E
m
7))
Yot
mmm
2T B
9.nmU
=~ O o
OOSU
-}ln
£% 3
5
& U
3:N«m1U
R 8 S
oD >

—Jﬁw . 8x930Ax, 8x930Hx Universal Serial Bus Microcontroller User’s Manual SRETIEN

8x930Ax, 8x930Hx
Universal Serial Bus
Microcontroller

- User’s Manual

September 1996

intel.

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or oth-
erwise, to any intellectual property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of
Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to
sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or
infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life
saving, or life sustaining applications.

Intel retains the right to make changes to specifications and product descriptions at any time, without notice.
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
*Third-party brands and names are the property of their respective owners.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be
obtained from:

Intel Corporation

Literature Sales

P.O. Box 7641

Mt. Prospect, IL 60056-7641
or call 1-800-879-4683

© INTEL CORPORATION, 1996

I ntel ® CONTENTS

CHAPTER 1
GUIDE TO THIS MANUAL
1.1 MANUAL CONTENTS ...ttt ettt et e sre e e e e e s ste e seeate e samnnes 1-1
1.2 NOTATIONAL CONVENTIONS AND TERMINOLOGYcccoooiieivriireeeciees e ceeee e 1-3
1.3 RELATED DOCUMENTS ...t eee ettt st er st e ee e et e e s s e s se e ss e aes st e eanasansaneen 1-6
1.3.1 Data SHEEL ... e e e e e e e s 1-6
1.3.2 APPLICAtION NOLES ...t e e e re e e ae e seses e bee e ananaen 1-6

1.4 APPLICATION SUPPORT SERVICES.......coociiiiieceteies et ses e esnnennes. 127
1.4.1 LYo T Fo YA Ao oIV R O . |

1.4.2 FaxBaCK SEIVICEcocciiiiiiiiiie ettt et et st et st st e e s e 1-8
1.4.3 Bulletin Board System (BBS)cccceeiiiiiiie et e et reaen 1-9
CHAPTER 2
ARCHITECTURAL OVERVIEW
2.1 PRODUCT OVERVIEW. ...ttt ettt ettt st sa e sr et e e 2-3
211 BXOB0AX FEAUIESeviiiiei et ettt et e e e e e e ea e snn e e ene s 2-3
2.1.2 BXOBOHX FEAIUIES ...ttt et ettt ettt e e s e saae e e e e 2-3
213 MCS® 251 ArChiteCtUre FEAUMESoo.eeeeeeeeeeeeeeeeeeeee e eeseesee e eee e s eeses e enesen e 2-4
2.2 MICROCONTROLLER CORE.........coottiiieeie et et e seees e aessaee v see e sraeeasveesn e e s e aean 2-8
222 Clock and Reset Unitccociiiiiiiiiiiiieie ettt et ae s senee 00 229
2.221 State Time and Peripheral CYCIESceccevieirieeiteeice et 2-9
2.2.2.2 LOW-CIOCK MOQEcccviiiiiiiiiirtiie ettt st esvie e enr e snnennneanae e 2210
2.2.2.3 RESELUNIL ..ot e e e e st e et a e e s 2-10
223 INerrupt HANAIEKc.ooiiiiiiii it st sttt 2-12
23 ON-CHIP MEMORY ...ttt et sttt i e e st ee e st s saeeee e e e es e e rats sneaeaeen 2-12
24 UNIVERSAL SERIAL BUS MODULE........ccoiiiiiistieie it et st eeenie v snsesiesne e snes 2-12
2.41 The 8X930AX USB MOQUIEcocceeieiieiitie ettt et te s es et ees e saaesrae e saesannees 2-14
2.41.1 Serial Bus Interface ENGiNe (SIE)ccoiiiiiiiiiniieeie et 2-14
2.4.1.2 Function Interface Unit (FIU)ccocoioieiiiiieie e e 2-14
2.4.1.3 FUNCHON FIFOS ...oiiiiii ettt ettt st e e e e et enase b e e e 2-14
242 The 8x930HX USB MOUIEccoeiiiiiiriieiiieseereecteesiie e s e se e et e e s 2-14
2421 HUD REPEALETeeieeiiiiiit e ettt e e st ae e et be e v aneae e aa 2-15
2.4.2.2 Serial Bus Interface Enging (SIE)c.cccoeiiiiiiiiiiiee e 2-15
2.4.2.3 Hub Interface Unit (HIU)coeciiiiiiiiciineci et 2215
2424 HUD FIFOS ...ttt et st st sa et s sae e s ee b e s e e e 2-15
25 ON-CHIP PERIPHERALS....... ottt sttt sttt e st st se s s ne e saen e 2-16
2.5.1 Timer/Counters and Watchdog TiMEerc..ccceiieiiiniirieninee et 2-16
252 Programmable Counter Array (PCA)cooiiiiiiir ittt st 2-16
2.5.3 Seri@l O POrt ..ottt e e e e e s 2-16
2.6 OPERATING CONDITIONSoouitiitetie ettt ee et ee et e ee e e sessses e esesesssnasesaen e 2-17

. -
8x930Ax, 8x930Hx USER’S MANUAL |nte|®

CHAPTER 3 -
ADDRESS SPACES
3.1 MCS® 251 ARCHITECTURE ADDRESS SPACES.......ccocoviiverieeiesiensessesissesssssisssesins 3-1
3.1.1 Compatibility with the MCS® 51 Architecturec..cccvevvvmiinieinicercn e 3-2
3.2 8X930 MEMORY SPACEoicoieireeeirre e et e s sr et s srassrs st s s s 3-5
3.2.1 On-chip General-purpose Data RAMcccceiiiiinii i 3-8
3.22 ONn-chip COAE MEMOTY ...ttt e e e e e st e e e e 3-8
3.2.2.1 Accessing On-chip Code Memory in Region 00:cccccoiivimiiinninin e 3-9
B3.2.3 EXErNal MEMOTY ...coooiiiiieir et e e e e e e e e e s e e e e 3-9
3.3 8X930 REGISTER FILEeoieieeiteci ettt et s srae b s s s s s 3-9
34 BYTE, WORD, AND DWORD REGISTERS...........cccccmiiiiirnrctin s 3-12
3.4.1 Dedicated REGISTEISocoiiiiiiririiiiie e b e e 3-12
3.4.1.1 Accumulator and B Registercccceoviiiiiiniiiic e 3-12
3.4.1.2 Extended Data Pointer, DPXcccccoviiiiiiiiiiccni e 3-14
3.4.1.3 Extended Stack Pointer, SPX ...t cen e e 3-14

3.5 SPECIAL FUNCTION REGISTERS (SFRS)cccccciviininiisiiiiniisiiee e 3-15

CHAPTER 4
DEVICE CONFIGURATION
4.1 CONFIGURATION OVERVIEWoooiiiiiieeeie e ettt s e s 4-1
4.2 DEVICE CONFIGURATIONccciiiiiiiieeneintir e rer s s e snesaesnessananens 421
4.3 THE CONFIGURATION BITS......ocootiiicrneirice st s i s s s s s 4-4
4.4 CONFIGURING THE EXTERNAL MEMORY INTERFACE.........cccoosiirininnnnininsnnes 4-7
4.41 Page Mode and Nonpage Mode (PAGE#)ccoooinveivecniniinnen e 4-7
442 Configuration Bits RD1:0ccccooiiiiiiiiiiiicese et e e e s s s 4-8
4421 RD1:0 =00 (18 External Address Bits)c.ccceuvvrniiviiiinniicn e, 4-10
4422 RD1:0=01 (17 External Address BitS)cccoeevvvrnnviiincinniin i 4=10
4.42.3 RD1:0 =10 (16 External Address BitS)ccoeceevimiviniiiniinncinniniine e 4-10
4424 RD1:0= 11 (Compatible with MCS 51 Microcontrollers)c..cecevivviviiininnns 4-11
443 Wait State Configuration BitSccccocermiiiiiiie i 4-11
4.4.3.1 Configuration Bits WSAT:0#, WSBT:0#coooiiiiiiiiiin i e 4-11
4.4.3.2 Configuration Bit XALE#cccooiiiieir et e 4-11
45 OPCODE CONFIGURATIONS (SRC)....coiirmeirerriirr i srisens s sre s 4-12
451 Selecting Binary Mode or Source Mode .. cerereerer e 4212

4.6 MAPPING ON-CHIP CODE MEMORY TO DATA MEMORY (EMAP#) U— S
4.7 INTERRUPT MODE (INTR).....ccooviiiiniinini et ssesne e 4214

CHAPTER 5
PROGRAMMING CONSIDERATIONS
5.1 SOURCE MODE OR BINARY MODE OPCODES........ccccoiicireenic s seeeeeeeeees 5-1
5.2 PROGRAMMING FEATURES OF THE 8X930 ARCHITECTUREccce v iniinnnnnn. 5-1
5.2.1 [T= = T I/ o< TR 5-1
5.2.1.1 Order of Byte Storage for Words and Double Wordsccceveriivininiiniiinnenccnnn, 5-2
522 Register NOtationcoceeviiiiiiiiiii e 5-2

|nte|® CONTENTS

5.2.3 Address NOtAtioNcccceoiiiiiiiiiiii et s b s 5-2
5.2.4 Addressing MOdESscccoiiiiiiiiinii i 5-4
5.3 DATA INSTRUCTIONS ..ottt ettt st s esn e sn e smmeb e sre e e 5-4
5.3.1 Data Addressing MOTESc.ccoviieiiiiiie e e e e e 5-4
5.83.1.1 Register AdAreSSINGcovieeiririniiiieee it e s e s e 5-5
5.3.1.2 IMMEAIALE ...cciiiiiiiiee et e e e e e 5-5
B.3.1.3 DIFECE et e e e s 5-5
5.83.1.4 INAIFECT ..t e e e e 5-6
5.3.1.5 DISPIACEMENTooiiiiiie ettt e et e e e e e e e e 5-8
5.3.2 Arithmetic INSTTUCHONScceeiiiiiieeii e e 5-8
5.83.3 Logical INSIrUCHIONScooiieciiiiiiict it e e 5-9
5.3.4 Data Transfer INStructionscccecoiriiiiiiin i 5-9
5.4 BIT INSTRUGCTIONS ...ttt ettt e e e e e e eb e e e 5-10
5.4.1 Bit ADAreSSING .. oceviiieie ettt e e s 5-10
55 CONTROL INSTRUCTIONS ..ottt et st s s e st e e 5-11
5.5.1 Addressing Modes for Control INStructionscccuveiivniieeinincnn s 5-12
5.5.2 Conditional JUMPScooiiiiiiiii it e et e et e bbb e s e e 5-13
5.5.3 Unconditional JUMPSccoirieriiiniiie e e e e TR 5-14
5.5.4 Calls and REIUIMNSooiiiiiiiiiiee ittt e e e s e e b e 5-14
5.6 PROGRAM STATUS WORDS ...ttt e e e e s 5-15
CHAPTER 6
INTERRUPT SYSTEM
6.1 OVERVIEW ...ttt ettt ettt s e e st crt s e et es e e e e e sas shes e 6-1
6.2 8X930 INTERRUPT SOURCES ..ottt e e e 6-3
6.2.1 External INterrupts ..o eiiiii et e s 6-5
6.2.2 Timer INErruptsocoviiiieit e e 6-6
6.3 PROGRAMMABLE COUNTER ARRAY (PCA) INTERRUPTc.oce et 6-7
6.4 SERIAL PORT INTERRUPTottt ettt st et e sr e n e s e e senae e e 6-7
6.5 USB INTERRUPTS...... ettt ettt et sttt et e et sn et et st e et s see e neean 6-7
6.5.1 USB FUuNnction INTEITUPEccooiiiiiie et et e e s sr e e 6-7
6.5.2 USB Start-of-frame INterruptcccooiiiiiiiii e 6-12
6.5.3 USB HUD INEEITUPE ..cocniiii ittt et e e e e e e et e s 6-15
6.5.4 USB Global Suspend/Resume Interruptcccoeeirieicnnniinniecnnnie e s 6-18
6.5.4.1 GIODAl SUSPENGooiiiiiiiiie ittt et e e e et e e 6-18

6.5.4.2 Global RESUMEccceeiiriiiiiiie ittt e e re s e s esnar e e O 18
6.5.4.3 USB Remote Wake-UPccccccveeriirerierertiee et s e esene a0 0= 18

6.5.5 8x930Ax USB Reset Separationcccceeevriiiiniciiiiciinsr i s 6-18
6.5.5.1 Initialization Required for USB Resetcceocviiiiiniiniicciisiic . 6-19
6.5.5.2 USB Reset Hardware Operationscccccevcicieverieseisiinrerceiniseees e svees e ceeae e e 6-22

6.5.5.3 USB RESELISReeiiieie ettt ee e aer e e e te e e e e s s esen saa s s naeas ee et san s e nss D22
6.5.5.4 Main Routine Considerationsccccoiverrrrieirreiirinnir e e s e e 000 0723

6.6 INTERRUPT ENABLEcooiiiiiii i s snnaenne. 024
6.7 INTERRUPT PRIORITIES......co oo sr s e eane. 0727

8x930Ax, 8x930Hx USER’S MANUAL Int3|®

6.8 INTERRUPT PROCESSING ..ottt s e e 6-32
6.8.1 Minimum Fixed Interrupt TIMeooceiiiiininie e e 6-33
6.8.2 Variable Interrupt Parameters ...t e e ree s e e s s e 6-33

6.8.2.1 Response Time Variablesccccciiiiiiiiiinicei e e e 6-33

6.8.2.2 Computation of Worst-case Latency With Variablesccccccveiiviinniicnnncns 6-35

6.8.2.3 Latency CalCulationscceoieiiiiiiin i e e e s 6-36

6.8.2.4 Blocking Conditionsccceviiiiiiiriiiin i e 6-36

6.8.2.5 Interrupt VECIOr CYCIEccoiiiiiiiiiiiiiieir ettt st s s s s e e e 6-37
6.8.3 SRS IN PrOCESS ..c..eoitiiiiiiieiiiestient et e e st e e st sr e s e snese e sn e st s e sraennseean 6-37

CHAPTER 7

USB FUNCTION

71 FUNCTION INTERFACE ... oottt st ettt es s et et sae e se e v e s ana e sae 7-1
7141 Function ENdPoint PAIrSccoeiiiiriiiee it ettt es st eee v s e e s sren e ee e e 7-1
7.1.2 FUNCHON FIFOS ..t et ettt et e e et e s ene e s s 7-1
7.1.3 Special Function Registers (SFRS)cccceecirieriei i s e seees e s 7-2

7.1.3.1 Endpoint-indexed SFRSc.ccciiiiiiicein ettt e e e e 7-3
7.1.3.2 ENdPoint SEIECHONceoueiieiiiiiesieees ettt st st e e et e r e s sr e 7-3

7.2 TRANSMIT FIFOS ...ttt e vrnr e e eeessneeesssssssesesessesesenssnnesesesssnssessssenssnsas 71D
7.2.1 Transmit FIFO OVEIVIEWucuviviiiiiiiririiiieeeeee e secesessre e setes s ssssssss e sssssssaressssessesnns £= 1D

7.2.2 Transmit FIFO RegiSters ...ttt 7-16
7.2.3 Transmit Data Register (TXDAT)ccoiviiiiiiiiii i i s s e 7-16
7.2.4 Transmit Byte Count Registers (TXCNTL/TXCNTH)ccoeecrnirnieiiiinccciniccnneen 7-16
7.2.5 Transmit Data Set Managementcccooieieiiniirien e e e 7-17
7.3 RECEIVE FIFOS ...ttt sttt ettt e s st st s e e s s s s en 7-24
7.3.1 Receive FIFO OVEIVIBWcocuiiiiiieiie et et e e e e e 7-24
7.3.2 Receive FIFO RegiStersccoiiiiiiiiiiiii it s e e e 7-25
7.3.2.1 Receive Data Register (RXDAT)ccuiiiiiiiir ittt s 7-25
7.3.2.2 Receive Byte Count Registers (RXCNTL/RXCNTH)cccovvvevivnneenncriinineennn 7-25
7.3.3 Receive FIFO Data Set Managementcccccoieenininiinnninin e 7-26
7.4 SIEDETAILS.. Y PTUP VR PIVIPTRRRUPY 1 X
75 SETUP TOKEN RECEIVE FIFO HANDLING SRR PRRRSPPTY £xC X
7.6 ISO DATA MANAGEMENT ..ottt st st s n e e s e 7-34
7.6.1 Transmit FIFO ISO Data Managementccceceerreiuinnieseescenseirreeese e sesseseesnsens 7-34
7.6.2 Receive FIFO ISO Data Managementcocoueueeoreeiiieereerincenseereeesrenre e e see s 7-35
CHAPTER 8
USB HUB
8.1 HUB FUNCTIONAL OVERVIEWcooitiiietiire ettt ee e e e e 8-1
8.1.1 Port Connectivity States .. PPN - i< |
8.1.2 Per-packet Signaling Connec’uvuty e 87D
8.1.2.1 Connectivity to Downstream Ports Attached Wlth FuII speed Devuces 8-5
8.1.2.2 Connectivity to Downstream Ports attached with Low-speed Devices 8-6
8.2 BUS ENUMERATIONocctiii ittt st sne s s s as e e b sr e e e aee 8-6

vi) I

intgl.

. 8.21 Hub DesCriptorsccccciiiiiiiiiieic
8.2.2 The Hub Address Register (HADDR)ccccooriiiiiiiiiiic e e

8.3 HUB STATUS ..
8.4 USB HUB ENDPOINTS .
8.41 Hub Endpoint Indexmg Usmg EPINDEX

CONTENTS

8.4.2 Hub Endpoint Controlccccvvvrciineinenninnee [T

8.4.3 Hub Endpoint Transmit and Receive Operationsc..c..

8.5 USB HUB PORTS... "
8.5.1 Controlling a Port Usmg HPCON

8.5.2 Examining a Port’s Status Using HPSTAT e e e BT
8.5.3 Monitoring Port Status Change Using HPSCc.ccceviennneene
8.5.4 Hub Port Indexing Using HPINDEXccccociiiiimiiiii 0. 85

8.5.5 Embedded Function . .
8.5.5.1 Embedded Functlon Reset

8.5.5.2 Embedded Function Remote Wake up

8.6 SUSPEND AND RESUME.........coivie ettt e
8.6.1 Hub Global Suspend and RESUMEccceeiiiieiie i e e e 00 O

8.6.2 Remote Connectivity ..
8.6.2.1 Resume Connectlwty

8.6.2.2 Connectivity Due to Physncal Connect/Dlsconnect ST RURUTRRPUPRPPTRTI - o
8.6.3 Embedded Function Suspend and Resumeccoeevcuenenn
8.7 HUB POWER DISTRIBUTIONccoiiiiiitie ittt st s s e naes
8.7.1 Port Power Switching ..o

8.7.2 Overcurrent DEECHIONccooviiiiiiiic e e ee e se e e e e e e e e e e eeeeeeee OF)

8.7.3 Ganged PoOWer ENADIEccoiriiiiieiiie e e e e s
8.8 HUB DEVICE SIGNALS ...ttt ettt e e s et e e e s sn e e eren e e e eaes

CHAPTER 9
USB PROGRAMMING MODELS

9.1 OVERVIEW OF PROGRAMMING MODELS ... s e e
9.11 Unenumerated Stateccccceeeeeiiiiieiiiieieeece e

9.1.2 Idle State .

9.1.3 Transmit and Recelve Routmes ...
9.1.4 USB INTEITUPES .neeieie e ettt ettt e sen e e e en e e e st e e e e e e e sae ne e eneenen
9.2 TRANSMIT OPERATIONS ...ttt er e eer e teeeeeeeesees s st e ber e seeeeaeaenassesse aeenranes

9.2.1 Overview

9.2.2 Pre-transmit Operatlons ...
9.2.3 Post-transmit OPerationsccccceeeveeriiiiieiieirinees e e s s s O
9.3 RECEIVE OPERATIONS......ccoei ittt ettt et s s ser s e s s s
9.3.1 OVEBIVIBW ...ttt et et e e e e e e
9.3.2 Post-receive Operationscccceeeuereee TSP
9.4 SETUP TOKEN ...ttt e e s s
9.5 START-OF-FRAME (SOF) TOKENccoeitiitititie et s s s

............................... 9-2

vii

L]
8x930AXx, 8x930Hx USER’S MANUAL Int9| ®

9.6 HUB OPERATION ...ttt ettt e et e et e et e sn e e e enn e e 9-16
9.6.1 BUS ENUMEIAtION ...ccuiiiiiiiiiecee ettt et s e e et e e e s 9-16
9.6.2 Hub Status and Configurationccc.cecuvrreeieiriiiinrie e e e e 9-17
9.6.3 Port Status Change CommuRiCatioNcccecceeriiinieiiin e e 9-22
9.6.4 Hub Firmware EXamples ... e s 9-23

9.6.4.1 GetPortStatus Request FIrmwareccccocoviiiiicniiieie et e 9-24

CHAPTER 10

INPUT/OUTPUT PORTS

10.1 INPUT/OUTPUT PORT OVERVIEW ..ottt et 10-1

10.2 /O CONFIGURATIONS......c.eo ettt ettt et e s e b et sae e bes e e st et sreenaeennennes 10-2

10.3 PORT 1 AND PORT 3 ...ttt e st e e e e sne e s e e e esesanea e ene e nens 10-2

10.4 PORT O AND PORT 2.....ociiiiiiniterinnree e e ene e s e seeeesseesensstesnansnssessesesenseessnesensenens 1072

10.5 READ-MODIFY-WRITE INSTRUCTIONS ..ottt e 10-5

10.6 QUASI-BIDIRECTIONAL PORT OPERATION........cccciiitiitie ettt eneee e 10-5

10.7 PORT LOADING......cccii ittt ettt s et ss e e e e s e e e ssee s bes e b aeen e e eenaassaeanns 10-6

10.8 EXTERNAL MEMORY ACCESS ..ottt setreee e ettt st st e e i s san s 10-7

CHAPTER 11 .

TIMER/COUNTERS AND WATCHDOG TIMER

11.1 TIMER/COUNTER OVERVIEW........coiiii ittt e e s s 11-1

11.2 TIMER/COUNTER OPERATION......cotici et crrrene et emees e e n 111

113 TIMER 0.ttt ettt et seee e er e e e e s e e e e et et e ae e eae e e s 11-4
11.3.1 Mode O (13-bit TIMEI) ittt e e et e saese e e 11-4
11.3.2 Mode 1 (16-Dit TIMEI) ...ooriiiiiiiie ettt st e cr e b e e e 11-4
11.3.3 Mode 2 (8-bit Timer With Auto-reload)ccoeeerrieiiieiiieinir e 11-5
11.3.4 Mode 3 (TWO 8-Dit TIMEIS)oviueiieiiieieies e ettt e e e e 11-5
11.4.1 Mode 0 (13-Dit TIMEI) ..eeiiiicie ettt et et e ee e st s e e e ene e e eas 11-9
11.4.2 Mode 1 (16-bit TIMEI) ...oocieiieiee et e e sn e e e s 11-9
11.4.3 Mode 2 (8-bit Timer with Auto-reload)c.cceoeiiiiriiiniecc e e 11-9
11.4.4 Mode 3 (Halt)c...... eeeeeeteeeaeeteteteretetateteteaea s tesesse s etebe s aeten s et et sre s erebebeserennas 11-9

11.5 TIMER 0/1 APPLICATIONS.......ccoi it ietireceeesivrsstaesceessressse s sesssnsnasssesssessssssnnnssnesnes 1129
11.5.1 Auto-reload Setup EXamplecccccceiviiriiciiin e e e e sereesieessseeeseeesssesssneneens 1 129

11.5.2 Pulse Width Measurémentscccoceeeiieir et ee e e st e ee e een e 11-10
T1.68 TIMER 2. oottt st e et e e et e e e saeeeeat e e esaseseesaeensss tesnneeenaeansreannanns 11-10
11.6.1 Capture MOTEcooveiiiiiiecie ettt e e et s st re e e sne e 11-11
11.6.2 AULO-reload MOAEooiiiiiiec e e e ee et e e s et r e e sne e eeannes 11-12
11.6.2.1 Up Counter OPerationc.c.coceevieiriveieinsienecniecessiiesssnvves e snesrssses sanessnneesesen 11-12
11.6.3 Up/Down Counter OPErationcc..eceeceeererrerereeseerneereesieeeessesse e esiesressenssesueennes 11-13
11.6.4 Baud Rate Generator MOGEcc.ueuiiiiiiiiiiee ettt et e e e 11-14
11.6.5 CIOCK-OUt MOGEoccneiiiiieeceie ettt te e e e ee e e e et be e e eete e ees eaasae s e ne e eeneasen 11-14
11.7 WATCHDOG TIMERooiiiiit ittt cee et st e st e s st e e e s e saae e s e sus e snaes sanneaaes 11-16

viii I

|nte|® CONTENTS

1171 DESCHPHON ..ttt ettt e re e bt s r s e et e sre e et e e aeasennn e e 11-16
11.7.2 USING the WDT ..ottt et et e et e e st svaesa e ste s saesnneees e eessennesnns 11-18
11.7.3 WDT During [dle MOcccuiiiiiiiiiiiecen ettt e et e e e 11-18
11.7.4 WDT DUring POWEIDOWNcocuiiiiiiiieie ettt et st sate e st arae e e 11-18
CHAPTER 12
PROGRAMMABLE COUNTER ARRAY
12.1 PCA DESCRIPTIONcoiittiiiiitieiitieiteaesteeeestiese e stesnaesstaes s aeses st sen ssaessnes sasansnessansnsanns 12-1
12,11 AlRernate POrt USAQEccccooiiiiiiiiiie ettt sttt st sn e e st e 12-2
122 PCA TIMER/COUNTER......ctiictiiieeite st srterre e st esee st e st se s e se e e aes e e e s neseanne e 12-2
12.3 PCA COMPARE/CAPTURE MODULEScciiiee ettt s 12-5
12.3.1 16-bit Capture Modecccceeevirrrieie ittt ee s saeas e e senaeens 12D
12.3.2 ComMPAre MOAEScccceiiiriieiiieeie e sesstee st eesae s et e e see e r e se e e e e sreeesaeseennne e ens 12-7
12.3.3 - 16-bit Software TIMer MOdeccocovi it e 12-7
12.3.4 High-speed Output MOdEccooeiiiiiiin it e e 12-8
12.3.5 PCA Watchdog Timer MOdeccoceiiiriiieirie e et e e e s 12-9
12.3.6 Pulse Width Modulation Modeccceeiiieiiieice et e 12-10
CHAPTER 13
SERIAL 1/0 PORT
131 OVERVIEW ..ottt ettt et e st st saae s te s e ea e saes s nte e s nsnaeenbesnnaanans 13-1
13.2 MODES OF OPERATION......c ittt cter st e eete e st ee e b s sae e et aeee e ntae e ennae e s 13-2
13.2.1 Synchronous Mode (MO 0)c...ecouieieiuiriieiie ettt s e e eee e e 13-2
13.2.1.1 Transmission (Mode 0)cccoeiiiiiimienir it eeeesresr e 13-2
13.2.1.2 Reception (Mode Q)viiiiioiiie ettt et e et e s 13-3
13.2.2 Asynchronous Modes (Modes 1, 2, and 3)cccceeveriieiieinie e e e eae 13-7
13.2.2.1 Transmission (Modes 1, 2, 3) ..coooiiiiriiiiir it et e 13-7
13.2.2.2 Reception (Modes 1, 2, 3) ..uoiuiiviiiriiieiirer e stsesir s se e ssns e et e s ssae s e s e sran e es 13-7
13.3 FRAMING BIT ERROR DETECTION (MODES 1, 2, AND 3).....cccceccvvrrerivirnrnreaeinnen 13-7
13.4 MULTIPROCESSOR COMMUNICATION (MODES 2 AND 3)....cccceeivviiereiirire e 13-8
13.5 AUTOMATIC ADDRESS RECOGNITION..........coeiireeieer e cerrcr e e eeer e eneneeees. 1378
13.5.1 GIVEN AAAIESS ...ooiuiiiiieieiiee ettt te e et ee s tr e sae e str e e st s saeeeansbeeeernaeaeeasennnnneaas 13-9
13.5.2 BroadCast AQAIESSccciicuiiiiie et ie e crr e e stre s ee e eteer e sbe e e een en sreaesnsnn e as 13-9
13.5.3 RESEE AAArESSESoeuiiieii et e e e st e e e e e ere e e st aa e er e e ean e e enes 13-10
13.6 BAUD RATESottt e sttt e st st e e ste st st se s e e s esaesneeneen sren 13-10
13.6.1 Baud Rate for Mode 0c.ccceevviiiiieei e se e e seen e e e eseaeesnneae e e cenneennenes 13210
13.6.2 Baud Rates fOr MO 2coiviiiiiiiee et er e st sre e er e e e en e snnne s 13-11
13.6.3 Baud Rates for Modes 1 and 3ccooiieieiiiiiniiees e e 13-11
13.6.3.1 Timer 1 Generated Baud Rates (Modes 1 and 3)ccccccuerniireecvninsenieeennn. 13-11

13.6.3.2 Selecting Timer 1 as the Baud Rate Generatorcc.cccceeeeveineeneniecieen . 13-11
13.6.3.3 Timer 2 Generated Baud Rates (Modes 1 and 3)cceoceiviniveircvcen e . 18-12
13.6.3.4 Selecting Timer 2 as the Baud Rate Generatorcccccvvieiveeiriecceniee e, 13-12

8x930Ax, 8x930Hx USER’S MANUAL "Ttel ®

CHAPTER 14
MINIMUM HARDWARE SETUP

14.1 MINIMUM HARDWARE SETUP.........coiiii i

14.2 ELECTRICAL ENVIRONMENTouiiiiiiecnie e ceteeeetneeseeeesaeeenser e esnen e aneesasesesneens
14.2.1 Power and Ground PiNSccceeviiiiiieir et s e ae s e e are e e e
14,22 UNUSEA PINS ..ottt et ettt tee st sa et st aee sttt es sttt sessasatssassene snsesessnnan
14.2.3 Noise CoNSIAErationsccccceriiiiiiiieee e e e e s eae e e

14.3 CLOCK SOURGCES.......oo oottt ee e e e sres s te e st e e et eetne e et e nesaesnneans

©14.3.1 On-chip OSCIllAtOr (CIYSEAI)cveveveeveceieectes oo s ensses

14.3.2 On-chip Oscillator (Ceramic RESONALOr)cccccerrieiiieineiniiie e
14.3.3 EXtErNal ClOCK ...ueiiniiiiieie it e e e b s
144 RESET oottt e e sttt e e s r e et s e s e e et e e
14.4.1 Externally-Initiated ReSetsccocciviiiiiiiiinc
14.4.2 WDT-initiated RESELSccvvcviiiieiie e e

14.4.3 USB-initiated Resets

14.4.3.1 8x930Ax USB Reset Separationccccoiiveiiciniiineinicic e

14.4.4 ReSet OPEIationceceeiuiiiiie i itiee ettt e e e e sb e e n e srae e

14.4.5 POWEI0N RESEE ..ottt et rr s e e ae e e e ee e e s ee s e e e st e ae e ee s e eas

CHAPTER 15
SPECIAL OPERATING MODES
15.1 GENERAL....oee e e e e e e bbb s
15.2 POWER CONTROL REGISTERS.......cccoiiiinir it e e
15.2.1 Serial I/O Control BitScccceiiieiiiiirieen et et
15.2.2 POWET Off FIAQ ..uvviiiririeiitien sttt sr e e e e st e s
15.2.3 8x930Ax USB Reset Separationcccoceiiiicimniiiniie i
15.3 IDLE MODE ..ottt et e e e e er e e e e snaen e

15.3.1 Entering [dle MOGEc..ouiiiiiii ettt ettt e e e s

156.3.2 EXiting Idle MOAEcoceiiiiiiie et e e s
154 USB POWER CONTROLcccoecenen. B PO VPSP PRPPSRPRPR
15.4.1 Global SUSPENnd MOdEccooeiiiiriiee it e e e e

15.4.1.1 Powerdown (Suspend) MOGEeecciriiiiien i e

o

15.4.1.2 Entering Powerdown (Suspend) Modec.cccecvvniiiineiiin e,
15.4.1.3 Exiting Powerdown (Suspend) Modecccceviiieieiin s
15.4.2 Global ReSUME MOGEccveiviieiieieieiier et s s e e s e
15.4.3 USB Remote Wake-Upcccoiriiiiiiiiiiniie ittt e
15.5.1 Entering LOW-ClOCK MOGEccooeiierriiii i
15.5.2 Exiting LOW-ClOCK MOAEcovuiiiiriiiiitii et e e e
15.6 ON-CIRCUIT EMULATION (ONCE) MODEc.co oo
15.6.1 Entering ONCE MOAEcccoeoiieiiiriei ettt et e s s b e e
15.6.2 EXtiNg ONCE MOGEoovuuiiiiiiiine ittt st e e sr e s e s s e s

intel.

