
Order this document
by AN427/D

Motorola Semiconductor Application Note

AN427
MC68HC11 EEPROM Error Correction Algorithms in C
By Richard Soja

Motorola Ltd.
East Kilbride, Glasgow

Introduction

This application note describes a technique for correcting 1-bit errors
and detecting 2-bit errors in a block of data ranging from 1 to 11 bits in
length. The technique applied is a modified version of a Hamming code
and has been implemented entirely in C. Additional functions have been
provided to program and read the EEPROM (electrically erasable
programmable read-only memory) on an M68HC11 microcontroller unit
using the error encoding and decoding algorithms.

Encoding and Decoding Algorithms

Some texts (see References [1] and [2]) describe the use of
simultaneous equations to calculate check bits in Hamming distance-3
error correcting codes. These codes are so named because there are at
least three bit differences between each valid code in the set of available
codes. The codes are relatively easy to generate and can be used to
correct 1-bit errors. However, their main drawback is that if 2-bit errors
occur, then the correction will be made erroneously. This is because the
condition of 2-bit errors corresponds exactly with a 1-bit error from
another valid code.
© Motorola, Inc., 1990, 2000 AN427

Application Note
The technique described here is based on an algorithmic strategy which
produces Hamming distance-4 codes over the range of 1 to 11 data bits.
This type of code is capable of correcting single-bit errors and detecting
2-bit errors.

Alternatively, if the errors are only to be detected, without correction,
then up to three bit errors can be detected. The reason for this is that the
condition of a 3 bit error in one code corresponds to a 1-bit error from an
adjacent valid code. The implication of this is that if the algorithms are
used to correct errors, then a 3-bit error will be corrected erroneously
and flagged as a 1-bit error.

The C program is divided into three modules, plus one header file. For
example:

1. EECOR1.C — This is the main program segment and serves only
to illustrate the method of calling and checking the algorithms.

2. HAMMING.C — This module contains the functions which encode
and decode the data.

3. EEPROG.C — This module contains the EEPROM programming
functions tailored for an M68HC11 MCU.

4. HC11REG.H — This is the header file which contains the
M68HC11 input/output (I/O) register names defined as a C
structure.

Implementation of Error Correction Strategy

The basic principle of decoding the error correcting codes is to use a
parity check matrix, H, to generate a syndrome word which identifies the
error. The H matrix can be generated as follows:

1. Identify how many data bits are needed. For example: 8 data bits

2. Use the standard equation to derive the number of check bits
required: If k is the number of check bits and m the number of data
bits, then for the Hamming bound to be satisfied:

2k ≥ m + k + 1
AN427

2 MOTOROLA

Application Note
Implementation of Error Correction Strategy
A simple way to understand why this equation holds true is as
follows: If one can generate a check code which is able to identify
where a single error occurs in a bit stream, then the check code
must have at least the same number of unique combinations as
there are bits in the bit stream, plus one extra combination to
indicate that no error has occurred. For example, if the total
number of data plus check bits were seven, then the check code
must consist of three bits to cover the range one to seven plus one
extra (0) to indicate no error at all.

In this example, if m = 8, then by rearranging the earlier equation:

2k – k – 1 ≥ 8

One way to solve for k is to just select values of k starting at, say,
1 and evaluating until the bound is reached. This method is
implemented by algorithm in function InitEncode() in Module
HAMMING.C.

For m = 8, the solution is k = 4. Note that this value exceeds the
Hamming bound, which means that additional data bits can be
added to the bit stream, thus increasing the efficiency of the code.
In fact, the maximum number of data bits is 11 in this case.

3. A parity matrix, H, is created from a "horizontally oriented" binary
table. The number of columns (b1 to b12) in the matrix correspond
to the total number of data and check bits and the number of rows
(r1 to r4) to the number of check bits.

Because the H matrix in this form is simply a truncated 4-bit binary
table, it can easily be generated by algorithm.

i.e. b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12

r1 1 0 1 0 1 0 1 0 1 0 1 0

r2 0 1 1 0 0 1 1 0 0 1 1 0

r3 0 0 0 1 1 1 1 0 0 0 0 1

r4 0 0 0 0 0 0 0 1 1 1 1 1
AN427

MOTOROLA 3

Application Note
4. The position of all the check bits (C1 to C4) within the encoded
word is the position of the single 1s in the columns of H. The
remaining bits correspond to the data bits (D1 to D8).

