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CHAPTER 1
ARCHITECTURAL FEATURES OF THE

PENTIUM® PROCESSOR FAMILY

This volume covers the desktop Pentium® processor family. This includes both the Pentium
processor (75/90/100/120/133/150/166/200)—supporting maximum operating frequencies of
75, 90, 100, 120, 133, 150, 166 and 200 MHz—and the newest member of the Pentium
processor family, the Pentium processor with MMX technology—supporting Intel MMX
technology and maximum operating frequencies of 166 and 200 MHz. This volume does not
cover the 5V Pentium processors (60, 66). Mobile Pentium processor specifications and
information are covered in separate documents (refer to Chapter 18 for odering information).

The general terms “Pentium processor” and “Pentium processor family” are used throughout
this volume to refer to both the Pentium processor (75/90/100/120/133/150/166/200) and the
Pentium processor with MMX technology together. The names “Pentium processor
(75/90/100/120/133/150/166/200)” and “Pentium processor with MMX technology” are used
to distinguish between the two processors where specific differences exist.

1.1. PROCESSOR FEATURES OVERVIEW
The Pentium processor supports the features of previous Intel Architecture processors and
provides significant enhancements including the following:

• Superscalar Architecture

• Dynamic Branch Prediction

• Pipelined Floating-Point Unit

• Improved Instruction Execution Time

• Separate Code and Data Caches1.

• Writeback MESI Protocol in the Data Cache

• 64-Bit Data Bus

• Bus Cycle Pipelining

• Address Parity

• Internal Parity Checking

• Functional Redundancy Checking2 and Lock Step operation2

• Execution Tracing

• Performance Monitoring

• IEEE 1149.1 Boundary Scan

• System Management Mode
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• Virtual Mode Extensions

• Upgradable with a Pentium OverDrive processor2

• Dual processing support

• Advanced SL Power Management Features

• Fractional Bus Operation

• On-Chip Local APIC Device

In addition, the Pentium processor with MMX technology offers the following enhancements
over the Pentium processor (75/90/100/120/133/150/166/200):1

• Support for Intel MMX technology

• Dual power supplies—separate VCC2 (core) and VCC3 (I/O) voltage inputs

• Separate 16 Kbyte 4-way set-associative code and data caches, each with improved fully
associative TLBs

• Pool of 4 write buffers used by both pipes

• Enhanced branch prediction algorithm

• New Fetch pipeline stage between Prefetch and Instruction Decode

The following features are supported by the Pentium processor (75/90/100/
120/133/150/166/200), but not supported by the Pentium processor with MMX technology:

• Functional Redundancy Checking and Lock Step operation

• Support for the Intel 82498/82493 and 82497/82492 cache chipset products

• Upgradability with a Pentium OverDrive processor

• Split line accesses to the code cache

1.2. COMPONENT INTRODUCTION
The application instruction set of the Pentium processor family includes the complete instruc-
tion set of existing Intel Architecture processors to ensure backward compatibility, with
extensions to accommodate the additional functionality of the Pentium processor.  All
application software written for the Intel386™ and Intel486™ microprocessors will run on the
Pentium processor without modification. The on-chip memory management unit (MMU) is
completely compatible with the Intel386 and Intel486 CPUs.

                                                          
Footnotes
1 The Code and Data caches are each 8Kbytes, a two-way set-associative on the Pentium processor

(75/90/100/120/ 133/150/166/200).
2 This feature is not supported on the Pentium processor with MMX technology.
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The Pentium processor with MMX technology adds 57 new instructions and four new data
types to accelerate the performance of multimedia and communications software. MMX
technology is based on the SIMD technique—Single Instruction, Multiple data—which
enables increased performance on a wide variety of multimedia and communications
applications. To take advantage of the MMX instructions, software modifications need to be
made. However, if the MMX instructions are not utilized, there are no hardware or software
modifications needed.

The two instruction pipelines and the floating-point unit on the Pentium processor are capable
of independent operation. Each pipeline issues frequently used instructions in a single clock.
Together, the dual pipes can issue two integer instructions in one clock, or one floating-point
instruction (under certain circumstances, 2 floating-point instructions) in one clock.

The Pentium processor with MMX technology adds the Fetch pipeline stage between the
Prefetch and Instruction decode stages, which increases the performance capability of the
processor.  The Pentium processor with MMX technology also doubles the number of write
buffers available to be used by the dual pipelines.

Branch prediction is implemented in the Pentium processor. To support this, the Pentium
processor implements two prefetch buffers, one to prefetch code in a linear fashion, and one
that prefetches code according to the Branch Target Buffer (BTB) so the needed code is almost
always prefetched before it is needed for execution. The branch prediction algorithm has been
enhanced on the Pentium processor with MMX technology for increased accuracy.

The Pentium processor includes separate code and data caches integrated on chip to meet its
performance goals.  Each cache on the Pentium processor with MMX technology is 16 Kbytes
in size, and is 4-way set associative. The caches on the Pentium processor
(75/90/100/120/133/150/166/200) are each 8 Kbytes in size and 2-way set-associative.  Each
cache has a dedicated Translation Lookaside Buffer (TLB) to translate linear addresses to
physical addresses. The Pentium processor data cache is configurable to be writeback or
writethrough on a line-by-line basis and follows the MESI protocol. The data cache tags are
triple ported to support two data transfers and an inquire cycle in the same clock. The code
cache is an inherently write protected cache. The code cache tags of the Pentium processor
(75/90/100/120/133/150/166/200) are also triple ported to support snooping and split-line
accesses. The Pentium processor with MMX technology does not support split line accesses to
the code cache. As such, its code cache tags are dual ported. Individual pages can be
configured as cacheable or non-cacheable by software or hardware. The caches can be enabled
or disabled by software or hardware.

The Pentium processor has a 64-bit data bus. Burst read and burst writeback cycles are
supported by the Pentium processor. In addition, bus cycle pipelining has been added to allow
two bus cycles to be in progress simultaneously. The Pentium processor Memory Management
Unit contains optional extensions to the architecture which allow 4 MB page sizes.

The Pentium processor has added significant data integrity and error detection capability. Data
parity checking is still supported on a byte-by-byte basis. Address parity checking, and internal
parity checking features have been added along with a new exception, the machine check
exception.
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The Pentium processor (75/90/100/120/133/150/166/200) has implemented functional
redundancy checking to provide maximum error detection of the processor and the interface to
the processor. When functional redundancy checking is used, a second processor, the
“checker” is used to execute in lock step with the “master” processor. The checker samples the
master’s outputs and compares those values with the values it computes internally, and asserts
an error signal if a mismatch occurs. The Pentium processor with MMX technology does not
support functional redundancy checking.

As more and more functions are integrated on chip, the complexity of board level testing is
increased. To address this, the Pentium processor has increased test and debug capability by
implementing IEEE Boundary Scan (Standard 1149.1).

System management mode has been implemented along with some extensions to the SMM
architecture. Enhancements to the Virtual 8086 mode have been made to increase performance
by reducing the number of times it is necessary to trap to a Virtual 8086 monitor.

Figure 1-1 presents a block diagram overview of the Pentium processor with MMX technology
including the two instruction pipelines, the “u” pipe and the “v” pipe. The u-pipe can execute
all integer and floating-point instructions. The v-pipe can execute simple integer instructions
and the FXCH floating-point instruction.

The separate code and data caches are shown. The data cache has two ports, one for each of
the two pipes (the tags are triple ported to allow simultaneous inquire cycles). The data cache
has a dedicated TLB to translate linear addresses to the physical addresses used by the data
cache.

The code cache, branch target buffer and prefetch buffers are responsible for getting raw
instructions into the execution units of the Pentium processor. Instructions are fetched from the
code cache or from the external bus. Branch addresses are remembered by the branch target
buffer. The code cache TLB translates linear addresses to physical addresses used by the code
cache.

The decode unit contains two parallel decoders which decode and issue up to the next two
sequential instructions into the execution pipeline. The control ROM contains the microcode
which controls the sequence of operations performed by the processor. The control unit has
direct control over both pipelines.

The Pentium processor contains a pipelined floating-point unit that provides a significant
floating-point performance advantage over previous generations of Intel Architecture-based
processors.

The Pentium processor includes features to support multi-processor systems, namely an on-
chip Advanced Programmable Interrupt Controller (APIC).  This APIC implementation
supports multiprocessor interrupt management (with symmetric interrupt distribution across all
processors), multiple I/O subsystem support, 8259A compatibility, and inter-processor
interrupt support.
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NOTES:
1. The Code and Data caches are each 8 Kbytes in size on the Pentium® processor

(75/90/100/120/133/150/166/200).

2. The MMX Unit is present only on the Pentium processor with MMX™ technology

3. The internal instruction bus is 256 bits wide on the Pentium processor
(75/90/100/120/133/150/166/200)

Figure 1-1. Pentium ® Processor Block Diagram

The dual processor configuration allows two Pentium processors to share a single L2 cache for
a low-cost symmetric multi-processor system.  The two processors appear to the system as a
single Pentium processor. Multiprocessor operating systems properly schedule computing
tasks between the two processors.  This scheduling of tasks is transparent to software
applications and the end-user.  Logic built into the processors support a “glueless” interface for
easy system design.  Through a private bus, the two Pentium processors arbitrate for the
external bus and maintain cache coherency.  The Pentium processor can also be used in a
conventional multi-processor system in which one L2 cache is dedicated to each processor.
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In this document, in order to distinguish between two Pentium processors in dual processing
mode, one CPU will be designated as the Primary processor with the other being the Dual
processor.  Note that this is a different concept than that of “master” and “checker” processors
described in the discussion on functional redundancy.

Dual processing is supported in a system only if both processors are operating at identical core
and bus frequencies and are the same type of processor (i.e., both Pentium processor
(75/90/100/120/133/150/166/200) or both Pentium processor with MMX technology). Within
these restrictions, two processors of different steppings may operate together in a system. See
the “Component Operation” chapter for more details about Dual processing.

The Pentium processor is produced on Intel’s advanced silicon technology. The Pentium
processor also includes SL enhanced power management features.  When the clock to the
Pentium processor is stopped, power dissipation is virtually eliminated.  The low VCC
operating voltages and SL enhanced power management features make the Pentium processor
a good choice for energy-efficient desktop designs.

Supporting an upgrade socket (Socket 7) in the system will provide end-user upgradability by
the addition of a future Pentium OverDrive processor.  Typical applications will realize a 40%
to 70% performance increase by addition of a future Pentium OverDrive processor.

The Pentium processor supports fractional bus operation.  This allows the internal processor
core to operate at high frequencies, while communicating with the external bus at lower
frequencies.  Table 4-3 lists the bus-to-core frequency ratios supported on the Pentium
processor.
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CHAPTER 2
COMPONENT OPERATION

The Pentium processor has an optimized superscalar micro-architecture capable of executing
two instructions in a single clock. A 64-bit external bus, separate 8-Kbyte data and instruction
caches for Pentium processor (75/90/100/120/133/150/166/200), separate 16-Kbyte data and
instruction caches for Pentium processor with MMX technology, write buffers, branch
prediction (with an enhanced branch prediction algorithm for the Pentium processor with
MMX technology), and a pipelined floating-point unit combine to sustain the high execution
rate. These architectural features and their operation are discussed in this chapter.

2.1. PIPELINE AND INSTRUCTION FLOW
The integer instructions traverse a five stage pipeline in the Pentium processor
(75/90/100/120/133/150/166/200), while the Pentium processor with MMX technology has an
additional pipeline stage. The pipeline stages are as follows:

PF Prefetch

F Fetch (Pentium processor with MMX technology only)

D1 Instruction Decode

D2 Address Generate

EX Execute - ALU and Cache Access

WB Writeback

The Pentium processor is a superscalar machine, built around two general purpose integer
pipelines and a pipelined floating-point unit capable of executing two instructions in parallel.
Both pipelines operate in parallel allowing integer instructions to execute in a single clock in
each pipeline. Figure 2-1 depicts instruction flow in the Pentium processor.

The pipelines in the Pentium processor are called the “u” and “v” pipes and the process of
issuing two instructions in parallel is termed “pairing.” The u-pipe can execute any instruction
in the Intel architecture, while the v-pipe can execute “simple” instructions as defined in the
“Instruction Pairing Rules” section of this chapter. When instructions are paired, the
instruction issued to the v-pipe is always the next sequential instruction after the one issued to
the u-pipe.



COMPONENT OPERATION E

2-2

12/18/96 4:46 PM    Ch02new2.doc

INTEL CONFIDENTIAL
(until publication date)

Clk0 Clk1 Clk2 Clk3 Clk4 Clk5 Clk6 Clk7

i1 i3 i5 i7
i2 i4 i6 i8

i1 i3 i5 i7
i2 i4 i6 i8

i1 i3 i5 i7
i2 i4 i6 i8

i1 i3 i5 i7
i2 i4 i6 i8

i1 i3 i5 i7
i2 i4 i6 i8

PF

D1

D2

EX

WB

Clk0 Clk1 Clk2 Clk3 Clk4 Clk5 Clk6 Clk7

i1 i3 i5 i7
i2 i4 i6 i8

i1 i3 i5 i7
i2 i4 i6 i8

i1 i3 i5 i7
i2 i4 i6 i8

i1 i3 i5 i7
i2 i4 i6 i8

i1 i3 i5 i7
i2 i4 i6 i8

PF

F

D1

D2

EX

i1 i3 i5 i7
i2 i4 i6 i8

WB

Clk8

Pentium® Processor (75/90/100/120/133/150/166/200) Pentium Processor with MMX™ Technology

PIPELINE

* i1 refers to instruction 1

Figure 2-1.  Pentium ® Processor Pipeline Execution

2.1.1. Pentium ® Processor Integer Pipeline Description
The Pentium processor pipeline has been optimized to achieve higher throughput compared to
previous generations of Intel Architecture processors.

The first stage of the pipeline is the Prefetch (PF) stage in which instructions are prefetched
from the on-chip instruction cache or memory. Because the Pentium processor has separate
caches for instructions and data, prefetches do not conflict with data references for access to
the cache. If the requested line is not in the code cache, a memory reference is made. In the PF
stage of the Pentium processor (75/90/100/120/133/150/166/200), two independent pairs of
line-size (32-byte) prefetch buffers operate in conjunction with the branch target buffer. This
allows one prefetch buffer to prefetch instructions sequentially, while the other prefetches
according to the branch target buffer predictions. The prefetch buffers alternate their prefetch
paths. In the Pentium processor with MMX technology, four 16-byte prefetch buffers operate
in conjunction with the BTB to prefetch up to four independent instruction streams. See the
section titled “Instruction Prefetch” in this chapter for further details on the Pentium processor
family prefetch buffers.

In the Pentium processor with MMX technology only, the next pipeline stage is Fetch (F), and
it is used for instruction length decode. It replaces the D1 instruction-length decoder and
eliminates the need for end-bits to determine instruction length. Also, any prefixes are decoded
in the F stage. The Fetch stage is not supported by the Pentium processor
(75/90/100/120/133/150/166/200) pipeline.

The Pentium processor with MMX technology also features an instruction FIFO between the F
and D1 stages. This FIFO is transparent; it does not add additional latency when it is empty.
During every clock cycle, two instructions can be pushed into the instruction FIFO (depending
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on availability of the code bytes, and on other factors such as prefixes). Instruction pairs are
pulled out of the FIFO into the D1 stage. Since the average rate of instruction execution is less
than two per clock, the FIFO is normally full. As long as the FIFO is full, it can buffer any
stalls that may occur during instruction fetch and parsing. If such a stall occurs, the FIFO
prevents the stall from causing a stall in the execution stage of the pipe. If the FIFO is empty,
then an execution stall may result from the pipeline being “starved” for instructions to execute.
Stalls at the FIFO entrance may be caused by long instuctions or prefixes, or “extremely
misaligned targets” (i.e., Branch targets that reside at the last bytes of 16-aligned bytes).

The pipeline stage after the PF stage in the Pentium processor (75/90/100/120/
133/150/166/200) is Decode1 (D1) in which two parallel decoders attempt to decode and issue
the next two sequential instructions. The decoders determine whether one or two instructions
can be issued contingent upon the instruction pairing rules described in the section titled
“Instruction Pairing Rules.” The Pentium processor (75/90/100/120/133/150/166/200) requires
an extra D1 clock to decode instruction prefixes. Prefixes are issued to the u-pipe at the rate of
one per clock without pairing. After all prefixes have been issued, the base instruction will
then be issued and paired according to the pairing rules. The one exception to this is that the
Pentium processor (75/90/100/120/133/150/166/200) will decode near conditional jumps (long
displacement) in the second opcode map (0Fh prefix) in a single clock in either pipeline. The
Pentium processor with MMX technology handles 0Fh as part of the opcode and not as a
prefix. Consequently, 0Fh does not take one extra clock to get into the FIFO. Note, in the
Pentium processor with MMX technology, MMX instructions can be paired as discussed in the
“MMX Instruction Pairing Guidelines” section later in this chapter.

The D1 stage is followed by Decode2 (D2) in which addresses of memory resident operands
are calculated. In the Intel486™ processor, instructions containing both a displacement and an
immediate, or instructions containing a base and index addressing mode require an additional
D2 clock to decode. The Pentium processor removes both of these restrictions and is able to
issue instructions in these categories in a single clock.

The Pentium processor uses the Execute (EX) stage of the pipeline for both ALU operations
and for data cache access; therefore those instructions specifying both an ALU operation and a
data cache access will require more than one clock in this stage. In EX all u-pipe instructions
and all v-pipe instructions except conditional branches are verified for correct branch
prediction. Microcode is designed to utilize both pipelines and thus those instructions requiring
microcode execute faster.

The final stage is Writeback (WB) where instructions are enabled to modify processor state
and complete execution. In this stage, v-pipe conditional branches are verified for correct
branch prediction.

During their progression through the pipeline, instructions may be stalled due to certain
conditions. Both the u-pipe and v-pipe instructions enter and leave the D1 and D2 stages in
unison. When an instruction in one pipe is stalled, then the instruction in the other pipe is also
stalled at the same pipeline stage. Thus both the u-pipe and the v-pipe instructions enter the EX
stage in unison. Once in EX if the u-pipe instruction is stalled, then the v-pipe instruction (if
any) is also stalled. If the v-pipe instruction is stalled then the instruction paired with it in the
u-pipe is not allowed to advance. No successive instructions are allowed to enter the EX stage
of either pipeline until the instructions in both pipelines have advanced to WB.
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2.1.1.1. INSTRUCTION PREFETCH

In the Pentium processor (75/90/100/120/133/150/166/200) PF stage, two independent pairs of
line-size (32-byte) prefetch buffers operate in conjunction with the branch target buffer. Only
one prefetch buffer actively requests prefetches at any given time. Prefetches are requested
sequentially until a branch instruction is fetched. When a branch instruction is fetched, the
branch target buffer (BTB) predicts whether the branch will be taken or not. If the branch is
predicted not taken, prefetch requests continue linearly. On a predicted taken branch the other
prefetch buffer is enabled and begins to prefetch as though the branch was taken. If a branch is
discovered mis-predicted, the instruction pipelines are flushed and prefetching activity starts
over.

The Pentium processor with MMX technology’s prefetch stage has four 16-byte buffers which
can prefetch up to four independent instruction streams, based on predictions made by the
BTB. In this case, the Branch Target Buffer predicts whether the branch will be taken or not in
the PF stage. The Pentium processor with MMX technology features an enhanced two-stage
Branch prediction algorithm, compared to the Pentium processor (75/90/100/120/133/
150/166/200).

For more information on branch prediction, see section 2.2.

2.1.2. Integer Instruction Pairing Rules
The Pentium processor can issue one or two instructions every clock. In order to issue two
instructions simultaneously they must satisfy the following conditions:

• Both instructions in the pair must be “simple” as defined below

• There must be no read-after-write or write-after-write register dependencies between them

• Neither instruction may contain both a displacement and an immediate

• Instructions with prefixes can only occur in the u-pipe (except for JCC instructions with a
0Fh prefix on the Pentium processor (75/90/100/120/133/150/166/200) and instructions
with a 0Fh, 66h or 67h prefix on the Pentium processor with MMX technology).

• Instruction prefixes are treated as separate 1-byte instructions (except for all 0F prefixed
instructions in the Pentium processor with MMX technology)

Simple instructions are entirely hardwired; they do not require any microcode control and, in
general, execute in one clock. The exceptions are the ALU mem,reg and ALU reg,mem
instructions which are three and two clock operations respectively. Sequencing hardware is
used to allow them to function as simple instructions. The following integer instructions are
considered simple and may be paired:

1. mov reg, reg/mem/imm

2. mov mem, reg/imm

3. alu reg, reg/mem/imm

4. alu mem, reg/imm
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5. inc reg/mem

6. dec reg/mem

7. push reg/mem

8. pop reg

9. lea reg,mem

10. jmp/call/jcc near

11. nop

12. test reg, reg/mem

13. test acc, imm

In addition, conditional and unconditional branches may be paired only if they occur as the
second instruction in the pair. They may not be paired with the next sequential instruction.
Also, SHIFT/ROT by 1 and SHIFT by imm may pair as the first instruction in a pair.

The register dependencies that prohibit instruction pairing include implicit dependencies via
registers or flags not explicitly encoded in the instruction. For example, an ALU instruction in
the u-pipe (which sets the flags) may not be paired with an ADC or an SBB instruction in the
v-pipe. There are two exceptions to this rule. The first is the commonly occurring sequence of
compare and branch which may be paired. The second exception is pairs of pushes or pops.
Although these instructions have an implicit dependency on the stack pointer, special hardware
is included to allow these common operations to proceed in parallel.

Although in general two paired instructions may proceed in parallel independently, there is an
exception for paired “read-modify-write” instructions. Read-modify-write instructions are
ALU operations with an operand in memory. When two of these instructions are paired there is
a sequencing delay of two clocks in addition to the three clocks required to execute the
individual instructions.

Although instructions may execute in parallel their behavior as seen by the programmer is
exactly the same as if they were executed sequentially.

Information regarding pairing of FPU and MMX instructions is discussed in the “Floating-
Point Unit” and “MMX™ Unit” sections of this chapter. For additional details on code
optimization, please refer to Optimizing for Intel’s 32-Bit Processors, Order # 241799.

2.2. BRANCH PREDICTION
The Pentium processor uses a Branch Target Buffer (BTB) to predict the outcome of branch
instructions which minimizes pipeline stalls due to prefetch delays.

The Pentium processor (75/90/100/120/133/150/166/200) accesses the BTB with the address
of the instruction in the D1 stage. It contains a Branch prediction state machine with four
states: (1) strongly not taken, (2) weakly not taken, (3) weakly taken, and (4) strongly taken. In
the event of a correct prediction, a branch will execute without pipeline stalls or flushes.
Branches which miss the BTB are assumed to be not taken. Conditional and unconditional near
branches and near calls execute in 1 clock and may be executed in parallel with other integer
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instructions. A mispredicted branch (whether a BTB hit or miss) or a correctly predicted
branch with the wrong target address will cause the pipelines to be flushed and the correct
target to be fetched. Incorrectly predicted unconditional branches will incur an additional three
clock delay, incorrectly predicted conditional branches in the u-pipe will incur an additional
three clock delay, and incorrectly predicted conditional branches in the v-pipe will incur an
additional four clock delay.

The benefits of branch prediction are illustrated in the following example. Consider the
following loop from a benchmark program for computing prime numbers:

for(k=i+prime;k<=SIZE;k+=prime)
flags[k]=FALSE;

A popular compiler generates the following assembly code:

(prime is allocated to ecx, k  is allocated to edx , and al  contains the value FALSE)

inner_loop:
mov byte ptr flags[edx],al
add edx,ecx
cmp edx, SIZE
jle inner_loop

Each iteration of this loop will execute in 6 clocks on the Intel486 CPU. On the Pentium
processor, the mov is paired with the add ; the cmp with the jle . With branch prediction,
each loop iteration executes in 2 clocks.

NOTE

The dynamic branch prediction algorithm speculatively runs code fetch
cycles to addresses corresponding to instructions executed some time in the
past. Such code fetch cycles are run based on past execution history,
regardless of whether the instructions retrieved are relevant to the currently
executing instruction sequence.

One effect of the branch prediction mechanism is that the Pentium processor
may run code fetch bus cycles to retrieve instructions which are never
executed. Although the opcodes retrieved are discarded, the system must
complete the code fetch bus cycle by returning BRDY#. It is particularly
important that the system return BRDY# for all code fetch cycles, regardless
of the address.

It should also be noted that upon entering SMM, the branch target buffer
(BTB) is not flushed and thus it is possible to get a speculative prefetch to an
address outside of SMRAM address space due to branch predictions based on
code executed prior to entering SMM.  If this occurs, the system must still
return BRDY# for each code fetch cycle.

Furthermore, it is possible that the Pentium processor may run speculative
code fetch cycles to addresses beyond the end of the current code segment
(approximately 100 bytes past end of last executed instruction). Although the
Pentium processor may prefetch beyond the CS limit, it will not attempt to
execute beyond the CS limit. Instead, it will raise a GP fault. Thus,
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segmentation cannot be used to prevent speculative code fetches to
inaccessible areas of memory. On the other hand, the Pentium processor
never runs code fetch cycles to inaccessible pages (i.e., not present pages or
pages with incorrect access rights), so the paging mechanism guards against
both the fetch and execution of instructions in inaccessible pages.

For memory reads and writes, both segmentation and paging prevent the
generation of bus cycles to inaccessible regions of memory. If paging is not
used, branch prediction can be disabled by setting TR12.NBP (bit 0)* and
flushing the BTB by loading CR3 before disabling any areas of memory.
Branch prediction can be re-enabled after re-enabling memory.

The following is an example of a situation that may occur:

1. Code passes control to segment at address c000h.

2. Code transfers control to code at different address (6000h) by using
FAR CALL instruction.

3. This portion of the code does an I/O write to a port that disables
memory at address c000h.

4. At the end of this segment, an I/O write is performed to re-enable
memory at address c000h.

5. Following the OUT instruction, there is a RET instruction to c000h
segment.
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—
—
OUT   ; disable c000h
—
—
OUT   ; enable c000h
RET

FAR CALL

c000h

6000h

The branch prediction mechanism of the Pentium processor, however,
predicts that the RET instruction is going to transfer control to the segment at
address c000h and performs a prefetch from that address prior to the OUT
instruction that re-enables that memory address. The result is that no BRDY
is returned for that prefetch cycle and the system hangs.

In this case, branch prediction should be disabled (by setting TR12.NBP*
and flushing the BTB by loading CR3) prior to disabling memory at address
c000h and re-enabled after the RET instruction by clearing TR12.NBP* as
indicated above.

* Please refer to Chapter 16 of this volume.

In the Pentium processor with MMX technology, the Branch prediction algorithm changes
from the Pentium processor (75/90/100/120/133/150/166/200) in the following ways:

• BTB Lookup is done when the branch is in the PF stage.

• The BTB Lookup tag is the Prefetch address.

• A Lookup in the BTB performs a search spanning sixteen consecutive bytes.

• BTB can contain four branch instructions for each line of 16 bytes.

• BTB is constructed from four independent Banks. Each Bank contains 64 entries and is
4-way associative.

• Enchanced two-stage Branch prediction algorithm.
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2.3. FLOATING-POINT UNIT
The floating-point unit (FPU) of the Pentium processor is integrated with the integer unit on
the same chip. It is heavily pipelined. The FPU is designed to be able to accept one floating-
point operation every clock. It can receive up to two floating-point instructions every clock,
one of which must be an exchange instruction.

For information on code optimization, please refer to Optimizing for Intel’s 32-Bit Processors,
Order Number 241799.

2.3.1. Floating-Point Pipeline Stages
The Pentium processor FPU has 8 pipeline stages, the first five of which it shares with the
integer unit. Integer instructions pass through only the first 5 stages. Integer instructions use
the fifth (X1) stage as a WB (write-back) stage. The 8 FP pipeline stages, and the activities that
are performed in them are summarized below:

PF Prefetch;

F Fetch (applicable to the Pentium processor with MMX technology only);

D1 Instruction Decode;

D2 Address generation;

EX Memory and register read; conversion of FP data to external memory format and
memory write;

X1 Floating-Point Execute stage one; conversion of external memory format to internal FP
data format and write operand to FP register file; bypass 1 (bypass 1 described in the
“Bypasses” section).

X2 Floating-Point Execute stage two;

WF Perform rounding and write floating-point result to register file; bypass 2 (bypass 2
described in the “Bypasses” section).

ER Error Reporting/Update Status Word.

2.3.2. Instruction Issue
Described below are the rules of how floating-point (FP) instructions get issued on the
Pentium processor:

1. FP instructions do not get paired with integer instructions. However, a limited pairing of
two FP instructions can be performed.

2. When a pair of FP instructions is issued to the FPU, only the FXCH instruction can be the
second instruction of the pair. The first instruction of the pair must be one of a set F where
F = [ FLD single/double, FLD ST(i), all forms of FADD, FSUB, FMUL, FDIV, FCOM,
FUCOM, FTST, FABS, FCHS].
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3. FP instructions other than the FXCH instruction and other than instructions belonging to
set F (defined in rule 2) always get issued singly to the FPU.

4. FP instructions that are not directly followed by an FP exchange instruction are issued
singly to the FPU.

The Pentium processor stack architecture instruction set requires that all instructions have one
source operand on the top of the stack. Since most instructions also have their destination as
the top of the stack, most instructions see a “top of stack bottleneck.” New source operands
must be brought to the top of the stack before we can issue an arithmetic instruction on them.
This calls for extra usage of the exchange instruction, which allows the programmer to bring
an available operand to the top of the stack. The Pentium processor FPU uses pointers to
access its registers to allow fast execution of exchanges and the execution of exchanges in
parallel with other floating-point instructions. An FP exchange that is paired with other FP
instructions takes 0 clocks for its execution. Since such exchanges can be executed in parallel
on the Pentium processor, it is recommended that one use them when necessary to overcome
the stack bottleneck.

Note that when exchanges are paired with other floating-point instructions, they should not be
followed immediately by integer instructions. The Pentium processor stalls such integer
instructions for a clock if the FP pair is declared safe, or for 4 clocks if the FP pair is unsafe.

Also note that the FP exchange must always follow another FP instruction to get paired. The
pairing mechanism does not allow the FP exchange to be the first instruction of a pair that is
issued in parallel. If an FP exchange is not paired, it takes 1 clock for its execution.

2.3.3. Safe Instruction Recognition
The Pentium processor FPU performs Safe Instruction Recognition or SIR in the X1 stage of
the pipeline. SIR is an early inspection of operands and opcodes to determine whether the
instruction is guaranteed not to generate an arithmetic overflow, underflow, or unmasked
inexact exception. An instruction is declared safe if it cannot raise any other floating-point
exception, and if it does not need microcode assist for delivery of special results. If an
instruction is declared safe, the next FP instruction is allowed to complete its E stage
operation. If an instruction is declared unsafe, the next FP instruction stalls in the E stage until
the current one completes (ER stage) with no exception. This means a 4 clock stall, which is
incurred even if the numeric instruction that was declared unsafe does not eventually raise a
floating-point exception.

For normal data, the rules used on the Pentium processor for declaring an instruction safe are
as follows.
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On the Pentium processor (75/90/100/120/133/150/166/200), if FOP = FADD/FSUB/
FMUL/FDIV, the instruction is safe from arithmetic overflow, underflow, and unmasked
inexact exceptions if:

1. Both operands have unbiased exponent ≤ 1FFEh AND

2. Both operands have unbiased exponent ≥ -1FFEh AND

3. The inexact exception is masked.

Similarly, on the Pentium processor with MMX technology, if FOP = FADD/FSUB/
FMUL/FDIV, the instruction is safe from arithmetic overflow, underflow, and unmasked
inexact exceptions if:

1. Both operands have unbiased exponent ≤ 1000h AND

2. Both operands have unbiased exponent ≥ -0FFFh AND

3. The inexact exception is masked

Note that arithmetic overflow of the double precision format occurs when the unbiased
exponent of the result is ≥ 400h, and underflow occurs when the exponent is ≤-3FFh. Hence,
the SIR algorithm on the Pentium processor allows improved throughput on a much greater
range of numbers than that spanned by the double precision format.

2.3.4. FPU Bypasses
The following section describes the floating-point register file bypasses that exist on the
Pentium processor. The register file has two write ports and two read ports. The read ports are
used to read data out of the register file in the E stage. One write port is used to write data into
the register file in the X1 stage, and the other in the WF stage. A bypass allows data that is
about to be written into the register file to be available as an operand that is to be read from the
register file by any succeeding floating-point instruction. A bypass is specified by a pair of
ports (a write port and a read port) that get circumvented. Using the bypass, data is made
available even before actually writing it to the register file.

The following procedures are implemented:

1. Bypass the X1 stage register file write port and the E stage register file read port.

2. Bypass the WF stage register file write port and the E stage register file read port.

With bypass 1, the result of a floating-point load (that writes to the register file in the X1 stage)
can bypass the X1 stage write and be sent directly to the operand fetch stage or E stage of the
next instruction.

With bypass 2, the result of any arithmetic operation can bypass the WF stage write to the
register file, and be sent directly to the desired execution unit as an operand for the next
instruction.

Note that the FST instruction reads the register file with a different timing requirement, so that
for the FST instruction, which attempts to read an operand in the E stage:
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1. There is no bypassing the X1 stage write port and the E stage read port, i.e. no added
bypass for FLD followed by FST. Thus FLD (double) followed by FST (double) takes
4 clocks (2 for FLD, and 2 for FST).

2. There is no bypassing the WF stage write port and the E stage read port. The E stage read
for the FST happens only in the clock following the WF write for any preceding arithmetic
operation.

Furthermore, there is no memory bypass for an FST followed by an FLD from the same
memory location.

2.3.5. Branching Upon Numeric Condition Codes
Branching upon numeric condition codes is accomplished by transferring the floating-point
SW to the integer FLAGS register and branching on it. The “test numeric condition codes and
branch” construct looks like:

FP instruction1; instruction whose effects on the status word are to be examined;

“numeric_test_and_branch_construct”:

FSTSW AX; move the status word to the ax register.

SAHF; transfer the value in ah to the lower half of the eflags register.

JC xyz ; jump upon the condition codes in the eflags register.

Note that all FP instructions update the status word only in the ER stage. Hence there is a built-
in status word interlock between FP instruction1 and the FSTSW AX instruction. The above
piece of code takes 9 clocks before execution of code begins at the target of the jump. These 9
clocks are counted as:

FP instruction1 : X1, X2, WF, ER (4 E stage stalls for the FSTSWAX);

FSTSW AX : 2 E clocks;

SAHF : 2 E clocks;

JC xyz : 1 clock if no mispredict on branch.

Note that if there is a branch mispredict, there will be a minimum of 3 clocks added to the
clock count of 9.

It is recommended that such attempts to branch upon numeric condition codes be preceded by
integer instructions, i.e. one should insert integer instructions in between FP instruction1 and
the FSTSW AX instruction which is the first instruction of the “numeric test and branch”
construct. This allows the elimination of up to 4 clocks (the 4 E-stage stalls on FSTSW AX)
from the cost attributed to this construct, so that numeric branching can be accomplished in
5 clocks.
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2.4. MMX™ UNIT
The Intel MMX technology, supported on the Pentium processor with MMX technology,
comprises a set of extensions to the Intel Architecture that are designed to greatly enhance the
performance of advanced media and communications applications. These extensions (which
include new registers, data types, and instructions) are combined with a single-instruction,
multiple-data (SIMD) execution model to accelerate the performance of applications such as
motion video, combined graphics with video, image processing, audio synthesis, speech
synthesis and compression, telephony, video conferencing, and 2D and 3D graphics, which
typically use compute-intensive algorithms to perform repetitive operations on large arrays of
simple, native data elements.

The MMX technology defines a simple and flexible software model, with no new mode or
operating-system visible state. All existing software will continue to run correctly, without
modification, on Intel Architecture processors that incorporate the MMX technology, even in
the presence of existing and new applications that incorporate this technology.

The following sections of this chapter describe the basic programming environment for the
technology, the MMX register set, data types and instruction set. Detailed descriptions of the
MMX instructions are provided in Chapter 3 of the Intel Architecture Software Developer’s
Manual, Volume 2. The manner in which the MMX technology extensions fit into the Intel
Architecture system programming model is described in Chapter 10 in the Intel Architecture
Software Developer’s Manual, Volume 3.

2.4.1. Overview of the MMX™ Programming Environment
MMX technology provides the following new extensions to the Intel Architecture
programming environment:

• Eight MMX registers (MM0 through MM7)

• Four MMX data types (packed bytes, packed words, packed doublewords and quadword)

• The MMX instruction set

2.4.1.1. MMX™ REGISTERS

The MMX register set consists of eight 64-bit registers (see Figure 2-2). The MMX
instructions access the MMX registers directly using the register names MM0 through MM7.
These registers can only be used to perform calculations on MMX data types; they cannot be
used to address memory. Addressing of MMX instruction operands in memory is handled by
using the standard Intel Architecture addressing modes and general-purpose registers (EAX,
EBX, ECX, EDX, EBP, ESI, EDI and ESP).
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Figure 2-2.  MMX™ Register Set

Although the MMX registers are defined in the Intel Architecture as separate registers, they are
aliased to the registers in the FPU data register stack (R0 through R7). (See Chapter 10 in the
Intel Architecture Software Developer’s Manual, Volume 3, for a more detailed discussion of
MMX register aliasing.)

2.4.1.2. MMX™ DATA TYPES

The MMX technology defines the following new 64-bit data types (see Figure 2-3):

Packed bytes Eight bytes packed into one 64-bit quantity.

Packed words Four (16-bit) words packed into one 64-bit quantity.

Packed doublewords Two (32-bit) doublewords packed into one 64-bit quantity.

Quadword One 64-bit quantity.

The bytes in the packed bytes data type are numbered 0 through 7, with byte 0 being contained
in the least significant bits of the data type (bits 0 through 7) and byte 7 being contained in the
most significant bits (bits 56 through 63). The words in the packed words data type and
numbered 0 through 4, with word 0 being contained in the bits 0 through 15 of the data type
and word 4 being contained in bits 48 through 63. The doublewords in a packed doublewords
data type are numbered 0 through 1, with doubleword 0 being contained in bits 0 through 31
and doubleword 1 being contained in bits 32 through 63.
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63

Packed bytes (8x8 bits)

56  55 48  47 40  39 32  31 24  23 16  15 8  7 0

63

Packed word (4x16 bits)

48  47 32  31 16  15 0

63

Packed doublewords (2x32 bits)

32  31 0

63

Quadword (64 bits)

0

3006002

Figure 2-3.  Packed Data Types

The MMX instructions move the packed data types (packed bytes, packed words or packed
doublewords) and the quadword data type to-and-from memory or to-and-from the Intel
Architecture general-purpose registers in 64-bit blocks. However, when performing arithmetic
or logical operations on the packed data types, the MMX instructions operate in parallel on the
individual bytes, words or doublewords contained in a 64-bit MMX register.

When operating on the bytes, words and doublewords within packed data types, the MMX
instructions recognize and operate on both signed and unsigned byte integers, word integers
and doubleword integers.

2.4.1.3. SINGLE INSTRUCTION, MULTIPLE DATA (SIMD) EXECUTION
MODEL

The MMX technology uses the single instruction, multiple data (SIMD) technique for
performing arithmetic and logical operations on the bytes, words or doublewords packed in an
MMX packed data type. For example, the PADDSB instruction adds eight signed bytes from
the source operand to eight signed bytes in the destination operand and stores eight byte-results
in the destination operand. This SIMD technique speeds up software performance by allowing
the same operation to be carried out on multiple data elements in parallel. The MMX
technology supports parallel operations on byte, word and doubleword data elements when
contained in MMX packed data types.
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The SIMD execution model supported in the MMX technology directly addresses the needs of
modern media, communications and graphics applications, which often use sophisticated
algorithms that perform the same operations on a large number of small data types (bytes,
words and doublewords). For example, most audio data is represented in 16-bit (word)
quantities. The MMX instructions can operate on four of these words simultaneously with one
instruction. Video and graphics information is commonly represented as palletized 8-bit (byte)
quantities. Here, one MMX instruction can operate on eight of these bytes simultaneously.

2.4.1.4. MEMORY DATA FORMATS

When stored in memory the bytes, words and doublewords in the packed data types are stored
in consecutive addresses, with the least significant byte, word or doubleword being stored at
the lowest address and the more significant bytes, words or doublewords being stored at
consecutively higher addresses (see Figure 2-4). The ordering bytes, words or doublewords in
memory is always little endian. That is, the bytes with the lower addresses are less significant
than the bytes with the higher addresses.

 

63

Memory Address 1000hMemory Address 1008h

56  55 48  47 40  39 32  31 24  23 16  15 8  7 0

3006045

Figure 2-4.  Eight Packed Bytes in Memory (at address 1000H)

2.4.1.5. MMX™ REGISTER DATA FORMATS

Values in MMX registers have the same format as a 64-bit quantity in memory. MMX
registers have two data access modes: 64-bit access mode and 32-bit access mode.

The 64-bit access mode is used for 64-bit memory access, 64-bit transfer between MMX
registers, all pack, logical and arithmetic instructions, and some unpack instructions.

The 32-bit access mode is used for 32-bit memory access, 32-bit transfer between integer
registers and MMX registers, and some unpack instructions.

2.4.2. MMX™ Instruction Set
The MMX instruction set consists of 57 instructions, grouped into the following categories:

• Data Transfer Instructions

• Arithmetic Instructions
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• Comparison Instructions

• Conversion Instructions

• Logical Instructions

• Shift Instructions

• Empty MMX State (EMMS) Instruction

These instructions provide a rich set of operations that can be performed in parallel on the
bytes, words or doublewords of an MMX packed data type.

When operating on the MMX packed data types, the data within a data type is cast by the type
specified by the instruction. For example, the PADDB (add packed bytes) instruction adds two
groups of eight packed bytes. The PADDW (add packed words) instruction, which adds
packed words, can operate on the same 64 bits as the PADDB instruction treating 64 bits as
four 16-bit words.

2.4.3. Intel MMX™ Technology Pipeline Stages
The MMX unit of the Pentium processor with MMX technology has six pipeline stages. The
integration of the MMX pipeline with the integer pipeline is very similar to that of the floating
point pipe.

Pentium processors with MMX technology add an additional fetch stage to the pipeline.  The
instruction bytes are prefetched from the code cache in the prefetch (PF) stage, and they are
parsed into instructions (and prefixes) in the fetch (F) stage.  Additionally, any prefixes are
decoded in the F stage.

When instructions execute in the two pipes, their behavior is exactly the same as if they were
executed sequentially. When a stall occurs, successive instructions are not allowed to pass the
stalled instruction in either pipe.  Figure 2-5 shows the pipelining structure for this scheme.

 

Decoupled stages of the MMX™ Pipeline

PF     F     D1    D2   EX   WB

E1    E2
EX1  EX2  EX3

EX1 EX2

Mex     WM/M2     M3   WMul

MMX pipeline integrated 
in integer pipeline

Integer pipeline only

MMXPIPE

Figure 2-5.  MMX™ Pipeline Structure
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Instruction parsing is decoupled from the instruction decoding by means of an instruction
FIFO, which is situated between the F and D1 (Decode 1) stages. The FIFO has slots for up to
four instructions. This FIFO is transparent, it does not add additional latency when it is empty.

Every clock cycle, two instructions can be pushed into the instruction FIFO (depending on
availability of the code bytes, and on other factors such as prefixes).  Instruction pairs are
pulled out of the FIFO into the D1 stage.  Since the average rate of instruction execution is less
than two per clock, the FIFO is normally full.  If the FIFO is full, then the FIFO can buffer a
stall that may have occurred during instruction fetch and parsing.  If this occurs then that stall
will not cause a stall in the execution stage of the pipe.  If the FIFO is empty, then an
execution stall may result from the pipeline being “starved” for instructions to execute.  Also,
if the FIFO contains only one instruction, then the instruction will not pair. Additionally, if an
instruction is longer than 7 bytes, then only one instruction will be pushed into the FIFO.
Figure 2-6 details the MMX pipeline on superscalar processors and the conditions where a stall
may occur in the pipeline.

 

PF State: Prefetches Instructions

Fetch Stage: The prefetched instruction's bytes are passed
into instructions. The prefixes are decoded and up to two
instructions are pushed into the FIFO. Two MMX™ instructions
can be pushed if each of the instructions are less than 7 in bytes
length.

D1 Stage: Integer, Floating-point and MMX instructions
are decoded in the D1 pipe stage.

D2 Stage: Source values are read, when an AGI is detected
a 1 clock delay is inserted into the V-Pipe pipeline.

EX Stage: The instruction is committed for execution.

Mex Stage: execution clock for MMX instruction: ALU,
shift pack and unpack are executed and completed in this clock.
First clock of multiply instructions. No stall conditions.

WM/M2 Stage: Single clock operations are written.
Second stage of multiplier pipe. No stall conditions.

M3 Stage: Third stage of multiplier pipe. No stall conditions.

WMul Stage: Write of multiplier result. No stall condtions.

PF

F

D1

D2

EX

Mex

Wm/M2

M3

WMul
INSTFLOW

Figure 2-6.  MMX™ Instruction Flow in a Pentium ® Processor with
MMX Technology
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PF Prefetch Prefetches instructions

F Fetch The prefetched instruction bytes are passed into
instructions. The prefixes are decoded and up to two
instructions are pushed into the FIFO. Two MMX
instructions can be pushed if each of the instructions are
less than seven in bytes length.

D1 Decode1 Integer, floating-point and MMX instructions are decoded
in the D1 pipe stage.

D2 Decode2 Source values are read.

E Execution The instruction is committed for execution.

Mex MMX Execution Execution clock for MMX instructions. ALU, shift, pack,
and unpack instructions are executed and completed in this
clock. First clock of multiply instructions. No stall
conditions.

WM/M2 Write/Multiply2 Single clock operations are written. Second stage of
multiplier pipe. No stall conditions.

M3 Multiply3 Third stage of multiplier pipe. No stall conditions.

Wmul Write of multiply Write of multiplier result. Not stall conditions.

2.4.4. Instruction Issue
The rules of how MMX instructions get issued on the Pentium processor with MMX
technology are summarized as follows:

1. Pairing of two MMX instructions can be performed.

2. Pairing of one MMX instruction with an integer instruction can be performed.

3. MMX instructions do not get paired with floating-point instructions.

2.4.4.1. PAIRING TWO MMX™ INSTRUCTIONS

The rules of how two MMX instructions can be paired are listed below:

• Two MMX instructions which both use the MMX shifter unit (pack, unpack and shift
instructions) cannot pair since there is only one MMX shifter unit. Shift operations may be
issued in either the u-pipe or the v-pipe but not in both in the same clock cycle.

• Two MMX instructions which both use the MMX multiplier unit (pmull, pmulh, pmadd
type instructions) cannot pair since there is only one MMX multiplier unit. Multiply
operations may be issued in either the u-pipe or the v-pipe but not in both in the same
clock cycle.
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• MMX instructions which access either memory or the integer register file can be issued in
the u-pipe only. Do not schedule these instructions to the v-pipe as they will wait and be
issued in the next pair of instructions (and to the u-pipe).

• The MMX destination register of the u-pipe instruction should not match the source or
destination register of the v-pipe instruction (dependency check).

• The EMMS instruction is not pairable.

• If either the CR0.TS or the CR0.EM bits are set, MMX instructions cannot go into the v-
pipe.

2.4.4.2. PAIRING AN INTEGER INSTRUCTION IN THE U-PIPE WITH AN
MMX™ INSTRUCTION IN THE V-PIPE

The rules of how an integer instruction in the u-pipe is paired with an MMX instruction in the
v-pipe are listed below:

• The MMX instruction can not be the first MMX instruction following a floating-point
instruction.

• The v-pipe MMX instruction does not access either memory or the integer register file.

• The u-pipe integer instruction is a pairable u-pipe integer instruction.

2.4.4.3. PAIRING AN MMX™ INSTRUCTION IN THE U-PIPE WITH AN
INTEGER INSTRUCTION IN THE V-PIPE

The rules of how an MMX instruction in the u-pipe is paired with an integer instruction in the
v-pipe are listed below:

• The v-pipe instruction is a pairable integer v-pipe instruction.

• The u-pipe MMX instruction does not access either memory or the integer register file.

2.5. ON-CHIP CACHES
The Pentium processor (75/90/100/120/133/150/166/200) implements two internal caches for a
total integrated cache size of 16 Kbytes: an 8 Kbyte data cache and a separate 8 Kbyte code
cache.  These caches are transparent to application software to maintain compatibility with
previous Intel Architecture generations. The Pentium processor with MMX technology
doubles the internal cache size to 32 Kbytes: a 16 Kbyte data cache and a separate 16 Kbyte
code cache.

The data cache fully supports the MESI (modified/exclusive/shared/invalid) writeback cache
consistency protocol. The code cache is inherently write protected to prevent code from being
inadvertently corrupted, and as a consequence supports a subset of the MESI protocol, the S
(shared) and I (invalid) states.
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The caches have been designed for maximum flexibility and performance. The data cache is
configurable as writeback or writethrough on a line-by-line basis. Memory areas can be
defined as non-cacheable by software and external hardware. Cache writeback and
invalidations can be initiated by hardware or software. Protocols for cache consistency and line
replacement are implemented in hardware, easing system design.

2.5.1. Cache Organization
On the Pentium processor (75/90/100/120/133/150/166/200), each of the caches are 8 Kbytes
in size and each is organized as a 2-way set associative cache. There are 128 sets in each
cache, each set containing 2 lines (each line has its own tag address). Each cache line is 32
bytes wide. The Pentium processor with MMX technology has two 16 Kbyte 4-way set-
associative caches the with a cache line length of 32 bytes.

In the Pentium processor (75/90/100/120/133/150/166/200), replacement in both the data and
instruction caches is handled by the LRU mechanism which requires one bit per set in each of
the caches. The Pentium processor with MMX technology employs a pseudo-LRU
replacement algorithm which requires three blts per set in each of the caches. When a line must
be replaced, the cache will first select which of l0:l1 and l2:l3 was least recently used. Then the
cache will determine which of the two lines was least recently used and mark it for
replacement. This decision tree is shown in Figure 2-7.

 

All four lines
in the set valid?

Replace
non-valid line

No

Yes

B0 = 0?

Yes: I0 or I1
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used

No: I2 or I3
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used

B1 = 0? B2 = 0?

Yes YesNo No

Replace
I0

Replace
I1

Replace
I2

Replace
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2202-203

Figure 2-7.  Pseudo-LRU Cache Replacement Strategy

The data cache consists of eight banks interleaved on 4-byte boundaries. The data cache can be
accessed simultaneously from both pipes, as long as the references are to different cache
banks. A conceptual diagram of the organization of the data and code caches is shown in
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Figure 2-8. Note that the data cache supports the MESI writeback cache consistency protocol
which requires 2 state bits, while the code cache supports the S and I state only and therefore
requires only one state bit.
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Figure 2-8.  Conceptual Organization of Code and Data Caches

2.5.2. Cache Structure
The instruction and data caches can be accessed simultaneously. The instruction cache can
provide up to 32 bytes of raw opcodes and the data cache can provide data for two data
references all in the same clock. This capability is implemented partially through the tag
structure. The tags in the data cache are triple ported. One of the ports is dedicated to snooping
while the other two are used to lookup two independent addresses corresponding to data
references from each of the pipelines. The instruction cache tags of the Pentium processor
(75/90/100/120/133/150/166/200) are also triple ported. Again, one port is dedicated to
support snooping and the other two ports facilitate split line accesses (simultaneously
accessing upper half of one line and lower half of the next line). Note, the Pentium processor
with MMX technology does not support split line accesses to the code cache; as such, its code
cache tags are dual ported.

The storage array in the data cache is single ported but interleaved on 4-byte boundaries to be
able to provide data for two simultaneous accesses to the same cache line.
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Each of the caches are parity protected. In the instruction cache, there are parity bits on a
quarter line basis and there is one parity bit for each tag. The data cache contains one parity bit
for each tag and a parity bit per byte of data.

Each of the caches are accessed with physical addresses and each cache has its own TLB
(translation lookaside buffer) to translate linear addresses to physical addresses. The TLBs
associated with the instruction cache are single ported whereas the data cache TLBs are fully
dual ported to be able to translate two independent linear addresses for two data references
simultaneously. The tag and data arrays of the TLBs are parity protected with a parity bit
associated with each of the tag and data entries in the TLBs.

The data cache of the Pentium processor (75/90/100/120/133/150/166/200) has a 4-way set
associative, 64-entry TLB for 4-Kbyte pages and a separate 4-way set associative, 8-entry TLB
to support 4-Mbyte pages. The code cache has one 4-way set associative, 32-entry TLB for 4-
Kbyte pages and 4-Mbyte pages which are cached in 4-Kbyte increments. Replacement in the
TLBs is handled by a pseudo LRU mechanism (similar to the Intel486 CPU) that requires 3
bits per set. The Pentium processor with MMX technology has a 64-entry fully associative data
TLB and a 32-entry fully associative code TLB. Both TLBs can support 4Kbyte pages as well
as 4 Mbyte pages.

2.5.3. Cache Operating Modes
The operating modes of the caches are controlled by the CD (cache disable) and NW (not
writethrough) bits in CR0. See Table 2-1 for a description of the modes. For normal operation
and highest performance, these bits should both be reset to “0.” The bits come out of RESET
as CD = NW = 1.

When the L1 cache is disabled (CR0.NW and CR0.CD bits are both set to ‘1’) external snoops
are accepted in a DP system and inhibited in a UP system. Note that when snoops are
inhibited, address parity is not checked, and APCHK# will not be asserted for a corrupt
address. However, when snoops are accepted, address parity is checked (and APCHK# will be
asserted for corrupt addresses).
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Table 2-1.  Cache Operating Modes

CD NW Description

1 1 Read hits access the cache.

Read misses do not cause linefills.

Write hits update the cache, but do not access memory.

Write hits will cause Exclusive State lines to change to Modified
State.

Shared lines will remain in the Shared state after write hits.

Write misses access memory.

Inquire and invalidation cycles do not affect the cache state or
contents.

This is the state after reset.

1 0 Read hits access the cache.

Read misses do not cause linefills.

Write hits update the cache.

Writes to Shared lines and write misses update external memory.

Writes to Shared lines can be changed to the Exclusive State under
the control of the WB/WT# pin.

Inquire cycles (and invalidations) are allowed.

0 1 GP(0)

0 0 Read hits access the cache.

Read misses may cause linefills.

These lines will enter the Exclusive or Shared state under the control
of the WB/WT# pin.

Write hits update the cache.

Only writes to shared lines and write misses appear externally.

Writes to Shared lines can be changed to the Exclusive State under
the control of the WB/WT# pin.

Inquire cycles (and invalidations) are allowed.

To completely disable the cache, the following two steps must be performed:

1. CD and NW must be set to 1.

2. The caches must be flushed.
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If the cache is not flushed, cache hits on reads will still occur and data will be read from the
cache. In addition, the cache must be flushed after being disabled to prevent any
inconsistencies with memory.

2.5.4. Page Cacheability
Two bits for cache control, PWT and PCD are defined in the page table and page directory
entries. The state of these bits are driven out on the PWT and PCD pins during memory access
cycles.  The PWT bit controls write policy for the second level caches used with the Pentium
processor. Setting PWT to 1 defines a writethrough policy for the current page, while clearing
PWT to 0 defines a writeback policy for the current page.

The PCD bit controls cacheability on a page-by-page basis. The PCD bit is internally ANDed
with the KEN# signal to control cacheability on a cycle-by-cycle basis. PCD = 0 enables
cacheing, while PCD = 1 disables it. Cache linefills are enabled when PCD = 0 and KEN# = 0.

2.5.4.1. PCD AND PWT GENERATION

The value driven on PCD is a function of the PWT bits in CR3, the page directory pointer, the
page directory entry and the page table entry, and the CD and PG bits in CR0.

The value driven on PWT is a function of the PCD bits in CR3, the page directory pointer, the
page directory entry and the page table entry, and the PG bit in CR0 (CR0.CD does not affect
PWT).

CR0.CD = 1

If cacheing is disabled, the PCD pin is always driven high. CR0.CD does not affect the PWT
pin.

CR0.PG = 0

If paging is disabled, the PWT pin is forced low and the PCD pin reflects the CR0.CD. The
PCD and PWT bits in CR3 are assumed 0 during the caching process.

CR0.CD = 0, PG = 1, normal operation

The PCD and PWT bits from the last entry (can be either PDE or PTE, depends on 4 Mbyte or
4 Kbyte mode) are cached in the TLB and are driven anytime the page mapped by the TLB
entry is referenced.

CR0.CD = 0, PG = 1, during TLB Refresh

During TLB refresh cycles when the PDE and PTE entries are read, the PWT and PCD bits are
obtained as shown in Table 2-2 and Table 2-3.
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Table 2-2.  32-Bits/4-Kbyte Pages

PCD/PWT Taken From During Accesses To

CR3 PDE

PDE PTE

PTE All other paged mem references

Table 2-3.  32-Bits/4-Mbyte Pages

PCD/PWT Taken From During Accesses To

CR3 PDE

PDE All other paged mem references
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Figure 2-9 shows how PCD and PWT are generated.

TABLE
(Optional)

OFFSETDIRECTORY

LINEAR ADDRESS

31 22 12 0

+ PCD, PWT

PAGE TABLE

10 031

PCD, PWT

CR3

031

+

10
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031

PAGE DIRECTORY

PG (Paging Enable)

CD (Cache Disable)CR0
PWT

PCD

Cache transition to
E-state enable 

PCD

WB/WT#

CACHE#
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Cache line fill enable

Cache Inhibit

TR12.3

CI

Unlocked Memory Reads

Writeback Cycle

1
PDB102

PCD

PWT

PDB102A

Figure 2-9.  PCD and PWT Generation
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2.5.5. Inquire Cycles
Inquire cycles are initiated by the system to determine if a line is present in the code or data
cache, and what its state is. This document refers to inquire cycles and snoop cycles
interchangeably.

Inquire cycles are driven to the Pentium processor when a bus master other than the Pentium
processor initiates a read or write bus cycle. Inquire cycles are driven to the Pentium processor
when the bus master initiates a read to determine if the Pentium processor data cache contains
the latest information. If the snooped line is in the Pentium processor data cache in the
modified state, the Pentium processor has the most recent information and must schedule a
writeback of the data.  Inquire cycles are driven to the Pentium processor when the other bus
master initiates a write to determine if the Pentium processor code or data cache contains the
snooped line and to invalidate the line if it is present. Inquire cycles are described in detail in
the “Bus Functional Description” chapter.

2.5.6. Cache Flushing
The on-chip cache can be flushed by external hardware or by software instructions.

Flushing the cache through hardware is accomplished by driving the FLUSH# pin low. This
causes the cache to writeback all modified lines in the data cache and mark the state bits for
both caches invalid. The Flush Acknowledge special cycle is driven by the Pentium processor
when all writebacks and invalidations are complete.

The INVD and WBINVD instructions cause the on-chip caches to be invalidated also.
WBINVD causes the modified lines in the internal data cache to be written back, and all lines
in both caches to be marked invalid. After execution of the WBINVD instruction, the
Writeback and Flush special cycles are driven to indicate to any external cache that it should
writeback and invalidate its contents.

INVD causes all lines in both caches to be invalidated. Modified lines in the data cache are not
written back. The Flush special cycle is driven after the INVD instruction is executed to
indicate to any external cache that it should invalidate its contents. Care should be taken when
using the INVD instruction that cache consistency problems are not created.

Note that the implementation of the INVD and WBINVD instructions are processor dependent.
Future processor generations may implement these instructions differently.

2.5.7. Data Cache Consistency Protocol (MESI Protocol)
The Pentium processor Cache Consistency Protocol is a set of rules by which states are
assigned to cached entries (lines). The rules apply for memory read/write cycles only. I/O and
special cycles are not run through the data cache.

Every line in the Pentium processor data cache is assigned a state dependent on both Pentium
processor generated activities and activities generated by other bus masters (snooping). The
Pentium processor Data Cache Protocol consists of four states that define whether a line is
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valid (HIT/MISS), if it is available in other caches, and if it has been MODIFIED. The four
states are the M (Modified), E (Exclusive), S (Shared) and the I (Invalid) states and the
protocol is referred to as the MESI protocol. A definition of the states is given below:

M - Modified: An M-state line is available in ONLY one cache and it is also MODIFIED
(different from main memory). An M-state line can be accessed (read/written
to) without sending a cycle out on the bus.

E - Exclusive: An E-state line is also available in ONLY one cache in the system, but the
line is not MODIFIED (i.e., it is the same as main memory). An E-state line
can be accessed (read/written to) without generating a bus cycle. A write to
an E-state line will cause the line to become MODIFIED.

S - Shared: This state indicates that the line is potentially shared with other caches (i.e.
the same line may exist in more than one cache). A read to an S-state line
will not generate bus activity, but a write to a SHARED line will generate a
write through cycle on the bus. The write through cycle may invalidate this
line in other caches. A write to an S-state line will update the cache.

I - Invalid: This state indicates that the line is not available in the cache. A read to this
line will be a MISS and may cause the Pentium processor to execute a LINE
FILL (fetch the whole line into the cache from main memory). A write to an
INVALID line will cause the Pentium processor to execute a write-through
cycle on the bus.

2.5.7.1. STATE TRANSITION TABLES

Lines cached in the Pentium processor can change state because of processor generated
activity or as a result of activity on the Pentium processor bus generated by other bus masters
(snooping). State transitions happen because of processor generated transactions (memory
reads/writes) and by a set of external input signals and internally generated variables. The
Pentium processor also drives certain pins as a consequence of the Cache Consistency
Protocol.

2.5.7.1.1. Read Cycle

Table 2-4 shows the state transitions for lines in the data cache during unlocked read cycles.
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Table 2-4.  Data Cache State Transitions for UNLOCKED
Pentium® Processor Initiated Read Cycles*

Present
State Pin Activity Next State Description

M n/a M Read hit; data is provided to processor core by
cache. No bus cycle is generated.

E n/a E Read hit; data is provided to processor core by
cache. No bus cycle is generated.

S n/a S Read hit; data is provided to the processor by
the cache. No bus cycle is generated.

I CACHE# low

AND

KEN# low

AND

WB/WT# high

AND

PWT low

E Data item does not exist in cache (MISS). A
bus cycle (read) will be generated by the
Pentium® processor. This state transition will
happen if WB/WT# is sampled high with first
BRDY# or NA#.

I CACHE# low

AND

KEN# low

AND

(WB/WT# low

OR PWT high)

S Same as previous read miss case except that
WB/WT# is sampled low with first BRDY# or
NA#.

I CACHE# high

OR

KEN# high

I KEN# pin inactive; the line is not intended to be
cached in the Pentium processor.

NOTE: *Locked accesses to the data cache will cause the accessed line to transition to the Invalid state

Note the transition from I to E or S states (based on WB/WT#) happens only if KEN# is
sampled low with the first of BRDY# or NA#, and the cycle is transformed into a LINE FILL
cycle. If KEN# is sampled high, the line is not cached and remains in the I state.

2.5.7.1.2. Write Cycle

The state transitions of data cache lines during Pentium processor generated write cycles are
illustrated in the next table. Writes to SHARED lines in the data cache are always sent out on
the bus along with updating the cache with the write item. The status of the PWT and
WB/WT# pins during these write cycles on the bus determines the state transitions in the data
cache during writes to S-state lines.
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A write to a SHARED line in the data cache will generate a write cycle on the Pentium
processor bus to update memory and/or invalidate the contents of other caches. If the PWT pin
is driven high when the write cycle is run on the bus, the line will be updated, and will stay in
the S-state regardless of the status of the WB/WT# pin that is sampled with the first BRDY# or
NA#. If PWT is driven low, the status of the WB/WT# pin sampled along with the first
BRDY# or NA# for the write cycle determines what state (E:S) the line transitions to.

The state transition from S to E is the only transition in which the data and the status bits are
not updated at the same time. The data will be updated when the write is written to the Pentium
processor write buffers. The state transition does not occur until the write has completed on the
bus (BRDY# has been returned). Writes to the line after the transition to the E-state will not
generate bus cycles. However, it is possible that writes to the same line that were buffered or in
the pipeline before the transition to the E-state will generate bus cycles after the transition to
E-state.

An inactive EWBE# input will stall subsequent writes to an E- or an M-state line. All
subsequent writes to E- or M-state lines are held off until EWBE# is returned active.

Table 2-5.  Data Cache State Transitions for Pentium® Processor Initiated Write Cycles

Present
State Pin Activity

Next
State Description

M n/a M Write hit; update data cache. No bus cycle generated to
update memory.

E n/a M Write hit; update cache only. No bus cycle generated;
line is now MODIFIED.

S PWT low

AND

WB/WT# high

E Write hit; data cache updated with write data item. A
write-through cycle is generated on bus to update
memory and/or invalidate contents of other caches. The
state transition occurs after the writethrough cycle
completes on the bus (with the last BRDY#).

S PWT low

AND

WB/WT# low

S Same as above case of write to S-state line except that
WB/WT# is sampled low.

S PWT high S Same as above cases of writes to S state lines except
that this is a write hit to a line in a writethrough page;
status of WB/WT# pin is ignored.

I n/a I Write MISS; a writethrough cycle is generated on the
bus to update external memory. No allocation done.

NOTE: Memory writes are buffered while I/O writes are not. There is no guarantee of synchronization be-
tween completion of memory writes on the bus and instruction execution after the write. A serializing
instruction needs to be executed to synchronize writes with the next instruction if necessary.
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2.5.7.1.3. Inquire Cycles (Snooping)

The purpose of inquire cycles is to check whether the address being presented is contained
within the caches in the Pentium processor. Inquire cycles may be initiated with or without an
INVALIDATION request (INV = 1 or 0). An inquire cycle is run through the data and code
caches through a dedicated snoop port to determine if the address is in one of the Pentium
processor caches. If the address is in a Pentium processor cache, the HIT# pin is asserted. If
the address hits a modified line in the data cache, the HITM# pin is also asserted and the
modified line is then written back onto the bus.

The state transition tables for inquire cycles are given below:

Table 2-6.  Cache State Transitions During Inquire Cycles

Present
State

Next
State

 INV=1

Next
State
INV=0 Description

M I S Snoop hit to a MODIFIED line indicated by HIT# and HITM# pins
low. Pentium® processor schedules the writing back of the modified
line to memory.

E I S Snoop hit indicated by HIT# pin low; no bus cycle generated.

S I S Snoop hit indicated by HIT# pin low; no bus cycle generated.

I I I Address not in cache; HIT# pin high.

2.5.7.2. PENTIUM® PROCESSOR CODE CACHE CONSISTENCY PROTOCOL

The Pentium processor code cache follows a subset of the MESI protocol. Accesses to the
code cache are either a Hit (Shared) or a Miss (Invalid).

In the case of a read hit, the cycle is serviced internally to the Pentium processor and no bus
activity is generated. In the case of a read miss, the read is sent to the external bus and may be
converted to a linefill.

Lines are never overwritten in the code cache. Writes generated by the Pentium processor are
snooped by the code cache. If the snoop is a hit in the code cache, the line is invalidated. If
there is a miss, the code cache is not affected.

2.6. WRITE BUFFERS AND MEMORY ORDERING
The Pentium processor (75/90/100/120/133/150/166/200) has two write buffers, one
corresponding to each of the pipelines, to enhance the performance of consecutive writes to
memory. These write buffers are one quadword wide (64-bits) and can be filled simultaneously
in one clock e.g., by two simultaneous write misses in the two instruction pipelines. Writes in
these buffers are driven out on the external bus in the order they were generated by the
processor core. No reads (as a result of cache miss) are reordered around previously generated
writes sitting in the write buffers. The implication of this is that the write buffers will be



E COMPONENT OPERATION

2-33

12/18/96 4:46 PM    Ch02new2.doc

INTEL CONFIDENTIAL
(until publication date)

flushed or emptied before a subsequent bus cycle is run on the external bus (unless BOFF# is
asserted and a writeback cycle becomes pending, see section 2.6.3.).

The Pentium processor with MMX technology has four write buffers that can be used by either
the u-pipe or v-pipe. Posting writes to these buffers enables the pipe to continue advancing
when consecutive writes to memory occur. The writes will be executed on the bus as soon as it
is free, in FIFO order. Reads cannot bypass writes posted in these buffers.

 

PF F
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EX
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Write

external Bus
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u-pipe

v-pipe

EX

EX

WBUFFER

Figure 2-10.  Pentium ® Processor Write Buffer Implementation

The Pentium processor supports strong write ordering only. That is, writes generated by the
Pentium processor will be driven to the bus or updated in the cache in the order that they
occur. The Pentium processor will not write to E or M-state lines in the data cache if there is a
write in either write buffer, if a write cycle is running on the bus, or if EWBE# is inactive.

Note that only memory writes are buffered and I/O writes are not. There is no guarantee of
synchronization between completion of memory writes on the bus and instruction execution
after the write. The OUT instruction or a serializing instruction needs to be executed to
synchronize writes with the next instruction. Please refer to the “Serializing Operations”
section for more information.
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No re-ordering of read cycles occurs on the Pentium processor. Specifically, the write buffers
are flushed before the IN instruction is executed.

2.6.1. External Event Synchronization
When the system changes the value of NMI, INTR, FLUSH#, SMI# or INIT as the result of
executing an OUT instruction, these inputs must be at a valid state three clocks before BRDY#
is returned to ensure that the new value will be recognized before the next instruction is
executed.

Note that if an OUT instruction is used to modify A20M#, this will not affect previously
prefetched instructions. A serializing instruction must be executed to guarantee recognition of
A20M# before a specific instruction.

2.6.2. Serializing Operations
After executing certain instructions the Pentium processor serializes instruction execution.
This means that any modifications to flags, registers, and memory for previous instructions are
completed before the next instruction is fetched and executed. The prefetch queue is flushed as
a result of serializing operations.

The Pentium processor serializes instruction execution after executing one of the following
instructions: MOV to Debug Register, MOV to Control Register, INVD, INVLPG, IRET,
IRETD, LGDT, LLDT, LIDT, LTR, WBINVD, CPUID, RSM and WRMSR.

NOTE

1. The CPUID instruction can be executed at any privilege level to serialize
instruction execution.

2. When the Pentium processor serializes instruction execution, it ensures
that it has completed any modifications to memory, including flushing
any internally buffered stores; it then waits for the EWBE# pin to go
active before fetching and executing the next instruction. Pentium
processor systems may use the EWBE# pin to indicate that a store is
pending externally. In this manner, a system designer may ensure that all
externally pending stores will complete before the Pentium processor
begins to fetch and execute the next instruction.

3. The Pentium processor does not generally writeback the contents of
modified data in its data cache to external memory when it serializes
instruction execution. Software can force modified data to be written
back by executing the WBINVD instruction.

4. Whenever an instruction is executed to enable/disable paging (that is,
change the PG bit of CR0), this instruction must be followed with a jump.
The instruction at the target of the branch is fetched with the new value
of PG (i.e., paging enabled/disabled), however, the jump instruction itself
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is fetched with the previous value of PG. Intel386™, Intel486 and
Pentium processors have slightly different requirements to enable and
disable paging. In all other respects, an MOV to CR0 that changes PG is
serializing. Any MOV to CR0 that does not change PG is completely
serializing.

5. Whenever an instruction is executed to change the contents of CR3 while
paging is enabled, the next instruction is fetched using the translation
tables that correspond to the new value of CR3. Therefore the next
instruction and the sequentially following instructions should have a
mapping based upon the new value of CR3.

6. The Pentium processor implements branch-prediction techniques to
improve performance by prefetching the destination of a branch
instruction before the branch instruction is executed. Consequently,
instruction execution is not generally serialized when a branch instruction
is executed.

7. Although the I/O instructions are not “serializing” because the processor
does not wait for these instructions to complete before it prefetches the
next instruction, they do have the following properties that cause them to
function in a manner that is identical to previous generations. I/O reads
are not re-ordered within the processor; they wait for all internally
pending stores to complete. Note that the Pentium processor does not
sample the EWBE# pin during reads.  If necessary, external hardware
must ensure that externally pending stores are complete before returning
BRDY#. This is the same requirement that exists on Intel386 and
Intel486 systems. The OUT and OUTS instructions are also not
“serializing,” as they do not stop the prefetcher. They do, however,
ensure that all internally buffered stores have completed, that EWBE#
has been sampled active indicating that all externally pending stores have
completed and that the I/O write has completed before they begin to
execute the next instruction. Note that unlike the Intel486 processor, it is
not necessary for external hardware to ensure that externally pending
stores are complete before returning BRDY#.

8. On the Pentium processor with MMX technology, serializing instructions
require an additional clock to complete compared to the Pentium
processor (75/90/100/120/133/150/166/200) due to the additional
pipeline stage.

2.6.3. Linefill and Writeback Buffers
In addition to the write buffers corresponding to each of the internal pipelines, the Pentium
processor has 3 writeback buffers. Each of the writeback buffers are 1 deep and 32-bytes
(1 line) wide.

There is a dedicated replacement writeback buffer which stores writebacks caused by a linefill
that replaces a modified line in the data cache.  There is one external snoop writeback buffer
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that stores writebacks caused by an inquire cycle that hits a modified line in the data cache.
Finally, there is an internal snoop writeback buffer that stores writebacks caused by an internal
snoop cycle that hits a modified line in the data cache. Internal and external snoops are
discussed in detail in the Inquire Cycle section of the Bus Functional Description chapter of
this document (Chapter 6).  Write cycles are driven to the bus with the following priority:

• Contents of external snoop writeback buffer

• Contents of internal snoop writeback buffer

• Contents of replacement writeback buffer

• Contents of write buffers.

Note that the contents of whichever write buffer was written into first is driven to the bus first.
If both write buffers were written to in the same clock, the contents of the u-pipe buffer is
written out first. In the Pentium processor with MMX technology, the write buffers are written
in order as well, even though there is no u-pipe buffer and v-pipe buffer.

The Pentium processor also implements two linefill buffers, one for the data cache and one for
the code cache. As information (data or code) is returned to the Pentium processor for a cache
linefill, it is written into the linefill buffer. After the entire line has been returned to the proces-
sor it is transferred to the cache. Note that the processor requests the needed information first
and uses that information as soon as it is returned. The Pentium processor does not wait for the
linefill to complete before using the requested information.

If a line fill causes a modified line in the data cache to be replaced, the replaced line will
remain in the cache until the linefill is complete. After the linefill is complete, the line being
replaced is moved into the replacement writeback buffer and the new linefill is moved into the
cache.

2.7. EXTERNAL INTERRUPT CONSIDERATIONS
The Pentium processor recognizes the following external interrupts: BUSCHK#, R/S#,
FLUSH#, SMI#, INIT, NMI, INTR and STPCLK#. These interrupts are recognized at
instruction boundaries. On the Pentium processor, the instruction boundary is the first clock in
the execution stage of the instruction pipeline. This means that before an instruction is
executed, the Pentium processor checks to see if any interrupts are pending. If an interrupt is
pending, the processor flushes the instruction pipeline and then services the interrupt.
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The Pentium processor interrupt priority scheme is shown in Table 2-7.

Table 2-7.  Pentium ® Processor Interrupt Priority Scheme

ITR = 0   (default) ITR = 1

1. Breakpoint (INT 3) Breakpoint (INT 3)

2. BUSCHK# BUSCHK#

3. Debug Traps (INT 1) FLUSH#

4. R/S# SMI#

5. FLUSH# Debug Traps (INT 1)

6. SMI# R/S#

7. INIT INIT

8. NMI NMI

9. INTR INTR

10. Floating-Point Error Floating-Point Error

11. STPCLK# STPCLK#

12. Faults on Next Instruction Faults on Next Instruction

NOTE:  ITR is bit 9 of the TR12 register

2.8. INTRODUCTION TO DUAL PROCESSOR MODE
Symmetric dual processing in a system is supported with two Pentium processors sharing a
single second-level cache.  The processors must be of the same type, either two Pentium
processors (75/90/100/120/133/150/166/200) or two Pentium processors with MMX
technology.  The two processors appear to the system as a single Pentium processor.
Multiprocessor operating systems properly schedule computing tasks between the two
processors.  This scheduling of tasks is transparent to software applications and the end-user.
Logic built into the processors support a “glueless” interface for easy system design.  Through
a private bus, the two Pentium processors arbitrate for the external bus and maintain cache
coherency.

In this document, in order to distinguish between two Pentium processors in dual processing
mode, one CPU will be designated as the Primary processor with the other being the Dual
processor. Note that this is a different concept than that of “master” and “checker” processors.

The Dual processor is a configuration option of the Pentium processor.  The Dual processor
must operate at the same bus and core frequency and bus/core ratio as the Primary processor.

The Primary and Dual processors include logic to maintain cache consistency between the
processors and to arbitrate for the common bus.  The cache consistency and bus arbitration
activity will cause the dual processor pair to issue extra bus cycles that will not appear in a
Pentium processor uniprocessor system.
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Chapter 3 describes in detail how the DP bootup, cache consistency, and bus arbitration
mechanisms operate. In order to operate properly in dual processing mode, the Primary and
Dual processors require private APIC, cache consistency, and bus arbitration interfaces, as
well as a multiprocessing-ready operating system.

The dual processor interface allows the Dual processor to be added for a substantial increase in
system performance.  The interface allows the Primary and Dual processor to operate in a
coherent manner that is transparent to the system.

The memory subsystem transparency was the primary goal of the cache coherency and bus
arbitration mechanisms.

2.8.1. Dual Processing Terminology
This section defines some terms used in the following discussions.  They are here to ensure
your understanding of the explanations and examples in remainder of this document.

Symmetric Multi-Processing: Two or more processors operating with equal priorities in a
system.  No individual processor is a master, and none is a
slave.

DP or Dual Processing: The Primary and Dual processor operating symmetrically
in a system sharing a second-level cache.

MRM or Most Recent Master: The processor (either the Primary or Dual) which currently
owns the processor address bus.  When interprocessor
pipelining, this is the processor which last issued an ADS#.

LRM or Least Recent Master: The processor (either the Primary or Dual) which does not
own the address bus.  The LRM automatically snoops
every ADS# from the MRM processor in order to maintain
level one cache coherency.

Primary Processor: The Pentium processor when CPUTYP = VSS (or left
floating).

Upgrade Processor: The future Pentium OverDrive processor.

Dual Processor: The Pentium processor when CPUTYP = VCC.

OverDrive Processor: The future Pentium OverDrive processor.

2.8.2. Dual Processing Overview
The Primary and Dual processor both have logic built-in to support “glueless” dual-processing
behind a shared L2 cache.  Through a set of private handshake signals, the Primary and Dual
processors arbitrate for the external bus and maintain cache coherency between themselves.
The bus arbitration and cache coherency mechanisms allow the Primary and Dual processors
to look like a single Pentium processor to the external bus.

The Primary and Dual processors implement a fair arbitration scheme.  If the Least Recent
Master (LRM) requests the bus from the Most Recent Master (MRM), the bus is granted.  The
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Pentium processor arbitration scheme provides no penalty to switch from one master to the
next.  If pipelining is used, the two processors will pipeline into and out of each other’s cycles
according to the Pentium processor specification.

Cache coherency is maintained between the two processors by snooping on every bus access.
The LRM must snoop with every ADS# assertion of the MRM.  Internal cache states are
maintained accordingly.  If an access hits a modified line, a write back is scheduled as the next
cycle in accordance with the Pentium processor specification.

Using the Dual processor may require special design considerations.  Please refer to Chapter 4
for more details.

2.8.2.1. CONCEPTUAL OVERVIEW

Dual processing can be viewed in Figure 2-11.

 

Prim ary
Processor

Processor Bus Interface

Private
Interface

Dual
Processor

PP0010

Figure 2-11.  Dual Processors

The dual processor pair will appear to the system bus as a single, unified processor.  The
operation will be identical to a uni-processor Pentium processor, except as noted in
Section 6.6.  The interface shields the system designer from the cache consistency and
arbitration mechanisms that are necessary for dual processor operation.

Both the Primary and Dual processors contain local APIC modules.  The system designer is
recommended to supply an I/O APIC or other multiprocessing interrupt controller in the chip
set that interfaces to the local APIC blocks over a three-wire bus.  The APIC allows directed
interrupts as well as inter-processor interrupts.

The Primary and Dual processors, when operating in dual processing mode, require the local
APIC modules to be hardware enabled in order to complete the bootup handshake protocol.
This method is used to “wake up” the Dual processor at an address other than the normal Intel
Architecture high memory execution address.  On bootup, if the Primary processor detects that
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a Dual processor is present, the dual processor cache consistency and arbitration mechanisms
are automatically enabled.  The bootup handshake process is supported in a protocol that is
included in the Pentium processor.  See Chapter 3 for more details on the APIC.

2.8.2.2. ARBITRATION OVERVIEW

In the dual processor configuration, there is a single-system bus which provides the processors
access to the external system.  This bus is a single, shared resource.

The dual processor pair will need to arbitrate for use of the system bus as requests are
generated.  The processors implement a fair arbitration mechanism.

If the LRM processor needs to run a cycle on the bus it will submit a request for bus ownership
to the MRM.  The MRM processor will grant the LRM processor bus ownership as soon as all
outstanding bus requests have finished on the processor bus.  The LRM processor will assume
the MRM state, and the processor which was just the MRM, will become the LRM.
Figure 2-12 further illustrates this point:

Diagram (a) of Figure 2-12 shows a configuration where the Primary processor is in the MRM
state and the Dual processor is in the LRM state.  The Primary processor is running a cycle on
the system bus when it receives a bus request from the Dual processor.  In diagram (b) of
Figure 2-12 the MRM (still the Primary processor) has received an indication that the bus
request has finished.  The bus ownership has transferred in diagram (c) of Figure 2-12, where
the Dual processor is now the MRM.  At this point, the Dual processor will start a bus
transaction and continue to own the bus until the LRM requests the bus.
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Figure 2-12.  Dual Processor Arbitration Mechanism

2.8.2.3. CACHE COHERENCY OVERVIEW

The Primary and Dual processors both contain separate code and data caches.  The data cache
uses the MESI protocol to enforce cache consistency.  A line in the data cache can be in the
Modified, Exclusive, Shared or Invalid state, whereas a line in the instruction cache can be
either in the valid or invalid state.

A situation can arise where the Primary and Dual processors are operating in dual processor
mode with shared code or data.  The first level caches will attempt to cache this code and data
whenever possible (as indicated by the page cacheability bits and the cacheability pins).  The
private cache coherency mechanism guarantees data consistency across the processors.  If any
data is cached in one of the processors, and the other processor attempts to access the data, the
processor containing the data will notify the requesting processor that it has cached the data.
The state of the cache line in the processor containing the data will change depending on the
current state and the type of request that the other processor has made.

In some cases the data returned by the system will be ignored.  This constraint is placed on the
dual processor cache consistency mechanism so that the dual processor pair will look like a
single processor to the system bus.  However, in general, bus accesses are minimized to
efficiently use the available bus bandwidth.

The basic coherency mechanism requires the processor that is in the LRM state to snoop all
MRM bus activity.  The MRM processor running a bus cycle will watch the LRM processor
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for an indication that the data is contained in the LRM cache.  The following diagrams
illustrate the basic coherency mechanism.

The series of following figures show an example where the Primary processor (the MRM) is
performing a cache line fill of data.  In this example, the data requested by the Primary
processor is cached by the Dual processor (the LRM), and is in the modified state.

In diagram (a) of Figure 2-13, the Primary processor has already negotiated with the Dual
processor for use of the system bus and started a cycle.  As the Primary processor starts
running the cycle on the system bus, the Dual processor snoops the transaction.  The key for
the start of the snoop sequence for the LRM processor is an assertion of ADS# by the MRM
processor.

Diagram (b) of Figure 2-13 shows the Dual processor indicating to the Primary processor that
the requested data is cached and modified in the Dual processor cache.  The snoop notification
mechanism uses a dedicated, two-signal interface that is private to the dual processor pair.  At
the same time that the Dual processor indicates that the transaction is contained as Modified in
the its cache, the Dual processor will request the bus from the Primary processor (still the
MRM).  The MRM processor continues with the transaction that is outstanding on the bus, but
will ignore the data returned by the system bus.

After the Dual processor notifies the Primary processor that the requested data is modified in
the Dual processor cache, the Dual processor will wait for the bus transaction to complete.  At
this point, the LRM/MRM state will toggle, with the Primary processor becoming the LRM
processor and the Dual processor becoming the MRM processor.  This sequence of events is
shown in diagram (c) of Figure 2-13.

Diagram (c) of Figure 2-13 also shows the Dual processor writing the data back on the system
bus.  The write back cycle will look like a normal cache line replacement to the system bus.
The final state of the line in the Dual processor is determined by the value of the W/R# pin as
sampled during the ADS# assertion by the Primary processor.

Finally, diagram (d) of Figure 2-13 shows the Primary processor re-running the bus transaction
that started the entire sequence.  The requested data will be returned by the system as a normal
line fill request without intervention from the LRM processor.
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Figure 2-13.  Dual Processor L1 Cache Consistency

2.9. APIC INTERRUPT CONTROLLER
The Pentium processor contains implementations of the Advanced Programmable Interrupt
Controller architecture.  These implementations are capable of supporting a multiprocessing
interrupt scheme with an external APIC-compatible controller.

The Advanced Programmable Interrupt Controller (APIC) is an on-chip interrupt controller
that supports multiprocessing.  In a uniprocessor system, the APIC may be used as the sole
system interrupt controller, or may be disabled and bypassed completely.

In a multiprocessor system, the APIC operates with an additional and external I/O APIC
system interrupt controller.  The dual-processor configuration requires that the APIC be
hardware enabled.  The APIC of the Primary and Dual processors are used in the bootup
procedure to communicate startup information.

NOTE

The APIC is not hardware compatible with the 82489DX.
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On the Pentium processor, the APIC uses 3 pins:  PICCLK, PICD0, and PICD1.  PICCLK is
the APIC bus clock while PICD0-1 form the two-wire communication bus.

To use the 8259A interrupt controller, or to completely bypass, the APIC may be disabled
using the APICEN pin.  You must use the local APICs when using the dual-processor
component.

The main features of the APIC architecture include:

• Multiprocessor interrupt management (static and dynamic symmetric interrupt distribution
across all processors)

• Dynamic interrupt distribution that includes routing interrupts to the lowest-priority
processor

• Inter-processor interrupt support

• Edge or level triggered interrupt programmability

• Various naming/addressing schemes

• System-wide processor control functions related to NMI, INIT, and SMI (see Chapter 14
for APIC handling of SMI)

• 8259A compatibility by becoming virtually transparent with regard to an externally
connected 8259A style controller, making the 8259A visible to software

• A 32-bit wide counter used as a timer to generate time slice interrupts local to that
processor.

The AC timings of the Pentium processor APIC are described in Chapter 7 of this document.
Note that while there are minor software differences from the 82489DX, programming  to the
integrated APIC model ensures compatibility with the external 82489DX.  For additional
APIC programming information, please refer to the MultiProcessor Specification, Order
Number 242016.

In a dual-processor configuration, the local APIC may be used with an additional device
similar to the I/O APIC.  The I/O APIC is a device which captures all system interrupts and
directs them to the appropriate processors via various programmable distribution schemes.  An
external device provides the APIC system clock.  Interrupts which are local to each processor
go through the APIC on each chip.  A system example is shown in Figure 2-14.
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Figure 2-14.  APIC System Configuration

The APIC devices in the Primary and Dual processors may receive interrupts from the I/O
APIC via the three-wire APIC bus, locally via the local interrupt pins (LINT0, LINT1), or
from the other processor via the APIC bus.  The local interrupt pins, LINT0 and LINT1, are
shared with the INTR and NMI pins, respectively.  When the APIC is bypassed (hardware
disabled) or programmed in “through local” mode, the 8259A interrupt (INTR) and NMI are
connected to the INTR/LINT0 and NMI/LINT1 pins of the processor.  Figure 2-15 shows the
APIC implementation in the Pentium processor.  Note that the PICCLK has a maximum
frequency of 16.67 MHz.

When the local APIC is hardware enabled, data memory accesses to its 4 Kbyte address space
are executed internally and do not generate an ADS# on the processor bus.  However, a code
memory access in the 4 KByte APIC address space will not be recognized by the APIC and
will generate a cycle on the processor bus.

NOTE

Internally executed data memory accesses may cause the address bus to
toggle even though no ADS# is issued on the processor bus.
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Figure 2-15.  Local APIC Interface

2.9.1. APIC Configuration Modes
There are four possible APIC Modes:

1. Normal mode

2. Bypass mode (hardware disable)

3. Through local mode

4. Masked mode (software disable)

2.9.1.1. NORMAL MODE

This is the normal operating mode of the local APIC.  When in this mode, the local APIC is
both hardware and software enabled.

2.9.1.2. BYPASS MODE

Bypass mode effectively removes (bypasses) the APIC from the Pentium processor causing it
to operate as if there were no APIC present.  Any accesses to the APIC address space will go
to memory.  APICEN is sampled at the falling edge of RESET, and later becomes the PICD1
(part of the APIC 3-wire bus) signal. Bypass mode is entered by driving APICEN low at the
falling edge of RESET.  Since the APIC must be used to enable the Dual processor after
RESET, PICD1 must be driven high at reset to ensure APIC is hardware enabled if a second
processor is present.

For hardware disabling operations, the following implications must be considered:
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1. The INTR and NMI pins become functionally equivalent to the corresponding interrupt
pins in the Pentium processor, and the APIC is bypassed.

2. The APIC PICCLK must be tied high.

3. The system will not operate with the Dual Processor if the local APIC is hardware
disabled.

2.9.1.3. THROUGH LOCAL MODE

Configuring in through local mode allows the APICs to be used for the dual-processor bootup
handshake protocol and then pass interrupts through the local APIC to the core to support an
external interrupt controller.

To use the through local mode of the local APIC, the APIC must be enabled in both hardware
and software.  This is done by programming two local vector table entries, LVT1 and LVT2 at
addresses 0FEE00350H and 0FEE00360H, as external interrupts (ExtInt) and NMI,
respectively.  The 8259A responds to the INTA cycles and returns the interrupt vector to the
processor.

The local APIC should not be sent any interrupts prior to it’s being programmed.  Once the
APIC is programmed it can receive interrupts.

Note that although external interrupts and NMI are passed through the local APIC to the core,
the APIC can still receive messages on the APIC bus.

2.9.1.4. MASKED MODE

The local APIC is initialized to masked mode once hardware enabled via the APICEN pin.  In
order to be programmed in normal or through local modes, the APIC must be “software
enabled.”  Once operating in normal mode or through local mode, the APIC may be disabled
by software through clearing bit 8 of the APIC’s spurious vector interrupt register  (Note:  this
register is normally cleared at RESET and INIT).  This register is at address 0FEE000F0H.
Disabling APIC in software will return it to Masked mode.  With the exception of NMI, SMI,
INIT, remote reads and the startup IPI, all interrupts are masked on the APIC bus.  The local
APIC does not accept any interrupts on LINT0 or LINT1.  See the following section for
software disabling implications.

2.9.1.4.1. Software Disabling Implications

For the software disabling operations, the following implications must be considered:

1. The 4 Kbyte address space for the APIC is always blocked for data accesses (i.e., external
memory in this region must not be accessed).

2. The interrupt control register (ICR) can be read and written (e.g. interprocessor interrupts
are sent by writing to this register).

3. The APIC can continue to receive SMI, NMI, INIT, “startup,” and remote read messages.

4. Local interrupts are masked.
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5. Software can enable/disable the APIC at any time.  After software disabling the local
APICs, pending interrupts must be handled or masked by software.

6. The APIC PICCLK must be driven at all times.

2.9.1.5. DUAL PROCESSING WITH THE LOCAL APIC

The Dual processor bootup protocol may be used in the normal, through local, or masked
modes.

2.9.2. Loading the APIC ID
Loading the APIC ID may be done with external logic that would drive the proper address at
reset.  If the BE[3:0]# signals are not driven and do not have external resistors to VCC or VSS,
the APIC ID value will default to 0000 for the Primary processor and 0001 for the Dual
processor.

Table 2-8.  APIC ID

APIC ID
Register Bit

Pin Latched
at RESET

bit 24 BE0#

bit 25 BE1#

bit 26 BE2#

bit 27 BE3#

WARNING

An APIC ID of all 1s is an APIC special case (i.e., a broadcast) and must not
be used.  Since the Dual processor inverts the lowest order bit of the APIC
ID placed on the BE pins, the value “1110” should also be avoided when
operating in Dual Processing mode.

In a dual processor configuration, the OEM and Socket 5 should have the four BE pairs tied
together.  The OEM processor will load the value seen on these four pins at RESET.  The dual
processor will load the value seen on these pins and automatically invert bit 24 of the APIC ID
Register.  Thus the two processors will have unique APIC ID values.

In a general multi-processing system consisting of multiple Pentium processor, these pins must
not be tied together so each local APIC can have unique ID values.

These four pins must be valid and stable two clocks before and after the falling edge of
RESET.
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2.9.3. Response to HOLD
While the Pentium processor is accessing the APIC, the processor will respond to a HOLD
request with a maximum delay of six clocks.  To external agents which are not aware of the
APIC bus, this looks like the Pentium processor is not responding to HOLD even though
ADS# has not been driven and the processor bus seems idle.

2.10. FRACTIONAL SPEED BUS
The Pentium processor is offered in various bus-to-core frequency ratios. The BF[1:0]
configuration pins determine the bus-to-core frequency ratio. The processor will multiply the
input CLK by the bus-to-core ratio to achieve higher internal core frequencies.

The external bus frequency is set on power-up RESET through the CLK pin.  The Pentium
processor will sample the BF[1:0] pins on the falling edge of RESET to determine which bus-
to-core ratio to use.  If the BF[1:0] pins are left unconnected, the Pentium processor
(75/90/100/120/133/150/166/200) defaults to the 2/3 ratio and the Pentium processor with
MMX technology defaults to the 1/2 ratio. BF[1:0] must not change its value while RESET
is active. Changing the external bus speed or bus-to-core ratio requires a “power-on” RESET
pulse initialization. Once a frequency is selected, it may not be changed with a warm-reset (15
clocks). The BF pin must meet a 1 ms setup time to the falling edge of RESET.

Each Pentium processor is specified to operate within a single bus-to-core ratio and a specific
minimum to maximum bus frequency range (corresponding to a minimum to maximum core
frequency range). Operation in other bus-to-core ratios or outside the specified operating
frequency range is not supported. For example, the 150 MHz Pentium processor does not
operate beyond the 60 MHz bus frequency and only supports the 2/5 bus-to-core ratio; it does
not support the 1/3, 1/2, or 2/3 bus-to-core ratios. Table 2-9 clarifies and summarizes these
specifications.
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Table 2-9. Bus-to-Core Frequency Ratios for the Pentium ® Processor

BF1 BF0

Pentium ®

Processor
(75/90/100/120/133/

150/166/200)
Bus/Core Ratio

Pentium
Processor with

MMX™
Technology

Bus/Core Ratio 4

Max Bus/Core
Frequency (MHz)

Min Bus/Core
Frequency (MHz)

0 1 1/3 1/3 66/200 33/100

0 0 2/5 2/5 66/166 33/83

0 0 2/5 2/5 60/150 30/75

1 0 1/2 1/2 2 66/133 33/66

1 0 1/2 1/2 2 60/120 30/60

1 0 1/2 1/2 2 50/1003 25/50

1 1 2/3 1 reserved 66/1003 33/50

1 1 2/3 1 reserved 60/90 30/45

1 1 2/3 1 reserved 50/75 25/37.5

NOTES: 

1. This is the default bus fraction for the Pentium® processor (75/90/100/120/133/150/166/200).  If the BF pins are left
floating, the processor will be configured for the 2/3 bus to core frequency ratio.

2. This is the default bus fraction for the Pentium processor with MMX™ technology.  If the BF pins are left floating, the
processor will be configured for the 1/2 bus to core frequency ratio.

3. The 100 MHz (Max Core Frequency) Pentium processors can be operated in both 1/2 and 2/3 Bus/Core Ratios.

4. Currently, the desktop Pentium processor with MMX technology supports 66/200 and 66/166 operation.

The following examples illustrate the Pentium processor synchronization mechanism.  The
Pentium processor (60, 66) case is given to illustrate how a 1/1 bus operates.

Int CLK

Ext CLK

Int Data

Ext Data A

A B

B

Output Input

Figure 2-16.  Pentium ® Processor (60, 66) Synchronous
Internal/External Data Movement
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Figure 2-17.  Pentium ® Processor
1/2 Bus Internal/External Data Movement
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Figure 2-18 Pentium® Processor
2/3 Bus Internal/External Data Movement

Figure 2-19 shows how the Pentium processor prevents data from changing in clock 2, where
the 2/3 external clock rising edge occurs in the middle of the internal clock phase, so it can be
properly synchronized and driven.
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Figure 2-19.  Pentium® Processor
2/5 Bus Internal/External Data Movement
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Figure 2-20.  Pentium ® Processor
1/3 Bus Internal/External Data Movement

2.11. POWER MANAGEMENT

2.11.1. I/O Instruction Restart
I/O Instruction restart is a power management feature of the Pentium processor that allows the
Pentium processor to re-execute an I/O instruction.  In this way, an I/O instruction can alert a
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sleeping device in a system and SMI# can be recognized before the I/O instruction is re-
executed.  SMI# assertion will cause a wake-up routine to be executed, so the restarted I/O
instruction can be executed by the system.

2.11.2. Stop Clock and AutoHalt Powerdown
The Pentium processor uses stop clock and AutoHalt Powerdown to immediately reduce the
power of each device.  These features cause the clock to be stopped to most of the CPU’s
internal units and thus significantly reduce power consumption by the CPU as a whole.

Stop clock is enabled by asserting the STPCLK# pin of the Pentium processor.  While
asserted, the Pentium processor will stop execution and not service interrupts, but will allow
external and interprocessor (Primary and Dual processor) snooping.

AutoHalt Powerdown is entered once the Pentium processor executes a HLT instruction.  In
this state, most internal units are powered-down, but the Pentium processor will recognize all
interrupts and snoops.

Pentium processor pin functions (D/P#, etc.) are not affected by STPCLK# or AutoHalt.

For additional details on power management, refer to  Chapter 14.

2.12. CPUID INSTRUCTION
The CPUID instruction provides information to software about the vendor, family, model and
stepping of the microporcessor on which it is executing. In addition, it indicates the features
supported by the processor.

When executing CPUID:

• If the value in EAX is “0,” then the 12-byte ASCII string “GenuineIntel” (little endian) is
returned in EBX, EDX, and ECX.  Also, EAX contains a value of “1” to indicate the
largest value of EAX which should be used when executing CPUID.

• If the value in EAX is “1,” then the processor version is returned in EAX and the
processor capabilities (feature flags) are returned in EDX.

• If the value in EAX is neither “0” nor “1”, the Pentium processor writes “0” to EAX,
EBX, ECX, and EDX.

The following EAX value is defined for the CPUID instruction executed with EAX = 1. The
processor version EAX bit assignments are given in Figure 2-21. Table 2-10 lists the feature
flag bits assignment definitions.
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Figure 2-21.  EAX Bit Assignments for CPUID
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Table 2-10.  EDX Bit Assignment Definitions (Feature Flags)

Bit Name Value Description When Flag=1 Comments

0 FPU 1 Floating-point  unit on-chip The processor contains an FPU that
supports the Intel 387 floating-point
instruction set.

1 VME 1 Virtual Mode Enhancements The processor supports extensions to
virtual-8086 mode.

2 DE 1 Debugging Extension The processor supports I/O breakpoints,
including the CR4.DE bit for enabling
debug extensions and optional trapping of
access to the DR4 and DR5 registers.

3 PSE 1 Page Size Extension The processor supports 4-Mbyte pages.

4 TSC 1 Time Stamp Counter The RDTSC instruction is supported
including the CR4.TSD bit for
access/privilege control.

5 MSR 1 Pentium Processor MSR Model SpecificRegisters are implemented
with the RDMSR, WRMSR instructions.

6 PAE 0 Physical Address Extension Physical addresses greater than 32 bits
are supported.

7 MCE 1 Machine Check Exception Machine Check Exception, Exception 18,
and the CR4.MCE enable bit are
supported.

8 CX8 1 CMPXCHG8B Instruction
Supported

The compare and exchange 8 bytes
instruction is supported.

9 APIC 1 On-chip APIC Hardware
Enabled*

The processor contains a local APIC.

10-11 R Reserved Do not rely on its value.

12 MTRR 0 Memory Type Range Registers The processor supports the Memory Type
Range Registers specifically the
MTRR_CAP register.

13 PGE 0 Page Global Enable The global bit in the PDE’s and PTE’s
and the CR4.PGE enable bit are
supported.

14 MCA 0 Machine Check Architecture The Machine Check Architecture is
supported, specifically the MCG_CAP
register.

15-22 R Reserved Do not rely on its value.

23 MMX
technology

1 Intel Architecture MMX™
technology supported

The processor supports the MMX
technology instruction set extensions to
the Intel Architecture.

24-31 R Reserved Do not rely on its value.

* Indicates that APIC is present and hardware enabled (software disabling does not affect this bit).
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The family field for the Pentium processor family is 0101 (5H). The model value for the
Pentium processor (75/90/100/120/133/150/166/200) is 0010 (2H) or 0111 (7H), and the
model value for the Pentium processor with MMX technology is 0100 (4H).

NOTE

Use the MMX technology feature bit (bit 23) in the EFLAGS register, not the
model value, to detect the presence of the MMX technology feature set.

For specific information on the stepping field, consult the Pentium processor family
Specification Update. The future Pentium OverDrive processor will not have the same values
in EAX as the Pentium processor (75/90/100/120/133/150/166/200) or the Pentium processor
with MMX technology. The type field is defined in Table 2-11.

Table 2-11.  EAX Type Field Values

Bit 13 Bit 12 Processor Type

0 0 Pentium® processor (75/90/100/120/133/150/166/200) or
Pentium processor with MMX™ technology.

0 1 Future Pentium OverDrive® processor

1 0 Dual Pentium processor

1 1 Reserved

2.13. MODEL SPECIFIC REGISTERS
Each Pentium processor contains certain Model Specific Registers that are used in execution
tracing, performance monitoring, testing, and machine check errors. They are unique to that
Pentium processor and may not be implemented in the same way in future processors.

Two instructions, RDMSR and WRMSR (read/write model specific registers) are used to
access these registers. When these instructions are executed, the value in ECX specifies which
model specific register is being accessed.

Software must not depend on the value of reserved bits in the model specific registers. Any
writes to the model specific registers should write “0” into any reserved bits.

For information on Model Specific Registers and Functions, refer to Chapter 16 of this
document.
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CHAPTER 3
MICROPROCESSOR INITIALIZATION AND

CONFIGURATION

This chapter covers microprocessor initialization and configuration information for both uni-
processor and dual-processor implementations of the Pentium processor family. For
configuration information on symmetric dual-processing mode, refer to section 3.4.

Before normal operation of the Pentium processor can begin, the Pentium processor must be
initialized by driving the RESET pin active. The RESET pin forces the Pentium processor to
begin execution in a known state. Several features are optionally invoked at the falling edge of
RESET: Built-in-Self-Test (BIST), Functional Redundancy Checking and Tristate Test Mode.

In addition to the standard RESET pin, the Pentium processor has implemented an
initialization pin (INIT) that allows the processor to begin execution in a known state without
disrupting the contents of the internal caches or the floating-point state.

This chapter describes the Pentium processor power up and initialization procedures as well as
the test and configuration features enabled at the falling edge of RESET.

3.1. POWER UP SPECIFICATIONS
During power up, RESET must be asserted while VCC is approaching nominal operating
voltage to prevent internal bus contention which could negatively affect the reliability of the
processor.

It is recommended that CLK begin toggling within 150 ms after VCC reaches its proper
operating level. For Pentium processors with MMX technology, it is recommended that the
CLK signal should be toggling within 150 ms after the last Vcc plane stabilizes. This
recommendation is only to ensure long term reliability of the device.

In order for RESET to be recognized, the CLK input needs to be toggling. RESET must
remain asserted for 1 millisecond after VCC and CLK have reached their AC/DC
specifications.

3.2. TEST AND CONFIGURATION FEATURES (BIST, FRC,
TRISTATE TEST MODE)

The INIT, FLUSH#, and FRCMC# inputs are sampled when RESET transitions from high to
low to determine if BIST will be run, or if tristate test mode or checker mode will be entered
(respectively).
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If RESET is driven synchronously, these signals must be at their valid level and meet setup
and hold times on the clock before the falling edge of RESET. If RESET is asserted
asynchronously, these signals must be at their valid level two clocks before and after RESET
transitions from high to low.

3.2.1. Built In Self-Test
Self-test is initiated by driving the INIT pin high when RESET transitions from high to low.

No bus cycles are run by the Pentium processor during self test. The duration of self test is
approximately 219 core clocks. Approximately 70% of the devices in the Pentium processor
are tested by BIST.

The Pentium processor BIST consists of two parts: hardware self-test and microcode self-test.

During the hardware portion of BIST, the microcode ROM and all large PLAs are tested. All
possible input combinations of the microcode ROM and PLAs are tested.

The constant ROMs, BTB, TLBs, and all caches are tested by the microcode portion of BIST.
The array tests (caches, TLBs and BTB) have two passes. On the first pass, data patterns are
written to arrays, read back and checked for mismatches. The second pass writes the
complement of the initial data pattern, reads it back, and checks for mismatches. The constant
ROMs are tested by using the microcode to add various constants and check the result against
a stored value.

Upon successful completion of BIST, the cumulative result of all tests are stored in the EAX
register. If EAX contains 0h, then all checks passed; any non-zero result indicates a faulty unit.
Note that if an internal parity error is detected during BIST, the processor will assert the
IERR# pin and attempt to shutdown.

3.2.2. Tristate Test Mode
When the FLUSH# pin is sampled low when RESET transitions from high to low, the Pentium
processor enters tristate test mode. The Pentium processor floats all of its output pins and bi-
directional pins including pins which are never floated during normal operation (except TDO).
Tristate test mode can be initiated in order to facilitate testing board interconnects. The
Pentium processor remains in tristate test mode until the RESET pin is asserted again.

3.2.3. Functional Redundancy Checking
The functional redundancy checking master/checker configuration input is sampled when
RESET is high to determine whether the Pentium processor is configured in master mode
(FRCMC# high) or checker mode (FRCMC# low). Note, the Pentium processor with MMX
technology does not support FRC mode.
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The final master/checker configuration of the Pentium processor is determined the clock
before the falling edge of RESET.  When configured as a master, the Pentium processor drives
its output pins as required by the bus protocol. When configured as a checker, the Pentium
processor tristates all outputs (except IERR#, PICD0, PICD1 and TDO) and samples the
output pins (that would normally be driven in master mode). If the sampled value differs from
the value computed internally, the Pentium processor asserts IERR# to indicate an error. Note
that IERR# will not be asserted due to an FRC mismatch until two clocks after the ADS# of
the first bus cycle (or in the third clock of the bus cycle).

FINIT/FNINIT must be used to initialize the FPU state prior to using FSAVE/FNSAVE in
FRC mode to avoid an FRC error caused by differences in the unitialized FPU state. The
initialization should be done before other FPU activity so that it does not corrupt the previous
state.

3.2.4. Lock Step APIC Operation
Lock Step operation is entered by holding BE4# high during the falling edge of RESET. Lock
Step operation is not supported by the Pentium processor with MMX technology.

Lock Step operation guarantees recognition of an interrupt on a specific clock by two
processors operating together that are using the APIC as the interrupt controller. This
functionality is related to FRC operation, but FRC on the APIC pins is not fully supported in
this way. There is no FRC comparator on the APIC pins, but mismatches on these pins will
result in a mismatch on other pins of the processor.

Fault tolerant systems implemented with multiple processors running identical code sequences
and generating identical bus cycles on all clocks may utilize Lock Step operation.

Setup and Hold time specifications PICCLK (in relation to CLK) are added for this
funtionality. Additionally, there is a requirement to sustain specific integer ratios between the
frequencies of PICCLK and CLK. This ratio should support both the maximum bus frequency
of the device as well as the maximum frequency of PICCLK. Details of these specifications
can be found in Chapter 7 of this manual.

3.3. INITIALIZATION WITH RESET, INIT AND BIST
Two pins, RESET and INIT, are used to reset the Pentium processor in different manners. A
“cold” or “power on” RESET refers to the assertion of RESET while power is initially being
applied to the Pentium processor. A “warm” RESET refers to the assertion of RESET or INIT
while VCC and CLK remain within specified operating limits.

Table 3-1 shows the effect of asserting RESET and/or INIT.
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Table 3-1.  Pentium ® Processor Reset Modes

RESET INIT BIST Run?
Effect on Code and

Data Caches
Effect on FP

Registers
Effect on BTB and

TLBs

0 0 No n/a n/a n/a

0 1 No None None Invalidated

1 0 No Invalidated Initailized Invalidated

1 1 Yes Invalidated Initialized Invalidated

Toggling either the RESET pin or the INIT pin individually forces the Pentium processor to
begin execution at address FFFFFFF0h. The internal instruction cache and data cache are
invalidated when RESET is asserted (modified lines in the data cache are NOT written back).
The instruction cache and data cache are not altered when the INIT pin is asserted without
RESET. In both cases, the branch target buffer (BTB) and translation lookaside buffers (TLBs)
are invalidated.

After RESET (with or without BIST) or INIT, the Pentium processor will start executing
instructions at location FFFFFFF0H. When the first Intersegment Jump or Call instruction is
executed, address lines A20-A31 will be driven low for CS-relative memory cycles and the
Pentium processor will only execute instructions in the lower one Mbyte of physical memory.
This allows the system designer to use a ROM at the top of physical memory to initialize the
system.

RESET is internally hardwired and forces the Pentium processor to terminate all execution and
bus cycle activity within 2 clocks. No instruction or bus activity will occur as long as RESET
is active. INIT is implemented as an edge triggered interrupt and will be recognized when an
instruction boundary is reached. As soon as the Pentium processor completes the INIT se-
quence, instruction execution and bus cycle activity will continue at address FFFFFFF0h even
if the INIT pin is not deasserted.

At the conclusion of RESET (with or without self-test) or INIT, the DX register will contain a
component identifier. The upper byte will contain 05h and the lower byte will contain a
stepping identifier.

Table 3-2 defines the processor state after RESET, INIT and RESET with BIST (built in
self-test).

Table 3-2.  Register State after RESET, INIT and BIST

Storage Element RESET (No BIST) RESET (BIST) INIT

EAX 0 0 if pass 0

EDX 0500+stepping 0500+stepping 0500+stepping

ECX, EBX, ESP, EBP, ESI, EDI 0 0 0

EFLAGS 2 2 2

EIP 0FFF0 0FFF0 0FFF0
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Table 3-2.  Register State after RESET, INIT and BIST (Contd.)