CHAPTER 16

EXTERNAL MEMORY INTERFACE
16.1 OVERVIEW
16.2 EXTERNAL BUS CYCLES

16.2.1 Bus Cycle Definitions
16.2.2 Nonpage Mode BUS CYCIEScoouiriiieiiiiiie et e sree et sa et e en e e
16.2.3 Page Mode Bus Cycles
16.3 WAIT STATES... .
16.4 EXTERNAL BUS CYCLES WITH CONFIGURABLE WAIT STATES
16.4.1 Extending RD#/WR#/PSEN#
16.4.2 Extending ALE
16.5 EXTERNAL BUS CYCLES WITH REAL-TIME WAIT STATES
16.5.1 Real-time WAIT# Enable (RTWE)
16.5.2 Real-time WAIT CLOCK Enable (RTWCE)
16.5.3 Real-time Wait State Bus Cycle Diagramsccccevivreiniciniincneinnniniiei e
16.6 CONFIGURATION BYTE BUS CYCLES
16.7 PORT 0 AND PORT 2 STATUS
16.7.1 Port 0 and Port 2 Pin Status in Nonpage Modeccccccoviviiiiniiiiin e,
16.7.2 Port 0 and Port 2 Pin Status in Page Modeccocvvniiiiiniiiniinni e,
16.8 EXTERNAL MEMORY DESIGN EXAMPLES...
16.8.1 Example 1: RD1:0 = 00, 18-bit Bus, External Flash and RAM
16.8.2 Example 2: RD1:0 = 01, 17-bit Bus, External Flash and RAM
16.8.3 Example 3: RD1:0 = 01, 17-bit Bus, External RAM
16.8.4 Example 4: RD1:0 = 10, 16-bit Bus, External RAM .
16.8.5 Example 5: RD1:0 = 11, 16-bit Bus, External EPROM and RAM
16.8.5.1 An Application Requiring Fast Access to the Stack
16.8.5.2 An Application Requiring Fast Access to Data
16.8.6 Example 6: RD1:0 = 11, 16-bit Bus, External EPROM and RAM
16.8.7 Example 7: RD1:0 = 01, 17-bit Bus, External Flashcccccccciviniiiinninniinnns

CHAPTER 17

VERIFYING NONVOLATILE MEMORY
17.1 GENERAL... .
1711 Consnderatuons for On Chlp Program Code Memory
17.4 VERIFY ALGORITHM....ccii ittt e s e s s sr e s
17.5.1 ENCIyPtiON AITAY ...oveiiiiiiiei ettt st s s s s s s b e e
17.6 SIGNATURE BYTESoiiiiiiie ittt s e e er b s sb e s s s s

CONTENTS

e 17-1

1741
17-3
17-3
17-5
17-5
17-5
17-6

Xi

8x930AXx, 8x930Hx USER’S MANUAL

APPENDIX A

INSTRUCTION SET REFERENCE
AA NOTATION FOR INSTRUCTION OPERANDS.coooiiiieee et s A-2
A.2 OPCODE MAP AND SUPPORTING TABLEScccco oottt e A-4
A3 INSTRUCTION SET SUMMARYooiiiinieitirntieeeneee st saaeenees et e st esaes st s seessaenas A-11

A.3.1 Execution Times for Instructions Accessing the Port SFRSc.ccoceeveeveervernnns A-11
A3.2 INSErUCtioN SUMMAIESoeviiiiiiiiiie et ae e erae e e A-13

A4 INSTRUCTION DESCRIPTIONSoooiioiiireir et ettt eseee e e et ens A-25
APPENDIX B

SIGNAL DESCRIPTIONS
APPENDIX C

REGISTERS
CA1 SFRS BY FUNCTIONAL CATEGORY ...c.ciiiictien ittt st sae s sten e e enne s enneessnae e C-4
C.2 SFR DESCRIPTIONS...... .ottt iieesite ettt ee sttt e e e sae e srae e sae s sae e snba s st aannneea sren C-8
C.3 CONFIGURATION BYTES.......ooiiiietiteiiie ettt i e stvsss st e sraessesessnaes s s s saessneaeneesrn C-78
APPENDIX D

DATA FLOW MODEL
GLOSSARY
INDEX
Xii

|nte|® CONTENTS

2-6

3-6

4-1

4-6

4-8

6-10
6-11
6-12
6-13
6-14
6-15
6-16
6-17

FIGURES

Page
8x930Ax and 8x930Hx N @ USB SyStemcoceiiiiiiieieee et 2-1
Functional Block Diagram of the 8X930...........cccoiuireiiiie i e e e 2-2
8x930Ax USB Module BIoCk Diagram..........cceceeriierieesieiieieeneee e ssseessesses e senssnessrean 2-6
8x930Hx USB Module Block Dlagram PP PP TOPTPRRUPURRURRPURIR - 4
The CPU... 28
Clock CII’CUI'(... 2-9
Clocking Definitions (LOW SPeed).........ccueiviiviriiirceii e e e cetee e e e e et e e enae e 2-11
Clocking Definitions (FUll SPEEd)cccuiiieeiieriie et e erae e 2-11
MCS® 251Architecture AdAreSs SPAaCESwereereeveereseiseeresesssserseesesseessesseseseeen 3-1
Address Spaces for the MCS® 51 ArchiteCturecccoeeecvviiveiieceiee e seecrerce e 3-3
Address Space Mappings MCS® 51 Architecture to MCS® 251 Architecture.............3-4
8x930 Address Space SO PTRPTRTPIPRIRIPRRC = o
Hardware Implementatlon of the 8x930 Address Space ST UPRUOTRRTRRRROPRES Y 4
The RegiSter Fileccouiuiiiiiiiieeiieie ettt e et s b e ss e st e 3-10
Register File Locations 0-7 ... RTRRC o) b |
Dedicated Registers in the Reglster File and thelr Correspondmg SFRs e 3-13
Configuration Array (ON-ChiD).......cceeveiieririeceirie e staeee et sreenerne e e e seessass e seeenns 4-2
Configuration Array (EXernal).........cccoevoeeeioieece e e eveseieene . 423
User Configuration Byte 0 (UCONFIGO) O TOURPPRIY - = o3
User Configuration Byte 1 (UCONFIGT)cccoiueiirieeieneniie e s e s 4-6
Internal/External Address Mapping (RD1:0 = 00 and 01) ... 4-8
Internal/External Address Mapplng (RD1 0=10and 11)... F Y .
Binary Mode Opcode Map... e 4 13
Source Mode OpCode MaPcooiiiiriiieiii ettt et s e e s 4-13

Word and Double-word Storage in Big Endien Formcccceeceivviincnicciniien . 5-3
Program Status Word Register............ccccimirioinnemriiiinie e se e D217
Program Status Word 1 Reglsters 18

Interrupt Control System .. TSP PP PPRPPURPRUPUON o v~
USB/Hub Interrupt Control System OO UPIUPRRTRUUPTRPPRUPPUPRN o E1<
FIE: USB Function Interrupt Enable Reglster ... 6-8
FIE1: USB Function Interrupt Enable Register.............ccccevrvirrinnnnenieniniee e e e 6-9
FIFLG: USB Function Interrupt Flag RegiSterccocveeeririeieine e 6-11
FIFLG1: USB Function Interrupt Flag Registercccovvriiiiii v 6-12

SOFH: Start of Frame High Register............cccccevmeiorreeiicrnirree e sevese s csrseenen e, 013
SOFL: Start of Frame Low RegiSterccoocvveveiririieirie ettt e srveeesriee e 6214

HIE: Hub Interrupt Enable RegiSter...........cccoiniiiiiiiinn ettt sestee s s 6-16
HIFLG: Hub Interrupt Status REGISLENecceiviiieieciiee s 6-17
USB Reset Separation Operating Model..........c.ccvirreiiieiniieie e 6-21
IENO: Interrupt Enable REGIStEr Oc.vvveveereieusieceeres s eeveretsmss e se s sees s ses s 6-25

IEN1: USB Interrupt Enable RegIStErcccuvvierevniiiininieis et 000. 6-20
IPHO: Interrupt Priority High Register 0........ccocooviviin it 6-28
IPLO: Interrupt Priority LOW Re@iSter O..........covivieriieeneiinie e seeceneeenie v 0-29
IPH1: Interrupt Priority High RegiStEr 1cccveveviiieiererereieieeerereee e rev et s s sevenens 6-30
IPL1: Interrupt Priority Low Register 1.........cccemniiiiiicin e . 6231

xiii

8x930Ax, 8x930Hx USER’S MANUAL

Figure
6-18
6-19
6-20
7-1

7-2
7-3
7-4

7-6
7-7

7-9

7-10
7-11
7-12
7-13
7-14
7-15
7-16
8-1

8-3
8-4

8-6
8-7

8-9
8-10
8-11
8-12
8-13
9-1

9-3
9-4

9-6
9-7

9-9

9-10
9-11
9-12

Xiv

FIGURES

The INTErruPt ProCeSS.......c.couiiiiiiiiie ittt sttt e et st e st
Response Time Example #1ccccooeveiiininnienein e

Response Time Example #2 ..

EPCONFIG: Endpoint Conflguratlon F{eglster

EPINDEX: Endpoint Index Registerccccceeueriiiiniiicnieennne.
EPCON: Endpoint Control REGISEEN...........vcevirriiniieeeee et st e e e en e
TXSTAT: Transmit FIFO Status Register.........cccccovvenvvennenneee
RXSTAT: Receive FIFO Status Register..........c..coveevvieeevvennnnenn
FADDR: Function Address Register............ccccvvvivinniciennecnne.

Transmit FIFO Outline...

TXDAT: Transmit FIFO Data Reglster

TXCNTH/TXCNTL Transmit FIFO Byte Count Registers
TXCON: Transmit FIFO Control Register............ccccevvveneneenne.
TXFLG: Transmit FIFO Flag Registerccccvcevverneniveenceennnnns

Receive FIFO ..

RXDAT: Recelve FIFO Data Reglster

RXCNTH/RXCNTL: Receive FIFO Byte Count Registers
RXCON: Receive FIFO Control Registerccccccevevieiniennnnnes
RXFLG: Receive FIFO Flag Register..........cocoiiiiiiiiii ittt
8X930Hx Hub Functional Diagram ..

Hub State Flow..

Packet Signaling Connectlvny ...

HADDR: Hub Address Register....

HSTAT: Hub Status and Conflguratlon Reglster .
TXDAT: Hub Transmit Data Buffer (Endpoint 1)ccccveriiinnini e
Status Change Communication TO HOStcccueiirininin i s
HPCON: Hub Port Control REgIStercccuvveiiieiens ittt 87
HPSTAT: Hub Port Status Register..........cccuv i, 85
HPSC: Hub Port Status Change RegiSterccovveeueieiciieiceeivececce e e 000. 85
HPINDEX: Hub Port Index Reglster -

Resume Connectivity ...

HPPWR: Hub Port Power CONtrol ..o e

Program Flow ..
High-level View of Transmlt Operatlons

Pre-transmit ISR (Non-1SOChronous)cecceveveireiesnseineenneenes
Post-transmit ISR (NON-ISOCAIONOUS)cccievirriiieiriir st e st
Post-transmit ISR (ISOChIONOUS)ccceiiiueiiiciiie i s e e e e e
High-level View of Receive Operationsccvuevieiererieeineseerieeseesses seesnee st sne s
Post-receive ISR (Non-isochronous)..
Receive SOF ISR (ISOCAIONOUS)cccooieiiiiiieii ettt ettt et n e e eraes e ne e e e O
Post-receive ISR (CONrol)........cocceveurivreiereee e
Hardware Operations for SOF TOKEN........ccccueiieeireiiee st esesseeeees Om
Hub-to-host Port Status Communication..........ccccccccevvveneennenne
GetPortStatus REQUESTccoiueieiiie et s s e e ee e e ane O

intel.

CONTENTS
FIGURES

Figure Page
9-13 Firmware Response to GetPortStatus...........cocceeveiiiiieniiiinieene e 9-25
9-14 SetPortFeature (PORT_SUSPEND) ROULINE.......cocueverieeeieneiceercee et svcre e se e 9-26
9-15 SetPortFeature (PORT_RESET) ROULINEcceeeiiiiieeiceee e e 9-27
10-1 Port 1. and Port 3 StTUCIUTE..........coceeiiiiieiiee et et et 10-3
10-2 POt O STUCIUIE ...t et e s e 10-3
10-3 POt 2 STUCIUIE ... e et s e s 10-4
10-4 Internal PUllup CoNnfIQUIAtioNsc.c.cceieiverecieiecriieeeee e et e cveeetee e v eree s ssae st s erans 10-6
11-1 Basic Logic of the TIMer/COUNTETScccecoviiieierniiee et v e s st 11-3
11-2 Timer 0/1 in Mode 0 and MOde 1coouiiiiii ettt e s 11-4
11-3 Timer 0/1 in Mode 2, AULO-TEIOAT..........cccuveeeiieieiiiee ettt e eere e eeveee e e e n 11-5
11-4 Timer 0in Mode 3, TWO 8-Dit TIMEIS....cccciciiiiiieeii ettt e e e e 11-6
11-5 TMOD: Timer/Counter Mode Control Registerccuvereriniiccniineieneseenee e e 11-7
11-6 TCON: Timer/Counter Control REGISLErccceerereiirrneceierenies et et e eeene 11-8
11-7 Timer 2: Capture MOAEcocuiiiiiiiiieies et e e e e e e ea s area e e e 11-11
11-8 Timer 2: Auto-reload Mode (DCEN = 0)cccevuiireniiiiee ettt e 11-12
11-9 Timer 2: Auto-reload Mode (DCEN = 1)cccocievrininininnnninienenec e cevirceesnneneeee. 11213
11-10 Timer 2: CIOCK OUt MOGE.........coieiiiriiicitireire et ettt st e sttt se e se s s e e ens 11-15
11-11 T2MOD: Timer 2 Mode Control REQIStercccovvrierieiiieie e e et 11-16
11-12 T2CON: Timer 2 Control REQIStercovcevueeviriiriiereeicie e et snieenene. 11217
12-1 Programmable Counter Array.............ccocecueeeeimeeiecreeiere et eresreie e ene e eerns e sene e 1223
12-2 PCA 16-bit Capture MOGEccueiire it s 12-6
12-3 PCA Software Timer and High-speed Output Modes.............ccccveeuerieiieenenniinsecnene 12-8
12-4 PCA Watchdog Timer MOGe........cc.ucoiiieiiie ettt e e st en s e s s 12-10
12-5 PCA 8-bit PWM MOGE ..ottt et e e e e e 12-11
12-6 PWM Variable Duty CYCIeccueiuuiiiieeiee ettt et e e 12-12
12-7 CMOD: PCA Timer/Counter Mode RegiSter............cccceeueiviiuriieiieneieie e e 12-13
12-8 CCON: PCA Timer/Counter Control REgiSter.............cccoueurnererrinenmniienene e e 12-14
12-9 CCAPMx: PCA Compare/Capture Module Mode Registers.........ccccccuvrvvrvrrneeennnnns 12-16
13-1 Serial Port BIOCK DIagramccc.cocveiriirieerieeieeseinsaesteesanssessasseesesseassessssssassussessseessens 13-3
13-2 SCON: Serial Port Control RegIStercocccuriiriere et e 13-4
13-3 MOdE O TIMING. ...ttt et e s e et ee e e e e ere e et e e 13-6
13-4 Data Frame (Modes 1, 2, and 3)ccciiiiiriiere e stee ettt ae s e s e e e ene 13-6
13-5 Timer 2 in Baud Rate Generator Modeccccoveririine et e 13-14
14-1 MINIMUM SELUP ...ttt ettt stae et e ste et e e e e aae e sre s e neaeaa 14-1
14-2 CHMOS On-Chip OSCIllator........cc.ueeeiieieeicee e et e e etae e s st eer e s en e enae e 14-3
14-3 External Clock Connection for the 8X930cccerviriieienenier e e e 14-4
14-4 External Clock Drive Waveforms............cueiiieneeriene sttt s 14-4
14-5 Reset TiMiNG SEQUENCEooeeriiieeeereeee et sttt s e st e e e e 14-7
15-1 PCON: Power Control REgIStErooiiuiiueriieeee ettt et s 15-3
15-2 PCON1: USB Power Control REQISter..........ccceuirreirnrreieeieceeereeses e ereesreseessaeseseenneans 15-4
15-3 Suspend/Resume Program with/without Remote Wake-upc.ccueveeeieinneinenne. 15-11
16-1 Bus Structure in Nonpage Mode and Page Mode............ccccoeeiereneieiisinien e 16-1
16-2 External Code Fetch (Nonpage Mode).........ccoveeeireieceenvieiinties et s 16-4
16-3 External Data Read (Nonpage Mode)cccceeereierenuirreneenie e seveiesaeesesnsecseeeeenes 16-5
XV

8x930Ax, 8x930HX USER’S MANUAL ' Inte|®

Figure
16-4
16-5
16-6
16-7
16-8
16-9
16-10
16-11
16-12
16-13
16-14
16-15
16-16
16-17
16-18
16-19
16-20
16-21
16-22
16-23
16-24
16-25
16-26
16-27
16-28
17-1
17-2

B-2

FIGURES

Page

External Data Write (Nonpage Mode)ccccevviiieimiiinein e 16-5
External Code Fetch (Page Mode)..........cccueeiiiiiieiniiiniein s 16-7
External Data Read (Page MOdE)cccvuerieiiinnin et e 16-7
External Data Write (Page Mode)... . rrrerrrrneenineneen. 16-8
External Code Fetch (Nonpage Mode One RD#/PSEN# Walt State) 16-9
External Data Write (Nonpage Mode, One WR# Wait State)...........cccccoevveerecniiennne. 16-9
External Code Fetch (Nonpage Mode, One ALE Wait State)...........cccceevviineiicnnnns 16-10
WCON: Real-time Wait State Control Registerccccovveiviiiiiininiiiciieiinccce 16-11
External Code Fetch/Data Read (Nonpage Mode, Real-time Wait State)................ 16-13
External Data Write (Nonpage Mode, Real-time Wait State)c.cccevevennee... 16-13
External Data Read (Page Mode, Real-time Wait State)ccccevvvvviiniinciennenn, 16-14
External Data Write (Page Mode, Real-time Wait State)............cccccoeeeivnnicncennncen. 16-14
- Configuration Byte BUS CYCIEScoccvviiiiiicie et 16-15
Bus Diagram for Example 1: 80930AD in Page Modeccoccooeiiiciiiiceiieeceeeee 16-17
Address Space for EXample 1.........ccocoiiiiiiiniiinincin e e 16-18
Bus Diagram for Example 2: 80930AD in Page Modeccccoceireiiriciicneininns 16-19
Address Space for Example 2... ceverenrererreseneeeesnennesneesnnen 16-20
Bus Diagram for Example 3: 83930AE in Nonpage Mode 16-21
Memory Space for EXample 3.........cooiiiiiie i e 16-22
Bus Diagram for Example 4: 83930AE in Nonpage Mode...........cccccceriiniininsininnen. 16-23
Address Space for EXample 4.........co oot e e 16-24
Bus Diagram for Example 5: 80930AD in Nonpage Mode...........c.cccccovvunciinrnncnse.... 16-26
Address Space for ExXamples 5 and 6.........c.ueeviviirneeiiiees i e 16-27
Bus Diagram for Example 6: 80930AD in Page Modeccccooivieriiiieciniiceeeceee 16-28
Bus Diagram for Example 7: 80930AD in Page Modec.cccceiiiniiiiinniiiiieinnnenn. 16-29
Setup for Verifying Nonvolatile Memoryccccovcveiiiiniiiecnncci e e 17-4
Verify BUS CYCIESoeiiee e e e s e e 17-4
8X930AX 68-pin PLCC PaCKage.....cccuvieeecieiineieeieiieeee sttt et e et e B-1
8x930Hx 68-pin PLCC PacCKage.........coceeeiveue et e s e s B-2

intel.

CONTENTS
TABLES

Table Page
1-1 Intel Application SUPPOrt SErviCes.........ooviiviiiiiiiecii e e 1-7
2-1 8X930 MEMOIY OPLIONS ...coveeeeeeie it ettt ettt e e e st e s ers e e e e see e scees e e an e e 2-3
2-2 8x930 USB Features SUMMATry.........ccccveeeriienneini e ene e 274
2-3 MCS® 251 ArCHItECUrE FEALUIESeeeeeeeeeseeereeesseresesessee e esssssss e e sessseressssensanennes 2-5
2-4 8x930 Operating FrEQUENCYeivuueereer ittt ettt sttt st e arbesr e s s snne e 2-10
2-5 Endpoint Pairs for 8x930Hx and 8x930Ax (4EPP Option)...........cceveeviviiiniiniiennincne 2-13
2-6 Endpoint Pairs for 8x930Ax (BEPP Option)..........ccccevviieiiineiiiciiiiniieci e 2-13
3-1 Address Mappings.... .3-4
3-2 Minimum Times to Fetch Two Bytes of Code ..3-8
3-3 Register Bank Selection... . 3-11
3-4 Dedicated Registers in the Reglster Flle and thelr Correspondlng SFRs 3-14
3-5 BXIB0AX SFR MAP ...ttt st st st st e e e e e s 3-16
3-6 BXIBOHX SFR MAP ..ottt et sreer e e srere e s s e s a s n e snesnssnses O 1 1)
3-7 (070 I ol o 1 O TP RP TP VPRP 3-18
3-8 INterrupt SYSLEM SFRS ...ccvuii ettt e e e et e et ere e e ernee e e 3-18
3-9 H/O PO SFRS ...ttt st st e e e sreen e et s srser e s sna enee 3-19
3-10 Serial /O SFRSoiviieieiic ettt ter e e e e e esr e e srneen e e O 1O
3-11 USB FUNCHON SFRS ...ttt ettt st et et e e e et s e er e esnaesnas 3-19
3-12 USB HUD SFRS ...ttt ettt et st ettt e e et aer e e et e e ner e eneenmrene 3-20
3-13 Timer/Counter and Watchdog Timer SFRS...........c.cccciviiiiinnii 0. 3-20
3-14 Programmable Counter Array (PCA) SFRS........cccoui it 3-21
4-1 External Addresses for Configuration Arraycc.covinceiiiiinin e 4-2
4-2 Memory Signal Selections (RD1:0)cccccovrieieimiiniie e e e s 4-7
4-3 RD#, WR#, PSEN# External Wait States.......ccccvivvrieeririiiccciiicrien e er e eserevevnennes 4-11
4-4 Examples of Opcodes in Binary and Source Modes...........cccceeveeeinicneenieiiiecnnneenens 4-14
5-1 Data TYPES . vveiiereeecie it cte et e s et e et e et s e eee e e ra e e ane e et e bt e e e ete e s enae e nanns 5-2
5-2 Notation for Byte Registers, Word Registers, and Dword Registers5-3

5-3 Addressing Modes for Data Instructions in the MCS® 51 Archltecture

5-5
5-4 Addressing Modes for Data Instructions in the MCS® 251 Architecture5-7
5-5 Bit-addressable LOCAtIONScccceiviieiiiiin et e e 5-11
5-6 Addressing Two Sample Bits..........cccooiiiiiiiiiiiiici 5-11
5-7 Addressing Modes for Bit InStructions...........ccccccevvevvn e, =11
5-8 Addressing Modes for Control Instructions... 5-13
5-9 Compare-conditional Jump Instructions .. et e D= 14
5-10 The Effects of Instructions on the PSW and PSW1 Flags .. 5-16
6-1 Interrupt System INput SIGNAIScueiieieiie 6-1
6-2 Interrupt System Special Function Registers ... 6-4
6-3 Interrupt Control Matrix... O PP PPUPRPRUPPRRPPRSTURY o o
6-4 USB/Hub Interrupt Control Matnx ... 6-6
6-5 LEVEI Of PrIOMTY ...cece ettt sttt et e et s aees e s sr e e s e sesebeaee e e e ean 6-27
6-6 Interrupt Priority Within Levelcooiiriieinniie it et 6-27
6-7 Interrupt Latency Variablesccvvviiiiiiiiiiiicic 6-35
6-8 Actual vs. Predicted Latency Calculations.............ccccccvvvvvvninveinininsnnncsnninienenn. . 6-36

7-1 Non-hub USB Signal DesCriptions...........coeeemtieenieeneiiiece e et

8x930Ax, 8x930Hx USER’S MANUAL |nte'®

TABLES
Table Page
7-2 USB Function SFRs .. OO PRSORPTRRSRY £)
7-3 Writing to the Byte Count Reglster ... 7-17
7-4 Truth Table for Transmit FIFO Management.........c.ccccovviicinnieinrncenen e 7-18
7-5 Status of the Receive FIFO Data Setscccuceeereirerreeerecerese s siesessssssesessseenses e 7-26
7-6 Truth Table for Receive FIFO Management.........ccccccvviiviinnieiine e 727
8-2 BXIBOHX DESCIIPIOIS ... ettt ettt e e e e e e e e e e e e aenee e e s 8-7
8-3 HUD DESCHIPIONS ... e ettt ettt sttt sttt ee e e st s e se e e ettt e aenae e e e 8-7
8-4 Hub Endpoint Configuration ... e e 8210
8-5 USB Requests Ignored by Hardware (by Port State) e 80 14
8-6 Encoded Hub Port Control Commandsccueerieieiniernceiee st sr s e 8-16
8-7 UPWIN# Pin State Truth Table........c.ccceviniriiniinen e s e, 8729
8-8 Signal Descriptions... U RPRRTRPRSPRRSROE - S1C 0
9-1 Firmware Actions for USB Requests Sent to Hub SO UUPRRPUUUURRRR £ 4
9-2 Firmware Action for Hub Class-Specific Requests e e e 9719
10-1 Input/Output Port Pin DeSCrPtiONScveviiiieiniie et e e sn et 10-1
10-2 Read-Modify-Write INSTIUCHONSccciviiieeeiie et 10-5
10-3 Instructions for External Data MOVes..........cccccvvveverieicne e seieeenees e 1027
11-1 External Signals ... Y SPUUPUPRPRUPRRURPPRT [E~4
11-2 Timer/Counter and Watchdog Tlmer SFRs .. 11-3
11-3 Timer 2 Modes Of OPEratioN..........c.ccueiviriiviieriiesieissr et s e esree et e e e e sraesee s 11-15
12-1 PCA Special Function Reglsters (SFRs) e e s e ne e ene e enesneens 1 204
12-2 External Signals ... 12-4
12-3 PCA Module Modes ... 12-15
13-1 Serial Port SIgNaIS.....c.uiiie i cecr et vte et s e e e e e e e e sn e e e e e eeaar e 13-2
13-2 Serial Port Special Function Registers..........cccociveeeiinneeninne v 13-2
13-3 Summary of Baud Ratescccccecuuieiiirecee ettt ee et e s 13-10
13-4 Timer 1 Generated Baud Rates for Serial /O Modes 1 and 3............ccccconvrrirenenn.. 13-12
13-5 Selecting the Baud Rate GEnerator(S)cccvvvvrrverviirseverseersieessnesscessveesssessesrennnenn. 1313
13-6 Timer 2 Generated Baud Ratescccoeviiieenin it 13-14
15-1 Pin Conditions in Various MOdES...........ccccveriienniinieinein st se e e 15-6
16-1 External Memory Interface Signals..........cccviuieniniiiicin s e 16-2
16-2 Bus Cycle Definitions (NO Walit States)occuevireiienre i 16-4
16-3 Port 0 and Port 2 Pin Status In Normal Operating Mode............ccccccceviiinininnnneee... 16-16
17-1 SigNal DESCHPHIONSeciieeiti ettt e st et e et s saaesae e srssaene e e 17-2
17-2 VErifY MOGES ...ttt sttt e ere et st sre e steeae et sre e e e e e 17-3
17-3 LOCK Bit FUNCHON ...ttt et et et st s s e nn s s 17-5
17-4 Contents of the Signature Bytes..........cccceciviriveininiven e e TSN 17-6
17-5 TimMiING DEfiMItIONS ..ottt et e e s e e e sr e see s 17-6
A-1 Notation for Register Operands............coeverveiniieierseiescer et e s e e s A-2
A-2 Notation for DireCt AdAreSSES......ccuveeiiitirie ittt e e e s e A-3
A-3 Notation for Immediate AdAreSSINGcccovieiiieieriiir e e ere e ee e A-3
A-4 Notation for Bit ADAreSSiNg.......ccccciveiiiiriiiereiees vt s e s e e s ree e ssrae e err e erenesrsneenseeeeanes A-3
A-5 Notation for Destinations in Control INStructionsccccevveivr e veiecrie e, A-3
xviii

|nte|@ CONTENTS

Table
A-6
A-7
A-8
A-9
A-10
A-11
A-12
A-13
A-14
A-15
A-16
A-17
A-18
A-19
A-20
A-21
A-22
A-23
A-24
A-25
A-26
A-27
A-28

B-2
B-3
C-1
C-2
C-3
C-4
C-5
C-6
C-7

C-9
C-10
D-1
D-2
D-3
D-4
D-5

TABLES

Page

Instructions for MCS® 51 Microcontrollers............coveeeiieienieeieie e e A-4
Instructions for the 8x930 Architecture............ccocciieiin v ASD
Data INSTIUCIONSottt e enr e e A-6
High Nibble, Byte 0 of Data Instructions............ccccco i A-6
Bit Instructions... B RPN PPPPRIUPURPURPPRIVRY L U 4
Byte 1 (High Nlbble) for B|t Instructlons BTSRRI . L
PUSH/POP INSTIUCHIONSeiiviiieiie ettt et s e e s e e e A-7
Control Instructions .. PP PUPUPRPPRTR A 02
Dlsplacement/Extended MOVs .. A-9
INC/DEC ... oottt et et e et e e et b e e e e e A-10
Encoding FOr INC/DEC ...ttt et et et s s s A-10
State Tlmes to Aocess the Port SFRs ... A-11
Summary of Add and Subtract Instructions............cc.ccceiviiienciricin e A-13
Summary of Compare INSIIUCHONS..........coviiiicir e e e A-14
Summary of Increment and Decrement Instructions .. SO TOPPTPURPRRI A T P
Summary of Multiply, Divide, and Decimal-adjust Instructlons A-15
Summary of Logical INSrUCHIONScueiiiiiiiiiiiie it e A-16
Summary of Move Instructions... . SO UPUPSTRUUPRRRRRRPIY | U I -
Summary of Exchange, Push, and Pop Instructlons BT URPRTRSRY . 24 |
Summary of Bit INStUCHONS.........ccoiiii it A-22
Summary of Control INSTIUCHIONScovvuiiviiiiiiei e e e e A-23
FIag SYMDBOIS....ccoi ittt e e e s e e e e e e s A-25
68-pin PLCC Signal Assignments Arranged by Functional Category.......................... B-3
Signal Descriptions... e O TPTRSTPRT = =
Memory Signal Selectlons (RD1 0) ... B-7
8x930Ax SFR Map ... SO PP ST OUR U VP TRUPOPRPRPPPPPRIN O3
8X930Hx SFR Map .. C-3
0T SFRS ... ettt ettt sttt et ea e b bt ea e st et et e bbb et ber e e et et e C-4
INterrupt SYStemM SFRSci it e e e e s C-4
/O POI SFRS ...ttt et et et sr e ess s st sr e e e e seesnnenne s snneenees 07D
SErIaAl /O SFRS ...ttt ettt st sttt e et e se e et et et s an e e e e C-5
USB FUNCLON SFRSoiiiiiiniiinnie et s e st esssesses sesessraes s e snssnnnneeernesnnens =D
USB HUD SFRS ...ttt et ee e e e e sen s e e e C-6
Timer/Counter and Watchdog Timer SFRScocoveeininieie e e C-6
Programmable Counter Array (PCA) SFRS.....c...cootiiiiiieiin et e C-7
Non-isochronous Transmit Data FIOWccccceiiiiiiiiiiin et e D-1
Isochronous Transmit Data Flow in Dual-packet Mode..........cccccoovivineiiin e, D-5
Non-isochronous Receive Data Flow in Single-packet Mode (RXSPM = 1)D-8
Non-isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0)................ D-11
Isochronous Receive Data Flow in Dual-packet Mode (RXSPM =0)ccccoeuenene. D-18
XiX

intel.

Guide to this Manual

intel.

CHAPTER 1
GUIDE TO THIS MANUAL

This manual describes the 8x930Ax and 8x930Hx" microcontrollers; the initial members of a new
family of products for universal serial bus (USB) applications. This manual is intended for use by
both firmware and hardware designers familiar with the principles of microcontroller architec-
ture.

1.1 MANUAL CONTENTS

This chapter provides an overview of the manual with brief summaries of the chapters and appen-
dices. It also explains the terminology and notational conventions used throughout the manual,
provides references to related documentation, and tells how to contact Intel for additional infor-
mation.

Chapter 2 — “Architectural Overview”” — provides an overview of device hardware. It covers
core functions (pipelined CPU, clock and reset unit, and interrupts), I/O ports, on-chip memory,
the USB module, and on-chip peripherals (timer/counters, watchdog timer, programmable
counter array, and serial I/O port).

Chapter 3 — “Address Spaces” — describes the three address spaces of the 8x930: memory
address space, special function register (SFR) space, and the register file. It also provides a map
of the SFR space showing the location of the SFRs and their reset values and explains the map-
ping of the address spaces relative to the MCS® 51 and MCS® 251 architectures into the address
spaces of the 8x930. '

Chapter 4 — “Device Configuration” — describes microcontroller features that are configured
at device reset, including the external memory interface (the number of external address bits, the
number of wait states, page mode, memory regions for asserting RD#, WR#, and PSEN#), bina-
ry/source opcodes, interrupt mode, and the mapping of a portion of on-chip code memory to data
memory. It describes the configuration bytes and how to program them for the desired configura-
tion. It also describes how internal memory maps into external memory.

Chapter 5 — “Programming Considerations” — provides an overview of the instruction set.
It describes each instruction type (control, arithmetic, logical, etc.) and lists the instructions in
tabular form. This chapter also discusses the addressing modes, bit instructions, and the program
status words. Appendix A, “Instruction Set Reference” provides a detailed description of each in-
struction.

Chapter 6 — “Interrupt System’’— describes the 8x930 interrupt circuitry which provides a
TRAP instruction interrupt and ten maskable interrupts: two external interrupts, three timer inter-
rupts, a PCA interrupt, a serial port interrupt, and three USB interrupts. This chapter also discuss-
es the interrupt priority scheme, interrupt enable, interrupt processing, and interrupt response
time.

1 In this manual, the 8x930Ax and 8x930Hx are referred to collectively as the 8x930.

I 1-1

8x930Ax, 8x930Hx USER’S MANUAL Inte|®

Chapter 7 — “USB Function”— describes the FIFOs and special function registers (SFRs) as-
sociated with the USB function interface. This chapter describes the operation of function inter-
face on the 8x930 USB microcontrollers.

Chapter 8 — “USB Hub”— describes the operation of the Intel Universal Serial Bus (USB) on-
chip hub. This chapter introduces on-chip hub operation and includes information on bus enumer-
ation, hub endpoint status and configuration, hub port control, hub suspend and resume, and hub
power control.

Chapter 9 — “USB Programming Models”— describes the programming models of the 8x930
USB function interface. This chapter provides flow charts of suggested firmware routines for us-
ing the transmit and receive FIFOs to perform data transfers between the host PC and the embed-
ded function and describes how the firmware interacts with the USB module hardware.

Chapter 10 — “Input/Output Ports”— describes the four 8-bit I/O ports (ports 0-3) and dis-
cusses their configuration for general-purpose I/0O. This chapter also discusses external memory
accesses (ports 0, 2) and alternative special functions.

Chapter 11 — “Timer/Counters and Watchdog Timer”— describes the three on-chip
timer/counters and discusses their application. This chapter also provides instructions for using
the hardware watchdog timer (WDT) and describes the operation of the WDT during the idle and
powerdown modes.

Chapter 12 — “Programmable Counter Array”— describes the PCA on-chip peripheral and
explains how to configure it for general-purpose applications (timers and counters) and special
applications (programmable WDT and pulse-width modulator).

Chapter 13 — “Serial 1/0 Port”— describes the full-duplex serial I/O port and explains how to
program it to communicate with external peripherals. This chapter also discusses baud rate gen-
eration, framing error detection, multiprocessor communications, and automatic address recog-
nition.

Chapter 14 — “Minimum Hardware Setup”— describes the basic requirements for operating
the 8x930 in a system. It also discusses on-chip and external clock sources and describes device
resets, including power-on reset.

Chapter 15 — “Special Operating Modes”— provides an overview of the idle, powerdown,
and on-circuit emulation (ONCE) modes and describes how to enter and exit each mode. This
chapter also describes the power control (PCON) special function register and lists the status of
the device pins during the special modes and reset.

Chapter 16 — “External Memory Interface”— describes the external memory signals and bus
cycles and provides examples of external memory design. It provides waveform diagrams for the
bus cycles, bus cycles with wait states, and the configuration byte bus cycles. It also provides bus
cycle diagrams with AC timing symbols and definitions of the symbols.

Chapter 17 — “Verifying Nonvolatile Memory”— provides instructions for verifying on-chip
program memory, configuration bytes, signature bytes, and lock bits.

Appendix A — “Instruction Set Reference”— provides reference information for the instruc-
tion set. It describes each instruction; defines the bits in the program status word registers (PSW,

|n'te|® ‘ GUIDE TO THIS MANUAL

PSW1); shows the relationships between instructions and PSW flags; and lists hexadecimal op-
codes, instruction lengths, and execution times.

Appendix B — “Signal Descriptions”— describes the function(s) of each device pin. Descrip-
tions are listed alphabetically by signal name. This appendix also provides a list of the signals
grouped by functional category.

Appendix C — “Registers”— accumulates, for convenient reference, copies of the register def-
inition figures that appear throughout the manual.

Appendix D — “Data Flow Model”— describes the data flow model for the 8x930 USB trans-
actions.

Glossary — a glossary of terms has been provided for reference of technical terms.

Index — an index has been included for your convenience.

1.2 NOTATIONAL CONVENTIONS AND TERMINOLOGY

The following notations and terminology are used in this manual. The Glossary defines other
terms with special meanings.

The pound symbol (#) has either of two meanings, depending on the
context. When used with a signal name, the symbol means that the
signal is active low. When used with an instruction mnemonic, the
symbol prefixes an immediate value in immediate addressing mode.

italics Italics identify variables and introduce new terminology. The context
in which italics are used distinguishes between the two possible
meanings.

Variables in registers and signal names are commonly represented by
x and y, where x represents the first variable and y represents the
second variable. For example, in register Px.y, x represents the
variable [1-4] that identifies the specific port, and y represents the
register bit variable [7:0]. Variables must be replaced with the correct
values when configuring or programming registers or identifying
signals.

XXXX, xxxx Uppercase X (no italics) and lowercase x (no italics) represent
unknown values or a “don’t care” states or conditions. The value may
be either binary or hexadecimal, depending on the context. For
example, 2xAFH (hex) indicates that bits 11:8 are unknown; 10xx in
binary context indicates that the two LSBs are unknown.

I 1-3

8x930Ax, 8x930Hx USER’S MANUAL . |nte|®

Assert and Deassert

Instructions

Logic 0 (Low)

Logic 1 (High)

Numbers

Register Access

Register Bits

Register Names

Reserved Bits

1-4

The terms assert and deassert refer to the act of making a signal
active (enabled) and inactive (disabled), respectively. The active
polarity (high/low) is defined by the signal name. Active-low signals
are designated by a pound symbol (#) suffix; active-high signals have
no suffix. To assert RD# is to drive it low; to assert ALE is to drive it
high; to deassert RD# is to drive it high; to deassert ALE is to drive it
low.

Instruction mnemonics are shown in upper case to avoid confusion.
When writing code, either upper case or lower case may be used.

An input voltage level equal to or less than the maximum value of V.
or an output voltage level equal to or less than the maximum value of
Vo.- See data sheet for values.

An input voltage level equal to or greater than the minimum value of
V; or an output voltage level equal to or greater than the minimum
value of V. See data sheet for values.

Hexadecimal numbers are represented by a string of hexadecimal
digits followed by the character H. Decimal and binary numbers are
represented by their customary notations. That is, 255 is a decimal
number and 1111 1111 is a binary number. In some cases, the letter B
is added for clarity.

All register bits support read/write access unless noted otherwise in
the bit description. Other types of access include read-only, write-
only, read/conditional-write, etc.

Bit locations are indexed by 7:0 for byte registers, 15:0 for word
registers, and 31:0.for double-word (dword) registers, where bit 0 is
the least-significant bit and 7, 15, or 31 is the most-significant bit. An
individual bit is represented by the register name, followed by a
period and the bit number. For example, PCON 4 is bit 4 of the power
control register. In some discussions, bit names are used. For
example, the name of PCON.4 is POF, the power-off flag.

