0

A

o)

0

ol

v

m

0

- =

W

c

v

v,

>

=i

m

THE EMERGING WORLD STANDARD™

1995 1995 /1996
1996 Supplement
Mlgmn | MICROCHIP

@
MICROCHIP

Embedded Control Handbook
Update 1995 /1996

SERVING A CoMPLEX AND COMPETITIVE
WORLD WITH FIELD-PROGRAMMABLE
EMBEDDED CONTROL
SYSTEM SOLUTIONS

© 1995 Microchip Technology Inc. DS00134A

MICROCHIP

"All rights reserved. Copyright c©1995, Microchip Technology
Incorporated, USA. Information contained in this publication
regarding device applications and the like is intended through
suggestion only and may be superseded by updates. No
representation or warranty is given and no liability is assumed by
Microchip Technology Incorporated with respect to the accuracy
or use of such information, or infringement of patents arising from
such use or otherwise. Use of Microchip's products as critical
components in life support systems is not authorized except with
express written approval by Microchip. No licenses are conveyed,
implicitly or otherwise, under any intellectual property rights."

PIC is a registered trademark of Microchip Technology Inc. in the
US.A

The Microchip logo and name are registered trademarks of
Microchip Technology Inc.

PICMASTER, PICSTART, PRO MATE, PICSEE, TrueGauge
name and logo, fuzzlAB, Smart Serial, Total Endurance,
UniMouse, The Emerging World Standard, and The Embedded
Control Solutions Company are trademarks of Microchip
Technology Inc.

SQTP is a service mark of Microchip Technology Inc.

ACCESS.bus is a trademark of the ACCESS.bus Industry Group
(ABIG). fuzzyTECH is a registered trademark of Inform Software
Corporation. 12C is a trademark of Philips Corporation. IBM, IBM
PC-AT, IBM PC/XT, and PS/2 are registered trademarks of
International Business Machines Corp. Pentium is a trademark of
Intel Corporation. MS-DOS, Microsoft Windows and Visual Basic
are registered trademarks of Microsoft Corporation. Windows and
Excel are trademarks of Microsoft Corporation. CompuServe is a
registered trademark of CompuServe Incorporated. Apple and
Macintosh are registered trademarks of Apple Computer, Inc.
Apple Desktop Bus (ADB) is a trademark of Apple Computer Inc.
National Semiconductor is a registered trademark of National
Semiconductor. Microwire is a trademark of National
Semiconductor. Motorola is a registered trademark of Motorola,
Inc. VESA is a registered trademark of the Video Electronics
Standards Association. DDC is a trademark of VESA. Panasonic
is a registered trademark of Panasonic. Inform is a registered
trademark of Inform Software.

All other trademarks mentioned herein are property of their
respective companies.

DS00134A - page ii

© 1995 Microchip Technology Inc.

S

MicRoCHIP

MICROCHIP TECHNOLOGY INC. COMPANY PROFILE

PIC16/17 MICROCONTROLLER APPLICATION NOTES

APPLICATION SPECIFIC STANDARD PRODUCTS APPLICATION NOTES

SERIAL EEPROM APPLICATION NOTES

QUALITY AND RELIABILITY APPLICATION NOTES

DEVELOPMENT SYSTEMS AND SOFTWARE TOOLS

SALES AND SERVICE LOCATIONS

© 1995 Microchip Technology Inc. DS00134A-page iii

a

MicROCHIP

TO OUR VALUED CUSTOMERS:

Welcome to the 1995/1996 Embedded Control Handbook (ECHB) Update. The 1995/1996 ECHB Update is the first
in the series of supplemental publications from Microchip Technology Inc. It includes all new application notes which
have been written and published since the 1994/1995 Embedded Control Handbook (released in September 1994).

With the 1995/1996 update, Microchip is introducing a library system of ‘Volumes’ and ‘Updates’ to PIC16/17,
Non-Volatile Memory and other product application notes. Volume I will be published in the fall of 1996, replacing the
existing 1994/1995 ECHB. Thereafter, updates will be published annualy, providing an uninterrupted flow of current
application notes for our customers’ convenience and use. These updates, with revised and new application notes, will
be incorporated into future volumes as appropriate.

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of
your Microchip product. To this end, we will continue to improve our publications to better suit your needs. Our
publications will be refined and enhanced as new volumes and updates are introduced. We welcome your feedback.

If you have any questions or comments regarding this publication, please contact the Marketing Communications
Department at facsimile 602.917.4150.

DS00134A-page iv © 1995 Microchip Technology Inc.

MicrocHIP
Table of Contents
PAGE
SECTION 1 MICROCHIP TECHNOLOGY INC. COMPANY PROFILE
Company Profile ... 1-1
SECTION2 PIC16/17 MICROCONTROLLER APPLICATION NOTES
AN597 Implementing URrasonic RaNGINGcccooueiiieiieieere et e se e 21
AN600 Air Flow Control Using FUZZY LOGICcuiiiieetieiiee ettt 2-9
AN606 Low Power Design USING PICT6/17ocooiiieee ettt 2-31
AN607 Power-up Trouble SHOOING.coiiie it ettt e e r e 2-47
AN611 Resistance and Capacitance Meter Using a PICT16CB22cocoveieciiiiienieninieienenns 2-69
AN615 Clock Design Using Low Power/Cost TEChNIQUESccccooiiieriiciiniieciiectine et 2-103
AN616 Digital Signal Processing with the PICTECT74ccoooiiiiiiiiie e 2-121
AN617 Fixed POINt ROUTINES ...ttt ettt ettt b ae e saae s 2-155
SECTION 3 APPLICATION SPECIFIC STANDARD PRODUCTS
APPLICATION NOTES
AN599 Energy Management Control SYSOMccuu i e e 3-1
SECTION 4 SERIAL EEPROM APPLICATION NOTES
AN601 EEPROM Endurance TULOHALccori it s e
AN602 How to get 10 Million Cycles out of your Microchip Serial EEPROM
AN603 CoNtiNUOUS IMPIOVEIMENEo.eiiiiiiiiiiiitie ettt ettt e s eae et seeereneaeeeneens
ANG608 Converting to 24LCXXB and 93LCXX Serial EEPROMS............ccooeeviiviininnan,
AN609 Interfacing Microchip Serial EEPROMs to Motorola® 68HC11 Microcontroller
AN610 Using the 24L.C21 Dual Mode Serial EEPROMcociiiiiiiiiiieececceetcee e
AN613 Using Microchip 93 Series Serial EEPROMs with Microcontroller SPI Ports............c.cccccc.....
AN614 Interfacing the 8051 with 2-wire Serial EEPROMS............cccoiiiiiioriiiin e e
SECTION 5 QUALITY AND RELIABILITY APPLICATION NOTES
AN595 Improving the Susceptibility of an Application to ESD.............ccccoiiveieiiene e e 5-1
AN598 Plastic Packaging and the Effects of Surface Mount Soldering Techniques.............c.c..c...... 5-19

© 1995 Microchip Technology Inc. DS00134A-page v

MICROCHIP

Table of Contents (continued)

PAGE
SECTION 6 DEVELOPMENT SYSTEMS AND SOFTWARE TOOLS
DEVELOPMENT SYSTEMS:
System Support Development System Selection Chatrt................... . rereteee et eree e an 6-1
Microchip BBS Microchip Bulletin Board SerViCe.............ccoeverriiirieeienineienientesisesssseessassesessssesassessassesssssssens 6-3
Design Kit Microchip Serial EEPROM Designer's Kit............cccceeoenirueneiinnneireeseesescsseseseseseesesnesssesnas 6-5
PICMASTER™ Universal In-Circuit Emulator System with MPLAB IDE OO 6-7
PRO MATE™ Universal Device Programmercccccccevveerrerreeseeriveseseennens

PICSEE™ Tools PICSEE Product Development Tools
PICSTART™-16B1 PIC16CXX Low-Cost Microcontroller Development System
PICSTART-16C PIC16CXX Low-Cost Microcontroller Development System...

PICDEM-1 Low-Cost PIC16/17 Demonstration Boardcccoceveeeivnineeesiinieneine et see s seveseeenns
PICDEM-2 Low-Cost PIC16CXX Demonstration Board.................

SOFTWARE TOOLS:

fuzzyTECH®-MP Fuzzy Logic Development System for PICT6/17cccvcuevereennneecineieneeieseecenesene e seesaencenas
MPASM Universal PIC16/17 Microcontroller Assembler Software

MPSIM PIC16/17 Microcontroller SIMUIALOT................ceeoiiririiinecie e e
MP-C C COMPIIBT ..ot

Total Endurance™ Microchip Serial EEPROM Endurance Model..............c.ccueiiiinnniiicscncie e
TrueGauge™ Tools TrueGauge Intelligent Battery Management Development Tool...........ccccccecevenereecerierienennnns 6-43

SECTION 7 SALES AND SERVICE LOCATIONS

Factory REPresentativesccccoceecerenercinerneeete sttt e e saesese s s ae s s sae s 71
Distributors....... 77
FACONY SIScccueieiteeieeee sttt e st et e e ste st s e s e ste st e st e e as b seaeaa s e sannessnanenn 7-19

DS00134A-page vi © 1995 Microchip Technology Inc.

Cross Reference Guides

CROSS REFERENCE GUIDE TO UPDATE 1995/1996 APPLICATION NOTES - ALPHABETICAL

PAGE
Clock Design Using Low Power/Cost Techniques............ceccueveevciinnniniresereseeseneenes AN615 2-103
ContiNUOUS IMPIOVOMENLccoiiiiiiiir et sie ettt eesie e st sreesaben e ee et sasaneenee s ANGOS 4-27
Converting to 24L.CXXB and 93LCXX Serial EEPROMScccoooiiviinnnnniiiicinne AN608 4-7
Digital Signal Processing with the PIC16CT74..............ccccoeiiiiincennrece e ANG16 2-121
EEPROM Endurance TUtOHal...........cooeiciiiiiiieniecicicrcteeen et ANBO1 41
Energy Management Control SYStem...........c.cccooviviiiriinienin e s AN599 3-1
FiXed POINE ROULINGSccoviiriiiricictiirciiiee ettt an ANB17 2-155
Air Flow Control Using FUZZY LOGIC.........cccueutiiiiiriine et st sveseeene s ANGB0O 2-9
How to get 10 Million Cycles out of your Microchip Serial EEPROMc.cccoceeeene AN602 4-5
Implementing Ultrasonic RangiNg............c.ececieiirinieie ettt eeee e seeneen AN597 241
Improving the Susceptibility of an Application to ESDc.cccocviiiinviniiiniciieee ANB95 5-1
Interfacing Micrchip Serial EEPROMSs to Motorola® 68HC11 Micocontroller.............. ANB609 4-9
Interfacing the 8051 with 2-wire Serial EEPROMs.
Low Power Design USing PICT6/17c..ooiriiiiiiiieie ettt s
Plastic Packaging and the Effects of Surface Mount Soldering Techniques AN598 5-19
Power-up Trouble ShOOtING..........ccoiiiiiiie et ANBO7 2-47
Resistance and Capacitance Meter Using a PIC16C622.........c..cc.ccocevevererienneraennns ANB11.............. 2-69
Using Microchip 93 Series Serial EEPROMSs with Microcontroller SPI Ports............... AN613.............. 4-23
Using the 24L.C21 Dual Mode Serial EEPROM..........ccccoiiiniiiiiince s AN610.............. 4-17

CROSS REFERENCE GUIDE TO UPDATE 1995/1996 APPLICATION NOTES - NUMERICAL

PAGE
AN595 Improving the Susceptibility of an Application t0 ESD..........ccccccvvievriccrnciinceceen. 5-1
AN597 Implementing Ultrasonic RANGING..........ccocuveeiierniereei et 21
AN598 Plastic Packaging and the Effects of Surface Mount Soldering Techniques............ 5-19
AN599 Energy Management Control SYstem.........c...ccvvvveniinninnnnn s 3-1
AN600 Air Flow Control Using Fuzzy Logic
AN601 EEPROM Endurance TULOHaL..........cccccuvreririeenirineeiristseeesess s eesessenenens
AN602 How to get 10 Million Cycles out of your Microchip Serial EEPROMcc.cc...... 4-5
AN603 Continuous Improvement
AN606 Low Power Design UsiNg PICT6/17.........ccccverrnneniienecreinssieseseesessesesnssessessessensens 2-31
AN607 Power-up Trouble ShOOtINGcevveiriiinneeiencr et st e ssessesesnens 2-47
AN608 Converting to 24LCXXB and 93LCXX Serial EEPROMS..........cccccovinnnervinncnnennns 4-7
AN609 Interfacing Micrchip Serial EEPROMSs to Motorola® 68HC11 Micocontroller............ 4-9
AN610 Using the 24L.C21 Dual Mode Serial EEPROM............ccccocovinmicnnnineneneniieennas 4-17
AN611 Resistance and Capacitance Meter Using a PIC16C622.............cccceeveveriencrinennens 2-69
AN613 Using Microchip 93 Series Serial EEPROMSs with Microcontroller SPI Ports4-23
AN614 Interfacing the 8051 with 2-wire Serial EEPROMSc.ccoevvinininiieienene e s 4-37
AN615 Clock Design Using Low Power/Cost Techniques............cceeerrienieneneineeneenenens 2-103
AN616 Digital Signal Processing with the PIC16C74...........cccccvcenininerncenneeeseennenns 2-121

AN617 Fixed Point Routines

© 1995 Microchip Technology Inc. DS00134A-page vii

Cross Reference Guides

CROSS REFERENCE GUIDE TO UPDATE 1995/1996 APPLICATION NOTES - BY SUBJECT

Digital Signal Processing
EEPROM, 24 Series

EEPROM, 93 Series..

EEPROM, Endurance..

EEPROM, Interfacing

Energy Management

Fixed Point Routines
Fuzzy Logic

Improvement.............ccceuuenne
Low Power Design........c..cccccuruen.e.

PIC16C74 .. .
RO MBLOI ...ttt ettt e st et e
Surface Mount Soldering
Ultrasonic Ranging

DS00134A-page viii © 1995 Microchip Technology Inc.

Cross Reference Guides

ADDITIONAL APPLICATION NOTES AVAILABLE FROM MICROCHIP

The following is a list of application notes that are available in the Microchip Technology Inc 1994/1995 Embedded
Control Handbook. Please see your local Microchip Sales Representative, Distributor or Sales Office for the latest
copy (order number DS00092C).

AN510 Implementation of an Asynchronous Serial I/O

AN511 PLD Replacement

AN512 Implementing Ohmmeter/Temperature Sensor

AN513 Analog to Digital Conversion

AN514 Software Interrupt Techniques

AN515 Communicating with the 12C Bus Using the PIC16C5X

AN517 24C01A Compatibility Issues and Its Mobility for Memory Upgrade
AN519 Implementing a Simple Serial Mouse Controller

AN520 A Comparison of Low End 8-Bit Microcontrollers

AN521 Interfacing to AC Power Lines

AN522 Power-Up Considerations

AN526 PIC16C5X/16CXX Math Utility Routines

AN527 Software Stack Management

AN528 Implementing Wake-Up on Key Stroke

AN529 Multiplexing LED Drive and a 4x4 Keypad Sampling

AN530 Interfacing 93CX6 Serial EEPROMs to PIC16C5X Microcontrollers
AN531 Intelligent Remote Positioner (Motor Control)

AN532 Servo Control of a DC-Brush Motor

AN534 Saving and Restoring Status on Interrupt (Implementing a Parameter Stack)
AN535 Logic Powered Serial EEPROMs

AN536 Basic Serial EEPROM Operation

AN537 Everything a System Engineer Needs to Know About Serial EEPROM Endurance
AN538 Using PWM to Generate Analog Output

AN539 Frequency and Resolution Options for PWM Outputs

AN540 Implementing IIR Digital Filters

AN541 Using a PIC16C5X as a Smart [°C Peripheral

AN542 Implementation of Fast Fourier Transforms

AN543 Tone Generation

AN544 Math Utility Routines

AN545 Using the Capture Module

AN546 Using the Analog to Digital Converter

AN547 Serial Port Utilities

AN548 Implementing Table Read and Table Write

AN550 1.8 Volt Technology - Benefits

AN551 Serial EEPROM Solutions vs. Parallel Solutions

AN552 Implementing Wake Up on Keystroke

AN554 Software Implementation of I°C Bus Master

AN555 Software Implementation of Asynchronous Serial I/O

AN556 Implementing a Table Read

AN557 Four Channel Digital Volt Meter with Display and Keyboard

© 1995 Microchip Technology Inc. DS00134A-page ix

Cross Reference Guides

AN558 : Using the 24XX65 and 24XX32 with Stand Alone PIC16C54 Code
AN559 ~ Optimizing Serial Bus Operations with Proper Write Cycle Times
AN560 Using the 93LC56 and 93LC66

AN562 Using the Microchip Endurance Predictive Software

AN563 Using PIC16C5X Microcontrollers as LCD Drivers’

AN564 Using the PWM

AN566 Using the PortB Interrupt on Change as an External Interrupt
AN567 Interfacing the 24LCXXB Serial EEPROMSs to the PIC16C54
AN569 Hardware and Software Resolution For a Pointing Device
AN570 TrueGauge™ Calibrating the MTA11200 System

AN571 Communicating with EEPROM in MTA85XXX

AN572 Questions and Answers Concemning Serial EEPROMs

AN575 IEEE 754 Compliant Floating-Point Routines

AN576 Techniques to Disable Global Interrupts

AN577 PIC16C54A EMI Results

AN578 Use of the SSP Module in the I2C Multi-Master Envronment
AN579 Using the 8-Bit Parallel Slave Port

AN580 Using Timer1 in Asynchronous Clock Mode

AN581 Implementing Long Calls

AN582 Low Power Real-Time Clock

AN583 Implementation of the Data Encryption Standard Using PIC17C42
AN584 PICMASTER™ Support of Microsoft® Windows® DDE

AN585 A Real-Time Operating System for PIC16/17

AN586 Macros for Page and Bank Switching

AN587 Interfacing to an LCD Module

AN588 PIC16/17 Oscillator Design Guide

AN589 A PC-Based Development Programmer for the PIC16C84
AN590 A Clock Design Using the PIC16C54 for LED Displays and Switch Inputs
AN591 Apple® Desktop Bus (ADB™)

AN592 Frequency Counter Using PIC16C5X

AN593 Serial Port Routines Without Using the RTCC

AN594 Using the CCP Modules

DS00134A-page x © 1995 Microchip Technology Inc.

N

MICROCHIP

SECTION 1
MICROCHIP TECHNOLOGY INC.
COMPANY PROFILE

© 1995 Microchip Technology Inc. DS00134A-page 1-i

MICROCHIP

DS00134A-page 1-ii © 1995 Microchip Technology Inc.

MICROCHIP

Microchip Technology Inc.

Company Profile

INTRODUCTION TO THE EMBEDDED
CONTROL SOLUTIONS COMPANY ™

Microchip Technology's mission is to offer industry
leading semiconductor products for embedded control
system applications. To do this we have focused our
technology, engineering, manufacturing and marketing

resources on two synergistic product lines: 8-bit

PIC16/17 microcontrollers and Serial EEPROMS.
These product lines provide the solutions to many of
the problems facing designers of embedded control
systems.

We publish the Microchip Data Books and Embedded
Control Handbook to assist our customers, existing
and new, in their efforts to design and produce
state-of-the-art embedded control systems.

HIGHLIGHTS

Inside Microchip Technology you'll find:

¢ Afocus on providing high-performance,
cost-effective, field-programmable embedded
control solutions

* An experienced executive team focused on

innovation and committed to listening to our

customers

8-bit RISC field-programmable microcontrollers

and supporting logic products

Serial and Parallel EEPROMs and EPROMs

Chandler, Arizona:

Company headquarters near Phoenix, Arizona;
executive offices, R&D, and wafer fabrication occupy
this 242,000 square-foot multi-building facility.

* Avariety of end-user Application-Specific
Standard Products
Fully integrated manufacturing capabilities

A global network of manufacturing and customer
support facilities

A unique corporate culture dedicated to
continuous improvement

Distributor network support worldwide including
certified distribution FAEs

BUSINESS SCOPE

Microchip Technology Inc. manufactures and markets a
variety of VLS| CMOS semiconductor components to
support the market for cost-effective embedded control
solutions. In particular, the company specializes in
highly integrated, field-programmable RISC
microcontrollers, application-specific standard
products and related non-volatile memory products to
meet growing market requirements for high
performance, yet economical embedded control
capability in products. Microchip's products feature the
industry's most economical OTP (One-Time-Program-
mable) EPROM, reprogrammable EEPROM, and ROM
capability, along with the compact size, integrated
functionality, ease of development and technical
support so essential to timely and cost-effective
product development by our customers.

Tempe, Arizona:

Microchip’s 170,000 square-foot wafer fabrication
facility provides increased manufacturing capacity
today and for the future.

© 1995 Microchip Technology Inc.

DS00027L-page 1-1

Microchip Technology Inc.

Customers Are Our Focus: We establish
successful customer partnerships by exceeding
customer expectations for products, services and
attitude. We start by listening to our customers,
earning our credibility by producing quality products,
delivering comprehensive services and meeting
commitments. We believe each employee must
effectively serve their intemal customers in order for
Microchip’s external customers to be properly
served.

Quality Comes First: We will perform correctly the
first time, maintain customer satisfaction and
measure our quality against requirements. We
practice effective and standardized improvement
methods, such as statistical process control to
anticipate problems and implement root cause
solutions. We believe that when quality comes first,
reduced costs follow.

Continuous Improvement Is Essential: We utilize
the concept of “Vital Few” to establish our priorities.
We concentrate our resources on continuously
improving the Vital Few while empowering each
employee to make continuous improvements in their
area of responsibility. We strive for constructive and
honest self-criticism to identify improvement
opportunities.

Employees Are Our Greatest Strength: We
design jobs and provide opportunities promoting
employee teamwork, productivity, creativity, pride in
work, trust, integrity, faimess, involvement,
development and empowerment. We base
recognition, advancement and compensation on an
employee’s achievement of excellence in team and
individual performance. We provide for employee
health and welfare by offering competitive and
comprehensive employee benefits.

Products And Technology Are Our Foundation:
We make ongoing investments and advancements
in the design and development of our manufacturing
process, device, circuit, system and software
technologies to provide timely, innovative, reliable
and cost effective products to support current and
future market opportunities.

MICROCHIP
- Mission Statement -

Microchip Technology Incorporated is a leading supplier of field-programmable embedded control solutions by
providing RISC microcontrollers and related non-volatile memory products. In order to contribute to the ongoing
success of customers, shareholders and employees, our mission is to focus resources on high-value, high-quality
products and to continuously improve all aspects of our business, providing a competitive return on investment.

- Guiding Values -

Total Cycle Times Are Optimized: We focus
resources to optimize cycle times to our internal and
external customers by empowering employees to
achieve efficient cycle times in their area of
responsibility. We believe that cycle time reduction is
achieved by streamlining processes through the
systematic removal of barriers to productivity.

Safety Is Never Compromised: We place our
concem for safety of our employees and community at
the forefront of our decisions, policies and actions.
Each employee is responsible for safety.

Profits And Growth Provide For Everything We Do:
We strive to generate and maintain competitive rates of
company profits and growth as they allow continued
investment for the future, enhanced employee
opportunity and represent the overall success of
Microchip.

Communication Is Vital: We encourage appropriate,
honest, constructive, and ongoing communication in
company, customer and community relationships to
resolve issues, exchange information and share
knowledge.

Suppliers, Representatives, And Distributors Are
Our Partners: We strive to maintain professional and
mutually beneficial partnerships with suppliers,
representatives, and distributors who are an integral
link in the achievement of our mission and guiding
values.

Professional Ethics Are Practiced: We manage our
business and treat customers, - employees,
shareholders, investors, suppliers, distributors,
representatives, community and government in a-
manner that exemplifies our- honesty, ethics and
integrity. We recognize our responsibility to the
community and are proud to. serve as an equal
opportunity employer. | :

DS00027L-page - 1-2

© 1995 Microchip Technology Inc.

Microchip Technology Inc.

MARKET FOCUS

Microchip targets selected markets where our
advanced designs, progressive process technology,
and industry-leading product performance enable us to
deliver decidedly superior performance. The company
has positioned itself to maintain a dominant role as a
supplier of high-performance, field-programmable
microcontrollers and associated memory and logic
products for embedded control applications which are
found throughout the consumer, automotive,
telecommunication, office automation and industrial
control markets.

FULLY INTEGRATED
MANUFACTURING

Microchip delivers fast tumaround and consistent
quality through total control over all phases of
production. Research and development, design, mask
making, wafer fabrication, and the major part of
assembly and quality assurance testing are conducted
at facilities wholly-owned and operated by Microchip.
Our integrated approach to manufacturing along with
rigorous use of advanced Statistical Process Control
(SPC) and a continuous improvement culture has
resulted in high and consistent yields which have
positioned Microchip as a quality leader in its global
markets. Microchip’s unique approach to SPC provides
customers with excellent costs, quality, reliability and
on-time delivery.

A GLOBAL NETWORK OF PLANTS
AND FACILITIES

Microchip is a global competitor providing local service
to the world’s technology centers. The Company’s
design and technology advancement facility is located
in Chandler, Arizona. Product and technology
development is located here, along with front-end
wafer fabrication and wafer probe and sort.

In 1994, Microchip purchased a second wafer
fabrication facility in Tempe, Arizona — thirteen miles
from its Chandler, Arizona, headquarters. The
additional 170,000 square foot facility meets the
increased production requirements of a growing
customer base, and provides production capacity
which more than doubles that of Chandler. Assembly
and test facilities, predominantly located in the Philip-
pine Islands, Kaohsiung, Taiwan, and Bangkok, Thai-
land, house the technology and assembly and test
equipment necessary for modern plastic and ceramic
packaging.

Sales and application offices are located in key cities
throughout the Americas, Asia/Pacific, Japan and
Europe. Offices are staffed to meet the high quality
expectations of our customers, and can be accessed
for technical and business support.

EMBEDDED CONTROL OVERVIEW

Unlike “processor’ applications such as personal
computers and workstations, the computing or
controlling elements of embedded control applications
are buried inside the application. The user of the
product is only concemed with the very top-level user
interface (such as keypads, displays and high-level
commands). Very rarely does an end-user know (or
care to know) the embedded controller inside (unlike
the conscientious PC users, who are intimately familiar
not only with the processor type, but also its clock
speed, DMA capabilities and so on).

It is, however, most vital for designers of embedded
control products to select the most suitable controller
and companion devices. Embedded control products
are found in all market segments: consumer,
commercial, PC peripherals, telecommunications
(including fast-emerging personal telecommunication
products), automotive and industrial. Most often
embedded control products must meet special
requirements: cost-effectiveness, low power, small
footprint, and a high level of system integration.

Typically, most embedded control systems are
designed around a microcontroller which integrates
on-chip program memoty, data memory (RAM) and
various peripheral functions, such as timers and serial
communication. In addition, these systems also
usually require complementary Serial EEPROM
memories, display drivers, keypads or small displays.

Microchip Technology has established itself as a
leading supplier of field-programmable embedded
control solutions. The combination of
high-performance microcontrollers from the
PIC17CXX, PIC16CXX and PIC16C5X families, along
with industry leading non-volatile memory products,
provide the basis for this leadership.

Microchip is committed to continuous innovation and
improvement in design, manufacturing and technical
support to provide the best possible embedded control
solutions to you.

© 1995 Microchip Technology Inc.

DS00027L-page 1-3

Microchip Technology Inc.

MICROCONTROLLERS

PIC16/17 microcontrollers from Microchip combine
high performance, low cost, and small package size,
offering the best price/performance ratio in the industry.
More than 200 million of these devices have been used
in cost-sensitive consumer products, computer
peripherals, office automation, automotive control
systems, security and telecommunication applications.

PIC16/17 MICROCONTROLLER
OVERVIEW AND ROADMAP

Microchip offers three families of 8-bit microcontrollers
to best fit your needs:

e PIC16C5X: Base-Line 8-bit Family
e PIC16CXX: Mid-Range 8-bit Family
e PIC17CXX: High-End 8-bit Family

All families offer One-Time-Programmable, low-voltage
and low-power options, as well as various packaging
options. Selected members are available in ROM and
reprogrammable versions.

The widely-accepted PIC16C5X, PIC16CXX and
PIC17CXX families are the industry’s only 8-bit
microcontrollers using a high-speed RISC architecture.
Microchip pioneered the use of RISC architecture to
obtain high speed and instruction efficiency.

PIC16C5X: BASE-LINE FAMILY

PIC16C5X is the well established base-line family
offering the most cost-effective solution. These
PIC16C5X products have a 12-bit wide instruction set
and are currently offered in 18-, 20- or 28-pin
packages. In the SOIC and SSOP packaging options,
these are the smallest footprint controllers.
Low-voltage operation down to 2.0V makes this family
ideal for battery operated applications.

PIC16CXX: MID-RANGE FAMILY

PIC16CXX mid-range family offers a wide-range of
options, from 18-pin to 44-pin packages as well as low
to high levels of peripheral integration. This family has
a 14-bit wide instruction set, interrupt handling
capability and a deeper 8-level hardware stack. The
PIC16CXX family provides the performance and
versatility to meet the requirements of more
demanding, yet cost-sensitive, mid-range 8-bit
applications.

The PIC16CXX mid-range family is rapidly gaining
acceptance with several of its members introduced:
PIC16C620, PIC16C621, PIC16C622, PIC16C61,
PIC16C62, PIC16C63, PIC16C64, PIC16C65,
PIC16C71, PIC16C73, PIC16C74 and PIC16C84.

PIC17CXX: HIGH-END FAMILY

The PIC17CXX high-end family offers the world’s
fastest execution performance of any 8-bit
microcontroller family in the industry. The PIC17CXX
family extends the PIC16/17 microcontroller’s
high-performance RISC architecture with a 16-bit
instruction word, enhanced instruction set and powerful
vectored interrupt handling capabilities. A powerful
array of precise on-chip peripheral features provide the
performance for the most demanding 8-bit
applications.

All three members of the PIC17CXX family have been
announced and are available in production.

Current PIC16/17 microcontrolier product families
include advanced features such as sophisticated
timers, embedded Analog-to-Digital converters,
extended instruction/data memory, inter-processor
communication (I2C™ bus, SPI and USARTs) and
ROM, RAM, EPROM and EEPROM memories.

All three families; PIC16C5X, PIC16CXX and
PIC17CXX, are supported by user-friendly
development systems including; assembler, software
simulator, C Compiler, fuzzy logic development
software, programmers and in-circuit emulators.

ROM EPROM EEPROM

PIC17CXX

Mid-Range
14-Bit

PIC16CXX -
Instructions
Base-Line
12-Bit

PIC16C5X ;
3 Instructions

Performance

Onboard Memory Technology —————

CMOS PIC16/17
Microcontroller Families

*In development

DS00027L-page 1-4

© 1995 Microchip Technology Inc.

Microchip Technology Inc.

FIGURE 1:

PIC16/17 MICROCONTROLLER MIGRATION PATH

A

Price

16C62

- In Production
© In Development

Performance
-
FIGURE 2: PIC16/17 SYNERGISTIC DEVELOPMENT TOOLS
Development Tool Name PIC16C5X PIC16CXX PIC17CXX

Assembler MPASM v v v
Software Simulator MPSIM v v v

C Compiler* MP-C v v v
Entry Level Development Kit PICSTART" v v Planned
Universal Programmer PRO MATE™ v v v
Universal In-Circuit Emulator PICMASTER™ v v v
Fuzzy Logic Development Tool fuzzy TECH®-MP v v v

* Available from Byte Craft Limited in Canada and supported by Microchip.

© 1995 Microchip Technology Inc.

DS00027L-page 1-5

Microchip Technology Inc.

PIC16/17 NAMING CONVENTION

The PIC16/17 architecture offers users a wider range
of cost/performance options of any 8-bit microcontroller
family. In order to identify the families, the following
naming conventions have been applied to the PIC16/17
microcontrollers. .

TABLE 1: PIC16/17 NAMING CONVENTION
Family Architectural Features Name Technology Products
Base-Line 8-bit |* 12-bit wide instruction set PIC16C5X OTP program memory, | PIC16C54
Microcontroller |« DC - 20 MHz clock speed PKZIL‘ZCS:()A digital only PIC16C54A
Family « 200 ns instructi | te PIC16C55
< ns instruction cycle PIC16056
8 PIC16C57
8 PIC16C58A
[PIC16CR5X | ROM program memory, | PIC16CR54
PIC16CR5XA digital only PIC16C54A
(Note 1) PIC16CR57A
PIC16CR58A
Mid-Range 8-bit | ¢ 14-bit wide instruction set PIC16C6X OTP program memory, | PIC16C61
Microcontroller |e Intemal/external interrupts digital - PIC16C62
Family |4 pc . 20 MHz clock speed PIC16C63
(Note 3) PIC16C64
. . PIC16C65
e 200 ns instruction cycle
(@ 20 MHz) PIC16CR6X | ROM program memory,
digital only
o] PIC16C62X | OTP program memory | PIC16C620
Q with comparators PIC16C621
o PIC16C622
e PIC16C7X | OTP program memory, | PIC16C71
with analog functions PIC16C73
(i.e., A/D) PIC16C74
PIC16C8X EEPROM program and | PIC16C84
data memory
PIC16CR8X ROM program and
EEPROM data memory
High-End 8-bit |* 16-bit wide instruction set PIC17C4X OTP program memory, | PIC17C42
g Microcontroller |e Intemal/external intermpts dlgltal only PIC17C43
= Family |, pc . 25 MHz clock speed PIC17C44
2 * 160 ns instruction cycle PIC17CR4X | ROM program memory,
digital only
Note 1: "A" designates a more advanced process technology, generally offering customers the benefits of lower
power, higher speed, etc. (example: PIC16C54, PIC16C54A). Sometimes it designates additional func-
tions such as the addition of Brown-out Detect.
Note 2: The numbering system within each family is not necessarily significant.
Note 3: The maximum clock speed for some devices is less than 20 MHz.

Please check with your local Microchip distributor, sales representative or sales office for the latest product information.

DS00027L-page 1-6

© 1995 Microchip Technology Inc.

Microchip Technology Inc.

FIGURE 3: PIC16/17 8-BIT MICROCONTROLLER FAMILY

PIC17C4X:
OTP Program Memory

PIC16C8X:
EEPROM Program and Data Memory

PIC16C7X:
OTP Program Memory with Analog

PIC16C62X:

OTP Program Memory with Comparators

PIC16C6X OR PIC16CR6X:
OTP or ROM Program Memory

PIC16C5X/5XA:
OTP Program Memory

PIC16CR5X/5XA:
ROM Program Memory

© 1995 Microchip Technology Inc. DS00027L-page 1-7

Microchip Technology Inc.

THE ADVANTAGE OF FIELD
PROGRAMMABILITY

The PIC16/17 microcontroller family provides a unique
combination of a high-performance RISC processor
with cost-effective One-Time-Programmable (OTP)
technology. Cost-effective OTP provides many benefits
to the user at prices which can be comparable to
competing ROM solutions. The benefits include:
1) quick time-to-market, 2) ease of code changes,
3) ability to provide adaptable solutions to
end-customer requirements, 4) ability to meet upside
potential via inventory positions at Microchip or
worldwide distribution, 5) reduced scrappage in
manufacturing, 6) reduced inventory in manufacturing,
and 7) reduced work-in-process liability.

For most manufacturers, getting the product to market
quickly has become the number one goal as global
markets have become more competitive.
Time-to-market puts pressure on all functions within
the manufacturing process: development, purchasing,
production, marketing and sales. Field-programmable
OTP technology streamlines the process for all stages
in the product life cycle.

In the early product development stages, a
programmable microcontroller allows much of the
functionality to be implemented in software which can
be modified more easily than hardware-only solutions.

In the manufacturing stage, the compression of the
product life cycle curve puts pressure on the
management of inventory and manufacturing cycle
times. Minimizing inventory reduces the ability to meet
upside demand. Using a traditional ROM-based
microcontroller limits the ability to respond to the market
with product enhancements or semi-customized
products for specific customers. Using the standard
OTP-based PIC16/17 microcontroller solves all these
issues. Inventory can be managed effectively by using
the same device in several systems. Costs can be
reduced due to volume purchasing. Upsides can be met
from either safety stock, directly from Microchip, or local
distributors who regularly inventory all PIC16/17
microcontroller devices. A sudden decline in demand
means no work-in-process ROM-based inventory and
any excess safety stock can be consumed by the other
products using the same standard device.

OTP is the ‘Flexible Manufacturing’ technology of the
microcontroller world. As competition intensifies, the
demand for customer-specific products increases.
Having the ability to change (for example, the
appearance of LCD displays or add extra features in a
timely manner) can be a key competitive advantage.
Programming the OTP device on the manufacturing
floor allows easy customizing and internal tracking of
the devices for each specific customer. Customization
can significantly increase the overall product life cycle
to provide better return on investment and help
minimize the threat of competition.

DEVELOPMENT SYSTEMS

Microchip is committed to providing useful and
innovative solutions to your embedded system
designs. Among support products offered are the
PICMASTER™ Real-Time Universal In-circuit Emulator
running under the Windows® environment.
PICMASTER is designed to provide product
development engineers with an optimized design tool
for deveioping iarget appiications. This universai
in-circuit emulator provides a complete microcontroller
design tool set for all microcontrollers in the PIC16C5X,
PIC16CXX and PIC17CXX families. PRO MATE™, the
full-featured device programmer, enables you to
quickly and easily program user software into
PIC16C5X, PIC16CXX and PIC17CXX CMOS
microcontrollers. The PRO MATE operates as a
stand-alone unit or in conjunction with a PC compatible
host system. The PICSTART™ development kit, a
low-cost development system for the
PIC16C5X/16CXX families of microcontrollers,
includes an assembler for code development, a
simulator for debug, and a development programmer
board. PICSEEKIT and PICSEESTART provide
product development engineers with a cost-effective
and timely design tool solution for the MTA8XXXX
family of ASSP products.

The Serial EEPROM Designer’'s Kit includes
everything necessary to read, write, erase, or program
special features of any Microchip Serial EEPROM
product including Smart Serials™ and secure serials.
The Total Endurance™ Disk is included to aid in
trade-off analysis and reliability calculations. The total
kit can significantly reduce time-to-market and result in
an optimized system.

The TrueGauge™ development tool supports system
development with the MTA11200 TrueGauge Intelligent
Battery Management IC.

DS00027L-page 1-8

© 1995 Microchip Technology Inc.

Microchip Technology Inc.

SOFTWARE SUPPORT

Microchip’s PIC16/17 microcontroller families are
supported by an assembler, compiler, software
simulator and fuzzy logic development software.
MPASM is a universal macro assembler supporting
Microchip’s entire product line of microcontrollers.
MPSIM, a discrete event software simulator, is
designed to imitate operation of PIC16C5X, PIC16CXX
and PIC17CXX microcontrollers. It allows the user to
debug software that will use any of these
mmicrocontrollers.

A full-featured C-Compiler and Fuzzy Logic tools are
also available for all three microcontroller families.

Microchip endeavors at all times to provide the best
service and responsiveness possible to its customers.
The Microchip Systems Bulletin Board Service (BBS) is
one service to facilitate this service. It's a multi-faceted
tool that can provide you with information on a number
of different topics.

The Microchip Internet Home Page can provide you
with technical information, application notes and
promotional news on Microchip products and
technology. The Microchip Web address is
http://www.mchip.com/biz/mchip.

Special Interest Groups available through the BBS can
provide you with the opportunity to discuss issues and
topics of interest with others that share your interest or
questions. The BBS is regularly used to distribute
technical information, application notes, source code,
errata sheets, bug reports, interim patches for
Microchip systems products, and user contributed files
for distribution. Please see Microchip BBS connection
information (Section 6, Page 6-3).

APPLICATION-SPECIFIC STANDARD
PRODUCTS (ASSPs)

Microchip’s Application-Specific Standard Products
(ASSP) provide value-added embedded control
solutions by combining PIC16/17 microcontroller
architecture, non-volatile memory, and innovative
software technology for vertical applications. These
products incorporate technology that offers a complete
solution that is both unique to the customer and
standard in manufacture to Microchip. In addition,
Microchip ASSPs reduce or remove the barriers for
customers to use Microchip solutions, in their products,
through the use of software, embedded in secure OTP-
or ROM-based microcontrollers. These microcontrollers
are packaged to provide the highest integration, to the
customer, at the best overall system cost.

The MTA11200 family is the most accurate and most
integrated battery management and charging solution
available today. The TrueGauge family incorporates
Microchip/SPAN patented technology which digitally
integrates battery charge and discharge current to
provide an accurate (>97% typical) state of
chargeindication. The family operates with NiCd and

NiMH and lead acid battery packs from 3 VDC to
25 VDC. These products are ideal for portable PC,
cellular phone, and portable consumer product
applications.

The MTA14000 programmable Intelligent Battery
Management IC allows engineers to design intelligent
controllers for smart batteries, battery chargers, battery
status monitoring, uninterruptible power supplies,
HVAC, and other data acquisition and processing
required for managing energy. The MTA14000’s
programmable 4K words of program memory and 192
bytes of RAM allows it to support any battery technology
including Li lon, NiMH, NiCd, Pb acid, Zinc Air. In
addition, the product's IC™ port enables any system
OEM, battery pack VAR, and battery manufacturer to
design, build, and market SBD-compliant products
supporting the System Management Bus standard.

The MTE1122 Energy Management Controller
combines Microchip’s proprietary PIC16/17 8-bit RISC
microcontroller technology with a unique, patent
pending power management firmware algorithm in a
single package. This device, by monitoring and
controlling the supply requirements into an AC
induction motor, effectively reduces the power
consumed by the motor. The MTE1122 is available in
both plastic DIP and space-saving SOIC packages,
and operates over commercial and industrial ranges.

Ease-of-use, low voltage, and low cost make the
MTA41XXX mouse and trackball MCU firmware solutions
ideal for implementing new designs for both PCs and
Apple® computers. The products in the MTA41XXX
family are 18-lead, low-power, CMOS microcontroller ICs
combined with application-specific software. By adding a
few extemal components, the user can easily realize a
complete mouse or trackball system.

The MTABXXXX PICSEE™ family of cost-effective
system solutions integrates PIC16/17 microcontrollers
with EEPROM technology. These PICSEE devices are
ideally suited for automotive security, keyless entry,
remote control, telecommunication applications and
data acquisition. The combined product assembly
techniques provide the user the highest performance
solution in a compact and cost-effective package.

Future ASSP products will include advanced features
such as mixed analog and digital capability as well as
an ever broadening family of turnkey software solutions
for the embedded control market.

© 1995 Microchip Technology Inc.

DS00027L-page 1-9

Microchip Technology Inc.

SERIAL EEPROM OVERVIEW

Microchip offers one of the broadest selections of
CMOS Serial EEPROMSs on the market for embedded
control systems. Serial EEPROMs are available in a
variety of densities, operating voltages, bus interface
protocols, operating temperature ranges and space
saving packages.

Densities:

Currently range from 1K to 64K with higher density
devices in development.

Bus Interface Protocols:

All major protocols are covered: 2-wire, 3-wire and
4-wire.

Operating Voltages:

In addition to standard 5V devices there are two low
voltage families. The “LC” devices operate down to
2.5V, while the breakthrough “AA” family operates, in
both read and write mode, down to 1.8V, making these
devices highly suitable for alkaline and NiCd battery
powered applications.

Temperature Ranges:

Like all Microchip devices, Serial EEPROMs are
offered in Commercial (0°C to 70°C), Industrial (-40°C
to 85°C) and Automotive (-40°C to 125°C) operating
temperature ranges.

Packages:

The focus is on small packages. Small footprint pack-
ages include: 8-lead DIP, 8-lead SOIC in JEDEC and
EIAJ body widths, and 14-lead SOIC. The SOIC comes
in two body widths; 150 mil and 207 mil.

Technology Leadership:

Microchip’s Serial EEPROMs are backed by a 10 million
Erase/Write cycle guarantee — an endurance break-
through unmatched by its competitors. Microchip's
erase/write cycle endurance is among the best in the
world, and only Microchip offers such unique and
powerful development tools as the Total Endurance disk.
This mathematical software model is an innovative tool
used by system designers to optimize Serial EEPROM
performance and reliability within the application.

The Company has also developed the world’s first 64K
Smart Serial EEPROM which provides four times the
speed, four times the memory, and four times the
features of any competitive 2-wire Serial EEPROM.
Device densities range from 256 bits up to 64K bits.
Another first is the 24LC21, the only single chip
DDC1/DDC2™-compatible solution for plug-and-play
video monitors.

Microchip is a high-volume supplier of Serial EEPROMs
to all the major markets worldwide including consumer,
automotive, industrial, computer, and communications.
To date, more than 300 million units have been
produced. Microchip continues to develop new Serial
EEPROM solutions for embedded control applications.

DS00027L-page 1-10

© 1995 Microchip Technology Inc.

Microchip Technology Inc.

PARALLEL EEPROM OVERVIEW

CMOS Parallel EEPROM devices from Microchip are
available in 4K, 16K and 64K densities. The
manufacturing process used for these EEPROMs
ensures 10,000 to 100,000 write and erase cycles
typical. Data retention is more than 10 years. Fast write
times are less than 200 ps. These EEPROMs work
reliably under demanding conditions and operate
efficiently at temperatures from —40°C to +85°C.
Microchip’s expertise in advanced SOIC, TSOP and
VSOP surface mount packaging supports our
customers’ needs in space-sensitive applications.

Typical applications include computer peripherals, engine
control, telecommunications and pattern recognition.

OTP EPROM OVERVIEW

Microchip’s CMOS EPROM devices are produced in
densities from 64K to 512K. High-speed EPROMs have
access times as low as 55 ns. Typical applications
include computer peripherals, instrumentation, and
automotive devices. Microchip’s expertise in surface
mount Packaging on SOIC, TSOP and VSOP
packages led to the development of the Surface Mount
one-time-programmable (OTP) EPROM market where
Microchip is a leading supplier today. Microchip is also
a ieading supplier of iow-voltage EPROMs for battery
powered applications.

© 1995 Microchip Technology Inc.

DS00027L-page 1-11

Microchip Technology Inc.

EASE OF PRODUCTION UTILIZING
QUICK TURN PROGRAMMING (QTP)
AND SERIALIZED QUICK TURN
PROGRAMMING (SQTPsM)

Recognizing the needs of high-volume manufacturing
operations, Microchip has developed two programming
methodologies which make the OTP products as easy
to use in manufaciuring as they are efficient in the
system development stage.

Quick Turm Programming allows factory programming
of OTP products prior to delivery to the system
manufacturing operation. PIC16/17, EPROM and
Serial EEPROM products can be automatically
programmed, with the users program, during the final
stages of the test operation at Microchip’s assembly
and test operations in the Philippine Islands, Taiwan
and Thailand. This low-cost programming step allows
the elimination of programming during system
manufacturing and essentially allows the user to treat
the PIC16/17 and memory products as custom ROM
products. With one- to four-week lead times on QTP
products, the user no longer needs to plan for the
extended ROM masking lead times and masking
charges associated with custom ROM products. This
capability, combined with the off-the-shelf availability of
standard OTP product, ensures the user of product
availability and the ability to reduce his time-to-market
once product development has been completed.

Unique in the 8-bit microcontroller market is Microchip’s
ability to enhance the QTP capability with Serialized
Quick Turn Programming (SQTP). SQTP allows for the
programming of devices with unique, random or
serialized identification codes. As each PIC16/17
device is programmed with the customers program
code, a portion of the program memory space can be
programmed with a unique id, accessible from normal
program memory, which will allow the user to provide
each device with a unique identification. This capability
is ideal for embedded systems applications where the
transmission of key codes or identification of the device
as a node within a network is essential. Taking
advantage of this capability allows the system designer
to eliminate the requirement for expensive off-chip
code implementation using DIP switches or
non-volatile memory components. The SQTP offering,
pioneered by Microchip, provides the embedded
systems designer with a low cost means of putting a
unique and custom device into every system or node.

FUTURE PRODUCTS AND
TECHNOLOGY

New process technology is constantly being developed
for microcontroller, ASSP, EEPRO, and high-speed
EPROM products. Advanced process technology
modules and products are being developed that will be
integrated into present product lines to continue to
achieve a range of compatible processes. Current
production technology utilizes lithography dimensions
down to 0.9 microns. Products using 0.7 microns
technology are in development.

Microchip’s research and development activities
include exploring new process technologies and
products that have industry leadership potential.
Particular emphasis is placed on products that can be
put to work in high-performance broad-based markets.

Equipment is continually updated to bring the most
sophisticated process, CAD and testing tools online.
Cycle times for new technology development are
continuously reduced by using in-house mask
generation, a high-speed pilot line within the
manufacturing facility and continuously improving
methodologies.

More advanced technologies are under development,
as well as advanced CMOS RISC-based
microcontroller, ASSP, and CMOS EEPROM and
EPROM products. Objective specifications for new
products are developed by listening to our customers
and by close co-operation with our many
customer-partners worldwide.

DS00027L-page 1-12

© 1995 Microchip Technology Inc.

MICROCHIP

SECTION 2
PIC16/17 MICROCONTROLLER
APPLICATION NOTES

AN597
ANG600
AN606
AN607
AN611
AN615
AN616
AN617

Implementing URrasonic RANGINGcccteirieirieriinene st ceeeer ettt eseneeeessesseeseeneesee et e saeesenas 2-1
Air Flow Control Using FUZZY LOGICc.ereeuruirieiirieiieecinc e ceeeten e e encseaseses e e eeemeen e eneenens 2-9
Low Power Design USING PICT6/17c.ccceiiiiireiineeeeintceese e e cenaessaessessae s sese s aontesneseneneens 2-31
Power-up Trouble Shooting .
Resistance and Capacitance Meter Using a PIC16CB22..............ccccinirmirrnneneenccnnee e eeenas 2-69
Clock Design Using Low Power/Cost TeChniQUes..........c.cccereeverrerieieereneeeneeceniesesee e senneenenes 2-103
Digital Signal Processing with the PICTBCT74...........coooiiierireeieceeeeers et cee e eneenee 2-121
Fixed Point Routines .
ApPPendix Az AlGOTtIMS ...ttt r e e s e e r e e seaseane 2-161
AppendiX B: FIOWChAMSc..occiiieiieeieectcrcteee ettt ettt e ere e ese e e re s e e esea s ee s snaeaeanen 2-162
Appendix C: Multiply Routines for the PICT6C5X/PICTECXX.......cccvrrirreierceeereieeiersenieanns 2-164
Appendix D: PIC16C5X/PIC16CXX Divide Routines. .
Appendix E: PIC17CXX Multiply ROULINGScccevuriiireeeieeeiriietee e e e

Appendix F: PIC17CXX Divide ROULINGSc..cceiuiirieeeineiieeireie et eereeres e se e seeaeas

© 1995 Microchip Technology Inc. DS00134A-page 2-i

MICROCHIP

DS00134A-page 2-ii © 1995 Microchip Technology Inc.

MIcCROCHIP

AN597

Implementing Ultrasonic Ranging

Author: Robert Schreiber
Logic Products Divisicr:

INTRODUCTION

Object ranging is essential in many types of systems.
One of the most popular ranging techniques is
ultrasonic ranging. Ultrasonic ranging is used in a wide
variety of applications including:

e Auto focus cameras

¢ Motion detection

* Robotics guidance

* Proximity sensing

¢ Object ranging

This application note describes a method of interfacing
PIC16CXX microcontrollers to the Polaroid 6500
Ranging Module. This implementation uses a
minimum of microcontroller resources, a CCP module
and two I/O pins. The two major components of the
system are:

¢ Microcontroller

¢ Polaroid 6500 Ranging Module

The microcontroller performs the intelligence and
arithmetic functions for ultrasonic ranging, while the

Polaroid 6500 Ranging Module performs the ultrasonic
signal transmissions and echo detection.

FIGURE 1: RANGING MODULE INTERFACE

THEORY OF OPERATION

Ultrasonic ranging entails transmitting a sound wave
and measuring the time that it takes for the sound wave
to reflect off of an object and back to the origin. The
reflection time is proportional to the distance that the
object is from the source. In this implementation, the
sound wave is transmitted and received from the same
transducer. Therefore, a blanking interval is required
between signal transmission and reception to eliminate
false echoes (i.e., a transmitted signal being detected
as its own echo).

CIRCUIT CONFIGURATION

In this implementation, a PIC16C74 is connected to the
ranging module as shown in Figure 1. The REO and
RE1 I/O pins are configured as digital outputs and are
tied to INIT and BINH, respectively. The CCP1 pin is
configured as a digital input and is tied to ECHO
through a pull-up resistor. The pull-up resistor is
needed since the ECHO signal is an open-collector
output. The CCP1 pin is configured for capture mode
(CCP1CON). Figure 2 shows the timing relationship for
VDD and the three signal lines (INIT, BINH, and ECHO)

RE1 | (BINH TRANSMIT | <a——p
REC| g |INIT
CCP1 |g—————{ECHO TRANSDUCER
» POLAROID 6500 RANGING MODULE

PIC16C74

© 1995 Microchip Technology Inc.

DS00597A-page 2-1

ANb597

FIGURE 2: TIMING DIAGRAM OF RANGING MODULE CONTROL LINES

Vob _l :

Tl p— s —PE——5—»

> L2
BINH . I___l ,
34*3—+: P p— B
ECHO : j ' |
Parameter . . .
Number Symbol Characteristic l Min ’ Typ I Max Units
1 Tpu Ranging Module Stabilization Time 5.0 - - ms
2 TBINH Blank Inhibit Time 0.9 2.38 - ms
3 TECHO Echo Time - - - -
4 TINIT_H High Time for INIT 100 - - ms
5 TINIT_L L.ow Time for INIT 100 - - ms

The PIC16C74 is configured to use one of its intemal
timers, Timer1, in capture mode to measure the time
between signal transmission and echo detection. The
resolution of the timer is determined by the
microcontroller clock frequency. For this application, a
4 MHz external oscillator was used, giving a resolution
of 1 ms per bit. The PIC16C74 initiates a ranging cycle
by first clearing Timer1. Timer1 is then enabled and
INIT is immediately asserted on the ranging module.
When INIT is asserted, the ranging module transmits a
series of 16 puises on the transducer at 49.4 kHz. The
transmitted pulses reflect off the object and are
received back at the transducer.

The transducer is used for both transmitting and
receiving sound waves. A blanking interval is needed to
ensure that the transmitted signal has decayed on the
transducer, in order not to receive false echoes. In
normal operation, the ranging module has a blanking
interval of 2.38 milliseconds, which corresponds to a
minimum detection distance of approximately
17 inches. However, the BINH (blank inhibit) signal can
be manipulated to reduce the blanking time on the
transducer to allow for object ranging as close as
6 inches.

In this implementation, the PIC16C74 asserts the BINH
signal approximately 0.9 milliseconds after signal
transmission. This enables the transducer to receive
reflections off objects at a distance of 6 inches. The
ranging module asserts the ECHO signal when a valid
reflection has been detected. The PIC16C74 uses the
ECHO signal to trigger a capture of the Timer1 value.
The capture register contains the 16-bit value

representing the elapsed time between signal
transmission and echo detection. The PIC16C74 then
calculates object distance based on the Timer1 value,
microcontroller clock speed, and the velocity of sound
in the atmosphere. The basic equation for calculating
distance is given below:

Distance (inches) = TECHO time / 147.9 microseconds

DESIGN CONSIDERATIONS

There are several design considerations which must be
taken into account and are listed below.

The absolute measuring distance supported by the
ranging module is 6 inches to 35 feet with an accuracy
of +/- 1%.

The distance output from the ranging module can be
averaged over time to filter distance calculations.

In some applications, the gain of the receiver amplifier
may be too low or too high and may need to be
adjusted. For example, if the transducer is mounted in
a cylinder, the gain may need to be lowered to reduce
false echoes within the cylinder. In this case, R1 (refer
to the Polariod Ultrasonic Ranging System manual)
may be replaced with a 20 kQ potentiometer to tweak
the gain of the receiver amplifier to reduce faise
echoes.

In order for the Polaroid 6500 ranging module to
operate properly, the power supply must be capable of
handling high current transients (2.5 A) during the

DS00597A-page 2-2

© 1995 Microchip Technology Inc.

AN597

transmit pulse. The instantaneous drain on the power
supply can be mitigated by installing a storage
capacitor across the power lines at the ranging module.
A value of 500 microfarads is recommended.

A 200 millisecond interval is recommended between
ranging cycles (Figure 2) to allow the transducer to
clear.

The ECHO line requires a pull-up resistor (4.7 k2 was
used in this application).

There must be a common ground between the
PIC16C74 circuitry and the ranging module.