Storage Element RESET (No BIST) RESET (BIST) INIT

CS selector = F000 selector = F000 selector = F000

AR = P, R/W, A AR = P, R/W, A AR = P, R/W, A

base = FFFF0000 base = FFFF0000 base = FFFF0000

limit = FFFF limit = FFFF limit = FFFF

DS, ES, FE, GS, SS selector = 0 selector = 0 selector = 0

AR = P, R/W, A AR = P, R/W, A AR = P, R/W, A

base = 0 base = 0 base = 0

limit = FFFF limit = FFFF limit = FFFF

(I/G/L)DTR, TSS selector = 0 selector = 0 selector = 0

base = 0 base = 0 base = 0

AR = P, R/W AR = P, R/W AR = P, R/W

limit = FFFF limit = FFFF limit = FFFF

CR0 60000010 60000010 Note 2

CR2, 3, 4 0 0 0

DR3-0 0 0 0

DR6 FFFF0FF0 FFFF0FF0 FFFF0FF0

DR7 00000400 00000400 00000400

Time Stamp Counter 0 0 Unchanged

Control and Event Select 0 0 Unchanged

TR12 0 0 Unchanged

All other MSR’s Undefined Undefined Unchanged

CW 0040 0040 Unchanged

SW 0 0 Unchanged

TW 5555 5555 Unchanged

FIP, FEA, FCS, FDS, FOP 0 0 Unchanged

FSTACK 0 0 Unchanged

SMBASE 30000 30000 Unchanged

Data and Code Cache Invalid Invalid Unchanged

Code Cache TLB, Data Cache
TLB, BTB, SDC

Invalid Invalid Invalid

NOTES:
1. Register States are given in hexadecimal format.
2. CD and NW are unchanged, bit 4 is set to 1, all other bits are cleared.
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3.3.1. Recognition of Interrupts after RESET
In order to guarantee recognition of the edge sensitive interrupts (FLUSH#, NMI, R/S#, SMI#)
after RESET or after RESET with BIST, the interrupt input must not be asserted until four
clocks after RESET is deasserted, regardless of whether BIST is run or not.

3.3.2. Pin State during/after RESET
The Pentium processor recognizes and will respond to HOLD, AHOLD and BOFF# during
RESET. Figure 3-1 shows the processor state during and after a power on RESET if HOLD,
AHOLD, and BOFF# are inactive. Note that the address bus (A31-A3, AP, BE7#-BE0#) and
cycle definition pins (M/IO#, D/C#, W/R#, CACHE#, SCYC, PCD, PWT, PM0/BP0,
PM1/BP1 and LOCK#) are undefined from the time RESET is asserted until the start of the
first bus cycle.

The following lists the state of the output pins after RESET assuming HOLD, AHOLD and
BOFF# are inactive, boundary scan is not invoked, and no internal parity error is detected.

• High: LOCK#, ADS#, ADSC#, APCHK#, PCHK#, IERR#, HIT#, HITM#,
FERR#, SMIACT#

• Low: HLDA, BREQ, BP3, BP2, PRDY

• High Impedance: D63-D0, DP7-DP0

• Undefined: A31-A3, AP, BE7#-BE0#, W/R#, M/IO#, D/C#, PCD, PWT,
CACHE#, TDO, SCYC, PM0/BP0, PM1/BP1
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CLK

RESET

INT, FLUSH#
FRCMC# (SYNC)

Tx Tx Tx Tx Tx T1 T1 T1 T1

1

5

3

INT, FLUSH#
FRCMC# (ASYNC) 4

ADS#, ADSC# Undefined 219 Core Clock if BIST

Valid
BREQ, HLDA,

BP3, BP2, PRDY
Undefined

150-200 Clocks if no BIST

Valid

A31-A3, M/IO#, D/C#,
W/R#, SCYC, CACHE#,

BE7#-BE0#, AP, PCD,
PM0/BP0, PM1/BP1,

TDO, PWT

Undefined

Valid
LOCK#, APCHK#,

PCHK#, IERR#,
HIT#, HITM#, FERR#,

SMIACT#

Undefined

D63-D0
DP7-DP0

PD826

NOTES:

1. RESET must meet setup and hold times to guarantee recognition on a specific clock edge. If RESET
does not need to be recognized on a specific clock edge it may be asserted asynchronously.

2. At power up, RESET needs to be asserted for 1 ms after VCC and CLK have reached their AC/DC
specifications. For warm reset, RESET needs to be asserted for at least 15 clocks while VCC and CLK
remain within specified operating limits.

3. If RESET is driven synchronously, FLUSH#, FRCMC# and INIT must be at their valid level and meet
setup and hold times to the clock before the falling edge of RESET.

4. If RESET is driven asynchronously, FLUSH#, FRCMC# and INIT must be at their valid level two clocks
before and after the falling edge of RESET.

5. An assertion of RESET takes at least two clocks to affect the pins.

Figure 3-1.  Pin States during RESET
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3.4. MANAGING AND DESIGNING WITH THE SYMMETRICAL
DUAL PROCESSING CONFIGURATION

3.4.1. Dual Processor Bootup Protocol

3.4.1.1. BOOTUP OVERVIEW

Systems using the Pentium processor may be equipped with a second processor socket.  For
correct system operation, the Pentium processor must be able to identify the presence and type
of the second processor (a Dual processor or a future Pentium OverDrive processor).
Furthermore, since upgrade processors will typically be installed in the field by end users,
system configuration may change between any two consecutive power-down/up sequences.
The system must therefore have a mechanism to ascertain the system configuration during
boot time.  The boot up handshake protocol provides this mechanism.

3.4.1.2. BIOS / OPERATING SYSTEM REQUIREMENTS

The BIOS or HAL (hardware abstraction layer) of the operating system software should be
generic, independent of the kind of OEM or upgrade processor present in the system.
BIOS/HAL are specific to the system hardware, and should not need any change when an
upgrade processor is installed.  For dual processors, if the BIOS is not DP-ready, it will be up
to the operating system to initialize and configure the dual processor appropriately.

The CPUID instruction is used to deliver processor-specific information.  The Pentium
processor CPUID status has been extended to supply the processor type information which
includes “turbo-upgrade” classification (“type” field:  bits 13-12 = 0-1).  For upgradability
with a future Pentium OverDrive processor, system software must allow the type field of the
EAX register following the CPUID instruction to contain the values for both the Pentium
processor and the future Pentium OverDrive processor.  Refer to Section 2.12 for details.  Note
also that the model field of the CPUID will change for the future Pentium OverDrive
processor.

 

03478111213

steppingmodelfamilytype

31

0 (reserved)

14

Figure 3-2.  EAX Bit Assignments for CPUID
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3.4.1.3. SYSTEM REQUIREMENTS

The number of Dual processors per Primary processor is limited to 1.

This bootup handshake protocol requires enabling the local APIC module using the APICEN
pin.  The startup IPI must be sent via the local APICs.  Once the Dual processor has been
initialized, software can later disable the local APIC module using several methods.  These
methods and their considerations are discussed in Section 2.9.

The protocol does not preclude more generic multiprocessing systems where multiple pairs of
Pentium processor Primary and Dual processors may exist on the system bus.

3.4.1.4. START-UP BEHAVIOR

On RESET and INIT (message or pin), the Pentium processor begins execution at the reset
vector (0FFFFFFF0H).  The Dual processor waits for a startup IPI from the BIOS or operating
system via the local APIC of the Pentium processor.  The INIT IPI can be used to put the
Pentium processor or Dual processor to sleep (since, once the INIT IPI is received, the CPU
must wait for the startup IPI).

The startup IPI is specifically provided to start the Dual processor’s execution from a location
other than the reset vector, although it can be used for the Pentium processor as well.  The
startup IPI is sent by the system software via the local APIC by using a delivery mode of
110B.  The startup IPI  must include an 8-bit vector which is used to define the starting
address. The starting address = 000 VV 000 h, where VV indicates the vector field (in hex)
passed through the IPI.

The 8-bit vector defines the address of a 4 Kbyte page in the Intel Architecture Real Mode
Space (1 Mbyte space).  For example, a vector of 0cdH specifies a startup memory address of
000cd000H. This value is used by the processor to initialize the segment descriptor for the
upgrade’s CS register as follows:

• The CS selector is set to the startup memory address/16 (real mode addressing)

• The CS base is set to the startup memory address

• The CS limit is set to 64 Kbytes

• The current privilege level (CPL) and instruction pointer (IP) are set to 0

NOTE

Vectors of 0A0H to 0BFH are reserved by Intel.

The benefit of the startup IPI is that it does not require the APIC to be software enabled (the
APIC must be hardware enabled via the APICEN pin) and does not require the interrupt table
to be programmed.   Startup IPIs are non-maskable and can be issued at any time to the
Pentium processor or Dual processor.  If the startup IPI message is not preceded by a RESET
or INIT (message or pin), it will be ignored.

It is the responsibility of the system software to resend the startup IPI message if there is an
error in the IPI message delivery.   Although the APIC need not be enabled in order to send the
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startup IPI, the advantage to enabling the APIC prior to sending the startup IPI is to allow
APIC error handling to occur via the APIC error handling entry of the local vector table
(ERROR INT or LVT3 at APIC address 0FEE00370).  Otherwise, the system software would
have to poll the delivery status bit of the interrupt command register to determine if the IPI is
pending (Bit 12 of the ICR=1) and resend the startup IPI if the IPI remains pending after an
appropriate amount of time.

3.4.1.5. DUAL-PROCESSOR OR UPGRADE PRESENCE INDICATION

The bootup handshake protocol becomes aware that an additional processor is present through
the DPEN# pin.  The second processor is guaranteed to drive this signal low during RESETs
falling edge.  If the system needs to remember the presence of a second processor for future
use, it must latch the state of the DPEN# pin during the falling edge of RESET.

3.4.2. Dual-Processor Arbitration
The Pentium processor incorporates a private arbitration mechanism that allows the Primary
and Dual processors to arbitrate for the shared processor bus without assistance from a bus
controller.  The arbitration scheme is architected in such a way that the dual processor pair will
appear as a single processor to the system.

The arbitration logic uses a fair arbitration scheme.  The arbitration state machine was
designed to efficiently use the processor bus bandwidth.  In this spirit, the dual processor pair
supports inter-CPU pipelining of most bus transactions.  Furthermore, the arbitration
mechanism does not introduce any dead clocks on bus transactions.

3.4.2.1. BASIC DUAL-PROCESSOR ARBITRATION MECHANISM

The basic set of arbitration premises requires that the Pentium processor check the second
socket (Socket 7) for a processor every time the processor enters reset.  To perform the
checking of the Socket 7 and to perform the actual boot sequence, the Pentium processor in the
296-pin socket will always come out of reset as the MRM.  This will require the part in the
Socket 7 to always come out of reset as the LRM.

The LRM processor will request ownership of the processor bus by asserting the private
arbitration request pin, PBREQ#.  The processor that is currently the MRM and owns the bus,
will grant the bus to the LRM as soon as any pending bus transactions have completed.  The
MRM will grant the bus to the LRM immediately if that CPU has a pipelined cycle to issue.
The MRM will notify that the LRM can assume ownership by asserting the private arbitration
grant pin, PBGNT#.  The PBREQ# pin is always the output of the LRM and the PBGNT# is
always an input to the LRM.

A processor can park on the processor bus if there are no requests from the LRM.  A parked
processor can be running cycles or just sitting idle on the bus.  If a processor just ran a cycle
on the bus and has another cycle pending without an LRM request, the processor will run the
second cycle on the bus.
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Locked cycles present an exception to the simple arbitration rules.  All locked cycles will be
performed as atomic operations without interrupt from the LRM.  The case where a locked
access causes an assertion of PHITM# by the LRM provides an exception to this rule.  In this
case, the MRM will grant the bus to the LRM and allow the writeback to complete.

The normal system arbitration pins (HOLD, HLDA, BOFF#) will function the same as in uni-
processor mode.  Thus, the dual-processor pair will always factor the state of the processor bus
as well as the state of the local arbitration before actually running a cycle on the processor bus.

3.4.2.2. DUAL-PROCESSOR ARBITRATION INTERFACE

Figure 3-3 details the hardware arbitration interface.

NOTE

For proper operation, PBREQ# and PBGNT# must not be loaded by the
system.

 

Pr imary
Processor

A[31:3]             D[63:0]

Dual
Processor

PBREQ#

PBGNT#

BOFF#

AHOLD

LOCK#

BREQ

HOLD

HLDA

Processor Control

Processor Data Bus

Processor Address Bus

D[63:0]             A[31:3]

PBREQ#

PBGNT#

BOFF#

AHOLD

LOCK#

BREQ

HOLD

HLDA

PP0024

Figure 3-3.  Dual-Processor Arbitration Interface

Figure 3-4 shows a typical arbitration exchange.

Diagram (a) of Figure 3-4 shows PA running a cycle on the processor bus with a transaction
pending.  At the same time, PB has a cycle pending and has asserted the PBREQ# pin to notify
PA that PB needs the bus.
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Diagram (b) of Figure 3-4 shows PA’s cycle completing with an NA# or the last BRDY#.
Note here that PA does not run the pending cycle, instead, PA grants the bus to PB to allow PB
to run its pending cycle.

In Diagram (c) of Figure 3-4, PB is running the pending transaction on the processor bus, and
PA asserts a request for the bus to PB.  The bus is granted to PA, and Diagram (d) of
Figure 3-4 shows PA running the last pending cycle on the bus.
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Figure 3-4.  Typical Dual-Processor Arbitration Example

3.4.2.3. DUAL-PROCESSOR ARBITRATION FROM A PARKED BUS

When both processors are idle on the CPU bus, and the LRM wants to issue an ADS#, there is
an arbitration delay in order that it may become the MRM.  Figure 3-5 shows how the Pentium
processor dual-processor arbitration mechanism handles this case.

This example shows the arbitration necessary for the LRM to gain control of the idle CPU bus
in order to drive a cycle.  In this example, PA is the Primary processor, and PB is the Dual
processor.
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Diagram (a) of Figure 3-5 shows PB requesting the bus from the MRM (PA).  Diagram (b) of
Figure 3-5 shows PA granting control of the bus to PB.  Diagram (c) of Figure 3-5 shows PB,
now the MRM, issuing a cycle.
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Figure 3-5.  Arbitration from LRM to MRM When Bus is Parked

3.4.3. Dual-Processor Cache Consistency
The Pentium processor incorporates a mechanism to maintain cache coherency with the Dual
processor.  The mechanism allows a dual processor to be inserted into the upgrade socket
without special consideration to the system hardware or software.  The presence or absence of
the dual processor is totally transparent to the system.
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3.4.3.1. BASIC CACHE CONSISTENCY MECHANISM

A private snoop interface has been added to the Pentium processor.  The interface consists of
two pins (PHIT#, PHITM#) that only connect between the two sockets.  The dual processors
will arbitrate for the system bus via two private arbitration pins (PBREQ#, PBGNT#).

The LRM processor will initiate a snoop sequence for all ADS# cycles to memory that are
initiated by the MRM.  The LRM processor will assert the private hit indication (PHIT#) if the
data accessed (read or written) by the MRM matches a valid cache line in the LRM.  In
addition, if the data requested by the MRM matches a valid cache line in the LRM that is in the
modified state, the LRM will assert the PHITM# signal.  The system snooping indication
signals (HIT#, HITM#) will not change state as a result of a private snoop.

The Pentium processor will support system snooping via the EADS# pin in the same manner
that the Pentium processor supports system snooping.

The private snoop interface is bi-directional.  The processor that is currently the MRM will
sample the private snoop interface, while the processor that is the LRM will drive the private
snoop signals.

The MRM will initiate a self backoff sequence if the MRM detects an assertion of the
PHITM# signal while running a bus cycle.  The self backoff sequence will involve the
following steps:

1. The MRM will allow the cycle that was requested on the bus to finish.  However, the
MRM will ignore the data returned by the system.

2. The MRM-LRM will exchange ownership of the bus (as well as MRM-LRM state) to
allow the LRM to write the modified data back to the system.

3. The bus ownership will exchange one more time to allow the original bus master
ownership of the bus.  At this point the MRM will retry the cycle, receiving the fresh data
from the system or writing the data once again.

The MRM will use an assertion of the PHIT# signal as an indication that the requested data is
being shared with the LRM.  Independent of the WB/WT# pin, a cache line will be placed in
the cache in the shared state if PHIT# is asserted.  This will make all subsequent writes to that
line externally visible until the state of the line becomes exclusive (E or M states).  In a
uniprocessor system, the line may have been placed in the cache in the E state.  In this
situation, all subsequent writes to that line will not be visible on the bus until the state is
changed to I.

3.4.3.2. CACHE CONSISTENCY INTERFACE

Figure 3-6 details the hardware cache consistency interface.

NOTE

For proper operation, PHIT# and PHITM# must not be loaded by the system.
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3.4.3.3. PIN MODIFICATIONS DUE TO THE DUAL-PROCESSOR

The Pentium processor, when operating in dual processing mode, modifies the functionality of
the following signals:

• A20M#, ADS#, BE4#-BE0#, CACHE#, D/C#, FERR#, FLUSH#, HIT#, HITM#, HLDA,
IGNNE#, LOCK#, M/IO#, PCHK#, RESET, SCYC, SMIACT#, W/R#

Table 3-10 summarizes the functional changes of all the pins in dual processor mode.

3.4.3.4. LOCKED CYCLES

The Pentium processor implements atomic bus transactions by asserting the LOCK# pin.
Atomic transactions can be initiated explicitly in software by using a LOCK prefix on specific
instructions.  In addition, atomic cycles may be initiated implicitly for instructions or
transactions that perform locked read-modify-write cycles.  By asserting the LOCK# pin, the
Pentium processor indicates to the system that the bus transaction in progress can not be
interrupted.

3.4.3.4.1. Locked Cycle Cache Consistency

Lock cycles adhere to the following sequence:

1. An unlocked writeback will occur if a cache line is in the modified state in the MRM
processor.  Two unlocked write back cycles may be required if the locked item spans two
cache lines that are both in the modified state.

2. A locked read to a cache line that is in the shared, exclusive or invalid state is always run
on the system bus.  The cache line will always be moved to the invalid state at the
completion of the cycle.  A locked read cycle that is run by the MRM could hit a line that
is in the modified state in the LRM.  In this case, the LRM will assert the PHITM# signal
indicating that the requested data is modified in the LRM data cache.  The MRM will
complete the locked read, but will ignore the data returned by the system.  The
components will exchange ownership of the bus, allowing the Modified cache line to be
written back with LOCK# still active.  The sequence will complete with the original bus
owner re-running the locked read followed by a locked write.  The sequence would be as
shown in Figure 3-7.

In Figure 3-7, the small box inside each CPU indicates the state of an individual cache line in
the sequence shown above.  Diagram (c) of Figure 3-7 shows the locked writeback occurring
as a result of the inter-processor snoop hit to the M-state line.
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Figure 3-7.  Dual-Processor Cache Consistency for Locked Accesses

3.4.3.5. EXTERNAL SNOOP EXAMPLES

3.4.3.5.1. Example 1:  During a Write to an M-State Line

The following set of diagrams illustrates the actions performed when one processor attempts a
write to a line that is contained in the cache of the other processor.  In this situation, the cached
line is in the M state in the LRM processor.  The external snoop and the write are to the same
address in this example.

In this example, PA is the Primary processor, and PB is the Dual processor.

In diagram (a) of Figure 3-8, processor PA starts a write cycle on the bus to a line that is in the
M state in processor PB.  Processor PB notifies PA that the write transaction has hit an M-state
line in diagram (b) of Figure 3-8 by asserting the PHITM# signal.  The MRM (PA) completes
the write cycle on the bus as if the LRM processor did not exist.

In this example, an external snoop happens just as the write cycle completes on the bus, but
before PB has a chance to write the modified data back to the system memory.  Diagram (b) of
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Figure 3-8 shows PB asserting the HITM# signal, informing the system that the snoop address
is cached in the dual processing pair and is in the modified state.  The external snoop in this
example is hitting the same line that caused the PHITM# signal to be asserted.

Diagram (c) of Figure 3-8 shows that an arbitration exchange has occurred on the bus, and PB
is now the MRM.  Processor PB writes back the M state line, and it will appear to the system
as if a single processor was completing a snoop transaction.

Finally, diagram (d) of Figure 3-8 shows processor PA re-running the original write cycle after
PB has granted the bus back to PA.
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Figure 3-8.  Dual-Processor Cache Consistency for External Snoops

3.4.3.5.2. Example 2:  During an MRM Self-Backoff

The following diagrams show an example where an external snoop hits an M-state line during
a self backoff sequence.

In this example, PA is the Primary processor, and PB is the Dual processor.
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In diagram (a) of Figure 3-9 processor PA initiates a write cycle that hits a line that is modified
in processor PB.  In diagram of (b) of Figure 3-9, processor PB notifies PA that the line is
modified in its cache by asserting the PHITM# signal.

Diagram (c) of Figure 3-9 shows an external snoop occurring just as the bus arbitration has
exchanged ownership of the bus.  Processor PB asserts the HITM# signal to notify the system
that the external snoop has hit a line in the cache.  In this example, the external snoop hits a
different line that was just hit on the private snoop.

In diagram (d) of Figure 3-9, processor PB takes ownership of the processor bus from PA.
Processor PB initiates a writeback of the data just hit on the external snoop even though a
writeback due to the private snoop is pending.  The external snoop causes processor PB to
delay the writeback that was initiated by the private snoop (to line 1).

Diagram (f) of Figure 3-9 shows the writeback of the modified data hit during the initial
private snoop.  Processor PA then restarts the write cycle for the second time, and completes
the write cycle in Diagram (h) of Figure 3-9.
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Figure 3-9.  Dual-Processor Cache Consistency for External Snoops
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3.4.3.6. STATE TRANSITIONS DUE TO DUAL-PROCESSOR CACHE
CONSISTENCY

The following tables outline the state transitions that a cache line can encounter during various
conditions.

Table 3-3.  Read Cycle State Transitions Due to Dual-Processor

Present State Pin Activity Next State Description

M n/a M Read hit.  Data is provided to the
processor core by the cache.  No bus
activity.

E n/a E Read hit.  Data is provided to the
processor core by the cache.  No bus
activity.

S n/a S Read hit.  Data is provided to the
processor core by the cache.  No bus
activity.

I CACHE#(L) &
KEN#(L) &
WB/WT#(H) &
PHIT#(H) &
PWT(L)

E Cache miss.  The cacheability
information indicates that the data is
cacheable.  A bus cycle is requested to
fill the cache line.  PHIT#(H) indicates
that the data is not shared by the LRM
processor.

I CACHE#(L) &
KEN#(L) &
[WB/WT#(L) +
PHIT#(L) +
PWT(H)]

S Cache miss.  The line is cacheable and
a bus cycle is requested to fill the cache
line.  In this case, either the system or
the LRM is sharing the requested data.

I CACHE#(H) +
KEN#(h)

I Cache miss.  The system or the
processor indicates that the line is not
cacheable.

NOTE:
The assertion of PHITM# would cause the requested cycle to complete as normal, with the requesting
processor ignoring the data returned by the system.  The LRM processor would write the data back and the
MRM would retry the cycle.  This is called a self backoff cycle.
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Table 3-4.  Write Cycle State Transitions Due to Dual-Processor

Present State Pin Activity Next State Description

M n/a M Write hit.  Data is written directly to the
cache.  No bus activity.

E n/a M Write hit.  Data is written directly to the
cache.  No bus activity.

S PWT(L) &
WB/WT#(H)

E Write hit.  Data is written directly to the
cache.  A write-through cycle will be
generated on the bus to update memory
and invalidate the contents of other
caches.  The LRM will invalidate the line
if it is sharing the data.  The state
transition from S to E occurs AFTER the
write completes on the processor bus.

S PWT(H) +
WB/WT#(L)

S Write hit.  Data is written directly to the
cache.  A write-through cycle will be
generated on the bus to update memory
and invalidate the contents of other
caches.  The LRM will invalidate the line
if it is sharing the data.

I n/a I Write miss (the Pentium® processor
does not support write allocate).  The
LRM will invalidate the line if it is sharing
the data.

Table 3-5.  Inquire Cycle State Transitions Due to External Snoop

Present State
Next State

(INV=1)
Next State

(INV=0) Description

M I S Snoop hit to an M-state line.  HIT# and
HITM# will be asserted, followed by a
writeback of the line.

E I S Snoop hit.  HIT# will be asserted.

S I S Snoop hit.  HIT# will be asserted.

I I I Snoop miss.
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Table 3-6.  State Transitions in the LRM Due to Dual-Processor “Private” Snooping

Present State
Next State

(MRM Write)
Next State

(MRM Read) Description

M I S Snoop hit to an M state line.  PHIT# and
PHITM# will be asserted, followed by a
write-back of the line.  Note that HIT#
and HITM# will NOT be asserted.

E I S Snoop hit.  PHIT# will be asserted.

S I S Snoop hit.  PHIT# will be asserted.

I I I Snoop miss.

3.5. DESIGNING WITH SYMMETRICAL DUAL PROCESSORS
Figure 3-10 shows how a typical system might be configured to support the Dual processor.
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Figure 3-10.  Dual-Processor Configuration

Refer toTable 3-Error! Bookmark not defined.  for a complete list of dual processor signal
connection requirements.
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3.5.1. Dual Processor Bus Interface
The Pentium processor in the dual-processor configuration is designed to have an identical bus
interface to a standard Pentium processor system. The Pentium processor in dual processor
mode has the capability to run the following types bus of cycles:

• Single reads and writes from one processor.

• Burst reads and writes from one processor.

• Address pipelining with up to two outstanding bus cycles from one processor.

• Inter-processor address pipelining with up to two outstanding bus cycles, one from each
processor.

All cycles run by the two processors are clock accurate to corresponding Pentium processor
bus cycles.

3.5.1.1. INTRA- AND INTER-PROCESSOR PIPELINING

In uni-processor mode, the Pentium processor supports bus pipelining with the use of the NA#
pin.  The bus pipelining concept has been extended to the dual processor pair by allowing
inter-CPU pipelining.  This mechanism allows an exchange between LRM and MRM on
assertions of NA#.

When NA# is sampled low, the current MRM processor may drive one more cycle onto the
bus or it may grant the address bus and the control bus to the LRM.  The MRM will give the
bus to the LRM only if its current cycle can have another cycle pipelined into it.

The cacheability (KEN#) and cache policy (WB/WT#) indicators for the current cycle are
sampled either in the same clock that NA# is sampled or with the first BRDY# of the current
cycle, whichever comes first.

There are no restrictions on NA# due to dual processing mode.

Inter-CPU pipelining will not be supported in some situations as shown in Table 3-7.
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Table 3-7.  Primary and Dual Processor Pipelining

Primary and Dual Processor Pipelining

Cycle Types Inter-CPU Intra-CPU

First Cycle Pipelined Cycle Primary<>Dual Primary<>Primary Dual<>Dual

Write Back X No No No

LOCK# X No No No

X Write Back No No No

X LOCK# No No No

Write Write No Yes Yes

Write Read Yes Yes Yes

Read Write Yes Yes Yes

Read Read Yes Yes Yes

I/O I/O* Yes No No

NOTE:
*I/O write cycles may not be inter-processor pipelined into I/O write cycles.

The table indicates that, unlike the uni-processor Pentium processor system, back-to-back
write cycles will never be pipelined between the two processors.

The Pentium processor alone may pipeline I/O cycles into non-I/O cycles, non-I/O cycles into
I/O cycles, and I/O cycles into I/O cycles only for OUTS or INS (e.g. string instructions).  I/O
cycles may be pipelined in any combination (barring writes into writes) between the Primary
and Dual processors.

3.5.1.2. FLUSH# CYCLES

The on-chip caches can be flushed by asserting the FLUSH# pin.  The FLUSH# pin must be
connected together to both the Primary and Dual processor parts.  All cache lines in the
instruction cache as well as all lines in the data cache that are not in the modified state will be
invalidated when the FLUSH# pin is asserted.  All modified lines in the data cache will be
written back to system memory and then marked as invalid in the data cache.  The Pentium
processor will run a special bus cycle indicating that the flush process has completed.

The Pentium processor incorporates the following mechanism to present a unified view of the
cache flush operation to the system when used with a Dual processor part:

1. FLUSH# is asserted by the system.

2. The Dual processor requests the bus (if it is not already MRM when FLUSH# is
recognized).  The Dual processor will always perform the cache flush operation first, but
will not run a flush special cycle on the system bus.

3. The Dual processor completes writebacks of modified cache lines, and invalidates all
others.
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4. Once the Dual processor caches are completely invalid, the processor grants the bus to the
Primary processor.

5. The Primary processor completes any pending cycles.  The Primary processor may have
outstanding cycles if the Dual processor initiated its flush operation prior to the Primary
processor completing pending operations.

6. Primary processor flushes both of its internal caches and runs the cache flush special
cycle.  The Primary processor maintains its status of MRM.  The Dual processor halts all
code execution while the Primary processor is flushing its caches, and does not begin
executing code until it recognizes the flush acknowledge special cycle.

The atomic flush operation assumes that the system can tolerate potentially longer interrupt
latency during flush operations.  The interrupt latency in a dual processor system can be
double the interrupt latency in a single processor system during flush operations.

The Pentium processor primary cache can be flushed using the WBINVD instruction.  In a
dual processor system, the WBINVD instruction only flushes the cache in the processor that
executed the instruction.  The other processor’s cache will be intact.

If the FLUSH# signal is de-asserted before the corresponding Flush Acknowledge cycle, the
FLUSH# signal must not be asserted again until the Flush Acknowledge cycle is completed.
Similarly, if the FLUSH# signal is asserted in dual processing mode, it must be deasserted at
least one clock prior to BRDY# of the Flush Acknowledge cycle to avoid dual-processor
arbitration problems. This requirement does not apply to a uni-processor system.  In a dual
processor system, a single Flush Acknowledge cycle is generated after the caches in both
processors have been flushed.

WARNING

If  FLUSH# is recognized active a second time by the Primary and Dual
processors prior to the completion of the Flush Acknowledge special cycle,
the private bus arbitration state machines will be corrupted.

3.5.1.3. ARBITRATION EXCHANGE — WITH BUS PARKING

The dual processor pair supports a number of different types of bus cycles.  Each processor
can run single-transfer cycles or burst-transfer cycles.  A processor can only initiate bus cycles
if it is the MRM.  To gain ownership of the bus, the LRM processor will request the bus from
the MRM processor by asserting PBREQ#.

In response to PBREQ# the MRM will grant the address and the control buses to the LRM by
asserting PBGNT#.  If NA# is not asserted or if the current cycle on the bus is not capable of
being pipelined, the MRM will wait until the end of the active cycle before granting the bus to
the LRM.  Once PBGNT# is asserted, since the bus is idling, the LRM will immediately
become the MRM.  While the MRM, the processor owns the address and the control buses and
can therefore start a new cycle.
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3.5.1.4. BOFF#

If BOFF# is asserted, the dual-processor pair will immediately (in the next clock) float the
address, control, and data buses.  Any bus cycles in progress are aborted and any data returned
to the processor in the clock BOFF# is asserted is ignored.  In response to BOFF#, Primary and
Dual processors will float the same pins as it does when HOLD is active.

The Primary and Dual processors may reorder cycles after a BOFF#.  The reordering will
occur if there is inter-CPU pipelining at the time of the BOFF#, but the system cannot change
the cacheability of the cycles after the BOFF#.  Note that there could be a change of bus
ownership transparent to the system while the processors are in the backed-off state. Table 3-8
illustrates the flow of events which would result in cycle reordering due to BOFF#:

Table 3-8.  Cycle  Reordering Due to BOFF#

Time* Processor A System Processor B

0 ADS# driven -- --

1 -- NA# active --

2 -- -- ADS# driven

3 Bus float BOFF# active Bus float

4 -- EADS# active --

5 -- -- HITM# driven

6 -- BOFF# inactive --

7 -- -- Write back ‘M’ data

8 -- BRDY#s --

9 -- -- Restart ADS#

10 Restart ADS# -- --

NOTE:
*Time is merely sequential, NOT measured in CLKs.

3.5.1.5. BUS HOLD

The Pentium processor supports a bus hold/hold acknowledge protocol using the HOLD and
HLDA signals.  When the Pentium processor completes all outstanding bus cycles, it will
release the bus by floating the external bus, and driving HLDA active.  HLDA will normally
be driven two clocks after the later of the last BRDY# or HOLD being asserted, but may be up
to six clocks due to active internal APIC cycles.  Because of this, it is possible that an
additional cycle may begin after HOLD is asserted but before HLDA is driven.  Therefore,
asserting HOLD does not prevent a dual-processor arbitration from occurring before HLDA is
driven out.  Even if an arbitration switch occurs, no new cycles will be started after HOLD has
been active for two clocks.
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3.5.2. Dual Processing Power Management

3.5.2.1. STPCLK#

The Primary and Dual processor STPCLK# signals may be tied together or left separate.  Refer
to Chapter 14 for more information on stop clock and Autohalt.

3.5.2.2. SYSTEM MANAGEMENT MODE

The Pentium processor supports system management mode (SMM) with a processor inserted
in the upgrade socket.  SMM provides a means to implement power management functions as
well as operating system independent functions.  SMM in the Pentium processor consists of an
interrupt (SMI), an alternate address space and an instruction (RSM).  SMM is entered by
asserting the SMI# pin or delivering the SMI interrupt via the local APIC.

Although SMM functions the same when a Dual processor is inserted in Socket 5/Socket 7, the
dual processor operation of the system must be carefully considered.  The SMI# pins may be
tied together or not, depending upon the power management features supported.

In order to ensure proper SMM operation when a future Pentium OverDrive processor upgrade
is installed in the system, it is recommended that the SMI# and SMIACT# signals be
connected together.  Refer to Chapter 14 for more details.

3.5.3. Other Dual-Processor Considerations

3.5.3.1. STRONG WRITE ORDERING

The ordering of write cycles in the processor can be controlled with the EWBE# pin.  During
uniprocessor operation, the EWBE# pin is sampled by the Pentium processor with each
BRDY# assertion during a write cycle.  The processor will stall all subsequent write operations
to E or M state lines if EWBE# is sampled inactive.  If the EWBE# pin is sampled inactive, it
will continue to be sampled on every clock until it is found to be active.

In dual processing mode, each processor will track EWBE# independently of bus ownership.
EWBE# is sampled and handled independently between the two processors.  Only the
processor which owns the bus (MRM) samples EWBE#.  Once sampled inactive, the CPU will
stall subsequent write operations.

3.5.3.2. BUS SNARFING

The dual processor pair does not support cache-to-cache transfers (bus snarfing).  If a
processor PB requires data that is modified in processor PA, processor PA will write the data
back to memory.  After PA has completed the data transfer, PB will run a read cycle to
memory.  Where PA is either the Primary or the Dual processor, and PB is the other processor.
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3.5.3.3. INTERRUPTS

A processor may need to arbitrate for the use of the bus as a result of an interrupt.  However,
from the simple arbitration model used by the Pentium processor, an interrupt is not a special
case.  There is no interaction between dual-processor support and the interrupt model in the
Pentium processor.

3.5.3.4. INIT SEQUENCES

The INIT operation in dual-processor mode is exactly the same as in uni-processor mode.  The
two INIT pins must be tied together.  However, in dual processor mode, the Primary processor
must send an IPI and a starting vector to the Dual processor via the local APIC modules.

3.5.3.5. BOUNDARY SCAN

The Pentium processor supports the full IEEE JTAG specification.  The system designer is
responsible to configure an upgrade ready system in such a way that the addition of a Dual
processor in Socket 7 allows the boundary scan chain to functional as normal.  This could be
implemented with a jumper in Socket 7 that connects the TDI and TDO pins.  The jumper
would then be removed when the dual processor is inserted.

Alternatively, Socket 7 could be placed near the end of the boundary scan chain in the system.
A multiplexer in the system boundary scan logic could switch between the TDO of the Primary
and the dual processors as a Dual processor part is inserted.  An illustration of this approach is
shown in Figure 3-11.

 

Primary
Processor

MUX

TDI TDO TDI TDO

Processor in Socket 5 Present

Level
Translator 

Socket 5

PP0050

Other
System Logic

TDI

TDO TDI

TDO

Figure 3-11.  Dual-Processor Boundary Scan Connections
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3.5.3.6. PRESENCE OF A PROCESSOR IN SOCKET 7

The Dual processor or future Pentium OverDrive processor drives the DPEN# signal low
during RESET to indicate to the Primary processor that a processor is present in Socket 7.  The
Pentium processor samples this line during RESETs falling edge.

DPEN# shares a pin with the APIC PICD0 signal.

3.5.3.7. MRM PROCESSOR INDICATION

In a dual-processor system, the D/P# (Dual processor/Primary processor Indication) signal
indicates which processor is running a cycle on the bus.  Table 3-9 shows how the external
hardware can determine which CPU is the MRM.

Table 3-9.  Using D/P# to Determine MRM

D/P# Bus Owner

0 Primary processor is MRM

1 Dual processor is MRM

D/P# can be sampled by the system with ADS# to determine which processor is driving the
cycle on the bus.

D/P# is driven only by the Pentium processor when operating as the Primary processor.
Because of this, this signal is never driven by the Dual processor and does not exist on the
future Pentium OverDrive processor.  When the future Pentium OverDrive processor is
installed, the Pentium processor continues to drive the D/P# signal high despite being “shut
down.”

3.5.4. Dual-Processor Pin Functions
All the inputs pins described in Chapter 4 are sampled with bus clock or test clock, and
therefore, must meet setup and hold times with respect to the rising edge of the appropriate
clock.  In the dual-processor configuration, the RESET and FLUSH# pins have been changed
to be synchronous (i.e. meet setup and hold times).  There have been no changes to the other
existing input pins.

If the FLUSH# signal is deasserted before the corresponding FLUSH ACK cycle, the FLUSH#
signal must not be asserted again until the FLUSH ACK cycle is generated.  This requirement
does not apply to a uni-processor system.  In a dual processor system, a single FLUSH ACK
cycle is generated after the caches in both processors have been flushed.

All system output pins will be driven from the rising edge of the bus clock and will meet
maximum and minimum valid delays with respect to the bus clock.  TDO is driven with
respect to the rising edge of TCK and PICD0-1 are driven with respect to the rising edge of
PICCLK.
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Table 3-10 summarizes the functional changes of all the pins in dual-processor mode.

Table 3-10.  Dual-Processor Pin Functions vs. Pentium ® Processor

Pin Name I/O
Load

(Note 1)
Same?
(Note 2)

Tied
Together?

(Note 3) Comments

A[31:3] I/O Y N Yes When the MRM becomes the LRM
(and issues PBGNT#), it tristates
these signals for one CLK.

A20M# I Y Y Yes Used in virtual mode and possibly
in real mode by DOS and DOS
extenders.  Internally masked by
the Dual processor.  It is necessary
to connect this signal to Socket 7 in
order for proper future Pentium®

OverDrive® processor operation.

ADS#,
ADSC#

I/O

O

Y N Yes ADS# and ADSC# are tristated by
the LRM processor in order to allow
the MRM processor to begin driving
them.  There are no system
implications.

AHOLD I Y Y Yes

AP I/O Y N Yes When the MRM becomes the LRM
(and issues PBGNT#), it tristates
this signal for one CLK.

APCHK# O N Y No Requires a system OR function.

BE[7:5]#
BE[4:0]#

O
I/O

Y
Y

N
N

Yes
Yes

When the MRM becomes the LRM
(and issues PBGNT#), it tristates
these signals for one CLK.
BE[3:0]# are used by the local
APIC modules to load the APIC_ID
at RESET.  BE[3:0]# will be
tristated by the Primary and Dual
processors during RESET.

BF I Y n/a Yes

BOFF# I Y Y Yes

BP[3:0] O N N No BP[3:0] will now only indicate
breakpoint match in the I/O clock.
Each processor must have different
breakpoints.  Note that BP[1:0] are
mux’d with PM[1:0].

BRDY#,
BRDYC#

I Y Y Yes
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Table 3-10.  Dual-Processor Pin Functions vs. Pentium ® Processor (Contd.)

Pin Name I/O
Load

(Note 1)
Same?
(Note 2)

Tied
Together?

(Note 3) Comments

BREQ O Y N Yes The MRM drives this signal as a
combined bus cycle request for
itself and the LRM.

BUSCHK# I Y Y Yes

CACHE# I/O Y N Yes When the MRM becomes the LRM
(and issues PBGNT#), it tristates
this signal for one CLK.

CLK I Y Y Yes Both processors must use the
same system clock.

CPUTYP I Y n/a No

D/C# I/O Y N Yes When the MRM becomes the LRM
(and issues PBGNT#), it tristates
this signal for one CLK.

D/P# O n/a n/a No The Primary processor always
drives this signal.  This output is
not defined on the Dual processor
or future Pentium OverDrive
processor.

D[63:0] I/O Y Y Yes

DP[7:0] I/O Y Y Yes

EADS# I Y Y Yes

EWBE# I Y Y Yes This signal is sampled active with
BRDY#, but inactive
asynchronously.  For optimized
performance (minimum number of
write E/M stalls) the chip
set/platform should allow a dead
clock between buffer going empty
to buffer going full.  This will allow
this signal to be completely
independent between the two
processors and not have one stall
internal cache writes due to the
other filling the external buffer.

FERR# O Y Y Yes Used for DOS floating point
compatibility.    The Primary
processor will drive this signal.  The
Dual processor will never drive this
signal.
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Table 3-10.  Dual-Processor Pin Functions vs. Pentium ® Processor (Contd.)

Pin Name I/O
Load

(Note 1)
Same?
(Note 2)

Tied
Together?

(Note 3) Comments

FLUSH# I Y Y Yes In a dual-processor system, the
flush operation will be atomic with a
single flush acknowledge bus cycle.
Therefore, FLUSH# must not be re-
asserted until the corresponding
FLUSH ACK  cycle is generated.

FRCMC# I N Y Yes Both processors must be in Master
mode.  A processor in the Socket 7
cannot be used as a Checker.

HIT# I/O Y N Yes This signal is asserted by the MRM
based on the combined outcome of
the inquire cycle between the two
processors.

HITM# I/O Y N Yes See HIT#.

HLDA I/O Y N Yes Driven by the MRM.

HOLD I Y Y Yes

IERR# O N Y No

IGNNE# I Y Y Yes The Dual processor will ignore this
signal.

INIT I N N Yes In dual-processor mode, the Dual
processor requires an IPI during
initialization.

INTR/LINT0 I N N May Be If the APIC is enabled, then this pin
is a local interrupt.  If the APIC is
hardware disabled, this pin function
is not changed.

INV I Y Y Yes

KEN# I Y Y Yes

LOCK# I/O Y N Yes The LRM samples the value of
LOCK#, and drives the sampled
value in the clock it gets the
ownership of the dual-processor
bus.  If sampled active, then the
LRM will keep driving the LOCK#
signal until ownership changes
again.

M/IO# I/O Y N Yes When the MRM becomes the LRM
(and issues PBGNT#), it tristates
this signal for one CLK.
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Table 3-10.  Dual-Processor Pin Functions vs. Pentium ® Processor (Contd.)

Pin Name I/O
Load

(Note 1)
Same?
(Note 2)

Tied
Together?

(Note 3) Comments

NA# I Y Y Yes

NC n/a N Y No

NMI/LINT1 I N Y May Be If the APIC is enabled, then this pin
is a local interrupt.  If the APIC is
hardware disabled, this pin function
is not changed.

PBGNT# I/O n/a n/a Yes This signal is always driven by one
of the processors.

PBREQ# I/O n/a n/a Yes This signal is always driven by one
of the processors.

PCD O Y N Yes When the MRM becomes the LRM
(and issues PBGNT#), it tristates
this signal for one CLK.

PCHK# O N Y May Be May be wire-AND’d together in the
system, tied together, or the chip
set may have two PCHK# inputs for
dual-processor data parity.

PEN# I Y Y Yes

PHIT# I/O n/a n/a Yes This signal is always driven by one
of the processors.

PHITM# I/O n/a n/a Yes This signal is always driven by one
of the processors.

PHITM# I/O n/a n/a Yes This signal is always driven by one
of the processors.

PICCLK I Y n/a Yes

PICD[1:0] I/O Y n/a Yes

PM[1:0] O N N No Each processor may track different
performance monitoring events.
Note that PM[1:0] are mux’d with
BP[1:0].

PRDY O N Y No

PWT O Y N Yes When the MRM becomes the LRM
(and issues PBGNT#), it tristates
this signal for one CLK.

R/S# I N Y No
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Table 3-10.  Dual-Processor Pin Functions vs. Pentium ® Processor (Contd.)

Pin Name I/O
Load

(Note 1)
Same?
(Note 2)

Tied
Together?

(Note 3) Comments

RESET I Y Y Yes In dual-processor mode, RESET
must be synchronous to the CPU
CLK which goes to the Primary and
Dual processors.

SCYC I/O Y N Yes When the MRM becomes the LRM
(and issues PBGNT#), it tristates
this signal for one CLK.

SMI# I N Y May Be Refer to Chapter 14.

SMIACT# O N Y Yes Refer to Chapter 14.

STPCLK# I n/a n/a May Be Refer to Chapter 14.

TCK I n/a n/a May Be System dependent

TDI I n/a n/a No System dependent

TDO O n/a n/a No System dependent

TMS I n/a n/a May Be System dependent

TRST# I n/a n/a May Be System dependent

VCC I N N Yes VCC on the Pentium processor
must be connected to 3.3V.

VCC5 I N Y no Two VCC5 pins remain on the future
Pentium OverDrive processor in
order to support a 5V fan/heatsink
in the future.

VSS I N Y Yes

W/R# I/O Y N Yes When the MRM becomes the LRM
(and issues PBGNT#), it tristates
this signal for one CLK.

WB/WT# I Y Y Yes

NOTES:
1. “Load” indicates whether the pin would introduce a capacitive load to the system board due to the dual

processor being present.

2. “N” indicates that there is a minor functional change to the pin(s) either as an enhancement to the
Pentium processor or due to dual processor operation.

3. “Yes” means that both processors must see the same value on the pin(s) for proper dual-processor
operation.  “No” means that the system must provide the signal to each processor independently.  “May
Be” means that the system designer can choose to provide the signal to both processors or provide
independent signals to each processor.



MICROPROCESSOR INITIALIZATION AND CONFIGURATION E

3-36

12/18/96 4:50 PM    Ch03new.doc

INTEL CONFIDENTIAL
(until publication date)



12/18/96 5:00 PM    Ch04new2.doc

INTEL CONFIDENTIAL
(until publication date)

E

Pinout

4



E PINOUT

4-1

12/18/96 5:00 PM    Ch04new2.doc

INTEL CONFIDENTIAL
(until publication date)

CHAPTER 4
PINOUT

The Pentium® processor with MMX™ technology and the Pentium processor
(75/90/100/120/133/150/166/200) are both available in a 296-pin Ceramic Staggered Pin Grid
Array (SPGA) package and a Plastic Pin Grid Array (PPGA) package.

4.1. PINOUT AND CROSS REFERENCE TABLES
The text orientation on the top side view drawings in this section represents the orientation of the
ink mark on the actual packages. (Note that the text shown in this section is not the actual text
which is marked on the packages).

Figure 4-1 and Figure 4-2 illustrate the top side view and the pin side view of the Pentium
processor pinout.
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4.1.1. Pinout

INCINCINCFLUSH#VCC2VCC3A10A6NC

ADSC#EADS#W/R#VSSVSSVSSVSSVSSVSSVSSVSSVSSVSSVSSVSSA8A4A30

VCC2
DET#

PWTHITM#BUSCHK#BE0#BE2#BE4#BE6#SCYCA20A18A16A14A12A11A7A3

APD/C#HIT#A20M#BE1#BE3#BE5#BE7#CLKRESETA19A17A15A13A9A5A29A28
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A26A22
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INTRVSS
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Top Side View
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PP0008a

NOTES:

1. The VCC2 and VCC3 pins are collectively defined as VCC pins on the Pentium® processor (75/90/100/120/133/150/166/200).

2. The VCC2DET# pin is defined only for the Pentium processor with MMX™ technology. Pin AL01 is an INC on the Pentium
processor (75/90/100/120/133/150/166/200).

3. The FRCMC# pin is defined only for the Pentium processor (75/90/100/120/133/150/166/200). Pin Y35 should be left as a
“NC” or tied to VCC3 via an external pullup resistor on the Pentium processor with MMX technology.

Figure 4-1.  Pentium ® Processor Pinout —
Top Side View
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INC INC INC FLUSH# VCC2 VCC3 A10 A6 NC
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Pin Side View
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NOTES:

1. The VCC2 and VCC3 pins are collectively defined as VCC pins on the Pentium® processor (75/90/100/120/133/150/166/200).

2. The VCC2DET# pin is defined only for the Pentium processor with MMX™ technology. Pin AL01 is an INC on the Pentium
processor (75/90/100/120/133/150/166/200).

3. The FRCMC# pin is defined only for the Pentium processor (75/90/100/120/133/150/166/200). Pin Y35 should be left as a
“NC” or tied to VCC3 via an external pullup resistor on the Pentium processor with MMX technology.

Figure 4-2.  Pentium ® Processor Pinout —
Pin Side View
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4.1.2. Pin Cross Reference Table

Table 4-1.  Pin Cross Reference by Pin Name

Address

A3 AL35 A9 AK30 A15 AK26 A21 AF34 A27 AG33

A4 AM34 A10 AN31 A16 AL25 A22 AH36 A28 AK36

A5 AK32 A11 AL31 A17 AK24 A23 AE33 A29 AK34

A6 AN33 A12 AL29 A18 AL23 A24 AG35 A30 AM36

A7 AL33 A13 AK28 A19 AK22 A25 AJ35 A31 AJ33

A8 AM32 A14 AL27 A20 AL21 A26 AH34

Data

D0 K34 D13 B34 D26 D24 D39 D10 D52 E03

D1 G35 D14 C33 D27 C21 D40 D08 D53 G05

D2 J35 D15 A35 D28 D22 D41 A05 D54 E01

D3 G33 D16 B32 D29 C19 D42 E09 D55 G03

D4 F36 D17 C31 D30 D20 D43 B04 D56 H04

D5 F34 D18 A33 D31 C17 D44 D06 D57 J03

D6 E35 D19 D28 D32 C15 D45 C05 D58 J05

D7 E33 D20 B30 D33 D16 D46 E07 D59 K04

D8 D34 D21 C29 D34 C13 D47 C03 D60 L05

D9 C37 D22 A31 D35 D14 D48 D04 D61 L03

D10 C35 D23 D26 D36 C11 D49 E05 D62 M04

D11 B36 D24 C27 D37 D12 D50 D02 D63 N03

D12 D32 D25 C23 D38 C09 D51 F04

Control

A20M# AK08 BREQ AJ01 HIT# AK06 PRDY AC05

ADS# AJ05 BUSCHK# AL07 HITM# AL05 PWT AL03

ADSC# AM02 CACHE# U03 HLDA AJ03 R/S# AC35

AHOLD V04 CPUTYP Q35 HOLD AB04 RESET AK20

AP AK02 D/C# AK04 IERR# P04 SCYC AL17

APCHK# AE05 D/P# AE35 IGNNE# AA35 SMI# AB34

BE0# AL09 DP0 D36 INIT AA33 SMIACT# AG03

BE1# AK10 DP1 D30 INTR/LINT0 AD34 TCK M34

BE2# AL11 DP2 C25 INV U05 TDI N35

BE3# AK12 DP3 D18 KEN# W05 TDO N33
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Table 4-1.  Pin Cross Reference by Pin Name (Contd.)

Control (Contd.)

BE4# AL13 DP4 C07 LOCK# AH04 TMS P34

BE5# AK14 DP5 F06 M/IO# T04 TRST# Q33

BE6# AL15 DP6 F02 NA# Y05 VCC2DET# AL01 1

BE7# AK16 DP7 N05 NMI/LINT1 AC33 W/R# AM06

BOFF# Z04 EADS# AM04 PCD AG05 WB/WT# AA05

BP2 S03 EWBE# W03 PCHK# AF04

BP3 S05 FERR# Q05 PEN# Z34

BRDY# X04 FLUSH# AN07 PM0/BP0 Q03

BRDYC# Y03 FRCMC#2 Y35 PM1/BP1 R04

APIC Clock Control
Dual Processor
Private Interface

PICCLK H34 3 CLK AK18 3 PBGNT# AD04

PICD0 J33 [BF0] Y33 PBREQ# AE03

[DPEN#] [BF1] X34 PHIT# AA03

PICD1 L35 STPCLK# V34 PHITM# AC03

[APICEN]

VCC2 4

A17 A07 Q01 AA01 AN11

A15 G01 S01 AC01 AN13

A13 J01 U01 AE01 AN15

A11 L01 W01 AG01 AN17

A09 N01 Y01 AN09 AN19

VCC3

A19 A27 J37 Q37 U37 AC37 AN27

A21 A29 L37 S37 W37 AE37 AN25

A23 E37 L33 T34 Y37 AG37 AN23

A25 G37 N37 U33 AA37 AN29 AN21
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Table 4-1.  Pin Cross Reference by Pin Name (Contd.)

VSS

B06 B18 H02 P02 U35 Z36 AF36 AM12 AM24

B08 B20 H36 P36 V02 AB02 AH02 AM14 AM26

B10 B22 K02 R02 V36 AB36 AJ37 AM16 AM28

B12 B24 K36 R36 X02 AD02 AL37 AM18 AM30

B14 B26 M02 T02 X36 AD36 AM08 AM20 AN37

B16 B28 M36 T36 Z02 AF02 AM10 AM22

NC

A37 S35 AL19

R34 W33 AN35

S33 W35 —

INC

A03 B02 C01 AN01 AN03 AN05

NOTES:

1. The VCC2DET# pin is defined only for the Pentium® processor with MMX™ technology. This pin is an INC on the Pentium
processor (75/90/100/120/133/150/166/200).

2. The FRCMC# pin is defined only for the Pentium processor (75/90/100/120/133/150/166/200). This pin should be left as a
“NC” or tied to VCC3 via an external pullup resistor on the Pentium processor with MMX technology.

3. PICCLK and CLK are 3.3V tolerant on the Pentium processor with MMX technology and 5.0V tolerant on the Pentium
processor (75/90/100/120/133/150/166/200).

4. The Pentium processor with MMX technology is a split-plane processor; VCC2 and VCC3 operate at different voltages for
split-place processors. The Pentium processor (75/90/100/120/133/150/166/200) is a unified-plane processor; VCC2 and
VCC3 operate at the same voltage for unified-plane processors. The VCC2 and VCC3 pins are collectively defined as VCC

pins on the Pentium processor (75/90/100/120/133/150/166/200).

4.2. DESIGN NOTES
For reliable operation, always connect unused inputs to an appropriate signal level. Unused
active low inputs should be connected to VCC. Unused active high inputs should be connected to
VSS (GND).

No Connect (NC) pins must remain unconnected. Connection of NC or INC (internal no-
connect) pins may result in component failure or incompatibility with processor steppings.

4.3. QUICK PIN REFERENCE
This section gives a brief functional description of each of the pins.  Note that all input pins
must meet their AC/DC specifications to guarantee proper functional behavior.
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The # symbol at the end of a signal name indicates that the active, or asserted, state occurs when
the signal is at a low voltage. When a # symbol is not present after the signal name, the signal is
active, or asserted, at the high voltage level.  Square brackets around a signal name indicate that
the signal is defined only at RESET.  See Chapter 7 for the timing requirements of these signals.

The following pins become I/O pins when either two Pentium processors with MMX technology
or two Pentium processors (75/90/100/120/133/150/166/200) are operating in a dual processing
environment:

ADS#, BE4#, CACHE#, HIT#, HITM#, HLDA#, LOCK#, M/IO#, D/C#, W/R#, SCYC

Please refer to Chapter 17 for information on how to connect the Pentium processor pins if an
upgrade socket is designed in the system.

Table 4-2.  Quick Pin Reference

Symbol Type* Name and Function

A20M# I When the address bit 20 mask  pin is asserted, the Pentium® processor
emulates the address wraparound at 1 Mbyte which occurs on the 8086 by
masking physical address bit 20 (A20) before performing a lookup to the internal
caches or driving a memory cycle on the bus. The effect of A20M# is undefined
in protected mode. A20M# must be asserted only when the processor is in real
mode.

A20M# is internally masked by the Pentium processor when configured as a
Dual processor.

A31-A3 I/O As outputs, the address  lines of the processor along with the byte enables
define the physical area of memory or I/O accessed. The external system drives
the inquire address to the processor on A31-A5.

ADS# O The address strobe  indicates that a new valid bus cycle is currently being
driven by the Pentium processor.

ADSC# O The address strobe (copy)  is functionally identical to ADS#.

AHOLD I In response to the assertion of address hold , the Pentium processor will stop
driving the address lines (A31-A3) and AP in the next clock. The rest of the bus
will remain active so data can be returned or driven for previously issued bus
cycles.

AP I/O Address parity is driven by the Pentium processor with even parity information
on all Pentium processor generated cycles in the same clock that the address is
driven. Even parity must be driven back to the Pentium processor during inquire
cycles on this pin in the same clock as EADS# to ensure that correct parity
check status is indicated by the Pentium processor.
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Table 4-2.  Quick Pin Reference (Contd.)

Symbol Type* Name and Function

APCHK# O The address parity check  status pin is asserted two clocks after EADS# is
sampled active if the Pentium processor has detected a parity error on the
address bus during inquire cycles. APCHK# will remain active for one clock
each time a parity error is detected (including during dual processing private
snooping).

[APICEN]
PICD1

I Advanced Programmable Interrupt Controller Enable enables or disables
the on-chip APIC interrupt controller. If sampled high at the falling edge of
RESET, the APIC is enabled. APICEN shares a pin with the PICD1 signal.

BE7#-BE4#
BE3#-BE0#

O
I/O

The byte enable  pins are used to determine which bytes must be written to
external memory or which bytes were requested by the CPU for the current cycle.
The byte enables are driven in the same clock as the address lines (A31-3).

Additionally, the lower 4-byte enables (BE3#-BE0#) are used on the Pentium
processor as APIC ID inputs and are sampled at RESET.

In dual processing mode, BE4# is used as an input during Flush cycles.

NOTE:

BE4# is an input/output pin on the Pentium processor (75/90/100/120/133/
150/166/200)

BF[1:0] I The bus frequency  pins determine the bus-to-core frequency ratio. BF[1:0] are
sampled at RESET, and cannot be changed until another non-warm (1 ms)
assertion of RESET. Additionally, BF[1:0] must not change values while RESET
is active.  See Table 4-3 for Bus Frequency Selections.

BOFF# I The backoff  input is used to abort all outstanding bus cycles that have not yet
completed. In response to BOFF#, the Pentium processor will float all pins
normally floated during bus hold in the next clock. The processor remains in bus
hold until BOFF# is negated, at which time the Pentium processor restarts the
aborted bus cycle(s) in their entirety.

BP[3:2]
PM/BP[1:0]

O The breakpoint  pins (BP3-0) correspond to the debug registers, DR3-DR0.
These pins externally indicate a breakpoint match when the debug registers are
programmed to test for breakpoint matches.

BP1 and BP0 are multiplexed with the performance monitoring  pins (PM1 and
PM0). The PB1 and PB0 bits in the Debug Mode Control Register determine if
the pins are configured as breakpoint or performance monitoring pins. The pins
come out of RESET configured for performance monitoring.

BRDY# I The burst ready input indicates that the external system has presented valid
data on the data pins in response to a read or that the external system has
accepted the Pentium processor data in response to a write request. This signal
is sampled in the T2, T12 and T2P bus states.

BRDYC# I The burst ready (copy)  is functionally identical to BRDY#.

BREQ O The bus request  output indicates to the external system that the Pentium
processor has internally generated a bus request. This signal is always driven
whether or not the Pentium processor is driving its bus.
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Table 4-2.  Quick Pin Reference (Contd.)

Symbol Type* Name and Function

BUSCHK# I The bus check  input allows the system to signal an unsuccessful completion of
a bus cycle. If this pin is sampled active, the Pentium processor will latch the
address and control signals in the machine check registers. If, in addition, the
MCE bit in CR4 is set, the Pentium processor will vector to the machine check
exception.

NOTE:

To assure that BUSCHK# will always be recognized, STPCLK# must be
deasserted any time BUSCHK# is asserted by the system, before the system
allows another external bus cycle. If BUSCHK# is asserted by the system for a
snoop cycle while STPCLK# remains asserted, usually (if MCE=1) the
processor will vector to the exception after STPCLK# is deasserted. But if
another snoop to the same line occurs during STPCLK# assertion, the
processor can lose the BUSCHK# request.

CACHE# O For Pentium processor-initiated cycles the cache pin indicates internal
cacheability of the cycle (if a read), and indicates a burst write back cycle (if a
write). If this pin is driven inactive during a read cycle, the Pentium processor
will not cache the returned data, regardless of the state of the KEN# pin. This
pin is also used to determine the cycle length (number of transfers in the cycle).

CLK I The clock input provides the fundamental timing for the Pentium processor. Its
frequency is the operating frequency of the Pentium processor external bus,
and requires TTL levels. All external timing parameters except TDI, TDO, TMS,
TRST#, and PICD0-1 are specified with respect to the rising edge of CLK.

This pin is 3.3V tolerant on the Pentium processor with MMX™ technology and
5.0V tolerant on the Pentium processor (75/90/100/120/133/150/166/200).

NOTE:

It is recommended that CLK begin toggling within 150 ms after VCC reaches its
proper operating level. This recommendation is to ensure long-term reliability of
the device.

CPUTYP I CPU type distinguishes the Primary processor from the Dual processor. In a
single processor environment, or when the Pentium processor is acting as the
Primary processor in a dual processing system, CPUTYP should be strapped to
VSS. The Dual processor should have CPUTYP strapped to VCC (VCC3).

D/C# O The data/code  output is one of the primary bus cycle definition pins. It is driven
valid in the same clock as the ADS# signal is asserted. D/C# distinguishes
between data and code or special cycles.

D/P# O The dual/primary  processor indication. The Primary processor drives this pin
low when it is driving the bus, otherwise it drives this pin high. D/P# is always
driven. D/P# can be sampled for the current cycle with ADS# (like a status pin).
This pin is defined only on the Primary processor. Dual processing is supported
in a system only if both processors are operating at identical core and bus
frequencies. Within these restrictions, two processors of different steppings may
operate together in a system.
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Table 4-2.  Quick Pin Reference (Contd.)

Symbol Type* Name and Function

D63-D0 I/O These are the 64 data lines  for the processor. Lines D7-D0 define the least
significant byte of the data bus; lines D63-D56 define the most significant byte
of the data bus. When the CPU is driving the data lines, they are driven during
the T2, T12, or T2P clocks for that cycle. During reads, the CPU samples the
data bus when BRDY# is returned.

DP7-DP0 I/O These are the data parity  pins for the processor. There is one for each byte of
the data bus. They are driven by the Pentium processor with even parity
information on writes in the same clock as write data. Even parity information
must be driven back to the Pentium processor on these pins in the same clock
as the data to ensure that the correct parity check status is indicated by the
Pentium processor. DP7 applies to D63-56, DP0 applies to D7-0.

[DPEN#]
PICD0

I/O Dual processing enable  is an output of the Dual processor and an input of the
Primary processor. The Dual processor drives DPEN# low to the Primary
processor at RESET to indicate that the Primary processor should enable dual
processor mode. DPEN# may be sampled by the system at the falling edge of
RESET to determine if the dual-processor socket is occupied. DPEN# is
multiplexed with PICD0.

EADS# I This signal indicates that a valid external address  has been driven onto the
Pentium processor address pins to be used for an inquire cycle.

EWBE# I The external write buffer empty input, when inactive (high), indicates that a
write cycle is pending in the external system. When the Pentium processor
generates a write, and EWBE# is sampled inactive, the Pentium processor will
hold off all subsequent writes to all E- or M-state lines in the data cache until all
write cycles have completed, as indicated by EWBE# being active.

FERR# O The floating point error pin is driven active when an unmasked floating point
error occurs. FERR# is similar to the ERROR# pin on the Intel387™ math
coprocessor. FERR# is included for compatibility with systems using DOS type
floating point error reporting. FERR# is never driven active by the Dual
processor.

FLUSH# I When asserted, the cache flush  input forces the Pentium processor to write
back all modified lines in the data cache and invalidate its internal caches. A
Flush Acknowledge special cycle will be generated by the Pentium processor
indicating completion of the write back and invalidation.

If FLUSH# is sampled low when RESET transitions from high to low, tristate test
mode is entered.

If two Pentium processors are operating in dual processing mode and FLUSH#
is asserted, the Dual processor will perform a flush first (without a flush
acknowledge cycle), then the Primary processor will perform a flush followed by
a flush acknowledge cycle.

NOTE:

If the FLUSH# signal is asserted in dual processing mode, it must be
deasserted at least one clock prior to BRDY# of the FLUSH Acknowledge cycle
to avoid DP arbitration problems.
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Table 4-2.  Quick Pin Reference (Contd.)

Symbol Type* Name and Function

FRCMC# I The functional redundancy checking master/checker mode input is used to
determine whether the Pentium processor is configured in master mode or
checker mode. When configured as a master, the Pentium processor drives its
output pins as required by the bus protocol. When configured as a checker, the
Pentium processor tristates all outputs (except IERR#, PICD0, PICD1 and TDO)
and samples the output pins.

The configuration as a master/checker is set after RESET and may not be
changed other than by a subsequent RESET.

Functional Redundancy Checking is not supported on the Pentium processor
with MMX technology. The FRCMC# pin is defined only for the Pentium
processor (75/90/100/120/133/150/166/200). This pin should be left as a “NC” or
tied to VCC3 via an external pullup resistor on the Pentium processor with MMX
technology.

HIT# O The hit  indication is driven to reflect the outcome of an inquire cycle. If an
inquire cycle hits a valid line in either the Pentium processor data or instruction
cache, this pin is asserted two clocks after EADS# is sampled asserted. If the
inquire cycle misses the Pentium processor cache, this pin is negated two
clocks after EADS#. This pin changes its value only as a result of an inquire
cycle and retains its value between the cycles.

HITM# O The hit to a modified line output is driven to reflect the outcome of an inquire
cycle. It is asserted after inquire cycles which resulted in a hit to a modified line
in the data cache. It is used to inhibit another bus master from accessing the
data until the line is completely written back.

HLDA O The bus hold acknowledge pin goes active in response to a hold request
driven to the processor on the HOLD pin. It indicates that the Pentium
processor has floated most of the output pins and relinquished the bus to
another local bus master. When leaving bus hold, HLDA will be driven inactive
and the Pentium processor will resume driving the bus. A pending bus cycle will
be driven in the same clock that HLDA is de-asserted by the Pentium processor
(75/90/100/120/133/150/166/200) and one clock after HLDA is deasserted by
the Pentium processor with MMX technology.

HOLD I In response to the bus hold request , the Pentium processor will float most of
its output and input/output pins and assert HLDA after completing all
outstanding bus cycles. The Pentium processor will maintain its bus in this state
until HOLD is de-asserted. HOLD is not recognized during LOCK cycles. The
Pentium processor will recognize HOLD during reset.
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Table 4-2.  Quick Pin Reference (Contd.)

Symbol Type* Name and Function

IERR# O The internal error pin is used to indicate two types of errors, internal parity
errors and functional redundancy errors. If a parity error occurs on a read from
an internal array, the Pentium processor will assert the IERR# pin for one clock
and then shutdown.

If the Pentium processor is configured as a checker and a mismatch occurs
between the value sampled on the pins and the corresponding value computed
internally, the Pentium processor will assert IERR# two clocks after the
mismatched value is returned.

Note: Functional Redundancy Checking is not supported on Pentium
processors with MMX technology.

IGNNE# I This is the ignore numeric error  input. This pin has no effect when the NE bit in CR0
is set to 1. When the CR0.NE bit is 0, and the IGNNE# pin is asserted, the Pentium
processor will ignore any pending unmasked numeric exception and continue
executing floating-point instructions for the entire duration that this pin is asserted.
When the CR0.NE bit is 0, IGNNE# is not asserted, a pending unmasked numeric
exception exists (SW.ES = 1), and the floating point instruction is one of FINIT,
FCLEX, FSTENV, FSAVE, FSTSW, FSTCW, FENI, FDISI, or FSETPM, the Pentium
processor will execute the instruction in spite of the pending exception. When the
CR0.NE bit is 0, IGNNE# is not asserted, a pending unmasked numeric exception
exists (SW.ES = 1), and the floating-point instruction is one other than FINIT, FCLEX,
FSTENV, FSAVE, FSTSW, FSTCW, FENI, FDISI, or FSETPM, the Pentium
processor will stop execution and wait for an external interrupt.

IGNNE# is internally masked when the Pentium processor is configured as a Dual
processor.

INIT I The Pentium processor initialization  input pin forces the Pentium processor to
begin execution in a known state. The processor state after INIT is the same as
the state after RESET except that the internal caches, write buffers, and floating
point registers retain the values they had prior to INIT. INIT may NOT be used
in lieu of RESET after power-up.

If INIT is sampled high when RESET transitions from high to low, the Pentium
processor will perform built-in self test prior to the start of program execution.

INTR/LINT0 I An active maskable interrupt  input indicates that an external interrupt has
been generated. If the IF bit in the EFLAGS register is set, the Pentium
processor will generate two locked interrupt acknowledge bus cycles and vector
to an interrupt handler after the current instruction execution is completed. INTR
must remain active until the first interrupt acknowledge cycle is generated to
assure that the interrupt is recognized.

If the local APIC is enabled, this pin becomes LINT0.

INV I The invalidation input determines the final cache line state (S or I) in case of
an inquire cycle hit. It is sampled together with the address for the inquire cycle
in the clock EADS# is sampled active.
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Table 4-2.  Quick Pin Reference (Contd.)

Symbol Type* Name and Function

KEN# I The cache enable pin is used to determine whether the current cycle is
cacheable or not and is consequently used to determine cycle length. When the
Pentium processor generates a cycle that can be cached (CACHE# asserted)
and KEN# is active, the cycle will be transformed into a burst line fill cycle.

LINT0/INTR I If the APIC is enabled, this pin is local interrupt 0 . If the APIC is disabled, this
pin is INTR.

LINT1/NMI I If the APIC is enabled, this pin is local interrupt 1 . If the APIC is disabled, this
pin is NMI.

LOCK# O The bus lock  pin indicates that the current bus cycle is locked. The Pentium
processor will not allow a bus hold when LOCK# is asserted (but AHOLD and
BOFF# are allowed). LOCK# goes active in the first clock of the first locked bus
cycle and goes inactive after the BRDY# is returned for the last locked bus
cycle. LOCK# is guaranteed to be de-asserted for at least one clock between
back-to-back locked cycles.

M/IO# O The memory/input-output  is one of the primary bus cycle definition pins. It is
driven valid in the same clock as the ADS# signal is asserted. M/IO#
distinguishes between memory and I/O cycles.

NA# I An active next address  input indicates that the external memory system is
ready to accept a new bus cycle although all data transfers for the current cycle
have not yet completed. The Pentium processor will issue ADS# for a pending
cycle two clocks after NA# is asserted. The Pentium processor supports up to 2
outstanding bus cycles.

NMI/LINT1 I The non-maskable interrupt  request signal indicates that an external non-maskable
interrupt has been generated.

If the local APIC is enabled, this pin becomes LINT1.

PBGNT# I/O Private bus grant  is the grant line that is used when two Pentium processors
are configured in dual processing mode, in order to perform private bus
arbitration. PBGNT# should be left unconnected if only one Pentium processor
exists in a system.

PBREQ# I/O Private bus request  is the request line that is used when two Pentium
processor are configured in dual processing mode, in order to perform private
bus arbitration. PBREQ# should be left unconnected if only one Pentium
processor exists in a system.

PCD O The page cache disable  pin reflects the state of the PCD bit in CR3, the Page
Directory Entry, or the Page Table Entry. The purpose of PCD is to provide an
external cacheability indication on a page by page basis.
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Table 4-2.  Quick Pin Reference (Contd.)

Symbol Type* Name and Function

PCHK# O The parity check output indicates the result of a parity check on a data read. It
is driven with parity status two clocks after BRDY# is returned. PCHK# remains
low one clock for each clock in which a parity error was detected. Parity is
checked only for the bytes on which valid data is returned.

When two Pentium processors are operating in dual processing mode, PCHK#
may be driven two or three clocks after BRDY# is returned.

PEN# I The parity enable  input (along with CR4.MCE) determines whether a machine
check exception will be taken as a result of a data parity error on a read cycle. If
this pin is sampled active in the clock a data parity error is detected, the
Pentium processor will latch the address and control signals of the cycle with
the parity error in the machine check registers. If, in addition, the machine check
enable bit in CR4 is set to “1”, the Pentium processor will vector to the machine
check exception before the beginning of the next instruction.

PHIT# I/O Private hit is a hit indication used when two Pentium processors are configured
in dual processing mode, in order to maintain local cache coherency. PHIT#
should be left unconnected if only one Pentium processor exists in a system.

PHITM# I/O Private modified hit  is a hit on a modified cache line indication used when two
Pentium processors are configured in dual processing mode, in order to
maintain local cache coherency. PHITM# should be left unconnected if only one
Pentium processor exists in a system.

PICCLK I The APIC interrupt controller serial data bus clock is driven into the
programmable interrupt controller clock  input of the Pentium processor.

This pin is 3.3V tolerant on the Pentium processor with MMX technology, and
5.0V tolerant on the Pentium processor (75/90/100/120/133/150/166/200).

PICD0-1
[DPEN#]
[APICEN]

I/O Programmable interrupt controller data lines 0-1  of the Pentium processor
comprise the data portion of the APIC 3-wire bus. They are open-drain outputs
that require external pull-up resistors. These signals are multiplexed with
DPEN# and APICEN respectively.

PM/BP[1:0] O These pins function as part of the performance monitoring feature.

The breakpoint 1-0 pins are multiplexed with the performance monitoring 1-0
pins. The PB1 and PB0 bits in the Debug Mode Control Register determine if
the pins are configured as breakpoint or performance monitoring pins. The pins
come out of RESET configured for performance monitoring.

PRDY O The probe ready  output pin is provided for use with the Intel debug port
described in the “Debugging” chapter.

PWT O The page write through pin reflects the state of the PWT bit in CR3, the Page
Directory Entry, or the Page Table Entry. The PWT pin is used to provide an
external write back indication on a page-by-page basis.
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Table 4-2.  Quick Pin Reference (Contd.)

Symbol Type* Name and Function

R/S# I The run/stop  input is provided for use with the Intel debug port described in the
“Debugging” chapter.

RESET I RESET forces the Pentium processor to begin execution at a known state. All
the Pentium processor internal caches will be invalidated upon the RESET.
Modified lines in the data cache are not written back. FLUSH#, FRCMC# and
INIT are sampled when RESET transitions from high to low to determine if
tristate test mode or checker mode will be entered, or if BIST will be run.

Note: Functional Redundancy Checking is not supported on Pentium
processors with MMX technology.

SCYC O The split cycle output is asserted during misaligned LOCKed transfers to
indicate that more than two cycles will be locked together. This signal is defined
for locked cycles only. It is undefined for cycles which are not locked.

SMI# I The system management interrupt  causes a system management interrupt
request to be latched internally. When the latched SMI# is recognized on an
instruction boundary, the processor enters System Management Mode.

SMIACT# O An active system management interrupt active  output indicates that the
processor is operating in System Management Mode.

STPCLK# I Assertion of the stop clock input signifies a request to stop the internal clock of
the Pentium processor, thereby causing the core to consume less power. When
the CPU recognizes STPCLK#, the processor will stop execution on the next
instruction boundary, unless superseded by a higher priority interrupt, and
generate a stop grant acknowledge cycle. When STPCLK# is asserted, the
Pentium processor will still respond to interprocessor and external snoop
requests.

TCK I The testability clock input provides the clocking function for the Pentium
processor boundary scan in accordance with the IEEE Boundary Scan interface
(Standard 1149.1). It is used to clock state information and data into and out of
the Pentium processor during boundary scan.

TDI I The test data input  is a serial input for the test logic. TAP instructions and data
are shifted into the Pentium processor on the TDI pin on the rising edge of TCK
when the TAP controller is in an appropriate state.

TDO O The test data output is a serial output of the test logic. TAP instructions and
data are shifted out of the Pentium processor on the TDO pin on TCK’s falling
edge when the TAP controller is in an appropriate state.

TMS I The value of the test mode select  input signal sampled at the rising edge of
TCK controls the sequence of TAP controller state changes.

TRST# I When asserted, the test reset  input allows the TAP controller to be
asynchronously initialized.
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Table 4-2.  Quick Pin Reference (Contd.)

Symbol Type* Name and Function

VCC I The Pentium processor (75/90/100/120/133/150/166/200) has 53 3.3V power
inputs.

VCC2 The Pentium processor with MMX technology has 25 2.8V power inputs.

VCC3 The Pentium processor with MMX technology has 28 3.3V power  inputs.

VCC2DET# O VCC2 detect  is defined only on the Pentium processor with MMX technology
and can be used in flexible motherboard implementations to configure the
voltage output set-point appropriately for the VCC2 inputs of the processor.

VSS I The Pentium processor has 53 ground  inputs.

W/R# O Write/read  is one of the primary bus cycle definition pins. It is driven valid in the
same clock as the ADS# signal is asserted. W/R# distinguishes between write
and read cycles.

WB/WT# I The write back/write through input allows a data cache line to be defined as
write back or write through on a line-by-line basis. As a result, it determines
whether a cache line is initially in the S or E state in the data cache.

NOTE:

* The pins are classified as Input or Output based on their function in Master Mode. See the Functional Redundancy Checking
section in the “Error Detection” chapter for further information.
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Each Pentium processor is specified to operate within a single bus-to-core ratio and a specific
minimum to maximum bus frequency range (corresponding to a minimum to maximum core
frequency range). Operation in other bus-to-core ratios or outside the specified operating
frequency range is not supported. For example, the 150 MHz Pentium processor does not operate
beyond the 60 MHz bus frequency and only supports the 2/5 bus-to-core ratio; it does not
support the 1/3, 1/2, or 2/3 bus-to-core ratios. Table 4-3 clarifies and summarizes these
specifications.

Table 4-3.  Bus to Core Frequency Ratios for the Pentium ® Processor

BF1 BF0

Pentium ®

Processor
(75/90/100/120/133/

150/166/200)
Bus/Core Ratio

Pentium
Processor with

MMX™
Technology

Bus/Core Ratio 4

Max Bus/Core
Frequency (MHz)

Min Bus/Core
Frequency (MHz)

0 1 1/3 1/3 66/200 33/100

0 0 2/5 2/5 66/166 33/83

0 0 2/5 2/5 60/150 30/75

1 0 1/2 1/2 2 66/133 33/66

1 0 1/2 1/2 2 60/120 30/60

1 0 1/2 1/2 2 50/1003 25/50

1 1 2/3 1 reserved 66/1003 33/50

1 1 2/3 1 reserved 60/90 30/45

1 1 2/3 1 reserved 50/75 25/37.5

NOTES: 

1. This is the default bus fraction for the Pentium® processor (75/90/100/120/133/150/166/200).  If the BF pins are left
floating, the processor will be configured for the 2/3 bus to core frequency ratio.

2. This is the default bus fraction for the Pentium processor with MMX™ technology.  If the BF pins are left floating, the
processor will be configured for the 1/2 bus to core frequency ratio.

3. The 100 MHz (Max Core Frequency) Pentium processors can be operated in both 1/2 and 2/3 Bus/Core Ratios.

4. Currently, the desktop Pentium processor with MMX technology supports 66/200 and 66/166 operation.
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4.3.1. Pin Reference Tables

Table 4-4.  Output Pins

Name Active Level When Floated

ADS#1 Low Bus Hold, BOFF#

ADSC# Low Bus Hold, BOFF#

APCHK# Low

BE7#-BE4# 5 Low Bus Hold, BOFF#

BREQ High

CACHE#1 Low Bus Hold, BOFF#

D/P#2 n/a

FERR#2 Low

HIT#1 Low

HITM#1,4 Low

HLDA1 High

IERR# Low

LOCK#1 Low Bus Hold, BOFF#

M/IO#1, D/C#1, W/R#1 n/a Bus Hold, BOFF#

PCHK# Low

BP3-2, PM1/BP1, PM0/BP0 High

PRDY High

PWT, PCD High Bus Hold, BOFF#

SCYC1 High Bus Hold, BOFF#

SMIACT# Low

TDO n/a All states except Shift-DR and Shift-IR

VCC2DET#3 Low

NOTES:

All output and input/output pins are floated during tristate test mode (except TCO) and checker mode (except IERR#, PICD0,
PICD1 and TDO).

1. These are I/O signals when two Pentium® processors are operating in dual processing mode.

2. These signals are undefined when the CPU is configured as a Dual Processor.

3. VCC2DET# is defined only for the Pentium processor with MMX™ technology.

4. The HITM# pin has an internal pull-up resistor.

5. BE4# is an input/output pin on the Pentium processor (75/90/100/120/133/150/166/200). BE4# has an internal pulldown
during RESET only.
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Table 4-5.  Input Pins

Name Active Level
Synchronous/
Asynchronous Internal Resistor Qualified

A20M#1 Low Asynchronous

AHOLD High Synchronous

APICEN High Synchronous/RESET Pullup

BF0 High Synchronous/RESET Pullup/Pulldown2

BF1 High Synchronous/RESET Pullup

BOFF# Low Synchronous

BRDY# Low Synchronous Pullup Bus State T2, T12, T2P

BRDYC# Low Synchronous Pullup Bus State T2, T12, T2P

BUSCHK# Low Synchronous Pullup BRDY#

CLK n/a

CPUTYP High Synchronous/RESET Pulldown

EADS# Low Synchronous

EWBE# Low Synchronous BRDY#

FLUSH# Low Asynchronous

FRCMC#3 Low Asynchronous Pullup

HOLD High Synchronous

IGNNE#1 Low Asynchronous

INIT High Asynchronous

INTR High Asynchronous

INV High Synchronous EADS#

LINT[1:0] High Asynchronous APICEN at RESET

KEN# Low Synchronous First BRDY#/NA#

NA# Low Synchronous Bus State T2,TD,T2P

NMI High Asynchronous

PEN# Low Synchronous BRDY#

PICCLK High Asynchronous Pullup

R/S# n/a Asynchronous Pullup
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Table 4-5.  Input Pins (Contd.)

Name Active Level
Synchronous/
Asynchronous Internal Resistor Qualified

RESET High Asynchronous

SMI# Low Asynchronous Pullup

STPCLK# Low Asynchronous Pullup

TCK n/a Pullup

TDI n/a Synchronous/TCK Pullup TCK

TMS n/a Synchronous/TCK Pullup TCK

TRST# Low Asynchronous Pullup

WB/WT# n/a Synchronous First BRDY#/NA#

NOTES:

1. These pins are undefined when the CPU is configured as a Dual processor.

2. BF0 has an internal pulldown on the Pentium® processor with MMX™ technology and an internal pullup on the Pentium
processor (75/90/100/120/133/150/166/200).

3. FRCMC# is defined only for the Pentium procesor (75/90/100/120/133/150/166/200).

Table 4-6.  Input/Output Pins 1

Name
Active
Level When Floated

Qualified
(when an input)

Internal
Resistor

A31-A3 n/a Address Hold, Bus Hold, BOFF# EADS#

AP n/a Address Hold, Bus Hold, BOFF# EADS#

BE3#-BE0# 3 Low Address Hold, Bus Hold, BOFF# RESET Pulldown3

D63-D0 n/a Bus Hold, BOFF# BRDY#

DP7-DP0 n/a Bus Hold, BOFF# BRDY#

DPEN# low RESET Pullup

PICD0 n/a Pullup

PICD1 n/a Pulldown

NOTES:

1. All output and input/output pins are floated during tristate test mode (except TDO) and checker mode (except IERR#,
PICD0, PICD1 and TDO).

2. BE4# is an input/output pin on the Pentium® processor (75/90/100/120/133/150/166/200).

3. BE4#-BE0# have pulldowns during RESET only.
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Table 4-7.  Inter-Processor Input/Output Pins

Name Active Level Internal Resistor

PHIT# Low Pullup

PHITM# Low Pullup

PBGNT# Low Pullup

PBREQ# Low Pullup

NOTE:

For proper inter-processor operation, the system cannot load these signals.
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4.3.2. Pin Grouping According to Function
Table 4-8 organizes the pins with respect to their function.

Table 4-8.  Pin Functional Grouping

Function Pins

Clock CLK

Initialization RESET, INIT, BF1–BF0

Address Bus A31-A3, BE7#–BE0#

Address Mask A20M#

Data Bus D63-D0

Address Parity AP, APCHK#

APIC Support PICCLK, PICD0-1

Data Parity DP7-DP0, PCHK#, PEN#

Internal Parity Error IERR#

System Error BUSCHK#

Bus Cycle Definition M/IO#, D/C#, W/R#, CACHE#, SCYC, LOCK#

Bus Control ADS#, ADSC#, BRDY#, BRDYC#, NA#

Page Cacheability PCD, PWT

Cache Control KEN#, WB/WT#

Cache Snooping/Consistency AHOLD, EADS#, HIT#, HITM#, INV

Cache Flush FLUSH#

Write Ordering EWBE#

Bus Arbitration BOFF#, BREQ, HOLD, HLDA

Dual Processing Private Bus Control PBGNT#, PBREQ#, PHIT#, PHITM#

Interrupts INTR, NMI

Floating Point Error Reporting FERR#, IGNNE#

System Management Mode SMI#, SMIACT#

Functional Redundancy Checking1 FRCMC#, (IERR#)

TAP Port TCK, TMS, TDI, TDO, TRST#

Breakpoint/Performance Monitoring PM0/BP0, PM1/BP1, BP3-2

Power Management STPCLK#

Miscellaneous Dual Processing CPUTYP, D/P#

Debugging R/S#, PRDY

Voltage Detection VCC2DET#2

NOTES:

1. Functional Redundancy Checking is not supported on the Pentium® processor with MMX™ technology. The FRCMC# pin
is defined only for the Pentium processor (75/90/100/120/133/150/166/200). This pin should be left as a “NC” or tied to
VCC3 via an external pullup resistor on the Pentium processor with MMX technology.

2. The VCC2DET# pin is defined only for the Pentium processor with MMX technology. This pin is an INC on the Pentium
processor (75/90/100/120/133/150/166/200).
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CHAPTER 5
HARDWARE INTERFACE

5.1. DETAILED PIN DESCRIPTIONS
This chapter describes the pins of the Pentium processor that interface to the system.  Both the
Pentium processor (75/90/100/120/133/150/166/200) and the Pentium processor with MMX
technology have the same logical hardware interface.  The Pentium processor with MMX
technology has one extra signal, VCC2DET#.

The Pentium processor, when operating in dual processing mode, modifies the functionality of
the following signals:

• A20M#, ADS#, BE4#-BE0#, CACHE#, D/C#, FERR#, FLUSH#, HIT#, HITM#, HLDA,
IGNNE#, LOCK#, M/IO#, PCHK#, RESET, SCYC, SMIACT#, W/R#



HARDWARE INTERFACE E

5-2

12/18/96 5:02 PM    Ch05new2.doc

INTEL CONFIDENTIAL
(until publication date)

5.1.1. A20M#
A20M# Address 20 Mask

Used to emulate the 1 Mbyte address wraparound on the 8086

Asynchronous Input

Signal Description

When the address 20 mask input is asserted, the Pentium processor masks physical address bit
20 (A20) before performing a lookup to the internal caches or driving a memory cycle on the
bus. A20M# is provided to emulate the address wraparound at one Mbyte which occurs on the
8086.

A20M# must only be asserted when the processor is in real mode. The effect of asserting
A20M# in protected mode is undefined and may be implemented differently in future
processors.

Inquire cycles and writebacks caused by inquire cycles are not affected by this input. Address
bit A20 is not masked when an external address is driven into the Pentium processor for an
inquire cycle. Note that if an OUT instruction is used to modify A20M# this will not affect
previously prefetched instructions. A serializing instruction must be executed to guarantee
recognition of A20M# before a specific instruction.

The Pentium processor, when configured as a Dual processor, will ignore the A20M# input.

When Sampled/Driven

A20M# is sampled on every rising clock edge. A20M# is level sensitive and active low. This
pin is asynchronous, but must meet setup and hold times for recognition in any specific clock.
To guarantee that A20M# will be recognized before the first ADS# after RESET, A20M# must
be asserted within two clocks after the falling edge of RESET

NOTE

As the performance of Pentium processors continues to improve, a given
code sequence is executed faster. As a result, some code sequences that rely
upon hardware timing may fail. Specifically when a keyboard controller is
used to toggle the A20M# pin and if the keyboard controller is slow in
response, then at some point in a code sequence, data or code may be read
from a wrong address. Therefore, it should be ensured that the keyboard
controller switches the A20M# signal fast enough to match the execution
speed of the processor. Software should be written to synchronize between
code execution and the event of A20M# toggling.
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Relation to Other Signals

Pin Symbol Relation to Other Signals

A20 When asserted, A20M# will mask the value of address pin A20.

CPUTYP When strapped to VCC, the processor will ignore the A20M# input.
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5.1.2. A31-A3
A31-A3 Address Lines

Defines the physical area of memory or I/O accessed.

Input/Output

Signal Description

As outputs, the Address Lines (A31-A3) along with the byte enable signals (BE7#-BE0#) form
the address bus and define the physical area of memory or I/O accessed.

The Pentium processor is capable of addressing 4 gigabytes of physical memory space and
64K bytes of I/O address space.

As inputs, the address bus lines A31-A5 are used to drive addresses back into the processor to
perform inquire cycles. Since inquire cycles affect an entire 32-byte line, the logic values of
A4 and A3 are not used for the hit/miss decision, however A4 and A3 must be at valid logic
level and meet setup and hold times during inquire cycles.

When Sampled/Driven

When an output, the address is driven in the same clock as ADS#. The address remains valid
from the clock in which ADS# is asserted until the earlier of the last BRDY# or the clock after
NA#, or until AHOLD is asserted.

When an input, the address must be returned to the processor to meet setup and hold times in
the clock EADS# is sampled asserted.
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Relation to Other Signals

Pin Symbol Relation to Other Signals

A20M# Causes address pin A20 to be masked.

ADS# A31-A3 are driven with ADS# (except when a external inquire cycle causes a
writeback before AHOLD is deasserted, see the Bus Functional Description
chapter).

AHOLD A31-A3 are floated one clock after AHOLD is asserted.

AP Even address parity is driven/sampled with the address bus on AP.

APCHK# The status of the address parity check is driven on the APCHK# pin.

BE7#-BE0# Completes the definition of the physical area of memory or I/O accessed.

BOFF# A31-A3 are floated one clock after BOFF# is asserted.

EADS# A31-A5 are sampled with EADS# during inquire cycles.

HIT# HIT# is driven to indicate whether the inquire address driven on A31-A5 is valid
in an internal cache.

HITM# HITM# is driven to indicate whether the inquire address driven on A31-A5 is in
the modified state in the data cache.

HLDA A31-A3 are floated when HLDA is asserted.

INV INV determines if the inquire address driven to the processor on A31-A5 should
be invalidated or marked as shared if it is valid in an internal cache.
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5.1.3. ADS#
ADS# Address Strobe

Indication that a new valid bus cycle is currently being driven by the
processor.

Synchronous Input/Output

Signal Description

The Address Strobe output indicates that a new valid bus cycle is currently being driven by the
Pentium processor. The following pins are driven to their valid level in the clock ADS# is
asserted: A31-A3, AP, BE7#-0#, CACHE#, LOCK#, M/IO#, W/R#, D/C#, SCYC, PWT, PCD.

ADS# is used by external bus circuitry as the indication that the processor has started a bus
cycle. The external system may sample the bus cycle definition pins on the next rising edge of
the clock after ADS# is driven active.

ADS# floats during bus HOLD and BOFF#. ADS# is not driven low to begin a bus cycle while
AHOLD is asserted unless the cycle is a writeback due to an external invalidation. An active
(floating low) ADS# in the clock after BOFF# is asserted should be ignored by the system.

This signal is normally identical to the ADSC# output.  When operating in dual processing
mode, the Pentium processor uses this signal for private snooping.

When Sampled/Driven

ADS# is driven active in the first clock of a bus cycle and is driven inactive in the second and
subsequent clocks of the cycle. ADS# is driven inactive when the bus is idle.

This signal becomes an Input/Output when two Pentium processors are operating together in
Dual Processing Mode.

Relation to Other Signals

Pin Symbol Relation to Other Signals

ADSC# ADS# is identical to the ADSC# output.

APCHK# When operating in dual processing mode, APCHK# is driven in response
to ADS# for a private snoop.

D/P# When operating in dual processing mode, D/P# should be sampled with
an active ADS#.

SMIACT# When operating in dual processing mode, SMIACT# should be sampled
with an active ADS# and qualified by D/P#.
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5.1.4. ADSC#
ADSC# Additional Address Strobe

Indicates that a new valid bus cycle is currently being driven by the
processor.

Synchronous Output

Signal Description

This signal is identical to the ADS# output.  This signal can be used to relieve tight board
timings by easing the load on the Address Strobe signal.

When Sampled/Driven

Refer to the ADS# signal description.

Relation to Other Signals

Pin Symbol Relation to Other Signals

ADS# ADSC# is identical to the ADS# output.
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5.1.5. AHOLD
AHOLD Address Hold

Floats the address bus so an inquire cycle can be driven to the Pentium®

processor.

Synchronous Input

Signal Description

In response to the Address Hold request input the Pentium processor will stop driving A31-A3
and AP in the next clock. This pin is intended to be used for running inquire cycles to the
Pentium processor. AHOLD allows another bus master to drive the Pentium processor address
bus with the address for an inquire cycle. Since inquire cycles affect the entire cache line,
although A31-A3 are floated during AHOLD, only A31-A5 are used by the Pentium processor
for inquire cycles (and parity checking). Address pins 3 and 4 are logically ignored during
inquire cycles but must be at a valid logic level when sampled.

While AHOLD is active, the address bus will be floated, but the remainder of the bus can
remain active. For example, data can be returned for a previously driven bus cycle when
AHOLD is active. In general, the Pentium processor will not issue a bus cycle (ADS#) while
AHOLD is active; the only exception to this is that writeback cycles due to an external snoop
will be driven while AHOLD is asserted.

Since the Pentium processor floats its bus immediately (in the next clock) in response to
AHOLD, an address hold acknowledge is not required.

When AHOLD is deasserted, the Pentium processor will drive the address bus in the next
clock. It is the responsibility of the system designer to prevent address bus contention. This can
be accomplished by ensuring that other bus masters have stopped driving the address bus
before AHOLD is deasserted. Note the restrictions to the deassertion of AHOLD discussed in
the inquire cycle section of the Bus Functional Description chapter (Chapter 6).

AHOLD is recognized during RESET and INIT. Note that the internal caches are flushed as a
result of RESET, so invalidation cycles run during RESET are unnecessary.

When Sampled

AHOLD is sampled on every rising clock edge, including during RESET and INIT.
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Relation to Other Signals

Pin Symbol Relation to Other Signals

A31-A3 A31-A3 are floated as a result of the assertion of AHOLD.

ADS# ADS# will not be driven if AHOLD is asserted (except when a external inquire
cycle causes a writeback before AHOLD is deasserted, see the Bus Functional
Description chapter (Chapter 6)).

AP AP is floated as a result of the assertion of AHOLD.

EADS# EADS# is recognized while AHOLD is asserted.



HARDWARE INTERFACE E

5-10

12/18/96 5:02 PM    Ch05new2.doc

INTEL CONFIDENTIAL
(until publication date)

5.1.6. AP
AP Address Parity

Bi-directional address parity pin for the address lines of processor.

Input/Output

Signal Description

This is the bi-directional Address Parity pin for the address lines of processor. There is one
address parity pin for the address lines A31-A5. Note A4 and A3 are not included in the parity
determination.

When an output, AP is driven by the Pentium processor with even parity information on all
Pentium processor generated cycles in the same clock as the address driven. (Even address
parity means that there are an even number of HIGH outputs on A31-A5 and the AP pins.)

When an input, even parity information must be returned to the Pentium processor on this pin
during inquire cycles in the same clock that EADS# is sampled asserted to insure that the
correct parity check status is driven on the APCHK# output.

The value read on the AP pin does not affect program execution. The value returned on the AP
pin is used only to determine even parity and drive the APCHK# output with the proper value.
It is the responsibility of the system to take appropriate actions if a parity error occurs. If parity
checks are not implemented in the system, AP may be connected to VCC through a pull-up
resistor and the APCHK# pin may be ignored.

When Sampled/Driven

When an output, AP is driven by the Pentium processor with even parity information on all
Pentium processor generated cycles in the same clock as the address driven. The AP output
remains valid from the clock in which ADS# is asserted until the earlier of the last BRDY# or
the clock after NA#, or until AHOLD is asserted.

When an input, even parity information must be returned to the Pentium processor on this pin
during inquire cycles in the same clock that EADS# is sampled asserted to guarantee that the
proper value is driven on APCHK#. The AP input must be at a valid level and meet setup and
hold times when sampled.
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Relation to Other Signals

Pin Symbol Relation to Other Signals

A31-A5 The AP pin is used to create even parity with the A31-A5 pins.

ADS# AP is driven with ADS# (except when a external inquire cycle causes a write-
back before AHOLD is deasserted, see the Bus Functional Description chapter).

AHOLD AP is floated one clock after AHOLD is asserted.

APCHK# The status of the address parity check is driven on the APCHK# output.

BOFF# AP is floated one clock after BOFF# is asserted.

EADS# AP is sampled with EADS# during inquire cycles.

HLDA AP is floated when HLDA is asserted.
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5.1.7. APCHK#
APCHK# Address Parity Check

The status of the address parity check is driven on this output.

Asynchronous Output

Signal Description

APCHK# is asserted two clocks after EADS# is sampled active if the Pentium processor has
detected a parity error on the A31-A5 during inquire cycles.

Driving APCHK# is the only effect that bad address parity has on the Pentium processor. It is
the responsibility of the system to take appropriate action if a parity error occurs. If parity
checks are not implemented in the system, the APCHK# pin may be ignored.

Address parity is checked during every private snoop between the Primary and Dual
processors.  Therefore, APCHK# may be asserted due to an address parity error during this
private snoop.  If an error is detected, APCHK# will be asserted 2 clocks after ADS# for one
processor clock period.  The system can choose to acknowledge this parity error indication at
this time or do nothing.

When Sampled/Driven

APCHK# is valid for one clock and should be sampled two clocks following ADS# and
EADS# assertion. At all other times it is inactive (high). APCHK# is not floated with AHOLD,
HOLD, or BOFF#. The APCHK# signal is glitch free.

Relation to Other Signals

Pin Symbol Relation to Other Signals

ADS# When operating in dual processing mode, APCHK# is driven in response
to a private snoop.

AP Even address parity with the A31-A5 should be returned to the Pentium®

processor on the AP pin. If even parity is not driven, the APCHK# pin is
asserted.

A31-A5 The AP pin is used to create even parity with A31-A5. If even parity is not
driven to the Pentium processor, the APCHK# pin is asserted.

EADS# APCHK# is driven in response to an external snoop.
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5.1.8. APICEN
APICEN APIC Enable

This pin enables the APIC on the processor.

Synchronous Configuration Input

Needs external pull-up resistors.

Signal Description

APICEN, if sampled high at the falling edge of RESET, enables the on-chip APIC.  If it is
sampled low, then the on-chip APIC is not enabled and the processor uses the interrupts as if
the APIC was not present (Bypass mode).

APICEN must be driven by the system. This pin has an internal pulldown resistor and is
sampled at the falling edge of RESET.  When using an active circuit to override the internal
pulldown resistor, the driver should have an internal effective pullup resistance of 1K ohms or
less.

When Sampled/Driven

APICEN should be valid and stable two clocks before and after the falling edge of RESET.

Relation to Other Signals

Pin Symbol Relation to Other Signals

BE3#-BE0# When APICEN is sampled active, BE3#-BE0# are used to sample the
APIC ID.

INTR/LINT0 When APICEN is sampled active, this input becomes the APIC local
interrupt 0.

NMI/LINT1 When APICEN is sampled active, this input becomes the APIC local
interrupt 1.

PICCLK PICCLK must be tied or driven high when APICEN is sampled low at the
falling edge of RESET.

PICD1 APICEN  shares a pin with PICD1.

RESET APICEN is sampled at the falling edge of RESET.
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5.1.9. BE7#-BE0#
BE7#-BE0# Byte Enable Outputs / APIC ID Inputs

When operating in dual processing mode, BE4# is used to transfer
information between the Dual and Primary processors during the atomic
Flush operation.

At RESET, the BE3#-BE0# pins read the APIC ID bits for the Pentium®

processor.

After RESET, these pins are byte enables and help define the physical
area of memory to I/O accessed.

BE4#:  Synchronous Input/Output, Dual Processing Mode.

BE3#-BE0#:  Synchronous Configuration Inputs, during RESET.

BE3#-BE0#:  Synchronous  Outputs, following RESET.

Signal Description

As outputs, the byte enable signals are used in conjunction with the address lines to provide
physical memory and I/O port addresses. The byte enables are used to determine which bytes
of data must be written to external memory, or which bytes were requested by the CPU for the
current cycle.

• BE7# applies to D63-D56

• BE6# applies to D55-D48

• BE5# applies to D47-D40

• BE4# applies to D39-D32

• BE3# applies to D31-D24

• BE2# applies to D23-D16

• BE1# applies to D15-D8

• BE0# applies to D7-D0

In the case of cacheable reads (line fill cycles), all 8 bytes of data must be driven to the
Pentium processor regardless of the state of the byte enables. If the requested read cycle is a
single transfer cycle, valid data must be returned on the data lines corresponding to the active
byte enables. Data lines corresponding to inactive byte enables need not be driven with valid
logic levels. Even data parity is checked and driven only on the data bytes that are enabled by
the byte enables.

The local APIC module on the Pentium processor loads its 4-bit APIC ID value from the four
least significant byte-enable pins at the falling edge of RESET.  The following table shows the
four pins that comprise the APIC ID.

APIC ID
Register Bit

Pin Latched
at RESET

bit 24 BE0#
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bit 25 BE1#

bit 26 BE2#

bit 27 BE3#

Loading the APIC ID should be done with external logic that drives the proper address at reset.
If the BE3#-BE0# signals are not driven, the APIC ID value will default to 0000 for the
Pentium processor and 0001 for the Dual processor.

BE[0:3]# pins establish the APIC ID for the processor and are input/output pins.  These pins
have strong internal pull down resistors and typically high external capacitive loading.  A
strong pullup on BE[0:3]# is needed to make sure that the pins reach the correct value.  In
addition, since these pins are also outputs, a large resistive load would degrade the signal
output during normal operation.  A 50 Ohm tristate driver is recommended to drive these pins
during RESET only.

WARNING

An APIC ID of all 1s is an APIC special case (i.e., a broadcast) and must not
be used.  Since the Dual processor inverts the lowest order bit of the APIC
ID placed on the lowest four BE pins, the value “1110” must not be used
when operating in Dual Processing mode.

In a dual-processor configuration, the OEM socket and Socket 5/Socket 7 should have the four
byte enable pairs tied together.  The Primary processor will load the value seen on these four
pins at RESET.  The Dual processor will load the value seen on these pins and automatically
invert bit 24 of the APIC ID Register.  Thus, the two processors will have unique APIC ID
values.

The Primary and Dual processors incorporate a mechanism to present an atomic view of the
cache flush operation to the system when in dual processing mode.  The Dual processor
performs the cache flush operation and grants the bus to the Primary processor by
PBREQ#/PBGNT# arbitration exchange. The Primary processor then flushes both of its
internal caches and runs a cache flush acknowledge special cycle by asserting BE4#, to
indicate to the external system that the cache line entries have been invalidated. The Dual
processor halts all code execution while the Pentium processor is flushing its caches, and does
not begin executing code until it recognizes the flush acknowledge special cycle. Please refer
to the Bus Functional Description chapter of this volume for more details (Chapter 6).

When Sampled/Driven

As outputs, the byte enables are driven in the same clock as ADS#. The byte enables are driven
with the same timing as the address bus (A31-3). The byte enables remain valid from the clock
in which ADS# is asserted until the earlier of the last BRDY# or the clock after NA#. The byte
enables do not float with AHOLD
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The four least significant byte-enable bits are sampled for APIC ID at the falling edge of
RESET.  These pins should be valid and stable two clocks before and after the falling edge of
RESET.

NOTE

Asserting the APIC ID is not specified for the rising edge of RESET. In a
FRC system, the BE3#-BE0# pins must not be driven for the 2 clocks
following the rising edge of RESET. The system design should drive these
signals on the third clock or later.

There are strong pull down resistors on the byte enable pins internally that
make it impractical to use pullup circuits to drive the APIC ID (on BE3#-
BE0#) or enter Lock Step operation (with BE4#) at the falling edge of
RESET. When not using the internal defaults on these pins, the value of the
external pullup resistors would have to be 50 Ohms or less. For this reason it
is suggested to use active drivers on these lines that would drive the byte
enable pins during the falling edge of RESET; passive pullups should be
avoided.

Relation to Other Signals

Pin Symbol Relation to Other Signals

A31-A3 A31-3 and BE7#-BE0# together define the physical area of memory or I/O
accessed.

ADS# BE7#-BE0# are driven with ADS#.

APICEN When APICEN is sampled active, BE3#-BE0# are used to sample the
APIC ID.

BOFF# BE7#-BE0# are floated one clock after BOFF# is asserted.

D63-D0 BE7#-BE0# indicate which data bytes are being requested or driven by
the Pentium® processor.

DP7-DP0 Even data parity is checked/driven only on the data bytes enabled by
BE7#-BE0#.

HLDA BE7#-BE0# are floated when HLDA is asserted.

RESET During reset the BE3#-BE0# pins are sampled to determine the APIC ID.
Following RESET, they function as byte-enable outputs.
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5.1.10. BF1-0
BF1-0 Bus to Core Frequency Ratio

Used to configure processor bus-to-core frequency ratio.

Asynchronous Input

Signal Description

The BF[1:0] pins determine whether the processor will operate at a 1/2, 2/3, 2/5, or 1/3 I/O bus
to core frequency ratio.  These pins have internal pullup/pulldown resistors; therefore,  they
can be left floating when the default value is desired.  However, external pulldowns of 500
Ohms or less must be used between the pins and ground to effectively override default
(internal) pullups, while external pullups of 2.2K Ohms or less should be used to override
default pulldowns on BF[1:0].

Each Pentium processor is specified to operate within a single bus-to-core ratio and a specific
minimum to maximum bus frequency range (corresponding to a minimum to maximum core
frequency range). Operation in other bus-to-core ratios or outside the specified operating
frequency range is not supported. For example, the 150 MHz Pentium processor does not
operate beyond the 60 MHz bus frequency and only supports the 2/5 bus-to-core ratio; it does
not support the 1/3, 1/2, or 2/3 bus-to-core ratios. The table below clarifies and summarizes
these specifications.
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Bus to Core Frequency Ratios for the Pentium® Processor

BF1 BF0

Pentium ®

Processor
(75/90/100/120/

133/150/166/200)
Bus/Core Ratio

Pentium Processor
with MMX™
Technology

Bus/Core Ratio 4

Max Bus/Core
Frequency (MHz)

Min Bus/Core
Frequency (MHz)

0 1 1/3 1/3 66/200 33/100

0 0 2/5 2/5 66/166 33/83

0 0 2/5 2/5 60/150 30/75

1 0 1/2 1/2 2 66/133 33/66

1 0 1/2 1/2 2 60/120 30/60

1 0 1/2 1/2 2 50/1003 25/50

1 1 2/3 1 reserved 66/1003 33/50

1 1 2/3 1 reserved 60/90 30/45

1 1 2/3 1 reserved 50/75 25/37.5

NOTES: 

1. This is the default bus fraction for the Pentium® processor (75/90/100/120/133/150/166/200).  If the BF
pins are left floating, the processor will be configured for the 2/3 bus to core frequency ratio.

2. This is the default bus fraction for the Pentium processor with MMX™ technology.  If the BF pins are
left floating, the processor will be configured for the 1/2 bus to core frequency ratio.

3. The 100 MHz (Max Core Frequency) Pentium processors can be operated in both 1/2 and 2/3
Bus/Core Ratios.

4. Currently, the desktop Pentium processor with MMX technology supports 66/200 and 66/166 operation.

If  BF[1:0] are left unconnected on the Pentium processor with MMX technology, the bus-to-
core ratio defaults to 2/5.  If BF[1:0] are left unconnected on the Pentium processor (75/90/
100/120/133/150/166/200) the bus-to-core ratio defaults to 2/3.

When Sampled/Driven

BF[0:1] are sampled at RESET and cannot be changed until another non-warm (1 ms)
assertion of RESET. BF[1:0] must meet a 1 ms setup time to the falling edge of RESET.

Relation to Other Signals

Pin Symbol Relation to Other Signals

RESET BF[1:0] are sampled at the falling edge of RESET.
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5.1.11. BOFF#
BOFF# Backoff

The back off input is used to force the Pentium® processor off the bus in the
next clock.

Synchronous Input

Signal Description

In response to BOFF#, the Pentium processor will abort all outstanding bus cycles that have
not yet completed and float the Pentium processor bus in the next clock. The processor floats
all pins normally floated during bus hold. Note that since the bus is floated in the clock after
BOFF# is asserted, an acknowledge is not necessary (HLDA is not asserted in response to
BOFF#).

The processor remains in bus hold until BOFF# is negated, at which time the Pentium
processor restarts any aborted bus cycle(s) in their entirety by driving out the address and
status and asserting ADS#.

This pin can be used to resolve a deadlock situation between two bus masters.

Any data with BRDY# returned to the processor while BOFF# is asserted is ignored.

BOFF# has higher priority than BRDY#. If both BOFF# and BRDY# occur in the same clock,
BOFF# takes effect.

BOFF# also has precedence over BUSCHK#. If BOFF# and BUSCHK# are both asserted
during a bus cycle, BOFF# causes the BUSCHK# to be forgotten.

When Sampled

BOFF# is sampled on every rising clock edge, including when RESET and INIT are asserted.

NOTE

If a read cycle is running on the bus, and an internal snoop of that read cycle
hits a modified line in the data cache, and the system asserts BOFF#, then the
sequence of bus cycles is as follows. Upon negation of BOFF#, the Pentium
processor will drive out a writeback resulting from the internal snoop hit.
After completion of the writeback, the processor will then restart the original
read cycle. Thus, like external snoop writebacks, internal snoop writebacks
may also be reordered in front of cycles that encounter a BOFF#. Also note
that, although the original read encountered both an external BOFF# and an
internal snoop hit to an M-state line, it is restarted only once.

This circumstance can occur during accesses to the page tables/directories
and during prefetch cycles (these accesses cause a bus cycle to be generated
before the internal snoop to the data cache is performed).
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Relation to Other Signals

Pin Symbol Relation to Other Signals

A3-A31 These signals float in response to BOFF#.

ADS#

AP

BE7#-BE3#

CACHE#

D/C#

D63-D0

DP7-DP0

LOCK#

M/IO#

PCD

PWT

SCYC

W/R#

BRDY# If BRDY# and BOFF# are asserted simultaneously, BOFF# takes priority and
BRDY# is ignored.

EADS# EADS# is recognized when BOFF# is asserted.

HLDA The same pins are floated when HLDA or BOFF# is asserted.

BUSCHK# If BUSCHK# and BOFF# are both asserted during a bus cycle, BOFF# takes
priority and BUSCHK# is forgotten.

NA# If NA# and BOFF# are asserted simultaneously, BOFF# takes priority and NA#
is ignored.
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5.1.12. BP3-BP0
BP3-BP0 Breakpoint signals

BP3-BP0 externally indicate a breakpoint match.

Synchronous Output

Signal Description

The Breakpoint pins (BP3-0) correspond to the debug registers, DR3-DR0.  These pins
externally indicate a breakpoint match when the debug registers are programmed to test for
breakpoint matches.  BP1 and BP0 are multiplexed with the performance monitoring pins
(PM1 and PM0).  The PB1 and PB0 bits in the debug mode control register determine if the
pins are configured as breakpoint or performance monitoring pins.  The pins come out of
RESET configured for performance monitoring.

