JMP or CALL instruction must come from
a page that is identity mapped (that is, the linear address before the jump is the same as the
physical address after paging and protected mode is enabled). The target instruction for the
JMP or CALL instruction does not need to be identity mapped.

5. If a local descriptor table is going to be used, execute the LLDT instruction to load the
segment selector for the LDT in the LDTR register.

6. After entering protected mode, the segment registers continue to hold the contents they had
in real-address mode. The JMP or CALL instruction in step 4 resets the CS register.
Perform one of the following operations to update the contents of the remaining segment
registers.

Reload segment registers DS, SS, ES, FS, and GS. If the ES, FS, and/or as registers
are not going to be used, load them with a null selector.

Perform a JMP or CALL instruction to a new task, which automatically resets the
values of the segment registers and branches to a new code segment.

7. If a jump or call to a task was not performed in step 6, execute the LTR instruction to load
the task register with a segment selector to the initial protected-mode task.

8. Execute the LIDT instruction to load the IDTR register with the address and limit of the
protected-mode IDT.

9. Execute the STI instruction to enable maskable interrupts and perform the necessary
hardware operation to enable NMI interrupts.

8.8.2. Switching Back to Real-Address Mode

The processor switches back to real-address mode if software clears the PE bit in the CRO
register with a MaV CRO instruction. A procedure that re-enters real-address mode should
perform the following steps:

8-12

I

PROCESSOR MANAGEMENT AND INITIALIZATION

1. Disable interrupts. A CLI instruction disables maskable (INTR) interrupts. NMI interrupts
can be disabled with external circuitry.

2. If paging is enabled, perform the following operations:

Transfer program control to linear addresses that are identity mapped to physical
addresses (that is, linear addresses equal physical addresses).

Insure that the ODT and IDT are in identity mapped pages.

Clear the PO bit in the CRO register.

Move OH into the CR3 register to flush the TLB.

3. Transfer program control to a readable segment that has a limit of 64 KBytes (FFFFH).
This operation loads the CS register with the segment limit required in real-address mode.

4. Load segment registers SS, DS, ES, FS, and OS with a selector for a descriptor containing
the following values, which are appropriate for real-address mode:

Limit = 64 KBytes (OFFFFH)

Byte granular (0 = 0)

Expand up (E = 0)

Writable (W = 1)

Present (P = 1)

Base = any value

The segment registers must be loaded with non-null segment selectors or the segment
registers will be unusable in real-address mode. Note that if the segment registers are not
reloaded, execution continues using the descriptor attributes loaded during protected
mode.

S. Execute an LIDT instruction to point to a real-address mode interrupt table that is within
the I-MByte real-address mode address range.

6. Clear the PE flag in the CRO register to switch to real-address mode.

7. Execute a far JMP instruction to jump to a real-address mode program. This operation
flushes the instruction queue and loads the appropriate base and access rights values in the
CS register.

8. Load the SS, DS, ES, FS, and OS registers as needed by the real-address mode code. If any
of the registers are not going to be used in real-address mode, write Os to them.

9. Execute the STI instruction to enable maskable interrupts and perform the necessary
hardware operation to enable NMI interrupts.

I

NOTE

All the code that is executed in steps 1 through 9 must be in a single page and
the linear addresses in that page must be identity mapped to physical
addresses.

8-13

PROCESSOR MANAGEMENT AND INITIALIZATION

8.9. INITIALIZATION AND MODE SWITCHING EXAMPLE

This section provides an initialization and mode switching example that can be incorporated into
an application. This code was originally written to initialize the Inte1386 processor, but it will
execute successfully on the Pentium Pro, Pentium, and Intel486 processors. The code in this
example is intended to reside in EPROM and to run following a hardware reset of the processor.
The function of the code is to do the following:

•
•
•

•

Establish a basic real-address mode operating environment.

Load the necessary protected-mode system data structures into RAM.

Load the system registers with the necessary pointers to the data structures and the
appropriate flag settings for protected-mode operation.

Switch the processor to protected mode.

Figure 8-3 shows the physical memory layout for the processor following a hardware reset and
the starting point of this example. The EPROM that contains the initialization code resides at the
upper end of the processor's physical memory address range, starting at address FFFFFFFFH
and going down from there. The address of the first instruction to be executed is at FFFFFFFOH,
the default starting address for the processor following a hardware reset.

8-14

After Reset

[CS.BASE+EIP] .. - - - - - - -
FFFF FFFFH t t
FFFF FFFOH I I

64K EPROM

EIP = 0000 FFFOH
CS.BASE = FFFF OOOOH
DS.BASE = OH

1---------1 FFFF OOOOH ~
ES.BASE = OH
SS.BASE = OH
ESP= OH

[SP, DS, SS, E&Slf-----; .. ~L-------' 0

Figure 8-3. Processor State After Reset

I

PROCESSOR MANAGEMENT AND INITIALIZATION

The main steps carried out in this example are summarized in Table 8-5. The source listing for
the example (with the filename STARTUP.ASM) is given in Example 8-1. The line numbers
given in Table 8-5 refer to the source listing.

The following are some additional notes concerning this example:

• When the processor is switched into protected mode, the original code segment base­
address value of FFFFOOOOH (located in the hidden part of the CS register) is retained and
execution continues from the current offset in the EIP register. The processor will thus
continue to execute code in the EPROM until a far jump or call is made to a new code
segment, at which time, the base address in the CS register will be changed.

Table 8-5. Main Initialization Steps in STARTUP.ASM Source Listing

STARTUP.ASM
Line Numbers Description

From To

157 157 Jump (short) to the entry code in the EPROM

162 169 Construct a temporary GOT in RAM with one entry:
0- null
1 - RlW data segment, base = 0, limit = 4 GBytes

171 172 Load the GOTR to point to the temporary GOT

174 177 Load CRO with PE flag set to switch to protected mode

179 181 Jump near to clear real mode instruction queue

184 186 Load OS, ES registers with GOT[1] descriptor, so both point to the entire
physical memory space.

188 195 Perform specific board initialization that is imposed by the new protected
mode

196 218 Copy the application's GOT from ROM into RAM

220 238 Copy the application's lOT from ROM into RAM

241 243 Load application's GOTR

244 245 Load application's IOTR

247 261 Copy the application's TSS from ROM into RAM

263 267 Update TSS descriptor and other aliases in GOT (GOT alias or lOT alias)

277 277 Load the task register (without task switch) using LTR instruction

282 286 Load SS, ESP with the value found in the application's TSS

287 287 Push EFLAGS value found in the application's TSS

288 288 Push CS value found in the application's TSS

289 289 Push EIP value found in the application's TSS

290 293 Load OS, ES with the value found in the application's TSS

296 296 Perform IRET; pop the above values and enter the application code

I
8-15

PROCESSOR MANAGEMENT AND INITIALIZATION

•

•

•

Maskable interrupts are disabled after a hardware reset and should remain disabled until
the necessary interrupt handlers have been installed. The NMI interrupt is not disabled
following a reset. The NMI# pin must thus be inhibited from being asserted until an NMI
handler has been loaded and made available to the processor.

The use of a temporary GDT allows simple transfer of tables from the EPROM to
anywhere in the RAM area. A GDT entry is constructed with its base pointing to address 0
and a limit of 4 GBytes. When the DS and ES registers are loaded with this descriptor, the
temporary GDT is no longer needed and can be replaced by the application GDT.

This code loads one TSS and no LDTs. If more TSSs exist in the application, they must be
loaded into RAM. If there are LDTs they may be loaded as well.

8.9.1. Assembler Usage

In this example, the Intel assembler ASM386 and build tools BLD386 are used to assemble and
build the initialization code module. The following assumptions are used when using the Intel
ASM386 and BLD386 tools.

•

•

•

The ASM386 will generate the right operand size opcodes according to the code segment
attribute. The attribute is assigned either by the ASM386 invocation controls or in the code
segment definition.

If a code segment that is going to run in real~address mode is defined, it must be set to a
USE 16 attribute. If a 32-bit operand is used in an instruction in this code segment (for
example, MOV EAX, EBX), the assembler automatically generates an operand prefix for
the instruction that forces the processor to execute a 32-bit operation, even though its
default code segment attribute is 16-bit.

Intel's ASM386 assembler allows specific use of the 16- or 32-bit instructions, for
example, LGDTW, LGDTD, IRETD. If the generic instruction LGDT is used, the default
segment attribute will be used to generate the right opcode.

8.9.2. STARTUP.ASM Listing

The source code listing to move the processor into protected mode is provided in Example 8-1.
This listing does not include any opcode and offset information.

Example 8-1. STARTUP.ASM

DOS 5.0(045-N) 386(TM) MACRO ASSEMBLER STARTUP 09:44:51 08/19/92
PAGE 1

DOS 5.0(045-N) 386(TM) MACRO ASSEMBLER V4.0, ASSEMBLY OF MODULE
STARTUP
OBJECT MODULE PLACED IN startup.obj
ASSEMBLER INVOKED BY: f:\386tools\ASM386.EXE startup.a58 pw (132)

8-16

I

PROCESSOR MANAGEMENT AND INITIALIZATION

LINE SOURCE

I

1

2
3

4

NAME STARTUP

..
11" I I I I ,,, I I I I I I I I I '" I I I I" I II I I I I I I' " I"

..................................
",1 I II I' I I' I' I II I I I I I I I I' I'" II I

5 ASSUMPTIONS:
6

7

8
9

1. The bottom 64K of memory is ram, and can be used for
scratch space by this module.

10
11

12
13
14
15

2. The system has sufficient free usable ram to copy the
initial GDT, IDT, and TSS

..
, "'l I '" I'" I II I I' I II II II "'l I II I' I"" I II II II I I I I I "'" I ""

; configuration data - must match with build definition
16
17 CS_BASE
18

EQU OFFFFOOOOH

19 CS_BASE is the linear address of the segment STARTUP_CODE
20 - this is specified in the build language file
21
22 RAM_START
23

EQU 400H

24 RAM_START is the start of free, usable ram in the linear
25 memory space. The GDT, IDT, and initial TSS will be
26 copied above this space, and a small data segment will be
27 discarded at this linear address. The 32-bit word at
28 RAM_START will contain the linear address of the first
29 free byte above the copied tables - this may be useful if
30 a memory manager is used.
31
32 TSS_INDEX
33

EQU 10

34 TSS_INDEX is the index of the TSS of the first task to
35 run after startup
36
37
38 ..

II' I'" "" II I I I '" 1'" I" I' 1'" I" I" II II I' I" I I I I I I I I II' I'

39
40 ------------------------- STRUCTURES and EQU ---------------
41 structures for system data
42
43
44

TSS structure
TASK_STATE STRUC

8-17

PROCESSOR MANAGEMENT AND INITIALIZATION

45 link
46 link_h
47 ESPO
48 SSO
49 SSO_h
50 ESP1
51 SS1
52 SS1_h
53 ESP2
54 SS2
55 SS2_h
56 CR3_reg
57 EIP_reg
58 EFLAGS_reg
59 EAX_reg
60 ECX_reg
61 EDX_reg
62 EBX_reg
63 ESP_reg
64 EBP_reg
65 ESI_reg
66 ED I_reg
67 ES_reg
68 ES_h
69 CS_reg
70 CS_h
71 SS_reg
72 SS_h
73 DS_reg
74 DS_h
75 FS_reg
76 FS_h
77 GS_reg
78 GS_h
79 LDT_reg
80 LDT_h
81 TRAP_reg
82 IO_map_base
83 TASK_STATE ENDS
84

DW ?

DW ?

DD ?

DW ?

DW ?
DD ?

DW ?

DW ?

DD ?

DW ?

DW ?

DD ?

DD ?

DD ?

DD ?

DD ?

DD ?

DD ?

DD ?

DD ?

DD ?

DD ?

DW ?

DW ?

DW ?

DW ?

DW ?

DW ?

DW ?

DW ?

DW ?
DW ?

DW ?

DW ?

DW ?

DW ?

DW ?

DW ?

85 ; basic structure of a descriptor
86 DESC STRUC
87 lim_O_15
88 bas_O_15
89
90
91

8-18

bas 16 23
access
gran

DW ?
DW ?

DB ?

DB ?

DB ?

I

I

PROCESSOR MANAGEMENT AND INITIALIZATION

92
93 DESC
94

DB ?

ENDS

95 ; structure for use with LGDT and LIDT instructions
96 TABLE_REG STRUC
97 table_lim
98 table_linear
99 TABLE_REG ENDS

100

DW ?

DD ?

101 ; offset of GDT and IDT descriptors in builder generated GDT
102 GDT_DESC_OFF EQU l*SIZE(DESC)
103 IDT_DESC_OFF
104

EQU 2*SIZE(DESC)

105
106
107
108
109

; equates for building temporary GDT in RAM
LINEAR_SEL EQU l*SIZE (DESC)
LINEAR_PROTO_LO EQU OOOOOFFFFH LINEAR_ALIAS

EQU 000CF9200H

110 ; Protection Enable Bit in CRO
111 PE_BIT EQU 1B
112
113 --
114
115 ------------------------- DATA SEGMENT----------------------
116
117 Initially, this data segment starts at linear 0, according
118 to the processor's power-up state.
119
120 STARTUP_DATA
121

SEGMENT RW

LABEL DWORD 122 free_mem_Iinear_base
123 TEMP_GDT LABEL BYTE must be first in segment
124 TEMP_GDT_NULL_DESC DESC <>

125 TEMP_GDT_LINEAR_DESC DESC <>

126
127 ; scratch areas for LGDT and LIDT instructions
128 TEMP_GDT_SCRATCH TABLE_REG <>

130
131
132
133

TABLE_REG
TABLE_REG

; align end_data
fill DW ?

<>

<>

134 ; last thing in this segment - should be on a dword boundary
135 end_data LABEL BYTE
136
137 STARTUP_DATA ENDS
138

8-19

PROCESSOR MANAGEMENT AND INITIALIZATION

139
140
141 ; ------------------------- CODE SEGMENT----------------------
142
143
144
145
146
147
148
149
150
151

STARTUP_CODE SEGMENT ER

; filled in by builder
PUBLIC GDT_EPROM

GDT_EPROM TABLE_REG

; filled in by builder
PUBLIC I DT_E PROM

IDT_EPROM TABLE_REG

PUBLIC USE16

<>

<>

152 entry point into startup code - the bootstrap will vector
153 here with a near JMP generated by the builder. This
154 label must be in the top 64K of linear memory.
155
156 PUBLIC STARTUP
157 STARTUP:
158
159 DS,ES address the bottom 64K of flat linear memory
160 ASSUME DS:STARTUP_DATA, ES:STARTUP_DATA

See Figure 8-4
load GDTR with temporary GDT

161
162
163
164
165
166
167
168
169
170

LEA EBX,TEMP_GDT build the TEMP_GDT in low ram,
where we can address MOV DWORD PTR [EBX],O

MOV DWORD PTR [EBX]+4,0
MOV
MOV
MOV
MOV

DWORD PTR [EBX]+8, LINEAR_PROTO_LO
DWORD PTR [EBX]+12, LINEAR_PROTO_HI
TEMP_GDT_scratch. table_linear, EBX
TEMP_GDT_scratch.table_lim, 15

171
172
173

LGDT
DB

174 enter protected mode
175 MOV EBX,CRO

66H

176
177
178

OR
MOV

EBX,PE_BIT
CRO,EBX

179 ; clear prefetch queue
180 JMP CLEAR_LABEL
181 CLEAR_LABEL:
182

; execute a 32 bit LGDT

183 ; make DS and ES address 4G of linear memory
184 MOV CX,LINEAR_SEL
185 MOV DS,CX

8-20

I

I

PROCESSOR MANAGEMENT AND INITIALIZATION

186 MOV ES,CX
187
188 do board specific initialization
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232

REP

REP

See Figure 8-5
copy EPROM GDT to ram at:

MOV
ADD
MOV
MOV
ADD
MOV
MOV
MOVZX
MOV
INC
MOV
MOV
ADD
MOVS

RAM_START + size (STARTUP_DATA)
EAX,RAM_START
EAX,OFFSET (end_data)
EBX,RAM_START
ECX, CS_BASE
ECX, OFFSET (GDT_EPROM)
ESI, [ECXJ . table_linear
EDI, EAX
ECX, [ECX] . table_lim
APP_GDT_ram[EBX] .table_lim,CX
ECX
EDX,EAX
APP_GDT_ram[EBX].table_linear,EAX
EAX,ECX
BYTE PTR ES: [EDI] ,BYTE PTR DS: [ESI]

; fixup GDT base in descriptor
MOV ECX,EDX
MOV
ROR
MOV
MOV

[EDX] . bas_0_15+GDT_DESC_OFF, CX
ECX, 16
[EDX] .bas_16_23+GDT_DESC_OFF,CL
[EDX] .bas_24_31+GDT_DESC_OFF,CH

; copy EPROM IDT to ram at:
; RAM_START+size{STARTUP_DATA)+SIZE (EPROM GDT)
MOV ECX, CS_BASE
ADD
MOV
MOV
MOVZX
MOV
INC
MOV
MOV
ADD
MOVS

ECX, OFFSET (IDT_EPROM)
ESI, [ECX] . table_linear
EDI,EAX
ECX, [ECX] . table_lim
APP_IDT_ram[EBX] .table_lim,CX
ECX
APP_IDT_ram[EBX] .table_linear,EAX
EBX,EAX
EAX,ECX
BYTE PTR ES: [EDI] ,BYTE PTR DS: [ESI]

8-21

PROCESSOR MANAGEMENT AND INITIALIZATION intet
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268

REP

MOV
ROR
MOV
MOV

MOV

LGDT

LIDT

MOV
MOV
MOV
MOV
MOV
MOV
ROL
MOV
MOV
LSL
INC
MOV
ADD
MOVS

MOV
ROL
MOV
MOV
ROL

; fixup IDT pointer in GDT
[EDX] .bas_0_15+IDT_DESC_OFF,BX
EBX,16
[EDX] .bas_16_23+IDT_DESC_OFF,BL
[EDX] .bas_24_31+IDT_DESC_OFF,BH

; load GDTR and IDTR
EBX,RAM_START
DB 66H
APP_GDT_ram[EBX]
DB 66H
APP_IDT_ram[EBX]

; move the TSS
EDI,EAX

execute a 32 bit LGDT

execute a 32 bit LIDT

EBX, TSS_INDEX*SIZE (DESC)
ECX,GDT_DESC_OFF ;build linear address for TSS
GS,CX
DH,GS: [EBX] .bas_24_31
DL,GS: [EBX] .bas_16_23
EDX,16
DX,GS: [EBX] .bas_0_15
ESI,EDX
ECX,EBX
ECX
EDX,EAX
EAX,ECX
BYTE PTR ES: [EDI] ,BYTE PTR DS: [ESI]

; fixup TSS pointer
GS: [EBX] .bas_0_15,DX
EDX,16
GS: [EBX] .bas_24_31,DH
GS: [EBX] .bas_16_23,DL
EDX,16

269 ;save start of free ram at linear location RAMSTART
270 MOV free_mem_linear_base+RAM_START,EAX
271
272 ;assume no LDT used in the initial task - if necessary,
273 ;code to move the LDT could be added, and should resemble
274 ;that used to move the TSS
275
276
277
278
279

8-22

load task register
LTR BX No task switch, only descriptor loading

See Figure 8-6
load minimal set of registers necessary to simulate task

I

PROCESSOR MANAGEMENT AND INITIALIZATION

280
281
282
283
284
285
286
287
288
289
290
291
292
293

294
295
296
297

switch

MOV
MOV
MOV
MOV
PUSH
PUSH
PUSH
MOV
MOV
MOV
MOV

AX, [EDX] . SS_reg
EDI, [EDX] . ESP_reg
SS,AX

start loading registers

ESP,EDI ; stack now valid
DWORD PTR [EDX] .EFLAGS_reg
DWORD PTR [EDX] .CS_reg
DWORD PTR [EDX] .EIP_reg
AX, [EDX] . OS_reg
BX, [EDX] . ES_reg
DS,AX
ES,BX

; OS and ES no longer linear memory

; simulate far jump to initial task
IRETD

298 STARTUP_CODE ENDS
*** WARNING #377 IN 298, (PASS 2) SEGMENT CONTAINS PRIVILEGED
INSTRUCTION{S)

299
300 END STARTUP, OS: STARTUP_DATA, SS:STARTUP_DATA
301
302

ASSEMBLY COMPLETE, 1 WARNING, NO ERRORS.

I
8-23

PROCESSOR MANAGEMENT AND INITIALIZATION

FFFF FFFFH

START: [CS.BASE+EIP) • FFFFOOOOH

o Jump near start
o Construct TEMP_GOT
oLGOT
o Move to protected mode

T
4GB

~
OS, ES = GOT[1) <

Base - - - - - - - - - - -
Limit GDLSCRATCH

GOT [1) Base=O, Limit=4G
GOT [0) °

Figure 8-4. Constructing Temporary GOT and Switching to Protected Mode (Lines
162-172 of List File)

8-24

I

I

• Move the GOT, lOT, TSS
from ROM to RAM

• Fix Aliases

• LTR

PROCESSOR MANAGEMENT AND INITIALIZATION

FFFF FFFFH

r-- TSS

r-r-- lOT
GOT

"""
.(>

y.. TSS RAM
~ lOT RAM

GOT RAM

o

Figure 8-5. Moving the GOT, lOT and TSS from ROM to RAM (Lines 196-261 of List File)

8-25

PROCESSOR MANAGEMENT AND INITIALIZATION

SS = TSS.SS
ESP = TSS.ESP
PUSH TSS.EFLAG
PUSH TSS.CS
PUSH TSS.EIP
ES=TSS.ES
OS = TSS.OS
IRET

4

• · EIP
EFLAGS

· · · ESP

·
ES

CS
SS
OS

GOT

~ lOT Alias
GOT Alias

0

TSSRAM
lOT RAM

GOT RAM

Figure 8-6. Task Switching (Lines 282-296 of List File)

8.9.3. MAIN.ASM Source Code

The file MAIN.ASM shown in Example 8-2 defines the data and stack segments for this appli­
cation and can be substituted with the main module task written in a high-level language that is
invoked by the IRET instruction executed by STARTUP.ASM.

Example 8-2. MAIN.ASM

NAME main_module
data SEGMENT RW

dw 1000 dup(?)
DATA ENDS
stack stackseg 800
CODE SEGMENT ER use32 PUBLIC
main_start:

nop
nop
nop

CODE ENDS
END main_start, ds:data, ss:stack

8-26

I

PROCESSOR MANAGEMENT AND INITIALIZATION

8.9.4. Supporting Files

The batch file shown in Example 8-3 can be used to assemble the source code files
STARTUP.ASM and MAIN.ASM and build the final application.

Example 8-3. Batch File to Assemble and Build the Application

ASM386 STARTUP.ASM
ASM386 MAIN.ASM
BLD386 STARTUP.OBJ, MAIN.OBJ buildfile(EPROM.BLD} bootstrap (STARTUP)
Bootload

BLD386 performs several operations in this example:

•
•
•
•

It allocates physical memory location to segments and tables.

It generates tables using the build file and the input files.

It links object files and resolves references.

It generates a boot-Ioadable file to be programmed into the EPROM.

Example 8-4 shows the build file used as an input to BLD386 to perform the above functions.

SEGMENT

TASK

TABLE
GDT

I

Example 8-4. Build File

*SEGMENTS(DPL = O}
startup. startup_code (BASE OFFFFOOOOH}

BOOT_TASK(OBJECT = startup, INITIAL,DPL = 0,
NOT INTENABLED}

PROTECTED_MODE_TASK(OBJECT = main_module,DPL 0,
NOT INTENABLED}

LOCATION = GDT_EPROM
ENTRY = (

10: PROTECTED MODE_TASK
startup. startup_code

startup. startup_data
main_module. data
main_module. code
main_module. stack

8-27

PROCESSOR MANAGEMENT AND INITIALIZATION

IDT

MEMORY
(

) ,

LOCATION
) ;

RESERVE (0 .. 3FFFH
Area for the GDT, IDT, TSS copied from

ROM
60000H .. OFFFEFFFFH)

RANGE (ROM_AREA ROM (OFFFFOOOOH .. OFFFFFFFFH))
-- Eprom size 64K

RANGE RAM (4000H .. 05FFFFH))
) ;

END

Table 8-6 shows the relationship of each build item with an ASM source file.

Table 8-6. Relationship Between BLD Item and ASM Source File

BLD386 Controls and
Item ASM386 and Startup.AS8 BLDfile Effect

Bootstrap public startup bootstrap Near jump at
startup: start(startup) OFFFFFFFOH to start

GOT location public GOT_EPROM TABLE The location of the GOT
GOT_EPROM TABLE_REG GOT(location = will be programmed into
<> GOT_EPROM) the GOT_EPROM

location

lOT location public lOT_EPROM TABLE The location of the lOT
lOT _EPROM TABLE_REG IOT(location = will be programmed into
<> lOT_EPROM the lOT_EPROM

location

RAM start RAM_START equ 400H memory(reserve = RAM_START is used as
(0 .. 3FFFH)) the ram destination for

moving the tables. It
must be excluded from
the application's
segment area.

Location of the TSS_INOEX EQU 10 TABLE GOT(Put the descriptor of the
application TSS ENTRY=(10: application TSS in GOT
in the GOT PROTECTEO_MOOE_ TA entry 10

SK))

EPROM size size and location of the SEGMENT startup.code Initialization code size
and location initialization code (base= OFFFFOOOOH) must be less than 64K

... memory (RANGE(and resides at upper
ROM_AREA = most 64K of the 4GB
ROM(x .. y)) memory space.

8·28

I

System Management
Mode (SMM)

I

9

CHAPTER 9
SYSTEM MANAGEMENT MODE (SMM)

The Pentium Pro processor implements Intel's System Management Mode (SMM) architecture.
This chapter describes the architectural features of SMM. For a detailed hardware description,
refer to the Pentium® Pro Family Developer's Manual, Volume 1.

9.1. SYSTEM MANAGEMENT MODE OVERVIEW

SMM is a special-purpose operating mode provided for handling system-wide functions like
power management, system hardware control, or proprietary OEM-designed code. It is intended
for use only by system firmware, not by applications software or general-purpose systems soft­
ware. The main benefit of SMM is that it offers a distinct processor environment that operates
transparently to the operating system or executive and software applications.

When SMM is invoked through a system management interrupt (SMI), the processor saves the
current state of the processor (the processor's context), then switches to a separate operating
environment contained in system management RAM (SMRAM). (A multiplexed status signal,
EXF4, allows system hardware to decode accesses to SMRAM.) While in SMM, the processor
executes SMI handler code to perform tasks such as powering down unused disk drives or moni­
tors, executing proprietary code, or placing the whole system in a suspended state. When the
SMI handler has completed its task (or the system receives a resume signal), the handler
executes a resume (RSM) instruction. This instruction causes the processor to reload the saved
context of the processor, switch back to protected or real mode, and resume executing the inter­
rupted application or operating-system program or task.

The following SMM mechanisms make it transparent to applications programs and operating
systems:

•
•

•
•

•

The only way to enter SMM is by means of an SMI.

The processor executes SMM code in a separate address space (SMRAM) that can be
made inaccessible from the other operating modes.

Upon entering SMM, the processor saves the context of the interrupted program or task.

All interrupts normally handled by the operating system are disabled upon entry into
SMM.

The RSM can be executed only in SMM.

SMM is similar to real-address mode in that there are no privilege levels or address mapping.
An SMM program can address up to 4 GBytes of memory and can execute all 110 and applicable
system instructions. See Section 9.5., "SMI Handler Execution Environment" for more informa­
tion about the SMM execution environment.

I
9-1

SYSTEM MANAGEMENT MODE (SMM)

9.2. SYSTEM MANAGEMENT INTERRUPT (SMI)

The only way to enter SMM is by signaling an SMI through the SMI# pin on the processor or
through an SMI message received through the APIC bus. The SMI is a non-maskable external
interrupt that operates independently from the processor's interrupt- and exception-handling
mechanism and the local APIC. The SMI takes precedence over an NMI and a maskable inter­
rupt. SMM is non-reentrant; that is, the SMI is disabled while the processor is in SMM.

9.3. SWITCHING BETWEEN SMM AND THE OTHER PROCESSOR
OPERATING MODES

Figure 2-2 shows how the processor moves between SMM and the other processor operating
modes (protected, real-address, and virtual-8086). Signaling an SMI while the processor is in
real-address, protected, or virtual-8086 modes always causes the processor to switch to SMM.
Upon execution ofthe RSM instruction, the processor always returns to the mode it was in when
the SMI occurred.

9.3.1. Entering SMM

The processor always handles an SMI on an architecturally defined "interruptible" point in
program execution (which is commonly at an Intel Architecture instruction boundary). When
the processor receives an SMI, it waits for all instructions to retire and for all stores to complete.
The processor then issues an SMIACK transaction on the system bus, saves its current context
in SMRAM (see Section 9.4., "SMRAM"), and begins to execute the SMI handler.

A SMI has a greater priority than debug exceptions and external interrupts. Thus, if an NMI,
maskable interrupt, or a debug exception occurs at an instruction boundary, only the SMI is
handled. Subsequent SMI requests are not acknowledged while the processor is in SMM. The
first SMI interrupt request that occurs while the processor is in SMM is latched and serviced
when the processor exits SMM with the RSM instruction. The processor will latch only one SMI
while in SMM.

See Section 9.5., "SMI Handler Execution Environment" for a detailed description of the execu­
tion environment when in SMM.

9.3.1.1. EXITING FROM SMM

The only way to exit SMM is to execute the RSM instruction. The RSM instruction is only avail­
able to the SMI handler; if the processor is not in SMM, attempts to execute the RSM instruction
result in an invalid-opcode exception (#UD) being generated.

The RSM instruction restores the processor's context by loading the state save image from
SMRAM back into the processor's registers. It then returns program control back to the inter­
rupted program.

If the processor detects invalid state information saved in the SMRAM, it enters the shutdown
state and generates a special bus cycle to indicate it has entered shutdown state. Shutdown
happens only in the following situations:

9-2

I

•

•

SYSTEM MANAGEMENT MODE (SMM)

A reserved bit in control register CR4 is set to 1 on a write to CR4. This error should not
happen unless SMI handler code modifies reserved areas of the SMRAM saved state map
(see Section 9.4.1., "SMRAM State Save Map").

An illegal combination of bits is written to control register CRO, in particular PG set to 1
and PE set to 0, or NW set to 1 and CD set to O.

In shutdown mode, the processor stops executing instructions until a RESET#, INIT# or NMI#
is asserted. The FLUSH# signal is also recognized by the Pentium Pro processor in the shutdown
state, but the SMI# signal is not.

If the processor is in the HALT state when the SMI is received, the processor handles the return
from SMM slightly differently (see Section 9.10., "Auto HALT Restart"). Also, the 5MBASE
address can be changed on a return from SMM (see Section 9.11., "SMBASE Relocation").

9.4. SMRAM

While in SMM, the processor executes code and stores data in the SMRAM space. The SMRAM
space is mapped to the physical address space of the processor and can be up to 4 GB ytes in size.
The processor uses this space to save the context of the processor and to store the SMI handler
code, data and stack. It can also be used to store system management information (such as the
system configuration) and OEM-specific information.

The default SMRAM size is 64 KBytes beginning at a base physical address in physical memory
called the 5MBASE (see Figure 9-1). The 5MBASE default value following a hardware reset is
30000H. The processor looks for the first instruction of the SMI handler at the address
[SMBASE + 8000H]. It stores the processors state in the area from [SMBASE + FEOOH] to
[SMBASE + FFFFH]. See Section 9.4.1., "SMRAM State Save Map" for a description of the
mapping of the state save area.

The system logic is minimally required to decode the physical address range for the SMRAM
from [SMBASE + 8000H] to [SMBASE + FFFFH]. A larger area can be decoded if need. The
size of this SMRAM can be between 32 KBytes and 4 GBytes.

The location of the SMRAM can be changed by changing the 5MBASE value (see Section 9.11.,
"SMBASE Relocation"). It should be noted that all P6 processors in a multiple-processor
system are initialized with the same 5MBASE value (30000H). Initialization software must
sequentially place each processor in SMM and change its 5MBASE so that it does not overlap
those of other processors.

The actual physical location of the SMRAM can be in system memory or in a separate RAM
memory. An SMIACT transaction is issued on the system bus when the processor receives an
SMI. System logic can use this transaction to decode accesses to the SMRAM and redirect them
to specific SMRAM memory. If a separate RAM memory is used for SMRAM, system logic
should provide a programmable method of mapping the SMRAM into system memory space
when the processor is not in SMM. This mechanism will enable start-up procedures to initial­
ization of the SMRAM space (that is, load SMI handler) before executing the SMI handler
during SMM.

I
9-3

SYSTEM MANAGEMENT MODE (SMM)

SMRAM

5MBASE + FFFFH
Start of State Save Area

5MBASE + 8000H
SMI Handler Entry Point

5MBASE L-______________________________ ~

Figure 9-1. SMRAM Usage

9.4.1. SMRAM State Save Map

When the processor initially enters SMM, it writes its state to the state save area of the SMRAM.
The state save area begins at [SMBASE + FFFFH], with state information being added to
[SMBASE + FEOOH]. Table 9-1 shows the state save map. The offset in column 1 is relative to
the 5MBASE value. Reserved spaces should not be used by software.

Some of the registers in the SMRAM state save area (marked YES in column 3) may be read
and changed by the SMI handler, with the changed values restored to the processor registers by
the RSM instruction. Some register images are read-only, and must not be modified (modifying
these registers will result in unpredictable behavior). An SMI handler should not rely on any
values stored in an area that is marked as reserved.

Table 9-1. SMRAM State Save Map

5MBASE + Offset Register Writable?

7FFCH CRO No

7FF8H CR3 No

7FF4H EFLAGS Yes

7FFOH EIP Yes

7FECH EDI Yes

7FE8H ESI Yes

7FE4H EBP Yes

7FEOH ESP Yes

7FDCH EBX Yes

7FD8H EDX Yes

7FD4H ECX Yes

9-4

I

SYSTEM MANAGEMENT MODE (SMM)

Table 9-1. SMRAM State Save Map (Contd.)

5MBASE + Offset Register Writable?

7FDOH EAX Yes

7FCCH DR6 No

7FC8H DR7 No

7FC4H TR* No

7FCOH LDT Base* No

7FBCH GS* No

7FB8H FS* No

7FB4H DS* No

7FBOH SS* No

7FACH CS* No

7FA8H ES* No

7FA7H - 7F98H Reserved No

7F94H IDTBase No

7F93H - 7F8CH Reserved No

7F88H GDT Base No

7F87H - 7F04H Reserved No

7F02H Auto HALT Restart Field (Word) Yes

7FOOH lID Instruction Restart Field (Word) Yes

7EFCH SMM Revision Identifier Field (Doubleword) No

7EF8H 5MBASE Field (Doubleword) Yes

7EF7H - 7EOOH Reserved No

NOTE:

• Upper two bytes are reserved.

The following registers are saved (but not readable) and restored upon exiting SMM:

•
•

Control register CR4.

The hidden segment descriptor information stored in segment registers CS, DS, ES, FS,
GS, and SS.

If an SMI request is issued for the purpose of powering down the processor, the values of all
reserved locations in the SMM state save must be saved to non-volatile memory.

The following registers are not automatically saved and restored following an SMI and the RSM
instruction, respectively:

•
•

I

Debug registers DRO through DR3.

The FPU registers.

9-5

SYSTEM MANAGEMENT MODE (SMM)

• TheMTRRs.

• Control register CR2.

These registers usually do not have to be saved during an SMI handler's execution, as their
contents will not change unless an FPU instruction is executed in SMM. However, if an SMI is
used to power down the processor, a power-on reset will be required before returning to SMM,
which will reset these registers back to their default values. So an SMI handler that is going to
trigger power down should first read these registers directly, and save them (along with the rest
of RAM) to nonvolatile storage. After the power-on reset, the continuation of the SMI handler
should restore these values, along with the rest of the system's state. Anytime the SMI handler
changes these registers in the processor it must also save and restore them.

9.4.2. SMRAM Caching

SMRAM can be cached. If it is cached, it is good practice to flush the processor's caches upon
entering SMM (execute an INVD instruction) and prior to executing the RSM instruction to exit
SMM. Flushing the caches is not necessary if SMRAM resides in a dedicated section of system
memory and is never paged out. SMRAM should not be paged.

If the SMRAM is located in its own physical RAM (not part of system memory), the processor's
caches must be flushed upon entering SMM. If the SMRAM is cached, the caches must be
flushed prior to executing the RSM instruction.

9.S. SMI HANDLER EXECUTION ENVIRONMENT

After saving the current context of the processor, the processor initializes its core registers to the
values shown in Table 9-2. Upon entering SMM, the PE and PG flags in control register CRO
are cleared, which places the processor is in an environment similar to real-address mode. The
differences between the SMM execution environment and the real-address mode execution
environment are as follows:

•

•
•

9-6

The addressable SMRAM address space ranges from 0 to FFFFFFFFH (4 GBytes). (The
physical address extension (enabled with the PAE flag in control register CR4) is not
supported in SMM.)

The normal 64-KByte segment limit for real-address mode is increased to 4 GBytes.

The default operand and address sizes are set to 16 bits, which restricts the addressable
SMRAM address space to the I-MByte real-address mode limit. However, operand-size
and address-size override prefixes can be used to access the address space beyond the
I-MByte.

I

SYSTEM MANAGEMENT MODE (SMM)

Table 9-2. Processor Register Initialization in SMM

Register Contents

Genera-purpose registers Undefined

EFLAGS 000OOO02H

EIP OOOOBOOOH

CS selector SMM Base shifted right 4 bits (default 3000H)

CS base SMM Base (default 30000H)

OS, ES, FS, GS, SS Selectors OOOOH

OS, ES, FS, GS, SS Bases OOOOOOOOOH

OS, ES, FS, GS, SS Limits OFFFFFFFFH

CRO PE, EM, TS and PG flags set to 0; others unmodified

OR6 Undefined

OR? 00000400H

• Near jumps and calls can be made to anywhere in the 4-GByte address space if a 32-bit
operand-size override prefix is used. Due to the real-address-mode style of base-address
formation, a far call or jump cannot transfer control to a segment with a base address of
more than 20 bits (I MByte). However, since the segment limit in SMM is 4 GBytes,
offsets into a segment that go beyond the I-MByte limit are allowed when using 32-bit
operand-size override prefixes. Any program control transfer that does not have a 32-bit
operand-size override prefix truncates the EIP value to the 16 low-order bits.

• Data and the stack can be located anywhere in the 4-GByte address space, but can be
accessed only with a 32-bit address-size override if they are located above 1 MByte. As
with the code segment, the base address for a data or stack segment cannot be more than 20
bits.

The value in segment register CS is automatically set to the default of 30000H for the 5MBASE
shifted 4 bits to the right; that is, 3000H. The EIP register is set to 8000H. When the EIP value
is added to shifted CS value (the 5MBASE), the resulting linear address points to the first
instruction of the SMI handler.

The other segment registers (DS, SS, ES, FS, and GS) are cleared to 0 and their segment limits
are set to 4 GBytes. In this state, the SMRAM address space may be treated as a single flat 4-
Gbyte linear address space. If a segment register is loaded with a 16-bit value, that value is then
shifted left by 4 bits and loaded into the segment base (hidden part of the segment register). The
limits and attributes are not modified.

Maskable interrupts and exceptions, NMI interrupts, SMI interrupts, A20M interrupts, single­
step traps, breakpoint traps, and INIT operations are inhibited when the processor enters SMM.
Maskable interrupts and exceptions, single-step traps, and breakpoint traps can be enabled in
SMM if the SMM execution environment provides and initializes an interrupt table and the
necessary interrupt and exception handlers (see Section 9.6., "Exceptions and Interrupts Within
SMM").

I
9-?

SYSTEM MANAGEMENT MODE (SMM) intet

9.6. EXCEPTIONS AND INTERRUPTS WITHIN SMM

When the processor enters SMM, all hardware interrupts are disabled in the following manner:

•

•
•
•

The IF flag in the EFLAGS register is cleared, which inhibits maskable interrupts from
being generated.

The TF flag in the EFLAGS register is cleared, which disables single-step traps

Debug register DR7 is cleared, which disables breakpoint traps.

NMI, SMI, and A20M interrupts are blocked by internal SMM logic. (See Section 9.7.,
"NMI Handling While in SMM" for further information about how NMIs are handled in
SMM.)

Software-invoked interrupts and exceptions can still occur, and maskable interrupts can be
enabled by setting the IF flag. Intel recommends that SMM code be written in so that it does not
invoke software interrupts (with the INTn , INTO, INT3, or BOUND instructions) or generate
exceptions.

If the SSM handler requires interrupt and exception handling, an SMM interrupt table and the
necessary exception and interrupt handles must be created and initialized from within SMM.
Until the interrupt table is correctly initialized, exceptions and software interrupts will result in
unpredictable processor behavior.

The following restrictions apply when designing SMM interrupt and exception handling
facilities:

•
•

•

•

•

•

9-8

The interrupt table must be located at linear address O.

Due to the real-address mode style of base address formation, an interrupt or exception
cannot transfer control to a segment with a base address of more that 20 bits.

An interrupt or exception cannot transfer control to a segment offset of more than 16 bits
(64 KBytes).

When an exception or interrupt occurs, only the 16 least-significant bits of the return
address (EIP) are pushed onto the stack. If the offset of the interrupted procedure is greater
than 64 KBytes, it is not possible for the interrupt/exception handler to return control to
that procedure. (One solution to this problem for a handler to adjust the return address on
the stack).

The 5MBASE relocation feature affects the way the processor will return from an interrupt
or exception generated while the SMI handler is executing. For example, if the 5MBASE
is relocated to above 1 MByte, but the exception handlers are below 1 MByte, a normal
return to the SMI handler is not possible. One solution to this problem is to provide the
exception handler with a mechanism for calculating a return address above 1 MByte from
the 16-bit return address on the stack, then use a 32-bit far call to return to the interrupted
procedure.

If an SMI handler needs access to the debug trap facilities, it must insure that an SMM
accessible debug handler is available and save the current contents of debug registers DRO
through DR3 (for later restoration). Debug registers DRO through DR3 and DR7 must then
be initialized with the appropriate values.

I

•

•

SYSTEM MANAGEMENT MODE (SMM)

If an SMI handler needs access to the single-step mechanism, it must insure that an SMM
accessible single-step handler is available, and then set the TF flag in the EFLAGS
register.

If the SMI design requires the processor to respond to maskable interrupts (hardware or
software) while in SMM, it must ensure that an SMM accessible interrupt handlers are
available and then set the IF flag in the EFLAGS register (using the STI instruction).
Software interrupts are not blocked upon entry to SMM, so they do not need to be enabled.

9.7. NMI HANDLING WHILE IN SMM

NMI interrupts are blocked upon entry to the SMI handler. If an NMI request occurs during the
SMI handler, it is latched and serviced after the processor exits SMM. Only one NMI request
will be latched during the SMI handler. If an NMI request is pending when the processor
executes the RSM instruction, the NMI is serviced before the next instruction of the interrupted
code sequence.

9.8. USING THE FPU IN SMM

The SMI handler can execute floating-point instructions while in SMM; however, it is the
responsibility of the handler to save the context of the FPU prior to using it and restore that
context prior to exiting SMM. The SMI handler should perform the following steps before
executing floating-point instructions:

1. Use the CPUID instruction to insure that the processor contains an FPU.

2. Use the FSAVE instruction to save the current context of the FPU.

3. If floating-point exception handlers are not present and accessible in SMM, set all the
floating-point mask bits in the FPU control word, to mask floating-point exceptions. When
the FPU detects and exception condition, it will then always produce a masked result that
is suitable for most applications.

If the SMI handler has executed floating-point instructions, it should restore the context of the
FPU to the values saved in step 3 (using the FRSTOR instruction) prior to exiting SMM.

9.9. SMM REVISION IDENTIFIER

The SMM revision identifier field is used to indicate the version of SMM and the SMM exten­
sions that are supported by the processor (see Figure 9-2). The SMM revision identifier is
written during SMM entry and can be examined in SMRAM space at offset 7EFCH. The
lower word of the SMM revision identifier refers to the version of the base SMM architecture.

I
9-9

SYSTEM MANAGEMENT MODE (SMM)

Register Offset
7EFCH

31 18171615

5MBASE Relocation I I

I/O Instruction Restart ==.J
Reserved

SMM Revision Identifier

Figure 9-2. SMM Revision Identifier

o

The upper word of the SMM revision identifier refers to the extensions available. If the 110
instruction restart flag (bit 16) is set, the processor supports the 110 instruction restart (see
Section 9.12., "110 Instruction Restart"); if the 5MBASE relocation flag (bit 17) is set, SMRAM
base address relocation is supported (see Section 9.11., "SMBASE Relocation").

9.10. AUTO HALT RESTART

If the processor is in a HALT state (due to the prior execution of a HLT instruction) when it
receives an SMI, the processor records the fact in the auto HALT restart flag in the saved
processor state (see Figure 9-3). (This flag is located at offset 7F02H and bit 0 in the state save
area of the SMRAM.)

If the processor sets the auto HALT restart flag upon entering SMM (indicating that the SMI
occurred when the processor was in the HALT state), the SMI handler has two options:

•

•

9-10

It can leave the auto HALT restart flag set, which instructs the RSM instruction to return
program control to the HLT instruction, which in effect causes the processor to re-enter the
HALT state after handling the SMI. (This is the default operation.)

It can clear the auto HALT restart flag, with instructs the RSM instruction to return
program control to the instruction following the HLT instruction. The default operation is
to restart the HLT instruction.

15 1 0

Reserved J
Auto HALT Restart

Figure 9-3. Auto HALT Restart Field

I

SYSTEM MANAGEMENT MODE (SMM)

These options are summarized in Table 9-3. Note that if the processor was not in a HALT state
when the SMI was received (the auto HALT restart flag is cleared), setting the flag to 1 will
cause unpredictable behavior when the RSM instruction is executed.

Table 9-3. Auto HALT Restart Flag Values

Value of Flag After Value of Flag When
Entry to SMM Exiting SMM Action of Processor When Exiting SMM

0 0 Returns to next instruction in interrupted pro-

gram or task

0 1 Unpredictable

1 0 Returns to next instruction after HLT instruction

1 1 Returns to HALT state

If the HLT instruction is restarted, the processor will generate a memory access to fetch the HLT
instruction (if it is not in the internal cache), and execute a HLT bus transaction. This behavior
results in multiple HLT bus transactions for the same HLT instruction.

9.10.1. Executing the HLT Instruction in SMM

The HLT instruction should not be executed during SMM, unless interrupts have been enabled
by setting the IF flag in the EFLAGS register. If the processor is halted in SMM, the only event
that can remove the processor from this state is a maskable hardware interrupt or a hardware
reset.

9.11. 5MBASE RELOCATION

The default base address for the SMRAM is 30000H. This value is contained in an internal
processor register called the 5MBASE register. The operating system or executive can relocate
the SMRAM by setting the 5MBASE field in the saved state map (at offset 7EF8H) to a new
value (see Figure 9-4). The RSM instruction reloads the internal 5MBASE register with the
value in the 5MBASE field each time it exits SMM. All subsequent SMI requests will use the
new 5MBASE value. (The processor reset the value in its internal 5MBASE register to 30000H
on a RESET, but does not change it on an INIT.) In multiple-processor systems, initialization
software must adjust the 5MBASE value for each processor so that the SMRAM state save areas
for each processor do not overlap.

I

31 o

SMM Base I Register Offset
.7EF8H L-__ ~

Figure 9-4. 5MBASE Relocation Field

9-11

SYSTEM MANAGEMENT MODE (SMM)

If the 5MBASE relocation flag in the SMM revision identifier field indicates the ability to
relocate the 5MBASE (see Section 9.9., "SMM Revision Identifier").

9.11.1. Relocating SMRAM to an Address Above 1 MByte

In SMM, the segment base-registers can only be updated by changing the value in the segment
registers. The segment registers contain only 16 bits, which allows only 20 bits to be used for a
segment base address (the segment register is shifted left 4 bits to determine the segment base­
address). If SMRAM is relocated to an address above 1 MByte, software operating in real­
address mode can no longer initialize the segment registers to point to the SMRAM base address
(SMBASE).

The SMRAM can still be accessed by using 32-bit address-size override prefixes to generate an
offset to the correct address. For example, if the 5MBASE has been relocated to FFFFFFH
(immediately below the l6-MByte boundary) and the DS, ES, FS, and GS registers are still
initialized to OH, data in SMRAM can be accessed by using 32-bit displacement registers, as in
the following example:

mov esi,OOFFxxxxH; 64K segment immediately below 16M
mov ax, ds: [esi)

A stack located above the I-MByte boundary can be accessed in the same manner.

9.12. 1/0 INSTRUCTION RESTART

If the I/O instruction restart flag in the SMM revision identifier field is set (see Section 9.9.,
"SMM Revision Identifier"), the 110 instruction restart mechanism is present on the processor.
This mechanism allows an interrupted 110 instruction to be re-executed upon returning from
SMM mode. For example, if an 110 instruction is used to access a powered-down 110 device,
the device can respond by asserting SMI#. The resulting SMI then invokes the SMI handler to
power-up the device. Upon returning from the SMI handler, the 110 instruction restart mecha­
nism can be used to re-execute the 110 instruction that caused the SM!.

The I/O instruction restart field (at offset 7FOOH in the SMM state-save area, see Figure 9-5)
controls 110 instruction restart. When an RSM instruction is executed, if this field contains the
value FFH, then the EIP register is modified to point to the 110 instruction that received the SMI
request. The processor will then automatically re-execute the I/O instruction that the SMI
trapped. (The processor saves the necessary machine state to insure that re-execution of the
instruction is handled coherently.)

15 0

I 1/0 Instruction Restart Field I Register Offset
L.... ____________ --'. 7FOOH

Figure 9-5. 1/0 Instruction Restart Field

9-12

I

SYSTEM MANAGEMENT MODE (SMM)

If the 1/0 instruction restart field contains the value OOH when the RSM instruction is executed,
then the processor begins program execution with the instruction following the 1/0 instruction.
(When a repeat prefix is being used, the next instruction may be the next 110 instruction in the
repeat loop.) Not re-executing the interrupted 110 instruction is the default behavior; the
processor automatically initializes the I/O instruction restart field to OOH upon entering SMM.
Table 9-4 summarizes the states of the 1/0 instruction restart field.

Table 9-4. 1/0 Instruction Restart Field Values

Value of Flag After Value of Flag When
Entry to SMM Exiting SMM Action of Processor When Exiting SMM

OOH OOH Does not re-execute trapped lID instruction.

OOH FFH Re-executes trapped lID instruction.

It is the responsibility of the SMI handler to examine the state of the processor to determine the
cause of the SMI and to determine if an 110 instruction was interrupted and should be restarted
upon exiting SMM. The 110 instruction restart mechanism does not indicate the cause of the
SM!.

9.12.1. SMM Multiple Processor Considerations

The following should be noted when designing multiple processor systems:

•
•

•

•
•

•

Any processor in a multiprocessor system can respond to an SMM.

Each processor needs its own SMRAM space. This space can be in system memory or in a
separate RAM.

The SMRAMs for different processors can be overlapped in the same memory space. The
only stipulation is that each processor needs its own state save area and its own dynamic
data storage area. Code and static data can be shared among processors. Because there is
no requirement to align the 5MBASE on a 32-KByte boundary, this can be handled by
overlapping SMRAM spaces.

The SMI handler will need to initialize the 5MBASE for each processor.

Processors can respond to local SMls through their SMI# pins or to SMls received through
the APIC interface. The APIC interface can distribute SMls to different processors.

Two or more processors can be executing in SMM at the same time.

SMM is not re-entrant, because the SMRAM State Save Map is fixed relative to the 5MBASE.
If there is a need to support two or more processors in SMM mode at the same time then each
processor should have dedicated, non-overlapping SMRAM spaces. This can be done by using
the 5MBASE Relocation feature (see Section 9.11., "SMBASE Relocation").

I
9-13

Debugging and
Performance
Monitoring

I

10

CHAPTER 10
DEBUGGING AND PERFORMANCE MONITORING

The Pentium Pro processor provides extensive debugging facilities for use in debugging code
and monitoring code execution and processor performance. These facilities are valuable for
debugging applications software, system software, and multitasking operating systems.

The debugging support is accessed through the debug registers (DBO through DB7) and two
model-specific registers (MSRs). The debug registers of the Pentium Pro processor hold the
addresses of memory and I/O locations, called breakpoints. Breakpoints are user-selected loca­
tions in a program, a data-storage area in memory, or specific I/O ports where a programmer or
system designer wishes to halt execution of a program and examine the state of the processor by
invoking debugger software. A debug exception (#DB) is generated when a memory or 1/0
access is made to one of these breakpoint addresses. A breakpoint is specified for a particular
form of memory or 1/0 access, such as a memory read andlor write operation or an 1/0 read
andlor write operation. The debug registers support both instruction breakpoints and data break­
points. The MSRs (which are new in the Pentium Pro processor) monitor branches, interrupts,
and exceptions and record the addresses of the last branch, interrupt or exception taken and the
last branch taken before an interrupt or exception.

10.1. OVERVIEW OF THE DEBUGGING SUPPORT FACILITIES

The following processor facilities support debugging and performance monitoring:

•

•

•

•

•

•

•

I

Debug exception (#DB)-Transfers program control to the debugger procedure or task
whena debug event occurs.

Breakpoint exception (#BP)-Transfers program control to the debugger procedure or
task when an INT3 instruction is executed.

Breakpoint-address registers (DBO through DB3)-Specifies the addresses of up to 4
breakpoints.

Debug status register (DB6)-Reports the conditions that were in effect when a debug or
breakpoint exception was generated.

Debug control register (DB7)-Specifies the forms of memory or 1/0 access that cause
breakpoints to be generated.

DebugCtIMSR register-Enables last branch, interrupt, and exception recording; taken
branch traps; the breakpoint reporting pins; and trace messages.

LastBranchToIP and LastBranchFromIP MSRs-Specifies the source and destination
addresses of the last branch, interrupt, or exception taken. The address saved is the offset in
the code segment of the branch (source) or target (destination) instruction.

10-1

DEBUGGING AND PERFORMANCE MONITORING

•

•

•

•

•

LastExceptionToIP and LastExceptionFromIP MSRs-Specifies the source and
destination addresses of the last branch that was taken prior to an exception or interrupt
being generated. The address saved is the offset in the code segment of the branch (source)
or target (destination) instruction.

T (trap) flag, TSS-Generates a debug exception (#DB) when an attempt is made to
switch to a task with the T flag set in its TSS.

RF (resume) flag, EFLAGS register- Suppresses multiple exceptions to the same
instruction.

TF (trap) flag, EFLAGS register-Generates a debug exception (#DB) after every
execution of an instruction.

Breakpoint instruction (INT3)-Generates a breakpoint exception (#BP), which
transfers program control to the debugger procedure or task. This instruction is an
alternative way to set code breakpoints. It is especially useful when more than four
breakpoints are desired, or when breakpoints are being placed in the source code.

These facilities allow a debugger to be called either as a separate task or as a procedure in the
context of the current program or task. The following conditions can be used to invoke the
debugger:

•
•
•
•
•
•
•
•
•

Task switch to a specific task.

Execution of the breakpoint instruction.

Execution of any instruction.

Execution of an instruction at a specified address.

Read or write of a byte, word, or doubleword at a specified memory address.

Write to a byte, word, or doubleword at a specified memory address.

Input of a byte, word, or doubleword at a specified I/O address.

Output of a byte, word, or doubleword at a specified 110 address.

Attempt to change the contents of a debug register.

10.2. DEBUG REGISTERS

The eight debug registers (see Figure 10-1) control the debug operation of the processor. These
registers can be written to and read using the move to or from debug register form of the MOV
instruction. A debug register may be the source or destination operand for one of these instruc­
tions. The debug registers are privileged resources; a MOV instruction that accesses these regis­
ters can only be executed in real-address mode, in SMM, or in protected mode at a CPL of O. An
attempt to read or write the debug registers from any other privilege level generates a general­
protection exception (#GP).