5. Each check bit is generated by taking each row of H in turn and
modulo-2 adding all bits with a 1 in them e
xcept the check bit positions.

i.e. C1 = D1+D2+D4+D5+D7
C2 = D1+D3+D4+D6+D7
C3 = D2+D3+D4+D8
C4 = D5+D6+D7+D8

6. The syndrome, s, is the binary weighted value of all check bits.

i.e. s = 1*C1+2*C2+4*C3+8*C4

The error position (i.e. column) is determined by the value of the
syndrome word, provided it is not zero. A zero syndrome means
no error has occurred. Note that this error correction technique
can correct errors in either data or check bits, which is not
necessarily the case with certain other error correction strategies.

The advantage of this method, where the check bits are
interspersed in a binary manner throughout the code word, is that
the error position can be calculated by algorithm.

An important point to note is that the parity check matrix described
earlier generates Hamming distance-3 codes, which means that
two errors will cause erroneous correction. This can be fixed by
adding an extra parity check bit, C5, which is the modulo-2
addition of all data and check bits together.

i.e. C5 = C1+C2+D1+C3+D2+D3+D4+C4+D5+D6+D7+D8

The code word then becomes:

C1 C2 D1 C3 D2 D3 D4 C4 D5 D6 D7 D8 C5

i.e. C1 C2 D1 C3 D2 D3 D4 C4 D5 D6 D7 D8

1 0 1 0 1 0 1 0 1 0 1 0

0 1 1 0 0 1 1 0 0 1 1 0

0 0 0 1 1 1 1 0 0 0 0 1

0 0 0 0 0 0 0 1 1 1 1 1
AN427

4 MOTOROLA

Application Note
Efficiency
To determine if an uncorrectable error has occurred (i.e. two
errors) in the received word, the extra parity bit is tested. If the
syndrome is non-zero and the parity bit is wrong, then a
correctable error has occurred. If the syndrome is non-zero and
the parity bit is correct, then an uncorrectable error has occurred.

Efficiency

The following table lists the relative efficiencies of this algorithm, against
data size.

The implementation of these techniques are given in Module
HAMMING.C.

In order to maintain orthogonality in the EEPROM algorithms, the
encoded data used by the functions in Module EEPROG.C are forced
to either 1-byte or 2-byte (word) sizes. This also eliminates the
complexities of packing and unpacking data in partially filled bytes.

Data Bits Encoded Bits Efficiency %

1 4 25

2
6

33

3 7 43

4 8 50

5 10 50

6 11 55

7 12 58

8 13 62

9 14 64

10 15 67

11 16 69
AN427

MOTOROLA 5

Application Note
Conclusions

In this application note, the encoding algorithm’s generator matrix is the
same as the parity check matrix.

The C functions <read> and <write> in Module HAMMING.C return a
status value — 0, 1, or 2 — which indicates whether the data has no
errors, one corrected error, or two erroneously corrected errors. This
means that if the status value is 0 or 1, then the data can be assumed
good. If the status value is 2, then the data will be bad.

Alternatively, the functions can be used for error detection only, without
correction. In this case, a status value of 1 corresponds to either 1- or
3-bit errors, while a status value of 2 indicates that 2-bit errors have
occurred.

By using the C functions listed in this application note, the encoded data
size can easily be changed dynamically. To do this, the function
<InitEncode> must be called with the required new data size. The global
variables used by all the encoding, decoding, and EEPROM
programming and reading functions are automatically updated. This
allows the encoding and error correction process to be virtually
transparent to the user. In addition, the functions <write> and <read> will
automatically increment the address pointer by the correct encoded data
size set up by <InitEncode>. This simplifies the structure of loops to
program and read back data. Example code is provided in Module
EECOR1.C.

The encoding and decoding algorithms listed here may be applied to
other forms of data, such as that used in serial communications or for
parallel data transfers.

