MITSUBISHI SEMICONDUCTORS

MELPS 7700

MITSUBISHI
ELECTRIC

Foreword

Foreword

This manual has been prepared to enable the users of the
Series MELPS 7700 CMOS 16-bit microcomputers to better
understand the instruction set and the features so that they can
utilize the capabilities of the microcomputers to the fullest. This
manual presents detailed descriptions of the instructions and ad-
dressing modes available for the Series MELPS 7700 micro-
computers.

For the hardware descriptions of the Series MELPS 7700 micro-
computers and descriptions of various development support
tools (e.g., assembler, debugger), please refer to the user's
manuals and operating guidebooks for the respective hardware
and software products.

Contents

Contents

1. Introduction of Series MELPS 7700 Software

Page

2. Register Configuration in CPU

2.1 Accumulator

2.2 Index Register X

2.3 Index Register Y

2.4 Stack Pointer

2.5 Program Counter

2.6 Program Bank Register
2.7 Data Bank Register

2.8 Direct Page Register

2.9 Processor Status Register

3. Addressing Modes
3.1 Addressing Mode
3.2 Explanation of Addressing Modes

4. Instructions

52

4.1 |Instruction Set
4.2 Description of Instructions

5. Notes for Programming

165

6. Instruction Execution Sequence

167

6.1 Bus Interface Unit
6.2 Change of the CPU Basic Clock ¢cru
6.3 Instruction Execution Sequence .

Appendixes

188

A. CPU Instruction Execution Sequence for each Addressing Mode 188

" B. Series MELPS 7700 Machine Instructions
C. Series MELPS 7700 Instruction Code Table

252
266

Introduction of Series MELPS 7700 Software

1. Introduction of Series MELPS 7700 Software

The software for the Series MELPS 7700 16-bit CMOS microcomputers was developed by
making is numerous enhancements on the software for the Series MELPS 740 8-bit microcom-
puter which are based on Mitsubishi Electric Corporation’s proprietary designs. The enhance-
ments include support of word (16-bit) operations and linear accessing of up to 16M bytes of
memory space.

The new software’s compact and easy to use instruction set and the support of powerful address-
ing modes will significantly increase

‘The Series MELPS 7700 microcomputers offer the following features

Upward compatibility for the Series MELPS 740.

Powerful addressing modes and fast and compact instruction set.

Direct page mapping function and memory oriented software system by direct paging.
Byte and word operations can be selected at will by the m flag.

The usual 64K bytes program memory boundary can be ignored for the practical
purposes,and programs can be written to utilize the full 16M bytes of memory space. For
data memory, linear as well as bank memory accessing are supported.

Bit manipulation instructions and bit test and branch instructions can be used for memory
and I/0 accessing of the entire 16M bytes space.

Block transfer instruction capable of handling blocks of up to 64K bytes each.
Improved stack accessing capability.

Decimal arithmetic instruction execution requiring no software compensation.

The performance of the systems based on the Series MELPS 7700 microcomputers, whether
used as advanced 8-bit microcomputer or next-generation 16-bit one.

Register Configuration

2. Register Configuration

The central processing unit (CPU) of each Series MELPS 7700 microcomputer has 10 internal
registers (See Fig.2.1). Each of these registers is described below

2.1 Accumulator (Acc)
(1) Accumulator A (A)

The accumulator A is the main register of the microcomputer, and data processing such as arith-
metic calculations, data transfer and input/output operations are executed via this accumulator.
It consists of 16-bit register, but it can be used as an 8-bit register by setting the data length se-
lection flag m in the processor status register PS. The flag m is described in detail in a later sec-
tion. The flag m value of “0” specifies 16-bit data length, and “1” specifies 8-bit data length.
When operating under 8-bit data length setting, only the lower 8 bits of the accumulator A are
used and the upper 8 bits do not change.

(2) Accumulator B (B)

The accumulator B is a 16-bit register whose function is equivalent to that of the accumulator A.
The Series MELPS 7700 instructions can use the accumulator B instead of the accumulator A.
Note, however, that use of the accumulator B requires more instruction bytes and execution
cycles than when using the accumulator A.

2.2 Index Register X (X)

The index register X is a 16-bit register, but it can be used as an 8-bit register by setting the index
register length selection flag x in the processor status register PS. The flag x is described in
detail in a later section. The flag x value of “0” specifies 16-bit index register length, and “1”
specifies 8-bit index register length. When operating under 8-bit index register length setting, only
the lower 8 bits of the index register X are used and the upper 8 bits do not change.

In an adadressing mode in which the index register X is used as the index register, the address
obtained by adding the contents of this register is accessed. For the block transfer instructions,
MVP and MVN, the contents of the index register X become the lower 16 bits of the transfer-from
address and the byte-3 of the instruction becomes the upper 8 bits.

2.3 Index Register Y (Y)

The index register Y is a 16-bit register whose function is equivalent to that of the index register
X. As in the case of the index register X, the index register length selection flag x can be used
to use only the lower 8 bits of the index register Y. 'For the block transfer instructions, MVP and
MVN, the contents of the index register Y become the lower 16 bits of the transfer-to address and
the byte-2 of the instruction become the upper 8 bits.

Register Configuration

b15 b8 b7 bo

Au AL Accumulator A (A)
bi5 '~ b8 b7 b0

Bu BL Accumulator B (B)
b15 b8 b7 b0

XH X Index Register X (X)
b15 b8 b7 bo

Y Yo Index Register Y (Y)
b15 b8 b7 b0

, SH S Stack Pointer (S)
b7 b0
DT Data Bank Register (DT)
b15 b8 b7 " b0
PG PCHx PCL Program Counter (PC)
b7 b0
Program Bank Register (PG)
b15 b8 b7 b0
DPRH DPRL Direct Page Register (DPR)
b15 b8 b7 b0
PSH PSL Processor Status Register (PS)
Mots b10 o8 b7 bo |
oj0o(0oj0 |0 IPL NIV!m x|D|I |Z]|C

Processor Interrupt Priority Level

Negative Flag

Carry Flag

Zero Flag

Interrupt Disable Flag

— Decimal Operation mode Flag

— Index Register Length Selection
Flag

Data Length Selection Flag
Overflow Flag

Fig. 2.1 CPU Register Model

Register Configuration

2.4 Stack Pointer (S)

The stack pointer (S) is a 16-bit register, and it is used when calling a subroutine, at the time of
interrupt processing and when using one of the stack addressing modes. The contents of the
stack pointer specifies the address (stack area) where the memory (RAM) registers that must be
saved are to be stored.

When an interrupt is received, the contents of the program bank register are saved at the address
specified by the stack pointer's value, and the stack pointer's value is decremented by 1.
Similarly, the contents of the program counter and the processor status register are saved in the
order of lower bytes first (PC,, PC, PS,, PS|). Thus, the value of the stack pointer after an
interrupt has been accepted will be 5 less than the value before the interrupt acceptance. When
the interrupt processing is completed and the control is returned to the original routine, the
registers that had been saved to the stack area are restored in the reverse order of the saving
operation, and the stack pointer's value is restored to that before the interrupt was accepted.
Similar operations are executed when a subroutine is called, except that the processor status
register (and the program bank register for some addressing modes) is not saved.

The registers other than those indicated above are not saved when an interrupt is invoked or
when a subroutine is called, so that provisions must be made in the application programs to save
the registers if necessary. Also note that the stack pointer must be initialized after the microcom-
puter is reset, because its content is indeterminable after reset operation. Normally, the highest
address of the internal RAM is set in the stack pointer. The contents of the stack area will change
by nesting of subroutines and acceptance of multiple interrupts, so that the subroutine nesting
levels must be chosen carefully so as not to destroy the integrity of RAM data.

2.5 Program Counter (PC)

The program counter (PC) is a 16-bit register that contains the lower 16-bit values of the 24-bit
program memory address of the instruction to be executed next.

2.6 Program Bank Register (PG)

The program bank register (PG) is an 8-bit register that contains the upper 8-bit (bank) value of
the 24-bit program memory address of the instruction to be executed next. When a carry is gen-
erated by incrementing of the program counter’s content or when a carry or borrow is generated
by addition or subtraction of an offset value to the program counter's content by execution of a
branching instruction, for example, the program bank register’'s content is automatically incre-
mented or decremented by 1 so that the bank boundary needs not be considered for application
programming.

b23 b15 b7 b0
| pa | pecH PCL
b7 b0 b15 b8 b7 b0

Register Configuration

2.7 Data Bank Register (DT)

The data bank register (DT) is an 8-bit register. Its contents are interpreted as the upper 8 bits
(bank) of a 24-bit memory address under certain addressing modes.

2.8 Direct Page Register (DPR)

The direct page register (DPR) is a 16-bit register, which allows specification of a 256 byte space
called a direct page in bank-0. This area can be accessed by 2 bytes in the direct page
addressing mode. The contents of the direct page register specify the least-significant (base)
address of the direct page area. A value in the range of 016-FFFF1s may be set in the direct page
register. When a value of or higher than FF0116 is set in the direct page register, the direct page
area will cross over the bank-0 and bank-1 boundary. Normally, the lower 8-bit value of the direct

page register is set to 0016 since that reduces the number of cycles required for address genera-
tion.

[0000001 000000t |
When DPR=00001s
_______ 0000FFw 1
_______ 00012316 |
| When DPR=01231s (Note 1)
Bank-0 L __] 00022216 __|
Direct page area
_______ 00FFD616
| O0FFFFie When DPR=FFD61s (Note 2)
01000016
_______ 010FD516
Bank-1
(Note 1) Cycles-count is incremented by 1 when the lower 8-bit of DPR is not 001s.
(Note 2) Direct page is specified across bank-0 and bank-1 when DPR value is FFO11s or higher.

Fig. 2.2 Setting Direct Page by Direct Page Register

Register Configuration

2.9 Processor Status Register (PS)

The processor status register (PS) is an 11-bit register, and it consists of flags that specify the
status immediately after operation and bits that set the processor interrupt priority level. The C,
Z, V and N flags enable execution of branching instructions depending on the flag values. Each
bit of the processor status register is explained below.

bit 15 14 13 12 11 10 O 2 1 0

olofolofo] IPL [NIV] m[ﬂ I[z]c| Processor Status Register (PS)

(Note) Bits 11-15 are fixed at 0.

[Bit-0] Carry Flag (C)

This bit is the carry flag which holds the carry or borrow from the arithmetic logic unit (ALU) after
arithmetic operation. It is also affected by the shift and rotate instructions. This flag can be
directly set by the SECand SEP, and cleared by CLC and CLP instructions.

[Bit-1] Zero Flag (2)

This bit is set 1 when the arithmetic operation or data transfer result is 0, and it is set 0 when
such result is not “0”. This flag is invalid for ition (ADC) instruction in th imal-
mode. This flag can be directly set by SEP and cleared by CLP instructions.

[Bit-2] Interrupt Disable Flag (1)

This is the flag that is used to disable all interrupts (except the interrupts by the watchdog timer,
BRK instruction and division by zero). When this flag is “1”, interrupts are disabled. This flag is
set to “1” automatically when an interrupt is accepted, inhibiting multiple interrupt acceptance.
This flag can be set using the SEI and SEP, and cleared using the CLI and CLP instructions.

\

[Bit-3] Decimal Operation Mode Flag (D)

This flag is used to determine whether to execute addition and subtraction in the binary-mode
or in the decimal-mode. “0” specifies the ordinary binary mode. When this flag is set to “1”, ad-
dition/subtraction is executed with 1 word as a 2- or 4-digit decimal value (2- or 4-digit selection
is made by the data length selection flag m). Decimal alignment is performed’ automatically.

N h imal-m n nl he AD nd SBC instructions.

This flag can be set by the SEP and cleared by the CLP instructions.

[Bit-4] Index Register Length Selection Flag (x)

This flag specifies whether to use the index register X or Y in the 16-bit index register length or
in the 8-bit index register length. “0” specifies the 16-bit length mode, and “1” specifies the 8-
bit length mode. This flag can be set by the SEP, and cleared by the CLP instructions.

Register Configuration

[Bit-5] Data Length Selection Flag (m)

This flag specifies whether to use the 16-bit data length or the 8-bit data length. "0" specifies
16-bit, and "1" specifies 8-bit data length. This flag can be set by the SEM and SEP, and cleared
by the CLM and CLP instructions.

[Bit-6] Overflow Flag (V)

The overflow flag has a meaning when adding or subtracting 1 word as a signed binary number.
This flag is set 1 when the flag m is set to "0" and the result of addition or subtraction is outside
the range -32768~+32767, and it is set 0 otherwise. When the flag m is set to "1", this flag is
set 1 if the result of addition or subtraction is outside the range -128~+127 and set Ootherwise.
This flag can be directly set by the SEP, and cleared by the CLV and CLP instructions. This flag
is meaningl in th imal ration mode.

[Bit-7] Negative flag (N)

The negative flag (N) is set 1 when the result of data transfer is negative (bit-15 of data is “1”
when the flag m is “0”, or bit-7 of data is “1” when the flag m is “1”), and it is set 0 otherwise.
This flag can be directly set by the SEP, and cleared by the CLP instructions. This flag is
meaningl in th imal ration mode.

[Bit-8~Bit-10] Processor interrupt priority level (IPLo~IPL2)

The processor interrupt priority level (IPL) consists of 3 bits, and these 3 bits enable determination
of 8 processor interrupt priority levels (level-0 ~ level-7). An interrupt is allowed only when its
interrupt priority level is higher than the IPL value. When an interrupt is generated, IPL is saved
to the stack area, and the priority level of the allowed interrupt is set in IPL.

There is no instruction that can directly set or clear IPLo~IPL2. Therefore, in order to alter the
IPL contents, the desired value must be first stored in the stack and then the processor status
register contents altered using the PUL or PLP instruction.

Addressing Modes

3. Addressing Modes
3.1 Addressing Mode

When executing an instruction, the address of the memory location from which the data required
for arithmetic operation is to be retrieved or to which the result of arithmetic operation is to be
stored must be specified in advance. Address specification is also necessary when the control
is to jump to a certain memory address during program execution. Addressing refers to the
method of specifying the memory address.

The Series MELPS 7700 microcomputers support 28 different addressing modes, offering ex-
tremely versatile and powerful memory accessing capability.

3.2 Explanation of Addressing Modes

Each of the 28 addressing modes is explained on the pages indicated below:

Implied addressing mode 9

Immediate addressing mode 10
Accumulator addressing mode 11
Direct addressing mode 12
Direct bit addressing mode 13
Direct indexed X addressing mode 14
Direct indexed Y addressing mode 16
Direct indirect addressing mode 17
Direct indexed X indirect addressing mode 18
Direct indirect indexed Y addressing mode 21
Direct indirect long addressing mode 24
Direct indirect long indexed Y addressing mode 25
Absolute addressing mode 28
Absolute bit addressing mode 30
Absolute indexed X addressing mode 31
Absolute indexed Y addressing mode 33
Absolute long addressing mode 35
Absolute long indexed X addressing mode 36
Absolute indirect addressing mode 37
Absolute indirect long addressing mode 38
Absolute indexed X indirect addressing mode 39
Stack addressing mode 40
Relative addressing mode 42
Direct bit relative addressing mode 43
Absolute bit relative addressing mode 45
Stack pointer relative addressing mode 47
Stack pointer relative indirect indexed Y addressing mode 48
Block transfer addressing mode 50

Implied

Mode ¢ Implied addressing mode

Function : The single-instruction inherently address an internal register.

Instruction: BRK, CLC, CLI, CLM, CLV, DEX, DEY, INX, INY, NOP,
RTI, RTL, RTS, SEC, SEIl, SEM, STP, TAD, TAS, TAX,

TAY, 'TBD, TBS, TBX, TBY, TDA, TDB, TSA, TSB, TSX,
TXA, TXB, TXS, TXY, TYA, TYB, TYX, WIT, XAB

ex. . Mnemonic Machine Code,
CLC 1846

[T T ITTTTT]
l
|

s [T T T T T T T ITLTTT (o
ex. . Mnemonic Machine Code ex. . Mnemonic Machine Code
TXA 8A¢ TXA 8Ass
(m=1,x=0) (m=0,x=1)

| | | [| |
The upper-byte
1s not transferred

AI L 1 Alooooooool I

(Note) When the data length differ between the transfer-from and trans-
fer-to locations, data I1s transferred at the data length for the

transfer-to location If, however, the index register 1s specified as
the transfer-to location and the x flag Is set to 1, 0016 I1s sent as

the upper byte value

Immediate

Mode

Function :

: Immediate addressing mode

the bank boundary.

A portion of the instruction is the actual data. Such instruction code may cross over

Instruction: ADC, AND, CLP, CMP, CPX, CPY, DIV, EOR, LDA, LDT,
LDX, LDY, MPY, ORA, RLA, SBC, SEP
ex. : Mnemonic Machine Code ex. . Mnemonic Machine Code
ADC A, #0A5H 69;5 A5qq ADC A,#0A5B7H 69,6 B745 A5
(m=1) (m=0)
Memory Memory
(_/ T ——
—————— 0000, A —— 0000,
Program Program
8-bit width bank-PG Op Code (69,5) bank-PG
A—A+C+ Op Code (69,5) Program 16-bit width Operand (B7¢) Program
|A5‘6| — Operand (A5,¢) Bank Register A'—A+C+|A5,5i B76 I‘— | Operand (ASy) Bank Register
_______ FFFFq - FFFFy
L ~——
/__—
ex. : Mnemonic Machine Code ex. * Mnemonic Machine Code
LDX #0A5H A2, A5 LDX #0A5B7H A2, B7,5 A5
(x=1) (x=0)
Memory Memory
/\/
T T T oe00e e —] 0000,
Program
bank-PG Program
PR _bi Op Code (A2,g) bank-PG
8-bit width Op Code (A2y5) Pro 16-bit width
gram Operand (B7,¢) Pro
<~ - i X< |AS.41 B7,6 [« gram
X A5, Operand (A5,5) Bank Register { Operand (A5;¢) Bank Register
A U FFFF,q
L ~—— L
10

Accumulator

Mode ¢ Accumulator addressing mode
Function : The contents of accumulator are the actual data.

Instruction: ASL, DEC, INC, LSR, ROL, ROR

ex. . Mnemonic Machine Code
ROL A 2A6
(m=1)

b0

T

Carry flag Accumulator A
ex. : Mnemonic Machine Code
ROL A 2Aq6
(m=0)

O T

Carry flag Accumulator A

Direct

: The contents of the bank-0 memory location specified by the result of adding the sec-
ond byte of the instruction to the contents of the direct page register become the ac-
tual data. If, however, addition of the instruction’s second byte to the direct page
register’s contents result in a value that exceeds the bank-0 range, the specified lo-

LSR,

CPX, CPY, DEC,

MPY, ORA,

ex. .
A—A+C+

[oamn L own - |

ex. :

DIV, EOR, INC,

ROL, ROR, SBC,
Mnemonic Machine Code
ADC A,02H 65,5 02,
(m=0)

Memory
0000,
DATA, 12366
DATA4
_______ { FFFFyg
T K Direct Page
Op Code (65;¢) Register

Operand (02,6)

+ | 1234, |= 1236,

/—_/

Mnemonic
LDX 02H
(x=0)

Memory

Mode : Direct addressing mode
Function
cation will be in bank-1.
Instruction: ADC, AND, ASL, CMP,
LDA, LDM, LDX, LDY,
STA, STX, STY
ex. . Mnemonic Machine Code
ADC A,02H 65,6 02,
(m=1)
Memory
0000,
A—A+C+ Bank-0
- DATA 1236,
FFFFyq
T L
T Direct Page
Op Code (65;¢) Register
Operand (02;6) + [1234, |=1236,
ex. . Mnemonic Machine Code
LDX 02H A6,s 02,6
(x=1)
Memory
0000,
Bank-0
x<—| DATA |<— DATA 12366
] FFFF,g
N |
1 Direct Page
Op Code (AByg) Register
Operand (0246) + | 1234, | =1236,¢
— ~———

DATA_

x«—l DATA, | DATA, |<—[

DATA,

Op Code (A6yg)

Machine Code
A6y 0246

0000,

Bank-0
1236,¢

FFFFy

Direct Page
Register

Operand (024)

\/'_\/

+ [1234, | = 1236,

Direct Bit

Mode : Direct bit addressing mode

Function : Specifies the bank-0 memory location by the value obtained by adding the instruc-
tion’s second byte to the direct page register’s contents, and specifies the positions
of multiple bits in the memory location by the bit pattern in the third and fourth bytes
of the instruction (third byte only when the m flag is set to 1). If, however, addition
of the instruction’s second byte to the direct page register’'s contents result in a value
that exceeds the bank-0 range, the specified location will be in bank-1.

Instruction : CLB, SEB

ex. . Mnemonic Machine Code ex. : Mnemonic Machine Code
CLB #5AH, 04H 14,6 04,5 5A¢ CLB #5AAS5H, 04H 14,5 0445 A5, 5A;¢
(m=1) (m=0)
Memory Memory
RPI PP [7| 001238, <— }Bank-0 2171°1°]212 (2| 001238,
alolol2l2|2 2|2 e\Bank-O
R —
L 4 J
Direct Page - - — — _:
Op Code (14,) Register Direct Page
Operand (045) | + [1284, |= 1238, Op Code (14;6) Register
Operand (5A5) Operand (04¢) + | 12344 [=12384¢
/\/ Operand (A5,g)
\L Operand (5A;¢)
| ~—~———

?[o[>[o]o] 2[0]]| 001238,

001238,

N [IRIVIRIEIIRS

CAN-}

13

Direct Indexed X

Mode

Function

Direct indexed X addressing mode

The contents of the bank-0 memory location specified by the result of adding the

second byte of the instruction, the contents of the direct page register and the con-

tents of the index register X become the actual data.

If, however, addition of the

instruction’s second byte, the direct page register’s contents and the index register
X’s contents results in a value that exceeds the bank-0 or bank-1 range, the specified
location will be in bank-1 or bank-2.

Instruction: ADC, AND, ASL, CMP, DEC, DI, EOR, INC, LDA, LDM,
LDY, LSR, MPY, ORA, ROL, ROR, SBC, STA, STy
ex. . Mnemonic Machine Code ex. : Mnemonic Machine Code
ADC A,1EH,X 756 1Es¢ ADC A,1EH,X 7516 1Eq6
(m=1,x=1) (m=0,x=1)
Memory Memory
0000,¢ 000046
A—~A+C+ Bank-0
A—A
l DATA | - DATA 1338, + .c + DATA_ 1338,
I DATAy | DATALI<_ DATAL
F ______ FFFF) |] FFFFye
£ = - +
7 Direct Page Index T Direct Page Index
Op Code (75,5) Register Register X Op Code (755) Register Register X
Operand (1Eyg) | +[123445 | +[| E6yq| = 13384 Operand (1E,,) | (123416 |+ [1E6ys] = 1338,
— L
ex. . Mnemonic Machine Code ex. . Mnemonic Machine Code
ADC A,1EH,X 7546 1Eq ADC A,1EH,X 75:6 1Eq6
(m=1,x=0) (m=0,x=0)
Memory Memory
0000+ 0000,
A—A+C+
[oATa] DATA 4338, A-A+C+ SATA 4338,
[[orn] - {5
H
_______ FFFF
* J ——————— FFFFy
[T Drrect Page Index T T Direct Page Index
Op Code (754¢) Register Register X Op Code (75,¢) Register Register X

Operand (1E,¢)
— ~——

+[1234,5] + [30E6,5 | = 4338,¢

Operand (1E,g)

+[123446 |+ [30E6, | = 4338,

L ~——

14

Direct Indexed X

ex. . Mnemonic Machine Code
LDY 1EH,X B4,s 1E¢¢
(x=1)
Memory
0000,5
Bank-0
v<|DatA | < DATA 1338,
I i i
:"; -
Direct Page Index
Op Code (B4,¢) Register Register X
Operand (1Es) | + [123446 |+ 1E6,6] = 1338,
/—__/
ex. . Mnemonic Machine Code
LDY 1EH,X B4,s 1Eq¢
(x=0)
Memory
0000,
Bank-0
Y< [DATA, | DATA, | < DATA, 33816 <
FFFFy
______]
Direct Page Index
Op Code (Bd,g) Register Register X
Operand (1E,q) + 1234,6_|+ 30E6,, | = 43385
/—-\/

Direct Indexed Y

Mode : Direct indexed Y addressing mode

Function : The contents of the bank-0 memory location specified by the result of adding the sec-
ond byte of the instruction, the contents of the direct page register and the contents ‘
of the index register Y become the actual data. If, however, addition of the instruc-
tion’s second byte, the direct page register’s contents and the index register Y's
contents results in a value that exceeds the bank-0 or bank-1 range, the specified’
location will be in bank-1 or bank-2.

Instruction: LDX, STX

ex. . Mnemonic Machine Code
LDX 02H,Y B6,s 02,6
(x=1) .
M
oy 0000,

X< l DATA I‘— DATA 131C,¢

J _______ FFFF,q
T B
Direct Page Index
Op Code (B6,s) Register Register Y
Operand (02i6) |+[123445 |+ [EBys | = 131C,¢
/\/
ex. . Mnemonic Machine Code
LDX 02H,Y B6:c 0246
(x=0)
Memory
0000,

Bank-0

X<| DATA, | DATA DATA. 131Ce
-
BATA,

I —— FFFFs

Direct Page Index

Op Code (B64g) Register RegisterY
Operand (02,) | + [123445 | -+ [00E6ys]=131C,
| ~———

16

Direct Indirect

Mode

Function

Instruction :

Direct indirect addressing mode

The value obtained by adding the instruction’s second byte to the contents of the
direct page register specifies 2 adjacent bytes in memory bank-0, and the contents
of these bytes in memory bank-DT (DT is contents of data bank register) become the
actual data. If, however, the value obtained by adding the instruction’s second byte
and the direct page register's contents exceeds the bank-0 range, the specified
location will be in bank-1.

ex. . Mnemonic
ADC A,(1EH)
(m=1)

Memory

ADC, AND, CMP, DIV,

Machine Code
7246 1E¢g

EOR,

————> 1252, DATAT (0146)
1253,¢ DATAL (124¢)
: 3
Direct Page
Register Op Code (72,6)
— | 1234, + Operand (1E,g)
; T
_______ Data Bank
A—A+C+ Register
DATA | «— DATA 120146
N

A—A+C+

DATAL | DATAL (—{

LDA, MPY, ORA, SBC, STA
ex. . Mnemonic Machine Code
ADC A,(1EH) 7246 1Eqg
(m=0)
Memory
> 1252, [DATAT (01y9) L Bank-0
1253, DATATL (126)
A\
=]
Direct Page
Register Op Code (72,¢)
L | 1234,5—l + Operand (1E;g)

-

Data Bank
Register

1201,

17

Direct Indexed X Indirect

Mode

. Direct indexed X indirect addressing mode

Function : The value obtained by adding the instruction’s second byte, the contents of the direct

page register and the contents of the index register X specifies 2 adjacent bytes in
memory bank-0, and the contents of these bytes in memory bank-0, and the contents
of these bytes in memory bank-DT (DT is contents of data bank register) become the
actual data. If, however, the value obtained by adding the instruction’s second byte,
the direct page register's contents and the index register X’s contents exceeds the
bank-0 or bank-1 range, the specified location will be in bank-1 or bank-2.

Instruction: ADC, AND, CMP, DIV, EOR, LDA, MPY, ORA, SBC, STA

ex.

. Mnemonic Machine Code
ADC A, (1EH, X) 6146 1E46
(m=1,x=1)

Memory

0000,
L Bank-0

DATAT (00,) 1338,
DATAI (14¢)
_______ FFFFyg N
R :E
] Direct Page Index
Op Code (614¢) Register Register X Program
Operand (1Eyg) +[1234, |+ [| E6ys | =1338; bank-PG

Data Bank
Register

A~—A+c+| DATA |<- DATA [DT] 1400,

18

Direct Indexed X Indirect

ex. . Mnemonic
ADC A, (1EH, X)
(m=0,x=1)

Machine Code
6146 1E4g

Memory

DATAT (0046)

DATAIL (144)

)
2

Op Code (614¢)

000046
Bank-0
133846
FFFFyg
Direct Page Index

Register Register X

Operand (1E,g)

+ L1234,,—| +| 16y |=1338,

N\

DATA.
/—\/
ex. : Mnemonic Machine Code
ADC A, (1EH, X) 6146 1E46
(m=1,x=0)
Memory

DATAT (0046)

DATAIL (1446)

Op Code (614¢)

b}
i

Data Bank
Register

1400,

10000,¢

l Bank-1
10338,¢

1FFFF,q

Direct Page Index
Register Register X

Operand (1Eq¢)

+[12345 |+ [FOE6,; | =10338,6

A'—A+C+| DATA |<—

Data Bank
Register

1400,

Program
bank-PG

Program
bank-PG

19

Direct Indexed X Indirect

ex. . Mnemonic
ADC A, (1EH, X)
(m=0,x=0)

Machine Code

61,6 1E¢

——

10000,
E Bank-1
DATAI (00,5) 10338,
DATALL (144¢)
] 1FFFF,q
L 1
Direct Page Index
Op Code (61,6) Register Register X Program
Operand (1E,q) + | 1284, | + [FOE6,s | =10338,; [bank-PG

DATAL

A« A+ C+| DATA, | DATAL 4—{

DATAn

Data Bank
Register

1400,

20

Direct Indirect Indexed Y

Mode : Direct indirect indexed Y addressing mode

Function : The value obtained by adding the instruction’s second byte and the contents of the
direct page register specifies 2 adjacent bytes in memory bank-0.
The value obtained by adding the contents of these bytes and the contents of the
index register Y specifies address of the actual data in memory bank-DT (DT is
contents of data bank register). If, however, the value obtained by adding the con-
tents of the instruction’s second byte and the direct page register exceeds the bank-
0 range, the specified location will be in bank-1. Also, if addition of the contents of
memory and index register Y generate a carry, the bank number will be 1 larger than
the contents of the data bank register.

Instruction: ADC, AND, CMP, DIV, EOR, LDA, MPY, ORA, SBC, STA

ex. : Mnemonic - Machine Code
ADC A, (1EH),Y 716 1Es6
(m=1,x=1)
Memory
Bank-0
Index
1252 DATAT (0146) fegiter ¥
—_> 16 18 + =12E7
= J:
Direct Page
Register Op Code (71,6)
—L1234,5 l + Operand (1E,)
______ -
= £
Data Bank
Register
A—A+C+/[DATA | — DATA 12E7,4 -
/—_\./

21

Direct Indirect Indexed Y

ex. . Mnemonic Machine Code
ADC A, (1EH), Y 7146 1E4¢
(m=0,x=1)
Memory
Bank-0
Index
Register Y
> 12525 DATAT (01,)
+ =12E7
12534 DATAIl (126) 1
R
DirectPage | - |
Register Op Code (714¢)
——| 1234, | + Operand (1Eqg)
= L
______ —
Data Bank
Register
S T B oer, <~
DATA,
/\/
ex. - Mnemonic Machine Code
ADC A, (1EH), Y 7146 1E¢g
(m=1,x=0)
Memory
Bank-0
Index
1252 DATAT (0146) Register ¥
r———— 16 16
+| FOE6;s | =102E7,¢
1253, DATAL (1246) }
Direct Page
Register Op Code (7146)
1234, | + Operand (1E;g)
— — ——— —]
L L
},_ ______
Data Bank
Register
A—A+c+| para | DATA (o7 J+1, 0267, <—
/‘_/

22

Direct Indirect Indexed Y

ex. : Mnemonic Machine Code
ADC A, (1EH), Y 7146 1Eqg
(m=0,x=0)
Memory
Bank-0
Index
Register Y
— > 12524 DATAT (014)
1253,,] DATAL (12,5) + =102E7,
Direct Page
Register Op Code (714¢)
L1234.5 I + Operand (1E,q)
4 J. Data Bank
Register
DATA, DT [+1, 02E7,; <—
A—A+cC+| paTA, | DATA, ‘-[DATAL °
H

23

Direct Indirect Long

Mode Direct indirect long addressing mode
Function The value obtained by adding the instruction’s second byte and the contents of the
direct page register specifies 3 adjacent bytes in memory bank-0, and the contents
of these bytes specify the address of the memory location that contains the actual
data. If, however, the value obtained by adding the contents of the instruction’s
second byte and the direct page register exceeds the bank-0 range, the specified
location will be in bank-1. The 3 adjacent bytes memory location may be spread over
two different banks.
Instruction: ADC, AND, CMP, DIV, EOR, LDA, MPY, ORA, SBC, STA
ex. . Mnemonic Machine Code ex. . Mnemonic Machine Code
ADCL A, (1EH) 6746 1Eqg ADCL A, (1EH) 6746 1E46
(m=1) (m=0)
Memory Memory
Bank-0 -
——————> 1252,¢ DATA 1 (EF,) o —————— 12524 DATA (EF,) pankco
12536 DATA Tl (0146) 1253,¢ DATAII (014¢)
12546 DATA Il (12,5) 1254:6[DATAM (1245)
SN 3 ~ +
______ -
Direct Page S P
Register Op Code (674¢) Dg:;t';:?e Op Codel(67,9)
— 184 | + [_Operand (1E.) L[1238, |+ [Operand(iEs)
%t | 7
~ h 5 4
______ - T h
-— D. 1201EFyy <—
A—A+C+| DATA ATA © DATA, 1201EF,; <—o
A"“+°+‘_{ DATA
L H
P

24

Direct Indirect Long Indexed Y

Mode : Direct indirect long indexed Y addressing mode

Function : The value obtained by adding the instruction’s second byte and the contents of the
direct page register specifies 3 adjacent bytes in memory bank-Q, and the value
obtained by adding the contents of these bytes and the contents of the index register
Y specifies the address of the memory location where the actual data is stored. If,
however, the value obtained by adding the contents of the instruction’s second byte
and the direct page register exceeds the bank-0 range, the specified location will be
in bank-1. The 3 adjacent bytes memory location may be spread over two differ-
ent banks.