10-2

I

DEBUGGING AND PERFORMANCE MONITORING

3130292827262524232221201918171615141312111098765432 10

LEN RJW LEN RJW LEN RfW LEN RJW o 0 GOO 1 G L G L G L G L GL
3 3 2 2 1 1 0 0 D E E 3 3 2 2 1 1 o 0 DR?

31 161514131211 10 9 8 7 6 5 4 3 2 1 0

Reserved (set to 1) B B B 0 11111111 B B B B
T S D 3 2 1 0 DR6

31 0

Reserved IDR5

31 0

Reserved lOR,

31 0

Breakpoint 3 Linear Address IDR3

31 0

Breakpoint 2 Linear Address IDR2

31 0

I
Breakpoint 1 Linear Address IDR1

31 0

Breakpoint 0 Linear Address IDRO

D Reserved Bits, DO NOT DEFINE

Figure 10-1. Debug Registers

The primary function of the debug registers is to set up and monitor from 1 to 4 breakpoints,
numbered 0 though 3. For each breakpoint, the following information can be specified and
detected with the debug registers:

•
•
•

I

The linear address where the breakpoint is to occur.

The length of the breakpoint location (1, 2, or 4 bytes).

The operation that must be performed at the address for a debug exception to be generated.

10-3

DEBUGGING AND PERFORMANCE MONITORING in1et

• Whether the breakpoint is enabled .

• Whether the breakpoint condition was present when the debug exception was generated.

The following paragraphs describe the functions of flags and fields in the debug registers.

10.2.1. Debug Address Registers (DRO-DR3)

Each of the four debug-address registers (DRO through DR3) holds the 32-bit linear address of
a breakpoint (see Figure 10-1). Breakpoint comparisons are made before physical address trans­
lation occurs. Each breakpoint condition is specified further by the contents of debug register
DR7.

10.2.2. Debug Registers DR4 and DRS

Debug registers DR4 and DR5 are reserved in the Pentium Pro processor when debug extensions
are enabled (when the DE flag in control register CR4 is set), and attempts to reference the DR4
and DR5 registers cause an invalid-opcode exception (#UD) to be generated. When debug
extensions are not enabled (when the DE flag is clear), the Pentium Pro processor aliases these
registers to debug registers DR6 and DR7, as in earlier Intel Architecture processors.

10.2.3. Debug Status Register (DR6)

The debug status register (DR6) reports the debug conditions that were sampled at the time the
last debug exception was generated (see Figure 10-1). Updates to this register only occur when
an exception is generated. The flags in this register show the following information:

BO through B3 (breakpoint condition detected) flags (bits 0 through 3)
Indicates (when set) that its associated breakpoint condition was met when a
debug exception was generated. These flags are set if the condition described
for each breakpoint by the LENn, and RlWn flags in debug control register
DR7 is true. They are set even if the breakpoint is not enabled by the Ln and
Gn flags in register DR7.

BD (debug register access detected) flag (bit 13)
Indicates that the next instruction in the instruction stream will access one of
the debug registers (DRO through DR7). This flag is enabled when the GD
(general detect) flag in debug control register DR7 is set. See Section 10.2.4.,
"Debug Control Register (DR 7)" for further explanation of the purpose of this
flag.

BS (single step) flag (bit 14)

10-4

Indicates (when set) that the debug exception was triggered by the single-step
execution mode (enabled with the TF flag in the EFLAGS register). The single­
step mode is the highest-priority debug exception. When the BS flag is set, any
of the other debug status bits also may be set.

I

DEBUGGING AND PERFORMANCE MONITORING

BT (task switch) flag (bit 15)
Indicates (when set) that the debug exception resulted from a task switch where
the T flag (debug trap flag) in the TSS of the target task was set (see Section
6.2.1., "Task State Segment (TSS)" for the format of a TSS). There is no flag
in debug control register DR7 to enable or disable this exception; the T flag of
the TSS is the only enabling flag.

Note that the contents of the DR6 register are never cleared by the processor. To avoid any
confusion in identifying debug exceptions, the debug handler should clear the register before
returning to the interrupted program or task.

10.2.4. Debug Control Register (DR7)

The debug control register (DR 7) enables or disables breakpoints and sets breakpoint conditions
(see Figure 10-1). The flags and fields in this register control the following things:

LO through L3 (local breakpoint enable) flags (bits 0, 2, 4, and 6)
Enable (when set) the breakpoint condition for the associated breakpoint for
the current task. When a breakpoint condition is detected and its associated Ln
flag is set, a debug exception is generated. The processor automatically clears
these flags on every task switch to avoid unwanted breakpoint conditions in the
new task.

GO through G3 (global breakpoint enable) flags (bits 1,3,5, and 7)
Enable (when set) the breakpoint condition for the associated breakpoint for all
tasks. When a breakpoint condition is detected and its associated Gn flag is set,
a debug exception is generated. The processor does not clear these flags on a
task switch, allowing a breakpoint to be enabled for all tasks.

LE and GE (local and global exact breakpoint enable) flags (bits 8 and 9)
(Not supported in the Pentium Pro processor.) When set, these flags cause the
processor to detect the exact instruction that caused a data breakpoint condi­
tion. For backward and forward compatibility with other Intel Architecture
processors, Intel recommends that the LE and GE flags be set to 1 if exact
breakpoints are required.

GD (general detect enable) flag (bit 13)

I

Enables (when set) debug-register protection, which causes a debug exception
to be generated prior to any MOV instruction that accesses a debug register.
When such a condition is detected, the BD flag in debug status register DR6 is
set prior to generating the exception. This condition is provided to support in­
circuit emulators. (When the emulator needs to access the debug registers,
emulator software can set the GD flag to prevent interference from the program
currently executing on the processor.) The processor clears the GD flag upon
entering to the debug exception handler, to allow the handler access to the
debug registers.

10-5

DEBUGGING AND PERFORMANCE MONITORING

R/WO through R/W3 (read/write) fields (bits 16, 17,20,21,24,25,28, and 29)
Specifies the breakpoint condition for the corresponding breakpoint. The DE
(debug extensions) flag in control register CR4 determines how the bits in the
RlWn fields are interpreted. When the DE flag is set, the processor interprets
these bits as follows:

OO-Break on instruction execution only.
Ol-Break on data writes only.
10-Break on 110 reads or writes.
II-Break on data reads or writes but not instruction fetches.

When the DE flag is clear, the processor interprets the RlWn bits the same as
the Intel486 and Inte1386 processors, which is as follows:

OO-Break on instruction execution only.
Ol-Break on data writes only.
10-Undefined.
II-Break on data reads or writes but not instruction fetches.

LENO through LEN3 (Length) fields (bits 19, 19,22,23,26,27,30, and 31)
Specify the size of the memory location at the address specified in the corre­
sponding breakpoint address register (DRO through DR3). These fields are
interpreted as follows:

OO-l-byte length
01-2-byte length
1O-Undefined
11-4-byte length

If the corresponding RWn field in register DR7 is 00 (instruction execution),
then the LENn field should also be 00. The effect of using any other length is
undefined.

10.2.5. Breakpoint Field Recognition

The breakpoint address registers (debug registers DRO through DR3) and the LENn fields for
each breakpoint define a range of sequential byte addresses for a data or 110 breakpoint. The
LENn fields permit specification of a 1-, 2-, or 4-byte range beginning at the linear address spec­
ified in the corresponding debug register (DRn). Two-byte ranges must be aligned on word
boundaries and 4-byte ranges must be aligned on doubleword boundaries. 1/0 breakpoint
addresses are zero extended from 16 to 32 bits for purposes of comparison with the breakpoint
address in the selected debug register. These requirements are enforced by the processor; it uses
the LENn field bits to mask the lower address bits in the debug registers. Unaligned data or 110
breakpoint addresses do not yield the expected results.

A data breakpoint for reading or writing data is triggered if any of the bytes participating in
an access is within the range defined by a breakpoint address register and its LENn field. Table
10-1 gives an example setup of the debug registers and the data accesses that would subse­
quently trap or not trap on the breakpoints.

10-6

I

DEBUGGING AND PERFORMANCE MONITORING

Table 10-1. Breakpointing Examples

Debug Register Setup

Debug Register R/Wn Breakpoint Address LENn

ORO R/WO = 11 (Read/Write) AOO01H LENO = 00 (1 byte)
DR1 R/W1 = 01 (Write) AOO02H LEN1 = 00 (1 byte)
DR2 R/W2 = 11 (Read/Write) BOO02H LEN2 = 01) (2 bytes)
DR3 R/W3 = 01 (Write) COOOOH LEN3 = 11 (4 bytes)

Data Accesses

Access Length
Operation Address (In Bytes)

Data operations that trap
Read or write AOO01H 1
Read or write AOO01H 2
Write AOO02H 1
Write AOO02H 2
Read or write BOO01H 4
Read or write BOO02H 1
Read or write BOO02H 2
Write COOOOH 4
Write COO01H 2
Write COO03H 1

Data operations that do not trap
Read or write AOOOOH 1
Read AOO02H 1
Read or write AOO03H 4
Read or write BOOOOH 2
Read COOOOH 2
Read or write COO04H 4

A data breakpoint for an unaligned operand can be constructed using two breakpoints, where
each breakpoint is byte-aligned, and the two breakpoints together cover the operand. These
breakpoints generate exceptions only for the operand, not for any neighboring bytes.

Instruction breakpoint addresses must have a length specification of 1 byte (the LENn field is
set to 00). The behavior of code breakpoints for other operand sizes is undefined. The processor
recognizes an instruction breakpoint address only when it points to the first byte of an instruc­
tion. If the instruction has any prefixes, the breakpoint address must point to the first prefix.

10.3. DEBUG EXCEPTIONS

The Pentium Pro processor dedicates two interrupt vectors to handling debug exceptions: vector
I (debug exception) and vector 3 (breakpoint exception). The following sections describe how
these exceptions are generated and typical exception handler operations for handling these
exceptions.

I
10-7

DEBUGGING AND PERFORMANCE MONITORING intet

10.3.1. Debug Exception (#DB)-Interrupt Vector 1

The debug-exception handler is usually a debugger program or is part of a larger software
system. The processor generates a debug exception for any of several conditions. The debugger
can check flags in the DR6 and DR7 registers to determine which condition caused the exception
and which other conditions might also apply. Table 10-2 shows the states of these flags
following the generation of each kind of breakpoint condition.

Table 10-2. Debug Exception Conditions

DRS Flags Tested DR7 Flags Tested Description

BS= 1 Single-step trap

Bn = 1 and RlWn = 0 Instruction breakpoint, at addresses defined by
(GEn or LEn = 1) DRnand LENn

Bn = 1 and RlWn = 1 Data write breakpoint, at addresses defined by
(GEn or LEn = 1) DRnand LENn

Bn = 1 and RlWn = 2 liD read or write breakpoint, at addresses
(GEn or LEn = 1) defined by DRn and LENn

Bn = 1 and RlWn =3 Data read or write (but not instruction fetches), at
(GEn or LEn = 1) addresses defined by DRn and LENn

BD = 1 General detect fault, resulting from an attempt to
modify debug registers (usually in conjunction
with in-circuit emulation)

BT= 1 Task switch

Instruction-breakpoint and general-detect conditions (see Section 10.3.1.3., "General-Detect
Exception Condition") result in faults; other debug-exception conditions result in traps. The
debug exception may report either or both at one time. The following sections describe each
class of debug exception. See Chapter 5, "Interrupt I-Debug Exception (#DB)" for additional
information about this exception.

1 0.3.1.1. INSTRUCTION-BREAKPOINT EXCEPTION CONDITION

The processor reports an instruction breakpoint when it attempts to execute an instruction at an
address specified in a breakpoint-address register (DBO through DR3) that has been set up to
detect instruction execution (RfW flag is set to 0). The processor generates the exception before
it executes the target instruction for the breakpoint. As a result, an instruction breakpoint
condition causes a fault-class exception to be generated. Instruction breakpoints are the highest
priority breakpoint exceptions and are guaranteed to be serviced before any other exceptions that
may be detected during the decoding or execution of an instruction.

Prior to returning to the interrupted program following a debug exception caused by an instruc­
tion-breakpoint, the debugger software should set the RF flag in the EFLAGS image saved on
the stack. Setting this flag causes the processor to ignore instruction-breakpoint conditions until
the interrupted instruction is executed, and thus prevents an instruction-breakpoint loop from
being created. Setting the RF flag does not prevent other types of debug-exception conditions

10-8

I

DEBUGGING AND PERFORMANCE MONITORING

(such as, I/O or data breakpoints) from being detected, nor does it prevent non-debug exceptions
from being generated. (The processor automatically clears the RF flag following the successful
execution of the instruction that originally caused the instruction-breakpoint debug exception to
be generated.) See Section 2.3., "System Flags and Fields in the EFLAGS Register" for more
information about the RF flag.

10.3.1.2. DATA MEMORY AND VO BREAKPOINT EXCEPTION CONDITIONS

Data memory and I/O breakpoints are reported when the processor attempts to access a memory
or I/O address specified in a breakpoint-address register (DBO through DR3) that has been set
up to detect data or I/O accesses (R/W flag is set to 1,2, or 3). The processor generates the excep­
tion after it executes the instruction that made the access, so these breakpoint condition causes
a trap-class exception to be generated.

Because data breakpoints are traps, the original data is overwritten before the trap exception is
generated. If a debugger needs to save the contents of a write breakpoint location, it should save
the original contents before setting the breakpoint. The handler can report the saved value after
the breakpoint is triggered. The address in the debug registers can be used to locate the new
value stored by the instruction that triggered the breakpoint.

The Pentium Pro, Pentium, and Intel486 processors ignore the GE and LE flags in DR7. In the
Inte1386 processor, exact data breakpoint matching does not occur unless it is enabled by setting
the LE and/or the GE flags.

The Pentium Pro processor, however, is unable to report data breakpoints exactly for the REP
MOVS and REP STOS instructions until the completion of the iteration after the iteration in
which the breakpoint occurred.

For repeated INS and OUTS instructions that generate an I/O-breakpoint debug exception, the
processor generates the exception after the completion of the first iteration. Repeated INS and
OUTS instructions generate an I/O-breakpoint debug exception after the iteration in which the
memory address breakpoint location is accessed.

10.3.1.3. GENERAL-DETECT EXCEPTION CONDITION

When the GD flag in DR7 is set, the general-detect debug exception occurs when a program
attempts to access any of the debug registers (DRO through DR 7) at the same time they are being
used by another application, such as an emulator or debugger. This additional protection feature
guarantees full control over the debug registers when required. The debug exception handler can
detect this condition by checking the state of the BD flag of the DR6 register. The processor
generates the exception before it executes the MOV instruction that accesses a debug register,
which causes a fault-class exception to be generated.

10.3.1.4. SINGLE-STEP EXCEPTION CONDITION

The processor generates a single-step debug exception if it detects that the TF flag in the
EFLAGS register is set. The exception is a trap-class exception, because the exception is gener­
ated after the instruction is generated. (Note that the processor does not generate this exception

I
10-9

DEBUGGING AND PERFORMANCE MONITORING

after an instruction that sets the TF flag. For example, if the POPF instruction is used to set the
TF flag, a single-step trap does not occur until after the instruction that follows the POPF
ins truction.)

The processor clears the TF flag before calling the exception handler. If the TF flag was set in a
TSS at the time of a task switch, the exception occurs after the first instruction is executed in the
new task.

The TF flag normally is not cleared by privilege changes inside a task. The INTn and INTO
instructions, however, do clear this flag. Therefore, software debuggers that single-step code
must recognize and emulate INTn or INTO instructions rather than executing them directly. To
maintain protection, the operating system should check the CPL after any single-step trap to see
if single stepping should continue at the current privilege level.

The interrupt priorities guarantee that, if an external interrupt occurs, single stepping stops.
When both an external interrupt and a single-step interrupt occur together, the single-step inter­
rupt is processed first. This operation clears the TF flag. After saving the return address or
switching tasks, the external interrupt input is examined before the first instruction of the single­
step handler executes. If the external interrupt is still pending, then it is serviced. The external
interrupt handler does not run in single-step mode. To single step an interrupt handler, single step
an INTn instruction that calls the interrupt handler.

10.3.1.5. TASK-SWITCH EXCEPTION CONDITION

The processor generates a debug exception after a task switch if the T flag of the new task's TSS
is set. This exception is generated after program control has passed to the new task, and after the
first instruction of that task is executed. The exception handler can detect this condition by
examining the BT flag of the DR6 register.

Note that, if the debug exception handler is a task, the T bit of its TSS should not be set. Failure
to observe this rule will put the processor in a loop.

10.3.2. Breakpoint Exception (#BP)-Interrupt Vector 3

The breakpoint exception (interrupt 3) is caused by execution of an INT 3 instruction (see
Chapter 5, "Interrupt 3-Breakpoint Exception (#BP)"). Debuggers use break exceptions in the
same way that they use the breakpoint registers; that is, as a mechanism for suspending program
execution to examine registers and memory locations. With earlier Intel Architecture proces­
sors, breakpoint exceptions are used extensively for setting instruction breakpoints. With the
Pentium Pro, Pentium, Inte1486, and Intel386 processors, it is more convenient to set break­
points with the breakpoint-address registers (DRO through DR3). However, the breakpoint
exception still is useful for breakpointing debuggers, because the breakpoint exception can call
a separate exception handler. The breakpoint exception is also useful when it is necessary to set
more breakpoints than there are debug registers or when breakpoints are being placed in the
source code of a program under development.

10-10

I

DEBUGGING AND PERFORMANCE MONITORING

10.4. LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING

The Pentium Pro processor provides five MSRs for recording the last branch, interrupt, or
exception taken by the processor: DebugCtlMSR, LastBranchToIP, LastBranchFromIP, LastEx­
ceptionToIP, and LastExceptionFromIP. These registers can be used to set breakpoints on
branches, interrupts, and exceptions and to single-step from one branch to the next.

10.4.1. DebugCtlMSR Register

The DebugCtlMSR register enables last branch, interrupt, and exception recording; taken
branch breakpoints; the breakpoint reporting pins; and trace messages. This register can be
written to using the WRMSR instruction, when operating at privilege level 0 or when in real­
address mode. A protected-mode operating system procedure is required to provide user access
to this register. Figure 10-2 shows the flags in the DebugCtlMSR register. The functions of these
flags are as follows:

LBR (last branch/interrupt/exception) flag (bit 0)

31

When set, the processor records the source and target addresses for the last
branch and the last exception or interrupt taken by the processor prior to a
debug exception being generated. The processor clears this flag whenever a
debug exception, such as an instruction or data breakpoint or single-step trap
occurs.

765 432 1 0

TR~ Trace messages enable ~~~I ~y--, I
PBi~Performance monitoring/breakpoint pins - I

BTF~Single-step on branches
LBR~Last branch/interrupt/exception ------------'

Reserved

Figure 10-2. DebugCtlMSR Register

BTF (single-step on branches) flag (bit 1)
When set, the processor treats the TF flag in the EFLAGS register as a "single­
step on branches" flag rather than a "single-step on instructions" flag. This
mechanism allows single-stepping the processor on taken branches. Software
must set both the BTF and TF flag to enable debug breakpoints on branches;
the processor clears both flags whenever a debug exception occurs.

PBi (performance monitoring/breakpoint pins) flags (bits 2 through 5)

I

When these flags are set, the performance monitoringibreakpoint pins on the
processor (BPO#, BPI#, BP2#, and BP3#) report breakpoint matches in the

10-11

DEBUGGING AND PERFORMANCE MONITORING

corresponding breakpoint-address registers (DRO through DR3). The
processor asserts then deasserts the corresponding BPi# pin when a breakpoint
match occurs. When a PBi flag is clear, the performance monitoring/breakpoint
pins report performance events. Processor execution is not affected by
reporting performance events.

TR (trace message enable) flag (bit 6)
When set, trace messages are enabled. Thereafter, when the processor detects
a branch, exception, or interrupt, it sends the "to" and "from" addresses out on
the system bus as part of a branch trace message. A debugging device that is
monitoring the system bus can read these messages and synchronize operations
with branch, exception, and interrupt events. Setting this flag greatly reduces
the performance of the processor. When trace messages are enabled, the values
stored in the LastBranchToIP, LastBranchFromIP, LastExceptionToIP, and
LastExceptionFromIP MSRs are undefined.

Note that the "from" addresses sent out on the system bus may differ from
those stored in the LastBranchFromIP MSRs or LastExceptionFromIP MSRs.
The from address sent out on the bus is always the next instruction in the
instruction stream following a successfully completed instruction. For
example, if a branch completes successfully, the address stored in the Last­
BranchFromIP MSR is the address of the branch instruction, but the address
sent out on the bus in the trace message is the address of the instruction
following the branch instruction. If the processor faults on the branch, the
address stored in the LastBranchFromIP MSR is again the address of the
branch instruction and that same address is sent out on the bus.

10.4.2. Last Branch and Last Exception MSRs

The LastBranchToIP and LastBranchFromIP MSRs are 32-bit registers for recording the
instruction pointers for the last branch, interrupt, or exception that the processor took prior to a
debug exception being generated (see Figure 10-2). When a branch occurs, the processor loads
the address of the branch instruction into the LastBranchFromIP MSR and loads the target
address for the branch into the LastBranchToIP MSR. When an interrupt or exception occurs
(other than a debug exception), the address of the instruction that was interrupted by the excep­
tion or interrupt is loaded into the LastBranchFromIP MSR and the address of the exception or
interrupt handler that is called is loaded into the LastBranchToIP MSR.

The LastExceptionToIP and LastExceptionFromIP MSRs (also 32-bit registers) record the
instruction pointers for the last branch that the processor took to prior to an exception or inter­
rupt being generated. When an exception or interrupt occurs, the contents of the LastBranchToIP
and LastBranchFromIP MSRs are copied into these registers before the to and from addresses
of the exception or interrupt are recorded in the LastBranchToIP and LastBranchFromIP MSRs.

These registers can be read using the RDMSR instruction.

10-12

I

DEBUGGING AND PERFORMANCE MONITORING

10.4.3. Monitoring Branches, Exceptions, and Interrupts

When the LBR flag in the DebugCtlMSR register is set, the processor automatically begins
recording branches that it takes, exceptions that are generated (except for debug exceptions), and
interrupts that are serviced. Each time a branch, interrupt, or exception occurs, the processor
records the to and from instruction pointers in the LastBranchToIP and LastBranchFromIP
MSRs. In addition, for interrupts and exceptions, the processor copies the contents of the Last­
BranchToIP and LastBranchFromIP MSRs into the LastExceptionToIP and LastException­
FromIP MSRs prior to recording the to and from addresses of the interrupt or exception.

When the processor generates a debug exception (#DB), it automatically clears the LBR flag
before executing the exception handler, but does not touch the last branch and last exception
MSRs. The addresses for the last branch, interrupt, or exception taken are thus retained in the
LastBranchToIP and LastBranchFromIP MSRs and the addresses of the last branch prior to an
interrupt or exception are retained in the LastExceptionToIP, and LastExceptionFromIP MSRs.

The debugger can use the last branch, interrupt, and/or exception addresses in combination with
code segment selectors retrieved from the stack to reset breakpoints in the breakpoint-address
registers (DRO through DR3), allowing a backward trace from the manifestation of a particular
bug toward its source. Because the instruction pointers recorded in the LastBranchToIP, Last­
BranchFromIP, LastExceptionToIP, and LastExceptionFromIP MSRs are offsets into a code
segment, software must determine the segment base address of the code segment associated with
the control transfer to calculate the linear address to be placed in the breakpoint-address regis­
ters. The segment base address can be determined by reading the segment selector for the code
segment from the stack and using it to locate the segment descriptor for the segment in the GDT
or LDT. The segment base address can then be read from the segment descriptor.

Before resuming program execution from a debug-exception handler, the handler should set the
LBR flag again to re-enable last branch and last exception/interrupt recording.

10.4.4. Single-Stepping on Branches, Exceptions, and Interrupts

When the BTF flag in the DebugCtlMSR register and the TF flag in the EFLAGS register are
both set, the processor generates a single-step debug exception the next time it takes a branch,
generates an exception, or services an interrupt. This mechanism allows the debugger to single­
step on control transfers caused by branches, exceptions, or interrupts. This "control-flow single
stepping" helps isolate a bug to a particular block of code before instruction single-stepping
further narrows the search. If the BTF flag is set when the processor generates a debug excep­
tion, the processor clears the flag along with the TF flag. The debugger must then reset both the
BTF and the TF flags before resuming program execution to continue control-flow single
stepping.

10.4.5. Initializing Last Branch or Last Exception/lnterrupt
Recording

The LastBranchToIP, LastBranchFromIP, LastExceptionToIP, and LastException-FromIP
MSRs are enabled by setting the LBR flag in the DebugCtlMSR register. Control-flow single
stepping is enabled by setting the BTF flag in the DebugCtlMSR register. The processor clears

I
10-13

DEBUGGING AND PERFORMANCE MONITORING in1:et

both the LBR and the BTF flags whenever a debug exception is generated. The debug-exception
handler must thus explicitly set these flags before returning to the interrupted program to
re-enable these mechanisms.

10.5. TIME-STAMP COUNTER

The Pentium Pro processor provides a 64-bit time-stamp counter that is incremented every
processor clock cycle. The counter is incremented even when the processor is halted by the HLT
instruction or the external STPCLK# pin.

The time-stamp counter is model specific. Following execution of the CPUID instruction, the
TSC flag in register EDX (bit 4) indicates (when set) that the time-stamp counter is present. (See
the description of the CPUID instruction in Chapter 11, Instruction Set Reference, in the
Pentium® Pro Family Developers Manual, Volume 2.)

The time-stamp counter is set to 0 following a hardware reset of the processor. The RDTSC
instruction reads the time stamp counter and is guaranteed to return a monotonically increasing
unique value whenever executed, except for 64-bit counter wraparound. Intel guarantees, archi­
tecturally, that the time-stamp counter frequency and configuration will be such that it will not
wraparound within 10 years after being reset to O. The period for counter wrap is several thou­
sands of years in the Pentium Pro and Pentium processors.

Normally, the RDTSC instruction can be executed by programs and procedures running at any
privilege level and in virtual-8086 mode. The TSD flag in control register CR4 (bit 2) allows
use of this instruction to be restricted to only programs and procedures running at privilege level
O. A secure operating system would set the TSD flag during system initialization to disable user
access to the time-stamp counter. An operating system that disables user access to the time­
stamp counter should emulate of the instruction through a user-accessible programming inter­
face.

The RDTSC instruction is not serializing or ordered with other instructions. Thus, it does not
necessarily wait until all previous instructions have been executed before reading the counter.
Similarly, subsequent instructions may begin execution before the RDTSC instruction operation
is performed.

The RDMSR and WRMSR instructions can read and write the time stamp counter, respectively,
as a model specific register (TSC). The ability to read and write the time stamp counter with the
RDMSR and WRMSR instructions is not an architectural feature, and may not be supported by
future Intel Architecture processors. Writing to the time-stamp counter with the WRMSR
instruction resets the count. Only the low order 32-bits of the time-stamp counter can be written
to; the high-order 32 bits are 0 extended (cleared to all Os).

10.S. PERFORMANCE MONITORING COUNTERS

The Pentium Pro processor provides two 40-bit performance counters, allowing two types of
events to be monitored simultaneously. These counters can either count events or measure dura­
tion. When counting events, a counter is incremented each time a specified event takes place or
a specified number of events takes place. When measuring duration, a counter counts the

10-14

I

DEBUGGING AND PERFORMANCE MONITORING

number of processor clocks that occur while a specified condition is true. The counters can count
events or measure durations that occur at any privilege level. Appendix B, Peiformance Moni­
toring Counters, lists the events that can be counted with the performance monitoring counters.

The performance monitoring counters are supported by four MSRs: the performance event
select MSRs (PerfEvtSelO and PerfEvtSell) and the performance counter MSRs (PerfCtrO and
PerfCtrl). These registers can be read from and written to using the RDMSR and WRMSR
instructions, respectively. They can be accessed using these instructions only when operating at
privilege level O. The PerfCtrO and PerfCtrl MSRs can be read from any privilege level using
the RDPMC (read performance-monitoring counters) instruction.

10.6.1. PerfEvtSelO and PerfEvtSel1 MSRs

The PerfEvtSelO and PerfEvtSell MSRs control the operation of the performance-monitoring
counters, with one register used to set up each counter. They specify the events to be counted,
how they should be counted, and the privilege levels at which counting should take place. Figure
10-3 shows the flags and fields in these MSRs.

31 24232221201918171615

Counter Mask

INV-I""rt 00",1" m"k I :
EN-Enable counters'
INT -APIC interrupt enable
PC-Pin control ------------'
E-Edge detect ----------'
OS-Operating system mode -----"
USR-User Mode _________ ---.l

• Only available in PerfEvtSeiO.

Reserved

8 7

Unit Mask Event Select

Figure 10-3. PerfEvtSelO and PerfEvtSel1 Registers.

o

The functions of the flags and fields in the PerfEvtSelO and PerfEvtSell MSRs are as follows:

Event select field (bits 0 through 7)
Select the event to be monitored (see Appendix B, Peiformance Monitoring
Counters, for a list of events and their 8-bit codes).

Unit mask field (bits 8 through 15)

I

Further qualifies the event selected in the event select field. For example, for
some cache events, the mask is used as a MESI-protocol qualifier of cache
states (see Table B-l).

10-15

DEBUGGING AND PERFORMANCE MONITORING intet

USR (user mode) flag (bit 16)
Events are counted only when the processor is operating at privilege levels I,
2 or 3. This flag can be used in conjunction with the OS flag.

OS (operating system mode) flag (bit 17)
Events are counted only when the processor is operating at privilege level O.
This flag can be used in conjunction with the USR flag.

E (edge detect) flag (bit 18)
Enables (when set) edge detection of events. The processor counts the number
of deasserted to asserted transitions of any condition that can be expressed by
the other fields. The mechanism is limited in that it does not permit back-to­
back assertions to be distinguished. This mechanism allows software to
measure not only the fraction of time spent in a particular state, but also the
average length of time spent in such a state (for example, the time spent waiting
for an interrupt to be serviced).

PC (pin control) flag (bit 19)
When set, the processor toggles the PMi pins when the counter overflows;
when clear, the processor toggles the PMi pins and increments the counter
when performance monitoring events occur. The toggling of a pin is defined as
assertion of the pin for two bus clocks followed by deassertion.

INT (APIC interrupt enable) flag (bit 20)
When set, the processor generates an exception through its local APIC on
counter overflow.

EN (Enable Counters) Flag (bit 22)
This flag is only present in the PerfEvtSelO MSR. When set, performance
counting is enabled in both performance-monitoring counters; when clear, both
counters are disabled.

INV (invert) flag (bit 23)
Inverts the result of the counter-mask comparison when set, so that both greater
than and less than comparisons can be made.

Counter mask field (bits 24 through 31)
When non-zero, the processor compares this mask to the number of count of
events during a single cycle. If the event count is greater than or equal to this
mask, the counter is incremented by one. Otherwise the counter is not incre­
mented. This mask can be used to count events only if multiple occurrences
happen per clock (for example, two or more instructions retired per clock). If
the counter-mask field is 0, then the counter is incremented each cycle by the
number of events that occurred that cycle.

10.6.2. PerfCtrO and PerfCtr1 MSRs

The performance-counter MSRs (PerfCtrO and PerfCtrl) contain the event or duration counts
for the selected events being counted. The RDPMC instruction can be used by programs or

10-16

I

DEBUGGING AND PERFORMANCE MONITORING

procedures running at any privilege level and in virtual-8086 mode to read these counters. The
PCE flag in control register CR4 (bit 8) allows the use of this instruction to be restricted to only
programs and procedures running at privilege level O.

The RDPMC instruction is not serializing or ordered with other instructions. Thus, it does not
necessarily wait until all previous instructions have been executed before reading the counter.
Similarly, subsequent instructions may begin execution before the RDPMC instruction opera­
tion is performed.

Only the operating system, executing at privilege level 0, can directly manipulate the perfor­
mance counters, using the RDMSR and WRMSR instructions. A secure operating system would
set the TSD flag during system initialization to disable direct user access to the performance­
monitoring counters, but provide a user-accessible programming interface that emulates the
RDPMC instruction.

The WRMSR instruction cannot arbitrarily write to the performance-monitoring counter MSRs
(PerfCtrO and PerfCtrl). Instead, the lower-order 32 bits of each MSR may be written with any
value, and the high-order 8 bits are sign-extended according to the value of bit 31. This operation
allows writing both positive and negative values to the performance counters.

10.6.3. Starting and Stopping the Performance-Monitoring
Counters

The performance-monitoring counters are started by writing valid setup information in the
PerfEvtSelO and/or PerfEvtSell MSRs and setting the enable counters flag in the PerfEvtSelO
MSR. If the setup is valid, the counters begin counting following the execution of a WRMSR
instruction that sets the enable counter flag. The counters can be stopped by clearing the enable
counters flag or by clearing all the bits in the PertEvtSelO and PertEvtSell MSRs. Counter I
alone can be stopped by clearing the PerfEvtSell MSR.

10.6.4. Event and Time-Stamp Monitoring Software

To use the performance-monitoring counters and time-stamp counter, the operating system
needs to provide an event-monitoring device driver. This driver should include procedures for
handling the following operations:

•
•
•
•
•

Feature checking.

Initialize and start counters.

Stop counters.

Read the event counters.

Read the time stamp counter.

The event monitor feature determination procedure must determine whether the current
processor supports the performance-monitoring counters and time-stamp counter. This proce­
dure compares the family and model of the processor returned by the CPUID instruction with

I
10-17

DEBUGGING AND PERFORMANCE MONITORING in1:et

those of processors known to support performance monitoring. The current processors
supporting performance counters are the Pentium Pro and Pentium processors. The procedure
also checks the MSR and TSC flags returned to register EDX by the CPUID instruction to deter­
mine if the MSRs and the RDTSC instruction are supported.

The initialize and start counters procedure sets the PerfEvtSelO and/or PertEvtSell MSRs for
the events to be counted and the method used to count them and initializes the counter MSRs
(PerfCtrO and PerfCtrl) to starting counts. The stop counters procedure stops the performance
counters. (See Section 10.6.3., "Starting and Stopping the Performance-Monitoring Counters"
for more information about starting and stopping the counters.)

The read counters procedure reads the values in the PerfCtrO and PerfCtri MSRs, and a read
time-stamp counter procedure reads the time-stamp counter. These procedures would be
provided in lieu of enabling the RDTSC and RDPMC instructions that allow application code
to read the counters.

10.6.5. Monitoring Counter Overflow

The Pentium Pro processor provides the option of generating a local APIC interrupt when a
performance-monitoring counter overflows. This mechanism is enabled by setting the interrupt
enable flag in either the PerfEvtSelO or the PerfEvtSell MSR. The primary use ofthis option is
for statistical performance sampling.

To use this option, the operating system do the following things:

•
•

•

•

Provide an interrupt vector for handling the counter-overflow interrupt.

Initialize the APIC PERF local vector entry to direct the interrupt to the appropriate
processor.

Provide an entry to the IDT that points to a stub exception handler that returns without
executing any instructions.

Provide an event monitor driver that provides the actual interrupt handler and modifies the
reserved IDT entry to point to its interrupt routine.

When interrupted by a counter overflow, the interrupt handler needs to perform the following
actions:

•

•

Save the instruction pointer (EIP register), code segment selector, TSS segment selector,
counter values and other relevant information at the time of the interrupt.

Reset the counter to its initial setting and return from the interrupt.

An event monitor application utility or another application program can read the information
collected for analysis ofthe performance of the profiled application.

10-18

I

Memory Cache
Control

I

11

CHAPTER 11
MEMORY CACHE CONTROL

This chapter describes the processors memory cache and cache control mechanisms, the TLBs
and the write buffer. It also describes the memory type range registers (MTRRs) and how the are
used to control caching of physical memory locations.

11.1. INTERNAL CACHES, TLBS, AND BUFFERS

The Pentium Pro processor provides on-chip caches, translation look aside buffers (TLBs), and
a write buffer for temporary on-chip storage of instructions and data (see Figure 11-1). Table
11-1 shows the characteristics of these caches and buffers for the first version of the Pentium
Pro processor. The sizes and characteristics of these units are machine specific and may
change in future versions of the processor. The CPUID instruction returns the sizes and char­
acteristics of the caches and buffers for the processor the instruction is executed on (see
"CPUID-CPU Identification" in Chapter 11, Instruction Set Reference, of the Pentium® Pro
Family Developer's Manual, Volume 2).

Physical
Memory

System Bus t-....jt!-.... ~
(External)

Bus Interface Unit

Figure 11-1. Internal Caches in the Pentium@pro Processor

The processor provides two separate on-chip caches: the level 1 (Ll) cache and the level 2 (L2)
cache (see Figure 11-1). The Ll cache is closely coupled to the instruction fetch unit and execu­
tion units of the processor. It is divided into two 8-KByte sections: one dedicated to caching
instructions and one to caching data. The 256-KByte L2 cache is closely coupled to the Ll cache
through the processor's cache bus and the bus interface unit. The L2 cache is a unified cache for
storage of both instructions and data.

I
11-1

MEMORY CACHE CONTROL intet

Table 11-1. Characteristics of the Caches, TLBs, and Write Buffer in the First Version of
the Pentium® Pro Processor

Cache or Buffer Characteristics

L 1 Instruction Cache 8 KBytes, 4-way set associative, 32-byte cache line size

L 1 Data Cache 8 KBytes, 2-way set associative, 32-byte cache line size

L2 Unified Cache 256 KBytes, 4-way set associative, 32-byte cache line size

Instruction TLB (4-KByte Pages) 64 entries, 4-way set associative

Data TLB (4-KByte Pages) 64 entries, 4-way set associative

Instruction TLB (Large Pages) 4 entries, 4-way set associative

Data TLB (Large Pages) 8 entries, 4-way set associative

Write Buffer 8 entries

The cache lines in the Pentium Pro processor's Ll and L2 caches are 32 bytes wide. The
processor always reads a cache line from system memory beginning on a 32-byte boundary. (A
32-byte aligned cache line begins at an address with its 5 least-significant bits clear.) A cache
line can be filled from memory with a 4-transfer burst transaction. The caches do not support
partially-filled cache lines, so caching even a single doubleword requires caching an entire line.

The Ll and L2 caches are available in all execution modes. Using these caches greatly improves
the performance of the processor both in single- and multiple-processor systems. Caching can
also be used in system management mode (SMM); however, it must be handled carefully (see
Section 9.4.2., "SMRAM Caching").

The TLBs store the most recently used page-directory and page-table entries. They speed up
memory accesses when paging is enabled by reducing the number of memory accesses that are
required to read the page tables stored in system memory. The TLBs are divided into four
groups: instruction TLBs for 4-KByte pages, data TLBs for 4-KByte pages; instruction TLBs
for large pages (2-MByte or 4-MByte pages), and data TLBs for large pages. The TLBs are
normally active only in protected mode with paging enabled. When paging is disabled or the
processor is in real-address mode, the TLBs maintain their contents until explicitly or implicitly
flushed (see Section 11.9., "Invalidating the Translation Lookaside Buffers (TLBs)").

The write buffer is associated with the processors instruction execution units. It allows writes to
system memory and/or the internal caches to be saved and in some cases combined to optimize
the processors bus accesses. The write buffer is always enabled in all execution modes.

The processor's caches are for the most part transparent to software. When enabled, instructions
and data flow through these caches without the need for explicit software control. However,
knowledge of the behavior of these caches may be useful in optimizing software performance.
For example, knowledge of cache dimensions and replacement algorithms are an indication of
how large of a data structure can be operated on at once without causing cache thrashing.

In multiprocessor systems, maintenance of cache consistency may, in rare circumstances,
require intervention by system software. For these rare cases, the processor provides privileged
cache control instructions for use in flushing caches.

11-2

I

MEMORY CACHE CONTROL

11.2. CACHING TERMINOLOGY

The Pentium Pro processor uses the MESI (modified, exclusive, shared, invalid) cache protocol
to maintain consistency with intemal caches and caches in other processors (see Section 11.4.,
"Cache Control Protocol").

When the processor recognizes that an operand being read from memory is cacheable, the
processor reads an entire 32-byte line into the appropriate cache (Ll, L2, or both). This opera­
tion is called a cache line fill. If the memory location containing that operand is still cached the
next time the processor attempts the operand, the processor can read the operand from the cache
instead of going back to memory. This operation is called a cache hit.

When the processor attempts to write an operand to a cacheable area of memory, it first checks
if a cache line for that memory location exists in the cache. If a valid cache line does exist, the
processor (depending on the write policy currently in force) can write the operand into the cache
instead of writing it out to system memory. This operation is called a write hit. If a write misses
the cache (that is, a valid cache line is not present for area of memory being written to), the
processor performs a cache line fill, write allocation. Then it writes the operand into the cache
line and (depending on the write policy currently in force) can also writes it out to memory. If
the operand is to be written out to memory, it is written first into the write buffer, and then written
from the write buffer to memory when the system bus is available.

When operating in multiple-processor system, the Pentium Pro processors have the ability to
snoop other processors accesses to system memory and to their internal caches. They use this
snooping ability to keep their internal caches consistent both with system memory and with the
caches in other processors on the bus. For example, if through snooping one processor detects
that another processor intends to write to a memory location that it currently has cached in
shared state, the snooping processor will invalidate its cache line forcing it to perform a cache
line fill the next time it accesses the same memory location.

Likewise, if a processor detects (through snooping) that another processor is trying to access a
memory location that it has modified in its cache, but has not yet written back to system memory,
the snooping processor will signal the other processor (by means of the HITM# signal) that the
cache line is held in modified state and will preform an implicit write-back of the modified data.
The implicit write-back is transferred directly to the initial requesting processor and snooped by
the memory controller to assure that system memory has been updated. Here, the processor with
the valid data may pass the data to the other processors without actually writing it to system
memory; however, it is the responsibility of the memory controller to snoop this operation and
update memory.

11.3. METHODS OF CACHING AVAILABLE

The processor allows any area of system memory to be cached in the LI and L2 caches. Within
individual pages or regions of system memory, it also allows the type of caching (also called
memory type) to be specified, using a variety of system flags and registers (see Section 11.5.,
"Cache Control"). The caching methods available are as follows:

•

I

Uncacheable (UC)-System memory locations are not cached. All reads and writes appear
on the system bus and are executed in program order, without reordering. No speCUlative

11-3

MEMORY CACHE CONTROL

•

•

•

•

memory accesses, page table walks, or prefetches of speculated branch targets are made.
This type of cache-control is useful for memory-mapped I/O devices. When used with
normal RAM, it greatly reduces processor performance.

Write Combining (WC)-System memory locations are not cached and coherency is not
enforced by the processor's bus coherency protocol. Speculative reads are allowed. Writes
may be delayed and combined in the write buffer to reduce memory accesses. This type of
cache-control is appropriate for frame buffers, where the order of writes is unimportant as
long as the writes update memory so they can be seen on the graphics display.

Write-through (WT)-Writes and reads to and from system memory are cached. Reads
come from cache lines on cache hits; read misses cause cache fills. Speculative reads are
allowed. All writes are written to a cache line (when possible) and through to system
memory. When writing through to memory, invalid cache lines are never filled, and valid
cache lines are either filled or invalidated. Write combining is allowed. This type of cache­
control is appropriate for frame buffers or when there are devices on the system bus that
access system memory, but do not perform snooping of memory accesses. It enforces
coherency between caches in the processors and system memory.

Write-back (WB)-Writes and reads to and from system memory are cached. Reads come
from cache lines on cache hits; read misses cause cache fills. Speculative reads are
allowed. Write misses cause cache line fills, and writes are performed entirely in the cache,
when possible. Write combining is allowed. The write-back memory type reduces bus
traffic by eliminating many unnecessary writes to system memory. Writes to a cache line
are not immediately forwarded to system memory; instead, they are accumulated in the
cache. The modIfied cache lines are written to system memory later, when a write-back
operation is performed. Write-back operations are triggered when cache lines need to be
deallocated, such as when new cache lines are being allocated in a cache that is already
full. They also are triggered by the mechanisms used to maintain cache consistency. This
type of cache-control provides the best performance, but it requires that all devices that
access system memory on the system bus be able to snoop memory accesses to insure
system memory and cache coherency.

Write protected (WP)-Reads come from cache lines when possible, and read misses
cause cache fills. Writes are propagated to the system bus and cause corresponding cache
lines on all processors on the bus to be invalidated. Speculative reads are allowed.

11.3.1. Choosing A Memory Type

The simplest system memory model does not use memory-mapped I/O with read or write side
effects, does not include a frame buffer, and uses the write-back memory type for all memory.
An I/O agent can perform direct memory access (DMA) to write-back memory and the cache
protocol maintains cache coherency.

A system can use uncacheable memory for other memory-mapped VO, and should always use
uncacheable memory for memory-mapped I/O with read side effects.

Dual-ported memory can be considered a write side effect, making relatively prompt writes
desirable, because those writes cannot be observed at the other port until they reach the memory

11-4

I

MEMORY CACHE CONTROL

agent. A system can use uncacheable, write-through, or write-combining memory for frame
buffers or dual-ported memory that contains pixel values displayed on a screen. Frame buffer
memory is typically large (a few megabytes) and is usually written more than it is read by the
processor. Using uncacheable memory for a frame buffer generates very large amounts of bus
traffic, because operations on the entire buffer are implemented using partial writes rather than
line writes. Using write-through memory for a frame buffer can displace almost all other useful
cached lines in the processor's L2 cache and L1 data cache. Therefore, systems should use write­
combining memory for frame buffers whenever possible.

Software can use page-level cache control, to assign appropriate effective memory types when
software will not access data structures in ways that benefit from write-back caching. For
example, software may read a large data structure once and not access the structure again until
the structure is rewritten by another agent. Such a large data structure should be marked as
uncacheable, or reading it will evict cached lines that the processor will be referencing again. A
similar example would be a write-only data structure that is written to (to export the data to
another agent), but never read by software. Such a structure can be marked as uncacheable,
because software never reads the values that it writes (though as uncacheable memory, it will be
written using partial writes, while as write-back memory, it will be written using line writes,
which may not occur until the other agent reads the structure and triggers implicit write-backs).

11.4. CACHE CONTROL PROTOCOL

In the L1 data cache and the L2 cache, the MESI (modified, exclusive, shared, invalid) cache
protocol maintains consistency with caches of other processors. The L1 data cache and the L2
cache has two MESI status flags per cache line. Each line can thus be marked as being in one of
the states defined in Table 11-2. In general, the operation of the MESI protocol is transparent to
programs.

In the L1 instruction cache implements only the "SI" part of the MESI protocol, because the
instruction cache is not writable. The instruction cache monitors changes in the data cache to
maintain consistency between the caches when instructions are modified. See Section 11.7.,
"Self-Modifying Code" for more information on the implications of caching instructions.

I
11-5

MEMORY CACHE CONTROL

Table 11-2. MESI Cache Line States

Cache Line State M (Modified) E (Exclusive) S (Shared) I (Invalid)

This cache line is valid? Yes Yes Yes No

The memory copy is out of date ... valid ... valid -
Copies exist in caches of No No Maybe Maybe
other processors?

A write to this line does not go ... does not go ... goes to bus ... goes directly
to bus to bus and updates to bus

cache

11.5. CACHE CONTROL

The processor provides the following cache-control mechanisms for use in enabling caching
and/or restricting caching to various pages or regions in memory (see Figure 11-2):

•

•

11-6

CD flag, bit 30 of control register CRO-Controls caching of system memory locations
(see Section 2.5., "Control Registers"). If the CD flag is clear, caching is enabled for the
whole of system memory, but may be restricted for individual pages or regions of memory
by other cache-control mechanisms. When the CD flag is set, caching is prevented in the
L1 and L2 caches (that is, cache fills and updates are prevented), but they will still respond
to snoop traffic. They should be explicitly flushed to insure memory coherency. For
highest processor performance, both the CD and the NW flags in control register CRO
should be cleared. Table 11-3 shows the interaction of the CD and NW flags.

NOTE

The effect of setting the CD flag is different for the Pentium Pro processor
than for earlier Intel Architecture processors. Setting the CD flag for the
Pentium Pro processor does not disable the caches as it does on earlier
processors. Instead, it merely prevents cache line fills and updates. The
processor will still read data from the caches on cache hits and invalidate
cache lines on writes. To insure memory coherency after the CD flag is set,
the caches should be explicitly flushed (see Section 11.5.2., "Preventing
Caching"). Also, setting the CD flag does not force strict ordering of memory
accesses unless the MTRRs are disabled and/or all memory is referenced as
uncached (see Section 7.2.1., "Strengthening or Weakening the Processor­
Order Model").

NW flags in control register CRO-Controls the write policy for system memory locations
(see Section 2.5., "Control Registers"). If the NW and CD flags are clear, write-back is
enabled for the whole of system memory, but may be restricted for individual pages or
regions of memory by other cache-control mechanisms. Table 11-3 shows how the other
combinations of CD and NW flags affects caching.

I

•

•

•

I

MEMORY CACHE CONTROL

PCD flag in the page-directory and page-table entries-Controls caching for individual
page tables and pages, respectively, (see Section 3.6.4., "Page-Directory and Page-Table
Entries"). This flag only has effect when paging is enabled and the CD flag in control
register CRO is clear. The PCD flag enables caching of the page table or page when clear
and prevents caching when set.

CR4

I~I I
L------L.:

E?2.--' Enables global pages

CR3 designated with G flag

18111 1 y Control caching of
L-----J~~ page directory

CRO

~
~
CD and NW Flags
control overall caching
of system memory

Write Buffer

Page-Directory or
Page-Table Entry

PCD and PWT flags
control page-level
caching

G flag controls page­
level flushing of TLBs

I TLB, I

Physical Memory
,--------, FFFFFFFFH

L-____ ---' a

MTRRs

MTRRs control caching
of selected regions of
physical memory

Memory Types Allowed:
-Uncacheable (UC)
-Write-Protected (WP)
-Write-Combining (WC)
-Write-Through (WT)
-Write-Back (WB)

Figure 11-2. Cache-Control Mechanisms Available in the Pentium®pro Processor

PWT flag in the page-directory and page-table entries-Controls the write policy for
individual page tables and pages, respectively, (see Section 3.6.4., "Page-Directory and
Page-Table Entries"). This flag only has effect when paging is enabled and the NW flag in
control register CRO is clear. The PWT flag enables write-back caching of the page table or
page when clear and write-through caching when set.

PCD and PWT flags in control register CR3. Control the global caching and write policy
for the page directory (see Section 2.5., "Control Registers"). The PCD flag enables
caching of the page directory when clear and prevents caching when set. The PWT flag
enables write-back caching of the page directory when clear and write-through caching
when set. These flags do not affect the caching and write policy for individual page tables.
These flags only have effect when paging is enabled and the CD flag in control register
CRO is clear.

11-7

MEMORY CACHE CONTROL

•

•

•

Table 11-3. Cache Operating Modes

CD NW Caching and ReadIWrite Policy

0 0 Normal highest performance cache operation.
- Read hits access the cache; read misses may cause replacement.
- Write hits update the cache.
- Only writes to shared lines and write misses update system memory.
- Write hits can change shared lines to exclusive under control of the MTRRs.
- Invalidation is allowed.

0 1 Invalid setting.
A general-protection exception (#GP) with an error code of 0 is generated.

1 0 Cache updates prevented. Memory coherency is maintained; existing contents
locked in cache.
- Read hits access the cache; read misses do not cause replacement.
- Write hits update cache.
- Only write hits to shared lines and write misses update memory.
- Invalidation is allowed.
- Strict memory ordering is not enforced unless the MTRRs are

disabled and/or all memory is referenced as uncached (see
Section 7.2.1., "Strengthening or Weakening the Processor-Order Model").

1 1 Cache updated prevented. Memory coherency is not maintained.
- Read hits access the cache; read misses do not cause replacement.
- Write hits update cache but not memory.
- Write hits change exclusive lines to modified.
- Shared lines remain shared after write hit.
- Write misses access memory.
- Invalidation is inhibited.
- Invalidation is allowed.
- Strict memory ordering is not enforced unless the MTRRs are

disabled and/or all memory is referenced as uncached (see
Section 7.2.1., "Strengthening or Weakening the Processor-Order Model").

G (global) flag in the page-directory and page-table entries-Controls the flushing of TLB
entries for individual pages. See Section 3.7., "Translation Lookaside Buffers (TLBs)" for
more information about this flag.

PGE (page global enable) flag in control register CR4--Enables the establishment of
global pages with the G flag. See Section 3.7., "Translation Lookaside Buffers (TLBs)" for
more information about this flag.

Memory type range registers (MTRRs)-Control the type of caching used in specific
regions of physical memory. Any of the caching types described in Section 11.3.,
"Methods of Caching Available" can be selected. See Section 11.11., "Memory Type
Range Registers (MTRRs)" for a detailed description of the MTRRs.

11.5.1. Precedence of Cache Controls

The cache control flags and MTRRs operate hierarchically for restricting caching. That is, if the
CD flag is set, caching is prevented globally (see Table 11-3). If the CD flag is clear, either the
PCD flags and/or the MTRRs can be used to restrict caching. If there is an overlap of page-level

11-8

I

MEMORVCACHECONTROL

caching control and MTRR caching control, the mechanism that prevents caching has prece­
dence. For example, if an MTRR makes a region of system memory uncachable, a PCD flag
cannot be used to enable caching for a page in that region. The converse is also true; that is, if
the PCD flag is set, an MTRR cannot be used to make a region of system memory cacheable.

In cases where there is a overlap in the assignment of the write-back and write-through caching
policies to a page and a region of memory, the write-through policy takes precedence. The write­
combining policy (which can only be assigned through an MTRR) takes precedence over either
write-through or write-back.

Table 11-4 describes the mapping from MTRR memory types and page-level caching attributes
to effective memory types, when normal caching is in effect (the CD and NW flags in control
register CRO are clear). Combinations that appear in gray are implementation-defined and may
be implemented differently on future Intel Architecture processors. System designers are
encouraged to avoid these implementation-defined combinations.

Table 11-4. Effective Memory Type Depending on MTRR, PCD, and PWT Settings

MTRR Memory Type peD Value PWTValue Effective Memory Type

UC X X UC

WC 0 0 WC

0 1 WC

1 0 WC

1 1 UC

WT 0 X WT

1 X UC

WP 0 0 WP
Oi. :. 1. WP . v.:
1

...... '.
0 UC' :· .• ·····C

' .. .'

1 1 UC

WB 0 0 WB

0 1 WT

1 X UC

NOTE:

This table assumes that the CD and NW flags in register CRO are set to O. The effective memory types in the
grey areas are implementation defined and may be different in future Intel Architecture processors.

When normal caching is in effect, the effective memory type is determined using the following
rules:

1. If the PCD and PWT attributes for the page are both 0, then the effective memory type is
identical to the MTRR -defined memory type.

2. If the PCD flag is set, then the effective memory type is UC.

I
11-9

MEMORY CACHE CONTROL

3. If the PCD flag is clear and the PWT flag is set, the effective memory type is WT for the
WB memory type and the MTRR-defined memory type for all other memory types.

4. Setting the PCD and PWT flags to opposite values is considered model-specific for the WP
and WC memory types and architecturally-defined for the WB, WT, and UC memory
types.

11.5.2. Preventing Caching

The Ll and L2 caches are enabled by default following a hardware reset (resulting from a
power-up or the asserting of the RESET# pin); however, all memory types are set for uncached
(UC) in the MTRRs. To prevent the L1 and L2 caches from performing all caching operations
after they have been enabled and have received cache fills, perform the following steps:

I. Execute a WBINVD instruction to invalidate the caches or to flush them to memory and
invalidate them, respectively.

2. Set the CD and NW flags in control register CRO to I.

3. Disable the MTRRs and set the default memory type to uncached or set all MTRRs for the
uncached memory type (see the discussion of the discussion of the TYPE field and the E
flag in Section 11.11.2.1., "MTRRdeIType Register").

