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CHAPTER 1
ARCHITECTURAL FEATURES OF THE
PENTIUM® PROCESSOR FAMILY

This volume covers the desktop PentRiprocessor family. This includes both the Pentium
processor (75/90/100/120/133/150/166/200)—supporting maximum operating frequencies of
75, 90, 100, 120, 133, 150, 166 and 200 MHz—and the newest member of the Pentium
processor family, the Pentium processor with MMX technology—supporting Intel MMX
technology and maximum operating frequencies of 166 and 200 MHz. This volume does not
cover the 5V Pentium processors (60, 66). Mobile Pentium processor specifications and
information are covered in separate documents (refer to Chapter 18 for odering information).

The general terms “Pentium processor” and “Pentium processor family” are used throughout
this volume to refer to both the Pentium processor (75/90/100/120/133/150/166/200) and the
Pentium processor with MMX technology together. The names “Pentium processor
(75/90/100/120/133/150/166/200)" and “Pentium processor with MMX technology” are used
to distinguish between the two processors where specific differences exist.

1.1. PROCESSOR FEATURES OVERVIEW

The Pentium processor supports the features of previous Intel Architecture processors anc
provides significant enhancements including the following:

® Superscalar Architecture

® Dynamic Branch Prediction

®* Pipelined Floating-Point Unit

®* Improved Instruction Execution Time

® Separate Code and Data Caéhes

* Writeback MESI Protocol in the Data Cache

® 64-Bit Data Bus

® Bus Cycle Pipelining

® Address Parity

® Internal Parity Checking

* Functional Redundancy Check#and Lock Step operatién
® Execution Tracing

®* Performance Monitoring

® |EEE 1149.1 Boundary Scan

® System Management Mode
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® Virtual Mode Extensions

® Upgradable with a Pentium OverDrive proce3sor
® Dual processing support

® Advanced SL Power Management Features

® Fractional Bus Operation

® On-Chip Local APIC Device

In addition, the Pentium processor with MMX technology offers the following enhancements
over the Pentium processor (75/90/100/120/133/150/1661200):

®  Support for Intel MMX technology
® Dual power supplies—separated? (core) and ¥c3 (1/O) voltage inputs

® Separate 16 Kbyte 4-way set-associative code and data caches, each with improved fully
associative TLBs

® Pool of 4 write buffers used by both pipes
®* Enhanced branch prediction algorithm
®* New Fetch pipeline stage between Prefetch and Instruction Decode

The following features are supported by the Pentium processor (75/90/100/
120/133/150/166/200), but not supported by the Pentium processor with MMX technology:

®* Functional Redundancy Checking and Lock Step operation
® Support for the Intel 82498/82493 and 82497/82492 cache chipset products

® Upgradability with a Pentium OverDrive processor
® Split line accesses to the code cache

1.2. COMPONENT INTRODUCTION

The application instruction set of the Pentium processor family includes the complete instruc-
tion set of existing Intel Architecture processors to ensure backward compatibility, with

extensions to accommodate the additional functionality of the Pentium processor. All
application software written for the Intel386™ and Intel486™ microprocessors will run on the

Pentium processor without modification. The on-chip memory management unit (MMU) is

completely compatible with the Intel386 and Intel486 CPUs.

Footnotes

1

The Code and Data caches are each 8Kbytes, a two-way set-associative on the Pentium processor
(75/90/100/120/ 133/150/166/200).

2

This feature is not supported on the Pentium processor with MMX technology.
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The Pentium processor with MMX technology adds 57 new instructions and four new data
types to accelerate the performance of multimedia and communications software. MMX
technology is based on the SIMD technique—Single Instruction, Multiple data—which
enables increased performance on a wide variety of multimedia and communications
applications. To take advantage of the MMX instructions, software modifications need to be
made. However, if the MMX instructions are not utilized, there are no hardware or software
modifications needed.

The two instruction pipelines and the floating-point unit on the Pentium processor are capable
of independent operation. Each pipeline issues frequently used instructions in a single clock.
Together, the dual pipes can issue two integer instructions in one clock, or one floating-point
instruction (under certain circumstances, 2 floating-point instructions) in one clock.

The Pentium processor with MMX technology adds the Fetch pipeline stage between the
Prefetch and Instruction decode stages, which increases the performance capability of the
processor. The Pentium processor with MMX technology also doubles the number of write
buffers available to be used by the dual pipelines.

Branch prediction is implemented in the Pentium processor. To support this, the Pentium
processor implements two prefetch buffers, one to prefetch code in a linear fashion, and one
that prefetches code according to the Branch Target Buffer (BTB) so the needed code is almos
always prefetched before it is needed for execution. The branch prediction algorithm has beer
enhanced on the Pentium processor with MMX technology for increased accuracy.

The Pentium processor includes separate code and data caches integrated on chip to meet
performance goals. Each cache on the Pentium processor with MMX technology is 16 Kbytes
in size, and is 4-way set associative. The caches on the Pentium processor
(75/90/100/120/133/150/166/200) are each 8 Khytes in size and 2-way set-associative. Eacl
cache has a dedicated Translation Lookaside Buffer (TLB) to translate linear addresses tc
physical addresses. The Pentium processor data cache is configurable to be writeback o
writethrough on a line-by-line basis and follows the MESI protocol. The data cache tags are
triple ported to support two data transfers and an inquire cycle in the same clock. The code
cache is an inherently write protected cache. The code cache tags of the Pentium processt
(75/90/100/120/133/150/166/200) are also triple ported to support snooping and split-line
accesses. The Pentium processor with MMX technology does not support split line accesses t
the code cache. As such, its code cache tags are dual ported. Individual pages can b
configured as cacheable or non-cacheable by software or hardware. The caches can be enabl
or disabled by software or hardware.

The Pentium processor has a 64-bit data bus. Burst read and burst writeback cycles ar
supported by the Pentium processor. In addition, bus cycle pipelining has been added to allow
two bus cycles to be in progress simultaneously. The Pentium processor Memory Managemen
Unit contains optional extensions to the architecture which allow 4 MB page sizes.

The Pentium processor has added significant data integrity and error detection capability. Date
parity checking is still supported on a byte-by-byte basis. Address parity checking, and internal
parity checking features have been added along with a new exception, the machine checl
exception.
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The Pentium processor (75/90/100/120/133/150/166/200) has implemented functional
redundancy checking to provide maximum error detection of the processor and the interface to
the processor. When functional redundancy checking is used, a second processor, the
“checker” is used to execute in lock step with the “master” processor. The checker samples the
master’s outputs and compares those values with the values it computes internally, and asserts
an error signal if a mismatch occurs. The Pentium processor with MMX technology does not
support functional redundancy checking.

As more and more functions are integrated on chip, the complexity of board level testing is
increased. To address this, the Pentium processor has increased test and debug capability by
implementing IEEE Boundary Scan (Standard 1149.1).

System management mode has been implemented along with some extensions to the SMM
architecture. Enhancements to the Virtual 8086 mode have been made to increase performance
by reducing the number of times it is necessary to trap to a Virtual 8086 monitor.

Figure 1-1 presents a block diagram overview of the Pentium processor with MMX technology
including the two instruction pipelines, the “u” pipe and the “v” pipe. The u-pipe can execute
all integer and floating-point instructions. The v-pipe can execute simple integer instructions
and the FXCH floating-point instruction.

The separate code and data caches are shown. The data cache has two ports, one for each of
the two pipes (the tags are triple ported to allow simultaneous inquire cycles). The data cache
has a dedicated TLB to translate linear addresses to the physical addresses used by the data
cache.

The code cache, branch target buffer and prefetch buffers are responsible for getting raw
instructions into the execution units of the Pentium processor. Instructions are fetched from the
code cache or from the external bus. Branch addresses are remembered by the branch target
buffer. The code cache TLB translates linear addresses to physical addresses used by the code
cache.

The decode unit contains two parallel decoders which decode and issue up to the next two
sequential instructions into the execution pipeline. The control ROM contains the microcode
which controls the sequence of operations performed by the processor. The control unit has
direct control over both pipelines.

The Pentium processor contains a pipelined floating-point unit that provides a significant
floating-point performance advantage over previous generations of Intel Architecture-based
processors.

The Pentium processor includes features to support multi-processor systems, namely an on-
chip Advanced Programmable Interrupt Controller (APIC). This APIC implementation
supports multiprocessor interrupt management (with symmetric interrupt distribution across all
processors), multiple 1/0O subsystem support, 8259A compatibility, and inter-processor
interrupt support.
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NOTES:

1. The Code and Data caches are each 8 Kbytes in size on the Pentium® processor
(75/90/100/120/133/150/166/200).

2. The MMX Unit is present only on the Pentium processor with MMX™ technology

3. The internal instruction bus is 256 bits wide on the Pentium processor
(75/90/100/120/133/150/166/200)

Figure 1-1. Pentium ® Processor Block Diagram

The dual processor configuration allows two Pentium processors to share a single L2 cache fo
a low-cost symmetric multi-processor system. The two processors appear to the system as
single Pentium processor. Multiprocessor operating systems properly schedule computing
tasks between the two processors. This scheduling of tasks is transparent to software
applications and the end-user. Logic built into the processors support a “glueless” interface for
easy system design. Through a private bus, the two Pentium processors arbitrate for the
external bus and maintain cache coherency. The Pentium processor can also be used in
conventional multi-processor system in which one L2 cache is dedicated to each processor.

1-5



u
ARCHITECTURAL FEATURES OF THE PENTIUM ® PROCESSOR FAMILY Inu ®

In this document, in order to distinguish between two Pentium processors in dual processing
mode, one CPU will be designated as the Primary processor with the other being the Dual
processor. Note that this is a different concept than that of “master” and “checker” processors
described in the discussion on functional redundancy.