Instruction: ADC, AND, CMP, DIV, EOR, LDA, MPY, ORA, SBC, STA

ex. . Mnemonic Machine Code
ADCL A,(1EH), Y 776 1E¢6
(m=1, x=1)

Memory

Bank-0
Index
1252, DATA I (EFys) Register Y

1253, DATA TI (01,6) +| 12146 | =120210,

1254, DATA Il (12,6)
]
L NS
Direct Page
Register Op Code(77:¢)
L | 1234, | + Operand(1E,g)
/
A—A+C+| DATA | < DATA 120210, <

25

Direct Indirect Long Indexed Y

ex. . Mnemonic Machine Code
ADCL A,(1EH), Y 7746 1Eq6
(m=0, x=1)
Memory
Bank-0
Index
—————>1252,¢ DATAT (EFy6) Register Y

125346 DATATIL(01,) + =120210,¢

1254, DATAII (12,5)

Direct Page
Register Op Code(774)
l 1234|e—| + Operand(1E,)

, Lo
DATA, 120210, <————
TAu! DATA, | = DATA

ex. . Mnemonic Machine Code
ADCL A,(1EH), Y 7716 1E46
(m=1, x=0)

Memory

Bank-0
Index

———> 1252 DATAI (EF6) Register Y

12536 DATAT (01,5) + =12E710,6

1254, DATAII (126)

Direct Page
Register Op Code(774¢)

L[1234 | + Operand(1Eyg)

o

A+—A+C++| DATA | < DATA 12E710;y <——]

26

Direct Indirect Long Indexed Y

ex. . Mnemonic Machine Code
ADCL A,(1EH), Y 7746 1Eqg
(m=0, x=0)
Memory

Bank-0
Index

—————— 1252, DATAI (EFy5)
12534 DATATI(01,¢)
1254, DATAI (12,4)
______ —
Direct Page
Register Op Code(7746)
L—[T1234,, | + Operand(1E,s)
—————— 7]
DATA_
A+ 4o o]| g
/—_/

Register Y
+| ES52145 | =12E710,4

12E7104¢ -~

27

Absolute

Mode Absolute addressing mode
Function The contents of the memory locations specified by the instruction’s second and third
bytes and the contents of the data bank register are the actual data. Note that, in
the cases of the JMP and JSR instructions, the instructions’ second and third byte
contents are transferred to the program counter.
Instruction: ADC, AND, ASL, CMP, CPX, CPY, DEC, DIV, EOR, INC,
JMP, JSR, LDA, LDM, LDX, LDY, LSR, MPY, ORA, ROL,
ROR, SBC, STA, 8§TX, STY
ex. . Mnemonic Machine Code ex. . Mnemonic Machine Code
ADC A, 0AD12H 6Dy 1246 AD;4 ADC A, 0AD12H 6D16 1245 ADyg
(m=1) (m=0)
Memory Memory
F—\/ T ~—
Op Code (6Dyg) Op Code (6Dy¢)
Operand (1245) Operand (12,5)
Operand (AD,g) Operand (ADyg)
| l ‘
S N SUNp S ———— Data Bank
Register
_______ Data Bank A—-A+C+
A—A+C+ Register - { DATA, AD12,,
- DATA [T AD12, DATAy
ex. . Mnemonic Machine Code ex. . Mnemonic Machine Code
LDX 0AC14H AE5 14,5 ACy LDX 0AC14H AEs 14,5 ACyg
(x=1) (x=0)
Memory Memory
/—\/ /—\/
Op Code (AE,g) Op Code (AE,s)

Operand (144¢)

Operand (AC,s)

)

L
T

X<—| DATA I<—

j Data Bank
Register

AC14,,

X | DATA, | DATAL <_{

L !

Operand (14,¢)

}

Operand (ACyg)

] Data Bank
Register
DATA, AC14,
DATAx
—————— —
/\/

28

Absolute

ex. : Mnemonic Machine Code
JMP 0AC14H 4C 14,5 ACyg
Memory
T ———]

——————— 0000,

Op Code (4C,q)
Operand (14,¢) }

Opérand (ACyq)

Program
bank-PG
Program
Bank Register
Address to be
executed next AC14,¢
______ i FFFF,q

Program bank register contents are not affected

Absolute Bit

Mode 1 Absolute bit addressing mode

Function : The contents of the instruction’s second and third bytes and the contents of the data
bank register specify the memory locations, and data for multiple bit positions in the
memory locations are specified by a bit pattern specified in the instruction's fourth and
fitth bytes (the fourth byte only if the m flag is set to 1).

Instruction: CLB, SEB

ex. . Mnemonic) Machine Code €X. . Mnemonic Machine Code
CLB #5AH, 1234H 1C46 3445 1246 5A+¢ CLB #5AA5H, 1234H 1Cy6 3446 124 A5, 5A+6
(m=1) (m=0)
Memory Memory
T ~———] T ——]

Op Code (1Cy6)
Operand (34,¢)

} Op Code (1C,6)

Operand (12,6) gperang E?:‘s; }
Operand (5A5) Operand (AS‘G)
peran 16
{_ ______ Operand (5A;¢)
T r b
Data Bank T T
Register (_J ______] Data Bank
? L)I ')l ')l '?l ?l b)l i 1234,6 Register
L i "PPPRPRE| [O7] 1288 <
e HERIBEEERE
——————— Data Bank
Register

Tl o[o7 [o7] r2oe

_______ }-— Data Bank
T ~———) Register

o[>]o]>[*[o]?]0o] [DT]1234,6

30

Absolute Indexed X

Mode Absolute indexed X addressing mode

Function The contents of the memory locations specified by a value resulting from addition of
a 16-bit numeric value expressed by the instruction’s second and third bytes with the
contents of the index register X and the contents of the data bank register are the
actual data. If, however, addition of the numeric value expressed by the instruction’s
second and third bytes with the contents of the index register X generates a carry,
the bank number will be 1 larger than the contents of the data bank register.

7

Instruction: ADC, AND, ASL, CMP, DEC, DIV, EOR, INC, LDA, LDM,
LDY, LSR, MPY, ORA, ROL, ROR, SBC, STA

ex. . Mnemonic Machine Code ex. . Mnemonic Machine Code
ADC A, 0AD12H, X 7D46 1246 ADyg ADC A,0AD12H, X 7D46 124 ADyg
(m=1, x=1) (m=0, x=1)

Memory Memory
/“—_/ T ——]
——————— | Index
ndex Op Code (7Dyg)

Op Code (7D,¢)

Operand (12,¢)

Operand (AD,q)
[R N S
r - X =
_______ Data Bank | 7 7 77| pataBank
an
A-A+CH+ Register A—A+C+ Register
l DATA] - DATA DT |AE00,, < | DATA, I DATA. | DATA, DT | AE0O,, <

| DATAy
/\I/ /-_/

} +[TEE]=AE00,

Register X

Operand (12,¢)
Operand (AD;g)

Register X

+ 1 EEyg | =AE00, 1

31

Absolute Indexed X

: Mnemonic
ADC A, 0AD12H, X
(m=1, x=0)

ex.

Op Code (7Dy6)

Operand (1246)

Operand (AD;g)

A—A+C+

DATA l -

. Mnemonic
LDY O0BC12H, X
(x=1)

ex.

Op Code (BCy)
Operand (126)
Operand (BCyg)

Y <[DATA | <

Machine Code
7Dy 12,6 ADyg

ex. .

Index
Register X

Data Bank
Register

[DoT] BEOO,

<

A<+ A+C+| DATA, 1 DATA_ ‘—{

Machine Code ex. :

BCys 1245 BCyg

Index
Rgister X

} + 1 EE4 | =BD00,¢

Data Bank
Register

BD0O,

Y <— | DATA, | DATAL <—{

Mnemonic Machine Code
ADC A, 0AD12H, X 7Dy 1246 ADyg
(m=0, x=0)

Memory
T —~—

Index
Register X

} + ok,] =800

Op Code (7D46)
Operand (1246)
Operand (ADyg)

-
Data Bank
Register
DATA, [DT] BEOD,, <
DATAx
/\/
Mnemonic Machine Code
LDY 0BC12H, X BCys 12,6 BCyg
(x=0)
Memory
== 1
Index
Op Code (BCy¢) Register X

Operand (12,6)
Operand (BCyg)

] + =CD00,s

Data Bank
Register
DATA, CD00;; <
DATA4

32

Absolute Indexed Y

Mode Absolute indexed Y addressing mode
Function The contents of the memory locations specified by a value resulting from addition of
a 16-bit numeric value expressed by the instruction’s second and third bytes with the
contents of the index register Y and the contents of the data bank register are the
actual data. If, however, addition of the numeric value expressed by the instruction’s
second and third bytes with the contents of the index register Y generates a carry,
the bank number will be 1 larger than the contents of the data bank register.
Instruction: ADC, AND, CMP, DIV, EOR, LDA, LDX, MPY, ORA, SBC,
STA
ex. . Mnemonic Machine Code ex. . Mnemonic Machine Code
ADC A,0AD12H,Y 7916 1245 AD4q ADC A,0AD12H,Y 7916 1245 AD;6
(m=1, x=1) (m=1, x=0)
Memory Memory
T ~———] T ~——
Op Code (79,5) mdox L] Index
oo (1216) 1 Register Y Op Code (79,6) Register Y
an 16 =
+ =AE00 o d (12
Operand (AD:y) || e perand (12,) } +[10EE,; | =BE00,
- Operand (ADy)
T 3 Data Bank
DataBank | . ., ., = — — — —
A—-A+C+ [— — —— —1 Register A—A+C+ Register
[Dama] - DATA AE00,, | pata]— DATA [oT | BE0O,,
_______ /_\/
L ~—
ex. . Mnemonic Machine Code ex. * Mnemonic Machine Code
ADC A,0AD12H, Y 7945 1246 ADyg ADC A,0AD12H,Y 7916 1246 AD+¢
(m=0, x=1) (m=0, x=0)
Memory .
/_\—/ Memory
______ — /"_’,‘
Index |\
gp Code ((1729‘5)) Register Y Index
perand (12 - Op Code (79
| Operand (12,) || e T
Operand (AD,g) f + I—E =BE00:
- —————
4 i F=————A
= x
_______ Data Bank c -
A—A4C+ , Register Data Bank
DATAL AE00,¢ A—-A+C+ | T T T T Register
DATA | DATA, | <
DATA4
/\—/
L ~—————

33

Absolute Indexed Y

ex.

: Mnemonic

LDX 0BC12H, Y
(x=1)

Op Code (BEg)

Operand (1244)
Operand (BCyg)

x=| DATA |~

Machine Code
BE;g 12,5 BCy6

Index
Register Y

ex.

Data Bank
Register

BDO0O;,

-

X < DATA, | DATA_ | < {

. Mnemonic

LDX 0BC12H, Y
(x=0)

Op Code (BEyg)
Operand (12,¢)

Machine Code
BE;s 12,6 BCys

Index
Register Y

Operand (BCyg)

Data Bank
Register

DATA_

CD00,g

DATAy

| + (o,] ~coon

-

34

Absolute Long

Mode Absolute long addressing mode
Function The contents of the memory locations specified by the instruction’s second, third and
fourth bytes become the actual data. Note that, in the cases of the JMP and JSR
instructions, the instructions’ second and third byte contents are transferred to the
program counter and the fourth byte contents are transferred to the program bank
register.
Instruction: ADC, AND, CMP, DIV, EOR, JMP, JSR, LDA, MPY, ORA,
SBC, STA
ex. . Mnemonic Machine Code ex. . Mnemonic Machine Code
ADC A, 123456H 6F 16 5616 3416 1246 ADC A, 123456H 6F 5 5646 3415 1246
(m=1) (m=0)
Memory Memory
T ~—— T —
Op Code (6F¢) Op Code (6F,)
Operand (56,¢) Operand (5646)
Operand (34,¢) _— Operand (34,¢)
Operand (12,¢) Operand (124¢)
~ E e ~
______ _4 e e —_————]
A—A+C+
| DATA |<— DATA 123456, T DATAL 123456, <
\/\/ A~—A+c+| DATA,, 1 DATA, |<— DATA,
/__/
ex. + Mnemonic Machine Code
JMP 123456H 5C16 5616 3415 1246
Memory
/\/
Op Code (5Cy¢)

Address to be
executed next

Operand (5646)
Operand (34,5)
Operand (12,¢)

Program
Bank Register

[1246 |3456,6 <!

s

Program bank register contents are replaced by
the third operand

35

Absolute Long Indexed X

Mode

Function

Absolute long indexed X addressing mode

The contents of the memory location specified by adding the numeric value ex-

pressed by the instruction’s second, third and fourth bytes with the contents of the
index register X are the actual data.

STA

Machine Code
7F16 5646 3446 1246

Index
Register X

[i rr,

123537,

Machine Code
7F 16 5646 3446 1246

Index
Register X

+ | EEE1,, | =132337,

Instruction: ADC, AND, CMP, DIV, EOR, LDA, MPY, ORA, SBC,
ex. Mnemonic Machine Code ex. . Mnemonic
ADC A, 123456H, X 7F 16 5646 34,5 124 ADC A, 123456H, X
(m=1, x=1) (m=0, x=1)
Memory Memory
T ~— T ~—
Op Code (7Fq) Index Op Code (7Fyg)
Operand (565) Register X Operand (564¢)
Operand (3446) +L T Ely5 |=123537,4 Operand (34;6)
Operand (124) * Operand (12,¢)
] -1
A-A+C+ A—A+C+
[omm] B B 1 77 O | Y
DATA 123537, DATA
/‘\—/ \/—\)
ex. - Mnemonic Machine Code ex. . Mnemonic
ADC A, 123456H, X 7F 16 5646 3446 1246 ADC A, 123456H, X
(m=0, x=1) (m=0, x=0)
Memory Memory
/\4 /‘_\/
______ . ———— —
Op Code (7Fys) Index Op Code (7F,¢)
Operand (565) Register X Operand (56,6)
Operand (3445) + [EEE1ys | =132337, Operand (3445)
Operand (12,5) Operand (12,¢)
_______]
L 4 L RS
A—A+cCH+
[oaa] - DATA 132337, < - { DATAL
A-AfC+ DATAY
/_\/
L~

132337y =——

36

Absolute Indirect

Mode ¢ Absolute indirect addressing mode

Function : The instruction’s second and third bytes specify 2 adjacent bytes in memory, and
the contents of these bytes specify the address within the same program bank to

which a jump is to be made.

Instruction: JMP

ex. : Mnemonic
JMP(1400H)

Memory

Op Code (6Cy6)

Operand (00,5)
Operand (14,)

DATA I (FFyg)
DATA I (1E6)

Address to be

executed next 0

Machine Code
6Cy6 0046 144¢

1400, }

Program
Bank Register

[PG] 1EFF,

Program
bank-PG

37

Absolute Indirect Long

Mode 1 Absolute indirect long addressing mode

Function : The instruction’s second and third bytes specify 3 adjacent bytes in memory, and the
contents of these bytes specify the address to which a jump is to be made.

Instruction: JMP

ex. . Mnemonic Machine Code
JMPL(1234H) DCi6 3445 1246
Memory
/—\-/

Op Code (DCy¢)
Operand (344¢)
Operand (1246)

Program
Bank Register

DATA I (12,) }123416

DATA 1T (Bdg)

DATA I (A1) ||

Program
Bank Register

Address to be
B412
executed next 1

o~

DATA Il 1s loaded in the program bank register

38

Absolute Indexed X Indirect

Mode Absolute indexed X indirect addressing mode
Function The value obtained by adding the instruction's second and third bytes and the con-
tents of the index register X specifies 2 adjacent bytes in memory, and the contents
of these bytes specify the address to which a jump is to be made.
Instruction: JMP, JSR
ex. . Mnemonic Machine Code
JMP(1234H, X) 7C16 3446 1245
(x=1)
Memory
Index
Register X Op Code (7Cy6)

Operand (34,¢)
Operand (12¢)

Address to be
executed next

DATA T (12) 1246, Program
DATA T (BCyq) bank-PG
Program
Bank Register
[pclBCt2,e <
T~

39

Stack

Register contents are saved to or restored from the memory location specified by the

stack pointer. The stack pointer is set in bank-0.

Mode Stack addressing mode
Function
Instruction: PEA, PEl, PER, PHA,
PHY, PLA, PLB, PLD,
ex. * Mnemonic Machine Code
PHA 48,6
(m=1)
Memory
Stack Pointer
S-1 0046 SH: S,
S AL
Bank-0
/—\/
ex. . Mnemonic Machine Code
PHD 0Bys
Memory
Stack Pointer
S-1 DPR,
S DPRy
Bank-0
T ~———

PHB, PHD, PHG, PHP, PHT, PHX,
PLP, PLT, PLX, PLY, PSH, PUL
ex. : Mnemonic Machine Code
PHA 48,¢
(m=0)
Memory
Stack Pointer
s-2 00i6[S!S, |
s-1 A
S Ay
Bank-0
S —
L ~——
ex. . Mnemonic Machine Code
PEA # 1234H F4,g 3446 124
Memory

Stack Pointer

00,6 | Sy S

Bank-0

Op Code (F4,)
Operand (34,6)
Operand (124¢)

40

Stack

Machine Code

ex. : Mnemonic
PEI # 12H Ddyg 1246
Memory
DATA I 341244

DATA I

Stack Pointer

S-2 005 | Sn :S,_
S-1 DATA 1
S DATA I

Direct Page

Op Code (D4,¢)

Register

Operand (12,4)

Bank-0

+ [340055 |= 3412,

S-2
S-1

ex. . Mnemonic
PER # 1234H

Memory

ACy

6816

Op Code (624)

Operand (34,¢)

Operand (124¢)

Stack Pointer

Program
Bank Register

5676,

~N ~
=/ /
|+ [T

Program Counter

Machine Code
6246 341 12,5

Bank-0

Program
bank-PG

41

Relative

Mode Relative addressing mode
Function : Branching occurs to the address specified by the value resulting from addition of the
contents of the program counter and the instruction’s second byte. In the case of a
long branch by the BRA instruction, a 15-bit signed numeric value formed by the con-
tents of the instruction’s second and third bytes is added to the program counter con-
tents. If the addition generates a carry or borrow, 1 is added to or subtracted from’
the program bank register.
Instruction: BCC, BCS, BEQ, BMI, BNE, BPL, BRA, BVC, BVS
ex. . Mnemonic Machine Code
BCC *—12 90,6 Fdy¢
Branches to the address * —12 if the carry flag (C) Advances to the address * If the carry flag (C)
has been cleared has been set
Memory Memory
/—\/ /—\1
Address to be
executed next *=12
Op Code (90,6) Op Code (90,¢)
Operand (F4,¢) Jump Operand (F4,5)
* Address to be *
executed next
/___—‘ /—\/
ex. : Mnemonic Machine Code
BRA 1234H 82,5 34,6 1244
Memory
/_\—’
Op Code (82,6) Program
Operand (34,¢) bank-PG
(2,0 Program
Operand (1245 Bank Register
FF12,4

Address to be
executed next

114646 Program

bank-PG+1

42

Direct Bit Relative

Mode : Direct bit relative addressing mode

Function : Specifies the bank-0 memory location by the value obtained by adding the instruc-
tion’s second byte to the direct page register’s contents, and specifies the positions
of multiple bits in the memory location by the bit pattern in the third and fourth bytes
(the third byte only if the m flag is set to 1). Then, if the specified bits all satisfy the
branching conditions, the instruction’s fifth byte (or the fourth byte if the m flag is set
to 1) is added to the program counter as a signed value, generating the branching
destination address. If, however, addition of the instruction’s second byte to the direct
page register's contents result in a value that exceeds the bank-0 range, the specified

location will be in bank-1.

Instruction: BBC, BBS

ex. . Mnemonic Machine Code
BBS #5AH, 04H, OF6H 24, 04,5 5Ac F6,6
(m=1)
Memory

o[1[1]1[1]o1] 1| 001238, <——

T T Program

Bank Register
Address to be 9

executed next 1146 FFFDyg

Direct Page

Jump Op Code (24,5) Register

Operand (04,5) + (123446 | = 1238,¢

Operand (5A;¢) Program
Operand (F646) Bank Register

000745

- o~
(Branch)

Bank-0

Address to be
executed next

Memory

ofo[1]1]1]o]1[1

{(

001238,; < (Bank-0

’\/

(Not branch)

Direct Page
Op Code (2446) Register
Operand (04;) | -+ [1234,5|=1238,
Operand (5A5) Program
Operand (F6,) Bank Regtster
0007,

43

Direct Bit Relative

ex. : Mnemonic
BBS #5AA5H, 04H, OF6H

(m=0)

Address to be
executed next

Jump

Machine
24, 04,6

Memory

P

Op Code (244¢)

Bank Register
114¢| FFFE;g

Direct Page

Code
A5,6 5A¢ F6¢

001238,, <—

Program

Register

Operand (04,5) +[1234,5|=1238,;

Operand (AS,5)

Operand (5A¢)

Operand (F6,¢)

0008,
/—-\/

(Branch)

Bank Register

Program
Address to be
executed next

Memory

001238,

Direct Pag,e

Op Code (24,4)

Register

Operand (04,¢)

+ [1234,5|= 12386

Operand (A5,¢)

Operand (5Aq¢)

Program

Operand (F6yg)

Bank Register

12,5 0008,

(Not branch)

——

44

j Bank-0

Absolute Bit Relative

Mode Absolute bit relative addressing mode
Function The instruction’s second and third bytes and the contents of the data bank register
specify the memory location, and data for the memory location’s multiple bits is
specified by a bit pattern in the instruction’s fourth and fifth bytes (the fourth byte only
if the m flag is set to 1). Then, if the specified bits all satisfy the branching conditions,
the instruction’s sixth byte (or the fifth byte if the m flag is set to 1) is added to the
program counter as a signed value, generating the branching destination address.
Instruction: BBC, BBS
ex. . Mnemonic Machine Code
BBS #5AH, 1234H, OF6H 2Cyg 3446 1245 5A5 F64¢
(m=1)
Memory Memory
/—\/ T~
_______ Program
Address to be Bank Register
executed next [1,g] FFFDys
, Op Code (2Cy) Op Code (2C1s)
ume Operand (344¢) } Operand (34,) }
Operand (12,¢) J Operand (12y6)
Operand (5A6) Program Operand (5A;6) . PLogram t
Operand (F6s¢) Bank Register Address to be Operend e o 00(39'5 i
0007,¢ executed next @] 716
““““ I L
_______ - — — — — 7
Data Bank Data Bank
Register Register
o[i[1[1[1[o[1[0 | [DT]1234,y ofo[1[1]1]o[1[o | [oT]1234: .
L ~— L ~—__
(Branch) (Not branch)

45

Absolute Bit Relative

ex. . Mnemonic
BBS z5AASH, 1234H, OF6H

Address to be
executed next

Jump

Machine Code
2C46 34,6 12,5 A5, 5A5 F64¢

Memory
T ~~——]
Program

Bank Register
FFFD,q

Op Code (2Cy6)

Operand (34,5)

Operand (12,¢)

Operand (A5yg)

Operand (5As6) Program

Operand (F64¢)

Bank Register

000745

Data Bank
Register

1 1234,
1

1/1/0(1]|1(1 0
L ~——
(Branch)

Address to be
executed next

Memory

Op Code (2Cy)
Operand (344¢)

Operand (12,¢)
Operand (AS5y¢)
Operand (5A:¢)

Operand (F6,¢)

(Not branch)

Program
Bank Register

0007,¢

Data Bank
Register

[DT 1234,

46

Stack Pointer Relative

Mode Stack pointer relative addressing mode
Function The contents of a bank-0 memory location specified by the value resulting from ad-
dition of the instruction’s second byte and the contents of the stack pointer become
the actual data. If, however, the value obtained by adding the contents of the instruc-
tion's second byte and the stack pointer's contents exceeds the bank-0 range, the
specified location will be in bank-1.
Instruction: ADC, AND, CMP, DIV, EOR, LDA, MPY, ORA, SBC, STA
ex. . Mnemonic Machine Code ex. . Mnemonic Machine Code
ADC A, 02H, S 63,6 02,5 - ADC A, 02H, S 63,6 02
(m=1) (m=0)
Memory Memory
Bank-0
ot Bank-0
A—A
A-A+C+H DATA | < DATA 1236, _mm - { DATA, 1236,
DATA,
______ — I
~ :’\ T R
Op Code (63,¢) Stack Pointer Op Code (63,5) Stack Pointer
Operand (02,¢) + 1234|e_l=1236|5 Operand (02,5) | + l 1234, (=1236,6
— P

47

Stack Pointer Relative Indirect Indexed Y

Mode : Stack pointer relative indirect indexed Y addressing mode

Function : The value obtained by adding the instruction’s second byte and the contents of the
stack pointer specifies 2 adjacent bytes in memory. The value obtained by adding the
contents of these bytes and the contents of the index register Y specifies address of
the actual data in memory bank-DT (DT is contents of data bank register). If addition
of the 2 bytes in memory with the contents of the index register Y generate a carry,
the bank number will be 1 larger than the contents of the data bank register.

Instruction: ADC, AND, CMP, DIV, EOR, LDA, MPY, ORA, SBC, STA

ex. . Mnemonic Machine Code ex. . Mnemonic Machine Code
ADC A,(1EH, S), Y 7346 1E46 ADC A,(1EH, S), Y 7346 1E4¢
(m=1, x=1) (m=0, x=1)
Memory Memory
Bank-0
nd Bank-0
ndex Register Y Index Register Y
12526 DATA I (01,) _ 12525 DATA I (014¢)
1253, DATA T (12,0) +[16| =12E7, 1253:c [DATA 1(126) +[_EBu]= 12675

a2
—
77
{
"
7

r Stack Pointer
Op Code (734¢)
Stack Pointer Op Code (734¢) 16
P 1 + Operand (1Eg)
1234,5 | + Operand (1E,g)
_______ EN 1
L = I Data Bank
_______ Data Bank A—A+C+ Register
A—A+C+ Register [DATA, [DATA, | < { DATA, 12E7,6
DATA | < DATA 1267,y <— DATA
L~ __— T ~———

48

Stack Pointer Relative Indirect Indexed Y

ex. . Mnemonic Machine Code
ADC A, (1EH, S), Y 7346 1Es6
(m=1,x=0)
Memory
Bank-0
Index Register Y
12526 DATA 1 (01,)
(FOEGyq] = 102E7
12536 DATA 11 (12,6) + *
L L
Stack Pointer Op Code (7346)
1234, | + Operand (1E,g)
_____ —
T T paaBank
"1 Reaster
A—A-+C+ |DATA| - DATA (DT]+1, 02E7,g<~——
ex. * Mnemonic Machine Code
ADC A, (1EH, S), Y 7346 1E46
(m=0, x=0)
Memory
Bank-0
. Index Register Y
12525 | OATA L(01,6) + [FOE6,5 | =102E7;6
125346 DATA 11(126)
% T
[
______]
Stack Pointer Op Code (7346)
1234,5 | + Operand (1Eqg)
— — — — — —
—
_______ Data Bank
Register
2E7 -
A—atct [DATAL TDATAL] { CE::::L [DT]+1, 02E746
H
L ~——

Block Transfer

ex.

Mode Block transfer addressing mode
Function The instruction’s second byte specifies the transfer-to data bank, and the contents of
the index register Y specify the transfer-to address within the data bank. The instruc-
tion's third byte specifies the transfer-from data bank, and the contents of the index
register X specify the address in the data bank where the data to be transferred is
stored. The contents of the accumulator A constitute the number of bytes to be trans-
ferred. Upon termination of transfer, the contents of the data bank register will
specify the transfer-to data bank. The MVN instruction is used for transfer to lower
address location. In this case, the contents of the index registers X and Y are incre-
mented each time data is transferred. The MVP instruction is used for transfer to
higher address location. In this case, the contents of the index registers X and Y are
decremented each time data is transferred. The block of data to be transferred may
cross over the bank boundary.
Instruction : MVN, MVP
. Mnemonic Machine Code
MVN 0E2H, 0E5H 54,6 E2,6 E5,¢
Before transfer After transfer
Memory Memory
,\/
DATA | E25678,¢
Bank-E2,g DATA I
DATA Il
N X I 1
______ — —
Op Code(54,,) | A | Op Code(54s) | A[FFFFo
Operand (E2;6) | X[1234, | Operand (E216) | x[1237,
Operand (E5,) Y[5678,5 | Operand (E5,¢) v[5678,
DT[E2,
] or(”]] ‘j 216
L A o
DATA 1 1E51234,s DATA I
DATA I | DATALl |
DATA I JBa"k-Eﬁ's DATA I
L— — ~———

50

Block Transfer

. Mnemonic
MVP OES5H, OE2H

Before transfer

DATA I
DATA I
DATA [

Op Code(4446)
Operand (E5,¢)
Operand (E2,g)

Machine Code
44, E5.5 E24¢

Bank-E2,
E2567A,,

A[00035 |
X (567 |
v (72562]
DT

Bank-ES5q6

After transfer

Memory

DATA 1
DATA I
DATA I

A[FFFFs

Op Code(44,5)

X| 567746

Operand (E5,¢)

Y [1233,,

Operand (E2,¢)

DT [ESue]

E51236,¢

51

Instructions

4. Instructions
4.1 Instruction Set

The Series MELPS 7700 microcomputers support a set of 103 instructions which are de-
scribed in this chapter. This section presents overviews of these instructions, and Sec. 4.2
presents the detailed description for each instruction.

4.1.1 Data Transfer Instructions

The data transfer instructions move data between data and registers, between a register and
the memory, between registers or between memory devices.

The following table summarizes the various data transfer instructions supported by the Series

MELPS 7700 :
Category Instruction Description
Load LDA Loads the contents of memory into the accumulat;)r.
v LDM Loads an immediate value into the memory.
LDT Loads an immediate value into the data bank register.
LDX Loads the contents of memory into the index register X.
LDY Loads the contents of memory into the index register Y.
Store STA Stores the contents of the accumulator in the memory.
STX Stores the contents of the index register X in the memory.
STY Stores the contents of the index register Y in the memory.
Transfer TAX Transfers the contents of the accumulator A to the index register X.
TXA Transfers the contents of the index register X to the accumulator A.
TAY Transfers the contents of the accumulator A to the index register Y.
TYA Transfers the contents of the index register Y to the accumulator A.
TSX Transfers the contents of the stack pointer to the index register X.
TXS Transfers the contents of the index register X to the stack pointer.
TAD Transfers the contents of the accumulator A to the direct page
register.
TDA Transfers the contents of the direct page register to the accumula-
tor A.
TAS Transfers the contents of the accumulator A to the stack pointer.
TSA Transfers the contents of the stack pointer to the accumulator A.
TBD Transfers the contents of the accumulator B to the direct page reg-
ister.
TDB Transfers the contents of the direct page register to the accumulator
B.
TBS Transfers the contents of the accumulator B to the stack pointer.

52

Instructions

Category Instruction Description
Transfer TSB Transfers the contents of the stack pointer to the accumulator B.
TBX Transfers the contents of the accumulator B to the index register X.
TXB Transfers the contents of the index register X to the accumulator B.
TBY Transfers the contents of the accumulator B to the index register Y.
TYB Transfers the contents of the index register Y to the accumulator B.
XY Transfers the contents of the index register X to the index register
Y.
TYX Transfers the contents of the index register Y to the index register
X.
MVN Transfers a block of data from the lower addresses.
MVP Transfers a block of data from the higher addresses.
Stack operation PSH Saves the contents of the specified register to the stack.
PUL Restores the contents of stack to the specified register.
PHA Saves the contents of the accumulator A to the stack.
PLA Restores the contents of stack to the accumulator A.
PHP Saves the contents of the program status register to the stack.
PLP Restores the contents of stack to the program status register.
PHB Saves the contents of the accumulator B to the stack.
PLB Restores the contents' of stack to the accumulator B.
PHD Saves the contents of the direct page register to the stack.
PLD Restores the contents of stack to the direct page register.
PHT Saves the contents of the data bank register to the stack. B
PLT Restores the contents of stack to the data bank register.
PHX Saves the contents of the index register X to the stack.
PLX Restores the contents of stack to the index register X.
PHY Saves the contents of the index register Y to the stack.
PLY Restores the contents of stack to the index register Y.
Stack PHG Saves the contents of the program bank register to the stack.
PEA Saves a the numeric of 2 bytes to the stack.
PEI Saves the contents of 2 consecutive bytes in the direct page area
to the stack.
PER Saves the result of adding a 16-bit numeric value to the program
counter contents to the stack.
Exchange XAB Swaps the contents of the accumulator A with the contents of the

accumulator B.

53

Instructions

4.1.2 Arithmetic Instructions

The arithmetic instructions perform addition, subtraction, multiplication, division, logical operation,
comparison, rotation and shifting of register and memory contents.

The following table summarizes the arithmetic instructions supported:

Category Instruction Description
Addition ADC Adds the contents of the accumulator,the contents of memory and
. the contents of the carry flag.
Subtraction v Tee
o SBC Subtracts the complements of the contents of memory and carry
Multiplication
flag from the contents of the accumulator.
Division INC Increments the accumulator or memory contents by 1.
DEC Decrements the accumulator or memory contents by 1.
INX Increments the contents of the index register X by 1.
DEX Decrements the contents of the index register X by 1.
INY Increments the contents of the index register Y by 1.
DEY Decrements the contents of the index register Y by 1.
MPY Multiples the contents of the accumulator A and the contents of
memory.
DIV Divides the numeric value whose lower byte is the contents of the
accumulator A and upper byte is the contents of the accumulator B
by the contents of memory.
Logical operation AND Performs logical AND between the contents of the accumu-
lator and the contents of memory.
ORA Performs logical OR between the contents of the accumulator and
the contents of memory.
EOR Performs logical exclusive-OR between the contents of the accumu-
lator and the contents of memory.
Comparison CMP Compares the contents of the accumulator with the contents of
memory.
CPX Compatres the contents of the index register X and the contents of
memory.
CPY Compares the contents of the index register Y and the contents of
memory.
Shifting, Lotation ASL Shifts the contents of the accumulator or memory to the left by 1 bit.
LSR Shifts the contents of the accumulator or memory to the right by 1
bit.
ROL Links the contents of accumulator or memory with the carry flag,
and rotates the result to the left by 1 bit.
ROR Links the contents of accumulator or memory with the carry flag,
and rotates the result to the right by 1 bit.
RLA Rotates the contents of the accumulator A to the left by the speci-

fied number of bits.

54

Instructions

4.1.3 Bit Manipulation Instructions

The bit manipulation instructions set the specified bits of the processor status register or
memory to “1” or “0”".

The following table summarizes the bit manipulation instructions supported:

Category Instruction Description
Bit manipulation CLB Clears the specified memory bit to "0”.
SEB Sets the specified'-memory bit to “1".
CLP Clears the specified bit of the processor status register's lower

byte (PSL) to “0”.

SEP Sets the specified bit of the processor status register’s lower
byte (PSt) to “1”.

4.1.4 Flag Manipulation Instructions
The flag manipulation instructions set to “1” or clear to “0” the C, |, m and V flags.

The following table summarizes the flag manipulation instructions supported:

Category Instruction Description

Flag setting CLC Clears the contents of carry flag to “0".
SEC Sets the contents of carry flag to “1”.
CLM Clears the contents of data length selection flag to “0”.
SEM Sets the contents of data length selection flag to “1”.
CLI Clears the contents of interrupt disable flag to “0".
SEl Sets the contents of interrupt disable flag to “1”.
CLvV Clears the contents of overflow flag to “0”.

4.1.5 Branching and Return Instructions
The branching and return instructions enable changing the program execution sequence.

The following table summarizes the branching and return instructions:

Category Instruction Description
Jump JMP Sets a new address in the program counter and jumps to the new
address.
BRA Jumps to the address obtained by adding an offset value to the

contents of the program counter.

JSR Saves the contents of the program counter to the stack and then
jumps to the new address.

55

Instructions

Category Instruction Description
Branch BBC Causes a branch if the specified memory bits are all “0”.
BBS Causes a branch if the specified memory bits are all 1.
BCC Causes a branch if the carry flag is set to "0”.
BCS Causes a branch if the carry flag is set to “1”.
BNE Causes a branch if the zero flag is set to “0”.
BEQ Causes a branch if the zero flag is set to “1".
BPL Causes a branch if the negative flag is set to “0”".
BMI Causes a branch if the negative flag is set to “1”.
BVC Causes a branch if the overflow flag is set to “0".
BVS Causes a branch if the overflow flag is set to “1".
Return RTI Returns from the interrupt routine to the original routine.
RTS Returns from a subroutine to the original routine. The program
bank register contents are not restored.
RTL Returns from a subroutine to the original routine. The program
bank register contents are restored.

4.1.6 Interrupt Instruction (Break Instruction)

The interrupt instruction executes software interrupt.

Category Instruction

Description

Break BRK Executes a software interrupt.

4.1.7 Special Instructions

The special instructions listed below control the clock generator circuit.

Category Instruction Description
Special WIT Stops the internal clock.
STP Stops the oscillator.
4.1.8 Other Instruction
Category Instruction Description
Other NOP Only advances the program counter.