Some applications may not need the resources of the
higher end PIC16CXX devices. It is still possible to do
this application using a device that does not contain a
CCP module (for ECHO timing). The capture function
can be implemented in firmware. The effect of a
firmware implementation is that the resolution of the
ECHO time would be 3 Tcy cycles versus 1 Tcy cycle
for the CCP module. Also, the firmware
implementation would not allow other tasks to be
performed while the capture function was occurring.

Refer to Appendix A for general ranging module
specifications.

© 1995 Microchip Technology Inc.

DS00597A-page 2-3

ANS597

APPENDIX A: POLAROID MODULE
SPECIFICATIONS

DESIGN CONSIDERATIONS IN
ULTRASONICS

Range: (with user custom designed processing

electronics)

Farther

a) Use an acoustic horn to “focus” the sound

(narrowing the beamwidth).

b) Use two transducers — 1 receiver and

1 transmitter — facing each other.

c) Lower the transmitting frequency (which will

decrease the attenuation in air).
Closer

a) Use a shorter transmit signal (such as four

cycles).

a) Use two transducers — one to transmit, one to
receive (eliminates waiting for damping time).

Resolution

a) Above all, know the target and range well, and
design a system with them in mind.

b) Use a higher transmit frequency.

c) Look at phase differences of a given cycle of the
transmitted signal and received echo (as
opposed to using and integration technique).

d) Increase the clock frequency of the timer.
Accuracy: (again, you must have a well defined target)

Temperature Compensate

a) Use a second small target, as a reference, at a
known distance in the ranging path (such as a
1/4” rod several feet away), process both
echoes, then normalize the second distance
with respect to the first, since t1/d1 = t2/d2.

b) Incorporate a temperature sensing integrated
circuit to drive a VCO to do the distance interval
clocking.

c) To increase sensitivity of detection circuit
change the value of C4 from 3300 pF to 1000 pF
on the 6500 Series Ranging Module.

Beam Width:
Increase

a) Use an acoustic lens (to disperse the signal).
b) Decrease the transmitting frequency.
c) Use several transducers to span an area.

Decrease
a) Use an acoustic horn (to focus the sound).
b) Increase the transmitting frequency.

TABLE1: RECOMMENDED OPERATING CONDITIONS

Min. Max. Unit
Supply Voltage, Vcc 45 6.8 \'
High-level input voltage, VIH BINH, INIT 2.1 \%
Low-level input voltage, ViL BINH, INIT 0.6 \
ECHO and OSC output voltage 6.8 Vv
Delay time, power up to INIT high 5 ms
Recycle period 80 ms
Operating free-air temperature, TA 0 40 °C

DS00597A-page 2-4

© 1995 Microchip Technology Inc.

AN597

TABLE2: ELECTRICAL CHARACTERISTICS OVER RECOMMENDED RANGES OF SUPPLY
VOLTAGE AND OPERATING FREE-AIR TEMPERATURE (UNLESS OTHERWISE

NOTED)
Parameter Test Conditions | Min. Typ. Max. Unit

Input current BINH, INIT Vi=21V 1 mA
High-level output current, loH ECHO, OSC VoH = 5.5V 100 HA
Low-level output voltage, VoL ECHO, OSC loL=1.6 mA 04 \
Transducer bias voitage Ta=25°C 200
Transducer output voltage (peak-to-peak) Ta =25°C 400 Vv
Number of cycles for XDCR output to reach 400V C= 500 pF 7
Internal blanking interval 2.38* ms
Frequency during 16-pulse trans- | ©SC output 49.4* KHz
mit period XMIT output 49.4*
Frequency after 16 pulse transmit | ©SC output 93.3" KHz
period XMIT output 0

During transmit period 2000 mA
Supply current, Icc

After transmit period 100

* These typical values apply for a 420 kHz ceramic resonator.

© 1995 Microchip Technology Inc. DS00597A-page 2-5

AN597

APPENDIX B: FIRMWARE LISTING

MPASM 01.02 Released XDCR.ASM 11-14-1994 9:29:15 PAGE 1
LOC OBJECT CODE LINE SOURCE TEXT
VALUE

0001 ; XDCR.ASM

0002 ;

0003 ; This routine continually executes ranging cycles in the
0004 ; following order:

0005 ;

0006 ; 1) Timers and Flags are cleared

0007 ; 2) Ranging Cycle Executes

0008 ; 3) Distance is Calculated (to 0.5 inch)

0009 ; 4) HW is re-initialized for next cycle

0010 ;

0011 ; The processor uses a 4MHz oscillator, so all timing
0012 ; calculations are referenced to that. The calculated
0013 ; distance is a 16-bit result in the ACCbHI:ACCbLO registers.
0014 ;

0015

0016 LIST P=16C74, F=INHX8M

0017 ;

0029

0030 :******************
0031 ; Bank 0 Registers

0032 :*k**********ﬁk****
0033 ;
0034 ; TMR1 is off, Prescaler is 1 for a capture timeout of 65 msec
0000 0190 0035 clrf T1CON
0036 ; Set to capture on every rising edge
0001 3005 0037 movlw 0x05
0002 0097 0038 movwf CCP1CON
0039 ; Clear the Ports
0003 0185 0040 clrf PORT_A
0004 0186 0041 clrf PORT_B
0005 0187 0042 clrf PORT_C
0006 0188 0043 clrf PORT_D
0007 0189 0044 clrf PORT_E

0045 ;
0046 ;k*****************
0047 ; Bank 1 Registers
0048 ;***i**************
0049 ;
0008 1683 0050 bsf STATUS, RPO ; Set RPO

0051 ; Port A is Digital, Port E is Digital
0009 3007 0052 movlw 0x07
000A 009F 0053 movwf ADCON1
0054 ; Configure CCP1 (RC2) as an input, and all other ports
0055 ; as Outputs, (RE0 = INIT, REl1 = BINH)
000B 0185 0056 clrf TRIS_A
000C 0186 0057 clrf TRIS_B
000D 3004 0058 movlw 0x04
000E 0087 0059 movwf TRIS_C
000F 0188 0060 clrf TRIS_D
0010 0189 0061 clrf TRIS_E

0011 1283 0062 bef STATUS,RPO ; Clear RPO
0012 0063 Xdcr
0064 ;
0065 ; Initialize Timers and Flags
0066 ;
0012 1010 0067 bef T1CON, 0 ; Disable TMR1
0013 018C 0068 clrf PIR1 ; Clear Timerl Overflow Flag & Timerl Capture Flag

DS00597A-page 2-6 © 1995 Microchip Technology Inc.

AN597

0014 018E 0069 clrf TMR1L ; Clear TMR1L
0015 018F 0070 clrf TMR1H ; Clear TMR1H
0016 0195 0071 clrf CCPR1L ; Clear CCPRIL
0017 0196 0072 clrf CCPR1H ; Clear CCPR1H
0018 1409 0073 bsf PORT_E, 0 ; Set INIT High on Ranging Module
0019 1410 0074 bsf T1CON, 0 ; Enable TMR1
001A 21F3 0075 call DEL_9 ; Delay 0.9 msec for transducer to stabilize
001B 1489 0076 bsf PORT_E, 1 ; Enable Transducer to Receive (BINH)
oolc 0077 chk_t1
001c 190Cc 0078 btfsc PIR1,2 ; Check for Capture
001D 2822 0079 goto chk_done ; Jump if Capture
001E 1cO0C 0080 btfss PIR1,0 ; Check for TMR1 Overflow
001F 281C 0081 goto chk_t1 ; Loop if nothing happened
0020 1010 0082 bef T1CON, 0 ; Turn off TMR1
0021 2833 0083 goto ovr_flo ; Capture event did not occur
0022 0084 chk_done
0085 ;
0086 ; Calculate distance to 0.5 inch resolution
0087 ;
0022 1010 0088 bef T1CON, 0 ; Turn off TMR1
0023 0815 0089 movf CCPR1L,W ; Move LSB into W
0024 00A2 0090 movwf ACCbLLO ; Move LSB into ACCbLO
0025 0816 0091 movf CCPR1H,W ; Move MSB into W
0026 00A3 0092 movwf ACCbHI ; Move MSB into ACCbLHI
0027 304a 0093 movlw Ox4A ; Move 75usec/0.50in into W
0028 00A0 0094 movwf ACCaLO ; Move LSB into ACCaLO
0029 01A1 0095 clrf ACCaHI ; Clear MSB (ACCaHI)
002A 208F 0096 call D_divF ; Call 16-bit/8-bit routine
0097 ; which is described in
0098 ; Application Note 544
002B 3025 0099 movlw 0x25 ; Check remainder to see if
002C 0224 0100 subwf ACCcLO,W ; we should round up...
002D 1803 0101 btfsc STATUS, CARRY ; If Remainder < (0.5 * Divisor), skip
002E 0AA2 0102 incf ACCbLO, F ; Round up
002F 1903 0103 btfsc STATUS,Z ; Check low byte for wrap around
0030 0AA3 0104 incf ACCbHI,F ; If LSB wrapped, increment high byte
0031 1D03 0105 btfss STATUS,Z ; Check high byte for wrap around
0032 2835 0106 goto done ; High byte didn't wrap
0033 0107 ovr_£flo
0033 01Aa2 0108 clrf ACCbLO
0034 01A3 0109 clrf ACCbHI
0035 0110 done
0035 21FD 0111 call DEL_100 ; Wait 100 msec before clearing HW.
0036 1009 0112 bef PORT_E, 0 ; Disable INIT
0037 1089 0113 bef PORT_E, 1 ; Disable BINH
0038 21FD 0114 call DEL_100 ; Wait 100 msec before enabling HW.
0039 2812 0115 goto Xdcr
0116
0120
0149
0150 end
0151
MEMORY USAGE MAP ('X' = Used, '~' = Unused)
0000 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXX~-=====
0040 : —---=——-=--cem - - - -——-
All other memory blocks unused.
Errors 0
Warnings 0
Messages 0

© 1995 Microchip Technology Inc.

DS00597A-page 2-7

AN597

NOTES:

DS00597 A-page 2-8 © 1995 Microchip Technology Inc.

MIicrRocHIP

ANG600

Air Flow Control Using Fuzzy Logic

Author: Robert Schreiber
Logic Products Divisicn
INTRODUCTION

Fuzzy logic control can be used to implement a wide
variety of intelligent functions including everything from
consumer electronic goods and household appliances
to auto electronics, process control, and automation.

Typically, fuzzy logic control applications fall into two
categories. First, it can be used to enhance existing
products with intelligent functions. Second, it can utilize
sensors that continuously respond to changing input

conditions. In addition, fuzzy logic simplifies dealing
with non-linearities in systems, and allows for quicker
product development cycles.

This application note will step the user through a fuzzy
logic control design utilizing sensors. The development
tool used is Inform® Software’s fuzzyTECH®-MP. The
development tool allows for an all-graphical editor,
analyzers, and debug capability.

PROJECT DESCRIPTION

The block diagram of the project is shown in Figure 1
and operates as follows.

Beach Ball

‘
< » Ultrasonic Transducer
for Height Detection

- PWM Controlied
DC Fan

FIGURE 1: BLOCK DIAGRAM
4x4 Keypad 2x20 LCD Display
A [
Y Y
PORT B l , PORTD, A
PIC16C74
192x8 RAM
Capture Rangi
LMOdu!e "{ Maodrﬂzg
[|
Module
4Kx14 ROM
Serial Port [

Control Panel

Interactive
Fuzzy Control
onPC

© 1995 Microchip Technology Inc.

DS00600A-page 2-9

ANG600

The control panel prompts the user to enter the desired
beach ball height on the 16-key keypad. The keypad
input is echoed on the LCD module and the user is
prompted for confirmation. Upon confirmation of user
input, the control panel initiates a ranging cycle to
calculate the current height of the beach ball. The
desired height and current height are continually
displayed on the LCD module. From the current height,
the control panel calculates both the velocity and the
deita height (difference in desired height from current
height). This information, along with the desired height,
is transmitted to the PC via an RS-232 link. The fuzzy
logic algorithm, running on the PC, calculates the
appropriate duty cycle of the DC fan and transmits this
information to the control panel. This emulates a “real
world” environment in which system level debug can be
done on the PC in real-time. The control panel controls
the duty cycle of the DC fan with this input. The above
listed ranging process continues indefinitely until
interrupted by the user.

The control panel houses an ultrasonic ranging module
and the microcontroller. The microcontroller handles all
of the peripheral interfaces including the 16-key
keypad, the LCD display, the ultrasonic ranging
module, and the RS-232 serial link. The project
required a microcontroller that could handle the data
throughput and all of these peripherals with little or no
external components. The microcontroller used was
the PIC16C74, which contains 4K of on-chip program
memory and 192 bytes of on-chip data memory.
Furthermors, the interrupt capabilities, I/O pins, PWM
module, capture and compare modules, timer
modules, Serial Communications Interface (SCI), and
A/D converter make it an excellent fit for the
application. In addition, the on-chip pulse-width-
modulation (PWM) module allows for a single
component (FET) interface for the DC fan control and
the ranging module can interface directly to the
microcontroller (refer to Application Note AN597,
“Implementing Ultrasonic Ranging").

FUZZY DESIGN

Fuzzy logic first translates the crisp inputs from the
sensor into a linguistic description. Then it evaluates
the control strategy contained in fuzzy logic rules and
translates the result back into a crisp value.

The first step in fuzzy logic control design is system
definition. The only possible sources of inputs to the
fuzzy logic control algorithm are the ultrasonic
transducer, the user, and the DC fan. The key is to
decide which of these inputs are significant and which
are not. Basically, the behavior of the beach ball was
characterized by asking the following questions from
the beach ball's perspective: :

e Where am I?

¢ How far am | from where | want to be?
¢ How fast am | getting there?

¢ What external force will get me there?

The nice thing about fuzzy logic control is that the
linguistic system definition becomes the control
algorithm.

The variables were defined as follows:

¢ Current Height [Where am 1?]

¢ Delta Height [How far am | from where | want to
be?]

¢ Velocity [How fast am | getting there?)

¢ Duty Cycle [What external force will get me
there?]

Defining the variables was the starting point, but for the
algorithm to work smoothly, it isn’t good enough to say
“the beach ball has velocity,” you need to know to what
degree the beach ball has velocity. This is
accomplished by defining terms that more fully
describe the variable. The combination of variables
and terms gives a linguistic description of what is
happening to the system. From this, the Velocity
variable can be described as having a “positive small
velocity” or a “positive big velocity,” not just a “velocity.”

DS00600A-page 2-10

© 1995 Microchip Technology Inc.

ANG600

There is no fixed rule on how many terms to define per
variable. Typically, three to five terms are defined, but
more or less may be needed based on the control
algorithm. In retrospect, we probably could have
reduced Current Height to three terms and Velocity to
five terms. Table 1 lists the four variables that are used
for the trade show demo and their associated terms.

Once the linguistic variables are defined, data types
and values need to be defined. For this application,
data types were defined as 8-bit integers (16-bit
definition is also possible). After defining the data
types, the shell and code values for each variable were
specified. A shell value is used within the fuzzy logic
development tool and a code value is used when the
code is generated.

The best way to describe shell and code values is using
the analogy of a D/A converter. If we have a 5.0V, 8-bit
D/A converter, the digital input would correspond to the
code value and the analog output would correspond to
the shell value. This is, if we write (or pass) a value of
128 to the D/A we would get a 2.51V out. Applying this
analogy to our project, we would pass a crisp value
(digital) to the fuzzy world and the fuzzy world would
use the fuzzy value (analog).

Therefore, when we define shell and code values, we
are basically defining the "D/A converter." For example,
you can define the shell value for Duty Cycle to be a
minimum of 0 and a maximum of 100 (percent).
Therefore, within the fuzzy logic development tool,
Duty Cycle will take on a value between 0 and 100,
inclusive.

The code value is limited by the data type, but can take
on any or all of the digital range. That is, if the shell
value is 0 to 100, the code values could be defined as
0 to 100. But to get full resolution, the code value
should be defined over the entire range (i.e., 0 to 255
for 8-bit data types). The code values and shell values
were defined as shown in Table 2. Note that for the
height and velocity variables, the shell values are
scaled by 2 (i.e., a Current Height with a crisp value of
60 would correspond to 30 inches).

TABLE 1: INPUT AND OUTPUT VARIABLES AND TERMS
Input Variables Output Variable
Current Height Delta Height Velocity Duty Cycle
very lo neg big neg big very slo
lo neg small neg med slo
medium zero neg small medium slo
hi pos small zero medium
very hi pos big pos small medium fast
pos med fast
pos big very fast
TABLE 2: SHELL AND CODE VALUES
Shell Value Code Value
Variable Min. Max. Min. Max.
Current Height 0 120 0 255
Delta Height -50 50 0 255
Velocity -5 5 0 255
Duty Cycle 0 255 0 255

© 1995 Microchip Technology Inc.

DS00600A-page 2-11

ANG600

Next, the membership functions were defined to further
describe the variables. The fuzzy logic development
tool creates the membership functions automatically.
This gives a good starting point, but the membership
functions still need to be fine-tuned during the debug
phase. In this application, only the linear shaped func-
tions (Pi, Z, S and Lambda types) were used as seen
in Figure 2.

FIGURE 2: STANDARD MEMBERSHIP
FUNCTION TYPES

Z-Type Pi-Type

Il

Lambda-Type S-Type

FUZZIFICATION

Fuzzification entails translating a crisp value into a
fuzzy value. Once all of the variables have been
defined, the interfaces between the variables need to
be defined. The. interfaces for the input variables
contain the fuzzification procedures. In defining the
interfaces, the input variable’s fuzzification method
needs to be defined. The computation of fuzzification
is carried out at runtime for code efficiency. The type of
fuzzification used in this project is membership function
computation. This is largely due to the code space
efficiency and accuracy associated with this method.
Once fuzzification has taken place, the algorithm is
performed in the fuzzy world according to the rule base.

FIGURE 3: DEGREE OF MEMBERSHIP

FUZZY RULE BASE

The entire fuzzy inference is contained within the rule
blocks of a system. For example, if the beach ball is
near the top of the tube and it was commanded to be
near the bottom of the tube, the rule that described the
situation would be:

IE CURRENT HEIGHT = VERY HI
AND DELTA HEIGHT = NEGATIVE BIG
THEN DUTY CYCLE = SLOW

The above rule describes one situation, but the rule
definition would continue until the system was
adequately described The rule block is the collection of
all rules that describe the system.

The rules of the rule block can also be defined in terms
of how much a specific rule is supported when calculat-
ing inference. The support of a rule, or plausibility, is
known as the degree of support for that rule. A
plausible rule is defined by a 1.0, a totally implausible
rule is defined by 0.0. In this project all rules are fully
supported.

The degree to which a crisp value belongs to a term is
known as the degree of membership. For example, the
terms Medium and Hi for the variable Current Height
were defined as a Lambda-type membership function
centered around the crisp values 52 (26 inches) and 82
(41 inches), respectively, as shown in Figure 3.

Term

medium
52 82

very_lo

lo
hi
very_hi

x | 51.2041

<
II

Current_Height

120

DS00600A-page 2-12

© 1995 Microchip Technology Inc.

AN600

Therefore, if the beach ball was at 26 inches, the
degree of membership would be 1.0 for Medium and
0.0 for Hi. However, as the beach ball rises in height,
the degree of membership for the term Medium would

From the list of rules, a Fuzzy Associative Map (FAM)
is constructed (see below). The FAM shows the
plausibility (degree of support) of each rule as seen in
Figure 4 and Figure 5.

decrease and the degree of membership for the term Hi
would increase. The interplay of these linguistic
variable terms is controlled by the rule base. The rule
base defines not only the relationship between the
terms, but also how much each rule is supported, as
described previously.

FIGURE 4: MATRIX RULE EDITOR WITH FAM RULES

delta_height neg_big .
, neg_small Pos_big
zero
pos_small

Show ...
@ Degree of Support

current_height
(O Input Aggregation

(O Composition with Degree of Support

—— Degree of Support

— THEN ——

delta_height @ duty_cycle

neg_big

Ze1o .
pos_small
pos_big

© 1995 Microchip Technology Inc. DS00600A-page 2-13

AN600

FIGURE 5: 3-D RULE DISPLAY

delta_height current_height

neg_big ” ’ very_lo
neg_small " " lo
‘%" |'r.?edium

very_hi

zero
pos_small

pos_big

DS00600A-page 2-14 © 1995 Microchip Technology Inc.

ANG600

DEFUZZIFICATION

Defuzzification entails translating a fuzzy value to a
crisp value. The interface for the output variables
contains the defuzzification procedures. For most
control applications (and this project), the center-of-
maximum (CoM) method is used for defuzzification.
CoM evaluates more than one output term as valid and
compromises between them by computing a weighted
mean of the term membership maxima. Example 1 and
Figure 6 show the defuzzification of the linguistic
variable Duty Cycle using CoM.

EXAMPLE 1: DEFUZZIFICATION OF DUTY
CYCLE

The crisp value can be calculated using the CoM
method with the following equation.

C =3, [1 » max, (M) « arg (max, (M))]

4l

¢ = crisp output value

i = linguistic term

| = inference result

M = membership function of linguistic term

For this example, when the crisp values are fuzzified,
the Duty Cycle variable is defined to be mostly
‘medium" (degree of membership of 0.7) and
somewhat "medium fast" (degree of membership 0.1).
The arguments for the "medium" and "medium fast"

The crisp values of the three input variables are as term membership maxima are 165 and 178,
follows: respectively.
Current Height: 30
Delta Height: 0 (0.7 ¢ 1.0 « 165) + (0.1 « 1.0 « 178)) = 166
Velocity: 0

(0.7 + 0.1)
FIGURE 6: DEFUZZIFICATION OF DUTY CYCLE

165

Term

178

very_slow

1
very slow

slow

med_slow 7
medium
med_fast
fast
very_fast

pe

X

\'s

o]

seeemeeeeeneenmranenn——aan

Duty_Cycle

Inputs

Qutputs

30.0000
0.0000

current_height
delta_height
velocity

duty_cycle 166.0000

Value: [0.0000 @ Steps [%]:

000 @

© 1995 Microchip Technology Inc.

DS00600A-page 2-15

AN600

DEBUGGING

In serial debug mode, one can graphically adjust the
variable terms and see the results in “real time.” On this
project, the first variable adjusted was the Duty Cycle
variable. Duty Cycle was adjusted so that the beach
ball reached 30 inches (Figure 7). The Delta Height
terms were fine-tuned -- negative small, zero, and
positive small were bunched together -- and the beach
ball stabilized at 30 inches (Figure 8). There was
virtually no fluctuation in the height. in order for the
system to self-correct for environmental (external)
changes, the Velocity variable was used. The velocity
variable is calculated by the difference in height
between consecutive height calculations. A few rules
were added that used the Velocity variable to nudge the

ball into place when the environmental conditions
changed (Figure 9).

FIGURE 7: DUTY CYCLE VARIABLE

Another advantage of fuzzy logic is that it simplifies
dealing with non-linearities of the system. The system
was highly non-linear, so it was tested at the extremes
and moving the beach ball at different rates from one
extreme to the other. The Current Height variable
needed almost no adjustment (Figure 10). The variable
that required the most work was the Duty Cycle
variable, but in less than a day, the algorithm was
working well within specifications. The beach ball could

go from a resting position, with the DC fan off, to the

maximum allowable height of 42 inches in less than
8 seconds with no overshoot. Operation between the

minimum and maximum height was much quicker, also
with no overshoot.

The final graphical representation of the linguistic
variables are shown in Figure 7 through Figure 10.

X

]
v o]

Term very_slow
1 L\ y
slow v\ /
med_slow VIV /s
medium AR 4
med_fast Yoy
fast | f ‘1
very_fast 0 L
i]
0 255

Duty_Cycle

DS00600A-page 2-16

© 1995 Microchip Technology Inc.

ANG600

FIGURE 8: DELTA HEIGHT VARIABLE

Term

‘

neg_small
zero
pos_small
pos_big

x | -16.6667 -50

y

i

FIGURE 9: VELOCITY VARIABLE

Term
neg_big

neg_med
neg_small
zero
pos_small
pos_med
pos_big

U

x | -3.78431 -5 5

<
II

© 1995 Microchip Technology Inc. DS00600A-page 2-17

ANG600

FIGURE 10: CURRENT HEIGHT VARIABLE

Term

very_lo

e o

lo
medium
hi
very_hi

-

¥y

O

Current_Height

120

INTEGRATION

The system parameters and graphical variable
representations are captured in a Fuzzy Technology
Language (FTL) file. The FTL file is a vendor and
hardware independent language which defines the
fuzzy logic based system. The FTL file for this project
can be seen in Appendix A.

The FTL file is used to generate the public variable
definitions and code which can be embedded in the
microcontroller. The appropriate device family from the
pre-assembler code are generated by simply selecting
the compile pull-down menu. Once the pre-assembler
file is generated, the "hooks" to the main program must
be added.

The best way to embed the code is to use the template
MYMAIN.ASM. The template for each of the families of
devices (PIC16C5X, PIC16CXX and PIC17CXX) is
included in the fuzzyTECH®-MP development kit. The
template shown in Appendix B is for the PIC16CXX
family.

The file MYMAIN.ASM should contain your program in
the "main_loop" section. The only other modifications
required to the template are listed below and are
specified in the left hand column of Appendix B.

1. Processor Type definition

2. Code Start Address

3. Fuzzy RAM Start Address

4. Include Public Variable Definition file
(myproj.var), which was created by
tuzzy TECH®-MP

5. Include Pre-Assembler Code (myproj.asm)
which was created by fuzzyTECH®-MP

6. Call Initialization (initmyproj) which was created
by fuzzyTECH®-MP

7. Set Crisp Input Value(s)

8. Call Fuzzy Logic System (myproj)

9. Read Crisp Output Value(s)

For this project, the fuzzy logic algorithm assembled to
704 words of program memory and 41 bytes of data
memory.

SUMMARY

This project demonstrates many aspects of fuzzy logic
control - quick development cycle, real-time debug,
sensor integration, and non-linear system control. The
total development time for the application took less
than a week and performed well within system
specifications.

DS00600A-page 2-18

© 1995 Microchip Technology Inc.

ANG600

APPENDIX A: FUZZY TECHNOLOGY LANGUAGE FILE
PROJECT {
NAME = B BALL.FTL;
AUTHOR = ROBERT SCHREIBER;
DATEFORMAT = M.D.YY;
LASTCHANGE = 9.16.94;
CREATED = 9.14.94;
SHELL = MP;
COMMENT {
} /* COMMENT */
SHELLOPTIONS {
ONLINE_REFRESHTIME = 55;
ONLINE_TIMEOUTCOUNT = 0;
ONLINE_CODE = OFF;
TRACE_BUFFER = (OFF, PAR(10000));
BSUM_AGGREGATION = OFF;
PUBLIC_IO = ON;
FAST_CMBF = ON;
FAST_COA = OFF;
SCALE_MBF = OFF;
FILE_CODE = OFF;
BTYPE = 8_BIT;
} /* SHELLOPTIONS */

MODEL {
VARIABLE_SECTION {
LVAR {
NAME = current_height;
BASEVAR = Current_Height;

LVRANGE = MIN(0.000000), MAX(120.000000),
MINDEF (0) , MAXDEF (255),
DEFAULT_OQUTPUT (120.000000) ;

RESOLUTION = XGRID(0.000000), YGRID(1.000000),

SHOWGRID (ON), SNAPTOGRID(ON) ;

TERM {

TERMNAME = very_lo;

POINTS = (0.000000, 1.000000),
(14.117647, 0.000000),
(120.000000, 0.000000);

SHAPE = LINEAR;

COLOR = RED (255), GREEN (0), BLUE (0);

}

TERM {

TERMNAME = lo;

POINTS = (0.000000, 0.000000),
(5.176471, 0.000000),
(24.941176, 1.000000),
(40.941176, 0.000000),
(120.000000, 0.000000);

SHAPE = LINEAR;

COLOR RED (0), GREEN (255), BLUE (0);

}

TERM {

TERMNAME = medium;

POINTS = (0.000000, 0.000000),
(27.294118, 0.000000),
(51.294118, 1.000000),

© 1995 Microchip Technology Inc. DS00600A-page 2-19

AN600

(66.352941, 0.000000),
(120.000000, 0.000000);

SHAPE = LINEAR;

COLOR = RED (0), GREEN (0), BLUE (255);
}
TERM {

TERMNAME = hi;

POINTS = (0.000000, 0.000000),
(55.529412, 0.000000),
(82.352941, 1.000000),
(106.352941, 0.000000),
(120.000000, 0.000000);

SHAPE = LINEAR;
COLOR = RED (128), GREEN (0), BLUE (0);
}
TERM {
TERMNAME = very_hi;
POINTS = (0.000000, 0.000000),
(73.411765, 0.000000),
(113.411765, 1.000000),
(120.000000, 1.000000) ;
SHAPE = LINEAR;
COLOR = RED (0), GREEN (128), BLUE (0);
}
} /* LVAR */
LVAR {
NAME = delta_height;
BASEVAR = Delta_Height;
LVRANGE = MIN(-50.000000), MAX(50.000000),

MINDEF (0), MAXDEF (255),
DEFAULT_OUTPUT (-50.000000) ;
RESOLUTION = XGRID(0.000000), YGRID(1.000000),
SHOWGRID (ON), SNAPTOGRID(ON);
TERM {
TERMNAME = neg_big;
POINTS = (-50.000000, 1.000000),
(-16.666667, 0.000000),
(50.000000, 0.000000);
SHAPE = LINEAR;
COLOR = RED (255), GREEN (0), BLUE (0);
}

TERM {
TERMNAME = neg_small;
POINTS = (-50.000000, 0.000000),
(-21.764706, 0.000000),
(-6.470588, 1.000000),
(-0.588235, 0.000000),
(50.000000, 0.000000);
SHAPE = LINEAR;
COLOR = RED (0), GREEN (255), BLUE (0);
}
TERM {

TERMNAME = zero;

POINTS = (-~50.000000, 0.000000),
(-12.352941, 0.000000),
(0.196078, 1.000000),
(13.529412, 0.000000),
(50.000000, 0.000000);

LINEAR;

RED (0), GREEN (0), BLUE (255);

SHAPE
COLOR

DS00600A-page 2-20 © 1995 Microchip Technology Inc.

ANG600

}
TERM {
TERMNAME = pos_small;
POINTS = (-50.000000, 0.000000),
(0.196078, 0.000000),
(10.000000, 1.000000),
(10.392157, 1.000000),
(32.745098, 0.000000),
(50.000000, 0.000000);

SHAPE = LINEAR;

COLOR = RED (128), GREEN (0), BLUE (0);
3
TERM {

TERMNAME = pos_big;

POINTS = (-50.000000, 0.000000),
(26.470588, 0.000000),
(39.803922, 1.000000),
(50.000000, 1.000000);

SHAPE LINEAR;

COLOR = RED (0), GREEN (128), BLUE (0);

}
} /* LVAR */

LVAR {
NAME = duty_cycle;
BASEVAR = Duty_Cycle;

LVRANGE = MIN(0.000000), MAX(255.000000),
MINDEF (0), MAXDEF (255),
DEFAULT_OUTPUT (0.000000) ;

RESOLUTION = XGRID(0.000000), YGRID(1.000000),

SHOWGRID (ON), SNAPTOGRID(ON) ;

TERM {

TERMNAME = very_slow;

POINTS = (0.000000, 0.000000),
(1.000000, 0.000000),
(103.000000, 1.000000),
(113.000000, 1.000000),
(147.000000, 0.000000),
(255.000000, 0.000000);

SHAPE = LINEAR;

COLOR = RED (255), GREEN (0), BLUE (0);
}
TERM {

TERMNAME = slow;

POINTS = (0.000000, 0.000000),
(108.000000, 0.000000),
(127.000000, 1.000000),
(131.000000, 0.000000),
(255.000000, 0.000000);

SHAPE = LINEAR;

COLOR = RED (0), GREEN (255), BLUE (0);

}
TERM {

TERMNAME = med_slow;

POINTS = (0.000000, 0.000000),
(133.000000, 0.000000),
(142.000000, 1.000000),
(162.000000, 0.000000),
(255.000000, 0.000000);

SHAPE = LINEAR;

COLOR = RED (0), GREEN (128), BLUE (128);

© 1995 Microchip Technology inc. DS00600A-page 2-21

AN600

}
TERM {

TERMNAME = medium;

POINTS = (0.000000, 0.000000),
(151.000000, 0.000000),
(164.000000, 1.000000),
(166.000000, 1.000000),
(174.000000, 0.000000),
(255.000000, 0.000000);

SHAPE = LINEAR;

COLOR = RED (0), GREEN (0), BLUE (255);

}
TERM {

TERMNAME = med_ fast;

POINTS = (0.000000, 0.000000),
(166.000000, 0.000000),
(178.000000, 1.000000),
(193.000000, 0.000000),
(255.000000, 0.000000);

SHAPE LINEAR;

COLOR = RED (255), GREEN (0), BLUE (128);

}
TERM {

TERMNAME = fast;

POINTS = (0.000000, 0.000000),
(189.000000, 0.000000),
(202.000000, 1.000000),
(232.000000, 0.000000),
(255.000000, 0.000000);

SHAPE = LINEAR;

COLOR = RED (128), GREEN (0), BLUE (0);

}
TERM {

TERMNAME = very_fast;

POINTS = (0.000000, 0.000000),
(206.000000, 0.000000),
(255.000000, 1.000000);

SHAPE = LINEAR;
COLOR = RED (0), GREEN (128), BLUE (0):
}
} /* LVAR */
LVAR {
NAME = velocity;
BASEVAR = Velocity;
LVRANGE = MIN(-5.000000), MAX(5.000000),

MINDEF (0) , MAXDEF (255),
DEFAULT_OUTPUT (0.000000) ;
RESOLUTION = XGRID(0.000000), YGRID(1.000000),
SHOWGRID (OFF), SNAPTOGRID(ON);
TERM {
TERMNAME = neg_big;
POINTS = (-5.000000, 1.000000),
(-3.784314, 1.000000),
(-2.529412, 0.000000),
(5.000000, 0.000000);
SHAPE = LINEAR;
COLOR = RED (255), GREEN (0), BLUE (0);
}
TERM {
TERMNAME = neg_med;

DS00600A-page 2-22 © 1995 Microchip Technology Inc.

ANG600

POINTS = (-5.000000, 0.000000),
(-3.784314, 0.000000),
(-2.529412, 1.000000),
(-1.274510, 0.000000),
(5.000000, 0.000000);
SHAPE = LINEAR;
COLOR = RED (0), GREEN (255), BLUE (0);
}
TERM {
TERMNAME = neg_small;
POINTS = (-5.000000, 0.000000),
{-2.568627, 0.000000),
(-1.313725, 1.000000),
(-0.058824, 0.000000),
(5.000000, 0.000000);
SHAPE = LINEAR;
COLOR = RED (0), GREEN (0), BLUE (255);
}
TERM {

TERMNAME = zero;
POINTS = (-5.000000, 0.000000),
(-1.000000, 0.000000),
(-0.019608, 1.000000),
(0.960784, 0.000000),
(5.000000, 0.000000);
SHAPE = LINEAR;
COLOR = RED (128), GREEN (0), BLUE (0);
}
TERM {
TERMNAME = pos_small;
POINTS = (-5.000000, 0.000000),
(-0.137255, 0.000000),
(1.117647, 1.000000),
(2.372549, 0.000000),
(5.000000, 0.000000);
SHAPE = LINEAR;
COLOR = RED (0), GREEN (128), BLUE (0);
}
TERM {
TERMNAME = pos_med;
POINTS = (-5.000000, 0.000000),
(1.078431, 0.000000),
(2.333333, 1.000000),
(3.588235, 0.000000),
(5.000000, 0.000000);
SHAPE = LINEAR;
COLOR = RED (0), GREEN (0), BLUE (128);
}
TERM {
TERMNAME = pos_big;
POINTS = (-5.000000, 0.000000),
(2.294118, 0.000000),
(3.549020, 1.000000),
(5.000000, 1.000000);
SHAPE = LINEAR;
COLOR = RED (255), GREEN (0), BLUE (128);
}
} /* LVAR */
} /* VARIABLE_SECTION */

It

© 1995 Microchip Technology Inc. DS00600A-page 2-23

AN600

OBJECT_SECTION {
INTERFACE {
INPUT = (current_height, FCMBF);
POS = -213, -137;
RANGECHECK = ON;
}
INTERFACE {
INPUT = (delta_height, FCMBF);
POS = -216, -83;
RANGECHECK = ON;
}
INTERFACE {
OUTPUT = (duty_cycle, COM);
POS = 158, -79;
RANGECHECK = ON;
}
RULEBLOCK {
INPUT = current_height, delta_height, wvelocity;
OUTPUT = duty_cycle;
AGGREGATION = (MIN_MAX, PAR (0.000000));
COMPOSITION = (GAMMA, PAR (0.000000));
POS = -39, -113;
RULES {
IF current_height = very_ lo
AND delta_height = neg_big
THEN duty_cycle = slow WITH 1.000;
IF current_height = very_lo
AND delta_height = neg_small
THEN duty_cycle = med_slow WITH 1.000;
IF current_height = very_lo
AND delta_height = zero
THEN duty cycle = medium WITH 1.000;
IF current_height = very_ lo
AND delta_height = pos_small
THEN duty_cycle = fast WITH 1.000;
IF current_height = very_lo
AND delta_height = pos_big
THEN duty_cycle = very_ fast WITH 1.000;
IF current_height = lo
AND delta_height = neg_big
THEN duty cycle = slow WITH 1.000;
IF current_height = lo
AND delta_height = neg_small
THEN duty _cycle = med_slow WITH 1.000;
IF current_height = lo
AND delta_height = zero
THEN duty_cycle = medium WITH 1.000;
IF current_height = lo
AND delta_height = pos_small
THEN duty cycle = fast WITH 1.000;
IF current_height = lo
AND delta_height = pos_big
THEN duty_cycle = very_fast WITH 1.000;
IF current_height = medium
AND delta_height = neg_big
THEN duty _cycle = very_slow WITH 1.000;
IF current_height = medium
AND delta_height = neg_small
THEN duty _cycle = med_slow WITH 1.000;
IF current_height = medium

DS00600A-page 2-24 © 1995 Microchip Technology Inc.

AN600

AND delta_height = zero
THEN duty_cycle = med_fast WITH 1.000;
IF current_height = medium

AND delta_height = pos_small
THEN duty_cycle = fast WITH 1.000;
IF current_height = medium

AND delta_height = pos_big
THEN duty_cycle = very fast WITH 1.000;
IF current_height = hi

AND delta_height = neg_big
THEN duty_cycle = very slow WITH 1.000;
IF current_height = hi

AND delta_height = neg_small
THEN duty_cycle = med_slow WITH 1.000;
IF current_height = hi

AND delta_height = zero
THEN duty_cycle = med_fast WITH 1.000;
IF current_height = hi

AND delta_height = pos_small
THEN duty cycle = fast WITH 1.000;
IF current_height = hi

AND delta_height = pos_big
THEN duty_cycle = very_fast WITH 1.000;
IF current_height = very hi

AND delta_height = neg_big
THEN duty_cycle = very_slow WITH 1.000;
IF current_height = very hi

AND delta_height = neg_small
THEN duty_cycle = slow WITH 1.000;
IF current_height = very_hi

AND delta_height = zero
THEN duty cycle = med_slow WITH 1.000;
IF current_height = very_hi

AND delta_height = pos_small
THEN duty_cycle = medium WITH 1.000;
IF current_height = very_hi

AND delta_height = pos_big
THEN duty_cycle = very_fast WITH 1.000;
IF current_height = very_ lo

AND delta_height = neg_small

AND velocity = zero
THEN duty _cycle = very slow WITH 1.000;
IF current_height = very lo

AND delta_height = neg small

AND velocity = pos_small
THEN duty_cycle = very_slow WITH 1.000;
IF current_height = very_lo

AND delta_height = neg_small

AND velocity = pos_med
THEN duty_cycle = very_slow WITH 1.000;
IF current_height = very_lo

AND delta_height = neg_small

AND velocity = pos_big
THEN duty cycle = very_slow WITH 1.000;
IF current_height = very_ lo

AND delta_height = pos_small

AND velocity = zero
THEN duty_cycle = fast WITH 1.000;
IF current_height = very_lo

AND delta_height = pos_small

© 1995 Microchip Technology Inc. DS00600A-page 2-25

AN600

AND velocity = neg_small
THEN duty_cycle = fast WITH 1.000;
IF current_height = very_lo

AND delta_height = pos_small

AND velocity = neg_med
THEN duty_cycle = fast WITH 1.000;
IF current_height = very_lo

AND delta_height = pos_small

AND velocity = neg_big
THEN duty_cycle = fast WITH 1.000;
IF current_height = lo

AND delta_height = neg_small

AND velocity = zero
THEN duty_cycle = very_slow WITH 1.000;
IF current_height = lo

AND delta_height = neg_small

AND velocity = pos_small
THEN duty_cycle = very_slow WITH 1.000;
IF current_height = lo

AND delta_height = neg_small

AND velocity = pos_med
THEN duty _cycle = very slow WITH 1.000;
IF current_height = lo

AND delta_height = neg_small

AND velocity = pos_big
THEN duty_cycle = very_slow WITH 1.000;
IF current_height = lo

AND delta_height = pos_small

AND velocity = zero
THEN duty cycle = fast WITH 1.000;
IF current_height = lo

AND delta_height = pos_small

AND velocity = neg_small
THEN duty_cycle = fast WITH 1.000;
IF current_height = lo

AND delta_height = pos_small

AND velocity = neg_med
THEN duty_cycle = fast WITH 1.000;
IF current_height = lo

AND delta_height = pos_small

AND velocity = neg_big
THEN duty_cycle = fast WITH 1.000;
IF current_height = medium

AND delta_height = neg_small

AND velocity = zero
THEN duty_cycle = slow WITH 1.000;
IF current_height = medium

AND delta_height = neg_small

AND velocity = pos_small
THEN duty_cycle = slow WITH 1.000;
IF current_height = medium

AND delta_height = neg _small

AND velocity = pos_med
THEN duty_cycle = slow WITH 1.000;
IF current_height = medium

AND delta_height = neg_small

AND velocity = pos_big
THEN duty_cycle = slow WITH 1.000;
IF current_height = medium

AND delta_height = pos_small

DS00600A-page 2-26 © 1995 Microchip Technology Inc.

AN600

AND velocity = zero
THEN duty_cycle = fast WITH 1.000;
IF current_height = medium

AND delta_height = pos_small

AND velocity = neg_small
THEN duty cycle = fast WITH 1.000;
IF current_height = medium

AND delta_height = pos_small

AND velocity = neg_med
THEN duty_cycle = fast WITH 1.000;
IF current_height = medium

AND delta_height = pos_small

AND velocity = neg_big
THEN duty_cycle = fast WITH 1.000;
IF current_height = hi

AND delta_height = neg_small

AND velocity = zero
THEN duty_cycle = med slow WITH 1.000;
IF current_height = hi

AND delta_height = neg_small

AND velocity = pos_small
THEN duty_cycle = med_slow WITH 1.000;
IF current_height = hi

AND delta_height = neg_small

AND velocity = pos_med
THEN duty_cycle = med_slow WITH 1.000;
IF current_height = hi

AND delta_height = neg_small

AND velocity = pos_big
THEN duty_cycle = med_slow WITH 1.000;
IF current_height = hi

AND delta_height = pos_small

AND velocity = zero
THEN duty_cycle = very fast WITH 1.000;
IF current_height = hi

AND delta_height = pos_small

AND velocity = neg_small
THEN duty_cycle = very_fast WITH 1.000;
IF current_height = hi

AND delta_height = pos_small

AND velocity = neg_med
THEN duty cycle = very fast WITH 1.000;
IF current_height = hi

AND delta_height = pos_small

AND velocity = neg_big
THEN duty_cycle = very_fast WITH 1.000;
IF current_height = very_hi

AND delta_height = neg_small

AND velocity = zero
THEN duty_cycle = medium WITH 1.000;
IF current_height = very_hi

AND delta_height = neg_small

AND velocity = pos_small
THEN duty_cycle = medium WITH 1.000;
IF current_height = very_hi

AND delta_height = neg_small

AND velocity = pos_med
THEN duty_cycle = medium WITH 1.000;
IF current_height = very_hi

AND delta_height = neg_small

© 1995 Microchip Technology Inc. DSO00600A-page 2-27

AN600

THEN

velocity = pos_big

duty cycle = medium WITH 1.000;

current_height = very_hi
delta_height = pos_small
velocity = zero
duty_cycle = very_fast
current_height = very hi
delta_height = pos_small
velocity = neg_small
duty_cycle = very_fast
current_height = very_ hi
delta_height = pos_small
velocity = neg_med
duty_cg\(cle = very_ fast
current_height = very hi
delta_height = pos_small
velocity = neg_big
duty_cycle = very_fast

} /* RULES */

}

INTERFACE
INPUT =
POS = -2

{
(velocity, FCMBF);
11, -29;

RANGECHECK = ON;

}

} /* OBJECT SECTION */

} /* MODEL */
} /* PROJECT */
TERMINAL {
BAUDRATE = 9600;
STOPBITS =1;
PROTOCOL = NO;
CONNECTION = PORT1;
INPUTBUFFER = 4096;
OUTPUTBUFFER = 1024;

}

/* TERMINAL *

/

WITH 1.000;

WITH 1.000;

WITH 1.000;

WITH 1.000;

DS00600A-page 2-28

© 1995 Microchip Technology Inc.

AN600

APPENDIX B: MYMAIN.ASM TEMPLATE FOR THE PIC16CXX FAMILY

CODE_START
RESET_ADR
FUZZY_RAM_START
include
CBLOCK

userl

ENDC
ORG CODE_START

mymain

: main_loop

call

movlw
movwf
movlw
movwi
call
movf
btfss
goto

@

case_fire

O——

case_no_fire

;proj OK
movf

;juser code
goto

EQU
“myproj.var"

initmyproj

000
1v0_Input_1
0A0
1lvl_Input_2
myproj
invalidflags ,W
Z

case_no_fire

1v2_Output,W

main_loop

;jcode startadr for 16C71

;jreset vector

;first free RAM location for 16C71
;include preassembler variables
;starts after fuzzy ram locations
;reserve 1 byte (example)

;example start adress for code

;call init once

;example

;set 1lst crisp input
;example

;set 2nd crisp input
;jcall preassembler code

;test if the project is completely defined

;fetch crisp output

;no rule defined for this input combination

;call default_handling_routine

;user code
goto

main_loop

INCLUDE "myproj.asm"

;include preassembler code

RESET_ADR
nymain

;jump to program code
;end for assembler (only here)

© 1995 Microchip Technology Inc.

DS00600A-page 2-29

AN600

NOTES:

DS00600A-page 2-30 © 1995 Microchip Technology Inc.

MIcCROCHIP

ANG606

Low Power Design Using PIC16/17

Author: Rodger Richey
Logic Products Division
INTRODUCTION

Power consumption is an important element in
designing a system, particularly in today’s battery
powered world. The PIC16/17 family of devices has
been designed to give the user a low-cost, low-power,
and high performance solution to this problem. For the
application to operate at the lowest possible power, the
designer must ensure that the PIC16/17 devices are
properly configured. This application note describes
some design techniques to lower current consumption,
some battery design considerations, and suggestions
to assist the designer in resolving power consumption
problems.

DESIGN TECHNIQUES

Many techniques are used to reduce power
consumption in the PIC16/17 devices. The most
commonly used methods are SLEEP Mode or external
events. These modes are the best way to reduce Ipd in
a system. The PIC16/17 device can periodically
wake-up from Sleep using the Watchdog Timer or
external interrupt, execute code and then go back into
SLEEP Mode. In SLEEP Mode the oscillator is shut off,
which causes the PIC16/17 device to consume very
little current. Typical Ipd current in most PIC16/17
devices is on the order of a few microamps.

In cases where the PIC16/17 uses an RC oscillator but
cannot use SLEEP Mode, another technique is used to
lower power consumption. An /O pin can remove a
parallel resistance from the oscillator resistor while
waiting for an event to occur. This would slow down the
internal clock frequency, by increasing the resistance,
and thus reduce Ipd. Once an event occurs the resistor
can be switched in and the PIC16/17 device can
process the event at full speed. Figure 1 shows how to
implement this technique. The resistor R1 would be
used to increase the clock frequency by making the I/O
pin an output and setting it to VDD.

FIGURE 1: USING AN EXTERNAL
RESISTOR TO LOWER POWER
IN RC MODE

Voo
e

VoD I/O pin R
R1
MCLR 0OscCt

‘rVSS :-[(o]

= PIC16/17

External events can be used to control the power to
PIC16/17 devices. For these cases, the Watchdog
Timer can be disabled to further reduce current
consumption. Figure 2 shows an example circuit that
uses an external event to latch power on for the
PIC16/17 device. Once the device has finished
executing code, it disables power by resetting the latch.
The latching circuit uses a low-power 4000 series
CMOS quad chip which consumes a typical of 10 pA of
current. The measured value of current consumption
for the complete circuit with the PIC16/17
powered-down was 1 nA. Current consumption for a
PIC16/17 in SLEEP Mode is typically 1 pA.

FIGURE 2: EXTERNAL EVENT POWER
CONTROL CIRCUIT

1/4 CD4011
V+

1/4 CD4011 VoD
) 110
LINE
1 1/4CD4011
d PIC16/17

© 1995 Microchip Technology Inc.

DS00606A-page 2-31

ANG606

Power consumption is dependent on the oscillator
frequency of the system. The device must operate fast
enough to interface with external circuitry, yet slow
enough to conserve power. The designer must account
for oscillator start-up -time, external circuitry
initialization, and code execution time when calculating
device power consumption. Table 1 shows various
frequency oscillators, oscillator modes and the average
current consumption of each mode. A PIC16C54 was
used to collect data for Table 1 and the code is shown
in Example 1. A current profile for a PIC16C54 in RC
oscillator mode running at 261 kHz is shown in
Figure 3. Figure 4 shows a current profile for a

PIC16C54 in XT mode running at 1 MHz. The current
profile includes three regions: power-up, active, and
sleep. The power-up region is defined as the time the
PIC16/17 device is in Power-On Reset and/or
Oscillator Start-up Time. The active region is the time
that the PIC16/17 device is executing code and the
sleep region is the time the device is in SLEEP Mode.
When using a 32.768 kHz crystal in LP oscillator mode,
the designer must check that the oscillator has
stabilized during the Power-On Reset. Otherwise, the
device may not come out of reset properly.

TABLE 1: OSCILLATOR MODES

Osc. Ty Frequenc Osc. Mode | R ':::%r;urrent, Active Region Sleep Region

-lype req Y) eg Time Current, Time Current, Time
Resistor / Capacitor 261 kHz RC 51.2 A, 17.5ms | 396 pA12.8 ms | 0.32 pA, 140 ms
Resistor / Capacitor 1.13 MHz RC 614 pA,17.5ms | 810puA,25ms | 0.3 A, 140 ms
Crystal 32.768 kHz LP 51.2pA,19ms | 23.5puA,93ms | 0.3 A, 140 ms
Crystal 50 kHz LP 61.4 uA, 16 ms | 39.4 pA, 48.5 ms | 0.28 uA, 140 ms
Crystal 1 MHz XT 92 uA, 17.5 ms 443 pA, 3 ms 0.35 pA, 140 ms
Crystal 8 MHz HS 123 pA, 18 ms | 2.11mA, 250 us | 0.3 uA, 140 ms
Resonator 455 kHz XT 38.4 uA, 17.3 ms 421 pA, 7 ms 0.34 pA, 140 ms
Resonator 8 MHz HS 143 pA, 18 ms 2.5mA, 250 us | 0.29 pA, 140 ms

EXAMPLE 1: CURRENT PROFILE CODE

TITLE "Current Profiling Program"
LIST P=16C54, F=INHX8M
INCLUDE "C:\PICMASTR\P16C5X.INC"

R e

i

PR L

; to sleep. The WDT wakes up the PIC16C54.

i This program initializes the PIC16C54, delays for 256 counts, then goes

.;******k***

R R R KRRk A Ak A R kR A A AR KR AR KA AR AR KRN R AR R AR RN KK I IR R KRR KRR AR NN N K

;Define General Purpose register locations

LSB EQU 0x10 jdelay control register
Reset Vector
ORG 0
START
MOVLW 0x0B ;WDT Prescaler of 1:8
OPTION
CLRF PORTA ;clear PORTA
CLRF PORTB ;clear PORTB
CLRW ;make PORTA and PORTB pins outputs
TRIS PORTA
TRIS PORTB
CLRF LSB
LOOP DECFSZ LSB,1
GOTO LOOP
SLEEP ;go to sleep
END

DS00606A-page 2-32

© 1995 Microchip Technology Inc.

ANG606

FIGURE 3: CURRENT PROFILE (261 kHz RC MODE)
Power-Up Region Active Region Sleep Region
20mV/div
AN NN LLLbL ey
LLRREARRARNLARRSEREA) rrrprrrryprTerT
ov ¥ MR ARANR
5ms/div Rg =99.4Q
FIGURE 4: CURRENT PROFILE (1 MHz XT MODE)
Power-Up Region &ecgi\{)?\ Sleep Region
T
20mV/div
HHH HH\H HHHHHHHHHHHH
' —t
ov e o P -
5ms/div Rg =99.4Q

Designing a system for lower supply voltages, typically
3V, is another method to reduce IpD. This type of
design is best utilized in a battery powered system
where current consumption is very low. A wide range of
devices from op-amps and Analog-to-Digital (A/D)
converters to CMOS logic products are being
manufactured for low voltage operation. This gives the
designer the flexibility to design a low voltage system
with the same type of components that are available for
a 5V design. Refer to the PIC16/17 device data sheets
for IPD vs. VDD data.

Since any /O pin can source or sink up to 20 mA, the
PIC16/17 devices can provide power to other
components. Simply connect the VDD pin of an external

component to an /O pin. Currently, most of the
op-amps, A/D converters, and other devices
manufactured today are low-power and can be
powered by this technique. This provides the ability to
turn off power to sections of the system during periods
of inactivity.

Temperature will effect the current consumption of the
PIC16/17 devices in different ways. Typically devices will
consume more current at extreme temperatures and
batteries will have less available current at those same
temperatures. PIC16/17 devices will exhibit higher Ipd
currents at high temperatures. Refer to the PIC16/17
device data sheets for IPD vs. Temperature data.

© 1995 Microchip Technology Inc.

DS00606A-page 2-33

AN606

TROUBLESHOOTING IrD

The first step in troubleshooting IPD problems is to
measure the IPD that the circuit is consuming. Circuits
to measure IPD for all oscillator modes are shown in
Figure 5 for PIC16/17 devices. The resistor Rp is used
to measure the amount of current entering the VDD pin
when resistor Rg is shorted. The resistor Rg is used to
measure the amount of current leaving the Vss pin
when resistor Rp is shorted. The value of Rp and Rg
should be approximately 100Q for all oscillator modes.
The two values of current should be approximately the
same when the PIC16/17 is operating at the lowest
possible power. If you find that the values of IPD
measured from both configurations are not equivalent
or are higher than the specifications, the following
suggestions should help to find the source of extra
current.

FIGURE5: CIRCUITS TO MEASURE IPD

FOR PIC16/17 DEVICES
VoD
Ly
Vop 0OscC1
RTCC/TOCKI OSC2 |—
MCIR -~ C
r Vss "TEST T

PIC16/17 i
R9 nc oscillator Mode
VoD

Vss *TEST 0 Xtal
Cc1 c2
JEEaE

PIC16/17

Rp
Vob OSCH1 |
RTCC/TOCKI OSC2
MCLR “Rs

LP, XT, and HS Oscillator Modes for PIC16CXX
devices XT and LF Oscillator Modes for PIC17C42

*Rs for HS and XT modes on PIC16CXX devices
XT mode on PIC17CXX devices

**PIC17C42 only

Basically, if Ip is not equal to Ig, then an I/O pin is either
sourcing (Ip>lg) current or sinking (Ip<Ig) current.

* |s the MCLR pin tied to VDD? Is the rate of rise of
VDD slower than 0.05 V/ms? Does VDD start at
Vss then rise? These conditions will not
guarantee that the chip will come out of reset and
function properly. Some of the circuits on
PIC16/17 devices will start operating at lower
voltage levels than other circuits. See Application
Note AN522 "Power-Up Considerations" in the
Microchip Embedded Control Handbook.

Are all inputs being driven to Vss or VDD? If any
input is not driven to either Vss or VDD, it will

" cause switching currents in the digital

(i.e., flashing) input buffers. The exceptions are
the oscillator pins and any pin configured as an
analog input. During Power-on Reset or Oscillator
Start-up time, pins that are floating may cause
increased current consumption.

All unused /O pins should be configured as
outputs and set high or low. This ensures that
switching currents will not occur due to a floating
input.

Is the TMRO (RTCC) pin pulled to Vss or VDD?
The TMRO pin of PIC16C5X devices should be
tied to Vss or VDD for the lowest possible current
consumption.