Because of the fractional-speed bus, each assertion of a Pentium processor BP pin indicates
that one or more BP matches occurred.  The maximum number of matches per assertion is two
when using the 2/3 or 1/2 bus-to-core ratios. Similarly, the maximum number of matches per
assertion is three when using the 2/5 or 1/3 bus-to-core ratios.

When Sampled/Driven

The BP3-BP0 pins are driven in every clock and are not floated during bus HOLD of BOFF#.

Relation to Other Signals

Pin Symbol Relation to Other Signals

PM1-PM0 BP1 and BP0 share pins with PM1 and PM0, respectively.
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5.1.13. BRDY#
BRDY# Burst Ready

Transfer complete indication.

Synchronous Input

Signal Description

The Burst Ready input indicates that the external system has presented valid data on the data
pins in response to a read, or that the external system has accepted the Pentium processor data
in response to a write request.

Each cycle generated by the Pentium processor will either be a single transfer read or write, or
a burst cache line fill or writeback. For single data transfer cycles, one BRDY# is expected to
be returned to the Pentium processor. Once this BRDY# is returned, the cycle is complete. For
burst transfers, four data transfers are expected by the Pentium processor. The cycle is ended
when the fourth BRDY# is returned.

When Sampled

This signal is sampled in the T2, T12 and T2P bus states.
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Relation to Other Signals

Pin Symbol Relation to Other Signals

BOFF# If BOFF# and BRDY# are asserted simultaneously, BOFF# takes priority and
BRDY# is ignored.

BUSCHK# BUSCHK# is sampled with BRDY#.

CACHE# In conjunction with the KEN# input, CACHE# determines whether the bus cycle
will consist of 1 or 4 transfers.

D63-D0 During reads, the D63-D0 pins are sampled by the Pentium® processor with
BRDY#. During writes, BRDY# indicates that the system has accepted D63-D0.

DP7-0 During reads, the DP7-0 pins are sampled by the Pentium processor with
BRDY#. During writes, BRDY# indicates that the system has accepted DP7-0.

EWBE# EWBE# is sampled with each BRDY# of a write cycle.

KEN# KEN# is sampled and latched by the Pentium processor with the earlier of the
first BRDY# or NA#. Also, in conjunction with the CACHE# input, KEN#
determines whether the bus cycle will consist of 1 or 4 transfers (assertions of
BRDY#).

LOCK# LOCK# is deasserted after the last BRDY# of the locked sequence.

PCHK# PCHK# indicates the results of the parity check two clocks after BRDY# is
returned for reads.

PEN# PEN# is sampled with BRDY# for read cycles.

WB/WT# WB/WT# is sampled and latched by the Pentium processor with the earlier of
the first BRDY# or NA#.
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5.1.14. BRDYC#
BRDYC# Burst Ready

Transfer complete indication.

Synchronous Input

Signal Description

This signal is identical to the BRDY# input.  This signal can be used to relieve tight board
timings by easing the load on the Burst Ready signal.

In addition to its normal functionality, BRDYC# is sampled with BUSCHK# at RESET to
select the buffer strength for some pins.  BRDYC# has an internal pullup resistor.  To override
the default settings for the buffer strengths, this pin should be driven and not permanently
strapped to ground since this will interfere with the normal operation of this pin. The driver
should have an internal resistance of 1K Ohms or less. This is only a function of BRDYC#.
The BRDY# signal is not sampled to select buffer sizes.

When Sampled/Driven

Refer to the BRDY# signal description.

Relation to Other Signals

Pin Symbol Relation to Other Signals

BRDY# BRDYC# is identical to the BRDY# input.

RESET BRDYC# and BUSCHK# are sampled at RESET to select the buffer
strength for some pins



E HARDWARE INTERFACE

5-25

12/18/96 5:02 PM    Ch05new2.doc

INTEL CONFIDENTIAL
(until publication date)

5.1.15. BREQ
BREQ Bus Request

Indicates externally when a bus cycle is pending internally.

Output

Signal Description

The Pentium processor asserts the BREQ output whenever a bus cycle is pending internally.
BREQ is always asserted in the first clock of a bus cycle with ADS#. Furthermore, if the
Pentium processor is not currently driving the bus (due to AHOLD, HOLD, or BOFF#), BREQ
is asserted in the same clock that ADS# would have been asserted if the Pentium processor
were driving the bus. After the first clock of the bus cycle, BREQ may change state. Every
assertion of BREQ is not guaranteed to have a corresponding assertion of ADS#.

External logic can use the BREQ signal to arbitrate between multiple processors. This signal is
always driven regardless of the state of AHOLD, HOLD or BOFF#.

When Driven

BREQ is always driven by the Pentium processor, and is not floated during bus HOLD or
BOFF#.

Relation to Other Signals

Pin Symbol Relation to Other Signals

ADS# BREQ is always asserted in the clock that ADS# is asserted.
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5.1.16. BUSCHK#
BUSCHK# Bus Check

Allows the system to signal an unsuccessful completion of a bus cycle.

Synchronous Input

Signal Description

The Bus Check input pin allows the system to signal an unsuccessful completion of a bus
cycle. If this pin is sampled active, the Pentium processor will latch the address and control
signals of the failing cycle in the machine check registers. If in addition, the MCE bit in CR4 is
set, the Pentium processor will vector to the machine check exception upon completion of the
current instruction.

If BUSCHK# is asserted in the middle of a cycle, the system must return all expected BRDY#s
to the Pentium processor. BUSCHK# is remembered by the processor if asserted during a bus
cycle. The processor decides after the last BRDY# whether to take the machine check
exception or not.

BOFF# has precedence over BUSCHK#. If BOFF# and BUSCHK# are both asserted during a
bus cycle, the BOFF# causes the BUSCHK# to be forgotten.

In addition to its normal functionality, BUSCHK# is sampled with BRDYC# at RESET to
select the buffer strength for some pins.  BUSCHK# has an internal pullup resistor.  To
override the default settings for the buffer strengths, this pin should be driven and not
permanently strapped to ground since this will interfere with the normal operation of this pin.
The driver should have an internal resistance of 1K Ohms or less.

When Sampled

BUSCHK# is sampled when BRDY# is returned to the Pentium processor.

NOTE

The Pentium processor can remember only one machine check exception at a
time. This exception is recognized on an instruction boundary. If BUSCHK#
is sampled active while servicing the machine check exception for a previous
BUSCHK#, it will be remembered by the processor until the original
machine check exception is completed. It is then that the processor will
service the machine check exception for the second BUSCHK#. Note that
only one BUSCHK# will be remembered by the processor while the machine
exception for the previous one is being serviced.

When the BUSCHK# is sampled active by the processor, the cycle address
and cycle type information for the failing bus cycle is latched upon assertion
of the last BRDY# of the bus cycle. The information is latched into the
Machine Check Address (MCA) and Machine Check Type (MCT) registers
respectively. However, if the BUSCHK# input is not deasserted before the
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first BRDY# of the next bus cycle, and the machine check exception for the
first bus cycle has not occurred, then new information will be latched into the
MCA and MCT registers, over-writing the previous information at the
completion of this new bus cycle. Therefore, in order for the MCA and MCT
registers to report the correct information for the failing bus cycle when the
machine check exception for this cycle is taken at the next instruction
boundary, the system must deassert the BUSCHK# input immediately after
the completion of the failing bus cycle (i.e., before the first BRDY# of the
next bus cycle is returned).

Relation to Other Signals

Pin Symbol Relation to Other Signals

BOFF# If BOFF# and BUSCHK# are both asserted during a bus cycle, the BOFF#
signal causes the BUSCHK# to be forgotten.

BRDY# BUSCHK# is sampled with BRDY#.

BRDYC# BUSCHK# is sampled with BRDYC# at RESET to select the buffer strength for
some pins.

RESET BUSCHK# and BRDYC# are sampled at RESET to select the buffer strength for
some pins
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5.1.17. CACHE#
CACHE# Cacheability

External indication of internal cacheability.

Synchronous Input/Output

Signal Description

The Cacheability output is a cycle definition pin. For Pentium processor initiated cycles this
pin indicates internal cacheability of the cycle (if a read), and indicates a burst writeback (if a
write). CACHE# is asserted for cycles coming from the cache (writebacks) and for cycles that
will go into the cache if KEN# is asserted (linefills). More specifically, CACHE# is asserted
for cacheable reads, cacheable code fetches, and writebacks. It is driven inactive for non-
cacheable reads, TLB replacements, locked cycles (except writeback cycles from an external
snoop that interrupt a locked read/modify/write sequence), I/O cycles, special cycles and
writethroughs.

For read cycles, the CACHE# pin indicates whether the Pentium processor will allow the cycle
to be cached. If CACHE# is asserted for a read cycle, the cycle will be turned into a cache line
fill if KEN# is returned active to the Pentium processor. If this pin is driven inactive during a
read cycle, Pentium processor will not cache the returned data, regardless of the state of the
KEN#.

If this pin is asserted for a write cycle, it indicates that the cycle is a burst writeback cycle.
Writethroughs cause a non-burst write cycle to be driven to the bus. The Pentium processor
does not support write allocations (cache line fills as a result of a write miss).

When operating in dual processing mode, the Pentium processors uses this signal for private
snooping.

When Sampled/Driven

CACHE# is driven to its valid level in the same clock as the assertion of ADS# and remains
valid until the earlier of the last BRDY# or the clock after NA#.

This signal becomes an Input/Output when two Pentium processor are operating together in
dual processing mode.
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Relation to Other Signals

Pin Symbol Relation to Other Signals

ADS# CACHE# is driven to its valid level with ADS#.

BOFF# CACHE# floats one clock after BOFF# is asserted.

BRDY# In conjunction with the KEN# input, CACHE# determines whether the bus cycle
will consist of 1 or 4 transfers (assertions of BRDY#).

HLDA CACHE# floats when HLDA is asserted.

KEN# KEN# and CACHE# are used together to determine if a read will be turned into a
linefill.
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5.1.18. CLK
CLK Clock

Fundamental timing for the Pentium processor.

Input

Signal Description

The Clock input provides the fundamental timing for the Pentium processor. Its frequency is
proportional to the internal operating frequency of the Pentium processor (as selected by the
BF[1:0] pins) and requires TTL levels. All external timing parameters except TDI, TDO, TMS,
and TRST# are specified with respect to the rising edge of CLK.

Note that the CLK signal on the Pentium processor with MMX technology is 3.3V tolerant,
while on the Pentium processor (75/90/100/120/133/150/166/200) the CLK input is 5.0V
tolerant.

When Sampled

CLK is used as a reference for sampling other signals. It is recommended that CLK begin
toggling within 150 ms after VCC reaches its proper operating level. This recommendation is
only to ensure long term reliability of the device. VCC specifications and clock duty cycle,
stability and frequency specifications must be met for 1 millisecond before the negation of
RESET. If at any time during normal operation one of these specifications is violated, the
power on RESET sequence must be repeated. This requirement is to insure proper operation of
the phase locked loop circuitry on the clock input.

Relation to Other Signals

Pin Symbol Relation to Other Signals

All except TCK,
TDI,
TDO,
TMS,
TRST#

External timing parameters are measured from the rising edge of CLK for all
signals except TDI, TDO, TMS, TCK, and TRST#.
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5.1.19. CPUTYP
CPUTYP CPU Type Definition Pin

Used to configure the Pentium® processor as a Dual processor.

Asynchronous Input

Signal Description

The CPUTYP pin is used to determine whether the Pentium processor will function as a
Primary or Dual processor.  CPUTYP must be strapped to either VCC or VSS.  When CPUTYP
is strapped to VCC, the Pentium processor will function as a Dual processor.  When CPUTYP
is strapped to VSS (or left unconnected), the Pentium processor will function as a Primary
processor. In a single socket system design, CPUTYP pin must be strapped to VSS (or left
unconnected).

When Sampled/Driven

CPUTYP is sampled at RESET and cannot be changed until another non-warm (1 ms)
assertion of RESET.  CPUTYP must meet a 1 ms setup time to the falling edge of RESET.  It
is recommended that CPUTYP be strapped to VCC or VSS.

Relation to Other Signals

Pin Symbol Relation to Other Signals

A20M# When CPUTYP is strapped to VCC, the processor will ignore the A20M#
input.

BE4#-BE0# The BE3#-BE0# input values are sampled during RESET to determine
the APIC ID.  The Dual processor uses BE4# to indicate to the Primary
processor that it has completed it’s cache flush operation.  Refer to the
BE4#-BE0# pin description.

D/P# D/P# is driven by the Pentium processor only when the CPUTYP signal is
strapped to VSS.

DPEN# When CPUTYP is strapped to VCC, DPEN# is driven active to indicate
that the second socket is occupied.

FERR# When CPUTYP is strapped to VCC, the FERR# output is undefined.

FLUSH# When operating in dual processing mode, the FLUSH# inputs become
Synchronous to the CPU clock.

IGNNE# When CPUTYP is strapped to VCC, the processor will ignore the IGNNE#
input.

RESET CPUTYP is sampled at the falling edge of RESET.  When operating in
dual processing mode, the RESET inputs become synchronous to the
CPU clock.



HARDWARE INTERFACE E

5-32

12/18/96 5:02 PM    Ch05new2.doc

INTEL CONFIDENTIAL
(until publication date)

NOTE

It is common practice to put either a pullup or pulldown resistor on a net. If a
pullup resistor is connected to the CPUTYP pin in order to operate in a Dual
Processing mode, the value of this resistor must be 100 ohms or less to
override the internal pulldown. In the absence of an external pullup, the
internal pulldown will sufficiently pulldown the CPUTYP pin, therefore the
pin can be left floating.
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5.1.20. D/C#
D/C# Data/Code

Distinguishes a data access from a code access.

Synchronous Input/Output

Signal Description

The Data/Code signal is one of the primary bus cycle definition pins. D/C# distinguishes
between data (D/C# = 1) and code/special cycles (D/C# = 0).

When operating in dual processing mode, the Pentium processor uses this signal for private
snooping.

When Sampled/Driven

The D/C# pin is driven valid in the same clock as ADS# and the cycle address. It remains valid
from the clock in which ADS# is asserted until the earlier of the last BRDY# or the clock after
NA#.

This signal becomes an Input/Output when two Pentium processors are operating together in
Dual Processing Mode.

Relation to Other Signals

Pin Symbol Relation to Other Signals

ADS# D/C# is driven with ADS#.

BOFF# D/C# floats one clock after BOFF# is asserted.

HLDA D/C# floats when HLDA is asserted.



HARDWARE INTERFACE E

5-34

12/18/96 5:02 PM    Ch05new2.doc

INTEL CONFIDENTIAL
(until publication date)

5.1.21. D63-D0
D63-D0 Data Lines

Forms the 64-bit data bus.

Input/Output

Signal Description

The bi-directional lines, D63-D0 form the 64 data bus lines for the Pentium processor. Lines
D7-D0 define the least significant byte of the data bus; lines D63-D56 define the most
significant byte of the data bus.

When Sampled/Driven

When the CPU is driving the data lines (during writes), they are driven during the T2, T12, or
T2P clocks for that cycle.

During reads, the CPU samples the data bus when BRDY# is returned.

D63-D0 are floated during T1, TD, and Ti states.

Relation to Other Signals

Pin Symbol Relation to Other Signals

BE7#-BE0# BE7#-BE0# indicate which data bytes are being requested or driven by the
Pentium® processor.

BOFF# D63-D0 float one clock after BOFF# is asserted.

BRDY# BRDY# indicates that the data bus transfer is complete.

DP7-DP0 Even data parity is driven/sampled with the data bus on DP7-DP0.

HLDA D63-D0 float when HLDA is asserted.

PCHK# The status of the data bus parity check is driven on PCHK#.

PEN# Even data parity with D63-D0 should be returned on to the Pentium processor
on the DP pin. If a data parity error occurs, and PEN# is enabled, the cycle will
be latched and a machine check exception will be taken if CR4.MCE = 1.
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5.1.22. D/P#
D/P# Dual Processor / Primary Processor

Indicates whether the Dual processor or the Primary processor is driving
the bus.

Synchronous Output

Signal Description

The D/P# pin is driven LOW when the Primary processor is driving the bus.  Otherwise, the
Primary processor drives this pin high to indicate that the Dual processor owns the bus.  The
D/P# pin can be sampled for the current cycle with ADS#.  This pin is defined only on the
Primary processor. In a single socket system design, D/P# pin should be left NC.

When Sampled/Driven

The D/P# pin is always driven by the Primary processor and should be sampled with ADS# of
the current cycle.

Relation to Other Signals

Pin Symbol Relation to Other Signals

ADS# D/P# is valid for the current cycle with ADS# (like a status pin).

CPUTYP D/P# is driven by the Pentium® processor when the CPUTYP signal is
strapped to VSS (or left unconnected).

SMIACT# When operating in dual processing mode, D/P# qualifies the SMIACT#
SMM indicator.
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5.1.23. DP7-DP0
DP7-DP0 Data Parity

Bi-directional data parity pins for the data bus.

Input/Output

Signal Description

These are the bi-directional Data Parity pins for the processor. There is one parity pin for each
byte of the data bus. DP7 applies to D63-D56, DP0 applies to D7-D0.

As outputs, the data parity pins are driven by the Pentium processor with even parity
information for writes in the same clock as write data. Even parity means that there are an even
number of HIGH logic values on the eight corresponding data bus pins and the parity pin.

As inputs, even parity information must be driven back to the Pentium processor on these pins
in the same clock as the data to ensure that the correct parity check status is indicated by the
Pentium processor.

The value read on the data parity pins does not affect program execution unless PEN# is also
asserted. If PEN# is not asserted, the value returned on the DP pins is used only to determine
even parity and drive the PCHK# output with the proper value. If PEN# is asserted when a
parity error occurs, the cycle address and type will be latched in the MCA and MCT registers.
If in addition, the MCE bit in CR4 is set, a machine check exception will be taken.

It is the responsibility of the system to take appropriate actions if a parity error occurs. If parity
checks are not implemented in the system, the DP[7:0] and PEN# pins should be tied to VCC
through a pullup resistor and the PCHK# pin may be ignored.

When Sampled/Driven

As outputs, the data parity pins are driven by the Pentium processor with even parity
information in the same clock as write data. The parity remains valid until sampled by the
assertion of BRDY# by the system.

As inputs, even parity information must be driven back to the Pentium processor on these pins
in the same clock as the data to ensure that the correct parity check status is indicated by the
Pentium processor. The data parity pins must be at a valid logic level and meet setup and hold
times when sampled.
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Relation to Other Signals

Pin Symbol Relation to Other Signals

BE7#-BE0# Even data parity is checked/driven only on the data bytes enabled by BE7#-
BE0#.

BOFF# DP7-DP0 are floated one clock after BOFF# is asserted.

BRDY# DP7-DP0 are sampled with BRDY# for reads.

D63-D0 The DP7-0 pins are used to create even parity with D63-D0 on a byte by byte
basis. DP7-DP0 are driven with D63-D0 for writes.

HLDA DP7-DP0 are floated when HLDA is asserted.

PCHK# The status of the data parity check is driven on the PCHK# output.

PEN# The DP7-DP0 pins are used to create even parity with D63-D0. If even parity is
not detected, and PEN# is enabled, the cycle address and type will be latched.
If in addition CR4.MCE = 1, the machine check exception will be taken.
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5.1.24. DPEN#
DPEN# Second Socket Occupied

Configuration signal which indicates that the second socket in a dual
socket system is occupied.

Synchronous Input (to the Pentium® processor)

Synchronous Output (from the Pentium processor, when configured as a
Dual processor)

Signal Description

DPEN# is driven during RESET by the Pentium processor when configured as a Dual
processor to indicate to the Primary processor in the first socket that there is a Dual processor
present in the system.

This pin has an internal pullup resistor and is sampled at the falling edge of RESET.  When
using an active circuit to override the internal pullup resistor, the driver should have an internal
effective pulldown resistance of 1K Ohms or less.

When Sampled/Driven

DPEN# is driven during RESET by the Dual processor, and sampled at the falling edge of
RESET by the Primary processor.  This pin becomes PICD0 following the falling edge of
RESET.  This pin should be valid and stable two clocks before and after the falling edge of
RESET.

Relation to Other Signals

Pin Symbol Relation to Other Signals

CPUTYP When CPUTYP is strapped to VCC, DPEN# is driven active to indicate
that the second socket is occupied.

RESET DPEN# is valid during the falling edge of RESET.

PICD0 DPEN# shares a pin with PICD0.
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5.1.25. EADS#
EADS# External Address Strobe

Signals the Pentium® processor to run an inquire cycle with the address on the
bus.

Synchronous Input

Signal Description

The EADS# input indicates that a valid external address has been driven onto the Pentium
processor address pins to be used for an inquire cycle. The address driven to the Pentium
processor when EADS# is sampled asserted will be checked with the current cache contents.
The HIT# and HITM# signals will be driven to indicate the result of the comparison. If the
INV pin is returned active (high) to the Pentium processor in the same clock as EADS# is
sampled asserted, an inquire hit will result in that line being invalidated. If the INV pin is re-
turned inactive (low), an inquire hit will result in that line being marked Shared (S).

When Sampled

To guarantee recognition, EADS# should be asserted two clocks after an assertion of AHOLD
or BOFF#, or one clock after an assertion of HLDA.  In addition, the Pentium processor will
ignore an assertion of EADS# if the processor is driving the address bus, or if HITM# is active,
or in the clock after ADS# or EADS# is asserted.

Relation to Other Signals

Pin Symbol Relation to Other Signals

A31-A5 The inquire cycle address must be valid on A31-A5 when EADS# is sampled
asserted.

A4-A3 These signals must be at a valid logic level when EADS# is sampled asserted.

AHOLD EADS# is recognized while AHOLD is asserted.

AP AP is sampled when EADS# is sampled asserted.

APCHK# APCHK# is driven to its valid level two clocks after EADS# is sampled asserted.

BOFF# EADS# is recognized while BOFF# is asserted.

HIT# HIT# is driven to its valid level two clocks after EADS# is sampled asserted.

HITM# HITM# is driven to its valid level two clocks after EADS# is sampled asserted.

HLDA EADS# is recognized while HLDA is asserted.

INV INV is sampled with EADS# to determine the final state of the cache line in the
case of an inquire hit.
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5.1.26. EWBE#
EWBE# External Write Buffer Empty

Provides the option of strong write ordering to the memory system.

Synchronous Input

Signal Description

The External write Buffer Empty input, when inactive (high), indicates that a writethrough
cycle is pending in the external system. When the Pentium processor generates a write
(memory or I/O), and EWBE# is sampled inactive, the Pentium processor will hold off all
subsequent writes to all E or M-state lines until all writethrough cycles have completed, as
indicated by EWBE# being active. In addition, if the Pentium processor has a write pending in
a write buffer, the Pentium processor will also hold off all subsequent writes to E- or M-state
lines. This insures that writes are visible from outside the Pentium processor in the same order
as they were generated by software.

When the Pentium processor serializes instruction execution through the use of a serializing
instruction, it waits for the EWBE# pin to go active before fetching and executing the next
instruction.

After the OUT or OUTS instructions are executed, the Pentium processor ensures that EWBE#
has been sampled active before beginning to execute the next instruction. Note that the
instruction may be prefetched if EWBE# is not active, but it will not execute until EWBE# is
sampled active.

When Sampled

EWBE# is sampled with each BRDY# of a write cycle. If sampled deasserted, the Pentium
processor repeatedly samples EWBE# in each clock until it is asserted. Once sampled asserted,
the Pentium processor ignores EWBE# until the next BRDY# of a write cycle.

Relation to Other Signals

Pin Symbol Relation to Other Signals

BRDY# EWBE# is sampled with each BRDY# of a write cycle.

SMIACT# SMIACT# is not asserted until EWBE# is asserted.
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5.1.27. FERR#
FERR# Floating-Point Error

The floating-point error output is driven active when an unmasked
floating-point error occurs.

Synchronous Output

Signal Description

The Floating-Point Error output is driven active when an unmasked floating-point error occurs.
FERR# is similar to the ERROR# pin on the Intel387 math coprocessor. FERR# is included for
compatibility with systems using DOS type floating-point error reporting.

In some cases, FERR# is asserted when the next floating-point instruction is encountered and
in other cases it is asserted before the next floating-point instruction is encountered depending
upon the execution state of the instruction causing the exception.

The following class of floating-point exceptions drive FERR# at the time the exception occurs
(i.e., before encountering the next floating-point instruction):

1. Stack fault, all invalid operation exceptions and denormal exceptions on: all
transcendental instructions, FSCALE, FXTRACT, FPREM, FPREM(1), FBLD,
FLD_extended, FRNDINT, and stack fault and invalid operation exceptions on Floating-
Point arithmetic instructions with an integer operand (FIADD/FIMUL/FISUB/FIDIV,
etc.).

2. All real stores (FST/FSTP), Floating-Point integer stores (FIST/FISTP) and BCD store
(FBSTP) (true for all exception on stores except Precision Exception).

The following class of floating-point exceptions drive FERR# only after encountering the next
floating-point instruction. Note that the Pentium processor with MMX technology will report a
pending floating-point exception (assert FERR#) upon encountering the next floating-point or
MMX instruction.

1. Numeric underflow, overflow and precision exception on: Transcendental instructions,
FSCALE, FXTRACT, FPREM, FPREM(1), FRNDINT, and Precision Exception on all
types of stores to memory.

2. All exceptions on basic arithmetic instructions (FADD/FSUB/FMUL/FDIV/
FSQRT/FCOM/FUCOM...)

FERR# is deasserted when the FCLEX, FINIT, FSTENV, or FSAVE instructions are executed.
In the event of a pending unmasked floating-point exception the FNINIT, FNCLEX,
FNSTENV, FNSAVE, FNSTSW, FNSTCW, FNENI, FNDISI, and FNSETPM instructions
assert the FERR# pin. Shortly after the assertion of the pin, an interrupt window is opened
during which the processor samples and services interrupts, if any. If no interrupts are sampled
within this window, the processor will then execute these instructions with the pending
unmasked exception. However, for the FNCLEX, FNINIT, FNSTENV, and FNSAVE
instructions, the FERR# pin is deasserted to enable the execution of these instructions. For
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details please refer to the Intel Architecture Software Developer’s Manual, Volume 1 (Chapter
7 and Appendix D)..

This signal is undefined when the Pentium processor is configured as a Dual processor.

When Sampled/Driven

FERR# is driven in every clock and is not floated during bus HOLD or BOFF#. The FERR#
signal is glitch free.

The Pentium processor, when configured as a Dual processor, will not drive this signal to valid
levels.

Relation to Other Signals

Pin Symbol Relation to Other Signals

CPUTYP When CPUTYP is strapped to VCC, the FERR# output is undefined.
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5.1.28. FLUSH#
FLUSH# Cache Flush

Writes all modified lines in the data cache back and flushes the code and
data caches.

Asynchronous Input (Normal, Uni-processor mode)

Synchronous Input (Dual processor mode)

Signal Description

When asserted, the Cache Flush input forces the Pentium processor to writeback all modified
lines in the data cache and invalidate both internal caches. A Flush Acknowledge special cycle
will be generated by the Pentium processor indicating completion of the invalidation and
writeback.

FLUSH# is implemented in the Pentium processor as an interrupt, so it is recognized on
instruction boundaries. External interrupts are ignored while FLUSH# is being serviced. Once
FLUSH# is sampled active, it is ignored until the flush acknowledge special cycle is driven.

If FLUSH# is sampled low when RESET transitions from high to low, tristate test mode is
entered.

The Pentium processor, when operating with a second Pentium processor in dual processing
mode, incorporates a mechanism to present an atomic cache flush operation to the system.
The Dual processor performs the cache flush operation first, then grants the bus to the Primary
processor.  The Primary processor flushes its internal caches, and then runs the cache flush
special cycle.  This could cause the total flush latency of two Pentium processor in dual
processor mode to be up to twice that of the Pentium processor in uni-processor mode.

The flush latency of the Pentium processor with MMX technology and the future Pentium
OverDrive processor may also be up to twice that of the Pentium processor
(75/90/100/120/133/150/166/200) due to the implementation of larger on-chip caches.

When Sampled/Driven

FLUSH# is sampled on every rising clock edge. FLUSH# is falling edge sensitive and
recognized on instruction boundaries. Recognition of FLUSH# is guaranteed in a specific
clock if it is asserted synchronously and meets the setup and hold times. If it meets setup and
hold times, FLUSH# need only be asserted for one clock. To guarantee recognition if FLUSH#
is asserted asynchronously, it must have been deasserted for a minimum of 2 clocks before
being returned active to the Pentium processor and remain asserted for a minimum pulse width
of two clocks.

If the processor is in the HALT or Shutdown state, FLUSH# is still recognized. The processor
will return to the HALT or Shutdown state after servicing the FLUSH#.

If FLUSH# is sampled low when RESET transitions from high to low, tristate test mode is
entered. If RESET is negated synchronously, FLUSH# must be at its valid level and meet
setup and hold times on the clock before the falling edge of RESET. If RESET is negated
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asynchronously, FLUSH# must be at its valid level two clocks before and after RESET
transitions from high to low.

When operating in a dual processing system, FLUSH# must be sampled synchronously to the
rising CLK edge to ensure both processors recognize an active FLUSH# signal in the same
clock.

Relation to Other Signals

Pin Symbol Relation to Other Signals

ADS# and cycle definition
pins.

Writeback cycles are driven as a result of FLUSH# assertion.

The Flush Special Cycle is driven as a result of FLUSH# assertion.

RESET If FLUSH# is sampled low when RESET transitions from high to low,
tristate test mode is entered.

CPUTYP When operating in dual processing mode, the FLUSH# inputs become
synchronous to the CPU clock.
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5.1.29. FRCMC#
FRCMC# Functional Redundancy Checking Master/Checker Configuration

Determines whether the Pentium® processor is configured as a Master or
Checker.

Asynchronous Input

NOTE: Functional Redundancy Checking is not supported on the Pentium processor with MMX
technology. The FRCMC# pin is defined only for the Pentium processor
(75/90/100/120/133/150/166/200). This pin should be left as a “NC” or tied to VCC3 via an
external pullup resistor on the Pentium processor with MMX technology.

Signal Description

The Functional Redundancy Checking Master/Checker Configuration input is sampled in
every clock that RESET is asserted to determine whether the Pentium processor is configured
in master mode (FRCMC# high) or checker mode (FRCMC# low).  When configured as a
master, the Pentium processor drives its output pins as required by the bus protocol. When
configured as a checker, the Pentium processor tristates all outputs (except IERR# and TDO)
and samples the output pins that would normally be driven in master mode. If the sampled
value differs from the value computed internally, the Checker Pentium processor asserts
IERR# to indicate an error.

Note that the final configuration as a master or checker is set after RESET and may not be
changed other than by a subsequent RESET. FRCMC# is sampled in every clock that RESET
is asserted to prevent bus contention before the final mode of the processor is determined.

When Sampled

This pin is sampled in any clock in which RESET is asserted. FRCMC# is sampled in the
clock before RESET transitions from high to low to determine the final mode of the processor.
If RESET is negated synchronously, FRCMC# must be at its valid level and meet setup and
hold times on the clock before the falling edge of RESET. If RESET is negated
asynchronously, FRCMC# must be at its valid level two clocks before and after RESET
transitions from high to low.

Relation to Other Signals

Pin Symbol Relation to Other Signals

IERR# IERR# is asserted by the Checker Pentium® processor in the event of an FRC
error.

RESET FRCMC# is sampled when RESET is asserted to determine if the Pentium
processor is in Master or Checker mode.
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5.1.30. HIT#
HIT# Inquire Cycle Hit/Miss

Externally indicates whether an inquire cycle resulted in a hit or miss.

Synchronous Input/Output

Signal Description

The HIT# output is driven to reflect the outcome of an inquire cycle. If an inquire cycle hits a
valid line (M, E, or S) in either the Pentium processor data or instruction cache, HIT# is
asserted two clocks after EADS# has been sampled asserted by the processor. If the inquire
cycle misses the Pentium processor cache, HIT# is negated two clocks after EADS# is sampled
asserted. This pin changes its value only as a result of an inquire cycle and retains its value
between cycles.

When operating in dual processing mode, the Pentium processor uses this signal for private
snooping.

When Sampled/Driven

HIT# reflects the hit or miss outcome of the inquire cycle 2 clocks after EADS# is sampled
asserted. After RESET, this pin is driven high. It changes it value only as a result of an inquire
cycle. This pin is always driven. It is not floated during bus HOLD or BOFF#.

This signal becomes an Input/Output when two Pentium processors are operating together in
dual processing mode.

Relation to Other Signals

Pin Symbol Relative to Other Signals

A31-A5 HIT# is driven to indicate whether the inquire address driven on
A31-A5 is valid in an internal cache.

EADS# HIT# is driven two clocks after EADS# is sampled asserted to indicate the out-
come of the inquire cycle.

HITM# HITM# is never asserted without HIT# also being asserted.



E HARDWARE INTERFACE

5-47

12/18/96 5:02 PM    Ch05new2.doc

INTEL CONFIDENTIAL
(until publication date)

5.1.31. HITM#
HITM# Inquire Cycle Hit/Miss to a Modified Line

Externally indicates whether an inquire cycle hit a modified line in the data
cache.

Synchronous Input/Output

Signal Description

The HITM# output is driven to reflect the outcome of an inquire cycle. If an inquire cycle hits
a modified line in the Pentium processor data cache, HITM# is asserted two clocks after
EADS# has been sampled asserted by the processor and a writeback cycle is scheduled to be
driven to the bus. If the inquire cycle misses the Pentium processor cache, HITM# is negated
two clocks after EADS# is sampled asserted.

HITM# can be used to inhibit another bus master from accessing the data until the line is
completely written back.

HITM# is asserted two clocks after an inquire cycle hits a modified line in the Pentium
processor cache. ADS# for the writeback cycle will be asserted no earlier than two clocks after
the assertion of HITM#.  ADS# for the writeback cycle will be driven even if AHOLD for the
inquire cycle is not yet deasserted. ADS# for a writeback of an external snoop cycle is the only
ADS# that will be driven while AHOLD is asserted.

When operating in dual processing mode, the Pentium processor uses this signal for private
snooping.

When Sampled/Driven

HITM# is driven two clocks after EADS# is sampled asserted to reflect the outcome of the
inquire cycle. HITM# remains asserted until two clocks after the last BRDY# of writeback is
returned. This pin is always driven. It is not floated during bus HOLD or BOFF#.

This signal becomes an input/output when two Pentium processors are operating together in
dual processing mode.

Relation to Other Signals

Pin Symbol Relation to Other Signals

A31-A5 HITM# is driven to indicate whether the inquire address driven on A31-A5 is in
the modified state in the data cache.

EADS# HITM# is driven two clocks after EADS# is sampled asserted.

HIT# HITM# is never asserted without HIT# also being asserted.
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5.1.32. HLDA
HLDA Bus Hold Acknowledge

External indication that the Pentium processor outputs are floated.

Synchronous Input/Output

Signal Description

The Bus Hold Acknowledge output goes active in response to a hold request presented on the
HOLD pin. HLDA indicates that the Pentium processor has given the bus to another local bus
master. Internal instruction execution will continue from the internal caches during bus
HOLD/HLDA.

When leaving bus hold, HLDA will be driven inactive and the Pentium processor will resume
driving the bus. A pending bus cycle will be driven in the same clock that HLDA is deasserted
by the Pentium processor (75/90/100/120/133/150/166/200) and one clock after HLDA is
deasserted by the Pentium processor with MMX technology.

The operation of HLDA is not affected by the assertion of BOFF#. If HOLD is asserted while
BOFF# is asserted, HLDA will be asserted two clocks later. If HOLD goes inactive while
BOFF# is asserted, HLDA is deasserted two clocks later.

When operating in dual processing mode, the Pentium processor uses this signal for private
snooping.

When Sampled/Driven

When the Pentium processor bus is idle, HLDA is driven high two clocks after HOLD is
asserted, otherwise, HLDA is driven high two clocks after the last BRDY# of the current cycle
is returned. It is driven active in the same clock that the Pentium processor floats its bus. When
leaving bus hold, HLDA will be driven inactive 2 clocks after HOLD is deasserted and the
Pentium processor will resume driving the bus. The HLDA signal is glitch free.

This signal becomes an input/output when two Pentium processors are operating together in
dual processing mode.



E HARDWARE INTERFACE

5-49

12/18/96 5:02 PM    Ch05new2.doc

INTEL CONFIDENTIAL
(until publication date)

Relation to Other Signals

Pin Symbol Relation to Other Signals

A3-A31 These signals float in response to HLDA.

ADS#

AP

BE7#-BE3#

CACHE#

D/C#

D63-D0

DP7-DP0

LOCK#

M/IO#

PCD

PWT

SCYC

W/R#

BOFF# The same pins are floated when HLDA or BOFF# is asserted.

EADS# EADS# is recognized while HLDA is asserted.

HOLD The assertion of HOLD causes HLDA to be asserted when all outstanding
cycles are complete.
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5.1.33. HOLD
HOLD Bus Hold

The bus hold request input allows another bus master complete control of the
Pentium® processor bus.

Synchronous Input

Signal Description

The Bus Hold request input allows another bus master complete control of the Pentium
processor bus. In response to HOLD, after completing all outstanding bus cycles the Pentium
processor will float most of its output and input/output pins and assert HLDA. The Pentium
processor will maintain its bus in this state until HOLD is deasserted. Cycles that are locked
together will not be interrupted by bus HOLD. HOLD is recognized during RESET.

When Sampled

HOLD is sampled on every rising clock edge including during RESET and INIT.

Relation to Other Signals

Pin Symbol Relation to Other Signals

A3-A31 These are the signals floated in response to HOLD.

ADS#

AP

BE7#-BE3#

CACHE#

D/C#

D63-D0

DP7-DP0

LOCK#

M/IO#

PCD

PWT

SCYC

W/R#

HLDA HLDA is asserted when the Pentium® processor relinquishes the bus in
response to the HOLD request.
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5.1.34. IERR#
IERR# Internal or Functional Redundancy Check1 Error

Alerts the system of internal parity errors and functional redundancy errors.

Output

NOTE:
1. Functional Redundancy Checking is not supported on the Pentium processor with MMX technology

Signal Description

The Internal Error output is used to alert the system of two types of errors, internal parity
errors and functional redundancy errors.

If a parity error occurs on a read from an internal array (reads during normal instruction
execution, reads during a flush operation, reads during BIST and testability cycles, and reads
during inquire cycles), the Pentium processor will assert the IERR# pin for one clock and then
shutdown. Shutdown will occur provided the processor is not prevented from doing so by the
error.

If the Pentium processor is configured as a checker (by FRCMC# being sampled low while
RESET is asserted) and a mismatch occurs between the value sampled on the pins and the
value computed internally, the Pentium processor will assert IERR# two clocks after the
mismatched value is returned.  Shutdown is not entered as a result of a function redundancy
error.

It is the responsibility of the system to take appropriate action if an internal parity or FRC error
occurs.

When Driven

IERR# is driven in every clock. While RESET is active IERR# is driven high. After RESET is
deasserted, IERR# will not be asserted due to an FRC mismatch until after the first clock of the
first bus cycle. Note however that IERR# may be asserted due to an internal parity error before
the first bus cycle. IERR# is asserted for 1 clock for each detected FRC or internal parity error,
two clocks after the error is detected. IERR# is asserted for each detected mismatch, so IERR#
may be asserted for more than one consecutive clock.

IERR# is not floated with HOLD or BOFF#. IERR# is a glitch free signal.

NOTE

When paging is turned on, an additional parity check occurs to page 0 for all
TLB misses. If this access is a valid entry in the cache and this entry also has
a parity error, then IERR# will be asserted and shutdown will occur even
though the pipeline is frozen to service the TLB miss.

During a TLB miss, a cache lookup occurs (to the data cache for a data TLB
miss, or the code cache for a code TLB miss) to a default page 0 physical
address until the correct page translation becomes available. At this time, if a
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valid cache entry is found at the page 0 address, then parity will be checked
on the data read out of the cache. However, the data is not used until after the
correct page address becomes available. If this valid line contains a true
parity error, then the error will be reported. This will not cause an
unexpected parity error. It can cause a parity error and shutdown at a time
when the data is not being used because the pipeline is frozen to service the
TLB miss. However, it still remains that a true parity error must exist within
the cache in order for IERR# assertion and shutdown to occur. For more
details on TLB, refer to Section 3.7 of the Intel Architecture Software
Developer’s Manual, Volume 1.

Relation to Other Signals

Pin Symbol Relative to Other Signals

FRCMC# If the Pentium® processor is configured as a Checker, IERR# will be asserted in
the event of an FRC error.
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5.1.35. IGNNE#
IGNNE# Ignore Numeric Exception

Determines whether or not numeric exceptions should be ignored.

Asynchronous Input

Signal Description

This is the Ignore Numeric Exception input. This pin has no effect when the NE bit in CR0 is
set to 1. When the CR0.NE bit is 0, this pin functions as follows:

When the IGNNE# pin is asserted, the Pentium processor will ignore any pending unmasked
numeric exception and continue executing floating-point instructions for the entire duration
that this pin is asserted.

When IGNNE# is not asserted and a pending unmasked numeric exception exists, (SW.ES =
1), the Pentium processor will behave as follows:

On encountering a floating-point instruction that is one of FNINIT, FNCLEX, FNSTENV,
FNSAVE, FNSTSW, FNSTCW, FNENI, FNDISI, or FNSETPM, the Pentium processor
will assert the FERR# pin. Subsequently, the processor opens an interrupt sampling
window. The interrupts are checked and serviced during this window. If no interrupts are
sampled within this window, the processor will then execute these instructions in spite of
the pending unmasked exception. For further details please refer to the Intel Architecture s
Software Developer’s Manual, Volume1 (Chapter 7 and Appendix D).

On encountering any floating-point instruction other than FINIT, FCLEX, FSTENV,
FSAVE, FSTSW, FSTCW, FENI, FDISI, or FSETPM, the Pentium processor will stop
execution and wait for an external interrupt.

The Pentium processor, when configured as a Dual processor, will ignore the IGNNE# input.

When Sampled/Driven

IGNNE# is sampled on every rising clock edge. Recognition of IGNNE# is guaranteed in a
specific clock if it is asserted synchronously and meets the setup and hold times. To guarantee
recognition if IGNNE# is asserted asynchronously, it must have been deasserted for a
minimum of two clocks before being returned active to the Pentium processor and remain
asserted for a minimum pulse width of two clocks.

Relation to Other Signals

Pin Symbol Relation to Other Signals

CPUTYP When strapped to VCC, the processor will ignore the IGNNE# input.
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5.1.36. INIT
INIT Initialization

Forces the Pentium® processor to begin execution in a known state without
flushing the caches or affecting the floating-point state.

Asynchronous Input

Signal Description

The Initialization input forces the Pentium processor to begin execution in a known state. The
processor state after INIT is the same as the state after RESET except that the internal caches,
write buffers, model specific registers, and floating-point registers retain the values they had
prior to INIT. The Pentium processor starts execution at physical address FFFFFFF0H.

INIT can be used to help performance for DOS extenders written for the 80286. INIT provides
a method to switch from protected to real mode while maintaining the contents of the internal
caches and floating-point state. INIT may not be used instead of RESET after power-up.

Once INIT is sampled active, the INIT sequence will begin on the next instruction boundary
(unless a higher priority interrupt is requested before the next instruction boundary). The INIT
sequence will continue to completion and then normal processor execution will resume,
independent of the deassertion of INIT. ADS# will be asserted to drive bus cycles even if INIT
is not deasserted.

If INIT is sampled high when RESET transitions from high to low the Pentium processor will
perform built-in self test (BIST) prior to the start of program execution.

When Sampled

INIT is sampled on every rising clock edge. INIT is an edge sensitive interrupt. Recognition of
INIT is guaranteed in a specific clock if it is asserted synchronously and meets the setup and
hold times. To guarantee recognition if INIT is asserted asynchronously, it must have been
deasserted for a minimum of 2 clocks before being returned active to the Pentium processor
and remain asserted for a minimum pulse width of two clocks. INIT must remain active for
three clocks prior to the BRDY# of an I/O write cycle to guarantee that the Pentium processor
recognizes and processes INIT right after an I/O write instruction.

If INIT is sampled high when RESET transitions from high to low the Pentium processor will
perform built-in self test. If RESET is driven synchronously, INIT must be at its valid level the
clock before the falling edge of RESET. If RESET is driven asynchronously, INIT must be at
its valid level two clocks before and after RESET transitions from high to low.

Relation to Other Signals

Pin Symbol Relation to Other Signals

RESET If INIT is sampled high when RESET transitions from high to low, BIST will be
performed.
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5.1.37. INTR
INTR External Interrupt

Indicates that an external interrupt has been generated.

Asynchronous Input

Signal Description

The INTR input indicates that an external interrupt has been generated. The interrupt is
maskable by the IF bit in the EFLAGS register. If the IF bit is set, the Pentium processor will
vector to an interrupt handler after the current instruction execution is completed. Upon
recognizing the interrupt request, the Pentium processor will generate two locked interrupt
acknowledge bus cycles in response to the INTR pin going active. INTR must remain active
until the first interrupt acknowledge cycle is completed to assure that the interrupt is
recognized.

When the local APIC is hardware disabled, this pin is the INTR input for the processor.  It
bypasses the local APIC in that case.

When the local APIC is hardware enabled, this pin becomes the programmable interrupt
LINT0.  It can be programmed in software in any of the interrupt modes.  Since this pin is the
INTR input when the APIC is disabled, it is logical to program the vector table entry for this
pin as ExtINT (i.e. through local mode).  In this mode, the interrupt signal is passed on to the
processor through the local APIC.  The processor generates the interrupt acknowledge, INTA,
cycle in response to this interrupt and receives the vector on the processor data bus.

When Sampled/Driven

INTR is sampled on every rising clock edge. INTR is an asynchronous input, but recognition
of INTR is guaranteed in a specific clock if it is asserted synchronously and meets the setup
and hold times. To guarantee recognition if INTR is asserted asynchronously it must have been
deasserted for a minimum of 2 clocks before being returned active to the Pentium processor.

NOTE

This applies only when using the APIC in the through local (virtual wire)
mode. Once INTR has been asserted (by a rising edge), it must not be
asserted again until after the end of the first resulting interrupt acknowledge
cycle. Otherwise, the new interrupt may not be recognized. The end of an
interrupt acknowledge cycle is defined by the end of the system’s BRDY#
response to the CPU cycle. Note that the APIC through local mode was
designed to match the protocol of an 8259A PIC, and an 8259A will always
satisfy this requirement.

To ensure INTR is not recognized inadvertantly a second time, deassert INTR no later than the
BRDY# of the second INTA cycle and no earlier than the BRDY# of the first INTA cycle.
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Relation to Other Signals

Pin Symbol Relation to Other Signals

ADS# and cycle definition
pins

An interrupt acknowledge cycle is driven as a result of the INTR pin
assertion.

APICEN When the APICEN configuration input is sampled inactive, this input
becomes the INTR interrupt.

LINT0 INTR shares a pin with LINT0.

LOCK# LOCK# is asserted for interrupt acknowledge cycles.
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5.1.38. INV
INV Invalidation Request

Determines final state of a cache line as a result of an inquire hit.

Synchronous Input

Signal Description

The INV input is driven to the Pentium processor during an inquire cycle to determine the final
cache line state (S or I) in case of an inquire cycle hit. If INV is returned active (high) to the
Pentium processor in the same clock as EADS# is sampled asserted, an inquire hit will result
in that line being invalidated. If the INV pin is returned inactive (low), an inquire hit will result
in that line being marked Shared (S). If the inquire cycle is a miss in the cache, the INV input
has no effect.

If an inquire cycle hits a modified line in the data cache, the line will be written back
regardless of the state of INV.

When Sampled

The INV input is sampled with the EADS# of the inquire cycle.

Relation to Other Signals

Pin Symbol Relative to Other Signals

A31-A5 INV determines if the inquire address driven to the processor on A31-A5 should
be invalidated or marked as shared if it is valid in an internal cache.

EADS# INV is sampled with EADS#.
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5.1.39. KEN#
KEN# Cache Enable

Indicates to the Pentium® processor whether or not the system can support a
cache line fill for the current cycle.

Synchronous Input

Signal Description

KEN# is the cache enable input. It is used to determine whether the current cycle is cacheable
or not and consequently is used to determine cycle length.

When the Pentium processor generates a read cycle that can be cached (CACHE# asserted) and
KEN# is active, the cycle will be transformed into a burst cache linefill. During a cache line
fill the byte enable outputs should be ignored and valid data must be returned on all 64 data
lines. The Pentium processor will expect 32 bytes of valid data to be returned in four BRDY#
transfers.

If KEN# is not sampled active, a linefill will not be performed (regardless of the state of
CACHE#) and the cycle will be a single transfer read.

Once KEN# is sampled active for a cycle, the cacheability cannot be changed. If a cycle is
restarted for any reason after the cacheability of the cycle has been determined, the same
cacheability attribute on KEN# must be returned to the processor when the cycle is redriven.

When Sampled

KEN# is sampled once in a cycle to determine cacheability.  It is sampled and latched with the
earlier of the first BRDY# or NA# of a cycle, however it must meet setup and hold times on
every clock edge.

Relation to Other Signals

Pin Symbol Relative to Other Signals

BRDY# KEN# is sampled with the earlier of the first BRDY# or NA# for that cycle. Also,
in conjunction with the CACHE# input, KEN# determines whether the bus cycle
will consist of 1 or 4 transfers (assertions of BRDY#).

CACHE# KEN# determines cacheability only if the CACHE# pin is asserted.

NA# KEN# is sampled with the earlier of the first BRDY# or NA# for that cycle.

W/R# KEN# determines cacheability only if W/R# indicates a read.
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5.1.40. LINT1-LINT0
LINT1-LINT0 Local Interrupts 1 and 0

APIC Programmable Interrupts.

Asynchronous Inputs

Signal Description

When the local APIC is hardware enabled, these pins become the programmable interrupts
(LINT1-LINT0).  They can be programmed in software in any of the interrupt modes.  Since
these pins are the INTR and NMI inputs when the APIC is disabled, it is logical to program the
vector table entry for them as ExtINT (i.e. through local mode) and NMI, respectively.  In this
mode, the interrupt signals are passed on to the processor through the local APIC.

When the local APIC is hardware disabled, these pins are the INTR and NMI inputs for the
processor.  They bypass the APIC in that case.

When Sampled

LINT1-LINT0 are sampled on every rising clock edge.  LINT1-LINT0 are asynchronous
inputs, but recognition of LINT1-LINT0 are guaranteed in a specific clock if they are asserted
synchronously and meets the setup and hold times.  To guarantee recognition if LINT1-LINT0
are asserted asynchronously they must have been deasserted for a minimum of 2 clocks before
being returned active to the Pentium processor.

Relation to Other Signals

Pin Symbol Relation to Other Signals

APICEN When the APICEN configuration input is sampled inactive, these inputs
become the INTR and NMI interrupts.

INTR INTR shares a pin with LINT0.

NMI NMI shares a pin with LINT1.



HARDWARE INTERFACE E

5-60

12/18/96 5:02 PM    Ch05new2.doc

INTEL CONFIDENTIAL
(until publication date)

5.1.41. LOCK#
LOCK# Bus Lock

Indicates to the system that the current sequence of bus cycles should
not be interrupted.

Synchronous Input/Output

Signal Description

The bus lock output indicates that the Pentium processor is running a read-modify-write cycle
where the external bus must not be relinquished between the read and write cycles. Read-
modify-write cycles of this type are used to implement memory based semaphores. Interrupt
Acknowledge cycles are also locked.

If a cycle is split due to a misaligned memory operand, two reads followed by two writes may
be locked together. When LOCK# is asserted, the current bus master should be allowed
exclusive access to the system bus.

The Pentium processor will not allow a bus hold when LOCK# is asserted, but address holds
(AHOLD) and BOFF# are allowed. LOCK# is floated during bus hold.

All locked cycles will be driven to the external bus. If a locked address hits a valid location in
one of the internal caches, the cache location is invalidated (if the line is in the modified state,
it is written back before it is invalidated).  Locked read cycles will not be transformed into
cache line fill cycles regardless of the state of KEN#.

LOCK# is guaranteed to be deasserted for at least one clock between back to back locked
cycles.

When operating in dual processing mode, the Pentium processor uses this signal for private
snooping.

When Sampled/Driven

LOCK# goes active with the ADS# of the first locked bus cycle and goes inactive after the
BRDY# is returned for the last locked bus cycle. The LOCK# signal is glitch free.

This signal becomes an input/output when two Pentium processors are operating together in
dual processing mode.
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Relation to Other Signals

Pin Symbol Relation to Other Signals

ADS# LOCK# is driven with the ADS# of the first locked cycle.

BOFF# LOCK# floats one clock after BOFF# is asserted.

BRDY# LOCK# is deasserted after the last BRDY# of the locked sequence.

HLDA LOCK# floats when HLDA is asserted.

NA# ADS# is not asserted to pipeline an additional cycle if LOCK# is asserted,
regardless of the state of NA#.

INTR LOCK# is asserted for interrupt acknowledge cycles.

SCYC SCYC is driven active if the locked cycle is misaligned.
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5.1.42. M/IO#
M/IO# Memory Input/Output

Distinguishes a memory access from an I/O access.

Synchronous Input/Output

Signal Description

The Memory/Input-Output signal is one of the primary bus cycle definition pins. M/IO#
distinguishes between memory (M/IO# =1) and I/O (M/IO# =0) cycles.

When operating in dual processing mode, the Pentium processor uses this signal for private
snooping.

When Sampled/Driven

M/IO# is driven valid in the same clock as ADS# and the cycle address. It remains valid from
the clock in which ADS# is asserted until the earlier of the last BRDY# or the clock after NA#.

This signal becomes an input/output when two Pentium processors are operating together in
dual processing mode.

Relation to Other Signals

Pin Symbol Relation to Other Signals

ADS# M/IO# is driven to its valid state with ADS#.

BOFF# M/IO# floats one clock after BOFF# is asserted.

HLDA M/IO# floats when HLDA is asserted.
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5.1.43. NA#
NA# Next Address

Indicates that external memory is prepared for a pipelined cycle.

Synchronous Input

Signal Description

The Next Address input, when active, indicates that external memory is ready to accept a new
bus cycle although all data transfers for the current cycle have not yet completed. This is
referred to as bus cycle pipelining.

The Pentium processor will drive out a pending cycle in response to NA# no sooner than two
clocks after NA# is asserted. The Pentium processor supports up to 2 outstanding bus cycles.
ADS# is not asserted to pipeline an additional cycle if LOCK# is asserted, or during a
writeback cycle. In addition, ADS# will not be asserted to pipeline a locked cycle or a
writeback cycle into the current cycle.

NA# is latched internally, so once it is sampled active during a cycle, it need not be held active
to be recognized. The KEN#, and WB/WT# inputs for the current cycle are sampled with the
first NA#, if NA# is asserted before the first BRDY# of the current cycle.

When Sampled

NA# is sampled in all T2, TD and T2P clocks.

Relation to Other Signals

Pin Symbol Relation to Other Signals

ADS# If NA# is sampled asserted and an internal bus request is pending, the
Pentium® processor drives out the next bus cycle and asserts ADS#.

KEN# KEN# is sampled with the earlier of the first BRDY# or NA# for that cycle.

WB/WT# WB/WT# is sampled with the earlier of the first BRDY# or NA# for that cycle.

LOCK# ADS# is not asserted to pipeline an additional cycle if LOCK# is asserted,
regardless of the state of NA#.

BOFF# If NA# and BOFF# are asserted simultaneously, BOFF# takes priority and NA#
is ignored.
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5.1.44. NMI
NMI Non-Maskable Interrupt

Indicates that an external non-maskable interrupt has been generated.

Asynchronous Input

Signal Description

The Non-Maskable interrupt request input indicates that an external non-maskable interrupt
has been generated. Asserting NMI causes an interrupt with an internally supplied vector value
of 2. External interrupt acknowledge cycles are not generated.

If NMI is asserted during the execution of the NMI service routine, it will remain pending and
will be recognized after the IRET is executed by the NMI service routine. At most, one
assertion of NMI will be held pending.  If NMI is reasserted prior to the NMI service routine
entry, it will be ignored.

When the local APIC is hardware enabled, this pin becomes the programmable interrupt
LINT1.  It can be programmed in software in any of the interrupt modes.  Since this pin is the
NMI input when the APIC is disabled, it is logical to program the vector table entry for this pin
as NMI.  In this mode, the interrupt signal is passed on to the processor through the local
APIC.

When the local APIC is hardware disabled, this pin is the NMI input for the processor.  It
bypasses the APIC in that case.

When Sampled

NMI is sampled on every rising clock edge. NMI is rising edge sensitive. Recognition of NMI
is guaranteed in a specific clock if it is asserted synchronously and meets the setup and hold
times. To guarantee recognition if NMI is asserted asynchronously, it must have been
deasserted for a minimum of 2 clocks before being returned active to the Pentium processor
and remain asserted for a minimum pulse width of two clocks.

Relation to Other Signals

Pin Symbol Relation to Other Signals

APICEN When the APICEN configuration input is sampled inactive, this input
becomes the NMI interrupt.

LINT1 NMI shares a pin with LINT1.
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5.1.45. PBGNT#
PBGNT# Dual Processor Bus Grant

Indicates to the LRM processor that it will become the MRM in the next
clock.

Synchronous Input (to the Least Recent Master, LRM, processor)

Synchronous Output (of the Most Recent Master, MRM, processor)

Signal Description

Two Pentium processors, when configured as dual processors, will arbitrate for the system bus
via two private arbitration pins (PBREQ# and PBGNT#).  The processor that currently owns
the system bus is referred to as the MRM processor.  The processor that does not own the bus
is referred to as the LRM processor.

PBGNT# is used by the dual processing private arbitration mechanism to indicate that bus
ownership will change in the next clock.  The LRM processor will request ownership of the
processor bus by asserting the private arbitration request pin, PBREQ#.  The processor that is
currently the MRM and owns the bus, will grant the bus to the LRM as soon as any pending
bus transactions have completed.  The MRM will notify that the LRM can assume ownership
by asserting the private arbitration grant pin, PBGNT#.  The PBGNT# pin is always the output
of the MRM and an input to the LRM.

NOTE

In a single socket system design, PBGNT# pin should be left NC. For proper
operation, PBGNT# must not be loaded by the system.

When Sampled/Driven

PBGNT# is driven by the MRM processor in response to the PBREQ# signal from the LRM
processor.  It is asserted following the completion of the current cycle on the processor bus, or
in the clock following the request if the bus is idle.

Relation to Other Signals

Pin Symbol Relation to Other Signals

PBREQ# PBGNT# is asserted in response to a bus request, PBREQ#, from the
LRM processor.

A[31:3], AP, BE[7:0]#,
CACHE#, D/C#, M/IO#, PCD,
PWT, SCYC, W/R#

These signals are tristated for one CLK in response to PBGNT# (when
the MRM becomes the LRM).
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5.1.46. PBREQ#
PBREQ# Dual Processor Bus Request

Indicates to the MRM processor that the LRM processor requires
ownership of the bus.

Synchronous Input (to the Most Recent Master, MRM, processor)

Synchronous Output (of the Least Recent Master, LRM, processor)

Signal Description

Two Pentium processors, when configured as dual processors, will arbitrate for the system bus
via two private arbitration pins (PBREQ# and PBGNT#).  The processor that currently owns
the system bus is referred to as the MRM processor.  The processor that does not own the bus
is referred to as the LRM processor.

PBREQ# is used by the dual processing private arbitration mechanism to indicate that the
LRM processor requests bus ownership.  The processor that is currently the MRM and owns
the bus, will grant the bus to the LRM as soon as any pending bus transactions have
completed.  The MRM will notify that the LRM can assume ownership by asserting the private
arbitration grant pin, PBGNT#.  The PBREQ# pin is always the output of the LRM and an
input to the MRM.

NOTE

In a single socket system design, PBREQ# pin should be left NC. For proper
operation, PBREQ# must not be loaded by the system.

When Sampled/Driven

PBREQ# is driven by the LRM processor, and sampled by the MRM processor.

Relation to Other Signals

Pin Symbol Relation to Other Signals

PBGNT# PBGNT# is asserted in response to a bus request, PBREQ#, from the
LRM processor.
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5.1.47. PCD
PCD Page Cacheability Disable

Externally reflects the cacheability paging attribute bit in CR3, PDE, or PTE.

Output

Signal Description

PCD is driven to externally reflect the cache disable paging attribute bit for the current cycle.
PCD corresponds to bit 4 of CR3, the Page Directory Entry, or the Page Table Entry. For
cycles that are not paged when paging is enabled (for example I/O cycles), PCD corresponds
to bit 4 in CR3. In real mode or when paging is disabled, the PCD pin reflects the cache
disable bit in control register 0 (CR0.CD).

PCD is masked by the CD (cache disable) bit in CR0. When CD=1, the Pentium processor
forces PCD high. When CD=0, PCD is driven with the value of the Page Table
Entry/Directory.

The purpose of PCD is to provide an external cacheability indication on a page by page basis.

When Driven

The PCD pin is driven valid in the same clock as ADS# and the cycle address. It remains valid
from the clock in which ADS# is asserted until the earlier of the last BRDY# or the clock after
NA#.

Relation to Other Signals

Pin Symbol Relation to Other Signals

ADS# PCD is driven valid with ADS#.

BOFF# PCD floats one clock after BOFF# is asserted.

HLDA PCD floats when HLDA is asserted.
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5.1.48. PCHK#
PCHK# Data Parity Check

Indicates the result of a parity check on a data read.

Synchronous Output

Signal Description

The data parity check pin indicates the result of a parity check on a data read. Data parity is
checked during code reads, memory reads, and I/O reads. Data parity is not checked during the
first Interrupt Acknowledge cycle. PCHK# indicates the parity status only for the bytes on
which valid data is expected. Parity is checked for all data bytes for which a byte enable is
asserted. In addition, during a cache linefill, parity is checked on the entire data bus regardless
of the state of the byte enables.

PCHK# is driven low two clocks after BRDY# is returned if incorrect parity was returned.

Driving PCHK# is the only effect that bad data parity has on the Pentium processor unless
PEN# is also asserted. The data returned to the processor is not discarded.

If PEN# is asserted when a parity error occurs, the cycle address and type will be latched in the
MCA and MCT registers. If in addition, the MCE bit in CR4 is set, a machine check exception
will be taken.

It is the responsibility of the system to take appropriate actions if a parity error occurs. If parity
checks are not implemented in the system, the PCHK# pin may be ignored, and PEN# pulled
high (or CR4.MCE cleared).

When operating in dual processing mode, the PCHK# signal can be asserted either 2 OR 3
CLKs following incorrect parity being detected on the data bus. When operating in Dual
Processing mode, the PCHK# pin circuit is implemented as a weak driving high output that
operates similar to an open drain output. This implementation allows connection of the two
processor PCHK# pins together in a dual processing system with no ill effects. Nominally, this
circuit acts like a 360 Ohm resistor tied to VCC.

When Sampled/Driven

PCHK# is driven low two clocks after BRDY# is returned if incorrect parity was returned.
PCHK# remains low one clock for each clock in which a parity error was detected. At all other
times PCHK# is inactive (high). PCHK# is not floated during bus HOLD or BOFF#. PCHK# is
a glitch free signal.
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Relation to Other Signals

Pin Symbol Relation to Other Signals

BRDY# PCHK# is driven to its valid level two clocks after the assertion of BRDY#.

D63-D0 The DP7-DP0 pins are used to create even parity with D63-D0. If even parity is
not returned, the PCHK# pin is asserted.

DP7-DP0 Even data parity with D63-D0 should be returned on to the Pentium® processor
on the dual processor pin. If even parity is not returned, the PCHK# pin is
asserted.
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5.1.49. PHIT#
PHIT# Private Inquire Cycle Hit/Miss Indication

Indicates whether a private, dual processor, inquire cycle resulted in a hit
or miss.

Synchronous Input (to the Most Recent Master, MRM, processor)

Synchronous Output (of the Least Recent Master, LRM, processor)

Signal Description

A private snoop interface has been added to the Pentium processor for use in dual processing.
The interface consists of two pins (PHIT# and PHITM#).

The LRM processor will initiate a snoop sequence for all ADS# cycles that are initiated by the
MRM.  The LRM processor will assert the private hit indication (PHIT#) if the data requested
by the MRM matches a valid cache line in the LRM.  In addition, if the data requested by the
MRM matches a valid cache line in the LRM that is in the modified state, the LRM will also
assert the PHITM# signal.  The system snooping indication signals (HIT#, HITM#) will not
change state as a result of a private snoop.

The MRM will use an assertion of the PHIT# signal as an indication that the requested data is
being shared with the LRM.  Independent of the WB/WT# pin, a cache line will be placed in
the shared state if PHIT# is asserted.  This will make all subsequent writes to that line
externally visible until the state of the line becomes exclusive (E or M states).  In a uni-
processor system, the line may have been placed in the cache in the E state.  In this situation,
all subsequent writes to that line will not be visible on the bus until the state is changed to I.

PHIT# will also be driven by the LRM during external snoop operations (e.g., following
EADS#) to indicate the private snoop results.

NOTE

In a single socket system, PHIT# pin should be left NC. For proper
operation, PHIT# must not be loaded by the system.

When Sampled/Driven

PHIT# is driven by the LRM processor, and sampled by the MRM processor.  It is asserted
within two clocks following an assertion of ADS# or EADS#.
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Relation to Other Signals

Pin Symbol Relation to Other Signals

A[31:5] PHIT# is driven to indicate whether the private inquire address driven on
A[31:5] is valid in the LRM’s on-chip cache.

ADS# PHIT# is driven within 2 clocks after ADS# is sampled asserted to
indicate the outcome of the private inquire cycle.

EADS# PHIT# is driven within 2 clocks after EADS# is sampled asserted to
indicate the outcome of the external inquire cycle.

PHITM# PHITM# is never asserted without PHIT# also being asserted.

WB/WT# The state of the WB/WT# pin will be ignored by the MRM if the PHIT# pin
is sampled active, and the cache line placed in the shared state.
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5.1.50. PHITM#
PHITM# Private Inquire Cycle Hit/Miss to a Modified Line Indication

Indicates whether a private, dual processor, inquire cycle resulted in a hit
or miss to a Modified line.

Synchronous Input (to the Most Recent Master, MRM, processor)

Synchronous Output (of the Least Recent Master, LRM, processor)

Signal Description

A private snoop interface has been added to the Pentium processor for use in dual processing.
The interface consists of two pins (PHIT# and PHITM#).

The LRM processor will initiate a snoop sequence for all ADS# cycles that are initiated by the
MRM.  The LRM processor will assert the private hit indication (PHIT#) if the data requested
by the MRM matches a valid cache line in the LRM.  In addition, if the data requested by the
MRM matches a valid cache line in the LRM that is in the modified state, the LRM will also
assert the PHITM# signal.  The system snooping indication signals (HIT#, HITM#) will not
change state as a result of a private snoop.

PHITM# will also be driven by the LRM during external snoop operations (e.g. following
EADS#) to indicate the private snoop results.

NOTE

In a single socket system, PHITM# pin should be left NC. For proper
operation, PHITM# must not be loaded by the system.

When Sampled/Driven

PHITM# is driven by the LRM processor, and sampled by the MRM processor.  It is asserted
within two clocks following an assertion of ADS# or EADS#.

Relation to Other Signals

Pin Symbol Relation to Other Signals

A[31:5] PHITM# is driven to indicate whether the private inquire address driven
on A[31:5] is modified in the LRM’s on-chip cache.

ADS# PHITM# is driven within 2 clocks after ADS# is sampled asserted to
indicate the outcome of the private inquire cycle.

EADS# PHITM# is driven within 2 clocks after EADS# is sampled asserted to
indicate the outcome of the external inquire cycle.

PHIT# PHITM# is never asserted without PHIT# also being asserted.
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5.1.51. PICCLK
PICCLK Processor Interrupt Controller Clock

This pin drives the clock for the APIC serial data bus operation.

Input

Signal Description

This pin provides the clock timings for the on-chip APIC unit of the processor.  This clock
input controls the frequency for the APIC operation and data transmission on the 2-wire APIC
serial data bus.  All the timings on APIC bus are referenced to this clock.

When hardware disabled, PICCLK must be tied high.

Note that the PICCLK signal on the Pentium processor with MMX technology is 3.3V tolerant,
while on the Pentium processor (75/90/100/120/133/150/166/200) the PICCLK input is 5.0V
tolerant.

When Sampled

PICCLK is a clock signal and is used as a reference for sampling the APIC data signals.

Relation to Other Signals

Pin Symbol Relation to Other Signals

APICEN PICCLK must be tied or driven high when APICEN is sampled low at the
falling edge of RESET.

PICD0-1 External timing parameters for the PICD0-1 pins are measured with
respect to this clock.
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5.1.52. PICD1-PICD0
PICD1-PICD0 Processor Interrupt Controller Data

These are the data pins for the 3-wire APIC bus.

Synchronous Input/Output to PICCLK

Needs external pull-up resistors.

Signal Description

The  PICD1-PICD0 are bi-directional pins which comprise the data portion of the 3-wire APIC
bus.

When Sampled/Driven

These signals are sampled with the rising edge of PICCLK.

Relation to Other Signals

Pin Symbol Relation to Other Signals

APICEN PICD1 shares a pin with APICEN.

DPEN# PICD0 shares a pin with DPEN#.



E HARDWARE INTERFACE

5-75

12/18/96 5:02 PM    Ch05new2.doc

INTEL CONFIDENTIAL
(until publication date)

5.1.53. PEN#
PEN# Parity Enable

Indicates to the Pentium® processor that the correct data parity is being
returned by the system. Determines if a Machine Check Exception should be
taken if a data parity error is detected.

Synchronous Input

Signal Description

The PEN# input (along with CR4.MCE) determines whether a machine check exception will
be taken as a result of a data parity error on a read cycle. If this pin is sampled active in the
clock a data parity error is detected, the Pentium processor will latch the address and control
signals of the cycle with the parity error in the machine check registers. If, in addition, the
machine check enable bit in CR4 is set to “1,” the Pentium processor will vector to the
machine check exception before the beginning of the next instruction. If this pin is sampled
inactive, it does not prevent PCHK# from being asserted in response to a bus parity error. If
systems are using PCHK#, they should be aware of this usage of PEN#.

This pin may be tied to VSS.

When Sampled

This signal is sampled when BRDY# is asserted for memory and I/O read cycles and the
second interrupt acknowledge cycle.

Relation to Other Signals

Pin Symbol Relation to Other Signals

BRDY# PEN# is sampled with BRDY# for read cycles.

D63-D0 The DP7-DP0 pins are used to create even parity with D63-D0. If even parity is
not returned, and PEN# is enabled, the cycle will be latched and an MCE will be
taken if CR4.MCE = 1.

DP7-DP0 Even data parity with D63-D0 should be returned to the Pentium® processor on
the dual-processor pins. If even parity is not returned, and PEN# is enabled, the
cycle will be latched and a MCE will be taken if CR4.MCE = 1.
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5.1.54. PM[1:0]
PM/BP1-0 Performance Monitoring

PM1-0 externally indicate the status of the performance monitor counter.

Output pins

Signal Description

The performance monitoring pins can be individually configured to externally indicate either
that the associated performance monitoring counter has incremented or that it has overflowed.
PM1 indicates the status of CTR1; PM0 indicates the status of CTR0.

BP1 and BP0 are multiplexed with the Performance Monitoring pins (PM1 and PM0). The
PB1 and PB0 bits in the Debug Mode Control Register determine if the pins are configured as
breakpoint or performance monitoring pins. The pins come out of reset configured for
performance monitoring .

When Driven

The BP[3:2], PM/BP[1:0] pins are driven in every clock and are not floated during bus HOLD
or BOFF#.

NOTE

The PM1/PM0 pins externally indicate the status of the performance
monitoring counters on the Pentium processor. These counters are undefined
after RESET, and must be cleared or pre-set (using the WRMSR instruction)
before they are assigned to specific events.

However, it is possible for these pins to toggle even during RESET. This
may occur ONLY if the RESET pin was asserted while the Pentium
processor was in the process of counting a particular performance monitoring
event. Since the event counters continue functioning until the CESR (Control
and Event Select Register) is cleared by RESET, it is possible for the event
counters to increment even during RESET. Externally, the state of the event
counters would also be reflected on the PM1/PM0 pins. Any assertion of the
PM1/PM0 pins during RESET should be ignored until after the start of the
first bus cycle.

Relation to Other Signals

Pin Symbol Relation to Other Signals

BP1-BP0 PM1 and PM0 are share pins with BP1 and BP0.
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5.1.55. PRDY
PRDY PRDY

For use with the Intel debug port.

Output

Signal Description

The PRDY pin is provided for use with the Intel debug port described in the “Debugging”
chapter.

When Driven

This output is always driven by the Pentium processor. It is not floated during bus HOLD or
BOFF#.

Relation to Other Signals

Pin Symbol Relation to Other Signals

R/S# R/S# is also used with the Intel debug port.
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5.1.56. PWT
PWT Page Writethrough

Externally reflects the writethrough paging attribute bit in CR3, PDE, or PTE.

Output

Signal Description

PWT is driven to externally reflect the cache writethrough paging attribute bit for the current
cycle. PWT corresponds to bit 3 of CR3, the Page Directory Entry, or the Page Table Entry.
For cycles that are not paged when paging is enabled (for example I/O cycles), PWT
corresponds to bit 3 in CR3. In real mode or when paging is disabled, the Pentium processor
drives PWT low.

PWT can override the effect of the WB/WT# pin. If PWT is asserted for either reads or writes,
the line is saved in, or remains in, the Shared (S) state.

When Driven

The PWT pin is driven valid in the same clock as ADS# and the cycle address. It remains valid
from the clock in which ADS# is asserted until the earlier of the last BRDY# or the clock after
NA#.

Relation to Other Signals

Pin Symbol Relation to Other Signals

ADS# PWT is driven valid with ADS#.

BOFF# PWT floats one clock after BOFF# is asserted.

HLDA PWT floats when HLDA is asserted.

WB/WT# PWT is used in conjunction with the WB/WT# pin to determine the MESI state of
cache lines.
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5.1.57. R/S#
R/S# R/S#

For use with the Intel debug port.

Asynchronous Input

Signal Description

The R/S# pin is provided for use with the Intel debug port described in the “Debugging”
chapter.

When Sampled

This pin should not be driven except in conjunction with the Intel debug port.

Relation to Other Signals

Pin Symbol Relation to Other Signals

PRDY PRDY is also used with the Intel debug port.
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5.1.58. RESET
RESET Reset

Forces the Pentium® processor to begin execution at a known state.

Asynchronous Input (Normal, Uni-processor, mode)

Synchronous Input (Dual processor mode)

Signal Description

The RESET input forces the Pentium processor to begin execution at a known state. All the
Pentium processor internal caches (code and data caches, the translation lookaside buffers,
branch target buffer and segment descriptor cache) will be invalidated upon the RESET.
Modified lines in the data cache are not written back. When RESET is asserted, the Pentium
processor will immediately abort all bus activity and perform the RESET sequence. The
Pentium processor starts execution at FFFFFFF0H.

When RESET transitions from high to low, FLUSH# is sampled to determine if tristate test
mode will be entered, FRCMC# is sampled to determine if the Pentium processor will be con-
figured as a master or a checker (only on the Pentium processor
(75/90/100/120/133/150/166/200), and INIT is sampled to determine if BIST will be run.

When Sampled/Driven

RESET is sampled on every rising clock edge.  RESET must remain asserted for a minimum
of 1 millisecond after VCC and CLK have reached their AC/DC specifications for the “cold” or
“power on” reset. During power up, RESET should be asserted while VCC is approaching
nominal operating voltage (the simplest way to insure this is to place a pullup resistor on
RESET). RESET must remain active for at least 15 clocks while VCC and CLK are within their
operating limits for a “warm reset.” Recognition of RESET is guaranteed in a specific clock if
it is asserted synchronously and meets the setup and hold times. To guarantee recognition if
RESET is asserted asynchronously, it must have been deasserted for a minimum of 2 clocks
before being returned active to the Pentium processor.

FLUSH#, FRCMC# and INIT are sampled when RESET transitions from high to low to
determine if tristate test mode or checker mode will be entered, or if BIST will be run. If
RESET is driven synchronously, these signals must be at their valid level and meet setup and
hold times on the clock before the falling edge of RESET. If RESET is driven asynchronously,
these signals must be at their valid level two clocks before and after RESET transitions from
high to low.

When operating in a dual processing system, RESET is sampled synchronously to the rising
CLK edge to ensure both processors recognize the falling edge in the same clock.
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Relation to Other Signals

Pin Symbol Relation to Other Signals

APICEN APICEN is sampled at the falling edge of RESET.

BE3#-BE0# During reset the BE3#-BE0# pins are sampled to determine the APIC ID.
Following RESET, they function as Byte Enable outputs.

BF[1:0] BF[1:0] are sampled at the falling edge of RESET.

CPUTYP CPUTYP is sampled at the falling edge of RESET.

DPEN# DPEN# is valid during RESET.

FLUSH# If FLUSH# is sampled low when RESET transitions from high to low,
tristate test mode will be entered.

FRCMC# FRCMC# is sampled when RESET transitions from high to low to
determine if the Pentium processor is in Master or Checker mode.

INIT If INIT is sampled high when RESET transitions from high to low, BIST
will be performed.
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5.1.59. SCYC
SCYC Split Cycle Indication

Indicates that a misaligned locked transfer is on the bus.

Synchronous Input/Output

Signal Description

The Split Cycle output is activated during misaligned locked transfers. It is asserted to indicate
that more than two cycles will be locked together. This signal is defined for locked cycles
only. It is undefined for cycles which are not locked.

The Pentium processor defines misaligned transfers as a 16-bit or 32-bit transfer which crosses
a 4-byte boundary, or a 64-bit transfer which crosses an 8-byte boundary.

When operating in dual processing mode, the Pentium processor uses this signal for private
snooping.

When Sampled/Driven

SCYC is only driven during the length of the locked cycle that is split. SCYC is asserted with
the first ADS# of a misaligned split cycle and remains valid until the earlier of the last BRDY#
of the last split cycle or the clock after NA# of the last split cycle.

This signal becomes an input/output when two Pentium processors are operating together in
dual processing mode.

Relation to Other Signals

Pin Symbol Relation to Other Signals

ADS# SCYC is driven valid in the same clock as ADS#.

BOFF# SCYC is floated one clock after BOFF# is asserted.

HLDA SCYC is floated when HLDA is asserted.

LOCK# SCYC is defined for locked cycles only.
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5.1.60. SMI#
SMI# System Management Interrupt

Latches a System Management Interrupt request.

Asynchronous Input

Internal Pullup Resistor

Signal Description

The System Management Interrupt input latches a System Management Interrupt request.
After SMI# is recognized on an instruction boundary, the Pentium processor waits for all
writes to complete and EWBE# to be asserted, then asserts the SMIACT# output. The
processor will then save its register state to SMRAM space and begin to execute the SMM
handler. The RSM instruction restores the registers and returns to the user program.

SMI# has greater priority than debug exceptions and external interrupts.  This means that if
more than one of these conditions occur at an instruction boundary, only the SMI# processing
occurs, not a debug exception or external interrupt.  Subsequent SMI# requests are not
acknowledged while the processor is in system management mode (SMM).  The first SMI#
interrupt request that occurs while the processor is in SMM is latched, and serviced when the
processor exits SMM with the RSM instruction.  Only one SMI# will be latched by the CPU
while it is in SMM.

When Sampled

SMI# is sampled on every rising clock edge. SMI# is a falling edge sensitive input.
Recognition of SMI# is guaranteed in a specific clock if it is asserted synchronously and meets
the setup and hold times. To guarantee recognition if SMI# is asserted asynchronously, it must
have been deasserted for a minimum of 2 clocks before being returned active to the Pentium
processor and remain asserted for a minimum pulse width of two clocks.

Relation to Other Signals

Pin Symbol Relation to Other Signals

SMIACT# When the SMI# input is recognized, the Pentium® processor asserts SMIACT#.
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5.1.61. SMIACT#
SMIACT# System Management Interrupt Active

Indicates that the processor is operating in SMM.

Synchronous Output

Signal Description

The System Management Interrupt Active output is asserted in response to the assertion of
SMI#. It indicates that the processor is operating in System Management Mode (SMM). It will
remain active (low) until the processor executes the RSM instruction to leave SMM.

When the system is operating in dual processing mode, the D/P# signal toggles based upon
whether the Primary or Dual processor owns the bus (MRM).  The SMIACT# pins may be tied
together or be used separately to insure SMRAM access by the correct processor.

CAUTION

If SMIACT# is used separately, note that the SMIACT# signal is only driven
by the processor when it is the MRM (so this signal must be qualified with
the D/P# signal).

Connecting the SMIACT# signals on the Primary and Dual processors together is strongly
recommended for operation with the Dual processor and upgradability with the future Pentium
OverDrive processor.

In dual processing systems, SMIACT# may not remain low (e.g., may toggle) if both
processors are not in SMM mode.  The SMIACT# signal is asserted by either the Primary or
Dual processor based on two conditions:  the processor is in SMM mode and is the bus master
(MRM).  If one processor is executing in normal address space, the SMIACT# signal will go
inactive when that processor is MRM.  The LRM processor, even if in SMM mode, will not
drive the SMIACT# signal low.

When Sampled/Driven

SMIACT# is driven active in response to the assertion of SMI# after all internally pending
writes are complete and the EWBE# pin is active (low). It will remain active (low) until the
processor executes the RSM instruction to leave SMM. This signal is always driven. It does
not float during bus HOLD or BOFF#.

When operating in dual processing mode, the SMIACT# output must be sampled with an
active ADS# and qualified with the D/P# signal to determine which Pentium processor (i.e.,
the Primary or Dual) is driving the SMM cycle.
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Relation to Other Signals

Pin Symbol Relation to Other Signals

ADS# SMIACT# should be sampled with an active ADS# during dual processing
operation.

D/P# When operating in dual processing mode, D/P# qualifies the SMIACT#
SMM indicator.

EWBE# SMIACT# is not asserted until EWBE# is active.

SMI# SMIACT# is asserted when the SMI# is recognized.
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5.1.62. STPCLK#
STPCLK# Stop Clock Pin

Used to stop the internal processor clock and consume less power.

Asynchronous Input

Signal Description

Assertion of STPCLK# causes the Pentium processor to stop its internal clock and consume
less power while still responding to interprocessor and external snoop requests.  This low-
power state is called the stop grant state.  When the CPU recognizes a STPCLK# interrupt, the
CPU will do the following:

1. Wait for all instructions being executed to complete.

2. Flush the instruction pipeline of any instructions waiting to be executed.

3. Wait for all pending bus cycles to complete and EWBE# to go active.

4. Drive a special bus cycle (stop grant bus cycle) to indicate that the clock is being stopped.

5. Enter low power mode.

The stop grant bus cycle consists of the following signal states:  M/IO# = 0, D/C# = 0,
W/R# = 1, Address Bus = 0000 0010H (A4 = 1), BE7#-BE0# = 1111 1011, Data bus =
undefined.

STPCLK# must be driven high (not floated) to exit the stop grant state.  The rising edge of
STPCLK# will tell the CPU that it can return to program execution at the instruction following
the interrupted instruction.

When Sampled/Driven

STPCLK# is treated as a level triggered interrupt to the Pentium processor and is prioritized
below all of the external interrupts.  When the Pentium processor recognizes the STPCLK#
interrupt, the processor will stop execution on the instruction boundary following the
STPCLK# assertion.
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Relation to Other Signals

Pin Symbol Relation to Other Signals

A4, Cycle Control signals
(M/IO#, D/C#, W/R#, BE7#-
BE0#, D/P#)

The Stop Grant Special Bus Cycle is driven on these pins in response to
an assertion of the STPCLK# signal.  M/IO# = 0, D/C# = 0, W/R# = 1.
Address Bus = 0000 0010H (A4 = 1), BE7#-BE0# = 1111 1011.

EWBE# After STPCLK# has been recognized, all pending cycles must be
completed and EWBE# must go active before the internal clock will be
disabled.

External Interrupt signals
(FLUSH#, INIT, INTR, NMI,
R/S#, SMI#)

While in the Stop Grant state, the CPU will latch transitions on the
external interrupt signals.  All of these interrupts are taken after the de-
assertion of STPCLK#.  The CPU requires that INTR be held active until
the CPU issues an interrupt acknowledge cycle in order to guarantee
recognition.

HLDA The CPU will not respond to a STPCLK# request from a HLDA state
because it  cannot generate a Stop Grant cycle.
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5.1.63. TCK
TCK Test Clock Input

Provides Boundary Scan clocking function.

Input

Signal Description

This is the Testability Clock input that provides the clocking function for the Pentium
processor boundary scan in accordance with the boundary scan interface (IEEE Std 1149.1). It
is used to clock state information and data into and out of the Pentium processor during
boundary scan. State select information and data are clocked into the Pentium processor on the
rising edge of TCK on TMS and TDI inputs respectively. Data is clocked out of the Pentium
processor on the falling edge of TCK on TDO.

When TCK is stopped in a low state, the boundary scan latches retain their state indefinitely.
When boundary scan is not used, TCK should be tied high or left as a no-connect.

When Sampled

TCK is a clock signal and is used as a reference for sampling other boundary scan signals.

Relation to Other Signals

Pin Symbol Relation to Other Signals

TDI Serial data is clocked into the processor on the rising edge of TCK.

TDO Serial data is clocked out of the processor on the falling edge of TCK.

TMS TAP controller state transitions occur on the rising edge of TCK.
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5.1.64. TDI
TDI Test Data Input

Input to receive serial test data and instructions.

Synchronous Input to TCK

Signal Description

This is the serial input for the Boundary Scan test logic. TAP instructions and data are shifted
into the Pentium processor on the TDI pin on the rising edge of TCK when the TAP controller
is in the SHIFT-IR and SHIFT-DR states. During all other states, TDI is a “don’t care.”

An internal pull-up resistor is provided on TDI to ensure a known logic state if an open circuit
occurs on the TDI path. Note that when “1” is continuously shifted into the instruction register,
the BYPASS instruction is selected.

When Sampled

TDI is sampled on the rising edge of TCK during the SHIFT-IR and SHIFT-DR states. During
all other states, TDI is a “don’t care.”

Relation to Other Signals

Pin Symbol Relation to Other Signals

TCK TDI is sampled on the rising edge of TCK.

TDO In the SHIFT-IR and SHIFT-DR TAP controller states, TDO contains the output
data of the register being shifted, and TDI provides the input.

TMS TDI is sampled only in the SHIFT-IR and SHIFT DR states (controlled by TMS).
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5.1.65. TDO
TDO Test Data Output

Outputs serial test data and instructions.

Output

Signal Description

This is the serial output of the Boundary Scan test logic. TAP instructions and data are shifted
out of the Pentium processor on the TDO pin on the falling edge of TCK when the TAP
controller is in the SHIFT-IR and SHIFT-DR states. During all other states, the TDO pin is
driven to the high impedance state to allow connecting TDO of different devices in parallel.

When Driven

TDO is driven on the falling edge of TCK during the SHIFT-IR and SHIFT-DR TAP
controller states. At all other times, TDO is driven to the high impedance state. TDO does not
float during bus HOLD or BOFF#.

Relation to Other Signals

Pin Symbol Relation to Other Signals

TCK TDO is driven on the falling edge of TCK.

TDI In the SHIFT-IR and SHIFT-DR TAP controller states, TDI provides the input
data to the register being shifted, and TDO provides the output.

TMS TDO is driven only in the SHIFT-IR and SHIFT DR states (controlled by TMS).
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5.1.66. TMS
TMS Test Mode Select

Controls TAP controller state transitions.

Synchronous Input to TCK

Signal Description

This a Boundary Scan test logic control input. The value of this input signal sampled at the
rising edge of TCK controls the sequence of TAP controller state changes.

To ensure deterministic behavior of the TAP controller, TMS is provided with an internal
pullup resistor. If boundary scan is not used, TMS may be tied to VCC or left unconnected.

When Sampled

TMS is sampled on every rising edge of TCK.

Relation to Other Signals

Pin Symbol Relation to Other Signals

TCK TMS is sampled on every rising edge of TCK.

TDI TDI is sampled only in the SHIFT-IR and SHIFT DR states (controlled by TMS).

TDO TDO is driven only in the SHIFT-IR and SHIFT DR states (controlled by TMS).
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5.1.67. TRST#
TRST# Test Reset

Allows the TAP controller to be asynchronously initialized.

Asynchronous Input

Signal Description

This is a Boundary Scan test logic reset or initialization pin. When asserted, it allows the TAP
controller to be asynchronously initialized. When asserted, TRST# will force the TAP
controller into the Test Logic Reset State. When in this state, the test logic is disabled so that
normal operation of the device can continue unhindered. During initialization, the Pentium
processor initializes the instruction register with the IDCODE instruction.

An alternate method of initializing the TAP controller is to Drive TMS high for at least 5 TCK
cycles. In addition, the Pentium processor implements a power on TAP controller reset
function. When the Pentium processor is put through its normal power on/RESET function, the
TAP controller is automatically reset by the processor. The user does not have to assert the
TRST# pin or drive TMS high after the falling edge of RESET.

When Sampled

TRST# is an asynchronous input.

Relation to Other Signals

None
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5.1.68. VCC

VCC Supply Voltage for Pentium® processor (75/90/100/120/133/150/166/200)

VCC is used to supply power to the Pentium processor.

Power Input

Signal Description

The Pentium processor (75/90/100/120/133/150/166/200) and the future Pentium OverDrive
processor require 3.3V VCC inputs.
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5.1.69. VCC2
VCC2 Core Supply Voltage for Pentium® processor with MMX™ technology

VCC2 is used to supply the core of the Pentium processor with MMX
technology

Power Input

Signal Description

The Pentium processor with MMX technology requires a 2.8V VCC2 (core) voltage.
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5.1.70. VCC3
VCC3 I/O Supply Voltage for Pentium® processor with MMX™ technology

VCC3 is used to supply the I/O of the Pentium processor with MMX
technology

Power Input

Signal Description

The Pentium processor with MMX technology requires a 3.3V VCC3 (I/O) voltage.  This
enables compatibility with Pentium processor (75/90/100/120/133/150/166/200) system
components.
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5.1.71. VCC2DET#
VCC2DET# VCC2 Detect

VCC2DET# can be used in flexible motherboard implementations to
configure the voltage regulator output set-point appropriately for the VCC2
inputs of the Pentium® processor with MMX™ technology.

Output

NOTES: This pin is defined only on the Pentium processor with MMX technology. This pin is an INC on
the Pentium processor (75/90/100/120/133/150/166/200).

Signal Description

The Pentium processor with MMX technology requires 2.8V on the VCC2 pins and 3.3V on
the VCC3 pins.  By using the VCC2DET# signal the system can adjust the core voltage to the
processor when a Pentium processor with MMX technology is inserted into Socket 7.

VCC2DET# is driven active (low) to indicate that a Pentium processor with MMX technology
is installed in the system and can be used in flexible motherboard designs to configure the
voltage regulator output set-point appropriately for the VCC2 inputs of the Pentium processor
with MMX technology.

When Sampled/Driven

This pin is internally strapped to VSS.
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5.1.72. W/R#
W/R# Write/Read

Distinguishes a Write cycle from a Read cycle.

Synchronous Input/Output

Signal Description

The Write/Read signal is one of the primary bus cycle definition pins. W/R# distinguishes
between write (W/R# = 1) and read cycles (W/R# = 0).

When operating in dual processing mode, the Pentium processor uses this signal for private
snooping.

When Sampled/Driven

W/R# is driven valid in the same clock as ADS# and the cycle address. It remains valid from
the clock in which ADS# is asserted until the earlier of the last BRDY# or the clock after NA#.

This signal becomes an input/output when two Pentium processors are operating together in
dual processing mode.

Relation to Other Signals

Pin Symbol Relation to Other Signals

ADS# W/R# is driven to its valid state with ADS#.

BOFF# W/R# floats one clock after BOFF# is asserted.

HLDA W/R# floats when HLDA is asserted.

KEN# KEN# determines cacheability only if W/R# indicates a read.
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5.1.73. WB/WT#
WB/WT# Writeback/Writethrough

This pin allows a cache line to be defined as writeback or writethrough on a line
by line basis.

Synchronous Input

Signal Description

This pin allows a cache line to be defined as writeback or writethrough on a line by line basis.
As a result, in conjunction with the PWT pin, it controls the MESI state in which the line is
saved.

If WB/WT# is sampled high during a memory read cycle and the PWT pin is low, the line is
saved in the Exclusive (E) state in the cache. If WB/WT# is sampled low during a memory
read cycle, the line is saved in the Shared (S) state in the cache.

If WB/WT# is sampled high during a write to a shared line in the cache and the PWT pin is
low, the line transitions to the E state. If WB/WT# is sampled low during a write to a shared
line in the cache, the line remains in the S state.

If for either reads or writes the PWT pin is high, the line is saved in, or remains in, the Shared
(S) state.

When Sampled

This pin is sampled with KEN# on the clock in which NA# or the first BRDY# is returned,
however it must meet setup and hold times on every clock edge.

Relation to Other Signals

Pin Symbol Relation to Other Signals

BRDY#
NA#

WB/WT# is sampled with the earlier of the first BRDY# or NA# for that cycle.

PWT If PWT is high, WB/WT# is a “don’t care.”
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CHAPTER 6
BUS FUNCTIONAL DESCRIPTION

Both the Pentium processor (75/90/100/120/133/130/166/200) and the Pentium processor with
MMX technology support the same bus functionality.  The Pentium processor bus is designed
to support a 528-Mbyte/sec data transfer rate at 66 MHz. All data transfers occur as a result of
one or more bus cycles. This chapter describes the Pentium processor bus cycles and the
Pentium processor data transfer mechanism.

6.1. PHYSICAL MEMORY AND I/O INTERFACE
Pentium processor memory is accessible in 8-, 16-, 32-, and 64-bit quantities. Pentium
processor I/O is accessible in 8-, 16-, and 32-bit quantities. The Pentium processor can directly
address up to 4 Gbytes of physical memory, and up to 64 Kbytes of I/O.

In hardware, memory space is organized as a sequence of 64-bit quantities. Each 64-bit
location has eight individually addressable bytes at consecutive memory addresses (see
Figure 6-1).

 PDB1 0 1

00000007H 00000000H

00000007H 00000000H

BE7# BE6# BE5# BE4# BE3# BE2# BE1#BE0#

PHYSICAL
MEMORY
4 GBYTES

PHYSICAL MEMORY
SPACE

64-BIT WIDE MEMORY ORGANIZATION

FFFFFFFFH FFFFFFF8H

FFFFFFFFH FFFFFFF8H

Figure 6-1. Memory Organization

The I/O space is organized as a sequence of 32-bit quantities. Each 32-bit quantity has four
individually addressable bytes at consecutive memory addresses. See Figure 6-2 for a
conceptual diagram of the I/O space.
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64 KBYTE
00000003H 00000000H

NOT
ACCESSIBLE

0000FFFFH 0000FFFCH

Figure 6-2. I/O Space Organization

Sixty-four-bit memories are organized as arrays of physical quadwords (8-byte words).
Physical quadwords begin at addresses evenly divisible by 8. The quadwords are addressable
by physical address lines A31-A3.

Thirty-two-bit memories are organized as arrays of physical dwords (4-byte words). Physical
dwords begin at addresses evenly divisible by 4. The dwords are addressable by physical
address lines A31-A3 and A2. A2 can be decoded from the byte enables according to
Table 6-2.

Sixteen-bit memories are organized as arrays of physical words (2-byte words). Physical words
begin at addresses evenly divisible by 2. The words are addressable by physical address lines
A31-A3, A2-A1, BHE#, and BLE#. A2 and A1 can be decoded from the byte enables
according to Table 6-2, BHE# and BLE# can be decoded from the byte enables according to
Table 6-3 and Table 6-4.

To address 8-bit memories, the lower 3 address lines (A2-A0) must be decoded from the byte
enables as indicated in Table 6-2.

6.2. DATA TRANSFER MECHANISM
All data transfers occur as a result of one or more bus cycles. Logical data operands of byte,
word, dword, and quadword lengths may be transferred. Data may be accessed at any byte
boundary, but two cycles may be required for misaligned data transfers. The Pentium
processor considers a 2-byte or 4-byte operand that crosses a 4-byte boundary to be
misaligned. In addition, an 8-byte operand that crosses an 8-byte boundary is misaligned.

Like the Intel486 CPU, the Pentium processor address signals are split into two components.
High-order address bits are provided by the address lines A31-A3. The byte enables BE7#-
BE0# form the low-order address and select the appropriate byte of the 8-byte data bus.
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The byte enable outputs are asserted when their associated data bus bytes are involved with the
present bus cycle as shown in Table 6-1. For both memory and I/O accesses, the byte enable
outputs indicate which of the associated data bus bytes are driven valid for write cycles and on
which bytes data is expected back for read cycles. Non-contiguous byte enable patterns will
never occur.

Address bits A2-A0 of the physical address can be decoded from the byte enables according to
Table 6-2. The byte enables can also be decoded to generate BLE# (byte low enable) and
BHE# (byte high enable) to address 16-bit memory systems (see Table 6-3 and Table 6-4).

Table 6-1. Pentium ® Processor Byte Enables and Associated Data Bytes

Byte Enable Signal Associated Data Bus Signals

BE0# D0-D7 (byte 0 — least significant)

BE1# D8-D15 (byte 1)

BE2# D16-D23 (byte 2)

BE3# D24-D31 (byte 3)

BE4# D32-D39 (byte 4)

BE5# D40-D47 (byte 5)

BE6# D48-D55 (byte 6)

BE7# D56-D63 (byte 7 — most significant)

Address bits A2-A0 of the physical address can be decoded from the byte enables according to
Table 6-2. The byte enables can also be decoded to generate BLE# (byte low enable) and
BHE# (byte high enable) to address 16-bit memory systems (see Table 6-3 and Table 6-4).
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Table 6-2. Generating A2-A0 from BE7-0#

A2 A1 A0 BE7# BE6# BE5# BE4# BE3# BE2# BE1# BE0#

0 0 0 X X X X X X X Low

0 0 1 X X X X X X Low High

0 1 0 X X X X X Low High High

0 1 1 X X X X Low High High High

1 0 0 X X X Low High High High High

1 0 1 X X Low High High High High High

1 1 0 X Low High High High High High High

1 1 1 Low High High High High High High High

Table 6-3. When BLE# is Active

BE7# BE6# BE5# BE4# BE3# BE2# BE1# BE0# BLE#

X X X X X X X Low Low

X X X X X Low High High Low

X X X Low High High High High Low

X Low High High High High High High Low

Table 6-4. When BHE# is Active

BE7# BE6# BE5# BE4# BE3# BE2# BE1# BE0# BHE#

X X X X X X Low X Low

X X X X Low X High High Low

X X Low X High High High High Low

Low X High High High High High High Low

Table 6-5. When BE3’# is Active

BE7# BE6# BE5# BE4# BE3# BE2# BE1# BE0# BE3’#

Low X X X Low X X X Low

Table 6-6. When BE2’# is Active

BE7# BE6# BE5# BE4# BE3# BE2# BE1# BE0# BE2’#

X Low X X X Low X X Low
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Table 6-7. When BE1’# is Active

BE7# BE6# BE5# BE4# BE3# BE2# BE1# BE0# BE1’#

X X Low X X X Low X Low

Table 6-8. When BE0’# is Active

BE7# BE6# BE5# BE4# BE3# BE2# BE1# BE0# BE0’#

X X X Low X X X Low Low

6.2.1. Interfacing With 8-, 16-, 32-, and 64-Bit Memories
In 64-bit physical memories such as Figure 6-3, each 8-byte quadword begins at a byte address
that is a multiple of eight. A31-A3 are used as an 8-byte quadword select and BE7#-BE0#
select individual bytes within the word.

PDB27

PENTIUM® PROCESSOR

D63-D0

A31-A3, BE7#-BE0#

64-BIT MEMORY

Figure 6-3. Pentium ® Processor with 64-Bit Memory

Memories that are 32 bits wide require external logic for generating A2 and BE3’#-BE0’#.
Memories that are 16 bits wide require external logic for generating A2, A1, BHE# and BLE#.
Memories that are 8 bits wide require external logic for generating A2, A1, and A0. All
memory systems that are less than 64 bits wide require external byte swapping logic for
routing data to the appropriate data lines.

The Pentium processor expects all the data requested by the byte enables to be returned as one
transfer (with one BRDY#), so byte assembly logic is required to return all requested bytes to
the Pentium processor at one time. Note that the Pentium processor does not support BS8#,
BS16# or BS32#, so this logic must be implemented externally if necessary.

Figure 6-4 shows the Pentium processor address bus interface to 64, 32, 16 and 8-bit
memories. Address bits A2, A1, and A0 and BHE#, BLE#, and BE3’#-BE0’# are decoded as
shown in Table 6-2 through Table 6-8.
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PDB28

PENTIUM®

PROCESSOR
BE7#-BE0#

BYTE 
SELECT
LOGIC

A31-A3

64-BIT
MEMORY

32-BIT
MEMORY

A2, BE3'# - BE0'#

16-BIT
MEMORY

8-BIT
MEMORY

BHE#, BLE#,
A2, A1

A2,A1,A0

Figure 6-4. Addressing 32-, 16- and 8-Bit Memories

Figure 6-5 shows the Pentium processor data bus interface to 32-, 16- and 8-bit wide
memories. External byte swapping logic is needed on the data lines so that data is supplied to
and received from the Pentium processor on the correct data pins (see Table 6-1). For memory
widths smaller than 64 bits, byte assembly logic is needed to return all bytes of data requested
by the Pentium processor in one cycle.
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PDB30

PENTIUM®

PROCESSOR

D7-D0
D15-D8
D23-D16
D31-D24
D39-D32
D47-D40
D55-D48
D63-D56

A
31-A

3 B
E

7#-B
E

0#

64-BIT
MEMORY

BYTE
SWAP
LOGIC

32
32-BIT

MEMORY

BYTE
SWAP
LOGIC

16-BIT
MEMORY

BYTE
SWAP
LOGIC

8-BIT
MEMORY

16

8

64-BIT DATA 
ASSEMBLY

 LOGIC

D7-D0
D15-D8
D23-D16
D31-D24
D39-D32
D47-D40
D55-D48
D63-D56

Figure 6-5. Data Bus Interface to 32-, 16- and 8-Bit Memories

Operand alignment and size dictate when two cycles are required for a data transfer. Table 6-9
shows the transfer cycles generated by the Pentium processor for all combinations of logical
operand lengths and alignment and applies to both locked and unlocked transfers. When
multiple cycles are required to transfer a multi-byte logical operand, the highest order bytes are
transferred first.
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Table 6-9. Transfer Bus Cycles for Bytes, Words, Dwords and Quadwords

Length of Transfer 1 Byte 2 Bytes

Low Order Address xxx 000 001 010 011 100 101 110 111

1st transfer b w w w hb w w w hb

Byte enables driven 0 BE0-1# BE1-2# BE2-3# BE4# BE4-5# BE5-6# BE6-7# BE0#

Value driven on A3 0 0 0 0 0 0 0 1

2nd transfer (if
needed)

lb lb

Byte enables driven BE3# BE7#

Value driven on A3 0 0

Length of Transfer 4 Bytes

Low Order Address 000 001 010 011 100 101 110 111

1st transfer d hb hw h3 d hb hw h3

Byte enables driven BE0-3# BE4# BE4-5# BE4-6# BE4-7# BE0# BE0-1# BE0-2#

Low order address 0 0 0 0 0 1 1 1

2nd transfer (if
needed)

l3 lw lb l3 lw lb

Byte enables driven BE1-3# BE2-3# BE3# BE5-7# BE6-7# BE7#

Value driven on A3 0 0 0 0 0 0

Length of Transfer 8 Bytes

Low Order Address 000 001 010 011 100 101 110 111

1st transfer q hb hw h3 hd h5 h6 h7

Byte enables driven BE0-7# BE0# BE0-1# BE0-2# BE0-3# BE0-4# BE0-5# BE0-6#

Value driven on A3 0 1 1 1 1 1 1 1

2nd transfer (if
needed)

l7 l6 l5 ld l3 lw lb

Byte enables driven BE1-7# BE2-7# BE3-7# BE4-7# BE5-7# BE6-7# BE7#

Value driven on A3 0 0 0 0 0 0 0

Key:

b = byte transfer w = 2-byte transfer 3 = 3-byte transfer d = 4-byte transfer

5 = 5-byte transfer 6 = 6-byte transfer 7 = 7-byte transfer q = 8-byte transfer

h = high order l = low order

8-byte operand:

high order
byte

byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 low order
byte

↑ ↑
byte with highest address byte with lowest address



E BUS FUNCTIONAL DESCRIPTION

6-9

12/19/96 9:35 AM    Ch06new.doc

INTEL CONFIDENTIAL
(until publication date)

6.3. BUS STATE DEFINITION
This section describes the Pentium processor bus states in detail. See Figure 6-6 for the bus
state diagram.

Ti: This is the bus idle state. In this state, no bus cycles are being run. The Pentium processor
may or may not be driving the address and status pins, depending on the state of the HLDA,
AHOLD, and BOFF# inputs. An asserted BOFF# or RESET will always force the state
machine back to this state. HLDA will only be driven in this state.

T1: This is the first clock of a bus cycle. Valid address and status are driven out and ADS# is
asserted. There is one outstanding bus cycle.

T2: This is the second and subsequent clock of the first outstanding bus cycle. In state T2, data
is driven out (if the cycle is a write), or data is expected (if the cycle is a read), and the BRDY#
pin is sampled. There is one outstanding bus cycle.

T12: This state indicates there are two outstanding bus cycles, and that the Pentium processor
is starting the second bus cycle at the same time that data is being transferred for the first. In
T12, the Pentium processor drives the address and status and asserts ADS# for the second
outstanding bus cycle, while data is transferred and BRDY# is sampled for the first outstand-
ing cycle.

T2P: This state indicates there are two outstanding bus cycles, and that both are in their second
and subsequent clocks. In T2P, data is being transferred and BRDY# is sampled for the first
outstanding cycle. The address, status and ADS# for the second outstanding cycle were driven
sometime in the past (in state T12).

TD: This state indicates there is one outstanding bus cycle, that its address, status and ADS#
have already been driven sometime in the past (in state T12), and that the data and BRDY#
pins are not being sampled because the data bus requires one dead clock to turn around
between consecutive reads and writes, or writes and reads. The Pentium processor enters TD if
in the previous clock there were two outstanding cycles, the last BRDY# was returned, and a
dead clock is needed. The timing diagrams in the next section give examples when a dead
clock is needed.

Table 6-10 gives a brief summary of bus activity during each bus state. Figure 6-6 shows the
Pentium processor bus state diagram.
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Table 6-10. Pentium ® Processor Bus Activity

Bus State Cycles Outstanding
ADS# Asserted

New Address Driven
BRDY# Sampled
Data Transferred

Ti 0 No No

T1 1 Yes No

T2 1 No Yes

T12 2 Yes Yes

T2P 2 No Yes

TD 1 No No
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PDB21

T1*
(5)

(2)
(4)

(3)
T2

(6)
(7)

(8)

TD

T12*

(9)

(11)

T2P

(10)

(13)

(14)

(12)

*ADS#  asserted

Ti

(1)

(0)

** If BOFF# is asserted during any state, a state transition to Ti 
occurs in the next clock (not shown)

*** If RESET is sampled asserted in any state, a state transition 
to Ti will occur (not shown)

Figure 6-6. Pentium ® Processor Bus Control State Machine
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6.3.1. State Transitions
The state transition equations with descriptions are listed below. In the equations, “&” means
logical AND, “+” means logical OR, and “#” placed after label means active low. The NA#
used here is actually a delayed version of the external NA# pin (delayed by one clock). The
definition of request pending is:

The Pentium processor has generated a new bus cycle internally & HOLD
(delayed by one clock) negated & BOFF# negated & (AHOLD negated +
HITM# asserted).

Note that once NA# is sampled asserted the Pentium processor latches NA# and will pipeline a
cycle when one becomes pending even if NA# is subsequently deasserted.

(0) No Request Pending

(1) Request Pending;:

The Pentium processor starts a new bus cycle & ADS# is asserted in the T1
state.

(2) Always:

With BOFF# negated, and a cycle outstanding the Pentium processor always
moves to T2 to process the data transfer.

(3) Not Last BRDY# & (No Request Pending + NA# Negated):

The Pentium processor stays in T2 until the transfer is over if no new request
becomes pending or if NA# is not asserted.

(4) Last BRDY# & Request Pending & NA# Sampled Asserted:

If there is a new request pending when the current cycle is complete, and if
NA# was sampled asserted, the Pentium processor begins from T1.

(5) Last BRDY# & (No Request Pending + NA# Negated):

If no cycle is pending when the Pentium processor finishes the current cycle
or NA# is not asserted, the Pentium processor goes back to the idle state.

(6) Not Last BRDY# & Request Pending & NA# Sampled Asserted:

While the Pentium processor is processing the current cycle (one outstanding
cycle), if another cycle becomes pending and NA# is asserted, the Pentium
processor moves to T12 indicating that the Pentium processor now has two
outstanding cycles. ADS# is asserted for the second cycle.

(7) Last BRDY# & No dead clock:

When the Pentium processor finishes the current cycle, and no dead clock is
needed, it goes to the T2 state.

(8) Last BRDY# & Need a dead clock:

When the Pentium processor finishes the current cycle and a dead clock is
needed, it goes to the TD state.
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(9) Not Last BRDY#:

With BOFF# negated, and the current cycle not complete, the Pentium
processor always moves to T2P to process the data transfer.

(10) Not Last BRDY#:

The Pentium processor stays in T2P until the first cycle transfer is over.

(11) Last BRDY# & No dead clock:

When the Pentium processor finishes the first cycle and no dead clock is
needed, it goes to T2 state.

(12) Last BRDY# & Need a dead clock:

When the first cycle is complete, and a dead clock is needed, it goes to TD
state.

(13) Request Pending & NA# sampled asserted:

If NA# was sampled asserted and there is a new request pending, it goes to
T12 state.

(14) No Request Pending + NA# Negated:

If there is no new request pending, or NA# was not asserted, it goes to T2
state.

6.4. BUS CYCLES
The following terminology is used in this document to describe the Pentium processor bus
functions. The Pentium processor requests data transfer cycles, bus cycles, and bus operations.
A data transfer cycle is one data item, up to 8 bytes in width, being returned to the Pentium
processor or accepted from the Pentium processor with BRDY# asserted. A bus cycle begins
with the Pentium processor driving an address and status and asserting ADS#, and ends when
the last BRDY# is returned. A bus cycle may have 1 or 4 data transfers. A burst cycle is a bus
cycle with 4 data transfers. A bus operation is a sequence of bus cycles to carry out a specific
function, such as a locked read-modify-write or an interrupt acknowledge.

The section titled “Bus State Definition” describes each of the bus states, and shows the bus
state diagram.