56

Instructions

4.2 Description of Instructions

This section describes the Series MELPS 7700 instructions individually. To the extent possible,
each instruction is described using one page per instruction. Each instruction description page
is headed by the instruction mnemonic, and the pages are arranged in alphabetical order of the
mnemonics. For each instruction, operation and description of the instruction, status flag changes
and a listing sorted by addressing modes of the assembler coding format (Note 1), machine code,
bytes-count and cycles-count (Note 2) are presented.

Note1. The assembler coding formats shown are general examples, and they may differ from the
actual formats for the assembler used. Please be sure to refer to the mnemonic coding
description in the manual for the assembler actually used for programming.

Note2. The cycles-counts shown are the minimum possible, and they vary depending on the fol-
lowing conditions:

® Value of direct page register's lower byte

The cycles-count shown are for when the direct page register’s lower byte (DPRL) is
0016. When using an addressing mode that uses the direct page register with
DPRw#“0016", the cycles-count will be 1 more than the value shown.

® Number of bytes that have been loaded in the instruction queue buffer

® Whether the first address of the memory read/write is even- or odd-numbered in
accessing the 16-bit data length.

@ Accessing of an external memory are with BYTE=1(using 8-bit external bus)

57

Instructions

The table below lists the symbols that are used in this section:

Symbol Description Symbol Description
C Carry flag DPR Direct page register
YA Zero flag DPRH1 | Direct page register’s upper 8 bits
I Interrupt disable flag DPRL Direct page register’s lower 8 bits
D Decimal operation mode flag PS Processor status register
X Index register length selection flag PSH Processor status register's upper 8 bits
m Data length selection flag PSL Processor status register's lower 8 bits
\Y Overflow flag PSn Processor status register's n-th bit
N Negative flag M Memory contents
IPL Processor interrupt priority level M(n) Contents of memory location specified by
+ Addition operand
- Subtraction M(S) Contents of memory at address indicated
% Multiplication by stack pointer
/ Division Mn n-th memory location
A Logical AND ADc Value of 24-bit address’ upper 8-bit
\Y Logical OR (Aea~Are))))
. ADH Value of 24-bit address’ middle 8-bit
_f Exclusive OR (Ars~As)
Negation AD. | Value of 24-bit address’ lower 8-bit (Ar~Ad)
— Movement to the arrow direction bn n-th bit of data
- Movement to the arrow direction dd 8-bit offset value
« Movement to the arrow direction i Number of transfer bytes or rotation
Ace Accumulator i1, i2 Number of registers pushed or pulled
AccH Accumulator’s upper 8 bits imm 8-bit immediate value
Acc Accumulator's lower 8 bits imm1, immz2| 16-bitimmediate value (imms1 specifies the
A Accumulator A upper 8-bit,and immz specifies the lower 8-
An Accumulator A’s upper 8 bits bit)
AL Accumulator A’s lower 8 bits I 8-bit address value
B Accumulator B mmil 16-bit address value (mm specifies the
Bu Accumulator B's upper 8 bits upper 8-bit and Il specifies the lower 8-bit)
BL Accumulator B's lower 8 bits hhmmil | 24-bit address value (hh specifies the up-
. per 8-bit, mm specifies the middle 8-bitand
X Index register X Il specifies the lower 8-bit)
XH Index register X's upper 8 bits nn 8-bit data value
Xt Index register X's lower 8 bits ni, N2 8-bit data value (Used when coding two 8-
Y Index register Y bit data side by side)
Yu Index register Y’s upper 8 bits rr Signed 8-bit data value
Yu Index register Y's lower 8 bits Irire Signed 16-bit data value (ir1 is the upper 8-
S Stack pointer bit value, and rrz is the lower 8-bit value)
PC Program counter
PCwx Program counter’s upper 8 bits
PCL Program counter’s lower 8 bits
REL Relative address
PG Program bank register
DT Data bank register

58

ADC

Add with Carry ADC

Operation

Description

Status flags

Acc, C « Acc+ M + C

Adds the contents of the accumulator, memory and carry flag, and places the
result in the accumulator.

Executed as binary addition if the decimal operation mode flag D is set to 0.
Executed as decimal addition if the decimal operation mode flag D is set to 1.

IPL: Not affected.

N Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of
the operation result is 1. Otherwise, cleared to 0. Meaningless for decimal
addition.

\Y Set to 1 when binary addition of signed data result in a value outside the range
of -32768 to +32767 (-128 to +127 if the data length selection flag m is set to 1).
Otherwise, cleared to 0. Meaningless :or decimal addition.

m : Not affected.

x : Not affected.

D : Not affected.

I Not affected.

Z : Setto 1 when the result of operation is 0. Otherwise, cleared to 0. Meaningless
for decimal addition.

C When the data length selection flag m is set to 0, set to 1 if binary addition.
exceeds +65535 or if decimal addition exceeds +9999. Otherwise, cleared to 0.
When the data length selection flag m is set to 1, set to 1 if binary addition
exceeds +255 or if decimal addition exceeds +99. Otherwise, cleared to 0.

Addressing mode Syntax Machine code Bytes | Cycles
Immediate ADC A, #imm 6916, imm 2 2
Direct ADC A, dd 6516, dd 2 4
Direct indexed X ADC A, dd, X 7516, dd 2 5
Direct indirect ADC A, (dd) 7216, dd 2 6
Direct indexed X indirect ADC A, (dd, X) 6116, dd 2 7
Direct indirect indexed Y ADC A, (dd), Y 7116, dd 2 8
Direct indirect long ADCL A, (dd) 6716, dd 2 10
Direct indirect long indexed Y ADCL A, (dd), Y 7716, dd 2 11
Absolute ADC A, mmll 6D1s, II, mm 3 4
Absolute indexed X ADC A, mmll, X 7D1s, Il, mm 3 6
Absolute indexed Y ADC A, mmll, Y 7916, Il, mm 3 6
Absolute long *ADC A, hhmmll 6F1e, Il, mm, hh 4 6
Absolute long indexed X ADC A, hhmmll, X 7F1s, Il, mm, hh 4 7
Stack pointer relative ADC A, nn,S 6316, NN 2 5
Stack pointer relative ADC A, (nn, S), Y 7316, NN 2 8
indirect indexed Y

(Note1) This table applies when using the accumulator A. If using the accumulator B, replace “A” with “B”.
In this case, "4216” is added at the beginning of the machine code, the bytes-count increases by
1 and the cycles-count increases by 2.

(Note2) When operating on 16-bit data in the immediate addressing mode with the data length selection flag
m set to 0, the bytes-count increases by 1.

59

AND

Logical AND

AND

Operation : Acc e Acc A M

Description : Performs logical AND between the contents of the accumulator and the contents
of memory, and places the result in the accumulator.

Status flags
IPL : Not affected.

N : Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of
the operation result is 1. Otherwise, cleared to 0.

Vv Not affected.

m Not affected.

X Not affected.

D Not affected.

| Not affected.

4 Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.
Addressing mode Syntax Machine code Bytes | Cycles|
Immediate AND A, #imm 2916, imm 2 2.
Direct AND A, dd 2516, dd 2 4
Direct indexed X AND A, dd, X 3516, dd 2 5
Direct indirect AND A, (dd) 3216, dd 2 6
Direct indexed X indirect AND A, (dd, X) 2116, dd 2 7
Direct indirect indexed Y AND A, (dd), Y 3116, dd 2 8
Direct indirect long ANDL A, (dd) 2716, dd 2 10
Direct indirect long indexed Y ANDL A, (dd), Y 3716, dd 2 11
Absolute AND A, mmil 2Dss, Il, mm 3 4
Absolute indexed X AND A, mmll, X 3D1s, I, mm 3 6
Absolute indexed Y AND A mmll, Y 3916, II, mm 3 6
Absolute long AND A, hhmmll 2F1s, I, mm, hh 4 6
Absolute long indexed X AND A, hhmmll, X 3F1e, I, mm, hh 4 7
Stack pointer relative AND A, nn, S 2316, Nn 2 5
Stack pointer relative AND A, (nn, S), Y 3316, NN 2 8

indirect indexed Y

(Note1) This table applies when using the accumulator A. If using the accumulator B, replace “A” with "B".
In this case, “4216” is added at the beginning of the machine code, the bytes-count increases by
1 and the cycles-count increases by 2.

(Note2) When operating on 16-bit data in the immediate addressing mode with the data length selection flag
m set to 0, the bytes-count increases by 1.

60

ASL

Arithmetic Shift Left AS L

Operation

Description

Status flags

When m=0
bis bo

ClL [TTTTTTITTTTTITT}eo0

When m=1

bo

Clel T[T T[]0

Shifts all bits of the accumulator or memory one place to the left. Bit 0 is loaded
with 0. The carry flag C is loaded from bit 15 (or bit 7 when the data length
selection flag m is set to 1) of the data before the shift.

IPL: Not affected.
N Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of
the operation result is 1. Otherwise, cleared to 0.
\ Not affected.
m Not affected.
X Not affected.
D Not affected.
| Not affected.
Z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
C Set to 1 when bit 15 (or bit 7 when the data length selection flag m is set to1)
before the operation is 1. Otherwise, cleared to 0.
Addressing mode Syntax Machine code ‘ Bytes i Cycles
Accumulator ASL A 0A16 | 1 [2
Direct ASL dd 0616, dd { 2 (7
Direct indexed X ASL dd, X 1616, dd 1 2 |7
Absolute ASL mmll OEss, I, mm i3] 7
Absolute indexed X ASL mmll, X 1Ess, Il, mm } 3 ‘ 8

(Note1) The accumulator addressing mode's specification in this table applies when using the accumulator
A. If using the accumulator B, replace “A” with “B”. In this case, “4216” is added at the beginning
of the machine code, the bytes-count increases by 1 and the cycles-count increases by 2.

61

BBC

Branch on.Bit Clear B BC

Operation

Description

Status flags

When MA IMM=0

PC « PC + n + REL (REL is instruction’s second byte)
PG « PG + 1 (if carry on PC), PG « PG - 1 (if borrow on PC)

When M A IMM=z0
PC « PC +n
PG « PG + 1 (if carry on PC)

IMM is the bit pattern that specifies the bit positions to be tested.
The value of n is determined as follows:

If the data length selection flag m is set to 1, n=4 if direct bit relative
addressing mode, and n=5 if absolute bit relative addressing mode.

If the data length selection flag m is set to 0, n=5 if direct bit relative
addressing mode, and n=6 if absolute bit relative addressing mode.

The BBC instruction tests the specified bits (which may be specified simultane-
ously) of memory. The instruction causes a branch to the specified address
when the specified bits are all 0. The branch address is specified by a relative
address.

Not affected.

Addressing mode Syntax Machine code Bytes | Cycles
Direct bit relative BBC #imm, dd, rr 3416, dd, imm, rr 4 7
Absolute bit relative BBC #imm, mmlil, rr 3Cis, Il, mm, imm, rr 5 - 8

(Note1) The bytes-count increases by 1 when operating on 16-bit data with the data length selection flag
m set to 0.

(Note2) The cycles-count increases by 2 when a branch occurs.

62

BBS

Branch on Bit Set

BBS

Operation : When M A IMM=0

PC « PC + n + REL (REL is instruction’s second byte)

PG « PG + 1 (if carry on PC), PG « PG - 1 (if borrow on PC)

When M A IMM=0
PC « PC +n

PG « PG + 1 (if carry on PC)

IMM is the bit pattern that specifies the bit positions to be tested. The value of
n is determined as follows:

If the data length selection flag m is set to 1, n=4 if direct bit relative
addressing mode, and n=5 if absolute bit relative addressing mode.

If the data length selection flag m is set to 0, n=5 if direct bit relative
addressing mode, and n=6 if absolute bit relative addressing mode.

Description : The BBS instruction tests the specified bits (which may be specified simultane-
ously) of memory. The instruction causes a branch to the specified address
when the specified bits are all 1. The branch address is specified by a relative

address.

Status flags : Not affected.

Addressing mode Syntax Machine code Bytes | Cycles
Direct bit relative BBS #imm, dd, rr 2416, dd, imm, rr 4 7
Absolute bit relative BBS #imm, mmll, rr 2C1e, Il, mm, imm, rr 5 8

(Note1) The bytes-count increases by 1 when operating on 16-bit data with the data length selection

flag m set to 0.

(Note2) The cycles-count increases by 2 when a branch occurs.

63

BCC

Branch on Carry Clear BCC

Operation

Description

Status flags

When C=0,

PC « PC + 2 + REL (REL is instruction’'s second byte)
PG « PG + 1 (if carry on PC), PG « PG - 1 (if borrow on PC)

When C=1,
PC « PC +2
PG « PG + 1 (if carry on PC)

When the carry flag C is clear (0), the BCC instruction causes a branch to the
specified address. The branch address is specified by a relative address.

When the carry flag C is set (1), the program advances to next step without any
action.

Not affected.

Addressing mode Syntax - Machine code Bytes |Cycles

Relative

BCC mr ' 901s, IT 2 4

(Note1) The cycles-count increases by 2 when a branch occurs.

64

BCS

Branch on Carry Set BCS

Operation

Description

Status flags

When C=1,

PC « PC + 2 £ REL (REL is instruction’s second byte)
PG « PG + 1 (if carry on PC), PG « PG - 1 (if borrow on PC)

When C=0,
PC « PC +2
PG « PG + 1 (if carry on PC)

When the carry flag C is set (1), the BCS instruction causes a branch to the
specified address. The branch address is specified by a relative address.

When the carry flag C is clear (0), the program advances to next step without any
action.

Not affected.

Addressing mode Syntax Machine code Bytes |Cycles

Relative

BCS 1r BO1s, 17 2 4

(Note1) The cycles-count increases by 2 when a branch occurs.

65

BEQ

Branch on Equal BEQ

Operation

Description

Status flags

When Z=1,

PC « PC + 2 £ REL (REL is instruction’s second byte)
PG « PG + 1 (if carry on PC), PG « PG - 1 (if borrow on PC)

When Z=0,
PC « PC +2
PG « PG + 1 (if carry on PC)

When the zero flag Z is set (1), the BEQ instruction causes a branch to the
specified address. The branch address is specified by a relative address.

When the zero flag Z is clear (0), the program advances to next step without any
action.

Not affected.

Addressing mode Syntax Machine code Bytes | Cycles

Relative

BEQ rr FOie, 1r 2 4

(Note1) The cycles-count increases by 2 when a branch occurs.

66

BMI

Branch on Result Minus BM'

Operation

Description

Status flags

When N=1,

PC « PC + 2 £ REL (REL is instruction’s second byte)
PG « PG + 1 (if carry on PC), PG « PG - 1 (if borrow on PC)

When N=0,
PC « PC + 2
PG « PG + 1 (if carry on PC)

When the negative flag N is set (1), the BMI instruction causes a branch to the
specified address. The branch address is specified by a relative address.

When the negative flag N is clear (0), the program advances to next step without
any action. ’ -

Not affected.

Addressing mode Syntax Machine code Bytes |Cycles

Relative

BMI 1r 301e, IT 2 4

(Note1) The cycles-count increases by 2 when a branch occurs.

67

BNE

Branch on Not Equal BNE

Operation

Description

Status flags

When Z=0,

PC « PC + 2 £ REL (REL is instruction’s second byte)
PG « PG + 1 (if carry on PC), PG « PG - 1 (if borrow on PC)

When Z=1,
PC « PC +2
PG « PG + 1 (if carry on PC)

When the zero flag Z is clear (0), the BNE instruction causes a branch to the
specified address. The branch address is specified by a relative address.

When the zero flag Z is set (1), the program advances to next step without any
action.

Not affected.

Addressing mode Syntax Machine code Bytes | Cycles

Relative

BNE rr DO, 1 2 4

(Note1) The cycles-count increases by 2 when a branch occurs.

68

BPL

Branch on Result Plus BPL

Operation

Description

Status flags

When N=0,

PC « PC + 2 + REL (REL is instruction’s second byte)
PG « PG + 1 (if carry on PC), PG « PG - 1 (if borrow on PC)

When N=1,
PC « PC +2
PG « PG + 1 (if carry on PC)

When the negative flag N is clear (0), the BPL instruction causes a branch to the
specified address. The branch address is specified by a relative address.

When the negative flag N is set (1), the program advances to next step without
any action. '

Not affected.

Addressing mode Syntax Machine code Bytes |Cycles

Relative

BPL rr 1016, 1 : 2 4

(Note1) The cycles-count increases by 2 when a branch occurs.

69

BRA

Branch Always

BRA

Operation
For short relative branch,
PC « PC + 2 £ REL (REL is instruction’s second byte)
PG « PG + 1 (if carry on PC), PG « PG - 1 (if borrow on PC)
For long relative branch,
PC « PC + 3 £+ REL (REL is a numeric value represented by the instruc-
tion's second and third bytes)
Description The BRA instruction causes a branch to the specified address. The branch
address is specified by a relative address.
Status flags Not affected.
Addressing mode Syntax Machine code Bytes | Cycles
Relative BRA 1r 8018, IT 2 4
BRAL rrirr2 8216, Ir2, Im 3 4

70

BRK

Force Break

BRK

Operation : PC« PC+2
M(S) « PG
S« S-1
M(S) « PCn
S« S-1
M(S) « PCL
S« S-1
M(S) « PSu
S« S-1
M(S) « PSL
S« S-1
I« 1
PCL « M(FFFAus)

PCH « M(FFFBis)
PG « 001

Description : When the BRK instruction is executed, the CPU first saves the address where the
next instruction is stored, and then saves the contents of the processor status
register on the stack. Then, the CPU executes a branch to the address in bank-
0 the lower portion of which is specified by the contents of FFFA1e in bank-0 and
the upper portion specified by the contents of FFFB1s in bank-0.

Status flags

IPL : Not affected.
Not affected.
Not affected.
Not affected.
Not affected.
Not affected.
Set to 1.
Not affected.
Not affected.

ON—OX%X 3 < Z

Addressing mode Syntax

Machine code

Bytes

Cycles

Implied BRK #nn

0016,EA16

15

(Note1) The instruction's second byte is ignored, so any value impossible.

71

BVC

Branch on Overflow Clear BVC

Operation

Description

Status flags

When V=0,
PC « PC + 2 + REL (REL is instruction’s second byte)
PG « PG + 1 (if carry on PC), PG « PG - 1 (if borrow on PC)

When V=1,
PC « PC + 2
PG « PG + 1 (if carry on PC)

When the overflow flag V is clear (0), the BVC instruction causes a branch to the
specified address. The branch address is specified by a relative address.

When the overflow flag V is set (1), the program advances to next step without
any action.

Not affected.

Addressing mode Syntax Machine code Bytes | Cycles

Relative

BVC rr 501s, IT 2 4

(Note 1) The cycles-count increases by 2 when a branch occurs.

72

BVS

Branch on Overflow Set BVS

Operation

Description

Status flags

When V=1,

PC « PC + 2 £ REL (REL is instruction’s second byte)
PG « PG + 1 (if carry on PC), PG « PG - 1 (if borrow on PC)

When V=0,
PC « PC +2
PG « PG + 1 (if carry on PC)

When the overflow flag V is set (1), the BVS instruction causes a branch to the
specified address. The branch address is specified by a relative address.

When the overflow flag V is clear (0), the program advances to next step without
any action.

Not affected.

Addressing mode Syntax Machine code Bytes | Cycles

Relative

BVS rr 701s, 1 2 4

(Note1)The cycles-count increases by 2 when a branch occurs.

73

CLB

Clear Bit C L B

Operation

Description

Status flags

M « MA IMM

IMM is the bit pattern that specifies the bit positions that are to be cleared to 0.
The bit positions that are to be cleared are indicated by 1 in IMM, and the bit po-
sitions that are not to be cleared are indicated by 0 in IMM.

When the data length selection flag m is set to 1, IMM is placed in the third byte
(direct bit addressing mode) or the fourth byte (absolute bit addressing mode) of
the instruction.

When the data length selection flag m is set to 0, IMM is placed in the third and
fourth bytes (direct bit addressing mode) or the fourth and fifth bytes (absolute bit
addressing mode) of the instruction.

The CLB instruction clears the specified memory bits to 0. Multiple bits to be
cleared can be specified at one time.

Not affected.

Addressing mode Syntax Machine code Bytes [Cycles
Direct bit CLB #imm, dd 1416, dd, imm 3 8
Absolute bit CLB #imm, mmil 1Cs, Il, mm, imm 4 9

(Note1) The bytes-count increases by 1 when operating on 16-bit data with the data length selection
flag m set to 0.

74

CLC

Clear Carry Flag

CLC

Operation i C«0

Description : Clears the contents of carry flag C to 0.

Status flags

ON—OX3 <Z3
e

Not affected.
Not affected.
Not affected.
Not affected.
Not affected.
Not affected.
Not affected.
Not affected.
Cleared to 0.

Addressing mode

Syntax

Machine code

Bytes

Cycles

Implied

CLC

1816

75

, C L' Clear Interrupt Disable Status C LI

Operation 1«0
Description : Clears the interrupt disable flag | to 0.

Status flags
IPL: Not affected.

N Not affected.

\" Not affected.

m Not affected.

X Not affected.

D Not affected.

I Cleared to 0.

V4 Not affected.

C Not affected.
Addressing mode Syntax Machine code Bytes | Cycles
Implied CLI 5816 1 2

76

CLM

Clear m Flag

Operation © meo0

Description : Clears the data length selection flag m to 0.

Status flags

IPL : Not affected.

N Not affected.

\" Not affected.

m Cleared to 0.

X Not affected.

D Not affected.

I Not affected.

Z Not affected.

C Not affected.
Addressing mode Syntax Machine code Bytes |Cycles
Implied CLM D81s 1 2

77

C L P Clear Processor Status C L P

Operation : PSL« PSLAIMM
(IMM is the immediate value. Its specified in the second byte of the instruction.)

Description : Clears the processor status flags specified by the bit pattern in the second byte
of the instruction to 0.

Status flags : The specifed flags are cleared. IPL is not affected.
Addressing mode Syntax Machine code Bytes |Cycles
Immediate CLP #mm C216, imm 2 4

78

CLV

Clear Overflow Flag

CLV

Operation Ve O

Description : Clears the overflow flag V to 0.

Status flags

IPL: Not affected.

O x 3 < 2Z

O N —

Not affected.
Cleared to 0.
Not affected.
Not affected.
Not affected.
Not affected.
Not affected.
Not affected.

Addressing mode

| Syntax

Machine code

Bytes

Cycles

Implied

| cLv

B81s

79

CMP

Compare

CMP

Operation Acc - M

Description

Status flags

IPL: Not affected. ‘
N : Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of

the operation result is 1. Otherwise, cleared to 0.

\" Not affected.
m Not affected.
X Not affected.
D Not affected.
| Not affected.
Z

o]

Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
Set to 1 if the result of operation is 0 or larger. Otherwise, cleared to 0.

Subtracts the contents of memory from the contents of the accumulator. The
accumulator and memory contents are not changed.

Addressing mode Syntax Machine code Bytes | Cycles
Immediate CMP A, #imm C916, imm 2 2
Direct CMP A, dd C516, dd 2 4
Direct indexed X CMP A, dd, X D516, dd 2 5
Direct indirect CMP A, (dd) D216, dd 2 6
Direct indexed X indirect CMP A, (dd, X) C11e, dd 2 7
Direct indirect indexed Y CMP A, (dd), Y D116, dd 2 8
Direct indirect long CMPL A, (dd) C716, dd 2 10
Direct indirect long indexed Y | CMPL A, (dd), Y D716, dd 2 11
Absolute CMP A, mmil CDss, Il, mm 3 4
Absolute indexed X CMP A, mmll, X DDss, I, mm 3 6
Absolute indexed Y CMP A, mmill, Y D9ss, Il, mm 3 6
Absolute long CMP A, hhmmil CFie, Il, mm, hh 4 6
Absolute long indexed X CMP A, hhmmil, X DFie, Il, mm, hh 4 7
Stack pointer relative CMP A, nn, S C316, Nn 2 5
Stack pointer relative CMP A, (nn, S), Y D316, Nn 2 8
indirect indexed Y

(Note1) This table applies when using the accumulator A. If using the accumulator B, replace “A” with “B".
In this case, "421¢" is added at the beginning of the machine code, the bytes-count increases by
1 and the cycles-count increases by 2.

(Note2) When operating on 16-bit data in the immediate'addressing mode with the data length selection

flag m set to 0, the bytes-count increases by 1.

80

CPX

Compare Memory and Index Register X CPX

Operation

Description

Status flags

X-M

Subtracts the contents of memory from the contents of the index register X. The
index register X and memory contents are not changed.

IPL: Not affected.
N Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set
to 1) of the operation result is 1. Otherwise, cleared to 0.

\ Not affected. A

m Not affected.

X Not affected.

D Not affected.

| Not affected.

V4 Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

Cc Set to 1 if the result of operation is 0 or larger. Otherwise, cleared to 0.
Addressing mode Syntax Machine code Bytes | Cycles
Immediate CPX #imm EO1s, imm 2 2
Direct CPX dd E41s, dd 2 4
Absolute CPX mmil ECie, Il, mm 3 4

(Note1) When operating on 16-bit data in the immediate addressing mode with the index register length
selection flag x set to 0, the bytes-count increases by 1.

81

CPY

Compare Memory and Index Register Y CPY

Operation

Description

Status flags

Y-M

Subtracts the contents of memory from the contents of the index register Y. The
index register Y and memory contents are not changed.

IPL : Not affected.
N Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set
to 1) of the operation result is 1. Otherwise, cleared to 0.

\Y Not affected.

m Not affected.

X Not affected.

D Not affected.

| Not affected.

V4 Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Set to 1 if the result of operation is 0 or larger. Otherwise, cleared to 0.
Addressing mode Syntax Machine code Bytes |Cycles
Immediate CPY #imm CO1s, imm 2 2
Direct CPY dd C416,dd 2 4
Absolute CPY mmli CCis, Il, mm 3 4

(Note1) When operating on 16-bit data in the immediate addressing mode with the index register length se-
lection flag x set to 0, the bytes-count increases by 1.

82

DEC

Decrement by One

DEC

Operation
Description

Status flags

Acc « Acc - 1

IPL: Not affected.
N : Setto 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of

the operation result is 1. Otherwise, cleared to 0.
Not affected.
Not affected.
Not affected.
Not affected.
Not affected.
Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
Not affected.

ON— O X 3 <

or M« M-

Subtracts 1 from the contents of the accumulator or memory.

Addressing mode Syntax Machine code Bytes | Cycles
Accumulator DEC A 1A1e 1 2
Direct DEC dd Cé61e, dd 2 7
Direct indexed X DEC dd, X D616, dd 2 7
Absolute DEC mmll CEse, I, mm 3 7
Absolute indexed X DEC mmll, X DEss, I, mm 3 8

(Note1) The accumulator addressing mode's specification in this table applies when using the accumulator
A. If using the accumulator B, replace “A” with “B”. In this case, “4216” is added at the beginning
of the machine code, the bytes-count increases by 1 and the cycles-count increases by 2.

83

DEX Decrement Index Register X by One DEX

Operation Do XeX-1
- Description : Subtracts 1 from the contents of the index register X.

Status flags
IPL : Not affected.

N : Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set
to 1) of the operation result is 1. Otherwise, cleared to 0.

\Y Not affected.

m Not affected.

X Not affected.

D Not affected.

| Not affected.

p4 Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.
Addressing mode Syntax Machine code Bytes | Cycles
Implied DEX CAie 1 2

84

DEY Decrement Index Register Y by One DEY
Operation D YeVY-1
Description Subtracts 1 from the contents of the index register Y.

Status flags
IPL: Not affected

N : Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set

to 1) of the operation result is 1. Otherwise, cleared to 0.

\Y Not affected.

m Not affected.

X Not affected.

D Not affected.

| Not affected.

Z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.
Addressing mode Syntax Machine code Bytes | Cycles
Implied DEY 8816 1 2

85

DIV Divide DIV

Operation . B(remainder), A(quotient) « (B, A) / M
If m=0
B A M(n+1) M(n) A B
| Dividend | = = |_Quotient | | _Remainder |
If m=1
BL AL M(n Al B

+ = l l Quotient I | IRemainder—l

Description : When the data length selection flag m is set to 0, a 32-bit data stored in the
accumulators B (upper 16 bits) and A (lower 16 bits) are divided by a 16-bit data
in memory. The quotient is placed in the accumulator A, and the remainder is
placed in the accumulator B.

When the data length selection flag m is set to 1, a 16-bit data stored in the lower
8 bits of the accumulators B (upper 8 bits) and A (lower 8 bits) are divided by an
8 bit data in memory. The quotient is placed in the lower 8 bits of the
accumulator A, and the remainder is placed in the lower 8 bits of the accumulator
B.

When an overflow results from this operation negrect removed out, the V flag is
set. '

When divisor is 0, the zero division interrupt is generated, in which case the
contents of the processor status register are saved on the stack and a branch
occurs to the address in bank-0 as specified by the zero division interrupt vector.
Accumulator contents are not changed.

Status flags

IPL : Not affected.

N : Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of
quotient from the operation is 1. Otherwise, cleared to 0.

\" : Setto 1 when the quotient from the operation exceeds 16 bits (or 8 bits if the data

length selection flag m is set to 1) (i.e., an overflow has occurred). Otherwise,
cleared to 0. No changes occur when divisor is 0.

m Not affected.
X Not affected.
D Not affected.
| Not affected.
z Set to 1 when the quotient from the operation is 0. Otherwise, cleared to 0. No

changes occur when divisor is 0.

C : Setto 1 when the quotient from the operation exceeds 16 bits (or 8 bits if the data
length selection flag m is set to 1) (i.e., an overflow has occurred). Otherwise,
cleared to 0. No changes occur when divisor is 0.

86

DIV

Divide

DIV

indirect indexed Y

Addressing mode Syntax Machine code Bytes | Cycles
Immediate DIV #imm 8916, 2916, imm 3 27
Direct DIV dd 8916, 2516, dd 3 29
Direct indexed X DIV dd, X 8916, 3516, dd 3 30
Direct indirect DIV (dd) 8916, 3216, dd 3 31
Direct indexed X indirect DIV (dd, X) 8916, 2116, dd 3 32
Direct indirect indexed Y DIV (dd), Y 8916, 3116, dd 3 33
Direct indirect long DIVL (dd) 8916, 2716, dd 3 35
Direct indirect long indexed Y | DIVL (dd), Y 8916, 3716, dd 3 36
Absolute DIV mmll 8916, 2D1s, I, mm 4 29
Absolute indexed X DIV mmll, X 8916, 3D1s, Il ,mm 4 31
Absolute indexed Y DIV mmll, Y 8916, 3916, Il ,mm 4 31
Absolute long DIV hhmmll 8916, 2F1s, Il, mm, hh 5 31
Absolute long indexed X DIV hhmmll, X 8916, 3F1e, Il, mm, hh 5 32
Stack pointer relative DIV nn, S 8916, 2316, NN 3 30
Stack pointer relative DIV (nn, S), Y 8916, 3316, NN 3 33

(Note1) When operating on 16-bit data in the immediate addressing mode with the data length selection flag
m set to 0, the bytes-count increases by 1.
(Note2) The cycles-count in this table are for 16-bit + 8-bit operations. For 32-bit + 16-bit operations, the
cycles-count increases by 16.

87

EOR Exclusive OR Memory with Accumulator

EOR

Operation : Acc « AccV M

Description : Performs the logical EXCLUSIVE OR between the contents of the accumulator

and the contents of memory, and places the result in the accumulator.

Status flags

IPL: Not affected.
N : Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of

the operation result is 1. Otherwise, cleared to 0.

\ Not affected.

m Not affected.

X Not affected.

D Not affected.

| Not affected. ‘

4 Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

Cc Not affected.
Addressing mode Syntax Machine code Bytes | Cycles
Immediate EOR A, #imm 4916, imm 2 2
Direct EOR A, dd 4516, dd 2 4
Direct indexed X EOR A, dd, X 5516, dd 2 5
Direct indirect EOR A, (dd) 5216, dd 2 6
Direct indexed X indirect EOR A, (dd, X) 4116, dd 2 7
Direct indirect indexed Y EOR A, (dd), Y 5116, dd 2 8
Direct indirect long EORL A, (dd) 4716, dd 2 10
Direct indirect long indexed Y | EORL A, (dd), Y 5716, dd 2 11
Absolute EOR A, mmll 4D1e, Il, mm 3 4
Absolute indexed X EOR A, mmil, X 5D1s, Il, mm 3 6
Absolute indexed Y EOR A, mmil, Y 5916, Il, mm 3 6
Absolute long EOR A, hhmmll 4F1s, Il, mm, hh 4 6
Absolute long indexed X EOR A, hhmmll, X 5F1e, I, mm, hh 4 7
Stack pointer relative EOR A, nn, S 4316, Nn 2 5
Stack pointer relative EOR A, (nn, S), Y 5316, NN 2 8

indirect indexed Y

(Note1) This table applies when using the accumulator A. If using the accumulator B, replace "A” with “B".
In this case, “421¢" is added at the beginning of the machine code, the bytes-count increases by
1 and the cycles-count increases by 2.

(Note2) When operating on 16-bit data in the immediate addressing mode with the data length selection flag

m set to 0, the bytes-count increases by 1.

88

INC

Increment by One l NC

Operation
Description

Status flags

Acce— Acc+1 or M« M+ 1

Adds 1 to the contents of the accumulator or memory.

IPL: Not affcted.
N Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of
the operation result is 1. Otherwise, cleared to 0.

\" Not affected.

m Not affected.

X Not affected.

D Not affected.

| Not affected.

Y4 Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.
Addressing mode Syntax Machine code Bytes | Cycles
Accumulator INC A 3Ass 1 2
Direct INC dd E61e, dd 2 7
Direct indexed X INC dd, X F61e, dd 2 7
Absolute INC mmll EEss, Il, mm 3 7
Absolute indexed X INC mml_l, X FEss, I, mm 3 8

(Note1) The accumulator addressing mode's specification in this table applies when using the accu-
mulator A. If using the accumulator B, replace “A” with “B”. In this case, "4216” is added at
the beginning of the machine code, the bytes-count increases by 1 and the cycles-count
increases by 2.

89

INX

Increment Index Register X by One

INX

Operation Do Xe X+ 1

Description

Status flags

IPL : Not affected.
N : Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set

to 1) of the operation result is 1. Otherwise, cleared to 0.
Not affected.
Not affected.
Not affected.
Not affected.
Not affected.
Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
Not affected.

ON— O X 3 <

Adds 1 to the contents of the index register X.

Addressing mode

Syntax

Machine code

Bytesﬁ

Cycles

Implied.

INX

E816

90

INY

Increment Index Register Y by One

INY

Operation D YeY+1

Description

Status flags

IPL: Not affected.
N : Setto 1 when bit 15 (or bit 7 if the index register length selection flag x is set

to 1) of the operation result is 1. Otherwise, cleared to 0.
Not affected.
Not affected.
Not affected.
Not affected.
Not affected.
Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
Not affected.

ON — O X 3 <

Adds 1 to the contents of the index register Y.

Addressing mode

Syntax

Machine code

Bytes

Cycles

Implied

INY

C816

91

JMP

Jump JMP

Operation

Description

Status flags

If absolute addressing mode,

PCL « AD.
PCH « ADn

If absolute long addressing mode,
PCL « ADL
PCH « ADH
PG « ADc

If absolute indirect addressing mode,
PCL « (ADw, ADL)
PCH « (ADu, ADL + 1)

If absolute indirect long addressing mode,
PCL « (ADw, ADL)
PCH « (ADw, ADL + 1)
PG « (ADH, ADL + 2)

If absolute indexed X indirect addressing mode,
PCL « (ADw, ADL + X)
PCH « (ADH, ADL + X + 1)

(AD., ADn and ADc specify the instruction’s second, third and fourth bytes, re-
spectively.)