Register names are shown in upper case. For example, PCON is the
power control register. If a register name contains a lowercase
character, it represents more than one register. For example,
CCAPMx represents the five registers: CCAPMO through CCAPM4.

Some registers contain reserved bits. These bits are not used in this
device, but they may be used in future implementations. Do not write
a “1” to a reserved bit. The value read from a reserved bit is indeter-
minate.

intgl.

Set and Clear

Signal Names

Units of Measure

GUIDE TO THIS MANUAL

The terms set and clear refer to the value of a bit or the act of giving
it a value. If a bit is set, its value is “1”; setting a bit gives it a “1”
value. If a bit is clear, its value is “0”; clearing a bit gives it a “0”

value.

Signal names are shown in upper case. When several signals share a
common name, an individual signal is represented by the signal name
followed by a number. Port pins are represented by the port abbrevi-
ation, a period, and the pin number (e.g., P0.0, PO.1). A pound
symbol (#) appended to a signal name identifies an active-low signal.

The following abbreviations are used to represent units of measure:

A
DCV
Kbyte
KQ
mA
Mbyte
MHz
ms
mW
ns

pF

LA
UF
us
uw

amps, amperes

direct current volts
kilobytes

kilo-ohms

milliamps, milliamperes
megabytes

megahertz

milliseconds

milliwatts

nanoseconds

picofarads

watts

volts

microamps, microamperes
microfarads
microseconds

microwatts

1-5

8x930Ax, 8x930Hx USER’S MANUAL |n'te|®

1.3 RELATED DOCUMENTS

The following documents contain additional information that is useful in designing systems that
incorporate the 8x930. To order documents, please call Intel Literature Fulfillment (1-800-548-
4725 in the U.S. and Canada; +44(0) 793-431155 in Europe).

Embedded Microcontrollers Order Number 270646
Embedded Processors | Order Number 272396
Embedded Applications Order Number 270648
Packaging Order Number 240800
Universal Serial Bus Specification Order Number 272904

1.3.1 Data Sheet

The data sheet is included in Embedded Microcontrollers and is also available individually.
8x930Ax Universal Serial Bus Microcontroller Order Number 272917
8x930Hx Universal Serial Bus Microcontroller Order Number 272928

1.3.2 Application Notes
The following MCS 251 application notes apply to the 8x930.

AP-125, Designing Microcontroller Systems Order Number 210313
for Electrically Noisy Environments :

AP-155, Oscillators for Microcontrollers : Order Number 230659
AP-708, Introducing the MCS® 251 Microcontroller Order Number 272670
—the 8XC251SB

AP-709, Maximizing Performance Using MCS® 251 Microcontroller ~ Order Number 272671
—Programming the 8XC251SB

AP-710, Migrating from the MCS® 51 Microcontroller to the Order Number 272672
MCS 251 Microcontroller (8XC251SB)—Firmware and Hardware
Considerations

The following MCS 51 microcontroller application notes also apply to the 8x930.

AP70, Using the Intel MCS® 51 Boolean Processing Capabilities Order Number 203830

1-6 , I

|ntel® GUIDE TO THIS MANUAL

AP-223, 8051 Based CRT Terminal Controller Order Number 270032
AP-252, Designing With the 80C51BH Order Number 270068
AP-425, Small DC Motor Control ‘ Order Number 270622
AP-410, Enhanced Serial Port on the 83C51FA Order Number 270490
AP-415, 83C51FA/FB PCA Cookbook Order Number 270609
AP-476, How to Implement I2C Serial Communication Order Number 272319

Using Intel MCS® 51 Microcontrollers

1.4 APPLICATION SUPPORT SERVICES

You can get up-to-date technical information from a variety of electronic support systems: the
World Wide Web, the FaxBack* service, and Intel’s Brand Products and Applications Support
bulletin board service (BBS). These systems are available 24 hours a day, 7 days a week, provid-
ing technical information whenever you need it. :

In the U.S. and Canada, technical support representatives are available to answer your questions
between 5 a.m. and 5 p.m. Pacific Standard Time (PST). Outside the U.S. and Canada, please con-
tact your local distributor. You can order product literature from Intel literature centers and sales
offices.

Table 1-1 lists the information you need to access these services.

Table 1-1. Intel Application Support Services

Service U.S. and Canada Asia-Pacific and Japan Europe
World Wide Web | URL:hitp://www.intel.com/ | URL:http://www.intel.com/ | URL:http://www.intel.com/
World Wide Web | URL:http:/www.intel.com/ | URL:http://www.intel.com/ | URL:http:/www.intel.com/
design/usb/ design/usb/ design/usb/
FaxBack* 800-525-3019 503-264-6835 +44(0)1793-496646
916-356-3105
BBS 503-264-7999 503-264-7999 +44(0)1793-432955
916-356-3600 916-356-3600
Help Desk 800-628-8686 Please contact your local | Please contact your local
916-356-7999 distributor. distributor.
Literature 800-548-4725 708-296-9333 +44(0)1793-431155
+81(0)120 47 88 32 England
+44(0)1793-421777
France
+44(0)1793-421333
Germany

8x930Ax, 8x930Hx USER’S MANUAL |nte|®

1.4.1 World Wide Web

We offer a variety of technical and product information through the World Wide Web (URL.: ht-
tp://www.intel.com/design/mcs96). Also visit Intel’s Web site for financials, history, news and
USB information at: www.intel.com/design/usb/.

1.4.2 FaxBack Service

The FaxBack service is an on-demand publishing system that sends documents to your fax ma-
chine. You can get product announcements, change notifications, product literature, device char-
acteristics, design recommendations, and quality and reliability information from FaxBack 24
hours a day, 7 days a week.

Think of the FaxBack service as a library of technical documents that you can access with your
phone. Just dial the telephone number and respond to the system prompts. After you select a doc-
ument, the system sends a copy to your fax machine.

Each document is assigned an order number and is listed in a subject catalog. The first time you
use FaxBack, you should order the appropriate subject catalogs to get a complete listing of doc-
ument order numbers. Catalogs are updated twice monthly. In addition, daily update catalogs list
the title, status, and order number of each document that has been added, revised, or deleted dur-
ing the past eight weeks. The daily update catalogs are numbered with the subject catalog number
followed by a zero. For example, for the complete microcontroller and flash catalog, request doc-
ument number 2; for the daily update to the microcontroller and flash catalog, request document
number 20.

The following catalogs and information are available at the time of publication:
1. Solutions OEM subscription form

Microcontroller and flash catalog

Development tools catalog

Systems catalog

Multimedia catalog

Multibus and iRMX® firmware catalog and BBS file listings

Microprocessor, PCI, and peripheral catalog

Quality and reliability and change notification catalog

N A A U R

iAL (Intel Architecture Labs) technology catalog

1-8 I

Int9|® GUIDE TO THIS MANUAL

1.4.3 Bulletin Board System (BBS)

Intel’s Brand Products and Applications Support bulletin board system (BBS) lets you download
files to your PC. The BBS has the latest ApBUILDER firmware, hypertext manuals and
datasheets, firmware drivers, firmware upgrades, application notes and utilities, and quality and
reliability data.

Any customer with a PC and modem can access the BBS. The system provides automatic config-
uration support for 1200- through 19200-baud modems. Use these modem settings: no parity, 8
data bits, and 1 stop bit (N, 8, 1).

To access the BBS, just dial the telephone number (see Table 1-1 on page 1-7) and respond to the
system prompts. During your first session, the system asks you to register with the system oper-
ator by entering your name and location. The system operator will set up your access account
within 24 hours. At that time, you can access the files on the BBS.

NOTE

In the U.S. and Canada, you can get a BBS user’s guide, a master list of BBS
files, and lists of FaxBack documents by calling 1-800-525-3019. Use these
modem settings: no parity, 8 data bits, and 1 stop bit (N, 8, 1).

intel.

Architectural
Overview

intgl.

CHAPTER 2
ARCHITECTURAL OVERVIEW

The 8x930Ax and 8x930Hx are PC peripheral microcontrollers for Universal Serial Bus (USB)
applications. These microcontrollers provide the means for connecting PC peripherals such as
monitors, keyboards, joysticks, telephones, and modems to USB-equipped personal computers.
The USB material in this document relies heavily on the Universal Serial Bus Specification which
provides a detailed description of the USB system.

In the language of the USB specification, the 8x930Ax and 8x930Hx are USB devices. A USB
device can serve as a function by providing an interface for a PC peripheral, and it can serve as a
hub by providing USB ports for additional PC peripherals.

The 8x930Ax described in this manual serves as a USB function. The 8x930Hx serves as both a
USB function and as a hub; it supports one embedded function and provides three external down-
stream ports. Figure 2-1 depicts the 8x930Ax and 8x930Hx in an example USB system.

Host PC

USB Hub
Monitor Printer
ITI USB Function
Digital Camera Joystick Speakers
USB Function USB Function USB Function
A4395-02

Figure 2-1. 8x930Ax and 8x930Hx in a USB System

8x930Ax, 8x930Hx USER’S MANUAL . In ®

1/0 Ports and
System Bus and I/O Ports Peripheral Signals
P0.7:0 P2.7:0 P1.7:0 P3.7:0
Port 0 Port 2 RAM Port 1 Port 3
Drivers Drivers ROM Drivers Drivers
| === -
1
Watchdog
: Timer
: K Peripheral 1 ! |
Interface
Timer/
Counters [
Interrupt ! .
Handler ! :
I
8 PCA
17
[
5 ©
° - 1 1
E 3 '
a8 @ j
Serial 110 :
. . I ‘
Register M[e)re:\tgry _ ! 1
File Interface
uss’ ‘
|
P |
USB Ports
\ T For details, see the USB module block diagram. /
- A4340-01

Figure 2-2. Functional Block Diagram of the 8x930

|nte|® ARCHITECTURAL OVERVIEW

2.1 PRODUCT OVERVIEW

The 8x930 can be briefly described as an MCS® 251 microcontroller with an on-chip USB mod-
ule, and additional pinouts for USB signals. As shown in the functional block diagram (Figure
2-2), the 8x930 consists of a microcontroller core, on-chip ROM (optional) and RAM, I/O ports,
the on-chip USB module, and on-chip peripherals. The USB module operates in conjunction with
the CPU to provide the capabilities of a USB device.

Table 2-1 lists the on-chip memory options. The on-chip peripherals provide hardware timers,
counters, and a serial I/O port. The 8x930 uses the standard instruction set of the MCS 251 archi-
tecture.

2.1.1 8x930Ax Features

The 8x930Ax USB microcontroller contains all the features of the MCS® 251 architecture, plus
it provides a USB interface for a PC peripheral. The 8x930Ax supports all four types of USB data
transfers: control, isochronous, interrupt, and bulk. The user can select the number of function
endpoint pairs (4 or 6) and whether USB reset is separate from chip reset. Each endpoint pair has
a transmit FIFO and a receive FIFO data buffer. Table 2-2 on page 2-4 provides a summary of
USB features including FIFO sizes and operating rates. Table 2-3 on page 2-5 provides a summa-
ry of MCS® 251 architecture features. The block diagram in Figure 2-3 shows the main compo-
nents of the 8x930Ax USB module and how they interface with the CPU.

21.2 8x930Hx Features

The 8x930Hx USB microcontroller is similar to the 8x930Ax in that it contains all the features of
the MCS® 251 architecture and provides a USB interface for a PC peripheral. The 8x930Hx also
provides a USB hub capability, permitting the connection of additional PC peripherals or hubs.
It provides three external downstream ports and one internal downstream port. The 8x930H.x sup-
ports two hub endpoint pairs and four function endpoint pairs. Each endpoint pair (except hub
endpoint 1) has a transmit FIFO and a receive FIFO. Table 2-2 on page 2-4 provides a summary
of USB features including FIFO sizes and operating rates. Table 2-3 on page 2-5 prov1des a sum-
mary of MCS® 251 architecture features. The block diagram in Figure 2-4 shows the main com-
ponents of the 8x930Hx USB module and how they interface with the CPU. (The 8x930Hx does
not provide the separate USB reset or the six-endpoint pair options.)

Table 2-1. 8x930 Memory Options

8x930Ax 8x930Hx On-chip Memory
(Hubless) (Hub)
ROM RAM
(Kbytes) (Bytes)
80930AD 80930HD 0 1024
83930AD 83930HD 8 1024
83930AE 83930HE 16 1024

I . 2-3

8x930AX, 8x930Hx USER’S MANUAL

Table 2-2. 8x930 USB Features Summary

intgl.

" 8x930Ax 8x930Hx
General USB Features
Complete Universal Serial Bus Specification Yes Yes
rev. 1.0 compatibility
On-chip USB transceivers Yes Yes
Automatic transmit/receive FIFO management Yes Yes
Timebase (crystal/PLL) 6 or12MHz 12 MHz
USB rate (full speed) 12 Mbps 12 Mbps (1)
USB rate (low speed) 1.5 Mbps —
Low-clock mode Yes Yes
USB interrupt vectors 3 3
Suspend/resume Yes Yes
Separate USB and chip resets (2) Yes No
USB Function Features
Function endpoint pairs 40r6(3) 4
Transmit/receive FIFO/ sizes:
Endpoint 0 16 bytes 16 bytes
Endpoints 2, 3 16 or 32 bytes 16 bytes
Endpoint 4 (8x930Ax only) (2) 16 or 32 bytes —
Endpoint 5 (8x930Ax only) (2) 16 bytes —
Endpoint 1 (4) 0-1024 bytes 0-1024 bytes
USB Hub Features
External downstream ports - 3
Internal downstream ports - 1
Hub Endpoint 0: Transmit and receive FIFOs - 16 bytes
Hub Endpoint 1: One transmit data buffer register - 1 byte

NOTES:

1. Fhe 8x930Hx operates at full speed only. Root port (Dpg, Dy) data transfers are
always full speed. Data transfer rates on the external downstream ports are matched to
the type of USB device attached (full speed or low speed).

2. Early sample devices did not have this feature.

3. The 8x930Ax can be programmed to have either four or six function endpoint pairs.
Endpoint 2, 3, and 4 FIFOs sizes are 16 bytes for the four endpoint pair (4EPP) option
and 32 bytes for the 6EPP option. Early sample devices did not have this feature.

4. Programmable size.The 4EPP option provides transmit/receive FIFO size options of
256/256, 512/512, 1024/0, or 0/1024 bytes for function endpoint 1. The 6EPP option
supports only 256/256-byte FIFOs for function endpoint 1.

21.3 MCS® 251 Architecture Features

The 8x930 retain all the features of the MCS 251 architecture including the configurable external
memory bus, four 8-bit I/O ports, on-chip peripherals, and code-compatibility with the MCs®
251 microcontroller. The features of the MCS 251 architecture are discussed in the following
paragraphs and summarized in Table 2-2.

The 8x930 stores code and data in a single, linear 16-Mbyte memory space. The usable memory
space of the 8x930 consists of four 64-Kbyte regions (256 Kbytes). The external bus provides up
to 256 Kbytes of external memory addressability. The special function registers (SFRs) and the

2-4 } I

I n'tel ® ARCHITECTURAL OVERVIEW

register file have separate address spaces. Refer to Chapter 3, “Address Spaces” for a description
of the address modes.

Certain instructions in the MCS 251 instruction set operate on 8-bit, 16-bit, or 32-bit operands,
providing easier and more efficient programming in high-level languages such as C. Additional
features include the TRAP instruction, a displacement addressing mode, and several conditional
jump instructions. Chapter 5, “Programming Considerations,” describes the instruction set and
compares it with the instruction set for MCS 51 microcontrollers.

You can configure the 8x930 for the binary mode or source mode opcode arrangement. Both
modes execute all of the MCS 51 architecture instructions and all of the MCS 251 architecture
instructions. However, source mode is more efficient for MCS 251 architecture instructions, and
binary mode is more efficient for MCS 51 architecture instructions. In binary mode, object code
for an MCS 51 microcontroller runs on the 8x930 without recompiling. For details see “Opcode
Configurations (SRC)” on page 4-12.

Each pin of the four 8-bit I/O ports can be individually programmed as a general I/O signal or as
a special-function signal that supports the external bus or one of the on-chip peripherals. Ports PO
and P2 comprise a 16-line external bus, which transmits a 16-bit address multiplexed with 8 data
bits. (You can also configure the 8x930 to have a 17-bit or an 18-bit external address bus. Refer
to “Configuring the External Memory Interface” on page 4-7. Ports P1 and P3 carry bus-control
and peripheral signals.

The 8x930 has two power-saving modes. In idle mode, the CPU clock is stopped, while clocks to
the peripherals continue to run. In global suspend mode (powerdown), the on-chip oscillator is
stopped, and the chip enters a static state. An enabled interrupt or a hardware reset can bring the
chip back to its normal operating mode from idle or powerdown. Refer to Chapter 15, “Special
Operating Modes,” for details on the power-saving modes.

Table 2-3. MCS® 251 Architecture Features

Address space 256 Kbytes
External bus (multiplexed)

Address 16, 17, or 18 bits
Data 8 bits
On-chip ROM 0, 8 or 16 Kbytes
On-chip RAM 1024 bytes
Register file 40 bytes
Eight interrupt vectors
I/O ports Four 8-bit I/0 ports

On-chip Peripherals:
Serial I/O port (industry-standard MCS® 51 UART)
Programmable counter array with 5 compare/capture modules
Three general-purpose timer/counters
Hardware watchdog timer
User-selectable configurations: external address range, wait states, page mode
Real-time wait states
Powerdown and idle gower-saving modes
Register-based MCS™ 251 architecture
Code-compatible with MCS 51 and MCS 251 microcontrollers

I 2-5

8x930Ax, 8x930Hx USER’S MANUAL

To
CPU

-

.

Control

usB

Upstream

Port

A

gl 8
a

Y Yy

Transceiver

A

Y

Serial Bus
Interface Engine
(SIE)

i

=

Data Bus

Control

—

Function
Interface Unit
(FIU)

Control

L

—)

FIFOs

Transmit/Receive Bus

A4231-03

Figure 2-3. 8x930Ax USB Module Block Diagram

ARCHITECTURAL OVERVIEW

S®
??

Transceiver

Yy

USB Upstream Port

Repeater

Transceiver

D+
De4

Transceiver

_’ DM2
—> Dpy

LN

Transceiver

— DM3

—> Dps3

! l T
Serial Bus Interface Engine
(SIE)
] Hub Function
: Interface Interface
Unit Unit
(" Control —»| (HIU) (FIU)

To

i

{

lTransmit/Receive Bus |

CPU

Data Bus

<

[

kControI ——>|

FIFOs

usB
Downstream
Ports

A5102-01

Figure 2-4. 8x930Hx USB Module Block Diagram

2-7

8x930Ax, 8x930HXx USER’S MANUAL Inu ®

Code Bus (16)U i iCode Address (24)

Instruction Sequencer <____.> Interrupt Handler

| Src18)
VANEIVAN

VV

[T U

. Data <____> Data Bus (8
ALU Register Memory ®)

File Interface Data Address (24)
| DsT(16) |

Figure 2-5. The CPU

| sRc2(8)

A4272-01

22 MICROCONTROLLER CORE

The microcontroller core contains the CPU, the clock and reset unit, the interrupt handler, the bus
interface, and the peripheral interface. The CPU contains the instruction sequencer, ALU, register
file, and data memory interface.

221 CPU

Figure 2-5 is a functional block diagram of the CPU (central processor unit). The 8x930 fetches
instructions from on-chip code memory two bytes at a time, or from external memory in single
bytes. The instructions are sent over the 16-bit code bus to the execution unit. You can configure
the 8x930 to operate in page mode for accelerated instruction fetches from external memory. In
page mode, if an instruction fetch is to the same 256-byte “page” as the previous fetch, the fetch
requires one state time rather than two state times. See “State Time and Peripheral Cycles” on
page 2-9.

The 8x930 register file has forty registers, which can be accessed as bytes, words, and double
words. As in the MCS®51 architecture, registers 0—7 consist of four banks of eight registers each,
where the active bank is selected by the program status word (PSW) for fast context switches.
Refer to Chapter 3, “8x930 Register File” or see Figure 5-2 on page 5-17.

The 8x930 is a single-pipeline machine. When the pipeline is full and code is executing from on-
chip code memory, an instruction is completed every state time. When the pipeline is full and

-
|nte|® ARCHITECTURAL OVERVIEW

code is executing from external memory (with no wait states and no extension of the ALE signal),
an instruction is completed every two state times.

2.2.2 Clock and Reset Unit

Figure 2-6 on page 2-9 shows the internal clock circuitry of the 8x930. The timing waveform at
XTALTI can be provided by:

® an on-chip oscillator employing an external crystal/resonator connected across XTAL1 and
XTAL2

¢ an external frequency source connected to XTAL1

“Clock Sources” on page 14-2 discusses the requirements for external-clock signals and on-chip
oscillators. Power management options — idle, powerdown, and low-clock mode — are discussed
in Chapter 15, “Special Operating Modes.”

Device pins PLLSEL2:0 determine the USB operating rate (full speed or low speed) and the in-
ternal frequency (F) distributed to the CPU and on-chip peripherals. See Table 2-4. Because
of its hub capability, the 8x930Hx (including the embedded function) always operates as a full-
speed USB device. Root port data transfers are always full speed. Data transfer rates on the ex-
ternal downstream ports are matched to the type of USB device attached (i.e., full speed or low
speed). For full speed operation, the PLL provides the 4X USB sampling rate.

2221 State Time and Peripheral Cycles

The basic unit of time for 84930 microcontrollers is the state time (or state). States are divided
into two phases identified as phase 1 and phase 2. See Figures 2-7 and 2-8. The 8x930 on-chip
peripherals operate on a peripheral cycle, which is six state times. A specific time within a pe-
ripheral cycle is denoted by its state and phase. For example, the PCA timer is incremented once
each peripheral cycle in phase 2 of state 5 (denoted as SS5P2).

Fosc
(6 or 12 MHz)

XTAL1 Clock
Generator

Internal Clock
Fewk

On-chip
Peripherals

XTAL2

[Po]
PCON.1
(Powerdown)

PCON.5 PCON.0
(Low-clock Mode) (Idle Mode)

PLLSEL

A5135-01

Figure 2-6. Clock Circuit

I 2-9

intgl.

As shown in Table 2-4 and Figure 2-7, when PLLSEL2:0 = 001 or 100 (low speed), there are two
Tosc periods per state. As shown in Table 2-4 and Figure 2-8, when PLLSEL2:0 = 110 (full
speed), there is one Ty period per state. See “Low-clock Mode” below.

8x930Ax, 8x930Hx USER’S MANUAL

As shown in Table 2-4 the internal clock frequency (F,) distributed to the CPU and peripherals
(3, 6, or 12 MHz) is a function of PLLSEL2:0 and F¢.. Note that in Figure 2-6, for PLLSEL2:0
= 110 (full speed), the two-to-one divider stage is bypassed and F, = Foq- = 12 MHz.

2222 Low-clock Mode

A special power-reduction mode (low-clock mode) overrides the timing definitions given in
“State Time and Peripheral Cycles” above and Figures 2-7 and Figures 2-8. Following device re-
set, the CPU and on-chip peripherals operate in low-clock mode (F, x = 3 MHz) until the LC bit
in PCON is cleared. During low-clock mode, there are four T g periods per state for PLLSEL2:0
=001 or 100. Low-clock mode does not affect the USB rate. Also see Chapter 15, “Special Op-
erating Modes.”

2223 Reset Unit

The reset unit resets the 8x930 to a known state. A chip reset is initiated by asserting the RST pin,
by a USB-initiated reset, or by allowing the watchdog timer to time out. The 8x930Ax can be pro-
grammed so a USB-initiated reset does not cause a chip reset. For information on resets refer to
Chapter 14, “Minimum Hardware Setup”.

Table 2-4. 8x930 Operating Frequency

XTAL1
PLLsEL2:0 | XTALT | ysBRate | MMeMal | clocks per
Device (Pins 43, 42, 44) (?:) y (2) e(g) Y State Comments
(1) ose (%L)K (Tosc/state)
(5)
8Xx930Ax 001 . 6 Mhz 1.5 Mbps - 3 Mhz 2(4) PLL Off
- (Low Speed)
8Xx930Ax 100 12 Mhz 1.5 Mbps 6 Mhz (4) 2 (4) PLL Off
(Low Speed)
8x930Ax 110 12 Mhz 12 Mbps 12 Mhz (4) 1 PLL On
8x930Hx (Full Speed)
NOTES:

1.

2.
3.
4

Other PLLSEL2:0 combinations are not valid.

The sampling rate is 4X the USB rate.
The internal frequency, Fe,« = 1/T¢,, is the clock signal distributed to the CPU and the on-chip

peripherals,

Following device reset, the CPU and on-chip peripherals operate in low-clock mode (F, « = 3 Mhz)
until the LC bit in the PCON register is cleared. In low clock mode, there are four To¢c periods per state

for PLLSEL2:0 = 100 or 110. Low-clock mode does not affect the USB rate.

* The number of XTAL1 clock periods per state (Tosc/state) depends on PLLSEL2:0 and the LC bit.

ARCHITECTURAL OVERVIEW
Phase 1 Phase 2
P1 P2
XTAL1 |
——
Tosc
2 Togc = State Time
| State 1 l State 2 ’ State 3 State 4 State 5 ‘ State 6 I
P1 P2 | P1 P2 | P1|P2 | P1|P2 | P1 | P2 | P1|P2

Peripheral Cycle I

l<
|

A2604-02

Figure 2-7. Clocking Definitions (Low Speed)

|P1|P2|

XTALA1 I
fe—
Tosc
1 TOSC = State Time
State 1 2 3 4 5 6

|P1 P2|P1 P2|P1 P2|P1 P2|P1 P2|P1 P2|

e

Peripheral Cycle
(6 States)

A5086-01

Figure 2-8. Clocking Definitions (Full Speed)

8x930Ax, 8x930Hx USER’S MANUAL |nte|®

2.2.3 Interrupt Handler

The interrupt handler can receive interrupt requests from eleven maskable sources and the TRAP
instruction. When the interrupt handler grants an interrupt request, the CPU discontinues the nor-
mal flow of instructions and branches to a routine that services the source that requested the in-
terrupt. You can enable or disable the interrupts individually (except for TRAP) and you can
assign one of four priority levels to each interrupt. Refer to Chapter 6, “Interrupt System,” for a
detailed description.

2.3 ON-CHIP MEMORY

For ROM devices, the 8x930 provides on-chip program memory beginning at location FF:0000H.
See Table 2-1 for memory options. Following chip reset, the first instruction is fetched from lo-
cation FF:0000H. (For devices without ROM, instruction fetches are always from external mem-
ory. Following chip reset, the first instruction is fetched from the external memory location that
corresponds to internal address FF:0000H. Figure 4-5 on page 4-8 and Figure 4-6 on page 4-9
show how addresses in region FF: map into external memory for various memory configura-
tions.)

The 8x930 provides on-chip data RAM beginning at location 00:0020H (just above the four banks
of registers RO—R7 which occupy the first 32 bytes of the memory space). See Table 2-1 for mem-
ory options. Data RAM locations can be accessed with direct, indirect, and displacement address-
ing. Ninety-six of these locations (20H-7FH) are bit addressable.

2.4 UNIVERSAL SERIAL BUS MODULE

The USB module operates in conjunction with the CPU to provide the capabilities of a USB de-
vice. The 8x930Ax USB module provides a function interface for one USB function. The
8x930Hx USB module supports one USB function and in addition provides a USB hub capability.

The 8x930 USB module communicates with the host PC by means of upstream data port O (pins
Dpg, Dyo)- In addition to the upstream port, the 8x930Hx has three external downstream ports for
bus expansion (pins Dpq, Dy1, Dpp, Do, Dp3, Dy3) and an internal downstream port for commu-
nicating with the embedded function. The 8x930 provides on-chip transceivers for each external
USB port.

Operation of the USB module is controlled through the use of special function registers (SFRs).
SFRs associated with the function interface are described in Chapter 7, “USB Function.” SFRs
associated with USB hub operations are described in Chapter 8, “USB Hub.” Interrupt SFRs are
described in Chapter 6, “Interrupt System.” Register definition tables in these chapters describe
register usage and define the register bits. The register definition tables also appear in Appendix
C in alphabetical order. Memory maps of the 8x930Ax and 8x930Hx SFRs are presented in Chap-
ter 3, “Address Spaces” and Appendix C.

Data transfers with the host are made to/from endpoint pairs (EPPs) on the USB module. The
8x930H.x provides four function endpoint pairs and two hub endpoint pairs. The 8x930Ax can be
programmed to support either four or six function endpoint pairs. Table 2-5 lists the hub and func-
tion endpoint pairs available on the 8x930Hx along with the associated transmit and receive FIFO
data buffers. Except for hub endpoints 0 arid 1, Table 2-5 also applies to the 8xX930Ax when the
4EPP option is selected. Table 2-6 lists the endpoint pairs available on the 8xX930Ax when the

2-12 l ;

InU@; ARCHITECTURAL OVERVIEW

6EPP option is selected. The value in the EPINDEX register determines the endpoint pair in-
volved in any given data transfer operation (Tables 2-5 and Table 2-6).

A complete description of the USB can be found in Universal Serial Bus Specification. For a de-
scription of the transceiver see the “Driver Characteristics” and “Receiver Characteristics” sec-
tions of the “Electrical” chapter of the Universal Serial Bus Specification. For electrical
characteristics and data signal timing, see the “Bus Timing/Electrical Characteristics” and “Tim-
ing Diagram” sections of the same chapter.

Table 2-5. Endpoint Pairs for 8x930Hx and 8x930Ax (4EPP Option)

EPINDEX Endpoint Pair Transmit Receive FIFO Size .
FIFOs FIFOs Select (1)
0000 0000 | Function Endpoint 0 (Control) 16 bytes 16 bytes XX
0000 0001 | Function Endpoint 1 256 bytes 256 bytes 00
512 bytes 512 bytes 01
1024 bytes 0 bytes 10
0 bytes 1024 bytes 11
0000 0010 | Function Endpoint 2 16 bytes 16 bytes XX
0000 0011 | Function Endpoint 3 16 bytes 16 bytes XX
1000 0000 | Hub Endpoint 0 (Control) (2) 16 bytes 16 bytes XX
1000 0001 | Hub Endpoint 1 (2), (3) N/A N/A XX
NOTE:
1. 2:3;2!?3211 :0 (TXCON.6:5) specify the size of the transmit and receive FIFOs for function

2. Hub endpoints are not applicable to the 8X930Ax.
3. Hub endpoint 1 assembles status-change information in a buffer register (TXDAT) and
transmits it to the host PC. Hub endpoint 1 does not require FIFOs.

Table 2-6. Endpoint Pairs for 8x930Ax (6EPP Option)

EPINDEX Endpoint Pair Transmit Receive FIFO Size
FIFOs FIFOs Select (1)
0000 0000 | Function Endpoint 0 (Control) 16 bytes 16 bytes XX
0000 0001 | Function Endpoint 1 256 bytes 256 bytes 00
0000 0010 | Function Endpoint 2 32 bytes 32 bytes XX
0000 0011 | Function Endpoint 3 32 bytes 32 bytes XX
0000 0100 | Function Endpoint 4 (2) 32 bytes 32 bytes XX
00000101 | Function Endpoint 5 (2) , 16 bytes 16 bytes XX
NOTE:

1. Bits FFSZ1:0 (TXCON.6:5) specify the size of the transmit and receive FIFOs for function
endpoint 1. For the 6EPP option, use FFSZ1:0 = 00.

2. On the 8x930Ax, setting the SIXEPPEN bit in the EPCONFIG register selects the six-
endpoint option (6EPP). Function endpoints 4 and 5 are available only when the 6EPP option
is selected. Early sample devices did not have this feature.

I 2-13

8x930Ax, 8x930Hx USER’S MANUAL ||'|1.'e|®

2.41 The 8x930Ax USB Module

Figure 2-3 on page 2-6 shows the main functional blocks of the 8x930Ax USB module and how
they interface with the CPU. The USB function interface manages communications between the
host PC and the USB function. This interface consists of the serial bus interface engine (SIE), the
function interface unit (FIU), and the transmit and receive FIFOs. The SIE handles the commu-
nication protocol of the universal serial bus, and the FIU handles data transfers and provides the
interface between the SIE and the 8x930Ax CPU.

The 8x930Ax function interface, which can be programmed to have either four or six endpoint
pairs, supports all four types of USB data transfer: control, isochronous, interrupt, and bulk.
Function endpoint 1 handles only control data transfers, whereas function endpoints 1 through 5
handle all four data transfer types.

24141 Serial Bus Interface Engine (SIE)

The SIE is the USB protocol interpreter for communications between the 8x930Hx and the host
PC over the USB lines. It provides serial-to-parallel conversion for data transfers from the host
and parallel-to-serial conversion for data transfers to the host. For additional information on the
SIE, see “SIE Details” on page 7-33.

2.4.1.2 Function Interface Unit (FIU)

The FIU manages data movement within the USB module. It controls the operation of the FIFOs,
monitors the status of the data transactions, and at the appropriate moment transfers event control
to the CPU through an interrupt request. The exact nature of a data transaction depends on the
type of data transfer and the initial conditions of the transmit and receive FIFOs.

2413 Function FIFOs

Each endpoint pair contains a transmit FIFO and a receive FIFO. See Table 2-5 for FIFO config-
urations. Transmit FIFOs are written by the CPU, then read by the FIU for transmission. Receive
FIFOs are written by the FIU following reception, then read by the CPU. All transmit FIFOs have
the same architecture, and all receive FIFOs have the same architecture.

2.4.2 The 8x930Hx USB Module

Figure 2-4 on page 2-7 shows the main functional blocks of the 8x930Hx USB module and how
they interface with CPU. As on the 8X930Ax USB module described above, the SIE, FIU, and
function FIFOs comprise the function interface. The 8x930Hx function interface is similar to that
of the 8x930Ax. See “The 8x930Ax USB Module” on page 2-14. There are three main differenc-
es: the 8x930Hx function interface is accessed via the internal downstream port, and it does not
have the six-endpoint pair option nor the separate USB reset feature.

The 8x930Hx function interface has four endpoint pairs. It supports all four types of USB data
transfer: control, isochronous, interrupt, and bulk. Function endpoint 0 handles only control data
transfers, whereas function endpoints 1, 2, and 3 handle all four data transfer types.

The repeater, the SIE, the hub interface unit (HIU), and the hub FIFOs provide the hub capability.
The hub interface has two endpoint pairs. Hub endpoint O supports only control data transfers.
Hub endpoint 1 is used to transmit hub status change information to the host PC.

2-14 I

InU@; ARCHITECTURAL OVERVIEW

8x930Hx USB hub operations are divided into two categories: hub repeater operations and hub
controller operations. The hub controller is split among four modules: the serial bus interface en-
gine, the hub interface unit, the hub endpoint O transmit and receive FIFOs, and the 8x930Hx
CPU. (See Chapter 8.) The following subsections discuss the role of each module.

24.21 Hub Repeater

The repeater is the connectivity manager for the 8X930Hx. It detects the connection or discon-
nection of devices on the external downstream ports and manages the upstream/downstream con-
nectivity for data packets. It keeps track of hub port status, manages connectivity, and performs
power management for external down stream ports. The repeater supports both full-speed (12
Mbps) and low-speed (1.5 Mbps) data traffic. The repeater also controls bus fault detection and
recovery. Downstream port control is managed primarily by the HIU.

2.4.2.2 Serial Bus Interface Engine (SIE)

The SIE is the USB communication protocol interpreter. It places data on and accepts data from
the bus. On the 8x930HLx, the hub interface and the function interface share the SIE. This is pos-
sible because the host communicates with only a single device during any one transaction.The
SIE is permanently attached to the internal downstream port. The SIE provides serial-to-parallel
conversion for data transfers from the host and parallel-to-serial conversion for data transfers to
the host. For additional information on the SIE, see “SIE Details” on page 7-33. For complete
functional, signal, and timing information, refer to the USB Function SIE Interface Specification.

24.23 Hub Interface Unit (HIU)

The HIU uses special function registers (SFRs) to control the operation of the hub and to maintain
the status of the hub and its downstream ports. Control SFRs are set by firmware in response to
USB requests. Status SFRs are set by the repeater hardware. Refer to Chapter 8, “USB Hub”, and
Chapter 9, “USB Programming Models,” for a discussion on the use of the HIU SFRs.

24.24 Hub FIFOs

Hub FIFOs operate in the same manner as the function interface FIFOs. See Chapter 7, “USB
Function.” Hub endpoint 0 handles only control data transfers. It is implemented with 16-byte
transmit and receive FIFO data buffers. The maximum packet size for hub control data transfers
is eight bytes. Data received from the USB for endpoint O is stored in the receive FIFO for reading
by firmware. Data to be sent to the host from hub endpoint O is loaded into the transmit FIFO.

Hub endpoint 1 transmits single-byte interrupt tokens to the host and does not have FIFO data
buffers.