Dual processing is supported in a system only if both processors are operating at identical core
and bus frequencies and are the same type of processor (i.e., both Pentium processor
(75/90/100/120/133/150/166/200) or both Pentium processor with MMX technology). Within
these restrictions, two processors of different steppings may operate together in a system. See
the “Component Operation” chapter for more details about Dual processing.

The Pentium processor is produced on Intel's advanced silicon technology. The Pentium
processor also includes SL enhanced power management features. When the clock to the
Pentium processor is stopped, power dissipation is virtually eliminated. The ¢taw V
operating voltages and SL enhanced power management features make the Pentium processor
a good choice for energy-efficient desktop designs.

Supporting an upgrade socket (Socket 7) in the system will provide end-user upgradability by
the addition of a future Pentium OverDrive processor. Typical applications will realize a 40%
to 70% performance increase by addition of a future Pentium OverDrive processor.

The Pentium processor supports fractional bus operation. This allows the internal processor
core to operate at high frequencies, while communicating with the external bus at lower
frequencies. Table 4-3 lists the bus-to-core frequency ratios supported on the Pentium
processor.
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CHAPTER 2
COMPONENT OPERATION

The Pentium processor has an optimized superscalar micro-architecture capable of executin
two instructions in a single clock. A 64-bit external bus, separate 8-Kbyte data and instruction
caches for Pentium processor (75/90/100/120/133/150/166/200), separate 16-Kbyte data an
instruction caches for Pentium processor with MMX technology, write buffers, branch
prediction (with an enhanced branch prediction algorithm for the Pentium processor with
MMX technology), and a pipelined floating-point unit combine to sustain the high execution
rate. These architectural features and their operation are discussed in this chapter.

2.1. PIPELINE AND INSTRUCTION FLOW

The integer instructions traverse a five stage pipeline in the Pentium processor
(75/90/100/120/133/150/166/200), while the Pentium processor with MMX technology has an
additional pipeline stage. The pipeline stages are as follows:

PF  Prefetch

F Fetch (Pentium processor with MMX technology only)
D1 Instruction Decode

D2  Address Generate

EX  Execute - ALU and Cache Access

WB  Writeback

The Pentium processor is a superscalar machine, built around two general purpose intege
pipelines and a pipelined floating-point unit capable of executing two instructions in parallel.
Both pipelines operate in parallel allowing integer instructions to execute in a single clock in
each pipeline. Figure 2-1 depicts instruction flow in the Pentium processor.

The pipelines in the Pentium processor are called the “u” and “v” pipes and the process of
issuing two instructions in parallel is termed “pairing.” The u-pipe can execute any instruction
in the Intel architecture, while the v-pipe can execute “simple” instructions as defined in the
“Instruction Pairing Rules” section of this chapter. When instructions are paired, the
instruction issued to the v-pipe is always the next sequential instruction after the one issued tc
the u-pipe.
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Figure 2-1. Pentium ® Processor Pipeline Execution

2.1.1. Pentium ® Processor Integer Pipeline Description

The Pentium processor pipeline has been optimized to achieve higher throughput compared to
previous generations of Intel Architecture processors.

The first stage of the pipeline is the Prefetch (PF) stage in which instructions are prefetched
from the on-chip instruction cache or memory. Because the Pentium processor has separate
caches for instructions and data, prefetches do not conflict with data references for access to
the cache. If the requested line is not in the code cache, a memory reference is made. In the PF
stage of the Pentium processor (75/90/100/120/133/150/166/200), two independent pairs of
line-size (32-byte) prefetch buffers operate in conjunction with the branch target buffer. This
allows one prefetch buffer to prefetch instructions sequentially, while the other prefetches
according to the branch target buffer predictions. The prefetch buffers alternate their prefetch
paths. In the Pentium processor with MMX technology, four 16-byte prefetch buffers operate
in conjunction with the BTB to prefetch up to four independent instruction streams. See the
section titled “Instruction Prefetch” in this chapter for further details on the Pentium processor
family prefetch buffers.

In the Pentium processor with MMX technology only, the next pipeline stage is Fetch (F), and

it is used for instruction length decode. It replaces the D1 instruction-length decoder and

eliminates the need for end-bits to determine instruction length. Also, any prefixes are decoded
in the F stage. The Fetch stage is not supported by the Pentium processor
(75/90/100/120/133/150/166/200) pipeline.

The Pentium processor with MMX technology also features an instruction FIFO between the F
and D1 stages. This FIFO is transparent; it does not add additional latency when it is empty.
During every clock cycle, two instructions can be pushed into the instruction FIFO (depending
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on availability of the code bytes, and on other factors such as prefixes). Instruction pairs are
pulled out of the FIFO into the D1 stage. Since the average rate of instruction execution is less
than two per clock, the FIFO is normally full. As long as the FIFO is full, it can buffer any
stalls that may occur during instruction fetch and parsing. If such a stall occurs, the FIFO
prevents the stall from causing a stall in the execution stage of the pipe. If the FIFO is empty,
then an execution stall may result from the pipeline being “starved” for instructions to execute.
Stalls at the FIFO entrance may be caused by long instuctions or prefixes, or “extremely
misaligned targets” (i.e., Branch targets that reside at the last bytes of 16-aligned bytes).

The pipeline stage after the PF stage in the Pentium processor (75/90/100/120/
133/150/166/200) is Decodel (D1) in which two parallel decoders attempt to decode and issue
the next two sequential instructions. The decoders determine whether one or two instructions
can be issued contingent upon the instruction pairing rules described in the section titled
“Instruction Pairing Rules.” The Pentium processor (75/90/100/120/133/150/166/200) requires
an extra D1 clock to decode instruction prefixes. Prefixes are issued to the u-pipe at the rate o
one per clock without pairing. After all prefixes have been issued, the base instruction will

then be issued and paired according to the pairing rules. The one exception to this is that the
Pentium processor (75/90/100/120/133/150/166/200) will decode near conditional jumps (long
displacement) in the second opcode map (OFh prefix) in a single clock in either pipeline. The
Pentium processor with MMX technology handles OFh as part of the opcode and not as a
prefix. Consequently, OFh does not take one extra clock to get into the FIFO. Note, in the
Pentium processor with MMX technology, MMX instructions can be paired as discussed in the
“MMX Instruction Pairing Guidelines” section later in this chapter.

The D1 stage is followed by Decode2 (D2) in which addresses of memory resident operands
are calculated. In the Intel486™ processor, instructions containing both a displacement and ar
immediate, or instructions containing a base and index addressing mode require an additiona
D2 clock to decode. The Pentium processor removes both of these restrictions and is able t
issue instructions in these categories in a single clock.

The Pentium processor uses the Execute (EX) stage of the pipeline for both ALU operations
and for data cache access; therefore those instructions specifying both an ALU operation and
data cache access will require more than one clock in this stage. In EX all u-pipe instructions
and all v-pipe instructions except conditional branches are verified for correct branch
prediction. Microcode is designed to utilize both pipelines and thus those instructions requiring
microcode execute faster.

The final stage is Writeback (WB) where instructions are enabled to modify processor state
and complete execution. In this stage, v-pipe conditional branches are verified for correct
branch prediction.

During their progression through the pipeline, instructions may be stalled due to certain
conditions. Both the u-pipe and v-pipe instructions enter and leave the D1 and D2 stages in
unison. When an instruction in one pipe is stalled, then the instruction in the other pipe is also
stalled at the same pipeline stage. Thus both the u-pipe and the v-pipe instructions enter the E
stage in unison. Once in EX if the u-pipe instruction is stalled, then the v-pipe instruction (if
any) is also stalled. If the v-pipe instruction is stalled then the instruction paired with it in the
u-pipe is not allowed to advance. No successive instructions are allowed to enter the EX stage
of either pipeline until the instructions in both pipelines have advanced to WB.
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2.1.1.1. INSTRUCTION PREFETCH

In the Pentium processor (75/90/100/120/133/150/166/200) PF stage, two independent pairs of
line-size (32-byte) prefetch buffers operate in conjunction with the branch target buffer. Only
one prefetch buffer actively requests prefetches at any given time. Prefetches are requested
sequentially until a branch instruction is fetched. When a branch instruction is fetched, the
branch target buffer (BTB) predicts whether the branch will be taken or not. If the branch is
predicted not taken, prefetch requests continue linearly. On a predicted taken branch the other
prefetch buffer is enabled and begins to prefetch as though the branch was taken. If a branch is
discovered mis-predicted, the instruction pipelines are flushed and prefetching activity starts
over.

The Pentium processor with MMX technology’s prefetch stage has four 16-byte buffers which
can prefetch up to four independent instruction streams, based on predictions made by the
BTB. In this case, the Branch Target Buffer predicts whether the branch will be taken or not in
the PF stage. The Pentium processor with MMX technology features an enhanced two-stage
Branch prediction algorithm, compared to the Pentium processor (75/90/100/120/133/
150/166/200).

For more information on branch prediction, see section 2.2.

2.1.2. Integer Instruction Pairing Rules

The Pentium processor can issue one or two instructions every clock. In order to issue two
instructions simultaneously they must satisfy the following conditions:

® Both instructions in the pair must be “simple” as defined below

®* There must be no read-after-write or write-after-write register dependencies between them
® Neither instruction may contain both a displacement and an immediate

® |nstructions with prefixes can only occur in the u-pipe (except for JCC instructions with a
OFh prefix on the Pentium processor (75/90/100/120/133/150/166/200) and instructions
with a OFh, 66h or 67h prefix on the Pentium processor with MMX technology).