The JMP instruction causes a jump to the address specified for the addressing
mode in use.

Not affected.

Addressing mode Syntax Machine code Bytes | Cycles
Absolute JMP mmll 4Cse, Il, mm 3 2
Absolute long JMPL hhmmll 5Cie, I, mm, hh 4 4
Absolute indirect JMP (mmll) 6Cis, Il, mm 3 4
Absolute indirect long JMPL (mmll) DCie, Il, mm 3 8
Absolute indexed X indirect | JMP (mmll, X) 7Css, I, mm 3 6

JSR

JSR

Jump to Subroutine

Operation

Description

Status flags

If absolute addressing mode,
M(S) « PCH
S« S-1
M(S) « PCL
S«S-1
PCL « ADL
PCH « ADn

If absolute long addressing mode,

M(S) « PG

S« S-1

M(S) « PCn

S« S-1

M(S) « PCL

S« S-1

PCL « ADL

PCH « ADw

PG « ADa

If absolute indexed X indirect addressing mode,
M(S) « PCw.
S« S-1
M(S) « PCL
S« S-1
PCL < (ADw, ADL + X)
PCH « (ADH, ADL + X + 1)

(ADt, ADH and ADe specify the instruction’s second, third and fourth bytes, re-
spectively.)

The contents of the program counter PC (or the program bank register PG and
the program counter PC if absolute long addressing mode) are first saved on the
stack, then a jump occurs to the address shown for each addressing mode.

Not affected.

Addressing mode Syntax Machine code Bytes | Cycles
Absolute JSR mmli 2016, I, mm 3 6
Absolute long JSRL hhmmll 2216, l, mm, hh 4 8
Absolute indexed X indirect | JSR (mmil, X) FCis, I, mm 3 8

93

LDA

LDA

Load Accumulator from Memory

Operation
Description

Status flags

IPL :

N

ON— O X 3 <

Acc « M

Loads the contents of memory into the accumulator.

Not affected.

Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of
the operation result is 1. Otherwise, cleared to 0.

Not affected.
Not affected.
Not affected.
Not affected.
Not affected.
Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
Not affected.

Addressing mode Syntax Machine code Bytes | Cycles
Immediate LDA A, #imm AQie, imm 2 2
Direct LDA A, dd AS1e, dd 2 4
Direct indexed X LDA A, dd, X B516, dd 2 5
Direct indirect LDA A, (dd) B21s, dd 2 6
Direct indexed X indirect LDA A, (dd, X) Atie, dd 2 7
Direct indirect indexed Y LDA A, (dd), Y B11s, dd 2 8
Direct indirect long LDAL A, (dd) A716, dd 2 10
Direct indirect long indexed Y | LDAL A, (dd), Y B716, dd 2 11
Absolute LDA A, mmll ADss, I, mm 3 4
Absolute indexed X LDA A, mmll, X BDy1s, I, mm 3 6
Absolute indexed Y LDA A, mmll, Y B91s, Il, mm 3 6
Absolute long LDA A, hhmmll AFis, ll, mm, hh 4 6
Absolute long indexed X LDA A, hhmmll, X BFis, Il, mm, hh 4 7
Stack pointer relative LDA A, nn, S A316, Nn 2 5
Stack pointer relative LDA A, (nn, S), Y B31s, nn 2 8
indirect indexed Y -

(Note1) This table applies when using the accumulator A. If using the accumulator B, replace “A” with “B”.
In this case, “4216” is added at the beginning of the machine code, the bytes-count increases by
1 and the cycles-count increases by 2.

(Note2) When operating on 16-bit data in the immediate addressing mode with the data length selection flag

m set to 0, the bytes-count increases by 1.

94

LDM

Load Immediate to Memory

LDM

_ Operation : M« IMM (IMM is an immediate value)

Description : Loads an immediate value into memory.

Status flags

Not affected.

Addressing mode Syntax Machine code Bytes | Cycles
Direct LDM #imm, dd 6416, dd, imm 3 4
Direct indexed X LDM #imm, dd, X 7416, dd, imm 3 5
Absolute LDM #imm, mmil 9Crs, Il, mm, imm 4 5
Absolute indexed X LDM #imm, mmll, X 9Ess, I, mm, imm 4 6

(Note1) When operating on 16-bit data with the data length selection flag m set to

increases by 1.

0, the bytes-count

95

LDT Load Immediate to Data Bank Register LDT

Operation : DT « IMM (IMM is an immediate value)

Description : Loads an immediate value into the data bank register DT.

Status flags : Not affected.
Addressing mode Syntax Machine code Bytes Cycleél
Immediate . LDT #imm 8916, C216, imm 3 5

96

LDX

Load Index Register X from Memory

LDX

Operation D XeM

Description

Status flags

IPL: Not affected.
N : Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set

to 1) of the operation result is 1. Otherwise, cleared to 0.
Not affected.
Not affected.
Not affected.
Not affected.
Not affected.
Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
Not affected.

ON —~— 0O X 3 <

Loads the contents of memory into the index register X.

Addressing mode Syntax Machine code Bytes | Cycles
Immediate LDX #imm A216, imm 2 2
Direct LDX dd A616, dd 2 4
Direct indexed Y LDX dd, Y B61e, dd 2 5
Absolute LDX mmll AEss, I, mm 3 4
Absolute indexed Y LDX mmll, Y BEis, Il, mm 3 6

(Note1) When operating on 16-bit data in the immediate addressing mode with the index register length se-
lection flag x set to 0, the bytes-count increases by 1.

97

LDY

Load Index Register Y from Memory LDY

Operation

Description

Status flags

Y« M

Loads the contents of memory into the index register Y.

IPL: Not affected.
N Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set
to 1) of the operation result is 1. Otherwise, cleared to 0.

\Y Not affected.

m Not affected.

X Not affected.

D Not affected.

| Not affected.

Zz Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.
Addressing mode Syntax Machine code | Bytes | Cycles|
Immediate LDY #imm A0, imm 2 2
Direct LDY dd Adie, dd 2 4
Direct indexed X LDY dd, X B4ie, dd 2 5
Absolute LDY mmll ACts, I, mm 3 4
Absolute indexed X LDY mmil, X BCis, I, mm 3 6

(Note1) When operating on 16-bit data in the immediate addressing mode with the index register length se-
lection flag x set to 0, the bytes-count increases by 1.

98

LSR

Logical Shift Right

LSR

Operation
When m=0
b1s

o [[[TTTTTTTTTT [T c]

When m=1

o s [T T[T I*[E

Description

Shifts all bits of the accumulator or memory one place to the right. Bit 15 (or bit

7 if the data length selection flag m is set to 1) of the accumulator or memory is
loaded with 0.

The carry flag C is loaded from bit 0 of the data before the shift.

Status flags

IPL: Not affected.

ON—O X 3 <z

Cleared to “0".
Not affected.
Not affected.
Not affected.
Not affected.
Not affected.
Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
Set to 1 when bit 0 before the operation is 1. Otherwise, cleared to 0.

Addressing mode Syntax Machine code Bytes | Cycles
Accumulator LSR A 4A16 1 2
Direct LSR dd 4616, dd 2 7
Direct indexed X LSR dd, X 5616, dd 2 7
Absolute LSR mmli 4Ess, Il, mm 3 7
Absolute indexed X LSR mmil, X 5Ess, Il, mm 3 8

(Note1) The accumulator addressing mode's specification in this table applies when using the accumulator
A. If using the accumulator B, replace “A” with “B”. In this case, "4216” is added at the beginning
of the machine code, the bytes-count increases by 1 and the cycles-count increases by 2.

99

MPY

Multiply M PY

Operation

Description

Status flags
IPL :
N

ON — 0O X 3 <

B,A « AxM

When the data length selection flag m is set to 0, The contents of the accumulator
A and the contents of memory are multiplied. Multiplication is performed as 16-
bit x 16-bit, and the result is a 32-bit data which is placed in the accumulators B
(upper 16 bits of the result) and A (lower 16 bits of the result).

When the data length selection flag m is set to 1, the lower 8-bit contents of the
accumulator A and the contents of memory are multiplied. Multiplication is
performed as 8-bit x 8-bit, and the result is a 16-bit data which is placed in the
lower 8 bits of the accumulators B (upper 8 bits of the result) and A (lower 8 bits
of the result). '

Not affected.

Set to 1 when bit 31 (or bit 15 if the data length selection flag m is set to 1) of
the operation result is 1. Otherwise, cleared to 0.

Not affected.
Not affected.
Not affected.
Not affected.
Not affected.
Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
Not affected.

Addressing mode Syntax Machine code Bytes | Cycles
Immediate MPY #imm 8916, 0916, imm 3 16
Direct MPY dd 8916, 0516, dd 3 18
Direct indexed X MPY dd, X 8916, 1516, dd 3 19
Direct indirect MPY (dd) 8916, 1216, dd 3 20
Direct indexed X indirect MPY (dd, X) 8916, 0116, dd 3 21
Direct indirect indexed Y MPY (dd), Y 8916, 1116, dd 3 22
Direct indirect long MPYL (dd) 8916, 0716, dd 3 24
Direct indirect long indexed Y | MPYL (dd), Y 8916, 1716, dd 3 25
Absolute MPY mmil 8916, OD1s, I, mm 4 18
Absolute indexed X MPY mmll, X 8916, 1D1e, I, mm 4 20
Absolute indexed Y MPY mmll, Y 8916, 1916, Il, mm 4 20
Absolute long MPY hhmmli 8916, OF1s, I, mm, hh 5 20
Absolute long indexed X MPY hhmmli, X 8916, 1F1e, I, mm, hh 5 21
Stack pointer relative MPY nn, S 8916, 0316, NN 3 19
Stack pointer relative MPY (nn, S), Y 8916, 1316, NN 3 22
indirect indexed Y

(Note1) When operating on 16-bit data in the immediate addressing mode with the data length selection flag
m set to 0, the bytes-count increases by 1.

(Note2) The cycles-count in this table are for 8-bit x 8-bit multiplications. For 16-bit x 16-bit multiplications,
the cycles-count increases by 8.

100

MVN

Move Negative M V N

Operation

Description

Status flags

Mn ~ Mnsk ¢« Mm ~ Mmuk

Normally, a block of data is transferred from upper addresses to lower
addresses. The transfer is performed in the ascending address order of the
block being transferred. The target bank is specified by the instruction’s
second byte, and the address within the target bank is specified by the
contents of the index register Y. The source bank is specified by the
instruction’s third byte, and the address within the source bank is specified
by the contents of the index register X. The accumulator A is loaded with the
bytes-count of the data to be transferred. As each byte of data is transferred,
the index registers X and Y are incremented by 1, so that the index register
X will become a value equal to 1 larger than the source address of the last
byte transferred and the index register Y will become a value equal to 1
larger than the target address of the last byte received. The data bank
register DT will become the terget bank number, and the accumulator A will
become FFFFis.

The accumulator A is affected by flag m. The index register X and Y are
affected by flag x.

When the contents of the accumulator A is “001¢”, the data are not trans-
ferred.

Not affected.

Addressing mode Syntax Machine code Bytes | Cycles
Block transfer MVN n1, n2 5416, N1, N2 3 T+(i12)x7
(Note1) The cycles-count shown above is for when the number of bytes transferred, i, is an even

number. If i is an odd number, the cycles-count is obtained as follows:

7+ (i+2)x7+ 4.

Note that (i + 2) denotes the integer part of the result of dividing i by 2.

101

MVP

Move Positive M V P

Operation

Description

Status flags

Mnk ~ Mn ¢~ Mmk ~ Mm

Normally, a block of data is transferred from lower addresses to upper
addresses. The transfer is performed in the descending address order of
the block being transferred. The target bank is specified by the instruction’s
second byte, and the address within the target bank is specified by the
contents of the index register Y. The source bank is specified by the
instruction’s third byte, and the address within the source bank is specified
by the contents of the index register X. The accumulator A is loaded with the
bytes-count of the data to be transferred. As each byte of data is transferred,
the index registers X and Y are decremented by 1, so that the index register
X will become a value equal to 1 less than the source address of the last
byte transferred and the index register Y will become a value equal to 1
smaller than the target address. of the last byte received. The data bank
register DT will become the target bank number, and the accumulator A will
become FFFFis.

The accumulator A is affected by flag m. The index register X and Y are
affected by flag x.

When the contents of the accumulator A is “001¢", the data are not trans-
ferred.

Not affected.

Addressing mode Syntax Machine code Bytes [Cycles

Block transfer

MVP ni1, n2 4416, N1, N2 3 9+(i/12)x7

(Note1) The cycles-count shown above is for when the number of bytes transferred, i, is an even

number.
94+ (i+2)x7+5.

If i is an odd number, the cycles-count is obtained as follows:

Note that (i + 2) denotes the integer part of the result of dividing i by 2.

102

NOP

No Operation

NOP

Operation : PC« PC+1
PG « PG + 1 (if carry on PC)

Description

nothing else.

Status flags

Not affected.

This instruction only causes the program counter to be incremented by 1 and

Addressing mode

Syntax

Machine code

Bytes

Cycles

Implied

NOP

EA1e

103

O RA OR Memory with Accumulator O RA

Operation : Acc « Acc VM

Description : Performs the logical OR between the contents of the accumulator and the con-
tents of memory, and places the result in the accumulator.

Status flags
IPL: Not affected.

N : Setto 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the
operation result is 1. Otherwise, cleared to 0.

\ Not affected.

m Not affected.

X Not affected.

D Not affected.

| Not affected.

Z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.-

c Not affected.
Addressing mode Syntax Machine code Bytes |Cycles
Immediate ORA A, #imm 0916, imm " 2 2
Direct ORA A, dd 0516, dd 2 4
Direct indexed X ORA A, dd, X 1516, dd 2 5
Direct indirect ORA A, (dd) 1216, dd 2 6
Direct indexed X indirect ORA A, (dd, X) 0116, dd 2 7
Direct indirect indexed Y ORA A, (dd), Y 1116, dd 2 8
Direct indirect long ORAL A, (dd) 0716, dd 2 10
Direct indirect long indexed Y |ORAL A, (dd), Y 1716, dd 2 11
Absolute ORA A, mmll 0D1s, Il, mm 3 4
Absolute indexed X ORA A, mmli, X 1D1e, Il, mm 3 6
Absolute indexed Y ORA A, mmll, Y 1916, I, mm 3 6
Absolute long ORA A, hhmmll OF1s, Il, mm, hh 4 6
Absolute long indexed X ORA A, hhmmll, X 1Fss, Il, mm, hh 4 7
Stack pointer relative ORA A/ nmn, S 0316, NN 2 5
Stack pointer relative ORA A, (nn, S), Y 1316, NN 2 8

indirect indexed Y

(Note1) This table applies when using the accumulator A. If using the accumulator B, replace “A” with “B”".
In this case, “4216” is added at the beginning of the machine code, the bytes-count increases by 1
and the cycles-count increases by 2.

(Note2) When operating on 16-bit data in the immediate addressing mode with the data length selection flag
m set to 0, the bytes-count increases by 1.

104

PEA

Push Effective Address

PEA

Operation o M(S) « IMM2 (IMMz is the immediate value specified by the instruction’s third byte)
S«S-1
M(S) « IMMi (IMMiisthe immediate value specified by the instruction’s second byte)
S«S-1

Description : The instruction’s third and second bytes are saved on the stack in this order.

Status flags Not affected.

Addressing mode

Syntax

Machine code

Bytes

Cycles

Stack

PEA #immiimmz

F416, immz, imm1

105

P

El Push Effective Indirect Address P EI

Operation . M(S) « M (DPR + IMM + 1)

S« S-1
M(S) « M (DPR + IMM)
S« S-1

DPR represents the contents of the direct page register, and IMM represents
the offset address within the direct page as specified by the instruction’s
second byte.

Description : Saves the contents of the consecutive 2 bytes in the direct page as specified by

the sum of the contents of the direct page register DPR and the instruction’s
second byte on the stack in the order of upper address first and lower address

second.
Status flags : Not affected.
Addressing mode Syntax Machine code Bytes | Cycles
Stack PEI #imm D416, imm 2 5

106

PER

Push Effective Program Counter Relative Address

PER

Operation : EAR « PC + IMMz, IMM:

M(S) « Upper byte of EAR

S«S-1

M(S) « Lower byte of EAR

S« S-1
EAR represents the value obtained by adding the 16-bit data represented by “IMMz,
IMM:” and the contents of the program counter.
instruction’s third and second bytes, respectively, and “IMMz, IMM1” represents a 16-bit
data with IMM2 being the upper byte and IMM1 being the lower byte.

IMM2 and IMM1 represent the

Description : Saves the result of adding a 16-bit data consisting of an upper byte specified by
the instruction’s third byte and a lower byte specified by the instruction’s second
byte with the contents of the program counter on the stack in the order of the
result's upper byte first and lower byte second.

Status flags : Not affected.

Addressing mode

Syntax

Machine code

Bytes

Cycles

Stack

PER #immiimma2

6216, immz, immi

107

PHA

Push Accumulator A on Stack P H A

Operation

Description

Status flags

If m=0, If m=1,
M(S) « AH M(S) « AL
S« S-1 S«S-1
M(S) « AL
S«S-1

Saves the contents of the accumulator A to the address specified by the stack
pointer S. When the data length selection flag m is set to 0, the accumulator A’s
upper byte is saved on the stack first and then the lower byte. When the data
length selection flag m is set to 1, only the accumulator A’s lower byte is saved
on the stack.

Not affected.

Addressing mode Syntax Machine code Bytes | Cycles

Stack

PHA 4815 1 4

108

PHB

Push Accumulator B on Stack P H B

Operation

Description

Status flags

If m=0, If m=1,
M(S) « BH M(S) « BL
S« S-1 S«S-1
M(S) « BL
S«S-1

Saves the contents of the accumulator B to the address indicated by the stack
pointer S. When the data length selection flag m is set to 0, the accumulator B’s
upper byte is saved on the stack first and then the lower byte. When the data
length selection flag m is set to 1, only the accumulator B's lower byte is saved
on the stack.

Not affected.

Addressing mode Syntax Machine code Bytes i Cycles

Stack

PHB 4216, 4816 2 6

109

P H D Push Direct Page Register on St\ack P H D

Operation . M(S) « DPRx
S« S-1
M(S) « DPR.
S« S-1
Description : Saves the contents of the direct page register DPR to the address indicated by

the stack pointer S in the order of upper byte first and then lower byte.

Status flags : Not affected.

Addressing mode | Syntax Machine code Bytes | Cycles
Stack ‘ PHD 0B16 1 4

110

PHG

Push Program Bank Register on Stack

PHG

Operation o M(S) « PG

Description

stack pointer S.

Status flags

Not affected.

Saves the contents of the program bank register to the address indicated by the

Addressing mode

Syntax

Machine code

Bytes

Cycles

Stack

PHG

4B16

PH P Push Processor Status on Stack PH P

Operation : M(S) « PSH
S«S-1
M(S) « PS.
S«S-1
Description : Saves the contents of the processor status register PS to the address indicated

by the stack pointer S in the order of upper byte and then lower byte.

Status flags : Not affected.

Addressing mode Syntax Machine code Bytes | Cycles
Stack PHP 0816 1 4

112

PHT

Push Data Bank Register on Stack

PHT

Operation © M(S) « DT |
S« S-1 I‘

!

Description : Saves the contents of the data bank register DT to the address indicated by the A '

stack pointer S.

Status flags : Not affected.

Addressing mode

Syntax

Machine code

Bytes

Cycleq

Stack

PHT

8B1s

113

P HX Push Index Register X on Stack PHX

Operation o If x=0, If x=1,
M(S) « Xn M(S) « Xu
S« S-1 S« S-1
M(S) « Xu
S« S-1
Description : Saves the contents of the index register X to the address indicated by the stack

pointer S. When the index register length selection flag x is set to 0, the contents
are saved in the order of upper byte and then lower byte. When the index register
length selection flag x is set to 1, only the lower byte is saved on the stack.

Status flags : Not affected.
Addressing mode Syntax Machine code Bytes | Cycles
Stack PHX DAt 1 4

114

PHY

Push Index Register Y on Stack

PHY

Operation o I x=0,
M(S) « Yu
S« S-1
M(S) « YL
S«S-1
Description

If x=1,
M(S) « YL
S« S-1

Saves the contents of the index register Y to the address indicated by the stack

pointer S. When the index register length selection flag x is set to 0, the contents
are saved in the order of upper byte and then lower byte. When the index register
length selection flag x is set to 1, only the lower byte is saved on the stack.

Status flags

Not affected.

Addressing mode

Syntax

Machine code

Bytes

Cycles

Stack

PHY

5A16

115

PLA

Pull Accumulator A from Stack

PLA

Operation o If m=0, If m=1,
S« S+1 S« S+1
AL « M(S) AL « M(S)
S«S+1
An « M(S)
Description : The stack pointer S is incremented, and then restores the lower byte of the

accumulator A with the data at the address indicated by the stack pointer S.
Again, increments the stack pointer S and then restores the upper byte of the ac-
cumulator A with the data at the address indicated by the stack pointer S. When
the data length selection flag m is set to 0, 2 bytes data are restored. When the
data length selection flag m is set to 1, only 1 byte data is restored (to the lower

byte of the accumulator A).

Status flags

IPL: Not affected.

N : " Setto 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the
operation result is 1. Otherwise, cleared to 0.

ON — O X 3 <

Not affected.
Not affected.
Not affected.
Not affected.
Not affected.
Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
Not affected.

Addressing mode

Syntax

Machine code

Bytes

Cycles

Stack

PLA

6816

116

P LB Pull Accumulator B from Stack PLB
Operation If m=0, If m=1,

S« S+1 S« S+1

BL « M(S) BL « M(S)

S« S+1

B « M(S)
Description The stack pointer S is incremented, and then restores the lower byte of the

Status flags

accumulator B with the data at the address indicated by the stack pointer S.
Again, increments the stack pointer S and then restores the upper byte of the
accumulator B with the data at the address indicated by the stack pointer S.
When the data length selection flag m is set to 0, 2 bytes data are restored.
When the data length selection flag m is set to 1, only 1 byte data is restored (to
the lower byte of the accumulator B).

IPL: Not affected.
N Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1)of
the operation result is 1. Otherwise, cleared to 0.
\ Not affected.
m Not affected.
X Not affected.
D Not affected.
| Not affected.
4 Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
C Not affected.
Addressing mode] Syntax Machine code Bytes[Cycles

Stack

‘ PLB 4216, 6816 2 , 7

117

P L D Pull Direct Page Register from Stack P L D

Operation i S« S +1
DPRL « M(S)
S« S +1
DPRH « M(S)
Description : The stack pointer S is incremented, and then restores the lower byte of the direct

page register DPR with the data at the address indicated by the stack pointer S.
Again, increments the stack pointer S and then restores the upper byte of the
direct page register DPR with the data at the address indicated by the stack

pointer S.
Status flags : Not affected.
Addressing mode Syntax Machine code Bytes | Cycles
Stack PLD) 2B1e 1 5

118

PLP

Pull Processor Status from Stack

PLP

Operation S« S+1
PSL « M(S)
S« S+1
PSH « M(S)
Description

The stack pointer S is incremented and then restores the lower byte of the

processor status register PS with the data at the address indicated by the stack
pointer S. Again, increments the stack pointer S and then restores the upper byte
of the processor status register PS with the data at the address indicated by the
stack pointer S.

Status flags

Changes to the values restored from the stack.

Addressing mode

Syntax

Machine code

Bytes

Cycles

Stack

PLP

2816

119

PLT

Pull Data Bank Register from Stack

PLT

Operation . S« S+1
DT « M(S)

Description

Status flags

IPL : Not affected.

ON— O X 3 < Z

The stack pointer S is incremented, and then the data bank register DT is
restored with the data at the address indicated by the stack pointer S.

Set to 1 when bit 7 of the operation result is 1. Otherwise, cleared to 0.
Not affected.
Not affected.
Not affected.
Not affected.
Not affected.
Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
Not affected.

Addressing mode

Syntax

Machine code

Bytes

Cycles

Stack

PLT

AB16

120

PLX

Pull Index Register X from Stack

PLX

Operation o If x=0, If x=1,
S«S+1 S« S+1
XL « M(S) XL« M(S)
S« S+1
Xu « M(S)
Description : The stack pointer S is incremented, and then restores the lower byte of the index

register X with the data at the address indicated by the stack pointer S. Again,
increments the stack pointer S and then restores the upper byte of the index
register X with the data at the address indicated by the stack pointer S. When
the index register length selection flag x is set to 0, 2 bytes are restored. When
the index register length selection flag x is set to 1, only 1 byte is restored (to the

lower byte of the index register X).

Status flags

IPL : Not affected.
N : Setto 1 when bit 15 (or bit 7 if the index register length selection flag x is set

to 1) of the operation result is 1. Otherwise, cleared to 0.
Not affected.
Not affected.
Not affected.
Not affected.
Not affected.
Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
Not affected.

ON—OXxX 3 <

Addressing mode

Syntax

Machine code

Bytes | Cycles

Stack

PLX

FA1s

1 5

121

PLY

Pull Index Register Y from Stack

PLY

Operation o If x=0, If x=1,
S« S+1 S«S+1
YL « M(S) YL « M(S)
S« S+1
Yo« M(S)
Description : The stack pointer S is incremented, and then restores the lower byte of the index

register Y with the data at the address indicated by the stack pointer S. Again,
increments the stack pointer S and then restores the upper byte of the index
register Y with the data at the address indicated by the stack pointer S. When
the index register length selection flag x is set to 0, 2 bytes are restored. When
the index register length selection flag x is set to 1, only 1 byte is restored (to the

lower byte of the index register Y).

Status flags

IPL: Not affected.
N : Setto 1 when bit 15 (or bit 7 if the index register length selection flag x is set

to 1) of the operation result is 1. Otherwise, cleared to 0.
Not affected.
Not affected.
Not affected.
Not affected.
Not affected.
Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
Not affected.

— o x 3 <

O N

Addressing mode

Syntax

Machine code

Bytes

Cycies

Stack

PLY

7A16

122

PSH Push PSH

Operation . M(S) « A, B, X, Y, DPR, DT, PG or PS

Description : This instruction’s second byte specifies the registers to be saved. The registers
corresponding to the bits in the second byte that are 1 are saved on the stack.
The bit and register correspondence is as shown below:

bz bo -
L ps PG DT T DOPRIY [X T B [T A]
< Saved on the stack in this order.

Status flags : Not affected.
Addressing mode Syntax Machine code Bytes | Cycles
Stack PSH #nn EB1s, nn 2 12+2xi14+i2

(Note1) To the cycles-count shown above, the values shown below are added depending on the registers
being saved. The count is 12 cycles when no registers are saved. i1 in above table represents
the number of registers (chosen from A, B, X, Y, DPR and PS) to be saved, and iz represents the
number of registers (chosen from DT and PG) to be saved.

Register type PS PG DT DPR Y X B A
Cycles-count 2 1 1 2 2 2 2 2

123

PSH

Push

PSH

PSH

NO

M(S) <« DPRH

S « S-1

nG)=12

ne) =12

)

7

(

NO

NO

NO

NO

NO

124

PUL

Pull P U L

Operation

Description

Status flags

M(S) » A, B, X, Y, DPR, DT or PS

This instruction’s second byte specifies the registers to be restored. The registers
corresponding to the bits in the second byte that are 1 are restored from the
stack. The bit and register correspondence is as shown below:

b7 bo
[pPs | l ot [pPRIY [T x [B | A]
Restored from the stack in this order. —

(Note) The contents of accumulator B's higher 8-bit will be changed, when PUL instruction
is executed with m=0 and the restored registor including PS whose m=1.

When bit 7 of the instruction’s second byte is 1, specifying that the program
status register PS is to be restored, the status flags are restored to the values
that had been restored from the stack. Otherwise, the status flags are not
affected.

Addressing mode Syntax Machine code Bytes |Cycles

Stack

PUL #nn FBis, nn 2 144 3xi1+4xi2

(Note1) To the cycles-count shown above, the values shown below are added depending on the registers
being restored. The count is 14 cycles when no registers are restored. i1 in above table represents
the number of registers (chosen from A, B, X, Y, PS and DT) to be saved. i2=1 if DPR is to be
restored, and i2=0 if DPR is not to be restored.

Register type PS DT DPR Y X

@©
>

Cycles-count 3 3 4 3 3 3 3

125

PUL

Pull

PUL

PUL

S « S+1
PSL « M(S)
S « S+1
PSH « M(S)

Y

S « S+1
DPRL « M(S)
S « S+1
DPRH « M(S)

S « S+1
YL « M(S)
S « S+1
YH « M(S)

S«
YL

S+1
M(S)

\/
A

S « S+1
XL «— M(S)

S+1
BL « M(S)

S « S+1
AL « M(S)
S « S+1
AH « M(S)

S « S+1
AL « M(S)

126

RLA

Rotate Left Accumulator A

RLA

Operation

If m=0, rotate n bits to left (n=0-65535)

bis bo
nllEEEEEEEEEEREEN .
If m=1, rotate n bits to left (n=0-255)
L—‘m bo “.l
HEEEEN
Description : The contents of the accumulator A are rotated to the left by n bits. The value
of n is specified by the instruction’s third byte (or third and fourth bytes when
m=0).
Status flags : Not affected.

Addressing mode

Syntax

Machine code

Bytes | Cycles

Immediate

RLA #imm

8916, 4916, imm

3 6+i

i: Number of rotation

(Note1) When the data length selection flag m is 0, the bytes-count increases by 1.

127

ROL

Rotate One Bit Left RO L

Operation

If m=0,

N EEEEEEEEEREERET T

If m=1,

L—Lm

TTTT T e

Description

Status flags

The carry flag C is linked to the accumulator or memory, and the combined
contents are rotated by 1 bit to the left.

Bit 0 of the accumulator or memory is loaded with the content of the carry flag
C before execution of this instruction, and the carry flag C is loaded with the
content of bit 15 (or bit 7 if the data length selection flag m is set to 1) of the
accumulator or memory before execution of this instruction.

IPL: Not affected.
N Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of
the operation result is 1. Otherwise, cleared to 0.
\ Not affected.
m Not affected.
X Not affected.
D Not affected.
| Not affected.
Z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
Cc Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) before
execution of the instruction is 1. Otherwise, cleared to 0
Addressing mode Syntax Machine code Bytes | Cycles
Accumulator ROL A 2A1s 1 2
Direct ROL dd 2616, dd 2 7
Direct indexed X ROL dd, X 3616, dd 2 7
Absolute ROL mmll 2E1s, Il, mm 3 7
Absolute indexed x ROL mmil, X 3E1s, I, mm 3 8

(Note1) The accumulator addressing mode's specification in this table applies when using the accumulator

A.

If using the accumulator B, replace “A” with “B”. In this case, “4216” is added at the beginning

of the machine code, the bytes-count increases by 1 and the cycles-count increases by 2.

128

RO R Rotate One Bit Right RO R

Operation
If m=0,
bis bo
IIIlIIIlIHlIIIFJ
If m=1,
V b7 bo
TITTTITH
Description : The carry flag C is linked to the accumulator or memory, and the combined

contents are shifted by 1 bit to the right.

Bit 15 (or bit 7 if the data length selection flag m is set to 1) of the accumula-
tor or memory is loaded with the content of the carry flag C, and the carry flag
C is loaded with the content of bit 0 of the accumulator or memory before
execution of this instruction.

Status flags
IPL . Not affected.

N : Setto 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of
the operation result is 1. Otherwise, cleared to 0.

\ Not affected.

m Not affected.

X Not affected.

D Not affected.

| Not affected.

4 Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Set to 1 when bit 0 before execution of the instruction is 1. Otherwise, cleared

to 0. :

Addressing mode Syntax Machine code Bytes | Cycles
Accumulator ROR A 6A16 1 2
Direct ROR dd 6616, dd 2 7
Direct indexed X ROR dd, X 7616, dd 2 7
Absolute ROR mmll 6E1s, Il, mm 3 7
Absolute indexed X ROR mmll, X 7Eis, I, mm 3 8

(Note1) The accumulator addressing mode's specification in this table applies when using the accumulator
A. If using the accumulator B, replace “A” with “B". In this case, "4216” is added at the beginning
of the machine code, the bytes-count increases by 1 and the cycles-count increases by 2.

129

RTI Return from Interrupt RT'

Operation : S« S+1

PSL « M(S)
S« S +1
PSH « M(S)
S« S+1
PCL « M(S)
S« S+1
PCH « M(S)
S« S +1
PG « M(S)

Description : The contents of the processor status register PS, program counter PC, and

program bank register PG, which are saved on the stack when the last interrupt
was accepted, are restored these registers.

Status flags : Restored according to the values that had been on the stack.
Addressing mode Syntax Machine code Bytes | Cycles
Implied RTI 4016 1 11

130

RTL Return from Subroutine Long

RTL

Operation i S« S+t
PCL « M(S)
S« S+1
PCh « M(S)
S«S+1
PG « M(S)

Description : The program counter PC and program bank register PG are restored according

to the state previously saved on the stack.

Status flags : Not affected.
Addressing mode Syntax Machine code Bytes | Cycles
Implied RTL 6B1s 1 8

131

RTS Return from Subroutine RTS

Operation S« S+1
PCL « M(S)
S« S +1
PCh « M(S)
Description : The program counter PC is restored according to the state previously saved on
the stack.
Status flags : Not affected.
Addressing mode Syntax Machine code Bytes | Cycles
Implied RTS 6016 1 5

132

S B C Subtract with Carry S B C

Operation : Acc,Ce Acc-M-C

Description : Subtracts the contents of memory and the 1's complements of carry flag from the
contents of the accumulator , and places the result in the accumulator. Executed
as a binary subtraction if the decimal operation mode flag D is set to 0. Executed
as a decimal subtraction if the decimal operation mode flag D is set to 1.

Status flags
IPL : Not affected.

N : Setto 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of
the operation result is 1. Otherwise, cleared to 0. Meaningless for decimal
subtraction.

V . Set to 1 when binary subtraction of signed data results in a value outside the

range of -32768 to +32767 (-128 to +127 if the data length selection flag m is set
to 1). Otherwise, cleared to 0. Meaningless for decimal subtraction.

m Not affected.

X Not affected.

D Not affected.

i Not affected.

Z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C : Setto 1 when the result of operation is equal to or larger than 0. Otherwise,

cleared to 0, and a borrow is indicated.

Addressing mode Syntax Machine code Bytes | Cycles
Immediate | SBC A, #imm E9ts, imm 2 2
Direct SBC A, dd ES51e, dd 2 4
Direct indexed X SBC A,dd, X F516, dd 2 5
Direct indirect SBC A, (dd) F216, dd 2 6
Direct indexed X indirect SBC A,(dd, X) E11e, dd 2 7
Direct indirect indexed Y SBC A,(dd), Y F11e, dd 2 8
Direct indirect long SBCL A, (dd) E716, dd 2 10
Direct indirect long indexed Y | SBCL A, (dd), Y F716, dd 2 11
Absolute SBC A,mmll ED1e,ll,mm 3 4
Absolute indexed X SBC A, mmll, X FDss, Il, mm 3 6
Absolute indexed Y SBC A, mmil, Y F91e, Il, mm . 3 6
Absolute long SBC A, hhmmll EF1e, Il, mm, hh 4 6
Absolute long indexed X SBC A, hhmmll, X FFis, l, mm, hh 4 7
Stack pointer relative SBC A, nn, S E316, nn 2 5
Stack pointer relative SBC A, (nn, S), Y F316, nn 2 8

indirect indexed Y

(Note1) This table applies when using the accumulator A. If using the accumulator B, replace “A” with “B".
In this case, “421¢” is added at the beginning of the machine code, the bytes-count increases by 1
and the cycles-count increases by 2.