If an analog voltage is present at a pin, is that pin
configured as an analog input? If an analog
voltage is present at a pin configured as a digital
input, the digital input buffers devices will
consume more current due to switching currents.
Are all on-chip peripherals tumed off? Any on-chip
peripheral that can operate with an external clock
source, such as the A/D converter or
asynchronous timers, will consume extra current.
Are you using the PORTB internal pull-up
resistors? If so and if any PORTB /O pin is driving
or receiving a zero, the additional current from
these resistors must be considered in the overall
current consumption.

Is the Power-Up Timer being used? This will add
additional current drain during power-up.

If the currents measured at the Rp and Rg
resistors are not the same, then current is being
sourced or sunk by an I/O pin. Make sure that all
1/O pins that are driving external circuitry are
switched to a low power state. For instance, an
I/0 pin that is driving an LED should be switched
to a state where the LED is off.

Is the window of a JW package device covered?
Light will affect the current consumption of a JW
package device with the window left uncovered.

DS00606A-page 2-34

© 1995 Microchip Technology Inc.

ANG606

IPD Analysis Using A Random Sample

The Microchip 1994 Microchip Data Book specifies the
typical Ipd current for a PIC16C5X part at 4uA and the
maximum Ipd current at 12 pA. These values are valid
ata VDD voltage of 3V and a temperature range of 0°C
to 70°C with the Watchdog Timer enabled. A control
group of fifty PIC16C54’s were randomly selected with
pre-production and production samples. Ipd tests were
run on the group for a voltage range of 2.5V to 6.5V and
for a temperature range of 0°C to 70°C. Table 2
compares the median and maximum values obtained
by the Ipd tests to the typical and maximum values in
the data book. The Ipd test data and the data book
values are based on VDD = 3.0V, Watchdog Timer
Enabled, and a temperature range of 0°C to 70°C.

The values in the data book are obtained from devices
in which the manufacturing process has been skewed
to various extremes. This should produce devices
which function close to the minimum and maximum
operating ranges for each parameter shown in the data
book. The typical values obtained in the data book are
actually the mean value of characterization data at a
temperature of 25°C. The minimum and maximum
values shown in the data book are the mean value of
the characterization data at the worst case
temperature, plus or minus three times the standard
deviation. Statistically this means that 99.5% of all
devices will operate at or below the typical value and
much less than the maximum value.

TABLE 2: IPpb COMPARISON OF CONTROL
GROUP vs. DATA BOOK
VALUES
Source Typical or Maximum
Median IrD

Control Group 2.349 pA 3.048 uA

1994 Microchip 4 pA 12pA

Data Book

BATTERY DESIGN

When designing a system to use batteries, the
designer must consider the maximum current
consumption, operating voltage range, size and weight
constraints, operating temperature range, and the
frequency of operation. Once the system design is
finished, the designer must again ask some questions
that will define what type of battery to use. What is the
operating voltage range? What is the current drain
rate? What are the size constraints? How long will the
system be used? What type of battery costs can be
tolerated? What range of temperatures will the system
be operated?

It is difficult to state a rule of thumb for selecting
batteries because there are many variables to
consider. For example, operating voltages vary from
one battery type to another. Lithium cells typically
provide 3.0V while Nickel-Cadmium cells provide 1.2V.
On the other hand, Lithium cells can withstand minimal
discharge rates while Nickel-Cadmium can provide up
to 30A of current. A designer must consider all
characteristics of each battery type when making a
selection. Appendix B contains a simple explanation of
batteries, a characteristic table for some common
battery types, and discharge curves for the common
batteries.

It is very important when doing a low power design to
correctly estimate the required capacity of the power
source. At this point, the designer should be able to
estimate the operating voltage, current drain rates and
how long the system is supposed to operate. To explain
how to estimate the required capacity of a system, we
will use the first entry from Table 1 using an RC
oscillator set at 261 kHz. Figure 3 shows the current
profile for this entry. It can be seen that the profile has
a period of 170.3 ms with a 17.5 ms power-up region,
a 12.8 ms active region, and a 140 ms sleep region.
Assuming that the system will be required to operate
for six months, we can now calculate the capacity
required to power this system. Example 2 will illustrate
the procedure. If a system does not have a periodic
current profile, then the percentages obtained in step 1
of Example 2 will have to be estimated.

© 1995 Microchip Technology Inc.

DS00606A-page 2-35

AN606

EXAMPLE 2: CAPACITY CALCULATION
1. Calculate the percentage of time spent in
power-up, active, and sleep regions.
power-up
(175ms/170.3 ms) x 100 = 10.3%

active
(128 ms/170.3ms) x 100 = 7.5%

sleep
(140 ms/170.3 ms) x 100 = 82.2%

2. Calculate the number of hours in 6 months.

6 months
x (30 days / month)
X (24 hours / day) = 4320 hours

3. Using the number of hours, percentages, and
currents calculate the capacity for each period
of time

power-up
4320 hours x 10.3% x 51.2 nA = 22.8 mAh

active
4320 hours x 7.5% x 396 nA = 128.3 mAh

sleep
4320 hours x 82.2% x 0.32 pA = 1.14 mAh

4. Sum the capacities of each period
22.8 mAh + 128.3 mAh + 1.14 mAh = 152.2 mAh

The capacity required to operate the circuit for six
months is 152.2 mAh. Example 2 does not take into
consideration temperature effects or leakage currents
that are associated with batteries. The load resistance
of a battery is affected by temperature which in turn
changes the available voltage and current; however,
the self discharge rate is higher.

EXAMPLE DESIGN

A PIC16C54 with an LP oscillator of 32.768 kHz is used
in this design. A Linear Technology low-power 12-bit
A/D converter samples a temperature sensor. This data
is transmitted via an LED at 300 baud to a receiver. The
A/D converter, op-amp, and temperature sensor are
powered from an /O pin on the PIC16C54. The
Watchdog Timer is enabled to periodically wake the
system up from Sleep and take a sample. Figure 6
shows the schematic for the example design and
Appendix A contains the source code.

This circuit has two operating modes, active and sleep.
There was not a distinct power-up region in this design.
In the circuit with the peripheral chips powered directly
from the battery, the example design consumed 8mA of
current in the active mode and 6.5 mA in SLEEP Mode.
With the peripheral chips powered from an I/O pin of
the PIC16C54, the example design consumed 4 mA of
current in the active mode and 0.5 pA in SLEEP Mode.
The advantage of using an I/O pin to provide power to

peripherals can be seen in a calculation of the capacity
required to operate the circuit for one month.
Example 3 details the two capacity calculations.

EXAMPLE 3: CAPACITY CALCULATION
FOR THE EXAMPLE DESIGN

1. Calculate the percentage of time spent in the
active and SLEEP Modes.

active - battery power
(210ms/2.61s)x 100 =8%

sleep - battery power
(2.4s/2.61s)x100=92%

active - VO power
(188 ms/2.638s)x100=7.1%

sleep - /O power
(2.45s/2.638s)x 100 = 92.9%

2. Calculate the number of hours in 1 month.

1 month

x (30 days / month)
X (24 hours / day)
=720 hours

3. Using the number of hours, percentages and
currents calculate the capacity for each period
of time.

active - battery power
720 hours x 8% x 8 mA = 461 mAh

sleep - battery power
720 hours x 92% x 6.5 mA = 4306 mAh

active - VO power
720 hours x 7.1% x 4 mA = 205 mAh

sleep - /O power
720 hours x 92.9% x 0.5 pA = 0.4 mAh
4. Sum the capacities of each period.

battery power
461 mAh + 4306 mAh = 4767 mAh

/0 power
205 mAh + 0.4 mAh = 206 mAh

The capacity required to operate this circuit for one
month can be reduced by a factor of twenty just by
powering the peripheral components from an I/O pin.
The example design will use two Panasonic® BR2325
Lithium batteries in series to provide power to the
circuit. This results in a Vbatt of 6V and a capacity of
165 mAh. Using the estimation process, the circuit
should function for approximately 24 days. The actual
time of operation was 24.2 days with the system
running in an ambient temperature of 22°C.

DS00606A-page 2-36

© 1995 Microchip Technology Inc.

ANG606

FIGURE 6: EXAMPLE DESIGN SCHEMATIC

Va
L
2 3) Va
120K ‘LO.1 " — 1—
LM385 1 s vee 8
3 170K 2| N oKk H = 0ip
1 31N Dout £ I
+ 41 vss VREF |2
Vio Vbatt LTC1292
+
Jumper
Header

] 1l21 3
Va va -
Va 0.1
T H Vbatt 1 | a2 RA1 |18 l
€ I 2 { pa3 Rao |7
2 3| N RTCC 0sc1 |18

LM35
MCIR 0sC2 ——-—-I|‘5 []%32 kHz
Vss vop |14

MAX406 5
ls 2| 820 p 13
4 o ol v e A
/l -7 | RB1 RB6 (12—
-8 | pe2 Res 11
9 10 L01
-9 | pB3 Res [10-| T m
+— W] L=
PIC16C54
o 1 6C Vbatt
20.9K
Vbatt
100
-

SUMMARY

This application note has described some of the
methods used to lower IPD and reduce overall system
current consumption. Some obvious methods such as
SLEEP Mode and low voltage design were given.
Techniques such as powering components from /O
pins and oscillator mode and frequency selection can
also be important in reducing IPD and overall system
current. Some suggestions for troubleshooting IPD
problems were presented. Finally, = some
considerations for designing a battery powered system
were offered.

© 1995 Microchip Technology Inc. DS00606A-page 2-37

8-z ebed-v90900sa

*au] ABojouyoe] diyooIolN 5664 ©

APPENDIX A: EXAMPLE DESIGN CODE

MPASM 01.02.05 Released
Ipd/Battery Apnote Example Design
LINE SOURCE TEXT

LOC OBJECT CODE
VALUE

0010
0011
0012
0013
0014

01FF 0A00

0001
0002
0003
0004
0002
0004
0005
0006

0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033

LOWPWR . ASM 1-9-1995

13:2:42

PAGE 1

TITLE "Ipd/Battery Apnote Example Design"

LIST P=16C54, F=INHX8M

INCLUDE "C:\PICMASTR\P16C5X.INC"
; P16C5X.INC Standard Header File, Version 0.1 Microchip Technology, Inc.
’.***************t**t*****t*******'k*********************k********************

H

; Filename:
; REVISION:

lowpwr.asm

9 Jan 95

This program initializes the PIC,
value to PORTB pin 0 (the LED), and then goes to Sleep. The
Watchdog Timer wakes the device up from Sleep. PORTA pin 0 is used
to control power to peripherals.

sk kkkkkkkhhkhkkhkdkkkkkkkhkhkkkkhkkkkhhhhkkhhhkkhhhhhhhhhhhhhhhhhhkhhhhhhkhkd

0007 ;

B s s

takes a sample, and outputs the

Ak kkkhkkhAh ARk Ak Ak kAR AR Ihhhhhhhhhkhhhhhk kA Ak hkhkkkhhhhhkhhhhkdhhkhdhd*x

GEEAKAKA AR KK A AR A AR K A KRR KA RAK AR KRR Ak Kk ok h ke hhkhdh ki hk ok kkkkkkhhkdkhhdhdkdkdhd s

; Define variable registers

MSB

LSB
DELAY_CNT
SHIFT
COUNT

; Reset Vector
ORG Ox1FF
GOTO START

EQU
EQU
EQU
EQU
EQU

; Start of main code

0x10
0x11
0x12
0x13
0x14

909NV

*ou| ABojouyoe | diyo01olN 5661 ©

6¢-2 ebed-v90900Sa

0000
0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
000A

000B
0o00cC
000D
000E
000F
0010

0011
0011
0012
0013
0014
0015
0016
0017
0018
0019
001A
001B
001cC
001D
001E
001F
0020
0021

0C2F
0002
0co2
0025
0066
0cos
0005
0040
0006
0071
0070

0004
0911
0004
0948
0004
0003

0505
0943
0COB
0034
0cos
0033
0000
0425
0000
0545
0000
0445
0000
0545
0000
0445
0000

0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080

ORG

0

PR

;
H
START

H
i

SAMPLE

Main routine which initializes the PIC, and has main loop.
KA K AR R AR A AR R A R R A R R AR AR AR AR A A AR R AR A AR AR R AR AR AR AR AR A AR Ak kA A AR AR AR ARk hkhkhhkhkk

MOVLW
OPTION
MOVLW
MOVWF
CLRF
MOVLW
TRIS
CLRW
TRIS
CLRF
CLRF

CLRWDT
CALL
CLRWDT
CALL
CLRWDT
SLEEP

0x2F

0x02
PORTA
PORTB
0x08
PORTA

PORTB

LSB

MSB

SAMPLE

OUTPUT

;1:128 WDT PRESCALAR

;RA1 SET HIGH

;ALL PINS SET TO Vss

;RA3-DATA INPUT
;RAO-POWER,RA1-CS,RA2-CLOCK OUTPUTS
; PORTB ALL OUTPUTS, RBO-LED OUTPUT

;CLEAR A/D RESULT REGISTERS

;GET SAMPLE FROM A/D

;OUTPUT SAMPLE TO LED AT 300 BAUD

B e s R e S R S

Main routine for retrieving a sample from the A/D.
;******‘k*‘k*t****k*‘k*********kt***k****************************tk************

BSF
CALL
MOVLW
MOVWF
MOVLW
MOVWF
NOP
BCF
NoOP
BSF
NOP
BCF
NOP
BSF
NOP
BCF
NOP

PORTA, 0
DELAY
0x0B
COUNT
0x08
SHIFT
PORTA, 1
PORTA, 2
PORTA, 2
PORTA, 2

PORTA, 2

; TURN POWER ON TO PERIPHERALS
;WAIT FOR PERIPHERALS TO STABILIZE
;DATA COUNTER, 12 BIT A/D

; SET SHIFT REGISTER

; ENABLE A/D

;1ST CLOCK RISE

;1ST CLOCK FALL

;NULL BIT CLOCK RISE

;NULL BIT CLOCK FALL

909NV

ov-2 ebed-y90900SQ

*ou| ABojouyoe] diyooIolN G661 ©

0022
0023
0024
0025
0026
0027
0028
0029
002A
002B
002C
002D
002E
002F
0030
0031
0032

0033
0033
0034
0035
0036
0037
0038
0039
003A
003B
003cC
003D
003E
003F
0040
0041
0042

0043
0043
0044
0045

0933
0000
0545
0000
0445
0000
02F4
0A22
0933
0000
0545
0000
0525
0000
0445
0405
0800

0004
0774
0A3B
0765
OA3F
0213
01F0
O0A3F
0765
OA3F
0213
01F1
0333
0603
0333
0800

0004
0072
02F2

0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127

LOOP CALL READ ;READ DATA BIT
NOP
BSF PORTA, 2 :BIT CLOCK RISE
NOP
BCF PORTA, 2 ;BIT CLOCK FALL
NOP
DECFSZ COUNT,F ; CHECK LOOP COUNTER
GOTO LOOP
CALL READ ;READ LAST BIT
NOP
BSF PORTA, 2 3 SET CLOCK
NOP
BSF PORTA, 1 ;SET CS
NOP
BCF PORTA, 2 ; CLEAR CLOCK
BCF PORTA, 0 ; POWER DOWN PERIPHERALS
RETURN

B R R R R R R R R R R A E R R R e e T T 22N

H Reads a bit from PORTA, data line from the A/D.

P e e e e e e e

READ

CLRWDT

BTFSS COUNT, 3 ;CHECK IF AT BIT 8 - 11

GOTO RLOW ;GOTO BITS 0 - 7

BTFSS PORTA, 3 ;CHECK IF DATA IS CLEAR

GOTO REND ;GOTO EXIT

MOVF SHIFT,W ;ADD A ONE TO MSB IN THE CORRECT
ADDWF MSB,F ;BIT POSITION

GOTO REND
RLOW BTFSS PORTA,3

GOTO REND
MOVF SHIFT,W ;ADD A ONE TO LSB IN THE CORRECT
ADDWF LSB,F ;BIT POSITION
REND RRF SHIFT,F ; SHIFT
BTFSC STATUS, C ;IF ONE IS IN THE CARRY
RRF SHIFT,F ; SHIFT AGAIN
RETURN
FERAE AR KR E KRR KA AR KRR AR KRR AR AR AR AR KRR AR KA KRRk R R AR R IR AR AR Ak

H Simple delay loop for 772 clock cycles.
;***********t*************************************i******t*******k**********
DELAY

CLRWDT ;RESET WATCHDOG TIMER

CLRF DELAY_CNT
DLOOPL DECFSZ DELAY_CNT,F

909NV

“ou} ABojouyoe . dILOIOIN G661 @

L¥-¢ #6ed-y¥90900Sa

0046
0047

0048
0048
0049

004A
004B
004cC
004D
004E
004F
0050
0051
0052
0053
0054
0055

0056
0057

0058
0059
005a
005B
005¢C
005D
005E
005F
0060
0061
0062
0063
0064
0065
0066
0067

0a45
0800

0cos
0034

0370
0703
0A50
0506
0968
0A54
0406
0000
0000
0968
02F4
0A4A

ocos
0034

0371
0703
OASE
0506
0968
0A62
0406
0000
0000
0968
02F4
0A58
0406
0071
0070
0800

0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174

GOTO
RETURN

DLOOPL

R KRR R R KRR R R AR KRR AR A AR AR KA AR KRR R I AR KK AR KRR AR KRR KA RKI K KRR R K KRR I AR R I KK

Output sample to LED at 300 baud.

R R KRR R ARk Rk R KA AR IR R KR AR R AR IR KA AR AR KK KA AR AR KRR R IR AR I AR K KRRk Kk kA kAR AR A

i

OUTPUT

MSBOUT

MSBCLR

MSBCHK

LSBOUT

LSBCLR

LSBCHK

MOVLW
MOVWF

RLF
BTFSS
GOTO
BSF
CALL
GOTO
BCF
NOP
NOP
CALL
DECFSZ
GOTO

MOVLW
MOVWF

RLF
BTFSS
GOTO
BSF
CALL
GOTO
BCF
NOP
NOP
CALL
DECFSZ
GOTO
BCF
CLRF
CLRF
RETURN

0x08 ; SHIFT 8 MSB BITS OUT

COUNT

MSB,F ; SHIFT LSB INTO CARRY

STATUS, C ; IF CARRY IS SET

MSBCLR

PORTB, 0 ; SET PORTB, 0

BAUD

MSBCHK ;CHECK FOR ALL 8 BITS TO BE SENT
PORTB, 0 ; OTHERWISE CLEAR PORTB, 0

;WAIT TO SET BAUD RATE 600

BAUD

COUNT ;CHECK FOR ALL 8 BITS TO BE SENT

MSBOUT

0x08 ;SHIFT 8 LSB BITS OUT

COUNT

LSB,F ;SHIFT LSB INTO CARRY

STATUS, C ; IF CARRY IS SET

LSBCLR

PORTB, 0 ; SET PORTB, 0

BAUD

LSBCHK ;CHECK FOR 8 BITS TO BE SENT

PORTB, 0 ; OTHERWISE CLEAR PORTB, 0
;WAIT TO SET BAUD RATE 600

BAUD

COUNT ;CHECK FOR 8 BITS TO BE SENT

LSBOUT

PORTB, 0 ;CLEAR PORTB, 0

LSB ;CLEAR LSB

MSB ;CLEAR MSB

l.***%***********

Delay loop for sending data to the LED at 300 baud.

P R s R e]
i

;

909NV

2v-¢ obed-v90900Sa

-ou| ABojouyde | dluoomlw 5661 @

0068 0175 BAUD
0068 0000 0176 NoP
0069 0000 0177 NOP
006A 0000 0178 NOP
006B 0000 0179 Nop
006C 0000 0180 NOP
006D 0000 0181 NOP
006E 0000 0182 NOP
006F 0000 0183 NOP
0070 0000 0184 Nop
0071 0000 0185 NoP
0072 0000 0186 NOP
0073 0000 0187 NOP
0074 0000 0188 NOP
0075 0800 0189 RETURN

0190

0191 END

0192

0193
MEMORY USAGE MAP ('X' = Used, '~' = Unused)

0000 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
0040 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXX~------===

All other memory blocks unused.

Errors : 0
Warnings : 0
Messages : 0

909NV

ANG606

APPENDIX B: BATTERY
DESCRIPTIONS

Presently there are two types of batteries that are
manufactured, primary and secondary. Primary
batteries are those that must be thrown away once their
energy has been expended. Low current drain, short
duty cycles, and remote operation favor primary
batteries such as Carbon Zinc and Alkaline. Secondary
batteries can be recharged once they have exhausted
their energy. High current drain or extended usage
favors secondary batteries especially when the cost of
replacement of disposable batteries is not feasible.
Secondary batteries include Nickel-Cadmium and
Nickel Metal Hydride.

A battery may be discharged by different means
depending on the type of load. The type of load will
have a significant effect on the life of the battery. The
typical modes of discharge are constant resistance,
constant current, and constant power. Constant
resistance is when the load maintains a constant
resistance throughout the discharge cycle. Constant
current is the mode where the load draws the same
current during discharge. Finally, constant power is
defined as the current during a discharge increases as
the battery voltage decreases.

The constant resistance mode results in the capacity of
the battery being drained at a rapid and excessive rate,
resulting in a short life. This is caused by the current
during discharge following the drop in battery voltage.
As a result, the levels of current and power during
discharge are in excess of the minimum required.

The constant current mode has lower current and
power throughout the discharge cycle than the
constant resistance mode. The average current drain
on the battery is lower and the discharge time to the
end-voltage is longer.

The constant power discharge mode has the lowest
average current drain and therefore has the longest
life. During discharge, the current is lowest at the
beginning of the cycle and increases as the battery
voltage drops. Under this mode the battery can be
discharged below its end voltage, because the current
is increased as the voltage drops. The constant power
mode provides the most uniform performance
throughout the life of the battery and has the most
efficient use of the energy in the battery.

The nominal voltage is the no-load voltage of the
battery, the operating voltage is the battery voltage with
a load, and the end-of-life voltags is the voltage when
the battery has expended its energy. Energy Density is
used to describe the amount of energy per unit of
volume or mass (Wh/kg or Wh/l). Generally, energy
density decreases with decreasing battery size within a
particular type of battery. Most batteries are rated by an
amp-hour (Ah) or milliamp-hour (mAh) rating. This
rating is based on a unit of charge, not energy. A 1-amp
current corresponds to the movement of 1 coulomb (C)
of charge past a given point in 1 second (s). Table B-1
lists some typical characteristics of the most common
types of batteries.

© 1995 Microchip Technology Inc.

DS00606A-page 2-43

ANG606

TABLE B-1: TYPICAL BATTERY CHARACTERISTICS

Carbon Zinc | Alkaline coeckel 1 Lithium "':I';‘:,'rm"“' Zinc Air | Siiver Oxide
Cell Voltage :
Nominal 1.5 15 1.2 3.0 1.2 1.4 1.6
Operating 1.25-1.16 1.25-1.16 1.25-1.00 2.5-3.0 1.25-1.0 1.35-1.1 1.5
End of life 0.8 0.9 0.9 1.75 0.9 0.9 0.9
Operating -5°C to 45°C | -20°C to 55°C | -40°C to 70°C | -30°C to 70°C | -20°C to 50°C | 0°C to 45°C | -20°C to 50°C
Temperature
Energy Den- 70 85 30 300 55 300 100
sity (Whtkg)
Capacity 60mAh to 30mAh to 150mAhto | 35mAhto 4Ah| 500mAh to 50mAh to 15mAh to
18Ah 45Ah 4Ah S5Ah 520mAh 210mAh
Advantages High capacity, | good low good low and | better capac- |high energy [good low
good low temp | temp, good high temp, ity than Nicad |density, good |temp, good
high rate dis- | good high for same size | shelf life shelf life
charge rate dis-
charge, long
shelf life
Limitations Low energy poor low rate | Violent reac- Cannot stop | poor high rate
density, poor discharge, dis- | tion to water reaction once | discharge
low temp, poor posal hazards started
high rate dis-
charge
Relative Cost low low medium high high high high
Type Primary Primary Secondary Primary Secondary Primary Primary

Typical discharge curves for alkaline, carbon zinc,
lithium, nickel cadmium, nickel metal hydride, silver
oxide, and zinc air are shown in Figure B-1 through
Figure B-7. These curves are only typical
representations of each battery type and are not
specific to any battery manufacturer. Also the load and
current drain are different for each type of battery.

FIGURE B-1: ALKALINE DISCHARGE CURVE (16 mA LOAD)
1.6
1.4 I
1.2 —
1 '\!\\'
_. 08 '\I
o 0.6
0.4
0.2

0

(\%

Voltags

0 25 50 75 100 125 150 165
Time (hours)

DS00606A-page 2-44 © 1995 Microchip Technology Inc.

ANG606

FIGURE B-2: CARBON ZINC DISCHARGE CURVE (16 mA LOAD)

1.6

1.4 '\

1.2

) S—

1

\ll\“\

0.8

]

Voltage (V)

0.6

0.4

0.2

0
0

10 20 30 40 48
Time (hours)

FIGURE B-3:

LITHIUM DISCHARGE CURVE (2.8 mA LOAD)

=

\L—u\'

2.5

N

Voltage (V)
&

.y

o
2

0 100

200 300 400 500 600 700 750
Time (hours)

FIGURE B-4: NICKEL CADMIUM DISCHARGE CURVE (500 mA LOAD)

1.4

— |

1.2

T~

1

\I

0.8

0.6

Voltage (V)

0.4

0.2

10 20 30 40 50 60
Time (minutes)

© 1995 Microchip Technology Inc.

DS00606A-page 2-45

ANG606

FIGURE B-5:

NICKEL METAL HYDRIDE DISCHARGE CURVE (1500 mA LOAD)

Voltage (V)

1.4

L

1.2

1

T

N

N

0.8

0.6

0.4

0.2

2

3 4 5

Time (hours)

54

FIGURE B-6:

SILVER OXIDE DISCHARGE CURVE (1 mA LOAD)

Voltage (V)

1.6 p

1.4

1.2

1

0.8

0.6

0.4

0.2

0

0

10

20 30
Time (hours)

38

FIGURE B-7: ZINC AIR DISCHARGE CURVE (1.3 mA LOAD)

Voltage (V)

14

1.2

1

o
©

o
o

o
'S

o
o

o

o

30

60 90
Time (hours)

95

DS00606A-page 2-46

© 1995 Microchip Technology Inc.

ANG6O7

MicRroCHIP
Power-up Trouble Shooting
capable of generating an intemal reset signal.
Author: Mark Palmer Depending on the device family, different power-up

Logic Products Division
Contributions: Richard Hull & Randy Yach
Logic Products Division

INTRODUCTION

For any application to begin proper operation, the
application must power-up properly. Many criteria must
be taken into account to ensure this. The PIC16/17
devices integrate several features to simplify the
design for the power-up sequence. These integrated
features also reduce the total system cost.

This application note describes the requirements for
the device to properly power-up, common pitfalls that
designers encounter, and methods to assist in solving
power-up problems.

THE POWER-UP SEQUENCE

There are several factors that determine the actual
power-up sequence that a device will go through.
These factors are:

e The Processor Family
- PIC16C5X
- PIC16CXX
- PIC17CXX
¢ Oscillator Configuration
¢ Device Configuration

* MCLR pin

The Power-on Reset (POR) signal generation is
discussed, followed by the power-up sequence for the
specific device families.

Power-on Reset (POR) signal

The data sheets show a Power-on Reset (POR) pulse,
as in Figure 1. The POR signal is a level triggered
signal. This representation will help in the
understanding of future devices, which may have a
brown-out reset capability.

The power-up sequence begins by increasing the volt-
age on the Voo pin (from 0V). If the slope of the Voo rise
time is faster than 0.05 V/ms, the internal circuitry is

sequences will occur after this POR signal.

If the slope is less then 0.05 V/ms, the MCLR pin
should be held low, by extemal circuitry, until a valid
operating Voo level is reached.

The Voo rise time specification needs to be met, until
the POR signal is generated. After the POR signal is
generated the slope of the Vop rise can change (to a
faster or slower rise). This may have other
ramifications, see the "Power-up Consideration"
section. In general, the POR signal will trip (PORTe)
somewhere between 1.2V to 2.0V (Figure 1).

FIGURE 1: INTERNAL POR SIGNAL

Valid Operating
Voltage

Device
dependent

1.2V - 2.0V
Voo

intemal [L
POR signal '
(active low)
Trip Point - Rising
(PORTPR)

When Voo is falling, the voltage at which the intemal
POR signal returns to a low level is processor/device
dependent. To ensure that a device will have a POR,
the device voltage must return to Vss before power is
re-applied.

The POR will be generated regardless of the level of
the MCLR pin. The PIC16/17 device families are
different on what triggers the power-up sequence.
Table 1 describes the events that cause the POR

sequence to occur.

After reaching the POR trip point (POR7rr), the POR
sequence holds the device in reset for a given time.
Once this time has elapsed, the device voltage must be
valid or the MCLR pin must be low. The time from the
POR rising edge to the time that Voo must be valid level
is the Troravoov time.

© 1995 Microchip Technology Inc.

DS00607A-page 2-47

AN607

TABLE 1: EVENTS THAT TRIGGER POR

SEQUENCE

Device Events

PIC16C5X |Both the POR signal rising edgé and

any MCLR rising edge(!

PIC16CXX | The POR signal rising edge

PIC17CXX |Either the POR signal rising edge or
the first MCLR rising edge (if MCLR is
low when the POR occurs).

After this event, all following MCLR
rising edges(" cause the device to start

program execution immediately.

Note 1: The POR low-to-high transition causes
Special Function Register (SFR)
bits/registers to a specified value. The SFR
bits/register are not identically affected by
the MCLR signal. Refer to the device data
sheet to see how the bits are affected by
these two conditions.

The POR sequence for each of the PIC16/17 families
is described in the following three sections:

PIC16C5X Family
PIC16CXX Family
PIC17CXX Family

PIC16C5X Family

After the MCLR pin has reached a high level, the
device is held in reset for typically 18 ms. This time is
determined by an on-chip RC oscillator and 8-bit ripple
counter. This Device Reset Timer (DRT), allows most
crystals (except low frequency crystals) to start-up and
stabilize. Due to the characteristics of resisters and
capacitors, this time is extremely variable over
temperature and voltage. There is also a device to
device variation. See the data sheet for the range of
this time-out.

TABLE 2: TIME-OUT IN VARIOUS
SITUATIONS (TYPICAL)
Oscillator Wake-up from
Configuration | POWer-uP SLEEP
XT, HS, LP(M 18 ms 18 ms
RC 18 ms 18 ms

Note 1: 32 kHz crystals have a typical start-up time
of 1-2 seconds. Crystals >100 kHz have a
typical start-up time of 10-20 ms.
Resonators a typically <1 ms. All these
times are voltage dependent.

FIGURE 2: PIC16C5X POWER-UP SEQUENCE

Vop S >/-:”PORTPF| : A _i, . PORrTeF
: =V . A Vi . !
MCLR] ! Vi . ' :
POR signal Zéééj I——~
. Reset ", Execution .. Reset . Execution .. Reset
! TroRr2voDV | .~ TroravoDv ! '

DS00607A-page 2-48

© 1995 Microchip Technology Inc.

AN607

PIC16CXX Family

After the POR rising edge has occurred, the device can
have up to 2 time-out sequences that occur in series.
The first being the Power-up Timer (PWRT), the
second being the Oscillator Start-up Timer (OST).

The Power-up Timer time-out will occur if enable fuse
PWRTE is read as a 't". The PWRT uses a 10-bit
counter, with the clock from an internal RC. Due to the
characteristics of resisters and capacitors, this time is
extremely variable over temperature and voltage.
There is also a device to device variation. See the data
sheet for the range of this time-out.

The OST will occur on power-up/wake-up when the
device has oscillator mode selected. This allows the
oscillator to stabilize before program execution begins.
The OST uses a 10-bit counter, with the clock from the
OSC pin. The time is dependent on the frequency of
the input clock. This timer is disabled if the oscillator is
configured as RC.

Figure 3 shows how the two timers work in the
power-up sequence. Vop must be valid when program
execution starts. The Tewar + Tost times can be
thought of as the time that the device gives for the Vop
to become valid (Tror2voov). Figure 4 shows when
device execution begins for the case of the MCLR pin
going high before Tror2voov times out. Figure 5 shows
when the MCLR pin is held low longer than the
Tror2voov time. The device starts execution
immediately when MCLR goes high. Table 3 gives the
typical reset times.

TABLE 3: TIME-OUT IN VARIOUS

SITUATIONS (TYPICAL)
Power-u -
Oscillator i w:fm“'p
i = =0
Configuration | PWRTE =1 | PWRTE SLEEP
(2) @
XT, HS, LP(72ms + 1024 Tosc 1024 Tosc
1024 Tosc
RC 72 ms —_ —_

Note 1: 32kHz crystals have a typical start-up time of 1-2
seconds. Crystals >100 kHz have a typical
start-up time of 10-20ms. Resonators are
typically <1 ms. All these times are voltage
dependent.

2: Future devices will change the polarity of this
configuration bit. Refer to the specific data sheet
for the polarity of the PWRT Configuration Bit.

FIGURE 3: PIC16CXX POWER-UP

SEQUENCE
Voo - A - PORteR .
MCLR / X
PORsignal | :
\ : :
« TpwaT .
PWRT Time-out ; .
' JosT

OST Time-out '

: Reset : Execution
Tror2voDv

FIGURE 4: START OF DEVICE OPERATION

(MCLR < Tror2voov)
Voo - # PORtPR .
. A VI
MCLR | .
POR signal .
., _Reset ... Execution
. Tror2voDV .

FIGURE 5: START OF DEVICE OPERATION

(MCLR > Tror2vopv)
Voo PORten
. b Ak
MCLR X X .
POR signa!__J . .
: Resets ' Execution
' Tror2vDDV !

© 1995 Microchip Technology Inc.

DS00607A-page 2-49

ANG607

PIC17CXX Family

When the MCLR pin comes to a high level, after the
POR rising edge, the device has 2 time-out sequences
that occur in parallel. One is the Power-up Timer
(PWRT), the other is the Oscillator Start-up Timer
(OST). The timer with the greater time holds the device
in reset. Figure 6 shows the sequence with MCLR tied
to Voo. Figure 7 show the time-out when MCLR is
independent of Voo. The PWRT time is generally
longer, except for low frequency crystals/resonators.
The OST time does not include the start-up time of the
oscillator/resonator.

The PWRT uses a 10-bit counter, with the clock from
an intemal RC. The characteristics of the RC vary from
device to device and over temperature and voltage.
The specification for the time-out range can be found in
the electrical specification of the data sheet.

The OST uses a 10-bit counter, with the clock from the
OSC pin. The time is dependent on the frequency of
the input clock. :

Until MCLR has reached a high level, the POR

FIGURE 6: PIC17CXX POWER-UP
SEQUENCE (MCLR TIED TO Voo)

Voo and - #* ‘PORTeR X
MCLR ! '
POR signal ‘ !
, q_TPWAT l:
PWRT. .
Time-out P !
" Tost
osT :
Time-out ‘ Reset ‘:‘ Execution
" TpoRavDDV 0

FIGURE7: PIC17CXX POWER-UP

sequence will not start. While the POR signal remains SEQUENCE (WiCLR NOT TIED
high, all following MCLR pulses will not cause the POR TO Voo)
sequences to occur (Figure 8).
TABLE 4: TIME-OUT IN VARIOUS Voo . ‘PORren
SITUATIONS (TYPICAL) '
MCR . 7 ViH
Oscillator Power-u Wake-up from . ‘
Configuration P Sleep POR sinal I :
RC, EC Greater of — sona «Touer
80 ms and : ' .
1024 Tosc PWRT : 5
XT, LFM Greater of 1024 Tosc Time-out | «—> :
80 ms and) :TOST \
1024 Tosc osT . : '

Note 1: 32 kHz crystals have a typical start-up time Time-out ' ; . .
of 1-2 seconds. Crystals >100 kHz have a . . Reset . Execution
typical start-up time of 10-20 ms. . h "

Resonators are typically <1 ms. All these + TrorzvoDv
times are voltage dependent.
FIGURE 8: MCLR OPERATION
Voo ¥ PORmea “_PORrer
T : N\
MCLR ' . TR M ! Vi TR Vi
POR signal [! ! - f
' ' Reset ' Execution . Reset . Execution ., Reset
. Tror2vDDV .

DS00607A-page 2-50

© 1995 Microchip Technology Inc.

ANG607

POWER-UP CONSIDERATIONS TABLE5: MAXIMUM TIME FROM POR
RISING EDGE TO VALID Voo
The device must be at a valid operating voltage when VOLTAGE

the device exits reset. This can be done by ensuring

that the power supply rise time is fast enough to guar- - . —
antee an operating Voo level, or by using an extemal Osc Mode | Maximum Time | Conditions
reset circuit which will hold MCLR low until the X< |LP, XT,HS, |9ms
operating Voo level is reached. 8 and RC
)
When the rise time of Voo is very fast, there will be a o
time delay before the Power-on Reset (POR) signal will o
rise to a logic high (Tte2ron). This delay is in the 1-5 us RC 28 ms
range, as shown in Figure 9. ;<< LP, XT, and 28 ms + PWRTE =1
Figure 10, Figure 11, and Figure 12 show the 8 HS 1024 Tosc
maximum time from the POR sequence beginning to 5 LR, XT,and [1024 Tosc PWRTE =0
the device having a valid operating voltage. Table 5 o |HS
gives the Troravopv times. When detemining the time E
at which Vop must be valid, the POR trip point must be % la's’dXRTé C. gl:?;zr;f
assumed to be at the minimum POR voltage trip point. ~ 1024 Tosc)
How Crystal Frequencies affect Start-up time g
Both the PIC16CXX and PIC17CXX families may have
start-up times that include the contributions of the FIGURE 9: PORDELAY FOR FAST Voo RISE
oscillator. Table 5 shows how the oscillator can affect TIME
each mode of operation, with Table 6 giving the reset
time that an oscillator generates. This time can be used Valid Operating
in the equation to calculate the total reset time, at the Voltage
given frequency. This time may vary slightly due to the 1.2V-20V
initial start-up characteristics of the crystal/oscillator ’ ’ - - -
circuit. Voo and .)
«—p TTP2PORH
T
PR aanal ¢ Reset | EXeciion
. . TroR2vDDV
Trip Point

TABLE 6: RESETTIME DUE TO OSCILLATOR

Clock Frequency
32kHz | 1MHz | 2MHz | 4 MHz | 8 MHz 10MHz | 16 MHz | 20 MHz | 25 MHz
1024 Tosc 32 ms 1.0ms |[512us [256us |128pus (1024 ps 64 us 512us |41us

© 1995 Microchip Technology Inc. DS00607A-page 2-51

AN607

FIGURE 10: MAXIMUM POWER-UP TIME, MCLR TIED TO Voo (PIC16C5X, PIC16CXX, PIC17CXX)

Voo and MCLR . :
POR signal V/A .
¢ . Reset e Execution

Tror2voDv

FIGURE 11: MAXIMUM POWER-UP TIME, MCLR NOT TIED TO Voo (PIC16CXX)

Minimum POR Trip Point

Vob \
MCLR .
POR signal V///] .
e iy Reset g Execution
: TroRr2vDDV '

FIGURE 12: MAXIMUM POWER-UP TIME, MCLR NOT TIED TO Voo (PIC16C5X AND PIC17CXX)

Voo
MCLR
POR signal V/A . .
sy .‘ ' Reset ' Execution
al al I: ;I‘
. TroRr2voDV '

DS00607A-page 2-52 © 1995 Microchip Technology Inc.

AN607

Oscillator and Resonator Considerations

Oscillators and resonators from different
manufacturers may have different characteristics. The
recommended capacitor selection can be found in
each device’s data sheet. When we do the capacitor
selection, during the oscillator/resonator
characterization, we are currently using devices from
one of several manufacturers. Generally we use
oscillators from either ECS, CTS, FOX or Epson, and
ceramic resonators from either Murata Erie or
Panasonic. Other manufacturers may be used in the
future, depending on availability and other factors.

Other manufacturers devices may have significantly
different characteristics. To ensure proper oscillator
operation, the circuit should be verified at the lowest
temperature/highest Voo (to ensure that the crystal is
not overdriven), and with the highest
temperature/lowest Voo (to ensure the device still starts
up) that the device will be subjected to while in the
application. This ensures a stable start-up and
frequency for this device, at the extreme conditions of
the application.

For production purposes, the above testing should be
done with many different samples of the components
selected. This is so the part to part variation of the
capacitors, resistors, crystals/resonators, and
PIC16/17 devices are taken into account. All PIC16/17
final data sheets supply the characterization
information on the transconductance of the oscillator
(measurement of gain). This information can be used to
check part to part variations of the PIC16/17.

When selecting the crystal, the designer must ensure
that it is a parallel cut type. Failure to use a parallel cut
crystal may cause:

¢ Frequency operation out of the specified range of
the crystal.

¢ Unreliable oscillator start-up.

¢ Device or crystal damage.

RAM and Special Function Register
Initialization

After a successful Power-up Reset, the device will
begin to execute the firmware program. To have
expected operation, ALL RAM should be initialized by
the program. This includes the Special Function
Registers (SFR) and the general purpose data
memory. The use (read) of an uninitialized RAM
location will cause the program to do exactly what you
told it, with the unexpected RAM value. It should not be
expected that all devices will power-up with the same
uninitialized device values.

There are many factors that contribute to how a RAM
cell powers up, but the most common “gotcha” is
between the Windowed and OTP device types. Many
times a user forgets to cover the window after erasing
the Windowed device. When the device is powering up,
and the light is able to shine onto the device die, the
transistor characteristics will shift. This can cause the

device RAM to have a different power-up value than a
device where no light can shine onto the die (OTP or
covered).

Valid Operating Voltage Levels

When the device is operating, the device voitage must
be within the specified Min/Max limits. Operation of the
device outside these limits may cause unexpected
device operation.

One of the primary functional failure modes of a device
is when the applied voltage is lower than the specified
minimum requirement. This functional failure is called
Brown-out. Brown-out causes the program memory not
to be read correctly. For example, the program counter
may be pointing to a MOVE instruction, but the device
reads it as a GOTO instruction (with a random
destination). This can have disastrous affects to the
operation of the application. If brown-out conditions are
possible, the application needs to be protected by
using a brown-out circuit. A brown-out circuit works
with the MCLR pin to put the device in RESET before
the device’s actual voltage violates the minimum limit.

Figure 13 shows a low cost brown-out protection
circuit. The voltage at which the circuit causes a reset
is dependent upon the tolerances of the components.
Figure 14 shows the use of a Dallas Semiconductor
EconoReset. This device monitors the status of the
power supply, and generates a reset when an
out-of-tolerance condition is detected. Motorola also
makes some 3-terminal devices to monitor the power
supply, such as the MC34164, MC34064, MC33064.
Their data sheets should be reviewed to ensure that
the device is suitable for that devices application.

© 1995 Microchip Technology Inc.

DS00607A-page 2-53

ANG607

FIGURE 13: LOW COST BROWN-OUT

PROTECTION CIRCUIT
Voo
Voo
R1
Q1
MCIR
R2
R3 | piciecxx

Note: ~ This brown-out circuit is less
expensive, albeit less accurate.
Transistor Q1 turns off when Voo is
below a certain level such that:

R1

« "t -o7v
Voo i RS

FIGURE 14: VOLTAGE SUPERVISORY CHIP

Vee
DS1233 PIC16/17
RST MCLR
Brown-out and the WDT

The recommended solution for brown-out conditions is
the use of a brown-out circuit. The brown-out circuit will
keep the device in reset until a valid operating voltage
is present. In some applications the additional cost of
the extemal brown-out circuit, can be traded-off with
system recovery from brown-out. Use of the Watchdog
Timer (WDT) can enhance the probability of system
recovery from a brown-out condition.

When using the WDT in brown-out conditions, care
must be taken. Brown-outs may cause an
unrecoverable condition, but with good design practice
the probability of this can be significantly reduced.

During a brown-out, improper program execution can
occur due to an EPROM read failure. This program
execution can also corrupt data memory locations,
which include the Special Function Registers (SFRs).
Corrupting the control registers may cause hardware
conflicts. For example, an input may become an
output. Other conflicts are possible, but the situation is
application dependent.

As the device voltage gets lower, internal logic can
become corrupted. This can include the Program
Counter (PC) value, Stack Pointer and contents, State
machines, Data Memory, etc.

When a valid voltage is returned, the device may be at
an unexpected program location, possibly using
corrupted values. In this situation, the device would not
be expected to operate as intended and could get into
a state that appears locked-up.

For the PIC17C42 in code protected microcontroller
mode, once the Program Counter (PC) exceeds the
32K-word boundary, the device will become locked-up.
The PC can exceed the 32K-word boundary from the
execution of incorrect instructions (due to failure
reading the EPROM) or by the PC becoming corrupted.

If the WDT is to be used to reset the device, care must
be used in structuring the program. Optimally, only one
CLRWDT instruction should be used. This minimizes the
possibility of program execution returning to a loop
which clears the WDT. This loop could then lock-up the
device, since other control registers are corrupted and
the device is not configured as expected. An example
is; if the loop was waiting for an interrupt, but the bit that
enables global interrupts was disabled the device
would no longer respond to the interrupts and would
appear locked-up.

Example 1 shows a simple implementation of using the
WDT reset for system recovery. The program loops,
waiting for a WDT time-out (which clears the TO bit).
After the WDT reset, the TO bit needs to be set (by
executing a CLRWDT instruction). The program should
then initialize the device. Then application code can
start executing. There is a possibility of the TO bit being
corrupted by low voltage, and the device not being in a
reset state when the software initializes the device.

The WDT example in Appendix B: uses a different
method, independent of the TO bit. This uses RAM
locations which get loaded with a value. A WDT
time-out (or other reset) needs to occur. The RAM
locations are verified to contain the same values. Once
the RAM is verified, it is cleared, and the device should
be initialized. These RAM locations can be used by the
application program.

DS00607A-page 2-54

© 1995 Microchip Technology Inc.

ANG607

EXAMPLE 1: USING WDT RESET

org Reset_Address

GOTO TO_TEST ;At any reset,
;jtest the TO bit
org TO_TEST

BTFSC STATUS, TO ;WDT Time-Out?
HERE GOTO HERE ;NO, Wait for TO
Time_Out ;YES, Good Reset

CLRWDT ;Start here

: ;Initialize Device
;Application Code

Faise Power-down

In applications where power is removed from the
device’s supply lines, but voltage is still applied to an
1/0 pin, unexpected operation may occur. Power is able
to be supplied to the device through this I/O pin. Since
the device is still partially powered, the internal logic is
never completely powered down. Figure 15 shows the
general structure of an I/O pin. Figure 16 depicts the
intemal voltage level that is actually applied to some
device logic, versus what is seen at the pin.

To guarantee a Power-on Reset (POR) rising edge, the
device voltage (Vopo) must start from Vss. When the
device is inadvertently powered from an 1/O pin, the
voltage at the Vop pin may appear to be near ground
but may actually be higher in the device. With some of
the internal logic powered, the characteristics of the
device can be similar to a brown-out situation. Similar
design practices to brown-out should be implemented.

A method for protecting the device from being powered
from an 1/O pin is shown in Figure 17.

FIGURE 15: TYPICAL ELECTRICAL
STRUCTURE OF I/O PIN

Voo
o —
N
Vss Vss I
RiN
Input
Buffer

FIGURE 16: FALSE POWER-DOWN

5V
Voo (Intemal) 3V - Vrn
Extornay
5V
Input to I/O pin 3V
FIGURE 17: POWERED INPUT
PROTECTION
Vop
PIC16/17
Vce
100 kQ
PoweRep
Vo q— InPUT
BAT 48
ScHotky Diobe

In general, a brown-out detect circuit should cause the
PIC16/17 to RESET (MCLR forced low). This ensures
that the internal logic is in a known state until a valid
device voltage level is reached. The actual brown-out
circuit depends on the voltage range of the device and
the application requirements. A comprehensive
brown-out circuit would use a dedicated device to
monitor the voltage and force the MCLR pin low when
the voltage becomes lower than specified.

Another case of false power-down situations is when
the power is removed from the system, but the
capacitor loading keeps a non-zero voltage on the Vob
pin. When power is reapplied, the device never
powered down so no power-on-reset will occur. A
simple Brown-out circuit should fix this.

© 1995 Microchip Technology Inc.

DS00607A-page 2-55

AN607

TROUBLESHOOTING

There are several techniques that can be used to
troubleshoot problems related to powering up. First it is
important to try to locate the source of the problem.
These sources could be:

¢ No oscillation on OSC1/0SC2 pins
¢ |Improper/no Program Execution

In cases where there is no oscillation on the
OSC1/0SC2 pins, some of the following should be
tried:

a) Verify that there are good connections/the
components are good.

b) Verify that the crystal/resonator manufacturer is
one that has been tested, if not try other
capacitor values.

c) See if an external clock (from a function
generator) causes device operation to begin.

d) Verify that all components are well grounded.

o) If a scope probe is connected to the oscillator
output, it must be a low capacitance/high
impedance probe. If it is not, the oscillator may
stop.

In cases where program execution is not as expected:

a) Use a minimal program with extemal clock
input.

b) Tie MCLR to ground until solid power is applied
to the device then release MCLR (bring high).

c) Measure Vop rise time to determine if an
external reset circuit is needed, and, if so, what
type of reset circuit should be used.

d) Verify that the device program memory and
configuration fuses are programmed to their
expected states.

The flowchart shown in Figure 18 can be used to
troubleshoot power-up problems. This flowchart is only
intended to be the first level diagnostic in trying to solve
a power-up problem. Many other flowcharts can be
used, depending on the characteristics of the problem
and the set-up of the application.

CONCLUSION

Understanding the criteria for the powering up of a
device will allow you to make better design choices. If
device power-up problems are still encountered, many
techniques can be used to solve the problem.
Appendix B contains example code which can be used
to verify that a device is operating (powered-up
correctly). This eliminates the possibility of the program
as the cause, and allows debug on the hardware.

DS00607A-page 2-56

© 1995 Microchip Technology Inc.

ANG607

FIGURE 18: TROUBLESHOOTING FLOWCHART

Voo
ramp meets
specifications?

No

Yes

Voo
in device
operating
range?

\
Hold MCLR low until Voo valid,
then raise MCLR

Is
clock
present?

Correct
fuse
setting?

Select correct fuse setting l._—>

Check the following:
- OSC Output is not over/under driven

Is clock

at desired - Capacitors are at their proper values Try using an External Clock
frequency? - The Oscillator/Resonator gives the desired value!gm- | (Select Proper Fuse Option |l
equency - The Optional Series Resistor is a Proper Value for External Clock)

- All Components are well grounded

Does
minimal
program work?
(Appendix B)

powering
device prior to
Voo rise?

Suspect device, programmer or circuit ‘———»

Isolate device pins from voltage | r Suspect software |

! {

© 1995 Microchip Technology Inc. DS00607A-page 2-57

ANG607

APPENDIX A:Q & As

Q. When | use a windowed device (JW), my
application works as expected. When | pro-
gram an OTP device, it no longer works as
expected. Why is this?

A. The silicon is the same between the OTP and
windowed devices. If the windowed device’s
window is not covered (with black tape), light
shines onto the silicon. The light causes the
potential levels of gates to shift. This in tum can
cause RAM to be initialized to an unknown state,
which could be different than in the OTP device.
If RAM is not initialized by the program before it
is used, these different power-up states of the
RAM could be the cause of the problem. Ensure
that all RAM is initialized in the device. This
includes the SFRs.

Q. My oscillator is not oscillating, what could be
wrong?

A. There are several possibilities, some which
include:
1. The wrong oscillator fuse setting is
selected. The erased (default) state is RC
oscillator mode.

2. The wrong capacitor values are installed.
Refer to the most current data sheet for
recommended values.

3. The characteristics of your manufacturers
crystal are different than those that are
characterized by Microchip. Generally our
tests have been done with one of the

following manufacturers’ crystals/
resonators: ECS, FOX, Murata Erie, or
Panasonic.

4. The external connections to the device are
wrong. Verify that all connections to the
device are correct and that good signals /
levels are being applied.

5. The cut of the crystal is a series type, as
opposed to the specified parallel type.

6. No bypassing capacitors were used on the
device. The noise on Vop could be
affecting the oscillator circuitry.

Q. The device was powered-down and then pow-

ered back up, but the device does not oper-
ate. What could be wrong.

Possibilities include:

1. |f power was applied to an /O pin when the
device was “powered-down”, the device
would be powered through the /O pin. The
intemal logic is not actually
powered-down, and Power-on Reset
(POR) will not occur.

2. When Voo was powered-down, Voo was
not given enough time to settle to OV.

3. The Vop ramp rate is too slow.

My oscillator is oscillating, but the device is
not working. What could be wrong?

There are several possibilities, some which

include:

1. Slow Voo rise time, which was too slow to
cause a Power-on Reset (POR). The rise
time should not exceed the minimum
device specification. For most devices this
is 0.05 V/ms. Also the device must be at
the minimum operating Voo of the
processor when reset is exited.

2. Ensure that the MCLR pin is not low. This
holds the device in RESET.

3. A brown-out has occurred, and has
corrupted the internal state machines
(including the WDT). An external
brown-out circuit is recommended to hold
the device in RESET during the brown-out
condition.

4. The CLRWDT instruction is not being used
(often enough) when the WDT is enabled.

When | power-up the device, it does not oper-
ate and it gets hot.

Your design is probably permitting fast high
voltage signals (spike) onto one of the device
pins. This sudden high voltage (and associated
current) is in excess of the protection diode limit.
The device must be powered-down (to Vss) to
release this condition. This condition may cause
a functional failure or affect device reliability.

All Microchip devices meet or exceed the Human
Body Model (HBM) and Machine Model (MM) for
ESD and latch-up.

DS00607A-page 2-58

©.1995 Microchip Technology Inc.

AN607

Q. My oscillator is oscillating, but not at the
expected frequency. What could be wrong.

A. For many designers, working with oscillators and
their related issues are a “black magic”, since the
characteristics can vary widely between
manufacturers. | suggest that you read all the
application notes that we have available on
oscillators. Some quick possibilities are:

1. The cut of the crystal is a series type, as
opposed to the specified parallel type.

2. No bypassing capacitors were used on the
device. The noise on Vob could affect the
oscillator circuitry.

3. The capacitor values used are causing the
oscillator to operate in one of the harmonic
frequencies.

Note: This is not an all inclusive list. You
may need to investigate other design
aspects.

Q. The device seems to never exit reset, or is
continually resetting.

A. The CLRWDT instruction is not being used (often
enough) when the WDT is enabled.

Q. The device was powered-down and back up
again, but it does not reset. It just starts
operating immediately.

A. Possibilities include:

1. If power was applied to an I/O pin when
the device was “powered-down”, the
device would be powered through the I/O
pin. The intemal logic is not actually
powered-down, and a Power-on Reset
(POR) will not occur.

2. When Voo was powered down, Voo was
not given enough time to settle to OV.

Q. The oscillator is operating (I check it with a
scope), yet when | look at other pins the
program is not executing. Why?

A. One possible reason is that when the oscillo-
scope probe is placed on the OSC2 pin, the
additional capacitance is enough to cause
oscillation to start. Removing the capacitive load
of the probe causes the oscillation to stop.

