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About This Book

The primary objective of this manual is to help programmers provide software that is
compatible across a variety of implementations. Because the PowerPC architecture is
designed to be flexible to support a broad range of processors, this book provides agenera
description of featuresthat are common to these processors and indi cates those features that
are optional or that may be implemented differently in the design of each processor.

Thisrevision of this book describes only the 32-bit portion of the PowerPC architecture in
detail.

L ocate errata or updates for this document at http://www.motorola.com/semiconductors.

For designers working with a specific processor, this book should be used in conjunction
with the user’s manual for that processor.

This document distinguishes between the three levels, or programming environments, of
the PowerPC architecture, which are as follows:

» Userinstruction set architecture (UISA)—The UISA defines the level of the
architecture to which user-level software should conform. The UISA defines the
base user-level instruction set, user-level registers, datatypes, memory conventions,
and the memory and programming models seen by application programmers.

* Virtual environment architecture (VEA)—TheVEA, which is the smallest
component of the PowerPC architecture, defines additional user-level functionality
that falls outside typical user-level software requirements. The VEA describes the
memory model for an environment in which multiple processorsor other devicescan
access external memory and defines aspects of the cache model and cache control
instructions from a user-level perspective. VEA resources are particularly useful for
optimizing memory accesses and for managing resources in an environment in
which other processors and other devices can access external memory.

I mplementations that conform to the VEA also conform to the UISA but may not
necessarily adhere to the OEA.

* Operating environment architecture (OEA)—The OEA defines supervisor-level
resources typically required by an operating system. It defines the memory
management model, supervisor-level registers, and the exception model.

Implementations that conform to the OEA aso conform to the UISA and VEA.
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Note that some resources are defined more generally at one level in the architecture and
more specifically at another. For example, conditions that cause a floating-point exception
are defined by the UISA, but the exception mechanism itself is defined by the OEA.

Because it is important to distinguish between the levels of the architecture to ensure
compatibility across multiple platforms, those distinctions are shown clearly throughout
this book. The level of the architecture to which text refersisindicated in the outer margin,
using the conventions shown in “Conventions,” on Page 5.

For ease in reference, topics in the user’s manuals are presented in the same order in this
book. Topics build upon one another, beginning with a description and complete summary
of the MPC750 programming model (registers and instructions) and progressing to more
specific, architecture-based topics regarding the cache, exception, and memory
management models. As such, chapters may include information from multiple levels of the
architecture. For example, the discussion of the cache model uses information from both
the VEA and the OEA.

The Power PC Architecture: A Specification for a New Family of RISC Processors defines
the architecture from the perspective of the three programming environments and remains
the defining document for the PowerPC architecture. .

Information in this book is subject to change without notice, as described in the disclaimers
on the title page of this book. As with any technical documentation, it is the readers
responsibility to be sure they are using the most recent version of the documentation.

Audience

It isassumed that the reader understands operating systems, microprocessor system design,
and the basic principles of RISC processing.

Organization

Following is a summary and a brief description of the major sections of this manual:

» Chapter 1, “Overview,” isuseful for those who want ageneral understanding of the
features and functions of the PowerPC architecture. This chapter describes the
flexible nature of the PowerPC architecture definition and provides an overview of
how the PowerPC architecture defines the register set, operand conventions,
addressing modes, instruction set, cache model, exception model, and memory
management model.

» Chapter 2, “Register Set,” is useful for software engineers who need to understand
the PowerPC programming model for the three programming environments and the
functionality of each register.
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» Chapter 3, “Operand Conventions,” describes conventions for storing datain
memory, including information regarding alignment, single- and double-precision
floating-point conventions, and big- and little-endian byte ordering.

o Chapter 4, “Addressing Modes and I nstruction Set Summary,” providesan overview
of the addressing modes and a description of the instructions. Instructions are
organized by function.

» Chapter 5, “Cache Model and Memory Coherency,” provides a discussion of the
cache and memory model defined by the VEA and aspects of the cache model that
are defined by the OEA.

» Chapter 6, “Exceptions,” describes the exception model defined in the OEA.

» Chapter 7, “Memory Management,” provides descriptions of the addresstranslation
and memory protection mechanism as defined by the OEA.

» Chapter 8, “Instruction Set,” functions as a handbook for the instruction set.
Instructions are sorted by mnemonic. Each instruction description includes the
instruction formats and an individualized legend that provides such information as
the level or levels of the architecture in which the instruction may be found and the
privilege level of the instruction.

* Appendix A, “Instruction Set Listings,” describes each instruction in detail.
Instructions are grouped according to mnemonic, opcode, function, and form.

» Appendix B, “POWER Architecture Cross-Reference,” identifies the differences
that must be managed in migration from the POWER architecture to the
architecture.

* Appendix C, “Multiple-Precision Shifts,” describes how multiple-precision shift
operations can be programmed as defined by the UISA.

* Appendix D, “Foating-Point Models,” gives examples of how the floating-point
conversion instructions can be used to perform various conversions as described in
the UISA.

» Appendix E, “Synchronization Programming Examples,” gives examples showing
how synchronization instructions can be used to emulate various synchronization
primitives and how to provide more complex forms of synchronization.

* Appendix F, “Simplified Mnemonics,” provides a set of simplified mnemonic
examples and symbols.

* Appendix G, “Programming Environments Manual (32-Bit) Revision History,”
describes major changes since the previous revision of this document.

* Thismanual also includes a glossary and an index.

Suggested Reading

This section lists additional reading that provides background for the information in this
manual as well as general information about the architecture.
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General Information

The following documentation, available through Morgan-Kaufmann Publishers, 340 Pine
Street, Sixth Floor, San Francisco, CA, provides useful information about the PowerPC
architecture and computer architecture in general:

The Power PC Architecture: A Specification for a New Family of RISC Processors,
Second Edition, by International Business Machines, Inc.

For updates to the specification, see http://www.austin.ibm.com/tech/ppc-chg.html.

Power PC Microprocessor Common Hardware Reference Platform: A System
Architecture, by Apple Computer, Inc., International Business Machines, Inc., and
Motorola, Inc.

Computer Architecture: A Quantitative Approach, Second Edition, by
John L. Hennessy and David A. Patterson

Computer Organization and Design: The Hardware/Software I nterface, Second
Edition, David A. Patterson and John L. Hennessy

Related Documentation

Motorola documentation is available from the sources listed on the back cover of this
manual; the document order numbers are included in parentheses for ease in ordering:

XXX

User’smanual s—These books provide detail s about individual implementationsand
are intended for use with the Programming Environments Manual.

Addenda/errata to user's manual s—Because some processors have follow-on parts
an addendum is provided that describes the additional features and functionality
changes. These addendaare intended for use with the corresponding user’s manuals.

Hardware specifications—Hardware specifications provide specific data regarding
bus timing, signal behavior, and AC, DC, and thermal characteristics, aswell as
other design considerations.

Technical summaries—Each device has atechnical summary that provides an
overview of itsfeatures. This document is roughly the equivalent to the overview
(Chapter 1) of an implementation’s user’s manual.

The Programmer’s Reference Guide for the Power PC Architecture:
MPCPRG/D—This concise reference includes the register summary, memory
control model, exception vectors, and the instruction set.

The Programmer’s Pocket Reference Guide for the Power PC Architecture:
MPCPRGREF/D—T hisfoldout card providesan overview of registers, instructions,
and exceptions for 32-bit implementations.

Application notes—These short documents address specific design issues useful to
programmers and engineers working with Motorola processors.
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Additional literature is published as new processors become available. For a current list of
documentation, refer to http://www.motorola.com/semiconductors.

Conventions

This document uses the following notational conventions:

cleared/set When abit takes the value zero, it issaid to be cleared; when it takes
avaue of one, it issaid to be set.

mnemonics I nstruction mnemonics are shown in lowercase bold.

italics Italics indicate variable command parameters, for example, becetr x.
Book titlesin text are set initalics
Internal signals are set in italics, for example, qual BG

0x0 Prefix to denote hexadecimal number

Ob0 Prefix to denote binary number

rA, rB Instruction syntax used to identify a source GPR

rD Instruction syntax used to identify a destination GPR

frA, frB, frC Instruction syntax used to identify a source FPR

frD Instruction syntax used to identify a destination FPR

REG[FIELD] Abbreviationsfor registersare shown in uppercasetext. Specific bits,
fields, or ranges appear in brackets. For example, MSR[LE] refersto
the little-endian mode enable bit in the machine state register.

X In some contexts, such as signal encodings, an unitalicized x
indicates adon’t care.

X Anitalicized x indicates an aphanumeric variable.

n Anitalicized n indicates an numeric variable.

- NOT logical operator

& AND logical operator

| OR logical operator

900 Indicates reserved bits or bit fieldsin aregister. Although these bits
can be written to as ones or zeros, they are always read as zeros.

m This symbol identifies text that is relevant with respect to the user
instruction set architecture (UISA). This symbol is used both for
information that can befound inthe Ul SA specification aswell asfor
explanatory information related to that programming environment.

v This symbol identifies text that is relevant with respect to the virtual
environment architecture (VEA). This symbol is used both for

MOTOROLA AboutThis Book XXXIi



information that can be found intheVEA specification aswell asfor
explanatory information related to that programming environment.

® This symbol identifies text that is relevant with respect to the
operating environment architecture (OEA). Thissymbol isused both
for information that can be found in the OEA specification aswell as
for explanatory information related to that programming
environment.

Additional conventions used with instruction encodings are described in Table 8-2.
Conventions used for pseudocode examples are described in Table 8-3.

Acronyms and Abbreviations

Tablei contains acronyms and abbreviations that are used in this document. Note that the
meanings for some acronyms (such as SDR1 and XER) are historical, and the words for
which an acronym stands may not be intuitively obvious.

Table i. Acronyms and Abbreviated Terms

Term Meaning

ALU Arithmetic logic unit

ASR Address space register

BAT Block address translation

BIST Built-in self test

BPU Branch processing unit

BUID Bus unit ID

CR Condition register

CTR Count register

DABR Data address breakpoint register

DAR Data address register

DBAT Data BAT

DEC Decrementer register

DSISR Register used for determining the source of a DSI exception

DTLB Data translation lookaside buffer
EA Effective address

EAR External access register

ECC Error checking and correction

FPECR Floating-point exception cause register

FPR Floating-point register

FPSCR Floating-point status and control register
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Table i. Acronyms and Abbreviated Terms (continued)

Term Meaning
FPU Floating-point unit
GPR General-purpose register
IBAT Instruction BAT
IEEE Institute of Electrical and Electronics Engineers
ITLB Instruction translation lookaside buffer
U Integer unit
L2 Secondary cache
LIFO Last-in-first-out
LR Link register
LRU Least recently used
LSB Least-significant byte
Isb Least-significant bit
MESI Modified/exclusive/shared/invalid—cache coherency protocol
MMU Memory management unit
MSB Most-significant byte
msb Most-significant bit
MSR Machine state register
NaN Not a number
NIA Next instruction address
No-op No operation
OEA Operating environment architecture
PIR Processor identification register
PTE Page table entry
PTEG Page table entry group
PVR Processor version register
RISC Reduced instruction set computing
RTL Register transfer language
RWITM Read with intent to modify
SDR1 Register that specifies the page table base address for virtual-to-physical address translation
SIMM Signed immediate value
SLB Segment lookaside buffer
SPR Special-purpose register
SPRGnN Registers available for general purposes
SR Segment register
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Table i. Acronyms and Abbreviated Terms (continued)

Term Meaning
SRRO Machine status save/restore register O
SRR1 Machine status save/restore register 1
STE Segment table entry
TB Time base register
TLB Translation lookaside buffer
UIMM Unsigned immediate value
UISA User instruction set architecture
VA Virtual address
VEA Virtual environment architecture
XATC Extended address transfer code
XER Register used primarily for indicating conditions such as carries and overflows for integer operations

Terminology Conventions

Tableii lists certain terms used in this manual that differ from the architecture terminology

conventions.

Table ii. Terminology Conventions

The Architecture Specification

This Manual

Data storage interrupt (DSI)

DSI exception

Extended mnemonics

Simplified mnemonics

Instruction storage interrupt (ISI)

ISI exception

Interrupt

Exception

Privileged mode (or privileged state)

Supervisor-level privilege

Problem mode (or problem state)

User-level privilege

Real address

Physical address

Relocation

Translation

Out of order memory accesses

Speculative memory accesses

Storage (locations)

Memory

Storage (the act of)

Access

Tableiii describes instruction field notation conventions used in this manual.
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Table iii. Instruction Field Conventions

The Architecture Specification

Equivalent to:

BA, BB, BT crbA, crbB, crbD (respectively)
BF, BFA crfD, crfS (respectively)

D d

DS ds

FLM FM

FRA, FRB, FRC, FRT, FRS

frA, frB, frC, frD, frS (respectively)

FXM CRM

RA, RB, RT, RS rA, rB, rD, rS (respectively)
Sl SIMM

U IMM

ul UIMM

10100 0...0 (shaded)
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Chapter 1
Overview

The architecture provides a software model that ensures software compatibility among
implementations. Theterm ‘implementation’ isused to refer to ahardware device (typically
amicroprocessor) that complies with the architecture specifications.

The PowerPC architecture is a 64-bit architecture with a 32-bit subset. This manual
describes the architecture from a 32-bit perspective. Although some 64-bit resources are
discussed, this manual does not completely describe details of the 64-bit—only features of
the architecture, in particul ar with respect to the memory management model, registers, and
instruction set.

The architecture defines the following major components:

Instruction set—The instruction set specifies the families of instructions (such as
load/store, integer arithmetic, and fl oating-point arithmetic instructions), the specific
instructions, and the forms used for encoding the instructions. The instruction set
definition also specifies the addressing modes used for accessing memory.

Programming model—T he programming model defines the register set and the
memory conventions, including details regarding the bit and byte ordering, and the
conventions for how data (such as integer and floating-point values) are stored.

Memory model—The memory model definesthe size of the address space and of the
subdivisions (pages and blocks) of that address space. It also defines the ability to
configure pages and blocks of memory with respect to caching, byte ordering (big-
or little-endian), coherency, and various types of memory protection.

Exception model—The exception model defines the common set of exceptions and
the conditions that can generate those exceptions. The exception model specifies
characteristics of the exceptions, such as whether they are precise or imprecise,
synchronous or asynchronous, and maskable or nonmaskable. The exception model
defines the exception vectors and a set of registers used when exceptions are taken.
The exception model also provides memory space for implementation-specific
exceptions. (Note that exceptions are referred to as interrupts in the architecture
specification.)

Memory management model—The memory management model defines how
memory is partitioned, configured, and protected. The memory management model
also specifies how memory trandation is performed, the real, virtual, and physical
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PowerPC Architecture Overview

address spaces, special memory control instructions, and other characteristics.
(Physical addressisreferred to asreal address in the architecture specification.)

» Time-keeping model—T he time-keeping model defines facilities that permit the
time of day to be determined and the resources and mechanisms required for
supporting time-related exceptions.

These aspects of the architecture are defined at different levels of the architecture, and this
chapter provides an overview of those levels—the user instruction set architecture (UISA),
the virtual environment architecture (VEA), and the operating environment architecture
(OEA).

For updates to this document, refer to http://www.motorola.com/motorola.

1.1 PowerPC Architecture Overview

The PowerPC architecture, developed jointly by Motorola, IBM, and Apple Computer, is
based on the POWER architecture implemented by RS/6000™ family of computers. The
PowerPC architecture takes advantage of recent technological advances in such areas as
process technology, compiler design, and reduced instruction set computing (RISC)
microprocessor design to provide software compatibility across a diverse family of
implementations, primarily single-chip microprocessors, intended for a wide range of
systems, including battery-powered personal computers; embedded controllers; high-end
scientific and graphics workstations; and multiprocessing, microprocessor-based
mainframes.

To provide asingle architecture for such a broad assortment of processor environments, the
PowerPC architecture is both flexible and scalable.

Designers can choose whether to implement architecturally-defined featuresin hardware or
in software. For example, a processor designed for a high-end workstation has greater need
for the performance gained from implementing floating-point normalization and
denormalization in hardware than a battery-powered, general-purpose computer might.

The architecture is scalable to take advantage of continuing technological advances—for
example, the continued miniaturization of transistors makes it more feasible to implement
more execution units and a richer set of optimizing features without being constrained by
the architecture.

The PowerPC architecture defines the following features:

o Separate 32-entry register files for integer and floating-point instructions. The
general-purpose registers (GPRs) hold source data for integer arithmetic
instructions, and the floating-point registers (FPRs) hold source and target data for
floating-point arithmetic instructions.

* Instructionsfor loading and storing data between the memory system and either the
FPRs or GPRs
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» Uniform-length instructions to allow simplified instruction pipelining and paralel
processing instruction dispatch mechanisms

» Nondestructive use of registersfor arithmetic instructionsin which the second, third,
and sometimesthe fourth operand, typically specify sourceregistersfor calculations
whose resultsaretypically stored in the target register specified by thefirst operand.

» A precise exception model (with the option of treating floating-point exceptions
imprecisaly)
» Floating-point support that includes | EEE-754 floating-point operations

» A flexible architecture definition that alows certain features to be performed in
either hardware or with assistance from implementation-specific software
depending on the needs of the processor design

» The ahility to perform both single- and double-precision floating-point operations

o User-level instructions for explicitly storing, flushing, and invalidating data in the
on-chip caches. The architecture also defines special instructions (cache block touch
instructions) for speculatively loading data beforeit is needed, reducing the effect of
memory latency.

» Definition of amemory model that allows weakly-ordered memory accesses. This
allows bus operations to be reordered dynamically, which improves overall
performance and in particular reduces the effect of memory latency on instruction
throughput.

» Support for separate instruction and data caches (Harvard architecture) and for
unified caches

» Support for both big- and little-endian addressing modes

» Support for 64-bit addressing. The architecture supports both 32-bit or 64-bit
implementations.This document describes the 32-bit portion of the PowerPC
architecture.

This chapter provides an overview of the major characteristics of the architecture in the
order in which they are addressed in this book:

» Register set and programming model
* Instruction set and addressing modes
» Cacheimplementations

* Exception model

* Memory management

1.1.1 The 64-Bit Architecture and the 32-Bit Subset

It is important to distinguish the following modes of operations:

* 64-bit implementations/64-bit mode—The architecture provides 64-bit addressing,
64-bit integer data types, and instructions that perform arithmetic operations on
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those datatypes, aswell as other featuresto support the wider addressing range. For
example, memory management differs somewhat between 32- and 64-hit
processors. The processor is configured to operate in 64-bit mode by setting abitin
the machine state register (MSR).

Processors that implement only the 32-bit portion of the architecture provide 32-bit
effective addresses, which is also the maximum size of integer data types.

64-bit implementations/32-bit mode—For compatibility with 32-bit
implementations, 64-bit implementations can be configured to operate in 32-bit
mode by clearing MSR[SF]. In 32-bit mode, the effective addressistreated as a
32-bit address, condition bits, such asoverflow and carry bits, are set based on 32-bit
arithmetic (for example, integer overflow occurs when the result exceeds 32 bits),
and the count register (CTR) is tested by branch conditional instructions following
conventions for 32-bit implementations. All applications written for 32-bit
implementations run without modification on 64-bit processors running in 32-bit
mode.

1.1.2 The Levels of the PowerPC Architecture

The architecture is defined in three levels that correspond to three programming
environments, roughly described from the most general, user-level instruction set
environment, to the more specific, operating environment.

This layering of the architecture provides flexibility, allowing degrees of software
compatibility across a wide range of implementations. For example, an implementation
such as an embedded controller may support the user instruction set, whereas it may be
impractical for it to adhere to the memory management, exception, and cache models.

The three levels of the architecture are defined as follows:

1-4

User instruction set architecture (UISA)—The UISA defines the level of the
architecture to which user-level (referred to as problem state in the architecture
specification) software should conform. The UISA defines the base user-level
instruction set, user-level registers, data types, floating-point memory conventions
and exception model as seen by user programs, and the memory and programming
models. The icon shown in the margin identifies text that is relevant with respect to
the UISA.,

Virtual environment architecture (VEA)—The VEA defines additional user-level
functionality that falls outside typical user-level software requirements. The VEA
describes the memory model for an environment in which multiple devices can
access memory, defines aspects of the cache model, defines cache control
instructions, and defines the time base facility from a user-level perspective. The
icon shown in the margin identifies text that is relevant with respect to the VEA.

Implementations that conform to the VEA also adhere to the UISA, but may not
necessarily adhere to the OEA.
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» Operating environment architecture (OEA)—The OEA defines supervisor-level
(referred to as privileged state in the architecture specification) resources typically
required by an operating system. The OEA definesthe memory management model,
supervisor-level registers, synchronization requirements, and the exception model.
The OEA also definesthe time base feature from a supervisor-level perspective. The
icon shown in the margin identifies text that is relevant with respect to the OEA.

Implementations that conform to the OEA also conform to the UISA and VEA.

Implementations that adhere to the VEA level are guaranteed to adhere to the UISA level;
likewise, implementations that conform to the OEA level are also guaranteed to conform to
the UISA and the VEA levels.

All PowerPC devices adhere to the UISA, offering compatibility among all PowerPC
application programs. However, there may be different versions of the VEA and OEA than
those described here. For example, some devices, such as embedded controllers, may not
require some of the features as defined by this VEA and OEA, and may implement a
simpler or modified version of those features.

The distinctions between the levels of the PowerPC architecture are maintained clearly
throughout this document, using the conventions described in the “ Conventions’ section of
the Preface.

1.1.3 Latitude Within the Levels of the Architecture

The architecture defines those parameters necessary to ensure compatibility among
processors, but also allows a wide range of options for individual implementations. These
are asfollows:

» Thearchitecture defines some facilities (such as registers, bits within registers,
instructions, and exceptions) as optional.

» The architecture allows implementations to define additional privileged
special-purpose registers (SPRs), exceptions, and instructions for special system
requirements (such as power management in processors designed for very
low-power operation).

* There are many other parameters that the architecture allows implementations to
define. For example, the architecture may define conditions for which an exception
may be taken, such as alignment conditions. A particular implementation may
choose to solve the alignment problem without taking the exception.

» Processors may implement any architectural facility or instruction with assistance
from software (that is, they may trap and emulate) as long as the results (aside from
performance) are identical to that specified by the architecture.

» Some parameters are defined at one level of the architecture and defined more
specifically at another. For example, the UISA defines conditions that may cause an
alignment exception, and the OEA specifies the exception itself.
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Because of updates to the architecture specification, which are described in this document,
variances may result between existing devices and the revised architecture specification.
Those variances are included in Implementation Variances Relative to Rev. 1 of The
Programming Environments Manual.

1.1.4 Features Not Defined by the PowerPC Architecture

Becauseflexibility isan important design goal of the PowerPC architecture, there are many
aspects of the processor design, typically relating to the hardware implementation, that the
PowerPC architecture does not define, such as the following:

» System bus interface signals—Although numerous implementations may have
similar interfaces, the PowerPC architecture does not defineindividual signalsor the
bus protocol. For example, the OEA allows each implementation to determine the
signal or signals that trigger the machine check exception.

» Cache design—The PowerPC architecture does not define the size, structure, the
replacement algorithm, or the mechanism used for maintaining cache coherency.
The PowerPC architecture supports, but does not require, the use of separate
instruction and data caches. Likewise, the PowerPC architecture does not specify the
method by which cache coherency is ensured.

*  Thenumber and the nature of execution units—The PowerPC architectureisaRISC
architecture, and as such has been designed to facilitate the design of processorsthat
use pipelining and parallel execution units to maximize instruction throughpuit.
However, the PowerPC architecture does not define the internal hardware details of
implementations. For exampl e, one processor may execute load and store operations
in the integer unit, while another may execute these instructions in a dedicated
|oad/store unit.

» Other internal microarchitecture issues—T he architecture does not prescribe which
execution unit is responsible for executing a particular instruction; it al'so does not
define details regarding the instruction fetching mechanism, how instructions are
decoded and dispatched, and how results are written back. Dispatch and write-back
may occur in order or out of order. Also while the architecture specifies certain
registers, such as the GPRs and FPRs, implementations can implement register
renaming or other schemes to reduce the impact of data dependencies and register
contention.

1.1.5 Summary of Architectural Changes in this Revision

This revision reflects enhancements to the architecture that have been made since the
publication of the Power PC Microprocessor Family: The Programming Environments, Rev.
0.1. The primary difference described in this document is the addition of the rfid and
mtmsrd instructions to the 64-bit portion of the architecture. The rfi and mtmsr
instructions are now legal in 32-bit processors and illegal in 64-bit processors. Likewise,
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therfid and mtmsrd arevalid instructions only in 64-bit processorsand areillegal in 32-bit
processors.

In addition, this book reflects smaller changes and clarifications to the PowerPC
architecture. For more information, see Section 1.3, “Changes in This Revision of The
Programming Environments Manual.”

1.2 The Architectural Models U]

This section provides overviews of aspects defined by the architecture, following the same v
order asthe rest of this book. The topics include the following:

* Registers and programming model

* Operand conventions

* Instruction set and addressing modes
» Cache model

» Exception model

* Memory management model

1.2.1 Registers and Programming Model

The architecture defines register-to-register operations for computational instructions.
Source operands for these instructions are accessed from the architected registers or are
provided as immediate values embedded in the instruction. The three-register instruction
format allows specification of atarget register distinct from two source operand registers.
This scheme allows efficient code scheduling in ahighly parallel processor. Load and store
instructions are the only instructions that transfer data between registers and memory. The
PowerPC registers are shown in Figure 1-1.
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f SUPERVISOR MODEL—OEA \

Configuration Registers

// \\ Machine State Register (MSR)

USER MODEL—UISA Processor Version Register (PVR)
32 General-Purpose Registers (GPRs) )

32 Floating-Point Registers (FPRs) Memory Management Registers
Condition Register (CR) 8 Instruction BAT Registers (IBATSs)
Floating-Point Status and Control Register (FPSCR) 8 Data BAT Registers (DBATS)
XER SDR1

Link Register (LR) 16 Segment Registers (SRs)!
Count Register (CTR)

/ Exception Handling Registers
Data Address Register (DAR)

DSISR

USER MODEL—VEA Save and Restore Registers (SRRO/SRR1)
Time Base Facility (TBU and TBL) SPRGO-SPRG3
(For reading) Floating-Point Exception Cause Register (FPECR) 2

)

Miscellaneous Registers

Time Base Facility (TBU and TBL) (For writing)
Decrementer Register (DEC)

Data Address Breakpoint Register (DABR) 2
Processor Identification Register (PIR) 2

External Access Register (EAR) 2 j

1 32-bit implementations only
2 Optional

Figure 1-1. Programming Model—PowerPC Registers

The programming model incorporates 32 GPRs, 32 FPRs, specia-purpose registers
(SPRs), and severa miscellaneous registers. Each implementation typically has registers
that are not defined by the architecture.

PowerPC processors have two levels of privilege:

» Supervisor mode—used exclusively by the operating system. Resources defined by
the OEA can be accessed only supervisor-level software.

» User mode—used by the application software and operating system software Only
resources defined by the UISA and VEA can be accessed by user-level software.

These two levels govern the access to registers, as shown in Figure 1-1. The division of
privilege allows the operating system to control the application environment (providing
virtual memory and protecting operating system and critical machine resources).
Instructions that control the state of the processor, the address translation mechanism, and
supervisor registers can be executed only when the processor is operating in supervisor
mode.

* User Instruction Set Architecture Register s—All UISA registerscan beaccessed [
by all software with either user or supervisor privileges. These registersinclude the
32 genera-purpose registers (GPRs) and the 32 floating-point registers (FPRs), and
other registers used for integer, floating-point, and branch instructions.
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* Virtual Environment Architecture Registers—The VEA defines the user-level
portion of the time base facility, which consists of the two 32-bit time base registers.
These registers can be read by user-level software, but can be written to only by
supervisor-level software.

v

» Operating Environment Architecture Register s—SPRs defined by the OEA are @

used for system-level operations such as memory management, exception handling,
and time-keeping.

The architecture also providesroom in the SPR space for implementation-specific registers,
which are not discussed in this manual.

1.2.2 Operand Conventions

Operand conventions are defined in two levels of the architecture—user instruction set [ij
architecture (UISA) and virtual environment architecture (VEA). These conventions define v

how datais stored in registers and memory.

1.2.2.1 Byte Ordering

The default mapping for processors is big-endian, but the UISA provides the option of [

operating in either big- or little-endian mode. Big-endian byte ordering is shown in
Figure 1-2.

MSB

| } | | N |

Byte 1

Byte N (max) |

Big-Endian Byte Ordering

Figure 1-2. Big-Endian Byte and Bit Ordering

The OEA defines two bits in the MSR for specifying byte ordering—LE (little-endian @

mode) and ILE (exception little-endian mode). MSR[LE] specifies whether the processor
is configured for big-endian or little-endian mode; MSR[ILE] specifies the mode when an
exception is taken by being copied into MSR[LE]. A value of 0 specifies big-endian mode
and avalue of 1 specifies little-endian mode.

1.2.2.2 Data Organization in Memory and Data Transfers

Bytesin memory are numbered consecutively starting with 0. Each number is the address
of the corresponding byte.

Memory operands may be bytes, half words, words, or double words, or, for the load/store
string/multiple instructions, a sequence of bytes or words. The address of a multiple-byte
memory operand is the address of its first byte (that is, of its lowest-numbered byte).
Operand length isimplicit for each instruction.
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The operand of a single-register memory access instruction has a natural alignment
boundary equal to the operand length. In other words, the natural address of an operand is
an integral multiple of the operand length. A memory operand is said to be aligned if it is
aligned at its natural boundary; otherwiseit is misaligned.

1.2.2.3 Floating-Point Conventions
M The architecture adheres to the IEEE-754 standard for 64- and 32-bit floating-point
arithmetic:

» Double-precision arithmetic instructions may have single- or double-precision
operands but always produce double-precision results.

» Single-precision arithmetic instructions require all operands to be single-precision
values and always produce single-precision results. Single-precision values are
stored in double-precision format in the FPRs—these values are rounded such that
they can be represented in 32-bit, single-precision format (as they are in memory).

1.2.3 Instruction Set and Addressing Modes

All instructions are encoded as single-word (32-hit) instructions. Instruction formats are
consistent among al instruction types, permitting decoding to occur in paralel with
operand accesses. This fixed instruction length and consistent format greatly simplifies
instruction pipelining.

1.2.3.1 Instruction Set
Although these categories are not defined by the architecture, the instructions can be
grouped as follows:

* Integer instructions—T hese instructions are defined by the UISA. They include M
computational and logical instructions.

— Integer arithmetic instructions

— Integer compare instructions

— Logical instructions

— Integer rotate and shift instructions

» Foating-point instructions—These instructions, defined by the UISA, include
floating-point computational instructions, aswell asinstructionsthat manipulate the
floating-point status and control register (FPSCR).

— Floating-point arithmetic instructions

— Foating-point multiply/add instructions

— Foating-point compare instructions

— Floating-point status and control instructions

1-10 Programming Environments Manual for 32-Bit Microprocessors MOTOROLA



04

The Architectural Models

— Foating-point move instructions
— Optional floating-point instructions

» Load/store instructions—T hese instructions, defined by the UISA, include integer
and floating-point load and store instructions.

— Integer load and store instructions

— Integer load and store with byte reverse instructions
— Integer load and store multiple instructions

— Integer load and store string instructions

— Floating-point load and store instructions

* TheUISA also provides aset of |oad/store with reservation instructions (lwar x and
stwcx.) that can be used as primitives for constructing atomic memory operations.
These are grouped under synchronization instructions.

» Synchronization instructions—The UISA and VEA define instructions for memory
synchronizing, especially useful for multiprocessing:

— Load and store with reservation instructions—These Ul SA-defined instructions
provide primitives for synchronization operations such as test and set, compare
and swap, and compare memory.

— The Synchronizeinstruction (sync)—ThisUI SA-defined instructionisuseful for
synchronizing load and store operations on a memory bus that is shared by
multiple devices.

— Enforce In-Order Execution of 1/0 (eieio)—The eieio instruction provides an
ordering function for the effects of load and store operations executed by a
processor.

» Flow control instructions—These include branching instructions, condition register
logical instructions, trap instructions, and other instructions that affect the
instruction flow.

— The UISA defines numerous instructions that control the program flow, m
including branch, trap, and system call instructions as well as instructions that
read, write, or manipulate bits in the condition register.

— The OEA defines two flow control instructions that provide system linkage. (0]
These instructions are used for entering and returning from supervisor level.

» Processor control instructions—These instructions are used for synchronizing
memory accesses and managing caches and trand ation lookaside buffers (TLBS)
(and segment registersin 32-bit implementations). These instructionsinclude move
to/from special-purpose register instructions (mtspr and mfspr).

* Memory/cache control instructions—These instructions provide control of caches,
TLBs, and segment registers.

— The VEA defines several cache control instructions.
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— The OEA defines one cache control instruction and several memory control
instructions.

V * Externd control instructions—The VEA defines two optional instructions for use
with special input/output devices.

Note that this grouping of the instructions does not indicate which execution unit executes
aparticular instruction or group of instructions. Thisis not defined by the architecture.

1.2.3.2 Calculating Effective Addresses

M The effective address (EA), also called the logical address, is the address computed by the
processor when executing amemory access or branch instruction or when fetching the next
sequential instruction. Unless address trandation is disabled, this address is converted by
the MMU to the appropriate physical address. (Note that the architecture specification uses
only the term effective address and not logical address.)

The architecture supports the following ssmple addressing modes for memory access
instructions:
* EA =(rA|O) (register indirect)
* EA =(rAJ0) + offset (including offset = 0) (register indirect with immediate index)
* EA =(rA|0) + rB (register indirect with index)

These smple addressing modes allow efficient address generation for memory accesses.

1.2.4 Cache Model

The VEA and OEA define aspects of cache implementations for processors. The
architecture does not define hardware aspects of cache implementations. For example, @
some processors may have separate instruction and data caches (Harvard architecture),
while others have a unified cache.

The architecture allowsimplementationsto control the following memory access modes on
apage or block basis:

* Write-back/write-through mode

» Caching-inhibited mode

* Memory coherency

» Guarded/not guarded against speculative accesses
Coherency is maintained on a cache block basis, and cache control instructions perform
operations on a cache block basis. The size of the cache block is

implementation-dependent. The term cache block should not be confused with the notion
of ablock in memory, whichisdescribed in Section 1.2.6, “Memory Management Model.”
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The VEA defines severa instructions for cache management. These can be used by
user-level software to perform such operations as touch operations (which cause the cache
block to be speculatively loaded), and operations to store, flush, or clear the contents of a
cache block. The OEA portion of the architecture defines one cache management
instruction—the Data Cache Block Invalidate (dcbi) instruction.

1.2.5 Exception Model

The exception mechanism, defined by the OEA, alows the processor to change to
supervisor state as a result of external signals, errors, or unusual conditions arising in the
execution of instructions. When exceptions occur, information about the state of the
processor is saved to various registers and the processor begins execution at an address
(exception vector) predetermined for each type of exception. Exception handler routines
begin execution in supervisor mode. The exception model is described in detail in
Chapter 6, “Exceptions.” Note also that some aspects regarding exception conditions are
defined at other levels of the architecture. For example, floating-point exception conditions
are defined by the UISA, whereas the exception mechanism is defined by the OEA.

The architecture requires that exceptions be handled in program order (excluding the
optional floating-point imprecise modes and the reset and machine check exception);
therefore, although a particular implementation may recognize exception conditions out of
order, they are handled strictly in order. When an instruction-caused exception is
recognized, any unexecuted instructions that appear earlier in the instruction stream,
including any that have not yet begun to execute, are required to complete before the
exception is taken. Any exceptions caused by those instructions must be handled first.
Likewise, exceptions that are asynchronous and precise are recognized when they occur,
but are not handled until all instructions currently executing successfully complete
processing and report their results.

The OEA supports four types of exceptions:
» Synchronous, precise
» Synchronous, imprecise
* Asynchronous, maskable
» Asynchronous, nonmaskable

1.2.6 Memory Management Model

The memory management unit (MMU) specifications are provided by the OEA. The
primary functions of the MMU are to trandate logica (effective) addresses to physical
addresses for memory accesses and 1/0 accesses (most 1/O accesses are assumed to be
memory-mapped), and to provide access protection on a block or page basis. Note that
many aspects of memory management are implementation-dependent. The description in
Chapter 7, “Memory Management,” describes the conceptual model of a MMU; however,
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processors may differ in the specific hardware used to implement the MMU model of the
OEA.

Processors require address translation for two types of transactions—instruction accesses
and data accesses to memory (typically generated by load and store instructions).

The memory management specification of the OEA includes modelsfor both 64- and 32-bit
implementations. The MMU of a 32-bit processor provides 232 bytes of logical address
space accessible to supervisor and user programs with a4-Kbyte page size and 256-Mbyte
segment size.

In 32-bit implementations, the entire 4-Gbyte memory space is defined by sixteen
256-Mbyte segments. Segments are configured through the 16 segment registers. In 64-bit
implementations there are more segments than can be maintained in architecture-defined
registers, so segment descriptors are maintained in segment table entries (STES) in memory
and are accessed through the use of a hashing algorithm much like that used for accessing
page table entries (PTES).

The block address trandation (BAT) mechanism maps large blocks of memory. Block sizes
range from 128 Kbytes to 256 Mbytes and are software-selectable. In addition, the MMU
of 32-bit processors uses an interim virtual address (52 bits) and hashed page tables in the
generation of 32-bit physical addresses.

Two types of processor-generated accesses require address translation: instruction accesses
and data accesses to memory generated by load and store instructions. The address
trandlation mechanism is defined in terms of segment tables (or segment registers in 32-bit
implementations) and page tables used to locate the logical-to-physical address mapping
for instruction and data accesses. The segment information translates the logical addressto
an interim virtual address, and the page table information translates the virtual addressto a
physical address.

Trangdation lookaside buffers (TLBs) are commonly implemented to keep recently-used
page table entries on-chip. Although their exact characteristics are not specified by the
architecture, the general concepts that are pertinent to the system software are described.
Similarly, 64-bit implementations may contain segment lookaside buffers (SLBsS) on-chip
that contain recently-used segment table entries, but for which the architecture does not
define the exact characteristics.

The block address trandation (BAT) mechanism is a software-controlled array that stores
the available block addresstranslations on-chip. BAT array entriesareimplemented aspairs
of BAT registersthat are accessible as supervisor special-purpose registers (SPRs); refer to
Chapter 7, “Memory Management,” for more information.
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1.3 Changes in This Revision of The Programming
Environments Manual

This book reflects changes made to the architecture after the publication of Rev. O of The
Programming Environments Manual and before Dec. 13, 1994 (Rev. 0.1). In addition, it
reflects changes made to the architecture after the publication of Rev.0.1 of The
Programming Environments Manual and before Aug. 6, 1996 (Rev. 1). Although there are
many changes in this revision, this section summarizes only the most significant changes
and clarifications to the architecture specification.

The main substantive change from Rev. 0 to Rev. 1 for 32-bit processors is the phasing out
of the direct-store facility. This facility defined segments that were used to generate
direct-store interface accesses on the external bus to communicate with specialized 1/0
devices; it was not optimized for performance in the architecture and was present for
compatibility with older devices only. As of this revision of the architecture (Rev. 1),
direct-store segments are an optional processor feature. However, they are not likely to be
supported in future implementations and new software should not use them.

Table 1-1 and Table 1-2 list changes made to the UISA that are reflected in this book and
identify the chapters affected by those changes. Note that many of the changes made in the
UISA are reflected in both the VEA and OEA portions of the architecture as well.

Table 1-1. UISA Changes—Rev. 0 to Rev. 0.1

Change Chapter(s) Affected
The rules for handling of reserved bits in registers are clarified. 2
Clarified that isync does not wait for memory accesses to be performed. 4,8
CRO0[0-2] are undefined for some instructions in 64-bit mode. 4,8

Clarified intermediate result with respect to floating-point operations (the intermediate result |3
has infinite precision and unbounded exponent range).

Clarified the definition of rounding such that rounding always occurs (specifically, FR and FI |3
flags are always affected) for arithmetic, rounding, and conversion instructions.

Clarified the definition of the term ‘tiny’ (detected before rounding). 3

In Section D.3.2, “Conversion from Floating-Point Number to Unsigned Fixed-Point Integer |D
Word,” changed value in FPR 3 from 232 to 232 — 1 (in 32-bit implementation description).

Noted additional POWER incompatibility for Store Floating-Point Single (stfs) instruction. B

Table 1-2. UISA Changes—Rev. 0.1 to Rev. 1.0

Change Chapter(s) Affected

Although the stfiwx instruction is an optional instruction, it will likely be required for future |4, 8, A
processors.

Added the new Data Cache Block Allocate (dcba) instruction. 4,5,8, A

Deleted some warnings about generating misaligned little-endian access. 3
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Table 1-3 and Table 1-4 list changes made to the VEA that are reflected in this book and the
chapters that are affected by those changes. Note that some changes to the UISA are
reflected in the VEA and in turn, some changes to the VEA affect the OEA aswell.

Table 1-3. VEA Changes—Rev. 0 to Rev. 0.1

Change Chapter(s) Affected
Clarified conditions under which a cache block is considered modified. 5
WIMG bits have meaning only when the effective address is translated. 2,57
Clarified that isync does not wait for memory accesses to be performed. 4,5 7,8
Clarified paging implications of eciwx and ecowx. 4,5,7,8

Table 1-4. VEA Changes—Rev. 0.1 to Rev. 1.0

Change Chapter(s) Affected
Added the requirement that caching-inhibited guarded store operations are ordered. 5
Clarified use of the dcbf instruction in keeping instruction cache coherency in the case of a |5

combined instruction/data cache in a multiprocessor system.

Table 1-5 and Table 1-6 list changes made to the OEA that are reflected in thisbook and the
chaptersthat are affected by those changes. Note that some changesto the UISA and VEA

are reflected in the OEA aswell.
Table 1-5. OEA Changes—Rev. 0 to Rev. 0.1

Change Chapter(s) Affected

Restricted several aspects of out-of-order operations. 2,4,5,6,7
Clarified instruction fetching and instruction cache paradoxes. 4,5
Specified that IBATs contain W and G bits and that software must not write 1s to them. 2,7
Corrected the description of coherence when the W bit differs among processors. 5

Clarified that referenced and changed bits are set for virtual pages. 7

Revised the description of changed bit setting to avoid depending on the TLB. 7
Tightened the rules for setting the changed bit out of order. 57
Specified which multiple DSISR bits may be set due to simultaneous DSI exceptions. 6
Removed software synchronization requirements for reading the TB and DEC. 2

More flexible DAR setting for a DABR exception. 6
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Table 1-6. OEA Changes—Rev. 0.1 to Rev. 1.0

Change Chapter(s) Affected

Changed definition of direct-store segments to an optional processor feature that is not likely |2, 6, 7
to be supported in future implementations and new software should not use it.

Changed the ranges of bits saved from MSR to SRR1 (and restored from SRR1 to MSR on |2, 6
rfi) on an exception.

Clarified the definition of execution synchronization. Also clarified that the mtmsr and 2,4,8
mtmsrd instructions are not execution synchronizing.

Clarified the use of memory allocated for predefined uses (including the exception vectors). |6, 7

Revised the page table update synchronization requirements and recommended code 7
sequences.
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Chapter 2
Register Set

This chapter describes the register organization defined by the three levels of the
architecture—user instruction set architecture (UISA), virtual environment architecture
(VEA), and operating environment architecture (OEA). The architecture defines
register-to-register operations for all computational instructions. Source data for these
instructions are accessed from the on-chip registers or are provided as immediate values
embedded in the opcode. The three-register instruction format allows specification of a
target register distinct from the two source registers, preserving the original datafor use by
other instructions and reducing the number of instructions for some operations. Data is
transferred between memory and registers with explicit load and store instructions only.

Note that the handling of reserved bits in any register is implementation-dependent.
Software is permitted to write any value to a reserved hit in a register. However, a
subsequent reading of the reserved bit returns O if the value last written to the bit was 0 and
returns an undefined value (may be 0 or 1) otherwise. This meansthat even if the last value
written to areserved bit was 1, reading that bit may return O.

2.1 UISA Register Set

The UISA registers, shown in Figure2-1, can be accessed by either user- or
supervisor-level instructions (the architecture specification refers to user-level and
supervisor-level as problem state and privileged state respectively). The general-purpose
registers (GPRS) and floating-point registers (FPRs) are accessed as instruction operands.
Access to registers can be explicit (that is, through the use of specific instructions for that
purpose such as Move to Specia-Purpose Register (mtspr) and Move from
Special-Purpose Register (mfspr) instructions) or implicit as part of the execution of an
instruction. Some registers are accessed both explicitly and implicitly.

The number to theright of the register namesindicates the number that is used in the syntax
of the instruction operands to access the register (for example, the number used to access
the XERisSPR 1).

Note that the GPRs, LR, and CTR are 64 bits wide on 64-bit implementations and 32 bits
wide on 32-bit implementations.
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SUPERVISOR MODEL—OEA

f \ Configuration Registers
USER MODEL Machine State Register Processor Version Register !
UISA MSR (64/32) (Read Only)
General-Purpose Registers PVR (32) SPR 287
GPRO (32) Memory Management Registers
GPR1 (32) Instruction BAT Registers Data BAT Registers
: IBATOU (64/32) | SPR 528 DBATOU (64/32) SPR 536
4 IBATOL (64/32) | SPR 529 DBATOL (64/32) SPR 537
GPR31 (32) IBAT1U (64/32) | SPR 530 DBAT1U (64/32) SPR 538
IBAT1L (64/32) | SPR 531 DBAT1L (64/32) SPR 539
Floating-Point Registers IBAT2U (64/32) SPR 532 DBAT2U (64/32) | SPR 540
FPRO (64) IBAT2L (64/32)  SPR 533 DBAT2L (64/32) = SPR 541
FPR1 (64) IBAT3U (64/32) | SPR 534 DBAT3U (64/32) SPR 542
° IBAT3L (64/32) | SPR 535 DBAT3L (64/32) SPR 543
: Segment Registers 12
FPR31 (64) SDR1 SRO (32)
SDR1 (64/32) | SPR 25 SR1 (32)

Condition Register 1
Address Space Register 3

ASR (64) SPR 280
Floating-Point Status and SR31 (32)
Control Register * Exception Handling Registers
Data Address Register DSISR !
XER Register 1 DAR (64/32) SPR 19 DSISR (32) SPR 18
Save and Restore Registers
SPRGO (64/32) | SPR 272 SRRO (64/32) | SPR 26
Link Register SPRGL (64/32) | SPR 273 SRR1 (64/32) | SPR27
SPR 8 SPRG2 (64/32) | SPR 274 Floating-Point Exception
SPRG3 (64/32) = SPR 275 Cause Register (Optional)
Count Register FPECR SPR 1022
SPR gj Miscellaneous Registers
Time Base Facility * Data Address Breakpoint
(For Writing) Register (Optional)
USET/I!SDEL TBL(32) SPR 284 DABR (64/32 SPR 1013
TBU (32) SPR 285 ( )
Time Base Facility 1 D tor 1 External Access Register
(For Reading) ecrementer (Optional) *
TBL (32) TBR 268 DEC (32) SPR 22 EAR (32) SPR 282
TBU (32) TBR 269 Progessor Ide_ntification
Register (Optional)
PIR SPR 1023

1 These registers are 32-bit registers only.
2These registers are on 32-bit implementations only.
3These registers are on 64-bit implementations only.

Figure 2-1. UISA Programming Model—User-Level Registers
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The user-level registers can be accessed by all software with either user or supervisor
privileges. The user-level register set includes the following:

» Genera-purpose registers (GPRs). The general-purpose register file consists of 32
GPRs designated as GPRO-GPR31. The GPRs serve as data source or destination
registersfor al integer instructions and provide data for generating addresses. See
Section 2.1.1, “ General-Purpose Registers (GPRs).”

* Foating-point registers (FPRs). The floating-point register file consists of 32 FPRs
designated as FPRO—PR31; FPRs serve as the data source or destination for all
floating-point instructions. The floating-point model includes data objects of either
single- or double-precision floating-point format, but the FPRs only contain datain
double-precision format. See Section 2.1.2, “Floating-Point Registers (FPRs).”

» Conditionregister (CR). The 32-bit CR has eight 4-bit fields, CRO—CR?7, that reflect
theresults of certain arithmetic operations and provides amechanism for testing and
branching. See Section 2.1.3, “Condition Register (CR).”

» Floating-point status and control register (FPSCR). The FPSCR contains all signal,
summary and enable bits for floating-point exceptions and rounding control bits for
compliance with the |IEEE 754 standard. See Section 2.1.4, “Floating-Point Status
and Control Register (FPSCR).”

» XERregister (XER). The XER indicates overflows and carry conditions for integer
operations and the number of bytesto betransferred by the load/store string indexed
instructions. See Section 2.1.5, “XER Register (XER).”

* Link register (LR). The LR provides the branch target address for the Branch
Conditional to Link Register (bclrx) instructions, and can optionally be used to hold
the effective address of the instruction that follows a branch with link update
instruction in theinstruction stream, typically used for |oading the return pointer for
a subroutine. For more information, see Section 2.1.6, “Link Register (LR).”

* Count register (CTR). The CTR holds aloop count that can be decremented during
execution of appropriately coded branch instructions. The CTR can also providethe
branch target address for the Branch Conditiona to Count Register (bcctrx)
Instructions. For more information, see Section 2.1.7, “Count Register (CTR).”

2.1.1 General-Purpose Registers (GPRSs)

Integer datais manipulated in the processor’'s 32 GPRs shown in Figure 2-2. Theseregisters
are 64-bit registers in 64-bit implementations and 32-bit registers in 32-bit
implementations. The GPRs are accessed as source and destination registers in the
Instruction syntax.
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GPRO

GPR1

GPR31

Figure 2-2. General-Purpose Registers (GPRs)

2.1.2 Floating-Point Registers (FPRSs)

The architecture provides thirty-two 64-bit FPRs as shown in Figure 2-3. These registers
are accessed as source and destination registers for floating-point instructions. Each FPR
supports the double-precision floating-point format. Every instruction that interprets the
contents of an FPR as a floating-point val ue uses the doubl e-precision fl oating-point format
for this interpretation. Note that FPRs are 64 bits on both 64-bit and 32-bit processor
implementations.

All floating-point arithmetic instructions operate on data located in FPRs and, with the
exception of compare instructions, place the result into an FPR. Information about the
status of floating-point operationsis placed into the FPSCR and in some cases, into the CR
after the compl etion of instruction execution. For information on how the CR is affected for
floating-point operations, see Section 2.1.3, “ Condition Register (CR)."