By incorporating the error correction or detection-only schemes
described in this application note, the integrity of data storage and
transfer can be greatly improved. The impact on EEPROM usage is to
increase its effective reliability and extend its useful life beyond the
manufacturer’s guaranteed specifications.
AN427

6 MOTOROLA

Application Note
References
References

[1] Carlson, Communication Systems, Chapter 9, McGraw-Hill.

[2] Harman, Principles of the Statistical Theory of Communication,
Chapter 5, McGraw-Hill.

Module EECOR1.C

Tests EEPROM error detection using a modified hamming encoding scheme.

typedef unsigned char byte;
typedef unsigned int word;

/* Global variables used by main () */
byte *ee_addr,*start_addr,*end_addr,i,Error;
word data:

/**/

/*External global variables */
 extern byte CodeSize; /* = number of bits in encoded data */

/* External Functions */
 extern byte read(word *data,byte **addr); /* Function returns error status */
 extern byte write(word data,byte **addr); /* "
/* Table of Status returned by read and write functions

Returned Status Condition
0 No errors detected or corrected.
1 One error detected and corrected.
2 Two errors detected, but correction is erroneous.

Notes:
1/ When the returned value is 2, the function <read> will returned a bad value in variable <data> due to
the inability to correctly correct two errors. <read> also automatically increments the address pointer
passed to it, to the next memory space. The incremented value takes into account the actual size of the
encoded data. i.e. either 1 or 2 byte increment.

2/ Function <write> also performs a read to update and return an error status. This gives an immediate
indication of whether the write was successful. <write> also automatically increments the address
pointer passed to it, to the next free memory space. The incremented value takes into account the actual
size of the encoded data. i.e. either 1 or 2 byte increment.

*/

/**/

int main ()
{
 CodeSize=InitEncode(11); /* Get code size (less 1) needed */

/* by 11 data bits */

 ee_addr=(byte *)0xb600; /* Initialise EEPROM start address */
 for(i=1;i<=0x10;i++) /* and ’erase’ EEPROM */
 Error=write(0x7ff,&ee_addr); /* Function successful if Error<>2 */

 ee_addr=(byte *)0xb600; /* Reset EEPROM address */

 Error=write(0x5aa,&ee_addr); /* Write 0x5aa & increment ee_addr */
AN427

MOTOROLA 7

Application Note
 Module HAMMING.C

 Error=write(0x255,&ee_addr); /* Write 0x255 at next available address */

 CodeSize=InitEncode(4); /* Change number of data bits to 4 */
 start_addr=ee_addr; /* Save start address for this data */

 for(i=1;i<0x10;i<<=1) /* Program ’walking 1s’ */
 Error=write(i,&ee_addr);
 end_addr=ee_addr; /* Save end address */

 ee_addr=start_addr;
 while (ee_addr<end_addr) /* Read back all the 4 bit data */
 Error=read(&data,&ee_addr); /* <data> good if Error=0 or 1 */

} /* main */

/* Modules to Generate hamming codes of distance 4, for data sizes in the range 1 bit to 11 bits.
The upper bound is limited by the encoded word type bit range (16 bits).

Corrects 1 bit error in any position (check or data), and detects 2 bit errors in any position.

After execution of the <Decode> function, the global variable <ErrFlag> is updated to indicate
level of error correction.

i.e. ErrFlag Condition
 0 No errors detected or corrected.
 1 One error detected and corrected.
 2 Two errors detected, but correction is erroneous.

Note that when ErrFlag is 2, function <Decode> will return a bad value, due to its inability to
correctly correct two errors.
*/

#define TRUE 1
#define FALSE 0
typedef unsigned char byte;
typedef unsigned int word;

byte DataSize,CodeSize,EncodedWord,ErrFlag;

/* Function prototypes */
byte OddParity(word Code);
word Power2(byte e);
byte InitEncode(byte DataLength);
word MakeCheck(word Data);
word Encode(word Data);
word Decode(word Code);

byte OddParity(Code)
word Code;
/*
Returns TRUE if Code is odd parity, otherwise returns FALSE
*/