© 1995 Microchip Technology Inc. DS00607A-page 2-59

AN607

APPENDIX B: TEST PROGRAMS
PIC16C5X BIT TOGGLE

MPASM 01.02.04 Intermediate C5X_BOT.ASM 12-20-1994 9:25:7 PAGE 1
LOC OBJECT CODE LINE SOURCE TEXT
VALUE
0001 LIST P = 16C54, F = INHX8M, n = 66
0002 ;
0003 ;ﬁ*ﬁﬁﬁt****h**ltiiﬁﬁﬂ*kﬁﬁ*ﬁ*'****ﬁﬁﬁ'ﬁﬁ*ﬁ*ﬂ*'*Qﬁﬁ*ﬁ***tﬁﬂﬁ*'*'*iﬁﬁ*ttﬁﬁ**ﬁkt*t*
0004 ;
0005 ; This program is a minimam program to toggle a single I/O port pin for the
0006 ; 16C5x family of devices. The only initialization is that of the data
0007 ; direction register (TRIS) of the I/O pin and the Toggling of the pin.
0008 ; The waveform will be 1 unit high and 3 units low.
0009 ;
0010 ; Program: C5X_BOT.ASM
0011 ; Revision Date: 12-20-94
0012 ;
0013 ;ﬁ*#b***ﬁ***Q*h******ﬁ***ﬁ*ﬁitﬁﬁﬁ*ﬁ#*iﬁﬁﬁﬁi*********tﬁ*tﬁt*ﬁﬁ*i****a*t*kﬁiiiﬁtﬁ
0014 ;
0015 ;
0016 ; HARDWARE SETUP
0017 ; None
0018 ;
0019 ;
0020 INCLUDE <pl6C5x.inc>
0002 ; P16C5X.INC Standard Header File, Version 0.1 Microchip Technology, Inc.
0020
0021 ;
OFF9 0022 _.FUSES (_CP_OFF & _WDT_OFF & _XT_OSC)
ggg: ;tiﬁiﬁi‘t**ﬁ**iiﬁittiﬁ*-ﬁtﬁ*ﬁ*ﬂﬁ*tt****ﬁ****ﬁ****t"t*k****h****ﬂt*iﬁ*ﬁﬁﬁ'*ﬁk****
0025 ;***xx Start program here.
0026 ;% *kkkkkodeok ek ke ko kb ok ok ok ke ke k ok R ok Rk Rk Rk kb ok R kR Rk Rk R Rk Rk
0027 ;
0000 0028 START ; POWER_ON Reset (Beginning of program)
0000 0063 0029 CLRF STATUS ; Do initialization (Bank 0)
0001 0c00 0030 MOVLW 0x00 ; Specify value for PortB output latch
0002 0026 0031 MOVWF PORTB i
0003 0C00 0032 MOVLW 0x00 ; Specify which PortB pins are inputs / outputs
0004 0006 0033 TRIS PORTB i
0034 ;
0005 0506 0035 1lzz BSF PORTB, 0 ; BO is High
0006 0406 0036 BCF PORTB, 0 ; BO is Low
0007 0AO5 0037 GOTO lzz ; Loop
0038 ;
0039 ;
0040
0041 ;
0042 ; Reset address. Determine type of RESET
0043 ;
0044 IFDEF —.16C54
01FF 0045 RESET_V EQU OxX1FF
0046 ENDIF
0047 ;
0048 IFDEF —.l6cs4a
0049 RESET_V EQU OX1FF
0050 ENDIF
0051 ;
0052 IFDEF __16C55
0053 RESET_V EQU OX1FF
0054 ENDIF
0055 ;
0056 IFDEF _lécse
0057 RESET_V EQU OX3FF
0058 ENDIF

DS00607A-page 2-60 © 1995 Microchip Technology Inc.

ANG607

MPASM 01.02.04 Intermediate C5X_BOT.ASM 12-20-1994 9:25:7

LOC OBJECT CODE LINE SOURCE TEXT
VALUE

0059 ;

0060 IFDEF __1l6cs7

0061 RESET_V EQU OXTFF
0062 ENDIF

0063 ;

0064 IFDEF __lecssa

0065 RESET_V EQU OXTFF
0066 ENDIF

0067 ;

O1FE 0068 PROG_MEM_END EQU RESET_V

0069 ;

0070 ;

0071 org PROG_MEM_END
01FE OBFE 0072 ERR_LP_1 GOTO ERR_LP_1

0073 ;

0074 org RESET_V
01FF 0A00 0075 R_VECTOR GOTO START

0076 ;

0077 ;

0078 end

0079

0080

0081

MEMORY USAGE MAP (‘X' = Used, ‘-’ = Unused)

0000 : XXXXXXXX---~===— e e EE SRR
0040 : ~=-——-——mmmmmm e e e e EE R

End of Program Memory
If you get here your program was lost

RESET vector location

0180
01co

All other memory blocks unused.

Errors : 4]
Warnings : 0
Messages : 0

© 1995 Microchip Technology Inc.

DS00607A-page 2-61

ANG607

PIC16CXX BIT TOGGLE

MPASM 01.02.04 Intermediate CXX_BOT.ASM 12-20-1994 10:18:22 PAGE 1
LOC OBJECT CODE LINE SOURCE TEXT
VALUE
0001 LIST P = 16C74, F = INHX8M, n = 66
0002 ;
0003 ;ﬁ**ﬁ*ﬁ*****k******w*ﬁﬁ*t*ﬁtﬁ********ﬁﬁ*********ﬁ*ﬁ********ﬁ***ﬁ****ﬁ**ﬁ***ﬁtﬁ*
0004 ;
0005 ; This program is a minimam program to toggle a single I/O port pin for the
0006 ; 16Cxx family of devices. The only initialization is that of the data
0007 ; direction register (TRIS) of the I/O pin and the Toggling of the pin.
0008 ; The waveform will be 1 unit high and 3 units low.
0009 ;
0010 ; Program: CXX_BOT.ASM
0011 ; Revision Date: 12-20-94
0012 ;
0013 ;Qﬁﬁﬁi'ﬂiktittﬁiﬁﬁﬁiﬁﬁﬂﬁtﬁﬁi*-ﬁ‘tiit-ﬁi*ﬁ*ﬁﬁﬁﬁii**i-***i*'ﬁiliit*ﬁ*ii*iiiﬁ*iiiiiﬁtﬁﬁ
0014 ;
0015 ;
0016 ; HARDWARE SETUP
0017 ; None
0018 ;
0019 ;
0020 INCLUDE <pl6Cxx.inec>
0002 ; P16CXX.INC Standard Header File, Version 0.2 Microchip Technology, Inc.
0020
0021 ;
3FF9 0022 __FUSES (_CP_OFF & _WDT_OFF & _XT_OSC & _PWDT_ON)
0023 ;
0024 ;h*hdksddkhkkkokhkhokkkdek ok ok ke ke k ok dok ke ko ko k ke k ke ke k Ak ko ko kk ke k ok k k ko k ek ke
0025 ;**xwx Start program here.
0026 ;*Q**ﬁ*****************'*******w*****ﬁﬁ*k*********ﬁ****k'*****ﬁ**h**ﬁ**ﬁ*ﬁ****ﬁ
0027 ;
0000 0028 START ; POWER_ON Reset (Beginning of program)
0000 0183 0029 CLRF STATUS ; Do initialization (Bank 0)
0001 3000 0030 MOVLW 0x00 ; Specify value for PortB output latch
0002 0086 0031 MOVWF PORTB H
0003 1683 0032 BSF STATUS, RPO ; Bank 1
0004 3000 0033 MOVLW 0x00 ; Specify which PortB pins are inputs / outputs
0005 0086 0034 MOVWF TRISB :
0006 1283 0035 BCF STATUS, RPO ; Bank 0
0036 ;
0007 1406 0037 1lzz BSF PORTB, 0 ; BO is High
0008 1006 0038 BCF PORTB, 0 ;i BO is Low
0009 2807 0039 GOTO lzz ; Loop
0040 ;
0041 ;
0042
0043 ;
0044 ; End of Program Memory
0045 ;
0046 IFDEF __16C71
0047 PROG_MEM_END EQU O0x3FF
0048 ENDIF
0049 ;
0050 IFDEF __16C71A
0051 PROG_MEM_END EQU Ox3FF
0052 ENDIF
0053 ;
0054 IFDEF _16c73
0055 PROG_MEM_END EQU OxXFFF
0056 ENDIF

DS00607A-page 2-62 © 1995 Microchip Technology Inc.

AN607

PAGE 2

End of Program Memory
If you get here your program was lost

0057 ;
MPASM 01.02.04 Intermediate CXX_BOT.ASM 12-20-1994 10:18:22
LOC OBJECT CODE LINE SOURCE TEXT
VALUE
0058 IFDEF __16C74
OFFF 0059 PROG_MEM_END EQU OXFFF
0060 ENDIF
0061 ;
0062 IFDEF __le6cél
0063 PROG_MEM_END EQU OxX3FF
0064 ENDIF
0065 ;
0066 IFDEF __16ce3
0067 PROG_MEM_END EQU 0x7FF
0068 ENDIF
0069 ;
0070 IFDEF __lé6ce4
0071 PROG_MEM_END EQU O0xXT7FF
0072 ENDIF
0073 ;
0074 IFDEF __16C65
0075 PROG_MEM_END EQU OXFFF
0076 ENDIF
0077 ;
0078 IFDEF __lecs4
0079 PROG_MEM_END EQU 0x3FF
0080 ENDIF
0081 ;
0082 IFDEF __l6cs4a
0083 PROG_MEM_END EQU Ox3FF
0084 ENDIF
0085 ;
0086 ;
0087 org PROG_MEM_END
OFFF 2FFF 0088 ERR_LP_1 GOTO ERR_LP_1
0089 ;
0090 ;
0091 end
0092
0093
0094
0095
MEMORY USAGE MAP (‘'X’ = Used, ‘-’ = Unused)
0000 : XXXXXXXXXX -
0040 :
OF80 :
0FCO : -X
All other memory blocks unused.

Errors
Warnings
Messages

coo

© 1995 Microchip Technology Inc.

DS00607A-page 2-63

AN607

PIC17CXX BIT TOGGLE

MPASM 01.02.04 Intermediate P17_BOT.ASM 12-19-1994 17:15:3 PAGE 1
LOC OBJECT CODE LINE SOURCE TEXT
VALUE
0001 LIST P = 17Cc42, F = INHX32, n = 66
0002 ;
0003 ;*****kﬁ**t****n*ﬁ**k*ﬁﬁﬁﬁ'kﬁi***ﬁﬂﬂ*ﬁ*ﬁ#ﬁﬁkﬁiQ*iﬁ&ﬁh**ﬁ**ﬁ*.ﬁ****ﬁ****OJ*Q**QQ*
0004 ;
0005 ; This program is a minimam program to toggle a single I/O port pin for the
0006 ; 17Cxx family of devices. The only initialization is that of the data
: 0007 ; direction register (TRIS) of the I/O pin and the Toggling of the pin.
: 0008 ; The waveform will be 1 unit high and 1 unit low.
| 0009 ;
| 0010 ; Program: P17_BOT.ASM
0011 ; Revision Date: 12-20-94
0012 ;
0013 ;Q***\h*ﬂﬁ*Q*‘hﬁ*ﬁﬁ***i*********i*ﬁ*********t****k*i***kﬁ*k**ﬁ**k*ﬁi***ﬁ'ﬁ***i*tk
0014 ;
0015 ;
0016 ; HARDWARE SETUP
0017 ; None
0018 ;
0019 ;
0020 INCLUDE <pl7Cxx.inc>
0002 ; P17CXX.INC Standard Header File, Version 0.2 Microchip Technology, Inc.
0020
0021 ;
FFE2 0022 __FUSES (_MC_MODE & _WDT_NORM & _XT_OSC)
0023 ;
0824 ;****‘(*ﬁ*\i**ﬁﬁ*****‘(****ﬁ***ﬁ*ﬁ**k******kﬁ*****ﬁ****ﬁkﬁ**ﬁﬁi***ﬁ*ﬂ**tt«ﬁtﬁﬁﬁ**ﬁ
0025 ;**¥*x Start program here.
[R R R R e S S P
0027 ;
0000 0028 START ; POWER_ON Reset (Beginning of program)
0000 2904 0029 CLRF ALUSTA ; Do initialization
0001 290F 0030 CLRF BSR ; Bank 0
0002 BOOO 0031 MOVLW 0x00 ; Specify value for PortB output latch
0003 0112 0032 MOVWF PORTB H
0004 BOOO 0033 MOVLW 0x00 ; Specify which PortB pins are inputs / outputs
0005 0111 0034 MOVWF DDRB H
0035 ;
0006 3812 0036 1lzz BTG PORTB, 0 ; Toggle level on BO
0007 €006 0037 GOTO lzz ; Loop
0038 ;
0039 ;
0040
0041 ;
0042 ; End of Program Memory
0043 ;
0044 IFDEF 17c42
07FF 0045 PROG_MEM_END EQU Ox7FF
0046 ENDIF
0047 ;
0048 ;
0049 org PROG_MEM_END ; End of Program Memory
07FF CT7FF 0050 ERR_LP_1 GOTO ERR_LP_1 ; If you get here your program was lost
0051 ;
0052 ;
0053 end
0054
0055
MEMORY USAGE MAP ('X’ = Used, ‘-’ = Unused)
0000 : XXXXXXXX: - -
0040 : —m——mmeem—m—ee e e ——— -
0780 : -
07¢c0 - - ——— X

All other memory blocks unused.

Errors : 0
Warnings : 0
Messages : [}

DS00607A-page 2-64 © 1995 Microchip Technology Inc.

ANG607

WDT RESET WITH

MPASM 01.20 Released

LOC OBJECT CODE LINE
VALUE

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
0001 00027
0000 00028
00029
0001 00030
00031
00032
00033
00102
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00001
00002
00298
FEOO FFE2 00047
00048
00049
00050
00051
00052
00053
00054
00029
00055
00116
00056
00057
00058
00059
00060
00061
0000 00062
00063
00064
00065
00066
00067
00068

RAM VERIFY

BO_RAMT .ASM 6-30-1995 16:04:36 PAGE 1

SOURCE TEXT

LIST P = 17c44, F = INHX32, n = 66
; This program is a minimum program to recover from a brown-out condition, thru
; the use of the WDT. The method is to load RAM locations with a known value
; and compare these locations after any RESET. If the RAM location matches the
; expected value then program flow can continue. The longer this RAM string
; is, the greater the probability that the RAM would NOT power up in that state.
i
i
; NOTE: This does not Guarantee device recovery, Due to the random start-up
; point after brown-out. This point could be a loop with a CLRWDT
; instruction. The recommended solution is to always use a brown-out
i circuit.
H
H Program: BO_RAMT .ASM
i Revision Date: 06-29-95
AR AR AR R AR ARk bk
i
i
; HARDWARE SETUP
H None
i
i
TRUE EQU 1
FALSE EQU 0
i
Debug EQU TRUE
#define __CONFIG __FUSES
H
INCLUDE <DEV_FAM.inc>
list
i
if (P16C5X)
INCLUDE <pl6C5x.inc>
__CONFIG (_CP_OFF & _WDT_ON & _XT_OSC)
endif
H
if (P16CXX)
INCLUDE <pl6Cxx.inc>
__CONFIG (_CP_OFF & _WDT _ON & _XT OSC & _PWRTE_ON
endif
i
if (P17CXX)
INCLUDE <pl7Cxx.inc>
LIST
; P17CXX.INC Standard Header File, Version 2.01 Microchip Technology, Inc.
LIST
__CONFIG (_MC_MODE & _WDT_NORM & _XT_OSC)
endif
i
if (P16C5X + P16CXX + P17CXX != 1)
MESSG "WARNING - USER DEFINED: One and only one device family can be selected"
endif
i
INCLUDE <BO_RAMT.inc>
list
INCLUDE <PMEM_END. inc>
list

J R KRRk Rk ok ko ko ko kb ok ok ok ok ok ok ko kR ok ok Kk kR kK ok ko ok ok ko ok ko Kk bk ok ok ko k ko kK

jREEHK Start program here.
B

org Reset_Address

H ; in the LIST directive
if (P16C5X)
org Oh ; Override the start of this code.
CLRF STATUS ; Force program memory to Page 0
CLRF FSR ; Force Data Memory to Bank 0
endif

© 1995 Microchip Technology Inc. DS00607A-page 2-65

AN607

0000 2903
0001 290F

0002 c100

0100
0100
0100
0101
0102
0103

BOAS
0520
9204
Cc110

0104
0105
0106
0107

BOOF
0521
9204
Cc110

0108
0109
010A
010B

BOSA
0522
9204
c110

010c
010D

2920
2921

010E 2922

010F C117
0110
0110
0111
0112
0113

BOAS
0120
BOOF
0121

0114
0115

BO5A
0122

0116
0117
0117

Cl1le

0004

00069 ;

00070 if (P16CXX)

00071 CLRF PCLATH
00072 CLRF STATUS
00073 endif

00074 ;

00075 if (P17CXX)

00076 CLRF PCLATH, F
00077 CLRF BSR, F
00078 endif

00079 ;

00080 GOTO RAM_TEST
00081

00082 ;

00083 ;

00084 ; occurs. That is,
00085 ;

00086 ;

00087 ;

00088 ;

00089 ;

00090 org MAIN

00091 RAM_TEST

00092 MOVLW BYTE_0
00093 SUBWF RAMO, F
00094 BTFSS STATUS, Z
00095 GOTO LD_RAM
00096 ;

00097 MOVLW BYTE_1
00098 SUBWF RAM1, F
00099 BTFSS STATUS, Z
00100 GOTO LD_RAM
00101 ;

00102 ;

00103 ;

00104 ;

00105 MOVLW BYTE_n
00106 SUBWF RAMn, F
00107 BTFSS STATUS, Z
00108 GOTO LD_RAM
00109 ;

00110 if (Pléc5X || P16Cxx)
00111 CLRF RAMO
00112 CLRF RAM1
00113 ; :

00114 ; :

00115 CLRF RAMn
00116 endif

00117 ;

00118 ;

00119 if (P17CXX)

00120 CLRF RAMO, F
00121 CLRF RAM1, F
00122 ; 3

00123 ; H

00124 CLRF RAMn, F
00125 endif

00126 ;

00127 GOTO Time_Out
00128

00129 LD_RAM

00130 MOVLW BYTE_O
00131 MOVWF RAMO
00132 MOVLW BYTE_1
00133 MOVWF RAM1
00134 ; H

00135 MOVLW BYTE_n
00136 MOVWF RAMn
00137 ;

00138 HERE GOTO HERE
00139 Time_oOut

00140 CLRWDT

00141 ; H

00142 ; H

00143 ;

00144 if (Debug)

00145 if (P16C5X)
00146 CLRF PORTB
00147 MOVLW 0x00
00148 TRIS PORTB
00149 BCF PORTB,
00150 BSF PORTB,
00151 endif

i
i

Force program memory to Page 0
Force Data Memory to Bank 0

Force program memory to Page 0O

Force Peripheral / GP

At any reset,
test the RAM

Data Memory to Bank 0

In RAM_TEST, program execution is held-off until a valid "warm" reset

the contents of some RAM locations retain the

values that were writen to them. The probability that the RAM would power-up
in that state is dependent on the number of bytes of RAM used. The

more RAM, the less the probability (probability =1 / (2 ** 8(N+l)).

In Program Memory Page 0

Result = 07?
NO, Load Ram

YES, Check next
location

Result = 0?

NO, Load RAM

YES, Do Again

YES, Check nth
location

Result = 02

NO, Load RAM

YES, Time-out
occured, clear
RAM locations

YES, Time-out
occured, clear
RAM locations

Initialize Device

Load RAM
locations to
compare against

Wait for WDT TO

YES, Good Reset
Start here

Initialze Device
Application Code

PORTB output latch is
Port B is output

Toggle pin BO

cleared

DS00607A-page 2-66

© 1995 Microchip Technology Inc.

ANG607

PORTB output latch is cleared
Bank 1

Port B is output

Bank 0

Toggle pin BO

PORTB output latch is cleared
Port B is output

Toggle pin BO

Return to start of Program

End of Program Memory

If you get here your program was lost

This will cause the Program memory rollover
for PIC16C5x devices

00152 ;
00153 if (P16CXX)
00154 CLRF PORTB
00155 BSF STATUS, RPO
00156 CLRF TRISB
00157 BCF STATUS, RPO
00158 BCF PORTB, O
00159 BSF PORTB, O
00160 endif
00161 ;
00162 if (P17CXX)
0118 2912 00163 CLRF PORTB, F
0119 2911 00164 CLRF DDRB, F
011A 8812 00165 BCF PORTB, 0
011B 8012 00166 BSF PORTB, 0
A ndiE
00168 endif
00169 ;
011ic c117 00170 GOTO Time_Out
00171 ;
1FFF 00172 org PROG_MEM_END
1FFF 00173 ERR_LP_1
1FFF DFFF 00174 GOTO ERR_LP_1
00175 ;
00176 if (Plec5X)
00177 NOP
00178
00179 endif
00180 ;
00181 ;
00182 end
MEMORY USAGE MAP ('X' = Used, '~' = Unused)
0000
0040
0100 : XXXXXXXXXXXX. X XXXXXXXXXXXKK~== ==m=m -
0140 :
1F80 : -
1FCO :
FEOO :
FE40 :

All other memory blocks unused.

Errors : 0
Warnings : 0
Messages : 0

© 1995 Microchip Technology Inc.

DS00607A-page 2-67

AN607

NOTES:

DS00607A-page 2-68 © 1995 Microchip Technology Inc.

MIcCRoOCHIP

ANG611

Resistance and Capacitance Meter Using a PIC16C622

Author: Rodger Richey
Logic Products Division

INTRODUCTION

The PIC16C62X devices create a new branch in
Microchip’s PIC16CXX 8-bit microcontroller family by
incorporating two analog comparators and a variable
voltage reference on-chip. The comparators feature
programmable input multiplexing from device inputs
and an internal voltage reference. The intemal voltage
reference has two ranges, each capable of 16 distinct
voltage levsls. Typical applications such as appliance
controllers or low-power remote sensors can now be
implemented using fewer external components thus
reducing cost and power consumption. The 18-pin
SOIC or 20-pin SSOP packages are ideal for designs
having size constraints.

The PIC16C62X family includes some familiar
PIC16CXX features such as:

« 8-bit timer/counter with 8-bit prescaler

¢ PORTB interrupt on change

¢ 13 /O pins

¢ Program and Data Memory

. Data
Device Program Memory Memory
PIC16C620 512x 14 80x8
PIC16C621 1Kx 14 80x8
PIC16C622 2Kx 14 128x8

This family of devices also introduce on-chip brown-out
detect circuitry and a filter on the reset input (MCLR) to
the PIC16CXX mid-range microcontroliers. Brown-out
Detect holds the device in reset while VDD is below the
Brown-out Detect voltage of 4.0V, £ 0.2V. The reset
filter is used to filter out glitches on the MCLR pin.

This application note will describe:

* Comparator module
- operation
- initialization
- outputs
* Voltage Reference module
- operation
- initialization
- outputs
¢ Linear slope integrating Analog to Digital
conversion techniques
- advantages
- disadvantages
¢ Overview of the application circuit

* Detailed description of the measurement
techniques used in the application circuit

© 1995 Microchip Technology Inc.

DS00611A-page 2-69

AN611

COMPARATOR MODULE also be selected as an input to the comparators. The
Comparator Control Register (CMCON) controls the

The comparator module contains two analog operation of the comparator and contains the compar-

comparators with eight modes of operation. The inputs ator output bits. Figure 1 shows the CMCON register.

to the comparators are multiplexed with the RAO
through RA3 pins. The on-chip voltage reference can

FIGURE 1: CMCON REGISTER

R R U U RWRW RW RW
|conT|c1OUT| . | B] CIS|CM2|CM1|CMO|
bit7 bito

Register: CMCON| R: Readable &
Address: 1Fh W: Writable

POR Value: 00h U: Unimplemented,
read as ‘0’

CM<2:0>: Comparator mode
See Figures 3 through 10.
CIS: Comparator Input Switch
When CM<2:0>= 001:

1= C1 VIN- connects to RA3
0 = C1 VIN—connects to RAO

When CM<2:0>= 010:

1= C1 VIN- connects to RA3,
C2 VIN- connects to RA2,

0= C1 VIN—connects to RAO,
C2 VIN- connects to RA1

C10UT: Comparator 1 output

1= C1VIN+ > C1 VIN-
0= C1VIN+ <C1 VIN-

C20UT: Comparator 2 output

1= C2VIN+ > C2 VIN-
0= C2VIN+ < C2 VIN—

DS00611A-page 2-70

© 1995 Microchip Technology Inc.

ANG611

A single comparator is shown in Figure 2. The
relationship between the inputs and the output is also
shown. When the voltage at VIN+ is less than the
voltage at VIN-, the output of the comparator is at a
digital low level. When the voltage at VIN+ is greater
than the voltage at VIN-, the output of the comparator
is at a digital high level. The shaded areas of the
comparator output waveform represent the uncertainty
due to input offsets and response time.

FIGURE 2: SINGLE COMPARATOR

VIN+

Output

VIN—- -

o — M KN T

FIGURE 3: COMPARATORS RESET

A VIN-
RAO/ANO ci Off

A ViNe | (Read as '0")
RA3/AN3

A VIN- [
RA1/AN1 c off

A VNG| 2 (Read as '0")
RA2/AN2

CM<2:0> = 000

The TRISA register controls the /O direction of the
PORTA pins regardless of the comparator mode. If the
comparator mode configures a pin as an analog input
and the TRISA register configures that pin as an
output, the contents of the PORTA data latch are
placed on the pin. The value at the pin, which can be a
digital high or low voltage, then becomes the input
signal to the comparators. This technique is useful to
check the functionality of the application circuit and the
comparator module.

Comparator Operating Modes

The analog inputs to the comparator module must be
between Vss and VbD and one input must be in the
Common Mode Range (CMR). The CMR is defined as
VDD-1.5 volt to Vss. The output of a comparator will
default to a high level if both inputs are outside of the
CMR. If the input voltage deviates above VDD or below
Vss by more than 0.6 volt, the microcontroller may
draw excessive current. A maximum source
impedance to the comparators of 10kQ is
recommended. Figure 3 through Figure 10 show the
eight modes of operation.

The Comparators Reset Mode (Figure 3) is considered
the lowest power mode because the comparators are
turned off and RAO through RA3 are analog inputs. The
comparator module defaults to this mode on Power-on
Reset.

FIGURE 4: COMPARATORS OFF

D
RAO/ANO Off

D (Read as '0)
RA3/AN3
RA1/AN1 Oft

D (Read as '0')
RA2/AN2

CM<2:0> = 111

The Comparators Off Mode (Figure 4) is the same as
the Comparators Reset Mode except that RAO through
RA3 are digital I/O. This mode may consume more
current if RAO through RA3 are configured as inputs
and the pins are left floating.

FIGURE5: TWO INDEPENDENT

COMPARATORS

A VIN- TS
RADANO ™ e CI Cc10UT
RA3/AN3 — — %

A VIN- >
RA1/AN1 | C20UT
RA2/AN2 *

CM<2:0> = 100

The Two Independent Comparators Mode (Figure 5)
enables both comparators to operate independently.

© 1995 Microchip Technology Inc.

DS00611A-page 2-71

ANG611

FIGURE 6: FOUR INPUTS MULTIPLEXED -
TOTWO COMPARATORS

A
RAO/ANO ™——° yi\-

AT
RA3/ANS =2 vin| CI ciouT

A
RA1/AN1 — * -
RAZ/AN2 22— lns , 2 c20uT

From VREF Module
CM<2:0> =010

The Four Inputs Multiplexed to Two Comparators Mode
(Figure 6) allows two inputs into the VIN- pin of each
comparator. The intemal voltage reference is
connected to the VIN+ pin input of each comparator.
The CIS bit, CMCON<3>, controls the input
multiplexing to the VIN- pin of each comparator.
Table 1 shows this relationship.

TABLE1: COMPARATOR INPUT
MULTIPLEXING
cis C1VIN- C2VIN-
0 RAO RA1
1 RA3 RA2

FIGURE7: TWO COMMON REFERENCE

COMPARATORS
A VIN- [
RAVANO™ ™ | C C10UT
RA3/AN3 — — 1%
RA1/AN{ e
Vne| €2 C20UT
RA2/AN2 +
CM<2:0> =011

The Two Common Reference Comparators Mode
(Figure 7) configures the comparators such that the
signal present on RA2 is connected to the VIN+ pin of
each comparator. RA3 is configured as a digital I/O pin.

FIGURE 8: TWO COMMON REFERENCE
COMPARATORS WITH
OUTPUTS

A
RAO/ANO

RA3/ANS3 _D—l_

RA1/AN1

A
RA2/AN2
Open Drain
RA4

c10UT

VIN-

yne|, C2 Cc20UT

CM<2:0> = 110

The Two Common Reference Comparators with
Outputs Mode (Figure 8) connects the outputs of the
comparators to an /O pin. These outputs are digital
outputs only with RA3 defined as a CMOS output and
RA4 defined as an open drain output. RA4 requires a
pull-up resistor to function properly. The value of
resistance used for the pull-up will affect the response
time of comparator C2. The signal present on RA2 is
connected to the VIN+ pin of both comparators.

FIGURE 9: ONE INDEPENDENT

COMPARATOR

D VIN- [
RAO/ANO ci Off

D N+ (Read as '0")
RAZ/AN3 — — 2

A VIN- [
RAT/AN1 VIN+ c2 C20UT
RA2/AN2 +

CM<2:0> = 101

The One Independent Comparator Mode (Figure 9)
turns comparator C1 off making both RAO and RA3
digital /0. Comparator C2 is operational with analog
inputs from RA1 and RA2.

DS00611A-page 2-72

© 1995 Microchip Technology Inc.

AN611

FIGURE 10: THREE INPUTS MULTIPLEXED

TOTWO COMPARATORS
A CIS=0
RAO/ANO — —® "viN-
A CIS=1
RA3/AN3 — * VNG| C1 Cc10UT
VIN- [
RA1/AN1 | 2 C20UT
RA2/AN2 +
CM<2:0> =001

The Three Inputs Multiplexed to Two Comparators
Mode (Figure 10) connects the VIN+ pin of each
comparator to RA2. The VIN- pin of comparator 2 is
connected to RA1. The CIS bit, CMCON<3>, controls
the input to the VIN- pin of comparator 1. If CIS = 0,
then RAO is connected to the VIN- pin. Otherwise RA3
is connected to the VIN- pin of comparator 1.

Clearing the Comparator Interrupt Flag

The comparator interrupt flag, CMIF, is located in the
PIR1 register. This flag must be cleared after changing
comparator modes. Whenever the comparator mode or
the CIS bit is changed, the CMIF may be set due to the
intemal circuitry switching between modes. Therefore,
comparator interrupts should be disabled before
changing modes. Then, a delay of 10 us should be
used after changing modes to allow the comparator
circuitry to stabilize.

The steps to clear the CMIF flag when changing modes
are as follows:

¢ Change the comparator mode or CIS bit

¢ 10 ps delay

¢ Read the CMCON register to end the “mismatch”
condition

¢ Clear the CMIF bit of the PIR1 register

The value of C10UT and C20UT are intemally latched
on every read of the CMCON register. The current
values of C10UT and C20UT are compared with the
latched values, and when these values are different a
“mismatch” condition occurs. The CMIF interrupt flag
will not be cleared if the CMCON register has not been
read.

Using the Comparator Module

The CMCON register contains the comparator output
bits C10UT and C20UT, CMCON<7:6>. These bits are
read only. C1OUT and C20UT follow the output of the
comparators and are not synchronized to any intemal
clock edges. Therefore, the firnware will need to
maintain the status of these output bits to determine the
actual change that has occurred. The PIR1 register
contains the comparator interrupt flag CMIF, PIR1<6>.
The CMIF bit is set whenever there is a change in the
output value of either comparator relative to the last
time the CMCON register was read.

When reading the PORTA register, all pins configured
as analog inputs will read as a '0'. Analog levels on any
pin that is defined as a digital input may cause the input
buffer to consume more current than is specified.

The code in Example 1 shows the steps required to
configure the comparator module. RA3 and RA4 are
configured as digital outputs. RA0O and RA1 are
configured as the VIN- inputs to the comparators and
RAZ2 is the VIN+ input to both comparators.

EXAMPLE 1: INITIALIZING THE

COMPARATOR MODULE
CLRF PORTA ;init PORTA
MOVLW 0X03 ; Two Common
MOVWF CMCON ;Reference
;Comparators

;mode selected
;go to Bank 1
;Set RA<2:0> as
;inputs,RA<4:3>
;as outputs

;go to Bank 0
;10pus delay
;read the CMCON

BSF STATUS, RPO
MOVLW 0X07
MOVWF TRISA

BCF STATUS, RP0O
CALL DELAY10
MOVF CMCON, F

BCF PIR1,CMIF ;jclear the CMIF
BSF STATUS,RPO ;jgo to Bank 1
BSF PIE1l,CMIE ;enable compar-
;ator interrupt
BCF STATUS, RPO ;go to Bank 0
BSF INTCON, PEIE ;enable global
BSF INTCON,GIE ;and peripheral

;interrupts

The comparators will remain active if the device is
placed in sleep mode, except for the Comparators Off
Mode (CM<2:0>=111) and Comparators Reset Mode
(CM<2:0>=000). In these modes the comparators are
turned off and are in a low power state. A comparator
interrupt, if enabled, will wake-up the device from sleep
in all modes except Off and Reset.

© 1995 Microchip Technology Inc.

DS00611A-page 2-73

ANG611

Comparator Timings

The comparator module has a response time and a
mode change to output valid timing associated with it.
The response time is defined as the time from when an
input to the comparator changes until the output of that
comparator becomes valid. The response time is faster
when the output of the comparator transitions from a
high level to a low level. The mode change to output
valid time refers to the amount of time it takes for the out-
put of the comparators to become valid after the mode
has changed. The internal voltage reference may con-
tribute some delay if used in conjunction with the com-
parators (see Voltage Reference Settling Time).

FIGURE 11: VRCON REGISTER

VOLTAGE REFERENCE MODULE

The voltage reference is a 16-tap resistor ladder
network that is segmented to provide two ranges of
VREF values. Each range has 16 distinct voltage levels.
The voltage reference has a power-down function to
conserve pcwer when the reference is not being used.
The voltage reference also has the capability to be
connected to RA2 as an output. Figure 11 shows the
Voltage Reference Control Register (VRCON) register
which controls the voltage reference. Figure 12 shows
the block diagram for the voltage reference module.

RW RW RW U RW FVW RW RW
1VREN |VHOE]Vnn | R |VR3 |Vnz [Vm |Vno |
bit7 bit0

VR<3:0>: VREF value selection 0 < VR [3:0] < 15

when VRR = 1: VREF = (VR<3:0>/ 24) * VDD
when VRR = 0: VREF = 1/4 * VDD + (VR<3:0>/ 32 * VDD)

VRR: VREF Range selection

1=Low Range
0=

VROE: VREF Output Enable

1 = VREF is output on RA2 pin
0 = VREF is disconnected from RA2 pin

VREN: VREF Enable

1 = VREF circuit powered on
O =

Register: VRCON | R: Readable

Address: 9Fh W: Writable

POR Value: 00h U: Unimplemented,
: read as ‘0’

High Range

VREF circuit powered down, no IDD drain

FIGURE 12: VOLTAGE REFERENCE BLOCK DIAGRAM

16 stages
VREN ——{>0—-c1 s h N\
&R R R R R
__._/\ (\ (\ LN —4
8R |- vrR
—— VR3
VREF 44— 16-1 analog mux — (from VRCON<3:05)
— VRO

DS00611A-page 2-74

© 1995 Microchip Technology Inc.

ANG611

Using the Voltage Reference

The voltage reference module operates independently
of the comparator module. The output of the voltage
reference may be connected to the RA2 pin at any time
by setting the TRISA<2> bit and the VRCON<6> bit
(VROE). It should be noted that enabling the voltage ref-
erence with an input signal present will increase cur-
rent consumption. Configuring the RA2 pin as a digital
output with the VREF output enabled will also increase
current consumption. The increases in current are
caused by the voltage reference output conflicting with
an input signal or the digital output. The amount of
increased current consumption is dependent on the
setting of VREF and the value of the input signal or the
digital output.

The full range of Vss to VDD cannot be realized due to
the construction of the module (Figure 12). The transis-
tors on the top and bottom of the resistor ladder net-
work keep VREF from approaching Vss or VDD.
Equation 1 and Equation 2 are used to calculate the
output of the voltage reference.

EQUATION 1: VOLTAGE REFERENCE
EQUATION, VRR=1

VREF=(VR<3:0>/24)xVDD |

EQUATION 2: VOLTAGE REFERENCE
EQUATION, VRR=0

VREF=(VDD/4) + (VR<3:05/32)xVDD |

An example of how to configure the voltage reference
is given in Equation 2. The reference is set for an
output voltage of 1.25V at a VDD of 5.0V.

EXAMPLE 2: VOLTAGE REFERENCE
CONFIGURATION

MOVLW 0X02 ;4 Inputs Muxed
MOVWF CMCON ;to 2 comps.
BSF STATUS,RPO0 ;go to Bank 1
MOVLW 0x07 ;RA3-RA0 are
MOVWF TRISA ;outputs
MOVLW 0XA6 ;enable VREF,
MOVWF VRCON ; low range

;set VR<3:0>=6
BCF STATUS,RP0 ;go to Bank 0
CALL DELAY10 ;10ls delay

If the voltage reference is used with the comparator
module, the following steps should be followed when
making changes to the voltage reference.

Disable the comparator interrupts

Make changes to the voltage reference

Delay 10 us to allow VREF to stabilize

Delay 10 us to allow comparators to settle

Clear the comparator interrupt flag

— Read the CMCON register
— Clear the CMIF bit

6. Enable comparator interrupts

ok 0=

The output of the voltage reference may be used as a
simple DAC. However, the VREF output has limited
drive capability when connected to the RA2 pin. In fact
the amount of drive the voltage reference can provide
is dependent on the setting of the tap on the resistor
ladder. If VREF is used as an output, an extemal buffer
must be utilized.

Voltage Reference Settling Time

Settling time of the voltage reference is defined as the
time it takes the output voltage to settle within 1/4 LSB
after making a change to the reference. The changes
include adjusting the tap position on the resistor ladder,
enabling the output, and enabling the reference itself. If
the voltage reference is used with the comparator mod-
ule, the settling time must be considered.

© 1995 Microchip Technology Inc.

DS00611A-page 2-75

AN611

MAKING SIMPLE A/D CONVERSIONS

Linear slope integrating A/D converters are very simple
to implement and can achieve high linearity and
resolution for low conversion rates. The three types of
converters that will be discussed are the single-slope,
dual-slope, and modified single-slope converters. The
following material was referenced from application note
AN260, “A 20-Bit (1ppm) Linear Slope-integrating A/D
Converter”, found in the Linear Applications Handbook
from National Semiconductor®.

Single-Slope Integrating Converter

A single-slope integrating converter is shown in
Figure 13. In a single-slope converter, a linear ramp is
compared against an unknown input AIN. When the
switch S1 is opened the ramp begins. The time interval
between the opening of the switch and the comparator
changing state is proportional to the value of AIN.

The basic assumptions are that the integrating
capacitor C1 and the clock used to measure the time
interval remain constant over time and temperature.
This type of converter is heavily dependent on the
stability of the integrating capacitor.

FIGURE 13: SINGLE-SLOPE INTEGRATING
CONVERTER

St
PR AL E—

-V C1
—~—o

AIN

= = Integrator Comparator

Dual-Slope Integrating Converter

Figure 14 shows a dual-slope integrating converter.
The dual-slope converter integrates the AIN input for a
predetermined length of time. The voltage referencs is
then switched into the integrator input, using S2, which
integrates in a negative direction from the AIN slope.
The length of time the reference slope requires to
return to zero is proportional to the value of AIN. Both
slopes are made with the same integrating capacitor
C1 and measured with the same clock, so they need
only to be stable over one conversion cycle.

FIGURE 14: DUAL-SLOPE INTEGRATING
CONVERTER

S1
PR I—

AN _¢S2
VREF —o

L Integrator
_L_Comparator

The dual-slope converter essentially removes the
stability factor of the integrating capacitor from a
conversion, however, the dielectric absorption of C1
has a direct effect. Dielectric absorption not only
creates residual non-linearity in the dual-slope
converter, but causes the converter to output different
values for a fixed input as the conversion rate is varied.
Dielectric absorption is defined as the capacitor
dielectric’s unwillingness to accept or give up charge
instantaneously. This effect is modeled as a parasitic
RC network across the main capacitor. A charged
capacitor will require some time to discharge, even
through a dead short, due to the parasitic RC network
and some amount of charge will be absorbed by the
parasitic C after charging of the main capacitor has
stopped. Typically, Teflon, polystyrene and
polypropylene dielectrics offer better performance than
paper, mylar, or glass. Electrolytics have the worst
dielectric absorption characteristics and should be
avoided for use in slope integrating converters.

National Semiconductor is a Registered Trademark of National Semiconductor Corporation.

DS00611A-page 2-76

© 1995 Microchip Technology Inc.

AN611

Modified Single-Slope Converter

The modified single-slope converter has been
designed to compensate for the effects present in the
previous converters. Resolutions of up to 16-bits can
be achieved using high precision components and
voltage reference source. Figure 15 shows the
modified single-slope converter. Some features of this
converter are:

¢ Continuously corrects for zero and full-scale drifts
in all components of the circuit.

The integrating capacitor C1 is charged periodi-
cally and always in the same direction. The error
induced from dielectric absorption will be small
and can be compensated by using an offset term
in the calibration procedure.

¢ The ramp voltage always approaches the com-
parator trip point from the same direction and
slew rate.

There is no noise rejection capability because the
input signal is directly coupled to the comparator
input. A filter at the comparator input would cause
a delay due to the settling time of the filter.

FIGURE 15: MODIFIED SINGLE-SLOPE
INTEGRATING CONVERTER

St
PR

Comparator

Integrator

AIN
VREF —e

£S2

The microcontroller sends a periodic signal to the
switch S1 regardless of the operating mode of the
system. The output of the integrator is a fixed fre-
quency, period and height signal which is fed into the
input of the comparator. The time between ramps is
long enough to allow the integrating capacitor C1 to
discharge completely. The other input is multiplexed
with ground, reference, and the AIN through switch S2.
When the microcontroller starts a conversion, the
ground signal is switched into the comparator and the
time for the ramp to cross zero is measured and stored.
The same measurements are repeated for the refer-
ence and AIN signals. Assuming that the integrator
ramps are highly linear, Equation 3 is used to deter-
mine the value of AIN.

EQUATION 3: OUTPUT EQUATION FOR
THE MODIFIED-SLOPE
CONVERTER

AIN = TAIN - TGND x K pv
TVREF - TGND

where tAIN is the measured time for the AIN signal,
TVREF is the measured time for the voltage reference
signal, TGND is the measured time for the ground signal,
and K is a constant (typically 107).

APPLICATION CIRCUIT

The application circuit, called PICMETER, uses a
PIC16C622 as a resistance and capacitance meter.
The PICMETER uses a variation of the single-slope
integrating convertor. The linear slope and integrator of
Figure 13 are replaced with the exponential charge
waveform of a RC Network. The charge time of a
known component is compared against the charge
time of an unknown component to determine the value
of the unknown component.

A schematic of the PICMETER is shown in Figure 16.
All reference designators cited in this section refer to
this schematic. Results are transmitted to a PC which
displays the value measured. The PICMETER can
measure resistance in the range 1 KQ to 999 KQ and
capacitance from 1 nF to 999 nF.

The following sections describe, in detail, the hard-
ware, firmware, and PC software used in the applica-
tion circuit. Appendix A shows the PICMETER firmware
and Appendix B has the PC software. Appendix C con-
tains the PCB layout.

© 1995 Microchip Technology Inc.

DS00611A-page 2-77

8.-z obed-y119008a

*ou) ABojouyos | diys0iol S661 ©

R/C Select Switch
S1

+INPUT
JACK _‘1"__—\ ot ous
_|£ o2
2 1
INPUT vad ved
JACK o-2—ova v ve 1
1 R1
L 1 1K
10K R3 R4
1M Seex
SW 3FPDT = 1
DL
vad LED
=
Loy . N
1 "E 47eNF T ivr =
re =
1ok
2 ui
x$lr2 Rot HE
3{raa_ osci HE e
- MCLR oscz H2 CHé—
vss VoD ovad | L
RG R? Vo RB® RB7 [43 =
12K ¢ 10K V1 REL RBG [42 1 i
L g EEEE mf, ESw Sms
v3 RE3 RB4 - Ve = ' or Oscillator
PIcieceaz
= RS
% %75
R [
vdd o—iaAn2 4
10K
s2 vad
o5 2 |
0z Rie = START SWITCH
1
AAZ OV 4
1N914 1 100 1N4734A ca
R11 @. 1LF
D3 475 1
CONL 1 2 1
o= L
=3 1N914 Q1 =
o= R12
o—Bx Lann2
o2 2 '/I BN3906 47.8K
o
R13
o—5x =
o—1ix = R4 19K
CONNECTOR DB s.62K 1
vdd

91 3HNOI4

OILLVINIHOS H313NWOld

LLONV

AN611

Power

The RS-232 serial port provides power to the
PICMETER. The RTS and DTR lines from the serial
port output 3V to 11V to the PICMETER. The diodes D2
and D3 prevent any damage to the PC’s serial port.
Resistor R10 is used to current limit the Zener diode,
D4. D4 is used to regulate the RTS and DTR voltage to
5.6V. Capacitors C3 and C4 provide power supply
filtering to the Zener diode and the PIC16C622. This
method of supplying power to devices using a serial
port, such as a trackball or mouse, is very simple
considering that the PICMETER requires approxi-
mately 7 mA to function.

Switches

Switch S1 is used to select either a resistor or capacitor
measurement. RB5 of the PIC16C622 is used to detect
what type of component is being measured. This switch
also swaps the unknown component into the RC
network.

If a resistor is the unknown component and a capacitor
measurement is requested, the circuit reduces to a
resistor divider on the VIN- pin of the comparator. This
would result in a measured value of 0 pF if the voltage
on the resistor divider network is greater than the volt-
age reference setting. Otherwise an error is detected.
If a capacitor is the unknown component and a resistor
measurement is selected, the circuit reduces to a
capacitor divider network on the VIN- pin of the
comparator. This case will also produce an error
message.

Resistor measurements that are started without any
component connected to the measuring terminals will
cause an error. Capacitor measurements without a
component connected to the measuring terminals will
give a result of 0 pF.

Switch S2 is used to initiate a measurement. The
switch is connected to RB6 of the PIC16C622 and the
PORTB wake-up on change interrupt is used to detect
a key press. A modified version of the fimware in
AN552, “Implementing Wake-up on Key Stroke” was
used to control the interrupt.

Measuring the Charge Time

The procedures for measuring a resistor or capacitor
are the same except for the I/O pins used to control the
RC networks. This also applies when measuring a
known or unknown component.

Measurement Overview

The charge time of the unknown RC network is
measured using Timer0. This value is multiplied by the
known value of resistance or capacitance and stored in
an accumulator. Then the charge time of the known RC
network is measured. The accumulator is divided by
the known RC network charge time to give the value of
resistance or capacitance of the unknown component.
Equation 4 shows the equation used to calculate
resistance and Equation 5 shows the capacitance
equation.

EQUATION 4: RESISTANCE EQUATION

RUNK = TUNK X RKN
TKN

EQUATION 5: CAPACITANCE EQUATION

CUNK = TUNKX CKN
TKN

RUNK and CUNK are the unknown resistor or capacitor
values. RKN and CKN are the known resistor and
capacitor values. TUNK and tKN are the charge times for
the unknown and known components.

© 1995 Microchip Technology Inc.

DS00611A-page 2-79

AN611

Detailed Measurement Description

The first step in measuring the charge time of either the
known or the unknown RC networks is to reconfigure
the /O pins. The default state of the PORTA and
PORTB pins connected to the RC network are all
grounded outputs. This discharges all capacitors in the
RC networks. The unknown component is measured
first, so the known component, R4 or C1, is removed
from the RC network. This is accomplished by making
RBO or RB2 on the PIC16C622 an input. Connections
to the other RC network are kept grounded.

The analog modules are now initialized. The mode of
the comparators is set to Four Inputs Multiplexed to
Two Comparators (Figure 6). The CIS bit, CMCON<3>
is cleared to select RAO as the VIN- input to
comparator1 and RA1 as the VIN- input to
comparator 2. The voltage reference is enabled, the
output is disabled, and the high range is selected. The
tap on the resistor ladder is set to 12. The value of 12
was selected because it is the lowest value of VREF that
will trip the comparators, yet gives a time constant long
enough to achieve good resolution for the
measurement. After a 20 msec delay, which allows the
analog modules to stabilize, the comparator flag is
cleared. Comparator interrupts are enabled and Timer0
is cleared. Finally, the PEIE bit is set to enable
comparator interrupts and the GIE bit is set to enable
interrupts.

Now that the analog systems are ready, TimerO is
cleared again and power is applied to the unknown RC
network by setting RB1 or RB3 high. Timer0 begins to
increment a set of three registers which are cascaded
together. These registers contain the charge time of the
component. While waiting for the DONE flag, the
ERROR flag is checked. See the Error Message
section for an explanation of error detection. When the
capacitor voltage trips the comparator, Timer0 is
prevented from further incrementing the time registers
and the DONE flag is set. The value in the time
registers is TUNK_

The analog modules are now disabled. The
comparator interrupts are disabled and the
comparators are turned off (CM<2:0>=111). RAO
through RA3 and RBO through RB4 are set up as
grounded outputs to discharge the capacitors in the RC
networks. This prevents a false reading during the next
measurement. The voltage reference is disabled to
conserve power and all interrupt flags are cleared.
Extra delay loops are added at this time to ensure that
the capacitors are discharged.

The charge time, TUNK, is then multiplied by the value
of known resistance or capacitance. These values, in
pF or Q, were obtained by measuring the known RC
networks with a Fluke meter. Each of these values is a
24-bit number. The result of multiplication is a 56-bit
number which is stored in accumulators ACCb (most
significant 24-bits) and ACCc (least significant 24-bits).

The process now repeats itself, except this time the
charge time of the known RC network is measured.
Now the unknown component is removed from the RC
network by making the connections from the
PIC16C622 inputs. The analog modules are initialized
and the same procedure explained above is followed to
measure the charge time of the known RC network.
The 56-bit result previously stored in accumulators
ACCDb and ACCc is now divided by the charge time of
the known component,tkN. This result is a 24-bit
number which has the units of pF or Q. This value is
then transmitted to the PC.

DS00611A-page 2-80

© 1995 Microchip Technology Inc.

AN611

RS-232 Transmission

PICMETER wuses a transmit only, software
implemented serial port adapted from AN593, “Serial
Port Routines Without Using the RTCC”. Hardware
hand-shaking is not used. Since the serial port is
realized in software, all interrupts must be disabled
during transmission otherwise the baud rate can get
corrupted.

On power-up, PICMETER sends a boot message to
the PC which is “PICMETER Booted!”. Otherwise, a
four byte packet structure with a command byte and
3 data bytes is used. The command byte contains one
of four possible commands:

e ASCII'S' signifies that a measurement has been
initiated

ASCII 'E' tells the PC that an error has been
detected

ASCII 'R tells the PC that resistance data is con-
tained in the three data bytes

ASCII 'C' tells the PC that capacitance data is
contained in the three data bytes

The first data byte for the 'R' and ‘C’ commands contain
the MSB of the measured value. The last data byte
contains the LSB of the measured value. The three
data bytes for the commands 'S' and 'E' do not contain
any useful information at this time.

An 'S' command is issued every time the start switch,
S2, is pressed. PICMETER then sends an ‘R’ or 'C'
command for a valid measurement or an 'E' command
when an error is detected.

Since the PICMETER operates from a single supply
voltage, a discrete transistor is used as a level shifter.
This insures that a low output on the RS-232 TXD line
is between -3V and -11V. When the TXD line, RB7,
from the PIC16C622 is at a logic high level, the
transistor Q1 is off. The RXD line.of the computer will
then be at approximately the same voltage as the TXD
line, -11V to -3V. A logic low level from RB7 of the
PIC16C622 will turn on transistor Q1. This will bring the
RXD line of the computer to about the same voltage of
the DTR or RTS line, +3V to +11V.

The pins of interest on the DB9 connector CON1 are:
e pin2 - RXD

* pin3-TXD

e pin4-DTR

e pin5-GND

s pin7-RTS

RTS, DTR, and GND provide power and ground to the
PICMETER. RXD is connected to the collector of tran-
sistor Q1. TXD is connected to RXD through resistor
R14. Since hardware hand-shaking is not implemented

on the PICMETER, DSR (pin 6) and CTS (pin 8) are left
disconnected.

The demo board developed by Microchip was intended
to connect directly to a 9-pin serial port. A 9-pin
male-to-female cable may also be used. These boards
were manufactured by Southwest Circuits located in
Tucson, Arizona (Appendix C). The PCB layout for this
demo board is shown in Appendix C.

Error Message

The error message is sent only when the PICMETER
is making a measurement and detects an error. The
range of resistance that the PICMETER measures is
1 kQ to 999 kQ. Using the value of C2, 1 iiF, the range
of charging times for resistance measurements is
imsec to 999 ms. The range of capacitor charging
times is also 1 ms to 999 ms using the resistance value
of R3, 1MQ, and a capacitor measuring range of 1 nF
to 999 nF. A ceramic resonator of 4 MHz gives Timer0
aresolution of 1 usec. Therefore, the highest count that
the time registers should reach is 999,000. This is a
20-bit number. If the 215t bit should ever be set, it is
assumed that the PICMETER s trying to measure the
air gap between the measuring terminals, a component
that is out of range, or switch S1 is not set correctly for
the component in the measuring terminals.

24-Bit Math Routines

The 24-bit math routines were developed using simple
algorithms found in any computer math book. These
math routines include addition, subtraction, multiplica-
tion, division, and 2's complement. Four 24-bit accumu-
lators located in the general purpose RAM area of the
PIC16C622 are used by the math routines: ACCa,
ACCb, ACCc, and ACCd. Table 2 shows the relation-
ship between the math routines and the accumulators.

TABLE 22 MATH ROUTINE
ACCUMULATORS
. Temp.
Name Operation Result Storage
Add | ACCa+ACCb ACCb N/A
Subtract 2's Comp ACCa N/A
ACCa
then

ACCa + ACCb ACCa

Multiply | ACCa x ACCb | ACCb (MSB’s)| ACCd
‘ ACCc (LSB's)

quotient in ACCd

Divide | ACCb:ACCc

ACCa ACCc
remainder in
ACCb
2's NOT(ACCa) + ACCa N/A
Comp 1

© 1995 Microchip Technology Inc.

DS00611A-page 2-81

ANG611

Computer Program

The program that receives data from the PICMETER
was written in Visual Basic® from Microsoft® for the
Windows® environment. Figure 17 show the display of
the Windows based PICMETER program.

FIGURE 17: PICMETER PC PROGRAM

=| PICMETER Display |v|a
Exit

’S\' MicRrRoOCHIP

PICMETER Power off ——

O PICMETER Power
Ocomi ® com2

The operation of this program is simple. A functional
description is given below:

a)
b)

<)

d)

e)

9)

h)

Select the appropriate COM port by clicking on
the COM1 or COM2 buttons.

Turn power on to the PICMETER by clicking on
the PICMETER Power button.

The frame message should read “PICMETER
Booted!”, the frame contents will be cleared, and
the LED on the PICMETER should be on.

The switch S1 selects the type of component
that is in the measuring terminals.

Pressing the START button, S2, on the
PICMETER will initiate a measurement. The
frame message should read “Measuring
Component” and the contents of the frame will
be cleared.

When the measurement is complete, the frame
message will read “Resistance” or “Capaci-
tance” depending on the position of switch S1.
The value of the component will be displayed in
the frame as well as the units.

If an error is detected, the frame message will
read “Emor Detected”. This is only a
measurement error. Check the component on
the measuring terminals and the position of
switch S1.

Turmn off the PICMETER by clicking on the
PICMETER Power button. The frame message
will change to “PICMETER Power OFF”, the
frame contents will be cleared, and the LED on
the PICMETER will turn off.

Appendix B contains a complete listing of the Visual
Basic program.

DS00611A-page 2-82

© 1995 Microchip Technology Inc.

AN611

PICMETER ACCURACY

The PICMETER measures capacitance in the range of
1 nF to 999 nF. Table 3 shows a comparison of various
capacitors. All capacitors have a tolerance of 10% and
have various dislectrics. The average error percentage
is 3%.

TABLE 3: CAPACITANCE
MEASUREMENTS
Capacitance Accuracy

Marked Fluke PICMETER Error
Value Value Value %
2.2nF 2.3nF 2.2nF 43
2.5nF 2,63 nF 2.5nF 4.9
20 nF 16.5 nF 16.3 nF 1.2
33nF 35.2nF 35.8 nF 1.7
47 nF 45 nF 445nF 1.1
50 nF 52 nF 52.9 nF 1.7
100 nF 99.7 nF 93 nF 6.7
0.1 uF 95 nF 96.1 nF 12
0.1 uF 99.4 nF 102.8 nF 3.4

0.22 pF 215nF 2152 nF 0.1
470 nF 508 nF 518.9 nF 21
940 nF ‘922 nF 983.1 nF 6.6

The 2.5 nF, 100 nF and 940 nF capacitors all have
polyester dielectric material. The Equivalent Series
Resistance (ESR) of polyester capacitors is typically
high which would cause the PICMETER to have a
larger error than other dielectrics. If the error
percentages for these capacitors is ignored, the
average error decreases to 1.9%.

The resistance range of the PICMETER is 1 kQ to
999 kQ. Table 4, Resistance Measurements, shows a
comparison of various resistors in this range. All
resistors have a tolerance of 5%. The average error
percentage is 1%.

