

ST9 FAMILY
8/16 BIT MCU

TECHNICAL MANUAL

1st EDITION

NOVEMBER 1991

USE IN LIFE SUPPORT DEVICES OR SYSTEMS MUST BE EXPRESSLY AUTHORIZED

SGS-THOMSON PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF SGS-THOMSON Microelectronics.
As used herein:

1. Life support devices or systems are those which (a) are
Intended for surgical implant into the body, or (b) support
or sustain life, and whose failure to perform, when
properly used in accordance with instructions for use
provided with the product, can be reasonably expected
to result in significant injury to the user.

2. A critical component is any component of a life support
device or system whose failure to perform can reason­
ably be expected to cause the failure of the life support
device or system, or to affect its safety or effectiveness.

TABLE OF CONTENTS

1 INTRODUCTION Page 1

2 ST9 CORE ARCHITECTURE 5

3 INSTRUCTION SET 25

4 INTERRUPT AND DMA 67

5 CLOCK AND RESET 89

6 INTERFACING EXTERNAL MEMORY 95

7 SERIAL PERIPHERAL INTERFACE 109

8 16 BIT PROGRAMMABLE TIMER/WATCHDOG 119

9 1/0 PORTS AND HANDSHAKE TRANSFERS 123

10 MULTIFUNCTION TIMER 141

11 AID CONVERTER 163

12 SERIAL COMMUNICATION INTERFACE 171

13 EPROM, EEPROM DESCRIPTION 183

14 ELECTRICAL CHARACTERISTICS 189

~ SGS·ntOMSON .. ., L ~D©lru@[g[L[g©'U'lru@~D©®

1.1 THE ST9 AND MACROCELLS
The ST9 is based on the twin ideas of simplicity and
flexibility. To achieve these ends, an approach was
adopted that uses an advanced core with standard
cell expansion. This approach, by simplifying inter­
nal communication and architecture, allows on­
chip customization. Among the benefits are
reduced operation times, reduced production
costs, and low power consumption, the typical
advantages of a good design, and adaptation to
customer requirements. ST9 devices are produced
using an advanced HCMOS process which en­
sures high speed, high density and good reliability.

Figure 1-1. ST9 Architecture

CHAPTER 1

INTRODUCTION

The standard cells (or Megacells) are seen as the
basic building blocks of the system and include
such units as the Core, AID Converter, Serial Com­
munications Interface (SCI) 16 bit Multi-function
Timer with input capture/output compare capability,
memory cells (ROM, EPROM, RAM, EEPROM)
and others coming. All these functions are envis­
aged as a library of dedicated functions from which
customers may choose their own preferred selec­
tion, according to their application needs.

The block diagram (figure 1.1) shows the simplicity
of the standard cell approach, with the two internal
buses and the physical design layout of the ST9.
This gives the system the ability to easily add on
extra cells of any type from the library (as dedicated
demands or future developments).

VA00266

1/4

1 - ST9 and Macrocells

1.2 ST9 BASIC FEATURES

The ST9 Core is based on a CPU which offers the
advantages commonly associated with a register
based micro-computer architecture. The main fea­
tures are:

- 87 types of Instruction

- bit, byte and word operations

- 14 addressing modes

- 224 byte register file

- 64 possible pages (of 16 registers each)

- a fully expandable Interrupt controller (up to 126
different vectors)

- On-chip DMA channels

- 24 MHz external clock

- 128k (64k Program + 64k Data) of Memory
Addressing Space

Two basic macrocells are also included in the ST9
Core:

- 16 bit Timer/Watchdog (with an 8 bit prescaler)

- A Serial Peripheral interface (SPJ)

Peripherals, memories and 1/0 ports can be in­
cluded in ST9 products:

- Expandable number of 1/0 ports (minimum 1),

- 0 (ROMiess) to 32k on-chip ROM/EPROM

- Up to 2k byte RAM

- Up to 1 k byte of EEPROM

- 16 bit Multi-Function Timer (8 bit prescaler) with
2 input capture and 2 output compare capability

- 8 bit /8 channels AID Converter with fast conver­
sion time (111-ls)

- Fully programmable asynchronous/syn-
chronous Serial Communication Interlace.

Moreover, specific and customized macrocells can
be designed on a ST9 product upon request.

Development tools are provided to support appli­
cation development phase as :

- TOTEM Emulator*

- Software Simulator(MS-DOS, VMS, UNIX oper-
ating systems)

- Macro assembler (MS-DOS, VMS, UNIX opera­
ting systems)

- ANSI C-Compiler (on MS-DOS, VMS, UNIX
operating system)

- ST9 products are available in 40/48 Plastic and
Ceramic OIL ; 44/68/84 pin PLCC and CLCC,
80QFP.

*TOTEM :The Total Emulator can emulate all the
available on chip peripherals with an add-in board
and can address the full addressing space.

The wide range of instructions facilitates full use of
the register file and address spaces, hence reduc­
ing operation times, while the register pointer
mechanism allows an unmatched code efficiency
and ultrafast context switching. A particularly not­
able feature is the comprehensive "Any Bit, Any
Register" (ABAR) addressing capability of the
Boolean instructions.

1.3 ST9 CORE

The ST9 Core includes the CPU, that is the micro­
code sequencer, the data path, the interrupt!DMA
controller and the Register File. Two peripherals
are also included: an SPI and a Timer/Watchdog
which are present in all ST9 products.

1.4 ST9 MACROCELLS

The modular approach of the ST9 allows easy
implementation of application oriented microcon­
trollers simply by integrating on-chip peripherals
(macrocells) and dedicated functions from the
existing library, thus creating in a single package
systems that previously required a microcontroller
plus additional peripheral circuits. Here following is
the list of the existing macrocells. Other standard
and dedicated functions can be added to the al­
ready existing library.

1.4.1 1/0 Ports

All the 8 bit on-chip 1/0 ports can be bit pro­
grammed. This allows configuration of individual
bits as input, bidirectional, output or alternate func­
tion.
Input level and output configuration can also be
selected bit by bit by choosing within TTUCMOS
level (input) and Push-Pull, open drain, weak push­
Pull driving capabilities. Alternate function selection
(for output only) allows the specific pin to be used
to connect an on-chip peripheral output.
Port 0 and 1 are used when required, to interface
with external memories. Port 0 is present in all ST9
products.

2/4 = SCS·THOMSON -------------- ._..,1 f~D©rnl@~~~=@~O©i;; --------------

2

1.4.2 STANDARD PERIPHERALS

The following peripherals are available :

- 16 bit Multi-Function Timer

- AID converter

- SCI interface

- Memory Bank Switch

1.4.2.1 16 BIT MULTI-FUNCTION TIMER

The ST9 can have up to eight 16-bit multi-function
timer units each with its own 8-bit prescaler. Each
counter/timer has two load/capture and two com­
pare registers and can operate in a wide variety of
modes using internal or external clocks and trigger
events which may be set to be level or edge sensi­
tive. Each multi-function timer is controlled by two
dedicated control registers and is provided with 2
input and 2 output pins.

1.4.2.2 ANALOG TO DIGITAL CONVERTER

The ST9 peripherals include an 8-bit AID converter
with a conversion time of 11)1S, 8 multiplexed
analog inputs, and separate analog Vss and Vee
pins. Additional features such as the Programm­
able Auto Scanning mode and the window Detector
are supported to give high performance.

1.4.2.3 SERIAL COMMUNICATION INTERFACE
(SCI)

The SCI allows handling of the great variety of
asynchronous serial communication formats avail­
able, and provides means for a single, high speed,
synchronous link. To achieve this the ST9 SCI
allows full duplex character-oriented synchronous
and asynchronous operation and offers fully pro-

1 - ST9 and Macrocells

grammable serial interface characteristics (pro­
grammable baud rate and extensive internal and
external error detection and location capabilities).
Other notable features include a programmable
address indication bit which provides efficient use
of other microcontroller/processors in network ar­
rangements, double buffering for transmission and
reception, and an off-chip clock capability using
programmable 1/0 ports.

1.4.2.4 MEMORY BANK SWITCH

The Memory Bank Switch (BS) is an address ex­
pander allowing ST9 device to extend its address­
ing range from 64k program plus 64k data memory
up to SM program plus SM data memory organized
in 32k byte segments mapped from the address
8000h up to FFFFh, and a 32k byte common
segment (segmentO) in the address range OOOOh-
7FFFh.

1.4.3 Memory Options

Two memory spaces can be addressed by ST9 :
program memory and data memory. Four different
kinds of memory can be available on ST9 :

- ROM : up to 32k byte (with 4k byte block step)

- EPROM : as for ROM. Used to support the
development phase of the application

- RAM : up to 2k byte (by 128 byte step). RAM
blocks can be added (as peripherals) up to 2k
bytes.

- EEPROM :available in 256 byte steps up to 1k
byte.

3

""" ~

~
~(I)

i~
©•
~;!
9~
©(I)
['lo
:!lz

DEVICE ROM EPROM RAM EEPROM TWD SPI MFT SCI A/D BS MAX I/O

ST9026 16K 256 1 1 1 1 40

ST9027 16K 256 1 1 1 1 32

ST9028 16K 256 1 1 1 1 36

ST90E26 16K 256 1 1 1 1 40

ST90E27 16K 256 1 1 1 1 32

ST90E28 16K 256 1 1 1 1 36

ST90T26 16K 256 1 1 1 1 40

ST90T27 16K 256 1 1 1 1 32

ST90T28 16K 256 1 1 1 1 36

ST90R26 256 1 1 1 1 32

ST9030 BK 1 1 2 1 1 56

ST9031 BK 1 1 2 1 1 38

ST90E30 8K 1 1 2 1 1 56

ST90E31 8K 1 1 2 1 1 38

ST90T30 8K 1 1 2 1 1 56

ST90T31 BK 1 1 2 1 1 38

ST90R30 1 1 2 1 1 40

ST9036 16K 256 1 1 2 1 1 40

ST9040 16K 256 512 1 1 2 1 1 56

ST90E40 16K 256 512 1 1 2 1 1 56

ST90T40 16K 256 512 1 1 2 1 1 56

ST90R40 256 512 1 1 2 1 1 40

ST90R50 1 1 3 2 1 1 56

ST9054 32K 1280 1 1 3 2 1 1 72

ST90E54 32K 1280 1 1 3 2 1 1 72

ST90T54 32K 1280 1 1 3 2 1 1 72

Note: ALL dev1ces have 256 byte Register F1le with 224 General Purpose Registers (Accumulators/RAM).
Key: TWO Timer/Watchdog SCI Senal Commumcations Interlace

SP I Serial Penpheral Interlace ND 8 b1t 8 channel ND Converter
MFT Mult1-Funct1on T1mer BS Banksw1tch log1c 16M byte address range
1/0 1n · TTUCMOS, Out· OD/PP HSHK # Ports w1th Handshake capability

Alternate Functional Penpheral

HSHK

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

PACKAGE

PDIP48

PDIP40

PLCC44

CDIP48-W

CDIP40-W

CLCC44-W

PDIP48

PDIP40

PLCC44

PDIP48

PLCC68

PDIP48

CLCC68-W

CDIP48-W

PLCC68

PDIP48

PLCC68

PLCC68/QFP80

PLCC68

CLCC68-W

PLCC68

PLCC68

PLCC84

PLCC84

CLCC84-W

PLCC84

en
;!!
en
m
r m
(")
-1
0
JJ
G)
c
a
m

.....
U>

<d
Ill
::J
a.
s
Ill
0 ...
0
0
!!!..
iii

2.1 ADDRESS SPACES

The ST9 has three separate address spaces:

- Register File: 240 8-bit registers plus up to 64
pages of 16 bytes each, located in the on-chip
peripherals.

- Data memory with up to 64k (65536) bytes

- Program memory with up to 64k (65536) bytes

Figure 2-1. Address Spaces

I
64K

PROGRAM

MEMORY

REGISTER

FILE

CHAPTER 2

ST9 CORE ARCHITECTURE

2.1.1 CPU Register File

The Register File consists of 240 registers divided
into 15 groups of 16 registers plus paging facilities
based on the top group (group F, R240-R255).

The groups of 16 registe'rs can be referred to by
their hexadecimal group address, so that registers
RO-R15 form group 0, registers R16-R31 form
group 1, R160-R175 form group Ah and so on.
Group Eh (registers R224-R239) is the system
register group.

64K

DATA

MEMORY

VA00430

1/20
--

5

2 - ST9 Core Architecture

Figure 2-2. Addressing The Register File

255

240
239
224
223

F

E

D

c

B

A

REGISTER FILE

PAGE REGISTERS

SYSTEM REGISTERS

~
R195

<ROC3hl

r1 9 ~ (1!00) (0011)

8

7

6

5

4

3

2

1

0 15

0

Figure 2-3. Register Grouping

.------J~=~~ rU?TO
255 r------- w 64 PAGES

F PAGED REGISTERS
2401---------1
239 E SYSTEM REGISTERS

"'1---------1
223 D

--- 15

GENERAL
PURPOSE
REGISTERS

VA00-:32

-GROUP D-

R207

-

GROUP C

~ R195

R192

f-- GROUP B-

VR000118

All registers in the Register File and pages can be
specified using a decimal, hex or binary address,
e.g.R40orR28horR00101000b

Working Register Addresses

The 8-bit Register address is formed by 2 nibbles,
for example, for register C3h or R195 or
R11000011, 1100 specifies the 13th group (i.e.
group C) and 0011 specifies the 3rd register in that
group.

Working registers are addressed by supplying the
least significant nibble in the instruction and adding
it to the most significant nibble found in the Register
Pointer. Working register addressing is shown in
figures 2.3.

2.1.2 System Registers

The 16 system registers form group E (i.e. R224-
R239) and are shown in the figure 2.4.

System registers are addressable using any of the
4 register addressing modes (paragraph 2.2) and
the most significant nibble will, in all cases, be 14
(0Eh,1110 bin).

2/20
------------I:;i ~~~;ll12!J1~,~~ ------------
6

Figure 2-4. Single Group of 16 Working
Registers

GROUP F

G~OUP E

GROUP 4

.---------,255

-+-------1 ~;~

REGISTER POINTER 0 1--­

-t-------j "'

-1-------j ciS

REG SE~

-1-------j'O

2.1.3 Paged Registers

VA00097

There are a maximum of 64 pages each containing
16 registers. These are addressed using the regis­
ter addressing modes with the addition of the Page
Pointer register, R234 (OEAh). This register selects
the page to be addressed in group F and once set,
does not need to be changed if two or more regis­
ters on the same page are to be addressed in
succession.

Therefore if the Page Pointer, R234 (OEAh), is set
to 5, the instruction ld R2 4 2, r4 will load the
contents of working register r4 into the third register
(R242, ROF2h) of page 5.

These paged registers hold data and control regis­
ters related to the on-chip peripherals, and thus the
configuration depends upon the peripheral organi­
sation of each ST9 family member. i.e. pages only
exist if the silicon of the peripheral exists on the
ST9.

2 - ST9 Core Architecture

Figure 2-5. Page Pointer Configuration

I

PAGE 63

I
PAGE 5

~

R255

I
PAG:O: 0

R2,.0

I
PAG:C: POINTER

R22l

RO

Figure 2-6. System Registers

R239 (ROEFh)

R238

R237

R236

R235

R234

R233

R232

R231

R230

R229

R228

R227

R226

R225

R224 (ROEOh)

SYS STACK POINTER LOW

SYS. STACK POINTER HIGH

USER STACK POINTER LOW

USER STACK POINTER HIGH

MODE REGISTER

PAGE POINTER

REGISTER POINTER 1

REGISTER POINTER 0

FLAGS

CENTRAL INT. CNTL REG

PORTS

PORT4

PORT3

PORT2

PORT1

PORTO

---------------~~~~;~~~~,~~~ _____________ 3_12_0

7

2 - ST9 Core Architecture

Figure 2-7. Example, ST9030 Group F Peripheral Organisation

DEC
DEC HEX

R255 RFF

R254 RFE

R253 RFD

R252 RFC

R251 RFB

R250 RFA

R249 RF9

R248 RF8

R247 RF7

R246 RF6

R245 RF5

R244 RF4

R243 RF3

R242 RF2

R241 RF1

R240 RFO

00
00

RESERVED

MSPI

WCR

T/WD

EXTINT

RESERVED

02
02

RESERVED

PORT3

RESERVED

PORT2

RESERVED

PORT1

RESERVED

PORTO

03
03

PORT?

RESERVED

PORT5

RESERVED

PORT4

08
08

MFT1

09
09

RESERVED

MFT

MFT1

MFTO

10
OA

MFTO

24
18

RESERVED

SCI

63
3F

AID

RFF

RFE

RFD

RFC

RFB

RFA

RF9

RF8

RF7

RF6

RF5

RF4

RF3

RF2

RF1

RFO

4/20
------------- £.fi. ~~~;m2~sg~ -------------
8

2.1.4 Memory

There is a total of 128k bytes of addressable mem­
ory space, Program and Data memory, 64 Kbytes
each.

The 16 bit address may be supplied directly using
the absolute memory location address or indirectly
using a pair of registers. In addition the address can
be given by an indexed mode when a short (byte)
or long (word) offset is added to an indirect base
word address.

Before either program or data area is addressed,
one of the two instructions sdm and spm (Set Data
Memory and Set Program Memory) should be
used. It is not necessary to use either sdm or spm:

- when operating external stacks where the data
memory is automatically used

- when using the memory-indirect to memory-indi­
rect post increment addressing mode when the
memory types are specified in the instruction (i.e.
ldpd, load from data memory to program memory.
see chapter 3).

Either the Data Memory or the Program memory
can be addressed using memory addressing
modes as described in Table 2.1.

2.1.4.1 PROGRAM MEMORY

The program memory size can be up to 64k bytes.
Access to the external program memory is allowed
ONLY for addresses greater than the existing on­
chip program memory. For example, when having
8192 bytes of on-chip program memory, external
memory fetches are performed at addresses above
location 8192 (see figure 2.4a).

Within the program memory address space, the
first 256 locations (0-255) can be used for the
interrupt vector table. (Locations OOh, 01 h for the
Reset Vector; 02h and 03h for the Divide by zero
Vector and 04h, 05h for the Top level interrupt
vector). Apart from this case no other part of the
Program memory has a predetermined function.

2- ST9 Core Architecture

Figure 2-8. External Program Memory

655361

I

I

I 8192 .-------lc------'

2551-----l
VECTOR TABLE

I~HERNAL EXTERNAL

PROGRAM SPACE

VA001 00

2.1.4.2 DATA MEMORY

The data memory maximum size is 64k bytes and
has exactly the same addresses and addressing
modes as the program memory, the spaces being
distinguished by the use of memory setting com­
mands (sdm, Set Data Memory).

5/20 ------------- l:.1i. ~~~@mg~~2:J -------------
9

2 - ST9 Core Architecture

2.2 ADDRESSING MODES

The ST9 offers a wide variety of established and
new addressing modes and combinations to facili­
tate full and rapid access to the address spaces
while reducing program length. The available ad­
dressing modes are shown in Table 2-1:

Table 2-1. ST9 Addressing Modes

Single operand arithmetic, logic and shift byte in­
structions have direct register and indirect register
addressing modes. For a full list of the possible
combinations for each instruction type, please refer
to chapter 3 (Instruction Set) or to the ST9 Pro­
gramming Manual.

Operand is in Addressing Mode
Destination Notation

Location

Instruction Immediate
Byte #N
Word #NN

D1rect
Byte r
Word rr

Reg1ster F1le lnd1rect Byte/Word (r)

Indexed Byte/Word N(r)

Indirect Post-Increment Byte (r)+

Direct Byte/Word NN

lnd1rect Byte/Word (rr)

Program or Data Memory
Indirect Post-Increment Byte/Word (rr)+

Indirect Pre-Decrement Byte/Word -(rr)

Short Indexed Byte/Word N(rr)

Long Indexed Byte/Word NN(rr)

Register Indexed Byte/Word rr(rr)

Any bit of any workmg reg1ster Direct Bit r.b

Any bit in program or data memory Indirect Bit (rr).b

6/20 ------------- £..W. ~i~~m~~~Ol~©~ -------------
10

2 • ST9 Core Architecture

Two Operands Arithmetic and Logic Instructions

Destination Source

Register Direct Register Direct

Register Direct Register Indirect

Register Direct Memory Indirect

Register Direct Memory Indexed

Register Direct Memory Indirect with Post-Increment

Register D1rect Memory lnd1rect w1th Pre-Decrement

Register Direct Memory Direct

Register Indirect Reg1ster D1rect

Memory Indirect Register Direct

Memory Indexed Register Direct

Memory lnd1rect with Post-Increment Register Direct

Memory Indirect w1th Pre-Decrement Register Direct

Memory Direct Register Direct

Register Direct Immediate

Memory Direct Immediate

Memory Indirect Immediate

Two Operands Arithmetic, Logic and Load Instructions

Destination Source

Memory Indirect Memory D1rect

7/20 ------------ I..V. ~~~@m~~~~~ ------------
11

2 - ST9 Core Architecture

Destination

Register Direct

Register Direct

Reg1ster Direct

Register Direct

Register Direct

Register Direct

Register Direct

Register Direct

Register Indirect

Reg1ster Indexed

Memory Indirect

Memory Indexed

Memory Indirect with Post-Increment

Memory Indirect with Pre-Decrement

Memory Direct

Register Direct

Memory Direct

Memory Indirect

Long Indexed Memory Ill

Destination

Register Indirect with Post-Increment

Memory Indirect with Post-Increment

Memory Indirect with Post-Increment

Notes:
1 Word lnstructrons Only

Load Byte Only 2

Two Operands Load Instructions

Source

Register Drrect

Register Indirect

Register Indexed

Memory Indirect

Memory Indexed

Memory Indirect with Post-Increment

Memory Indirect with Pre-Decrement

Memory Direct

Register Direct

Register D1rect

Register Direct

Register Direct

Register D1rect

Register Direct

Register Direct

Immediate

Immediate

Immediate

Immediate

Two Operands Load Instructions 12l

Source

Memory Indirect with Post-Increment

Register Indirect with Post-Increment

Memory Indirect with Post-Increment

8/20 -------------~ ~~~©IH~~~~~ -------------
12

2.2.1 Register Addressing Modes

2.2.1.1 IMMEDIATE ADDRESSING MODE

In the Immediate addressing mode, the data is
found in the instruction. When using immediate
data, a hash-mark (#) is used to distinguish it from
an absolute address in memory.