Table 6-11 lists all of the bus cycles that will be generated by the Pentium processor. Note that
inquire cycles (initiated by EADS#) may be generated from the system to the Pentium
processor.
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Table 6-11. Pentium ® Processor Initiated Bus Cycles

M/IO# D/C# W/R# CACHE#* KEN# Cycle Description # of Transfers

0 0 0 1 x Interrupt Acknowledge
(2 locked cycles)

1 transfer each cycle

0 0 1 1 x Special Cycle (Table 6-13) 1

0 1 0 1 x I/O Read, 32-bits or less,
non-cacheable

1

0 1 1 1 x I/O Write, 32-bits or less,
non-cacheable

1

1 0 0 1 x Code Read, 64-bits,
non-cacheable

1

1 0 0 x 1 Code Read, 64-bits,
non-cacheable

1

1 0 0 0 0 Code Read, 256-bit burst line
fill

4

1 0 1 x x Intel Reserved (will not be
driven by the Pentium
processor)

n/a

1 1 0 1 x Memory Read, 64 bits or
less, non-cacheable

1

1 1 0 x 1 Memory Read, 64 bits or
less, non-cacheable

1

1 1 0 0 0 Memory Read, 256-bit burst
line fill

4

1 1 1 1 x Memory Write, 64 bits or
less, non-cacheable

1

1 1 1 0 x 256-bit Burst Writeback 4

* CACHE# will not be asserted for any cycle in which M/IO# is driven low or for any cycle in which PCD is
driven high.
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Note that all burst reads are cacheable, and all cacheable read cycles are bursted. There are no
non-cacheable burst reads or non-burst cacheable reads.

The remainder of this chapter describes all of the above bus cycles in detail. In addition,
locked operations and bus cycle pipelining will be discussed.

6.4.1. Single-Transfer Cycle
The Pentium processor supports a number of different types of bus cycles. The simplest type
of bus cycle is a single-transfer non-cacheable 64-bit cycle, either with or without wait states.
Non-pipelined read and write cycles with 0 wait states are shown in Figure 6-7.

The Pentium processor initiates a cycle by asserting the address status signal (ADS#) in the
first clock. The clock in which ADS# is asserted is by definition the first clock in the bus
cycle. The ADS# output indicates that a valid bus cycle definition and address is available on
the cycle definition pins and the address bus. The CACHE# output is deasserted (high) to
indicate that the cycle will be a single transfer cycle.

For a zero wait state transfer, BRDY# is returned by the external system in the second clock of
the bus cycle. BRDY# indicates that the external system has presented valid data on the data
pins in response to a read or the external system has accepted data in response to a write. The
Pentium processor samples the BRDY# input in the second and subsequent clocks of a bus
cycle (the T2, T12 and T2P bus states; see the Bus State Definition section of this chapter for
more information).

The timing of the data parity input, DP, and the parity check output, PCHK#, is also shown in
Figure 6-7. DP is driven by the Pentium processor and returned to the Pentium processor in the
same clock as the data. PCHK# is driven two clocks after BRDY# is returned for reads with
the results of the parity check.
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 PDB1

CLK

ADDR

ADS#

CACHE#

W/R#

BRDY#

DATA

PCHK#

T1 T2 Ti T1 T2 Ti T1

DP

NA#

VALID VALIDINVALID INVALID

TO CPU

TO CPU

FROM CPU

FROM CPU

Figure 6-7. Non-Pipelined Read and Write

If the system is not ready to drive or accept data, wait states can be added to these cycles by
not returning BRDY# to the processor at the end of the second clock. Cycles of this type, with
one and two wait states added are shown in Figure 6-8. Note that BRDY# must be driven
inactive at the end of the second clock. Any number of wait states can be added to Pentium
processor bus cycles by maintaining BRDY# inactive.
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 PDB2

T2 T2
CLK

ADDR

ADS#

CACHE#

W/R#

BRDY#

DATA/DP

PCHK#

T1 T2 T1 T2 T2Ti

NA#

VALID VALID

FROM CPUTO CPU

Figure 6-8. Non-Pipelined Read and Write with Wait States

6.4.2. Burst Cycles
For bus cycles that require more than a single data transfer (cacheable cycles and writeback
cycles), the Pentium processor uses the burst data transfer. In burst transfers, a new data item
can be sampled or driven by the Pentium processor in consecutive clocks. In addition the
addresses of the data items in burst cycles all fall within the same 32-byte aligned area
(corresponding to an internal Pentium processor cache line).

The implementation of burst cycles is via the BRDY# pin. While running a bus cycle of more
than one data transfer, the Pentium processor requires that the memory system perform a burst
transfer and follow the burst order (see Table 6-12). Given the first address in the burst
sequence, the address of subsequent transfers must be calculated by external hardware. This
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requirement exists because the Pentium processor address and byte-enables are asserted for the
first transfer and are not re-driven for each transfer. The burst sequence is optimized for two
bank memory subsystems and is shown in Table 6-12.

Table 6-12. Pentium ® Processor Burst Order

1st Address 2nd Address 3rd Address 4th Address

0 8 10 18

8 0 18 10

10 18 0 8

18 10 8 0

NOTES: The addresses are represented in hexadecimal format.

The cycle length is driven by the Pentium processor together with cycle specification (see
Table 6-11), and the system should latch this information and terminate the cycle on time with
the appropriate number of transfers. The fastest burst cycle possible requires 2 clocks for the
first data item to be returned/driven with subsequent data items returned/driven every clock.

6.4.2.1. BURST READ CYCLES

When initiating any read, the Pentium processor will present the address and byte enables for
the data item requested. When the cycle is converted into a cache linefill, the first data item
returned should correspond to the address sent out by the Pentium processor; however, the
byte enables should be ignored, and valid data must be returned on all 64 data lines. In
addition, the address of the subsequent transfers in the burst sequence must be calculated by
external hardware since the address and byte enables are not re-driven for each transfer.

Figure 6-9 shows a cacheable burst read cycle. Note that in this case the initial cycle generated
by the Pentium processor might have been satisfied by a single data transfer, but was
transformed into a multiple-transfer cache fill by KEN# being returned active on the clock that
the first BRDY# is returned. In this case KEN# has such an effect because the cycle is
internally cacheable in the Pentium processor (CACHE# pin is driven active). KEN# is only
sampled once during a cycle to determine cacheability.

PCHK# is driven with the parity check status two clocks after each BRDY#.
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PDB3

T2
CLK

ADDR

ADS#

CACHE#

W/R#

BRDY#

DATA/DP

PCHK#

T1 T2 T2 T2

KEN#

Ti

VALID

TO CPU TO CPU TO CPU TO CPU

Figure 6-9. Basic Burst Read Cycle

Data will be sampled only in the clock that BRDY# is returned, which means that data need
not be sent to Pentium processor every clock in the burst cycle. An example burst cycle where
two clocks are required for every burst item is shown in Figure 6-10.
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 PDB5

CLK

ADDR

ADS#

CACHE#

W/R#

BRDY#

DATA/DP

PCHK#

T1 T2 T2 T2 T2

KEN#

T2 T2 T2

TO CPU TO CPU TO CPUTO CPU

Figure 6-10. Slow Burst Read Cycle

6.4.2.2. BURST WRITE CYCLES

Figure 6-11 shows the timing diagram of basic burst write cycle. KEN# is ignored in burst
write cycle. If the CACHE# pin is active (low) during a write cycle, it indicates that the cycle
will be a burst writeback cycle. Burst write cycles are always writebacks of modified lines in
the data cache. Writeback cycles have several causes:

1. Writeback due to replacement of a modified line in the data cache.

2. Writeback due to an inquire cycle that hits a modified line in the data cache.

3. Writeback due to an internal snoop that hits a modified line in the data cache.

4. Writebacks caused by asserting the FLUSH# pin.

5. Writebacks caused by executing the WBINVD instruction.
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Writeback cycles are described in more detail in the Inquire Cycle section of this chapter.

The only write cycles that are burstable by the Pentium processor are writeback cycles. All
other write cycles will be 64 bits or less, single transfer bus cycles.

PDB4

CLK

ADDR

ADS#

CACHE#

W/R#

BRDY#

DATA/DP

PCHK#

T1 T2 T2T2 T2 Ti

VALID

FROM CPU FROM CPU FROM CPU FROM CPU

Figure 6-11. Basic Burst Write Cycle

For writeback cycles, the lower five bits of the first burst address always starts at zero;
therefore, the burst order becomes 0, 8h, 10h, and 18h. Again, note that the address of the
subsequent transfers in the burst sequence must be calculated by external hardware since the
Pentium processor does not drive the address and byte enables for each transfer.

6.4.3. Locked Operations
The Pentium processor architecture provides a facility to perform atomic accesses of memory.
For example, a programmer can change the contents of a memory-based variable and be
assured that the variable was not accessed by another bus master between the read of the
variable and the update of that variable. This functionality is provided for select instructions
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using a LOCK prefix, and also for instructions which implicitly perform locked read modify
write cycles such as the XCHG (exchange) instruction when one of its operands is memory
based. Locked cycles are also generated when a segment descriptor or page table entry is
updated and during interrupt acknowledge cycles.

In hardware, the LOCK functionality is implemented through the LOCK# pin, which indicates
to the outside world that the Pentium processor is performing a read-modify-write sequence of
cycles, and that the Pentium processor should be allowed atomic access for the location that
was accessed with the first locked cycle. Locked operations begin with a read cycle and end
with a write cycle. Note that the data width read is not necessarily the data width written. For
example, for descriptor access bit updates the Pentium processor fetches eight bytes and writes
one byte.

A locked operation is a combination of one or multiple read cycles followed by one or
multiple write cycles. Programmer generated locked cycles and locked page table/directory
accesses are treated differently and are described in the following sections.

6.4.3.1. PROGRAMMER GENERATED LOCKS AND SEGMENT DESCRIPTOR
UPDATES

For programmer generated locked operations and for segment descriptor updates, the sequence
of events is determined by whether or not the accessed line is in the internal cache and what
state that line is in.

6.4.3.1.1. Cached Lines in the Modified (M) State

Before a programmer initiated locked cycle or a segment descriptor update is generated, the
Pentium processor first checks if the line is in the Modified (M) state. If it is, the Pentium
processor drives an unlocked writeback first, leaving the line in the Invalid (I) state, and then
runs the locked read on the external bus. Since the operand may be misaligned, it is possible
that the Pentium processor may do two writeback cycles before starting the first locked read.
In the misaligned scenario the sequence of bus cycles is: writeback, writeback, locked read,
locked read, locked write, then the last locked write. Note that although a total of six cycles are
generated, the LOCK# pin is active only during the last four cycles. In addition, the SCYC pin
is asserted during the last four cycles to indicate that a misaligned lock cycle is occurring. In
the aligned scenario the sequence of cycles is: writeback, locked read, locked write. The
LOCK# pin is asserted for the last two cycles (SCYC is not asserted, indicating that the locked
cycle is aligned). The cache line is left in the Invalid state after the locked operation.

6.4.3.1.2. Non-Cached (I-State), S-State and E-State Lines

A programmer initiated locked cycle or a segment descriptor update to an I, S, or E -state line
is always forced out to the bus and the line is transitioned to the Invalid state. Since the line is
not in the M-State, no writeback is necessary. Because the line is transitioned to the Invalid
state, the locked write is forced out to the bus also. The cache line is left in the Invalid state
after the locked operation.
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6.4.3.2. PAGE TABLE/DIRECTORY LOCKED CYCLES

In addition to programmer generated locked operations, the Pentium processor performs
locked operations to set the dirty and accessed bits in page tables/page directories. The
Pentium processor runs the following sequence of bus cycles to set the dirty/accessed bit.

6.4.3.2.1. Cached Lines in the Modified (M) State

If there is a TLB miss, the Pentium processor issues an (unlocked) read cycle to determine if
the dirty or accessed bits need to be set. If the line is modified in the internal data cache, the
line is written back to memory (lock not asserted). If the dirty or accessed bits need to be set,
the Pentium processor then issues a locked read-modify-write operation. The sequence of bus
cycles to set the dirty or accessed bits in a page table/directory when the line is in the M-state
is: unlocked read, unlocked writeback, locked read, then locked write. The line is left in the
Invalid state after the locked operation. Note that accesses to the page tables/directories will
not be misaligned.

6.4.3.2.2. Non-Cached (I-State), S-State and E-State Lines

If the line is in the I, S or E-state, the locked cycle is always forced out to the bus and the line
is transitioned to the Invalid state. The sequence of bus cycles for an internally generated
locked operation is locked read, locked write. The line is left in the Invalid state. Note that
accesses to the page tables/directories will not be misaligned.

6.4.3.3. LOCK# OPERATION DURING AHOLD/HOLD/BOFF#

LOCK# is not deasserted if AHOLD is asserted in the middle of a locked cycle.

LOCK# is floated during bus HOLD, but if HOLD is asserted during a sequence of locked
cycles, HLDA will not be asserted until the locked sequence is complete.

LOCK# will float if BOFF# is asserted in the middle of a locked cycle, and is driven low again
when the cycle is restarted. If BOFF# is asserted during the read cycle of a locked read-modify
write, the locked cycle is redriven from the read when BOFF# is deasserted. If BOFF# is
asserted during the write cycle of a locked read-modify-write, only the write cycle is redriven
when BOFF# is deasserted. The system is responsible for ensuring that other bus masters do
not access the operand being locked if BOFF# is asserted during a LOCKed cycle.

6.4.3.4. INQUIRE CYCLES DURING LOCK#

This section describes the Pentium processor bus cycles that will occur if an inquire cycle is
driven while LOCK# is asserted. Note that inquire cycles are only recognized if AHOLD,
BOFF# or HLDA is asserted and the external system returns an external snoop address to the
Pentium processor. If AHOLD, BOFF# or HLDA is not asserted when EADS# is driven,
EADS# is ignored. Note also that an inquire cycle can not hit the “locked line” because the
LOCK cycle invalidated it.
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Because HOLD is not acknowledged when LOCK# is asserted, inquire cycles run in
conjunction with the assertion of HOLD can not be driven until LOCK# is deasserted and
HLDA is asserted.

BOFF# takes priority over LOCK#. Inquire cycles are permitted while BOFF# is asserted. If
an inquire cycle hits a modified line in the data cache, the writeback due to the snoop hit will
be driven before the locked cycle is re-driven. LOCK# will be asserted for the writeback.

An inquire cycle with AHOLD may be run concurrently with a locked cycle. If the inquire
cycle hits a modified line in the data cache, the writeback may be driven between the locked
read and the locked write. If the writeback is driven between the locked read and write,
LOCK# will be asserted for the writeback.

NOTE

Only writebacks due to an external snoop hit to a modified line may be
driven between the locked read and the locked write of a LOCKed sequence.
No other writebacks (due to an internal snoop hit or data cache replacement)
are allowed to invade a LOCKed sequence.

6.4.3.5. LOCK# TIMING AND LATENCY

The timing of LOCK# is shown in Figure 6-12. Note that LOCK# is asserted with the ADS# of
the read cycle and remains active until the BRDY# of the write cycle is returned. Figure 6-13
shows an example of two consecutive locked operations. Note that the Pentium processor
automatically inserts at least one idle clock between two consecutive locked operations to
allow the LOCK# pin to be sampled inactive by external hardware. Figure 6-14 shows an
example of a misaligned locked operation with SCYC asserted.

The maximum number of Pentium processor initiated cycles that will be locked together is
four. Four cycles are locked together when data is misaligned for programmer generated locks
(read, read, write, write). SCYC will be asserted for misaligned locked cycles. Note that
accesses to the page tables/directories will not be misaligned.
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Figure 6-12. LOCK# Timing
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Figure 6-13. Two Consecutive Locked Operations
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Figure 6-14. Misaligned Locked Cycles

6.4.4. BOFF#
In a multi-master system, another bus master may require the use of the bus to enable the
Pentium processor to complete its current cycle. The BOFF# pin is provided to prevent this
deadlock situation. If BOFF# is asserted, the Pentium processor will immediately (in the next
clock) float the bus (see Figure 6-15). Any bus cycles in progress are aborted and any data re-
turned to the processor in the clock BOFF# is asserted is ignored. In response to BOFF#, the
Pentium processor floats the same pins as HOLD, but HLDA is not asserted. BOFF# overrides
BRDY#, so if both are sampled active in the same clock, BRDY# is ignored. The Pentium
processor samples the BOFF# pin every clock.
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Figure 6-15. Back Off Timing

The device that asserts BOFF# to the Pentium processor is free to run any bus cycle while the
Pentium processor is in the high impedance state. If BOFF# is asserted after the Pentium
processor has started a cycle, the new master should wait for memory to return BRDY# before
driving a cycle. Waiting for BRDY# provides a handshake to insure that the memory system is
ready to accept a new cycle. If the bus is idle when BOFF# is asserted, the new master can
start its cycle two clocks after issuing BOFF#. The system must wait two clocks after the asser-
tion of BOFF# to begin its cycle to prevent address bus contention.

The bus remains in the high impedance state until BOFF# is negated. At that time, the Pentium
processor restarts all aborted bus cycles from the beginning by driving out the address and
status and asserting ADS#. Any data returned before BOFF# was asserted is used to continue
internal execution, however that data is not placed in an internal cache. Any aborted bus cycles
will be restarted from the beginning.

External hardware should assure that if the cycle attribute KEN# was returned to the processor
(with the first BRDY# or NA#) before the cycle was aborted, it must be returned with the same
value after the cycle is restarted. In other words, backoff cannot be used to change the
cacheability property of the cycle. The WB/WT# attribute may be changed when the cycle is
restarted.

If more than one cycle is outstanding when BOFF# is asserted, the Pentium processor will
restart both outstanding cycles in their original order. The cycles will not be pipelined unless
NA# is asserted appropriately.
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A pending writeback cycle due to an external snoop hit will be reordered in front of any cycles
aborted due to BOFF#. For example, if a snoop cycle is run concurrently with a line fill, and
the snoop hits an M-state line and then BOFF# is asserted, the writeback cycle due to the
snoop will be driven from the Pentium processor before the cache linefill cycle is restarted.

The system must not rely on the original cycle, that was aborted due to BOFF#,  from
restarting immediately after BOFF# is deasserted. In addition to reordering writebacks due to
external snoop hit in front of cycles that encounter a BOFF#, the processor may also reorder
bus cycles in the following situations:

1. A pending writeback cycle due to an internal snoop hit will be reordered in front of any
cycles aborted due to BOFF#. If a read cycle is running on the bus, and an internal snoop
of that read cycle hits a modified line in the data cache, and the system asserts BOFF#, the
Pentium processor will drive out a writeback cycle resulting from the internal snoop hit.
After completion of the writeback cycle, the processor will then restart the original read
cycle. This circumstance can occur during accesses to the page tables/directories, and
during prefetch cycles, since these accesses cause a bus cycle to be generated before the
internal snoop to the data cache is performed.

2. If BOFF# is asserted during a data cache replacement writeback cycle, the writeback cycle
will be aborted and then restarted once BOFF# is deasserted. However, if the processor
encounters a request to access the page table/directory in memory during the BOFF#, this
request will be reordered in front of the replacement writeback cycle that was aborted due
to BOFF#. The Pentium processor will first run the sequence of bus cycles to service the
page table/directory access and then restart the original replacement writeback cycle.

Asserting BOFF# in the same clock as ADS# may cause the Pentium processor to leave the
ADS# signal floating low. Since ADS# is floating low, a peripheral device may think that a
new bus cycle has begun even though the cycle was aborted. There are several ways to
approach this situation:

1. Design the system’s state machines/logic such that ADS# is not recognized the clock after
ADS# is sampled active.

2. Recognize a cycle as ADS# asserted and BOFF# negated in the previous clock.

3. Assert AHOLD one clock before asserting BOFF#.

6.4.5. Bus Hold
The Pentium processor provides a bus hold, hold acknowledge protocol using the HOLD and
HLDA pins. HOLD is used to indicate to the Pentium processor that another bus master wants
control of the bus. When the Pentium processor completes all outstanding bus cycles, it will
release the bus by floating its external bus, and drive HLDA active. An example HOLD/HLDA
transaction is shown in Figure 6-16.
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Figure 6-16. HOLD/HLDA Cycles

The Pentium processor recognizes HOLD while RESET is asserted, when BOFF# is asserted,
and during BIST (built in self test). HOLD is not recognized when LOCK# is asserted. Once
HOLD is recognized, HLDA will be asserted two clocks after the later of the last BRDY# or
HOLD assertion. Because of this, it is possible that a cycle may begin after HOLD is asserted,
but before HLDA is driven. The maximum number of cycles that will be driven after HOLD is
asserted is one. BOFF# may be used if it is necessary to force the Pentium processor to float its
bus in the next clock. Figure 6-16 shows the latest HOLD may be asserted relative to ADS# to
guarantee that HLDA will be asserted before another cycle is begun.

The operation of HLDA is not affected by the assertion of BOFF#. If HOLD is asserted while
BOFF# is asserted, HLDA will be asserted two clocks later. If HOLD goes inactive while
BOFF# is asserted, HLDA is deasserted two clocks later.

Note that HOLD may be acknowledged between two bus cycles in a misaligned access.

All outputs are floated when HLDA is asserted except: APCHK#, BREQ, FERR#, HIT#,
HITM#, HLDA, IERR#, PCHK#, PRDY, BP3-2, PM1/BP1, PM0/BP0, SMIACT# and TDO.
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6.4.6. Interrupt Acknowledge
The Pentium processor generates interrupt acknowledge cycles in response to maskable
interrupt requests generated on the interrupt request input (INTR) pin (if interrupts are en-
abled). Interrupt acknowledge cycles have a unique cycle type generated on the cycle type
pins.

An example interrupt acknowledge transaction is shown in Figure 6-17. Interrupt acknowledge
cycles are generated in locked pairs. Data returned during the first cycle is ignored, however
the specified data setup and hold times must be met. The interrupt vector is returned during the
second cycle on the lower 8 bits of the data bus. The Pentium processor has 256 possible
interrupt vectors.

The state of address bit 2 (as decoded from the byte enables) distinguishes the first and second
interrupt acknowledge cycles. The byte address driven during the first interrupt acknowledge
cycle is 4: A[31:3] = 0, BE4# = 0, BE[7:5]# = 1, and BE[3:0]# = 1. The address driven during
the second interrupt acknowledge cycle is 0: A[31:3] = 0, BE0# = 0 and BE[7:1]# = 1h.

Interrupt acknowledge cycles are terminated when the external system returns BRDY#. Wait
states can be added by withholding BRDY#. The Pentium processor automatically generates at
least one idle clock between the first and second cycles, however the external system is
responsible for interrupt controller (8259A) recovery.
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Figure 6-17. Interrupt Acknowledge Cycles

6.4.7. Flush Operations
The FLUSH# input is implemented in the Pentium processor as an asynchronous interrupt,
similar to NMI. Therefore, unlike the Intel486 microprocessor, FLUSH# is recognized on
instruction boundaries only. FLUSH# is latched internally. Once setup, hold and pulse width
times have been met, FLUSH# may be deasserted, even if a bus cycle is in progress.

To execute a flush operation, the Pentium processor first writes back all modified lines to
external memory. The lines in the internal caches are invalidated as they are written back.
After the write-back and invalidation operations are complete, a special cycle, flush
acknowledge, is generated by the Pentium processor to inform the external system.

6.4.8. Special Bus Cycles
The Pentium processor provides six special bus cycles to indicate that certain instructions have
been executed, or certain conditions have occurred internally. The special bus cycles in
Table 6-13 are defined when the bus cycle definition pins are in the following state:
M/IO# = 0, D/C# = 0 and W/R# = 1. During most special cycles the data bus is undefined and
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the address lines A31-A3 are driven to “0.” The external hardware must acknowledge all
special bus cycles by returning BRDY#.

Table 6-13. Special Bus Cycles Encoding

BE7# BE6# BE5# BE4# BE3# BE2# BE1# BE0# Special Bus Cycle

1 1 1 1 1 1 1 0 Shutdown

1 1 1 1 1 1 0 1 Flush
(INVD,WBINVD instr)

1 1 1 1 1 0 1 1 Halt/Stop Grant1

1 1 1 1 0 1 1 1 Writeback
(WBINVD instruction)

1 1 1 0 1 1 1 1 Flush Acknowledge
(FLUSH# assertion)

1 1 0 1 1 1 1 1 Branch Trace Message

NOTE:
1. The definition of the Stop Grant bus cycle is the same as the HALT cycle definition, with the exception

that the address bus is driven with the value 0000 0010H during the Stop Grant bus cycle.

Shutdown can be generated due to the following reasons:

1. If any other exception occurs while the Pentium processor is attempting to invoke the
double-fault handler.

2. An internal parity error is detected.

Prior to going into shutdown, the Pentium processor will not writeback the M-state lines. Upon
entering shutdown, the state of the CPU is unpredictable and may or may not be recoverable.
RESET or INIT should be asserted to return the system to a known state.  Although some
system operations (i.e. FLUSH# and R/S#) are generally recognized during shutdown, these
operations may not complete successfully in some cases once shutdown is entered.  During
shutdown, the internal caches remain in the same state unless an inquire cycle is run or the
cache is flushed.

The Pentium processor will remain in shutdown until NMI, INIT, or RESET is asserted.
Furthermore, upon exit from shutdown with NMI (to the NMI handler), the SS, ESP and EIP
of the task that was executing when shutdown occurred can no longer be relied upon to be
valid.  Therefore, using NMI to exit shutdown should be used only for debugging purposes
and not to resume execution from where shutdown occurred.

If invoking NMI to exit shutdown, use a task gate rather than an interrupt or trap gate in slot 2
of the IDT.  One of the conditions that may lead to shutdown is an attempt to use an invalid
stack segment selector (SS).  In this case, if  the NMI successfully exits shutdown, it will
immediately re-enter shutdown because it has no valid stack on which to push the return
address.  It is more robust to vector NMI through a task gate rather than an interrupt gate in the
IDT, since the task descriptor allocates a new stack for the NMI handler context.
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The Flush Special Cycle is driven after the INVD (invalidate cache) or WBINVD (writeback
invalidate cache) instructions are executed. The Flush Special Cycle is driven to indicate to the
external system that the internal caches were invalidated and that external caches should also
be invalidated.

NOTE

INVD should be used with care. This instruction does not writeback
modified cache lines.

The Halt Special Cycle is driven when a Halt instruction is executed. Externally, halt differs
from shutdown in only two ways:

1. In the resulting byte enables that are asserted.

2. The Pentium processor will exit the Halt state if INTR is asserted and maskable interrupts
are enabled in addition to the assertion of NMI, INIT or RESET.

A special Stop Grant bus cycle will be driven after the processor recognizes the STPCLK#
interrupt. The definition of the Stop Grant bus cycle is the same as the HALT cycle definition,
with the exception that the address bus is driven with the value 0000 0010H during the Stop
Grant bus cycle.

The Writeback Special Cycle is driven after the WBINVD instruction is executed and it
indicates that modified lines in the Pentium processor data cache were written back to memory
or a second level cache. The Writeback Special Cycle also indicates that modified lines in
external caches should be written back. After the WBINVD instruction is executed, the
Writeback Special cycle is generated, followed by the Flush Special Cycle. Note that INTR is
not recognized while the WBINVD instruction is being executed.

When the FLUSH# pin is asserted to the Pentium processor, all modified lines in the data
cache are written back and all lines in the code and data caches are invalidated. The Flush
Acknowledge Special Cycle is driven after the writeback and invalidations are complete. The
Flush Acknowledge Special Cycle is driven only in response to the FLUSH# pin being
activated. Note that the Flush Acknowledge Special Cycle indicates that all modified lines
were written back and all cache lines were invalidated while the Flush special cycle only
indicates that all cache lines were invalidated.

The Branch Trace Message Special Cycle is part of the Pentium processor’s execution tracing
protocol. The Branch Trace Message Special Cycle is the only special cycle that does not drive
0’s on the address bus, however like the other special cycles, the data bus is undefined. When
the branch trace message is driven, bits 31-3 of the branch target linear address are driven on
A[31:3].

6.4.9. Bus Error Support
Pentium processor provides basic support for bus error handling through data and address
parity check. Even data parity will be generated by the processor for every enabled byte in
write cycles and will be checked for all valid bytes in read cycles. The PCHK# output signals
if a data parity error is encountered for reads.
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Even address parity will be generated for A31-A5 during write and read cycles, and checked
during inquire cycles. The APCHK# output signals if an address parity error is encountered
during inquire cycles.

External hardware is free to take whatever actions are appropriate after a parity error. For
example, external hardware may signal an interrupt if PCHK# or APCHK# is asserted. Please
refer to the Error Detection chapter for the details.

6.4.10. Pipelined Cycles
The NA# input indicates to the Pentium processor that it may drive another cycle before the
current one is completed. Cacheability (KEN#) and cache policy (WB/WT#) indicators for the
current cycle are sampled in the same clock NA# is sampled active (or the first BRDY# for
that cycle, whichever comes first). Note that the WB/WT# and KEN# inputs are sampled with
the first of BRDY# or NA# even if NA# does not cause a pipelined cycle to be driven because
there was no pending cycle internally or two cycles are already outstanding.

The NA# input is latched internally, so even if a cycle is not pending internally in the clock
that NA# is sampled active, but becomes pending before the current cycle is complete, the
pending cycle will be driven to the bus even if NA# was subsequently deasserted.

LOCK# and writeback cycles are not pipelined into other cycles and other cycles are not
pipelined into them (regardless of the state of NA#). Special cycles and I/O cycles may be
pipelined.

An example of burst pipelined back to back reads is shown in Figure 6-18. The assertion of
NA# causes a pending cycle to be driven 2 clocks later. Note KEN# timing.
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Figure 6-18. Two Pipelined Cache Linefills
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Write cycles can be pipelined into read cycles and read cycles can be pipelined into write
cycles, but one dead clock will be inserted between read and write cycles to allow bus turnover
(see the bus state diagram in the Bus State Definition section of this chapter). Pipelined back-
to-back read/write cycles are shown in Figure 6-19.
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T2 T2 T2P

b

rd wr
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 CPU

Figure 6-19. Pipelined Back-to-Back Read/Write Cycles
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6.4.10.1. KEN# AND WB/WT# SAMPLING FOR PIPELINED CYCLES

KEN# and WB/WT# are sampled with NA# or BRDY# for that cycle, whichever comes first.
Figure 6-20 and Figure 6-21 clarify this specification.

Figure 6-20 shows that even though two cycles have been driven, the NA# for the second
cycle still causes KEN# and WB/WT# to be sampled for the second cycle. A third ADS# will
not be driven until all the BRDY#s for cycle 1 have been returned to the Pentium processor.

PDB31

CYCLE 1

T1 T2 T2 T12 T2P T2P T2P T2P T2P T2 T12
CLK

ADS#

NA#

KEN#

WB/WT#

BRDY#

W/R#

CYCLE 1 CYCLE 2

Figure 6-20. KEN# and WB/WT# Sampling with NA#
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Figure 6-21 shows that two cycles are outstanding on the Pentium processor bus. The assertion
of NA# caused the sampling of KEN# and WB/WT# for the first cycle. The assertion of the
four BRDY#s for the first cycle DO NOT cause the KEN# and WB/WT# for the second cycle
to be sampled. In this example, KEN# and WB/WT# for the second cycle are sampled with the
first BRDY# for the second cycle.

PDB32

CYCLE 1 CYCLE 2

T1 T2 T2 T12 T2P T2P T2P T2P T2 T2 T2
CLK

ADS#

NA#

KEN#

WB/WT#

BRDY#

W/R#

CYCLE 1 CYCLE 2

Figure 6-21. KEN# and WB/WT# Sampling with BRDY#
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6.4.11. Dead Clock Timing Diagrams
The timing diagrams in Figure 6-22 and Figure 6-23 show bus cycles with and without a dead
clock.

In Figure 6-22, cycles 1 and 2 can be either read or write cycles and no dead clock would be
needed because only one cycle is outstanding when those cycles are driven. To prevent a dead
clock from being necessary after cycle 3 is driven, it must be of the “same type” as cycle 2.
That is if cycle 2 is a read cycle, cycle 3 must also be a read cycle in order to prevent a dead
clock. If cycle 2 is a write cycle, cycle 3 must also be a write cycle to prevent a dead clock.

PDB22

T1 T2

ADS#

NA#

BRDY#

1 2 3

1 2 3

T2 T iT2 T1 T2 T2 T12 T2 T i

wr rd rd

Figure 6-22. Bus Cycles Without Dead Clock

NOTE

Although the processor ignores BRDY# during this dead clock when
configured in uni-processor mode, BRDY# may be falsely recognized in an
inter-CPU pipelined cycle. As such, dual processing system designs must not
drive BRDY# low during this dead clock.



E BUS FUNCTIONAL DESCRIPTION

6-41

12/19/96 9:35 AM    Ch06new.doc

INTEL CONFIDENTIAL
(until publication date)

PDB23

ADS#

NA#

BRDY#

rd wr

rd wr

dead
clk

rd wr

dead
clk

T1 T2 T2 T12 TD T2 T12 T2P TD T12 T2P

W/R#

Figure 6-23.  Bus Cycles with TD Dead Clock

6.5. CACHE CONSISTENCY CYCLES (INQUIRE CYCLES)
The purpose of an inquire cycle is to check whether a particular address is cached in a Pentium
processor internal cache and optionally invalidate it. After an inquire cycle is complete, the
system has information on whether or not a particular address location is cached and what state
it is in.

An inquire cycle is typically performed by first asserting AHOLD to force the Pentium
processor to float its address bus, waiting two clocks, and then driving the inquire address and
INV and asserting EADS#. Inquire cycles may also be executed while the Pentium processor is
forced off the bus due to HLDA, or BOFF#. Because the entire cache line is affected by an in-
quire cycle, only A31-A5 need to be driven with the valid inquire address. Although the value
of A4-A3 is ignored, these inputs should be driven to a valid logic level during inquire cycles
for circuit reasons. The INV pin is driven along with the inquire address to indicate whether
the line should be invalidated (INV high) or marked as shared (INV low) in the event of an
inquire hit.

After the Pentium processor determines if the inquire cycle hit a line in either internal cache, it
drives the HIT# pin. HIT# is asserted (low) two clocks after EADS# is sampled asserted1 if the
inquire cycle hit a line in the code or data cache. HIT# is deasserted (high) two clocks after
EADS# is sampled asserted if the inquire cycle missed in both internal caches. The HIT#
output changes its value only as a result of an inquire cycle. It retains its value between inquire

                                                          
1Since the EADS# input is ignored by the processor in certain clocks, the two clocks reference is from the clock in

which EADS# is asserted and actually sampled by the processor at the end of this clock (i.e. rising edge of next
clock) as shown in Figure 6-25.
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cycles. In addition, the HITM# pin is asserted two clocks after EADS# if the inquire cycle hit a
modified line in the data cache. HITM# is asserted to indicate to the external system that the
Pentium processor contains the most current copy of the data and any device needing to read
that data should wait for the Pentium processor to write it back. The HITM# output remains
asserted until two clocks after the last BRDY# of the writeback cycle is asserted.

The external system must inhibit inquire cycles during BIST (initiated by INIT being sampled
high on the falling edge of RESET), and during the Boundary Scan Instruction RUNBIST.
When the model specific registers (test registers) are used to read or write lines directly to or
from the cache it is important that external snoops (inquire cycles) are inhibited to guarantee
predictable results when testing. This can be accomplished by inhibiting the snoops externally
or by putting the processor in SRAM mode (CR0.CD=CR0.NW=1).

The EADS# input is ignored during external snoop writeback cycles (HITM# asserted), or
during the clock after ADS# or EADS# is active. EADS# is also ignored when the processor is
in SRAM mode, or when the processor is driving the address bus.

Note that the Pentium processor may drive the address bus in the clock after AHOLD is
deasserted. It is the responsibility of the system designer to ensure that address bus contention
does not occur. This can be accomplished by not deasserting AHOLD to the Pentium processor
until all other bus masters have stopped driving the address bus.

Figure 6-24 shows an inquire cycle that misses both internal caches. Note that both the HIT#
and HITM# signals are deasserted two clocks after EADS# is sampled asserted.

Figure 6-25 shows an inquire cycle that invalidates a non-modified line. Note that INV is
asserted (high) in the clock that EADS# is returned. Note that two clocks after EADS# is
sampled asserted, HIT# is asserted and HITM# is deasserted.

Figure 6-24 and Figure 6-25 both show that the AP pin is sampled/driven along with the
address bus, and that the APCHK# pin is driven with the address parity status two clocks after
EADS# is sampled asserted.

An inquire cycle that hits a M-state line is shown in Figure 6-26. Both the HIT# and HITM#
outputs are asserted two clocks after EADS# is sampled asserted. ADS# for the writeback
cycle will occur no earlier than two clocks after the assertion of HITM#.
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Figure 6-24. Inquire Cycle that Misses the Pentium ® Processor Cache
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Figure 6-25. Inquire Cycle that Invalidates a Non-M-State Line

HITM# is asserted only if an inquire cycle (external snoop) hits a modified line in the Pentium
processor data cache. HITM# is not asserted for internal snoop writeback cycles or cache
replacement writeback cycles. HITM# informs the external system that the inquire cycle hit a
modified line in the data cache and that line will be written back. Any ADS# driven by the
Pentium processor while HITM# is asserted will be the ADS# of the writeback cycle. The
HITM# signal will stay active until the last BRDY# is returned for the corresponding inquire
cycle. Writeback cycles start at burst address 0.
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Note that ADS# is asserted despite the AHOLD signal being active. This ADS# initiates a
writeback cycle corresponding to the inquire hit. Such a cycle can be initiated while address
lines are floating to support multiple inquires within a single AHOLD session. This
functionality can be used during secondary cache replacement processing if its line is larger
than the Pentium processor cache line (32 bytes). Although the cycle specification is driven
properly by the processor, address pins are not driven because AHOLD forces the Pentium
processor off the address bus. If AHOLD is cleared before the Pentium processor drives out
the inquire writeback cycle, the Pentium processor will drive the correct address for inquire
writeback in the next clock. The ADS# to initiate a writeback cycle as a result of an inquire hit
is the only time ADS# will be asserted while AHOLD is also asserted.

Note that in the event of an address parity error during inquire cycles, the snoop cycle will not
be inhibited. If the inquire hits a modified line in this situation and an active AHOLD prevents
the Pentium processor from driving the address bus, the Pentium processor will potentially
writeback a line at an address other than the one intended. If the Pentium processor is not
driving the address bus during the writeback cycle, it is possible that memory will be
corrupted.

If BOFF# or HLDA were asserted to perform the inquire cycle, the writeback cycle would wait
until BOFF# or HLDA was deasserted.

State machines should not depend on a writeback cycle to follow an assertion of HITM#.
HITM# may be negated without a corresponding writeback cycle being run. This may occur as
a result of the internal caches being invalidated due to the INVD instruction or by testability
accesses. Note that inquire cycles occurring during testability accesses will generate
unpredictable results. In addition, a second writeback cycle will not be generated for an inquire
cycle which hits a line that is already being written back, see Figure 6-28. This can happen if
an inquire cycle hits a line in one of the Pentium processor writeback buffers.

6.5.1. Restrictions on Deassertion of AHOLD
To prevent the address and data buses from switching simultaneously, the following
restrictions are placed on the negation of AHOLD: (i) AHOLD must not be negated in the
same clock as the assertion of BRDY# during a write cycle; (ii) AHOLD must not be negated
in the dead clock between write cycles pipelined into read cycles; and (iii) AHOLD must not
be negated in the same clock as the assertion of ADS# while HITM# is asserted. Note that
there are two clocks between EADS# being sampled asserted and HITM# being asserted, and a
further minimum of two clocks between an assertion of HITM# and ADS#.

These restrictions on the deassertion of AHOLD are the only considerations the system
designer needs to make to prevent the simultaneous switching of the address and data buses.
All other considerations are handled internally.

Figure 6-26 can be used to illustrate restrictions (i) and (iii). AHOLD may be deasserted in
Clock 2, 3, or 4, but not in Clock 5, 6, 7, 8 or 9.

Figure 6-27 and Figure 6-28 depict restrictions (i) and (ii) respectively. Note that there are no
restrictions on the assertion of AHOLD.
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Figure 6-26. Inquire Cycle that Invalidates M-State Line

Figure 6-27 shows a writeback (due to a previous snoop that is not shown). ADS# for the
writeback is asserted even though AHOLD is asserted. Note that AHOLD can be deasserted in
Clock 2, 4, 7, or 9. AHOLD can not be deasserted in Clock 1, 3, 5, 6, or 8.
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Figure 6-27. AHOLD Restriction during Write Cycles

Figure 6-28 shows a write cycle being pipelined into a read cycle. Note that if AHOLD is
asserted in Clock 5, it can be deasserted in Clock 7 before the TD, or in Clock 10 after the TD,
but it can not be deasserted in Clock 8 (the TD clock). AHOLD can not be deasserted in Clock
9 because BRDY# for the write cycle is being returned.
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Figure 6-28. AHOLD Restriction during TD

6.5.2. Rate of Inquire Cycles
The Pentium processor can accept inquire cycles at a maximum rate of one every other clock.
However, if an inquire cycle hits an M-state line of the Pentium processor, subsequent inquire
cycles will be ignored until the line is written back and HITM# is deasserted. EADS# is also
ignored the clock after ADS# is asserted.

6.5.3. Internal Snooping
“Internal snoop” is the term used to describe the snooping of the internal code or data caches
that is not initiated by the assertion of EADS# by the external system. Internal snooping occurs
in the three cases described below. Note that neither HIT# nor HITM# are asserted as a result
of an internal snoop.

1. An internal snoop occurs if an access is made to the code cache, and that access is a miss.
In this case, if the accessed line is in the S or E state in the data cache, the line is
invalidated. If the accessed line is in the M state in the data cache, the line is written back
then invalidated.
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2. An internal snoop occurs if an access is made to the data cache, and that access is a miss
or a writethrough. In this case, if the accessed line is valid in the code cache, the line is
invalidated.

3. An internal snoop occurs if there is a write to the accessed and/or dirty bits in the page
table/directory entries. In this case, if the accessed line is valid in either the code or data
cache, the line is invalidated. If the accessed line is in the M state in the data cache, the
line is written back then invalidated.

6.5.4. Snooping Responsibility
In systems with external second level caches allowing concurrent activity of the memory bus
and Pentium processor bus, it is desirable to run invalidate cycles concurrently with other
Pentium processor bus activity. Writes on the memory bus can cause invalidations in the sec-
ondary cache at the same time that the Pentium processor fetches data from the secondary
cache. Such cases can occur at any time relative to each other, and therefore the order in which
the invalidation is requested, and data is returned to the Pentium processor becomes important.

The Pentium processor always snoops the instruction and data caches when it accepts an
inquire cycle. If a snoop comes in during a linefill, the Pentium processor also snoops the line
currently being filled. If more than one cacheable cycle is outstanding (through pipelining), the
addresses of both outstanding cycles are snooped.

For example, during linefills, the Pentium processor starts snooping the address(es) associated
with the line(s) being filled after KEN# has been sampled active for the line(s). Each line is
snooped until it is put in the cache. If a snoop hits a line being currently filled, the Pentium
processor will assert HIT# and the line will end up in the cache in the S or I state depending on
the value of the INV pin sampled during the inquire cycle. The Pentium processor will
however use the data returned for that line as a memory operand for the instruction that caused
the data cache miss/line fill or execute an instruction contained in a code cache miss/line fill.

Figure 6-29 and Figure 6-30 illustrate the snoop responsibility pickup. Figure 6-29 shows a
non-pipelined cycle, while Figure 6-30 illustrates a pipelined cycle. The figures show the
earliest EADS# assertion that will cause snooping of the line being cached relative to the first
BRDY# or NA#.
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Figure 6-29. Snoop Responsibility Pickup — Non-Pipelined Cycles
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Figure 6-30. Snoop Responsibility Pickup — Pipelined Cycle

The Pentium processor also snoops M state lines in the writeback buffers until the writeback of
the M state lines are complete. If a snoop hits an M state line in a writeback buffer, both HIT#
and HITM# are asserted. Figure 6-31 illustrates snooping (snoop responsibility drop) of an M
state line that is being written back because it has been replaced with a “new” line in the data
cache. It shows the latest EADS# assertion, relative to the last BRDY# of the writeback cycle
that will result in a snoop hit to the line being written back. HITM# stays asserted until the
writeback is complete. Note that an additional ADS# is not asserted during the writeback
cycle.

The HIT# signal is a super set of the HITM# signal; it is always asserted with HITM#.
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Figure 6-31. Latest Snooping of Writeback Buffer

6.6. SUMMARY OF DUAL PROCESSING BUS CYCLES
The following is a list of bus cycles or bus cycle sequences which would not occur in Pentium
processor uni-processor systems, but may be seen in Dual processor systems.

• Locked cycle sequences

• Cycle pipelining

• Cycle ordering due to BOFF#

• Cache line state

• Back-to-back cycles

• Address parity checking

• Flush cycles

• PCHK# assertion
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• Synchronous FLUSH# and RESET

• Floating point error handling

6.6.1. Locked Cycle Sequences
1. Locked read to address X

2. Locked write back to address X

3. Locked read to address X

4. Locked write to address X

May occur due to the inter-processor cache consistency mechanism.  Refer to Chapter 3.

Implications

Processor bus hardware needs to handle this locked sequence.  The only other time the system
will see a locked write back is when an external snoop hits a modified line while a locked
cycle is in progress (this will occur in a uni-processor or a dual-processor system).

6.6.2. Cycle Pipelining
Inter-processor (Primary/Dual processor) back-to-back write cycles will not be pipelined even
if NA# has been asserted.  The purpose of this rule is to prevent data bus contention during bus
arbitration from one processor to the other.  In dual processor mode, the Primary processor
may pipeline I/O cycles into I/O cycles from the Dual processor (and vice versa) for any I/O
instruction combination (i.e., except I/O writes into writes).

Implications

System hardware designers should be aware of these bus changes.

6.6.3. Cycle Ordering Due to BOFF#
Cycle ordering following an assertion of BOFF# may be different between uni-processor and
dual processor modes.  This occurs when there are pipelined cycles from both processors, a
BOFF# stalls both cycles, and an external snoop hits a modified line in the LRMs cache.

Implications

System hardware designers should be aware of these bus changes.
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6.6.4. Cache Line State
In Pentium processor family uni-processor systems, if a line is put into the E state by the
system hardware using the WB/WT# signal during the line fill, then all subsequent writes to
that line will be handled internally via the on-chip cache.  In dual-processor systems, under
certain circumstances, even if the system puts a line into the E state using WB/WT#, the dual-
processor protocol may force the line to be stored in the S state.  Private snooping in dual
processor systems can also cause a line to be placed into the S or I state.

Implications

There are no system implications.  The system may be required to handle writes to a line
which would not otherwise have been seen.

NOTE

In a dual processing system where NW=1 and CD=1 are set, (i.e., SRAM
mode), an inquire cycle will invalidate a cache line with INV on a HIT#.

6.6.5. Back-to-Back Cycles
Due to the dual-processor cache consistency protocol, the Primary and Dual processors may
follow a write to address X with a write back to a 32-byte area which contains X.  This will not
occur in uni-processor systems.   Also a read to address X may be followed by a write back to
a 32-byte area which contains X.

Implications

There are no system implications.

6.6.6. Address Parity Checking
Address parity is checked during every private snoop between the Primary and Dual
processors.  Therefore, APCHK# may be asserted due to an address parity error during this
private snoop.  If an error is detected, APCHK# will be asserted 2 clocks after ADS# for one
processor clock period.  The system can choose to acknowledge this parity error indication at
this time or do nothing.

Implications

There are no system implications.  The system designers get extra address parity checking with
dual processors due to the automatic private snooping.
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6.6.7. Synchronous FLUSH# and RESET
When the Dual processor is present, the FLUSH# and RESET signals must be recognized by
both processors at the same time.

Implications

FLUSH# and  RESET must be asserted on the same clock to both the Primary and Dual
processors.

6.6.8. PCHK# Assertion
In a dual-processor configuration, there is the possibility that the PCHK# signal can be
asserted either 2 OR 3 CLKs following incorrect parity being detected on the data bus
(depending on the bus-to-core ratio).

Implications

Chip sets must account for this difference from the Pentium processor in their logic or state
machines.

6.6.9. Flush Cycles
The Primary and Dual processors incorporate a mechanism to present a unified view of the
cache flush operation to the system when in dual processing mode.  The Dual processor
performs the cache flush operation first, then grants the bus to the Primary processor.  The
Primary processor flushes its internal caches, and then runs the cache flush special cycle.

Implications

The system hardware must not assert a subsequent FLUSH# to the processors until the flush
acknowledge special cycle has completed on the processor bus.  The assertion of FLUSH# to
the processors prior to this point would result in a corruption of the dual processing bus
arbitration state machines.

6.6.10. Floating Point Error Handling
The Pentium processor, when configured as a Dual processor, ignores the IGNNE# input.  The
FERR# output is also undefined in the Dual processor.

Implications

None.
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CHAPTER 7
ELECTRICAL SPECIFICATIONS

This section describes the electrical differences between the Pentium processor
(75/90/100/120/133/150/166/200) and the Pentium processor with MMX technology, as well
as their respective AC and DC specifications.

7.1. ELECTRICAL CHARACTERISTICS AND DIFFERENCES
BETWEEN THE PENTIUM® PROCESSOR WITH MMX™
TECHNOLOGY AND THE PENTIUM® PROCESSOR
(75/90/100/120/133/150/166/200)

When designing a Pentium processor with MMX technology system from a Pentium processor
(75/90/100/120/133/150/166/200) system, there are a number of electrical differences that
require attention. Designing a single motherboard that supports various members of the
Pentium processor family including the Pentium processor with MMX technology, Pentium
processor (75/90/100/120/133/150/166/200), Pentium OverDrive processor, or future Pentium
OverDrive processor with MMX technology can be easily accomplished. Refer to the
Pentium® Processor Flexible Motherboard Design Guidelines Application Note (Order #
243187) for more information and specific implementation examples.

The following sections highlight key electrical issues pertaining to the Pentium processor
power supplies, connection specifications, and buffer models.

7.1.1. Power Supplies
The main electrical difference between the Pentium processor with MMX technology  and the
Pentium processor (75/90/100/120/133/150/166/200) is the operating voltage. The Pentium
processor with MMX technology requires two separate voltage inputs, VCC2 and VCC3. The
VCC2 pins supply power to the Pentium processor with MMX technology core, while the
VCC3 pins supply power to the processor I/O pins.

The Pentium processor (75/90/100/120/133/150/166/200), on the other hand, requires a single
voltage supply for all VCC pins. This single supply powers both the core and I/O pins of the
Pentium processor (75/90/100/120/133/150/166/200).

By connecting all of the VCC2 pins together and all the VCC3 pins together on separate power
islands, Pentium processor (75/90/100/120/133/150/166/200) designs can easily be converted
to support the Pentium processor with MMX technology. In order to maintain compatibility
with Pentium processor (75/90/100/120/133/150/166/200)-based platforms, the Pentium
processor with MMX technology supports the standard 3.3V specification on its VCC3 pins.
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7.1.1.1. POWER SUPPLY SEQUENCING

There is no specific power sequence required for powering up or powering down the separate
VCC2 and VCC3 supplies of the Pentium processor with MMX technology. It is recommended
that the VCC2 and VCC3 supplies be either both ON or both OFF within 1 second of each
other.

7.1.2. Connection Specifications
Connection specifications for the power and ground inputs, 3.3V inputs and outputs, and the
NC/INC and unused inputs are discussed in the following sections.

7.1.2.1. POWER AND GROUND CONNECTIONS

For clean on-chip power distribution, the Pentium processor has 53 VCC (power) and 53 VSS
(ground) inputs.

Power and ground connections must be made to all VCC and VSS pins of the Pentium
processor.  On the circuit board, all VCC pins must be connected to a VCC plane.  All VSS pins
must be connected to a VSS plane.

It is imperative that the system decoupling be sufficient to maintain ALL VCC pins of the
processor within their specified operating range regardless of whether a unified-plane or split-
plane processor is installed.

The unified-plane Pentium processor packages have a single internal VCC plane. This plane
may be used as the means of conduction between the VCC2 and VCC3 motherboard power
planes when a unified-plane processor is installed in the system. Should such an
implementation be used, it must be ensured that the maximum current flowing through the
processor package does not exceed 8 Amps, including the power required by the processor.
(The Pentium processor (75/90/100/120/133/150/166/200) is a unified plane processor).

Given the above specifications, many different implementations of power distribution are
possible for Pentium processor based motherboard designs. These can be broadly categorized
into two groups:

1. Unified-plane processors receive power externally to ALL VCC2 and VCC3 pins, while
split-plane processors receive power from independent sources for VCC2 and VCC3.

2. Unified-plane processors receive power externally to either the VCC2 OR VCC3 pins,
while split-plane processors receive power from independent sources for VCC2 and VCC3.

The second implementation discussed above implies that when a unified-plane processor is
installed, either the VCC2 or VCC3 voltage regulator will shut down if the voltage from the
other regulator is higher than its own output setpoint.  This will leave one voltage regulator
powering either the VCC2 or VCC3 pins directly. The remaining functioning voltage regulator
must be capable of providing the total required current independently. In the case when a split-
plane processor is installed, both voltage regulators must continue to function at the proper
voltage levels.
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Note that the future Pentium OverDrive processor with MMX technology, although specified
for a single voltage, are not unified-plane processors and must have voltage supplied externally
to both VCC2 and VCC3 pins.  For the future Pentium OverDrive processor with MMX
technology, the exact voltages at the VCC2 and VCC3 pins are not required to be the same level
provided both are within the Socket 7 specifications.

7.1.2.1.1. VCC Measurement Specification

The values of VCC should be measured at the bottom side of the CPU pins using an
oscilloscope with a 3 dB bandwidth of at least 20 MHz (100 MS/s digital sampling rate).
There should be a short isolation ground lead attached to a CPU pin on the bottom side of the
board.

The measurement should be taken at the following VCC/VSS pairs:  AN13/AM10,
AN21/AM18, AN29/AM26, AC37/Z36, U37/R36, L37/H36, A25/B28, A17/B20, A7/B10,
G1/K2, S1/V2, AC1/Z2.  Note that on the Pentium processor with MMX technology , one-half
of these pins are VCC2 while the others are VCC3; the operating ranges for the VCC2 and VCC3
pins are specified at different voltages.

The display should show continuous sampling of the VCC line, at 20 mV/div, and 500 nS/div
with the trigger point set to the center point of the range. Slowly move the trigger to the high
and low ends of the specification, and verify that excursions beyond these limits are not
observed.  There are no allowances for crossing the high and low limits of the voltage
specification.  For more information on measurement techniques, see the Implementation
Guidelines for 3.3V Pentium® Processors with VR/VRE Specifications (order # 242687) and
Voltage Guidelines for Pentium® Processors with MMX™ Technology (order # 243186)
application notes.

7.1.2.1.2. Decoupling Recommendations

Liberal decoupling capacitance should be placed near the Pentium processor. The Pentium
processor driving its large address and data buses at high frequencies can cause transient
power surges, particularly when driving large capacitive loads.

Low inductance capacitors and interconnects are recommended for best high frequency
electrical performance. Inductance can be reduced by shortening circuit board traces between
the Pentium processor and decoupling capacitors as much as possible. These capacitors should
be evenly distributed around each component on the power plane. Capacitor values should be
chosen to ensure they eliminate both low and high frequency noise components.

For the Pentium processor, the power consumption can transition from a low level of power to
a much higher level (or high to low power) very rapidly. A typical example would be entering
or exiting the Stop Grant State. Another example would be executing a HALT instruction,
causing the Pentium processor to enter the AutoHALT Power Down State, or transitioning
from HALT to the Normal State. All of these examples may cause abrupt changes in the power
being consumed by the Pentium processor. Note that the AutoHALT Power Down feature is
always enabled even when other power management features are not implemented.
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Bulk storage capacitors with a low ESR (Effective Series Resistance) in the 10Ω to 100Ω
range are required to maintain a regulated supply voltage during the interval between the time
the current load changes and the point that the regulated power supply output can react to the
change in load. In order to reduce the ESR, it may be necessary to place several bulk storage
capacitors in parallel.

These capacitors should be placed near the Pentium processor on the power plane(s) to ensure
that the supply voltage stays within specified limits during changes in the supply current
during operation.

Detailed decoupling recommendations are provided in the Flexible Motherboard Design
Guidelines Application Note (Order #243187).

7.1.2.2. 3.3V INPUTS AND OUTPUTS

The inputs and outputs of the Pentium processor comply with the 3.3V JEDEC standard levels.
Both inputs and outputs are also TTL-compatible, although the inputs cannot tolerate voltage
swings above the VIN3 (max.) specification.

System support components which use TTL-compatible inputs will interface to the Pentium
processor without extra logic. This is because the Pentium processor drives according to the
5V TTL specification (but not beyond 3.3V).

For Pentium processor inputs, the voltage must not exceed the 3.3V VIN3 (max.) specification.
System support components can consist of 3.3V devices or open-collector devices. In an open-
collector configuration, the external resistor should be biased to VCC3.

All pins, other than the CLK and PICCLK of the Pentium processor
(75/90/100/120/133/150/166/200), are 3.3V-only. If an 8259A interrupt controller is used, for
example, the system must provide level converters between the 8259A and the Pentium
processor.

The CLK and PICCLK inputs of the Pentium processor (75/90/100/120/133/150/166/200) are
5V tolerant. This allows a 5V clock driver to be used for the Pentium processor
(75/90/100/120/133/150/166/200). These inputs, however, are NOT 5V tolerant on the
Pentium processor with MMX technology. The Pentium processor with MMX technology
CLK and PICCLK inputs are 3.3V tolerant only. A 3.3V clock driver should be used in
systems designed to support both the Pentium processor with MMX technology and Pentium
processor (75/90/100/120/133/150/166/200).

7.1.2.3. NC/INC AND UNUSED INPUTS

All NC and INC pins must remain unconnected.

For reliable operation, always connect unused inputs to an appropriate signal level. Unused
active low inputs of the Pentium processor with MMX technology should be connected to
VCC3, and unused active low inputs of the Pentium processor
(75/90/100/120/133/150/166/200) should be connected to VCC. Unused active high inputs
should be connected to VSS (ground).
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7.1.3. Buffer Models
The structure of the buffer models for the Pentium processor with MMX technology and the
Pentium processor (75/90/100/120/133/150/166/200) are identical. Some of the values of the
components have changed to reflect the minor manufacturing process and package differences
between the processors. The system should see insignificant differences between the AC
behavior of the Pentium processor with MMX technology and the Pentium processor
(75/90/100/120/133/150/166/200).

Simulation of AC timings using the Pentium processor buffer models is recommended to
ensure robust system designs. Pay specific attention to the signal quality restrictions imposed
by 3.3V buffers.

7.2. ABSOLUTE MAXIMUM RATINGS
Table 7-1 provides stress ratings only. Functional operation at the Absolute Maximum Ratings
is not implied or guaranteed. Functional operating conditions are given in the AC and DC
specification tables.

Extended exposure to the maximum ratings may affect device reliability. Furthermore,
although the Pentium processor contains protective circuitry to resist damage from electrostatic
discharge, always take precautions to avoid high static voltages or electric fields.

Table 7-1.  Absolute Maximum Ratings

Symbol Parameter Min Max Unit Notes

Storage Temperature -65 150 oC

Case Temperature Under Bias -65 110 oC

VCC3 VCC3 Supply Voltage with respect to VSS -0.5 4.6 V 1

VCC2 VCC2 Supply Voltage with respect to VSS -0.5 3.7 V 2

VIN3 3V Only Buffer DC Input Voltage -0.5 VCC3 +0.5
not to

exceed
VCC3 max

V 3

VINSB3 5V Safe Buffer DC Input Voltage -0.5 6.5 V 4

NOTES:
1. Applies to all the VCC inputs of the Pentium® processor (75/90/100/120/133/150/0166/200).

2. The VCC2 pins are defined only for the Pentium processor with MMX™ technology.

3. Applies to all Pentium processor inputs except CLK and PICCLK of the Pentium processor
(75/90/100/120/133/150/166/200).

4. Applies only to CLK and PICCLK of the Pentium processor (75/90/100/120/133/150/166/200). See
Table 7-4.
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WARNING

Stressing the device beyond the Absolute Maximum Ratings may cause
permanent damage. These are stress ratings only. Operation beyond the DC
Specifications is not recommended or guaranteed and extended exposure
beyond the DC Specifications may effect device reliability.

7.3. DC SPECIFICATIONS
Table 7-2 through Table 7-7 list the DC Specifications of the Pentium processor.

Table 7-2.  VCC and TCASE Specifications

Symbol Parameter Min Nom Max Unit Notes

TCASE Case Temperature 0 70 OC

VCC2 VCC2 Voltage 2.7 2.8 2.9 V Range = 2.8 ± 3.57%, (1), (2)

VCC3 VCC3 Voltage 3.135 3.3 3.6 V Applies to all VCC inputs of the
Pentium® processor
(75/90/100/120/133/150/166/200),
Range = 3.3 -5%, +9.09%, (2)

NOTES:
1. The VCC2 specification applies only to the Pentium processor with MMX™ technology.

2. See the VCC measurement specification section earlier in this chapter.

Table 7-3.  3.3V DC Specifications

Symbol Parameter Min Max Unit Notes

VIL3 Input Low Voltage -0.3 0.8 V TTL Level

VIH3 Input High Voltage 2.0 VCC3 +0.3 V TTL Level (1)

VOL3 Output Low Voltage 0.4 V TTL Level (2, 4)

VOH3 Output High Voltage 2.4 V TTL Level (3)

NOTES:
1. Parameter measured at nominal VCC.

2. Parameter measured at -4 mA.

3. Parameter measured at 3 mA.

4. In dual processing systems, up to a 10mA load from the second processor may be observed on the
PCHK# signal. Based on silicon characterization data, VOL of PCHK# will remain less than 400 mV
even with a 10 mA load. PCHK# VOL will increase to approximately 500 mV with a 14 mA load (worst
case for a dual processor system with a 4 mA system load).
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Table 7-4.  3.3V (5V Safe) DC Specifications

Symbol Parameter Min Max Unit Notes

VIL5 Input Low Voltage -0.3 0.8 V TTL Level (1)

VIH5 Input High Voltage 2.0 5.55 V TTL Level (1)

NOTE:
1. Applies only to CLK and PICCLK of the Pentium® processor (75/90/100/120/133/150/166/200).

Table 7-5.  ICC Specifications

Pentium ® Processor with MMX™ Technology
(Measured at VCC2=2.9V and VCC3=3.6V)

Symbol Parameter Min Max Unit Notes

ICC2 Power Supply Current 5700
4750

mA
mA

200 MHz (1)
166 MHz (1)

ICC3 Power Supply Current 650
540

mA
mA

200 MHz (1)
166 MHz (1)

Pentium Processor (75/90/100/120/133/150/166/200)
(Measured at VCC=3.6V)

Symbol Parameter Min Max Unit Notes

ICC Power Supply Current 4600
4250
3850
3400
3730
3250
2950
2650

mA
mA
mA
mA
mA
mA
mA
mA

200 MHz (1)
166 MHz (1)
150 MHz (1)
133 MHz (1)
120 MHz (1)
100 MHz (1)
90 MHz (1)
75 MHz (1)

NOTE:
1. This value should be used for power supply design. It was determined using a worst case instruction

mix and maximum VCC. Power supply transient response and decoupling capacitors must be sufficient
to handle the instantaneous current changes occurring during transitions from Stop Clock to full Active
modes.
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Table 7-6.  Power Dissipation Requirements for Thermal Design

Pentium ® Processor with MMX™ Technology
(Measured at VCC2=2.8V and VCC3=3.3V)

Parameter Typical (1) Max (2) Unit Notes

Active Power 7.3 (6)
6.1 (6)

15.7 (5)
13.1 (5)

Watts
Watts

200 MHz
166 MHz

Stop Grant / Auto Halt
Powerdown Power

N/A 2.41
2.05

Watts 200 MHz (3)
166 MHz (3)

Stop Clock Power 0.03 < 0.3 Watts All frequencies (4)

Pentium Processor (75/90/100/120/133/150/166/200)
(Measured at VCC=3.3V)

Parameter Typical (1) Max (2) Unit Notes

Active Power 6.5 (6)
5.4 (6)
4.9 (6)
4.3 (6)
5.06 (6)
3.9 (6)
3.5 (6)
3.0 (6)

15.5 (5)
14.5 (5)
11.6 (5)
11.2 (5)
12.81 (5)
10.1 (5)
9.0 (5)
8.0 (5)

Watts
Watts
Watts
Watts
Watts
Watts
Watts
Watts

200 Mhz, VCC = 3.5V
166 MHz, VCC = 3.5V
150 MHz
133 MHz
120 MHz
100 MHz
90 MHz
75 MHz

Stop Grant / Auto Halt
Powerdown Power

2.5
2.1
1.9
1.7

1.76
1.55
1.40
1.20

Watts
Watts
Watts
Watts
Watts
Watts
Watts
Watts

200 MHz (3)
166 MHz (3)
150 MHz (3)
133 MHz (3)
120 MHz (3)
100 MHz (3)
90 MHz (3)
75 MHz (3)

Stop Clock Power 0.03 <0.3 Watts All frequencies (4)

NOTES:
1. This is the typical power dissipation in a system. This value is expected to be the average value that

will be measured in a system using a typical device at nominal VCC running typical applications. This
value is highly dependent upon the specific system configuration. Typical power specifications are not
tested.

2. Systems must be designed to thermally dissipate the maximum active power dissipation.  It is
determined using worst case instruction mix with nominal VCC, and also takes into account the thermal
time constants of the package.

3. Stop Grant/Auto Halt Power Down Power Dissipation is determined by asserting the STPCLK# pin or
executing the HALT instruction.

4. Stop Clock Power Dissipation is determined by asserting the STPCLK# pin and then removing the
external CLK input.

5. Active Power (max) is the maximum power dissipation under normal operating conditions at nominal
VCC, worst-case temperature, while executing the worst case power instruction mix.

6. Active Power (typ) is the average power measured in a system using a typical device running typical
applications under normal operating conditions at nominal Vcc and room temperature. Active Power,
max is identical to Thermal Design Power (TDP), max.
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Table 7-7.  Input and Output Characteristics

Symbol Parameter Min Max Unit Notes

CIN Input Capacitance 15 pF (4)

CO Output Capacitance 20 pF (4)

CI/O I/O Capacitance 25 pF (4)

CCLK CLK Input Capacitance 15 pF (4)

CTIN Test Input Capacitance 15 pF (4)

CTOUT Test Output Capacitance 20 pF (4)

CTCK Test Clock Capacitance 15 pF (4)

ILI Input Leakage Current ±15 uA 0 < VIN < VIL,
VIH > VIN > VCC (1)

ILO Output Leakage Current ±15 uA 0 < VIN < VIL,
VIH > VIN > VCC (1)

IIH Input Leakage Current 200 uA VIN = 2.4V (3)

IIL Input Leakage Current -400 uA VIN = 0.4V (2,5)

NOTES:
1. This parameter is for inputs/outputs without an internal pull up or pull down.

2. This parameter is for inputs with an internal pull up.

3. This parameter is for inputs with an internal pull down.

4. Guaranteed by design.

5. For the Pentium processor with MMX™ technology, the IIL specification applies to the HITM# pin when
it is driven as an input (e.g., during JTAG mode).

7.4. AC SPECIFICATIONS
The AC specifications consist of output delays, input setup requirements and input hold
requirements. All AC specifications (with the exception of those for the TAP signals and APIC
signals) are relative to the rising edge of the CLK input.

All timings are referenced to 1.5 volts for both “0” and “1” logic levels unless otherwise
specified. Within the sampling window, a synchronous input must be stable for correct
Pentium processor operation.

Each valid delay is specified for a 0 pF load. The system designer should use I/O buffer
modeling to account for signal flight time delays.

Do not select a bus fraction and clock speed which will cause the processor to exceed its
internal maximum frequency specification. Each Pentium processor is specified to operate
within a single bus-to-core ratio and a specific minimum to maximum bus frequency range
(corresponding to a minimum to maximum core frequency range). Operation in other bus-to-
core ratios or outside the specified operating frequency range is not supported. For example,
the 150 MHz Pentium processor does not operate beyond the 60 MHz bus frequency and only
supports the 2/5 bus-to-core ratio; it does not support the 1/3, 1/2, or 2/3 bus-to-core ratios.
Table 4-3 clarifies and summarizes these specifications.
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7.4.1. AC Timing Tables for a 66-MHz Bus

Table 7-8.  Pentium ® Processor AC Specifications for 66-MHz Bus Operation

See Table 7-2 for VCC and TCASE Specifications, CL = 0 pF

Symbol Parameter Min Max Unit Figure Notes

Frequency 33.33 66.6 MHz 7-1

t1a CLK Period 15.0 30.0 nS 7-1

t1b CLK Period Stability ±250 pS Adjacent
Clocks (1,25)

t2 CLK High Time 4.0 nS 7-1 2V(1)

t3 CLK Low Time 4.0 nS 7-1 0.8V(1)

t4 CLK Fall Time 0.15 1.5 nS 7-1 (2.0V–0.8V)(1)

t5 CLK Rise Time 0.15 1.5 nS 7-1 (0.8V–2.0V)(1)

t6a PWT, PCD, CACHE# Valid Delay 1.0 7.0 nS 7-2

t6b AP Valid Delay 1.0 8.5 nS 7-2

t6c BE0-7#, LOCK# Valid Delay 0.9 7.0 nS 7-2 4

t6d ADS# Valid Delay 0.8 6.0 nS 7-2

t6e ADSC#, D/C#, W/R#, SCYC, Valid
Delay

0.8 7.0 nS 7-2

t6f M/IO# Valid Delay 0.8 5.9 nS 7-2

t6g A3–A16 Valid Delay 0.5 6.3 nS 7-2

t6h A17–A31 Valid Delay 0.6 6.3 nS 7-2

t7 ADS#, ADSC#, AP, A3-A31, PWT,
PCD, BE0-7#, M/IO#, D/C#, W/R#,
CACHE#, SCYC, LOCK# Float
Delay

10.0 nS 7-3 1

t8a APCHK#, IERR#, FERR# Valid
Delay

1.0 8.3 nS 7-2 4

t8b PCHK# Valid Delay 1.0 7.0 nS 7-2 4

t9a BREQ Valid Delay 1.0 8.0 nS 7-2 4

t9b SMIACT# Valid Delay 1.0 7.3 nS 7-2 4

t9c HLDA Valid Delay 1.0 6.8 nS 7-2

t10a HIT# Valid Delay 1.0 6.8 nS 7-2

t10b HITM# Valid Delay 0.7 6.0 nS 7-2

t11a PM0-1, BP0-3 Valid Delay 1.0 10.0 nS 7-2
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Table 7-8.  Pentium ® Processor AC Specifications for 66-MHz Bus Operation (Contd.)

See Table 7-2 for VCC and TCASE Specifications, CL = 0 pF

Symbol Parameter Min Max Unit Figure Notes

t11b PRDY Valid Delay 1.0 8.0 nS 7-2

t12 D0-D63, DP0-7 Write Data Valid
Delay

1.3 7.5 nS 7-2

t13 D0-D63, DP0-3 Write Data Float
Delay

10.0 nS 7-3 1

t14 A5-A31 Setup Time 6.0 nS 7-4 26

t15 A5-A31 Hold Time 1.0 nS 7-4

t16a INV, AP Setup Time 5.0 nS 7-4

t16b EADS# Setup Time 5.0 nS 7-4

t17 EADS#, INV, AP Hold Time 1.0 nS 7-4

t18a KEN# Setup Time 5.0 nS 7-4

t18b NA#, WB/WT# Setup Time 4.5 nS 7-4

t19 KEN#, WB/WT#, NA# Hold Time 1.0 nS 7-4

t20 BRDY#, BRDYC# Setup Time 5.0 nS 7-4

t21 BRDY#, BRDYC# Hold Time 1.0 nS 7-4

t22 AHOLD, BOFF# Setup Time 5.5 nS 7-4

t23 AHOLD, BOFF# Hold Time 1.0 nS 7-4

t24a BUSCHK#, EWBE#, HOLD Setup
Time

5.0 nS 7-4

t24b PEN# Setup Time 4.8 nS 7-4

t25a BUSCHK#, EWBE#, PEN# Hold
Time

1.0 nS 7-4

t25b HOLD Hold Time 1.5 nS 7-4

t26 A20M#, INTR, STPCLK# Setup
Time

5.0 nS 7-4 12, 16

t27 A20M#, INTR, STPCLK# Hold Time 1.0 nS 7-4 13

t28 INIT, FLUSH#, NMI, SMI#, IGNNE#
Setup Time

5.0 nS 7-4 12, 16, 17

t29 INIT, FLUSH#, NMI, SMI#, IGNNE#
Hold Time

1.0 nS 7-4 13

t30 INIT, FLUSH#, NMI, SMI#, IGNNE#
Pulse Width, Async

2.0 CLKs 15, 17



ELECTRICAL SPECIFICATIONS E

7-12

12/18/96 5:10 PM    Ch07new.doc

INTEL CONFIDENTIAL
(until publication date)

Table 7-8.  Pentium ® Processor AC Specifications for 66-MHz Bus Operation (Contd.)

See Table 7-2 for VCC and TCASE Specifications, CL = 0 pF

Symbol Parameter Min Max Unit Figure Notes

t31 R/S# Setup Time 5.0 nS 7-4 12, 16, 17

t32 R/S# Hold Time 1.0 nS 7-4 13

t33 R/S# Pulse Width, Async. 2.0 CLKs 15, 17

t34 D0-D63, DP0-7 Read Data Setup
Time

2.8 nS 7-4

t35 D0-D63, DP0-7 Read Data Hold
Time

1.5 nS 7-4

t36 RESET Setup Time 5.0 nS 7-5 11, 12, 16

t37 RESET Hold Time 1.0 nS 7-5 11, 13

t38 RESET Pulse Width, VCC & CLK
Stable

15.0 CLKs 7-5 11, 17

t39 RESET Active After VCC & CLK
Stable

1.0 mS 7-5 Power up

t40 Reset Configuration Signals (INIT,
FLUSH#, FRCMC#) Setup Time

5.0 nS 7-5 12, 16, 17

t41 Reset Configuration Signals (INIT,
FLUSH#, FRCMC#) Hold Time

1.0 nS 7-5 13

t42a Reset Configuration Signals (INIT,
FLUSH#, FRCMC#) Setup Time,
Async.

2.0 CLKs To RESET
falling edge(16)

t42b  Reset Configuration Signals (INIT,
FLUSH#, FRCMC#, BRDYC#,
BUSCHK#) Hold Time, Async.

2.0 CLKs To RESET
falling edge(27)

t42c Reset Configuration Signals
(BRDYC#, BUSCHK#) Setup Time,
Async.

3.0 CLKs To RESET
falling edge(27)

t42d Reset Configuration Signal
BRDYC# Hold Time, RESET driven
synchronously

1.0 nS 7-5 To RESET
falling
edge(1,27)

t43a BF0, BF1, CPUTYP Setup Time 1.0 mS 7-5 To RESET
falling edge(22)

t43b BF0, BF1, CPUTYP Hold Time 2.0 CLKs To RESET
falling edge(22)

t43c APICEN, BE4# Setup Time 2.0 CLKs To RESET
falling edge
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Table 7-8.  Pentium ® Processor AC Specifications for 66-MHz Bus Operation (Contd.)

See Table 7-2 for VCC and TCASE Specifications, CL = 0 pF

Symbol Parameter Min Max Unit Figure Notes

t43d APICEN, BE4# Hold Time 2.0 CLKs To RESET
falling edge

t44 TCK Frequency 16.0 MHz 7-1

t45 TCK Period 62.5 nS 7-1

t46 TCK High Time 25.0 nS 7-1 2V(1)

t47 TCK Low Time 25.0 nS 7-1 0.8V(1)

t48 TCK Fall Time 5.0 nS 7-1 (2.0V–0.8V)
(1,8,9)

t49 TCK Rise Time 5.0 nS 7-1 (0.8V–2.0V)
(1,8,9)

t50 TRST# Pulse Width 40.0 nS 7-7 Asynchronous
(1)

t51 TDI, TMS Setup Time 5.0 nS 7-6 7

t52 TDI, TMS Hold Time 13.0 nS 7-6 7

t53 TDO Valid Delay 2.5 20.0 nS 7-6 8

t54 TDO Float Delay 25.0 nS 7-6 1, 8

t55 All Non-Test Outputs Valid Delay 2.5 20.0 nS 7-6 3, 8, 10

t56 All Non-Test Outputs Float Delay 25.0 nS 7-6 1, 3, 8, 10

t57 All Non-Test Inputs Setup Time 5.0 nS 7-6 3, 7, 10

t58 All Non-Test Inputs Hold Time 13.0 nS 7-6 3, 7, 10

APIC AC Specifications

t60a PICCLK Frequency 2.0 16.66 MHz 7-1

t60b PICCLK Period 60.0 500.0 nS 7-1

t60c PICCLK High Time 15.0 nS 7-1

t60d PICCLK Low Time 15.0 nS 7-1

t60e PICCLK Rise Time 0.15 2.5 nS 7-1

t60f PICCLK Fall Time 0.15 2.5 nS 7-1

t60g PICD0-1 Setup Time 3.0 nS 7-4 To PICCLK

t60h PICD0-1 Hold Time 2.5 nS 7-4 To PICCLK
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Table 7-8.  Pentium ® Processor AC Specifications for 66-MHz Bus Operation (Contd.)

See Table 7-2 for VCC and TCASE Specifications, CL = 0 pF

Symbol Parameter Min Max Unit Figure Notes

t60i PICD0-1 Valid Delay (LtoH) 4.0 38.0 nS 7-2 From PICCLK
(28)

t60j PICD0-1 Valid Delay (HtoL) 4.0 22.0 nS 7-2 From PICCLK
(28)

t61 PICCLK Setup Time 5.0 nS To CLK (30)

t62 PICCLK Hold Time 2.0 nS To CLK (30)

t63 PICCLK Ratio (CLK/PICCLK) 4 31

NOTE: See notes following Table 7-13.

Table 7-9.  Pentium ® Processor Dual Processor Mode AC Specifications for 66-MHz Bus
Operation

See Table 7-2 for VCC and TCASE Specifications, CL = 0 pF

Symbol Parameter Min Max Unit Figure Notes

t80a PBREQ#, PBGNT#, PHIT# Flight
Time

0 2.0 nS 29

t80b PHITM# Flight Time 0 1.8 nS 29

t83a A5-A31 Setup Time 3.7 nS 7-4 18, 21, 26

t83b D/C#, W/R#, CACHE#, LOCK#,
SCYC Setup Time

4.0 7-4 18, 21

t83c ADS#, M/IO# Setup Time 5.8 nS 7-4 18, 21

t83d HIT#, HITM# Setup Time 6.0 nS 7-4 18, 21

t83e HLDA Setup Time 6.0 nS 7-4 18, 21

t84a CACHE#, HIT# Hold Time 1.0 nS 7-4 18, 21

t84b ADS#, D/C#, W/R#, M/IO#, A5-A31,
HLDA, SCYC Hold Time

0.8 nS 7-4 18, 21

t84c LOCK# Hold Time 0.9 nS 7-4 18, 21

t84d HITM# Hold Time 0.7 nS 7-4 18, 21

t85 DPEN# Valid Time 10.0 CLKs 18, 19, 23

t86 DPEN# Hold Time 2.0 CLKs 18, 20, 23

t87 APIC ID (BE0#-BE3#) Setup Time 2.0 CLKs 7-5 To RESET
falling edge(23)

t88 APIC ID (BE0#-BE3#) Hold Time 2.0 CLKs 7-5 From RESET
falling edge(23)

t89 D/P# Valid Delay 1.0 8.0 nS 7-2 Primary
processor only

NOTE: See notes following Table 7-13.
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7.4.2. AC Timing Tables for a 60-MHz Bus

Table 7-10.  Pentium ® Processor AC Specifications for 60-MHz Bus Operation

See Table 7-2 for VCC and TCASE Specifications, CL = 0 pF

Symbol Parameter Min Max Unit Figure Notes

Frequency 30.0 60.0 MHz 7-1

t1a CLK Period 16.67 33.33 nS 7-1

t1b CLK Period Stability ±250 pS Adjacent
Clocks (1,25)

t2 CLK High Time 4.0 nS 7-1 2V (1)

t3 CLK Low Time 4.0 nS 7-1 0.8V (1)

t4 CLK Fall Time 0.15 1.5 nS 7-1 (2.0V–0.8V)
(1,5)

t5 CLK Rise Time 0.15 1.5 nS 7-1 (0.8V–2.0V)
(1,5)

t6a PWT, PCD, CACHE# Valid Delay 1.0 7.0 nS 7-2

t6b AP Valid Delay 1.0 8.5 nS 7-2

t6c BE0-7#, LOCK# Valid Delay 0.9 7.0 nS 7-2 4

t6d ADS#, ADSC#, D/C#, M/IO#, W/R#,
SCYC, Valid Delay

0.8 7.0 nS 7-2

t6e A3–A16 Valid Delay 0.5 6.3 nS 7-2

t6f A17–A31 Valid Delay 0.6 6.3 nS 7-2

t7 ADS#, ADSC#, AP, A3-A31, PWT,
PCD, BE0-7#, M/IO#, D/C#, W/R#,
CACHE#, SCYC, LOCK# Float
Delay

10.0 nS 7-3 1

t8a APCHK#, IERR#, FERR# Valid
Delay

1.0 8.3 nS 7-2 4

t8b PCHK# Valid Delay 1.0 7.0 nS 7-2 4

t9a BREQ, HLDA Valid Delay 1.0 8.0 nS 7-2 4

t9b SMIACT# Valid Delay 1.0 7.6 nS 7-2

t10a HIT# Valid Delay 1.0 8.0 nS 7-2

t10b HITM# Valid Delay 0.7 6.0 nS 7-2

t11a PM0-1, BP0-3 Valid Delay 1.0 10.0 nS 7-2



ELECTRICAL SPECIFICATIONS E

7-16

12/18/96 5:10 PM    Ch07new.doc

INTEL CONFIDENTIAL
(until publication date)

Table 7-10.  Pentium ® Processor AC Specifications for 60-MHz Bus Operation (Contd.)

See Table 7-2 for VCC and TCASE Specifications, CL = 0 pF

Symbol Parameter Min Max Unit Figure Notes

t11b PRDY Valid Delay 1.0 8.0 nS 7-2

t12 D0-D63, DP0-7 Write Data Valid
Delay

1.3 7.5 nS 7-2

t13 D0-D63, DP0-3 Write Data Float
Delay

10.0 nS 7-3 1

t14 A5-A31 Setup Time 6.0 nS 7-4 26

t15 A5-A31 Hold Time 1.0 nS 7-4

t16a INV, AP Setup Time 5.0 nS 7-4

t16b EADS# Setup Time 5.5 nS 7-4

t17 EADS#, INV, AP Hold Time 1.0 nS 7-4

t18a KEN# Setup Time 5.0 nS 7-4

t18b NA#, WB/WT# Setup Time 4.5 nS 7-4

t19 KEN#, WB/WT#, NA# Hold Time 1.0 nS 7-4

t20 BRDY#, BRDYC# Setup Time 5.0 nS 7-4

t21 BRDY#, BRDYC# Hold Time 1.0 nS 7-4

t22 AHOLD, BOFF# Setup Time 5.5 nS 7-4

t23 AHOLD, BOFF# Hold Time 1.0 nS 7-4

t24 BUSCHK#, EWBE#, HOLD, PEN#
Setup Time

5.0 nS 7-4

t25a BUSCHK#, EWBE#, PEN# Hold
Time

1.0 nS 7-4

t25b HOLD Hold Time 1.5 nS 7-4

t26 A20M#, INTR, STPCLK# Setup
Time

5.0 nS 7-4 12, 16

t27 A20M#, INTR, STPCLK# Hold Time 1.0 nS 7-4 13

t28 INIT, FLUSH#, NMI, SMI#, IGNNE#
Setup Time

5.0 nS 7-4 12, 16, 17

t29 INIT, FLUSH#, NMI, SMI#, IGNNE#
Hold Time

1.0 nS 7-4 13

t30 INIT, FLUSH#, NMI, SMI#, IGNNE#
Pulse Width, Async

2.0 CLKs 15, 17
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Table 7-10.  Pentium ® Processor AC Specifications for 60-MHz Bus Operation (Contd.)

See Table 7-2 for VCC and TCASE Specifications, CL = 0 pF

Symbol Parameter Min Max Unit Figure Notes

t31 R/S# Setup Time 5.0 nS 7-4 12, 16, 17

t32 R/S# Hold Time 1.0 nS 7-4 13

t33 R/S# Pulse Width, Async. 2.0 CLKs 15, 17

t34 D0-D63, DP0-7 Read Data Setup
Time

3.0 nS 7-4

t35 D0-D63, DP0-7 Read Data Hold
Time

1.5 nS 7-4

t36 RESET Setup Time 5.0 nS 7-5 11, 12, 16

t37 RESET Hold Time 1.0 nS 7-5 11, 13

t38 RESET Pulse Width, VCC & CLK
Stable

15 CLKs 7-5 11, 17

t39 RESET Active After VCC & CLK
Stable

1.0 mS 7-5 Power up

t40 Reset Configuration Signals (INIT,
FLUSH#, FRCMC#) Setup Time

5.0 nS 7-5 12, 16, 17

t41 Reset Configuration Signals (INIT,
FLUSH#, FRCMC#) Hold Time

 1.0 nS 7-5 13

t42a Reset Configuration Signals (INIT,
FLUSH#, FRCMC#) Setup Time,
Async.

2.0 CLKs To RESET
falling edge(16)

t42b Reset Configuration Signals (INIT,
FLUSH#, FRCMC#, BRDYC#,
BUSCHK#) Hold Time, Async.

2.0 CLKs To RESET
falling edge(27)

t42c Reset Configuration Signals
(BRDYC#, BUSCHK#) Setup Time,
Async.

3.0 CLKs To RESET
falling edge(27)

t42d Reset Configuration Signal
BRDYC# Hold Time, RESET driven
synchronously

1.0 nS 7-5 To RESET
falling
edge(1,27)

t43a BF0, BF1, CPUTYP Setup Time 1.0 mS 7-5 To RESET
falling edge(22)

t43b BF0, BF1, CPUTYP Hold Time 2.0 CLKs To RESET
falling edge(22)
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Table 7-10.  Pentium ® Processor AC Specifications for 60-MHz Bus Operation (Contd.)

See Table 7-2 for VCC and TCASE Specifications, CL = 0 pF

Symbol Parameter Min Max Unit Figure Notes

t43c APICEN, BE4# Setup Time 2.0 CLKs To RESET
falling edge

t43d APICEN, BE4# Hold Time 2.0 CLKs To RESET
falling edge

t44 TCK Frequency 16.0 MHz 7-1

t45 TCK Period 62.5 nS 7-1

t46 TCK High Time 25.0 nS 7-1 2V (1)

t47 TCK Low Time 25.0 nS 7-1 0.8V (1)

t48 TCK Fall Time 5.0 nS 7-1 (2.0V–0.8V)
(1,8,9)

t49 TCK Rise Time 5.0 nS 7-1 (0.8V–2.0V)
(1,8,9)

t50 TRST# Pulse Width 40.0 nS 7-7 Asynchronous
(1)

t51 TDI, TMS Setup Time 5.0 nS 7-6 7

t52 TDI, TMS Hold Time 13.0 nS 7-6 7

t53 TDO Valid Delay 2.5 20.0 nS 7-6 8

t54 TDO Float Delay 25.0 nS 7-6 1, 8

t55 All Non-Test Outputs Valid Delay 2.5 20.0 nS 7-6 3, 8, 10

t56 All Non-Test Outputs Float Delay 25.0 nS 7-6 1, 3, 8, 10

t57 All Non-Test Inputs Setup Time 5.0 nS 7-6 3, 7, 10

t58 All Non-Test Inputs Hold Time 13.0 nS 7-6 3, 7, 10

APIC AC Specifications

t60a PICCLK Frequency 2.0 16.66 MHz 7-1

t60b PICCLK Period 60.0 500.0 nS 7-1

t60c PICCLK High Time 15.0 nS 7-1

t60d PICCLK Low Time 15.0 nS 7-1

t60e PICCLK Rise Time 0.15 2.5 nS 7-1

t60f PICCLK Fall Time 0.15 2.5 nS 7-1
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Table 7-10.  Pentium ® Processor AC Specifications for 60-MHz Bus Operation (Contd.)

See Table 7-2 for VCC and TCASE Specifications, CL = 0 pF

Symbol Parameter Min Max Unit Figure Notes

t60g PICD0-1 Setup Time 3.0 nS 7-4 To PICCLK

t60h PICD0-1 Hold Time 2.5 nS 7-4 To PICCLK

t60i PICD0-1 Valid Delay (LtoH) 4.0 38.0 nS 7-2 From PICCLK
(28)

t60j PICD0-1 Valid Delay (HtoL) 4.0 22.0 nS 7-2 From PICCLK
(28)

 t61 PICCLK Setup Time 5.0 nS To CLK (30)

 t62 PICCLK Hold Time 2.0 nS To CLK (30)

 t63 PICCLK Ratio (CLK/PICCLK) 4 31

NOTE: See notes following Table 7-13.
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Table 7-11.  Pentium ® Processor Dual Processor Mode AC Specifications for 60-MHz Bus
Operation

See Table 7-2 for VCC and TCASE Specifications, CL = 0 pF

Symbol Parameter Min Max Unit Figure Notes

t80a PBREQ#, PBGNT#, PHIT# Flight
Time

0 2.0 nS 29

t80b PHITM# Flight Time 0 1.8 nS 29

t83a A5-A31 Setup Time 3.9 nS 7-4 18, 21, 26

t83b D/C#, W/R#, CACHE#, LOCK#,
SCYC Setup Time

4.0 nS 7-4 18, 21

t83c ADS#, M/IO# Setup Time 6.0 nS 7-4 18, 21

t83d HIT#, HITM# Setup Time 6.0 nS 7-4 18

t83e HLDA Setup Time 6.0 nS 7-4 18

t84a CACHE#, HIT# Hold Time 1.0 nS 7-4 18, 21

t84b ADS#, D/C#, W/R#, M/IO#, A5-A31,
HLDA, SCYC Hold Time

0.8 nS 7-4 18, 21

t84c LOCK# Hold Time 0.9 nS 7-4 18, 21

t84d HITM# Hold Time 0.7 nS 7-4 18, 21

t85 DPEN# Valid Time 10.0 CLKs 18, 19, 23

t86 DPEN# Hold Time 2.0 CLKs 18, 20, 23

t87 APIC ID (BE0#–BE3#) Setup Time 2.0 CLKs 7-5 To RESET
falling edge(23)

t88 APIC ID (BE0#-BE3#) Hold Time 2.0 CLKs 7-5 From RESET
falling edge(23)

t89 D/P# Valid Delay 1.0 8.0 nS 7-2 Primary
Processor Only

NOTE: See notes following Table 7-13.
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7.4.3. AC Timing Tables for a 50-MHz Bus

Table 7-12.  Pentium ® Processor AC Specifications for 50-MHz Bus Operation

See Table 7-2 for VCC and TCASE Specifications, CL = 0 pF

Symbol Parameter Min Max Unit Figure Notes

Frequency 25.0 50.0 MHz 7-1 Max Core Freq
= 100 MHz

t1a CLK Period 20.0 40.0 nS 7-1

t1b CLK Period Stability ±250 pS 7-1 Adjacent
Clocks (1,25)

t2 CLK High Time 4.0 nS 7-1 2V,(1)

t3 CLK Low Time 4.0 nS 7-1 0.8V, (1)

t4 CLK Fall Time 0.15 1.5 nS 7-1 (2.0V–0.8V),
(1,5)

t5 CLK Rise Time 0.15 1.5 nS 7-1 (0.8V–2.0V),
(1,5)

t6a PWT, PCD, CACHE# Valid Delay 1.0 7.0 nS 7-2

t6b AP Valid Delay 1.0 8.5 nS 7-2

t6c BE0-7#, LOCK# Valid Delay 0.9 7.0 nS 7-2 4

t6d ADS#, ADSC#, D/C#, M/IO#, W/R#,
SCYC Valid Delay

0.8 7.0 nS 7-2

t6e A3-A16 Valid Delay 0.5 7.0 nS 7-2

t6f A17-A31 Valid Delay 0.6 7.0 nS 7-2

t7 ADS#, ADSC#, AP, A3-A31, PWT,
PCD, BE0-7#, M/IO#, D/C#, W/R#,
CACHE#, SCYC, LOCK# Float
Delay

10.0 nS 7-3 1

t8 APCHK#, IERR#, FERR#, PCHK#
Valid Delay

1.0 8.3 nS 7-2 4

t9a BREQ, HLDA, SMIACT# Valid
Delay

1.0 8.0 nS 7-2 4

t10a HIT# Valid Delay 1.0 8.0 nS 7-2

t10b HITM# Valid Delay 0.7 6.0 nS 7-2

t11a PM0-1, BP0-3 Valid Delay 1.0 10.0 nS 7-2
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Table 7-12.  Pentium ® Processor AC Specifications for 50-MHz Bus Operation (Contd.)

See Table 7-2 for VCC and TCASE Specifications, CL = 0 pF

Symbol Parameter Min Max Unit Figure Notes

t11b PRDY Valid Delay 1.0 8.0 nS 7-2

t12 D0-D63, DP0-7 Write Data Valid
Delay

1.3 8.5 nS 7-2

t13 D0-D63, DP0-3 Write Data Float
Delay

10.0 nS 7-3 1

t14 A5-A31 Setup Time 6.5 nS 7-4 26

t15 A5-A31 Hold Time 1.0 nS 7-4

t16a INV, AP Setup Time 5.0 nS 7-4

t16b EADS# Setup Time 6.0 nS 7-4

t17 EADS#, INV, AP Hold Time 1.0 nS 7-4

t18a KEN# Setup Time 5.0 nS 7-4

t18b NA#, WB/WT# Setup Time 4.5 nS 7-4

t19 KEN#, WB/WT#, NA# Hold Time 1.0 nS 7-4

t20 BRDY#, BRDYC# Setup Time 5.0 nS 7-4

t21 BRDY#, BRDYC# Hold Time 1.0 nS 7-4

t22 BOFF# Setup Time 5.5 nS 7-4

t22a AHOLD Setup Time 6.0 nS 7-4

t23 AHOLD, BOFF# Hold Time 1.0 nS 7-4

t24 BUSCHK#, EWBE#, HOLD, PEN#
Setup Time

5.0 nS 7-4

t25 BUSCHK#, EWBE#, PEN# Hold
Time

1.0 nS 7-4

t25a HOLD Hold Time 1.5 nS 7-4

t26 A20M#, INTR, STPCLK# Setup
Time

5.0 nS 7-4 12, 16

t27 A20M#, INTR, STPCLK# Hold Time 1 .0 nS 7-4 13

t28 INIT, FLUSH#, NMI, SMI#, IGNNE#
Setup Time

5.0 nS 7-4 12, 16, 17

t29 INIT, FLUSH#, NMI, SMI#, IGNNE#
Hold Time

1.0 nS 7-4 13
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Table 7-12.  Pentium ® Processor AC Specifications for 50-MHz Bus Operation (Contd.)

See Table 7-2 for VCC and TCASE Specifications, CL = 0 pF

Symbol Parameter Min Max Unit Figure Notes

t30 INIT, FLUSH#, NMI, SMI#, IGNNE#
Pulse Width, Async

2.0 CLKs 15, 17

t31 R/S# Setup Time 5.0 nS 7-4 12, 16, 17

t32 R/S# Hold Time 1.0 nS 7-4 13

t33 R/S# Pulse Width, Async. 2. 0 CLKs 15, 17

t34 D0-D63, DP0-7 Read Data Setup
Time

3.8 nS 7-4

t35 D0-D63, DP0-7 Read Data Hold
Time

1.5 nS 7-4

t36 RESET Setup Time 5.0 nS 7-5 11, 12, 16

t37 RESET Hold Time 1.0 nS 7-5 11, 13

t38 RESET Pulse Width, VCC & CLK
Stable

15 CLKs 7-5 11, 17

t39 RESET Active After VCC & CLK
Stable

1.0 mS 7-5 Power up

t40 Reset Configuration Signals (INIT,
FLUSH#, FRCMC#) Setup Time

5.0 nS 7-5 12, 16, 17

t41 Reset Configuration Signals (INIT,
FLUSH#, FRCMC#) Hold Time

1.0 nS 7-5 13

t42a Reset Configuration Signals (INIT,
FLUSH#, FRCMC#) Setup Time,
Async

2.0 CLKs To RESET
falling edge(16)

t42b Reset Configuration Signals (INIT,
FLUSH#, FRCMC#, BRDYC#,
BUSCHK#) Hold Time, Async

2.0 CLKs To RESET
falling edge(27)

t42c Reset Configuration Signals
(BRDYC#, BUSCHK#) Setup Time,
Async.

3.0 CLKs To RESET
falling edge(27)

t42d Reset Configuration Signal
BRDYC# Hold Time, RESET driven
synchronously

1.0 nS 7-5 To RESET
falling
edge(1,27)

t43a BF0, BF1, CPUTYP Setup Time 1.0 mS 7-5 To RESET
falling edge(22)
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Table 7-12.  Pentium ® Processor AC Specifications for 50-MHz Bus Operation (Contd.)

See Table 7-2 for VCC and TCASE Specifications, CL = 0 pF

Symbol Parameter Min Max Unit Figure Notes

t43b BF0, BF1, CPUTYP Hold Time 2.0 CLKs To RESET
falling edge(22)

t43c APICEN, BE4# Setup Time 2.0 CLKs To RESET
falling edge

t43d APICEN, BE4# Hold Time 2.0 CLKs To RESET
falling edge

t44 TCK Frequency 16.0 MHz 7-1

t45 TCK Period 62.5 nS 7-1

t46 TCK High Time 25.0 nS 7-1 2V (1)

t47 TCK Low Time 25.0 nS 7-1 0.8V (1)

t48 TCK Fall Time 5.0 nS 7-1 (2.0V–0.8V)
(1,8,9)

t49 TCK Rise Time 5.0 nS 7-1 (0.8V–2.0V)
(1,8,9)

t50 TRST# Pulse Width 40.0 nS 7-7 Asynchronous
(1)

t51 TDI, TMS Setup Time 5.0 nS 7-6 7

t52 TDI, TMS Hold Time 13.0 nS 7-6 7

t53 TDO Valid Delay 2.5 20.0 nS 7-6 8

t54 TDO Float Delay 25.0 nS 7-6 1, 8

t55 All Non-Test Outputs Valid Delay 2.5 20.0 nS 7-6 3, 8, 10

t56 All Non-Test Outputs Float Delay 25.0 nS 7-6 1, 3, 8, 10

t57 All Non-Test Inputs Setup Time 5.0 nS 7-6 3, 7, 10

t58 All Non-Test Inputs Hold Time 13.0 nS 7-6 3, 7, 10

APIC AC Specifications

t60a PICCLK Frequency 2.0 16.66 MHz 7-1

t60b PICCLK Period 60.0 500.0 nS 7-1

t60c PICCLK High Time 15.0 nS 7-1

t60d PICCLK Low Time 15.0 nS 7-1

t60e PICCLK Rise Time 0.15 25 nS 7-1
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Table 7-12.  Pentium ® Processor AC Specifications for 50-MHz Bus Operation (Contd.)

See Table 7-2 for VCC and TCASE Specifications, CL = 0 pF

Symbol Parameter Min Max Unit Figure Notes

t60f PICCLK Fall Time 0.15 25 nS 7-1

t60g PICD0-1 Setup Time 3.0 nS 7-4 To PICCLK

t60h PICD0-1 Hold Time 2.5 nS 7-4 To PICCLK

t60i PICD0-1 Valid Delay (LtoH) 4.0 38.0 nS 7-2 From PICCLK
(28)

t60j PICD0-1 Valid Delay (HtoL) 4.0 22.0 nS 7-2 From PICCLK
(28)

t61 PICCLK Setup Time 5.0 nS To CLK (30)

t62 PICCLK Hold Time 2.0 nS To CLK (30)

t63 PICCLK Ratio (CLK/PICCLK) 4 31

NOTE: See notes following Table 7-13.
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Table 7-13.  Pentium® Processor Dual-Processor Mode AC Specifications for 50-MHz
Bus Operation

See Table 7-2 for VCC and TCASE Specifications, CL = 0 pF

Symbol Parameter Min Max Unit Figure Notes

t80a PBREQ#, PBGNT#, PHIT# Flight
Time

0 2.0 nS 7-8 29

t80b PHITM# Flight Time 0 1.8 nS 7-8 29

t83a A5-A31 Setup Time 6.5 nS 7-4 18, 21, 26

t83b D/C#, W/R#, CACHE#, LOCK#,
SCYC Setup Time

6.0 nS 7-4 18, 21

t83c ADS#, M/IO# Setup Time 8.0 nS 7-4 18, 21

t83d HIT#, HITM# Setup Time 8.0 nS 7-4 18

t83e HLDA Setup Time 6.0 nS 7-4 18

t84a CACHE#, HIT# Hold Time 1.0 nS 7-4 18, 21

t84b ADS#, D/C#, W/R#, M/IO#, A5-A31,
HLDA, SCYC Hold Time

0.8 nS 7-4 18, 21

t84c LOCK# Hold Time 0.9 nS 7-4 18, 21

t84d HITM# Hold Time 0.7 nS 7-4 18, 21

t85 DPEN# Valid Time 10.0 CLKs 18, 19, 23

t86 DPEN# Hold Time 2.0 CLKs 18, 20, 23

t87 APIC ID (BE0#-BE3#) Setup Time 2.0 CLKs 7-5 To RESET
falling edge(23)

t88 APIC ID (BE0#-BE3#) Hold Time 2.0 CLKs 7-5 From RESET
falling edge(23)

t89 D/P# Valid Delay 1.0 8.0 nS 7-2 Primary
Processor Only

NOTES:

Notes 2, 6, and 14 are general and apply to all standard TTL signals used with the Pentium® processor family.

1. Not 100% tested. Guaranteed by design/characterization.

2. TTL input test waveforms are assumed to be 0 to 3V transitions with 1V/nS rise and fall times.

3. Non-test outputs and inputs are the normal output or input signals (besides TCK, TRST#, TDI, TDO, and TMS). These
timings correspond to the response of these signals due to boundary scan operations.

4. APCHK#, FERR#, HLDA, IERR#, LOCK#, and PCHK# are glitch-free outputs. Glitch-free signals monotonically
transition without false transitions (i.e., glitches).

5. 0.8V/ns ≤ CLK input rise/fall time ≤ 8V/ns.

6. 0.3V/ns ≤ input rise/fall time ≤ 5V/ns.

7. Referenced to TCK rising edge.

8. Referenced to TCK falling edge.
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9. 1 ns can be added to the maximum TCK rise and fall times for every 10 MHz of frequency below 33 MHz.

10. During probe mode operation, do not use the boundary scan timings (t55-58).

11. FRCMC# should be tied to VCC (high) to ensure proper operation of the Pentium processor
75/90/100/120/133/150/166/200 as a primary processor.

12. Setup time is required to guarantee recognition on a specific clock. The Pentium processor must meet this specification
for dual processor operation for the FLUSH# and RESET signals.

13. Hold time is required to guarantee recognition on a specific clock. The Pentium processor  must meet this specification
for dual processor operation for the FLUSH# and RESET signals.

14. All TTL timings are referenced from 1.5V.

15. To guarantee proper asynchronous recognition, the signal must have been de-asserted (inactive) for a minimum of 2
clocks before being returned active and must meet the minimum pulse width.

16. This input may be driven asynchronously. However, when operating two processors in dual processing mode, FLUSH#
and RESET must be asserted synchronously to both processors.

17. When driven asynchronously, RESET, NMI, FLUSH#, R/S#, INIT, and SMI# must be de-asserted (inactive) for a
minimum of 2 clocks before being returned active.

18. Timings are valid only when dual processor is present.

19. Maximum time DPEN# is valid from rising edge of RESET.

20. Minimum time DPEN# is valid after falling edge of RESET.

21. The D/C#, M/IO#, W/R#, CACHE#, and A5-A31 signals are sampled only on the CLK that ADS# is active.

22. BF0, BF1 and CPUTYP should be strapped to 3.3V or VSS.

23. RESET is synchronous in dual processing mode and functional redundancy checking mode. All signals which have a
setup or hold time with respect to a falling or rising edge of RESET in UP mode, should be measured with respect to the
first processor clock edge in which RESET is sampled either active or inactive in dual processing and functional
redundancy checking modes.

24. The PHIT# and PHITM# signals operate at the core frequency.

25. These signals are measured on the rising edge of adjacent CLKs at 1.5V. To ensure a 1:1 relationship between the
amplitude of the input jitter and the internal and external clocks, the jitter frequency spectrum should not have any power
spectrum peaking between 500 KHz and 1/3 of the CLK operating frequency. The amount of jitter present must be
accounted for as a component of CLK skew between devices. The internal clock generator requires a constant
frequency CLK input within ± 250 ps. Therefore, the CLK input cannot be changed dynamically.

26. In dual processing mode, timing t14 is replaced by t83a. Timing t14 is required for external snooping (e.g., address
setup to the CLK in which EADS# is sampled active) in both uniprocessor and dual processor modes.

27. BRDYC# and BUSCHK# are used as reset configuration signals to select buffer size.

28. This assumes an external pullup resistor to VCC and a lumped capacitive load. The pullup resistor must be between 300
ohms and 1k ohms, the capacitance must be between 20 pF and 240 pF, and the RC product must be between 6ns and
36ns. VOL for PICD0-1 is 0.55V.

29. This is a flight time specification, that includes both flight time and clock skew. The flight time is the time from where the
unloaded driver crosses 1.5V (50% of min VCC), to where the receiver crosses the 1.5V level (50% of min VCC). See
Figure 7-8. The minimum flight time minus the clock skew must be greater than zero.

30. This is for the Lock Step operation of the component only. This guarantees that APIC interrupts will be recognized on
specific clocks to support two processors running in a Lock Step fashion, including FRC mode. FRC on the APIC pins is
not supported, but mismatches on these pins will result in a mismatch on other pins of the processor.

31. The CLK to PICCLK ratio for Lock Step operation has to be an integer and the ratio (CLK/PICCLK) cannot be smaller
than 4.

* Each valid delay is specified for a 0 pF load. The system designer should use I/O buffer models to account for signal
flight time delays.
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7.4.4. Timing Waveforms
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CHAPTER 8
I/O BUFFER MODELS

This Chapter describes the 3.3V I/O buffer models of the Pentium processor.

The first order I/O buffer model is a simplified representation of the complex input and output
buffers used in the Pentium processor family. Figures 8-1 and 8-2 show the structure of the
input buffer model and Figure 8-3 shows the output buffer model.  Tables 8-1 and 8-2 show
the parameters used to specify these models.

Although simplified, these buffer models will accurately model flight time and signal quality.
For these parameters, there is very little added accuracy in a complete transistor model.

The following two models represent the input buffer models.  The first model, Figure 8-1,
represents all of the input buffers of the Pentium processor except for a special group of input
buffers.  The second model, Figure 8-2, represents these special buffers.  These buffers are the
inputs:  AHOLD, EADS#, KEN#, WB/WT#, INV, NA#, EWBE#, BOFF#, CLK, and
PICCLK.

The Pentium processor (75/90/100/120/133/150/166/200) supports 5V tolerant buffers on the
CLK and PICCLK pins. It is important to note that all inputs of the Pentium processor with
MMX technology are 3.3V tolerant only. The CLK and PICCLK pins are not 5V tolerant on
the Pentium processor with MMX technology.
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Table 8-1.  Parameters Used in the Specification of the First Order Input Buffer Model

Parameter Description

Cin Minimum and Maximum value of the capacitance of the input buffer
model.

Lp Minimum and Maximum value of the package inductance.

Cp Minimum and Maximum value of the package capacitance.

Rs Diode Series Resistance

D1, D2 Ideal Diodes

Figure 8-3 shows the structure of the output buffer model.  This model is used for all of the
output buffers of the Pentium processor.
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R

P P 00 6 1

o

C o

L p

C p

Figure 8-3.  First Order Output Buffer Model

Table 8-2.  Parameters Used in the Specification of the First Order Output Buffer Model

Parameter Description

dV/dt Minimum and maximum value of the rate of change of the open circuit
voltage source used in the output buffer model.

Ro Minimum and maximum value of the output impedance of the output
buffer model.

Co Minimum and Maximum value of the capacitance of the output buffer
model.

Lp Minimum and Maximum value of the package inductance.

Cp Minimum and Maximum value of the package capacitance.

In addition to the input and output buffer parameters, input protection diode models are
provided for added accuracy.  These diodes have been optimized to provide ESD protection
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and provide some level of clamping.  Although the diodes are not required for simulation, it
may be more difficult to meet specifications without them.

Note however, some signal quality specifications require that the diodes be removed from the
input model.  The series resistors (Rs) are a part of the diode model.  Remove these when
removing the diodes from the input model.

8.1. BUFFER MODEL PARAMETERS
This section gives the parameters for each Pentium processor input, output, and bi-directional
signals, as well as the settings for the configurable buffers.

In dual processor mode, a few signals change from output signals to I/O signals.  These signals
are:  ADS#, M/IO#, D/C#, W/R#, LOCK#, CACHE#, SCYC, HLDA, HIT#, and HITM#.
When simulating these signals use the correct operation of the buffer while in DP mode.

Some pins on the Pentium processor have selectable buffer sizes to allow for faster switching
of the buffer in heavily loaded environments.  The buffer selection is done through the setting
of configuration pins at power on RESET. Once selected, these cannot be changed without a
power on RESET.  The BUSCHK# and BRDYC# pins are used to select the different buffer
size.  All configurable pins get set to the selected buffer size.  There is no selection for specific
signal groups to get specific buffers.  Keep in mind that the largest buffer size is not always the
best selection especially in a lightly loaded environment.  AC timing and signal quality
simulations should be done to ensure that the buffers used meet required timing and signal
quality specifications for the components that will be used in the specific board design.

The pins with selectable buffer sizes use the configurable output buffer EB2.  Table 8-3 shows
the drive level required at falling edge of RESET, to select the buffer strength.  Once selected,
the buffer size cannot be changed without a power on RESET.  The buffer sizes selected should
be the appropriate size required, otherwise AC timings might not be met, or too much
overshoot and ringback may occur.  There are no other selection choices, all the configurable
buffers get set to the same size at the same time.

Table 8-3 shows the proper settings on BRDYC# and BUSCHK# for proper buffer size
selection.

Table 8-3.  Buffer Selection Chart

Environment BRDYC# BUSCHK# Buffer Selection

Typical Stand Alone Component 1 X EB2

Loaded Component 0 1 EB2A

Heavily Loaded Component 0 0 EB2B

NOTE:
X is a “DON’T CARE” (0 or 1).