(Note 2)When operating on 16-bit data in the immediate addressing mode with the data length selection flag
m set to 0, the bytes-count increases by 1.

133

SEB set Bit SEB

Operation P M« MVIMM

IMM is the bit pattern that specifies the bit positions that are to be set to 1.

When the data length selection flag m is set to 1, IMM is placed in the third byte
(direct bit addressing mode) or the fourth byte (absolute bit addressing mode) of
the instruction.

When the data length selection flag m is set to 0, IMM is placed in the third and
fourth bytes (direct bit addressing mode) or the fourth and fifth bytes (absolute bit
addressing mode) of the instruction.

Description : The SEB instruction sets the specified memory bits to 1. Multiple bits to be set

can be specified at one time.

Status flags : Not affected.
Addressing mode Syntax Machine code Bytes | Cycles
Direct bit SEB #imm, dd 0416, dd, imm 3 8
Absolute bit SEB #imm, mmil 0Cts, Il, mm, imm 4 9

(Note1) When operating on 16-bit data with the data length selection flag m set to 0, the bytes-count
increases by 1.

134

S EC Set Carry Flag

SEC

Operation i Ce1

Description : Sets the carry flag C to 1.

Status flags

IPL: Not affected.
Not affected.
Not affected.
Not affected.
Not affected.
Not affected.
Not affected.
Not affected.
Set to 1.

ON— O XX 3 < 2Z2

Addressing mode Syntax

Machine code

Bytes

Cycles

Implied SEC

3816

135

S El Set Interrupt Disable Status S El

Operation Do le 1
Description : Sets the interrupt disable flag | to 1.

Status flags

IPL: Not affected.

N Not affected.

V . Not affected.

m : Not affected.

X Not affected.

D Not affected.

1 Set to 1.

Z Not affected.

C Not affected.
Addressing mode Syntax Machine code Bytes | Cycles
Implied SEI 7816 1 2

136

S E M Set m Flag

SEM

Operation oome 1

Description : Sets the data length selection flag m to 1.

Status flags

IPL Not affected.

N Not affected.

\ Not affected.

m Set to 1.

X Not affected.

D Not affected.

| Not affected.

Y4 Not affected.

C Not affected.
Addressing mode Syntax Machine code Bytes |Cycles
Implied SEM F816 1 2

137

S E P Set Processor Status S E p

Operation : PSL ¢« PSLVIMM
(IMM is the immediate value specified in the second byte of the instruction.)

Description : Sets the processor status flags specified by the bit pattern in the second byte of
the instruction to 1. .

Status flags : The specified flags are set. IPL is not affected.
Addressing mode Syntax Machine code Bytes | Cycles
Immediate SEP #imm E216, imm 2 3

138

STA

Store Accumulator in Memory

STA

Operation : When m=0, When m=1
M(n) « AccL M(n) « AccL
M(n+1) « AccH

Description : Stores the contents of the accumulator in memory.

The contents of the accumulator are not changed.

Status flags : Not affected.

Addressing mode Syntax Machine code Bytes | Cycles
Direct STA A, dd 8516, dd 2 4
Direct indexed X STA A, dd, X 9516, dd 2 5
Direct indirect STA A, (dd) 9216 dd 2 7
Direct indexed X indirect STA A, (dd, X) 8116, dd 2 7
Direct indirect indexed Y STA A, (dd), Y 9116, dd 2 7
Direct indirect long STAL A, (dd) 8716, dd 2 10
Direct indirect long indexed Y | STAL A, (dd), Y 9716, dd 2 11
Absolute STA A, mmll 8D1e, Il, mm 3 5
Absolute indexed X STA A, mmll, X 9D1e, I, mm 3 5
Absolute indexed Y STA A, mml, Y 9916, I, mm 3 5
Absolute long STA A, hhmmll 8F1s, Il, mm, hh 4 6
Absolute long indexed X STA A, hhmmll, X 9F1s, Il, mm, hh 4 7
Stack pointer relative STA A, nn, S 8316, NN 2 5
Stack pointer relative STA A, (nn, S), Y 9316, NN 2 8
indirect indexed Y

(Note1) This table applies when using the accumulator A. If using the accumulator B, replace “A” with “B”.
In this case, “4216” is added at the beginning of the machine code, the bytes-count increases by 1
and the cycles-count increases by 2.

139

STP Stop STP

Operation . Stop the oscillator.

Description : Resets the oscillator controliing flip-flop circuit to inhibit the oscillator. To restart
the oscillator, either an interrupt or reset must be executed.

Status flags : Not affected.
Addressing mode Syntax Machine code Bytes | Cycles
Implied STP . DB1e 1 3

140

STX Store Index Register X in Memory

STX

Operation ;' When x=0, When x=1
M(n) « Xu M(n) « Xu
M(n+1) « Xu

Description : Stores the contents of the index register X in memory.

register X remain the same.

The contents of the index

Status flags : Not affected.
Addressing mode Syntax Machine code Bytes | Cycles
Direct STX dd 8616, dd 2 4
Direct indexed Y * STX dd, Y 9616, dd 2 5
Absolute STX mmil 8Ess, I, mm 3 5

141

STY

Store Index Register Y in Memory

STY

Status flags

‘Operation When x=0,
M(n) « Y.
M(n+1) « Yu
Description

Not affected.

When x=1
M(n) « YU

Stores the contents of the index register Y in memory. The contents of the index
register Y remain the same.

Addressing mode Syntax Machine code Bytes | Cycles
Direct STY dd 8416, dd 2 4
Direct indexed X STY dd, X 9416, dd 2 5
Absolute STY mmll 8C1s, Il, mm 3 5

142

TA D Transfer Accumulator A to Direct Page Reg_;ister TA D
Operation : DPR « A
Description Loads the direct page register DPR with the contents of the accumulator A. Data

is transferred as 16-bit data regardless of the status of the data length selection

flag m. The contents of the accumulator A are not changed.

Status flags Not affected.

Addressing mode

Syntax

Machine code

Bytes

Cycles

Implied

TAD

5B1s

143

TAS

Transfer Accumulator A to Stack Pointer

TAS

Operation : S« A

Description

Status flags

Loads the stack pointer S with the contents of the accumulator A. Data is

transferred as 16-bit data regardless of the status of the data length selection flag

m. The contents of the accumulator A are not changed.

Not affected.

Addressing mode

Syntax

Machine code

Bytes

Cycles

Implied

TAS

1B1e

144

TAX Transfer Accumulator A to Index Reg_;ister X TAX
Operation If x=0, If x=1,

X« A X« A

XH ¢ AH
Description Loads the index register X with the contents of the accumulator A. The contents

Status flags

of the accumulator A.are not changed.

IPL: Not affected.
N Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set
to 1) of the operation result is 1. Otherwise, cleared to 0.
\" Not affected.
m Not affected.
X Not affected.
D Not affected.
I Not affected.
Z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
C Not affected.
Addressing mode Syntax Machine code Bytes | Cycles

Implied

TAX AAss 1 2

145

TAY Transfer Accumulator A to Index Register Y TAY
Operation If x=0, If x=1,

YL« Al Yo « A

YH ¢« An
Description Loads the index register Y with the contents of the accumulator A. The contents

Status flags

of the accumulator A are not changed.

IPL : Not affected.
N Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set
to 1) of the operation result is 1. Otherwise, cleared to 0.

\Y Not affected.

m Not affected.

X Not affected.

D Not affected.

| Not affected.

V4 Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.

Addressing mode Syntax Machine code Bytes | Cycles

Implied

TAY A81s 1 2

146

TB D Transfer Accumulator B to Direct Page Register TB D
Operation : DPR« B
Description Loads the direct page register DPR with the contents of the accumulator B. Data

is transferred as 16-bit data regardless of the status of the data length selection

flag m. The contents of the accumulator B are not changed.

Status flags

Not affected.

Addressing mode

Syntax

Machine code

Bytes

Cycles

Implied

TBD

4216, 5B16

147

TBS

Transfer Accumulator B to Stack Pointer

TBS

Operation : S« B

Description

Status flags

Loads the stack pointer S with the contents of the accumulator B. Data is

transferred as 16-bit data regardless of the status of the data length selection flag

m. The contents of the accumulator B are not changed.

Not affected.

Addressing mode

Syntax

Machine code

Bytes

Cycles

Implied

TBS

4216, 1B1s

1148

TBX

Transfer Accumulator B to Index Register X TBX

Operation

Description

Status flags

If x=0, If x=1,
XL « BL XL « BL
Xu < BH

Loads the index register X with the contents of the accumulator B. The contents
of the accumulator B are not changed.

IPL: Not affected.
N Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set
to 1) of the operation result is 1. Otherwise, cleared to 0.

\" Not affected.

m Not affected.

X Not affected.

D Not affected.

l Not affected.

4 Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

c Not affected. '

Addressing mode Syntax Machine code Bytes | Cycles

Implied

TBX 4216, AA1s 2 4

149

TBY Transfer Accumulator B to Index Register Y TBY
Operation If x=0, Iif x=1,

Y. « B Y. « Bu

YH < BH
Description Loads the index register Y with the contents of the accumulator B. The contents

Status flags

of the accumulator B are not changed.

IPL : Not affected.
N Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set
to 1) of the operation result is 1. Otherwise, cleared to 0.

\ Not affected.

m Not affected.

X Not affected.

D Not affected.

| Not affected.

4 Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.

Addressing mode Syntax Machine code Bytes | Cycles

Implied

TBY 4216, A816 2 4

150

TDA Transfer Direct Page Register to Accumulator A TDA
Operation If m=0, If m=1,

AL « DPR. AL « DPRL

An « DPRu
Description Loads the accumulator A with the contents of the direct page register DPR. The

Status flags

contents of the direct page register DPR are not changed.

IPL: Not affected.
N Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of
the operation result is 1. Otherwise, cleared to 0.

\Y Not affected.

m Not affected.

X Not affected.

D Not affected.

I Not affected.

V4 Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.

Addressing mode ’ Syntax Machine code] Bytes |Cycles

Implied

| TDA 7B1s L 2

151

TD B Transfer Direct Page Register to Accumulator B) T D B

Operation : f m=0, If m=1,
BL « DPRL Bu < DPR.
Bx « DPRn
Description : Loads the accumulator B with the contents of the direct page register DPR. The

contents of the direct page register DPR are not changed.

‘Status flags
IPL : Not affected.

N : Setto 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of
the operation result is 1. Otherwise, cleared to 0.

Vv Not affected.

m Not affected.

X Not affected.

D Not affected.

| Not affected.

4 Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.
Addressing mode Syntax Machine code Bytes | Cycles
Implied TDB 4216, 7B16 2 4

152

TSA ‘ Transfer Stack Pointer to Accumulator A TSA
Operation If m=0, ‘ If m=1,

AL« SL AL « Su

A < Su
Description Loads the accumulator A with the contents of the stack pointer S. The contents

Status flags

of the stack pointer S are not changed.

IPL: Not affected.
N Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of
the operation result is 1. Otherwise, cleared to 0.

Vv Not affected.

m Not affected.

X Not affected.

D Not affected.

| Not affected.

4 Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.

Addressing mode Syntax Machine code Bytes | Cycles

Implied

TSA 3Bie 1 2

153

TS B Transfer Stack Pointer to Accumulator B TS B
Operation If m=0, If m=1,

BL« St BL « S

Bu « Su
Description Loads the accumulator B with the contents of the stack pointer S. The contents

Status flags

of the stack pointer S are not changed.

IPL: Not affected.
N Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of
the operation result is 1. Otherwise, cleared to 0.

v Not affected.

m Not affected.

X Not affected.

D Not affected.

| Not affected.

4 Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.

Addressing mode Syntax Machine code Bytes | Cycles

Implied

TSB 4216, 3B1s 2 4

154

TSX

Transfer Stack Pointer to Index Register X

TSX

Operation o If x=0,
XL« Su
XH < SH
Description

If x=1,

XL« S

of the stack pointer S are not changed.

Status flags

IPL: Not affected.
N : Setto 1 when bit 15 (or bit 7 if the index register length selection flag x is set

to 1) of the operation result is 1. Otherwise, cleared to 0.

Not affected.

Not affected.
Not affected.

v
m : Not affected.
X
D

O N —

Not affected.
Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
Not affected.

Loads the index register X with the contents of the stack pointer S. The contents

Addressing mode

Syntax

Machine code

Bytes

Cycles

Implied

TSX

BAis

155

TXA Transfer Index Register X to Accumulator A TXA
Operation If m=0 and x=0, If m=0 and x=1, If m=1,

AL« Xo AL« Xu AL « XL

AH «— XH An « 0016
Description Loads the accumulator A with the contents of the index register X. The contents

Status flags

of the index register X are not changed.

IPL: Not affected.
N Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of
the operation result is 1. Otherwise, cleared to 0.
Vv Not affected.
m Not affected.
X Not affected.
D Not affected.
| Not affected. :
p4 Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
C Not affected.
Addressing mode Syntax Machine code Bytes | Cycles

Implied

TXA 8A1s 1 2

156

TX B Transfer Index Register X to Accumulator B TXB
Operation If m=0 and x=0, If m=0 and x=1, If m=1,

BL « Xu BL « XL B X

Bu « Xu Bn « 0016
Description Loads the accumulator B with the contents of the index register X. The contents

Status flags

of the index register X are not changed.

IPL : Not affected.
N Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of
the operation result is 1. Otherwise, cleared to 0.

\" Not affected.

m Not affected.

X Not affected.

D Not affected.

| Not affected.

z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.

Addressing mode Syntax Machine code Bytes |Cycles

Implied

TXB 4216, 8A16 2 4

157

TXS

Transfer Index Register X to Stack Pbinter

TXS

Operation o If x=0,
St « Xu
SH « Xu
Description

Status flags

If x=1,
SL « Xu
S « 0016

of the index register X are not changed.

Not affected.

Loads the stack pointers with the contents of the index register X. The contents

Addressing mode

Syntax

Machine code

Bytes

Cycles

Implied

TXS

9A16

158

XY

Transfer Index Register Xto Y TXY

Operation

Description

Status flags

If x=0, If x=1,
YL« Xu Y« X
YH « Xu

Loads the index register Y with the contents of the index register X. The con-
tents of the index register X are not changed.

IPL: Not affected.
N Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set
to 1) cf the operation result is 1. Otherwise, cleared to 0.

\' Not affected.

m Not affected.

X Not affected.

D Not affected.

| Not affected.

4 Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.

Addressing mode Syntax Machine code Bytes | Cycles

Implied

TXY 9B1s 1 2

159

TYA Transfer Index Register Y to Accumulator A TYA
Operation If m=0 and x=0, If m=0 and x=1, If m=1,

AL« YL AL YL A— YL

A4« YH An ¢ 0016
Description Loads the accumulator A with the contents of the index register Y. The contents

Status flags

of the index register Y are not changed.

IPL: Not affected.
N Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of
the operation result is 1. Otherwise, cleared to 0.

\" Not affected.

m Not affected.

X Not affected.

D Not affected.

| Not affected.

Z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.

Addressing mode Syntax Machine code Bytes | Cycles

Implied

TYA 9816 1 2

160

TY B Transfer Index Register Y to Accumulator B TY B
Operation If m=0 and x=0, If m=0 and x=1, If m=1,

BL « Y. BL « YL BL « YL

BH « YH Bu « 0016
Description Loads the accumulator B with the contents of the index register Y. The contents

Status flags

of the index register Y are not changed.

IPL : Not affected.
N Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of
the operation result is 1. Otherwise, cleared to 0.

\ Not affected.

m Not affected.

X Not affected.

D Not affected.

| Not affected.

Z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.

Addressing mode Syntax Machine code Bytes |Cycles

Implied

TYB 4216, 9816 2 4

161

TYX

Transfer Index Register Y to X TYX

Operation

Description

Status flags

” X:O, If X=1,
Xt « Y XL« Yo
XH « YH

Loads the index register X with the contents of the index register Y. The con-
tents of the index register Y are not changed.

IPL: Not affected.

N Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set
to 1) of the operation result is 1. Otherwise, cleared to 0.

\"% Not affected.

m Not affected.

X Not affected.

D Not affected.

| Not affected.
Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.

Addressing mode Syntax Machine code Bytes |Cycles

Implied

TYX BBis 1 2

162

WIT

Wait

WIT

Operation

Description

Stop the internal clock.

The WIT instruction stops the internal clock but not the external clock is not

stopped. To restart the internal clock, either an interrupt or reset must be

executed.

Status flags

Not affected.

Addressing mode

Syntax

Machine code

Bytes

Cycles

Implied

WIT

CBis

163

XAB

Exchange Accumulator A and B XA B

Operation

Description

Status flags

IPL :

z

If m=0, If m=1,
AL & B AL & Be
AH & B

Swaps the contents of the accumulators A and B.

Not affected.

Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of
the accumulator A after the operation is 1. Otherwise, cleared to 0.

Not affected.
Not affected.
Not affected.
Not affected.
Not affected.

Set to 1 when the contents of the accumulator A is cleared to 0 by the operation.
Otherwise, cleared to 0.

Not affected.

Addressing mode Syntax Machine code Bytes | Cycles

Implied

XAB 8916, 2816 12 6

164

Notes for Programming

5. Notes for Programming

Take care of the following when programming with the MELPS 7700 series.

(1)

()

The stack pointer S is undefined immediately after the reset is commanded. Always set the
initial value.

Example) LDX #27FH
TXS

The program bank register PG and the data bank register DT are disabled under the single chip
mode. Do not set value other than “001" here.

When “1” is set in the D-flag for decimal operation:

The C-flag alone is effective in the ADC instruction, while the Z, N, and V flags are disabled.
The C and Z flags alone are effective in the SBC instruction, while the N and V flags are
disabled. (Decimal operation can be done in the ADC and the SBC instructions alone.)

Using the 16-bit immediate data with “1” (data length : 8 bits) in the data length selection flag
m, or using the 8- bit immediate data with “0” (data length : 16 bits) in flag m, will cause the
program run-away. The same rule is applied to the indéx register length selection flag x. Take
care of the condition of these flags when coding the program.

The MELPS 7700 can prefetch the instructions using the 3-byte instruction queue buffer. Keep
in mind when creating the timer with the software, that the number of cycles shown in the list
of machine fanguage instructions is the minimum value. (Also see Chapter 6.)

When value other than “0016” is set in the lower order 8 bits of the direct page register DPR
(DPRL), the processing time will become 1 machine cycle longer than when “0016” is set.

The processing speed will deteriorate if a 16- bit data will be accessed from an odd address.
Place the 16-bit data from an even address if the processing speed is important.

The N and Z flags will change by execution of the PLA instruction, but the contents of the proc- '

essor status register will not change if the accumulator A alone is recovered by the PUL instruc-
tion.

The program bank register PG can be saved into the stack by setting “1” in bit 6 of the operation
by the PSH instruction. However, the PG cannot be recovered by the PUL instruction.

When the PUL or the PSH instruction is executed, the flag m and the flag x are affected in
addition.

165

Notes for Programming

(11) The code in the second byte of the BRK instruction will not affect the CPU.

(12) When the block transfer instruction (MVN or MVP) is executed with x=1, the contents of middle
order 8-bit in source and destination address (There are consists of 24-bit.) will be fixed “0016”.

166

Instruction Execution Sequence

6.

6.1

Instruction Execution Sequence

The basic clock of the MELPS 7700 central processing unit (CPU) is clock ¢ (1/2 the oscillation
frequency f(Xw)). The basic clock of the bus is an E derived from clock ¢, so data exchange be-
tween the CPU and the internal bus is done via the bus interface unit. The frequency of E is
normally 1/2 that of clock ¢, but it becomes 1/4 that of ¢, when accessing external memory while
the wait is enabled by the wait bit.

Bus Interface Unit

The bus interface unit is a unit that helps data exchange between the CPU and the internal bus.
The unit is structured by registers and buffers as shown in Figure 6.1.1. The functions of these
registers and buffers are shown in Table 6.1.1. The CPU reads the instruction code from the
instruction queue buffer, and the data from the data buffer of the bus interface unit. Then, data
is written in the data buffer of the bus interface unit. The bus interface unit reads or writes data
from the memory or 1/O via the bus, instead of the CPU.

b23 b0
PA | Program Address Register
b7 bo
[@ | |
' | Instruction Queue Buffer
|
]
b23 bo
DA I Data Address Register
b1S bo
| pBi | DBL | DataBuffer

Fig. 6.1.1 Bus Interface Unit Register Model

Table 6.1.1 Functions of the Registers and Buffers

Name Function

Program address register This register indicates the address where the program is stored.

Instruction queue buffer The 3-byte buffer for temporal storage of the instruction pre-
fetched from the memory.

Data address register The register that indicates the address for data read or data
write.
Data buffer The buffer where the bus interface unit temporarily stores data

read from the memory or /O or where the CPU temporarily
stores data to be written into the memory or I/0.

167

Instruction Execution Sequence

6.2 Change of the CPU Basic Clock ¢cru
When the bus interface unit is not ready, the CPU extends the basic clock to synchronize with

the

bus, and waits till it is ready. As the CPU basic clock waits owing to some conditions, this

clock will be called ¢cru to be distinguished from the clock . The following are the cases in which

the

dcru Waits.

([

ﬁ
Causes for the ¢cru to wait
<Cause 1>

When the CPU requests operation codes and operands, but the operation codes and op-
erands in the instruction queue buffer did not reach the necessary number.

<Cause 2>

When the CPU tried to access data, but the bus interface unit was using the bus for fetching
some data into the instruction queue buffer or writing data.

<Cause 3>

When the bus interface unit was reading data from the internal/external memory or /O,
according to the request of the CPU.

In addition to the above, the following are also causes for the ¢cru to be extended.
® When 16-bit data is accessed from odd address.
® When external memory 16-bit data is accessed while the BYTE terminal level is “H".

\S

® When external memory is accessed with wait commanded by the wait bit.)

The above conditions causes the execution time to differ each time, even with the same instruc-
tion and same addressing mode. Two example instructions are given in the next section to see

the

The

variation of the number of cycles according to the above conditions.

“ CPU execution sequence per addressing mode " of Appendix-A is the CPU instruction

execution sequences based on the ¢cru . The number of cycles shown in “ 4.2 Instructions " and
“ Appendix-B List of machirie language instructions " are the count for the shortest case, and
cannot always be applied when calculating the actual cycles or the execution time of instructions.

168

Instruction Execution Sequence

6.3 Instruction Execution Sequence

The instruction execution sequence of the CPU based on the ¢cru, and the variation of the actual
instruction execution cycle when various conditions are applied are shown here.

e Example 1. ASL instruction Direct addressing mode

e Example 2. LDA instruction Direct indirect long addressing mode

Before observing the ¢cru based CPU instruction execution sequence

The following table describes the ¢cru based CPU instruction execution sequence symbols. The
signals indicated in this execution sequence are all CPU internal signals, that show data ex-
change between the bus interface unit and the CPU. Accordingly, these signals cannot be
observed from outside.

¢cru Based CPU Instruction Execution Sequence Symbols

Symbol Description

depu CPU basic clock

Ar(cru) Higher order 8 bits of the address (24 bits) of the program that the CPU is actually execution

AnAvLcru) Lower order 16 bits of the address (24 bits) of the program that the CPU is actually execution

DATA(cru) Data information the CPU is processing

R/Wicru) Data read/write request to the data buffer in the bus interface

PG,PC Contents of the program bank register (PG) and the program counter (PC)

ADr Data indicating the address (higher order 8 bits)

ADw,ADL Data indicating the address (middle order 8 bits, lower order 8 bits)

DPRH Contents of the higher order 8 bits of the direct page register

DPRL Contents of the lower order 8 bits of the direct page register (DPRL = 0 in the examples)

D Data to be fetched or written from the data buffer by the CPU (higher order 8 bits)

Do Data to be fetched or written from the data buffer by the CPU (lower order 8 bits)

dd Contents of the operand (DPRL = 0 in examples 1 and 2, so dd represents the lower order 8
bits of the address)

169

Instruction Execution Sequence

il Before observing the ¢ based instruction execution sequence

The ¢ based execution sequence symbols are shown in the following table. The signals in this
execution sequence indicates data exchange of the bus interface unit with the memory and 1/O.
The internal instruction execution sequence of the CPU can be guessed from these signals.
However, the ¢cru and the number of data in the instruction queue buffer shown here cannot be
observed from the outside.

¢ Based Execution Sequence Symbols

Symbol Description

¢ Basic operation clock of the microcomputer f(Xin) / 2

E Basic operation clock of the bus ¢/ 2

hh Higher order 8 bits of the address where the bus interface unit is to access to (bank)
mm Middle order 8 bits of the address where the bus interface unit is to access to

Lower order 8 bits of the address where the bus interface unit is to access to

DPR Contents of the direct page

DPRu Contents of the higher order 8 bits of the direct page register

DPRL Contents of the lower order 8 bits of the direct page register
OP4 Data to be fetched into the instruction queue buffer by the bus interface
OP2 (Operation code or operand)
OPs The subscript represents the fetch sequence.
D Data to be fetched into the data buffer or data to be written into the memory by the bus interface
D unit
dd Data obtained as the operand (The lower order 8 bits of the address are given in examples 1

and 2, because DPRL = 0.)

ADr Higher order 8 bits of data that indicates the address (contents of the data address register)
ADw Middle order 8 bits of data that indicates the address (contents of the data address register)
ADL Lower order 8 bits of data that indicates the address (contents of the data address register)

The following are the cause of the “¢cru to queue” in the ¢ based execution sequence.

((Cause 1 D

king to the request of the CPU.

When the CPU required operation codes and operands, but the number of operation codes and
operands did not reach the requested number.

Cause 2
When the CPU tried to access data, but the bus interface was using the bus for fetching data into
the instruction queue buffer or for writing data.

Cause 3
When the bus interface unit is reading data from the internal/external memory or I/O, etc., accord-

>,

170

Instruction Execution Sequence

Example 1. ASL instruction / direct addressing mode (DPRL = 001s)

= ¢cru based CPU instruction execution sequence

doru |
D D 6 SN € 6
AALcry) X pe X pewt X DPRY , dd >< porz X
DATAGPU)) 0p Code X overand X DuD L et Used X N,;‘“;i NERE

R / W(cPu)

Note: All the signals are CPU internal signals, which cannot be observed from outside.

\

The following examples 1-1to 1-6 are examples of the ¢cru based instruction execution se-
quences under various conditions.

Example 1-1 When the instruction dueue buffer is vacant

Example 1-2 When two data are in the instruction queue buffer

Example 1-3 When three data are in the instruction queue buffer

Example 1-4 When 16-bit data is accessed from odd address

Example 1-5 When external memory is accessed from the BYTE terminal using 8-bit
external bus width

Example 1-6 When external memory is accessed with wait by the wait bit

171

Instruction Execution Sequence

(Example 1-1) When the instruction queue buffer is vacant

Conditions

® Number of data in the instruction queue buffer 0

¢ ROM, RAM External memory is used (Note)
® Data length selection flag m “0” (16-bit length)

® BYTE terminal level “L” (External bus width is 16 bits)

® Contents of lower order bytes (PCv) of the program counter Even

® Contents of the operand (dd) Even

¢ based execution sequence

o LML Ly
oov | [] [|

Fetches Op Fetches Reads Data Modifies Writes Next
Code Operand Data Data Instruction
Number of data in
instruction queue 0 251 0 2 1
buffer
AsxeA Modified DL
23~ A6 ra
JDATAGen A X OPrXhh Y oPsX 00 Xoo X 00 X ¥X
Op Code Next Op Code Modified DH
Ais~As ’/
IDATAw X mm X OP2)_ mm)} OPa)(opm X Dn X DPR: X * X
Opeland (dd)
N G G ¢ dd X
E I N I
‘BHE
uL" :
RIW | I
Cause for)CPU to queue - -~ —

Cause 1 Cause 2 Cause 3

Note. The operation when internal ROM and internal RAM are used, will be as shown above, regardless of the

level of the BYTE terminal. However, the address/data bus, BHE, R/W signal cannot be observed from
outside, when the mode is single-chip mode.

172

Instruction Execution Sequence

Operation of the CPU and bus interface unit under various cycles

¢ No. CPU Bus interface unit
1 (No fetching can be done, because there are no | Fetches the instruction, because instruction
operation codes in the instruction queue buffer.) | queue buffer is vacant and the CPU is not
using the bus.

2 | Fetches 2-byte worth of data into the instruc-

/ tion queue buffer when E becomes “L".
Fetches the operation code.

3 Fetches the operand. Prefetches the instruction, because the in-
struction queue buffer is vacant and the CPU
is not using the bus.

4 (Waits till the bus used by the bus interface unit | Fetches 2 bytes worth of data into the instruc-

becomes vacant.) tion queue buffer when E becomes “L".

5 Waits for E to become “L”, to read data.

6 Reads data when E becomes “L”.

7 Modifies data.

8 Writes data into the data buffer.

9 Fetches the next operation code. Writes the contents of the data buffer into the

original address, when E becomes “L".

173

Instruction Execution Sequence

(Example 1-2) When two data are in the instruction queue buffer

Conditions

& Number of data in the instruction queue buffer 2

* ROM, RAM External memory is used (Note)
® Data length selection flag m “0” (16-bit length)

® BYTE terminal level “L” (External bus width is 16 bits)

* Contents of lower order bytes (PCL) of the program counter Even

® Contents of the operand (dd) Even

¢ based execution sequence
oo [1] [[LI L

; Fetches Fetches Reads Data Modifies Writes Next
Number of data in : Op Code Operand Data Data Instruction
instruction queue 21 1 0 2 1
buffer :
A Modified DL
23~A16 y I’
/ DAT Ageven :X hh X OPX 00 XD X 00 X X
Next Op Code Modified DH

A1s~As
/ DATAG) :)(mm X OP2Xopri ¥ D+ X DPR-

Ar~Ao :)(I X dd X

E | L
BHE
L
RIW l__l_
Cause for {cPU to q;Jeue <> <«

Cause 2 Cause 3

Note. The operation when internal ROM and internal RAM are used, will be as shown above, regardless of the
level of the BYTE terminal. However, the address/data bus, BHE, R/W signal cannot be observed from -
outside, when the mode is single chip mode.

174

Instruction Execution Sequence ‘

Operation of the CPU and bus interface unit under various cycles

¢ No. CcPU Bus interface unit
1 Fetches operation code.
2 Fetches operand (dd). Prefetches the instruction, because the instruct
queue buffer is vacant and the CPU is not using
the bus. |
3 (Waits till the bus used by the bus interface unit | Fetches 2-byte worth of data into the instruction ‘
becomes vacant.) queue buffer when E becomes “L". }
|
4 Waits for E to become “L”, to read data. |
5 Reads data when E becomes “L”.
6 Modifies data.
7 Writes data into the data buffer.
8 Fetches the next operation code. Writes the contents of the data buffer into the
original address, when E becomes “L".

175

Instruction Execution Sequence

(Example 1-3) When three data are in the instruction queue buffer

Conditions
e Number of data in the instruction queue buffer 3
* ROM, RAM External memory is used (Note)
® Data length selection flag m “0” (16-bit length)
® BYTE terminal level “L” (External bus width is 16 bits)

e Contents of lower order bytes (PCL) of the program counter Even

& Contents of the operand (dd) Even

¢ based execution sequence

0 !"Il_ll_ll_ll_lll_]l_!jh[“
e LML T LT

Fetches Fetches Reads Data Modifies Writes 'gNext

Number of data in Op Code Operand Data Data Instruction
mstruction queue g, 2 1 3 -
buffer : :

Azi~Ats) Modified Dt

3~
/DATAwen _ X hh__ X 00 XD X"hh X 0P X 00 X ¥ X
: Modified DH
Ars~As

E7 G G C G) G S
N G G D G ¢ ad X

E I N [

BHE

RIW | | l
Cause for OcPu to q‘ueue <> <> H

Cause 3 Cause 2

Note. The operation when internal ROM and internal RAM are used, will be as shown above, regardless of the
level of the BYTE terminal. However, the address/data bus, BHE, R/W signal cannot be observed from
outside, when the mode is single chip mode.

176

Instruction Execution Sequence

Operation of the CPU and bus interface unit under various cycles

¢ No. CPU Bus interface unit

1 Fetches operation code .

2 Fetches operand (dd).

3 Waits for E to become “L”, to read data.

4 Reads data when E becomes “L".

5 Modifies data. Prefetches the instruction, because there are two
vacant instruction queue buffers and the CPU is not
using the bus.

6 (Waits till the bus used by the bus interface| Fetches 2-byte worth of data into the instruction

unit becomes vacant.) queue buffer when E becomes “L".

7 Writes data into the data buffer.

8 Fetches the next operation code. Writes the contents of the data buffer into the origi-
nal address, as E becomes “L”.

177

Instruction Execution Sequence

(Example 1-4) When 16-bit data is accessed from odd address

Conditions
* Number of data in the instruction queue buffer 0
s ROM, RAM External memory is used (Note1)
® Data length selection flag m “0” (16-bit length)
& BYTE terminal level “L” (External bus width is 16 bits)

® Contents of lower order bytes (PCv) of the program counter Odd

® Contents of the operand (dd) Odd

¢ based execution sequence

e 1 T1 T giEgigigh

; Fetches Op Fetches Reads Data Modifies Writes %Nex(

Number of data in %Code Operand Data Data glnslvuctlon
instruction queue 0 150 241 3)
buffer H i
Modified DH
A2xr~Ate o —
/ DATA(even) f
Invalid Opeland (dd) Invaiid Invalid Modified DL
Ais~As
/ DATAs m@mmnm@@m@n
ext Op Code Invalid Invalid
Ar~ho :X T X w1 X _dad X s X 3 X e X dat X
I o e O s A e N s e A e O
R/W ; J——
Cause for)cPU to q;ueue <> <> ‘ — > <> < P

Cause 1 Cause 1 Cause 3 Cause 2 Cause 2
(Note2)

Note1. The operation when internal ROM and internal RAM are used, will be as shown above, regardless of
the level of the BYTE terminal. However, the address/data bus, BHE, R/W signal cannot be observed
from outside, when the mode is single chip mode.

Note 2. At the <- - -> part
* When the CPU does not use the bus, ¢cpu corresponds with ¢.

* When the CPU uses the bus, the dcru queues till the writing in the bus interface unit completes. (the ¢14
cycle)

178

Instruction Execution Sequence

Operation of the CPU and bus interface unit under various cycles

¢ No. CPU Bus interface unit
1 (No fetching can be done, because there are | Fetches the instruction, because instruction queue
no operation codes in the instruction queue | buffer is vacant and the CPU is not using the bus.
buffer.)

2 | Fetches 1 odd address byte worth of data into the

/ instruction queue buffer, when E becomes-"L".
Fetches operation code.

3 (No fetching can be done, because there are | Fetches the instruction, because instruction queue

no operands in the instruction queue buffer.) | buffer is vacant and the CPU is not using the bus.

4 L Fetches 2-byte worth of data into the instruction

/ queue buffer when E becomes “L".
Fetches operand (dd).

5 Waits for E to become “L”, to read data.

6 Reads data in the odd addresses (DL) alone into the data buffer when E becomes “L”".

7 Waits for E to become “L”, to read data.

8 Reads data in the even addresses (Dn) alone into the data buffer when E becomes “L”.

9 Modifies data. Prefetches the instruction, because there are two
vacant positions in the instruction queue buffer,
and the CPU is not using the bus.

10 (Waits till the bus used by the bus interface | Fetches 2 bytes worth of data into the instruction

unit becomes vacant.) queue buffer, when E becomes “L”".