Example: ldw RR42, #65536
loads the immediate value 65536 into the register
pair R42 & R43. While the example shows decimal
data, hexadecimal and binary values may also be
used.

Example: ldw RR42, #OFFFFh.

Figure 2-9. Immediate Register

Addressmg In the
Mode lnstructron

IMMEDIATE
REGISTER EJ

In a
Worktng
regrster

In an
Absolute
regtster

2.2.1.2 DIRECT ADDRESSING MODE

In
memory

In the direct addressing mode, a register can be
addressed by using its absolute address in the
Register File (in decimal, hexadecimal or binary
form). Alternatively a register can be addressed
directly as a working register;

Example: xch ROA2h, r4
exchanges the values in the register OA2h and
working register number 4.

Figure 2-10. Direct Register

Addresstng In the In a In an In
Mode lnstruclton Worktng Absolute memory regtster regtster

r-EJ DIRECT REG
REGISTER = ______.. DATA

EJ REG
ADDR

'----

2.2.1.3 INDIRECT ADDRESSING MODE

In the Indirect Register Addressing mode, the ad­
dress of the data does not appear in the instruction
but is located in a working register. The address of
this register is given in the instruction. The indirect
addressing mode is indicated by the use of paren­
theses.

2- ST9 Core Architecture

Example:
If register 200 contains 178 and working register 11
contains 86 then the instruction 1 ct (r 11) , R2 o o
loads the value 178 into register 86.
Note: the 1ndrrect address can only be contarned 1n a workrng
regiSter

Figure 2-11. Indirect Register

Addressmg In the
Mode InstructiOn

INDIRECT
REGISTER

In a
Worktng
regtster

Jn an
Absolute
regtster

2.2.1.4 INDEXED ADDRESSING MODE

In
memory

To address a register using the Indexed mode, an
offset value is used to add to an index value (which
acts as a base or starting value). The offset value
is the Immediate value given in the instruction while
the index value is given by the contents of the
working register.

Example: if working register 10 contains 55 then
the instruction

ld 40(r10),rl8

loads register 95 (i.e.55+40) with the content of
working register 18.

The Register File never needs an absolute value
requiring more than one byte and therefore only
requires a short offset and a single register to
contain the index.
Note: The rndex value can only be contarned rna working regrster

Figure 2-12.1ndexed Register

Addressmg In the
Mode lnstruclton

In a
Worktng
regrster

In an
Absolute
regrster

INDEXED --::- D ~ EJ
REGISTER ADDR ------+01 + DATA

::: J
-

In
memory

9/20 ------------- l:.!i ~~~.;m~~~Ba:~ -------------
13

2 - ST9 Core Architecture

2.2.1.5 INDIRECT REGISTER POST-INCRE­
MENT ADDRESSING MODE

In this addressing mode, both destination and
source addresses are given by the contents of
working registers which are then post-in­
cremented. The address of the memory location is
contained in a working register pair, and the ad­
dress of the register is contained into a single
working register. Only working registers may be
used to contain the addresses, this mode being
indicated by both source and destination using
parentheses followed by plus sign.

Example: if working register 8 contains the value
44, working register pair rr2 contains the value
2000, and register 44 contains the value 56, then
by using the instruction

ld (rr2) +, (r8) +

the memory location 2000 will be loaded with the
value 56. Immediately following this, the contents
of r8 is incremer.ted to 45 and the contents of rr2
is incremented to 2001.

This addressing mode is useful for moving blocks
of data either from Register File to Memory or from
Memory to Register File.

Figure 2-13. Register Indirect Post-Increment

Addressrng
Mode

REGISTER
INDIRECT

WITH POST·
INCREMENT

14

In the
lnstructron

In a
Workmg
regrster

In an
Absolute
regrster

In
memory

I A~EDGR I~ A~g~ Tl DATA I
ADDR
LOW

+1---

2.2.1.6 DIRECT BIT ADDRESSING MODE

In the direct bit addressing mode, any bit in any
working register can be addressed

Examples: bset r7. 3

This instruction sets the bit 3 of the working register 7.

bld r7.3, rl2.6

This instruction loads the bit 6 of the working reg­
ister 12 in bit 3 of working register 7

2.2.2 Memory Addressing Modes

The memory addressing modes described in this
section are available to data and program memory.
Thus before addressing the memory, it is necess­
ary to indicate by use of the Set Program/Data
Memory instructions, spm and sdm, in which mem­
ory the instructions are working. Since each mem­
ory space is 64k byte long, a word address is
necessary to specify memory locations.

2.2.2.1 DIRECT ADDRESSING MODE

The Memory Direct addressing mode requires the
specific location within the memory. This only
needs the absolute offset value which can be given
in decimal, hex or binary form.

Thus the instruction

ld 12345,r9

loads working register 9 data into memory location
12345
In the memory direct mode, it is possible to use an
immediate addressing mode for the source oper­
and.

Examples:
ld 12354,#34

will load the value 34 into the memory location
12354.

ldw 12354,#3457

will load the location pair 12354 and 12355 with the
value 3457.

Figure 2-14. Memory Direct

Addressmg In the In a In an In
Mode lnstructron Workmg Absolute memory regrster regrster

,..----

B MEMORY ADDR
DIRECT HIGH

'--

ADDR
LOW

-

2.2.2.2 INDIRECT ADDRESSING MODE

When using the indirect addressing mode to ac­
cess memory, the address is contained in a pair of
working registers.

Example: if the working register pair r8 and r9
contains the value 2000 then the instruction

ld (rr8),#34

loads the value 34 into memory location 2000.

If the data to be stored is a word then the instruction
ldw will automatically interpret the address as a pair
of memory locations. So if rr8 contains 2000 then
the instruction

ldw (rr8),#3467

loads the memory locations 2000 and 2001 with the
value 3467.

Figure 2-15. Memory Indirect

Address1ng
Mode

In the
Instruction

Ina
Workrng
reg1ster

In an
Absolute
reg1ster

In
memory

MEMORY
INDIRECT EJ-- -;;1-----+1 DATA I

-
ADDR
LOW

-

2.2.2.3 INDIRECT WITH POST-INCREMENT
ADRESSING MODE

The indirect with post-increment addressing mode
is similar to the memory indirect addressing mode
but, in addition, after accessing the data in the
currently pointed address, the value in the pointing
working register pair is incremented. This mode is
indicated by a plus sign following a working register
pair in parentheses, e.g. (rr4)+.

Example:
If the working register pair rr4 (working registers r4
and r5) contains the value 3000 and memory loca­
tion 3000 contains the value 88, then the instruction

ld R50, (rr4)+

loads register 50 with the value 88 and then the
value in rr4 to be incremented to 3001 .

This mode uses only working registers to contain
the address. Thus the Indirect with Post-Increment
addressing mode is most useful in repeated situ­
ations when a number of adjacent items of data are
required in succession. The use of this addressing
mode saves both time and program memory space
since it cuts the usual increment instruction.

2- ST9 Core Architecture

Figure 2-16. Memory Indirect Post-Increment

Addressrng In the
Mode lnstruct1on

In a
Workrng
reg1ster

In an
Absolute
reg1ster

In
memory

MEMORY
INDIRECT

WITH POST·
INCREMENT

EJ-=1----.---+1 DATA I
ADDR
LOW

+1}------'

2.2.2.4 INDIRECT WITH PRE-DECREMENT AD­
DRESSING MODE

This indirect memory addressing mode has an
automatic pre-decrement. The address can only be
contained in working registers and the mode is
indicated by a minus sign in front of the working
registers which are in parentheses, e.g. -(rr6).

Thus if the working register pair rr6 contains the
value 1111 and location 1110 contains the value 40
then the instruction

ld R56,-(rr6)

decrements the value in rr6 to 1110 and then loads
the value 40 into register 56.

This addressing mode allows the ST9 to deal in the
reverse order with data previously managed using
the indirect post-increment mode without resetting
the pointing registers (of the last post-increment).

The pre-decrement mode has the same benefits of
time and program memory saving as the post-in­
crement mode.

Figure 2-17. Memory Indirect Pre-Decrement

Addressrng In the
Mode Instruction

In a
Workmg
reg1ster

In an
Absolute
reg1ster

In
memory

MEMORY
INDIRECT
WfTH PRE·

DECREMENT
r::l ~ G\ EJ U__. ~~G:H~ 1--6-- DATA

LOW

----,

11/20 -------------~ ~i~©IH~~~~~ -------------
15

2 - ST9 Core Architecture

Figure 2-18. Memory Indexed with Immediate
Short Offset

Addressing In the
Mode lnstruct1on

In a
Workmg
reg1ster

-

In an
Absolute
reg1ster

In
memory

MEMORY
INDEXED

WITH IMM
SHORT
OFFSET

I ~~~E~

-::- ~ f.\ ·I DATA I ADDR LOW---~ --r
OFFSET

-

2.2.2.5 INDEXED ADDRESSING MODES

There are three indexed addressing modes, each
using an indirect address plus offset format. The
index address is given as an indirect address con­
tained in a working register pair, while the offset can
be long or short (a word or a byte). The address of
the data required is given by the value of the
working register pair indicated, (the index), plus the
value of the given offset. The specification of this
offset which differentiates the three modes, is as
follows:

- Indexed with an Immediate Short and Long
Offset

In these indexed modes the offset is a fixed and
Immediate value included in the instruction. It may
be either a short or long index as required, this
immediate value being added to the address given
by the working register pair.

Example: if the working register pair, rr6, contains
the value 8000 and memory location 8034 contains
the value 254 then the instruction

ld R55, 34 (rr6)

loads the value 254 into register 55.

Or, as another example, if the working register pair
rr2 contains the value 2000 and register 78 con­
tains the value 34 then the instruction.

ld 322(rr2),r78

loaded the value 34 into memory location 2322.

- Indexed with a Register Offset

In this addressing mode, the index is supplied by
one pair of working registers and the offset is
supplied by a second pair of working registers. The
format is rrx(rry), x and y being in the range
0,2,4 ... 12, 14.

Example
If working register pair rrO contains the value 2222
and working register pair rr4 contains 3333 while

Figure 2-19. Memory Indexed with Immediate
Long Offset

Addressmg In the
Mode lnstruct1on

In a
Workmg
reg1ster

In an
Absolute
reg1ster

In
memory

MEMORY
INDEXED

WITH IMM

I ~~Pl~ - f---

REG INDEX
ADDR LOW -0-----1 DATA I
-~I LONG

OFFSET OFFSET
HIGH

OFFSET
LOW

-

register 45 contains the value 78 then the instruc­
tion
ld rr4(rr0),R45

loads the value 78 into memory location 5555.

Figure 2-20. Memory Indexed with Register
Offset

Addressmg In the
Mode Instruction

MEMORY
INDEXED

WITH
REGISTER

OFFSET

In a
Workmg
reg1ster

In an
Absolute
reg1ster

In
memory

2.2.2.6 INDIRECT MEMORY BIT ADDRESSING
MODE

In the indirect memory bit addressing mode, any bit
of Program/Data memory location can be ad­
dressed with the btset (Bit Test and SET) instruc­
tion.

Example

btset (rr8) .3

This instruction sets the bit 3 of the memory location
addressed by the working registers r8, r9 content.

12/20
----------------------------~~~~;~~~sg~~ ----------------------------
16

2.3 THE REGISTER FILE

The Register File consists of:

- 224 general purpose registers (OOh to ODFh)

- 16 system registers (OEOh to OEFh)

- up to 641/0 pages (OFOh to OFFh), each contain-
ing up to 16 registers

This means that in the maximum expansion, the
ST9 can have up to 1264 registers.

The Port registers are located in two areas:

Port registers 0-5 occupy the first 6 registers of the
system register group and have the absolute ad­
dresses R224 to R229 (OEOh to OE5h).

The Port registers for ports 6 to 7 are located in
page 3, in registers 251 (OFBh) and 255 (OFFh)
respectively.

Figure 2-21. Register File

,c::::::"~===~~ t UP TO
255 II 64 PAGES
240 F PAGED REGISTERS f_J

239 E SYSTEM REGISTERS
~~; f----------j

c

A

···········------------------ 15

GENERAL
PURPOSE
REGISTERS

VA00432

2- ST9 Core Architecture

2.3.1 System Registers

The sixteen system registers, including Port regis­
ters 0-5 (R224-R229), are in locations 224 to 239
(OEOh-OEFh see system registers map, figure 2.4.).
In the following paragraphs an explanation is given
for each system register and for its specific func­
tion.

2.3.2 Register Pointing Techniques

Two registers, R232 and R233, within the system
register group, are available for register pointing.
R232 and R233 may be used together as a single
pointer for a 16 register working space or separ­
ately for two 8 register spaces, in which case R232
becomes Register Pointer 0 (RPO) and R233
becomes Register Pointer 1 (RP1).

Table 2-2. Register File Organization

Register
Hex. Decimal General File

Address Address Function Group

Group F OFO-OFF 240-255
Page

Reg1sters

GroupE OEO-OEF 224-239
System

Reg1sters

Group D 000-0DF 208-223 G.P. Registers

Group C OCO-OCF 192-207 G.P. Registers

Group B 080-0BF 176-191 G.P. Registers

Group A DAD-OAF 160-175 G.P. Registers

Group 9 090-09F 144-159 G.P. Registers

Group 8 080-08F 128-143 G.P. Registers

Group 7 070-07F 112-127 G.P. Registers

Group 6 060-06F 96-111 G.P. Registers

Group 5 050-05F 80-95 G.P. Reg1sters

Group 4 040-04F 64-79 G.P. Registers

Group 3 030-03F 48-63 G.P. Registers

Group 2 020-02F 32-47 G.P. Registers

Group 1 010-01 F 16-31 G.P. Registers

Group 0 000-00F 00-15 G.P. Registers

13/20
-----------------~ ~i~©~~~~~~©~ -----------------

17

2 - ST9 Core Architecture

The instructions SRP, SRPO and SRPl (the Set
Register Pointer instructions) automatically inform
the ST9 whether the Register File is to operate with
a single 16-register group or two a-register groups.
The SRPO and SRPl instructions automatically set
the twin a-register group mode while the SRP in­
struction sets the single 16-register group mode.
There is no limitation on the order or positions of
these chosen register groups other than they must
be on a or 16 register boundaries.

The addressing of working registers involves use
of the Register Pointer value plus an offset value
given by the number of the addressed working
register.

When addressing a register, the most significant
nibble (bits 4-7) gives the group address and the
least significant nibble (bits 0-3) gives the register
within that group.

2.3.2.1 REGISTER POINTER 0

RPO-R232 (OEah) System Read/Write
Register Pointer 0
Reset Value : undefined

7

I RG71 RG61 RGSI RG41 RG31 RPS I D1

0

DO

b7-b3 = RG7-RG3: Register Group number. These
bits contain the number (from 0 to 31) of the group
of working registers indicated in the instructions
srpO or srp. When using a 16-register group, a
number between 0 and 31 must be used in the srp
instruction indicating one of the two adjacent a-reg­
ister group of working registers used. RG7 is the
MSB.

b2 = RPS: Register Pointer Selector. This bit is set
by the instructions srpO and srpl to indicate that
a double register pointing mode is used. Otherwise,
the instruction srp resets the RPS bit to zero to
indicate that a single register pointing mode is
used.

b1 ,bO = 01 ,DO: These bits are fixed by hardware
to zero and are not affected by any writing instruc­
tion trying to modify their value.

2.3.2.2 REGISTER POINTER 1

RP1-R233 (OE9h) System Read/Write
Register Pointer 1
Reset Value : undefined

7 0

I RG71 RG61 RGSI RG41 RG31 RPS I D1 DO

This register is used only with double register point­
ing mode; otherwise, using single register pointing
mode, the RP1 R register has to be considered as
reserved and not usable as a general purpose
register.

b7 -b3 = RG7-RG3: Register Group number. These
bits contain the number (from 0 to 31) of the group
of 8 working registers indicated in the instructions
srp1. Bit 7 is the MSB.

b2 = RPS: Register Pointer Selector. This bit is
automatically set by the instructions srpO and srp1
to indicate that a double register pointing mode is
used. Otherwise the instruction srp reset the RPS
bit to zero to indicate that a single register pointing
mode is used.

b1 ,bO = 01,00: These bits are hardware fixed to
zero and are not affected by any writing instruction
trying to modify their value.

2.3.2.3 EXAMPLES

Using the Single 16 Register Group

When the system is operating in the single 16-reg­
ister group mode, the registers are referred to as
r0-r15. In this mode, the offset value (i.e. the num­
ber of the working register referred to) is supplied
in the address (preceded by a small r, e.g. r5) and
is added to the Register Pointer 0 value to give the
absolute address.

For example, if the Register Pointer contains the
value 70h, then working register r7 would have the
absolute address, R77h.

In this mode, the single 16-registers group will
always start from the lowest even number equal or
lower to the number given in the instruction.

Example: srp #3 is equivalent to srp #2.

Using the Twin 8-Register Group

When working in the twin working group mode, the
registers pointed by Register Pointer 0 (RPOR), are
referred as r0-r7 and those pointed by Register
Pointer 1 (RP1 R), are referred to as ra-r15, regard­
less of their absolute addresses. In this mode,
when operating with the first a working registers
(i.e. rO - r7) the working register number acts as an
offset which is added to the value in Register
Pointer 0.

So if Register Pointer 0 contains the value 96, then
working register 0 has the absolute address 96,
working register 5 has the absolute address 101,
and so on. The second group of working registers,
r8-r15, has the offset values 0 to 7 repectively (i.e.
r8 has the offset value 0, r9 has the offset value 1,
and so on), this offset value being added to the
value in Register Pointer 1.

14/20
----------------------------~ ~~~;~~~~~~©~ ----------------------------
18

Figure 2-22a. Single 16 Register Pointing
Mode

255

GROUP F

240

'"
GROUP E

REGISTER POINTER 0 t-
22'

c15

WORKING -GROUP 4
REGISTER

cO

0

VA00097

For example, given that the value in Register
Pointer 1 is 32, then working register 12 supplies
an offset value of 4 (given by 12 minus 8) to the
value in Register Pointer 1 to give an absolute
address of 36.
Note: If work1ng 1n twm 8-reg1ster group mode but only us1ng SAPO
(I.e. only us1ng one 8-reg1ster group) the unused register (R233) IS
to be considered as reserved and not usable as a general purpose
register.

The group of registers immediately below the sys­
tem registers (i.e. group R208-R223) can only be
accessed via the Register Pointers. To address
group D then, it is necessary to set the Regi~ter
Pointer to group D and then use the addressmg
procedure for working registers. The programmer
is required to remember that the D-group (ODOh­
ODFh, R208-R223) should be used as a stacking
area. This point is also covered in the Stack
Pointers paragraph (2.3.4.3).

2- ST9 Core Architecture

Figure 2-22b. Double Register Pointing
Mode

255

GROUP F

240
239

REGISTER POINTER 1 t-
REGISTER POINTER 0 t--

GROU? E

224

GROUP 8

\'.O~<ING REGISTER !-'-'--
cO

c15
\',OR-<ING REGISTER 1--

GROUP 3 cB

0

VA00098

2.3.3 Page Configuration

The pages are available to be used for the storage
of control information (such as interrupt vector
pointers) relevant to particular peripherals. There
are up to 64 pages (each with 16 registers) based
on registers 240-255. These paged registers are
addressable via the page pointer register (PPR),
which is system register R234.

To address a paged register the page pointer reg­
ister (R234) must be loaded with the relevant page
number using the spp instruction (Set Page
Pointer) and subsequently any address from the
top (F) group (R240-R255) will be referred to that
page.

For example if register 23 contains th~ value. 44,
the following sequence loads the th1rd reg1ster
R242 on page 5 with the value 44.

spp 5

ld R242, R23

15/20
------------l::fi ~i©m~:~~lj ------------

19

2 - ST9 Core Architecture

Figure 2-23. Page Pointer Configuration

I

PAGE 6.3

R255
I PAGE 5

r--
PAGE 0

[1
PAGE POINTER

R240

R224

RO

VA00433

2.3.3.1 PAGE POINTER REGISTER

PPR-R234 (OEAh) System Read/Write
Page Pointer Register
Reset value : undefined

7 0

I PP7 I PP6 I PP5 I PP41 PP3 I PP21 PP1 I PPO I

b7-b2 = PP7-PP2: Page Pointer. These bits contain
the number (between 0 to 63) of the page chosen
by the instruction ssp (Set Page Pointer). PP7 is
the MSB of the page address. Once the page
pointer has been set, there is no need to refresh it
unless a different page is required.

b1-b0 = 01 ,DO: These bits are fixed by hardware
to zero and are not affected by any writing instruc­
tion trying to modify their value.