Load and store double-word instructions transfer 64 bits of data between memory and the
FPRs with no conversion. Load single instructions are provided to read a single-precision
floating-point value from memory, convert it to double-precision floating-point format, and
placeit in the target floating-point register. Store single-precision instructions are provided
to read a double-precision floating-point value from a floating-point register, convert it to
single-precision floating-point format, and place it in the target memory location.

Single- and double-precision arithmetic instructions accept values from the FPRs in
double-precision format. For single-precision arithmetic and store instructions, all input
values must be representable in single-precision format; otherwise, the result placed into
the target FPR (or the memory location) and the setting of status bitsin the FPSCR and in
the condition register (if the instruction’s record bit, Rc, is set) are undefined.

The floating-point arithmetic instructions produce intermediate results that may be
regarded asinfinitely precise and with unbounded exponent range. Thisintermediate result
iIsnormalized or denormalized if required, and then rounded to the destination format. The
final result isthen placed into the target FPR in the double-precision format or in fixed-point
format, depending on the instruction. Refer to Section 3.3, “Floating-Point Execution
Models—UISA,” for more information.
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FPRO

FPR1

FPR31

Figure 2-3. Floating-Point Registers (FPRS)

2.1.3 Condition Register (CR)

The 32-bit condition register (CR) reflects the result of certain operations and provides a
mechanism for testing and branching. CR bits are grouped into eight 4-bit fields,
CRO—CRY7, as shown in Figure 2-4.

CRO CR1 CR2 CR3 CR4 CR5 CR6 CR7

0 34 7 8 11 12 15 16 19 20 23 24 27 28 31
Figure 2-4. Condition Register (CR)

The CR fields can be set by using the following instructions:
» Specified CR fields are set from a GPR by using mtcrf.

» The contents of one CR field are copied into another CR field by using mcrf. All
other condition register fields remain unchanged.

* The contents of XER[0-3] is moved to another CR field by using mcrxr.

» A gpecified FPSCR field is copied to a specified field of the CR by using mcrfs.

* CRlogical instructions perform logical operations on specified CR bits.

* CRO can betheimplicit result of an integer instruction.

* CR1 can betheimplicit result of afloating-point instruction.

* A gpecified CR field can indicate the result of either an integer or floating-point
compare instruction.

Note that branch instructions are provided to test individual CR bits.

2.1.3.1 Condition Register CRO Field Definition

For all integer instructions, when the CR is set to reflect the result of the operation (that is,
when Rc = 1), and for addic., andi., and andis., the first three bits of CRO are set by an
algebraic comparison of the result to zero; the fourth bit of CRO is copied from XER[SQ].
For integer instructions, CR bits 0—3 are set to reflect the result as a signed quantity.

The CR bits are interpreted as shown in Table 2-1. If any portion of the result is undefined,
the value placed into the first three bits of CRO is undefined.
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Table 2-1. Bit Settings for CRO Field of CR

Bits Description
0 | Negative (LT)—This bit is set when the result is negative.
1 |Positive (GT)—This bit is set when the result is positive (and not zero).
2 | Zero (EQ)—This bit is set when the result is zero.
3 | Summary overflow (SO)—This is a copy of the final state of XER[SO] at the completion of the instruction.

Note that CRO may not reflect the true (that is, infinitely precise) result if overflow occurs.

2.1

3.2 Condition Register CR1 Field Definition

In all floating-point instructions when the CR is set to reflect the result of the operation (that
IS, when the instruction’s record bit, Rc, is set), CR1 (bits 4—7 of the CR) is copied from
FPSCR[0-3] and indicates the floating-point exception status. See Section 2.1.4,
“Floating-Point Status and Control Register (FPSCR).” Table 2-2 shows CRL1 bit settings.

Table 2-2. Bit Settings for CR1 Field of CR

Bits

Description

Floating-point exception (FX). Copy of the final state of FPSCR[FX] at the completion of the instruction.

5 | Floating-point enabled exception (FEX). Copy of the final state of FPSCR[FEX] at the completion of the
instruction.
6 | Floating-point invalid exception (VX). Copy of the final state of FPSCR[VX] at the completion of the instruction.
7 | Floating-point overflow exception (OX). Copy of the final state of FPSCR[OX] at the completion of the instruction.
2.1.3.3 Condition Register CRn Field—Compare Instruction

For a compare instruction, when a specified CR field is set to reflect the result of the
comparison, the bits of the specified field are interpreted as shown in Table 2-3.

Table 2-3. CRn Field Bit Settings for Compare Instructions

Bits 1

Description 2

0

Less than or floating-point less than (LT, FL).

For integer compare instructions:

rA < SIMM or rB (signed comparison) or rA < UIMM or rB (unsigned comparison).
For floating-point compare instructions:frA < frB.

Greater than or floating-point greater than (GT, FG).

For integer compare instructions:

rA > SIMM or rB (signed comparison) or rA > UIMM or rB (unsigned comparison).
For floating-point compare instructions:frA > frB.
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Table 2-3. CRn Field Bit Settings for Compare Instructions (continued)

Bits 1 Description 2

2 | Equal or floating-point equal (EQ, FE).
For integer compare instructions: rA = SIMM, UIMM, or rB.
For floating-point compare instructions: frA = frB.

3 | Summary overflow or floating-point unordered (SO, FU).
For integer compare instructions, this is a copy of the final state of XER[SO] at the completion of the instruction.
For floating-point compare instructions, one or both of frA and frB is a Not a Number (NaN).

1 Here, the bit indicates the bit number in any one of the 4-bit subfields, CRO-CRY7.
For a complete description of instruction syntax conventions, refer to Table 8-2.

N

2.1.4 Floating-Point Status and Control Register (FPSCR)

The FPSCR, shown in Figure 2-5, contains bits that do the following:
* Record exceptions generated by floating-point operations
* Record the type of the result produced by a floating-point operation
» Control the rounding mode used by floating-point operations
» Enable or disable the reporting of exceptions (invoking the exception handler)

Bits 0-23 are status bits, which are updated at the completion of the instruction execution.
Bits 24-31 are control bits.

Except for the floating-point enabled exception summary (FEX) and floating-point invalid
operation exception summary (VX), the exception condition bits, FPSCR[0-12,21-23], are
sticky. Once set, sticky bits remain set until they are cleared by an mcrfs, mtfsfi, mtfsf, or
mtfsbO instruction.

FEX and VX are the logical ORs of other FPSCR bhits. Therefore, these two bits are not
listed among the FPSCR bits directly affected by the various instructions.

|:| Reserved
VXIDI VXZDZ ——  VXSOFT
VXISI S — VXIMZ VXSQRT
VXSNAN —‘ ’7 VXVC ’_ VXCVI
FX [FEX VX | OX| uX| zXx [ xX FR| FI FPRF |0 VE|OE|UE|ZE|XE|NI| RN
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 2-5. Floating-Point Status and Control Register (FPSCR)

FPSCR bits are decribed in Table 2-4
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Table 2-4. FPSCR Bit Settings

Bits

Name

Description

FX

Floating-point exception summary. Every floating-point instruction, except mtfsfi and mtfsf,
implicitly sets FX if that instruction causes any FPSCR floating-point exception bit to transition from
0 to 1. The mcrfs, mtfsfi, mtfsf, mtfsb0, and mtfsb1 instructions can alter FX explicitly. This is a
sticky bit.

FEX

Floating-point enabled exception summary. Signals the occurrence of any enabled exception
conditions. It is the logical OR of all the floating-point exception bits masked by their respective
enable bits (FEX = (VX & VE) " (OX & OE) * (UX & UE) * (ZX & ZE) ™ (XX & XE)). The mcrfs,
mtfsf, mtfsfi, mtfsb0, and mtfsb1 instructions cannot alter FPSCR[FEX] explicitly. This is not a
sticky bit.

VX

Floating-point invalid operation exception summary. This bit signals the occurrence of any invalid
operation exception. It is the logical OR of all of the invalid operation exception bits as described
in Section 3.3.6.1.1, “Invalid Operation Exception Condition.” The mcrfs, mtfsf, mtfsfi, mtfsbO,
and mtfsb1 instructions cannot alter FPSCR[VX] explicitly. This is not a sticky bit.

OX

Floating-point overflow exception. This is a sticky bit. See Section 3.3.6.2, “Overflow, Underflow,
and Inexact Exception Conditions.”

UXx

Floating-point underflow exception. This is a sticky bit. See Section 3.3.6.2.2, “Underflow
Exception Condition.”

ZX

Floating-point zero divide exception. This is a sticky bit. See Section 3.3.6.1.2, “Zero Divide
Exception Condition.”

XX

Floating-point inexact exception. This is a sticky bit. See Section 3.3.6.2.3, “Inexact Exception

Condition.” XX is the sticky version of FPSCRI[FI]. A given instruction sets XX as follows:

« If the instruction affects FPSCR[FI], the new value of FPSCR[XX] is obtained by logically ORing
the old value of FPSCR[XX] with the new value of FPSCRJFI].

« If the instruction does not affect FPSCR[FI], the value of FPSCR[XX] is unchanged.

VXSNAN

Floating-point invalid operation exception for SNaN. This is a sticky bit. See Section 3.3.6.1.1,
“Invalid Operation Exception Condition.”

VXISI

Floating-point invalid operation exception for o — . This is a sticky bit. See Section 3.3.6.1.1,
“Invalid Operation Exception Condition.”

VXIDI

Floating-point invalid operation exception for o + . This is a sticky bit. See Section 3.3.6.1.1,
“Invalid Operation Exception Condition.”

10

VXZDZ

Floating-point invalid operation exception for 0 + 0. This is a sticky bit. See Section 3.3.6.1.1,
“Invalid Operation Exception Condition.”

11

VXIMZ

Floating-point invalid operation exception for « * 0. This is a sticky bit. See Section 3.3.6.1.1,
“Invalid Operation Exception Condition.”

12

VXVC

Floating-point invalid operation exception for invalid compare. This is a sticky bit. See
Section 3.3.6.1.1, “Invalid Operation Exception Condition.”

13

FR

Floating-point fraction rounded. The last arithmetic, rounding, or conversion instruction
incremented the fraction. See Section 3.3.5, “Rounding.” This bit is not sticky.

14

Fl

Floating-point fraction inexact. The last arithmetic, rounding, or conversion instruction either
produced an inexact result during rounding or caused a disabled overflow exception. See
Section 3.3.5, “Rounding.” This is not a sticky bit. For more information regarding the relationship
between FPSCR[FI] and FPSCR[XX], see the description of the FPSCR[XX] bit.
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Table 2-4. FPSCR Bit Settings (continued)

Bits

Name

Description

15-19

FPRF

Floating-point result flags. For arithmetic, rounding, and conversion instructions, FPRF is based on

the result placed into the target register, except that if any portion of the result is undefined, the

value placed here is undefined.

15 Floating-point result class descriptor (C). Arithmetic, rounding, and conversion instructions
may set this bit with the FPCC bits to indicate the class of the result as shown in Table 2-5.

Bits 16—19 comprise the floating-point condition code (FPCC). Floating-point compare instructions

always set one of the FPCC bits to one and the other three FPCC bits to zero. Arithmetic, rounding,

and conversion instructions may set the FPCC bits with the C bit to indicate the class of the result.

Note that in this case the high-order three bits of the FPCC retain their relational significance

indicating that the value is less than, greater than, or equal to zero.

16 Floating-point less than or negative (FL or <)

17 Floating-point greater than or positive (FG or >)

18 Floating-point equal or zero (FE or =)

19 Floating-point unordered or NaN (FU or ?)

Note that these are not sticky bits.

20

Reserved

21

VXSOFT

Floating-point invalid operation exception for software request. This is a sticky bit. This bit can be
altered only by the mcrfs, mtfsfi, mtfsf, mtfsb0, or mtfsb1 instructions. For more detailed
information, refer to Section 3.3.6.1.1, “Invalid Operation Exception Condition.”

22

VXSQRT

Floating-point invalid operation exception for invalid square root. This is a sticky bit. For more
detailed information, refer to Section 3.3.6.1.1, “Invalid Operation Exception Condition.”

23

VXCVI

Floating-point invalid operation exception for invalid integer convert. This is a sticky bit. See
Section 3.3.6.1.1, “Invalid Operation Exception Condition.”

24

VE

Floating-point invalid operation exception enable. See Section 3.3.6.1.1, “Invalid Operation
Exception Condition.”

25

OE

IEEE floating-point overflow exception enable. See Section 3.3.6.2, “Overflow, Underflow, and
Inexact Exception Conditions.”

26

UE

IEEE floating-point underflow exception enable. See Section 3.3.6.2.2, “Underflow Exception
Condition.”

27

ZE

IEEE floating-point zero divide exception enable. See Section 3.3.6.1.2, “Zero Divide Exception
Condition.”

28

XE

Floating-point inexact exception enable. See Section 3.3.6.2.3, “Inexact Exception Condition.”

29

NI

Floating-point non-IEEE mode. If this bit is set, results need not conform with IEEE standards and
the other FPSCR bits may have meanings other than those described here. If the bit is set and if
all implementation-specific requirements are met and if an IEEE-conforming result of a
floating-point operation would be a denormalized number, the result produced is zero (retaining
the sign of the denormalized number). Any other effects associated with setting this bit are
described in the user’'s manual for the implementation.

Effects of the setting of this bit are implementation-dependent.

30-31

RN

Floating-point rounding control. See Section 3.3.5, “Rounding.”
00 Round to nearest

01 Round toward zero

10 Round toward +infinity

11 Round toward —infinity

Table 2-5 describes the floating-point result flags, which correspond to FPSCR[15-19].
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Table 2-5. Floating-Point Result Flags in FPSCR

Result Flags (Bits 15-19)
Result Value Class
C < > = ?
1 0 0 0 1 |Quiet NaN
0 1 0 0 1 |[—Infinity
0 1 0 0 0 [-Normalized number
1 1 0 0 0 [-Denormalized number
1 0 0 1 0 |-Zero
0 0 0 1 0 |+Zero
1 0 1 0 0 |+Denormalized number
0 0 1 0 0 [+Normalized number
0 0 1 0 1 | +Infinity

2.1.5 XER Register (XER)
The XER register is a 32-hit, user-level register shown in Figure 2-6.

|:| Reserved

SO|OV|CA 0 0000 0000 0000 0000 0000 O Byte count

01 2 3 24 25 31
Figure 2-6. XER Register

The XER bit definitions, shown in Table 2-6, are based on the operation of an instruction
considered as a whole, not on intermediate results. For example, the result of the Subtract
from Carrying (subfcx) instruction is specified as the sum of three values. Thisinstruction
sets XER bits based on the entire operation, not on an intermediate sum.

Table 2-6. XER Bit Definitions

Bits Name Description

0 SO | Summary overflow. The summary overflow bit (SO) is set whenever an instruction (except mtspr)
sets the overflow bit (OV). Once set, the SO bit remains set until it is cleared by an mtspr instruction
(specifying the XER) or an mcrxr instruction. It is not altered by compare instructions, nor by other
instructions (except mtspr to the XER, and mcrxr) that cannot overflow. Executing an mtspr
instruction to the XER, supplying the values zero for SO and one for OV, causes SO to be cleared
and OV to be set.

1 OV |Overflow. The overflow bit (OV) is set to indicate that an overflow has occurred during execution of
an instruction. Add, subtract from, and negate instructions having OE = 1 set the OV bit if the carry
out of the msb is not equal to the carry out of the msb + 1, and clear it otherwise. Multiply low and

divide instructions having OE = 1 set the OV bit if the result cannot be represented in 64 bits (mulld,
divd, divdu) or in 32 bits (mullw, divw, divwu), and clear it otherwise. The OV bit is not altered by
compare instructions that cannot overflow (except mtspr to the XER, and mcrxr).
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Table 2-6. XER Bit Definitions (continued)

Bits Name Description

2 CA | Carry. Set during execution of the following instructions:

« Add carrying, subtract from carrying, add extended, and subtract from extended instructions set
CA if there is a carry out of the msb, and clear it otherwise.

« Shift right algebraic instructions set CA if any 1 bits have been shifted out of a negative operand,
and clear it otherwise.

The CA bit is not altered by compare instructions, nor by other instructions that cannot carry (except

shift right algebraic, mtspr to the XER, and mcrxr).

3-24 — Reserved

25-31 Byte | This field specifies the number of bytes to be transferred by a Load String Word Indexed (Iswx) or
count | Store String Word Indexed (stswx) instruction.

2.1.6 Link Register (LR)

Thelink register (LR) is a64-bit register in 64-bit implementations and a 32-bit register in
32-bit implementations. The LR supplies the branch target address for the Branch
Conditional to Link Register (bclrx) instructions, and in the case of a branch with link
update instruction, can be used to hold the logical address of theinstruction that followsthe
branch with link update instruction (for returning from a subroutine). The format of LR is
shown in Figure 2-7.

Branch Address

Figure 2-7. Link Register (LR)

Note that although the two least-significant bits can accept any values written to them, they
areignored when the LR is used as an address. Both conditional and unconditional branch
instructions include the option of placing the logical address of the instruction following
the branch instruction in the LR.

The link register can be also accessed by the mtspr and mfspr instructions using SPR 8.
Prefetching instructions along the target path (loaded by an mtspr instruction) is possible
provided the LR is loaded sufficiently ahead of the branch instruction (so that any branch
prediction hardware can calculate the branch address). Additionally, processors can
prefetch along atarget path loaded by a branch and link instruction.

Note that some processors may keep a stack of the LR values most recently set by branch
with link update instructions. To benefit from these enhancements, use of the LR should be
restricted to the manner described in Section 4.2.4.2, “ Conditional Branch Control.”

2.1.7 Count Register (CTR)

The count register (CTR) isa64-bit register in 64-bit implementations and a 32-bit register
in 32-bit implementations. The CTR can hold aloop count that can be decremented during
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execution of branch instructions that contain an appropriately coded BO field. If the value
in CTRis 0 before being decremented, it is OXFFFF_FFFF (232-1) afterward. The CTR can
also provide the branch target address for the Branch Conditional to Count Register
(bcctrx) instruction. The CTR is shown in Figure 2-8.

CTR

Figure 2-8. Count Register (CTR)

Prefetching instructions along the target path is also possible provided the count register is
loaded sufficiently ahead of the branch instruction (so that any branch prediction hardware
can calculate the correct value of the loop count).

The count register can also be accessed by the mtspr and mfspr instructions by specifying
SPR 9. In branch conditional instructions, the BO field specifies the conditions under which
the branch istaken. Thefirst four bits of the BO field specify how the branch is affected by
or affects the CR and the CTR. The encoding for the BO field is shown in Table 2-7.

Table 2-7. BO Operand Encodings

BO Description

0000y Decrement the CTR, then branch if the decremented CTR # 0 and the condition is FALSE.

0001y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is FALSE.

001zy Branch if the condition is FALSE.

0100y Decrement the CTR, then branch if the decremented CTR # 0 and the condition is TRUE.

0101y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is TRUE.

011zy Branch if the condition is TRUE.

1z00y Decrement the CTR, then branch if the decremented CTR # 0.

1z01y Decrement the CTR, then branch if the decremented CTR = 0.

1z1zz Branch always.

Notes: The y bit provides a hint about whether a conditional branch is likely to be taken and is used by some
implementations to improve performance. Other implementations may ignore the y bit.

The z indicates a bit that is ignored. The z bits should be cleared (zero), as they may be assigned
a meaning in a future version of the UISA.

2.2 VEA Register Set—Time Base

WV The virtual environment architecture (VEA) defines registers in addition to those defined
by the UISA. The VEA register set can be accessed by all software with either user- or
supervisor-level privileges. Figure 2-9 shows the VEA register set. Note that the following
programming model is similar to that found in Figure 2-1, however, the VEA registers are
now included.
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The VEA introduces the time base facility (TB), a 64-bit structure that consists of two
32-hit registers—time base upper (TBU) and time base lower (TBL). Note that the time
base registers can be accessed by both user- and supervisor-level instructions. In the context
of the VEA, user-level applications are permitted read-only access to the TB. The OEA
defines supervisor-level access to the TB for writing values to the TB. See Section 2.3.12,
“Time Base Facility (TB)—OEA,” for more information.

In Figure 2-9, the numbersto theright of the register name indicates the number that isused
in the syntax of the instruction operands to access the register (for example, the number
used to accessthe XER isSPR 1).

Note that the GPRs, LR, and CTR are 64 bits on 64-bit implementations and 32 bits on
32-bit implementations. These registers are described fully in Section 2.1, “UISA Register
%_”
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SUPERVISOR MODEL—OEA

\\ Configuration Registers

(

USER MODEL Machine State Register Processor Version Register !
UISA MSR (64/32) (Read Only)
General-Purpose Registers PVR (32) SPR 287
GPRO (64/32) Memory Management Registers
GPR1 (64/32) Instruction BAT Registers Data BAT Registers
. IBATOU (64/32) | SPR 528 DBATOU (64/32) | SPR 536
o IBATOL (64/32) | SPR 529 DBATOL (64/32) = SPR 537
GPR31 (64/32) IBAT1U (64/32)| SPR 530 DBAT1U (64/32) | SPR 538
IBAT1L (64/32) | SPR 531 DBAT1L (64/32) SPR 539
Floating-Point Registers IBAT2U (64/32) | SPR 532 DBAT2U (64/32) | SPR 540
FPRO (64) IBAT2L (64/32) | SPR 533 DBAT2L (64/32) SPR 541
FPR1 (64) IBAT3U (64/32) SPR 534 DBAT3U (64/32) = SPR 542
° IBAT3L (64/32) | SPR 535 DBAT3L (64/32) SPR 543
: Segment Registers 12
FPR31 (64) SDR1 SRO (32)
Condition Register 1 SDR1 (64/32) SPR 25 SR1 (32)
Address Space Register 3
ASR (64) SPR 280
Floating-Point Status and SR31 (32)
Control Register * Exception Handling Registers
Data Address Register DSISR 1
XER Register ! DAR (64/32) SPR 19 DSISR (32) SPR 18
S d Rest Regist
SPR 1 SPRGs ave and Restore Registers
SPRGO (64/32) | SPR 272 SRRO (64/32) | SPR 26
Link Register SPRG1 (64/32) | SPR 273 SRR1(64/32) | SPR27
SPR 8 SPRG2 (64/32) | SPR 274 FIoating-Po_int Excep_tion
SPRG3 (64/32) | SPR 275 Cause Register (Optional)
Count Register FPECR SPR 1022
SPR gj Miscellaneous Registers
Time Base Facility 1 Data Address Breakpoint
(For Writing) Register (Optional)
USEI?/I,;AAODEL TBL (32 SPR 284 DABR (64/32 PR 101
TBU (32) SPR 285 (64/32) S 013
Time Base Facility 1 Decrementer 1 External Access Register
(For Reading) ecremente (Optional) 1
TBL (32) 4 TBR 268 DEC (32) SPR 22 EAR (32) SPR 282
TBU (32) TBR 269 Proc_essor Ide_ntification
k j Register (Optional)
PIR SPR 1023

1 These registers are 32-bit registers only.

2 These registers are on 32-bit implementations only.

3 These registers are on 64-bit implementations only.

4 |n 64-bit implementations, TBR268 is read as a 64-bit value.

Figure 2-9. VEA Programming Model—User-Level Registers Plus Time Base
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The time base (TB), shown in Figure 2-10, is a 64-bit structure that contains a 64-bit
unsigned integer that is incremented periodically. Each increment adds 1 to the low-order
bit (bit 31 of TBL). The frequency at which the counter is incremented is
implementation-dependent.

TBU—Upper 32 bits of time base TBL—Lower 32 bits of time base

0 31 0 31
Figure 2-10. Time Base (TB)

The TB increments until its value becomes OxFFFF_FFFF_FFFF_FFFF (254 — 1). At the
next increment its value becomes 0x0000_0000_0000_0000. Note that there is no explicit
indication that this has occurred (that is, no exception is generated).

The period of the time base depends on the driving frequency. The TB isimplemented such
that the following requirements are satisfied:

1. Loading a GPR from the time base has no effect on the accuracy of the time base.

2. Storing a GPR to the time base replaces the value in the time base with the value in
the GPR.

The VEA does not specify arelationship between the frequency at which the time base is
updated and other frequencies, such asthe processor clock. The TB update frequency is not
required to be constant; however, for the system software to maintain time of day and
operate interval timers, one of two thingsis required:

» Thesystem provides an implementati on-dependent exception to software whenever
the update frequency of the time base changes and ameans to determine the current
update frequency; or

» The system software controls the update frequency of the time base.

Notethat if the operating system initializesthe TB to some reasonable value and the update
frequency of the TB is constant, the TB can be used as a source of values that increase at a
constant rate, such as for time stamps in trace entries.

Even if the update frequency is not constant, values read from the TB are monotonically
increasing (except when the TB wraps from 254 — 1 to 0). If atrace entry is recorded each
time the update frequency changes, the sequence of TB values can be postprocessed to
become actual time values.

However, successive readings of the time base may return identical values due to
Implementation-dependent factors such as alow update frequency or initialization.

2.2.1 Reading the Time Base

The mftb instruction is used to read the time base. For specific details on using the mftb
instruction, see Chapter 8, “Instruction Set.” For information on writing the time base, see
Section 2.3.12.1, “Writing to the Time Base.”

MOTOROLA Chapter 2. Register Set 2-15



VEA Register Set—Time Base

On 32-bit implementations, it is not possible to read the entire 64-bit time base in asingle
instruction. The mftb simplified mnemonic moves from the lower haf of the time base
register (TBL) to a GPR, and the mftbu simplified mnemonic moves from the upper half
of the time base (TBU) to a GPR.

Because of the possibility of acarry from TBL to TBU occurring between reads of the TBL
and TBU, a sequence such as the following example is necessary to read the time base on
32-bit implementations:

| oop:
nftbu rx #l oad from TBU
nftb ry #l oad from TBL
nftbu rz #l oad from TBU
cnpw rz,rx #see if ‘old = ‘new
bne | oop #l oop if carry occurred

The comparison and loop are necessary to ensure that a consistent pair of values has been
obtained. The previous example will also work on 64-bit implementations running in either
64-bit or 32-bit mode.

2.2.2 Computing Time of Day from the Time Base

Since the update frequency of the time base is system-dependent, the algorithm for
converting the current value in the time base to time of day is also system-dependent.

In a system in which the update frequency of the time base may change over time, it is not
possible to convert an isolated time base value into time of day. Instead, a time base value
has meaning only with respect to the current update frequency and the time of day that the
update frequency was last changed. Each time the update frequency changes, either the
system software is notified of the change viaan exception, or else the change wasinstigated
by the system software itself. At each such change, the system software must compute the
current time of day using the old update frequency, compute a new vaue of
ticks-per-second for the new frequency, and save the time of day, time base value, and tick
rate. Subsequent calls to compute time of day use the current time base value and the saved
data.

A generalized service to compute time of day could take the following as input:
» Time of day at beginning of current epoch
» Time base value at beginning of current epoch
» Time base update frequency
* Time base value for which time of day is desired

For a system in which the time base update frequency does not vary, the first three inputs
would be constant.
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2.3 OEA Register Set

The operating environment architecture (OEA) completes the discussion of registers.
Figure 2-11. shows the entire register set—UISA, VEA, and OEA. In Figure 2-11 the
numbers to the right of the register name indicates the number that is used in the syntax of
the instruction operands to access the register (for example, the number used to access the
XERisSPR1).

All of the SPRs in the OEA can be accessed only by supervisor-level instructions; any
attempt to access these SPRs with user-level instructions results in a supervisor-level
exception. Some SPRs are implementation-specific. In some cases, not al of aregister's
bits are implemented in hardware.

If a processor executes an mtspr/mfspr instruction with an undefined SPR encoding, it
takes (depending on the implementation) an illegal instruction program exception, a
privileged instruction program exception, or the results are boundedly undefined. See 6.4.7,
“Program Exception (0x00700),” for more information.

Note that the GPRs, LR, CTR, TBL, MSR, DAR, SDR1, SRRO, SRR1, and
SPRGO-SPRG3 are 64 bits wide on 64-bit implementations and 32 bits wide on 32-bit
implementations.
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=

USER MODEL \\
UISA

General-Purpose Registers

GPRO (64/32)
GPR1 (64/32)

GPR31 (64/32)

Floating-Point Registers
FPRO (64)
FPR1 (64)

FPR31 (64)

Condition Register 1

CR (32)

Floating-Point Status and
Control Register !

FPSCR (32)

XER Register 1

XER (32) SPR 1

Link Register
SPR 8

LR (64/32)

Count Register
CTR (64/32)

KI

SPR 9
J

USER MODEL
VEA

Time Base Facility 1
(For Reading)

TBL (32) 4 TBR 268
TBU (32) TBR 269

. J

SUPERVISOR MODEL—OEA

Configuration Registers

Machine State Register

MSR (64/32)

Memory Management Registers

Instruction BAT Registers

IBATOU (64/32)| SPR 528
IBATOL (64/32) | SPR 529
IBAT1U (64/32)| SPR 530
IBATAL (64/32) | SPR 531
IBAT2U (64/32)| SPR 532
IBAT2L (64/32) | SPR 533
IBAT3U (64/32)| SPR 534
IBAT3L (64/32) | SPR 535
SDR1

Address Space Register 3
ASR (64) SPR 280

Exception Handling Registers

Data Address Register

SPRGs
SPRGO (64/32) SPR 272
SPRG1 (64/32) SPR 273
SPRG2 (64/32) SPR 274
SPRG3 (64/32) SPR 275

Miscellaneous Registers

Time Base Facility 1

(For Writing)
TBL (32) SPR 284
TBU (32) SPR 285
Decrementer

Processor Identification
Register (Optional)

SPR 1023

~

Processor Version Register *
(Read Only)

Data BAT Registers
DBATOU (64/32) SPR 536
DBATOL (64/32) | SPR 537
DBAT1U (64/32) | SPR 538
DBAT1L (64/32) | SPR 539
DBAT2U (64/32) | SPR 540
DBAT2L (64/32) | SPR 541
DBAT3U (64/32) SPR 542
DBAT3L (64/32) | SPR 543
Segment Registers 12
SRO (32)
SR1 (32)
[ ]
[ ]
[ )
SR31 (32)
DSISR !

Save and Restore Registers
SRRO (64/32) SPR 26
SRR1 (64/32) SPR 27

Floating-Point Exception
Cause Register (Optional)

FPECR SPR 1022

Data Address Breakpoint
Register (Optional)

SPR 1013

DABR (64/32)

External Access Register

—~
O
©
=
o
>
R
=
N

EAR (32) SPR 282

)

1 These registers are 32-bit registers only.

2 These registers are on 32-bit implementations only.
3 These registers are on 64-bit implementations only.
4 |n 64-bit implementations, TBR268 is read as a 64-bit value.

Figure 2-11. OEA Programming Model—All Registers
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A description of the OEA supervisor-level registersfollows:
» Configuration registers

— Machine state register (MSR). The M SR defines the state of the processor. The
M SR can be modified by the Move to Machine State Register (mtmsr), System
Call (sc), and Return from Interrupt (rfi) instructions. It can be read by the Move
from Machine State Register (mfmsr) instruction. For more information, see
Section 2.3.1, “Machine State Register (MSR).”

— Processor version register (PVR). This register is aread-only register that
identifies the version (model) and revision level of the processor. For more
information, see Section 2.3.2, “Processor Version Register (PVR).”

* Memory management registers

— Block-address trandation (BAT) registers. The OEA defines four pairs of
instruction BATs (IBATOU-IBAT3U and IBATOL—-BAT3L) and four pairs of
data BATs (DBATOU-DBAT3U and DBATOL-DBAT3L). Figure 2-11 shows
SPR numbers for BAT registers. See Section 2.3.3, “BAT Registers,” for more
information.

— SDRI1. The SDR1 register specifies the page table base address used in
virtual-to-physical addresstranslation. For more information, see Section 2.3.4,
“SDR1.” (Note that physical addressisreferred to asreal addressin the
architecture specification.)

— Segment registers (SR). The OEA defines sixteen 32-bit segment registers
(SRO-SR15). Note that the SRs are implemented on 32-bit implementations
only. The fieldsin the segment register are interpreted differently depending on
thevalue of bit 0. For moreinformation, see Section 2.3.5, “ Segment Registers.”

» Exception handling registers

— Data addressregister (DAR). After aDSI or an aignment exception, DAR is set
to the effective address generated by the faulting instruction. For more
information, see Section 2.3.6, “Data Address Register (DAR).”

— SPRGO-SPRG3. The SPRGO-SPRG3 registers are provided for operating
system use. For more information, see Section 2.3.7, “ SPRGO-SPRG3.”

— DSISR. The DSISR definesthe cause of DS and alignment exceptions. For more
information, refer to Section 2.3.8, “DSISR.”

— Machine status savelrestore register 0 (SRR0). The SRRO register isused to save
machine status on exceptions and to restore machine status when an rfi
instruction is executed. For more information, see Section 2.3.9, “Machine
Status Save/Restore Register 0 (SRR0).”

— Machine status savelrestoreregister 1 (SRR1). The SRR1 register isused to save
machine status on exceptions and to restore machine status when an rfi
instruction is executed. For more information, see Section 2.3.10, “Machine
Status Save/Restore Register 1 (SRR1).”
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— Floating-point exception cause register (FPECR). This optional register isused
to identify the cause of a floating-point exception.

* Miscellaneous registers

— Time base (TB). The TB is a 64-hit structure that maintains the time of day and
operates interval timers. The TB consists of two 32-bit registers—time base
upper (TBU) and time baselower (TBL). Note that the time base registers can be
accessed by both user- and supervisor-level instructions. For more information,
see Section 2.3.12, “ Time Base Facility (TB)—OEA,” and Section 2.2, “VEA
Register Set—Time Base.”

— Decrementer register (DEC). Thisregister isa 32-bit decrementing counter that
provides a mechanism for causing a decrementer exception after a
programmable delay; the frequency is a subdivision of the processor clock. For
more information, see Section 2.3.13, “Decrementer Register (DEC).”

— External accessregister (EAR). Thisoptional register isused in conjunction with
the eciwx and ecowx instructions. Note that the EAR register and the eciwx and
ecowx instructions are optional in the architecture and may not be supported in
all processorsthat implement the OEA. For more information about the external
control facility, see Section 4.3.4, “External Control Instructions.”

— Data address breakpoint register (DABR). This optional register is used to
control the data address breakpoint facility. Note that the DABR is optional in
the architecture and may not be supported in al processors that implement the
OEA. For more information about the data address breakpoint facility, see
Section 6.4.3, “DSI Exception (0x00300).”

— Processor identification register (PIR). This optional register is used to hold a
valuethat distinguishesan individual processor in amultiprocessor environment.

2.3.1 Machine State Register (MSR)

Themachine state register (MSR) isa64-bit register on 64-bit implementations and a 32-bit
register in 32-bit implementations (see Figure 2-12). The MSR defines the state of the
processor. When an exception occurs, MSR bits, as described in Table 2-8, are altered as
determined by the exception. The MSR can also be modified by the mtmsr, sc, and rfi
instructions. It can be read by the mfmsr instruction.

|:| Reserved

0000 0000 0000 O POW O | ILE|EE/PR FAMEFEQSE|BE|FE] 0 | IP|IRDR| 00 (RI [LE
0 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26272829 30 31

Figure 2-12. Machine State Register (MSR)

Table 2-9 shows the bit definitions for the MSR.
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Table 2-9. MSR Bit Settings

Bits

Name

Description

0-12

Reserved

13

POW

Power management enable

0 Power management disabled (normal operation mode)

1 Power management enabled (reduced power mode)

Note: Power management functions are implementation-dependent. If the function is
not implemented, this bit is treated as reserved.

14

Reserved

15

ILE

Exception little-endian mode. When an exception occurs, this bit is copied into
MSRJLE] to select the endian mode for the context established by the exception.

16

EE

External interrupt enable

0 While the bit is cleared, the processor delays recognition of external interrupts and
decrementer exception conditions.

1 The processor is enabled to take an external interrupt or the decrementer
exception.

17

PR

Privilege level
0 The processor can execute both user- and supervisor-level instructions.
1 The processor can only execute user-level instructions.

18

FP

Floating-point available

0 The processor prevents dispatch of floating-point instructions, including
floating-point loads, stores, and moves.

1 The processor can execute floating-point instructions.

19

ME

Machine check enable
0 Machine check exceptions are disabled.
1 Machine check exceptions are enabled.

20

FEO

Floating-point exception mode 0 (see Table 2-10).

21

SE

Single-step trace enable (Optional)

0 The processor executes instructions normally.

1 The processor generates a single-step trace exception upon the successful
execution of the next instruction.

Note: If the function is not implemented, this bit is treated as reserved.

22

BE

Branch trace enable (Optional)

0 The processor executes branch instructions normally.

1 The processor generates a branch trace exception after completing the execution
of a branch instruction, regardless of whether the branch was taken.

Note: If the function is not implemented, this bit is treated as reserved.

23

FE1

Floating-point exception mode 1 (See Table 2-10).

24

Reserved

25

Exception prefix. The setting of this bit specifies whether an exception vector offset is

prepended with Fs or 0s. In the following description, nnnnn is the offset of the

exception vector. See Table 6-2.

0 Exceptions are vectored to the physical address 0x000n_nnnn in 32-bit
implementations and 0x0000_0000_000n_nnnn in 64-bit implementations.

1 Exceptions are vectored to the physical address OxFFFn_nnnn in 32-bit
implementations and 0x0000_0000_FFFn_nnnn in 64-bit implementations.

In most systems, IP is set during system initialization and then cleared when

initialization is complete.

MOTOROLA

Chapter 2. Register Set

2-21



OEA Register Set

Table 2-9. MSR Bit Settings (continued)

Bits

Name

Description

26

Instruction address translation

0 Instruction address translation is disabled.

1 Instruction address translation is enabled.

For more information, see Chapter 7, “Memory Management.”

27

DR

Data address translation

0 Data address translation is disabled.

1 Data address translation is enabled.

For more information, see Chapter 7, “Memory Management.”

28-29

Reserved

30

RI

Recoverable exception (for system reset and machine check exceptions).
0 Exception is not recoverable.

1 Exception is recoverable.

For more information, see Chapter 6, “Exceptions.”

31

LE

Little-endian mode enable
0 The processor runs in big-endian mode.
1 The processor runs in little-endian mode.

The floating-point exception mode bits (FEO-FEL) are interpreted as shown in Table 2-10.

Table 2-10. Floating-Point Exception Mode Bits

FEO | FE1 Mode
0 0 |Floating-point exceptions disabled
0 1 | Floating-point imprecise nonrecoverable
1 0 |Floating-point imprecise recoverable
1 1 | Floating-point precise mode

Table 2-11 indicates the initia state of the MSR at power up.

2-22

Table 2-11. State of MSR at Power Up

Bits Name 32-Bit Default Value
0-12 — Unspecified 1
13 POW |0
14 — Unspecifiedl
15 ILE 0
16 EE 0
17 PR 0
18 FP 0
19 ME 0
20 FEO 0
21 SE 0

Programming Environments Manual for 32-Bit Microprocessors
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Table 2-11. State of MSR at Power Up

Bits Name | 32-Bit Default Value
22 BE 0
23 FE1 0
24 — Unspecified!
25 IP 12
26 IR 0
27 DR 0
28-29 — Unspecified
30 RI 0
31 LE 0

1 Unspecified can be either 0 or 1
2 1 s typical, but might be 0

2.3.2 Processor Version Register (PVR)

The processor version register (PVR) is a 32-bit, read-only register that contains a value
identifying the specific version (model) and revision level of the processor. The contents of
the PVR can be copied to a GPR by the mfspr instruction. Read access to the PVR is
supervisor-level only; write accessis not provided.

Version Revision

0 15 16 31
Figure 2-13. Processor Version Register (PVR)

The PVR consists of two 16-bit fields, described in Table 2-12.
Table 2-12. PVR Field Descriptions

Bits Name Description

0-15 | Version | A 16-bit number that uniquely identifies a particular processor version. This number can be used
to determine the version of a processor; it may not distinguish between different end product
models if more than one model uses the same processor.

16-31 | Revision | A 16-bit number that distinguishes between various releases of a particular version (that is, an
engineering change level). The value of the revision portion of the PVR is implementation-specific.
The processor revision level is changed for each revision of the device.

2.3.3 BAT Registers

The BAT registers (BATs) maintain the address translation information for eight blocks of
memory. The BATs are maintained by the system software and are implemented as eight
pairs of specia-purpose registers (SPRs). Each block is defined by a pair of SPRs called
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upper and lower BAT registers. These BAT registers define the starting addresses and sizes
of BAT areas.

The OEA defines eight instruction block-address translation (IBAT) registers, consisting of
four pairs of instruction BATs (IBATOU-IBAT3U and IBATOL—BAT3L) and eight data
BATs (DBATOU-DBAT3U and DBATOL-DBATS3L). Figure 2-11 lists SPR numbers for
BAT registers.

Figure 2-14 and Figure 2-15 show the format of the upper and lower BATSs for 32-bit
processors.

[ ] Reserved
BEPI 0 000 BL Vs|Vp
0 14 15 18 19 29 30 31
Figure 2-14. Upper BAT Register
[ ] Reserved
BRPN 0 0000 0000 O WIMG* 0 PP
0 14 15 24 25 28 29 30 31

*W and G bits are not defined for IBAT registers. Attempting to write to these bits causes boundedly-undefined results.

Figure 2-15. Lower BAT Register

Figure 2-13 describes the bitsin the BAT registers.
Table 2-14. BAT Registers—Field and Bit Descriptions

Upper/Lower . .
BAT Bits Name Description
Upper BAT 0-14 BEPI | Block effective page index. This field is compared with high-order bits of the
Register logical address to determine if there is a hit in that BAT array entry. (Note that
the architecture specification refers to logical address as effective address.)
15-18 — Reserved
19-29 BL Block length. BL is a mask that encodes the size of the block. Values for this

field are listed in Table 2-15.

30 Vs Supervisor mode valid bit. This bit interacts with MSR[PR] to determine if
there is a match with the logical address. For more information, see
Section 7.5.2, “Recognition of Addresses in BAT Arrays."

31 Vp User mode valid bit. This bit also interacts with MSR[PR] to determine if there
is a match with the logical address. For more information, see Section 7.5.2,
“Recognition of Addresses in BAT Arrays.”
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Table 2-14. BAT Registers—Field and Bit Descriptions (continued)

Upper/Lower . .
BAT Bits Name Description
Lower BAT 0-14 BRPN | This field is used in conjunction with the BL field to generate high-order bits
Register of the physical address of the block.
15-24 — Reserved

25-28 WIMG | Memory/cache access mode bits

W Write-through

| Caching-inhibited

MMemory coherence

G Guarded

Attempting to write to the W and G bits in IBAT registers causes
boundedly-undefined results. For detailed information about the WIMG bits,
see Section 5.3.1, “Memory/Cache Access Attributes."

29 — Reserved

30-31 PP Protection bits for block. This field determines the protection for the block as
described in Section 7.5.4, “Block Memory Protection."

Figure 2-15 lists the BAT area lengths encoded in BAT[BL].
Table 2-15. BAT Area Lengths

BAT Area Length BL Encoding
128 Kbytes 000 0000 0000
256 Kbytes 000 0000 0001
512 Kbytes 000 0000 0011

1 Mbyte 000 0000 0111
2 Mbytes 000 0000 1111
4 Mbytes 000 0001 1111
8 Mbytes 000 0011 1111
16 Mbytes 000 0111 1111
32 Mbytes 000 1111 1111
64 Mbytes 001 1111 1111

128 Mbytes 01111111111
256 Mbytes 11111111111

Only the values in Table 2-15 are valid for the BL field. The rightmost BL bit is aligned
with bit 14 of the logical address. A logical address is determined to be within a BAT area
if the logical address matches the value in the BEPI field.

The boundary between the cleared bits and set bits in BL determines the bits of logical
address that participate in the comparison with BEPI. Bits in the logical address
corresponding to set bitsin BL are cleared for this comparison. Bitsin the logical address
corresponding to set bitsin the BL field, concatenated with the 17 bits of thelogical address
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to the right (less significant bits) of BL, form the offset within the BAT area. This is
described in detail in Chapter 7, “Memory Management.”

The value loaded into BL determines both the length of the BAT area and the alignment of
the areain both logical and physical address space. The values|oaded into BEPI and BRPN
must have at least as many low-order zeros as there are onesin BL.

Use of BAT registersis described in Chapter 7, “Memory Management.”

2.3.4 SDR1

The SDRL1 is a 64-bit register in 64-bit implementations and a 32-bit register in 32-bit
implementations. The 32-bit implementation of SDR1 is shown in Figure 2-16.

|:| Reserved
HTABORG 0000 000 HTABMASK
0 15 16 22 23 31
Figure 2-16. SDR1
The bits of the 32-bit implementation of SDR1 are described in Table 2-16.
Table 2-16. SDR1 Bit Settings
Bits Name Description
0-15 HTABORG The high-order 16 bits of the 32-bit physical address of the page table
16-22 — Reserved
23-31 HTABMASK | Mask for page table address

In 32-bit implementations, the HTABORG field in SDR1 contains the high-order 16 bits of
the 32-bit physical address of the page table. Therefore, the page tableis constrained to lie
on a 216-byte (64 Kbytes) boundary at a minimum. At least 10 bits from the hash function
are used to index into the page table. The page table must consist of at least 64 Kbytes (210
PTEGs of 64 bytes each).

The page table can be any size 2" where 16 < n < 25. As the table size is increased, more
bits are used from the hash to index into the table and the value in HTABORG must have
more of itslow-order bitsequal to 0. TheHTABMASK field in SDR1 containsamask value
that determines how many bits from the hash are used in the page table index. This mask
must be of the form 0b00...011...1; that is, a string of O bits followed by a string of 1bits.
The 1 bits determine how many additional bits (at least 10) from the hash are used in the
index; HTABORG must have this same number of low-order bits equal to O.

For example, suppose that the page table is 8,192 (213), 64-byte PTEGs, for atotal size of
219 pytes (512 Kbytes). Note that a 13-bit index is required. Ten bits are provided from the
hash initially, so 3 additional bits form the hash must be selected. The value in
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HTABMASK must be 0x007 and the value in HTABORG must have its low-order 3 bits
(bits 1315 of SDR1) equal to 0. This means that the page table must begin on a
23+10+6 = 219 = 572 K bytes boundary.

For more information, refer to Chapter 7, “Memory Management.”

2.3.5 Segment Registers

The segment registers contain the segment descriptors for 32-bit implementations. For
32-bit processors, the OEA defines a segment register file of sixteen 32-bit registers.
Segment registers can be accessed by using the mtsr/mfsr and mtsrin/mfsrin instructions.
The value of bit O, the T bit, determines how the remaining register bits are interpreted.
Figure 2-17 shows the format of a segment register when T = 0.

[ ] Reserved
T |Ks|Kp| N 0000 VSID
0O 1 2 3 4 78 31
Figure 2-17. Segment Register Format (T = 0)
Segment register bit settingswhen T = 0 are described in Table 2-17.
Table 2-17. Segment Register Bit Settings (T =0)
Bits Name Description
0 T T = 0 selects this format
1 Ks Supervisor-state protection key
2 Kp User-state protection key
3 N No-execute protection
4-7 — Reserved
8-31 VSID Virtual segment ID
Figure 2-18 shows the bit definition when T = 1.
T | Ks|Kp BUID Controller-Specific Information
0o 1 2 3 11 12 31

Figure 2-18. Segment Register Format (T = 1)

The bitsin the segment register when T = 1 are described in Table 2-18.
Table 2-18. Segment Register Bit Settings (T = 1)

Bits Name Description
0 T T = 1 selects this format.
1 Ks Supervisor-state protection key
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Table 2-18. Segment Register Bit Settings (T = 1) (continued)

Bits Name Description
2 Kp User-state protection key
3-11 BUID Bus unit ID

12-31 CNTLR_SPEC | Device-specific data for 1/0 controller

If an access is trandated by the block address trandation (BAT) mechanism, the BAT
trandation takes precedence and the results of tranglation using segment registers are not
used. However, if an access is not translated by a BAT, and T = 0 in the selected segment
register, the effective address is areference to a memory-mapped segment. In this case, the
52-bit virtual address (VA) isformed by concatenating the following:

* The 24-bit VSID field from the segment register
* The 16-bit page index, EA[4-19]
* The 12-bit byte offset, EA[20-31]

The VA is then trandated to a physical address as described in Section 7.6, “Memory
Segment Model

If T =1 in the selected segment register (and the access is not translated by a BAT), the
effective addressis areference to adirect-store segment, defined by the architecture but not
supported. No reference is made to the page tables.

2.3.6 Data Address Register (DAR)

The DAR is a 64-bit register in 64-bit implementations and a 32-bit register in 32-bit
implementations. The DAR is shown in Figure 2-19.

DAR

Figure 2-19. Data Address Register (DAR)

The effective address generated by a memory accessinstruction isplaced in the DAR if the
access causes an exception (for example, an aignment exception). For information, see
Chapter 6, “ Exceptions.”

2.3.7 SPRGO-SPRG3

SPRGO-SPRG3 are 64-hit or 32-bit registers, depending on the type of processor. They are
provided for general operating system use, such as performing a fast state save or for
supporting multiprocessor implementations. The formats of SPRGO-SPRG3 are shown in
Figure 2-20.
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SPRGO

SPRG1

SPRG2

SPRG3
Figure 2-20. SPRGO-SPRG3

Table 2-19 describes typical uses of SPRGO through SPRG3.
Table 2-19. Conventional Uses of SPRG0O-SPRG3

Register Description

SPRGO | Software may load a unique physical address in this register to identify an area of memory reserved for
use by the first-level exception handler. This area must be unique for each processor in the system.

SPRG1 | SPRG1 may be used as a scratch register by the first-level exception handler to save the content of a GPR.
That GPR then can be loaded from SPRGO and used as a base register to save other GPRs to memory.

SPRG2 | SPRG2 may be used by the operating system as needed.

SPRG3 | SPRG3 may be used by the operating system as needed.