TABLE 4: RESISTANCE MEASUREMENTS

Resistance Accuracy

Marked Fluke PICMETER Error
Value Value Value %
1.2K 1.215K 1.2K 13
5.1K 5.05K 5.0K 1.0
8.2K 8.47K 8.3K 2.0
10K 10.2K 10K 2.0
15K 15.36K 15.1K 1.7
20K 20.8K 20.5K 15
30K 30.4K 30K 1.4
51K 50.3K 49.8K 1.0
75K 75.5K 74 8K 1.0
91K 96.4K 95.9K 0.6
150K 146.3K 145.6K 0.5
200K 195.5K 195K 0.3
300K 309K 309.5K 0.2
430K 433K 434 5K 0.4
560K 596K 599.6K 0.6
680K 705K 709.8K 0.7
820K 901K 907.3K 0.7
910K 970K 977.8K 0.8

© 1995 Microchip Technology Inc.

DS00611A-page 2-83

ANG611

The accuracy of the PICMETER is dependent on the
range of components being measured. If auto-ranging
could be implemented, the accuracy of the PICMETER
could be improved. The addition of capacitors in
parallel with C2 of Figure 16 would allow auto-ranging
for resistor measurements. Additional resistors in
parallel with R3 would give auto-ranging capability to
capacitor measurements. Figure 18 shows a simple
implementation of auto-ranging given that the I/O pins
are available. The R? and C? are the extra components
that are added to the PICMETER circuit. These
components should be optimized for a particular range
of devices.

FIGURE 18: AUTO-RANGING TECHNIQUE

To I/O Pins
Vo
R3= R?= R?
R4
To RA1 E}' To RAO —,

v T

To /O Pins

Another addition to the PICMETER that would increase
the accuracy of components being measured is a
constant current source. The source would feed into
the resistor of the RC networks. This provides the same
charging current to all RC networks being measured.
Figure 19 shows a bilateral current source and
Figure 20 shows a precision current source.

FIGURE 19: BILATERAL CURRENT SOURCE

R1 R3
2M 1M
ViN
>R5
2K
lout
R2 4
= 2M ™
lout = R3 VIN
R1=R2,R3=R4+R5 RiR5

FIGURE 20: PRECISION CURRENT SOURCE

VIN

louT = VIN
A _
VINSOV bt

The alternative to the previous current sources is a
single chip solution. A 3-terminal adjustable current
source, such as a LM134/LM234/LM334 from National
Semiconductor, is an ideal choice. This output current
is programmable from 1 pA to 10 mA and requires a
single external resistor to set the value of current.
Figure 21 shows a block diagram of the LM334Z.

FIGURE 21: LM334Z BLOCK DIAGRAM

Ny,

Rser

-Vin

CONCLUSION

The PIC16C62X devices add two significant analog
features to the PIC16CXX mid-range family:
comparators and a voltage reference. The flexibility of
eight operating modes for the comparator module
allows the designer to tailor the PIC16C62X device to
the application. The addition of an on-chip voltage
reference simplifies the design by removing at least
one external component and power consumption.
These analog modules coupled with the PIC16CXX
mid-range family core create a new path to achieve
high resolution results.

DS00611A-page 2-84

© 1995 Microchip Technology Inc.

APPENDIX A: PICMETER FIRMWARE
MPASM 01.02.05 Intermediate PICMETER.ASM 5-1-1995 11:29:17 PAGE 1
PICMETER Firmware for PIC16C622

LOC OBJECT CODE LINE SOURCE TEXT

VALUE
0001 TITLE "PICMETER Firmware for PIC16C622"
0002 LIST P = 16C622, F = INHX8M
0003
0004 INCLUDE "C:\PICMASTR\P16CXX.INC"
0002 ; P16CXX.INC Standard Header File, Version 0.2 Microchip Technology, Inc.
0004
0005

3FB9 0006 FUSES _BODEN_OFF&_CP_OFF&_PWDT_ON&_WDT_OFF&_XT_OSC
0007
0008 ;*********************k*************t*********************************t**
0009 ;* e e e *
0010 ;*- -
0011 ;*- PICMETER - Resistance and Capacitance Meter -
0012 ;*- -*
0013 ;¥ e e *
0014 ;*- -*
0015 ;*- Author: Rodger Richey -*
0016 ;*- Applications Engineer -*
0017 ;*- Filename: picmtr.asm -*
0018 ;*- Revision: 1 May 1995 -*
0019 ;*- =%
0020 ;* oo m s m oo *
0021 ;*- -*
0022 ;*- PICMETER is based on a PIC16C622 which has two comparators and -*
0023 ;*- a variable voltage reference. Resistance and capacitance is -*
0024 ;*- calculated by measuring the time constant of a RC network. The -*
0025 ;*- toggle switch selects either resistor or capacitor input. The ~-*
0026 ;*- pushbutton switch starts a measurement. The time constant of the -*
0027 ;*- unknown component is compared to that of known component to -*
0028 ;*- calculate the value of the unknown component. The following -*
0029 ;*- formulas are used: -*
0030 ;*- =%
0031 ;*- Resistance: Ru= (Rk *Tu) / Tk -*
0032 ;*- Capacitance: Cu=(Ck*Tu) / Tk %
0033 ;*- -*
0034 ;¥ - e o *
0035 ;*****************t**t********************************t******************
0036
0037
0038 ;*****‘k********************k**ﬁ*****************‘k**k*********i***i'k****t*
0039 ;* o e *
0040 ;*- RS232 code borrowed from Application Note AN593 ~-*
0041 ;*- "Serial Port Routines Without Using the RTCC" -*
0042 ;*- Author: Stan D'Souza -*
0043 ;¥ oo *
0044 ;******k**************************************t**************************

003D 0900 0045 xtal equ .4000000

2580 0046 baud equ .9600

000F 4240 0047 fclk equ xtal/4
0048 ;***k**
0049 ;The value baudconst must be a 8-bit value only

0020 0050 baudconst equ ((fclk/baud)/3-2)
0051 7**
0052
0053

© 1995 Microchip Technology Inc. DS00611A-page 2-85

ANG611

0000
0007
0005
0003
0005
0000
0001
0002
0003
0004
0007
0000
0007
009D
0038
0007
00cs
0030

0020
0021
0023
0024
0025
0026
0027
0028
0029
002A
0040
0041
0042

0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0052
005B
005¢c

0000 2810

0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119

AR IR IR R AR KRR AR AR KRR AR RNR AR R KRR ARARA R AR R AR AR AR AR AR ARk Ak hkhkhhk Ak khh k&

Bit Equates
;***************************k**

;

H

registers

User Registers Bank 1

PORTB, 7

;begin a measurement flag

;done measuring flag

;R or C measurement flag

;error detection flag

;flag if component is connected
;power for R reference ckt
;jpower for C reference ckt
;ground for C reference ckt
;power for unknown R ckt
;ground for unknown C ckt
;define for bit 7

;define for bit 0

;value of the known resistance, R4, in ohms
;measured by a Fluke meter

;value of the known capacitance, Cl, in pF
;measured by a Fluke meter

LR L R 2 T

R L R e T

;Bank 0 temporary storage for W reg
; temporary storage for STATUS reg
; temporary Time register

;flags register

;RS232 register

;RS232 data register

;RS232 delay register

;table position register

;general delay register

;general delay register

;Time registers

;24-Bit accumulator a

;24-Bit accumulator b

;24-Bit accumulator c

;24-Bit accumulator 4

; temporary storage

;Bank 1 temporary storage for W reg

;define for RS232 TXD output pin

R s R e T
i

BEGIN equ 0
DONE equ 7
WHICH equ 5
F_ERROR equ 3
EMPTY equ 5
Vo equ 0
vi equ 1
V2 equ 2
v3 equ 3
v4 equ 4
msb_bit equ 7
1sb_bit equ 0
RKHI equ 0x07
RKMID equ 0x9D
RKLO equ 0x38
CKHI equ 0x07
CkMID equ 0xC8
CkLO equ 0x30
; User Registers
; Bank 0
W_TEMP equ 0x20
STATUS_TEMP equ 0x21
Ttemp equ 0x23
flags equ 0x24
count equ 0x25
txreg equ 0x26
delay equ 0x27
offset equ 0x28
msb equ 0x29
1sb equ 0x2A
TimeLO equ 0x40
TimeMID equ 0x41
TimeHI equ 0x42
: Math related
ACCaHI equ 0x50
ACCaMID equ 0x51
ACCalO0 equ 0x52
ACCbHI equ 0x53
ACCbMID equ 0x54
ACCbLO equ 0x55
ACCcHI equ 0x56
ACCcMID equ 0x57
ACCcLO equ 0x58
ACCAHI equ 0x59
ACCAMID equ 0x5a
ACCALO equ 0x5B
temp © equ 0x5¢C
;
;W_TEMP equ 0xA0Q
H User defines
#define tx
org 0x0
goto init

DS00611A-page 2-86

© 1995 Microchip Technology Inc.

ANG611

0004

0010
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
001A
001B
001C
001D
001E
001F
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
002a
002B
002¢C

002D
002D
002E
002F

0030
0031
0032
0033

0034
0035
0036
0037
0038

0039
0039
003a
003B
003C
003D
003E
003F
0040
0041
0042
0043
0044
0045

28B9

1283
0185
0186
1786
01A4
3010
00A8
0188
3007
009F
2140
089F
130C
1683
3088
0081
0185
3060
0086
300C
009F
1283
3008
008B
213D
213D
213D
2131
178B

1c24
282D
1024

138B
3053
20AD
178B

o1c2
0lcl
01co
1E86
2862

1683
1406
1283
20FB
0181
0000
1586
19a4
288B
1FA4
2840
1324
2111

0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185

init

start

Resistor

RwaitU

org
goto

org

clrf
clrf
bsf
clrf
movlw
movwf
cirf
movlw
movwf
call
movf
bef
bsf
movlw
movwf
clrf
movlw
movw§
movlw
movwf
bef
movlw
movwf
call
call
call
call
bsf

btfss
goto
bef

bef
movlw
call
bsf

clrf
clrf
clrf
btfss
goto

bsf
bsf

call
clrf
nop
bsf
btfsc
goto
btfss
goto
bef
call

0x4

Servicelnterrupts

0x10

STATUS, RP0O ;select bank 0

PORTA ;clear PORTA and PORTB

PORTB

tx ;set TXD output pin

flags ;clear flags register

0x10 ;load table offset register

offset

INTCON ;clear interrupt flags and disable interrupts
0x07 ;turn off comparators, mode 111

CMCON

delay20 ;wait for comarators to settle

CMCON, F

PIR1,CMIF

STATUS, RP0O ;select bank 1

0x88 ;WDT prescalar,internal TMRO increment
OPTION_REG

TRISA ;PORTA all outputs, discharges RC ckts
0x60 ; PORTA<7,4:0> outputs, PORTA<6:5> inputs
TRISB

0x0C ;setup Voltage Reference

VRCON

STATUS, RPO ;select bank 0

0x08 ;enable RBIE interrupt

INTCON

vlong ;delay before transmitting boot message
vlong ;to allow computer program to setup
vlong

BootMSG ;transmit boot message

INTCON,GIE ;enable global interrupt bit
flags,BEGIN ;wait for a start measurement key press
start

flags, BEGIN ;clear start measurement flag

INTCON, GIE ;transmit a start measurement message
's! ;to the PC

Send

INTCON, GIE

TimeHI ;reset Time registers

TimeMID

TimeLO

PORTB, WHICH ;detect if resistor or capacitor measure
Capacitor

STATUS, RPO ;set VO to input

TRISB, VO

STATUS, RP0O

AnalogOn ;turn analog on

TMRO

PORTB, V3 ;turn power on to unknown RC ckt
flags,F_ERROR ;detect if an error occurs

ErrorDetect

flags, DONE ;measurement completed flag

RwaitU

flags, DONE ;clear measurement completed flag
AnalogOff ;turn analog off

© 1995 Microchip Technology Inc.

DS00611A-page 2-87

ANG611

0046 2126
0047 3007
0048 00D3
0049 309D
004A 00D4
004B 3038
004C 00D5
004D 2230

004E 1683
004F 1586
0050 1283
0051 20FB
0052 0181
0053 0000
0054 1406
0055 19A4
0056 288B
0057 1FA4

0058 2855
0059 1324
005A 2111

005B 2126
005C 224B

005D 138B
005E 3052
005F 20AD
0060 178B
0061 282D

0062

0062 1683
0063 1506
0064 1283
0065 20FB
0066 0181
0067 0000
0068 1486
0069 19a4
006A 288B
006B 1FAa4
006C 2869
006D 13A4
006E 2111

006F 2126
0070 3007
0071 00D3
0072 30cC8
0073 00D4
0074 3030
0075 00DS
0076 2230

0077 1683
0078 1606
0079 1283
007A 20FB
007B 0181
007C 0000
007D 1486
007E 1924
007F 288B

0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204

0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250

call

movlw
movwf
movlw
movwf
movlw
movwE
call

bsf
bsf
bef
call
clrf
nop
bsf
btfsc
goto
btfss

RwaitkK

goto
bef
call

call
call

bef
movlw
call
bsf
goto

Capacitor
bsf
bsf
bef
call
clrf
nop
bsf
btfsc
goto
btfss
goto
bef
call

CwaitU

call

movlw
movwf
movlw
movwf
movlw
movwi
call

bsf
bsf
bef
call
clrf
nop
bsf
btfsc
goto

CwaitK

SwapTtoA
RKHI
ACCbHI
RKMID
ACCbMID
RKLO
ACCbLO
Mpy24

STATUS, RPO
TRISB,V3
STATUS, RP0O
AnalogOn
TMRO

PORTB, V0
flags,F_ERROR
ErrorDetect
flags,DONE

Rwaitk
flags,DONE
AnalogOff

SwapTtoA
Div24

INTCON, GIE
R

Send
INTCON,GIE
start

STATUS,RPO
TRISB,V2
STATUS,RPO
AnalogOn
TMRO

PORTB, V1
flags,F_ERROR
ErrorDetect
flags,DONE
CwaitU
flags,DONE
AnalogOff

SwapTtoA
CkHI
ACCbHI
CkMID
ACCbMID
CkLO
ACCbLO
Mpy24

STATUS, RPO
TRISB,V4
STATUS, RPO
AnalogOn
TMRO

PORTB, V1
flags,F_ERROR
ErrorDetect

;swap Time to accumulator a
;swap known resistance value
;to accumulator b

;multiply accumulator a and b
;set V3 to input

;turn analog on

; turn power on to known RC ckt
;detect if an error occurs
;measurement completed flag
;clear measurement completed flag

;turn analog off

;swap Time to accumulator a
;divide multiply by known time

;disable all interrupts
;transmit, for R measurement

;enable global interrupt bit
;restart

;set V2 to input

;turn analog on

;turn power on to unknown RC ckt
;detect if an error occurs
;measurement completed flag

;clear measurement completed flag
; turn analog off

;swap Time to accumulator a

;swap known resistance value
;to accumulator b

;multiply accumulator a and b

;set V3 to input

; turn analog on

;turn power on to known RC ckt
;detect if an error occurs

DS00611A-page 2-88

© 1995 Microchip Technology Inc.

ANG611

0080
0081
0082
0083

0084
0085

0086
0087
0088
0089
008A

008B
008B
008C
008D
008E
008F

0090
0091
0092
0093
0094

0095
0095
0096
0097
0098
0099
009A
009B
009C
009cC
009D
009E
009F
00A0Q
00A1
00A2
00A3
00A4
00A5
00A6
00A6
00A7
00A8
00A9
00AA
00AB
00AC

1FA4
287E
13n4
2111

2126
224B

138B
3043
20AD
178B
282D

1283
128B
110B
2111
11a4

138B
3045
20AD
178B
282D

1283
00A6
1386
3020
00A7
3009
00a5

0BA7
289¢C
3020
00A7
0BAS
28A6
3009
00A5
1786
0008

0CA6
1co03
28AB
1786
289C
1386
289C

0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
0271
0272
0273
0274
0275
0276
0277
0278

0294
0295
0296
0297
0298
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310
0311
0312
0313
0314
0315
0316

btfss flags,DONE ;measurement completed flag

goto CwaitkK

bcf flags,DONE ;clear measurement completed flag

call AnalogOff ;turn analog off

call SwapTtoA ;swap Time to accumulator a

call Div24 ;divide multiply by known time

bef INTCON, GIE ;disable all interrupts

movlw 'c ;transmit, for C measurement

call Send

bsf INTCON, GIE ;enable global interrupt bit

goto start :restart
ErrorDetect

bef STATUS, RPO ;disable TMRO

bef INTCON, TOIE

bef INTCON, TOIF

call AnalogOff ;turn analog off

bef flags,F_ERROR ;clear error flag

bef INTCON,GIE ;disable all interrupts

movlw 'E' ;transmit, for C measurement

call Send

bsf INTCON,GIE ;enable global interrupt bit

goto start ;restart
;**k***************
;* __ *
P *- RS232 Transmit Routine
*- Borrowed fram AN593, “Serial Port Routines Without Using the RTCC"
3 *= Author: Stan D'Souza
;*=- This is the routine that interfaces directly to the hardware
8 R e e e e o o 2 o o o o *
;***k***************t**
Transmit

bef STATUS, RPO

movwf txreg

bef tx ;send start bit

movlw baudconst

movwf delay

movlw 0x9

movwf count
txbaudwait

decfsz delay

goto txbaudwait

movlw baudconst

movwf delay

decfsz count

goto SendNextBit

movlw 0x9

movwf count

bsf tx ;send stop bit

return
SendNextBit

rrf txreg

btfss STATUS, C

goto Setlo

bsf tx

goto txbaudwait
Setlo bef tx

goto txbaudwait
;**
0 K e e e e o e e o e ot o o o o ot o o o o o o o 2 o o o o o o *

© 1995 Microchip Technology Inc.

DS00611A-page 2-89

ANG611

00AD

00AD 2095
00AE 2146
00AF 0856
00BO 2095
00B1 2146
00B2 0857
00B3 2095
00B4 2146
00B5 0858
00B6 2095
00B7 2146
00B8 0008

00B9

00B9 00AO
00BA OE03
00BB 1283
00BC 00Al

00BD 0801
00BE 00A3
00BF 190B
00C0 20E5
00C1 1BOC
00C2 20EC
00C3 180B
00C4 20CB

00C5 1283
00C6 OE21
00C7 0083
00C8 OEAO
00C9 O0E20

00CA 0009

00CB

00CB 118B
00CC 0906
00CD 100B
00CE 3940
00CF 1903
00D0 28D6
00D1 2143
00D2 0906
00D3 20D9
00D4 1424
00D5 0008

0317
0318
0319
0320
0321
0322
0323
0324
0325
0326
0327
0328
0329
0330
0331
0332
0333
0334
0335
0336
0337
0338
0339
0340
0341
0342
0343
0344
0345
0346
0347
0348
0349
0350
0351
0352
0353
0354
0355
0356
0357
0358
0359
0360
0361
0362
0363
0364
0365
0366
0367
0368
0369
0370
0371
0372
0373
0374
0375
0376
0377
0378
0379
0380
0381
0382

P*- Generic Transmit Routine
s *- Serds what is currently in the W register and accumulator ACCc

FRERERA KA KKK AR KA R IR AR KRR KA KRR A A I IR IR AR AR IR AR I AR R IR Ak ok kA Rk hhdk

Send

call Transmit

call delayl ;delay between bytes

movf ACCcHI,W ;transmit high resistance byte
call Transmit

call delayl ;delay between bytes

movEf ACCcMID,W ;transmit mid resistance byte
call Transmit

call delayl ;delay between bytes

movE ACCcLO, W ;transmit low resistance byte
call Transmit

call delayl ;delay between bytes

return

R KRR R R KR KA A KA KRR AR KRR KK KR KRR AR KA R I AR AR KKR AR KRR IR A KRR IR KKK

P
H

ServicelInterrupts

movwf W_TEMP ;Pseudo push instructions

swapf STATUS, W

bef STATUS, RPO

movwf STATUS_TEMP

movf TMRO , W

movwf Ttemp

btfsc INTCON, TOIF ;Service Timer 0 overflow

call ServiceTimer

btfsc PIR1,CMIF ;Stops Timer0O, Records Value

call ServiceComparator

btfsc INTCON, RBIF ;Service pushbutton switch

call ServiceKeystroke ;Starts a measurement

bef STATUS, RPO

swapf STATUS_TEMP, W ;Pseudo pop instructions

movwf STATUS

swapf W_TEMP, F

swapf W_TEMP, W

retfie
’.t****************k**
:'* __ *
P *- Borrowed from AN552, "Implementing Wake-up on Key Stroke"
P *- Author: Stan D'Souza
;* __ *
,.**Q*********
ServiceKeystroke

bef INTCON, RBIE ;disable interrupt

comf PORTB,W ;read PORTB

bcf INTCON, RBIF ;clear interrupt flag

andlw B'01000000°'

btfsc STATUS, 2

goto NotSwitch

call delayl6 ;de-bounce switch for lémsec

comf PORTB,W ;read PORTB again

call KeyRelease ;check for key release

bsf flags,BEGIN

return

DS00611A-page 2-90

© 1895 Microchip Technology Inc.

ANG611

00D6
00D6
00D7
00D8

00D9
00D9
00DA
00DB
00DC
00DD
QCDE
00DF
00EO
00E1
00E2
00E3

00E4

00ES5
00E5
00E6
00E7
00E8
00E9
00EA
00EB

00EC
00EC
00ED
00EE
00EF
00F0
00F1
00F2
00F2
00F3
00F4
00F4
00F5
00F6
00F7
00F8
00F9
00F9
00FA

100B
158B
0008

2143
0906
100B
158B
3940

10032
0008
0063
118B
0906
100B
28D9

0AC1
1903
0AC2
1AC2
15a4
110B
0008

1283
1E86
28F2
1F1F
28F4
28F9

1BI9F
28F9

128B
1108
0823
00cCo
17n4

130C
0008

0383

0384 NotSwitch ;detected other PORTB pin change
0385 bef INTCON, RBIF ;reset RBI interrupt

0386 bsf INTCON, RBIE

0387 return

0388

0389 KeyRelease

0390 call delayl6 ;debounce switch

0391 comf PORTB,W ;read PORTB

0392 bef INTCON, RBIF ;clear flag

0393 bsf INTCON, RBIE ;enable interrupt

0394 andlw B'01000000"

0308 btfsc STATUS, 2 ;Key still pressedrs

0396 return ;1f no, then return

0397 sleep ;else, save power

0398 becf INTCON, RBIE ;disable interrupts

0399 comf PORTB,W ;read PORTB

0400 bef INTCON, RBIF ;clear flag

0401 goto KeyRelease ;try again

0402 ;

0403

0404 ;*********i(**
0405 ;¥ *
0406 ;*- ISR to service a Timer0 overflow

0407 ;¥ o m o o *
0408 ;*********k****‘k***************iz**********************t********t***
0409 ServiceTimer

0410 incf TimeMID, F ;increment middle Time byte

0411 btfsc STATUS, Z ;if middle overflows,

0412 incf TimeHI,F ;increment high Time byte

0413 btfsc TimeHI, EMPTY ;check if component is connected
0414 bsf flags,F_ERROR ;set error flag

0415 bef INTCON, TOIF ;clear TMRO interrupt flag

0416 return

0417 ;

0418

0419 ;**********************************i******************************ﬁ
0420 ;¥ oo s *
0421 ;*- ISR to service a Comparator interrupt

0422 ;¥ oo o *
0423 ;**
0424 ServiceComparator

0425 bef STATUS, RPO ;select bank 0

0426 btfss PORTB,WHICH ;detect which measurement, R or C?
0427 goto capconmp

0428 btfss CMCON, C10UT ;detect if R ckt has interrupted
0429 goto scstop

0430 goto scend

0431 capcomp

0432 btfsc CMCON, C20UT ;detect if C ckt has interrupted
0433 goto scend

0434 scstop

0435 bef INTCON, TOIE ;disable TMRO interrupts

0436 bef INTCON, TOIF

0437 movf Ttemp, W

0438 movwf TimeLO

0439 bsf flags,DONE ;set DONE flag

0440 scend

0441 bef PIR1,CMIF ;clear comparator interrupt flag
0442 return

0443 ;

0444

0445 l.**
0446 ;*——— - *
0447 ;*- Turn Comparators and Vref On

0448 ;%o *

© 1995 Microchip Technology Inc.

DS00611A-page 2-91

ANG611

00FB
00FB
00FC
00FD
OOFE
00FF
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
010a
010B
010¢C
010D
010E
010F
0110

0111
0111
0112
0113
0114
0115
0116
0117
0118
0119
011A
011B
011c
011D
0l1E
011F
0120
0121
0122
0123
0124
0125

0126
0126
0127
0128
0129
012a

1283
3002
009F
1683
300F
0085
179F
1283
2140
089F
130C
1683
170¢C
1283
170B
11a4
0181
0000
0000
110B
168B
0008

1283
130B
3080
0086
1683
130C
0185
3060
0086
139F
1283
3007
009F
2140
089F
130C
110B
213D
213D
213D
0008

1283
0842
00D0
0841
00D1

0449 s*d*hkkhkkkkkhhhhhhhhkkhhkhkhhkh kA Rk khk kA khkk kAR Ak kk kA Ak kkhkhkhkhkhkhkhkk ¥
i

0450
0451
0452
0453
0454
0455
0456
0457
0458
0459
0460
0461
0462
0463
0464
0465
0466
0467
0468
0469
0470
0471
0472
0473
0474
0475
0476
0477
0478
0479
0480
0481
0482
0483
0484
0485
0486
0487
0488
0489
0490
0491
0492
0493
0494
0495
0496
0497
0498
0499
0500
0501
0502
0503
0504
0505
0506
0507
0508
0509
0510
0511
0512
0513
0514

AnalogOn

bef STATUS, RPO ;select bank 0

movlw 0x02 ;turn comparators on, mode 010

movwf CMCON ;4 inputs multiplexed to 2 comparators

bsf STATUS,RPO ;select bank 1

movlw OxOF ;make PORTA<3:0> all inputs

movwif TRISA

bsf VRCON, VREN

bef STATUS, RPO ;select bank 0

call delay20 ;20msec delay

movE CMCON, F ;clear comparator mismatch condition

bef PIR1,CMIF ;jclear comparator interrupt flag

bsf STATUS, RPO

bsf PIEl,CMIE ;enable comparator interrupts

bef STATUS, RPO

bsf INTCON, PEIE ;enable peripheral interrupts

bef flags, F_ERROR

clrf TMRO ;jclear TMRO counter

nop

nop

bef INTCON, TOIF ;clear TMRO interrupt flag

bsf INTCON, TOIE ;enable TMRO interrupts

return
‘.**************t*******************‘k**‘k**********************************
K *
P*- Turn Comparators and Vref Off
K e ————— e = *
;**
AnalogOff

bef STATUS, RPO

bef INTCON, PEIE

movlw 0x80 ;reset PORTB value

movwf PORTB

bsf STATUS, RPO ;select bank 1

bef PIEl,CMIE ;disable comparator interrupts

clrf TRISA ;set PORTA pins to outputs, discharge RC ckt

movlw 0x60 ;set PORTB 7,4-0 as outputs, 6,5 as inputs

movwf TRISB

bef VRCON, VREN ;disable Vref

becf STATUS, RPO ;select bank 0

movlw 0x07

movwf CMCON ;disable comparators

call delay20 ;20msec delay

movE CMCON, F ;clear comparator mismatch condition

bef PIR1,CMIF ;clear comparator interrupt flag

bef INTCON, TOIF ;clear Timer0 interrupt flag

call vlong ; long delay to allow capacitors to discharge

call vlong

call vlong

return
;
;**
; K e e e o o = e o o o o o o e o o o o o o ot e *
P *- Swap Time to Accumulator a
;* __ *
;***********************t**
SwapTtoA

bef STATUS, RPO

movE TimeHI, W

movwf ACCaHI

movE TimeMID, W

movwf ACCaMID

DS00611A-page 2-92

© 1995 Microchip Technology Inc.

ANG611

012B 0840 0515
012C 00D2 0516
012D 01cC2 0517
012E 01cC1 0518
012F 01cC0 0519
0130 0008 0520
0521
0522
0523
0524
0525
0526
0527
0131 0528
0131 1283 0529
0132 3002 0530
0133 008A 0531
0134 0828 0532
0135 2200 0533
0136 2095 0534
0137 2146 0535
0138 0BAS 0536
0139 2932 0537
013A 3010 0538
013B 00A8 0539
013C 0008 0540
0541
0542
0543
0544
0545
0546
0547
013D 30FF 0548
013E 00A9 0549
013F 2948 0550
0140 0551
0140 301A 0552
0141 00A9 0553
0142 2948 0554
0143 0555
0143 3015 0556
0144 00A9 0557
0145 2948 0558
0146 0559
0146 3001 0560
0147 00A9 0561
0148 30FF 0562
0149 00AA 0563
014A O0BAA 0564
014B 294A 0565
014C 0BA9 0566
014D 2948 0567
014E 0008 0568
0569
0570
0571
0572
0573
0574
0575
0576
0577
0578
0579
0200 0580

movf TimeLO, W
movwf ACCaLO
clrf TimeHI
clrf TimeMID
clrf TimeLO
return

PR R T
H

AANARRARL A

bef STATUS, RPO ;select bank 0

msg movlw HIGH Table ;init the PCH for a table call
movwf PCLATH
movf offset,W ;move table offset into W
call Table ;get table value
call Transmit ;transmit table value
call delayl ;delay between bytes
decfsz offset,F ;check for end of table
goto msg
movlw 0x10 ;reset table offset
movwf offset
return

FRE KA R KKK I KA I AR KKK KRR KKK I AR K H KRR KRR RI IR AR A h Ak ko hh ok ko k ok ok h ko kkhh ok

PR 2 L T T
;

vlong movlw Oxff ;very long delay, approx 200msec
movwf msb
goto dl
delay20 ;20 msec delay
movlw .26
movwf msb
goto dl
delayl6 ;16 msec delay
movlw .21
movwf msb
goto dl
delayl ;approx 750nsec delay
movlw .1
movwf msb
d1l movlw oxff
movwf 1sb
az2 decfsz 1lsb,F
goto d2
decfsz msb,F
goto dl
return
org 0x200

PR
i

FRRKK KKK AR KKK KKK kA K I I A KK AR KKK KKK KKK AR I KAR KKK RK KK KRR KKK IR KKK KK

Table ;boot message "PICMETER Booted!™"

© 1995 Microchip Technology Inc.

DS00611A-page 2-93

ANG611

0200 0782 0581 addawf PCL ;add W to PCL
0201 3400 0582 retlw 0
0202 3421 0583 retlw e
0203 3464 0584 retlw ‘q
0204 3465 0585 retlw ‘e’
0205 3474 0586 retlw 't
0206 346F 0587 retlw ‘o’
0207 346F 0588 retlw ‘o’
0208 3442 0589 retlw ‘B’
0209 3420 0590 retlw v
020A 3472 0591 retlw ‘rt
020B 3465 0592 retlw ‘e’
020C 3474 0593 retlw 't
020D 3465 0594 retlw ‘e’
020E 346D 0595 retlw ‘m'
020F 3443 0596 retlw e
0210 3449 0597 retlw ‘T
0211 3450 0598 retlw ‘P
0599 ;
0600
0601 ;***k*****t**********
0602 ;¥ m e e e e e e e e *
0603 ;*- 24-bit Addition
0604 ;*-
0605 ;*- Uses ACCa and ACCb
0606 ;*-
*- ACCa + ACCb -> ACCb

0607 ;
0608 ;

I RS SRS EEEEEEEEEEEEEEEEEEEEEEEREEEEEELEEEEESALEEEEEEEEEtitt

0212 0610 Add24

0212 0852 0611 movf ACCaLO,W
0213 07D5 0612 addwf ACCbLO ;add low bytes
0214 1803 0613 btfsc STATUS, C ;add in carry if necessary
0215 2Al1D 0614 goto A2
0216 0851 0615 Al movE ACCaMID, W
0217 07D4 0616 addwf ACCbMID ;add mid bytes
0218 1803 0617 btfsc STATUS, C ;add in carry if necessary
0219 0AD3 0618 incf ACCbHI
021A 0850 0619 movf ACCaHI,W
021B 07D3 0620 addwf ACCbHI ;add high bytes
021C 3400 0621 retlw O
021D 0AD4 0622 A2 incf ACCbMID
021E 1903 0623 btfsc STATUS,Z
021F 0AD3 0624 incf ACCbHI
0220 2a16 0625 goto Al
0626 ;
0627
0628 ;***k**
0629 ;¥ oo oo e *
0630 ;*- Subtraction (24 - 24 -> 24)
0631 ;*-
0632 ;*- Uses ACCa, ACCb, Accd
0633 ;*-
0634 ;*- ACCa -> ACCd,
0635 ;*- 2's complement ACCa,
0636 ;*- call Add24 (ACCa + ACCb -> ACCb),
0637 ;*- ACCd -> ACCa
0638 ;¥ e o *

0639 ;hrhkkkk ks ke ke k kA Kk h kAR I IR IR R K AR KA R IR R K HARI KA AR KA AR IR K KRR IR A IRk

0221 0640 Sub24

0221 0850 0641 movE ACCaHI, W ;Transfer ACCa to ACCdA
0222 00D9 0642 movwf ACCAHI

0223 0851 0643 movE ACCaMID,W

0224 00DA 0644 movwf ACCAMID

0225 0852 0645 movE ACCaLO,W

0226 00DB 0646 movwf ACCALO

DS00611A-page 2-94 © 1995 Microchip Technology Inc.

AN611

0227 2275 0647 call compA ;2's complement ACCa
0228 2212 0648 call Add24 ;Add ACCa to ACCb
0229 0859 0649 movf ACCAHI, W ;Transfer ACCd to ACCa
022A 00DO 0650 movwf ACCaHI
022B 085A 0651 movf ACCAMID, W
022c 00D1 0652 movwf ACCaMID
022D 085B 0653 movf ACCdLO, W
022E 00D2 0654 movwf ACCaLO
022F 3400 0655 retlw 0
0656 ;
0657
0658 ;**
T *
0660 ;*- Multiply (24 X 24 -> 56)
0661 ;*-
0662 ;* Uses ACCa, ACCb, ACCc, Accd
0663 ;*-
0664 ;*- ACCa * ACCb -> ACCb,ACCc 56-bit output
0665 ;*- with ACCb (ACCbLHI,ACCbLMID,ACCbLO) with 24 msb's and
0666 ;*- ACCc (ACCcHI,ACCcMID,ACCcLO) with 24 1lsb's
0667 ;- mm oo *
0668 ;**
0230 0669 Mpy24
0230 223F 0670 call Msetup
0231 0CD9 0671 mloop rrf ACCdHI ;rotate d right
0232 0CDA 0672 rrf ACCAMID
0233 0CDB 0673 rrf ACCdLO
0234 1803 0674 btfsc STATUS, C ;need to add?
0235 2212 0675 call Add24
0236 0CD3 0676 rrf ACCDbHI
0237 0CcD4 0677 rrf ACCbMID
0238 0CD5 0678 rrf ACCbLO
0239 0CD6 0679 rrf ACCcHI
023A 0CD7 0680 rrf ACCcMID
023B 0CD8 0681 rrf ACCcLO
023C 0BDC 0682 decfsz temp ;loop until all bits checked
023D 2A31 0683 goto mloop
023E 3400 0684 retlw 0
0685
023F 0686 Msetup
023F 3018 0687 movlw 0x18 ;for 24 bit shifts
0240 00DC 0688 movwf temp
0241 0853 0689 movf ACCbLHI,W ;move ACCb to ACCd
0242 00D9 0690 movwf ACCAHI
0243 0854 0691 movf ACCbMID,W
0244 00DA 0692 movwf ACCAMID
0245 0855 0693 movE ACCbBLO, W
0246 00DB 0694 movwf ACCALO
0247 01D3 0695 clrf ACCbHI
0248 01D4 0696 clrf ACCbMID
0249 01D5 0697 clrf ACCbLO
024a 3400 0698 retlw 0
0699 ;
0700
0701 ;*********t**‘k*
0702 j* e e o o *
0703 ;*- Division (56 / 24 -> 24)
0704 ;*-
0705 ;*- Uses ACCa, ACCb, ACCc, Accd
0706 ;*-
0707 ;*- 56-bit dividend in ACCh,ACCc (ACCb has msb's and ACCc has 1lsb's)
0708 ;*- 24-bit divisor in ACCa
0709 ;*- quotient is stored in ACCc
0710 ;*- remainder is stored in ACCb
071 ¥ m e e e *

Q712 j ¥ ok h ke ke Ak ok ok k kA I I KRR KA KK KRR ARARI KK AR K H AR IR KK AR K KRR R IR AR A XK

© 1995 Microchip Technology Inc. DS00611A-page 2-95

ANG611

024B
024B 2272

024C 1003
024D 0DD8
024E 0DD7
024F 0DD6
0250 0DD5
0251 0DD4
0252 0DD3

0253 1803
0254 2A58
0255 1FDO
0256 0AD8
0257 2A5A
0258 1BDO
0259 0AD8

025A 1858
025B 2A5E
025C 2212
025D 2AS5SF
025E 2221

025F OBDC
0260 2A4cC

0261 1003
0262 0DD8
0263 0DD7
0264 0DD6
0265 1BD3
0266 2A6A
0267 1FDO
0268 0AD8
0269 2A6C
026A 1BDO
026B 0ADS
026C 1FD3
026D 2A71
026E 1BDO
026F 2A71
0270 2212

0271 3400

0272
0272 3018
0273 00DC

0274 3400

0713
0714
0715
0716
0717
0718
0719
0720
0721
0722
0723
0724
0725
0726
0727
0728
0729
0730
0731
0732
0733
0734
0735
0736
0737
0738
0739
0740
0741
0742
0743
0744
0745
0746
0747
0748
0749
0750
0751
0752
0753
0754
0755
0756
0757
0758
0759
0760
0761
0762
0763
0764
0765
0766
0767
0768
0769
0770
0771
0772
0773
0774
0775
0776
0777
0778

Div24
call

dloop bef
rlf
r1lf
rlf
rlf
rlf
rlf

btfsc
goto
btfss
incf
goto
btfsc
incf

clear

btfsc
goto
call
goto
call

cont

minus

decfsz
goto

check

bcf
rlf
rlf
rlf
btfsc
goto
btfss
incf
goto
wl btfsc
incf
wzd btfss
goto
btfsc
goto
call

wend retlw

Dsetup
movlw
movwf

retlw

Dsetup

STATUS, C
ACCcLO
ACCcMID
ACCcHI
ACCbLO
ACCbMID
ACCbHI

STATUS, C

clear
ACCaHI,msb_bit
ACCcLO

cont
ACCaHI,msb_bit
ACCcLO

ACCcLO, 1sb_bit
minus
Add24
check
Sub24

temp, £
dloop

STATUS, C
ACCcLO

ACCcMID

ACCcHI
ACCbHI,msb_bit
wl
ACCaHI,msb_bit
ACCcLO

wzd
ACCaHI,msb_bit
ACCcLO
ACCbHI,msb_bit
wend
ACCaHI,msb_bit
wend

Add24

0x18
temp

;Rotate dividend left 1 bit position

; invert carry and exclusive or with the
;msb of the divisor then move this bit
;into the 1lsb of the dividend

;check the lsb of the dividend

;if = 0, then add divisor to upper 24 bits
;of dividend

;if = 1, then subtract divisor from upper
;24 bits of dividend

;do 24 times

;shift lower 24 bits of dividend 1 bit
;position left

;exlusive or the inverse of the msb of the

;dividend with the msb of the divisor
;store in the lsb of the dividend

;if the msb of the remainder is set and
;the msb of the divisor is not

;add the divisor to the remainder to correct
; for zero partial remainder

;quotient in 24 lsb's of dividend
;remainder in 24 msb's of dividend

;loop 24 times

KKK R KKK KR KA KRR AR KRR KRR KA KRR AR Kk hh kAR KA KRRk kR AR AR Rk Kk ok ok kA k

RR KK AR R R kR AR KRR AR R AR AR KIIK IR A KA KA IR RAAARK AR KRR IR Kk AR F Kk k ok

DS00611A-page 2-96

© 1995 Microchip Technology Inc.

AN611

0275
0275
0276
0277
0278
0279
027A
027B
027¢C
027D

0000
0040

0080
00Co

0100
0140

0200
0240

0779 compA
09D2 0780 comf ACCaLo ;invert all bits in accumulator a
09D1 0781 comf ACCaMID
09D0 0782 comf ACCaHI
0AD2 0783 incf ACCaLo ;add one to accumulator a
1903 0784 btfsc STATUS, Z
0AD1 0785 incf ACCaMID
1903 0786 btfsc STATUS, Z
0ADO 0787 incf ACCaHI
3400 0788 retlw 0
0789 ;
0790
0791 END
0792
X-=eX-mmm oo XXXXKXXXXXXKXXKXXK XXXXXXXKXXXXXXXXX XXXXXXXXXXXXXXXX
XXXXXXXXXXKXXXXXKX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXX XXXXXXXXXXKXXXKXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
XXXXXXXXKXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
XXXXXXXXKXXXXXXKX XXXXXXXXXXXXXKXXK XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
P:0:0:0:0.0.9:0.9:9:0.0.0.0.0. G R R T e ittt
XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXX--

All other memory blocks

Errors B 0
Warnings : 0
Messages : 0

unused.

© 1995 Microchip Technology Inc.

DS00611A-page 2-97

AN611

APPENDIX B: VISUAL BASIC PROGRAM
PICMTR.FRM

Sub

End

Sub

End

Sub

Form_Load ()
‘Initialize the program
Imagel.Height = 600
Imagel.Width = 2700
Framel.Caption = "PICMETER Power Off"
Labell.Caption =

Label2.Caption

'‘Initialize Comm Port 1

Comml .RThreshold = 1

Comml .Handshaking = 0
Comml.Settings = "9600,n,8,1"
Comml.CommPort = 2
Comml.PortOpen = True

'Initialize the global variable First$%
First% = 0
Sub

Form_Unload (Cancel As Integer)
'Unload PICMETER

Comml .RTSEnable False

Comml .DTREnable False
Comml.PortOpen = False

Unload PICMETER

Sub

Comml_OnComm ()

Dim Value As Double
Dim High As Double
Dim Medium As Double
Dim Low As Double

'Received a character
If Comml.CommEvent = 2 Then
If First% = 0 Then
If Comml.InBufferCount = 16 Then
Labell.FontSize = 10
InString$ = Comml.Input
If InString$ = "PICMETER Booted!" Then
Framel.Caption = "PICMETER Booted!"

End If

First% = 1

Comml.InputLen = 4
End If

Else
If Comml.InBufferCount >= 4 Then

InString$ = Comml.Input

If Left$(InString$, 1) = “R" Then
Framel.Caption = "Resistance"
Label2.FontName = "Symbol"
Label2.Caption = "KW"
Labell.FontSize = 24

ElseIf Left$(InString$, 1) = "C" Then
Framel.Caption = "Capacitance"
Label2.FontName = "MS Sans Serif"
Label2.Caption = "nF"
Labell.FontSize = 24

ElseIf Left$(InString$, 1) = "E" Then
Framel.Caption = "Error Detected"
Label2.Caption = ""

ElseIf Left$(InString$, 1) = "S" Then
Framel.Caption = "Measuring Component"

DS00611A-page 2-98

© 1995 Microchip Technology Inc.

ANG611

Label2.Caption = ""

Else
Framel.Caption = "Error Detected"
Label2.Caption = ""

End If

If Framel.Caption = "Error Detected" Then
Labell.Caption = ""

ElseIf Framel.Caption = "Measuring Component" Then
Labell.Caption = ""

Else
High = 65536# * Asc(Mid$(InString$, 2, 1))
Medium = 256# * Asc(Mid$(InString$, 3, 1))
Low — AsC(Midi{Ianltirings, 4, 1))
Labell.Caption = Format$((High + Medium + Low) / 1000, "###0.0"

End If

End If
End If
End If
End Sub

Sub Check3D1l_Click (Value As Integer)
'Control Power to the PICMETER
If Check3Dl.Value = False Then
Comml.InputLen = 0
Labell.Caption = "*"
Label2.Caption = ""
Comml.RTSEnable = False
Comml.DTREnable = False
Framel.Caption = "PICMETER Power Off"
InString$ = Comml.Input
Else
Framel.Caption = "*"
First% = 0
Comml.InputLen = 0
InString$ = Comml.Input
Comml.RTSEnable = True
Comml.DTREnable = True
End If
End Sub

Sub menExitTop_Click ()
‘Unload PICMETER
Unload PICMETER
End Sub

Sub Optionl_Click ()
'Open COM1 for communications
If Optionl.Value = True Then
If Comml.CommPort = 2 Then
Comml .PortOpen = False
Comml.CommPort = 1
Comml .PortOpen = True
End If
End If
End Sub

Sub Option2_Click ()
'Open COM2 for communications
If Option2.Value = True Then
If Comml.CommPort = 1 Then
Comml.PortOpen = False
- Comml.CommPort = 2
Comml.PortOpen = True
End If
End If
End Sub

PICMETER.BAS

Global I%
Global First$%

© 1995 Microchip Technology Inc. DS00611A-page 2-99

ANG611

APPENDIX C: PICMETER PCB LAYOUT

Boards Manufactured by: Southwest Circuits

Contact: Perry Groves
3760 E. 43rd Place
Tucson, AZ 85713
1-520-745-8515

The following artwork is not printed to scale:

Component Side

oK e
T }3 i et .I':'H

1.0“

Loyer 1

Solder Side
K
N
.* W
o0
[J ® .
e ® o 00000000 .\I/
£ wyol _@

DS00611A-page 2-100 ' © 1995 Microchip Technology Inc.

Component Side Silkscreen

P 30° 5%
81 Ct 1
T s =5 .OF
& 3 R4 piciges22 'S
I e
o3 o J+F
slé Microcuip mSZ O RY :;:‘]:I— 5
gz R[] Stort a
@_ Loyer Sikscreen
Solder Side Silkscreen
& 0.8 tast
p Q. =0 O T
m "0.t
o e, Om Oas On Oas Llé

© 1995 Microchip Technology Inc. DS00611A-page 2-101

AN611

Manufacturing Drawing

& 30" &
+
M X XX XX XXX XX X XXyese
T X X OOOX s o X XX
. K L XXXXXXXXX ' &
L ><><><><><><><><>><< X X%y %
M XXX XXXXXXK X X X X
sizE | Qry |Sym

37 89

X| X+

DS00611A-page 2-102 © 1995 Microchip Technology Inc.

MICROCHIP

ANG615

Clock Desngn Using Low Power/Cost Techniques

Author: John Day
Sr., Field Application Engineer, Boston

INTRODUCTION

Typical embedded control applications place demands
such as low power consumption, small size, low cost
and reduced component count onto the microcontrol-
ler. This application implements a 24-hour digital clock,
alarm and 99 minute 59 second count down timer, yet
operates on two “AA” batteries. The PIC16C54A is per-
fect for this application, due to it's small size, high cur-
rent I/Os with direct LED drive, low cost, fast instruction
throughput and low frequency/current operation.

System cost

The objective of this design was to implement the max-
imum number of features with the least expensive and
smallest device. The PIC16C54A is Microchip’s lowest
cost microcontroller and it has 12 I/O lines, each capa-
ble of sinking 25 mA and sourcing 20 mA. High effi-
ciency common cathode LED displays were chosen for
their 3.5 mA current requirement, eliminating the need
for any external transistors for display drive. A low
impedance direct drive piezo buzzer was chosen and
it's tone is generated by the software of the PIC16C54A
to further reduce system cost.

Operating power

In battery powered applications, the operating current
determines the lifetime of the batteries. There are many
ways to reduce the operating current of any applica-
tion, including low frequency operation and the use of
sleep modes. Since the clock has to keep track of time,
SLEEP mode could not be used and the processor
must be kept running all of the time. The PIC16C54A
supports the 32.768 kHz “watch” crystal and typically
consumes less than 15 pA of current in this configura-
tion. Since the PIC16C54A executes instructions in
one cycle and it's instruction set is very efficient, this
application was able to be implemented using a low fre-
quency crystal. Another solution to this problem
comes with the PIC16C74/73/65/63 in it’s Timer1 mod-
ule. This timer will run when the device is asleep, so it
could have been used to keep track of time, simplifying
the software.

Clock system

A 32.768 kHz crystal was chosen for the clock due to
the low power and cost requirements of this design.
The four internal phases of this input clock create an
intemal instruction cycle. Therefore, the instruction
time is calculated as follows:

Instruction _ 1 = 1 - 1
rate (CLKIN/4) 32768/4 8,192

Instruction cycle = 122.07 ps

This means that every instruction executes in
122.07 us or we execute exactly 8,192 instructions per
second.

Display and keypad multiplexing

The display contains four digits with seven segments
each; therefore a multiplexing scheme was used to
reduce the number of I/O lines needed to drive the dis-
plays. There are 4 common cathode display connec-
tions (one for each display digit and connected to
PORTA for convenience so that rotates and moves can
be used) and 7 segments (connected to PORTB for
convenience so that moves can be used) for a total of
11 1/O lines needed for the display. Common Cathode
displays were chosen, since the PIC16C54A can sink
5 mA more current than it can source. The last I/O line
(RB7) was used to drive the buzzer. The three keys for
setting the time are multiplexed onto the LED display
segments to eliminate the need for additional I/O lines.

© 1995 Microchip Technology Inc.

DS00615A-page 2-103

y0I-¢ ebed-y51900sa

-ouj ABojouyoa . diyoosol G661 ©

2AA _L 2 l1 c2
Cells — B D1 c3 1 |]2
— av 1N4001]2 0.1 uF L 1
2 33pF
1 = X us
32.768 kHz 1
1 , 2
| Buzzer
Ut R1 3
. RA2 RA1 8 LY 2 |/ a
3 RA3 RAO 22K s 3004
r TOCKI osct 15 -
= | +— MR osc2 |7 —
s | pe voo [R4A 10k swi UP
12 1 pap__18 1 2
+ RB1 RBE 17 W\ o—
9| fe2 RBS 0 RIB 10k sw2 DOWN
RB3 RB4
2 15 1 o2
PIC16C54
R4C 10k SW3 MODE
3 AAA_14 1 c2
\AS I_‘
1 2 3 4 1 2 3
Lra Lms Lrc LReo (ma LA LRic 3
T o v M T v 4 <.7§kA <>?&B >?§f
= = =
16 15 14 13 16 15 14 y J
16 15 14
iojol8fs[4]2]3 1ojols|s]4]2|3 1ojos)s|4]2|3 iojolslsla]2|3
ABCDEFG ABCDEFG ABCDEFG ABCDEFG
[[[} [}
L o (] o
-’ . ‘-’ . . .
Cci _Cc2 DP Ci C2 DP ci_C2 DP Ci_C2 DP
1 e k7 1 [6 %7 lil6*7 1 [6 %7
u2 u3 us us
HDSP - 7503 HDSP - 7503 HDSP - 7503 HDSP - 7503

1 3HNOI

OILVINIHOS NDIS3A 001D

S9NV

ANG615

SOFTWARE IMPLEMENTATION

The main loop of the software must perform the follow-
ing tasks to implement the clock’s functionality:

1. Determine when one second has passed (when
bit7 on the TMRO register changes state 4
times), increment the current time and (if
enabled) decrement the countdown timer.

2. Determine if any of the alarms (countdown timer
or the alam time) are currently alaiming or
should be alarming. If so, the buzzer is buzzed.

3. Check for any keys that are pressed. If MODE is
pressed, the current mode is incremented and if
UP or DOWN is pressed, the time displayed is
modified.

4. Automatically turn the displays on/off for power
management.

5. Multiplex the displays every 3.9 ms (32 instruc-
tion cycles!).

General purpose registers are defined and
used for the following purposes:

* DISPSEGS_A through DISPSEGS_D store the

bit pattem that is to be displayed on each of the

four 7-segment displays.

CLK_SEC stores the second counter for the cur-

rent clock time (values from 0-59 decimal are

stored).

* CLK_MIN_LD, CLK_MIN_HD store the upper
and lower minute digit of the current time.

¢ CLK_HOUR_LD, CLK_HOUR_HD store the
upper and lower hour digit of the current time.

e ALM_MIN_LD, ALM_MIN_HD store the upper
and lower minute digit of the alamm time.

¢ ALM_HOUR_LD, ALM_HOUR_HD store the
upper and lower hour digit of the alarm time.

¢ TMR_SEC_LD, TMR_SEC_HD store the upper
and lower second digit of the countdown timer.

¢ TMR_MIN_LD, TMR_MIN_HD store the upper
and lower minute digit of the countdown timer.

o KEYPAT stores a pattern showing the currently
pressed keys:

- UP = bit6
- DOWN = bit5
- MODE = bit4

* FLAGS stores key flag bits such as the current
mode, display on, alarm on, etc.

PREVTMRO stores previous TMRO values so that
the differences can be detected the next time the
TMRO is polled.

TEMP is a temporary register used for various
routines.

DISPONCNT stores the remaining number of
seconds the displays should be on.

* MODE_COUNT stores the number of 1/2 sec-
onds the MODE and UP or DOWN buttons are
pressed. Used to switch from setting minutes to
hours.

* ALARMCNT stores the number of beeps remain-
ing to be driven into the buzzer.

FLAGS Register

Most designs require flag or state bits to indicate cur-
rent modes or the state of a software routines. In this
design, the FLAGS register is defined as follows:

Bits 0,1 -indicates the current operating mode
(changed by pressing and releasing
the MODE button):

00 - Display OFF

01 - Display/Set countdown timer
10 - Display/Set alarm time

11 - Display/Set clock (current time)

Bit 3- indicates if (alarm time) = (current clock
time)

Bit4 - indicates if (count down timer) =0

Bits 5,6,7 -Used as a divide by four counter to
keep track of seconds

The software is broken up into the following
routines for modularity:

buzz_now routine - Oufput buzzing tone during alarm
for 156 ms.

Buzzers are available in self-oscillating and direct drive
models. To save cost, a low impedance, direct drive
model was selected. The buzz_now routine is called by
the main_loop and it chirps the buzzer for 156 ms at a
1638 Hz frequency. This routine first turns off the LEDs
(by clearing PORTB) and then uses TEMP to count for
256 pulses. The pulse is sent to the buzzer by the BSF
BUZZEROUT and BCF BUZZEROUT instructions. This rou-
tine retums once 256 pulses are sent to the buzzer.
This is necessary, since the controller cannot buzz the
buzzer and keep track of time at the same time (run-
ning at such a low frequency), so these two functions
are multiplexed.

© 1995 Microchip Technology Inc.

DS00615A-page 2-105

AN615

task_scan routine - multiplex LEDs to display the next
digit, only one digit is lit at a time).

The PIC16C5X family is designed for polled /O appli-
cations and does not contain a hardware interrupt
structure. To achieve the lowest cost design, the
PIC16C54A was selected and all modules are written
to CALL this task_scan routine within the multiplexing
time frame of 3.9 ms or 32 instruction cycles. This rou-
tine first synchronizes itself with the TMRO register, bit0
to ensure that the scanning occurs at the same point in
time, regardless of when the routine is called. Next,
PREVSCAN is rotated, setting up the CARRY bit cor-
rectly. The bit pattern for the next digit to be displayed
is then moved into the W. register The display is
blanked, PORTA is rotated (to select the next digit) and
the next display bit pattem is moved to PORTB to dis-
play it. For ESD integrity, PORTA is later restored from
the PREVSCAN register. This routine takes a total of
21 cycles (including the CALL and RETLW instructions)
to execute and the displays are scanned every 3.9 ms
(32 instruction cycles); therefore, this routine needs to
be called after every 11 instruction cycles from every
routine to maintain proper display multiplexing.

disp_value routine - Update the display registers with
the bitmap of what digits are to be displayed next.

Indirect addressing is used here to reduce the amount
of code needed and to simplify the routine. Since the
clock, alarm or countdown time could each be dis-
played, the W register contains the base address (in
the register file) of the four digits that are to currently be
displayed. The W register is first moved to the FSR reg-
ister so that the indirect address register contains the
first digit to be displayed. The first digit is first converted
into the segment bit pattem by calling the led_lookup
table and then the bit pattern is moved to
DISPSEGS_A. The FSR register is incremented (mov-
ing to the next digit) and the process is repeated for the
remaining 3 digits. To maintain proper multiplexing,
task_scan is called throughout this routine.

turnon_scan routine - Tums on the LEDs and
restores a legal scan position.

To save battery power, the displays are automatically
shut off after 8 seconds when no buttons are pressed.
The DISPON bit is used to preset the remaining display
on time to 8 seconds. This routine sets this flag (to later
turn on the displays) and then checks to see if the PRE-
VSCAN register contains a legal value (an illegal value
of “FFh” is used to turn off all of the displays) and it
restores a legal value if the displays were off.

scan_keys routine - Turns off LEDs for a moment and
scans the push-button inputs.