® Instruction prefixes are treated as separate 1-byte instructions (except for all OF prefixed
instructions in the Pentium processor with MMX technology)

Simple instructions are entirely hardwired; they do not require any microcode control and, in

general, execute in one clock. The exceptions are the ALU mem,reg and ALU reg,mem
instructions which are three and two clock operations respectively. Sequencing hardware is
used to allow them to function as simple instructions. The following integer instructions are

considered simple and may be paired:

1. mov reg, reg/mem/imm

2. mov mem, reg/imm

3. alureg, reg/mem/imm
4

alu mem, reg/imm
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5. increg/mem

6. dec reg/mem
7. push reg/mem
8. popreg

9. leareg,mem

10. jmp/call/jcc near
11. nop

12. test reg, reg/mem
13. test acc, imm

In addition, conditional and unconditional branches may be paired only if they occur as the
second instruction in the pair. They may not be paired with the next sequential instruction.
Also, SHIFT/ROT by 1 and SHIFT by imm may pair as the first instruction in a pair.

The register dependencies that prohibit instruction pairing include implicit dependencies via
registers or flags not explicitly encoded in the instruction. For example, an ALU instruction in
the u-pipe (which sets the flags) may not be paired with an ADC or an SBB instruction in the
v-pipe. There are two exceptions to this rule. The first is the commonly occurring sequence of
compare and branch which may be paired. The second exception is pairs of pushes or pop:s
Although these instructions have an implicit dependency on the stack pointer, special hardware
is included to allow these common operations to proceed in parallel.

Although in general two paired instructions may proceed in parallel independently, there is an
exception for paired “read-modify-write” instructions. Read-modify-write instructions are
ALU operations with an operand in memory. When two of these instructions are paired there is
a sequencing delay of two clocks in addition to the three clocks required to execute the
individual instructions.

Although instructions may execute in parallel their behavior as seen by the programmer is
exactly the same as if they were executed sequentially.

Information regarding pairing of FPU and MMX instructions is discussed in the “Floating-
Point Unit” and “MMX™ Unit” sections of this chapter. For additional details on code
optimization, please refer ©ptimizing for Intel's 32-Bit Processqr®rder # 241799.

2.2. BRANCH PREDICTION

The Pentium processor uses a Branch Target Buffer (BTB) to predict the outcome of branch
instructions which minimizes pipeline stalls due to prefetch delays.

The Pentium processor (75/90/100/120/133/150/166/200) accesses the BTB with the addres
of the instruction in the D1 stage. It contains a Branch prediction state machine with four
states: (1) strongly not taken, (2) weakly not taken, (3) weakly taken, and (4) strongly taken. In
the event of a correct prediction, a branch will execute without pipeline stalls or flushes.
Branches which miss the BTB are assumed to be not taken. Conditional and unconditional nea
branches and near calls execute in 1 clock and may be executed in parallel with other intege
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instructions. A mispredicted branch (whether a BTB hit or miss) or a correctly predicted
branch with the wrong target address will cause the pipelines to be flushed and the correct
target to be fetched. Incorrectly predicted unconditional branches will incur an additional three
clock delay, incorrectly predicted conditional branches in the u-pipe will incur an additional
three clock delay, and incorrectly predicted conditional branches in the v-pipe will incur an
additional four clock delay.

The benefits of branch prediction are illustrated in the following example. Consider the
following loop from a benchmark program for computing prime numbers:

for(k=i+prime;k<=SIZE;k+=prime)
flags[k]=FALSE;

A popular compiler generates the following assembly code:

(prime is allocated tecx, k is allocated tedx, andal contains the valuEALSE)

inner_loop:
mov byte ptr flags[edx],al
add edx,ecx
cmp edx, SIZE
jle inner_loop

Each iteration of this loop will execute in 6 clocks on the Intel486 CPU. On the Pentium
processor, thenov is paired with theadd; the cmp with thejle . With branch prediction,
each loop iteration executes in 2 clocks.

NOTE

The dynamic branch prediction algorithm speculatively runs code fetch
cycles to addresses corresponding to instructions executed some time in the
past. Such code fetch cycles are run based on past execution history,
regardless of whether the instructions retrieved are relevant to the currently
executing instruction sequence.

One effect of the branch prediction mechanism is that the Pentium processor
may run code fetch bus cycles to retrieve instructions which are never
executed. Although the opcodes retrieved are discarded, the system must
complete the code fetch bus cycle by returning BRDY#. It is particularly
important that the system return BRDY# for all code fetch cycles, regardless
of the address.

It should also be noted that upon entering SMM, the branch target buffer
(BTB) is not flushed and thus it is possible to get a speculative prefetch to an
address outside of SMRAM address space due to branch predictions based on
code executed prior to entering SMM. If this occurs, the system must still
return BRDY# for each code fetch cycle.

Furthermore, it is possible that the Pentium processor may run speculative
code fetch cycles to addresses beyond the end of the current code segment
(approximately 100 bytes past end of last executed instruction). Although the
Pentium processor may prefetch beyond the CS limit, it will not attempt to
execute beyond the CS limit. Instead, it will raise a GP fault. Thus,
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segmentation cannot be used to prevent speculative code fetches to

inaccessible areas of memory. On the other hand, the Pentium processor
never runs code fetch cycles to inaccessible pages (i.e., not present pages or
pages with incorrect access rights), so the paging mechanism guards against
both the fetch and execution of instructions in inaccessible pages.

For memory reads and writes, both segmentation and paging prevent the

generation of bus cycles to inaccessible regions of memory. If paging is not

used, branch prediction can be disabled by setting TR12.NBP (bit 0)* and

flushing the BTB by loading CR3 before disabling any areas of memory.

Branch prediction can be re-enabled after re-enabling memory.

The following is an example of a situation that may occur:

1. Code passes control to segment at address c000h.

2. Code transfers control to code at different address (6000h) by using
FAR CALL instruction.

3. This portion of the code does an I/O write to a port that disables
memory at address c000h.

4. At the end of this segment, an /O write is performed to re-enable
memory at address c000h.

5. Following the OUT instruction, there is a RET instruction to cO00h
segment.
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OUT ; disable cO00h

v

OUT ; enable cO00h
RET

6000h

FAR CALL

c000h

The branch prediction mechanism of the Pentium processor, however,
predicts that the RET instruction is going to transfer control to the segment at
address c000h and performs a prefetch from that address prior to the OUT
instruction that re-enables that memory address. The result is that no BRDY
is returned for that prefetch cycle and the system hangs.

In this case, branch prediction should be disabled (by setting TR12.NBP*
and flushing the BTB by loading CR3) prior to disabling memory at address
c000h and re-enabled after the RET instruction by clearing TR12.NBP* as
indicated above.

* Please refer to Chapter 16 of this volume.

In the Pentium processor with MMX technology, the Branch prediction algorithm changes
from the Pentium processor (75/90/100/120/133/150/166/200) in the following ways:

® BTB Lookup is done when the branch is in the PF stage.

® The BTB Lookup tag is the Prefetch address.

®* A Lookup in the BTB performs a search spanning sixteen consecutive bytes.

® BTB can contain four branch instructions for each line of 16 bytes.

® BTB is constructed from four independent Banks. Each Bank contains 64 entries and is
4-way associative.

® Enchanced two-stage Branch prediction algorithm.
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2.3. FLOATING-POINT UNIT

The floating-point unit (FPU) of the Pentium processor is integrated with the integer unit on
the same chip. It is heavily pipelined. The FPU is designed to be able to accept one floating-
point operation every clock. It can receive up to two floating-point instructions every clock,
one of which must be an exchange instruction.

For information on code optimization, please refeDfmimizing for Intel's 32-Bit Processqrs
Order Number 241799.

2.3.1. Floating-Point Pipeline Stages

The Pentium processor FPU has 8 pipeline stages, the first five of which it shares with the
integer unit. Integer instructions pass through only the first 5 stages. Integer instructions use
the fifth (X1) stage as a WB (write-back) stage. The 8 FP pipeline stages, and the activities tha
are performed in them are summarized below:

PF  Prefetch;

F Fetch (applicable to the Pentium processor with MMX technology only);
D1 Instruction Decode;

D2  Address generation;

EX Memory and register read; conversion of FP data to external memory format and
memory write;

X1  Floating-Point Execute stage one; conversion of external memory format to internal FP
data format and write operand to FP register file; bypass 1 (bypass 1 described in the
“Bypasses” section).

X2  Floating-Point Execute stage two;

WF  Perform rounding and write floating-point result to register file; bypass 2 (bypass 2
described in the “Bypasses” section).

ER  Error Reporting/Update Status Word.

2.3.2. Instruction Issue

Described below are the rules of how floating-point (FP) instructions get issued on the
Pentium processor:

1. FP instructions do not get paired with integer instructions. However, a limited pairing of
two FP instructions can be performed.

2. When a pair of FP instructions is issued to the FPU, only the FXCH instruction can be the
second instruction of the pair. The first instruction of the pair must be one of a set F where
F = [ FLD single/double, FLD ST(i), all forms of FADD, FSUB, FMUL, FDIV, FCOM,
FUCOM, FTST, FABS, FCHS].
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3. FP instructions other than the FXCH instruction and other than instructions belonging to
set F (defined in rule 2) always get issued singly to the FPU.

4. FP instructions that are not directly followed by an FP exchange instruction are issued
singly to the FPU.

The Pentium processor stack architecture instruction set requires that all instructions have one
source operand on the top of the stack. Since most instructions also have their destination as
the top of the stack, most instructions see a “top of stack bottleneck.” New source operands
must be brought to the top of the stack before we can issue an arithmetic instruction on them.
This calls for extra usage of the exchange instruction, which allows the programmer to bring
an available operand to the top of the stack. The Pentium processor FPU uses pointers to
access its registers to allow fast execution of exchanges and the execution of exchanges in
parallel with other floating-point instructions. An FP exchatiwg is paired with other FP
instructions takes 0 clocks for its execution. Since such exchanges can be executed in parallel
on the Pentium processor, it is recommended that one use them when necessary to overcome
the stack bottleneck.