2.3.3.2 PAGE 0 CONFIGURATION

This page contains the control registers of:

- the external interrupt

- the watchdog timer

- the wait logic states

- the serial peripheral interface (SPI)

- the EPROM (when present, otherwise this reg-
ister is reserved and cannot be used (as well as
register 255.)

- the EEPROM (when present)

Please refer to the Interrupt, the EPROM and EE­
PROM, the Timer/Watchdog, the SPI, and the
Clock chapters for more detailed information con­
cerning these registers.

Table 2-3. Page 0 Configuration

Register Page 0 Register Number

0 Reserved

1 EEPROM EEPROM control register

2 EITR
External Interrupt Trigger
event register

3 EIPR
External Interrupt
Pending Register

4 EIMR
External Interrupt bit
Mask Register

5 EIPLR External Interrupt Pnority
Level Register

6 EIVR External Interrupt Vector
Register

7 NICR Nested Interrupt Control
Register

8 WDTHR
Watchdog/Timer-High
Register

9 WDTLR Watchdog/Timer-Low
Register

A WDTPR Watchdog/Timer
Prescaler Register

B WDTCR Watchdog/Timer Control
Reg1ster

c WCR Wait Control Register

D SPIDR SPI Data Regrster

E SPICR SPI Control Register

F Reserved

16/20 ---------------~ ~~~;m~m~,~~~ ---------------
20

2.3.4 Stack Pointers

There are two separate, double register stack
pointers available (named System Stack Pointer
and User Stack Pointer), both of which can address
registers or memory.

The stack pointers point to the bottom of the stacks
which are filled using the push commands and
emptied using the pop commands. The stack
pointer is automatically pre-decremented when
data is "pushed in" and post-incremented when
data is "popped out".

For example, the register address space is se­
lected for a stack and the corresponding stack
pointer register contains 220. When a byte of data
is "pushed" into the stack, the stack pointer register
~o.~tents i~ ~ecrem~nted to 219, then the data byte
IS loaded mto register 219. Conversely if a stack
pointer register contains 189 and a byte' of data is
"popped" out, the byte of data is then extracted
!r~m the stack and then the stack pointer register
IS Incremented to 190.

2- ST9 Core Architecture

The push and pop commands used to manage the
system stack area are made applicable to the user
stack by adding the suffix U, while to use a stack
instruction for a word a W is added.

For example push inserts data into the system
stack, but an added U indicates the user stack and
W means a word, so the instruction pushuw loads
a word into the bottom of the user stack.

If the User Stack Pointer register contains 223
(~orking in register space) the instruction pushuw
will decrement User Stack Pointer register to 222
and then load a word into register R222 and R221.

When bytes (or words) are "popped out" the values
in those registers are left unchanged until fresh
data is loaded into those locations. Thus when data
is "popped" out from a stack area, the stack content
remains unchanged.
NO!E: Stacks should not be located in the pages or the system
reg1ster area. because of the risk of losing valuable data

------------~ ~~©lli~~i!~~ ___________ 1_71_20

21

2 - ST9 Core Architecture

2.3.4.1 THE SYSTEM STACK AREA AND THE
SYSTEM STACK POINTER

The System Stack area is used for the storage of
temporarily suspended system and/or control reg­
isters, i.e. the Flag register and the Program
counter, while interrupts are being serviced. For
subroutine execution only the Program Counter
needs to be saved in the System stack area.

There are two situations when this occurs automat­
ically, one being when an interrupt occurs and the
other when the instruction call subroutine is used.
When the system stack area is in the Register File,
the stack pointer, which points to the bottom of the
stack, only needs one byte for addressing, in which
case the System Stack Pointer Low Register
(R239) is sufficient for addressing purposes. As a
result the System Stack Pointer High Register
(R238) becomes redundant BUT must be con­
sidered as reserved. Clearly when the stack is
external a full word address is necessary and so
both registers are used to point, the even register
providing the MSB and the odd register providing
the LSB.

2.3.4.2 THE USER STACK AREA AND USER
STACK POINTER

The User Stack area is completely free from all
interference from automatic operations and so it
provides a totally user controlled stacking area, that
area being in any part of the memory which is of a
RAM nature, or the first 14 groups of the general
Register File i.e. not in the system register or page
groups.

The User Stack Pointer consists of two registers,
R236 and R237, which are both used for address­
ing an external stack, while, when stacking in the
Register File, the User Stack Pointer High Register,
R236, becomes redundant but must be considered
as reserved.

2.3.4.3 STACK LOCATION

Care is necessary when managing stacks as there
is no limit to stack sizes apart from the bottom of
any address space in which the stack is placed.
Consequently programmers are advised to use a
stack pointer value as high as possible, particularly
when using the Register File as a stacking area.
This will also benefit programmers who may locate
the stacks in group Dusing, for example the instruc­
tion ld R237, #223 which loads the value 223 into
the User Stack Pointer Low Register. The Pro­
grammer will not need to remember to set the
Register Pointer to 208 to gain access to registers
in the D-group, a problem outlined in paragraph
2.3.2.3

Stacks may be located anywhere in the first 14
groups of the Register File (internal stacks) or the
data memory (external stacks). It is not necessary
to set the data memory using the instruction sdrn
as external stack instructions automatically use the
data memory.

2.3.5 Mode Register

This register MODER is located in the System
Register Group at the address 235. Using this
register it is possible:

- to select either internal or external System and
User Stack area,

- to manage the clock frequency

- to enable the Bus request and Wait signals when
interfacing external memory.

MODER-R235 (OE3h) Sys. Reg. Read/Write
Mode Register
Reset value : 111 0 0000

7 0

I SSP I USP I DIV21PRS21PRS11PRSOIBRQENIHIMPI

b? = SSP: System Stack Pointer. This bit selects
internal (in the Register File) or external (in the
external Data Memory) System Stack area, logical
"1" for internal, and logical "0" for external. After
Reset the value of this bit is "1".

b6 = USP: User Stack Pointer. Same as bit 7 for
the User Stack Pointer;

b5 = DIV2: OSCIN Clock Divided by 2. This bit
controls the divide by 2 circuit which operates on
the OSCIN Clock. A logical "1" value means that
the OSCIN clock is internally divided by 2, and a
logical "0" value means that no division of the
OSCIN Clock occurs.

Figure 2-25 . Clocks Generation

3 bots

PROGRAMMABLE CPUCLK
PRESCALER

VR000136

18/20 ------------~ ~~©IH~~~~~ ------------
22

b4-b2 = PRS2-PRSO: ST9 CPUCLK Prescaler.
These bits load the prescaling module of the inter­
nal clock (INTCLK). The prescaling value selects
the frequency of the ST9 clock, which can be
divided by 1 to 8. See Clock chapter for more
information.

b1 = BRQEN: Bus Request Enable. This bit is a
software enable of an External Bus Request. When
set to "1 ", it enables a Bus Request on the BUS­
REO pin.

bO = HIMP: High Impedance Enable. When Port 0
and/or Port 1 are programmed as multiplexed ad­
dress and Data lines to interface external Program
and/or Data Memory, these lines can be forced into
the High Impedance state by setting to 1 the HIMP
bit. When this bit is reset, it has no effect on PO and
P1 lines.

If Port 1 is declared as an address AND as an 1/0
port (example: P10 ... P14 =Address, and P15 ...
P17 = 1/0), HIMP has no effect on the 1/0 lines (in
the previous example: P15 ... P17).

2.3.6 Flag Register

The Flag Register, R231 (OE7h), contains 8 flags
indicating the status of the ST9. During an interrupt
the flag register is automatically stored in the sys­
tem stack area and recalled at the end of the
interrupt service routine so that the ST9 is returned
to the original status. This occurs for all interrupts
and, when operating in the nested mode, up to
seven versions of the flag register may be stored.

FLAGR-R231 (OE7h) Sys. Reg. Read/Write
Flag Register
Reset value : undefined

7 0

c z s v DA H UF DP

b7 = C: Carry Flag. The carry flag C is affected by
the following instructions: Addition (add, addw,
adc, adcw), Subtraction (sub, subw, sbc,
sbcw), Compare (cp, cpw), Shift Right Arithmetic
(sra, sraw), Rotate (rrc, rrcw, rlc,
rlcw, ror, rol), Decimal Adjust (da), and
Multiply and Divide (mul, div, divws) instruc­
tions. When set, it generally indicates a carry out of
the most significant bit position of the register being
used as an accumulator (bit 7 for byte and bit 15
for word operations).

The carry flag can be set by the Set Carry Flag
(set) instruction, cleared by the Reset Carry Flag
(ref) instruction, and complemented (changed to

2- ST9 Core Architecture

"0" if "1", and vice versa) by the Complement Carry
Flag (eel) instruction.

b6 = Z: Zero Flag. The Zero flag is affected by the
same instructions as the Carry flag, plus the Logical
(and, andw, or, orw, xor, xorw, cpl),
Increment and Decrement (inc, incw, dec,
deo1), Test (tm, tmw, tern, tcmw, btset).ln
most cases, the Zero flag is set when the register
being used as an accumulator register, following
one of the above operations, is zero.

b5 = S: Sign Flag. The Sign flag is affected by the
same instructions as the Zero flag. The Sign flag is
set when bit 7 (for byte operation) or bit 15 (for
word operation) of the register used as an accumu­
lattor is one.

b4 = V: Overflow Flag. The Overflow flag is affected
by the same instructions as the Zero and Sign flags.
When set, the Overflow flag indicates that a two's­
complement number, in a result register, is in error,
since it has exceeded the largest (or is less than
the smallest), number that can be represented in
twos-complement notation.

b3 = DA: Decimal Adjust Flag. The Decimal Adjust
flag is used for BCD arithmetic. Since the algorithm
for correcting BCD operations is different for addi­
tion and subtraction, this flag is used to specify
which type of instruction was executed last, so that
the subsequent Decimal Adjust (da) operation can
perform its function correctly. The Decimal Adjust
flag cannot normally be used as a test condition by
the programmer.

b2 = H: Half Carry Flag. The Half Carry flag indi­
cates a carry out of (or a borrow into) bit 3, as the
result of adding or subtracting two 8-bit bytes, each
representing two BCD digits. The Half Carry flag is
used by the Decimal Adjust (da) instruction to
convert the binary result of a previous addition or
subtraction into the correct BCD result. Like the
Decimal Adjust flag, this flag is not normally ac­
cessed by the user.

b1 = UF: User Flag. Bit 1 in the flag register (UF)
is available to the user, but it must be set or cleared
by an instruction.

bO = DP: Data/Program Memory Flag. This bit in
the flag register indicates which memory area is
addressed. Its value is affected by the Set Data
Memory (sdm) and Set Program Memory (spm)
instructions.

If the bit is set, the ST9 addresses the Data Memory
Area; when the bit is cleared, the ST9 addresses
the Program Memory Area. By reading this bit, the
user can verify in which memory area the processor
is working. The user writes this bit with the sdm or
spm instructions.

19/20
----------------------------~ ~~~©~~~iR~~ ----------------------------

23

2 - ST9 Core Architecture

2.3.7 Central Interrupt Control Register

This Register CICR is located in the system Reg­
ister Group at the address R230 (OE6h). Please
refer to "INTERRUPT and DMA" chapter in order
to get the background of the ST9 interrupt philos­
ophy.

CICR-R230 (OE6h) Sys. Reg. Read/Write
Central Interrupt Control Register
Reset Value : 1000 0111

b7 = GCEN: Global Counter Enable. This bit is the
Global Counter Enable of the 2 x 16 bit Timers of
the Timer cell. The GCEN bit is ANDed with the CE
(Counter Enable) bit of the Timer Control Register
(explained in the Timer chapter) in order to enable
the Timers when both bits are set. This bit is set

7 0

IGCENI TLIP I TLI liEN I lAM I CPL21 CPL 1 I CPLO I

after the Reset cycle.

b6 = TLIP: Top Level Interrupt Pending. This bit is
automatically set when a Top Level Interrupt Re­
quest is recognized. This bit can also be set by
Software in order to simulate a Top Level Interrupt
Request.

b5 = TLI: Top Levellnterrrupt bit. When this bit is
set, a Top Level interrupt request is acknowledged
depending on the lEN bit and the TLNM bit (in
Nested Interrupt Control Register). If the TLM bit is
reset the top level interrupt acknowledgement de­
pends on the TLNM alone.

b4 = lEN: Enable Interrupt. This bit, (when set),
allows interrupts to be accepted. When reset no
interrupts other than the NMI can be acknow­
ledged. It is cleared by interrupt acknowledgement
for concurrent mode and set by interrupt return

(I RET). It can be managed by hardware and soft­
ware (ei and cti instruction).

b3 =lAM: Interrupt Arbitration Mode. This bit cover­
s the selection of the two arbitration modes, the
Concurrent Mode being indicated by the value "0"
and the Fully Automatic Nested Mode by the value
"1 ".This bit is under software control.

b2-b0 = CPL2-CPLO: Current Priority Level. These
three bits record the priority level of the interrupt
presently under service (i.e. the Current Priority
Level, CPL). For these priority levels 000 is the
highest priority and 111 is the lowest priority. The
CPL bits can be set by hardware or software and
give the reference by which following interrupts are
either left pending or able to interrupt the current
interrupt. When the present interrupt is replaced by
one of a greater priority, the current priority value is
automatically stored until required.

2.3.8 Input/Output Ports

The input/output ports are located in two areas. The
port registers for ports 0-5 are located at the bottom
of the system register group in locations R224 to
R229 (OEOh- OE5h), while port 6 and 7 are located
in page three, in registers 251 (OFBh) and 255
(OFFh) respectively.

Each Port has three associated Control registers,
which determine the individual pin modes (1/0,
Open-Drain etc). These registers are located in
pages 2 and 3 (see the 1/0 Ports chapter 9 for
detailed information).

20/20 -'="= SGS-1HOMSON -------------- ~>.""fl u:JJ~©mJ©~~rn©TIL~JmJ~©@ --------------

24

3.1 THE INSTRUCTION SET

The ST9 instruction set consists of 87 instruction
types which can be divided into eight groups:

- Load (two operands)

- Arithmetic & logic (two operands)

- Arithmetic Logic and Shift (one operand)

- Stack (one operand)

- Multiply & Divide (two operands)

- Boolean (one or two operands)

- Program Control (zero to three operands)

- Miscellaneous (zero to two operands)

CHAPTER 3

INSTRUCTION SET

The wide range of instructions eases use of the
register file and address spaces, reducing oper­
ation times, while the register pointers mechanism
allows an unmatched code efficiency and ultrafast
context switching. A particularly notable feature is
the comprehensive "Any Bit, Any Register" (ABAR)
addressing capability of the Boolean instructions.

The ST9 can operate with a wide range of data
lengths from single bits, 4-bit nibbles which can be
in the form of Binary Coded Decimal (BCD) digits,
8-bit bytes, and 16-bit words.

The following summary shows the instructions be­
longing to each group and the number of operands
required for each instruction. The source operand
is "src", "dst" is the destination operand, and "cc"
is a condition code.

1/42

25

3 - Instruction Set

LOAD INSTRUCTIONS (two operands)

Mnemonic Operands Instruction

LD dst,src Load
LOW dst,src Load Word

LDPP dst,src Load Program Memory -> Program Memory
LDPD dst,src Load Data Memory -> Program Memory
LDDP dst,src Load Program Memory -> Data Memory
LDDD dst,src Load Data Memory -> Data Memory

ARITHMETIC & LOGIC (two operands)

Mnemonic Operands Instruction

ADD dst,src Add
ADDW dst,src Add Word

ADC dst,src Add With carry
ADCW dst,src Add Word With Carry

SUB dst,src Substract
SUBW dst,src Substract Word

SBC dst,src Substract With Carry
SBCW dst,src Substract Word With Carry

AND dst,src Logical AND
ANDW dst,src Logical Word AND

OR dst,src Logical OR
ORW dst,src Logical Word OR

XOR dst,src Logical Exclusive OR
XORW dst,src Log1cal Word Exclusive OR

CP dst,src Compare
CPW dst,src Compare Word

TM dst,src Test Under Mask
TMW dst,src Test Word Under Mask

TCM dst,src Test Complement Under Mask
TCMW dst,src Test Word Complement Under Mask

2/42
---------------------------~~~~@~g~~~~---------------------------
26

3 - Instruction Set

ARITHMETIC LOGIC & SHIFT (one operand)

Mnemonic Operands Instruction

INC dst Increment
INCW dst Increment Word

DEC dst Decrement
DECW dst Decrement Word

SLA dst Shift Left Anthmet1c
SLAW dst Shift Word Left Arithmetic

SRA dst Shift Right Arithmetic
SRAW dst Shift Word Right Anthmetic

RRC dst Rotate R1ght Through Carry
RRCW dst Rotate Word Right Through Carry

RLC dst Rotate Left Through Carry
RLCW dst Rotate Word Left Through Carry

ROR dst Rotate Right

ROL dst Rotate Left

CLR dst Clear

CPL dst Complement

SWAP dst Swap Nibbles

DA dst Decimal Adjust

STACK INSTRUCTIONS (one operand)

Mnemonic Operands Instruction

PUSH src Push on System Stack
PUSHW src Push Word on System Stack
PEA src Push Effective Address on System Stack

POP dst Pop From System Stack
POPW dst Pop Word from System Stack

PUSHU src Push on User Stack
PUSHUW src Push Word on User Stack
PEAU src Push Effective Address on User Stack

POPU dst Pop From User Stack
POPUW dst Pop Word From User Stack

3/42 ------------/iii. ~itm~i!Y~ ------------
27

3 - Instruction Set

MULTIPLY AND DIVIDE INSTRUCTIONS (two operands)

Mnemonic Operands Instruction

MUL dst,src Multiply 8x8

DIV dst,src Divide 16/8
DIVWS dst,src Div1de Word Stepped 32/16

BOOLEAN INSTRUCTIONS (one and two operands)

Mnemonic Operands Instruction

BSET dst Bit Set

BRES dst Bit Reset

BCPL dst Bit Complement

BTSET dst Bit Test and Set

BLD dst,src Bit Load

BAND dst,src Bit AND

BOR dst,srrc Bit OR

BXOR dst,src BitXOR

4/42 ------------~ li©mgm:~~~ ------------
28

3 - Instruction Set

PROGRAM CONTROL INSTRUCTIONS (one, two or three operands)

Mnemonic Operands Instruction

RET Return from Subroutine

I RET Return from Interrupt

Stop Program Execution and Wait for
the next Enabled Interrupt. If a DMA

WFI request is present, the CPU executes
the DMA service routine and then
automatically returns to the WFI

HALT Stop Program Execution Until Next System Reset

JR cc,dst Jump Relative If Condition is Met

JP cc,dst Jump if Condition is Met

JP dst Unconditional Jump

CALL dst Unconditional Call

BTJF dst,N Bit Test and Jump if false

BTJT dst,N Bit Test and Jump if True

DJNZ dst,N
Decrement a Working Register and Jump
if Non Zero

DWJNZ dst,N
Decrement a Register Pair and Jump if
Non Zero

CPJFI dst,N
Compare and Jump on False. Otherwise
Post Increment

CPJTI dst,N Compare and Jump on True. Otherwise
Post Increment

5/42 ---------- IDl SCS-THOMSON ---------­
• l, , lllJC©OO©Ia~~©li'OO©J!~©®

29

3 - Instruction Set

MISCELLANEOUS (none, one or two operands)

Mnemonic Operands Instruction

XCH dst,src Exchange Registers

SRP src Set Register Pointer Long (16 working registers)

SRPO src Set Register Pointer 0 (8 LSB working register)

SRP1 src Set Reg1ster P01nter 1 (8 MSB working register)

SPP src Set Page Pointer

EXT dst Sign Extend

El Enable Interrupts

Dl D1sable Interrupts

SCF Set Carry Flag

RCF Reset Carry Flag

CCF Complement Carry Flag

SPM Select Program Memory

SDM Select Data Memory

NOP No Operation

'6/42
~ SCS·THOMSON ---------------- JJ..""fl. I'Jl~@ffil©]l~©li'ffil©]Ju©\\! ---------------

30

3.2 ST9 PROCESSOR FLAGS

An important feature of a single chip microcom­
puter is the ability to test data and make the appro­
priate action based on the results. In order to
provide this facility, FLAGR (register 231) in the
register file is used as a flag register. Six bits of this
register are used as the following flags:

C- Carry

Z- Zero

S- Sign

V- Overflow

D- Decimal Adjust

H - Half Carry

Bit 1 is available to the user. Bit 0 is the Pro­
gram/Data Memory selector bit.

The flags and their positions in the FLAGR are
shown below.

FLAGR- R231 (OE7h) Sys. Reg. ;Read/Write

Flag Register

Reset value: Undefined

7 0

c z I s I v I D I H I UF I DP I

Note : When mak1ng a log1cal and anthmet1c operation on the flag
register. the result is undefined For example. performing a CLR
instruction on the flag register will return an undefined value on the
Z (status b1t 6) flag In fact. the clear operation would force to 0 all
the reg1ster bits, while flag defJnJtJon would reqUJre b1t 6 to be set to
1.

b7 = C: Carry Flag. The carry flag C is affected by
the following instructions: Addition (add, addw,
adc, adcw), Subtraction (sub, subw, sbc,
sbcw), Compare (cp, cpw), Shift Right Arithmetic
(sra, sraw), Rotate (rrc, rrcw, rlc,
rlcw, ror, rol), Decimal Adjust (da), and
Multiply and Divide (mul, di v, di vws) instruc­
tions. When set, it generally indicates a carry out of
the most significant bit position of the register being
used as an accumulator (bit 7 for byte and bit 15
for word operations).