Please refer to Table 8-4 for the groupings of the buffers.
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Table 8-4.  Signal to Buffer Type

Signals Type
Driver Buffer

Type
Receiver

Buffer Type

CLK I ER0

A20M#,  AHOLD, BF[1:0], BOFF#,  BRDY#, BRDYC#,
BUSCHK#, EADS#, EWBE#, FLUSH#, FRCMC#2, HOLD,
IGNNE#, INIT, INTR, INV, KEN#, NA#, NMI, PEN#,
PICCLK, R/S#, RESET, SMI#, STPCLK#, TCK, TDI, TMS,
TRST#, WB/WT#

I ER1

ADSC#, APCHK#, BE[7:5]#, BP[3:2], BREQ, FERR#,
IERR#, PCD, PCHK#, PM0/BP0, PM1/BP1, PRDY, PWT,
SMIACT#, TDO, D/P#

O ED1

A[31:21], AP, BE[4:0]#, CACHE#, D/C#, D[63:0], DP[7:0],
HLDA, LOCK#, M/IO#, PBGNT#, PBREQ#, PHIT#,
PHITM#,  SCYC

I/O EB1 EB1

A[20:3], ADS#, HITM#, W/R# I/O EB2/A/B EB2

HIT# I/O EB3 EB3

PICD0, PICD1 I/O EB4 EB4

NOTES:
1. VCC2DET# has no buffer model  it is simply a short to VSS on the Pentium processor with MMX

technology. This pin is an INC on the Pentium processor (75/90/100/120/133/150/166/200)

2. FRCMC# is defined only for the Pentium processor (75/90/100/120/133/150/166/200).

The input, output and bi-directional buffers values are listed in Table 8-5.  Table 8-5 contains
listings for all three types, do not get them confused during simulation.  When a bi-directional
pin is operating as an input, just use the Cin, Cp and Lp values, if it is operating as a driver use
all the data parameters.
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Table 8-5.  Input, Output and Bi-directional Buffer Model Parameters

Buffer
Type Transition

dV/dt
(V/nsec)

Ro
(Ohms)

Cp
(pF)

Lp
(nH)

Co/Cin
(pF)

min max min max min max min max min max

ER0 Rising 3.0 5.0 4.0 7.2 0.8 1.2

(input) Falling 3.0 5.0 4.0 7.2 0.8 1.2

ER1 Rising 1.1 6.1 4.7 15.3 0.8 1.2

(input) Falling 1.1 6.1 4.7 15.3 0.8 1.2

ED1 Rising 3/3.0 3.7/0.9 21.6 53.1 1.1 8.2 4.0 17.7 2.0 2.6

(output) Falling 3/2.8 3.7/0.8 17.5 50.7 1.1 8.2 4.0 17.7 2.0 2.6

EB1 Rising 3/3.0 3.7/0.9 21.6 53.1 1.3 8.7 4.0 18.7 2.0 2.6

(bidir) Falling 3/2.8 3.7/0.8 17.5 50.7 1.3 8.7 4.0 18.7 2.0 2.6

EB2 Rising 3/3.0 3.7/0.9 21.6 53.1 1.3 8.3 4.4 16.7 9.1 9.7

(bidir) Falling 3/2.8 3.7/0.8 17.5 50.7 1.3 8.3 4.4 16.7 9.1 9.7

EB2A Rising 3/2.4 3.7/0.9 10.1 22.4 1.3 8.3 4.4 16.7 9.1 9.7

(bidir) Falling 3/2.4 3.7/0.9 9.0 21.2 1.3 8.3 4.4 16.7 9.1 9.7

EB2B Rising 3/1.8 3.7/0.7 5.5 12.9 1.3 8.3 4.4 16.7 9.1 9.7

(bidir) Falling 3/1.8 3.7/0.7 4.6 12.3 1.3 8.3 4.4 16.7 9.1 9.7

EB3 Rising 3/3.0 3.7/0.9 21.6 53.1 1.9 7.5 9.9 14.3 3.3 3.9

(bidir) Falling 3/2.8 3.7/0.8 17.5 50.7 1.9 7.5 9.9 14.3 3.3 3.9

EB4 Rising 3/3.0 3.7/0.9 100K* 100K* 2.0 6.9 5.8 14.6 5.0 7.0

(bidir) Falling 3/2.8 3.7/0.8 17.5 50.7 2.0 6.9 5.8 14.6 5.0 7.0

* The buffer is an open drain. For simulation purposes it should be modeled by a very large internal resistor
with an additional external pull-up.

Table 8-6.  Input Buffer Model Parameters: D (Diodes)

Symbol Parameter D1 D2

IS Saturation Current 1.4e-14A 2.78e-16A

N Emission Coefficient 1.19 1.00

RS Series Resistance 6.5 ohms 6.5 ohms

TT Transit Time 3 ns 6 ns

VJ PN Potential 0.983V 0.967V

CJ0 Zero Bias PN Capacitance 0.281 pF 0.365 pF

M PN Grading Coefficient 0.385 0.376
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8.2. SIGNAL QUALITY SPECIFICATIONS
Signals driven by the system into the Pentium processor must meet signal quality
specifications to guarantee that the components read data properly and to ensure that incoming
signals do not affect the reliability of the component.  There are two signal quality parameters:
Ringback and Settling Time. Reference Section 8.2.3 for the CLK/PICCLK signal quality
specification for the Pentium processor with MMX technology.

8.2.1. Ringback
Excessive ringback can contribute to long-term reliability degradation of the Pentium
processor, and can cause false signal detection.  Ringback is simulated at the input pin of a
component using the input buffer model.  Ringback can be simulated with or without the
diodes that are in the input buffer model.

Ringback is the absolute value of the maximum voltage at the receiving pin below VCC (or
above VSS) relative to VCC (or VSS) level after the signal has reached its maximum voltage
level. The input diodes are assumed present.

Maximum Ringback on Inputs = 0.8V

(with diodes)

If simulated without the input diodes, follow the Maximum Overshoot/Undershoot
specification.  By meeting the overshoot/undershoot specification, the signal is guaranteed not
to ringback excessively.

If simulated with the diodes present in the input model, follow the maximum ringback
specification.

Overshoot (Undershoot) is the absolute value of the maximum voltage above VCC (below
VSS). The guideline assumes the absence of diodes on the input.

• Maximum Overshoot/Undershoot on 3.3V Pentium processor Inputs (including CLK and
PICCLK) =  1.4V above VCC3 (without diodes)
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Figure 8-4.  Overshoot/Undershoot and Ringback Guidelines

8.2.2. Settling Time
The settling time is defined as the time a signal requires at the receiver to settle within 10% of
VCC or VSS.  Settling time is the maximum time allowed for a signal to reach within 10% of its
final value.

Most available simulation tools are unable to simulate settling time so that it accurately reflects
silicon measurements.  On a physical board, second-order effects and other effects serve to
dampen the signal at the receiver.  Because of all these concerns, settling time is a
recommendation or a tool for layout tuning and not a specification.

Settling time is simulated at the slow corner, to make sure that there is no impact on the flight
times of the signals if the waveform has not settled.  Settling time may be simulated with the
diodes included or excluded from the input buffer model.  If diodes are included, settling time
recommendation will be easier to meet.

Although simulated settling time has not shown good correlation with physical, measured
settling time, settling time simulations can still be used as a tool to tune layouts.
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Use the following procedure to verify board simulation and tuning with concerns for settling
time.

1. Simulate settling time at the slow corner for a particular signal.

2. If settling time violations occur, simulate signal trace with DC diodes in place at the
receiver pin.  The DC diode behaves almost identically to the actual (non-linear) diode on
the part as long as excessive overshoot does not occur.

3. If settling time violations still occur, simulate flight times for 5 consecutive cycles for that
particular signal.

4. If flight time values are consistent over the 5 simulations, settling time should not be a
concern.  If however, flight times are not consistent over the 5 simulations, tuning of the
layout is required.

5. Note that, for signals that are allocated 2 cycles for flight time, the recommended settling
time is doubled.

Maximum Settling Time to within 10% of VCC is: 12.5ns @66 MHz

14.2ns @60 MHz

17.5ns @50 MHz

 

Vcc + 10%

Vcc -10%

Settl ing Time

PP0111

Vcc

Figure 8-5.  Settling Time
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8.2.3. CLK/PICCLK Signal Quality Specification for the Pentium ®

Processor with MMX™ Technology
The maximum overshoot, maximum undershoot, overshoot threshold duration, undershoot
threshold duration, and maximum ringback specifications for CLK/PICCLK are described
below:

MAXIMUM OVERSHOOT AND MAXIMUM UNDERSHOOT SPECIFICATION:  The
maximum overshoot of the CLK/PICCLK signals should not exceed VCC3,nominal + 0.9V.
The maximum undershoot of the CLK/PICCLK signals must not drop below  -0.9V.

OVERSHOOT THRESHOLD DURATION SPECIFICATION: The overshoot threshold
duration is defined as the sum of all time during which the CLK/PICCLK signal is above
VCC3,nominal + 0.5V within a single clock period. The overshoot threshold duration must not
exceed 20% of the period.

UNDERSHOOT THRESHOLD DURATION SPECIFICATION: The undershoot
threshold duration is defined as the sum of all time during which the CLK/PICCLK signal is
below -0.5V within a single clock period. The undershoot threshold duration must not exceed
20% of the period.

MAXIMUM RINGBACK SPECIFICATION:  The maximum ringback of CLK/PICCLK
associated with their high states (overshoot) must not drop below VCC3 - 0.8V as shown in
Figure 8-7. Similarly, the maximum ringback of CLK/PICCLK associated with their low states
(undershoot) must not exceed 0.8V as shown in Figure 8-9.

Refer to Table 8-7 and Table 8-8 for a summary of the clock overshoot and undershoot
specifications for the Pentium processor with MMX technology.
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Table 8-7.  Overshoot Specification Summary

Specification Name Value Units Notes

Threshold Level VCC3,nominal + 0.5 V (1) (2)

Maximum Overshoot Level VCC3,nominal + 0.9 V (1) (2)

Maximum Threshold Duration 20% of clock period above threshold
voltage

nS (2)

Maximum Ringback VCC3,nominal - 0.8 V (1) (2)

NOTES:
1. VCC3, nominal refers to the voltage measured at the bottom side of the VCC3 pins. See Section

7.1.2.1.1 for details.

2. See Figure 8-6 and Figure 8-7.

Table 8-8.  Undershoot Specification Summary

Specification Name Value Units Notes

Threshold Level -0.5 V (1)

Minimum Undershoot Level -0.9 V (1)

Maximum Threshold Duration 20% of clock period below threshold
voltage

nS (1)

Maximum Ringback 0.8 V (1)

NOTE:
1. See Figure 8-8 and Figure 8-9.

8.2.3.1. CLOCK SIGNAL MEASUREMENT METHODOLOGY

The waveform of the clock signals should be measured at the bottom side of the processor pins
using an oscilloscope with a 3 dB bandwidth of at least 20 MHz (100 MS/s digital sampling
rate).  There should be a short isolation ground lead attached to a processor pin on the bottom
side of the board.  An 1 MOhm probe with loading of less than 1 pF (e.g., Tektronics 6243 or
Tektronics 6245) is recommended.  The measurement should be taken at the CLK (AK18) and
PICCLK (H34) pins and their nearest VSS pins (AM18 and H36, respectively).

MAXIMUM OVERSHOOT, MAXIMUM UNDERSHOOT AND MAXIMUM
RINGBACK SPECIFICATIONS:  The display should show continuous sampling (e.g.,
infinite persistence) of the waveform at 500 mV/div and 5 nS/div (for CLK) or 20 nS/div (for
PICCLK) for a recommended duration of approximately five seconds.  Adjust the vertical
position to measure the maximum overshoot and associated ringback with the largest possible
granularity. Similarly, readjust the vertical position to measure the maximum undershoot and
associated ringback. There is no allowance for crossing the maximum overshoot, maximum
undershoot or maximum ringback specifications.
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OVERSHOOT THRESHOLD DURATION SPECIFICATION:   A snapshot of the clock
signal should be taken at 500 mV/div and 500 pS/div (for CLK) or 2 nS/div (for PICCLK).
Adjust the vertical position and horizontal offset position to view the threshold duration.  The
overshoot threshold duration is defined as the sum of all time during which the clock signal is
above VCC3,nominal + 0.5V within a single clock period. The overshoot threshold duration
must not exceed 20% of the period.

UNDERSHOOT THRESHOLD DURATION SPECIFICATION:   A snapshot of the clock
signal should be taken at 500 mV/div and 500 pS/div (for CLK) or 2 nS/div (for PICCLK).
Adjust the vertical position and horizontal offset position to view the threshold duration.  The
undershoot threshold duration is defined as the sum of all time during which the clock signal is
below -0.5V within a single clock period. The undershoot threshold duration must not exceed
20% of the period.

These overshoot and undershoot specifications are illustrated graphically in Figure 8-6 to
Figure 8-9.

 

Overshoot Threshold Level

Maximum Overshoot Level

Overshoot
Threshold
 Duration

VCC3, nominal

Figure 8-6.  Maximum Overshoot Level, Overshoot Threshold Level, and Overshoot
Threshold Duration
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Maximum Ringback

VCC3, nominal

Figure 8-7. Maximum Ringback Associated with the Signal High State

 

Maximum Undershoot Level
Undershoot Threshold Level

Undershoot
Threshold
 Duration

VSS,nominal

Figure 8-8.  Maximum Undershoot Level, Undershoot Threshold Level, and Undershoot
Threshold Duration
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Maximum
Ringback

VSS, nominal

Figure 8-9.  Maximum Ringback Associated with the Signal Low State
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CHAPTER 9
MECHANICAL SPECIFICATIONS

The Pentium processor is packaged in 296-pin ceramic Staggered Pin Grid Array (SPGA) or
plastic (PPGA) packages.  The pins of the Pentium processor are arranged in a 37 x 37 matrix
and the package dimensions are 1.95” x 1.95” (Table 9-1). There is a nickel plated copper heat
slug attached to the top of the packages.

The Pentium processor is available in both ceramic and plastic packages.

Table 9-1.  Package Information Summary

Package Type Total Pins Pin Array Package Size

Ceramic Staggered Pin Grid Array SPGA 296 37 x 37 1.95” x 1.95”

4.95 cm x
4.95 cm

Plastic Staggered Pin Grid Array PPGA 296 37 x 37 1.95” x 1.95”

4.95 cm x
4.95 cm

Figure 9-1 shows the dimensions of the ceramic packages. Table 9-2 provides the mechanical
specifications of the ceramic packages.  Figure 9-2 shows the dimensions of the plastic
package, and Table 9-3 provides the mechanical specfications for the plastic package.

Note: for more information, see Application Note 577, “An Introduction to PPGA Packaging”
(Order # 243103).
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Figure 9-1. Ceramic Package (without the Heat Spreader) Dimensions
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Table 9-2. Ceramic Package (without the Heat Spreader) Dimensions

Millimeters Inches

Symbol Min Max Notes Min Max Notes

A 2.62 2.97 0.103 0.117

A1 0.69 0.84 Ceramic Lid 0.027 0.033 Ceramic Lid

A2 3.31 3.81 Ceramic Lid 0.130 0.150 Ceramic Lid

B 0.43 0.51 0.017 0.020

D 49.28 49.78 1.940 1.960

D1 45.59 45.85 1.795 1.805

e1 2.29 2.79 0.090 0.110

L 3.05 3.30 0.120 0.130

N 296 Lead Count 296 Lead Count

S1 1.52 2.54 0.060 0.100

Figure 9-2.  PPGA Package Dimensions
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Table 9-3. PPGA Package Dimensions

Millimeters Inches

Symbol Min Max Notes Min Max Notes

A 2.72 3.33 0.107 0.131

A1 1.83 2.23 0.072 0.088

A2 1.00 0.039

B 0.40 0.51 0.016 0.020

D 49.43 49.63 1.946 1.954

D1 45.59 45.85 1.795 1.805

D2 23.44 23.95 0.923 0.943

e1 2.29 2.79 0.090 0.110

F1 17.56 0.692

F2 23.04 0.907

L 3.05 3.30 0.120 0.130

N 296 Lead Count 296 Lead Count

S1 1.52 2.54 0.060 0.100
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CHAPTER 10
THERMAL SPECIFICATIONS

The Pentium processor is specified for proper operation when case temperature, TCASE, (TC) is
within the specified range of 0°C to 70°C.

10.1. MEASURING THERMAL VALUES
To verify that the proper TC (case temperature) is maintained, it should be measured at the
center of the package top surface (opposite of the pins).  The measurement is made in the same
way with or without a heat sink attached.  When a heat sink is attached, a hole (smaller than
0.150” diameter) should be drilled through the heat sink to allow probing the center of the
package.  See Figure 10-1 for an illustration of how to measure TC.

To minimize the measurement errors, it is recommended to use the following approach:

• Use 36-gauge or finer diameter K, T, or J type thermocouples.  Intel’s laboratory testing
was done using a thermocouple made by Omega (part number:  5TC-TTK-36-36).

• Attach the thermocouple bead or junction to the center of the package top surface using
high thermal conductivity cements.  The laboratory testing was done by using Omega
Bond (part number: OB-101).

• The thermocouple should be attached at a 90-degrees angle as shown in Figure 10-1.

• The hole size should be smaller than 0.150” in diameter.
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SPGA Package

PPGA Package
PP0062

Figure 10-1.  Technique for Measuring T C 1

NOTE:

1. The same technique applies to measuring TC of the package with or without a heat spreader.

10.1.1. Thermal Equations and Data
For the Pentium processor, an ambient temperature, TA (air temperature around the processor),
is not specified directly.  The only restriction is that TC is met.  To calculate TA values, the
following equations may be used:

TJ = TC + (P *  ΘJC)

TA = TJ - (P *  ΘJA)

TA = TC - (P * ΘCA)

ΘCA = ΘJA - ΘJC

where, TA and TC = ambient and case temperature.  (°C)

ΘCA = case-to-ambient thermal resistance.  (°C/Watt)

ΘJA  = junction-to-ambient thermal resistance. (°C/Watt)
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ΘJC  = junction-to-case thermal resistance. (°C/Watt)

P = maximum power consumption  (Watt)

(See the DC specifications in Chapter 7 for detailed power consumption specifications.)

Table 10-1 through Table 10-5 list the ΘJC and ΘCA values for the Pentium processor
(75/90/100/120/133/150/166/200) and Pentium processor with MMX technology. Figure 10-2
through Figure 10-6 show ΘCA  vs. Heatsink height graphically.

ΘCA is the thermal resistance from package case to ambient. The ΘCA values shown in these
tables are typical values. The actual ΘCA values depend on the heat sink design, interface
between the heat sink and package, the air flow in the system, and thermal interactions
between the processor and surrounding components through PCB and the ambient. ΘJC is the
thermal resistance from die to package case. The ΘJC values shown in these tables are typical
values. The actual ΘJC values depend on actual thermal conductivity and the process of die
attach.

For more detailed information regarding thermal design issues, see the “Pentium® Processor
Thermal Design Guidelines,” Application Note (Order # 241575).

Table 10-1.  Thermal Resistances for SPGA Packages (without Heat Spreader) for the
Pentium ® Processor (75/90/100/120)

ΘΘCA (°C/Watt) vs. Laminar Airflow (linear ft/min)

Heat Sink in Inches ΘΘJC (°C/Watt) 0 100 200 400 600 800

0.25 0.8 9.1 8.0 6.6 4.5 3.6 3.0

0.35 0.8 8.8 7.5 6.0 4.0 3.3 2.8

0.45 0.8 8.4 7.0 5.3 3.6 2.9 2.5

0.55 0.8 8.1 6.5 4.7 3.2 2.6 2.3

0.65 0.8 7.7 6.0 4.3 3.0 2.4 2.1

0.80 0.8 7.0 5.3 3.9 2.8 2.2 2.0

1.00 0.8 6.3 4.7 3.6 2.6 2.1 1.8

1.20 0.8 5.9 4.3 3.3 2.4 2.0 1.8

1.40 0.8 5.4 3.9 3.0 2.2 1.9 1.7

Without Heat Sink 1.3 14.4 13.1 11.7 8.8 7.4 6.5

NOTES:
Heat sinks are omni directional pin aluminum alloy.

Features were based on standard extrusion practices for a given height

Pin size ranged from 50 to 129 mils

Pin spacing ranged from 93 to 175 mils

Based thickness ranged from 79 to 200 mils

Heat sink attach was 0.005” of thermal grease.

Attach thickness of 0.002” will improve performance approximately 0.3oC/Watt
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Figure 10-2.  Thermal Resistance vs. Heatsink Height — SPGA Package without Heat
Spreader for the Pentium ® Processor (75/90/100/120)
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Table 10-2.  Thermal Resistances for SPGA Packages (without Heat Spreader) for the
Pentium ® Processor (120/133/150/166/200)

Heat Sink Height in θθCA(°C/Watt) vs. Laminar Airflow (linear ft/min)

Inches θθJC (°C/Watt) 0 100 200 400 600 800

0.25 1.2 9.4 8.3 6.9 4.8 3.9 3.3

0.35 1.2 9.1 7.8 6.3 4.3 3.6 3.1

0.45 1.2 8.7 7.3 5.6 3.9 3.2 2.8

0.55 1.2 8.4 6.8 5.0 3.5 2.9 2.6

0.65 1.2 8.0 6.3 4.6 3.3 2.7 2.4

0.80 1.2 7.3 5.6 4.2 3.1 2.5 2.3

1.00 1.2 6.6 5.0 3.9 2.9 2.4 2.1

1.20 1.2 6.2 4.6 3.6 2.7 2.3 2.1

1.40 1.2 5.7 4.2 3.3 2.5 2.2 2.0

Without Heat Sink 1.7 14.5 13.8 12.6 10.5 8.6 7.5

NOTES:
Heat sinks are omni directional pin aluminum alloy.

Features were based on standard extrusion practices for a given height

Pin size ranged from 50 to 129 mils

Pin spacing ranged from 93 to 175 mils

Based thickness ranged from 79 to 200 mils

Heat sink attach was 0.005” of thermal grease.

Attach thickness of 0.002” will improve performance approximately 0.3oC/Watt



THERMAL SPECIFICATIONS E

10-6

12/19/96 10:45 AM    Ch10new.doc

INTEL CONFIDENTIAL
(until publication date)

0

1

2

3

4

5

6

7

8

9

10

0.2 0.4 0.6 0.8 1.0 1.2 1.4

Heat Sink Height [in]

T
he

ta
 c

a 
[C

/W
]

0 100
200 400
600 800

Air Flow Rate [LFM]

Figure 10-3.  Thermal Resistance vs. Heatsink Height — SPGA Packages (without Heat
Spreader) for the Pentium ® Processor (120/133/150/166/200)
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Table 10-3.  Thermal Resistances for PPGA Packages for the
Pentium ® Processor (120/133/150/166/200)

Heat Sink Height in θθCA(°C/Watt) vs. Laminar Airflow (linear ft/min)

Inches θθJC (°C/Watt) 0 100 200 400 600 800

0.25 0.5 9.0 7.9 6.5 4.4 3.5 2.9

0.35 0.5 8.7 7.4 5.9 3.9 3.2 2.7

0.45 0.5 8.3 6.9 5.2 3.5 2.8 2.4

0.55 0.5 8.0 6.4 4.6 3.1 2.5 2.2

0.65 0.5 7.6 5.9 4.2 2.9 2.3 2.0

0.80 0.5 6.9 5.2 3.8 2.7 2.1 1.9

1.00 0.5 6.2 4.6 3.5 2.5 2.0 1.7

1.20 0.5 5.8 4.2 3.2 2.3 1.9 1.7

1.40 0.5 5.3 3.8 2.9 2.1 1.8 1.6

Without Heat Sink 1.3 13.0 12.3 11.4 8.0 6.6 5.7

NOTES:
Heat sinks are omni directional pin aluminum alloy.

Features were based on standard extrusion practices for a given height

Pin size ranged from 50 to 129 mils

Pin spacing ranged from 93 to 175 mils

Based thickness ranged from 79 to 200 mils

Heat sink attach was 0.005” of thermal grease.

Attach thickness of 0.002” will improve performance approximately 0.1ºC/Watt
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Figure 10-4.  Thermal Resistance vs. Heatsink Height — PPGA Packages for the
Pentium ® Processor (120/133/150/166/200)

Table 10-4.  Thermal Resistance for SPGA Packages for the Pentium® Processor with
MMX™ Technology

Heat Sink Height in θθCA(°C/Watt) vs. Laminar Airflow (linear ft/min)

Inches θθJC (°C/Watt) 0 100 200 400 600 800

0.25 0.9 9.2 8.1 6.7 4.6 3.7 3.1

0.35 0.9 8.9 7.6 6.1 4.1 3.4 2.9

0.45 0.9 8.5 7.1 5.4 3.7 3.0 2.6

0.55 0.9 8.2 6.6 4.8 3.3 2.7 2.4

0.65 0.9 7.8 6.1 4.4 3.1 2.5 2.2

0.80 0.9 7.1 5.4 4.0 2.9 2.3 2.1

1.00 0.9 6.4 4.8 3.7 2.7 2.2 1.9

1.20 0.9 6.0 4.4 3.4 2.5 2.1 1.9

1.40 0.9 5.5 4.0 3.1 2.3 2.0 1.8

Without Heat Sink 1.4 14.4 13.4 12.1 9.7 8.0 7.0
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NOTES:
Heat sinks are omni directional pin aluminum alloy.

Features were based on standard extrusion practices for a given height

Pin size ranged from 50 to 129 mils

Pin spacing ranged from 93 to 175 mils

Based thickness ranged from 79 to 200 mils

Heat sink attach was 0.005” of thermal grease.

Attach thickness of 0.002” will improve performance approximately 0.3oC/Watt
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Figure 10-5.  Thermal Resistance vs. Heatsink Height — SPGA Packages for the
Pentium ® Processor with MMX™ Technology
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Table 10-5.  Thermal Resistances for PPGA Packages for the Pentium® Processor with
MMX™ Technology

Heat Sink Height in θθCA(°C/Watt) vs. Laminar Airflow (linear ft/min)

Inches θθJC (°C/Watt) 0 100 200 400 600 800

0.25 0.4 8.9 7.8 6.4 4.3 3.4 2.8

0.35 0.4 8.6 7.3 5.8 3.8 3.1 2.6

0.45 0.4 8.2 6.8 5.1 3.4 2.7 2.3

0.55 0.4 7.9 6.3 4.5 3.0 2.4 2.1

0.65 0.4 7.5 5.8 4.1 2.8 2.2 1.9

0.80 0.4 6.8 5.1 3.7 2.6 2.0 1.8

1.00 0.4 6.1 4.5 3.4 2.4 1.9 1.6

1.20 0.4 5.7 4.1 3.1 2.2 1.8 1.6

1.40 0.4 5.2 3.7 2.8 2.0 1.7 1.5

Without Heat Sink 1.2 12.9 12.2 11.2 7.7 6.3 5.4

NOTES:
Heat sinks are omni directional pin aluminum alloy.

Features were based on standard extrusion practices for a given height

Pin size ranged from 50 to 129 mils

Pin spacing ranged from 93 to 175 mils

Based thickness ranged from 79 to 200 mils

Heat sink attach was 0.005” of thermal grease.

Attach thickness of 0.002” will improve performance approximately 0.1oC/Watt
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Figure 10-6.  Thermal Resistance vs. Heatsink Height — PPGA Packages for the
Pentium ® Processor with MMX™ Technology
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CHAPTER 11
TESTABILITY

This chapter describes the features which are included in the Pentium processor for the purpose
of enhancing the testability of the Pentium processor. The capability of the Intel486 CPU test
hooks are included in the Pentium processor; however, some are implemented differently. In
addition, new test features were added to assure timely testing and production of the system
product.

Internal component testing through the Built-InSelf-Test (BIST) feature of the Pentium
processor provides 100% single stuck at fault coverage of the microcode ROM and large PLAs.
Some testing of the instruction cache, data cache, Translation Lookaside Buffers (TLBs), and
Branch Target Buffer (BTB) is also performed. In addition, the constant ROMs are checked.

Tristate test mode and the IEEE 1149.1 “Test Access Port and Boundary Scan” mechanism are
included to facilitate testing of board connections.

See Chapter 16 for more information regarding the testing of the on-chip caches, translation
lookaside buffers, branch target buffer, second level caches, the superscalar architecture, and
internal parity checking through the test registers.

Built-in self-test, tristate test mode, and Boundary Scan are discussed in this chapter.

11.1. BUILT-IN SELF-TEST (BIST)
Self-test is initiated by driving the INIT pin high when RESET transitions from high to low.

No bus cycles are run by the Pentium processor during self-test. The duration of self-test is
approximately 219 core clocks. Approximately 70% of the devices in the Pentium processor are
tested by BIST.

The Pentium processor BIST consists of two parts: hardware self-test and microcode self-test.

During the hardware portion of BIST, the microcode and all large PLAs are tested. All possible
input combinations of the microcode ROM and PLAs are tested.

The constant ROMs, BTB, TLBs and all caches are tested by the microcode portion of BIST.
The array tests (caches, TLBs and BTB) have two passes. On the first pass, data patterns are
written to arrays, read back and checked for mismatches. The second pass writes the
complement of the initial data pattern, reads it back and checks for mismatches. The constant
ROMs are tested by using the microcode to add various constants and check the result against a
stored value.

Upon completion of BIST, the cumulative result of all tests are stored in the EAX register. If
EAX contains 0h, then all checks passed; any non-zero result indicates a faulty unit. Note that
if an internal parity error is detected during BIST, the processor will assert the IERR# pin and
attempt to shutdown.
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11.2. TRISTATE TEST MODE
When the FLUSH# pin is sampled low in the clock prior to the RESET pin going from high to
low, the Pentium processor enters tristate test mode. The Pentium processor floats all of its
output pins and bi-directional pins including pins which are never floated during normal
operation (except TDO). Tristate test mode can be initiated in order to facilitate testing of
board connections. The Pentium processor remains in tristate test mode until the RESET pin is
toggled again.

In a dual-processor system, the private interface pins are not floated in Tri-state Test mode.
These pins are PBREQ#, PBGNT#, PHIT#, and PHITM#.

NOTE

There are several pins that have internal pullups or pulldowns attached that
show these pins going high or low, respectively, during Tri-state Test mode.
There is one pin, PICD1, that has an internal pulldown attached that shows
this pin going low during Tri-state Test mode. The five pins that have pullups
are PHIT#, PHITM#, PBREQ#, PBGNT#, and PICD0. There are two other
pins that have pullups attached during dual processor mode, HIT# and
HITM#. The pullups on these pins (except HIT#) have a value of about 30K
Ohms, HIT# is about 2K Ohms.

11.3. IEEE 1149.1 TEST ACCESS PORT AND BOUNDARY SCAN
MECHANISM

The IEEE Standard Test Access Port and Boundary Scan Architecture (Standard 1149.1) is
implemented in the Pentium processor. This feature allows board manufacturers to test board
interconnects by using “boundary scan,” and to test the Pentium processor itself through BIST.
All output pins are tristateable through the IEEE 1149.1 mechanism.

11.3.1. Pentium ® Processor Test Access Port (TAP)
The Pentium processor Test Access Port (TAP) contains a TAP controller, a Boundary Scan
Register, 4 input pins (TDI, TCK, TMS, and TRST#) and one output pin (TDO). The TAP
controller consists of an Instruction Register, a Device ID Register, a Bypass Register, a
Runbist Register and control logic. See Figure 11-1 for the TAP Block Diagram.
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Pentium® Processor

Boundary Scan Test Register

External Pins and
Control Cells

Device Identification

BYPASS Register

RUNBIST Register

Instruction Decode/Control Logic

Instruction Register

TDI

TRST#

TCK

TMS

TAP Controller

TDO-EN

TDO

Figure 11-1. Test Access Port Block Diagram
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11.3.1.1. TAP PINS

As mentioned in the previous section, the TAP includes 4 input pins and one output pin. TDI
(test data in) is used to shift data or instructions into the TAP in a serial manner. TDO (test data
out) shifts out the response data. TMS (test mode select) is used to control the state of the TAP
controller. TCK is the test clock. The TDI and TMS inputs are sampled on the rising edge of
this TCK. Asserting TRST# will force the TAP controller into the Test Logic Reset State (see
the TAP controller state diagram, Figure 11-4). The input pins (TDI, TMS, TCK, and TRST#)
have pullup resistors.

11.3.1.2. TAP REGISTERS

Boundary Scan Register

The IEEE standard requires that an extra single bit shift register be inserted at each pin on the
device (Pentium processor). These single bit shift registers are connected into a long shift
register, the Boundary Scan Register. Therefore, the Boundary Scan Register is a single shift
register path containing the boundary scan cells that are connected to all input and output pins
of the Pentium processor. Figure 11-2 shows the logical structure of the Boundary Scan
Register. While output cells determine the value of the signal driven on the corresponding pin,
input cells only capture data; they do not affect the normal operation of the device (the INTEST
instruction is not supported by the Pentium processor). Data is transferred without inversion
from TDI to TDO through the Boundary Scan Register during scanning. The Boundary Scan
Register can be operated by the EXTEST and SAMPLE/PRELOAD instructions. The
Boundary Scan Register order is defined later in this chapter.
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 PDB40

SYSTEM
LOGIC
INPUT

TCK

B/S
CELL

CPU
LOGIC

B/S
CELL

B/S
CELL

B/S
CELL

B/S
CELL

BOUNDARY SCAN REGISTER

SYSTEM
BIDIRECTIONAL
PIN

SYSTEM
3-STATE
OUTPUT

TDOTDI

Figure 11-2. Boundary Scan Register

BYPASS Register

The Bypass Register is a one-bit shift register that provides the minimal length path between
TDI and TDO. This path can be selected when no test operation is being performed by the
component to allow rapid movement of test data to and from other components on the board.
While the bypass register is selected data is transferred from TDI to TDO without inversion.
The Bypass Register loads a logic 0 at the start of a scan cycle.

Device ID Register

The Device Identification Register contains the manufacturer’s identification code, part number
code, and version code in the format shown in Figure 11-3. It is selected to be connected
between TDI and TDO by using the IDCODE instruction.
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PDB41

1
MANUFACTURER

IDENTITYPART NUMBERVERSION

Figure 11-3. Format of the Device ID Register

The Pentium processor has divided up the 16-bit part number into 3 fields. The upper 7 bits are
used to define the product type (examples: Cache, CPU architecture). The middle 4 bits are
used to represent the generation or family (examples: Intel486 CPU, Pentium processor). The
lower 5 bits are used to represent the model (examples: SX, DX). Using this definition, the
Pentium processor ID code is shown in Table 11-1.

The version field is used to indicate the stepping ID.

Table 11-1. Device ID Register Values

Part Number

Processor Stepping Version
Product

Type Generation Model
Manufacturing

ID “1”
Entire Code

Pentium®

processor
x xh 01h 05h 08h 09h 1 x82A8013h

(75/90/120/
133/150/
166/200)

x xh 01h 05h 04h 09h 1 x82A4013h

Pentium
processor

with MMX™
technology

x xh 01h 05h 03h 09h 1 x82A3013h

Runbist Register

The Runbist Register is a one bit register used to report the results of the Pentium processor
BIST when it is initiated by the RUNBIST instruction. This register is loaded with “0” upon
successful completion of BIST.
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Instruction Register

This register is 13 bits wide. The command field (the lower 4 bits of instruction) is used to
indicate one of the following instructions: EXTEST, IDCODE, RUNBIST,
SAMPLE/PRELOAD and BYPASS. The upper 9 bits are reserved by Intel.

The most significant bit of the Instruction Register is connected to TDI, the least significant to
TDO.

11.3.1.3. TAP CONTROLLER STATE DIAGRAM

Figure 11-4 shows the 16-state TAP controller state diagram. A description of each state
follows. Note that the state machine contains two main branches to access either data or
instruction registers.
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Figure 11-4. TAP Controller State Diagram
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Test-Logic-Reset State

In this state, the test logic is disabled so that normal operation of the device can continue
unhindered. During initialization, the Pentium processor initializes the instruction register such
that the IDCODE instruction is loaded.

No matter what the original state of the controller, the controller enters Test-Logic-Reset state
when the TMS input is held high (logic 1) for at least five rising edges of TCK. The controller
remains in this state while TMS is high. The TAP controller is forced to enter this state when
the TRST# pin is asserted (with TCK toggling or TCK at a high logic value). The Pentium
processor automatically enters this state at power-up.

Run-Test/Idle State

This is a controller state between scan operations. Once in this state, the controller remains in
this state as long as TMS is held low. In devices supporting the RUNBIST instruction, the
BIST is performed during this state and the result is reported in the Runbist Register. For
instructions not causing functions to execute during this state, no activity occurs in the test
logic. The instruction register and all test data registers retain their previous state. When TMS
is high and a rising edge is applied to TCK, the controller moves to the Select-DR state.

Select-DR-Scan State

This is a temporary controller state. The test data register selected by the current instruction
retains its previous state. If TMS is held low and a rising edge is applied to TCK when in this
state, the controller moves into the Capture-DR state, and a scan sequence for the selected test
data register is initiated. If TMS is held high and a rising edge is applied to TCK, the controller
moves to the Select-IR-Scan state.

The instruction does not change in this state.

Capture-DR State

In this state, the Boundary Scan Register captures input pin data if the current instruction is
EXTEST or SAMPLE/PRELOAD. The other test data registers, which do not have parallel
input, are not changed.

The instruction does not change in this state.

When the TAP controller is in this state and a rising edge is applied to TCK, the controller
enters the Exit1-DR state if TMS is high or the Shift-DR state if TMS is low.

Shift-DR State

In this controller state, the test data register connected between TDI and TDO as a result of the
current instruction shifts data one stage toward its serial output on each rising edge of TCK.

The instruction does not change in this state.
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When the TAP controller is in this state and a rising edge is applied to TCK, the controller
enters the Exit1-DR state if TMS is high or remains in the Shift-DR state if TMS is low.

Exit1-DR State

This is a temporary state. While in this state, if TMS is held high, a rising edge applied to TCK
causes the controller to enter the Update-DR state, which terminates the scanning process. If
TMS is held low and a rising edge is applied to TCK, the controller enters the Pause-DR state.

The test data register selected by the current instruction retains its previous value during this
state. The instruction does not change in this state.

Pause-DR State

The pause state allows the test controller to temporarily halt the shifting of data through the test
data register in the serial path between TDI and TDO. An example use of this state could be to
allow a tester to reload its pin memory from disk during application of a long test sequence.

The test data register selected by the current instruction retains its previous value during this
state. The instruction does not change in this state.

The controller remains in this state as long as TMS is low. When TMS goes high and a rising
edge is applied to TCK, the controller moves to the Exit2-DR state.

Exit2-DR State

This is a temporary state. While in this state, if TMS is held high, a rising edge applied to TCK
causes the controller to enter the Update-DR state, which terminates the scanning process. If
TMS is held low and a rising edge is applied to TCK, the controller enters the Shift-DR state.

The test data register selected by the current instruction retains its previous value during this
state. The instruction does not change in this state.

Update-DR State

The Boundary Scan Register is provided with a latched parallel output to prevent changes at
the parallel output while data is shifted in response to the EXTEST and SAMPLE/PRELOAD
instructions. When the TAP controller is in this state and the Boundary Scan Register is
selected, data is latched onto the parallel output of this register from the shift-register path on
the falling edge of TCK. The data held at the latched parallel output does not change other than
in this state.

All shift-register stages in the test data register selected by the current instruction retains their
previous value during this state. The instruction does not change in this state.

Select-IR-Scan State

This is a temporary controller state. The test data register selected by the current instruction
retains its previous state. If TMS is held low and a rising edge is applied to TCK when in this
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state, the controller moves into the Capture-IR state, and a scan sequence for the instruction
register is initiated. If TMS is held high and a rising edge is applied to TCK, the controller
moves to the Test-Logic-Reset state. The instruction does not change in this state.

Capture-IR State

In this controller state the shift register contained in the instruction register loads a fixed value
on the rising edge of TCK.

The test data register selected by the current instruction retains its previous value during this
state. The instruction does not change in this state.

When the controller is in this state and a rising edge is applied to TCK, the controller enters the
Exit1-IR state if TMS is held high, or the Shift-IR state if TMS is held low.

Shift-IR State

In this state the shift register contained in the instruction register is connected between TDI and
TDO and shifts data one stage towards its serial output on each rising edge of TCK.

The test data register selected by the current instruction retains its previous value during this
state. The instruction does not change in this state.

When the controller is in this state and a rising edge is applied to TCK, the controller enters the
Exit1-IR state if TMS is held high, or remains in the Shift-IR state if TMS is held low.

Exit1-IR State

This is a temporary state. While in this state, if TMS is held high, a rising edge applied to TCK
causes the controller to enter the Update-IR state, which terminates the scanning process. If
TMS is held low and a rising edge is applied to TCK, the controller enters the Pause-IR state.

The test data register selected by the current instruction retains its previous value during this
state. The instruction does not change in this state.

Pause-IR State

The pause state allows the test controller to temporarily halt the shifting of data through the
instruction register.

The test data register selected by the current instruction retains its previous value during this
state. The instruction does not change in this state.

The controller remains in this state as long as TMS is low. When TMS goes high and a rising
edge is applied to TCK, the controller moves to the Exit2-IR state.
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Exit2-IR State

This is a temporary state. While in this state, if TMS is held high, a rising edge applied to TCK
causes the controller to enter the Update-IR state, which terminates the scanning process. If
TMS is held low and a rising edge is applied to TCK, the controller enters the Shift-IR state.

The test data register selected by the current instruction retains its previous value during this
state. The instruction does not change in this state.

Update-IR State

The instruction shifted into the instruction register is latched onto the parallel output from the
shift-register path on the falling edge of TCK. Once the new instruction has been latched, it
becomes the current instruction.

Test data registers selected by the current instruction retain their previous value.

11.3.2. Boundary Scan
The IEEE Standard 1149.1 Boundary Scan is implemented using the Test Access Port and TAP
Controller as described above. The Pentium processor implements all of the required boundary
scan features as well as some additional features. The required pins (all 3.3V) are: TDI, TDO,
TCK and TMS. The required registers are: Boundary Scan, Bypass, and the Instruction
Register. Required instructions include: BYPASS, SAMPLE/PRELOAD and EXTEST. The
additional pin, registers, and instructions are implemented to add additional test features.

On the board level, the TAP provides a simple serial interface that makes it possible to test all
signal traces with only a few probes. The testing is controlled through the TAP Controller State
machine that can be implemented with automatic test equipment or a PLD.

On power up the TAP controller is automatically initialized to the test logic reset state (test
logic disabled), so normal Pentium processor behavior is the default. The Test Logic Reset
State is also entered when TRST# is asserted, or when TMS is high for 5 or more consecutive
TCK clocks.

To implement boundary scan, the TDO of one device is connected to TDI of the next in a
daisy-chain fashion. This allows all of the I/O of the devices on this chain to be accessed
through a long shift register. TMS and TCK are common to all devices.

The Boundary Scan Register for the Pentium processor contains a cell for each pin.

The following is the bit order of the Pentium processor with MMX technology Boundary Scan
Register (left to right, top to bottom):

TDI ➙ Reserved, Reserved, Reserved, Reserved, Reserved, Reserved, Reserved, STPCLK#,
Reserved, Reserved, Reserved, Reserved, Reserved, FRCMC#, PEN#, INIT, IGNNE#, SMI#,
INTR, RS#, NMI, D/P#, A21, A22, A23, A24, A25, A26, A27, A28, A29, A30, A31, A3, A4,
A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, Disabus*,
RESET, CLK, SCYC, BE7#, BE6#, BE5#, BE4#, BE3#, BE2#, BE1#, BE0#, A20M#,
FLUSH#, BUSCHK#, W/R#, HIT#, HITM#, ADS#, EADS#, D/C#, PWT, PCD, ADSC#,
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LOCK#, AP, HLDA, BREQ, APCHK#, PCHK#, PRDY, SMIACT#, PBGNT#, PBREQ#,
PHIT#, PHITM#, HOLD, WB/WT#, Dismiscf*, Dismisca*, Disua1bus*, Disua2bus*,
Dismisc*, Disbusl*, Dismisch*, Disbus*, NA#, BOFF#, BRDY#, BRDYC#, KEN#, AHOLD,
INV, EWBE#, CACHE#, M/IO#, BP3, BP2, PM1BP1, PM0BP0, FERR#, IERR#, DP7, D63,
D62, D61, D60, D59, D58, D57, D56, DP6, D55, D54, D53, D52, D51, D50, D49, D48, DP5,
D47, Diswr*, D46, D45, D44, D43, D42, D41, D40, DP4, D39, D38, D37, D36, D35, D34,
D33, D32, DP3, D31, D30, D29, D28, D27, D26, D25, D24, DP2, D23, D22, D21, D20, D19,
D18, D17, D16, DP1, D15, D14, D13, D12, D11, D10, D9, D8, DP0, D7, D6, D5, D4, D3,
D2, D1, D0, PICCLK, Reserved, PICD0, PICD1, Disapsba* ➙ TDO

The following is the bit order of the Pentium processor (75/90/100/120/133/150/166/200)
Boundary Scan Register (left to right, top to bottom):

TDI -> Disapsba*, PICD1, PICD0, Reserved, PICCLK, D0, D1, D2, D3, D4, D5, D6, D7,
DP0, D8, D9, D10, D11, D12, D13, D14, D15, DP1, D16, D17, D18, D19, D20, D21, D22,
D23, DP2, D24, D25, D26, D27, D28, D29, D30, D31, DP3, D32, D33, D34, D35, D36, D37,
D38, D39, DP4, D40, D41, D42, D43, D44, D45, D46, Diswr*, D47, DP5, D48, D49, D50,
D51, D52, D53, D54, D55, DP6, D56, D57, D58, D59, D60, D61, D62, D63, DP7, IERR#,
FERR#, PM0/BP0, PM1/BP1, BP2, BP3, M/IO#, CACHE#, EWBE#, INV, AHOLD, KEN#,
BRDYC#, BRDY#, BOFF#, NA#, Disbus*, Dismisch*, Disbus1*, Dismisc*, Disua2bus*,
Disua1bus*, Dismisca*, Dismiscfa*, WB/WT#, HOLD, PHITM#, PHIT#, PBREQ#,
PBGNT#, SMIACT#, PRDY, PCHK#, APCHK#, BREQ, HLDA, AP, LOCK#, ADSC#, PCD,
PWT, D/C#, EADS#, ADS#, HITM#, HIT#, W/R#, BUSCHK#, FLUSH#, A20M#, BE0#,
BE1#, BE2#, BE3#, BE4#, BE5#, BE6#, BE7#, SCYC, CLK, RESET, Disabus*, A20, A19,
A18, A17, A16, A15, A14, A13, A12, A11, A10, A9, A8, A7, A6, A5, A4, A3, A31, A30,
A29, A28, A27, A26, A25, A24, A23, A22, A21, D/P#, NMI, R/S#, INTR, SMI#, IGNNE#,
INIT, PEN#, FRCMC#, Reserved, Reserved, BF0, BF1, Reserved, STPCLK#, Reserved,
Reserved, Reserved, Reserved, Reserved, Reserved, CPUTYP -> TDO

“Reserved” includes the no connect “NC” signals on the Pentium processor.

The cells marked with an “*” are control cells that are used to select the direction of bi-
directional pins or tristate the output pins.  If  “1” is loaded into the control cell, the associated
pin(s) are tristated or selected as input.  The following lists the control cells and their
corresponding pins:

For Pentium Processor with MMX Technology:

Disabus: A31-A3, AP.

Disbus: BE7-0#, CACHE#, SCYC, M/IO#, D/C#, W/R#, PWT, PCD.

Disbusl: ADS#, ADSC#, LOCK#.

Dismisc: APCHK#, PCHK#, PRDY, BP3, BP2, PM1/BP1, PM0/BP0.

Dismiscf: D/P#.

Dismisch: FERR#, SMIACT#, BREQ, HLDA, HIT#, HITM#.

Dismisca: IERR#.

Disua1bus: PBREQ#, PHIT#, PHITM#.
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Disua2bus: PBGNT#.

Diswr: D63-0, DP7-0.

Disapsba: PICD1-0.

For Pentium Processors (75/90/100/120/150/166/200):

Disabus: A31-A3, AP

Dismiscfa: D/P#, FERR#

Dismisca: IERR#

Disua1bus: PBREQ#, PHIT#, PHITM#

Disua2bus: PBGNT#

Dismisc: APCHK#, PHCK#, PRDY#, BP3, BP2, PM1/BP1, PM0/BP0

Disbus1: ADS#, ADSC#, LOCK#

Dismisch: HIT#, HITM#, HLDA, BREQ#, SMIACT#

Disbus: SCYC, BE7#-BE0#, W/R#, D/C#, PWT, PCD, CACHE#, M/IO#

Diswr: DP7-DP0, D63-D0

Disapsba: PICD0, PICD1

11.3.2.1. PENTIUM® PROCESSOR BOUNDARY SCAN TAP INSTRUCTION
SET

Table 11-2 shows the Pentium Processor Boundary Scan TAP instructions and their instruction
register encoding. A description of each instruction follows. The IDCODE and BYPASS
instructions may also be executed concurrent with processor execution. The following
instructions are not affected by the assertion of RESET: EXTEST, SAMPLE PRELOAD,
BYPASS, and ID CODE.

The instructions should be scanned in to the TAP port least significant bit first (bit 0 of the
TAP Command field is the first bit to be scanned in).
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Table 11-2. TAP Instruction Set and Instruction Register Encoding

Instruction Name Instruction Register Bits 12:4
TAP Command
Field [Bits 3:0]

EXTEST XXXXXXXXX 0000

Sample/Preload XXXXXXXXX 0001

IDCODE XXXXXXXXX 0010

Private Instruction XXXXXXXXX 0011

Private Instruction XXXXXXXXX 0100

Private Instruction XXXXXXXXX 0101

Private Instruction XXXXXXXXX 0110

RUNBIST XXXXXXXXX 0111

Private Instruction XXXXXXXXX 1000

Private Instruction XXXXXXXXX 1001

Private Instruction XXXXXXXXX 1010

HI-Z XXXXXXXXX 1011

Private Instruction XXXXXXXXX 1100

BYPASS XXXXXXXXX 1111

The TAP Command field encodings not listed in Table 11-2 (1101, 1110) are unimplemented
and will be interpreted as Bypass instructions.

EXTEST The EXTEST instruction allows testing of circuitry external to the
component package, typically board interconnects. It does so by
driving the values loaded into the Pentium processor’s Boundary
Scan Register out on the output pins corresponding to each
boundary scan cell and capturing the values on the Pentium
processor input pins to be loaded into their corresponding
Boundary Scan Register locations. I/O pins are selected as input or
output, depending on the value loaded into their control setting
locations in the Boundary Scan Register. Values shifted into input
latches in the Boundary Scan Register are never used by the
internal logic of the Pentium processor. Note: after using the
EXTEST instruction, the Pentium processor must be reset before
normal (non-boundary scan) use.

SAMPLE/PRELOAD The SAMPLE/PRELOAD performs two functions. When the TAP
controller is in the Capture-DR state, the SAMPLE/PRELOAD
instruction allows a “snap-shot” of the normal operation of the
component without interfering with that normal operation. The
instruction causes Boundary Scan Register cells associated with
outputs to sample the value being driven by the Pentium processor.
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It causes the cells associated with inputs to sample the value being
driven into the Pentium processor. On both outputs and inputs the
sampling occurs on the rising edge of TCK. When the TAP
controller is in the Update-DR state, the SAMPLE/PRELOAD
instruction preloads data to the device pins to be driven to the
board by executing the EXTEST instruction. Data is preloaded to
the pins from the Boundary Scan Register on the falling edge of
TCK.

IDCODE The IDCODE instruction selects the device identification register
to be connected to TDI and TDO. This allows the device
identification code to be shifted out of the device on TDO.

RUNBIST The RUNBIST instruction selects the one (1) bit Runbist Register,
loads a value of “1” into the Runbist Register, and connects it to
TDO. It also initiates the built-in self test (BIST) feature of the
Pentium processor. After loading the RUNBIST instruction code
in the instruction register, the TAP controller must be placed in the
Run-Test/Idle state. BIST begins on the first rising edge of TCK
after entering the Run-Test/Idle state. The TAP controller must
remain in the Run-Test/Idle state until BIST is completed. It
requires 219 core clock cycles to complete BIST and report the
result to the Runbist Register. After completing BIST, the value in
the Runbist Register should be shifted out on TDO during the
Shift-DR state. A value of “0” being shifted out on TDO indicates
BIST successfully completed. A value of “1” indicates a failure
occurred. The CLK clock must be running in order to execute
RUNBIST. After executing the RUNBIST instruction, the Pentium
processor must be reset prior to normal (non-boundary scan)
operation.

HI-Z The TAP Hi-Z instruction causes all outputs and I/Os of the
Pentium processor to go to a high-impedance state (float)
immediately.  The Hi-Z state is terminated by either resetting the
TAP with the TRST# pin, by issuing another TAP instruction, or
by entering the Test_Logic_Reset state. The Hi-Z state is enabled
or disabled on the first TCK clock after the TAP instruction has
entered the UPDATE-IR state of the TAP control state machine.
This instruction overrides all other bus cycles.  Resetting the
Pentium processor will not disable this instruction since CPU
RESET does not reset the TAP.

BYPASS The BYPASS instruction selects the Bypass Register to be
connected to TDI and TDO. This effectively bypasses the test
logic on the Pentium processor by reducing the shift length of the
device to one bit. Note that an open circuit fault in the board level
test data path will cause the Bypass Register to be selected
following an instruction scan cycle due to a pull-up resistor on the
TDI input. This was implemented to prevent any unwanted
interference with the proper operation of the system logic.
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CHAPTER 12
ERROR DETECTION

The Pentium processor incorporates a number of data integrity features that are focused on the
detection and limited recovery of errors. The data integrity features in the Pentium processor
provide capabilities for error detection of the internal devices and the external interface. The
Pentium processor (75/90/100/120/133/150/166/200) also provides the capability to obtain
maximum levels of error detection by incorporating Functional Redundancy Checking (FRC)
support. Error detecting circuits in the Pentium processor do not limit the operating frequency
of the chip.

The data integrity features in the Pentium processor can be categorized as (1) internal error
detection, (2) error detection at the bus interface, and (3) FRC support.

12.1. INTERNAL ERROR DETECTION
Detection of errors of a majority of the devices in the Pentium processor is accomplished by
employing parity checking in the large memory arrays of the chip. The data and instruction
caches (both storage and tag arrays), translation lookaside buffers, and microcode ROM are all
parity protected. The following describes the parity checking employed in the major memory
arrays in the Pentium processor (MESI status bits are not parity protected):

• Parity bit per byte in the data cache storage array.

• Parity bit per entry in the data cache tag array.

• Four Parity bits: One for each of the even upper, even lower, odd upper, odd lower bits of
an instruction cache line.

• Parity bit per entry in the instruction cache tag array.

• Parity bit per entry in both the data and instruction TLBs storage arrays.

• Parity bit per entry in both the data and instruction TLBs tag arrays.

• Parity bit per entry in the microcode ROM.

Parity checking as described above provides error detection coverage of 53% of the on-chip
devices. This error detection coverage number also includes the devices in the branch target
buffer since branch predictions are always verified.

If a parity error has occurred internally, then the Pentium processor operation can no longer be
trusted. Normally, a parity error on a read from an internal array will cause the Pentium
processor to assert the IERR# pin and then shutdown. (Shutdown will be entered assuming it is
not prevented from doing so by the error.); however, if TR1.NS is set, IERR# will not result in
processor shutdown. Execution will continue, but operation will not be reliable. Parity errors
on reads during normal instruction execution, reads during a flush operation, reads during
BIST and testability cycles, and reads during inquire cycles will cause IERR# to be asserted.
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The IERR# pin will be asserted for one clock for each clock a parity error is detected and may
be latched by the system. The IERR# pin is a glitch free signal, so no spurious assertions of
IERR# will occur.

In general, internal timing constraints of the Pentium processor do not allow the inhibition of
writeback cycles caused by inquire cycles, FLUSH# assertion or the WBINVD instruction
when a parity error is encountered. In those cases where an internal parity error occurred
during the generation of a writeback cycle, and that cycle was not able to be inhibited, the
IERR# pin can be used to recognize that the writeback should be ignored. If an internal parity
error occurs during a flush operation, the Pentium processor will assert the IERR# pin as stated
above, and the internal caches will be left in a partially flushed state. The flush, flush
acknowledge, or writeback special cycles will not be run.

12.2. ERROR DETECTION AT PENTIUM® PROCESSOR
INTERFACE

The Pentium processor provides parity checking on the external address and data buses. There
is one parity bit for each byte of the data bus and one parity bit for bits A31-A5 of the address
bus.

12.2.1. Address Parity
A separate and independent mechanism is used for parity checking on the address bus during
inquire cycles. Even address parity is driven along with the address bus during all Pentium
processor initiated bus cycles and checked during inquire cycles. When the Pentium processor
is driving the address bus, even parity is driven on the AP pin. When the address bus is being
driven into the Pentium processor during an inquire cycle, this pin is sampled in any clock in
which EADS# is sampled asserted. APCHK# is driven with the parity status two clocks after
EADS# is sampled active. The APCHK# output (when active) indicates that a parity error has
occurred on the address bus during an inquire. Figure 12-1 depicts an address parity error
during an inquire cycle. For additional timing diagrams which show address parity, see the Bus
Functional Description chapter. The APCHK# pin will be asserted for one clock for each clock
a parity error is detected and may be latched by the system. The APCHK# pin is a glitch free
signal, so no spurious assertions of APCHK# will occur.

In the event of an address parity error during inquire cycles, the internal snoop will not be
inhibited. If the inquire hits a modified line in this situation and an active AHOLD prevents the
Pentium processor from driving the address bus, the Pentium processor will potentially
writeback a line at an address other than the one intended. If the Pentium processor is not
driving the address bus during the writeback cycle, it is possible that memory will be
corrupted.
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Figure 12-1.  Inquire Cycle Address Parity Checking

Driving APCHK# is the only effect that bad address parity has on the Pentium processor. It is
the responsibility of the system to take appropriate action if a parity error occurs. If parity
checks are not implemented in the system, the APCHK# pin may be ignored.

12.2.2. Data Parity
Even data parity is driven on the DP7-DP0 pins in the same clock as the data bus is driven dur-
ing all Pentium processor initiated data write cycles. During reads, even parity information
may be driven back to the Pentium processor on the data parity pins along with the data being
returned. Parity status for data sampled is driven on the PCHK# pin two clocks after the data is
returned. PCHK# is driven low if a data parity error was detected, otherwise it is driven high.
The PCHK# pin will be asserted for one clock for each clock a parity error is detected and may
be latched by the system. The PCHK# pin is a glitch free signal, so no spurious assertions of
PCHK# will occur. Figure 12-2 shows when the data parity (DP) pins are driven/sampled and
when the PCHK# pin is driven. For additional timing diagrams that show data parity, see the
Bus Functional Description chapter (Chapter 6).
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Figure 12-2.  Data Parity During a Read and Write Cycle

Driving PCHK# is the only effect that bad data parity has on the Pentium processor. It is the
responsibility of the system to take appropriate action if a parity error occurs. If parity checks
are not implemented in the system, the PCHK# pin may be ignored.

12.2.2.1. MACHINE CHECK EXCEPTION AS A RESULT OF A DATA PARITY
ERROR

The PEN# input determines whether a machine check interrupt will be taken as a result of a
data parity error. If a data parity error occurs on a read for which PEN# was asserted, the
physical address and cycle information of the cycle causing the parity error will be saved in the
Machine Check Address Register and the Machine Check Type Register. If in addition, the
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CR4.MCE is set to 1, the machine check exception is taken. The “Machine Check Exception”
section provides more information on the machine check exception.

The parity check pin, PCHK#, is driven as a result of read cycles regardless of the state of the
PEN# input.

12.2.3. Machine Check Exception
As mentioned in the earlier section, a new exception has been added to the Pentium processor.
This is the machine check exception which resides at interrupt vector 18 (decimal). In proc-
essors previous to the Pentium processor, interrupt vector 18 was reserved and, therefore, there
should be no interrupt routine located at vector 18. For reasons of compatibility, the MCE bit
of the CR4 register will act as the machine check enable bit. When set to “1,” this bit will
enable the generation of the machine check exception. When reset to “0,” the processor will
inhibit generation of the machine check exception. CR4.MCE will be cleared on processor
reset. In the event that a system is using the machine check interrupt vector for another
purpose and the Machine Check Exception is enabled, the interrupt routine at vector 18 must
examine the state of the CHK bit in the Machine Check Type register to determine the cause of
its activation. Note that at the time the system software sets CR4.MCE to 1, it must read the
Machine Check Type register in order to clear the CHK bit.

The Machine Check Exception is an abort, that is, it is not possible to reliably restart the
instruction stream or identify the instruction causing the exception. Therefore, the exception
does not allow the restart of the program that caused the exception. The Pentium processor
does not generate an error code for this exception. Since the machine check exception is
synchronous to a bus cycle and not an instruction, the IP pushed on to the stack may not be
pointing to the instruction which caused the failing bus cycle.

The Machine Check Exception can be caused by one of two events: 1) Detection of data parity
error during a read when the PEN# input is active, or 2) The BUSHCK# input being sampled
active. When either of these events occur, the cycle address and type will be latched into the
Machine Check Address (MCA) and Machine Check Type (MCT) registers (independent of
the state of the CR4.MCE bit). If in addition, the CR4.MCE is “1,” a machine check exception
will occur. When the MCA and MCT registers are latched, the MCT.CHK bit is set to “1”
indicating that their contents are valid (Figure 12-3).

The Machine Check Address register, and the Machine Check Type register are model
specific, read only registers. The Machine Check Address register is a 64-bit register
containing the physical address for the cycle causing the error. The Machine Check Type
register is a 64-bit register containing the cycle specification information, as defined in
Figure 12-3. These registers are accessed using the RDMSR instruction. When the MCT.CHK
is zero, the contents of the MCT and MCA registers are undefined. When the MCT register is
read (using the RDMSR instruction), the CHK bit is reset to zero. Therefore, software must
read the MCA register before reading the MCT register.
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Figure 12-3. Machine Check Type Register

The bits in the Machine Check Type Register are defined as follows:

CHK: This bit is set to 1 when the Machine Check Type register is
latched and is reset to 0 after the Machine Check Type register is
read via the RDMSR instruction. In the event that the Machine
Check Type register is latched in the same clock in which it is
read, the CHK bit will be set. The CHK bit is reset to “0” on
assertion of RESET. When the CHK bit is “0,” the contents of the
MCT and MCA registers are undefined.

*M/IO#, D/C#, W/R#: These cycle definition pins can be decoded to determine if the
cycle in error was a memory or I/O cycle, a data or code fetch, and
a read or a write cycle. (* See Table 4-2 for Quick pin reference.)

LOCK: Set to “1” if LOCK# is asserted for the cycle

12.2.4. Bus Error
The BUSCHK# input provides the system a means to signal an unsuccessful completion of a
bus cycle. This signal is sampled on any edge in which BRDY# is sampled, for reads and
writes. If this signal is sampled active, then the cycle address and type will be latched into the
Machine Check Address and Machine Check Type registers. If in addition, the CR4.MCE bit
is set to 1, the processor will be vectored to the machine check exception.

Even if BUSCHK# is asserted in the middle of a cycle, BRDY# must be asserted the
appropriate number of clocks required to complete the bus cycle. The purpose of BUSCHK# is
to act as an indication of an error that is synchronous to bus cycles. If the machine check
interrupt is not enabled, i.e., the MCE bit in the CR4 register is zero, then an assertion of
BUSCHK# will not cause the processor to vector to the machine check exception.

The Pentium processor can remember only one machine check exception at a time. This
exception is recognized on an instruction boundary. If BUSCHK# is sampled active while
servicing the machine check exception for a previous BUSCHK#, it will be remembered by the
processor until the original machine check exception is completed. It is then that the processor
will service the machine check exception for the second BUSCHK#. Note that only one
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BUSCHK# will be remembered by the processor while the machine exception for the previous
one is being serviced.

For use of BUSCHK# with STPCLK#, please refer to Table 4-2.

When the BUSCHK# is sampled active by the processor, the cycle address and cycle type
information for the failing bus cycle is latched upon assertion of the last BRDY# of the bus
cycle. The information is latched into the Machine Check Address and Machine Check Type
registers respectively. However, if the BUSCHK# input is not deasserted before the first
BRDY# of the next bus cycle, and the machine check exception for the first bus cycle has not
occurred, then new information will be latched into the MCA and MCT registers, over-writing
the previous information at the completion of this new bus cycle. Therefore, in order for the
MCA and MCT registers to report the correct information for the failing bus cycle when the
machine check exception for this cycle is taken at the next instruction boundary, the system
must deassert the BUSCHK# input immediately after the completion of the failing bus cycle
and before the first BRDY# of the next bus cycle is returned.

12.2.5. Functional Redundancy Checking
Functional Redundancy Checking (FRC) in the Pentium processor will provide maximum
error detection (>99%) of on-chip devices and the processor’s interface. A “checker” Pentium
processor that executes in lock step with the “master” Pentium processor is used to compare
output signals every clock. Note, the Pentium processor with MMX technology does not
support FRC. Also, FRC is not supported in Dual processor designs.

Two Pentium processors are required to support FRC. Both the master and checker must be of
the same stepping and same bus fraction. The Pentium processor configured as a master
operates according to bus protocol described in this document. The outputs of the checker
Pentium processor are tristated (except IERR#, TDO, PICD0, PICD1—however, these signals
are not part of FRC) so the outputs of the master can be sampled. If the sampled value differs
from the value computed internally by the checker, the checker asserts the IERR# output to
indicate an error. A master-checker pair should have all pins except FRCMC#, IERR#, PICD0,
PICD1 and TDO tied together.

The Pentium processors are configured either as a master or a checker by driving the FRCMC#
input to the appropriate level while RESET is asserted. If sampled low during reset, the
Pentium processor enters checker mode and tristates all outputs except IERR# and TDO
(IERR# is driven inactive during reset). This feature is provided to prevent bus contention
before reset is completed. The final master/checker configuration is determined when RESET
transitions from high to low. The final master/checker configuration may not be changed other
than by a subsequent RESET.

The IERR# pin reflects the result of the master-checker comparison. It is asserted for one
clock, two clocks after the mismatch. It is asserted for each detected mismatch, so IERR# may
be low for more than one consecutive clock. During the assertion of RESET, IERR# will be
driven inactive. After RESET is deasserted, IERR# will not be asserted due to a mismatch until
two clocks after the ADS# of the first bus cycle (i.e., in the third clock of the first bus cycle).
IERR# will reflect pin comparisons thereafter. Note that IERR# may be asserted due to an
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internal parity error prior to the first bus cycle. It is possible for FRC mismatches to occur in
the event that an undefined processor state is driven off-chip, therefore no processor state
should be stored without having been previously initialized.

In order for the master-checker pair to operate correctly, the system must be designed such that
the master and the checker sample identical input states in the same clock. All asynchronous
inputs should change state in such a manner that both the master and checker sample them in
the same state in the same clock. The simplest way to do this is to design all asynchronous
inputs to be synchronously controlled.

The TDO pin is not tested by FRC since it operates on a separate clock. Note that it is possible
to use boundary scan to verify the connection between the master and checker by scanning into
one, latching the outputs of the other and then scanning out. The Stop Clock state feature
cannot be used in dual processing or functional redundancy checking modes because there is
no way to re-synchronize the internal clocks of the two processors.

Figure 12-4 illustrates the configuration of output pins with respect to FRC. The comparators
at each output compare the value of the package pin with the value being driven from the core
to that pin, not the value driven by boundary scan to that pin. Therefore, during the use of
boundary scan, FRC mismatches (IERR# assertion) can be expected to occur.
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Boundary Scan Chain
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IERR#
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Figure 12-4.  Conceptual IERR# Implementation for FRC
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CHAPTER 13
EXECUTION TRACING

13.1. EXECUTION TRACING
The Pentium processor family uses special bus cycles to support execution tracing.  These
bus cycles, which are optional, have a significant impact on overall performance. Execution
tracing allows the external hardware to track the flow of instructions as they execute inside
the processor.

The special bus cycles generated by the Pentium processor family are Branch Trace
Messages. Due to physical limitations, the maximum number of outstanding taken branches
allowed is two.  Once the second taken branch reaches the last stage of the pipeline,
execution is stalled until the first branch message is sent on the bus.

Branch trace messages may be enabled by setting the Execution Tracing bit, TR, of TR12
(bit 1) to a 1.  Once enabled, there are two forms of branch trace messages:  normal and fast.
Normal messages produce two cycles, one for the branch target linear address, and one for
the linear address of the instruction causing the taken branch. Fast messages only produce the
second of these two cycles. The second message will always contain the linear address of the
instruction executed in the u pipe even if the instruction that caused the branch was executed
in the v pipe. For serializing instructions and segment descriptor loads the address field of the
first cycle will contain the address of the next sequential instruction after the instruction that
caused the BTM. Fast execution tracing is enabled by setting bit 8 of TR12 to 1. Note that
switching between the normal and fast formats by using the WRMSR instruction to change
bit 8 of TR12, the WRMSR instruction causes a branch trace message when they are enabled.
The format for this branch trace message will be the format that was programmed before the
WRMSR instruction was executed.

Normal and fast branch trace messages may be delayed by 0 or more clocks after the cycle in
which the branch was taken depending on the bus activity.  Also, higher priority cycles may
be run between the first and second cycles of a normal branch trace message.  In dual-
processor mode, branch trace message cycles may be interleaved with cycles from the other
processor.  Branch trace message cycles are buffered so they do not normally stall the
processor.

Branch trace messages, normal and fast, may be identified by the following special cycle:

M/IO# = 0

D/C# = 0

W/R# = 1

BE [7:0]# = 0DFh
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The address and data bus fields for the two bus cycles associated with a branch trace message
are defined below:

First Cycle (Normal)
A31 - A4 Bits 31 - 4 of the branch target linear address

A3 “1” if the default operand size is 32 bits

“0” if the default operand size is 16 bits

D63 - D60 Bits 3 - 0 of the branch target linear address

D59 “0” - indicating the first of the two cycles

D58-D0 Reserved.  Driven to a valid state, but must be ignored

Second Cycle (Normal)
A31 - A4 Bits 31 - 4 of the linear address of the instruction causing the taken branch

A3 “1” if the default operand size is 32 bits

“0” if the default operand size is 16 bits

D63 - D60 Bits 3 - 0 of the linear address of the instruction causing the taken branch

D59 “1” - indicating the second of the two cycles

D58-D0 Reserved.  Driven to a valid state, but must be ignored

Fast Cycle
A31 - A4 Bits 31 - 4 of the linear address of the instruction causing the taken branch

A3 “1” if the default operand size is 32 bits

“0” if the default operand size is 16 bits

D63 - D60 Bits 3 - 0 of the linear address of the instruction causing the taken branch

D59 Driven to a “1”

D58-D0 Reserved.  Driven to a valid state, but must be ignored

In addition to conditional branches, jumps, calls, returns, software interrupts, and interrupt
returns, the Pentium processor family treats the following operations as causing taken
branches:

• Sserializing instructions

• Some segment descriptor loads

• Hardware interrupts

• Masked floating point exceptions and all other exceptions that invoke a trap or fault
handler

• Exiting the HALT state
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With execution tracing enabled, these operations will also cause a corresponding branch trace
message cycle. The Pentium processor data bus is valid during branch trace message special
cycles. Instructions which cause masked floating point exceptions may cause one or more
branch trace special cycles.  This is because execution of an instruction may be aborted and
restarted several times due to the exception.

Also note that the WRMSR instruction to enable branch trace messages will cause a BTM to
be generated (WRMSR is a serializing instruction and serializing instructions cause BTMs).
A WRMSR to disable BTMs will not generate a BTM. Conditions which cause the VERR,
VERW, LAR and LSL instruction to clear the ZF bit in EFLAGS will also cause these
instructions to be treated as taken branches.  However, if these instructions fail the protection
checks, no branch trace message will be generated.

Note that if an instruction faults, it does not complete execution but instead is flushed from
the pipeline and an exception handler is invoked. This faulting instruction effectively causes
a branch; a branch trace message is generated accordingly.

Refer to Chapter 16 for detailed information on model specific registers.
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CHAPTER 14
POWER MANAGEMENT

The Pentium processor family implements Intel’s System Management Mode (SMM)
architecture.  This chapter describes the hardware interface to SMM and Clock Control.  For a
overall architectural description, refer to Chapter 3 of this manual, and also the Intel
Architecture Software Developer’s Manual.

14.1. PENTIUM® PROCESSOR FAMILY POWER MANAGEMENT
FEATURES

• System Management Interrupt can be delivered through the SMI# signal or through the
local APIC using the SMI# message, which enhances the SMI interface, and provides for
SMI delivery in APIC-based Pentium processor dual processing systems.

• In dual processing systems, SMIACT# from the bus master (MRM) behaves differently
than in uniprocessor systems.  If the LRM processor is the CPU in SMM mode, SMIACT#
will be inactive and remain so until that processor becomes the MRM.

• The Pentium processor is capable of supporting an SMM I/O instruction restart.  This
feature is automatically disabled following RESET.  To enable the I/O instruction restart
feature, set bit 9 of the TR12 register to “1”.

• The Pentium processor default SMM revision identifier has a value of 2 when the SMM
I/O instruction restart feature is enabled.

• SMI# is NOT recognized by the Pentium processor in the shutdown state.

14.2. SYSTEM MANAGEMENT INTERRUPT PROCESSING
The system interrupts the normal program execution and invokes SMM by generating a
System Management Interrupt (SMI#) to the processor.  The processor will service the SMI#
by executing the following sequence.  See Figure 14-1.

1. Wait for all pending bus cycles to complete and EWBE# to go active.

2. The CPU asserts the SMIACT# signal while in SMM indicating to the system that it
should enable the SMRAM.

3. The CPU saves its state (context) to SMRAM, starting at address location SMBASE +
0FFFFH, proceeding downward in a stack-like fashion.

4. The CPU switches to the System Management Mode processor environment (a pseudo-
real mode).
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5. The CPU will then jump to the absolute address of SMBASE + 8000H in SMRAM to
execute the SMI handler.  This SMI handler performs the system management activities.

6. The SMI handler will then execute the RSM instruction which restores the CPU’s context
from SMRAM, de-asserts the SMIACT# signal, and then returns control to the previously
interrupted program execution.

NOTE

The default SMBASE value following RESET is 30000H.

 

SMI#

SMIACT#

RSM

Instr Instr Instr

State Save SMI  Handler State Restore

#1 #2 #3 #4 #5

SMI#

Active during bus cycles in SMM

PP0001

Instr Instr

Figure 14-1.  Basic SMI# Interrupt Service

Figure 14-2 describes the System Management Interrupt hardware interface which consists of
the SMI# interrupt request input and the SMIACT# output used by the system to decode the
SMRAM.
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C PU

SMI#

SMIACT#

} SMI Interface

PP0002

Figure 14-2.  Basic SMI# Hardware Interface

14.2.1. System Management Interrupt (SMI#)
SMI# is a falling-edge triggered, non-maskable interrupt request signal. SMI# is an
asynchronous signal, but setup and hold times, t28 and t29, (see Chapter 7) must be met in
order to guarantee recognition on a specific clock.  The SMI# input need not remain active
until the interrupt is actually serviced.  The SMI# input only needs to remain active for a single
clock if the required setup and hold times are met.  SMI# will also work correctly if it is held
active for an arbitrary number of clocks.

The SMI# signal is synchronized internally and must be asserted at least three (3) CLK periods
prior to asserting the BRDY# signal in order to guarantee recognition on a specific instruction
boundary. See Figure 14-3.

The SMI# input must be held inactive for at least four clocks after it is asserted to reset the
edge triggered logic.  A subsequent SMI# might not be recognized if the SMI# input is not
held inactive for at least four clocks after being asserted.

SMI#, like NMI, is not affected by the IF bit in the EFLAGS register and is recognized on an
instruction boundary.   An SMI# will not break locked bus cycles.  The SMI# has a higher
priority than NMI and is not masked during an NMI.

After the SMI# interrupt is recognized, the SMI# signal will be masked internally until the
RSM instruction is executed and the interrupt service routine is complete.  Masking the SMI#
prevents recursive SMI# calls.  If another SMI# occurs while the SMI# is masked, the pending
SMI# will be recognized and executed on the next instruction boundary after the current SMI#
completes.  This instruction boundary occurs before execution of the next instruction in the
interrupted application code, resulting in back to back SMM handlers.  Only one SMI# can be
pending while SMI# is masked.
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SMI#

BRDY#

tsu thd

   SMI#
Sampled

CLK

A

PP0003

A: Setup time for recognition on instruction boundary

Figure 14-3.  SMI# Timing

14.2.1.1. SMI# Synchronization for I/O Instruction Restart

The SMI# signal is synchronized internally and must be asserted at least three (3) CLK periods
prior to asserting the BRDY# signal in order to guarantee recognition on a specific I/O
instruction boundary.  This is important for servicing an I/O trap with an SMI# handler.  Due
to the asynchronous nature of SMI# delivery with the APIC, it is impossible to synchronize the
assertion of BRDY#.  As a result, the SMM I/O instruction restart feature cannot be used when
an SMI is delivered via the local APIC.

14.2.1.2. DUAL PROCESSING CONSIDERATIONS FOR SMI# DELIVERY

Although the SMM functions the same when the Dual processor is inserted into Socket 7, the
dual processor operation of the system must be carefully considered.  Table 14-1 shows the
four possible options for SMI# delivery depending on the SMM applications (mainly power
management) the system has to support.  There are implications to system design and the
SMM handler.  Note that for operation with the Dual processor and upgradability with the
future Pentium OverDrive processor, Option #3 is strongly recommended.
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Table 14-1.  Dual Processing SMI# Delivery Options

SMI# Pins Tied Together SMI# Pins NOT Tied Together

SMI# pins

delivering SMI

Option #1

Both CPUs enter SMM.

Option #2

One CPU enters SMM.

APIC

delivering SMI

Option #3

One or Both CPUs enter SMM.

Option #4

One or Both CPUs enter SMM

NOTE:
The I/O Instruction Restart Power Management feature should not be used when delivering the system
management interrupt via the local APIC.  Refer to the Intel Architecture Software Developer’s Manual,
Volume 3 for additional details on I/O instruction restart.

Implications

1. SMI# pin delivery of SMI with the SMI# pins tied together:  Any assertion of the SMI#
pin will cause both the Primary and Dual processors to interrupt normal processing, enter
SMM mode and start executing SMM code in their respective SMRAM spaces.  In this
case, using the I/O Instruction restart feature in Dual Processor mode will require
additional system hardware (D/P# pin) and software (detection of which processor was the
MRM when the SMI# pin was asserted) considerations.  This option will work for the
future Pentium OverDrive processor.

2. SMI# pin delivery of SMI with the SMI# pins NOT tied together:  Only the processor
whose SMI# pin is asserted will handle SMM processing.  It is possible that both the
Primary and Dual processor will be doing SMM processing at the same time, especially if
the I/O Instruction restart feature is being used.  If I/O instruction restart is not supported,
then it is possible to dedicate only one processor for SMM handling at any time.  This
option is not recommended for future Pentium OverDrive processor compatibility.

3. APIC SMI# delivery of SMI with the SMI# pins tied together:  This option is strongly
recommended for operation with the Dual processor and upgradability with the future
Pentium OverDrive processor.  System Management Interrupts should be delivered via the
APIC for DP systems, and may be delivered either via the APIC or the SMI# pin for
turbo-upgraded systems.  Either the Primary or Dual processor can be the assigned target
for SMI# delivery and hence SMM handling.  The SMM I/O instruction restart feature
may be used in a uniprocessor system or in a system with a future Pentium OverDrive
processor (with SMI# pin delivery of the interrupt), but the system must not use this
feature when operating in dual processing mode (with APIC delivery of the interrupt).

4. APIC SMI# delivery of SMI with the SMI# pins NOT tied together:  I/O Instruction
Restart feature is not recommended when delivering SMI via the local APIC.  Either the
Primary or Dual processor can be the assigned target for SMI# delivery and hence SMM
handling.  This option is not recommended for future Pentium OverDrive processor
compatibility.
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14.2.2. SYSTEM MANAGEMENT INTERRUPT VIA APIC
When SMI# is asserted (SMI# pin asserted low or APIC SMI# message) it causes the
processor to invoke SMM.

14.2.3. SMI Active (SMIACT#)
SMIACT# indicates that the CPU is operating in System Management Mode.   The CPU
asserts SMIACT# in response to an SMI interrupt request on the SMI# pin or through the
APIC message.  SMIACT# is driven active for accesses only after the CPU has completed all
pending write cycles (including emptying the write buffers — EWBE# returned active by the
system). SMIACT# will be asserted for all accesses in SMM beginning with the first access to
SMRAM when the CPU saves (writes) its state (or context) to SMRAM.  SMIACT# is driven
active for every access until the last access to SMRAM when the CPU restores (reads) its state
from SMRAM.  The SMIACT# signal is used by the system logic to decode SMRAM.

NOTE

The number of CLKs required to complete the SMM state save and restore is
very dependent on system memory performance and the CPU bus frequency.

As shown in Figure 14-4, the approximate time required to enter an SMI handler routine for
the Pentium processor (from the completion of the interrupted instruction) is given by:

Latency to beginning of SMI handler = A + B + C = ~184 CLKs

The approximate time required to return to the interrupted application (following the final
SMM instruction before RSM) is given by:

Latency to continue interrupted application = E + F + G = ~207 CLKs
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Normal State

T1 T2

A FC ED

System Management Mode

G

B
SMI#

ADS#

BRDY#

SMIACT#

CLK

Pentium® Processor
A: Last BRDY# from non-SMM transfer to SMIACT# assertion
B: SMIACT# assertion to first ADS# for SMM state save
C: SMM state save (dependent on memory performance)
D: SMM handler
E: SMM state restore (dependent on memory performance)
F: Last RDY# from SMM transfer to de-assertion of SMIACT#
G: SMIACT# de-assertion to first non-SMM ADS#

StateSave SMMHandler StateRestore NormalState

Normal State

PP0004

2 CLKs minimum
2 CLKs minimum
Approximately 180 CLKs
User determined
Approximately 200 CLKs
2 CLKs minimum
5 CLKs minimum

Figure 14-4.  SMIACT# Timing

14.2.3.1. Dual Processing Considerations for SMIACT#

When the Pentium processor is the only processor present, then it always drives the D/P#
signal low.  SMIACT# is asserted when the Pentium processor enters SMM and is de-asserted
only when the Pentium processor exits SMM.

When the Dual processor is also present, the D/P# signal toggles depending upon whether the
Primary or Dual processor owns the bus (MRM).  The SMIACT# pins may be tied together or
be used separately to insure SMRAM access by the correct processor.

CAUTION

If SMIACT# is used separately: the SMIACT# signal is only driven by the
Primary or Dual processor when it is the MRM, so this signal must be
qualified with the D/P# signal.

In a dual socket system, connecting the SMIACT# signals together on the Primary and Dual
processor sockets is strongly recommended for both dual processing operation and
upgradability with the Pentium OverDrive processor.
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In dual processing systems, SMIACT# may not remain low (e.g., may toggle) if both
processors are not in SMM mode.  The SMIACT# signal is asserted by either the Primary or
Dual processor based on two conditions:  the processor is in SMM mode and is the bus master
(MRM).  If one processor is executing in normal address space, the SMIACT# signal will go
inactive when that processor is MRM.  The LRM processor, even if in SMM mode, will not
drive the SMIACT# signal low.

14.3. SMM — SYSTEM DESIGN CONSIDERATIONS

14.3.1. SMRAM Interface
The hardware designed to control the SMRAM space must follow these guidelines:

1. A provision should be made to allow for initialization of SMRAM space during system
boot up.  This initialization of SMRAM space must happen before the first occurrence of
an SMI# interrupt.  Initializing the SMRAM space must include installation of an SMM
handler, and may include installation of related data structures necessary for particular
SMM applications.  The memory controller providing the interface to the SMRAM should
provide a means for the initialization code to manually open the SMRAM space.

2. A minimum initial SMRAM address space of SMBASE + 8000H to SMBASE + 0FFFFH
should be decoded by the memory controller.

3. Alternate bus masters (such as DMA controllers) should not be allowed to access SMRAM
space.  Only the CPU, either through SMI or during initialization, should be allowed
access to SMRAM.

4. In order to implement a zero-volt suspend function, the system must have access to all of
normal system memory from within an SMM handler routine.  If the SMRAM is going to
overlay normal system memory, there must be a method of accessing any system memory
that is located underneath SMRAM.

5. Inquire cycles are permitted during SMM, but it is the responsibility of the system to
ensure that any snoop writeback completes to the correct memory space, irrespective of
the state of the SMIACT# pin.  Specifically, if SMM is overlaid, and SMM space is non
cacheable, then any snoop writeback cycle occurring during SMM must complete to
system memory, even though SMIACT# will remain active.

If an inquire cycle occurs after assertion of SMI# to the processor, but before SMIACT# is
returned, note that SMIACT# could be returned at any point during the snoop writeback
cycle.  Depending on the timing of SMI# and the inquire cycle, SMIACT# could change
states during the writeback cycle.  Again, it is the responsibility of the system, if it
supports snooping during SMM, to ensure that the snoop writeback cycle completes to the
correct memory space, irrespective of the state of the SMIACT# pin.
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6. It should also be noted that upon entering SMM, the branch target buffer (BTB) is not
flushed and thus it is possible to get a speculative prefetch to an address outside of
SMRAM address space due to branch predictions based on code executed prior to entering
SMM.  If this occurs, the system must still return BRDY# for each code fetch cycle.

 

Shadowed RegionNormal
Memory

Normal
Memory

Overlaid
(caches must be flush)

Non-overlaid
(caches must
be flushed)

Normal
Memory

SMRAM

SMRAM

Figure 14-5.  SMRAM Location

14.3.2. Cache Flushes
The Pentium processor does not unconditionally writeback and invalidate its cache before
entering SMM (this option is left to the system designer).  If the SMRAM is in an area that is
cacheable and overlaid on top of normal memory that is visible to the application or operating
system (default), then it is necessary for the system to flush both the CPU cache and any
second level cache upon entering SMM.  This may be accomplished by asserting flush the
same time as the request to enter SMM (i.e., cache flushing during SMM entry is
accomplished by asserting the FLUSH# pin at the same time as the request to enter SMM
through SMI#).  The priorities of FLUSH# and SMI# are such that the FLUSH# will be
serviced first.  To guarantee this behavior, the constraints on setup and hold timings on the
interaction of FLUSH# and SMI# as specified for a processor should be obeyed.  When the
default SMRAM location is used, SMRAM is overlaid on top of system main memory (at
SMBASE + 8000H to SMBASE + 0FFFFH).

In a system where FLUSH# and SMI# pins are synchronous and setup/hold times are met, then
the FLUSH# and SMI# pins may be asserted in the same clock.  In asynchronous systems, the
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FLUSH# pin must be asserted at least one clock before the SMI# pin to guarantee that the
FLUSH# pin is serviced first.  Note that in systems that use the FLUSH# pin to write back and
invalidate the cache contents before entering SMM, the Pentium processor will prefetch at
least one cache line in between the time the Flush Acknowledge special cycle is run and the
recognition of SMI# and the driving of SMIACT# for SMRAM accesses.  It is the obligation
of the system to ensure that these lines are not cached by returning KEN# inactive.

If SMRAM is located in its own distinct memory space, which can be completely decoded
with only the CPU address signals, it is said to be non-overlaid.  In this case, there is one new
requirement for maintaining cache coherency, refer to Table 14-2 below.

Table 14-2.  Scenarios for Cache Flushes with Writeback Caches

Is SMRAM
overlapped with
normal memory?

Is Normal
Memory

cacheable ?
Is SMRAM
cacheable?

Flush  required
during SMM

entry?

Flush required
during SMM

exit? Comments

No No No No No

No WT No No

WT No No No

WB No No* No *Snoop WB’s
must always go to
normal memory
space

WT WT No No

WB WT No* No *Snoop and
Replacement
WB’s must go to
normal memory
space.

Yes No No No No

No WT No Yes

WT No Yes No

WB No Yes No

WT WT Yes Yes

WB WT Yes Yes

NOTE:
Writeback cacheable SMRAM is not recommended.  When flushing upon SMM exit, SMIACT# will be
deasserted and may cause regular memory to be overwritten.
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The Pentium processor implements writeback caches.  Hence the performance hit due to
flushing the cache for SMM execution can be more significant.  Due to the writeback nature of
the cache, flushing the cache has the following penalties:

1. Before entry into SMM (when SMRAM is cacheable), the cache has to be flushed.  Hence,
all dirty lines need to be written back.  This may cause a large number of bus cycles and
increase SMM entry latency.

2. If the cache had to be flushed upon SMM exit, execution starts with cache miss 100%.
The cache fill cycles reduce performance.

 

SMI#

SMIACT# RSM

Instr Instr Instr Instr Instr

State Save SMM  Handler State Resume

#1 #2 #3 #4 #5

SMI#

Flush Cache

  Cache must
be empty

Cache must
be empty

PP0006

Figure 14-6.  FLUSH# Mechanism During SMM with Overlay

The method suggested is shown in Figure 14-7.
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Figure 14-7.  Flush with Non-Cached SMM with Overlay

14.3.2.1. Dual Processing Considerations for Cache Flushes

Cache flushing during SMM exit is not possible while both the Primary and Dual processors
are present due to the fact that it is not possible to clearly predict when the CPU in SMM has
exited.  This is because the SMIACT# is not a static status indicator but only a bus cycle
indicator for SMRAM accesses.

14.3.3. A20M# Pin
Systems based on the MS-DOS operating system contain a feature that enables the CPU
address bit A20 to be forced to 0.  This limits physical memory to a maximum of 1 Mbyte, and
is provided to ensure compatibility with those programs that relied on the physical address
wrap around functionality of the original IBM PC.  The A20M# pin on the Pentium processor
provides this function.  When A20M# is active, all external bus cycles will drive A20 low, and
all internal cache accesses will be performed with A20 low.

The A20M# pin is recognized while the CPU is in SMM.  The functionality of the A20M#
input must be recognized in two instances:

1. If the SMM handler needs to access system memory space above 1 Mbyte (for example,
when saving memory to disk for a zero-volt suspend), the A20M# pin must be de-asserted
before the memory above 1 Mbyte is addressed.

2. If SMRAM has been relocated to address space above 1 Mbyte, and A20M# is active upon
entering SMM, the CPU will attempt to access SMRAM at the relocated address, but with
A20 low.  This could cause the system to crash, since there would be no valid SMM
interrupt handler at the accessed location.
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In order to account for the above two situations, the system designer must ensure that A20M#
is de-asserted on entry to SMM.  A20M# must be driven inactive before the first cycle of the
SMM state save, and must be returned to its original level after the last cycle of the SMM state
restore.  This can be done by blocking the assertion of A20M# whenever SMIACT# is active.

14.3.4. SMM and Second Level Write Buffers
Before the Pentium processor enters SMM, it empties its internal write buffers.  This is
necessary so that the data in the write buffers is written to normal memory space, not SMM
space.  Once the CPU is ready to begin writing an SMM state save to SMRAM, it asserts the
SMIACT# signal for SMRAM references.  SMIACT# may be driven active by the CPU before
the system memory controller has had an opportunity to empty the second level write buffers.

To prevent the data from these second level write buffers from being written to the wrong
location, the system memory controller needs to direct the memory write cycles to either SMM
space or normal memory space.  This can be accomplished by saving the status of SMIACT#
along with the address for each word in the write buffers.

EWBE# can also be used to prevent the CPU from asserting SMIACT# before write buffers
are empty.  The processor will wait for an active EWBE# before asserting SMIACT#.

14.4. CLOCK CONTROL

14.4.1. Clock Generation
To understand the additional power management fears of the Pentium processor and how it
manipulates the clock to conserve power, it is necessary to understand how the clock operates.
The Pentium processor is capable of running internally at frequencies much higher than the
bus speed via the various bus frequency settings (see BF[1:0] pin settings in Chapter 4 or
Chapter 5).  This allows simpler system design by lowering the clock speeds required in the
external system.  The high frequency internal clock relies on an internal Phase Lock Loop
(PLL) to generate the two internal clock phases, “phase one” and “phase two.”  Most external
timing parameters are specified with respect to the rising edge of CLK.  The PLL requires a
constant frequency CLK input, and therefore the CLK input cannot be changed dynamically.

On the Pentium processor, CLK provides the fundamental timing reference for the bus
interface unit.  The internal clock converter enhances all operations functioning out of the
internal cache and/or operations not blocked by external bus accesses.

14.4.2. Stop Clock
The Pentium processor provides an interrupt mechanism, STPCLK#,  that allows system
hardware to control the power consumption of the CPU by stopping the internal clock (output
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of the PLL) to the CPU core in a controlled manner.  This low-power state is called the Stop
Grant state.  The target for low-power mode supply current in the Stop Grant state is ~15% of
normal ICC.

When the CPU recognizes a STPCLK# interrupt, the processor will stop execution on the next
instruction boundary (unless superseded by a higher priority interrupt), stop the pre-fetch unit,
complete all outstanding writes, generate a Stop Grant bus cycle, and then stop the internal
clock.  At this point, the CPU is in the Stop Grant state.

NOTE

If STPCLK# is asserted during RESET and continues to be held active after
RESET is deasserted, the processor will execute one instruction before the
STPCLK# interrupt is recognized. Execution of instructions will therefore
stop on the second instruction boundary after the falling edge of RESET.

The CPU cannot respond to a STPCLK# request from a HLDA state because it cannot
generate a Stop Grant cycle.

The rising edge of STPCLK# will tell the CPU that it can return to program execution at the
instruction following the interrupted instruction.

Unlike the normal interrupts, INTR and NMI, the STPCLK# interrupt does not initiate
interrupt table reads.  Among external interrupts, STPCLK# is the lowest priority.

14.4.2.1. STPCLK# PIN

STPCLK# is treated as a level triggered interrupt to the Pentium processor.  This interrupt may
be asserted asynchronously and is prioritized below all of the external interrupts.  If asserted,
the Pentium processor will recognize STPCLK# on the next instruction boundary, and then do
the following:

1. Flush the instruction pipeline of any instructions waiting to be executed.

2. Wait for all pending bus cycles to complete and EWBE# to go active.

3. Drive a special bus cycle (Stop Grant bus cycle) to indicate that the clock is being stopped.

4. Enter low power mode.

STPCLK# is active LOW.  To ensure STPCLK# recognition, the system must keep this signal
active until the appropriate special cycle has been issued by the Pentium processor.  To
guarantee that every STPCLK# assertion, and subsequent de-assertion and re-assertion, is
recognized and thus will get a Stop Grant bus cycle response (which will also ensure that each
de-assertion of STPCLK# allows execution of at least one instruction), the system must meet
the following requirements:

1.  Hold STPCLK# active at least until the processor’s Stop Grant cycle response has been
completed by the system’s BRDY# response.
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2.  STPCLK# must not be re-asserted until 5 clocks after the last of the following events:

a.  The processor’s Stop Grant cycle has been completed by the system’s BRDY#
response.

b.   HITM# is de-asserted.  (This applies only if HITM#  was asserted while waiting for
one of the other two events listed here, or within 2 bus clocks of their completion.)

c.   EWBE# becomes active after it was sampled inactive at the last relevant  BRDY#. A
relevant BRDY# is one which ends either a stop-grant cycle or an external snoop
writeback caused by HITM# being asserted as in case b) above.

Events b) and c) can in principle alternate indefinitely, continuing to delay STPCLK# de-
assertion recognition, if the system design allows that to happen.

Note that if a system is not relying on either a Stop Grant bus cycle response for every
STPCLK# assertion, or for each de-assertion of STPCLK# to allow execution of at least one
instruction, these detailed requirements can be ignored.  Though STPCLK# is asynchronous,
setup and hold times (Refer to Chapter 7) may be met to ensure recognition on a specific
clock.

The STPCLK# input must be driven high (not floated) in order to exit the Stop Grant state.
Once STPCLK# is deasserted and the Pentium processor resumes execution, the Pentium
processor is guaranteed to execute at least one instruction before STPCLK# is recognized
again.  To return to normal state, external hardware must deassert STPCLK#.

14.4.2.2. DUAL PROCESSING CONSIDERATIONS

The Primary and Dual processors may or may not tie their STPCLK# signals together.  The
decision is dependent on system specific CPU power conservation needs.  Connecting the
STPCLK# signals on the Primary and Dual processors together is strongly recommended for
operation with the Dual processor and upgradability with the future Pentium OverDrive
processor.

Tying the STPCLK# signals together causes both the Primary and Dual processors to
eventually enter the Stop Grant state on assertion of STPCLK#.  The system ceases processing
until the STPCLK# signal is deasserted.  In Dual Processor mode with the STPCLK# pins tied
together, independent STPCLK# control of each processor is not possible.  Both the Primary
processor and Dual processor will go into the Stop Grant state independently, and will each
generate a Stop Grant special bus cycle.

NOTE

In a dual processing system where STPCLK# is tied to both the primary and
dual processors, the system expects to see two Stop Grant Bus Cycles after
STPCLK# is asserted. FLUSH# should not be asserted between the time
STPCLK# is asserted and the completion of the second Stop Grant Bus
Cycle. If FLUSH# is asserted during this interval, the system may not see the
second Stop Grant Bus Cycle until after STPCLK# is deasserted.



POWER MANAGEMENT E

14-16

12/19/96 8:50 AM    Ch14new.doc

INTEL CONFIDENTIAL
(until publication date)

Not tying the STPCLK# signals together gives the flexibility to control either or both the
processors’ power consumption based on the system performance required.  External logic
would be required to control this signal to each processor in a DP system.  In order to be
upgradable with the future Pentium OverDrive processor, system-level logic would be required
(and be end-user invisible) to allow the STPCLK# signal to operate properly with both the
Pentium processor (in a non-upgraded system) and with the future Pentium OverDrive
processor (in an upgraded system).

14.4.3. Stop Grant Bus Cycle
A special Stop Grant bus cycle will be driven to the bus after the processor recognizes the
STPCLK# interrupt.  The definition of this bus cycle is the same as the HALT cycle definition
for the standard Intel486 microprocessor architecture, with the exception that the Stop Grant
bus cycle drives the value 0000 0010H on the address pins.  In a Dual Processor system, with
both STPCLK# signals tied together, two stop grant cycles will occur in a row.  The system
hardware must acknowledge the Stop Grant cycle by returning BRDY#.  The processor will
not enter the Stop Grant state until BRDY# has been returned.

The Stop Grant Bus cycle consists of the following signal states:  M/IO# = 0, D/C# = 0,
W/R# = 1, Address Bus = 0000 0010H (A4 = 1), BE7#-BE0# = 1111 1011, Data bus =
undefined.

NOTE

When operating in dual processing mode, and the STPCLK# signals are tied
together, both the Primary processor and Dual processor will go into the Stop
Grant state independently, and will each generate a Stop Grant special bus
cycle.  The system must return BRDY# for both of the special bus cycles.

The latency between a STPCLK# request and the Stop Grant bus cycle is dependent on the
current instruction, the amount of data in the CPU write buffers, and the system memory
performance.  Refer to Figure 14-8.
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Figure 14-8.  Entering Stop Grant State

14.4.4. Pin State during Stop Grant
During the Stop Grant state, most output and input/output signals of the microprocessor will be
held at their previous states (the level they held when entering the Stop Grant state).  See
Table 14-3.  However, the data bus and data parity pins will be floated.  In response to HOLD
being driven active during the Stop Grant state (when the CLK input is running), the CPU will
generate HLDA and tri-state all output and input/output signals that are tri-stated during the
HOLD/HLDA state.  After HOLD is de-asserted, all signals will return to their states prior to
the HOLD/HLDA sequence.
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Table 14-3.  Pin State During Stop Grant Bus State

Signal Type State

A31-A3 I/O Previous State

D63-D0 I/O Floated

BE7# - BE0# O Previous State

DP7 - DP0 I/O Floated

W/R#, D/C#, M/IO# O Previous State

ADS#, ADSC# O Inactive

LOCK# O Inactive

BREQ O Previous State

HLDA O As per HOLD

FERR# O Previous State

PCHK# O Previous State

PWT, PCD O Previous State

SMIACT# O Previous State

In order to achieve the lowest possible power consumption during the Stop Grant state,  the
system designer must ensure the input signals with pull-up resistors are not driven LOW and
the input signals with pull-down resistors are not driven HIGH.  (Refer to Table 4-4 to
Table 4-7 in this document for signals with internal pull-up and pull-down resistors).

All inputs, except data bus pins, must be driven to the power supply rails to ensure the lowest
possible current consumption during Stop Grant or Stop Clock modes.  Data pins should be
driven low to achieve the lowest power consumption.  Pull down resistors or bus keepers are
needed to minimize the leakage current.
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14.4.5. CLOCK CONTROL STATE DIAGRAM
Figure 14-9 shows the state descriptions and the state transitions for the clock control
architecture.

3  Auto HALT Power Down State

CLK Running
ICC - 15% of Active ICC

1  Normal State

Normal Execution

HALT asserted and
Halt bus cycle

generated

INTR*, NMI, SMI#,
RESET, INIT
(* if enabled)

4  Stop Clock Snoop State

Perform cache
invalidation/writeback

2  Stop Grant State

CLK Running
ICC ~ 15% of Active ICC

EADS#

Last BRDY#

EADS# Last BRDY#

STPCLK# asserted
and stop grant cycle

generated

STPCLK# 
deasserted

5  Stop Clock State

Internal Powerdown
CLK Stopped
(held low)

Stop CLK Start CLK + PLL
Startup Latency

Figure 14-9.  Stop Clock State Machine

A Flush State can be entered from states 1, 2 and 3 by asserting the FLUSH# input signal.  The
flush state is exited (e.g., the CPU returns to the state from which it came) when the Flush
Acknowledge Special Bus Cycle is issued by the CPU.

14.4.5.1. NORMAL STATE — STATE 1

This is the normal operating state of the CPU.
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14.4.5.2. STOP GRANT STATE — STATE 2

The  Stop Grant state (~15% of normal state ICC) provides a fast wake-up state that can be
entered by simply asserting the external STPCLK# interrupt pin.  Once the Stop Grant bus
cycle has been placed on the bus, and BRDY# is returned, the CPU is in this state.  The CPU
returns to the normal execution state in approximately 10 clock periods after STPCLK# has
been deasserted.

For minimum CPU power consumption, all other input pins should be driven to their inactive
level while the CPU is in the Stop Grant state.  A RESET will bring the CPU from the Stop
Grant state to the normal state (note:  unless STPCLK# is also deasserted, an active RESET
will only bring the CPU out of the Stop Grant state for a few cycles).  The CPU will recognize
the inputs required for maintaining cache coherency (e.g., HOLD, AHOLD, BOFF#, and
EADS# for cache invalidations and snoops) as explained later in this section.  The CPU will
not recognize any other inputs while in the Stop Grant state.  Input signals to the CPU will not
be recognized until 1 CLK after STPCLK# is de-asserted.

While in the Stop Grant state, the CPU will latch transitions on the external interrupt signals
(SMI#, NMI, INTR, FLUSH#, R/S#, and INIT).  All of these interrupts are taken after the
deassertion of STPCLK# (e.g., upon re-entering the normal state).  The Pentium processor
requires INTR to be held active until the CPU issues an interrupt acknowledge cycle in order
to guarantee recognition.

The CPU will generate a Stop Grant bus cycle only when entering that state from the normal
state.  When the CPU enters the Stop Grant state from the Stop Clock Snoop state, the CPU
will not generate a Stop Grant bus cycle.

14.4.5.3. AUTO HALT POWERDOWN STATE — STATE 3

The execution of a HLT instruction will also cause the Pentium processor to automatically
enter the Auto HALT Power Down state where ICC will be ~15% of ICC in the Normal state.
The CPU will issue a normal HALT bus cycle when entering this state.  The CPU will
transition to the normal state upon the occurrence of INTR, NMI, SMI#, RESET, or INIT.

A FLUSH# event during the Auto HALT power down state will be latched and acted upon
while in this state.

STPCLK# is not recognized by the CPU while in the Auto HALT Powerdown state.  The
system can generate a STPCLK# while the CPU is in the Auto HALT Powerdown state, but
the Pentium processor will only service this interrupt if the STPCLK# pin is still asserted when
the Pentium processor returns to the normal state.

While in Auto HALT Powerdown state, the CPU will only recognize the inputs required for
maintaining cache coherency (e.g., HOLD, AHOLD, BOFF#, and EADS# for cache
invalidations and snoops) as explained later in this section.
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14.4.5.4. STOP CLOCK SNOOP STATE (CACHE INVALIDATIONS) —
STATE 4

When the CPU is in the Stop Grant state or the Auto HALT Powerdown state, the CPU will
recognize HOLD, AHOLD, BOFF# and EADS# for cache invalidation/writebacks.  When the
system asserts HOLD, AHOLD, or BOFF#, the CPU will float the bus accordingly.  When the
system then asserts EADS#, the CPU will transparently enter the Stop Clock Snoop state and
perform the required cache snoop cycle.  It will then re-freeze the clock to the CPU core and
return to the previous state.  The CPU does not generate the Stop Grant bus cycle or HALT
special cycle when it returns to the previous state.

14.4.5.5. STOP CLOCK STATE — STATE 5

Stop Clock state (~ 1% of normal state ICC) is entered from the Stop Grant state by stopping
the CLK input.  Note: for the Pentium processor, the CLK must be held at a logic low while
stopped.  None of the CPU input signals should change state while the CLK input is stopped.
Any transition on an input signal (with the exception of INTR) before the CPU has returned to
the Stop Grant state will result in unpredictable behavior.  If INTR is driven active while the
CLK input is stopped, and held active until the CPU issues an interrupt acknowledge bus
cycle, it will be serviced in the normal manner once the clock has been restarted.  The system
design must ensure the CPU is in the correct state prior to asserting cache invalidation or
interrupt signals to the CPU.

While the processor is in the Stop Clock state, all pins with static pullups or pulldowns must be
driven to their appropriate values as specified in Table 4-4 to Table 4-7.

During the Stop Clock state the CPU input frequency may be changed to any frequency
between the minimum and maximum frequency listed in the AC timing specifications found in
Chapter 7.  To exit out of the Stop Clock state, the CLK input must be restarted and remain at
a constant frequency for a minimum of 1 ms.  The PLL requires this amount of  time to
properly stabilize.  After the PLL stabilizes, the CPU will return to Stop Grant state and the
STPCLK# signal may be deasserted to take the CPU out of Stop Grant state and back to the
Normal state.

In order to realize the maximum power reduction while in the Stop Clock state, PICCLK and
TCK should also be stopped.  These clock inputs have the same restarting restrictions as CLK.
The local APIC cannot be used while in the Stop Clock state since it also uses the system
clock, CLK.

WARNING

The Stop Clock state feature cannot be used in dual processing or functional
redundancy checking modes because there is no way to re-synchronize the
internal clocks of the two processors.
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CHAPTER 15
PENTIUM® PROCESSOR DEBUGGING

15.1. INTRODUCTION
Pentium processor-based system designers intending to use integration tools to debug their
prototype systems can interface to the processor using two methods: (1) insert an emulator
probe into the CPU socket, or (2) include some simple logic on their board that implements a
debug port connection.  Inserting an emulator probe into the CPU socket will allow access to
all bus signals, but capacitive loading issues may affect high speed operation.  In contrast, the
debug port connection will allow debugger access to Pentium processor’s registers and signals
without affecting any high speed operation.  This allows the system to operate at full speed
with the debugger attached.  Therefore, Intel recommends that all Pentium processor-based
system designs include a debug port .

15.2. TWO LEVELS OF SUPPORT
Two levels of support are defined for the Pentium processor-based debug port, the second
level being a superset of first.  The system designer should choose the level of support that is
appropriate for the particular system design and implement that level.  Samples of each level
of implementation are given in section 15.6 of this document.

15.2.1. Level 1 Debug Port (L1)
The Level 1 debug port supports systems with a single Pentium processor-based CPU.  L1 uses
a 20-pin connector to allow a debugger access to the processor’s registers and signals.

15.2.2. Level 2 Debug Port (L2)
L2 extends the 20-pin debug port connector to 30 pins.  The extra ten pins include a second set
of boundary scan signals as well as additional R/S# and PRDY signals.  The additional R/S#
and PRDY signals are added to support the Pentium processor in the dual-processor
configuration.  This enables a debugger to provide separate control over the two CPUs during
debug.

Signals on pins 1 through 20 of the L2 debug port are identical to the signals on the L1 debug
port.
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15.3. DEBUG PORT CONNECTOR DESCRIPTIONS
A debugger for Pentium processor-based designs can have a 30-pin connector on its probe that
supports both levels of the debug port (as described previously, L1 or L2).  Two cables can be
provided, each cable having a 30-pin connector at one end (to mate with the debugger’s probe
connector) and the appropriate size connector at the other end to mate with the debug port in
the system under debug.  (For example, the L1 debug port Cable can be a 20-conductor cable
with a 20-pin connector at one end and a 30-pin connector at the other end, leaving pins 21 to
30 unconnected.)

Intel recommended connectors to mate with debug port Cables are available in either a vertical
or right-angle configuration.  Use the one that fits best in your design. The connectors are
manufactured by AMP Incorporated and are in their AMPMODU System 50 line. Table 15-1
shows the AMP part numbers for the various connectors:

Table 15-1.  Recommended Connectors

Vertical Right-Angle

20-pin shrouded header 104068-1 104069-1

30-pin shrouded header 104068-3 104069-5

NOTE:
These are high density through hole connectors with pins on 0.050” by 0.100” centers.  Do not  confuse
these with the more common 0.100” by 0.100” center headers.

Figure 15-1 is an example of the pinout of the connector footprint as viewed from the
connector side of the circuit board.  This is just an example.  Contact your tools representative
to determine the correct implementation for the tool you will use.  Note that the 30-pin
connector is a logical extension of the 20-pin connector with the key aligned with pin 15.

 PP0065

Figure 15-1.  Debug Port Connector



E PENTIUM® PROCESSOR DEBUGGING

15-3

12/19/96 8:56 AM    Ch15new.doc

INTEL CONFIDENTIAL
(until publication date)

15.4. SIGNAL DESCRIPTIONS
Table 15-2 shows the debug port signals.  Direction is given as follows: O = output from the
Pentium processor-based board to a debugger; I = input to the Pentium processor-based board
from a debugger.  These are 3.3V signals, compatible with the Pentium processor DC
specifications.  For the L1 debug port, ignore signals on pins 21 through 30.

NOTE

Target systems should be sure to provide a way for debugging tools like
emulators, in-target probes and logic analyzers to reset the entire system,
including upgrade processor, chip sets, etc.  For example, if you follow the
debug port implementation described below, the DBRESET signal provides
this functionality.  If you are not implementing the debug port, make sure
that your system has a test point connected into the system reset logic to
which a debug tool can connect.
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Table 15-2.  Debug Port Signals

Signal Name Dir Pin Description

INIT O 1 (Pentium® processor signal).  A debugger may use INIT to support
emulating through the CPU INIT sequence while maintaining
breakpoints or breaking on INIT.

DBRESET I 2 Debugger Reset output.  A debugger may assert DBRESET (high)
while performing the “RESET ALL” and “RESET TARGET”
debugger commands.  DBRESET should be connected to the
system reset circuitry such that the system and processor(s) are
reset when DBRESET is asserted. This is useful for recovering
from conditions like a “ready hang.”  This signal is asynchronous.

RESET O 3 (Pentium processor signal).  A debugger may use RESET to
support emulating through the reset while maintaining breaking on
RESET.

GND 4 Signal ground.

NC 5 No connect. Leave this pin unconnected.

VCC 6 VCC from the Pentium processor system.  A debugger uses this
signal to sense that system power is on.  Connect this signal to VCC
through a 1 K Ohm (or smaller) resistor.

R/S# I 7 Connect to the R/S# pin of the Pentium processor.

GND 8 Signal ground.

NC 9 No connect. Leave this pin unconnected.

GND 10 Signal ground.

PRDY O 11 From the PRDY pin of the Pentium processor.