Note that when exchanges are paired with other floating-point instructions, they should not be
followed immediately by integer instructions. The Pentium processor stalls such integer
instructions for a clock if the FP pair is declared safe, or for 4 clocks if the FP pair is unsafe.

Also note that the FP exchange must always follow another FP instruction to get paired. The
pairing mechanism does not allow the FP exchange to be the first instruction of a pair that is
issued in parallel. If an FP exchange is not paired, it takes 1 clock for its execution.

2.3.3.  Safe Instruction Recognition

The Pentium processor FPU performs Safe Instruction Recognition or SIR in the X1 stage of
the pipeline. SIR is an early inspection of operands and opcodes to determine whether the
instruction is guaranteed not to generate an arithmetic overflow, underflow, or unmasked
inexact exception. An instruction is declared safe if it cannot raise any other floating-point
exception, and if it does not need microcode assist for delivery of special results. If an
instruction is declared safe, the next FP instruction is allowed to complete its E stage
operation. If an instruction is declared unsafe, the next FP instruction stalls in the E stage until
the current one completes (ER stage) with no exception. This means a 4 clock stall, which is
incurred even if the numeric instruction that was declared unsafe does not eventually raise a
floating-point exception.

For normal data, the rules used on the Pentium processor for declaring an instruction safe are
as follows.
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On the Pentium processor (75/90/100/120/133/150/166/200), if FOP = FADD/FSUB/
FMUL/FDIV, the instruction is safe from arithmetic overflow, underflow, and unmasked
inexact exceptions if:

1. Both operands have unbiased expogehEFEh AND
2. Both operands have unbiased expoeeritFFEh AND
3. The inexact exception is masked.

Similarly, on the Pentium processor with MMX technology, if FOP = FADD/FSUB/
FMUL/FDIV, the instruction is safe from arithmetic overflow, underflow, and unmasked
inexact exceptions if:

1. Both operands have unbiased expogeh®00h AND
2. Both operands have unbiased expoeeif-FFh AND
3. The inexact exception is masked

Note that arithmetic overflow of the double precision format occurs when the unbiased
exponent of the result i 400h, and underflow occurs when the exponesgt3&Fh. Hence,

the SIR algorithm on the Pentium processor allows improved throughput on a much greater
range of numbers than that spanned by the double precision format.

2.3.4. FPU Bypasses

The following section describes the floating-point register file bypasses that exist on the
Pentium processor. The register file has two write ports and two read ports. The read ports ar
used to read data out of the register file in the E stage. One write port is used to write data intc
the register file in the X1 stage, and the other in the WF stage. A bypass allows data that is
about to be written into the register file to be available as an operand that is to be read from the
register file by any succeeding floating-point instruction. A bypass is specified by a pair of
ports (a write port and a read port) that get circumvented. Using the bypass, data is made
available even before actually writing it to the register file.

The following procedures are implemented:

1. Bypass the X1 stage register file write port and the E stage register file read port.
2. Bypass the WF stage register file write port and the E stage register file read port.

With bypass 1, the result of a floating-point load (that writes to the register file in the X1 stage)
can bypass the X1 stage write and be sent directly to the operand fetch stage or E stage of tt
next instruction.

With bypass 2, the result of any arithmetic operation can bypass the WF stage write to the
register file, and be sent directly to the desired execution unit as an operand for the next
instruction.

Note that the FST instruction reads the register file with a different timing requirement, so that
for the FST instruction, which attempts to read an operand in the E stage:
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1. There is no bypassing the X1 stage write port and the E stage read port, i.e. no added
bypass for FLD followed by FST. Thus FLD (double) followed by FST (double) takes
4 clocks (2 for FLD, and 2 for FST).

2. There is no bypassing the WF stage write port and the E stage read port. The E stage read
for the FST happens only in the clock following the WF write for any preceding arithmetic
operation.

Furthermore, there is no memory bypass for an FST followed by an FLD from the same
memory location.

2.3.5. Branching Upon Numeric Condition Codes

Branching upon numeric condition codes is accomplished by transferring the floating-point
SW to the integer FLAGS register and branching on it. The “test numeric condition codes and
branch” construct looks like:

FP instructionl; instruction whose effects on the status word are to be examined,;
“numeric_test_and_branch_construct™

FSTSW AX; move the status word to the ax register.

SAHF; transfer the value in ah to the lower half of the eflags register.

JC xyz ; jump upon the condition codes in the eflags register.

Note that all FP instructions update the status word only in the ER stage. Hence there is a built-
in status word interlock between FP instructionl and the FSTSW AX instruction. The above
piece of code takes 9 clocks before execution of code begins at the target of the jump. These 9
clocks are counted as:

FP instructionl : X1, X2, WF, ER (4 E stage stalls for the FSTSWAX);
FSTSW AX: 2 E clocks;

SAHF : 2 E clocks;

JC xyz : 1 clock if no mispredict on branch.

Note that if there is a branch mispredict, there will be a minimum of 3 clocks added to the
clock count of 9.

It is recommended that such attempts to branch upon numeric condition codes be preceded by
integer instructions, i.e. one should insert integer instructions in between FP instruction1 and
the FSTSW AX instruction which is the first instruction of the “numeric test and branch”
construct. This allows the elimination of up to 4 clocks (the 4 E-stage stalls on FSTSW AX)
from the cost attributed to this construct, so that numeric branching can be accomplished in
5 clocks.
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24, MMX™ UNIT

The Intel MMX technology, supported on the Pentium processor with MMX technology,
comprises a set of extensions to the Intel Architecture that are designed to greatly enhance th
performance of advanced media and communications applications. These extensions (whict
include new registers, data types, and instructions) are combined with a single-instruction,
multiple-data (SIMD) execution model to accelerate the performance of applications such as
motion video, combined graphics with video, image processing, audio synthesis, speech
synthesis and compression, telephony, video conferencing, and 2D and 3D graphics, whict
typically use compute-intensive algorithms to perform repetitive operations on large arrays of
simple, native data elements.

The MMX technology defines a simple and flexible software model, with no new mode or
operating-system visible state. All existing software will continue to run correctly, without
modification, on Intel Architecture processors that incorporate the MMX technology, even in
the presence of existing and new applications that incorporate this technology.

The following sections of this chapter describe the basic programming environment for the
technology, the MMX register set, data types and instruction set. Detailed descriptions of the
MMX instructions are provided in Chapter 3 of thtel Architecture Software Developer’s
Manual Volume 2. The manner in which the MMX technology extensions fit into the Intel
Architecture system programming model is described in Chapter 10 intéiéArchitecture
Software Developer’'s ManuaVolume 3.

2.4.1. Overview of the MMX™ Programming Environment

MMX technology provides the following new extensions to the Intel Architecture
programming environment:

® Eight MMX registers (MMO through MM7)

®* Four MMX data types (packed bytes, packed words, packed doublewords and quadword)
®* The MMX instruction set

24.1.1. MMX™ REGISTERS

The MMX register set consists of eight 64-bit registers (see Figure 2-2). The MMX
instructions access the MMX registers directly using the register names MMO through MM7.
These registers can only be used to perform calculations on MMX data types; they cannot be
used to address memory. Addressing of MMX instruction operands in memory is handled by
using the standard Intel Architecture addressing modes and general-purpose registers (EAX
EBX, ECX, EDX, EBP, ESI, EDI and ESP).
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63 0
MM7

MM6

MM5
MM4

MM3
MM2

MM1

MMO

3006044

Figure 2-2. MMX™ Register Set

Although the MMX registers are defined in the Intel Architecture as separate registers, they are
aliased to the registers in the FPU data register stack (RO through R7). (See Chapter 10 in the
Intel Architecture Software Developer's Manudblume 3, for a more detailed discussion of
MMX register aliasing.)

2.4.1.2. MMX™ DATA TYPES

The MMX technology defines the following new 64-bit data types (see Figure 2-3):
Packed bytes Eight bytes packed into one 64-bit quantity.

Packed words Four (16-bit) words packed into one 64-bit quantity.
Packed doublewords  Two (32-bit) doublewords packed into one 64-bit quantity.
Quadword One 64-bit quantity.

The bytes in the packed bytes data type are numbered 0 through 7, with byte 0 being contained
in the least significant bits of the data type (bits 0 through 7) and byte 7 being contained in the
most significant bits (bits 56 through 63). The words in the packed words data type and
numbered 0 through 4, with word 0 being contained in the bits 0 through 15 of the data type
and word 4 being contained in bits 48 through 63. The doublewords in a packed doublewords
data type are numbered 0 through 1, with doubleword O being contained in bits O through 31
and doubleword 1 being contained in bits 32 through 63.

2-14 I
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Packed bytes (8x8 bits)
63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

Packed word (4x16 bits)
63 48 47 32 31 16 15 0

Packed doublewords (2x32 bits)
63 32 31 0

Quadword (64 bits)
63 0

3006002

Figure 2-3. Packed Data Types

The MMX instructions move the packed data types (packed bytes, packed words or packed
doublewords) and the quadword data type to-and-from memory or to-and-from the Intel
Architecture general-purpose registers in 64-bit blocks. However, when performing arithmetic
or logical operations on the packed data types, the MMX instructions operate in parallel on the
individual bytes, words or doublewords contained in a 64-bit MMX register.

When operating on the bytes, words and doublewords within packed data types, the MMX
instructions recognize and operate on both signed and unsigned byte integers, word integer
and doubleword integers.