The carry flag can be set by the Set Carry Flag
(scf) instruction, cleared by the Reset Carry Flag
(ref) instruction, and complemented (changed to
"0" if "1 ",and vice versa) by the Complement Carry
Flag (ccf) instruction.

b6 = Z: Zero Flag. The Zero flag is affected by the
same instructions as the Carry flag, plus the Logical

3 - Instruction Set

(and, andw, or, orw, xor, xorw, cpl),
Increment and Decrement (inc, incw, dec,
decw), Test (tm, tmw, tern, tcmw, btset).ln
most cases, the Zero flag is set when the register
being used as an accumulator register, following
one of the above operations, is zero.

b5 = S: Sign Flag. The Sign flag is affected by the
same instructions as the Zero flag. The Sign flag is
set when bit 7 (for byte operation) or bit 15 (for
word operation) of the register used as an accumu­
lattor is one.

b4 = V: Overflow Flag. The Overflow flag is affected
by the same instructions as the Zero and Sign flags.
When set, the Overflow flag indicates that a two's­
complement number, in a result register, is in error,
since it has exceeded the largest (or is less than
the smallest), number that can be represented in
twos-complement notation.

b3 = DA: Decimal Adjust Flag. The Decimal Adjust
flag is used for BCD arithmetic. Since the algorithm
for correcting BCD operations is different for addi­
tion and subtraction, this flag is used to specify
which type of instruction was executed last, so that
the subsequent Decimal Adjust (da) operation can
perform its function correctly. The Decimal Adjust
flag cannot normally be used as a test condition by
the programmer.

b2 = H: Half Carry Flag. The Half Carry flag indi­
cates a carry out of (or a borrow into) bit 3, as the
result of adding or subtracting two 8-bit bytes, each
representing two BCD digits. The Half Carry flag is
used by the Decimal Adjust (da) instruction to
convert the binary result of a previous addition or
subtraction into the correct BCD result. Like the
Decimal Adjust flag, this flag is not normally ac­
cessed by the user.

b1 = UF: User Flag. Bit 1 in the flag register (UF)
is available to the user, but it must be set or cleared
by an instruction.

bO = DP: Data/Program Memory Flag. This bit in
the flag register indicates which memory area is
addressed. Its value is affected by the Set Data
Memory (sdm) and Set Program Memory (spm)
instructions.

If the bit is set, the ST9 addresses the Data Memory
Area; when the bit is cleared, the ST9 addresses
the Program Memory Area. By reading this bit, the
user can verify in which memory area the processor
is working. The user writes this bit with the sdm or
spm instructions.

7/42 -------------~ ~~i©JH21J1~,~~~ -------------
31

3 - Instruction Set

3.3 CONDITION CODES
Flags C, Z, S, and OV control the operation of the
"conditional" Jump instructions. The next table
shows the condition codes and the flag settings.

Table 1. Condition Codes Table

MNEMONIC MEANING
CODE

F Always False

T Always true

c Carry

NC No carry

z Zero

NZ No Zero

PL Plus

Ml Minus

ov Overflow

NOV No Overflow

EQ Equal

NE Not Equal

GE
Greater Than -
or Equal

LT Less Than

GT Greater Than

LE Less Than or Equal

UG
Unsigned Greater
Than or Equal

UL Unsigned Less Than

UGT
Unsigned
Greater Than

ULE Unsigned Less
Than or Equal

Note : Some of the Status flags are used to indicate
more than one condition e.g . Zero and Equal. In
such cases the condition code is the same for both
conditions.

FLAG HEX. BINARY
SETTING VALUE VALUE

0 0000 ----

8 1000 ----
C=1 7 0111

C=O F 1111

Z=1 6 0011

Z=O E 1110

8=0 D 1101

8=1 5 0101

V=1 4 0100

V=O c 1100

Z=1 6 0110

Z=O E 1110

(8 xor V)=O 9 1001

(8 xorV)=1 1 0001

(Z or(8 xor V))=O A 1010

(Z or(8 xor V))=1 2 0010

C=O F 1111

C=1 7 0111

(C=O and Z=0)=1 B 1011

(CorZ)=1 3 0011

8/42 -------------~ ~~~©ltl~~~,~~ -------------
32

3 - Instruction Set

3.4 NOTATION

Operands and status flags are represented by a
notational shorthand in the detailed instruction de·
scription (see programming manual). The notation
for operands (condition codes and address modes)
and the actual operands they represent are as
follows:

Table 2. Notations (Part 1)

Notation Significance Actual Operand/Range

cc Condition Code See previous table 1

#N Immediate Byte # data where data is a byte expression
#NN Immediate Word # data where data is a word expression

r Direct Working Register rn, where n=0-15

R Direct Register Rn, where n=0-255

rr Direct Working Register Pair
rrn, where n is an even number in the range 0-15.

(n=0,2,4,6 14)

RR Direct Register Pair
RRn, where n is an even number in the range 0-254.

(n=0,2,4,6 254)

(r) Indirect Working Register (rn), where n=0-15

(R) Indirect register (Rn), where n=0-255

(r)+
Indirect working register post

(rn)+, where n=0-15
increment

N(rx) Indexed register N(rx), where X=0-15; N=0-255 (one byte)

N Memory relative Short Address
Program label or expression in the range + 127/-128 starting
from the address of the next instruction

NN Direct Memory Long Address
Program label or expression in the range 0-65535 in memory
area

9/42 ------------- I..V. ~i~©m2m1a[G~ -------------
33

3 - Instruction Set

Table 2. Notations (Part 2)

Notation Significance Actual Operand/Range

(rr)
Indirect Pair of Working

(rrn)
Where n is an even number in the range

Register Pointers 0-15.(n=0,2.4,6 14)

Indirect Pair of Working
where n IS an even number in the range

(rr)+ Register Pointers with Post (rrn)+
0-15.(n=0,2,4,6 14)

Increment

Indirect Pair of Working
where n is an even number in the range

-(rr) Register Pointers with Pre -(rrn)
0-15.(n=0,2,4,6 14)

Decrement

Indexed Pair of Working where x is an even number in the range
N(rrx) Reg1ster Pointers w1th N(rrx) 0-15.(n=0,2,4,6 14) and N is a signed one

Short Offset byte expression between+ 127/-128

Indexed Pair of Working
where x is an even number in the range
0-15.(n=0,2,4,6 14) and NN is word

NN(rrx) Reg1ster Pointers with Long NN(rrx) expression in the range between 0 and
Offset

65535

Indexed Pair of Register
where x is an even number in the range

N(RRx)
Pointers with Short Offset

N(RRx) 0-255.(n=0,2,4,6 ... 254) and N is a one byte
s1gned expression in the range +127/-128

Indexed Pair of Register where x is an even number in the range
NN(RRx) NN(RRx) 0-255.(n=0,2,4,6 14) and NN is word

Pointers with Long Offset
expression in the range between 0 and 65535

Indexed Pair of Working

rr(rrx)
Registers with a Pair of

rrn(rrx)
where n and x are two even numbers in the

Working Registers used as range 0-15. (n,x=0,2,4,6 14)
Offset

Bit pointer in a direct working
n=0.15 and b is a number between

r.b rn.b 0-7;0 LSB
register

7 MSB

Bit pointer m a Memory where n IS an even number in the range

(rr).b Location us1ng a Pair of
(rrn).b 0-15.(n=0,2,4,6 14) and be is a number

Indirect Working Registers as between 0-7 0 LSB
Address Pointer 7 MSB

(RR) Indirect pair of Register Pointer (RRn)
where n is an even number in the range
0-255.(n=0,2,4,6 254)

10/42 ------------- iiii ~~~©W.RI~~~©~ -------------
34

3.5 INSTRUCTION SUMMARY

The following tables summarize the operation for
each of the instructions which are listed with their
corresponding mnemonic codes, addressing
modes, byte counts, timing information, and af­
fected flags.

GENERAL NOTES FOR THE ABOVE-MEN­
TIONED TABLES :

- dst: destination operand

- src: source operand

- SSP: system stack pointer

- USP: user stack pointer

- PC: program counter

- cc: condition code

- C: carry flag

- Z: zero flag

- S: sign flag

- V: overflow flag

- D: decimal adjust flag

- CIC: central interrupt control register

- DP : data/program memory flag

FLAGS STATUS:

- " : affected
- - : not affected

- 0 : reset to zero

- 1 : setto one

- ? : undefined

3 - Instruction Set

Note: for detailed information on the instruction set
refer to the ST9 programming manual.

11/42 ------------~ ~~tm~~~~ ------------
35

3 - Instruction Set

Mnemo. dst Bytes
Clock Operation

Flags
src cycles CZSVDH

ADC :Addition of 2 bytes with carry

ADC r r 2 6 dsl<-dst+src+C A A A A 0 A

ADC R R 3 10 dsl<-dSt+SrC+C A A A A 0 A

ADC r R 3 10 dsl<-dSt+SrC+C A A A A 0 A

ADC R r 3 10 dst<-dst+src+C A A A A 0 A

ADC r (r) 2 6 dsl<-dSt+SrC+C A A A A 0 A

ADC R (r) 3 10 dsk-dst+src+C A A A A 0 A

ADC r (rr) 3 12 dst<-dst+src+C A A A A 0 A

ADC R (rr) 3 12 dsk-dst+src+C A A A A 0 A

ADC r NN 4 18 dsk-dst+src+C A A A A 0 A

ADC r N(rrx) 4 24 dsk-dst+src+C A A A A 0 A

ADC R N(rrx) 4 24 dsk-dst+src+C A A A A 0 A

ADC r NN(rrx) 5 26 dsl<-dst+src+C A A A A 0 A

ADC R NN(rrx) 5 26 dsl<-dst+src+C A A A A 0 A

ADC r rr(rrx) 3 22 dsl<-dSI+SrC+C A A A A 0 A

ADC r (rr)+ 3 16 dsk-dSI+src+C A A A A 0 A

rr<·rr+ 1
ADC R (rr)+ 3 16 dsk-dSI+src+C A A A A 0 A

rr<-rr+ 1
ADC r -(rr) 3 16 rr<-rr-1 A A A A 0 A

dsl<-dSI+SrC+C
ADC R -(rr) 3 16 rr<·rr-1 A A A A 0 A

dsl<-dst+src+C
ADC (r) r 3 10 dsk-dSI+SrC+C A A A A 0 A

ADC (r) R 3 10 dsk-dst+src+C A A A A 0 A

ADC (rr) r 3 18 dsk-dst+src+C A A A A 0 A

ADC (rr) R 3 18 dsk-dSI+SrC+C A A A A 0 A

ADC (rr)+ r 3 22 dsk-dsl+src+C A A A A 0 A

rr<-rr+ 1
ADC (rr)+ R 3 22 dsk-dsl+src+C A A A A 0 A

rr<-rr+1
ADC NN r 4 20 dsl<-dsl+src+C A A A A 0 A

ADC N(rrx) r 4 26 dsl<·dSt+SrC+C A A A A 0 A

ADC N(rrx) R 4 26 dst<-dst+src+C A A A A 0 A

ADC NN(rrx) r 5 28 dsk-dSt+SrC+C A A A A 0 A

ADC NN(rrx) R 5 28 dsk-dsl+src+C A A A A 0 A

ADC rr(rrx) r 3 24 dsk-dst+src+C A A A A 0 A

ADC -(rr) r 3 24 rr<-rr-1 A A A A 0 A

dsk-dsl+src+C
ADC -(rr) R 3 22 rr<-rr-1 A A A A 0 A

dsl<-dst+src+C
ADC r #N 3 10 dsl<-dst+src+C A A A A 0 A

ADC R #N 3 10 dsk-dst+src+C A A A A 0 A

ADC (rr) #N 3 16 dst<-dst+src+C A A A A 0 A

ADC NN #N 5 24 dsk-dSt+SrC+C A A A A 0 A

ADC (rr) (rr) 3 20 dsk-dSI+src+C A A A A 0 A

ADC (RR) (rr) 3 20 dsk-dst+src+C A A A A 0 A

12/42 ------------- l..1i. ~i~©lH!I1~~~/j -------------
36

3 - Instruction Set

Mnemo. dst src Bytes Clock Operation Flags
cycles CZSVDH

ADCW : Add word with carry

ADCW rr rr 2 10 dsl<·dst+src+C A A A A ? ?
ADCW RR RR 3 12 dst<-dst+src+C A A A A ? ?
ADCW rr RR 3 12 dsl<-dSI+src+C A A A A ? ?
ADCW RR rr 3 12 dS!<·dSI+SrC+C A A A A ? ?
ADCW rr (r) 3 14 dsl<-dst+src+C A A A A ? ?
ADCW RR (r) 3 14 dst<-dst+src+C A A A A ? ?
ADCW rr (rr) 2 16 dsk-dS!+SrC+C A A A A ? ?
ADCW RR (rr) 3 18 dsk-dst+src+C A A A A ? ?
ADCW rr NN 4 22 dst<-dst+src+C A A A A ? ?
ADCW rr N(rrx) 4 28 dst<-dS!+SrC+C A A A A ? ?
ADCW RR N(rrx) 4 28 dSt<-dS!+SrC+C A A A A ? ?
ADCW rr NN(rrx) 5 30 dst<-dS!+SrC+C A A A A ? ?
ADCW RR NN(rrx) 5 30 dst<-dst +src+C A A A A ? ?
ADCW rr rr(rrx) 3 26 dsk-dst+src+C A A A A ? ?
ADCW rr (rr)+ 3 22 dsk-dst+src+C A A A A ? ?

rr<-rr+2
ADCW RR (rr)+ 3 22 ds!<-dS!+SrC+C A A A A ? ?

rr<-rr+2
ADCW rr -(rr) 3 24 rr<-rr-2 A A A A ? ?

dsl<-dSI+Src+C
ADCW RR -(rr) 3 24 rr<-rr-2 A A A A ? ?

ds!<-dS!+SrC+C
ADCW (r) rr 3 14 ds!<-dS!+SrC+C A A A A ? ?
ADCW (r) RR 3 14 dst<-dS!+SrC+C A A A A ? ?
ADCW (rr) rr 2 30 dst<-dst+src+C A A A A ? ?
ADCW (rr) RR 3 30 dsk-dSI+SrC+C A A A A ? ?
ADCW (rr)+ rr 3 32 dsk-dst+src+C A A A A ? ?

rr<-rr+2
ADCW (rr)+ RR 3 32 dst<-dst+src+C A A A A ? ?

rr<-rr+2
ADCW NN rr 4 32 dst<-dsl+src+C A A A A ? ?
ADCW N(rrx) rr 4 38 dst<-dst+src+C A A A A ? ?
ADCW N(rrx) RR 4 38 dst<-dst+src+C A A A A ? ?
ADCW NN(rrx) rr 5 38 dsk-dst+src+C A A A A ? ?
ADCW NN(rrx) RR 5 38 dst<-dst+src+C A A A A ? ?
ADCW rr(rrx) rr 3 34 dsk-dst+src+C A A A A ? ?
ADCW -(rr) rr 3 34 rr<-rr-2 A A A A ? ?

dst<-dst+src+C
ADCW -(rr) RR 3 32 rr<-rr-2 A A A A ? ?

dst<-dst+src+C
ADCW rr #NN 4 14 dst<-dSI+SrC+C A A A A ? ?
ADCW RR #NN 4 14 dst<-dsl+src+C A A A A ? ?
ADCW (rr) #NN 4 32 ds!<-dS!+SrC+C A A A A ? ?
ADCW NN #NN 6 36 ds!<-dS!+SrC+C A A A A ? ?
ADCW N(rrx) #NN 5 36 dsk-dst+src+C A A A A ? ?
ADCW NN(rrx) #NN 6 38 dsk-dst+src+C A A A A ? ?
ADCW (rr) (rr) 2 32 dsk-dS!+SrC+C A A A A ? ?

~ SCS-1liOMSON ---------------- .._.,l l'!lO©OO©~~~©'iiiD@~JO©!ll ----------------
13/42