11 Writes data into the data buffer. Waits till E becomes “L” to write data.

12 Fetches the next operation code. Writes the contents of the data buffer (DL) into the
original address (odd address), when E becomes
IAL".

13 ? Waits till E becomes “L” to write data.

14 Writes the contents of the data buffer (Dw) into the

? original address (even address), when E becomes
L

When internal ROM or BYTE terminal level “L” external memory is used as the program memory, the instruction is
fetched into the instruction queue buffer normally in 2-byte (word) unit of sequential even and odd addresses in this
order. However, when the instruction must be fetched from odd address like after execution of the JMP instruction,
the 1-byte of the first odd address alone is fetched into the instruction queue buffer (62 cycle), and the later instructions
are fetched into the instruction queue buffer in 2-byte units (4, d10 cycle).

The bus interface unit automatically selects whether to fetch one word or to fetch the 1 byte of odd address alone.
The operation status can be observed from outside, according to the output of the BHE terminal and the address bus
signal Ao, as long as the mode is not single chip mode.

« When one word is fetched
The output from both the BHE terminal and the address bus Ao are at the “L" level.

« When 1 byte of odd address alone is fetched
The output from the BHE terminal is “L”, while the output from address bus Ao is “H”.

179

Instruction Execution Sequence

When internal RAM and external memory at BYTE terminal level “L” are used as the data memory, with data
length selection flag m = 0, both data read and write are normally done in 2-byte units of even and odd
addresses, in this sequence. However, access can also be done when the word data is defined from an odd
address. In other words, “H” is output first from address bus Ao and then “L” from the BHE terminal to access
to odd address alone. Next, “L" is output from Ao, and “H" from the BHE terminal to access to the even address.

(o5 to 08, d11 to 14 cycle)

180

Instruction Execution Sequence

(Example 1-5) When external memoryis accessed fromthe BYTE terminal using
8-bit external bus width

Conditions
* Number of data in the instruction queue buffer 0
s ROM, RAM External memory is used
® Data length selection flag m “0" (16-bit length)
& BYTE terminal level “H" (External bus width is 8 bits)

e Contents of lower order bytes (PCL) of the program counter ~ Even

® Contents of the operand (dd) Even

¢ based execution sequence

SV o I A M LT

" Fetches Op Fetches Reads Data Modifies Wntes iNext
Code Operand Data Data :Instruction
Number of data in .
Instruction queue 0: 150 1.0 1 : 0
butter :
Modified DL Modified DH
A2s~Aie
/ DATAeven)

Next Op Code

;Al;;«fl'\;(odd) mm X mm X DPRy X mm j DPR+ X:

Ar~Ao ___X X et X dd - X ddet X w2 X o X _daet X
| N e Y e Y s O
i m IS p I L
R/W : [

Cause for)CPU 10 queve ~ 4—> <> -— > <> : < D
Cause 1 Cause 1 Cause 3 Cause 2 Cause 2 (Note)

m|
L

Note. Atthe <- - -> part
* When the CPU does not use the bus, ¢cpu corresponds with ¢.
* When the CPU uses the bus, the ¢cpu queues till the writing I1n the bus interface unit completes. (the ¢13 to ¢14
cycle)

181

Instruction Execution Sequence

Operation of the CPU and bus interface unit under various cycles

¢ No. CPU Bus interface unit
1 (No fetching can be done, because there are| Fetches the instruction, because the instruction queue
no operation codes in the instruction queue| buffer is vacant and the CPU is not using the bus.
buffer.)

2 | Fetches 1 odd address byte worth of data into the in-

/ struction queue buffer when E becomes “L”.
Fetches operation code.

3 (No fetching can be done, because there are| Fetches the instruction, because instruction queue

no operands in the instruction queue buffer.)| buffer is vacant and the CPU is not using the bus.

4 | Fetches 1-byte worth of data into the instruction

/ queue buffer when E becomes “L”".
Fetches operand (dd).

5 Waits for E to become “L”", to read data.

6 Reads data (DL) into the data buffer when E becomes “L”.

7 Waits for E to become “L”, to read data.

8 Reads data (DH) alone into the data buffer when E becomes “L”.

9 Modifies data. Prefetches the instruction, because there are two
vacant positions in the instruction queue buffer, and
the CPU is not using the bus.

10 (Waits till the bus used by the bus interface| Fetches 1 byte worth of data into the instruction

unit is vacant.) queue buffer when E becomes “L".

11 Writes data into the data buffer. Waits till E becomes “L” to write data.

12 Fetches the next operation code. Writes the contents of the data butfer (D) into the
original address (odd address), when E becomes “L".

13 ? Waits till E becomes “L” to write data.

14 ? Writes the contents of the data buffer (Dw) into the
original address (even address), when E becomes “L".

L]

The external bus width becomes 8 bits when the "H” level is applied to the BYTE terminal. (The width of the internal
bus is 16 bits, regardless of the level of the BYTE terminal.) When external ROM is used under this mode, the
instruction can only be fetched byte by byte. (2, ¢4, 10 cycle) When external RAM is used, the data can likewise
only be handled byte by byte. Accordingly, when data length selection flag m = 0 is selected, it takes time worth 2
cycles of the enable output E for data read and write. (¢sto ¢s, ¢11to ¢14 cycle)

182

Instruction Execution Sequence

(Example 1-6) When external memory is accessed with wait by the wait bit

Conditions
® Number of data in the instruction queue buffer
* ROM, RAM
® Data length selection flag m
® BYTE terminal level
® Contents of lower order bytes (PCL) of the program counter

® Contents of the operand (dd)

¢ based execution sequence

0

External memory is used

“0" (16-bit length)

“L" (External bus width is 16 bits)
Even

Even

Fetches Op Code Fetches Operand Reads Data Modifies Wntes Next
Data Data Instruction
Number of datain
Instruction queue 0 251 0 2 1
buffer
A23~Ats
/ DATAGwen X _op X hh X o X 00 X o X 00 X Mosted o Y
Op Code Next Op Code N
Ats~As
/ DATA e mm X _op: X mm X 0P« X oPA X Dn_ X DPRi___ X_Moaiedn X
Opeland (dd)
LD] X 1+2 X dd X
£ [A R I I A N R
BHE
o
R/W [|
Cause for OcpU to queue < > < > < > <« >
Cause 1 Cause 2 Cause 3 Cause 2 (Note)

183

Instruction Execution Sequence

Operation of the CPU and bus interface unit under various cycles

¢ No. CPU Bus interface unit
1 (No fetching can be done, because there are Fetches the instruction, because instruction queue
2 no operation codes in the instruction queue buffer is vacant and the CPU is not using the bus.
buffer.)
3 | Fetches 2 bytes worth of data into the instruction
4 queue buffer when E becomes “L".
Fetches the operation code . /
5 Fetches operand (dd). Prefetches the instruction because the instruction
6 queue buffer is vacant and the CPU is not using the
bus.
7 (Waits till the bus used by the bus interface Fetches 2 bytes worth of data into the instruction
8 unit becomes vacant.) queue buffer when becomes “L”".
9 Waits till E becomes “L” to write data.
10
11 Reads data when E becomes “L".
12
13 Modifies data.
14 Writes data into the data buffer.
15 Fetches the next operation code.
16 ? Writes the contents of the data buffer into the original
address (odd address), when E becomes “L”".

Note. Atthe <- - -> part
* When the CPU does not use the bus, ¢cru corresponds with ¢.

* When the CPU uses the bus, the ¢cru extends till the writing in the bus interface unit completes. (the $16 to

17 cycle)

The conditions are the same, except when wait is commanded by the wait bit (example 1-1). When accessing to
the external memory, the cycle of enable output E becomes twice that for no-wait, and thus the ¢cru wait time
also becomes twice the cycle. (¢3to ¢4, ¢7 to ds, d11to 12, h16 to P17 cycle)

184

Instruction Execution Sequence

Example 2. LDA instruction / Direct indirect long addressing mode (DPRL = 0016)

Iz

F ¢cru based CPU instruction execution sequence

0 cpu _I I
AP(CPU) X PG X PGX 00 X000r01><000r01>< ADP>< PG X
AHAL(CPU PR+
(CPU) PC PC+1 DPRH, dd dd 42 NADHADL X PC+2
N
DATA(cPu) xOpCodeXOpde;andX;DHADLXNot UsedX ADp >< DHDL ><Ofﬁ:ode><

R/Wecpuy ™

Note: All the signals are CPU internal signals, which cannot be observed from outside

)

\

185

Instruction Execution Sequence

(Example 2-1) When the internal as well as the external memotries are used together while wait
is commanded by the wait bit.

Conditions
& Number of data in the instruction queue buffer 0
e Bank 0 Internal ROM, RAM are used
Bank 1 and after External memory is used
e Data length selection flag m “0” (16-bit length)
® BYTE terminal level “L” (External bus width is 16 bits)

® Contents of lower order bytes (PCL) of the program counter ~ Even

® Contents of the operand (dd) Even
® Data indicated by the address ADL. Even
ADr 1 or more (bank 1 and after)

¢ based execution sequence

etches Op Fetches Reads Calculates Reads Reads Next

Number of data in Operand Data Address Data Data * Instruction
instruction queue 2,1 0 2 o1
buffer ;
~ A
s DX TGP o0 XEBX XX A XX
H de Next Op Code
?65;?:(o) :Xmm X 0Pz X mm X OPXorri X ADiX__ ot X 2 X ADh X Dv X
Opeland (dd) i

Ar~Ao :)(X 2 X dd X dd+2 X ADL X
L L | B
- :

N

m|

R/W
Cause for)cPU to queue d——>= -~ <« <« —
Cause 1 Cause 2 Cause 3 Cause 3 Cause 3

186

Instruction Execution Sequence

Operation of the CPU and bus interface unit under various cycles

¢ No. CPU Bus interface unit

1 (No fetching can be done, because there areno | Fetches the instruction, because instruction queue

operation codes in the instruction queue buffer.) | buffer is vacant and the CPU is not using the bus.

2 L Fetches 2 bytes worth of data into the instruction

/ queue buffer when E becomes “L".
Fetches the operation code .

3 Fetches operand (dd). Prefetches the instruction because the instruction
queue buffer is vacant and the CPU is not using the
bus.

4 (Waits till the bus used by the bus interface unit | Fetches 2 bytes worth of data into the instruction

becomes vacant.) queue buffer when E becomes “L".
5 Waits for E to becomes “L", to read data (ADH ADL) indicated by the address obtained by adding the

contents of the operand (dd) and the DPRL.

6 Reads data when E becomes “L".

7 Calculated address.

8 Waits for E to become “L”, to read data (ADp).

9 Reads data when E becomes “L".

:2 Waits for E to become “L”", to read the data (D+ DL) at the address specified by ADr ADH ADL.
g Reads data when E becomes “L".

The above is the case when bank 1 and after are used by the external memory under the memory expansion mode.
The currently executed program is in bank 0. The contents of the lower order bytes of the direct page register DPRL
is "0016", so the direct pages are all in bank 0. The access to the outside ({10 to $13 cycle) alone is affected by the
wait bit, and access to the internal memory is not affected by the bit.

187

APPENDIX A

CPU Instruction Execution Sequence for each Addressing Mode

APPENDIX A. CPU Instruction Execution Sequence for each Addressing Mode

The following are the CPU instruction execution sequences for each addressing mode. The exe-
cution sequences shown here describe the internal operation of the CPU. Therefore, the signals
are all CPU internal signals, and cannot be observed from outside. The CPU internal operation,
the actual execution time, and the relation between signals that can be externally checked are
described in Chapter 6 “Instruction Execution Sequence”.

The following are the signals and the symbols indicating the contents.

Symbol Description
dcpu CPU basic cycle
AP(cru) Higher order 8 bits of the CPU internal address bus.
AHALcry) | Lower order 16 bits of the CPU internal address bus.
PG Contents of the program bank register.
PC Contents of the program counter.

Others are data that indicates the address obtained as result of address calculation.

DATAwcryy | The CPU internal data bus. The signal is output with a half-cycle delay from the CPU

internal address bus. The operation codes and the operands are fetched from the in-
struction buffer. They are not directly fetched from the memory indicated by the PG
and PC of this cycle.

R/Wicpu) Becomes “L” when the CPU writes data into the data buffer of the bus interface unit.

The accumulator used in the above instructions in the CPU instruction execution sequence is
accumulator A.. When accumulator B is used, the execution cycle will have the two cycles of
a “421¢” that indicates accumulator B, and an internal processing cycle added at the front.
(See the figure in the next page.)

The number of ¢cru cycles differs in the addressing mode that uses the direct page register,
according to whether the lower order 8 bits (DPRL) are “00+”. The number of cycles when
DPRL = 001 is 1 cycle (address calculation cycle) less than when DPRL # 001.

The number of cycles differs in the PSH and PUL instructions according to the number and
type of registers placed in (taken out of) the stack.

The number of cycles differs in the block transmission instruction (MVN, MVP), according to
the number of the data transmitted.

188

APPENDIX A
CPU Instruction Execution Sequence for each Addressing Mode

Variation of the execution cycles according to the accumulator used

<<When accumulator A is used>>
Mnemonic : ADC A #1234H Machine code : 6916 3416 1216

0 cpu __|
Ap (crPu) (PG X PG X PG X
AH AL (cpu) }< PC Kpcn X PC+3 X

DATA (cpu) ‘ Xew; X 123416 X X

: OpCode Operand

<<When accumulator B is used>> :
Mnemonic : ADC B,#1234H Machine code : 4216 6916 3416 1216

4——2-cycle——»

0 cpPu J

E ADC Instruction / Inmediate addressing mode %

Ap (cpPu) PG PG PG X PG X PG

AH AL (cPu) :X PC X PC+1 X PC+1 X PC+2 X PC+4
DATA (cpu) :X 4216 XNotUﬂX 6916 X12341e)<___

Op Code : Op Code Operand

f

4

189

Implied

Instruction : CLC,
SEC,
TSX,

Timing :

#cru |
Ap(cru) < PG X PG X PG x
AuALicru) (PC X PC+1 X PC+1 x

DATA(cpu) x Op Code

CLI, CLM, CLV, DEX, DEY,
SEI, SEM, TAD, TAS, TAX,
TXA, TXS, TXY, TYA, TYX

Next
Op Code

X Not used X

NS

“Hr

R/Wicpu)

Instruction :

Timing :

INX, INY, NOP,
TAY, TDA, TSA,

TBD, TBS, TBX, TBY, TDB, TSD, TXB, TYR

$ceu |
Arccrw < PG X PG X PG >< PG >< Pc X
AuLiceu) < PC XPC+1 X pc+1 >< PC+2 >< Pc+2 X

Next
DATA(cru) X Op Code XNot used ><0p Code ﬂot used >< op Code>
oy
R/W(CPU)

190

Implied

Instruction X AB

Timing :

$ceu

Aricru)

.

AnAcicru) PC+1 PC+2

Next
DATA(cpu) Op Code Not used Op Code Not used Not used Not used Op Code

R/W(cpu)

™

Instruction : STP, WI T

Timing :

$ceu

Ap(cru) < PG X PG X
Co X X o

DATA(cpu) x Op Code >< Not used x Not used

R/V_V(cpui

AnALicru)

191

Implied

Instruction : RT S

Timing :

#cru I

v (m X n X=X = X
X X

AnAccru) < PC X PC+1

R/Wicpu)

Instruction :RTL

Timing :

$cru

Ap(cpu) < PG X PG X 00
CX = X XX

DATA Op Code Not used Not used AuA Not used A Next
(cpPu) p ot use WAL ot use P Op Code

oy

R/Wicpy»

AvALicpu) PC+ 1

Fﬁ?ﬁ

192

Implied

Instruction : RT I

Timing :

$cru

Apiceu

AnAvicpu

DATA(cpu)

R/W.cpy:

< e X ke X % X Fe X:
< PC X PC+ 1 Xs+l X S+2 X s+3 X s+5 X PC,PC, x
Next
Op Code Not used Not used PS4PS, Not used PCxPC_ Not used PG Op Code

(Stack) (Stack) (Stack)

193

Implied

Instruction : BRK

Timing :

v (70 X o X w
U (o X o X X e X e X s X s)
DATA(cp >< Op CodeX OperandX Not used XNot usedX\lot usedXNot usex Not usedX PG X Not usecb

R/Wicpy l I I

Qs— X s-3 X S—4 X FFFA X AD4AD. X
PC Not used PS Notused X AD,AD, Next
Op Code

194

Immediate

Instruction : ADC, AND, CMP, EOR, LDA, ORA, SBC ;

Timing :

dcru

Ap(cpu) < PG x PG X PG
Operand Next
Op Code X mmnn Xi)p Code

When m=1, fetched operand at 2-nd cycle is 1-byte(nn)

AnALicry) PC+3

e

DATA(cpu)

<

wpn,

R/W(cpy)

Instruction : LDX, LDY, CPX, CPY

Timing :

Bceu

Ap(cpu)

AnALcpu) (PC x PC+1 x PC+3
Operand Next
DATA(cpu) x Op Code X mmnn X op Code>

~ “py
R/Wicpu)

X = X
X

When x=1, fetched operand at 2-nd cycle 1s 1-byte(nn)

195

Immediate

Instruction : LD T

Timing :

dcru |

Ar(cru) < X X X PG PG K
AnAccru) < PC X PC+1 X PC+1 X PC+2 PC+3 x
DATA(cpu) x Op Code XNOI used XOp Code XOD:;a“;XNot used X ggxéode >
R/W(cpy) H

Instruction : RL A

Timing :

Bcru

AP(CPU)

AnAcicru)

DATA(cpy)

R/W(CPUJ

PC+1 PC+1

{ rc >< >< X PC+2 Pc+3 X
Operand Next
d\ Not d Cod
x Op Co eX ot use: xp ode mm nn X Not use:Xl\lon;X Not used Xop Code>

196

Immediate

Instruction : SEP

Timing :

¢CPU \

< PG X PG >< PG
AF(CF‘U)
< PC >< PC+ 1 ><
ANAL(CPU)
Operand Next
1
DATAccru) >< Op C°de>< m ><N° use;>< Op Code

wyr
R/Wicpu)

™

PC+2

s

\J

Instruction : CLP

Timing :

$cru i
PG PG PG
Apicru)
< X PC+ 1 X ' X K
Operand Next >
Op Code X n X Not used X Not used X Op Code

PC
AnAcicru)

L

DATA(cpu)

R/Wicpy)

197

Immediate

Instruction : DIV, MPY

Timing :

| L | |
Avtcru) < PG X PG X PG X PG
e Xret X ot X

#ceu

AnAL(cpu) PC PC+2

DATA(cpu) X Op COdeXNol used X Op CodeXOP%';]a“d X Not used X Not used

R/Wiceu)

PC+2

™
Not used Not used X Not usengsxéode>

(Note) MPY instruction is 12-cycle, and DIV instruction 1s 23-cycle.

198

Accumulator

Instruction : ASL, DEC, INC, LSR, ROL, ROR

Timing :

$cru

Ap(cru) < PG X PG X PG
AnALcru) < PC X PC+1 x PC+1

. Next
DATA(cpu) x Op Code X Not used X Op Code>

B wyr
R/W(cpu)

™

7

199

Direct

CPX, CPY,

EOR,

LDA, LDX, LDY,

pG}(

00 or 01

0

PC+1

DPR+dd

X
X

> >

PC+ 2

.

Operand Next
Op C°de>< dd 4>< Not used X DwDL XOP Code

N

Instruction : ADC, AND, CMP,
ORA, SBC
Timing :
DPR_+ 0
$cpu |
AP(CPU) < PG X
ANAL(CPU) < X
DATA(cpu) X
R/V_V(CPU) e

Instruction : LDM

Timing :

-

When DPR_=0, this cycle is nothing

00 or 01

Y
X

PC+2

X X
X X

Operand
Op Code X P o X S_"::r:nnd XNot used X

DF’R+ddX PC+4 X
mm nn

Next
Op Code

DPR_#+ 0
bceu
/Ap(cpm < PG X PG
AnALicru) < PC X‘PC-{-T
DATA(cpu) x
R/Wiceu) -

-—
When DPR_=0, this cycle is nothing

200

Direct

Instruction : STA, STX, STY

Timing :

DPR_ + 0

$cpu

Aoy (PG X PG >< 00 >< 00 or 01 X X

AnALicru) < PC >< PC+1 X .DPR+dd >< pct+2 X
Next

DATA(cpu) Op Code Operand Not used Not used Op Code

s

R/Wicpu)

-
When DPR_=0, this cycle Is nothing

Instruction : ASL, DEC, INC, LSR, ROL, ROR

Timing

DPR_# 0

$cru |

Aoccr < bG X pGX 0 >< 00 0r 01 X ra ><
AnALicru) < rc X PC+ 1 X DPR+dd >< pc+2 X

Next
DATA(cou >< Op Code >< Operandx\lot used x DHDLXlotu;X;ew DuD, x op Cod‘e>

R/W(cPu)

-_—
When DPR_=0, this cycle i1s nothing

201

Direct

Instruction : DIV, MPY

Timing

DPR.# 0

—————

SR I I I O O I
Ap(cru) (PG X PG X PG X PG X 00 X 00 or 01 T
AnAL(cru) < PC X PC+ IX PC+1 X PC+ 2 X DPR+dd T

DATA(cou) X 0p Code X Not used X Op CodeX Operand X Not usedX DuD, Not used

oy

R/W(cpy)

f————————{
When DPR_ =0, this cycle is nothing.

—— (Note) g
bt |

.
e 00 or 01 x PG x
____ DPRtad wcm X

Not used X Not usedXNot used gp Code)

MPY instruction is 12-cycle, and DIV instruction I1s 23-cycle.

202

Direct Bit

Instruction : CLB, SEB

Timing :

DPR_.#0, m=0

#cru

Ar(cru) { PG X PG X PG 00 X 00 or 01 X PG X
AvAuceny PG X PCH1 ch+2 >< ’ X DPR+dd X:c+4 X
Operand Operand Next
DATA(cpu) Op Code Not used DD Not used New D,,D
¢ > < P dd mm nn ner WEHOL A\ op Code

-
When DPR_ =0, this cycle s nothing.
When m=1, fetched operand at 3-rd cycle is 1-byte(nn).

203

Direct Indexed X

Instruction : ADC, AND, CMP, EOR, LDA‘, LDY, ORA, SBC

Timing :

DPR_# 0

$cru

Ay { PG X PG >(00 ﬁrm X 00, 01 or9< R
AnAL(cPu) < PCX PC+1 XDPR'Fdd% PC+2K
Operand Next
0
DATA(Gru) X pCode>< . XNotused X NotusedxiDHDL XODCode)
oy

R/W(CPUJ

< —
When DPR_ =0, this cycle is nothing

Instruction : I, DM

Timing :

DPR_#0

bcru

Aetcru) < PG X pa X PG >< 00, 01 or 02 PG
AvALcrw) < PC >< PC+1 >< PC+2 >< DPR+dd+)>< PC+ 4
Operand Operand
DATA(cpu) Op Code P Not used Not used mmnn Next
dd mmnn Op Code

“yr

><

DPR-+dd

OO‘X 00 or 01
’ X

<
e

R/ W(cpPu)

B
When DPR_ =0, this cycle is nothing

204

Direct Indexed X

Instruction : STA, STY

Timing :

DPR_+ 0

¢CPU

AF‘(CPU)

CX X e X X
AnAc(cpu) < PC X PC+1 X DPR+dd+X X PC+2 X

Next
DATA(cpu) x Op Code ><Operand >< Not usedX Not used XNot used >< ‘X op Code>

R/Wicpu)

-—
When DPR_=0, this cycle is nothing

Instruction : ASL, DEC, INC, LSR, ROL, ROR

Timing :

DPR + 0

$ceu

Ap(cpu: 00, 01 or 02

AvALcru)

(oo X X w Xwow X

< K PC+ 1 x DPR+dd-+X PC+ 2
Operand Next

DATA(cey) Op Code Not used Not used DuDL Not used New DD Op Code

Fﬁ?ﬁ

-

When DPR_=0, this cycle 1s nothing

205

Direct Indexed X

Instruction : DIV, MPY

Timing :

————

S N N T T I I 1 O O R
Aricrw) < PG X PG X PG X PG X 00 XOOOrOl)(00, 01 or 02
X

AnAL(cPu) < PC PC+1 PC+1 X PC+2 X DPR-+dd+X

DATA(cpu) X Op Code X Not usedx Op CodeXOPzza"d X Not used Y’ Not useciX DnDL XNO! used

“n

R/W(cpy)

S —

When DPR_ =0, this cycle is nothing
T LT
|
[S

=~
00 or 01 X PG x
Xrors X
—_—— Next
Not used Not used Not used Op Code

(Note) MPY instruction is 12-cycle, and DIV instruction is 23-cycle

— — —(Note)

DPR+dd

206

Direct Indexed Y

Instruction : LD X

Timing :

DPR_ # 0

$cru

Aicru) < e X PG)(00 >< 00 or 01 Xoo. 0t or 02>< P X

AuAuiceu) < PC >< PC+ 1 ><)pn+au+y pc+2 X
Operand Next

DATA(cpu) x Op Code x 4 XNot used X Not usedX DuDL X op Code>

B o
R/W(cpu)

-
When DPR_ =0, this cycle is nothing

Instruction : STX

Timing :

DPR_+# 0

$cru

Ap(cpu) < PG X PG X 00 XOO or 01 X 00, 01 or 02 PG x
AvALcry) € PC—K PC+1 X DPR-+dd+Y PC+ ZX—
DATA Operand Next
(cPu) Op Code Not used Not used Not used A
dd Op Code

“yr

>< <

H/W(CPU)

—
When DPR_=0, this cycle i1s nothing

207

Direct Indirect

Instruction : ADC, AND, CMP, EOR, LDA, ORA, SBC

Timing :

DPR,+ 0
¢CPU
Apicru) < PG KPG >< 00 X000r01 KDT X e X
AvAiicrw < PC >< PC+1 XDPR+dd>< ADHADLX Pct+2 X

Operand) Next
DATA(ceu) X OpCode>< . XNotuse;X ADHAD.X DuDL Xop co de>
R/W(ceu)
-

When DPR_ =0, this cycle is nothing

Instruction : STA

Timing :

DPR_# 0
#cpu
Arccru) < >< PG >< X000101 X oT >< PG
AvALicru) < >< PC+ 1 ><Dpn+dd X AD,AD, X PC+ 2
Operand Next
Op Code Not used Not used
T i) €) @
R/V_V(cpu)

<=
When DPR =0, this cycle i1s nothing

208

Direct Indirect

Instruction : DIV, MPY

Timing :

DPR + 0 o

S N R I G O
Ap(cru) < PG X PG X PG X PG Koo X 00 or 01X DT _
AuAuicru) < PC X PC+1 Xﬁ“ X PC+ 2 XDPR+ddX ADWAD, .

DATA(cpu) >< Op Code >< Not usedXOp Cod;XOPZ';‘"‘TXNot uSedXADNADL X DuDyL X Not used

“H™ _—— = ——

R/Wicpy)

When DPR_ =0, this cycle Is nothing

— — — —(Note)

| l - 'I I'_—I I_I l'_
'
W
X e X
X pc+3 X
Not used x Not used x Not used g?éode)

(Note) MPY instruction I1s 12-cycle, and DIV instruction i1s 23-cycle

209

Direct Indexed X Indirect

Instruction : ADC, AND, CMP, EOR, LDA, ORA, SBC

Timing :

DPR_# 0

¢ cPU

Ap(cru)

< PG PG x 00 X 00 or 01 XJO 01 orZZX DT X PG
DPR+dd
AuALicru) < PCX PC+1 >< +x >< ADyAD, >< PC+ 2

Operand Next
DATA(cpu) x Op CodeX P x Not used XNot used ADHAD, X DuDL Xop Code >

e

R/W(CPU)

-
When DPR_ =0, this cycle i1s nothing

Instruction : STA

Timing :

DPR_* 0

#cru

Ar(cru) < >< X 00 X 00 or 01 Xoo 01 or 02 X DT X G X
AnAL(cru) < K PG+ 1 DPR+d°X AD,AD, X pc+2 X
DATA(cru) Op Code Operand Not used Not used ADLAD, Not used Next

Op Code
__ “H”
R/W(cpy)

-
When DPR_ =0, this cycle is nothing

210

Direct Indexed X Indirect

Instruction : DIV, MPY

Timing :

DPR_# 0

O I O B o B e e LI
Aelcpu) LPG x PG XJG X PG X 00 X 00 or 01 >@0, 01 or 02>< DT .
AnAL(cru) < PC X PC+1 X PCH+1 x PC+2 X 2:_?_-; ADwAD,

DATA(cpu) X 0p Code X Notused X Op CodeX Op;‘;ﬁ“dXNot used X Not usedX ADyAD, X DD, Not used

wn

R/W(cpu)

e
When DPR_ =0, this cycle Is nothing

- — — —(Note)————— ——
i |

—T X o X

Not used XNot used—Xﬁot usedX El)gx(t.‘,ode X

(Note) MPY instruction 1s 12-cycle, and DIV instruction i1s 23-cycle

211

Direct Indirect Indexed Y

Instruction : ADC, AND, CMP, EOR, LDA, ORA, SBC

Timing :

DPR +=0MD& &

#cru

Ap(cpu) < PG X PG X 00 X 00 or 01X DT X T or DT+ 1 x
AnAL(cru) < PC X PC+1 >< DPR+dd >< DuAD +Y pc+2 X

Op Cod Operand Next
DATA(cpu) p Code Not used ADyAD, Not used DuD, Op Code

oy

R/W(cpy)

>
When DPR_ =0, this cycle is nothing

Instruction : STA

Timing :

DPR_# 0

Bcru

Avicrw) < PG >< X 0 XowrmX oT X DT or DT+1
AvAuccru) < PC X PG+ 1 X DPR+dd ><

Operand t
DATA(csu) X Op Code X P XNot used XADHADL X Not use%ot usedX X NexC d>
Op Code

R/V_V(cpu)

ADLAD +Y PC+ 2

Fﬁ?ﬁ

>
When DPR_ =0, this cycle is nothing

212

Direct Indirect Indexed Y

Instruction : DIV, MPY
Timing :

DPR, + 0

w L

Ap(cpu) (PG X:G X PG X PG X 00 X000r01X DT X DT or DT+ 1

AnAuicro) (PG X PCH 1 X Pc+1 X PC+ 2 X DPR-+dd X ADwAD+Y

DATA(Gru) X op Cod;X Not used XOp Code) Operand XNot used X ADAD, XNot used X DD, X Not used

", ——

_ H
R/Wicpu)

>
When DPR_=0, this cycle 1s nothing

-— — (Note)

L L L
X_re X
- X rets X

Not used Not used XNot used ggx(!:ode>

(Note) MPY nstruction 1s 12-cycle, and DIV instruction i1s 23-cycle

213

Direct Indirect Long

Instruction : ADC, AND, CMP, EOR, LDA, ORA, SBC

Timing :

DPR_# 0

$cpu l

Ap(cpu) < PG X PG X 00 X 00 or 01 X '00 or 01 X 00 or 01 X ADp X PG x

AnAuicro) < PC >< PG+ 1 X DPR+dd ><Dpn+dd+2>< ADHADLX pct2 X
Operand Next

DATA(cru) x Op Code >< “ >< Not used>< ADHAD, >quz used >< AD» >< DuD. >< Op Cade

_ “H
R/Wicpy)

D
When DPR_ =0, this cycle Is nothing.

Instruction : STA

Timing :

DPR_+ 0

#(cpu) I

e < " X " X 00 X %o OTX 90 o X e : : o X
AvhLicry) < PC X PC+ 1 >< DPR+dd XPRHHX ADLAD, X Pc+2
(o]
DATA(cpu) Op Code perand Not used AD,AD, Not used ADp Not used A Next
dd Op Code
o

R/W(cpu)

PG

e

D Emm———
When DPR_=0, this cycle 1s nothing

214

Direct Indirect Long

Instruction : DIV, MPY

Timing :

DPR_#* 0

e L] L L L L L L

Avtcru) < PGXPG X PG‘X PG X 00 X 00 or 01 X 00 or 01 X 00 or OD

AuAiicru) (PC X PC+ 1 X PC+ 1 X PCH+ 2 X DPR+dd X DPT'Z“">

DATA(cpu) X Op Codeﬂot used X Op Codeﬂpgga“dxgusedx ADuAD. X Notused X' AD,)
g

R/W(cpu)

B
When DPR_=0, this cycle 1s nothing

(Note) >

Next
< DuDL X Not used Not used Not used Op Code

(Note) MPY instruction 1s 12-cycle, and DIV instruction 1s 23-cycle

215

Direct Indirect Long Indexed Y

Instruction : ADC, AND, CMP, EOR, LDA, ORA, SBC

Timing

DPR % 0

$cru

Ap(cru)

ADp
00 00 or 01 00 or 01 00 or 01 ADe or ADp+ 1
< X pCH+ 1 >< DPR+dd X DPR+dd+ 2
— > (R CodeX opj:,and>Q°‘ usedX ADNADLXNot us;X AD;-_X Not used X DuDL ngx:: 0de>

R/ W(CPU)

AnALiceu) ADHADL+Y PC+2

>
Fﬁﬁﬁ

-
When DPR_ =0, this cycle 1s nothing.

Instruction : STA

Timing

DPR# 0

Aee (pa X e X 00 X OOOE><?OorO1X oot X ADs X ADp or ADp+ 1 x
Adhuicry (PC X PC+1 1 DPRH-dd X OPR+dd+ 2 X ADLAD+Y XPCH

R/W(ceu

-—>
When DPR_=0, this cycle is nothing

216

Direct Indirect Long Indexed Y

Instruction : DIV, MPY

Timing
DPR_# 0
OO I I O O O I O O O O B A R e
Ap(cpu) G >(PG X PG X PG X Xoo or 01 Xoo or01X00 or09< ADp >
ArALicru) pc X PCt1 X PC+ 1 X PC+2 x DPR+dd X DPR+dd+2 >

DATA(cpu) >< Op CodeX Not use(iXOp CodeX OP:(;andXNot usedXADHADLwot usedx ADe X Notused

o ————

R/W(cpu)

-

When DPR_ =0, this cycle is nothing

s

1|
(ADp or AE)p-+_]- _ ' X PG >C
X >C

PC+3

(Note) MPY instruction I1s 12-cycle, and DIV instruction 1s 23-cycle

217

Absolute

Instruction : ADC, AND, CMP, CPX, CPY, EOR, LDA, LDX, LDY,
\ ORA, SBC

Timing :

Bcru

Arcey { Pa X X >< PG
(oo Yo X m X
> < Operand Next :
DATA (¢]
(cPu) p Code >< - X DyDL >< Op Code

R/V—V(cpw

AnAL(cPu)

Instruction : LDM

Timing :

(2

>
b1
o
v
<
T
[0}
5
[0}

__ “H
R/W(cpy)

218

Absolute

Instruction : STA,

Timing :

¢CPU

Ar(cru)

AnAL(cru)

DATA(cpu)

R/Wicpu)

Instruction : ASL, DEC,

Timing :

STX,

STY

< PG X PG X DT
o

perand Not used
hhil

PC+ 1 hhil

Op Code X

><

*H

INC, LSR, ROL, ROR

)

$bcru ‘

Apcceu) < PG X PG >< DT >< pa X

AuALicru) (PC X PC+1 X hhll X:C'f':‘l x
Operand Next

DATA Op Cod

(cPU) X Op Co eX il XDHDL X Not USe;XNeWDHDLXOpCOde
__ “H —
R/W(CPU)

219

Absolute

Instruction : DIV, MPY

Timing :

e [L L L LT

Ap(cru) < PG X PG X PGX PG X DT

AnAiicru) < PG X PC+1X pc+1 X po+2 X hhil

DATA(cpu) X Op Codex Not use;XOp Code Of‘i?ndX DuD, X Not used
“yr

R/W(cpu)

—— — —-(Note

Jg S) S) O A B
e
T XPC+4><___

Not used x Not usedXNot usegxgg"éode>

(Note) MPY instruction 1s 12-cycle, and DIV nstruction is 23-cycle.