2.3.8 DSISR

The DSISR, shown in Figure 2-21, identifies the cause of DS| and alignment exceptions.
DSISR

0 31

Figure 2-21. DSISR

For information about bit settings, see Section 6.4.3, “DS| Exception (0x00300),” and
Section 6.4.6, “Alignment Exception (0x00600).”
2.3.9 Machine Status Save/Restore Register 0 (SRRO)

The SRRO is used to save machine status on exceptions and restore machine status when an
rfi instruction is executed. It also holds the EA for the instruction that follows the System
Call (sc) instruction. The format of SRRO is shown in Figure 2-22.

|:| Reserved

SRRO 00

0 29 30 31
Figure 2-22. Machine Status Save/Restore Register 0 (SRRO)

When an exception occurs, SRRO is set to point to an instruction such that all prior
Instructions have completed execution and no subsequent instruction has begun execution.
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When an rfi instruction is executed, the contents of SRRO are copied to the next instruction
address (NIA)—the 64- or 32-bit address of the next instruction to be executed. The
instruction addressed by SRRO may not have completed execution, depending on the
exception type. SRRO addresses either the instruction causing the exception or the
immediately following instruction. The instruction addressed can be determined from the
exception type and status bits.

Note that in some implementations, every instruction fetch performed while MSR[IR] = 1,
and every instruction execution requiring address translation when MSR[DR] = 1, may
modify SRRO.

For information on how specific exceptions affect SRRO, refer to the descriptions of
individual exceptionsin Chapter 6, “ Exceptions.”

2.3.10 Machine Status Save/Restore Register 1 (SRR1)

The SRR1 is a 64-bit register in 64-bit implementations and a 32-bit register in 32-bit
implementations. SRR1 is used to save machine status on exceptions and to restore
machine status when an rfi instruction is executed. Figure 2-23 shows the SRR1 format.

SRR1

Figure 2-23. Machine Status Save/Restore Register 1 (SRR1)

When an exception occurs, SRR1[1-4,10-15] are loaded with exception-specific
information and MSR[16-23,25-27,30-31] are placed in corresponding SRR1 bit
positions. When rfi executes, MSR[16-23,25-27,30-31] are loaded from
SRR1[16-23,25-27,30-31].

The remaining bits of SRR1 are defined as reserved. An implementation may define one or
more of these bits, and in this case, may also cause them to be saved from MSR on an
exception and restored to MSR from SRR1 on an rfi.

Note that, in some implementations, every instruction fetch when MSR[IR] = 1, and every
Instruction execution requiring addresstranslation when MSR[DR] = 1, may modify SRRL1.

For information on how specific exceptions affect SRR1, refer to the individual exceptions
in Chapter 6, “Exceptions.”

2.3.11 Floating-Point Exception Cause Register (FPECR)

FPECR may be used to identify the cause of a floating-point exception. Note that the
FPECR is an optional register in the architecture and may be implemented differently (or
not at all) in the design of each processor. The user’s manual of a specific processor will
describe the functionality of the FPECR, if it isimplemented in that processor.
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2.3.12 Time Base Facility (TB)—OEA

Asdescribed in Section 2.2, “VEA Register Set—Time Base,” the time base (TB) provides
along-period counter driven by an implementation-dependent frequency. The VEA defines
user-level read-only access to the TB. Writing to the TB is reserved for supervisor-level
applications such as operating systems and boot-strap routines. The OEA defines
supervisor-level, write access to the TB.

The TB is a volatile resource and must be initialized during reset. Some implementations
may initialize the TB with a known value; however, there is no guarantee of automatic
initialization of the TB when the processor is reset. The TB runs continuously at start-up.

For more information on the user-level aspects of the time base, refer to Section 2.2, “VEA
Register Set—Time Base”

2.3.12.1 Writing to the Time Base
Note that writing to the TB isreserved for supervisor-level software.

The simplified mnemonics, mttbl and mttbu, write the lower and upper halves of the TB,
respectively. The simplified mnemonics listed above are for the mtspr instruction; see
Appendix F, “ Simplified Mnemonics.” Themtspr, mttbl, and mttbu instructionstreat TBL
and TBU as separate 32-bit registers; setting one leaves the other unchanged. It is not
possible to write the entire 64-bit time base in a single instruction.

The instructions for writing the time base are not dependent on the implementation or
mode. Thus, code written to set the TB on a 32-bit implementation will work correctly on
a 64-bit implementation running in either 64- or 32-bit mode.

The TB can be written by a sequence such as the following:

| wz rx, upper #l oad 64-bit value for
| wz ry, | oner # TBinto rx and ry

[i rz,0

ntt bl rz #force TBL to O

ntbu rx #set TBU

mtbl ry #set TBL

Provided that no exceptions occur while the last three instructions are being executed,
loading O into TBL preventsthe possibility of acarry from TBL to TBU whilethetime base
Isbeing initialized.

For information on reading the time base, refer to Section 2.2.1, “Reading the Time Base.”

2.3.13 Decrementer Register (DEC)

The decrementer register (DEC), shown in Figure 2-24, is a 32-bit decrementing counter
that provides a mechanism for causing a decrementer exception after a programmable
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delay. The DEC frequency is based on the same implementation-dependent frequency that
drives the time base.

DEC

Figure 2-24. Decrementer Register (DEC)

2.3.13.1 Decrementer Operation

The DEC counts down, causing an exception (unless masked by MSR[EE]) when it passes
through zero. The DEC satisfies the following reguirements:

» The operation of the time base and the DEC are coherent (that is, the counters are
driven by the same fundamental time base).

» Loading a GPR from the DEC has no effect on the DEC.

» Storing the contents of a GPR to the DEC replaces the value in the DEC with the
value in the GPR.

*  Whenever bit 0 of the DEC changesfrom 0 to 1, a decrementer exception request is
signaled. Multiple DEC exception requests may be received before the first
exception occurs; however, any additional requests are canceled when the exception
occurs for the first request.

» If the DEC isaltered by software and the content of bit O ischanged fromOto 1, an
exception request is signaled.

2.3.13.2 Writing and Reading the DEC

The content of the DEC can be read or written using the mfspr and mtspr instructions, both
of which are supervisor-level when they refer to the DEC. Using asimplified mnemonic for
the mtspr instruction, the DEC may be written from GPR r A with the following:

nt dec rA

Using asimplified mnemonic for the mfspr instruction, the DEC may beread into GPRrA
with the following:

nf dec rA

2.3.14 Data Address Breakpoint Register (DABR)

The optional data address breakpoint facility is controlled by an optional SPR, the DABR.
The DABR is a 64-hit register in 64-bit implementations and a 32-bit register in 32-bit
implementations. The data address breakpoint facility is optional to the architecture.
However, if the data address breakpoint facility isimplemented, it isrecommended, but not
required, that it be implemented as described in this section.
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The data address breakpoint facility provides a means to detect accesses to a designated
double word. The address comparison is done on an effective address, and it appliesto data
accesses only. It does not apply to instruction fetches.

The DABR is shown in Figure 2-25.

DAB BT|DW|DR

0 28 29 30 31

Figure 2-25. Data Address Breakpoint Register (DABR)

Table 2-20 describes the fields in the DABR.
Table 2-20. DABR—BIt Settings

Bits Name Description
0-28 DAB Data address breakpoint

29 BT Breakpoint translation enable

30 DW Data write enable

31 DR Data read enable

A data address breakpoint match is detected for a load or store instruction if the three
following conditions are met for any byte accessed:

» EA[0-28] = DABR[DAB]

« MSR[DR] = DABR[BT]

* Theinstruction isastore and DABR[DW] = 1, or the instruction isaload and

DABR[DR] = 1.

Even if the above conditions are satisfied, it is undefined whether a match occurs in the
following cases:

* A storestring instruction (stwcx.) in which the store is not performed

* A load or store string instruction (Iswx or stswx) with a zero length

* A dcbz, dcba, eciwx, or ecowx instruction. For the purpose of determining whether
amatch occurs, eciwx istreated asaload, and dcbz, dcba, and ecowx are treated as
stores.

The cache management instructions other than dcbz and dcba never cause amatch. If dcbz
or dcba causesamatch, some or all of the target memory locations may have been updated.

A match generatesa DSl exception. Section 6.4.3, “DSI Exception (0x00300),” gives more
information on the data address breakpoint facility.
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2.3.15 External Access Register (EAR)

The EAR isan optional 32-bit SPR that controls access to the external control facility and
identifies the target device for external control operations. The external control facility
provides a means for user-level instructions to communicate with special external devices.
The EAR is shown in Figure 2-26.

|:| Reserved

E 000 0000 0000 0000 0000 0000 00 RID

01 25 26 31
Figure 2-26. External Access Register (EAR)

The high-order bits of the resource ID (RID) field beyond the width of the RID supported
by a particular implementation are treated as reserved bits.

The EAR register is provided to support the External Control In Word Indexed (eciwx) and
External Control Out Word Indexed (ecowx) instructions, which are described in Chapter 8,
“Instruction Set.” Although accessto the EAR is supervisor-level, the operating system can
determine which tasks are allowed to issue external access instructions and when they are
allowed to do so. EAR hit settings described in Table 2-21. Interpretation of the physical
address transmitted by the eciwx and ecowx instructions and the 32-bit value transmitted
by the ecowx instruction is not prescribed by the OEA but is determined by the target
device. The data access of eciwx and ecowx is performed as though the memory access
mode bits (WIMG) were 0101.

For example, if the external control facility supports a graphics adapter, ecowx could be
used to send the translated physical address of a buffer containing graphics data to the
graphics device; eciwx could be used to load status information from the graphics adapter.

Table 2-21. External Access Register (EAR) Bit Settings

Bits | Name Description

0 E |Enable bit
0 Disabled. eciwx or ecowx causes a DSI exception.
1 Enabled. eciwx and ecowx can perform the specified external operation.

1-25 — | Reserved

26-31| RID |Resource ID

EAR can be accessed by using the mtspr and mfspr. Table 2-23 and Table 2-24 show EAR
synchronization requirements.
2.3.16 Processor Identification Register (PIR)

The optional, 32-bit processor identification register (PIR) is a read-only register that
contains a value that can be used to distinguish the processor from other processors in the
system. The contents of the PIR can be copied to a GPR by the mfspr instruction.
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Read access to the PIR is privileged; write access, if provided, is implementation
dependent.

PROCID

Figure 2-27. Processor Identification Register

Table 2-22. PID Field Description

Bits | Name | Description

0-31 | PROCID | Processor ID

2.3.17 Synchronization Requirements for Special Registers
and for Lookaside Buffers

Changing the value in certain system registers, and invalidating TLB entries, can cause
ateration of the context in which data addresses and instruction addresses are interpreted,
and in which instructions are executed. An instruction that alters the context in which data
addresses or instruction addresses are interpreted, or in which instructions are executed, is
caled a context-altering instruction. The context synchronization required for
context-altering instructions is shown in Table 2-23 for data access and Table 2-24 for
instruction fetch and execution.

A context-synchronizing exception (that is, any exception except nonrecoverable system
reset or nonrecoverable machine check) can be used instead of a context-synchronizing
instruction. In the tables, if no software synchronization is required before (after) a
context-altering instruction, the synchronizing instruction before (after) the
context-altering instruction should be interpreted as meaning the context-altering
instruction itself.

A synchronizing instruction before the context-altering instruction ensures that all
instructions up to and including that synchronizing instruction are fetched and executed in
the context that existed before the ateration. A synchronizing instruction after the
context-altering instruction ensures that all instructions after that synchronizing instruction
are fetched and executed in the context established by the alteration. Instructions after the
first synchronizing instruction, up to and including the second synchronizing instruction,
may be fetched or executed in either context.

If an instruction sequence alters the context but contains no instructions affected the
aterations, no software synchronization is required within the sequence.

Note that some instructions that occur naturally in the program, such astherfi at the end of
an exception handler, provide the required synchronization.

No software synchronization is needed before altering the MSR (except when altering
MSR[POW] or MSR[LE]; see Table 2-23 and Table 2-24), because mtmsr is execution
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synchronizing. No software synchronization isrequired before most of the other alterations
shown in Table 2-24, because instructions before the context-altering instruction are
fetched and decoded before the context-altering instruction is executed (the processor must
determine whether any of the preceding instructions are context synchronizing). Table 2-23
provides information on data access synchronization requirements.

Table 2-23. Data Access Synchronization

Instruction/Event Required Prior Required After
Exception 1 None None
rfi 1 None None
scl None None
Trap ! None None
mtmsr (ILE) None None
mtmsr (PR) None Context-synchronizing instruction
mtmsr (ME) 2 None Context-synchronizing instruction
mtmsr (DR) None Context-synchronizing instruction

mtmsr (LE) 3 — —

mtsr [or mtsrin] Context-synchronizing instruction Context-synchronizing instruction
mtspr (SDR1) % 5 sync Context-synchronizing instruction
mtspr (DBAT) Context-synchronizing instruction Context-synchronizing instruction

mtspr (DABR) & — _

mtspr (EAR) Context-synchronizing instruction Context-synchronizing instruction
tlhie 7 8 Context-synchronizing instruction Context-synchronizing instruction or sync
tlbia "+ 8 Context-synchronizing instruction Context-synchronizing instruction or sync

1
2

Synchronization requirements for changing the power conserving mode are implementation-dependent.

A context synchronizing instruction is required after modification of the MSR[ME] bit to ensure that the modification
takes effect for subsequent machine check exceptions, which may not be recoverable and therefore may not be
context synchronizing.

Synchronization requirements for changing from one endian mode to the other are implementation-dependent.
SDR1 must not be altered when MSR[DR] = 1 or MSR[IR] = 1, if it is, the results are undefined.

A sync instruction is required before the mtspr instruction because SDR1 identifies the page table and thereby the
location of the referenced and changed (R and C) bits. To ensure that R and C bits are updated in the correct page
table, SDR1 must not be altered until all R and C bit updates due to instructions before the mtspr have completed. A
sync instruction guarantees this synchronization of R and C bit updates, while neither a context synchronizing
operation nor the instruction fetching mechanism does so.

Synchronization requirements for changing the DABR are implementation-dependent.

For data accesses, the context synchronizing instruction before the tibie, or tlbia instruction ensures that all memory
accesses, due to preceding instructions, have completed to a point at which they have reported all exceptions that
may be caused. The context synchronizing instruction after the tlbie, or tibia ensures that subsequent memory
accesses will not use the TLB entry(s) being invalidated. It does not ensure that all memory accesses previously
translated by the TLB entry(s) being invalidated have completed with respect to memory or, for tibie or tlbia, that R
and C bit updates associated with those memory accesses have completed; if these completions must be ensured,
the tlbie, or tibia must be followed by a sync instruction rather than by a context synchronizing instruction.

Multiprocessor systems have other requirements to synchronize TLB invalidate.
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For information on instruction access synchronization requirements, see Table 2-24.

Table 2-24. Instruction Access Synchronization

Instruction/Event Required Prior Required After
Exception 1 None None
rfi 1 None None
scl None None
Trap 1 None None

mtmsr (POW) 1 — —

mtmsr (ILE) None None
mtmsr (EE) 2 None None
mtmsr (PR) None Context-synchronizing instruction
mtmsr (FP) None Context-synchronizing instruction
mtmsr (ME) 3 None Context-synchronizing instruction
mtmsr (FEO, FE1) None Context-synchronizing instruction
mtmsr (SE, BE) None Context-synchronizing instruction
mtmsr (IP) None None
mtmsr (IR) 4 None Context-synchronizing instruction
mtmsr (RI) None None

mtmsr (LE) ° — —

mtsr [or mtsrin] 4 None Context-synchronizing instruction

mtspr (SDR1) & 7 sync Context-synchronizing instruction

mtspr (IBAT) 4 None Context-synchronizing instruction

mtspr (DEC) 8 None None

tlbie 9 10 None Context-synchronizing instruction or sync
tlbia 9 10 None Context-synchronizing instruction or sync

1
2

Synchronization requirements for changing the power conserving mode are implementation-dependent.
The effect of altering the EE bit is immediate as follows:

If an mtmsr clears EE, neither an external interrupt nor a decrementer exception can occur after the instruction is
executed.

If an mtmsr sets EE, when an external interrupt, decrementer exception, or higher priority exception exists, the
corresponding exception occurs immediately after the mtmsr is executed, and before the next instruction is executed
in the program that set MSR[EE].

A context synchronizing instruction is required after modification of MSR[ME] to ensure that the modification takes
effect for subsequent machine check exceptions, which may not be recoverable and therefore may not be context
synchronizing.

The alteration must not cause an implicit branch in physical address space. The physical address of the
context-altering instruction and of each subsequent instruction, up to and including the next context synchronizing
instruction, must be independent of whether the alteration has taken effect.

Synchronization requirements for changing from one endian mode to the other are implementation-dependent.
SDR1 must not be altered when MSR[DR] = 1 or MSR[IR] = 1; if it is, the results are undefined.
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7 A sync instruction is required before the mtspr instruction because SDR1 identifies the page table and thereby the
location of the referenced and changed (R and C) bits. To ensure that R and C bits are updated in the correct page
table, SDR1 must not be altered until all R and C bit updates due to instructions before the mtspr have completed.
A sync instruction guarantees this synchronization of R and C bit updates, while neither a context synchronizing
operation nor the instruction fetching mechanism does so.

The elapsed time between the content of the decrementer becoming negative and the signaling of the decrementer
exception is not defined.

For data accesses, the context synchronizing instruction before the tlbie, or tibia instruction ensures that all memory
accesses, due to preceding instructions, have completed to a point at which they have reported all exceptions that
may be caused. The context synchronizing instruction after the tlbie, or tibia ensures that subsequent memory
accesses will not use the TLB entry(s) being invalidated. It does not ensure that all memory accesses previously
translated by the TLB entry(s) being invalidated have completed with respect to memory or, for tlbie or tlbia, that R
and C bit updates associated with those memory accesses have completed; if these completions must be ensured,
the tlbie, or tlbia must be followed by a sync instruction rather than by a context synchronizing instruction.

10 Multiprocessor systems have other requirements to synchronize TLB invalidate.
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Chapter 3
Operand Conventions

This chapter describes the operand conventions as they are represented in the user
instruction set architecture (UISA) and virtual environment architecture (VEA). Detailed
descriptions are provided of conventions used for storing values in registers and memory,
accessing registers and representing data in these registers in both big- and little-endian
modes. The floating-point data formats and exception conditions are also described. Refer
to Appendix D, “Floating-Point Models,” for more information on the implementation of
the | EEE floating-point execution models.

3.1 Data Organization in Memory and Data Transfers

Bytesin memory are numbered consecutively starting with 0. Each number is the address
of the corresponding byte. Memory operands may be bytes, half words, words, or double
words, or, for the load and store multiple and the load and store string instructions, a
sequence of bytes or words. The address of amemory operand isthe address of itsfirst byte
(that is, its lowest-numbered byte). Operand length isimplicit for each instruction.

3.1.1 Aligned and Misaligned Accesses

The operand of a single-register memory access instruction has a natural alignment
boundary equal to the operand length. That is, the natural address of an operand is an
integral multiple of itslength. An operand not aligned at its natural boundary is considered
misaligned. Instructions are always 4 bytes long and word-aligned. Table 3-1 shows
operand characteristics for single-register memory access instructions.

Table 3-1. Memory Operand Alignment

Operand Length Aligned Addr(60-63) 1
Byte 8 bits XXXX
Half word 2 bytes xxx0
Word 4 bytes xx00
Double word 8 bytes x000
Quad word (Although not permitted as operands, quad-word alignment is | 16 bytes 0000
desirable for certain memory operands.)

1 An x in an address bit position indicates that the bit can be 0 or 1 independent of the state of other address bits.
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The concept of alignment is also applied more generally to datain memory. For example,
a 12-byte dataitem is said to be word-aligned if its address is a multiple of four.

Some instructions require their memory operands to have certain alignment. In addition,
alignment may affect performance. For single-register memory accessinstructions, the best
performance is obtained when memory operands are aligned.

3.1.2 Byte Ordering

If individual data items were indivisible, the concept of byte ordering would be
unnecessary. The order of bits or groups of bits within the smallest addressable unit of
memory is irrelevant, because nothing can be observed about such order. Order matters
only when scalars, which the processor and programmer regard as indivisible quantities,
can be made up of more than one addressable unit of memory.

The smallest addressable memory unit is the byte (8 bits), and scalars are composed of one
or more sequential bytes. When a 32-bit scalar is moved from a register to memory, it
occupies four consecutive bytes in memory, and a decision must be made regarding the
order of these bytes in these four addresses.

Both big- and little-endian byte ordering are supported; the default is big-endian. Big- and
little-endian byte orderings are described as follows:

» Big-endian byte ordering (default). For big-endian scalars, the most-significant byte
(MSB) is stored at the lowest (or starting) address while the least-significant byte
(LSB) isstored at the highest (or ending) address. Thisis called big-endian because
the big end of the scalar comes first in memory.

» Little-endian byte ordering. For little-endian scalars, the LSB is stored at the |owest
(or starting) addresswhilethe M SB is stored at the highest (or ending) address. This
Is called little-endian because the little end of the scalar comes first in memory.

3.1.3 Structure Mapping Examples

Figure 3-1 shows a C programming example that defines data structure Sis used in this
section to demonstrate how the bytes that comprise each element (a, b, ¢, d, e, and f) are
mapped into memory. The structure contains scalars (shown in hexadecimal in the
comments) and a sequence of characters, shown in single quote marks.

struct {

i nt a; /* 0x1112_1314 wor d */
doubl e b; [* 0x2122_2324_2526_2728 doubl e word */
char * c¢; /* 0x3132_3334 wor d */
char [ 7]; [* 'L'","M,'"N,"O,'"P,'"Q,'"R array of bytes */
short e; /* 0x5152 hal f word */
i nt f; /* 0x6162_6364 wor d */

}S
Figure 3-1. C Program Example—Data Structure S
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3.1.3.1 Big-Endian Mapping

Figure 3-2 showsthe big-endian mapping of the structure. Note that the M SB of each scalar
isat the lowest address. The mapping uses padding (indicated by (x)) to align the scalars—4
bytes between elements a and b, 1 byte between d and e, and 2 bytes between e and f. Note
that the padding is determined by the compiler, not the architecture.

Contents 11 12 13 14 (x) %) (x) (x)
Address 00 01 02 03 04 05 06 07
Contents 21 22 23 24 25 26 27 28
Address 08 09 0A 0B oc oD OE OF
Contents 31 32 33 34 ‘L ‘M’ ‘N’ ‘0’
Address 10 11 12 13 14 15 16 17
Contents ‘P’ ‘Q’ ‘R’ (x) 51 52 (x) (x)
Address 18 19 1A 1B 1C 1D 1E 1F
Contents 61 62 63 64 x) x) (x) (x)
Address 20 21 22 23 24 25 26 27

Figure 3-2. Big-Endian Mapping of Structure S

3.1.3.2 Little-Endian Mapping

Figure 3-3 shows the structure using little-endian mapping. Note that the LSB of each
scalar is at the lowest address.

Contents 14 13 12 11 (x) (x) (x) x)
Address 00 01 02 03 04 05 06 07
Contents 28 27 26 25 24 23 22 21
Address 08 09 0A 0B ocC 0D OE OF
Contents 34 33 32 31 ‘L ‘M’ ‘N’ ‘o’
Address 10 11 12 13 14 15 16 17
Contents ‘P’ ‘Q ‘R’ x) 52 51 x) x)
Address 18 19 1A 1B 1C 1D 1E 1F
Contents 64 63 62 61 (x) (x) (x) x)
Address 20 21 22 23 24 25 26 27

Figure 3-3. Little-Endian Mapping of Structure S
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Figure 3-3 shows the sequence of double wordslaid out with addresses increasing from | eft
to right. Programmersfamiliar with little-endian byte ordering may be more accustomed to
viewing double words laid out with addresses increasing from right to left, as shown in
Figure 3-4. This alows the little-endian programmer to view each scalar in its natural byte
order of MSB to LSB. However, to demonstrate how the PowerPC architecture provides
both big- and little-endian support, this section uses the convention of showing addresses
increasing from left to right, asin Figure 3-3.

Contents x) (x) x) x) 11 12 13 14
Address 07 06 05 04 03 02 01 00
Contents 21 22 23 24 25 26 27 28
Address OF OE 0D oC 0B 0A 09 08
Contents ‘O’ ‘N’ ‘™ ‘L 31 32 33 34
Address 17 16 15 14 13 12 11 10
Contents (x) (x) 51 52 (x) ‘R’ ‘Q’ ‘P’
Address 1F 1E 1D 1C 1B 1A 19 18
Contents (x) (x) (x) x) 61 62 63 64
Address 27 26 25 24 23 22 21 20

Figure 3-4. Little-Endian Mapping of Structure S —Alternate View

3.1.4 Byte Ordering

The architecture supports both big- and little-endian byte ordering; however, the code
sequence to switch modes may differ among processors. Byte ordering is specified through
two MSR bits. MSR[LE] (little-endian mode) indicates the endian mode in which the
processor is currently operating; MSR[ILE] (exception little-endian mode) specifies the
mode to be used when an exception handler is invoked. When an exception occurs,
MSRJILE] (as set for the interrupted process) is copied into MSR[LE] to select the endian
mode for the context established by the exception. For both bits, a value of O specifies
big-endian mode and a value of 1 specifieslittle-endian mode.

The architecture provides load and store instructions that reverse byte ordering. These
instructions have the effect of loading and storing data in the endian mode opposite from
that which the processor is operating. See Section 4.2.3.4, “Integer Load and Store with
Byte-Reverse Instructions.”

3.1.4.1 Aligned Scalars in Little-Endian Mode

Chapter 4, “Addressing Modes and Instruction Set Summary,” describes the effective
address calculation for theload and store instructions. For processorsin little-endian mode,
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the effective address is modified before being used to access memory. The 3 low-order
effective address bits are exclusive-ORed (X OR) with a 3-hit value that depends on operand
length, as shown in Table 3-2. This modification is sometimes called munging.

Table 3-2. EA Modifications

Data Width (Bytes) EA Modification
8 No change
4 XOR with 0b100
2 XOR with 0b110
1 XOR with 0b111

The modified physical address is passed to the cache or to main memory, and data of the
specified width is transferred (in big-endian order—M SB at the lowest addressand LSB at
the highest) between a GPR or FPR and the addressed memory locations (as modified).

Modifying the address makes it appear to the processor that individual aligned scalars are
stored aslittle-endian, when in fact they are stored in big-endian order, but at different byte
addresses within double words. Only the address is modified, not the byte order.

Taking into account the preceding address modifications, in little-endian mode, structure S
Is placed in memory as shown in Figure 3-5.

Contents (x) (x) (x) (x) 11 12 13 14
Address 00 01 02 03 04 05 06 07
Contents 21 22 23 24 25 26 27 28
Address 08 09 0A 0B oC oD OE OF
Contents ‘o’ ‘N’ ‘M’ ‘L 31 32 33 34
Address 10 11 12 13 14 15 16 17
Contents (x) (x) 51 52 (x) ‘R’ ‘Q’ ‘P’
Address 18 19 1A 1B 1C 1D 1E 1F
Contents (x) (x) (x) (x) 61 62 63 64
Address 20 21 22 23 24 25 26 27

Figure 3-5. Modified Little-Endian Structure S as Seen by the Memory Subsystem

Note that the mapping shown in Figure 3-5 is not a true little-endian mapping of the
structure S. However, because the processor modifies the address when accessing memory,
the physical structure S shown in Figure 3-5 appears to the processor as the structure S
shown in Figure 3-6.
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Contents 14 13 12 11

Address 00 01 02 03 04 05 06 07
Contents 28 27 26 25 24 23 22 21

Address 08 09 0A 0B oC oD OE OF
Contents 34 33 32 31 ‘L ‘M’ ‘N’ ‘O’

Address 10 11 12 13 14 15 16 17
Contents ‘P’ ‘Q’ ‘R’ 52 51

Address 18 19 1A 1B 1C 1D 1E 1F
Contents 64 63 62 61

Address 20 21 22 23 24 25 26 27

Figure 3-6. Modified Little-Endian Structure S as Seen by the Processor

Note that the mapping in Figure 3-6 isidentical to the little-endian mapping in Figure 3-3.
However, from outside of the processor, the addresses of the bytes making up the structure
S are as shown in Figure 3-5. These addresses match neither the big-endian mapping of
Figure 3-2 nor the true little-endian mapping of Figure 3-3. This must be considered when
performing 1/O operations in little-endian mode, as described in Section 3.1.4.5,
“Input/Output Data Transfer Addressing in Little-Endian Mode.”

3.1.4.2 Misaligned Scalars in Little-Endian Mode

Performing an XOR operation on the low-order bits of the address works only if the scalar
is aligned on a boundary equal to a multiple of its length. Table 3-7 shows a true
little-endian mapping of the four-byte word 0x1112 1314, stored at address 05.

Contents| | | | | | 14 | 13 | 12 |
Address 00 01 02 03 04 05 06 07

Contents 11

Address 08 09 OA 0B oC 0D OE OF

Figure 3-7. True Little-Endian Mapping, Word Stored at Address 05

For the true little-endian example in Figure 3-7, the LSB (0x14) is stored at address 0x05,
the next byte (0x13) is stored at address 0x06, the third byte (0x12) is stored at address
0x07, and the MSB (0x11) is stored at address 0x08.

When a processor, in little-endian mode, issues a single-register load or store instruction
with a misaligned effective address, it may take an alignment exception. In this case, a
single-register load or store instruction means any of the integer load/store, load/store with
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byte-reverse, memory synchronization (excluding sync), or floating-point |oad/store
(including stfiwx) instructions. Processorsin little-endian mode are not required to invoke
an alignment exception when such a misaligned access is attempted. The processor may
handle some or all such accesses without taking an alignment exception.

The architecture requires that half words, words, and double words be placed in memory
such that the little-endian address of the lowest-order byte isthe effective address computed
by theload or storeinstruction; thelittle-endian address of the next-lowest-order byteisone
greater, and so on. However, because processorsin little-endian mode modify the effective
address, the byte order of amisaligned scalar must be asif they were accessed one at atime.

Using the same example as shown in Figure 3-7, when the LSB (0x14) is stored to address
0x05, the address is XORed with Ob111 to become 0x02. When the next byte (0x13) is
stored to address 0x06, the address is XORed with 0b111 to become 0x01. When the third
byte (0x12) is stored to address 0x07, the address is XORed with Ob111 to become 0x00.
Finally, when the MSB (0x11) is stored to address 0x08, the addressis X ORed with Ob111
to become OxOF. Figure 3-8 shows the misaligned word, stored by alittle-endian program,
as seen by the memory subsystem.

Contents | 12 | 13 | 14 | | | | | |
Address 00 01 02 03 04 05 06 07
Contents 11
Address 08 09 0A 0B 0C oD 0E OF

Figure 3-8. Word at Little-Endian Address 05 as Seen by the Memory Subsystem

Note that the misaligned word in this example spans two double words. The two parts of
the misaligned word are not contiguous as seen by the memory system. An implementation
may support some but not all misaligned little-endian accesses. For example, amisaligned
little-endian accessthat is contai ned within adouble word may be supported, while one that
spans double words may cause an alignment exception.

3.1.4.3 Nonscalars

Two types of instructions handle nonscalars (multiple instances of scalars):
» Load and store multiple instructions

» Load and store string instructions
Address modification cannot be used because these instructions typically operate on more
than one word-length scalar. These instructions cause alignment exception conditionswhen

the processor executesin little-endian mode. String accesses are not supported, but they are
inherently byte-based operations and can be broken into a series of word-aligned accesses.
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3.1.4.4 Instruction Addressing in Little-Endian Mode

Instructions are word-aligned in memory. They are fetched as if the current instruction
address is incremented by four for each sequential instruction. In little-endian mode, the
instruction address is XORed with 0b100 as described in Section 3.1.4.1, “Aligned Scalars
in Little-Endian Mode.” A program is thus an array of little-endian words with each word
fetched and executed in order (not including branches).

Instruction addresses visible to an executing program are the effective addresses computed
by that program, or, in the case of the exception handlers, effective addresses that were or
could have been computed by the interrupted program. These addresses are independent of
the endian mode. Examples for little-endian mode include the following:

* Aninstruction address placed in the link register by branch and link operation or an
instruction address saved in an SPR when an exception istaken isthe addressthat a
program executing in little-endian mode would use to access the instruction as a
word of data using aload instruction.

» An offset in arelative branch instruction reflects the difference between the
addresses of the branch and target instructions, where the addresses used are those
that a program executing in little-endian mode would use to access the instructions
as datawords using aload instruction.

» A target addressin an absolute branch instruction is the address that a program
executing in little-endian mode would use to access the target instruction as aword
of datausing aload instruction.

» Memory locations that contain the first set of instructions executed by each kind of
exception handler must be set consistently with the endian mode in which the
exception handler isinvoked. Thus, if the handler isto be invoked in little-endian
mode, the first set of instructions comprising each kind of exception handler must
appear in memory with the instructions within each double word reversed from the
order in which they are to be executed.

3.1.4.5 Input/Output Data Transfer Addressing in Little-Endian Mode

In big-endian mode, the processor and memory subsystem recognize the same byte as byte
0. However, thisisnot true in little-endian mode because of the address bits modified when
the processor accesses memory.

I/O transfers in little-endian mode must be performed as if the bytes transferred were
accessed one at a time, using the little-endian address modification appropriate for the
single-byte transfers (that is, the lowest-order address bits must be XORed with Ob111).
This does not mean that 1/O operations in little-endian systems must be performed using
only 1-byte transfers. Transfers can be as wide as desired, but the byte order within double
words must be asif they were fetched or stored one at atime. That is, in atrue little-endian
I/O device, the system must provide away to modify and unmodify addresses and reverse
the bytes within a double word (MSB to LSB).
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3.2 Operand Placement and Performance—VEA

W TheVEA states that the placement (location and alignment) of operandsin memory affects
the relative performance of memory accesses. The best performance is guaranteed if
memory operands are aligned on natural boundaries. For more information on memory
access ordering and atomicity, refer to Section 5.2, “The Virtual Environment.”

3.2.1 Summary of Performance Effects

For best performance across the widest range of PowerPC processor implementations, the
programmer should assume the performance model described in Table 3-3 and Figure 3-4
with respect to the placement of memory operands.

The performance of accesses varies depending on the following:

* Operand size and alignment

* Endian mode (big-endian or little-endian)

» Whether a cache block, page, BAT, or segment boundary is crossed
Table 3-3 applies when the processor isin big-endian mode.

Table 3-3. Performance Effects of Memory Operand Placement, Big-Endian Mode

Operand Boundary Crossing
Type Size Byte Alignment None Cache Block Page BAT/Segment
Integer 8 byte 8 Optimal — — —
4 Good Good Poor Poor
<4 Poor Poor Poor Poor
4 byte 4 Optimal — — _
<4 Good Good Poor Poor
2 byte 2 Optimal — — —
<2 Good Good Poor Poor
1 byte 1 Optimal — — —
Imw, stmw 4 Good Good Good ! Poor
String — Good Good Poor Poor
Floating 8 byte 8 Optimal — — —
point 4 Good Good Poor Poor
<4 Poor Poor Poor Poor
4 byte 4 Optimal — — _
<4 Poor Poor Poor Poor

1 Crossing a page boundary where the memory/cache access attributes of the two pages differ is equivalent to crossing
a segment boundary and thus has poor performance.

Table 3-4 applies when the processor isin little-endian mode.
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Table 3-4. Performance Effects of Memory Operand Placement, Little-Endian Mode

Operand Boundary Crossing
Type Size Byte Alignment None Cache Block Page BAT/Segment
Integer 8 byte 8 Optimal — — —
<8 Poor Poor Poor Poor
4 byte 4 Optimal — — _
<4 Poor Poor Poor Poor
2 byte 2 Optimal — — —
<2 Poor Poor Poor Poor
1 byte 1 Optimal — — —
Floating point 8 byte 8 Optimal — — —
<8 Poor Poor Poor Poor
4 byte 4 Optimal — — —
<4 Poor Poor Poor Poor

The load/store multiple and the load/store string instructions are supported only in
big-endian mode. Load/store multiple instructions are defined to operate only on aligned
operands. Load/store string instructions have no alignment requirements.

3.2.2 Instruction Restart

The execution of amemory access instruction may abort after part of an accessis performed
for several reasons. For example, if a program attemptsto access a page for the first time or
when the processor must check for a change in the memory and cache access attributes
when an access crosses a page boundary. When this occurs, the processor or operating
system may restart the instruction, in which case, some bytes at that location may be loaded
from or stored to the target location a second time.

The following rules apply to memory accesses with regard to restarting the instruction:

» Aligned accesses—A single-register instruction that accesses an aligned operand is
never restarted (that is, it is not partially executed).

» Misaligned accesses—A single-register instruction that accesses a misaligned
operand may be restarted if the access crosses apage, BAT, or segment boundary, or
if the processor isin little-endian mode.

» Load/store multiple, load/store string instructions—These instructions may be
restarted if, in accessing the locations specified by the instruction, a page, BAT, or
segment boundary is crossed.

Programmers should assume that any misaligned access in a segment might be restarted.
When the processor is in big-endian mode, software can ensure that misaligned accesses
are not restarted by placing the misaligned datain BAT areas, as BAT areas have no internal
protection boundaries. See Section 7.5, “Block Address Trandation.”
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3.3 Floating-Point Execution Models—UISA

The architecture supports the two following types of floating-point instructions:

» Computational instructions including | EEE-754 defined operations for 64- and
32-hit arithmetic (addition, subtraction, multiplication, division, extracting the
sgquare root, rounding conversion, comparison, and combinations of these) and
architecture-defined multiply-add and reciprocal estimate instructions.

* Noncomputational instructions—floating-point load, store, and move instructions.

Although computational and noncomputational instructions are governed by MSR[FP]
(that allows floating-point instructions to be executed), only computational instructions are
considered floating-point operations throughout this chapter.

The I|EEE standard requires that single-precision arithmetic be provided for
single-precision operands. The standard permits double-precision arithmetic instructionsto
have either (or both) single-precision or double-precison operands, but states that
single-precision arithmetic instructions should not accept double-precision operands. The
guidelines are asfollows:

* Double-precision arithmetic instructions may have single-precision operands but
always produce double-precision results.

» Single-precision arithmetic instructions require all operands to be single-precision
and always produce single-precision results.

For arithmetic instructions, double- to single-precision conversion must be done explicitly
by software; single- to double-precision conversion is done implicitly by the processor.

All implementations provide the equivalent of the following execution models to ensure
that identical results are obtained. The definition of the arithmetic instructionsfor infinities,
denormalized numbers, and NaNs follow conventions described in the following sections.
Appendix D, “Floating-Point Models,” has additional detailed information on the execution
models for |EEE operations as well as the other floating-point instructions.

Although the double-precision format specifies an 11-bit exponent, exponent arithmetic
uses two additional bit positions to avoid potential transient overflow conditions. An extra
bit is required when denormalized double-precision numbers are prenormalized. A second
bit is required to permit computation of the adjusted exponent value in the following
examples when the corresponding exception enable bit is 1 (exceptions are referred to as
interrupts in the architecture specification):

» Underflow during multiplication using a denormalized operand
» Overflow during division using a denormalized divisor
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3.3.1 Floating-Point Data Format

The UISA defines a 32-hit format for a single-precision floating-point value and a 64-bit
format for a double-precision floating-point value. Floating-point data in memory may be
in single- or double-precision format, however both single- and double-precision valuesin
floating-point registers (FPRS) are stored in double-precision format.

Figure 3-9 shows single-precision format; Figure 3-10 shows double-precision format.

Exp Fraction
01 89 31
Figure 3-9. Floating-Point Single-Precision Format

Exp Fraction
01 1112 63
Figure 3-10. Floating-Point Double-Precision Format

Both formats consist of three fields:
* S(sign hit)
» EXP (exponent + bias)
* FRACTION (fraction)

If only aportion of afloating-point dataitem in memory is accessed, as with aload or store
instruction for a byte or half word (or word in the case of floating-point double-precision
format), the value affected depends on whether the system isusing big- or little-endian byte
ordering, as described in Section 3.1.2, “Byte Ordering.” Big-endian mode is the default.

For numeric values, the significand consists of a leading implied bit concatenated on the
right with the FRACTION. This leading implied bit (the first bit to the left of the binary
point) is 1 for normalized numbers and O for denormalized numbers. Values representable
in the two floating-point formats can be specified by the parametersin Table 3-5.

Table 3-5. IEEE Floating-Point Fields

Parameter Single-Precision Double-Precision

Exponent bias +127 +1023
Maximum exponent (unbiased) | +127 +1023
Minimum exponent (unbiased) [-126 -1022
Format width 32 bits 64 bits
Sign width 1 bit 1 bit

Exponent width 8 bits 11 bits
Fraction width 23 bits 52 bits
Significand width 24 bits 53 bits
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As Table 3-6 shows, an exponent’s true value can be determined by subtracting 127 for
single-precision numbers and 1023 for double-precision numbers. Note that an exponent of
al onesindicates an infinity or NaN; all zeros indicates zero or a denormalized number.

Table 3-6. Biased Exponent Format

Biased Exponent (Binary) | Single-Precision (Unbiased) [ Double-Precision (Unbiased)
11..... 11 Reserved for infinities and NaNs
11..... 10 +127 +1023
11..... 01 +126 +1022
10..... 00 1 1
0o1..... 11 0 0
01..... 10 -1 -1
00..... 01 -126 -1022
00..... 00 Reserved for zeros and denormalized numbers

3.3.1.1 Value Representation

The UISA defines numerical and nonnumerical values representable in single- and
double-precision formats. Numerical values are approximationsto real numbers, including
normalized numbers, denormalized numbers, and zero val ues. Representable nonnumerical
values are positive and negative infinities and NaNs. Infinities are adjoined to the red
numbers but are not numbers themselves, and the standard rules of arithmetic do not hold
when they appear in an operation. They are related to the real numbers by order alone. Itis
possible, however, to define restricted operations among numbers and infinities as defined
below. Figure 3-11 shows the relative location of defined numerical entities on a real
number line. Tiny values include denormalized numbers and numbers that too small to be
represented for a particular precision format, but do not include 0.

h Tiny b Tiny -
-0 +0

-0 ‘ —NORM ‘—DENORM ‘ +DENORM

I | ! A

+NORM ‘ +00
A ' | '

Unrepresentable, small numbers
Figure 3-11. Approximation to Real Numbers

Positive and negative NaNs convey diagnostic information such as representation of
uninitialized variables and are not related to the numbers, +, or each other by order or
value. Table 3-7 describes each of the floating-point formats.
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Table 3-7. Recognized Floating-Point Numbers

Sign Bit Biased Exponent Implied Bit | Fraction Value
0 Maximum X Nonzero |NaN
0 Maximum X Zero +Infinity
0 0 < Exponent < Maximum 1 X +Normalized
0 0 0 Nonzero |+Denormalized
0 0 X Zero +0
1 0 X Zero -0
1 0 0 Nonzero |-Denormalized
1 0 < Exponent < Maximum 1 X —Normalized
1 Maximum X Zero —Infinity
1 Maximum X Nonzero |NaN

The following sections describe floating-point values defined in the architecture.

3.3.1.2 Binary Floating-Point Numbers

Binary floating-point numbers are machine-representabl e approximations of real numbers.
Three categories are supported—normalized numbers, denormalized numbers, and zeros.

3.3.1.3 Normalized Numbers (xtNORM)

The values for normalized numbers have a biased exponent value in the range:
* 1-254in single-precision format
» 12046 in double-precision format

The implied unit bit is one. Normalized numbers are interpreted as follows:
NORM = (-1)S x 2E x (1.fraction)
Thevariable (s) isthe sign, (E) is the unbiased exponent, and (1.fraction) is the significand

composed of aleading unit bit (implied bit) and a fractional part. Figure 3-12 shows the
format for normalized numbers.

MIN < Exponent < Max . .
(B?fseed)t 2 Fraction = Any bit pattern

| Sign bit, 0 or 1

Figure 3-12. Format for Normalized Numbers

The ranges covered by the magnitude (M) of a normalized floating-point number are
approximated in the following decimal representation:

Single-precision format:
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1.2x10738 < M < 3.4x1038

Double-precision format:
2.2x1073%8 < M < 1.8x103%%8

3.3.1.4 Zero Values (x0)

Zero values, Figure 3-13, have a biased exponent value of zero and fraction of zero. Zeros
can have a positive or negative sign. Comparison operations ignore the sign (that is, +0 =
—0). Arithmetic with zero results is aways exact and does not signal any exception, except
when an exception occurs due to the invalid operations as described in Section 3.3.6.1.1,
“Invalid Operation Exception Condition.” Rounding a zero result affects only the sign (x0).

Exponent =0

(Biased) Fraction =0

Sign Bit,0 or 1
Figure 3-13. Format for Zero Numbers

3.3.1.5 Denormalized Numbers (zDENORM)

Denormalized numbers have a biased exponent value of zero and a nonzero fraction. The
format for denormalized numbersis shown in Figure 3-14.

Exponent =0 Fraction = Any Nonzero
(Biased) Bit Pattern

Sign Bit, 0 or 1
Figure 3-14. Format for Denormalized Numbers

Denormalized numbers are nonzero numbers smaller in magnitude than the normalized
numbers. They are values in which the implied unit bit is zero. Denormalized numbers are
interpreted as follows:

DENORM = (-1)S x 2Emn x (0. fraction)

The value Emin is the minimum unbiased exponent value for a normalized number (—126
for single-precision, —1022 for double-precision).

3.3.1.6 Infinities (x)

Infinities have a maximum biased exponent value of 255 in single-precision format, 2047
in double-precision format, and a zero fraction value. Infinities approximate values greater
in magnitude than the maximum normalized value. Infinity arithmetic is defined as the
limiting case of real arithmetic, with restricted operations defined among numbers and
infinities. Infinities and real numbers can be related by ordering in the affine sense:

—oo < every finite number < +co
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The format for infinitiesis shown in Figure 3-15.

Exponent = Maximum L
(Biased) Fraction =0

Sign Bit, 0 or 1
Figure 3-15. Format for Positive and Negative Infinities

Arithmetic using infinite numbersis always exact and does not signal any exception, except
when an exception occurs due to the invalid operations as described in Section 3.3.6.1.1,
“Invalid Operation Exception Condition.”

3.3.1.7 Not a Numbers (NaNs)

NaNs have the maximum biased exponent value and a nonzero fraction. The format for
NaNsisshownin Figure 3-16. The sign bit of NaN does not show an algebraic sign; rather,
it issimply another bit in the NaN. If the highest-order bit of the fraction field isazero, the
NaN isasignaling NaN; otherwise it isaquiet NaN (QNaN).

Exponent = Maximum Fraction = Any Nonzero
(Biased) Bit Pattern

| Sign Bit (ignored)
Figure 3-16. Format for NaNs

Signaling NaNs signal exceptions when they are specified as arithmetic operands.

QNaNs represent the results of certain invalid operations, such as attempts to perform
arithmetic operations on infinities or NaNs, when the invalid operation exception is
disabled (FPSCR[VE] = 0). QNaNs propagate through all operations, except floating-point
round to single-precision, ordered comparison, and conversion to integer operations. They
signal exceptions only for ordered comparison and conversion to integer operations.
Specific encodings in QNaNs can thus be preserved through a sequence of operations and
used to convey diagnostic information to help identify results from invalid operations.

When a QNaN results from an operation because an operand isaNaN or because a QNaN
is generated due to a disabled invalid operation exception, the following rule is applied to
determine the QNaN to be stored as the result:

If (frA) is a NaN
Then frD « (frA)
Else if (frB) is a NaN
Then if instruction is frsp
Then frD « (frB)[0-34]]](29)0
Else frD « (frB)
Else if (frC is a NaN
Then frD « (frQC
El se if generated QNaN
Then frD ~ generated QNaN
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If the operand specified by fr A isaNaN, that NaN is stored as the result. Otherwisg, if the
operand specified by frB isaNaN (if the instruction specifies an fr B operand), that NaN is
stored as the result, with the low-order 29 bits cleared. Otherwise, if the operand specified
by frCisaNaN (if theinstruction specifiesan fr C operand), that NaN is stored asthe result.
Otherwise, if aQNaN is generated by a disabled invalid operation exception, that QNaN is
stored astheresult. If aQNaN isto be generated as aresult, the QNaN generated hasasign
bit of zero, an exponent field of all ones, and a highest-order fraction bit of one with all
other fraction bits zero. An instruction that generates a QNaN as the result of a disabled
invalid operation generates this QNaN. Thisis shown in Figure 3-17.

0 111..1 1000....0

| Sign Bit (ignored)
Figure 3-17. Representation of Generated QNaN

3.3.2 Sign of Result

The following rules govern the sign of the result of an arithmetic operation, when the
operation does not yield an exception. These rules apply even when the operands or results
are +0 or +oo:

* Thesign of the result of an addition operation is the sign of the source operand
having the larger absolute value. If both operands have the same sign, the sign of the
result of an addition operation is the same as the sign of the operands. The sign of
the result of the subtraction operation, x — Y, is the same as the sign of the result of
the addition operation, x + (-y).

* When the sum of two operandswith opposite sign, or the difference of two operands

with the same sign, is exactly zero, the sign of theresult is positive in al rounding
modes except round toward negative infinity (—o), in which casethe signisnegative.

* Thesign of the result of amultiplication or division operation isthe XOR of the
signs of the source operands.

» Thesign of the result of around to single-precision or convert to/from integer
operation is the sign of the source operand.

* Thesign of theresult of asquareroot or reciprocal square root estimate operationis
always positive, except that the square root of —0is—0 and the reciprocal square root
of -0 is—infinity.

For multiply-add instructions, these rules are applied first to the multiplication operation
and then to the addition or subtraction operation (one of the source operandsto the addition
or subtraction operation is the result of the multiplication operation).
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3.3.3 Normalization and Denormalization

The intermediate result of an arithmetic or Floating Round to Single-Precision (fr spx)
instruction may require normalization and/or denormalization. When an intermediate result
consists of a sign bit, an exponent, and a nonzero significand with a zero leading bit, the
result must be normalized (and rounded) before being stored to the target.

A number is normalized by shifting its significand left and decrementing its exponent by
one for each bit shifted until the leading significand bit becomes one. The guard and round
bits are also shifted, with zeros shifted into the round bit; see Section D.1, “Execution
Model for IEEE Operations,” for information about the guard and round bits. During
normalization, the exponent is regarded asif its range were unlimited.

If an intermediate result has a nonzero significand and an exponent that is smaller than the
minimum value that can be represented in the format specified for the result, thisvalueis
referred to as ‘tiny’ and the stored result is determined by the rules described in
Section 3.3.6.2.2, “Underflow Exception Condition” These rules may involve
denormalization. The sign of the number does not change.

An exponent can become tiny in either of the following circumstances:
» Astheresult of an arithmetic or fr spx instruction
» Astheresult of decrementing the exponent in the process of normalization.