37

v 0 v v v v
v 0 v v v v
v 0 v v v v
v 0 v v v v
v 0 v v v v
v 0 v v v v

v 0 v v v v

v 0 v v v v
v 0 v v v v
v 0 v v v v
v 0 v v v v

v 0 v v v v

v 0 v v v v

v 0 v v v v

v 0 v v v v

v 0 v v v v
v 0 v v v v
v 0 v v v v
v 0 v v v v

v 0 v v v v

v 0 v v v v

v 0 v v "
v 0 v v v v

v 0 v v v v
v 0 v v v v

v 0 v v v v

v 0 v v v v

v 0 v v v v

v 0 v v v v

v 0 v v v v

v 0 v v v v

v 0 v v v v
v 0 v v v v

v 0 v v v v

v 0 v v v v

v 0 v v v v

v 0 v v v v

v 0 v v v v

HOJ\SZO l soel,:l

88
~~~1\l@f1il!1~ID~~@[1i]~~~ 1i,:-. ------------­
N0SW0H1·S:JS ~ cvlv~ 

OJS+jSp->iSP oc: 8 (JJ) (l:H:l) OO'v' 
OJS+jSp->jSp oc: 8 (JJ) (JJ) OO'v' 
OJS+jSp->jSp 17<:: s N# NN OO'v' 
OJS+jSp->jSp 9~ 8 N# (JJ) OO'v' 
OJS+jSp->jSp 0~ 8 N# 1:1 OO'v' 
OJS+ISP->ISP 0~ 8 N# J OO'v' 
OJS+ISP->ISP 

~-JJ->JJ cc 8 1:1 (JJ)- OO'v' 
::us+)sp->ISP 

~-JJ->JJ c:c: 8 j (JJ)- OO'v' 
OJS+jSp->jSp vc 8 J (XJJ)JJ OO'v' 
OJS+jsp->jSp 8<:: s 1:1 (XJJ)NN OO'v' 
::us+!SP->ISP 8<:: s j (XJJ)NN OO'v' 
OJS+jSp->jSp 9<:: v 1:1 (lUJ)N OO'v' 
OJS+ISP->ISP 9c v j (XJJ)N OO'v' 
OJS+ISP->ISP oc=: v j NN OO'v' 

~+JJ->JJ 

OJS+jSp->jSp cc 8 1:1 +(JJ) OO'v' 
~+JJ->JJ 

OJS+ISP->ISP GG 8 J +(JJ) OO'v' 
OJS+jSp->jSp 8~ 8 1:1 (JJ) OO'v' 
OJS+jSp->jSp 8~ 8 j (JJ) OO'v' 
OJS+jSp->iSP 0~ 8 1:1 (J) OO'v' 
OJS+jSp->jSp 0~ 8 J (J) OO'v' 
OJS+jSp->jSp 

~-JJ->JJ 9~ 8 (JJ)- 1:1 OO'v' 
OJS+ISP->iSP 

~-JJ->JJ 9~ 8 (JJ)- J OO'v' 
~+JJ->JJ 

OJS+ISP->ISP 9~ 8 +(JJ) 1:1 OO'v' 
~+JJ->JJ 

OJS+jsp->jSp 9~ 8 +(JJ) J OO'v' 
OJS+jSp->jSp GG 8 (XJJ)JJ J OO'v' 
OJS+ISP->ISP 9c s (XJJ)NN 1:1 OO'v' 
OJS+jSp->jSp 9c s (XJJ)NN J OO'v' 
OJS+jSp->jSp vc v (XJJ)N 1:1 OO'v' 
OJS+ISP->ISP vc v (XJJ)N J OO'v' 
OJS+ISP->ISP 8~ v NN J OO'v' 
OJS+ISP->ISP ;::~ 8 (JJ) 1:1 OO'v' 
OJS+\SP->ISP <::~ 8 (JJ) J OO'v' 
OJS+jSp->jSp 0~ 8 {J) 1:1 OO'v' 
OJS+jSp->jSp 9 G (J) j OO'v' 
OJS+jSp->jSp 0~ 8 J 1:1 OO'v' 
OJS+jsp->jSp 0~ 8 1:1 J OO'v' 
OJS+jSp->jSp 0~ 8 1:1 1:1 OO'v' 
OJS+ISP->ISP 9 ;:: J J 00\f 

Au eo )nOLJI!M Sa)Aq C:: !0 UO!I!PP\f : 00\f 

uoneJado l 581°Au S81A8 l OJS ISP ·owau1111 
>fOOIO 

--- ---

tas uon:>nJtSUI • E 



3 - Instruction Set 

Mnemo. dst src Bytes Clock Operation Flags 
cycles CZSVDH 

ADDW : Add word without carry 

ADDW rr rr 2 10 dsk-dsl+src A A A A ? ? 
ADDW RR RR 3 12 dst<-dst+src A A A A ? ? 
ADDW rr RR 3 12 dst<-dst+src A A A A ? ? 
ADDW RR rr 3 12 dst<-dst+src A A A A ? ? 
ADDW rr (r) 3 14 dst<-dsl+src A A A A ? ? 
ADDW RR (r) 3 14 dst<-dst+src A A A A ? ? 
ADDW rr (rr) 2 16 dsl<-dst+src A A A A ? ? 

ADDW RR (rr) 3 18 dsl<-dsl+src A A A A ? ? 

ADDW rr NN 4 22 dsl<-dst+src A A A A ? ? 

ADDW rr N(rrx) 4 28 dsl<-dst+src A A A A ? ? 
ADDW RR N(rrx) 4 28 dsl<-dsl+src A A A A ? ? 
ADDW rr NN(rrx) 5 30 dsl<-dst +src A A A A ? ? 
ADDW RR NN(rrx) 5 30 dst<-dst+src A A A A ? ? 
ADDW rr rr(rrx) 3 26 dsl<-dsl+src A A A A ? ? 
ADDW rr (rr)+ 3 22 dsl<-dst+src A A A A ? ? 

rr<-rr+2 
ADDW RR (rr)+ 3 22 dsl<-dsl+src A A A A ? ? 

rr<-rr+2 
ADDW rr -(rr) 3 24 rr<-rr-2 A A A A ? ? 

dsl<-dst+src 
ADDW RR -(rr) 3 24 rr<-rr-2 A A A A ? ? 

dsl<-dst+src 
ADDW (r) rr 3 14 dsl<-dst+src A A A A ? ? 
ADDW (r) RR 3 14 dsk-dsl+src A A A A ? ? 
ADDW (rr) rr 2 30 dsl<-dsl+src A A A A ? ? 
ADDW (rr) RR 3 30 dsk-dsl+src A A A A ? ? 
ADDW (rr)+ rr 3 32 dsk-dsl+src A A A A ? ? 

rr<-rr+2 
ADDW (rr)+ RR 3 32 dsl<-dsl+src A A A A ? ? 

rr<-rr+2 
ADDW NN rr 4 32 dsl<-dst+src A A A A ? ? 
ADDW N(rrx) rr 4 38 dsl<-dst+src A A A A ? ? 
ADDW N(rrx) RR 4 38 dst<-dsl+src A A A A ? ? 
ADDW NN(rrx) rr 5 38 dst<-dsl+src A A A A ? ? 
ADDW NN(rrx) RR 5 38 dsk-dsl+src A A A A ? ? 
ADDW rr(rrx) rr 3 34 dsl<-dsl+src A A A A ? ? 
ADDW -(rr) rr 3 32 rr<-rr-2 A A A A ? ? 

dsl<-dst+src 
ADDW -(rr) RR 3 32 rr<-rr-2 A A A A ? ? 

dSI<-dSI+src 
ADDW rr #NN 4 14 dsl<-dst+src A A A A ? ? 
ADDW RR #NN 4 14 dsl<-dsl+src A A A A ? ? 
ADDW (rr) #NN 4 32 dst<-dst+src A A A A ? ? 
ADDW NN #NN 6 36 dsk-dsl+src A A A A ? ? 
ADDW N(rrx) #NN 5 36 dsk-dsl+src A A A A ? ? 
ADDW NN(rrx) #NN 6 38 dsk-dst+src A A A A ? ? 
ADDW (rr) (rr) 2 32 dsl<-dsl+src A A A A ? ? 

15/42 ------------~ ~~tm~~~~~ ------------
39 



3 - Instruction Set 

Mnemo. dst Bytes 
Clock Operation 

Flags 
src cycles CZSVDH 

AND : Logical AND between 2 bytes 

AND r r 2 6 dst<-dst AND src - A A 0 - -
AND R R 3 10 dst<-dst AND src - A A 0 - -
AND r R 3 10 dst<-ds AND src _ A A 0 - -
AND R r 3 10 dsk-ds AND src _ A A 0 -
AND r (r) 2 6 dsk-ds AND src - h A 0 
AND R (r) 3 10 dsk-ds AND src - A A 0 - -
AND r (rr) 3 12 dst<-ds AND src _ A A 0 - -
AND R (rr) 3 12 dst<-ds AND src _ A A 0 -
AND r NN 4 18 dst<-ds AND src - A A 0 
AND r N(rrx) 4 24 dSI<-dS AND src - A A 0 
AND R N(rrx) 4 24 dst<-ds AND src - A A 0 -
AND r NN(rrx) 5 26 dsk-ds AND src A A 0 - -
AND R NN(rrx) 5 26 dsk-ds AND src - A h 0 - -
AND r rr(rrx) 3 22 dst<-ds AND src A A 0 
AND r (rr)+ 3 16 dsk-ds AND src - h h 0 - -

rr<-rT+1 
AND R (rr)+ 3 16 dst<-ds AND src - A A 0 - -

rr<-rT+1 
AND r -(rr) 3 16 rr<-rr-1 - A A 0 - -

dst<-ds AND src 
AND R -(rr) 3 16 TT<-TT-1 - A A 0 -

dsk-ds AND src 
AND (r) r 3 10 dsk-ds AND src - A A 0 - -
AND (r) R 3 10 dsk-ds AND src - A A 0 - -
AND (rr) r 3 18 dsk-ds AND src - A A 0 -
AND (rr) R 3 18 dsk-ds AND src _ A A 0 
AND (rr)+ r 3 22 dsl<-ds AND src - A A 0 

rr<-rr+1 
AND (rr)+ R 3 22 dsl<-ds AND src - A A 0 - -

rr<-rr+1 
AND NN r 4 20 dst<-ds AND src _ A A 0 -
AND N(rrx) r 4 26 dsk-ds AND src A A 0 -
AND N(rrx) R 4 26 dsk-ds AND src A A 0 - -
AND NN(rrx) r 5 28 dsk-ds AND src - A A 0 - -
AND NN(rrx) R 5 28 dsk-ds AND src - A A 0 - -
AND rr(rrx) r 3 24 dsk-ds AND src - A A 0 - -
AND -(rr) r 3 22 rr<-rr-1 - A A 0 

dst<-ds AND src 
AND -(rr) R 3 22 rr<-rr-1 A A 0 - -

dsl<-ds AND src 
AND r #N 3 10 dSI<-dS AND src - A A 0 - -
AND R #N 3 10 dsl<-ds AND src - A A 0 - -
AND (rr) #N 3 16 dsk-ds AND src - A A 0 - -
AND NN #N 5 24 dsk-ds AND src - A A 0 - -
AND (rr) (rr) 3 20 dsk-ds AND src A A 0 -
AND (RR) (rr) 3 20 dst<-ds AND src - A A 0 -

16142 ------------i..V. ~i©IH~,~~©~ ------------
40 



3 - Instruction Set 

Mnemo. dst Bytes 
Clock 

Operation 
Flags src 

cycles CZSVDH 

ANDW : Logical AND between two words 

ANDW rr rr 2 10 dsk-dst AND src A A 0 - -
ANDW RR RR 3 12 dsk-dst AND src A A 0 - -
ANDW rr RR 3 12 dsk-dst AND src A A 0 - -
ANDW RR rr 3 12 dsk-dst AND src A A 0 - -
ANDW rr (r) 3 14 dsk-dst AND src A A 0 --
ANDW RR (r) 3 14 dsk-dst AND src A A 0 --
ANDW rr (rr) 2 16 dsk-dst AND src A A 0 --
ANDW RR (rr) 3 18 dsk-dst AND src A A 0 --
ANDW rr NN 4 22 dsk-dst AND src A A 0 --
ANDW rr N(rrx) 4 28 dsk-dst AND src A A 0 - -
ANDW RR N(rrx) 4 28 dsk-dst AND src A A 0 - -
ANDW rr NN(rrx) 5 30 dsk-dst AND src A A 0 - -
ANDW RR NN(rrx) 5 30 dsk-dst AND src A A 0 - -
ANDW rr rr(rrx) 3 26 dsk-dst AND src A A 0 - -
ANDW rr (rr)+ 3 22 dsk-dst AND src A A 0 - -

rr<-rr +2 
ANDW RR (rr)+ 3 22 dsk-dst AND src A A 0 - -

rr<-rr+2 
ANDW rr -(rr) 3 24 rr<-rr-2 A A 0 - -

dsk-dst AND src 
ANDW RR -(rr) 3 24 rr<-rr-2 A A 0 --

dsk-dst AND src 
ANDW (r) rr 3 14 dsk-dst AND src - A A 0 --
ANDW (r) RR 3 14 dst<-dst AND src - A A 0 --
ANDW (rr) rr 2 30 dsk-dst AND src - A A 0 --
ANDW (rr) RR 3 30 dsk-dst AND src - A A 0 --
ANDW (rr)+ rr 3 32 dsk-dst AND src - A A 0 --

rr<-rr+2 
ANDW (rr)+ RR 3 32 dsk-dst AND src - A A 0 --

rr<-rr+2 
ANDW NN rr 4 32 dsk-dst AND src A A 0 - -
ANDW N(rrx) rr 4 38 dsk-dst AND src A A 0 - -
ANDW N(rrx) RR 4 38 dsk-dst AND src A A 0 --
ANDW NN(rrx) rr 5 38 dsk-dst AND src A A 0 - -
ANDW NN(rrx) RR 5 38 dsk-dst AND src A A 0 - -
ANDW rr(rrx) rr 3 34 dst<-dst AND src A A 0 --
ANDW -(rr) rr 3 32 rr<-rr-2 A A 0 - -

dsk-dst AND src 
ANDW -(rr) RR 3 32 rr<-rr-2 A A 0 - -

dsl<-dst AND src 
ANDW rr #NN 4 14 dsk-dst AND src A A 0 - -
ANDW RR #NN 4 14 dsl<-dst AND src A A 0 - -
ANDW (rr) #NN 4 32 dsk-dst AND src A A 0 - -
ANDW NN #NN 6 36 dsk-dst AND src A A 0 --
ANDW N(rrx) #NN 5 36 dsk-dst AND src A A 0 --
ANDW NN(rrx) #NN 6 38 dsk-dst AND src A A 0 --
ANDW (rr) (rr) 2 32 dsk-dst AND src A A 0 --

17/42 -------------~ ~~~®ln2~~~~ -------------
41 



3 - Instruction Set 

Mnemo dst src Bytes Clock Operation Flags 
cycles CZSVDH 

BAND : Bit AND 

BAND r.b r.b 3 14 dst bik-dst bit AND src bit ~ - - - - -
BAND r.b r.!b 3 14 dst bik-dst bit AND complemented src bit ------

BCPL : Bit Complement 

BCPL r.b 2 6 dst bik-dst bit complemented ------

BLD : Bit Load 

BLD r.b r.b 3 14 dst bik-src bit ------
BLD r.b r.!b 3 14 dst bik-src bit complemented ------

BOR: Bit OR 

BOR r.b r.b 3 14 dst bik-dst bit OR src bit ------
BOR r.b r.!b 3 14 dst bik-dst bit OR complemented src bit ------

BRES : Bit Reset 

BRES r.b 2 6 dstbik- 0 ------

BSET : Bit Set 

BSET r.b 2 6 dstbik-1 ------

BTJF, BTJT: Bit test and jump 

BTJF r.b N 3 14/16 If test b1t is 0, PC<-PC+N ------

BTJT r.b N 3 14/16 If test bit is 1 , PC<·PC+N ------

BXOR : Bit Exclusive OR 

BXOR r.b r.b 3 14 dst bik·dst bit XOR src bit ------
BXOR r.b r.!b 3 14 dst bik-dst bit XOR complemented src bit ------

BTSET : Bit Test and Set 

BTSET r.b 2 8 If test bit = 0, test bit <-1,Z<-1 - •• 0 - -
BTSET (rr).b 2 20 If test bit = 0, test bit <-1,Z<-1 - •• 0 - -

18/42 ------------- I..1i. ~~tm~:~Y~ -------------
42 



3 - Instruction Set 

Mnemo. dst Bytes Clock Operation 
Flags 

src 
cycles CZSVDH 

CALL : Call a subroutine 

CALL NN 3 18 
SSP<·SSP-2,(SP)< - -
PC, PC<-dst 

CALL (rr) 2 16 .. .. -

CALL (RR) 2 16 .. .. -

CCF : Complement Carry Flag 

CCF 1 6 c <- c - -
complemenled 

CLR : Clear register 

CLR r 2 6 dsk-0 - -
CLR R 2 6 dsk-0 -

CLR (r) 2 6 dsk-0 -
CLR (R) 2 6 dsk-0 - - -

19/42 -------------~ ~i~©R!~&?~ -------------
43 



3 - Instruction Set 

Mnemo. dst src Bytes Clock Operation Flags 
cycles CZSVDH 

CP : Compare bytes 

CP r r 2 6 dst-src A A A A 

CP R R 3 10 dst-src A A A A 

CP r R 3 10 dst-src A A A A 

CP R r 3 10 dst-src A A A A 

CP r (r) 2 6 dst-src A A A A 

CP R (r) 3 10 dst-src A A A A 

CP r (rr) 3 12 dst-src A A A A 

CP R (rr) 3 12 dst-src A A A A 

CP r NN 4 18 dst-src A A A A 

CP r N(rrx) 4 24 dst-src A A A A 

CP R N(rrx) 4 24 dst-src A A A A 

CP r NN(rrx) 5 26 dst-src A A A A -
CP R NN(rrx) 5 26 dst-src A A A A -

CP r rr(rrx) 3 22 dst-src A A A A -
CP r (rr)+ 3 16 dst-src,rr<-rr+ 1 A A A A -
CP R (rr)+ 3 16 dst-src,rr<-rr+ 1 A A A A -
CP r -(rr) 3 16 rr<-rr-1 ,dst-src A A A A -

CP R -(rr) 3 16 rr<-rr-1 ,dst-src A A A A - -
CP (r) r 3 10 dst-src A A A A -
CP (r) R 3 10 dst-src A A A A - -
CP (rr) r 3 18 dst-src A A A A 

CP (rr) R 3 18 dst-src A A A A -
CP (rr)+ r 3 22 dst-src,rr<-rr+ 1 A A A A -
CP (rr)+ R 3 22 dst-src,rr<-rr+ 1 A A A A -
CP NN r 4 20 dst-src A A A A 

CP N(rrx) r 4 26 dst-src A A A A -
CP N(rrx) R 4 26 dst-src A A A A - -
CP NN(rrx) r 5 28 dst-src A A A A -
CP NN(rrx) R 5 28 dst-src A A A A -
CP rr(rrx) r 3 24 dst-src A A A A -

CP -(rr) r 3 22 rr<-rr-1 ,dst-src A A A A - -

CP -(rr) R 3 22 rr<-rr-1 ,dst-src A A A A -
CP r #N 3 10 dst-src A A A A -

CP R #N 3 10 dst-src A A A A -

CP (rr) #N 3 16 dst-src A A A A - -
CP NN #N 5 22 dst-src A A A A - -
CP (rr) (rr) 3 18 dst-src A A A A - -
CP (RR) (rr) 3 18 dst-src A A A A - -

CPL : Complement register 

CPL r 2 6 dsk- NOTdst - A A 0 - -

CPL R 2 6 dsk- NOTdst - A A 0 - -
CPL (r) 2 6 dsl<- NOT dst - A A 0 - -

CPL (R) 2 6 dsl<- NOT dst A A 0 - -

CPJFI, CPJTI : Compare with post-increment 

If compare not venf1ed 
CPJFI (rr) r,N 3 22/24 jump otheJWise post- - - -

increment 

If compare venfied 
CPJTI (rr) r,N 3 22/24 jump otheJWise post-

increment 

20/42 -------------1.1i ~~~;w,g~~l!~©~ -------------
44 



3 - Instruction Set 

Mnemo. dst Bytes Clock 
Operation 

Flags src 
cycles CZSVDH 

CPW : Compare word 

CPW rr rr 2 10 dst·src ' ' ' ' - -
CPW RR RR 3 12 dst-src ' ' ' ' -
CPW ~ rr RR 3 12 dst-src ' ' ' ' 
CPW RR rr 3 12 dst-src ' ' ' ' 
CPW rr (r) 3 14 dst-src ' ' ' ' CPW RR (r) 3 14 dst-src ' ' ' ' 
CPW rr (rr) 2 16 dst-src ' ' ' ' 
CPW RR (rr) 3 18 dst-src ' ' ' ' 
CPW rr NN 4 22 dst-src ' ' ' ' 
CPW rr N(rrx) 4 28 dst-src ' ' ' ' 
CPW RR N(rrx) 4 28 dst-src ' ' ' ' CPW rr NN(rrx) 5 30 dst-src ' ' ' ' 
CPW RR NN(rrx) 5 30 dst-src ' ' ' ' CPW rr rr( rrx) 3 26 dst-src ' ' ' ' CPW rr (rr)+ 3 22 dst-src ' ' ' ' 

rr<-rr+2 
CPW RR (rr)+ 3 22 dst-src ' ' ' ' 

rr<-rr+2 
CPW rr -(rr) 3 24 rr<-rr-2 ' ' ' ' 

dst-src 
CPW RR -(rr) 3 24 rr<-rr-2 ' ' ' ' 

dst-src 
CPW (r) rr 3 14 dst-src ' ' ' ' -
CPW (r) RR 3 14 dst-src ' ' ' ' CPW (rr) rr 2 26 dst-src ' ' ' ' CPW (rr) RR 3 28 dst-src ' ' ' ' 
CPW (rr)+ rr 3 30 dst-src ' ' ' ' 

rr<-rr+2 
CPW (rr)+ RR 3 30 dst-src ' ' ' ' -

rr<-rr+2 
CPW NN rr 4 30 dst-src ' ' ' ' -
CPW N(rrx) rr 4 36 dst-src ' ' ' ' -
CPW N(rrx) RR 4 36 dst-src ' ' ' ' - -
CPW NN(rrx) rr 5 36 dst-src ' ' ' ' -
CPW NN(rrx) RR 5 36 dst-src ' ' ' ' CPW rr(rrx) rr 3 32 dst-src ' ' ' ' -
CPW -(rr) rr 3 30 rr<-rr-2 ' ' ' ' 

dst-src 
CPW -(rr) RR 3 30 rr<-rr-2 ' ' ' ' 

dst-src 
CPW rr #NN 4 14 dst-src ' ' ' ' 
CPW RR #NN 4 14 dst-src ' ' ' ' 
CPW (rr) #NN 4 30 dst-src ' ' ' ' CPW NN #NN 6 34 dst-src ' ' ' ' CPW N(rrx) #NN 5 34 dst-src ' ' ' ' 
CPW NN(rrx) #NN 6 36 dst-src ' ' ' ' -
CPW (rr) (rr) 2 32 dst-src ' ' ' ' -

21/42 -------------~ ~i~©IH~~:~~©~ -------------
45 



3 - Instruction Set 

Mnemo dst src Bytes Clock Operation 
Flags 

cycles CZSVDH 

DA : Decimal adjust 

DA r 2 6 dsl<- DAds! A 1\ 1\ ? - -
DA R 2 6 dsl<- DAds! A /1. A ? .. 
DA (r) 2 6 dsl<- DAds! II. II 1\ ? - -
DA (R) 2 6 dsl<- DAds! 1\ 1\ 1\ ? - -

DEC : Decrement 

DEC r 2 6 dsl<- dst-1 - 1\ 1\1\--

DEC R 2 6 dsk- dst-1 ••• --
DEC (r) 2 6 dsl<- dst-1 ••• --
DEC IR) 2 6 dsl<- dst-1 ••• --

DECW : Decrement Word 

DECW rr 2 8 dsl<-dst-1 - ••• --
DECW RR 2 8 dst<-dst-1 - ••• --

Dl : Disable Interrupts 

Dl 1 6 Bit 4 of the CIC Register is set to 0 ------

DIV :Divide 16 by 8 

DIV rr r 2 28/20 
dst I src <- dst high=remainder note 1 
16/8 <- dst low=result 

DIVWS: Divide Word Stepped 32 by 16 

DIVWS 
rrhigh 

rr 3 28 32/16 note 1 
rrlow 

DJNZ : Decrement a working register and Jump if Non Zero 

DJNZ r N 2 10112 r <- r-1, If r=O then PC<-PC+N 