220

Absolute

Instruction : JMP

Timing :

Instruction : J SR

Timing :

$ceu
Ar(cpu)

AnALicru)

DATA(cpu)

R/Wicpu)

$cru |
AP(CPU) < PG X PG X x
AnALicru) < PC ch+1 X hhil x
Operand Next
DATA,
(er >< Op Code >< hhil XOpCode>
_ e
R/W(ceu)

(o)
Op Code perand
hhll

g

>L

f%

X X
X=X

C

Not used PCwPC Next
i Op Code

221

Absolute Bit

Instruction : CLB, SEB

Timing :

$cru

Ar(cpu)

PC+5

< PGXPG X PG X DT X PG
AwALcru) < L G >< PC+3 >< hhil X
Operand Next
DATA(cpu) x Op Code X Bl XOperand X DuD, XNot used XNew DATA Op Code >

“yr —

an

R/W(CPU)

When m=1, fetched operand at 3-rd cycle 1s 1-byte(nn)

222

Absolute Indexed X

Instruction

Timing :

Instruction

Timing :

:ADC, AND, CMP, EOR, LDA, LDY, ORA, SBC

¢CPU

Ap(cru) < PG K DT or DT+ X

AvAvicru) < PC PCH 1 X hhil+X PC+3

DATA Operand N Next
(cPu) Op Code hhil ot used DyD. Op Code

R/W(cpu)

o
Sl

[

:LDM

#ceu

N

Ap(cPu) PG X PG x PG X DT Xi)zr DT+X x
AuAucerty < X pcti >< PC+3 Xhhu+x>< Pc+s X
>< P Operand Operand > < Next
ATA Op Code Not used mmnn
D (cPu) - X hhl X mmnnX Op Code
o wr
R/W(cpu)

223

Absolute Indexed X

Instruction : ASL, DEC, INC, LSR, ROL, ROR

Timing :

Bceu

DT or DT+ 1 PG

AnAL cru

Apicru! < PG >< PG X DT X ><
(X e X e N er
Next
DATAcpu Op Code Operand Not used DuD Not used New DyD. X
. hhli Op Code
.

—— —
R/W. cpu)

ale

224

Absolute Indexed X
Absolute Indexed Y

Instruction : DIV, MPY

Timing :

S o I e e I e e e B

Aetcru) < PG X PG X PG X PG >(DT X DT or DT+ 1

Aoy { Po X pok1 X Pot1 X pot2 X '

DATA(cpu) :XOp CodeX&t usedXﬁCodeXOpﬁ:ﬁlndXNolusedX DuDL X Not used T
oy —_———-

hhll4+-X(Y)

R/W(cpu)

— — —(Note)

—— ﬂ r
i) e))
| I,
X e X
Xrers X
- N— Next
ot used Not used Not used Op Code

(Note) MPY instruction 1s 12-cycle, and DIV instruction is 23-cycle.

225

Absolute Indexed X
Absolute Indexed Y

Instruction : STA

Timing :

hhil+-X(Y) PC+3

PG X ot X DT or DT+ 1 >< e X

" ’ X X K
Operand Nex

DATA(cru) X Op Code >< F:mu ><\lot used ><Not use:>< X op Cod

\/

226

Absolute Indexed Y

Instruction : ADC, AND, CMP, EOR, LDA, LDX, ORA, SBC

Timing :

$cru

Ap(cpu) < PG x PG X DT XDI or DT+ 1 PG
PC PC+1 >< hh|I+YX:C+3
Operand Next
DATA, Op Code Not
(CPU) x P X hhl x otused X DHDLXOD Code

oy

AHAL(CPU)

e

N>

‘
R/Wicpy)

227

Absolute Long

Instruction : ADC, AND, CMP, EOR, LDA, ORA, SBC

Timing :

#cpu

e (X X X X

AvAuicru) < PC X PC+1 X PC+3X bl >< PC+ 4
Operand Operand Next

DATA(cru) Op Code nhil op D,D, Op Gode

__ “H
R/W(cpu)

s

N

Instruction : STA

Timing :

$cru

P(CPU) < X PG X PG X pp X
At { PC >< PCH 1 ch+3 >< hhil XC+4
Operand Operand Next
DATA Op Code Not used
T CO e P e

R/Wicpy)

Fﬁ?ﬁ

N

228

Absolute Long

Instruction : DIV, MPY

Timing :

I |

o B B
Ar(cru) (PG X PG X PG X PG
AnALicru) < PC X X PC+1 X PC+4 X hhl

DATAcru) X op CodevXEot used XOp Code Y Operand Xo"e’a”d X DWDL X Not used
I

|
s X__» s

|
X_*
: X

PC+1

' I L
| -
X ra X
X pots X
TN Next
__l:lotused Xﬂotused Not used op Code}

(Note) MPY nstruction 1s 12-cycle, and DIV instruction 1s 23-cycle

229

Absolute Long

Instruction : J MP

Timing :

$cpu

Ap(cru) < PG X PG X X
W X X

Operand Operand Next
x Op Cod
DATA(cru) p Co ex hhil X pp Op Code

H/V_V(CPU)

AuAL(cru)

e

Instruction : J SR

Timing :

$cru

Ap(cpu)

PC+3

X=X =X e X = X

AnAL(cPU) (PC XPC-HX X S >< S—2 >< hhil x

Operand erand Next
G G G) G €2 EW

R/V_V(CPU)

230

Absolute Long Indexed X

Instruction : ADC, AND, CMP, EOR, LDA, ORA, SBC

Timing :

¢C"U

Ap(cpu) < PG >< PG PG >< pp or pp+l PG ><
< PC X PC+ 1 PC+3 >< nnn+x PC+4 X

Operan Operand Next
Op Code Not used DuD
DATA(cPu) >< hhil X X DL Op Code

R/W(CFU)

AHAL(CPU)

Instruction : STA

Timing :

$cru

Apicpud < PG X
AuAviceu < PC >< PC+T>< PC+3

hhil+X PC+ 4

PG X PG X pp X pp or ppt+ 1 PG X

Fﬁ

Op Code Operand Operand Not used Not J Next
DATAcpu) P hhil otuse Op Cod

DED

R/Wicpu»

231

Absolute Long Indexed X

Instruction : DIV, MPY
Timing :

— - - - — — —— .

AR RN S I N N G
e (P X pa X re X pe X pe X w X wormrt i

AvALicrw) Q PC X PCH 1 XPC+I X PC+ 2 X PC+ 4 X mix

DATA(cr) X 0p Code)" Not used XOp Code Y OPerand A Operand XFOI us@(DD, X Not used
liH" - T

R/Wiceu)

~ — — —(Note)

L S .
X X
. Xrers X

- T Next
Not used XNot used XNot usedx Op Code

(Note) MPY instruction is 12-cycle, and DIV instruction 1s 23-cycle.

232

Absolute Indirect

Instruction : J MP

Timing :

$ceu |
Ae(cru) < PGX PG XPG x PG x
< PC PC+1 X hhll X x
opcese Xt X 2000 X o)

AnAL(cpu) ADWAD,

DATA(cpu)

=

_ “y
R/W(cpy)

233

Absolute Indirect Long

Instruction : J MP

Timing :

écru

Ar(cru) < e X pa >< PG X’G or PG+><>G or PG+1 A, X
AvAuce { PC XPC-}- 1 >< hhil thll-% 2XEHAD,_ X
Op Code Operand AD,AD Not used AD Next
DATA(CPU) hhit H L P Op Code
g

R/W(cpu)

234

Absolute Indexed X Indirect

Instruction : JMP

Timing :

$cru

Ap(cru) < X!G >< PG or PG+ 1X

PC x PC+1 hhil+X x
O d t
DATA(cpu) X Op Cod:>< p:r:mot used X ('\;ZXCO >

oy

AnAccru)

R/W(cpu)

Instruction : J SR

Timing :

¢CF‘U

Ap(cpu) < PG X PG X PG PG or PG+X 00
< PCX PC+1 X nhi+x >< s—1 ADHADL
Operand Next
DATA x Op Code Not used ADLAD PCHPC, >
o ’ X hhl X X ! LX i) X Op Code

oy

R/W(CPU)

AnALicpu,

I

235

Stack

Instruction : PE A

- Timing :

¢CPU I

Ap(cru) < PG X PG X 00

AnALcPu) < PC X PC+1 X S— pc+ 3
Op Cod Operand Not d mmnn Next

DATA(cpu) p Code mmnn ot use Op Code

R/Wicpu)

Fﬁ?ﬁ

Instruction : PE |

Timing :

Bcru

Ap(cru) < PG X PG X 00 X X 00

AnAL(cPu) < PC X PC+1 X DPR+nnX s—1 pc+2’
> < Operand Next

DATA(cpu) Op Code X X Not used X DuDL x DuDL X Op Code>

e

R/Wiceu)

00 or 01

Fﬁ?ﬁ

236

Stack

Instruction : PER

Timing :

bcru |
Ap(cru) < PG‘X PG X 00 PG x
< PC >< PC+ 1 >< s— PC+3 X
Operand Next
ATA Op Cod Not used Not used PC+mmnn
S C = G K Kot)

“yr

AnALicru)

R/Wiceu)

Instruction : PHA, PHD, PHP, PHX, PHY

Timing :

$cru |
Ap(cpu) (PG X PG X X PG x
AnAL(cru) < PC X PC+1 X S— X Pc+1 X
DATA Op Code Notused X Not used A Next
(CcPU) Op Code
o e
R/W(cpu)

237

Stack

Instruction : PHB

Timing :

#cru l
Ap(cpu) < PGX PG X PG X PG X 00 X PG x
AuAicru) < PCX PCH1 >< PG+ 1 >< PCH2 X s—1>< Ptz X
Next
DATA(cry) Op Code Not used Op Code Not used Not used B Op Code
_ “w
R/W(cpu)

Instruction : PHG, PHT

Timing :

#cru |

o {0 X re X X e ><:
R CHED ><:

. Next
DATA(cpu) Op Code Not used PG Op Code

R/Wiceu)

PG

PC+1

238

Stack

Instruction : PLA, PLD, PLX, PLY

Timing :

$cru ‘

Ap(cpu) < PG >< PG ><

AnALicru) < PC >< PC+1 >< S+ 1 PC+1
Next

DATA(cpu) Op Code Not used Not used DuDL Op Code

R/W(cpu)

ﬁfﬁ

Instruction : PLB

Timing :
¢CPU l
AP(CPU) < X PG X X PG X OO X PG : :
AnALicru) < ><PC+1 >< PC+ 1 >< PC+ 2 >< s+1 >< pct2 X
Next
DATA(cpu) x Op Code>< Not use:XOp Cod;>< Not usedX Not used >< DuD. Xop Code >
B “y
R/W(cpu)

239

Stack

Instruction : PLP

Timing :

#cru

cm———

Ap(cpru) PG

S+1 PC+1

O G &
- < po X o+ >< ><

Next
DATA(cpu))(Op Code4><Not used>< Not used >< DyD, >< Not used >< op Code>

oy

R/Wicpu)

e

Instruction : PL T

Timing :

¢CPU |
Ap(cru) { PG >< PG >< 00 >< DL e X
AnALicru) < PC >< PC+1 >< s+1 PCH+ 1 ><

Op Cod Not used X Not used Next
DATA(cpu) p Code ot use: Not use Do Not used Op Code
R/V_\/icPu)

240

Stack

Instruction : PSH

Timing

bceu

Artcru)

AnALicru)

DATA cpu)

R/W'cnw

IUL_IL_IIIIII[II_II_\I—I
=X - X=X

G X X XX oD
:><p00de Pe;a“dXNot used X Not us%ot used)@ot usedX A Xﬁusetx;ot usedX B >
I N B

X Y DPR

FL L L
D G G I
D) e e e 6D,
<Notuse;XNotusedX x‘XNOt usedXNotusedX v XNotusedXNotusedX OPR Xl\lot used
J L LI L

C = X = X
< S—10 X S—11 X S—1 X S—12 X S—12 X
Next
>< DT XNot used >< PG XNot useiX Not usedX PS)<0p Code >
(Note) This figure 1s an example pushed all the registers

by PSH instruction If any register i1s not pushed,
its cycle (++) I1s nothing,

241

Stack

Instruction : PUL

Timing

e [L L L L L L L

AnALicru) (PG X PG X 00 >
Avicrun (JC X PC+ 1 X s+1 X S+1 XSM X S+1 X s+2 X S+3 X s+3 >
bepu :XOp CodeXSp:;a”dXEOt usedXEot used Y Not usedXNot usedX PS XNot usedXNot usedX——N_c; used

oy

R/Wicpy

DT DPR Y

X X -) G
X S+3 X S+4 x S+4 x S+5 X S+6 X S+ 6 X S+7x S+8 >
)(oT XNot usedk\lot use&X DPR X\lot usec%Not usedX Not usedX Y Xlot used X Not used

l

S+3

|
o
<

x

A
00 X 00 >(PG
S+8 X S+9 X S$+10 x S+10 x S+le S+12 x S+12 X S+13 X S+14 X PC+2 x
X XNot used XNot usedX B XNot used XNot usedX A XNot usedXNot useng%XEOQ

Fﬁﬁ

NN T

§

(Note) This figure 1s an example pulled all the registers
by PUL instruction If some register I1s not pulled,
its cycle (=) i1s nothing,

242

Relative

Instruction :BR A

Timing :

$cru

Ap(cpu)

PG or PG+ 1

Fﬁ

PC+1

AnAciceu) <

P >< o X e
e ><

PG+

s

Operand Next
DATAcru) X' Op Code >< P >Q\lot usec:><Not used >< Op Code >

e

R/Wigey)

Instruction :BCC, BCS, BEQ, BMI, BNE,

Timing

Branched

BPL, BVC, BVS

$ceu

Ap(cpPu) < PG X PG

AnALcru) < PC X PC+ 1

F’C+rr

><!G PG or PG+ 1 X

Operand Next
DATA(cpu) Op Code Not used Not used Not used Not used Op Code

R/W(cpw

When not branch, this cycle 1s nothing

243

Direct Bit Relative

Instruction : BBC, BBS

Timing :

DPR_# 0, m=0, Branched

< o X - Xoo XMO,X P X b X be XG+><
< PC X PC+1 XDPR+ddX PC+2 >< PC+ 4 XPC"PCL-MX
Operand Operand \ / Operand Next

DATA(cpu xopCOdeX a ><Notused>< DWD, Xmmnn X " Notused X Notused X Notused X o5 Gode

_ e
R/W(cpu)

$cru

AnAvicru

<

When DPR_=0, this cycle 1s nothing. When not branch, this cycle 1s nothing

>

When m=1, fetched operand at 5-th cycle is 1-byte(nn).

244

Absolute Bit Relative

Instruction : BBC, BBS

Timing :

m=0, Branched

$bcru |
Ao < ra x P >< re >< re X ba X bo Xe reat)
AnAicru) < PC X PC+1X hhil X PC+3X pPC+5 X PCHrr X
Operand Operand Next
DATA(cru) Op Code Operand DuD. P P Not used Not used Not used X
hhii mmnn I Op Code
R/Wicpu)

When not branch, this cycle 1s nothing

When m=1, fetched operand at 4-th cycle 1s 1-byte(nn)

245

Stack Pointer Relative

Instruction : ADC, AND, CMP, EOR, LDA, ORA, SBC

Timing :

$cru

Ap(cpu)

AuAL(cru)

< X o1 >< S X o+ 2 ><
D. Cod Operand Not d Next
ATA(cpu) Op Code otuse DuDy Op Code

R/W(CPU)

Instruction : STA

Timing :

¢CPU

Ar(crw) < PG >< PG X 00 >< 00 or 01 Xpe ><
< PC X PC+1 X S+rr X PC+ 2 ><
DATA () X op Code>< Opera”d >< Not used >< Not used >< A ngxéode >

R/W(CPU

AnAc(cru)

246

Stack Pointer Relative

Instruction : DIV, MPY

Timing :

O I S R O R S R SR

Apccru (PG X PG X PG X PG 00 00 or 01

AnALcru) (PC X PC+1 X PC+1 X PC+2 X

S+trr

DATA(cpu) X Op CodeXNot used X Op CodeX Operrrand >< Not usedX DuDL X Not used
wpy —_ -

R/Wicpu)

NN
- X e X
ch+3><:

T Netused >< >< Next
_ l\lcit used Not use%ﬁ used op Code>

(Note) MPY nstruction 1s 12-cycle, and DIV nstruction 1s 23-cycle

247

Stack Pointer Relative Indirect Indexed Y

Instruction : ADC, AND, CMP, EOR, LDA, ORA, SBC

Timing :

¢ CPU \

DT
PG
Avcru) < P:X PG >(00 >< 00 or 01>< ot ><or DT+)<
AnAL(cPu) < X PC+1 X
Operand Next
DATA(cpu) x Op COdi>< X Not USTXADHADLXNO' used x DD X Op Code

R/W(CPU)

Instruction : STA

Timing :

#cru l

Ar(cru) < PG X PG >< 00 >< 00 or 01 >< ot X DT or DT+ 1 X
AnAL(cru) < PC X PC+1 X S+rr)(ADyAD, +Y Pc+2 X
Operand
DATA(r0) Op Code peran Not used ADLAD, Notused Y Not used Next
Op Code

R/W(cpu)

248

Stack Pointer Relative Indirect Indexed Y

Instruction : DIV, MPY

Timing :

O (N I I s I U I o)

Ap(cru) < PG X pc X PG X PG X 00 XOO or 01 X DT X DT or DT+ 1

AvAccry) L PC X PC+1X PG+ 1 X PC+ 2 X Strr X ADWAD. +Y

DATA(cpu: >< Op Codemsedﬁp Cod%l)e'l"a"dXNot used >< AD..ADLXNOl usedX DuD. >(Not used
e -——-

R/Wicpu)

(Note) —————————=

I
L
X e X
XX
Notused X Not used Notusengg’%ode>

(Note) MPY instruction i1s 12-cycle, and DIV instruction i1s 23-cycle

249

Block Transfer

Instruction : MVN

Timing

| Repeat this cycle

e [e o o Y e

Apicru) Q PG X PG X dd er x ss X Source Bank ss)
e {70 X X X XX)

DATA(cpu))(Op CodeX XNot usedX XNot used)(ot usedXNot usedX DuDL XNol used x Not used

R/W,
er! (Target Bank) (Source Bank)

—

X Target Bank dd X x
X XXX
Not usedX DuD. XNot usedXNot used XOpxCode>

| —

(Note) This figure ts shown that transfered the 2-bytes data started from even

address |If transfered more than 3-bytes data, the cycle («+) I1s repeated

each 2-bytes

250

Block Transfer

Instruction : MV P
Timing :

b= Repeat this cycle

- LT L L L L L L L L
LPG KPG X dd X PG X ss X Source Bank ss>

AvAuicru) < PC PC+1 X Y X PC;X X X K X X—1 >

DATA(cpy) ><Op Code dd XNotusedX ss %otused X NotusedXNot us;XNot usedX DuD, XNotused

Ap(cru)

R/Wicry) (Target Bank) (Source Bank)

Target
X Target Bank dd X Bank X PG)(
X X XX
N Next
ot used DuD. Not used Not used Not used Not used Op Code

(Note) This figure I1s shown that transfered the 2-bytes data started from even
address If transfered more than 3-bytes data, the cycle (+) 1s repeated

each 2-bytes

251

APPENDIX B
Series MELPS 7700 Machine Instructions

MACHINE INSTRUCTIONS

Addressing mode
Symbol Function Details IMP | IMM A DIR | DIRb | DIRX | DIR,Y | (DIR) |(DIRX) | (DIR),Y
op| n|#|op| n|#|op| n|$|op|n|3op|n|#[op|n[#|op|n|#|op|n|%|op|n|2|op|n |2
ADC Acc,C + Acc+M+C | Adds the carry, the accumulator and the memory contents 692 (2 654 |2 75|52 72)612161|7]2(71/8(2
(Note 1,2) The result i1s entered into the accumulator When the D
flag 1s “0", binary additions 1s done, and when the D flag 1s 421413 42/ 6 | 3 427 |3 428|342/ 9|3 [42]10| 3
“1", decimal addition 1s done 69 65 75 72! 61 71
AND Acc ~ AccAM Obtarns the logical product of the contents of the accumu- 29/ 2(2 225|412 35/512 32/6]221)17)2131|8|2
(Note 1,2) lator and the contents of the memory The result 1s en-
tered into the accumulator 421413 4263 427 |3 42(8|3 [42(9|3 [42/10| 3
29 25 35] 32 21 31
ASL m=0 Shifts the accumulator or the memory contents one bit to 0A[210672 16|72
(Note 1) b—._0 the left “0" 1s entered into bit 0 of the accumulator or the
= memory The contents of bit 15 (bit 7 when the m flag 1s 42|14 |2
“1") of the accumulator or memory before shift is entered 0A
E{ool Tbol-0 | intothe c flag
BBC Mb=0" Tests the specified bit of the memory Branches when all
(Note 3,5) the contents of the specified bit 1s “0"
BBS Mb=1" Tests the specified bit of the memory Branches when all
(Note 3,5) the contents of the specified bit 1s “1"
BCC c=0" Branches when the contents of the C flag i1s “0"
(Note 3)
BCS c=1" Branches when the contents of the C flag 1s “1"
(Note 3)
BEQ z=1" Branches when the contents of the Z flag i1s “1"
(Note 3)
BMI N=17? Branches when the contents of the N flag 1s “1"
(Note 3)
BNE z=0" Branches when the contents of the Z flag 1s “0"
(Note 3)
BPL N=0" Branches when the contents of the N flag 1s “0"
(Note 3)
BRA PC+—PC=offset Jumps to the address indicated by the program counter
(Note 4) | PG-PG+1 plus the offset value
(carry occured)
PG-PG—1
(borrow occured)
BRK PC+-PC+2 Executes software interruption 00]15(2
M(S)+—PG
S+85—1
M(S)+PCy
S—s—1
M(S)—PCL
S—s—1
M(S)+PSy
S—§—1
M(8)+—Ps_
S+s—1
11 .
PCL—AD,
PCh—ADy
PG+00i6
BVC v=0? Branches when the contents of the V flag 1s “0"
(Note 3)
BVS v=1? Branches when the contents of the V flag i1s “1”
(Note 3)
cLB Mb+—0 Makes the contents of the specified bit in the memory “0" 14(8(3
(Note 5)
cLC C+0 Makes the contents of the C flag “0” 1821
CLl 1-0 Makes the contents of the | flag “0" 58|12 (1
CLM m—0 Makes the contents of the m flag “0" Dg| 2|1
CLP PSb+0 Specifies the bit position in the processor status register by the bit c2[4)|2
pattern of the second byte in the instruction, and sets “0” in that bit
cLv V0 Makes the contents of the V flag “0” B8| 2|1
CMP Acc—M Compares the of the with the of C9(2(2 C5(4(2 D552 D2/6|2]|Cl{7|2|D1|8|2
(Note 1,2) the memory
42| 4|3 4216 (3 42|73 42| 83 142/ 9|3 42(10] 3
C9 C5) D5) D2 Cl DI

252

APPENDIX B
Series MELPS 7700 Machine Instructions

Addressing mode Processor status register
L(DIR)|L(DIR)Y| ABS | ABS,b|ABSX|ABSY| ABL |ABLX|(ABS)I|L(ABS)|(ABSX)| STK | REL | DIRbR |ABSpR| SR |(SR),Y| BLK IOIQIB 716|5(4(3|2|1
op| n |# |op| n | |op| n|#|op|n|#op|n|3|op|n|#[op|n | |op{n | op|n|H|op|n|H]op|n|H]op| n|%|op|n|#fop/n|$|op|n|H]op| n|H|op|n|H|op|n|#| IPL [N|V|m|x|D|I|Z
6710{2|77|11| 2|6D| 4| 3 70|16 |3[79|6 |3 [6F|6|4|7F|7 |4 63)5(2(73/8(2 cle|*|N[V|e]|sf}*|Z|C
142(12| 3 142[13| 3 [42{6 | 4 42| 8 |4 142|8 |4 [42(8|542(9|5 427 | 3 142|103
67 77 6D 7D 79| 6F TF 63| 73]
2710]2|37/11) 2|20} 4|3 3063 (39|63 [2F|6|4(3F|7(4 23|5(2(33(8(2 efo|o{N|elo]e]le]|e|z
142112 3 |42(13) 3 426 | 4 42|84 142|814 42|85 42/915 427 3 14210/ 3
27 37| 20 3D 39] 2F 3F 23 33
0e| 73 1g|8(3 el Nl e e T T2
3474 (3c|8 |5 elefelelelo]eloalefe
24|74]2C{8|5 efofefefefofele]e]e
90 4 | 2
Bol4 |2
Fo[4(2 elefefala]ofe|e|e]e
3042
Dol 4|2 elefolelalolofofele
10042 elelafalolo|ofole]e
804 (2
82]413
50(4 {2 efefelofo]o]ole]e]e
70/4 (2 elelelalalala)olele
Ic|j914 elofofofefafafe]els
elofefelole]lelalo]s
efefofelofo|e]o]le]e
+|*)e*|Specified flag b
comes “0”
efelelelofe]e]efo]e
C7(10/ 2 {07]11) 2 D 4| 3 DD| 6|3 D3| 6 |3 |CF| 6|4 [DF| 7|4 C3|5|2|03|8 |2 ele[s[N|e|sl*|l(2Z
142/12| 3]42|13/ 3 142/ 6 | 4 42|84 142/814 14218154295 42/ 713142103
C7 D7| ICD| DD D9 CFi DF| C3! D3|

253

APPENDIX B
Series MELPS 7700 Machine Instructions

Symbol

Function

Addressing mode
Details IMP | IMM A DIR | DIRb | DIRX | DIRY | (DIR) | (DIRX) | (DIR).Y

op|n|#{op|n|# |op| n ¥ op|n|#|op|n | fop|n|#|op|n|2|op|n |4 |op|n|#|op|n |2

CPX
(Note 1,2)

X—M

Compares the contents of the index register X with the £0(2]2 E4{4|2
contents of the memory

CPY
(Note 1,2)

Y—-M

Compares the contents of the index register Y with the c0|2|2 C4l4|2
contents of the memory

DEC
(Note 1)

Acc+Acc—1 or
M—M—1

Decrements the contents of the accumlator or memory by 1A[2]1[c8|7|2 0672
1

4214 |2
1A

DEX

X—=X—1

Decrements the contents of the index register X by 1 ICA| 2 |1

DEY

YeY=1

Decrements the contents of the index register Y by 1 88(2 (1

o
(Note 2,10)

A(quotient)+~B,A/M
B(remainder)

The numeral that places the contents of accumulator B to the higher order and the 89)27 3 89]29| 3 89(30(3 89(31 3 [89|32| 3 89|33 3
contents of accumuiator A to the lower order 1s dvided by the contents of the memory 29 25 35 32 21 31
The quotient is entered into accumulator A and the remander nto accumulator B

EOR
(Note 1,2)

Acc+Acc¥M

Logtcal l sum 1s ob d of the c: of the 49| 2|2 45/ 4 |2 555 |2 5262|417 |2(51|8{2
accumulator and the contents of the memory The result Is
placed Into the accumulator 421413 42/6 |3 42|17 13 42|83 142/ 9|3)42{10[3
49 145 155 52 41 51

INC
(Note 1)

Acc*Acct1 or
M —M+1

Increments the contents of the accumulator or memory by 3A12|1[E6| 7|2 F6)7]2
1

421412
3A

INX

Xe=X+1

[N

Increments the contents of the index register X by 1 E8

INY

Yev+1

Increments the contents of the index register Y by 1 C8(2 |1

JMP

ABS
PCL— AD_
PCy — ADy

ABL
PC_— AD_
PCh — ADy
PG—ADg

(ABS)
PCL —(ADy, AD.)
PCy —(ADy, AD_+1)

L(ABS)

PC_ +-(ADy, AD,)
PCy +(ADy, AD_+1)
PG «(ADy, AD_+2)

(ABS, X)

PCL +(ADy, AD_+X)

PCy + (ADy, AD_+X
+1)

Places a new address into the program counter and jumps
to that new address

ABS
M(S)+— PCy
§-8—1
M(S)— PC_
Se—s—1
PC_ — AD_
PCy — ADy

ABL
M(S)+- PG
S—5—1
M(S)+ PCy
S—5—1
M(S)—PCL
S—s—1
PCL+— AD_
PCy + ADy
PG + ADg

(ABS, X)

M(8)+ PCy

S+—s-1

M(S)«PC_

S-5—1

PC_ (ADg, AD_+X)

PCy +(ADy, AD_+X
+1)

Saves the contents of the program counter (also the con-
tents of the program bank register for ABL) into the stack,
and jumps to the new address

254

APPENDIX B
Series MELPS 7700 Machine Instructions

Addressing mode Processor status register

L(DIR)[L(DIR).Y] ABS [ABSb|ABSX|ABSY| ABL |ABLX|(ABS)|L(ABS)[(ABSX)| STK | REL |DIRbR |ABSbR| SR [(SR)Y| BLK lOIBlB 7(6(5(4(3|2]1

op|n |4 |op| n|#]op| n|%|op|n |3]op| n|# |op| n|%|op|n|#|op|n|#[op|n|#|op| n|#|op| n|%[op|n [op(n|#[op|n|%|op|ni#|op|n|#|op{n|#|op|n|#| IPL [N|V|mIx|D|I]|Z

ecl4(3 el Nl <l]+ |z
IcCl4 (3 elolelN[e]o]|e]s]e]lz
ce| 713 EHE ARANARRARNE

1B9[35| 3 [89[36{ 3 [0l29] 4 89[31] 4 [89[31] 4 [89j31| 5 [saj32(5 83[30(3 [89[33(3 eleleinfviefee]-]z
27l | 7| | o o | 9] | || | | 23 | [33
47/10| 257|112 40| 4 | 3 50[6 |3 [59]6 |3 (4|6 |4 [sF[7[4 43)5|2 [53|8 |2 clefeqnfefl]-]-]2
42)12[3[42[13]3[42] 6 | 4 4284428442 8]542[3]5 4273 [42[10]3
47| | 57| | |0 so| | fs9| | [4F| | |5 43| | [53
£E| 7|3 FE| 8|3 B RN I £ R R Y 2
oflofe(N|e|efele|=]2z
e|lelefN|e|e|e]lele]z
ic| 2|3 sc|4 4 6c|4(3{oc 8|3 1c|6 (3
20/6 (3 22|84 Fc|8)3

255

APPENDIX B
Series MELPS 7700 Machine Instructions

Addressing mode
Symbol Function Details IMP | IMM A DIR | DIRb | DIRX | DIRY | (DIR) | (DIRX) | (DIR),Y
op|n|3|op!n |3 |op| n|#|op|n|# op|n|#|op|n(#|op|n[#|op|n|#[op|n|#|op|n |2
LDA Acc+ M Enters the contents of the memory into the accumulator A9 2] 2 A5 42 B5|5|2 B2|6{2]A1)7]|2|B1|8|2
(Note 1,2)
424 {3 421613 42713 42/ 8 | 3142/ 91314210 3
A9 AS B5 B2 Al Bl
LDM M < IMM Enters the immediate value into the memory 64|43 74/5(3
(Note 5)
LDT DT - IMM Enters the immediate value into the data bank register 89|53
C2)
LDX XM Enters the contents of the memory into index register X A2|2)2 AS[4|2 B6(5 (2
(Note 1,2)
LDY Y—M Enters the contents of the memory into index register Y A0| 2|2 Adl4)2 B4|5|2
(Note 1,2)
LSR m=0 Shifts the contents of the accumulator or the contents of 4A[2(1146(7 |2 56| 7| 2
(Note 1) 0—[bis] _|bo}~C the memory one bit to the right The bit 0 of the accumula-
m=1 tor or the memory is entered into the C flag “0" is entered 42|42
o into bit 15 (bit 7 when the m flag is “1") 4A
oo Tou}-c
MPY B, A—A*xM Multiplies the contents of accumulator A and the contents of the mem- 89/16) 3 89/18 3 89/19| 3 8920/ 3 189,21| 389/22| 3
(Note 2,11) ory The higher order of the result of operation are entered into accu- 09 05 15 12 01 11
mulator B, and the lower order into accumulator A
MVN Mn+i+—-Mm+i Transmits the data block The transmisston is done from
(Note 8) the lower order address of the block .
MVP Mn—i—=Mm— Transmits the data block Transmussion i1s done form the
(Note 9) higher order address of the data block
NOP PC+PC+1 Advances the program counter, but performs nothing else |EA[2|1
ORA Acc+AccVM Logical sum per bit of the contents of the accumulator and 09/2|2 05/4 (2 15/5(2 12(6(2(01|7 (21|82
(Note 1,2) the contents of the memory is obtained The result is en-
tered Into the accumulator 42413 42/6|3 4273 42| 8 3 (429 (3 [42[10({3
03 05 15 12 01 1"
PEA M(S)+-IMM: The 3rd and the 2nd bytes of the instruction are saved into
S<Ss—1 the stack, in this order
M(S)+IMM;
S+-8-1
PEI M(S)=M((DPR)+IMM | Specifies 2 sequential bytes in the direct page in the 2nd
+1) byte of the instruction, and saves the contents into the
S+-S—1 stack
M(S)+-M((DPR)+IMM)
S+5—1
PER EAR-PC+IMM2,IMM; Regards the 2nd and 3rd bytes of the instruction as 16-bit
M(S)+—EARy numerals, adds them to the program counter, and saves
S—8—1 the result into the stack
M(S)—EAR,
S—S—1
PHA m=0 Saves the contents of accumulator A into the stack
M(S)—Ay
§+8—1
M(S)-AL
S+-8-1
m=1
M(8)—AL
S+S—1
PHB m=0 Saves the contents of accumulator B into the stack
M(S)+«By -
Ss—1
M(8)+B
S—s—1
m=1
M(8)+~B,
S+-§—1

256

APPENDIX B
Series MELPS 7700 Machine Instructions

Addressing mode Processor status register
L(DIR)[L(DIR).Y| ABS |ABSb|[ABSX|ABSY| ABL |ABLX|(ABS)|L(ABS)|(ABSX)| STK REL | DIRbR |ABSbR| SR [(SR)Y| BLK 10[9]8 716|5(4(3|2(1
opn#topn#opnﬁopn#opnﬁopnﬁopn#opn:topnﬁopn#opnttopn#opn#opn#opnﬁopn#og!n#opn# IPL |N|V[m|x|D|1{Z
A7(10| 2 |B7|11|2 [AD[4 |3 BD| 6|3 (B3| 6|3 (AF| 6|4 (BF| 7|4 A3|5|2|B3|8|2 cle|*|N|sfeje]sf*)2Z
142[12) 3 [42/13|3 42| 6 | 4 42|18 |4 142|8 |4 [42/8|5[42|9|5 42| 7| 3142/10(3
A7 87 IAD| BO| B3] AF BF A3 83
9C| 5|4 9E| 6|4 elofofofe|olofofofe
e[4|3 Be|6(3 ERBNERRRRE
Ac 4|3 Bc|6 |3 N T T 2
HE 5e[8[3 BRBNERRRRE
189124/ 3 89|25/ 3 8918 4 89/20| 4 (89]20] 4 (89[20) 5 [83]21) 5 89)19) 3 89(22| 3 ol {N|e]l*[["|Z
107, 17 0D 1D 19 OF IF 03 13
54(7(3[oo fo|e|efofele]e]s
+
Lx7
449 3) o] o] o] e)olele|ele]s
+
=X7
107101 2 |17(11{2(0D| 4|3 1D{6|3|19|6|3|0F|6|4|IF|7 (4 03[5]2(13]8]2 els|oN[efelelefefZ
[42(12] 3 |42/13/3 (42| 6| 4 42|18 |4 142)8|442|8|5(42/915 42|73 (42)10{3
107] 17 0D 1D 19 OF 1F 03 13
F4|5(3 efelolafefolofele]s
| |
4[5 |2 ole|ofolofolo]e]e]e
62|53 olefofofolofe]efe]e
48| 4 | 1 elolofofofofolale]e
426 (2 elofoeflelele)olelole
48