The caches must be flushed when the CD flag is cleared to insure system memory coherency. If
the caches are not flushed in step 1, cache hits on reads will still occur and data will be read from
valid cache lines.

11.6. CACHE MANAGEMENT INSTRUCTIONS

The INVD and WBINVD instructions are used to invalidate the contents of the LI and L2
caches. The INVD instruction invalidates all internal (data and instruction) cache entries, then
generates a special bus cycle (called a SYNC cycle) that indicates that external caches (level 3
caches) also should be invalidated. The INVD instruction should be used with care. It does not
force a write-back of modified cache lines; therefore, it can cause the caches to become incon­
sistent with system memory. Unless there is a specific requirement or benefit to invalidating the
caches without writing back the modified lines (such as, during testing or fault recovery where
cache coherency with main memory is not a concern), software should use the WBINVD
instruction.

The WBINVD instruction first writes back any modified lines in the caches, then invalidates the
contents of both the LI and L2 caches. It ensures that cache coherency with main memory is
maintained regardless of the write policy in effect (that is, write-through or write-back).
Following this operation, the WBINVD instruction generates a FLUSH cycle to indicate to
external cache controllers that write-back of modified data and invalidation of external caches
should occur.

11-10

I

MEMORY CACHE CONTROL

11.7. SELF-MODIFYING CODE

A write to a memory location in a code segment that is currently cached in the processor causes
the associated cache line (or lines) to be invalidated. This check is based on the physical address
of the instruction. In addition, the Pentium Pro processor checks whether a write to a code
segment may modify an instruction that has been prefetched for execution. If the write affects a
prefetched instruction, the prefetch queue is invalidated. This latter check is based on the linear
address of the instruction.

In practice, the check on linear addresses should not create compatibility problems among Intel
Architecture processors. Applications that include self-modifying code use the same linear
address for modifying and fetching the instruction. Systems software, such as a debugger, that
might possibly modify an instruction using a different linear address than that used to fetch the
instruction, will execute a serializing operation, such as an IRET instruction, before the modi­
fied instruction is executed, which will automatically resynchronize the instruction cache and
prefetch queue.

11.8. IMPLICIT CACHING

Implicit caching occurs when a memory element is made potentially cacheable, although the
element may never have been accessed in normal the von Neumann sequence. Implicit caching
occurs on the Pentium Pro processor due to its aggressive prefetching and TLB miss handling.
Implicit caching is an extension of the behavior of existing Inte1386, Inte1486, and Pentium
processor systems, since software has never been able to deterministically predict the behavior
of instruction prefetch.

To avoid problems related to implicit caching, the operating system must explicitly invalidate
the cache when changes are made to cacheable data that the cache coherency mechanism does
not automatically handle. This includes writes to dual-ported or physically alia sed memory
boards that are not detected by the snooping mechanisms of the processor, and changes to page
table entries in memory.

The code in Example 11-1 shows the effect of implicit caching on page table entries. The linear
address FOOOH points to physical location BOOOH (the page table entry for FOOOH contains the
value BOOOH), and the page table entry for linear address FOOO is PTE_FOOO.

Example 11-1. Effect of Implicit Caching on Page Table Entries

mov EAX, CR3 Invalidate the TLB
mov CR3, EAX by copying CR3 to itself
mov PTE_FOOO, AOOOH; Change FOOOH to point to AOOOH
mov EBX, [FOOOH];

Because of speculative execution in the Pentium Pro processor, the last MOV instruction
performed would place the value at physical location BOOOH into EBX, rather than the value at
the new physical address AOOOH. This situation is remedied by placing a TLB invalidation
between the load and the store.

I
11-11

MEMORY CACHE CONTROL intet

11.9. INVALIDATING THE TRANSLATION LOOKASIDE BUFFERS
(TLBS)

The processor updates its address translation caches (TLBs) transparently to software. Several
mechanisms are available, however, that allow software and hardware to invalidate the TLBs
either explicitly or as a side effect of another operation. The following operations invalidate all
TLB entries except global entries. (A global entry is one for which the G (global) flag is set in
its corresponding page-directory and page-table entry.)

• Writing to control register CR3.

• A task switch that changes control register CR3.

The following operations invalidate all TLB entries, irrespective of the setting of the G flag:

• Asserting or de-asserting the FLUSH# pin.

• Writing to an MTRR (with a WRMSR instruction).

• Writing to control register CRO to modify the PG or PE flag.

• Writing to control register CR4 to modify the PSE, PGE, or PAE flag.

• Executing an INVD or WBINVD instruction. (The INVLPG instruction invalidates the
TLB for a specific page.)

See Section 3.7., "Translation Lookaside Buffers (TLBs)" for additional information about the
TLBs.

11.10. WRITE BUFFER

The Pentium Pro processor temporarily stores each write (store) to memory in a write buffer.
The write buffer improves processor performance by allowing the processor to continue
executing instructions without having to wait until a write to memory and/or to a cache is
complete. It also allows writes to be delayed for more efficient use of memory-access bus cycles.

In general, the existence of the write buffer is transparent to software, even in systems that use
multiple processors. The Pentium Pro processor ensures that write operations are always carried
out in program order. It also insures that the contents of the write buffer are always drained to
memory in the following situations:

•
•
•
•
•

When an exception or interrupt is generated.

When a serializing instruction is executed.

When an I/O instruction is executed.

When a locking operation is performed.

When a BINIT operation is performed.

The discussion of write ordering in Section 7.2., "Memory Ordering" gives a detailed descrip­
tion of the operation of the write buffer.

11-12

I

MEMORY CACHE CONTROL

11.11. MEMORY TYPE RANGE REGISTERS (MTRRS)

The memory type range registers (MTRRs) provide a mechanism for associating the memory
types (see Section 11.3., "Methods of Caching Available") with physical-address ranges in
system memory. They allow the processor to optimize operations for different types of memory
such as RAM, ROM, frame-buffer memory, and memory-mapped 110 devices. They also
simplify system hardware design by eliminating the memory control pins used for this function
on earlier Intel Architecture processors and the external logic needed to drive them.

The MTRR mechanism allows up to 96 memory ranges to be defined in physical memory (see
Figure 11-3), and it defines a set of model-specific registers (MSRs) for specifying the type of
memory that is contained in each range. Table 11-5 shows the memory types that can be speci­
fied and their properties; see Section 11.3., "Methods of Caching Available" for a more detailed
description of each memory type.

I

Address ranges not
mapped by an MTRR --.--"';>

are set to a default type

8 variable ranges
(from 4 KBytes to
maximum size of

physical memory)

Physical Memory
FFFFFFFFH

1---------1 100000H
64 fixed ranges __ ~I FFFFFH

(4 KBytes each) "1--_25_6_K_B_yt_e_s_--1 COOOOH

16 fixed ranges .. 256 KBytes BFFFFH
(16 KBytes each) 80000H

7FFFFH
8 fixed ranges

(64-KBytes each) --~ 512 KBytes

~ _____ ~ 0

Figure 11-3. Mapping Physical Memory With MTRRs

11-13

MEMORY CACHE CONTROL

Following a hardware reset, the Pentium Pro processor disables all the fixed and variable
MTRRs, which in effect makes all of physical memory uncachable. Initialization software
should then set the MTRRs to a specific, system-defined memory map. Typically, the BIOS
(basic input/output system) software configures the MTRRs. The operating system or executive
is then free to modify the memory map using the normal page-level cache ability attributes.

In a mUltiprocessor system, different Pentium Pro processors should use the identical MTRR
memory map so that software has a consistent view of memory, independent of the processor
executing a program.

Table 11-5. MTRR Memory Types and Their Properties

Cacheable in Allows
Encoding in L1 and L2 Writeback Speculative Memory Ordering

Mnemonic MTRR Caches Cacheable Reads Model

Uncacheable 0 No No No Strong Ordering
(UC)

Write 1 No No Yes Weak Ordering
Combining (WC)

Write·th rough 4 Yes No Yes Sp'eculative
(WT) Processor Ordering

Write'protected 5 Yes for reads, No Yes Speculative
(WP) no for writes Processor Ordering

Writeback (WB) 6 Yes Yes Yes Speculative
Processor Ordering

Reserved 2,3,
Encodings* 7 through 255

NOTE:

* Using these encoding result in a general-protection exception (#GP) being generated.

11.11.1. MTRR Feature Identification

The availability of the MTRR feature is model-specific. Software can determine if MTRRs are
supported on a processor by executing the CPUID instruction and reading the state of the MTRR
flag (bit 12) in the feature information register (EDX).

If the MTRR flag is set (indicating that the processor implements MTRRs), additional informa­
tion about MTRRs can be obtained from the 64-bit MTRRcap register. The MTRRcap register
is a read-only MSR that can be read with the RDMSR instruction. Figure 11-4 shows the
contents of the MTRRcap register. The functions of the flags and field in this register are as
follows:

VeNT (variable range registers count) field, bits 0 through 7

11-14

Indicates the number of variable ranges implemented on the processor. The
Pentium Pro processor has eight pairs of MTRRs for setting up eight variable
ranges.

I

MEMORY CACHE CONTROL

63 11109 8 7

I Reserved I~I I ~ I
WC-Write-combining memory type supported J I
FIX-Fixed range registers supported

VCNT

VCNT -Number of variable range registers --------"

D Reserved

Figure 11-4. MTRRcap Register

o

I

FIX (fixed range registers supported) flag, bit 8
Fixed range MTRRs (MTRRfix64K_00000 through MTRRfix4K_OFSOOO)
are supported when set; no fixed range registers are supported when clear.

we (write combining) flag, bit 10
The write-combining (WC) memory type is supported when set; the we type
is not supported when clear.

Bit 9 and bits 11 through 63 in the MTRRcap register are reserved. If software attempts to write
to the MTRRcap registers, a general-protection exception (#GP) is generated.

For the Pentium Pro processor, the MTRRcap register always contains the value 50SH.

11.11.2. Setting Memory Ranges with MTRRs

The memory ranges and the types of memory specified in each range are set by three groups of
registers: the MTRRdeffype register, the fixed-range MTRRs, and the variable range MTRRs.
These registers can be read and written to using the RDMSR and WRMSR instructions, respec­
tively. The MTRRcap register indicates the availability of these registers on the processor (see
Section 11.11.1., "MTRR Feature Identification").

11.11.2.1. MTRRDEFTYPE REGISTER

The MTRRdeffype register sets the default properties of the regions of physical memory that
are not encompassed by MTRRs (see Figure 11-4). The functions of the flags and field in this
register are as follows:

Type field, bits 0 through 7

I

Indicates the default memory type used for those physical memory address
ranges that do not have a memory type specified for them by an MTRR. (See
Table 11-5 for the encoding of this field.) If the MTRRs are disabled, this field
defines the memory type for all of physical memory. The legal values for this
field are 0, 1,4,5, and 6. All other values result in a general-protection excep­
tion (#GP) being generated.

11-15

MEMORY CACHE CONTROL intet

63

Intel recommends the use of the UC (uncached) memory type for all physical
memory addresses where memory does not exist. To assign the MC type to
non-existent memory locations, it can either be specified as the default type in
the Type field or be explicitly assigned with the fixed and variable MTRRs.

121110987 o

Type

FE-Fixed-range MTRRs enable/disable
Type-Default memory type --------------'

D Reserved

Figure 11-5. MTRRdefType Register

FE (fixed MTRRs enabled) flag, bit 10
Fixed-range MTRRs are enabled when set; fixed-range MTRRs are disabled
when clear. When the fixed-range MTRRs are enabled, they take priority over
the variable-range MTRRs when overlaps in ranges occur. If the fixed-range
MTRRs are disabled, the variable-range MTRRs can still be used and can map
the range ordinarily covered by the fixed-range MTRRs.

E (MTRRs enabled) flag, bit 11
MTRRs are enabled when set; all MTRRs are disabled when clear, and the
default memory type (specified with the TYPE field) is mapped to all of phys­
ical memory. When this flag is set, the FE flag can disable the fixed-range
MTRRs; when the flag is clear, the FE flag has no affect.

Bits 8 and 9, and bits 12 through 63, in the MTRRdeIType register are reserved; the processor
generates a general-protection exception (#GP) if software attempts to write non-zero values to
them.

11.11.2.2. FIXED RANGE MTRRS

The fixed memory ranges are mapped with 8 fixed-range registers of 64 bits each. Each of these
registers is divided into 8-bit fields that are used to specify the memory type for each of the sub­
ranges the register controls. Table 11-6 shows the relationship between the fixed physical­
address ranges and the corresponding fields of the fixed-range MTRRs; Table 11-5 shows the
encoding of these field:

•

•

Register MTRRfix64K_00000. Maps the 512-KByte address range from OH to 7FFFFH .
This range is divided into eight 64-KByte sub-ranges.

Registers MTRRfix16K_80000 and MTRRfix16K_AOOOO. Maps the two 128-KByte
address ranges from 80000H to BFFFFH. This range is divided into sixteen 16-KByte sub­
ranges, 8 ranges per register.

11-16

I

MEMORY CACHE CONTROL

Table 11-6. Address Mapping for Fixed-Range MTRRs

Address Range (hexadecimal) Register

63 56 55 4B 47 40 39 32 31 24 23 16 15 B 7 0

70000- 60000- 50000- 40000- 30000- 20000- 10000- 00000- MTRRfix64K
7FFFF 6FFFF 5FFFF 4FFFF 3FFFF 2FFFF 1FFFF OFFFF 00000 -
9COOO 9BOOO- 94000- 90000- BCOOO- BBOOO- B4000- BOOOO- MTRRfix16K
9FFFF 9BFFF 97FFF 93FFF BFFFF BBFFF B7FFF B3FFF _BOOOO

BCOOO BBOOO- B4000- BOOOO- ACOOO- ABOOO- A4000- AOOOO- MTRRfix16K
BFFFF BBFFF B7FFF B3FFF AFFFF ABFFF A7FFF A3FFF _AOOOO

C7000 C6000- C5000- C4000- C3000- C2000- C1000- COOOO- MTRRfix4K -
C7FFF C6FFF C5FFF C4FFF C3FFF C2FFF C1FFF COFFF COOOO

CFOOO CEOOO- COOOO- CCOOO- CBOOO- CAOOO- C9000- CBOOO- MTRRfix4K -
CFFFF CEFFF COFFF CCFFF CBFFF CAFFF C9FFF CBFFF CBOOO

07000 06000- 05000- 04000- 03000- 02000- 01000- 00000- MTRRfix4K -
07FFF 06FFF 05FFF 04FFF 03FFF 02FFF 01FFF OOFFF 00000

OFOOO OEOOO- 00000- OCOOO- OBOOO- OAOOO- 09000- OBOOO- MTRRfix4K -
OFFFF OEFFF OOFFF OCFFF OBFFF OAFFF 09FFF OBFFF OBOOO

E7000 E6000- E5000- E4000- E3000- E2000- E1000- EOOOO- MTRRfix4K -
E7FFF E6FFF E5FFF E4FFF E3FFF E2FFF E1FFF EOFFF EOOOO

EFOOO EEOOO- EOOOO- ECOOO- EBOOO- EAOOO- E9000- EBOOO- MTRRfix4K_
EFFFF EEFFF EOFFF ECFFF EBFFF EAFFF E9FFF EBFFF EBOOO

F7000 F6000- F5000- F4000- F3000- F2000- F1000- FOOOO- MTRRfix4K -
F7FFF F6FFF F5FFF F4FFF F3FFF F2FFF F1FFF FOFFF FOOOO

FFOOO FEOOO- FOOOO- FCOOO- FBOOO- FAOOO- F9000- FBOOO- MTRRfix4K -
FFFFF FEFFF FOFFF FCFFF FBFFF FAFFF F9FFF FBFFF FBOOO

• Registers MTRRfix4K_COOOO. and MTRRfix4K_F8000. Maps eight 32-KByte address
ranges from COOOOH to FFFFFH. This range is divided into sixty-four 4-KByte sub­
ranges, 8 ranges per register.

See the Pentium® Pro BIOS Writers Guide for examples of assigning memory types with fixed­
range MTRRs.

11.11.2.3. VARIABLE RANGE MTRRS

The Pentium Pro processor permits software to specify the memory type for eight variable-size
address ranges, using a pair of MTRRs for each range. The first of each pair (MTRRphysBasen)
defines the base address and memory type for the range, and the second (MTRRphysMaskn)
contains a mask that is used to determine the address range. The "n" suffix indicates registers
pairs a through 7. Figure 11-6 shows flags and fields in these registers. The functions of the flags
and fields in these registers are as follows:

Type field, bits 0 through 7

I

Specifies the memory type for the range (see Table 11-5 for the encoding of this
field.)

11-17

MEMORY CACHE CONTROL intet

MTRRphysBasen Register
63 3635 1211 87 o

... Res~rve;d'

PhysBase-Base address of range
Type-Memory type for range---------------'

MTRRphysMaskn Register

63 3635 121110 o

PhysMask-Sets range mask
V-Validity of range --------'

1'1 Reserved

Figure 11-6. MTRRphysBasen and MTRRphysMaskn Variable-Range Register Pair

PhysBase field, bits 12 through 35
Specifies the base address of the address range. This 24-bit value is extended
by 12 bits at the low end to form the base address, which automatically aligns
the address on a 4-KByte boundary.

PhysMask field, bits 12 through 35
Specifies a 24-bit mask that determines the range of the region being mapped,
according to the following relationship:

Address_ Within_Range AND PhysMask = PhysBase AND PhysMask

This 24-bit value is extended by 12 bits at the low end to form the mask value.
See Section 11.11.3., "Example Base and Mask Calculations" for more infor­
mation and some examples of base address and mask computations.

V (valid) flag, bit 11
Enables the register pair when set; disables register pair when clear.

All other bits in the MTRRphysBasen and MTRRphysMaskn registers are reserved; the
processor generates a general-protection exception (#GP) if software attempts to write to them.

Overlapping variable MTRR ranges are not supported generically. However, two variable
ranges are allowed to overlap, if the following conditions are present:

• If both of them are UC (uncached) .

• If one range is of type UC and the other is of type WB (write back) .

In both cases above, the effective type for the overlapping region is UC. The processor's
behavior is undefined for all other cases of overlapping variable ranges.

11-18

I

MEMORY CACHE CONTROL

A variable range can overlap a fixed range (provided the fixed range MTRR's are enabled).
Here, the memory type specified in the fixed range register overrides the one specified in vari­
able-range register pair.

NOTE

Some mask values can result in discontinuous ranges. In a discontinuous
range, the area not mapped by the mask value is set to the default memory
type. Intel does not encourage the use of discontinuous ranges, because they
require could physical memory to be present throughout the entire 4-GByte
physical memory map. If memory is not provided for the complete memory
map, the behaviour of the processor is undefined.

11.11.3. Example Base and Mask Calculations

The base and mask values entered into the variable-range MTRR pairs are 24-bit values that the
processor extends to 36-bits. For example, to enter a base address of2 MBytes (200000H) to the
MTRRphysBase3 register, the 12 least-significant bits are truncated and the value 200H is
entered into the PhysBase field. The same operation must be performed on mask values. For
instance, to map the address range from 200000H to 3FFFFFH (2 MBytes to 4 MBytes), a mask
value of FFFEOOOOOH is required. Here again, the 12 least-significant bits of this mask value
are truncated, so that the value entered in the PhysMask field of the MTRRphysMask3 register
is FFFFEOOH. This mask is chosen so that when any address in the 200000H to 3FFFFFH range
is ANDed with the mask value it will return the same value as when the base address is ANDed
with the mask value (which is 200000H).

To map the address range from 400000H 7FFFFFH (4 MBytes to 8 MBytes), a base value of
400H is entered in the PhysBase field and a mask value of FFFCOOH is entered in the PhysMask
field.

Here is a real-life example of setting up the MTRRs for an entire system. Assume that the system
has the following characteristics:

•

•

•

•

96 MBytes of system memory is mapped as write-back memory (WB) for highest system
performance.

A custom 4-MByte I/O card is mapped to uncached memory (UC) at a base address of 64
MBytes. This restriction forces the 96 MBytes of system memory to addressed from 0 to
64 MBytes and from 68 MBytes to 100 MBytes, leaving a 4-MByte hole for the I/O card.

An 8-MByte graphics card is mapped to write-combining memory (WC) beginning at
address AOOOOOOOH.

The BIOS area from 15 MBytes to 16 MBytes si mapped to UC memory.

The following settings for the MTRRs will yield the proper mapping of the physical address
space for this system configuration. The xO_Ox notation is used below to add clarity to the large
numbers represented.

I
11-19

MEMORY CACHE CONTROL

MTRRPhysBaseO = 0000_0000_0000_0006h
MTRRPhysMaskO = OOOO_OOOF]COO_0800h Caches 0-64 MB as WB cache type.
MTRRPhysBase1 = 0000_0000_0400_0006h
MTRRPhysMask1 = OOOO_OOOF]EOO_0800h Caches 64-96 MB as WB cache type.
MTRRPhysBase2 = 0000_0000_0600_0006h
MTRRPhysMask2 = OOOO_OOOF]FCO_0800h Caches 96-100 MB as WB cache type.
MTRRPhysBase3 = 0000_0000_0400_0000h
MTRRPhysMask3 = OOOO_OOOF]FCO_0800h Caches 64-68 MB as UC cache type.
MTRRPhysBase4 = OOOO_OOOO_OOFO_OOOOh
MTRRPhysMask4 = OOOO_OOOF]FFO_0800h Caches 15-16 MB as UC cache type
MTRRPhysBase5 = 0000_0000_AOOO_0001 h
MTRRPhysMask5 = OOOO_OOOF _FF80_0800h Cache AOOOOOOOh-A0800000 as WC type.

This MTRR setup uses the ability to overlap any two memory ranges (as long as the ranges are
mapped to WB and DC memory types) to minimize the number of MTRR registers that are
required to configure the memory environment. This setup also fulfills the requirement that two
register pairs are left for operating system usage.

11.11.4. Range Size .and Alignment Requirement

The range that is to be mapped to a variable-range MTRR must meet the following "power of
2" size and alignment rules:

1. The minimum range size is 4 KBytes, and the base address of this range must be on at least
a 4-KByte boundary.

2. For ranges greater than 4 KBytes, each range must be of length 2n and its base address
must be aligned on a 2n boundary, where n is a value equal to or greater than 12. The base­
address alignment value cannot be less than its length. For example, an 8-KByte range
cannot be aligned on a 4-KByte boundary. It must be aligned on at least an 8-KByte
boundary.

11.11.4.1. MTRR PRECEDENCES

If the MTRRs are not enabled (by setting the E and FE flags in the MTRRdeIType register), then
all memory accesses are of the default memory type (specified in the Type field of the
MTRRdeIType register). If the MTRRs are enabled, then the memory type used for a memory
access is determined as follows:

1. If the physical address falls within the first 1 MByte of physical memory and fixed MTRRs
are enabled, the processor uses the memory type stored for the appropriate fixed-range
MTRR.

2. Otherwise, the processor attempts to matches the physical address with a memory type
range set with a pair of variable-range MTRRs:

a. If one variable memory range matches, the processor uses the memory type stored in
the MTRRphysBasen register for that range.

11-20

I

MEMORY CACHE CONTROL

b. If two or more variable memory ranges match and the memory types are UC, the UC
memory type used.

c. If two or more variable memory ranges match and the memory types are UC and WE,
the UC memory type is used.

d. If two or more variable memory ranges match and the memory types are other than UC
and WE, the behaviour of the processor is undefined.

3. If no fixed or variable memory range matches, the processor uses the default memory type.

11.11.5. MTRR Initialization

On a hardware reset, the Pentium Pro processor clears the valid flags in the variable-range
MTRRs and clears the E flag in the MTRRdeIType register to disable all MTRRs. All other bits
in the MTRRs are undefined. Prior to initializing the MTRRs, software (normally the system
BIOS) must initialize all fixed-range and variable-range MTRR registers fields to O. Software
can then initialize the MTRRs according to the types of memory known to it, including memory
on devices that it auto-configures. This initialization is expected to occur prior to booting the
operating system.

See Section 11.11.8., "Multiple-Processor Considerations" for information on initializing
MTRRs in multiple-processor systems.

11.11.6. Remapping Memory Types

A system designer may re-map memory types to tune performance or because a future processor
may not implement all memory types supported by the Pentium Pro processor. The following
rules support coherent memory-type re-mappings:

1. A memory type should not be mapped into another memory type that has a weaker
memory ordering model. For example, the uncacheable type cannot be mapped into any
other type, and the write-back, write-through, and write-protected types cannot be mapped
into the weakly ordered write-combining type.

2. A memory type that does not delay writes should not be mapped into a memory type that
does delay writes, because applications of such a memory type may rely on its write­
through behavior. Accordingly, the write-through type cannot be mapped into the write­
back type.

3. A memory type that views write data as not necessarily stored and read back by a
subsequent read, such as the write-protected type, can only be mapped to another type with
the same behaviour (and there are no others for the Pentium Pro processor) or to the
uncacheable type.

In many specific cases, a system designer can have additional information about how a memory
type is used, allowing additional mappings. For example, write-through memory with no asso­
ciated write side effects can be mapped into write-back memory.

I
11-21

MEMORY CACHE CONTROL

11.11.7. MTRR Maintenance Programming Interface

The operating system maintains the MTRRs after booting and sets up or changes the memory
types for memory-mapped devices. The operating system should provide a driver and applica­
tion programming interface (API) to access and set the MTRRs. The function calls
MemTypeGetO and MemTypeSetO define this interface.

11.11.7.1. MEMTYPEGET{) FUNCTION

The MemTypeGetO function returns the memory type of the physical memory range specified
by the parameters base and size. The base address is the starting physical address and the size is
the number of bytes for the memory range. The function automatically aligns the base address
and size to 4-KByte boundaries. Pseudocode for the MemTypeGetO function is given in
Example 11-2.

Example 11-2. MemTypeGetO Pseudocode

#define MIXED_TYPES -1 1* 0 < MIXED_TYPES II MIXED_TYPES> 256 */

IF CPU_FEATURES.MTRR 1* processor supports MTRRs */
THEN

Align BASE and SIZE to 4-KByte boundary;
IF (BASE + SIZE) wrap 4-GByte address space

THEN return INVALID;
FI;
IF MTRRdefType.E = 0

THEN return UC;
FI;
FirstType f- Get4KMemType (BASE);
1* Obtains memory type for first 4-KByte range */
/* See Get4KMemType (4KByteRange) in Example 11-3 */
FOR each additional 4-KByte range specified in SIZE

NextType f- Get4KMemType (4KByteRange);
IF NextType *- FirstType

FI;
ROF;

THEN return MixedTypes;

return FirstType;
ELSE return UNSUPPORTED;

FI;

If the processor does not support MTRRs, the function returns UNSUPPORTED. If the MTRRs
are not enabled, then the ue memory type is returned. If more than one memory type corre­
sponds to the specified range, a status of MIXED_TYPES is returned. Otherwise, the memory
type defined for the range (ue, we, WT, WB, or WP) is returned.

The pseudocode for the Get4KMemTypeO function in Example 11-3 obtains the memory type
for a single 4-KByte range at a given physical address. The sample code determines whether an

11-22

I

MEMORY CACHE CONTROL

PHY_ADDRESS falls within a fixed range by comparing the address with the known fixed
ranges: Oto 7FFFFH (64-KByteregions), 80000H toBFFFFH (l6-KByte regions), andCOOOOH
to FFFFFH (4-KByte regions). If an address falls within one of these ranges, the appropriate bits
within one of its MTRRs determine the memory type.

Example 11-3. Get4KMemTypeO Pseudocode

IF MTRRcap.FIX AND MTRRdefType.FE 1* fixed registers enabled */
THEN IF PHY _ADDRESS is within a fixed range

return MTRRfixed.Type;
FI;
FOR each variable-range MTRR in MTRRcap.VCNT

IF MTRRphysMask.V = 0
THEN continue;

FI;
IF (pHY _ADDRESS AND MTRRphysMask.Mask) = (MTRRphysBase.Base

AND MTRRphysMask.Mask)

FI;
ROF;

THEN
return MTRRphysBase.Type;

return MTRRdefType.Type;

11.11.7.2. MEMTYPESET() FUNCTION

The MemTypeSetO function in Example 11-4 sets a MTRR for the physical memory range spec­
ified by the parameters base and size to the type specified by type. The base address and size are
multiples of 4 KBytes and the size is not O.

Example 11-4. MemTypeSet Pseudocode

IF CPU_FEATURES.MTRR (* processor supports MTRRs *)

I

THEN
IF BASE and SIZE are not 4-KByte aligned or size is 0

THEN return INVALID;
FI;
IF (BASE + SIZE) wrap 4-GByte address space

THEN return INVALID;
FI;
IF TYPE is invalid for Pentium Pro processor

THEN return UNSUPPORTED;
FI;
IF TYPE is WC and not supported

THEN return UNSUPPORTED;
FI;
IF MTRRcap.FIX is set AND range can be mapped using a fixed-range MTRR

THEN

11-23

MEMORY CACHE CONTROL

FI;

FI;

pre_mtrr_changeO;
update affected MTRR;
posCmtrr _changeO;

ELSE (* try to map using a variable MTRR pair *)
IF MTRRcap. VCNT = 0

THEN return UNSUPPORTED;
FI;
I F conflicts with current variable ranges

THEN return RANGE_OVERLAP;
FI;
I F no MTRRs available

THEN return VAR_NOT_AVAILABLE;
FI;
IF BASE and SIZE do not meet the power of 2 requirements for variable MTRRs

THEN return INVALlD_VAR_REQUEST;
FI;
pre_mtrr_changeO;
Update affected MTRRs;
posCmtrr_changeO;

pre_mtrr _changeO
BEGIN

disable interrupts;
Save current value of CR4;
disable and flush caches;
flush TLBs;
disable MTRRs;
IF multiprocessing

THEN maintain consistency through IPls;
FI;

END
post_mtrcchangeO

BEGIN
flush caches and TLBs;
enable MTRRs;
enable caches;
restore value of CR4;
enable interrupts;

END

The physical address to variable range mapping algorithm in the MemTypeSet function detects
conflicts with current variable range registers by cycling through them and determining whether
the physical address in question matches any of the current ranges. During this scan, the algo­
rithm can detect whether any current variable ranges overlap and can be concatenated into a
single range.

11-24

I

MEMORY CACHE CONTROL

The pre_mtrcchangeO function disables interrupts prior to changing the MTRRs, to avoid
executing code with a partially valid MTRR setup. The algorithm disables caching by setting
the CD flag and clearing the NW flag in control register CRO. The caches are invalidated using
the WBINVD instruction. The algorithm disables the page global flag (PGE) in control register
CR4, if necessary, then flushes all TLB entries by updating control register CR3. Finally, it
disables MTRRs by clearing the E flag in the MTRRdefType register.

After the memory type is updated, the posCmtrr_changeO function re-enables the MTRRs and
again invalidates the caches and TLBs. This second invalidation is required because of the
processor's aggressive prefetch of both instructions and data. The algorithm restores interrupts
and re-enables caching by setting the CD flag.

An operating system can batch mUltiple MTRR updates so that only a single pair of cache inval­
idations occur.

11.11.8. Multiple-Processor Considerations

In multiple-processor systems, the operating systems must maintain MTRR consistency
between all the processors in the system. The Pentium Pro processor provides no hardware
support to maintain this consistency. In general, all processors must have the same MTRR
values.

This requirement implies that when the operating system initializes a multiple-processor system,
it must load the MTRRs of the boot processor while the E flag in register MTRRdefType is O.
The operating system then directs other processors to load their MTRRs with the same memory
map. After all the processors have loaded their MTRRs, the operating system signals them to
enable their MTRRs. Barrier synchronization is used to prevent further memory accesses until
all processors indicate that the MTRRs are enabled. This synchronization is likely to be a shoot­
down style algorithm, with shared variables and interprocessor interrupts.

Any change to the value of the MTRRs in a multiple-processor system requires the operating
system to repeat the loading and enabling process to maintain consistency, using the following
procedure:

1. Broadcast to all processors to execute the following code sequence.

2. Disable interrupts.

3. Wait for all processors to reach this point.

4. Enter the no-fill cache mode. (Set the CD flag in control register CRO to 1 and the NW flag
to 0.)

5. Flush all caches using the WBINVD instruction.

6. Clear the PGE flag in control register CR4 (if set).

7. Flush all TLBs. (Execute a MOV from control register CR3 to another register and then a
MOV from that register back to CR3).

I
11-25

MEMORY CACHE CONTROL

8. Disable all range registers (by clearing the E flag in register MTRRdeffype). If only
variable ranges are being modified, software may clear the valid bits for the affected
register pairs instead.

9. Update the MTRRs.

10. Enable all range registers (by setting the E flag in register MTRRdeIType). If only
variable-range registers were modified and their individual valid bits were cleared, then set
the valid bits for the affected ranges instead.

11. Flush all caches and all TLBs a second time. (The TLB flush is required for Pentium Pro
processors. Executing the WBINVD instruction is not needed using Pentium Pro
processors, but it may be needed in future systems.)

12. Enter the normal cache mode to re-enable caching. (Set the CD and NW flags in control
register CRO to 0.)

13. Set PGE flag in control register CR4, if previously cleared.

14. Wait for all processors to reach this point.

15. Enable interrupts.

11.11.9. Large Page Size Considerations

The MTRRs provide memory typing for a limited number of regions that have a 4 KByte gran­
ularity (the same granularity as 4-KByte pages). The memory type for a given page is cached in
the processor's TLBs. When using large pages (2 or 4 MBytes), a single page-table entry covers
multiple 4-KByte granules, each with a single memory type. Because the memory type for a
large page is cached in the TLB, the processor can behave in an undefined manner if a large page
is mapped to a region of memory that MTRRs have mapped with multiple memory types.

Undefined behavior can be avoided by insuring that all MTRR memory-type ranges within a
large page are of the same type. If a large page maps to region of memory containing different
MTRR-defined memory types, the PCD and PWT flags in the page-table entry should be set for
the most conservative memory type for that range. For example, a large page used for memory
mapped I/O and regular memory is mapped as UC memory. Alternatively, the operating system
can map the region using multiple 4-KByte pages each with its own memory type. The require­
ment that all 4-KByte ranges in a large page are of the same memory type implies that large
pages with different memory types may suffer a performance penalty, since they must be marked
with the lowest common denominator memory type.

The Pentium Pro processor provides special support for the physical memory range from 0 to 4
MBytes, which is potentially mapped by both the fixed and variable MTRRs. This support is
invoked when the Pentium Pro processor detects a large page overlapping the first 1 MByte of
this memory range with a memory type that conflicts with the fixed MTRRs. Here, the processor
maps the memory range as multiple 4-KByte pages within the TLB. This operation insures
correct behavior at the cost of performance. To avoid this performance penalty, operating­
system software should reserve the large page option for regions of memory at addresses greater
than or equal to 4 MBytes.

11-26

I

12
8086 Emulation

I

CHAPTER 12
8086 EMULATION

The Pentium Pro processor provides two ways to execute new or legacy programs that are
assembled and/or compiled to run on an Intel 8086 processor:

• Real-address mode.

• Virtual-8086 mode.

Figure 2-2 shows the relationship of these operating modes to protected mode and system
management mode (SMM).

When the processor is powered up or reset, it is placed in the real-address mode. This operating
mode almost exactly duplicates the execution environment of the Intel 8086 processor, with
some extensions. Virtually any program assembled and/or compiled to run on an Intel 8086
processor will run on the Pentium Pro processor in this mode.

When running in protected mode, the processor can be switched to virtual-8086 mode to run
8086 programs. This mode also duplicates the execution environment of the Intel 8086
processor, with extensions. In virtual-8086 mode, an 8086 program runs as a separate protected­
mode task. Legacy 8086 programs are thus able to run under an operating system (such as
Micros oft * Windows) that takes advantage of protected mode and to use protected mode facil­
ities, such as the protected-mode interrupt- and exception-handling facilities. Protected-mode
multitasking permits multiple virtual-8086-mode tasks be run (with each one running an sepa­
rate 8086 program) to be run on the processor along with other non-virtual-8086-mode tasks.

This section describes both the basic real-address mode execution environment and the virtual-
8086-mode execution environment.

12.1. REAL-ADDRESS MODE

The real-address mode of the Pentium Pro processor runs programs written for the Intel 8086,
Intel 8088, Intel 80186, and Intel 80188 processors, or for the real-address mode ofthe Intel 286,
Inte1386, Inte1486, Pentium, and Pentium Pro processors.

The execution environment of the processor in real-address mode is designed to duplicate the
execution environment of the Intel 8086 processor. To an 8086 program, a Pentium Pro
processor operating in real-address mode behaves like a high-speed 8086 processor. The prin­
cipal features of this architecture are defined in Chapter 3, Basic Execution Environment, of the
Pentium® Pro Family Developer's Manual, Volume 2. The following is a summary of the core
features of the real-address mode execution environment:

•

I

The 1-MByte physical address space ranges from a to FFFFFH. To access operands in this
address space, it is divided into 64-KByte segments. The base of a segment is specified
with a 16-bit segment selector, which is zero extended to form a 20-bit offset from address

12-1

8086 EMULATION

•
•
•

•

•

•

•

•

•

o in the address space. An operand within a segment is addressed with a 16-bit offset from
the base of the segment. A physical address is thus formed by adding the offset to the
20-bit segment base (see Section 12.1.1., "Address Translation in Real-Address Mode").

All operands are 8-bit or 16-bit values.

Six 16-bit general-purpose registers are provided: AX, BX, CX, DX, SP, BP, SI, and DI.

Four segment registers are provided: CS, DS, SS, and ES. The CS register contains the
segment selector for the code segment; the DS and ES registers contain segment selectors
for data segments; and the SS register contains the segment selector for the stack segment.

The instruction pointer is contained in the 16-bit IP register (referred to in the Pentium Pro
processor as the EIP register).

The 16-bit FLAGS register contains status and control flags. (This register is known in the
Pentium Pro processor as the EFLAGS register.)

All of the Intel 8086 instructions are supported (see Section 12.1.3., "Instructions
Supported in Real-Address Mode").

A single, 16-bit-wide procedure stack is provided for handling procedure calls and calls to
interrupt and exception handlers. This stack is contained in the stack segment identified
with the SS register. The SP (stack pointer) register contains an offset into the stack
segment. The stack grows down (toward lower segment offsets) from the stack pointer.
The BP (base pointer) register also contains an offset into the stack segment that can be
used as a pointer to a parameter list. When a CALL instruction is executed, the processor
pushes the current instruction pointer (the 16 least-significant bits of the EIP register and,
on far calls, the current value of the CS register) onto the stack. On a return, initiated with
a RET instruction, the processor pops the saved instruction pointer from the stack into the
EIP register (and CS register on far returns). When an implicit call to an interrupt or
exception handler is executed, the processor pushes the EIP, CS, and EFLAGS (low-order
16-bits only) registers onto the stack. On a return from an interrupt or exception handler,
initiated with an IRET instruction, the processor pops the saved instruction pointer and
EFLAGS image from the stack into the EIP, CS, and EFLAGS registers.

A single interrupt table called the interrupt descriptor table (IDT) is provided for handling
interrupts and exceptions. Interrupt and exception vectors provide an index into entries in
this table. Each entry provides a pointer to an interrupt- or exception-handling procedure.
See Handling Interrupts and Exceptions for more details.

The floating-point unit (FPU) in the Pentium Pro processor is active and available to
execute FPU instructions in real-address mode. Programs written to run on the Intel 8087
and Intel287 math coprocessors can be run in real-address mode without modification.

The following extensions to the Intel 8086 execution environment are available in the Pentium
Pro processor in real-address mode. If backwards compatibility to Intel 286 and Intel 8086
processors is required, these features should not be used in new programs written to run in real­
address mode.

• Two additional segment registers (FS and GS) are available.

12-2

I

•

•

•

8086 EMULATION

Many of the integer and system instructions that have been added to later Intel Archi­
tecture processors can be executed in real-address mode (see Section 12.1.3., "Instructions
Supported in Real-Address Mode").

The 32-bit operand prefix can be used in real-address mode programs to execute the 32-bit
forms of instructions. This prefix also allows real-address mode programs to use the 32-bit
general-purpose registers in the Pentium Pro processor.

The 32-bit address prefix can be used in real-address mode programs, allowing 32-bit
offsets.

The following sections describe address formation, registers, available instructions, and inter­
rupt and exception handling in real-address mode. For information on 110 in real-address mode,
see Chapter 8, Input/Output, in the Pentium® Pro Family Developer's Manual, Volume 2.

12.1.1. Address Translation in Real-Address Mode

In real-address mode, the processor does not interpret segment selectors as indexes into a
descriptor table; instead, it uses them directly to form linear addresses as the 8086 processor
does. It shifts the segment selectorleft by 4 bits to form a 20-bit base address (see Figure 12-1).
The offset into a segment is added to the base address to create a linear address that maps directly
to the physical address space.

19 4 3 0

Base 1'--_---'-____ 1_6_-b_it_S_e_9_m_e_n_t s_e_l_ec_to_r _____ --L.I_o_o_o_o--'1
+ 19 16 15

Offset I 0000

=
Linear I

Address

19

16-bit Effective Address

20-bit Linear Address

Figure 12-1. Real-Address Mode Address Translation

o

o

When using 8086-style address translation, it is possible to specify addresses larger than 1
MByte. For example, with a segment selector value of FFFFH and an offset of FFFFH, the effec­
tive address would be lOFFEFH (1 megabyte plus 64 KBytes). The 8086 processor, which can
form addresses only up to 20 bits long, truncates the high-order bit, thereby "wrapping" this
address to FFEFH. When operating in real-address mode, however, the Pentium Pro processor
does not truncate such an address and uses it as a physical address. (Note, however, that on the
Pentium Pro, Pentium, and Intel486 processors, the A20M# signal can be used in real-address
mode to mask address line A20, thereby mimicking the 20-bit wrap-around behavior of the 8086
processor.)

I
12-3

8086 EMULATION

The Pentium Pro processor can generate 32-bit offsets using an address override prefix;
however, in real-address mode, the value of a 32-bit address may not exceed FFFFH without
causing an exception. For full compatibility with Intel 286 real-address mode, pseudo-protec­
tion faults (interrupt 12 or 13) occur if an effective address is generated outside the range 0
through FFFFH.

12.1.2. Registers Supported in Real-Address Mode

The register set available in real-address mode includes all the registers defined for the 8086
processor plus the new registers introduced in later Intel Architecture processors, such as the FS
and GS segment registers, the debug registers, the control registers, and the floating-point unit
registers. The 32-bit operand prefix allows a real-address mode program to use the 32-bit
general-purpose registers (EAX, EBX, ECX, EDX, ESP, EBP, ESI, and EDI).

12.1.3. Instructions Supported in Real-Address Mode

The following instructions make up the core instruction set for the 8086 processor. If backwards
compatibility to the Intel 286 and Intel 8086 processors is required, only these instructions
should be used in a new program written to run in real-address mode.

•

•
•

•
•
•
•
•
•
•
•
•

•
•
•

12-4

Move (MOV) instructions that move operands between general-purpose registers and
between memory and general-purpose registers, and the exchange (XCHG) instruction.

Load segment register instructions LDS and LES.

Arithmetic instructions ADD, ADC, SUB, SBB, MUL, MULl, DIV, DIVI, INC, DEC,
CMP, and NEG.

Logical instructions AND, OR, XOR, and NOT.

Decimal instructions DAA, DAS, AAA, AAS, AAM, and AAD.

Stack instructions PUSH and POP.

Type conversion instructions CWD, CDQ, CBW, and CWDE.

Shift and rotate instructions SAL, SHL, SHR, SAR, ROL, ROR, RCL, and RCR.

TEST instruction.

Control instructions JMP, Jcc, CALL, RET, LOOP, LOOPE, and LOOPNE.

Interrupt instructions INTn, INTO, and IRET.

EFLAGS control instructions STC, CLC, CMC, CLD, STD, LAHF, SAHF, PUSHF, and
POPF.

I/O instructions IN, INS, OUT, and OUTS.

Load effective address (LEA) instruction, and translate (XLATB) instruction.

LOCK prefix.

I

•
•
•

Repeat prefixes REP, REPE, REPZ, REPNE, and REPNZ.

Processor halt (HLT) instruction.

No operation (NOP) instruction.

8086 EMULATION

The following instructions added to later Intel Architecture processors can be executed in real­
address mode, if backwards compatibility to the Intel 286 and Intel 8086 processors is not
required.

•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•

Move (MOV) instructions that operate on the control and debug registers.

Load segment register instructions LSS, LFS, and LGS.

Generalized multiply instructions and multiply immediate data.

Shift and rotate by immediate counts.

Stack instructions PUSHA, PUSHAD, POPA and POPAD, and PUSH immediate data.

Move with sign extension instructions MOVSX and MOVZX.

Long-displacement Icc instructions.

Exchange instructions CMPXCHG, CMPXCHG8B, and XADD.

String instructions MOVS, CMPS, SCAS, LODS, and STOS.

Bit test and bit scan instructions BT, BTS, BTR, BTC, BSF, and BSR; the byte-set-on
condition instruction SETcc; and the byte swap (BSWAP) instruction.

Double shift instructions SHLD and SHRD.

EFLAGS control instructions PUSHFH and POPFH.

ENTER and LEAVE control instructions.

BOUND instruction.

CPU identification (CPUID) instruction.

System instructions CLTS, INVD, WINVD, INVLPG, LGDT, SGDT, LIDT, SIDT,
LMSW, SMSW, RDMSR, WRMSR, RDTSC, RDPMC, and RSM.

Execution of any of the other Pentium Pro processor instructions (not given in the previous two
lists) in real-address mode result in an invalid-opcode exception (#UD) being generated.

12.1.4. Interrupt and Exception Handling

When operating in real-address mode, software must provide interrupt and exception handling
facilities that are separate from those provided in protected mode. Even during the early stages
of processor initialization when the processor is still in real-address mode, elementary real­
address mode interrupt and exception handling facilities must be provided to insure reliable
operation of the processor.

I
12-5

8086 EMULATION intet
The Pentium Pro processor handles interrupts and exceptions in real-address mode similar to the
way it handles them in protected mode. When the processor receives an interrupt or generates
an exception, it uses the vector number of interrupt or exception as an index into the interrupt
table. (In the Pentium Pro processor, the interrupt table is called the interrupt descriptor table
(IDT). The entry in the IDT provides a pointer to an interrupt- or exception-handler procedure.
The processor performs the following actions to make an implicit call to the selected handler:

1. Pushes the current values of the CS and EIP registers onto the stack. (Only the 16 least-
significant bits of the EIP register are pushed.)

2. Pushes the low-order 16 bits of the EFLAGS register onto the stack.

3. Clears the IF flag in the EFLAGS register to disable interrupts.

4. Clears the TF flag, in the EFLAGS register.

5. Transfers program control to the location specified in the IDT.

An lRET instruction at the end of the handler procedure reverses these steps to return program
control to the interrupted program. Exceptions do not return error codes in real-address mode.

The IDT is an array of 4-byte entries (see Figure 12-2). Each entry consists of a far pointer to a
handler procedure, made up of a segment selector and an offset. The processor scales the inter­
rupt or exception vector by 4 to obtain an index into the interrupt table. Following reset, the base
of the IDT is located at physical address 0 and its limit is set to 3FFH. In the Intel 8086 processor,
the base address and limit of the IDT cannot be changed. In the Pentium Pro processor, the base
address and limit of the IDT are contained in the IDTR register and can be changed using the
LIDT instruction. (For backward compatibility to Intel 286 and Intel 8086 processors, the
default base address and limit of the IDT should not be changed.)

12-6

Vector 0 pOints{
to entry 0

15

Up to Entry 255

Entry 3

Entry 2

Entry 1

Segment Selector

Offset

12

8

4

2

Figure 12-2. Interrupt Table (lOT) in Real-Address Mode

I

8086 EMULATION

Table 12-1 shows the exception and interrupt vectors that can be generated in real-address mode
and virtual-8086 mode, and in the Intel 8086 processor. See Chapter 5, Interrupt and Exception
Handling, for a description of the exception conditions. Note that the name of the segment
overrun exception (vector 13) is different in the Pentium Pro processor. For the 32-bit Intel
Architecture processors, the function of this exception has been expanded to cover all general­
protection exceptions (#GP).

Table 12-1. Real-Address Mode Exceptions and Interrupts

Vector Real-Address Virtual-SOS6 IntelSOS6
No. Description Mode Mode Processor

0 Divide Error (#DE) Yes Yes Yes

1 Debug Exception (#DB) Yes Yes Yes

2 NMllnterrupt Yes Yes Yes

3 Breakpoint (#BP) Yes Yes Yes

4 Overflow (#OF) Yes Yes Yes

5 BOUND Range Exceeded Yes Yes Reserved
(#BR)

6 Invalid Opcode (#UD) Yes Yes Yes

7 Device Not Available (#NM) Yes Yes Yes

8 Double Fault (#DF) Yes Yes Yes

9 (Intel reserved. Do not use.) Reserved Reserved Reserved

10 Invalid TSS (#TS) Reserved Yes Reserved

11 Segment Not Present (#NP) Reserved Yes Reserved

12 Stack Fault (#SS) Yes Yes Yes

13 General Protection (#GP)* Yes Yes Yes

14 Page Fault (#PF) Reserved Yes Reserved

15 (Intel reserved. Do not use.) Reserved Reserved Reserved

16 Floating-Point Error (#MF) Yes Yes Yes

17 Alignment Check (#AC) Reserved Yes Reserved

18 Machine Check (#MC) Yes Yes Reserved

19-31 (Intel reserved. Do not use.) Reserved Reserved Reserved

32-255 Maskable Interrupts Yes Yes Yes

NOTE:
* In the Intel 8086 processor, vector 13 is the segment overrun exception. For the 32-bit Intel Architec­

ture processors, the function of this exception has been expanded to cover all general-protection error
conditions.

I
12-7

8086 EMULATION

12.2. VIRTUAL-SOS6 MODE
,

Virtual-8086 mode is actually a special type of a task that runs in the Pentium Pro processor's
protected mode. When the operating-system or executive switches to a virtual-8086-mode task,
the processor emulates an Intel 8086 processor. The execution environment of the processor
while in the 8086-emulation state is the same as is described in Section 12.1., "Real-Address
Mode" for real-address mode, including the extensions. The major difference between the two
modes is that in virtual-8086 mode the 8086 emulator uses some protected-mode services (such
as the protected-mode interrupt and exception handling facilities).

As in real-address mode, any new or legacy program that has been assembled and/or compiled
to run on an Intel 8086 processor will run in a virtual-8086-mode task. And several 8086
programs can be run as virtual-8086-mode tasks concurrently using the processor's multitasking
facilities.

12.2.1. Enabling Virtual-SOSS Mode

The processor runs in virtual-8086 mode when the VM (virtual machine) flag in the EFLAGS
register is set. This flag can only be set when the processor switches to a new task, or returns to
a task that was suspended to handle an interrupt or exception.

System software cannot change the state of the VM flag directly in the EFLAGS register (for
example, by using the POPFH instruction). Instead it changes the flag in the image of the
EFLAGS register stored in the TSS or on the stack following a call to an interrupt- or exception­
handler procedure. Software sets the VM flag in the EFLAGS image in the TSS when first
creating a virtual-8086 task.

The processor tests this flag under two general conditions:

•

•

When loading segment registers, to determine whether to use 8086-style address
translation.

When decoding instructions, to determine which instructions are not supported in virtual-
8086 mode and which instructions are sensitive to IOPL.

12.2.2. Structure of a Virtual-SOS6 Task

A virtual-8086-mode task consists of the following items:

•
•
•
•

A 32-bit TSS for the task.

The 8086 program.

A virtual-8086 monitor.

Operating-system services.

The TSS of the new task must be a 32-bit TSS, not a 16-bit TSS, because the 16-bit TSS does
not load the most-significant word ofthe EFLAGS register, which contains the VM flag.

12-8

I

8086 EMULATION

The processor enters virtual-8086 mode to run the 8086 program and returns to protected mode
to run the monitor.

The virtual-8086 monitor is 32-bit protected-mode code module that runs at a CPL of O. The
monitor consists of initialization, interrupt- and exception-handling, and I/O emulation proce­
dures that emulate a personal computer or other 8086-based platform. As with any Pentium Pro
processor code module, code-segment descriptors for the virtual-8086 monitor must exist in the
GDT or in the task's LDT. The linear addresses above lOFFEFH are available for the virtual-
8086 monitor, the operating system, and other system software. The monitor also may need data­
segment descriptors so it can examine the IDT or other parts of the 8086 program in the first 1
MByte of the address space.

The 8086 operating-system services consists of a kernel and/or operating-system procedures
that the 8086 program makes calls to. These services can be implemented in either of the
following two ways:

•

•

They can be included in the 8086 program. This approach is desirable for either of the
following reasons:

The 8086 program code modifies the 8086 operating-system services.

There is not sufficient development time to merge the 8086 operating-system services
into main operating system or executive.

They can be implemented or emulated in the virtual-8086 monitor. This approach is
desirable for any of the following reasons:

The 8086 operating-system procedures can be more easily coordinated among several
virtual-8086 tasks.

The 8086 operating-system procedures can be easily emulated by calls to the main
operating system or executive.

The approach chosen for implementing the 8086 operating-system services may result different
virtual-8086-mode tasks using different 8086 operating-system services.

12.2.3. Paging of Virtual-SOS6 Tasks

Even though a program running in virtual-8086 mode can use only 20-bit linear addresses, the
processor converts these addresses into 32-bit linear addresses before mapping them to the phys­
ical address space. If paging is being used, the 8086 address space for a program running in
virtual-8086 mode can be paged and located in set of pages in physical address space. If paging
is use, it is transparent to the program running in virtual-8086 mode just as it is for any task
running on the processor.

Paging is not necessary for a single virtual-8086-mode task, but paging is useful or necessary in
the following situations:

•

I

When running multiple virtual-8086-mode tasks. Each task must map the lower 1 MByte
of linear addresses to different physical address locations.

12-9

8086 EMULATION

•

•
•

•

When emulating the 8086 address-wraparound that occurs at 1 MByte. When using 8086-
style address translation, it is possible to specify addresses larger than 1 MByte. These
addresses automatically wraparound in the Intel 8086 processor (see Section 12.1.1.,
"Address Translation in Real-Address Mode"). If any 8086 programs depend on address
wraparound, the same effect can be achieved in a virtual-8086-mode task by mapping the
linear addresses between 100000H and 1l0000H and linear addresses between 0 and
10000H to the same physical addresses.

When creating a virtual address space larger than the physical address space.

When sharing the 8086 operating-system services or ROM code that is common to several
8086 programs running as different 8086-mode tasks.

When redirecting or trapping references to memory-mapped I/O devices.

12.2.4. Protection within a Virtual-BOB6 Task

Protection is not enforced between the segments of an 8086 program. The following techniques
can be used to protect the system software running in a virtual-8086-mode task from the 8086
program:

•

•

Reserve the first 1 MByte plus 64 KBytes of each task's linear address space for the 8086
program. An 8086 processor task cannot generate addresses outside this range.

Use the U/S flag of page-table entries to protect the virtual-8086 monitor and other system
software in the virtual-8086 mode task space. When the processor is in virtual-8086 mode,
the CPL is 3. Therefore, an 8086 processor program has only user privileges. If the pages
of the virtual-8086 monitor have supervisor privilege, they cannot be accessed by the 8086
program.

12.2.5. Entering Virtual-BOB6 Mode

Figure 12-3 summarizes the methods of entering and leaving virtual-8086 mode. The processor
switches to virtual-8086 mode in either of the following situations:

•

•

•

When dispatching or switching to a task in which the EFLAGS register image stored in the
TSS has the VM flag set.