note2 

DWJNZ : Decrement a register pair and Jump if Non Zero 

DWJNZ rr N 3 12/16 rr<-rr-1, If rr=O then PC<-PC+N note 2 
DWJNZ RR N 3 12/16 RR<-RR-1 ,If RR=O then PC<-PC+N 

Notes: 
1 Refer to the ST9 Programming Manual for detailed 1nformat10n 
2 Working reg1sters 1n groups D, E and F are not allowed 

~ SGS·lHOMSON -------------- .. ..,l liil~©rnl©~!Uli©'iirn@i'l~©@ --------------
22/42 

46 



3 - Instruction Set 

Mnemo dst src Bytes Clock Operation 
Flags 

cycles CZSVDH 

El : Enable Interrupts 

El 1 6 Bit 4 of the CICR register is set to 1 ------

EXT : Sign extend 

EXT rr 2 10 r(7) ··> r(n) n=8-15 ------
EXT RR 2 10 R(?) ··> R(n) n=8·15 ------

HALT 

HALT 2 6 Stops all internal clocks until next system . . . . . . 
reset 

INC : Increment 

INC r 2 6 dsl<- dsl+1 . II. A A __ 

INC R 2 6 dsk- dst+1 • A II. A--

INC (r) 2 6 dsk- dsl+1 A A A .. 
INC (R) 2 6 dSk·dSI+1 . 1\ 1\ (\--

INCW : Increment Word 

INCW rr 2 8 dst<-dst+1 . A A A .. 
INCW RR 2 8 dsl<·dSI+1 • A A A .. 

IRET : Return from Interrupt Routine 

I RET 1 16 
FLAGS<·{SSP),SSP<·SSP+ 1, 

note 1 PC<·{SSP), SSP<·SPP+2, CIC(4)<·1 

JP : Jump to a Routine 

JP NN 3 10 PC<·dst . . . . 

JP (rr) 2 8 PC<-dst . . . . 

JP (RR) 2 8 PC<·dst . . . 

JPcc NN 3 10 
IF cc(condil!on code) is true, . . . . . . 
PC<·dst 

JRcc :Conditional Relative Jump to a Routine 

JRcc N 2 10/12 
IF cc(condition code)is true, . . . 
PC<-PC+dst 

Note 1 : All flags are restored to ong~nal sett1ng (before Interrupt occured) 

~ SGS-1HOMSON --------------- ._""fl ~U©JJ@~I!.!!©'TI'OO@iliU©@ ---------------
23/42 

47 



3 - Instruction Set 

Clock Flags 
Mnemo. dst src Bytes cycles Operation CZSVDH 

LD : Load byte instructions 

LD r r 2 6 dsk·src 
LD R R 3 10 dsk-src 
LD r R 2 6 dsk-src - -
LD R r 2 6 dsk-src -
LD r (r) 2 6 dsk-src - -

LD R (r) 3 10 dsk-src -
LD r (rr) 2 10 dsk-src 
LD R (rr) 3 12 dsk-src -
LD r NN 4 18 dsk-src -
LD r N(rx) 3 10 dsk-src 
LD r N(rrx) 4 24 dsk-src 
LD R N(rrx) 4 24 dsk-src 
LD r NN(rrx) 5 26 dsk-src 
LD R NN(rrx) 5 26 dsk-src 
LD r rr(rrx) 3 22 dsk-src 
LD r (rr)+ 3 16 dsk-src,rr<-rr+ 1 
LD R (rr)+ 3 16 dsk-src,rr<-rr+ 1 
LD r -(rr) 3 16 rr<-rr-1 ,dsk-src 
LD R -(rr) 3 16 rr<-rr-1 ,dsk-src 
LD (r) r 2 6 dsk-src 
LD (r) R 3 10 dsk-src 
LD (rr) r 2 10 dsk-src 
LD (rr) R 3 14 dsk-src 
LD (rr)+ r 3 18 dsk-src,rr<-rr+ 1 
LD (rr)+ R 3 18 dsk-src,rr<-rr+ 1 
LD NN r 4 18 dst-src 
LD N(rx) r 3 10 dst-src 
LD N(rrx) r 4 24 dst-src 
LD N(rrx) R 4 24 dst-src 
LD NN(rrx) r 5 26 dst-src 
LD NN(rrx) R 5 26 dst-src 
LD rr(rrx) r 3 22 dst-src 
LD -(rr) r 3 18 rr<-rr-1 ,dsk-src -

LD -(rr) R 3 18 rr<-rr-1 ,dsk-src 
LD r #N 2 6 dst<-src -
LD R #N 3 10 dsk-src -
LD (rr) #N 3 12 dsk-src - -

LD NN #N 5 20 dsk-src -
LD (rr) (rr) 3 16 dsk-src -
LD (RR) (rr) 3 16 dsk-src, -
LD (r)+ (rr)+ 2 14 rr<-rr+ 1 ,r<-r+ 1 
LD (rr)+ (r)+ 2 18 rr <-rr + 1 ,r<-r + 1 

LDPP,LDDP,LDPD, LDDD : Load from /to program I data memory 

LDPP (rr)+ (rr)+ 2 16 
dsk-src (note 1 ), 
rr<-rr+ 1 

LDDP (rr)+ (rr)+ 2 16 
dsk-src (note 2), 
rr<-rr+ 1 

LDPD (rr)+ (rr)+ 2 16 
dsk-src (note 3). -rr<-rr+1 

LDDD (rr)+ (rr)+ 2 16 
dsk-src (note 4), - -
rr<-rr + 1 

Notes: 
1. dst in Program Memory, src in Program Memory 3. 

4 
dst in Program Memory, src in Data Memory 
dst in Data Memory, src in Data Memory 2 dst in Data Memory, src in Program Memory 

24/42 

- -

- -
- -
- - -
- -

-
- -
- -
- - -
- -
- -
- -
- -
-

- -

-

-
-

-
-

- -
- - -
- - -
- -

-

-

~ SGS·niOMSON ---------------- .._""Jl ll:i:C©Im'Ql~~~©"ii'ffil@i'iD©& ---------------

48 



3 - Instruction Set 

Mnemo. dst Bytes 
Clock 

Operation 
Flags 

src 
cycles CZSVDH 

LOW : Load word instructions 

LDW rr rr 2 10 dst<-src - - - - -
LDW RR RR 3 10 dsl<-src - - - - - -
LDW rr RR 3 10 dsl<-src - - - - -
LDW RR rr 3 10 dst<-src - - - - - -
LDW rr (r) 3 10 dsl<-src - - - - - -
LDW RR (r) 3 10 dst<-src - - - - -
LDW rr (rr) 2 16 dst<-src - - - - - -
LDW RR (rr) 3 18 dst<-src - - - - - -
LDW rr NN 4 22 dst<-src - - - - - -
LDW rr N(rx) 3 16 dsl<-src - - - - - -
LDW rr N(rrx) 4 28 dsl<-ssc - - - - - -
LDW RR N(rrx) 4 28 dsl<-src - - - - - -
LDW rr NN(rrx) 5 30 dsl<-src - - - - - -
LDW RR NN(rrx) 5 30 dst<-src - - - - - -
LDW rr rr(rrx) 3 24 dsl<-src - - - - - -
LDW rr (rr)+ 3 20 dst<-src,rr<-rr+2 - - - - - -
LDW RR (rr)+ 3 20 dst<-src,rr<-rr+2 - - - - - -
LDW rr -(rr) 3 22 rr<-rr-2,dsk-src - - - - -
LDW RR -(rr) 3 22 rr<-rr-2,dsk-src - - - - - -
LDW (r) rr 3 10 dsl<-src - - - - - -
LDW (r) RR 3 10 dst<-src - - - - - -
LDW (rr) rr 2 18 dsl<-src - - - - - -
LDW (rr) RR 3 20 dsl<-src - - - - - -
LDW (rr)+ rr 3 24 rr<-rr +2,dsl<-src - - - - - -
LDW (rr)+ RR 3 24 rr<-rr +2,dsl<-src - - - - - -
LDW NN rr 4 22 dsl<-src - - - - - -
LDW N(rx) rr 3 14 dsk-src - - - - -
LDW N(rrx) RR 4 26 dsl<-src - - - - - -
LDW N(rrx) rr 4 26 dst<-src - - - - -
LDW NN(rrx) RR 5 28 dst<-src - - - - - -
LDW NN(rrx) rr 5 28 dst<-src - - - - -
LDW rr(rrx) rr 3 24 dsk-src - - - - - -
LDW -(rr) rr 3 26 rr<-rr-2,dsl<-src - - - - - -
LDW -(rr) RR 3 26 rr<-rr-2,dsl<-src - - - - - -
LDW rr #NN 4 12 dsl<-src - - - - - -
LDW RR #NN 4 12 dst<-src - - - - -
LDW (rr) #NN 4 22 dsk-src - - - - -
LDW N(rrx) #NN 5 28 dst<-src - - - - - -
LDW NN(rrx) #NN 6 30 dst<-src - - - - -
LDW NN #NN 6 26 dsk-src - - - - - -
LDW (rr) (rr) 2 22 dsl<-src - - - - - -

25/42 ------------ i..1i. ~~-rn~~O!~li ------------
49 



3 - Instruction Set 

Mnemo. dst src Bytes Clock Operation 
Flags 

cycles CZSVDH 

MUL : Multiply 

MUL rr r 2 22 
dst <- dst x src, 8 x 8 note 1 
multiply 

NOP : No operation 

NOP 1 6 No Operat1on - - - -

OR : Logical OR between 2 bytes 

OR r r 2 6 dsl<-dst OR src - A A 0 - -
OR R R 3 10 dsk-dst OR src - A A 0 - -
OR r R 3 10 dsk-dst OR src - A A 0 - -
OR R r 3 10 dsk-dst OR src - A A 0 - -
OR r (r) 2 6 dsk-dst OR src - A A 0 - -
OR R (r) 3 10 dsk-dst OR src - A A 0 - -
OR r (rr) 3 12 dsk-dst OR src - A A 0 - -
OR R (rr) 3 12 dst<-dst OR src - A A 0 - -
OR r NN 4 18 dsk-dst OR src - A A 0 - -
OR r N(rrx) 4 24 dsk-dst OR src - A A 0 - -
OR R N(rrx) 4 24 dsk-dst OR src - A A 0 - -
OR r NN(rrx) 5 26 dst<-dst OR src - A A 0 - -
OR R NN(rrx) 5 26 dsk-dst OR src - A A 0 - -
OR r rr(rrx) 3 22 dsk-dst OR src - A A 0 -
OR r (rr)+ 3 16 dsk-dst OR src - A A 0 -

rr<-rr+1 
OR R (rr)+ 3 16 dsk-dst OR src - A A 0 -

rr<-rr+1 
OR r -(rr) 3 16 rr<-rr-1 - A A 0 -

dsk-dst OR src 
OR R -(rr) 3 16 rr<-rr-1 - A A 0 - -

dsk-dst OR src 
OR (r) r 3 10 dsk-dst OR src - A A 0 
OR (r) R 3 10 dsk-dst OR src - A A 0 
OR (rr) r 3 18 dsk-dst OR src - A A 0 -
OR (rr) R 3 18 dsk-dst OR src - A A 0 - -
OR (rr)+ r 3 22 dsk-dst OR src - A A 0 - -

rr<-rr+1 
OR (rr)+ R 3 22 dst<-dst OR src - A A 0 - -

rr<-rr+1 
OR NN r 4 20 dsk-dst OR src - A A 0 -
OR N(rrx) r 4 26 dsl<-dst OR src - A A 0 -
OR N(rrx) R 4 26 dsk-dst OR src - A A 0 - -
OR NN(rrx) r 5 28 dsk-dst OR src - A A 0 - -
OR NN(rrx) R 5 28 dsk-dst OR src - A A 0 - -
OR rr(rrx) r 3 24 dsk-dst OR src A A 0 - -
OR -(rr) r 3 22 dsk-dst OR src - A A 0 - -

rr<-rr-1 
OR -(rr) R 3 22 dst<-dst OR src - A A 0 - -

rr<-rr-1 
OR r #N 3 10 dst<-dst OR src A A 0 - -
OR R #N 3 10 dsk-dst OR src A A 0 - -
OR (rr) #N 3 16 dst<-dst OR src A A 0 - -
OR NN #N 5 24 dsk-dst OR src - A A 0 - -
OR (rr) (rr) 3 20 dsk-dst OR src - A A 0 - -
OR (RR) (rr) 3 20 dsk-dst OR src - A A 0 - -

Note 1. Refer to programming manual for detailed 1nformat1on. 

t=: SGS·lHOMSON --------------- A""Jl [i,j]~©rnJ@~~~©WJ©~IT©® ---------------
26/42 

50 



3 - Instruction Set 

Mnemo. dst src Bytes Clock 
Operation 

Flags 
cycles CZSVDH 

ORW : Logical OR between two words 

ORW rr rr 2 10 dsk-dst OR src A A 0 
ORW RR RR 3 12 dsk-dst OR src A A 0 - -
ORW rr RR 3 12 dst<-dst OR src A A 0 
ORW RR rr 3 12 dsk-dst OR src - A A 0 - -
ORW rr (r) 3 14 dst<-dst OR src - A A 0 -
ORW RR (r) 3 14 dsk-dst OR src A A 0 
ORW rr (rr) 2 16 dsk-dst OR src - A A 0 -
ORW RR (rr) 3 18 dsk-dst OR src - A A 0 - -
ORW rr NN 4 22 dsk-dst OR src - A A 0 
ORW rr N(rrx) 4 28 dsk-dst OR src A A 0 
ORW RR N(rrx) 4 28 dst<-dst OR src - A A 0 - -
ORW rr NN(rrx) 5 30 dsk-dst OR src - A A 0 - -
ORW RR NN(rrx) 5 30 dsk-dst OR src - A A 0 . . 
ORW rr rr(rrx) 3 26 dsk-dst OR src A A 0 
ORW rr (rr)+ 3 22 dsk-dst OR src A A 0 

rr<-rr+2 
ORW RR (rr)+ 3 22 dsk-dst OR src . A A 0 . . 

rr<·rr+2 
ORW rr -(rr) 3 24 rr<·rr-2 A A 0 

dsk-dst OR src 
ORW RR -(rr) 3 24 rr<·rr-2 A A 0 . 

dsk-dst OR src 
ORW (r) rr 3 14 dst<-dst OR src A A 0 
ORW (r) RR 3 14 dsk-dst OR src A A 0 
ORW (rr) rr 2 30 dsk-dst OR src A A 0 
ORW (rr) RR 3 30 dst<-dst OR src A A 0 
ORW (rr)+ rr 3 32 dsk-dst OR src A A 0 

rr<-rr+2 
ORW (rr)+ RR 3 32 dsk-dst OR src A A 0 

rr<-rr+2 
ORW NN rr 4 32 dsk-dst OR src . A A 0 . . 
ORW N(rrx) rr 4 38 dsk-dst OR src . A A 0 . -
ORW N(rrx) RR 4 38 dsk-dst OR src . A A 0 . 
ORW NN(rrx) rr 5 38 dsk-dst OR src - A A 0 . . 
ORW NN(rrx) RR 5 38 dsk-dst OR src A A 0 
ORW rr(rrx) rr 3 34 dsk-dst OR src A A 0 
ORW -(rr) rr 3 32 rr<-rr-2 - A A 0 -

dsk-dst OR src 
ORW -(rr) RR 3 32 rr<-rr-2 A A 0 

dsk-dst OR src 
ORW rr #NN 4 14 dsk-dst OR src A A 0 
ORW RR #NN 4 14 dsk-dst OR src A A 0 
ORW (rr) #NN 4 32 dsk-dst OR src A A 0 
ORW NN #NN 6 36 dsk-dst OR src . A A 0 . -
ORW N(rrx) #NN 5 36 dsk-dst OR src A A 0 
ORW NN(rrx) #NN 6 38 dst<-dst OR src A A 0 
ORW (rr) (rr) 2 32 dsk-dst OR src . A A 0 . 

27/42 -------------~ ~~~©IH2~:,H~~ -------------
51 



3 - Instruction Set 

Mnemo dst src Bytes Clock Operation Flags 
cycles CZSVDH 

PEA : Push effective address on system stack 

PEA N(rrx) 4 20 SSP<-USP-2, (SSP)<-rrx+N ~ - - - - -
PEA NN(rrx) 5 26 SSP<-USP-2, (SSP)<-rrx+N ------
PEA N(RRx) 4 20 SSP<-USP-2, (SSP)<-RRX+N ------
PEA NN(RRx) 5 26 SSP<-USP-2, (SSP)<-RRX+N ------

PEAU : Push effective address on user stack 

PEAU N(rrx) 4 20 USP<-USP-2, (USP)<-rrx+N ------
PEAU NN(rrx) 5 26 USP<-USP-2, (USP)<-rrx+N ------
PEAU N(RRx) 4 20 USP<-USP-2, (USP)<-RRx+N ------
PEAU NN(RRx) 5 26 USP<-USP-2, (USP)<-RRx+N ------

POP : Pop system stack 

POP r 2 10 dst<-(SSP), SSP<-SSP+1 ------
POP R 2 10 dst<-(SSP), SSP<-SSP+ 1 ------
POP (r) 2 10 dst<-(SSP), SSP<-SSP+ 1 ------
POP (R) 2 10 dst<-(SSP), SSP<-SSP+ 1 ------

POPU : Pop user stack 

POPU r 2 10 dst<-(USP), USP<-USP+ 1 ------
POPU R 2 10 dst<-(USP), USP<-USP+ 1 ------
POPU (r) 2 10 dst<-(USP), USP<-USP+ 1 ------
POPU (R) 2 10 dst<-(USP), USP<-USP+ 1 ------

POPUW : Pop word from user stack 

POPUW rr 2 14 dst<-(USP), USP<-USP+2 ------
POPUW RR 2 14 dst<-(USP), USP<-USP+2 ------

POPW : Pop word from system stack 

POPW rr 2 14 dst<-(SSP), SSP<-SSP+2 ------
POPW RR 2 14 dst<-(SSP), SSP<-SSP+2 ------

PUSH : Push system stack 

PUSH r 2 10 SSP<-SSP-1, (SSP)<-src ------
PUSH R 2 10 SSP<-SSP-1, (SSP)<-src ------
PUSH (r) 2 10 SSP<-SSP-1, (SSP)<-src ------
PUSH (R) 2 10 SSP<-SSP-1, (SSP)<-src ------
PUSH #N 3 16 SSP<-SSP-1, (SSP)<-src ------

PUSHU : Push user stack 

PUSHU r 2 10 USP<-USP-1, (USP)<-src ------
PUSHU R 2 10 USP<-USP-1, (USP)<-src ------
PUSHU (r) 2 10 USP<-USP-1, (USP)<-src ------
PUSHU (R) 2 10 USP<-USP-1, (USP)<-src ------
PUSHU #N 3 16 USP<-USP-1, (USP)<-src ------

PUSHUW : Push word on user stack 

PUSHUW rr 2 12 USP<-USP-2, (USP)<-src ------
PUSHUW RR 2 12 USP<-USP-2, (USP)<-src ------
PUSHUW #NN 4 20 USP<-USP-2, (USP)<-src ------

PUSHW : Push Word on System Stack 

PUSHW rr 2 12 SSP<-SSP-2, (SSP)<-src ------
PUSHW RR 2 12 SSP<-SSP-2, (SSP)<-src ------
PUSHW #NN 4 20 SSP<-SSP-2, (SSP)<-src ------

28/42 -------------~ ~i~©m•~i!~~ -------------
52 



3 • Instruction Set 

Mnemo dst src Bytes 
Clock 

Operation 
Flags 

cycles CZSVDH 

RCF : Reset carry flag 

RCF 1 6 C<-0 0 -- -- -

RET : Return from subroutine 

RET 1 12 PC<- (SSP), SSP <- SPP+2 ------

RLC : Rotate left through carry 

RLC r 2 6 dst(O)<-C, C<-dst(7) A A A A • _ 

' dst(n+1)<-dst(n) n=0-6 
RLC R 2 6 II II A A A A __ 

RLC (r) 2 6 " " II. II. A II. - -

RLC (R) 2 6 " " A A A A • _ 

RLCW : Rotate word left through carry 

RLCW rr 2 8 dst(O)<-C, C<-dst(15) 
dst(n+ 1 )<-dst(n) n=0-14 

RLCW RR 2 8 II II 

ROL : Rotate left 

ROL r 2 6 C<-dst(7), dst(O)<-dst(7) 1\ A II. 1\--

dst(n+ 1 )<-dst(n) n=0-6 
ROL R 2 6 II II I\ I\ II. II.--

ROL (r) 2 6 " " A A A A __ 

ROL (R) 2 6 " " 1\ 1\ II. II.--

ROR : Rotate right 

ROR r 2 6 C<-dst(O), dst(7)<-dst(O) II. fl. 1\1\--

dst(n)<-dst(n+ 1) n=0-6 
ROR R 2 6 II II II.{\(\ II.--

ROR (r) 2 6 " " A A II. A __ 

ROR (R) 2 6 " " II. II. II. A - -

ARC : Rotate right through carry 

ARC r 2 6 dst(7)<-C, C<-dst(O) I\ 1\ 1\ fl.--

dst(n)<-dst(n+ 1) n=0-6 
ARC R 2 6 II II II. II. A A __ 

ARC (r) 2 6 " " A A fl. 1\ __ 

ARC (R) 2 6 " " A A A A __ 

RRCW : Rotate word right through carry 

RRCW rr 2 8 dst(15)<-C, C<-dst(O) II. II. A 1\--

dst(n)<-dst(n+ 1) n=0-14 
RRCW RR 2 8 II II I\ 1\ II. A - -

29/42 ------------~ ~i©1HWI9~ ------------
53 



3 - Instruction Set 

Mnemo. dst src Bytes 
Clock Operation 

Flags 
cycles CZSVDH 

SBC : Subtraction of 2 bytes with carry 

sse r r 2 6 dst<·dst-src-C A A A A 1 A 

sse R R 3 10 dst<-dst-src-e A A A A 1 A 

sse r R 3 10 dst<-dst-src-e A A A A 1 A 

sse R r 3 10 dst<-dst-src-e A ' ' A 1 A 

SSe r (r) 2 6 dst<-dst-src-e ' ' ' A 1 A 

sse R (r) 3 10 dsk-dst-src-e ' ' A A 1 A 

sse r (rr) 3 12 dsk-dst-src-e A ' ' A 1 A 

sse R (rr) 3 12 dsk-dst-src-e A ' ' A 1 A 

sse r NN 4 18 dsk-dst-src-e A ' ' A 1 A 

sse r N(rrx) 4 24 dsk-dst-src-e A A A A 1 A 

sse R N(rrx) 4 24 dst<-dst-src-e A A A A 1 A 

sse r NN(rrx) 5 26 dst<-dst-src-e A A A A 1 A 

sse R NN(rrx) 5 26 dst<-dst-src-e A A A A 1 A 

sse r rr(rrx) 3 22 dst<-dst-src-e A A A A 1 A 

SSe r (rr)+ 3 16 dsk-dst-src-e A ' ' ' 1 ' 
rr<-rr+1 

SSe R (rr)+ 3 16 dsk-dst-src-e A A ' A 1 A 

rr<-rr+1 
sse r -(rr) 3 16 rr<-rr-1 A A A A 1 A 

dsk-dst-src-e 
sse R -(rr) 3 16 rr<-rr-1 A A A A 1 A 

dst<-dst-src-e 
sse (r) r 3 10 dsk-dst-src-e ' A A A 1 A 

sse (r) R 3 10 dsk-dst-src-e ' A A A 1 A 

sse (rr) r 3 18 dsk-dst-src-e ' A A A 1 A 

sse (rr) R 3 18 dsk-dst-src-e ' A A 
' 1 ' 

sse (rr)+ r 3 22 dst<-dst-src-e ' A A A 1 A 