24.13. SINGLE INSTRUCTION, MULTIPLE DATA (SIMD) EXECUTION
MODEL

The MMX technology uses the single instruction, multiple data (SIMD) technique for
performing arithmetic and logical operations on the bytes, words or doublewords packed in an
MMX packed data type. For example, the PADDSB instruction adds eight signed bytes from
the source operand to eight signed bytes in the destination operand and stores eight byte-resul
in the destination operand. This SIMD technique speeds up software performance by allowing
the same operation to be carried out on multiple data elements in parallel. The MMX
technology supports parallel operations on byte, word and doubleword data elements wher
contained in MMX packed data types.
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The SIMD execution model supported in the MMX technology directly addresses the needs of
modern media, communications and graphics applications, which often use sophisticated
algorithms that perform the same operations on a large number of small data types (bytes,
words and doublewords). For example, most audio data is represented in 16-bit (word)

guantities. The MMX instructions can operate on four of these words simultaneously with one

instruction. Video and graphics information is commonly represented as palletized 8-bit (byte)

guantities. Here, one MMX instruction can operate on eight of these bytes simultaneously.

24.1.4. MEMORY DATA FORMATS

When stored in memory the bytes, words and doublewords in the packed data types are stored
in consecutive addresses, with the least significant byte, word or doubleword being stored at

the lowest address and the more significant bytes, words or doublewords being stored at

consecutively higher addresses (see Figure 2-4). The ordering bytes, words or doublewords in
memory is always little endian. That is, the bytes with the lower addresses are less significant

than the bytes with the higher addresses.

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

Memory Address 1008h Memory Address 1000h

3006045

Figure 2-4. Eight Packed Bytes in Memory (at address 1000H)

2.4.15. MMX™ REGISTER DATA FORMATS

Values in MMX registers have the same format as a 64-bit quantity in memory. MMX
registers have two data access modes: 64-bit access mode and 32-bit access mode.

The 64-bit access mode is used for 64-bit memory access, 64-bit transfer between MMX
registers, all pack, logical and arithmetic instructions, and some unpack instructions.

The 32-bit access mode is used for 32-bit memory access, 32-bit transfer between integer
registers and MMX registers, and some unpack instructions.

2.4.2. MMX™ Instruction Set
The MMX instruction set consists of 57 instructions, grouped into the following categories:

® Data Transfer Instructions
® Arithmetic Instructions
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® Comparison Instructions

® Conversion Instructions

® Logical Instructions

® Shift Instructions

®* Empty MMX State (EMMS) Instruction

These instructions provide a rich set of operations that can be performed in parallel on the
bytes, words or doublewords of an MMX packed data type.

When operating on the MMX packed data types, the data within a data type is cast by the type
specified by the instruction. For example, the PADDB (add packed bytes) instruction adds two
groups of eight packed bytes. The PADDW (add packed words) instruction, which adds
packed words, can operate on the same 64 bits as the PADDB instruction treating 64 bits a
four 16-bit words.

2.4.3. Intel MMX™ Technology Pipeline Stages

The MMX unit of the Pentium processor with MMX technology has six pipeline stages. The
integration of the MMX pipeline with the integer pipeline is very similar to that of the floating
point pipe.

Pentium processors with MMX technology add an additional fetch stage to the pipeline. The
instruction bytes are prefetched from the code cache in the prefetch (PF) stage, and they ar
parsed into instructions (and prefixes) in the fetch (F) stage. Additionally, any prefixes are
decoded in the F stage.

When instructions execute in the two pipes, their behavior is exactly the same as if they were
executed sequentially. When a stall occurs, successive instructions are not allowed to pass th
stalled instruction in either pipe. Figure 2-5 shows the pipelining structure for this scheme.

Decoupled stages of the MMX™ Pipeline
|Mex |WM/M2| M, |WMuI|

MMX pipeline integrated
l:l in integer pipeline

|:| Integer pipeline only

MMXPIPE

Figure 2-5. MMX™ Pipeline Structure
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Instruction parsing is decoupled from the instruction decoding by means of an instruction
FIFO, which is situated between the F and D1 (Decode 1) stages. The FIFO has slots for up to
four instructions. This FIFO is transparent, it does not add additional latency when it is empty.

Every clock cycle, two instructions can be pushed into the instruction FIFO (depending on
availability of the code bytes, and on other factors such as prefixes). Instruction pairs are
pulled out of the FIFO into the D1 stage. Since the average rate of instruction execution is less
than two per clock, the FIFO is normally full. If the FIFO is full, then the FIFO can buffer a
stall that may have occurred during instruction fetch and parsing. If this occurs then that stall
will not cause a stall in the execution stage of the pipe. If the FIFO is empty, then an
execution stall may result from the pipeline being “starved” for instructions to execute. Also,
if the FIFO contains only one instruction, then the instruction will not pair. Additionally, if an
instruction is longer than 7 bytes, then only one instruction will be pushed into the FIFO.
Figure 2-6 details the MMX pipeline on superscalar processors and the conditions where a stall
may occur in the pipeline.

PF ——— » PF State: Prefetches Instructions

Fetch Stage: The prefetched instruction's bytes are passed

into instructions. The prefixes are decoded and up to two

F —— > instructions are pushed into the FIFO. Two MMX™ instructions
can be pushed if each of the instructions are less than 7 in bytes

length.

D1 Stage: Integer, Floating-point and MMX instructions

L ) ]
Dl are decoded in the D1 pipe stage.

D2 Stage: Source values are read, when an AGI is detected
D2 a 1 clock delay is inserted into the V-Pipe pipeline.
EX —————» EX Stage: The instruction is committed for execution.

Mex Stage: execution clock for MMX instruction: ALU,
M ———» shift pack and unpack are executed and completed in this clock.
ex First clock of multiply instructions. No stall conditions.

WM/M2 Stage: Single clock operations are written.
WI I I/'\/l2 Second stage of multiplier pipe. No stall conditions.

M3 ———» M3 Stage: Third stage of multiplier pipe. No stall conditions.

WMul —————» WMul Stage: Write of multiplier result. No stall condtions.

INSTFLOW

Figure 2-6. MMX™ Instruction Flow in a Pentium  ® Processor with
MMX Technology
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PF Prefetch Prefetches instructions

F Fetch The prefetched instruction bytes are passed into
instructions. The prefixes are decoded and up to two
instructions are pushed into the FIFO. Two MMX
instructions can be pushed if each of the instructions are
less than seven in bytes length.

D1 Decodel Integer, floating-point and MMX instructions are decoded
in the D1 pipe stage.

D2 Decode?2 Source values are read.

E Execution The instruction is committed for execution.

Mex MMX Execution  Execution clock for MMX instructions. ALU, shift, pack,

and unpack instructions are executed and completed in this
clock. First clock of multiply instructions. No stall
conditions.

WM/M 2 Write/Multiply2 Single clock operations are written. Second stage of
multiplier pipe. No stall conditions.

M3 Multiply3 Third stage of multiplier pipe. No stall conditions.

Wmul Write of multiply ~ Write of multiplier result. Not stall conditions.

2.4.4. Instruction Issue

The rules of how MMX instructions get issued on the Pentium processor with MMX
technology are summarized as follows:

1. Pairing of two MMX instructions can be performed.

2. Pairing of one MMX instruction with an integer instruction can be performed.

3. MMX instructions do not get paired with floating-point instructions.

2441, PAIRING TWO MMX™ INSTRUCTIONS

The rules of how two MMX instructions can be paired are listed below:

® Two MMX instructions which both use the MMX shifter unit (pack, unpack and shift
instructions) cannot pair since there is only one MMX shifter unit. Shift operations may be
issued in either the u-pipe or the v-pipe but not in both in the same clock cycle.

® Two MMX instructions which both use the MMX multiplier unit (pmull, pmulh, pmadd
type instructions) cannot pair since there is only one MMX multiplier unit. Multiply
operations may be issued in either the u-pipe or the v-pipe but not in both in the same
clock cycle.



]
COMPONENT OPERATION InU®

® MMX instructions which access either memory or the integer register file can be issued in
the u-pipe only. Do not schedule these instructions to the v-pipe as they will wait and be
issued in the next pair of instructions (and to the u-pipe).

®* The MMX destination register of the u-pipe instruction should not match the source or
destination register of the v-pipe instruction (dependency check).

® The EMMS instruction is not pairable.

® |f either the CRO.TS or the CRO.EM bits are set, MMX instructions cannot go into the v-
pipe.

24.4.2. PAIRING AN INTEGER INSTRUCTION IN THE U-PIPE WITH AN
MMX™ INSTRUCTION IN THE V-PIPE

The rules of how an integer instruction in the u-pipe is paired with an MMX instruction in the
v-pipe are listed below:

® The MMX instruction can not be the first MMX instruction following a floating-point
instruction.

®* The v-pipe MMX instruction does not access either memory or the integer register file.

® The u-pipe integer instruction is a pairable u-pipe integer instruction.

2.4.4.3. PAIRING AN MMX™ INSTRUCTION IN THE U-PIPE WITH AN
INTEGER INSTRUCTION IN THE V-PIPE

The rules of how an MMX instruction in the u-pipe is paired with an integer instruction in the
v-pipe are listed below:

® The v-pipe instruction is a pairable integer v-pipe instruction.
®* The u-pipe MMX instruction does not access either memory or the integer register file.

2.5. ON-CHIP CACHES

The Pentium processor (75/90/100/120/133/150/166/200) implements two internal caches for a
total integrated cache size of 16 Kbytes: an 8 Kbyte data cache and a separate 8 Kbyte code
cache. These caches are transparent to application software to maintain compatibility with
previous Intel Architecture generations. The Pentium processor with MMX technology
doubles the internal cache size to 32 Kbytes: a 16 Kbyte data cache and a separate 16 Kbyte
code cache.