When executing an IRET instruction and the VM flag in the EFLAGS image on the stack
is set.

When executing an IRET instruction and the NT flag in the EFLAGS register is set and
task being returned to is a virtual-8086-mode task.

When a task switch is used to enter virtual-8086 mode, the TSS for the virtual-8086-mode task
must be a 32-bit TSS. (If the new TSS is a 16-bit TSS, the upper word of the EFLAGS register
is not in the TSS, causing the processor to clear the VM flag when it loads the EFLAGS register.)
The processor updates the VM flag prior to loading the segment registers from their images in
the new TSS. The new setting of the VM flag determines whether the processor interprets the

12-10

I

8086 EMULATION

contents of the segment registers as 8086-style segment selectors or protected-mode segment
selectors. When the VM flag is set, the segment registers are loaded from the TSS, using 8086-
style address translation to form base addresses.

See Section 12.3., "Interrupt and Exception Handling in Virtual-8086 Mode" for information on
entering virtual-8086 mode on a return from an interrupt or exception handler.

12.2.6. Leaving Virtual-BOB6 Mode

The processor leaves virtual-8086 mode in any of the following situations (see Figure 12-3):

•
•
•

When the operating system suspends the virtual-8086-mode task.

When the processor switches to a protected-mode task.

When the processor services an interrupt or exception that was generated while in virtual-
8086 mode.

To S ask witch
orlRET Initial

Entry

Interrupt, Exception Virtual-BOB6 BOB6 Program
Monitor (Virtual-BOB6 Mode)

IRET (Protected Mode)

Task Switch Task Switch J Other Tasks I
I (Protected Mode) I

Task Switch Task Switch

Figure 12-3. Entering and Leaving Virtual-8086 Mode

A task switch from a virtual-8086 task to any other task loads the EFLAGS register from the
TSS of the new task. If the new TSS is a 32-bit TSS and the VM flag in the EFLAGS image is
clear or if the new TSS is a 16-bit TSS, the processor clears the VM flag of the EFLAGS register,
loads the segment registers from the new TSS using protected-mode address formation, and
begins executing the new task in 32-bit protected mode.

See Section 12.3., "Interrupt and Exception Handling in Virtual-8086 Mode" for information on
leaving virtual-8086 mode to handle an interrupt or exception generated in virtual-8086 mode.

I
12-11

8086 EMULATION

12.2.7. Sensitive Instructions

When the Pentium processor is running in virtual-8086 mode, the CLI, ST!, PUSHF, POPF,
INTn, and IRET instructions are sensitive to IOPL. The IN, INS, OUT, and OUTS instructions,
which are sensitive to IOPL in protected mode, are not sensitive in virtual-8086 mode.
Following is a complete list of instructions which are sensitive in virtual-8086 mode:

The CPL is always 3 while running in virtual-8086 mode; if the IOPL is less than 3, an attempt
to use the instructions listed above triggers a general-protection exception (#GP). These instruc­
tions are sensitive to IOPL to give the virtual-8086 monitor a chance to emulate the facilities
they affect.

12.2.S. Virtual-SOS6 Mode 1/0

Many 8086 programs written for non-multitasking systems directly access I/O ports. This prac­
tice may cause problems in a multitasking environment. If more than one program accesses the
same port, they may interfere with each other. Most multitasking systems require application
programs to access I/O ports through the operating system. This results in simplified, centralized
control.

The processor provides I/O protection for creating I/O that is compatible with the environment
and transparent to 8086 programs. Designers may take any of several possible approaches to
protecting I/O ports:

• Protect the I/O address space and generate exceptions for all attempts to perform I/O
directly.

• Let the 8086 program perform I/O directly.

• Generate exceptions on attempts to access specific I/O ports.

• Generate exceptions on attempts to access specific memory-mapped I/O ports.

The method of controlling access to I/O ports depends upon whether they are I/O-port mapped
or memory mapped.

12.2.8.1. I/O-PORT-MAPPED I/O

The I/O permission bit map in the TSS can be used to generate exceptions on attempts to access
specific I/O port addresses. The I/O permission bit map of each virtual-8086-mode task deter­
mines which I/O addresses generate exceptions for that task. Because each task may have a
different I/O permission bit map, the addresses that generate exceptions for one task may be
different from the addresses for another task. This differs from protected mode because the IOPL
is not checked. See Chapter 8, Input/Output, in the Pentium® Pro Family Developer's Manual,
Volume 2 for more information about the I/O permission bit map.

12-12

I

8086 EMULATION

12.2.8.2. MEMORY-MAPPED 1/0

In systems which use memory-mapped 110, the paging facilities of the processor can be used to
generate exceptions for attempts to access 110 ports. The virtual-8086 monitor may use paging
to control memory-mapped 1/0 in these ways:

•

•

Map part of the linear address space of each task that needs to perform 1/0 to the physical
address space where 1/0 ports are placed. By putting the 1/0 ports at different addresses (in
different pages), the paging mechanism can enforce isolation between tasks.

Map part of the linear address space to pages that are not-present. This generates an
exception whenever a task attempts to perform 110 to those pages. System software then
can interpret the 110 operation being attempted.

Software emulation of the 110 space may require too much operating system intervention under
some conditions. In these cases, it may be possible to generate an exception for only the first
attempt to access 110. The system software then may determine whether a program can be given
exclusive control of 1/0 temporarily, the protection of the 110 space may be lifted, and the
program allowed to run at full speed.

12.2.8.3. SPECIAL 1/0 BUFFERS

Buffers of intelligent controllers (for example, a bit-mapped frame buffer) also can be emulated
using page mapping. The linear space for the buffer can be mapped to a different physical space
for each virtual-8086-mode task. The virtual-8086 monitor then can control which virtual buffer
to copy onto the real buffer in the physical address space.

12.3. INTERRUPT AND EXCEPTION HANDLING IN VIRTUAL-SOS6
MODE

When the Pentium Pro processor receives an interrupt or detects an exception condition while
in virtual-8086 mode, it executes an implicit call to an interrupt or exception handler, just as it
does in protected or real-address mode. The interrupt or exception handler that is called and the
mechanism used to call it depends on the state of various system flags and fields, which include
the following:

•

•

•

I

VME flag (bit 0 in control register CR4)-Enables the virtual mode extension for the
processor when set (see Section 2.5., "Control Registers").

IOPL field (bits 12 and 13 in the EFLAGS register)-Controls how interrupts are handled
when the processor is in virtual-8086 mode (see Section 2.3., "System Flags and Fields in
the EFLAGS Register").

Interrupt redirection bit map (32 bytes in the TSS, see Figure 12-4)-Contains 256 flags
that indicates how software interrupts (interrupts generated by the INTn instruction)
should be handled when they occur in virtual-8086 mode. A software interrupt can be
directed either to the interrupt and exception handlers in the currently running 8086
program or to the protected-mode interrupt and exception handlers. Hardware interrupts
and exceptions are always directed back to the protected-mode interrupt and exception
handlers.

12-13

8086 EMULATION int:et

These flags and fields allow the interrupt or exception to be handled by a protected-mode inter­
rupt or exception handler or be redirected back to the interrupt and exception handlers that are
part of the 8086 program. Table 12-2 shows the various actions the processor takes when it
detects a interrupt or exception condition in virtual-8086 mode, depending on the settings of the
VME flag, IOPL field, and the bits in the interrupt redirection bit map. This table also introduces
six different methods of handling interrupts or exceptions in virtual-8086 mode.

31 2423 Task State Segment (TSS) 0
Last byte of bit ---.. 1 1 1 1 1 1 1 11 map must be

followed by a byte
with all bits set

1/0 Permission Bit Map

Interrupt Redirection Bit Map (32 Bytes))
C 1/0 Map Base

1/0 base map must ~ I 64H

not exceed DFFFH.

I
I 0

Figure 12-4. Interrupt Redirection Bit Map in TSS

The VME flag enables the processor's virtual mode extension. When this flag is clear, the
processor responds to interrupts and exceptions in virtual-8086 mode in the same manner as an
Intel486 processor does. When this flag is set, the virtual mode extension provides the following
enhancements to virtual-8086 mode:

•

•

Speeds up interrupt handling in virtual-8086 mode by allowing interrupts to be redirected
back to the interrupt and exception handlers that are part of the currently running 8086
program.

Supports virtual interrupts for software written to run on the 8086 processor .

The IOPL flag interacts with the VME flag and the bits in the interrupt redirection bit map to
determine how specific interrupts and exceptions should be handled.

12-14

I

BOB6 EMULATION

Table 12-2. Interrupt and Exception Handling Methods While in Virtual-BOB6 Mode

Bit in
Redir.

Method VME IOPL Bitmap' Processor Action

1 0 3 X Interrupt from Virtual-8086 Mode to Protected Mode:
- Clears VM and TF flags
- If service through interrupt gate, clears IF flag
- Switches to privilege-level 0 (PLO) stack
- Pushes GS, FS, OS and ES onto PLO stack
- Clears GS, FS, OS and ES to 0
- Pushes SS, ESP, EFLAGS, CS and EIP of interrupted task onto

PLO stack
- Sets CS and EIP from interrupt gate

2 0 <3 X General-protection exception (#GP)

3 1 <3 1 General-protection exception (#GP)

4 1 3 1 Interrupt from Virtual-8086 Mode to Protected Mode:
- Clears VM and TF flags
- If service through interrupt gate, clears IF flag
- Switches to PLO stack
- Pushes GS, FS, OS and ES onto PLO stack
- Clears GS, FS, OS and ES to 0
- Pushes SS, ESP, EFLAGS, CS and EIP of the interrupted task

onto PLO stack
- Sets CS and EIP from interrupt gate

5 1 3 0 Redirect to 8086 Interrupt:
- Clears TF flag
- Pushes FLAGS after clearing NT and IOPL
- Pushes CS and IP
- Loads CS and IP from interrupt vector table at linear address 0
- Clears IF flag

6 1 <3 0 Redirect to Virtual 8086 Interrupt with VIF and VIP flag support:
VIF flag clear or VIF set and NMI or exception occurs
- Interrupts and exceptions handled in same manner as method 5
VIF flag set and maskable hardware interrupt occurs
- Performs a method 4 style call to the #GP exception handler
- Handler sets VIP flag in EFLAGS image and returns to 8086

program
VIP flag set when VIF flag is cleared with CLI instruction
- Performs a method 4 style call to the #GP exception handler
- Handler clears VIF and VIP flag in EFLAGS image and returns to

8086 program

NOTE:

• When set to 0, interrupt is redirected back to the 8086 program; when set to 1, interrupt is directed to pro­
tected-mode handler.

The interrupt redirection bit map is a 32-byte field in the TSS. This map is located directly below
the 110 permission bit map in the TSS. Each bit in the interrupt redirection bit map is mapped to
an interrupt or exception vector. Bit 0 in the interrupt redirection bit map (which maps to vector
zero in the interrupt table) is located at the 110 base map address in the TSS minus 32. When a
bit in this bit map is set, it indicates that the associated software interrupt should be handled in

I
12-15

8086 EMULATION

through the protected mode IDT and interrupt and exception handlers. When a bit in this bit map
is clear, the associated software interrupt should be redirected back to the interrupt table in the
8086 program (located at linear address one in the programs address space). Redirecting soft­
ware interrupts back to the 8086 program potentially speeds up interrupt handling because a
switch back and forth between virtual-8086 mode and protected mode is not required. This latter
interrupt handling technique is particularly useful for 8086 operating systems that use the INTn
instruction to call operating system procedures.

When the virtual mode extension is enabled (the VME flag is set), two additional flags are acti­
vated in the EFLAGS register:

• VIF (virtual interrupt) flag, bit 19 ofthe EFLAGS register.

• VIP (virtual interrupt pending) flag, bit 20 of the EFLAGS register.

(See Section 2.3., "System Flags and Fields in the EFLAGS Register" for a description of these
flags.)

These flags allow interrupt and exception handlers to use a virtual IF flag (a virtual version of
the IF flag in the EFLAGS register) to inhibit external interrupts from interrupting a program
running in virtual-8086 mode. These flags provide software a means of implementing a virtual
IF flag that is compatible with multitasking and multiple processor implementations. The use of
the VIF and VIP flags is described in Section 12.3.5., "Method 6 Interrupt and Exception
Handling".

The CPUID instruction can be used to verify that the virtual mode extension is implemented on
the processor. Bit 1 of the feature flags register (EDX) indicates the availability of the virtual
mode extension (see "CPUID-CPU Identification" in Chapter 11, Instruction Set Reference, of
the Pentium® Pro Family Developer's Manual, Volume 2).

Table 12-2 describes six methods (or mechanisms) for handling interrupts and exceptions in
virtual-8086 mode, depending on the setting of the VME flag, the IOPL field, and the bits in the
interrupt redirection bit map. The following sections describe the actions that processor takes
and the possible actions of interrupt and exception handlers for each of these methods. These
sections describe three different possible interrupt and exception handlers:

•

•

•

Protected-mode interrupt and exceptions handlers-These are the standard handlers that
the processor calls through the protected-mode IDT.

Virtual-8086 mode monitor interrupt and exception handlers-These handlers are resident
in the virtual-8086 mode monitor. They are typically called by the protected-mode
interrupt and exception handlers.

8086 program interrupt and exception handlers-These handlers are part of the 8086
program that is running in virtual-8086 mode.

The following sections describe how these handlers are used, depending on the selected method
of interrupt and exception handling.

12-16

I

8086 EMULATION

12.3.1. Method 1 Interrupt and Exception Handling

When the VME flag in control register CR4 is clear and the IOPL field is 3, the processor
handles virtual-8086 mode interrupts and exceptions in the same manner as they are handled by
the Intel486 processor. It executes an implicit call to the interrupt or exception handler in the
protected-mode IDT pointed to by the interrupt or exception vector. The IDT entry for an inter­
rupt or exception generated in a virtual-8086-mode task must contain either:

•

•

A 32-bit trap gate or 32-bit interrupt gate, which must point to a nonconforming, privilege­
level 0, code segment.

A task gate .

The following sections describe various ways a virtual-8086 mode interrupt or exception can be
handled after the implicit call has been made to a protected-mode handler.

12.3.1.1. HANDLING A VIRTUAL-SOSS MODE INTERRUPT OR EXCEPTION
THROUGH A PROTECTED-MODE TRAP OR INTERRUPT GATE

When an interrupt or exception vector points to a 32-bit trap or interrupt gate in the IDT, the
processor performs the following steps.

1. Switches to 32-bit protected mode and privilege level O.

2. Saves the state of the processor on the privilege-level 0 stack. The states of the EIP, CS,
EFLAGS, ESP, SS, ES, DS, FS, and GS registers are saved (see Figure 12-5).

3. Clears the segment registers. Saving the DS, ES, FS, and GS registers on the stack and then
clearing the registers lets the interrupt or exception handler safely save and restore these
registers regardless of the type segment selectors they contain (protected-mode or 8086-
style). Interrupt and exception handlers, which may be called in the context of either a
protected-mode task or a virtual-8086-mode task, can use the same code sequences for
saving and restoring the registers for any task. Clearing these registers before execution of
the IRET instruction does not cause a trap in the interrupt handler. Interrupt procedures that
expect values in the segment registers or that return values in the segment registers must
use the register images saved on the stack for privilege level O.

4. Clears the VM flag in the EFLAGS register.

5. Begins executing selected the interrupt or exception handler.

If the trap or interrupt gate references a procedure in a conforming segment or in a segment at a
privilege level other than 0, the processor generates a general-protection exception (#GP). Here,
the error code is the segment selector of the code segment to which a call was attempted.

I
12-17

SOS6 EMULATION intet

Without Error Code

Unused

OldGS

Old FS

OldDS

Old ES

OldSS

Old ESP

Old EFLAGS

OldCS

Old EIP

.--ESPfrom
TSS

.--NewESP

With Error Code

Unused

OldGS

Old FS

OldDS

Old ES

OldSS

Old ESP

Old EFLAGS

OldCS

Old EIP

Error Code

.--ESPfrom
TSS

.--NewESP

Figure 12-5. Privilege Level 0 Stack After Interrupt or Exception in Virtual-SOS6 Mode

Interrupt and exception handlers can examine the VM flag on the stack to determine if the inter­
rupted procedure was running in virtual-8086 mode. If so, the interrupt or exception can be
handled in one of three ways:

•

•

•

The protected-mode interrupt or exception handler that was called can handle the interrupt
or exception.

The protected-mode interrupt or exception handler can call the virtual-8086 monitor to
handler the interrupt or exception.

The virtual-8086 monitor can in turn pass control back to the 8086 program's interrupt and
exception handler.

If the interrupt or exception is one that the virtual-8086 monitor needs to handle and the VM flag
is set in the EFLAGS image stored on the stack, the interrupt handler can call to the virtual-8086
monitor. The virtual-8086 monitor also runs at privilege level O. It can then either handle the
interrupt or exception itself or call a virtual-8086-mode handler.

If the interrupt or exception is handled with a protected-mode handler, the handler can return to
the interrupted program in virtual-8086 mode by executing an IRET instruction. This instruction
loads the EFLAGS and segment registers from the images saved in the privilege level 0 stack
(see Figure 12-5). A set VM flag in the EFLAGS image causes the processor to switch back to
virtual-8086 mode. The CPL at the time the IRET instruction is executed must be 0, otherwise
the processor does not change the state of the VM flag.

12-18

I

8086 EMULATION

If the interrupt or execution is handled by the virtual-8086-monitor handler, the handler must
first return to the protected-mode handler by executing an IRET instruction. An IRET instruc­
tion in the protected-mode handler executes the return to the interrupted program in virtual-8086
mode.

12.3.1.2. HANDLING A VIRTUAL-BOB6 MODE INTERRUPT OR EXCEPTION
WITH THE BOB6 PROGRAM INTERRUPT OR EXCEPTION HANDLER

Because it was designed to run on an 8086 processor, an 8086 program running in a virtual-
8086-mode task contains an 8086-style interrupt table (IDT), which starts at linear address O. If
the virtual-8086 monitor directs an interrupt or exception vector back to the virtual-8086-mode
task it came from, the handlers in the 8086 program can handle the interrupt or exception.
Sending an interrupt or exception back to the 8086 program involves the following steps:

1. Use the 8086 interrupt vector to locate the appropriate handler procedure in the 8086
program interrupt table.

2. Store the EFLAGS (low-order 16 bits only), CS and EIP values of the 8086 program on the
privilege-level 3 stack. This is the stack that the virtual-8086-mode task is using.

3. Change the return link on the privilege-level 0 stack to point to the privilege-level 3
handler procedure.

4. Execute an IRET instruction to pass control to the 8086 program handler.

5. When the lRET instruction from the privilege-level 3 handler again calls the virtual-8086
monitor, restore the return link on the privilege-level 0 stack to point to the original, inter­
rupted, privilege-level 3 procedure.

6. Execute an IRET instruction to pass control back to the interrupted 8086 program.

12.3.1.3. HANDLING A VIRTUAL-BOB6 MODE INTERRUPT OR EXCEPTION
THROUGH A TASK GATE

When an interrupt or exception vector points to a task gate in the IDT, the processor performs a
task switch to the selected interrupt- or exception-handling task. The following actions are
carried out as part of this task switch:

1. The EFLAGS register with the VM flag set is saved in the current TSS.

2. The link field in the TSS of the called task is loaded with the segment selector of the TSS
for the interrupted virtual-8086-mode task.

3. The EFLAGS register is loaded from the image in the new TSS, which clears the VM flag
and causes the processor to switch to protected mode.

4. The NT flag in the EFLAGS register is set.

5. Clears the VM flag in the EFLAGS register.

6. Begins executing selected the interrupt- or exception-handler task.

I
12-19

8086 EMULATION

When an IRET instruction is executed in the handler task and the NT flag in the EFLAGS
register is set, the processors switches from a protected-mode interrupt- or exception-handler
task back to a virtual-8086-mode task. Here, the EFLAGS and segment registers are loaded from
images saved in the TSS for the virtual-8086cmode task. If, the VM flag is set in the EFLAGS
image, the processor to switches to virtual-8086 mode on the task switch. The CPL at the time
the !RET instruction is executed must be 0, otherwise the processor does not change the state of
the VM flag.

12.3.2. Methods 2 or 3 Interrupt and Exception Handling

When an interrupt and exception occurs in virtual-8086 mode and the method 2 or 3 conditions
are present, the processor generates a general-protection exception (#GP). Method 2 is enabled
when the VME flag is set to 0 and the IOPL value is less than 3. Here the IOPL value is used to
bypass the protected-mode interrupt and exception handlers and cause all interrupts and excep­
tions that occur in virtual-8086 mode to be treated as a protected-mode general-protection
exception. The general-protection exception handler can then emulate an 8086 interrupt and
exception handler.

Method 3 performs the same operation as method 2, except that is allows bits in the interrupt
redirection bit map to determine which interrupts and exceptions are directed to the general­
protection exception handler. Those interrupts or exception vectors with the a redirection bit set
to 1 are handled by the general-protection exception handler and those with a bit set to 0 are
handled as method 6 interrupts and exceptions (that is, they are redirected back to the 8086
program with virtual interrupt support).

12.3.3. Method 4 Interrupt and Exception Handling

Method 4 interrupt and exception handling allows method 1 style handling when the virtual
mode extension is enabled; that is, the interrupt or exception is directed to a protected mode
handler (see Section 12.3.1., "Method 1 Interrupt and Exception Handling"). Method 4 handling
is enabled when the VME flag is set to 1, the IOPL value is 3, and the bit for the interrupt or
exception vector in the redirection bit map is set to 1.

12.3.4. Method 5 Interrupt and Exception Handling

Method 5 interrupt and exception handling provides a streamlined method of redirecting soft­
ware interrupts (invoked with the INTn instruction) that occurs in virtual 8086 mode back to the
8086 program's interrupt vector table and its interrupt and exception handlers. Method 5
handling is enabled when the VME flag is set to 1, the IOPL value is 3, and the bit for the inter­
rupt vector in the redirection bit map is set to O. The processor performs the following actions
to make an implicit call to the selected 8086 program interrupt or exception handler:

1. Pushes the current values of the CS and EIP registers onto the current stack. (Only the 16
least-significant bits of the EIP register are pushed and no stack switch occurs.)

12·20

I

8086 EMULATION

2. Pushes the low-order 16 bits of the EFLAGS register onto the stack with the NT and IOPL
bits cleared.

3. Clears the IF flag in the EFLAGS register to disable interrupts.

4. Clears the TF flag, in the EFLAGS register.

5. Locates the 8086 program interrupt vector table at linear address 0 for the 8086-mode task.

6. Loads the CS and EIP registers with values from the vector table entry pointed to by the
interrupt or exception vector. Only the 16 low-order bits of the EIP are loaded and the 16
high-order bits are set to O.

7. Begins execution the selected interrupt or exception handler.

Exceptions do not return error codes when using this method of handling exceptions.

An IRET instruction at the end of the handler procedure reverses these steps to return program
control to the interrupted 8086 program.

The method 5 handling actions are virtually identical to the actions the processor takes when
handling interrupts and exception in real-address mode. The benefit of using method 5 handling
to access the 8086 program handlers is that it avoids the overhead of method 1 handling, which
requires first going to the virtual-8086 mode monitor as described in Section 12.3.1.1.,
"Handling a Virtual-8086 Mode Interrupt or Exception Through a Protected-Mode Trap or Inter­
rupt Gate" and Section 12.3.1.2., "Handling a Virtual-8086 Mode Interrupt or Exception With
the 8086 Program Interrupt or Exception Handler".

12.3.5. Method 6 Interrupt and Exception Handling

With method 6 interrupt and exception handling, the processor performs the same operation as
with method 5, except that it adds to ability to use the virtual interrupt flag (VIF) and interrupt
pending flag (VIP) in the EFLAGS interrupt to control maskable hardware interrupts. Method
6 handling is enabled when the VME flag is set to 1, the IOPL value is less than 3, and the bit
for the interrupt or exception vector in the redirection bit map is set to O.

Existing 8086 programs commonly set and clear the IF flag in the EFLAGS register to disable
and enable maskable interrupts, respectively, (for example, to disable interrupts while handling
another interrupt or an exception). This practice works well in single task environments, but can
cause problems in multitasking and multiple processor environments. When using earlier Intel
Architecture processors, this problem was often solved by creating a virtual IF flag in software.
The Pentium Pro and Pentium processors provide hardware support for this virtual IF flag
through the VIF and VIP flags. The virtual interrupt flag mechanism operates as follows.

When the processor is set up for method 6 handling of interrupts and exceptions, the CLI and
STI instructions operate on the VIF flag instead of the IF flag. When an 8086 program executes
the CLI instruction, the processor sets the VIF flag to inhibit maskable hardware interrupts from
interrupting program execution; when it executes the STI instruction, the processor clears the
yIF flag. The VIP flag is read by the processor but never explicitly written by the processor. It
can only be written by software. The processor uses the setting of the VIF and VIP flags to deter­
mine how to handle interrupts or exceptions as follows.

I
12-21

8086 EMULATION

If the processor receives an interrupt or exception and the VIF flag is clear (maskable hardware
interrupts enabled), the processor performs the same operation as it does for method 5 interrupt
and exception handling (that is, it redirects handling to the 8080 program's interrupt and excep­
tion handlers). The processor also handles interrupts and exceptions in this manner if the VIF
flag is set, and the processor receives either an NMI interrupt or an exception (interrupt vectors
o through 18).

If the processor receives a maskable hardware interrupt (interrupt vector 32 through 255) when
the VIF flag is set, processor performs and the interrupt handler software must perform the
following operations:

1. The processor makes a call to a protected mode interrupt handler as described in the
following steps. These steps are almost identical to those described for method 1 interrupt
and exception handling in Section 12.3.1.1., "Handling a Virtual-8086 Mode Interrupt or
Exception Through a Protected-Mode Trap or Interrupt Gate":

a. Switches to 32-bit protected mode and privilege level O.

b. Saves the state of the processor on the privilege-level 0 stack. The states of the EIP,
CS, EFLAGS, ESP, SS, ES, DS, FS, and GS registers are saved (see Figure 12-5). In
the EFLAGS image on the stack, the IOPL field is set to 3 and the VIF flag is copied to
the IF flag.

c. Clears the segment registers.

d. Clears the VM flag in the EFLAGS register.

e. Begins executing selected the protected-mode interrupt handler.

2. The recommended action of the protected-mode interrupt handler is to read the VM flag
from the EFLAGS image on the stack. If this flag is set, the handler makes a call to the
virtual-8086 monitor.

3. The virtual-8086 monitor reads the VIF flag in the EFLAGS register. If the flag is set, the
virtual-8086 monitor sets the VIP flag in the EFLAGS register to indicate that there is an
interrupt pending and returns to the protected mode handler.

4. The protected mode handler executes a return to virtual-8086 mode.

5. Upon returning to virtual-8086 mode, the processor continues execution of the 8086
program without handling the interrupt.

When the 8086 program executes the STI instruction to clear the VIF flag, the processor does
the following:

1. Checks the VIP flag.

a. If the VIP flag is clear, the processor clears the VIF flag.

b. If the VIP flag is set, the processor generates a general-protection exception (#GP).

2. The recommended action of the protected-mode general-protection exception handler is to
then call the virtual-8086 monitor and let it handle the pending interrupt.

12-22

I

8086 EMULATION

A typical action of the virtual-8086 monitor is to clear the VIF and VIP flags in the EFLAGS
image on the stack and execute a return to the virtual-8086 mode (through the protected-mode
exception handler). The next time the processor receives a maskable hardware interrupt,
(providing the VIF flag is still clear) it will handle it in the same manner as with method 5 inter­
rupt and exception handling.

Note that the states of the VIF and VIP flags are not modified in real-address mode or during
transitions between real-address and protected modes.

12.4. PROTECTED MODE VIRTUAL INTERRUPTS

The Pentium Pro and Pentium processors also support the VIF and VIP flags in the EFLAGS
register in protected mode by setting the PVI (protected-mode virtual interrupt) flag in the CR4
register. Setting the PVI flag allows applications running at privilege level 3 to execute the CLI
and STI instructions without causing a general-protection exception (#GP) or affecting hard­
ware interrupts.

When the PVI flag is set to 1, the CPL is 3, and the IOPL is less than 3, the CLI and STI instruc­
tions set and clear the VIF flag in the EFLAGS register, leaving IF unaffected. In this mode of
operation, an application running in protected mode and at a CPL of 3 can inhibit interrupts in
the same manner as is described in Section 12.3.5., "Method 6 Interrupt and Exception
Handling" for a virtual-8086 mode task. When the application executes the CLI instruction, the
processor sets the VIF flag. If the processor receives a maskable hardware interrupt when the
VIF flag is set, the processor makes an implicit call the general-protection exception handler.
This handler can then set the VIP flag in the EFLAGS register and return to the privilege-level
3 application, which continues program execution. When the application executes a STI instruc­
tion to clear the VIF flag, the processor automatically executes an implicit call to the general­
protection exception handler, which can then handle the pending interrupt. The typical method
of handling the pending interrupt is to clear the VIF and VIP flags in the EFLAGS image on the
stack and execute a return to the application program. The next time the processor receives a
maskable hardware interrupt, the processor will handle it in the normal manner for interrupts
received while the processor is operating at a CPL of 3.

As with the virtual mode extension (enabled with the VME flag in the CR4 register), the
protected mode virtual interrupt extension only affects maskable hardware interrupts (interrupt
vectors 32 through 255). NMI interrupts and exceptions are handled in the normal manner.

When protected mode virtual interrupts are disabled (CR4.PVI=O) or CPL<3 or IOPL=3, then
the CLI and STI instructions execute in a manner compatible with the Intel486 processor. That
is, if the CPL is greater (less privileged) than the UO privilege level (IOPL), a general exception
occurs. If the IOPL=3, CLI and STI clear or set the IF flag, respectively.

PUSHF, POPF, and IRET are executed like the Intel486 processor, regardless of whether
protected mode virtual interrupts are enabled.

It is only possible to enter virtual-8086 mode through a task switch or the execution of an IRET
instruction, and it is only possible to leave virtual-8086 mode by faulting to the virtual-8086
mode handler. In both cases, the EFLAGS register is saved and restored. This is not true,
however, in protected mode when the PVI flag is set and the processor is not in virtual-8086

I
12-23

8086 EMULATION

mode. It is possible to call a procedure at a different privilege level, in which case the EFLAGS
register is not saved or modified. However, the state of VIF and VIP is never examined by the
processor when the privilege level is not 3.

12-24

I

Mixing 16-Bit
and 32-Bit Code

I

13

CHAPTER 13
MIXING 16-BIT AND 32-BIT CODE

Intel Architecture code modules can be either 16-bit modules or 32-bit modules. Table 13-1
shows the characteristic of 16-bit and 32-bit code modules.

Table 13-1. Characteristics of 16-Bit and 32-Bit Code Modules

Characteristic 16-Bit Code Modules 32-Bit Code Modules

Segment Size o to 64 KBytes o to 4 GBytes

Operand Sizes 8 bits and 16 bits 8 bits and 32 bits

Pointer Offset Size (Address Size) 16 bits 32 bits

Stack Pointer Size 16 Bits 32 Bits

Control Transfers Allowed to Code 16 Bits 32 Bits
Segments of This Size

The Pentium Pro processor functions most efficiently when executing 32-bit code modules. It
can, however, also execute 16-bit code modules, in any of the following ways:

•
•
•
•

•

In real-address mode.

In virtual-8086 mode.

System management mode (SMM).

As a protected mode task, when the code segment for the task is configured as a 16-bit
code module.

By integrating 16-bit operations into a 32-bit code module.

Real-address mode, virtual-8086 mode, and SMM are native 16-bit modes. A legacy program
assembled and/or compiled to run on an Intel 8086 or Intel 286 processor should run in real­
address mode or virtual-8086 mode without modification. Sixteen-bit code modules can also be
written to run in real-address mode for handling system initialization or to run in SMM for
handling system management functions. See Chapter 12, 8086 Emulation, for detailed informa­
tion on real-address mode and virtual-8086 mode; see Chapter 9, System Management Mode
(SMM), for information on SMM.

This chapter describes how to integrate 16-bit code modules with 32-bit code modules when
operating in protected mode and how to mix 16-bit and 32-bit code within a 32-bit code module.

I
13-1

MIXING 16-BIT AND 32-BIT CODE

13.1. DEFINING 16-BIT AND 32-BIT CODE MODULES

The following features of the Pentium Pro processor are used to distinguish between and support
16-bit and 32-bit code modules:

•
•
•
•
•

The D (default operand size) flag in code-segment descriptors.

The B (default stack size) flag in stack-segment descriptors.

16-bit and 32-bit call gates, interrupt gates, and trap gates.

Operand-size and address-size instruction prefixes.

16-bit and 32-bit general-purpose registers.

The D flag in a code-segment descriptor determines the default operand-size and address-size
for the instructions of a code segment. (In real-address mode and virtual-8086 mode, which do
not use segment descriptors, the default is 16 bits.) A code segment with its D flag set is a 32-bit
segment; a code segment with its D flag clear is a 16-bit segment.

The B flag in the stack segment descriptor specifies the size of stack pointer (the 32-bit ESP
register or the 16-bit SP register) used by the processor for implicit stack references. The B flag
for all data descriptors also controls upper address range for expand down segments.

When transferring program control to another code segment through a call gate, interrupt gate,
or trap gate, the operand size and stack pointer size used during the transfer is determined by the
type of gate used (16-bit or 32-bit). The gate type determines how return information is saved
on the stack (or stacks).

For most efficient and trouble-free operation of the processor, 32-bit programs or tasks should
have the D flag in the code-segment descriptor and the B flag in the stack-segment descriptor
set, and 16-bit programs or tasks should have these flags clear. Program control transfers from
16-bit code modules to 32-bit modules (and vice versa) are handled most efficiently through
call, interrupt, or trap gates.

Instruction prefixes can be used to override the default operand size and address size of a code
module. These prefixes can be used in protected mode as well as in real-address mode and
virtual-8086 mode. An operand-size or address-size prefix only changes the size for the duration
of the instruction.

Operand prefixes or register names (established by the assembler) can be used to select the
register size to be used (16-bit and 32-bit). The register size affects the size of operands and the
results of arithmetic and effective-address calculations.

13-2

I

MIXING 16-BIT AND 32-BIT CODE

13.2. MIXING 16-BIT AND 32-BIT OPERATIONS WITHIN A CODE
MODULE

The following two instruction prefixes allow mixing of 32-bit and 16-bit operations within one
segment:

•
•

The operand-size prefix (66H)

The address-size prefix (67H)

These prefixes reverse the default size selected by the D flag in the code-segment descriptor. For
example, the processor can interpret the (MOV mem, reg) instruction in any of four ways:

•

•

In a 32-bit code segment:

Moves 32 bits from a 32-bit register to memory using a 32-bit effective address.

If preceded by an operand-size prefix, moves 16 bits from a 16-bit register to memory
using a 32-bit effective address.

If preceded by an address-size prefix, moves 32 bits from a 32-bit register to memory
using a 16-bit effective address.

If preceded by both an address-size prefix and an operand-size prefix, moves 16 bits
from a 16-bit register to memory using a 16-bit effective address.

In a 16-bit code segment:

Moves 16 bits from a 16-bit register to memory using a 16-bit effective address.

If preceded by an operand-size prefix, moves 32 bits from a 32-bit register to memory
using a 16-bit effective address.

If preceded by an address-size prefix, moves 16 bits from a 16-bit register to memory
using a 32-bit effective address.

If preceded by both an address-size prefix and an operand-size prefix, moves 32 bits
from a 32-bit register to memory using a 32-bit effective address.

The previous examples show that any instruction can generate any combination of operand size
and address size regardless of whether the instruction is in a 16- or 32-bit segment. The choice
of the 16- or 32-bit default for a code segment is normally based on the following criteria:

•

•

•

•

I

Performance. Always used 32-bit code modules when possible. They run much faster than
16-bit code modules on the Pentium Pro processor.

The operating system the code module will be running on. If the operating system is a
16-bit operating system, it may not support 32-bit code modules.

Mode of operation. If the code module is being designed to run in real-address mode,
virtual-8086 mode, or SMM, it must be a 16-bit code module.

Backward compatibility to earlier Intel Architecture processors. If a code module must be
able to run on an Intel 8086 or Intel 286 processor, it must be a 16-bit code module.

13-3

MIXING 16-BIT AND 32-BIT CODE in1:et

13.3. SHARING DATA AMONG MIXED-SIZE CODE SEGMENTS

Data segments can be accessed from both 16-bit and 32-bit code segments. When a data segment
that is larger than 64 KBytes is to be shared among 16- and 32-bit code segments, the data that
is to be accessed from the 16-bit code segments must be located within the first 64 KBytes of
the data segment. The reason for this is that 16-bit pointers by definition can only point to the
first 64 KBytes of a segment.

A stack that spans less than 64 KBytes can be shared by both 16- and 32-bit code segments. This
class of stacks includes:

•

•
•

Stacks in expand-up segments with the G (granularity) and B (big) flags in the stack­
segment descriptor clear.

Stacks in expand-down segments with the G and B flags clear.

Stacks in expand-up segments with the G flag set and the B flag clear and where the stack
is contained completely within the lower 64 KBytes. (Offsets greater than FFFFH can be
used for data, other than the stack, which is not shared.)

See Section 3.4.3., "Segment Descriptors" for a description of the G and B flags and the expand­
down stack type.

The B flag cannot, in general, be used to change the size of stack used by a 16-bit code segment.
This flag controls the size of the stack pointer only for implicit stack references such as those
caused by interrupts, exceptions, and the PUSH, POP, CALL, and RET instructions. It does not
control explicit stack references, such as accesses to parameters or local variables. A 16-bit code
segment can use a 32-bit stack only if the code is modified so that all explicit references to the
stack are preceded by the 32-bit address-size prefix, causing those references to use 32-bit
addressing and explicit writes to the stack pointer are preceded by a 32-bit operand-size prefix.

In 32-bit, expand-down segments, all offsets may be greater than 64 KBytes; therefore, 16-bit
code cannot use this kind of stack segment unless the code segment is modified to use 32-bit
addressing.

13.4. TRANSFERRING CONTROL AMONG MIXED-SIZE CODE
SEGMENTS

There are three ways for a procedure in a 16-bit code segment to safely make a call to a 32-bit
code segment:

•
•

•

13-4

Make the call through a 32-bit call gate.

Make a 16-bit call to a 32-bit interface procedure. The interface procedure then makes a
32-bit call to the intended destination.

Modify the 16-bit procedure, inserting an operand-size prefix before the call, to change it
to a 32-bit call.

I

MIXING 16-BIT AND 32-BIT CODE

Likewise, there are three ways for procedure in a 32-bit code segment to safely make a call to a
16-bit code segment:

•
•

•

Make the call through a 16-bit call gate. Here, the offset cannot exceed FFFFH.

Make a 32-bit call to a 16-bit interface procedure. The interface procedure then makes a
16-bit call to the intended destination.

Modify the 32-bit procedure, inserting an operand-size prefix before the call, changing it to
a 16-bit call. Be certain that the return offset does not exceed FFFFH.

These methods of transferring program control overcome the following architectural limitations
imposed on calls between 16-bit and 32-bit code segments:

•

•

•

•

Pointers from 16-bit code segments (which by default can only be 16-bits) cannot be used
to address data or code located beyond FFFFH in a 32-bit segment.

The operand-size attributes for a CALL and its companion RETURN instruction must be
the same to maintain stack coherency. This is also true for implicit calls to interrupt and
exception handlers and their companion IRET instructions.

A 32-bit parameters (particularly a pointer parameter) greater than FFFFH cannot be
squeezed into a 16-bit parameter location on a stack.

The size of the stack pointer (SP or ESP) changes when switching between 16-bit and
32-bit code segments.

These limitations are discussed in greater detail in the following sections.

13.4.1. Code-Segment Pointer Size

For control-transfer instructions that use a pointer to identify the next instruction (that is, those
that do not use gates), the operand-size attribute determines the size of the offset portion of the
pointer. The implications of this rule are as follows:

•

•

A JMP, CALL, or RET instruction from a 32-bit segment to a 16-bit segment is always
possible using a 32-bit operand size, providing the 32-bit pointer does not exceed FFFFH.

A JMP, CALL, or RET instruction from a 16-bit segment to a 32-bit segment cannot
address a destination greater than FFFFH.

See Section 13.4.5., "Writing Interface Procedures"Jor an interface procedure that can transfers
program control from 16-bit segments to destinations in 32-bit segments beyond FFFFH.

13.4.2. Stack Management for Control Transfer

Because the procedure stack is managed differently for 16-bit procedure calls than for 32-bit
calls, the operand-size attribute of the RET instruction must match that of the CALL instruction
(see Figure 13-1). On a 16-bit call, the processor pushes the contents of the 16-bit IP register and
(for calls between privilege levels) the 16-bit SP register. The matching RET instruction must
also use a 16-bit operand size to pop these 16-bit values from the stack into the 16-bit registers.

I
13-5

MIXING 16-BIT AND 32-BIT CODE

A 32-bit CALL instruction pushes the contents of the 32-bit EIP register and (for inter-privilege­
level calls) the 32-bit ESP register. Here, the matching RET instruction must use a 32-bit
operand size to pop these 32-bit values from the stack into the 32-bit registers. If the two parts
of a CALL/RET instruction pair do not have matching operand sizes, the stack will not be
managed correctly and the values of the instruction pointer and stack pointer will not be restored
to correct values.

While executing 32-bit code, if a call is made to a 16-bit code segment at a lower or equal priv­
ilege level (that is, the DPL of the called code segment is less than or equal io the CPL of the
called code segment) through a 16-bit call gate, then the upper 16-bits of the ESP register may
be unreliable upon returning to the 32-bit code segment (that is, after executing a RET in the
16-bit code segment).

When the CALL instruction and its matching RET instruction are in code segments that have D
flags with the same values (that is, both are 32-bit code segments or both are 16-bit code
segments), the default settings may be used. When the CALL instruction and its matching RET
instruction are in segments which have different D-flag settings, an operand-size prefix must be
used.

13.4.2.1. CONTROLLING THE OPERAND-SIZE ATTRIBUTE FOR A CALL

Three things can determine the operand-size of a call:

• The D flag in the segment descriptor for the calling code segment.

• Any operand-size instruction prefix .

• The type of call gate (16-bit or 32-bit), if a call is made through a call gate .

When a call is made with a pointer (rather than a call gate), the D flag for the calling code
segment determines the operand-size operand for the CALL instruction. This operand-size
attribute can be overridden by prepending an operand-size prefix to the CALL instruction. So,
for example, if the D flag for a code segment is set for 16 bits and a 32-bit operand-size prefix
is used with a CALL instruction, the processor will cause the information stored on the stack to
be stored in 32-bit format. If the call is to a 32-bit code segment, the instructions in that code
segment will be able to read the stack coherently. Also, a RET instruction from the 32-bit code
segment without an operand-size prefix will maintain stack coherency with the 16-bit code
segment being returned to.

13-6

I

MIXING 16-BIT AND 32-BIT CODE

Without Privilege Transition

After 16-bit Call After 32-bit Call

31 0 31 0

Stack
PARM2 PARM 1 PARM2

Growth
CS IP ~SP PARM 1

~ 1
CS

EIP ..--ESP

With Privilege Transition

After 16-bit Call After 32-bit Call
31 0 31 0

SS SP I. ••

I SS

Stack
PARM2 PARM 1 ESP

Growth
CS IP ..--SP PARM2

~ PARM 1

•. ····1 CS

EIP ..--ESP

D Undefined

Figure 13-1. Stack after Far 16- and 32-Bit Calls

When a CALL instruction references a call gate descriptor, the type of call is detennined by the
type of call gate (16-bit or 32-bit). The offset to the destination in the code segment being called
is taken from the gate descriptor; therefore, if a 32-bit call gate is used, a procedure in a 16-bit
code segment can call a procedure located more than 64 Kbytes from the base of a 32-bit code
segment, because a 32-bit call gate uses a 32-bit offset.

An unmodified 16-bit code segment that has run successfully on an 8086 processor or in
real-mode on a later Intel Architecture processor will have its D flag clear and will not use
operand-size override prefixes. As a result, all CALL instructions in this code segment will use
the 16-bit operand-size attribute. Procedures in these code segments can be modified to safely
call procedures to 32-bit code segments in either of two ways:

I
13-7

MIXING 16-BIT AND 32-BIT CODE

• Relink the CALL instruction to point to 32-bit call gates (see Section 13.4.2.2., "Passing
Parameters With a Gates").

• Add a 32-bit operand-size prefix to each CALL instruction .

13.4.2.2. PASSING PARAMETERS WITH A GATES

When referencing 32-bit gates with 16-bit procedures, it is important to consider the number of
parameters passed in each procedure call. The count field of the gate descriptor specifies the size
of the parameter string to copy from the current stack to the stack of a more privileged (numer­
ically lower privilege level) procedure. The count field of a 16-bit gate specifies the number of
16-bit words to be copied, whereas the count field of a 32-bit gate specifies the number of 32-bit
doublewords to be copied. The count field for a 32-bit gate must thus be half the size of the
number of words being placed on the stack by a 16-bit procedure. Also, the 16-bit procedure
must use an even number of words as parameters.

13.4.3. Interrupt Control Transfers

A program-controhransfer caused by an exception or interrupt is always carried out through an
interrupt or trap gate (located in the IDT). Here, the type of the gate (16-bit or 32-bit) determines
the operand-size attribute used in the implicit call to the exception or interrupt handler procedure
in another code segment.

A 32-bit interrupt or trap gate provides a safe interface to a 32-bit exception or interrupt handler
when the exception or interrupt occurs in either a 32-bit or a 16-bit code segment. It is sometimes
impractical, however, to place exception or interrupt handlers in 16-bit code segments, because
only 16-bit return addresses are saved on the stack. If an exception or interrupt occurs in a 32-bit
code segment when the EIP was greater than FFFFH, the 16-bit handler procedure cannot
provide the correct return address.

13.4.4. Parameter Translation

When segment offsets or pointers (which contain segment offsets) are passed as parameters
between 16-bit and 32-bit procedures, some translation is required. If a 32-bit procedure passes
a pointer to data located beyond 64 KBytes to a 16-bit procedure, the 16-bit procedure cannot
use it. Except for this limitation, interface code can perform any format conversion between
32-bit and 16-bit pointers that may be needed.

Parameters passed by value between 32-bit and 16-bit code also may require translation between
32-bit and 16-bit formats. The form ofthe translation is application-dependent.

13-8

I

MIXING 16-BIT AND 32-BIT CODE

13.4.5. Writing Interface Procedures

Placing interface code between 32-bit and 16-bit procedures can be the solution to the following
interface problems:

•

•
•
•

Allowing procedures in 16-bit code segments to call procedures with offsets greater than
FFFFH in 32-bit code segments.

Matching operand-size attributes between companion CALL and RET instructions.

Translating parameters (data).

The possible invalidation of the upper bits of the ESP register.

The interface procedure is simplified where these rules are followed.

1. The interface procedure must reside in a 32-bit code segment (the D flag for the code­
segment descriptor is set).

2. All procedures that may be called by 16-bit procedures must have offsets not greater than
FFFFH.

3. All return addresses saved by 16-bit procedures must have offsets not greater than FFFFH.

The interface procedure becomes more complex if any of these rules are violated. For example,
if a 16-bit procedure calls a 32-bit procedure with an entry point beyond FFFFH, the interface
procedure will need to provide the offset to the entry point. The mapping between 16- and 32-bit
addresses is only performed automatically when a call gate is used, because the gate descriptor
for a call gate contains a 32-bit address. When a call gate is not used, the gate descriptor must
provide the 32-bit address.

The structure of the interface procedure depends on the types of calls it is going to support, as
follows:

•

•

I

Calls from 16-bit procedures to 32-bit procedures. Calls to the interface procedure from
a 16-bit code segment are made with 16-bit CALL instructions (by default, because the D
flag for the calling code-segment descriptor is clear), and 16-bit operand-size prefixes are
used with RET instructions to return from the interface procedure to the calling procedure.
Calls from the interface procedure to 32-bit procedures are performed with 32-bit CALL
instructions (by default, because the D flag for the interface procedure's code segment is
set), and returns from the called procedures to the interface procedure are performed with
32-bit RET instructions (also by default).

Calls from 32-bit procedures to 16-bit procedures. Calls to the interface procedure from
a 32-bit code segment are made with 32-bit CALL instructions (by default), and returns to
the calling procedure from the interface procedure are made with 32-bit RET instructions
(also by default). Calls from the interface procedure to 16-bit procedures require the CALL
instructions to have a 16-bit operand-size prefixes, and returns from the called procedures
to the interface procedure are performed with 16-bit RET instructions (by default).

13-9

14
Code Optimization

I

CHAPTER 14
CODE OPTIMIZATION

This chapter provides some general guidelines for programming Intel Architecture processors.
For additional information refer to AP-500, Optimizations for Intel's 32-Bit Processors, order
number 241799.

14.1. ADDRESSING MODES AND REGISTER USAGE

This section gives examples of code sequences that result on delays based on addressing modes
and register usage.

An address generation interlock (AGI) occurs when a register being used as the base or index
component of an effective address calculation was the destination register of a previous instruc­
tion. An AGI causes a I-clock delay.

In the following sequence, the MOV instruction has a one clock stall on the Pentium Pro,
Pentium, Intel486 and processors.

add edx, 4

mov esi, [edx]

On the Inte1486 processor, only adjacent instructions can cause AGI's. On the Pentium Pro and
Pentium processors, with their higher degree of concurrent execution, instructions that are up to
three instructions away can interact to cause an AGI. Consider the following fabricated worst
case sequence:

add esi, 4

pop ebx

inc ebx

mov edx, [esi]

This sequence executes on the Intel486 processor in four clocks. Due to the pairing of instruc­
tions on the Pentium Pro and Pentium processors, the MOV instruction needs the value of ESI,
which is not available until the ADD completes the execute (EX) stage. This delay results in a
one clock stall for the MOV instruction. Therefore, the above instruction sequence executes in
three clocks on the Pentium Pro and Pentium processors.

Instructions that generate implicit writes/reads to registers (such as the PUSH, POPO, RET, and
CALL instructions, which implicitly address the ESP register) also suffer from the AGI penalty
(an explicit write followed by an explicit or implicit read). The following examples show stalls
resulting from the dependence on the ESP register by the PUSH and POP instructions:

I
14-1

CODE OPTIMIZATION

sub esp, 24 / 1 clock stall
(sub)

push ebx

mov esp, ebp / 1 clock stall
(mov)

pop ebp

The PUSH and POP instructions also implicitly write to the ESP register. These writes, however,
does not cause an AGI when the next instruction addresses through the ESP register (implicit
write followed by explicit or implicit read through ESP). The following example demonstrates
that an implicit write followed by an explicit or implicit read of the ESP register does not
generate an AGI.

push edi / no stall
mov ebx, [espl

On the Intel486 CPU, there is a one clock penalty for decoding an instruction with either an
index or an immediate-displacement combination. On the Pentium Pro and Pentium processors,
there is no one clock penalty. There also is no penalty for an indexed instruction on the Pentium
Pro and Pentium processors, as shown in the following example.

mov result, 555 / 555 is immediate, result is displacement
mov dword ptr [esp+41, 1 / 1 is immediate, 4 is displacement

Unlike the Intel486 CPU, there is no one clock penalty with the Pentium Pro and Pentium
processors when using a register immediately after its sub-register was written, as demonstrated
in the following examples.

mov aI, 0 /1
mov [ebpl, eax /2 no delay on Pentium Pro and Pentium processors

mov aI, 0
(mov)

mov [ebpl, eax

/1
/2 one clock delay on Intel486 CPU

/3

14.2. ALIGNMENT

The effect of data misalignment on the Pentium Pro and Pentium processors is similar to its
effect on the Intel486 CPU. However, code alignment requirements are not as strict as on the
Intel486 CPU.

14.2.1. Code Alignment

Unlike the Intel486 CPU, alignment of code on a cache line boundary (32-byte on Pentium Pro
and Pentium processors, 16-byte on Intel486 CPU) does not have a substantial effect on Pentium
Pro and Pentium processors performance. However, labels may be aligned as recommended for
the Intel486 CPU because the incremental cost on the Pentium Pro and Pentium processors is
negligible and it improves the efficiency of the Intel486 CPU.

14-2

I

CODE OPTIMIZATION

14.2.2. Data Alignment

A misaligned access in the data cache costs an extra 3 clock cycles on the Pentium Pro, Pentium,
and Intel486 processors.

•
•

•

4-byte Data. The alignment of 4-byte objects should be on a 4-byte boundary.

2-byte Data. A 2-byte object should be fully contained within an aligned 4-byte word (i.e.,
its binary address should be xxxxOO, xxxxOl, xxxxlO, but not xxxxll). (A 2-byte data
object has to be aligned on a 2-byte boundary to avoid a penalty.)

8-byte Data. The penalty for a misaligned 8-byte data object (64-bit, for example, double­
precision reals) access is 3 clock cycles (as in Intel486 CPU). An 8-byte datum should be
aligned on an 8-byte boundary.

14.3. PREFIXED OPCODES

The prefixes lock, segment override, address size, 2-byte opcode map (OF), and operand size are
decoded in 1 clock for each prefix. Note that this includes all the l6-bit instructions when
executing in 32-bit mode because an operand size prefix is required (for example, MOV WORD
PTR [..], ADD WORD PTR [..], ...). Use 32-bit operands for 32-bit segments and l6-bit oper­
ands for l6-bit segments as much as possible to avoid the additional byte for prefixes.

The near conditional jump instructions that have a OFH prefix are decoded differently. In this
case, the processor does not take an extra clock. Other OF opcodes behave as normal prefixed
instructions.

14.4. OPERAND AND REGISTER USAGE

The guidelines for operand and register usage should be followed to improve processor
performance:

•

•

•
•

I

Use the EAX register when possible. Many instructions are 1 byte shorter when the EAX
register is used, for example, loads and stores to memory when absolute addresses are
used, transfers to other registers using the XCHG instruction, and operations using
immediate operands.

Use the DS register to access the data segment when possible. Instructions that deal with
the DS register are one byte shorter than instructions that use the other data segments,
because of the lack of a segment-override prefix.

Use the ESP register to reference the stack in the deepest level of procedure calls.

When several references are made to a variable addressed with a displacement, load the
displacement into a register.

14-3

CODE OPTIMIZATION

14.5. INTEGER INSTRUCTION SELECTION

This section gives some instruction sequences to avoid and some sequences to use when gener­
ating Intel Architecture assembly code.

•

•

•

•

14-4

The LEA instruction is useful in the following circumstances:

The LEA instruction may be used sometimes as a three- or four-operand addition
instruction. LEA ECX,[EAX+EBX*4+ARRAY _NAME]).

In many cases, an LEA instruction (or a sequence of LEA instructions, add and shift
instructions) may be used to replace constant multiply instructions.

The LEA instruction can also be used to avoid copying a register when both operands
to an ADD instruction are being used after the add, since the LEA instruction need not
overwrite its operands.

The disadvantage of the LEA instruction is that it increases the possibility of an AGI stall
with previous instructions.

Complex Instructions. Avoid using complex instructions (ENTER, LEAVE, LOOP, string
instructions, etc.) when short sequences of simple instructions will handle the coding
requirements just as well.

Zero-Extension of Short Integers. The MOVZX instruction has a prefix and takes 3 cycles
to execute (a total of 4 cycles). As with the Inte1486 CPU, the following code sequence is
recommended instead of using the MOVZX instruction with a prefix:

xor eax, eax
mov al, mem

If sequence occurs within a loop, it may be possible to pull the XOR out of the loop if the
only assignment to the EAX register is the MOV AL, MEM. This has greater importance
for the Pentium Pro and Pentium processors due to their concurrency of instruction
execution.

Access 16-bit data with the MOVSX and MOVZX instructions. These instructions sign­
extend and zero-extend word operands to doubleword length. This eliminates the need for
an extra instruction to initialize the high word.