2425 8x930Hx CPU

The CPU runs the firmware associated with the operation of the hub and the function interface.
The CPU reads the receive FIFOs, loads the transmit FIFOs, and decodes and executes USB re-
quests for the hub. Control transaction stages are also tracked by firmware. Hub operation is im-
plemented by reading and writing SFRs in the HIU. Operation of the function interface is
implemented by reading and writing SFRs in the FIU.

I 2-15

8x930Ax, 8x930Hx USER’S MANUAL |nte|®

2.5 ON-CHIP PERIPHERALS

The on-chip peripherals reside outside the microcontroller core. They perform specialized func-
tions in hardware. Firmware controls the peripherals via their special function registers (SFRs).
The 8x930 has four peripherals: the watchdog timer, the timer/counter unit, the programmable
counter array (PCA), and the serial I/O port.

2.5.1 Timer/Counters and Watchdog Timer

The timer/counter unit has three timer/counters, which can be clocked by the oscillator (for timer
operation) or by an external input (for counter operation). You can set up an 8-bit, 13-bit, or 16-
bit timer/counter. You can program them for special applications, such as capturing the time of
an event on an external pin, outputting a programmable clock signal on an external pin, or gen-
erating a baud rate for the serial I/O port. Timer/counter events can generate interrupt requests.

The watchdog timer is a circuit that automatically resets the 8x930 in the event that a hardware
or firmware operation fails to complete. When enabled by firmware, the watchdog timer begins
running, and unless firmware intervenes, the timer overflows and initiates a chip reset. In normal
operation, firmware periodically clears the timer register to prevent the reset. If a malfunction oc-
curs and firmware fails to clear the timer, the resulting chip reset disables the timer and returns
the system to a known state. The watchdog timer and the timer/counters are described in Chapter
11, “Timer/Counters and Watchdog Timer.”

2.5.2 Programmable Counter Array (PCA)

The programmable counter array (PCA) has its own timer and five capture/compare modules that
perform several functions: capturing (storing) the timer value in response to a transition on an in-
put pin; generating an interrupt request when the timer matches a stored value; toggling an output
pin when the timer matches a stored value; generating a programmable PWM (pulse width mod-
ulator) signal on an output pin; and serving as a firmware watchdog timer. Chapter 12, “Program-
mable Counter Array,” describes this peripheral in detail.

2.5.3 Serial /O Port

The serial I/O port provides one synchronous and three asynchronous communication modes.
The synchronous mode (mode 0) is half-duplex: the serial port outputs a clock signal on one pin
and transmits or receives data on another pin. .

The asynchronous modes (modes 1-3) are full-duplex (i.e., the port can send and receive simul-
taneously). Mode 1 uses a serial frame of 10 bits: a start bit, 8 data bits, and a stop bit. The baud
rate is generated by the overflow of timer 1 or timer 2. Modes 2 and 3 use a serial frame of 11
bits: a start bit, eight data bits, a programmable ninth data bit, and a stop bit. The ninth bit can be
used for parity checking or to specify that the frame contains an address and data. In mode 2, you
can use a baud rate of 1/32 or 1/64 of the oscillator frequency. In mode 3, you can use the over-
flow from timer 1 or timer 2 to determine the baud rate.

2-16 I

|nte|® ‘ ARCHITECTURAL OVERVIEW

In its asynchronous modes (modes 1-3) the serial port can operate as a slave in an environment
where multiple slaves share a single serial line. It can accept a message intended for itself or a
message that is being broadcast to all of the slaves, and it can ignore a message sent to another
slave.

2.6 OPERATING CONDITIONS

The 8x930 is designed for a commercial operating environment and to accommodate the operat-
ing rates of the USB interface. For detailed specifications, refer to the current 8x930 Universal
Serial Bus Microcontroller datasheet. For USB module operating rates, see “Clock and Reset
Unit” on page 2-9.

intel.

Address Spaces

intel.

CHAPTER 3
ADDRESS SPACES

The 8x930 has three address spaces: a memory space, a special function register (SFR) space, and
aregister file. This chapter describes these address spaces as they apply to the 8x930. It also dis-
cusses the compatibility of the MCS® 251 architecture and the MCS® 51 architecture in terms of
their address spaces.

3.1 MCS® 251 ARCHITECTURE ADDRESS SPACES

Figure 3-1 shows the memory space, the SFR space, and the register file for MCS 251 architec-
ture. (The address spaces are depicted as being eight bytes wide with addresses increasing from
left to right and from bottom to top.)

Memory Address Space
16 Mbytes

SFR Space
512 Bytes

Register File
64 Bytes

A4100-01

Figure 3-1. MCS® 251Architecture Address Spaces

I 3-1

8x930AXx, 8x930Hx USER’S MANUAL Intel ®

Itis convenient to view the unsegmented, 16-Mbyte memory space as consisting of 256 64-Kbyte
regions, numbered 00: to FF:.

NOTE

The memory space in the 8x930 is unsegmented. The 64-Kbyte “regions” 00:,
01:, ..., FF: are introduced only as a convenience for discussions. Addressing in
the 8x930 is linear; there are no segment registers.

On-chip RAM is located at the bottom of the memory space, beginning at location 00:0000H. The
first 32 bytes (00:0000H-00:001FH) provide storage for a part of the register file. The on-chip,
general-purpose data RAM resides just above this, beginning at location 00:0020H.

On-chip ROM (code memory) is located in the top region of the memory space, beginning at lo-
cation FF:0000H. Following device reset, execution begins at this address. The top eight bytes of
region FF: are reserved for the configuration array.

The register file has its own address space (Figure 3-1). The 64 locations in the register file are
numbered decimally from 0 to 63. Locations 0-7 represent one of four switchable register banks,
each having eight registers. The 32 bytes required for these banks occupy locations 00:0000H-
00:001FH in the memory space. Register file locations 8—63 do not appear in the memory space.
See “8x930 Register File” on page 3-9 for a further description of the register file.

The SFR space accommodates up to 512 eight-bit special function registers with addresses
S:000H-S:1FFH. SFRs implemented in the 8x930 are shown in Table 3-6 on page 3-10. In the
MCS 251 architecture, use the prefix “S:” with SFR addresses to distinguish them from the mem-
ory space addresses 00:0000H-00:01FFH. See “Special Function Registers (SFRs)” on page 3-15
for details on the SFR space.

3.1.1 Compatibility with the MCS® 51 Architecture

The address spaces in the MCS 51 architecture’ are mapped into the address spaces in the MCS
251 architecture. This mapping allows code written for MCS 51 microcontrollers to run on MCS
251 microcontrollers. (Chapter 5, “Programming Considerations” discusses the compatibility of
the two instruction sets.)

Figure 3-2 shows the address spaces for the MCS 51 architecture. Internal data memory locations
OOH-7FH can be addressed directly and indirectly. Internal data locations 80H-FFH can only be
addressed indirectly. Directly addressing these locations accesses the SFRs. The 64-Kbyte code
memory has a separate memory space. Data in the code memory can be accessed only with the
MOVC instruction. Similarly, the 64-Kbyte external data memory can be accessed only with the
MOVX instruction.

The register file (registers RO-R7) comprises four switchable register banks, each having eight
registers. The 32 bytes required for the four banks occupy locations 00H-1FH in the on-chip data
memory.

Figure 3-3 shows how the address spaces in the MCS 51 architecture map into the address spaces
in the MCS 251 architecture; details are listed in Table 3-1.

T MCS®51 Microcontroller Family User’s Manual (Order Number: 272383)

3-2 |

|nte|® ADDRESS SPACES

The 64-Kbyte code memory for MCS 51 microcontrollers maps into region FF: of the memory
space for MCS 251 microcontrollers. Assemblers for MCS 251 microcontrollers assemble code
for MCS 51 microcontrollers into region FF:, and data accesses to code memory are directed to
this region. The assembler also maps the interrupt vectors to region FF:. This mapping is trans-
parent to the user; code executes just as before, without modification.

FFFFH
Code
(MOVC)
0000H
FFFFH RO Register File R7
External Data
(MOVX)
0000H
FFH FFH
Internal Data SFRs
(indirect) (direct)
80H 80H
7FH
Internal Data
(direct, indirect)
JO0H
A4139-01

Figure 3-2. Address Spaces for the MCS® 51 Architecture

I 3-3

8x930AXx, 8x930Hx USER’S MANUAL

Memory Address Space
16 Mbytes
I FFFFH
_ SFR Space
®
MCS® 51 Architecture 512 Bytes

FF:0000H] 0000H

02:0000H

01:0000H | 0000H

00:0000H | OCH

Code Memory

S:100H

FFFFH

MCS 51 Architecture
External Data Memory

FFH

MCS 51 Architecture
Internal Data Memory

MCS 51 Architecture
SFRs

S:000H

Register File
64 Bytes

o lo MCS51 Architecture R.F. 7

A4133-01

Figure 3-3. Address Space Mappings MCS® 51 Architecture to MCS® 251 Architecture

Table 3-1. Address Mappings

MCS® 51 Architecture

MCS® 251 Architecture

Memory Type . . Data .
Size Location Addressing Location
Indirect using . .
Code 64 Kbytes 0000H-FFFFH MOVC instr. FF:0000H-FF:FFFFH
Indirect using . .
External Data 64 Kbytes 0000H-FFFFH MOVX instr. 01:0000H-01:FFFFH
128 bytes 00H-7FH Direct, Indirect | 00:0000H-00:007FH
Internal Data
128 bytes 80H-FFH Indirect 00:0080H-00:00FFH
SFRs 128 bytes S:80H-S:FFH Direct S:080H-S:0FFH
Register File 8 bytes RO-R7 Register RO-R7
3-4

|nte|® ADDRESS SPACES

The 64-Kbyte external data memory for MCS 51 microcontrollers is mapped into the memory re-
gion specified by bits 16-23 of the data pointer DPX, i.e., DPXL. DPXL is accessible as register
file location 57 and also as the SFR at S:084H (see “Dedicated Registers” on page 3-12). The re-
set value of DPXL is 01H, which maps the external memory to region O1: as shown in Figure 3-3.
You can change this mapping by writing a different value to DPXL. A mapping of the MCS 51
microcontroller external data memory into any 64-Kbyte memory region in the MCS 251 archi-
tecture provides complete run-time compatibility because the lower 16 address bits are identical
in the two address spaces.

The 256 bytes of on-chip data memory for MCS 51 microcontrollers (00H-FFH) are mapped to
addresses 00:0000H-00:00FFH to ensure complete run-time compatibility. In the MCS 51 archi-
tecture, the lower 128 bytes (OOH-7FH) are directly and indirectly addressable; however the upper
128 bytes are accessible by indirect addressing only. In the MCS 251 architecture, all locations in
region 00: are accessible by direct, indirect, and displacement addressing (see “8x930 Memory
Space” on page 3-5).

The 128-byte SFR space for MCS 51 microcontrollers is mapped into the 512-byte SFR space of
the MCS 251 architecture starting at address S:080H, as shown in Figure 3-3. This provides com-
plete compatibility with direct addressing of MCS 51 microcontroller SFRs (including bit ad-
dressing). The SFR addresses are unchanged in the new architecture. In the MCS 251
architecture, SFRs A, B, DPL, DPH, and SP (as well as the new SFRs DPXL and SPH) reside in
the register file for high performance. However, to maintain compatibility, they are also mapped
into the SFR space at the same addresses as in the MCS 51 architecture.

3.2 8x930 MEMORY SPACE

Figure 3-4 shows the logical memory space for the 8x930 microcontroller. The usable memory
space of the 8x930 consists of four 64-Kbyte regions: 00:, 01:, FE:, and FF:. Code can execute
from all four regions; code execution begins at FF:0000H. Regions 02:-FD are reserved. Reading
a location in the reserved area returns an unspecified value. Firmware can execute a write to the
reserved area, but nothing is actually written.

All four regions of the memory space are available at the same time. The maximum number of
external address lines is 18, which limits external memory to a maximum of four regions (256
Kbytes). See “Configuring the External Memory Interface” on page 4-7, and “External Memory
Design Examples” on page 16-17.

Locations FF:FFF8H-FF:FFFFH are reserved for the configuration array (see Chapter 4, “Device
Configuration”). The two configuration bytes for the 8x930 are accessed at locations FF:FFF8H
and FF:FFF9H; locations FF:FFFAH-FF:FFFFH are reserved for configuration bytes in future
products. Do not attempt to execute code from locations FF:FFF8H-FF:FFFFH. Also, see the
caution on page 4-3 regarding execution of code from locations immediately below the configu-
ration array.

Figure 3-4 also indicates the addressing modes that can be used to access different areas of mem-
ory. The first 64 Kbytes can be directly addressed. The first 96 bytes of general-purpose RAM
(00:0020H-00:007FH) are bit addressable. Chapter 5, “Programming Considerations,” discusses
addressing modes.

I 3-5

8x930Ax, 8x930Hx USER’S MANUAL

Register Addressing
(32 Bytes)

Memory Address Space
16 Mbytes
FRFFFFH] |
FF:0000H
FE:FFFFH
FE:0000H

N

Regions 02-FD
are Reserved

L 3

£ ¢

01:FFFFH

01:0000H
00:FFFFH
00:0080H _ _ _ _ _ ________
00:007FH
0000201
00:0000H 00:001FH

Indirect and
Displacement
Addressing
(16 Mbytes)

Direct Addressing
(64 Kbytes)

Bit Addressing
(96 Bytes)

A4385-01

3-6

Figure 3-4. 8x930 Address Space

lnte|® . ADDRESS SPACES

FE:FFFFH
External Memory

FE:0000H

N

Regions 02-FD
are Reserved

£ ¢

01:FFFFH

External Memory

01:0000H

00:FFFFH

External Memory

T Eight-byte configuration array (FF:FFF8H - FF:FFFFH)
T Four banks of registers R0-R7 (32 bytes, 00:0000H - 00:001FH)

A5209-01

Figure 3-5. Hardware implementation of the 8x930 Address Space

8x930Ax, 8x930Hx USER’S MANUAL |nte|®

Figure 3-5 shows how areas of the memory space are implemented by on-chip RAM and external
memory. The first 32 bytes of on-chip RAM store banks 0-3 of the register file (see “8x930 Reg-
ister File” on page 3-9).

3.2.1 On-chip General-purpose Data RAM

On-chip RAM provides general data storage (Figure 3-5). Instructions cannot execute from on-
chip data RAM. The data is accessible by direct, indirect, and displacement addressing. Locations
00:0020H-00:007FH are also bit addressable.

'3.2.2 On-chip Code Memory

The 8x930 is available with 0, 8 or 16 Kbytes of on-chip ROM located in memory region FF:.
(Figure 3-5). Table 2-1 on page 2-3 lists the amount of on-chip code memory for each device. On-
- chip ROM is intended primarily for code storage, although its contents can also be read as data
with the indirect and displacement addressing modes. Following a chip reset, program execution
begins at FF:0000H. Chapter 17, “Verifying Nonvolatile Memory,” describes the procedure for
verifying the contents of on-chip ROM.

A code fetch within the address range of the on-chip ROM accesses the on-chip ROM only if
EA# = 1. For EA# =0, a code fetch in this address range accesses external memory. The value of
EA# is latched when the chip leaves the reset state. Code is fetched faster from on-chip code
memory than from external memory. Table 3-2 lists the minimum times to fetch two bytes of code
from on-chip memory and external memory.

NOTE
If your program executes exclusively from on-chip ROM (not from external
memory), beware of executing code from the upper eight bytes of the on-chip
ROM (FF:1FF8H-FF:1FFFH for 8 Kbytes, FF:3FFSH-FF:3FFFH for 16
Kbytes). Because of its pipeline capability, the 8x930 may attempt to prefetch
code from external memory (at an address above FF:1FFFH/ FF:3FFFH) and
thereby disrupt I/O ports 0 and 2. Fetching code constants from these eight
bytes does not affect ports 0 and 2.

If your program executes from both on-chip ROM and external memory, code
can be placed in the upper eight bytes of on-chip ROM. As the 8x930 fetches
bytes above the top address in the on-chip ROM, code fetches automatically
become external bus cycles. In other words, the rollover from on-chip ROM to
external code memory is transparent to the user.

Table 3-2. Minimum Times to Fetch Two Bytes of Code

Type of Code Memory State Times

On-chip Code Memory 1

External Memory (page mode)

External Memory (nonpage mode)

3-8 I

"Ttel@ ADDRESS SPACES

3.2.2.1 Accessing On-chip Code Memory in Region 00:

Devices with 16 Kbytes of on-chip code memory can be configured so that the upper half of the
on-chip code memory can also be read as data at locations at the top of region 00: (see “Mapping
On-chip Code Memory to Data Memory (EMAP#)” on page 4-14). That is, locations FF:2000H-
FF:3FFFH can also be accessed at locations 00:EOOOH-00:FFFFH. This is useful for accessing
code constants stored in ROM. Note, however, that all of the following three conditions must hold
for this mapping to be effective:

® The device is configured with EMAP# = 0 in the UCONFIGI register (See Figure 4-3 on
page 4-5).

e EA#=1.
¢ The access to this area of region 00: is a data read, not a code fetch.

If one or more of these conditions do not hold, accesses to the locations in region 00: are referred
to external memory.

3.2.3 External Memory

Regions 01:, FE:, and portions of regions 00: and FF: of the memory space are implemented as
external memory (Figure 3-5). For discussions of external memory, see “Configuring the External
Memory Interface” on page 4-7, and Chapter 16, “External Memory Interface.”

3.3 8x930 REGISTER FILE

The 8x930 register file consists of 40 locations: 0-31 and 56-63, as shown in Figure 3-6. These
locations are accessible as bytes, words, and dwords, as described in “Byte, Word, and Dword
Registers” on page 3-12.” Several locations are dedicated to special registers (see “Dedicated
Registers” on page 3-12); the remainder are general-purpose registers.

Register file locations 0-7 actually consist of four switchable banks of eight registers each, as il-
lustrated in Figure 3-7 on page 3-11. The four banks are implemented as the first 32 bytes of on-
chip RAM and are always accessible as locations 00:0000H-00:001FH in the memory address
space.T Only one of the four banks is accessible via the register file at a given time. The accessi-
ble, or “active,” bank is selected by bits RS1 and RSO in the PSW register, as shown in Table 3-3.
(The PSW is described in “Program Status Words” on page 5-15.”) This bank selection can be
used for fast context switches.

Register file locations 8-31 and 56-63 are always accessible. These locations are implemented
as registers in the CPU. Register file locations 32-55 are reserved and cannot be accessed.

T Because these locations are dedicated to the register file, they are not considered a part of the general-purpose,
1-Kbyte, on-chip RAM (locations 00:0020H-00:041FH).

I 3-9

8x930Ax, 8x930Hx USER’S MANUAL Intel o

Byte Registers

Note: R10=B
R11 = ACC

R8 | R9 |R10JR11]R12|R13|R14|R15
RO|R1|R2|R3|R4| R5]| R6 | R7

Register File Word Registers
56 | 57 [58 [59 [60]61]62] 63

Locations 32-55 are Reserved

2412512627128]129]30]31] WR24 | WR26 | WR28 | WR30

1617118 19]20] 21|22] 23 WR16 | WR18 | WR20 | WR22

819 |]10|11}12]13]14 |15 WR8 | WR10 | WR12 | WR14
WRO WR2 WR4 WR6

Dword Registers

DR56 =DPX | DR60=SPX
Banks 0-3
DR24 DR28
DR16 DR20
DR8 DR12
DRO DR4
A4099-01

Figure 3-6. The Register File

3-10

|nte|® ADDRESS SPACES

Register File Memory Address Space

Wﬂ\
PSW bits RS1:0 o[1]2]3]4]5]6]7 \ LS 1FH] Banks 0-3

10H 17H]| accessible

select one bank Banks 0-3 \ :

to be accessed via 08H OFH| in memory

the register file. 00H 07H| @address space
A4215-01

Figure 3-7. Register File Locations 0-7

Table 3-3. Register Bank Selection
PSW Selection Bits

Bank Address Range
RS1 RSO

Bank 0 00H-07H 0
Bank 1 08H-0FH 0
1
1

Bank 2 10H-17H
Bank 3 18H-1FH

- O| =] 0O

I 3-11

8x930Ax, 8x330Hx USER’S MANUAL |nte|®

3.4 BYTE, WORD, AND DWORD REGISTERS

Depending on its location in the register file, a register is addressable as a byte, a word, and/or a
dword, as shown on the right side of Figure 3-6. A register is named for its lowest numbered byte
location. For example:

R4 is the byte register consisting of location 4.
WR4 is the word register consisting of registers 4 and 5.
DR4 is the dword register consisting of registers 4—7.

Locations RO-R15 are addressable as bytes, words, or dwords. Locations 16-31 are addressable
only as words or dwords. Locations 56—63 are addressable only as dwords. Registers are ad-
dressed only by the names shown in Figure 3-6 — except for the 32 registers that comprise the
four banks of registers RO—R7, which can also be accessed as locations 00:0000H-00:001FH in
the memory space.

3.4.1 Dedicated Registers

The register file has four dedicated registers:
® RI10 is the B-register
® RI11 is the accumulator (ACC)
* DR56 is the extended data pointer, DPX
* DRG0 is the extended stack pointer, SPX

These registers are located in the register file; however, R10; R11; the DPXL, DPH, and DPL
bytes in DR56; and the SPH and SP bytes in DR60 are also accessible as SFRs. The bytes of DPX
and SPX can be accessed in the register file only by addressing the dword registers. The dedicated
registers in the register file and their corresponding SFRs are illustrated in Figure 3-8 and listed
in Table 3-4. '

3.4.1.1 Accumulator and B Register

The 8-bit accumulator (ACC) is byte register R11, which is also accessible in the SFR space as
ACC at S:EOH (Figure 3-8). The B register, used in multiplies and divides, is register R10, which
is also accessible in the SFR space as B at S:FOH. Accessing ACC or B as a register is one state
faster than accessing them as SFRs.

Instructions in the MCS 51 architecture use the accumulator as the primary register for data
moves and calculations. However, in the MCS 251 architecture, any of registers R1-R15 can
serve for these tasksT. As a result, the accumulator does not play the central role that it has in MCS
51 microcontrollers.

f Bits in the PSW and PSW 1 registers reflect the status of the accumulator. There are no equivalent status indicators for
the other registers.

3-12 I

ADDRESS SPACES

SFRs

Register File

omaﬁa
- ,w“». -
e
&ﬁw@wmﬁ%?

,.?x;
.

o

.

o

.

-

- e

-

.
e

.

; e

.

-

-

. an
.@@@
.
. | T smf
P ;.

e : .
. - .
e i -

.

.
. .
- .

.
. .

.
o

o
.

S

o

-

-
-

.

-

-
5 -

L
g

A4152-02

ile and their Corresponding SFRs

ister F

ers in the Regi

icated Regist

igure 3-8. Ded

F

3-13

8x930Ax, 8x930Hx USER’S MANUAL |nte|®

3.4.1.2 Extended Data Pointer, DPX

Dword register DR56 is the extended data pointer, DPX (Figure 3-8). The lower three bytes of
DPX (DPL, DPH, DPXL) are accessible as SFRs. DPL and DPH comprise the 16-bit data pointer
DPTR. While instructions in the MCS 51 architecture always use DPTR as the data pointer, in-
structions in the MCS 251 architecture can use any word or dword register as a data pointer.

DPXL, the byte in location 57, specifies the region of memory (00:—FF:) that maps into the 64-
Kbyte external data memory space in the MCS 51 architecture. In other words, the MOVX in-
struction addresses the region specified by DPXL when it moves data to and from external mem-
ory. The reset value of DPXL is O1H.

3.4.1.3 Extended Stack Pointer, SPX

Dword register DR60 is the stack pointer, SPX (Figure 3-8). The byte at location 63 is the 8-bit
stack pointer, SP, in the MCS 51 architecture. The byte at location 62 is the stack pointer high,
SPH. The two bytes allow the stack to extend to the top of memory region 00:. SP and SPH can
be accessed as SFRs.

Two instructions, PUSH and POP directly address the stack pointer. Subroutine calls (ACALL,
ECALL, LCALL) and returns (ERET, RET, RETI) also use the stack pointer. To preserve the
stack, do not use DR60 as a general-purpose register.

Table 3-4. Dedicated Registers in the Register File and their Corresponding SFRs

Register File SFRs
Name Mnemonic | Reg. | Location Mnemonic | Address
—_ — v 60 — —
Stack — — 61 — —
Pointer - - DR60
(SPX) | Stack Pointer, High SPH 62 SPH S:BEH
Stack Pointer, Low SP 63 SP - S:81H
) — — 56 — —
Data Data Pointer Extended, Low DPXL 57 DPXL S:85H
Pointer DR56
(DPX) DPTR Data Pointer, High DPH 58 DPH S:83H
Data Pointer, Low DPL 59 DPL S:82H
Accumulator (A Register) A R11 11 ACC S:EOH
B Register B R10 10 B S:FOH

3-14 I

|nte|® ADDRESS SPACES

3.5 SPECIAL FUNCTION REGISTERS (SFRS)

The special function registers (SFRs) reside in the microcontroller core, the USB module, and the
on-chip peripherals. Memory maps showing the location of all the 8xX930Ax and 8x930Hx SFRs
are presented in Tables 3-5 and Tables 3-6. The contents of each register following device reset
is given. An “x” indicates the bit value following reset is indeterminate.

Blank locations in Tables 3-5 and 3-6 and locations below S:80H and above S:FFH are unimple-
mented, i.e., no register exists. If an instruction attempts to write to an unimplemented SFR loca-
tion, the instruction executes, but nothing is actually written. If an unimplemented SFR location
is read, it returns an unspecified value.

Endpoint-indexed SFRs are implemented as banks of registers similar to register file locations
RO-R7. There is a set or bank of registers for each endpoint pair. Endpoint-indexed SFRs are ac-
cessed by means of the SFR address and an index value. The EPINDEX register specifies
hub/function and the endpoint number (which serves as the index value). See “Endpoint-indexed
SFRs” on page 7-3 and “Hub Endpoint Indexing Using EPINDEX” on page 8-11.

Port-indexed SFRs (HPCON, HPSC, and HPSTST) are implemented in a similar manner. There
is a set or bank of these registers for each USB downstream port. Port-indexed SFRs are accessed
by means of the SFR address and an index value. The HPINDEX register contains the port num-
ber which serves as the index value. See “Hub Port Indexing Using HPINDEX” on page 8-23.

SFR addresses are preceded by “S:” to differentiate them from addresses in the memory space.
Tables describing the SFRs are presented in alphabetical order in Appendix C.
Table 3-7 through Table 3-14 list the SFRs by functional category. .

Table 3-7 — Core SFRs

Table 3-8 — Interrupt System SFRs

Table 3-9 — I/O Port SFRs

Table 3-10 — Serial I/O SFRs

Table 3-11 — USB Function SFRs

Table 3-12 — USB Hub SFRs

Table 3-13 — Timer/Counter and Watchdog Timer SFRs

Table 3-14 — Programmable Counter Array (PCA) SFRs

NOTE

SFRs may be accessed only as bytes; they may not be accessed as words or
dwords.

8x930Ax, 8x930Hx USER’S MANUAL

Table 3-5. 8x930Ax SFR Map

0/8 1/9 2/A 3/B 4/C 5/D 6/E 7/F
F8 - . FF
FO EPINDEX || TXSTAT TXDAT TXCON TXFLG TXCNTL TXCNTH F7
1xxxx000 00000000 || XXXXXXXX 000x01007 | 00xx1000 000000007 || xxxxxx00
EO EPCON RXSTAT RXDAT RXCON RXFLG RXCNTL RXCNTH E7
00x100007 || 00000000 || XXXXXXXX 0x000100 00xx1000 000000007 [| xxxxxx00
D8 PCON1 DF
xxx00000
Do SOFL SOFH D7
00000000 | 00000000
cs CF
COo | FIFLG FIFLG1 EPCONFIG C7
00000000 | 00000000 XXXXXXXO0
B8

BO

A8

A0

98

90

88

80

'0/8 1/9

IPL1
x0000000

IPH1
x0000000

FIE
00000000

FIE1
00000000

2/A

3/B

4/C

5/D

FADDR
00000000

7/F

8F

N

3-16

MCS 251 microcontroller SFRs Izl Endpoint-indexed SFRs

For EPCON, TXCON, TXCNTL, and RXCNTL, the reset value depends on the endpoint pair selected.
Refer to the register definition tables in Appendix C or Chapter 7, “USB Function.”

|nte|® ADDRESS SPACES

Table 3-6. 8X930Hx SFR Map

0/8 1/9 2/A 3/B 4/C 5/D 6/E 7/F

F8 CH ! H |ccApeH | ccAP3H | CCAPaH FF

Fo |B.~ | EPINDEX |[TXSTAT |[TXDATt [[TXCON || TXFLG TXCNTL || TXCNTH || F7
00000000 | 1xxxxx00 00000000 || xxxxxxxx! || 000x0100" [| 00xx1000 000000007 || xxxxxx00

E8 |HIFLG [CL [CCAPOL |CCAPIL |CCAP2L | CCAP3L | CCAPAL EF
0xxxxx00 | 00000000 " | 000000 | XXXXXXXX | XXXOKXX - | 30000 7 | XX0000KX.

EO |ACC. |[EPCON |[RXSTAT || RXDAT RXCON || RXFLG RXCNTL ||RXCNTH ||E7
| 00000000 || 00x100007 || 00000000 || xxxxaxxx || 0x000100 || 00xx1000 || 000000007 || xxxxxx00

D8 |CCON [CMOD |CCAPMO |CCAPMi |CCAPM2 |[CCAPM3 |[CCAPM4 [PCON1 DF
00x00000 | 00%] | x0000000 | xo€ | | xxx00000

DO [PSW [PSW1 HPINDEX [HPSC HPSTAT | D7
00000000 | € 00000000 | xxxxx000 | xxx00000 0x000100

C8 | T2CON | T2M RCAP2L |RCAPZH [Ttz [TH2 HPCON | CF
00000000 | XXXXXX || 60000000 | 00000000 | 06000000 | 000OO0CO: x0xxx000

co | FIFLG c7
00000000

B8 | IPLO

BO | 1EN1 IPL1 IPH1

, x0XX000 | X0000000 | 0000000 | X0000000
A8 | IEND R HSTAT AF

x0000000

FIE WDTRS
00000000 X000

AO | P2 A7

98 HPPWR oF
.| xxx1000x

9 [P1 HADDR |97
R 00000000

88 S ClTHO . o [THE FADDR 8F
00000000 00000000 00000000

go [P0 |sp i PH DPXL pCON | 87
A oanee 109000000 - | tpboroas « Gexomne

0/8 1/9 2/A 3/B 4/C 5/D 6/E 7/F
MCS 251 microcontroller SFRs E Port-indexed SFRs
Endpoint-indexed SFRs

T For EPCON, TXCON, TXDAT, TXCNTL, and RXCNTL the reset valuye depends on the endpoint pair
selected. Refer to the register definition tables in Appendix C or Chapter 7, “USB Function.”

T For hub endpoint 1 (EPINDEX = 1000 0001), the only endpoint SFR implemented is TXDAT. A separate
TXDAT register definition table is provided for this endpoint (see Chapter 8, “USB Hub.”)

J 3-17

8x930AXx, 8x930Hx USER’S MANUAL

Table 3-7. Core SFRs

Mnemonic | Name Address
ACC* Accumulator S:EOH
Bt B Register S:FOH
PSW Program Status Word S:DOH
PSW1 Program Status Word 1 S:D1H
SP# Stack Pointer — LSB of SPX S:81H
SPHt Stack Pointer High — MSB of SPX S:BEH
DPTRf Data Pointer (2 bytes) —

DPL¥ Low Byte of DPTR S:82H

DPH? High Byte of DPTR S:83H
DPXL? Data Pointer Extended, Low S:85H
PCON Power Control S:87H
PCON1 USB Power Control. S:DFH
WCON Wait State Control Register S:A7H

i These SFRs can also be accessed by their corresponding registers in the register
file (see Table 3-4).

Table 3-8. Interrupt System SFRs

Mnemonic Description Address
FIE USB Function Interrupt Enable Register. S:A2H
FIE1 USB Function Interrupt Enable Register. S:A3H
FIFLG USB Function Interrupt Flag Register. S:COH
FIFLG1 USB Function Interrupt Flag Register. S:C1H
HIE Hub Interrupt Enable Register. S:A1H
HIFLG Hub Interrupt Flag Register. S:E8H
IENO Interrupt Enable Register 0. S:A8H
IEN1 Interrupt Enable Register1. S:B1H
IPLO Interrupt Priority Low Register 0. S:B8H
IPHO Interrupt Priority High Register 0. S:B7H
IPL1 Interrupt Priority Low Register 1. S:B2H
IPH1 Interrupt Priority High Register 1. S:B3H
SOFH Start of Frame High Register. S:D3H
SOFL Start of Frame Low Register. S:D2H

ADDRESS SPACES
Table 3-9. /O Port SFRs

Mnemonic Name Address

PO Port 0 S:80H

P1 Port 1 S:90H

P2 Port 2 S:AOH

P3 Port 3 S:BOH

Table 3-10. Serial /0 SFRs
Mnemonic Name Address
SCON Serial Control S:98H
SBUF Serial Data Buffer S:99H
SADEN Slave Address Mask S:B9H
SADDR Slave Address S:A9H
Table 3-11. USB Function SFRs
Mnemonic Name Address
EPCON Endpoint Control Register. S:E1H
EPCONFIG Endpoint Configuration Register S:C7H
EPINDEX Endpoint Index Register. S:F1H
FADDR Function Address Register. S:8FH
RXCNTH Receive FIFO Byte-Count High Register. S:E7H
RXCNTL Receive FIFO Byte-Count Low Register. S:E6H
RXCON Receive FIFO Control Register. S:E4H
RXDAT Receive FIFO Data Register. S:E3H
RXFLG Receive FIFO Flag Register. S:E5H
RXSTAT Endpoint Receive Status Register. S:E2H
TXCNTH Transmit Count High Register. S:F7H
TXCNTL Transmit Count Low Register. S:FeH
TXCON Transmit FIFO Control Register. S:F4H
TXDAT Transmit FIFO Data Register. S:F3H
TXFLG Transmit Flag Register. S:F5H
TXSTAT Endpoint Transmit Status Register. S:FAH
3-19

8x930Ax, 8x930Hx USER’S MANUAL

Table 3-12. USB Hub SFRs

Mnemonic Name Address
HADDR Hub Address Register. S:97H
HPCON Hub Port Control. S:CFH
HPINDEX Hub Port Index Register. S:D4H
HPPWR Hub Port Power Control. S:9AH
HPSC Hub Port Status Change. S:D5H
HPSTAT Hub Port Status. S:D7H
HSTAT Hub Status and Configuration. S:AEH

Table 3-13. Timer/Counter and Watchdog Timer SFRs

Mnemonic Name Address
TLO Timer/Counter 0 Low Byte S:8AH
THO Timer/Counter O High Byte S:8CH
TLA Timer/Counter 1 Low Byte S:8BH
TH1 Timer/Counter 1 High Byte S:8DH
TL2 Timer/Counter 2 Low Byte S:CCH
TH2 Timer/Counter 2 High Byte S:CDH
TCON Timer/Counter 0 and 1 Control S:88H
TMOD Timer/Counter 0 and 1 Mode Control S:89H
T2CON Timer/Counter 2 Control S:C8H
T2MOD Timer/Counter 2 Mode Control S:Co9H
RCAP2L Timer 2 Reload/Capture Low Byte S:CAH
RCAP2H Timer 2 Reload/Capture High Byte S:CBH
WDTRST WatchDog Timer Reset S:A6H

intel.

ADDRESS SPACES

Table 3-14. Programmable Counter Array (PCA) SFRs

Mnemonic Name Address
CCON PCA Timer/Counter Control S:D8H
CMOD PCA Timer/Counter Mode S:D9H
CCAPMO PCA Timer/Counter Mode 0 S:DAH
CCAPM1 PCA Timer/Counter Mode 1 S:DBH
CCAPM2 PCA Timer/Counter Mode 2 S:DCH
CCAPM3 PCA Timer/Counter Mode 3 S:DDH
CCAPM4 PCA Timer/Counter Mode 4 S:DEH
CL PCA Timer/Counter Low Byte S:E9H
CH PCA Timer/Counter High Byte S:F9H
CCAPOL PCA Compare/Capture Module 0 Low Byte S:EAH
CCAP1L PCA Compare/Capture Module 1 Low Byte S:EBH
CCAP2L PCA Compare/Capture Module 2 Low Byte S:ECH
CCAP3L PCA Compare/Capture Module 3 Low Byte S:EDH
CCAP4L PCA Compare/Capture Module 4 Low Byte S:EEH
CCAPOH PCA Compare/Capture Module 0 High Byte S:FAH
CCAP1H PCA Compare/Capture Module 1 High Byte S:FBH
CCAP2H PCA Compare/Capture Module 2 High Byte S:FCH
CCAP3H PCA Compare/Capture Module 3 High Byte S:FDH
CCAP4H PCA Compare/Capture Module 4 High Byte S:FEH

3-21

intgl.