To reduce the number of I/Os needed by this applica-
tion, the three user input keys are multiplexed onto the
LED display segments through PORTB. First, the
PORTB is cleared and PORTA is set to ‘OFh’, tuming
off the LED displays. Next, PORTB is set up with bits
4,5 and 6 as inputs to read the keys. TEMP is then
loaded with the keys that have changed state (to detect

the falling edge of a key press) and KEYPAT is loaded
with a pattem ('0' = not pressed, '1' = pressed) for the
keys that are pressed. Lastly, PORTB is restored to all
outputs and the current multiplex scan is restored to
PORTA.

check_time routine - Checks for alarm or countdown
timer expiration.

Each second, alarm conditions must be detected and
the buzzer sounded if an alarm condition is true.
ALARMNOW and EGGNOW are flag bits that are used
by the main program to sound the buzzer if they are
set. This routine starts by setting both ALARMNOW
and EGGNOW. Next, the current time hours and min-
utes are compared (through a subtraction and a test of
the STATUS register Z bit) with the alarm time. If there
is any miscompare, the ALARMNOW bit is cleared. To
finish, the countdown timer time minutes and seconds
digits are each compared with zero. If there is any mis-
compare, the EGGNOW bit is cleared. To maintain
proper multiplexing, the task_scan routine is regularly
called throughout this routine.

inc_time routine - Adds one second, minute or hour to
the clock, alarm or timer.

Every second, inc_time is called by main_loop to incre-
ment the seconds count for the clock. This routine is
also called when the “UP” key is pressed and “MODE”
key is held down to adjust the current time, alarm time
or set the countdown timer. This routine uses indirect
addressing to reduce the amount of code and simplify
it's operation. Before this routine is called, the W regis-
ter is loaded with the address of the clock second reg-
ister and the routine is called. The FSR register is
loaded with this value and the indirect address register
is incremented (effectively incrementing the seconds
counter).

Once the second counter is incremented, this register
is checked for overflow (greater than 59 seconds) and
if no overflow occurred, the routine retums. If an over-
flow happened, the second counter is cleared and the
minute low digit is incremented. This register is then
checked for an overflow (greater than 9 minutes) and
so on until the all digits are updated.

This routine can also be called from multiple points. If
called with the label inc_min_Id, only the minutes (and
hours if an overflow occurs) will be incremented. Addi-
tionally, calling inc_hour_Id will increment only the hour
digits. These features are used when setting the clock
or alarm function. The FLAGS register (bits 0 and 1) is
used to determine the current mode (clock, alarm or
countdown timer) and ensure proper overflow calcula-
tions. To maintain proper multiplexing, the task_scan
routine is regularly called throughout this routine.

DS00615A-page 2-106

© 1995 Micfochip Tecﬁnology Inc.

ANG615

dec_time routine - Subtracts one second, minute or
hour from the clock, alarm or timer.

If the countdown timer is enabled, dec_time is called by
the main loop to decrement the seconds count for the
countdown timer. This routine is also called by the main
loop when the “DOWN?” key is pressed and “MODE”
key is held down to adjust the current time, alarm time
or set the countdown timer. This routine uses indirect
addressing to reduce the amount of code and simplify
it's operation. Before this routine is called, the W regis-
ter is loaded with the address of the countdown timer’s
second register and the routine is called. The FSR reg-
ister is loaded with this value and the indirect address
register is incremented (effectively incrementing the
seconds counter).

Once the second counter LSD is decremented, this
register is checked for underflow (less than 0 seconds)
and if no underflow occurred, the routine retums. If an
underflow happened, the second counter LSD is set to
9 and the second MSD is decremented. This register is
then checked for an underflow (less than 0 seconds)
and so on until all digits are updated.

This routine also can be called from multiple points. If
called with the label dec_hour_Id_vec, only the hour
digits (or minutes if it is the countdown timer) will be
decremented. This feature is used when setting the
clock or alarm function. The FLAGS register (bits 0 and
1) is used to determine the current mode (clock, alarm
or countdown timer) and ensure proper underflow cal-
culations. To maintain proper multiplexing, the
task_scan routine is regularly called throughout this
routine.

main_loop routine - Calls the above routines as
needed and keeps track of when to increment the clock
or decrement the countdown timer.

The main_loop calls all of the previous routines as nec-
essary to maintain time, LED multiplexing, alarming
and setting each function. The OPTION register is
loaded with a 03h value to set up a Divide by 16 pres-
caler for the TMRO register and internal instruction
cycle increment. The instruction cycle is 122.07 us;
therefore, bit0 changes every (122 us » 16) = 1.953 ms
and bit7 changes every (122.07 us e 16 e 128) =
250 ms. Bits 5 and 6 of the FLAGS register are used to
divide this 250 ms event by 4 to call inc_time every sec-
ond.

The check_time routine is called after calling inc_time
(every second), setting the EGGNOW or ALARMNOW
flag bits. If the alarm is enabled, the buzzer is buzzed
by calling buzz_now; however, the main timer updates
need to occur in between buzzer beeps to keep track
of time.

Every 500 ms, the keys are scanned and the edges on
the MODE key are detected. Pressing the UP or
DOWN key will shut off the buzzer (clearing the enable
bits) and pressing the MODE key will advance the cur-
rent mode. The mode is a 4-state state machine,
revolving between the following states:

1. Display OFF - saves battery power - defaults to
this mode if no keys are pressed for 8 seconds.

2. Display or Set countdown timer (holding MODE
key allows setting).

3. Display or Set Alarm time (helding MODE key
allows setting).

4. Display or Set Clock time (holding MODE key
allows setting).

Next, the UP and DOWN keyscan values are tested
and if the MODE and UP are both pressed, the cur-
rently displayed mode time is incremented or decre-
mented. If MODE is not pressed and UP or DOWN is
pressed, the displays are tumed on, but the displayed
time is not altered.

DISPONCNT is used to keep track of how long the dis-
plays have been on once all buttons are released. After
8 seconds, the displays are automatically turned off to
save power. MODE_COUNT is used to switch from
setting the right hand displays (minutes or seconds) to
the left hand displays (hours or minutes). When the UP
or DOWN button is held with mode for more than 4 sec-
onds consecutively, MODE_COUNT reaches zero,
switching from the right to left hand displays.

Finally, the main_loop finishes by updating the display
registers by calling disp_value and if DISPONCNT has
decreased to zero, the displays are turned off.

Lookup Tables - Convert a number into a bit pattern or
RAM address.

There are three lookup tables used in this design for
BCD to 7-Segment decoding, manufacturing diagnos-
tics and looking up the address of the currently dis-
played mode.

* mode_timer - look-up the address of the clock,
Alarm or Timer data storage RAM.

led_lookup - look-up table contains the bitmap
display pattern for displaying digits 0-9.
mfg_led_lookup - look-up table contains the bit-
map display pattern used for manufacturing

mode. Only one segment is lit at a time.

Miscellaneous routines used for initialization
and manufacturing test:
« init - Initializes all of RAM to zero, sets up the I/O
ports and sets default time values.
¢ mfg_selftest - Used in manufacturing mode only
- tests each LED segment, push-button, buzzer

and display separately to expose bad keys, con-
nections, buzzer or displays.

© 1995 Microchip Technology Inc.

DS00615A-page 2-107

AN615

CONCLUSION

The implementation of this application highlights the
PIC16C54’s highly efficient instruction set, low power
and frequency operation, high current direct LED drive
capability and high performance instruction execution.
Many of the routines used in this application note apply
to a variety embedded control applications.

Ram Used: 25 Bytes

Code Space
Used: 444 Words (without manufacturing
diagnostics)
510 Words (including manufacturing
diagnostics)

DS00615A-page 2-108

© 1995 Microchip Technology Inc.

APPENDIX A: CODE

MPASM 01.21.03 Intermediate CLK8.ASM 8-21-1995 9:17:56 PAGE 1

Loc OBJECT LINE SOURCE TEXT

VALUE CODE

OFFF OFF8

0007

00000000
00000007
00000008
00000009
0000000A
0000000B
0000000C
0000000D
0000000E
0000000F
00000010
00000011
00000012
00000013
00000014
00000015
00000016
00000017
00000018
00000019
0000001A
0000001B
0000001C
0000001D

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00001
00002
00143
00024
00025
00026

00027 ;

00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053

R L L

P PIC Egg Timer Give-Away *

; * *

; * Author: John Day *

P Sr. Field Applications Engineer *

; * Northeast Region *

; * *

; * Revision: 1.2 *

; * Date September 22, 1994 *

; * Part: PIC16C54-LP/P or PICLl6LCS4A/P *

; * Fuses: 0sC: LP *

R WDT: OFF *

; * PuT: OFF *

;0 * CP: OFF *

H ARk A AR AAA AR A KRR ARAR AR A RKRA AR A A A kA kA kA A Ak Axhkhkk

; This program is intended to run on a 32 Khz watch crystal and
; connects to four multiplexed seven segment displays. It displays the

; current time, alarm time and egg count down timers. There are
; switches that allow the user to set the alarm, timer and clock functions.

LIST F=INHX8M, P=16C54

INCLUDE "pl6C5X.inc"
LIST

; P16CS5X.INC Standard Header File, Version 2.02 Microchip Technology, Inc.
LIST
__FUSES _CP_OFF&_WDT_OFF&_LP_0OSC

ORG 07h

R R e

; * Static RAM Register File Definitions *

KK KRR AR KR KIAAAKR IR AR AAKRAARARARRRA R A A A Ak kK
INDADDR EQU 0 ; Indirect address register
DISPSEGS_A EQU 07h ; Current Display A segment bit pattern
DISPSEGS_B EQU 08h ; Current Display B segment bit pattern
DISPSEGS_C EQU 09h ; Current Display C segment bit pattern
DISPSEGS_D EQU 0Ah ; Current Display D segment bit pattern
CLK_SEC EQU 0Bh ; Clock second counter (0-59)
CLK_MIN_LD EQU 0ch ; Clock minute low digit counter (0-9)
CLK_MIN_HD EQU 0Dh ; Clock minute high digit counter (0-5)
CLK_HOUR_LD EQU 0Eh ; Clock hour low digit counter (0-9)
CLK_HOUR_HD EQU OFh ; Clock hour high digit counter (0-2)
ALM_MIN_LD EQU 10h ; Alarm minute low digit counter (0-9)
ALM_MIN_HD EQU 11h ; Alarm minute high digit counter (0-5)
ALM_HOUR_LD EQU 12h ; Alarm hour lor digit counter (0-9)
ALM_HOUR_HD EQU 13h ; Alarm hour high digit counter (0-2)
TMR_SEC_LD EQU 14h ; Timer second low digit counter (0-9)
TMR_SEC_HD EQU 15h ; Timer second high digit counter (0-5)
TMR_MIN_LD EQU 16h ; Timer hour low digit counter (0-9)
TMR_MIN_HD EQU 17h ; Timer hour high digit counter (0-2)
KEYPAT EQU 18h ; Currently pressed key bits
FLAGS EQU 19h ; Status of alarms, display on, etc.
PREVTMRO EQU 1ah ; Used to determine which TMRO bits changed
PREVSCAN EQU 1Bh ; Store Common Cathode display scan state
TEMP EQU 1ch ; Temporary storage
DISPONCNT EQU 1Dh ; Time the displays have been on

© 1995 Microchip Technology Inc. DS00615A-page 2-109

AN615

0000001E
0000001F

0000003C
0000000A
00000006
00000004
00000002
00000003
00000007
00000008
00000028

01FF
O01FF
O1FF OBAS

0000

0000

0000 OEO03
0001 01E2
0002 0814
0003 0810
0004 080C
0005 080C

0006

0006 0066
0007

0007 007C
0008

0008 05E6
0009 04E6
000A 02FC
000B 0AO8
000C 0800

000D

00054
00055
00056
00057

00058 ;

00059
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072

00073 ;

00074
00075
00076
00077
00078
00079
00080
00081
00082
00083
00084
00085
00086
00087
00088
00089
00090
00091
00092
00093
00094
00095
00096
00097
00098
00099
00100
00101
00102
00103
00104
00105
00106
00107
00108
00109
00110
00111
00112
00113
00114
00115

00116 ;

00117

00118 ;

00119

MODE_COUNT EQU 1Eh ; Current mode state
ALARMCNT EQU 1Fh ; Time the alarm has been sounding
H AhkKKhk IR AR AR AR AkR AR R Ak hkhhhhhhhkhdkk
; * Flag and state bit definitions *
o hAkEKk A KA A KA KA A Ak kA AR Ak kA hkhhkkhkk bk hhhhkk .
#define SECBIT TEMP, 7 ; Bit to spawn 1/4 second count
#define SCANBIT TMRO, 0 ; Bit to spawn display MUX
#define MODEKEY KEYPAT, 4 ; Bit for MODEKEY pressed
#define UPKEY KEYPAT, 6 ; Bit for UPKEY pressed
#define DOWNKEY KEYPAT, 5 ; Bit for DOWNKEY pressed
#define MODEKEYCHG TEMP, 4 ; Bit for delta MODEKEY
#define TIMENOW FLAGS, 7 ; Flag to indicate 1 second passed
#define ALARMNOW FLAGS, 3 ; Flag to indicate wakeup alarm
#define EGGNOW FLAGS, 4 ; Flag to indicate egg timer alarm
#define ALARMOK STATUS, PAO ; Flag to enable wakeup alarm
#define EGGOK STATUS, PAl ; Flag to enable timer alarm
#define BUZZEROUT PORTB, 7 ; Pin for pulsing the buzzer
#define DISPON DISPONCNT, 4 ; Bit to turn on LED displays
KAKKKAKKKKAKKKRKAKRKKRKRKKNAKRKRKRAKRAKRARARAAAR A AR AR AR AR AR AR hh
; * Various Constants used throughout the program *
H KA KKARKAIAKRA AR AR AR R KA AR AR AR R A AR R AR A ARk R A Ak khkk Kk
SEC_MAX EQU .60 ; Maximum value for second counter
MIN_LD_MAX EQU .10 ; Maximum value for low digit of minute
MIN_HD_MAX EQU .6 ; Maximum value for high digit of minute
HOUR_LD_MAX EQU .4 ; Maximum value for low digit of hour
HOUR_HD_MAX EQU .2 ; Maximum value for high digit of hour
OPTION_SETUP EQU b'00000011" ; TMRO - internal, /16 prescale
BUZINITVAL EQU 7 ;
INIT_MODE_COUNT EQU 8 ; Digit counts to move to hour digits
ALARMCYCCNT EQU .40 ; Alarm for 10 seconds (ALARMCYCCNT/4)
ORG 01FFh ; The PICSX reset vector is at end of mamory
reset_vector
GOTO init ; Jump to the initialization code
ORG 0
: KA AKRKRAKRKARARKAKRKAKAARAA R A AN A Ak hk Ak hkhkAhkhkhhkh
; * Current mode look-up table *
H KAk IA KA A KRR KA AA AR AR AT AR A Ak kA kA khkd

mode_timer

ANDLW 3 ; Mask off upper bits just in case
ADDWF PCL,F ; Jump to one of 4 look-up entries
RETLW TMR_SEC_LD ; Return the address of the 99 min timer RAM
RETLW ALM MIN_LD ; Return the address of the alarm RAM
RETLW CLK_MIN_LD ; Return the address of the clock RAM
RETLW CLK_MIN_LD ; Return the address of the clock RAM

H hhkkhkhkkhkhhkhhhhkhhkhhhhAhhhhAhkrrhkhhhdhkhhhkk

; * Buzz the buzzer for 1/8 second *

; hhkhkhkhkhkhkhkhhkhhkhhkhkhhkhhkhhhkhhkhAhhkhhhhhhhhhdd

buzz_now
CLRF PORTB ; Shut off the segments

buzz_now_dispon

CLRF TEMP ; Buzz for 256 pulses
loop_buz
BSF BUZZEROUT ; Send out pulse
BCF BUZZEROUT ; Clear out the pulse
DECFSZ TEMP,F ; Decriment counter and skip when done
GOTO loop_buz ; Go back and send another pulse
RETLW O ; We are done so come back!
Khkhkhkhhkhkhhhhhkhhhkhhhhrhhhhhkhkhhhkhhhkkkhhkhhkk
; * Mux drive the next LED display digit *
hhkkkhkhkhkhhhhhhhhkhhhhhhhkhhhhkhkhhkkr bk hhkd
task_scan ; (19 (next_scan) + 2 = 21 cycles - must be called every 11 cy)

DS00615A-page 2-110

© 1995 Microchip Technology Inc.

AN615

000D
000E

000F
000F
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
001A
001B
001C
001D
001E

001F
001F
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
002A
002B
002¢C
002D
002E
002F
0030
0031
0032
0033
0034
0035
0036

0037
0037
0038
0039
003a
003B
003cC
003D
003E
003F
0040
0041

0601
0AOD

035B
073B
0209
071B
0208
077B
0207
075B
020A
0066
037B
0365
0026
021B
0025
0800

0024
090D
0200
0937
0027
02A4
090D
0200
0937
0028
02a4
090D
0200
0937
0029
0224
090D
0200
0643
0240
0937
002A
090D
0800

OEOF
01E2
083F
0806
085B
084F
0866
086D
087D
0807
087F

SCANBIT
task_scan

; Synch up with 3.9 mS timer bit
; Jump back until bit is clear

(15 + 2 call + 2 return = 19 cycles)

PREVSCAN, W
PREVSCAN, 1
DISPSEGS_C,W
PREVSCAN, 0
DISPSEGS_B,W
PREVSCAN, 3
DISPSEGS_A,W
PREVSCAN, 2
DISPSEGS_D,W
PORTB
PREVSCAN, F
PORTA, F
PORTB
PREVSCAN, W
PORTA

0

; Move to the next digit select into C
; 0 Check if display A was on before
Place display B value into W

1 Check if display B was on before
Place display C value into W

2 Check if display C was on before
Place display D value into W

3 Check if display D was on before

; Place display A value intc W

Turn off all segments

Move to the next digit

Move port to the next digit

Place next segment value on PORTB
Restore the port in case it is wrong
Restore the port

Display is updated - now return

j KRR KA AR KA RAK IR RK K KRR KRR K KRR KRR AR AR AR KRR

; * Move new digit display info out to display *

FSR
task_scan
INDADDR, W
led_lookup
DISPSEGS_A
FSR,F
task_scan
INDADDR, W
led_lookup
DISPSEGS_B
FSR,F
task_scan
INDADDR, W
led_lookup
DISPSEGS_C
FSR,F
task_scan
INDADDR, W
STATUS, Z
INDADDR, W
led_lookup
DISPSEGS_D
task_scan
0

ARAKRK K KA KRAAKRRRRRARAARAAAK K KRR KRR AR A AN A KA R Rk k&

Place W into FSR for indirect addressing
Scan the next LED digit.

Place display value into W

Look up seven segment value

Move value out to display register A
Go to next display value

Scan the next LED digit.

Place display value into W

Look up seven segment value

Move value out to display register B
Go to next display value

Scan the next LED digit.

Place display value into W

Look up seven segment value

Move value out to display register C
; Go to next display value

Scan the next LED digit.

Place display value into W

ZBLANK - Check for a zero

ZBLANK - Clear digit with FF if leading 0
Look up seven segment value

Move value out to display register D
Scan the next LED digit.

;ORKEER KKK RKARRRRIRAR KRR KA AR I AR AR IR R KRR A,

; * Convert display value into segments *
hAhkhkhk kA hkhkhkrhAh kA hh kA bk bk oAbk hkrhkhkdhd

00120 BTFSC
00121 GOTO
00122

00123 next_scan H
00124 RLF
00125 BTFSS
00126 MOVF
00127 BTFSS
00128 MOVF
00129 BTFSS
00130 MOVF
00131 BTFSS
00132 MOVF
00133 CLRF
00134 RLF
00135 RLF
00136 MOVWF
00137 MOVF
00138 MOVWF
00139 RETLW
00140

00141

00142

00143

00144 ;

00145 disp_value
00146 MOVWF
00147 CALL
00148 MOVF
00149 CALL
00150 MOVWF
00151 INCF
00152 CALL
00153 MOVF
00154 CALL
00155 MOVWF
00156 INCF
00157 CALL
00158 MOVF
00159 CALL
00160 MOVWF
00161 INCF
00162 CALL
00163 MOVF
00164 BTFSC
00165 COMF
00166 CALL
00167 MOVWF
00168 CALL
00169 RETLW
00170

00171

00172

00173

00174 led_lookup
00175 ANDLW
00176 ADDWF
00177 RETLW
00178 RETLW
00179 RETLW
00180 RETLW
00181 RETLW
00182 RETLW
00183 RETLW
00184 RETLW
00185 RETLW

OFh

PCL,F
b'00111111"
b'00000110"
b'01011011"
b'01001111"
b'01100110"
b'01101101"
b'01111101"
b'00000111"
b'01111111"

Strip off upper digits
Jump into the correct location
Bit pattern for a Zero

; Bit pattern for a One

; Bit pattern for a Two

; Bit pattern for a Three
; Bit pattern for a Four
; Bit pattern for a Five
; Bit pattern for a Six

; Bit pattern for a Seven
; Bit pattern for a Eight

© 1995 Microchip Technology Inc.

DS00615A-page 2-111

AN615

0042 086F 00186 RETLW b'01101111" ; Bit pattern for a Nine
0043 0800 00187 RETLW 0 ; Turn display off - ILLEGAL VALUE
0044 0800 00188 RETLW 0 ; Turn display off - ILLEGAL VALUE
0045 0800 00189 RETLW 0 ; Turn display off - ILLEGAL VALUE
0046 0800 00190 RETLW 0 ; Turn display off - ILLEGAL VALUE
0047 0800 00191 RETLW 0 ; Turn display off - ILLEGAL' VALUE
0048 0800 00192 RETLW 0 ; Turn display off - ILLEGAL VALUE
00193
00194 ; KA KA KR KK KA KR AR AR AR R AR AR KA KRR KRR AN ARA AR KRR KRR RN AR AR AR AR AR KRR AR AR AR A A A hh hx

00195 ; * Convert display value into single segment ON for manufacturing diags *

00196 ; AKAEARAR R KK R AR A RRA A AR KA AKR AR A A RARAAARKA KR AKRRARARKNRARAKRARA KRR R A AR AR R AR AR A AR A KRR A RK
0049 00197 mfg_led_lookup
0049 OEO7 00198 ANDLW 07h ; Strip off upper digits
004A 01E2 00199 ADDWF PCL,F ; Jump into the correct location
004B 0801 00200 RETLW b' 00000001 ; Bit pattern for segment A on only
004C 0802 00201 RETLW b*00000010" ; Bit pattern for segment B on only
004D 0804 00202 RETLW b'00000100" ; Bit pattern for segment C on only
004E 0808 00203 RETLW b'00001000" ; Bit pattern for segment D on only
004F 0810 00204 RETLW b'00010000" ; Bit pattern for segment E on only
0050 0820 00205 RETLW b'00100000" ; Bit pattern for segment F on only
0051 0840 00206 RETLW b'01000000" ; Bit pattern for segment G on only
0052 087F 00207 RETLW b'0ol1111111" ; Bit pattern for all segments on
00208
00209 H KKK KKK AR A AR KR AR AR AR R AR AR AR KA AR AR A KRAARKRRAKRRAAAKRAAR AR AR A AN AN KK
00210 ; * Wake-up and turn on the displays *
00211 ; KKK KA KA KRR AR KA A KRR R AR KRAAKRAARRARARRANKRRARRRRR AR AR KRR A AR R R AN R A XK
0053 00212 turnon_scan
0053 059D 00213 BSFEF DISPON ; Set display ON bit
0054 OCEE 00214 MOVLW b'11101110" ; Place digit 0 scan pattern in W
0055 019B 00215 XORWF PREVSCAN, W ; See if this is the current scan
0056 0643 00216 BTFSC STATUS, Z ; Skip if this is not the current scan
0057 0800 00217 RETLW 0 ; Legal scan value - we are done!
0058 0CDD 00218 MOVLW b'11011101" ; Place digit 1 scan pattern in W
0059 019B 00219 XORWF PREVSCAN, W ; See if this is the current scan
005A 0643 00220 BTFSC STATUS, Z ; Skip if this is not the current scan
005B 0800 00221 RETLW 0 ; Legal scan value - we are done!
005C OCBB 00222 MOVLW b'10111011" ; Place digit 2 scan pattern in W
005D 019B 00223 XORWF PREVSCAN, W ; See if this is the current scan
005E 0643 00224 BTFSC STATUS, Z ; Skip if this is not the current scan
005F 0800 00225 RETLW 0 ; Legal scan value - we are done!
0060 0C77 00226 MOVLW b'01110111" ; Place digit 3 scan pattern in W
0061 019B 00227 XORWF PREVSCAN, W ; See if this is the current scan
0062 0643 00228 BTFSC STATUS, Z ; Skip if this is not the current scan
0063 0800 00229 RETLW 0 ; Legal scan value - we are done!
0064 OCEE 00230 MOVLW O0EEh ; Move digit 0 scan value into W
0065 003B 00231 MOVWF PREVSCAN ; Move it into scan pattern register
00232
00233 ; KA KA KA KRR AR A KRR AT AR A AR A RN A AR AR AR AR AR AR KAk
00234 ; * Scan for pressed keys *
00235 H AAKAAKKKKARKRKRKRKR KA ARKAAA KA A AKN A AR AR AR KA KA KA %
0066 00236 scan_keys
0066 0066 00237 CLRF PORTB ; Turn off all of the segments
0067 OCFF 00238 MOVLW 0FFh ; Place FF into W
0068 0025 00239 MOVWF PORTA ; Make PORT A all ones
0069 0C70 00240 MOVLW b'01110000°¢ ; Place 70 into W
006A 0006 00241 TRIS PORTB ; Make RB4,5,6 inputs others outputs
006B 0206 00242 MOVF PORTB, W ; Place keyscan value into W
006C 0198 00243 XORWF KEYPAT, W ; Place Delta key press into W
006D 003C 00244 MOVWF TEMP ; Place Delta key press into TEMP
006E 01B8 00245 XORWF KEYPAT, F ; Update KEYPAT reg to buttons pressed
006F 0040 00246 CLRW ; Place 0 into W
0070 0006 00247 TRIS PORTB ; Make PORT B outputs
0071 021B 00248 MOVF PREVSCAN, W ; Place previous scan value into W
0072 0025 00249 MOVWF PORTA ; Turn on the scan
0073 0800 00250 RETLW 0
00251 H khkkhkkhkhhkhkhkhhkhkhkhhkhhhkhkhk kA hhkhhhkhhkhhkh Ak hkhk

DS00615A-page 2-112 © 1995 Microchip Technology Inc.

AN615

00252 ;

00253
0074 00254 check_time
0074 090D 00255 CALL
0075 0579 00256 BSF
0076 0599 00257 BSF
0077 0210 00258 MOVF
0078 008C 00259 SUBWF
0079 0743 00260 BTFSS
007a 0479 00261 BCF
007B 0211 00262 MOVF
007Cc 008D 00263 SUBWF
007D 0743 00264 BTFSS
007E 0479 00265 BCF
007F 090D 00266 CALL
0080 0212 00267 MOVF
0081 008E 00268 SUBWF
0082 0743 00269 BTFSS
0083 0479 00270 BCF
0084 0213 00271 MOVF
0085 008F 00272 SUBWF
0086 0743 00273 BTFSS
0087 0479 00274 BCF
0088 090D 00275 CALL
0089 0214 00276 MOVF
008A 0743 00277 BTFSS
008B 0499 00278 BCF
008C 0215 00279 MOVF
008D 0743 00280 BTFSS
008E 0499 00281 BCF
008F 0216 00282 MOVF
0090 0743 00283 BTFSS
0091 0499 00284 BCF
0092 090D 00285 CALL
0093 0217 00286 MOVF
0094 0743 00287 BTFSS
0095 0499 00288 BCF
0096 0799 00289 BTFSS
0097 05c3 00290 BSF
0098 0779 00291 BTFSS
0099 05A3 00292 BSF
009A 090D 00293 CALL
009B 0800 00294 RETLW

00295

00296 ;

00297 ;

00298 ;
009C 00299 inc_time
009C 0024 00300 MOVWF
009D 090D 00301 CALL
009E 02A0 00302 INCF
009F 0C3cC 00303 MOVLW
00AQ0 0080 00304 SUBWF
00a1 0703 00305 BTFSS
00A2 0800 00306 RETLW
00A3 006B 00307 CLRF
00A4 02a4 00308 INCF
00A5 02A0 00309 INCF
00A6 0AA9 00310 GOTO
00a7 00311 inc_min_ld
00A7 0024 00312 MOVWF
00A8 02A0 00313 INCF
00A9 00314 skip_min_fsr
0029 090D 00315 CALL
00AA 0COA 00316 MOVLW
00AB 0080 00317 SUBWF

* Incriment the clock,
KAK KA IAK KRR A KKK KA R AA KRR AR AR AR AR A AR A R ARk k ko k

task_scan
ALARMNOW
EGGNOW
ALM_MIN_LD,W
CLK_MIN_LD,W
STATUS, 2
ALARMNOW

ALM MIN_HD,W
CLK_MIN_HD,W
STATUS | Z
ALARMNOW
task_scan
ALM_HOUR_LD,W
CLK_HOUR_LD,W
STATUS, Z
ALARMNOW
ALM_HOUR_HD, W
CLK_HOUR_HD,W
STATUS, Z
ALARMNOW
task_scan
TMR_SEC_LD,W
STATUS, Z
EGGNOW
TMR_SEC_HD,W
STATUS, Z
EGGNOW
TMR_MIN_LD,W
STATUS, Z
EGGNOW
task_scan
TMR_MIN_HD,W
STATUS, Z
EGGNOW
EGGNOW

EGGOK
ALARMNOW
ALARMOK
task_scan

0

FSR
task_scan
INDADDR, £
SEC_MAX
INDADDR, W
STATUS, C
0

CLK_SEC
FSR,F
INDADDR, F
skip_min_fsr

FSR
INDADDR, F

task_scan
MIN_LD_MAX
INDADDR, W

* Check if alarm or timer is expired *
hhkhkhkhhhhkhhkhkhkhkhhA kAo h kA A AA kA A AR kXA A Ak kK

Scan the next LED digit.

Set the alarm bit

Set the Egg timer alarm bit

Place alarm minute counter into W
CLK_MIN_LD - W -> W

Skip if they are equal

They are not equal so clear alarm bit
Place alarm minute counter into W
CLK_MIN.HD - W -> W

Skip if they are equal

They are not equal so clear alarm bit
Scan the next LED digit.

Place alarm hour counter into W
CLK_HOUR_LD - W -> W

Skip if they are equal

They are not equal so clear alarm bit
Place alarm hour counter into W
CLK_HOUR_LD - W -> W

sSkip if they are equal

They are not equal so clear alarm bit
Scan the next LED digit.

Set the Z bit to check for zero

Skip if this digit is zero

Timer is not zero so clear egg alarm bit
Set the Z bit to check for zero

Skip if this digit is zero

Timer is not zero so clear egg alarm bit
Set the Z bit to check for zero

Skip if this digit is zero

Timer is not zero so clear egg alarm bit
Scan the next LED digit.
Set the Z bit to check for
Skip if this digit is zero
Timer is not zero so clear egg alarm bit
Skip if we are still at EGG Time

If we are not at BGG time, re-set egg alarm
Skip if we are still at Alarm time

If we are not at Alarm time, re-set alam
Scan the next LED digit.

zero

KAKKKRKKRAKKAAKKAKRRR AR KRR RKRRKRARARRARKRARAKR

timer or alarm *

Add one to clock second counter
Scan the next LED digit.

Add one to minute lower digit
Place second max value into w
CLOCK_SEC - SEC_MAX -> W

Skip if there is an overflow
We are done so let's get out of here!
Clear CLK_second counter

Move to the next digit

Add 1 to minute LOW digit

Jump to the next digit

Add 1 to minute LOW digit
Scan the next LED digit.

Place minute lower digit max value into W
CLK_MIN_LD - MIN_LD_MAX -> W

© 1995 Microchip Technology Inc.

DS00615A-page 2-113

ANG615

00AC 0703 00318 BTFSS STATUS, C
00AD 0800 00319 RETLW 0
00AE 0060 00320 CLRF INDADDR
00AF 02A4 00321 INCF FSR,F
00BO 02A0 00322 INCF INDADDR, F
00B1 00323 inc_min_hd
00B1 090D 00324 CALL task_scan
00B2 0CO06 00325 MOVLW MIN_HD_MAX
00B3 0080 00326 SUBWF INDADDR, W
00B4 0703 00327 BTFSS STATUS, C
00B5 0800 00328 RETLW 0
00B6 0060 00329 CLRF INDADDR
00B7 02a4 00330 INCF FSR,F
00B8 02A0 00331 INCF INDADDR, F
00B9 OABE 00332 GOTO skip_hour_fsr
00BA 00333 inc_hour_1ld
00BA 0024 00334 MOVWF FSR
00BB 02A4 00335 INCF FSR,F
00BC 02a4 00336 INCF FSR,F
00BD 02A0 00337 INCF INDADDR, F
00BE 00338 skip_hour_fsr
00BE 090D 00339 CALL task_scan
00BF 0COA 00340 MOVLW MIN_LD_MAX
00Cc0 0080 00341 SUBWF INDADDR , W
00Cc1 0703 00342 BTFSS STATUS, C
00Cc2 0AC7 00343 GOTO check_inc
00C3 0060 00344 CLRF INDADDR
00Cc4 02a4 00345 INCF FSR,F
00Cc5 02A0 00346 INCF INDADDR, F
00C6 OAC8 00347 GOTO inc_hour_hd
00Cc7 00348 check_inc
00Cc7 02a4 00349 INCF FSR,F
00c8 00350 inc_hour_hd
00C8 090D 00351 CALL task_scan
00C9 0C02 00352 MOVLW HOUR_HD_MAX
00CA 0639 00353 BTFSC FLAGS, 1
00CB OACE 00354 GOTO of f_model
00cc 0619 00355 BTFSC FLAGS, 0
00CD 0C09 00356 MOVLW MIN_LD_MAX-1
00CE 00357 off_model
00CE 0080 00358 SUBWF INDADDR, W
00CF 0703 00359 BTFSS STATUS, C
00D0 0800 00360 RETLW 0
00D1 O0OE4 00361 DECF FSR,F
00D2 090D 00362 CALL task_scan
00D3 0C04 00363 MOVLW HOUR_LD_MAX
00D4 0639 00364 BTFSC FLAGS, 1
00D5 OADS8 00365 GOTO off_mode2
00D6 0619 00366 BTFSC FLAGS, 0
00D7 0C00 00367 MOVLW O
00D8 00368 off_mode2
00D8 0080 00369 SUBWF INDADDR, W
00D9 0703 00370 BTFSS STATUS, C
00DA 0800 00371 RETLW 0
00DB 090D 00372 CALL task_scan
00DC 0060 00373 CLRF INDADDR
00DD 0639 00374 BTFSC FLAGS, 1
00ODE O0AEOQ 00375 GOTO off_mode3
00DF 0719 00376 BTFSS FLAGS, 0
00EOQ 00377 off_mode3
00EO 0000 00378 NOP
00E1 02A4 00379 INCF FSR,F
00E2 0060 00380 CLRF INDADDR
00E3 090D 00381 CALL task_scan
00E4 0800 00382 RETLW 0

00383

Skip if there is an overflow

We are done so let's get out of here!
Clear CLK minute low digit

Move to the minute high digit

Add one to minute high digit

Scan the next LED digit.

Place minute high digit max value into W
CLK_MIN_HD - MIN_HD_MAX -> W

Skip if there is an overflow

We are done so let's get out of here!
Clear CLK minute high digit

Move to the hour low digit

Add one to hour low digit

Jump to the next digit

Add 1 to minute LOW digit

Scan the next LED digit.

Place hour lower digit max value into W
CLK_HOUR_LD - HOUR_LD_MAX -> W

Skip if there is an overflow

We need to check for overflow

Clear CLK hour low digit

Move to the hour high digit

Add one to hour high digit

Move to hour high digit

Scan the next LED digit.
Place hour high digit max value into W

CLK_HOUR_HD - HOUR_HD_MAX -> W

Skip if there is an overflow

We are done so let's get out of here!
Move to the hour low digit

Scan the next LED digit.

Place hour high digit max value into W

Clear W

CLK_HOUR_HD - HOUR_HD_MAX -> W

Skip if there is an overflow

We are done so let's get out of here!
Scan the next LED digit.

Clear hour high digit

Move to the hour high digit
Clear one hour low digit

We are done so let's get out of here!

DS00615A-page 2-114

© 1995 Microchip Technology Inc.

AN615

00E5
00ES O0AF9

00E6

00E6

00E6 0024
00E7 090D
00E8 00EO
00E9 0240
O0EA 0743
00EB 0800
00EC 0C09
00ED 0020
00EE

00EE 090D
00EF 02A4
00F0 OOEQ
00F1 0240
00F2 0743
00F3 0800
00F4 0CO05
00F5 0020
00F6 090D
00F7 02A4
00F8 OAFD
00F9

00F9 0024
00FA 02A4
00FB 02A4
00FC 090D
00FD

00FD 00EO
00FE 0240
00FF 0743
0100 0BO6
0101 0cC09
0102 0020
0103 02Aa4
0104 OOEO
0105 0BO7
0106

0106 02A4
0107

0107 090D
0108 0240
0109 0743
010A 0800
010B 090D
010C 00E4
010D 0C09
010E 0080
010F 0743
0110 0800
0111 090D
0112 02A4
0113 0C02
0114 0739
0115 0co09
0116 0020
0117 0cC03
0118 0739
0119 0c09
011A 00E4

00384 dec_hour_1d

dec_hour_1ld_vect

;

ran out of CALL space....

KKK KK I KK KKK KKK AARRKARR AR R AR K AR KA KA KRR KA KK

e clock,

alarm or timer *

B

00385 GOTO
00386

00387

00388 ; * Decriment thi
00389

00390 dec_time
00391 dec_min_1ld
00392 MOVWE
00393 CALL
00394 DECF
00395 COMF
00396 BTFSS
00397 RETLW
00398 MOVLW
00399 MOVWE
00400 dec_min_hd
00401 CALL
00402 INCF
00403 DECF
00404 COMF
00405 BTFSS
00406 RETLW
00407 MOVLW
00408 MOVWF
00409 CALL
00410 INCF
00411 GOTO
00412 dec_hour_ld_vect
00413 MOVWF
00414 INCF
00415 INCF
00416 CALL
00417 skip_dhour_fsr
00418 DECF
00419 COMF
00420 BTFSS
00421 GOTO
00422 MOVLW
00423 MOVWE
00424 INCF
00425 DECF
00426 GOTO
00427 check_hour
00428 INCF
00429 dec_hour_hd
00430 CALL
00431 COMF
00432 BTFSS
00433 RETLW
00434 CALL
00435 DECF
00436 MOVLW
00437 SUBWF
00438 BTFSS
00439 RETLW
00440 CALL
00441 INCF
00442 MOVLW
00443 BTFSS
00444 MOVLW
00445 MOVWF
00446 MOVLW
00447 BTFSS
00448 MOVLW
00449 DECF

FSR

task_scan
INDADDR, F
INDADDR, W
STATUS 7.

0

MIN_LD_MAX - 1
INDADDR

task_scan
FSR,F
INDADDR, F
INDADDR, W
STATUS, Z

0

MIN_HD_MAX - 1
INDADDR
task_scan
FSR,F
skip_dhour_fsr

FSR

FSR,F
FSR,F
task_scan

INDADDR, F
INDADDR, W
STATUS, Z
check__hour
MIN_LD_MAX - 1
INDADDR

FSR,F
INDADDR, F
dec_hour_hd

FSR,F

task_scan
INDADDR, W
STATUS, Z

0

task_scan
FSR,F

.9
INDADDR, W
STATUS, Z

0

task_scan
FSR,F
HOUR_HD_MAX
FLAGS, 1

.9

INDADDR
HOUR_LD_MAX - 1
FLAGS, 1

.9

FSR,F

; We are done... Let's get ocut of here

Set up pointer for inditect address
Scan the next LED digit.

Subtract one from CLK_MIN_LD

Set the Z bit to check for zero
Skip if CTLK_MIN I.D is zero

Place minute lower digit max value into W
MIN_LD_MAX -> CLK_MIN_LD

Scan the next LED digit.

Move the pointer to Min HIGH DIGIT
Subtract one from CLK_MIN_HD

Set the Z bit to check for zero

Skip if CLK_MIN_LD is zero

We are done... Let's get out of here
Place minute lower digit max value into W
MIN_HD_MAX -> CLK_MIN_HD

Scan the next LED digit.

Move the pointer to Hour LOW DIGIT
Jump to the next digit

Scan the next LED digit.

Subtract one from CLK_HOUR_LD
Set the Z bit to check for zero
Skip if CLK_MIN_LD is zero

Place minute lower digit max value into W
MIN_LD_MAX -> CLK_HOUR_LD

Move the pointer to Hour HIGH DIGIT
Subtract one from CLK_HOUR_HD

Point to hour high digit

Scan the next LED digit.

Scan the next LED digit.
Reset digit to 9

Skip if CLK_MIN_LD is zero
We are done... Let's get out of here
Scan the next LED digit.

Place minute lower digit max value into W
Skip if CLOCK or ALARM mode

Reset digit to 9

HOUR_HD_MAX -> CLK_HOUR_HD

Place minute lower digit max value into W
Skip if CLOCK or ALARM mode

Reset digit to 9

Move the pointer to Min LOW DIGIT

© 1995 Microchip Technology inc.

DS00615A-page 2-115

AN615

011B 0020 00450 MOVWF INDADDR ; HOUR_LD_MAX -> CLK_HOUR_LD
011C 090D 00451 CALL task_scan ; Scan the next LED digit.
011D 0800 00452 RETLW 0 ; We are done... Let's get out of here
00453
00454 ; hhkRh KA KRAKRRKRR A AR K AR ARk h kA kA hkhhhhhhhkhh
00455 ; * Main loop calls all tasks as needed *
00456 H KAKRK KRR KR AKRR KA AR AAR AR AR AR AR AR A AR ARk k ok
011E 00457 main_loop
011E 090D 00458 CALL task_scan ; Scan the next LED digit.
011F 0201 00459 MOVF TMRO, W ; Place current TMRO value into W
0120 019A 00460 XORWF PREVTMRO , W ; Lets see which bits have changed...
0121 003¢C 00461 MOVWF TEMP ; All changed bits are placed in temp for test
0122 01BA 00462 XORWF PREVTMRO, F ; Update Previous TMRO value.
0123 07FC 00463 BTFSS SECBIT ; Skip if it is not time to increment second
0124 OB1E 00464 GOTO main_loop ; Go back to main loop if 250 mS not passed
0125 0C20 00465 MOVLW b'00100000°' ; Bits 6 and 5 of FLAGS used as divide by 4
0126 01F9 00466 ADDWF FLAGS,F ; Add one to bit 5
0127 07F9 00467 BTFSS TIMENOW ; Check bit 7 - if four adds occur, skip
0128 0B38 00468 GOTO skip_timer ; One second has not passed - skip timers
0129 090D 00469 CALL task_scan ; Scan the next LED digit.
012A 04F9 00470 BCF TIMENOW ; Clear out second passed flag
012B 0COB 00471 MOVLW CLK_SEC ; Place pointer to increment clock
012C 099cC 00472 CALL inc_time ; Increment the clock
012D 0974 00473 CALL check_time ; Check for alarm or timer conditions
012E 0699 00474 BTFSC EGGNOW ; Do NOT decrease timer if zero
012F 0B38 00475 GOTO skip_timer ; Jump out if egg timer is zero
0130 06D8 00476 BTFSC UPKEY ; Skip if UP key is NOT pressed
0131 0B38 00477 GOTO skip_timer ; Jump out if UP key is pressed
0132 06B8 00478 BTFSC DOWNKEY ; Skip if DOWN key is NOT pressed
0133 0B38 00479 GOTO skip_timer ; Jump out if DOWN key is pressed
0134 o0c14 00480 MOVLW TMR_SEC_LD ; Place pointer to decrement timer
0135 09ES6 00481 CALL dec_time ; Decrement countdown timer
0136 0C28 00482 MOVLW ALARMCYCCNT ; Place the number of alarm beeps into W
0137 003F 00483 MOVWE ALARMCNT ; Move beep count to ALARMCNT
0138 00484 skip_timer
0138 07A3 00485 BTFSS ALARMOK ; Skip if this is the first pass into alamm
0139 OB3F 00486 GOTO skip_wakeup ; Second pass - do not re-init ALARMCNT
013A 0779 00487 BTFSS ALARMNOW ; Skip if this is alarm pass
013B OB3F 00488 GOTO skip_wakeup ; Countdown timer - do not re-init ALARMCNT
013C 0cC28 00489 MOVLW ALARMCYCCNT ; Place the number of alarm beeps into W
013D 003F 00490 MOVWF ALARMCNT ; Move beep count to ALARMCNT
013E 04A3 00491 BCF ALARMOK ; Clear flag for second pass
013F 00492 skip_wakeup
013F 090D 00493 CALL task_scan ; Scan the next LED digit.
0140 0679 00494 BTFSC ALARMNOW ; Skip if alarm clock is not set
0141 0B4S 00495 GOTO send_alarm ; Blast out a beep
0142 0699 00496 BTFSC EGGNOW ; Skip if countdown timer is not alarming
0143 0B45 00497 GOTO send_alarm ; Blast out a beep
0144 0B4A 00498 GOTO skip_alarm ; Skip beeping and continue
0145 00499 send_alarm
0145 021F 00500 MOVF ALARMCNT, W ; Place ALARMCNT into W
0146 0643 00501 BTFSC STATUS, Z ; Skip if not zero
0147 0B4A 00502 GOTO skip_alarm ; We are done beeping - skip and continue
0148 O02FF 00503 DECFSZ ALARMCNT,F ; Decriment beep count and skip when zero
0149 0906 00504 CALL buzz_now ; Blast out the beep!!!
014A 00505 skip_alarm
014a 07B9 00506 BTFSS FLAGS,5 ; Skip if it is time to scan the keys 1/2 sec
014B 0B9A 00507 goto finish_update ; Jump to finish updates - don't scan
014C 0966 00508 CALL scan_keys ; Scan the keys and load value into KEYPAT
014D 090D 00509 CALL task_scan ; Scan the next LED digit.
014E 0798 00510 BTFSS MODEKEY ; Skip if the MODEKEY is pressed
014F O0B55 00511 GOTO same_mode ; Not pressed so it is the same mode...
0150 079¢C 00512 BTFSS MODEKEYCHG ; Skip if the is pressing edge
0151 0B55 00513 GOTO same_mode ; Button is held so it is the same mode...
0152 02B9 00514 INCF FLAGS,F ; Advance the mode by incrimenting bits 0,1
0153 0459 00515 BCF FLAGS, 2 ; Force mode to wrap-around by clearing bit 2

DS00615A-page 2-116

© 1995 Microchip Technology Inc.

AN615

0154

0155
0155
0156
0157
0158
0159
015A
0158
015¢C
015D
015E
015F
0160
0lel
0162
0163
0164
0165
0166
0166
0167
0l68
0169
Gl6A
016B
oleéc
016D
016D
0l6E
0leF
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
017A
017B
017¢
017c
017D
017E
017F
0180
0181
0181
0182
0183
0184
0185
0186
0187
0188
0188
0189
018a
018B
018cC
018D
018E

0953

090D
06D8
0B66
06B8
0B81
ocos
003E
023D
0743
00FD
0743
0B9A
0419
0439
0066
0065
0B9A

090D
0619
0B6D
0639
0B6D
0519
0539

007F
0953
0798
0B9A
021E
0743
O00FE
090D
021E
0743
0B7C
00D9
0900
09BA
0B9A

090D
00D9
0900
09A7
0B9A

090D
0619
0B88
0639
0B88
0519
0539

007F
0953
0798
0B9A
021E
0743
O00FE

00516
00517
00518
00519
00520
00521
00522
00523
00524
00525
00526
00527
00528
00529
00530
00531
00532
00533
00534
00535
00536
00537
00538
00539
00540
00541
00542
00543
00544
00545
00546
00547
00548
00549
00550
00551
00552
00553
00554
00555
00556
00557
00558
00559
00560
00561
00562
00563
00564
00565
00566
00567
00568
00569
00570
00571
00572
00573
00574
00575
00576
00577
00578
00579
00580
00581

CALL

same_mode
call
BTFSC
GOTO
BTFSC
GOTO
MOVLW
MOVWE
MOVF
BTFSS
DECF
BTFSS
GOTO
BCF
BCF
CLRF
CLRF
GOTO
serve_up_key
call
BTFSC
GOTO
BTFSC
GOTO
BSF
BSF
no_up_display
CLRF
call
BTFSS
GOTO
MOVF
BTFSS
DECF
call
MOVF
BTFSS
GOTO
DECF
CALL
CALL
GOTO
serve_min_up
call
DECF
CALL
CALL
GOTO
serve_down_key
call
BTFSC
GOTO
BTFSC
GOTO
BSF
BSF
no_dn_display
CLRF
CALL
BTFSS
GOTO
MOVF
BTFSS
DECF

turnon_scan

task_scan
UPKEY
serve_up_key
DOWNKEY
serve_down_key

INIT_MODE_COUNT

MODE_COUNT
DISPONCNT, F
STATUS, 2
DISPONCNT, £
STATUS, 2
finish_update
FLAGS, 0
FLAGS, 1

PORTB

PORTA
finish_update

task_scan
FLAGS, 0
no_up_display
FLAGS, 1
no_up_display
FLAGS, 0
FLAGS, 1

ALARMCNT
turnon_scan
MODEKEY
finish_update
MODE_COUNT, W
STATUS, Z
MODE_COUNT, F
task_scan
MODE_COUNT , W
STATUS, Z
serve_min_up
FLAGS,W
mode_timer
inc_hour_1d
finish_update

task_scan
FLAGS,W
mode_timer
inc_min_1ld
finish_update

task_scan
FLAGS, 0
no_dn_display
FLAGS, 1
no_dn_display
FLAGS, 0
FLAGS, 1

ALARMCNT
turnon_scan
MODEKEY
finish_update
MODE_COUNT , W
STATUS, Z
MODE_COUNT, F

Mode button pressed - must turn on LEDs

Scan the next LED digit.

Skip if the UP key is not pressed

UP key is pressed - jump to serve it!
Skip if the DOWN key is not pressed
DOWN key is pressed - jump to serve it!

; UP and DOWN not pressed - re-init mode count

Change back to lower digits for setting
Update Z bit in STATUS rey display on time
Skip if displays should be OFF
Decriment display ON counter

skip if displays should be OFF

Displays are ON - jump to finish updates
Restore the mode to displays OFF
Restore the mode to displays OFF

Clear out segment drives on PORTB
Clear out common digit drives on PORTA
Jump to finish updates

Scan the next LED digit.

Skip if not in TIMER or CLOCK mode
Currently in TIMER or CLOCK - keep mode
Skip if not in ALARM mode

Currently in ALARM - keep mode

Set to CLOCK mode

Set to CLOCK mode

A key was pressed, so turn off alarm
Turn on the LEDs

Skip if MODE is pressed as well

MODE is not pressed - jump to finish update
Update STATUS Z bit for mode count

Skip if we have counted down to zero
Decriment the mode count

Scan the next LED digit.

Update the Z bit to check for zero

Skip if we have incrimented for 7 times
Incriment the minutes digits

Place current mode into W

Look-up register RAM address for current mode
Add one hour to the current display
Jump to finish updates

Scan the next LED digit.

Place current mode into W

Look-up register RAM address for current mode
Add one minute to the current display
Jump to finish updates

Scan the next LED digit.

Skip if not in TIMER or CLOCK mode
Currently in TIMER or CLOCK - keep mode
skip if not in ALARM mode

Currently in ALARM - keep mode

Set to CLOCK mode
Set to CLOCK mode
A key was pressed, so turn off alarm
Turn on the LEDs

Skip if MODE is pressed as well

MODE is not pressed - jump to finish update
Update STATUS Z bit for mode count
Skip if we have counted down to zero
Decriment the mode count

© 1995 Microchip Technology Inc.

DS00615A-page 2-117

AN615

018F 090D
0190 021E
0191 0743
0192 0B97
0193 00D9
0194 0900
0195 09ES
0196 0B9A
0197

0197 00D9
0198 0900
0199 09E6
019a

019A 090D
019B 0619
019C 0BA4
019D 0639
019E OBA4
019F 0067
01A0 0068
01A1 0069
01A2 006A
01A3 OBLE
01a4

01a4 00D9
01A5 0900
01A6 091F
01A7 OB1E

01A8

01A8 0C03
01A9 0002
01AA 0CO0S
01AB 0024
01AC

01AC 0060
01AD 03E4
01AE 0BAC
01AF 0572
01BO 02AE
01B1 OCEE
01B2 003B
01B3 0040
01B4 0006
01B5 0005
01B6 0539
01B7 0519
01B8 04A3
01B9 04cC3
01BA 059D
01BB

01BB 0966
01BC 07D8
01BD OB1E

01BE

01BE 0C70
01BF 002D
01C0 006F

task_scan
MODE_COUNT , W
STATUS, Z
serve_min_down
FLAGS,W
mode_timer
dec_hour_1d
finish_update

FLAGS,W
mode_timer
dec_min_ld

task_scan
FLAGS, 0
new_display
FLAGS, 1
new_display
DISPSEGS_A
DISPSEGS_B
DISPSEGS_C
DISPSEGS_D
main_loop

FLAGS,W
mode_timer
disp_value
main_loop

Scan the next LED digit.

Update the Z bit to check for zero

Skip if we have incrimented for 7 times
Decriment the minutes digits

Place current mode into W

Look-up register RAM address for current mode
Subtract one hour fram the current display
Jump to finish updates

Place current mode into W
Look-up register RAM address for current mode
Subtract one minute fram the current display

Scan the next LED digit.

Skip if in mode OFF or ALARM

Jump to update LED display registers
Skip if in mode OFF

Jump to update LED display registers
Clear display regs to Shut off LED display
Clear display regs to Shut off LED display
Clear display regs to Shut off LED display
Clear display regs to Shut off LED display
We are done - go back and do it again!

Move current mode state into W

Look-up register address of value to display
Update display registers with new values

We are done - go back and do it again!

D L L

;
; * Set up and initialize the processor *
KAKRKIKR KKK AR AR KRR R AR R AR AR AR Ak Ak Ak hkk

OPTION_SETUP

PORTA
FSR

INDADDR

FSR,F
clear_mem
ALM_HOUR_LD, 3
CLK_HOUR_LD,F
OEEh

PREVSCAN

PORTB
PORTA
FLAGS,1
FLAGS, 0
ALARMOK
EGGOK
DISPON

scan_keys
UPKEY
main_loop

Place option reg setup into W

Set up OPTION register

Place beginning of RAM/Port location into W
Now initialize FSR with this location

Clear the FSR pointed memory location
Point to the next location

Jump back to clear memory routine

Place 8:00 into alarm register

Place 1:00 into clock register

Turn on display A scan line, others off

Make all Port B pins outputs.
Make all Port A pins outputs.
Set up current mode to CLOCK, display ON

Don't want to trigger alarms
Turn on the displays
Lets see what is pressed

Goto self-test if UP key is pressed at pwr up
Normal operation - Jump to the main loop '

R e L

; * Self-test code for manufacturing only - test buttons and LEDs *
Khkhkhkhkh Rk KAKAK KKK ARk RAARRKAKR AR AR KA K AR A AR AR AR KA KA R Ak kA A hhhhkhhhkhhk

00582

00583 call
00584 MOVF
00585 BTFSS
00586 GOTO
00587 DECF
00588 CALL
00589 CALL
00590 GOTO
00591 serve_min_down
00592 DECF
00593 CALL
00594 CALL
00595 finish_update
00596 call
00597 BTFSC
00598 GOTO
00599 BTFSC
00600 GOTO
00601 CLRF
00602 CLRF
00603 CLRF
00604 CLRF
00605 GOTO
00606 new_display
00607 DECF
00608 CALL
00609 CALL
00610 GOTO
00611

00612

00613

00614

00615 init

00616 MOVLW
00617 OPTION
00618 MOVLW
00619 MOVWF
00620 clear_mem
00621 CLRF
00622 INCFSZ
00623 GOTO
00624 BSF
00625 INCF
00626 MOVLW
00627 MOVWF
00628 CLRW
00629 TRIS
00630 TRIS
00631 BSF
00632 BSF
00633 BCF
00634 BCF
00635 BSF
00636 mfg_checkkey
00637 CALL
00638 BTFSS
00639 GOTO
00640

00641 ;

00642

00643

00644 mfg_selftest
00645 MOVLW
00646 MOVWF
00647 CLRF

'01110000"
CLK_MIN_HD
CLK_HOUR_HD

;

;

Place all key on pattern into W
Use CLK_MIN_HD for keystuck ON test
Use CLK_HOUR_HD for keystuck OFF test

DS00615A-page 2-118

© 1995 Microchip Technology Inc.