{
 byte p;

 p=TRUE;
 While (Code!=0)
AN427

8 MOTOROLA

Application Note
Module HAMMING.C
 {
 if (Code & 1) p=!p;
 Code>>=1;
 }
 return(p);
}

word Power2(e)
byte e;
/*
 Returns 2^e
*/

{
word P2;
signed char i;

P2=1;
if ((signed char) (e)<0)
 return(0);
else

{
 for (i=1;i<=(signed char) (e);i++)
 P2<<=1;
 return(P2);
 }
}

byte InitEncode(DataLength)
byte DataLength;
/*
Returns the minimum number of total bits needed to provide
Hamming distance 3 codes from a data size defined by passed
variable <DataLength>. This value also updates global variable <DataSize>.
i.e. finds the minimum solution of (k+m) for the inequality:
 2^k ≥ k + m + 1

In addition, updates global variable <EncodedSize> to reflect number of bytes
per encoded data. <EncodedSize> will be either 0 or 1.
*/

{
 byte CheckLength,i;

DataSize=DataLength; /* DataSize used by other functions in this module */
 CheckLength=1;
 while ((Power2(CheckLength)-CheckLength-1)<DataLength)
 CheckLength++;
 i=CheckLength+DataLength;
 EncodedWord=i / 8; /* =0 if byte sized, =1 if word sized */
 return(CheckLength+DataLength);
}

word MakeCheck(Data)
word Data;
/*
 Returns a check word for Data, based on global variables <DataSize>
 and <CheckSize>. The H parity matrix is generated by a simple for loop.
*/

{
 byte i,H,CheckSize,CheckValue,Check,CheckMask;
 word DataMask;
AN427

MOTOROLA 9

Application Note
 Check=0;
 CheckMask=1;
 CheckSize=CodeSize-DataSize;
 for (i=1;i<=CheckSize;i++)
 {
 CheckValue=FALSE;
 DataMask=1
 for (H=1;H<=CodeSize;H++)
 {
 if ((0x8000 % H)!=0) /* Column with single bit set */
 {
 if ((H & CheckMask !=0)
 CheckValue^=((DataMask & Data) !=0);
 DataMask<<=1;
 }
 }
 if (CheckValue) Check|=CheckMask;
 CheckMask<<=1;
 }
 return(Check);
}
word Encode (Data)
word Data;
/*
 Returns an encoded word, consisting of the check bits
 concatenated on to the most significant bit of <Data>.
 A single odd parity bit is concatenated on to the Encoded word to
 increase the hamming bound from 3 to 4, and provide 2 bit error
 detection as well as 1 bit correction.
 Uses global variables <Datasize> and <CodeSize> to determine the
 concatenating positions.
*/
{
 word Code;

 Code=Data | (MakeCheck(Data)<<DataSize);
 if (OddParity(Code))
 Code|=Power2(CodeSize);
 return(Code);
}

word Decode(Code)
word Code;
/*
 Returns the error corrected data word, decoded from <Code>.
 Uses global variable <DataSize> to determine position of the
 check bits in <Code>.
 Updates global variable <ErrFlag> to indicate error status i.e.:
 ErrFlag Status
 0 No errors found
 1 Single error corrected
 2 Double error - invalid correction
*/

{
 word ParityBit,Data,Check,ErrorCheck,Syndrome,DataMask;
 byte DataPos,CheckSize,CheckPos,H,DataBit;

 ErrFlag=0;
 ParityBit=Code & Power2(CodeSize); /* Extract parity bit */
 DataMask=Power2(DataSize)-1; /* Make data mask */
 Data=Code & DataMask; /* Extract parity bits. */
 CheckSize=CodeSize-DataSize; /* Extract check bits, */
AN427