4

Device Configuration

intel.

CHAPTER 4
DEVICE CONFIGURATION

The 8x930 provides design flexibility by configuring certain operating features during device re-
set. These features fall into the following categories:

¢ external memory interface (page mode, address bits, wait states, range for RD#, WR#, and
PSEN#)

¢ source mode/binary mode opcodes
® selection of bytes stored on the stack by an interrupt
* mapping of the upper portion of on-chip code memory to region 00:

You can specify a 16-bit, 17-bit, or 18-bit external addresses bus (256 Kbyte external address
space). Wait state selection provides 0, 1, 2, or 3 wait states.

This chapter provides a detailed discussion of device configuration. It describes the configuration
bytes and provides information to aid you in selecting a suitable configuration for your applica-
tion. It discusses the choices involved in configuring the external memory interface and shows
how the internal memory space maps into external memory. See “Configuring the External Mem-
ory Interface” on page 4-7. “Opcode Configurations (SRC)” on page 4-12 discusses the choice
of source mode or binary mode opcode arrangements.

4.1 CONFIGURATION OVERVIEW

The configuration of the 8x930 is established by the reset routine based on information stored in
configuration bytes. The 8x930 stores configuration information in two user configuration bytes
(UCONFIGO and UCONFIG1) located in code memory. Devices with no on-chip code memory
fetch configuration data from external memory. Factory programmed ROM devices use customer-
provided configuration data supplied on floppy disk.

4.2 DEVICE CONFIGURATION

The 8x930 reserves the top eight bytes of the memory address space (FF:FFF8H-FF:FFFFH) for
an eight-byte configuration array (Figure 4-1). The two lowest bytes of the configuration array
are assigned to the two configuration bytes UCONFIGO (FF:FFF8H) and UCONFIGI1
(FF:FFF9H). Bit definitions of UCONFIGO and UCONFIG1 are provided in Figures 4-3 and 4-4.
The upper six bytes of the configuration array are reserved for future use.

When EA# = 1, the 8x930 obtains configuration information at reset from on-chip nonvolatile
memory at addresses FF:FFF8H and FF:FFFIH. For ROM devices, configuration information is
entered at these addresses during fabrication. The user can verify configuration information
stored on-chip using the procedures presented in Chapter 17, “Verifying Nonvolatile Memory.”

8x930AXx, 8x930Hx USER’S

MANUAL

intgl.

For devices without on-chip program memory, configuration information is accessed from exter-
nal memory using these same addresses. The designer must store configuration information in an
eight-byte configuration array located at the highest addresses implemented in external code
memory. See Table 4-1 and Figure 4-2. When EA# = 0, the microcontroller obtains configuration

information at reset from external memory using internal addresses FF:FFF8H and FF:FFFOH.

8-Kbyte
Devices

FF:

FF:0000H

16-Kbyte
Devices

FF:FFFFH
FF:FFFEH

FF:0000H

For EA# = 1, configuration information is obtained from the
on-chip configuration array located in non-volatile memory
at addresses FF:FFF8H - FF:FFFFH.

FF:FFFDH
FF:FFFCH
FF:FFFBH
FF:FFFAH
FF:FFFOH
FF:FFF8H

UCONFIG
UCONFIGO

Detail. On-chip configuration array.

A4393-01

Figure 4-1. Configuration Array (On-chip)

Table 4-1. External Addresses for Configuration Array
Size of External Address of Address of
Address Bus Configuration Array on Configuration Bytes
(Bits) External Bus (2) on External Bus (1)
16 FFF8H-FFFFH UCONFIG1: FFF9H
UCONFIGO: FFF8H
17 1FFF8H-1FFFFH UCONFIG1: 1FFF9H
UCONFIGO: 1FFF8H
18 3FFF8H-3FFFFH UCONFIG1: 3FFF9H
UCONFIGO: 3FFF8H
.NOTES:
1. When EA# = 0, the reset routine retrieves UCONFIGO and UCONFIG1 from

external memory using the internal addresses FF:FFF8H and FF:FFF9H
which appear on the external address bus (A17, A16, A15:0) as shown in this
table. See Figure 4-2.

2. The upper six

bytes of the configuration array are reserved for future use.

DEVICE CONFIGURATION

8 Kbytes 16 Kbytes 32 Kbytes 64 Kbytes

3FF9H
1FF9H 3FF8H

1FF8H ko

FFFOH

.Y
't

1:FFFOH
1:FFF8H

3:FFF9H
3:FFF8H

This figure shows the addresses of configuration bytes UCONFIG1 and UCONFIGO in external memory for
several memory implementations. For EA# = 0, configuration information is obtained from configuration bytes
in external memory using internal addresses FF:FFF8H and FF:FFF9H. In external memory, the eight-byte

configuration array is located at the highest addresses implemented.

xxFFFH
xxFFEH
x:xFFDH
xxFFCH
xxFFBH
xxFFAH

xxFFOH | UCONFIG1
xxFF8H | UCONFIGO

Detail.
Configuration array in external memory.

A4394-01

Figure 4-2. Configuration Array (External)

CAUTION

The eight highest addresses in the memory address space (FF:FFF8H—
FF:FFFFH) are reserved for the configuration array. Do not read or write
application code at these locations. These address are also used to access the
configuration array in external memory, so the same restrictions apply to the
eight highest addresses implemented in external memory. Instructions that
might inadvertently cause these addresses to be accessed due to call returns or
prefetches should not be located at addresses immediately below the
configuration array. Use an EJMP instruction, five or more addresses below the
configuration array, to continue execution in other areas of memory.

43

8x930Ax, 8x930Hx USER’S MANUAL |nte|®

| 4.3 THE CONFIGURATION BITS

This following list briefly describes the configuration bits contained in configuration bytes
UCONFIGO and UCONFIGI1 (Figures 4-3 and 4-4):

* SRC. Selects source mode or binary mode opcode configuration.

* INTR. Selects the bytes pushed onto the stack by interrupts.

* EMAP#. Maps on-chip code memory (16 Kbyte devices only) to memory region 00:.
The following bits configure the external memory interface:

* PAGEH#. Selects page/nonpage mode and specifies the data port.

¢ RD1:0. Selects the number of external address bus pins and the address range for RD#, WR,
and PSEN#. ‘

¢ XALE#. Extends the ALE pulse. »
* WSAL:04#. Selects 0, 1, 2, or 3 wait states for all memory regions except 01:.
* WSBI1:0#. Selects 0, 1, 2, or 3 wait states for memory region 01:.

* EMAP#. Affects the external memory interface in that, when asserted, addresses in the
range 00:E000H-00:FFFFH access on-chip memory.

44 I

|nte|® DEVICE CONFIGURATION

UCONFIGO Address: FF:FFF8H (2)
(1), 3)
7 0
| — | wsamw | wsao# | XALE# || RDI1 RDO PAGE# | SRC |
Bit Bit .
Number | Mnemonic Function
7 —_ Reserved:
Reserved for internal or future use. Set this bit when programming
UCONFIGO.
6:5 WSAT1:0# | Wait State A (all regions except 01:):

For external memory accesses, selects the number of wait states for RD#,
WR#, and PSEN#.

WSA1# WSAO#

0 0 Inserts 3 wait states for all regions except 01:
0 1 Inserts 2 wait states for all regions except 01:
1 0 Inserts 1 wait state for all regions except 01:
1 1 Zero wait states for all regions except 01:

4 XALE# Extend ALE:

Set this bit for ALE = Tygc.
Clear this bit for ALE = 3Tyg; (adds one external wait state).

3:2 RD1:0 Memory Signal Selection:

RD1:0 bit codes specify an 18-bit, 17-bit, or 16-bit external address bus and
address ranges for RD#, WR#, and PSEN#. See Table 4-2 on page 4-7.

1 PAGE# Page Mode Select:

Clear this bit for page mode enabled with A15:8/D7:0 on P2 and A7:0 on PO.
Set this bit for page mode disabled with A15:8 on P2 and A7:0/D7:0 on PO.
0 SRC Source Mode/Binary Mode Select:

Set this bit for source mode.
Clear this bit for binary mode (opcodes compatible with MCS 51
microcontrollers).

NOTES:

1. User configuration bytes UCONFIGO and UCONFIG1 define the configuration of the 8x930.

2. Address. UCONFIGO is the lowest byte of the 8-byte configuration array. When EA# = 1, the 8x930
fetches configuration information from an on-chip configuration array located in nonvolatile memory at
the top of region FF:. When EA# = 0, the 8x930 fetches configuration information from a configuration
array located at the highest addresses implemented in external memory using addresses FF:FFF8H
and FF:FFF9H. The physical location of the configuration array in external memory depends on the size
and decode arrangement of the external memory (Table 4-1 and Figure 4-2).

3. Instructions for verifying on-chip configuration bytes are given in Chapter 17.

Figure 4-3. User Configuration Byte 0 (UCONFIGO)

Nl

L]
8x930Ax, 8x930Hx USER’S MANUAL Intet@

UCONFIG1 Address: FF:FFF9H (2)
(1),(3)

7

[wsei# | wseor | EwmaAP

Bit Bit Function
Number | Mnemonic
75 — Reserved:
Reserved for internal or future use. Set these bits when programming
UCONFIGH.
4 INTR Interrupt Mode:

If this bit is set, interrupts push 4 bytes onto the stack (the 3 bytes of the PC
and PSWH1). If this bit is clear, interrupts push the 2 lower bytes of the PC
onto the stack. See “Interrupt Mode (INTR)” on page 4-14.

— Reserved. Write a ‘1’ to this bit.

2:1 WSB1:0# | External Wait State B (Region 01:):
WSB1# WSBO#
0 0 Inserts 3 wait states for region 01:
0 1 Inserts 2 wait states for region 01:
1 0 Inserts 1 wait state for region 01:
1 1 Zero wait states for region 01:

0 EMAP# EPROM Map:

For devices with 16 Kbytes of on-chip code memory, clear this bit to map the
upper half of on-chip code memory to region 00: (data memory). This maps
FF:2000H-FF:3FFFH to 00:E000H-00:FFFFH. If this bit is set, mapping
does not occur and addresses in the range 00:E000H-00:FFFFH access
external RAM. See “Mapping On-chip Code Memory to Data Memory
(EMAP#)” on page 14.

NOTES: i

1. User configuration bytes UCONFIGO and UCONFIG1 define the configuration of the 8x930.

2. Address. UCONFIG1 is the second lowest byte of the 8-byte configuration array. When EA# =1, the
8x930 fetches configuration information from an on-chip configuration array located in nonvolatile’
memory at the top of region FF:. When EA# = 0, the 8x930 fetches configuration information.from a
configuration array located at the highest addresses implemented in external memory using addresses
FF:FFF8H and FF:FFF9H. The physical location of the configuration array in external memory depends
on the size and decode arrangement of the external memory (Table 4-1 and Figure 4-2).

3. Instructions for verifying on-chip configuration bytes are given in Chapter 17.

Figure 4-4. User Configuration Byte 1 (UCONFIG1)

intgl.

DEVICE CONFIGURATION

Table 4-2. Memory Signal Selections (RD1:0)

. A17/P1.7/
RD1:0 CEX4/WCLK A16/P3.7/RD# PSEN# P3.6/WR# Features
00 [A17 A16 Asserted for | Asserted for writes to | 256 Kbyte external
all addresses | all memory locations | memory
0 1 P1.7/CEX4/ A16 Asserted for | Asserted for writes to | 128 Kbyte external
WCLK all addresses | all memory locations | memory
1 0 | P1.7/CEX4/ P3.7 only Asserted for | Asserted for writes to | 64 Kbyte external
WCLK all addresses | all memory locations | memory. One
additional port pin.
11 P1.7/CEX4/ RD# asserted | Asserted for | Asserted only for Compatible with MCS
WCLK for addresses | > 80:0000H writes to MCS® 51 51 microcontrollers.
< 7F:FFFFH microcontroller data | Separate 64-Kbyte
memory locations. external program
and data memories.
NOTE: RD1:0 are bits 3:2 of configuration byte UCONFIGO (Figure 4-3).

4.4 CONFIGURING THE EXTERNAL MEMORY INTERFACE

This section describes the configuration options that affect the external memory interface. The
configuration bits described here determine the following interface features:

® page mode or nonpage mode (PAGE#)

¢ the number of external address pins — 16, 17, or 18 (RD1:0)

¢ the memory regions assigned to the read signals RD# and PSEN# (RD1:0)
¢ the external wait states (WSA1:0#, WSB1:0#, XALE#)

* mapping a portion of on-chip code memory to data memory (EMAP#)

4.41

Page Mode and Nonpage Mode (PAGE#)

The PAGE# bit (UCONFIGO.1) selects page-mode or nonpage-mode code fetches and deter-
mines whether data is transmitted on P2 or PO. See Figure 16-1 on page 16-1 and “Page Mode
Bus Cycles” on page 16-6 for a description of the bus structure and page mode operation.

* Nonpage mode: PAGE# = 1. The bus structure is the same as for the MCS 51 architecture
with data D7:0 multiplexed with A7:0 on PO. External code fetches require two state times

(4Tos0)-

¢ Page mode: PAGE# = 0. The bus structure differs from the bus structure in MCS 51
controllers. Data D7:0 is multiplexed with A15:8 on P2. Under certain conditions, external

code fetches require only one state time (2Tqc).

8x930Ax, 8x930Hx USER’S MANUAL

4.4.2 Configuration Bits RD1:0

The RD1:0 configuration bits (UCONFIGO.3:2) determine the number of external address lines
and the address ranges for asserting the read signals PSEN#/RD# and the write signal WR#.
These selections offer different ways of addressing external memory. Figures 4-5 and 4-6 show
how internal memory space maps into external memory space for the four values of RD1:0. Chap-
ter 16, “External Memory Interface,” provides examples of external memory designs for each

choice of RD1:0.

intel.

RD1:0 = 00

PO, P2, A16, A17

Notes:

1. Maximum external
memory

2. Single read signal

RD1:0 =01

PO, P2, A16

Note:
Single read signal

18 external address bits:

17 external address bits:

Internal Memory with
Read/Write Signals

FF:
FE:

PSEN#, WR#

01:
00:

PSEN#, WR#

Internal Memory with
Read/Write Signals

PSEN#, WR#

PSEN#, WR#

External
Memory
256 Kbytes
A17:16
11 FF:
10 FE:
01 01
00 00
External
Memory
128 Kbytes
A16
1 01:, FF:
0 00:, FE:
A4218-02

Figure 4-5. Internal/External Address Mapping (RD1:0 = 00 and 01)

48

L]
|nte| ® DEVICE CONFIGURATION
RD1:0 =10
16 external address bits: Internal Memory with External
PO, P2 Read/Write Signals Memory
64 Kbytes
Notes: —
1. Single read signal :
2. P3.7/RD#/A16 functions PSEN#, WR# FE:
only as P3.7 I:I 00:, 01:, FE:, FF:
PSEN#, WR# |2 '
00:
RD1:0 =11

16 external address bits:

Note:

1. Compatible with MCS® 51
microcontrollers

2. Cannot write to regions FC:—FF:

PSEN#

RD#, WR#

Internal Memory with
PO, P2 Read/Write Signals

FF:

FE:

External
Memory

128 Kbytes

00:, 01:

FE:, FF:

A4217-02

Figure 4-6. Internal/External Address Mapping (RD1:0 = 10 and 11)

4-9

8x930Ax, 8x930Hx USER’S MANUAL |nte|®

A key to the memory interface is the relationship between internal memory addresses and external
memory addresses. While the 8x930 has 24 internal address bits, the number of external address
lines is less than 24 (i.e., 16, 17, or 18, depending on the values of RD1:0). This means that
reads/writes to different internal memory addresses can access the same location in external
memory.

For example, if the 8x930is configured for 18 external address lines, a write to location 01:6000H
and a write to location FF:6000H accesses the same 18-bit external address (1:6000H) because
A16 =1 and A17 =1 for both internal addresses. In other words, regions 00: and FE: map into
the same 64 Kbyte region in external memory.

In some situations, however, a multiple mapping from internal memory to external memory does
not preclude using more than one region. For example, for a device with on-chip ROM configured
for 17 address bits and with EA# = 1, an access to FF:0000H-FF:3FFFH (16 Kbytes) accesses
the on-chip ROM, while an access to 01:0000H-01:3FFFH is to external memory. In this case,
you could execute code from these locations in region FF: and store data in the corresponding lo-
cations in region 01: without conflict. See Figure 4-5 and “Example 1: RD1:0 = 00, 18-bit Bus,
External Flash and RAM” on page 16-17.”

44.21 RD1:0 = 00 (18 External Address Bits)

The selection RD1:0 = 00 provides 18 external address bits: A15:0 (ports PO and P2), A16 (from
P3.7/RD#/A16), and A17 (from P1.7/CEX4/A17/WCLK). Bits A16 and A17 can select four 64
Kbyte regions of external memory for a total of 256 Kbytes (top half of Figure 4-5). This is the
largest possible external memory space. See “Example 1: RD1:0 = 00, 18-bit Bus, External Flash
and RAM” on page 16-17.

4422 RD1:0 = 01 (17 External Address Bits)

The selection RD1:0 = 01 provides 17 external address bits: A15:0 (ports PO and P2) and A16
(from P3.7/RD#/A16). Bit A16 can select two 64 Kbyte regions of external memory for a total of
128 Kbytes (bottom half of Figure 4-5). Regions 00: and FE: (each having A16 = 0) map into the
same 64 Kbyte region in external memory. This duplication also occurs for regions 01: and FF:.

This selection provides a 128 Kbyte external address space. The advantage of this selection, in
comparison with the 256 Kbyte external memory space with RD1:0 = 00, is the availability of pin
P1.7/CEX4/A17/WCLK for general I/0, PCA 1/O or real-time wait clock output. I/O P3.7 is un-
available. All four 64 Kbyte regions are stored by PSEN# and WR#. Chapter 16, “External Mem-
ory Interface,” shows examples of memory designs with this option.

4423 RD1:0 = 10 (16 External Address Bits)

For RD1:0 = 10, the 16 external address bits (A15:0 on ports PO and P2) provide a single 64 Kbyte-
region in external memory (top of Figure 4-6). This selection provides the smallest external mem-
ory space; however, pin P3.7/RD#/A16 is available for general I/O and pin P1.7/CEX4/A17 is
available for general I/O or PCA I/O. This selection is useful when the avallablhty of these pins
is required and/or a small amount of external memory is sufficient.

4-10 I

|n",'e|® " DEVICE CONFIGURATION

4.4.2.4 RD1:0 = 11 (Compatible with MCS 51 Microcontrollers)

The selection RD1:0 = 11 provides only 16 external address bits (A15:0 on ports PO and P2).
However, PSEN# is the read signal for regions FE:-FF:, while RD# is the read signal for regions
00:-01: (bottom of Figure 4-6). The two read signals effectively expand the external memory
space to two 64 Kbyte regions. WR# is asserted only for writes to regions 00:—01:. This selection
provides compatibility with MCS 51 microcontrollers, which have separate external memory
spaces for code and data.

4.4.3 Wait State Configuration Bits

You can add wait states to external bus cycles by extending the RD# WR#/PSEN# pulse and/or
extending the ALE pulse. Each additional wait state extends the pulse by 2T¢.. A separate wait
state specification for external accesses via region 01: permits a slow external device to be ad-
dressed in region 01: without slowing accesses to other external devices. Table 4-3 summarizes
the wait state selections for RD#, WR#,PSEN#. For waveform diagrams showing wait states, see
“External Bus Cycles With Configurable Wait States” on page 16-8.

4.4.3.1 Configuration Bits WSA1:0#, WSB1:0#

The WSA1:04# wait state bits (UCONFIGO0.6:5) permit RD#, WR#, and PSEN# to be extended by
1, 2, or 3 wait states for accesses to external memory via all regions except region 01:. The
WSB1:0# wait state bits (UCONFIG1.2:1) permit RD#, WR#, and PSEN# to be extended by 1,
2, or 3 wait states for accesses to external memory via region 01:.

443.2 Configuration Bit XALE#

Clearing XALE# (UCONFIGO0.4) extends the time ALE is asserted from Tqg to 3Tggc. This ac-
commodates an address latch that is too slow for the normal ALE signal. Figure 16-10 on page
16-10 shows an external bus cycle with ALE extended.

Table 4-3. RD#, WR#, PSEN# External Wait States

8x930

Regions WSA1# WSAO#

00: FE: FF: 0 0 3 Wait States
0 1 2 Wait States
1 0 1 Wait State
1 1 0 Wait States

Region 01: WSB1# WSBO#
0 0 3 Wait States
0 1 2 Wait States
1 0 1 Wait State
1 1 0 Wait States

L]
8x930Ax, 8x930Hx USER’S MANUAL an@,

45 OPCODE CONFIGURATIONS (SRC)

The SRC configuration bit (UCONFIGO.0) selects the source mode or binary mode opcode ar-
rangement. Opcodes for the 8x930 architecture are listed in Table A-6 on page A-4 and Table A-7
on page A-5. Note that in Table A-6 every opcode (0OH-FFH), is used for an instruction except
AS5H (ESC), which provides an alternative set of opcodes for columns 6H through FH. The SRC
bit selects which set of opcodes is assigned to columns 6H through FH and which set is the alter-
native.

Binary mode and source mode refer to two ways of assigning opcodes to the instruction set for
the 8x930 architecture. One of these modes must be selected when the chip is configured. De-
pending on the application, binary mode or source mode may produce more efficient code. This
section describes the binary and source modes and provides some guidelines for selecting the
mode for your application.

The 8x930 architecture has two types of instructions:
* instructions that originate in the MCS® 51 architecture
* instructions that are common with the MCS® 251 architecture

Figure 4-7 shows the opcode map for binary mode. Area I (columns 1 through 5 in Table A-7)
and area II (columns 6 through F) make up the opcode map for the instructions that originate in
the MCS 51 architecture. Area III in Figure 4-7 represents the opcode map for the instructions
that are common with the MCS 251 architecture (Table A-7). Some of these opcodes are reserved
for future instructions. Note that the opcode values for areas II and III are identical (06 H-FFH).
To distinguish between the two areas in binary mode, the opcodes in area III are given the prefix
ASH. The area III opcodes are thus ASO6H-ASFFH.

Figure 4-8 shows the opcode map for source mode. Areas II and III have switched places (com-
pare with Figure 4-7). In source mode, opcodes for instructions in area II require the ASF escape
prefix while opcodes for instructions in area III do not.

To illustrate the difference between the binary-mode and source-mode opcodes, Table 4-4 shows
the opcode assignments for three sample instructions.

45.1 Selecting Binary Mode or Source Mode

If a system was originally developed using an MCS 51 microcontroller, and if the new 8x930-
based system will run code written for the MCS 51 microcontroller, performance will be better
with the 8x930 running in binary mode. Object code written for the MCS 51 microcontroller runs
faster on the 8x930.

However, if most of the code is rewritten using the MCS 251 instruction set, performance will be
better with the 8x930 running in source mode. In this case, the 84930 can run significantly faster
than the MCS 51 microcontroller.

If you have code that was written for an MCS 51 microcontroller and you want to run it unmod-
ified on an 8x930, choose binary mode. You can use the object code without reassembling the
source code. You can also assemble the source code with an assembler for the MCS 251 architec-
ture and have it produce object code that is binary-compatible with MCS 51 microcontrollers.

4-12 I

|nte| . DEVICE CONFIGURATION

A5H Prefix
OH 5H 6H FH 6H FH
OH 1 OH
I I I I
FH ! FH
MCS® 51 MCS 51 MCS 251
Architecture Architecture Architecture
A4131-01
Figﬁre 4-7. Binary Mode Opcode Map
A5H Prefix
OH 5H 6H FH 6H FH
OH | OH
I : I it
FH : FH
MCS® 51 MCS 251 MCS 51
Architecture Architecture Architecture
A4130-01

Figure 4-8. Source Mode Opcode Map

I 4-13

8x930AXx, 8x930Hx USER’S MANUAL Inu®

Table 4-4. Examples of Opcodes in Binary and Source Modes

Opcode
Instruction
Binary Mode | Source Mode
DEC A 14H 14H
SUBB A R4 9CH A59CH
SUB R4,R4 A59CH 9CH

If a program uses only instructions from the MCS 51 architecture, the binary-mode code is more
efficient because it uses no prefixes. On the other hand, if a program uses many more new instruc-
tions than instructions from the MCS 51 architecture, source mode is likely to produce more ef-
ficient code. For a program where the choice is not clear, the better mode can be found by
experimenting with a simulator.

For both architectures, an instruction with a prefixed opcode requires one more byte for code stor-
age, and if an additional fetch is required for the extra byte, the execution time is increased by
one state. This means that using fewer prefixed opcodes produces more efficient code.

4.6 MAPPING ON-CHIP CODE MEMORY TO DATA MEMORY (EMAP#)

For devices with 16 Kbytes of on-chip code memory, the EMAP# bit (UCONFIG1.0) provides
the option of accessing the upper half of on-chip code memory as data memory. This allows code
constants to be accessed as data in region 00: using direct addressing. See “Accessing On-chip
Code Memory in Region 00:” on page 3-9 for the exact conditions required for this mapping to
be effective.

EMAP# = 0. For the 83930AE and 83930HE, the upper eight Kbytes of on-chip code memory
(FF:2000-FF:3FFFH are mapped to locations 00: EOOOH-00: FFFFH.

EMAP# = 1. Mapping of on-chip code memory to region 00: does not occur. Addresses in the
range 00:E000H—-00:FFFFH access external RAM.

4.7 INTERRUPT MODE (INTR)

The INTR bit (UCONFIG1.4) determines what bytes are stored on the stack when an interrupt
occurs and how the RETI (Return from Interrupt) instruction restores operation.

For INTR = 0, an interrupt pushes the two lower bytes of the PC onto the stack in the following
order: PC.7:0, PC.15:8. The RETI instruction pops these two bytes in the reverse order and uses
them as the 16-bit return address in region FF:.

For INTR = 1, an interrupt pushes the three PC bytes and the PSW1 register onto the stack in the
following order: PSW1, PC.23:16, PC.7:0, PC.15:8. The RETI instruction pops these four bytes
and then returns to the specified 24-bit address, which can be anywhere in the 16 Mbyte address
space.

414 ' I

intel.

Programming
Considerations

intgl.

CHAPTER 5
PROGRAMMING CONSIDERATIONS

The instruction set for the architecture supports the instruction set for the MCS® 51 architecture
and MCS® 251 architecture. This chapter describes the addressing modes and summarizes the in-
struction set, which is divided into data instructions, bit instructions, and control instructions. The
program status word registers PSW and PSW1 are also described. Appendix A, “Instruction Set
Reference,” contains an opcode map and a detailed description of each instruction.

NOTE

The instruction execution times given in Appendix A are for code executing
from external memory and for data that is read from and written to on-chip
RAM. Execution times are increased by accessing peripheral SFRs, accessing
data in external memory, using a wait state, or extending the ALE pulse.

For some instructions, accessing the port SFRs (Px, x = 3:0) increases the
execution time. These cases are noted in the tables in Appendix A.

5.1 SOURCE MODE OR BINARY MODE OPCODES

Source mode and Binary mode refer to the two ways of assigning opcodes to the instruction set
of the 8x930. Depending on the application, one mode or the other may produce more efficient
code. The mode is established during device reset based on the value of the SRC bit in configu-
ration byte UCONFIGO. For information regarding the selection of the opcode mode, see “Op-
code Configurations (SRC)” on page 4-12.

5.2 PROGRAMMING FEATURES OF THE 8x930 ARCHITECTURE

The instruction set for 84930 microcontrollers provides the user with instructions that exploit the
features of the MCS 251 architecture while maintaining compatibility with the instruction set for
MCS 51 microcontrollers. Many of the MCS 251 architecture instructions operate on 8-bit, 16-
bit, or 32-bit operands. (In comparison with 8-bit and 16-bit operands, 32-bit operands are access-
ed with fewer addressing modes.) This capability increases the ease and efficiency of program-
ming the 8x930 microcontroller in a high-level language such as C.

The instruction set is divided into data instructions, bit instructions, and control instructions.
These are described in this chapter. Data instructions process 8-bit, 16-bit, and 32-bit data; bit in-
structions manipulate bits; and control instructions manage program flow.

5.2.1 Data Types

Table 5-1 lists the data types that are addressed by the instruction set. Words or dwords (double
words) can be in stored memory starting at any byte address; alignment on two-byte or four-byte
boundaries is not required. Words and dwords are stored in memory and the register file in big
endien form.

|

8x930Ax, 8x930Hx USER’S MANUAL Intel®

Table 5-1. Data Types

Data Type Number of Bits
Bit 1
Byte 8
Word 16
Dword (Double Word) 32

5.2.1.1 Order of Byte Storage for Words and Double Words

The 8x930 microcontroller stores words (2 bytes) and double words (4 bytes) in memory and in
the register file in big endien form. In memory storage, the most significant byte (MSB) of the
word or double word is stored in the memory byte specified in the instruction; the remaining bytes
are stored at higher addresses, with the least significant byte (LSB) at the highest address. Words
and double words can be stored in memory starting at any byte address. In the register file, the
MSB is stored in the lowest byte of the register specified in the instruction. For a description of
the register file, see “8x930 Register File” on page 3-9. The code fragment in Figure 5-1 illus-
trates the storage of words and double words in big endien form.

5.2.2 Register Notation

In register-addressing instructions, specific indices denote the registers that can be used in that
instruction. For example, the instruction ADD A,Rn uses “Rn” to denote any one of RO, R1, ...,
R7; i.e., the range of n is 0-7. The instruction ADD Rm,#data uses “Rm” to denote RO, R1, ...,
R15; i.e., the range of m is 0—15. Table 5-2 summarizes the notation used for the register indices.
When an instruction contains two registers of the same type (e.g., MOV Rmd,Rms) the first index
“d” denotes “destination” and the second index “s” denotes “source.”

5.2.3 Address Notation

In the 8x930 architecture, memory addresses include a region number (00:, O1:, ..., FF:) (Figure
3-5 on page 3-7). SFR addresses have a prefix “S:” (S:000H-S:1FFH). The distinction between
memory addresses and SFR addresses is necessary because memory locations 00:0000H-
00:01FFH and SFR locations S:000H-S:1FFH can both be directly addressed in an instruction.

5-2 I

PROGRAMMING CONSIDERATIONS

Memory
2
200H 201H 202H 203H MOV WRO,#A3B6H
| | AsH | BeH | | MOV 00:0201H,WR0
MOV DR4,#0000C4D7H

Register File

0 1 2 3 4 5 6 7
[AsH | B6H | [[oot | ooH | car | D7H |
— - -

WRO0 DR4

Contents of register file and memory after execution
A4242-01

Figure 5-1. Word and Double-word Storage in Big Endien Form

Table 5-2. Notation for Byte Registers, Word Registers, and Dword Registers
Rogitr | Rosister | Destnaton | e
Ri —_— — RO, R1
Byte Rn — — RO-R7
Rm Rmd Rms R0O-R15
Word WR;j WRijd WR;js WRO0, WR2, WR4, ..., WR30
Dword DRk DRkd DRks DRO, DR4, DRS, ..., DR28, DR56, DR60

Instructions in the MCS 51 architecture use 80H-FFH as addresses for both memory locations
and SFRs, because memory locations are addressed only indirectly and SFR locations are ad-
dressed only directly. For compatibility, firmware tools for 8x930 microcontrollers recognize this

notation for instructions in the 8x930 architecture. No change is necessary in any code written for
MCS 51 controllers.

For the MCS 251 architecture instructions, the memory region prefixes (00:, 01, ..., FF:) and the
SER prefix (S:) are required. Also, firmware tools for the 8x930 architecture permit 00: to be used
for memory addresses 00H-FFH and permit the prefix S: to be used for SFR addresses in instruc-
tions in the 8x930 architecture.

5-3

N

8X930Ax, 8x930Hx USER’S MANUAL |nte|®

5.2.4 Addressing Modes

The 8x930 architecture supports the following addressing modes:
* register addressing: The instruction specifies the register that contains the operand.
¢ immediate addressing: The instruction contains the operand.
¢ direct addressing: The instruction contains the operand address.

¢ indirect addressing: The instruction specifies the register that contains the operand
address.

¢ displacement addressing: The instruction specifies a register and an offset. The operand
address is the sum of the register contents (the base address) and the offset.

* relative addressing: The instruction contains the signed offset from the next instruction to
the target address (the address for transfer of control, e.g., the jump address).

* bit addressing: The instruction contains the bit address.

More detailed descriptions of the addressing modes are given in “Data Addressing Modes” on
page 5-4, “Bit Addressing” on page 5-10, and “Addressing Modes for Control Instructions” on
page 5-12.

5.3 DATAINSTRUCTIONS

Data instructions consist of arithmetic, logical, and data-transfer instructions for 8-bit, 16-bit, and
32-bit data. This section describes the data addressing modes and the set of data instructions.

5.3.1 Data Addressing Modes

This section describes the data-addressing modes, which are summarized in two tables: Table 5-4
for the instructions that are native to the MCS 51 architecture, and Table 5-4 for the data instruc-
tions in the MCS 251architecture.

NOTE
References to registers RO-R7, WR0-WR6, DRO, and DR2 always refer to the
register bank that is currently selected by the PSW and PSW1 registers (see
“Program Status Words” on page 5-15). Registers in all banks (active and
inactive) can be accessed as memory locations in the range 00H-1FH.

Instructions from the MCS 51 architecture access external memory through the
region of memory specified by byte DPXL in the extended data pointer
register, DPX (DR56). Following reset, DPXL contains 01H, which maps the
external memory to region 01:. You can specify a different region by writing to
DRS56 or the DPXL SFR (see “Dedicated Registers” on page 3-12).

ﬁ |

intgl.

5.3.1.1

Register Addressing

PROGRAMMING CONSIDERATIONS

Both architectures address registers directly:

® MCS 251 architecture. In the register addressing mode, the operand(s) in a data instruction
are in byte registers (R0O-R15), word registers (WR0, WR2, ..., WR30), or dword registers
(DRO, DR4, ..., DR28, DR56, DR60).

® MCS 51 architecture. Instructions address registers RO—R7 only.

5.3.1.2

Immediate

Both architectures use immediate addressing.

® MCS 251 architecture. In the immediate addressing mode, the instruction contains the data
operand itself. Byte operations use 8-bit immediate data (#data); word operations use 16-bit
immediate data (#datal6). Dword operations use 16-bit immediate data in the lower word,
and either zeros in the upper word (denoted by #0datal6), or ones in the upper word
(denoted by #1datal6). MOV instructions that place 16-bit immediate data into a dword
register (DRk), place the data either into the upper word while leaving the lower word
unchanged, or into the lower word with a sign extension or a zero extension.

The increment and decrement instructions contain immediate data (#short = 1, 2, or 4) that
specifies the amount of the increment/decrement.

® MCS 51 architecture. Instructions use only 8-bit immediate data (#data).

5.3.1.3

Direct

® MCS 251 architecture. In the direct addressing mode, the instruction contains the address of
the data operand. The 8-bit direct mode addresses on-chip RAM (dir8 = 00:0000H-
00:007FH) as both bytes and words, and addresses the SFRs (dir8 = S:080H-S: 1FFH) as
bytes only. (See the second note in “Data Addressing Modes” on page 5-4 regarding SFRs
in the MCS 251 architecture.) The 16-bit direct mode addresses both bytes and words in
memory (dir16 = 00:0000H-00:FFFFH).

® MCS 51 architecture. The 8-bit direct mode addresses 256 bytes of on-chip RAM (dir8 =
00H-7FH) as bytes only and the SFRs (dir8 = 80H-FFH) as bytes only.

Table 5-3. Addressing Modes for Data Instructions in the MCS® 51 Architecture

Address Range of Assembly Language ’
Mode Operand Reference Comments
. RO-R7
Register O0H—1FH (Bank selected by PSW)
Immediate Operand in Instruction | #data = #00H—#FFH
00H-7FH dir8 = 00H-7FH On-chip RAM
Direct dir8 = 80H—FFH
SFRs or SFR mnemonic. SFR address

8x930Ax, 8x930HXx USER’S MANUAL an ®

Table 5-3. Addressing Modes for Data Instructions in the MCS® 51 Architecture (Continued)

Address Range of Assembly Language
Mode Operand Reference Comments

Accesses on-chip RAM or the

00H-FFH @RO0, @R1 lowest 256 bytes of external
data memory (MOVX).

Indirect Accesses external data
0000H-FFFFH @DPTR, @A+DPTR memory (MOVX).
0000H-FFFFH @A+DPTR, @A+PC Accesses region FF: of code
! memory (MOVC).