8/16-Bit Operands. With 8-bit operands, try to use the byte opcodes, rather than using
32-bit operations on sign and zero extended bytes. The prefixes for operand size overrides
apply to 16-bit operands, not to 8-bit operands.

Sign Extension is usually quite expensive. Often, the semantics can be maintained by zero
extending 16-bit operands. Specifically, the C code in the following example does not need
sign extension nor does it need prefixes for operand size overrides.

static short int a,b;
if (a==b) {

I

•

CODE OPTIMIZATION

Compares. Use the TEST instruction when comparing a value in a register with O. This
instruction essentially AND's the operands together without writing to a destination
register. If you AND a value with itself and the result sets the 0 condition flag, the value
was o.
Use the TEST instruction when comparing the result of a boolean AND with an immediate
constant for equality or inequality if the register is EAX. (IF (AVAR & 8) { }).

• Address Calculations. Pull address calculations into load and store instructions. Internally,
memory reference instructions can have four operands: a relocatable load time segment
base, a base register, a displacement, and a scaled index register. In many cases, several
integer instructions can be eliminated by fully using the operands of memory references.

•

•

•

•

•

•

I

When there is a choice to use either a base or index register, always choose the base
because there is a one clock penalty on an Intel486 CPU for using an index.

Clearing a Register. The preferred sequence to move 0 to a register is XOR REG, REG.
This saves code space but sets the condition codes. In contexts where the condition codes
must be preserved, use: MOV REG, O.

Integer Divide. Typically, an integer divide is preceded by a CDQ instruction. (Divide
instructions use EDX:EAX as the dividend and CDQ sets up EDX.) It is better to copy
EAX into EDX, then right shift EDX 31 places to sign extend. The copy/shift takes the
same number of clocks as CDQ on the Pentium Pro, Pentium, and Intel486 CPU
processors, but the copy/shift scheme allows two other instructions to execute at the same
time on the Pentium Pro and Pentium processors. If you know the value is positive, use
XOR EDX, EDX.

Avoid Compares with Immediate O. Often when a value is compared with 0, the operation
producing the value sets condition codes that can be tested directly by a JCC instruction.
(The most notable exceptions are the MOV and LEA instructions. In these cases, use the
TEST instruction.)

Integer Multiply by Constant. The integer mUltiply by an immediate can usually be
replaced by a faster series of shift's, add's, sub's, and LEA's.

In general, if there are 8 or fewer bits set in the binary representation of the constant, it is
better not to do the integer multiply. On an Intel486 CPU, the break even point is lower: it
is profitable if 6 bits or less are in the constant. Basically, shift and add for each bit set.

In place of using an ENTER instruction at lexical level 0, use a code sequence like:

PUSH EBP
MOV EBP, ESP
SUB ESP, BYTE_COUNT

Jump Instructions. The jump instructions come in two forms: one form has an 8-bit
immediate for relative jumps in the range from 128 bytes back to 127 bytes forward, the
other form has a full 32-bit displacement. Many assemblers use the long form in situations
where the short form can be used. When it is clear that the short form may be used,
explicitly specify the destination operand as being byte length. This tells the assembler to
use the short form. Note that some assemblers perform this optimization automatically.

14-5

CODE OPTIMIZATION

•

•

14-6

Task Switching. For fastest task switching, perform task switching in software. This allows
a smaller processor state to be saved and restored. See Chapter 6, Task Management, for a
discussion of multitasking.

Segment Register Loads. Minimize segment register loads and use of far pointers as much
as possible. Increased protection between segments costs performance as a substantial
number of clocks are required to load the segment registers.

I

Intel Architecture
Compatibility

I

15

CHAPTER 15
INTEL ARCHITECTURE COMPATIBILITY

The Pentium Pro processor is fully binary compatible with all Intel Architecture processors,
including the Pentium, Inte1486 DX and SX, Inte1386 DX and SX, Intel 286, and the 8086/8088
processors. Compatibility means that, within certain limited constraints, programs that execute
on previous generations of Intel Architecture processors will produce identical results when
executed on the Pentium Pro processor. The compatibility constraints and any implementation
differences between the Intel Architecture processors are described in this chapter and in
Chapter 10, Intel Architecture Compatibility, in the Pentium® Pro Family Developer's Manual,
Volume 2. The compatibility issues described in this chapter deal with the system architecture.
Compatibility issues regarding new instructions, the basic execution environment, and the
floating-point unit (FPU) and math coprocessors are covered in the Pentium® Pro Family Devel­
oper's Manual, Volume 2.

The Pentium Pro processor also includes extensions to the registers, instruction set, and control
functions found in earlier Intel Architecture processors. Those extensions have been defined
with consideration for compatibility with previous and future processors. This chapter also
summarizes the compatibility considerations for those extensions.

15.1. RESERVED BITS

Throughout this manual, certain bits are marked as reserved in many register and memory layout
descriptions. When bits are marked as undefined or reserved, it is essential for compatibility
with future processors that software treat these bits as having a future, though unknown effect.
Software should follow these guidelines in dealing with reserved bits:

•

•

•
•

Do not depend on the states of any reserved bits when testing the values of registers or
memory locations that contain such bits. Mask out the reserved bits before testing.

Do not depend on the states of any reserved bits when storing them to memory or to a
register.

Do not depend on the ability to retain information written into any reserved bits.

When loading a register, always load the reserved bits with the values indicated in the
documentation, if any, or reload them with values previously read from the same register.

Avoid any software dependence upon the state of reserved Pentium Pro processor bits.
Depending on the values of reserved bits will make software dependent upon the unspecified
manner in which the Pentium Pro processor handles these bits. Depending upon reserved values
risks incompatibility with future processors.

Software written for an Pentium, Inte1486, or Inte1386 processor that handles reserved bits
correctly will port to the Pentium Pro processor without generating exceptions.

I
15-1

INTEL ARCHITECTURE COMPATIBILITY

15.2. SERIALIZING INSTRUCTIONS

Certain instructions have been defined to serialize instruction execution to ensure that modifi­
cations to flags, registers and memory are completed before the next instruction is executed (or
in Pentium Pro processor terminology "committed to machine state"). Because the Pentium Pro
processor uses branch-prediction and out-of-order execution techniques to improve perfor­
mance, instruction execution is not generally serialized until the results of an executed instruc­
tion are committed to machine state (see Chapter 2, Introduction to the Intel Pentium® Pro
Processor of the Pentium® Pro Family Developer's Manual, Volume 2). As a result, at places in
a program or task where it is critical to have execution completed for all previous instructions
before executing the next instruction (for example, at a branch, at the end of a procedure, or in
multiprocessor dependent code), it is useful to add a serializing instruction. See Section 7.3.,
"Serializing Instructions" for more information on serializing instructions.

15.3. INITIALIZATION AND RESET

This section identifies the state of the integer and floating-point units for the various processors
and floating-point processor (FPU) extensions.

15.3.1. Integer Unit Initialization on Power-Up or Reset

Table 15-1 identifies the values of the integer unit registers for the 32-bit Intel Architecture
processors following a power-up or hardware reset from the RESET# pin. These values are the
same regardless of whether the built-in self test (BIST) is executed.

Table 15-1. Processor State Following Power-Up or Reset

Pentium® Pro Pentium Intel486™ Intel386™
Register Processor Processor Processor Processor

EFLAGSl 00000002H 00000002H 00000002H FFFC802AH

EIP OOOOFFFOH OOOOFFFOH OOOOFFFOH OOOOFFFOH

CRO 60000010H 60000010H 60000010H 7FFFFFEOH

CR2 OOOOOOOOH OOOOOOOOH OOOOOOOOH OOOOOOOOH

CR3 OOOOOOOOH OOOOOOOOH OOOOOOOOH OOOOOOOOH

CR4 OOOOOOOOH OOOOOOOOH OOOOOOOOH OOOOOOOOH

CS OFOOOH OFOOOH OFOOOH OFOOOFOOOH
base=OFFFFOOOH base=OFFFFOOOH uC:I:;e=OFFFFOOOH oase=OFFFFOOOH
Iimit=OFFFFH limit=OFFFFH Iimit=OFFFFH Iimit=OFFFFH
AR=00OOO093H AR=00000093H AR=OFF3F93FFH AR=OFF3F93FFH

SS, OS, ES, FS, 0000 0000 0000 0000
GS base=OOOOOOOOH base=OOOOOOOOH base=OOOOOOOOH base=OOOOOOOOH

limit=OFFFFH Iimit=OFFFFH Iimit=OFFFFH Iimit=OFFFFH
AR=00000093H AR=00000093H AR=OFF3F93FFH AR=OFF3F93FFH

15-2

I

INTEL ARCHITECTURE COMPATIBILITY

Table 15-1. Processor State Following Power-Up or Reset (Contd.)

Pentium@pro Pentium Intel486™ Intel386™
Register Processor Processor Processor Processor

EDX 0000x6xxH 0000x5xxH 0000x4xxH 00000308H

EAX 02 02 02 02

EBX, ECX, ESI, OOOOOOOOH OOOOOOOOH OOOOOOOOH OOOOOOOOH
EDI, EBP, ESP

GDTR,LDTR 00000000 00000000 xxxxOOOO 00000000
base=OOOOOOOOH base=OOOOOOOOH base=OOOOOOOOH base=OOOOOOOOH
Iimit=OFFFFH Iimit=OFFFFH Iimit=OFFFFH Iimit=OFFFFH
AR=00000082H AR=00000082H AR=OFFFFFFFFH AR=OFFFFFFFFH

IDTR 00000000 00000000 xxxxOOOO 00000000
base=OOOOOOOO H base=OOOOOOOOH base=OOOOOOOOH base=OOOOOOOOH
Iimit=OFFFFH Iimit=OFFFFH Iimit=OFFFFH Iimit=OFFFFH
AR=00000082H AR=00000082H AR=OFFFFFFFFH AR=OFFFFFFFFH

Task Register 0 0 NA NA

DRO, DR1, OOOOOOOOH OOOOOOOOH OOOOOOOOH OOOOOOOOH
DR2, DR3

DR6 FFFFOFFOH FFFFOFFOH FFFF1FFOH FFFF1FFOH

DR? 00000400H 00000400H OOOOOOOOH OOOOOOOOH

Time Stamp 0 0 NA3 NA
Counter

Control and 0 0 NA NA
Event Select

All Other MSR's Undefined Undefined NA NA

Data and Code Invalid Invalid Invalid NA
Cache

TLB(s) Invalid Invalid Invalid NA

Fixed MTRRs Disabled Not Implemented Not Implemented Not Implemented

Variable MTRRs Disabled Not Implemented Not Implemented Not Implemented

Machine Check Undefined Undefined Not Implemented Not Implemented
Architecture

APIC Enabled Enabled Not Implemented Not Implemented

NOTES:

1. The 10 most-significant bits (14 for the Intel486™ and Intel386™ processor's) of the EFLAGS register
are undefined following power-up. Undefined bits are reserved. Software should not depend on the states
of any of these bits.

2. If BIST is invoked, EAX is 0 only if all tests passed.

3. Not Applicable.

I
15-3

INTEL ARCHITECTURE COMPATIBILITY

15.3.2. FPU Initialization on Power-Up or Reset

Table 15-2 shows the state of the FPU registers for 32-bit Intel Architecture FPUs and math
coprocessors following a power-up or hardware reset.

Table 15-2. FPU State Following Power-Up or Reset

Register Pentium® Pro Pentium Intel486™ Intel387TM Math
Processor FPU1 Processor FPUl Processor FPU2 CoProcessor3

STO-ST7 +0.0 +0.0 +0.0 +0.0

Control Word 0040H 0040H 037FHH 037FH

Status Word OOOOH OOOOH OOOOH OOOOH

Tag Word 5555H 5555H OFFFFH OFFFFH

IP Offset OOOOOOOOH OOOOOOOOH OOOOOOOOH OOOOOOOOH

Data Operand OOOOOOOOH OOOOOOOOH OOOOOOOOH OOOOOOOOH
Offset

CS Selector OOOOH OOOOH OOOOH OOOOH

Operand Selector OOOOH OOOOH OOOOH OOOOH

NOTES:

1. The state of the FPU is left unchanged on the Pentium® Pro and Pentium processor FPUs following and
INIT.

2. The BIST must be requested during a reset to initialize the Intel486™ FPU to the values shown; other­
wise, the state of the FPU is left unchanged.

3. The BIST must be requested during a reset to initialize the Intel387TM math coprocessor to the values
shown; otherwise, the state of the FPU is left unchanged.

Following an Inte1386 processor reset, the processor identifies its coprocessor type (Inte1287 or
Inte1387 DX math coprocessor) by sampling its ERROR# input some time after the falling edge
of RESET# signal and before execution of the first floating-point instruction. The Intel287
coprocessor keeps its ERROR# output in inactive state after hardware reset; the Inte1387 copro­
cessor keeps its ERROR# output in active state after hardware reset.

Upon hardware reset or execution of the FINIT instruction, the Intel387 math coprocessor
signals an error condition. The Pentium Pro, Pentium, and Intel486 processors, like the Intel287
coprocessor, do not.

15.3.3. Intel486™ SX Processor and Intel487TM SX Math
Coprocessor Initialization

When initializing an Intel486 SX processor and an Intel487 SX math coprocessor, the initializa­
tion routine should check the presence of the math coprocessor and should set the FPU related
flags (EM, MP, and NE) in control register CRO accordingly (see Section 2.5., "Control Regis­
ters" for a complete description of these flags). Table 15-3 gives the recommended settings for
these flags when the math coprocessor is present. The FSTCW instruction will give a value of
FFFFH for the Intel486 SX microprocessor and 037FH for the Intel487 SX math coprocessor.

15-4

I

INTEL ARCHITECTURE COMPATIBILITY

Table 15-3. Recommended Values of the FP Related Bits for Intel486™ SX
Microprocessorlintel487™ SX Math Coprocessor System

CRD Flags Intel486™ SX Processor Only Intel487™ SX Math Coprocessor Present

EM 1 0

MP 0 1

NE 1 0, for DOS systems
1, for user-defined exception handler

The EM and MP flags in register CRO are interpreted as shown in Table 15-4.

Table 15-4. EM and MP Flag Interpretation

EM MP Interpretation

0 0 Floating-point instructions are passed to FPU; WAIT/FWAIT and
other waiting-type instructions ignore TS.

0 1 Floating-point instructions are passed to FPU; WAIT/FWAIT and
other waiting-type instructions test TS.

1 0 Floating-point instructions trap to emulator; WAIT/FWAIT and
other waiting-type instructions ignore TS.

1 1 Floating-point instructions trap to emulator; WAIT/FWAIT and
other waiting-type instructions test TS.

Following is an example code sequence to initialize the system and check for the presence of
Intel486 SX processor/Intel487 SX math coprocessor.

fninit
fstew mem_Iae
mav ax, mem_Iae
emp ax, 037fh
jz InteI487_SX_Math_CoProeessor-present;ax=037fh

jmp InteI486_SX_mieroproeessor-present;ax=ffffh

If the Intel487 SX math coprocessor is not present, the following code can be run to set the CRO
register for the Intel486 SX processor.

mov eax, erO
and eax, fffffffdh ;make MP=O
or eax, 0024h

mov erO, eax

I

;make EM=l, NE=l

15-5

INTEL ARCHITECTURE COMPATIBILITY

This initialization will cause any floating~point instruction to generate a device not available
exception (#NH), interrupt 7. The software emulation will then take control to execute these
instructions. This code is not required if an Intel487 SX math coprocessor is present in the
system. In that case, the typical initialization routine for the Intel486 SX microprocessor will be
adequate.

Also, when designing an Intel486 SX processor based system with an Intel487 SX math copro­
cessor, timing loops should be independent of clock speed and clocks per instruction. One way
to attain this is to implement these loops in hardware and not in software (for example, BIOS).

15.4. CONTROL REGISTERS

The following sections identify the new control registers and control register flags and fields that
have been added to the various versions of the 32-bit Intel Architecture. See Figure 2-5 for the
location of these flags and fields in the control registers.

15.4.1. New Pentium@ Pro Processor Control Flags

Control register CR4 contains three new control flags in the Pentium Pro processor:

•

•

•

PAE (bit 5)-Physical address extension. Enables paging mechanism to reference 36-bit
physical addresses when set; restricts physical addresses to 32 bits when clear (see Section
15.5.1.1., "Physical Memory Addressing Extension").

PGE (bit 7)-Page global enable. Inhibits flushing of frequently-used or shared pages on
task switches (see Section 15.5.1.2., "Global Pages".

PCE (bit 8)-Performance-monitoring counter enable. Enables execution of the RDPMC
instruction at any protection level.

The content of CR4 is OH following a hardware reset.

15.4.2. New Pentium@Processor Control Register and Flags

One new control register (CR4) was defined for the Pentium processor. Register CR4 contains
flags that enable certain new extensions provided in the Pentium processor:

• "1\11"-0 'T~""'nnl Q(\Q;::;: ~ rt,: .. """"" .. t:t. ~,..... C" "0 1""" ,.. + .f r~ ,.. l ~ +o...--., + .rI ;

•

•

15-6

"..L.~"""-" ..L.LLYU.I.-UVUV .l.H.VU\.I "'Al.'-'.l.l.:l..LV.l.lO • .l....JJ.u. ... U.l."'.., ..,UppVl. ... LVI. (..I. Y.l.J.LUUJ. ..LJ..ll,V.L.l.UP" .1..1.&..1.5 .1..1.1

virtual-8086 mode (see Section 12.3., "Interrupt and Exception Handling in Virtual-8086
Mode").

PVI-Protected-mode virtual interrupts. Enables support for a virtual interrupt flag in
protected mode (see Section 12.4., "Protected Mode Virtual Interrupts").

TSD-Time stamp disable. Restricts the execution of the RDTSC instruction to
procedures running at privileged level O.

I

•

•

•

INTEL ARCHITECTURE COMPATIBILITY

DE-Debugging extensions. Causes an undefined opcode (#UD) exception to be
generated when debug registers DR4 and DR5 are references for improved performance
(see Section 10.2.2., "Debug Registers DR4 and DR5").

PSE-Page size extensions. Enables 4-MByte pages when set (see Section 3.6.1., "Paging
Options").

MCE-Machine check enable. Enables the machine check exception, allowing exception
handling for certain hardware error conditions (see Chapter 16, Machine Check
Architecture).

15.4.3. New Intel486™ Processor Control Register Flags

Five new flags are defined in the CRO register for the Inte1486 processor:

•

•
•

•

•

NE-Numeric error. Enables the standard mechanism for reporting floating-point numeric
errors.

WP-Write protect. Write-protects user-level pages against supervisor-mode accesses.

AM-Alignment mask. Controls whether alignment checking is performed. Operates in
conjunction with the AC (Alignment Check) flag.

NW-Not write-through. Enables write-throughs and cache invalidation cycles when clear
and disables invalidation cycles and write-throughs that hit in the cache when set.

CD-Cache disable. Enables the internal cache when clear and disables the cache when
set.

Two new flags have been defined in the CR3 register:

•

•

PCD-Page-level cache disable. The state of this flag is driven on the PCD# pin during
bus cycles that are not paged, such as interrupt acknowledge cycles, when paging is
enabled. The PCD# pin is used to control caching in an external cache on a cycle-by-cycle
basis.

PWT-Page-level write through. The state of this flag is driven on the PWT# pin during
bus cycles that are not paged, such as interrupt acknowledge cycles, when paging is
enabled. The PWT# pin is used to control write through in an external cache on a cycle-by­
cycle basis.

15.5. MEMORY MANAGEMENT FACILITIES

The following sections describe the new memory management facilities available in the various
Intel Architecture processors and some compatibility differences.

I
15-7

INTEL ARCHITECTURE COMPATIBILITY

15.5.1. New Memory Management Control Flags

The Pentium Pro processor provides three new memory management features: physical memory
addressing extension, the global bit in page table entries, and general support for larger page
sizes. These features are only available when operating in protected mode.

15.5.1.1. PHYSICAL MEMORY ADDRESSING EXTENSION

The new PAE (physical address extension) flag in control register CR4, bit 5, enables 4 addi­
tional address lines on the processor, allowing 36-bit physical addresses. This option can only
be used when paging is enabled, using a new page table mechanism provided to support the
larger physical address range (see Section 3.8., "Physical Address Extension").

15.5.1.2. GLOBAL PAGES

The new PGE (page global enable) flag in control register CR4, bit 7, provides a mechanism for
preventing frequently used pages from being flushed from the translation lookaside buffer
(TLB). When this flag is set, frequently used pages (such as pages containing kernel procedures
or common data tables) can be marked global by setting the global flag in a page-directory or
page-table entry. On a task switch or a write to control register CR3 (which normally causes the
TLBs to be flushed), the entries in the TLB marked global are not flushed. Marking pages global
in this manner prevents unnecessary reloading of the TLB due to TLB misses on frequently used
pages. See Section 3.7., "Translation Lookaside Buffers (TLBs)" for a detailed description of
this mechanism.

15.5.1.3. LARGER PAGE SIZES

The Pentium Pro processor supports large page sizes. This facility is enabled with the PSE (page
size extension) flag in control register CR4, bit 4. When this flag is set, the processor supports
either 4-KByte or 4-MByte page sizes when normal paging is used and 4-KByte and 2-MByte
page sizes when the physical address extension is used. See Section 3.6.1., "Paging Options" for
more information'about large page sizes.

15.5.2. Cache Control Flags on the Pentium@ Pro, Pentium@, and
Intel486™ Processors

The CD and NW flags in control register CRO implement a writeback strategy for the data cache
of the Pentium Pro and Pentium processor. On the Tntel4R6 processor, these values implement a
write-through strategy. See Table 15-5 for a comparison of these bits on the Pentium Pro,
Pentium, and Inte1486 processors. For complete information on caching, see Chapter 11,
Memory Cache Control.

15-8

I

INTEL ARCHITECTURE COMPATIBILITY

15.5.3. Descriptor Types and Contents

Operating-system code that manages space in descriptor tables often contains an invalid value
in the access-rights field of descriptor-table entries to identify unused entries. Access rights
values of 80H and OOH remain invalid for the Pentium Pro, Pentium, Inte1486, Inte1386, and
Intel 286 processors. Other values that were invalid on the Intel 286 processor may be valid on
the 32-bit processors because uses for these bits have been defined.

Table 15-5. Cache Mode Differences Between the Pentium<lilpro Processor, Pentium<lil, and
Intel486™ Processors

CD NW Pentium<lil Pro Processor and Pentium Intel486™ Processor
Processor

0 0 Normal highest performance cache Normal highest performance cache
operation. operation.
Read hits access the cache. Read hits access the cache.

Read misses may cause replacements. Read misses may cause replacements.

These lines will enter the Exclusive or
Shared state under the control of the
WBIWT# pin.

Write hits update the cache. Write hits update the cache.

Only writes to shared lines and write All writes appear externally.
misses appear externally

Writes to Shared lines can be changed to
the Exclusive State under the control of
the WB/WT# pin.

Invalidations are allowed. Invalidations are allowed.

0 1 Invalid Operation (#GP) Invalid Operation (#GP)

1 0 Cache disabled. Memory consistency Cache disabled. Memory consistency
maintained. Contents locked in cache. maintained. Contents locked in cache.
Read hits access the cache. Read hits access the cache.

Read misses do not cause replacement. Read misses do not cause replacement.

Write hits update the cache. Write hits update the cache.

Only writes to Shared lines and write All writes update external memory
misses update external memory

Writes to Shared lines can be changed to
the Exclusive State under the control of
the WB/WT# pin.

Invalidations are allowed. Invalidations are allowed.

1 1 Cache disabled. Memory consistency not Cache disabled. Memory consistency
maintained. not maintained.
Read hits access the cache. Read hits access the cache.

1 1 Cache disabled. Memory consistency not Cache disabled. Memory consistency
maintained. not maintained.
Read hits access the cache. Read hits access the cache.

I
15-9

INTEL ARCHITECTURE COMPATIBILITY

Table 15-5. Cache Mode Differences Between the Pentium®pro Processor, Pentium®, and
Intel486™ Processors (Contd.)

CD NW Pentium® Pro Processor and Pentium Intel486™ Processor
Processor

Read misses do not cause replacement. Read misses do not cause replacement.

Write hits update the cache, but do not Write hits update the cache, but do not
access memory. access memory.

Write hits will cause Exclusive State lines
to change to Modified State

Shared lines will remain in the Shared
state after write hits.

Write misses access memory. Write misses access memory.

Inquire and Invalidation Cycles do not Inquire and Invalidation Cycles do not
effect the cache state or contents. effect the cache state or contents.

This is the state after reset. Th is is the state after reset.

15.5.4. Changes in Segment Descriptor Loads

On the Inte1386 processor, loading a segment descriptor always causes a locked read and write
to set the accessed bit of the descriptor. On the Pentium Pro, Pentium, and Intel486 processors,
the locked read and write occur only if the bit is not already set.

15.6. DEBUG FACILITIES

The Pentium Pro and Pentium processors includes extensions to the Intel486 processor debug­
ging support for breakpoints. To use the new breakpoint features, it is necessary to set the DE
flag in control register CR4.

15.6.1. Differences in Debug Register DR6

It is not possible to write a 1 to reserved bit 12 in debug status register DR6 on the Pentium Pro
and Pentium processors; however, it is possible to write a 1 in this bit on the Intel486 processor.
See Section 15.3.1., "Integer Unit Initialization on Power-Up or Reset" for the different setting
nf thic;: TP.O"lc;:tPT fnllnu,.ina ~ nnu.TPT_lln nr h~rrh,lT~rp TPfo;:pt
~- ---~ --o-~--- -... -- ... ··--.... 0 -r ··-- -r - - _-_ .. _-- -_ __ .

15.6.2. Differences in Debug Register DR7

The Pentium Pro and Pentium processors determines the type of breakpoint access by the RIWO
through RIW3 fields in debug control register DR7 as follows:

15-10

I

INTEL ARCHITECTURE COMPATIBILITY

00 Break on instruction execution only.

01 Break on data writes only.

10 Undefined if the DE flag in control register CR4 is cleared; break on I/O reads or writes
but not instruction fetches if the DE flag in control register CR4 is set.

11 Break on data reads or writes but not instruction fetches.

On the Pentium Pro and Pentium processors, reserved bits 11, 12, 14 and 15 are hard-wired to
O. On the Intel486 processor, however, bit 12 can be set. See Section 15.3.1., "Integer Unit
Initialization on Power-Up or Reset" for the different setting of this register following a power­
up or hardware reset.

15.6.3. Debug Registers DR4 and DR5

Although the DR4 and DR5 registers are documented as reserved, previous generations of
processors alia sed references to these registers to debug registers DR6 and DR7, respectively.
When debug extensions are not enabled (the DE flag in control register CR4 is cleared), the
Pentium Pro and Pentium processors remain compatible with existing software by allowing
these aliased references. When debug extensions are enabled (the DE flag is set), attempts to
reference registers DR4 or DR5 will result in an invalid-opcode exception (#UD).

15.6.4. Test Registers

The implementation of test registers on the Intel486 processor used for testing the cache and
TLB has been redesigned using MSRs on the Pentium Pro and Pentium processors. (Note that
MSRs used for this function are different on the Pentium Pro and Pentium processors.) The
MOV to and from test register instructions generate invalid-opcode exceptions (#UD) on the
Pentium Pro processor.

15.6.5. Recognition of Breakpoints

For the Pentium processor, it is recommended that debuggers execute the LGDT instruction
before returning to the program being debugged to ensure that breakpoints are detected. This
operation does not need to be performed on the Pentium Pro, Inte1486, or Inte1386 processors.

15.7. EXCEPTIONS

This section describes the new exceptions added to the 32-bit Intel Architecture processors and
implementation differences in existing exception handling. See Chapter 5, Interrupt and Excep­
tion Handling, for a detailed description of the Pentium Pro processor exceptions.

I
15-11

INTEL ARCHITECTURE COMPATIBILITY

15.7.1. New Penti um@ Pro Processor Exception Conditions

No new exceptions were added to the Pentium Pro processor. The set of available exceptions is
the same as for the Pentium processor. The following exception conditions were added to the
Pentium Pro processor:

• Machine-check exception (#MC, interrupt 18)-New exception conditions. Many
exception conditions have been added to the machine-check exception and a new archi­
tecture has been added for handling and reporting on hardware errors. See Chapter 16,
Machine Check Architecture, for a detailed description of the new conditions.

15.7.2. New Pentium@ Processor Exceptions and/or Exception
Conditions

The following exceptions and/or exception conditions were added to the Pentium processor:

•

•

•

General-protection exception (#GP, interrupt 13)-

New exception condition added. An attempt to write a 1 to a reserved bit position of a
special register causes a general-protection exception to be generated.

Change in writes using the CS register prefix. Following a switch from protected mode
to real-address mode, the Intel486 processor requires a far jump control-flow
instruction to be executed prior to performing a write using the CS segment register
prefix (for example, MOV CS:[O], EAX). The far jump in protected mode on the
Intel486 processor reloads the CS access rights to be writable. If this requirement is
not met, a general-protection exception (#GP) occurs. This requirement has been
eliminated on the Pentium processor, which leaves the access rights unchanged and
ignores code segment access right protection checks in real-address mode. As a result,
the code segment register can be used as a prefix in a write operation in real-address
mode without generating an exception. For upwards and downwards compatibility,
however, programmers may wish to include the far jump instruction prior to any writes
to the code segment in real-address mode. The code segment can not be written to in
protected mode on either the Pentium, and Intel486 processors.

Page-fault exception (#PF, interrupt 14)-New exception condition added. When a 1 is
detected in any of the reserved bit positions of a page-table entry, page-directory entry, or
page directory pointer during address translation, a page fault exception is generated.

Machine-check exception (#MC, interrupt 18)-New exception. This exception reports
parity and other hardware errors. It is a model-specific exception and may not be
implemented or implemented differently in future processors. The MCE flag in control
register CR4 enables the machine-check exception. When this bit is clear (which it is at
reset), the processor inhibits generation of the machine-check exception.

15-12

I

INTEL ARCHITECTURE COMPATIBILITY

15.7.3. New Intel486™ Processor Exception

The following exception was added to the Intel486 processor:

• Alignment-check exception (#AC, interrupt 17)-New exception. Reports unaligned
memory references when alignment checking is being performed.

15.7.4. New Intel386™ Processor Exceptions and/or Exception
Conditions

The following exceptions and/or exception conditions were added to the Inte1386 processor:

•

•

•

•

Divide-error exception (#DE, interrupt 0)-

Change in exception handling. Divide-error exceptions on the Inte1386 processors
always leave the saved CS:IP value pointing to the instruction that failed. On the 8086
processor, the CS:IP value points to the next instruction.

Change in exception handling. The Inte1386 processors can generate the largest
negative number as a quotient for the IDIV instruction (80H and 8000H). The 8086
processor generates a divide-error exception instead.

Invalid-opcode exception (#UD, interrupt 6)-New exception condition added. Improper
use of the LOCK instruction prefix can generate an invalid-opcode exception.

Page-fault exception (#PF, interrupt 14)-New exception condition added. If paging is
enabled in a 16-bit program, a page-fault exception can be generated as follows. Paging
can be used in a system with 16-bit tasks if all tasks use the same page directory. Because
there is no place in a 16-bit TSS to store the PDBR register, switching to a 16-bit task does
not change the value of the PDBR register. Tasks ported from the Intel 286 processor
should be given 32-bit TSSs so they can make full use of paging.

General-protection exception (#GP, interrupt 13)-New exception condition added. The
Inte1386 processor sets a limit of 15 bytes on instruction length. The only way to violate
this limit is by putting redundant prefixes before an instruction. A general-protection
exception is generated if the limit on instruction length is violated. The 8086 processor has
no instruction length limit.

15.7.5. Machine-Check Architecture

The Pentium Pro processor has added a new architecture for handling and reporting on machine­
check exceptions. This architecture (described in detail in Chapter 16, Machine Check
Architecture) greatly expands the ability of the processor to report on internal hardware errors.

I
15-13

INTEL ARCHITECTURE COMPATIBILITY intet

15.7.6. Priority OF Exceptions

The priority of exceptions are broken down into several major categories:

1. Traps on the previous instruction

2. External interrupts

3. Faults on fetching the next instruction

4. Faults in decoding the next instruction

5. Faults on executing an instruction

There are no changes in the priority of these major categories between the different processors,
however, exceptions within these categories are implementation dependent and may change
from processor to processor.

15.8. INTERRUPTS

The following differences in handling interrupts are found among the Intel Architecture
processors.

15.8.1. Interrupt Propagation Delay

External hardware interrupts on the 'Pentium Pro processor may be recognized on different
instruction boundaries than on the Pentium, Inte1486, and Inte1386 processors due to the super­
scaler designs of the Pentium Pro and Pentium processors. Therefore, the EIP pushed onto the
stack when servicing the interrupt on the Pentium Pro may be different then that for the Pentium,
Inte1486, and Inte1386 processors.

15.8.2. NMI Interrupts

After an NMI interrupt is recognized by the Pentium Pro, Pentium, Inte1486, Inte1386, and Intel
286 processors, the NMI interrupt is masked until the first IRET instruction is executed, unlike
the 8086 processor.

15.8.3. lOT Limit

The LIDT instruction can be used to set a limit on the size of the IDT. A double-fault exception
(#DF) is generated if an interrupt or exception attempts to read a vector beyond the limit. Shut­
down then occurs on the 32-bit Intel Architecture processors if the double-fault handler vector
is beyond the limit. (The 8086 processor does not have a shutdown mode nor a limit.)

15-14

I

INTEL ARCHITECTURE COMPATIBILITY

15.9. TASK SWITCHING AND TSS

This section identifies the implementation differences of task switching, additions to the TSS
and the handling of TSSs and TSS segment selectors.

15.9.1. Pentium® Pro and Pentium® Processor TSS

When the virtual mode extensions are enabled (by setting the VME flag in control register CR4),
the TSS in the Pentium Pro and Pentium processors contain an interrupt redirection bit map,
which is used in virtual-8086 mode to redirect interrupts back to an 8086 program.

15.9.2. TSS Selector Writes

During task state saves, the Intel486 processor writes 2-byte segment selectors into a 32-bit TSS,
leaving the upper 16 bits undefined. For performance reasons, the Pentium Pro and Pentium
processors writes 4-byte segment selectors into the TSS with the upper 2 bytes being O. For
compatibility reasons, code should not depend on the value of the upper 16 bits of the selector
in the TSS.

15.9.3. Order of ReadsIWrites to The TSS

The order of reads and writes into the TSS is processor dependent. The Pentium Pro and Pentium
processor may generate different page-fault addresses in control register CR2 in the same TSS
area than the Intel486 and Inte1386 processors, if a TSS crosses a page boundary (which is not
recommended).

15.9.4. Using A 16-Bit TSS with 32-Bit Constructs

Task switches using 16-bitTSSs should be used only for pure 16-bit code. Any new code written
using 32-bit constructs (operands, addressing, or the upper word of the EFLAGS register)
should use only 32-bit TSSs. This is due to the fact that the 32-bit processors do not save the
upper 16 bits ofEFLAGS to a 16-bit TSS. A task switch back to a 16-bit task that was executing
in virtual mode will never re-enable the virtual mode, as this flag was not saved in the upper half
of the EFLAGS value in the TSS. Therefore, it is strongly recommended that any code using
32-bit constructs use a 32-bit TSS to ensure correct behavior in a multitasking environment.

15.9.5. Differences in 1/0 Map Base Addresses

The Intel486 processor considers the TSS segment to be a 16-bit segment and wraps around the
64K boundary. Any I/O accesses check for permission to access this I/O address at the I/O base
address plus the I/O offset. If the I/O map base address exceeds the specified limit of ODFFFH,
an I/O access will wrap around and obtain the permission for the I/O address at an incorrect

I
15-15

INTEL ARCHITECTURE COMPATIBILITY

location within the TSS. A TSS limit violation does not occur in this situation on the Intel486
processor. However, the Pentium Pro and Pentium processors consider the TSS to be a 32-bit
segment and a limit violation occurs when the 110 base address plus the 110 offset is greater than
the TSS limit. By following the recommended specification for the 110 base address to be less
than ODFFFH, the Intel486 processor will not wrap around and access incorrect locations within
the TSS for 110 port validation and the Pentium Pro and Pentium processors will not experience
general-protection exceptions (#GP). Figure 15-1 demonstrates the different areas accessed by
the Intel486 and the Pentium Pro and Pentium processors.

Intel486™ Processor

,------- FFFFH

I/O Map I
Base Addres ---.. FFFFH

1---L------1

FFFFH + 10H = FH
for I/O Validation

OH 1.--____ --'

I/O access at port 10H checks
bitmap at I/O map base address
FFFFH + 10H = offset 10H.
Offset FH from beginning of
TSS segment results because
wraparound occurs.

Pentium@ Pro and Pentium Processors

C: FFFFH + 10H = Outside Segment
for I/O Validation

FFFFH

I/O Map I
Base Addres ---.. FFFFH

1----'------1

OH 1.--____ --'

1/0 access at port 10H checks
bitmap at 1/0 address FFFFH + 10H,
which exceeds segment limit.
Wrap around does not occur,
general-protection exception (#GP)
occurs.

Figure 15-1. 1/0 Map Base Address Differences

15.10. CACHE MANAGEMENT

The Pentium Pro processor includes two levels of internal caches: Ll (level 1) and L2 (level 2).
The L1 cache is divided into a instruction cache and a data cache; the L2 cache is a general­
purpose cache. See Section 11.1., "Internal Caches, TLBs, and Buffers" for a description of
these caches.

The Pentium processor includes separate level 1 instruction and data caches. The data cache
supports a writeback (or alternatively write-through, on a line by line basis) policy for memory
updates. Refer to Chapter 18 and the Pentium® Processor Data Book for more information about
the organization and operation of the Pentium processor caches.

The Intel486 processor includes a single level 1 cache for both instructions and data.

15-16

I

INTEL ARCHITECTURE COMPATIBILITY

The meaning of the CD and NW flags in control register CRO have been redefined for the
Pentium Pro and Pentium processors. For these processors, the recommended value (OOB)
enables writeback for the data cache of the Pentium processor and for the Ll data cache and L2
cache of the Pentium Pro processor. In the Intel486 processor, setting these flags to (OOB)
enables write-through for the cache.

External system hardware can force the Pentium processor to disable caching or to use the write­
through cache policy should that be required. Refer to Chapter 18 and the Pentium® Processor
Data Book for more information about hardware control of the Pentium processor caches. In the
Pentium Pro processor, the MTRRs can be used to override the CD and NW flags (see Table
11-4).

The Pentium Pro and Pentium processors support page-level cache management in the same
manner as the Intel486 processor by using the PCD and PWT flags in control register CR3, the
page-directory entries, and the page-table entries. The Intel486 processor, however, is not
affected by the state of the PWT flag since the internal cache of the Intel486 processor is a write­
through cache.

15.10.1. Self Modifying Code with Cache Enabled

On the Intel486 processor, a write to an instruction in the cache will modify it in both the cache
and memory. If the instruction was prefetched before the write, however, the old version of the
instruction could be the one executed. To prevent this problem, it is necessary to flush the
instruction prefetch unit of the Intel486 processor by coding a jump instruction immediately
after any write that modifies an instruction. The Pentium Pro and Pentium processors, however,
check whether a write may modify an instruction that has been prefetched for execution. This
check is based on the linear address of the instruction. If the linear address of an instruction is
found to be present in the prefetch queue, the Pentium Pro and Pentium processors flush the
prefetch queue, eliminating the need to code ajump instruction after any writes that modify an
instruction.

Because the linear address of the write is checked against the linear address of the instructions
that have been prefetched, special care must be taken for self-modifying code to work correctly
when the physical addresses of the instruction and the written data are the same, but the linear
addresses differ. In such cases, it is necessary to execute a serializing operation to flush the
prefetch queue after the write and before executing the modified instruction. See Section 7.3.,
"Serializing Instructions" for more information on serializing instructions.

I
15-17

INTEL ARCHITECTURE COMPATIBILITY

NOTE

The check on linear addresses described above is not in practice a concern for
compatibility. Applications that include self-modifying code use the same
linear address for modifying and fetching the instruction. System software,
such as a debugger, that might possibly modify an instruction using a
different linear address than that used to fetch the instruction must execute a
serializing operation, such as IRET, before the modified instruction is
executed.

15.11. PAGING

This section identifies enhancements made to the paging mechanism and implementation differ­
ences in the paging mechanism for various Intel Architecture processors.

15.11.1. Pentium@pro and Pentium® Processor Paging

The Pentium Pro and Pentium processors provide an extension to the memory
management/paging functions of the Intel486 processor to support larger page sizes (see Section
3.6.1., "Paging Options").

15.11.2. Intel486™ Processor Paging

Two flags were introduced in the Intel486 processor to control the caching of pages:

• PCD (page-level cache disable) flag-Controls caching on a page-by-page basis .

• PWT (page-level write-through) flag-Controls the write-throughlwriteback caching
policy on a page-by-page basis. Since the internal cache of the Intel486 processor is a
write-through cache, it is not affected by the state of the PWT flag.

15.11.3. Enabling and Disabling Paging

Paging is enabled and disabled by loading a value into control register CRO that modifies the PG
flag. For backward and forward compatibility with all Intel Architecture processors, Intel
recommends that the following operations be performed when enabling or disabling paging:

1. Execute a MOV eRo, REG instruction to either set (enable paging) or clear (disable
paging) the PG flag.

2. Execute a near JMP instruction.

The sequence bounded by the MOV and JMP instructions should be identity mapped (that is,
the instructions should reside on a page whose linear and physical addresses are identical).

For the Pentium Pro processor, the MOV CRO, REG instruction is serializing, so the jump oper­
ation is not required.

15-18

I

INTEL ARCHITECTURE COMPATIBILITY

15.12. STACK OPERATIONS

This section identifies the differences in the stack mechanism for the various Intel Architecture
processors.

15.12.1. Selector Pushes and Pops

When pushing a segment selector on to the stack, the Intel486 processor writes 2 bytes onto
4-byte stacks and decrements ESP by 4. The Pentium Pro and Pentium processors write 4 bytes
with the upper 2 bytes being zeros.

When popping a segment selector from the stack, the Intel486 processor reads only 2 bytes. The
Pentium Pro and Pentium processors read 4 bytes and discard the upper 2 bytes. This operation
may have an effect if the ESP is close to the stack segment limit. On the Pentium Pro and
Pentium processors, stack location at ESP plus 4 may be above the stack limit, in which case a
stack fault exception (#SS) will be generated. On the Intel486 processor, stack location at ESP
plus 2 may be less than the stack limit and no exception is generated.

15.12.2. Error Code Pushes

The Intel486 processor implements the error code pushed on the stack as a l6-bit value. When
pushed onto a 32-bit stack, the Intel486 processor only pushes 2 bytes and updates ESP by 4.
The Pentium Pro and Pentium processors' error code is a fu1132 bits with the upper 16 bits set
to zero. The Pentium Pro and Pentium processors, therefore, push 4 bytes and update ESP by 4.
Any code that relies on the state of the upper 16 bits may produce inconsistent results.

15.12.3. Fault Handling Effects on the Stack

During the handling of certain instructions, such as CALL and PUSHA, faults may occur in
different sequences for the different processors. For example, during far calis, the Intel486
processor pushes the old CS and EIP before a possible branch fault is resolved. A branch fault
is a fault from a branch instruction occurring from a segment limit or access rights violation. If
a branch fault is taken, the Intel486 processor will have corrupted memory below the stack
pointer. However, the ESP register is backed up to make the instruction restartable. The Pentium
Pro and Pentium processors issue the branch before the pushes. Therefore, if a branch fault does
occur, these processors do not corrupt memory below the stack pointer. This implementation
difference, however, does not constitute a compatibility problem, as only values at or above the
stack pointer are considered to be valid.

15.12.4. Interlevel RET/IRET From a 16-Bit Interrupt or Call Gate

If a call or interrupt is made from a 32-bit stack environment through a l6-bit gate, only 16 bits
of the old ESP can be pushed onto the stack. On the subsequent RETIIRET, the l6-bit ESP is
popped but the full 32-bit ESP is updated since control is being resumed in a 32-bit stack envi­
ronment. The Intel486 processor writes the SS selector into the upper 16 bits of ESP. The
Pentium Pro and Pentium processors write zeros into the upper 16 bits.

I
15-19

INTEL ARCHITECTURE COMPATIBILITY

15.13. MIXING 16- AND 32-BIT SEGMENTS

The features of the l6-bit Intel 286 processor are an object-code compatible subset of those of
the Pentium Pro processor. The D (default operation size) flag in segment descriptors indicates
whether the processor treats a code or data segment as a l6-bit or 32-bit segment; the B(default
stack size) flag in segment descriptors indicates whether the processor treats a stack segment as
a l6-bit or 32-bit segment.

The segment descriptors used by the Intel 286 processor are supported by the 32-bit Intel Archi­
tecture processors if the Intel-reserved word (highest word) of the descriptor is clear. On the
32-bit Intel Architecture processors, this word includes the upper bits of the base address and
the segment limit.

The segment descriptors for data segments, code segments, local descriptor tables (there are no
descriptors for global descriptor tables), and task gates are the same for the 16- and 32-bit
processors. Other l6-bit descriptors (TSS segment, call gate, interrupt gate, and trap gate) are
supported by the 32-bit processors. The 32-bit processors also have descriptors for TSS
segments, call gates, interrupt gates, and trap gates that support the 32-bit architecture. Both
kinds of descriptors can be used in the same system.

For those segment descriptors common to both 16- and 32-bit processors, clear bits in the
reserved word cause the 32-bit processors to interpret these descriptors exactly as an Intel 286
processor does, that is:

•

•

•

•

•

Base Address-The upper 8 bits of the 32-bit base address are clear, which limits base
addresses to 24 bits.

Limit-The upper 4 bits of the limit field are clear, restricting the value of the limit field to
64 Kbytes.

Granularity bit-The G (granularity) flag is clear, indicating the value of the 16-bit limit is
interpreted in units of 1 byte.

Big bit-In a data-segment descriptor, the B flag is clear in the segment descriptor used by
the 32-bit processors, indicating the segment is no larger than 64 Kbytes.

Default bit-In a code-segment descriptor, the D flag is clear, indicating 16-bit addressing
and operands are the default. In a stack-segment descriptor, the D flag is clear, indicating
use of the SP register (instead of the ESP register) and a 64-Kbyte maximum segment
limit.

For information on mixing 16- and 32-bit code in applications, see Chapter 13, Mixing 16-Bit
and 32-Bit Code.

15.14. SEGMENT AND ADDRESS WRAPAROUND

This section discusses differences in segment and address wraparound between the Pentium Pro,
Pentium, Inte1486, Inte1386, Intel 286, and 8086 processors.

15-20

I

INTEL ARCHITECTURE COMPATIBILITY

15.14.1. Segment Wraparound

On the 8086 processor, an attempt to access a memory operand that crosses offset 65,535 or
OFFFFH or offset 0 (for example, moving a word to offset 65,535 or pushing a word when the
stack pointer is set to 1) causes the offset to wrap around modulo 65,536 or OlOOOOH. With the
Intel 286 processor, any base and offset combination that addresses beyond 16 MBytes wraps
around to the 1 MByte of the address space. The Pentium Pro, Pentium, Inte1486, and Intel386
processors in real-address mode generate an exception in these cases:

•

•

A general-protection exception (#GP) if the segment is a data segment (that is, if the CS,
DS, ES, FS, or GS register is being used to address the segment).

A stack-fault exception (#SS) if the segment is a stack segment (that is, if the SS register is
being used).

An exception to this behavior occurs when a stack access is data aligned, and the stack pointer
is pointing to the last aligned piece of data that size at the top of the stack (ESP is FFFFFFFCH).
When this data is popped, no segment limit violation occurs and the stack pointer will wrap
around to O.

The address space of the Pentium Pro, Pentium, and Inte1486 processors may wraparound at 1
MByte in real-address mode. An external A20M# pin forces wraparound if enabled. On Intel
8086 processors, it is possible to specify addresses greater than 1 MByte. For example, with a
selector value FFFFH and an offset of FFFFH, the effective address would be lOFFEFH (1
MByte plus 65519 bytes). The 8086 processor, which can form addresses up to 20 bits long,
truncates the uppermost bit, which "wraps" this address to FFEFH. However, the Pentium Pro,
Pentium, and Inte1486 processors do not truncate this bit if A20M# is not enabled.

If a stack operation wraps around the address limit, shutdown occurs. (The 8086 processor does
not have a shutdown mode nor a limit.)

15.15. WRITE BUFFERS AND MEMORY ORDERING

The Pentium Pro processor provides a write buffer for temporary storage of writes (stores) to
memory (see Section 11.10., "Write Buffer"). Writes stored in the write buffer are always
written to memory in program order.

The Pentium processor has two write buffers, one corresponding to each of the pipelines. Writes
in these buffers are always written to memory in the order they were generated by the processor
core.

It should be noted that only memory writes are buffered and 110 writes are not. The Pentium Pro,
Pentium, and Inte1486 processors do not synchronize the completion of memory writes on the
bus and instruction execution after a write. The OUT instruction or a serializing instruction
needs to be executed to synchronize writes with the next instruction (see Section 7.3., "Serial­
izing Instructions").

The Pentium Pro processor uses processor ordering to maintain consistency in the order that data
is read (loaded) and written (stored) in a program and the order the processor actually carries out
the reads and writes. With this type of ordering, reads can be carried out speculatively and in any

I
15-21

INTEL ARCHITECTURE COMPATIBILITY

order, reads can pass buffered writes, and writes to memory are always carried out in program
order. (See Section 7.2., "Memory Ordering" for more information about processor ordering.)

No re-ordering of reads occurs on the Pentium processor. Specifically, the write buffers are
flushed before the IN instruction is executed. No reads (as a result of cache miss) are reordered
around previously generated writes sitting in the write buffers. The implication of this is that the
write buffers will be flushed or emptied before a subsequent bus cycle is run on the external bus.

On the Intel486 processor, under certain conditions, a memory read will go onto the external bus
before the memory writes pending in the buffer even though the writes occurred earlier in the
program execution. A memory read will only be reordered in front of all writes pending in the
buffers if all writes pending in the buffers are cache hits and the read is a cache miss. Under these
conditions, the Intel486 processor will not read from an external memory location that needs to
be updated by one of the pending writes.

Locked bus cycles are used for read-modify-write accesses to memory. During a locked bus
cycle, the Intel486 processor will always access external memory, it will never look for the loca­
tion in the on-chip cache. All data pending in the Intel486 processor's write buffers will be
written to memory before a locked cycle is allowed to proceed to the external bus. Thus, the
locked bus cycle can be used for eliminating the possibility of reordering read cycles on the
Intel486 processor. The Pentium processor does check its cache on a read-modify-write access
and, if the cache line has been modified, writes the contents back to memory before locking the
bus. The Pentium Pro processor writes to its cache on a read-modify-write operation (if the
access does not split across a cache line) and does not write back to system memory. If the access
does split across a cache line, it locks the bus and accesses system memory.

I/O reads are never reordered in front of buffered memory writes on the Intel486 processor. This
ensures an update of all memory locations before reading the status from an I/O device.

15.16. BUS LOCKING

The Intel 286 processor performs the bus locking differently than the Intel Pentium Pro,
Pentium, Inte1486, and Inte1386 processors. Programs which use forms of memory locking
specific to the Intel 286 processor may not run properly when run on later processors.

A locked instruction is guaranteed to lock only the area of memory defined by the destination
operand, but may lock a larger memory area. For example, typical 8086 and Intel 286 configu­
rations lock the entire physical memory space. Programmers should not depend on this.

On the Intel 286 processor, the LOCK prefix is sensitive to IOPL. If the CPL is greater than the
IOPL, a general-protection exception (#GP) is generated. On the Inte1386 DX, Inte1486, and
PentiutTI, and Pentium Pro processors, no check against IOPL is performed.

The Pentium processor automatically asserts the LOCK# signal when acknowledging external
interrupts. After signaling an interrupt request, an external interrupt controller may use the data
bus to send the interrupt vector to the processor. After receiving the interrupt request signal, the
processor asserts LOCK# to insure that no other data appears on the data bus until the interrupt
vector is received. This bus locking does not occur on the Pentium Pro processor.

15-22

I

INTEL ARCHITECTURE COMPATIBILITY

15.17. BUS HOLD

Unlike the 8086 and Intel 286 processors, but like the Inte1386 and Intel486 processors, the
Pentium Pro and Pentium processors respond to requests for control of the bus from other poten­
tial bus masters, such as DMA controllers, between transfers of parts of an unaligned operand,
such as two words which form a doubleword. Unlike the Inte1386 processor, the Pentium Pro,
Pentium and Intel486 processors respond to bus hold during reset initialization.

15.18. TWO WAYS TO RUN INTEL 286 PROCESSOR TASKS

When porting 16-bit programs to the Pentium Pro processor, there are two approaches
to consider:

•

•

Porting an entire 16 software system to a 32-bit processor, complete with the old operating
system, loader, and system builder. Here, all tasks will have 16-bit TSSs. The 32-bit
processor is being used as if it were a faster version of the 16-bit processor.

Porting selected 16-bit applications to run in a 32-bit processor environment with a 32-bit
operating system, loader, and system builder. Here, the TSSs used to represent 286 tasks
should be changed to 32-bit TSSs. It is possible to mix 16 and 32-bit TSSs, but the benefits
are small and the problems are great. All tasks in a 32-bit software system should have 32-
bit TSSs. It is not necessary to change the 16-bit object modules themselves; TSSs are
usually constructed by the operating system, by the loader, or by the system builder. See
Chapter 13, Mixing 16-Bit and 32-Bit Code, for more detailed information about mixing
16-bit and 32-bit code.

Because the 32-bit processors use the contents of the reserved word of 16-bit segment descrip­
tors, 16-bit programs that place values in this word may not run correctly on the 32-bit
processors.

15.19. MODEL-SPECIFIC EXTENSIONS TO THE INTEL
ARCHITECTURE

Certain extensions to the Intel Architecture are specific to a processor or family of Intel Archi­
tecture processors and may not be implemented or implemented in the same way in future
processors. The following sections describe these model-specific extensions. The CPUID
instruction indicates the availability of some of the model-specific features of the Pentium Pro
processor.

15.19.1. Model-Specific Registers

The Pentium processor introduced a set of model-specific registers (MSRs) for use in control­
ling hardware functions and performance monitoring. To access these MSRs, two new instruc­
tions were added to the Intel Architecture: read MSR (RDMSR) and write MSR (WRMSR). The

I
15-23

INTEL ARCHITECTURE COMPATIBILITY

MSRs in the Pentium processor are not guaranteed to be duplicated or provided in the next
generation Intel Architecture processors.

The Pentium Pro processor greatly increased the number of MSRs available to software. See
Appendix C, Model-Specific Registers (MSRs) for a complete list of the available MSRs. The
new registers control the debug extensions, the performance counters, the machine-check
exception capability, the machine check architecture, and the MTRRs. These registers are acces­
sible using the RDMSR and WRMSR instructions. Specific information on some of these new
MSRs is provided in the following sections. As with the Pentium processor MSR, the Pentium
Pro processor MSRs are not guaranteed to be duplicated or provided in the next generation Intel
Architecture processors.

15.19.2. RDMSR and WRMSR Instructions

The RDMSR (read model-specific register) and WRMSR (write model-specific register)
instructions recognize a much larger number of model-specific registers in the Pentium Pro
processor. (See "RDMSR-Read from Model Specific Register" and "WRMSR-Write to
Model Specific Register" in Chapter 11, Instruction Set Reference, ofthe Pentium® Pro Family
Developer's Manual, Volume 2 for more information about these instructions.

15.19.3. Memory Type Range Registers

Memory type range registers (MTRRs) are a new feature introduced in the Pentium Pro
processor that allow the processor to optimize memory operations for different types of memory,
such as RAM, ROM, frame buffer memory, and memory-mapped I/O.