TDI I 12 Boundary scan data input (Pentium processor signal). This signal
connects to TDI of the Pentium processor. For dual processor
operation, TDI of the Dual Pentium processor would connect to
TDO of the Pentium processor.

TDO O 13 Boundary scan data output (Pentium processor signal). This signal
connects to TDO from the Pentium processor for a single processor
design, or to TDO from the Dual Pentium Pentium processor for
dual processor operation.

TMS I 14 Boundary scan mode select (Pentium processor signal).

GND 15 Signal ground.
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Table 15-2.  Debug Port Signals (Contd.)

Signal Name Dir Pin Description

TCK I 16 Boundary scan clock (Pentium processor signal).

GND 17 Signal ground.

TRST# I 18 Boundary scan reset (Pentium processor signal).

DBINST# I 19 DBINST# is asserted (connected to GND) while the debugger is
connected to the debug port .  DBINST# can be used to control the
isolation of signals while the debugger is installed.

BSEN# I 20 Boundary scan enable.  This signal can be used by the Pentium
processor system to control multiplexing of the boundary scan input
pins (TDI, TMS, TCK, and TRST# signals) between the debugger
and other boundary scan circuitry in the Pentium processor system.
The debugger asserts (low) BSEN# when it is driving the boundary
scan input pins.  Otherwise, the debugger drivers are high
impedance.  If the boundary scan pins are actively driven by the
Pentium processor system, then BSEN# should control the system
drivers/multiplexers on the boundary scan input pins.  See example
2 in section 15.6.

PRDY2 O 21 From the PRDY pin of the Dual Pentium processor (for dual
processor operation).

GND 22 Signal ground.

R/S#2 I 23 Connect to the R/S# pin of the Dual Pentium processor (for dual
processor operation).

NC 24

NC 25

NC 26

NC 27

NC 28

GND 29 Signal ground.

NC 30

15.5. SIGNAL QUALITY NOTES
Since debuggers can connect to the Pentium processor-based system via cables of significant
length (e.g., 18 inches), care must be taken in Pentium processor-based system design with
regard to the signals going to the debug port.  If system outputs to the debug port (i.e., TDO,
PRDY, INIT and RESET) are used elsewhere in the system they should have dedicated drivers
to the debug port.  This will isolate them from the reflections from the end of the debugger
cable.  Series termination is recommended at the driver output.  If the Pentium processor
boundary scan signals are used elsewhere in the system, then the TDI, TMS, TCK, and TRST#
signals from the debug port should be isolated from the system signals with multiplexers.



PENTIUM® PROCESSOR DEBUGGING E

15-6

12/19/96 8:56 AM    Ch15new.doc

INTEL CONFIDENTIAL
(until publication date)

15.6. IMPLEMENTATION EXAMPLES

15.6.1. Example 1:  Single CPU, Boundary Scan Not Used by
System

Figure 15-2 shows a schematic of a minimal Level 1 debug port implementation for a Pentium
processor, single-processor system in which the boundary scan pins of the Pentium processor
are not used in the system.
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Figure 15-2.  Single CPU — Boundary Scan Not Used
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15.6.2. Example 2:  Single CPU, Boundary Scan Used by System
Figure 15-3 shows a schematic of a Level 1 debug port implementation for a Pentium
processor, single-processor system in which the boundary scan pins of the Pentium processor
are used in the system.  Note that the BSEN# signal controls the multiplexing of the boundary
scan signals.  With this implementation, the Pentium processor-based system could use the
boundary scan (through the Pentium processor) while the debugger is “emulating,” but could
not while the debugger is “halted” (because the chain is broken).
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15.6.3. Example 3:  Dual CPUs, Boundary Scan Not Used by
System

Figure 15-4 shows a schematic of a typical Level 2 debug port implementation for a Pentium
processor, dual-processor system in which the boundary scan pins of the Pentium processor are
not used in the system.  The multiplexer circuit for use with the “upgrade socket” concept is
shown, but could be replaced with a jumper.
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15.6.4. Example 4:  Dual CPUs, Boundary Scan Used by System
Figure 15-5 shows a schematic of a Level 2 debug port implementation for a Pentium
processor, dual-processor system that uses boundary scan.  Note that the BSEN# signal
controls the multiplexing of the boundary scan signals.  With this implementation, the Pentium
processor-based system could use the boundary scan (through the Pentium processor) while
the debugger is “emulating,” but could not while the debugger is “halted” (because the chain is
broken).
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Figure 15-5.  Dual CPUs — Boundary Scan Used
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15.7. IMPLEMENTATION DETAILS

15.7.1. Signal Routing Note
The debugger software communicates with the CPU through the debug port using the
boundary scan signals listed above.  Typically, the debugger expects the CPU to be the first
and only component in the scan chain (from the perspective of the debug port).  That is, it
expects TDI to go directly from the debug port to the TDI pin of the CPU, and the TDO pin to
go directly from the CPU to the debug port (see Figure 15-6).  If you have designed your
system so that this is not the case (for instance, see Figure 15-7), you will need to provide the
debugger software with the following information:  (1) position of the CPU in the scan chain,
(2) the length of the scan chain, (3) instruction register length of each device in the scan chain.
Without this information the debugger will not be able to establish communication with the
CPU.
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Figure 15-6.  Example of CPU Only in Scan Chain
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…
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……

Figure 15-7.  Example of Multiple Components in Scan Chain

15.7.2. Special Adapter Descriptions
For those designs where board real estate is a concern or where the design is finished and it is
too late to implement the debug port, it may be possible to use a special “debug port adapter”
to replace the on-board debug port described in the previous sections.  The purpose of the
adapter is to provide easy access to the boundary scan signals of the CPU(s).  For simplicity,
the adapter should make the boundary scan signals accessible to the debug tool while at the
same time preventing the target system from accessing them.  Two debug port adapters are
described: (1) for uni-processor debug, (2) for dual-processor debug.

15.7.2.1. UNI-PROCESSOR DEBUG

A debug port adapter for use in uni-processor systems, or dual-processor systems where only
one processor will be debugged at a time, can be built by reworking two Pentium processor
SPGA sockets (see Figure 15-8).
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NOTE

This adapter can be used only when the CPU is NOT included in the target
system boundary scan string.  In addition, when used in dual-processor
systems you will only be able to debug the CPU to which the adapter is
connected.

Table 15-3 show which pins to connect lines of appropriate 20- or 30- wire cable to on the top
socket.

Table 15-3.  SPGA Socket

Cable Wire # SPGA Pin# Signal

1 AA33 INIT

2 NC DRESET

3 AK20 RESET

4 AD36(VSS) GND

5 NC NC

6 U37 VCC

7 AC35 R/S#

8 AB36(VSS) GND

9 NC NC

10 Z36(VSS) GND

11 AC05 PRDY

12 N35 TDI

13 N33 TDO

14 P34 TMS

15 X36(VSS) GND

16 M34 TCK

17 R36(VSS) GND

18 Q33 TRST#

19 NC DBINST#

20 NC BSEN#

NOTE

You may connect the GND pins to any pin marked VSS on the SPGA pinout
diagram.  The NC pins are no connects.  You may simply cut those wires.
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Debug Port Connector
(AMP# 111196-7)

Connect to socket
mounted on debugger board

Plug into processor
socket on system board

Mount processor here

PP0072

Figure 15-8.   Uni-Processor Debug

Connect a double-row receptacle (AMP# 111196-7) to the debug port connector end of the
cable.  This is a 30-pin connector, so that it fits into the socket on the debugger buffer board.

Remove the following pins from the bottom socket:

R/S# AC35

PRDY AC05

TDI N35

TDO N33

TMS P34

TCK M34

TRST# Q33

Connect the two sockets together.  Make sure not to crush the wires between the pins.

15.7.2.2. DUAL-PROCESSOR DEBUG

A debug port adapter for use in dual processor debugging can be built by reworking four
Pentium processor-based SPGA sockets.  (See Figure 15-9).

NOTE

This adapter can be used only when the CPUs are NOT included in the target
system boundary scan string.
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You will need to use two SPGA sockets per processor location.  For this discussion, assume
that the startup processor is called processor 1 and that the upgrade processor is called
processor 2.  Thus, you will use two SPGA sockets to connect to processor 1 and two SPGA
sockets to connect to processor 2.  Certain debug port signals must be shared by Processor 1
and Processor 2.  These signals must be connected from the debug port connector end of the
cable (on which you will place a double-row receptacle: AMP# 111196-7) to both double
SPGA sockets.

 

Debug Port Connector
(AMP# 111196-7)

Connect to socket
mounted on debugger board

Plug into processor 2
socket on system board

Mount processor 1 here

Plug into processor 1
socket on system board

Mount processor 2 here

PP0073

Figure 15-9.  Dual-Processor Debug Port Adapter

Connect lines of 30-wire cable to the pins on the top SPGA sockets for both processor 1 and 2.
Following are the signals which should be connected to each processor socket.  Make sure to
connect the shared lines to both top sockets.
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Figure 15-10.  Shared Pins for Dual-Processor Adapter
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Table 15-4.  Debug Port Connector Pinout

Cable wire # SPGA Pin# Processor Socket Signal

1 AA33  1,2 INIT

2 NC DBRESET

3 AK20  1,2 RESET

4 VSS  1 GND

5 NC NC

6 VCC  1 VCC

7 AC35  1 R/S1#

8 VSS  1 GND

9 NC NC

10 VSS  1 GND

11 AC05  1 PRDY1

12 N35  1 TDI

13 N33  2 TDO

14 P34  1,2 TMS

15 VSS  1 GND

16 M34  1,2 TCK

17 VSS  1 GND

18 Q33  1,2 TRST#

19 NC DBINST#

20 NC BSEN#

21 AC05  2 PRDY2

22 VSS  2 GND

23 AC35  2 R/S2#

24 NC NC

25 NC NC

26 NC NC

27 NC NC

28 NC NC

29 VSS 2 GND

30 NC NC

NOTE:
You may connect the VCC and GND pins to any convenient power or ground pin.
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Connect a double-row receptacle (AMP# 111196-7) to the debug port end of the cable.  This is
a 30-pin connector, so that it fits into the socket on the debugger buffer board.

Remove the following pins from the bottom of both double sockets:

R/S# AC35

PRDY AC05

TDI N35

TDO N33

TMS P34

TCK M34

TRST# Q33

Connect each set of two sockets together.  Make sure not to crush the wires between the pins.
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CHAPTER 16
MODEL SPECIFIC REGISTERS AND FUNCTIONS

This chapter introduces the model specific registers (MSRs) as they are implemented on the
Pentium processor family. Model specific registers are used to provide access to features that
are generally tied to implementation dependent aspects of a particular processor. For example,
testability features that provide test access to physical structures such as caches, and branch
target buffers are inherently model specific. Features to measure the performance of the
processor or particular components within the processor are also model specific.

The features provided by the model specific registers are expected to change from processor
generation to processor generation and may even change from model to model within the same
generation. Because these features are implementation dependent, they are not recommended
for use in portable software. Specifically, software developers should not expect that the
features implemented within the MSRs will be supported in an upward or downward
compatible manner across generations or even across different models within the same
generation.

The Pentium processor with MMX technology MSRs are different than the Pentium processor
(75/90/100/120/133/150/166/200) MSRs. When possible, fields were preserved between the
two processors. Differences between the MSRs are noted throughout this chapter.

16.1. MODEL SPECIFIC REGISTERS
The Pentium processor family implements the RDMSR and WRMSR instructions to read and
write the MSR’s respectively. A feature bit in EDX (bit 5), reported by the CPUID instruction,
indicates whether the processor supports the RDMSR and WRMSR instructions. The Pentium
processor with MMX technology implements a new instruction called RDPMC (Read
Performance Monitoring Counter). This instruction enables the user to read the performance
monitoring counters in “Current Privilege Level = 3” given bit 8 is set in CR4 (CR4.PCE).

16.1.1. Model Specific Register Usage Restrictions
Proper use of the MSR features described in this chapter requires that the CPUID instruction
be used not only to validate that the FAMILY reported in the EAX register is equal to “5”, but
also to validate the specific MODEL number within that FAMILY.  Note that this requirement
is significantly more restrictive than is required for new architectural features where it is
sufficient to validate that the FAMILY is equal to or greater than that of the first family to
implement the new feature. For more information regarding the use of the CPUID instruction,
refer to the Intel Architecture Software Developer’s Manual.
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16.1.2. Model Specific Registers
Access to the model specific registers is provided through the RDMSR and WRMSR
instructions. Access to a particular MSR is achieved by loading the ECX register with the
appropriate ECX value from Table 16-1 below, and then executing either RDMSR or
WRMSR. For more information regarding the use of these instructions, refer to the Intel
Architecture Software Developer’s Manual.

Table 16-1.  Model Specific Registers

ECX Value (in Hex) Register Name Description

00 Machine Check Address 1 Stores address of cycle causing
the exception

01 Machine Check Type 1 Stores cycle type of cycle causing
the exception

02 Test Register 1 Parity Reversal Register

03 RESERVED

04 Test Register 2 2 Instruction Cache End Bit

05 Test Register 3 Cache Test Data

06 Test Register 4 Cache Test Tag

07 Test Register 5 Cache Test Control

08 Test Register 6 TLB Test Linear Address

09 Test Register 7 TLB Test Control & Physical
Address 31–12

0A RESERVED

0B Test Register 9 BTB Test Tag

0C Test Register 10 BTB Test Target

0D Test Register 11 BTB Test Control

0E Test Register 12 New Feature Control

0F RESERVED

10 Time Stamp Counter Performance Monitor

11 Control and Event Select Performance Monitor

12 Counter 0 Performance Monitor

13 Counter 1 Performance Monitor

14+ RESERVED

NOTES:
1. CR4.MCE must be 1 in order to utilize the machine check exception feature.

2. Reserved on the Pentium® processor with MMX™ technology.
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16.2. TESTABILITY AND TEST REGISTERS
The Pentium processor provides testability access to the on-chip caches, TLBs, BTB and
internal parity checking features through model specific test registers. The RDMSR/WRMSR
instructions may be utilized by the Pentium processor to access the test registers.

16.2.1. Cache, TLB and BTB Test Registers
The Pentium processor and Pentium processor with MMX technology contain several test
registers. The purpose of these test registers is to provide direct access to the Pentium
processor’s caches, Translation Look-aside Buffers (TLB), and Branch Target Buffer (BTB) so
test programs can easily exercise these structures. Because the architecture of the caches,
TLBs, and BTB is different, a different set of test registers (along with a different test
mechanism) is required for each. Most test registers are shared between the code and data
caches.

The test registers should be written to for testability purposes only. Writing to the test registers
during normal operation causes unpredictable behavior. Note that when the test registers are
used to read or write lines directly to or from the cache, external inquire cycles must be
inhibited to guarantee predictable results when testing. This is done by setting both CR0.CD
and CR0.NW to “1”.  In addition, the INVD, WBINVD and INVLPG instructions may be
executed before and after but not during testing.

Since the on-board caches, TLBs, and BTB implemented in Pentium processor with MMX
technology differ than those in Pentium processor (75/90/100/120/133/150/166/200), the test
register interface differs.

NOTE

If a memory data access occurs during a code cache testability operation
using the test registers, the data cache is checked before the external memory
operation in initiated. If the access is a miss in the data cache, then if the
accessed line is valid in the code cache, it is invalidated through the internal
snooping mechanism. In addition, the same cache line fill buffer is used for
cache testability writes and to temporarily store data from memory data
reads. For this reason, memory data reads should be done with care or
avoided to ensure data from the memory read does not overwrite data from
the testability write in the cache line fill buffer.

Similarly, if a code access occurs during a data cache testability operation
using the test registers, the code cache is checked before the external
memory operation is initiated. If the access is a miss in the code cache, then
the accessed line if valid in the data cache is invalidated (or written back and
then invalidated if in the M state) through the internal snooping mechanism.



MODEL SPECIFIC REGISTERS AND FUNCTIONS E

16-4

12/19/96 8:58 AM    Ch16new.doc

INTEL CONFIDENTIAL
(until publication date)

16.2.1.1. CACHE TEST REGISTERS

The registers in Figure 16-1 provide direct access to the Pentium processor’s code and data
caches.
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*  TR2 isreserved on the Pentium ® processor with MMX™ technology

*  TR4.3 and TR4.4 are reserved on the Pentium processor (75/90/100/120/133/150/166/200)

*  TR5.19 is reserved on the Pentium processor (75/90/100/120/133/150/166/200)

CTESTREG

Figure 16-1.  Cache Test Registers

On the Pentium processor (75/90/100/120/133/150/166/200), TR2 is the End Bit Test Register
for the code cache. It contains four end bits. Each end bit corresponds to one byte of
instruction in TR3 during code cache testability access. Since a cache line 32 bytes, 8 access
are needed to read or write the end bits for the entire cache line. TR2 is used for accesses to the
code cache only. TR2 is reserved on the Pentium processor with MMX technology.

End Bits are used to indicate instruction boundaries on the Pentium processor
(75/90/100/120/133/150/166/200). The end bit mechanism aids the decode of two variable
length instructions per clock by providing information on where the boundary between
instruction is. If a given byte is the last byte in an instruction, the corresponding end bit is set
to one. When a line is written into the code cache after a miss, all end bits corresponding to the
line are initialized to one. As instructions are decoded, the end bits are checked for correctness
and modified if incorrect. In order for two instructions to be issued in a single clock, the end
bits of the u-pipe instruction must have the correct values, otherwise only one instruction will
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be issued. This does have the effect that instructions are usually not paired the first time that
they are put in the code cache.

TR3 is the Cache Data Test Register. This is where the data is held on its way into or out of the
cache. Prior to a cache testability write, software must load an entire cache line into the
32-byte fill buffer using TR3, 4 bytes at a time. Similarly, during a cache testability read, the
Pentium processor extracts a specified 4-byte data quantity from a cache line and places the
data in TR3. A 32-byte cache line may be written to or read from TR3 as eight 4-byte accesses.

TR4 is the Cache Status Test Register. It contains the tag, LRU and valid bits to be written to
or read from the cache. Like TR3, TR4 must be loaded with the tag/LRU/valid bits prior to a
testability write, and gets updated with the tag/LRU/valid bits as a result of a testability read.
Note that TR4[31:28] are reserved and always return a zero as a result of a testability
read. The two valid bits are interpreted differently by the code and data caches, depending
upon the setting of TR5.CD bit. The encodings for TR4.valid are shown in Table 16-2. The
encodings for the LRU bits are shown in Table 16-3 for the Pentium processor
(75/90/100/120/133/150/166/200) and the Pentium processor with MMX technology.

Table 16-2.  Encoding for Valid Bits in TR4

TR5.CD=1 (Data Cache) valid[1] valid[0] Meaning

0 0 Cache line in I state

0 1 Cache line in S state

1 0 Cache line in E state

1 1 Cache line in M state

TR5.CD=0 (Code Cache) valid[1] valid[0] Meaning

X 0 Cache line invalid

X 1 Cache line valid

Table 16-3.  Encoding of the LRU Bit in TR4

Pentium ® Processor (75/90/100/120/133/150/166/200)

LRU[0] Points to WAY

0 0

1 1

Pentium Processor with MMX™ Technology

LRU[2] LRU[1] LRU[0] Points to WAY

X 0 0 0

X 1 0 1

0 X 1 2

1 X 1 3
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NOTE

The LRU bits for the instruction cache change state when an entry is read
using the test registers, with CR0.CD=1. The LRU bits for the data cache,
however, do not change their state during testability reads with CR0.CD=1.

TR5 is the Cache Control Test Register. It contains the writeback bit, the CD bit, the cache
entry, the set address, the buffer select, and a two-bit control field, cntl.

The writeback bit determines whether that particular line is configured for writethrough or
allows the possibility of writeback. It is used by the data cache only (i.e., if the writeback bit is
set and a flush occurs (TR5.cntl=11), then if the addressed line in the data cache is modified, it
will be invalidated and written back to the bus). The CD bit distinguishes between the code
and data cache. The entry field selects one of the four ways in the Pentium processor with
MMX technology (two ways in the Pentium processor (75/90/100/120/133/150/166/200)) in
the cache. The set address field selects one of 128 sets within the cache to be accessed. The
buffer field selects one of the eight portions of a cache line to be visible through TR3. The
control field selects one of the four possible operation modes. The encodings for the TR5
fields are shown in Table 16-4, Table 16-5, Table 16-6 and Table 16-7.

Table 16-4.  Encoding of the WB Bit in TR5

WB Writeback or Writethrough

0 Writethrough

1 Writeback

Table 16-5.  Encoding of the Code/Data Cache Bit in TR5

CD Cache

0 Code cache

1 Data cache

Table 16-6.  Encoding of the Entry Bit in TR5

Entry[1] Entry[0] Way

0 0 0

0 1 1

1 0 2

1 1 3

NOTE:  The Entry[1] bit, Way 2 and Way 3 are specific to the Pentium® processor with MMX™
technology .
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Table 16-7.  Encoding of the Control Bits in TR5

Cntl1 Cntl0 Command

0 0 Normal operation

0 1 Testability write

1 0 Testability read

1 1 Flush

16.2.1.1.1. Direct Cache Access

To access the cache for testing, the programmer specifies a set address and entry and requests a
testability read or write. No tag comparison is done; the programmer can directly read/write a
particular entry in a particular set. Note that since TR2 is reserved for Pentium processor with
MMX technology, there is no TR2 access when reading an entry from the cache.

To write down an entry into the cache:

• Disable replacements by setting CR0.CD=1.

• For each 4-byte access:

1) Write address into TR5.buffer. Here, TR5.cntl=00.

2) Write data into TR3.

3) Write end bits into TR2 (for instruction cache only).

• Write the desired tag, LRU and valid bits into TR4. Note that the contents of TR4
completely overwrites the previous tag, LRU and valid bits in the cache.

• Perform a testability write by loading TR5 with the appropriate CD, entry, set address, and
cntl fields. Here, TR5.cntl=01.

To read an entry from the cache:

• For each 4-byte access:

1) Write the appropriate CD, entry, set address, buffer and cntl fields into TR5. Here,
TR5.cntl=10.

2) Read data from TR3.

3) Read end bits from TR2[3:0] (for instruction cache only).

4) Read the tag, LRU, and valid bits from TR4. No hit/comparison is performed.
Whatever was in that entry in that set is read into TR4, TR3, and TR2.

To invalidate the cache or invalidate an entry:

• When TR5.cntl=11 (flush), and CD=0 (code cache), the entire code cache is invalidated.
However, if TR5.cntl=11 and CD=1 (data cache), the user can specify through the
TR5.WB bit whether to invalidate the entire data cache, or invalidate and writeback only
the cache line specified by TR5 (see Table 16-8).
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Table 16-8.  Definition of the WB Bit in TR5

TR5.cntl=11 TR5.WB Meaning

CD=0 X Invalidate the entire code cache.

CD=1 0 Invalidate entire data cache. Modified lines are not
written back.

CD=1 1 Invalidate line. Writeback if modified.

Note that TR2, TR3, and TR4 permit both reads and writes, whereas TR5 is a write-only
register. The test registers should be written to for testability accesses only. Writing to the test
registers during normal operation may cause unpredictable behavior. For example, inadvertent
cache hits can be created.

During cache testability operations, the internal snooping mechanism functions similar to
that described in section 6.5.3. If a memory data access occurs during a code cache
testability operation using the test registers, the date cache is checked before the external
memory operation is initiated. If the access is a miss in the data cache, then the accessed
line if valid in the code cache is invalidated through the internal snooping mechanism. In
addition, the same cache line fill buffer is used for cache testability writes and to
temporarily store data from memory data reads. For this reason, memory data reads
should be done with care or avoided to ensure data from the memory read does not
overwrite data from the testability write in the cache line fill buffer.

Similarly, if a code access occurs during a data cache testability operation using the test
registers, the code cache is checked before the external memory operation is initiated. If
the access is a miss in the code cache, then the accessed line if valid in the data cache is
invalidated (or written back and then invalidated if in the M-state) through the internal
snooping mechanism.

When the FLUSH# pin is asserted, it is treated as an interrupt, and when serviced at the next
instruction boundary, it causes a writeback of the data cache and then invalidation of the
internal caches. The cache test registers TR2, TR3, TR4 and TR5 are used in this process, and
thus their values after FLUSH# has been serviced are unpredictable. Therefore FLUSH#
should not be asserted while code is being executed which uses these test registers.

16.2.1.2. TLB TEST REGISTERS

The registers in Figure 16-2 provide access to the Pentium processor’s code and data cache
translation lookaside buffers (TLBs). Note that the data cache has two TLBs: a 64-entry TLB
for 4-Kbyte data pages and an 8-entry TLB for 4-Mbyte data pages. The code cache contains
only one 32-entry TLB for both 4-Kbyte code pages and 4-Mbyte code pages. The 4-Mbyte
code pages are cached in 4-Kbyte increments (the PS bit in TR6 is ignored). The code cache
contains one fully associative 32-entry TLB which is also integrated for both 4-Kbyte and
4-Mbyte pages. Note that, unlike the Pentium processor (75/90/100/120/133/150/166/200), the
Pentium processor with MMX technology data cache contains one fully associative 64-entry
TLB which is integrated for both 4-Kbyte and 4-Mbyte pages.
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Figure 16-2.  TLB Test Registers

TR6 is the TLB Command Test Register. It contains the linear address, code/data TLB select
(CD), operation (Op) bits and the following status bits: valid (V), dirty (D), user (U), writeable
(W), and page size (PS) bits.

The status bits are inputs to the TLB entry during testability writes, and outputs from the TLB
entry during testability reads. The V bit indicates whether a TLB entry is valid or invalid
during testability writes. The D bit indicates whether or not a write access was made to the
page. The U bit indicates the privilege level that the Pentium processor must be in to access the
page. The W bit is one of the factors in determining the read/write protection of the page. The
PS (page size) bit specifies the page size for the TLB entry. The CD bit determines if the code
or data TLB is being accessed. The Op bit distinguished between a read and write cycle.

The W-bit, D-bit, and PS-bit are defined only for the data TLB.

Table 16-9, Table 16-10, Table 16-11, Table 16-12, Table 16-13, Table 16-14 and Table 16-15
list the encodings for the fields in the TR6 register.

Table 16-9.  Encoding for the Valid Bit in TR6

Valid Valid/Invalid TLB Entry

0 Invalid

1 Valid
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Table 16-10.  Encoding for the Dirty Bit in TR6

D-bit Write access made to page?

0 Write access was not made

1 Write access was made

Table 16-11.  Encoding for the User Bit in TR6

U-bit Privilege Level Access Allowed

0 PL=0,1,2,3

1 PL=0

Table 16-12.  Encoding for the Writeable Bit in TR6

W-bit Writes Allowed?

0 No writes, read only

1 Allows writes

Table 16-13.  Encoding for the Page Size Bit in TR6

PS-bit Page Size

0 4 KByte

1 4 MByte

NOTE

Normally the user should not allocate a page entry in both the TLBs; during
testability however if a match is found in both, then the processor reports that
it found it for the 4-Mbyte page size (PS=1).

Table 16-14.  Encoding for the Operation Bit TR6

Op Command

0 TLB write

1 TLB read
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Table 16-15.  Encoding for the Code/Data TLB Bit in TR6

CD Cache

0 Code TLB

1 Data TLB

TR7 is the TLB Data Test Register. In the Pentium processor (75/90/100/
120/133/150/166/200) it contains bits 31:12 of the physical address, the hit indicator H, a two-
bit entry pointer, and the status bits. The status bits of the Pentium processor include the two
paging attribute bits PCD and PWT, and three LRU bits (L0, L1, and L2). PCD is the page
level cache disable bit. PWT is the page level write through bit. The LRU bits determine which
entry is to be replaced according to the pseudo-LRU algorithm. TLB reads which result in hits
and TLB writes can change the LRU bits. The LRU bits reported for a test read are the value
before the TLB read. The LRU bits are then changed according to the pseudo-LRU
replacement algorithm. The two entry bits determine which one of the four ways to write to in
the code or data  TLB during testability writes.

In the Pentium processor with MMX technology, the entry pointer has been extended from two
bits to six bits. The six entry bits determine which one of the 64 entries to write to in the data
TLB during testability writes. The lower five entry bits determine which one of the 32 entries
to write to in the code TLB during testability writes. Also, the L0, L1 and L2 bits are reserved
in the Pentium processor with MMX technology.

The H is the hit indicator. This bit needs to be set to 1 during testability writes. During
testability reads, if the input linear address matches a valid entry in the TLB, the H bit is set to
1. The two entry bits determine in which one of the four ways to write to the TLB during
testability writes. During testability reads, they indicate the way that resulted in a read bit.

TR6, and TR7 are read/write registers. The test registers should be written to for testability
accesses only. Writing to the test registers during normal operation causes unpredictable
behavior.

When reading from the code cache TLB (TR5.CD = 0), the TR6 register zeros out bits [31:12]
(corresponding to the linear address) at the end of the TLB testability read cycle. This does not
mean that an incorrect linear address was used. All operations happen normally (with whatever
linear address was written into TR6 before the testability read operation).

16.2.1.2.1. TLB Access

Unlike the caches, the TLB is structured as a CAM cell and, thus, can only be searched (rather
than directly read). In other words, the programmer can directly read/write a particular entry in
a particular set of the code or data caches, however the TLB only reports a hit or a miss in the
Hit bit in TR7. Dumping the TLB requires the programmer to step through the entire linear
address space one page at a time. Also, please note the following changes which apply to the
Pentium processor with MMX technology:

• LRU bits of TR7 (bits 9:7) are reserved on the Pentium processor with MMX technology.
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• The entry pointer in TR7 has been extended from two bits to six bits in the Pentium
processor with MMX technology.

• To assure correct functioning, software MUST flush the TLB after testability writes and
prior to return to normal operation mode by writing to CR3.

• It is recommended that users do not use testability reads to load the TLB with overlapping
4 Kbyte and 4 Mbyte pages.

To write an entry into the TLB:

• Write the physical address bits [31:12], attribute bits, LRU bits and replacement entry into
TR7, setting TR7.H=1.

• Write the linear address, protection bits, and page size bit into TR6, setting TR6.Op=0.

To read an entry from the TLB:

• Write the linear address, CD, and OP bits into TR6, setting TR6.Op=1.

• If TR7.H is set to 1, the read resulted in a hit. Read the translated physical address,
attribute bits, and entry from TR7. Read the V, D, U, and W bits from TR6. If TR7.H is
cleared to 0, the read was a miss and the physical address is undefined.

Note that when reading from the TLB, the PS bit in the TR6 register does not have to be set;
the PS bit is actually written by the processor at the end of the TLB (testability) lookup. Based
on the PS bit the user is supposed to infer whether the linear address found in the TLB
corresponds to the 4-Kbyte or 4-Mbbyte page size. Normally the user should not allocate a
page entry in both the TLBs; during testability however if a match is found in both, then the
processor reports that it found it for the 4-Mbyte page size (PS=1).

Also note that when reading from the code cache TLB (TR5.CD=0), the TR6 register zeros out
bits 12-31 (corresponding to the linear address) at the end of the TLB testability read cycle.
This does not mean that an incorrect linear address was used. All operations happen normally
(with whatever linear address was written into TR6 before the testability read operation).

16.2.1.3. BTB TEST REGISTERS

The test registers in Figure 16-3 provide direct access to the branch target buffer. Note that the
branch prediction mechanism should be disabled through test register 12 before doing any
BTB testability access.

TR9 is the BTB Tag Test Register. Before writing any entry into the BTB, software must first
load TR9 with the appropriate information. After reading any entry in the BTB, the processor
places the retrieved information in TR9.
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Figure 16-3.  BTB Test Registers
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Table 16-16.  TR9 Register Description
(BTB Test Register)

Bits in the
Pentium ® Processor
(75/90/100/120/133/

150/166/200)

Bits in the Pentium
Processor with

MMX™ Technology TR9 Register Description (BTB Test Register)

63:32 63:32 Reserved

31:6 31:8 Tag Address: Bits 31:6 or 31:8 of the address of the last
byte of the branch

N/A 7:6 Offset: Bits 1:0 of the address of the last byte of the
branch

N/A 5 Valid bit: If set, the entry is allocated in the BTB

N/A 4 Prediction bit: Defines if this branch is predicted taken or
not taken by the BTB

1:0 3:0 History: Contains the previous history for this branch

Table 16-17.  TR10 Register Description
(BTB Target Test Register)

Bits TR10 Register Description (BTB Target Test Register)

63:32 Reserved

31:0 BTB Target Address: Linear address of the branch’s
target
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Table 16-18.  TR11 Register Description
(BTB Command Test Register)

Bits in the
Pentium ® Processor
(75/90/100/120/133/

150/166/200)

Bits in the Pentium
Processor with

MMX™ Technology
TR11 Register Description

(BTB Command Test Register)

63:32 63:32 Reserved

31:12 31:26 Reserved

N/A 25:24 Branch type: 00 JCC (Jump if condition is met), 01
unconditional jump, 10 call, 11 return

N/A 23:13 Reserved

N/A 12 Control:  Selects either Normal operation, or Testability
Read/Write, Flush and Testability Read Tag

11:6 11:8 Set :  Selects one of 64 sets to access in the Pentium®

processor (75/90/100/120/133/150/166/200) or 16 sets in
the Pentium processor with MMX™ technology.

N/A 7:6 Bank:  Selects one of the 4 banks per BTB cache line.
The bank number corresponds to bits 3:2 of the branch
address

5:4 5:4 Reserved

3:2 3:2 Way:  Selects one of four ways within the Set (i.e. 00 =
Way1, 01 = Way2, 10 = Way3 and 11 = Way4 )

1:0 1:0 Control:  Selects either Normal operation, or Testability
Read/Write, Flush and Testability Read Tag

NOTE: The format for the control field is shown in Table 16-19.

TR10 is the BTB Target Test Register. Like TR9, TR10 must be loaded with the target address
before a testability write. After a BTB testability read, the target address is placed in this
register.

TR11 is the BTB Command Test Register. This register is used to issue read and write
commands to the BTB. The set address field selects one of 16 sets (64 sets in the Pentium
processor 75/90/100/120/133/150/166/200)) to access. The entry field selects one of four ways
within the set on the Pentium processor (75/90/100/120/133/150/166/200). A BTB testability
cycle is initiated by loading TR11 controls bits with the appropriate values. The format for the
control field is shown in Table 16-19.
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Table 16-19.  Format for TR11 Control Field

Cntl2 1 Cntl1 Cntl0 Command

0 0 0 Normal operation

0 0 1 Testability write data

0 1 0 Testability read data

0 1 1 Testability BTB flush

1 0 1 Testability read TAG 1

NOTES: Other combiniations are reserved.

1. Applies to the Pentium processor with MMX technology only.

TR9, TR10 and TR11 are all read/write registers. The test registers should be written to for
testability accesses only. Writing to the test registers during normal operation causes
unpredictable behavior.

The following BTB testability cycles exist:

1. Testability read data. Reads the Target, branch type, offset, history, and prediction bit of a
BTB line defined by a set, way and bank into the corresponding testability register field.

2. Testability read TAG and valid bit (Pentium processor with MMX technology only).
Reads the Tag defined by the testability registers set, way and bank into the corresponding
testability register field.

3. Testability BTB flush. Clear all BTB valid bits.

4. Testability Write Data. Writes all the BTB fields from the corresponding test registers. If
there is an entry on the same bank and set, with the same TAG, the write overwrites this
entry even if the way choosen in TR11 is different from the existing entry’s way. (This is
done to avoid having two entries in the same bank and same set, but different ways, with
the same TAG.)

TR9, TR10, TR11 are all read/write registers. The test registers should be written to for
testability accesses only. Writing to the test registers during normal operation causes
unpredictable behavior.

16.2.1.3.1. Direct BTB Access

The BTB contents are directly accessible, in a manner similar to the code/data caches. Note
that the branch prediction mechanism should be disabled before doing any BTB testability
access.

To write an entry into the BTB for the Pentium processor (75/90/100/120/133/150/166/200):

• Disable BTB entry allocation by setting TR12.NBP=1 (see Feature Control section)

• Write the tag address and history information in TR9

• Write the target address in TR10

• Write the appropriate set address, entry fields and control bits in TR11.
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To write an entry into the BTB for the Pentium processor with MMX technology:

• Disable BTB entry allocation by setting TR12.NBP=1 (see Feature Control section)

• Write the tag address and history, offset, valid and prediction information in TR9

• Write the target address in TR10

• Write the appropriate set address, way, bank, branch type and control bits in TR11.

To read an entry from the BTB for Pentium processor (75/90/100/120/133/150/166/200):

• Perform a testability read by writing to TR11 with the appropriate set address entry fields.

• Read the tag address and history information from TR9.

• Read the target address from TR10.

To read an entry from the BTB for Pentium processor with MMX technology:

• Disable BTB entry allocation by setting TR12.NBP=1 (see Feature Control section)

• Perform a testability read by writing to TR11 with the appropriate set address, way, bank
and control bits.

• Read the tag address, history information, offset, prediction and valid bits from TR9.

• Read the target address from TR10.

• Read the branch type from TR11.

• Perform a testability read tag by writing to TR11 with the appropriate set address, way,
bank and control bits.

• Read the branch tag from TR9

NOTE

Read Tag and Read data does not destroy the other’s cycle fields in TR9.
This means that the read from TR9 can be done only once after both cycles
were executed.

16.2.1.4. TEST PARITY CHECK (TR1)

A model specific register, TR1, the Parity Reversal Register (PRR), allows the parity check
mechanism to be tested. Figure 16-4 shows the format of the PRR.



MODEL SPECIFIC REGISTERS AND FUNCTIONS E

16-18

12/19/96 8:58 AM    Ch16new.doc

INTEL CONFIDENTIAL
(until publication date)

 

0
3

1

3

0

2

9

2

8

2

7

2

6

2

5

2

4

2

3

2

2

2

1

2

0

1

9

1

8

1

7

1

6

1

5

1

4

1

3

1

2

1

1

1

0 9… 8 7 6 5 4 3 2 1

3

2

6

3

TR1

PARITY REVERSAL REGISTER

D

T

D

D

T

T

I

T

D

I

T

T

I

D

3

I

D

2

I

D

1

I

D

0

P

E

S

D

D

M

CRESERVED D


T
I

T

N

S

Figure 16-4.  Parity Reversal Register

Table 16-20 lists each of the bits in the parity reversal register and their function.

Table 16-20.  Parity Reversal Register Bit Definition

Bit Name Description

PES Parity Error Summary, set on any parity error

NS 0 = set PRR.PES, assert IERR#, and shutdown on parity error

1 = set PRR.PES, and assert IERR# on parity error

IT code (instruction) cache tag

ID0 code cache data even bits 126, 124 ... 2,0

ID1 code cache data odd bits 127, 125 ... 3,1

ID2 code cache data even bits 254, 252 ... 130,128

ID3 code cache data odd bits 255, 253 ... 131, 129

ITT code TLB tag

ITD code TLB data

DT data cache tag

DD data cache data, use byte writes for individual access

DTT data TLB tag

DTD data TLB data

MC microcode, reverse parity on read

Writing a one into bits 2-12 reverses the sense of the parity generation for any write into the
corresponding array. This includes both normal cache replacements as well as testability writes
and data writes. Parity is checked during both normal reads and testability reads.

To test parity error detection, software should write a one into the appropriate bit of the parity
reversal register (PRR), perform a testability write into the array, and then perform a testability
read. Upon successful detection of the parity error, the Pentium processor asserts the IERR#
pin and may shutdown. Alternatively, after writing a one into the appropriate bit of the PRR,
software may perform a normal write and read of the array by creating a cache miss and doing
a read.
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As an option, software may mask the shutdown by setting PRR.NS to 1 if the system is unable
to recover from a shutdown. To determine if a parity error has occurred, software may read the
parity error summary bit, PRR.PES. Hardware sets this bit on any parity error, and it remains
set until cleared by software.

For the microcode, bad parity may be forced on a read by setting the PRR.MC bit to 1.

Bit 0 of TR1 is read/write. The remaining bits are write only. The test registers should be
written to for testability accesses only. Writing to the test registers during normal operation
causes unpredictable behavior.

16.3. NEW FEATURE CONTROL (TR12)
The new features of branch prediction, execution tracing, and instruction pairing in the
Pentium processor can be selectively enabled or disabled through individual bits in test register
TR12 (Figure 16-5). The branch prediction, execution tracing, and instruction pairing features
of the Pentium processor family can be selectively enabled or disabled through individual bits
in test register TR12. In addition, level 1 caching can be disabled without affecting the PCD
output to allow testing of a second level cache.
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Table 16-21.  New Feature Controls

Name Position Function

NBP 0 No Branch Prediction controls the allocation of new entries in the BTB.
When TR12.NBP is clear, the code cache allocates entries in the BTB.
When TR12.NBP is set, no new entry is allocated in the BTB, however,
entries already in the BTB may continue to cause a BTB hit and result in
the pipeline being reloaded from the predicted branch target.  To completely
disable branch prediction, first set TR12.NBP to 1 and then flush the entire
BTB by loading CR3.

TR 1 Execution Tracing controls the Branch Trace message Special Cycle.
When the TR12.TR bit is set to 1, a branch trace message special cycle is
generated whenever a taken branch is executed. Two cycles are produced:
one for the linear address of the instruction causing the taken branch, and
one for the branch target linear address.

SE 2 Single Pipe Execution controls instruction pairing. When TR12.SE is
cleared to zero, instructions are issued to both the u and v pipes contingent
on pairing restrictions.  When TR12.SE is set to one, the v pipe is disabled
and instructions are issued only to the u pipe.  Microcoded instructions are
designed to utilize both pipes concurrently, independent of the state of
TR12.SE.  Note that all instructions requiring microcode are not pairable.

CI 3 Cache Inhibit controls line fill behavior.  When TR12.CI is reset to 0, the on-
chip data and instruction caches operate normally.  When TR12.CI is set to
1, all cache line fills are inhibited and all bus cycles due to cache misses
are run as single transfer cycles (CACHE# is not asserted).  Unlike
CR0.CD, TR12.CI does not affect the state of the PCD output pin.  This
allows the first level cache to be disabled while the second level cache is
still active and can be tested.  Note that the contents of the instruction and
data caches are not affected by the state of TR12.CI, e.g., they are not
flushed.  The second level cache test sequence should be: set TR12.CI to
1, flush the internal caches, run the second level cache tests.

4-7 Reserved

FTR 8 Fast Execution Tracing is similar to Execution Tracing (TR12.TR).  If
TR12.FTR is set to 1 while execution tracing is enabled (TR12.TR = 1), only
one branch trace message special cycle is produced containing the linear
address of the instruction causing the taken branch.

ITR 9 IO Trap Restart enables proper interrupt prioritization to support restarting
IO accesses trapped by System Management Mode.

10-18 Reserved

CCI 19 1 Code Cache Inhibit is the same instruction as Cache Inhibit (CI), but only
applies to the code cache.

DCI 20 1 Data Cache Inhibit is the same instruction as Cache Inhibit (CI), but only
applies to the data cache.

21-63 Reserved

NOTES:
1. These bits are reserved on the Pentium processor (75/90/100/120/133/150/166/200).
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TR12.NBP, TR12.TR, TR12.SE, and TR12.CI are initialized to zero on reset. This register is
write only and the reserved bits should be written with zeros.

16.4. PERFORMANCE MONITORING
The Pentium processor includes features to measure and monitor various parameters that
contribute to the performance of the processor. This information can be then used for compiler
and memory system tuning. For memory system tuning, it is possible to measure data and
instruction cache hit rates, and time spent waiting for the external bus. The performance
monitor allows compiler writers to gauge the effectiveness of instruction scheduling
algorithms by measuring address generation interlocks and parallelism.

While the performance monitoring features that are provided by the Pentium processor are
generally model specific and available only to privileged software, the Pentium processor also
provides an architectural Time Stamp Counter that is available to the user. With this notable
exception, the performance monitor features and the events they monitor are otherwise
implementation dependent, and consequently, they are not considered part of the Pentium
processor architecture. The performance monitor features are expected to change in future
implementations. It is essential that software abide by the usage restrictions for accessing
model specific registers as discussed in section 16.1.1.

16.4.1. Performance Monitoring Feature Overview
Pentium processor performance monitoring features include:

Table 16-22.  Architectural Performance Monitoring Features

RDTSC Read Time Stamp Counter - a user level instruction to provide read access to a 64-bit
free-running counter

RDPMC Read Performance Monitoring Counter - this instruction enables reading of the
performance monitoring counters (in CPL = 3) provided bit 8 of CR4 (CR4.PCE) is set.

Note: The RDPMC instruction is only defined on the Pentium® processor with MMX™
technology. Execution of the RDPMC instruction in a Pentium processor
(75/90/100/120/133/150/166/200) will result in an invalid opcode exception.

CPUID
(EDX.TSC)

Time Stamp Counter Feature Bit - Bit 4 of EDX is set to 1 to indicate that the processor
implements the TSC and RDTSC instruction

CR4.TSD Time Stamp Disable - A method for a supervisor program to disable user access to the
time stamp counter in secure systems. When bit 2 of CR4 is set to 1, an attempt to
execute the RDTSC instruction generates an general protection exception (#GP).
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Table 16-23.  Model Specific Performance Monitoring Features

CTR0, CTR1 Counter 0, Counter 1 - two programmable counters

CESR Control and Event Select Register - programs CTR0, CTR1

TSC Time Stamp Counter - provides read and write access to the architectural 64-bit counter
in a manner that is model specific.

PM0/BP0,
PM1/BP1

Event Monitoring Pins - These pins allow external hardware to monitor the activity in
CTR0 and CTR1.

16.4.2. Time Stamp Counter - TSC
A dedicated, free-running, 64-bit time stamp counter is provided on chip. Note that on the
Pentium processor, this counter increments on every clock cycle, although it is not guaranteed
that this will be true on future processors. As a time stamp counter, the RDTSC instruction
reports values that are guaranteed to be unique and monotonically increasing. Portable
software should not expect that the counter reports absolute time or clock counts. The user
level RDTSC (Read Time Stamp Counter) instruction is provided to allow a program of any
privilege level to sample its value. A bit in CR4, TSD (Time Stamp Disable) is provided to
disable this instruction in secure environments. Supervisor mode programs may sample this
counter using the RDMSR instruction or reset/preset this counter with a WRMSR instruction.
The counter is cleared after reset.

While the user level RDTSC instruction and a corresponding 64-bit time stamp counter will be
provided in all future Pentium CPU compatible processors, access to this counter via the
RDMSR/WRMSR instructions is dependent upon the particular implementation.

16.4.3. Programmable Event Counters - CTR0, CTR1
Two programmable 40-bit counters CTR0 and CTR1 are provided. The implementation of
these two counters is slightly different between the Pentium processor with MMX technology
and the Pentium processor (75/90/100/120/133/150/166/200). In the Pentium processor
(75/90/100/120/133/150/166/200) each counter may be programmed to count any event from a
pre-determined list of events. These events, which are described in the Events section of this
chapter, are selected by programming the Control and Event Select Register (CESR). In the
Pentium processor with MMX technology some additional events were added and cannot be
assigned to either of the two counters independently. These new events are paired, so when
one event is assigned to counter 0, a second related event is automatically assigned to counter
1. The counters are not affected by writes to CESR and must be cleared or pre-set when
switching to a new event. The counters are undefined after RESET.

Associated with each counter is an event pin (PM1/BP1, PM0/BP0) which externally signals
the occurrence of the selected event.
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Note that neither the CTR0/CTR1 nor CESR are part of the processor state that is
automatically saved and restored during a context switch. If it is desired to coordinate the use
of the programmable counters in a multiprocessing system, it is the software’s responsibility to
share or restrict the use of these counters through a semaphore or other appropriate
mechanism.

16.4.4. Control and Event Select Register - CESR
A 32-bit Control and Event Select Register (CESR) is used to control operation of the
programmable counters and their associated pins. Figure 16-6 depicts the CESR. For each
counter, the CESR contains a 6-bit Event Select field (ES), a Pin Control bit (PC), and a three
bit control field (CC). It is not possible to selectively write a subset of the CESR. If only one
event needs to be changed, the CESR must first be read, the appropriate bits modified, and all
bits must be written back. At reset, all bits in the Control and Event Select Register are cleared.
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Figure 16-6.  Control and Event Select Register

16.4.4.1. EVENT SELECT - ES0, ES1

Up to two events may be monitored by placing the appropriate event code in the Event Select
field. The events and codes are listed in the Events section of this chapter.

16.4.4.2. COUNTER CONTROL - CC0, CC1

A three bit field is used to control the operation of the counter. the highest order bit selects
between counting events and counting clocks. The middle bit enables counting when the
CPL=3. The low order bit enables counting when the CPL=0, 1 or 2.

CC Meaning

000 Count Nothing (Disable Counter)

001 Count the selected Event while the CPL=0, 1 or 2

010 Count the selected Event while the CPL=3

011 Count the selected Event regardless of the CPL
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100 Count Nothing (Disable Counter)

101 Count Clocks while the CPL=0, 1 or 2

110 Count Clocks while the CPL=3

111 Count Clocks regardless of the CPL

While a counter need not be stopped to sample its contents, it must be stopped and cleared or
pre-set before switching to a new event.

16.4.4.3. PIN CONTROL - PC0, PC1

Associated with CTR0 and CTR1 are two pins, PM0 and PM1 (PM0/BP0, PM1/BP1), and two
bits which control their operation, PC0 and PC1. These pins may be programmed by the
PC0/PC1 bits in the CESR to indicate either that the associated counter has incremented or that
it has overflowed. Note that the external signalling of the event on the pins will lag the internal
event by a “few” clocks as the signals are latched and buffered.

PC PM pin signals when the corresponding counter:

0 has incremented

1 has overflowed

When the pins are configured to signal that a counter has incremented, it should be noted that
although the counters may increment by 1 or 2 in a single clock, the pins can only indicate that
the event occurred. Moreover, since the internal clock frequency may be higher than the
external clock frequency, a single external clock may correspond to multiple internal clocks.

A “count up to” function may be provided when the event pin is programmed to signal an
overflow of the counter. Because the counters are 40 bits, a carry out of bit 39 indicates an
overflow. A counter may be preset to a specific value less than 240 - 1. After the counter has
been enabled and the prescribed number of events has transpired, the counter will overflow.
Approximately 5 clocks later, the overflow is indicated externally and appropriate action, such
as signaling an interrupt, may then be taken.

When the performance monitor pins are configured to indicate when the performance monitor
counter has incremented and an “occurrence event” is being counted, the associated PM pin is
asserted (high) each time the event occurs. When a “duration event” is being counted the
associated PM pin is asserted for the entire duration of the event. When the performance
monitor pins are configured to indicate when the counter has overflowed, the associated PM
pin is not asserted until the counter has overflowed.

The PM0/BP0, PM1/BP1 pins also serve to indicate breakpoint matches during in Circuit
Emulation, during which time the counter increment or overflow function of these pins is not
available. After RESET, the PM0/BP0, PM1/BP1 pins are configured for performance
monitoring, however a hardware debugger may re-configure these pins to indicate breakpoint
matches.
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16.4.5. Performance Monitoring Events
Events may be considered to be of two types: those that count OCCURRENCES, and those
that count DURATION. Each of the events listed below is classified accordingly.

Occurrences events are counted each time the event takes place. If the PM0 or PM1 pins are
configured to indicate when a counter increments, they are asserted each clock the counter
increments. Note that if an event can happen twice in one clock the counter increments by 2,
however the PM0/1 pins are asserted only once.

For Duration events, the counter counts the total number of clocks that the condition is true.
When configured to indicate when a counter increments, the PM0 and PM1 pins are asserted
for the duration of the event.

Table 16-24 lists the events that can be counted, and their encodings for the Control and Event
Select Register.

The performance monitoring features present in the Pentium processor
(75/90/100/120/133/150/166/200) have been extended in the Pentium processor with MMX
technology. The event list is longer, and there is a new instruction defined to facilitate use of
the instruction monitoring. To leave room for future additions all new Pentium processor with
MMX technology events are assigned to just one of the two events counters (CTR0, CTR1). It
is not possible to assign these events to any of the two counters at will. “Twin events” (such as
“D1 starvation and FIFO is empty”) are assigned to different counters to allow their concurrent
measurement.

The Read Performance Monitoring Counter (RDPMC) is implemented in Pentium processor
with MMX technology. See the Intel Architecture Software Developer’s Manual for more
information about the RDPMC instruction.
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Table 16-24.  Performance Monitoring Events

Decimal
Encoding

Binary
Encoding Counter 0 Counter 1 Performance Monitoring Event

Occurrence or
Duration?

0 000000 Yes Yes Data Read Occurrence

1 000001 Yes Yes Data Write Occurrence

2 000010 Yes Yes Data TLB Miss Occurrence

3 000011 Yes Yes Data Read Miss Occurrence

4 000100 Yes Yes Data Write Miss Occurrence

5 000101 Yes Yes Write (hit) to M- or E-state lines Occurrence

6 000110 Yes Yes Data Cache Lines Written Back Occurrence

7 000111 Yes Yes External Snoops Occurrence

8 001000 Yes Yes External Data Cache Snoop Hits Occurrence

9 001001 Yes Yes Memory Accesses in Both Pipes Occurrence

10 001010 Yes Yes Bank Conflicts Occurrence

11 001011 Yes Yes Misaligned Data Memory or I/O
References

Occurrence

12 001100 Yes Yes Code Read Occurrence

13 001101 Yes Yes Code TLB Miss Occurrence

14 001110 Yes Yes Code Cache Miss Occurrence

15 001111 Yes Yes Any Segment Register Loaded Occurrence

16 010000 Yes Yes Reserved

17 010001 Yes Yes Reserved

18 010010 Yes Yes Branches Occurrence

19 010011 Yes Yes BTB Hits Occurrence

20 010100 Yes Yes Taken Branch or BTB hit Occurrence

21 010101 Yes Yes Pipeline Flushes Occurrence

22 010110 Yes Yes Instructions Executed Occurrence

23 010111 Yes Yes Instructions Executed in the v pipe e.g.
parallelism/pairing

Occurrence

24 011000 Yes Yes Clocks while a bus cycle is in progress
(bus utilization)

Duration

25 011001 Yes Yes Number of clocks stalled due to full write
buffers

Duration
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Table 16-24.  Performance Monitoring Events (Contd.)

Decimal
Encoding

Binary
Encoding Counter 0 Counter 1 Performance Monitoring Event

Occurrence or
Duration?

26 011010 Yes Yes Pipeline stalled waiting for data memory
read

Duration

27 011011 Yes Yes Stall on write to an E- or M-state line Duration

28 011100 Yes Yes Locked Bus Cycle Occurrence

29 011101 Yes Yes I/O Read or Write Cycle Occurrence

30 011110 Yes Yes Non-cacheable memory reads Occurrence

31 011111 Yes Yes Pipeline stalled because of an address
generation interlock

Duration

32 100000 Yes Yes Reserved

33 100001 Yes Yes Reserved

34 100010 Yes Yes FLOPs Occurrence

35 100011 Yes Yes Breakpoint match on DR0 Register Occurrence

36 100100 Yes Yes Breakpoint match on DR1 Register Occurrence

37 100101 Yes Yes Breakpoint match on DR2 Register Occurrence

38 100110 Yes Yes Breakpoint match on DR3 Register Occurrence

39 100111 Yes Yes Hardware Interrupts Occurrence

40 101000 Yes Yes Data Read or Data Write Occurrence

41 101001 Yes Yes Data Read Miss or Data Write Miss Occurrence

42 101010 Yes No Bus Ownership Latency Duration

42 101010 No Yes Bus Ownership Transfers Occurrence

43 101011 Yes No MMX instructions executed in u pipe Occurrence

43 101011 No Yes MMX instructions executed in v pipe Occurrence

44 101100 Yes No Cache M-State Line Sharing Occurrence

44 101100 No Yes Cache Line Sharing Occurrence

45 101101 Yes No EMMS instructions executed Occurrence

45 101101 No Yes Transition between MMX™ instructions
and FP instructions

Occurrence

46 101110 Yes No Bus Utilization Due to processor Activity Duration

46 101110 No Yes Writes to Non-Cacheable Memory Occurrence
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Table 16-24.  Performance Monitoring Events (Contd.)

Decimal
Encoding

Binary
Encoding Counter 0 Counter 1 Performance Monitoring Event

Occurrence or
Duration?

47 101111 Yes No Saturating MMX instructions executed Occurrence

47 101111 No Yes Saturations performed Occurrence

48 110000 Yes No Number of Cycles Not in HLT State Duration

48 110000 No Yes Number of Cycles Not in HLT State Duration

49 110001 Yes No MMX instruction data reads Occurrence

49 110001 No Yes MMX instruction data read misses Occurrence

50 110010 Yes No Floating Point Stalls Duration

50 110010 No Yes Taken Branches Occurrence

51 110011 Yes No D1 Starvation and FIFO is empty Occurrence

51 110011 No Yes D1 Starvation and only one instruction
in FIFO

Occurrence

52 110100 Yes No MMX instruction data writes Occurrence

52 110100 No Yes MMX instruction data write misses Occurrence

53 110101 Yes No Pipeline flushes due to wrong branch
prediction

Occurrence

53 110101 No Yes Pipeline flushes due to wrong branch
predictions resolved in WB-stage

Occurrence

54 110110 Yes No Misaligned data memory reference on
MMX instruction

Occurrence

54 110110 No Yes Pipeline stalled waiting for MMX
instruction data memory read

Duration

55 110111 Yes No Returns Predicted Incorrectly or not
predicted at all

Occurrence

55 110111 No Yes Returns Predicted (Correctly and
Incorrectly)

Occurrence

56 111000 Yes No MMX multiply unit interlock Duration

56 111000 No Yes MOVD/MOVQ store stall due to
previous operation

Duration

57 111001 Yes No Returns Occurrence

57 111001 No Yes Reserved

58 111010 Yes No BTB false entries Occurrence

58 111010 No Yes BTB miss prediction on a Not-Taken
Branch

Occurrence
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Table 16-24.  Performance Monitoring Events (Contd.)

Decimal
Encoding

Binary
Encoding Counter 0 Counter 1 Performance Monitoring Event

Occurrence or
Duration?

59 111011 Yes No Number of clocks stalled due to full
write buffers while executing MMX
instructions

Duration

59 111011 No Yes Stall on MMX instruction write to E- or
M-state line

Duration

NOTE:
Shaded areas only apply to the Pentium® processor with MMX™ technology.

16.4.6. Description of Events
The following descriptions clarify the events. The event codes are provided in parenthesis.

Data Read (0, 000000), Data Write (1, 000001), Data Read or Data Write (40, 101000):

These are memory data reads and/or writes (internal data cache hit and miss combined),
I/O is not included. The individual component reads and writes for split cycles are counted
individually. Data Memory Reads that are part of TLB miss processing are not included.
These events may occur at a maximum of two per clock.

Data TLB Miss (2, 000010):

This event counts the number of misses to the data cache translation look-aside buffer.

Data Read Miss (3, 000011), Data Write Miss (4, 000100), Data Read Miss or Data Write
Miss (41, 101001):

These are memory read and/or write accesses that miss the internal data cache whether or
not the access is cacheable or non-cacheable. Additional reads to the same cache line after
the first BRDY# of the burst linefill is returned but before the final (fourth) BRDY# has
been returned, will not cause the Data Read Miss counter to be incremented additional
times. Data accesses that are part of TLB miss processing are not included. Accesses
directed to I/O space are not included.

Write (hit) to M- or E-state lines (5, 000101):

This measures the number of write hits to exclusive or modified lines in the data cache.
(These are the writes which may be held up if EWBE# is inactive.) This event may occur at
a maximum of two per clock.

Data Cache Lines Written Back (6, 000110):

This counts ALL Dirty lines that are written back, regardless of the cause. Replacements
and internal and external snoops can all cause writeback and are counted.
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External Snoops (7, 000111), Data Cache Snoop Hits (8, 001000):

The first event counts accepted external snoops whether they hit in the code cache or data
cache or neither. Assertions of EADS# outside of the sampling interval are not counted. No
internal snoops are counted. The second event applies to the data cache only. Snoop hits to
a valid line in either the data cache, the data line fill buffer, or one of the write back buffers
are all counted as hits.

Memory Accesses in Both Pipes (9, 001001):

Data memory reads or writes which are paired in the pipeline. Note that these accesses are
not necessarily run in parallel due to cache misses, bank conflicts, etc.

Bank Conflicts (10, 001010):

These are the number of actual bank conflicts.

Misaligned Data Memory or I/O References (11, 001011):

Memory or I/O reads or writes that are misaligned. A two or four byte access is misaligned
when it crosses a four byte boundary; an eight byte access is misaligned when it crosses an
eight byte boundary. Ten byte accesses are treated as two separate accesses of eight and
two bytes each.

Code Read (12, 001100), Code TLB Miss (13, 001101), Code Cache Miss (14, 001110):

Total instruction reads and reads that miss the code TLB or miss the internal code cache
whether or not the read is cacheable or non-cacheable. Individual eight byte non-cacheable
instruction reads are counted.

Any Segment Register Loaded (15, 001111):

Writes into any segment register in real or protected mode including the LDTR, GDTR,
IDTR, and TR. Segment loads are caused by explicit segment register load instructions, far
control transfers, and task switches. Far control transfers and task switches causing a
privilege level change will signal this event twice. Note that interrupts and exceptions may
initiate a far control transfer.

Branches (18, 010010):

In addition to taken conditional branches, jumps, calls, returns, software interrupts, and
interrupt returns, the Pentium processor treats the following operations as causing taken
branches: serializing instructions, VERR and VERW instructions, some segment descriptor
loads, hardware interrupts (including FLUSH#), and programmatic exceptions that invoke
a trap or fault handler. Both Taken and Not Taken Branches are counted. The pipe is not
necessarily flushed. The number of branches actually executed is measured, not the number
of predicted branches.

BTB Hits (19, 010011):

Hits are counted only for those instructions that are actually executed.
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Taken Branch or BTB Hit (20, 010100):

This is a logical OR of taken branches and BTB hits (defined above). It represents an event
that may cause a hit in the BTB. Specifically, it is either a candidate for a space in the BTB,
or it is already in the BTB.

Pipeline Flushes (21, 010101):

BTB Misses on taken branches, mis-predictions, exceptions, interrupts, and some segment
descriptor loads all cause pipeline flushes. This event counter will not be incremented for
serializing instructions (serializing instructions cause the prefetch queue to be flushed but
will not trigger the Pipeline Flushed event counter) and software interrups (software
interrupts do not flush the pipeline).

Instructions Executed (22, 010110):

Up to two per clock. Invocations of a fault handler are considered instructions. All
hardware and software interrupts and exceptions will also cause the count to be
incremented. Repeat prefixed string instructions will only increment this counter once
despite the fact that the repeat loop executes the same instruction multiple times until the
loop criteria is satisfied. This applies to all the Repeat string instruction prefixes (i.e., REP,
REPE, REPZ, REPNE, and REPNZ). This counter will also only increment once per each
HLT instruction executed regardless of how many cycles the processor remains in the
HALT state.

Instructions Executed in the v pipe e.g. parallelism/pairing (23, 010111):

Same as the Instructions exectued counter except it only counts the number of instructions
actually executed in the v pipe. It indicates the number of instructions that were paired.

Clocks while a bus is in progress (bus utilization) (24, 011000):

Including HLDA, AHOLD, BOFF# clocks.

Number of clocks stalled due to full write buffers (25, 011001):

This event counts the number of clocks that the internal pipeline is stalled due to full write
buffers. Full write buffers stall data memory read misses, data memory write misses, and
data memory write hits to S state lines. Stalls on I/O accesses are not included.

Pipeline stalled waiting for data memory read (26, 011010):

Data TLB Miss processing is also included. The pipeline stalls while a data memory read is
in progress including attempts to read that are not bypassed while a line is being filled.

Locked Bus Cycle (28, 011100):

LOCK prefix or LOCK instruction, Page Table Updates, and Descriptor Table Updates.
Only the Read portion of the Locked Read-Modify-Write is counted. Split Locked cycles
(SCYC active) count as two separate accesses. Cycles restarted due to BOFF# are not re-
counted.
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I/O Read or Write Cycle (29, 011101):

Bus cycles directed to I/O space. Misaligned I/O accesses will generate two bus cycles. Bus
cycles restarted due to BOFF# are not re-counted.

Non-cacheable memory reads (30, 011110):

Non-cacheable instruction or data memory read bus cycles. Includes read cycles caused by
TLB misses; does not include read cycles to I/O space. Cycles restarted due to BOFF# are
not re-counted.

Pipeline stalled because of an address generation interlock (31, 011111):

Number of address generation interlocks (AGIs). An AGI occurring in both the u- and v-
pipelines in the same clock signals this event twice. An AGI occurs when the instruction in
the execute stage of either of u- or v-pipelines is writing to either the index or base address
register of an instruction in the D2 (address generation) stage of either the u- or v-
pipelines.

FLOPs (34, 100010);

Number of floating point adds, subtracts, multiplies, divides, remainders, and square roots.
The transcendental instructions consist of multiple adds and multiplies and will signal this
event multiple times. Instructions generating the divide by zero, negative square root,
special operand, or stack exceptions will not be counted. Instructions generating all other
floating point exceptions will be counted. The integer multiply instructions and other
instructions which use the floating point arithmetic circuitry will be counted.

Breakpoint match on DR0 Register (35, 100011),

Breakpoint match on DR1 Register (36, 100100),

Breakpoint match on DR2 Register (37, 100101),

Breakpoint match on DR3 Register (38, 100110):

If programmed for one of these breakpoint match events, the performance monitor counters
will be incremented in the event of a breakpoint match whether or not breakpoints are
enabled. However, if breakpoints are not enabled, code breakpoint matches will not be
checked for instructions executed in the v-pipe and will not cause this counter to be
incremented (they are checked on instruction executed in the u-pipe only when breakpoints
are not enabled). These events correspond to the signals driven on the BP[3:0] pins. Please
refer to the Debugging chapter of this volume for more information.

Hardware Interrupts (39, 100111):

Number of taken INTR and NMI only.

Bus ownership latency (42, 101010/0), Bus ownership transfers (42, 101010/1):
The first event measures the time from LRM bus ownership request to bus ownership
granted, the time from the earlier of PBREQ (0), PHITM# or HITM# to PBGNT. The
second event is count of the number of PBREQ (0). The ratio of these two events is the
average stall time due to bus ownership conflict.
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MMX instructions executed in U pipe (43, 101011/0):
Total number of MMX instructions executed in U-pipe.

MMX instructions executed in V pipe (43, 101011/1):
Total number of MMX instructions executed in V-pipe.

Cache M-state line sharing (44, 101100/0):
Counts the number of times a processor identified a hit to a modified line due to a memory
access in the other processor (PHITM (O)). If the average memory latencies of the system
are known, this event enables the user to count the Write Backs on PHITM(O) penalty
and the Latency on Hit Modified(I)  penalty.

Cache line sharing (44, 101100/1):
Counts the number of shared data lines in the L1 cache (PHIT (O)).

EMMS instructions executed (45, 101101/0):
Counts number of EMMS instructions executed.

Transition between MMX instructions and FP instructions (45, 101101/1):
Counts first floating point instruction following any MMX instruction or first MMX
instruction following a floating point instruction. May be used to estimate the penalty in
transitions between FP state and MMX state. An even count indicates the processor is in
MMX state. an odd count indicates it is in FP state.

Bus utilization due to processor activity (46, 101110/0):
Counts the number of clocks the bus is busy due to the processor’s own activity, i.e. the
bus activity which is caused by the CPU.

Writes to non-cacheable memory (46, 101110/1):
Counts the number of write accesses to non-cacheable memory. It includes write cycles
caused by TLB misses and I/O write cycles. Cycles restarted due to BOFF# are not re-
counted.

Saturating MMX instructions executed (47, 101111/0):
Counts saturating MMX instructions executed, independently of whether or not they
actually saturated. Saturating MMX instructions may perform either add, subtract or pack
operations.

Saturations performed (47, 101111/1):
Counts number of MMX instructions that used saturating arithmetic and that at least one
of its results actually saturated; i.e., if an MMX instruction operating on four dwords
saturated in three out of the four results, the counter will be incremented by one only.

Number of cycles not in HLT state (48, 110000/0):
This event counts the number of cycles the processor is not idle due to HLT instruction.
This event will enable the user to calculate “net CPI”. Note that during the time that the
processor is executing the HLT instruction, the Time Stamp Counter is not disabled. Since
this event is controlled by the Counter Controls CC0, CC1 it can be used to calculate the
CPI at CPL=3 which the TSC cannot provide.
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Clocks stalled on Data cache TLB miss (48, 110000/1):
Counts the number of clocks the pipeline is stalled due to a data cache translation look-
aside buffer (TLB) miss. This is the same as the event with encoding 011010 (pipeline
stalled waiting for data memory read), but only for TLB miss.

MMX instruction data reads (49, 110001/0):
Analogous to “Data reads,” counting only MMX instruction accesses.

MMX instruction data read misses (49, 110001/1):
Analogous to “Data read misses,” counting only MMX instruction accesses.

Floating Point stalls (50, 110010/0):
This event counts the number of clocks while pipe is stalled due to a floating-point freeze.

Taken Branches (50, 110010/1):
This event counts the number of taken branches.

D1 starvation and FIFO is empty (51, 110011/0), D1 starvation and only one instruction
in FIFO (51, 110011/1):

The D1 stage can issue 0, 1, or 2 instructions per clock if those are available in an
instructions FIFO buffer. The first event counts how many times D1 cannot issue ANY
instructions since the FIFO buffer is empty. The second event counts how many times the
D1-stage issues just a single instruction since the FIFO buffer had just one instruction
ready. Combined with previously defined events, Instruction Executed (010110) and
Instruction Executed in the V-pipe (010110), the second event enables the user to calculate
the numbers of time pairing rules prevented issuing of two instructions.

MMX instruction data writes (52, 110001/1):
Analogous to “Data writes,” counting only MMX instruction accesses.

MMX instruction data write misses (52, 110100/1):
Analogous to “Data write misses,” counting only MMX instruction accesses.

Pipeline flushes due to wrong branch prediction (53, 110101/0), Pipeline flushes due to
wrong branch prediction resolved in WB-stage(53, 110101/1):

Counts any pipeline flush due to a branch which the pipeline did not follow correctly. It
includes cases where a branch was not in the BTB, cases where a branch was in the BTB
but was mispredicted, and cases where a branch was correctly predicted but to the wrong
address. Branches are resolved in either the Execute stage (E-stage) or the Writeback stage
(WB-stage). In the later case, the misprediction penalty is larger by one clock. The two
events count the number of pipeline flushes due to wrong branch predictions. The first
event counts the number of wrong branch predictions resolved in either the E-stage or the
WB-stage. The second event counts the number of wrong branch prediction resolved in
the WB-stage. The difference between these two counts is the number of E-stage resolved
branches.

Misaligned data memory reference on MMX instruction (54, 110110/0):
Analogous to “Misaligned data memory reference,” counting only MMX instruction
accesses.
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Pipeline stalled waiting for MMX instruction data memory read (54, 110110/1):
Analogous to “Pipeline stalled waiting for data memory read,” counting only MMX
instruction accesses.

Returns predicted incorrectly or not predicted at all (55, 110111/0):
These are the actual number of Returns that were either incorrectly predicted or were not
predicted at all. It is the difference between the total number of executed returns and the
number of returns that were correctly predicted. Only RET instructions are counted (e.g.,
IRET instructions are not counted.).

Returns predicted (correctly and incorrectly) (55, 110111/1):
This is the actual number of Returns for which a prediction was made. Only RET
instructions are counted (e.g. IRET instructions are not counted).

MMX multiply unit interlock (56, 111000/0):
This is the number of clocks the pipe is stalled since the destination of previous MMX
multiply instruction is not ready yet. The counter will not be incremented if there is
another cause for a stall. For each occurrence of a multiply interlock this event will be
counted twice (if the stalled instruction comes on the next clock after the multiply) or by
one (if the stalled instruction comes two clocks after the multiply).

MOVD/MOVQ store stall due to previous operation (56, 111000/1):
Number of clocks a MOVD/MOVQ store is stalled in D2 stage due to a previous MMX
operation with a destination to be used in the store instruction.

Returns (57, 111001/0):
This is the actual number of Returns executed. Only RET instructions are counted (e.g.,
IRET instructions are not counted). Any exception taken on a RET instruction and any
interrupt recognized by the processor on the instruction boundary prior to the execution of
the RET instruction will also cause this counter to be incremented.

BTB false entries (58, 111010/0):
Counts the number of false entries in the Branch Target Buffer. False entries are causes for
misprediction other than a wrong prediction.

BTB miss prediction on a Not-Taken Branch (58, 111010/1):
Counts the number of times the BTB predicted a Not-Taken branch as Taken.

Number of clocks stalled due to full write buffers while executing MMX instructions
(59, 111011/0):

Analogous to “Number of clocks stalled due to full write buffers,” counting only MMX
instruction accesses.

Stall on MMX instruction write to an E- or M-state line (59, 111011/1):
Analogous to “Stall on write to an E- or M-state line,” counting only MMX instruction
accesses.
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CHAPTER 17
PENTIUM® OverDrive ® PROCESSOR

SOCKET SPECIFICATION

17.1. INTRODUCTION
This chapter includes the Socket 7 design specifications to support Pentium OverDrive
processor upgrade products for 3.3V Pentium processor-based systems. Pentium OverDrive
processors (125/150/166) are available today for upgradable Pentium processor-based systems
(75/90/100). Future Pentium OverDrive processors with MMX technology are planned for
upgradable Pentium processor-based systems (75/90/100/120/133/150/166/2001).

For the remainder of this chapter, the Pentium processor (75/90/100/120/133/150/166/200) will
be referred to as the Pentium processor or 3.3V Pentium processor.  When a specific core
frequency of the Pentium is discussed, the core speed will be included.  For example, the
Pentium processor at 133 MHz will be described as the Pentium processor (133). The Pentium
processor with MMX technology will always be so noted.  The future Pentium OverDrive
processor with MMX technology will also be distinguished from the existing Pentium
OverDrive processor by stating that it has MMX technology.

Two upgrade sockets have been defined for Pentium processor-based systems as part of the
processor architecture.  Socket 5 has been defined for the Pentium processor-based systems
with core frequencies from 75 MHz to 120 MHz.  When upgraded, the Pentium processor is
simply removed from the Socket 5 Zero Insertion Force (ZIF) socket and replaced by the
Pentium OverDrive processor.

Socket 7 has been defined as the upgrade socket for Pentium processor
(75/90/100/120/133/15/166/200)-based systems. The flexibility of the Socket 7 definition
makes it backward compatible with Socket 5. Socket 7 should be used for all new Pentium
processor-based system designs. Socket 7 supports the Pentium processor family, the Pentium
OverDrive processor, and the future Pentium OverDrive processor with MMX technology. To
support the future Pentium OverDrive processor with MMX technology, systems should be
designed using the electrical specifications described in this chapter. Note that in some cases,
the electrical specifications of the Pentium processor with MMX technology differ from the
Socket 7 specifications. Systems designed to support the Pentium processor with MMX
technology must adhere to the specifications outlined in Chapter 7 of this manual.

1 The future 200-MHz Pentium OverDrive processor with MMX technology will provide the benefit of MMX
technology in addition to some integer and floating point performance increase compared to the 200-MHz Pentium
processor.
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Socket 7 support requires minor changes from Socket 5 designs: additional power, 3.3V clocks,
additional decoupling, etc. Pentium processor (133/150/166/200)-based systems must use
Socket 7 in order to accept the future Pentium OverDrive processor with MMX technology.

The inclusion of Socket 7 in Pentium processor-based systems provides the end-user with a
flexible and cost-effective way to increase system performance.  The majority of upgrade
installations will be performed by end-users and resellers; therefore, it is important that the
design be “end-user easy,” and that the amount of training and technical expertise required to
install the upgrade processors be minimal.  Upgrade installation instructions should be clearly
described in the system user’s manual. Three main characteristics of end-user friendly designs
are:

• Accessible socket location

• Clear indication of upgrade component orientation

• Minimization of insertion force

The future Pentium OverDrive processor with MMX technology will support the 82430
PCIsets and other common chipsets that are supported by the Pentium processor. The
82497/82492 cache controller, 82498/82493 cache controller, and chipsets with 5 volt signal
levels are not supported by the Pentium OverDrive processor with MMX technology.

The rest of this chapter describes the Socket 7 specification.

17.2. SOCKET 7 DIFFERENCES FROM SOCKET 5
This section contains general information concerning the upgrade socket for the future Pentium
OverDrive processor with MMX technology (Socket 7).  Socket 7 is an enhancement to the
Socket 5 definition that allows for future upgradability and installation of the future Pentium
OverDrive processor with MMX technology.  The socket is a 321-pin ZIF socket compatible to
the 320-pin Socket 5 pinout with minimal system design changes.  Throughout this document,
any significant differences that exist between Socket 5 and Socket 7 that would impact a system
design will be detailed.

The major differences are summarized below:

• Socket 7 requires 5.0 amps at 3.3 volts to support all Pentium processors
(75/90/100/120/133/150/166/200) and the future Pentium OverDrive processor with MMX
technology.  The Socket 5 specification only requires 4.33 amps.

• Socket 7 requires that CLK and PICCLK be driven at 3.3 volt levels.  CLK and PICCLK
are not 5 volt tolerant on Pentium processors with MMX technology.

• The maximum power dissipation for Socket 7 is 17 watts, two watts higher than the 15 watt
Socket 5 definition.  The future Pentium OverDrive processor with MMX technology
supports a maximum ambient temperature of 45°C at the fan intake.

• The future Pentium OverDrive processor with MMX technology requires a slightly larger
heatsink for proper cooling.  This increase in heatsink height raises the required vertical
clearance to 1.75” compared to 1.35” for Socket 5.  Socket 7 also enables the use of
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standard heatsink clips.  The location of these clips will be consistent on all qualified
sockets and are available for OEM and upgrade processor use.

• The pinout of Socket 7 is compatible with Socket 5 with the addition of a mechanical key
pin at location AH32 and VCC2DET# at AL01. AH32 is defined as an internal no-connect
for Socket 7 compatible processors.

• Socket 7 specification provides the capability to support dual voltage supply processors.
See the specifications for the Pentium processor with MMX technology for more
information.

Upgradability for Socket 7 is implemented through a single socket, processor replacement
approach.  The OEM processor is always installed in the Socket 7 at the factory.  When this
system configuration is upgraded, the end user removes the original CPU and installs the
Pentium OverDrive processor.

17.3. SOCKET 7 PINOUT
The upgrade socket configuration consists of a 321-pin Socket 7.  Socket 7 is a superset of
Socket 5 with one additional pin at AH32.  This position can be used to key the socket and
prevent components designed only for Socket 7 from being installed in systems with Socket 5
configuration.  This additional pin is a mechanical key pin and does not need to be routed on the
motherboard.

To support flexible designs for both unified and split plane processors, Socket 7 has defined two
sets of power pins, VCC2 and VCC3. (For information on VCC2 and VCC3 pins, refer to section
17.3.2 of this chapter.) Socket 7 also defines the pin at AL01 as VCC2DET#.  For information
on the use of VCC2DET# refer to section 17.3.3 of this chapter.
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17.3.1. Socket 7 Pin Diagrams
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Figure 17-1. Socket 7 Pinout - Top Side View



E PENTIUM® OverDrive ® PROCESSOR SOCKET SPECIFICATION

17-5

12/19/96 9:00 AM    Ch17new.doc

INTEL CONFIDENTIAL
(until publication date)

123456789

12345678910111213141516171819202122232425262728293031323334353637

Z

Y

X

W

V

U

T

S

R

Q

P

N

M

L

K

J

H

G

F

E

D

C

B

A

NC

VCC5

KEY

VCC2

VSSVCC2

VSS

AN

AM

AL

AK

AJ

AH

AG

AF

AE

AD

AC

AB

AA

Z

Y

X

W

V

U

T

S

R

Q

P

N

M

L

K

J

H

G

F

E

D

C

B

A

VCC5
AN

AM

AL

AK

AJ

AH

AG

AF

AE

AD

AC

AB

AA

10111213141516171819202122232425262728293031323334353637

VSSVSSVSS VCC3NCVCC3VSSVSS

NC VSSVCC2 VSSVSSVSS VCC3NCVCC3 VSSVSS VSSVSS

VSSVSSVSSVSSVSSVSSVSSVSSVSSVSSVSSD20D16D13D11 VSS

VCC3 VCC3 VCC3 VCC3 VCC3 VCC3 VCC2 VCC2 VCC2 VCC2 VCC2 VCC2 D41

INCDP4 D45 D47D38

D42

D36D34D32D27 D29 D31D25DP2D24

D50D40 D44 D48D39D37D35D33D28 D30 DP3D26D23D19

D54D46 D49 D52

DP6DP5 D51

VCC2D53 D55

VCC2D58 D57

VCC2D60 D61

VSS

D43

D56

DP7 D63

D59

D62

D21D17D14D10

DP1D12D8DP0

VCC3

VSS

D22D18D15NC

D9

D6 D7

D4 D5

D1 D3

D2 PICD0

PICD1 VCC3

TDI TDO

CPUTYP TRST#

NC NC

VSS VCC3

NC NC

FRCMC# BF0

VCC3

VCC3

VCC3

VCC3

VCC3

VCC3

VCC3

VCC3

VCC3

VCC3

VCC3

VCC3

VCC3

VSS

VSS

VSS

VSS

VSS

VSS

VSS

VSS

VSS

VSS

VSS

VSS

VSS

VSS

VSS

VSS

VCC2

VCC2

VCC2

VCC2

VCC2

VCC2

VCC2

VCC2

VCC2

VCC2

BREQ

VCC2DET#

VSS

VSS

VSS

VSS

VSS

VSS

VSS

VSS

VSS

VSS

AP

ADSC#

FERR# PM0BP0

BP3 BP2

INV CACHE#

MI/O#

PM1BP1

IERR#

KEN# EWBE#

NA# BRDYC#

WB/WT# PHIT#

BOFF#

BRDY#

AHOLD

APCHK# PBREQ#

PCD SMIACT#

HIT#

LOCK#

PCHK#

PBGNT#

ADS# HLDA

HITM# PWT

INC

EADS#

D/C#

IGNNE# INIT

RS# NMI

D/P# A23

INTR

SMI#

PEN#

A24 A27

A25 A31

A3 A7

A29

A26

A21

PRDY PHITM#

HOLD

FLUSH#VCC2

VSS W/R#

VCC2

VSS

VCC2

VSS

VCC2

VSS

VCC2

VSS

VCC2

VSS

VCC3

VSS

VCC3

VSS

VCC3

VSS

VCC3

VSS

VCC3

VSS

A10

VSSA8A4A30

A6NC

A28

A22

PICCLK

D0

TCK

TMS#

NC

VCC3

STPCLK#

BF1

BUSCHK#

A20M#

BE0#

BE1#

BE2#

BE3#

BE4#

BE5#

BE6#

BE7#

SCYC

CLK

NC

RESET

A20

A19

A18

A17

A16

A15

A14

A13

A12

A9

A11

A5

Figure 17-2. Socket 7 Pinout - Pin Side View
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17.3.2. Socket 7 Pin Cross Reference Table
In Table 17-1, Socket 7 pins which differ from the Socket 5 pinout or definition are shaded.

Table 17-1.  Pin Cross Reference by Pin Name

Address

A3 AL35 A9 AK30 A15 AK26 A21 AF34 A27 AG33

A4 AM34 A10 AN31 A16 AL25 A22 AH36 A28 AK36

A5 AK32 A11 AL31 A17 AK24 A23 AE33 A29 AK34

A6 AN33 A12 AL29 A18 AL23 A24 AG35 A30 AM36

A7 AL33 A13 AK28 A19 AK22 A25 AJ35 A31 AJ33

A8 AM32 A14 AL27 A20 AL21 A26 AH34

Data

D0 K34 D13 B34 D26 D24 D39 D10 D52 E03

D1 G35 D14 C33 D27 C21 D40 D08 D53 G05

D2 J35 D15 A35 D28 D22 D41 A05 D54 E01

D3 G33 D16 B32 D29 C19 D42 E09 D55 G03

D4 F36 D17 C31 D30 D20 D43 B04 D56 H04

D5 F34 D18 A33 D31 C17 D44 D06 D57 J03

D6 E35 D19 D28 D32 C15 D45 C05 D58 J05

D7 E33 D20 B30 D33 D16 D46 E07 D59 K04

D8 D34 D21 C29 D34 C13 D47 C03 D60 L05

D9 C37 D22 A31 D35 D14 D48 D04 D61 L03

D10 C35 D23 D26 D36 C11 D49 E05 D62 M04

D11 B36 D24 C27 D37 D12 D50 D02 D63 N03

D12 D32 D25 C23 D38 C09 D51 F04
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Table 17-1.  Pin Cross Reference by Pin Name (Contd.)

Control

A20M# AK08 BREQ AJ01 HIT# AK06 PRDY AC05

ADS# AJ05 BUSCHK# AL07 HITM# AL05 PWT AL03

ADSC# AM02 CACHE# U03 HLDA AJ03 R/S# AC35

AHOLD V04 CPUTYP Q35 HOLD AB04 RESET AK20

AP AK02 D/C# AK04 IERR# P04 SCYC AL17

APCHK# AE05 D/P# AE35 IGNNE# AA35 SMI# AB34

BE0# AL09 DP0 D36 INIT AA33 SMIACT# AG03

BE1# AK10 DP1 D30 INTR/LINT0 AD34 TCK M34

BE2# AL11 DP2 C25 INV U05 TDI N35

BE3# AK12 DP3 D18 KEN# W05 TDO N33

BE4# AL13 DP4 C07 LOCK# AH04 TMS P34

BE5# AK14 DP5 F06 M/IO# T04 TRST# Q33

BE6# AL15 DP6 F02 NA# Y05 VCC2DET# AL01

BE7# AK16 DP7 N05 NMI/LINT1 AC33 W/R# AM06

BOFF# Z04 EADS# AM04 PCD AG05 WB/WT# AA05

BP2 S03 EWBE# W03 PCHK# AF04

BP3 S05 FERR# Q05 PEN# Z34

BRDY# X04 FLUSH# AN07 PM0/BP0 Q03

BRDYC# Y03 FRCMC# Y35 PM1/BP1 R04

APIC Clock Control Dual Processor Private Interface

PICCLK H34 CLK AK18 PBGNT# AD04

PICD0 J33 [BF0] Y33 PBREQ# AE03

[DPEN#] [BF1] X34 PHIT# AA03

PICD1 L35 STPCLK# V34 PHITM# AC03

[APICEN]
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Table 17-1.  Pin Cross Reference by Pin Name (Contd.)

VCC2

A07 A15 G01 Q01 Y01 AG01 AN13

A09 A17 J01 S01 AA01 AJ11 AN15

A11 B02 L01 U01 AC01 AN09 AN17

A13 E15 N01 W01 AE01 AN11 AN19

VCC3

A19 A27 E37 L37 T34 Y37 AG37 AN23

A21 A29 G37 N37 U33 AA37 AJ19 AN25

A23 E21 J37 Q37 U37 AC37 AJ29 AN27

A25 E27 L33 S37 W37 AE37 AN21 AN29

VSS

A03 B20 E23 M36 V02 AD02 AJ17 AM10 AM26

B06 B22 E29 P02 V36 AD36 AJ21 AM12 AM28

B08 B24 E31 P36 X02 AF02 AJ25 AM14 AM30

B10 B26 H02 R02 X36 AF36 AJ27 AM16 AN37

B12 B28 H36 R36 Z02 AH02 AJ31 AM18

B14 E11 K02 T02 Z36 AJ07 AJ37 AM20

B16 E13 K36 T36 AB02 AJ09 AL37 AM22

B18 E19 M02 U35 AB36 AJ13 AM08 AM24

NC INC VCC5 KEY

A37 S33 AJ15 C01 AN01 AH32

E17 S35 AJ23 AN05 AN03

E25 W33 AL19

R34 W35 AN35
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17.3.3. Socket 7 Quick Pin Reference
With the exception of the pins in Table 17-2, Socket 7 has the same pin definition as Socket 5.

Table 17-2.  Socket 7 Quick Pin Reference

Symbol Type Name and Function

CLK,

PICCLK

(I) The Clock and Programmable Interrupt Controller  Clock inputs to Socket 7
are not  5V tolerant. These inputs must be driven by an appropriate 3.3V clock
driver.

KEY NA The KEY pin is strictly a mechanical keying device. The corresponding pin on
the processors is an Internal No Connect and has no electrical purpose.

VCC2DET# (O) VCC2 Detect  is defined to identify processors that require the system to supply
a lower voltage on the VCC2 power inputs as compared to the VCC3 inputs. This
pin is defined only on the Pentium® processor with MMX™ technology and can
be used in flexible motherboard implementations to correctly set the voltage
regulator to supply the appropriate voltage to the core (VCC2) power pins. This
pin is internally strapped to VSS on the Pentium processor with MMX
technology. This pin is an INC on the Pentium processor
(75/90/100/120/133/150/166/200).

VCC2 (I) Socket 7 has 28 power supply pins defined for the core voltage on processors
with separate power inputs.  For processors with a single power supply
requirement, these pins can be considered the same as VCC3 pins and should
be driven with the same power source.

VCC3 (I) Socket 7 has 32 power supply pins defined for the I/O voltage on processors
with separate power inputs.  For processors with a single supply requirement,
these pins are used in conjunction with the VCC2 pins to power the device.

17.4. HARDWARE SYSTEM DESIGN CONSIDERATIONS

17.4.1. Bus Fraction Selection

The Pentium OverDrive processors do not require the bus frequency ratio (BF0 and BF1 pins)
to be changed when upgrading a system.  The future Pentium OverDrive processor with MMX
technology will be internally bonded to the proper bus/core multiplier.  See the specific
Pentium processor specification requirements for pullup and pulldown resister values on the BF
pins.
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17.4.2. Power Supply Considerations for Split and Unified Power
Planes

17.4.2.1. POWER SUPPLY CONSIDERATIONS FOR SOCKET 7

Socket 7 has defined 28 VCC2 power pins and 32 VCC3 power pins as well as 53 VSS pins.
Ground connections should be made to all the VSS pins in a Socket 7 motherboard design. Note
that the Pentium OverDrive processor and the future Pentium OverDrive processor with MMX
technology are both capable of accepting 3.3V levels. The connection of the VCC2 pins and
VCC3 pins may be implemented several distinct ways. Motherboards may be designed which
implement a non-flexible Socket 7 design supporting only single voltage processors or a
flexible Socket 7 design supporting single and dual voltage processors.

17.4.2.2. NON-FLEXIBLE SOCKET 7 POWER IMPLEMENTATIONS

A Socket 7 design with a single external power supply capable of suppling only one voltage to
the socket will not support the Pentium processor with MMX technology. In such designs, the
power supply must be connected to ALL the VCC2 pins as well as ALL of the VCC3 pins. The
voltage to ALL of the VCC2 and VCC3 pins must remain within the operating range for the
processor. The Pentium processor and the Pentium OverDrive processor are both single voltage
processors and have an internally unified power plane. The future Pentium OverDrive
processor with MMX technology is also a single voltage processor but it has two internal
power planes. When placed in a non-flexible Socket 7 motherboard design, the future Pentium
OverDrive processor with MMX technology will receive the same voltage at both the VCC2
pins and the VCC3 pins. It is imperative that all of the VCC2 and VCC3 pins are connected to
the power plane.

17.4.2.3. FLEXIBLE SOCKET 7 POWER IMPLEMENTATIONS

A flexible Socket 7 motherboard is able to support single and dual voltage processors. Flexible
designs fall into two groups determined by their response to unified and split plane processors.
There are:

1. Unified plane processors receive power externally to ALL the VCC2 pins and ALL the
VCC3 pins. This can be from a single source with the two power planes externally stitched
together at boot up time through VCC2DET# circuitry or from dual sources with current
sharing circuitry. Split plane processors receive power from independent sources for VCC2
and VCC3.

2. Unified plane processors receive power externally to either the VCC2 or VCC3 pins. Split
plane processors receive power from independent sources for VCC2 and VCC3.

The second of these implementations implies that a unified processor causes one of the
system’s voltage regulators to shut down upon power up. Since the output set points of the two
voltage regulators will not be exactly the same, connecting the two outputs with the processor’s
internally unified power plane will cause one of them to shut down. This will leave the
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processor to be powered by either ALL of the VCC2 pins or ALL of the VCC3 pins. This is
acceptable as long as the current flowing through the processor package does not exceed 8
amps, including the power required by the processor. Also the voltage regulator that remains in
operation must be able to provide enough current for the entire system. When a split plane
processor is installed, both voltage regulators must continue to function at the proper voltage
levels. Since the future Pentium OverDrive processor with MMX technology does not assert
VCC2DET#, it is not acceptable to use the VCC2DET# signal to determine whether to power
only VCC2 or VCC3. Note that although the future Pentium OverDrive processor with MMX
technology is a single voltage processor, the voltage supplied to the VCC2 pins is not required
to be exactly the same as the voltage supplied to the VCC3 pins as long as they are within the
specified votage range. Refer to Chapter 7 of this document for the Pentium processor with
MMX technology voltage specifications.

CPU I/O BUFFER CIRCUITRY

CPU CORE CIRCUITRY

VCC3 PINS

VCC2 PINS

ON-PACKAGE REGULATOR

CPU I/O BUFFER CIRCUITRY

CPU CORE CIRCUITRY

VCC3 PINS

VCC2 PINS

ON-PACKAGE REGULATOR

UNIFIED POWER PLANE SPLIT POWER PLANE

VCORE POWER PLANE

VI/O POWER PLANE

VCC3 POWER PLANE

Figure 17-3.  Future Pentium ® OverDrive ® Processor with MMX™ Technology Unified
and Split Power Plane Designs

17.4.3. 3.3 Volt Clocks
Socket 7 requires 3.3V clock buffers. The clock driver should be powered by the 3.3 volt
processor power plane.   Routing of the clocks should be done on the trace layer adjacent to the
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VSS layer.  If the clock must be routed on the signal layer adjacent to the VCC plane, avoid
routing above the 5V area or crossing the split between the 5 volt and 3.3 volt power planes.

17.5. SOFTWARE SYSTEM DESIGN CONSIDERATIONS

17.5.1. CPU Identification
Socket 7 is the universal socket for the “flexible motherboard” and may be populated with a
variety of processors.  The BIOS should use the CPUID instruction to obtain the CPU signature
and features.  The various CPUs may have different caches, test registers, and core architecture.
Use the signature and feature registers to identify the device rather than making assumptions
about the architecture of the installed device.

The CPU identification can be obtained from the EDX register after RESET or through use of
the CPUID instruction.  The signature for the various processors is noted below:

Table 17-3.  CPU Signatures

Pentium® processors (75/90/100/120/133/150/166/200)

Pentium processor with MMX™ technology

052xH or
057xH

054xH

Note:  Dual processor in
second socket will have a
Type of “2”.  For example, a
Pentium processor

Pentium OverDrive® processor

Future Pentium OverDrive processor with MMX technology

152xH *

154xH

(75/90/100/120/133/150/166/
200) in the second socket will
be 252xH socket

* Note that the CPUID should be 152xH; however, an errata exists such that it is actually 052xH.  See
errata notes in the Pentium Processor Specification Update.

For complete details on how to differentiate between processors by using the CPUID
instruction, refer to “AP-485, Intel Processor Identification and the CPUID Instruction” (Intel
literature Order #241618).

17.5.2. Code Prefetch Queue and Branch Target Buffers
Code should not be written to rely on the specific code prefetch queue or branch target buffer
mechanism of a particular processor. With each new generation and family of processors, these
mechanisms are subject to change.

Software timing loops that rely on the code execution speed of the processor should never be
used. Future Pentium OverDrive processors will execute a given code loop faster than the
original processor, causing the execution time of the loop to change.
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17.5.3. Model Specific Registers and Test Registers
Model Specific Registers (MSRs) are subject to change between the future OverDrive
processor and the original processor it replaces.  In addition, MSRs are subject to change with
new processor generations and even between processor steppings.

Test registers can be a valuable debug tool. However, production code should not utilize them
as they are subject to change with new processor generations.

17.5.4. Intel Architecture MMX™ Technology
Intel’s MMX technology is an extension to the Intel architecture which provides for additional
performance on multimedia and communications applications.  Intel processors that include
this technology are still 100% compatible with all “scalar” Intel processors.  This means that all
existing software that runs on existing Intel processors will continue to run on Intel processors
that incorporate MMX technology without modification.

The future Pentium OverDrive processor with MMX technology includes the MMX instruction
set.  Software can determine that the system has been upgraded to a Intel Architecture
processor that supports MMX technology via the CPUID instruction.  By loading EAX=1 and
then executing the CPUID instruction, the EDX register will reflect the processor feature flags.
Bit 23 in EDX will be set to a 1 if the processor supports the MMX instruction set:

...

mov EAX,  1 ;Request feature flags

CPUID ;0Fh,0A2h CPUID instruction

test EDX, 00800000h ;Is MMX bit (bit#23 of EDX) in feature flag set?

jnz MMXFound

...

If the support for MMX technology is detected, the software can then enable MMX optimized
code, drivers, DLLs, etc. to take advantage of the MMX instruction set.  Because the future
Pentium OverDrive processor with MMX technology will be used to upgrade existing systems,
detection of MMX technology by software should be “run-time” versus “install-time”.

For the complete definition of the MMX instruction set, see the Architecture and Programming
manual within the Intel Architecture Software Developer’s Manual.

17.6. ELECTRICAL SPECIFICATIONS
This section describes the Socket 7 electrical differences from Socket 5, the Socket 7 DC
specifications, and the I/O buffer models of the processors for Socket 7.  Socket 7 AC
specifications are the same as the Pentium processor.
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17.6.1. Socket 7 Electrical Differences from Socket 5
When designing a Socket 7 system based upon an existing Socket 5 system, there are a number
of electrical differences that require attention.

17.6.1.1. 3.3 VOLT SUPPLY CURRENT INCREASE

Socket 7 requires that the 3.3 volt supply support 5 amps for the future Pentium OverDrive
processor with MMX technology on unified plane designs.  The Pentium processor with MMX
technology requires a different split plane power supply.  Please refer to the Pentium processor
with MMX technology electrical specifications for information.

17.6.1.2. CLK AND PICCLK ARE NOT 5V TOLERANT

The clock inputs on Socket 5 are 5 volt tolerant, meaning that the clock VIH may drive as high
as 5.55 volts. Processors that support 5 volt clock inputs will also accept 3.3V clock inputs.
Socket 7 specifications require 3.3V clock inputs.  See section 17.6.4, for more information on
the 3.3 volt clock specification.

17.6.1.3. INPUTS AND OUTPUTS

All inputs and outputs of the Socket 7 are 3.3 volt JEDEC standard levels.  Both inputs and
outputs are also TTL compatible although the inputs cannot tolerate voltage swings above the
3.3 volt VIH maximum.  The processor outputs will interface to standard system components
with TTL compatible inputs without extra logic.  The processors will drive the output
according to the TTL specification (but not beyond 3.3 volts).  System support components can
consist of 3.3 volt devices or open-collector devices.  In an open-collector configuration, the
external resistor may be biased to VCC3.

17.6.1.4. PROCESSOR BUFFER MODEL

The goal of the future Pentium OverDrive processor with MMX technology is to have Pentium
processor compatible buffers.  However, minor changes have been made in the clock input.
The standard “Input Buffer Model” for the future Pentium OverDrive processor with MMX
technology should be used for CLK rather than the “Input Buffer Model for Special Group”.
Refer to Chapter 8 for additional information regarding buffer types.

17.6.1.5. DUAL POWER SOURCE CAPABILITY

Socket 7 has the capability to support split power plane processors such as the Pentium
processor with MMX technology.  Refer to the processor specifications for further information.



E PENTIUM® OverDrive ® PROCESSOR SOCKET SPECIFICATION

17-15

12/19/96 9:00 AM    Ch17new.doc

INTEL CONFIDENTIAL
(until publication date)

17.6.2. Absolute Maximum Ratings
Please refer to processor specifications for the absolute maximum ratings for an individual
processor.   Also refer to the socket vendor specifications for the maximum ratings for the
socket implementation.

17.6.3. DC Specifications

Table 17-4.  Socket 7 DC Specifications

Operating Conditions for the Pentium ® OverDrive ® Processor and the Future Pentium OverDrive
Processor with MMX™ Technology:

VCC2 = 3.135V - 3.6V, VCC3 = 3.135 - 3.6V, TA = 0 to 45°C

Symbol Parameter Min Max Unit Notes

VIL Input Low Voltage -0.3 0.8 V TTL Level

VIH Input High Voltage 2.0 VCC3+0.3 V TTL Level

VOL Output Low Voltage 0.4 V TTL Level (1)

VOH Output High Voltage 2.4 V TTL Level (2)

Unified Power Plane

ICC3 + ICC2 Power Supply Current 5000 mA (3)(4)(5)

Split Power Plane

ICC3 I/O Power Supply Current 400 mA (5)(6)

ICC2 Core Power Supply Current 4600 mA (5)(6)

5 Volt Power Plane

ICC5 Fan/Heatsink Current 200 mA

NOTES:
1. Parameter measured at -4 mA.
2. Parameter measured at 3 mA.
3. This value should be used for power supply design.  It estimated for a worst case instruction mix and

VCC + 5%.  Power supply transient response and decoupling capacitors must be sufficient to handle the
instantaneous current changes occurring during transitions from Stop Clock to full Active modes.

4. This is the value for the unified power plane and split power plane designs for Pentium® processors
and the current Pentium OverDrive® processors.

5. These values are different from the Socket 5 specification.
6. These ICC values relate to the split plane implementation of a future Pentium OverDrive processor with

MMX™ technology-based system where both VCC2 and VCC3 are 3.3 volts.  The Pentium processor
with MMX technology requires a different split plane power supply.  Please see the Electrical
Specifications chapter of this document for further details..
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Table 17-5.  Input and Output Characteristics

Symbol Parameter Min Max Unit Notes

CIN Input Capacitance 15 pF (1)

CO Output Capacitance 20 pF (1)

CI/O I/O Capacitance 25 pF (1)

CCLK CLK Input Capacitance 15 pF (1)

CTIN Test Input Capacitance 15 pF (1)

CTOUT Test Output Capacitance 20 pF (1)

CTCK Test Clock Capacitance 15 pF (1)

ILI Input Leakage Current ± 15 µA 0 < VIN < VIL

VIH > VIN > VCC (2)

ILO Output Leakage Current ± 15 µA 0 < VIN < VIL

VIH > VIN > VCC (2)

IIL Input Leakage Current -400
200

±200

µA VIN = 0.4V (3)
VIN = 2.4V (4)
0 < VIN < VCC3 (5)

NOTES:
1. Guaranteed by design.
2. This parameter is for input without pullup or pulldown.
3. This parameter is for input with pullup.
4. This parameter is for input with pulldown.
5. This parameter is for CLK and PICCLK.
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Table 17-6.  Power Dissipation for Thermal Design

Parameter Max (1) Unit Notes

Active Power Dissipation 17 Watts (2) (3)

NOTES:
1. Systems must be designed to thermally dissipate the maximum active power dissipation.  It is

determined using worst case instruction mix with nominal VCC and also takes into account the thermal
time constants of the package.

2. Maximum power dissipation of the future Pentium® OverDrive® processor with MMX™ technology.
3. This is different than the Socket 5 specifications.

17.6.4. 3.3 Volt Clock Signal Specifications
The maximum overshoot, maximum undershoot, overshoot threshold duration, undershoot
threshold duration, and maximum ringback specifications for CLK/PICCLK are described
below:

MAXIMUM OVERSHOOT AND MAXIMUM UNDERSHOOT SPECIFICATION:  The
maximum overshoot of the CLK/PICCLK signals should not exceed VCC3,nominal + 0.9V.
The maximum undershoot of the CLK/PICCLK signals must not drop below  -0.9V.

OVERSHOOT THRESHOLD DURATION SPECIFICATION: The overshoot threshold
duration is defined as the sum of all time during which the CLK/PICCLK signal is above
VCC3,nominal + 0.5V within a single clock period. The overshoot threshold duration must not
exceed 20% of the period.

UNDERSHOOT THRESHOLD DURATION SPECIFICATION: The undershoot
threshold duration is defined as the sum of all time during which the CLK/PICCLK signal is
below -0.5V within a single clock period. The undershoot threshold duration must not exceed
20% of the period.

MAXIMUM RINGBACK SPECIFICATION:  The maximum ringback of CLK/PICCLK
associated with their high states (overshoot) must not drop below VCC3 - 0.8V as shown in
Figure 17-5. Similarly, the maximum ringback of CLK/PICCLK associated with their low
states (undershoot) must not exceed 0.8V as shown in Figure 17-7.

Refer to Table 17-7 and Table 17-8 for a summary of the clock overshoot and undershoot
specifications for the Pentium processor with MMX technology.

17.6.4.1. CLOCK SIGNAL MEASUREMENT METHODOLOGY

The waveform of the clock signals should be measured at the bottom side of the processor pins
using an oscilloscope with a 3 dB bandwidth of at least 20 MHz (100 MS/s digital sampling
rate).  There should be a short isolation ground lead attached to a processor pin on the bottom
side of the board.  An 1 MOhm probe with loading of less than 1 pF (e.g., Tektronics 6243 or
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Tektronics 6245) is recommended.  The measurement should be taken at the CLK (AK18) and
PICCLK (H34) pins and their nearest VSS pins (AM18 and H36, respectively).

MAXIMUM OVERSHOOT, MAXIMUM UNDERSHOOT AND MAXIMUM
RINGBACK SPECIFICATIONS:  The display should show continuous sampling (e.g.,
infinite persistence) of the waveform at 500 mV/div and 5 nS/div (for CLK) or 20 nS/div (for
PICCLK) for a recommended duration of approximately five seconds.  Adjust the vertical
position to measure the maximum overshoot and associated ringback with the largest possible
granularity. Similarly, readjust the vertical position to measure the maximum undershoot and
associated ringback. There is no allowance for crossing the maximum overshoot, maximum
undershoot or maximum ringback specifications.

OVERSHOOT THRESHOLD DURATION SPECIFICATION:   A snapshot of the clock
signal should be taken at 500 mV/div and 500 pS/div (for CLK) or 2 nS/div (for PICCLK).
Adjust the vertical position and horizontal offset position to view the threshold duration.  The
overshoot threshold duration is defined as the sum of all time during which the clock signal is
above VCC3,nominal + 0.5V within a single clock period. The overshoot threshold duration
must not exceed 20% of the period.

UNDERSHOOT THRESHOLD DURATION SPECIFICATION:   A snapshot of the clock
signal should be taken at 500 mV/div and 500 pS/div (for CLK) or 2 nS/div (for PICCLK).
Adjust the vertical position and horizontal offset position to view the threshold duration.  The
undershoot threshold duration is defined as the sum of all time during which the clock signal is
below -0.5V within a single clock period. The undershoot threshold duration must not exceed
20% of the period.

These overshoot and undershoot specifications are illustrated graphically in Figure 17-4 to
Figure 17-7.
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Table 17-7.  Overshoot Specification Summary

Specification Name Value Units Notes

Threshold Level VCC3,nominal + 0.5 V (1) (2)

Maximum Overshoot Level VCC3,nominal + 0.9 V (1) (2)

Maximum Threshold Duration 20% of clock period above threshold
voltage

nS (2)

Maximum Ringback VCC3,nominal - 0.8 V (1) (2)

NOTES:
1. VCC3, nominal refers to the voltage measured at the bottom side of the VCC3 pins. See Section

7.1.2.1.1 for details.
2. See Figure 17-4 and Figure 17-5.

Table 17-8.  Undershoot Specification Summary

Specification Name Value Units Notes

Threshold Level -0.5 V (1)

Minimum Undershoot Level -0.9 V (1)

Maximum Threshold Duration 20% of clock period below threshold
voltage

nS (1)

Maximum Ringback 0.8 V (1)

NOTE:
1. See Figure 17-6 and Figure 17-7.
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Overshoot Threshold Level

Maximum Overshoot Level

Overshoot
Threshold
Duration

VCC3, nominal

Figure 17-4.  Maximum Overshoot Level, Overshoot Threshold Level, and Overshoot
Threshold Duration

 

Maximum Ringback

VCC3, nominal

Figure 17-5.  Maximum Ringback Associated with the Signal High State
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Maximum Undershoot Level
Undershoot Threshold Level

Undershoot
Threshold
 Duration

VSS,nominal

Figure 17-6.  Maximum Undershoot Level, Undershoot Threshold Level, and Undershoot
Threshold Duration

 

Maximum
Ringback

VSS, nominal

Figure 17-7.  Maximum Ringback Associated with the Signal Low State



PENTIUM® OverDrive ® PROCESSOR SOCKET SPECIFICATION E

17-22

12/19/96 9:00 AM    Ch17new.doc

INTEL CONFIDENTIAL
(until publication date)

17.7. MECHANICAL SPECIFICATIONS

17.7.1. Socket 7 Mechanical Specifications
Although socket specifications differ among vendors, some parameters are required for all
qualified sockets.  New to Socket 7 is the addition of standardized heatsink clips.  The
motherboard layout should encompass keepout zones around these clips.  Figure 17-8 indicates
the socket clips and keep out zones.  Refer to vendor datasheets for mechanical dimensions of
individual sockets.

 

0.10"

Socket 7

0.10"

Figure 17-8.  Socket 7 Heatsink Clip Tabs and Keepout Zones

17.7.2. Pentium ® OverDrive ® Processor Mechanical
Specifications

The future Pentium OverDrive processor with MMX technology will be packaged in a 320-pin
staggered pin grid array (SPGA).  The pins will be arranged in a 37 x 37 matrix and the
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package dimensions will be 1.95” x 1.95” (4.95cm x 4.95cm).  The future Pentium OverDrive
processor with MMX technology is shipped with an attached fan/heatsink.

Table 17-9.  Future Pentium ® OverDrive ® Processor with MMX™ Technology Package
Information Summary

Package Type Total Pins Pin Array Package Size

Future Pentium® OverDrive® processor
with MMX™ technology

SPGA 320 37 x 37 1.95” x 1.95”

Table 17-10 and Figure 17-9 show the Socket 7 dimensions and the space requirements for the
future Pentium OverDrive processor with MMX technology. The future Pentium OverDrive
processor with MMX technology will have a fan/heatsink attached.  For proper cooling, the
fan/heatsink requires an additional space clearance.

Table 17-10.  Socket 7 Requirements for SPGA Package Dimensions

Symbol Millimeters Inches Notes

Min Max Min Max

A 44.45 1.75 Includes Airspace (1)

A1 30.48 34.29 1.2 1.35 (1)

A2 2.62 3.73 0.103 0.147

A3 30.48 1.200 (1)

A4 10.16 0.400 Air Space

A5 0.89 0.035 Lid Thickness

D 49.28 50.29 1.940 1.980

D1 45.47 45.97 1.790 1.810

L 3.05 3.30 0.120 0.130

N 321 321 SPGA Pins (2)

S1 1.52 2.67 0.060 0.105

NOTES:
1. These values are different from the Socket 5 specification.
2. The number of pins is increased from that of Socket 5.
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Figure 17-9.  Future Pentium ® OverDrive ® Processor with MMX™ Technology
Dimensions and Space Requirements

17.8. THERMAL SPECIFICATIONS

17.8.1. Thermal Information
The future Pentium OverDrive processors with MMX technology will be cooled with an
integrated fan/heatsink cooling solution.  The future Pentium OverDrive processors with MMX
technology with an integrated fan/heatsink are specified for proper operation when TA (air
temperature entering the fan/heatsink) is a maximum of 45°C.  When the TA(max) ≤ 45°C
specification is met, the fan/heatsink will keep TC (case temperature) within the specified
range, provided airflow through the fan/heatsink is unimpeded.