10 MOTOROLA

Application Note
Module EEPROG.C
Module EEPROG.C

 Check=(Code>>DataSize) & (Power2(CheckSize)-1; /* ignoring parity. */
 ErrorCheck=MakeCheck(Data);
 Syndrome=Check ^ ErrorCheck; /* Get bit position of error. */
 if (Syndrome>0) ErrFlag++; /* Increment flag if error exists */
 H=0;
 DataPos=0;
 CheckPos=DataSize;
 DataBit=TRUE;

 while ((H!+Syndrome) & (DataPos<DataSize)) /* Identify which data or */
 {
 H++; /* code bit is in error. */
 DataBit=(0x8000 % H);
 if (DataBit) DataPos++;
 else CheckPos++;
 }
 if (DataBit) Code^=Power2(DataPos-1);
 else Code^=Power2(CheckPos-1);
 Code|=ParityBit;
 if (OddParity(Code)) ErrFlag++;
 return(Code & DataMask);

/*Module to program MC68HC11 EEPROM

Contains <read> and <write> functions to encode and decode data
formatted by modified hamming scheme.

*/

#include <HC11REG.H>
#define regbase (*(struct HC11IO *) 0x1000)

#define eras 0x16
#define writ 0x02
typedef unsigned char byte;
typedef unsigned int word;

 union twobytes
 {
 word w;
 byte b[2]; /* Word stored as MSB, LSB */
 } udata;

 extern byte EncodedWord,ErrFlag;

/* Function prototypes */

extern word Encode(word Data);
extern word Decode(word Code);

 void delay(word count);
 void eeprog(byte val,byte byt,byte *addr,word count);
 void program(byte byt,byte *addr);
 byte read(word *data,byte **addr);
 byte write(word data,byte **addr);

void delay(count)
word count;
{
 regbase.TOC1=regbase.TCNT+count; /* Set timeout period on OC1 and */
AN427

MOTOROLA 11

Application Note
 regbase.TFLG1=0x80; /* clear any pending OC1 flag. */
 do;while ((regbase.TFLG1 & 0x80)==0); /* Wait for timeout flag. */
}

void eeprog(val,byt,addr,count)
byte val; /* val determines Erase or Write operation */
byte byt; /* byt is byte to be programmed */
byte *addr; /* addr is address of encoded byte in EEPROM */
word count; /* count is number of E clock delays */
{
 regbase.PPROG=val; /* Enable address/data latches */
 addr=byt; / Write value to required eeprom location */
 ++regbase.PPROG; /* Enable voltage pump */
 if (count<100) count=100; /* Allow for software overhead */
 delay(count); /* wait a bit */
 -regbase.PPROG; /* Disable pump,then addr/data latches */
 regbase.PPROG=0;
}
void program(byt,addr)
byte byt;
byte *addr;
{
 eeprog(eras,byt,addr,20000); /* First erase byte */
 eeprog(writ,byt,addr,20000); /* Then write value */
}
byte read(data,addr)
word *data;
byte **addr;
{

 udata.b[1]=*(*addr)++; /* Read back data LSB first, and inc address */
 if (EncodedWord) /* If word stored then read MSB */
 udata.b[0]=*(*addr)++; /* Inc address for next call to this function */
 else /* else only byte stored, so clear MSB */
 udata.b[0]=0;
 data=Decode(udata.w); / Decode data, which updates <ErrFlag>, */
 return(ErrFlag); /* and return ErrFlag */
}

byte write(data,addr)
word data;
byte **addr;
{
 byte *oldaddr;

 udata.w=Encode(data); /* Encode data.
 oldaddr=*addr; /* Save initial address for verification. */
 program(udata.b[1],(*addr)++); /* Program LSB first to allow for either */
 if (EncodedWord) /* 1 or 2 byte encoded data */
 program(udata.b[0],(*addr)++); /* MSB of word sized data,& inc address */
 return(read(&udata.w,&oldaddr)); /* Return <ErrFlag> to calling segment */
AN427

12 MOTOROLA

Application Note
HC11REG.H
HC11REG.H

/* HC11 structure - I/O registers for MC68HC11 */
struct HC11IO {
 unsigned char PORTA; /* Port A - 3 input only, 5 output only */
 unsigned char Reserved;
 unsigned char PIOC; /* Parallel I/O control */
 unsigned char PORTC; /* Port C */
 unsigned char PORTB; /* Port B - Output only */
 unsigned char PORTCL; /* Alternate port C latch */
 unsigned char Reserved1;
 unsigned char DDRC; /* Data direction for port C */
 unsigned char PORTD; /* Port D */
 unsigned char DDRD; /* Data direction for port D */
 unsigned char PORTE; /* Port E */