MTRRs are MSRs that contain an internal map of how physical address ranges are mapped to
various types of memory. The processor uses this internal memory map to determine the cache­
ability of various physical memory locations and the optimal method of accessing memory loca­
tions. For example, if a memory location is specified in an MTRR as write-through memory, the
processor handles accesses to this location as follows. It reads data from that location in lines
and caches the read data or maps all writes to that location to the bus and updates the cache to
maintain cache coherency. In mapping the physical address space with MTRRs, the processor
recognizes five types of memory: uncacheable (UC), uncacheable, speculatable, write­
combining (USWC), write-through (WT), write-protected (WP), and writeback (WB).

Earlier Intel Architecture processors (such as the Intel486 and Pentium processors) used the
KEN# (cache enable) pin and external logic to maintain an external memory map and signal
cacheable accesses to the processor. The MTRR mechanism simplifies hardware designs by
eliminating the KEN# pin and the eXiernallogic required to drive it

See Chapter 8, Processor Management and Initialization, and Appendix C, Model-Specific
Registers (MSRs) for more information on the MTRRs.

15-24

I

INTEL ARCHITECTURE COMPATIBILITY

15.19.4. Machine Check Exception and Architecture

The Pentium processor introduced a new exception called the machine-check exception (#MC,
interrupt 18). This exception is used to detect hardware-related errors, such as a parity error on
a read cycle.

The Pentium Pro processor extends the types of errors that can be detected and that generate a
machine-check exception. It also provides a new machine-check architecture for recording
information about a machine-check error and provides extended recovery capability.

The machine-check architecture provides several banks of reporting registers for recording
machine-check errors. Each bank of registers is associated with a specific hardware unit in the
processor. The primary focus of the machine checks is on bus and interconnect operations;
however, checks are also made of translation lookaside buffer (TLB) and cache operations.

The machine-check architecture can correct some errors automatically and allow for reliable
restart of instruction execution. It also collects sufficient information for software to use in
correcting other machine errors not corrected by hardware.

See Chapter 16, Machine Check Architecture for more information on the machine-check excep­
tion and the machine-check architecture.

15.19.5. Performance Monitoring Counters

The Pentium Pro processor provides two performance-monitoring counters for use in moni­
toring internal hardware operations. These counters are event counters that can be programmed
to count any of approximately 100 different types of events, such as the number of instructions
decoded, number of interrupts received, or number of cache loads. Appendix B, Performance
Monitoring Counters lists all the events that can be counted. The counters are set up, started, and
stopped using two MSRs and the RDMSR and WRMSR instructions. The current count for a
particular counter can be read using the new RDPMC instruction.

The performance-monitoring counters are useful for debugging programs, optimizing code,
diagnosing system failures, or refining hardware designs. See Chapter 10, Debugging and
Performance Monitoring, for more information on these counters.

I
15-25

Machine Check
Architecture

I

16

CHAPTER 16
MACHINE CHECK ARCHITECTURE

This chapter describes the Pentium Pro processor's machine check architecture and machine
check exception mechanism. See Chapter 5, "Interrupt 18-Machine Check Exception (#MC)"
for more information on the machine-check exception.

16.1. MACHINE CHECK EXCEPTIONS AND ARCHITECTURE

The Pentium Pro processor's machine check architecture provides a mechanism for detecting
and reporting on hardware (machine) errors, such as system bus errors, ECC errors, parity
errors, cache errors, and TLB errors. It consists of a set of model-specific registers (MSRs) that
are used to set up machine checking and additional banks of MSRs for recording the errors that
are detected. The processor signals the detection of a machine check error by generating a
machine-check exception (#MC). A machine-check exception is generally an abort class excep­
tion. The implementation of the machine check architecture in the Pentium Pro processor does
not ordinarily permit the processor to be restarted reliably after generating a machine-check
exception; however, the machine-check-exception handler can collect information about the
machine-check error from the machine-check MSRs.

16.2. COMPATIBILITY WITH PENTIUM®pROCESSOR

The Pentium Pro processor supports and extends the machine-check exception mechanism used
in the Pentium processor. The Pentium processor reports the following machine-check errors:

•
•

Data parity errors during a read cycles .

Unsuccessful completions of a bus cycles .

The Pentium Pro processor uses the same mechanism as is used in the Pentium processor to
report these errors.

16.3. MACHINE CHECK MSRS

The Pentium Pro processor's machine check MSRs consist of a set of global control and status
registers and several error-reporting register banks (see Figure 16-1). Each error-reporting bank
is associated with a specific hardware unit (or group of hardware units) within the processor.
The RDMSR and WRMSR instructions are used to read and write these registers.

I
16-1

MACHINE CHECK ARCHITECTURE

Global Control Registers Error-Reporting Bank Registers
(One Set for Each Hardware Unit)

63 0 63 0

I MCG_CAP Register I I MCLCTL Register I
63 0 63 0

I MCG_STATUS Register I I MCLSTATUS Register I
63 0 63 0

I MCG_CTL Register' I I MCLADDR Register I
, Not present in the Pentium" Pro 63 0

processor.

I MCLMISC Register I
Figure 16-1. Machine Check MSRs

16.3.1. Machine Check Global Control MSRs

The machine-check global control registers include the MCG_CAP, MCG_STATUS, and
MCG_CTL MSRs. See Appendix C, Model-Specific Registers (MSRs) , for the addresses of
these registers.

16.3.1.1.

The MCG_CAP MSR is a read-only register that provides information about the machine-check
architecture implementation in the processor (see Figure 16-2). It contains the following field
and flag:

Count field, bits 0 through 7
Indicates the number of hardware unit error-reporting banks available in a particular
processor implementation.

MCG_CTL_P (register present) flag, bit 8
Indicates that the MCG_CTL register is present when set, and absent when clear.

Bits 9 through 63 are reserved. The effect of writing to the MCG_CAP register is undefined.
Figure 5-1 shows the bit fields of MCG_CAP.

16-2

I

63

MACHINE CHECK ARCHITECTURE

9 8 7

Reserved II Count

MCG_CTL_P-MCG_CTL register present~
Count-Number of reporting banks ------------'

Figure 16-2. MCG_CAP Register

o

16.3.1.2. MeG_STATUS MSR

The MeG_STATUS MSR describes the current state of the processor after a machine check
exception has occurred (see Figure 16-3). This register contains the following flags:

RIPV (restart IP valid) flag, bit 0
Indicates (when set) that program execution can be restarted reliably at the instruction
pointed to by the instruction pointer pushed on the stack when the machine-check
exception is generated. When clear, the program cannot be reliably restarted at the
pushed instruction pointer.

EIPV (error IP valid) flag, bit 1
Indicates (when set) that the instruction pointed to by the instruction pointer pushed
onto the stack when the machine check exception is generated is directly associated
with the error. When this flag is cleared, the instruction pointed to may not be associ­
ated with the error.

MCIP (machine check in progress) flag, bit 2
Indicates (when set) that a machine check exception was generated. Software can set
or clear this flag. The occurrence of a second Machine Check Event while MCIP is set
will cause the processor to enter a shutdown state.

Bits 3 through 63 in the MCG_STATUS register are reserved.

63

I

3 2 1 0

Reserved

MCIP-Machine check in progress flag-----ll II
EIPV-Error IP valid flag . .
RIPV-Restart IP valid flag------------'

Figure 16-3. MCG_STATUS Register

16-3

MACHINE CHECK ARCHITECTURE

16.3.1.3.

The MCG_CTL register is present if the capability flag MCG_CTL_P is set in the MCG_CAP
register. The MCG_CTL register controls the reporting of machine check exceptions. If present
(MCG_CTL_P flag in the MCG_CAP register is set), writing allIs to this register enables all
machine check features and writing aliOs disables all machine check features. All other values
are undefined and/or implementation specific.

16.3.2. Error-Reporting Register Banks

Each error-reporting register bank can contains an MCCCTL, MCCSTATUS, MCCADDR, and
MCCMISC MSR. The Pentium Pro processor provides five banks of error-reporting registers.
The first error-reporting register (MCO_CTL) always starts at address 400H. See Table C-l for
the addresses of the other error-reporting registers.

16.3.2.1.

The MCCCTL MSR controls error reporting for specific errors produced by a particular hard­
ware unit (or group of hardware units). Each of the 64 flags (EEj) represents a potential error.
Setting an EEj flag enables reporting of the associated error and clearing it disables reporting of
the error. Writing the 64-bit value FFFFFFFFFFFFFFFFH to an MCi_CTL register enables
logging of all errors. The processor does not write changes to bits that are not implemented.
Figure 5-3 shows the bit fields of MCCCTL

16-4

NOTE

Operating system or executive software must not modify the contents of the
MCO_CTL register. The MCO_CTL register is internally aliased to the
EBL_CR_POWERON register and as such controls system-specific error
handling features. These features are platform specific. System specific
firmware (the BIOS) is responsible for the appropriate initialization of
MCO_CTL. The current Pentium Pro processor's implementation only allows
the writing of allIs or alIOs to the MCi_CTL registers.

636261 3 2 1 0

• • • • •

EEf-Error reporting enable flag ------------'
(where j is 00 through 63)

Figure 16-4. MCi_CTL Register

I

intet MACHINE CHECK ARCHITECTURE

16.3.2.2.

The MCi_STATUS MSR contains information related to a machine check error if its VAL
(valid) flag is set (see Figure 16-5). Software is responsible for clearing the MCLSTATUS
register by writing it with aliOs; writing Is to this register will cause a general-protection excep­
tion to be generated. The flags and fields in this register are as follows:

MCA (machine-check architecture) error code field, bits 0 through 15
Specifies the machine-check architecture-defined error code for the machine-check
error condition detected. The machine-check architecture-defined error codes are
guaranteed to be the same for all Intel Architecture processors that implement the
machine-check architecture. See Section 16.6., "Interpreting the MCA Error Codes"
for information on machine-check error codes.

3231 1615 o

Other Information Model Specific MCA Error Code
Error Code

111ll= PCC-Pmoo,,"' ooolon '''ru,t ADDRV-MCi_ADDR register valid
MISCV-MCLMISC register valid
EN-Error enabled
UC-Uncorrected error

'---~~~~~- OVER-Error overflow
'----------- VAL-MCLSTATUS register valid

Figure 16-5. MCLSTATUS Register

Model-specific error code field, bits 16 through 31
Specifies the model-specific error code that uniquely identifies the machine-check
error condition detected. The model-specific error codes may differ among Intel Archi­
tecture processors for the same machine-check error condition.

Other information field, bits 32 through 56
The functions of the bits in this field are implementation specific and are not part of the
machine-check architecture. Software that is intended to be portable among Intel
Architecture processors should not rely on the values in this field.

PCC (processor context corrupt) flag, bit 57
Indicates (when set) that the state of the processor might have been corrupted by the
error condition detected and that reliable restarting of the processor may not be
possible. When clear, this flag indicates that the error did not affect the processor's
state.

ADDRV (MCi_ADDR register valid) flag, bit 58

I

Indicates (when set) that the MCLADDR register contains the address where the error
occurred (see Section 16.3.2.3., "MCi_ADDR MSR"). When clear, this flag indicates
that the MCi_ADDR register does not contain the address where the error occurred. Do
not read these registers if they are not implemented in the processor.

16-5

MACHINE CHECK ARCHITECTURE

MISCV (MCCMISC register valid) flag, bit 59
Indicates (when set) that the MCi_MISC register contains additional information
regarding the error. When clear, this flag indicates that the MCLMISC register does
not contain additional information regarding the error. Do not read these registers if
they are not implemented in the processor

EN (error enabled) flag, bit 60
Indicates (when set) that the error was enabled by the associated EEj bit of the
MCLCTL register.

UC (error uncorrected) flag, bit 61
Indicates (when set) that the processor did not or was not able to correct the error condi­
tion. When clear, this flag indicates that the processor was able to correct the error
condition.

OVER (machine check overflow) flag, bit 62
Indicates (when set) that a machine-check error occurred while the results of a previous
error were still in the error-reporting register bank (that is, the VAL bit was already set
in the MCLSTATUS register). The processor sets the OVER flag and software is
responsible for clearing it. Enabled errors are written over disabled errors, and uncor­
rected errors are written over corrected errors. Uncorrected errors are not written over
previous valid uncorrected errors.

VAL (MCi_STATUS register valid) flag, bit 63
Indicates (when set) that the information within the MCi_STATUS register is valid.
When this flag is set, the processor follows the rules given for the OVER flag in the
MCi_STATUS register when overwriting previously valid entries. The processor sets
the VAL flag and software is responsible for clearing it.

16.3.2.3.

The MCi_ADDR MSR contains the address of the code or data memory location that produced
the machine-check error if the ADDRV flag in the MCLSTATUS register is set (see Section
16.3.2.3., "MCi_ADDR MSR"). The address returned is either 32-bit virtual, 32-bit linear, or
36-bit physical address, depending upon the type of error encountered. Bits 36 through 63 of this
register are reserved for future address expansion and are always read as zeros.

63 36 35 0
/"

J I Address
, ~. " n I r '.' •· .• R~~~t\i~~\.

"00:'"· -.

Figure 16-6. Machine Check Bank Address Register

16-6

I

MACHINE CHECK ARCHITECTURE

16.3.2.4.

The MCi_MISC MSR contains additional information describing the machine-check error if the
MISCV flag in the MCi_STATUS register is set. This register is not implemented in any of the
error-reporting register banks for the Pentium Pro processor.

16.3.3. Mapping ofthe Pentium®processor Machine-Check Errors
to the Pentium® Processor Machine-Check Architecture

The Pentium processor reports machine-check errors using two registers: P5_MC_TYPE and
P5_MC_ADDR. The Pentium Pro processor maps these registers into the MCi_STATUS and
MCCADDR registers of the error-reporting register bank that reports on the type external bus
errors reported in the P5_MC_TYPE and P5_MC_ADDR registers. The information in these
registers can then be accessed in either of two ways:

•

•

By reading the MCLSTATUS and MCi_ADDR registers as part of a generalized machine­
check exception handler written for the Pentium Pro processor.

By reading the P5_MC_TYPE and P5_MC_ADDR registers with the RDMSR instruction .

The second access capability permits a machine-check exception handler written to run on a
Pentium processor to be run on a Pentium Pro processor. There is a limitation in that information
returned by the Pentium Pro processor will be encoded differently than it is for the Pentium
processor. To run the Pentium processor machine-check exception handler on a Pentium Pro
processor, it must be rewritten to interpret the P5_MC_TYPE register encodings correctly.

16.4. MACHINE CHECK AVAILABILITY

The machine-check architecture and machine-check exception (#MC) are model-specific
features. Software can execute the CPUID instruction to determine whether a processor imple­
ments these features. Following the execution of the CPUID instruction, the settings of the MCA
flag (bit 14) and MCE flag (bit 7) in the EDX register indicate whether the processor implements
the machine-check architecture and machine-check exception, respectively.

16.5. MACHINE CHECK INITIALIZATION

To use the processors machine check architecture, software must initialize the processor to acti­
vate the machine-check exception and the error-reporting mechanism. Example 16-1 gives
pseudocode for performing this initialization. This pseudocode checks for the existence of the
machine-check architecture and exception on the processor, then enables the machine-check
exception and the error-reporting register banks. This initialization procedure is compatible with
the Pentium Pro, Pentium, and future microprocessors.

I
16-7

MACHINE CHECK ARCHITECTURE

Example 16-1. Machine Check Initialization Pseudocode

EXECUTE the CPUID instruction;
READ bits 7 (MCE) and 14 (MCA) of the EDX register;
IF CPU supports MCE

THEN
IF CPU supports MCA

THEN

FI;

IF MCG_CAP.MCG_CTL_P = 1 (* MCG_CTL register is present *)
Set MCG_CTL register to all1s; (* enables all MCA features *)

FI;
COUNT ~ MCG_CAP.Count;
(* determine number of error-reporting banks supported *)
FOR error-reporting banks (1 through COUNT) DO

Set MCi_CTL register to all1s;
(* enables logging of all errors except for the MCO_CTL register *)

00
FOR error-reporting banks (0 through COUNT) DO

Set MCLST ATUS register to all Os; (* clears all errors *)
00

Set the MCE flag (bit 6) in CR4 register to enable machine check exceptions;
FI;

The MCCSTATUS registers can be written to while the processor is being powered up with
valid information (such as an ECC error). As part of the initialization of the MCE exception
handler, software might examine all the MCCSTATUS registers and log the contents of them,
then rewrite them all to zeros. This procedure is not included in the initialization pseudocode in
Example 16-1.

16.6. INTERPRETING THE MCA ERROR CODES

When the processor detects a machine-check error condition, it writes a 16-bit error code in the
MCA Error Code field of one of the MCi_STATUS registers and sets the VAL (valid) flag in that
register. The processor may also write a 16-bit Model-specific Error Code in the MCi_STATUS
register depending on the implementation of the machine-check architecture of the processor.

The MCA error codes are architecturally defined for Intel Architecture processors; however, the
specific MCCSTATUS register that a code is written into is model specific. To determine the
cause of a machine-check exception, the machine-check exception handler must read the VAL
.L'1_ f: 1 ,....,. n~ .. rT'1TTt"'I •• 1 °r.1 ,... • ..1 ... 1 ,........... ... ,.,. 11

uag lor eaCIlIVl\..-l_" ifU u" n:glsu::r, linu, 11 LIlt: Hag IS St:L, LIlt:n rt:au me IVILJ-\ errur cuue HelU
of the register. It is the encoding of the MCACOD value that determines the type of error being
reported and not the register bank reporting it.

There are two types of MCA error codes: simple error codes and compound error codes.

16·8

I

MACHINE CHECK ARCHITECTURE

16.6.1. Simple Error Codes

Table 16-1 shows the simple error codes. These unique codes indicate global error information.

Table 16-1. Simple Error Codes

Error Code Binary Encoding Meaning

No Error 0000 0000 0000 0000 No error has been reported to this bank of
error-reporting registers

Unclassified 0000 0000 0000 0001 This error has not been classified into the
MGA error classes.

Microcode ROM Parity 0000000000000010 Parity error in internal microcode ROM
Error

External Error 0000000000000011 The BINIT# from another processor caused
this processor to enter machine check

FRG Error 0000 0000 0000 0100 FRG (functional redundancy check)
master/slave error

Internal Unclassified 0000 01xx xxxx xxxx Internal unclassified errors

16.6.2. Compound Error Codes

The compound error codes describe errors related to the TLBs, memory, caches, bus and inter­
connect logic. A set of sub-fields is common to all of the compound error encodings. These sub­
fields describe the type of access, level in the memory hierarchy, and type of request. Table 16-2
shows the general form of the compound error codes. The interpretation column indicates the
name of a compound error. The name is constructed by substituting mnemonics from Tables
16-2 through 16-6 for the sub-field names given within curly braces. For example, the error code
ICACHELl_RD_ERR is constructed from the form:

{TT}CACHE{LLL{RRRR}_ERR

where {TT} is replaced by I, {LL} is replaced by Ll, and {RRRR} is replaced by RD.

The 2-bit TT sub-field (see Table 16-2) indicates the type of transaction (data, instruction, or
generic). It applies to the TLB, cache, and interconnect error conditions. The generic type is
reported when the processor cannot determine the transaction type.

Table 16-2. General Forms of Compound Error Codes

Type Form Interpretation

TLB Errors 0000 0000 0001 TTLL {TT}TLB{LLLERR

Memory Hierarchy Errors 0000 0001 RRRR TTLL {TT}GAGHE{LLL{RRRRLERR

Bus and Interconnect 0000 1 PPT RRRR IILL BU8{LLUPPL{RRRRL{IIL{TIMEOUT,}ERR
Errors

I
16-9

MACHINE CHECK ARCHITECTURE

Table 16-3. Encoding for TT (Transaction Type) Sub-Field

Transaction Type Mnemonic Binary Encoding

Instruction I 00

Data D 01

Generic G 10

The 2-bit LL sub-field (see Table 16-4) indicates the level in the memory hierarchy where the
error occurred (level 0, level!, level 2, or generic). The LL sub-field also applies to the TLB,
cache, and interconnect error conditions. The Pentium Pro processor supports two levels in the
cache hierarchy and one level in the TLBs. Again, the generic type is reported when the
processor cannot determine the hierarchy level.

Table 16-4. Level Encoding for LL (Memory Hierarchy Level) Sub-Field

Hierarchy Level Mnemonic Binary Encoding

Level 0 LO 00

Level 1 L1 01

Level 2 L2 10

Generic LG 11

The 4-bit RRRR sub-field (see Table 16-5) indicates the type of action associated with the error.
Actions include read and write operations, prefetches, cache evictions, and snoops. Generic
error is returned when the type of error cannot be determined. Generic read and generic write
are returned when the processor cannot determine the type of instruction or data request that
caused the error. Eviction and Snoop requests apply only to the caches. All of the other requests
apply to TLBs, caches and interconnects.

Table 16-5. Encoding of Request (RRRR) Sub-Field

Request Type Mnemonic Binary Encoding

Generic Error ERR 0000

Generic Read RD 0001

Generic Write WR 0010
.. _----

Data Read DRD 0011

Data Write DWR 0100

Instruction Fetch IRD 0101

Prefetch PREFETCH 0110

Eviction EVICT i 0111

Snoop SNOOP 1000

16-10

I

MACHINE CHECK ARCHITECTURE

The bus and interconnect errors are defined with the 2-bit PP (participation), I-bit T (time-out),
and 2-bit II (memory or 110) sub-fields, in addition to the LL and RRRR sub-fields (see Table
16-6). The bus error conditions are implementation dependent and related to the type of bus
implemented by the processor. Likewise, the interconnect error conditions are predicated on a
specific implementation-dependent interconnect model that describes the connections between
the different levels of the storage hierarchy. The type of bus is implementation dependent, and
as such is not specified in this document. A bus or interconnect transaction consists of a request
involving an address and a response.

Table 16-6. Encodings of PP, T, and II Sub-Fields

Binary
Sub-Field Transaction Mnemonic Encoding

PP (Participation) Local processor originated request SRC 00

Local processor responded to request RES 01

Local processor observed error as third party OBS 10

Generic 11

T (Time-out) Request timed out TIM OUT 1

Request did not time out 0

II (Memory or 1/0) Memory Access M 00

Reserved 01

1/0 10 10

Other transaction 11

16.6.3. Interpreting the Machine-Check Error Codes for External
Bus Errors

Table 16-7 gives additional information for interpreting the MeA error code, model-specific
error code, and other information error code fields for machine-check errors that occur on the
external bus. This information can be used to design a machine-check exception handler for the
Pentium Pro processor that offers greater granularity for the external bus errors.

Table 16-7. Encoding of MCi STATUS Register for External Bus Errors -
Bit
No. Bit Function Bit Description

0-1 MCACOD Undefined.

2-3 MCACOD Bit 2 is set to 1 if the access was a special cycle.
Bit 3 is set to 1 if the access was a special cycle OR a I/O cycle.

4-7 MCACOD OOWR; W = 1 for writes, R = 1 for reads

8-9 MCACOD Undefined.

I
16-11

MACHINE CHECK ARCHITECTURE

Table 16-7. Encoding of MCi STATUS Register for External Bus Errors (Contd.) -
10 MCACOD Set to 0 for all EBL errors.

Set to 1 for internal watch-dog timer time-out.
For a watch-dog timer time-out, all the MCACOD bits except this bit 10 are set
to o. A watch-dog timer time-out only occurs if the BINIT driver is enabled.

11 MCACOD Set to 1 for EBL errors.
Set to 0 for intemal watch-dog timer time-out.

12-15 MCACOD Reserved.

16-18 Model Reserved.
Specific Error
Cod

19-24 Model 000000 for BQ_DCU_READ_ TYPE error.
Specific Error 000010 for BQ_IFU_DEMAND_TYPE error.
Code 000011 for BQ_IFU_DEMAND_NC_ TYPE error.

000100 for BQ_DCU_RFO_TYPE error.
000101 for BQ_DCU_RFO_LOCK_ TYPE error.
000110 for BQ_DCU_ITOM_ TYPE error.
001000 for BQ_DCU_WB_ TYPE error.
001010 for BQ_DCU_WCEVICT_ TYPE error.
001011 for BQ_DCU_WCLlNE_ TYPE error.
001100 for BQ_DCU_BTM_ TYPE error.
001101 for BQ_DCU_INTACK_ TYPE error.
001110 for BQ_DCU_INVALL2_TYPE error.
001111 for BQ_DCUJLUSHL2_TYPE error.
010000 for BQ_DCU_PART _RD_ TYPE error.
010010 for BQ_DCU_PART _ WR_ TYPE error.
010100 for BQ_DCU_SPEC_CYC_ TYPE error.
011000 for BQ_DCU_IO_RD_ TYPE error.
011001 for BQ_DCU_IO_WR_TYPE error.
011100 for BQ_DCU _LOCK_RD_ TYPE error.
011110 for BQ_DCU_SPLOCK_RD_TYPE error.
011101 for BQ_DCU_LOCK_WR_TYPE error.

27-25 Model 000 for BQ_ERR_HARD_ TYPE error.
Specific Error 001 for BQ_ERR_DOUBLE_ TYPE error.
Cod 010 for BQ_ERR_AERR2_ TYPE error.

100 for BQ_ERR_SINGLE3YPE error.
101 for BQ_ERR_AERR1_TYPE error.

28 Model 1 if FRC error is active.
Specific Error
Cod

29 Model 1 if BERR is driven.
Specific Error
Cod

30 Model 1 if BINIT is driven for this processor.
Specific Error
Code

31-34 Other Reserved.
Information

16-12

I

MACHINE CHECK ARCHITECTURE

Table 16-7. Encoding of MCi STATUS Register for External Bus Errors (Contd.) -

35 Other 1 if BINIT is received from external bus.
Information
BINIT

36 Other This bit is asserted in the MCLSTATUS register if this component has received
Information a parity error on the RS[2:0]# pins for a response transaction. The RS signals
RESPONSEP are checked by the RSP# external pin.
ARITY
ERROR

37 Other This bit is asserted in the MCLSTATUS register if this component has received
Information a hard error response on a split transaction (one access that has needed to be
BUS BINIT split across the 64-bit external bus interface into two accesses).

38 Other This bit is asserted in the MCLSTATUS register if this component has
Information experienced a ROB time-out, which indicates that no microinstruction has been
TIMEOUT retired for a predetermined period of time. A ROB time-out occurs when the 15-
BINIT bit ROB time-out counter carries a 1 out of its high order bit.

The timer is cleared when a microinstruction retires, an exception is detected
by the core processor, RESET is asserted, or when a ROB BINIT occurs.

The ROB time-out counter is prescaled by the 8-bit PIC timer which is a divide
by 128 of the bus clock (the bus clock is 1 :2, 1 :3, 1:4 the core clock). When a
carry out of the 8-bit PIC timer occurs, the ROB counter counts up by one.

While this bit is asserted, it cannot be overwritten by another error.

42 Other This bit is asserted in the MCLSTATUS register if this component has initiated
Information a bus transactions which has received a hard error response. While this bit is
HARD asserted, it cannot be overwritten.
ERROR

39-41 Other Reserved
Information

42 Other This bit is asserted in the MCi_STATUS register if this component has initiated
Information a bus transactions which has received a hard error response. While this bit is
HARD asserted, it cannot be overwritten.
ERROR

43 Other This bit is asserted in the MCi_STATUS register if this component has
Information experienced a failure that causes the IERR pin to be asserted. While this bit is
IERR asserted, it cannot be overwritten.

44 Other This bit is asserted in the MCi_STATUS register if this component has initiated
Information 2 failing bus transactions which have failed due to Address Parity Errors (AERR
AERR asserted). While this bit is asserted, it cannot be overwritten.

45 Other Uncorrectable ECC error bit is asserted in the MCi_STATUS register for
Information uncorrected ECC errors. While this bit is asserted, the ECC syndrome field will
UECC not be overwritten.

46 Other The correctable ECC error bit is asserted in the MCi_STATUS register for
Information corrected ECC errors.
CECC

I
16-13

MACHINE CHECK ARCHITECTURE

Table 16-7. Encoding of MCi_STATUS Register for External Bus Errors (Contd.)

47-54 Other The ECC syndrome field in the MCLSTATUS register contains the 8-bit ECC
Information syndrome only if the error was a correctable/uncorrectable ECC error,
SYNDROME and there wasn't a previous valid ECC error syndrome logged in the

MCi_STATUS register.
A previous valid ECC error in MCLSTATUS is indicated by MCLSTATUS.bit45
(uncorrectable error occurred) being asserted. After processing an ECC error,
machine check handling software should clear MCLSTATUS.bit45 so that
future ECC error syndromes can be logged.

55-56 Other Reserved
Information

16.7. GUIDELINES FOR WRITING MACHINE CHECK SOFTWARE

The machine-check architecture and error logging can be used in two different ways:

•

•

To detect machine errors during normal instruction execution, using the machine-check
exception (#MC).

To periodically check and log machine errors.

To use the machine-check exception, the operating system or executive software must provide
a machine-check exception handler. This handler can be designed specifically for the Pentium
Pro processor or be a portable handler that also handles Pentium machine-check errors.

A special program or utility is required to log machine errors.

Guidelines for writing a machine-check exception handler or a machine-error logging utility are
given in the following sections.

16.7.1. Machine Check Exception Handler

The machine-check exception (#MC) corresponds to vector 18. To service machine-check
exceptions, a trap gate must be added to the IDT, and the pointer in the trap gate must point to a
machine-check exception handler. Two approaches can be taken to designing the exception
handler:

•

•

The handler can merely log all the machine status and error information, then call a
debugger or shut down the system.

The handler can analyze the reported error information and, in some cases, attempt to
correct the error and restart the processor.

Virtually all the machine-check conditions detected with the Pentium Pro processor cannot be
recovered from (they result in abort-type exceptions). The logging of status and error informa­
tion is therefore a baseline implementation. See Section 16.7., "Guidelines for Writing Machine
Check Software" for more information on logging errors.

16-14

I

MACHINE CHECK ARCHITECTURE

For future implementations of the Pentium Pro processor, where recovery may be possible, the
following things should be considered when writing a machine-check exception handler:

•

•

•

•

•

•

•

•

I

To determine the nature of the error, the handler must read each of the error-reporting
register banks. The count field in the MCG_CAP register gives number of register banks.
The first register of register bank 0 is at address 400H.

The VAL (valid) flag in each MCCSTATUS register indicates whether the error
information in the register is valid. If this flag is clear, the registers in that bank do not
contain valid error information and do not need to be checked.

To write a portable exception handler, only the MCA error code field in the MCi_STATUS
register should be checked. See Section 16.6., "Interpreting the MCA Error Codes" for
information that can be used to write an algorithm to interpret this field.

The RIPV, PCC, and OVER flags in each MCCSTATUS register indicate whether
recovery from the error is possible. If either of these fields is set, recovery is not possible.
The OVER field indicates that two or more machine-check error occurred. When recovery
is not possible, the handler typically records the error information and signals an abort to
the operating system.

Corrected errors will have been corrected automatically by the processor. The UC flag in
each MCCSTATUS register indicates whether the processor automatically corrected the
error.

The RIPV flag in the MCG_STATUS register indicates whether the program can be
restarted at the instruction pointed to by the instruction pointer pushed on the stack when
the exception was generated. If this flag is clear, the processor may still be able to be
restarted (for debugging purposes), but not without loss of program continuity.

For unrecoverable errors, the EIPV flag in the MCG_STATUS register indicates whether
the instruction pointed to by the instruction pointer pushed on the stack when the exception
was generated is related to the error. If this flag is clear, the pushed instruction may not be
related to the error.

The MCIP flag in the MCG_STATUS register indicates whether a machine-check
exception was generated. Before returning from the machine-check exception handler,
software should clear this flag so that it can be used reliably by an error logging utility. The
MCIP flag also detects recursion. The machine check architecture does not support
recursion. When the processor detects machine check recursion, it enters the shutdown
state.

16-15

MACHINE CHECK ARCHITECTURE

Example 16-2 gives typical steps carried out by a machine-check exception handler:

Example 16-2. Machine-Check Exception Handler Pseudocode

IF CPU supports MCE

FI;

THEN
IF CPU supports MCA

THEN
call errorlogging routine; (* returns restartability *)

FI;
ELSE (* Pentium processor compatible *)

READ P5_MC_ADDR
READ P5_MC_TYPE;
report RESTARTABILITY to console;

IF error is not restartable
THEN

FI;

report RESTARTABILITY to console;
abort system;

CLEAR MCIP flag in MCG_STATUS;

16.7.2. Pentium® Machine-Check Exception Handling

To make the machine-check exception handler portable to the Pentium processor and future,
checks can be made (using the CPUID instruction) to determine the processor type. Then based
on the processor type, machine-check exceptions can be handled specifically for Pentium Pro or
future processors or for Pentium processors.

When machine-check exceptions are enabled for the Pentium processor (MCE flag is set in
control register CRO), the machine-check exception handler uses the RDMSR instruction to read
the error type from the P5_MC_TYPE register and the machine check address from the
P5_MC_ADDR register. The handler then normally reports these register values to the system
console before aborting execution (see Example 16-2).

16.7.3. Logging Correctable Machine Check Errors

If a machine-check error is correctable, the processor does not generate a machine-check excep­
don for it To detect correctable machine-check errors, a utility program must be written that
reads each of the machine-check error-reporting register banks and logs the results in an
accounting file or data structure. This utility can be implemented in either of the following ways:

•

•

A system daemon that polls the register banks on an infrequent basis, such as hourly or
daily.

A user-initiated application that polls the register banks and records the exceptions. Here,
the actual polling service is provided by an operating-system driver or through the system
call interface.

16·16

I

MACHINE CHECK ARCHITECTURE

Example 16-3 gives pseudocode for an error logging utility.

Example 16-3. Machine-Check Error Logging Pseudocode

Assume that execution is restartable;
IF the processor supports MCA

FI;

THEN
FOR each bank of machine-check registers

DO
READ MCi_STATUS;
IF VAL flag in MCi_STATUS = 1

THEN

FI;
OD;

IF ADDRV flag in MCLSTATUS = 1
THEN READ MCLADDR;

FI;
IF MISCV flag in MCi_STATUS = 1

THEN READ MCLMISC;
FI;
IF MCIP flag in MCG_STATUS = 1

FI;

(* Machine check exception is in progress *)
AND PCC flag in MCLSTATUS = 1
AND RIPV flag in MCG_STATUS = 0
(* execution is not restartable *)

THEN
RESTARTABILITY = FALSE;
return RESTARTABILITY to calling procedure;

Save time stamp counter and processor ID;
Set MCi_STATUS to all Os;
Execute serializing instruction (i.e. CPUID);

If the processor supports the machine-check architecture, the utility reads through the banks of
error-reporting registers looking for valid register entries, and then saves the values of the
MCi_STATUS, MCi_ADDR, MCLMISC and MCG_STATUS registers for each bank that is
valid. The routine minimizes processing time by recording the raw data into a system data struc­
ture or file, reducing the overhead associated with polling. User utilities analyze the collected
data in an off-line environment.

When the MCIP flag is set in the MCG_STATUS register, a machine check exception is in
progress and the machine-check exception handler has called the exception logging routine.
Once the logging process has been completed the exception handling routine must determine
whether execution can be restarted, which is usually possible when damage has not occurred
(The PCC flag is clear, in the MCi_STATUS register) and when the Pentium Pro processor can
guarantee that execution is restartable (the RIPV flag is set in the MCG_STATUS register). If
execution cannot be restarted, the system is not recoverable and the exception handling routine

I
16-17

MACHINE CHECK ARCHITECTURE

should signal the console appropriately before returning the error status to the Operating System
kernel for subsequent shutdown.

The machine-check architecture allows buffering of exceptions from a given error-reporting
bank although the Pentium Pro processor does not implement this feature. The error logging
routine should provide compatibility with future processors by reading each hardware error­
reporting bank's MCCSTATUS register and then writing as to clear the OVER and VAL flags
in this register. The error logging utility should re-read the MCCSTATUS register for the bank
ensuring that the valid bit is clear. The processor will write the next error into the register bank
and set the VAL flags.

Additional information that should be stored by the exception-logging routine includes the
processor's time stamp counter value, which provides a mechanism to indicate the frequency of
exceptions. A multiprocessing operating system stores the identity of the processor node incur­
ring the exception using a unique identifier, such as the processors APIC ID (see Section 7.4.6.,
"Interrupt Destination and APIC ID").

The basic algorithm given in Example 16-3 can be modified to provide more robust recovery
techniques. For example, software has the flexibility to attempt recovery using information
unavailable to the hardware. Specifically, the machine-check exception handler can, after
logging carefully analyze the error-reporting registers when the error-logging routine reports an
error that does not allow execution to be restarted. These recovery techniques can use external
bus related model-specific information provided with the error report to localize the source of
the error within the system and determine the appropriate recovery strategy.

16-18

I

A
OpcodeMap

I

APPENDIX A
OPCODE MAP

The opcode tables in this section aid in interpreting Pentium processor object code. Use the 4
high-order bits of the opcode as an index to a row of the opcode table; use the 4 low-order bits
as an index to a column of the table. If the opcode is OFH, refer to the 2-byte opcode table and
use the second byte af the opcode to index the rows and columns of that table.

The escape (ESC) opcade tables for floating-point instructions identify the 8 high-order bits of
the opcade at the top of each page. If the accompanying modRIM byte is in the range OOH
through BFH, bits 3 through 5 identified along the top row of the third table on each page, along
with the REG bits af the modRIM, determine the opcode. ModRiM bytes outside the range OOH
through BFH are mapped by the bottom two tables on each page.

A.1. KEY TO ABBREVIATIONS

Operands are identified by a two-character code of the form Zz. The first character, an uppercase
letter, specifies the addressing method; the second character, a lowercase letter, specifies the
type of operand.

A.2. CODES FOR ADDRESSING METHOD

The following abbreviations are used for addressing methods:

A

c

D

E

F

G

I

I

Direct address. The instruction has no modR/M byte; the address of the operand is
encoded in the instruction; and no base register, index register, or scaling factor can be
applied, for example, far JMP (EA).

The reg field of the modRiM byte selects a control register, for example,
MOY (OF20, OF22).

The reg field of the modRiM byte selects a debug register, for example,
MOY (OF21,OF23).

A modRiM byte follows the opcode and specifies the operand. The operand is either a
general-purpose register or a memory address. If it is a memory address, the address is
computed from a segment register and any of the following values: a base register, an
index register, a scaling factor, a displacement.

EFLAGS Register.

The reg field of the modRiM byte selects a general register, for example, AX (000).

Immediate data. The value of the operand is encoded in subsequent bytes of the
instruction.

A-1

OPCODE MAP

J The instruction contains a relative offset to be added to the instruction pointer register,
for example, JMP short, LOOP.

M The modR/M byte may refer only to memory, for example, BOUND, LES, LDS, LSS,
LFS, LGS, CMPXCHG8B.

o The instruction has no modRIM byte; the offset of the operand is coded as a word or
double word (depending on address size attribute) in the instruction. No base register,
index register, or scaling factor can be applied, for example, MOV (AO--A3).

R The mod field of the modR/M byte may refer only to a general register, for example,
MOV (OF20-0F24, OF26).

S The reg field of the modRIM byte selects a segment register, for example, MOV
(8C,8E).

T The reg field of the modRIM byte selects a test register, for example, MOV
(OF24,OF26).

X Memory addressed by the DS:SI register pair, for example, MOVS, CMPS, OUTS,
LODS.

Y Memory addressed by the ES:DI register pair, for example, MOVS, CMPS, INS,
STOS, SCAS.

A.3. CODES FOR OPERAND TYPE

The following abbreviations are used for operand types:

a

b

c

d

P

q

s

v

w

A-2

Two one-word operands in memory or two double-word operands in memory,
depending on operand size attribute (used only by the BOUND instruction).

Byte, regardless of operand-size attribute.

Byte or word, depending on operand-size attribute.

Doubleword, regardless of operand-size attribute.

32-bit or 48-bit pointer, depending on operand size attribute.

Quadword, regardless of operand-size attribute.

6-byte pseudo-descriptor.

Word or doubleword, depending on operand-size attribute.

Word, regardless of operand-size attribute.

I

OPCODE MAP

A.4. REGISTER CODES

When an operand is a specific register encoded in the opcode, the register is identified by its
name (for example, AX, CL, or ESI). The name of the register indicates whether the register is
32, 16, or 8 bits wide. A register identifier of the form eXX is used when the width of the register
depends on the operand size attribute. For example, eAX indicates that the AX register is used
when the operand size attribute is 16, and the EAX register is used when the operand size
attribute is 32.

A.5. OPCODE LOOK-UP EXAMPLES

This section provides several examples to demonstrate how the following opcode maps are used.
See the introduction to Chapter 11, Instruction Reference, in the Pentium® Pro Family Devel­
oper's Manual, Volume 2 for detailed information on the modRIM byte, register values, and the
various addressing forms.

A.5.1. One-Byte Opcode Integer Instructions

For I-byte opcodes, the instruction and its operands can be determined from the hexadecimal
opcode.

Opcode: 030500000000H

I ~:B address I ~OSB address

Looking at the I-byte opcode map, the first digit (0) of the opcode indicates the row and the
second digit (3) indicates the column. The instruction located at row 0, column 3 is an ADD
instruction using the operand types Gv, Ev. The first operand of type Gv indicates a general
register that is a word or double word depending on the operand-size attribute. The second
operand (Ev) indicates that a modR/M byte follows that specifies whether the operand is a word
or doubleword general-purpose register or a memory address. The modRIM byte for this instruc­
tion is 05H, which indicate that a 32-bit displacement follows (OOOOOOOOH). The reg/opcode
portion of the modR/M byte (bits 3 through 5) is 000 indicating the EAX register. Thus, it can
be determined that the instruction for this opcode is ADD EAX, mem_op and the offset of
mem_op is OOOOOOOOH.

A.5.2. Two-Byte Opcode Integer Instructions

Instructions that begin with OFH can be found in the two-byte opcode map. The second opcode
byte is then used to reference a particular row and column. For example, the opcode
OFA4050000000003H, is located on the first page of the two-byte opcode map in row A, column
4. This indicates a SHLD instruction with the operands Ev, Gv, and lb. These operands are
defined as follows:

I
A-3

OPCODE MAP

Ev The modRIM byte follows the opcode to specify a word or doubleword operand

Gv The reg field of the modRIM byte selects a general-purpose register

Ib Immediate data is encoded in the subsequent byte of the instruction.

The third byte is the modRlM byte (OSH). The mod and opcode/reg fields indicate that a 32-bit
displacement follows, located in the EAX register is the source.

The next part of the opcode is the 32-bit displacement for the destination memory operand
(OOOOOOOOH) and finally the immediate byte representing the count of the shift (03H).

By this breakdown, it has been shown that this opcode represents the instruction:

SHLD DS:OOOOOOOOH, EAX, 3

A.S.3. Escape Opcodes

The escape (ESC) opcode maps are slightly different than the integer opcode maps. For instruc­
tions that have a modRlM byte in the range of OOH through BFH, bits 3 through S of the
modRIM byte are used to determine the opcode. ModRIM bytes outside the range OOH through
BFH are mapped by the tables at the bottom of each page.

A.S.3.1. OPCODES WITH MODR/M BYTES IN THE OOH THROUGH BFH
RANGE

The opcode DDOS04000000 can be interpreted as follows. This instruction can be located on the
page indicating DD as the first byte. Since the modRIM byte is in the OOH through BFH range
(OSH or OOOOOlOlB), bits 3 through S (000) of this byte indicate the opcode to be an FLD
double-real instruction. The double-real value to be loaded is at 00000004H, which is the
following 32-bit displacement in this opcode.

A.S.3.2. OPCODES WITH MODRIM BYTES OUTSIDE THE OOH THROUGH
BFH RANGE

Since the opcode of D8C 1 has a modRIM byte outside the range OOH through BFH, the bottom
two tables are used to determine this escape instruction on the page with D8 as the first byte. Cl
indicates row C, column 1 which is an FADD instruction using ST, ST(l) as the operands.

A-4

I

intet OPCODE MAP

One-Byte Opcode Map
o 2 3 4 5 6 7

o ADD PUSH POP

Eb,Gb Ev,Gv Gb,Eb Gv,Ev AL,lb eAX,lv ES ES

ADC PUSH POP

Eb,Gb Ev,Gv Gb,Eb Gv,Ev AL,lb eAX,lv SS SS

2 AND SEG DAA

Eb,Gb Ev,Gv Gb,Eb Gv,Ev AL,lb eAX,lv =ES

3 XOR SEG AAA

Eb,Gb Ev,Gv Gb,Eb Gb,Ev AL,lb eAX,lv =SS

4 INC general register

eAX eCX eDX eBX eSP eBP eSI eDI

5 PUSH general register

eAX eCX eDX eBX eSP eBP eSI eDI

eAX eCX eDX eBX eSP eBP eSI eDI

6 PUSH A POPA BOUND ARPL SEG SEG Operand Address

PUSHAD POPAD Gv,Ma Ew,Gw =FS =GS Size Size

7 Short-displacement jump on condition (Jb)

JO JNO JB/JNAE/J JNB/JAE/J JZ JNZ JBE JNBE
C NC

8 Immediata Grpl MOVB* Grpl TEST XCHG

Eb,lb Ev,lv AL,immed Eb,lb Eb,Gb Ev,Gv Eb,Gb Ev,Gv
8

9 NOP XCHG word or double-word register with eAX

eCX eDX eBX eSP eBP eSI eDI

A MOV MOVSB MOVSW CMPSB CMPSW

AL,Ob eAX,Ov Ob,AL Ov,eAX Xb,Yb Xv,Yv Xb,Yb Xv,Yv

B MOV immediate byte into byte register

AL CL DL BL AH CH DH BH

C Shift Grp2a RET near LES LDS MOV

Eb,lb Ev,lb Iw Gv,Mp Gv,Mp Eb,lb Ev,lv

D Shift Grp2 AAM AAD * XLAT

Eb,1 Ev,1 Eb,CL Ev,CL

E LOOPN LOOPE LOOP JCXZ/JEC IN OUT
XZ

Jb Jb Jb Jb AL,lb eAX,lb Ib,AL Ib,eAX

F LOCK * REPNE REP HLT CMC Unary Grp3

REPE Eb Ev

* Reserved

I
A-5

OPCODE MAP

One-Byte Opcode Map (Contd.)

8 9 A B C D E F

o OR PUSH 2-byte

Eb,Gb EV,Gv Gb,Eb GV,Ev AL,lb eAX,Iv CS escape

SBB PUSH POP

Eb,Gb EV,Gv Gb,Eb GV,Ev AL,lb eAX,Iv DS DS

2 SUB SEG DAS

Eb,Gb EV,Gv Gb,Eb GV,Ev AL,lb eAX,Iv =CS

3 CMP SEG AAS

Eb,Gb EV,Gv Gb,Eb GV,Ev AL,lb eAX,Iv =DS

4 DEC general register

eAX eCX eDX eBX eSP eBP eSI eDI

5 POP into general register

eAX eCX eDX eBX eSP eBP eSI eDI

6 PUSH IMUL PUSH IMUL INSB I NSWID OUTSB OUTSW/D

Iv GV,Ev,lv Ib GV,Ev,lb Yb,DX Yv,DX DX,Xb DX,Xv

7 ShOrl-displacementjump on condition (Jb)

JS JNS JP JNP JL JNL JLE JNLE

8 MOV MOV LEA MOV POP

Eb,Gb EV,Gv Gb,Eb GV,Ev Ew,Sw GV,M SW,Ew Ev

9 CBW CWD/CDQ CALL WAIT PUSHF POP SAHF LAHF

aP Fv Fv

A TEST STOSB STOSW/D LODSB LODSW/D SCASB SCASW/D

AL,lb eAX,lv Yb,AL YV,eAX AL,Xb eAX,Xv AL,Yb eAX,Yv

B MOV immediate word or double into word or double register

eAX eCX eDX eBX eSP eBP eSI eDI

C ENTER LEAVE RET far RET far INT INT INTO IRET

IW,lb Iw 3 Ib

D ESC (Escape to coprocessor instruction set)

E CALL JMP !!\l OUT

Jv Jv Ap Jb AL,DX eAX,DX DX,AL DX,eAX

F CLC STC CLI STI CLD STD INC/DEC INC/DEC

Grp4 Grp5

A-6

I

o

2

3

4

5

6

7

8

9

A

B

C

D

E

F

o
Grp6

.
MOV
Rd,Cd

WRMSR

JO

SETO

PUSH
FS

CMPXCH
G

Eb,Gb

XADD
Eb,Gb

• Reserved

I

Two Byte Opcode Map (First byte is OFH)

2 3 4 5 . LAR LSL
GV,Ew GV,Ew . . .

MOV MOV MOV MOV'
Rd,Dd Cd,Rd Dd,Rd Rd,Td

RDTSC RDMSR

Long-displacement jump on condition (Jv)

JNO JB JNB JZ JNZ

Byte Set on condition (Eb)

SETNO SETB SETNB SETZ SETNZ

POP CPUID BT SHLD SHLD
FS EV,Gv EV,Gv,lb EV,Gv,CL

CMPXCH LSS BTR LFS LGS
G

EV,Gv Mp EV,Gv Mp Mp

XADD
EV,Gv

OPCODE MAP

6 7
"

CLTS .

MOV'
Td,Rd

JBE JNBE

SETBE SETNBE

A step' A step'
CMPXCHG CMPXCHG

XBTS IBTS

MOVZX

GV,Eb GV,Ew

Group 9

A-7

OPCODE MAP

2

3

4

5

6

7

a

9

A

B

C

D

E

F

A-a

a
INVD

JS

SETS

Eb

PUSH
GS

BSWAP
EAX

Two-Byte Opcode Map (First byte is OFH) (Contd.)

9· A B C D

WBINVD

Long-displacement jump on condition (Jv)

JNS JP JNP JL JNL

Byte set on condition (Eb)

SETNS SETP SETNP SETL SETNL

Eb Eb Eb Eb Eb

POP RSM BTS SHRD SHRD
GS EV,Gv EV,Gv,lb EV,Gv,CL

Grp-a BTC BSF BSR

EV,lb EV,Gv GV,Ev GV,Ev

BSWAP BSWAP BSWAP BSWAP BSWAP
ECX EDX EBX ESP EBP

E F

JLE JNLE

SETLE SETNLE

Eb Eb

IMUL
GV,Ev

MOVSX

GV,Eb GV,Ew

BSWAP BSWAP
ESI EDI

I

Opcodes Determined by Bits 5,4,3 of ModR/M Byte

Group

2

3

4

5

6

7

B

9

mod

000

ADD

ROL

TEST
Ib/lv

INC
Eb

INC
Ev

SLDT
Ew

SGDT
Ms

001

OR

ROR

DEC
Eb

DEC
Ev

STR
Ew

SIDT
Ms

CMPXCH
BBMq

nnn

010 011 100

ADC SBB AND

RCL RCR SHL SAL

NOT NEG MUL
AUeAX

CALL CALL JMP
Ev Ep Ev

LLDT LTR VERR
Ew Ew Ew

LGDT LlDT SMSW
Ms Ms Ew

BT

Escape Opcodes with 08 as First Byte

mod nnn

101

SUB

SHR

IMUL
AUeAX

JMP
Ep

VERW
Ew

BTS

OPCODE MAP

RIM

110 111

XOR CMP

SAR

DIV IDIV
AUeAX AUeAX

PUSH
Ev

LMSW INVLPG
Ew

BTR BTC

RIM

ModR/M bytes in range of OOH through BFH, nnn are mapped according to the following table
(opcode is determined by bits 3 through 5 of mod RIM byte).

000 001 010 011 100 101 110 111

I
A-9

OPCODE MAP

ModRIM bytes outside the range OOH through BFH are mapped by the tables below:

o 2 3 4 5 6 7

C FADD

ST,ST(O) I ST,ST(1) I ST,ST(2) I ST,ST(3) I ST,ST(4) I ST,ST(5) I ST,ST(6) I ST,ST(7)

D FCOM

ST,ST(O) 1 ST,ST(1) 1 ST,T(2) 1 ST,ST(3) J ST,ST(4) 1 ST,ST(5).1 ST,ST(6) J ST,ST(7)

E FSUB

ST,ST(O) 1 ST,ST(1) 1 ST,ST(2) 1 ST,ST(3) 1 ST,ST(4) 1 ST,ST(5) 1 ST,ST(6) 1 ST,ST(7)

F FDIV

ST,ST(O) I ST,ST(1) I ST,ST(2) I ST,ST(3) I ST,ST(4) I ST,ST(5) I ST,ST(6) I ST,ST(7)

8 9 A B C D E F

C FMUL

ST,ST(O) I ST,ST(1) I ST,ST(2) I ST,ST(3) I ST,ST(4) I ST,ST(5) I ST,ST(6) I ST,ST(7)

D FCOMP

ST,ST(O) I ST,ST(1) I ST,T(2) I ST,ST(3) I ST,ST(4) I ST,ST(5) I ST,ST(6) I ST,ST(7)

E FSUBR

ST,ST(O) I ST,ST(1) I ST,ST(2) I ST,ST(3) I ST,ST(4) I ST,ST(5) I ST,ST(6) I ST,ST(7)

F FDIVR

ST,ST(O) I ST,ST(1) I ST,ST(2) I ST,ST(3) I ST,ST(4) I ST,ST(5) I ST,ST(6) I ST,ST(7)

Escape Opcodes with 09 as First Byte

mod nnn RIM

ModRiM bytes in range of OOH through BFH, nnn are mapped according to the following table
(opcode is determined by bits 3 through 5 of modRiM byte)

000 001 010 011 100 101 110 111

FLD FST FSTP FLDENV FLDCW FSTENV FSTCW
single-real single-real single-real 14/28 2 bytes 14/28 2 bytes

bytes bytes

A-10

I

OPCODE MAP

ModR/M bytes outside the range OOH through BFH are mapped by the tables below

o 2 3 4 5 7

C FLD

ST,ST(O) ST,ST(1) ST,ST(2) ST,ST(3) ST,ST(4) ST,ST(5) ST,ST(6) ST,ST(7)

D FNOP

E FCHS FABS FTST FXAM

F F2XM1 FYL2X FPTAN FPATAN FXTRAC FPREM1 FDECSTP FINCSTP
T

8 9 A B C D E F

C FXCH

ST,ST(O) ST,ST(1) ST,ST(2) ST,ST(3) ST,ST(4) ST,ST(5) ST,ST(6) ST,ST(7)

D

E FLD1 FLDL2T FLDL2E FLDPI FLDLG2 FLDLN2 FLDZ

F FPREM FYL2XP1 FSQRT FSINCOS FRNDINT FSCALE FSIN FCOS

Escape Opcodes with DA as First Byte

mod nnn RIM

ModR/M bytes in range of OOH through BFH, nnn are mapped according to the following table
(opcode is determined by bits 3 through 5 of modRIM byte),

000 001 010 011 100 101 110 111

I
A-11

OPCODE MAP

ModR/M bytes outside the range OOH through BFH are mapped by the tables below:

o 2 3 4 5 6 7

C

D

E

F

8 9 A B C D E F

C

D

E FUCOMPP

F

NOTE:
• Short-int = 32 bit integer.

Escape Opcodes with DB as First Byt

mod nnn RIM

ModR/M bytes in range of OOH through BFH, nnn are mapped according to the following table
(opcode is determined by bits 3 through 5 of modRlM byte).

ModRlM bytes outside the range OOH through BFH are mapped by the tables below:

000 001 010 011 100 101 110 111

A-12

I

OPCODE MAP

o 2 3 4 5 6 7

C

o

E FCLEX FINIT

F

8 9 A B C o E F

C

o

E

F

NOTE:
• Short-int = 32 bit integer.

Escape Opcodes with DC as First Byte

mod nnn RIM

ModR/M bytes in range of OOH through BFH, nnn are mapped according to the following table
(opcode is determined by bits 3 through 5 of modRIM byte).