ANG615

olc1
01c1
01c2
01c3
01C4
0lc4
01c5
01Cé
01c7
oics
01c9
0ica

0iCB

01CB
olicc
01cp
01CcD
01CE
01CF
01D0
01D1
01D2
01D3
01D4
01D5
01D5S
01D6
01D7
01D8
01D9
01DA
01DB
01DC
01DD
01DE
01DF
01E0
01E1l
01E2
01E3
01lE4
01E5
01ES
01E6
01E7
01E8
01E9
OlEA
01EB
01EC
01EC
01ED
01EE
OlEF
01EF
01F0
01F1
01F2
01F3
01F4
01F5
01F6
01F7
01F8
01F9
01F9

020B
0949
0026

0201
019A
003cC
01BA
07FC
0BC4
02AB

07AB
0BD5

006B
0906
0778
0BES
035B
037B
021B
0025

0966
0218
016D
012F
077B
05F8
0cos8
008B
0703
0078
03B8
025B
0158
0743
0BCD
0BC1

022D
0743
OBEF
020F
OF70
0743
0BEF

006F
006D
OBlE

026D
038D
0038
0SEF
038F
0178
0C7F
0026
006C
05AC

0907

00648
00649
00650
00651
00652
00653
00654
00655
00656
00657
00658
00659
00660
00661
00662
00663
00664
00665
00666
00667
00668
00669
00670
00671
00672
00673
00674
00675
00676
00677
00678
00679
00680
00681
00682
00683
00684
00685
00686
00687
00688
00689
00690
00691
00692
00693
00694
00695
00696
00697
00698
00699
00700
00701
00702
00703
00704
00705
00706
00707
00708
00709
00710
00711
00712
00713

mfg_display
MOVF
CALL
MOVWF

mfg_timer
MOVF
XORWF
MOVWF
XORWF
BTFSS
GOTO
INCF

mfg_check_digit

BTFSS
GOTO
mfg_nextdigit
CLRF
CALL
BTFSS
GOTO
RLF
RLF
MOVF
MOVWF
mfg_doneclk
CALL
MOVF
ANDWF
IORWF
BTFSS
BSF
MOVLW
SUBWF
BTFSS
CLRF
SWAPF
COMF
ANDWF
BTFSS
GOTO
GOTO

finish_mfg_test

MOVF
BTFSS
GOTO
MOVF
XORLW
BTFSS
GOTO
mfg_cleanup
CLRF
CLRF
GOTO
bad_switch
COMF
SWAPF
MOVWF
BSF
SWAPF
ANDWF
MOVLW
MOVWF
CLRF
BSF
loop_bad_sw
CALL

CLK_SEC,W
mfg_led_lookup
PORTB

TMRO, W
PREVTMRO , W
TEMP
PREVTMRO, F
TEMP, 7
mfg_timer
CLK_SEC,F

CLK_SEC,5
mfg_doneclk

CLK_SEC
buzz_now
PREVSCAN, 3

finish mfg_test

PREVSCAN, W
PREVSCAN, F
PREVSCAN, W
PORTA

scan_keys
KEYPAT,W
CLK_MIN_HD,F
CLK_HOUR_HD, F
PREVSCAN, 3
KEYPAT, 7

.8

CLK_SEC,W
STATUS, C
KEYPAT
KEYPAT, F
PREVSCAN, W
KEYPAT, W
STATUS, Z
mfg_nextdigit
mfg_display

CLK_MIN_HD,F
STATUS, Z
bad_switch
CLK_HOUR_HD, W
070h

STATUS, Z
bad_switch

CLK_HOUR_HD
CLK_MIN_HD
main_loop

CLK_MIN_HD,F
CLK_MIN_HD,W
KEYPAT
CLK_HOUR_HD, 7
CLK_HOUR_HD, W
KEYPAT, F

07Fh

PORTB
CLK_MIN_LD
CLK_MIN_LD,5

buzz_now_dispon

H

H

H

H
;
H

H

i

Current segment display count -> W
Look-up the next segment pattern to display
Move the pattern to PORT B to display it

Place current TMRO value into W

Lets see which bits have changed...

All changed bits are placed in temp for test
Update Previous TMRO value.

Skip if it is not time to increment second

It is not time to move to next digit - go back
Move to the next display pattern

Skip if we have timed out waiting for button
Jump to check for the next button press

Clear out timer

Send out a buzzer beep!

Skip if we have NOT tested the last digit
Jump to the end after last digit tested
Select the next digit through a rotate..

Place next digit select into W
Update port A to select next digit

Scan the keys to see what is pressed...
Place pattern into W

Make shure keys are not stuck ON

Make shure each key is pressed at least once
Skip if we are NOT at the last digit
Set flag bit to indicate we are done!
Place 8 into W

CLK_SEC - W => W

Restore temp registers to zero
Restore temp registers to zero
Jump to main loop

Beep the buzzer constantly for a few secs

© 1995 Microchip Technology Inc.

DS00615A-page 2-119

AN615

01FA 02EC 00714
01FB OBF9 00715
01FC OBEC 00716

00717

MEMORY USAGE MAP ('X' =

0000 :

0040
0080
00Co
0100
0140
0180
01co
0F80
0FCO

p.9:9:0.0.0.9.9:9.0.0.0.9.:9.9:9.4
KEXXXKXXXXKXXXXXKXX

¢ XXXXXXXXXXXXXXXX

XXXXXXXXXXXKXXXXX
XXXXKXEXXXKXXXXKEX
KXXXXXXXXKXXXKXXKX
XXXXXXXXXXXXXXXX
KXXXXXXXXXXXXXXX

DECFSZ CLK_MIN_LD,F H
loop_bad_sw
mfg_cleanup

GOTO
GOTO
END

Used, '-'

XXX XXX XXXXXXXXX
KEXXXXXXXXXXXKXKX
KXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXX
KXXXXXXXXXXXXXXX
XXXXXXKXXXXXXXXXX
KXXKXXXXXXXXXXXXX

= Unused)

XXXXXXKXXXXXXXKXK
XXXXXXXXXXKXXXXX
XXXXXXXXXXXXXXKX
XXXXXXXXXXXXXXXX
XXXXXKXKXXXXKXKXKXX
XXXXXXXXXKXXX KKK
XXXXXXXXXXXXX XXX
XXXXXXXXXXXXXXXX

Decriment counter and skip when done
; Not done buzzing - go back and do it again
; Done buzzing - clean-up and run clock

XXXXEXXXXXXXXEXX
XXXXXXXXXXXXEKRXX
XXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXX
KXXKXXXEXXXKXXXKKXX
EXXXXXXXXXXXXXXX
XXXXXXXXXXXXX-~-X

All other memory blocks

Errors 0
Warnings : 0
Messages : 0

unused.

DS00615A-page 2-120

© 1995 Microchip Technology Inc.

MICRoOCHIP

ANG616

Digital Signal Processing with the PIC16C74

Author: Darius Mostowfi
Design Consultant

INTRODUCTION

The use of general purpose microcontrollers for
low-end digital signal processing applications has
become more commonplace these days with the avail-
ability of higher speed processors. Since most signal
processing systems consist of a host processor and
dedicated DSP chip, the use of a single microcontroller
to perform both these functions provides a simpler and
lower cost solution. In addition, the single chip design
will consume less power which is ideal for battery
powered applications. The PIC16C74 with its on-chip
A/D, PWM module, and fast CPU is an ideal candidate
for use in these low-bandwidth signal processing
applications.

A typical signal processing system includes an A/D
converter, D/A converter, and CPU that performs the
signal processing algorithm as shown in Figure 1.

The input signal, x(t), is first passed through an input
filter (commonly called the anti-aliasing filter) whose
function is to bandlimit the signal to below the Nyquist
rate (one half the sampling frequency) to prevent
aliasing. The signal is then digitized by the A/D
converter at a rate determined by the sample clock to
produce x(n), the discrete-time input sequence. The
system transfer function, H(z), is typically implemented
in the time-domain using a difference equation. The

output sample, y(n), is then converted back into the
continuous-time signal, y(t), by the D/A converter and
output low-pass filter.

The calculation of the output signal using a difference
equation requires a multiply and accumulate (MAC)
operation. This is typically a single-cycle instruction on
DSP chips but can take many cycles to perform on a
standard microcontroller since it must be implemented
in code. Since the digitization of the signal, calculation
of the output, and output to the D/A converter all must
be completed within the sample clock period, the
speed at which this can be done determines the
maximum bandwidth that can be achieved with the
system. The relatively slow speed of most
microcontrollers is the major limitation when they are
used in DSP applications but the PIC16C74’s fast
instruction execution speed (as fast as
200 ns/instruction) can provide the performance
required to implement relatively low bandwidth
systems. In addition, the device’s on-chip A/D and
PWM modules provide all the functions needed for a
single chip system. Only a few external components
are needed to use the PIC16C74 for tone generation,
filtering of transducer signals, or low bandwidth control.

This application note describes the basic issues that
need to be addressed in order to implement digital sig-
nal processing systems using the PIC16C74 and
provides application code modules and examples for
DTMF tone generation , a 60 Hz notch filter, and a
simple PID compensator for control systems. These
routines can also be used with other PIC16C6X and
PIC16C7X processors with minor modifications and
the addition of external analog I/O devices.

FIGURE 1: TYPICAL SIGNAL PROCESSING SYSTEM

X[n]
Xt | ey [AD |

Yn] -
— DA |—p|ORPaS)_ vy

System Clock

© 1995 Microchip Technology Inc.

DS00616A-page 2-121

AN616

CODE DEVELOPMENT TOOLS

The code for these apllications was written using
Byte Crafts MPC C compiler. The MPC compiler
provides. an Integrated Development Environment
(IDE) and generates highly optimized code for the
entire PIC16CXX/17CXX family. For new
PIC16CXX/17CXX users that are familiar with C, this is
an ideal way to quickly develop code for these
processors. In addition, the listing files can be studied
in order to learn the details of PIC16CXX/17CXX
assembly language. The modules and examples for
this application note use C for the main program body
and in-line assembly language for the time-critical
routines. MPC provides interrupt support so that
interrupt service routines (ISRs) can be easily written in
either C or assembly. This feature was used to provide
a timer ISR for one of the code modules. The compiler
proved to be a valuable tool that allowed both high level
and assembly language routines to be written and
tested quickly.

In order to provide the double precision math functions
required for this application note, a couple of existing
math functions written for the PIC16C54 (see AN525)
were converted for use with MPC. The double precision
multiply and addition routines were modified by first
changing all RAM declarations done in EQU
statements to C “unsigned char” variable declarations.
The main body of assembly language code was
preceded by “#asm” and ended by “#endasm”
preprocessor directives which tell the compiler where
the in-line assembly code starts and ends. Finally, any
macro sections and register names that are defined
differently in MPC were changed.

The assembly language routines for tone generation
and filtering were also written as C functions using the
compiler. Assembly language routines written in this
way can be called directly from other assembly
language modules or called directly from C by using the
label name as a C function. Source listings for all the
modules and example programs can be found in the
appendices at the end of this application note. These
modules can be directly compiled using the MPC
compiler or, alternatively, the assembly language
sections can be used with MPASM with minor
modifications.

Number Representation and Math Routines

One of the challenges of using any general purpose
microcontroller for signal processing algorithms is in
implementing the finite word-length arithmetic required
to perform the calculations. As mentioned before, the
speed at which the MAC operations can be performed
limits the maximum achievable bandwidth of the
system. Therefore, the routines that perform the
multiplication and the main signal processing
algorithms need to be optimized for speed in order to
obtain the highest possible bandwidth when using the
PIC16C74.

The selection of word size and coefficient scaling are
also important factors in the successful implementation
of signal processing systems. The effects of using a
fixed word length to represent the signal and do
calculations fall into three categories: signal
quantization, round-off error, and coefficient
quantization. The signal quantization due to the A/D
converter and round-off error due to the finite precision
arithmetic affect the overall signal-to-noise
performance of the system. Scaling of the input signal
should be done before the A/D converter to use the full
input range and maximize the input signal-to-noise
ratio. The use of double precision math for all
calculations and storing intermediate results, even if
the input and output signals are represented as 8-bit
words, will help to reduce the round-off error noise to
acceptable levels. Coefficient quantization occurs
when the calculated coefficients are truncated or
rounded off to fit within the given word length. This has
the effect of moving the system transfer function poles
and zeros which can change the system gain, critical
frequencies of filters, or stability of the system. The
successful implementation of these systems requires
careful design and modeling of these effects using one
of the many software programs that are available. The
code written for this application note was first modeled
using PC MATLAB before being implemented on the
PIC16C74.

The algorithms in this application note are all
implemented using fixed point two’s compliment
arithmetic. Two math libraries were used for the
examples: one 8-bit signed multiply routine that was
written specifically for the tone generation algorithm,
and the modified double precision routines for the
PIC16C54 that were used in the filtering routine. All
numbers are stored in fractional two’s compliment
format where the MSB is the sign bit and there is an
implied decimal point right after it. This is commonly
referred to as Qx format where the number after the
Q represents the number of fractional bits in the word.
For instance, 16 bit words with the decimal point after
the MSB would be referred to as Q15. This format
allows numbers over the range of -1 to 0.99 to be
represented and, because the magnitude of all
numbers is less than or equal to one, has the
advantage that there can be no overflow from a
multiplication operation.

Since calculations are done using two’s compliment
arithmetic, values read by the PIC16C74's A/D
converter need to be converted to this format. This can
be easily done if the input is set up to read values in
offset binary format. In this representation, the most
negative input voltage is assigned to the number 0,
zero volts is assigned the number 128, and the most
positive voltage input is assigned 255. Since the
PIC16C74 has a unipolar input A/D converter, a bipolar
input signal must be scaled to be between 0 and 5V.
One way to accomplish this is to use an op-amp scaling
and offset circuit. The signal should be centered at
2.5V and have a peak to peak voltage swing of

DS00616A-page 2-122

© 1995 Microchip Technology Inc.

ANG616

4 to 4.5V. The offset binary number can be converted
to two’s compliment format by simply complementing
the MSB of the word. Once the signal processing
calculations are completed, the number can be
converted back to offset binary by complementing the
MSB before it is written to the PWM module. A similar
level shifting circuit can be used at the PWM output to
restore the DC level of the signal. Using this technique
allows a wide range of analog input voltages to be
handled by the PIC16C74.

A/D and D/A Conversion

The PIC16C74’s internal 8-bit A/D converter and PWM
modules can be used to implement analog I/O for the
system. The A/D converter along with an extemal
anti-aliasing filter provides the analog input for the
system. Depending on the input signal bandwidth and
the sampling frequency, the filter can be a simple single
pole RC filter or a multiple pole active filter. The PWM
output along with an external output “smoothing” filter
provides the D/A output for the system. This can be a
simple RC filter if the PWM frequency is much higher
(five to ten times) than the analog signal that is being
output. Alternatively, an active filter can also be used at
the PWM output . Since the use of the A/D and PWM
modules is covered in detail in the data sheet for the
pant, they will not be covered here. In addition, since
the PIC16C74's A/D converter is similar to the
PIC16C71 and the PWM module is the same as the
PIC16C74, the use of these is also covered in
application notes AN546, AN538, and AN539.

Appendix A contains the listing for the C module
“ANALOGIO.C” that has the functions that read the A/D
converter input, initialize the PWM module, and write
8-bit values to the PWM module. The number format
(offset binary or two’s compliment) for the A/D and
PWM values as well as the PWM resolution and mode
are set using “#define” pragmas at the beginning of the
module. The get_sample() function takes the A/D input
multiplexor channel number as an argument and
returns the measured input value. The init_PWM()
function takes the PWM period register PR2 value as
an argument. The write_ PWM() function takes the
output values for PWM module1 and 2 and writes them
to the appropriate registers using the specified
resolution. If the second argument to the function is 0,
the registers for PWM module 2 are unaffected. The
PWM resolution is always 8-bits but the mode used
depends on the PWM frequency.

The A/D conversions need to be performed at the
system sample rate which requires that some form of
sample clock be generated internally or input from an
external source. One way to generate this clock
intemally, in software with minimal effort, is to use the
Timer2 interrupt. Since Timer2 is used to generate the
PWM period, enabling the Timer2 interrupt and using
the Timer2 postscaler can generate an interrupt at
periods that are integer divisors of the PWM period.
The ISR can set a software “sample flag” that is
checked by the main routine. Once the sample flag is

asserted by the ISR, the main routine can then clear it
and perform the signal processing operation, output
the next sample, and then wait for the sample flag to be
asserted true again. Alternatively, a separate
timer/counter or external clock input can be used for
the system sample clock. The latter two methods have
the advantage that the PWM frequency can be set
independent of the sampling period. For best results,
the PWM frequency should be set for at least five times
the maximum frequency of the analog signal that is
bring reproduced. The example programs illustrate the
use of both of the methods for generating an intemal
sample clock.

Tone Generation

For systems that need to provide audible feedback or
to provide DTMF signaling for telcom applications, the
PIC16C74’s PWM module can be used to generate
these signals. One way to do this is to output samples
of a sinusoidal waveform to the PWM module at the
system sampling rate. This method is relatively simple
but is limited to single tones and may require large
amounts of memory depending on the number of
samples used per cycle of the waveform and the
number of tones that need to be generated. A more
efficient method of generating both single and
dual-tone signals is to use a difference equation
method. This method uses a difference equation that is
derived from the z-transform of a sinusoid as follows:

The z-transform of a sinusoid is

Z'sineT
1 -2z coswT + 22

where the period ® = 2rf and T is the sampling period.

If this is interpreted as the transfer function
H(z) = Y(z)/X(z) then the difference equation can be
found taking the inverse z-transform and applying the
associated shift theorem as follows:

rearranging:
Y(2)(1 - 22 'coswT + z2) = X(2)(z sinwT)

Y(2) = 2 X(2)sinoT + 2 'Y(z)2coswT - 22Y(2)

taking the inverse z-transform:
ZY(@)] = 22 ' X(@)sineT + 2 1Y(z)2coswT - 22Y(2)]
y(n) = sinoT x(n - 1) + 2cosw@T y(n - 1) - y(n - 2)

If we let a = sinoT and b = coswT, the equation can be
written as:

yiny)=ax(n-1)+2by(n-1)-y(in-2)

© 1995 Microchip Technology Inc.

DS00616A-page 2-123

ANG616

thus we have a difference equation with coefficients a
and b.Note that only two coefficients are needed to
generate a sinusoidal output sequence. These are
calculated from the relationship above and stored in
memory for use by the tone generation algorithm.

If we input an impulse to this system (x(n)=1atn=0
and is zero elsewhere) then the output of the system
will be a discrete-time sinusoidal sequence. Note that
at n = 0, the output will always be 0 and x(n) is only 1
at n = 1 so the sequence becomes:

y(0)=0

y()=a
yn)=2by(n-1)-yn-2)

for n equal to or greater than 2

In order to further simplify the implementation of the
algorithm, we can omit the first sample period. Since
the output is already at 0 before starting, this will make
no difference in the final output other than the fact that
it will be time shifted by one sample. To generate dual
tones, the algorithm is executed once for each tone and
the two output samples are summed together. Since
the output must be calculated and output to the D/A
each sample period, a limitation exists on the
frequency of the tone that can be produced for a given
sample rate and processor speed. The higher the ratio
of the sample clock to the tone frequency, the better,
but a sample rate of at least three to four times the
highest tone output should produce a sine wave with
acceptable distortion.

FIGURE 2: SINGLE TONE SIGNAL

Appendix B contains the listing for the “PICTONE.C”
module which uses the difference equation method to
produce variable length tones from the PWM module.
Timer2 is used to generate the PWM period as well as
the sample clock and tone duration timer. To send a
tone, the coefficients and duration are written to the
appropriate variables and then the tone routine is
called. If the a2 and b2 coefficients are cleared, the
routine will only generate a single tone sequence. The
difference equation algorithm uses 8-bit signed math
routines for the multiply operations. Using 8-bit
coefficients reduces the accuracy by which the tones
can be generated but greatly reduces the number of
processor cycles needed to perform the algorithm
since only single precision arithmetic is used. The
spectrum of a single tone signal generated using this
routine is shown in Figure 2.

Note that the second hamonic is better than 40 dB
below the fundamental. Accuracy of this particular tone
is better than 0.5%.

An example program “DTMFGEN.C’ illustrates the use
of the tone module to generate the 16 standard DTMF
tones used for dialing on the telephone system. A
sampling rate of 6.5 kHz was used which allows dual
tones to be generated on a processor running at
10 MHz. Accuracy with respect to the standard DTMF
frequencies is better than 1% for all tones and all
harmonics above the fundamental frequency are
greater than 30 dB down.

0.0

PIC16C74 Tone Generation Routine Output Spectrum - 770 Hz Fundamental

[

Relative Amplitude (dB)
&
o

.
&
S
e B
=

bl

WA

-90
-100,
0.0 500 1.0k 1.5k 2.0k 2.5k 3.0k 3.5k
Frequency (Hz)

DS00616A-page 2-124

© 1995 Microchip Technology Inc.

ANG616

Digital Filters

Digitalfilters with critical frequencies up to a kilohertz or
so can be implemented on the PIC16C74. Digital filters
fall into two classes: Finite Impulse Response (FIR)
and Infinite Impulse Response (lIR) filters. FIR filters
require more coefficients and multiplication operations
to implement practical filters and are not as well suited
for implementation on the PIC16C74. lIR type filters
are typically designed starting with an analog filter
prototype and then performing an analog to digital
transformation to produce the digital filter coefficients.
The subject of digital filter design is not within the scope
of this application note but there are many excellent
texts that cover the theory and design of these filters.

The implementation of a second-order lIR filter is done
by using a second-order difference equation. A
second-order infinite impulse response (IIR) filter has a
transfer function of the form:

b + bz " +byz?
H(Z) = s e e 5
1+a42 +ayz

Where a; , a5, by , by , and b, are the coefficients of the
polynomials of the system transfer function that, when
factored, yield the system poles and zeros. The
difference equation found by taking the inverse
z-transform and applying the shift theorem is:

y(n) =
box(n) + byx(n - 1) + box(n - 2) - ayy(n - 1) - agy(n - 2)

Since the transfer function coefficients are used
directly in the difference equation, this is often called
the “Direct Form I” implementation of a digital filter. This
form has its limitations due to numerical accuracy
issues but is effective for implementing second-order
systems.

Appendix C contains the listing for the general-purpose
filter routine “IIR_FILT.C” that can be used to implement
low-pass, high-pass, bandpass, and bandstop (notch)
filters. The filter() function takes an 8-bit input value
x(n) and calculates the output value y(n) . The filter
coefficients are stored as 16-bit two’s compliment
numbers and computation of the output is done using
double precision arithmetic. Since the coefficients
generated from the filter design program will be in
decimal form, they need to be scaled to be less than 1
and then multiplied by 32,768 to put them in Q15
format. Additional scaling by factors of two may be
required to prevent overflow of the sum during calcula-
tions. If this is done, the output must be multiplied by
this scale factor to account for this. The “lIR_FILT.C”
module contains two other subroutines required for the
filtering program. One if these is a decimal adjust
subroutine to restore the decimal place after two 16-bit
Q15 numbers are multiplied. The subroutine shifts the
32-bit result left by one to get rid of the extra sign bit.

The other routine scales the output by factors of two
and is used after the output of the filter has been
calculated to account for the scaling of the coefficients.

An example program “NOTCH_60.C" is provided that
illustrates the implementation of a 60 Hz notch filter
using the “IIR_FILT.C” module. The filter was modeled
and designed using PC MATLAB before being
implemented on the PIC16C74. A sample rate of 1 kHz
is used which means that signals up to a few hundred
hertz can be processed. The filter provides an
attenuation of about 40 dB at 60 Hz and can be used to
remove interference from sensor signals in a system.

Digital Control

A low bandwidth digital control system can be
implemented on the PIC16C74 using the analog I/O
and IIR filter routines. A typical digital control system is
shown below:

FIGURE 3: TYPICAL DIGITAL CONTROL

SYSTEM
e[n]
'-FK(Z] D/A G[s] yit]
Plant
yin]
_ ”_—""‘"{A’—D_l‘““““

The input, r, is the reference input and y(t) is the
continuous-time output of the system. G(s) is the ana-
log transfer function of the plant (controlled system)
and K(z) is the digital compensator. The error signal is
calculated by subtracting the measured output signal,
y(n), from the reference. The controller transfer
function is essentially a filter that is implemented in the
time-domain using a difference equation. Since digital
control system design is a complex subject and the
design of a suitable compensator depends on the
system being controlled and the performance
specifications, only the implementation issues will be
discussed.

© 1995 Microchip Technology Inc.

DS00616A-page 2-125

AN616

One popular and well understood compensator is the
Proportional-Integral-Derivative (PID) controller whose
transfer function is of the form:

K

1
K@= Kp+ 7 +Kp(1-2"

Where Kp is the proportional gain, K; is the integral gain
,and Kp, is the derivative gain. The transfer function can
be implemented directly or can be put in the form of a
standard second-order difference equation from the
maodified transfer function as shown below:

(K T2 + KpT + Kp) - @Kp + KpT)z'! + Kpz2

H(2)
TA -2

K
y(n) = Kp + KT + TD x(n)

ks 20

P T)x(n-1)
Ko

= x(n-2)-y(n-1)

Since the numerator coefficients will be greater than
one, a gain factor K needs to be factored out so that the
resulting coefficients are less than one. In this way, the
IR filter routine can be used to implement the
controller. After the filter routine, the output y needs to
be multiplied by K before being output to the PWM
module. Since the gain can be high, this result needs
to be checked for overflow and limited to the maximum
8-bit value, if required. Saturating the final result
prevents the system from going unstable if overflow in
the math does occur. The gains can also be applied
externally at the D/A output. For example, the PWM
can drive a power op-amp driver that provides a +/- 20
volt swing for a DC motor.

RESULTS AND CONCLUSION

The results obtained using the PIC16C74 in these
applications were impressive. The tone generation
routines produce very clean sinusoidal signals and
DTMF tones generated using this routine have been
used to dial numbers over the telephone system with
excellent results. In addition, tones used for audible
feedback are more pleasing to the ear than those
generated from a port pin as is typically done on
processors without PWM modules. Using the
PIC16C74 to generate these tones eliminates the need
for special DTMF generator IC’s thus reducing the cost
and simplifying the design. The tone routine requires
approximately 125 instruction cycles to calculate an
output sample for a single tone output and
230 instruction cycles to calculate an output sample for
adual tone output.

The IIR filtering routines produce good results and have
been used to filter 60 Hz signals on sensor lines and also
to implement a simple PID controller system with
excellent results. The IIR routine takes approximately
1670 instruction cycles to calculate the output. Table 1
shows the performance that can be expected with the
PIC16C74 for various processor speeds.

In conclusion, the PIC16C74 provides the necessary
performance to provide these simple, low bandwidth
signal processing operations. This means that
products using this device can benefit from cost and
power savings by eliminating specialized components
that normally perform these tasks.

References

Antoniou, A. Digital Filters: Analysis and Design. NY:
McGraw-Hill Book Co., 1979.
Openheim, A.V. and Schafer, R.W. Digital Signal

Processing. Englewood Cliffs, N.J.: Prentice-Hall, Inc.,
1975.

TABLE 1: PIC16C74 lIR FILTER PERFORMANCE
4 MHz 8 MHz 10 MHz 16 MHz 20 MHz
A/D Input (35 cycles + 15 ms) 50 us 32.5 29 23.75 22
IIR Filter (1850 cycles) 1850 925 740 462.5 370
PWM Output (62 cycles) 62 31 248 15.5 124
Total 1962 988.5 7938 501.75 3684
Max. Sampling Frequency ~500 Hz ~1000 Hz ~1250 Hz ~2000 Hz ~2500 Hz

DS00616A-page 2-126

© 1995 Microchip Technology Inc.

AN616

NOTES:

© 1995 Microchip Technology Inc. DS00616A-page 2-127

8z1-gz ebed-yv91900Sa

*ou) ABojouyos | diyooIOIN G661 ©

+V (12VDC In)
- 10pF

$C0 +1e

R4 RITAAA
\ ; 10k 100k
11

0u|
(pled) VA2

_ 47k
Input Level Adjust

+5V input Offset Adjust
100k

10k
Cb
T (see table)

Ca (see table)
i
pAs

8

- 7
i +~"uiB
10k 1 LM324
Cc
T(see table)

*5V' output Offset Adjust
0k

Ca (see table)
i Z

Signal Output
(DC Coupled) 0 \r\
LM324
R8
3 Pole Chebyshev Filter - 1 dB Passband Ripple
Capacitor Values for 250 Hz and 3.4 kHz

250 Hz 3.4 kHz
Ca 1puF 0.082 pF
Cb | 0.15uF 0.012 uF
Cc | 0.0039 uF | 300 pF

RA1

PICDEM2
Board

{See Figure 5)

RC1

+V (12 VDC In)

10k
U2
e I et
] & 9% onwr
c8 1o pF GND v P
T 417c v 2
LMC7660IN o7 L 10 F
;

v JHNOIA

OILVWIHOS

919NV

-ou| ABojouyoe] diyoooN 5661 ©

621-¢ obed-v91900SQ

% RA 5V o 2 s A6 +5V Notes: . _
RAO —wmj R? Unless ctherwise specified,
o 47k Z_BM ot 10k = 47k resistance values are in ohms,
. S e S 5% 1/4W. Capacitance values
2.0 o 5 RA4 T are in microfarads.
RAS U1 REQ
T
= = U0 REO |8 RE1, RAT
= R17 RE2) RA2 .
3 Voo REf [T
3V ¥ NMCLR —1lMcrR Rez - RA3 L
Ri6 A2 A RAo Do 13 B LCD
5k RA1 RD1 RO 5 DSPLY
470 R18 RA2 RD2 Bl O i
=8 470 Ras RDS 5 —RD: i
= A RA4 RD4 -5 —r e ZR19 +5V
RB RA5 RDS 12 F470
+5V I [—— cz ——
RB1 RD7 o 14) | 0.1
R3 35! pB2 R ST~ ’
s 47k RB3 RCI
B4 __a7]hoe e Acz 16| us
T RBS 38 Vee
F e R Yopneza
7 RCS)
= % A8 Ree [25__TX — IX LN T1ouT
Ra 1Blosct Re7 26 BX = 10lraN TeouT|
4.7k 14 OSCZ 11 (RCO) OSO RX 12
57 vss OsC2 RIOUT RIIN
S 0sCi 31lvss 2.{Fon 081 —21Ro0UT R2IN
3 e 1
= PIC16C64 T :
Keyboard TIToeF) T Plemles L . ______; }222 :SA e
Ja = . Provision Only ' T——FcE f_a c1- Co-
il) Y1 ' 16 ___RCE
1 AN3 ' Jl‘:“ ' 7 (RAC6) 1X 01 ¢ v
! c4 cs ! 8__(RC7) AX
» o+ NS . —T—zopp TED -LgopF . L & (RC7) RX cial L_GND |
' T ' RD 01T 15 +5v
3 3 AN3 . vo = = . ot RDO = = D1 g
' out) Not Populated . 5 RDT 151
% 4 4 ANS ppy . [Apb2 L %oan 470
b RN3 . . [4 RD3 J2 Power
L5 3 M\ —RB4 5 RD4 1 LM78L05
£ AN3 6 ros —%
ale 4 00 ABS o us "1
o AN3 7 RD6 . ’ [w OUTH9
7 4 20) che __com
4 —fBe Voo . L 7 iNg1a | E +
R NMCLR 1/ perr Only Igég 56
NMCLR 1) ision =
o oscr Not Populated 22 T

Vss
Vss

= PIC16C73

+
v

@ +9V =
O+ Battery gy v
? Breadboard

$—180000000¢

S 34NOId

NI-31L JILVW3HOS ¢W3adid

919NV

AN616

APPENDIX A: ANALOG I/O MODULE

JRE Rk kR Ak ok ok kk Rk Kk kAR Rk A AR R A Ak R R kAR AR AR Kk kA AR AR AR A KRR AR AR I AR H KA KR KA

* Analog I/O Module
Written for “Digital Signal Processing with the PIC16C74” Application Note

This module contains functions that read the A-D inputs, initialize the PWM
ports, and write values to the PWM ports.

* %k * *

* D. Mostowfi 4/95

Hokkkk ko k ko kAR Rk kAR Kk kAR R Rk kAR AR Rk k Kk Kk kAR AR R AR ARk kkk kAR KA AR KKK KR KKk h Ak /

#define active 1 /* define active as 1 */

#define LOW 0 /* define LOW as 0 */

#define HIGH 1 /* define HIGH as 1 */

#define OFFSET 0 /* define offset binary mode as 0 */
#define TWOS 1 /* define two’s compliment mode as 1 */
#define AD_FORMAT TWOS /* define A-D format as TWOS */

#define PWM_FORMAT TWOS /* define PWM format as TWOS */

#define PWM_RES HIGH /* define PWM resolution as HIGH */
bits FLAGS; /* general purpose flags */

#define sample_flag FLAGS.l1 /* define sample_flag as FLAGS.1l */

SRR KRk k Kk kR Rk kR kA k ok ok ok ok h ok ok k ok Ak Kk kR kR kR Ak Ak A kA AR AR KRR KRR AR AR ARk kh Kk hhhkhh kKK

* A-D Converter Routine - reads A-D converter inputs
*

* usage:
* - call get_sample(channel #)
* - returns 8 bit value

Kok k kR Rk k kKRR KRR KRR KRR AR R Rk h ok ok k ok kAR R ARk AR AR R KRR KRR AR R AR hk ok khkhhk Kk Kk /

char get_sample(char channel)

{
char i;
ADRES=0; /* clear ADRES */
STATUS.C=0; /* clear carry */
RLCF (channel) ; /* and rotate channel 3 times */
RLCF (channel) ; /* to put in proper position */
RLCF (channel) ; /* for write to ADCONO */
ADCONO=channel; /* write channel to ADCONO */
ADCONO.0=1; /* turn on A-D */
i=0; /* set delay loop variable to 0 */
while (i++<=5) {}; /* delay (to ensure min sampling time) */
ADCONO0.2=1; /* start conversion */
while (ADCONO.2) {} /* wait for eoc */
ADCONO.0=0; /* turn off a-d converter */
if (AD_FORMAT==TWOS) { /* if format is two’s compliment */
ADRES.7=!ADRES.7; /* compliment MSB */
}
return ADRES; /* return value in a-d result reg */
}

JEERHE KRR Ak k ok k Kk ok k Kk kKK KRR KR KRR KR AR AR ARk h ok Kk kKR KRR K h Rk Kk kAR KK KA KA AR KRR KK KRR A R A

* PWM Initialization Routine - sets up PR2, sets output to mid-point, and
* starts timer 2 with interrupts disabled.

*

* usage:

* - call init_PWM(PR2 register value)

DS00616A-page 2-130 © 1995 Microchip Technology Inc.

AN616

Kok k ok kK h kAR Kk kA kA KAk h ok kh Kk kR KRR Rk kA A AR ARk kA AR Ak ke hkkkkkkhkkkhkkkhkkkh kAR K Kk /

void init_PWM(char _pr2)

{

PR2=_pr2; /*

CCP1CON.5=0; /*

CCP1CON.4=0;

CCP2CON.5=0;

CCP2CON. 4=0;

if (PWM_RES==HIGH) (/*
CCPR1H=0x00; /*
CCPR1L=0x20;
CCPR2H=0x00;
CCPR2L=0X20;

}

else(
CCPR1H=0x00; /*
CCPR1L=0x80; /*
CCPR2H=0x00;
CCPR2L=0x80;

}

T2CON.TMR20N=1; /*

PIEl.TMR2IE=0; /*

}

reload value for 40khz PWM period */
set CCPxCON = 0 for 50% output */

if resolution is high, set CCPRxH=0 and */
CCPRxL=0x20 for 50% PWM duty cycle */

if resolution is low, set CCPRxH=0 and */
CCPRxL=0x80 for 50% PWM duty cycle */

start timer 2 */
and disable timer 2 interrupt */

Rk Kk Rk k ok ko k ok kR kA Kk k kKA kA Kk k ok h kA ARk ko kA Ak ok ko kR AR R R Kk kAR Rk ke k ko h R AR KA KKK Kk

* PWM Output Routine - writes output values to PWM ports

*

* Both high resolution and low resolution modes write 8 bit values - use of
high or low resolution depends on PWM output period.

usage:

value, channel 2 value)

if channel 2 value=0, PWM port 2 not written
**********************************-k********'k**k********************k***k******/

*
*
*
* - call write_PWM(channel 1
*
*

void write_ PWM(bits pwm_outl, bits
{

if (PWM_FORMAT==TWOS) { /*
pwm_outl.7=!pwm_outl.7; /*
pwm_out2.7=!pwm_outl.7;
}
if (PWM_RES==HIGH) { /*
STATUS.C=0; /*
pwm_outl=RRCF (pwm_outl); /*
CCP1CON.4=STATUS.C; /*
STATUS.C=0;
pwm_out1=RRCF (pwm_outl) ;
CCP1CON.5=8STATUS.C;
if (pwm_out2!=0) { /*
STATUS.C=0; /*
pwm_out2=RRCF (pwm_out2) ;
CCP2CON. 4=STATUS.C;
STATUS.C=0;
pwm_out2=RRCF (pwm_out2) ;
CCP2CON.5=STATUS.C;
}
}
CCPR1L=pwm_outl; /*
if (pwm_out2!=0) { /*
CCPR2L=pwm_out2; /*
}
} /*

pwm_out2)

if format is two’s compliment */
compliment msb’s */

if resolution is high */

clear carry */

rotate right and write two 1lsb’s */
to CCP1CON4 and CCP1CON5 */

if pwm_out2 not 0, do the same */
for channel 2 */

write value to CCPRIL */
if pwm_out2 not 0, do the same */
for CCPR2L */

done */

© 1995 Microchip Technology Inc.

DS00616A-page 2-131

AN616

APPENDIX B: TONE GENERATION MODULE

[RR R R R kR AR R R Rk kK h AR AR AR R Ak kAR ARk kA k Ak ok ok ok Kk ok kR AR R AR R Ak ok ok h ok kR kAR AR A kR Ak ok

* Tone Generation Module
Written for “Digital Signal Processing with the PIC16C74” Application Note.

This module contains a C callable module that generates single or dual
tones using a difference equation method:

yl(n)=al*x(n-1)+bl*yl(n-1)-yl(n-2)
y2(n)=a2*x(n-1)+b2*y2 (n-1) -y2 (n-2)

The routine is written in assembly language and uses the optimized signed
8x8 multiply routine and scaling routine in the file 8BITMATH.C.

* Ok % ok R X F B % % % *

* D. Mostowfi 2/95
*******************t***/

#include “\mpc\apnotes\8bitmath.c” /* 8 bit signed math routines */

#define sample_flag FLAGS.1 /* sample flag */

#define no_tone2 FLAGS,2 /* no tone 2 flag */

extern char ms_cntr; /* millisecond counter for tone loop */

char al; /* first tone (low-group) coeeficient 1 */
char a2; /* first tone (low-group) coefficient 2 */
char bl; /* second tone (high group) coefficient 1 */
char b2; /* second tone (high group) coefficient 2 */
char duration; /* tone duration */

char y1; /* output sample yl(n) for tone 1 */

char y2; /* output sample y2(n) for tone 2 */

R rr R Rk R ARk kAR AR R KA AR ARk kAR AR A A AR I AR R A A K I AR R A AR AR ARk I AR kAR Rk A Ak k

* Tone function - generates single or dual tone signals out PWM port 1.

*

* usage:

* - write coefficients for tone 1 to al and bl

* - write coefficents for tone 2 to a2 and b2 (0 if no tone 2)

* - write duration of tone in milliseconds to duration

* - call tone() function
tf*********/

void tone(void)

H /* yl(n-1) */
char yl1_2; /* yl(n-2) */

char y2_1 /* y2(n-1) */
char y2_2 /* y2(n-2) */
PIR1.TMR2IF=0; /* clear timer 2 interrupt flag */
PIEl.TMR2IE=1; /* and enable timer 2 interrupt */
ms_cntr=0; /* clear ms counter */
STATUS.RP0=0; /* set proper bank!!! */
#asm
clrf vyl ; clear output byte and taps
clrf y2 H

clrf yl_1 H

clrf yl_ 2 H
clrf y2_1 H

DS00616A-page 2-132 © 1995 Microchip Technology Inc.

ANG616

clrf

bef
clrf

first_sample:
movf
movwf
movwf
movlw
iorwf
btfsc
bsf
movf
movwf
movwf
movf
addwf

tone_loop:
movf
subwf
btfsc
goto

wait_PWM:
btfss
goto
becf

#endasm

y2_2

no_tone2
ms_cntr

al,w

vl

yl.1
0x00
a2, w
STATUS, Z
no_tone2
a2, W

v2

y2_1
y2,W
vy1l,F

ms_cntr, W
duration,W
STATUS, 2
tone_done

FLAGS, 1
wait_PWM

FLAGS, 1

write PWM((char)yl,0);

#asm

next_sample:
movf
movwf
movf
movwf
call
call
movf
subwf
movwf
movf
movwf
movf
movwf
btfsc
goto
movf
movwf
movf
movwf
call
call
movf
subwf
movwf
movf
movwf
movf
movwf

movf

bl, W
multcnd
yl 1,w
multplr
_8x8smul
scale_16
yi_2,w
result_1,W
yl

yi_1,w
yl 2

yl,Ww

vyl 1
no_tone2
tone_loop
b2,W
multend
y2_1,w
multplr
_8x8smul
scale_16
y2_2,W
result_1,W

; clear no tone 2 flag
; clear millisecond counter

; first iteration
; yl(n)=al

; generate second tone (a2 !=0) ?

; yY2(n)=a2

vy1l(n)=yl(n)+y2(n) (sum two tone outputs)

test to see if ms=duration (done?)

test sample flag (sample period elapsed?)
; loop if not

if set, clear sample flag

/* write yl to PWM port */

; yl(n)=bl*yl(n-1)-yl(n-2)

; y1(n-2)=yl(n-1)

; yl1(n-1)=yl(n)

; y2(n)=b2*y2(n-1)-y2(n-2)

; y2(n-2)=y2(n-1)

; ¥2(n-1)=y2(n)

© 1995 Microchip Technology Inc.

DS00616A-page 2-133

AN616

addwf yi1,F

goto tone_loop
tone_done:
#endasm

CCP1CON.5=0;
CCP1CON. 4=0;
CCP2CON.5=0;
CCP2CON. 4=0;
CCPR1H=0%00;
CCPR1L=0x20;
CCPR2H=0x00;
CCPR2L=0x20;

PIE1l.TMR2IE=0;
PIR1.TMR2IF=0;

; yl(n)=yl(n)+y2(n) (sum two tone outputs)

; go and calculate next sample

/* reset PWM outputs to mid value */

/* disable timer 2 interrupts */
/* and clear timer 2 interrupt flag */

DS00616A-page 2-134

© 1995 Microchip Technology Inc.

AN616

APPENDIX C: DTMF TONE GENERATION

/****kt**************k********i*****k********t*******t*****************t******
* DTMF tone generation using PIC16C74

*

* Written for the “Digital Signal Processing Using the PIC16C74” Ap Note
Generates 16 DTMF tones (1-9,0,*,#,A,B,C,D) out PWM port 1

Uses PICTONE.C and ANALOGIO.C modules

* Ok * * * ¥

D. Mostowfi 4/95
************************************ﬁ***l
#include “\mpc\include\delayl4.h”

#include “\mpc\include\16c74.h” /* c74 header file */

#include “\mpc\math.h”

#include “\mpc\apnotes\analogio.c” /* analog I/O module */
#include “\mpc\apnotes\pictone.c” /* tone generation module */

bits pwml;
/* Function Prototypes */

void main_isr();
void timer2_isr();

/* 16C74 I/0 port bit declarations */

/* global program variables */

char tmr2_cntr; /* timer 2 interrupt counter */
char delay_cntr; /* delay time counter (10ms ticks)*/

/* Tone Coefficients for DTMF Tones */

const DTMF_1[4]1=(30, 51, 48, 27};
const DTMF_2[4]=(30, 51, 56, 19};
const DTMF_3([4]=(30, 51, 64, 11};
const DTMF_4[4]1=(33, 48, 48, 27};
const DTMF_5[4]1=(33, 48, 56, 19};
const DTMF_6[4]1=(33, 48, 64, 11};
const DTMF_7([41=(36, 45, 48, 27};
const DTMF_8([4]={36, 45, 56, 19};
const DTMF_9[4]={36, 45, 64, 11};
const DTMF_0[4]1=(40, 41, 56, 19};
const DTMF_star([4]1={40, 41, 48, 27};
const DTMF_pound[4]={40, 41, 64, 11};
const DTMF_A[4]={30, 51, 75, 2};
const DTMF_B([4]={33, 48, 75, 2};
const DTMF_C[4]={36, 45, 75, 2};
const DTMF_D[41=(40, 41, 75, 2};

/****k********i****t*************t**t********k************k****k**************
* main isr - 16C74 vectors to 0004h (MPC __INT() function) on any interrupt *
* assembly language routine saves W and Status registers then tests flags in
* INTCON to determine source of interrupt. Routine then calls appropriate isr.

* Restores W and status registers when done.
**********************t*************t**/

© 1995 Microchip Technology Inc. DS00616A-page 2-135

AN616

void __INT(void)

{
if (PIR1.TMR2IF) { /* timer 2 interrupt ? */
PIR1.TMR2IF=0; /* clear interrupt flag */
timer2_isr(); /* and call timer 2 isr */

/* Restore W, WImage, and STATUS registers */

#asm
BCF STATUS,RPO ;Bank 0
MOVF temp_ PCLATH, W
MOVWF PCLATH ; PCLATH restored
MOVF temp WImage, W
MOVWF ___WImage ;__WImage restored
MOVF temp_FSR, W
MOVWF FSR ;FSR restored
SWAPF temp_STATUS,W
MOVWF STATUS ;RPO restored
SWAPF temp_WREG,F
SWAPF temp_WREG,W ;W restored
#endasm
}

JRr R KA KRR KRR K KRR AR KKKk h A A AR KKK AR KKK KA KRR R KKK A AR AR AR A I A I XA AR KA K AARA KKK KR KK

* timer 2 isr - provides PWM sample clock generation and millisecond counter
* for tone routine
*****'k**************R*****ﬁ‘*****************ﬂ**i****'ﬁ***k*ttk******t‘k*tt*****/

void timer2_isr(void)

{
sample_flag=active; /* set sample flag (150us clock) */
PORTB.7=!PORTB.7; /* toggle PORTB.7 at sample rate */
if (tmr2_cntr++==7) { /* check counter */
tmr2_cntr=0; /* reset if max */
ms_cntr++; /* and increment millisecond ticks */
}
}

void main()

{

/* initialize OPTION register */
OPTION=0b11001111;

/* initialize INTCON register (keep GIE inactive!) */
INTCON=0b00000000; /* disable all interrupts */

/* initialize PIEl1l and PIE2 registers (periphereal interrupts) */
PIE1=0b00000000; /* disable all interrupts */
PIE2=0b00000000;

/* initialize T1CON and T2CON registers */
T1CON=0b00000000; /* Tl not used */
T2CON=0b00101000; /* T2 postscaler=5 */

/* initialize CCPxXCON registers */
CCP1CON=0b00001100; /* set CCP1CON for PWM mode */
CCP2CON=0b00001100; /* set CCP2CON for PWM mode (not used in demo) */

/* initialize SSPCON register */
SSPCON=0b00000000; /* serial port - not used */

/* initialize ADCONx registers */

DS00616A-page 2-136 © 1995 Microchip Technology Inc.

AN616

ADCONO0=0b00000000; /* A-D converter */
ADCON1=0b00000010;

/* initialize TRISx register (port pins as inputs or outputs) */
TRISA=0b00001111;
TRISB=0b00000000;
TRISC=0b10000000;
TRISD=0b00001111;
TRISE=0b00000000;

/* clear watchdog timer (not used) */
CLRWDT () ;

/* initialize program variables */
tmr2_cntr=0;

/* initialize program bit variables */
FLAGS=0b00000000;

/* intialize output port pins (display LED’s on demo board) */

PORTB=0;

/* enable interrupts... */
INTCON.ADIE=1; /* Periphereal interrupt enable */
INTCON.GIE=1; /* global interrupt enable */
init_PWM(0x3e); /* initialize PWM port */
PORTB=0x01; /* write a 1 to PORTB */
al=DTMF_1[0]; /* and send a DTMF “17 */
b1=DTMF_1[1];
a2=DTMF_1[2];

b2=DTMF_1(3];
duration=150;

tone();

Delay Ms_20MHz (200); /* delay 100ms (200/2 using MPC delays) */
PORTB=0x02; /* write a 2 to PORT B */

al=DTMF_2[0]; /* and send a DTMF “27 */

bl=DTMF_2(11];

a2=DTMF_2([2];

b2=DTMF_2[3];

duration=150;

tone();)
Delay_Ms_20MHz (200) ; /* delay 100ms (200/2 using MPC delays) */
PORTB=0x03; /* write a 3 to PORTB */

al=DTMF_3[0]; /* and send a DTMF “37 */

bl=DTMF_3[1];
a2=DTMF_3[2];
b2=DTMF_3[3];
duration=150;

tone();

Delay_Ms_20MHz (200) ; /* delay 100ms (200/2 using MPC delays) */
PORTB=0x04; /* write a 4 to PORTB */

al=DTMF_4[0]; /* and send a DTMF “4" */

bl=DTMF_4[1];
a2=DTMF_4([2];

© 1995 Microchip Technology Inc. DS00616A-page 2-137

ANG616

b2=DTMF_4[3];
duration=150;

tone() ;
Delay_Ms_20MHz (200);
PORTB=0x05;
al=DTMF_5[0];
bl=DTMF_5([1];
a2=DTMF_5(2];
b2=DTMF_5[3];
duration=150;

tone() ;
Delay_Ms_20MHz (200) ;

PORTB=0x06;
al=DTMF_6[0];
bl=DTMF_6[1];
a2=DTMF_6[2];
b2=DTMF_6[3];
duration=150;
tone();
Delay_Ms_20MHz (200) ;

PORTB=0x07;

al=DTMF_7[0];
bl=DTMF_7[1];
a2=DTMF_71[2];

b2=DTMF_7(3];
duration=150;
tone() ;

Delay_Ms_20MHz (200) ;

PORTB=0x08;
al=DTMF_8[0];
bl=DTMF_8(1];
a2=DTMF_8[2];
b2=DTMF_8(3];
duration=150;
tone();
Delay_Ms_20MHz (200) ;

PORTB=0x09;
al=DTMF_9[0];
bl=DTMF_9([1];
a2=DTMF_9(2];
b2=DTMF_9[3];
duration=150;
tone();
Delay_Ms_20MHz (200) ;

PORTB=0x0;
al=DTMF_0[0];
bl=DTMF_0(1];
a2=DTMF_0(2];
b2=DTMF_0(3];
duration=150;

tone () ;

Delay_ Ms_20MHz (200);
Delay_Ms_20MHz (200) ;

PORTB=0x0e;

/*
/*
/*

/*

/*
/*

/*

/*
/*

/*

/*
/*

/*

/*
/*

/*

/*
/*

/*
/*

/*

delay 100ms (200/2 using MPC delays) */
write a 5 to PORTB */
and send a DTMF “57 */

delay 100ms (200/2 using MPC delays) */

write a 6 to PORTB */
and send a DTMF “6” */

delay 100ms (200/2 using MPC delays) */

write a 7 to PORTB */
and send a DTMF “7” */

delay 100ms (200/2 using MPC delays) */

write a 8 to PORTB */
and send a DTMF “8" */

delay 100ms (200/2 using MPC delays) */

write a 9 to PORTB */
and send a DTMF “9” */

delay 100ms (200/2 using MPC delays) */

write a 0 to PORTB */
and send a DTMF “0” */

delay 100ms (200/2 using MPC delays) */
delay 100ms (200/2 using MPC delays) */

write a Ox0Oe to PORTB */

DS00616A-page 2-138

© 1995 Microchip Technology Inc.

ANG616

al=DTMF_star|[0]; /* and send a DTMF “*” */

bl=DTMF_star(1];

a2=DTMF_star[2];

b2=DTMF_star[3];

duration=250;

tone();

Delay_Ms_20MHz (200); /* delay 100ms (200/2 using MPC delays) */

PORTB=0x0f; /* write a 0x0f to PORTB */
al=DTMF_pound[0]; /* and send a DTMF “#” */
bl=DTMF_pound[1];

a2=DTMF_pound[21:

b2=DTMF_pound[3];

duration=250;

tone();

Delay_Ms_20MHz (200); /* delay 100ms (200/2 using MPC delays) */
Delay_ Ms_20MHz (200); /* delay 100ms (200/2 using MPC delays) */

PORTB=0x0a; /* write a 0x0a to PORTB */

al=DTMF_A[O]; /* and send a DTMF “A” */

bl=DTMF_A[1l];

a2=DTMF_A[2];

b2=DTMF_A[3];

duration=250;

tone();

Delay_Ms_20MHz (200); /* delay 100ms (200/2 using MPC delays) */

PORTB=0x0b; /* write a 0x0b to PORTB */

al=DTMF_B(0]; /* and send a DTMF “B” */

bl=DTMF_B[1];

a2=DTMF_B(2];

b2=DTMF_B[3];

duration=250;

tone() ;

Delay_Ms_20MHz (200); /* delay 100ms (200/2 using MPC delays) */

PORTB=0x0c; /* write a 0x0c to PORTB */
al=DTMF_C[0]; /* and send a DTMF “C” */
bl=DTMF_CI[1];

a2=DTMF_C[2];

b2=DTMF_C[3];
duration=250;
tone () ;

Delay_Ms_20MHz (200); /* delay 100ms (200/2 using MPC delays) */

PORTB=0x04d; /* write a 0x0d to PORTB */
al=DTMF_D[0]; /* and send a DTMF “D” */
b1=DTMF_D[1];

a2=DTMF_D[2];

b2=DTMF_D[3];

duration=250;

tone();
PORTB=0; /* write a 0 to PORTB */
while(1) {} /* done (loop) */

© 1995 Microchip Technology Inc. DS00616A-page 2-139

ANG616

APPENDIX D: IR FILTER MODULE

/t***************i**k*k*k*k******k***************************k****************
* Second-Order IIR Filter Module

Written for “Digital SIgnal Processing with the PIC16C74” Application Note.

This routine implements an IIR filter using a second order difference
egauation of the form:

y(n) = b0*x(n)+bl*x(n-1)+b2*x(n-2)+al*y(n-1)+a2*y(n-2)

* R F O F * F * *

D. Mostowfi 3/95
***l

#include “\mpc\apnotes\dbl_math.c”

bits Xx_n; /* input sample x(n) */

unsigned long y_n; /* output sample y(n) */

unsigned long x_n_1; /* x(n-1) */

unsigned long x_n_2; /* x(n-2) */

unsigned long y_n_1; /* y(n-1) */

unsigned long y.n 2; /* y(n-2) */

char rmndr_h; /* high byte of remainder from multiplies */
char rmndr_1; /* low byte of remainder from multiplies */
#define A1_H 0xd2 /* filter coefficients */

#define Al_L 0x08 /* for 60Hz notch filter */

#define A2_H 0x11 /* Fs= lkHz */

#define A2_L 0x71

#define BO_H 0x18

#define BO_L 0xbb

#define B1_H 0xd2

#define B1_L 0x08

#define B2_H 0x18

#define B2_L 0xb9

SRR IR AR AR KRR AR AR AR R R R AR AR kAR R AR AR KA AR AR R AR AR R KA AR R AR R AR AR A AR KRR AR A A A Ak

* Filter initialization - clears all taps in memory.
*

* usage:
* - call init_filter()
* use at program initialization

***********************************k**************t***************************/

void init_filter(){

#asm
clrf y_n ; clear output value
clrf y_n+l H
clrf y.n_1 ; and all filter “taps”
clrf y.n_1+1 :
clrf y_n_2 :
clrf y_n_2+1 H
clrf x_n_1 H
clrf x n_1+1 H
clrf x n_2 ;
clrf Xx_n_2+1 H
#endasm
}

DS00616A-page 2-140 © 1995 Microchip Technology Inc.