17.8.2. Thermal and Physical Space Requirements
The future Pentium OverDrive processors with MMX technology for Socket 7 will utilize an
integrated fan/heatsink cooling solution.  Intel’s fan/heatsink cooling solution requires that the
air temperature entering the fan/heatsink (TA) does not exceed 45°C under worst case
conditions.

A required height of 0.4” airspace is required above the fan/heatsink unit to ensure that the
airflow through the fan/heatsink is not blocked.  Blocking the airflow to the fan/heatsink
reduces the cooling efficiency and decreases the fan lifetime. Figure 17-10 illustrates an
acceptable airspace clearance above the fan/heatsink.



E PENTIUM® OverDrive ® PROCESSOR SOCKET SPECIFICATION

17-25

12/19/96 9:00 AM    Ch17new.doc

INTEL CONFIDENTIAL
(until publication date)

The fan/heatsink will reside within the boundaries of the surface of the chip (1.95” x 1.95”).
There are also free airspace clearance requirements around the ceramic package to ensure that
the airflow exiting the fan/heatsink is not blocked. Figure 17-10 details the minimum space
needed around the chip package to ensure proper airflow through the fan/heatsink.

As shown in Figure 17-10, it is acceptable to allow any device (i.e. add-in cards, surface mount
device, chassis etc.) to enter within the free space distance of 0.2” from the chip package if it is
not taller than the level of the heatsink base.  In other words, if a component is taller than
height ‘B’, it cannot be closer to the chip package than distance ‘A’.  This applies to all four
sides of the chip package, although the ZIF socket lever cam area will generally automatically
meet this specification since the width is larger than distance ‘A’ (0.2”).

To avoid localized heating at the processor, it is critical that adequate airflow be provided at
the socket.  A clear air path and adequate venting must be provided to prevent hot spots from
occurring.
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Figure 17-10.  Thermal and Physical Space Requirements

17.8.2.1. PHYSICAL REQUIREMENTS

• The future Pentium OverDrive processor with MMX technology requires 1.75” vertical
clearance above the surface (opposite pin side) of Socket 7 when installed.

• The future Pentium OverDrive processor with MMX technology requires 0.2” clearance
around all four sides of the package.

• The future Pentium OverDrive processor with MMX technology requires space greater
than specified above for end user installation.
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17.8.2.2. THERMAL REQUIREMENTS

• The future Pentium OverDrive processor with MMX technology specifies a maximum air
temperature entering the fan/heatsink of 45°C.  TA is measured where the air enters the
fan/heatsink unit approximately 0.3” above the top of the fan/heatsink.

17.8.2.3. FAN/HEATSINK SUPPLY REQUIREMENTS

• The future Pentium OverDrive processor with MMX technology requires 5 volt power
connections through the VCC5 package pins.
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CHAPTER 18
PENTIUM® PROCESSORS FOR MOBILE

SYSTEMS

18.1. INTRODUCTION
Intel manufactures a reduced power version of the latest Pentium processor, the Pentium with
voltage reduction technology as well as the Mobile Pentium processor with MMX technology,
targeting the mobile market. The Pentium processor for mobile systems is offered in the Tape
Carrier Package (TCP) and the Staggered Pin Grid Array (SPGA) package. It has all the
advanced features of the 3.3V Pentium processor.

TCP has several features which allow high-performance notebooks to be designed with the
Pentium processor, including the following:

• TCP dimensions are ideal for small form-factor designs.

• TCP has superior thermal resistance characteristics.

• 2.45V or 2.9V core and 3.3V I/O buffer VCC inputs reduce power consumption
significantly, while maintaining 3.3V compatibility externally.

• The SL Enhanced feature set, which was initially implemented in the Intel386 CPU.

The architecture and internal features of the Mobile version of the Pentium processor are
identical to the desktop processor specifications provided in this document, except several
features not used in mobile applications which have been eliminated to streamline it for mobile
applications.



PENTIUM® PROCESSORS FOR MOBILE SYSTEMS E

18-2

12/19/96 9:01 AM    Ch18redo.doc

INTEL CONFIDENTIAL
(until publication date)

18.2. DOCUMENT REFERENCE LIST
For information regarding Pentium processors for mobile systems, you may obtain documents
listed in Table 18-1 by calling our toll-free literature distribution center at 1-800-548-4725.

Table 18-1.  Document Reference List

Document Title Document Type Document Number

Mobile Pentium® Processor with MMX™ Technology Data Sheet 243292

Pentium Processor with Voltage Reduction Technology
Max. Operating Frequency: 75 Mhz, 100 MHz, 120 MHz,
133 MHz, 150 MHz

Data Sheet 242557

Pentium Processor at iCOMP® Index 815\100 Mhz
Pentium Processor at iCOM Index 735\90 Mhz
Pentium Processor at iCOMP® Index 610\75 Mhz
with Voltage Reduction Technology

Data Sheet 242973

Pentium Processor at iCOMP Index 610\75 Data Sheet 242323

Pentium Processor (610\75) Design Considerations for
Mobile Systems

Application Note 242417

Pentium Processor (610\75) Power Supply Considerations
for Mobile Systems

Application Note 242415

Pentium Processor with Voltage Reduction Technology:
Power Supply Design Considerations for Mobile Systems

Application Note 242558

Packaging Databook Databook 240800
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APPENDIX A
Errata and S-Specs for the

Pentium ® Processor Family

GENERAL INFORMATION

Nomenclature
S-Specs  are exceptions to the published specifications, and apply only to the units assembled under that
s-spec.

Errata are design defects or errors.  Errata may cause the Pentium processor’s behavior to deviate from
published specifications.  Hardware and software designed to be used with any given stepping must
assume that all errata documented for that stepping are present on all devices.

Top Markings
B-Step Engineering Samples:

       A80502XX-YYY

Q ZZZZ   B   DDDD

FFFFFFFF ES

i M  C  1993 CONFIDENTIAL

pentium TM

B-Step Production Units:

A80502-SSS SXZZZ

FFFFFFFF-DDDD

ICOMP INDEX=YYY

INTEL  M  C   ‘92 ‘93

pentium TM

B-Step TCP Engineering Samples:

       A80502-75

QZZZZ Bn ES
FFFFFFFF

i
 M  C  ‘92, 93



ERRATA AND S-SPECS FOR THE PENTIUM ® PROCESSOR FAMILY E

A-2

12/18/96 4:53 PM    Appenda2.doc

INTEL CONFIDENTIAL
(until publication date)

B-Step TCP Production Units:

       A80502-75

SKZZZ
FFFFFFFF

i
 M  C  ‘92 ‘93

C-Step Engineering Samples:

pentium TM

       A80502BB-SSS

QZ ZZZ   C   DDDD
FFFFFFFQ ES

i M  C  1993 CONFIDENTIAL

C and cB1-Step Production Units:

       A80502-XXX SZZZZ

FFFFFFFF-DDDD
ICOMP 2 #=YYY

INTEL M  C  ‘92 ‘93

 pentium 

C-Step Engineering Sample TCP Units:

       A80502-XX

QZZZZ
FFFFFFFQ ES

i
 M  C  ‘92 ‘93

C-Step Production TCP Units:

       A80502-75

SKZZZ
FFFFFFFF

i
 M  C  ‘92 ‘93

mA1-Step Engineering Samples TCP
Units:

       A80502-XX

QZZZZ  A1 2.9V
FFFFFFFF ES

i
 M  C  ‘92 ‘93

mA1-Step Engineering Sample SPGA
Units:

       A80502-XX

QZZZZ  A1 2.9V DDDD
FFFFFFFQ ES

i M  C  ‘92, 93

pentium TM

mA1-Step Production TCP Units:

       TT80502-XX

SKZZZ  2.9V
FFFFFFFF

i  M  C  ‘92, 93

mA1-Step Production SPGA Units:

       A80502-XX

SKZZZ  2.9V DDD
FFFFFFFF

i  M  C  ‘92, 93

 pentium 
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mcB1-Step Engineering Sample TCP
Units:

PPXXX QZZZ

FFFFFFFF
i  C  ‘92 ‘93

intel

mcB1-Step Production TCP Units:

PPXXX KZZZ

FFFFFFFF
i  C  ‘92 ‘93

intel

mcB1-Step Engineering Sample SPGA
Units:

       A80502-XXX

QZZZZ ES
FFFFFFFF

INTEL M  C  ‘92

 pentium 

mcB1-Step Production SPGA Units:

       A80502-XXX

SXZZZ 3.3V DDDD
FFFFFFFF

INTEL M  C  ‘92

 pentium 

cC0-Step Engineering Sample Units:

       A80502BB-XXX

QZZZZ  C DDDD
FFFFFFFQ ES

i  M  C  ‘92, 93

 pentium 

cC0-Step Engineering Sample PPGA
Units:

 iXXX

 pentium 

cC0-Step 200-MHz Engineering Sample
PPGA Units:

 iXXX

 pentium 

133 MHz cC0-Step Production Units:

       A80502XXX SYZZZ

FFFFFFFF-DDDD
 ICOMP 2 #=YYY

INTEL M  C  ‘92 ‘93

 pentium 

150 and 166-MHz cC0-Step Production
Units:

       A80502XXX SYZZZ

FFFFFFFF-DDDD
INTEL M  C  ‘92 ‘93

 pentium 

 ICOMP 2 #=YYY
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cC0-Step Production PPGA Units:

 iXXX

 pentium 

mA4-Step Engineering Sample TCP
Units:

       TT80502-XXX

QZZZZ  2.9V
FFFFFFFF ES

i  M  C  ‘92, 93

mA4-Step Engineering Sample SPGA
Units:

       A80502-XXX

QZZZZ 2.9V DDDD
FFFFFFFF ES

INTEL M  C  ‘92 ‘93

 pentium 

L

mA4-Step Production TCP Units:

       TT80502-XXX

SKZZZ  2.9V
FFFFFFFF

L M  C  ‘92, 93

mA4-Step Production SPGA Units:

       A80502-XXX

SKZZZ 2.9V DDDD
FFFFFFFF

INTEL M  C  ‘92 ‘93

 pentium 

L

mcC0-Step Engineering Sample SPGA
Units

i

       A80502-XXX

QZZZZ ES 3.1V
 FFFFFFFF

INTELM  C  ‘92 ‘93

 pentium 

mcC0-Production SPGA Steppings:

       A80502XXX SYZZZ

FFFFFFFF-DDDD
 ICOMP 2 #=YYY

INTEL M C  ‘92 ‘93

 pentium 

mcC0-Step Engineering Sample TCP

PPXXX QZZZ

FFFFFFFF
i  C  ‘92 ‘93

mcC0-Step Production TCP Units:

PPXXX YZZZ

FFFFFFFF
i  C  ‘92 ‘93
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E0-Step Engineering Sample Units:

       A80502BB-XXX

QZZZZ  E  DDDD
FFFFFFFQ ES

i  M  C  ‘92, 93

 pentium 

E0-Step Production Units:

       A80502XXX SYZZZ

FFFFFFFF-DDDD
 ICOMP 2 #=YYY

INTEL M  C  ‘92 ‘93

 pentium 

xA3-Step Pentium® processor w/
MMX TM technology Engineering Sample

PPGA Units:

 w/ MMXTM tech

 pentium 

Bottom Markings
C-Step Production Units:

(before 7/95)

XXXXXXXXXX
XXXXXXXXXX

A80502-SSS

 SXZZZ

INTEL  M  C   ‘92

C and cB1-Step Production Units:
(after 7/95)

XXXXXXXXXX
XXXXXXXXXX

A80502-SSS

SXXXX / KLM
 iUU

mcB1-Step Engineering Sample SPGA
Units:

XXXXXXXXXX
XXXXXXXXXX

A80502-XXX

QZZZZ ES
 iPP

mcB1-Step Production SPGA Units:

XXXXXXXXXX
XXXXXXXXXX

A80502-XXX

SXZZZ
 iPP

cC0-Step Engineering Sample Units:

XXXXXXXXXX
XXXXXXXXXX

A80502-XXX

QZZZZ / KLM
 iUU

cC0-Step Production Units:

XXXXXXXXXX
XXXXXXXXXX

A80502XXX

SYZZZ / KLM
 iUU
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mA4-Step Engineering Sample SPGA
Units:

XXXXXXXXXX
XXXXXXXXXX

A80502-XXX

QZZZZ
 iPP

mA4-Step Production SPGA Units:

XXXXXXXXXX
XXXXXXXXXX

A80502-XXX

SKZZZ
 iPP

cC0-Step Engineering Sample PPGA
Units:

FV80502-XXX

 pentium 

QZZZZ ES/KLM

XXXXX
FFFFFFFF-DDDD
 M  C  ‘92 ‘93

cC0-Step 200 MHz Engineering Sample
PPGA Units:

FV80502XXX

 pentium 

QZZZZ ES/KLM

XXXXX
FFFFFFFF-DDDD
 M  C  ‘92 ‘93

mcC0-Step Production SPGA Units:

XXXXXXXXXX
   XXXXXX X

A80502XXX

SYZZZ
 iHHH

cC0-Step Production PPGA Units:

FV80502XXX
 pentium 

SYZZZ/KLM

XXXXX
FFFFFFFF-DDDD
 M  C  ‘92 ‘93i
ICOMP 2 #=YYY

mcC0-Step Engineering Sample SPGA
Units

XXXXXXXXXX
XXXXXXXXXX

A80502-XXX

QZZZZ ES
 iPP

E0-Step Engineering Sample Units

XXXXXXXXXX
XXXXXXXXXX

A80502-XXX

QZZZZ / KLM
 iUU

E0-Step Production Units:

XXXXXXXXXX
XXXXXXXXXX

A80502XXX

SYZZZ / KLM
 iUU
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xA3-Step Pentium® processor w/
MMX TM technology Engineering Sample

PPGA Units:

FV80503XXX

   pentium 

 w/ MMXTM tech

QBBB ES/2.8V
XXXXX
FFFFFFFF-[{SN}]
 M  C  ‘92 ‘95

Boxed Pentium ® Processors with Attached Fan Heatsink
Top Side Marking:

 BP80502-XXX SZZZZ

FFFFFFFF- DDDD
ICOMP 2 #=YYY

 INTEL M  C  ‘92 ‘93

 pentium 

 XXX

Bottom Side Marking:

XXXXXXXXXX
XXXXXXXXXX

BP80502-SSS
SXXXX / KLM

XXX

             Fan Heatsink Base Marking:

BP80502-XXX SZZZZ
ICOMP INDEX=YYY
L5313065
INTEL® ©’92’93

M
[[[
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NOTES:

• XX or XXX = Core Speed (MHz).

• BB = Bus speed (Mhz)

• SXZZZ/SYZZZ/SZZZZ = Product S-Spec number

• FFFFFFFF = FPO # (Test Lot Traceability #).

• For packages with heat spreaders, the inner line box defines the spreader edge.

• Ink Mark = All logo information on the heat spreader.

• Laser Mark = The two lines of information above and below the heat spreader. All bottomside information is laser mark.

• ES = Engineering Sample.

• QZZZZ = Sample Specification number.

• DDDD = Serialization code.

• YYY = : iCOMP® Index 2.0 OR iCOMP Index.  Intel is making an enhancement to the current plastic PGA (PPGA) and

ceramic PGA (CPGA) desktop and mobile Pentium® processors with the addition of the iCOMP Index 2.0 rating as

part of the processor package mark.  For PPGA Pentium processors, the iCOMP Index 2.0 will be marked on the

bottom side (pin side) of the package and for CPGA it will be marked on the top side of the package.  The part marking

will be: iCOMP 2 # = XXX (67 for 75-MHz, 81 for 90-MHz, 90 for 100-MHz, 100 for 120-MHz, 111 for 133-MHz, 114 for

150-MHz, 127 for 166-MHz, and 142 for 200-MHz).  Older parts may be marked with the iCOMP Index (610 for

75-MHz and 735 for 90-MHz, 815 for 100-MHz, 1000 for 120-MHz, 1110 for 133-MHz, 1176 for 150-MHz and 1308 for

166-MHz parts).

• TT = TCP Package, A = SPGA Package

• The bottom markings on the C and cB1-step production units will replace the existing bottom marking on C-step parts

effective 7/95.

• UU = 75 or 133 for 75- or 133-MHz Pentium processors, PP for all other speeds and MPP for mobile Pentium

processors

• K = V for VRE voltage range and S for standard voltage range

• L = M for min valid MD timings and S for min valid standard timings

• M = U is not tested for DP, is tested for UP and MP and S is tested for DP, UP and MP
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Basic 75/90/100/120/133/150/166/200-MHz Pentium® Processor and Pentium Processor
with MMX™ Technology Identification Information

CPUID

Type Family Model Stepping
Manufacturing

Stepping
Speed (MHz)
Core / Bus S-Spec Comments

0 5 2 1 B1 75/50 Q0540 ES

2 5 2 1 B1 75/50 Q0541 ES

0 5 2 1 B1 90/60 Q0542 STD

0 5 2 1 B1 90/60 Q0613 VR

2 5 2 1 B1 90/60 Q0543 DP

0 5 2 1 B1 100/66 Q0563 STD

0 5 2 1 B1 100/66 Q0587 VR

0 5 2 1 B1 100/66 Q0614 VR

0 5 2 1 B1 75/50 Q0601 TCP Mobile

0 5 2 1 B1 90/60 SX879 STD

0 5 2 1 B1 90/60 SX885 MD

0 5 2 1 B1 90/60 SX909 VR

2 5 2 1 B1 90/60 SX874 DP, STD

0 5 2 1 B1 100/66 SX886 MD

0 5 2 1 B1 100/66 SX910 VR, MD

0 5 2 2 B3 90/60 Q0628 STD

0 or 2 5 2 2 B3 90/60 Q0611 STD

0 or 2 5 2 2 B3 90/60 Q0612 VR

0 5 2 2 B3 100/66 Q0677 VRE/MD

0 5 2 2 B3 75/50 Q0606 TCP Mobile

0 5 2 2 B3 75/50 SX951 TCP Mobile

0 5 2 2 B3 90/60 SX923 STD

0 5 2 2 B3 90/60 SX922 VR

0 5 2 2 B3 90/60 SX921 MD

2 5 2 2 B3 90/60 SX942 DP, STD

2 5 2 2 B3 90/60 SX943 DP, VR

2 5 2 2 B3 90/60 SX944 DP, MD

0 5 2 2 B3 90/60 SZ9515 STD
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Basic 75/90/100/120/133/150/166/200-MHz Pentium® Processor and Pentium Processor
with MMX™ Technology Identification Information (Contd.)

CPUID

Type Family Model Stepping
Manufacturing

Stepping
Speed (MHz)
Core / Bus S-Spec Comments

0 5 2 2 B3 100/66 SX960 VRE/MD

0 or 2 5 2 4 B5 75/50 Q0704 TCP Mobile

0 or 2 5 2 4 B5 75/50 Q0666 STD

0 or 2 5 2 4 B5 90/60 Q0653 STD

0 or 2 5 2 4 B5 90/60 Q0654 VR

0 or 2 5 2 4 B5 90/60 Q0655 MD

0 or 2 5 2 4 B5 100/66 Q0656 MD

0 or 2 5 2 4 B5 100/66 Q0657 VR, MD

0 or 2 5 2 4 B5 100/66 Q0658 VRE/MD

0 5 2 4 B5 120/60 Q0707 VRE/MD1

0 5 2 4 B5 120/60 Q0708 STD1

0 5 2 4 B5 75/50 SX975 TCP Mobile

0 or 2 5 2 4 B5 75/50 SX961 STD

0 or 2 5 2 4 B5 75/50 SZ9775 STD

0 or 2 5 2 4 B5 90/60 SX957 STD

0 or 2 5 2 4 B5 90/60 SX958 VR

0 or 2 5 2 4 B5 90/60 SX959 MD

0 or 2 5 2 4 B5 90/60 SZ9785 STD

0 or 2 5 2 4 B5 100/66 SX962 VRE/MD

0 5 2 5 C2 75/50 Q0725 TCP Mobile

0 or 2 5 2 5 C2 75/50 Q0700 STD

0 or 2 5 2 5 C2 75/50 Q0749 MD

0 or 2 5 2 5 C2 90/60 Q0699 STD

0 or 2 5 2 5 C2 100/50 or 66 Q0698 VRE/MD

0 or 2 5 2 5 C2 100/50 or 66 Q0697 STD

0 5 2 5 C2 120/60 Q0711 VRE/MD

0 5 2 5 C2 120/60 Q0732 VRE/MD

0 5 2 5 C2 133/66 Q0733 MD
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Basic 75/90/100/120/133/150/166/200-MHz Pentium® Processor and Pentium Processor
with MMX™ Technology Identification Information (Contd.)

CPUID

Type Family Model Stepping
Manufacturing

Stepping
Speed (MHz)
Core / Bus S-Spec Comments

0 5 2 5 C2 133/66 Q0751 MD

0 5 2 5 C2 133/66 Q0775 VRE/MD

0 5 2 5 C2 75/50 SK079 TCP Mobile

0 or 2 5 2 5 C2 75/50 SX969 STD

0 or 2 5 2 5 C2 75/50 SX998 MD

0 or 2 5 2 5 C2 75/50 SZ9945 STD

0 or 2 5 2 5 C2 75/50 SU0706 STD

0 or 2 5 2 5 C2 90/60 SX968 STD

0 or 2 5 2 5 C2 90/60 SZ9955 STD

0 or 2 5 2 5 C2 90/60 SU0316 STD

0 or 2 5 2 5 C2 100/50 or 66 SX970 VRE/MD

0 or 2 5 2 5 C2 100/50 or 66 SX963 STD

0 or 2 5 2 5 C2 100/50 or 66 SZ9965 STD

0 or 2 5 2 5 C2 100/50 or 66 SU0326 STD

0 5 2 5 C2 120/60 SK086 VRE/MD

0 5 2 5 C2 120/60 SX994 VRE/MD

0 5 2 5 C2 120/60 SU0336 VRE/MD

0 5 2 5 C2 133/66 SK098 MD

0 5 2 5 mA14 75/50 Q0686 VRT2, TCP

0 5 2 5 mA14 75/50 Q0689 VRT2, SPGA

0 5 2 5 mA14 90/60 Q0694 VRT2, TCP

0 5 2 5 mA14 90/60 Q0695 VRT2, SPGA

0 5 2 5 mA14 75/50 SK089 VRT2, TCP

0 5 2 5 mA14 75/50 SK091 VRT2, SPGA

0 5 2 5 mA14 90/60 SK090 VRT2, TCP

0 5 2 5 mA14 90/60 SK092 VRT2, SPGA

0 or 2 5 2 B cB14 120/60 Q0776 STD/no Kit3
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Basic 75/90/100/120/133/150/166/200-MHz Pentium® Processor and Pentium Processor
with MMX™ Technology Identification Information (Contd.)

CPUID

Type Family Model Stepping
Manufacturing

Stepping
Speed (MHz)
Core / Bus S-Spec Comments

0 or 2 5 2 B cB14 133/66 Q0772 STD/no Kit3

0 or 2 5 2 B cB14 133/66 Q0773 STD

0 or 2 5 2 B cB14 133/66 Q0774 VRE/MD, no Kit3

0 or 2 5 2 B cB14 120/60 SK110 STD/no Kit3

0 or 2 5 2 B cB14 133/66 SK106 STD/no Kit3

0 or 2 5 2 B cB14 133/66 S106J7 STD/no Kit3

0 or 2 5 2 B cB14 133/66 SK107 STD

0 or 2 5 2 B cB14 133/66 SU0386 STD/no Kit3

0 5 2 B mcB14 100/66 Q0884 VRT2, TCP

0 5 2 B mcB14 120/60 Q0779 VRT2, TCP

0 5 2 B mcB14 120/60 Q0808 3.3V, SPGA

0 5 2 B mcB14 100/66 SY029 VRT2, TCP

0 5 2 B mcB14 120/60 SK113 VRT2, TCP

0 5 2 B mcB14 120/60 SK1187 VRT2, TCP

0 5 2 B mcB14 120/60 SX999 3.3V, SPGA

0 or 2 5 2 C cC0 133/66 Q0843 STD/No Kit3

0 or 2 5 2 C cC0 133/66 Q0844 STD

0 or 2 5 2 C cC0 150/60 Q0835 STD

0 or 2 5 2 C cC0 150/60 Q0878 STD, PPGA9

0 or 2 5 2 C cC0 166/66 Q0836 VRE/No Kit3

0 or 2 5 2 C cC0 166/66 Q0841 VRE

0 or 2 5 2 C cC0 166/66 Q0886 VRE, PPGA9

0 or 2 5 2 C cC0 166/66 Q0890 VRE, PPGA9

0 5 2 C cC0 166/66 Q09498 VRE, PPGA9

0 or 2 5 2 C cC0 200/66 Q0951F10 VRE, PPGA9

0 5 2 C cC0 200/66 Q09518 VRE, PPGA9

0 or 2 5 2 C cC0 120/60 SY062 STD

0 or 2 5 2 C cC0 133/66 SY022 STD/ No Kit3
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Basic 75/90/100/120/133/150/166/200-MHz Pentium® Processor and Pentium Processor
with MMX™ Technology Identification Information (Contd.)

CPUID

Type Family Model Stepping
Manufacturing

Stepping
Speed (MHz)
Core / Bus S-Spec Comments

0 or 2 5 2 C cC0 133/66 SY023 STD

0 or 2 5 2 C cC0 133/66 SU0736 STD/ No Kit3

0 or 2 5 2 C cC0 150/60 SY015 STD

0 or 2 5 2 C cC0 150/60 SU0716 STD

0 or 2 5 2 C cC0 166/66 SY016 VRE/ No Kit3

0 or 2 5 2 C cC0 166/66 SY017 VRE

0 or 2 5 2 C cC0 166/66 SU0726 VRE/ No Kit3

0 5 2 C cC0 166/66 SY0378 VRE, PPGA9

0 or 2 5 2 C cC0 200/66 SY044 VRE, PPGA9

0 5 2 C cC0 200/66 SY0458 VRE, PPGA9

0 5 7 0 mA44 75/50 Q0848 VRT2, TCP

0 5 7 0 mA44 75/50 Q0851 VRT2, SPGA

0 5 7 0 mA44 90/60 Q0849 VRT2, TCP

0 5 7 0 mA44 90/60 Q0852 VRT2, SPGA

0 5 7 0 mA44 100/66 Q0850 VRT2, TCP

0 5 7 0 mA44 100/66 Q0853 VRT2, SPGA

0 5 7 0 mA44 75/50 SK119 VRT2, TCP

0 5 7 0 mA44 75/50 SK122 VRT2, SPGA

0 5 7 0 mA44 90/60 SK120 VRT2, TCP

0 5 7 0 mA44 90/60 SK123 VRT2, SPGA

0 5 7 0 mA44 100/66 SK121 VRT2, TCP

0 5 7 0 mA44 100/66 SK124 VRT2, SPGA

0 5 2 C mcC04 100/66 Q0887 TCP/VRT2

0 5 2 C mcC04 120/60 Q0879 TCP/VRT2

0 5 2 C mcC04 120/60 Q0880 SPGA 3.1V

0 5 2 C mcC04 133/66 Q0881 TCP/VRT2

0 5 2 C mcC04 133/66 Q0882 SPGA 3.1V

0 5 2 C mcC04 150/60 Q024 TCP/VRT2
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Basic 75/90/100/120/133/150/166/200-MHz Pentium® Processor and Pentium Processor
with MMX™ Technology Identification Information (Contd.)

CPUID

Type Family Model Stepping
Manufacturing

Stepping
Speed (MHz)
Core / Bus S-Spec Comments

0 5 2 C mcC04 150/60 Q0906 TCP 3.1V

0 5 2 C mcC04 150/60 Q040 SPGA/VRT2

0 5 2 C mcC04 75/50 SY056 TCP/VRT2

0 5 2 C mcC04 100/66 SY020 TCP/VRT2

0 5 2 C mcC04 100/66 SY046 SPGA 3.1V

0 5 2 C mcC04 120/60 SY021 TCP/VRT2

0 5 2 C mcC04 120/60 SY027 SPGA 3.1V

0 5 2 C mcC04 120/60 SY030 SPGA 3.3V

0 5 2 C mcC04 133/66 SY019 TCP/VRT2

0 5 2 C mcC04 133/66 SY028 SPGA 3.1V

0 5 2 C mcC04 150/60 SY061 TCP/VRT2

0 5 2 C mcC04 150/60 SY043 TCP 3.1V

0 5 2 C mcC04 150/60 SY058 SPGA/VRT2

0 5 2 6 E0 75/50 Q0846 TCP Mobile

0 or 2 5 2 6 E0 75/50 Q0837 STD

0 or 2 5 2 6 E0 90/60 Q0783 STD

0 or 2 5 2 6 E0 100/50 or 66 Q0784 STD

0 or 2 5 2 6 E0 120/60 Q0785 VRE

0 5 2 6 E0 75/50 SY009 TCP Mobile

0 or 2 5 2 6 E0 75/50 SY005 STD

0 or 2 5 2 6 E0 75/50 SU0975 STD

0 or 2 5 2 6 E0 75/50 SU0986 STD

0 or 2 5 2 6 E0 90/60 SY006 STD

0 or 2 5 2 6 E0 100/50 or 66 SY007 STD

0 or 2 5 2 6 E0 100/50 or 66 SU1105 STD

0 or 2 5 2 6 E0 100/50 or 66 SU0996 STD

0 or 2 5 2 6 E0 120/60 SY033 STD

0 or 2 5 2 6 E0 120/60 SU1006 STD



E ERRATA AND S-SPECS FOR THE PENTIUM ® PROCESSOR FAMILY

A-15

12/18/96 4:53 PM    Appenda2.doc

INTEL CONFIDENTIAL
(until publication date)

Basic 75/90/100/120/133/150/166/200-MHz Pentium® Processor and Pentium Processor
with MMX™ Technology Identification Information (Contd.)

CPUID

Type Family Model Stepping
Manufacturing

Stepping
Speed (MHz)
Core / Bus S-Spec Comments

0 or 2 5 4 4 xA3 150/60 Q020 ES, PPGA12

0 or 2 5 4 4 xA3 166/66 Q019 ES, PPGA12

0 or 2 5 4 4 xA3 200/66 Q018 ES, PPGA12

0 or 2 5 4 4 xA3 166/66 SY059 PPGA12

0 or 2 5 4 4 xA3 166/66 SL239 SPGA12

0 or 2 5 4 4 xA3 200/66 SY060 PPGA12

0 5 4 4 mxA3 150/60 Q061 ES, PPGA11

0 5 4 4 mxA3 150/60 Q016 ES, TCP11

0 5 4 4 mxA3 166/66 Q017 ES, TCP11

0 5 4 4 mxA3 166/66 Q062 ES, PPGA11

0 5 4 4 mxA3 150/60 SL22G TCP11

0 5 4 4 mxA3 150/60 SL246 PPGA11

0 5 4 4 mxA3 166/66 SL22F TCP11

0 5 4 4 mxA3 166/66 SL23Z PPGA11

NOTES:

• For a definition of STD, VR, VRE, MD, VRE/MD, refer to S-Spec 10 in this document. ES refers to Engineering
Samples. DP indicates that this part can only be used as a dual processor.  CPU Type of  “2”  or  “0 or 2”  indicates this
part supports dual processing.

• The Type corresponds to bits [13:12] of the EDX register after RESET, bits [13:12] of the EAX register after the CPUID
instruction is executed. This is shown as 2 different values based on the operation of the device as the primary
processor or the dual processor upgrade.

• The Family corresponds to bits [11:8] of the EDX register after RESET, bits [11:8] of the EAX register after the CPUID
instruction is executed.

• The Model corresponds to bits [7:4] of the EDX register after RESET, bits [7:4] of the EAX register after the CPUID
instruction is executed.

• The Stepping corresponds to bits [3:0] of the EDX register after RESET, bits [3:0] of the EAX register after the CPUID
instruction is executed.

1. TCASE = 60°C.

2. VRT  Intel’s Voltage Reduction Technology: The VCC for I/O is 3.3V, but the core VCC, accounting for about 90% of
power usage, is reduced  to 2.9V, to reduce power consumption and heating.

3. No Kit   means that part meets the specifications but is not tested to support 82498/82493 and 82497/82492 cache
timings

4. STEPPING The cB1 stepping is logically equivalent to the C2-step, but on a different manufacturing process.  The
mcB1 step is logically equivalent to the cB1 step  (except it does not support DP, APIC or FRC).  The mcB1, mA1,
mA4 and mcC0-steps also use Intel’s VRT (Voltage Reduction Technology, see note 2 above) and are available in the
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TCP and/or SPGA package, primarily to support mobile applications.  The mxA3 is logically equivalent to the xA3
stepping (except it does not support DP or APIC). All mobile steppings are distinguished by an additional “m” prefix, for
“mobile”. All steppings of the Pentium® processor with MMX  technology are distinguished by an additional “x” prefix.

5. This is a boxed Pentium processor without the attached fan heatsink.

6. This is a boxed Pentium processor with an attached fan heatsink.

7. These parts do not support boundary scan.  S106J was previously marked  (and is the same as) SK106J.

8. DP, FRC and APIC features are not supported on these parts.

9. These parts are packaged in the Plastic Pin Grid Array (PPGA) package.  For additional specifications of this package,
see specification clarifications 27 and 28.

10. Some Q0951F units are marked on the bottom side with spec number Q0951 and with an additional line immediately
underneath spelling out  “Full Feature” to properly identify the unit.

11. This is a mobile Pentium processor with MMX technology with a core operating voltage of 2.285V - 2.665V.

12. This is a desktop Pentium processor with MMX technology with a core operating voltage of 2.7V-2.9V.
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SUMMARY TABLE OF CHANGES
The following table indicates the Specification Changes, S-Specs, Errata, Specification Clarifications or
Documentation Changes, which apply to the listed Pentium processor (75/90/100/120/133/150/166/200)
and Pentium processor with MMX technology steppings. Intel intends to fix some of the errata in a future
stepping of the component, and to account for the other outstanding issues through documentation or
specification changes as noted. This table uses the following notations:

CODES USED IN SUMMARY TABLE

X: Erratum or S-Spec that applies to this stepping.

Fix: This erratum or S-Spec is intended to be fixed in a future stepping of the
component.

Fixed: This erratum or S-Spec has been previously fixed.

NoFix There are no plans to fix this erratum.

(No mark) or (Blank Box): This erratum or S-Spec is fixed in listed stepping or does not apply to listed
stepping.

DP: Dual processing related errata.

AP: APIC related errata.

TCP: Applies to the listed stepping of a mobile Pentium processor in a TCP
package only.
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NO. B1 B3 B5 C2 mA1 cB1 mcB1 cC0 mA4 mcC0 E0 xA3 mxA3 Plans S-SPECS

1 X X Fixed t6a, t6b, max valid delay A31-A3, BE7#-
BE0#, ADS#, LOCK#

2 X X Fixed Minimum required voltage separation
between VCC3 and VCC2

3 X X Fixed VIH for TRST#

4 X Fixed VIL for BF0 and BF1 is reduced

5 X Fixed Boundary scan timing changes

6 X Fixed SPGA VCC2 supply voltage change

7 X X Fixed AC specifications for the Pentium®

processor with Voltage Reduction
Technology

8 X X Fixed Reduced VIL for TCK

9 X X X X X Fixed Mixing steppings in dual processing mode

10 X X X X X X Fixed MD/VR/VRE specifications

11 X Fixed 120-MHz  and 133-MHz parts (Q0707,
Q0708, Q0711, Q0732, Q0733, Q0751,
Q0775, SK086, SX994, SK098, SU033) do
not support dual processing

12 X Fixed 120-MHz  and 133-MHz parts (Q0707,
Q0708, Q0711, Q0733, Q0751, Q0775,
SK086, SK098) do not support FRC

13 X Fixed 120-MHz  and 133-MHz parts (Q0707,
Q0708, Q0711, Q0733, Q0751, Q0775,
SK086, SK098) VCC to CLK startup
specification

14 X Fixed 120-MHz  and 133-MHz parts (Q0707,
Q0708, Q0711, Q0733, Q0751, Q0775,
SK086, SK098) current leakage on PICD1
pin

15 X Fix Mobile stop clock power

16 X X Fix IIH, input leakage current

17 X X Fix Max valid delay A3-A31

18 X Fix Max valid delay ADS#

19 X Fix Max valid delay HITM#

20 X Fix Max valid delay data bus D0-D63

21 X Fix Desktop stop clock power
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NO. B1 B3 B5 C2 mA1 cB1 mcB1 cC0 mA4 mcC0 E0 xA3 mxA3 Plans ERRATA

1 X X X Fixed Branch trace messages during lock cycles

2 X X X Fixed Breakpoint or single-step may be missed
for one instruction following STI

3 X X X Fixed I/O restart does not function during single
stepping or data breakpoint exceptions

4 X X X Fixed NMI or INIT in SMM with I/O restart during
single-stepping

5 X X X Fixed SMI# and FLUSH# during shutdown

6 X X X Fixed No shutdown after IERR#

7 X X X Fixed FLUSH# with a breakpoint pending causes
false DR6 values

8 X Fixed Processor core may not serialize on bus
idle

9 X X X X X X Fixed SMIACT# premature assertion during
replacement writeback cycle

10 Superseded by a specification change STPCLK# deassertion not recognized for 5
CLKs after BRDY# returned

11 X X X Fixed Future Pentium OverDrive® processor
FERR# Contention in Two-Socket Systems

12 X Fixed Code cache lines are not invalidated if
snooped during AutoHALT or stop grant
states

13 X Fixed STPCLK# assertion during execution of the
HALT instruction hangs system

14 X X X X X X X X X X X X X NoFix NMI or INIT during HALT within SMM may
cause large amount of bus activity

15 X X X X X X X X X X X Fixed RUNBIST restrictions when run through
boundary scan circuitry

16 X X X X X X X Fixed FRC mode miscompare due to uninitialized
internal register

17 Superseded by a specification change STPCLK# restrictions during EWBE#

18 X X X Fixed Multiple allocations into branch target buffer

19 X X X Fixed 100-MHz REP MOVS speed path

20 X X X Fixed Overflow undetected on some numbers on
FIST

21 X X X Fixed Six operands result in unexpected FIST
operation
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NO. B1 B3 B5 C2 mA1 cB1 mcB1 cC0 mA4 mcC0 E0 xA3 mxA3 Plans ERRATA

22 X Fixed Snoop with table-walk violation may not
invalidate snooped line

23 X X Fixed Slight precision loss for floating-point
divides on specific operand pairs

24 X X X Fixed FLUSH#, INIT or machine check dropped
due to floating-point exception

25 X X X X X X X X Fixed Floating-point operations may clear
alignment check bit

26 X X X X X X X X Fixed CMPXCHG8B across page boundary may
cause invalid opcode exception

27 X X X X X NoFix Single-step debug exception breaks out of
HALT

28 X X X X X X X X X X X Fixed Branch trace message corruption

29 X X X X X Fixed FRC lock-step failure during APIC write

30 X X X X X X X X Fixed BE4#-BE0# sampled incorrectly at Min Vih

31 X X X X X Fixed Incorrect PCHK# output during boundary
scan if in DP mode

32 X X X X X X X X Fixed EIP altered after specific FP operations
followed by MOV Sreg, Reg

33 X X X X X X X X X X X Fixed WRMSR into illegal MSR does not
generate GP Fault

34 X X X Fixed Inconsistent data cache state from
concurrent snoop and memory write

35 X X X Fixed BE3#-BE0# not driven during boundary
scan if RESET high

36 X X X X X X X X X X X Fixed Incorrect FIP after RESET

37 X X X X X X X X X X X X X NoFix Second assertion of FLUSH# not ignored

38 X X X X X X X X X X X X X NoFix Segment limit violation by FPU operand
may corrupt FPU state

39 X X X X X X X X X X X X X NoFix FP exception inside SMM with pending NMI
hangs system

40 X X X X X X X Fixed Current in Stop Clock state exceeds
specification

41 X X X X X X X X X Fixed STPCLK# buffer samples incorrectly during
boundary scan testing

42 X X X X X X X Fixed Incorrect decode of certain 0F instructions

43 X X X X X X X X X X X X X NoFix Data breakpoint deviations
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NO. B1 B3 B5 C2 mA1 cB1 mcB1 cC0 mA4 mcC0 E0 xA3 mxA3 Plans ERRATA

44 X X X X X X X X X X X X X NoFix Event monitor counting discrepancies

45 X X X X X X X X X X X X X NoFix VERR type instructions causing page fault
task switch with T bit set may corrupt
CS:EIP

46 X X X X X X X X X X X X X NoFix BUSCHK# interrupt has wrong priority

47 X X X X X X X Fixed BF and CPUTYP buffers sample incorrectly
during boundary scan testing

48 X X X X X X X X X X X X X NoFix Matched but disabled data breakpoint can
be lost by STPCLK# assertion.

49 X X X X X X X X X X X X X NoFix STPCLK# ignored in SMM when INIT or
NMI pending

50 X X X X X X X X X X X Fixed STPCLK# pullup not engaged at RESET

51 X X X X X X X X X X X X X NoFix A fault causing a page fault can cause an
instruction to execute twice

52 X X X X X X X X X X X X X NoFix Machine check exception pending, then
HLT, can cause skipped or incorrect
instruction, or CPU hang

53 X X X X X X X X X X X X X NoFix FBSTP stores BCD operand incorrectly If
address wrap & FPU error both occur

54 X X X X X X X X X X X X X NoFix V86 interrupt routine at illegal privilege level
can cause spurious pushes to stack

55 X X X X X X X X X X X X X NoFix Corrupted HLT flag can cause skipped or
incorrect  instruction, or CPU hang

56 X X X X X X X X X X X X X NoFix Benign exceptions can erroneously cause
double fault

57 X X X X X X X X X X X X X NoFix Double fault counter may not increment
correctly

58 X X X X Fixed Some input pins may float high when core
VCC powers up after I/O VCC (mobile CPU)

59 X X X X X X X X X X X X X NoFix Short form of mov EAX/ AX/ AL may not
pair

60 X X X X X X X X X X X X X NoFix Turning off paging may result in prefetch to
random location

61 X X X X X X X X X X X X X NoFix STPCLK# or FLUSH# after STI

62 X X X X X X X X X X X X X NoFix REP string instruction not interruptable by
STPCLK#

63 X X X X X X X X X X X X X NoFix Single step may not be reported on first
instruction after FLUSH#
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NO. B1 B3 B5 C2 mA1 cB1 mcB1 cC0 mA4 mcC0 E0 xA3 mxA3 Plans ERRATA

64 X X X X X X X X X NoFix Double fault may generate illegal bus cycle

65 X X X X X X X X X X X X X NoFix TRST# not asynchronous

66 X X X X X X X X X X X X X NoFix STPCLK# on RSM to HLT causes non-
standard behavior

67 X X X X X X X X X X X X X NoFix Code cache dump may cause wrong IERR#

68 X X X X X X X X X X X X X NoFix Asserting TRST# pin or issuing JTAG
instructions does not exit TAP Hi-Z state

69 X X X X X X X X X X X X X NoFix ADS# may be delayed after HLDA
deassertion

70 X X X X X X X X X X X X X NoFix Stack underflow in IRET gives #GP, not
#SS

71 X X X X X X X X X X X X X NoFix Performance monitoring pins PM[1:0] may
count the events incorrectly

72 X X Fix BIST is disabled

73 X X NoFix Branch trace messages may cause system
hang

74 X X Fix Enabling RDPMC in CR4 and also using
SMM may cause shutdown

75 X X Fix Event monitor counting discrepancies (fix)

76 X X NoFix Event monitor counting discrepancies
(Nofix)

77 X X Fix INVD may leave valid entries in the cache
due to snoop interaction

78 X X NoFix TLB update is blocked after a specific
sequence of events with a misaligned
descriptor

1DP X X X Fixed Problem with external snooping while two
cycles are pending on the bus

2DP X X X Fixed STPCLK# assertion and the stop grant bus
cycle

3DP X X X Fixed External snooping with AHOLD asserted
may cause processor to hang

4DP X X X Fixed Address parity check not supported in dual
processing mode

5DP X X Fixed Inconsistent cache state may result from
interprocessor pipelined READ into a
WRITE
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NO. B1 B3 B5 C2 mA1 cB1 mcB1 cC0 mA4 mcC0 E0 xA3 mxA3 Plans ERRATA

6DP X X X Fixed Processors hang during Zero WS, pipelined
bus cycles

7DP X X X Fixed Bus lock-up problem in a specific dual
processing mode sequence

8DP X X X X X Fixed Incorrect assertion of PHITM# without
PHIT#

9DP X X X X X Fixed Double issuance of read cycles

10DP X X X X X Fixed Line invalidation may occur on read or
prefetch cycles

11DP X X X X X X X Fixed EADS# or floating ADS# may cause extra
invalidates

12DP X X X X X Fixed HOLD and BOFF# during APIC cycle may
cause dual processor arbitration problem

13DP X X X X X Fixed System hang after hold during local APIC
2nd INTA cycle

14DP X X X X X X X Fixed External snoop can be incorrectly
invalidated

15DP X X X X X X X X NoFix STPCLK# re-assertion recognition
constraint with DP

16DP X X X X X X X X NoFix Second assertion of FLUSH# during flush
acknowledge cycle may cause hang

1AP X X X Fixed Remote read message shows valid status
after a checksum error

2AP X X X Fixed Chance of clearing an unread error in the
error register

3AP X X X Fixed Writes to error register clears register

4AP X X X Fixed Three interrupts of the same priority causes
lost local interrupt

5AP X X X Fixed APIC bus synchronization lost due to
checksum error on a remote read message

6AP X X X Fixed HOLD during a READ from local APIC
register may cause incorrect PCHK#

7AP X X X Fixed HOLD during an outstanding interprocessor
pipelined APIC cycle hangs processor

8AP X X X Fixed PICCLK reflection may cause an APIC
checksum error

9AP X X X X X X X Fixed Spurious interrupt in APIC through local
mode
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NO. B1 B3 B5 C2 mA1 cB1 mcB1 cC0 mA4 mcC0 E0 xA3 mxA3 Plans ERRATA

10AP X X X Fixed Potential for lost interrupts while using
APIC in through Local mode

11AP X X X X X Fixed Back to back assertions of HOLD or BOFF#
may cause lost APIC write cycle

12AP X X X X X X Fixed System hangs when BOFF# is asserted
during second internal INTA cycle

13AP X X X X X X X Fixed APIC pipeline cycle during cache linefill
causes restarted cycle to lose its attribute

14AP X X X X X X X X NoFix INIT and SMI via the APIC three-wire bus
may be lost

15AP X X Fixed IERR# in FRC lock-step mode during APIC
write

16AP X X X X X X X X X Fixed Inadvertent BRDY# during external INTA
cycle with BOFF#

17AP X X X X X X X Fixed APIC read cycle may not complete upon
assertion of BOFF# and HOLD

18AP X X X X X X X X NoFix PICCLK must toggle for at least twenty
cycles before RESET

19AP X Fix APIC ID can not be changed

1TCP X Fixed CPU may not reset correctly due to floating
FRCMC# pin

2TCP X X X X X X X Fixed BRDY# does not have buffer selection
capability
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S-SPECS

1. t6a, t6c, Max Valid Delay A31-A3, BE7#-BE0#, ADS#, LOCK#

Symbol Parameter Datasheet  Max (nS) S-Spec Max (nS) Notes

t6a ADS#, BE0-7# 7.0 7.25 50 MHz, 60 MHz bus

t6c A31-A3, LOCK# 7.0 7.25 50 MHz, 60 MHz bus

2. Minimum Required Voltage Separation Between V CC3  and
VCC2

In order to ensure proper operation a minimum of 120mV separation must be maintained between VCC3
(min) and VCC2 (max) at all times while the processor is powered up.  In order to provide flexibility in the
power supply design, the voltage tolerance of  +/- 165mV will be supported on both supplies, however, the
voltage difference between the two supplies must remain greater than 120mV.  Therefore, the capacitive
decoupling scheme that handles current transients must be chosen to support this requirement.  It is
recommended that the OEM provide sufficient decoupling capacitance for the desired voltage tolerance
distribution between VCC3 and VCC2, and perform actual system measurements to validate the design.

 For further information, contact your local Intel Sales office.

VCC3 (Min) VCC2 (Max)
VCC3 (Min) - VCC2 (Max)

Standard
VCC3 (Min) - VCC2 (Max)

S-Spec

3.3 - 0.165V 2.9 + 0.165V 70mV 120mV*

*  Test condition is at VCC2 = 2.9V + 0.165V = 3.065V: VCC3 = 3.3V - 0.115V = 3.185V

3. VIH  For TRST#

Symbol Pin Standard Min S-Spec Min Unit

VIH TRST# 2.0 2.2 Volts

4. VIL  For BF0 and BF1 is Reduced

Symbol Pin Standard Max S-Spec Max Unit

VIL BF0, BF1 0.8 0.6 Volts
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5. Boundary Scan Timing Changes
The boundary scan valid delay minimum time for t53 and t55 has been reduced for the mcC0 stepping as
indicated below. This applies to both SPGA and TCP packages.

Symbol Parameter

Standard
Min Time

(60/66MHz)

S-Spec
Min Time

(60/66MHz)

t53 TDO Valid Delay 3.0 nS 2.8 nS

t55 All Non-Test Outputs Valid Delay 3.0 nS 2.5 nS

6. SPGA VCC2 Supply Voltage Change
The core supply voltage (VCC2) required is changed from 2.9V to 3.1V.  This applies to SPGA
100/120/133 MHz units only.  I/O voltage supply (VCC3) remains at 3.3V+/-165mV.

Symbol Parameter
Standard

Supply Voltage
S-Spec

Supply Voltage

VCC2 Core voltage supply 2.9V+/-165mV 3.1V+/-165mV

7. AC Specifications for the Pentium ® Processor with Voltage
Reduction Technology

The TCP and SPGA Pentium Processor with Voltage Reduction Technology AC specifications for 60- and
66-MHz bus operation have been published in the Pentium® Processor with Voltage Reduction Technology
datasheets (Order Numbers 242973 and 242557).  The mA1 and mA4 steppings differ from the published
specifications as noted below.

SPGA AC Specifications for 60-MHz Bus

S-Specs
60MHz Bus (nS)

Mobile Standard
60MHz Bus (nS)

Symbol Parameter Min Max Min Max

t6e A3-A31 Valid Delay 1.1 7.7 1.1 6.3

t12 D0–D63, DP0–7 Write Data Valid Delay 1.3 7.8 1.3 7.5

t35 D0–D63, DP0–7 Read Data Hold Time 2.0 1.5
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TCP AC Specifications for 60-MHz Bus

S-Specs
60MHz Bus (nS)

Mobile Standard
60MHz Bus (nS)

Symbol Parameter Min Max Min Max

t6e A3-A31 Valid Delay 1.1 7.0 1.1 6.3

t35 D0–D63, DP0–7 Read Data Hold Time 2.0 1.5

SPGA AC Specifications for 66-MHz Bus

S-Specs
66MHz Bus (nS)

Mobile Standard
66MHz Bus (nS)

Symbol Parameter Min Max Min Max

t6a BE0-7# Valid Delay 1.0 7.25 1.0 7.0

t6c LOCK# Valid Delay 1.1 7.25 1.1 7.0

t6d ADS# Valid Delay 1.0 7.0 1.0 6.0

t6e A3-A31 Valid Delay 1.1 7.5 1.1 6.3

t6f M/IO# Valid Delay 1.0 7.0 1.0 5.9

t9c HLDA Valid Delay 1.0 7.2 1.0 6.8

t10a HIT# Valid Delay 1.0 8.0 1.0 6.8

t12 D0–D63, DP0–7 Write Data Valid Delay 1.3 7.8 1.3 7.5

t16b EADS# Setup Time 5.5 5.0

t24b PEN# Setup Time 5.0 4.8

t34 D0–D63, DP0–7 Read Data Setup Time 3.0 2.8

t35 D0–D63, DP0–7 Read Data Hold Time 2.0 1.5
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TCP AC Specifications for 66-MHz Bus

S-Specs
66MHz Bus (nS)

Mobile Standard
66MHz Bus (nS)

Symbol Parameter Min Max Min Max

t6c LOCK# Valid Delay 1.1 7.25 1.1 7.0

t6d ADS# Valid Delay 1.0 7.0 1.0 6.0

t6e A3-A31 Valid Delay 1.1 7.0 1.1 6.3

t6f M/IO# Valid Delay 1.0 6.8 1.0 5.9

t10a HIT# Valid Delay 1.0 8.0 1.0 6.8

t16b EADS# Setup Time 5.5 5.0

t24b PEN# Setup Time 5.0 4.8

t34 D0–D63, DP0–7 Read Data Setup Time 3.0 2.8

t35 D0–D63, DP0–7 Read Data Hold Time 2.0 1.5

8. Reduced V IL For TCK

Symbol Pin Standard Min S-Spec Min Unit

VIL TCK 0.8 0.6 Volts

9. Mixing Steppings in Dual Processing Mode
Some OEMs may choose to ship their systems with one processor, and then perform a field upgrade and
add a second processor dual processing system. In some cases, the two processors may not be of the
exact same stepping. If there is a need to mix steppings of the Pentium processor in a dual processing
system, the following guidelines must be met:

1. The processors must be set to run at the same frequencies, and the same bus/core fractions. For
example:  If the primary processor is running at 60 and 90 MHz, the dual processor must also run at
60 and 90 MHz.

2. The CPUTYP pin of the dual processor socket must be tied to VCC.

3. Use the following table for restrictions, or workarounds required to mix the steppings. Each of the
notes is the errata that may cause the system to fail. There may be other applicable errata, please see
the errata descriptions for a full listing and the complete details of the workaround.
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Mixing Stepping Matrix

B1 as Dual
(CM Package)

B3 as Dual
(CM Package) B5 as Dual C2 as Dual

B1 as Primary 5DP 5DP 5DP 5DP

B3 as Primary 5DP 5DP 5DP 5DP

B5 as Primary 5DP 5DP 1DP 1DP

C2 as Primary 5DP 5DP 1DP No pipeline
restrictions

NOTES:

5DP: Workaround requires pipelining disabled.

1DP: Workaround requires either pipelining disabled, or AHOLD pin held active one clock longer than
BOFF# deassertion.

10. MD/VR/VRE Specifications
There are some changes to the standard VCC and timing specifications to support the highest performance
operation of the Pentium processor.

STD: The VCC specification for the C2 and subsequent steppings of the Pentium processor is
VCC = 3.135V to 3.6V. The voltage range for B-step parts remains at  3.135V–3.465V.
Note that all E0-step production parts are standard voltage.

VR: This is a reduced voltage specification that has the range of 3.300V–3.465V.

VRE/MD: These parts have a reduced and shifted voltage specification, and reductions in the
minimum output valid delays on the list of pins in the table below. The VRE voltage range
for the C2 and subsequent steppings of the Pentium processor is VCC = 3.40-3.60V.  The
VRE voltage range for B-step parts remains at 3.45-3.60V.

MD: This is a reduction in the minimum valid timings on a subset of output pins. Due to faster
operation of the core, and faster operation of the transistors at the higher voltages these
minimum valid timings need to be met.  These parts have the standard VCC specification.

Previous Current

Operating VCC Range (VRE) 3.45 to 3.60V 3.40 to 3.60V

There are no allowances for crossing the high and low limits of the voltage specification. Part operation
beyond these ranges cannot be guaranteed.  For more information on measurement techniques, see
Chapter 7 of the Pentium® Processor Family Developer’s Manual and the application note Implementation
Guidelines for 3.3V Pentium Processors with VR/VRE Specifications.
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Symbol Signal

Min Valid STD
(50/60/66)

Specifications

Min Valid, MD
(50/60/66)

Specifications Units

t6c A3-16 1.1 0.5 nS

t6c A17-31 1.1 0.6 nS

t6a W/R# 1.0 0.8 nS

t6a M/IO# 1.0 0.8 nS

t6a D/C# 1.0 0.8 nS

t6c LOCK# 1.1 0.9 nS

t10b HITM# 1.1 0.7 nS

t6a BE0-7# 1.0 0.9 nS

11. 120-MHz  and 133-MHz Parts (Q0707, Q0708, Q0711, Q0732,
Q0733, Q0751, Q0775, SK086, SX994, SU033, SK098) Do Not
Support Dual Processing

The 120-MHz and 133-MHz parts (Q0707, Q0708, Q0711, Q0732, Q0733, Q0751, Q0775, SK086, SX994,
SU033, SK098) do not support dual processing as defined in the Pentium Processor Family Developer’s
Manual.  Dual processing support will be added in a future stepping.

12. 120-MHz  and 133-MHz Parts (Q0707, Q0708, Q0711, Q0733,
Q0751, Q0775, SK086, SK098) Do Not Support FRC

The 120-MHz  and 133-MHz parts (Q0707, Q0708, Q0711, Q0733, Q0751, Q0775, SK086, SK098) do not
support FRC as defined in the Pentium Processor Family Developer’s Manual

13. 120-MHz  and 133-MHz Parts (Q0707, Q0708, Q0711, Q0733,
Q0751, Q0775, SK086, SK098) VCC to CLK Startup
Specification

The specification for the maximum time from VCC reaching nominal value to the time the CLK must toggle
is 30 ms for 120-MHz  and 133-MHz parts (Q0707, Q0708, Q0711, Q0733, Q0751, Q0775, SK086,
SK098).  If this specification is not met it may impact the long term reliability of the component.

VCC to CLK Startup Time:  30 ms maximum.
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14. 120-MHz  and 133-MHz Parts (Q0707, Q0708, Q0711, Q0733,
Q0751, Q0775, SK086, SK098) Current Leakage on PICD1 Pin

The leakage current specification as described in the Pentium Processor Family Developer’s Manual is
200µA.  The leakage specification for 120-MHz  and 133-MHz parts (Q0707, Q0708, Q0711, Q0733,
Q0751, Q0775, SK086, SK098) differs as follows:

Symbol Parameter Min Max Unit Notes

IIH Input Leakage Current 250 µA Vin = 0.4V (1)

NOTE: (1) This parameter is for input with pull up resistor.

15. Mobile Stop Clock Power

Parameter Standard Power S-SPEC Power

Mobile Maximum Stop Clock Power Dissipation 50 mW 150 mW

Mobile Typical Clock Power Dissipation (1) 20 mW 85 mW

NOTES:
1. Typical stop clock power dissipation is not tested.

16. IIH Input Leakage Current

Symbol Parameter
Standard Leakage

Current
S-SPEC Leakage

Current

IIH   (1), (2) Input Leakage Current 200 µA 400 µA

NOTES:
1. This parameter is for input with pulldown.

2. Vin = 2.4 V.

17. Max Valid Delay A3-A31

Symbol Parameter Bus Frequecny
Standard Max

Valid Delay
S-SPEC Max
Valid Delay

Desktop t6e A3-A16 60, 66 MHz 6.3 nS 6.6 nS

Desktop t6e A17-A31 60, 66 MHz 6.3 nS 6.6 nS

Mobile t6e A3-A31 60 MHz 6.3 nS 7.0 nS

Mobile t6e A3-A31 66 MHz 6.3 nS 6.6 nS
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18. Max Valid Delay ADS#

Symbol Parameter Bus Frequecny
Standard Max

Valid Delay
S-SPEC Max
Valid Delay

Mobile t6d ADS# 60 MHz 7.0 nS 7.0 nS (1)

Mobile t6d ADS# 66 MHz 6.0 nS 6.4 nS

1. This is for reference only, not an S-Spec.

19. Max Valid Delay HITM#

Symbol Parameter Bus Frequecny
Standard Max

Valid Delay
S-SPEC Max
Valid Delay

Mobile t10b HITM# 60 MHz 6.0  nS 6.7 nS

Mobile t10b HITM# 66 MHz 6.0 nS 6.4 nS

20. Max Valid Delay Data Bus D0-D63

Symbol Parameter Bus Frequecny
Standard Max

Valid Delay
S-SPEC Max
Valid Delay

Mobile t12 D0-D63 60 MHz 7.5 nS 8.3 nS

Mobile t12 D0-D63 66 MHz 7.5 nS 8.0 nS

21. Desktop Stop Clock Power

Parameter
Standard

Power
S-SPEC
Power

Desktop Maximum Stop Clock Power Dissipation 265 mW 375 mW

Desktop Typical Clock Power Dissipation 30 mW 160 mW
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ERRATA

1. Branch Trace Message During Lock Cycles
PROBLEM:  During instruction execution tracing only two Branch Trace messages can be buffered. If there
is a possibility of a third message being delivered from the instruction being executed, the machine will stall
to avoid overwriting either of the messages that are buffered. If this instruction is a "locked read-modify-
write" operation, the processor will hang up due to internal service contention for the bus controller logic.

IMPLICATION:  This problem only effects operation of the component while performing instruction tracing on
the CPU. It has not been seen using Intel development tools.

WORKAROUND:  None identified at this time.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

2. Breakpoint or Single-Step May Be Missed for One Instruction
Following STI

PROBLEM:  If the following conditions are met, the processor may shut off the interrupt window for one
instruction following STI:

1. The address of the instruction preceding the STI instruction is a hit in the BTB.

2. The target address of the BTB hit does not correspond to the instruction following the STI instruction.

This will prevent breakpoints, single-step or other external interrupts from being recognized during this
time.

IMPLICATION:  The processor may not recognize NMI, SMI# INIT, FLUSH#, BUSCHK#, R/S#, code/data
breakpoint and single-step for one instruction after executing STI. This is not a problem unless breakpoints
or single-stepping is used and then the only effect is that the breakpoint would be missed.

WORKAROUND:  Do not set a breakpoint on the next sequential instruction after STI, or disable branch
prediction to prevent this problem.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

3. I/O Restart Does Not Function During Single Stepping or Data
Breakpoint Exceptions

PROBLEM:  If an SMI# interrupt is generated while a data breakpoint exception is pending or during single-
stepping, an I/O restart attempt will not be successful.

IMPLICATION:  If this problem occurs, it will not be possible to restart the I/O instruction.

WORKAROUND:  Do not allow single-stepping or data breakpoint exceptions when attempting to restart an
I/O instruction.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.
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4. NMI or INIT in SMM with I/O Restart During Single Stepping
PROBLEM:  An NMI# or INIT may be falsely accepted while in an SMM handler if all of the following
conditions are met:

1. I/O restart is enabled with the ITR bit in TR12.

2. An SS or DBP exception is pending at the time that the SMI# is recognized.

3. NMI# or INIT is asserted before another fault occurs or before an INTR occurs ( and the IF flag is set).

IMPLICATION:  If the above conditions are met, the processor may falsely go into an interrupt service routine
or begin the INIT sequence.

WORKAROUND:  Do not enable I/O trap restart while single-stepping.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

5. SMI# and FLUSH# During Shutdown
PROBLEM:  If the processor transitions from the shutdown state to System Management mode via an SMI#
interrupt, and FLUSH# is asserted after the SMI# interrupt is recognized, the processor returns to the
shutdown state rather than to the SMM handler.

IMPLICATION:  After the FLUSH# is asserted, the processor erroneously returns to the shutdown state when
it should return to the SMM handler.

WORKAROUND:  Do not assert SMI# while the processor is in the shutdown state.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

6. No Shutdown After IERR#
PROBLEM:  If an internal parity error is reported to the IERR# pin and a mispredicted branch or a trap with
higher priority than shutdown occurs, then the processor may not shutdown.

IMPLICATION:  During the reporting of an internal parity error, the IERR# pin may go active without a
processor shutdown.

WORKAROUND:  When the IERR# pin is asserted, force the system to shutdown.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

7. FLUSH# with a Breakpoint Pending Causes False DR6 Values
PROBLEM:  If I/O restart is enabled during single-stepping or while a breakpoint is pending, and a FLUSH#
is asserted, the wrong value will be stored in DR6.

IMPLICATION:  The debug status register (DR6) may contain false information.

WORKAROUND:  Do not assert FLUSH# when I/O restart is enabled with single-stepping or a breakpoint is
pending.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.
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8. Processor Core May Not Serialize on Bus Idle
PROBLEM:  Under rare circumstances, a BOFF# asserted to the processor, while it is internally waiting
(looping) for the completion of all pending bus cycles, may cause the processor to proceed with the event
before all pending bus activity is completed. However, bus cycle ordering will not change.

The following is a list of events identified that may possibly effect system operation:

• SMI# pending

• OUT instructions

• Serializing instructions

• Stop Grant special cycle

• AutoHALT special cycle

• INIT asserted while there is a memory mapped APIC register access

SMI# pending If BOFF# is used to back off a bus cycle while an SMI# is pending, the processor
may assert SMIACT# before re-starting the aborted bus cycles.

Serializing instruction If BOFF# is used to back off a bus cycle due to a serializing instruction, the
processor may start executing the next instruction before restarting or completing
the previous bus cycle. The processor, however, will not reorder any bus cycles for
the new instruction in front of bus cycles for the previous instruction.

Invalidation during cache line fill
If BOFF# is used to back off a cache line fill and BOFF# occurs after the data has
been returned to the processor but before the end of the line fill, an invalidation
request during this time may result in the cache invalidation to occur before the line
fill has completed, This may cause the cache line to remain in a valid state after the
invalidation has completed. Note that if the invalidation request comes in via
WBINVD or FLUSH#, the line fill would have to be backed off at least twice (or
once for INVD) in order for the cache line to remain in a valid state after the
invalidation has completed.

OUT instruction If BOFF# is used to back off a bus cycle due to an OUT instruction, the processor
may start executing the next instruction before the bus cycle due to OUT has
completed. (NOTE:  the OUT instruction is similar to the serializing instructions
except that it does not stop the prefetch of the subsequent instruction.) The
processor, however, will not reorder any bus cycles for the new instruction in front
of the OUT bus cycle.

Stop Grant special cycle
If BOFF# is used to back off a Stop Grant special cycle, the processor may hang.

AutoHALT special cycle
If BOFF# is used to back off a AutoHALT special cycle, the processor may hang.

INIT asserted while there is a memory mapped APIC register access 
If BOFF# is used to back off a memory mapped APIC register access while an INIT
is pending, the processor may hang. The access could be either a read or a write,
and is an access to the local APIC register space.

IMPLICATION:  This problem has only been observed in internal test vehicles. The six events have different
possible implications.

SMI# pending The processor may enter SMM before restarting the aborted bus cycle. The
SMIACT# assertion may cause the restarted bus cycle to run to SMRAM space.
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Serializing Instruction Since the cycles are not reordered, a system should not encounter any problems
unless it depends on the serializing instruction causing an external event prior to
execution of the next instruction.

Invalidation during cache line fill
In a rare instance, a cache line may remain in the valid (E or S) state after the
cache invalidation has completed.

OUT instruction Since the cycles are not reordered, a system should not encounter any problems
unless it depends on the OUT instruction causing an external event prior to
execution of the next instruction. For example, an OUT instruction may be used to
assert the A20M# signal prior to the next instruction. In this case, observed code
has followed the OUT with an I/O read (IN) to ensure the signal is properly
asserted. A second case, could be using an OUT instruction to configure/initialize
and interrupt controller and follow it with STI to enable interrupts. Once again no
failure would be observed. The controller would respond with the spurious interrupt
vector.

Stop Grant special cycle
If BOFF# is used to back off a Stop Grant special cycle, the processor may hang.
Stop Grant and Stop Clock states for low power consumption cannot be used.

AutoHALT special cycle
If BOFF# is used to back off a AutoHALT special cycle, the processor may hang.
This means that the lower power AutoHALT state is not usable. This does not
affect the normal HALT state, entered with the HLT instruction though.

INIT asserted while there is a memory mapped APIC  register access
If BOFF# is used to back off a memory mapped APIC register access (read or
write) while an INIT is pending, the processor may hang. The INIT would only be
used during a switch from Protected to Real mode, which is normally associated
with a system reboot. In the processor lockup occurs a reboot may have to be
performed via system powerdown.

WORKAROUND:  Restrict the use of BOFF# for the described events. In addition, the SMI# pending event
can be eliminated by locating SMRAM so that it does not shadow standard memory and does not require
SMIACT# for memory decode. The OUT or Serializing instruction events are also eliminated if the next
instruction does not depend on the result of the event before executing the instruction. The Stop Grant
special cycle event is also eliminated by not asserting STPCLK#. The AutoHALT special cycle event is also
eliminated by disabling AUTOHALT (set TR12.AHD bit to ‘1’).

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

9. SMIACT# Premature Assertion During Replacement
Writeback Cycle

PROBLEM: If a data read cycle triggers a replacement writeback cycle and the SMI# signal is asserted
before the last BRDY# of the read cycle, the processor may assert the SMIACT# signal prematurely. It
occurs on all steppings when the processor is in 2/3 bus mode.  If the processor is in 1/2 bus mode it
will not exhibit this erratum for C2 and subsequent steppings.

Before the processor asserts SMIACT# in response to an SMI# request, it should complete all pending
write cycles (including emptying the write buffers). However, if the appropriate conditions occur, the
SMIACT# signal may get asserted during the replacement writeback cycle, at anytime during the writeback
cycle.  See below diagram.
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IMPLICATION: If the SMIACT# signal is used by the system logic to decode SMRAM (e.g., SMRAM is
located in an area that is overlaid on top of normal memory space, e.g. system, video etc.), then the
replacement writeback cycle with SMIACT# asserted could occur to SMM space. Systems that locate
SMRAM in its own distinct memory space (non-overlaid) should not experience data corruption once the
SMRAM has been initialized and relocated.

Some board designs and/or chip sets may contain logic which locks when an SMIACT# is asserted during
the writeback cycle.  This is logic dependent and not all systems will fail when this condition occurs,
although data corruption could still result.

WORKAROUND:  Use one of following:

Non Overlaid SMRAM

In systems that relocate the SMBASE so that it does not overlay normal memory space.

1. Do not use SMIACT# as a decode signal once SMRAM has been relocated. When entering SMM for
the first time to relocate the SMBASE to the non-overlaid region the system must be in one of three
modes:  the processor L1 cache must be in WT mode, the default SMBASE location (30000H) should
be marked non-cacheable, or the L1 cache should be turned off.  Once the SMBASE has been
relocated to the non-overlaid region and SMIACT# is no longer used to decode SMRAM, the
processor’s L1 cache may be used in WB mode or the memory area at 30000H may be configured as
a cacheable region.

Overlaid SMRAM

In systems that locate SMRAM over normal cacheable or non-cacheable memory space there are several
software and hardware workarounds.

1. Operate the processor with the L1 cache in WT mode only.  This will eliminate all processor WB
cycles and thus prevent the error condition from occurring.  The performance impact to the system for
this could be between 5-15% depending on L2 cache size, speed, and operating mode (WB/WT).

2. Assert FLUSH# one clock before SMI# or assert FLUSH# and SMI# simultaneously and
synchronously with the processor clock.  The processor always assigns FLUSH# a higher priority than

SMMRead WB Cycle
CLK

ADS#

BRDY#

SMI#

SMIACT#

W/R#

CACHE#

M/IO#

D/C#

Errata Case
Spec Case
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SMI# and thus it will delay the assertion of SMIACT#.  This is already a necessary requirement to
maintain cache coherency when SMRAM overlays a cacheable normal memory area.  Depending on
the chip set, external hardware may be required to synchronize SMI# and FLUSH#.  The performance
impact of this solution depends heavily on frequency of SMIs.  No performance impact should be
visible if SMM is accessed infrequently, such as during periods of bus inactivity.  Frequent SMM
access (i.e. 18/sec) will result in less than 1% processor performance decrease.

Note that other hardware workarounds may be possible.  Any other hardware workaround needs to take
into account the possible case when BOFF# or AHOLD is asserted thereby restarting the writeback cycle
after SMIACT# may have been asserted.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

10. STPCLK# Deassertion Not Recognized for 5 CLKs After
BRDY# Returned

This erratum has been superseded by a specification change.

11. Future Pentium ® OverDrive ® Processor FERR# Contention in
Two-Socket Systems

PROBLEM:  When the future Pentium OverDrive processor is plugged into Socket 5 of a two socket 75-, 90-,
or 100-MHz Pentium processor system, the OEM processor shuts down following RESET to allow the
OverDrive processor to drive the bus. In this case, the FERR# output of the 75-, 90-, and 100-MHz Pentium
processor continues to be driven HIGH (inactive).

IMPLICATION:  If the system uses the FERR# output of the OEM processor, and has the signal connected
together between the two sockets (296-pin SPGA OEM socket and 320-pin Socket 5), contention on this
signal is certain since the future Pentium OverDrive processor, when placed into Socket 5, will also drive
this output. This signal contention can cause component and even board reliability issues.

WORKAROUND:  There are two possible workarounds for this erratum.

1. For upgradability in two socket systems:  External logic may be used to connect the FERR#
outputs from the two sockets (296-pin SPGA and 320-pin Socket 5) in a way that will resolve the
signal contention.

An external AND gate may be used to combine the outputs of the FERR# signals from the two
sockets. A pullup resistor (≥3KΩ) is required on the FERR# output from both of the sockets in order to
allow proper operation of both the dual processor and the future Pentium OverDrive processor. See
the following figure:
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2. Upgradability by modifying a two socket system to be a single socket system:  This workaround
involves modifying a design that includes two socket sites (296-pin SPGA and 320-pin Socket 5) such
that it effectively becomes a single socket design.

A dual processing two socket system must have CPUTYP tied to VSS on the 296-pin SPGA OEM
socket, and tied to VCC on Socket 5 (320-pin SPGA). This workaround includes inserting a jumper on
the Socket 5 CPUTYP signal (or strapping Socket 5 CPUTYP directly to VSS) to make this the
primary processor site. The system would then effectively become a single-socket design. NOTE:  If a
jumper is used, it must be set by the OEM prior to system sale (not by the end-user at the time of the
future Pentium OverDrive processor purchase and installation). This jumper would set the CPUTYP
signal on Socket 5 to VSS. If the same board design is used for dual processing, this jumper (or
strapping option) may be set to VCC for those systems, as shown in the following figure:

3 20-p in  S P G A

Socket 5

Vcc

Vss

Ju m p er

o r S trap

 to  Vs s

C P U T Y P

Vss

C P U T Y P
29 6-p in  S P G A

By setting CPUTYP to VSS, and inserting the 75-, 90-, and 100-MHz Pentium processor into Socket 5 prior
to system sale, the design can be treated as if it is a single socket system. When upgrading with the future
Pentium OverDrive processor, the 75-, 90-, and 100-MHz Pentium processor is removed from Socket 5
and replaced by the OverDrive processor upgrade.

IMPLICATIONS OF WORKAROUND #2:

Other implications of this workaround include Boundary Scan, and any other signals not connected
together between Socket 5 and the 296-pin SPGA socket site.

If Socket 5 follows the 296-pin socket in the Boundary Scan chain, the TDI input and TDO output of the
296-pin socket site must be connected together by the OEM prior to system sale in order to skip this socket
site and complete the path to socket, as shown in the following figure. This connection is necessary only if
Boundary Scan will be used by end-users after system sale.
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TDI TDO TDI TDO

296-pin 
Socket

Socket 5

Connection or Jumper

All of the signals which are not connected together in a dual socket system must be handled by both socket
sites if the feature is desired. These signals are APCHK#, BP[3:0], IERR#, PM[1:0], PRDY, and R/S#.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

12. Code Cache Lines Are Not Invalidated if Snooped During
AutoHALT or Stop Grant States

PROBLEM:  If the code cache is snooped while the processor is in the Stop Grant state or the AutoHALT
Powerdown state, and there is a hit to a line in the code cache with the INV pin asserted, the line may not
be invalidated. In normal operation, a hit to a line in the code cache results in that line being invalidated.

IMPLICATION:  This problem will cause the snooped line to remain valid in the cache. This may cause the
processor to execute an invalid instruction that erroneously remained valid in the code cache. NOTE:  HIT#
is properly asserted. This may occur in DMA transfers, or transfers to hard disks. It was found on a disk
drive that used a BIOS that used HALTs extensively in the boot sequence and performed data transfers
after the CPU entered the AutoHALT state. Since this occurs in both the AutoHALT state and the Stop
Grant states of the SL Enhanced power management features, both of these features should not be used
unless one of the listed workarounds is implemented. Not using the power management features could
impact the compliance of an Energy Star Compliant System.

WORKAROUND:  Use one of the following:

1. Disable the AutoHALT Powerdown feature by setting the TR12.AHD bit (bit 6) to ‘1’ and do not assert
STPCLK#.

2. Flush the caches before or upon entry into the AutoHALT or Stop Grant states. The flush will be
serviced immediately if in the AutoHALT state, while the flush will be serviced after the Stop Grant
state is exited.

3. Wake up the processor via an NMI or an R/S# prior to snooping the code cache three clocks before
the EADS# of the snoop. If the system generates either NMI or R/S# pins based on AHOLD the
processor will come out of the out of the low power state to service the Snoop. (This workaround
assumes that the minimum 2 clock space between AHOLD and EADS# is not being used.)

4. Use the HIT# indication from the processor to flush the cache if the processor is in the AutoHALT
Powerdown or Stop Grant state. The 75-, 90-, and 100-MHz Pentium processors asserts the HIT# pin
when a snoop has caused a hit in the code cache. With this Workaround, it is necessary for the
system to externally track the status of the cache line in the processor. (i.e., if the processor is in
AutoHALT Powerdown or Stop Grant state and the INV pin was active during the snoop, then if the
HIT# is returned active, assert FLUSH#.)

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.
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13. STPCLK# Assertion During Execution of the HALT Instruction
Hangs System

PROBLEM:  If STPCLK# is asserted during the execution of the HALT instruction the processor will enter the
Stop Grant mode without driving a Stop Grant bus cycle on to the bus. There is a 14 clock window around
the ADS# for the HALT special cycle that this erratum occurs. (see figure) This erratum happens even
when the AutoHALT power down feature is disabled. There are 3 scenarios for the symptom of this
problem, depending on the way the system gets out of HALT.

1. When using INTR, the Interrupt Acknowledge Cycle appears on the bus, but then no other cycles.
(The device has entered the Stop Grant state without issuing a Stop Grant special cycle.)

2. When using NMI or INIT, no bus cycles appear on the bus. (The device has hung up, the core has
started a bus cycle but the clocks to the core have been stopped)

3. When using SMI#, the SMIACT# is driven asserted, and the SMM state dump completes, and no other
cycles appear on the bus.

In addition when there is an event that brings the CPU out of HALT temporarily like FLUSH# or R/S#, if
STPCLK# is asserted as the processor re-enters the HALT state, the erratum will occur.

At this time the processor has entered the Stop Grant mode but the part should have generated a Stop
Grant special cycle prior to entry. If STPCLK# is deasserted for at least 1 clock, prior to the interrupt
assertion the processor will resume correct operation.

The following figure depicts the minimum window around the HALT special cycle ADS#:

CLK

ADS#

STPCLK

HALT Special

IMPLICATION:  If the processor enters the Stop Grant state without issuing a Stop Grant special cycle, the
state tracking machines of a chip set will be corrupted. A chip set will typically wait for the Stop Grant cycle
before deasserting the STPCLK# pin. This will cause a system to hang.

WORKAROUND:  Use one of the following:

• Do not use STPCLK# and disable the STPCLK# feature.

• If there is a way to deassert STPCLK# based on a timer tick, or the decode of the HALT special cycle
prior to the interrupt then the system will not hang.

• If STPCLK# is being generated via software control such as an I/O instruction, then correct STPCLK#
assertion can be guaranteed by using a code loop or string of no-ops that are equal to the latency of
the STPCLK# assertion. As long as this code does not contain the HALT instruction, there is no
possibility of this erratum occurring.
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For example:

MOV CX, STPCLK_Delay ;set the delay to the falling edge of STPCLK#.

OUT Stop_Clock_port, AX ;trigger STPCLK#

L1: NOP ;The loop delay should be at least equal to

;the hardware delay in asserting the STPCLK#

;signal.

LOOP L1

NOP ;Ten NOP instructions must follow the

   . ;assertion of STPCLK#.

   .

   .

NOP

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

14. NMI or INIT During HALT Within SMM May Cause Large
Amount of Bus Activity

PROBLEM:  If a HALT or REP (repeat string instruction) instruction is executed while the processor is in
System Management mode (SMM), and an NMI or INIT is asserted prior to interrupt initialization, the
processor may continuously re-execute the HALT, and generate the HALT special cycle, or it will perform
iterations of the REP instruction that was executed. Normally the processor would ignore NMI and INIT
while in SMM. However, NMI and INIT will be enabled inside of SMM if interrupts have been enabled and
then an INTR signal is recieved. Also, exceptions, when taken, enable NMI and INIT inside of SMM, but
this behavior is not part of the Intel Architecture.

IMPLICATION:  The processor may continuously run the same cycle on the bus until a non-masked interrupt
is detected. There are no other problems associated with the erratum, the component resumes correct
operation at this time. This impacts the "low power operation" that might have been expected with the use
of a HALT while in SMM.

WORKAROUND:  Use one of the following:

1. Do not use HALT while in SMM.

2. If the system must use HALT in SMM, the system is required to initialize interrupt vector tables prior to
use of any interrupts, doing so will ensure the error will not occur. The system must ensure that NMI
and INIT are not asserted while the processor is HALTed in System Management mode, prior to
interrupt vector initialization.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

15. RUNBIST Restrictions When Run through Boundary Scan
Circuitry

PROBLEM:  When the built in self test (Runbist) is run via the Boundary Scan circuitry a failing result is
shown on the device. This failing result appears even after initializing the RESET cell as described in
Chapter 11 of the Pentium® Processor Family Developer’s Manual.

IMPLICATION: If one of the workarounds listed is not implemented then the system cannot depend of the
result of this test as part of a Boundary Scan generated manufacturing test or power on test.
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WORKAROUND:  Use one of the following workarounds. Both of these workarounds rely on the initialization
of the RESET scan cell as stated in the Specification Clarifications section of this document.

1. Although not IEEE 1149.1 compatible, it has been found that if BRDY# is asserted low for every ADS#
the processor generates, the Runbist test completes correctly. If the system can return these BRDY#s
to the CPU then the BIST functionality can be utilized on the processor through Boundary Scan.

2. If RESET is held HIGH during the execution of the RUNBIST Boundary Scan instruction and the
subsequent 219 core clocks.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

16. FRC Mode Miscompare Due to Uninitialized Internal Register
PROBLEM:  There is a mismatch and a resulting IERR# assertion when running in FRC mode due to an
uninitialized internal register in the paging unit. The failure mechanism is due to uninitialized data being
driven on the upper 32-bits of the data bus while updating a page table entry on the lower 32-bits (upon
enabling paging).  The data bits that mismatch are not valid during that bus cycle (byte enables are
inactive), so the IERR# output is due to a spurious comparison.

IMPLICATION:  The FRC mode of the processor requires use of a workaround to initialize the paging unit if
addresses in the upper 32 bits are accessed.

WORKAROUND:  Initialize this internal register through software by performing a dummy page table lookup
on the upper 32 bits. (In a code segment with linear address bit 22 set to ‘1’, turn paging on and then turn it
off again immediately).

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

17. STPCLK# Restrictions During EWBE#
This erratum has been superseded by a specification change.

18. Multiple Allocations Into Branch Target Buffer
PROBLEM:  A specific sequence of code may cause the Pentium processor to erroneously allocate the
same branch into multiple ways of the Branch Target Buffer. These multiple entries may contain conflicting
branch predictions. If this occurs and the branch address is accessed for a branch prediction, an incorrect
entry may be written into the instruction cache, resulting in the possible execution of invalid or erroneous
opcodes and probable activation of the IERR# signal. The incorrect write is dependent on process and
circuit sensitivities which vary from one unit to the next.

The occurrence is extremely rare and is software dependent. A specific sequence of code is required to
create the condition. In addition, Branch Target Buffer taken/not taken predictions associated with this code
must proceed in a specific pattern.
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Sensitive code can be summarized as follows:  Any conditional jump (possibly paired with a previous
instruction), sequentially followed by a move to a segment register, with any jump or instruction pair
containing any jump at the target address (LBL_A below) of the first jump. An example follows:

JCXZ LBL_A
MOV ES, CX

.

.

.
LBL_A: CALL LBL_B

For this erratum to occur, there must also be a specific pattern of taken/not-taken in the conditional jump
(JCXZ), as well as a specific pattern of hit/miss in the segment descriptor cache for the segment register
load.

IMPLICATION:  When this erratum occurs, the processor may execute invalid or erroneous instructions and
may assert IERR#. Depending on software and system configuration, the user may see an application error
message or a system reset.

WORKAROUND:  Several workarounds are available:

1. Disable the Branch Target Buffer by setting the NBP bit (0) to ‘1’ in TR12. This results in
approximately 7 percent degradation in performance on the BAPCo benchmark suite, a measure of
typical system performance.

2. Use a software patch to avoid the sensitive sequence of instructions. The specific code sequence has
only been observed in Windows* 3.10 and 3.11.

3. Ensure that the descriptor tables reside in non-cacheable areas of memory.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

19. 100-MHz REP MOVS Speed Path
PROBLEM:  A speed path exists in the Pentium processor that may cause failures at the rated operating
frequency of the part. Under certain rare and specific conditions, the speed path can cause the REP MOVS
instruction to be misprocessed.

For this speed path to be exercised, the following conditions must be met:

1. The processor must be executing a REP MOVS instruction.

2. The source and destination operands must reside within the same cache line.

3. There must be a snoop coincident with the REP MOVS.

Because this is a speed path, its occurrence is dependent on temperature, voltage, and process variation
(differs from one unit to the next). Failures have only been observed when operating near the upper limit of
the temperature range and near the lower limit of the voltage range, and, then, only in a fraction of parts.

When this erratum occurs, the result is that an extra data item is copied during the REP MOVS. For
example, in following code sequence, the Dword in memory location 108h may be erroneously copied into
memory location 118h. When the error occurs, ESI will contain the value 10Ch rather than 108h and EDI
will contain 11Ch rather than 118h.
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MOV ECX, 2
MOV ESI, 100h
MOV EDI, 110h
REP MOVSD

The problem has been only observed in 100-MHz multi- or dual-processor machines with multi-threaded
software; there have been no observed failures in uniprocessor systems. Multi- and dual-processing
environments have higher processor utilization and more intense snoop activity than uniprocessor systems.

IMPLICATION:  When this erratum occurs, the software may malfunction. This erratum has only been
observed when running several instances of the WinBEZ* application on Windows NT* 3.1.

The failure may manifest itself in one of four ways:

1. A process window is dropped.

2. The screen locks with a red, vertical stripe.

3. The system hangs completely.

4. An application error message occurs.

WORKAROUND:  Intel has implemented a tighter test screen to preclude future instances of this speed path.
Operating the L1 cache in writethrough mode reduces the frequency of occurrence and provides additional
margin in the system design. For multiprocessor systems with dedicated caches, Intel’s TPC benchmark
testing indicates that operating the L1 cache in writethrough mode results in less than a 5 percent
performance impact. For shared-cache dual-processor systems, the performance impact is significantly
higher, and L1 cache writethrough operation is not recommended.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

20. Overflow Undetected on Some Numbers on FIST
PROBLEM:  On certain large positive input floating-point numbers, and only in two processor rounding
modes, the instructions FIST[P] m16int and FIST[P] m32int fail to process integer overflow. As a
consequence, the expected exception response for this situation is not correctly provided. Instead, a zero
is returned to memory as the result.

The problem occurs only when all of the following conditions are met:

1. The FIST[P] instruction is either a 16- or 32-bit operation; 64-bit operations are unaffected.

2. Either the ‘nearest’ or ‘up’ rounding modes are being used. Both ‘chop’ and ‘down’ rounding modes are
unaffected by this erratum.

3. The sign bit of the floating-point operand is positive.

4. The operand is one of a very limited number of operands. The table below lists the operands that are
affected. For an operand to be affected, it must have an exponent equal to the value listed and a
significand with the most significant bits equal to ‘1’. Additionally in the ‘up’ rounding mode, at least
one of the remaining lower bits of the significand must be ‘1’. The Exponent and the two Significand
columns describe the affected operands exactly, while the values in the column titled ‘Approximate
Affected Range’ are only for clarity.
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FIST[P]
Operation

Rounding
Mode

Unbiased
Exponent

Upper Bits of
Significand

Lower Bits of
Significand

Approximate
Affected Range

16 bit Up 15 16 MSB’s = ‘1’ At least one ‘1’ 65,535.50 ± 0.50

Nearest 15 17 MSB’s = ‘1’ don’t care 65,535.75 ± 0.25

32 bit Up 31 32 MSB’s = ‘1’ At least one ‘1’ 4,294,967,295.50 ± 0.50

Nearest 31 33 MSB’s = ‘1’ don’t care 4,294,967,295.75 ± 0.25

64 bit Problem does not occur

Actual VS. Expected Response

Actual Response

When the flaw is encountered, the processor provides the following response:

• A zero is returned as a result. This result gets stored to memory.

• The IE (Invalid Operation) bit in the FPU status word is not set to flag the overflow.

• The C1 (roundup) and PE bits in the FPU status word may be incorrectly updated.

• No event handler is ever invoked.

Expected Response

The expected processor response when the invalid operation exception is masked is:

• Return a value 10000....0000 to memory. Set the IE bit in the FPU status word.

• The IE (Invalid Operation) bit in the FPU status word is not set to flag the overflow.

The expected processor response when the invalid operation exception is unmasked is:

• Do not return a result to memory. Keep the original operand intact on the stack.

• Set the IE bit in the FPU status word.

• Appropriately vector to the user numeric exception handler.

IMPLICATION:  An unexpected result is returned when an overflow condition occurs without being processed
or flagged. Integer overflow occurs rarely in applications. If overflow does occur, the likelihood of the
operand being in the range of affected numbers is even more rare. The range of numbers affected by this
erratum is outside that which can be converted to an integer value. The figure below and corresponding
table detail the normal range of numbers (between A and B) and the range affected by this erratum
(between C and D):
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16-bit Operation A B C D

Round Nearest [-32,768.5] (+32,767.5) [+65,535.5] (+65,536.0)

Round Up (-32,769.0) [+32,767.0] (+65,535.0) (+65,536.0)

32-bit Operation A B C D

Round Nearest [-2,147,483,648.5] (+2,147,483,647.5) [+4,294,967,295.5] (+4,294,967,296.0)

Round Up (-2,147,483,649.0) [+2,147,483,647.0] (+4,294,967,295.0) (+4,294,967,296.0)

NOTE:

[xxx.x] indicates the endpoint is included in the interval; (xxx.x) indicates the endpoint is not included in the
interval.

Furthermore, given that the problem cannot occur in the ‘chop’ rounding mode, and given that the ‘chop’
rounding mode is the standard rounding mode in ANSI-C and ANSI-FORTRAN 77, it is unlikely that this
condition will occur in most applications.

This erratum is not believed to affect application programs in general. Applications will need to handle
exceptional behavior and take the appropriate actions to recover from exceptions. In order to do this
applications will need to do either range checking prior to conversion or implement explicit exception
handling. If an application relies on explicit exception handling the possibility of an error exists. It is,
however, believed that applications written in languages that support exception handling will most likely do
range checking, thereby allowing the application to be compiled with a no check option for performance
reasons when the application has been debugged.

WORKAROUND:  Any of three software workarounds will completely avoid occurrence of this erratum:

1. Range checking performed prior to execution of the FIST[P] instruction will avoid the overflow
condition from occurring, and is likely to already be implemented.

2. Use the ‘chop’ or ‘down’ rounding modes. This erratum will never occur in these modes. By default,
both ANSI-C and FORTRAN will use the ‘chop’ mode.

3. Use the FRNDINT (Round floating-point value to integer) instruction immediately preceding FIST[P].
FRNDINT will always round the value correctly.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

21. Six Operands Result in Unexpected FIST Operation
PROBLEM:  For six possible operands and only in two processor rounding modes (up, down), the FIST or
FISTP (floating-point to integer conversion and store) instructions return unexpected results to memory.
Additionally, incorrect status information is returned under certain conditions in all 4 rounding modes.

The flaw occurs only on certain operands on the instructions FIST[P] m16int, FIST[P] m32int, and FIST[P]
m64int. These operands are ±0.0625, ±0.125, and ±0.1875.

The following table details the conditions for the flaw and the results returned. For use of any of the six
above-listed operands, refer to the left-hand side of the table in the column for a given combination of sign
and rounding mode. The corresponding right-hand side of the table shows the results which will occur for
the given conditions. These results include the C1 (Condition Code 1) and PE (Precision Exception) bits
and, in two instances, storing of unexpected results.
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Status Bits

Operand
(any one of) Rounding Mode

Result
Expected / Actual

PE
Expected / Actual

C1
Expected / Actual

+0.0625 nearest SAME 1 / Unchanged SAME

+0.1250 chop SAME 1 / Unchanged SAME

+0.1875 down SAME 1 / Unchanged SAME

up 0001 / 0000 1 / Unchanged 1 / 0

−0.0625 nearest SAME 1 / Unchanged SAME

−0.1250 chop SAME 1 / Unchanged SAME

−0.1875 down - 0001 / 0000 1 / Unchanged 1 / 0

up SAME 1 / Unchanged SAME

IMPLICATION:  An incor rect result (0 instead of +1 or -1) is returned to memory for the six previously listed
operands. Incorrect results are returned to memory only when in the ‘up’ rounding mode with a positive sign
or in the ‘down’ rounding mode with a negative sign. The majority of applications will be unaffected by this
erratum since the standard rounding mode in ANSI-C and ANSI-FORTRAN 77 is ‘chop’, while BASIC and
the ISO PASCAL intrinsic ROUND function use ‘nearest’ rounding mode. In addition, ‘nearest’ is also the
default rounding mode in the processor.

Incorrect status information is also insignificant to most applications. Given that the PE bit in the numeric
status register is ‘sticky’, and that most floating-point instructions will set this bit, PE will most likely have
already been set to ‘1’ before execution of the FIST[P] instruction and therefore the PE bit will not be seen
to be incorrect. In addition, the unexpected values for the C1 bit are unlikely to be significant for most
applications since the only usage of this information is in exception handling.

WORKAROUND:  Either of two software workarounds will completely avoid this erratum.

1. Use the FRNDINT (Round floating-point value to integer) instruction immediately preceding FIST[P].
FRNDINT will always round the value correctly.

2. Use of ‘nearest’ or ‘chop’ modes will always avoid any incorrect result being stored (although the PE
bit may have incorrect values).

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

22. Snoop With Table-Walk Violation May Not Invalidate Snooped
Line

PROBLEM:  If an internal snoop (as a result of ADS#) or external snoop (EADS#) with invalidation (INV)
occurs coincident with a page table walk violation, the snoop may fail to invalidate the entry in the
instruction cache. A page table walk violation occurs when the processor speculatively prefetches across a
page boundary and this page is not accessible or not present. This violation results in a page fault if this
code is executed. A page fault does not occur if the code is not executed.

For this erratum to occur, all the following conditions must be met:

1. A snoop with invalidation is run in the code cache. The snoop may be internal or external.
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2. The Pentium processor is performing a page table walk to service an instruction TLB miss. The page
table walk results in a violation (this may or may not lead to a page or other fault due to a speculative
fetch).

3. The page table walk results in a violation (this may or may not lead to a page or other fault due to a
speculative fetch).

4. The EADS# of the external snoop or ADS# of the table update occur within the window of failure.

The window is defined by:

a. 1-3 clocks after BRDY# is returned for the page directory or table read.

b. 2-n clocks after BRDY# is returned for the page directory or table read if the set address of a
buffered write matches that of the instruction cache lookup. “n” is determined by the time to
complete two new data write bus cycles from the data cache.

IMPLICATION:  This erratum has not been observed on any system. It was found only through investigation
of component schematics, and Intel has only duplicated it on a proprietary test system by forcing failure
conditions using the internal test registers. Its low frequency of occurrence is due to the way most systems
operate; DMA devices snoop code 4 bytes at a time so that each line will get snooped and invalidated
multiple times.

If this erratum occurs and a line is not invalidated in the instruction cache, then the instruction cache may
have a coherency problem. As a result the processor may execute incorrect instructions leading to a GPF
or an application error. This erratum affects only self Modifying code and bus masters/DMA devices. Due to
necessary conditions, this erratum is expected to have an extremely low frequency of occurrence.

WORKAROUND:  There are two workarounds. Because of the rarity of occurrence of this erratum, many
OEMs may choose not to implement either workaround.

1. Rewrite the device driver for the DMA devices such that after DMA is complete, the instruction cache
is invalidated using the TR5.cntl=11 (flush) and CD=0 (code cache) bits.

2. Disable the L1 cache.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

23. Slight Precision Loss for Floating-point Divides on Specific
Operand Pairs

PROBLEM:  For certain input datum the divide, remaindering, tangent and arctangent floating-point
instructions produce results with reduced precision.

The odds of encountering the erratum are highly dependent upon the input data. Statistical characterization
yields a probability that about one in nine billion randomly fed operand pairs on the divide instruction will
produce results with reduced precision. The statistical fraction of the total input number space prone to
failure is 1.14x10-10.  The degree of inaccuracy of the result delivered depends upon the input data and
upon the instruction involved. On the divide, tangent, and arctangent instructions, the worst-case
inaccuracy occurs in the 13th significant binary digit (4th decimal digit). On the remainder instruction, the
entire result could be imprecise.

This flaw can occur in all three precision modes (single, double, extended), and is independent of rounding
mode. This flaw requires the binary divisor to have any of the following bit patterns (1.0001, 1.0100,
1.0111, 1.1010 or 1.1101) as the most significant bits, followed by at least six binary ones. This condition is
necessary but not sufficient for the flaw to occur. The instructions that are affected by this erratum are:
FDIV, FDIVP, FDIVR, FDIVRP, FIDIV, FIDIVR, FPREM, FPREM1, FPTAN, FPATAN.

During execution, these instructions use a hardware divider that employs the SRT (Sweeney-Robertson-
Tocher) algorithm which relies upon a quotient prediction PLA. Five PLA entries were omitted. As a result
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of the omission, a divisor/remainder pair that hits one of these missing entries during the lookup phase of
the SRT division algorithm will incorrectly predict a intermediate quotient digit value. Subsequently, the
iterative algorithm will return a quotient result with reduced precision.

The flaw will not  occur when a floating-point divide is used to calculate the reciprocal of the input operand
in single precision mode, nor will it occur on integer operand pairs that have a value of less than 100,000.

IMPLICATION:  For certain input datum, there will be a loss in precision of the result that is produced. The
loss in precision can occur between the 13th and 64th significant binary digit in extended precision. On the
remainder instruction the entire result could be imprecise.

The occurrence of the anomaly depends upon all of the following:

1. The rate of use of the specific FP instructions in the Pentium processor.

2. The data fed to them. The way in which the results are propagated for further computation by the
application.

3. The way in which the results are propagated for further computation by the application.

4. The way in which the final result of the application is interpreted.

Because of the low probability of the occurrence with respect to the input data (one in nine billion random
operand pairs), this anomaly is of low significance to users unless they exercise the CPU with a very large
number of divides and/or remainder instructions per day, or unless the data fed to the divisor is abnormally
high in sensitive bit patterns.

WORKAROUND:  Due to the extreme rarity of this flaw, a workaround is not necessary for almost all users.
However, Intel is replacing components for end users and OEM’s upon request. In addition, a software
patch is available for compiler developers. If you are a compiler developer, contact your local Intel
representative to obtain this, or download from the World Wide Web Intel support server (www.intel.com).

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

A white paper, Statistical Analysis of Floating-point Flaw in the Pentium Processor,  (Order Number
242481), is available that includes a complete analysis performed by Intel.

24. FLUSH#, INIT or Machine Check Dropped Due to Floating-
point Exception

PROBLEM:  HARDWARE FLUSH and INIT requests and Machine Check exceptions may be dropped if they
occur coincidentally with a floating-point exception.

The following conditions are necessary for this erratum to occur:

1. Two floating-point instructions are paired and immediately followed by an integer instruction.

2. The floating-point instruction in the u-pipe causes a floating-point exception.

3. The FLUSH, INIT, or Machine Check occurs internally on the same clock as the integer instruction.

IMPLICATION:  The processor caches will not be flushed, or the INIT request may be dropped.

WORKAROUND:  None identified at this time.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.
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25. Floating-point Operations May Clear Alignment Check Bit
PROBLEM:  The Alignment Check bit (bit 18 in the EFLAGS register) may be inadvertently cleared.

This erratum occurs if a fault occurs during execution of the FNSAVE instruction. After servicing the fault
and resuming and completing the FNSAVE, the AC bit will be ‘0’. Expected operation is that the contents of
AC are unchanged.

IMPLICATION:  The only known use being made of the AC bit, at this time, is to aid code developers in
aligning data structures for performance optimizations. As a result, there are no hardware or system
application implications known to Intel at this time. Operating systems and applications will not be affected
by this erratum.

WORKAROUND:  None identified at this time.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

26. CMPXCHG8B Across Page Boundary May Cause Invalid
Opcode Exception

PROBLEM:  Use of the new Pentium processor specific CMPXCHG8B instruction may result in an invalid
opcode exception.

If the CMPXCHG8B opcode crosses a page boundary such that the first two bytes are located in a page
which is present in physical memory and the remaining bytes are located in a non-present page,
unexpected program execution results. In this case, the processor generates an Invalid Opcode exception
and passes control to exception handler number 6. Normal execution would be for a Page Fault to occur
when the non-present page access is attempted, followed by reading in of the requested page from a
storage device and completion of the CMPXCHG8B instruction.

IMPLICATION:  This erratum only affects existing software which is Pentium processor aware and uses the
CMPXCHG8B instruction. Any occurrence would generate an invalid opcode exception and pass control to
exception handler 6.

WORKAROUND:  Any software which uses Pentium processor specific instructions should ensure that the
CMPXCHG8B opcode does not cross a page boundary.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

27. Single Step Debug Exception Breaks Out of HALT
PROBLEM:  When Single Stepping is enabled (i.e. the TF flag is set) and the HLT instruction is executed the
processor does not stay in the HALT state as it should. Instead, it exits the HALT state and immediately
begins servicing the Single Step exception.

IMPLICATION:  The behavior described above is identical to Intel486 CPU behavior.

WORKAROUND:  None identified at this time.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.
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28. Branch Trace Message Corruption
PROBLEM:  When performing execution tracing (in normal or fast mode), the linear address of the
instruction causing the taken branch is sent to the bus as part of a branch trace message.  In a tight loop of
code, the reported linear address of the instruction causing the taken branch may be corrupted in some
branch trace messages.  If the first branch trace message completes on the bus before the second one is
posted, the problem will be avoided. Note that this erratum applies to normal mode for processor steppings
prior to C2 and to fast mode on all processor steppings.

IMPLICATIONS:  This erratum only affects execution tracing, a specialized feature allowing external hardware
to track the flow of instructions as they execute in the processor.  Regular operation of the processor is not
affected.

WORKAROUND:  Use normal trace mode for processor steppings C2 and later since these steppings are not
affected by this erratum in normal mode.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

29. FRC Lock Step Failure During APIC Write
PROBLEM:  During FRC, the APIC write cycle is not driven on the external bus.  When the internal APIC
write data is compared with data on the external bus, the checker processor sees a comparison error and
asserts IERR#.

IMPLICATIONS:  This erratum only affects operation during FRC mode and will cause inadvertent IERR#’s to
occur.

WORKAROUND:  Ignore IERR# when doing APIC write cycles.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

30. BE4#-BE0# Sampled Incorrectly at Min Vih
PROBLEM:  Due to strong internal pull down resistors on BE4#-BE0#, these pins are pulled low upon
RESET high.  A minimum input high voltage may be read into these pins incorrectly.

IMPLICATION:  An input high voltage could be sampled as a “0”, for instance, during APIC identification or
boundary scan.  This violates IEEE spec 1149.1 which states that regardless of the state of RESET in the
boundary scan mode, the value driven should be that in the boundary scan cell.

WORKAROUND:  To ensure a logical “1” is read, drive a minimum Input High Voltage (Vih) of 3.0V @6mA
into these pins.

Otherwise, if testing boundary scan in a system environment which does not meet the above criteria, these
pins can be left untested by marking these pins as "INTERNAL" in the BSDL file.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

31. Incorrect PCHK# Output During Boundary Scan if in DP Mode
PROBLEM:  In a DP system, weak output drivers are enabled at PCHK# during the falling edge of RESET
when APICEN and DPEN# are enabled on the primary processor, (and CPUTYP tied to Vss).  For the dual
processor the weak driver at PCHK# is enabled whenever APICEN is enabled, (and CPUTYP tied to VCC).
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The weak driver at PCHK# will drive a “1” with a long rise time, exceeding the specification for PCHK# max
valid delay.

IMPLICATION:  A weak “1” driven by PCHK# could be sampled as “0” during boundary scan testing. The
maximum frequency of TCK may have to be decreased.  This violates IEEE spec 1149.1 which states that
regardless of the state of APICEN, DPEN#, CPUTYP or RESET in the boundary scan mode, the value
driven should be that in the boundary scan cell.

WORKAROUND:  To ensure a “1” is driven during boundary scan test, from the falling edge of TCK wait at
least 55 nS before sampling PCHK#.  The board’s capacitve load is estimated at 40pf.  Please refer to
Pentium Processor Family Developer’s Manual Section 5.1.48 which specifies Ro=360 Ohms for the
PCHK# weak driver.

Otherwise, if testing boundary scan in a system environment which does not meet the above criteria, these
pins can be left untested by marking these pins as "INTERNAL" in the BSDL file.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

32. EIP Altered After Specific FP Operations Followed by MOV
Sreg, Reg

PROBLEM: A specific sequence of code may cause corruption of the EIP.  This specific code sequence
must contain all of the following characteristics:

1. Three consecutive FP instructions

2. The third FP instruction must be immediately followed by a MOV Sreg, Reg instruction. (Sreg means
one of  the 6 segment registers. Note that all   other   ways of changing an Sreg, such as “POP Sreg”,
“MOV Sreg, Mem”, LES, LDS, LSS etc., and far JMPs, CALLs & RETs etc., will not  cause this
problem.)

3. The descriptor selected by the MOV Sreg, Reg must not be available in the on-chip cache of the most
recently used descriptors.

4. In addition, there are specific restrictions on each of the 3 consecutive FP instructions:

5. The first instruction in the sequence must be an FP instruction which can be paired with FXCH (FADD,
FSUB, FMUL, FDIV, FLD, FCOM, FUCOM, FCHS, FTST & FABS.)

6. The second FP instruction must be FXCH, since it’s the only FP instruction that can go down the v-
pipe (a pair of FP instructions must run together in u and v to allow this problem to occur).

7. The last (third) FP instruction must cause the CPU to test for an unsafe condition. Instructions that
compare 2 numbers, and adjust FP flags as the result (FCOM(P), FICOM(P), FUCOM(P) & FTEST)
are the usual sources of this test, but only with certain arguments (e.g. NANs and infinities). (In rare
situations, FDIV (with a denominator of zero) and FSQRT (negative argument) will cause an unsafe
condition test.)

Example: FADD ; is able to go into the u pipe & pair with FXCH in the v pipe
FXCH ; must be in the v pipe for this problem to occur
FCOMP ; can cause test for an unsafe condition
MOV Sreg, Reg ; selected descriptor must be a “miss’ in the segment descriptor cache

IMPLICATION:  If this erratum occurs, an erroneous value is written into the EIP (instruction pointer), causing
unpredictable results.  This will most frequently result in an invalid opcode exception.

Intel knows of no existing application or OS code which involves this sequence.  First, FXCH is rarely used
just before a compare type instruction. Usually a calculation would be done just before compare which
would set up one of the numbers to be compared at the FP stack top. Further, to make use of the compare,
the FP flags must first be stored in a location where they can be tested, or loaded into EFLAGS for testing,
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so the next instruction is typically FSTSW, not an Sreg load. Also, Sreg loads are typically not done by
application code in a 32-bit environment.

WORKAROUND:  Move any instruction between the compare and the Sreg load, such as FSTSW. Even NOP
will work.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

33. WRMSR Into Illegal MSR Does Not Generate GP Fault
PROBLEM:  The WRMSR and RDMSR instructions allow writing and reading of special MSRs (Model
Specific Registers) based on the index number placed in ECX. The architecture was specified to reject
access to illegal MSRs by generating the fault GP(0) if WRMSR or RDMSR is executed with an illegal
index. However, negative indices, all of which are illegal, do not trigger GP(0).

IMPLICATION:  If RDMSR is used with negative indices, undefined values will be read into EAX. If  WRMSR
is used with negative indices, undefined processor behavior may result.

WORKAROUND:  Do not use illegal indices with WRMSR and RDMSR.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

34. Inconsistent Data Cache State From Concurrent Snoop and
Memory Write

PROBLEM:  This is a generalization of the Dual Processing specific erratum  5DP. Although this erratum has
not been verified in a real Pentium processor-based system without using the DP mode, detailed analysis
with the simulation model indicates that it is possible for the erratum  to occur as described here. The
possible occurrence requires the following conditions:

1. The processor begins a WRITE cycle to a writeback (WB) line in its L1 cache that  is in the (S)
(shared) state.

2. A non-invalidating snoop using AHOLD/EADS# is generated by another bus master by reading the
same cache line before the completion of the WRITE.

3. There is at least one more cache in the system that holds a copy of the cache line.

When the snoop occurs during this window, the snoop is mishandled and the cache line will transition to
the exclusive (E) state instead of the shared (S) state.  An additional write to the same cache line by the
processor will cause a cache state transition from (E) to modified (M) and will not generate a bus cycle.
Since a bus cycle is not generated, other caching agents in the system that hold the cache line in the
shared (S) state will not be updated and will contain stale data.

This erratum occurs because the sequence of cycles completed inside the processor is different from the
sequence of cycles started on the bus, which  is a memory write by the processor followed by a snoop on
the same address. Inside the processor, the snoop occurs, and then the memory write completes. This can
only happen if the snoop occurs in a window between the ADS# assertion by the processor for its WRITE
cycle, and up to 2 CPU clocks after the system assertion of BRDY# at the end of the WRITE cycle.

This erratum can only occur if  AHOLD/EADS# is used for snoops; if HOLD or BOFF# are used to force a
snoop before the processor WRITE is completed, it will be restarted after the snoop and handled correctly.
In addition, this erratum cannot occur on memory updates where the LOCK# signal is asserted.

IMPLICATION:  The processor’s L1 cache may become incoherent with an external cache.  A memory read
cycle by an external bus master could read stale data.
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WORKAROUND:  Designs which do not snoop under AHOLD are not affected.  Uniprocessor systems using
a lookaside L2 cache, such as those built with either the 82430NX or 82430FX PCIsets, are not affected
because a read by an external bus master will always snoop the L1 as well as L2.  Intel knows of no
uniprocessor implementation which is subject to this erratum.  While this erratum is more likely to occur in a
multi-processing environment, Intel is not aware of any designs which have demonstrated a susceptibility
to this issue.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

35. BE3#-BE0# Not Driven During Boundary Scan if RESET High
PROBLEM:  During boundary scan, BE3#-BE0# are always tristated when RESET is high regardless of the
value in the control cell.  If RESET is low the proper value will be driven.

IMPLICATION:  When RESET is high stong pull downs are enabled, and the value of “0” will always appear
at the BE3#-BE0# pins.  This violates IEEE spec 1149.1 which states that regardless of RESET in the
boundary scan mode, the value driven should be that in the boundary scan cell.