000 001 010 011 100 101 110 111

I
A-13

OPCODEMAP

FADD FMUL FCOM FCOMP FSUB FSUBR FDIV FDIVR
double- double- double- double- double- double- double- double-

real real real real real real real real

ModRiM bytes outside the range OOH through BFH are mapped by the tables below:

o 2 3 4 5 6 7

C FADD

ST(O),ST ST(1),ST ST(2),ST ST(3),ST ST(4),ST ST(5),ST ST(6),ST ST(7),ST

D

E FSUBR

ST(O),ST ST(1),ST ST(2),ST ST(3),ST ST(4),ST ST(5),ST ST(6),ST ST(7),ST

F FDIVR

ST(O),ST ST(1),ST ST(2),ST ST(3),ST ST(4),ST ST(5),ST ST(6),ST ST(7),ST

8 9 A B C D E F

C FMUL

ST(O),ST ST(1),ST ST(2),ST ST(3),ST ST(4),ST ST(5),ST ST(6),ST ST(7),ST

D

E FSUB

ST(O),ST ST(1),ST ST(2),ST ST(3),ST ST(4),ST ST(5),ST ST(6),ST ST(7),ST

F FDIV

ST(O),ST ST(1),ST ST(2),ST ST(3),ST ST(4),ST ST(5),ST ST(6),ST ST(7),ST

A-14

I

OPCODE MAP

Escape Opcodes with DO as First Byte

mod nnn RIM

ModR/M bytes in range of OOH through BFH, nnn are mapped according to the following table
(opcode is determined by bits 3 through 5 of modR/M byte).

000 001 010 011 100 101 110

ModR/M bytes outside the range OOH through BFH are mapped by the tables below:

o 2 3 4 5 6

C FFREE

ST(O) ST(1) ST(2) ST(3) ST(4) ST(5) ST(6)

o FST

ST(O) ST(1) ST(2) ST(3) ST(4) ST(5) ST(6)

E FUCOM

ST(O),ST ST(1),ST ST(2),ST ST(3),ST ST(4),ST ST(5),ST ST(6),ST

F

8 9 A B C o E

C

o FSTP

ST(O) ST(1) ST(2) ST(3) ST(4) ST(5) ST(6)

E FUCOMP

ST(O) ST(1) ST(2) ST(3) ST(4) ST(5) ST(6)

F

I

111

FSTSW
2 bytes

7

ST(7)

ST(7)

ST(7),ST

F

ST(7)

ST(7)

A-15

OPCODE MAP

Escape Opcodes with DE as First Byte

mod nnn RIM

ModR/M bytes in range of OOH through BFH, nnn are mapped according to the following table
(opcode is determined by bits 3 through 5 of modR/M byte).

000 001 010 011 100 101 110 111

ModR/M bytes outside the range OOH through BFH are mapped by the tables below:

o 2 3 4 5 6 7

C FADDP

ST(O),ST ST(1),ST ST(2),ST ST(3),ST ST(4),ST ST(5),ST ST(6),ST ST(7),ST

D

E FSUBRP

ST(O),ST ST(1),ST ST(2),ST ST(3),ST ST(4),ST ST(5),ST ST(6),ST ST(7),ST

F FDIVRP

ST(O),ST ST(1),ST ST(2),ST ST(3),ST ST(4),ST ST(5),ST ST(6),ST ST(7),ST

8 9 A B C D E F

C FMULP

ST(O),ST ST(1),ST ST(2),ST ST(3),ST ST(4),ST ST(5),ST ST(6),ST ST(7),ST

D FCOMPP

E FSUBP

C:Tfm C:T CTf1 \ CT CT/I)\ CT CT/'l\ CT COT/A\ CT C!'T/!:\ CT CoT la' C'\T C"T/"'7\ COT -,\,,/,-- -'\'/,-- I \,-,,\oJ I """'\V,,V • VI \"T},V I VI\v/lV' v I \V/IV I VI\'J,UI

F FDIVP

ST(O),ST ST(1),ST ST(2),ST. ST(3),ST ST(4),ST ST(5),ST ST(6),ST ST(7),ST

A-16

I

OPCODE MAP

Escape Opcodes with OF As First Byte

mod nnn RIM

ModR/M bytes in range of OOH through BFH, nnn are mapped according to the following table
(opcode is determined by bits 3 through 5 of modR/M byte).

000 001 010 011 100 101 110 111

FILD FIST FISTP FBLD FILD FBSTP FISTP
word-int word-int word-int packed- long-int packed- long-int

BCD BCD

ModR/M bytes outside the range OOH through BFH are mapped by the tables below:

o 2 3 4 5 6 7

C

D

E FSTSW

AX

F

8 9 A B C D E F

C

D

E

F

I
A-17

Performance
Monitoring Counters

I

B

APPENDIX B
PERFORMANCE MONITORING COUNTERS

Table B-1 lists the events that can be counted with the performance-monitoring counters and
read with the RDPMC instruction. The unit column gives the micro architecture or bus unit that
produces the event; the event number column gives the hexadecimal number identifying the
event; the mnemonic event name column gives the name of the event; the unit mask column
gives the unit mask required (if any); the description column describes the event; and the
comments column gives additional information about the event.

These performance monitoring events are intended to be used as guides for performance tuning.
The counter values reported are not guaranteed to be absolutely accurate and should be used as
a relative guide for tuning. Known discrepancies are documentation where applicable. All
performance events are model specific to the Pentium Pro processor and are not architecturally
guaranteed in future versions of the processor. All performance event encodings not listed in
Table B-1 are reserved and their use will result in undefined counter results.

See the end of the table for notes related to certain entries in the table.

Table 8-1. Performance Monitoring Counters

Event Mnemonic Event Unit
Unit Num. Name Mask Description Comments

Data 43H DATA_MEM - OOH All memory
Cache REFS references, both
Unit (DCU) cacheable and non-

cacheable

45H DCU_LlNES_IN OOH Total lines allocated
in the DCU.

46H DCU_M_LlNES_IN OOH Number of M state
lines allocated in the
DCU.

47H DCU_M_LlNES - OOH Number of M state
OUT lines evicted from the

DCU. This includes
evictions via snoop
HITM, intervention or
replacement.

I
8-1

PERFORMANCE MONITORING COUNTERS

Table 8-1. Performance Monitoring Counters (Contd.)

Event Mnemonic Event Unit
Unit Num. Name Mask Description Comments

48H DCU_MISS_ OOH Weighted number of An access that also
OUTSTANDING cycles while a DCU misses the L2 is short-

miss is outstanding. changed by 2 cycles.
(Le. if counts N cycles,
should be N+2
cycles.)

Subsequent loads to
the same cache line
will not result in any
additional counts.

Count value not
precise, but still
useful.

Instruction 80H IFU_IFETCH OOH Number of instruction
Fetch Unit fetches, both
(IFU) cacheable and non-

cacheable.

81H I FU_IFETCH - OOH Number of instruction
MISS fetch misses.

8SH ITLB_MISS OOH Number of ITLB
misses.

86H I FU_MEM_STALL OOH Number of cycles that
the instruction fetch
pipe stage is stalled,
including cache
misses, ITLB misses,
ITLB faults, and victim
cache evictions.

87H ILD_STALL OOH Number of cycles that
the instruction length
decoder is stalled.

L2 Cache1 28H L2_IFETCH MESI Number of L2
OFH instruction fetches.

29H L2_LD MESI Number of L2 data
OFH loads.

2AH L2_ST MESI Number of L2 data
OFH stores.

24H L2_LlNES_IN OOH Number of lines
allocated in the L2.

26H L2_LlNES_OUT OOH Number of lines
removed from the L2
for any reason.

B-2

I

PERFORMANCE MONITORING COUNTERS

Table 8-1. Performance Monitoring Counters (Contd.)

Event Mnemonic Event Unit
Unit Num. Name Mask Description Comments

25H L2_M_L1 NES_I NM OOH Number of modified
lines allocated in the
L2.

27H L2_M_L1NES - OOH Number of modified
OUTM lines removed from

the L2 for any reason.

2EH L2_RQSTS MESI Number of L2
OFH requests.

21H L2_ADS OOH Number of L2 address
strobes.

22H L2_DBUS_BUSY OOH Number of cycles
during which the data
bus was busy.

23H L2_DBUS_BUSY - OOH Number of cycles
RD during which the data

bus was busy
transferring data from
L2 to the processor.

Extemal 62H BUS_DRDY_ OOH (Self) Number of clocks Unit Mask = OOH
Bus Logic CLOCKS 20H (Any) during which DRDY counts bus clocks
(EBL)2 is asserted. when the processor is

driving DRDY.

Unit Mask = 20H
counts in processor
clocks when any
agent is driving DRDY.

63H BUS_LOCK_ OOH (Self) Number of clocks Always counts in
CLOCKS 20H (Any) during which LOCK is processor clocks

asserted

60H BUS_REQ_ OOH (Self) Number of bus Counts only DCU full·
OUTSTANDING requests outstanding. line cacheable reads,

not RFOs, writes,
instruction fetches, or
anything else. Counts
"waiting for bus to
complete" (last data
chunk received).

65H BUS_ TRAN_BRD OOH (Self) Number of burst read
20H (Any) transactions.

66H BUS_ TRAN_RFO OOH (Self) Nu mber of read for
20H (Any) ownership

transactions.

67H BUS_ TRANS_WB OOH (Self) Number of write back
20H (Any) transactions.

I
B·3

PERFORMANCE MONITORING COUNTERS

Table 8-1. Performance Monitoring Counters (Contd.)

Event Mnemonic Event Unit
Unit Num. Name Mask Description Comments

68H BUS3RAN_ OOH (Self) Number of instruction
IFETCH 20H (Any) fetch transactions.

69H BUS_TRAN_ OOH (Self) Number of invalidate
INVAL 20H (Any) transactions.

6AH BUS_TRAN - OOH (Self) Number of partial
PWR 20H (Any) write transactions.

6BH BUS_ TRANS_P OOH (Self) Number of partial
20H (Any) transactions.

6CH BUS_ TRANS_IO OOH (Self) Number of I/O
20H (Any) transactions.

6DH BUS_TRAN_DEF OOH (Self) Number of deferred
20H (Any) transactions.

6EH BUS_TRAN_ OOH (Self) Number of burst
BURST 20H (Any) transactions.

70H BUS_TRAN_ANY OOH (Self) Numberof all
20H (Any) transactions.

6FH BUS_ TRAN_MEM OOH (Self) Number of memory
20H (Any) transactions

64H BUS_DATA_RCV OOH (Self) Number of bus clock
cycles during which
this processor is
receiving data.

61H BUS_BNR_DRV OOH (Self) Number of bus clock
cycles during which
this processor is
driving the BNR pin.

7AH BUS_HIT_DRV OOH (Self) Number of bus clock Includes cycles due
cycles during which to snoop stalls.
this processor is
driving the HIT pin.

7BH BUS_HITM_DRV OOH (Self) Number of bus clock Includes cycles due
cycles during which to snoop stalls.
this processor is
driving the HITM pin.

7EH BUS_SNOOP - OOH (Self) Number of clock
STALL cvcles durino which

the bus is snoop
stalled.

Floating C1H FLOPS OOH Number of Counter 0 only
Point Unit computational

floating-point
operations retired.

B-4

I

PERFORMANCE MONITORING COUNTERS

Table B-1. Performance Monitoring Counters (Contd.)

Event Mnemonic Event Unit
Unit Num. Name Mask Description Comments

10H FP _COMP _OPS - OOH Number of Counter 0 only.
EXE computational

floating-point
operations executed.

11H FP _ASSIST OOH Nu mber of floating- Counter 1 only.
point exception cases
handled by
microcode.

12H MUL OOH Number of multiplies. Counter 1 only.

13H DIV OOH Number of divides. Counter 1 only.

14H CYCLES_DIV - OOH Number of cycles Counter 0 only.
BUSY during which the

divider is busy.

Memory 03H LD_BLOCKS OOH Number of store
Ordering buffer blocks

04H SB_DRAINS OOH Number of store
buffer drain cycles.

05H MISALIGN OOH Number of -
MEM_REF misaligned data

memory references.

Instruction COH INST_RETIRED OOH Number of
Decoding instructions retired.
and
Retirement

C2H UOPS_RETIRED OOH Number of UOPs
retired.

DOH INST _DECODER OOH Number of
instructions decoded.

Interrupts C8H HW_INT_RX OOH Number of hardware
interrupts received.

C6H CYCLES_INT_ OOH Number of processor
MASKED cycles for which

interrupts are
disabled.

C7H CYCLES_INT_ OOH Number of processor
PENDING cycles for which
AND_MASKED interrupts are disabled

and interrupts are
pending.

Branches C4H BR_INST_ OOH Number of branch
RETIRED instructions retired.

I
B-5

PERFORMANCE MONITORING COUNTERS

Table B-1. Performance Monitoring Counters (Contd.)

Event Mnemonic Event Unit
Unit Num. Name Mask Description Comments

C5H BR_MISS_PRED - OOH Number of
RETIRED mispredicted

branches retired.

C9H BR_TAKEN - OOH Number of taken
RETIRED branches retired.

CAH BR_MISS_PRED - OOH Number of taken
TAKEN_RET mispredictions

branches retired.

EOH BR_INST_ OOH Number of branch
DECODED instructions decoded.

E2H BTB_MISSES OOH Number of branches
that miss the BTB.

E4H BR_BOGUS OOH Number of bogus
branches.

E6H BACLEARS OOH Number of time
BACLEAR is asserted

Stalls A2 RESOURCE - OOH Number of cycles
STALLS during which there are

resource related
stalls.

D2H PARTIAL_RAT_ OOH Number of cycles or
STALLS events for partial

stalls

Segment 06H SEGMENT_REG - OOH Number of segment
Register LOADS register loads
Loads

Clocks 79H CPU_CLK_ OOH Number of cycles
UNHALTED during which the

processor is not
halted

NOTES:

1. Several L2 cache events, where noted, can be further qualified using the Unit Mask (UMSK) field in the
PerfEvtSelO and PerfEvtSel1 registers. The lower 4 bits of the Unit Mask field are used in conjunction
with L2 events to indicate the cache state or cache states involved. The Pentium®pro processor identifies
cache states using the "MESI" protocol and consequently each bit in the Unit Mask field represents one of
the four states: UMSK[3] = M (8H) state, UMSK[2] = E (4H) state, UMSK[1] = S (2H) state, and UMSK[O]
= I (1 H) state. UMSK[3:0] = MES" (FH) should be used to collect data for all states; UMSK = OH, for the
applicable events, will result in nothing being counted.

2. All of the external bus logic (EBL) events, except where noted, can be further qualified using the Unit
Mask (UMSK) field in the PerfEvtSelO and PerfEvtSel1 registers. Bit 5 of the UMSK field is used in con­
junction with the EBL events to indicate whether the processor should count transactions that are self
generated (UMSK[5] = 0) or transactions that result from any processor on the bus (UMSK[5] = 1).

B-6

I

Model-Specific
Registers (MSRs)

I

c

APPENDIX C
MODEL-SPECIFIC REGISTERS (MSRS)

Table C-l lists the model-specific registers (MSRs) that can be read with the RDMSR and
written with the WRMSR instructions. Register addresses are given in both hexadecimal and
decimal; the register name is the mnemonic register name; the bit description describes indi­
vidual bits in registers.

Table C-l. Model-Specific Registers (MSRs)

Register Address

Hex Dec Register Name Bit Description

OH 0 P5_MC_ADDR

1H 1 P5_MC_TYPE

10H 16 TSC

1BH 27 APICBASE

8 Boot Strap Processor indicator Bit. BSP= 1

10:9 Reserved

11 APIC Global Enable Bit - Permanent til reset
Enabled = 1 , Disabled = 0

2AH 42 EBL_CR_POWERON

0 Data bus error code policy
1 = ECC
0= Parity
ReadlWrite

1 Data Error Checking Enable
1 = Disabled
0= Enabled
ReadlWrite

2 Response Error Checking
Enable
1 = Disabled
0= Enabled
ReadlWrite

3 AERR# Drive Enable
1 = Disabled
0= Enabled
ReadlWrite

4 BERR# Enable for initiator bus requests
1 = Disabled
0= Enabled
ReadlWrite

I
C-1

MODEL-SPECIFIC REGISTERS (MSRS)

Table C-1. Model-Specific Registers (MSRs) (Contd.)

Register Address

Hex Dec Register Name Bit Description

6 BERR# Enable for initiator internal errors
1 = Disabled
0= Enabled
Read/Write

7 BINIT# Driver Enable
1 = Disabled
0= Enabled
Read/Write

8 Output Tri-state Enabled
1 = Enabled
0= Disabled
Read

9 Execute BIST
1 = Enabled
0= Disabled
Read

10 AERR# Observation Enabled
1 = Enabled
0= Disabled
Read

12 BINIT# Observation Enabled
1 = Enabled
0= Disabled
Read

13 IN Order Queue Depth
1 = 1
0=8
Read

14 1 M Power on Reset Vector
1 = 1M
0=4G
Read

15 FRC Mode Enable
1 = Enabled
0= Disabled
Read

17:16 APIC Cluster ID
Read

21:20 Symmetric Arbitration ID
Read

24:22 Clock Frequency Ratio
Read

25 Reserved

C-2

I

MODEL-SPECIFIC REGISTERS (MSRS)

Table C-1. Model-Specific Registers (MSRs) (Contd.)

Register Address

Hex Dec Register Name Bit Description

26 Low Power Enable
Read

31:27 Reserved

79H 121 BIOS_UPDL TRIG BIOS Update Trigger Register

8BH 139 BIOS_SIGN BIOS Update Signature Register

C1H 193 PERFCTRO

C2H 194 PERFCTR1

FEH 254 MTRRcap

179H 377 MCG_CAP

17AH 378 MCG_STATUS

17BH 379 MCG_CTL

186H 390 EVNTSELO

7:0 Event Select
(See Performance Counter section for a list of event
encodings)

15:8 UMASK:
Unit Mask Register Set to Zero to enable all count
options

16 USER:
Controls the counting of events at Privilege levels of
1,2, and 3

17 OS:
Controls the counting of events at Privilege level of 0

18 E:
Occurrence/Duration Mode Select
1 = Occurrence
0= Duration

19 PC:
Enabled the signalling of performance counter
overflow via BPO pin.

20 I NT:
Enables the signalling of counter overflow via input to
APIC
1 = Enable
0= Disable

22 ENABLE:
Enables the counting of performance events in both
counters
1 = Enable
0= Disable

I
C-3

MODEL-SPECIFIC REGISTERS (MSRS)

Table C-1. Model-Specific Registers (MSRs) (Contd.)

Register Address

Hex Dec Register Name Bit Description

23 INV:
Inverts the result of the CMASK condition
1 = Inverted
o = Non-Inverted

31:24 CMASK:
Counter Mask

187H 391 EVNTSEL1

7:0 Event Select
(See Performance Counter section for a list of event
encodings)

15:8 UMASK:
Unit Mask Register Set to Zero to enable all count
options

16 USER:
Controls the counting of events at Privilege levels of
1,2, and 3

17 OS:
Controls the counting of events at Privilege level of 0

18 E:
Occurrence/Duration Mode Select
1 = Occurrence
0= Duration

19 PC:
Enabled the signalling of performance counter
overflow via BPO pin.

20 INT:
Enables the signalling of counter overflow via input to
APIC
1 = Enable
0= Disable

23 INV:
Inverts the result of the CMASK condition
1 = Inverted
o = Non-Inverted

31:24 CMASK:
Counter Mask

1D9H 473 DEBUGCTLMSR

0 Enable/Disable Last Branch Records.

1 Branch Trap Flag.

2 Performance Monitoring/Break Point Pins

3 Performance Monitoring/Break Point Pins

C-4

I

MODEL-SPECIFIC REGISTERS (MSRS)

Table C-1. Model-Specific Registers (MSRs) (Contd.)

Register Address

Hex Dec Register Name Bit Description

4 Performance Monitoring/Break Point Pins

5 Performance Monitoring/Break Point Pins

6 Enable/Disable Execution Trace Messages

13:7 Reserved

14 Enable/Disable Execution Trace Messages

15 Enable/Disable Execution Trace Messages

1DBH 475 LASTBRANCHFROMIP

1DCH 476 LASTBRANCHTOI P

1DDH 477 LASTINTFROMIP

1DEH 478 LASTINTTOIP

1EOH 480 ROB_CR_BKUPTMPDR6

1:0 Reserved

2 Fast String Enable bit. Default is enabled

200H 512 MTRRphysBaseO

201H 513 MTRRphysMaskO

202H 514 MTRRphysBase1

203H 515 MTRRphysMask1

204H 516 MTRRphysBase2

205H 517 MTRRphysMask2

206H 518 MTRRphysBase3

207H 519 MTRRphysMask3

208H 520 MTRRphysBase4

209H 521 MTRRphysMask4

20AH 522 MTRRphysBase5

20BH 523 MTRRphysMask5

20CH 524 MTRRphysBase6

20DH 525 MTRRphysMask6

20EH 526 MTRRphysBase7

20FH 527 MTRRphysMask7

250H 592 MTRRfix64K_OOOOO

258H 600 MTRRfix16K_80000

259H 601 MTRRfix16K_AOOOO

I
C-5

MODEL-SPECIFIC REGISTERS (MSRS)

Table C-1. Model-Specific Registers (MSRs) (Contd.)

Register Address

Hex Dec Register Name Bit Description

268H 616 MTRRfix4K_COOOO

269H 617 MTRRfix4K_C8000

26AH 618 MTRRfix4K_DOOOO

26BH 619 MTRRfix4K_D8000

26CH 620 MTRRfix4K_EOOOO

26DH 621 MTRRfix4K_E8000

26EH 622 MTRRfix4K_FOOOO

26FH 623 MTRRfix4K_F8000

2FFH 767 MTRRdefType

2:0 Default memory type

10 Fixed MTRR enable

11 MTRR Enable

400H 1024 MCO_CTL

401H 1025 MCO_STATUS

63 MC_STATUS_ V

62 MC_STATUS_O

61 MC_STATUS_UC

60 MC_STATUS_EN

59 MC_STATUS_MISCV

58 MC_STATUS_ADDRV

57 MC_STATUS_DAM

31:16 MC_STATUS_MSCOD

15:0 MC_STATUS_MACCOD

402H 1026 MCO_ADDR

403H 1027 MCO_MISC Defined in MCA architecture but not implemented in
the Pentium® Pro processor

404H 1028 MC1_CTL
..

405H 1029 MC1_STATUS Bit definitions same as MCO_STATUS

406H 1030 MC1_ADDR

407H 1031 MC1_MISC Defined in MCA architecture but not implemented in
the Pentium Pro processor

408H 1032 MC2_CTL

409H 1033 MC2_STATUS Bit definitions same as MCO_STATUS

C-6

I

MODEL-SPECIFIC REGISTERS (MSRS)

Table C-1. Model-Specific Registers (MSRs) (Contd.)

Register Address

Hex Dec Register Name Bit Description

40AH 1034 MC2_ADDR

40BH 1035 MC2_MISC Defined in MCA architecture but not implemented in
the Pentium Pro processor

40CH 1036 MC4_CTL

40DH 1037 MC4_STATUS Bit definitions same as MCO_STATUS

40EH 1038 MC4_ADDR Defined in MCA architecture but not implemented in
the Pentium Pro processor

40FH 1039 MC4_MISC Defined in MCA architecture but not implemented in
the Pentium Pro processor

410H 1040 MC3_CTL

411H 1041 MC3_STATUS Bit definitions same as MCO_STATUS

412H 1042 MC3_ADDR

413H 1043 MC3_MISC Defined in MCA architecture but not implemented in
the Pentium Pro processor

I
C-7

Index

I

I

A
A (accessed) flag, page table entry 3-24
A20M# signal 12-3,15-21
Aborts

description of 5-4
restarting a program or task after 5-5

AC (alignment check) flag, EFLAGS register .. 2-9,
5-44

Access rights
checking 2-17
checking caller privileges 4-24
description of4-22
invalid values 15-9

ADC instruction 7-4
ADD instruction 7-4
Address

generation interlock (AGI) 14-1
size prefix 13-2
space, of task 6-15

Address translation
2-MByte pages 3-28
4-KByte pages 3-19,3-27
4-MByte pages 3-20
in real-address mode 12-3
logical to linear 3-7
overview 3-6

Addressing
modes, code optimization 14-1
segments 1-6

Advanced programmable interrupt controller
(see APIC)

Advanced programmable interrupt controller
(see I/O APIC or Loal APIC)

Alignment
alignment check exception 5-44
checking 4-26
code optimization 14-2

Alignment check exception (#AC) 5-44, 15-13
AM (alignment mask) flag, CRO control

register 2-13, 15-7
AND instruction 7-4
APIC bus

arbitration mechanism and protocol 7-31
bus arbitration 7-11
bus message format. 7-31
description of 7-10
diagram of 7-10
EOI message format. 7-31
non-focused lowest priority message 7-33
short message format. 7-32
SMI message 9-2
status cycles 7-35
structure of 7-10
transmitting maskable interrupts on 5-2

INDEX

APR (arbitration priority register),
local APIC 7-27

Arbitration
APIC bus 7-31
priority, local APIC 7-17

ARPL instruction 2-17, 4-25
Atomic operations

automatic bus locking 7-3
effects of a locked operation on internal

processor caches 7-5
guaranteed, description of 7-2
overview of 7-1, 7-3
software controlled bus locking 7-4

Auto HALT restart
field, SMM 9-10
SMM 9-10

Automatic bus locking 7-3

B
B (busy) flag, TSS descriptor 6-6,6-14,6-15,

7-3
B (default stack size) flag, segment

descriptor 3-11,13-2,15-20
BO-B3 (breakpoint condition detected) flags,

DR6 register 10-4
Base address fields, segment descriptor 3-10
BD (debug register access detected) flag,

DR6 register 10-4, 10-9
Binary numbers 1-6
Binary-coded decimal (see BCD)
Bit order. .. 1-4
BOUND instruction 5-2, 5-23
BOUND range exceeded exception (#BR) ... 5-23
BPO#, BP1#, BP2#, and BP3# pins 10-11
Breakpoint exception (#BP) 5-2, 5-21, 10-10
Breakpoints

breakpoint exception (#BP) 10-1
data breakpoint 10-6
data breakpoint exception conditions 10-9
description of 10-1
DRO-DR3 debug registers 10-4
example 10-6
exception 5-21
field recognition 10-6
general-detect exception condition 10-9
instruction breakpoint 10-7
instruction breakpoint exception condition 10-8
I/O breakpoint exception conditions 10-9
LENO - LEN3 (Length) fields,

DR7 register 10-6
RIW0-R/W3 (read/write) fields,

DR7 register. 10-6
single-step exception condition 10-9
task-switch exception condition 10-10

INDEX-1

INDEX

BS (single step) flag, DR6 register 10-4
BT (task switch) flag, DR6 register 10-5, 10-10
BTC instruction 7-4
BTF (single-step on branches) flag,

DebugCtlMSR register 10-11, 10-13
BTR instruction 7-4
BTS instruction 7-4
Built-in self test (BIST)

description of 8-1
performing 8-2, 15-2

Bus
arbitration, APIC bus 7-11
errors, detected with machine check

architecture 16-11
hold 15-23
locking 7-3, 15-22

Byte order 1-4

c
C (conforming) flag, segment descriptor4-11
Cache control. 11-13

cache management instructions 11-10
cache mechanisms in Intel architecture

processors 15-16
cache mode differences in Intel architecture

processors 15-9
caching terminology 11-3
CD flag, CRO control register 11-6, 15-8
choosing a memory type 11-5
fixed-range MTRRs 11-16
flags and fields 11-6
flushing TLBs 11-12
G (global) flag, page-directory entries ... 11-8,

11-12
G (global) flag, page-table entries .11-8, 11-12
internal caches 11-1
MemTypeGetO function 11-22
MemTypeSetO function 11-23
MESI protocol. 11-3,11-5
methods of caching available 11-4
MTRR initialization 11-21
MTRR precedences 11-20
MTRRs, description of 11-13
multiple processor considerations 11-25
NW flag, CRO control register 11-6, 15-8
operating modes 11-8
overview of 11-1
PCD flag, CR3 control register 11-7
peD flag, page .. directory entries ... 11-7, 11-8,

11-26
PCD flag, page-table entries. 11-7, 11-8,

11-26
precedence of controls 11-8
preventing caching 11-10
protocol. 11-5
PWT flag, CR3 control register. 11-7
PWT flag, page-directory entries .. 11-7, 11-26

INDEX-2

PWT flag, page-table entries 11-7, 11-26
remapping memory types 11-21
setting up memory ranges with

MTRRs 11-15
variable-range MTRRs 11-17

Caches 2-6
cache hit 11-3
cache line 11-3
cache line fill 11-3
cache write hit. 11-3
description of. 11-1
effects of a locked operation on internal

processor caches 7-5
enabling 8-6
management, instructions 2-19

Caching
cache control protocol 11-5
cache line 11-3
cache mechanisms in Intel architecture

processors 15-16
caching terminology 11-3
choosing a memory type 11-5
flushing TLBs 11-12
implicit caching 11-11
internal caches 11-1
L 1 (level 1) cache 11-1
L2 (level 2) cache 11-1
methods of caching available 11-4
MTRRs, description of. 11-13
operating modes 11-8
overview of 11-1
self-modifying code, effect on 11-11, 15-17
snooping 11-3
TLBs 11-2
UC (uncacheable) memory type 11-4
WB (write back) memory type 11-4
WC (write combining) memory type 11-4
WP (write protected) memory type 11-4
write buffer 11-2, 11-12
write-back caching 11-3
WT (write through) memory type 11-4

Call gates
16-bit, interlevel return from 15-19
accessing a code segment through 4-15
description of. 4-14
for 16-bit and 32-bit code modules 13-2
introduction to 2-3
mechanism 4-15
privilege level checking rules 4-16

,.... A I I = __ .1._ •• _.L: _ _ "" n A .. ,.,. A.... A .. ,... ..,.,."
vMLL III::tU Ut,;UUII .•••• .,)-~, "t- I V, "t- I I, "t- I 0, "t-.tt::,u,

5-6,6-3,6-10,13-6
Caller access privileges, checking 4-24
Calls (see Procedure calls)
CD (cache disable) flag, CRO control

register ... 2-13,8-6,11-6, 11-8, 11-10,
11-25,15-7,15-8,15-9,15-17

CLI instruction 5-5
CL TS instruction 2-17, 4-21

I

INDEX

Cluster model, local APIC 7-16 CPUID instruction 2-16,7-8,10-14,10-17,
CMPXCHG instruction 7-4 11-14, 15-23, 16-7
CMPXCHG8B instruction 7-4 CRO control register
Code modules description of 2-11

16 bit vs. 32 bit 13-2 introduction to 2-5
mixing 16-bit and 32-bit code 13-1, 13-3 state following processor reset 8-1
sharing data among mixed-size code CR1 control register (reserved) 2-11

segments 13-4 CR2 control register
transferring control among mixed-size description of. 2-11

code segments 13-4 introduction to 2-5
Code optimization CR3 control register (PDBR)

addressing modes and register usage 14-1 associated with a task 6-1, 6-3
alignment 14-2 description of. 2-11,3-21
code alignment 14-2 in TSS 6-4, 6-15
data alignment 14-3 introduction to 2-5
guidelines 14-1 loading during initialization 8-10
integer instruction selection 14-4 memory management 2-4
operand and register usage 14-3 CR4 control register
prefix opcodes 14-3 description of. 2-11

Code segments inclusion in Intel Architecture 15-6
accessing data in4-9 introduction to 2-5
accessing through a call gate4-15 CS register
description of 3-12 saving on call to exception or interrupt
descriptor format.4-2 handler 5-11
descriptor layout4-2 state following initialization 8-4
direct calls or jumps to4-11 CS segment selector, CPL field 4-2
executable (defined) 3-11 Current privilege level (see CPL)
pointer size 13-5 Current-count register, local APIC 7-37
privilege level checking when transferring

program control between code
segments 4-10

Compatibility
Intel architecture 15-1

D
D (default operation size) flag, segment

descriptor 3-11,4-4,13-2,15-20
software 1-5 D (dirty) flag, page table entry 3-25

Conforming code segments
accessing4-13
C (conforming) flag4-11
description of 3-13

Context, task (see Task state)
Control registers

CRO 2-11

Data
alignment, code optimization 14-3
breakpoint exception conditions 10-9

Data segments
description of. 3-12
descriptor layout 4-2
expand-down type 3-12

CR1 (reserved) 2-11
CR2 2-11

privilege level checking when accessing ... 4-8
DBO-DB3 breakpoint-address registers 10-1

CR3 (PDBR) 2-4,2-11
CR4 2-11

DB6 debug status register 10-1
DB7 debug control register. 10-1

description of 2-11
introduction to 2-5

DE (debugging extensions) flag, CR4 control
register 2-16, 15-7, 15-10, 15-11

qualification of flags with CPUID
instruction 2-16

Debug exception (#DB) 5-6,5-19,6-4,
10-1,10-8,10-13

CoProcessor segment overrun exception 5-29
Counter

Debug registers .
description of. 10-2

mask field, PerfEvtSelO and PerfEvtSel1
MSRs 10-16

introduction to . 2-5
loading 2-19

overflow, performance-monitoring
counters 10-18

DebugCtlMSR register 10-1, 10-11
Debugging facilities

CPL debug registers 10-2

description of4-7 exceptions 10-7
field, CS segment selector4-2

I
INDEX-3

INDEX

last branch, interrupt, and exception
recording 10-11

masking debug exceptions 5-6
overview of 10-1
performance-monitoring counters 10-14
time-stamp counter 10-14

DEC instruction 7-4
Denormal number (see Denormalized finite

number)
Device-not-available exception (#NM) ... 5-25, 8-6
DFR (destination format register),

local APIC 7-16
DIV instruction 5-18
Divide configuration register, local APIC 7-37
Divide error exception (#DE) 5-18, 15-13
Double fault exception (#DF) 5-27, 15-14
DPL (descriptor privilege level) field, segment

descriptor 3-11, 4-2, 4-7
DRO-DR3 breakpoint-address registers 10-4,

10-12,10-13
DR4-DR5 debug registers 10-4, 15-11
DR6 debug status register 10-4

BO-B3 (breakpoint condition detected)
flags 10-4

BD (debug register access detected) flag .. 10-4
BS (single step) flag 10-4
BT (task switch) flag 10-5
debug exception (#DB) 5-19
reserved bits 15-10

DR7 debug control register 10-5
GO-G3 (global breakpoint enable) flags ... 10-5
GO (general detect enable) flag 10-5
GE (global exact breakpoint enable) flag .. 10-5
LO-L3 (local breakpoint enable) flags 10-5
LE local exact breakpoint enable) flag 10-5
LENO-LEN3 (Length) fields 10-6
RlWO-RIW3 (read/write) fields 10-6,15-10

E
E (edge detect) flag, PerfEvtSelO and

PerfEvtSel1 MSRs 10-16
E (expansion direction) flag, segment

descriptor4-4
E (MTRRs enabled) flag, MTRRdefType

register 11-16
EFLAGS register

introduction to 2-5
saved in TSS 6-4
sBving on cal! to exception or interrupt

handler 5-11
8086

emulation, support for. 12-1
processor, exceptions and interrupts 12-7

8086/8088 processor 15-1
82489DX, software visible differences between

the local APICon a Pentium Pro
processor and the 82489DX 7-38

INDEX-4

intet
EIP register

saved in TSS 6-4
saving on call to exception or interrupt

handler. 5-11
state following initialization 8-4

EM (emulation) flag, CRO control register ... 2-14,
5-25, 8-5, 8-6

EOI (end-of-interrupt register), local APIC ... 7-28
Error code

exception, description of 5-14
pushing on stack 15-19

ERROR# input 15-4
ERROR# output 15-4
ESP register, saving on call to exception or

interrupt handler. 5-11
ESR (error status register), local APIC 7-36
ET (extension type) flag, CRO control

register 2-14
Event select field, PerfEvtSelO and

PerfEvtSel1 MSRs 10-15
Exception handler

calling 5-11
defined 5-1
flag usage by handler procedure 5-12
machine check exceptions (#MC). 16-14
procedures 5-11
protection of handler procedures 5-14
stack usage 5-13
task 5-14, 6-3

Exceptions
classifications . 5-4
conditions checked during a task switch .. 6-12
description of. 2-4, 5-1, 5-2
double fault 5-27
error code . 5-14
handler mechanism 5-11
handler procedures 5-11
handling 5-11
handling in real-address mode 12-5
handling in SMM 9-8
handling in virtual-8086 mode. 12-13
handling through a task gate in virtual-8086

mode 12-19
handling through a trap or interrupt gate in

virtual-8086 mode 12-17
lOT 5-7
initializing for protected mode operation .. 8-10
masking debug exceptions 5-6
masking when switching stack segments .. 5-7
................. :........ .. ~
I IULaLIVI I •• I-V

overview of 5-1
priorities among simultaneous exceptions

and interrupts. 5-7
priority of .. 15-14
reference information on all exceptions .. 5-17
restarting a task or program ' 5-4
summary of 5-3
vectors 5-2

I

I

Executable code segment, size 3-11
Expand-down data segment type 3-12
External bus errors, detected with machine

check architecture 16-11

F
Faults

description of 5-4
restarting a program or task after 5-4

FE (fixed MTRRs enabled) flag,
MTRRdefType register 11-16

FINIT/FNINIT instruction 8-5, 15-4
FIX (fixed range registers supported) flag,

MTRRcap register 11-15
Fixed-range MTRRs

description of 11-16
mapping to physical memory 11-17

Flat model, local APIC 7-16
Flat segmentation model 3-3, 3-4
Floating-point rrror exception (#MF) 5-42
Focus processor, local APIC 7-17
FPU

configuring the FPU environment 8-5
device not available exception 5-25
floating-point error exception 5-42
initialization 8-4
setting up for software emulation of FPU

functions 8-6
state following execution of FINIT/FNINIT

instruction 8-5
state following power-up or hardware

reset 8-5, 15-4
using in SMM 9-9

FWAIT instruction 5-25

G
G (global) flag

page-directory entries 11-8, 11-12
page-table entries 11-8, 11-12
page-table entry 3-25

G (granularity) flag, segment descriptor 3-9,
3-12,4-4

GO-G3 (global breakpoint enable) flags,
OR7 register 10-5

Gate descriptors
call gates 4-14
description of4-13

Gates 2-3
GO (general detect enable) flag,

OR7 register 10-5, 10-9
GOT

description of 2-3, 3-15
index into with index field of segment

selector 3-7
initializing 8-9

INDEX

pointers to exception- and
interrupt-handlers 5-11

segment descriptors in 3-9
selecting with TI (table indicator) flag of

segment selector 3-7
task gate descriptor 6-8
task switching 6-10
TSS descriptors 6-6
use in address translation 3-6

GOTR register
description of 2-3,2-10,3-15
introduction to 2-5
Iimit 4-4
loading during initialization 8-10
storing 3-17

GE (global exact breakpoint enable) flag,
OR7 register 10-5, 10-9

General-detect exception condition 10-9
General-protection exception (#GP) 3-12, 4-6,

4-7,4-11,4-13,5-14,5-36,6-6,10-2,
15-12,15-13,15-21,15-22

General-purpose registers
saved in TSS 6-4

Global descriptor table register (see GOTR)
Global descriptor table (see GOT)

H
HALT state 9-10

relationship to SMI interrupt 9-3
Hardware reset

description of. 8-1
effect on caches 11-1 0
processor state after reset 8-1
state of FPU following 8-5
state of MTRRs following 11-14
value of 5MBASE following 9-3

Hexadecimal numbers 1-6
HITM# line 11-3
HL T instruction 2-20, 4-21, 5-28, 9-10, 9-11,

10-14

10 (identification) flag, EFLAGS register 2-9
10lV instruction 5-18, 15-13
lOT

calling interrupt- and exception-handlers
from 5-11

changing base and limit in real-address
mode 12-6

description of. 5-7
handling NMI interrrupts during

initialization 8-8
initializing, for protected mode operation. 8-10
initializing, for real-address mode

operation 8-8
introduction to 2-4

INDEX-5

INDEX

limit. 15-14
segment descriptors in 3-9
structure in real-address mode 12-6
task gate descriptor 6-8
task switching 6-10
types of descriptors allowed 5-9
use in real-address mode 12-6

IOTR register
description of 2-11, 5-8
introduction to 2-4
limit4-4
loading in real-address mode 12-6
storing 3-17

IF (interrupt enable) flag, EFLAGS register ... 2-8,
5-1,5-5,5-10,5-13,9-8,12-6,12-21

IN instruction 7-7, 15-22
INC instruction 7-4
Index field, segment selector 3-7
IN IT interrupt 7-10
Initial-count register, local APIC 7-37
Initialization

built-in self test (BIST) 8-1, 8-2
CS register state following 8-4
EIP register state following 8-4
example 8-14
first instruction executed 8-4
FPU 8-4, 15-4
hardware reset 8-1
lOT, protected mode 8-10
lOT, real-address mode 8-8
Intel486 SX processor and Intel487 SX

math coprocessor 15-4
local APIC 7-29
location of software-initialization code 8-4
model and stepping information 8-3
multitasking environment 8-11
overview 8-1
paging 8-10
processor state after reset 8-1, 15-2
protected mode 8-9
real-address mode 8-8
RESET# pin 8-1
setting up exception and interrupt handling

facilities 8-10
INIT# pin 8-1
InpuVoutput (see 110)
INS instruction 10-9
Instruction prefixes (see Prefixes)
Instruction-breakpoint exception condition 10-8
insiruciions

operands 1-5
privileged4-21
serializing 15-2
supported in real-address mode 12-4
system 2-6, 2-16

INT 3 instruction 5-21, 10-2
INT instruction 4-10

INDEX-6

INT (APIC interrupt enable) flag, PerfEvtSelO
and PerfEvtSel1 MSRs 10-16

INT3 instruction 3-9, 5-2
Intel 286 processor. 15-1
Intel architecture

compatibility 15-1
processors 15-1

Intel386 OX processor 15-1
Intel386 SX processor 15-1
Intel486 OX processor 15-1
Intel486 SX processor 15-1, 15-4
Intel487 SX math coprocessor 15-4
Interprivilege level calls

call mechanism 4-15
stack switching 4-18

Interrupt command register (ICR),
local APIC 7-20

Interrupt gates
16-bit, interlevel return from 15-19
clearing IF flag 5-6, 5-13
difference between interrupt and

trap gates. 5-13
for 16-bit and 32-bit code modules 13-2
handling a virtual-8086 mode interrupt or

exception through 12-17
in lOT 5-9
introduction to 2-3, 2-4
layout of 5-9

Interrupt handler
calling 5-11
defined 5-1
flag usage by handler procedure 5-12
procedures 5-11
protection of handler procedures 5-14
stack usage 5-13
task 5-14, 6-3

Interrupt redirection bit map field (in TSS) .. 12-13
Interrupts

acceptance, local APIC 7-25
APIC priority levels 7-11
automatic bus locking when

acknowledging 15-22
control transfers between 16- and 32-bit

code modules 13-8
description of. 2-4, 5-1
distribution mechanism, local APIC 7-17
enabling and disabling 5-5
handler mechanism 5-11
handler procedures 5-11
hanuiing 5-11
handling in real-address mode 12-5
handling in SMM 9-8
handling in virtual-8086 mode 12-13
handling multiple NMls 5-5
handling through a task gate in

virtual-8086 mode 12-19
handling through a trap or interrupt gate in

virtual-8086 mode 12-17

I

I

lOT 5-7
IOTR 2-11
initializing for protected mode operation ... 8-10
interrupt descriptor table register (see IOTR)
interrupt descriptor table (see lOT)
local APIC 7-9
local APIC sources 7-11
masking maskable interrupts 5-5
masking when switching stack segments ... 5-7
overview of 5-1
priorities among simultaneous exceptions

and interrupts 5-7
propagation delay 15-14
restarting a task or program 5-4
software 5-47
summary of 5-3
types of 5-1
valid APIC interrupts 7-11
vectors 5-2

INTn instruction .. 3-9, 5-1, 5-2, 5-6, 10-10, 12-13
INTO instruction 3-9, 5-2, 5-22, 10-10
INTR# pin 5-5
Invalid opcode exception (#UO) ... 5-24,9-2,10-4,

15-11,15-13
Invalid TSS exception (#TS) 5-30, 6-7
INVO instruction 2-19, 4-21, 7-8,11-10,11-12
INVLPG instruction 2-19,4-21,7-8,11-12
10PL (I/O privilege level) field, EFLAGS register

description of 2-8
restoring on return from exception or interrupt

handler 5-11
sensitive instructions in

virtual-8086 mode 12-12
IRET instruction .. 3-9,5-5,5-6,5-11,5-12,6-10,

6-14,7-8,12-6,12-21
IRETO instruction 7-8
IRR (interrupt request register), local APIC ... 7-25
ISR (in-service register), local APIC 7-25
I/O

breakpoint exception conditions 10-9
in virtual-8086 mode 12-12
instruction restart flag, SMM revision

indentifier field 9-12
instructions, restarting following an SMI

interrupt 9-12
I/O permission bit map, TSS 6-5
map base address field, TSS 6-5

I/O APIC
bus arbitration 7-11
description of 7-9
interrupt sources 7-11
relationship of local APIC to I/O APIC 7-10
valid interrupts 7-11

I/O privilege level (see 10PL)

INDEX

J
JMP instruction ... 3-9, 4-10, 4-11, 4-15, 5-6, 6-3,

6-10,6-14

K
KEN# pin .. 15-24

L
LO-L3 (local breakpoint enable) flags,

OR7 register 10-5
L 1 (level 1) cache

description of. 11-1
disabling 11-2,11-4,11-5,11-6,11-10,

11-14
enabling 8-6
introduction of 15-16
MESI cache protocol 11-5
preventing caching 11-10

L2 (level 2) cache
description of. 11-1
disabling 11-2,11-4,11-5,11-6,11-10,

11-14
enabling 8-6
introduction of .. 15-16
MESI cache protocol 11-5
preventing caching 11-10

LAR instruction 2-17, 4-22
Larger page sizes

introduction of . 15-18
support for 15-8

Last branch, interrupt, and exception recording
description of. 10-11
initialization 10-13

LastBranchFromlP MSR 10-1, 10-12, 10-13
LastBranchTolP MSR 10-1,10-12,10-13
LastExceptionFromlP MSR ... 10-2,10-12,10-13
LastExceptionTolP MSR 10-2, 10-12, 10-13
LBR (last branch/interrupt/exception) flag,

OebugCtlMSR register 10-11, 10-13
LOR (logical destination register),

local APIC 7-15
LOS instruction 3-9, 4-8
LOT

associated with a task 6-3
description of. 3-16
index into with index field of segment

selector 3-7
introduction to 2-3
pointer to in TSS 6-4
pointers to exception- and

interrupt-handlers 5-11
segment descriptors in 3-9
segment selector field, TSS 6-15
selecting with TI (table indicator) flag of

segment selector 3-7
setting up during initialization 8-10

INDEX-7

INDEX

task gate descriptor 6-8
task switching 6-10
use in add ress translation 3-6

LDTR register
description of 2-10, 3-16
introduction to 2-3, 2-5
limit4-4
storing 3-17

LE (local exact breakpoint enable) flag,
DR7 register. 10-5, 10-9

LENO-LEN3 (Length) fields, DR7 register 10-6
LES instruction 3-9, 4-8, 5-24
LFS instruction 3-9, 4-8
LGDT instruction 2-17, 4-21, 7-8, 8-10,15-11
LGS instruction 3-9, 4-8
LlDT instruction .. 2-17,4-21,5-9,7-8,8-8,12-6,

15-14
Limit checking

description of4-4
pointer offsets are within limits4-23

Limit field, segment descriptor 4-2, 4-4
Linear address

description of 3-6
introduction to 2-4

Linear address space 3-6
defined 3-1
of task 6-16

Link (to previous task) field, TSS 5-14,6-4,
6-13,6-15

Linking tasks
mechanism 6-13
modifying task linkages 6-15

LLDT instruction 2-17, 4-21, 7-8
LMSW instruction 2-17, 4-21
Local APIC

APR (arbitration priority register) 7-27
arbitration priority 7-17
block diagram 7-12
bus arbitration 7-11
cluster model 7-16
current-count register 7-37
description of 7-9
DFR (destination format register) 7-16
divide configuration register 7-37
EOI (end-of-interrupt register) 7-28
ESR (error status register) 7-36
flat model 7-16
focus processor 7-17
ID 7-15
=_..1: __ ... : ____ -' __________ : ... __ = ____ .. _.a. __
II IU I\"all I Iy tJt::IIUIIIIClII\"t::-IIIVIIiLVIIIIY "'VUIIL~I

overflow 10-18
initial-count register 7-37
initialization 7-29
interrupt acceptance 7-25
interrupt acceptance decision flow chart ... 7-25
interrupt command register (ICR) 7-20
interrupt destination 7-15
interrupt distribution mechanism 7-17

INDEX-8

interrupt sources 7-11
IRR (interrupt request register) 7-25
ISR (in-service register) 7-25
LDR (logical destination register) 7-15
local vector table (L VT) 7-18
logical destination mode 7-15
LVT (Iocal-APIC version register) 7-30
MDA (message destination address) 7-15
new features incorporated in the

Pentium Pro processor 7-38
physical destination mode 7-15
PPR (processor priority register) 7-27
register address map 7-14
relationship of local APIC to I/O APIC 7-10
SMI interrupt 9-2
software visible differences between the local

APIC on a Pentium Pro processor and the
82489DX 7-38

spurious interrupt 7-28
state after a software (INIT) reset 7-30
state after INIT-deassert message 7-30
state after power-up reset 7-30
state of . 7-28
SVR (spurious-interrupt vector register) .. 7-29
timer 7-37
TMR (trigger mode register) 7-25
TPR (task priority register) 7-26
two-processor bootup handshake protocol

sequence 7-42
valid interrupts 7-11

Local descriptor table register (see LDTR)
Local descriptor table (see LDT)
Local vector table (LVT), local APIC 7-18
Local-APIC version register 7-30
LOCK prefix 2-20, 5-24, 7-2,7-3,7-4,7-7,

15-22
Locked (atomic) operations

automatic bus locking 7-3
bus locking 7-3
effects of a locked operation on internal

processor caches 7-5
loading a segment descriptor 15-10
on Intel architectu re processors 15-22
overview of 7-1
software controlled bus locking 7-4

LOCK# signal 7-2, 7-3, 7-4, 7-5
Logical address space, of task 6-16
Logical address, description of 3-6
Logical destination mode, local APIC 7-15
I rt.1 : __ _,,:__ n 04~

L.~L. III~LI U LlUII ••.•••••••••••••••••••• • , ... I I

LSS instruction 3-9, 4-8
LTR instruction 2-17,4-21,6-7,7-8,8-11
LVT (local vector table), local APIC 7-18

I

I

M
Machine check architecture

availability of machine check architecture and
exception 16-7

compatibility with Pentium processor
implementation 16-1

error codes, compound 16-9
error codes, interpreting 16-8
error codes, simple 16-9
error-reporting MSRs 16-4
first introduced 15-13
global MSRs 16-2
guidelines for writing machine check

software 16-14
initialization of 16-7
introduction of in Intel architecture

processors 15-25
logging correctable machine

check errors 16-16
machine check error codes, external

bus errors 16-11
machine check exception handler 16-14
MCG_CAP MSR 16-2
MCG_CTL MSR 16-4
MCi_ADDR MSRs 16-6
MCi_CTL MSRs 16-4
MCi_MISC MSRs 16-7
MCi_STATUS MSRs 16-5
MSRs 16-1
overview 5-16, 16-1
P5_MC_ADDR MSR 16-7
P5_MC_ TYPE MSR 16-7
Pentiurn processor machine check exception

handling 16-16
Pentium processor style error reporting ... 16-7

Machine check exception (#MC) 5-46,15-12,
15-25,16-1,16-7,16-14

Maskable interrupts
description of 5-1
masking 5-5

MCA (machine check architecture) flag,
CPUID instruction 16-7

MCE (machine check enable) flag,
CR4 control register 2-16, 15-7

MCE (machine check exception) flag,
CPUID instruction 16-7

MCG_CAP MSR 16-2, 16-15
MCG_CTL MSR 16-4
MCG_STATUS MSR 16-15,16-17
MCi_ADDR MSRs 16-17
MCi_CTL MSRs 16-4
MCi_MISC MSRs 16-7,16-17
MCi_STATUS MSRs 16-5,16-15,16-17
MDA (message destination address),

local APIC 7-15
Memory 11-1

INDEX

Memory management
introduction to 2-4
overview 3-1
paging 3-1
segmentation 3-1

Memory ordering
in Intel architecture processors 15-21
overview 7-5
processor ordering 7-5
snooping mechanism 7-5
strengthening or weakening the .

processor-order model. 7-7
write forwarding 7-5
write ordering 7-5

Memory type range registers (see MTRRs)
Memory types

caching methods, defined 11-4
choosing . 11-5
MTRR types 11-14
UC (uncacheable) 11-4
WB (write back) 11-4
WC (write combining) 11-4
WP (write protected) 11-4
WT (write through) 11-4

MemTypeGetO function 11-22
MemTypeSetO function 11-23
MESI cache protocol

described 11-3, 11-5
Mixing 16-bit and 32-bit code

on Intel architecture processors 15-20
overview . 13-1

Mode switching
between real-address and protected

mode 8-11
example 8-14
to SMM 9-2

Model and stepping information, following
processor initialization or reset. 8-3

Model specific registers (see MSRs)
MOV instruction 3-9,4-8, 14-1
MOV (control registers) instructions ... 2-17,4-21,

7-8, 8-11
MOV (debug registers) instructions ... 2-19, 4-21,

7-8, 10-9
MP (monitor coprocessor) flag, CRO control

register 2-15,5-25,8-5,8-6
MSRs

description of. 8-7
introduction of in Intel architecture

processors. 15-23
introduction to 2-5
list of C-1
machine check architecture 16-2

MTRR flag, EDX feature information
register 11-14

MTRRcap register 11-14
MTRRdefType register 11-15

INDEX-9

INDEX

MTRRfix16K_80000 and MTRRfix16K AOOOO
(fixed range) MTRRs :-..... 11-16

MTRRfix4K COOOO. and MTRRfix4K F8000
(fixed range) MTRRs -:-...... 11-17

MTRRfix64K_00000 (fixed range) MTRR ... 11-16
MTRRphys8asen (variable range)

MTRRs 11-17
MTRRphysMaskn (variable range)

MTRRs 11-17
MTRRs 7-7

address mapping for fixed-range
MTRRs 11-17

cache control 11-8
description of 8-7, 11-13
enabling caching 8-7
example of base and mask

calculations 11-19
feature identification 11-14
fixed-range registers 11-16
initialization of 11-21
introduction of in Intel architecture

processors 15-24
large page size considerations 11-26
mapping physical memory with 11-13
memory types and their properties 11-14
MemTypeGetO function 11-22
MemTypeSetO function 11-23
MTRRcap register 11-14
MTRRdefType register 11-15
multiple processor considerations 11-25
precedence of cache controls 11-8
precedences 11-20
programming interface 11-22
remapping memory types 11-21
setting memory ranges 11-15
state of following a hardware reset 11-14
variable-range registers 11-17

Multiple processor initialization
MP protocol. 7-39
procedure 7-41

Multiple processor management
bootup handshake protocol sequence for

processors with local APICs 7-42
bus locking 7-3
guaranteed atomic operations 7-2
interprocessor and self interrupts 7-20
local APIC 7-9
local APIC bootup handshake protocol

seq uence 7-42
memory ordering 7-5
MP protocol. 7-39
overview of 7-1
SMM considerations 9-13

Multiple processor system
MP protocol. 7-39
relationship of local and 1/0 APICs 7-10

Multitasking
initialization for 8-11

INDEX-10

linking tasks 6-13
mechanism, description of 6-3
overview . 6-1
setting up TSS 8-11
setting up TSS descriptor 8-11
task switching 6-10