Normalization is the process of coercing the leading significand bit to be a 1 while
denormalization is the process of coercing the exponent into the target format's range. In
denormalization, the significand is shifted to the right while the exponent is incremented
for each bit shifted until the exponent equal sthe format’s minimum value. Theresult isthen
rounded. If any significand bits are lost due to the rounding of the shifted value, the result
is considered inexact. The sign of the number does not change.

3.3.4 Data Handling and Precision

There are specific instructions for moving floating-point data between the FPRs and
memory. For double-precision format data, the data is not altered during the move. For
single-precision data, the format is converted to double-precision format when data is
loaded from memory into an FPR. A format conversion from double- to single-precisionis
performed when data from an FPR is stored as single-precision. These operations do not
cause floating-point exceptions.

All floating-point arithmetic, move, and select instructions use floating-point
double-precision format. Floating-point single-precision formats are obtained by using the
following four types of instructions:

» Load floating-point single-precision instructions—These instructions access a
single-precision operand in single-precision format in memory, convert it to
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double-precision, and load it into an FPR. Floating-point exceptions do not occur
during the load operation.

» Foating Round to Single-Precision (fr spx) instruction—The fr spx instruction
rounds a double-precision operand to single-precision, checking the exponent for
single-precision range and handling any exceptions according to respective FPSCR
enable bits. The instruction places that operand into an FPR as a double-precision
operand. For results produced by single-precision arithmetic instructions and by
single-precision loads, this operation does not alter the value.

» Single-precision arithmeticinstructions—Theseinstructionstake operandsfrom the
FPRs in double-precision format, perform the operation asif it produced an
intermediate result correct to infinite precision and with unbounded range, and then
force this intermediate result to fit in single-precision format. Status bits in the
FPSCR and CR are set to reflect the single-precision result. The result is then
converted to double-precision format and placed into an FPR. Theresult fallswithin
the range supported by the single-precision format.

Source operands for these instructions must be representable in single-precision
format. Otherwise, the result placed into thetarget FPR and the setting of statushbits,
FPSCR and CR if update mode is selected, are undefined.

» Store floating-point single-precision instructions—These instructions convert a
double-precision operand to single-precision format and store that operand into
memory. If the operand requires denormalization in order to fit in single-precision
format, it is automatically denormalized prior to being stored. No exceptions are
detected on the store operation (the value being stored is effectively assumed to be
the result of an instruction of one of the preceding three types).

When the result of a Load Floating-Point Single (Ifs), Floating Round to Single-Precision
(frspx), or single-precision arithmetic instruction is stored in an FPR, the low-order 29
fraction bits are zero. Thisis shown in Figure 3-18.

Bit 35 +
EXP D 00 O XXX00000. ... 0000
01 1112 63

Figure 3-18. Single-Precision Representation in an FPR

The frspx instruction allows conversion from double- to single-precision with appropriate
exception checking and rounding. It is used to convert double-precision floating-point
values (produced by double-precision load and arithmetic instructions) to single-precision
values before storing them into single-format memory elements or using them as operands
for single-precision arithmetic instructions. Values produced by single-precision load and
arithmetic instructions can be stored directly, or used directly as operands for
single-precision arithmetic instructions, without being preceded by an fr spx instruction.

MOTOROLA Chapter 3. Operand Conventions 3-19



Floating-Point Execution Models—UISA

A single-precision value can be used in double-precision arithmetic operations. Thereverse
Is true only if the double-precision value can be represented in single-precision format. If
double-precision accuracy is not required, using single-precision data and instructions may
speed operations in some implementations.

3.3.5 Rounding

All arithmetic, rounding, and conversion instructions defined by the architecture (except the
optional Floating Reciprocal Estimate Single (fresx) and Floating Reciprocal Square Root
Estimate (fr sgrtex) instructions) produce an intermediate result considered to be infinitely
precise and with unbounded exponent range. This intermediate result is normalized or
denormalized if required, and then rounded to the destination format. Thefinal resultisthen
placed into the target FPR in the double-precision format or in fixed-point format,
depending on the instruction.

The IEEE-754 specification allows loss of accuracy to be defined as when the rounded
result differsfrom the infinitely precise value with unbounded range (same as the definition
of inexact). In the PowerPC architecture, thisis how loss of accuracy is detected.

Let Z be the intermediate result (with infinite precison and unbounded range) or the
operand of a conversion operation. If Z can be represented exactly in the target format, the
result in al rounding modes is exactly Z. If Z cannot be represented exactly in the target
format, let Z1 and Z2 be the next larger and next smaller numbersrepresentabl e in the target
format that bound Z; Z1 or Z2 can be used to approximate the result in the target format.

Figure 3-19 shows agraphical representation of Z, Z1, and Z2 in this case.
By incrementing Isb of Z

Infinitely precise value
By truncating after Isb

Y Y

A
 J

Z2 Z1 0 Z2 Z1

z Negative values -« 5 Positive values z

Figure 3-19. Relation of Z1 and Z2

Table 3-8 describes the four rounding modes available through FPSCR[RN].
Table 3-8. FPSCR[RN] Setting

RN | Rounding Mode Rules

00 | Round to nearest | Choose the best approximation (Z1 or Z2). If a tie, choose the one that is even (lisb 0).

01 | Round toward zero | Choose the smaller in magnitude (Z1 or Z2).

10 | Round toward +o | Choose Z1.

11 | Round toward —« | Choose Z2.
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See Section D.1, “Execution Model for IEEE Operations,” for a detailed explanation of
rounding. Rounding occurs before an overflow condition is detected. This meansthat while
an infinitely precise value with unbounded exponent range may be greater than the greatest
representable value, the rounding mode may allow that value to be rounded to a
representable value. In this case, no overflow condition occurs.

However, the underflow condition is tested before rounding. Therefore, if the value that is
infinitely precise and with unbounded exponent range fals within the range of
unrepresentable values, the underflow condition occurs. The results in these cases are
defined in Section 3.3.6.2.2, “Underflow Exception Condition.” Figure 3-20 shows the
selection of Z1 and Z2 for the four possible rounding modes provided by FPSCR[RN].

Z is infinitely precise
result or operand

Z fits otherwise

target format \I

Z2 <Z <271 | per Figure 3-19
-
FPSCR[RN] = 01

(round toward 0)

otherwise

FPSCR[RN] = 11 otherwise

Z<0 Z>0
(round toward —o)
frD « Z2 ]\HD ~ 71 frD « Z2

FPSCR[RN]=00  FPSCR[RN] = 10
(round to nearest)  (round toward_+o)

frD — Best approximation (Z1 or Z2) frD < Z1
If tie, choose even (Z1 or Z2 with Isb 0)

Figure 3-20. Selection of Z1 and Z2 for the Four Rounding Modes

All arithmetic, rounding, and conversion instructions affect FPSCR bits FR and FI,
according to whether the rounded result is inexact (FI) and whether the fraction was
incremented (FR) as shown in Figure 3-21. If the rounded result isinexact, Fl isset and FR
may be either set or cleared. If rounding does not change the result, both FR and Fl are
cleared. The optional fresx and frsgrtex instructions set FI and FR to undefined values;
other floating-point instructions do not alter FR and FI.
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(Z,ound is rounded result)

O

otherwise Zround % Z

T

FI « 1

fraction in- otherwise
cremented

Figure 3-21. Rounding Flags in FPSCR

3.3.6 Floating-Point Program Exceptions

Only computational instructions can cause fl oating-point enabled exceptions (subsets of the
program exception). Floating-point program exceptions are signaled by FPSCR condition
bits described here and in Chapter 2, “Register Set.” These bits correspond to conditions
identified as IEEE floating-point exceptions and can cause the system floating-point
enabled exception error handler to be invoked. Handling for floating-point exceptions is
described in Section 6.4.7, “ Program Exception (0x00700).”

The FPSCR is shown in Figure 3-22.

|:| Reserved
VXIDI VXZDZ ——  VXSOFT
VXISI S — VXIMZ VXSQRT
VXSNAN —‘ ’7 VXVC ’_ VXCVI
FX[FEX]VX]OX]| UX| ZX | XX FR| FI FPRF 0 VE|OE|UE|ZE | XE| NI RN
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 3-22. Floating-Point Status and Control Register (FPSCR)

Table 3-9 describes FPSCR hit settings.
Table 3-9. FPSCR Bit Settings

Bits Name Description

0 FX Floating-point exception summary. Every floating-point instruction, except mtfsfi and mtfsf,
implicitly sets FPSCR[FX] if that instruction causes any of the floating-point exception bits in the
FPSCR to transition from 0 to 1. The mcrfs, mtfsfi, mtfsf, mtfsb0, and mtfsb1 instructions can alter
FPSCR[FX] explicitly. This is a sticky bit.

1 FEX Floating-point enabled exception summary. This bit signals the occurrence of any of the enabled
exception conditions. It is the logical OR of all the floating-point exception bits masked by their
respective enable bits (FEX = (VX & VE) * (OX & OE) * (UX & UE) " (ZX & ZE) * (XX & XE)). The
mcrfs, mtfsf, mtfsfi, mtfsb0, and mtfsb1 instructions cannot alter FPSCR[FEX] explicitly. This is
not a sticky bit.
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Table 3-9. FPSCR Bit Settings (continued)

Bits Name Description

2 VX Floating-point invalid operation exception summary. This bit signals the occurrence of any invalid
operation exception. It is the logical OR of all of the invalid operation exception bits as described in
Section 3.3.6.1.1, “Invalid Operation Exception Condition.” The mcrfs, mtfsf, mtfsfi, mtfsb0, and
mtfsb1 instructions cannot alter FPSCR[VX] explicitly. This is not a sticky bit.

3 OX Floating-point overflow exception. This is a sticky bit. See Section 3.3.6.2, “Overflow, Underflow, and
Inexact Exception Conditions.”

4 UX Floating-point underflow exception. This is a sticky bit. See Section 3.3.6.2.2, “Underflow Exception
Condition.”

5 ZX Floating-point zero divide exception. This is a sticky bit. See Section 3.3.6.1.2, “Zero Divide
Exception Condition.”

6 XX Floating-point inexact exception. This is a sticky bit. See Section 3.3.6.2.3, “Inexact Exception
Condition.” XX is the sticky version of FPSCR[FI]. The following describes how XX is set by a given
instruction:

« If the instruction affects FPSCR[FI], the new value of FPSCR[XX] is obtained by logically ORing
the old value of FPSCR[XX] with the new value of FPSCR[FI].
« If the instruction does not affect FPSCR[FI], the value of FPSCR[XX] is unchanged.

7 VXSNAN | Floating-point invalid operation exception for SNaN. This is a sticky bit. See Section 3.3.6.1.1,
“Invalid Operation Exception Condition.”

8 VXISI | Floating-point invalid operation exception for o — . This is a sticky bit. See Section 3.3.6.1.1,
“Invalid Operation Exception Condition.”

9 VXIDI | Floating-point invalid operation exception for o« + . This is a sticky bit. See Section 3.3.6.1.1, “Invalid
Operation Exception Condition.”

10 VXZDZ | Floating-point invalid operation exception for 0 + 0. This is a sticky bit. See Section 3.3.6.1.1, “Invalid
Operation Exception Condition.”

11 VXIMZ | Floating-point invalid operation exception for o * 0. This is a sticky bit. See Section 3.3.6.1.1, “Invalid
Operation Exception Condition.”

12 VXVC | Floating-point invalid operation exception for invalid compare. This is a sticky bit. See
Section 3.3.6.1.1, “Invalid Operation Exception Condition.”

13 FR Floating-point fraction rounded. The last arithmetic, rounding, or conversion instruction incremented
the fraction. See Section 3.3.5, “Rounding.” This bit is not sticky.

14 Fl Floating-point fraction inexact. The last arithmetic, rounding, or conversion instruction either
produced an inexact result during rounding or caused a disabled overflow exception. See
Section 3.3.5, “Rounding.” This is not a sticky bit. For more information regarding the relationship
between FPSCR[FI] and FPSCR[XX], see the description of the FPSCR[XX] bit.
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Table 3-9. FPSCR Bit Settings (continued)

Bits

Name

Description

15-19

FPRF

Floating-point result flags. For arithmetic, rounding, and conversion instructions, FPRF is based on

the result placed into the target register, except that if any portion of the result is undefined, the value

placed here is undefined.

15 Floating-point result class descriptor (C). Arithmetic, rounding, and conversion instructions may
set this bit with the FPCC bits to indicate the class of the result as shown in Table 3-10.

Bits 16—19 comprise the floating-point condition code (FPCC). Floating-point compare instructions

always set one of the FPCC bits to one and the other three FPCC bits to zero. Arithmetic, rounding,

and conversion instructions may set the FPCC bits with the C bit to indicate the class of the result.

Note that in this case the high-order three bits of the FPCC retain their relational significance

indicating that the value is less than, greater than, or equal to zero.

16 Floating-point less than or negative (FL or <)

17 Floating-point greater than or positive (FG or >)

18 Floating-point equal or zero (FE or =)

19 Floating-point unordered or NaN (FU or ?)

Note that these are not sticky bits.

20

Reserved

21

VXSOFT

Floating-point invalid operation exception for software request. This is a sticky bit. This bit can be
altered only by the mcrfs, mtfsfi, mtfsf, mtfsb0, or mtfsb1 instructions. For more detailed
information, refer to Section 3.3.6.1.1, “Invalid Operation Exception Condition.”

22

VXSQRT

Floating-point invalid operation exception for invalid square root. This is a sticky bit. For more
detailed information, refer to Section 3.3.6.1.1, “Invalid Operation Exception Condition.”

23

VXCVI

Floating-point invalid operation exception for invalid integer convert. This is a sticky bit. See
Section 3.3.6.1.1, “Invalid Operation Exception Condition.”

24

VE

Floating-point invalid operation exception enable. See Section 3.3.6.1.1, “Invalid Operation
Exception Condition.”

25

OE

IEEE floating-point overflow exception enable. See Section 3.3.6.2, “Overflow, Underflow, and
Inexact Exception Conditions.”

26

UE

IEEE floating-point underflow exception enable. See Section 3.3.6.2.2, “Underflow Exception
Condition.”

27

ZE

IEEE floating-point zero divide exception enable. See Section 3.3.6.1.2, “Zero Divide Exception
Condition.”

28

XE

Floating-point inexact exception enable. See Section 3.3.6.2.3, “Inexact Exception Condition.”

29

NI

Floating-point non-IEEE mode. If this bit is set, results need not conform with IEEE standards and
the other FPSCR bits may have meanings other than those described here. If the bit is set and if all
implementation-specific requirements are met and if an IEEE-conforming result of a floating-point
operation would be a denormalized number, the result produced is zero (retaining the sign of the
denormalized number). Any other effects associated with setting this bit are described in the user’s
manual for the implementation.

Effects of the setting of this bit are implementation-dependent.

30-31

RN

Floating-point rounding control. See Section 3.3.5, “Rounding.”
00 Round to nearest

01 Round toward zero

10 Round toward +infinity

11 Round toward —infinity

Table 3-10 describes the floating-point result flags, FPSCR[FPRF].
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Table 3-10. Floating-Point Result Flags—FPSCR[FPRF]

Result Flags (Bits 15-19)
Result Value Class

C

A}
\
|

?

Quiet NaN

—Infinity

—Normalized number

—Denormalized number

-Zero

+Zero

+Denormalized number

+Normalized number

o|lo|lr|o|lr|r|ol| ofr
o|lo|lo|lo|lo|r|r|r]|o
Rl || o|lo|lo|lo|l ol o
o|lo|lo|lr|r|o|lo|lo|o
| ol ol ol ol ol ol |+

+Infinity

The following conditions that can cause program exceptions are detected by the processor.
These conditions may occur during execution of computational floating-point instructions.
The corresponding bits set in the FPSCR are indicated in parentheses:

Invalid operation exception condition (V X)
— SNaN condition (VXSNAN)

— Infinity —infinity condition (VXISI)

— Infinity + infinity condition (VXIDI)

— Zero + zero condition (VXZDZ)

— Infinity * zero condition (VXIMZ)

— Invalid compare condition (VXVC)

— Software request condition (VX SOFT)

— Invalid integer convert condition (VXCVI)
— Invalid square root condition (VX SQRT)

These exception conditions are described in Section 3.3.6.1.1, “Invalid Operation
Exception Condition.”

Zero divide exception condition (ZX). These exception conditions are described in
Section 3.3.6.1.2, “Zero Divide Exception Condition.”

Overflow Exception Condition (OX). These exception conditions are described in
Section 3.3.6.2.1, “Overflow Exception Condition.”

Underflow Exception Condition (UX). These exception conditions are described in
Section 3.3.6.2.2, “Underflow Exception Condition.”

Inexact Exception Condition (XX). These exception conditions are described in
Section 3.3.6.2.3, “Inexact Exception Condition.”
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Each floating-point exception condition and each category of invalid |EEE floating-point
operation exception condition has a corresponding exception bit in the FPSCR. Generaly,
the occurrence of an exception condition depends only on the instruction and its arguments
(with one deviation, described bel ow). When one or more exception conditions arise during
the execution of an instruction, the way in which the instruction completes execution
depends on the corresponding IEEE floating-point enable bits in the FPSCR. If no
governing enable bit is set, the instruction delivers a default result. Otherwise, specific
condition bits and FPSCR[FX] are set and instruction execution is completed by
suppressing or delivering aresult. Finally, after instruction execution completes, anonzero
FPSCR[FX] causes aprogram exception if either MSR[FEQ] or MSR[FE1] is set (invoking
the system error handler). The FPR values immediately after the occurrence of an enabled
exception do not depend on MSR[FEO,FE1L].

FPSCR[FX] is set by any floating-point instruction (except mtfsfi and mtfsf) that causes
any FPSCR exception bit to changefrom 0to 1, or by mtfsfi, mtfsf, and mtfsbl instructions
that explicitly set one of these bits. FPSCR[FEX] is set when an exception condition bitsis
set and the exception enable bit is one.

A single instruction can set multiple exception condition bits only in the following cases:

» Theinexact exception condition bit (FPSCR[XX]) may be set with the overflow
exception condition bit (FPSCR[OX]).

* Theinexact exception condition bit (FPSCR[XX]) may be set with the underflow
exception condition bit (FPSCR[UX]).

» Theinvalid |EEE floating-point operation exception condition bit (SNaN) may be
set with invalid |EEE floating-point operation exception condition bit (co* 0)
(FPSCR[V XIMZ]) for multiply-add instructions.

» Theinvalid operation exception condition bit (SNaN) may be set with the invalid
| EEE floating-point operation exception condition bit (invalid compare)
(FPRSC[VXVC]) for compare ordered instructions.

* Theinvalid |EEE floating-point operation exception condition bit (SNaN) may be
set with the invalid | EEE floating-point operation exception condition bit (invalid
integer convert) (FPSCR[V XCVI]) for convert-to-integer instructions.

Instruction execution is suppressed for the following kinds of exception conditions, so that
there is no possibility that one of the operandsis lost:

» Enabled invalid | EEE floating-point operation

» Enabled zero divide
For the remaining kinds of exception conditions, a result is generated and written to the
destination specified by the instruction causing the exception condition. The result may

depend on whether the condition is enabled or disabled. The kinds of exception conditions
that deliver aresult are the following:
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» Disabled invalid |EEE floating-point operation
e Disabled zero divide

e Disabled overflow

* Disabled underflow

e Disabled inexact

* Enabled overflow

e Enabled underflow

e Enabled inexact

Subsequent sections define each of the floating-point exception conditions and specify the
action taken when they are detected.

The |EEE standard specifies the handling of exception conditionsin terms of traps and trap
handlers. An FPSCR exception enable bit being set causes generation of the result value
specified in the IEEE standard for the trap enabled case—the expectation is that the
exception is detected by software, which revisesthe result. An FPSCR exception enabl e bit
of O causes generation of the default result value specified for the trap disabled (or no trap
occurs or trap is not implemented) case—the expectation is that the exception is not
detected by software, which uses the default result. The result to be delivered in each case
for each exception is described in the following sections.

The |EEE default behavior when an exception occurs, which isto generate a default value
and not to notify software, is obtained by clearing al FPSCR exception enable bits and
using ignore exceptions mode (see Table 3-11). In this case the system floating-point
enabled exception error handler is not invoked, even if floating-point exceptions occur. If
necessary, software can inspect the FPSCR exception bits to determine whether exceptions
have occurred.

If the system error handler isto be invoked, the corresponding FPSCR exception enable bit
must be set and a mode other than ignore exceptions mode must be used. In this case the
system floating-point enabled exception error handler is invoked if an enabled
floating-point exception condition occurs.

Whether and how the system fl oating-point enabled exception error handler isinvoked if an
enabled floating-point exception occurs is controlled by MSR bits FEO and FE1 as shown
in Table 3-11. (The system floating-point enabled exception error handler is never invoked
iIf the appropriate floating-point exception is disabled.)
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Table 3-11. MSR[FEOQO] and MSR[FE1] Bit Settings for FP Exceptions

FEO | FE1 Description

0 0 |lIgnore exceptions mode—Floating-point exceptions do not cause the program exception error handler
to be invoked.

0 1 | Imprecise nonrecoverable mode—When an exception occurs, the exception handler is invoked at some
point at or beyond the instruction that caused the exception. It may not be possible to identify the
excepting instruction or the data that caused the exception. Results from the excepting instruction may
have been used by or affected subsequent instructions executed before the exception handler was
invoked.

1 0 |Imprecise recoverable mode—When an enabled exception occurs, the floating-point enabled exception
handler is invoked at some point at or beyond the instruction that caused the exception. Sufficient
information is provided to the exception handler that it can identify the excepting instruction and correct
any faulty results. In this mode, no results caused by the excepting instruction have been used by or
affected subsequent instructions that are executed before the exception handler is invoked.

1 1 | Precise mode—The system floating-point enabled exception error handler is invoked precisely at the
instruction that caused the enabled exception.

In precise mode, whenever the system floating-point enabled exception error handler is
invoked, the architecture ensuresthat all instructionslogically residing before the excepting
instruction have completed and no instruction after the excepting instruction has been
executed. In an imprecise mode, the instruction flow may not be interrupted at the point of
the instruction that caused the exception. The instruction at which the system fl oating-point
exception handler isinvoked has not been executed unlessit isthe excepting instruction and
the exception is not suppressed.

In either of the imprecise modes, an FPSCR instruction can be used to force the occurrence
of any invocations of the floating-point enabled exception handler, due to instructions
initiated before the FPSCR instruction. This forcing has no effect in ignore exceptions
mode and is superfluous for precise mode.

Instead of using an FPSCR instruction, an execution synchronizing instruction or event can
be used to force exceptions and set bits in the FPSCR; however, for the best performance
across the widest range of implementations, an FPSCR instruction should be used to
achieve these effects.

For the best performance across the widest range of implementations, the following
guidelines should be considered:

» If IEEE default results are acceptable, FEO and FE1 should be cleared (ignore
exceptions mode). All FPSCR exception enable bits should be cleared.

» |f IEEE default results are unacceptable, an impreci se mode should be used with the
FPSCR enable bits set as needed.

* Ignore exceptions mode should not, in general, be used when any FPSCR exception
enable bits are set.

* Precise mode may substantially degrade performance in some implementations and
should be used only for debugging or other specialized applications.
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3.3.6.1 Invalid Operation and Zero Divide Exception Conditions

The flow diagram in Figure 3-23 shows the initial flow for checking floating-point
exception conditions (invalid operation and divide by zero conditions). If any of these
conditions occur, if FPSCR[FEX] is set (implicitly) and MSR[FEO—-FE1] # 00, the
processor takes a program exception (floating-point enabled exception type).

Check for FP Computational
FP Exception Conditions / |nstructions

Invalid Operand Ex-

otherwise ception Condition

Perform Actions per Section 3.3.6.1.1,

/J)\(FPSCR[FEX] =1)&

(MSR[FEO—FE1] # 00)

otherwise

Zero Divide Cake FP Enable}
otherwise Exception Condition Program Exception

(for Invalid Operation)

Perform Actions per Section 3.3.6.1.2,

/(L\(FPSCR[FEX] =1)&

(MSR[FEO—FE1] # 00)

otherwise

Execute Instruction; (Zake FP Engbke}
X < Intermediate Result rogram Exception
(Infinitely Precise and with Unbounded Range) (for Zero Divide)
x = (0) or (£w) otherwise
* X — Rounded x (per FPSCR[RN
round (p [RND Check for Overflow, Underflow, .
*frD —Xyound , o (see Figure 3-24)
« Set FPSCRI[FI, FR, FPRF] appropriately & Inexact Exception Conditions

Continue Instruction
Execution

Figure 3-23. Initial Flow for Floating-Point Exception Conditions

See Chapter 6, “Exceptions,” for information about exception handling. The actions
performed for floating-point exception conditions are described in the following sections.
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3.3.6.1.1 Invalid Operation Exception Condition
An invalid operation exception occurs when an operand is invalid for the specified
operation. The invalid operations are as follows:
» Any operation except |oad, store, move, select, or mtfsf on asignaling NaN (SNaN)
» For add or subtract operations, magnitude subtraction of infinities (co — )
» Division of infinity by infinity (co + o)
» Division of zero by zero (0 + 0)
» Multiplication of infinity by zero (e * Q)
* Ordered comparison involving aNaN (invalid compare)

» Sguareroot or reciprocal square root of a negative, nonzero number (invalid square
root). Note that if the implementation does not support the optional floating-point
square root or floating-point reciprocal square root estimate instructions, software
can simulate the instruction and set FPSCR[V X SQRT] to reflect the exception.

* Integer convert involving a number that istoo large in magnitude to be represented
in the target format, or involving an infinity or aNaN (invalid integer convert)

FPSCR[V XSOFT] allows software to cause an invalid operation exception for a condition
that is not necessarily associated with the execution of a floating-point instruction. For
example, it might be set by a program that computes a square root if the source operand is
negative. This allows instructions not implemented in hardware to be emul ated.

If an invalid operation occurs or software explicitly requests the exception using
FPSCR[V XSOFT], (regardiess of the value of FPSCR[VE]), the following occurs:

* Oneor two invalid operation exception condition bitsis set
FPSCR[VXSNAN] (if SNaN)

FPSCR[VXISI] (if 0o — o)
FPSCR[VXIDI] (if 00 + o)
FPSCR[VXZDZ] (if0+0)
FPSCR[VXIMZ] (if o * Q)
FPSCR[VXVC] (if invalid comparison)

FPSCR[V X SOFT] (if software request)

FPSCR[V X SQRT] (if invalid square root)

FPSCR[VXCVI] (if invalid integer convert)
» If the operation is a compare,

FPSCR[FR, FI, C] are unchanged

FPSCR[FPCC] is set to reflect unordered

» |f software explicitly requests the exception,
FPSCR[FR, Fl, FPRF] are as set by the mtfsfi, mtfsf, or mtfsb1 instruction.

Table 3-12 describes additional actions performed that depend on the value of FPSCR[VE].
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Table 3-12. Additional Actions Performed for Invalid FP Operations

Invalid Operation

Result Category

Action if FPSCRI[VE] = 1

Action if FPSCR[VE] = 0

Arithmetic or floating-point frD Unchanged QNaN
round to single
FPSCR[FR, FI] |Cleared Cleared
FPSCR[FPRF] Set for QNaN Unchanged
Convert to 64-bit integer frD[0-63] Unchanged Most positive 64-bit integer value
(positive number or +09)
FPSCR[FR, FI] |Cleared Cleared
FPSCR[FPRF] Set for QNaN Undefined
Convert to 64-bit integer frD[0-63] Unchanged Most negative 64-bit integer value
(negative number, NaN, or —00)
FPSCR[FR, FI] |Cleared Cleared
FPSCR[FPRF] Set for QNaN Undefined
Convert to 32-bit integer frD[0-31] Unchanged Undefined
(positive number or +09) — .
frD[32-63] Unchanged Most positive 32-bit integer value
FPSCR[FR, FI] |Cleared Cleared
FPSCR[FPRF] Set for QNaN Undefined
Convert to 32-bit integer frD[0-31] Unchanged Undefined
(negative number, NaN, or —00) . -
frD[32-63] Unchanged Most negative 32-bit integer value
FPSCR[FR, FI] |Cleared Cleared
FPSCR[FPRF] Set for QNaN Undefined
All cases FPSCR[FEX] Implicitly set (causes exception) | Unchanged

3.3.6.1.2 Zero Divide Exception Condition

A zero divide exception condition occurs when adivide instruction is executed with a zero
divisor and a finite, nonzero dividend or when an fres or frsgrte is executed with a zero
operand. This condition indicates an exact infinite result from finite operands exception
condition corresponding to a mathematical pole (divide or fres) or a branch point
singularity (frsgrte). When a zero divide condition occurs, the following actions are taken:

» Zero divide exception condition bit is set (FPSCR[ZX] = 1).

* FPSCR[FR,FI] are cleared.

Table 3-13 describes additional actions depending on the value of FPSCR[ZE].
Table 3-13. Additional Actions Performed for Zero Divide

Result Category Action if FPSCR[ZE] = 1 Action if FPSCR[ZE] =0
frD Unchanged +oo (sign determined by XOR of the signs of the operands)
FPSCR[FEX] Implicitly set (causes exception) | Unchanged
FPSCR[FPRF] Unchanged Set to indicate *oo
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3.3.6.2 Overflow, Underflow, and Inexact Exception Conditions

Overflow, underflow, and inexact exception conditions are detected after the instruction
executes and an infinitely precise result with unbounded range is computed. Figure 3-24
shows the flow for the detection of these conditions. It is a continuation of Figure 3-23.

Check for Overflow, Un- ) ]
Gerﬂow, and Inexact > (from Figure 3-23)

Xnorm — Normalized x
(Xnorm Infinitely Precise and with Unbounded Range)

Xnorm IS tiny otherwise
FPSCRIUE] =0 otherwise X - Roundld X er FPSCR[RN
(underflow disabled) ~__ round o ® R
* Xgenorm — Denormalized Xnorm &henNise magnitude of X,o,nq > Magnitude of
* Round Xgenorm (Per FPSCR[RN]) | largest finite number in result precision

*frD « X;ound —~ Rounded Xgenorm

_ *frD < Xround
e inexact — Xyound % Xdenorm l

« If ‘inexact’, FPSCR[UX] « 1 * INexact — Xround * Xnorm FPSCRI[OX] - 1
"FPSCRUX] ~1 otherwise /é\FPSCR[OE] =0
. FPSCR[FE_X] =1 (implicitly) (overflow disabled)
* Xadjust —Adj. EXp. of X0y, per Table 3-15 ~
* Round Xagjyst (Per FPSCRIRN]) « FPSCRIFEX] = 1 (implicitly)
* D~ Xroung — Rounded Xagjust * Adjust Exponent per Table 3-15 | [Epscpnog 1
e inexact — Xround FS Xadjust o frD Xround (adjusted)

e inexact « Xyound # Xnorm

» Get default fromTable 3-15
* frD ~ default

otherwise inexact = 1 * FPSCRI[FI] ~ 1

_— ~— « FPSCRIFR] - undefined

|
FPSCR[XX] 1 (inexact)

/é{FPSCR[XE] =0

otherwise

(inexact disabled)
el N

FPSCRIFEX] = 1 (implicitly)

Set FPSCR[FPRF] appropriately
I

(If (FPSCR[FEX] = 1) & (MSR[FEO-FE1] # 00), therD

take FP Program Exception; otherwise, continue

Figure 3-24. Checking of Remaining Floating-Point Exception Conditions
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As in the cases of invalid operation, or zero divide conditions, if FPSCR[FEX] is set
implicitly as described in Table3-9 and MSR[FEO,FE1] # 00, the processor takes a
program exception (floating-point enabled exception type). Refer to Chapter 6,
“Exceptions,” for more information on exception processing. The actions performed for
each of these floating-point exception conditions (including the generated result) are
described in greater detail in the following sections.

3.3.6.2.1 Overflow Exception Condition

Overflow occurs when the magnitude of what would have been the rounded result (had the
exponent range been unbounded) is greater than the magnitude of the largest finite number

of the specified result precision. FPSCR[OX] is set, regardless of the FPSCR[OE] value.
Table 3-14 describes additional actions taken that depend on the setting of FPSCR[OE].

Table 3-14. Additional Actions Performed for Overflow Exception Condition

Condition

Result Category

Action if FPSCR[OE] = 1

Action if FPSCR[OE] = 0

Double-precision
arithmetic instructions

Exponent of normalized
intermediate result

Adjusted by subtracting 1536

Single-precision
arithmetic and frspx
instruction

Exponent of normalized
intermediate result

Adjusted by subtracting 192

All cases

frD Rounded result (with adjusted Default result per Table 3-15
exponent)

FPSCR[XX] Set if rounded result differs from | Set
intermediate result

FPSCR[FEX] Implicitly set (causes exception) | Unchanged

FPSCR[FPRF] Set to indicate tnormal number | Set to indicate +oo or +normal

number
FPSCRIFI] Reflects rounding Set
FPSCR[FR] Reflects rounding Undefined

When FPSCR[OE] = 0 and an overflow condition occurs, the default result is determined
by the rounding mode bit (FPSCR[RN]) and the sign of the intermediate result as shownin

Table 3-15.

Table 3-15. Target Result for Overflow Exception Disabled Case

FPSCR[RN] Sign of Intermediate Result frD
Round to nearest Positive +Infinity
Negative —Infinity
Round toward zero Positive Format'’s largest finite positive number
Negative Format’s most negative finite number
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Table 3-15. Target Result for Overflow Exception Disabled Case (continued)

FPSCR[RN] Sign of Intermediate Result frD
Round toward +infinity Positive +Infinity
Negative Format’'s most negative finite number
Round toward —infinity Positive Format’s largest finite positive number
Negative —Infinity

3.3.6.2.2 Underflow Exception Condition

The underflow exception condition is defined separately for the enabled and disabled states:
» Enabled—Underflow occurs when the intermediate result is tiny.

» Disabled—Underflow occurs when the intermediate result is tiny and the rounded
result isinexact. In this context, the term ‘tiny’ refersto a floating-point value that
istoo small to be represented for a particular precision format.

As shown in Figure 3-24, a tiny result is detected before rounding, when a nonzero
intermediate result value computed as though it had infinite precision and unbounded
exponent range is less in magnitude than the smallest normalized number.

If the intermediate result is tiny and the underflow exception condition enable bit,
FPSCR[UE], is zero, the intermediate result is denormalized (see Section 3.3.3,
“Normalization and Denormalization”) and rounded (see Section 3.3.5, “Rounding”)
before being stored in an FPR. Inthis casg, if the rounding causes the delivered result value
to differ from what would have been computed were both the exponent range and precision
unbounded (the result is inexact), then underflow occurs and FPSCR[UX] is set.

The actions performed for underflow exception conditions are described in Table 3-16.

Table 3-16. Actions Performed for Underflow Conditions

Action Performed
Condition Result Category

FPSCR[UE] = 1 FPSCR[UE] = 0

Double-precision
arithmetic instructions

Exponent of normalized
intermediate result

Adjusted by adding 1536

Single-precision arithmetic | Exponent of normalized

and frspx instructions

intermediate result

Adjusted by adding192
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Table 3-16. Actions Performed for Underflow Conditions (continued)

Action Performed
Condition Result Category
FPSCR[UE] =1 FPSCR[UE] =0
All cases frD Rounded result (with adjusted Denormalized and rounded
exponent) result
FPSCR[XX] Set if rounded result differs from | Set if rounded result differs
intermediate result from intermediate result
FPSCR[UX] Set Set only if tiny and inexact
after denormalization and
rounding
FPSCR[FPRF] Set to indicate tnormalized Set to indicate
number +denormalized number or
+zero
FPSCR[FEX] Implicitly set (causes exception) [ Unchanged
FPSCRIFI] Reflects rounding Reflects rounding
FPSCR[FR] Reflects rounding Reflects rounding

Note that FPSCR[FR,FI] allow the system floating-point enabled exception error handler,
when invoked because of an underflow exception condition, to simulate a trap disabled
environment. That is, FR and FI allow the system floating-point enabled exception error
handler to unround the result, thus allowing the result to be denormalized.

3.3.6.2.3 Inexact Exception Condition

Theinexact exception condition occurs when one of two conditions occur during rounding:

* Therounded result differs from the intermediate result assuming the intermediate
result exponent range and precision to be unbounded. (In the case of an enabled
overflow or underflow condition, where the exponent of the rounded result is
adjusted for those conditions, an inexact condition occurs only if the significand of
the rounded result differs from that of the intermediate result.)

» Therounded result overflows and the overflow exception condition is disabled.
When an inexact exception condition occurs, the following actions are taken independently
of the setting of the inexact exception condition enable bit of the FPSCR:

* Inexact exception condition bit in the FPSCR is set (FPSCR[XX] = 1).

* Therounded or overflowed result is placed into the target FPR.

» FPSCR[FPRF] is set to indicate the class and sign of the result.

If the inexact exception condition enable bit, FPSCR[XE], is set and an inexact condition
exists, then FPSCR[FEX] is implicitly set, causing the processor to take a floating-point

enabled program exception. Running with inexact exception conditions enabled may have
greater latency than enabling other types of floating-point exception conditions.
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Chapter 4
Addressing Modes and Instruction Set
Summary

This chapter describes instructions and addressing modes defined by the three levels of the [
PowerPC architecture—user instruction set architecture (UISA), virtual environment
architecture (VEA), and operating environment architecture (OEA). These instructions are Po)
divided into the following functional categories:

* Integer instructions—These include arithmetic and logical instructions. For more
information, see Section 4.2.1, “Integer Instructions.”

» Floating-point instructions—T heseinclude fl oating-point arithmetic instructions, as
well asinstructionsthat affect the fl oating-point status and control register (FPSCR).
For more information, see Section 4.2.2, “Floating-Point Instructions.”

» Load and storeinstructions—T heseincludeinteger and floating-point load and store
instructions. For moreinformation, see Section 4.2.3, “Load and Store I nstructions.”

» Flow control instructions—T hese include branching instructions, condition register
logical instructions, trap instructions, and other instructions that affect the
instruction flow. For moreinformation, see Section 4.2.4, “ Branch and Flow Control
Instructions.”

* Processor control instructions—These instructions are used for synchronizing
memory accesses and managing of caches, TLBs, and the segment registers. For
more information, see Section 4.2.5, “Processor Control Instructions—UISA
Section 4.3.1, “Processor Control Instructions—VEA,” and Section 4.4.2,
“Processor Control Instructions—OEA."

» Memory synchronization instructions—These instructions control the order in
which memory operations are completed with respect to asynchronous events, and
the order in which memory operations are seen by other processors or memory
access mechanisms. For more information, see Section 4.2.6, “Memory
Synchronization Instructions—UISA,” and Section 4.3.2, “Memory
Synchronization Instructions—VEA."

* Memory control instructions—T hese include cache management instructions
(user-level and supervisor-level), segment register manipulation instructions, and
trandation lookaside buffer management instructions. For more information, see
Section 4.3.3, “Memory Control Instructions—VEA,” and Section 4.4.3, “Memory
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Control Instructions—OEA.” (Note that user-level and supervisor-level arereferred
to as problem state and privileged state, respectively, in the architecture
specification.)

» Externa control instructions—These instructions allow a user-level program to
communicate with a special-purpose device. For more information, see
Section 4.3.4, “External Control Instructions.”

This grouping of instructions does not necessarily indicate the execution unit that processes
aparticular instruction or group of instructions within a processor implementation.

M Integer instructions operate on byte, half-word, and word operands. Floating-point
instructions operate on single-precision and double-precision floating-point operands. The
PowerPC architecture uses instructions that are 4 bytes long and word-aligned. It provides
for byte, half-word, and word operand fetches and stores between memory and a set of 32
general-purpose registers (GPRs). It aso provides for word and double-word operand
fetches and stores between memory and a set of 32 floating-point registers (FPRs). FPRs
are 64 bitswide in all implementations. GPRs are 32 bits wide in 32-bit implementations
and 64 bits wide in 64-bit implementations.

Arithmetic and logical instructions do not read or modify memory. To use the contents of a
memory location in a computation and then modify the same or another memory location,
the memory contents must be loaded into aregister, modified, and then written to the target
location using load and store instructions.

The description of each instruction includes the mnemonic and aformatted list of operands.
that support the mnemonics and operand lists. To simplify assembly language
programming, a set of ssimplified mnemonics (referred to as extended mnemonics in the
architecture specification) and symbols is provided for some of the most frequently-used
instructions; see Appendix F, “Simplified Mnemonics,” for a complete list of simplified
mnemonics.

M Theinstructions are organized by functional categories while maintaining the delineation
v of thethreelevelsasdescribed in Section 1.1.2, “ The Levels of the PowerPC Architecture.”

(0] .
4.1 Conventions

This section describes instruction set conventions. Descriptions of computation modes,
memory addressing, synchronization, and the exception summary follow.
4.1.1 Sequential Execution Model

Processors that implement the PowerPC architecture appear to execute instructions in
program order, regardless of asynchronous events or program exceptions. The execution of
a sequence of instructions may be interrupted by an exception caused by one of the
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instructions in the sequence, or by an asynchronous event. (Note that the architecture
specification refers to exceptions as interrupts.)

For exceptions to the sequential execution model, refer to Chapter 6, “Exceptions.” For
information about the synchronization required when using store instructions to access
instruction areas of memory, refer to Section 4.2.3.3, “Integer Store Instructions,” and
Section 5.2.5.2, “Instruction Cache Instructions.” For information regarding instruction
fetching, and for information about guarded memory refer to Section 5.3.1.5, “The
Guarded Attribute (G).”

4.1.2 Computation Modes

The architecture allows for the following types of implementations:

*  64-bit implementations, in which all general-purpose and floating-point registers,
and some special-purpose registers (SPRs) are 64 bits long, and effective addresses
are 64 bitslong. All 64-bit implementations have two modes of operation: 64-bit
mode (which is the default) and 32-bit mode. The mode controls how the effective
addressisinterpreted, how condition bits are set, and how the count register (CTR)
Istested by branch conditional instructions. All instructions provided for 64-bit
implementations are available in both 64- and 32-bit modes.

e 32-bit implementations, in which all registers except the FPRs are 32 bitslong, and
effective addresses are 32 bits long.

This chapter describes only the instructions defined for 32-bit implementations.
Instructions defined only for 64-bit implementations are illegal in 32-bit implementations,
and vice versa.

4.1.3 Classes of Instructions

Instructions belong to one of the following three classes:

* Defined

o lllega

* Reserved
Note that while the definitions of these terms are consistent among these processors, the
assignment of these classifications is not. For example, an instruction that is specific to

64-bit implementations is considered defined for 64-bit implementations but illegal for
32-bit implementations.

The classis determined by examining the primary opcode, and the extended opcode if any.
If the opcode, or the combination of opcode and extended opcode, is not that of a defined
instruction or of areserved instruction, the instructionisillegal.
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In future versions of the architecture, instruction codings that are now illegal may become
defined (by being added to the architecture) or reserved (by being assigned to one of the
special purposes). Likewise, reserved instructions may become defined.

4.1.3.1 Definition of Boundedly Undefined

Theresults of executing agiven instruction are said to be boundedly undefined if they could
have been achieved by executing an arbitrary sequence of instructions, starting in the state
the machine was in before executing the given instruction. Boundedly undefined results for
agiveninstruction may vary between implementations and between different executionson
the same implementation.

4.1.3.2 Defined Instruction Class

Defined instructions contain al the instructions defined in the UISA, VEA, and OEA.
Defined instructions are guaranteed to be supported in all implementations. The only
exceptions are instructions that are defined only for 64-bit implementations, instructions
that are defined only for 32-bit implementations, and optional instructions, as stated in the
instruction descriptions in Chapter 8, “Instruction Set.” A processor may invoke theillegal
instruction error handler (part of the program exception handler) when an unimplemented
instruction is encountered so that it may be emulated in software, as required.

A defined instruction can have invalid forms, as described in Section 4.1.3.2.2, “Invalid
Instruction Forms.”

4.1.3.2.1 Preferred Instruction Forms

A defined instruction may have an instruction form that is preferred (that is, the instruction
will execute in an efficient manner). Any form other than the preferred form will take
significantly longer to execute. The following instructions have preferred forms:

» Load/store multiple instructions
» Load/store string instructions
* Orimmediate instruction (preferred form of no-op)

4.1.3.2.2 Invalid Instruction Forms

A defined instruction may have an instruction form that isinvalid if one or more operands,
excluding opcodes, are coded incorrectly in a manner that can be deduced by examining
only the instruction encoding (primary and extended opcodes). Attempting to execute an
invalid form of an instruction either invokestheillegal instruction error handler (a program
exception) or yields boundedly-undefined results. See Chapter 8, “Instruction Set,” for
individual instruction descriptions.

Invalid forms result when a bit or operand is coded incorrectly, for example, or when a
reserved bit (shownas‘0’) iscoded as‘1’.

4-4 Programming Environments Manual for 32-Bit Microprocessors MOTOROLA



Conventions

The following instructions have invalid forms identified in their individual instruction
descriptions:

Branch conditional instructions

L oad/store with update instructions

Load multiple instructions

Load string instructions

Integer compare instructions (in 32-bit implementations only)
L oad/store floating-point with update instructions

4.1.3.2.3 Optional Instructions

A defined instruction may be optional. The optional instructions fall into the following
categories:

General-purpose instructions—fsgrt and fsgrts
Graphicsinstructions—fres, frsgrte, and fsel
External control instructions—eciwx and ecowx

L ookaside buffer management instructions—tlbia, tlbie, and tlbsync (with
conditions, see Chapter 8, “Instruction Set,” for more information)

v

Note that the stfiwx instruction is defined as optional by the architecture to ensure [
backwards compatibility with earlier processors; however, it will likely be required for
subsequent processors.

Also, note that additional categories may be defined in future implementations. If an
implementation claimsto support agiven category, it implements all theinstructionsin that
category.

Any attempt to execute an optional instruction that is not provided by the implementation
will cause the illegal instruction error handler to be invoked. Exceptions to this rule are
stated in the instruction descriptions found in Chapter 8, “Instruction Set.”

4.1.3.3 lllegal Instruction Class

Illegal instructions can be grouped into the following categories:

Instructions that are not implemented in the architecture. These opcodes are
available for future extensions of the architecture; that is, future versions of the
architecture may define any of these instructions to perform new functions. The
following primary opcodes are defined asillegal but may be used in future
extensions to the architecture:

1,4,5, 6, 56, 57, 60, 61
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» Instructions that are implemented in the architecture but are not implemented in a
specific implementation. For example, instructions specific to 64-bit processors are
illegal for 32-bit processors.

The following primary opcodes are defined for 64-bit implementations only and are
illegal on 32-bit implementations:

2, 30, 58, 62

» All unused extended opcodes areillegal. The unused extended opcodes can be
determined from information in Section A.4, “Instructions Sorted by Opcode
(Binary),” and Section 4.1.3.4, “Reserved Instructions.” Notice that extended
opcodes for instructions that are defined only for 64-bit implementations areillegal
in 32-bit implementations. The following primary opcodes have unused extended
opcodes.

19, 31, 59, 63 (primary opcodes 30 and 62 areillegal for 32-bit implementations, but
as 64-bit opcodes they have some unused extended opcodes)

* Aninstruction consisting entirely of zerosis guaranteed to be an illegal instruction.
Thisincreases the probability that an attempt to execute data or uninitialized
memory invokes the illegal instruction error handler (a program exception). Note
that if only the primary opcode consists of all zeros, the instruction is considered a
reserved instruction, as described in Section 4.1.3.4, “ Reserved Instructions.”

An attempt to execute an illegal instruction invokes the illegal instruction error handler (a
program exception) but has no other effect. See Section 6.4.7, “Program Exception
(0x00700),” for additional information about illegal instruction exception.

With the exception of the instruction consisting entirely of binary zeros, the illegal
instructions are available for further additions to the architecture.

4.1.3.4 Reserved Instructions

Reserved instructions are allocated to specific implementation-dependent purposes not
defined by the architecture. An attempt to execute an unimplemented reserved instruction
invokes the illegal instruction program exception. See Section 6.4.7, “Program Exception
(0x00700).”

The following types of instructions are reserved:

« POWER architecture instructions not included in the architecture.

* Implementation-specific instructions not defined in the UISA, VEA, or OEA,
including those used to conform to the architecture specifications (for example,
Load Data TLB Entry (tIbld) and Load Instruction TLB Entry (tIbli) instructions
implemented in several processors).

» Theinstruction with primary opcode 0 when theinstruction does not consist entirely
of binary zeros
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4.1.4 Memory Addressing m

A program references memory using the effective (logical) address computed by the
processor when it executes a load, store, branch, or cache instruction, and when it fetches o
the next sequential instruction.

4.1.4.1 Memory Operands

Bytes in memory are numbered consecutively starting with zero. Each number is the [
address of the corresponding byte.

Memory operands may be bytes, half words, words, or double words, or, for the load/store
multiple and load/store string instructions, a sequence of bytes or words. The address of a
memory operand is the address of its first byte (that is, of its lowest-numbered byte).
Operand length is implicit for each instruction. The architecture supports both big-endian
and little-endian byte ordering. The default byte and bit ordering is big-endian; see
Section 3.1.2, “Byte Ordering,” for more information.

The operand of a single-register memory access instruction has a natural alignment
boundary equal to the operand length. In other words, the “natural” address of an operand
Is an integral multiple of the operand length. A memory operand is said to be aligned if it
isaligned at its natural boundary; otherwiseit ismisaligned. For adetail ed discussion about
memory operands, see Chapter 3, “Operand Conventions.”

4.1.4.2 Effective Address Calculation

An effective address (EA) is the 32-bit sum computed by the processor when executing a
memory access or branch instruction or when fetching the next sequential instruction. For
a memory access instruction, if the sum of the effective address and the operand length
exceeds the maximum effective address, the memory operand is considered to wrap around
from the maximum effective address through effective address 0, as described in the
following paragraphs.

Effective address computations for both data and instruction accesses use 32-bit unsigned
binary arithmetic. A carry from bit O isignored.

In al implementations (including 32-bit mode in 64-bit implementations), the three
low-order bits of the calculated effective address may be modified by the processor before
accessing memory if the systemisoperating in little-endian mode. See Section 3.1.2, “Byte
Ordering,” for more information about little-endian mode.

L oad and store operations have three categories of effective address generation that depend
on the operands specified:

* Register indirect with immediate index mode

* Register indirect with index mode

* Register indirect mode
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See Section 4.2.3.1, “Integer Load and Store Address Generation,” for a detailed
description of effective address generation for load and store operations.