The data cache fully supports the MESI (modified/exclusive/shared/invalid) writeback cache
consistency protocol. The code cache is inherently write protected to prevent code from being
inadvertently corrupted, and as a consequence supports a subset of the MESI protocol, the S
(shared) and | (invalid) states.
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The caches have been designed for maximum flexibility and performance. The data cache i
configurable as writeback or writethrough on a line-by-line basis. Memory areas can be
defined as non-cacheable by software and external hardware. Cache writeback and
invalidations can be initiated by hardware or software. Protocols for cache consistency and line
replacement are implemented in hardware, easing system design.

2.5.1. Cache Organization

On the Pentium processor (75/90/100/120/133/150/166/200), each of the caches are 8 Kbyte
in size and each is organized as a 2-way set associative cache. There are 128 sets in ea
cache, each set containing 2 lines (each line has its own tag address). Each cache line is 3
bytes wide. The Pentium processor with MMX technology has two 16 Kbyte 4-way set-
associative caches the with a cache line length of 32 bytes.

In the Pentium processor (75/90/100/120/133/150/166/200), replacement in both the data anc
instruction caches is handled by the LRU mechanism which requires one bit per set in each of
the caches. The Pentium processor with MMX technology employs a pseudo-LRU
replacement algorithm which requires three blts per set in each of the caches. When a line mus
be replaced, the cache will first select which of 10:11 and 12:13 was least recently used. Then the
cache will determine which of the two lines was least recently used and mark it for
replacement. This decision tree is shown in Figure 2-7.

Al four lines No Replace
in the set valid? non-valid line
Yes
B0 =07?

Yes: 10 or I1 No: 12 or I3

least recently least recently

used used

B1=07? B2 =07
Yes/\o Yes /\\lo
Replace Replace Replace Replace
10 11 12 13
2202-203

Figure 2-7. Pseudo-LRU Cache Replacement Strategy

The data cache consists of eight banks interleaved on 4-byte boundaries. The data cache can
accessed simultaneously from both pipes, as long as the references are to different cach
banks. A conceptual diagram of the organization of the data and code caches is shown ir
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Figure 2-8. Note that the data cache
which requires 2 state bits, while the
requires only one state bit.

intgl.

supports the MESI writeback cache consistency protocol
code cache supports the S and | state only and therefore

MESI
State

MESI
State

MESI
State

VAN LRU ¥\
Data Cache Set | Tag Address | | | |<—>| | Tag Address | | | |Tag Address | | | |Tag Address | | |
WAY 0 WAY 1 WAY 2 WAY 3
State State State State
Bit Bit Bit Bit
(Sorly (Sorl) (Sorl) (Sorly
! LRU }
Code Cache Set . | Tag Address | | | Tag Address | |
WAY 0 WAY 1 WAY 2 WAY 3
Pentium® Processor with MMX™ Technology
MESI MESI
State State
I\ LRU "\
WAY 0 WAY 1
State State
(sBélr 1) s o )
il LRU !

WAY 0 WAY 1

Pentium Processor (75/90/100/120/133/150/166/200)

concept

Figure 2-8. Conceptual Organization of Code and Data Caches

2.5.2. Cache Structure

The instruction and data caches can be accessed simultaneously. The instruction cache can
provide up to 32 bytes of raw opcodes and the data cache can provide data for two data
references all in the same clock. This capability is implemented partially through the tag
structure. The tags in the data cache are triple ported. One of the ports is dedicated to snooping
while the other two are used to lookup two independent addresses corresponding to data
references from each of the pipelines. The instruction cache tags of the Pentium processor
(75/90/100/120/133/150/166/200) are also triple ported. Again, one port is dedicated to
support snooping and the other two ports facilitate split line accesses (simultaneously
accessing upper half of one line and lower half of the next line). Note, the Pentium processor
with MMX technology does not support split line accesses to the code cache; as such, its code
cache tags are dual ported.

The storage array in the data cache is single ported but interleaved on 4-byte boundaries to be
able to provide data for two simultaneous accesses to the same cache line.
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Each of the caches are parity protected. In the instruction cache, there are parity bits on e
quarter line basis and there is one parity bit for each tag. The data cache contains one parity b
for each tag and a parity bit per byte of data.

Each of the caches are accessed with physical addresses and each cache has its own TI
(translation lookaside buffer) to translate linear addresses to physical addresses. The TLB:s
associated with the instruction cache are single ported whereas the data cache TLBs are full:
dual ported to be able to translate two independent linear addresses for two data reference
simultaneously. The tag and data arrays of the TLBs are parity protected with a parity bit
associated with each of the tag and data entries in the TLBs.

The data cache of the Pentium processor (75/90/100/120/133/150/166/200) has a 4-way Se
associative, 64-entry TLB for 4-Kbyte pages and a separate 4-way set associative, 8-entry TLB
to support 4-Mbyte pages. The code cache has one 4-way set associative, 32-entry TLB for 4
Kbyte pages and 4-Mbyte pages which are cached in 4-Kbyte increments. Replacement in the
TLBs is handled by a pseudo LRU mechanism (similar to the Intel488) that requires 3

bits per set. The Pentium processor with MMX technology has a 64-entry fully associative data
TLB and a 32-entry fully associative code TLB. Both TLBs can support 4Kbyte pages as well
as 4 Mbyte pages.

2.5.3. Cache Operating Modes

The operating modes of the caches are controlled by the CD (cache disable) and NW (no
writethrough) bits in CRO. See Table 2-1 for a description of the modes. For normal operation
and highest performance, these bits should both be reset to “0.” The bits come out of RESET
as CD =NWwW =1.

When the L1 cache is disabled (CRO.NW and CRO0.CD bits are both set to ‘1) external snoops
are accepted in a DP system and inhibited in a UP system. Note that when snoops are
inhibited, address parity is not checked, and APCHK# will not be asserted for a corrupt
address. However, when snoops are accepted, address parity is checked (and APCHK# will b
asserted for corrupt addresses).
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Table 2-1. Cache Operating Modes

CD NW Description

1 1 Read hits access the cache.

Read misses do not cause linefills.

Write hits update the cache, but do not access memory.

Write hits will cause Exclusive State lines to change to Modified
State.

Shared lines will remain in the Shared state after write hits.

Write misses access memory.

Inquire and invalidation cycles do not affect the cache state or
contents.

This is the state after reset.

1 0 Read hits access the cache.

Read misses do not cause linefills.

Write hits update the cache.

Writes to Shared lines and write misses update external memory.

Writes to Shared lines can be changed to the Exclusive State under
the control of the WB/WT# pin.

Inquire cycles (and invalidations) are allowed.

0 1 GP(0)

0 0 Read hits access the cache.

Read misses may cause linefills.

These lines will enter the Exclusive or Shared state under the control
of the WB/WT# pin.

Write hits update the cache.

Only writes to shared lines and write misses appear externally.

Writes to Shared lines can be changed to the Exclusive State under
the control of the WB/WT# pin.

Inquire cycles (and invalidations) are allowed.

To completely disable the cache, the following two steps must be performed:

1. CD and NW must be set to 1.
2. The caches must be flushed.
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If the cache is not flushed, cache hits on reads will still occur and data will be read from the
cache. In addition, the cache must be flushed after being disabled to prevent any
inconsistencies with memory.

2.5.4. Page Cacheability

Two bits for cache control, PWT and PCD are defined in the page table and page directory
entries. The state of these bits are driven out on the PWT and PCD pins during memory acces
cycles. The PWT bit controls write policy for the second level caches used with the Pentium
processor. Setting PWT to 1 defines a writethrough policy for the current page, while clearing
PWT to 0 defines a writeback policy for the current page.

The PCD bit controls cacheability on a page-by-page basis. The PCD bit is internally ANDed
with the KEN# signal to control cacheability on a cycle-by-cycle basis. PCD =0 enables
cacheing, while PCD = 1 disables it. Cache linefills are enabled when PCD = 0 and KEN# = 0.

2.54.1. PCD AND PWT GENERATION

The value driven on PCD is a function of the PWT bits in CR3, the page directory pointer, the
page directory entry and the page table entry, and the CD and PG bits in CRO.

The value driven on PWT is a function of the PCD bits in CR3, the page directory pointer, the
page directory entry and the page table entry, and the PG bit in CRO (CR0.CD does not affect
PWT).

CRO.CD=1

If cacheing is disabled, the PCD pin is always driven high. CR0.CD does not affect the PWT
pin.

CRO.PG=0

If paging is disabled, the PWT pin is forced low and the PCD pin reflects the CR0.CD. The
PCD and PWT bits in CR3 are assumed 0 during the caching process.

CRO0.CD =0, PG =1, normal operation

The PCD and PWT bits from the last entry (can be either PDE or PTE, depends on 4 Mbyte or
4 Kbyte mode) are cached in the TLB and are driven anytime the page mapped by the TLB
entry is referenced.

CRO0.CD =0, PG =1, during TLB Refresh

During TLB refresh cycles when the PDE and PTE entries are read, the PWT and PCD bits are
obtained as shown in Table 2-2 and Table 2-3.

2-25



]
COMPONENT OPERATION Inu ®

Table 2-2. 32-Bits/4-Kbyte Pages

PCD/PWT Taken From During Accesses To
CR3 PDE
PDE PTE
PTE All other paged mem references

Table 2-3. 32-Bits/4-Mbyte Pages

PCD/PWT Taken From During Accesses To
CR3 PDE
PDE All other paged mem references
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Figure 2-9. PCD and PWT Generation
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2.5.5. Inquire Cycles

Inquire cycles are initiated by the system to determine if a line is present in the code or data
cache, and what its state is. This document refers to inquire cycles and snoop cycles
interchangeably.