5.3.1.4 Indirect

In arithmetic and logical instructions that use indirect addressing, the source operand is always a
byte, and the destination is either the accumulator or a byte register (RO-R15). The source address
is a byte, word, or dword. The two architectures do indirect addressing via different registers:

® MCS 251 architecture. Memory is indirectly addressed via word and dword registers:

— Word register (@WRj, j=0, 2, 4, ..., 30). The 16-bit address in WRj can access
locations 00:0000H-00:FFFFH. :

— Dword register (@DRk, k=0, 4, 8, ..., 28, 56, and 60). The 24 least significant bits can
access the entire 16-Mbyte address space. The upper eight bits of DRk must be 0. (If
you use DR60 as a general data pointer, be aware that DR60 is the extended stack
pointer register SPX.)

® MCS 51 architecture. Instructions use indirect addressing to access on-chip RAM, code
memory, and external data RAM. (See the second note in “Data Addressing Modes” on
page 5-4 regarding the region of external data RAM that is addressed by instructions in the
MCS 51 architecture.)

— Byte register (@Ri, i =1, 2). Registers RO and R1 indirectly address on-chip memory
locations 0OH-FFH and the lowest 256 bytes of external data RAM.

— 16-bit data pointer (@DPTR or @ A+DPTR). The MOVC and MOVX instructions use
these indirect modes to access code memory and external data RAM.

— 16-bit program counter (@ A+PC). The MOVC instruction uses this indirect mode to
access code memory.

| |

intel.

PROGRAMMING CONSIDERATIONS

Table 5-4. Addressing Modes for Data Instructions in the MCS® 251 Architecture

Address Range of Assembly Language
Mode Operand Notation Comments
00:0000H-00:001FH | o 21¢ \Ro-wRa0 Sgﬂéﬁﬂéﬁiigf bk
Register (RO-R7, WRO-WRS3, DRO—DFiZB, DR56, Dﬁ60 currently selected by the
DRO, DR2) (1) PSW and PSW1.
Immediate, N.A. (Operandis in the _ Used only in increment and
2 bits instruction) #short=1,2, or4 decrement instructions.
Immediate, N.A. (Operand is in the _
8 bits instruction) #data = #00H-#FFH
Immediate, N.A. (Operand s in the _ .
16 bits instruction) #data16 = #0000H—#FFFFH
Direct 00:0000H-00:007FH dir8 = 00:0000H-00:007FH On-chip RAM
irect,
8 address bits dir8 = S:080H-S:1FFH (2)
SFRs or SFR mnemonic SFR address
Direct, 00:0000H-00:FFFFH | dir16 = 00:0000H-00:FFFFH
16 address bits : : R :
Indirect, . . -
16 address bits 00:0000H-00:FFFFH @WR0-@WR30
Indirect, . CCE @DR0-@DR30, @DR56, Upper 8 bits of DRk must be
24 address bits | 00-0000H-FF:FFFFH @DR60 O0H.
@WRj + dis16 =
Displacement, | . Offset is signed; address
16 address bits | 00:0000H-00:FFFFH @Véwggg'j_‘gg:ugn wraps around in region 00:.
@DRKk + dis24 =
; @DRO + OH through i ai ;
Displacement, . . Offset is signed, upper 8 bits
24 address bits | 00:0000H—FF:FFFFH @DR28 + FFFFH, of DRK must be 00H.
@DR56 + (OH-FFFFH),
@DR60 + (OH-FFFFH)

NOTES:

1. These registers are accessible in the memory space as well as in the register file (see “8x930
Register File” on page 3-9).
2. The MCS 251 architecture supports SFRs in locations S:000H-S:1FFH; however, in the 8x930 all
SFRs are in the range S:080H-S:0FFH.

5-7

-
8x930Ax, 8x930Hx USER’S MANUAL InU®

5.3.1.5 Displacement

Several move instructions use displacement addressing to move bytes or words from a source to
a destination. Sixteen-bit displacement addressing (@ WRj+dis16) accesses indirectly the lowest
64 Kbytes in memory. The base address can be in any word register WRj. The instruction contains
a 16-bit signed offset which is added to the base address. Only the lowest 16 bits of the sum are
used to compute the operand address. If the sum of the base address and a positive offset exceeds
FFFFH, the computed address wraps around within region 00: (e.g. FOOOH + 2005H becomes
1005H). Similarly, if the sum of the base address and a negative offset is less than zero, the com-
puted address wraps around the top of region 00: (e.g., 2005H + FOOOH becomes 1005H).

Twenty-four-bit displacement addressing (@ DRk+dis24) accesses indirectly the entire 16-Mbyte
address space. The base address must be in DR0, DR4, ..., DR24, DR28, DR56, or DR60. The
upper byte in the dword register must be zero. The instruction contains a 16-bit signed offset
which is added to the base address.

5.3.2 Arithmetic Instructions

The set of arithmetic instructions is greatly expanded in the MCS 251 architecture. The ADD and
SUB instructions (Table A-19 on page A-13) operate on byte and word data that is accessed in
several ways:

¢ as the contents of the accumulator, a byte register (Rn), or a word register (WRj)
* in the instruction itself (immediate data)
® in memory via direct or indirect addressing

The ADDC and SUBB instructions (Table A-19) are the same as those for MCS 51 microcontrol-
lers.

The CMP (compare) instruction (Table A-20 on page A-14) calculates the difference of two bytes
or words and then writes to flags CY; OV, AC, N, and Z in the PSW and PSW1 registers. The dif-
ference is not stored. The operands can be addressed in a variety of modes. The most frequent use
of CMP is to compare data or addresses preceding a conditional jump instruction.

Table A-21 on page A-14 lists the INC (increment) and DEC (decrement) instructions. The in-
structions for MCS 51 microcontrollers are supplemented by instructions that can address byte,
word, and dword registers and increment or decrement them by 1, 2, or 4 (denoted by #short).
These instructions are supplied primarily for register-based address pointers and loop counters.

The 8x930 architecture provides the MUL (multiply) and DIV (divide) instructions for unsigned
8-bit and 16-bit data (Table A-22 on page A-15). Signed multiply and divide are left for the user
to manage through a conversion process. The following operations are implemented:

¢ ecight-bit multiplication: 8 bits X 8 bits — 16 bits

* sixteen-bit multiplication: 16 bits X 16 bits — 32 bits

® cight-bit division: 8 bits + 8 bits — 16 bits (8-bit quotient, 8-bit remainder)

® sixteen-bit division: 16 bits + 16 bits — 32 bits (16-bit quotient, 16-bit remainder)

5-8 I

|nte|® PROGRAMMING CONSIDERATIONS

These instructions operate on pairs of byte registers (Rmd,Rms), word registers (WRjd,WRjs), or
the accumulator and B register (A,B). For 8-bit register multiplies, the result is stored in the word
register that contains the first operand register. For example, the product from an instruction
MUL R3,R8 is stored in WR2. Similarly, for 16-bit multiplies, the result is stored in the dword
register that contains the first operand register. For example, the product from the instruction
MUL WR6,WR18 is stored in DR4.

For 8-bit divides, the operands are byte registers. The result is stored in the word register that con-
tains the first operand register. The quotient is stored in the lower byte, and the remainder is stored
in the higher byte. A 16-bit divide is similar. The first operand is a word register, and the result is
stored in the double word register that contains that word register. If the second operand (the di-
visor) is zero, the overflow flag (OV) is set and the other bits in PSW and PSW1 are meaningless.

5.3.3 Logical Instructions

The 8x930 architecture provides a set of instructions that perform logical operations. The ANL,
ORL, and XRL (logical AND, logical OR, and logical exclusive OR) instructions operate on
bytes and words that are accessed via several addressing modes (Table A-23 on page A-16). A
byte register, word register, or the accumulator can be logically combined with a register, imme-
diate data, or data that is addressed directly or indirectly. These instructions affect the Z and N
flags.

Inaddition to the CLR (clear), CPL (complement), SWAP (swap), and four rotate instructions that
operate on the accumulator, 8x930 microcontroller has three shift commands for byte and word
registers: '

¢ SLL (Shift Left Logical) shifts the register one bit left and replaces the LSB with 0
¢ SRL (Shift Right Logical) shifts the register one bit right and replaces the MSB with 0
¢ SRA (Shift Right Arithmetic) shifts the register one bit right; the MSB is unchanged

5.3.4 Data Transfer Instructions

Data transfer instructions copy data from one register or memory location to another. These in-
structions include the move instructions (Table A-24 on page A-18) and the exchange, push, and
pop instructions (Table A-25 on page A-21). Instructions that move only a single bit are listed
with the other bit instructions in Table A-26 on page A-22.

MOV (Move) is the most versatile instruction, and its addressing modes are expanded in the
8x930 architecture. MOV can transfer a byte, word, or dword between any two registers or be-
tween a register and any location in the address space.

The MOVX (Move External) instruction moves a byte from external memory to the accumulator
or from the accumulator to memory. The external memory is in the region specified by DPXL,
whose reset value is 01H (see “Dedicated Registers” on page 3-12).

The MOVC (Move Code) instruction moves a byte from code memory (region FF:) to the accu-
mulator.

MOVS (Move with Sign Extension) and MOVZ (Move with Zero Extension) move the contents
of an 8-bit register to the lower byte of a 16-bit register. The upper byte is filled with the sign bit

8x930AXx, 8x930Hx USER’S MANUAL I“@@

(MOVS) or zeros (MOVZ). The MOVH (Move to High Word) instruction places 16-bit immedi-
ate data into the high word of a dword register.

The XCH (Exchange) instruction interchanges the contents of the accumulator with a register or
memory location. The XCHD (Exchange Digit) instruction interchanges the lower nibble of the
accumulator with the lower nibble of a byte in on-chip RAM. XCHD is useful for BCD (binary
coded decimal) operations.

The PUSH and POP instructions facilitate storing information (PUSH) and then retrieving it
(POP) in reverse order. Push can push a byte, a word, or a dword onto the stack, using the imme-
diate, direct, or register addressing modes. POP can pop a byte or a word from the stack to a reg-
ister or to memory.

5.4 BIT INSTRUCTIONS

A bit instruction addresses a specific bit in a memory location or SFR. There are four categories
of bit instructions:

¢ SETB (Set Bit), CLR (Clear Bit), CPL (Complement Bit). These instructions can set,
clear or complement any addressable bit.

* ANL (And Logical), ANL/ (And Logical Complement), ORL (OR Logical), ORL/ (Or
Logical Complement). These instructions allow ANDing and ORing of any addressable bit
or its complement with the CY flag.

* MOV (Move) instructions transfer any addressable bit to the carry (CY) bit or vice versa.

¢ Bit-conditional jump instructions execute a jump if the bit has a specified state. The bit-
conditional jump instructions are classified with the control instructions and are described
in “Conditional Jumps” on page 5-13.

5.4.1 Bit Addressing

The bits that can be individually addressed are in the on-chip RAM and the SFRs (Table 5-5).
The bit instructions that are unique to the MCS 251 architecture can address a wider range of bits
than the instructions from the MCS 51 architecture.

There are some differences in the way the instructions from the two architectures address bits. In
the MCS 51 architecture, a bit (denoted by bit51) can be specified in terms of its location within
a certain register, or it can be specified by a bit address in the range 00H-7FH. The 8x930 archi-
tecture does not have bit addresses as such. A bit can be addressed by name or by its location with-
in a certain register, but not by a bit address.

Table 5-6 illustrates bit addressing in the two architectures by using two sample bits:

¢ RAMBIT is bit 5 in RAMREG, which is location 23H. “RAMBIT” and “RAMREG” are
assumed to be defined in user code.

® IT1 is bit 2 in TCON, which is an SFR at location 88H.

5-10 I

|nte|® PROGRAMMING CONSIDERATIONS

Table 5-5. Bit-addressable Locations

Bit-addressable Locations
Architecture
On-chip RAM SFRs
MCS® 251 Architecture 20H-7FH All defined SFRs
. SFRs with addresses ending in OH or 8H:
MCS 51 Architecture 20H-2FH 80H, 88H, 90H, 98H, F8H

Table 5-7 lists the addressing modes for bit instructions and Table A-26 on page A-22 summa-
rizes the bit instructions. “Bit” denotes a bit that is addressed by an instruction in the MCS 251
architecture and “bit51” denotes a bit that is addressed by an instruction in the MCS 51 architec-
ture.

Table 5-6. Addressing Two Sample Bits

Location Adﬁgzzi"g Ax:i?:cf:lre Ax:i?ezcﬂre
Register Name RAMREG.5 RAMREG.5
On-chip RAM Register Address 23H.5 23H.5
Bit Name RAMBIT RAMBIT
Bit Address 1DH NA
Register Name TCON.2 TCON.2
SFR Register Address 88.2H S:88.2H
Bit Name IT IT1
Bit Address 8A NA

Table 5-7. Addressing Modes for Bit Instructions

Architecture | Variants | Bit Address Memory/SFR Address Comments
MCS® 251 Memory | NA 20H.0-7FH.7
Architecture
(bit) SFR NA All defined SFRs

Memory | 00H-7FH 20H.0-7FH.7
s 51 SFR t defined
Architecture = S are not defin
(bit51) SFR | 80H-F8H AAPLO-XXH.7, Where XX =80, | atall bit-addressable

PET EE e R locations.

5.5 CONTROL INSTRUCTIONS

Control instructions—instructions that change program flow—include calls, returns, and condi-
tional and unconditional jumps (see Table A-27 on page A-23). Instead of executing the next in-
struction in the queue, the processor executes a target instruction. The control instruction provides

8x930Ax, 8x930Hx USER’S MANUAL “Ttel ®

the address of a target instruction either implicitly, as in a return from a subroutine, or explicitly,
in the form of a relative, direct, or indirect address.

The 8x930 has a 24-bit program counter (PC), which allows a target instruction to be anywhere
in the 16-Mbyte address space. However, as discussed in this section, some control instructions
restrict the target address to the current 2-Kbyte or 64-Kbyte address range by allowing only the
" lowest 11 or lowest 16 bits of the program counter to change.

5.5.1 Addressing Modes for Control Instructions

Table 5-8 lists the addressing modes for the control instructions.

® Relative addressing: The control instruction provides the target address as an 8-bit signed
offset (rel) from the address of the next instruction.

¢ Direct addressing: The control instruction provides a target address, which can have 11 bits
(addrll), 16 bits (addr16), or 24 bits (addr24). The target address is written to the PC.

— addrl11: Only the lower 11 bits of the PC are changed; i.e., the target address must be in
the current 2-Kbyte block (the 2-Kbyte block that includes the first byte of the next
instruction).

— addr16: Only the lower 16 bits of the PC are changed; i.e., the target address must be in
the current 64-Kbyte region (the 64-Kbyte region that includes the first byte of the next
instruction).

— addr24: The target address can be anywhere in the 16-Mbyte address space.
® Indirect addressing: There are two types of indirect addressing for control instructions:

— For the instructions LCALL @WRj and LIMP @WR}j, the target address is in the
current 64-Kbyte region. The 16-bit address in WRj is placed in the lower 16 bits of the
PC. The upper eight bits of the PC remain unchanged from the address of the next
instruction.

— For the instruction JMP @ A+DPTR, the sum of the accumulator and DPTR is placed in
the lower 16 bits of the PC, and the upper eight bits of the PC are FF:, which restricts
the target address to the code memory space of the MCS 51 architecture.

5-12 ' I

Inte|® PROGRAMMING CONSIDERATIONS

Table 5-8. Addressing Modes for Control Instructions

Description Ad':’:’evsiz eBc:ts Address Range
Relative, 8-bit relative address (rel) 8 -128 to +127 from first byte of next instruction
Direct, 11-bit target address (addr11) 1 Current 2 Kbytes
Direct, 16-bit target address (addr16) 16 Current 64 Kbytes
Direct, 24-bit target address (addr24)t 24 00:0000H-FF:FFFFH
Indirect (@ WR;j)t 16 Current 64 Kbytes
Indirect (@ A+DPTR) 16 Sgl-ll;b):ng 1rag)1ion specified by DPXL (reset

iThese modes are not used by instructions in the MCS® 51 architecture.

5.5.2 Conditional Jumps

The 8x930 architecture supports bit-conditional jumps, compare-conditional jumps, and jumps
based on the value of the accumulator. A bit-conditional jump is based on the state of a bit. In a
compare-conditional jump, the jump is based on a comparison of two operands. All conditional
jumps are relative, and the target address (rel) must be in the current 256-byte block of code. The
instruction set includes three kinds of bit-conditional jumps:

¢ JB (Jump on Bit): Jump if the bit is set.
¢ JNB (Jump on Not Bit): Jump if the bit is clear.
¢ JBC (Jump on Bit then Clear it): Jump if the bit is set; then clear it.
“Bit Addressing” on page 5-10 describes the bit addressing used in these instructions.

Compare-conditional jumps test a condition resulting from a compare (CMP) instruction that is
assumed to precede the jump instruction. The jump instruction examines the PSW and PSW1 reg-
isters and interprets their flags as though they were set or cleared by a compare (CMP) instruction.
Actually, the state of each flag is determined by the last instruction that could have affected that
flag.

The condition flags are used to test one of the following six relations between the operands:
® equal (=), not equal (#)
e greater than (>), less than (<)
¢ greater than or equal (), less than or equal (<)

For each relation there are two instructions, one for signed operands and one for unsigned oper-
ands (Table 5-9).

I - 5413

8x930Ax, 8x930Hx USER’S MANUAL InU ®

Table 5-9. Compare-conditional Jump Instructions

Operand Relation
Type = Y > < § £
Unsigned JG JL JGE JLE
JE JNE
Signed JSG JSL JSGE JSLE

5.5.3 Unconditional Jumps

There are five unconditional jumps. NOP and SIMP jump to addresses relative to the program
counter. AJMP, LIMP, and EJMP jump to direct or indirect addresses.

® NOP (No Operation) is an unconditional jump to the next instruction.
¢ SJMP (Short Jump) jumps to any instruction within -128 to 127 of the next instruction.

¢ AJMP (Absolute Jump) changes the lowest 11 bits of the PC to jump anywhere within the
current 2-Kbyte block of memory. The address can be direct or indirect.

* LIMP (Long Jump) changes the lowest 16 bits of the PC to jump anywhere within the
current 64-Kbyte region.

¢ EJMP (Extended Jump) changes all 24 bits of the PC to jump anywhere in the 16-Mbyte
address space. The address can be direct or indirect.

5.5.4 Calls and Returns
The 8x930 architecture provides relative, direct, and indirect calls and returns.

ACALL (Absolute Call) pushes the lower 16 bits of the next instruction address onto the stack
and then changes the lower 11 bits of the PC to the 11-bit address specified by the instruction.
The call is to an address that is in the same 2-Kbyte block of memory as the address of the next
instruction.

LCALL (Long Call) pushes the lower 16 bits of the next-instruction address onto the stack and
then changes the lower 16 bits of the PC to the 16-bit address specified by the instruction. The
call is to an address in the same 64-Kbyte block of memory as the address of the next instruction.

ECALL (Extended Call) pushes the 24 bits of the next instruction address onto the stack and then
changes the 24 bits of the PC to the 24-bit address specified by the instruction. The call is to an
address anywhere in the 16-Mbyte memory space.

RET (Return) pops the top two bytes from the stack to return to the instruction following a sub-
routine call. The return address must be in the same 64-Kbyte region.

ERET (Extended Return) pops the top three bytes from the stack to return to the address following
a subroutine call. The return address can be anywhere in the 16-Mbyte address space.

514 . 1

L]
Int6|® PROGRAMMING CONSIDERATIONS

RETI (Return from Interrupt) provides a return from an interrupt service routine. The operation
of RETI depends on the INTR bit in the UCONFIG1 or CONFIG1 configuration byte:

¢ For INTR =0, an interrupt pushes the two lower bytes of the PC onto the stack in the
following order: PC.7:0, PC.15:8. The RETI instruction pops these two bytes and uses them
as the 16-bit return address in region FF:. RETI also restores the interrupt logic to accept
additional interrupts at the same priority level as the one just processed.

® For INTR = 1, an interrupt pushes the three PC bytes and PSW1 onto the stack in the
following order: PSW1, PC.23:16, PC.7:0, PC.15:8. The RETI instruction pops these four
bytes and then returns to the specified 24-bit address, which can be anywhere in the 16-
Mbyte address space. RETT also clears the interrupt request line. (See the note in Table 5-8
regarding compatibility with code written for MCS 51 microcontrollers.)

The TRAP instruction is useful for the development of emulations of an 8x930 microcontroller.

5.6 PROGRAM STATUS WORDS

The Program Status Word (PSW) register (Figure 5-2) and the Program Status Word 1 (PSW1)
register (Figure 5-3) contain four types of bits:

* CY, AC, OV, N, and Z are flags set by hardware to indicate the result of an operation.
¢ The P bit indicates the parity of the accumulator.

* Bits RSO and RS1 are programmed by firmware to select the active register bank for
registers RO-R7.

® FO0 and UD are available to the user as general-purpose flags.

The PSW and PSW1 registers are read/write registers; however, the parity bit in the PSW is not
affected by a write. Individual bits can be addressed with the bit instructions (see “Bit Address-
ing” on page 5-10). The PSW and PSW1 bits are used implicitly in the conditional jump instruc-
tions (see “Conditional Jumps” on page 5-13).

The PSW register is identical to the PSW register in MCS 51 microcontrollers. The PSW1 register
exists only in MCS 251 microcontrollers. Bits CY, AC, RS0, RS1, and OV in PSW1 are identical
to the corresponding bits in PSW; i.e., the same bit can be accessed in either register. Table 5-10
lists the instructions that affect the CY, AC, OV, N, and Z bits.

8x930Ax, 8x930Hx USER’S MANUAL

5-16

Table 5-10. The Effects of Instructions on the PSW and PSW1 Flags

Flags Affected (1), (5)

Instruction Type Instruction
cYy OV | AC(2) N

ADD, ADDC, SUB, X X X X X
SuBB, CMP

Arithmetic INC, DEC) X X
MUL, DIV (3) 0 X X X
DA X X
ANL, ORL, XRL, CLR A, X X
CPL A, RL, RR, SWAP

Logical
RLC, RRC, SRL, SLL, X X X
SRA (4)
CJNE X X

Program Control

. DJNE X X

NOTES:

1. X =the flag can be affected by the instruction.
0 = the flag is cleared by the instruction.

aprwN

accumulator (ACC, Register R11).

The AC flag is affected only by operations on 8-bit operands.

If the divisor is zero, the OV flag is set, and the other bits are meaningless.
For SRL, SLL, and SRA instructions, the last bit shifted out is stored in the CY bit.
The parity bit (PSW.0) is set or cleared by instructions that change the contents of the

|nte|® PROGRAMMING CONSIDERATIONS

PSW Address: S:DOH
Reset State: 0000 0000B
7 0
cY AC i Fo RS1 || RSO ov uD P
Bit Bit Function
Number Mnemonic
7 cY Carry Flag:

The carry flag is set by an addition instruction (ADD, ADDC) if there is a
carry out of the MSB. It is set by a subtraction (SUB, SUBB) or compare
(CMP) if a borrow is needed for the MSB. The carry flag is also affected
by logical bit, bit move, multiply, decimal adjust, and some rotate and
shift instructions (see Table 5-10).

6 AC Auxiliary Carry Flag:

The auxiliary carry flag is affected only by instructions that address 8-bit
operands. The AC flag is set if an arithmetic instruction with an 8-bit
operand produces a carry out of bit 3 (from addition) or a borrow into bit
3 (from subtraction). Otherwise, it is cleared. This flag is useful for BCD
arithmetic (see Table 5-10).

5 FO Flag O:
This general-purpose flag is available to the user.
4:3 RS1:0 Register Bank Select Bits 1 and 0:

These bits select the memory locations that comprise the active bank of
the register file (registers R0O-R7).

RS1 RSO Bank Address

0 o0 0 00H-O07H

0 1 1 08H-0FH

1 0 2 10H-17H

1 1 3 18H-1FH
2 ov Overflow Flag:

This bit is set if an addition or subtraction of signed variables results in
an overflow error (i.e., if the magnitude of the sum or difference is too
great for the seven LSBs in 2’s-complement representation). The
overflow flag is also set if a multiplication product overflows one byte or if
a division by zero is attempted.

1 ub User-definable Flag:
This general-purpose flag is available to the user.
0 P Parity Bit:

This bit indicates the parity of the accumulator. It is set if an odd number |
of bits in the accumulator are set. Otherwise, it is cleared. Not all
instructions update the parity bit. The parity bit is set or cleared by
instructions that change the contents of the accumulator (ACC, Register
R11).

Figure 5-2. Program Status Word Register

5-17

8x930AXx, 8x930Hx USER’S MANUAL

intel.

Address: S:D1H
Reset State: 0000 0000B

0

Bit
Number

Bit
Mnemonic

Function

cY

Carry Flag:
Identical to the CY bitin the PSW register.

AC

Auxiliary Carry Flag:
Identical to the AC bit in the PSW register.

Negative Flag:

This bit is set if the result of the last logical or arithmetic operation was
negative (i.e., bit 15 = 1). Otherwise it is cleared.

4-3

RS1:0

Register Bank Select Bits 0 and 1:
Identical to the RS1:0 bits in the PSW register.

ov

Overflow Flag:
Identical to the OV bit in the PSW register.

Zero Flag:

This flag is set if the result of the last logical or arithmetic operation is
zero. Otherwise it is cleared.

Reserved:
The value read from this bit is indeterminate. Write a zero to this bit.

Figure 5-3. Program Status Word 1 Register

intel.

Interrupt System

intel.

CHAPTER 6
INTERRUPT SYSTEM

6.1 OVERVIEW

The 8x930, like other control-oriented microcontroller architectures’, employs a program inter-
rupt method. This operation branches to a subroutine and performs some service in response to
the interrupt. When the subroutine completes, execution resumes at the point where the interrupt
occurred. Interrupts may occur as a result of internal 8x930 activity (e.g., timer overflow) or at
the initiation of electrical signals external to the microcontroller (e.g., serial port communication).
In all cases, interrupt operation is programmed by the system designer, who determines priority
of interrupt service relative to normal code execution and other interrupt service routines. Ten of
the eleven interrupts are enabled or disabled by the system designer and may be manipulated dy-
namically.

A typical interrupt event chain occurs as follows. An internal or external device initiates an inter-
rupt-request signal. This signal, connected to an input pin (see Table 6-1) and periodically sam-
pled by the 8x930, latches the event into a flag buffer. The priority of the flag (see Table 6-2) is
compared to the priority of other interrupts by the interrupt handler. A high priority causes the
handler to set an interrupt flag. This signals the instruction execution unit to execute a context
switch. This context switch breaks the current flow of instruction sequences. The execution unit
completes the current instruction prior to a save of the program counter (PC) and reloads the PC
with the start address of a firmware service routine. The firmware service routine executes as-
signed tasks and as a final activity performs a RETI (return from interrupt instruction). This in-
struction signals completion of the interrupt, resets the interrupt-in-progress priority, and reloads
the program counter. Program operation then continues from the original point of interruption.

Table 6-1. Interrupt System Input Signals

Signal : o Multiplexed
Name Type Description With
INT1:0# | External Interrupts 0 and 1. These inputs set bits IE1:0 in the P3.3:2

TCON register. If bits IT1:0 in the TCON register are set, bits IE1:0
are controlled by a negative-edge trigger on INT1#/INTO#. If bits
IT1:0 are clear, bits IE1:0 are controlled by a low level trigger on
INT1:0#.

NOTE: Other signals are defined in their respective chapters and in Appendix B, “Signal Descriptions.”

T A non-maskable interrupt (NMI#) is not included on the 8x930.

I 6-1

8x930Ax, 8X930Hx USER’S MANUAL |nte|®

Interrupt Enable Priority Select

IENO IPHO/IPLO P

Interrupt

0 O
External o >

INTO# [] (TCON.0) IEO

11 \ TCON.1

Timer O TFO
TCON.5
External 0 - » °
INT1# [] (TCON.2) =
11 \ TCON.3
Timer 1 TF1
TCON.7
Serial Port
Receive)E
SCON.0 .
Transmit
SCON.1
Timer 2
T2CON.7 .
T2EX [J
T2CON.6
PCA 0
: ECF
Counter (CMOD.0)

Overflow CCON.7 1

PCA 0§ ECCFx ’

Match or (CCAPMX.0)
Capture coNa0 5

A5042-02

Figure 6-1. Interrupt Control System

6-2 I

InU@, INTERRUPT SYSTEM

6.2 8x930 INTERRUPT SOURCES

Figures 6-1 and 6-2 illustrate the interrupt control system. The 8x930 has eleven interrupt sourc-
es; ten maskable sources and the TRAP instruction (always enabled). The maskable sources in-
clude two external interrupts (INTO# and INT1#), three timer interrupts (timers 0, 1, and 2), one
programmable counter array (PCA) interrupt, one serial port interrupt, and three USB interrupts
(one of which doubles as a hub interrupt). Each interrupt (except TRAP) has an interrupt request
flag, which can be set by firmware as well as by hardware (see Table 6-3). For some interrupts,
hardware clears the request flag when it grants an interrupt. Firmware can clear any request flag
to cancel an impending interrupt.

Interrupt Enable Priority Select
EA

]
. IEN1T , IPH1/IPLA
Receive FRXDx]

FIFLG,
FIFLG1
0
Transmit FTXDx
1
Any Start _—)l_—l—’}‘
y
of Frame ASOF 1o SOFIE
SOFH.6 SOFH.5

USB Hub 0

Receive HRXDO . I HRXEO
HIFLG ¢ HIE
Transmit HTXDO
1

Resume GRSM
USB PCON1.1
sopis [————
FTTo T ——————-———] u Lowest Priority Interrupt
USB —>|__—|—')
: Reset URST o URDIS :
| PCON1.3 PCON1.4 |
|

8X930Ax Only !

A5100-02

Figure 6-2. USB/Hub Interrupt Control System

8x930Ax, 8x930Hx USER’S MANUAL

Table 6-2. Interrupt System Special Function Registers

Mnemonic Description Address

FIE USB Function Interrupt Enable Register. Enables and disables the receive S:A2H
and transmit done interrupts for the four function endpoints.

FIE1 USB Function Interrupt Enable Register. Available on the 8x930Ax only, S:A3H
this register enables and disables the receive and transmit done interrupts for
the function endpoints 4 and 5.

FIFLG USB Function Interrupt Flag Register. Contains the USB function’s transmit S:COH
and receive done interrupt flags for non-isochronous endpoints.

FIFLG1 USB Function Interrupt Flag Register. Contains the USB function’s transmit S:C1H
and receive done interrupt flags for non-isochronous endpoints. This register,
available in the 8x3930Ax only, contains the function interrupt flags for
endpoints 4 and 5.

HIE Hub Interrupt Enable Register. Contains the hub interrupt enable bits. S:A1H

HIFLG Hub Interrupt Flag Register. Contains the hub interrupt status flags. S:E8H

IENO Interrupt Enable Register 0. Enables individual programmable interrupts. S:A8H
Also provides a global enable for the programmable interrupts. The reset value
for this register is zero (interrupts disabled).

IEN1 Interrupt Enable Register1. Enables individual programmable interrupts for S:B1H
the USB interrupts. The reset value of this register is zero (interrupts disabled).

IPLO Interrupt Priority Low Register 0. Establishes relative priority for S:B8H
programmable interrupts. Used in conjunction with IPHO.

IPHO Interrupt Priority High Register 0. Establishes relative priority for S:B7H
programmable interrupts. Used in conjunction with IPLO.

IPL1 Interrupt Priority Low Register 1. Establishes relative priority for S:B2H
programmable interrupts. Used in conjunction with IPH1.

IPH1 Interrupt Priority High Register 1. Establishes relative priority for S:B3H
programmable interrupts. Used in conjunction with IPL1.

PCON1 USB Power Control. Contains USB global suspend and resume interrupt bits. S:DFH
Also contains the USB reset separation enable and interrupt bits for the
8x930Ax. See Figure 15-2 on page 15-4.

SOFH Start of Frame High Register. Contains isochronous data transfer enable S:D3H
and interrupt bits and the upper three bits of the 11-bit time stamp received
from the host.

SOFL Start of Frame Low Register. Contains the lower eight bits of the 11-bit time S:D2H

stamp received from the host.

NOTE: Other SFRs are described in their respective chapters and in Appendix C, “Registers.”

|nte|® INTERRUPT SYSTEM

6.2.1 External Interrupts

External interrupts INTO# and INT1# (INTx#) pins may each be programmed to be level-trig-
gered or edge-triggered, dependent upon bits ITO and IT1 in the TCON register (see Figure 11-6
on page 11-8). If ITx = 0, INTx# is triggered by a detected low at the pin. If ITx = 1, INTx# is
negative-edge triggered. External interrupts are enabled with bits EX0 and EX1 (EXx) in the
IENO register (see Figure 6-12). Events on the external interrupt pins set the interrupt request
flags IEx in TCON. These request bits are cleared by hardware vectors to service routines only if
the interrupt is negative-edge triggered. If the interrupt is level-triggered, the interrupt service
routine must clear the request bit. External hardware must deassert INTx# before the service rou-
tine completes, or an additional interrupt is requested. External interrupt pins must be deasserted
for at least four state times prior to a request.

External interrupt pins are sampled once every four state times (a frame length of 666.4 ns at 12
MHz). A level-triggered interrupt pin held low or high for any five-state time period guarantees
detection. Edge-triggered external interrupts must hold the request pin low for at least five state
times. This ensures edge recognition and sets interrupt request bit EXx. The CPU clears EXx au-
tomatically during service routine fetch cycles for edge-triggered interrupts.

Table 6-3. Interrupt Control Matrix

Global Timer | Serial | Timer Timer
Interrupt Name* Enable PCA 2 Port 1 INT1# 0 INTO#
Bit Name in IENO
Register EA EC ET2 ES ET1 EX1 ETO EXO0
Interrupt Priority-
Within-Level
(10 = Low Priority, NA 7 6 5 4 3 2 1
1 = High Priority)
Bit Names in:
IPHO Reserved | IPH0.6 | IPH0.5 | IPHO.4 | IPH0.3 | IPH0.2 | IPHO.1 IPHO0.0
IPLO Reserved | IPLO.6 | IPLO.5 | IPLO.4 | IPLO.3 | IPLO.2 IPLO.1 IPLO.0
Programmable for
Negative-edge
Triggered or Level- NA Edge No No No Yes No Yes
triggered Detect?
Interrupt Request . .
Flag in CCON, na | SN | TECON: | scon: | TCON: | TCON: | TCON: | TCON:
T2CON, SCON, or CCFx EXF2 RI, Tl TF1 IE1 TFO IEO
TCON Register
Interrupt Request Edge Edge
Flag Cleared by No No No No Yes Yes, Yes Yes,
Hardware? Level No Level No
ISR Vector Address NA FF: FF: FF: FF: FF: FF: FF:
0033H | 002BH | 0023H | 001BH | 0013H | 000BH | 0003H

T The 8x930 also contains a TRAP interrupt, not cleared by hardware, with a vector address of FFO07BH.
For a discussion of TRAP and other interrupt sources, see “8x930 Interrupt Sources” on page 6-3.

Additional interrupts specific to USB and USB hub operation appear in Table 6-4.

I 6-5

8x930Ax, 8x930Hx USER’S MANUAL

6.2.2 Timer Interrupts

Two timer-interrupt request bits TFO and TF1 (see TCON register, Figure 11-6 on page 11-8) are
set by timer overflow (the exception is Timer 0 in Mode 3, see Figure 11-4 on page 11-6). When
a timer interrupt is generated, the bit is cleared by an on-chip hardware vector to an interrupt ser-
vice routine. Timer interrupts are enabled by bits ETO, ET1, and ET2 in the IENO register (see

Table 6-4. USB/Hub Interrupt Control Matrix

USB Gilobal USB Function USB Hub/SOF
Interrupt Name Suspend/Resume | [Non-Isochronous [Isochronous
‘ and USB Reset’ Endpoint] Endpoint]
Bit Name in IEN1
Register ESR EF ESOF
Interrupt Priority-
Within-Level
(10 = Low Priority, 10 9 8
1 = High Priority)
Bit Names in:
IPH1 IPH1.2 IPH1.1 IPH1.0
IPL1 IPL1.2 IPL1.1 IPL1.0
Programmable for
Negative-edge
Triggered or Level- N/A N/A N/A
triggered Detect?
Interr'upt Request PCONT1: FIFLG: SOFH:ASOF,
Flag in PCON1, GSUS .
FTXDx, FRXDx HIFLG:
FIFLG, HIFLG, or GRSM ¥=01.23 HTXDO. HRXDO
SOFH Register URSTY e ’
Interrupt Request
Flag Cleared by No No No
Hardware?
ISR Vector Address FF:0053H FF:004BH FF:0043H

T USB Reset interrupt applies to the 8x930Ax only.

Figure 6-12).

Timer 2 interrupts are generated by a logical OR of bits TF2 and EXF2 in register T2CON (see
Figure 11-12 on page 11-17). Neither flag is cleared by a hardware vector to a service routine. In
fact, the interrupt service routine must determine if TF2 or EXF2 generated the interrupt, and then

clear the bit. Timer 2 interrupt is enabled by ET2 in register IENO.