Branch instructions have three categories of effective address generation:
* Immediate addressing.
* Link register indirect
» Count register indirect
See Section 4.2.4.1, “Branch Instruction Address Calculation,” for adetailed
description of effective address generation for branch instructions.

Branch instructions can optionally load the LR with the next sequential instruction address
(current instruction address + 4).

4.1.5 Synchronizing Instructions

@® The synchronization described in this section refers to the state of activities within the
processor that is performing the synchronization. Refer to Section6.1.2,
“Synchronization,” for more detailed information about other conditions that can cause
context and execution synchronization.

4.1.5.1 Context Synchronizing Instructions

The System Call (sc), Return from Interrupt (rfi), and Instruction Synchronize (isync)
instructions perform context synchronization by allowing previously issued instructionsto
complete before performing a context switch. Execution of one of these instructions
ensures the following:

1. No higher priority exception exists (sc) and instruction dispatching is halted.

2. All previous instructions have compl eted to a point where they can no longer cause
an exception.

3. Previous instructions complete execution in the context (privilege, protection, and
address tranglation) under which they were issued.

4. Theinstructions following the sc, rfi, or isync instruction execute in the context
established by these instructions.

4.1.5.2 Execution Synchronizing Instructions

Aninstruction is execution synchronizing if it satisfies the conditions of the first two items
described above for context synchronization. The sync instruction istreated like isync with
respect to the second item described above (that is, the conditions described in the second
item apply to the completion of sync). The sync and mtmsr instructions are examples of
execution-synchronizing instructions.
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All context-synchronizing instructions are execution-synchronizing. Unlike a context
synchronizing operation, an execution synchronizing instruction need not ensure that the
instructions following it execute in the context established by that instruction. This new
context becomes effective sometime after the execution synchronizing instruction
completes and before or at a subsequent context synchronizing operation.

4.1.6 Exception Summary

The exception mechanism handles system functions and error conditionsin an orderly way.
The exception model is defined by the OEA. There are two kinds of exceptions—those
caused directly by the execution of an instruction and those caused by an asynchronous
event. Either may cause components of the system software to be invoked.

Exceptions can be caused directly by the execution of an instruction as follows:

* An attempt to execute an illegal instruction causes the illegal instruction (program
exception) error handler to be invoked. An attempt by a user-level program to
execute the supervisor-level instructions listed below causes the privileged
instruction (program exception) handler to be invoked.

The architecture provides the following supervisor-level instructions: dcbi, mfmsr,
mfspr, mfsr, mfsrin, mtmsr, mtspr, mtsr, mtsrin, rfi, tibia, tlbie, and tlbsync
(defined by OEA). Notethat the privilege level of the mfspr and mtspr instructions
depends on the SPR encoding.

» Theexecution of adefined instruction using aninvalid form causes either theillegal
instruction error handler or the privileged instruction handler to be invoked.

» Theexecution of an optional instruction that is not provided by the implementation
causes theillegal instruction error handler to be invoked.

* An attempt to access memory in amanner that violates memory protection, or an
attempt to access memory that isnot available (page fault), causesthe DSI exception
handler or ISl exception handler to be invoked.

» Anattempt to access memory with an effective address alignment that isinvalid for
the instruction causes the alignment exception handler to be invoked.

» Theexecution of an scinstruction permitsaprogramto call onthe systemto perform
aservice, by causing a system call exception handler to be invoked.

» The execution of atrap instruction invokes the program exception trap handler.

» The execution of afloating-point instruction when floating-point instructions are
disabled invokes the floating-point unavailable exception handler.

» Theexecution of an instruction that causes afloating-point exception that is enabled
invokes the floating-point enabled exception handler.

» Theexecution of afl oating-point instruction that requires system software assi stance
causes the floating-point assist exception handler to be invoked. The conditions
under which such software assistance is required are implementati on-dependent.
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Exceptions caused by asynchronous events are described in Chapter 6, “ Exceptions.”

4.2 UISA Instructions

The user instruction set architecture (UISA) includes the base user-level instruction set
(excluding a few user-level cache-control, synchronization, and time base instructions),
user-level registers, programming model, data types, and addressing modes. This section
discusses the instructions defined in the UISA.

4.2.1 Integer Instructions

The integer instructions consist of the following:
* Integer arithmetic instructions
* Integer compare instructions
* Integer logical instructions
* Integer rotate and shift instructions

Integer instructions use the content of the GPRs as source operands and place results into
GPRs. Integer arithmetic, shift, rotate, and string move instructions may update or read
values from the XER, and the condition register (CR) fields may be updated if the Rc bit of
theinstruction is set.

These instructions treat the source operands as signed integers unless the instruction is
explicitly identified as performing an unsigned operation. For example, Multiply
High-Word Unsigned (mulhwu) and Divide Word Unsigned (divwu) instructions interpret
both operands as unsigned integers.

The integer instructions that are coded to update the condition register, and the integer
arithmetic instruction, addic., set CR bits 0—-3 (CRO) to characterize the result of the
operation. CRO is set to reflect a signed comparison of the result to zero.

The integer arithmetic instructions, addic, addic., subfic, addc, subfc, adde, subfe,
addme, subfme, addze, and subfze, always set the XER bit, CA, to reflect the carry out of
bit 0. Integer arithmetic instructions with the overflow enable (OE) bit set in the instruction
encoding (instructions with o suffix) cause the XER[SO] and XER[OV] to reflect an
overflow of the result. Except for the multiply low and divide instructions, these integer
arithmetic instructions reflect the overflow of the result.

Instructions that select the overflow option (enable XER[OV]) or that set the XER carry bit
(CA) may delay the execution of subsequent instructions.

Unless otherwise noted, when CRO and the XER are s&t, they reflect the value placed in the
target register.
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4.2.1.1 Integer Arithmetic Instructions
Table 4-1 lists the integer arithmetic instructions.

Table 4-1. Integer Arithmetic Instructions

Name Mnemonic Syntax Operation
Add Immediate |addi rD,rA,SIMM | The sum (rA|0) + SIMM is placed into rD.
Add Immediate |addis rD,rA,SIMM | The sum (rA|0) + (SIMM || 0x0000) is placed into rD.
Shifted
Add add rD,rA,rB The sum (rA) + (rB) is placed into rD.
add. add Add
addo add. Add with CR Update. The dot suffix enables the update of the
addo. CR.
addo Add with Overflow Enabled. The o suffix enables the overflow

bit (OV) in the XER.
addo. Add with Overflow and CR Update. The o. suffix enables the
update of the CR and enables the overflow bit (OV) in the

XER.
Subtract From | subf rD,rA,rB The sum = (rA) + (rB) +1 is placed into rD.
subf. subf Subtract From
subfo subf. Subtract from with CR Update. The dot suffix enables the
subfo. update of the CR.

subfo Subtract from with Overflow Enabled. The o suffix enables the
overflow bit (OV) in the XER.

subfo. Subtract from with Overflow and CR Update. The o. suffix
enables the update of the CR and enables the overflow bit
(QV) in the XER.

Add Immediate |addic rD,rA,SIMM | The sum (rA) + SIMM is placed into rD.
Carrying
Add Immediate |addic. rD,rA,SIMM | The sum (rA) + SIMM is placed into rD. The CR is updated.
Carrying and
Record
Subtract from subfic rD,rA,SIMM | The sum = (rA) + SIMM + 1 is placed into rD.
Immediate
Carrying
Add Carrying addc rD,rA,rB The sum (rA) + (rB) is placed into rD.
addc. addc Add Carrying
addco addc. Add Carrying with CR Update. The dot suffix enables the
addco. update of the CR.

addco Add Carrying with Overflow Enabled. The o suffix enables the
overflow bit (OV) in the XER.

addco. Add Carrying with Overflow and CR Update. The o. suffix
enables the update of the CR and enables the overflow bit
(QV) in the XER.
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Table 4-1. Integer Arithmetic Instructions (continued)

Name Mnemonic Syntax Operation
Subtract from subfc rD,rA,rB The sum = (rA) + (rB) + 1 is placed into rD.
Carrying subfc. subfc Subtract from Carrying
subfco subfc. Subtract from Carrying with CR Update. The dot suffix
subfco. enables the update of the CR.
subfco  Subtract from Carrying with Overflow. The o suffix enables the
overflow bit (OV) in the XER.
subfco. Subtract from Carrying with Overflow and CR Update. The o.
suffix enables the update of the CR and enables the overflow
bit (OV) in the XER.
Add adde rD,rA,rB The sum (rA) + (rB) + XER[CA] is placed into rD.
Extended adde. adde Add Extended
addeo adde. Add Extended with CR Update. The dot suffix enables the
addeo. update of the CR.
addeo Add Extended with Overflow. The o suffix enables the
overflow bit (OV) in the XER.
addeo. Add Extended with Overflow and CR Update. The o. suffix
enables the update of the CR and enables the overflow bit
(OV) in the XER.
Subtract from subfe rD,rA,rB The sum = (rA) + (rB) + XER[CA] is placed into rD.
Extended subfe. subfe Subtract from Extended
subfeo subfe. Subtract from Extended with CR Update. The dot suffix
subfeo. enables the update of the CR.
subfeo  Subtract from Extended with Overflow. The o suffix enables
the overflow bit (OV) in the XER.
subfeo. Subtract from Extended with Overflow and CR Update. The o.
suffix enables the update of the CR and enables the overflow
(QV) bit in the XER.
Add to Minus addme rD,rA The sum (rA) + XER[CA] added to OxFFFF_FFFF is placed into rD.
One Extended |addme. addme  Add to Minus One Extended
addmeo addme. Add to Minus One Extended with CR Update. The dot suffix
addmeo. enables the update of the CR.
addmeo Add to Minus One Extended with Overflow. The o suffix
enables the overflow bit (OV) in the XER.
addmeo. Add to Minus One Extended with Overflow and CR Update.
The o. suffix enables the update of the CR and enables the
overflow (OV) bit in the XER.
Subtract from subfme rD,rA The sum = (rA) + XER[CA] added to OxFFFF_FFFF is placed into rD.
Minus One subfme. subfme  Subtract from Minus One Extended
Extended subfmeo subfme. Subtract from Minus One Extended with CR Update. The dot
subfmeo. suffix enables the update of the CR.
subfmeo Subtract from Minus One Extended with Overflow. The o suffix
enables the overflow bit (OV) in the XER.
subfmeo. Subtract from Minus One Extended with Overflow and CR
Update. The o. suffix enables the update of the CR and
enables the overflow bit (OV) in the XER.
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Table 4-1. Integer Arithmetic Instructions (continued)

Name Mnemonic Syntax Operation
Add to Zero addze rD,rA The sum (rA) + XER[CA] is placed into rD.
Extended addze. addze Add to Zero Extended
addzeo addze. Add to Zero Extended with CR Update. The dot suffix enables
addzeo. the update of the CR.
addzeo Add to Zero Extended with Overflow. The o suffix enables the
overflow bit (OV) in the XER.
addzeo. Add to Zero Extended with Overflow and CR Update. The o.
suffix enables the update of the CR and enables the overflow
bit (OV) in the XER.
Subtract from subfze rD,rA The sum = (rA) + XER[CA] is placed into rD.
Zero Extended |subfze. subfze  Subtract from Zero Extended
subfzeo subfze. Subtract from Zero Extended with CR Update. The dot suffix
subfzeo. enables the update of the CR.
subfzeo Subtract from Zero Extended with Overflow. The o suffix
enables the overflow bit (OV) in the XER.
subfzeo. Subtract from Zero Extended with Overflow and CR Update.
The o. suffix enables the update of the CR and enables the
overflow bit (OV) in the XER.
Negate neg rD,rA The sum = (rA) + 1 is placed into rD.
neg. neg Negate
nego neg. Negate with CR Update. The dot suffix enables the update of
nego. the CR.
nego Negate with Overflow. The o suffix enables the overflow bit
(QV) in the XER.
nego. Negate with Overflow and CR Update. The o. suffix enables
the update of the CR and enables the overflow bit (OV) in the
XER.
Multiply Low mulli rD,rA,SIMM | The low-order 32 bits of the product (rA) [ISIMM are placed into rD.
Immediate This instruction can be used with mulhdx or mulhwx to calculate a full
64-bit product.
Multiply Low mullw rD,rA,rB The 32-bit product (rA) LI(rB) is placed into register rD.
mullw. This instruction can be used with mulhwx to calculate a full 64-bit
mullwo product.
mullwo. mullw Multiply Low
mullw. Multiply Low with CR Update. The dot suffix enables the
update of the CR.
mullwo  Multiply Low with Overflow. The o suffix enables the overflow
bit (OV) in the XER.
mullwo. Multiply Low with Overflow and CR Update. The o. suffix
enables the update of the condition register and enables the
overflow bit (OV) in the XER.
Multiply High mulhw rD,rA,rB The contents of rA and rB are interpreted as 32-bit signed integers. The
Word mulhw. 64-bit product is formed. The high-order 32 bits of the 64-bit product are
placed into rD.
mulhw  Multiply High Word
mulhw.  Multiply High Word with CR Update. The dot suffix enables
the update of the CR.
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Table 4-1. Integer Arithmetic Instructions (continued)

Name Mnemonic Syntax Operation

Multiply High mulhwu rD,rA,rB The contents of rA and of rB are interpreted as 32-bit unsigned integers.

Word Unsigned | mulhwu. The 64-bit product is formed. The high-order 32 bits of the 64-bit product

are placed into rD.

mulhwu  Multiply High Word Unsigned

mulhwu. Multiply High Word Unsigned with CR Update. The dot suffix
enables the update of the CR.

Divide Word divw rD,rA,rB The dividend is the signed value of rA. The divisor is the signed value of
divw. rB. The quotient is placed into rD. The remainder is not supplied as a
divwo result.
divwo. divw  Divide Word

divw. Divide Word with CR Update. The dot suffix enables the update
of the CR.

divwo Divide Word with Overflow. The o suffix enables the overflow bit
(OV) in the XER.

divwo. Divide Word with Overflow and CR Update. The o. suffix enables
the update of the CR and enables the overflow bit (OV) in the

XER.
Divide Word divwu rD,rA,rB The dividend is the zero-extended value in rA. The divisor is the
Unsigned divwu. zero-extended value in rB. The quotient is placed into rD. The remainder
divwuo is not supplied as a result.
divwuo. divwu Divide Word Unsigned

divwu.  Divide Word Unsigned with CR Update. The dot suffix enables
the update of the CR.

divwuo Divide Word Unsigned with Overflow. The o suffix enables the
overflow bit (OV) in the XER.

divwuo. Divide Word Unsigned with Overflow and CR Update. The o.
suffix enables the update of the CR and enables the overflow
bit (OV) in the XER.

Although there is no Subtract Immediate instruction, its effect can be achieved by using an
addi instruction with the immediate operand negated. Simplified mnemonics are provided
that include this negation. The subf instructions subtract the second operand (r A) from the
third operand (rB). Simplified mnemonics are provided in which the third operand is
subtracted from the second operand. See Appendix F, “Simplified Mnemonics,” for
examples.

4.2.1.2 Integer Compare Instructions

Theinteger compareinstructions algebraically or logically compare the contents of register
r A with either the zero-extended value of the UIMM operand, the sign-extended value of
the SIMM operand, or the contents of register rB. The comparison is signed for the cmpi
and cmp instructions, and unsigned for the cmpli and cmpl instructions. Table 4-2
summarizes the integer compare instructions.

For 32-bit implementations, the L field must be cleared, otherwise the instruction form is
invalid.
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The integer compare instructions (Table 4-2) set one of the leftmost three bits of the
designated CR field and clear the other two. XER[SQ] is copied into bit 3 of the CR field.

Table 4-2. Integer Compare Instructions

Name Mnemonic Syntax Operation
Compare cmpi crfD,L,rA,SIMM | The value in register rA is compared with the sign-extended value of the
Immediate SIMM operand, treating the operands as signed integers. The result of

the comparison is placed into the CR field specified by operand crfD.

Compare cmp crfD,L,rA,rB The value in register rA is compared with the value in register rB,
treating the operands as signed integers. The result of the comparison
is placed into the CR field specified by operand crfD.

Compare cmpli crfD,L,rA,JUIMM | The value in register rA is compared with 0x0000 || UIMM, treating the
Logical operands as unsigned integers. The result of the comparison is placed
Immediate into the CR field specified by operand crfD.

Compare cmpl crfD,L,rA,rB The value in register rA is compared with the value in register rB,
Logical treating the operands as unsigned integers. The result of the

comparison is placed into the CR field specified by operand crfD.

The crfD operand can be omitted if the result of the comparison is to be placed in CRO.
Otherwise the target CR field must be specified in the instruction crfD field, using an
explicit field number.

For information on simplified mnemonics for the integer compare instructions see
Appendix F, “Simplified Mnemonics”

4.2.1.3 Integer Logical Instructions

The logica instructions shown in Table4-3 perform bit-parallel operations on 32-bit
operands. Logica instructions with the CR updating enabled (uses dot suffix) and
instructions andi. and andis. set CR field CRO (bits O to 2) to characterize the result of the
logical operation. Logical instructions without CR update and the remaining logical
instructions do not modify the CR. Logical instructions do not affect XER[SO,0V,CA].

See Appendix F, “Simplified Mnemonics,” for smplified mnemonic examples for integer
logical operations.

Table 4-3. Integer Logical Instructions

Name Mnemonic Syntax Operation
AND andi. rA,rS,UIMM | The contents of rS are ANDed with 0x0000 || UIMM and the result is placed
Immediate into rA.

The CR is updated.

AND andis. rA,rS,UIMM | The content of rS are ANDed with UIMM || 0x0000 and the result is placed
Immediate into rA.

Shifted The CR is updated.

OR ori rA,rS,UIMM | The contents of rS are ORed with 0x0000 || UIMM and the result is placed
Immediate into rA.

The preferred no-op is ori 0,0,0
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Table 4-3. Integer Logical Instructions (continued)

Name Mnemonic Syntax Operation
OR oris rA,rS,UIMM | The contents of rS are ORed with UIMM || 0x0000 and the result is placed
Immediate into rA.
Shifted
XOR xori rA,rS,UIMM | The contents of rS are XORed with 0x0000 || UIMM and the result is placed
Immediate into rA.
XOR Xoris rA,rS,UIMM | The contents of rS are XORed with UIMM || 0x0000 and the result is placed
Immediate into rA.
Shifted
AND and rA,rS,rB The contents of rS are ANDed with the contents of register rB and the result
and. is placed into rA.
and AND
and. AND with CR Update. The dot suffix enables the update of the CR.
OR or rArS,rB The contents of rS are ORed with the contents of rB and the result is placed
or. into rA.
or OR
or. OR with CR Update. The dot suffix enables the update of the CR.
XOR xor rA;rS,rB The contents of rS are XORed with the contents of rB and the result is placed
xor. into rA.
xor XOR
xor. XOR with CR Update. The dot suffix enables the update of the CR.
NAND nand rArS,rB The contents of rS are ANDed with the contents of rB and the one’s
nand. complement of the result is placed into rA.
nand NAND

nand. NAND with CR Update. The dot suffix enables the update of CR.
Note that nandx, with rS = rB, can be used to obtain the one's complement.

NOR nor rA,rS,rB The contents of rS are ORed with the contents of rB and the one’s
nor. complement of the result is placed into rA.
nor NOR

nor. NOR with CR Update. The dot suffix enables the update of the CR.
Note that norx, with rS = rB, can be used to obtain the one's complement.

Equivalent |eqv rArS,rB The contents of rS are XORed with the contents of rB and the complemented
eqgv. result is placed into rA.
eqv Equivalent
eqgv. Equivalent with CR Update. The dot suffix enables the update of
the CR.
AND with andc rArS,rB The contents of rS are ANDed with the one’s complement of the contents of
Complement | andc. rB and the result is placed into rA.

andc  AND with Complement
andc. AND with Complement with CR Update. The dot suffix enables the
update of the CR.

OR with orc rA,rS,rB The contents of rS are ORed with the complement of the contents of rB and
Complement | orc. the result is placed into rA.
orc OR with Complement

orc. OR with Complement with CR Update. The dot suffix enables the
update of the CR.
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Table 4-3. Integer Logical Instructions (continued)

Name Mnemonic Syntax Operation
Extend Sign | extsb rArS The contents of the low-order eight bits of rS are placed into the low-order
Byte extsb. eight bits of rA. Bit 24 of rS is placed into the remaining high-order bits of rA.

extsb  Extend Sign Byte
extsh. Extend Sign Byte with CR Update. The dot suffix enables the
update of the CR.

Extend Sign |extsh rArS The contents of the low-order 16 bits of rS are placed into the low-order 16

Half Word extsh. bits of rA. Bit 16 of rS is placed into the remaining high-order bits of rA.

extsh  Extend Sign Half Word

extsh. Extend Sign Half Word with CR Update. The dot suffix enables the
update of the CR.

Count cntlzw rArS A count of the number of consecutive zero bits starting at bit 0 of rS is placed
Leading cntlzw. into rA. This number ranges from 0 to 32, inclusive.
Zeros Word If Rc = 1 (dot suffix), LT is cleared in CRO.

cntlzw Count Leading Zeros Word
cntlzw. Count Leading Zeros Word with CR Update. The dot suffix enables
the update of the CR.

4.2.1.4 Integer Rotate and Shift Instructions

Rotation operations are performed on data from a GPR, and the result, or a portion of the
result, is returned to a GPR. The rotation operations rotate a 32-bit quantity left by a
specified number of bit positions. Bits that exit from position O enter at position 31.

The rotate and shift instructions employ a mask generator. The mask is 32 bits long and
consists of ‘1’ bitsfrom a start bit, Mstart, through and including a stop bit, Mstop, and ‘0’
bits elsewhere. The values of Mstart and Mstop range from 0 to 31. If Mstart > Mstop, the
‘1’ bitswrap around from position 31 to position 0. Thus the mask is formed as follows:

If Mstart < Mstop then

mask[ mstart—mstop] = ones
mask[all other bits] = zeros
else

mask[mstart—31] = ones
mask[O0—mstop] = ones
mask[all other bits] = zeros

It is not possible to specify an all-zero mask. The use of the mask is described in the
following sections.

If CR updating is enabled, rotate and shift instructions set CR0[0-2] according to the
contents of rA at the completion of the instruction. Rotate and shift instructions do not
change the values of XER[OV] and XER[SO] bits. Rotate and shift instructions, except
algebraic right shifts, do not change the XER[CA] bit.

See Appendix F, “ Simplified Mnemonics,” for acompletelist of ssimplified mnemonicsthat
allows ssmpler coding of often-used functions such as clearing the leftmost or rightmost
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bits of aregister, left justifying or right justifying an arbitrary field, and simple rotates and
shifts.

4.2.1.4.1 Integer Rotate Instructions

Integer rotate instructions rotate the contents of aregister. Theresult of therotation iseither
inserted into the target register under control of amask (if amask bit is 1 the associated bit
of the rotated data is placed into the target register, and if the mask bit is O the associated
bit in the target register is unchanged), or ANDed with a mask before being placed into the
target register.

Rotate |eft instructions allow right-rotation of the contents of aregister to be performed by
aleft-rotation of 64 —n, where nisthe number of bits by which to rotateright. It also allows
right-rotation of the contents of the low-order 32 bits of a register to be performed by a
|eft-rotation of 32 —n, where n is the number of bits by which to rotate right.

The integer rotate instructions are summarized in Table 4-4.

Table 4-4. Integer Rotate Instructions

Name Mnemonic Syntax Operation
Rotate Left riwinm rA,rS,SH,MB,ME | The contents of register rS are rotated left by the number of bits
Word riwinm. specified by operand SH. A mask is generated having 1 bits from
Immediate the bit specified by operand MB through the bit specified by
then AND with operand ME and 0 bits elsewhere. The rotated data is ANDed with
Mask the generated mask and the result is placed into register rA.

rlwinm Rotate Left Word Immediate then AND with Mask
rlwinm. Rotate Left Word Immediate then AND with Mask with
CR Update. The dot suffix enables the update of the

CR.
Rotate Left rlwnm rArS,rB,MB,ME | The contents of rS are rotated left by the number of bits specified
Word then rlwnm. by operand in the low-order five bits of rB. A mask is generated
AND with having 1 bits from the bit specified by operand MB through the bit
Mask specified by operand ME and 0 bits elsewhere. The rotated word is

ANDed with the generated mask and the result is placed into rA.

rlwnm Rotate Left Word then AND with Mask

riwnm.  Rotate Left Word then AND with Mask with CR Update.
The dot suffix enables the update of the CR.

Rotate Left rlwimi rA,rS,SH,MB,ME | The contents of rS are rotated left by the number of bits specified
Word riwimi. by operand SH. A mask is generated having 1 bits from the bit
Immediate specified by operand MB through the bit specified by operand ME
then Mask and 0 bits elsewhere. The rotated word is inserted into rA under
Insert control of the generated mask.

rlwimi Rotate Left Word Immediate then Mask

rlwimi. Rotate Left Word Immediate then Mask Insert with CR

Update. The dot suffix enables the update of the CR.

4.2.1.4.2 Integer Shift Instructions

The integer shift instructions perform left and right shifts. Immediate-form logical
(unsigned) shift operations are obtained by specifying masks and shift values for certain
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rotate instructions. Simplified mnemonics (shown in Appendix F, “Simplified
Mnemonics’) are provided to make coding of such shifts simpler and easier to understand.

Any shift right algebraic instruction, followed by addze, can be used to divide quickly by
2". The setting of XER[CA] by the shift right algebraic instruction isindependent of mode.

Multiple-precision shifts can be programmed as shown in Appendix C, “Multiple-Precision
Shifts”

The integer shift instructions are summarized in Table 4-5.

Table 4-5. Integer Shift Instructions

Name Mnemonic | Syntax Operation
Shift Left slw rArS,rB The contents of rS are shifted left the number of bits specified by operand in
Word slw. the low-order six bits of rB. Bits shifted out of position 0 are lost. Zeros are
supplied to the vacated positions on the right. The 32-bit result is placed into
rA.
slw Shift Left Word
slw. Shift Left Word with CR Update. The dot suffix enables the update
of the CR.
Shift Right srw rArS,rB The contents of rS are shifted right the number of bits specified by the
Word Srw. low-order 6 rB bits. Bits shifted out of position 31 are lost. Zeros are supplied
to the vacated positions on the left. The 32-bit result is placed into rA.
Srw Shift Right Word
Srw. Shift Right Word with CR Update. The dot suffix enables the
update of the CR.
Shift Right srawi rA,rS,SH | The contents of rS are shifted right the number of bits specified by operand
Algebraic srawi. SH. Bits shifted out of position 31are lost. The result is sign extended and
Word placed into rA.
Immediate srawi Shift Right Algebraic Word Immediate

srawi. Shift Right Algebraic Word Immediate with CR Update. The dot
suffix enables the update of the CR.

Shift Right sraw rArS,rB The contents of rS are shifted right the number of bits specified by the
Algebraic sraw. low-order six bits of rB. Bits shifted out of position 31 are lost. The result is
Word placed into rA.

sraw Shift Right Algebraic Word
sraw. Shift Right Algebraic Word with CR Update. The dot suffix
enables the update of the CR.

4.2.2 Floating-Point Instructions

This section describes the floating-point instructions, which include the following:
» Floating-point arithmetic instructions
» Floating-point multiply-add instructions
» Foating-point rounding and conversion instructions
» Floating-point compare instructions
» Floating-point status and control register instructions
» Floating-point move instructions
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Note that MSR[FP] must be set in order for any of these instructions (including the
floating-point loads and stores) to be executed. If MSR[FP] = 0 when any floating-point
instruction is attempted, the floating-point unavailable exception is taken (see
Section 6.4.8, “Floating-Point Unavailable Exception (0x00800)"). See Section 4.2.3,
“Load and Store Instructions,” for information about floating-point loads and stores.

The architecture supports the |IEEE-754 floating-point standard, but requires software
support to conform with that standard. Floating-point operations conform to the standard,
except for operations performed with the fmadd, fres, fsel, and frsgrte instructions, or if
software sets the non-IEEE mode bit, FPSCR[NI]. Section 3.3, “Floating-Point Execution
Models—UISA,” givesdetail ed information about the floating-point formats and exception
conditions. Also, see Appendix D, “Floating-Point Models.”

4.2.2.1 Floating-Point Arithmetic Instructions

The floating-point arithmetic instructions are summarized in Table 4-6.

Table 4-6. Floating-Point Arithmetic Instructions

Name Mnemonic Syntax Operation
Floating fadd frD,frA,frB The floating-point operand in frA is added to the floating-point operand in
Add fadd. frB. If the most significant bit of the resultant significand is not a one the
(Double- result is normalized. The result is rounded to the target precision under
Precision) control of the floating-point rounding control field RN of the FPSCR and
placed into frD.
fadd Floating Add (Double-Precision)
fadd. Floating Add (Double-Precision) with CR Update. The dot suffix
enables the update of the CR.
Floating fadds frD,frA,frB The floating-point operand in frA is added to the floating-point operand in
Add Single |fadds. frB. If the most significant bit of the resultant significand is not a one, the
result is normalized. The result is rounded to the target precision under
control of the floating-point rounding control field RN of the FPSCR and
placed into frD.
fadds Floating Add Single
fadds. Floating Add Single with CR Update. The dot suffix enables the
update of the CR.
Floating fsub frD,frA,frB The floating-point operand in frB is subtracted from the floating-point
Subtract fsub. operand in frA. If the most significant bit of the resultant significand is not 1,
(Double- the result is normalized. The result is rounded to the target precision under
Precision) control of the floating-point rounding control field RN of the FPSCR and
placed into frD.
fsub Floating Subtract (Double-Precision)
fsub. Floating Subtract (Double-Precision) with CR Update. The dot
suffix enables the update of the CR.
Floating fsubs frD,frA,frB The floating-point operand in frB is subtracted from the floating-point
Subtract fsubs. operand in frA. If the most significant bit of the resultant significand is not 1,
Single the result is normalized. The result is rounded to the target precision under
control of the floating-point rounding control field RN of the FPSCR and
placed into frD.
fsubs Floating Subtract Single
fsubs. Floating Subtract Single with CR Update. The dot suffix enables
the update of the CR.
4-20 Programming Environments Manual for 32-Bit Microprocessors MOTOROLA



UISA Instructions

Table 4-6. Floating-Point Arithmetic Instructions (continued)

Name Mnemonic Syntax Operation
Floating fmul frD,frAfrC The floating-point operand in frA is multiplied by the floating-point operand
Multiply fmul. in frC.
(Double- fmul Floating Multiply (Double-Precision)
Precision) fmul. Floating Multiply (Double-Precision) with CR Update. The dot
suffix enables the update of the CR.
Floating fmuls frD,frAfrC The floating-point operand in frA is multiplied by the floating-point operand
Multiply fmuls. in frC.
Single fmuls Floating Multiply Single
fmuls. Floating Multiply Single with CR Update. The dot suffix enables
the update of the CR.
Floating fdiv frD,frA,frB The floating-point operand in frA is divided by the floating-point operand in
Divide fdiv. frB. No remainder is preserved.
(Double- fdiv Floating Divide (Double-Precision)
Precision) fdiv. Floating Divide (Double-Precision) with CR Update. The dot
suffix enables the update of the CR.
Floating fdivs frD,frA,frB The floating-point operand in frA is divided by the floating-point operand in
Divide fdivs. frB. No remainder is preserved.
Single fdivs Floating Divide Single
fdivs. Floating Divide Single with CR Update. The dot suffix enables
the update of the CR.
Floating fsqrt frD,frB The square root of the floating-point operand in frB is placed into frD.
Square fsqrt. fsqrt Floating Square Root (Double-Precision)
Root fsqrt. Floating Square Root (Double-Precision) with CR Update. The
(Double- dot suffix enables the update of the CR.
Precision) This instruction is optional.
Floating fsqrts frD,frB The square root of the floating-point operand in frB is placed into frD.
Square fsqrts. fsqrts Floating Square Root Single
Root fsqrts. Floating Square Root Single with CR Update. The dot suffix
Single enables the update of the CR.
This instruction is optional.
Floating fres frD,frB A single-precision estimate of the reciprocal of the floating-point operand in
Reciprocal |fres. frB is placed into frD. The estimate placed into frD is correct to a precision
Estimate of one part in 256 of the reciprocal of frB.
Single fres Floating Reciprocal Estimate Single
fres. Floating Reciprocal Estimate Single with CR Update. The dot
suffix enables the update of the CR.
This instruction is optional.
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Table 4-6. Floating-Point Arithmetic Instructions (continued)

Name Mnemonic Syntax Operation
Floating frsqrte frD,frB A double-precision estimate of the reciprocal of the square root of the
Reciprocal |frsqrte. floating-point operand in frB is placed into frD. The estimate placed into frD
Square is correct to a precision of one part in 32 of the reciprocal of the square root
Root of frB.
Estimate frsqrte  Floating Reciprocal Square Root Estimate

frsqrte.  Floating Reciprocal Square Root estimate with CR Update. The
dot suffix enables the update of the CR.
This instruction is optional.

Floating fsel frD,frA,frC,frB | The floating-point operand in frA is compared to the value zero. If the
Select operand is greater than or equal to zero, frD is set to the contents of frC. If
the operand is less than zero or is a NaN, frD is set to the contents of frB.
The comparison ignores the sign of zero (that is, regards +0 as equal to -0).
fsel Floating Select

fsel. Floating Select with CR Update. The dot suffix enables the

update of the CR.
This instruction is optional.

4.2.2.2 Floating-Point Multiply-Add Instructions

These instructions combine multiply and add operations without an intermediate rounding
operation. The fractional part of the intermediate product is 106 bits wide, and all 106 bits
take part in the add/subtract portion of the instruction.

Status bits are set as follows:

» Overflow, underflow, and inexact exception bits, FPSCR[FR,FI,FPRF] are set based
on the final result of the operation and not on the result of the multiplication.

* Invalid operation exception bits are set asif the multiplication and the addition were
performed using two separate instructions (fmuls, followed by faddsor fsubs). That
is, multiplication of infinity by zero or of anything by an SNaN, and/or addition of
an SNaN, cause the corresponding exception bits to be set.

The floating-point multiply-add instructions are summarized in Table 4-7.
Table 4-7. Floating-Point Multiply-Add Instructions

Name | Mnemonic Syntax Operation
Floating fmadd frD,frA,frC,frB | The floating-point operand in frA is multiplied by the floating-point operand in
Multiply- | fmadd. frC. The floating-point operand in frB is added to this intermediate result.
Add fmadd Floating Multiply-Add (Double-Precision)
(Double- fmadd. Floating Multiply-Add (Double-Precision) with CR Update. The
Precision) dot suffix enables the update of the CR.

Floating fmadds frD,frAfrC,frB | The floating-point operand in frA is multiplied by the floating-point operand in

Multiply- | fmadds. frC. The floating-point operand in frB is added to this intermediate result.
Add fmadds Floating Multiply-Add Single
Single fmadds. Floating Multiply-Add Single with CR Update. The dot suffix

enables the update of the CR.
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Table 4-7. Floating-Point Multiply-Add Instructions (continued)

Name | Mnemonic Syntax Operation
Floating fmsub frD,frA,frC,frB | The floating-point operand in frA is multiplied by the floating-point operand in
Multiply- | fmsub. frC. The floating-point operand in frB is subtracted from this intermediate
Subtract result.
(Double- fmsub Floating Multiply-Subtract (Double-Precision)
Precision) fmsub.  Floating Multiply-Subtract (Double-Precision) with CR Update.
The dot suffix enables the update of the CR.

Floating fmsubs frD,frAfrC,frB | The floating-point operand in frA is multiplied by the floating-point operand in
Multiply- | fmsubs. frC. The floating-point operand in frB is subtracted from this intermediate
Subtract result.
Single fmsubs Floating Multiply-Subtract Single

fmsubs. Floating Multiply-Subtract Single with CR Update. The dot suffix

enables the update of the CR.

Floating fnmadd frD,frAfrC,frB | The floating-point operand in frA is multiplied by the floating-point operand in
Negative |fnmadd. frC. The floating-point operand in frB is added to this intermediate result.
Multiply- fnmadd Floating Negative Multiply-Add (Double-Precision)
Add fnmadd. Floating Negative Multiply-Add (Double-Precision) with CR
(Double- Update. The dot suffix enables update of the CR.
Precision)
Floating fnmadds |frD,frA,frC,frB | The floating-point operand in frA is multiplied by the floating-point operand in
Negative |fnmadds. frC. The floating-point operand in frB is added to this intermediate result.
Multiply- fnmadds Floating Negative Multiply-Add Single
Add fnmadds. Floating Negative Multiply-Add Single with CR Update. The dot
Single suffix enables the update of the CR.
Floating fnmsub frD,frA,frC,frB | The floating-point operand in frA is multiplied by the floating-point operand in
Negative |fnmsub. frC. The floating-point operand in frB is subtracted from this intermediate
Multiply- result.
Subtract fnmsub  Floating Negative Multiply-Subtract (Double-Precision)
(Double- fnmsub. Floating Negative Multiply-Subtract (Double-Precision) with CR
Precision) Update. The dot suffix enables the update of the CR.
Floating fnmsubs |frD,frAfrC,frB | The floating-point operand in frA is multiplied by the floating-point operand in
Negative |fnmsubs. frC. The floating-point operand in frB is subtracted from this intermediate
Multiply- result.
Subtract fnmsubs Floating Negative Multiply-Subtract Single
Single fnmsubs. Floating Negative Multiply-Subtract Single with CR Update. The

dot suffix enables the update of the CR.

For more information on multiply-add instructions, refer to Section D.2, “Multiply-Add
Type Instruction Execution Model.”

4.2.2.3 Floating-Point Rounding and Conversion Instructions

The Floating Round to Single-Precision (frsp) instruction is used to truncate a 64-bit
double-precison number to a 32-bit single-precision floating-point number. The
floating-point convert instructions convert a 64-bit double-precision floating-point number
to a 32-bit signed integer number.
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The architecture defines frD[0-31] as undefined when executing the Floating Convert to
Integer Word (fctiw) and Floating Convert to Integer Word with Round toward Zero
(fctiwz) instructions. Floating-point rounding instructions are described in Table 4-8.

Examples of uses of these instructions to perform various conversions can be found in
Appendix D, “Floating-Point Models”

Table 4-8. Floating-Point Rounding and Conversion Instructions

Name Mnemonic | Syntax Operation

Floating Round |frsp frD,frB The floating-point operand in frB is rounded to single-precision using the

to Single- frsp. rounding mode specified by FPSCR[RN] and placed into frD.

Precision frsp Floating Round to Single-Precision
frsp. Floating Round to Single-Precision with CR Update. The dot

suffix enables the update of the CR.

Floating Convert | fctiw frD,frB The floating-point operand in frB is converted to a 32-bit signed integer, using

to Integer Word | fctiw. the rounding mode specified by FPSCR[RN], and placed in the low-order 32
bits of frD. Bits 0-31 of frD are undefined.
fctiw Floating Convert to Integer Word

fctiw. Floating Convert to Integer Word with CR Update. The dot suffix
enables the update of the CR.

Floating Convert | fctiwz frD,frB The floating-point operand in frB is converted to a 32-bit signed integer, using
to Integer Word | fctiwz. the rounding mode Round toward Zero, and placed in the low-order 32 bits
with Round of frD. Bits 0-31 of frD are undefined.

toward Zero fctiwz Floating Convert to Integer Word with Round toward Zero

fctiwz. Floating Convert to Integer Word with Round toward Zero with
CR Update. The dot suffix enables the update of the CR.

4.2.2.4 Floating-Point Compare Instructions

Floating-point compare instructions compare the contents of two FPRs and the comparison
ignoresthe sign of zero (that is+0 = —0). The comparison can be ordered or unordered. The
comparison setsonebit in the designated CR field and clearsthe other three bits. The FPCC
(floating-point condition code) FPSCD[16-19] is set in the same way.

The CR field and the FPCC are interpreted as shown in Table 4-9.
Table 4-9. CR Bit Settings

Bit Name Description
0 FL (frA) < (frB)
1 FG (frA) > (frB)
2 FE (frA) = (frB)
3 FU (frA) ? (frB) (unordered)

The floating-point compare instructions are summarized in Table 4-10.
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Table 4-10. Floating-Point Compare Instructions

Name Mnemonic Syntax Operation
Floating fcmpu crfD,frAfrB | The floating-point operand in frA is compared to the floating-point operand
Compare in frB. The result of the compare is placed into crfD and the FPCC.
Unordered
Floating fcmpo crfD,frA,frB | The floating-point operand in frA is compared to the floating-point operand
Compare in frB. The result of the compare is placed into crfD and the FPCC.
Ordered

4.2.2.5 Floating-Point Status and Control Register Instructions

Every FPSCR instruction appears to synchronize the effects of all floating-point
Instructions executed by agiven processor. Executing an FPSCR instruction ensuresthat all
floating-point instructions previoudly initiated by the given processor appear to have
completed before the FPSCR instruction is initiated and that no subsequent floati ng-point
instructions appear to be initiated by the given processor until the FPSCR instruction has
completed. In particular:

» All exceptions caused by the previoudly initiated instructions are recorded in the
FPSCR before the FPSCR instruction is initiated.

» All invocations of the floating-point exception handler caused by the previously
initiated instructions have occurred before the FPSCR instruction is initiated.

* No subsequent floating-point instruction that depends on or altersthe settings of any
FPSCR bits appears to be initiated until the FPSCR instruction has compl eted.

Floating-point memory access instructions are not affected by the execution of the FPSCR

instructions.

The FPSCR instructions are summarized in Table 4-11.
Table 4-11. Floating-Point Status and Control Register Instructions

Name Mnemonic Syntax Operation
Move from mffs frD The contents of the FPSCR are placed into bits 32—63 of frD. frD[0-31] are
FPSCR mffs. undefined.
mffs Move from FPSCR
mffs. Move from FPSCR with CR Update. The dot suffix enables the
update of the CR.
Move to mcrfs crfD,crfS The contents of FPSCR field specified by operand crfS are copied to the
Condition CR field specified by operand crfD. All exception bits copied (except FEX
Register from and VX) are cleared in the FPSCR.
FPSCR
Move to mtfsfi crfD,IMM The contents of the IMM field are placed into FPSCR field crfD. The
FPSCR Field | mtfsfi. contents of FPSCR[FX] are altered only if crfD = 0.
Immediate mtfsfi Move to FPSCR Field Immediate
mtfsfi. Move to FPSCR Field Immediate with CR Update. The dot
suffix enables the update of the CR.
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Table 4-11. Floating-Point Status and Control Register Instructions (continued)

Name Mnemonic Syntax Operation
Move to mtfsf FM,frB Bits 32—63 of frB are placed into the FPSCR under control of the field mask
FPSCR Fields | mtfsf. specified by FM. The field mask identifies the 4-bit fields affected. Let i be

an integer in the range 0-7. If FM[i] = 1, FPSCR field i (FPSCR bits 403

through 404+3) is set to the contents of the corresponding field of the

low-order 32 bits of frB.

The contents of FPSCR[FX] are altered only if FM[0] = 1.

mtfsf Move to FPSCR Fields

mtfsf. Move to FPSCR Fields with CR Update. The dot suffix enables
the update of the CR.

Move to mtfsb0 crbD The FPSCR bit location specified by operand crbD is cleared.

FPSCR Bit0 | mtfshO. Bits 1 and 2 (FEX and VX) cannot be reset explicitly.

mtfsb0 Move to FPSCR Bit 0

mtfsb0. Move to FPSCR Bit 0 with CR Update. The dot suffix enables
the update of the CR.

Move to mtfsbl crbD The FPSCR bit location specified by operand crbD is set.

FPSCR Bit1 |mtfsbl. Bits 1 and 2 (FEX and VX) cannot be set explicitly.

mtfsbl  Move to FPSCR Bit 1

mtfsbl. Move to FPSCR Bit 1 with CR Update. The dot suffix enables
the update of the CR.

4.2.2.6 Floating-Point Move Instructions

Floating-point move instructions copy data from one FPR to another, altering the sign bit
(bit 0) asdescribed for the fneg, fabs, and fnabsinstructionsin Table 4-12; fneg, fabs, and
fnabs may ater the sign bit of a NaN. Floating-point move instructions do not modify the
FPSCR. The CR update option in these instructions controlsthe placing of result statusinto
CR1. If the CR update option is enabled, CR1 is set; otherwise, CR1 is unchanged.

Table 4-12 provides a summary of the floating-point move instructions.

Table 4-12. Floating-Point Move Instructions

Name | Mnemonic Syntax Operation
Floating |fmr frD,frB The contents of frB are placed into frD.
Move fmr. fmr Floating Move Register
Register fmr. Floating Move Register with CR Update. The dot suffix

enables the update of the CR.
Floating |fneg frD,frB The contents of frB with bit O inverted are placed into frD.
Negate fneg. fneg Floating Negate
fneg. Floating Negate with CR Update. The dot suffix enables the

update of the CR.
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Table 4-12. Floating-Point Move Instructions (continued)

Floating |fabs frD,frB The contents of frB with bit O cleared are placed into frD.

Absolute | fabs. fabs Floating Absolute Value

Value fabs. Floating Absolute Value with CR Update. The dot suffix
enables the update of the CR.

Floating fnabs frD,frB The contents of frB with bit 0 set are placed into frD.

Negative |fnabs. fnabs Floating Negative Absolute Value

Absolute fnabs. Floating Negative Absolute Value with CR Update. The dot

Value suffix enables the update of the CR.

4.2.3 Load and Store Instructions

Load and store instructions are issued and translated in program order; however, the
accesses can occur out of order. Synchronizing instructions are provided to enforce strict
ordering. This section describes the load and store instructions, which consist of the
following:

* Integer load instructions

* Integer storeinstructions

* Integer load and store with byte-reverse instructions
* Integer load and store multiple instructions

* Foating-point load instructions

» Floating-point store instructions

» Memory synchronization instructions

4.2.3.1 Integer Load and Store Address Generation

Integer load and store operations generate effective addresses using register indirect with
immediate index mode, register indirect with index mode, or register indirect mode. See
Section 4.1.4.2, “Effective Address Calculation,” for information about calculating
effective addresses. Note that in some implementations, operations that are not naturally
aigned may suffer performance degradation. Section 6.4.6.1, “Integer Alignment
Exceptions,” gives additional information about load and store address alignment
exceptions.

4.2.3.1.1 Register Indirect with Immediate Index Addressing for Integer
Loads and Stores

Instructions using this addressing mode contain a signed 16-bit immediate index
(d operand) which is sign extended, and added to the contents of a general-purpose register
specified in theinstruction (r A operand) to generate the effective address. If ther A field of
the instruction specifiesr0, avalue of zero is added to the immediate index (d operand) in
place of the contents of r0. The option to specify rA or 0 is shown in the instruction
descriptions as (rA|0).
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Figure 4-1 shows how an effective address is generated when using register indirect with
Immediate index addressing.

0 56 1011 15 16 31

Instruction Encoding: | opcode | roirs | A d
0 15 16 v 31

Sign Extension d

/

\
-(F
No
0 31 J 0 31

GPR (rA) Effective Address

Y

Store Memory
GPR (rDI/rS) Load Interface

-
-

Figure 4-1. Register Indirect with Immediate Index Addressing for Integer
Loads/Stores

4.2.3.1.2 Register Indirect with Index Addressing for Integer Loads and
Stores

I nstructions using this addressing mode cause the contents of two general-purpose registers
(specified as operandsr A and r B) to be added in the generation of the effective address. A
zero in place of the rA operand causes a zero to be added to the contents of the
general-purpose register specified in operand rB (or the value zero for Iswi and stswi
instructions). The option to specify rA or 0 is shown in the instruction descriptions as
(rAJ0).

Figure 4-2 shows how an effective address is generated when using register indirect with
index addressing.
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) _ 0 56 1011 1516 2021 30 31
[[] Reserved Instruction Encoding: Opcode | rDFS| rA rB | Subopcode |0
0 v 31
GPR (rB)
Yes n
~(F
No
0 31J 0 31
GPR (rA) Effective Address
Y
0 31
Store »| Memory
GPR (rDIrS) B Load Interface

Figure 4-2. Register Indirect with Index Addressing for Integer Loads/Stores

4.2.3.1.3 Register Indirect Addressing for Integer Loads and Stores

Instructions using this addressing mode use the contents of the GPR specified by the rA
operand as the effective address. A zero in the r A operand causes an effective address of
zero to be generated. The option to specify r A or 0 is shown in the instruction descriptions
as (rA|0).

Figure 4-3 shows how an effective address is generated when using register indirect
addressing.
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0 56 1011 1516 2021 30 31
[] Reserved Instruction Encoding: | opcode | rors| ra | NB | Subopcode |0
1
Yes 0 3
rA=07? »00000000000000000000000000000000¢
No
0 31
GPR (rA)
0 Y 31
> Effective Address
Y
0 31 Store »| Memory
GPR (rD/rS) B Load Interface

Figure 4-3. Register Indirect Addressing for Integer Loads/Stores

4.2.3.2 Integer Load Instructions

For integer load instructions, the byte, half word, word, or double word addressed by the
EA (effective address) is loaded into rD. Many integer load instructions have an update
form, inwhichrA is updated with the generated effective address. For these forms, if rA #
OandrA #rD (otherwiseinvalid), the EA isplaced into r A and the memory element (byte,
half word, word, or double word) addressed by the EA is loaded into rD. Note that the
architecture defines load with update instructions with operand rA = 0 or rA=rD as
invalid forms.

The default byte and bit ordering is big-endian in the architecture; see Section 3.1.2, “Byte
Ordering,” for information about little-endian byte ordering.

Note that in some implementations of the architecture, the load word algebraic instructions
(Iha, Ihax, lwa, lwax) and the load with update (Ibzu, Ibzux, Ihzu, Ihzux, Ihau, Ihaux,
lwaux, |du, ldux) instructions may execute with greater latency than other types of load
instructions. Moreover, the load with update instructions may take longer to execute in
some implementations than the corresponding pair of a nonupdate |oad followed by an add
instruction.
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Table 4-13 summarizes the integer load instructions.
Table 4-13. Integer Load Instructions

Name Mnemonic | Syntax Operation

Load Byte and |Ibz rD,d(rA) |The EA is the sum (rA|O) + d. The byte in memory addressed by the EA is

Zero loaded into the low-order eight bits of rD. The remaining bits in rD are cleared.

Load Byte and |Ibzx rD,rA,rB | The EA is the sum (rA|0) + (rB). The byte in memory addressed by the EA is

Zero Indexed loaded into the low-order eight bits of rD. The remaining bits in rD are cleared.

Load Byte and |lbzu rD,d(rA) |The EA is the sum (rA) + d. The byte in memory addressed by the EA is

Zero with loaded into the low-order eight bits of rD. The remaining bits in rD are cleared.