Mult-segment segmentation model 3-4

N
NE (numeric error) flag, CRO control

register 2-13,5-42,8-5,8-6,15-7
NEG instruction 7-4
NMI interrupt. 7-10

description of. 5-1
handling during initialization 8-8
handling in SMM 9-8
handling multiple NMls 5-5
masking. .. 15-14
receiving when processor is shutdown ... 5-28
reference information 5-20
vector 5-2

NMI# pin 5-1, 5-20
Nonconforming code segments

accessing 4-11
C (conforming) flag 4-11
description of 3-13

Non-maskable interrupt (see NMI)
NOT instruction 7-4
Notation

bit and byte order 1-4
conventions. .. 1-4
exceptions. .. 1-6
hexadecimal and binary numbers 1-6
instruction operands. 1-5
reserved bits .. 1-5
segmented addressing 1-6

NT (nested task) flag, EFLAGS
register 2-8, 6-10,6-13

Null segment selector, checking for 4-6
NV (invert) flag, PerfEvtSelO MSR 10-16
NW (not writethrough) flag,

o

CRO control register ... 2-13,8-7,11-6,
11-8,11-10,11-25,15-7,15-8,15-9,
15-17

OF flag, EFLAGS register. 5-22
1"\ "" "
_tJ\JIUIIUoWt

in instructions 1-5
operand-size prefix 13-2
usage, code optimization 14-3

OR instruction 7-4
OS (operating system mode) flag, PerfEvtSelO

and PerfEvtSel1 MSRs 10-16
OUT instruction 7-7, 15-21
OUTS instruction 10-9

I

I

Overflow exception (#OF) 5-22
Overflow, FPU exception (see Numeric overflow

exception)

p
P (present) flag

page-directory entry 5-39
page-table entry 3-23, 5-39

P (segment-present) flag, segment
descriptor 3-11

P5 MC AOOR MSR 16-7,16-16
P5=:MC=: TYPE MSR 16-7,16-16
PAE (physical address extension) flag,

CR4 control register ... 2-16,3-18,3-27,
15-6, 15-8

Page directory
base address 3-21
base address (POBR) 6-4
description of 3-18
introduction to 2-4
overview 3-2
setting up during initialization 8-10

Page directory pointer (POPTR) table 3-27
Page fault exception (#PF) 5-39
Page frame (see Page)
Page tables

description of 3-18
introduction to 2-4
overview 3-2
setting up during initialization 8-10

Page-directory entries
automatic bus locking while updating 7-4
caching in TLBs 11-2
RIW (read/write) flag 4-2,4-27
structure of 3-21
U/S (user/supervisor) flag 4-2, 4-27

Page-fault exception (#PF) 3-17, 15-13
Pages

descripiton of 3-18
disabling protection of.4-1
enabling protection of4-1
introduction to 2-4
overview 3-2
PG flag, CRO control register4-2

Page-table entries
automatic bus locking while updating 7-4
caching in TLBs 11-2
effect of implicit caching on 11-11
RIW (read/write) flag 4-2, 4-27
structure of 3-21
U/S (user/supervisor) flag 4-2, 4-27

Paging
combining segment and page-level

protection4-29
combining with segmentation 3-5
defined , 3-1
initializing 8-10

INDEX

introduction to 2-4
large page size MTRR considerations .. 11-26
linear address translation

(4-KByte pages) 3-19
linear address translation

(4-MByte pages) 3-20
mapping segments to pages 3-33
mixing 4-KByte and 4-MByte pages 3-20
page boundaries regarding TSS 6-6
page fault exception 5-39
page-level protection4-2, 4-26
page-level protection flags 4-26
virtual-8086 tasks 12-9

Parameter
passing, between 16- and 32-bit

call gates 13-8
translation, between 16- and 32-bit code

segments 13-8
PBi (performance monitoring/breakpoint pins)

flags, OebugCtlMSR register 10-11
PC (pin control) flag, PerfEvtSelO and

PerfEvtSel1 MSRs 10-16
PCO (page-level cache disable) flag

CR3 control register .. 2-15,11-7,15-7,15-17
page-directory entries .. 8-7, 11-7, 11-8, 11-26
page-table entries 3-24, 8-7, 11-7,11-8,

11-26,15-18
PCE (performance-monitoring counter enable)

flag, CR4 control register ... 2-16,4-22,
10-17, 15-6

POBR (see CR3 control register)
PE (protection enable) flag, CRO control

register 2-15,4-1,8-10,8-11,9-6
Pentium processor. 15-1
PerfCtrO MSR 10-15, 10-16
PerfCtr1 MSR 10-15, 10-16
PerfEvtSelO MSR 10-15
PerfEvtSel1 MSR 10-15
Performance-monitoring counters

description of. 10-14
introduction of in Intel architecture

processors 15-25
list of B-1
monitoring counter overilow 10-18
overview of 2-6
reading 10-16
setting up 10-15
software drivers for 10-17
starting and stopping. 10-17

PG (paging) flag, CRO control register 2-13,
3-18,3-24,4-2,8-10,8-11,9-6,15-18

PGE (page global enable) flag, CR4 control
register 2-16, 3-25, 15-6, 15-8

PhysBase field, MTRRphysBasen register.. 11-18
Physical address extension

access full extended physical address
space 3-28

description of 3-27

INDEX-11

INDEX

page-directory entries 3-30
page-table entries 3-30

Physical address space
defined 3-1
description of 3-6
mapped to a task 6-16

Physical addressing 2-4
Physical destination mode, local APIC 7-15
Physical memory

mappi ng of with fixed-range MTR Rs 11-17
mapping of with variable-range MTRRs .. 11-17

PhysMask, MTRRphysMaskn register. 11-18
Pointers

code-segment pointer size 13-5
limit checking4-23
validation4-22

POP instruction 3-9
POPF instruction 5-6, 10-10
Power-up, initialization 15-2
PPR (processor priority register),

local APIC 7-27
Prefix opcodes, code optimization 14-3
Priority levels, APIC interrupts 7-11
Privilege levels

checking when accessing data segments . .4-8
checking, for call gates4-15
checking, when transferring program control

between code segments4-10
description of4-6
protection rings4-8

Privileged instructions4-21
Procedure calls

between 16- and 32-bit code segments ... 13-4
controlling the operand-size attribute

for a call 13-6
returning from 4-20

Procedure stacks
error code pushes 15-19
faults 5-34
for privilege levels 0,1, and 24-18
interlevel RET/I RET from a 16-bit interrupt

or call gate 15-19
managment of control transfers for 16-

and 32-bit procedure calls 13-5
operation on pushes and pops 15-19
pointers to in TSS 6-4
stack switching4-18
usage on call to exception or interrupt

handler 5-13, 15-19
Processor management

initialization 8-1
local APIC 7-9
overview of 7-1
snooping mechanism 7-5

Processor ordering, description of 7-5
Protected mode

lOT initialization 8-10
initialization for 8-9

INDEX-12

intet
mixing 16-bit and 32-bit code modules ... 13-2
mode switching 8-11
PE flag, CRO register 4-1
switching to4-1,8-11
system data structures required during

initialization 8-9
Protection

combining segment and page-level
protection 4-29

disabling 4-1
enabling 4-1
flags used for page-level-protection 4-2
flags used for segment-level protection ... 4-2
of exception- and interrupt-handler

procedures 5-14
overview of 4-1
page level 4-1
page level, overriding 4-28
page level, overview 4-26
page-level 4-28
page-level protection flags 4-26
read/write, page level 4-27
segment level .. 4-1
user/supervisor type 4-27

Protection rings 4-8
PS (page size) flag, page table entry 3-25
PSE (page size extension) flag, CR4 control

register ... 2-16, 3-18, 3-20, 15-7, 15-8
PUSHF instruction 5-6
PVI (protected-mode virtual interrupts) flag,

CR4 control register 2-15, 15-6
PWT (page-level write-through) flag

CR3 control register .. 2-15, 11-7, 15-7, 15-17
page-directory entries 8-7,11-7,11-26
page-table entries 11-7, 11-26, 15-18
page-table entry . 3-24
page-tale entries 8-7

Q
Quiet NaN (see QNaN)

R
ROMSR instruction4-21,10-12,10-14,10-15,

10-17,11-14,15-24
ROPMC instruction4-21,10-15,10-16,15-6,

15-25
ROTSC instruction4-21, 10-14
Readl\"Jrite

protection, page level 4-27
rights, checking. 4-23

Real-address mode
8086 emulation 12-1
address translation in 12-3
description of. 12-1
exceptions and interrupts 12-7
lOT initialization 8-8

I

I

IDT, changing base and limit of 12-6
IDT, structure of 12-6
IDT, use of 12-6
initialization 8-8
instructions supported 12-4
interrupt and exception handling 12-5
mode switching 8-11
native 16-bit mode 13-1
overview of 12-1
registers supported 12-4
switching to 8-12

Register usage, code optimization 14-1, 14-3
Related literature 1-7
Requested privilege level (see RPL)
Reserved bits 1-5, 15-1
RESET# pin 11-10, 15-2,15-4
Reset, hardware

initialization 15-2
receiving when processor is shutdown 5-28

Restarting program or task, following an exception
or interrupt 5-4

Restricting addressable domain4-27
RET instruction 4-10, 4-11, 4-20, 13-6
Returning

from a called procedure4-20
from an interrupt or exception handler 5-11

RF (resume) flag, EFLAGS register 2-8, 5-6,
10-2,10-8

RPL
description of 3-8, 4-7
field, segment selector4-2

RSM instruction 2-20, 7-8, 9-1, 9-2, 9-9, 9-13
RfW (read/write) flag

page-directory entry 4-2, 4-27
page-table entry 3-24, 4-2, 4-27

RfWO-R/W3 (read/write) fields,
DR7 register. 10-6, 15-10

s
S (descriptor type) flag, segment

descriptor 3-11, 3-12, 4-2, 4-5
SBB instruction 7-4
Segment descriptors

access rights4-22
access rights, invalid values 15-9
automatic bus locking while updating 7-3
base address fields 3-10
code type4-2
D (default operation size) flag 3-11, 4-4
data type4-2
description of 2-3, 3-9
DPL (descriptor privilege level) field .. 3-11, 4-2
E (expansion direction) flag4-4
G (granularity) flag 3-12,4-4
limit field 4-2, 4-4
loading 15-1 0
P (segment-present) flag 3-11

INDEX

S (descriptor type) flag 3-11, 4-2, 4-5
segment limit field 3-9
system type 4-2
system types 3-14
tables 3-15
TSS descriptor 6-6
type field 3-10, 3-12, 4-2, 4-5
type field, encoding 3-14
type field, encoding of 3-13
when P (segment-present) flag is clear. .. 3-11

Segment limit
checking 2-17
field, segment descriptor 3-9

Segment not present exception (#NP) .. 3-11,5-32
Segment registers

description of. 3-8
saved in TSS 6-4

Segment selectors
description of. 3-7
index field 3-7
null. 4-6
RPL field 3-8, 4-2
TI (table indicator) flag 3-7

Segments
addressing 1-6
code type 3-12
combining segment and page-level

protection 4-29
combining with paging 3-5
data type 3-12
defi ned . 3-1
disabling protection of 4-1
enabling protection of 4-1
flat model. 3-3
mapping to pages 3-33
multi-segment usage model 3-4
protected segmentation flat model 3-4
segment not present exception 5-32
segment-level protection 4-2
system 2-3
types, checking compatibility of 4-22
typing 4-5
using 3-3
wraparound 15-21

Self interrupts, local APIC 7-20
Self-modifying code, effect on caches 11-11
Serializing instructions 7-8, 15-2
SGDT instruction 2-17,3-17
Shutdown

resulting from double fault. 5-28
resulting from out of IDT limit condition ... 5-28

SIDT instruction 2-17,3-17,5-9
Signaling NaN (see SNaN)
Single-stepping

breakpoint exception condition 10-9
on branches .. 10-13
on exceptions .. 10-13
on interrupts 10-13
TF (trap) flag, EFLAGS register 10-9

INDEX-13

INDEX

16-bit code, mixing with 32-bit code 13-1
SLOT instruction 2-17
SLTR instruction 3-17
5MBASE

default value 9-3
relocation of 9-11

SMI handler
description of 9-1
execution environment for 9-6
exiting from 9-2
location in SMRAM 9-3

SM I interrupt. 7-1 0
description of 9-1, 9-2
priority 9-2
switching to SMM 9-2

SMIACK transaction 9-2
SMI# pin 9-2, 9-12
SMM

auto halt restart 9-10
executing the HLT instruction in 9-11
exiting from 9-2
handling exceptions and interrupts 9-8
I/O instruction restart : 9-12
native 16-bit mode 13-1
overview of 9-1
revision identifier 9-9
revision identifier field 9-9
switching to 9-2
switching to from other operating modes ... 9-2
using FPU in 9-9

SMRAM
caching 9-6
description of 9-1
state save map 9-4
structure of 9-3

SMSW instruction 2-17
Snooping mechanism 7-5, 11-3
Software controlled bus locking 7-4
Software interrupts 5-1
Spurious interrupt, local APIC 7-28
SS register, saving on call to exception or

interrupt handler 5-11
Stack fault exception (#SS) 5-34
Stack pointers

privilege level 0, 1, and 2 stacks 6-4
size of 3-12

Stack segments
privilege level checks when loading the

SS register4-10
size of stack pointer 3-12

Stack switching
inter-privilege level calls4-18
masking exceptions and interrupts when

switching stacks 5-7
on call to exception or interrupt handler ... 5-11

Stack (see procedure stacks)
Stack (see Procedure stack)
Stack-fault exception (#SS) 15-21

INDEX-14

Stepping information, following processor
initialization or reset 8-3

STI instruction 5-5
STPCLK# pin 10-14
STR instruction 3-17, 6-7
STRT instruction 2-17
SUB instruction 7-4
Supervisor mode

description of. 4-27
U/S (user/supervisor) flag 4-27

SVR (spurious-interrupt vector register),
local APIC 7-29

System
architecture 2-1
instructions 2-6, 2-16
registers, introduction to 2-5
segment descriptor, layout of 4-2

System management mode (see SMM)

T
T (debug trap) flag, TSS 6-4, 10-2
Task gates

descriptor 6-8
executing a task 6-3
handling a virtual-8086 mode interrupt or

exception through 12-19
in lOT 5-9
introduction to 2-3, 2-4
layout of 5-9
referencing of TSS descriptor 5-14

Task management 6-1
data structures 6-3
mechanism, description of 6-3

Task register 3-17
description of. 2-11, 6-1, 6-7
initializing 8-11
introduction to . 2-5

Task state segment (see TSS)
Task switching

description of 6-3
exception condition 10-10
mechanism 6-10
operation 6-11
preventing recursive task switching 6-14
T (debug trap) flag 6-4

Tasks
address space 6-15
description of. 6-1
exception-handler task 5-11
executing 6-3
Intel 286 processor tasks 15-23
interrupt-handler task 5-11
interrupts and exceptions 5-14
linking 6-13
logical address space 6-16
management 6-1

I

intet
mapping to linear and physical address

spaces 6-1 6
restart following an exception or interrupt. .. 5-4
state (context) 6-2, 6-3
structure 6-1
switching 6-3
task management data structures 6-3
task switching 6-10

Test registers 15-11
TF (trap) flag, EFLAGS register 2-7,5-12,9-8,

10-2, 10-9, 10-11, 10-13, 12-6, 12-21
32-bit code, mixing with 16-bit code 13-1
TI (table indicator) flag, segment selector 3-7
Timer, local APIC 7-37
Time-stamp counter

description of 10-14
software drivers for 10-17

TLBs
description of 3-17,11-1,11-2
flushing 11-12
relationship to PGE flag 3-25, 15-8

TMR (Trigger Mode Register), local APIC 7-25
TPR (task priority register), local APIC 7-26
TR (trace message enable) flag, OebugCtlMSR

register 10-12
Translation lookaside buffer (see TLB)
Trap gates

difference between interrupt and
trap gates 5-13

for 16-bit and 32-bit code modules 13-2
handling a virtual-8086 mode interrupt or

exception through 12-17
in lOT 5-9
introduction to 2-3, 2-4
layout of 5-9

Traps
description of 5-4
restarting a program or task after 5-4

TS (task switched) flag, CRO control
register 2-14, 5-25, 6-11

TSO (time stamp counter disable) flag,
CR4 control register 2-16, 4-22,
10-14,10-17,15-6

TSS
16-bit TSS, structure of. 6-18
32-bit TSS, structure of. 6-4
CR3 control register (POBR) 6-4, 6-15
description of 2-3, 2-4, 6-1, 6-4
EFLAGS register 6-4
EIP 6-4
executing a task 6-3
general-purpose registers 6-4
initialization for multitasking 8-11
invalid TSS exception 5-30
I/O map base address field 6-5, 15-15
I/O permission bit map 6-5
LOT segment selector field 6-4, 6-15
link field 5-14

I

INDEX

link (to previous task) field 6-13,6-15
order of reads/writes to 15-15
page directory base address (POBR) 3-21
pointed to by task gate descriptor 6-8
previous task link 6-4
privilege-level 0, 1, and 2 procedure

stacks 4-18
referenced by task gate 5-14
segment registers 6-4
T (debug trap) flag 6-4
task register 6-7
using 16-bit TSSs in a 32-bit

environment. 15-15
virtual mode extensions 15-15

TSS descriptor
B (busy) flag 6-6
initialization for multitasking 8-11
structure of 6-6

TSS segment selector
field, task gate descriptor 6-8
writes 15-15

Type

U

checking 4-5
field, MTRRdefType register 11-15, 11-20
field, MTRRphysBasen register 11-17
field, segment descriptor 3-10, 3-12, 3-14,

4-2,4-5
of segment 4-5

U02 instruction 5-24
Uncached (UC) memory type

description of. 11-4
effect on memory ordering 7-7
use of 8-7
using 11-5

Underflow, FPU exception (see Numeric underflow
exception)

Unit mask field, PerfEvtSelO and PerfEvtSel1
MSRs 10-15

User mode
description of 4-27
U/S (user/supervisor) flag 4-27

USR (user mode) flag, PerfEvtSelO and
PerfEvtSel1 MSRs 10-16

U/S (user/supervisor) flag
page-directory entry4-2, 4-27
page-table entries. 12-10
page-table entry 3-24, 4-2, 4-27

v
V (valid) flag, MTRRphysMaskn register ... 11-18
Variable-range MTRRs, description of 11-17
VCNT (variable range registers count) field,

MTRRcap register 11-14
Vector (see Interrupt vector)

INDEX-15

INDEX

Vectors
exceptions 5-2
interrupts 5-2
reserved 7-11

VERR instruction 2-17,4-23
VERW instruction 2-17,4-23
VIF (virtual interrupt) flag, EFLAGS register ... 2-9
VIP (virtual interrupt pending) flag, EFLAGS

register 2-9
Virtual memory 2-4, 3-1
Virtual-8086 mode

8086 emulation 12-1
description of 12-8
emulating 8086 operating system calls ... 12-16
enabling 12-8
entering 12-10
exception and interrupt handling,

overview 12-13
exceptions and interrupts, handling through a

task gate 12-19
exceptions and interrupts, handling through a

trap or interrupt gate 12-17
handling exceptions and interrupts through a

task gate 12-19
10PL sensitive instructions 12-12
I/O-port-mapped I/O 12-12
leaving 12-11
memory mapped I/O 12-13
native 16-bit mode 13-1
overview of 12-1
paging of virtual-8086 tasks 12-9
protection within a virtual-8086 task 12-10
special I/O buffers 12-13
structure of a virtual-8086 task 12-8
virtual I/O 12-12

Virtual-8086 tasks
paging of 12-9
protection within 12-10
structure of 12-8

VM (virtual-8086 mode) flag, EFLAGS
register 2-9

VME (virtual-8086 mode extensions) flag,
CR4 control register 2-15, 15-6

W
WAIT instruction 5-25
WB (write back) memory type 11-4, 11-5
WBINVD instruction 2-19, 4-21, 7-8, 11-10,

11-12
WC (write combining)

flag, MTRRcap register 11-15
memory type 11-4, 11-5

WP (write protected) memory type 11-4
WP (write protect) flag, CRO control

register 2-13, 4-27, 15-7

INDEX-16

Write
forwarding 7-5
hit 11-3
ordering 7-5

Write back (WB) memory type 7-7
Write buffer

description of. 11-2
in Intel architecture processors 15-21
operation of 11-12

Write-back caching 11-3
WRMSR instruction4-21, 7-8,10-11,10-14,

10-15,10-17,15-24
WT (write through) memory type 11-4, 11-5

X
XADD instruction 7-4
XCHG instruction 7-3,7-4,7-7
XOR instruction 7-4

Z
ZF flag, EFLAGS register 4-23

I

NORTH AMERICAN DISTRIBUTORS
ALABAMA CALIFORNIA Hall-Mark Computer Wyla Electronics CONNECTICUT

15950 Bernardo elr Dr 9525 Chesapeake Dr.
Anthem Electronics Anthem Electronics SuiteC San Diego 92123 Anthem Electronics
600 Boulevard South 9131 Oakdale Avenue ~:r ~~&o 4~~~~83 Tel: (619) 565-9171 61 Mallaluck Helghls
Suile 104F & H Chatsworth 91311 FAX: (619) 365-0512 Road
Huntsville 35802 Tel: (818) 775-1333

Hall-Mark Computer WyJe Electronics
Watelburg 06705

Tel: (205) 890·0302 FAX: (818) 775-1302 Tel: (203) 575-1575
1175 Bordeaux Drive 3000 Bowers Avenue FAX: (203) 596-3232 ArrowlSchweber Anthem Electronics Sunnyvale 94089 Santa Clara 95051

Electronics 1 Oldfield Drive Tel: (800) 409-1483 Tel: (408) 727-2500 Arrow/Schweber
1015 Henderson Road Irvine 92718-2809 FAX: (408) 727-5896 Electronics
Huntsville 35805 Tel: (714) 768-4444 Hall-Mark Computer

Wyle Electronics
860 N. Main 51. Ext.

~~~wg~m;~~~~l FAX: (714) 768-6456 ~rv~n~U~~~18 Wallingford 06492 
17872 Cowan Avenue Tel: (203) 265-7741 Anthem Electronics Tel: (800) 409-1483 Irvine 92714 FAX: (203) 265-7988 Hall-Mark Computer 580 Menlo Drive Tel: (714) 863-9953 

4890 University Square Suite 8 Hall-Mark Computer FAX: (714) 263-0473 Hall-Mark Computer 
Huntsville 35816 Rocklin 95677 580 Menlo Drive Still River Corporate ctr 
Tel: (800) 409-1483 Tel: (916) 624-9744 Suite 2 Wyle Electronics 55 Federal Road 

FAX: (916) 624-9750 Rocklin 95765 26010 Mureau Road Danbury 06810 Hamilton Hallmark Tel: (800) 409-1483 Suite 150 Tel: (800) 409-1483 4890 University Square Anthem Electronics Calabasas 91302 
Suite 1 9369 Carroll Park Drive Hamilton Hallmark Tel: (818) 880-9000 Hamilton Hallmark 
Huntsville 35816 San Diego 92121 3170 Pullman Street FAX: (818) 880-5510 125 Commerce Court, 
Tel: (205) 837-8706 Tel: (619) 453-9005 Costa Mesa 92626 Unit 6 
FAX: (205) 830-2565 FAX: (619) 546-7893 Tel: (714) 641-4100 Zeus Arrow Cheshire 06410 

FAX: (714) 641-4122 Electronics Tel: (203) 271-2844 MTI Systems Sales Anthem ElectronIcs 
Hamilton Hallmark 

6276 San Ignacio FAX: (203) 272-1704 4950 Corporate Drive 1160 Ridder Park Drive Avenua 
Suite 120 San Jose 95131 2105 Lundy Avenue Suite E Pioneer Standard 
Huntsville 35805 Tel: (408) 453-1200 San Jose 95131 San Jose 95119 2 Trap Falls Road 
Tel: (205) 830-9526 FAX: (408) 441-4504 Tel: (408) 435·3500 Tel: (408) 629-4689 Shelton 06484 
FAX: (205) 830-9557 

Arrow/Schweber 
FAX: (408) 435-3720 FAX: (408) 629-4792 Tel: (203) 929-5600 

Pioneer Technologies Electronics Hamilton Hallmark Zeus Arrow FLORIDA 
Group 26707 West Agoura 4545 Vlewridge Avenue Electronics 
4835 University Square Road ~:r ~ileW5~~~~~40 6 Cromwell Street Anthem ElectronIcs 
SuiteS Calabasas 91302 Suite 100 5200 NW 3rd Avenue 
Huntsville 35805 Tel: (818) 880-9686 FAX: (619) 277-6136 Irvine 92718 Suite 206 

m~~~g~~~7~~g~8 FAX: (818) 772-8930 Hamilton Hallmark Tel: (714) 581-4622 Ft. Lauderdale 33309 

Arrow/Schweber 21150 Califa Street FAX: (714) 454-4355 Tel: (305) 484·0990 

Wyle Electronics Electronics Woodland Hills 91367 COLORADO Anthem Electronics 
7800 Governers Dr., W. 48834 Kato Road Tel: (818) 594-0404 598 s. Northlake Blvd. 
Tower Building, 2nd Suite 103 FAX: (818) 594-8234 Anthem Electronics Suite 1024 
Roar Fremont 94538 Hamilton Hallmark 373 Inverness Dr. S. Allamonte sprgs 32701 
Huntsville 35807 Tel: (510) 490-94n 580 Menlo Drive Englewood 80112 Tel: (813) 797-2900 

m~~~g~~~o~mo FAX: (510) 490-1084 Suite 2 Tel: (303) 790-4500 FAX: (813) 796-4880 

Arrow/schwabar Rocklin 95762 FAX: (303) 790-4532 
ArrowlSchweber 

ARIZONA Electronics Tel: (916) 624-9781 Arrow/Schweber ElectronIcs 
6 Cromwell FAX: (916) 961-0922 Electronics 400 Fairway Drive 

Alliance Electronics Suite 100 Pioneer Standard 61 Inverness Dr East Suite 102 
7550 East Redfield Rd Irvine 92718 5126 Clareton Drive Suite 105 Deerfield Beach 33441 
Scottsdale 85260 Tel: (714) 581-4622 Suite 106 Englewood 80112 Tel: (305) 429-8200 
Tel: (602) 261-7988 FAX: (714) 454-4206 Agoura Hills 91301 Tel: (303) 799-0258 FAX: (305) 428-3991 

Anthem Electronics Arrow/Schweber Tel: (818) 865-5800 FAX: (303) 799-0730 
ArrowlSchweber 

1555 West 10th Place Electronics Pioneer Standard Avnet Computer Electronics 
Suite 101 9511 Ridgehaven Court 217 Technology Drive 9605 Maroon Circle 37 Skyline Drive 

i:rr6"ogr~~-6600 San Diego 92123 Sulle 110 Englewood 80111 Suite 3101 
Tel: (619) 565-4800 Irvine 92718 Tel: (800) 426-7999 Lake Mary 32746 

FAX: (602) 966-4826 FAX: (619) 279-8062 Tel: (714) 753-5090 Hall-Mark Computer ~~~~~~~~:;~~g~o ArrowlSchweber Arrow/schweber Pioneer Technologies 9605 Maroon Circle 
Electronics Electronics 

~M'j{jo Robles 
Englewood 80111 ArrowlSchweber 

2415 West Erie Drive 1180 Murphy Avenue Tel: (800) 409-1483 Electronics 

i:rrs"ogr~~t0030 San Jose 95131 San Jose 95134 Hamilton Hallmark 
4010 Boy Scout Dr. 

Tel: (408) 441-9700 Tel: (408) 954·9100 Suite 295 
FAX: (602) 431-9555 FAX: (408) 453-4810 12503 East Euclid Dr Tampa 33607 FAX: (408) 954·9113 Suite 20 Tel: (813) 873-1030 Avnet Computer Avnet Computer Pioneer Standard f~W(3'b~)~28.~ ~~2 FAX: (813) 873-0077 1626 South Edwards Dr 

~~n~u~~~r8 4370 La Jolla Village Tempe 85281 Drive FAX: (303) 790-4991 Avnet Computer 
Tel: (800) 426-7999 Tel: (800) 426-7999 

~:r ~if£o 5~~~~06 Hamilton Hallmark 
541 s. Orlando Ave. 
Suite 203 

~:~17~r;:~~~W~~I:~e Avnet Computer 710 Wooten Road Maitland 32751 
371 Van Ness Way Wyle Electronics Suite 28 Tel: (800) 426-7999 Phoenix 85040 Torrance 90501 15370 Barranca Pkwy Colorado Springs 

Tel: (800) 409-1483 Tel: (800) 426-7999 Irvine 92713 80915 Hall-Mark Computer 
Pioneer Standard Avnet Computer Tel: (714) 753-9953 Tel: (719) 637-0055 10491 72nd 51. North 
1438 West Broadway 15950 Bernardo elr Dr FAX: (714) 753-9877 FAX: (719) 637-0088 Largo 34647 
Suite B-140 Suite 6 Wyle Electronics ~~~~e~~e~~:o~~p'!~: 

Tel: (800) 409-1483 

Tempe 85282 San Diego 92127 15360 Barranca Pkwy ~~~~~~:hCSrl~~~ Tel: (602) 350-9335 Tel: (800) 426-7999 Suite 200 Blvd. 
Hamilton Hallmark Avnet Computer Irvine 92713 Suite 201 Suite 206 
4637 South 36th Place 1175 Bordeaux Drive Tel: (714) 753·9953 Englewood 80111 Clearwater 34620 
Phoenix 85040 Suite A FAX: (714) 753-9877 Tel: (303) 773-8090 Tel: (800) 409-1483 

Tel: (602) 437-1200 Sunnyvale 94089 Wyle ElectronIcs :V6;I,::;!r~~~I~~enue Hamilton Hallmark 
FAX: (602) 437·2348 Tel: (800) 426-7999 2951 Sunrise Blvd. 3350 N.W. 53rd Street 

Wyle Electronics Hall-Mark Computer Suite 175 Thomton 80241 Suite 105-107 
Rancho Cordova 95742 Tel: (303) 457-9953 Ft. Lauderdale 33309 4141 East Raymond 21150 Califa Street 

~~~~gg~:~~~:5 Phoenix 85040 Woodland Hills 91367 Tel: (916) 638-5282 FAX: (303) 457-4831 

Tel: (602) 437-2088 Tel: (800) 409-1483 FAX: (916) 638-1491
FAX: (602) 437-2124

NORTH AMERICAN DISTRIBUTORS (Cont'd)
Hamilton Hallmark Arrow/Schweber MARYLAND Zaus Arrow
10491 72nd SI. North Electronics

Wyle Electronics
Electronics 1325 East 79th Street

Largo 34647 1140 W Thorndale Rd
Tel: (813) 541-7440 Itasca 60143

Anthem Electronics 25 U{'len Drive Suite 1

FAX: (813) 544-4394 Tel: (708) 250-0500
7168A Columbia Wilmington 01887 ~~~~~\n21t~~i_~~~~ Gateway Orive Tel: (508) 658-4776

Hamilton Hallmark Avnst Computer ColumbIa 21046 FAX: (508) 694-2199 FAX: (612) 853-2298

7079 University Blvd. 1124 Thorndale Ave Tel: (800) 239-6039
Winter Park 32792 Bensenville 60106 Arrow/Schweber

MICHIGAN MISSOURI

~~~1~~~r~~8~~~4 Tel: (800) 426-7999 Electronics Arrow/Schweber Arrow/schweber 
Hall-Mark Computer 9800J Patuxent Woods Electronics Electronics 

Pioneer Tochnologies 1124 Thorndale Ave Drive 44720 Helm street . 2380 Schuetz Road 

~~7'Worthlake Blvd 
Bensenville 60106 Columbia 21046 Plymoulh 48170 SI. Louis 63141 

Tel: (800) 409-1483 Tel: (301) 591>-7800 Tel: (313) 462-2290 Tel: (314) 567-6888 

Suite 1000 FAX: (301) 596-7821 FAX: (313) 462-2686 FAX: (314) 567-1164 

Alta Monle Spgs 32701 Hamilton Hallmark 

~~~1mr~~4~g~g5 
1130 Thomdale Ave ~1;:b~~~~:·r

Avnsl Computer :::k'1ct~~~::::-South
Bensenville 60106

41650 Galden Brk Rd

Tel: (800) 426-7999 Gateway Driva Suite 120 i:r~8~~r :~~-la99 Pioneer Technologies
~1~Os~s~~"th:r~ld:le

SuHeG Novl4B375

Group Columbia 21045 Tel: (800) 426-7999

~~!~I~~hB~~~~rx3:::~
Tel: (800) 426-7999 ~7~~~~~~rCT~r=t!;h

Avenue HalJ.Mark Computer ~f~15~~~~::'G~t~~
Tel: (305) 428-8877 Itasca 60143 Earth Ci~ 63045

FAX: (305) 481-2950 Tel: (708) 250-8222 7172 Columbia Sulle120 Tel: (800 409-1483

FAX: (708) 250-8275 Gateway Drive Novi 48375

Wyle Electronics SuHeG Tel: (800) 409-1483 HamlHon Hallmark

1000 1121h Circle North Pioneer Standard Columbia 21046 Hamilton Hallmark
3783 Rider Trail Soulh

S1. Petersburg 33716 2171 Executive Drive Tel: (800) 409-1483 i:r~3~~r ~2~~35O
Suite 800 Suite 200

44191 Plymoulh Oaks

Tel: (813) 579-1518 Addison 60101 Hamilton Hallmark Blvd. FAX: (314) 291-0362

FAX: (813) 579-1518 Tel: (708) 495-9680 10240 Old Columbia Sulle 1300

FAX: (708) 495·9831 Road Plymoulh 48170 NEW HAMPSHIRE

Zeus Arrow Columbia 21046 Tel: (313) 416-5806

Electronics Wyle Electronics Tel: (410) 988-9800 FAX: (313) 416-5811 Avnat Computer

~Td~tg~:n3u?t~~~ 01
2055 Army Trail Road FAX: (410) 381-2036 Hamilton Hallmark

2 Executive Park Drive

Suite 140
Bedford 03102

Lake Mary 32746 Addison 60101 North Atlantic 41650 Galden Brk Rd Tel: (800) 426-7999

Suite 800 Tel: (800) 853-9953 Industries Suite 100

~~~1~~~?~lg~~, Zeus Arrow 
Systems Division Novi 49418 NEW JERSEY 
7125 River Wood Drive Tel: (313) 347-4271 

Electronics Columbia 21046 FAX: (313) 347-4021 Anthem Electronics 

GEORGIA 1140 W Thorndale Ave Tel: (301) 312-5800 Pioneer Standard 
26 Chapin Road. UnH K 

11asca 60143 FAX: (301) 312-5850 Pine Brook 07058 

Anthem Electronics Tel: (708) 250·0500 
4505 Broadmoor S.E. Tel: (201) 227-7960 

2400 Pleasant Hill Rd INDIANA 
Piona.r Technologies Gland Rapids 49512 FAX: (201) 227-9246 

Sulles 9 & 10 ~;~g Gaither Road 
Tel: (616) 698-1800 

Dululh 30136 Arrow/schweber 
FAX: (616) 698-1831 Arrow/schweber 

Tel: (404) 931-3900 
GaHhersburg 20877 Pioneer Standard 

Electronics 

Electronics Tel: (301) 921-0660 4 Easl Slow Road 
FAX: (404) 931-3902 7108 Lakeview FAX: (301) 670-6746 44190 Plymouth Oaks UnH 11 

Arrow/schweber Parkway West Drive 
Blvd. Marlton 08053 

Electronics Indianapolis 46268 Wyle Electronics Plymoulh 48170 Tel: (609) 596-8000 

4250 E Rivergreen Pkwy m~~mmii~g~~9 
9101 Guilfold Road Tel: (313) 525-1800 FAX: (609) 596-9632 

Suite E 
Suile 120 FAX: (313) 427-3720 

Dululh 30136 Avnat Computer 
Columbia 21046 

MINNESOTA 
Arrow/schweber 

Tel: (404) 497-1300 
Tel: (301) 490-2170 Electronics 

FAX: (404) 476-1493 
655 West Carmel Drive FAX: (301) 490-2190 Anthem Electronics 

43 Roule 46 East 

SuHe 160 
Pine Brook 07058 

Avnet Computer Carmel 46032 MASSACHUSETTS 7646 Golden Triangle Tel: (201) 227-7880 

3425 Corporate Way Tel: (800) 426-7999 Drive FAX: (201) 227-2064 

SuiteG Hall-Mark Computer 
Anthem Electronics Eden Plalrie 55344 

Avnet Computer 
Duluth 30136 

200 Research Drive Tel: (612) 944-5454 

Tel: (800) 426-7999 
655 West Carmel Drive Wilmlnglon 01887 FAX: (612) 944-3045 1·B Keystone AVenue 

Carmel 46032 Tel: (508) 657-5170 g~~~inli~r 08003 
HalJ.Mark Computer Tel: (800) 409-1483 FAX: (508) 657-6008 Arrow/Schweber 

3425 Corporale Way Hamilton Hallmark 
Electronics Tel: {loo) 426-7999 

SuReG 
Arrow/Schweber 10100 Viking Drive 

Dululh 30136 
655 West Carmel Drive Electronics Sulle 100 Hall-Mark Computer 

Tel: (800) 409-1483 
SuHe 160 25 U{'ton Drive Eden Plalrle 55344 1·8 Keystone Avenue 

Cermel46032 WilmIngton 01887 Tel: (612) 941-5280 ~~~~In'l-i~f 08003 
Hamilton Hallmark Tel: (317) 575-3500 Tel: (508) 658-0900 FAX: (612) 942-7803 

3425 Corporale Way FAX: (317) 575-3535 FAX: (508) 694-1754 
::8~~~:nmJf:~~ East 

Tel: {loo) 409-1483 

SufteG&A Pioneer Standard Avnet Computer Hall-Mark Computer 
Duluth 30136 
Tel: (404) 623-5475 

9350 Priority wal W Dr 10 0 Centennial Drive Suite 410 10 Lanidex Plaza West 

FAX: (404) 623-5490 ~~:(~~~\,IM~J8~0 Peabody 01960 Minnelonka 55343 Parsippany 07054 

Tel: (800) 426-7999 Tel: (800) 426-7999 Tel: (800) 409-1483 

Pioneer Technologies FAX: (317) 573-0979 
~gI6't:~r~~~:r~rie:e ~:~~~~~ ~~~S~::t 

Hamilton Hallmark 
Groug 
4250 Riverereen Pkwy 

KANSAS ~~Ic:x~to~6 Avenue 

Dululh 3013 Arrow/schweber 
Peabody 01960 Suile 410 Cher~ 'lim 08003 

~~~~~g~)6~~3~gg~5 
Tel: (800) 409-1483 Minnetonka 55343

E!~!:!!'~!'!!!:!: Tel: (800) 409-1483 Tel: (09) 424-0110

9801 Legler Road Hamilton Hallmark FAX; (6uS) 75j·2552

Wyle Electronics Lenexa 66219 100 Centennial Drive Hamilton Hallmark

6025 The Corners Pkwy Tel: (913) 541-9542 Peabody 01960 9401 James Ave South Hamilton Hallmark

Suite 111 FAX: (913) 541-0328 Tel: (508) 531-7430 Suite 140 10 Lanldex Plaza West

Norcross 30092 Hall-Mark Computer
FAX: (508) 532-9802 ~~~~\n~I~~n~~

Parsippany 07054

Tel: (404) 441-9045 Pioneer Standard
Tel: (201) 515-5300

FAX: (404) 441-9086
10809 Lakeview Ave FAX: (612) 881-9461 FAX: (201) 515-1601

Lenexa 66219 44 Hartwell Avenue

ILLINOIS Tel: (800) 409·1483 !r:f:i~21~~ ~~1 :9~00
Pioneer Standard MTI Systems Sales

Hamilton Hallmark
7625 Golden Triangle 43 Roule 46 East

Anthem Electronics
FAX: (617) 863-1547 Drive Pinebrook 07058

1300 Remington Road
10809 Lakeview

r~l:k EJ:~~rg~!~S
SuiteG Tel: (201) 882-8780

SuileA
Avenue Eden Prairie 55344 FAX: (201) 539-6430

Schaumberg 60173
Lenexa 66215 Tel: (612) 944-3355
Tel: (913) 888-4747 Bedlold 01803

Tel: (708) 884-0200 FAX: (913) 888-0523 Tel: (617) 271-9953
FAX: (612) 944-3794

FAX: (708) 885-0480 FAX: (617) 275-3809

NORTH AMERICAN DISTRIBUTORS (Cont'd)
PloneerStandard Pioneer Standard Hall-Mark Computer Pioneer Technologies ~~~;~~~~e~~~ West 14-A Madison Road ~a~~~s~.a(!~ ~~~d 777 Dearborn Pk Lane 8905 Southwest
Fairtield 07006 Suite L Numbus Ave. Suite 525
Tel: (201) 575-3510 11797 Worthington 43085 Suite 160 Houston 77008
FAX: (201) 575-3454 Tel: (516) 921-8700 Tel: (800) 409-1483 Beaverton 97005 Tel: (800) 426-7999

Wyle Electronics FAX: (516) 921-2143
Hamilton Hallmark

Tel: (503) 626-7300
Hall-Mark Computer

115 Route 46. Bldg F Pioneer Standard ~~~~n ~~ri~ Road
FAX: (503) 626-5300

12211 Technology Blvd
Mountain Lakes 07046 840 Fairport Park Wyla Eloctronlcs Austin 78727
Tel: (201) 402-4970 Fairport 14450 Tel: (216) 498-1100 9640 Sunshine Court Tel: (800) 409-1483

NEW MEXICO
Tel: (716) 381-7070 FAX: (216) 248-4803 Building G Hall-Mark Computer FAX: (716) 381-5955 Suite 200

Hamilton Hallmark Beaverton 97005 4004 Beltline Road
Alliance Electronics, Zeus Arrow 777 Dearborn Pk Lane Tel: (503) 643-7900 Suite 200
Inc. Electronics Suite L FAX: (503) 646-5466 Dallas 75244
3411 Bryn Mawr N.E. 100 Midland Avenue Worthington 43085 Tel: (800) 409-1483
Albuquerque 87101 Port Chester 10573 Tel: (614) 888-3313 PENNSYLVANIA

Hall·Mark Computer Tel: (505) 292-3360 Tel: (914) 937-7400 FAX: (614) 888-0767
FAX: (505) 275-6392 FAX: (914) 937-2553 Anthem Electronics 1235 North Loop West

MTI Systems Sales 355 Business Ctr Drive Houston 77008
Avnet computer NORTH CAROLINA 23404 Commerce Pk Horsham 19044 Tel: (800) 409-1483
7801 Academy' Road Road

~~~~~mf:~5~~~?5 Hamilton Hallmark Building 1, SUite 204 Anthem electronics Beachwood 44122 
Albuquerque 87109 4805 Greenwood Tel: (216) 464-6688 12211 Technology 
Tel: (800) 426-7999 Suite 100 FAX: (216) 464-3564 Avnet Computer Boulevard 

Raleigh 27604 213 Executive Drive Austin 78727 
NEW YORK Tel: (919) 782-3550 Plonear Standard Suite 320 Tel: (512) 258-8848 

4433 Interpoint Blvd Mars 16046 FAX: (512) 258-3777 
Anthem Electronics Arrow/Schweber ~:r~~ ~~~~~-9900 Tel: (800) 426-7999 Hamilton Hallmark 47 Mall Drive Electronics 
Commack 11725 5240 Greensdahy FAX: (513) 236-8133 ArrowlSchweber 11420 Page Mill Road 
Tel: (516) 864-6600 Road Electronics Dallas 75243 
FAX: (516) 493-2244 Raleigh 27604 Pioneer Standard 2681 Mosside Blvd Tel: (214) 553-4300 

Tel: (919) 876-3132 4800 East 131st Street Suite 204 FAX: (214) 553-4395 
Arrow/Schwaber FAX: (919) 878-9517 Cleveland 44105 Monroeville 15146 Hamilton Hallmark Electronics Tel: (216) 587-3600 Tel: (412) 856-9490 
3375 Brighton Henrietta Avnst Computer FAX: (216) 663-1004 

Pioneer Technologies ~~~~t~ne7~~~~ Townline Road 4421 Stuart Andrew 
Rochester 14623 Boulevard Wyle Electronics 

~~~~ppaDrive 
Tel: (713) 781-6100

Tel: (716) 427-0300 Suite 600 6835 Cochran Rd. FAX: (713) 953-8420
FAX: (716) 427-0735 Charlotte 28217 Solon 44139 Pittsburgh 15238 Pioneer Standard

Tel: (800) 426-7999 Tel: (216) 248-9996 Tel: (412) 782-2300 18260 Kramer Lane Arrow/Schweber FAX: (412) 963-8255
Electronics Hall·Mark Computer OKLAHOMA Austin 78768
20 Oser Avenue 3510 Spring Forest Rd Pioneer Tochnologies Tel: (512) 835-4000

~:I~~~f~?~3~ ~ ~g~ Suite B Arrow/Schweber
~~g1nterprise Road

FAX: (512) 835-9829
Raleigh 27604 Electronics

Pioneer Standard
FAX: (516) 231-1072 Tel: (800) 409-1483 12101 East 51st Street Keith Valley Bus.Ctr 13765 Beta Road· Suite 106 Horsham 19044 Dallas 75244 Avnet Computer Hamilton Hallmark Tulsa 74146 Tel: (215) 674-4000
2 Penn Plaza 3510 Spring Forest Rd Tel: (918) 252-7537 Tel: (214) 263-3168

Suite 1245 Su~eB FAX: (918) 254-0917 r'~~~;16ri~~nlcs FAX: (214) 490-6419

New York 10121 Raleigh 27604 Pioneer Standard
Tel: (80?) 426-7999 Tel: (800) 409-1483 Hamilton Hallmark Suite 111 10530 Rockley Road 5411 S. 125th E. Ave Marlton 08053-3185
Avnet Computer Hamilton Hallmark Suite 305 Tel: (609) 985-7953

Suite 100
1057 E. Henrietta Road 5234 Greens Dairy Rd Tulsa 74146 FAX: (609) 985-8757

Houston 77099
Rochester 14623 Raleigh 27604 Tel: (918) 254-6110 Tel: (713) 495-4700
Tel: (800) 426-7999 Tel: (919) 878-0819 FAX: (918) 254-6207 TEXAS FAX: (713) 495-5642

Hall-Mark Computer Pioneer Technologies Pioneer Standard Anthem Electronics Wyle Electronics
2 Penn Plaza Group 9717 East 42nd Street 651 N. Plano Road 1810 Greenville Ave
New York 10121 2200 Gateway Ctr. Blvd Suite 105 Suite 401

Richardson 75081
Tel: (800) 409-1483 Suite 215 Tulsa 74146 Richardson 75081 Tel: (214) 235-9953

Morrisville 27560 Tel: (918) 665-7840 Tel: (214) 238-7100
FAX: (214) 644-5064

Hall-Mark Computer Tel: (919) 460-1530 FAX: (918) 665-1891 FAX: (214) 238-0237 Wyle Electronics 1057 E Henrietta Road
Rochester 14623 OHIO OREGON Anthem Electronics 9208 Waterford Center
Tel: (800) 409-1483 14050 Summit Drive Blvd

Arrow/Schweber AlmacArrow Suite 119 Suite 150
Hamilton Hallmark Electronics Electronics Tel: (512) 388-0049 Austin 78750
933 Motor Parkway 6573 Cochran Road 9500 S. W. Nimbus Ave FAX: (512) 388-0271

Tel: (512) 345-8853

~:I~~~f~?:3~~ ~:~O Suite E Suite E FAX: (512) 345-9330
Solon 44139 Beaverton 97008 ArrowlSchweber Wylo Electronics FAX: (516) 434-7491 Tel: (216) 248-3990 Tel: (503) 629-8090 Electronics 2901 Wilcrest

Hamilton Hallmark FAX: (216) 248-1106 FAX: (503) 645-0611 Brake Ctr III. Bldg Ml Suite 120
1057 E Henrietta Road 11500 Metric Boulevard Houston 77099 Arrow/Schweber Anthem Electronics Suite 160 Rochester 14623 ElectronIcs 9090 SW Gemini Drive AUstin 78758 Tel: (713) 879-9953
Tel: (716) 475-9130 8200 Washington Beaverton 97005 Tel: (512) 835-4180

FAX: (713) 879-9953
FAX: (716) 475-9119 Village Drive Tel: (503) 643-1114 FAX: (512) 832-5921 Zeus Arrow
Hamilton Hallmark Centerville 45458 FAX: (503) 626-7928 Electronics
3075 Veterans Tel: (513) 435-5563 Arrow/Schweber 3220 Commander Or Avnet Computer Electronics Memorial Hwy. FAX: (513) 435-2049

9750 SW Nimbus,Ave. 3220 Commander Drive Carrollton 75006
Ronkonkoma 11779 Avnet Computer Beaverton 97005 Carrollton 75006

Tel: (214) 380-4330
Tel: (516) 737-0600 7764 Washington Tel: (800) 426-7999 Tel: (214) 380-6464

FAX: (214) 447-2222
FAX: (516) 737-0838 Village Drive

Hall-Mark Computer FAX: (214) 248-7208 UTAH
MTI Systems Sales ~:r~~g~:~~-7999 9750 SW Nimbus Ave. Arrow/Schweber 1 Penn Plaza Beaverton 97005 Electronics Anthem Electronics
250 West 34th Street Avnst Computer Tel: (800) 409-1483 19416 Park Row

1279 West 2200 Soulh
New York 10119 2 Summit Park Drive Suite 190 Salt Lake City 84119
Tel: (212) 643-1280 Suite 520 Hamilton Hallmark Houston 77084 Tel: (801) 973-8555
FAX: (212) 643-1288 Independence 44131 9750 SW Nimbus Ave. Tel: (713) 647-6868 FAX: (801) 973-8909

Beaverton 97005 Pioneer Standard Tel: (800) 426-7999
Tel: (503) 526-6200 FAX: (713) 492-8722 Arrow/Schweber

68 Corporate Drive Hall-Mark Computer FAX: (503) 641-5939 Avnet Computer Electronics
Binghamton 13904

~~~~n ~~ri~ Road 4004 Beilline 1946 West Parkway 

~~M~~~~r~~2~~g~2 Suite 200 Boulevard 
Tel: (800) 409-1483 Dallas 75244 Salt Lake City 84119 

Tel: (800) 426-799 
Tel: (801) 973-6913 
FAX: (801) 972-0200 



NORTH AMERICAN DISTRIBUTORS (Cont'd) 
Avnet Computer 
1100 East 6600 South ~~~~e1eJ6~~~~o~~~~es ALASKA ONTARIO PloneerlPloneer 

155 Colonnade Rd., S. 
Suite 150 Suite 100 Avnet Computer Arrow/Schweber Suite 17 
Salt Lake City 84121 Bellevue 98007 1400 W Benson Blvd Electronics ~:F:(~M~~l-~~40 Tel: (800) 426-7999 Tel: (206) 644-7500 Suite 400 36 Antares Drive 

Hall-Mark Computer Wyle Electronics ~~t~~~"o~·4~~~7:99 Unit 100 FAX: (613) 226-6352 

1100 East 6600 South 15385 NE 901h SI ~:F:(~M~~l-~i03 QUEBEC 
Suite 150 Redmond 98052 FAX: (613) 723-2018 
Salt Lake City Tel: (206) 881-1150 CANADA Arrow/Schweber 
Tel: (800) 409-1483 FAX: (206) 881-1567 Arrow/Schweber Electronics 

Hamilton Hallmark ALBERTA Electronics 1100 Street Regis Blvd 
WISCONSIN 1093 Meyerside, Unit 2 Dorval H9P 2T5 

1100 East 6600 South Avnet Computer Mississauga L5T 1 M4 Tel: (514) 421-7411 
Suite 120 Arrow/Schweber 1144 29th Avenue NE Tel: (416) 670-2010 FAX: (514) 421-7430 
Salt Lake Cily 84121 Electronics Suite 108 FAX: (416) 670-5863 
Tel: (801) 266-2022 200 N. Patrick Calgary T2E 7Pl 

Gates Arrow 
FAX: (801) 263-0104 Suite ~oo Avnet Computer Electronics 

Brookfield 53045 Tel: (800) 387-3406 Canada System 500 Boul. 
Wyle Electronics Tel: (414) 792-0150 PloneerlPloneer i~~i~~~~~~r1r~d. St·Jean-Baptiste Ave 
1325 Wesl 2200 Soulh FAX: (414) 792-0156 560,1212-31 Ave. NE Quebec H2E 5R9 
Suite E Calgary T2E 7S8 Mississuaga L5T 2L 1 Tel: (418) 871-7500 
West Valley 84119 Avnet Computer Tel: (403) 291-1988 Tel: (800) 387-3406 FAX: (418) 871-6816 
Tel: (801) 974-9953 2440 South 179th St 
FAX: (801) 972-2524 New Berlin 53416 FAX: (403) 295-8714 Avnet Computer Avnet Computer 

Tel: (800) 426-7999 BRITISH COLUMBIA 190 Colonade Road 7575 Trans Canada 
WASHINGTON 

~:F:(:80~~m~06 Suite 601 
Hall-Mark Computer Almac Arrow S1. Laurent H4T 1V6 

AlmacArrow 2440 Soulh 1791h SI Electronics Tel: (800) 265-1135 
Electronics New Berlin 53146 8544 Baxter Place Canada System 
14360 S.E. Eastgate Tel: (800) 409-1483 Burnaby V5A 4T8 Engineering Group Hamilton Hallmark 

~e~revue 98007 
151 Superior Boulevard 7575 Transcanada Hwy 

Hamilton Hallmark Tel: (604) 421-2333 Mississuaga L5T 2L 1 Suite 600 
Tel: (206) 643-9992 2440 Soulh 1791h SI FAX: (604) 421-5030 Tel: (800) 387-3406 Street Laurent H4T 2V6 
FAX: (206) 643-9709 New Berlin 53146 Hamilton Hallmark Tel: (514) 335-1000 

Tel: (414) 797-7844 8610 Commerce Court Hamilton Hallmark FAX: (514) 335-2481 
Anthem Electronics FAX: (414) 797-9259 

Burnaby V5A 4N6 
151 Superior Blvd., 

190171201h Ave N.E. Unit 1-6 PioneerlPloneer 
Suite 102 Pioneer Standard Tel: (604) 420-4101 Mississauga L5T 2L 1 520 McCafirey 
Bothell 98011 120 Bishops Way FAX: (604) 420-5376 Tel: (416) 564-6060 Street Laurent H4T 1 Nt 
Tel: (206) 483-1700 Suite 163 Pioneer/Pioneer FAX: (416) 564-6033 Tel: (514) 737-9700 
FAX: (206) 486-0571 Brookfield 53005 4455 North 6 Road FAX: (514) 737-5212 

Tel: (414) 780-3600 Rochmond V6V 1 P6 Hamilton Hallmark 
Avnet Computer FAX: (414) 780-3613 

Tel: (604) 273-5575 
190 Colonade Road 

8630 1541h Ave, NE ~:F:(~r 3~~~l-~~OO Redmond 98052 fsbl~~~e~~~t~i~: FAX: (604) 273-2413 

Tel: (800) 426-7999 
Building 7, Suite 150 MANITOBA FAX: (613) 226-1184 

Hamilton Hallmark Brookfield 53045 PloneerlPloneer PloneerlPloneer 
8630 154th Avenue Tel: (414) 879-0434 540 Marjorie Street 3415 American Drive 
Redmond 98052 FAX: (414) 879-0474 Mississauga L4V 1T6 
Tel: (206) 881-6697 Winnipeg R3H OS9 Tel: (416) 507-2600 
FAX: (206) 867-0159 FAX: (416) 507-2831 