Inquire cycles are driven to the Pentium processor when a bus master other than the Pentium
processor initiates a read or write bus cycle. Inquire cycles are driven to the Pentium processor
when the bus master initiates a read to determine if the Pentium processor data cache contains
the latest information. If the snooped line is in the Pentium processor data cache in the
modified state, the Pentium processor has the most recent information and must schedule a
writeback of the data. Inquire cycles are driven to the Pentium processor when the other bus
master initiates a write to determine if the Pentium processor code or data cache contains the
shooped line and to invalidate the line if it is present. Inquire cycles are described in detail in
the “Bus Functional Description” chapter.

2.5.6. Cache Flushing
The on-chip cache can be flushed by external hardware or by software instructions.

Flushing the cache through hardware is accomplished by driving the FLUSH# pin low. This
causes the cache to writeback all modified lines in the data cache and mark the state bits for
both caches invalid. The Flush Acknowledge special cycle is driven by the Pentium processor
when all writebacks and invalidations are complete.

The INVD and WBINVD instructions cause the on-chip caches to be invalidated also.
WBINVD causes the modified lines in the internal data cache to be written back, and all lines
in both caches to be marked invalid. After execution of the WBINVD instruction, the
Writeback and Flush special cycles are driven to indicate to any external cache that it should
writeback and invalidate its contents.

INVD causes all lines in both caches to be invalidated. Modified lines in the data cache are not
written back. The Flush special cycle is driven after the INVD instruction is executed to
indicate to any external cache that it should invalidate its contents. Care should be taken when
using the INVD instruction that cache consistency problems are not created.

Note that the implementation of the INVD and WBINVD instructions are processor dependent.
Future processor generations may implement these instructions differently.

2.5.7. Data Cache Consistency Protocol (MESI Protocol)

The Pentium processor Cache Consistency Protocol is a set of rules by which states are
assigned to cached entries (lines). The rules apply for memory read/write cycles only. I/O and
special cycles are not run through the data cache.

Every line in the Pentium processor data cache is assigned a state dependent on both Pentium
processor generated activities and activities generated by other bus masters (snooping). The
Pentium processor Data Cache Protocol consists of four states that define whether a line is
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valid (HIT/MISS), if it is available in other caches, and if it has been MODIFIED. The four
states are the M (Modified), E (Exclusive), S (Shared) and the | (Invalid) states and the
protocol is referred to as the MESI protocol. A definition of the states is given below:

M - Modified:

E - Exclusive:

S - Shared:

| - Invalid:

An M-state line is available in ONLY one cache and it is also MODIFIED
(different from main memory). An M-state line can be accessed (read/written
to) without sending a cycle out on the bus.

An E-state line is also available in ONLY one cache in the system, but the
line is not MODIFIED (i.e., it is the same as main memory). An E-state line
can be accessed (read/written to) without generating a bus cycle. A write to
an E-state line will cause the line to become MODIFIED.

This state indicates that the line is potentially shared with other caches (i.e.
the same line may exist in more than one cache). A read to an S-state line
will not generate bus activity, but a write to a SHARED line will generate a
write through cycle on the bus. The write through cycle may invalidate this
line in other caches. A write to an S-state line will update the cache.

This state indicates that the line is not available in the cache. A read to this
line will be a MISS and may cause the Pentium processor to execute a LINE
FILL (fetch the whole line into the cache from main memory). A write to an
INVALID line will cause the Pentium processor to execute a write-through
cycle on the bus.

2.5.7.1. STATE TRANSITION TABLES

Lines cached in the Pentium processor can change state because of processor generat
activity or as a result of activity on the Pentium processor bus generated by other bus master:
(snooping). State transitions happen because of processor generated transactions (memo
reads/writes) and by a set of external input signals and internally generated variables. The
Pentium processor also drives certain pins as a consequence of the Cache Consistenc

Protocol.

257.1.1.

Read Cycle

Table 2-4 shows the state transitions for lines in the data cache during unlocked read cycles.
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Table 2-4. Data Cache State Transitions for UNLOCKED
Pentium® Processor Initiated Read Cycles*

Present
State Pin Activity Next State Description
M n/a M Read hit; data is provided to processor core by
cache. No bus cycle is generated.
E n/a E Read hit; data is provided to processor core by
cache. No bus cycle is generated.
S n/a S Read hit; data is provided to the processor by
the cache. No bus cycle is generated.
| CACHE# low E Data item does not exist in cache (MISS). A
bus cycle (read) will be generated by the
AND Pentium® processor. This state transition will
KEN# low happen if WB/WT# is sampled high with first
BRDY# or NA#.
AND
WB/WT# high
AND
PWT low
| CACHE# low S Same as previous read miss case except that
WB/WT# is sampled low with first BRDY# or
AND NA#.
KEN# low
AND
(WB/WT# low
OR PWT high)
| CACHE# high | KEN# pin inactive; the line is not intended to be
cached in the Pentium processor.
OR
KEN# high

NOTE: *Locked accesses to the data cache will cause the accessed line to transition to the Invalid state

Note the transition from | to E or S states (based on WB/WT#) happens only if KEN# is
sampled low with the first of BRDY# or NA#, and the cycle is transformed into a LINE FILL
cycle. If KEN# is sampled high, the line is not cached and remains in the | state.

25.7.1.2. Write Cycle

The state transitions of data cache lines during Pentium processor generated write cycles are
illustrated in the next table. Writes to SHARED lines in the data cache are always sent out on
the bus along with updating the cache with the write item. The status of the PWT and
WB/WT# pins during these write cycles on the bus determines the state transitions in the data
cache during writes to S-state lines.
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A write to a SHARED line in the data cache will generate a write cycle on the Pentium
processor bus to update memory and/or invalidate the contents of other caches. If the PWT pir
is driven high when the write cycle is run on the bus, the line will be updated, and will stay in
the S-state regardless of the status of the WB/WT# pin that is sampled with the first BRDY# or
NA#. If PWT is driven low, the status of the WB/WT# pin sampled along with the first
BRDY# or NA# for the write cycle determines what state (E:S) the line transitions to.

The state transition from S to E is the only transition in which the data and the status bits are
not updated at the same time. The data will be updated when the write is written to the Pentium
processor write buffers. The state transition does not occur until the write has completed on the
bus (BRDY# has been returned). Writes to the line after the transition to the E-state will not
generate bus cycles. However, it is possible that writes to the same line that were buffered or ir
the pipeline before the transition to the E-state will generate bus cycles after the transition to
E-state.

An inactive EWBE# input will stall subsequent writes to an E- or an M-state line. All
subsequent writes to E- or M-state lines are held off until EWBE# is returned active.

Table 2-5. Data Cache State Transitions for Pentium® Processor Initiated Write Cycles

Present Next
State Pin Activity State Description

M n/a M Write hit; update data cache. No bus cycle generated to
update memory.

E n/a M Write hit; update cache only. No bus cycle generated;
line is now MODIFIED.

S PWT low E Write hit; data cache updated with write data item. A

. write-through cycle is generated on bus to update

memory and/or invalidate contents of other caches. The
WB/WT# high state transition occurs after the writethrough cycle
completes on the bus (with the last BRDY#).

S PWT low S Same as above case of write to S-state line except that

WB/WT# is sampled low.
AND
WB/WT# low

S PWT high S Same as above cases of writes to S state lines except
that this is a write hit to a line in a writethrough page;
status of WB/WT# pin is ignored.

| n/a | Write MISS; a writethrough cycle is generated on the

bus to update external memory. No allocation done.

NOTE: Memory writes are buffered while 1/O writes are not. There is no guarantee of synchronization be-
tween completion of memory writes on the bus and instruction execution after the write. A serializing
instruction needs to be executed to synchronize writes with the next instruction if necessary.
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25.7.1.3. Inquire Cycles (Snooping)

The purpose of inquire cycles is to check whether the address being presented is contained
within the caches in the Pentium processor. Inquire cycles may be initiated with or without an
INVALIDATION request (INV = 1 or 0). An inquire cycle is run through the data and code
caches through a dedicated snoop port to determine if the address is in one of the Pentium
processor caches. If the address is in a Pentium processor cache, the HIT# pin is asserted. If
the address hits a modified line in the data cache, the HITM# pin is also asserted and the
modified line is then written back onto the bus.

The state transition tables for inquire cycles are given below:

Table 2-6. Cache State Transitions During Inquire Cycles

Next Next
Present State State
State INV=1 INV=0 Description
M | S Snoop hit to a MODIFIED line indicated by HIT# and HITM# pins
low. Pentium® processor schedules the writing back of the modified
line to memory.
| S Snoop hit indicated by HIT# pin low; no bus cycle generated.
S | S Snoop hit indicated by HIT# pin low; no bus cycle generated.
| | | Address not in cache; HIT# pin high.
2.5.7.2. PENTIUM® PROCESSOR CODE CACHE CONSISTENCY PROTOCOL

The Pentium processor code cache follows a subset of the MESI protocol. Accesses to the
code cache are either a Hit (Shared) or a Miss (Invalid).

In the case of a read hit, the cycle is serviced internally to the Pentium processor and no bus
activity is generated. In the case of a read miss, the read is sent to the external bus and may be
converted to a linefill.

Lines are never overwritten in the code cache. Writes generated by the Pentium processor are
snooped by the code cache. If the snoop is a hit in the code cache, the line is invalidated. If
there is a miss, the code cache is not affected.

2.6. WRITE BUFFERS AND MEMORY ORDERING

The Pentium processor (75/90/100/120/133/150/166/200) has two write buffers, one
corresponding to each of the pipelines, to enhance the performance of consecutive writes to
memory. These write buffers are one quadword wide (64-bits) and can be filled simultaneously

in one clock e.g., by two simultaneous write misses in the two instruction pipelines. Writes in
these buffers are driven out on the external bus in the order they were generated by the
processor core. No reads (as a result of cache miss) are reordered around previously generated
writes sitting in the write buffers. The implication of this is that the write buffers will be
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flushed or emptied before a subsequent bus cycle is run on the external bus (unless BOFF# |
asserted and a writeback cycle becomes pending, see section 2.6.3.).