Update The EA is placed into rA.

Load Byte and |Ibzux rD,rA,rB | The EA is the sum (rA) + (rB). The byte in memory addressed by the EA is

Zero with loaded into the low-order eight bits of rD. The remaining bits in rD are cleared.

Update Indexed The EA is placed into rA.

Load Half Word |Ihz rD,d(rA) |The EA is the sum (rA|0) + d. The half word in memory addressed by the EA

and Zero is loaded into the low-order 16 bits of rD. The remaining bits in rD are cleared.

Load Half Word | lhzx rD,rA,rB | The EA is the sum (rA|O) + (rB). The half word in memory addressed by the

and Zero EA is loaded into the low-order 16 bits of rD. The remaining bits in rD are

Indexed cleared.

Load Half Word | Ihzu rD,d(rA) |The EA is the sum (rA) + d. The half word in memory addressed by the EA is

and Zero with loaded into the low-order 16 bits of rD. The remaining bits in rD are cleared.

Update The EA is placed into rA.

Load Half Word | Ihzux rD,rA,rB | The EAis the sum (rA) + (rB). The half word in memory addressed by the EA

and Zero with is loaded into the low-order 16 bits of rD. The remaining bits in rD are cleared.

Update Indexed The EA is placed into rA.

Load Half Word | Iha rD,d(rA) |The EA is the sum (rA|0) + d. The half word in memory addressed by the EA

Algebraic is loaded into the low-order 16 bits of rD. The remaining bits in rD are filled
with a copy of the most significant bit of the loaded half word.

Load Half Word | Ihax rD,rA,rB | The EA is the sum (rA|O) + (rB). The half word in memory addressed by the

Algebraic EA is loaded into the low-order 16 bits of rD. The remaining bits in rD are filled

Indexed with a copy of the most significant bit of the loaded half word.

Load Half Word | Ihau rD,d(rA) | The EA is the sum (rA) + d. The half word in memory addressed by the EA is

Algebraic with loaded into the low-order 16 bits of rD. The remaining bits in rD are filled with

Update a copy of the most significant bit of the loaded half word. The EA is placed into
rA.

Load Half Word | lhaux rD,rA,rB | The EA is the sum (rA) + (rB). The half word in memory addressed by the EA

Algebraic with is loaded into the low-order 16 bits of rD. The remaining bits in rD are filled

Update Indexed with a copy of the most significant bit of the loaded half word. The EA is placed
into rA.

Load Word and |Iwz rD,d(rA) |The EAis the sum (rA|0) + d. The word in memory addressed by the EA is

Zero loaded into rD.

Load Word and | Ilwzx rD,rA,rB | The EA is the sum (rA|0) + (rB). The word in memory addressed by the EA is

Zero Indexed

loaded into rD.
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Table 4-13. Integer Load Instructions (continued)

Name Mnemonic | Syntax Operation
Load Word and |Iwzu rD,d(rA) |The EA is the sum (rA) + d. The word in memory addressed by the EA is
Zero with loaded into rD. The EA is placed into rA.
Update
Load Word and | lwzux rD,rA,rB | The EA is the sum (rA) + (rB). The word in memory addressed by the EA is
Zero with loaded into rD. The EA is placed into rA.
Update Indexed

4.2.3.3 Integer Store Instructions

For integer storeinstructions, the contents of r S are stored into the byte, half word, word or
double word in memory addressed by the EA (effective address). Many store instructions
have an update form, in which r A is updated with the EA. For these forms, the following

rules apply:
» IfrA #£0, the effective addressis placed into rA.

* |frS=rA, thecontentsof register r Sare copied to the target memory element, then
the generated EA isplaced intorA (rS).

In general, the architecture defines a sequential execution model. However, when a store
instruction modifies a location that contains an instruction, software synchronization is
required to ensure that subsequent instruction fetches from that location obtain the modified
version of theinstruction.

If a program modifies the instructions it intends to execute, it should call the appropriate
system library program before attempting to execute the modified instructions to ensure
that the modifications have taken effect with respect to instruction fetching.

The architecture defines store with update instructions with rA = 0 as an invalid form. In
addition, it defines integer store instructions with the CR update option enabled (Rc field,
bit 31, in the instruction encoding = 1) to be an invalid form. Table 4-14 provides a
summary of the integer store instructions.

Table 4-14. Integer Store Instructions

Name Mnemonic | Syntax Operation

Store Byte stb rS,d(rA) | The EA is the sum (rA|0) + d. The contents of the low-order eight bits
of rS are stored into the byte in memory addressed by the EA.

Store Byte Indexed |sthx rS,rA,rB | The EA is the sum (rA|0) + (rB). The contents of the low-order eight
bits of rS are stored into the byte in memory addressed by the EA.

Store Byte with stbu rS,d(rA) | The EA is the sum (rA) + d. The contents of the low-order eight bits of

Update rS are stored into the byte in memory addressed by the EA. The EA is
placed into rA.

Store Byte with stbux rS,rA,rB | The EA is the sum (rA) + (rB). The contents of the low-order eight bits

Update Indexed of rS are stored into the byte in memory addressed by the EA. The EA

is placed into rA.
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Table 4-14. Integer Store Instructions (continued)

Name Mnemonic | Syntax Operation

Store Half Word sth rS,d(rA) | The EA is the sum (rA|0) + d. The contents of the low-order 16 bits of
rS are stored into the half word in memory addressed by the EA.

Store Half Word sthx rS,rArB | The EA is the sum (rA|0) + (rB). The contents of the low-order 16 bits

Indexed of rS are stored into the half word in memory addressed by the EA.

Store Half Word with | sthu rS,d(rA) | The EAis the sum (rA) + d. The contents of the low-order 16 bits of rS

Update are stored into the half word in memory addressed by the EA. The EA
is placed into rA.

Store Half Word with | sthux rS,rA,rB | The EAis the sum (rA) + (rB). The contents of the low-order 16 bits of

Update Indexed rS are stored into the half word in memory addressed by the EA. The
EA is placed into rA.

Store Word stw rS,d(rA) | The EA is the sum (rA|O) + d. The contents of rS are stored into the
word in memory addressed by the EA.

Store Word Indexed | stwx rS,rArB | The EA is the sum (rA|0) + (rB). The contents of rS are stored into the
word in memory addressed by the EA.

Store Word with stwu rS,d(rA) | The EAisthe sum (rA) + d. The contents of rS are stored into the word

Update in memory addressed by the EA. The EA is placed into rA.

Store Word with stwux rS,rA,rB | The EA is the sum (rA) + (rB). The contents of rS are stored into the

Update Indexed word in memory addressed by the EA. The EA is placed into rA.

4.2.3.4

Integer Load and Store with Byte-Reverse Instructions

Table 4-15 describes integer load and store with byte-reverse instructions. Note that in
some implementations, load byte-reverse instructions may have greater latency than other

load instructions.

When used in a system operating with the default big-endian byte order, these instructions
have the effect of loading and storing datain little-endian order. Likewise, when used in a
system operating with little-endian byte order, these instructions have the effect of loading
and storing data in big-endian order. For more information about big-endian and
little-endian byte ordering, see Section 3.1.2, “Byte Ordering.”

Table 4-15. Integer Load and Store with Byte-Reverse Instructions

Name Mnemonic | Syntax Operation

Load Half |lhbrx rD,rA,rB | The EA is the sum (rA|0) + (rB). The high-order eight bits of the half word

Word Byte- addressed by the EA are loaded into the low-order eight bits of rD. The next eight

Reverse higher-order bits of the half word in memory addressed by the EA are loaded into

Indexed the next eight lower-order bits of rD. The remaining rD bits are cleared.

Load Word | Iwbrx rD,rA,rB | The EAis the sum (rA|0) + (rB). Bits 0—7 of the word in memory addressed by the

Byte- EA are loaded into the low-order eight bits of rD. Bits 8—15 of the word in memory

Reverse addressed by the EA are loaded into bits 16—23 of rD. Bits 16—-23 of the word in

Indexed memory addressed by the EA are loaded into bits 8-15. Bits 24-31 of the word
in memory addressed by the EA are loaded into bits 0—7. The remaining bits in rD
are cleared.
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Table 4-15. Integer Load and Store with Byte-Reverse Instructions (continued)

Name Mnemonic | Syntax Operation

Store Half |sthbrx rS,rA,rB | The EA is the sum (rA|0) + (rB). The contents of the low-order eight bits of rS are

Word Byte- stored into the high-order eight bits of the half word in memory addressed by the

Reverse EA. The contents of the next lower-order eight bits of rS are stored into the next

Indexed eight higher-order bits of the half word in memory addressed by the EA.

StoreWord | stwbrx rS,rA,rB | The effective address is the sum (rA|0) + (rB). The contents of the low-order eight

Byte- bits of rS are stored into bits 0-7 of the word in memory addressed by EA. The

Reverse contents of the next eight lower-order bits of rS are stored into bits 8-15 of the

Indexed word in memory addressed by the EA. The contents of the next eight lower-order
bits of rS are stored into bits 16—23 of the word in memory addressed by the EA.
The contents of the next eight lower-order bits of rS are stored into bits 24-31 of
the word addressed by the EA.

4.2.3.5 Integer Load and Store Multiple Instructions

The load/store multiple instructions are used to move blocks of datato and from the GPRs.
The load multiple and store multiple instructions may have operands that require memory
accesses crossing a 4-Kbyte page boundary. As a result, these instructions may be
interrupted by a DSI exception associated with the address trandlation of the second page.
Table 4-16 summarizes the integer load and store multiple instructions.

In the load/store multiple instructions, the combination of the EA and rD (rS) is such that
the low-order byte of GPR31 isloaded from or stored into the last byte of an aligned quad
word in memory; if the effective address is not correctly aligned, it may take significantly
longer to execute.

In some implementations operating with little-endian byte order, execution of an Imw or
stmw instruction causes the system alignment error handler to be invoked; see
Section 3.1.2, “Byte Ordering,” for more information.

The architecture defines the load multiple word (Imw) instruction with r A in the range of
registers to be loaded, including the case in whichrA =0, asan invalid form.

Table 4-16. Integer Load and Store Multiple Instructions

Name Mnemonic Syntax Operation
Load Multiple Word Imw rD,d(rA) The EA is the sum (rA|0) + d. n = (32 —rD).
Store Multiple Word stmw rS,d(rA) The EA is the sum (rA[0) + d. n = (32 —rS).

4.2.3.6

Integer Load and Store String Instructions

The integer load and store string instructions allow movement of data from memory to
registersor from registersto memory without concern for alignment. Theseinstructions can
be used for a short move between arbitrary memory locations or to initiate a long move
between misaligned memory fields. However, in some implementations, these instructions
are likely to have greater latency and take longer to execute, perhaps much longer, than a
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sequence of individual load or store instructions that produce the same results. Table 4-17
summarizes the integer load and store string instructions.

Load and store string instructions execute more efficiently when rD or rS=5, and the last
register loaded or stored islessthan or equal to 12.

In some implementations operating with little-endian byte order, execution of a load or
string instruction causes the system alignment error handler to be invoked; see
Section 3.1.2, “Byte Ordering,” for more information.

Table 4-17. Integer Load and Store String Instructions

Name Mnemonic Syntax Operation
Load String Word Immediate Iswi rD,rA,NB The EA is (rA|0).
Load String Word Indexed Iswx rD,rA,rB The EA is the sum (rA|0) + (rB).
Store String Word Immediate stswi rS,rA,NB The EA is (rA|0).
Store String Word Indexed stswx rS,rA,rB The EA is the sum (rA|0) + (rB).

Load string and store string instructions may involve operands that are not word-aligned.
As described in Section 6.4.6, “Alignment Exception (0x00600),” a misaligned string
operation suffers aperformance penalty compared to an aligned operation of the sametype.
A non—word-aligned string operation that crosses a double-word boundary is also slower
than aword-aligned string operation.

4.2.3.7 Floating-Point Load and Store Address Generation

Floating-point load and store operations generate effective addresses using the register
indirect with immediate index addressing mode and register indirect with index addressing
mode.

4.2.3.7.1 Register Indirect with Immediate Index Addressing for
Floating-Point Loads and Stores

Instructions using this addressing mode contain a signed 16-bit immediate index
(d operand) which is sign extended to 32 bits, and added to the contents of a GPR specified
in the instruction (rA operand) to generate the effective address. If the rA field of the
instruction specifiesr0, avalue of zero isadded to the immediate index (d operand) in place
of the contents of r0. The option to specify r A or 0 is shown in the instruction descriptions
as (rA|0).

Figure 4-4 shows how an effective address is generated when using register indirect with
immediate index addressing for floating-point loads and stores.
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0 56 1011 1516 31
Instruction Encoding: | opcode| froirs | rA d
0 15 16 v 31
Sign Extension d
Yes n
Y

(¥
No
0 31 0 31

GPR (rA) Effective Address
Y
0 31
Store | Memory
FPR (frD/frS) B Load Access

Figure 4-4. Register Indirect with Immediate Index Addressing for Floating-Point
Loads/Stores

4.2.3.7.2 Register Indirect with Index Addressing for Floating-Point Loads
and Stores

Instructions using this addressing mode add the contents of two GPRs (specified in
operands r A and rB) to generate the effective address. A zero in ther A operand causes a
zero to be added to the contents of the GPR specified in operand rB. Thisis shown in the
instruction descriptions as (rA|0).

Figure 4-5 shows how an effective address is generated when using register indirect with
index addressing.
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0 56 1011 1516 2021 30 31
[[] Reserved Instruction Encoding: | opcode | rDfrs | rA | rB | Subopcode | 0
0 Y 31

GPR (rB)
>t |
>(+
No
0 31J 0 31

GPR (rA) Effective Address
Y
0 31
Store »| Memory
FPR (frD/frS) B Load Access

Figure 4-5. Register Indirect with Index Addressing for Floating-Point Loads/Stores

The architecture defines floating-point load and store with update instructions (Ifsu, Ifsux,
Ifdu, Ifdux, stfsu, stfsux, stfdu, stfdux) with operand rA = 0 as invalid forms of the
instructions. In addition, it defines floating-point load and store instructions with the CR
updating option enabled (Rc bit, bit 31 = 1) to be an invalid form.

The architecture defines that FPSCR[UE] should not be used to determine whether
denormalization should be performed on floating-point stores.

4.2.3.8 Floating-Point Load Instructions

There are two forms of the floating-point load instruction—single-precision and
double-precision operand formats. Because the FPRs support only the floating-point
double-precison format, single-precison floating-point load instructions convert
single-precision data to double-precision format before |oading the operands into the target
FPR. This conversion isdescribed fully in Section D.6, “Floating-Point Load I nstructions.”
Table 4-18 provides a summary of the floating-point load instructions.
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Note that the architecture defines load with update instructions with rA = 0 as an invalid
form.

Table 4-18. Floating-Point Load Instructions

Name Mnemonic | Syntax Operation

Load Ifs frD,d(rA) | The EA is the sum (rA|0) + d.

Floating-Point The word in memory addressed by the EA is interpreted as a floating-point

Single single-precision operand. This word is converted to floating-point
double-precision format and placed into frD.

Load Ifsx frD,rA,rB | The EA is the sum (rA[O) + (rB).

Floating-Point The word in memory addressed by the EA is interpreted as a floating-point

Single single-precision operand. This word is converted to floating-point

Indexed double-precision format and placed into frD.

Load Ifsu frD,d(rA) |The EA is the sum (rA) + d.

Floating-Point The word in memory addressed by the EA is interpreted as a floating-point

Single with single-precision operand. This word is converted to floating-point

Update double-precision format and placed into frD.

The EA is placed into the register specified by rA.

Load Ifsux frD,rA,rB | The EA is the sum (rA) + (rB).

Floating-Point The word in memory addressed by the EA is interpreted as a floating-point
Single with single-precision operand. This word is converted to floating-point
Update double-precision format and placed into frD.

Indexed The EA is placed into the register specified by rA.

Load Ifd frD,d(rA) | The EA is the sum (rA|0) + d.

Floating-Point The double word in memory addressed by the EA is placed into frD.
Double

Load Ifdx frD,rA,rB | The EA is the sum (rA[O) + (rB).

Floating-Point The double word in memory addressed by the EA is placed into frD.
Double

Indexed

Load Ifdu frD,d(rA) |The EA is the sum (rA) + d.

Floating-Point The double word in memory addressed by the EA is placed into frD.
Double with The EA is placed into the register specified by rA.

Update

Load Ifdux frD,rA,rB | The EA is the sum (rA) + (rB).

Floating-Point The double word in memory addressed by the EA is placed into frD.
Double with The EA is placed into the register specified by rA.

Update

Indexed

4.2.3.9 Floating-Point Store Instructions

This section describes floating-point store instructions. There are three basic forms of the
store instruction—single-precision, double-precision, and integer. The integer form is
supported by the stfiwx instruction. (Note that the stfiwx instruction is defined as optional
by the architecture to ensure backwards compatibility with earlier processors; however, it
will likely be required for subsequent processors.) Because the FPRs support only
floating-point, double-precision format for floating-point data, single-precision
floating-point store instructions convert double-precision data to single-precision format
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before storing the operands. The conversion steps are described fully in Section D.7,
“Floating-Point Store Instructions.” Table 4-19 provides a summary of the floating-point
store instructions.

Note that the architecture defines store with update instructions with rA = 0 as an invalid

form.

Table 4-19 provides the floating-point store instructions.

Table 4-19. Floating-Point Store Instructions

Name Mnemonic Syntax Operation
Store stfs frS,d(rA) The EA is the sum (rA|0) + d.
Floating-Point The contents of frS are converted to single-precision and stored into
Single the word in memory addressed by the EA.
Store stfsx frS,rArB The EA is the sum (rA|0) + (rB).
Floating-Point The contents of frS are converted to single-precision and stored into
Single Indexed the word in memory addressed by the EA.
Store stfsu frS,d(rA) The EA is the sum (rA) + d.
Floating-Point The contents of frS are converted to single-precision and stored into
Single with the word in memory addressed by the EA.
Update The EA is placed into rA.
Store stfsux frS,rArB The EA is the sum (rA) + (rB).
Floating-Point The contents of frS are converted to single-precision and stored into
Single with the word in memory addressed by the EA.
Update The EA is placed into the rA.
Indexed
Store stfd frS,d(rA) The EA is the sum (rA|0) + d.
Floating-Point The contents of frS are stored into the double word in memory
Double addressed by the EA.
Store stfdx frS,rArB The EA is the sum (rA|0) + (rB).
Floating-Point The contents of frS are stored into the double word in memory
Double addressed by the EA.
Indexed
Store stfdu frS,d(rA) The EA is the sum (rA) + d.
Floating-Point The contents of frS are stored into the double word in memory
Double with addressed by the EA.
Update The EA is placed into rA.
Store stfdux frS,rArB The EA is the sum (rA) + (rB).
Floating-Point The contents of frS are stored into the double word in memory
Double with addressed by EA.
Update The EA is placed into register rA.
Indexed
Store stfiwx frS,rA,rB The EA is the sum (rA|0) + (rB).
Floating-Point The contents of the low-order 32 bits of frS are stored, without
as Integer conversion, into the word in memory addressed by the EA.

Word Indexed

Note: The stfiwx instruction is defined as optional by the
architecture to ensure backwards compatibility with earlier
processors; however, it will likely be required for subsequent
processors.
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4.2.4 Branch and Flow Control Instructions

Some branch instructions can redirect instruction execution conditionally based on the
value of bitsin the CR. When the processor encounters one of these instructions, it scans
the execution pipelines to determine whether an instruction in progress may affect the
particular CR bit. If no interlock is found, the branch can be resolved immediately by
checking the bit in the CR and taking the action defined for the branch instruction.

If an interlock is detected, the branch is considered unresolved and the direction of the
branch may either be predicted using the y bit (as described in Table 4-20) or by using
dynamic prediction. The interlock is monitored while instructions are fetched for the
predicted branch. When the interlock is cleared, the processor determines whether the
prediction was correct based on the value of the CR bit. If the prediction is correct, the
branch is considered completed and instruction fetching continues. If the prediction is
incorrect, the fetched instructions are purged, and instruction fetching continues along the
alternate path.

4.2.4.1 Branch Instruction Address Calculation

Branch instructions can alter the sequence of instruction execution. Instruction addresses
are aways assumed to be word aligned; the two low-order bits of the generated branch
target address are ignored.

Branch instructions compute the effective address (EA) of the next instruction address
using the following addressing modes:

* Branchrelative

» Branch conditional to relative address

» Branch to absolute address

» Branch conditional to absolute address

» Branch conditional to link register

» Branch conditional to count register

In the 32-bit mode of a 64-bit implementation, the final step in the address computation is
clearing the high-order 32 bits of the target address.

4.2.4.1.1 Branch Relative Addressing Mode

Instructions that use branch relative addressing generate the next instruction address by
sign extending and appending 0b00 to the immediate displacement operand L1, and adding
the resultant value to the current instruction address. Branches using this addressing mode
have the absolute addressing option disabled (AA field, bit 30, in the instruction
encoding = 0). Thelink register (LR) update option can be enabled (LK field, bit 31, in the
instruction encoding = 1). This option causes the effective address of the instruction
following the branch instruction to be placed in the LR.
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Figure 4-6 shows how the branch target address is generated when using the branch relative
addressing mode.

0 56 29 30 31
Instruction Encoding: 18 LI AA|LK
0 5 6 Y 2930 31
Sign Extension LI 0|0
0 31

Current Instruction Address

[ ] Reserved Branch Target Address

Figure 4-6. Branch Relative Addressing

4.2.4.1.2 Branch Conditional to Relative Addressing Mode

If the branch conditions are met, instructions that use the branch conditional to relative
addressing mode generate the next instruction address by sign extending and appending
0Ob00 to the immediate displacement operand (BD) and adding the resultant value to the
current instruction address. Branches using this addressing mode have the absolute
addressing option disabled (AA field, bit 30, in the instruction encoding = 0). The link
register update option can be enabled (LK field, bit 31, in the instruction encoding = 1).
This option causes the effective address of the instruction following the branch instruction
to be placed inthe LR.

Figure 4-7 shows how the branch target address is generated when using the branch
conditional relative addressing mode.
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0 56 1011 1516 30 31
16 BO BI BD AA|LK [[] Reserved

Instruction Encoding:

31
Next Sequential Instruction Address

0 15 16 29 30 31
Sign Extension BD 0|0
0 31 4
Current Instruction Address +
0 31
Branch Target Address

Figure 4-7. Branch Conditional Relative Addressing

4.2.4.1.3 Branch to Absolute Addressing Mode

Instructions that use branch to absolute addressing mode generate the next instruction
address by sign extending and appending 0b0O to the LI operand. Branches using this
addressing mode have the absolute addressing option enabled (AA field, bit 30, in the
instruction encoding = 1). Thelink register update option can be enabled (LK field, bit 31,
in the instruction encoding = 1). This option causes the effective address of the instruction
following the branch instruction to be placed in the LR.

Figure 4-8 shows how the branch target address is generated when using the branch to
absolute addressing mode.

0 56 29 30 31

Instruction Encoding: 18 LI AALK|
0 56 v 29 30 31

Sign Extension LI o0

0 v 29 30 31

Branch Target Address 0|0

Figure 4-8. Branch to Absolute Addressing
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4.2.4.1.4 Branch Conditional to Absolute Addressing Mode

If the branch conditions are met, instructions that use the branch conditional to absolute
addressing mode generate the next instruction address by sign extending and appending
0b00 to the BD operand. Branches using this addressing mode have the absol ute addressing
option enabled (AA field, bit 30, in the instruction encoding = 1). The link register update
option can be enabled (LK field, bit 31, in theinstruction encoding = 1). This option causes
the effective address of the instruction following the branch instruction to be placed in the
LR.

Figure 4-9 shows how the branch target address is generated when using the branch
conditional to absolute addressing mode.

0 56 1011 1516 29 30 31
Instruction Encoding: 16 BO BI BD AA|LK

—

No

0 31
Next Sequential Instruction Address

Condition
Met?

0 1516 29 30 31
Sign Extension BD 0|0

0 v 29 30 31
Branch Target Address ofo

Figure 4-9. Branch Conditional to Absolute Addressing

4.2.4.1.5 Branch Conditional to Link Register Addressing Mode

If the branch conditions are met, the branch conditional to link register instruction generates
the next instruction address by fetching the contents of the LR and clearing the two
low-order bits to zero. The link register update option can be enabled (LK field, bit 31, in
the instruction encoding = 1). This option causes the effective address of the instruction
following the branch instruction to be placed in the LR.

Figure 4-10 shows how the branch target address is generated when using the branch
conditional to link register addressing mode.
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0 56 1011 1516 2021 30 31
19 BO | Bl [00000 16 |LK [[] Reserved

Instruction Encoding:

0 31
Condition Next Sequential Instruction Address
Met?

Yes
0 29 30 31
LR (|| )= 0|0
0 31

Branch Target Address

Figure 4-10. Branch Conditional to Link Register Addressing

4.2.4.1.6 Branch Conditional to Count Register Addressing Mode

If the branch conditions are met, the branch conditional to count register instruction
generates the next instruction address by fetching the contents of the count register (CTR)
and clearing the two low-order bitsto zero. The link register update option can be enabled
(LK field, bit 31, in the instruction encoding = 1). This option causes the effective address
of the instruction following the branch instruction to be placed in the LR.

Figure 4-11 shows how the branch target address is generated when using the branch
conditional to count register addressing mode.
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0 56 1011 1516 2021 30 31

[ ] Reserved

31
Next Sequential Instruction Address

29 30 31

CTR (|| )= olo

Branch Target Address

Figure 4-11. Branch Conditional to Count Register Addressing

4.2.4.2 Conditional Branch Control

For branch conditional instructions, the BO operand specifies the conditions under which
the branch istaken. Thefirst four bits of the BO operand specify how the branch is affected
by or affects the condition and count registers. Thefifth bit, shown in Table 4-20 as having
the valuey, is used by some implementations for branch prediction as described bel ow.

The encodings for the BO operands are shown in Table 4-20.

Table 4-20. BO Operand Encodings

BO Description
0000y Decrement the CTR, then branch if the decremented CTR # 0 and the condition is FALSE.
0001y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is FALSE.
001zy Branch if the condition is FALSE.
0100y Decrement the CTR, then branch if the decremented CTR # 0 and the condition is TRUE.
0101y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is TRUE.
0l1zy Branch if the condition is TRUE.
1z00y Decrement the CTR, then branch if the decremented CTR # 0.
1z01y Decrement the CTR, then branch if the decremented CTR = 0.
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Table 4-20. BO Operand Encodings (continued)

BO Description

1z1zz Branch always

In this table, z indicates a bit that is ignored.
Note that the z bits should be cleared, as they may be assigned a meaning in some future version of the architecture.
The y bit provides a hint about whether a conditional branch is likely to be taken, and may be used by some
implementations to improve performance.

The branch always encoding of the BO operand does not have ay bit.

Clearing they bit indicates a predicted behavior for the branch instruction as follows:
» For bex with a negative value in the displacement operand, the branch is taken.

* Inall other cases (bcx with anon-negative valuein the displacement operand, bclr x,
or bectrx), the branch is not taken.

Setting the y bit reverses the preceding indications.

The sign of the displacement operand is used as described above even if the target is an
absolute address. The default value for the y bit should be O, and should only be set to 1 if
software has determined that the prediction corresponding to y = 1 is more likely to be
correct than the prediction corresponding to y = 0. Software that does not compute branch
predictions should clear they bit.

In most cases, the branch should be predicted to be taken if the value of the following
expression is 1, and predicted to fall through if the valueisO.

((BO[O] & BO[2]) | §) = BO[4]

In the expression above, S (bit 16 of the branch conditional instruction coding) isthe sign
bit of the displacement operand if the instruction has a displacement operand and isO if the
operand is reserved. BO[4] is the y bit, or O for the branch always encoding of the BO
operand. (Advantage is taken of the fact that, for bclrx and bcectrx, bit 16 of theinstruction
is part of areserved operand and therefore must be 0.)

The 5-bit Bl operand in branch conditional instructions specifies which of the 32 bitsin the
CR represents the condition to test.

When the branch instructions contain immediate addressing operands, the target addresses
can be computed sufficiently ahead of the branch instruction that instructions can be
fetched along the target path. If the branch instructions use the link and count registers,
instructions along the target path can be fetched if the link or count register is loaded
sufficiently ahead of the branch instruction.

Branching can be conditional or unconditional, and optionally a branch return address is
created by the access of the effective address of the instruction following the branch
instruction in the LR after the branch target address has been computed. This is done
regardless of whether the branch is taken. Some processors may keep a stack of the link
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register values most recently set by branch and link instructions, with the possible
exception of the form shown below for obtaining the address of the next instruction. To
benefit from this stack, the following programming conventions should be used.

In the following examples, let A, B, and Glue represent subroutine labels:

Obtaining the address of the next instruction— use the following form of branch and
link:

bcl 20,31,$+4

L oop counts:

Keep them in the count register, and use one of the branch conditional instructions
to decrement the count and to control branching (for example, branching back to the
start of aloop if the decremented counter value is nonzero).

Computed GOTOs, case statements, etc.:

Usethe count register to hold the address to branch to, and use the bectr instruction
with the link register option disabled (LK = 0) to branch to the selected address.

Direct subroutine linkage—where A calls B and B returnsto A. The two branches

should be as follows:

— A callsB: use abranch instruction that enables the link register (LK = 1).

— B returnsto A: use the bclr instruction with the link register option disabled
(LK =0) (thereturn addressisin, or can be restored to, the link register).

Indirect subroutine linkage:

Where A calls Glue, Glue calls B, and B returnsto A rather than to Glue. (Such a
calling sequence is common in linkage code used when the subroutine that the
programmer wantsto call, here B, isin adifferent module from the caller: the binder
inserts“glue’” code to mediate the branch.) The three branches should be asfollows:

— A calls Glue: use abranch instruction that sets the link register with the link
register option enabled (LK = 1).

— Glue calls B: place the address of B in the count register, and use the bectr
instruction with the link register option disabled (LK = 0).

— B returnsto A: use the bclr instruction with the link register option disabled
(LK =0) (thereturn addressisin, or can be restored to, the link register).

4.2.4.3 Branch Instructions

Table 4-21 describes the branch instructions provided by the processors.
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Table 4-21. Branch Instructions

Name Mnemonic Syntax Operation
Branch b target_addr b Branch. Branch to the address computed as the sum of the
ba immediate address and the address of the current instruction.
bl ba Branch Absolute. Branch to the absolute address specified.
bla bl Branch then Link. Branch to the address computed as the sum
of the immediate address and the address of the current
instruction. The instruction address following this instruction is
placed into the link register (LR).
bla  Branch Absolute then Link. Branch to the absolute address
specified. The instruction address following this instruction is
placed into the LR.
Branch bc BO,Bl,target_addr | The Bl operand specifies the bit in the CR to be used as the condition
Conditional |bca of the branch. The BO operand is used as described in Table 4-20.
bcl bc Branch Conditional. Branch conditionally to the address
bcla computed as the sum of the immediate address and the
address of the current instruction.
bca Branch Conditional Absolute. Branch conditionally to the
absolute address specified.
bcl Branch Conditional then Link. Branch conditionally to the
address computed as the sum of the immediate address and
the address of the current instruction. The instruction address
following this instruction is placed into the LR.
bcla Branch Conditional Absolute then Link. Branch conditionally to
the absolute address specified. The instruction address
following this instruction is placed into the LR.
Branch bclr BO,BI The Bl operand specifies the bit in the CR to be used as the condition
Conditional |bclrl of the branch. The BO operand is used as described in Table 4-20.
to Link bclr  Branch Conditional to Link Register. Branch conditionally to
Register the address in the LR.
bclrl  Branch Conditional to Link Register then Link. Branch
conditionally to the address specified in the LR. The instruction
address following this instruction is then placed into the LR.
Branch beccetr BO,BI The Bl operand specifies the bit in the CR to be used as the condition
Conditional |bcctrl of the branch. The BO operand is used as described in Table 4-20.
to Count bcetr  Branch Conditional to Count Register. Branch conditionally to
Register the address specified in the count register.
bccetrl  Branch Conditional to Count Register then Link. Branch

conditionally to the address specified in the count register.
The instruction address following this instruction is placed into
the LR.

Note: If the “decrement and test CTR” option is specified (BO[2] = 0),
the instruction form is invalid.

4.2.4.4 Simplified Mnemonics for Branch Processor Instructions

To simplify assembly language programming, a set of simplified mnemonics and symbols
is provided for the most frequently used forms of branch conditional, compare, trap, rotate
and shift, and certain other instructions. See Appendix F, “Simplified Mnemonics,” for a
list of simplified mnemonic examples.
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4.2.45 Condition Register Logical Instructions

Condition register logical instructions, shown in Table4-22, and the Move Condition
Register Field (mcrf) instruction are also defined as flow control instructions.

Note that if the LR update option is enabled for any of these instructions, the architecture
defines these forms of the instructions as invalid.

Table 4-22. Condition Register Logical Instructions

Register NOR

Name Mnemonic Syntax Operation
Condition crand crbD,crbA,crbB | The CR bit specified by crbA is ANDed with the CR bit specified
Register AND by crbB. The result is placed into the CR bit specified by crbD.
Condition cror crbD,crbA,crbB | The CR hit specified by crbA is ORed with the CR bit specified by
Register OR crbB. The result is placed into the CR bit specified by crbD.
Condition crxor crbD,crbA,crbB | The CR bit specified by crbA is XORed with the CR bit specified
Register XOR by crbB. The result is placed into the CR bit specified by crbD.
Condition crnand crbD,crbA,crbB | The CR bit specified by crbA is ANDed with the CR bit specified
Register NAND by crbB. The complemented result is placed into the CR bit
specified by crbD.
Condition crnor crbD,crbA,crbB | The CR bit specified by crbA is ORed with the CR bit specified by

crbB. The complemented result is placed into the CR bit specified
by crbD.

Register Field

Condition creqv crbD,crbA, crbB | The CR bit specified by crbA is XORed with the CR bit specified
Register by crbB. The complemented result is placed into the CR bit
Equivalent specified by crbD.

Condition crandc crbD,crbA, crbB | The CR bit specified by crbA is ANDed with the complement of
Register AND with the CR bit specified by crbB and the result is placed into the CR
Complement bit specified by crbD.

Condition crorc crbD,crbA, crbB | The CR bit specified by crbA is ORed with the complement of the
Register OR with CR hit specified by crbB and the result is placed into the CR bit
Complement specified by crbD.

Move Condition mcrf crfD,crfS The contents of crfS are copied into crfD. No other condition

register fields are changed.

4.2.4.6 Trap Instructions

The trap instructions shown in Table 4-23 are provided to test for a specified set of
conditions. If any of the conditions tested by a trap instruction are met, the system trap
handler is invoked. If the tested conditions are not met, instruction execution continues
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normally. See Appendix F, “Simplified Mnemonics,” for a complete set of simplified
mnemonics.

Table 4-23. Trap Instructions

Name Mnemonic Syntax Description
Trap Word twi TO,rA,SIMM | The contents of rA are compared with the sign-extended SIMM operand. If
Immediate any bit in the TO operand is set and its corresponding condition is met by

the result of the comparison, the system trap handler is invoked.

Trap Word tw TO,rA,rB The contents of rA are compared with the contents of rB. If any bit in the
TO operand is set and its corresponding condition is met by the result of
the comparison, the system trap handler is invoked.

4.2.4.7 System Linkage Instruction—UISA

Table 4-24 describes the System Call (sc) instruction that permits a program to call on the
system to perform a service. See Section 4.4.1, “ System Linkage Instructions—OEA,” for
a complete description of the sc instruction.

Table 4-24. System Linkage Instruction—UISA

Name | Mnemonic | Syntax Operation
System | sc — This instruction calls the operating system to perform a service. When control is
Call returned to the program that executed the system call, the content of the registers

will depend on the register conventions used by the program providing the system
service. This instruction is context synchronizing as described in Section 4.1.5.1,
“Context Synchronizing Instructions.”

See Section 4.4.1, “System Linkage Instructions—OEA,” for a complete description
of the sc instruction.

4.2.5 Processor Control Instructions—UISA

Processor control instructions are used to read from and write to the condition register
(CR), machine state register (MSR), and specia-purpose registers (SPRs). See
Section 4.3.1, “Processor Control Instructions—VEA,” for the mftb instruction and
Section 4.4.2, “Processor Control Instructions—OEA,” for information about the
instructions used for reading from and writing to the MSR and SPRs.

4.2.5.1 Move to/from Condition Register Instructions

M Table 4-25 summarizestheinstructionsfor reading from or writing to the condition register.
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Table 4-25. Move to/from Condition Register Instructions

Name Mnemonic | Syntax Operation
Move to Condition | mtcrf CRM,rS | The contents of rS are placed into the CR under control of the field mask
Register Fields specified by operand CRM. The field mask identifies the 4-bit fields affected.

Let i be an integer in the range 0-7. If CRM(i) = 1, CR field i (CR bits 4 * i
through 4 * i + 3) is set to the contents of the corresponding field of rS.

Move to Condition | mcrxr crfD The contents of XER[0-3] are copied into the condition register field
Register from designated by crfD. All other CR fields remain unchanged. The contents of
XER XER[0-3] are cleared.

Move from mfcr rD The contents of the CR are placed into rD.

Condition

Register

4.2.5.2 Move to/from Special-Purpose Register Instructions (UISA)

Table 4-26 provides a brief description of the mtspr and mfspr instructions. For more
detailed information refer to Chapter 8, “Instruction Set.”

Table 4-26. Move to/from Special-Purpose Register Instructions (UISA)

Name Mnemonic | Syntax Operation
Move to Special-Purpose Register mtspr SPR,r'S | The value specified by rS are placed in the specified SPR.
Move from Special-Purpose Register | mfspr rD,SPR | The contents of the specified SPR are placed in rD.

4.2.6 Memory Synchronization Instructions—UISA

Memory synchronization instructions control the order in which memory operations are
compl eted with respect to asynchronous events, and the order in which memory operations
are seen by other processors or memory access mechanisms.

The number of cycles required to complete a sync instruction depends on system
parameters and on the processor's state when the instruction isissued. As aresult, frequent
use of thisinstruction may degrade performance slightly. The eieio instruction may be more
appropriate than sync for many cases.

The architecture defines the sync instruction with CR update enabled (Rc field, bit 31 = 1)
to be an invalid form.

The proper paired use of the lwar x with stwex. instructions allows programmersto emulate [
common semaphore operations such astest and set, compare and swap, exchange memory,

and fetch and add. Examples of these semaphore operations can be found in Appendix E,

“ Synchronization Programming Examples.” The Iwar x instruction must be paired with an
stwcx. instruction with the same effective address specified by both instructions of the pair.
The only exception is that an unpaired stwcx. instruction to any (scratch) effective address

can be used to clear any reservation held by the processor. Note that the reservation
granularity is implementati on-dependent.
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The concept behind the use of the lwarx and stwcx. instructions is that a processor may
load a semaphore from memory, compute aresult based on the value of the semaphore, and
conditionally store it back to the same location. The conditional store is performed based
upon the existence of a reservation established by the preceding Iwar x instruction. If the
reservation exists when the store is executed, the store is performed and a bit is set in the
CR. If the reservation does not exist when the store is executed, the target memory location
is not modified and a bit is cleared in the CR.

The lwarx and stwcx. primitives allow software to read a semaphore, compute a result
based on the value of the semaphore, store the new value back into the semaphore location
only if that location has not been modified since it wasfirst read, and determineif the store
was successful. If the store was successful, the sequence of instructionsfrom the read of the
semaphoreto the store that updated the semaphore appear to have been executed atomically
(that is, no other processor or mechanism modified the semaphore location between the
read and the update), thus providing the equivalent of areal atomic operation. However, in
reality, other processors may have read from the location during this operation.

The lwarx and stwcx. instructions require the EA to be aligned.

In general, the lwarx and stwcx. instructions should be used only in system programs,
which can be invoked by application programs as needed.

At most one reservation exists simultaneously on any processor. The address associated
with the reservation can be changed by a subsequent lwarx instruction. The conditional
store is performed based upon the existence of a reservation established by the preceding
lwar x instruction.

A reservation held by the processor is cleared (or may be cleared, in the case of the fourth
and fifth bullet items) by one of the following:

» Theprocessor holding the reservation executes another lwar x instruction; thisclears
the first reservation and establishes a new one.

» The processor holding the reservation executes any stwcx. instruction whether its
address matches that of the war x.

» Some other processor executes a store or dcbz to the same reservation granule, or
modifies areferenced or changed bit in the same reservation granule.

» Someother processor executesadcbtst, dcbst, dcbf, or dcbi to the samereservation
granule; whether the reservation is cleared is undefined.

» Some other processor executes a dcba to the same reservation granule. The
reservation is cleared if the instruction causes the target block to be newly
established in the data cache or to be modified; otherwise, whether thereservationis
cleared is undefined.

» Some other mechanism modifiesamemory location in the same reservation granule.

Notethat exceptionsdo not clear reservations; however, system software invoked by
exceptions may clear reservations.
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Table 4-27 summarizes the memory synchronization instructions as defined in the UISA.
See Section4.3.2, “Memory Synchronization Instructions—VEA,” for details about

VEA Instructions

additional memory synchronization (eieio and isync) instructions.

Table 4-27. Memory Synchronization Instructions—UISA

Name

Mnemonic

Syntax

Operation

Load Word
and Reserve
Indexed

lwarx

rD,rA,rB

The EA is the sum (rA|0) + (rB). The word in memory addressed by the EA is
loaded into rD.

Store Word
Conditional
Indexed

stwcx.

rS,rA,rB

The EA is the sum (rA|O) + (rB).

If a reservation exists and the EA specified by stwcx. is the same as that
specified by the load and reserve instruction that established the reservation,
the contents of rS are stored into the word addressed by the EA and the
reservation is cleared.

If a reservation exists but the EA specified by the stwcx. instruction is not the
same as that specified by the load and reserve instruction that established the
reservation, the reservation is cleared, and it is undefined whether the contents
of rS are stored into the word in memory addressed by the EA.

If a reservation does not exist, the instruction completes without altering
memory or the contents of the cache.

Synchronize

sync

Executing a sync instruction ensures that all instructions preceding the sync
instruction appear to have completed before the sync instruction completes,

and that no subsequent instructions are initiated by the processor until after the
sync instruction completes. When the sync instruction completes, all memory
accesses caused by instructions preceding the sync instruction will have been
performed with respect to all other mechanisms that access memory.

See Chapter 8, “Instruction Set,” for more information.

4.2.7 Recommended Simplified Mnemonics

To simplify assembly language programs, a set of simplified mnemonics is provided for
some of the most frequently used operations (such as no-op, load immediate, |oad address,
move register, and complement register). Assemblers should provide the smplified

mnemonics listed in Section F.9, “Recommended Simplified Mnemonics” Programs
written to be portable across the various assemblers for the architecture should not assume

the existence of mnemonics not described in this document.

For acomplete list of smplified mnemonics, see Appendix F, “ Simplified Mnemonics.”

4.3 VEA Instructions

M@ Thevirtual environment architecture (VEA) describes the semantics of the memory model
that can be assumed by software processes, and includes descriptions of the cache model,
cache-control instructions, address aliasing, and other related issues. |mplementations that
conform to the VEA aso adhere to the UISA, but may not necessarily adhere to the OEA.

(0]

This section describes additional instructions that are provided by the VEA.
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4.3.1 Processor Control Instructions—VEA

W The VEA defines the mftb instruction (user-level instruction) for reading the contents of

the time base register; see Chapter 5, “Cache Model and Memory Coherency,” for more
information. Table 4-28 describes the mftb instruction.

Simplified mnemonics are provided (See Section F.8, “ Simplified Mnemonics for SPRs”)
for the mftb instruction so it can be coded with the TBR name as part of the mnemonic
rather than requiring it to be coded as an operand. The simplified mnemonics Move from
Time Base (mftb) and Move from Time Base Upper (mftbu) are variants of the mftb
instruction rather than of the mfspr instruction. The mftb instruction serves as both abasic
and simplified mnemonic. Assemblers recognize an mftb mnemonic with two operands as
the basic form, and an mftb mnemonic with one operand as the simplified form.

On 32-bit implementations, it is not possible to read the entire 64-bit time base register in
asingle instruction. The mftb simplified mnemonic moves from the lower half of the time
base register (TBL) to a GPR, and the mftbu simplified mnemonic moves from the upper
half of the time base (TBU) to a GPR.

Table 4-28. Move from Time Base Instruction

Name |Mnemonic Syntax Operation
Move mftb rD, TBR The TBR field denotes either time base lower or time base upper, encoded
from as shown in Table 4-29 and Table 4-30. The contents of the designated
Time register are copied to rD.
Base

Table 4-29 summarizes the time base (TBL/TBU) register encodings to which user-level
access (using mftb) is permitted (as specified by the VEA).

Table 4-29. User-Level TBR Encodings (VEA)

Decimal Value in . .
TBR Field tbr[0—4] tbr[5-9] Register Name Description
268 01100 01000 TBL Time base lower (read-only)
269 01101 01000 TBU Time base upper (read-only)

Table 4-30 summarizes the TBL and TBU register encodings to which supervisor-level
access (using mtspr) is permitted.

Table 4-30. Supervisor-Level TBR Encodings (VEA)

Decimal Value in . -
SPR Field spr[0-4] spr[5-9] Register Name Description
284 11100 01000 TBL! Time base lower (write only)
285 11101 01000 TBU? Time base upper (write only)

IMoving from the time base (TBL and TBU) can also be accomplished with the mftb instruction.
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4.3.2 Memory Synchronization Instructions—VEA

Memory synchronization instructions control the order in which memory operations are [ij
completed with respect to asynchronous events, and the order in which memory operations
are seen by other processors or memory access mechanisms. See Chapter 5, “ Cache Model

and Memory Coherency,” for additional information about these instructions and about
related aspects of memory synchronization.

System designs that use a second-level cache should take special care to recognize the
hardware signaling caused by a sync operation and perform the appropriate actions to
guarantee that memory references that may be queued internally to the second-level cache
have been performed globally.

In addition to the sync instruction (specified by UISA), the VEA defines the Enforce
In-Order Execution of 1/O (eieio) and Instruction Synchronize (isync) instructions; see
Table 4-31. The number of cycles required to complete an eieio instruction depends on
system parameters and on the processor's state when the instruction isissued. As aresult,
frequent use of this instruction may degrade performance slightly.

The isync instruction causes the processor to wait for any preceding instructions to
complete, discard all prefetched instructions, and then branch to the next sequential
instruction (which has the effect of clearing the pipeline behind the isync instruction).

Table 4-31. Memory Synchronization Instructions—VEA

Name Mnemonic | Syntax Operation
Enforce In-Order |eieio — The eieio instruction provides an ordering function for the effects of loads
Execution of /0 and stores executed by a processor.
Instruction isync — Executing an isync instruction ensures that all previous instructions
Synchronize complete before the isync instruction completes, although memory

accesses caused by those instructions need not have been performed with
respect to other processors and mechanisms. It also ensures that the
processor initiates no subsequent instructions until the isync instruction
completes. Finally, it causes the processor to discard any prefetched
instructions, so subsequent instructions will be fetched and executed in the
context established by the instructions preceding the isync instruction.
This instruction does not affect other processors or their caches.

4.3.3 Memory Control Instructions—VEA

W Memory control instructions include the following types:

(0] » Cache management instructions (user-level and supervisor-level)
Segment register manipulation instructions

Segment |ookaside buffer management instructions

Trandation lookaside buffer management instructions
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This section describes the user-level cache management instructions defined by the VEA.
See Section 4.4.3, “Memory Control Instructions—OEA,” for more information about
supervisor-level cache, segment register manipulation, and transation lookaside buffer
management instructions.

4.3.3.1 User-Level Cache Instructions—VEA

W The instructions summarized in this section provide user-level programs the ability to
manage on-chip caches if they are implemented. See Chapter 5, “Cache Model and
Memory Coherency,” for more information about cache topics.

Aswith other memory-related instructions, the effect of the cache management instructions
on memory are weakly ordered. If the programmer needs to ensure that cache or other
instructions have been performed with respect to all other processors and system
mechanisms, a sync instruction must be placed in the program following those instructions.

@® Note that when data address translation is disabled (MSR[DR] = 0), the Data Cache Block
Clear to Zero (dcbz) and the Data Cache Block Allocate (dcba) instructions allocate a
cache block in the cache and may not verify that the physical address (referred to as redl
address in the architecture specification) is valid. If a cache block is created for an invalid
physical address, a machine check condition may result when an attempt is made to write
that cache block back to memory. The cache block could be written back as a result of the
execution of an instruction that causes a cache miss and the invalid addressed cache block
Isthe target for replacement or a Data Cache Block Store (dcbst) instruction.

Any cache control instruction that generates an effective address for which SR[T] = 1 is
treated as a no-op.

Table 4-32 summarizes the cache instructions defined by the VEA. Note that these W
instructions are accessible to user-level programs.

Table 4-32. User-Level Cache Instructions

Name Mnemonic | Syntax Operation
Data dcht rA,rB The EA is the sum (rA|0) + (rB).
Cache This instruction is a hint that performance will probably be improved if the block
Block containing the byte addressed by EA is fetched into the data cache, because the
Touch program will probably soon load from the addressed byte.
Data dcbtst rArB The EA is the sum (rA|0) + (rB).
Cache This instruction is a hint that performance will probably be improved if the block
Block containing the byte addressed by EA is fetched into the data cache, because the
Touch for program will probably soon store into the addressed byte.
Store
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Table 4-32. User-Level Cache Instructions (continued)

Name

Mnemonic

Syntax

Operation

Data
Cache
Block
Allocate

dcbha

rA,rB

The EA is the sum (rA|0) + (rB).

If the cache block containing the byte addressed by the EA is in the data cache,
all bytes of the cache block are made undefined, but the cache block is still
considered valid. Note that programming errors can occur if the data in this
cache block is subsequently read or used inadvertently.

If the page containing the byte addressed by the EA is not in the data cache and
the corresponding page is marked caching allowed (I = 0), the cache block is
allocated (and made valid) in the data cache without fetching the block from main
memory, and the value of all bytes of the cache block is undefined.

If the page containing the byte addressed by the EA is marked caching inhibited
(WIM = x1x), this instruction is treated as a no-op.

If the cache block addressed by the EA is located in a page marked as memory
coherent (WIM = xx1) and the cache block exists in the caches of other
processors, memory coherence is maintained in those caches.