WORKAROUND:  If testing boundary scan in a system environment, these pins can be left untested by
marking these pins as "INTERNAL" in the BSDL file.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

36. Incorrect FIP After RESET
PROBLEM:  After a RESET, the floating point instruction pointer (FIP) should be initialized to 00000000h.
The FIP will instead retain the value it contained prior to the RESET.  The FIP gets updated whenever the
processor decodes a floating point instruction other than an administrative floating point instruction
(FCLEX, FLDCW, FSTCW, FSTSW, FSTSWAX, FSTENV, FLDENV, FSAVE, FRSTOR and FWAIT).  If an
FSAVE or FSTENV is executed after a RESET and before any non-administrative floating point instruction
caused the FIP to be updated, the old value contained in the FIP will be saved.   If a non-administrative
floating point instruction is the first floating point instruction executed after RESET, the old value in the FIP
will be overwritten and any successive FSAVE of FSTENV will save the correct value.

The FIP is used by software exception handlers to determine which floating point instruction caused the
exception.  The only instructions that can cause an exception are non-administrative floating point
instructions, so a non-administrative floating point instruction is usually executed before an FSAVE or
FSTENV.

IMPLICATION:  If an FSAVE or FSTENV is executed after a RESET and before any non-administrative
floating point instruction,  the incorrect FIP will be saved.

WORKAROUND:  If an FSAVE or FSTENV is executed after a RESET and before a non-administrative
floating point instruction is executed, perform an FINIT instruction after RESET as recommended in the
Intel Architecture Software Developer’s Manual, Volume 3, Section 8.2.  This will set the FIP to 00000000h.
Otherwise, no workaround is required.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

37. Second Assertion of FLUSH# Not Ignored
PROBLEM:  If FLUSH# is asserted while the processor is servicing an existing flush request, a second flush
operation will follow after the first one completes.  Proper operation is for a second assertion of FLUSH# to
be ignored between the time the first FLUSH# is asserted and completion of its Flush Acknowledge cycle.
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IMPLICATION:  A system that asserts FLUSH# during a flush that's already in progress will flush the cache a
second time.  Flushing the cache again is not necessary and results in a slight performance degradation.

WORKAROUND:  For best performance, the system hardware should not assert any subsequent FLUSH#
while a flush is already being serviced.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

38. Segment Limit Violation by FPU Operand May Corrupt FPU
State

PROBLEM:  On the Intel486, 80386 and earlier processors, if the operand of the FSTENV/FLDENV
instructions, or the FSAVE/FRSTOR instructions, exceeds a segment limit during execution, the resulting
General Protection fault blocks completion of the instruction. (Actually, interrupt #9 is generated in the
80386 and earlier.) This leaves the FPU state itself (with FLDENV, FRSTOR) or its image in memory (with
FSTENV, FSAVE) partly updated, thus corrupted, and the instruction generally is non-restartable. It is
stated in the Intel Architecture Software Developer’s Manual, Volume 3, Chapter 17 that the Pentium
processor fixes this problem by starting these instructions with a test read of the first and last bytes of the
operand. Thus if there is a segment limit violation, it is triggered before the actual data transfer begins, so
partial updates cannot occur.

This improvement works as intended in the large majority of segment limit violations. There is however a
special case in which the beginning and end of the FPU operand are within the segment, so the endpoints
pass the initial test, but  part of the operand exceeds the segment limit. Thus part way through the data
transfer, the limit is violated, the GP fault occurs, and thus the FPU state is corrupted. Note that this is a
subset of the cases which will cause the same problem with Intel486 and earlier CPUs, so any code that
executes correctly on those CPUs will run correctly on the Pentium processor.

This erratum will happen when both the segment limit and a 16 or 32 bit addressing wrap around boundary
falls within the range of the FPU operand, with the segment limit below the wrap boundary. (To use a 16 bit
wrap boundary of course, one must be executing code using 16 bit addressing.) The upper endpoint of  the
FPU operand wraps to near the bottom of the segment, so it passes the initial test. But part way through
the data transfer the CPU tries to access memory above the segment limit but below the wrap boundary,
causing the GP fault with the FPU state partly copied.  This erratum can also happen if the segment limit is
at or above a 16 bit addressing wrap boundary, with both straddled by an FPU operand that is not aligned
on an 8 byte boundary.   Test of the upper endpoint wraps and thus passes. But when the instruction is
actually transferring data, the misalignment forces the CPU to calculate extra addresses for special bus
cycles. This special address calculation does not support the 16 bit wrap, so the GP fault is triggered when
the segment limit is crossed.

Note that the Intel Architecture Software Developer’s Manual, Volume 3, Chapter 17 warns in general that
the Pentium processor may store only part of operands which generate a memory fault by crossing either a
segment or page limit. This erratum is just one case of that general problem, and all cases will be avoided
by following the recommended programming practice of never straddling segment or page boundaries with
operands. Note also that the handling of operands which straddle such boundaries is processor specific, so
code which uses such straddling will behave differently when run on different Intel Architecture processors.

IMPLICATION:  This erratum can corrupt that state of the FPU and will cause a GP fault. This generally will
require that the task using the FPU be restarted, but it will not cause unflagged errors in results. Code
written following Intel recommendations, and any code which runs on the Intel486 (or earlier) CPUs, will not
cause this erratum. The case where the Pentium processor will experience this erratum is a small subset of
the cases in which the Intel486 (and earlier) CPUs will be corrupted.

WORKAROUNDS:

1. Do not use code in which FPU operands wrap around the top of their segments.
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2. If one must use FPU operands which wrap at the top of their segments, make sure that they are
aligned on an 8 byte boundary, and  that the segment limit is not below the 16 or 32 bit wrap boundary.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

39. FP Exception Inside SMM with Pending NMI Hangs System
PROBLEM:  If a previous FPU instruction has caused an unmasked exception, and an FP instruction is
executed inside SMM with an NMI pending, the system will hang unless the system is both DOS
compatible (CR0.NE=0), and external interrupts are enabled.

IMPLICATION: For standard PC-AT systems, NMI is typically used (if at all) to indicate a parity error, and the
response required is a system reset, to preserve data integrity. So this erratum will only occur when the
system has already suffered a parity error; the effect of the erratum is only to force reset inside SMM,
instead of after the RSM when the NMI would normally be serviced. In a system where NMI is not used for
an error that requires  shutdown, the workaround should be implemented.

A properly designed system should not experience a hang-up. In such a system the SMM BIOS checks for
pending interrupts before issuing an FSAVE or FRSTOR. If an interrupt is pending, the BIOS will exit SMM
to handle the interrupt. If an interrupt is not present, the BIOS will disable interrupts (for example, it will
disable NMI by writing to the chip set) and only then will issue the FP instruction.

WORKAROUND:   If FPU instructions are used in SMM, and NMI is used for other than an error that requires
shutdown, NMI should be blocked from outside the CPU during SMM.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

40. Current in Stop Clock State Exceeds Specification
PROBLEM:  During the stop clock mode, a portion of the internal processor circuitry may remain active. This
problematic circuitry is part of the boundary scan logic, and is not properly reset unless boundary scan is
run. The current drawn will result in a violation of the stop clock power dissipation specification.

IMPLICATION: The Pentium processor will draw more current than specified for the stop clock state.  The
specification for Stop Clock Power dissipation is 50mW.  Under the condition of the erratum, the power
consumption can reach 60-80mW, depending on the type of processor and core voltage.

WORKAROUND:  Use one of following:

1. Ground TCK or TRST#.  Note that this will NOT allow boundary scan to be run.

2. Ground TCK or TRST# through a 1K Ohm resistor.  This will allow a normal boundary scan to be
performed if desired.

For power sensitive designs, please observe that as both TCK and TRST# have an internal 30K Ohm pull-
up resistor, the workarounds will not result in any significant additional current draw.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

41. STPCLK# Buffer Samples Incorrectly During Boundary Scan
Testing

PROBLEM:  During boundary scan input testing, the boundary scan input path in the STPCLK# buffer is
disabled when RESET is high.
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IMPLICATION:. The boundary scan cell in the STPCLK# buffer captures a “1” from the STPCLK# pin
regardless of the actual data on that pin when RESET is high.  This violates the IEEE Specification 1149.1
which states that the value driven should always be that in the boundary scan cell regardless of the state of
RESET.  However, the buffer functions correctly when the EXTEST instruction is used.

WORKAROUND: If testing boundary scan in a system environment this pin can be left untested by marking
this pin as  “INTERNAL”  in the BSDL file.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

42. Incorrect Decode of Certain 0F Instructions
PROBLEM:  With a specific arrangement of instructions in memory and certain asynchronous events, the
processor may incorrectly decode certain 0F prefixed instructions.

In order for this erratum to occur there must be a very specific arrangement of instructions in memory. In
conjunction, these instructions must be resident in the cache and an asynchronous cache line replacement
must occur during execution of these instructions. The conditions for this erratum are as follows:

1. There is a 0F prefix instruction (other than 0F80-0F8F) which can begin in the range of the most
significant byte of the first cache line (1F) through the 0E byte of the second cache line, followed  by
the rest of the 0F prefixed instruction. (See cache lines 1 & 2 in Fig. 1; the 0F byte is at offset 1F in
line 1.)

2. The processor must execute a branch to the second half of the first cache line shown below (10 - 1F).

3. There is a replacement or invalidation of cache line 2 shown below. This replacement or invalidation
must complete in a narrow  window (3 or less CPU clocks) between the decode of the 0F byte from
the instruction queue, and the decode of the rest of the instruction.

4. The third consecutive cache line must contain the bit pattern 0F80 - 0F8F offset by 33 bytes from the
0F byte of the first instruction.  There must be a spacing of exactly 33 bytes between the first and
subsequent 0F bytes.

5. All 3 lines must already be resident in the instruction cache and must be from sequential linear
memory addresses.

This erratum can occur only if all of the above conditions are met.  After the first byte (0F) of the opcode is
decoded, but before the rest of the instruction can be decoded, the second cache line gets replaced or
invalidated.  While the processor is waiting for the line containing the second byte of the 0F opcode to be
read in again from memory, the 2 bytes offset by 33 bytes from the 0F byte of the stalled instruction are
temporarily presented to the instruction decoder.  Normally this data would be completely ignored, however
if the bit pattern is in the range of 0F80 - 0F8F, then the decode of the 0F byte of the stalled instruction is
discarded. (Note that this happens only with the 0F prefixed instructions.) When the cache line fill has
returned the missing line, the second byte of the stalled instruction is incorrectly interpreted as the start of
the instruction.

3 Consecutive L1 Cache Lines, Holding Consecutive Code

1F            10    0E       00    Byte offset within cache line

8X 0F N + 40h = Memory Addr. for code in Cache Line 3

0F................................. N + 20h = Memory Addr. for code in Cache Line 2

 0F N           = Memory Addr. for code in Cache Line 1

IMPLICATION:  When this erratum occurs, the processor will execute invalid or erroneous instructions.
Depending on software and system configuration, the user will typically see an application error message
or system reset.
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WORKAROUND:  There are currently no workaround identified for existing code.

This erratum may be eliminated in code that is being created or recompiled as follows: The compiler must
check for the occurrence of bytes 0F, not 8X, 31 other bytes, 0F and 8X.  When such an occurrence is
found, a NOP inserted or any other change in spacing will prevent the alignment required for this erratum to
occur.

A loader based workaround can also be implemented as follows:  At load time, scan the executable for the
existence of a 0F instruction (other than 0F8X), check the cache alignment of the 0F instruction and check
for the existence of a 0F8X bit pattern 33 bytes beyond the 0F byte of the first instruction.  If these
conditions are found, the page containing this code sequence can be marked as non-cacheable.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

43. Data Breakpoint Deviations
The following three problems are deviations from the data breakpoint specification when a fault occurs
during an FP instruction while the data breakpoint is waiting to be serviced. They all share the same
workaround. In the first case the breakpoint is serviced, incorrectly, before the actual data access that
should trigger it takes place; in the other cases the breakpoint is not serviced  when it should be.

PROBLEM A:  First , the debug registers must be set up so that any of the FP instructions which read from
memory  (except for FRSTOR, FNRSTOR, FLDENV and FNLDENV)  will trigger a data breakpoint upon
accessing its memory operand. Second , there must be an unmasked FP exception pending from a
previous FP instruction when the FP load or store instruction enters the execution stage. This so far would
cause, per specification, a branch to the FP exception handler. The data breakpoint would not be triggered
until/ unless the memory access is made after return from the exception handler. But if  third , either of the
external interrupts INTR or NMI is asserted after the FP instruction enters the execution stage, but before
the branch to the FP exception handler occurs, this erratum is generated. In this situation, the processor
should branch to the external interrupt handler, but instead it goes to the data breakpoint handler. This is
incorrect because the data access that should trigger the breakpoint has not occurred yet.

PROBLEM B: Interrupts are blocked for the instruction after a MOV or POP to SS (to allow a MOV or POP to
ESP to complete a stack switch before any interrupt). If the MOV or POP to SS triggers a data breakpoint,
it normally is serviced after the following instruction is executed. However, if the following instruction is a
FP instruction and  there is a pending FP error from a preceding FP instruction (even if the error is
masked), the delayed data breakpoint is forgotten.

PROBLEM C:  If the sequence of memory accesses during execution of FSAVE  or  FSTENV (or their
counterparts FNSAVE and FNSTENV) touches an enabled data breakpoint location, the data breakpoint
exception (interrupt 1) occurs at the end of the FP instruction. If however the sequence of memory
accesses cross a segment limit after touching the data breakpoint location, the General Protection (GP)
fault will occur. This erratum is that as the processor branches to the GP fault handler, the valid data
breakpoint is forgotten.

IMPLICATION:  This erratum will only be seen by software or hardware developers using the data breakpoint
feature of the debug registers. It can cause data breakpoints to be both lost, and asserted prematurely, as
long as the contributing FP and GP errors remain uncorrected.

WORKAROUND:  Use one of the following:

1. General solution: For problems A & B to occur, an FP error must be caused by a preceding FP
instruction, and in problem C, the FP operand causes a segment limit violation. These errors are all
indicated in the normal way, despite this erratum.  Eliminate them and this erratum disappears,
allowing the data breakpoint debugging to proceed normally. Since debugging is usually done in
successive stages, this workaround  is usually performed as part of the debugging process.

2. Problem A may also be handled by blocking NMI and INTR during debugging.
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STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

44. Event Monitor Counting Discrepancies
PROBLEM:  The Pentium processor contains two registers which can count the occurrence of specific
events used to measure and monitor various parameters which contribute to the performance of the
processor.  There are several conditions where the counters do not operate as specified.

In some cases it is possible for the same instruction to cause the “Breakpoint match” (event 100011,
100100, 100101 or 100110) event counter to be incremented multiple times for the same instruction.
Instructions which generate FP exceptions may be stalled and restarted several times causing the counter
to be incremented every time the instruction is restarted.  In addition, if FLUSH# or STPCLK# is asserted
during a matched breakpoint or if a data breakpoint is set on a POP SS instruction, the counter will be
incremented twice.  The counter will incorrectly not get incremented if the matched instruction generates an
exception and the exception handler does an IRET which sets the resume flag.  The counter will also not
get incremented for a data breakpoint match on a u-pipe instruction if the paired instruction in the v-pipe
generates an exception.

The “Hardware interrupts” (event 100111) event counter counts the number of taken  INTR and NMIs.  In
the event that both INTR/NMI and a higher priority interrupt are present on the same instruction boundary,
the higher priority interrupt correctly gets processed first.  However, the counter prematurely counts the
INTR/NMI as taken and the count incorrectly gets incremented.

The “Code breakpoint match” (event 100011, 100100, 100101 or 100110) event counter may also fail to be
incremented in some cases.  If there is a code breakpoint match on an instruction and there is also a
single-step or data breakpoint interrupt pending, the code breakpoint match counter will not be
incremented.

The “Non-cacheable memory reads” (event 0111110) event counter is defined to count non-cacheable
instruction or data memory read bus cycles.  Reads to I/O memory space are not supposed to be counted.
However, the counter incorrectly gets incremented for reads to I/O memory space.

The “Instructions executed” (event 010110) and “Instructions executed in the v-pipe” (event 010111) event
counters are both supposed to be incremented when any exception is recognized.  However, if the
instruction in the v-pipe generates an exception and a second exception occurs before execution of the first
instruction of the exception handler for the first exception, the counter incorrectly does not get incremented
for the first exception.

The “Stall on write to an E or M state line” (event 011011) event counter counts the number of clocks the
processor is stalled on a data memory write hit to an E or M state line in the internal data cache while either
the write buffers are not empty or EWBE# is not asserted.  However, it does not count stalls while the write
buffers are not empty, it only counts the number of clocks stalled while EWBE# is not asserted.

The “Code TLB miss” (event 001101) and “Data TLB miss” (event 000010) event counters incorrectly get
incremented twice if the instruction that misses the code TLB or the data that misses the data TLB also
causes an exception.

The “Data read miss” (event 000011) and “Data write miss” (event 000100) event counters incorrectly get
incremented twice if the access to the cache is misaligned.

The “Bank conflicts” (event 001010) event counter may be incremented more than once if a v-pipe access
takes more than 1 clock to execute.

The “Misaligned data memory or I/O References” (event 001011) incorrectly gets incremented twice if the
access was caused by a FST or FSTP instruction.

The “Pipeline flushes” (event 010101) event counter may incorrectly be incremented for some segment
descriptor loads and the VERR instruction.
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The “Pipeline stalled waiting for data memory read” (event 011010) event counter incorrectly counts a
misaligned access as 2 clocks instead of 3 clocks, unless it misses the TLB.

IMPLICATION: The event monitor counters report an inaccurate count for certain events.

WORKAROUND:  None identified at this time.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

45. VERR Type Instructions Causing Page Fault Task Switch with
T Bit Set May Corrupt CS:EIP

PROBLEM:  This erratum can only occur during debugging with the T bit set in the Page Fault Handler’s
TSS. It requires the following very specific sequence of events:

1. The descriptor read caused by a VERR type instruction must trigger a page fault. (These instructions
are VERR, VERW, LAR and LSL. They each use a selector to access the selected descriptor and
perform some checks on it.)

2. The OS must have the page fault handler set up as a separate task, so the page fault causes a task
switch.

3. The T bit in the page fault handler’s TSS must be set, which would normally cause a branch to the
interrupt 1 (debug exception) handler.

4. The interrupt 1 handler must be in a not present code segment.

The not present code segment should cause a branch to interrupt 11. However, because of this erratum,
execution begins at an invalid location selected by the CS from the page fault handler TSS but with the EIP
value pointing to the instruction just beyond the VERR type instruction.

IMPLICATION:   This erratum will only be seen by software or hardware developers setting the T bit in the
page fault handler’s TSS for debugging. It requires that the OS in use has the page fault handler set up as
a separate task, which is not done in any standard OS. Even when these conditions are met, the other
conditions will cause this erratum to occur only infrequently. When it does occur, the processor will execute
invalid or erroneous instructions.  Depending on software and system configuration, the developer will
typically see an application error message or system reset.

WORKAROUND:  If debugging a system in which the page fault handler is a separate task, use one of the
following:

1. Do not set the T bit in the page fault handler’s TSS.

2. Ensure that the code segment where the debug exception handler starts is always present in the
system memory during debugging.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

46. BUSCHK# Interrupt Has Wrong Priority
PROBLEM:  Section 2.7 of the Pentium® Processor Family Developer’s Manual lists the priorities of the
external interrupts, with BUSCHK# as the highest (if the BUSCHK# interrupt, AKA the machine check
exception, is enabled by setting the MCE bit in CR4), and INTR as the lowest. It is also specified that
STPCLK# is the very lowest priority external interrupt for those Pentium processors provided with it (all
CPUs with a core frequency of 75 MHz and above). Consistently with this specification, the CPU blocks all
other external interrupts once execution of the BUSCHK# exception handler begins.
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However this erratum can change the effective priority for a given assertion of BUSCHK# in the following
cases:

CASE 1: An additional external interrupt (except INTR) or a debug exception occurs during a narrow
window after the CPU begins to transfer control to the BUSCHK# handler, but before the first
instruction of the handler begins execution.

In this case, the other interrupt may be serviced before BUSCHK# is serviced. Thus for other interrupts that
occur during this narrow window, BUSCHK# is effectively treated as the next to lowest priority interrupt
instead of the highest.

CASE 2: The following conditions must all apply for this case to cause an erratum:

1. A machine check request (INT 18) is pending

2. A FLUSH# or SMI# request is pending

3. A single step or data breakpoint exception (INT 1) is pending

4. The IO_Restart feature is enabled (i.e. TR12 bit 9 is set)

Given the above set of conditions, the interrupt priority logic does not recognize the machine check
exception as the highest priority. The processor will not service the FLUSH#/SMI# nor the debug exception
(INT 1). Instead, it will generate an illegal opcode exception (INT 6).

IMPLICATION:  Most systems do not use BUSCHK# and thus are unaffected by this erratum. For those that
do use BUSCHK#, the pin allows the system to signal an unsuccessful completion of a bus cycle. This
would only occur in a defective system. (Since BUSCHK# is an “abort” type exception, it cannot be used to
handle a problem from which the OS intends to recover; BUSCHK# always requires a system reset.)

Due to this erratum, the BUSCHK# interrupt would either occasionally be displaced by another interrupt
(which incorrectly would be serviced first) or an unexpected illegal opcode exception (INT 6) would be
generated and the pending machine check would be skipped.

Depending on the system and also the severity of the defect, this delay of the BUSCHK# interrupt (case #1
above) could cause a system hang or reset before a bus cycle error message is displayed by the
BUSCHK# interrupt.  In case #2 above where an illegal opcode exception (INT 6) is generated instead of
the machine check exception, a properly architected INT 6 handler will usually require a reset since this
handler was erroneously entered without an illegal opcode.  But in any event, the normal outcome of a bus
cycle error is to require a system reset, so the practical result of this erratum is just the occasional loss of
the proper error message in a defective system.

Another problem can occur due to this erratum if the system is using the SMM I/O instruction restart
feature. This problem requires an improbable coincidence: the SMI# signal caused by an I/O restart event
must occur essentially simultaneously with BUSCHK#, such that the SMI# interrupt hits the narrow window
(as described above) just before the first instruction of the BUSCHK# handler begins execution. This could
happen if the same I/O instruction that triggers SMI# (usually to turn back on a device that’s been turned off
to save power) also generates a bus failure due to the system suddenly going defective, thus signaling
BUSCHK#. The result is that the SMI# interrupt is serviced after the EIP has already been switched to point
to the first instruction of the BUSCHK# handler, instead of the I/O instruction. The SMM code that services
the I/O restart feature may well use the image of EIP in the SMRAM state save memory to inspect the I/O
instruction, for example to determine what I/O address it’s trying to access. In this case, the I/O restart part
of SMM code will not find the correct instruction. If it is well written, it will execute RSM when it determines
there is no valid I/O access to service. Then execution returns to the BUSCHK# handler with no deleterious
impact. But less robust code might turn on the wrong I/O device, hang up, or begin executing from a
random location.

WORKAROUND:  Do not design a system which relies on BUSCHK# as the highest priority interrupt. If using
SMM, do not use BUSCHK# at all.

Note that Case 2 does not apply to B1, C1 or D1 steppings of the 60- and 66-MHz Pentium processors.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.
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47. BF and CPUTYP Buffers Sample Incorrectly During Boundary
Scan Testing

PROBLEM:  During boundary scan input testing, the boundary scan input paths in the BF0, BF1 and
CPUTYP buffers are disabled when RESET is low . (Note that this is different from the BSDL testing
problem with STPCLK#, documented as Erratum 41; STPCLK# is “stuck” when RESET is high .)

IMPLICATION: The boundary scan cells in the BF0, BF1 and CPUTYP buffers capture a “1” from their pins,
regardless of the actual data on the pins, when RESET is low. This violates the IEEE specification 1149.1
which states that the value captured should always be that on the pins regardless of the state of RESET.
However, the buffer functions correctly when the EXTEST instruction is used.

WORKAROUND:  If testing with boundary scan in a system environment these pins can be left untested by
marking them “INTERNAL” in the BSDL file.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

48. Matched But Disabled Data Breakpoint Can Be Lost By
STPCLK# Assertion

PROBLEM:  Assertion of STPCLK# can interfere with a feature described in the Intel Architecture Software
Developer’s Manual, Volume 3, Section 14.2.3: “The processor sets the DR6 B bits for all breakpoints
which match the conditions present at the time the debug exception is generated, whether or not they are
enabled.”  When the debug exception is generated, all breakpoints which match the conditions present at
that time are flagged by a bit set in a temporary register. If STPCLK# is asserted after this, but before
control is transferred to the debug exception handler (interrupt 1), a matched but disabled data breakpoint
may not be transferred from the temporary register. That is, as a result of the STPCLK# assertion,  the B
bit corresponding to that breakpoint may not get set in DR6.

IMPLICATION:  This feature (defining disabled breakpoints) can be used in debugging; e.g., one can set a
disabled data breakpoint on a memory location and then check the corresponding bit in DR6, to see if the
location has been accessed by the most recent (main code) instruction, any time one is in the debug
handler for some other reason. This erratum will sometimes cause this debug feature to fail to set its DR6
bit, when STPCLK# is also being used.

WORKAROUND:  Use one of the following:

1. Use only enabled data breakpoints when STPCLK# may be asserted.

2. Disable the assertion of STPCLK# while this debug feature is being used.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

49. STPCLK# Ignored In SMM When INIT or NMI Pending
PROBLEM:  If an INIT or NMI is pending while in SMM mode, and STPCLK# is asserted, the stop clock
interrupt is not serviced.  The correct operation is for the stop clock request to be serviced while in SMM,
regardless of pending NMI or INIT.

IMPLICATION:  The stop clock request is blocked until after the processor exits SMM and services the
pending NMI or INIT.  The processor then services the lower priority stop clock interrupt.

WORKAROUND:  None identified at this time.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.
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50. STPCLK# Pullup Not Engaged at RESET
PROBLEM:  The internal pullup on the STPCLK# pin may not pullup at power on if the pin is floating at a low
input level.

IMPLICATION:  If the STPCLK# pin is floating at a low input level and the pin is left unconnected at bootup,
the processor may inititiate the stop grant bus cycle in response to the STPCLK# request shortly after
completing the reset sequence.  This may result in a system hang.

WORKAROUND:  Use one of the following:

1. Always drive a valid logic level on STPCLK# (including during RESET).

2. Use an external pullup.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

51. A Fault Causing a Page Fault Can Cause an Instruction To
Execute Twice

PROBLEM:  When the processor encounters an exception while trying to begin the handler for a prior
exception, it should be able to handle the two serially (i.e. the second fault is handled and then the faulting
instruction is restarted, which causes the first fault again, whose handler now should begin properly); if not,
it signals the double-fault exception. A “contributory” exception followed by another contributory exception
causes the double-fault, but a contributory exception followed by a page fault are both handled. (See the
Intel Architecture Software Developer’s Manual, Volume 3, Section 5.12, Interrupt 8 for the list of
contributory exceptions and other details.) This erratum occurs under the following circumstances:

1. One of  these three contributory faults:  #12 (stack fault), #13 (General Protection), or #17 (alignment
check), is caused by an instruction in the v-pipe.

2. Then a page fault occurs before the first instruction of the contributory fault handler is fetched. (This
means that a page fault that occurs because the handler starts in a not present page will not cause
this erratum.)

The result is that execution correctly branches to the page fault handler, but an incorrect return address is
pushed on the stack: the address of the (immediately preceding) u-pipe instruction, instead of the v-pipe
instruction that caused the faults. This causes the u-pipe instruction to be executed an extra time, after the
page fault handler is finished.

IMPLICATION:  When this erratum occurs, an instruction will be (incorrectly) executed, effectively, twice in a
row. For many instructions (e.g. MOV, AND, OR) it will have no effect, but for some instructions it can
cause an incorrect answer (e.g. ADD would increase the destination by double the correct amount).
However, the page fault (during transfer to the handler for fault #12, #13 or #17) required for this erratum to
occur can happen in only three unusual cases:

1. If the alignment check fault handler is placed at privilege level 3, the push of the return address could
cause a page fault, thus causing this erratum. (Fault #17 can only be invoked from level 3, so it is legal
to have its handler at level 3. Fault 12 and 13 handlers must always be at  level 0 since they can be
invoked from level 0. The push of a return address on the level 0 stack must not cause a page fault,
because if the OS allowed that to happen, the push of return address for a regular page fault could
cause a second page fault, which causes a double-fault and crashes the OS.)

2. If the descriptor for the fault handler’s code segment (in either the GDT or the current LDT) is in a not
present page, a page fault occurs which causes this erratum.

3. If the OS has defined the fault handler as a separate task, and a page fault occurs while bringing in the
new LDT or initial segments, this erratum will occur.



E ERRATA AND S-SPECS FOR THE PENTIUM ® PROCESSOR FAMILY

A-65

12/18/96 4:53 PM    Appenda2.doc

INTEL CONFIDENTIAL
(until publication date)

WORKAROUND:  All of the following steps must be taken (but 2 & 3 are part of normal OS strategy, done in
order to optimize speed of access to key OS elements, and minimize chances for bugs):  1). If allowing the
alignment fault (#17), place its handler at level 0.  2). Do not allow any of the GDT or current LDT to be
“swapped out” during virtual memory management by paging.  3). Do not use a separate task for interrupts
12, 13 or 17.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

52. Machine Check Exception Pending, then HLT, Can Cause
Skipped or Incorrect  Instruction, or CPU Hang

PROBLEM:  This erratum can occur if a machine check exception is pending when the CPU encounters a
HLT instruction, or occurs while the CPU is in the HLT state.  (E.g. the BUSCHK# error could be caused by
executing the previous instruction, or by a code prefetch.) Before checking for pending interrupts, the HLT
instruction issues its special bus cycle, and sets an special internal flag to indicate that the CPU is in the
HLT state. The machine check exception (MCE) can then be detected, and if it is present the CPU
branches to the MCE handler, but without clearing the special HLT flag - the source of this erratum. As
when other interrupts break into HLT, the return address is that of the next instruction after HLT, so
execution continues there after return from the MCE handler.

Except for MCE (and some cases of the debug interrupt), interrupts clear the special HLT flag before
executing their handlers. The erratum that causes the MCE logic to not clear the HLT flag in this case can
have the following consequences:

1. If NMI, or INTR if enabled, occurs while the HLT flag is set, the CPU logic assumes the instruction
immediately following the interrupt is an HLT. So it places the address of the instruction after that on
the stack, which means that upon return from the interrupt, the instruction immediately following the
interrupt occurrence is skipped over.

2. If FLUSH # is asserted while the HLT flag is set, the CPU flushes the L1 cache and then returns to the
HLT state. If the CPU is extracted from the HLT state by NMI or INTR, as in 1), the CPU logic
assumes that the current CS:EIP points to an HLT instruction, and pushes the address of the next
instruction on the stack, so the instruction immediately following the FLUSH# assertion is skipped
over.

3. If RSM is executed while the HLT flag is set, again the CPU logic assumes that the CPU must have
been interrupted (by SMI, in this case) while in the HLT state. Normally, RSM would cause the CPU to
branch back to the instruction that was aborted when entering SMM. But in this case, the CPU
branches to the address of the next instruction minus one byte. If the aborted instruction is one byte
long, this is fine. If it is longer, the CPU executes effectively a random opcode: the last byte of the
aborted instruction is interpreted as the first byte of the next instruction.

IMPLICATION:  In cases 1 and 2, skipping an instruction can have no noticeable effect, or it could cause
some obvious error condition signaled by a system exception, or it could cause an error which is not easily
detected. In case 3, executing a random opcode is most likely to cause a system exception like #6 (invalid
opcode), but it could cause either of the other results as with cases 1 and 2. Case 2 can also cause an
indefinite CPU hang, if the problem occurred when INTR was disabled. However, in order to encounter any
of these problems, the system has to continue on with program execution after servicing the MCE. Since
the MCE is an abort type exception, the handler for it cannot rely on a valid return address. Also MCE
usually signals a serious system reliability problem. For both these reasons, the usual protocol is to require
a system reset to terminate the MCE handler. If this usual protocol is followed successfully, it will clear the
HLT flag and thus always prevent the above problems. However, there is an additional complication: the
cases 1, 2 and 3 above can occur inside the MCE handler, possibly preventing its completion.
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WORKAROUND:  The problems caused by this erratum will be prevented if the Machine Check Exception
handler (if invoked) always forces a CPU RESET or INIT (which it should do anyway, for reasons given
above). Since the problems can occur inside the MCE handler, the IF should be left zero to prevent INTR
from interrupting. Also, NMI, SMI and FLUSH could be blocked inside the MCE handler. The most secure
strategy is to force INIT immediately upon entrance to the MCE handler.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

53. FBSTP Stores BCD Operand Incorrectly If Address Wrap &
FPU Error Both Occur

PROBLEM:  This erratum occurs only if a program does all of the following:

1. The program uses 16 bit addressing inside a USE32 segment (requiring the 67H addressing override
prefix) in order to wrap addresses at offsets above 64K back to the bottom of the segment.

2. The 10 byte BCD operand written to memory by the FBSTP instruction must actually straddle the 64K
boundary. If all 10 bytes are either above or below 64K, the wrap works normally.

3. The FBSTP instruction whose operand straddles the boundary must also generate an FPU exception.
(e.g. Overflow if the operand is too big, or Precision if the operand must be rounded, to fit the BCD
format.)

The result is that some of the 10 bytes of the stored BCD number will be located incorrectly if there is an
FPU exception. They will be nearby, in the same segment, so no protection violation occurs from this
erratum.

The erratum is caused by the fact that when an FPU exception occurs due to FBSTP, a different internal
logic sequence is used by the CPU, which incidentally sends the bytes to memory in different groupings.
Normally this does not affect the result, but when address wrap occurs in the middle of the operand, the
different groupings can cause different destination addresses to be calculated for some bytes.

IMPLICATION:  Code which relies on this address wrap with a straddled FBSTP operand may not store the
operand correctly if FBSTP also generates an FPU exception.  Intel recommends not to straddle segment
or addressing boundaries with operands for several reasons, including (see the Intel Architecture Software
Developer’s Manual, Volume 3, Chapter 17) the chance of losing data if a memory fault interrupts an
access to the operand.  Also there is variation between generations of Intel processors in how straddled
operands are handled.

WORKAROUND:  Use one of the following:

Do not use 16 bit addressing to cause wraps at 64K inside a USE32 segment.

Follow Intel’s recommendation and do not straddle an addressing boundary with an operand.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

54. V86 Interrupt Routine at Illegal Privelege Level Can Cause
Spurious Pushes to Stack

PROBLEM:  By architectural definition, V86 mode interrupts must be executed at privilege level 0. If the
target CPL (Current Privilege Level) in the interrupt gate in the IDT (Interrupt Descriptor Table) and the DPL
(Descriptor Privilege Level) of the selected code segment are not 0 when an interrupt occurs in V86 mode,
then interrupt 13 (GP fault) occurs. This is described in the Intel Architecture Software Developer’s Manual,
Volume 3, Section 15.3. The architectural definition says that execution transfers to the GP fault routine
(which must be at level 0) with nothing done at the privilege level (call it level N) where the interrupt service
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routine is illegally located. In fact (this erratum) the Pentium Processor incorrectly pushes the segment
registers GS and FS on the stack at level N, before correctly transferring to the GP fault routine at level 0
(and pushing GS and FS again, along with all the rest that’s specified for a V86 interrupt).

IMPLICATION:  When this erratum occurs, it will place a few additional bytes on the stack at the level (1, 2 or
3) where the interrupt service routine is illegally located. If the stack is full or does not exist, the erratum will
cause an unexpected exception. But this problem will have to be fixed during the development process for
a V86 mode OS or application, because otherwise the interrupt service routine can never be accessed by
V86 code. Thus this erratum can only be seen during the debugging process, and only if the software
violates V86 specifications.

WORKAROUND:  Place all code for V86 mode interrupt service routines at privilege level 0, per specification.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

55. Corrupted HLT Flag Can Cause Skipped or Incorrect
Instruction, or CPU Hang

PROBLEM:  The Pentium processor sets an internal HLT flag while in the HLT state.  There are some
specific instances where this HLT flag can be incorrectly set when the CPU is not in the HLT state.

1. A POP SS which generates a data breakpoint, and is immediately followed by a HLT.  Any interrupt
which is pending during an instruction which changes the SS, is delayed until after the next instruction
(to allow atomic modification of SS:ESP).  In this case, the breakpoint is therefore correctly delayed
until after the HLT instruction is executed.  The processor waits until after the HLT cycle to honor the
breakpoint, but in this case when the processors branches to the interrupt 1 handler, it fails to clear
the HLT flag. The interrupt 1 handler will return to the instruction following the HLT, and execution will
proceed, but with the HLT flag erroneously set.

2. A code breakpoint is placed on a HLT instruction, and an SMI# occurs while processor is in the HLT
state (after servicing the code breakpoint). The SMI handler usually chooses to RSM to the HLT
instruction, rather than the next one, in order to be transparent to the rest of the system. In this case,
on returning from the SMI# handler, the code breakpoint is typically re-triggered (SMI# handler does
not typically set the RF flag in the EFLAGS image in the SMM save area).  The processor branches to
the interrupt 1 handler again, but without clearing the HLT flag.  The interrupt 1 handler will return to
the instruction following the HLT, and execution will proceed, but with the HLT flag erroneously set.

3. A machine check exception just before, or during, a HLT instruction can leave the HLT flag
erroneously set. This is described in detail in erratum #52: Machine Check Exception Pending, then
HLT, Can Cause Skipped or Incorrect Instruction, or CPU Hang.

IMPLICATION:  For cases 1 and 2, the CPU will proceed with the HLT flag erroneously set.  The following
problematic conditions may then occur.

a. If NMI, or INTR if enabled, occurs while the HLT flag is set, the CPU logic assumes the
instruction immediately following the interrupt is a HLT. It therefore places the address of the
instruction after that on the stack, which means that upon return from the interrupt, the
instruction immediately following the interrupt occurrence is skipped over.

b. If FLUSH # is asserted while the HLT flag is set, the CPU flushes the L1 cache and then
incorrectly returns to the HLT state, which will hang the system if INTR is blocked (IF = 0) and
NMI does not occur. If the CPU is extracted from the HLT state by NMI or INTR, as in a), the
CPU logic assumes that the current CS:EIP points to an HLT instruction, and pushes the
address of the next  instruction on the stack, so the instruction immediately following the
FLUSH# assertion is skipped over.

c. If RSM is executed while the HLT flag is set, again the CPU logic assumes that the CPU must
have been interrupted (by SMI#, in this case) while in the HLT state. Normally, RSM would
cause the CPU to branch back to the instruction that was aborted when entering SMM. But in
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this case, the CPU branches to the address of the next instruction minus one byte. If the
aborted instruction is one byte long, this is fine. If it is longer, the CPU executes effectively a
random opcode: the last byte of the aborted instruction is interpreted as the first byte of the next
instruction.

d. If STPCLK# is asserted to the CPU while the HLT flag is incorrectly set, the CPU will hang such
that a CPU reset is required to continue execution.

Cases 1 and 2 of this erratum occur only during code development work, and only with the unusual
combination of data breakpoint triggered by POP SS followed by HLT or code breakpoint on HLT followed
by SMI#.

WORKAROUND:

CASE 1:  Avoid following POP SS with a HLT instruction.  POP SS should always be followed by POP
ESP anyway, to finish switching stacks without interruption.  Following POP SS with HLT instead would
normally be a program logic error  (the interrupt that breaks the CPU out of HLT will not have a well defined
stack to use).

CASE 2:  Do not place code breakpoints on HLT instructions.  Or:  Modify the SMI# handler slightly for
debugging purposes by adding instructions to set the RF flag in the EFLAGS image in the SMM save area.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

56. Benign Exceptions Can Erroneously Cause Double Fault
PROBLEM:  The double-fault counter can be incorrectly incremented in the following cases:

CASE 1:  An instruction generates a benign exception (for example, a FP instruction generates an INT 7)
and this instruction causes a segment limit violation (or is paired with a v-pipe instruction which causes a
segment limit violation)

CASE 2:  A machine check exception (INT 18) is generated.

The initial benign exception will be serviced properly. However, if while trying to begin execution of the
benign exception handler, the processor gets an additional contributory exception, the processor will trigger
a double fault (and start to service the double fault handler) instead of servicing the new contributory fault.
(See Table 5-3 in the Intel Architecture Software Developer’s Manual, Volume 3 for a complete list of
benign/contributory exceptions).

IMPLICATION:  Contributory exceptions generated while servicing benign exceptions can erroneously cause
the processor to execute the double fault handler instead of the contributory exception handler.

WORKAROUND:  Use benign exception handlers that do not generate additional exceptions.  Operating
systems designed such that benign exception handlers do not generate additional exceptions will be
immune to this erratum. In general, most operating system exception handlers are architected accordingly.

Note that Case 2 does not apply to OverDrive processors.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

57. Double Fault Counter May Not Increment Correctly
PROBLEM:  In some cases a double fault exception is not generated when it should have been because the
internal double fault counter does not correctly get incremented.

When the processor encounters a contributory exception while attempting to begin execution of the handler
for a prior contributory exception (for example, while fetching the interrupt vector from the IDT or accessing
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the GDT/LDT) it should signal the double fault exception. Due to this erratum, however, the CPU will
incorrectly service the new exception instead of going to the double fault handler.

In addition, if the first contributory fault is the result of an instruction executed in the v-pipe,  a second
contributory fault will cause the processor to push an incorrect EIP onto the stack before entering the
second exception handler.  Upon completion of the second exception handler, this incorrect EIP gets
popped from the stack and the processor resumes execution from the wrong address.

IMPLICATION:  The processor could incorrectly service a second contributory fault instead of going to the
double fault handler. The resulting system behavior will be operating system dependent. Additionally, an
inconsistent EIP may be pushed on to the stack.

Robust operating systems should be immune to this erratum because their exception handlers are
designed such that they do not generate additional contributory exceptions. This erratum is only of concern
during operating system development and debug.

WORKAROUND:  Use contributory exception handlers that do not generate additional contributory
exceptions.  Operating systems which are designed such that their contributory exception handlers do not
generate additional contributory exceptions will not be affected by this erratum.  In general, most operating
system exception handlers are architected accordingly.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

58.  Some Input Pins May Float High Erroneously When Core
VCC Powers Up After I/O V CC (Mobile CPU)

PROBLEM:  Unused input signals are typically tied off (either high or low).  Low inputs can be provided with
a hard VSS strap or a pulldown resistor.  If any of the input pins AHOLD, KEN#, WB/WT#, NA#, INV,
BRDY#, or EWBE# are not driven by system logic, and are tied to ground via a weak pulldown resistor (i.e.
!2KOhms), and CPU I/O power supply (VCC3) ramps before CPU core power supply (VCC2), these input pins
may float high and be erroneously latched high by the processor during boot.  The effect of this erratum
depends on the usage of each pin.  For example, if EWBE# gets latched high, the processor may hang
indefinitely.

IMPLICATION:  The input pins AHOLD, KEN#, WB/WT#, NA#, INV, BRDY#, or EWBE# may register a false
start up state.  In some cases, the processor may erroneously hang while waiting for an input response.
For example, the EWBE# being sampled high may cause the system to hang while waiting for the
processor to sample EWBE# low.

WORKAROUND:  If the signal is not driven by system logic and is pulled low, a pulldown resistor of 2K Ohms
or less should be used to guarantee logic level zero.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

59. Short Form of MOV EAX/ AX/ AL May Not Pair
PROBLEM:  The MOV data instruction forms (excluding MOV using Control, Debug or Segment registers)
are intended to be pairable, unless there is a register dependency between the two instructions considered
for pairing. (e.g. MOV EAX, mem1 followed by MOV mem2, EAX: here the 2nd instruction cannot be
completed until after the first has put the new value in EAX.) This pairing for MOV data is documented by
the UV symbol in the Pairing column in the table of Pentium processor instruction timings in the
Optimizations for Intel’s 32-Bit Processors application note (Order # 243195). This erratum is that the
instruction unit under some conditions fails to pair the special short forms of MOV mem, EAX /AX /AL,
when no register dependency exists.
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The Intel Architecture includes special instructions to MOV EAX /AX /AL to a memory offset (opcodes
0A2H & 0A3H). These instructions don't have a MOD/RM byte (and so are shortened by one byte).
Instead, the opcode is  followed immediately by 1/2/4 bytes giving the memory offset (displacement). This
erratum occurs specifically when a MOV mem, EAX /AX /AL instruction using opcode 0A2H or 0A3H is
followed by an instruction that uses the EAX /AX /AL register as a source (register source, or as base or
index for the address of a memory source) or a destination register. Then the instruction unit detects a
(false) dependency and it doesn't allow pairing.  For example, the following two instructions are not paired:

A340000000   MOV DWORD PTR 40H, EAX ;  memory DS:[40H] <- EAX  [goes into u-pipe ]
A160000000   MOV EAX, DWORD PTR 60H ;  EAX <- memory DS:[60H]  [does NOT go into
v-pipe]

IMPLICATION: The only result of this erratum is a very small performance impact due to the non-pairing of
the above instructions under the specified conditions. The impact was evaluated for SPECint92* and
SPECfp92* and was estimated to be much smaller than run-to-run measurement variations.

WORKAROUND: For the Pentium processor, use the normal MOV instructions (with the normal MOD/RM
byte) for EAX /AX /AL instead of the short forms, when writing optimizing compilers and assemblers or
hand assembling code for maximum speed. However, as documented above, the performance
improvement from avoiding this erratum will be quite small for most programs.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

60. Turning Off Paging May Result In Prefetch To Random
Location

PROBLEM:  When paging is turned off a small window exists where the BTB has not been flushed and a
speculative prefetch to a random location may be performed.  The Intel Architecture Software Developer’s
Manual, Volume 3, Section 8.8.2, lists a sequence of nine steps for switching from protected mode to real-
address mode.   Listed here is step 1.

1.  If paging is enabled, perform the following sequence:

- Transfer control to linear addresses which have an identity mapping (i.e., linear addresses equal 
  physical addresses).  Ensure the GDT and IDT are identity mapped.

- Clear the PG bit in the CR0 register.

- Move zero into the CR3 register to flush the TLB.

With paging enabled, linear addresses are mapped to physical addresses using the paging system.  In step
a above the executing code transfers control to code located where the linear addresses are mapped
directly to physical addresses.  Step b turns off paging followed by step c which writes zero to CR3 which
flushes the TLB (and BTB).  A small window exists (after clearing the PG bit and before zeroing CR3)
where the BTB has not been flushed, and a BTB hit may cause a prefetch to an unintended physical
address.

IMPLICATION:   A prefetch to an unintended physical address could potentially cause a problem if this
prefetch was to a memory mapped I/O address.  If reading a memory mapped I/O address changes the
state of a memory mapped I/O device, this unintended access may cause a system problem.

WORKAROUND:  Flush the BTB just before turning paging off.  This can be done by reading the contents of
CR3 and writing it back to CR3 prior to clearing the PG bit in CR0.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.
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61. STPCLK# or FLUSH# After STI
PROBLEM:   The STI specification says that external interrupts are enabled at the end of the next instruction
after STI.  However external interrupts may be enabled before the next instruction is executed following STI
if a STPCLK# or FLUSH# is asserted and serviced before the instruction boundary of this next instruction.

IMPLICATION:   External interrupts assumed blocked until after the instruction following STI may be
recognized before this instruction executes.  No operating system is known by Intel to be affected.

WORKAROUND:  None identified at this time.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

62. REP String Instruction Not Interruptable by STPCLK#
PROBLEM:  The Intel Architecture Software Developer’s Manual, Volume 2, Chapter 3 under the REP string
instruction, states that any pending interrupts are acknowledged during a string instruction.  On the
Pentium processor there is one exception.  STPCLK# is not able to interrupt a REP string instruction.  It is
only recognized on an instruction boundary (as stated in Volume 1, Section 21.1.36).  However, if any other
interrupt is recognized during a REP string instruction, this will allow STPCLK# to be serviced before
returning to execution of the REP string instruction.

IMPLICATION:  A system that uses stop clock frequently can not interrupt the REP string instruction in the
middle and must wait until it completes or another interrupt is recognized before STPCLK# is recognized.
Note that in standard PC-AT architecture, the real time clock interrupt will interrupt a long string instruction
allowing STPCLK# to be recognized.

WORKAROUND:  None identified at this time.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

63. Single Step May Not be Reported on First Instruction After
FLUSH#

PROBLEM:  The single step trap should cause an exception to occur upon completion of all instructions.
However, in some cases when ITR (bit 9 of TR12) = ‘1’, a single step exception may not be reported for the
first instruction following FLUSH#. The Single Step exception will be skipped for this instruction. Note that
subsequent single step exceptions will be reported correctly.

IMPLICATION: A single step breakpoint may be missed when a FLUSH# request is presented to the
processor. This erratum will only affect software developers while debugging code.

WORKAROUND:  None identified at this time.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

64. Double Fault May Generate Illegal Bus Cycle
PROBLEM:  A double fault condition may generate an illegal bus cycle (a cacheable line-fill with a lock
attribute). This scenario is caused by following sequence of events:

1. A contributory fault occurs.
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2. The processor begins to service this fault by reading the appropriate trap/interrupt gate from the IDT.
However, this gate points to a segment descriptor (in the GDT) whose “accessed” bit is not set.

3. The segment descriptor is modified and marked “not present/not valid” by another processor in the
system

4. A locked Read-Modify-Write cycle is generated to update the “accessed” bit.

The erratum condition is encountered if the segment descriptor was modified and marked “not present/not
valid” by another processor in the system before the locked read cycle (step #4 above). The processor will
begin to execute the locked read. Since the descriptor is marked invalid, the processor should go to the
exception handler to service a specific exception and clear the bus-lock (through a write operation).
However, since a contributory fault has already occurred, the processor will interpret this condition as a
double fault. The double fault logic incorrectly generates a cacheable line-fill with a lock attribute.

IMPLICATION:  This erratum can only occur in DP and MP systems.

Cacheable line-fills with a lock attribute are “illegal” bus cycles. Exact operation under this condition is
chipset dependent. It may cause the system to hang.

Note that this erratum will only occur in the case of a double fault, which are rare events for well architected
operating systems. Also, the double fault condition is not generally recoverable, implying that the system
will need to be rebooted anyway.

Finally, this erratum can only happen on the first pass through the interrupt handler. After that, the
“accessed” bit of the code descriptor will be set, eliminating a prerequisite for occurrence of this erratum.

WORKAROUND:  None identified at this time.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

65. TRST# Not Asynchronous
PROBLEM:  TRST# is not an asynchronous input as specified in Section 5.1.67 of the Pentium Processor
Family Developer’s Manual.

IMPLICATION: TRST# will not be recognized in cases where it does not overlap a rising TCK# clock edge.
This violates the IEEE 1149.1 specification on Boundary Scan.

WORKAROUND:  TRST# should be asserted for a minimum of two TCK periods to ensure recognition by the
processor.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

66. STPCLK# on RSM to HLT Causes Non-Standard Behavior
PROBLEM:  This problem will occur if STPCLK# is asserted during the execution of an RSM instruction
which is returning from SMM to a HALT instruction (Auto HALT restart must be enabled for this to happen).
The RSM instruction will be completed, and then the CPU correctly issues, in response to the STPCLK#
assertion, a Stop Grant special cycle, and goes into the Stop Grant state. However, following this, behavior
occurs which deviates from the CPU specifications in one of two ways, depending on whether STPCLK# is
de-asserted before any (enabled) external interrupt occurs (Case 1), or an (enabled) external interrupt
occurs while STPCLK# is still active (Case 2).

CASE 1:  After STPCLK# is de-asserted, no HALT special cycle is issued, and the CPU effectively stays in
the Stop Grant state until an external interrupt is asserted (to which the CPU responds normally). However,
a HALT cycle should  be issued when STPCLK# is de-asserted, because it is stated that a HALT cycle will
be issued upon an RSM to the HALT state.
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CASE 2:  When the (enabled) external interrupt is asserted while STPCLK# is still active, the CPU should
remain in the Stop Grant state. But when the conditions have been met for this erratum, the CPU comes
out of the Stop Grant state and starts the internal interrupt service process. This includes issuing the
interrupt acknowledge cycles, reading the selected entry from the interrupt descriptor table, and fetching
the first instruction of the requested interrupt service routine (I.S.R.). However, before the CPU executes
that first instruction, STPCLK# is recognized again, execution halts, and a Stop Grant cycle is issued. The
erratum condition is cleared by one of the steps which the CPU performs to prepare for the I.S.R., so any
further interrupts (while STPCLK# remains asserted)  will not remove the CPU from the Stop Grant state.
When STPCLK# is de-asserted, the CPU begins executing the requested I.S.R.

IMPLICATION:

CASE 1:  The absence of the usual  HALT special cycle upon a RSM to a HLT instruction in this rare case
should have no impact, unless the system is looking for the HALT cycle after RSM and would normally
make some response to it.  The system will have received the HALT cycle upon initial entry to the HALT
state. To expect another HALT cycle after RSM, the system would have to be tracking the fact that the SMI
occurred during a HLT.

CASE 2:  This case of the erratum means that some cycles preparatory to executing the I.S.R. are issued
when the interrupt is received, rather than waiting until after STPCLK# is de-asserted. Also, an extra Stop
Grant cycle is issued just after these premature cycles. However, all of the I.S.R. itself is executed at the
correct time. This difference in the bus cycles has no known system implications.

WORKAROUND:  None required for any known implementations.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

67. Code Cache Dump May Cause Wrong IERR#
PROBLEM:  When using the test registers to read a cache line that is not initialized, the data array may
indicate a wrong parity, which may cause IERR# to be asserted. It may also cause a shutdown.

IMPLICATION:  A code cache dump through test registers may cause a parity check when reading an
uninitialized cache entry, resulting in a shutdown.

WORKAROUND:  Set TR[1] to 1 to ignore IERR#, so that shutdown during a code cache dump can be
avoided, or ensure that all cache lines have been initialized prior to a code cache dump.

68. Asserting TRST# Pin or Issuing JTAG Instructions Does not
Exit TAP Hi-Z State

PROBLEM:  The Pentium Processor Family Developer’s Manual, Section 11.3.2.1 states that the TAP Hi-Z
state can be terminated by resetting the TAP with the TRST# pin, by issuing another TAP instruction, or by
entering the Test_Logic_Reset state.  However, the indication that the processor has entered the TAP Hi-Z
state is maintained until the next RESET.  Therefore by using the above methods alone, the TAP Hi-Z state
can not be terminated.

IMPLICATION:  When the TAP Hi-Z instruction is enabled and executed, the processor may not terminate the
Hi-Z state.

WORKAROUND: To exit TAP Hi-Z state, in addition to the methods described above, the processor needs to
be RESET as well.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.
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69. ADS# May be Delayed After HLDA Deassertion
PROBLEM:  The Pentium processor typically starts a pending bus cycle on the same clock that HLDA is
deasserted and the Pentium processor with MMX technology typically starts the cycle one clock after
HLDA is deasserted. However, in both processors it may be delayed by as many as two clocks.  See the
diagram below:

CLK

Pending Cycle May Be Delayed

ADS#

 HOLD

HLDA

In two cases, for example, if HOLD is deasserted for one clock (i.e., clock 2) or two clocks (i.e., clocks 1 &
2) and then reasserted, the window may not be large enough to start a pending snoop writeback cycle.
The writeback cycle may be delayed until the HLDA is deasserted again (i.e., clock N).  See diagram
below.

CLK

Snoop Writeback Cycle Delayed 

ADS#

 HOLD

HLDA

1       2       3

1       2       3

HITM#

EADS#

N

IMPLICATION:  If the system expects a cycle, for example a writeback cycle, and depends on this cycle to
commence within the HLDA deassertion window,  then the system may not complete the handshake and
cause a hang.

WORKAROUND:   

1. Deassert HOLD for at least 3 clocks (i.e., clocks 1, 2, and 3 shown in figure) before reasserting HOLD
again.  This ensures that the Pentium processor initiates any pending cycles before reasserting
HLDA.

2. If the system is waiting for the snoop writeback cycle to commence, for instance if HITM# is asserted,
the system should wait for the ADS# before reasserting HOLD.
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STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

70. Stack Underflow in IRET Gives #GP, Not #SS
PROBLEM:  The general Intel architecture rule about accessing the stack beyond either its top or bottom is
that the stack fault error (#SS) will be generated.  However, if during the execution of the IRET instruction
there are insufficient bytes for an interlevel IRET to pop from the stack (stack underflow), the general
protection (#GP) fault is generated instead of #SS.

IMPLICATIONS:  This can only occur if the stack has been modified since the interrupt stored its return
address, flags etc. such that there is no longer room on the stack for all of the stored information when
IRET tries to access it.  This would constitute a serious programming error that would cause problems
more obvious than this erratum, and would normally be corrected during debugging.  If this erratum did
occur during regular execution of a program, the normal O/S response to a task causing either a #GP or
#SS exception is to terminate the task, and so this erratum (#GP instead of #SS) would normally have no
effect.  If however the O/S is to be programmed to try to correct #GP and #SS problems and allow the task
to continue execution, the workaround should be used.

WORKAROUND:  In order for the O/S code to correctly analyze this case of stack limit violation, the #GP
code must include a test for stack underflow when #GP occurs during the IRET instruction.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

71. Performance Monitoring Pins PM[1:0] May Count The Events
Incorrectly

PROBLEM:  The performance monitoring pins PM[1:0] can be used to indicate externally the status of event
counters CTR1 and CTR0.  While events are generated at the rate of the CPU clock, the PM[1:0] pins
toggle at the rate of the I/O bus clock.  However in some cases, the PM[1:0] pins may toggle twice when
the event counters increment twice in one I/O clock, while in some cases, the PM[1:0] pins may toggle only
once even when the event counters increment twice in two consecutive I/O clocks.

IMPLICATION: The performance monitoring pins PM[1:0] may not be relied upon to reflect the correct
number of events that have occurred.

WORKAROUND:  None identified at this time.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

72. BIST Is Disabled
PROBLEM :  Built in Self Test (BIST) is disabled and will not be run when the proper sequence is initiated.
BIST can be initiated in two different ways - by asserting INIT when RESET transitions from high to low or
by using the RUNBIST command through the TAP port. In both cases, BIST will not be run and the value
returned in either EAX or the Runbist register will be zero indicating BIST has passed.

IMPLICATION: If BIST is initiated, the system should not depend on the result since the processor always
reports that BIST has completed successfully. BIST is normally only run as part of a manufacturing test or
as part of a power on test.

WORKAROUND: None identified at this time.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.
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73. Branch Trace Messages May Cause System Hang
PROBLEM : In a system with branch trace messages enabled, certain semaphore signaling sequences may
cause the system to hang. Branch trace messages have the highest priority bus cycle in the Pentium
processor with MMX technology, unlike previous Pentium processors, and take precedence over any other
write cycle. A sequence of code where the processor writes to another processor or a controller, and then
locks into a tight loop while waiting for the other processor or the controller to respond to the write, is
susceptible to a hang, if branch trace messages are enabled. The problem is that the unending branch
trace messages from the loop take priority over the previous write cycle. The write cycle never occurs and
the other processor or the controller never responds.  However, the processor will be pulled out of the
hanging situation if an interrupt occurs.

IMPLICATION: This erratum only affects operation of the processor during instruction execution tracing which
is normally only done during code development and debug. In addition, this erratum would  typically only
occur in an MP system, with short code sequences used for message passing. Also since interrupts pull
the processor out of the hanging condition and they normally occur frequently, there should not be any
noticeable system hang.

WORKAROUND: Disable the branch trace message feature by setting TR12 bit 1 to 0 (the default is
disabled).

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

74. Enabling RDPMC in CR4 And Also Using SMM May Cause
Shutdown

PROBLEM : The Pentium processor with MMX technology implements a new instruction RDPMC (read
performance monitoring counters), and a new control bit, CR4.PCE in the CR4 register. When CR4.PCE is
one, the RDPMC instruction is not O/S protected and may be executed at the O/S level (level 0), or at the
application level (level 1, 2 or 3) .  When the processor enters SMM mode, it dumps the contents of all the
control registers, including CR4, to the SMM dump area. Upon leaving SMM mode, the RSM instruction
restores the control registers from the SMM dump area. The RSM instruction checks the dumped CR4
value at the SMM dump area before it loads the data back to CR4 to ensure the reserved bits are all zero.
The PCE bit incorrectly gets flagged as reserved and the processor enters into shutdown mode.

IMPLICATION:  This erratum only affects systems that use SMM and also enable the RDPMC instruction to
be executed at all privilege levels by setting the CR4.PCE bit. If the CR4.PCE bit is set and SMM mode is
used, executing the RSM instruction will cause the processor to enter shutdown mode.

WORKAROUND:  Disable SMM when CR4.PCE is set.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

75. Event Monitor Counting Discrepancies (Fix)
PROBLEM : The Pentium processor with MMX technology added several performance monitoring events to
those defined in the Pentium processor (75/90/100/120/133/166/200).  There are several conditions where
the counters do not operate as specified.

The “Writes to non-cacheable memory” (event 101110) event counter counts the number of writes to non-
cacheable memory including non-cacheable writes caused by MMXTM instructions.  In some cases the
counter fails to get incremented for a non-cacheable memory write caused by an MMX instruction.

The “Stall on MMX instruction write to an E or M state line” (event 111011) event counter counts the
number of clocks the processor is stalled on a data memory write hit to an E or M state line in the internal
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data cache caused by a MMX instruction while either the write buffers are not empty or EWBE# is not
asserted.  However, it does not count stalls while the write buffers are not empty, it only counts the number
of clocks stalled while EWBE# is not asserted.

IMPLICATION: The event monitor counters report an inaccurate count for certain events.

WORKAROUND: None identified at this time.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

76. Event Monitor Counting Discrepancies (NoFix)
PROBLEM : The Pentium processor with MMX technology added several performance monitoring events to
those defined in the Pentium processor (75/90/100/120/133/166/200).  There are several conditions where
the counters do not operate as specified.

The “MMX instruction data read misses” (event 110001) and “MMX instruction data write misses” (event
110100) event counters get incorrectly incremented twice if the access to the cache is misaligned. The
“Pipeline stalled waiting for MMX instruction data memory read” (event 110110) event counter incorrectly
counts a misaligned access as 2 clocks instead of 3 clocks unless it misses the TLB.

The “MMX instruction multiply unit interlock” (event 111011) event counter counts the number of clocks the
pipe is stalled because the destination of a previous MMX multiply instruction is not ready.  However, if
there is a multiply instruction followed by a branch instruction followed by a dependent multiply instruction,
the counter incorrectly gets incremented when the branch is taken.

IMPLICATION: The event monitor counters report an inaccurate count for certain events.

WORKAROUND: None identified at this time.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

77. INVD May Leave Valid Entries In The Cache Due To Snoop
Interaction

PROBLEM : If the processor is snooped (external snoop or private snoop in a DP implementation) during
execution of the INVD instruction, some cache entries may be left in a valid state.

IMPLICATION: There are no known system implications. INVD is a privileged instruction, and hence can not
be used by application software in a protected mode O/S. In any case, executing INVD on a writeback
processor will not guarantee cache coherency. If the O/S or the BIOS wishes to invalidate the cache, it
should use the WBINVD instruction which is not affected by this erratum.

WORKAROUND: If the INVD instruction must be used in a cache test or some other (BIOS) code, set CD and
NW in CR0 to ‘1’ before executing the INVD instruction, so that a snoop cycle has no effect on the state of
the cache. After the INVD instruction, re-enable the cache by setting CD and NW to “0”. Note that this
workaround does not apply to DP systems since external snoops can not be inhibited in a DP system.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.
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78. TLB Update Is Blocked After A Specific Sequence Of Events
With A Misaligned Descriptor

PROBLEM : An obscure sequence of events may cause the TLB replacement mechanism to fail. This specific
sequence must contain all  of the following:

1. A specific setup of the data TLB: all 64 entries must be valid and one entry must contain the page
where  the IDT is located.

2. A REP-MOVS accesses a string that is at least 62-pages long.

3. A MOVS results in a GP fault in the 62nd page.

4. A gate in the IDT points to a descriptor and the descriptor is misaligned and crosses a page boundary.

5. The descriptor causes a TLB miss.

When the TLB miss discussed in condition 5 above occurs, the processor starts a split locked read-modify-
write sequence to update the descriptor access or busy bit. During this split locked cycle, the address of
the low bytes of the descriptor is loaded into a slot in the TLB. The address of the high bytes of the
descriptor is then put into the same slot of the TLB causing the address of the low bytes to be overwritten
(this is caused by conditions 1-3 above). The address of the low bytes of the descriptor then needs to be
re-read from memory. However, since the bus is now locked, this cannot occur and the processor hangs
waiting for the sequence to complete.

IMPLICATION: If all of the above conditions occur, the processor may hang.

WORKAROUND: Ensure that the base address of the GDT or LDT  is aligned.  This will prevent the split
locked cycle from occurring due to the misaligned descriptor.  This is already recommended in the Intel
Architecture Software Developer’s Manual, Volume 3, Section 3.5.1 for performance reasons.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

1DP. Problem with External Snooping while Two Cycles Are
Pending on the Bus

PROBLEM:  In a dual processor system, the following sequence of events can cause the processors to lock
up:

1. There are two cycles pending on the bus, one from each processor. In this case the first cycle is from
the C and the second from CM; therefore, C is the LRM and CM is the MRM.

2. AHOLD is asserted and then an external snoop occurs (EADS# is asserted) causing a hit to a
modified line in the CM. Since the CM is the MRM, it does not give an indication to the C that it has
been hit.

3. Now a BOFF# is asserted and backs off the pending cycles. Once BOFF# is released, the C becomes
the MRM in order to maintain cycle order.

4. C now owns the bus but cannot run its cycle because AHOLD is still active. Since C is not aware that
CM has been hit by an external snoop, C is not willing to give up the bus to the CM and thus prevents
the CM from performing a writeback. Since the C will not give up the bus to the CM and cannot run its
own cycle, the system hangs.

IMPLICATION:  If each processor in a dual processor system has a cycle pending on the bus and an external
snoop results in a hit to a modified line, the processors may lock up.

WORKAROUND:
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1. Disable pipelining.

2. Deassert AHOLD no earlier than one clock after BOFF# has been deasserted. Note that if this
workaround is used, the system will continue to run but a re-ordering of cycles will occur. The C will
run its cycle first (rather than the writeback occurring first), and then grant the bus to the CM to
complete its writeback cycle and then its outstanding cycle.

Designs based on the 82430NX PCIset and other chip sets which do not generate an external snoop when
two cycles are pending on the bus are not affected.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

2DP. STPCLK# Assertion and the Stop Grant Bus Cycle
PROBLEM:  If a STPCLK# interrupt occurs and BRDY# is not asserted within 4 CLKs following the Stop
Grant bus cycle, then the processor which ran the Stop Grant bus cycle may hang.

IMPLICATION:  This problem occurs only in dual processor systems and will cause one of the processors to
hang.

In two cases, for example, if HOLD is deasserted for one clock (i.e., clock 2) or two clocks (i.e., clocks 1 &
2) and then reasserted, the window may not be large enough to start a pending snoop writeback cycle.
The writeback cycle may be delayed until the HLDA is deasserted again (i.e., clock N).  See diagram
below.
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WORKAROUND:

1. Do not assert STPCLK#.

2. Ensure that BRDY# is asserted within 4 CLKs after the Stop Grant bus cycle has begun.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

3DP. External Snooping with AHOLD Asserted May Cause
Processor to Hang

PROBLEM:  The following sequence of events may cause one of the processors in a dual processing
system to hang:

1. The MRM (Most Recent Bus Master, this could be the C or CM processor) issues an ADS# of a
memory-write (or memory read) cycle and an AHOLD assertion follows.

2. This ADS# causes an automatic snoop by the LRM (Least Recent Bus Master) and hits a modified line
in the LRM causing PHITM#/PHIT# to be asserted.

3. After PHITM# is asserted, EADS# is asserted by the system and does not  hit a modified line. This
causes the LRM to deassert PHITM# for one or two clocks, and then assert PHITM# again.

4. One or two clocks after EADS# is deasserted, AHOLD is deasserted.

5. BRDY# or NA# is asserted within two clocks after EADS# is deasserted. With a BRDY# or NA#
assertion, the MRM samples the PHITM# pin before driving the next cycle on the bus. If the MRM
samples PHITM# high, during the "critical period" (shown in the figure below, the critical period is
defined as the two clock periods after EADS# is sampled active.), the MRM will incorrectly issue the
ADS# of its memory-write cycle again before surrendering the bus to the LRM to do its writeback.

6. After the memory-write cycle is complete, the LRM performs its writeback.

7. The MRM then re-issues the memory write-cycle again. This cycle, now being issued for the third time,
causes an internal hangup in the MRM.
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IMPLICATION:  If a memory write or memory read cycle is pending on the bus and an external snoop occurs,
one of the processors may hang.

WORKAROUND: Use one of the following:

1. Ensure that NA#/BRDY# is asserted before, or after the "critical period". (the critical period is the two
CLK period after EADS# is sampled active.)

2. Ensure that AHOLD is held high for a minimum of three clocks after EADS# has been sampled active.
See the following figure.

3. Drive HOLD for two clocks after the EADS# was sampled active. Removal of HOLD can be done
without regard to the HLDA signal. See the following figure.

4. Drive BOFF# for 3 clocks after the EADS# was sampled active. See the following figure.

All of the listed workarounds prevent the MRM processor from starting a new cycle, thus preventing the
third restart of the pending cycle.

EADS#

HOLD

AHOLD

BOFF#

or

or
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STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

4DP. Address Parity Check Not Supported in Dual Processing
Mode

PROBLEM:  This is a dual processor erratum:  There is a very short setup and hold time for the address bus
lines in Dual Processing mode to support the single clock interprocessor snoop response required for
cache coherency. In this case the 3ns setup specification is enough for the address to propagate to the
cache but it does not allow enough time for the address to propagate to the parity calculation circuits. There
is a chance that the APCHK# line will spuriously go active showing a parity error on the address bus.

IMPLICATION:  Internal measurements of these address signals show that if the 3ns spec is met, the
addresses will be latched correctly. Since the parity portion of the circuitry does not meet this timing there
is no way to guarantee the APCHK# output is valid. Systems using the APCHK# pin will perform the
APCHK# interrupt error routines.

WORKAROUND:  Designs based on the 82430NX PCIset and other chip sets which ignore APCHK# in a dual
processor environment are therefore not affected.  If the address setup (t83) and Maximum Valid Delay (t6)
timings in the Pentium Processor Family Developer’s Manual, Chapter 7 are followed, this erratum will not
apply to C-step components and future steppings.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this
section .

5DP. Inconsistent Cache State May Result from Interprocessor
Pipelined READ into a WRITE

PROBLEM:  This is a dual processor erratum:  If there is a READ generated by processor 2 pipelined into a
WRITE generated by processor 1, and both of these cycles are to the identical address, the cache states
for these lines become inconsistent. In this case the WB/WT# pin is driven HIGH, and the KEN# pin is
active. Processor 1 will have data that changes from the (S) shared state to the (E) exclusive state, and
processor 2 will have data that changes from the (I) invalid state to the (S) shared state. This violates the
cache coherency protocol, since any writes to the line that is in the (E) state in processor 1 will not be seen
on the bus, resulting in the second processor operating with stale data. This is a symmetrical problem,
such that the initiator of the WRITE cycle can either be the primary or dual processor in a two processor
configuration. The reason this happens is that each ADS# causes a snoop in the LRM processor, but in
this case at the time of the snoop the line state is (S) which will generate the PHIT#, and no PHITM#, the
transition to the (E) state has been posted but is not performed until the BRDY# of the WRITE cycle.
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IMPLICATION:  If the described conditions are met, then an additional write to the same address in processor
1 will cause a cache state transition from (E) to (M) and will not generate a bus cycle. This will mean that
the data in processor 2 is stale but it could continue operating with the stale data. For example:  When 2
processors are sharing a cached semaphore, and processor 1 is updating the semaphore just as processor
2 is reading the semaphore, then processor 2 would eventually end up with stale data in its cache. Due to
the nature of the problem, this could cause a number of unknown system problems and may or may not
cause a system to hang.

WORKAROUND:  Disable pipelining while using dual processing, this is done by not asserting NA#.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

6DP. Processors Hang During Zero WS, Pipelined Bus Cycles
PROBLEM:  In a dual processing system when the following conditions are met:  A non-bursted read or write
cycle that hits a modified line in the data cache is pipelined into a data read cycle, and this dual processing
system is running in zero Wait State mode to the L2 Cache, (2-1-1-1). If the ADS# for the pipelined cycle is
in the same clock as the 3 or 4th BRDY# of the bursted data read then the processors will hang.

IMPLICATION:  Possible system hang in dual processing operation. System restart/reboot would be required.

WORKAROUND:  Use one of the following:

1. Run the dual processing configuration in a non-zero Wait State mode, a (3-1-1-1) burst operation has
an anticipated impact of 2-4 percent performance decrease. This is how the 82430NX PCIset
operates.

2. Disable pipelining by setting NA# pin high.
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STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

7DP. Bus Lock-up Problem in a Specific Dual Processing Mode
Sequence

PROBLEM:  In a dual processor system with the CPUs operating in 2/3 (bus/core) Bus Fraction mode, the
following sequence of events may cause the system to lock up:

1. The LRM processor is ‘spinning’ on a semaphore location, with interrupts disabled, waiting for the
other CPU to complete its task.

2. The MRM (CPU A) issues a bus cycle by asserting ADS#.

3. The LRM (CPU B) samples the ADS# from the MRM and initiates an internal snoop.

4. Due to an internal circuit problem, the snoop may cause the LRM to assert PBREQ# for one clock
erroneously even though it does not have a bus cycle to run. The LRM deasserts PBREQ# in the next
clock.

5. The MRM (CPU A) on seeing PBREQ# asserted, grants the bus to the LRM (CPU B) by asserting
PBGNT#.

6. Since CPU B actually does not need the bus, it does not run any bus cycle but it continues to own the
bus.

7. CPU A asserts PBREQ# to CPU B in order to obtain bus ownership back to run its pending cycle.

8. CPU B, however does not grant the bus back to CPU A since it needs to run a bus cycle before
relinquishing the bus ownership. Since interrupts are disabled and the processor is executing in a tight
‘spin’ loop, it does not have any bus cycles to run and does not relinquish the bus.

CLK

ADS#

D/P#

PBREQ#

PBGNT#

BRDY#

IMPLICATION:  A system lockup can occur because one CPU requests the bus, while the other CPU does
not relinquish bus control. Running Windows NT operating system, it has been observed that when the
hang condition occurs, the code inside the Windows NT kernel is always inside a very tight code loop, with
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at least one of the processors ‘spinning’ on a semaphore location, with interrupts disabled, waiting for the
other CPU to complete its task.

WORKAROUND:  Asserting STPCLK# to the processor that owns the bus will cause the system to come out
of the lock up condition. Using a timer, when the PBREQ# signal is seen asserted for a few thousand
clocks without the PBGNT# signal asserted, STPCLK# can then be asserted to the processor that owns
the bus in order to get it out of the hang condition and resume normal operation. The D/P# pin can be used
to tell which processor owns the bus. Alternatively, asserting STPCLK# to both processors will also work.

Although this problem is extremely rare, the failure rate is higher:

1. At lower temperatures, closer to approximately 30° C.

2. With pipelining enabled. Pipelining is disabled by setting NA# pin high.

3. Operating in zero or one Wait State mode.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

8DP. Incorrect Assertion of PHITM# without PHIT#
PROBLEM:  In a dual processing environment, assertion of BOFF# in a pipelined bus situation may cause
the same cycle to be completed twice on the bus.

This problem occurs in the following case:

1. The Primary processor issues cycle A, either a memory read or write.

2. While cycle A is in progress, the dual processor obtains the bus and issues pipelined memory cycle B,
creating an internal self-snoop in the dual processor. Cycle B is of the type that creates a snoop into
the data cache (TLB snoop or a code read), and this snoop hits a modified line. As a result, the dual
processor has a pending internal writeback cycle.

3. BOFF# is asserted to both processors, backing off cycles A and B.

4. After deassertion of BOFF#, the Primary processor restarts cycle A.

5. The dual processor erroneously asserts PHITM# (without PHIT#) due to the pending internal writeback
cycle. This causes the Primary processor to internally back off cycle A, even though there is no hit to a
modified line in the dual processor and cycle A completes on the bus externally.

6. The dual processor receives the bus and issues the pending internal writeback.

7. The dual processor restarts cycle B.

8. The Primary processor receives the bus and erroneously re-issues cycle A, completing it a second
time.

IMPLICATION:  Cycle A is completed twice on the system bus. In most cases the extra cycle will not create
any system problems. If the cycle is to a memory-mapped I/O device, mis-operation could occur.

WORKAROUND:  Either of two workarounds will avoid this erratum.

1. Disable pipelining.

2. Do not assert BOFF# during a pipelined cycle condition.  Designs based on the 82430NX PCIset and
other chip sets which do not assert BOFF# during a pipelined condition are therefore not affected

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.
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9DP. Double Issuance of Read Cycles
PROBLEM:  In a dual processing environment, a memory read cycle (either data read or prefetch) may
occur twice. The second read cycle may cause mis-operation of the CPU.

This problem occurs only in dual processing systems with a bus/core ratio of 2/3. For this to occur,
pipelining must be enabled with some or all read cycles occurring in zero wait states.

For this erratum to occur, either of two specific sequence of conditions must occur on the bus as shown in
the figures below:

Case 1:

• The processor issues read cycle A which may be pipelined into an earlier (not shown) cycle.

• Cycle A will be completed by the system as a 2-1-1-1 (zero wait state) cycle.

• One clock after issuance of the ADS#, NA# is asserted by the system.

• A pipelined cycle (B) is asserted by the MRM in clock 4.

• Cycle A completes on the bus in clock 5.

• One clock later, PHITM# is issued by the LRM.
 

Case 2:

• The processor issues read cycle A which may be pipelined into an earlier (not shown) cycle.

• Cycle A will be completed by the system as a 2-1-1-1 (zero wait state) cycle.

• One or two clocks after issuance of the ADS#, NA# is asserted by the system.

• A pipelined cycle (B) is asserted by the MRM in either clock 4 or clock 5.

• Cycle A completes on the bus in clock 5.

• One clock later, BOFF# is issued by the system.
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Specifically given the above conditions, the error condition occurs internally in the CPU due to the assertion
of PHITM# or BOFF# one clock after the final BRDY# of cycle A. If this occurs, the CPU will respond to the
PHITM# or BOFF# by subsequently re-issuing both cycles A and B, where expected operation would be
that only cycle B is re-issued.

IMPLICATION:  The code fetch or data read cycle (A) will be re-issued even though it is already completed.
The second occurrence of the cycle, even if harmless from a system point of view, will confuse the internal
state of the CPU and may cause subsequent CPU mis-operation.

WORKAROUND:  Any of three workarounds will avoid this erratum:

1. Avoid assertion of BOFF# or PHITM# during the sensitive clock (clock 6). Avoiding assertion of
PHITM# in clock 6 is guaranteed by asserting NA# no earlier than clock 3. Since ADS# occurs two or
more clocks after NA# and since PHITM# occurs 2 clocks after ADS#, assertion of NA# in clock 3 or
after will ensure that PHITM# is not driven active in clock 6.

2. Disable pipelining by not asserting NA#.

3. Do not perform zero wait-state read cycles.

Designs based on the 82430NX PCIset and other chip sets which do not perform zero wait-state read
cycles are therefore not affected.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

10DP. Line Invalidation May Occur On Read or Prefetch Cycles
PROBLEM:  When operating in dual processing mode, a read or prefetch cycle from either CPU may
invalidate a cache line in the other.

In a dual processor environment, the LRM performs an internal snoop for each memory cycle the MRM
drives onto the bus. If this snoop results in a hit in the either the code or data cache and the INV
(Invalidate) signal is asserted by the system, the LRM will assert either the PHIT# or PHITM# signal and
invalidate the snooped line. Expected operation is that the INV signal is not meaningful and that the LRM
should respond only by asserting the PHIT# or PHITM# signal.

IMPLICATION:  Unnecessary and unexpected invalidations in the LRM’s caches will result. If this occurs, the
only impact is to system performance;  no functional problems occur with this erratum. Unnecessary
invalidations in the LRM L1 caches will possibly decrease subsequent hit rate. The amount of performance
degradation is a function of how many lines are shared between the two processors.

WORKAROUND:  After external snoops have completed, the system should deassert the INV signal so that
no invalidations are performed on subsequent private snoop operations. Designs based on the 82430NX
PCIset and other chip sets which only assert INV during external snoops are therefore not affected.
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STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

11DP. EADS# or Floating ADS# May Cause Extra Invalidates
PROBLEM:  This erratum only occurs in a dual processing environment. Extra invalidates may occur into the
L1 cache due to assertions of EADS#. If EADS# is asserted while the processor is driving the bus, an
invalidate into the processor’s L1 cache may occur.

IMPLICATION:  The specification states that EADS# is ignored while the processor is driving the bus.
Occurrence of this erratum means that unnecessary invalidations and writeback cycles may be performed
resulting in sub-optimal performance.

WORKAROUND:  The system should not assert EADS# while the CPU owns the bus. Designs based on the
82430NX PCIset and other chip sets which do not assert EADS# while the CPU owns the bus are therefore
not affected.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

12DP. HOLD and BOFF# During APIC Cycle May Cause Dual
Processor Arbitration Problem

PROBLEM:  In a dual processor system, the following sequence of events may cause the dual processing
arbitration machines of both processors to lose synchronization and cause the system to hang:

1. One of the CPUs initiates an internal APIC cycle (read or write). The LRM CPU requests ownership of
the bus by asserting PBREQ#

2. HOLD is asserted during the APIC cycle

3. BOFF# is asserted before the APIC cycle gets completed, two or three clocks after HOLD is asserted
(as shown in figure below)

4. Once BOFF# is deasserted, both processors may assume ownership of the bus at the same time
resulting in possible contention of the CPU pins.

C LK

A DD R E S S

HO LD

B O FF#

PB R E Q #

PB G N T #
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IMPLICATION:  This problem affects dual processing (with CPU local APIC enabled) that assert HOLD and
BOFF#. When the problem occurs, the dual processing arbitration machines of both processors get out of
synchronization causing both processors to park on the bus. This will result in a system hang.

WORKAROUND:  Use one of the following workarounds:

1. Do not use HOLD/HLDA protocol together with BOFF#. Use one or the other. Designs based on the
82430NX PCIset and other chip sets which do not use the HOLD/HLDA protocol together with BOFF#
are therefore not affected.

2. In a non-pipelined system, avoid assertion of HOLD when the bus is idle. Asserting HOLD while CPU
is running a bus cycle (between ADS# and last BRDY#) will ensure that HOLD does not hit an APIC
cycle. Alternatively, if HOLD is asserted when the bus is idle, avoid asserting BOFF# two or three
clocks after HOLD is asserted (as shown in figure above.)

3. In a pipelined system, use the same workaround as described in #2 with an additional requirement.
Since an APIC cycle can be pipelined into another bus cycle, avoid assertion of HOLD in the clocks
between NA# and the next ADS# (as shown in figure below.)

C L K

A D S #

N A #

HO LD

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

13DP. System Hang After Hold During Local APIC 2nd INTA Cycle
PROBLEM:  In a dual processor system, the following sequence of events may cause the system to lock up:

1. One of the CPU’s (i.e. CPU A) initiates the first and second internal APIC INTA cycles.  The INTA
cycles are not driven on the external bus.  CPU B requests ownership of the bus by asserting
PBREQ#.

2. HOLD is asserted during the 2nd INTA cycle and PBGNT# is asserted.

3. CPU B issues a read or write cycle and receives NA# before completion of the cycle.  The bus is
granted back to CPU A.

4. CPU A reissues the second INTA cycle and grants the bus to CPU B.
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5. CPU A hangs because the internal Rdy# and BRDY# were recognized out of order.

CLK

ADDRESS

HOLD
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PBREQ#

PBGNT#

1st INTA
BE#=EF

2nd INTA
BE#=FE

2nd INTA
  AGAIN

BRDY#

Internal
Rdy

NA#

IMPLICATION:   Asserting HOLD during the second INTA cycle causes the processors to lose
synchronization.  The external cycle completes on the bus after the INTA cycle completes which hangs the
system.

WORKAROUND:  Use one of the following workarounds:

1. Do not use HOLD/HLDA protocol.  Designs based on the 82430NX PCIset and other chip sets which
do not use the HOLD/HLDA protocol are therefore not affected.

2. Disable pipelining.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

14DP. External Snoop Can Be Incorrectly Invalidated
PROBLEM:   An external snoop with INV pin = 0 (non invalidating snoop) can be incorrectly treated as an
invalidating snoop under the following conditions:

1. The system must use Dual Processors, operating in Intel’s DP mode.

2. An external snoop occurs via EADS#, with INV = 0.

3. The previous bus master must have driven CACHE# = 1, M/IO# = 1, D/C# = 1, (W/R# = 1 or LOCK# =
0), or the pins must float to this value by the time EADS# is asserted. (This corresponds to an
immediately preceding bus cycle that was non cacheable, memory, data and write or locked read.)

IMPLICATION:  A small fraction of non invalidating external snoops will be incorrectly invalidated, which in
turn will cause unnecessary write back cycles, resulting in sub-optimal performance if the system uses non
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invalidating external snoops frequently. The degree of sub-optimal performance will depend on the details
of system hardware and software, and most importantly, on the amount of non invalidating external snoops.

WORKAROUND:  None identified at this time.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

15DP. STPCLK# Re-assertion Recognition Constraint With DP
PROBLEM:  The Pentium Processor Family Developer’s Manual, Section 14.4.2.1 describes how to assure
that each assertion and de-assertion of STPCLK# is recognized. However, it is not possible to guarantee
that all changes on STPCLK# will be recognized in a DP system. This is because snoops between the dual
processors triggered by the PHITM# signal can delay the processor’s entry into the Stop Grant state until
well after the end of the Stop Grant cycle. It is specified that de-assertion of STPCLK#  must be held for at
least 5 clocks after the beginning of the processor’s entry into the Stop Grant state to be guaranteed to be
recognized by the processor.  As it is not practical for the system to monitor the PHITM# signal, there is no
practical way to guarantee that deassertion of STPCLK# will be recognized.

IMPLICATIONS:  A DP system should not be designed to depend on every STPCLK# assertion being
recognized and thus generating a Stop Grant bus cycle response, and/or on every STPCLK# de-assertion
allowing execution of at least one instruction. If a system design (such as typical usage of STPCLK# for
thermal control and/or power usage reduction) does not depend on either of these features, this erratum
will have no effect. Aside from sometimes not displaying these two features, a Pentium Processor system
will never hang or otherwise malfunction because of random assertion and de-assertion of STPCLK#.

WORKAROUND: Do not design DP systems to depend on every STPCLK# assertion being recognized and
thus generating a Stop Grant bus cycle response, or to depend on every STPCLK# de-assertion allowing
execution of at least one instruction.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

16DP. Second Assertion of FLUSH# During Flush Acknowledge
Cycle May Cause Hang

PROBLEM:  The Pentium Processor Family Developer’s Manual, Section 3.5.1.2 states that in a DP
system the FLUSH# signal must not be asserted again until the FLUSH ACK cycle is generated.  The
erratum occurs when the dual processor hasn’t been initialized (with the IPI), and a FLUSH#  is asserted
during a FLUSH ACK cycle (anytime from ADS# to 1 clock after BRDY# of FLUSH ACK cycle).

IMPLICATION:  Asserting FLUSH# in a DP system with the dual processor un-initialized by an IPI during a
FLUSH ACK cycle may cause a hang.

WORKAROUND:  Initialize the dual processor by sending an IPI, or do not assert FLUSH# during the FLUSH
ACK cycle.  The FLUSH# can safely be asserted two clocks after the completion (i.e. BRDY#) of the
FLUSH ACK cycle.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

1AP. Remote Read Message Shows Valid Status After a
Checksum Error

PROBLEM:  If an APIC Remote Read (RR) transmission suffers checksum error, the RR bits of the register
are mistakenly set to valid when they should show an invalid message state.
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IMPLICATION:  The implication is that the data portion (cycles 21-36) of the remote read message could be
corrupted, but the RR status bits (bits [17:16] of the ICR0 register) would show a valid status of ‘10’, when
they should show an invalid status of ‘00’.

WORKAROUND:  There is no workaround for this erratum, but checksum errors on the APIC bus imply that
there are more serious noise issues inherent to the system that need to be addressed. In any event the RR
messages should not be used if there are noise issues on the bus.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

2AP. Chance of Clearing an Unread Error in the Error Register
PROBLEM:  A normal read of the APIC Error register clears the register. The clearing process waits 3 clocks
to complete due to the possibility of being backed off. In the mean time if another error is written during this
3 clock delay, this new error overwrites the originally read error, and then is cleared at the end of the
original 3 clock period.

IMPLICATION:  An error could be posted in the APIC Error register but cleared prior to being read.

WORKAROUND:  None identified at this time.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

3AP. Writes to Error Register Clears Register
PROBLEM:  The APIC Error register is intended to only be read. If there is a write to this register the data in
the APIC Error register will be cleared and lost.

IMPLICATION:  There is a possibility of clearing the Error register status since the write to the register is not
specifically blocked.

WORKAROUND:  Writes should not occur to the Pentium processor APIC Error register.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

4AP. Three Interrupts of the Same Priority Causes Lost Local
Interrupt

PROBLEM:  If three interrupts of the same priority level (priority is defined in the 4MSB of the interrupt
vector), arrive in the following circumstance:

1. A interrupt is being serviced by the CPU, and the proper bit is set in the ISR register.

2. A second interrupt is received from the serial bus.

3. At the same time a third interrupt is received from a local interrupt source, which could include local
pins (LVT), an APIC timer (Timer), self-interrupt, or an APIC error interrupt.

If the first two conditions are met the third interrupt will be lost, and not serviced.

IMPLICATION:  The third interrupt will be ignored and not serviced if the specific scenario happens as listed
above.
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WORKAROUND:  The problem can be avoided if different priority levels are assigned to serial interrupts, than
to local interrupts.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

5AP. APIC Bus Synchronization Lost Due to Checksum Error on
a Remote Read Message

PROBLEM:  This error only occurs when a Remote Read message request is processed, and the returned
data has a non-zero value in the bits [30:29], and this returned data suffers a checksum (CS) error in the
transmission. When the device that generated the Remote Read responds with the end of interrupt
message (EOI) or the ICR message the APIC bus will lose synchronization.

IMPLICATION:  If this rare condition occurs the APIC bus will become unusable, and will impact system
operation. The system will hang because there will be no service on interrupts. Since RR messages are
primarily used in system debug procedures, there is no impact foreseen on normal APIC or system
operation.

WORKAROUND:  There is no known workaround for this erratum; Remote Read messages should not be
used. This error is mainly caused by checksum errors on the APIC bus which means that there are more
serious noise issues inherent to the system that need to be fixed.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

6AP. HOLD During a READ from Local APIC Register May Cause
Incorrect PCHK#

PROBLEM:  If the processor is reading one of its local APIC registers when the HOLD pin is asserted,
PCHK# may be asserted for one clock even though there is no data parity error. PCHK# will be asserted if
the values of the data bits [D31:0] and the parity bits [DP3:DP0] do not match during the HOLD/HLDA
transaction.

IMPLICATION:  This will impact a system that implements or responds to parity checking by the CPU, the
response will be specific to the parity error recovery routines implemented in the system. If parity is not
implemented in a system, there will be NO adverse effect from this erratum since there is no real parity
problem.

WORKAROUND:  If data parity checking and the local APIC are both enabled, deassert PEN# (parity enable)
during the time that HOLD is active. This signals to the processor that parity is not being driven from the
system and PCHK# will never be driven in response to this data transfer.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

7AP. HOLD During an Outstanding Interprocessor Pipelined
APIC Cycle Hangs Processor

PROBLEM:  This is an APIC related dual processor erratum:  When an APIC read cycle is interprocessor
pipelined into any other allowable cycle, and HOLD is prior to the last BRDY# of the outstanding cycle, the
MRM processor will hang.
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CLK
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BRDY#

NA#

HOLD

Unknown

IMPLICATION:  A system that uses dual processor with pipelining enabled, is subject to periodic lockups if
HOLD/HLDA# protocol is used.

WORKAROUND:  Use one of the following:

1. Disable pipelining in dual processor operation.

2. Do not use the HOLD/HLDA# protocol, use BOFF# instead.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

8AP. PICCLK Reflection May Cause an APIC Checksum Error
PROBLEM:  This is an APIC-related erratum:  Even though the PICCLK signal is a slower frequency clock, it
has been found to be extremely sensitive to the signal transition speeds and slopes. If the PICCLK
specification for rise time is met but there is a “knee” or a reflection during a high or low going transition
between 0.8V to 2.0V then the CPU may not correctly receive the APIC message, and will generate a
checksum error and in addition it will try to resend the APIC message. This knee could be as small as 100-
200ps, and it may still cause a problem. If the reflection occurs regularly, the resend tries on the bus could
saturate the bus bandwidth and the system could lose interrupts or hang up.

IMPLICATION:  Checksums happen occasionally, but if there is a knee in the PICCLK transition range then
there is a much higher likelihood of the occurrence. A healthy system will only see one or two per day of
operation, if this problem shows up then there is a chance that the resends of the checksum errors will
saturate the APIC bus and hang the system.

WORKAROUND:  Use the Intel Diagnostic tool under Microsoft Windows NT 3.1 to count the number of
checksum errors that occur. This tool is available to OEMs through Intel, and only works with the latest
release of the Windows NT 1.1 HAL. If you are an OEM, contact your Intel representative to get a copy.

Verify that the PICCLK signal meets the new .15ns (min), 2.5ns (max), specification for a rise from 0.8V to
2.0V or a fall between 2.0V and 0.8V. Also verify that this signal is “clean” , and there are no chances or
evidence of reflection during this time. The reflection would show up as ledges in the transition of the signal
in the 0.8V to 2.0V transition range. If there is any evidence of a reflection and the system shows errors on
the diagnostic tool, then the PICCLK line must be reworked to clean this up. The rework could include a
different clock driver, and/or rerouting the clock lines on the board. See the Specification Clarification that is
part of this document for guidance on PICCLK routing. See also the Specification Change section of this
document for more details on the PICCLK specification.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.
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9AP. Spurious Interrupt in APIC Through Local Mode
PROBLEM:  This erratum affects APIC in through Local (virtual wire) mode. The system can be a
uniprocessing or dual processing system that is using a Pentium processor with the APIC in through-local
(virtual wire) mode. This mode is supposed to cause the processor to respond to interrupts identically to a
Level triggered 8259 interrupt controller, and is typically used to provide AT compatibility mode for existing
drivers. Currently it acts as an edge triggered mode interrupt controller, latching any interrupts that may be
quickly asserted and then deasserted based on driver interception. The result is that some operating
systems (i.e., Novell*) will report the spurious interrupt and it may impact the performance or operation of
certain debug hooks for the operating system or network. Software disabling of the APIC by clearing bit 8 of
the SVR (spurious vector interrupt register) will not prevent this from occurring.

IMPLICATION:  Reports of the a spurious interrupt or lost interrupt message may continuously be output to
the terminal connection and fill the screen of a monitoring host.

WORKAROUND:  Use one of the following:

1. Ignore/disable the spurious interrupt reports. This may impact other debug hooks normally associated
with the network or operating system.

2. Rewrite drivers such that they disable interrupt processing during the driver execution, and then re-
enable the interrupts at the end of the procedure.

3. Disable APIC instead of running it in through Local mode.

By Hardware:  By deasserting the APICEN pin prior to the falling edge of reset.

By Software:  This can be done on the B1, B3, B5, and C2-step components by using a reserved bit
(bit 4) in the TR12 test register set to ‘1’. The use of a reserved bit is only for these steppings (B1, B3,
B5, and C2) and the function of this bit may change in future steppings. When implementing this
workaround ensure that the BIOS does a CPUID check looking for a specific stepping of the device.
CPUIDs for the following components are B1 = 0521H, B3= 0522H, B5= 0524H and C2=0525H. If the
TR12 register is used,  the APIC is fully disabled. To re-enable APIC, bit 4 must be cleared to ‘0’ and
then a warm reset of the part performed prior to APIC use of any kind.

4. For cB1, cC0 and E0 steppings, a software fix can be enabled by setting bit 14 of TR12 to ‘1’.   By
enabling this bit, an interrupt that is asserted and deasserted during the window that interrupts are
disabled (after CLI and before STI) is ignored.  If the interrupt is asserted during this window and
deasserted after interrupts are enabled (after STI sets IF), the interrupt is latched and serviced.  By
setting bit 14 to ‘0’, the processor will behave as in earlier steppings.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

10AP. Potential for Lost Interrupts while Using APIC in Through
Local Mode

PROBLEM:  This erratum affects APIC in through Local (virtual wire) mode. If a uniprocessing or dual
processing system is using a Pentium processor with the APIC in through Local (virtual wire) mode, and
the chip set is able to re-assert the INTR line prior to completion of the second Interrupt acknowledge cycle
(from a prior assertion of the INTR line), then the processor will neither recognize nor service the second
interrupt. The assertion edge of INTR has to occur after the completion of the second IntAck BRDY#, if
there is a transition and this transition is held high during the restricted time period, this INTR will not be
recognized. Software disabling of the APIC by clearing bit 8 of the SVR (spurious vector interrupt register)
will not prevent this from occurring.
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IMPLICATION:  If the conditions listed above are met the system may hang up since there would be an
interrupt that would not get serviced.

WORKAROUND:  Use one of the following:

1. Verify/Modify chip sets such that they cannot assert a second INTR for processing prior to the
completion of both Interrupt acknowledge cycles for the first INTR.

2. Disable APIC instead of running in through Local mode.

By Hardware:  This can be done through hardware by deasserting the APICEN pin prior to the falling
edge of reset.

By Software:  This can be done on the B-step components by using a reserved bit (bit 4) in the TR12
test register set to ‘1’. The use of a reserved bit is only for the B-steppings (B1, B3, or B5) of the 75-,
90-, and 100-MHz Pentium processors and the function of this bit may change in future steppings.
When implementing this workaround ensure the BIOS does a CPUID check looking for a specific B-
stepping of the device. CPUIDs for the following components are B1 = 0521H, B3= 0522H and B5=
0524H. If the TR12 register is used APIC is fully disabled. To re-enable APIC, bit 4 must be cleared to
‘0’ and then a warm reset of the part performed prior to APIC use of any kind.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

11AP. Back to Back Assertions of HOLD or BOFF# May Cause
Lost APIC Write Cycle

PROBLEM:  If the processor is writing to one of its local APIC registers when the HOLD or BOFF# pin is
asserted, then the next assertion of HOLD or BOFF# can potentially cause a subsequent APIC write cycle
to be lost. This may occur as a result of the following sequence of events:

1. The CPU issues a write cycle to one of its local APIC registers (this cycles runs internally to the CPU
but the corresponding APIC address is observed on the address bus while the cycle is executing)

2. HOLD or BOFF# is asserted while this APIC cycle is executing. (The write cycle to the local APIC
register does complete but internal logic remembers to restart this cycle.  For HOLD case, the cycle
restarts upon deassertion of HOLD)

3. The processor asserts HLDA (if HOLD is asserted)

4. HOLD or BOFF# is deasserted

5. The processor deasserts HLDA (if HOLD is asserted)



E ERRATA AND S-SPECS FOR THE PENTIUM ® PROCESSOR FAMILY

A-97

12/18/96 4:53 PM    Appenda2.doc

INTEL CONFIDENTIAL
(until publication date)

6. The first APIC write cycle appears to restart

7. Another HOLD or BOFF#  is asserted while this restarted APIC write cycle is executing internally

8. The processor asserts HLDA (if HOLD is asserted)

9. HOLD or BOFF# is deasserted

10. The processor deasserts HLDA (if HOLD is asserted)

11. The CPU issues the next APIC write cycle to one of its local APIC registers and there is no bus activity
prior to this cycle and the previous restarted APIC write cycle.

12. This subsequent APIC write cycle is observed to start (the correct address is observed on the bus),
however it fails to complete internally. In other words, from a software perspective this APIC write
instruction is lost.

IMPLICATION:  This problem affects systems that use HOLD/HLDA or BOFF# and enable the local APIC of
the CPU. If the second APIC write cycle is an EOI (End of Interrupt) cycle, the CPU will stop servicing
subsequent interrupts of equal or less priority. This may cause the system to hang. If the second APIC
write cycle is not an EOI, the failure mode would depend on the particular APIC register that is not updated
correctly.

WORKAROUND:  Using one of the following workarounds will avoid this erratum:

1. This problem will not occur if an instruction in between the two APIC write commands in the code
results in a bus cycle. This may also be achieved by inserting an APIC read instruction (reading one of
the local APIC registers) before every APIC write instruction. Other instructions such as I/O or locked
instructions would also force bus activity prior to executing an APIC write and will avoid this erratum.

2. Disable the local APIC if running in Uniprocessor mode.

3. In Dual processor mode, delay the next assertion of HOLD or BOFF# to allow the restarted APIC write
cycle to complete.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

12AP. System May Hang When BOFF# Is Asserted During the
Second Internal APIC INTA Cycle

PROBLEM: The processor will hang if BOFF# is asserted and deasserted during the second internal APIC
INTA cycle. The erratum will occur if BOFF# is sampled during the interval (i.e. clocks 1, 2, or 3) shown in
the figure below, although keeping BOFF# asserted through the last cycle (i.e. cycle 4) of the second INTA
will prevent this erratum from occurring

If these conditions occur while a remote read message is being sent or received, the second INTA cycle
may take up to 8 clocks to complete (counting from clock 1).  BOFF#  is not latched and must remain
asserted until after the 2nd INTA completes (e.g. for 8 clocks).

Similarly, if HOLD is asserted anytime during the second INTA cycle, and during a remote read, the
processor will hang.
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BOFF# During 2nd INTA (Non-remote Read)

1       2       3       4

IMPLICATION:  If the system does not assert BOFF# when the processor bus is idle, then this problem will
not occur.  Internal APIC INTA cycles are run only when the bus is idle, thus asserting BOFF# during an
external bus cycle (e.g. started by an ADS#) will avoid these circumstances.  In systems that can assert
BOFF# when the bus is idle, asserting BOFF# for a least 4 clocks will avoid the problem for non-remote
read cases.  Note that there may be other implementations that guarantee BOFF# is not asserted in the
problematic window.  For example, if BOFF# is only asserted with AHOLD active and AHOLD always
precedes BOFF# by at least 4 clocks, the erratum is avoided.

If a remote read is occurring (e.g. between two processors) this will delay completion of the second INTA
cycle by up to 8 clocks (i.e. bus clocks), and BOFF# asserted during this time may hang the system.
Remote reads are typically performed during system debug and not in normal operation. Not performing
remote reads will avert this case.

Asserting HOLD anytime during the second INTA cycle during a remote read cycle will cause the system to
hang.  Not asserting HOLD or not performing APIC remote read cycles will avert this case.

WORKAROUND:  Use one of the following to avoid the BOFF# case:

1. For non-remote read case, do not assert BOFF# when the bus is idle, or assert BOFF# for at least 4
clocks during idle bus cycles.  For the remote read case, assert BOFF# for at least 8 clocks.

2. Use APIC in through local mode.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

13AP. APIC Pipeline Cycle During Cache Linefill Causes
Restarted Cycle to Lose Its Attribute

PROBLEM:  When a read or write cycle to an APIC register is pipelined into a cache linefill and both cycles
get backed off (by assertion of BOFF# for one clock only), the cache linefill that is restarted loses its
attributes.  When the cache linefill is restarted, although the processor does assert CACHE#, the processor
loses track of the cacheability of the cycle and treats the burst linefill as a single cycle read.

IMPLICATION:  The processor reads only the first quad-word (indicated by the first BRDY#), but ignores the
following three transfers of the burst linefill. However, the internal APIC cycle is allowed to restart after the
first BRDY#.  When the APIC cycle completes and another bus cycle is started by the processor (indicated
by an ADS#) before the last BRDY# from the burst linefill is returned, the leftover BRDY#s could incorrectly
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terminate the new cycle and the processor could lose synchronization with the bus, causing the processor
to hang or get corrupted data.

It is unlikely this erratum will occur for systems using zero wait states (i.e. 2111 burst read) or one wait
state lead off (i.e. 3111 burst read).  A high-latency memory subsystem or I/O subsystem would increase
the exposure of the new bus cycle to a leftover BRDY# (i.e. 3222 burst read).

WORKAROUND:  Use one of the following:

1.  Always assert BOFF# for more than one clock.

2.  Disable pipelining when using the APIC.

3.  Avoid asserting BOFF# during pipelined linefill cycles when using the APIC.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

14AP. INIT and SMI# Via the APIC Three-Wire Bus May Be Lost
PROBLEM:  If the INIT and SMI# pins are kept asserted once they are recognized and then another INIT or
SMI# is asserted to the processor via the APIC three-wire bus, the processor will not recognize this second
assertion of INIT or SMI#.

INIT and SMI# are edge triggered interrupts and are only recognized on the rising edge (falling edge for
SMI#).  Since the processor only detects the edges on these pins, it is possible to hold the levels on these
pins in the asserted state (logic 1 for INIT and logic 0 for SMI#).  When another INIT or SMI# is required,
the levels at these pins can be deasserted for several clocks and reasserted to generate the edge which
triggers the interrupt.  However, if the levels on these pins are kept asserted, and the APIC three-wire bus
is also used to assert INIT and SMI# to the processor, the INIT and SMI# interrupts via the APIC three-wire
bus are lost.

IMPLICATION:  If the above conditions are met, INIT and SMI# interrupts via the APIC three-wire bus will be
lost.  Designs which do not use the APIC three-wire bus to assert INIT and SMI# will not be affected by this
erratum.

WORKAROUND:  To avoid this erratum, use one of the following:

1. Assert INIT or SMI# to trigger the interrupt and then deassert the INIT or SMI# thereafter to avoid
conflict with the APIC serial bus INIT or SMI# messages.

2. Do not send an INIT or SMI# message via the APIC three-wire bus.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

15AP. IERR# in FRC Lock-Step Mode During APIC Write
PROBLEM: When an APIC write is pipelined into a memory write, IERR# is incorrectly asserted one clock
after the BRDY# of the memory write for a duration of one clock. (Note that APIC write cycles are not
driven on the external bus).  This problem is a subset of the problem described in Erratum 29.

IMPLICATION:  This will cause an inadvertent IERR# to occur for one clock.

WORKAROUND:  Disable pipelining in FRC lock-step mode.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.
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16AP. Inadvertent BRDY# During External INTA Cycle With
BOFF#

PROBLEM:  The Pentium Processor Family Developer’s Manual states that BRDY# is ignored during
assertion of ADS#.  There are two cases when using the APIC in through local mode where an inadvertent
BRDY# asserted during the ADS# of an external INTA cycle, in combination with a subsequent BOFF#,
can cause the processor to hang.

1. If during the first INTA cycle an inadvertent BRDY# is asserted with ADS#, followed by the real
BRDY# for that cycle, and then the 2nd INTA cycle is backed off, the processor loses synchronization.
Instead of restarting the 2nd INTA cycle externally, the processor ends the cycle internally without
reading a valid interrupt number (0-255) which hangs the interrupt handler.  The window that BOFF#
can cause this erratum is after (the valid BRDY#) completion of the 1st INTA cycle and before
completion of the 2nd INTA cycle.

2. If the 1st INTA cycle completes correctly (with only one valid BRDY#), and an inadvertent BRDY# is
asserted during the ADS# of the 2nd INTA cycle, and then the 2nd INTA cycle is backed off before its
completion, the processor again loses synchronization and hangs.

IMPLICATION:  The interrupt will not be serviced and the system hangs waiting for the processor to complete
its 2nd INTA cycle.

WORKAROUND:  Use one of the following:

1. Do not assert BRDY# during ADS#.

2. Do not assert BOFF# during an external INTA cycle.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

17AP. APIC Read Cycle Doesn’t Complete Upon Assertion of
BOFF# and HOLD

PROBLEM:  During an APIC cycle (read or second INTA), if BOFF# is asserted for one clock, and HOLD is
asserted in the following cycle (at the rising edge of BOFF#) for one clock, the APIC cycle may either not
complete or not complete correctly.  Either the processor is waiting for the APIC cycle to complete before
issuing any new cycles and the processor hangs (APIC read), or the cycle does complete but with the
incorrect Interrupt Vector being recognized (APIC second INTA).  Note that this erratum does not occur
when BOFF# and HOLD are asserted simultaneously for one clock.

IMPLICATION:  Systems typically use either BOFF# or HOLD (but not both) to gain control of the bus.  If a
system were to assert this sequence of BOFF# and HOLD for one clock each, the system may be
susceptible to a hang.

WORKAROUND:  Do not assert BOFF# for one clock immediately followed by HOLD for one clock.  If HOLD
must follow BOFF# by one clock, assert one of the signals (BOFF# or HOLD) for more than one clock.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

18AP. PICCLK Must Toggle For at Least Twenty Cycles Before
RESET

PROBLEM:  In order for the internal circuitry of the local APIC to initialize properly, PICCLK must toggle at
least twenty times (1.2µS – 10µS depending on the PICCLK frequency) before the falling edge of RESET.



E ERRATA AND S-SPECS FOR THE PENTIUM ® PROCESSOR FAMILY

A-101

12/18/96 4:53 PM    Appenda2.doc

INTEL CONFIDENTIAL
(until publication date)

IMPLICATION:  An improper initialization of the internal APIC circuits may cause, for example, the
APICEN/PICD1 pin to be erroneously driven low; thus, the on-chip APIC would not be enabled. In such a
scenario, the dual-processor in DP systems and all messages sent on the serial APIC bus would not be
recognized.

WORKAROUND:  Ensure that PICCLK toggles for at least twenty cycles before the falling edge of RESET.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

19AP. APIC ID Can Not Be Changed
PROBLEM:: BE[3:0]# can be used on the Pentium processor as APIC ID inputs and are sampled at RESET.
Due to the strong internal pulldown on these pins, it may not be possible to change  the default APIC ID
when the pins are sampled at RESET.

IMPLICATION: Only the default APIC ID (0000 for OEM and 0001 for DP upgrade) can be set at RESET.

WORKAROUND: The APIC ID can also be configured through software. To change the APIC ID after
RESET, write the value to Local APIC Unit ID Register.

1TCP. CPU May Not Reset Correctly Due to Floating FRCMC# Pin
PROBLEM:  The functional redundancy master/checker (FRCMC#) input is sampled by the processor during
reset (it is ignored after reset). If it is sampled active, then it tri-states the outputs. In the TCP package, this
input is not bonded out, and is therefore floating internally. The possibility exists that the processor will
sample this input low during reset and tri-state the outputs.

IMPLICATION:  The system may fail to boot up.

WORKAROUND:  If CPU fails to reset, reboot the system.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.

2TCP. BRDY# Does Not Have Buffer Selection Capability
PROBLEM:  The capability of configuring selectable buffer sizes via the BRDY# and BUSCHK# pins is not
available in the TCP package; only the Typical Stand Alone Component strength is available.

IMPLICATION:  Only the Typical Stand Alone Component buffer size (the smallest, # EB2) is available in the
TCP package.  This erratum is expected to impact few if any notebook designs; the higher buffer strengths
are helpful only for large designs, which are normally built into server and some desktop systems.

WORKAROUND:  None identified at this time.

STATUS:  For the steppings affected see the Summary Table of Changes at the beginning of this section.
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