The Pentium processor with MMX technology has four write buffers that can be used by either
the u-pipe or v-pipe. Posting writes to these buffers enables the pipe to continue advancing
when consecutive writes to memory occur. The writes will be executed on the bus as soon as i
is free, in FIFO order. Reads cannot bypass writes posted in these buffers.

Write

— external Bus

u-pipe

(o} (e (e [%)
——[
o} (5[]

v-pipe Write

Pentium® Processor with MMX™ Technology

Write — external Bus
u-pipe

(o) (o2 [0 (o8]
7 —
(o) [z [ [ve)

v-pipe
- — external Bus
Write

Pentium® Processor (75/90/100/120/133/150/166/200)

WBUFFER

Figure 2-10. Pentium ® Processor Write Buffer Implementation

The Pentium processor supports strong write ordering only. That is, writes generated by the
Pentium processor will be driven to the bus or updated in the cache in the order that they
occur. The Pentium processor will not write to E or M-state lines in the data cache if there is a
write in either write buffer, if a write cycle is running on the bus, or if EWBE# is inactive.

Note that only memory writes are buffered and 1/0O writes are not. There is no guarantee of
synchronization between completion of memory writes on the bus and instruction execution
after the write. The OUT instruction or a serializing instruction needs to be executed to
synchronize writes with the next instruction. Please refer to the “Serializing Operations”

section for more information.
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No re-ordering of read cycles occurs on the Pentium processor. Specifically, the write buffers
are flushed before the IN instruction is executed.

2.6.1. External Event Synchronization

When the system changes the value of NMI, INTR, FLUSH#, SMI# or INIT as the result of
executing an OUT instruction, these inputs must be at a valid state three clocks before BRDY#
is returned to ensure that the new value will be recognized before the next instruction is
executed.

Note that if an OUT instruction is used to modify A20M#, this will not affect previously
prefetched instructions. A serializing instruction must be executed to guarantee recognition of
A20M# before a specific instruction.

2.6.2. Serializing Operations

After executing certain instructions the Pentium processor serializes instruction execution.
This means that any modifications to flags, registers, and memory for previous instructions are
completed before the next instruction is fetched and executed. The prefetch queue is flushed as
a result of serializing operations.

The Pentium processor serializes instruction execution after executing one of the following
instructions: MOV to Debug Register, MOV to Control Register, INVD, INVLPG, IRET,
IRETD, LGDT, LLDT, LIDT, LTR, WBINVD, CPUID, RSM and WRMSR.

NOTE

1. The CPUID instruction can be executed at any privilege level to serialize
instruction execution.

2. When the Pentium processor serializes instruction execution, it ensures
that it has completed any modifications to memory, including flushing
any internally buffered stores; it then waits for the EWBE# pin to go
active before fetching and executing the next instruction. Pentium
processor systems may use the EWBE# pin to indicate that a store is
pending externally. In this manner, a system designer may ensure that all
externally pending stores will complete before the Pentium processor
begins to fetch and execute the next instruction.

3. The Pentium processor does not generally writeback the contents of
modified data in its data cache to external memory when it serializes
instruction execution. Software can force modified data to be written
back by executing the WBINVD instruction.

4. Whenever an instruction is executed to enable/disable paging (that is,
change the PG bit of CRO0), this instruction must be followed with a jump.
The instruction at the target of the branch is fetched with the new value
of PG (i.e., paging enabled/disabled), however, the jump instruction itself
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is fetched with the previous value of PG. Intel386™, Intel486 and
Pentium processors have slightly different requirements to enable and
disable paging. In all other respects, an MOV to CRO that changes PG is
serializing. Any MOV to CRO that does not change PG is completely
serializing.

5. Whenever an instruction is executed to change the contents of CR3 while
paging is enabled, the next instruction is fetched using the translation
tables that correspond to the new value of CR3. Therefore the next
instruction and the sequentially following instructions should have a
mapping based upon the new value of CR3.

6. The Pentium processor implements branch-prediction techniques to
improve performance by prefetching the destination of a branch
instruction before the branch instruction is executed. Consequently,
instruction execution is not generally serialized when a branch instruction
is executed.

7. Although the 1/O instructions are not “serializing” because the processor
does not wait for these instructions to complete before it prefetches the
next instruction, they do have the following properties that cause them to
function in a manner that is identical to previous generations. 1/O reads
are not re-ordered within the processor; they wait for all internally
pending stores to complete. Note that the Pentium processor does not
sample the EWBE# pin during reads. If necessary, external hardware
must ensure that externally pending stores are complete before returning
BRDY#. This is the same requirement that exists on Intel386 and
Intel486 systems. The OUT and OUTS instructions are also not
“serializing,” as they do not stop the prefetcher. They do, however,
ensure that all internally buffered stores have completed, that EWBE#
has been sampled active indicating that all externally pending stores have
completed and that the 1/O write has completed before they begin to
execute the next instruction. Note that unlike the Intel486 processor, it is
not necessary for external hardware to ensure that externally pending
stores are complete before returning BRDY#.

8. On the Pentium processor with MMX technology, serializing instructions
require an additional clock to complete compared to the Pentium
processor (75/90/100/120/133/150/166/200) due to the additional
pipeline stage.

2.6.3. Linefill and Writeback Buffers

In addition to the write buffers corresponding to each of the internal pipelines, the Pentium
processor has 3 writeback buffers. Each of the writeback buffers are 1 deep and 32-bytes
(1 line) wide.

There is a dedicated replacement writeback buffer which stores writebacks caused by a linefill
that replaces a modified line in the data cache. There is one external snoop writeback buffel
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that stores writebacks caused by an inquire cycle that hits a modified line in the data cache.
Finally, there is an internal snoop writeback buffer that stores writebacks caused by an internal
snoop cycle that hits a modified line in the data cache. Internal and external snoops are
discussed in detail in the Inquire Cycle section of the Bus Functional Description chapter of

this document (Chapter 6). Write cycles are driven to the bus with the following priority:

® Contents of external snoop writeback buffer
® Contents of internal snoop writeback buffer
® Contents of replacement writeback buffer

® Contents of write buffers.

Note that the contents of whichever write buffer was written into first is driven to the bus first.
If both write buffers were written to in the same clock, the contents of the u-pipe buffer is
written out first. In the Pentium processor with MMX technology, the write buffers are written
in order as well, even though there is no u-pipe buffer and v-pipe buffer.

The Pentium processor also implements two linefill buffers, one for the data cache and one for
the code cache. As information (data or code) is returned to the Pentium processor for a cache
linefill, it is written into the linefill buffer. After the entire line has been returned to the proces-
sor it is transferred to the cache. Note that the processor requests the needed information first
and uses that information as soon as it is returned. The Pentium processor does not wait for the
linefill to complete before using the requested information.

If a line fill causes a modified line in the data cache to be replaced, the replaced line will
remain in the cache until the linefill is complete. After the linefill is complete, the line being
replaced is moved into the replacement writeback buffer and the new linefill is moved into the
cache.

2.7. EXTERNAL INTERRUPT CONSIDERATIONS

The Pentium processor recognizes the following external interrupts: BUSCHK#, R/S#,
FLUSH#, SMI#, INIT, NMI, INTR and STPCLK#. These interrupts are recognized at
instruction boundaries. On the Pentium processor, the instruction boundary is the first clock in
the execution stage of the instruction pipeline. This means that before an instruction is
executed, the Pentium processor checks to see if any interrupts are pending. If an interrupt is
pending, the processor flushes the instruction pipeline and then services the interrupt.
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The Pentium processor interrupt priority scheme is shown in Table 2-7.

Table 2-7. Pentium ® Processor Interrupt Priority Scheme

ITR=0 (default) ITR=1
1. Breakpoint (INT 3) Breakpoint (INT 3)
2. BUSCHK# BUSCHK#
3. Debug Traps (INT 1) FLUSH#
4. R/S# SMI#
5. FLUSH# Debug Traps (INT 1)
6. SMI# R/S#
7. INIT INIT
8. NMI NMI
9. INTR INTR
10. Floating-Point Error Floating-Point Error
11. STPCLK# STPCLK#
12. Faults on Next Instruction Faults on Next Instruction

NOTE: ITR is bit 9 of the TR12 register

2.8. INTRODUCTION TO DUAL PROCESSOR MODE

Symmetric dual processing in a system is supported with two Pentium processors sharing ¢
single second-level cache. The processors must be of the same type, either two Pentiun
processors (75/90/100/120/133/150/166/200) or two Pentium processors with MMX
technology. The two processors appear to the system as a single Pentium processol
Multiprocessor operating systems properly schedule computing tasks between the two
processors. This scheduling of tasks is transparent to software applications and the end-use
Logic built into the processors support a “glueless” interface for easy system design. Through
a private bus, the two Pentium processors arbitrate for the external bus and maintain cach
coherency.

In this document, in order to distinguish between two Pentium processors in dual processing
mode, one CPU will be designated as the Primary processor with the other being the Dual
processor. Note that this is a different concept than that of “master” and “checker” processors.

The Dual processor is a configuration option of the Pentium processor. The Dual processor
must operate at the same bus and core frequency and bus/core ratio as the Primary processor.

The Primary and Dual processors include logic to maintain cache consistency between the
processors and to arbitrate for the common bus. The cache consistency and bus arbitratio
activity will cause the dual processor pair to issue extra bus cycles that will not appear in a
Pentium processor uniprocessor system.
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Chapter 3 describes in detail how the DP bootup, cache consistency,