The dcba instruction is treated as a store to the addressed byte with respect to
address translation, memory protection, referenced and changed recording, and
the ordering enforced by eieio or by the combination of caching-inhibited and
guarded attributes for a page.

This instruction is optional in the architecture.

(In the OEA, the dcba instruction is additionally defined to clear all bytes of a
newly established block to zero in the case that the block did not already exist in
the cache.)

Data
Cache
Block Clear
to Zero

dcbz

rArB

The EA is the sum (rA|0) + (rB).

If the cache block containing the byte addressed by the EA is in the data cache,
all bytes of the cache block are cleared to zero.

If the page containing the byte addressed by the EA is not in the data cache and
the corresponding page is marked caching allowed (I = 0), the cache block is
established in the data cache without fetching the block from main memory, and
all bytes of the cache block are cleared to zero.

If the page containing the byte addressed by the EA is marked caching inhibited
(WIM = x1x) or write-through (WIM = 1xx), either all bytes of the area of main
memory that corresponds to the addressed cache block are cleared to zero, or
an alignment exception occurs.

If the cache block addressed by the EA is located in a page marked as memory
coherent (WIM = xx1) and the cache block exists in the caches of other
processors, memory coherence is maintained in those caches.

The dcbz instruction is treated as a store to the addressed byte with respect to
address translation, memory protection, referenced and changed recording, and
the ordering enforced by eieio or by the combination of caching-inhibited and
guarded attributes for a page.
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Table 4-32. User-Level Cache Instructions (continued)

Name

Mnemonic

Syntax

Operation

Data
Cache
Block Store

dchst

rA,rB

The EA is the sum(rA|0) + (rB).

If the cache block containing the byte addressed by the EA is located in a page
marked memory coherent (WIM = xx1), and a cache block containing the byte
addressed by EA is in the data cache of any processor and has been modified,
the cache block is written to main memory.

If the cache block containing the byte addressed by the EA is located in a page
not marked memory coherent (WIM = xx0), and a cache block containing the
byte addressed by EA is in the data cache of this processor and has been
modified, the cache block is written to main memory.

The function of this instruction is independent of the write-through/write-back
and caching-inhibited/caching-allowed modes of the cache block containing the
byte addressed by the EA.

The dcbst instruction is treated as a load from the addressed byte with respect
to address translation and memory protection. It may also be treated as a load
for referenced and changed bit recording except that referenced and changed bit
recording may not occur.

4-58

Programming Environments Manual for 32-Bit Microprocessors MOTOROLA



VEA Instructions

Table 4-32. User-Level Cache Instructions (continued)

Name Mnemonic | Syntax Operation

Data dcbf rArB The EA is the sum (rA|0) + (rB).

Cache The action taken depends on the memory mode associated with the target, and

Block Flush on the state of the block. The following list describes the action taken for the
various cases, regardless of whether the page or block containing the addressed
byte is designated as write-through or if it is in the caching-inhibited or
caching-allowed mode.
« *Coherency required (WIM = xx1)

— Unmodified block—Invalidates copies of the block in the caches of all
processors.

— Modified block—Copies the block to memory. Invalidates copies of the
block in the caches of all processors.

— Absent block—If modified copies of the block are in the caches of other
processors, causes them to be copied to memory and invalidated. If
unmodified copies are in the caches of other processors, causes those
copies to be invalidated.

« *Coherency not required (WIM = xx0)

— Unmodified block—Invalidates the block in the processor’s cache.

— Modified block—Copies the block to memory. Invalidates the block in the
processor’s cache.

— Absent block—Does nothing.
The function of this instruction is independent of the write-through/write-back
and caching-inhibited/caching-allowed modes of the cache block containing the
byte addressed by the EA.
The dcbf instruction is treated as a load from the addressed byte with respect to
address translation and memory protection. It may also be treated as a load for
referenced and changed bit recording except that referenced and changed bit
recording may not occur.
Instruction |ichi rArB The EA is the sum (rA|0) + (rB).
Cache If the cache block containing the byte addressed by EA is located in a page
Block marked memory coherent (WIM = xx1), and a cache block containing the byte
Invalidate addressed by EA is in the instruction cache of any processor, the cache block is

made invalid in all such instruction caches, so that the next reference causes the
cache block to be refetched.

If the cache block containing the byte addressed by EA is located in a page not
marked memory coherent (WIM = xx0), and a cache block containing the byte
addressed by EA is in the instruction cache of this processor, the cache block is
made invalid in that instruction cache, so that the next reference causes the
cache block to be refetched.

The function of this instruction is independent of the write-through/write-back
and caching-inhibited/caching-allowed modes of the cache block containing the
byte addressed by the EA.

The icbi instruction is treated as a load from the addressed byte with respect to
address translation and memory protection. It may also be treated as a load for
referenced and changed bit recording except that referenced and changed bit
recording may not occur.

4.3.4 External Control Instructions

The external control instructions allow a user-level program to communicate with a
special-purpose device. Two instructions are provided and are summarized in Table 4-33.
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Table 4-33. External Control Instructions

Name |[Mnemonic | Syntax Operation
External | eciwx rD,rA,rB | The EA is the sum (rA|0) + (rB).
Control A load word request for the physical address corresponding to the EA is sent to the
In Word device identified by the EAR[RID] (bits 26—31), bypassing the cache. The word
Indexed returned by the device is placed into rD. The EA sent to the device must be
word-aligned.

This instruction is treated as a load from the addressed byte with respect to address
translation, memory protection, referenced and changed recording, and the ordering
performed by eieio.

This instruction is optional.

External | ecowx rS,rA,rB | The EA is the sum (rA|O) + (rB).

Control A store word request for the physical address corresponding to the EA and the
Out contents of rS are sent to the device identified by EAR[RID] (bits 26—31), bypassing
Word the cache. The EA sent to the device must be word-aligned.

Indexed This instruction is treated as a store to the addressed byte with respect to address

translation, memory protection, referenced and changed recording, and the ordering
performed by eieio. Software synchronization is required in order to ensure that the
data access is performed in program order with respect to data accesses caused by
other store or ecowx instructions, even though the addressed byte is assumed to be
caching-inhibited and guarded.

This instruction is optional.

4.4 OEA Instructions

The operating environment architecture (OEA) includes the structure of the memory [
management model, supervisor-level registers, and the exception model. |mplementations
that conform to the OEA aso adhere to the UISA and the VEA. This section describes the ®
instructions provided by the OEA.

4.4.1 System Linkage Instructions—OEA

@ This section describes the system linkage instructions (see Table 4-34). The sc instruction
Is a user-level instruction that permits a user program to call on the system to perform a
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service and causes the processor to take an exception. The rfi instruction is a
supervisor-level instruction that is useful for returning from an exception handler.

Table 4-34. System Linkage Instructions—OEA

Name |[Mnemonic | Syntax Operation
System |sc — When executed, the effective address of the instruction following the sc instruction
Call is placed into SRRO. Bits 1-4, and 10-15 of SRR1 are cleared. Additionally, bits

16-23, 25-27, and 30-310f the MSR are placed into the corresponding bits of
SRR1. Depending on the implementation, additional bits of MSR may also be
saved in SRR1. Then a system call exception is generated. The exception causes
the MSR to be altered as described in Section 6.4, “Exception Definitions.”

The exception causes the next instruction to be fetched from offset 0xC00 from the
base physical address indicated by the new setting of MSR[IP].

This instruction is context synchronizing.

Return | rfi — Bits 16-23, 25-27, and 30-31 of SRR1 are placed into the corresponding bits of
from the MSR. Depending on the implementation, additional bits of MSR may also be
Interrupt restored from SRR1. If the new MSR value does not enable any pending

(32-bit exceptions, the next instruction is fetched, under control of the new MSR value,
only) from the address SRR0O[0-29] || Ob0O.

If the new MSR value enables one or more pending exceptions, the exception
associated with the highest priority pending exception is generated; in this case the
value placed into SRRO (machine status save/restore 0) by the exception
processing mechanism is the address of the instruction that would have been
executed next had the exception not occurred.

This is a supervisor-level instruction and is context-synchronizing.

This instruction is defined only for 32-bit implementations. The use of the rfi
instruction on a 64-bit implementation will invoke the system exception handler.

4.4.2 Processor Control Instructions—OEA

This section describes the processor control instructions that are used to read from and
write to the MSR and the SPRs.

4.4.2.1 Move to/from Machine State Register Instructions
Table 4-35 summarizes the instructions used for reading from and writing to the MSR.

Table 4-35. Move to/from Machine State Register Instructions

Name Mnemonic | Syntax Operation
Move to Machine mtmsr rs The contents of rS are placed into the MSR.
State Register This instruction is a supervisor-level instruction and is context
(32-bit only) synchronizing except with respect to alterations to the POW and LE

bits. Refer to Section 2.3.17, “Synchronization Requirements for
Special Registers and for Lookaside Buffers,” for more information.

Move from Machine | mfmsr rD The contents of the MSR are placed into rD. This is a supervisor-level
State Register instruction.
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4.4.2.2 Move to/from Special-Purpose Register Instructions (OEA)

Provided is a brief description of the mtspr and mfspr instructions (see Table 4-36). For
more detailed information, see Chapter 8, “Instruction Set.” Simplified mnemonics are
provided for the mtspr and mfspr instructions in Appendix F, “Simplified Mnemonics”
For adiscussion of context synchronization requirements when altering certain SPRs, refer
to Appendix E, “ Synchronization Programming Examples”

Table 4-36. Move to/from Special-Purpose Register Instructions (OEA)

Name Mnemonic Syntax Operation
Move to mtspr SPR,rS The SPR field denotes a special-purpose register. The contents of rS
Special- are placed into the designated SPR. For SPRs that are 32 bits long, the
Purpose contents of rS are placed into the SPR.
Register For this instruction, SPRs TBL and TBU are treated as separate 32-bit

registers; setting one leaves the other unaltered.

Move from mfspr rD,SPR The SPR field denotes a special-purpose register. The contents of the
Special- designated SPR are placed into rD.
Purpose
Register

For mtspr and mfspr instructions, the SPR number coded in assembly language does not
appear directly as a 10-bit binary number in the instruction. The number coded is split into
two 5-bit halves that are reversed in the instruction encoding, with the high-order 5 bits
appearing in bits 1620 of the instruction encoding and the low-order 5 bitsin bits 11-15.

For information on SPR encodings (both user- and supervisor-level), see Chapter 8,
“Instruction Set.” Note that there are additional SPRs specific to each implementation; for
implementation-specific SPRs, see the user's manual for that particular processor.

4.4.3 Memory Control Instructions—OEA

Memory control instructions include the following types of instructions:
» Cache management instructions (supervisor-level and user-level)
» Segment register manipulation instructions
» Trandation lookaside buffer management instructions
This section describes supervisor-level memory control instructions. See Section 4.3.3,

“Memory Control Instructions—VEA,” for more information about user-level cache
management instructions.

4.4.3.1 Supervisor-Level Cache Management Instruction

Table 4-37 summarizes the operation of the only supervisor-level cache management
instruction. See Section 4.3.3.1, “User-Level Cache Instructions—VEA,” for cache
instructions that provide user-level programs the ability to manage the on-chip caches.
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Note that any cache control instruction that generates an effective address for which
SR[T] = 1istreated as a ho-op.

Table 4-37. Cache Management Supervisor-Level Instruction

Name |[Mnemonic| Syntax Operation
Data dcbi rA,rB The EA is the sum (rA|O) + (rB).
Cache The action taken depends on the memory mode associated with the target, and
Block the state (modified, unmodified) of the cache block. The following list describes the
Invalidate action to take if the cache block containing the byte addressed by the EA is or is

not in the cache.
 «Coherency required (WIM = xx1)
— Unmaodified cache block—Invalidates copies of the cache block in the
caches of all processors.
— Modified cache block—Invalidates copies of the cache block in the caches
of all processors. (Discards the modified contents.)
— Absent cache block—If copies are in the caches of any other processor,
causes the copies to be invalidated. (Discards any modified contents.)
» «Coherency not required (WIM = xx0)
— Unmodified cache block—Invalidates the cache block in the local cache.
— Modified cache block—Invalidates the cache block in the local cache.
(Discards the modified contents.)
— Absent cache block—No action is taken.
When data address translation is enabled, MSR[DT]=1, and the logical (effective)
address has no translation, a data access exception occurs.
The function of this instruction is independent of the write-through and
cache-inhibited/allowed modes determined by the WIM bit settings of the block
containing the byte addressed by the EA.
This instruction is treated as a store to the addressed byte with respect to address
translation and protection, except that the change bit need not be set, and if the
change bit is not set then the reference bit need not be set.

4.4.3.2 Segment Register Manipulation Instructions

The instructions listed in Table 4-38 provide access to the segment registers for 32-bit
implementations. Theseinstructions operate compl etely independently of the MSR[IR] and
MSR[DR] bit settings. Refer to Section 2.3.17, “ Synchronization Requirementsfor Special
Registers and for Lookaside Buffers” for serialization requirements and other
recommended precautions to observe when manipul ating the segment registers.

Table 4-38. Segment Register Manipulation Instructions

Name Mnemonic | Syntax Operation
Move to Segment mtsr SR,rS The contents of rS are placed into segment register specified by
Register operand SR.
(32-bit only) This is a supervisor-level instruction.
Move to Segment mtsrin rS,rB The contents of rS are copied to the segment register selected by bits
Register Indirect 0-3 of IB.
(32-bit only) This is a supervisor-level instruction.
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Table 4-38. Segment Register Manipulation Instructions (continued)

Name Mnemonic | Syntax Operation
Move from Segment | mfsr rD,SR The contents of the segment register specified by operand SR are
Register placed into rD.
(32-bit only) This is a supervisor-level instruction.
Move from Segment | mfsrin rD,rB The contents of the segment register selected by bits 0-3 of rB are
Register Indirect copied into rD.
(32-bit only) This is a supervisor-level instruction.

4.4.3.3 Translation Lookaside Buffer Management Instructions

The address translation mechanism is defined in terms of segment descriptors and page
table entries (PTES) used to |ocate the logical-to-physical address mapping for a particular
access. These segment descriptors and PTEs reside in segment tables and page tables in
memory, respectively.

For performance reasons, many processors implement one or more transglation lookaside
buffers on-chip. These are caches of portions of the page table. As changes are made to the
address trandation tables, it is necessary to maintain coherency between the TLB and the
updated tables. Thisisdone by invalidating TLB entries, or occasionally by invalidating the
entire TLB, and allowing the trangdlation caching mechanism to refetch from the tables.

Each implementation that has a TLB provides means for invalidating an individual TLB
entry and invalidating the entire TLB.

If a processor does not implement a TLB, it treats the corresponding instructions (tlbie,
tlbia, and tlbsync) either as no-ops or asillegal instructions.

Refer to Chapter 7, “Memory Management,” for more information about TLB operation.
Table 4-39 summarizes the operation of the SLB and TLB instructions.

Table 4-39. Translation Lookaside Buffer Management Instructions

Name Mnemonic | Syntax Operation
TLB tibie rB The EA is the contents of rB. If the TLB contains an entry corresponding to the
Invalidate EA, that entry is removed from the TLB. The TLB search is performed regardless
Entry of the settings of MSR[IR,DR]. Any block address translation for the EA is ignored.

This instruction causes the target TLB entry to be invalidated in all processors.
The operation performed by this instruction is treated as a caching inhibited and
guarded data access with respect to the ordering performed by eieio.

This is a supervisor-level instruction and optional in the architecture.
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Table 4-39. Translation Lookaside Buffer Management Instructions (continued)

Name Mnemonic | Syntax Operation
TLB tibia — All TLB entries are made invalid. The TLB is invalidated regardless of the
Invalidate All MSRJ[IR,DR] settings. This instruction does not cause the entries to be invalidated

in other processors. This is a supervisor-level instruction and optional in the
architecture.

TLB tlbsync — Executing a tlbsync instruction ensures that all tibie instructions previously
Synchronize executed by the processor executing tlbsync have completed on all processors.
The operation performed by this instruction is treated as a caching-inhibited and
guarded data access with respect to the ordering performed by eieio.

This is a supervisor-level instruction and optional in the architecture.

Because the presence and exact semantics of the trandlation lookaside buffer management
instructions is implementation-dependent, system software should incorporate uses of the
Instruction into subroutines to minimize compatibility problems.
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Chapter 5
Cache Model and Memory Coherency

This chapter summarizes the cache model as defined by the virtual environment
architecture (VEA) as well as the built-in architectural controls for maintaining memory
coherency. This chapter describes the cache control instructions and special concerns for
memory coherency in single-processor and multiprocessor systems. Aspects of the
operating environment architecture (OEA) as they relate to the cache model and memory
coherency are also covered.

5.1 Overview

The PowerPC architecture provides for relaxed memory coherency. Features such as
write-back caching and memory access reordering allow software engineers to exploit the
performance benefits of weakly-ordered memory access. The architecture also providesthe
means to control the order of accesses for order-critical operations.

In this chapter, the term multiprocessor is used in the context of maintaining cache
coherency. In this context, asystem could include other devicesthat access system memory,
maintain independent caches, and function as bus masters.

Each cache management instruction operates on an aligned unit of memory. The VEA
defines this cacheable unit as a block. This chapter uses the term ‘cache block’ to
distinguish it from the unit of memory addressed by the block address translation (BAT)
mechanism. The cache block size can vary by implementation. In addition, the unit of
memory at which coherency is maintained is called the coherence block, the size of which
is aso implementation-specific, although it is typically the same size as a cache block.

5.2 TheVirtual Environment

The user instruction set architecture (UISA) relies upon a memory space of 232 bytes for
applications. The VEA expands upon the memory model by introducing virtual memory,
caches, and shared memory multiprocessing. Although many applications will not need to
access the features introduced by the VEA, it isimportant that programmers are aware that
they are working in a virtual environment where the physical memory may be shared by
multiple processes running on one or More Processors.
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This section describes load and store ordering, atomicity, the cache model, memory
coherency, and the VEA cache management instructions. The features of the VEA are
accessible to both user-level and supervisor-level applications (referred to as problem state
and privileged state, respectively, in the architecture specification).

The mechanism for controlling the virtual memory space is defined by the OEA. The
features of the OEA are accessible to supervisor-level applicationsonly (typically operating
systems). For more information on the address translation mechanism, refer to Chapter 7,
“Memory Management.”

5.2.1 Memory Access Ordering

The VEA specifies aweakly consistent memory model for shared memory multiprocessor
systems. This model provides an opportunity for significantly improved performance over
amodel that has stronger consistency rules, but placesthe responsibility for access ordering
on the programmer. When a program requires strict access ordering for proper execution,
the programmer must insert the appropriate ordering or Synchronization instructions into
the program.

The order in which the processor performs memory accesses, the order in which those
accesses complete in memory, and the order in which those accesses are viewed as
occurring by another processor may all be different. A means of enforcing memory access
ordering isprovided to alow programs (or instances of programs) to share memory. Similar
means are needed to allow programs executing on a processor to share memory with some
other mechanism, such as an 1/0 device, that can also access memory.

Various facilities are provided that enable programs to control the order in which memory
accesses are performed by separate instructions. First, if separate store instructions access
memory that is designated as both caching-inhibited and guarded, the accesses are
performed in the order specified by the program. Refer to Section 5.2.4, “Memory
Coherency,” and Section 5.3.1, “Memory/Cache Access Attributes” for a complete
description of the caching-inhibited and guarded attributes. Additionally, two instructions,
eieio and sync, are provided that enable the program to control the order in which the
memory accesses caused by separate instructions are performed.

No ordering should be assumed among the memory accesses caused by asingle instruction
(that is, by an instruction for which multiple accesses are not atomic), and no means are
provided for controlling that order. Chapter 8, “Instruction Set,” contains additional
information about sync and eieio.

5.2.1.1 Enforce In-Order Execution of I/O Instruction

Theeeoinstruction creates amemory barrier, which provides an ordering function for the
memory accesses caused by load, store, dcbz, and dcba instructions executed by the
processor executing the eieio instruction. These accesses are divided into two sets, which
are ordered separately. The access caused by dcbz or dcba is ordered as a store.
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The eieio instruction permits the program to control the order in which loads and stores are
performed when the accessed memory has certain attributes, as described in Chapter 8,
“Instruction Set.” For example, eleio can be used to ensure that a sequence of load and store
operations to an |1/O device's control registers updates those registers in the desired order.
The eieio instruction can also be used to ensure that all storesto ashared data structure are
visible to other processors before the store that releases the lock is visible to them.

The eeo instruction may complete before memory accesses caused by instructions
preceding the eieio have been performed.

If stronger ordering is desired, sync must be used.

5.2.1.2 Synchronize Instruction

When a portion of memory that requires coherency must be forced to a known state, it is
necessary to synchronize memory with respect to other processors and mechanisms. This
synchronization is accomplished by requiring programs to indicate explicitly in the
instruction stream, by inserting a sync, that synchronization is required. Only when sync
completes are the effects of all coherent memory accesses previously executed by the
program guaranteed to have been performed with respect to all other processors and
mechanisms that access those locations coherently. The sync instruction is described in
Chapter 8, “Instruction Set.”

5.2.2 Atomicity

An accessis atomic if it is always performed in its entirety with no visible fragmentation.
Atomic accesses are thus serialized—each happensin its entirety in some order, even when
that order is neither specified in the program nor enforced between processors.
Only the following single-register accesses are guaranteed to be atomic:

» Byte accesses (all bytes are aligned on byte boundaries)

» Half-word accesses aligned on half-word boundaries

» Word accesses aligned on word boundaries
No other accesses are guaranteed to be atomic. In particular, the accesses caused by the
following instructions are not guaranteed to be atomic:

* Load and store instructions with misaligned operands

o Imw, stmw, Iswi, Iswx, stswi, or stswx instructions

* Foating-point double-word accesses in 32-bit implementations

* Any cache management instructions
The Iwarx/stwex. instruction combinations can be used to perform atomic memory
references. The lwarx isaload from aword-aligned location that has two side effects:

1. A reservation for a subsequent stwcx. is created.
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2. The memory coherence mechanism is notified that a reservation exists for the
memory |location accessed by the lwar x.

The stwcx. is a store to aword-aligned location that is conditioned on the existence of the
reservation created by lwar x and on whether the same memory location is specified by both
instructions and whether the instructions are issued by the same processor.

In a multiprocessor system, every processor (other than the one executing Iwar x/stwcx.)
that might update the location must configure the addressed page as memory coherency
required. The Iwarx/stwex. instructions function in caching-inhibited, as well as in
caching-allowed, memory. If the addressed memory is in write-through mode, it is
implementation-dependent whether these instructions function correctly or cause the DS
exception handler to be invoked. (Note that exceptions are referred to as interrupts in the
architecture specification.)

The Iwar x/stwex. combination is described in Section 4.3.2, “Memory Synchronization
Instructions—VEA,” and Chapter 8, “Instruction Set.”

5.2.3 Cache Model

The PowerPC architecture does not specify the type, organization, implementation, or even
the existence of acache. The standard cache model has separate instruction and data caches,
also known as a Harvard cache model. However, the architecture alows for many different
cachetypes. Some implementations will have aunified cache (where thereisasingle cache
for both instructions and data). Other implementations may not have a cache at all.

The function of the cache management instructions depends on the implementation of the
cache(s) and the setting of the memory/cache access modes. For a program to execute
properly on all implementations, software should use the Harvard model. In cases where a
processor is implemented without a cache, the architecture guarantees that instructions
affecting the nonimplemented cache does not halt execution (note that dcbz may cause an
alignment exception on some implementations). For example, a processor with no cache
may treat a cache instruction as ano-op. Or, a processor with a unified cache may treat the
icbi instruction as a no-op. In this manner, programs written for separate instruction and
data caches will run on all compliant implementations.

5.2.4 Memory Coherency

The primary objective of a coherent memory system is to provide the same image of
memory to all devices using the system. The VEA and OEA define coherency controls that
facilitate synchronization, cooperative use of shared resources, and task migration among
processors. These controls include the memory/cache access attributes, the sync and eieio
instructions, and the Iwar x/stwex. pair. Without these controls, the processor could not
support a weakly-ordered memory access model.
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A strongly-ordered memory access model hinders performance by requiring excessive
overhead, particularly in multiprocessor environments. For example, a processor
performing a store operation in a strongly-ordered system requires exclusive access to an
address before making an update, to prevent another device from using stale data.

TheVEA defines apage asaunit of memory for which protection and control attributes are
independently specifiable. The OEA (supervisor level) specifies the size of a page as
4 Kbytes. It isimportant to note that the VEA (user level) does not specify the page size.

5.2.4.1 Memory/Cache Access Modes

The OEA defines the set of memory/cache access modes and the mechanism to implement
these modes. Refer to Section 5.3.1, “Memory/Cache Access Attributes,” for more
information. However, the VEA specifiesthat at the user level, the operating system can be
expected to provide the following attributes for each page of memory:

»  Write-through or write-back

» Caching-inhibited or caching-allowed

* Memory coherency required or memory coherency not required
» Guarded or not guarded

User-level programs specify the memory/cache access attributes through an operating
system service.

5.2.4.1.1 Pages Designated as Write-Through

When a page is designated as write-through, store operations update the data in the cache
and also update the datain main memory. The processor writes to the cache and through to
main memory. Load operations use the data in the cache, if it is present.

In write-back mode, the processor is only required to update data in the cache. The
processor may (but is not required to) update main memory. Load and store operations use
the data in the cache, if it is present. The data in main memory does not necessarily stay
consistent with that same |location’s datain the cache. Many implementations automatically
update main memory in response to a memory access by another device (for example, a
snoop hit). In addition, dcbst and dcbf can explicitly force an update of main memory.

The write-through attribute is meaningless for |ocations designated as caching-inhibited.

5.2.4.1.2 Pages Designated as Caching-Inhibited

When a page is designated as caching-inhibited, the processor bypasses the cache and
performs load and store operations to main memory. When a page is designated as
caching-allowed, the processor uses the cache and performs|oad and store operationsto the
cache or main memory depending on the other memory/cache access attributesfor the page.
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It isimportant that all locations in a page are purged from the cache prior to changing the
memory/cache access attribute for the page from caching-allowed to caching-inhibited. It
is considered a programming error if a caching-inhibited memory location is found in the
cache. Software must ensure that the location has not previously been brought into the
cache, or, if it has, that it has been flushed from the cache. If the programming error occurs,
the result of the access is boundedly undefined.

5.2.4.1.3 Pages Designated as Memory Coherency Required

When a page is designated as memory coherency required, store operationsto that location
are serialized with all stores to that same location by all other processors that also access
the location coherently.This can be implemented, for example, by an ownership protocol
that allows at most one processor at a time to store to the location. Moreover, the current
copy of a cache block that is in this mode may be copied to main storage any number of
times, for example, by successive dcbst instructions.

Coherency does not ensure that the result of a store by one processor isvisibleimmediately
to all other processors and mechanisms. Only after a program has executed a sync are the
previous accesses it executed guaranteed to have been performed with respect to all other
processors and mechanisms.

5.2.4.1.4 Pages Designated as Memory Coherency Not Required

For a memory area that is configured such that coherency is not required, software must
ensure that the data cache is consistent with main storage before changing the mode or
allowing another device to access the area.

Executing adcbst or dcbf specifying a cache block that isin this mode causes the block to
be copied to main memory if and only if the processor modified the contents of alocation
in the block and the modified contents have not been written to main memory.

In a single-cache system, correct coherent execution may likely not require memory
coherency; therefore, using memory coherency not required mode improves performance.

5.2.4.1.5 Pages Designated as Guarded

The guarded attribute pertains to speculative execution. Refer to Section 5.3.1.5.4,
“Speculative Accesses to Guarded Memory,” for more information about speculative
execution. Note that the term ‘ speculative’ isreferred to as out-of-order in the architecture
specification. The use of these terms in this manual is described in Section 5.3.1.5.1,
“Definition of Speculative and Out-of-Order Memory Accesses.”

Instructions and data cannot be accessed speculatively from a page designated as guarded.
Additionally, if separate store instructions access memory that is caching-inhibited and
guarded, accesses are performed in the order specified by the program. When a page is
designated as not guarded, speculative fetches and accesses are allowed.
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5.2.4.2 Coherency Precautions

Mismatched memory/cache attributes cause coherency paradoxes in both single- and
multiple-processor systems. When the memory/cache access attributes are changed, it is
critical that the cache contents reflect the new attribute settings. For example, if ablock or
page that had allowed caching becomes caching-inhibited, the appropriate cache blocks
should be flushed to leave no indication that caching had previously been allowed.

Although coherency paradoxes are considered programming errors, specific
implementations may attempt to handle the such conditions to minimize the negative
effects on memory coherency. Bus operations generated for specific instructions and state
conditions are not defined by the architecture.

5.2.5 VEA Cache Management Instructions

The VEA defines instructions for controlling both the instruction and data caches. For
implementations that have a unified instruction/data cache, instruction cache control
instructions are valid instructions, but may function differently.

Note that any cache control instruction that generates an EA that corresponds to a
direct-store segment (SR[T] = 1) is treated as a no-op. However, the direct-store facility is
being phased out of the architecture and will not likely be supported in future devices. Thus,
software should not depend on its effects.

This section briefly describes the cache management instructions available to programs at
the user privilege level. Additional descriptions of coding the VEA cache management
instructions is provided in Chapter 4, “Addressing Modes and Instruction Set Summary,”
and Chapter 8, “Instruction Set.” In the following instruction descriptions, the target is the
cache block containing the byte addressed by the effective address.

5.25.1 Data Cache Instructions

Data caches and unified caches must be consistent with other caches (data or unified),
memory, and |I/O data transfers. To ensure consistency, aliased effective addresses (two
effective addresses that map to the same physical address) must have the same page offset.
Note that physical addressisreferred to as real address in the architecture specification.

5.2.5.1.1 Data Cache Block Touch (dcbt) and
Data Cache Block Touch for Store (dcbtst) Instructions

These instructions provide a method for improving performance through the use of
software-initiated prefetch hints. However, these instructions do not guarantee that a cache
block will be fetched.

A program uses dcbt to request acache block fetch beforeit is needed by the program. The
program can then use the data from the cache rather than fetching from main memory.
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The dcbtst instruction behaves similarly to dcbt. A program uses dcbtst to request acache
block fetch to guarantee that a subsequent store will be to a cached location.

The processor does not invoke the exception handler for translation or protection violations
caused by either of the touch instructions. Additionally, memory accesses caused by these
Instructions are not necessarily recorded in the page tables. If an accessis recorded, then it
is treated like a load from the addressed byte. Some implementations may not take any
action based on the execution of these instructions, or they may prefetch the cache block
corresponding to the EA into their cache. For information about the R and C bits, see
Section 7.6.3, “Page History Recording.”

Both dcbt and dcbtst are provided for performance optimization. These instructions do not
affect the correct execution of a program, regardliess of whether they succeed (fetch the
cache block) or fail (do not fetch the cache block). If the target block is not accessible to
the program for loads, then no operation occurs.

5.2.5.1.2 Data Cache Block Set to Zero (dcbz) Instruction

The dcbz instruction clears a single cache block as follows:
» |f thetarget isin the data cache, al bytes of the cache block are cleared.

» If thetarget isnot in the data cache and the corresponding page is caching-allowed,
the cache block is established in the data cache (without fetching the cache block
from main memory), and all bytes of the cache block are cleared.

» |f thetarget isdesignated as either caching-inhibited or write-through, then either all
bytesin main memory that correspond to the addressed cache block are cleared, or
the alignment exception handler isinvoked. The exception handler should clear all
the bytes in main memory that correspond to the addressed cache block.

» |f thetarget is designated as coherency required, and the cache block existsin the
data cache(s) of any other processor(s), it is kept coherent in those caches.

The dcbz instruction is treated as a store to the addressed byte with respect to address
trandation, protection, referenced and changed recording, and the ordering enforced by
eieio or by the combination of caching-inhibited and guarded attributes for a page.

Refer to Chapter 6, “Exceptions,” for more information about a possible delayed machine
check exception that can occur by using dcbz when the operating system has set up an
Incorrect memory mapping.

5.2.5.1.3 Data Cache Block Store (dcbst) Instruction

The dcbst instruction permits the program to ensure that the latest version of the target
cache block isin main memory. The dcbst instruction executes as follows:

» Coherency required—If the target existsin the data cache(s) of any processor(s) and
has been modified, the data is written to main memory.
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» Coherency not required—If the target exists in the data cache of the executing
processor and has been modified, the data is written to main memory.

The function of this instruction is independent of the write-through/write-back and
caching-inhibited/caching-allowed attributes of the target.

The memory access caused by dcbst is not necessarily recorded in the page tables. If the
access isrecorded, then it istreated as aload operation (not as a store operation).

5.2.5.1.4 Data Cache Block Flush (dcbf) Instruction

The action taken depends on the memory/cache access mode associated with the addressed
byte and on the state of the cache block. The following list describes the action taken for
the various cases:

» Coherency required

Unmodified cache block—Invalidates copies of the cache block in the data caches
of all processors.

M odified cache block—Copies the cache block to memory. Invalidates copies of the
cache block in the data caches of all processors.

Target block not in cache—If amodified copy of the cache block is in the data
cache(s) of any processor(s), dcbf causes the modified cache block to be copied to
memory and then invalidated. If unmodified copies are in the data caches of other
processors, dcbf causes those copies to be invalidated.

» Coherency not required

Unmaodified cache block—Invalidates the cache block in the executing processor's
data cache.

M odified cache block—Copies the data cache block to memory and then invalidates
the cache block in the executing processor.

Target block not in cache—No action is taken.

The function of this instruction is independent of the write-through/write-back and
caching-inhibited/caching-allowed attributes of the target.

The memory access caused by dcbf is not necessarily recorded in the page tables. If the
access isrecorded, then it istreated as aload operation (not as a store operation).

5.2.5.2 Instruction Cache Instructions

Instruction caches, if they exist, are not required to be consistent with data caches, memory,
or 1/0O data transfers. Software must use the appropriate cache management instructions to
ensure that instruction caches are kept coherent when instructions are modified by the
processor or by input data transfer. When a processor alters amemory location that may be
contained in an instruction cache, software must ensure that updates to memory are visible
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to the instruction fetching mechanism. Although the instructions to enforce consistency
vary among implementations, the following sequence for a uniprocessor system istypical:

. dcbst (update memory)

2. sync (wait for update)

3. ichi (invalidate copy in instruction cache)
4. isync (perform context synchronization)

=

Note that most operating systems will provide a system service for this function. These
operations are necessary because the memory may be designated as write-back. Because
instruction fetching may bypass the data cache, changes made to items in the data cache
may not otherwise be reflected in memory until after the fetch completes.

For implementations used in multiprocessor systems, variations on this sequence may be
recommended. For example, in amultiprocessor system with aunified cache (at any level),
If instructions are fetched without coherency being enforced, the preceding instruction
sequence is inadequate. Because icbi does not invalidate blocks in a unified cache, a dcbf
should be used instead of adcbst for this case.

5.2.5.2.1 Instruction Cache Block Invalidate Instruction (icbi)

Theichi instruction executes as follows:
» Coherency required
If the target isin the instruction cache of any processor, the cache block is made

invalid in all such processors, so that the next reference causes the cache block to be
refetched.

» Coherency not required

If thetarget isin theinstruction cache of the executing processor, the cacheblock is
made invalid in the executing processor so that the next reference causes the cache
block to be refetched.

The icbi instruction is provided for use in processors with separate instruction and data
caches. The effective addressis computed, translated, and checked for protection violations
as defined in Chapter 7, “Memory Management.” If the target block is not accessibleto the
program for loads, then a DSl exception occurs.

The function of this instruction is independent of the write-through/write-back and
caching-inhibited/caching-allowed attributes of the target.

A memory access caused by an icbi is not necessarily recorded in the page tables. If it is
recorded, it is treated as a load operation. Implementations that have a unified cache treat
ichi as a no-op except that they may invalidate the target cache block in the instruction
caches of other processors (in coherency required mode).
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5.2.5.2.2 Instruction Synchronize Instruction (isync)

The isync instruction provides an ordering function for the effects of all instructions
executed by a processor. Executing an isync ensures that all instructions preceding the
isync have completed before the isync compl etes, except that memory accesses caused by
those instructions need not have been performed with respect to other processors and
mechanisms. It aso ensures that no subsequent instructions are initiated by the processor
until after the isync completes. Finally, it causes the processor to discard any prefetched
instructions, with the effect that subsequent instructions will be fetched and executed in the
context established by the instructions preceding isync. The isync has no effect on other
processors or on their caches.

5.2.6 Shared Memory

The architecture supports sharing memory between programs, between different instances
of the same program, and between processors and other mechanisms. It also supports
access to a memory location by one or more programs using different effective addresses.
In these cases memory is shared in blocks that are an integral number of pages. When one
physical memory location has different effective addresses, the addresses are said to be
aliases. Each application can be granted separate access privileges to aliased pages.

Section 5.2.6.2, “Lock Acquisition and Import Barriers,” gives examples of how sync and
eieio are used to control memory access ordering when memory is shared among programs.

5.2.6.1 Memory Access Ordering

The memory model for memory access ordering is weakly consistent. This provides an
opportunity for improved performance over a model with stronger consistency rules, but
places the responsibility on the program to ensure that ordering or synchronization
instructions are properly placed for the correct execution of the program.

The order in which the processor accesses memory, the order in which those accesses are
performed with respect to other processors or mechanisms, and the order in which they are
performed in main memory may all be different. The following ways to enforcing accesses
ordering are provided to allow programs to share memory with other programs or with
mechanisms such as 1/0O devices.

» If two store instructions specify memory locations that are both caching inhibited
and guarded, the corresponding memory accesses are performed in program order
with respect to any processor or mechanism.

» If aload instruction depends on the value returned by a preceding load (because the
value is used to compute the effective address specified by the second |oad), the
corresponding memory accesses are performed in program order with respect to any
processor or mechanism to the extent required by the associated memory coherence
required attributes (that is, the memory coherence required attribute, if any,
associated with each access). This applies even if the dependency does not affect
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program logic (for example, the value returned by thefirst load iSANDed with zero

and then added to the effective address specified by the second load).

*  When aprocessor (P1) executes sync or eieio, amemory barrier is created that
separates applicable memory accesses into two groups, G1 and G2. G1 includes all

applicable memory accesses associated with instructions preceding the
barrier-creating instruction, and G2 includes all applicable memory accesses
associated with instructions following the barrier-creating instruction.

Figure 5-1 shows an example using a two-processor system.

Processor 1 (P1) Memory Access Groups G1 and G2

Instruction 1

Instruction 2

Instruction 3

Instruction 4

G1: Memory accesses generated by
P1 before the memory barrier

Processor 2 (P2)

When memory coherence is
required, G1 accesses that affect P2
are also performed before the
memory barrier.

Instruction 5 (sync or eieio)—Memory barrier

Barrier generated by P1 does not
order P2 instructions or associated
accesses with respect to other P2
instructions and associated
accesses.

Instruction 6

Instruction 7

Instruction 8

Instruction 9

Instruction 10

G2: Memory accesses generated by
P1 after the memory barrier

When memory coherence is
required, G2 accesses that affect P2
are also performed after the memory
barrier.

Figure 5-1. Memory Barrier when Coherency is Required (M = 1)

The memory barrier ensures that all memory accesses in G1 are performed with respect to
any processor or mechanism, to the extent required by the associated memory coherence
required attributes (that is, the memory coherence required attribute, if any, associated with
each access), before any memory accesses in G2 are performed with respect to that

processor or mechanism.

The ordering done by a memory barrier is said to be cumulative if it also orders memory
accesses that are performed by processors and mechanisms other than P1, as follows:

— Gl includes all applicable memory accesses by any such processor or

mechanism that have been performed with respect to P1 before the memory

barrier is created.
— G2 includes all applicable memory accesses by any such processor or

mechanism that are performed after aload instruction executed by that processor

or mechanism has returned the value stored by a store that isin G2.

Figure 5-2 shows an example of a cumulative memory barrier in a two-processor system.
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Processor 1 (P1) Memory Access Groups G1 and G2 Processor 2 (P2)

P1 Instruction 1 P2 Instruction L
G1: Memory accesses generated by P1 and P2 that affect
P1. Includes accesses generated by executing P2
instructions L—O (assuming that the access generated by
instruction O occurs before P1's sync is executed).

P1 Instruction 4 P2 Instruction O

P1 Instruction 2 P2 Instruction M

P1 Instruction 3 P2 Instruction N

P2 Instruction P

P1 Instruction 5 (sync)—Cumulative memory barrier applies to all accesses

except those associated with fetching instructions following sync. P2 Instruction Q

P2 Instruction R

Pl Instruction 6 | G2: Memory accesses generated by P1 and P2. Includes |P2 Instruction S
accesses generated by P2 instructions P—X (assuming
that the access generated by instruction P occurs after
P1 Instruction 8 P1’'s sync is executed) performed after a load instruction | p2 |nstruction U
executed by P2 has returned the value stored by a store
P1 Instruction 9 that is in G2. P2 Instruction V
The sync memory barrier does not affect accesses

associated with instruction fetching that occur after the
P1 Instruction 10 |sync. P2 Instruction X

P1 Instruction 7 P2 Instruction T

P1 Instruction 10 P2 Instruction W

Figure 5-2. Cumulative Memory Barrier

A memory barrier created by sync is cumulative and applies to all accesses except those
associated with fetching instructions following the sync. See the definition of eieio in
Chapter 8, “Instruction Set,” for a description of the corresponding properties of the
memory barrier created by that instruction.

5.2.6.1.1 Programming Considerations

Because stores cannot be performed out of program order, as described in the OEA, if a
store instruction depends on the value returned by a preceding load (because the value the
load returns is needed to compute either the effective address specified by the store or the
value to be stored), the corresponding accesses are performed in program order. The same
appliesif whether the storeinstruction executes depends on aconditional branch that inturn
depends on the value returned by a preceding load. For example, if a conditional branch
depends on a preceding load and that branch chooses between a path that includes a store
instruction if the condition ismet, that dependent storeis not performed unless and until the
condition determined by the load is met.

Because instructions following an isync cannot execute until all instructions preceding
isync have completed, if an isync follows a conditional branch instruction that depends on
the value returned by a preceding load instruction, that load is performed before any loads
caused by instructionsfollowing theisync. Thisistrue even if the effects of the dependency
are independent of the value loaded (for example, the value is compared to itself and the
branch tests CRN[EQ]), and even if the branch target is the next sequential instruction.
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Except for the cases described above and earlier in this section, data and control
dependencies do not order memory accesses. Examples include the following:

» |f aload specifiesthe same memory location as a preceding store and the locationis
not caching inhibited, the load may be satisfied from a store queue (a buffer into
which the processor places stored values before presenting them to the memory
subsystem) and not be visible to other processors and mechanisms. Asaresult, if a
subsequent store depends on the value returned by the load, the two stores need not
be performed in program order with respect to other processors and mechanisms.

» Because astore conditional instruction may complete before its store is performed,
aconditional branch instruction that depends on the CRO value set by a store
conditional instruction does not order the store conditional's store with respect to
memory accesses caused by instructions that follow the branch.

For example, in the following sequence, the stw instruction isthe bc instruction’s
target:

stwcx.

bc

stw

For the stwcx. to complete, it must update the architected CRO value, even though
its store may not have performed. The architecture does not require that the store
generated by the stwcx. must be performed before the store generated by the stw.

» Because processors may predict branch target addresses and branch condition
resolution, control dependencies (for example, branches) do not order memory
accesses except as described above. For example, when a subroutine returns to its
caller, the return address may be predicted, with the result that oads caused by
instructions at or after the return address may be performed before the load that
obtains the return address is performed.

Some processors implement nonarchitected duplicates of architected resources such as
GPRs, CR fields, and the LR, so resource dependencies (for example, specification of the
same target register for two load instructions) do not order memory accesses.

Examples of correct uses of dependencies, sync, and eieio to order memory accesses can
be found in Appendix E, “ Synchronization Programming Examples.”

Because the memory model isweakly consistent, the sequential execution model as applied
to instructions that cause memory accesses guarantees only that those accesses appear to be
performed in program order with respect to the processor executing the instructions. For
example, an instruction may complete, and subsequent instructions may be executed,
before memory accesses caused by the first instruction have been performed. However, for
a sequence of atomic accesses to the same memory location for which memory coherence
Is required, the definition of coherence guarantees that the accesses are performed in
program order with respect to any processor or mechanism that accesses the location
coherently, and similarly if the location is one for which caching is inhibited.
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Because accesses to caching inhibited memory are performed in main memory, memory
barriers and dependencies on load instructions order such accesses with respect to any
processor or mechanism even if the memory is not memory coherence required.

5.2.6.1.2 Programming Examples

Example 1 shows cumulative ordering of memory accesses preceding a memory barrier,
and the second illustrates cumulative ordering of memory accesses following a memory
barrier. Assume that locations X, Y, and Z initially contain the value 0.
Example 1:

* Processor A stores the value 1 to location X.

» Processor B loadsfrom location X obtaining the value 1, executesasync, then stores
thevalue 2 to location'Y.

* Processor Cloadsfrom locationY obtaining the value 2, executes async, then loads
from location X.

Example 2:
* Processor A storesthe value 1 to location X, executes a sync, then stores the value
2tolocationY.

* Processor B loops loading from location' Y until the value 2 is obtained, then stores
the value 3 to location Z.

* Processor Cloadsfrom location Z obtaining the value 3, executes async, then loads
from location X. In both cases, cumulative ordering dictates that the value loaded
from location X by processor Cis 1.

5.2.6.2 Lock Acquisition and Import Barriers

An import barrier is an instruction or instruction sequence that prevents memory accesses
caused by instructionsfollowing the barrier from being performed before memory accesses
that acquire a lock have been performed. An import barrier can be used to ensure that a
shared data structure protected by alock is not accessed until the lock has been acquired.
A syncinstruction can always be used as an import barrier, but the approaches shown bel ow
generally yield better performance because they order only the relevant memory accesses.

5.2.6.2.1 Acquire Lock and Import Shared Memory

If lwarx and stwcx. are used to obtain the lock, an import barrier can be constructed by
placing an isync immediately following the loop containing the Iwarx and stwcx.. The
following example uses the Compare and Swap primitive (see SectionE.2,
“Synchronization Primitives’) to acquire the lock.

In this example it is assumed that the address of the lock isin GPR 3, the value indicating
that the lock isfreeisin GPR 4, the value to which the lock should be set isin GPR 5, the
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old value of the lock isreturned in GPR 6, and the address of the shared data structureisin
GPR 9.

| oop: lwarx r6,0,r3
cnpw rd, r6 skip ahead if
bne- wai t l ock not free

# | oad | ock and reserve
#
#
stwex. r5,0,r3 # try to set |ock
#
#
#

bne- | oop loop if lost reservation
i sync i mport barrier
| wz r7,datal(r9) | oad shared data

wait: ... #wait for lock to free

The second bne- does not complete until CRO has been set by the stwcx.. The stwex. does
not set CRO until it has completed (successfully or unsuccessfully). The lock is acquired
when the stwcx. completes successfully. Together, the second bne- and the subsequent
isync create an import barrier that preventsthe load from datal from being performed until
the branch has been resolved not to be taken.

5.2.6.2.2 Obtain Pointer and Import Shared Memory

If lwarx and stwcx. are used to obtain a pointer into a shared data structure, an import
barrier is not needed if al the accesses to the shared data structure depend on the value
obtained for the pointer. The following example uses the Fetch and Add primitive (see
Section E.2, “ Synchronization Primitives’) to obtain and increment the pointer.

In this example it is assumed that the address of the pointer isin GPR 3, the value to be
added to the pointer isin GPR 4, and the old value of the pointer isreturned in GPR 5.

| oop: lwarx r5,0,r3 # | oad pointer and reserve
add ro,r4,r5 # increment the pointer
stwex. r0,0,r3 # try to store new val ue
bne- | oop # loop if |lost reservation
| wz r7,datal(rb) # |l oad shared data

Theload from datal cannot be performed until the lwar x |oads the pointer value into GPR
5. Theload from datal may be performed out-of-order before the stwcex.. But if the stwcx.
fails, the branch is taken and the value returned by the load from datal is discarded. If the
stwex. succeeds, the value returned by the load from datal is valid even if the load is
performed out-of-order, because the load uses the pointer value returned by the instance of
the lwar x that created the reservation used by the successful stwcx..

Anisync could be placed between the bne- and the subsequent lwz, but no isync is needed
iIf all accessesto the shared data structure depend on the value returned by the Iwar x.
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5.3 The Operating Environment

@® The OEA defines the mechanism for controlling the memory/cache access modes
introduced in Section 5.2.4.1, “Memory/Cache Access Modes.” This section describes the
cache-related aspects of the OEA including the memory/cache access attributes, the dcbi,
and speculative execution. Note that the terms ‘ speculative’ and ‘out-of-order’ are used
here as defined in Section 5.3.1.5.1, “Definition of Speculative and Out-of-Order Memory
Accesses.”

The features of the OEA are accessible to supervisor-level applications only. The
mechanism for controlling the virtual memory space is described in Chapter 7, “Memory
Management.”
The memory model of PowerPC processors provides the following features:

* Flexibility to allow performance benefits of weakly-ordered memory access

* A mechanism to maintain memory coherency among processors and between a
processor and 1/O devices controlled at the block and page level

* Instructions that can be used to ensure a consistent memory state

* Guaranteed processor access order
The memory implementations in PowerPC systems can take advantage of the performance
benefits of weak ordering of memory accesses between processors or between processors
and other external devices without any additional complications. Memory coherency can

be enforced externally by a snooping bus design, a centralized cache directory design, or
other designs that can take advantage of the coherency features of PowerPC processors.

Memory accesses performed by a single processor appear to complete sequentially from
the view of the programming model but may complete out of order with respect to the
ultimate destination in the memory hierarchy. Order is guaranteed at each level of the
memory hierarchy for accesses to the same address from the same processor. The dcbst,
dcbf, ichi, isync, sync, eieio, lwarx, and stwcx. instructions allow the programmer to
ensure a consistent memory state.

5.3.1 Memory/Cache Access Attributes
All instruction and data accesses are performed under the control of the four memory/cache
access attributes:

»  Write-through (W attribute)

» Caching-inhibited (I attribute)

* Memory coherency (M attribute)

* Guarded (G attribute)

These attributes are programmed in the PTEs and BATSs by the operating system for each
page and block respectively. The W and | attributes control how the processor performing
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an access uses its own cache. The M attribute ensures that coherency is maintained for all
copies of the addressed memory location. When an access requires coherency, the processor
performing the access must inform the coherency mechanisms throughout the system that
the access requires memory coherency. The G attribute prevents speculative (referred to the
asout-of-order in the architecture specification) |oading and prefetching from the addressed
memory location.