rr<-rr+1 
SBe (rr)+ R 3 22 dsk-dst-src-e ' A A A 1 A 

rr<-rr+1 
sse NN r 4 20 dst<-dst-src-e A A A A 1 A 

sse N(rrx) r 4 26 dst<-dst-src-e A A A A 1 A 

sse N(rrx) R 4 26 dsk-dst-src-e A ' A A 1 A 

SSe NN(rrx) r 5 28 dst<-dst-src-e A A A A 1 A 

sse NN(rrx) R 5 28 dsk-dst-src-e ' A A 
' 1 ' 

sse rr(rrx) r 3 24 dsk-dst-src-e ' A ' ' 1 ' 
sse -(rr) r 3 22 rr<-rr-1 ' A ' ' 1 ' 

dsk-dst-src-e 
sse -(rr) R 3 22 rr<-rr-1 A A A A 1 A 

dst<-dst-src-e 
sse r #N 3 10 dst<-dst-src-e A A A A 1 A 

sse R #N 3 10 dst<-dst-src-e A A A A 1 A 

sse (rr) #N 3 16 dsk-dst-src-e ' A A A 1 A 

sse NN #N 5 24 dsk-dst-src-e ' A A A 1 A 

sse (rr) (rr) 3 20 dsk-dst-src-e ' ' A A 1 A 

sse (RR) (rr) 3 20 dsk-dst-src-e ' ' A A 1 A 

30/42 ------------~ ~i©IH~~~q~ ------------
54 



3 - Instruction Set 

Mnemo. dst src Bytes Clock 
Operation Flags 

cycles CZSVD H 

SBCW : Subtract word with carry 

SBCW rr rr 2 10 dsk-dst-src-C A A A A ? ? 
SBCW RR RR 3 12 dsk-dst-src-C A A A A ? ? 

SBCW rr RR 3 12 dsk-dst-src-C A A A A ? ? 

SBCW RR rr 3 12 dsk-dst-src-C A A A A ? ? 
SBCW rr (r) 3 14 dsk-dst-src-C A A A A ? ? 
SBCW RR (r) 3 14 dsk-dst-src-C A A A A ? ? 
SBCW rr (rr) 2 16 dsk-dst-src-C A A A A ? ? 
SBCW RR (rr) 3 18 dsk-dst-src-C A A A A ? ? 
SBCW rr NN 4 22 dsk-dst-src-C A A A A ? ? 

SBCW rr N(rrx) 4 28 dsk-dst-src-C A A A A ? ? 
SBCW RR N(rrx) 4 28 dsk-dst-src-C A A A A ? ? 
SBCW rr NN(rrx) 5 30 dsk-dst-src-C A A A A ? ? 
SBCW RR NN(rrx) 5 30 dsk-dst-src-C A A A A ? ? 
SBCW rr rr(rrx) 3 26 dsk-dst-src-C A A A A ? ? 
SBCW rr (rr)+ 3 22 dsk-dst-src-C A A A A ? ? 

rr<-rr+2 
SBCW RR (rr)+ 3 22 dsk-dst+src+C A A A A ? ? 

rr<-rr+2 
SBCW rr -(rr) 3 24 rr<-rr-2 A A A A ? ? 

dsk-dst-src-C 
SBCW RR -(rr) 3 24 rr<-rr-2 A A A A ? ? 

dsk-dst-src-C 
SBCW (r) rr 3 14 dsk-dst-src-C A A A A ? ? 
SBCW (r) RR 3 14 dsk-dst-src-C A A A A ? ? 
SBCW (rr) rr 2 30 dsk-dst-src-C A A A A ? ? 
SBCW (rr) RR 3 30 dsk-dst-src-C A A A A ? ? 
SBCW (rr)+ rr 3 32 dsk-dst-src-C A A A A ? ? 

rr<-rr+2 
SBCW (rr)+ RR 3 32 dsk-dst-src-C A A A A ? ? 

rr<-rr+2 
SBCW NN rr 4 32 dsk-dst-src-C A A A A ? ? 
SBCW N(rrx) rr 4 38 dsk-dst-src-C A A A A ? ? 
SBCW N(rrx) RR 4 38 dsk-dst-src-C A A A A ? ? 
SBCW NN(rrx) rr 5 38 dsk-dst-src-C A A A A ? ? 
SBCW NN(rrx) RR 5 38 dsk-dst-src-C A A A A ? ? 
SBCW rr(rrx) rr 3 34 dsk-dst-src-C A A A A ? ? 
SBCW -(rr) rr 3 32 rr<-rr-2 A A A A ? ? 

dsk-dst-src-C 
SBCW -(rr) RR 3 32 rr<-rr-2 A A A A ? ? 

dsk-dst-src-C 
SBCW rr #NN 4 14 dsk-dst-src-C A A A A ? ? 
SBCW RR #NN 4 14 dsk-dst-src-C A A A A ? ? 
SBCW (rr) #NN 4 32 dsk-dst-src-C A A A A ? ? 
SBCW NN #NN 6 36 dsk-dst-src-C A A A A ? ? 
SBCW N(rrx) #NN 5 36 dsk-dst-src-C A A A A ? ? 
SBCW NN(rrx) #NN 6 38 dsk-dst-src-C A A A A ? ? 
SBCW (rr) (rr) 2 32 dsk-dst-src-C A A A A ? ? 

31/42 ------------- I5ii. ~i~©ltl&~:~~~-------------
55 



3 - Instruction Set 

Mnemo dst Bytes 
Clock 

Operation 
Flags 

src cycles CZSVDH 

SCF : Set carry flag 

SCF 1 6 c <-1 1 - - - - -

SDM : Set data memory 

SDM 1 6 Set Data Memory DP<-1 Note 1 - - - - - -

SLA : Shift left arithmetic 

r 2 6 dst C<-dst(7), dst (0)<-0 A A A A 0 
dst(n+ 1 )<-dst(n)n~0-6 

SLA R 3 10 ,, " 
A A A A 0 

(rr) 3 20 " " A A A A 0 

SLAW : Shift word left arithmetic 

rr 2 10 C<-dst(15), dst (0)<-0 II. A A 1\ 

dst(n+ 1 )<-dst(n)n~1-14 
SLAW RR 3 12 II Tl 

A A A A 

(rr) 2 32 " " A A A A - -

SPM : Set program memory 

SPM 1 6 Set Program Memory DP<-0 Note 2 - - - - - -

SPP : Set page pointer 

SPP #N 2 6 Set Page Pointer - - - - - -

SRA : Shift right arithmetic 

SRA r 2 6 dst(7)<-dst(7), C<-dst(O) A A A A 0 A 

dst(n)<-dst(n+ 1 )n~0-6 
SRA R 2 6 II II A A A A 0 A 

SRA (r) 2 6 " " A A 1\ A Q A 

SRA (R) 2 6 " " A A 1\ 1\ 0 1\ 

SRAW : Shift word right arithmetic 

SRAW rr 2 6 
dst(15)<-dst(15), C<-dst(O) A A A 0 -
dst(n)<-dst(n+ 1 )n~0-14 

SRAW RR 2 8 " " 
A A A 0 - -

Note 1 : Following th1s mstruction, all addressing modes refenng to address spaces w1ll refer to the Data Space. 

Note 2 : Following this instruction, all addressing modes refering to address spaces will refer to the Program Space, except for the following 
instructions which operate with Dataspace independently of the setting of the DP flag: 

PUSH(W)/PUSHU(W), POP(W)/POPU(W), PENPEAU, and CALL, RET, IRET and interrupt execution (assuming the Stack Pointers 

are not po1ntmg to the Reg1ster File. 

32/42 -------------i.V. ~~©m~m:~Y~ -------------
56 



3 - Instruction Set 

Mnemo I dst I I Bytes I Clock I Operation I 
Flags 

src 
cycles CZSVDH 

SRP : Set register pointer 

SRP I I #N I 2 I 6 I Set Register Pointer I - - - - - -

SRPO : Set register pointer 0 

SRPO I I #N I 2 I 6 I Set Register Pointer 0 I - - - - - -

SRP1 : Set register pointer 1 

SRP1 I I #N I 2 I 6 I Set Register Pointer 1 I - - - - - -

33/42 -------------/.V. ~i~©lt&~~:Jj~~ -------------
57 



3 - Instruction Set 

Mnemo. dst src Bytes Clock Operation 
Flags 

cycles CZSVDH 

SUB : Subtraction of 2 bytes without carry 

SUB r r 2 6 dsl<-dst-src A A A A 1 A 

SUB R R 3 10 dsl<-dst-src A A A A 1 A 

SUB r R 3 10 dst<-dst-src A A A A 1 A 

SUB R r 3 10 dsl<-dst-src A A A A 1 A 

SUB r {r) 2 6 dsk-dst-src A A h h 1 h 

SUB R {r) 3 10 dsk-dst-src h h h h 1 h 

SUB r {rr) 3 12 dsk-dst-src A A A A 1 h 

SUB R {rr) 3 12 dsk-dst-src A A A h 1 A 

SUB r NN 4 18 dsl<-dst-src A A A A 1 A 

SUB r N{rrx) 4 24 dSI<-dst-src A A A A 1 A 

SUB R N{rrx) 4 24 dsk-dst-src A A A A 1 A 

SUB r NN{rrx) 5 26 dsk-dst-src A A A A 1 A 

SUB R NN{rrx) 5 26 dsk-dst-src h h h A 1 h 

SUB r rr(rrx) 3 22 dsk-dst-src h h h A 1 h 

SUB r (rr)+ 3 16 dsk-dst-src h h h h 1 h 

rr<-rr+1 
SUB R (rr)+ 3 16 dst<-dst-src A A A h 1 A 

rr<-rr+1 
SUB r -(rr) 3 16 rr<-rr-1 A A A A 1 A 

dsl<-dst-src 
SUB R -(rr) 3 16 rr<-rr-1 A A A A 1 A 

dst<-dst-src 
SUB {r) r 3 10 dsk-dst-src A A A A 1 h 

SUB {r) R 3 10 dst<-dst-src h h A h 1 h 

SUB {rr) r 3 18 dsk-dst-src h A h h 1 h 

SUB {rr) R 3 18 dsk-dst-src h A h h 1 h 

SUB (rr)+ r 3 22 dsk-dst-src h A h h 1 h 

rr<-rr+1 
SUB (rr)+ R 3 22 dst<-dst-src A A h h 1 A 

rr<-rr+1 
SUB NN r 4 20 dsk-dst-src A A A A 1 A 

SUB N{rrx) r 4 26 dsk-dst-src A A A A 1 A 

SUB N(rrx) R 4 26 dsk-dst-src h h h h 1 A 

SUB NN(rrx) r 5 28 dsk-dst-src A A h h 1 h 

SUB NN(rrx) R 5 28 dsk-dst-src h h h h 1 h 

SUB rr(rrx) r 3 24 dsl<-dst-src h h h A 1 h 

SUB -(rr) r 3 22 rr<-rr-1 h h h A 1 h 

dsl<-dst-src 
SUB -{rr) R 3 22 rr<-rr-1 A A A A 1 A 

dsl<-dst-src 
SUB r #N 3 10 dst<-dst-src A A A A 1 A 

SUB R #N 3 10 dsk-dst-src A A A A 1 A 

SUB (rr) #N 3 16 dsk-dst-src A A A A 1 A 

SUB NN #N 5 24 dsk-dst-src h h h h 1 h 

SUB (rr) (rr) 3 20 dsk-dst-src h h h h 1 h 

SUB (RR) (rr) 3 20 dsk-dst-src h h h h 1 h 

34/42 ---------- ID'l SGS·THOMSON ---------­
." • !Rll~©rnl@~~~©WJ@IlJ~©@ 

58 



3 • Instruction Set 

Mnemo. dst src Bytes 
Clock 

Operation 
Flags 

cycles CZSVDH 

SUBW :Subtract words 

SUBW rr rr 2 10 dsk-dst-src A A A A ? ? 
SUBW RR RR 3 12 dsk-dst-src A A A A ? ? 
SUBW rr RR 3 12 dsk-dst-src A A A A ? ? 
SUBW RR rr 3 12 dsk-dst-src A A A A ? ? 
SUBW rr (r) 3 14 dsk-dst-src A A A A ? ? 
SUBW RR (r) 3 14 dsk-dst-src A A A A ? ? 
SUBW rr (rr) 2 16 dsk-dst-src A A A A ? ? 
SUBW RR (rr) 3 18 dsk-dst-src A A A A ? ? 
SUBW rr NN 4 22 dsk-dst-src A A A A ? ? 
SUBW rr N(rrx) 4 28 dsk-dst-src A A A A ? ? 
SUBW RR N(rrx) 4 28 dst<-dst-src A A A A ? ? 
SUBW rr NN(rrx) 5 30 dsk-dst-src A A A A ? ? 
SUBW RR NN(rrx) 5 30 dsk-dst-src A A A A ? ? 
SUBW rr rr(rrx) 3 26 dsk-dst-src A A A A ? ? 
SUBW rr (rr)+ 3 22 dsk-dst-src A A A A ? ? 

rr<-rr+2 
SUBW RR (rr)+ 3 22 dsk-dst-src A A A A ? ? 

rr<-rr+2 
SUBW rr -(rr) 3 24 rr<-rr-2 A A A A ? ? 

dsk-dst-src 
SUBW RR -(rr) 3 24 rr<-rr-2 A A A A ? ? 

dsk-dst-src 
SUBW (r) rr 3 14 dsk-dst-src A A A A ? ? 
SUBW (r) RR 3 14 dsk-dst-src A A A A ? ? 
SUBW (rr) rr 2 30 dsk-dst-src A A A A ? ? 

SUBW (rr) RR 3 30 dsk-dst-src A A A A ? ? 
SUBW (rr)+ rr 3 32 dsk-dst-src A A A A ? ? 

rr<-rr+2 
SUBW (rr)+ RR 3 32 dsk-dst-src A A A A ? ? 

rr<-rr+2 
SUBW NN rr 4 32 dsk-dst-src A A A A ? ? 
SUBW N(rrx) rr 4 38 dsk-dst-src A A A A ? ? 
SUBW N(rrx) RR 4 38 dsk-dst-src A A A A ? ? 
SUBW NN(rrx) rr 5 38 dsk-dst-src A A A A ? ? 
SUBW NN(rrx) RR 5 38 dsk-dst-src A A A A ? ? 
SUBW rr(rrx) rr 3 34 dsk-dst-src A A A A ? ? 
SUBW -(rr) rr 3 32 rr<-rr-2 A A A A ? ? 

dsk-dst-src 
SUBW -(rr) RR 3 32 rr<-rr-2 A A A A ? ? 

dsk-dst-src 
SUBW rr #NN 4 14 dsk-dst-src A A A A ? ? 
SUBW RR #NN 4 14 dsk-dst-src A A A A ? ? 
SUBW (rr) #NN 4 32 dsk-dst-src A A A A ? ? 
SUBW NN #NN 6 36 dsk-dst-src A A A A ? ? 
SUBW N(rrx) #NN 5 36 dsk-dst-src A A A A ? ? 
SUBW NN(rrx) #NN 6 38 dsk-dst-src A A A A ? ? 

SUBW (rr) (rr) 2 32 dsk-dst-src A A A A ? ? 

SWAP : Swap nibbles 

SWAP r 2 8 dst(0-3)<--->dst(4-7) ? {\ {\ -
SWAP R 2 8 dst(0-3)<--->dst( 4-7) ? A 1\ -
SWAP (r) 2 8 dst(0-3)<--->dst( 4-7) ? A A 

SWAP (R) 2 8 dst(0-3)<--->dst( 4-7) ? A A -

35/42 -------------~ ~ii©lH~~1~~ -------------
59 



3 • Instruction Set 

Mnemo. dst src Bytes Clock Operation Flags 
cycles CZSVDH 

TCM : Test and complement byte under mask 

TCM r r 2 6 NOT dst AND src - A A 0 - -
TCM R R 3 10 NOT dst AND src - A A 0 - -
TCM r R 3 10 NOT dst AND src - A A 0 - -
TCM R r 3 10 NOT dst AND src - A A O - -
TCM r (r) 2 6 NOT dst AND src - A A O - -
TCM R (r) 3 10 NOT dst AND src - A A O - -
TCM r (rr) 3 12 NOT dst AND src - A A 0 
TCM R (rr) 3 12 NOT dst AND src - A A 0 - -
TCM r NN 4 18 NOT dst AND src - A A 0 - -
TCM r N(rrx) 4 24 NOT dst AND src - A A 0 - -
TCM R N(rrx) 4 24 NOT dst AND src - A A 0 - -
TCM r NN(rrx) 5 26 NOT dst AND src - A A 0 - -
TCM R NN(rrx) 5 26 NOT dst AND src - A A 0 - -
TCM r rr(rrx) 3 22 NOT dst AND src - A A 0 -
TCM r (rr)+ 3 16 NOT dst AND src - A A 0 -

rr<-rr+1 
TCM R (rr)+ 3 16 NOT dst AND src - A A 0 -

rr<-rr+1 
TCM r -(rr) 3 16 rr<-rr-1 - A A 0 - -

NOT dst AND src 
TCM R -(rr) 3 16 rr<-rr-1 - A A 0 - -

NOT dst AND src 
TCM (r) r 3 10 NOT dst AND src - A A 0 
TCM (r) R 3 10 NOT dst AND src - A A 0 
TCM (rr) r 3 18 NOT dst AND src - A A 0 -
TCM (rr) R 3 18 NOT dst AND src - A A 0 - -
TCM (rr)+ r 3 22 NOT dst AND src - A A 0 - -

rr<-rr+1 
TCM (rr)+ R 3 22 dSI<-dS AND src - A A 0 - -

rr<-rr+1 
TCM NN r 4 20 NOT dst AND src A A 0 
TCM N(rrx) r 4 26 NOT dst AND src - A A 0 -
TCM N(rrx) R 4 26 NOT dst AND src - A A 0 - -
TCM NN(rrx) r 5 28 NOT dst AND src - A A 0 - -
TCM NN(rrx) R 5 28 NOT dst AND src - A A 0 - -
TCM rr(rrx) r 3 24 NOT dst AND src - A A 0 - -
TCM -(rr) r 3 22 NOT dst AND src - A A 0 - -

rr<-rr-1 
TCM -(rr) R 3 22 NOT dst AND src - A A 0 - -

rr<-rr-1 
TCM r #N 3 10 NOT dst AND src - A A 0 - -
TCM R #N 3 10 NOT dst AND src - A A O - -
TCM (rr) #N 3 16 NOT dst AND src - A A 0 - -
TCM NN #N 5 22 NOT dst AND src - A A 0 - -
TCM (rr) (rr) 3 18 NOT dst AND src - A A 0 - -
TCM (RR) (rr) 3 18 NOT dst AND src - A A 0 - -

36/42 
-------------~iii. ~itm•~~Y~ -------------
60 



3 - Instruction Set 

Mnemo. dst src Bytes Clock Operation Flags 
cycles CZSVDH 

TCMW : Test and complement word under mask 

TCMW rr rr 2 10 NOT dst AND src - A A 0 -
TCMW RR RR 3 12 NOT dst AND src - A A 0 - -
TCMW rr RR 3 12 NOT dst AND src A A 0 
TCMW RR rr 3 12 NOT dst AND src A A 0 
TCMW rr (r) 3 14 NOT dst AND src A A 0 
TCMW RR (r) 3 14 NOT dst AND src A A 0 
TCMW rr (rr) 2 16 NOT dst AND src A A 0 
TCMW RR (rr) 3 18 NOT dst AND src A A 0 
TCMW rr NN 4 22 NOT dst AND src A A 0 
TCMW rr N(rrx) 4 28 NOT dst AND src A A 0 -
TCMW RR N(rrx) 4 28 NOT dst AND src A A 0 
TCMW rr NN(rrx) 5 30 NOT dst AND src A A 0 
TCMW RR NN(rrx) 5 30 NOT dst AND src A A 0 
TCMW rr rr(rrx) 3 26 NOT dst AND src A A 0 
TCMW rr (rr)+ 3 22 NOT dst AND src A A 0 

rr<-rr+2 
TCMW RR (rr)+ 3 22 NOT dst AND src A A 0 -

rr<-rr+2 
TCMW rr -(rr) 3 24 rr<-rr-2 A A 0 

NOT dst AND src 
TCMW RR -(rr) 3 24 rr<-rr-2 A A 0 - -

NOT dst AND src 
TCMW (r) rr 3 14 NOT dst AND src A A 0 -
TCMW (r) RR 3 14 NOT dst AND src - A A 0 -
TCMW (rr) rr 2 30 NOT dst AND src - A A 0 -
TCMW (rr) RR 3 28 NOT dst AND src - A A 0 
TCMW (rr)+ rr 3 30 NOT dst AND src - A A 0 - -

rr<-rr+2 
TCMW (rr)+ RR 3 30 NOT dst AND src A A 0 

rr<-rr+2 
TCMW NN rr 4 30 NOT dst AND src A A 0 -
TCMW N(rrx) rr 4 36 NOT dst AND src A A 0 
TCMW N(rrx) RR 4 36 NOT dst AND src - A A 0 -
TCMW NN(rrx) rr 5 36 NOT dst AND src A A 0 -
TCMW NN(rrx) RR 5 36 NOT dst AND src A A 0 -
TCMW rr(rrx) rr 3 32 NOT dst AND src - A A 0 -
TCMW -(rr) rr 3 30 rr<·rr-2 A A 0 

NOT dst AND src 
TCMW -(rr) RR 3 30 rr<·rr-2 - A A 0 -

NOT dst AND src 
TCMW rr #NN 4 14 NOT dst AND src A A 0 
TCMW RR #NN 4 14 NOT dst AND src - A A 0 -
TCMW (rr) #NN 4 30 NOT dst AND src - A A 0 - -
TCMW NN #NN 6 34 NOT dst AND src - A A 0 
TCMW N(rrx) #NN 5 34 NOT dst AND src A A 0 
TCMW NN(rrx) #NN 6 36 NOT dst AND src A A 0 -
TCMW (rr) (rr) 2 32 NOT dst AND src - A A 0 -

37/42 -------------l:fi. ~~~~m~~~~~~-------------
61 



3 - Instruction Set 

Mnemo. dst src Bytes Clock Operation 
Flags 

cycles CZSVDH 

TM : Test byte under mask 

TM r r 2 6 dst AND src " " 0 
TM R R 3 10 dstAND src " " 0 
TM r R 3 10 dst AND src " " 0 
TM R r 3 10 dstAND src " " 0 
TM r (r) 2 6 dstANDsrc " " 0 
TM R (r) 3 10 dstAND src " " 0 
TM r (rr) 3 12 dstANDsrc - " " 0 
TM R (rr) 3 12 dstANDsrc " " 0 
TM r NN 4 18 dstAND src " " 0 
TM r N(rrx) 4 24 dst AND src " " 0 
TM R N(rrx) 4 24 dstAND src " " 0 
TM r NN(rrx) 5 26 dstAND src " " 0 
TM R NN(rrx) 5 26 dstAND src " " 0 
TM r rr(rrx) 3 22 dstAND src " A 0 
TM r (rr)+ 3 16 dstAND src A A 0 

rr<-rr+1 
TM R (rr)+ 3 16 dstAND -src A A 0 

rr<-rr+1 
TM r -(rr) 3 16 rr<-rr-1 A A 0 -

dstAND src 
TM R -(rr) 3 16 rr<-rr-1 - A " 0 

dstAND src 
TM (r) r 3 10 dstAND src A A 0 -
TM (r) R 3 10 dstAND src - A A 0 
TM (rr) r 3 18 dstANDsrc A A 0 
TM (rr) R 3 18 dstAND src A A 0 -
TM (rr)+ r 3 22 dstAND src - A " 0 

rr<-rr+1 
TM (rr)+ R 3 22 dstAND src A A 0 

rr<-rr+1 
TM NN r 4 20 dstAND src " A 0 
TM N(rrx) r 4 26 dstAND src A A 0 
TM N(rrx) R 4 26 dstAND src A A 0 
TM NN(rrx) r 5 28 dstAND src - A A 0 