6-6

"T'.'el® , INTERRUPT SYSTEM

6.3 PROGRAMMABLE COUNTER ARRAY (PCA) INTERRUPT

The programmable counter array (PCA) interrupt is generated by the logical OR of five event
flags (CCFx) and the PCA timer overflow flag (CF) in the CCON register (see Figure 12-8 on
page 12-14). All PCA interrupts share a common interrupt vector. Bits are not cleared by hard-
ware vectors to service routines. Normally, interrupt service routines resolve interrupt requests
and clear flag bits. This allows the user to define the relative priorities of the five PCA interrupts.

The PCA interrupt is enabled by bit EC in the IENO register (see Figure 6-1). In addition, the CF
flag and each of the CCFx flags must also be individually enabled by bits ECF and ECCFx in reg-
isters CMOD and CCAPMy, respectively, for the flag to generate an interrupt (see Figure 12-7
on page 12-13 and Figure 12-9 on page 12-16).

NOTE
CCFx refers to five separate bits, one for each PCA module (CCF0, CCF1,
CCF2, CCF3, CCF4). CCAPMx refers to 5 separate registers, one for each
PCA module (CCAPMO, CCAPM1, CCAPM2, CCAPM3, CCAPM4).

6.4 SERIAL PORT INTERRUPT

Serial port interrupts are generated by the logical OR of bits RI and TI in the SCON register (see
Figure 13-2 on page 13-4). Neither flag is cleared by a hardware vector to the service routine. The
service routine resolves RI or TI interrupt generation and clears the serial port request flag. The
serial port interrupt is enabled by bit ES in the IENO register (see Figure 6-12).

6.5 USB INTERRUPTS

There are three types of USB interrupts, as shown in Figure 6-2 on page 6-3: The USB function
interrupt, used to control the flow of non-isochronous data; the hub/any start-of-frame interrupt
(SOF), used to signal a hub interrupt or to monitor the transfer of isochronous data; and the global
suspend/resume interrupt, used to allow USB power control and, for the 8x930Ax only, to provide
a separate USB interrupt. These interrupts are enabled using the IEN1 register. See Table 6-4 and
Figure 6-13.

6.5.1 USB Function Interrupt

The USB function generates two types of interrupts to control the transfer of non-isochronous da-
ta: the receive done interrupt and the transmit done interrupt. Individual USB function interrupts
in the 8x930 are enabled by setting the corresponding bits in the FIE register (Figure 6-3). The
8x930Ax, with its six function endpoints, also uses the FIE1 register (Figure 6-4) to enable inter-
rupts for endpoints 4 and 5.

NOTE

In order to use any of the USB function interrupts, the EF bit in the IEN1
register must be enabled.

I 6-7

8x930Ax, 8x930Hx USER’S MANUAL InU@a

The USB Function Interrupt Flag register (FIFLG, as shown in Figure 6-5) is used to indicate
pending function interrupts for a given endpoint. The 8x930Ax, with its six function endpoints,
also uses the FIFLGI register (Figure 6-6) to indicate interrupts for endpoints 4 and 5. For all bits
in FIFLG or FIFLG1, a ‘1’ indicates that an interrupt is actively pending for that endpoint; a ‘0’
indicates that the interrupt is not active. The interrupt status is shown in the FIFLG or FIFLG1
register regardless of the state of the corresponding interrupt enable bit in the FIE or FIE1 register
(Figures 6-3 and 6-4).

FIE Address: S:A2H
Reset State: 0000 0000B

Function Interrupt Enable Register. Enables and disables the receive and transmit done interrupts for
the four function endpoints.

7 0

Bit Bit

Number Mnemonic Function

7 FRXIE3 Function Receive Interrupt Enable 3:

Enables receive done interrupt for endpoint 3 (FRXD3).
6 FTXIE3 Function Transmit Interrupt Enable 3:

Enables transmit done interrupt for endpoint 3 (FTXD3).
5 FRXIE2 Function Receive Interrupt Enable 2:

Enables the receive done interrupt for endpoint 2 (FRXD2).
4 FTXIE2 Function Transmit Interrupt Enable 2:

Enables the transmit done interrupt for endpoint 2 (FTXD2).
3 FRXIE1 Function Receive Interrupt Enable 1:

Enables the receive done interrupt for endpoint 1 (FRXD1).
2 FTXIE1 Function Transmit Interrupt Enable 1:

Enables the transmit done interrupt for endpoint 1 (FTXD1).
1 FRXIEO Function Receive Interrupt Enable 0:

Enables the receive done interrupt for endpoint 0 (FRXDO).

0 FTXIEO Function Transmit Interrupt Enable O:
Enables the transmit done interrupt for endpoint 0 (FTXDO).

NOTE: For all bits, a ‘1’ means the interrupt is enabled and will cause an interrupt to be signaled to
the microcontroller. A ‘0’ means the associated interrupt source is disabled and cannot
cause an interrupt, even though the interrupt bit’s value is still reflected in the FIFLG register.

Figure 6-3. FIE: USB Function Interrupt Enable Register

|nte| o INTERRUPT SYSTEM

FIE1 Address: S:A3H
Reset State: 0000 0000B

Function Interrupt Enable Register 1. Available on the 8xX930Ax only, this register enables and
disables the receive and transmit done interrupts for function endpoints four and five.

7) 0
T TFRXiER | Fixi
NuE::)er MnelB'rI\t(mic Function
7:4 — Reserved:
3 FRXIE5 Function Receive Done Interrupt Enable 5:
Enables receive done interrupt for endpoint 5 (FTXD5).
2 FTXIE5 Function Transmit Interrupt Enable 5:
Enables the transmit done interrupt for endpoint 5 (FTXDS5).
1 FRXIE4 Function Receive Interrupt Enable 4:
Enables the receive done interrupt for endpoint 4 (FRXD4).
0 FTXIE4 Function Transmit Interrupt Enable 4:

Enables the transmit done interrupt for endpoint 4 (FTXD4).

NOTE: When the FRXIE.5:4 or FTXIE.5:4 is set, the interrupt is enabled and it will cause an
interrupt to the CPU, when a transmit of receive done flag is set. If the FRXIE.5:4 and
FTXIE.5:4 is cleared, the interrupt is disabled. All these bits can be read/write by firmware.

Figure 6-4. FIE1: USB Function Interrupt Enable Register

The USB function generates a receive done interrupt for an endpoint x (x = 0-3) by setting the
FRXDx bit in the FIFLG or FIFLG1 register (Figures 6-5 and 6-6). Only non-isochronous trans-
fer can cause a receive done interrupt. Receive done interrupts are generated only when all of the
following are true:

1. A valid SETUP or OUT token is received to function endpoint x, and
2. Endpoint x is enabled for reception (RXEPEN in EPCON = ‘1’), and

3. Receive is enabled (RXIE = ‘1’) and STALL is disabled (RXSTL = ‘0’) for OUT tokens
(or the token received is a SETUP token), and

4. A data packet is received with no time-out — regardless of transmission errors (CRC, bit-
stuffing) or FIFO errors (overrun, underrun), and

5. There is no data sequence PID error.

8Xx930Ax, 8X930HX USER’S MANUAL "‘ﬂ.'el®

Because the FRXDx bit is set and a receive done interrupt is generated regardless of transmission
errors, this condition means either:

1.

Valid data is waiting to be serviced in the receive FIFO for function endpoint x and that
the data was received without error and has been acknowledged; or

Data was received with a receive data error and requires firmware intervention to be
cleared. This could be either a transmission error or a FIFO-related error. You must check
for these conditions and respond accordingly in the interrupt service routine (ISR).

The USB function generates a transmit done interrupt for an endpoint x (x = 0-3%) by setting the
FI'XDx bit in the FIFLG or FIFLG1 register (Figures 6-5 and 6-6). Only non-isochronous transfer
can cause a transmit done interrupt. Transmit done interrupts are generated only when all of the
following are true:

1.
2
3.
4

5.

A valid IN token is receivéd to function endpoint x, and
Endpoint x is enabled for transmission (TXEPEN = ‘1°), and
Transmit is enabled (TXIE = ‘1’) and STALL is disabled (TXSTL = ‘0’), and

A data packet/byte count has been loaded in the transmit FIFO and was transmitted in
response to the IN token — regardless of whether or not a FIFO error occurs, and

An ACK is received from the host or there was a time-out in the SIE.

Because the FTXDx bit is set and a transmit done interrupt is generated regardless of transmission
errors, this condition means either: :

1.

The transmit data has been transmitted and the host has sent an acknowledgment to
indicate that is was successfully received; or

A transmit data error occurred during transmission of the data packet, which requires
servicing by firmware to be cleared. You must check for these conditions and respond
accordingly in the ISR.

NOTE

Setting an endpoint interrupt’s bit in the Function Interrupt Enable register
(FIE or FIE1, as shown in Figures 6-3 and 6-4) means that the interrupt is
enabled and will cause an interrupt to be signaled to the microcontroller.
Clearing a bit in the FIE register disables the associated interrupt source,
which can no longer cause an interrupt even though its value will still be
reflected in the FIFLG or FIFLG1 register (Figures 6-5 and 6-6).

T The 8x930Ax can be configured for up to six endpoints, 0-5.

6-10

|nte| o INTERRUPT SYSTEM

FIFLG Address: S:COH
Reset State: 0000 0000B

Function Interrupt Flag Register. Contains the USB Function’s Transmit and Receive Done interrupt
flags for non-isochronous endpoints.

7 ‘ 0

FRXD3 FTXD3 FRXD2] FTXD2 H FRXD1 FTXD1 FRXDO FTXDO

Nulrsnl::er Mne?vl\tonic Function
7 FRXD3 Function Receive Done Flag, Endpoint 3
6 FTXD3 Function Transmit Done Flag, Endpoint 3
5 FRXD2 Function Receive Done Flag, Endpoint 2
4 FTXD2 Function Transmit Done Flag, Endpoint 2
3 FRXD1 Function Receive Done Flag, Endpoint 1
2 FTXD1 Function Transmit Done Flag, Endpoint 1
1 FRXDO Function Receive Done Flag, Endpoint 0
0 FTXDO Function Transmit Done Flag, Endpoint 0
NOTES:

1. For all bits in the Interrupt Flag Register, a ‘1’ indicates that an interrupt is actively pending; a ‘0’

indicates that the interrupt is not active. The interrupt status is shown regardless of the state of the
corresponding interrupt enable bit in the FIE.

2. Bits are set-only by hardware and clearable in firmware. Firmware can also set the bits for test
purposes, allowing the interrupt to be generated in firmware. '

3. A set bit indicates either:
Valid data waiting to be serviced in the RX FIFO for the indicated endpoint and that the data was
received without error and has been acknowledged; or
Data was received with a Receive Data Error requiring firmware intervention to be cleared.

Figure 6-5. FIFLG: USB Function Interrupt Flag Register

8x930AXx, 8x930Hx USER’S MANUAL IntGqu

FIFLG1 Address: S:C1H
Reset State: 0000 0000B

Function Interrupt Flag Register 1. Available on the 8X330Ax only, this register contains the USB
Function’s Transmit and Receive Done interrupt flags for non-isochronous endpoints.

Nuzl:Jer Mne?'rln;nic Function
7:4 - Reserved:
Write zeros to these bits.

3 FTXD5 Function Receive Done Flag, Endpoint 5:
2 FTXD5 Function Transmit Done Flag, Endpoint 5:

1 FRXD4 Function Receive Done Flag, Endpoint 4:
0 FTXD4 Function Transmit Done Flag, Endpoint 4:
NOTES:

1. For all bits in the Interrupt Flag Register, a ‘1’ indicates that an interrupt is actively pending; a ‘0’

indicates that the interrupt is not active. The interrupt status is shown regardless of the state of the
corresponding interrupt enable bit in the FIE.

2. Bits are set-only by hardware and clearable in firmware. Firmware can also set the bits for test
purposes, allowing the interrupt to be generated in firmware.

3. A set bit indicates either:
Valid data waiting to be serviced in the RX FIFO for the indicated endpoint and that the data was
received without error and has been acknowledged; or
Data was received with a Receive Data Error requiring firmware intervention to be cleared.

Figure 6-6. FIFLG1: USB Function Interrupt Flag Register

6.5.2 USB Start-of-frame Interrupt

The USB start-of-frame interrupt (SOF) is used to control the transfer of isochronous data. The
8x930 frame timer attempts to synchronize to the frame time automatically. When the frame timer
is locked to the USB frame time, hardware sets the FTLOCK bit in SOFH (Figure 6-7). To enable
the start-of-frame interrupt, set the SOFIE bit in SOFH.

The 8x930 generates a start-of-frame interrupt whenever a start-of-frame packet is received from
the USB lines, or whenever a start-of-frame packet should have been received (i.e., an artificial
SOF). The 8x930 generates an SOF interrupt by setting the ASOF bit in the SOFH SFR. When a
start-of-frame interrupt occurs, the 8x930 loads the current value of the frame timer into the
SOFH/SOFL registers (Figures 6-7 and 6-8).

6-12 I

intgl.

INTERRUPT SYSTEM

NOTE

The start-of-frame interrupt shares an interrupt vector with the hub interrupt.
When this interrupt is triggered, firmware must examine the ASOF bit in the
SOFH SFR to determine that it was the start-of-frame interrupt that was
triggered, and not the hub interrupt.

SOFH

Address: S:D3H
Reset State: 0000 0000B

Start of Frame High Register. Contains isochronous data transfer enable and interrupt bits and the
upper three bits of the 11-bit time stamp received from the host.

7

f SOFACK

ASOF

SOFIE | FTLOCK | [soFopis| Ts10 [Ts9 TS8

Bit
Number

Bit
Mnemonic

Function

7

SOFACK

SOF Token Received without Error (read-only):

When set, this bit indicates that the 11-bit time stamp stored in SOFL and
SOFH is valid. This bit is updated every time a SOF token is received from
the USB bus, and it is cleared when an artificial SOF is generated by the
frame timer. This bit is set and cleared by hardware.

ASOF

Any Start of Frame:

This bit is set by hardware to indicate that a new frame has started. The
interrupt can result either from reception of an actual SOF packet or from an
artificially-generated SOF from the frame timer. This interrupt is asserted in
hardware even if the frame timer is not locked to the USB bus frame timing.
When set, this bit is an indication that either an actual SOF packet was
received or an artificial SOF was generated by the frame timer. This bit must
be cleared by firmware or inverted and driven to the SOF# pin. The effect of
setting this bit by firmware is the same as hardware: the external pin will be
driven with an inverted ASOF value for eight T ¢s.

This bit also serves as the SOF interrupt flag. This interrupt is only asserted
in hardware if the SOF interrupt is enabled (SOFIE set) and the interrupt
channel is enabled.

SOFIE

SOF Interrupt Enable:

When this bit is set, setting the ASOF bit causes an interrupt request to be
generated if the interrupt channel is enabled. Hardware reads but does not
write this bit.

FTLOCK

Frame Timer Locked (read-only):

When set, this bit indicates that the frame timer is presently locked to the
USB bus’ frame time. When cleared, this bit indicates that the frame timer is
attempting to synchronize to the frame time.

Figure 6-7. SOFH: Start of Frame High Register

6-13

8x930Ax, 8x930Hx USER’S MANUAL ||"I'|.'e|®

SOFH (Continued) Address: S:D3H
Reset State: 0000 0000B

Start of Frame High Register. Contains isochronous data transfer enable and interrupt bits and the
upper three bits of the 11-bit time stamp received from the host.

7

Bit Bit .
Number | Mnemonic Function

3 SOFODIS | SOF# Pin Output Disable:
When set, no low pulse will be driven to the SOF# pin in response to setting
the ASOF bit. The SOF# pin will be driven to ‘1’ when SOFODIS is set.
When this bit is clear, setting the ASOF bit causes the SOF# pin to be
toggled with a low pulse for eight T, ¢s.

2:0 TS10:8 Time stamp received from host:
TS10:8 are the upper three bits of the 11-bit frame number issued with an
SOF token. This time stamp is valid only if the SOFACK bit is set.

Figure 6-7. SOFH: Start of Frame High Register (Continued)

SOFL Address: S:D2H
Reset State: 0000 0000B

Start-of-Frame Low Register. Contains the lower eight bits of the 11-bit time stamp received from the
host.

7 0

TS7:0 —|

Function

Bit Bit
Number | Mnemonic

7:0 TS7:0 Time stamp received from host:

This time stamp is valid only if the SOFACK bit in the SOFH register is set.
TS7:0 are the lower eight bits of the 11-bit frame number issued with a SOF
token. If an artificial SOF is generated, the time stamp remains at its
previous value and it is up to firmware to update it. These bits are set and
cleared by hardware.

Figure 6-8. SOFL: Start of Frame Low Register

6-14 | I

|nte|® INTERRUPT SYSTEM

The 8x930 uses the start-of-frame interrupt to signal either of two complementary events:

1. When transmitting: The next isochronous data packet needs to be retrieved from memory
and loaded into the transmit FIFO in preparation for transmission in the next frame; or

2. When receiving: An isochronous packet has been received in the previous frame and
needs to be retrieved from the receive FIFO.

Since the start-of-frame packet could be corrupted, there is a chance that a new frame could be
started without successful reception of the SOF packet. For this reason, an artificial SOF is pro-
vided. The frame timer signals a time-out when an SOF packet has not been received within the
allotted amount of time. In this fashion, the 8x930 generates an SOF interrupt reliably once each
frame within 1 ps of accuracy, except when this interrupt is suspended or when the frame timer
gets out-of-sync with the USB bus frame time.

In summary, in order to utilize the USB start-of-frame functionality for isochronous data transfer,
the following must all be true:

1. The global enable bit must be set. That is, the EA bit must be set in the IENO register
(Figure 6-12).

2. The isochronous endpoint any SOF interrupt must be enabled. That is, the ESOF bit must
be set in the IEN1 register (Figure 6-13).

3. The start-of-frame interrupt must be enabled. That is, the SOFIE bit must be set in the
SOFH Register (Figure 6-7).

NOTE

The SOF interrupt is brought out to an external pin (SOF#) in order to provide
a 1 ms pulse, subject to the accuracy of the USB start-of-frame. This pin is
enabled by clearing the SOFODIS bit in the SOFH register.

6.5.3 USB Hub Interrupt
The USB hub interrupt is used to signal a receive done or transmit done for hub endpoint 0.
To enable the hub interrupt:

1. Set the global enable bit (EA) in the IENO register (Figure 6-12)

2. Enable the hub endpoint O transmit done and receive done interrupts individually:

a. To enable the receive done interrupt, set the HRXEO bit in the Hub Interrupt Enable
SFR (HIE, as shown in Figure 6-9)

b. To enable the transmit done interrupt, set the HTXEOQ bit in HIE

8x930Ax, 8x930HXx USER’S MANUAL "Ttel ®

HIE

Hub Interrupt Enable Register. Enables and disables the receive and transmit done interrupts for hub
endpoint 0.

7

Address: S:A1H
Reset State: 0xxx xx00B

Nuﬁ:ger Mne?:onic Function
72 —_ Reserved:
Write zeros to these bits.
1 HRXEO HRXEO:
Enable the hub endpoint 0 receive done interrupt (HRXDO).*
0 HTXEO | HTXEO:

Enable the hub endpoint 0 transmit done interrupt (HTXDO).*

T For both bits, a ‘1’ means the interrupt is enabled, and will cause an interrupt to be signaled to the
microcontroller. A ‘0’ means the associated interrupt source is disabled and cannot cause an
interrupt, even though its value is still reflected in the HIFLG register.

Figure 6-9. HIE: Hub Interrupt Enable Register

The USB Hub Interrupt Flag Register (HIFLG, as shown in Figure 6-10) is used to indicate pend-
ing hub interrupts. For all bits in HIFLG, a ‘1’ indicates that an interrupt is actively pending; a
‘0’ indicates that the interrupt is not active. The interrupt status is shown in the HIFLG register
regardless of the state of the corresponding interrupt enable bit in the HIE Register (Figure 6-9).

NOTE

The hub interrupt shares an interrupt vector with the start-of-frame interrupt.
When this interrupt is triggered, firmware must examine the HIFLG SFR to
determine that it was the hub interrupt that was triggered and not the start-of-.
frame interrupt.

6-16

|nte|® INTERRUPT SYSTEM

HIFLG Address: S:E8H
Reset State: 0xxx xx00B

Hub Interrupt Flag Register. Contains the hub’s transmit and receive done interrupt flags for hub
endpoint 0.

7 0
=i e e e e e
Nuﬁ::)er Mne?\:tonic Function
7:2 — Reserved:
Write zeros to these bits.
1 HRXDO Hub Receive Done, Endpoint 0.:

Hardware sets this bit to indicate that there is either: (1) valid data
waiting to be serviced in the receive data buffer for hub endpoint 0 and
that the data was received without error and has been acknowledged; or
(2) that data was received with a FIFO error requiring firmware
intervention to be cleared.

0 HTXDO Hub Transmit Done, Endpoint O:

Hardware sets this bit to indicate that one of two conditions exists in the
transmit data buffer for hub endpoint 0: (1) the transmit data has been
transmitted and the host has sent acknowledgment which was
successfully received; or (2) a FIFO-related error occurred during
transmission of the data packet, which requires servicing by firmware to
be cleared.

NOTES:

1. Note that because the HIFLG appears in the first SFR column, it is a bit-addressable SFR. All bits
are set in hardware and cleared by firmware. Firmware can also set these bits for test purposes,
allowing the interrupt to be generated by firmware.

2. For both HRXDO and HTXDO, a ‘1’ indicates that an interrupt is actively pending; a ‘0’ indicates
that the interrupt is not active. The interrupt status is shown regardless of the state of the
corresponding interrupt enable bit in the HIE.

Figure 6-10. HIFLG: Hub Interrupt Status Register

L]
8x930AXx, 8x930Hx USER’S MANUAL InU®

6.5.4 USB Global Suspend/Resume Interrupt

The 8x930 supports USB power control through firmware. The USB power control register
(PCONI, as shown in Figure 15-2 on page 15-4) facilitates USB power control of the 8x930, in-
cluding global suspend/resume and USB function resume.

NOTE

On the 8x930Ax only, the global suspend/resume interrupt shares an interrupt
vector with the USB reset interrupt. When this interrupt is triggered, firmware
must examine the GSUS and GRSM bits in the PCON1 SFR (Figure 15-2 on
page 15-4) to determine that it was the global suspend/resume interrupt that
was triggered, and not the USB reset interrupt.

6.5.4.1 Global Suspend

When a global suspend is detected by the 8x930, the global suspend bit (GSUS of PCON1) is set
and the global suspend/resume interrupt is generated. Global suspend is defined as bus inactivity
for more than 3 ms on the USB lines. For additional information, see “Global Suspend Mode” on
page 15-8.

6.5.4.2 Global Resume

When a global resume is detected by the 8x930, the global resume bit (GRSM of PCON1) is set
and the global suspend/resume interrupt is generated. As soon as resume signaling is detected on
the USB lines, the oscillator is restarted. After executing the resume interrupt service routine, the
8x930 resumes operation from where it was when it was interrupted by the suspend interrupt. For
additional information, see “Global Resume Mode” on page 15-10.

6.5.4.3 USB Remote Wake-up

The 8x930 can also initiate resume signaling to the USB lines through remote wake-up of the
USB function while it is in powerdown/idle mode. While in powerdown mode, remote wake-up
has to be initiated through assertion of an enabled external interrupt. The external interrupt has to
be enabled and it must be configured with level trigger and with higher priority than a suspend/re-
sume interrupt. An external interrupt restarts the clocks to the 8x930 and program execution
branches to the external interrupt service routine.

Within this external interrupt service routine, you must set the remote wakeup bit (RWU in
PCON1) to drive resume signaling on the USB lines to the host or upstream hub. After executing
the external ISR, the program continues execution from where it was put into powerdown mode
and the 8x930 resumes normal operation. For additional information, see “USB Remote Wake-
up” on page 15-10.

6.5.5 8x930Ax USB Reset Separation

The 8x930Ax features an optional USB reset that functions independently from the chip reset.
When the PCON1 SFR’s URDIS bit is set, the MCS 251 core and peripherals will not reset when
a USB reset signal is detected. After an 8x930Ax with URDIS set detects a USB reset signal, it
resets all the USB blocks (including the USB SFRs), sets the URST bit in PCONT1, and generates
a USB reset interrupt. USB reset signals can originate only from the host PC or upstream hub.

6-18 I

|nte|@ INTERRUPT SYSTEM

NOTE
The use of a separate USB reset is recommended only for applications where
the device is required to be operated continually, even when the PC is
powered-off. All other applications are advised against using the separate USB
reset. Leaving the URDIS bit clear will ensure a robust, chip-level reset.

The USB reset must be implemented partially in firmware, including an
initialization routine as part of chip start-up. To ensure compliance with USB-
specified timing constraints and minimize the potential for data corruption,
you must implement flag checking as part of your main routine, subroutines,
and ISRs. These requirements increase the complexity of your firmware code.

If the 8x930Ax is in powerdown or suspend mode when the separate USB reset interrupt is gen-
erated, the device will wake up from powerdown or suspend mode upon receiving the USB reset
signal. The ISR of a bus-powered device must set the LC bit of PCON (Figure 15-1 on page 15-3)
in order to operate at 3 MHz. This ensures that the device meets the 100 mA current limit during
enumeration, as required by the Universal Serial Bus Specification. Self-powered devices (i.e.,
devices drawing less than 100mA from the USB wires) may choose not to switch to Low Clock
mode after detecting the USB reset.

NOTE

If desired, your firmware can handle the separate USB reset without using an
ISR. To do this, you must clear the ESR bit in the IEN1 SFR. The USB reset
hardware operations will still take place, but the ISR will not be called. That is,
step 1 and step 2 under “USB Reset Hardware Operations” on page 6-22 will
still occur, but step 3 will not. Your firmware must poll the URST flag
periodically to detect the USB reset and take the appropriate action.

Since the global suspend and global resume interrupts share the same interrupt
vector as USB reset, your firmware must also poll the GRSM and GSUS bits
in PCONI1 to detect global suspend or resume.

If, instead, you choose to implement a separate USB reset using an ISR, follow the procedure out-
lined in the following subsections and shown in Figure 6-11.

6.5.5.1 Initialization Required for USB Reset

Because USB reset implementation depends heavily on firmware, your code must perform the
following initialization prior to execution of the main routine (See Figure 6-11):

1. To enable the USB reset interrupt on the 8x930Ax, your initialization routine must set the
following bits to ‘1’:
a. the EA bit of IENO (Figure 6-12)
b. the ESR bit of IEN1 (Figure 6-13)
c. the URDIS bit of PCON1 (Figure 15-2 on page 15-4)

I 6-19

L]
8x930Ax, 8x930Hx USER’S MANUAL . InU®

2. Use bit 2 of IPH1/IPL1 to set the priority of the USB reset interrupt (See “Interrupt
Priorities” on page 6-27).

NOTE
It is recommended that you set the USB reset interrupt to the highest priority.

3. After enabling the USB reset interrupt and assigning it a priority, your initialization
routine should clear the USB_RST_FLG flag. This flag is a global variable declared in
your firmware, not a bit in an SFR.

This flag, an indicator that a USB reset has occurred, will be examined at various points in
your main routine, subroutines, and ISRs.

6-20 I

intel.

Main Routine Flush USB FIFOs;

INTERRUPT SYSTEM
Initialization Routine:
Set IENO.EA; Fo S Se s S mSs S s
Set EN1.ESF; v USB Reset, X
SetPCON1.URDIS; | o ' Global Suspend, X
Set Interrupt Priority; 2 ' Resume ISR ,
USB_RST_FLG = 0; 8 ! '
=]
5 - !
¢ ' '
o : '
%5} Reset all USB blocks 1 !
Main Routine: = Set PCON.URST; 1 =1 Check !
(normal processing Generate USB Reset 1 N PCON1.URST =0
until interrupt occurs) Interrupt;] ’ !
]
X '
N 1
) 1
| oo - :
3 ontinue wi 1
""‘E Main Routine : Perform Global 1
S , Suspend/Resume | ,
o
o . ISR 1
§ - !
1 [}
1
Periodically Test X '
USB_RST_FLG . Clear PCON1.URST; '
\ USB_RST_FLG =1 1
, (Bus Powered?— 1
. Set PCON.LC) 1
L e R R - !
1 USB 1 1 1
USB RST FLG Yes , Initialization Routine , 1
=17 1 ['
1 [ISR 1
1 [l Complete 1
) 1 1 1
] p T TTsEEEEEEEEEEE
1]
1 1
1 1
inue wi 'l Clear USB_RST FLG; |
Continue with 1| Initialize USB-related SFRs; :
1
]]
1]

A5206-01

Figure 6-11. USB Reset Separation Operating Model

I 6-21

8x930Ax, 8x930Hx USER’S MANUAL |nte|®

6.5.5.2 USB Reset Hardware Operations

When the host initiates a USB reset signal, the following series of events is performed by the
8x930Ax hardware (See Figure 6-11):

1. Upon detecting a USB reset signal, the 8x930Ax hardware resets all the USB blocks (i.e.,
the FIFOs, the SIU, the SIE, and the USB transceiver).

As a result of this process, all USB-related SFRs are reset to their default reset states. This
includes EPINDEX, EPCON, SOFL, SOFH, FIE, FIFLG, FADDR, TXSTAT, TXDAT,
TXCON, TXFLG, TXCNTL, TXCNTH, RXSTAT, RXDAT, RXCON, RXFLG,
RXCNTL, RXCNTH, and PCON1. Note that PCONT1 is only partially reset — the URDIS
and URST bits retain their original values.

Because of this hardware reset, any USB-related operations (e.g., MOV TXDAT,A) will
not provide valid data.

2. The 8x930Ax sets the PCON1.URST bit to indicate a USB reset to the ISR.

3. Ifthe ESR bit in IENI is set, the 8x930Ax generates a USB reset interrupt, which causes a
branch to the interrupt service routine whose vector is located at FF:0053H. This ISR
services both the USB reset interrupt and the global suspend/resume interrupt.

6.5.5.3 USB Reset ISR

Because the USB reset interrupt shares an interrupt vector with the USB global suspend/resume
interrupt, the interrupt service routine must play a dual role. The ISR must first check PCON1’s
URST bit to ensure that this interrupt is indeed a USB reset interrupt.

If URST = ‘0’, then this interrupt must be a global suspend/resume interrupt and the ISR must
branch to service that type of interrupt. See “USB Global Suspend/Resume Interrupt” on page
6-18 for a description of this portion of the ISR.

If the URST bit is set to ‘1°, then this interrupt is a USB reset interrupt. The ISR must perform
the following procedure (See Figure 6-11):

1. Clear PCON1’s URST bit — to indicate that the USB reset interrupt has been serviced.
2. Set the user flag USB_RST_FLG that was cleared as part of your initialization routine.

This flag is discussed in “Initialization Required for USB Reset” on page 6-19. Setting this
flag is necessary to inform your firmware routines that a USB reset has occurred and that
USB initialization must be performed.

3. Bus-powered devices must set the LC bit of PCON (Figure 15-1 on page 15-3) in order to
operate at 3 MHz. This ensures that the device meets the Universal Serial Bus
Specification’s 100 mA current limit during enumeration.

4. Restore any register values and return from interrupt.

The rest of the USB reset procedure will be initiated by a USB initialization routine that can be
called from the main routine, subroutines, or other ISRs.

6-22 I

|nte|® INTERRUPT SYSTEM

6.5.5.4 Main Routine Considerations

Although the USB-related SFRs were reset by the USB reset ISR, they must also be initialized
by a special USB initialization routine called by the main routine. Since the USB reset interrupt
can occur at any time, the only way the main routine will know that a USB reset occurred is to
periodically check the USB reset flag (USB_RST_FLG). This is the firmware flag that was set in
Step 2 of the “USB Reset ISR” on page 6-22.

When a set reset flag is detected, the main routine branches to a USB initialization routine, which
performs the following tasks (See Figure 6-11):

1.- Clear the user flag USB_RST_FLG.

Clearing this flag indicates that USB initialization is not required. Clear this flag first in
case a second USB reset occurs during this initialization routine, rendering this
initialization invalid.

2. Initialize the USB-related SFRs to the values required by your program.

If your application requires any other SFRs to be initialized upon USB reset (e.g., SCON),
now is the time to do so.

Restore any USB-related user flags specific to your application.

4. Flush all USB FIFOs. This is done by setting RXCLR in RXCON and TXCLR in
TXCON. This must be done for each function endpoint.

5. Return to the calling routine.

At this point, the main routine can resume normal processing. Eventually, the host PC will trans-
mit a SETUP token. This will trigger an interrupt that will perform USB enumeration.

NOTE
USB specifications require that all devices must be able to accept a device
address via a SET_ADDRESS command no later than 10 ms after the reset is
removed.

It is recommended that you ensure that the total time required for the following is less than 10ms:

1. The time to complete and exit from the USB reset ISR (accounting for latency — see
“Interrupt Processing” on page 6-32)

2. The time for the maximum number of instructions that could execute before your code
recognizes that a USB reset has occurred (by checking USB_RST_FLG) and calls your
USB initialization routine

3. The time to execute your USB initialization routine

This time constraint may require you to check USB_RST_FLG at multiple points in your code
(and within any ISRs that may take longer than 10ms to perform). By inserting this checkpoint,
your program can branch from a routine (or ISR) after the USB reset without having to complete
the routine (or ISR). Your program can continue the interrupted routine after ensuring that the
device is ready for USB enumeration.

I 6-23

L]
8x930Ax, 8x930Hx USER’S MANUAL InU®

CAUTION
If a USB reset interrupt occurs during execution of a USB receive ISR (e.g.,
receive done or start-of-frame), the 8x930Ax will reset the USB hardware.
This will render invalid any data received during the USB transfer. If this is
not detected by your firmware, misprocessing can occur.

The risk of USB reset-related misprocessing can be reduced if your USB receive/transmit ISRs
check USB_RST_FLG before returning. If this flag is set, your code should branch to the USB
initialization routine to initialize the USB-related SFRs and flush the FIFOs. If this is done, the
only potential opportunity for misprocessing would be if the USB reset interrupt occurs between
the test of USB_RST_FLG and the branch to the USB initialization routine.

NOTE

Because of the risk of misprocessing, however slight, it is recommended that
applications that will not substantially benefit from a separate USB reset
disable this option (by leaving the URDIS bit in PCON1 cleared) to simplify
firmware coding and ensure a robust, chip-level reset.

6.6 INTERRUPT ENABLE

Each interrupt source (with the exception of TRAP) may be individually enabled or disabled by
the appropriate interrupt enable bit in the IENO register at S:A8H (see Figure 6-12) or the IEN1
register at S:B1H (see Figure 6-13). Note IENO also contains a global disable bit (EA). If EA is
set, interrupts are individually enabled or disabled by bits in IENO and IEN1. If EA is clear, all
interrupts are disabled.

6-24 I

intgl.

Interrupt Enable Register 0. IENO contains two types of interrupt enable bits. The global enable bit
(EA) enables/disables all of the interrupts (including those in IEN1), except the TRAP interrupt, which
is always enabled. The remaining bits enable/disable the other individual interrupts.

INTERRUPT SYSTEM
IENO Address: S:A8H
Reset State: 0000 0000B

0
CEX1 ~ETO CEXO o
Nuﬂ:)er Mne?lztonic Function
7 EA Gilobal Interrupt Enable:
Setting this bit enables all interrupts that are individually enabled by bits
0-6 of this register, as well as the interrupts enabled by the bits in the
IEN1 SFR.
Clearing this bit disables all interrupts, except the TRAP interrupt, which
is always enabled.
6 EC PCA Interrupt Enable:
Setting this bit enables the PCA interrupt.
5 ET2 Timer 2 Overflow Interrupt Enable:
Setting this bit enables the timer 2 overflow interrupt.
4 ES Serial I/O Port Interrupt Enable:
Setting this bit enables the serial 1/0 port interrupt.
3 ET1 Timer 1 Overflow Interrupt Enable:
Setting this bit enables the timer 1 overflow interrupt.
2 EX1 External Interrupt 1 Enable:
Setting this bit enables external interrupt 1.
1 ETO Timer 0 Overflow Interrupt Enable:
Setting this bit enables the timer 0 overflow interrupt.
0 EX0 External Interrupt O Enable:
Setting this bit enables external interrupt 0.

Figure 6-12. IENO: Interrupt Enable Register 0

6-25

8x930Ax, 8x930Hx USER’S MANUAL Intel ®

IEN1 Address: S:B1H
Reset State: xxxx x000H

Interrupt Enable Register 1. Contains the enable bits for the USB interrupts.
7 0

Bit Bit

Number Mnemonic Function
7:3 — Reserved:
Values read from these bits are indeterminate. Write zeros to these bits.
2 ESR Enable Suspend/Resume:
USB global suspend/resume interrupt enable bit.
1 EF Enable Function:

Transmit/Receive Done interrupt enable bit for non-isochronous USB
function endpoints. '

0 ESOF Enable USB Hub/Start of Frame:

Any start-of-frame interrupt enable for isochronous endpoints, or USB
hub interrupt enable.