Note that the memory/cache access attributes are relevant only when an effective addressis
trandlated by the processor performing the access. Note also that not al combinations of
settings of these bitsis supported. The attributes are not saved along with datain the cache
(for cacheable accesses), nor are they associated with subsequent accesses made by other
processors.

The operating system programs the memory/cache access attribute for each page or block
as required. The WIMG attributes occupy four bitsin the BAT registers for block address
trandation and in the PTES for page address trandation. The WIMG bits are programmed
asfollows:

» Theoperating system usesthemtspr to programthe WIMG bitsinthe BAT registers
for block address trandation. The IBAT register pairs implement the W or G bits;
however, attempting to set either bit in IBAT registers causes boundedly-undefined
results.

* The operating system writes the WIMG bits for each page into the PTEsin system
memory as it sets up the page tables.

Note that for data accesses performed in real addressing mode (MSR[DR] = 0), the WIMG
bits are assumed to be 0b0011 (the data is write-back, caching is enabled, memory
coherency is enforced, and memory is guarded). For instruction accesses performed in real
addressing mode (MSR[IR] = 0), the WIMG bits are assumed to be 0b0001 (the data is
write-back, caching is enabled, memory coherency is not enforced, and memory is
guarded).

5.3.1.1 Write-Through Attribute (W)

When an access is designated as write-through (W = 1), if the datais in the cache, a store
operation updates the cached copy of the data. In addition, the update is written to the
memory location. The definition of the memory location to be written to (in addition to the
cache) depends on the implementation of the memory system but can be illustrated by the
following examples:

» RAM—The storeis sent to the RAM controller to be written into the target RAM.

* |/O device—The storeis sent to the memory-mapped I/O controller to be written to
the target register or memory location.

In systems with multilevel caching, the store must be written to at least a depth in the
memory hierarchy that is seen by all processors and devices.
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Multiple store instructions may be combined for write-through accesses except when the
store instructions are separated by a sync or eieio. A store operation to a memory location
designated as write-through may cause any part of the cache block to be written back to
main memory.

Accesses that correspond to W = 0 are considered write-back. For this case, athough the
store operation is performed to the cache, the data is copied to memory only when a
copy-back operation is required. Use of the write-back mode (W = 0) can improve overall
performance for areas of the memory space that are seldom referenced by other processors
or devices in the system.

Accesses to the same memory location using two effective addresses for which the W bit
setting differs meet the memory-coherency requirements if the accesses are performed by
a single processor. If the accesses are performed by two or more processors, coherence is
enforced by the hardware only if the write-through attribute isthe samefor al the accesses.

5.3.1.2 Caching-Inhibited Attribute (1)

If I = 1, the memory access is completed by referencing the location in main memory,
bypassing the cache. During the access, the addressed location is not |oaded into the cache
nor is the location alocated in the cache.

It is considered a programming error if a copy of the target location of an access to
caching-inhibited memory is resident in the cache. Software must ensure that the location
has not been previously loaded into the cache, or, if it has, that it has been flushed from the
cache.

Data accesses from more than one instruction may be combined for cache-inhibited
operations, except when the accesses are separated by a sync, or by an eleio when the page
or block is also designated as guarded.

Instruction fetches, dcbz instructions, and load and store operations to the same memory
location using two effective addresses for which the | bit setting differs must meet the
requirement that a copy of the target location of an access to caching-inhibited memory not
be in the cache. Violation of this requirement is considered a programming error; software
must ensure that the location has not previously been brought into the cache or, if it has,
that it has been flushed from the cache. If the programming error occurs, the result of the
access is boundedly undefined. It is not considered a programming error if the target
location of any other cache management instruction to caching-inhibited memory isin the
cache.

5.3.1.3 Memory Coherency Attribute (M)

This attribute is provided to alow improved performance in systems where
hardware-enforced coherency isrelatively slow, and software isableto enforce therequired
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coherency. When M = 0, there are no requirements to enforce data coherency. When M =1,
the processor enforces data coherency.

When the M attribute is set, and the access is performed to memory, there is a hardware
indication to the rest of the system that the access is global. Other processors affected by
the access must then respond to this global access. For example, in a snooping bus design,
the processor may assert some type of global access signal. Other processors affected by
the access respond and signal whether the data is being shared. If the data in another
processor is modified, then the location is updated and the accessis retried.

Because instruction memory does not have to be coherent with data memory, some
implementations may ignore the M attribute for instruction accesses. In a single-processor
(or single-cache) system, performance might be improved by designating all pages as
memory coherency not required.

Accesses to the same memory location using two effective addresses for which the M bit
settings differ may require explicit software synchronization before accessing the location
with M = 1if the location has previously been accessed with M = 0. Any such requirement
IS system-dependent. For example, no software synchronization may be required for
systems that use bus snooping. In some directory-based systems, software may be required
to execute dcbf instructions on each processor to flush all storage locations accessed with
M = 0 before accessing those locations with M = 1.

53.1.4 W,I, and M Bit Combinations

Table 5-1 summarizes the six combinations of the WIM bits supported by the OEA. The
combinations where WIM = 11x are not supported. Note that either a zero or one setting
for the G bit is allowed for each of these WIM bit combinations.

Table 5-1. Combinations of W, |, and M Bits

WIM Meaning

000 | The processor may cache data (or instructions).
A load or store operation whose target hits in the cache can use that entry in the cache.
The processor does not need to enforce memory coherency for accesses it initiates.

001 | Data (or instructions) may be cached.
A load or store operation whose target hits in the cache may use that entry in the cache.
The processor enforces memory coherency for accesses it initiates.

010 | Caching is inhibited.
The access is performed to memory, bypassing the cache.
The processor does not need to enforce memory coherency for accesses it initiates.

011 | Caching is inhibited.
The access is performed to memory, bypassing the cache.
The processor enforces memory coherency for accesses it initiates.
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Table 5-1. Combinations of W, |, and M Bits (continued)

WIM Meaning

100 | Data (or instructions) may be cached.

A load operation whose target hits in the cache may use that entry in the cache.

Store operations are written to memory. The target location of the store may be cached and is updated on a hit.
The processor does not need to enforce memory coherency for accesses it initiates.

101 | Data (or instructions) may be cached.

A load operation whose target hits in the cache may use that entry in the cache.

Store operations are written to memory. The target location of the store may be cached and is updated on a hit.
The processor enforces memory coherency for accesses it initiates.

5.3.1.5 The Guarded Attribute (G)

When the guarded bit is set, the memory area (block or page) isdesignated asguarded. This
setting can be used to protect certain memory areas from read accesses made by the
processor that are not dictated directly by the program. If there are areas of physical
memory that are not fully populated (in other words, there are holesin the physical memory
map within this area), this setting can protect the system from undesired accesses caused
by speculative (referred to as out-of-order in the architecture specification) load operations
or instruction prefetches that could lead to the generation of the machine check exception.
Also, the guarded bit can be used to prevent speculative load operations or prefetches from
occurring to certain peripheral devicesthat produce undesired results when accessed inthis

way.

5.3.1.5.1 Definition of Speculative and Out-of-Order Memory Accesses

In the architecture definition, the term ‘ out-of-order’ replaced the term ‘ speculative’ with
respect to memory accesses to avoid a conflict between the word's meaning in the context
of execution of instructions past unresolved branches. The architecture's use of
out-of-order in this context could in turn be confused with the notion of loads and stores
being reordered in a weakly ordered memory system.

To address the need for these distinctions, in the context of memory accesses this document
uses the terms ‘ speculative’ and ‘ out-of-order’ as follows:

» Speculative memory access. An access to memory that occurs before it is known to
be required by the sequential execution model.

» Qut-of-order memory access. A memory access performed ahead of one that may
have preceded it in the sequential model, such asis allowed by a weakly-ordered
memory model.

5.3.1.5.2 Performing Operations Speculatively

An operation is said to be nonspeculativeif it is guaranteed to be required by the sequential
execution model. Any other operation is said to be performed speculatively, which the
architecture specification refers to as out of order.
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Operations are performed speculatively by hardware on the expectation that the results will
be needed by an instruction that will be required by the sequential execution model.
Whether theresults are really needed depends on anything that might divert the control flow
away from theinstruction, such as exceptions, branch, trap, system call, and rfi instructions,
and anything that might change the context in which the instruction is executed.

Typically, the hardware performs operations specul atively when it has resources that would
otherwise be idle, so the operation incurs little or no cost. If subsequent events such as
branches or exceptions indicate that the operation would not have been performed in the
sequential execution model, the processor abandons any results of the operation (except as
described below).

Most operations can be performed speculatively, as long as the machine appears to follow
the sequential execution model. Certain speculative operations are restricted, as follows.

» Stores—A storeinstruction may not be executed speculatively in amanner such that
the alteration of the target location can be observed by other processors or
mechanisms.

» Accessing guarded memory—The restrictions for this case are givenin
Section 5.3.1.5.4, “ Specul ative Accesses to Guarded Memory.”

No error of any kind other than a machine check exception may be reported due to an
operation that is performed speculatively, until such time as it is known that the operation
is required by the sequential execution model. The only other permitted side effects (other
than machine check) of performing an operation speculatively are the following:

» Referenced and changed bitsmay be set asdescribed in Section 7.6.3, “ Page History
Recording.”

* Nonguarded memory locations that could be fetched into a cache by nonspeculative
execution may be fetched speculatively into that cache.

5.3.1.5.3 Guarded Memory

Memory is said to be well behaved if the corresponding physical memory exists and is not
defective, and if the effects of asingle access to it are indistinguishable from the effects of
multiple identical accesses to it. Data and instructions can be fetched speculatively from
well-behaved memory without causing undesired side effects.

Memory is said to be guarded if either of the following cases:
» TheGhitis1intherelevant PTE or DBAT register

* The processor isin real addressing mode (MSR[IR] =0 or MSR[DR] =0 for
instruction fetches or data accesses respectively). In this case, al of memory is
guarded for the corresponding accesses.

In general, memory that is not well-behaved should be guarded. Because such memory may
represent an 1/0O device or may include non-existent locations, a speculative access to such
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memory may cause an /O device to perform incorrect operations or may cause a machine
check.

Note that if separate store instructions access memory that is both caching-inhibited and
guarded, the accesses are performed in the order specified by the program. If an aligned,
load or store that is not a string or multiple access to caching-inhibited, guarded memory
has accessed main memory and an external, decrementer, or impreci se-mode fl oating-point
enabled exception is pending, the load or store is completed before the exception is taken.

5.3.1.5.4 Speculative Accesses to Guarded Memory

The circumstancesin which guarded memory may be accessed speculatively are asfollows:
e Loadinstruction

If acopy of the target location isin a cache, the location may be accessed in the
cache or in main memory.

e |nstruction fetch

In real addressing mode (MSR[IR] = 0), an instruction may be fetched if any of the
following conditionsis met:

— Theinstruction isin a cache. In this case, it may be fetched from that cache.

— Theinstruction isin the same physical page as an instruction that is required by
the sequential execution model or isin the physical pageimmediately following
such a page.

If MSR[IR] =1, instructions may not be fetched from either no-execute segments or
guarded memory. If the effective address of the current instruction is mapped to
either of these kinds of memory when MSR[IR] = 1, an ISl exception is generated.
However, it is permissible for an instruction from either of these kinds of memory
to be in the instruction cache if it was fetched into that cache when its effective
address was mapped to some other kind of memory. Thus, for example, the
operating system can access an application's instruction segments as no-execute
without having to invalidate them in the instruction cache.

Additionaly, instructions are not fetched from direct-store segments (only applies
when MSR[IR] =1). If aninstruction fetch is attempted from adirect-store segment,
an | Sl exception is generated. Note that the direct-store facility is being phased out
of the architecture and will not likely be supported in future devices. Thus, software
should not depend on its effects.

Note that software should ensure that only well-behaved memory is loaded into a cache,
either by marking as caching-inhibited (and guarded) all memory that may not be
well-behaved, or by marking such memory caching-allowed (and guarded) and referring
only to cache blocks that are well-behaved.
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If a physical page contains instructions that will be executed in real addressing mode
(MSR[IR] = 0), software should ensure that this physical page and the next physical page
contain only well-behaved memory.

5.3.2 1/O Interface Considerations

The PowerPC architecture defines two mechanisms for accessing 1/O:

* Memory-mapped I/O interface operations. SR[T] = 0. These operations are
considered to address memory space and are therefore subject to the same coherency
control as memory accesses. Depending on the specific 1/0 interface, the
memory/cache access attributes (WIMG) and the degree of access ordering
(requiring eieio or sync instructions) need to be considered. Thisisthe
recommended way of accessing I/0.

» Direct-store segment operations. SR[T] = 1. These operations are considered to
address the noncoherent and noncacheabl e direct-store segment space; therefore,
hardware need not maintain coherency for these operations, and the cacheis
bypassed compl etely. Although the architecture defines this direct-store
functionality, it is being phased out of the architecture and will not likely be
supported in future devices. Thus, its use is discouraged, and new software should
not use it or depend on its effects.

5.3.3 OEA Cache Management Instruction—Data Cache
Block Invalidate (dcbi)

As described in Section 5.2.5, “VEA Cache Management Instructions,” the VEA defines
instructions for controlling both the instruction and data caches, The OEA defines one
instruction, the data cache block invalidate (dcbi) instruction, for controlling the data
cache. This section briefly describes the cache management instruction available to
programs at the supervisor privilege level. Additional descriptions of coding dcbi are
provided in Chapter 4, “Addressing Modes and Instruction Set Summary,” and Chapter 8,
“Instruction Set.” In the following description, the target is the cache block containing the
byte addressed by the effective address.

Any cache management instruction that generates an EA that corresponds to a direct-store
segment (SR[T] = 1) is treated as a no-op. However, note that the direct-store facility is
being phased out of the architecture and will not likely be supported in future devices. Thus,
software should not depend on its effects.

The action taken depends on the memory/cache access mode associated with the target, and
on the state of the cache block. The following list describes the action taken for the various
Cases.

» Coherency required
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Unmodified cache block—Invalidates copies of the cache block in the data caches
of all processors.

Modified cache block—Invalidates copies of the cache block in the data caches of
all processors. (Discards the modified data in the cache block.)

Target block not in cache—If copies of the target are in the data caches of other
processors, dcbi causesthose copiesto beinvalidated, regardless of whether the data
Is modified or unmodified.

» Coherency not required

Unmodified cache block—Invalidates the cache block in the executing processor's
data cache.

M odified cache block—Invalidates the cache bl ock in the executing processor's data
cache. (Discards the modified data in the cache block.)

Target block not in cache—No action is taken.

The processor treats dcbi as a store to the addressed byte with respect to address trandlation
and protection. It is not necessary to set the referenced and changed bits.

The function of this instruction is independent of the write-through/write-back and
caching-inhibited/caching-allowed attributes of the target. To ensure coherency, aliased
effective addresses (two effective addresses that map to the same physical address) must
have the same page offset.

MOTOROLA Chapter 5. Cache Model and Memory Coherency 5-25



The Operating Environment

5-26 Programming Environments Manual for 32-Bit Microprocessors MOTOROLA



Chapter 6
Exceptions

The operating environment architecture (OEA) portion of the PowerPC architecture defines
the mechanism by which PowerPC processors implement exceptions (referred to as
interrupts in the architecture specification). Exception conditions may be defined at other
levels of the architecture. For example, the user instruction set architecture (UISA) defines
conditions that may cause floating-point exceptions; the OEA defines the mechanism by
which the exception is taken.

The PowerPC exception mechanism allows the processor to change to supervisor state as a
result of external signals, errors, or unusua conditions arising in the execution of
instructions. When exceptions occur, information about the state of the processor is saved
to certain registers and the processor begins execution at an address (exception vector)
predetermined for each exception. Processing of exceptions begins in supervisor mode.

Although multiple exception conditions can map to a single exception vector, a more
gpecific condition may be determined by examining a register associated with the
exception—for example, the DSISR and the floating-point status and control register
(FPSCR). Additionally, certain exception conditions can be explicitly enabled or disabled
by software.

The PowerPC architecture requires that exceptions be taken in program order; therefore,
although a particular implementation may recognize exception conditions out of order, they
are handled dtrictly in order with respect to the instruction stream. When an
instruction-caused exception is recognized, any unexecuted instructions that appear earlier
in the instruction stream, including any that have not yet entered the execute state, are
required to complete before the exception is taken. For example, if a single instruction
encounters multiple exception conditions, those exceptions are taken and handled
sequentially. Likewise, exceptions that are asynchronous and precise are recognized when
they occur, but are not handled until all instructions currently in the execute stage
successfully complete execution and report their results.

Note that exceptions can occur while an exception handler routine is executing, and
multiple exceptions can become nested. It is up to the exception handler to save the
appropriate machine state if it is desired to allow control to ultimately return to the
excepting program.
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In many cases, after the exception handler handles an exception, there is an attempt to
execute the instruction that caused the exception. Instruction execution continues until the
next exception condition is encountered. This method of recognizing and handling
exception conditions sequentially guarantees that the machine state is recoverable and
processing can resume without |osing instruction results.

To prevent the loss of state information, exception handlers must save the information
stored in SRRO and SRR1 soon after the exception istaken to prevent thisinformation from
being lost due to another exception being taken.

In this chapter, thefollowing terminology is used to describe the various stages of exception
processing:

Recognition Exception recognition occurs when the condition that can cause an
exception isidentified by the processor.

Taken An exception is said to be taken when control of instruction
execution is passed to the exception handler; that is, the context is
saved and the instruction at the appropriate vector offset is fetched
and the exception handler routine is begun in supervisor mode.

Handling Exception handling is performed by the software linked to the
appropriate vector offset. Exception handling is begun in supervisor
mode (referred to as privileged state in the architecture
specification).

6.1 Exception Classes

As specified by the PowerPC architecture, all exceptions can be described as either precise
or imprecise and either synchronous or asynchronous. A synchronous exceptions are caused
by events external to the processor’'s execution; synchronous exceptions are caused by
instructions.

The PowerPC exception types are shown in Table 6-1.

Table 6-1. PowerPC Exception Classifications

Type Exception

Asynchronous/nonmaskable Machine Check
System Reset

Asynchronous/maskable External interrupt
Decrementer

Synchronous/precise Instruction-caused exceptions, excluding
floating-point imprecise exceptions

Synchronous/imprecise Instruction-caused imprecise exceptions
(Floating-point imprecise exceptions)
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Exceptions, their offsets, and conditions that cause them, are summarized in Table 6-2. The
exception vectors described in the table correspond to physical address locations,
depending on the value of MSRJ[IP]. Refer to Section 7.3.1.2, “Predefined Physica
Memory Locations,” for a complete list of the predefined physica memory areas.
Remaining sections in this chapter provide more complete descriptions of the exceptions
and of the conditions that cause them.

Table 6-2. Exceptions and Conditions—OQOverview

Exception
Type

Vector Offset
(hex)

Causing Conditions

System reset

00100

The causes of system reset exceptions are implementation-dependent. If the conditions
that cause the exception also cause the processor state to be corrupted such that the
contents of SRRO and SRR1 are no longer valid or such that other processor resources
are so corrupted that the processor cannot reliably resume execution, the copy of the RI
bit copied from the MSR to SRR1 is cleared.

Machine
check

00200

The causes for machine check exceptions are implementation-dependent, but typically
these causes are related to conditions such as bus parity errors or attempting to access
an invalid physical address. Typically, these exceptions are triggered by an input signal to
the processor. Note that not all processors provide the same level of error checking.
The machine check exception is disabled when MSR[ME] = 0. If a machine check
exception condition exists and ME is cleared, the processor goes into checkstop state.
If the conditions that cause the exception also corrupt the processor state such that the
SRRO0 and SRR1 contents are no longer valid or such that other processor resources are
so corrupted that the processor cannot reliably resume execution, the copy of the RI bit
written from the MSR to SRR1 is cleared.

(Note that physical address is referred to as real address in the architecture specification.)

DSI

00300

Occurs when a data memory access cannot be performed for any of the reasons
described in Section 6.4.3, “DSI Exception (0x00300).” Such accesses can be generated
by load/store instructions and by certain memory control and cache control instructions.

ISI

00400

Occurs when an instruction fetch cannot be performed for a variety of reasons described
in Section 6.4.4, “IS| Exception (0x00400).”

External
interrupt

00500

Generated only when an external interrupt is pending (typically signalled by a signal
defined by the implementation) and the interrupt is enabled (MSR[EE] = 1).

Alignment

00600

May occur when the processor cannot perform a memory access for reasons described
in Section 6.4.6, “Alignment Exception (0x00600).” Note that an implementation is allowed
to perform the operation correctly and not cause an alignment exception.
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Table 6-2. Exceptions and Conditions—Overview (continued)

Exception
Type

Vector Offset
(hex)

Causing Conditions

Program

00700

Caused by one of the following exception conditions, which correspond to bit settings in
SRR1 and arise during execution of an instruction:
« Floating-point enabled exception—A floating-point enabled exception condition is
generated when MSR[FEO—FE1] # 00 and FPSCR[FEX] is set. The settings of FEO and
FE1 are described in Table 6-3.
FPSCR[FEX] is set by the execution of a floating-point instruction that causes an
enabled exception or by the execution of a Move to FPSCR instruction that sets both
an exception condition bit and its corresponding enable bit in the FPSCR. These
exceptions are described in Section 3.3.6, “Floating-Point Program Exceptions.”
lllegal instruction—An illegal instruction program exception is generated when
execution of an instruction is attempted with an illegal opcode or illegal combination of
opcode and extended opcode fields or when execution of an optional instruction not
provided in the specific implementation is attempted (these do not include those
optional instructions that are treated as no-ops). The instruction set is described in
Chapter 4, “Addressing Modes and Instruction Set Summary.” See Section 6.4.7,
“Program Exception (0x00700),” for a complete list of causes for an illegal instruction
program exception.
Privileged instruction—A privileged instruction type program exception is generated
when the execution of a privileged instruction is attempted and the MSR user privilege
bit, MSR[PR], is set. This exception is also generated for mtspr or mfspr with an invalid
SPR field if spr[0] = 1 and MSR[PR] = 1.
» Trap—A trap type program exception is generated when any of the conditions specified
in a trap instruction is met.
« For more information, refer to Section 6.4.7, “Program Exception (0x00700).”

Floating-point
unavailable

00800

Caused by an attempt to execute a floating-point instruction (including floating-point load,
store, and move instructions) when the floating-point available bit is cleared, MSR[FP] = 0.

Decrementer

00900

Taken if the exception is enabled (MSR[EE] = 1), and it is pending. The exception is
created when the most-significant bit of the decrementer changes from 0 to 1. If it is not
enabled, the exception remains pending until it is taken.

Reserved

00AQ0

Reserved for implementation-specific exceptions.

Reserved

00B00

System call

00CO00

Occurs when a System Call (sc) instruction is executed.

Trace

00D00

Optional. If implemented, a trace exception occurs if either MSR[SE] = 1 and almost any
instruction successfully completed or MSR[BE] = 1 and a branch instruction is completed.
See Section 6.4.11, “Trace Exception (0x00D00),” for more information.

Floating-point

0OEOO

Optional. This exception can be used to provide software assistance for infrequent and

assist complex floating-point operations such as denormalization.
Reserved |OOE10-00FFF |—
Reserved 01000-02FFF | Reserved for implementation-specific purposes. May be used for implementation-specific

exception vectors or other uses.

6.1.1 Precise Exceptions

When any precise exceptions occur, SRRO is set to point to an instruction such that all prior
instructions in the instruction stream have completed execution and no subsequent
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instruction has begun execution. However, depending on the exception type, the instruction
addressed by SRRO may not have completed execution.

When an exception occurs, instruction dispatch (the issuance of instructions by the
instruction fetch unit to any instruction execution mechanism) is halted and the following
synchronization is performed:

1. The exception mechanism waits for al previous instructionsin the instruction
stream to complete to a point where they report all exceptions they will cause.
However, some memory accesses associated with these preceding instructions may
not have been performed with respect to other processors and mechanisms.

2. The processor ensures that all previousinstructionsin the instruction stream
complete in the context in which they began execution.

3. The exception mechanism implemented in hardware and the software handler is
responsible for saving and restoring the processor state.

The synchronization described conforms to the requirements for context synchronization.
A complete description of context synchronization is described in the following section.

6.1.2 Synchronization

The synchronization described in this section refers to the state of activities within the
processor that performs the synchronization.

6.1.2.1 Context Synchronization

An instruction or event is context synchronizing if it satisfies all the requirements listed
below. Context-synchronizing operations include the sc and rfi instructions and most
exceptions and have the following characteristics:

1. The operation causes instruction dispatching to be halted.

2. The operation isnot initiated or, in the case of isync, does not complete, until all
instructions in execution have completed to a point at which they have reported all
exceptions they will cause.

3. Instructions that precede the operation complete execution in the context (for
example, the privilege, tranglation mode, and memory protection) in which they
were initiated.

4. If the operation either directly causes an exception (for example, the sc instruction
causes asystem call exception) or is an exception, the operation is not initiated until
no exception exists having higher priority than the exception associated with the
context-synchronizing operation.

A context-synchronizing operation is necessarily execution synchronizing. Unlike the sync
instruction, these operations need not wait for memory-related operations to complete on
other processors or for referenced and changed bits in the page table to be updated.

MOTOROLA Chapter 6. Exceptions 6-5



Exception Classes

6.1.2.2 Execution Synchronization

Aninstruction is execution synchronizing if it satisfies the conditions of the first two items
described above for context synchronization. The sync instruction istreated like isync with
respect to the second item described above (that is, the conditions described in the second
item apply to the completion of sync). The sync and mtmsr instructions are examples of
execution-synchronizing instructions.

All  context-synchronizing instructions are execution-synchronizing. Unlike a
context-synchronizing operation, an execution-synchronizing instruction need not ensure
that the subsequent instructions execute in the context established by that instruction. This
new context becomes effective sometime after the execution-synchronizing instruction
completes and before or at a subsequent context-synchronizing operation.

6.1.2.3 Synchronous/Precise Exceptions

When instruction execution causes a precise exception, the following conditions exist at the
exception point:

» Depending on the type of exception, SRRO addresses either the instruction causing
the exception or the immediately following instruction. The instruction addressed
can be determined from the exception type and status bits, which are defined in the
description of each exception.

» Allinstructionsthat precede the excepting instruction compl ete before the exception
Is processed. However, some memory accesses generated by these preceding
instructions may not have been performed with respect to all other processors or
system devices.

» Theinstruction causing the exception may not have begun execution, may have
partially completed, or may have completed, depending on the exception type.
Handling of partially executed instructionsis described in Section 6.1.4, “Partially
Executed Instructions.”

» Architecturally, no subsequent instruction has begun execution.
While instruction parallelism alows the possibility of multiple instructions reporting

exceptions during the same cycle, they are handled one at a time in program order.
Exception priorities are described in Section 6.1.5, “Exception Priorities.”

6.1.2.4 Asynchronous Exceptions

There are four asynchronous exceptions—system reset and machine check, which are
nonmaskable and highest-priority exceptions, and external interrupt and decrementer
exceptions which are maskable and low-priority. These two types of asynchronous
exceptions are discussed separately.
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6.1.2.4.1 System Reset and Machine Check Exceptions

System reset and machine check exceptions have the highest priority and can occur while
other exceptions are being processed. Note that nonmaskabl e, asynchronous exceptions are
never delayed; therefore, if two of these exceptions occur inimmediate succession, the state
information saved by thefirst exception may be overwritten when the subsequent exception
occurs. Note that these exceptions are context-synchronizing if they are recoverable
(MSR[RI] is copied from the MSR to SRRL1 if the exception does not cause loss of state.)
If the RI bit is clear (nonrecoverable), the exception is context-synchronizing only with
respect to subsequent instructions.

These exceptions cannot be masked by using MSR[EE]. However, if the machine check
enable bit, MSR[ME], is cleared and a machine check exception condition occurs, the
processor goes directly into checkstop state as the result of the exception condition. When
one of these exceptions occur, the following conditions exist at the exception point:

» For system reset exceptions, SRRO addresses the instruction that would have
attempted to execute next if the exception had not occurred.

» For machine check exceptions, SRRO holds either an instruction that would have
completed or some instruction following it that would have completed if the
exception had not occurred.

* Anexception is generated such that all instructions preceding the instruction
addressed by SRRO appear to have completed with respect to the executing
processor.

Note that MSR[RI] indicates whether enough of the machine state was saved to alow the
processor to resume processing.

6.1.2.4.2 External Interrupt and Decrementer Exceptions

For the external interrupt and decrementer exceptions, the following conditions exist at the
exception point (assuming these exceptions are enabled (MSR[EE] is set)):

» All instructions issued before the exception is taken and any instructions that
precede those instructionsin theinstruction stream appear to have completed before
the exception is processed.

* No subsequent instructions in the instruction stream have begun execution.

» SRRO addressestheinstruction that would have been executed had the exception not
occurred.

That is, these exceptions are context-synchronizing. The external interrupt and decrementer
exceptions are maskable. When the machine state register external interrupt enable bit is
cleared (MSR[EE] = 0), these exception conditions are not recognized until the EE bit is
set. EE is cleared automatically when an exception is taken, to delay recognition of
subsequent exception conditions. Exception handling does not begin until al currently
executing instructions complete and any synchronous, precise exceptions caused by those
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instructions have been handled. Exception priorities are described in Section 6.1.5,
“Exception Priorities”

6.1.3 Imprecise Exceptions

The PowerPC architecture defines one imprecise exception, the imprecise floating-point
enabled exception. Thisisimplemented as one of the conditions that can cause a program
exception.

6.1.3.1 Imprecise Exception Status Description

When the execution of an instruction causes an imprecise exception, SRRO contains
information related to the address of the excepting instruction as follows:

* SRRO contains the address of either the instruction that caused the exception or of
some instruction following that instruction.

» Theexception is generated such that all instructions preceding the instruction
addressed by SRRO have completed with respect to the processor.

» If theimprecise exception is caused by the context-synchronizing mechanism (due
to an instruction that caused another exception—for example, an alignment or DS
exception), then SRRO contains the address of the instruction that caused the
exception, and that instruction may have been partially executed (refer to
Section 6.1.4, “Partially Executed Instructions”).

» |f theimprecise exception iscaused by an execution-synchronizing instruction other
than sync or isync, SRRO addresses the instruction causing the exception.
Additionally, besides causing the exception, that instruction is considered not to
have begun execution. If the exception is caused by the sync or isync instruction,
SRRO may address either the sync or isync instruction, or the following instruction.

» |f theimprecise exception is not forced by either the context- or
execution-synchronizing mechanism, the instruction addressed by SRRO is
considered not to have begun execution if it did not cause the exception.

* When an imprecise exception occurs, no instruction following the instruction
addressed by SRRO is considered to have begun execution.

6.1.3.2 Recoverability of Imprecise Floating-Point Exceptions

The enabled |IEEE floating-point exception mode bits, MSR[FEO,FE1], together define
whether | EEE floating-point exceptions are handled precisely, imprecisaly, or whether they
are taken at all. The possible settings are shown in Table 6-3. For further details, see
Section 3.3.6, “Floating-Point Program Exceptions.”
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Table 6-3. IEEE Floating-Point Program Exception Mode Bits

FEO | FE1 Mode

0 0 | Floating-point exceptions ignored

0 1 |Floating-point imprecise nonrecoverable. When an exception occurs, the exception handler is invoked at
some point at or beyond the instruction that caused the exception. It may not be possible to identify the
excepting instruction or the data that caused the exception. Results from the excepting instruction may
have been used by or affected subsequent instructions executed before the exception handler was invoked.

1 0 | Floating-point imprecise recoverable. When an exception occurs, the floating-point enabled exception
handler is invoked at some point at or beyond the instruction that caused the exception. Sufficient
information is provided to the exception handler that it can identify the excepting instruction and correct any
faulty results. In this mode, no incorrect results caused by the excepting instruction have been used by or
affected subsequent instructions that are executed before the exception handler is invoked.

1 1 |Floating-point precise mode

Although these exceptions are maskable with these bits, they differ from other maskable
exceptionsin that the masking is usually controlled by the application program rather than
by the operating system.

6.1.4 Partially Executed Instructions

The architecture permits certain instructions to be partially executed when an alignment
exception or DSI exception occurs, or an impreci se floating-point exception isforced by an
instruction that causes an alignment or DSI exception. They are as follows:

» Load multiple/string instructions that cause an alignment or DSI exception—Some
registers in the range of registers to be loaded may have been loaded.

» Store multiple/string instructions that cause an alignment or DSI exception—Some
bytes in the addressed memory range may have been updated.

* Non-multiple/string store instructions that cause an alignment or DS
exception—Some bytes just before the boundary may have been updated. If the
instruction normally alters CRO (stwcx.), CRO is set to an undefined value. For
instructions that perform register updates, the update register (rA) isnot altered.

» Foating-point load instructions that cause an alignment or DSI exception—The
target register may be altered. For update forms, the update register (rA) is
unchanged.

In the cases above, the number of registers and the amount of memory altered are
implementation-, instruction-, and boundary-dependent. However, memory protection is
not violated.

Partial execution is not allowed when integer load operations (except multiple/string
operations) cause an alignment or DSI exception. The target register is not altered. For
update forms of the integer load instructions, the update register (rA) is not altered.
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6.1.5 Exception Priorities

Exceptions are roughly prioritized by exception class, as follows:

1. Nonmaskable, asynchronous exceptions have priority over all other

exceptions—system reset and machine check exceptions (although the machine

check exception condition can be disabled so that the condition causes the processor
to go directly into the checkstop state). These two types of exceptionsin this class
cannot be delayed by exceptionsin other classes, and do not wait for the completion

of any precise exception handling.

2. Synchronous, precise exceptions are caused by instructions and are taken in strict
program order.

3. If animprecise exception exists (the instruction that caused the exception has been
completed and is required by the sequential execution model), exceptions signaled
by instructions subsequent to the instruction that caused the exception are not
permitted to change the architectural state of the processor. The exception causes
an imprecise program exception unless a machine check or system reset exception
is pending.

4. Maskable asynchronous exceptions (external interrupt and decrementer exceptions)
have lowest priority.

The exceptions are listed in Table 6-4 in order of highest to lowest priority.

Table 6-4. Exception Priorities

Exception
Class

Priority

Exception

Nonmaskable,
asynchronous

1

System reset—The system reset exception has the highest priority of all exceptions. If this
exception exists, the exception mechanism ignores all other exceptions and generates a
system reset exception. When the system reset exception is generated, previously issued
instructions can no longer generate exception conditions that cause a nonmaskable
exception.

Machine check—The machine check exception is the second-highest priority exception. If
this exception occurs, the exception mechanism ignores all other exceptions (except reset)
and generates a machine check exception.When the machine check exception is
generated, previously issued instructions can no longer generate exception conditions that
cause a nonmaskable exception.
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Table 6-4. Exception Priorities (continued)

EXCC:F;;;O“ Priority Exception
Synchronous, 3 Instruction dependent— When an instruction causes an exception, the exception
precise mechanism waits for any instructions prior to the excepting instruction in the instruction
stream to complete. Any exceptions caused by these instructions are handled first. It then
generates the appropriate exception if no higher priority exception exists when the exception
is to be generated.
Note that a single instruction can cause multiple exceptions. When this occurs, those
exceptions are ordered in priority as indicated in the following:
A. Integer loads and stores
a. Alignment
b. DSI
c. Trace (if implemented)
B. Floating-point loads and stores
a. Floating-point unavailable
b. Alignment
c. DSI
d. Trace (if implemented)
C. Other floating-point instructions
a. Floating-point unavailable
b. Program—Precise-mode floating-point enabled exception
c. Floating-point assist (if implemented)
d. Trace (if implemented)
D.rfi and mtmsr
a. Program—~Privileged Instruction
b. Program—Precise-mode floating-point enabled exception
c. Trace (if implemented), for mtmsr only
If precise-mode IEEE floating-point enabled exceptions are enabled and FPSCR[FEX]
is set, a program exception occurs no later than the next synchronizing event.
E. Other instructions
a. These exceptions are mutually exclusive and have the same priority:
—Program: Trap
—System call (sc)
—Program: Privileged Instruction
—Program: lllegal Instruction
b. Trace (if implemented)
F. ISI exception
The ISI exception has the lowest priority in this category. It is only recognized when all
instructions prior to the instruction causing this exception appear to have completed and that
instruction is to be executed. The priority of this exception is specified for completeness and
to ensure that it is not given more favorable treatment. An implementation can treat this
exception as though it had a lower priority.

Imprecise 4 Program imprecise floating-point mode enabled exceptions—When this exception occurs,
the exception handler is invoked at or beyond the floating-point instruction that caused the
exception. The PowerPC architecture supports recoverable and nonrecoverable imprecise
modes, which are enabled by setting MSR[FEOQ] # MSR[FE1]. For more information see,
Section 6.1.3, “Imprecise Exceptions.”
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Table 6-4. Exception Priorities (continued)

Exception — .
Class Priority Exception
Maskable, 5 External interrupt—The external interrupt mechanism waits for instructions currently or
asynchronous previously dispatched to complete execution. After all such instructions are completed, and

any exceptions caused by those instructions have been handled, the exception mechanism
generates this exception if no higher priority exception exists. This exception is enabled only
if MSR[EE] is currently set. If EE is zero when the exception is detected, it is delayed until
the bit is set.

6 Decrementer—This exception is the lowest priority exception. When this exception is
created, the exception mechanism waits for all other possible exceptions to be reported. It
then generates this exception if no higher priority exception exists. This exception is enabled
only if MSR[EE] is currently set. If EE is zero when the exception is detected, it is delayed
until the bit is set.

Nonmaskable, asynchronous exceptions (system reset or machine check exceptions) can
occur anytime; they are not delayed if another exception is being handled (although
machine check exceptions can be delayed by system reset exceptions). As a result, state
information for the interrupted exception handler may be lost.

All other exceptions have lower priority than system reset and machine check exceptions,
and the exception may not be taken immediately when it is recognized. Only one
synchronous, precise exception can be reported at atime. If a maskable, asynchronous or
an imprecise exception condition occurs while instruction-caused exceptions are being
processed, its handling isdelayed until all exceptions caused by previousinstructionsin the
program flow are handled and those instructions compl ete execution.

6.2 Exception Processing

When an exception istaken, the processor uses the save/restore registers, SRR1 and SRRO,
respectively, to save the contents of the MSR for the interrupted process and to help
determine where instruction execution should resume after the exception is handled.

When an exception occurs, the address saved in SRRO is used to help calculate where
instruction processing should resume when the exception handler returns control to the
interrupted process. Depending on the exception, this may be the addressin SRRO or at the
next address in the program flow. All instructions in the program flow preceding this one
will have completed execution and no subsequent instruction will have begun execution.
This may be the address of the instruction that caused the exception or the next one (asin
the case of a system call or trap exception). The SRRO register is shown in Figure 6-1.
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[ ] Reserved

SRRO (holds EA for instruction in interrupted program flow) 00

0 29 30 31

Figure 6-1. Machine Status Save/Restore Register 0

The save/restore register 1 (SRR1) is used to save machine status (selected bits from the
MSR and other implementation-specific status bits as well) on exceptions and to restore
those values when rfi is executed. SRR1 is shown in Table 6-2.

Exception-specific information and MSR bit values

Figure 6-2. Machine Status Save/Restore Register 1

When an exception occurs, SRR1 bits 14 and 10-15 are loaded with exception-specific
information and M SR bits 16-23, 25-27, and 30-31 are placed into the corresponding bit
positions of SRR1. Depending on the implementation, additional M SR bits may be copied
to SRR1.

In someimplementations, every instruction fetch when MSR[IR] = 1 and every dataaccess
requiring address translation when MSR[DR] = 1, may modify SRRO and SRRL1.

The MSR is 32 hits wide as shown in Figure 6-3. Note that the 32-bit implementation of
the MSR is comprised of the 32 least-significant bits of the 64-bit MSR.

[ ] Reserved

0000 0000 0000 0 POW| 0 |ILE|EE|PR|FP|ME|FEO|SE|BE|FEY 0 [IP|IR[DR| 00 [RI|LE
0 12 13 14 15 16 171819 20 2122 23 24 252627282930 31
Figure 6-3. Machine State Register (MSR)

Table 6-6 shows the bit definitions for the MSR
Table 6-6. MSR Bit Settings

Bits | Name Description

0-12 — Reserved

13 POW | Power management enable

0 Power management disabled (normal operation mode).

1 Power management enabled (reduced power mode).

Note: Power management functions are implementation-dependent. If the function is not
implemented, this bit is treated as reserved.

14 — Reserved
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Table 6-6. MSR Bit Settings (continued)

Bits

Name

Description

15

ILE

Exception little-endian mode. When an exception occurs, this bit is copied into MSR[LE] to select the
endian mode for the context established by the exception.

16

EE

External interrupt enable

0 While the bit is cleared the processor delays recognition of external interrupts and decrementer
exception conditions.

1 The processor is enabled to take an external interrupt or the decrementer exception.

17

PR

Privilege level
0 The processor can execute both user- and supervisor-level instructions.
1 The processor can only execute user-level instructions.

18

FP

Floating-point available

0 The processor prevents dispatch of floating-point instructions, including floating-point loads,
stores, and moves.

1 The processor can execute floating-point instructions.

19

ME

Machine check enable
0 Machine check exceptions are disabled.
1 Machine check exceptions are enabled.

20

FEO

Floating-point exception mode O (see Table 2-10).

21

SE

Single-step trace enable (Optional)

0 The processor executes instructions normally.

1 The processor generates a single-step trace exception upon the successful execution of the next
instruction.

Note: If the function is not implemented, this bit is treated as reserved.

22

BE

Branch trace enable (Optional)

0 The processor executes branch instructions normally.

1 The processor generates a branch trace exception after completing the execution of a branch
instruction, regardless of whether or not the branch was taken.

Note: If the function is not implemented, this bit is treated as reserved.

23

FE1

Floating-point exception mode 1 (See Table 2-10).

24

Reserved

25

Exception prefix. The setting of this bit specifies whether an exception vector offset is prepended with
Fs or Os. In the following description, nnnnn is the offset of the exception vector. See Table 6-2.

0 Exceptions are vectored to the physical address 0x000n_nnnn .

1 Exceptions are vectored to the physical address OxFFFn_nnnn.

In most systems, IP is set to 1 during system initialization, and then cleared to 0 when initialization is
complete.

26

Instruction address translation

0 Instruction address translation is disabled.

1 Instruction address translation is enabled.

For more information see Chapter 7, “Memory Management.”

27

DR

Data address translation

0 Data address translation is disabled.

1 Data address translation is enabled.

For more information see Chapter 7, “Memory Management.”

28-29

Reserved

6-14
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Table 6-6. MSR Bit Settings (continued)

Bits | Name Description

30 Rl | Recoverable exception (for system reset and machine check exceptions).

0 Exception is not recoverable.

1 Exception is recoverable.

For more information see Section 6.4.1, “System Reset Exception (0x00100),"and Section 6.4.2,
“Machine Check Exception (0x00200).”

31 LE |Little-endian mode enable
0 The processor runs in big-endian mode.
1 The processor runs in little-endian mode.

Those MSR hits that are written to SRR1 are written when the first instruction of the
exception handler is encountered. The data address register (DAR) is used by severad
exceptions (for example, DSl and alignment exceptions) to identify the address of a
memory element.

6.2.1 Enabling and Disabling Exceptions

When acondition exists that may cause an exception to be generated, it must be determined
whether the exception is enabled for that condition as follows:

» |EEE floating-point enabled exceptions (atype of program exception) are ignored
when both MSR[FEQ] and MSR[FE1] are cleared. If either of these bitsis set, all
| EEE enabled floating-point exceptions are taken and cause a program exception.

» Asynchronous, maskable exceptions (that is, the external and decrementer
interrupts) are enabled by setting MSR[EE]. When MSR[EE] = 0, recognition of
these exception conditionsis delayed. MSR[EE] is cleared automatically when an
exception is taken to delay recognition of conditions causing those exceptions.

* A machine check exception can only occur if the machine check enable bit,
MSR[ME], isset. If MSR[ME] iscleared, the processor goes directly into checkstop
state when a machine check exception condition occurs.

6.2.2 Steps for Exception Processing

After it is determined that the exception can be taken (by confirming that any
instruction-caused exceptions occurring earlier in the instruction stream have been handled,
and by confirming that the exception is enabled for the exception condition), the processor
does the following:

1. The machine status save/restore register O (SRRO) is loaded with an instruction
address that depends on the type of exception. See the individual exception
description for details about how thisregister is used for specific exceptions.

2. SRR1 bits 14 and 10-15 are loaded with exception-specific information.

3. MSR bits 16-23, 25-27, and 30-31 are loaded with a copy of the corresponding
MSR bits. Note that some implementations save additional M SR bits to SRR1.
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4. The MSR is set as described in Table 6-7. The new values take effect beginning
with the fetching of the first instruction of the exception-handler routine located at
the exception vector address.

Note that MSR[IR] and MSR[DR] are cleared for all exception types; therefore,
address trangdlation is disabled for both instruction fetches and data accesses
beginning with the first instruction of the exception-handler routine.

Also, note that the MSR[ILE] setting at the time of the exception is copied to
MSR[LE] when the exception is taken (as shown in Table 6-7).

5. Instruction fetch and execution resumes, using the new M SR value, at alocation
specific to the exception type. The location is determined by adding the exception's
vector offset (see Table 6-2) to the base address determined by MSR[IP]. If IPis
cleared, exceptions are vectored to the physical address 0x000n_nnnn. If IPis set,
exceptions are vectored to the physical address OxFFFn_nnnn. For amachine check
exception that occurs when M SR[ME] = 0 (machine check exceptions are disabled),
the checkstop state is entered (the machine stops executing instructions). See
Section 6.4.2, “Machine Check Exception (0x00200).”

In some implementations, any instruction fetch with MSR[IR] = 1 and any load or store
with MSR[DR] = 1 may cause SRRO and SRR1 to be modified.

6.2.3 Returning from an Exception Handler

The Return from Interrupt (rfi) instruction performs context synchronization by allowing
previoudly issued instructions to complete before returning to the interrupted process.
Execution of the rfi instruction ensures the following:

» All previousinstructions have completed to a point where they can no longer cause
an exception.

» Previous instructions complete execution in the context (privilege, protection, and
address tranglation) under which they were issued.

» Therfi instruction copies SRR1 bits back into the MSR.
»  Subsequent instructions execute in the context established by thisinstruction.

For a complete description of context synchronization, refer to Section 6.1.2.1, “ Context
Synchronization.”

6.3 Process Switching

The operating system should execute the following when processes are switched:

» Thesync instruction, which orders the effects of instruction execution. All
Instructions previoudly initiated appear to have completed before the sync
instruction compl etes, and no subsequent instructions appear to beinitiated until the
sync instruction completes.
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Theisyncinstruction, which waitsfor al previousinstructionsto complete and then
discards any fetched instructions, causing subsequent instructions to be fetched (or
refetched) from memory and to execute in the context (privilege, trandation,
protection, etc.) established by the previous instructions.

The stwcx. instruction clears any outstanding reservations, which ensures that an
lwar x instruction in the old process is not paired with an stwcx. instruction in the
New Process.

The operating system should handle MSR[RI] asfollows:

In machine check and system reset exception handlers—If the SRR1 bit
corresponding to MSR[RI] is cleared, the exception is not recoverable.

In each exception handler—When enough state information is saved that a machine
check or system reset exception can reconstruct the previous state, set MSR[RI].

At the end of each exception handler—Clear MSR[RI], set SRRO and SRR1
appropriately, and then execute rfi.

Notethat the RI bit being set indicates that, with respect to the processor, enough processor
state dataisvalid for the processor to continue, but it does not guarantee that the interrupted
process can resume.

6.4 Exception Definitions

Table 6-8. shows all exception types and certain MSR bit settings when the exception
handler is invoked. Depending on the exception, some of these bits are stored in SRR1
when an exception is taken. The following subsections describe each exception in detail.

Table 6-8. MSR Setting Due to Exception

MSR Bit
Exception Type

POW | ILE EE | PR | FP | ME | FEO | SE | BE | FE1 IP IR | DR RI LE
System reset 0 — 0 0 0 — 0 0 0 0 — 1 0 0 0 ILE
Machine check 0 — 0 0 0 0 0 0 0 0 — | 0 0 0 ILE
Data access 0 — 0 0 0 — 0 0 0 0 — | 0 0 0 ILE
Instruction access 0 — 0 0 0 — 0 0 0 0 — | 0 0 0 ILE
External 0 — 0 0 0| — 0 0 0 0 — |0 0 0 ILE
Alignment 0 — 0 0 0| — 0 0 0 0 — |0 0 0 ILE
Program 0 — 0 0 0 — 0 0 0 0 — 1 0 0 0 ILE
Floating-point 0 — 0 0 0 — 0 0 0 0 — | 0 0 0 ILE
unavailable
Decrementer 0 — 0 0 0 — 0 0 0 0 — | 0 0 0 ILE
System call 0 — 0 0 0 — 0 0 0 0 — | 0 0 0 ILE
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Table 6-8. MSR Setting Due to Exception (continued)

MSR Bit
Exception Type

POW | ILE | EE | PR | FP | ME | FEO | SE | BE | FE1 | IP | IR | DR RI LE

Trace exception 0 — 0 0 0 — 0 0 0 0 — 10 0 0 ILE
Floating-point 0 — 0 0 0 — 0 0 0 0 — 10 0 0 ILE
assist exception

0 Bit is cleared

1 Bit is set

ILE Bit is copied from the ILE bit in the MSR.
— Bit is not altered
Reading of reserved bits may return 0, even if the value last written to it was 1.

6.4.1 System Reset Exception (0x00100)

The system reset exception is a nonmaskable, asynchronous exception signaled to the
processor typically through the assertion of a system-defined signal; see Table 6-9.

Table 6-9. System Reset Exception—Register Settings

Register Setting Description

SRRO | Set to the effective address of the instruction that the processor would have attempted to execute next if no
exception conditions were present.

SRR1 |1-4 Cleared
10-15 Cleared
16-23 Loaded with equivalent bits from the MSR
25-27 Loaded with equivalent bits from the MSR
30 Loaded from the equivalent MSR bit, MSR[RI], if the exception is recoverable;
otherwise cleared.
31 Loaded with equivalent bit from the MSR

Note that depending on the implementation, additional MSR bits may be copied to SRR1.
If the processor state is corrupted to the extent that execution cannot resume reliably, the bit corresponding
to MSR[RI], (SRR1[30]), is cleared.