/* Timer Section */

 unsigned char CFORC; /* Compare force */
 unsigned char OC1M; /* Oc1 mask */
 unsigned char OC1D; /* Oc1 data */
 int TCNT; /* Timer counter */
 int TIC1; /* Input capture 1 */
 int TIC2; /* Input capture 2 */
 int TIC3; /* Input capture 3 */
 int TOC1; /* Output compare 1 */
 int TOC2; /* Output compare 2 */
 int TOC3; /* Output compare 3 */
 int TOC4; /* Output compare 4 */
 int TOC5; /* Output compare 5 */
 unsigned char TCTL1; /* Timer control register 1 */
 unsigned char TCTL2; /* Timer control register 2 */
 unsigned char TMSK1; /* Main timer interrupt mask 1 */
 unsigned char TFLG1; /* Main timer interrupt flag 1 */
 unsigned char TMSK2; /* Main timer interrupt mask 2 */
 unsigned char TFLG2; /* Main timer interrupt flag 2 */

/* Pulse Accumulator Timer Control */

 unsigned char PACTL; /* Pulse Acc control */
 unsigned char PACNT /* Pulse Acc count */

/* SPI registers */

 unsigned char SPCR; /* SPI control register */
 unsigned char SPSR; /* SPI status register */
 unsigned char SPDR; /* SPI data register */

/* SCI registers */

 unsigned char BAUD; /* SCI baud rate control */
 unisgned char SCCR1; /* SCI control register 1 */
 unisgned char SCCR2; /* SCI control register 2 */
 unisgned char SCSR; /* SCI status register */
 unsigned char SCDR; /* SCI data register */

/* A to D registers */

 unsigned char ADCTL; /* AD control register */
 unsigned char ADR[4]; /* Array of AD result registers */

/* Define each result register */
AN427

MOTOROLA 13

Application Note
#define adr1 ADR[0]
#define adr2 ADR[1]
#define adr3 ADR[2]
#define adr4 ADR[3]

 unsigned char Rsrv[4]; /* Reserved for A to D expansion

/* System Configuration */

 unsigned char OPTION; /* System configuration options */
 unsigned char COPRST; /* Arm/Reset COP timer circuitry */
 unsigned char PPROG; /* EEPROM programming control reg */
 unsigned char HPRIO; /* Highest priority i-bit int & misc */
 unsigned char INIT; /* RAM - I/O mapping register */
 unsigned char TEST1; /* Factory TEST control register */
 unsigned char CONFIG; /* EEPROM cell - COP,ROM,& EEPROM en */

 };

/* End of structure HC11 */
AN427

14 MOTOROLA

Application Note
HC11REG.H
AN427

MOTOROLA 15

N

O
N

-
D

I
S

C
L

O
S

U
R

E

A
G

R
E

E
M

E
N

T

R
E

Q
U

I
R

E
D

Application Note
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its
products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts.
Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a
situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the
design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution, P.O. Box 5405, Denver, Colorado 80217, 1-303-675-2140

or 1-800-441-2447. Customer Focus Center, 1-800-521-6274
JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3-20-1, Minami-Azabu, Minato-ku, Tokyo, 106-8573 Japan.

81-3-3440-8573
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate,

Tai Po, N.T., Hong Kong. 852-26668334
Mfax™, Motorola Fax Back System: RMFAX0@email.sps.mot.com; http://sps.motorola.com/mfax/;

TOUCHTONE, 1-602-244-6609; US and Canada ONLY, 1-800-774-1848
HOME PAGE: http://motorola.com/sps/
AN427/D

© Motorola, Inc., 2000

Mfax is a trademark of Motorola, Inc.

	Introduction
	Encoding and Decoding Algorithms
	Implementation of Error Correction Strategy
	Efficiency
	Conclusions
	References
	Module EECOR1.C
	Module HAMMING.C
	Module EEPROG.C
	HC11REG.H