257

APPENDIX B
Series MELPS 7700 Machine Instructions

Symbol

Function

Details

Addressing mode

IMP

IMM

DIR

DIR,b

DIR,X

DIRY | (DIR)

(DIRX)

(DIR).Y

op|n|#

op(n

#|op

ni#

op| n

#lop(n|#t

op|n |#

op

ni#

PHD

M(S)—DPRy
Se—S—1
M(S)—DPR,
S+-5—1

Saves the contents of the direct page register into the
stack

PHG

M(S)-PG
S+s—1

Saves the contents of the program bank register into the
stack

PHP

M(8)—PSy
S—-5—1
M(S)+—PS,
S—5—1

Saves the contents of the program status register into the
stack

PHT

M(S)-DT
S+—s—1

Saves the contents of the data bank register into the
stack

PHX

x=0

M(S) Xy
S+—s—1
M(S) Xy
S—s—1

x=1
M(S) X,
S+—8—1

Saves the contents of the index register X into the stack

PHY

x=0

Saves the contents of the index register Y into the stack

PLA

Ap—M(S)

m=1
S+—S+1
A —M(S)

Restores the contents of the stack on the accumulator A

PLB

m=0
S+—S+1
BL—M(S)
S—S+1
By—M(S)

m=1
S+—s+1
BL—M(S)

Restores the contents of the stack on the accumulator B

PLD

S—S+1
DPR_-M(S)
S—S+1
DPRy—M(S)

Restores the contents of the stack on the direct page reg-
1ster

PLP

S—S+1
PS_ —M(S)
S<85+1
PSy+—M(S)

Restores the contents of the stack on the processor status
register

PLT

S+-S+1
DT+M(S)

Restores the contents of the stack on the data bank reg-
ister

PLX

x=0
S<S5+1
Xc—M(S)
S85+1
Xu—M(S)

x=1
SS+1
X +—M(8)

Restores the contents of the stack on the index register X

258

APPENDIX B
Series MELPS 7700 Machine Instructions

Addressing mode Processor status register
L(DIR){L(DIR),Y] ABS |ABSb [ABSX|ABSY| ABL |ABLX |(ABS)(L(ABS)|(ABSX)| STK | REL | DIRbR [ABSDR| SR |(SR)Y| BLK IO’QrB 716|5(4|3|21
op| n | |op| n | # [op| n |4 |op| n|# |op|n|#|op[n|#|op|n | |op|n % [op{n{#[op|n{#H|op|n|Hiop/n|lop|n|#|op/n||op/n|%|op|n|#|op|ni#|op|n|#| PL |[N|V|m|[x|D|1|Z
0841 efofolefalolo]o]e]e
483 (1
0841 elefefofolofo]e]e]e
88{ 3|1 elelofefofafo]ofe]e
DAl 4 (1 efeloflol|olololefefe
5A14)1 elefolefalelo]lelele
68|51 lelenNlelelelele]z
4272 el Nl [Tl 2
68
28151 elelo|efefefefelele
28/6|1 Value saved in stack
AB| 6|1 eloloNfe|elslele]z
FA|5|1 elo|o[Nle|o]|ofefe|z

259

APPENDIX B
Series MELPS 7700 Machine Instructions

Addressing mode
Symbol Function Details IMP | IMM A DIR | DIRb | DIRX | DIRY | (DIR) | (DIRX) | (DIR).Y
op(n|#|op|n|#)op|n|#fop|n|#|op|n|#|op[n|#|op|n{#|op| n|#|op|n||op|nist
PLY x=0 Restores the contents of the stack on the index register Y
S—s+1
YL—M(S)
S—S+1
Yu—M(S)
x=1
S+=S+1
YL—-M(S)
PSH M(S)+A, B, X - Saves the registers among accumulator, index register,
(Note 6) direct page register, data bank register, program bank
register, or processor status register, specified by the bit
pattern of the second byte of the instruction into the stack
PUL A, B, X-+<M(S) Restores the contents of the stack to the registers among
(Note 7) accumulator, index register, direct page register, data
bank register, or processor status register, specified by
the bit pattern of the second byte of the instruction
RLA m=0 Rotates the contents of the accumulator A, n bits to the 89613
(Note 13) | n bit rotate left left 49T
m=1
n bit rotate left
ROL m=0 Links the accumulator or the memory to C flag, and rotates 2A(2(1]26]7 (2 36/ 712
(Note 1) result to the left by 1 bit
(bis]_Tbo}-[C] 42[412
2A
m=1 .
[b2] oo J--[€]
ROR m=0 Links the accumulator or the memory to C flag, and rotates 6A12]1166|7)2 76|72
(Note 1) result to the night by 1 bit
[Cl-[ois] Tbo 4242
6A
m=1
(G- ba]_Tbo]
RTI S<S+1 Returns from the interruption routine 40/1111
PS_ +-M(S) R
S—S+1
PSH—M(S)
S—s+1
PCL-M(S)
S—S+1
PCH+—M(S)
S-5+1 '
PG+M(S)
RTL S+S+1 Returns from the subroutine The contents of the program |68|8 |1
PC_—M(S) bank register are also restored
S—S+1
PCH-M(S)
S—-S§+1
PG+—M(S)
RTS S—S+1 Returns from the subroutine The contents of the program [60[5 |1
PC_+M(S) bank register are not restored ‘
S—S+1
PCH+—M(S)
SBC Acc, C—Acc—M—C | Subtracts the contents of the memory and the borrow from E9(2|2 E5412 F5|5(2 R|6|2[EI|7|2|F1|8|2
(Note 1,2) the contents of the accumulator
42(4 13 421613 42|73 42| 8 | 342/ 9314210 3
E9 E5 F| F2 El Fl

260

APPENDIX B
Series MELPS 7700 Machine Instructions

Addressing mode Processor status register
L(DIR)[L(DIR),Y{ ABS |ABS,b|ABSX|ABS)Y| ABL | ABLX |(ABS)[L(ABS)|(ABSX)] STK | REL |DIRbR [ABSbR| SR |(SR)Y| BLK IOIB‘B 716151413121
op| n |4 |op| n | op| n|%|op| n | op| n |3 |op| n[# [op| n|#|op|n|#|op|n|Hop|n|%|op|n|%(opn|#|op[n | opin|Hiop|n|op|n|#]op|n|Hlop|n|#] IPL [N|V|m|x|D|I|Z|C
TA|5 |1 ololo[Nlolalolelelz]e
EB[12] 2 efojelafelofjolefole]e
2+
FB|14f 2 If restored the contents of PS,
+ It becomes its value And the
3n+a
other case Is no change
€/7|3 3E|8)3 “{*f{*|N|s|ei*|*|*]|Z|C
6E| 7|3 TE[8|3 elef|e|Njelelelele]|zlC
Value saved in stack
E7(10[2|F7|11[2eD{4(3 FD| 613 (F3|6 3 (EF(6{4|FFI7 4 E3|5[2|F3|8)2 eleleNjV|e|ele|*|Z]|C
42(12| 3 {42{13/3 142/ 6 |4 42/8(4(42/8|4142|85142(9|5 42| 7| 34210 3
E7, F7 ED| FD| F3 EF| FF B3 F3

261

APPENDIX B
Series MELPS 7700 Machine Instructions

Addressing mode

Symbol Function Details IMP | IMM A DIR | DIR,b { DIRX | DIRY | (DIR) {(DIRX)|(DIR).Y
op| n|4)op| n |3t |op|n|#|op| n|%|op|n|3t|op| n 3t |op| n|#[op|n|#op|n|#|opfn |3
SEB Mb+1 Makes the contents of the specified bit in the memory “1" 04)8(3
(Note 5)
SEC C+1 Makes the contents of the C flag “1” 38{2 (1
SEI =1 Makes the contents of the | flag “1") 78| 2|1
SEM me1 Makes the contents of the m flag “1" F8) 2|1
SEP PSb—1 Set the specified bit of the processor status register’s low- E2{3(2
er byte (PS_) to "1"
STA M+—Acc Stores the contents of the accumulator into the memory 854 |2 95(5 (2 92(712(81{7(291{7|2
(Note 1)
426 (3 42(7|3 4219]3142)913142/9|3
85 95, 92 81 91
STP Stops the oscillation of the oscillator DB/ 3|1 | (
STX M—X Stores the contents of the index register X into the memory 864 | 2 96/ 5 | 2
STY M-y Stores the contents of the index register Y into the memory 84}4 |2 94|52
TAD DPR+-A T the of the A to the direct |58|2 1
page register
TAS S—A Transmits the contents of the accumulator A to the stack pointer. [1B[2 |1
TAX X—A Transmits the contents of the accumulator A to the index [AAf2 |1
register X
TAY YA T its the of the A to the Index |A8(211
register Y.
TBD DPR+-B T the of the or B to the direct [42(4 |2
page register 58
TBS S+-B Transmits the contents of the accumulator B to the stack 424 |2
pornter. 18
T8X X-B T its the of the or B to the index |42/ 4 |2
register X AA
TBY Y-B Transmits the contents of the accumulator B to the index [42)4)2
register Y A8
TDA A+-DPR Transmits the contents of the direct page register to the |7B|2 |1
accumulator A
TDB B+—DPR Transmits the contents of the direct page register to the [42|4 |2
accumulator B 78
TSA A+-S Transmits the contents of the stack pointer to the accumulator A |38(2 |1
TSB B+-S Transmits the contents of the stack pointer to the accumu- |42]4 |2
lator B 38
TSX X8 Transmits the contents of the stack pointer to the index [BA|2 {1
register X.
TXA A=X Transmits the contents of the index register X to the accu- [8A{2 1
mulator A
TXB B+X Transmits the contents of the index register X to the accu- |42(4 |2
mulator B 8A
TXS S+X Transmits the contents of the index register X to the stack |9A[2 |1
pointer.
TXY Y+—X Transmits the contents of the index register X to the index 98|21
register Y
TYA A=Y Transmits the contents of the index register Y to the accu- [98{2|1
mulator A
TYB B+-Y Transmits the contents of the index register Y to the accu- [42|4 {2
mulator B 98
TYX XY Transmits the contents of the index register Y to the index (BB 2|1
register X
WIT Stops the internal clock cB|3 |1
XAB ASB Exch the of the A and the con- 896 |2
tents of the accumulator B 128

262

APPENDIX B
Series MELPS 7700 Machine Instructions

Addressing mode Processor status register

L(DIR)|L(DIR)Y| ABS | ABS,b|ABSX|ABSY| ABL |ABLX|(ABS)|L(ABS)|(ABSX)[STK | REL |DIRbR |ABSbR| SR [(SR)Y| BLK |0I9|8 716(514(3(2(1]0

op| n | % |op| n {#]op| n|# [opn [|op|n|# [op{n[#{op(n |#]opn|#[op| n}%fop|n[#]op| n|# |op| n | |op|n|#]op| n|#|op|n|#|op|n|#|op|n|#|opin|#| IPL |N|VIm|x|D|I|Z|C

0cl 9|4 oflejolofololololole]e

elefefalolole]e]e]e]

efelofololofelelt]e]e

elefofafaft)elo]e|e]e

||°|Specified flag be-

comes “1

87(10{2 (97{11{ 2 (8D{ 5 9D|513199/513|8F 6|4 |9F|7 (4 83(5]2|93/8|2 RN RN RN KNS N KNS K

142112] 3 142/13) 3 (42| 7 42|714142)714142|8{5]42|9|5 42| 713 42[10| 3
87 | lo7| | Jeo 0| | foa) | [e| | o 83 | (93
8E(S efelofolofalofelele]e
scl 5 elefefolofalalo]ele]e

263

APPENDIX B
Series MELPS 7700 Machine Instructions

The number of cycles shown in the table is described in case of the fastest mode for each Instruction The number of cycles shown in the table is
calculated for DPR,=0 The number of cycles in the addressing mode concerning the DPR when DPR_+0 must be incremented by 1.

The number of cycles shown in the table differs according to the bytes fetched into the instruction queue buffer, or according to whether the memory
read/write address I1s odd or even |t also differs when the external region memory is accessed by BYTE="H"

Note

Note

Note

Note

Note

Note

Note

Note

Note

Note

Note

Note

Note

1. The operation code at the upper row is used for accumulator A, and the operation at the lower row 1s used for accumulator B
2. When setting flag m=0 to handle the data as 16-bit data in the iImmedrate addressing mode, the number of bytes increments by 1
3. The number of cycles increments by 2 when branching

4. The operation code on the upper row is used for branching in the range of —128~+127, and the operation code on the lower row Is used for
branching in the range of —32768~+-32767

5. When handling 16-bit data with flag m=0, the byte in the table is incremented by 1

6.
[Typeofregister [A | B | X | Y [DPR] DT | PG | PS |
[Numberofcycles| 2 | 2 | 2 [2 [2 [1 [1 [2|

The number of cycles corresponding to the register to be pushed are added. The number of cycles when no pushing is done i1s 12 i; indicates
the number of registers among A, B, X, Y, DPR, and PS to be saved, while i indicates the number of registers among DT and PG to be saved

7.
[Typeofreaster | A. | B | X [Y [DPR] DT | PS |
[Numberofcycles| 3 [3 | 3 | 3 [4 [3 [3 |

The number of cycles corresponding to the register to be pulled are added The number of cycles when no pulling is done is 14 1, indicates the
number of registers among A, B, X, Y, DT, and PS to be restored, while ;=1 when DPR is to be restored

8. The number of cycles is the case when the number of bytes to be transfered 1s even
When the number of bytes to be transfered 1s odd, the number Is calculated as,

7+ (V2) X7+4
Note that, (i/2) shows the integer part when i 1s divided by 2

9. The number of cycles Is the case when the number of bytes to be transfered 1s even
When the number of bytes to be transfered i1s odd, the number 1s calculated as,

9+ (i/2) X745
Note that, (1/2) shows the integer part when 1 is divided by 2
10. The number of cycles s the case In the 16-bit=+8-bit operation The number of cycles i1s incremented by 16 for 32-bit+-16-bit operation
11. The number of cycles Is the case in the 8-bitX8-bit operation The number of cycles Is incremented by 8 for 16-bit X 16-bit operation
12. When setting flag x=0 to handle the data as 16-bit data in the iImmediate addressing mode, the number of bytes increments by 1

13. When flag m is 0, the byte in the table i1s'incremented by 1

264

APPENDIX B

Series MELPS 7700 Machine Instructions

Symbol Description Symbol Description
IMP Implied addressing mode N Exclusive OR
IMM Immediate addressing mode - Negation
A Accumulator addressing mode - Movement to the arrow direction
DIR Direct addressing mode Acc Accumulator
DIR, b Direct bit addressing mode AccH Accumulator's upper 8 bits
DIR, X Direct Indexed X addressing mode AccL Accumulator's lower 8 bits
DIR, Y Direct indexed Y addressing mode A Accumulator A
(DIR) Direct indirect addressing mode An Accumulator A's upper 8 bits
(DIR, X) Direct indexed X indirect addressing mode AL Accumulator A’s lower 8 bits
(DIR), Y Direct indirect indexed Y addressing mode B Accumulator B
L (DIR) Direct indirect long addressing mode By Accumulator B's upper 8 bits
L (DIR), Y Direct indirect long indexed Y addressing mode B Accumulator B's lower 8 bits
ABS Absolute addressing mode X Index register X
ABS, b Absolute bit addressing mode Xn Index register X's upper 8 bits
ABS, X Absolute indexed X addressing mode Xo Index register X's lower 8 bits
ABS, Y Absolute iIndexed Y addressing mode Y Index register Y
ABL Absolute long addressing mode Yu Index register Y's upper 8 bits
ABL, X Absolute long iIndexed X addressing mode Yo Index register Y's lower 8 bits
(ABS) Absolute indirect addressing mode S Stack pointer
L (ABS) Absolute indirect long addressing mode PC Program counter
(ABS, X) Absolute indexed X indirect addressing mode PChn Program counter's upper 8 bits
STK Stack addressing mode PC_ Program counter's lower 8 bits
REL Relative addressing mode PG Program bank register
DIR, b, REL Direct bit relative addressing mode DT Data bank register
ABS, b, REL Absolute bit relative addressing mode DPR Direct page register
SR Stack pointer relative addressing mode DPRy Direct page register's upper 8 bits
(SR), Y Stack pointer relative indirect indexed Y addressing DPRL Direct page register's lower 8 bits

mode PS Processor status register
BLK Block transfer addressing mode PSh Processor status register's upper 8 bits
c Carry flag PS_ Processor status register's lower 8 bits
z Zero flag PSp Processor status register's b-th bit
! Interrupt disable flag M(S) Contents of memory at address indicated by stack
D Decimal operation mode flag pointer
X Index register length selection flag Mp b-th memory location
m Data length selection flag ADg Value of 24-bit address’s upper 8-bit (Az~Ae)
\" Overflow flag ADy Value of 24-bit address’s middle 8-bit (Ajs~Ag)
N Negative flag AD_ Value of 24-bit address’s lower 8-bit (A;~Ag)
IPL Processor interrupt prionty level op Operation code
-+ Addition n Number of cycle
Subtraction # Number of byte

* Multiplication | Number of transfer byte or rotation
/ Division Iy, 12 Number of registers pushed or pulled
VAN Logical AND
\V4 Logical OR

265

APPENDIX C
Series MELPS 7700 Instruction Code Table

INSTRUCTION CODE TABLE-1

Ds~Do | 0000 | 0001 | 0010 | 0011 { 0100 | 0101 { 0110 | 0111 | 1000 { 1001 | 1010 | 1011 [1100 | 1101 | 1110 | 1111
Hexadecimal
D;~Ds4 notation | 0 1 2 3 4 5 6 7 8 9 A B c D E F
ORA ORA | SEB | ORA | ASL | ORA ORA | ASL SEB | ORA | ASL | ORA
0000 0 BRK PHP PHD
A(DIRX) ASR | DIRb | ADIR | DIR [AL(DIR) AIMM| A ABSb | AABS | ABS | AABL
ORA | ORA | ORA | CLB | ORA | ASL | ORA ORA | DEC CLB | ORA | ASL | ORA
0001 1 BPL cLC TAS
A(DIR).Y|A,(DIR)|A,(SR),Y| DIR,b |A,DIRX| DIR,X |AL(DIR)Y AABSY| A ABS,b |A,ABS,X| ABS,X |AABL,X|
JSR | AND | JSR | AND | BBS | AND | ROL | AND AND | ROL BBS | AND | ROL | AND
0010 2 PLP PLD
ABS |A(DIRX)| ABL | ASR [DIR,b,R| ADIR | DIR |AL(DIR) AIMM| A ABS,b,R| AABS| ABS | AABL
AND | AND | AND | BBC | AND | ROL | AND AND | INC BBC | AND | ROL | AND
0011 3 BMI SEC TSA
A(DIR),Y|A,(DIR)|A,(SR),Y|DIR,b,R|A,DIR,X| DIR,X |AL(DIR).Y AABSY| A ABS,b,R|AABS,X| ABS,X |AABL X
EOR EOR EOR | LSR | EOR EOR | LSR JMP | EOR | LSR | EOR
0100 4 RTI Note 1 MVP PHA PHG
A(DIRX) ASR ADIR | DIR |AL(DIR) AIMM| A ABS |AABS| ABS |AABL
EOR | EOR | EOR EOR | LSR | EOR EOR JMP | EOR | LSR | EOR
0101 5 BVC MVN cLl PHY | TAD
A(DIR).Y|A,(DIR)|A,(SR).Y ADIRX| DIRX |AL(DIR).Y] AABS.Y ABL |AABSX| ABS,X |AABLX
ADC ADC | LDM | ADC | ROR | ADC ADC | ROR JMP | ADC | ROR | ADC
0110 6 RTS PER PLA RTL
A(DIRX) ASR | DIR |ADIR| DIR |AL(DIR) AIMM| A (ABS) | AABS | ABS |AABL
ADC | ADC | ADC | LDM | ADC | ROR | ADC ADC JMP | ADC | ROR | ADC
0111 7 BVS SEI PLY | TDA
A(DIR),Y|A,(DIR)|A(SR),Y| DIRX [A,DIRX| DIR,X [AL(DIR)Y| AABS,Y (ABS,X) |A,ABS X| ABS,X |A,ABL X|
BRA | STA | BRA | STA | STY | STA | STX | STA STY | STA | STX | STA
1000 8) DEY |Note2| TXA | PHT
REL [A(DIRX)| REL | ASR | DIR [ADIR| DIR |AL(DIR) ABS |AABS| ABS |AABL
STA | STA | STA | STY | STA | STX | STA STA LDM | STA | LDM | STA
1001 9 BCC TYA TXS | TXY
A,(DIR),Y|A,(DIR)|A,(SR),Y| DIR,X |A,DIR,X| DIR,Y |AL(DIR).Y AABS,Y ABS |AABSX| ABSX |AABLX|
LDY | LDA | LDX | LDA | LDY | LDA | LDX | LDA LDA LDY | LDA | LDX | LDA
1010 A TAY TAX | PLT
IMM |A(DIRX)] IMM | ASR | DIR | ADIR| DIR |AL(DIR) AIMM ABS | AABS| ABS | AABL
LDA | LDA | LDA | LDY | LDA | LDX | LDA LDA LDY | LDA | LDX | LDA
1011 B BCS CLV TSX | TYX
A(DIR).Y|A,(DIR)|A,(SR),Y| DIR,X |A,DIRX| DIR,Y AL(DIR)Y AABSY ABS,X |AABS X| ABS,Y |AABL,X
CPY | CMP | CLP | CMP | CPY | CMP | DEC | CMP CMP CPY | CMP | DEC | CMP
1100 (¢} INY DEX | wWIT
IMM |A(DIRX)| IMM | ASR | DIR | ADIR| DIR |AL(DIR) AIMM ABS |AABS| ABS |AABL
CMP | CMP | CMP CMP | DEC | CMP CMP JMP | CMP | DEC | CMP
1101 D BNE PEI CLM PHX | STP
A.(DIR),Y|A,(DIR)|A,(SR).Y| A,DIR,X| DIR,X |AL(DIR)Y, AABS,Y L(ABS)|AABS X| ABS X |AABLX
CPX | SBC | SEP | SBC | CPX | SBC | INC | SBC SBC CPX | SBC | INC | SBC
1110 E / INX NOP | PSH
IMM [A(DIRX)| IMM | ASR | DIR | ADIR| DIR |AL(DIR) AIMM ABS |AABS| ABS | AABL
SBC | SBC | SBC SBC | INC | SBC SBC JSR | SBC | INC | SBC
1M F BEQ PEA SEM PLX | PUL
A(DIR).Y|A,(DIR)|A,(SR).Y ADIR,X| DIR,X |AL(DIR).Y, AABS,Y (ABS,X) |A,ABS X| ABS X |AABL X
Note 1 ! 42,5 specifies the contents of the INSTRUCTION CODE TABLE-2.
About the second word's codes, refer to the INSTRUCTION CODE TABLE-2
Note 2 : 896 specifies the contents of the INSTRUCTION CODE TABLE-3

About the third word's codes, refer to the INSTRUCTION CODE TABLE-2

266

APPENDIX C
Series MELPS 7700 Instruction Code Table

INSTRUCTION CODE TABLE-2 (The first word’s code of each instruction is 42,¢)

Ds~Do | 0000 [0001 { 0010 | 0011 | 0100 | 0101 | 0110 | O111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 11N
p,~plexadecimall o 14 2 | 3| 4 | s | 6| 7|8]| 9| a|B]|c| 0| E]|F
ORA ORA ORA ORA ORA | ASL ORA ORA
0000 0
B,(DIRX) B.SR B,DIR B,L(DIR) BIMM| B B,ABS B,ABL
ORA | ORA | ORA ORA ORA ORA | DEC ORA ORA
0001 1 TBS
B,(DIR),Y|B,(DIR)|B,(SR).Y| B,DIR X| BL(DIR), BABSY| B B,ABS,X| B,ABL,X
AND AND AND AND AND | ROL AND AND
0010 2
8,(DIRX) B,SR B,DIR B,L(DIR) BIMM| B B,ABS B,ABL
AND | AND | AND AND AND AND | INC AND AND
0011 3 S8
8,(DIR),YB,(DIR)|B,(SR).Y| B,DIR,X! BL(DIR), BABSY| B B,ABS X! B,ABL,X
EOR EOR EOR EOR EOR | LSR EOR EOR
0100 4 PHB
B,(DIRX) B,SR B,DIR BL(DIR) BIMM| B B,ABS B,ABL
EOR | EOR | EOR EOR EOR EOR EOR EOR
0101 5 TBD
B,(DIR).YB,(DIR)|B,(SR).Y| B,DIR.X BL(DIR), B,ABS,Y| B,ABS,X| B,ABL,X
ADC ADC ADC ADC ADC | ROR ADC ADC
0110 6 PLB
8,(DIRX) B,SR B,DIR B,L(DIR) BI/MM| B B,ABS B.ABL
ADC | ADC | ADC ADC ADC ADC ADC ADC
om 7 DB
B,(DIR),Y|B,(DIR)|B,(SR),Y B,DIR X! BL(DIR), B,ABS,Y| B,ABS X B,ABL,X
STA STA STA STA STA STA
1000 8 TXB
B,(DIRX) B,SR B,DIR B,L(DIR) B,ABS B,ABL
STA | STA | STA STA STA STA STA STA
1001 9 TYB
B,(DIR),Y|B,(DIR)|B,(SR),Y B,DIRX| BL(DIR) Y] B,ABS,Y B,ABS X B,ABL X|
LDA LDA LDA LDA LDA LDA LDA
1010 A TBY TBX
B,(DIRX) B,SR B,DIR B,L(DIR) B,IMM B,ABS B,ABL
LDA | LDA | LDA LDA LDA LDA LDA LDA
101 B
8,(DIR),Y|B,(DIR)|B,(SR),Y B,DIR,X BL(DIR), B,ABS,Y| B,ABS,X B,ABL X
CMP CMP CMP CMP CMP CMP CMP
1100 c
B,(DIRX) B,SR B,DIR B,L(DIR) B,IMM B,ABS B,ABL
CMP | CMP | CMP CMP CMP CMP CMP CMP
1101 D
B,(DIR),Y|B,(DIR)|B,(SR),Y| B,DIRX| BL(DIR), B,ABS,Y| B,ABS,X| B,ABL,X
SBC SBC SBC SBC SBC SBC SBC
1110 E
B,(DIRX) B,SR B,DIR B,L(DIR) B,IMM B,ABS B,ABL
SBC | SBC | SBC SBC SBC SBC SBC SBC
mn F
B,(DIR),Y|B,(DIR)|B,(SR),Y B,DIR X! B.L(DIR).Y] B,ABS,Y B,ABS X B,ABL X!

267

APPENDIX C
Series MELPS 7700 Instruction Code Table

INSTRUCTION CODE TABLE-3 (The first word’s code of each instruction is 89,c)

Ds~Do | 0000 | 0001 | 0010 | o011 | o100 | or01 | or10 | o111 | 1000 | 1001 | 1010 | 1011 | 1100 | 101 | 1110 | 11m
|
p~pNtedemall o |y 2| 3 | 4 s |6 | 7|8 | s | alBlc!| o] E]|F
MPY MPY MPY MPY MPY MPY MPY
w0 | 0
(DIR,X) SR DIR L(DIR) IMM ABS ABL
MPY | MPY | MPY MPY MPY MPY MPY MPY
0001 1
(DIR),Y| (DIR) |(SR),Y DIR,X L(DIR).Y| ABSY ABS,X ABL,X
DIv Div DIv DIV DV DIV DIV
w0 | 2 . XAB
(DIRX) SR DIR L(DIR) IMM ABS ABL
DIV Div DIV DIV DIV DIV DIV DIv
o1 | 3 '
(DIR),Y| (DIR) | (SR),Y DIR,X L(DIR),Y| ABS)Y ABS,X ABL,X
RLA
o0 | 4
IMM
o1 | s
oo | 6 |
|
!
o 7
1000 | 8
00 | 9
010 | A
o | B
Lot
o | ¢
IMM
o | o
mo | E
1 F

268

CONTACT ADDRESSES FOR FURTHER INFORMATION

JAPAN
Semiconductor Marketing Division
Mitsubishi Electric Corporation
2-3, Marunouchi 2-chome
Chiyoda-ku, Tokyo 100, Japan

Telex 24532 MELCO J
Telephone' (03) 218-3473
(03) 218-3499

Facsimile (03) 214-5570

Overseas Marketing Manager
Kita-Itami Works

4-1, Mizuhara, Itami-shi,
Hyogo-ken 664, Japan

Telex 526408 KMELCO J
Telephone (0727) 82-5131
Facsimile (0727) 72-2329

HONG KONG
MITSUBISHI ELECTRIC (H K) LTD
25 Floor, Leighton Centre,

77, Leighton Road Causeway Bay
Hong Kong

Telex 60800 MELCO HX
Telephone (5) 773901-3

Facsimile (5) 895-3104

SINGAPORE
MELCO SALES SINGAPORE PTE
LTD

230 Upper Bukit Timah Road # 03-
01/15

Hock Soon Industrial Complex
Singapore 2158

Telex RS 20845 MELCO
Telephone 4695255

Facsimile 4695347

TAIWAN
MELCO-TAIWAN CO, Ltd
1st fI, Chung-Ling Bldg,

363, Sec 2, Fu-Hsing S Road,
TaipetROC

Telephone (02) 735-3030
Facsimile (02) 735-6771

Telex 25433 CHURYO “MELCO-
TAIWAN"

U.S.A.

NORTHWEST

Mitsubishi Electronics America, Inc
1050 East Arques Avenue
Sunnyvale, CA 94086

Telephone (408) 730-5900
Facsimile (408) 730-4972

SAN DIEGO

Mitsubishi Electronics America, Inc
11545 West Bernardo Court

Suite 100

San Diego, CA 92128

Telephone (619) 592-1445
Facsimile (619) 592-0242

DENVER

Mitsubishi Electronics America, Inc
4600 South Ulster Street
Metropoint Building, 7th Floor
Denver, CO 80237

Telephone (303) 740-6775
Facsimile (303) 694-0613

SOUTHWEST

Mitsubishi Electronics America, Inc
991 Knox Street

Torrance, CA 90502

Telephone (213) 515-3993
Facsimile (213) 217-5781

SOUTH CENTRAL

Mitsubishi Electronics America, Inc
1501 Luna Road, Suite 124
Carrollton, TX 75006

Telephone (214) 484-1919
Facsimile (214) 243-0207

NORTHERN

Mitsubishi Electronics America, Inc
15612 Highway 7 $243
Minnetonka, MN 55345

Telephone (612) 938-7779
Facsimile (612) 938-5125

NORTH CENTRAL

Mitsubishi Electronics America, inc
800 N Bierman Circle

Mt Prospect, IL 60056

Telephone (312) 298-9223
Facsimile (312) 298-0567

NORTHEAST

Mitsubishi Electronics America, Inc
200 Unicorn Park Drive

Woburn, MA 01801

Telephone (617) 932-5700
Facsimile (617) 938-1075

MID-ATLANTIC

Mitsubishi Electronics America, Inc
800 Cottontail Lane

Somerset, NJ 08873

Telephone (201) 469-8833
Facsimile (201) 469-1909

SOUTH ATLANTIC

Mitsubishi Electronics America, Inc
2500 Gateway Center Blvd , Suite 300
Morrisville NC 27560

Telephone (404) 368-4850
Facsimile (404) 662-5208

SOUTHEAST

Mitsubishi Electronics America, Inc
Town Executive Center

6100 Glades Road #210

Boca Raton, FL 33433

Telephone (407) 487-7747
Facsimile (407) 487-2046

CANADA

Mitsubishi Electronics America, Inc
6185 Ordan Drive, Unit #110
Mississauga, Ontario, Canada L5T 2E1
Telephone (416) 670-8711

Facsimile (416) 670-8715

Mitsubishi Electronics America, Inc
300 March Road, Suite 302
Kanata, Ontario, Canada K2K 2E2
Telephone (416) 670-8711
Facsimile (416) 670-8715

WEST GERMANY —

Mitsubishi Electric Europe GmbH
Headquarters

Gothear Str 8

4030 Ratingen 1, West Germany
Telex 8585070 MED D
Telephone (02102) 4860
Facsimile (02102) 486-115

Munich Office

ArabellastraBe 31

8000 Munchen 81, West Germany
Telex 5214820

Telephone (089) 919006-09
Facsimile (089) 9101399

FRANCE =
Mitsubishi Electric Europe GmbH
55, Avenue de Colmar

92563 Ruell Malmaison Cedex
Telex 632326

Telephone 47087871

Facsimile 47513622

ITALY
Mitsubishi Electric Europe GmbH
Centro Direzionale Colleont
Palazzo Cassiopea 1|

20041 Agrate Brianza I-Milano
Telephone (039) 636011
Facsimile (039) 6360120

SWEDEN
Mitsubishi Electric Europe GmbH
Lastbilsvagen 6B

5-19149 Sollentuna, Sweden
Telex 10877 (meab S)
Telephone (08) 960468
Facsimile (08) 966877

U.K.

Mitsubishi Electric (U K) Ltd
Travellers Lane

Hatfield

Herts AL10 8XB, England, U K
Telephone (0044) 7072 76100
Facsimile (0044) 7072 78692

AUSTRALIA

Mitsubishi Electric Australia Pty Ltd
73-75, Epping Road, North Ryde,

P O Box 1567, Macquarie Centre,
N SW, 2113, Austraha

Telex MESYD AA 26614
Telephone (02) (888) 5777
Facsimile (02) (887) 3635

MITSUBISHI SEMICONDUCTORS
MELPS 7700 {(SOFT WARE) USER’S MANUAL

July. First Edition 1989
Editioned by
Committee of editing of Mitsubishi Semiconductor USER'S MANUAL

Published by
Mitsubishi Electric Corp., Semiconductor Marketing Division

This book, or parts thereof, may not be reproduced in any form without permission
of Mitsubishi Electric Corporation.

©1989 MITSUBISHI ELECTRIC CORPORATION

MITSUBISHI SEMICONDUCTORS
MELPS 7700{SOFT WARE)

AMITSUBISHI ELECTRIC CORPORATION

HEAD OFFICE: MITSUBISHI DENKI BLDG MARUNOUCHI, TOKYO 100 TELEX J24532 CABLE: MELCO TOKYO

These products or technologies
are subject to Japanese and/or
COCOM strategic restrictions, and
diversion contrary thereto is
prohibitea.

New publication, effective Jul. 1989.

H-E0112-A KI-8907 Printed in Japan (ROD) el y
Specifications subject to change without notice.

© 1989 MITSUBISHI ELECTRIC CORPORATION