Figure 6-13. IEN1: USB Interrupt Enable Register

6-26 I

|nte|® INTERRUPT SYSTEM

6.7 INTERRUPT PRIORITIES

Ten of the eleven 8x930 interrupt sources (TRAP excluded) may be individually programmed to
one of four priority levels. This is accomplished with the IPHX.x/IPLX x bit pairs in the interrupt
priority high (IPH1/IPHO in Figure 6-14 and 6-16) and interrupt priority low (IPL1/IPLO) regis-
ters (Figures 6-15 and 6-17). Specify the priority level as shown in Table 6-5 using IPHO.x (or
IPH1.x) as the MSB and IPLO.x (or IPL1.x) as the LSB.

Table 6-5. Level of Priority

Priority Level IPH1.x, IPL1.x | IPHO.x, IPLO.x
0 Lowest Priority 00 00
1 01 01
2 10 10
3 Highest Priority 11 1

A low-priority interrupt is always interrupted by a higher priority interrupt but not by another in-
terrupt of equal or lower priority. The highest priority interrupt is not interrupted by any other
interrupt source. Higher priority interrupts are serviced before lower priority interrupts. The re-
sponse to simultaneous occurrence of equal priority interrupts (i.e., sampled within the same four-
state interrupt cycle) is determined by a hardware priority-within-level resolver (see Table 6-6).

Table 6-6. Interrupt Priority Within Level

Priority Number Interrupt Name
1 (Highest Priority) INTO#
2 Timer 0
3 INT1#
4 Timer 1
5 Serial Port
6 Timer 2
7 PCA
8 USB Hub / SOF
9 USB Function
10 USB Gilobal Suspend/Resume

I 6-27

8x930AXx, 8x930Hx USER’S MANUAL _ "Ttel ®

IPHO . Address: S:B7H
Reset State: x000 0000B

Interrupt Priority High Control Register 0. IPHO, together with IPLO, assigns each interrupt in IENO a
priority level from 0 (lowest) to 3 (highest):

IPHO.x IPLO.x Priority Level
0 0 0 (lowest priority)
0 1 1
1 0 2
1 1 3 (highest priority)

0
[wPHo2 T PHOA | IPHOO]

| PHos | wpHos | iPHo4

NuBmI:)er Mne?r:‘onic Function

7 — Reserved. The value read from this bit is indeterminate. Write a zero to
this bit.

6 IPH0.6 PCA Interrupt Priority Bit High

5 IPHO.5 Timer 2 Overflow Interrupt Priority Bit High

4 IPHO.4 Serial I/O Port Interrupt Priority Bit High

3 IPHO0.3 Timer 1 Overflow Interrupt Priority Bit High

2 IPHO0.2 External Interrupt 1 Priority Bit High

1 IPHO.1 Timer 0 Overflow Interrupt Priority Bit High

0 IPHO.0 External Interrupt O Priority Bit High

Figure 6-14. IPHO: Interrupt Priority High Register 0

6-28 I

intel.

INTERRUPT SYSTEM

IPLO

Address:
Reset State:

Interrupt Priority Low Control Register 0. IPLO, together with IPHO, assigns each interrupt in IENO a
priority level from O (lowest) to 3 (highest):

S:B8H
x000 0000B

IPHO.x IPLO.x Priority Level
0 0 0 (lowest priority)
0 1 1
1 0 2
1 1 3 (highest priority)
7 0
= IPLO6 f IPLOE | 1PLDA | | ipLos | Pl | PLod | IPLon
NuanI:)er Mne|B1:tonic Function
7 — Reserved. The value read from this bit is indeterminate. Write a zero to
this bit.
6 IPLO.6 PCA Interrupt Priority Bit Low
5 IPLO.5 Timer 2 Overflow Interrupt Priority Bit Low
4 IPLO.4 Serial I/O Port Interrupt Priority Bit Low
3 IPLO.3 Timer 1 Overflow Interrupt Priority Bit Low
2 IPLO.2 External Interrupt 1 Priority Bit Low
1 IPLO.1 Timer 0 Overflow Interrupt Priority Bit Low
0 IPLO.O External Interrupt O Priority Bit Low

Figure 6-15. IPLO: Interrupt Priority Low Register 0

6-29

8x930Ax, 8x930Hx USER’S MANUAL Inte|®

IPH1 Address: S:B3H
Reset State: x000 0000B

Interrupt Priority High Control Register 1. IPH1, together with IPL1, assigns each interrupt in IEN1 a
priority level from 0 (lowest) to 3 (highest):

IPH1.x IPL1.x Priority Level
0 0 0 (lowest priority)
0 1 1
1 0 2
1 1 3 (highest priority)

Nuﬁ::)er Mne?l:tonic Function
7:3 —_ Reserved:
Values read from these bits are indeterminate. Write zeros to these bits.
2 IPH1.2 Global Suspend/Resume Interrupt Priority Bit High
IPH1.1 USB Function Interrupt Priority Bit High
0 IPH1.0 USB Hub/SOF Interrupt Priority Bit High

Figure 6-16. IPH1: Interrupt Priority High Register 1

6-30

intel.

INTERRUPT SYSTEM

IPL1

Address:
Reset State:

S:B2H
x000 0000B

Interrupt Priority Low Control Register 1. IPL1, together with IPH1, assigns each interrupt in IEN1 a
priority level from O (lowest) to 3 (highest):

IPH1.x IPL1.x Priority Level
0 0 0 (lowest priority)
0 1 1
1 0 2
1 1 3 (highest priority)
7 0
e = = | =0 = Feaz [war | Puo
Nuﬁ::)er Mneﬁ:tonic Function
7:3 — Reserved:
Values read from these bits are indeterminate. Write zeros to these bits.
2 IPL1.2 Global Suspend/Resume Interrupt Priority Bit Low
IPL1.1 USB Function Interrupt Priority Bit Low
0 IPL1.0 USB Hub/SOF Interrupt Priority Bit Low

Figure 6-17. IPL1: Interrupt Priority Low Register 1

6-31

8x930Ax, 8x930Hx USER’S MANUAL |nte|®

6.8 INTERRUPT PROCESSING

Interrupt processing is a dynamic operation that begins when a source requests an interrupt and
lasts until the execution of the first instruction in the interrupt service routine (see Figure 6-18).
Response time is the amount of time between the interrupt request and the resulting break in the
current instruction stream. Latency is the amount of time between the interrupt request and the
execution of the first instruction in the interrupt service routine. These periods are dynamic due
to the presence of both fixed-time sequences and several variable conditions. These conditions
contribute to total elapsed time.

Response Time
OsC MuaAAARARAAARAARARARRRARARRRARAARARAAAARRRR AR
State o U UnunuIunIaLn
Time '
External : :
Interrupt M

Request

S : Ending Instructions

Latency

A4153-01

Figure 6-18. The Interrupt Process

Both response time and latency begin with the request. The subsequent minimum fixed sequence
comprises the interrupt sample, poll, and request operations. The variables consist of (but are not
limited to): specific instructions in use at request time, internal versus external interrupt source
requests, internal versus external program operation, stack location, presence of wait states, page-
mode operation, and branch pointer length.

NOTE

In the following discussion, external interrupt request pins are assumed to be
inactive for at least four state times prior to assertion. In this chapter all
external hardware signals maintain some setup period (i.c., less than one state
time). Signals must meet Vin and Vi specifications prior to any state time
under discussion. This setup state time is not included in examples or
calculations for either response or latency.

6-32 I

Int9|® INTERRUPT SYSTEM

6.8.1 Minimum Fixed Interrupt Time

All interrupts are sampled or polled every four state-times (see Figure 6-18). Two of eight inter-
rupts are latched and polled per state time within any given window of four state-times. One ad-
ditional state time is required for a context switch request. For code branches to jump locations
in the current 64-Kbyte memory region (compatible with MCS 51 microcontrollers), the context
switch time is 11 states. Therefore, the minimum fixed poll and request time is 16 states (4 poll
states + 1 request state + 11 states for the context switch = 16 state times).

Therefore, this minimum fixed period rests upon four assumptions:

¢ The source request is an internal interrupt with high enough priority to take precedence over
other potential interrupts,

* The request is coincident with internal execution and needs no instruction completion time,
¢ The program uses an internal stack location, and
¢ The ISR is in on-chip ROM.

6.8.2 Variable Interrupt Parameters

Both response time and latency calculations contain fixed and variable components. By defini-
tion, it is often difficult to predict exact timing calculations for real-time requests. One large vari-
able is the completion time of an instruction cycle coincident with the occurrence of an interrupt
request. Worst-case predictions typically use the longest-executing instruction in an architec-
ture’s code set. In the case of the 8x930, the longest-executing instruction is a 16-bit divide (DIV).
However, even this 21- state instruction may have only 1 or 2 remaining states to complete before
the interrupt system injects a context switch. This uncertainty affects both response time and la-
tency.

6.8.2.1 Response Time Variables

Response time is defined as the start of a dynamic time period when a source requests an interrupt
and lasts until a break in the current instruction execution stream occurs (see Figure 6-18). Re-
sponse time (and therefore latency) is affected by two primary factors: the incidence of the re-
quest relative to the four-state-time sample window and the completion time of instructions in the
response period (i.e., shorter instructions complete earlier than longer instructions).

NOTE
External interrupt signals require one additional state time in comparison to
internal interrupts. This is necessary to sample and latch the pin value prior to
a poll of interrupts. The sample occurs in the first half of the state time and the
poll/request occurs in the second half of the next state time. Therefore, this
sample and poll/request portion of the minimum fixed response and latency
time is five states for internal interrupts and six states for external interrupts.
External interrupts must remain active for at least five state times to guarantee
interrupt recognition when the request occurs immediately after a sample has
been taken (i.e., requested in the second half of a sample state time).

I 6-33

8Xx930Ax, 8x930Hx USER’S MANUAL |nte|®

If the external interrupt goes active one state after the sample state, the pin is not resampled for
another three states. After the second sample is taken and the interrupt request is recognized, the
interrupt controller requests the context switch. The programmer must also consider the time to
complete the instruction at the moment the context switch request is sent to the execution unit. If
9 states of a 10-state instruction have completed when the context switch is requested, the total
response time is 6 states, with a context switch immediately after the final state of the 10-state
instruction (see Figure 6-19).

Response Time = 6

OsC
State Time U

INTO#

Sample INTO# (I LI LI Ll
Request =)

Ten State
Instruction

A4155-02

Figure 6-19. Response Time Example #1

Conversely, if the external interrupt requests service in the state just prior to the next sample, re-
sponse is much quicker. One state asserts the request, one state samples, and one state requests
the context switch. If at that point the same instruction conditions exist, one additional state time
is needed to complete the 10-state instruction prior to the context switch (see Figure 6-20). The
total response time in this case is four state times. The programmer must evaluate all pertinent
conditions for accurate predictability.

6-34 I

|nte|® INTERRUPT SYSTEM

Response Time = 4

0sC
State Time EgipipRpipipipti
INTO# lzw
Sample INTO# L] LT L LT
Request L=
Ten State (
Instruction q Push PC

A4154-02

Figure 6-20. Response Time Example #2

6.8.2.2 Computation of Worst-case Latency With Variables

Worst-case latency calculations assume that the longest 8x930 instruction used in the program
must fully execute prior to a context switch. The instruction execution time is reduced by one
state with the assumption the instruction state overlaps the request state (therefore, 16-bit DIV is
21 state times - 1 = 20 states for latency calculations). The calculations add fixed and variable
interrupt times (see Table 6-7) to this instruction time to predict latency. The worst-case latency
(both fixed and variable times included) is expressed by a pseudo-formula:

FIXED_TIME + VARIABLES + LONGEST_INSTRUCTION = MAXIMUM LATENCY PREDICTION

Table 6-7. Interrupt Latency Variables

External
INTO#, >64K External External | External
Variable | INT1#, Eﬁ’;f;:}ﬁ'n ﬂiﬂi Jumpto | MEMOY | “stack Stack | Stack
T2EX ISR (1) State <64K (1) >64K (1) | Wait State
Number
of 1 per 1 per
States 1 2 1 8 bus cycle 4 8 bus cycle
Added
NOTES:

1. <64K/>64K means inside/outside the 64-Kbyte memory region where code is executing.
2. Base-case fixed time is 16 states and assumes:

— A 2-byte instruction is the first ISR byte. — Internal execution
— <64K jump to ISR — Internal stack
— Internal peripheral interrupt

I 6-35

8x930Ax, 8x930Hx USER’S MANUAL |nte| e

6.8.2.3 Latency Calculations

Assume the use of a zero-wait-state external memory where current instructions, the ISR, and the
stack are located within the same 64-Kbyte memory region (compatible with memory maps for
MCS 51 microcontrollers.) Further, assume there are 3 states yet to complete in the current 21-
state DIV instruction when INTO# requests service. Also assume INTO0# has made the request one
state prior to the sample state (as in Figure 6-20). Unlike Figure 6-20, the response time for this
assumption is three state times as the current instruction completes in time for the branch to occur.
Latency calculations begin with the minimum fixed latency of 16 states. From Table 6-7, one state
is added for an INTO# request from external hardware; two states are added for external execu-
tion; and four states for an external stack in the current 64-Kbyte region. Finally, three states are
added for the current instruction to complete. The actual latency is 26 states. Worst-case latency
calculations predict 43 states for this example due to inclusion of total DIV instruction time (less
one state).

Table 6-8. Actual vs. Predicted Latency Calculations

Latency Factors Actual Predicted
Base Case Minimum Fixed Time 16 16
INTO# External Request 1 1
External Execution
<64K Byte Stack Location
Execution Time for Current DIV Instruction | 3 20
TOTAL 26 43

6.8.2.4 Blocking Conditions

If all enable and priority requirements have been met, a single prioritized interrupt request at a
time generates a vector cycle to an interrupt service routine (see CALL instructions in Appendix
A, “Instruction Set Reference”). There are three causes of blocking conditions with hardware-
generated vectors:

1. Aninterrupt of equal or higher priority level is already in progress (defined as any point
after the flag has been set and the RETI of the ISR has not executed).

2. The current polling cycle is not the final cycle of the instruction in progress.

The instruction in progress is RETI or any write to the IENO, IEN1, IPHO, IPH1, IPLO or
IPL1 registers.

Any of these conditions blocks calls to interrupt service routines. Condition two ensures the in-
struction in progress completes before the system vectors to the ISR. Condition three ensures at
least one more instruction executes before the system vectors to additional interrupts if the in-
struction in progress is a RETI or any write to IENO, IEN1, IPHO, IPH1, IPLO or IPL1. The com-
plete polling cycle is repeated every four state-times.

6-36 I

InU ® INTERRUPT SYSTEM

6.8.2.5 Interrupt Vector Cycle

When an interrupt vector cycle is initiated, the CPU breaks the instruction stream sequence, re-
solves all instruction pipeline decisions, and pushes multiple program counter (PC) bytes onto the
stack. The CPU then reloads the PC with a start address for the appropriate ISR. The number of
bytes pushed to the stack depends upon the INTR bit in the UCONFIGI1 (Figure 4-4 on page 4-6)
configuration byte. The complete sample, poll, request and context switch vector sequence is il-
lustrated in the interrupt latency timing diagram (Figure 6-18).

NOTE
If the interrupt flag for a level-triggered external interrupt is set but denied for
one of the above conditions and is clear when the blocking condition is
removed, then the denied interrupt is ignored. In other words, blocked
interrupt requests are not buffered for retention.

6.8.3 ISRs in Process

ISR execution proceeds until the RETT instruction is encountered. The RETI instruction informs
the processor that the interrupt routine is completed. The RETT instruction in the ISR pops PC
address bytes off the stack (as well as PSW1 for INTR = 1) and execution resumes at the suspend-
ed instruction stream.

NOTE
Some programs written for MCS 51 microcontrollers use RETI instead of RET
to return from a subroutine that is called by ACALL or LCALL (i.e., not an
interrupt service routine (ISR)). In the 8x930, this causes a compatibility
problem if INTR = 1 in configuration byte CONFIGI. In this case, the CPU
pushes four bytes (the three-byte PC and PSW1) onto the stack when the
routine is called and pops the same four bytes when the RETT is executed. In
contrast, RET pushes and pops only the lower two bytes of the PC. To
maintain compatibility, configure the 8x930 with INTR = 0.

With the exception of TRAP, the start addresses of consecutive interrupt service routines are eight
bytes apart. If consecutive interrupts are used (IEO and TFO, for example, or TFO and IE1), the
first interrupt routine (if more than seven bytes long) must execute a jump to some other memory
location. This prevents overlap of the start address of the following interrupt routine.

CAUTION
It is recommended that programmers set the contents of EPINDEX and/or
HPINDEX once, at the start of each routine, instead of writing to the
EPINDEX register prior to each access of an endpoint-indexed SFR and to
HPINDEX prior to each access of a port-indexed SFR.

This means that interrupt service routines must save the contents of the
EPINDEX and HPINDEX registers at the start of the routine and restore the
contents at the end of the routine to prevent the EPINDEX and HPINDEX
registers from being corrupted.

I . 6-37

intel.

USB Function

intel.

CHAPTER 7
USB FUNCTION

This chapter describes the FIFOs and special function registers (SFRs) associated with the USB
function interface. This chapter, along with Chapter 2, “Architectural Overview” and Chapter 9,
“USB Programming Models,” describes the operation of function interface on the 8x930Ax and
8x930Hx USB microcontrollers.

A data flow model for USB transactions, intended to bridge the hardware and firmware layers of
the 8x930, is presented in truth table form in Appendix D, “Data Flow Model.” The model de-
scribes 8x930 behavior in response to a particular USB event, given a known state/configuration.

The USB signals discussed in this chapter are described in Table 7-1. Pinout diagrams for the
8x930Ax and 8x930Hx appear in Appendix B, “Signal Descriptions.”

The SFRs described in this chapter are listed in Table 7-2. The SFR definition tables that appear
in this chapter also appear in alphabetical order in Appendix C, “Registers.”

7.1 FUNCTION INTERFACE

The function interface provides a USB interface capability for one USB function. The main com-
ponents of the function interface are the serial bus interface engine (SIE) and the function inter-
face unit (FIU). Refer to the block diagrams in Figure 2-3 on page 2-6 (8x930Ax) and Figure 2-4
on page 2-7 (8x930Hx). The operation of the function interface is discussed in “Universal Serial
Bus Module” on page 2-12. On the 8x930HLx, the hub accesses the function interface by means of
the internal downstream port.

7.1.1 Function Endpoint Pairs

The endpoint pairs implemented on the 8x930Ax and 8x930Hx are listed in Tables 2-5. The
EPINDEX register selects the endpoint pair for any given data transaction.

The 8x930Ax can be programmed to support either four function endpoint pairs (4EPP, 0-3) or
six function endpoint pairs (6EPP, 0-5). See the EPCONFIG register (Figure 7-1 on page 7-5).
The selection is made during initialization and should not be changed during program execution.
Endpoint O handles only control data transfers. Endpoints 1 through 4 handle all four data transfer
types: control, isochronous (ISO), interrupt, and bulk. Endpoint 5 handles three data transfer
types: control, interrupt, and bulk.

The 8x930Hx supports four function endpoint pairs (identical to the four-endpoint pair option on
the 8x930Ax) and two hub endpoint pairs. See “USB Hub Endpoints” on page 8-10.
7.1.2 Function FIFOs

The 8x930 provides a transmit/receive FIFO pair in support of each endpoint pair. Figure 7-1 on
page 7-5 shows the byte capacities of the 8x930 FIFOs. For the 8x930Ax (with the four-endpoint
pair option selected) and the 8x930HLx, the function endpoint 1 transmit/receive FIFO pair can be

I 7-1

8x930Ax, 8x930Hx USER’S MANUAL |nte| o

programmed for capacities of 256/256, 512/512, 1024/0, or 0/1024 bytes respectively. This is
done with the FFSZ1:0 bits in the TXCON register associated with function endpoint1.

For the 8x930Ax with the six;endpoint option selected, program the endpoint 1 transmit/receive
FIFOs for 256/256 bytes (FFSZ1:0 = 00).

Transmit FIFOs are written by the CPU and then read by the FIU for transmission on the USB.
Receive FIFOs are written by the FIU following reception from the host PC, then read by the
CPU. All transmit FIFOs have the same architecture, and all receive FIFOs have the same archi-
tecture. '

7.1.3 Special Function Registers (SFRs)

The FIU controls operations through the use of four sets of special functions registers (SFRs): the
FIU SFRs, the transmit FIFO SFRs, the receive FIFO SFRs, and the USB interrupt SFRs. Table
7-2 lists the special function registers (SFRs) described in this chapter. USB interrupt SFRs are
described in Chapter 6, “Interrupt System.” Table 3-5 on page 3-16 and Table 3-6 on page 3-17
are SFR memory maps for the 8x930Ax and 8x930Hx.

The registers in the FIU SFR set are: EPINDEX, EPCON, TXSTAT, RXSTAT, SOFL, SOFH,
and FADDR. The SOFH and SOFL SFRs are defined in Figure 6-7 on page 6-13 and Figure 6-8
on page 6-14. The remaining registers are defined in Figures 7-1 through 7-6.

Table 7-1. Non-hub USB Signal Descriptions

Signal ‘ . Alternate
Name Type Description Function
PLLSEL2:0 | Phase-locked Loop Select. Three-bit code selects the USB —_
data rate (see Table 2-4 on page 2-10).
SOF# O | Start of Frame. The SOF# pin is asserted for eight states when —
an SOF token is received.
Dpo, Dwo I/0 | USB Port 0. Do and Dy are the data plus and data minus —

lines of differential USB upstream port 0. These lines do not
have internal pullup resistors. For low-speed devices, provide
an external 1.5 KQ pullup resistor at Dy,g. For full-speed
devices, provide an external 1.5 KQ pullup resistor at Dpg.
NOTE: For the 8x930AX, either Dpq or Dy must be pulled
high. Otherwise a continuous SEO (USB reset) will be
applied to these inputs causing the 8x930Ax to stay in
reset.
For the 8x930Hx, provide an external 1.5 KQ pullup
resistor at Dy s0 the device indicates to the host that
itis a full-speed device.

ECAP | External Capacitor. Must be connected to a 1 pF capacitor (or —
larger) to ensure proper operation of the differential line driver.
The other lead of the capacitor must be connected to Vgg.

7-2 I

|nte|®, USB FUNCTION

The registers in the transmit FIFO SFR set are TXDAT, TXCON, TXFLG, TXCNTL, and
TXCNTH. These registers are defined in Figures 7-8 through 7-11 beginning on page 7-18.

The registers in the receive FIFO SFR set are RXDAT, RXCON, RXFLG, RXCNTL, and
RXCNTH. These registers are defined in Figures 7-13 through 7-16 beginning on page 7-27.

The transmit SFR set, the receive SFR set, EPCON, TXSTAT, and RXSTAT are endpoint-in-
dexed

CAUTION
Unless otherwise noted in the bit definition, SFRs can be read and written by
firmware. All SFRs should be written using read-modify-write instructions
only, due to the possibility of simultaneous writes by hardware and firmware.

These instructions are listed in “Read-Modify-Write Instructions” on page
10-5.

7.1.3.1 Endpoint-indexed SFRs

As indicated in the SFR memory maps in Table 3-5 on page 3-16 (8x930Ax) and Table 3-6 on
page 3-17 (8x930Hx), certain USB SFRs are endpoint-indexed. These SFRs are implemented as
banks of registers similar to register file locations RO-R7 (Figure 3-7 on page 3-11). Endpoint-
indexed SFRs are accessed by means of the SFR address and the current contents of the EPIN-
DEX register (which selects the appropriate bank).

With the exception of hub endpoint 1, there is a bank of SFRs (TXDAT, TXCON, TXFLG, etc.)
for each hub and function endpoint pair. Thus the 8x930Ax, with four-endpoint pair option se-
lected, has four TXCON registers. When EPINDEX = 0000 0001, the function endpoint 1 TX-
CON is accessed. When EPINDEX = 0000 0010, the function endpoint 2 TXCON is accessed.
The contents of a given SFR are retained when other endpoints are selected.

Only SFRs necessary for device operation are implemented. For example, since hub endpoint 1
is transmit only, RXDAT for that endpoint is not implemented. The high-order byte count regis-
ters (TXCNTH and RXCNTH) are implemented only for function endpoint 1, since only that
endpoint pair has FIFOs larger than 32 bytes.

7.1.3.2 Endpoint Selection

The most significant bit of the endpoint index register (EPINDEX) selects hub or function. The
low-order bits (EPINX2:0 for the six-endpoint pair option and EPINX1:0 for the four-endpoint
pair option) indicate the endpoint and serve as an index value for selecting the SFR bank. To spec-
ify the endpoint pair, write a value of the form Zxxx xYYYB or Zxxx xxYYB to EPINDEX,
where Z specifies hub or function and YYY and YY specify the endpoint number. See Figure 7-2.

It is recommended that programmers set the contents of EPINDEX once, at the start of each rou-
tine, instead of writing the EPINDEX register prior to each access of an endpoint-indexed SFR.
This means that interrupt service routines must save the contents of the EPINDEX register at the
start of the routine and restore the contents at the end of the routine to prevent the EPINDEX reg-
ister from being corrupted.

I 7-3

8x930Ax, 8x930Hx USER’S MANUAL

Table 7-2. USB Function SFRs

intel.

Mnemonic Description Address

EPCON Endpoint Control Register. Configures the operation of the endpoint S:E1H
specified by EPINDEX.

EPCONFIG | Endpoint Configuration Register. Selects the four-endpoint pair or six- S:C7H
endpoint pair configuration for function endpoint 1 (8X930Ax only).

EPINDEX Endpoint Index Register. Selects the appropriate endpoint pair. S:F1H

FADDR Function Address Register. Stores the USB function address for the S:8FH
device. The host PC assigns the address and informs the device via
endpoint 0.

RXCNTH Receive FIFO Byte-Count High Register. High register in a two-register S:E7H
ring buffer used to store the byte count for the data packets received in the
receive FIFO specified by EPINDEX. .

RXCNTL Receive FIFO Byte-Count Low Register. Low register in a two-register S:E6H
ring buffer used to store the byte count for the data packets received in the
receive FIFO specified by EPINDEX.

RXCON Receive FIFO Control Register. Controls the receive FIFO specified by S:E4H
EPINDEX.

RXDAT Receive FIFO Data Register. Receive FIFO data is read from this register S:E3H
(specified by EPINDEX).

RXFLG Receive FIFO Flag Register. These flags indicate the status of data S:ESH
packets in the receive FIFO specified by EPINDEX.

RXSTAT Endpoint Receive Status Register. Contains the endpoint status of the S:E2H
receive FIFO specified by EPINDEX.

TXCNTH Transmit Count High Register. High register in a two-register ring buffer S:F7H
used to store the byte count for the data packets in the transmit FIFO
specified by EPINDEX.

TXCNTL Transmit Count Low Register. Low register in a two-register ring buffer S:F6H
used to store the byte count for the data packets in the transmit FIFO
specified by EPINDEX.

TXCON Transmit FIFO Control Register. Controls the transmit FIFO specified by S:F4H
EPINDEX.

TXDAT Transmit FIFO Data Register. Transmit FIFO data is written to this register S:F3H
(specified by EPINDEX).

TXFLG Transmit Flag Register. These flags indicate the status of data packets in S:F5H
the transmit FIFO specified by EPINDEX.

TXSTAT Endpoint Transmit Status Register. Contains the endpoint status of the S:FAH
transmit FIFO specified by EPINDEX.

74

intel.

USB FUNCTION

EPCONFIGT

Address: S:C7H
Reset State: xxxx xxx0B

Endpoint Configuration Register. Selects the six-endpoint pair option or four-endpoint pair option as
the 8x930Ax function endpoint pair configuration.

7 0
T T = = | = . — | — | sixeppen.
Nug':::er Mne?1:tonic Function
71 — Reserved:
Write zeroes to these bits.
0 SIXEPPEN Six-endpoint pair enable:ft

Set this bit to select the six-endpoint pair (6EPP) configuration, which
provides the following FIFO sizes (bytes).

EPINDEX FFSZ1:0 Transmit Receive

FIFO FIFO
Oxxx X000 xx 16 16
Oxxx X001 00ttt 256 256
Oxxx x010 xx 32 32
Oxxx x011 XX 32 32
Oxxx x100 xx 32 32
Oxxx x101 xx 16 16

Clear this bit to select the four-endpoint pair (4EPP) configuration, which
provides the following FIFO sizes (bytes).

EPINDEX FFSZ1:0 Transmit Receive

FIFO FIFO
Oxxx xx00 xx 16 16
Oxxx xx01 00 256 256
01 512 512
10 1024 0
11 0 1024
Oxxx xx10 xx 16 16
Oxxx xx11 XX 16 16

T 8x930Ax only. Early sample devices did not have this SFR.
T Select the endpoint configuration during initialization and do not change during program execution.

1T When using function endpoint 1 in the six-endpoint pair configuration, clear the FFSZ1:0 bits in
TXCON to select the 256-byte size for the transmit and receive FIFOs.

Figure 7-1. EPCONFIG: Endpoint Configuration Register

8x930Ax, 8x930Hx USER’S MANUAL InU ®

EPINDEX Address: S:F1H
Reset State: 1xxx x000B

Endpoint Index Register. This register identifies the endpoint pair. Its contents select the transmit and
receive FIFO pair and serve as an index to endpoint-specific SFRs.

7 0
8X930HxX ‘ ‘ ‘
8X930Ax
4 EPP
8X930Ax
6 EPP
Bit Bit .
Number | Mnemonic Function
7 HORF Hub/function Bit:
(8X930Hx) | 1 = Hub. Selects USB hub FIFOs and SFRs.
0 = Function. Selects USB function FIFOs and SFRs.
— Reserved:
(8X930Ax) Although the reset state for this bit is “1”, always write a zero to this bit for
8X930Ax applications.
6:3 — Reserved:
Write zeros to these bits.
2 —_ Reserved:
8X930Hx or | Write a zero to this bit. 8xX930Hx
8X930Ax
(4 EPP)
1:0 EPINX1:0 | Endpoint Index: .
8X930Hx | EPINDEXT EPINDEXT (8x930Hx only)
or 0Oxxx xx00 Function Endpoint 0 1xxx xx00 Hub Endpoint 0
8X930Ax | Oxxx xx01 Function Endpoint 1 1xxx xx01 Hub Endpoint 1
(4 EPP) Oxxx xx10 Function Endpoint 2
Oxxx xx11 Function Endpoint 3
2:0 EPINX2:0 | Endpoint Index:
8X930Ax | EPINDEXT
(6 EPP) 0xxx X000 Function Endpoint 0
Oxxx x001 Function Endpoint 1
0xxx X010 Function Endpoint 2
Oxxx X011 Function Endpoint 3
0xxx x100 Function Endpoint 4
Oxxx x101 Function Endpoint 5

T The EPINDEX register identifies the endpoint pair and selects the associated transmit and receive
FIFO pair. The value in this register plus SFR addresses select the associated bank of endpoint-
indexed SFRs (TXDAT, TXCON, TXFLG, TXCNTH/L, RXDAT, RXCON, RXFLG, RXCNTHIL,
EPCON, TXSTAT, and RXSTAT).

Figure 7-2. EPINDEX: Endpoint Index Register

intel.

USB FUNCTION

¥

EPCON

(Endpoint-indexed)

Address: S:E1H
Reset State: Endpoint 0 0011 0101B
Function Endpoints 1,2, 3 0001 0000B

Endpoint Control Register. This SFR configures the operation of the endpoint specified by EPINDEX.

7

0

RXSTL | TXSTL | CTLEP | RXSPM

| BXIE [RXEPEN [TXOE [TXEPEN

Bit
Number

Bit
Mnemonic

Function

7

RXSTL

Stall Receive Endpoint:

Set this bit to stall the receive endpoint. Clear this bit only when the host has
intervened through commands sent down endpoint 0. When this bit is set
and RXSETUP is clear, the receive endpoint will respond with a STALL
handshake to a valid OUT token. When this bit is set and RXSETUP is set,
the receive endpoint will NAK. This bit does not affect the reception of
SETUP tokens by a control endpoint.

TXSTL

Stall Transmit Endpoint:

Set this bit to stall the transmit endpoint. This bit should be cleared only
when the host has intervened through commands sent down endpoint 0.
When this bit is set and RXSETUP is clear, the receive endpoint will
respond with a STALL handshake to a valid IN token. When this bit is set
and RXSETUP is set, the receive endpoint will NAK

CTLEP

Control Endpoint:*
Set this bit to configure the endpoint as a control endpoint. Only control
endpoints are capable of receiving SETUP tokens.

RXSPM

Receive Single Packet Mode:*

Set this bit to configure the receive endpoint for single data packet operation.
When enabled, only a single data packet is allowed to reside in the receive
FIFO.

NOTE: For control endpoints (CTLEP=1), this bit should be set for single
packet mode operation as the recommended firmware model.
However, itis possible to have a control endpoint configured in dual
packet mode as long as the firmware handles the endpoint
correctly.

RXIE

Receive Input Enable:

Set this bit to enable data from the USB to be written into the receive FIFO.
If cleared, the endpoint will not write the received data into the receive FIFO
and at the end of reception, but will return a NAK handshake on a valid OUT
token if the RXSTL bit is not set.This bit does not affect a valid SETUP
token. A valid SETUP token and packet overrides this bit if it is cleared, and
place the receive data in the FIFO.

For hub endpoint 0 (EPINDEX = 1000 0000, 8x930Hx only), bits 5 and 4 are hard-wired to ‘1’ since hub
endpoint 0 is always a control endpoint.

Figure 7-3. EPCON: Endpoint Control Register

8x930Ax, 8x930Hx USER’S MANUAL ‘ |nte|®

EPCON (Continued)
(Endpoint-indexed)

Address: S:E1H
Reset State: Endpoint 0 0011 0101B
Function Endpoints 1,2, 3 0001 0000B

Endpoint Control Register. This SFR configures the' operation of the endpoint specified by EPINDEX.
, .

0

Bit
Number

Bit
Mnemonic

Function

RXEPEN

Receive Endpoint Enable:

Set this bit to enable the receive endpoint. When disabled, the endpoint
does not respond to a valid OUT or SETUP token. This bit is hardware read-
only and has the highest priority among RXIE and RXSTL. Note that
endpoint 0 is enabled for reception upon reset.

TXOE

Transmit Output Enable:

This bit is used to enable the data in TXDAT to be transmitted. If cleared, the
endpoint returns a NAK handshake to a valid IN token if the TXSTL bit is not
set.

TXEPEN

Transmit Endpoint Enable:

This bitis used to enable the transmit endpoint. When disabled, the endpoint
does not respond to a valid IN token. This bit is hardware read only. Note
that endpoint 0 is enabled for transmission upon reset.

T For hub endpoint 0 (EPINDEX = 1000 0000, 8x930Hx only), bits 5 and 4 are hard-wired to ‘1’ since hub
endpoint 0 is always a control endpoint.

Figure 7-3. EPCON: Endpoint Control Register (Continued)

intel.

USB FUNCTION

TXSTAT

7

(Endpoint-indexed)

Address: S:F2H
Reset State: 0000 0000B

Endpoint Transmit Status Register. Contains the current endpoint status of the transmit FIFO specified
by EPINDEX.

0

- TXSEQ

— | TXFLUSH | | TXSOVW | TXVOID | TXERR | TXACK

Bit
Number

Bit
Mnemonic

Function

7

TXSEQ

Transmitter’s Current Sequence Bit (read, conditional write): t

This bit will be transmitted in the next PID and toggled on a valid ACK
handshake. This bit is toggled by hardware on a valid SETUP token. This bit
can be written by firmware if the TXSOVW bit is set when written together
with the new TXSEQ value.

6:5

Reserved:
Write zeros to these bits.

TXFLUSH

Transmit FIFO Packet Flushed (read-only):

When set, this bit indicates that hardware flushed a stale ISO data packet
from the transmit FIFO due to a TXFIF1:0 = 11 at SOF. To guard against a
missed IN token in ISO mode, if, with TXFIF1:0 = 11, no IN token is received
for the current endpoint, hardware automatically flushes the oldest packet
and decrements the TXFIF1:0 value.

TXSOVW

Transmit Data Sequence Overwrite Bit: ¥

Write a ‘1’ to this bit to allow the value of the TXSEQ bit to be overwritten.
Writing a ‘0’ to this bit has no effect on TXSEQ. This bit always returns ‘0’
when read. t

TXVOID

Transmit Void (read-only): f

A void condition has occurred in response to a valid IN token. Transmit void
is closely associated with the NAK/STALL handshake returned by the
function after a valid<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>