ANG616

JEHEER R KK KRR AR KKK ARK AR KRR KR KKK AR AKX AR AR KKK KA ARK KKK A KAKKRNRN R KKK KK ARA KKK KK KKk

* Assembly language subroutines for main filter() function
*******ﬂ***Rk*****ﬁ**********A’*********tf**t*********kﬂtt**ﬁ**tt*************tl

#asm

B

Add Remainder subroutine -

add_rmndr :

btfss
goto
comf
incf
btfsc
decf
comf
btfsc
comf
inctf
btfsc
decf
comf

add_r_start:

movt
addwf
btfsc
incf
movf
addwf
btfsc
incf

btfss
goto
comf
incf
btfsc
decf
comf
btfsc
comf
incf
btfsc
decf
comf

add_r_done:

i

i

retlw

sign.7
add_r_start
ACCcLO
ACCcLO
STATUS, 2
ACCcHI
ACCcHI
STATUS, Z
ACCbLO
ACCDLO
STATUS, Z
ACCbHI
ACCbHI

rmndr 1,W
ACCcLO
STATUS, C
ACCcHI
rmndr_h,W
ACCcHI
STATUS, C
ACCbLO

sign,7
add_r_done
ACCcLO
ACCcLO
STATUS, Z
ACCcHI
ACCcHI
STATUS, 2
ACCbLO
ACCbLO
STATUS, Z
ACCbHI
ACCbHI

Decimal Adjust Subroutine

to Q15 number

dec_adjust:

bcf
btfss
goto
bsf

comf
incf
btfsc

sign,7
ACCDbHI,7
adjust
sign,7

ACCcLO
ACCcLO
STATUS, Z

adds remainder from multiplies to ACCc

: check if number is negative
go to add_.
if so, negate number in ACC

; get low byte of remainder

; and add to ACCcLO

; check for overflow

; 1f overflow, increment ACCcHI
; get high byte of remainder

; and add to ACCcHI

; check for overflow

; 1if overflow, increment ACCbLO

check if result negative
if not, go to add_r_done
if so, negate result

; done

used atter each Q15 multiply to convert Q30 result

clear sign

test if number is negative
go to adjust if not

set sign if negative

; and negate number

© 1995 Microchip Technology Inc.

DS00616A-page 2-141

AN616

decf
comf
btfsc
comf
incf
btfsc
decf
comf

adjust:
rlf
rlf
rlf

btfss
goto
comf
incf
btfsc
decf
comf

adj_done:
retlw

i

ACCcHI
ACCcHI
STATUS, 2
ACCbLO
ACCbLO
STATUS, 2
ACCbHI
ACCbHI

ACCcHI
ACCbLO
ACCbHI

sign,7
adj_done
ACCbLO
ACCbLO
STATUS, Z
ACCbHI
ACCbHI

i

rotate ACC left 1 bit

check if result should be negative
if not, done
if result negative, negate ACC

; done

; Output Scaling Routine - used to scale output samples by factors of
; 2, 4, or 8 at end of filter routine

i

scale_y_n:
bef sign,7
btfss y_n+l,7
goto start_scale
bsf sign,7
comf y_n
incf y_n
btfsc STATUS, Z
decf y_n+l1
comf y_n+l
start_scale:
bef STATUS,C
rlf y_n+l
rlf y_n
bef STATUS, C
rlf y_n+l
rlf y_n
bef STATUS,C
rlf y_n+l
rlf y.n
btfss sign,7
goto scale_y_done
comf y_n
incf y_n
btfsc STATUS, Z
decf y_n+l
comf y_n+l
scale_y_done:
retlw [

#endasm

clear sign,7

test if y(n) negative
go to start_scale if not
set sign,7 if negative
and compliment y(n)

clear carry
and rotate y(n) left

test if result is negative
go to scale_y_done if not
negate y(n) if result is negative

done

DS00616A-page 2-142

© 1995 Microchip Technology Inc.

AN616

VAA AR R T

* Filter function - filter takes current input sample, x(n), and outputs next

* output sample, y(n).
*

* usage:

* - write sample to be filtered to x_n

* - call filter()

* - output is in MSB of y_n (y_n=MSB, y_n+1=LSB)

*
t****'Q***t***************'*****t**t*tk'*ﬁ******ﬂ**k******ﬁ*****ﬁﬁ************/

void filter(){
#asm

clrf y_n clear y(n) before starting

clrf y_n+l ;

clrf ACCbLO
movf x_n,W
movwf ACCbHI ;

move x(n) to ACCbHI
(scale 8 bit - 16 bit input)

movlw BO_H
movwf ACCaHI
movlw BO_L H

get coefficient b0
y(n)=b0*x(n)

movwf ACCaLO ;
call D_mpyF H
movf ACCCHI,W ; save remainder from multiply
movwf rmndr_h ;

movf ACCcLO,W ;
movwf rmndr_1 ;
call dec_adjust ;
movf ACCDbHI, W H
movwf y_n+l ;
movf ACCbLO,W ;
movwf y_n ;

movlw B1_H ; get coefficient bl
movwf ACCaHI ; y(n)=y(n)+bl*x(n-1)
movlw B1_L 3
movwf ACCaLO H

movE x_n_1+1,W i

movwf ACCbHI ;

movEf xn_1,W H

movwf ACCbLO H

call D_mpyF H

call add_rmndr ; add in remainder from previous multiply
movE ACCcHI,W ; and save new remainder

movwf rmndr_h ;
movf ACCcLO,W H
movwf rondr_1 ;
call dec_adjust ;
movf y_n+l,w H
movwf ACCaHI H
movf y.n,w i
movwf ACCaLO i
call D_add H
movf ACCbHI, W H
movwf y_n+l H
movf ACCbLO, W i
movwf y.n H

movlw B2_H ; get coefficient b2
movwf ACCaHI ; y(n)=y(n)+b2*x(n-2)
movlw B2_L i
movwf ACCaLO H
movf x_n_2+1,W H
movwf ACCbHI ;

© 1995 Microchip Technology Inc. DS00616A-page 2-143

AN616

movf
movwf
call
call
movf
movwf
movE
movwE
call
movf
movwf
movf
movwf
call
movf
movwf
movf
movwf

movlw
movwf
movlw
movwf
movf
movwf
movf
movwf
call
call
movEf
movwf
movf
movwf
call
movf
movwf
movf
movwf
call
movf
movwf
movf
movwf

movlw
movwf
movlw
movwf
movf
movwf
movE
movwf
call
call
call
movE
movwf
movEf
movwE
call
movf
movwf
movf
movwf

movEf

x_n_2,W
ACCbLO
D_mpyF
add_rmndr
ACCcHI,W
rrmndr_h
ACCcLO,W
rmndr_1
dec_adjust
y_n+l,wW
ACCaHI

n,w
ACCaLO
D_add
ACCbHI,W
y_n+l
ACCbLO,W
y.n

Al_H
ACCaHI
aAl_L
ACCaLoO

n_ 1+1,W
ACCbHI
n_ 1,W
ACCbLO
D_mpyF
add_rmndr
ACCcHI, W
rmndr_h
ACCcLO,W
rmndr_1
dec_adjust
y_n+l,W
ACCaHI
y.n,w
ACCaLoO
D_sub
ACCbLHI,W
y_n+l
ACCbLO, W
y.n

A2_H
ACCaHI
A2_L
ACCaLO
y.n_2+1,wW
ACCbHI

_n_2,W
ACCbLO
D_mpyF
add_rmndr
dec_adjust
y_n+l,w
ACCaHI
y.n,w
ACCaLO
D_sub
ACCbHI,W
y_n+l
ACCbLO,W
y.n

xn_1,wW

H

add in remainder from previous multiply

and save new remainder

get coefficient al
y(n)=y(n)+al*y(n-1)

add in remainder from previous multiply

and save new remainder

get coefficient a2
y(n)=y(n)+a2*y(n-2)

; x(n-2)=x(n-1)

DS00616A-page 2-144

© 1995 Microchip Technology Inc.

AN616

movwf x_n_2 H

movEf x_n_1+1,W ;

movwf x_n_2+1 :

movf xn,W ; X(n-1)=x(n)
movwf x_n_1+1 :

clrf x_n_1 ;

movf n_1,W ; y(n-2)=y(n-1)

movwf y.n_2 H

movE y.n_1+1,W H
movwf y_n_2+1 H

movf n,W ; y(n-1)=y(n)
movwE y.n 1 ;
movE y_n+l,w H

movwf y.n_1+1 H

call scale_y. n ;

movf y_n+l,w ; shift 1lsb of y_n to msb
movwf y_n H

#endasm

}

© 1995 Microchip Technology Inc. DS00616A-page 2-145

AN616

APPENDIX E: NOTCH FILTER

/*******************************t**********************************k*k**k*****
* 60 Hertz Notch Filter

Written for “Digital Signal Processing with the PIC16C74” Application Note.

This example program use the filter() function to implement a 60Hz notch
filter. TO is used to generate a lkHz sample clock. The program samples the
input signal x(n) on A-D channel 1, calls the filter routine signal, and
outputs y(n) to PWM channel 1.

EE I Y

If FILTER set to 0, performs straight talkthru from A-D to PWM output.
TO period can be changed to cary the sample rate.

I

* D. Mostowfi 4/95

KRR KKK AR A ARK KKK KRR KKK KR K R AR KA KR KR KRR KRR KR AR R KRR RRRRRRRAR AR R KRR KRR KR AR KRR * K)

#include “\mpc\include\1l6c74.h” /* ¢74 header file */
#include “\mpc\apnotes\analogio.c” /* analog I/O module */
#include “\mpc\apnotes\iir_filt.c” /* iir filter module */
#define FILTER 1

/* Function Prototypes */
void main_isr();
void timer0_isx();

/******i***********‘k******************k**k************************************
* main isr - 16C74 vectors to 0004h (MPC __INT() function) on any interrupt *
* assembly language routine saves W and Status registers then tests flags in

* INTCON to determine source of interrupt. Routine then calls appropriate isr.
* Restores W and status registers when done.
*********************************k**********t****'k***************************/

void __INT(void)

{
if (INTCON.TOIF) { /* timer 0 interrupt ? */
INTCON.TOIF=0; /* clear interrupt flag */
timer0_isr(); /* and call timer 0 isr */
}

/* Restore W, WImage, and STATUS registers */

#asm
BCF STATUS, RPO ;Bank 0
MOVF temp_PCLATH, W
MOVWF PCLATH ;PCLATH restored
MOVF temp_WImage, W
MOVWF __WImage ;WImage restored
MOVF temp_FSR, W
MOVWF FSR ;FSR restored
SWAPF temp_STATUS, W
MOVWF STATUS ;RPO restored
SWAPF temp_WREG, F
SWAPF temp_WREG,W ;W restored
#endasm
}

SRR KKKk h ok h ok h kAR KKK KKK KA KRR KKK KRR AR R KA AR KRR R R A AR KRR Kk h kK KRR A KRR AR KR A h A

* timer 0 interrupt service routine
t**************************/

void timerO_isr(void)

{

DS00616A-page 2-146 © 1995 Microchip Technology Inc.

AN616

TMR0=100; /* reload value for 1lms period */
PORTB.0=!PORTB.O0; /* toggle PORTB.0 */
sample_flag=active; /* set sample flag */

void main()

{

/*

/*

/*

/%

/*

/*

/*

initialize OPTION register */
OPTION=0b00000011; /* assign prescaler to T0O */

initialize INTCON register (keep GIE inactive!) */
INTCON=0b00000000; /* disable all interrupts */

initialize PIEl and PIE2 registers (periphreal interrupts) */
PIE1=0b00000000; /* disable all peripheral interrupts */
PIE2=0b00000000;

initialize T1CON and T2CON registers */
T1CON=0b00000000; /* Tl not used */
T2CON=0b00000000; /* T2 not used */

initialize CCPXCON registers */
CCP1CON=0b00001100; /* set CCP1CON for PWM mode */
CCP2CON=0b00000000; /* CCP2CON=0 (PWM 2 not used) */

initialize SSPCON register */
SSPCON=0b00000000; /* serial port - not used */

initialize ADCONX registers */
ADCONO=0b00000000; /* a-d converter */
ADCON1=0b00000010;

initialize TRISx register (port pins as inputs or outputs) */
TRISA=0b00001111;
TRISB=0b00000000;
TRISC=0b11111011;
TRISD=0b11111111;
TRISE=0b11111111;

clear watchdog timer (not used) */
CLRWDT() ;

initialize program bit variables */
FLAGS=0b00000000;

intialize output port pins */
PORTB=0;
enable interrupts... */
INTCON.TOIE=1; /* peripheral interrupt enable */
INTCON.GIE=1; /* global interrupt enable */
init_PWM(0x40); /* init PWM port */
init_filter(); /* init filter */
while(1){
while(!sample_flag){} /* wait for sample clock flag to be set */
sample_flag=0; /* clear sample clock flag */
x_n=get_sample(1); /* read ADC channel 1 into x(n) */
if (FILTER==1) { /* if filter enabled */
filter(); /* call filter routine */
}
else(/* or else write x(n) to y(n) (talkthru) */
y_n=x_n;

}
write_PWM((char)y_n,0); /* write y_n to PWM port 1 */

© 1995 Microchip Technology Inc.

DS00616A-page 2-147

APPENDIX F: 8-BIT MULTIPLY AND SCALING ROUTINES

JRRR KRR A Ak Ak h ok ok Kk ok hk kKK KRR KKK AR KK IR R KRR RAA KA A AR AR K KA I I A KKK AR KRR I IR AR AR AR AR A KA,

*

LI T T T I

8 bit Multiply and Scaling Routines

Written for “Digital Signal Processing with the PIC16C74” Application Note.
This module provides a 8 bit signed multiply and scaling routine for the
PICTONE.C tone generation program. The routines are adapted from “Math
Routines for the 16C5x” in Microchip’s Embedded Controller Handbook.

All numbers are assumed to be signed 2‘s compliment format.

D. Mostowfi 11/94

KAk KKK KK KA AR KKK AR KR RKARR KR ARk kA ok ko ko kAR Ak kk ke k ok ok kA hhhh kAR Rk h k)

char multcnd; /* 8 bit multiplicand */
char multplr; /* 8 bit multiplier */
char result_h; /* result - high byte */
char result_1; /* result - low byte */
char sign; /* result sign */

#asm

8x8 signed multiply routine
called from PICTONE.C module (assembly language routine)

.MACRO mult_core bit
btfss multplr,bit
goto \no_add
movf multcend, W
addwf result_h,F

\no_add:
rrf result_h
rrf result_1

. ENDM

_8x8smul:
movf multend, W ; get multiplicand
xorwf multplr,W ; and xor with multiplier
movwf sign ; and save sign of result
btfss multend, 7 ; check sign bit of multiplicand
goto chk_multplr ; go and check multipier if positive
comf multend ; negate if negative
incf multcnd H

chk_multplr:
btfss multplr,7 ; check sign bit of multiplier
goto multiply ; go to multiply if positive
comf multplr ; negate if negative
incf multplr :

multiply:
movf multend, W ; set up multiply registers
bef STATUS, C ;
clrf result_h H
clrf result_1 H
mult_core 0 ; and do multiply core 8 times

mult_core 1 ;
mult_core 2 H

DS00616A-page 2-148 © 1995 Microchip Technology Inc.

AN616

mult_core 3 H

mult_core 4 ;

mult_core 5 ;

mult_core 6 ;

mult_core 7 H

set_sign:

btfss sign,7 test sign to see if result negative
retlw 0 done if not! (clear W)

comf result_1
incf result_1
btfsc STATUS,Z
dect result_h ;
comf result_h ;

negate result if sign set

retlw 0 ; done (clear W)

Scaling Routine (used after a multiply to scale 16 bit result)
Operates on result_h and result_1l - final result is in result_l
routine divides by 32 to restore Q7 result of 2*b*y(n-1) in tone
generation algorithm

scale_16:

btfss sign,7

goto start_shift
comf result_1
incf result_1
btfsc STATUS,Z
decf result_h ;
comf result_h ;

test if negative (sign set from mult)
go to start shift if pos.
negate first if neg.

start_shift:

bef STATUS, C clear status

rrf result_h and shift result left 5x (/32)
rrf result_1 H
rrf result_h :
rrf result_1 H
rrf result_h ;
rrf result_1 :
rrf result_h H
rrf result_1 ;
rrf result_h ;
rrf result_1 H

test if result negative
done if not negative
negate result if negative

btfss sign,7
goto scale_done
comf result_1l
incf result_1l
btfsc STATUS,Z
decf result_h
comf result_h

scale_done: :

retlw 0 done (clear W)

#endasm

© 1995 Microchip Technology Inc. DS00616A-page 2-149

AN616

APPENDIX G:DOUBLE PRECISION MATH ROUTINES

JREEI R R KRR A IR KRR R KRR R AR RK I AR A R AR A A A ARk hhhh kA khkhkhhd

* Double Precision Math Routines

This module contains assembly language routines from “Math Routines for the
16C5x” from Microchip’s Embedded Controller Handbook that have been adapted
for use with the Bytecraft MPC C Compiler.

Routines are used IIR_FILT.C module written for “Digital Signal Processing
with the PIC16C74" Application Note.

D. Mostowfi 3/95

*
*
*
*
*
*
*
*
*
******************************t*******ﬁ***t******************************ﬁ*t*/
/*

Start of converted MPASM modules:

KA A IAIKKKRRI KRR KK AR KA KRR KRR KRR KRR ARk kAR AR AR A AR R AR Ak kA Ak hkkhkhk

Double Precision Addition & Subtraction

k*********************k*********%***************tt*****k********k**;
Addition : ACCb(16 bits) + ACCa(16 bits) -> ACCb(16 bits)

; (a) Load the 1st operand in location ACCaLO & ACCaHI (16 bits)

: (b) Load the 2nd operand in location ACCbLO & ACCbHI (16 bits

H (c) CALL D_add

; (d) The result is in location ACCbLO & ACCbHI (16 bits)

; Performance :

; Program Memory : 07

H Clock Cycles : 08
;**********k*******k******ﬁ*i***k**********t************************;
H Subtraction : ACCb(16 bits) - ACCa(16 bits) -> ACCb(16 bits)

H (a) Load the 1lst operand in location ACCaLO & ACCaHI (16 bits

(b) Load the 2nd operand in location ACCbLO & ACCbHI (16 bits)
(c) CALL D_sub
(d) The result is in location ACCbLO & ACCbHI (16 bits)
: Performance :
H Program Memory : 14
H Clock Cycles : 17
;*****************ﬁ******************************t******ﬁkt***i*****;
;,
char ACCalO; //equ 10 changed equ statements to C char variables
char ACCaHI; //equ 11
char ACCbLO; //equ 12
char ACCbHI; //equ 13
#asm /* start of in-line assembly code */
; include “mpreg.h” commented out these
; org 0 two lines (MPASM specific)
;*********************************t***************t*****************
; Double Precision Subtraction (ACCb - ACCa -> ACCb)
D_sub call neg_A2 ; At first negate ACCa; Then add

GREERE KKK IRIIRRIIRR A RARRI IR KRR KRR AR KRR K KRR KRR AR AR AR RR AR AR ARk ko

; Double Precision Addition (ACCb + ACCa -> ACCb)

DS00616A-page 2-150 © 1995 Microchip Technology Inc.

_AN616

D_add movf ACCaLo,W

addwf ACCbLO ;add 1sb
btfsc STATUS, C ;add in carry
incf ACCbHI

movf ACCaHI,C

addwf ACCbHI ;add msb
retlw 0
neg_A2 comf ACCaLO ; negate ACCa (-ACCa -> ACCa)

incf ACCaLOo
btfsc STATUS, 2
decf ACCaHI
comf ACCaHI
retlw 0

B)

H Double Precision Multiplication

H (Ooptimized for Speed : straight Line Code)
;*ﬁ****************i***********t**iﬁtiti**i*i**Q***ﬁt*t***ﬁ*it*ii*it;

; Multiplication : ACCb(16 bits) * ACCa(16 bits) -> ACCb,ACCc (32 bits)
H (a) Load the 1lst operand in location ACCaLO & ACCaHI (16 bits)

; (b) Load the 2nd operand in location ACCbLO & ACCbHI (16 bits)

; (c) CALL D_mpy

H (d) The 32 bit result is in location (ACCbHI,ACCbLO,ACCcHI,ACCcLO)

Performance :
Program Memory : 240
Clock Cycles : 233

Note : The above timing is the worst case timing, when the
register ACCb = FFFF. The speed may be improved if
the register ACCb contains a number (out of the two
numbers) with less number of 1s.

The performance specs are for Unsigned arithmetic (i.e,
with “SIGNED equ FALSE *“).

dk Ak R Rk Ak kR Rk kAR A AR ARk R Ak kAR A A AR A h ke k ok h ko kA ke ko hh ok,

#endasm

//char ACCaLO; equ 10 Commented out - already defined in Dbl_add
//char ACCaHI; equ 11

//char ACCbBLO; equ 12

//char ACCbHI; equ 13

char ACCcLO; //equ 14 changed equ statements to C char variables
char ACCcHI; //equ 15

char ACCALO; //equ 16

char ACCAHI; //equ 17

char temp; //equ 18

char sign; //equ 19

#asm

; include “mpreg.h” commented out these

H org 0 two lines (MPASM specific)
;ﬁ*****************t**
SIGNED equ 1 Set This To ‘TRUE’ if the routines
: for Multiplication & Division needs
to be assembled as Signed Integer
Routines. If ‘FALSE’ the above two
routines (D_mpy & D_div) use

H

;

i

© 1995 Microchip Technology Inc. DS00616A-page 2-151

ANG616

; ; unsigned arithmetic.
;i*******************i***i*****ﬁﬁ******************i*iﬁ****i*****ﬁ**
; multiplication macro

.MACRO mulMac
; LOCAL NO_ADD

changed macro to conform to MPC macro
language - declaration is different
and macro labels are preceded by “/”

rrf ACCAHI
rrf ACCdALO
btfss STATUS, C need to add?

goto \NO_ADD no addition necessary

movf ACCaLo,W ; Addition (ACCb + ACCa -> ACCb)
addwf ACCbLO add 1lsb

btfse STATUS,C add in carry

incf ACCbHI

movf ACCaHI,W

rotate d right

addwf ACCbHI ;add msb
\NO_ADD rrf ACCbHI
rrf ACCbLO
rrf ACCcHI
rrf ACCcLO
. ENDM ; end of modified macro

'.*********t**************i**************************i*ﬁ*****ﬁ**ﬁ****
Double Precision Multiply (16x16 -> 32)

(ACCb*ACCa -> ACCb,ACCc) : 32 bit output with high word

in ACCb (ACCbLHI,ACCbLO) and low word in ACCc (ACCCcHI,ACCcLO).

H

D_mpyF ;results in ACCb(16 msb’s) and ACCc(16 1lsb’s)
.IF SIGNED
CALL S_SIGN
.ENDIF
call setup

use the mulMac macro 16 times

mulMac
mulMac
mulMac
mulMac
mulMac
mulMac
mulMac
mulMac
mulMac
mulMac
mulMac
mulMac
mulMac
mulMac
mulMac
mulMac

IF SIGNED

btfss sign,7

retlw 0

comf ACCcLO ; negate ACCa (-ACCa -> ACCa)
incf ACCcLO

btfsc STATUS, Z

decf ACCcHI

comf ACCcHI

btfsc STATUS, Z

DS00616A-page 2-152 © 1995 Microchip Technology Inc.

ANG616

neg_B comf ACCbLO ; negate ACCb
incf ACCDbLO
btfsc STATUS, Z
decf ACCbHI
comf ACCbHI

retlw 0
.ELSE
retlw 0
.ENDIF

B R

H
i
;

setup moviw i6 ; for 16 shifts
movwf temp
movf ACCbHI,W ;move ACCb to ACCd

movwi ACCAHI
movf ACCbLO, W
movwf ACCALO
clrf ACCbHI
clrf ACCbLO
retlw 0

H
PR R AR R
i

;

neg_A comf ACCaLoO ; negate ACCa (-ACCa -> ACCa)
incf ACCaLO
btfsc STATUS, Z
decf ACCaHI
comf ACCaHI
retlw 0

P R T]

Assemble this section only if Signed Arithmetic Needed

IF SIGNED

S_SIGN movf ACCaHI,W
xorwf ACCbHI,W
movwf sign
btfss ACCbHI, 7 ; if MSB set go & negate ACCb
goto chek_A

comf ACCbLO ; negate ACCb
incf ACCbLO

btfsc STATUS, Z

decf ACCbHI

comf ACCbHI

chek_A Dbtfss ACCaHI, 7 ; 1f MSB set go & negate ACCa
retlw 0
goto neg_A

.ENDIF

#endasm

© 1995 Microchip Technology Inc. DS00616A-page 2-153

ANG616

NOTES:

DS00616A-page 2-154 © 1995 Microchip Technology Inc.

MICROCHIP

ANG617

Fixed Point Routines

Author: Frank J. Testa
Design Consultant

INTRODUCTION

This application note presents an implementation of
the following fixed point math routines for the PIC16/17
microcontroller families:

* Multiplication
* Division
Routines for the PIC16/17 families are provided in a

variety of fixed point formats, including both unsigned
and signed two’s complement arithmetic.

FIXED POINT ARITHMETIC

Unsigned fixed point binary numbers A, can be
represented in the form

n-1 n-1
A=Y a(k)e2k" = 27Y a(k)e2k
k=0 k=0

where n is the number of bits, a(k) is the kth bit with
a(0) = LSb, and r indicates the location of the radix
point. For example, in the case where A is an integer,
r=0 and when A is a fraction less than one, r = n. The
value of r only affects the interpretation of the numbers
in a fixed point calculation, with the actual binary
representation of the numbers independent of the
value of r. Factoring out of the above sum, it simply-
locates the radix point of the representation and is
analogous to an exponent in a floating point system.
Using the notation Qi.j to denote a fixed point binary
number with i bits to the left of the radix point and j to
the right, the above n-bit format is in Qn-r.r. With care,
fixed point calculations can be performed on operands
in different Q formats. Although the radix point must be
aligned for addition or subtraction, multiplication
provides an illustrative example of the simple
interpretive nature of r. Consider the unsigned product
of a Q20.4 number with a Q8.8. After calling the
appropriate unsigned 2416 bit multiply for these fixed
point arguments, the 40-bit fixed point result is in
Q28.12, where the arguments of the Q notation are
summed respectively. Similar arguments can be made
for two’s complement arithmetic, where the negative
representation of a positive number is obtained by
reversing the value of each bit and incrementing the
result by one. Producing a unique representation of
zero, and covering the range -2™1 to 2"™1- 1, this is
more easily applied in addition and subtraction
operations and is therefore the most commonly used
method of representing positive and negative numbers
in fixed point arithmetic.

The above analysis in Q notation can be employed to
build dedicated fixed point algorithms, leading to
improved performance over floating point methods in
cases where the size of the arguments required for the
range and precision of the calculations is not large
enough to destroy gains made by fixed point methods.

© 1995 Microchip Technology Inc.

DS00617A-page 2-155

AN617

FIXED POINT FORMATS

The fixed point library routines supports 8-,16-, 24- and
32-bit formats in the following combinations:

Division Library Names Format Multiplication Library Names Format
PIC16C5X/PIC16CXX Routines
FXD0808S, FXD0808U, 8/8 FXM0808S, FXM0808U, 8e8
FXDO0807U, FXD0707U FXM0807U
FXD1608S, FXD1608U, 16/8 FXM1608S, FXM1608U, 1608
FXD1607U, FXD1507U FXM1607U, FXM1507U
FXD1616S, FXD1616U, 16/16 FXM1616S, FXM1616U, 16016
FXD1515U FXM1515U
FXD2416S, FXD2416U, 24/16 FXM2416S, FXM2416U, 24016
FXD2315U . FXM2315U
FXD2424S, FXD2424U, 24/24 FXM2424S, FXM2424U, 24024
FXD2323U FXM2323U
FXD3216S, FXD3216U, 32/16 FXM3216S, FXM3216U, 32016
FXD3115U FXM3115U
FXD3224S, FXD3224U, 32/24 FXM3224S, FXM3224U, 32e24
FXD3123U FXM3123U
FXD3232S, FXD3232U, 32/32 FXM3232S, FXM3232U, 32432
FXD3131U FXM3131U
PIC17CXX Functions
FXDO0808S, FXD0808U, 8/8 FXMO0808S, FXM0808U, 8e8
FXD0807U, FXD0707U FXM0807U
FXD1608S, FXD1608U, 16/8 FXM1608S, FXM1608U, 168
FXD1607U, FXD1507U FXM1507U
FXD1616S, FXD1616U, 16/16 FXM1616S, FXM1616U, 16016
FXD1615U, FXD1515U FXM1515U
FXD2416S, FXD2416U, 24/16 'FXM2416S, FXM2416U, 24¢16
FXD2415U, FXD2315U FXM2315U
FXD2424S, FXD2424U, 24/24 FXM2424S, FXM2424U, 2424
FXD2423U, FXD2323U FXM2323U
FXD3216S, FXD3216U, 32/16 FXM3216S, FXM3216U, 32416
FXD3215U, FXD3115U FXM3115U
FXD3224S, FXD3224U, 32/24 FXM3224S, FXM3224U, 32024
FXD3223U, FXD3123U FXM3123U
FXD3232S, FXD3232U, 32/32 FXM3232S, FXM3232U, 32032
FXD3231U, FXD3131U FXM3131U

Note: U - unsigned math operation, S - signed math operation

These general format combinations are implemented
in both signed and unsigned versions. Additional
unsigned routines are implemented with arguments
reduced by one bit to accommodate the case of
operations on signed numbers, with arguments known

to be nonnegative, thereby,
performance improvement.

resulting

in some

DS00617A-page 2-156

© 1995 Microchip Technology Inc.

ANG617

DATA RAM REQUIREMENTS
The following contiguous data ram locations are used
by the library:
ACCB7 = REMB3 = AEXP = EXP AARG and ACC exponent
ACCB6 = REMB2 = BEXP BARG exponent
ACCB5 = REMBL
ACCB4 = REMBO remainder
ACCB3 = AARGB3
ACCB2 = AARGB2
ACCB1 = AARGB1
ACCBO = AARGBO = ACC AARG and ACC
SIGN sign in MSB
FPFLAGS exception flags and option bits
BARGB3
BARGB2
BARGB1
BARGBO BARG
TEMPB3
TEMPB2
TEMPB1
TEMPBO temporary storage
These definitions are identical with those used by the
|IEEE 754 compliant floating point library[6], AN575.

USAGE

Multiplication assumes the multiplicand in AARG,
multiplier in BARG, and produces the result in ACC.
Division assumes a dividend in AARG, divisor in
BARG, and quotient in ACC with remainder in REM.

ADDITION/SUBTRACTION

Because of the generally trivial nature of addition and
subtraction, the call and return overhead outweighs the
need for explicit routines and so they are not included
in the library. However, the PIC16C5X/PIC16CXX
families do not have an add with carry or subtract with
borrow instruction, leading to subtleties regarding
production of a correct carry-out in a multiple byte add
or subtract. In the case of a two byte add or subtract,
the most elegant solution to these difficulties, requiring
6 cycles, appears to be given by the following code in
Example 1.

EXAMPLE 1: TWO BYTE

ADDITION/SUBTRACTION
ROUTINES
ADD MOVF AARGBL1,W
ADDWF BARGB1
MOVF AARGBO, W
BTFSC -
INCFSZ AARGBO, W
ADDWF BARGBO
SUB MOVF AARGB1,W
SUBWF BARGB1
MOVF AARGBO, W
BTFSS c
INCFSZ AARGBO, W
SUBWF BARGBO

The four instructions after the initial add/subtract, can
be easily concatenated for operations involving more
than two bytes. Because addition and subtraction are
required in standard algorithms for multiplication and
division, these issues permeate the implementation of
both fixed and floating point algorithms for the
PIC16C5X/PIC16CXX families.

MULTIPLICATION

The fixed point multiply routine FXPMxxyy, takes an
xx-bit multiplicand in AARG, a yy-bit multiplier in BARG
and returns the (xx+yy)-bit product in ACC. The
implementation uses a standard sequential add-shift
algorithm, negating both factors if BARG < 0, to
produce the positive multiplier required by the method.
Analogous to simple longhand binary multiplication, the
multiplier bits are sequentially tested, with one
indicating an add-shift and zero simply a shift. The shift

© 1995 Microchip Technology Inc.

DS00617A-page 2-157

AN617

is required to align the partial product for the next TABLE 2: PIC16C5X/PIC16CXX FIXED
possible add[1]. Several examples are shown in POINT MULTIPLY
Example 2. PERFORMANCE DATA:
APPENDIX C
EXAMPLE 2: MULTIPLICATION EXAMPLES :
FXM2416S(0xC11682,0x608B) Routine | Max Cyc ::‘;: PM |DM| Page
= FXM24165(-4123006,24715) FXMOB0BS | 79/82 | 55 | 33 | 5 | 2.252
= 0xE84647F896 FXM0808U | 73 54 | 21 | 4 | 2-252
=-101900093290 FXMO707U | 67 48 | 23 | 4 [2252
FXM1616U(0x0458,0x822C) FXM1608S | 122/128 | 55 | 44 | 7 | 2-246
— FXM1616U(1112,33324) FXM1608U | 126 | 59 | 31 | 7 | 2-247
FXM1507U | 114 | 52 | 35 | 7 | 2-247
= 0x02356F20 FXM1616S | 260/269 | 105 | 74 | 9 | 2-240
= 37056288 FXM1616U | 256 | 107 | 58 | 9 | 2-241
TABLE1: PIC17CXX FIXED POINT FXMI515U | 244 | 103 | 63 | 9 | 2241
MULTIPLY PERFORMANCE FXM2416S | 334/346 | 108 | 92 | 12 | 2-231
DATA: APPENDIX E FXM2416U | 334 [110 | 70 [12| 2232
Min FXM2315U | 319 | 104 | 76 | 12 | 2232
Routine |MaxCyc| o . | PM |DM| Page FXM2424S | 520/535 | 157 | 126 | 13 | 2.221
FXMO0808S | 50/53 26 | 65 | 5 | 2-375 FXM2424U 512 159 | 98 | 13 | 2-222
FXMO0808U 39 23 | 53 | 3 | 2-375 FXM2323U 497 154 | 107 | 13 | 2-222
FXMO707U 37 21 49 | 3 | 2-375 FXM3216S | 408/423 | 111 | 98 | 9 [2-208
FXM1608S | 74779 | 35 | 100 | 6 | 2376 FXM3216U | 412 | 114 | 84 | 9 | 2-208
FXM1608U 75 24 90 | 6 | 2-376 FXM3115U 392 106 | 91 9 | 2-209
FXM1507U 69 24 82 | 6 | 2-376 FXM3224S | 634/652 | 160 | 152 | 15 | 2-196
FXM1616S | 168/175 | 24 | 197 | 8 | 2377 FXM3224U | 630 | 162 | 151 | 15 | 2197
FXM1616U 156 41 [191 | 8 | 2-377 FXM3123U 610 157 | 129 | 15 | 2-197
FXM1515U 150 39 [185 | 8 | 2-377 FXM3232S | 868/889 | 207 | 189 | 17 [2-181
FXM2416S | 213/223 | 43 | 253 | 10 | 2-378 FXM3232U | 856 | 209 | 168 | 17 | 2-182
FXM2416U | 203 | 43 | 239 | 10 | 2378 FXM3131U | 836 | 204 | 168 | 17 | 2-182
FXM2315U 194 41 | 229 | 10 | 2-378 Legend: PM - Program memory, DM - Data Memory
FXM2424S | 334/346 | 60 | 392 | 12 | 2-379
FXM2424U | 316 | 60 | 364 | 12 | 2379
FXM2323U | 308 | 58 | 354 | 12 | 2-380
FXM3216S | 258/270 | 46 | 301 | 13 | 2-380
FXM3216U | 265 | 44 | 298 | 13 | 2-381
FXM3115U | 254 | 42 | 285 [13 | 2-381
FXM3224S | 403/417 | 62 | 464 | 15 | 2-381
FXM3224U | 410 | 61 | 459 | 15 | 2-382
FXM3123U | 399 | 59 | 446 | 15 | 2382
FXM3232S | 556/572 | 79 | 635 | 16 | 2-383
FXM3232U | 563 | 78 | 628 | 16 | 2-383
FXM3131U | 543 | 76 | 606 | 16 | 2-384

Legend: PM - Program memory, DM - Data Memory

DS00617A-page 2-158 © 1995 Microchip Technology Inc.

ANG617

DIVISION

The fixed point divide routine FXPDxxyy, takes an
xx-bit dividend in AARG, a yy-bit divisor in BARG and
returns the xx-bit quotient in ACC and yy-bit remainder
in REM. Unlike multiplication, division is not
deterministic, requiring a trial-and-error sequential shift
and subtract process. Binary division is less
complicated than decimal division because the
possible quotient digits are only zero or one. If the
divisor is less than the partial remainder, the
corresponding quotient bit is set to one followed by a
shift and subtract. Otherwise, the divisor is greater than
the partial remainder, the quotient bit is set to zero and
only a shift is performed. The intermediate partial
remainder may be restored at each stage as in
restoring division, or corrected at the end as in
nonrestoring division. Implementation dependent
trade-offs between worst case versus average
performance affect the choice between these two
approaches, and therefore, macros for each method
are provided.

The results of the division process for AARG/BARG,
satisfy the relation

AARG = BARG ¢ QUOTIENT + REMAINDER,

where the remainder has the same sign as the
quotient, and represents the fraction of the result in
units of the denominator BARG. Some simple
examples are given in Example 3.

EXAMPLE 3: DIVISION EXAMPLES

FXD1608S(0xC116,0x60) = OXFF59, 0xB6
FXD1616U(0x9543,0x4AA1) = 00002, 0x0001

© 1995 Microchip Technology Inc.

DS00617A-page 2-159

AN617

TABLE 3: PIC17CXX FIXED POINT DIVIDE TABLE 4: PIC16C5X/PIC16CXX FIXED
PERFORMANCE DATA: POINT DIVIDE PERFORMANCE
APPENDIX F DATA: APPENDIX D
Routine 'c‘;: ::‘;'; PM | DM | Page Routine 'é;: g;: PM | DM | Page
FXD0808S | 71/77 | 71/77 | 77 | 4 | 2-449 FXD0808S | 90/96 | 90/96 | 41 5 |2-344
FXD0808U 75 67 74 | 3 |2-449 FXD0808U | 100 92 15 | 4 | 2-345
FXD0807U 66 66 65 | 3 |2-450 FXD0807U 88 88 21 4 12345
FXD0707U 61 61 60 | 3 |2-450 FXD0707U 80 80 44 | 4 | 2-345
FXD1608S | 135/146 | 135/146 | 146 | 5 | 2-448 FXD1608S | 176/188|176/188| 67 | 6 | 2-338
FXD1608U | 196 156 195 | 4 | 2-448 FXD1608U | 294 230 41 7 |2-339
FXD1607U | 130 130 129 | 4 | 2-448 FXD1607U | 174 174 41 5 |2-339
FXD1507U | 125 125 124 | 4 |2-449 FXD1507U | 166 166 44 | 5 | 2-340
FXD1616S | 201/214| 187/200 | 241 7 | 2-446 FXD1616S | 304/319 | 269/284 | 74 8 | 2-330
FXD1616U 244 180 243 | 6 | 2-447 FXD1616U 373 277 27 7 | 2-330
FXD1615U | 197 182 216 | 6 [2-447 FXD1515U | 294 274 45 | 7 | 2-331
FXD1515U 191 177 218 | 6 | 2-447 FXD2416S | 417/438|389/410| 140 | 8 | 2-321
FXD2416S [297/314272/289| 353 | 8 | 2-444 FXD2416U 529 501 172 | 8 | 2-322
FXD2416U 365 339 453 | 8 | 2-445 FXD2315U 407 379 120 | 7 | 2-322
FXD2415U | 294 268 339 | 8 |2-445 FXD2424S | 541/565 | 509/533| 253 | 12 | 2-311
FXD2315U 287 262 330 | 8 | 2-446 FXD2424U 676 644 226 | 13 | 2-312
FXD2424S | 371/390 | 344/363 | 482 | 10 | 2-475 FXD2323U | 531 499 211 | 12 | 2-313
FXD2424U 440 412 577 | 10 | 2-476 FXD3216S | 551/578 | 515/551| 201 | 10 | 2-299
FXD2423U | 369 341 460 | 9 | 2-476 FXD3216U | 703 667 243 | 9 | 2-300
FXD2323U | 361 334 448 | 9 | 2-476 FXD3115U | 541 505 160 | 9 | 2-300
FXD3216S | 393/414 | 363/384 | 476 | 9 | 2-473 FXD3224S | 715/742 | 675/702| 280 | 11 | 2-287
FXD3216U | 485 459 608 | 9 |2-474 FXD3224U | 867 827 299 | 11 | 2-288
FXD3215U 390 359 451 8 |2-474 FXD3123U 705 665 232 | 10 | 2-288
FXD3115U | 383 353 442 | 8 | 2-475 FXD3232S | 879/912|835/868 | 357 | 13 | 2-271
FXD3224S | 491/514 | 456/479 | 639 | 11 | 2-419 FXD3232U | 1031 987 364 | 13 | 2-272
FXD3224U | 584 548 769 | 11 | 2-420 FXD3131U | 869 825 304 | 13 | 2-272
FXD3223U | 489 453 612 | 10 | 2-421 Legend: PM - Program memory, DM - Data Memory
FXD3123U 481 446 600 | 10 | 2-421 REFERENCES
FXD3232S | 580/614 | 552/577 | 800 | 13 | 2-418 1. Cavanagh, J.J.F.,, “Digital Computer Arithmetic,”
FXD3232U | 683 645 930 | 13 | 2-419 McGraw-Hill,1984.
FXD3231U | 588 550 773 | 12 | 2-419 2. Hwang, K., “Computer Arithmetic,” John Wiley &
FXD3131U | 579 | 542 | 758 | 12 | 2-419 Sons, 1979.
Legend: PM - Program memory, DM - Data Memory 8. ig?:r'ne';g'brg:{::ﬁ:a' :\l;arg%)er Systems &
4. |EEE Standards Board, “IEEE Standard for
Floating-Point Arithmetic,” ANSIIEEE Std
754-1985, IEEE, 1985.
5. Knuth, D.E., “The Art of Computer Program-
ming, Volume 2,” Addison-Wesley, 1981.
6. F.J.Testa, “IEEE 754 Compliant Floating Point

Routines,” AN575, Embedded Control Hand-
book, Microchip Technology Inc., 1995.

DS00617A-page 2-160

© 1995 Microchip Technology Inc.

AN617

APPENDIX A: ALGORITHMS

Several algorithms for decimal to binary conversion are
given below. The integer and fractional conversion
algorithms are useful in both native assembly as well
as high level languages.

AAd Integer conversion algorithm[3]:

Given an integer |, where d(k) are the bit values of its n
bit binary representation with d(0) = LSB,

n-1
I =, d(k) e 2K
k=0
k=0
(k) =1
while i(k) =10

d(k) = remainder of I(k)/2
Ikt 1) = 1(k)/2 1
k=k+1

endw

where [1 denotes the greatest integer function (or
ceiling function).

A2 Fractional conversion algorithm[3]:

Given a fraction F, where d(k) are the bit values of its n
bit binary representation with d(1)=MSB,

n
F=2 d(k)e2X
k=1

k=0

Fk)=F

while k <=n

d(k) =[F(k)e2 1

F(k+1) = fractional part of F(k)e2
k=k+1

endw

© 1995 Microchip Technology Inc.

DS00617A-page 2-161

AN617

APPENDIX B: FLOWCHARTS

FIGURE B-1: MULTIPLICATION FLOWCHART
(FXPMxxU) (FXPMxxS)
\i Y
i=0 i=0
clear high order clear high order
partial product partial product
multiplier
multiplier \\Yes < 8
biti=1 ?
?
N Y
No v ° negate multiplier
and multiplicand
add multiplicand save sign of result
to high order
partial product
\ multiplier
right shift biti=1
partial product ?
i=i+1 V}
No o
add multiplicand
to high order
partial product
Yes -
\
right shift partial
No product with
sign extension
i=i+1
Yes
No

© 1995 Microchip Technology Inc.

DS00617A-page 2-162

AN617

FIGURE B-2: DIVISION FLOWCHART

(FXPDxxU) FXPDxxS

Y K
. left sh
i=0 compute sign (re?nasincliﬁer
clear remainder of quotient quotient) "
partial quotient
= dividend
> y \)
\ subtract divisor
from partial
divisor < 0 Yes remainder
i<n No ?
?
No L] X
Yes negate

L

/ divisor Yes
Return 0 resugy——

left shift Y No '
(remainder,
quotient) ‘ .
partial quotient
‘ dividend < 0\ €S LSb =
?
subtract division
from partial {'
remainder No
negate restore partial
ivi quotient,
dividend Yegient

L]

A
i=0
Y clear remainder
partial quotient
restore partial = dividend
quotient,
LSb=0 Y.

restore partial
quotient, i<n-1 ves
LSb=0 ?
No
S

© 1995 Microchip Technology Inc. DS00617A-page 2-163

APPENDIX C: MULTIPLY ROUTINES FOR THE PIC16C5X/PIC16CXX

Table of Contents for Appendix C

C.1 32x32 PIC16C5X/PIC16CXX Fixed Point Muitiply Routines 2-164
C.2 32x24 PIC16C5X/PIC16CXX Fixed Point Multiply Routines 2-182
Cc3 32x16 PIC16C5X/PIC16CXX Fixed Point Multiply Routines 2-197
C4 24x24 PIC16C5X/PIC16CXX Fixed Point Multiply Routines 2-209
C5 24x16 PIC16C5X/PIC16CXX Fixed Point Multiply Routines 2-222
C.6 16x16 PIC16C5X/PIC16CXX Fixed Point Multiply Routines 2-232
Cc7 16x8 PIC16C5X/PIC16CXX Fixed Point Multiply Routines 2-241
cs8 8x8 PIC16C5X/PIC16CXX Fixed Point Multiply Routines 2-247
C.1 32x32 PIC16C5X/PIC16CXX Fixed Point Multiply Routines

; 32x32 PIC16 FIXED POINT MULTIPLY ROUTINES VERSION 1.2

i Input: fixed point arguments in AARG and BARG

; Output: product AARGXBARG in AARG

; All timings are worst case cycle counts

H It is useful to note that the additional unsigned routines requiring a non-power of two
; argument can be called in a signed multiply application where it is known that the

H respective argument is nonnegative, thereby offering some improvement in performance.

; Routine Clocks Function

; FXM3232S 889 32x32 -> 64 bit signed fixed point multiply

: FXM3232U 856 32x32 -> 64 bit unsigned fixed point multiply
; FXM3131U 836 31x31 -> 62 bit unsigned fixed point multiply

; The above timings are based on the looped macros. If space permits,
H approximately 128-168 clocks can be saved by using the unrolled macros.

list r=dec, x=on, t=off
include <PIC16.INC> ; general PIC1l6 definitions
include <MATH16.INC> ; PIC16 math library definitions

R KRR R R KR KRR K K KR K R K K A Kk kKKK R A A R KAk kKA AR AR K AR AR AR AR A A IR I I KK I KRR A AR AR A KRR I hhkhhhhhhkkkkk

R R Kk kK kKRR KK KR A KKk ok ok ok ok k kR kA Ak k k kK kK kR K KKK KRR R AR R R KRR A KA I I AR I I I I A IRARKKAIA KRR IR A ** ok hh Kk kkk

; Test suite storage

RANDHI equ 0x1A ; random number generator registers
RANDLO equ 0x1B
DATA equ 0x20 ; beginning of test data

G RAK R Rk Rk ok K Ak Rk kR Ak ko Ak kA kK ok ok kA Ak kR A A K kR A A kA ARk ok kA A KA K I h A AR IR AR R A AR KK AR A I KRR R KRR A KRR K

R R KRR KK A KRR R R KA AR Ak ok ok ok kA A A kKR KA K KA AR IR KRR RAA KR AR R IR R kA K KRR AR AR ARk ko hkkkkkkkkkkkkkkk

; Test suite for 32x32 bit fixed point multiply algorithms

org 0x0005
MAIN MOVLW RAMSTART
MOVWF FSR
MEMLOOP CLRF INDF
INCF FSR
MOVLW RAMSTOP
SUBWF FSR,W
BTFSS _Z
GOTO MEMLOOP
MOVLW 0x45 ; seed for random numbers
MOVWF RANDLO
MOVLW 0x30
MOVWF RANDHI
MOVLW DATA
MOVWF FSR
BCF _RPO
BCF _RP1
BCF _IRP
CALL TFXM3232
SELF GOTO SELF
RANDOM16 RLF RANDHI, W ; random number generator
XORWF RANDHI, W
MOVWF TEMPBO
SWAPF RANDHI
SWAPF RANDLO, W

DS00617A-page 2-164 © 1995 Microchip Technology Inc.

AN617

—

MOVWF TEMPB1
RLF TEMPB1,W
RLF TEMPB1
MOVF TEMPB1,W
XORWF RANDHI,W
SWAPF RANDHI
ANDLW 0x01
RLF TEMPBO
RLF RANDLO
XORWF RANDLO
RLF RANDHI
RETEW 0

; Test suite for FXM3232

TFXM3232
CALL RANDOM16
MOVF RANDHI,W
MOVWF BARGBO
BCF BARGBO, MSB
MOVF BARGBO,W
MOVWF INDF
INCF FSR
MOVF RANDLO, W
MOVWF BARGB1
MOVWF INDF
INCF FSR
CALL RANDOM16
MOVF RANDHI,W
MOVWF BARGB2
MOVWF INDF
INCF FSR
MOVF RANDLO,W
MOVWF BARGB3
MOVWF INDF
INCF FSR
CALL RANDOM16
MOVF RANDHI,W
MOVWF AARGBO
BCF AARGBO, MSB
MOVF AARGBO, W
MOVWF INDF
INCF FSR
MOVF RANDLO, W
MOVWF AARGB1
MOVWF INDF
INCF FSR
CALL RANDOM16
MOVF RANDHI,W
MOVWF AARGB2
MOVWF INDF
INCF FSR
MOVF RANDLO, W
MOVWF AARGB3
MOVWF INDF
INCF FSR
CALL FXM3131U
MOVF AARGBO, W
MOVWF INDF
INCF FSR
MOVF AARGB1,W
MOVWF INDF
INCF FSR
MOVF AARGB2,W
MOVWF INDF
INCF FSR
MOVF AARGB4,W
MOVWF INDF

© 1995 Microchip Technology Inc. DS00617A-page 2-165

AN617

INCF
MOVF
MOVWF
INCF
MOVF
MOVWF
INCF
MOVF
MOVWF
INCF
RETLW

FSR
AARGB5,W
INDF

FSR
AARGB6,W
INDF

FSR
AARGB7,W
INDF

FSR

0x00

PR R e e e L e e LT

AR R e e A R e L]

B 32x32 Bit Multiplication Macros
SMUL3232L macro
; Max Timing: 2+13+6*26+25+2+7*27+26+2+7*28+27+2+6*29+28+9 = 851 clks
H Min Timing: 2+47*6+5+1+47*6+5+1+7*6+5+2+46*6+5+6 = 192 clks
; PM: 31+25+42+426+2+27+2+28+9 = 152 DM: 17
MOVLW 0x8
MOVWF LOOPCOUNT
LOOPSM3232A
RRF BARGB3
BTFSC C
GOTO ALSM3232NA
DECFSZ LOOPCOUNT
GOTO LOOPSM3232A
MOVWF LOOPCOUNT
LOOPSM3232B
RRF BARGB2
BTFSC C
GOTO BLSM3232NA
DECFSZ LOOPCOUNT
GOTO LOOPSM3232B
MOVWF LOOPCOUNT
LOOPSM3232C
RRF BARGB1
BTFSC C
GOTO CLSM3232NA
DECFSZ LOOPCOUNT
GOTO LOOPSM3232C
MOVLW 0x7
MOVWF LOOPCOUNT
LOOPSM3232D
RRF BARGBO
BTFSC _C
GOTO DLSM3232NA
DECFS2Z LOOPCOUNT
GOTO LOOPSM3232D
CLRF AARGBO
CLRF AARGB1
CLRF AARGB2
CLRF AARGB3
RETLW 0x00
ALOOPSM3232
RRF BARGB3
BTFSS c
GOTO ALSM3232NA
MOVF TEMPB3 , W
ADDWF ACCB3
MOVF TEMPB2,W
BTFSC _C
INCFSZ TEMPB2,W
ADDWF ACCB2
MOVF TEMPB1,W
BTFSC _C
INCFSZ TEMPB1,W

DS00617A-page 2-166

© 1995 Microchip Technology Inc.

AN617

ADDWF ACCB1

MOVF TEMPBO, W

BTFSC _c

INCFSZ TEMPBO, W

ADDWF ACCBO
ALSM3232NA RLF TEMPBO, W

RRF ACCBO

RRF ACCB1

RRF ACCB2

RRF ACCB3

RRF ACCB4

DECFSZ LOOPCOUNT

GOTO ALOOPSM3232

MOVLW 0x8

MOVWF LOOPCOUNT
BLOOPSM3232

RRF BARGB2

BTFSS c

GOTO BLSM3232NA

MOVF TEMPB3,W

ADDWF ACCB3

MOVF TEMPB2, W

BTFSC _c

INCFSZ TEMPB2, W

ADDWF ACCB2

MOVF TEMPB1,W

BTFSC _c

INCFSZ TEMPB1,W

ADDWF ACCB1

MOVF TEMPBO, W

BTFSC e

INCFSZ TEMPBO, W

ADDWF ACCBO
BLSM3232NA RLF TEMPBO, W

RRF ACCBO

RRF ACCB1

RRF ACCB2

RRF ACCB3

RRF ACCB4

RRF ACCBS

DECFSZ LOOPCOUNT

GOTO BLOOPSM3232

MOVLW 0x8

MOVWF LOOPCOUNT
CLOOPSM3232

RRF BARGB1

BTFSS _c

GOTO CLSM3232NA

MOVF TEMPB3, W

ADDWF ACCB3

MOVF TEMPB2,W

BTFSC _c

INCFSZ TEMPB2,W

ADDWF ACCB2

MOVF TEMPB1,W

BTFSC c

INCFSZ TEMPB1,W

ADDWF ACCB1

MOVF TEMPBO, W

BTFSC c

INCFSZ TEMPBO, W

ADDWF ACCBO
CLSM3232NA RLF TEMPBO, W

RRF ACCBO

RRF ACCB1

RRF ACCB2

© 1995 Microchip Technology Inc. DS00617A-page 2-167

AN617

DLOOPSM3232

BTFSS
GOTO
MOVF
ADDWF
MOVF
BTFSC
INCFSZ
ADDWF
MOVF
BTFSC
INCFSZ
ADDWF
MOVF
BTFSC
INCFSZ
ADDWF
DLSM3232NA RLF

endm
UMUL3232L macro
Max Timing:
Min Timing:

MOVLW
MOVWF
LOOPUM3232A
RRF
BTFSC
GOTO
DECFSZ
GOTO
MOVWF
LOOPUM3232B
RRF
BTFSC
GOTO
DECFSZ
GOTO

ACCB3

ACCB4

ACCB5
ACCB6
LOOPCOUNT
CLOOPSM3232
0x7
LOOPCOUNT

BARGBO
_C
DLSM3232NA
TEMPB3, W
ACCB3
TEMPB2 , W
_C
TEMPB2, W
ACCB2
TEMPB1, W
<
TEMPB1, W
ACCB1
TEMPBO, W
C
TEMPBO, W
ACCBO
TEMPBO, W
ACCBO
ACCB1
ACCB2
ACCB3
ACCB4
ACCBS
ACCB6
ACCB7
LOOPCOUNT
DLOOPSM3232
TEMPBO, W
ACCBO
ACCB1
ACCB2
ACCB3
ACCB4
ACCBS
ACCB6
ACCB7

2+415+46*25+24+2+47%26+25+2+7*27+26+2+7*28+27 = 842 clks
2+7*6+5+41+7*6+5+1+7*6+5+1+7*6+5+6 = 197 clks

PM: 38+24+2+25+2+26+2+27+9 = 155

0x08
LOOPCOUNT

BARGB3

c
ALUM3232NAP
LOOPCOUNT
LOOPUM3232A
LOOPCOUNT

BARGB2

c
BLUM3232NAP
LOOPCOUNT
LOOPUM3232B

DM: 17

DS00617A-page 2-168

© 1995 Microchip Technology Inc.

AN617

LOOPUM3232C

LOOPUM3232D

ALUM3232NAP

BLUM3232NAP

CLUM3232NAP

DLUM3232NAP

ALOOPUM3232

ALUM3232NA

BLOOPUM3232

MOVWF

RRF
BTFSC
GOTO
DECFSZ
GOTO
MOVWF

RRF
BTFSS
GOTO
MOVF
ADDWF
MOVF
BTFSC
INCFSZ
ADDWF
MOVF
BTFSC
INCFSZ
ADDWF
MOVF
BTFSC
INCFSZ
ADDWF

RRF
RRF
RRF
RRF
RRF
DECFSZ
GOTO
MOVLW
MOVWF

RRF
BTFSS
GOTO
MOVF
ADDWF
MOVF
BTFSC
INCF