TM NN(rrx) R 5 28 dstAND src A A 0 
TM rr(rrx) r 3 24 dstAND src A A 0 
TM -(rr) r 3 22 rr->rr-1 A A 0 

dstAND src 
TM -(rr) R 3 22 rr->rr-1 - A A 0 

dstAND src 
TM r #N 3 10 dstAND src " " 0 -
TM R #N 3 10 dstAND src A A 0 - -
TM (rr) #N 3 16 dstAND src A A 0 -
TM NN #N 5 22 dstAND src - " A 0 
TM (rr) (rr) 3 18 dstAND src A " 0 
TM (RR) (rr) 3 18 dstAND src A A 0 - -

t== SCiS·lHOMSON --------------- .._""'fl [ij]u©~©]~~©'U'iK!©N:u©® ---------------
38/42 

62 



3 - Instruction Set 

Mnemo. dst src Bytes Clock 
Operation Flags 

cycles CZSVDH 

TMW : Test word under mask 

TMW rr rr 2 10 dstAND src A A 0 
TMW RR RR 3 12 dstAND src A A 0 
TMW rr RR 3 12 dstAND src A A 0 
TMW RR rr 3 12 dst AND src A A 0 
TMW rr (r) 3 14 dstAND src A A 0 
TMW RR (r) 3 14 dstAND src A A 0 
TMW rr (rr) 2 16 dstAND src A A 0 
TMW RR (rr) 3 18 dstAND src A A 0 
TMW rr NN 4 22 dst AND src A A 0 
TMW rr N(rrx) 4 28 dstAND src A A 0 -
TMW RR N(rrx) 4 28 dstAND src A A 0 - -
TMW rr NN(rrx) 5 30 dst AND src - A A 0 - -
TMW RR NN(rrx) 5 30 dst AND src A A 0 - -
TMW rr rr(rrx) 3 26 dstAND src - A A 0 - -
TMW rr (rr)+ 3 22 dstAND src - A A 0 - -

rr<-rr+2 
TMW RR (rr)+ 3 22 dstAND src - A A 0 

rr<-rr+2 
TMW rr -(rr) 3 24 rr<-rr-2 A A 0 

dstAND src 
TMW RR -(rr) 3 24 rr<-rr-2 A A 0 

dst AND src 
TMW (r) rr 3 14 dstAND src A A 0 
TMW (r) RR 3 14 dstAND src A A 0 
TMW (rr) rr 2 28 dst AND src A A 0 
TMW (rr) RR 3 28 dst AND src A A 0 
TMW (rr)+ rr 3 30 dstAND src A A 0 

rr<-rr+2 
TMW (rr)+ RR 3 30 dst AND src A A 0 

rr<-rr+2 
TMW NN rr 4 30 dst AND src A A 0 
TMW N(rrx) rr 4 36 dst AND src A A 0 
TMW N(rrx) RR 4 36 dstAND src A A 0 -
TMW NN(rrx) rr 5 36 dst AND src - A A 0 
TMW NN(rrx) RR 5 36 dstAND src A A 0 
TMW rr(rrx) rr 3 32 dstAND src A A 0 
TMW -(rr) rr 3 30 rr<-rr-2 A A 0 

dst AND src 
TMW -(rr) RR 3 30 rr<-rr-2 A A 0 

dstAND src 
TMW rr #NN 4 14 dstAND src A A 0 
TMW RR #NN 4 14 dst AND src A A 0 
TMW (rr) #NN 4 30 dstAND src A A 0 
TMW NN #NN 6 34 dstAND src A A 0 
TMW N(rrx) #NN 5 34 dst AND src A A 0 
TMW NN(rrx) #NN 6 36 dstAND src A A 0 
TMW (rr) (rr) 2 32 dst AND src A A 0 

WFI : Wait for Interrupt 

WFI 2 18 wait for interrupt 

~ SGS·ntOMSON --------------- .._...,/. liillJ[IIJ@~~~©voo:!l~Ja~ ---------------
39/42 

63 



3 - Instruction Set 

Mnemo. dst src Bytes Clock Operation 
Flags 

cycles CZSVDH 

XCH : Exchange Register 

XCH r r 3 12 dst <-> src - - - - -
XCH R R 3 12 dst <-> src - - - - -
XCH r r 3 12 dst <-> src - - - - -
XCH R R 3 12 dst <-> src - - - - - -

XOR : Logical exclusive OR 

XOR r r 2 6 dsk-dst XOR src - A A 0 - -
XOR R R 3 10 dsk-dst XOR src - A A 0 - -
XOR r R 3 10 dsk-dst XOR src - A A 0 - -
XOR R r 3 10 dsk-dst XOR src - A A 0 
XOR r (r) 2 6 dsk-dst XOR src - A A 0 
XOR R (r) 3 10 dsk-dst XOR src - A A 0 
XOR r (rr) 3 12 dsk-dst XOR src A A 0 
XOR R (rr) 3 12 dst<-dst XOR src - A A 0 - -
XOR r NN 4 18 dsk-dst XOR src - A A 0 - -
XOR r N(rrx) 4 24 dsk-dst XOR src - A A 0 -
XOR R N(rrx) 4 24 dst<-dst XOR src A A 0 -
XOR r NN(rrx) 5 26 dsk-dst XOR src A A 0 
XOR R NN(rrx) 5 26 dsk-dst XOR src A A 0 - -
XOR r rr(rrx) 3 22 dsk-dst XOR src A A 0 -
XOR r (rr)+ 3 16 dSI<-dSI XOR src A A 0 - -

rr->rr+1 
XOR R (rr)+ 3 16 dst<·dst XOR src - A A 0 

rr->rr+1 
XOR r -(rr) 3 16 rr->rr-1 A A 0 

dsk-dst XOR src 
XOR R -(rr) 3 16 rr->rr-1 - A A 0 - -

dsk-dst XOR src 
XOR (r) r 3 10 dsk-dst XOR src A A 0 - -
XOR (r) R 3 10 dsk-dst XOR src - A A 0 
XOR (rr) r 3 18 dsk-dst XOR src - A A 0 
XOR (rr) R 3 18 dst<-dst XOR src - A A 0 
XOR (rr)+ r 3 22 dsl<·dst XOR src - A A 0 - -

rr->rr+1 
XOR (rr)+ R 3 22 dsk-dst XOR src A A 0 - -

rr->rr+1 
XOR NN r 4 20 dsk-dst XOR src - A A 0 -
XOR N(rrx) r 4 26 dsk-dst XOR src - A A 0 - -
XOR N(rrx) R 4 26 dsk-dst XOR src - A A 0 -
XOR NN(rrx) r 5 28 dsk-dst XOR src - A A 0 
XOR NN(rrx) R 5 28 dsk-dst XOR src - A A 0 
XOR rr(rrx) r 3 24 dsl<-dst XOR src - A A 0 
XOR -(rr) r 3 22 rr->rr-1 - A A 0 -

dsl<-dst XOR src 
XOR -(rr) R 3 22 rr->rr-1 - A A 0 - -

dsk-dst XOR src 
XOR r #N 3 10 dst<-dst XOR src - A A 0 - -
XOR R #N 3 10 dsk-dst XOR src - A A 0 - -
XOR (rr) #N 3 16 dsk-dst XOR src - A A 0 - -
XOR NN #N 5 24 dsk-dst XOR src - A A 0 - -
XOR (rr) (rr) 3 20 dsk-dst XOR src - A A 0 - -
XOR (RR) (rr) 3 20 dsk-dst XOR src - A A 0 - -

40/42 
------------~ ~~©IH~~~~lj ------------
64 



3 - Instruction Set 

Mnemo. dst src Bytes Clock Operation Flags 
cycles CZSVDH 

XORW : Logical exclusive OR between words 

XORW rr rr 2 10 dst<·dst XOR src - A A 0 - -
XORW RR RR 3 12 dst<·dst XOR src - A A 0 -
XORW rr RR 3 12 dst<·dst XOR src - A A 0 -
XORW RR rr 3 12 dst<·dst XOR src A A 0 -
XORW rr (r) 3 14 dst<-dst XOR src A A 0 
XORW RR (r) 3 14 dst<-dst XOR src - A A 0 - -
XORW rr (rr) 2 16 dst<·dst XOR src - A A 0 - -
XORW RR (rr) 3 18 dst<-dst XOR src - A A 0 -
XORW rr NN 4 22 dst<-dst XOR src A A 0 
XORW rr N(rrx) 4 28 dst<-dst XOR src A A 0 
XORW RR N(rrx) 4 28 dst<-dst XOR src A A 0 -
XORW rr NN(rrx) 5 30 dst<·dst XOR src - A A 0 - -
XORW RR NN(rrx) 5 30 dsl<·dst XOR src - A A 0 - -
XORW rr rr(rrx) 3 26 dSI<·dst XOR src A A O 
XORW rr (rr)+ 3 22 dst<-dst XOR src A A 0 

rr<·rr+2 
XORW RR (rr)+ 3 22 dst<-dst XOR src - A A 0 - -

rr<-rr+2 
XORW rr -(rr) 3 24 rr<-rr-2 - A A 0 - -

dst<·dst XOR src 
XORW RR -(rr) 3 24 rr<-rr·2 - A A 0 - -

dst<-dst XOR src 
XORW (r) rr 3 14 dst<·dst XOR src - A A 0 - -
XORW (r) RR 3 14 dst<·dst XOR src - A A 0 - -
XORW (rr) rr 2 30 dsk·dst XOR src - A A O - -
XORW (rr) RR 3 30 dsk·dst XOR src - A A 0 - -
XORW (rr)+ rr 3 32 dst<-dst XOR src - A A O -

rr<·rr+2 
XORW (rr)+ RR 3 32 dst<-dst XOR src - A A 0 - -

rr<·rr+2 
XORW NN rr 4 32 dSI<-dst XOR src A A 0 -
XORW N(rrx) rr 4 38 dsl<·dst XOR src A A 0 
XORW N(rrx) RR 4 38 dsl<-dst XOR src A A 0 
XORW NN(rrx) rr 5 38 dst<-dSI XOR src A A 0 
XORW NN(rrx) RR 5 38 dst<-dst XOR src A A 0 -
XORW rr(rrx) rr 3 34 dsk-dst XOR src A A 0 -
XORW -(rr) rr 3 32 rr<-rr·2 - A A 0 - -

dsk-dst XOR src 
XORW -(rr) RR 3 32 rr<-rr·2 - A A 0 - -

dst<·dst XOR src 
XORW rr #NN 4 14 dsl<·dst XOR src - A A 0 - -
XORW RR #NN 4 14 dsk·dst XOR src - A A 0 -
XORW (rr) #NN 4 32 dsk·dst XOR src - A A 0 - -
XORW NN #NN 6 36 dsk·dst XOR src - A A 0 - -
XORW N(rrx) #NN 5 36 dsk-dst XOR src A A 0 -
XORW NN(rrx) #NN 6 38 dsk-dst XOR src - A A 0 
XORW (rr) (rr) 2 32 dsl<-dst XOR src A A 0 - -

41/42 ------------~ ~~~©lH~ii!~~------------
65 



3 - Instruction Set 

42142 r.==' SGS·THOMSON __________ _ ------------ "'"1/. r::J~~©Iil©rn~~©1i'lil©l!~©® 
66 



4.1 INTRODUCTION 

The ST9 responds to peripheral events and exter­
nal events through its Interrupt and on-chip DMA 
channels. When such an event occurs, if previously 
enabled and according to a priority mechanism, the 
current program execution can be suspended to 
allow the ST9 to execute a specific response rou­
tine. If the event generates an interrupt request, the 
current program status is saved after the current 
instruction is completed and the CPU control 
passes to the Interrupt Service Routine. Similarly, 
if the event occurrence requires a DMA transaction, 
this will take place at the end of the current instruc­
tion execution. 

The ST9 CPU can receive requests from the fol­
lowing type of sources 

- On-chip peripherals 

- External pins 

- Top-Level Pseudo-non-maskable interrupt 

According to the on-chip peripheral features, an 
event occurrence can generate an Interrupt re­
quest or a DMA transaction, depending on the 
selected mode. 

Up to eight external interrupt channels, with pro­
grammable input trigger edge, are available. In 
addition, a dedicated interrupt channel, set to the 
Top-level priority, can be devoted either to the 
external pin NMI (to provide a Non-Maskable-lnter­
rupt) or to the Timer/Watchdog. Interrupt service 
routines are addressed through a vector table 
mapped in Program Memory. 

DMA transactions provide high speed data trans­
mission from/to the peripheral data register to/from 
Register File or Data Memory or Program Memory. 
DMAchannels support up to 64k bytes block trans­
fer with Memory spaces. When DMA operates with 
the Register File, the data block dimension cannot 
be larger than 222 bytes. A special DMA mode 
called Swap Mode is implemented to support real 
time applications. 

CHAPTER 4 

INTERRUPT AND DMA 

4.2 INTERRUPT VECTORIZATION 
The ST9 implements an interrupt vectoring struc­
ture that allows the on-chip peripheral to identify 
the location of the first instruction of the Interrupt 
Service Routine (IVR) automatically. 

When the interrupt request is acknowledged, the 
peripheral interrupt module provides, through its 
Interrupt Vector Register (IVR), a vector to point 
into the vector table of locations containing the start 
addresses of the Interrupt Service Routines 
(defined by the programmer). 

Each peripheral has a specific IVR mapped within 
its Register File pages. 

The Interrupt Vector table, containing the list of the 
addresses of the Interrupt Service Routines, is 
located in the first 256 locations of the Program 
Memory. The first 61ocations of the Program Mem­
ory are reserved for: 

Address Content 

0 Address high of Power on Reset routine 

1 Address low of Power on Reset routine 

2 Address high of Divide by zero trap routine 

3 Address low of Divide by zero trap routine 

4 Address high of Top Level interrupt routine 

5 Address low of Top Level Interrupt routine 

With one Interrupt Vector register, it is possible to 
address more interrupt service routines; in fact, 
several peripherals share the same interrupt vector 
register among several interrupt channels. The 
most significant bits of the vector are user pro­
grammable to define the base vector address in­
side the vector table in the program memory, the 
least significant bits are controlled by the interrupt 
module in hardware to select the specific vector. 
Note: The first 256 locations of the program memory can contain 
program code. Other than the Reset vector, they are not exclusively 
reserved to the vector table. 

1/22 

67 



4 - Interrupt and DMA 

Figure 4-1. Vectors and Associated Routines 

2/22 

0 24 

23 9 

I 
REGISTER FILE 

IVR 

-

TOP LEVEL REOUEST -

PROGRAM MEMORY 

6~53~ 
USER INT. SUBROUTINE 

USER DIVIDE BY ZERO 

ROUTINE 

USER 

MAIN PROGRAU 

USER 

TOP LEVEL ISR 

255 

ODD LO 
ISR ADDRESS -EllEN HI 

5 LO 
4 HI 

TOP LEVEL -
J LO 

DIVIDE BY ZERO -
2 HI 
1 rl4!- POWER ON RESET -
0 HI 

RESET 

.... CPU DETECTION 
DIVISION BY ZERO 

}--

f--

r---

> VECTOR 
TABLE 

VA00221 

~ SGS·niOMSON ---------------- .. ""!l llllu©Lil©rnG.ll©WJ©~O©® ----------------

68 



4.3 INTERRUPT AND DMA PRIORITY LEVEL 
ARCHITECTURE 

The ST9 supports a fully programmable interrupt 
and DMA priority structure. Figure 4.2 shows a 
conceptual description. 

9 priority levels are available to define the channel 
priority relationship. Each channel has a 3 bit field, 
PRL (Priority Level), that defines its priority level 
among 8 programmable levels. The ninth level (Top 
Level Priority) is reserved for the Timer/Watch-Dog 
or the External Pseudo Non-Maskable Interrupt. 
The On-chip peripheral channel and the eight ex­
ternal interrupt sources can be programmed within 
eight priority levels: level 7 has the lowest priority, 
level 0 has the highest priority. 

If several units are located at the same priority level, 
an internal daisy chain, fixed for each ST9 device, 
defines the priority relationship within that level. 

The PRL bits are used to define the priority level 
both for interrupt requests and for DMA transac­
tions. If both interrupt and DMA requests are gener­
ated at the same priority level, the DMA request will 
be acknowledged first. 

Figure 4-2. ST9 Interrupt Architecture 

INT AQ 

INT A1 

INT BQ 

INT 81 

4 - Interrupt and DMA 

Top level priority interrupt (highest) can be as­
signed either to the external Pseudo Non-Mask­
able interrupt or to the internal Timer/Watch-Dog. 
An Interrupt service routine at this level cannot be 
interrupted in any arbitration mode. Its mask can 
be both maskable (TLI) or non-maskable (TLNM). 

4.4 PRIORITY LEVEL ARBITRATION 

The 3 bits of CPL (Current Priority Level) in the 
Central Interrupt Control Register contain the 
priority of the currently running program (CPU 
priority). CPL is set to 7 (lowest priority) upon reset 
and can be modified during program execution 
either by software or automatically by hardware 
according to the selected Arbitration Mode. 

During every instruction an arbitration phase is 
made between every channel capable of genera­
ting an Interrupt or DMA request, each priority level 
is compared to all the other requests. If the highest 
priority request is an interrupt, it must be higher 
than the CPL value in order to be acknowledged. If 
the highest priority request is a DMA transaction 
request, it must be equal to or higher than the CPL 
value in order to be executed. 

INT DQ 

INT 01 

INT. ca 
INT C1 

VR000145 

3/22 
----------------------------~ ~~~@~~~~~~©~ ----------------------------

69 



4 - Interrupt and DMA 

The priority of the Top Level Interrupt overrides 
every other priority. 

If two or more requests occur at the same instant 
of time and at the same priority level, an on-chip 
daisy chain, specific to every ST9 version, selects 
the channel with the highest position in the chain. 
The position in the chain for the ST9030, ST9040, 
ST9020 families is shown in table 4.1. 

Table 4-1. Daisy Chain Priorities 

ST9030 ST9020 ST9040 

Highest Position INTAO INTAO 
INTA1 INTA1 
INTBO INTBO 
INTB1 INTB1 
INTCO INTCO 
INTC1 INTC1 
INTDO INTDO 
INTD1 INTD1 
TIMERO SCI 
SCI TIMER 
AID 

Lowest Position TIMER1 

The 8 priority levels used for interrupts are also 
used to prioritize the DMA requests, which are 
arbitrated in the same arbitration phase as interrupt 
requests. When an interrupt and a DMA request 
occur simultaneously, on the same priority level, 
the DMA request is serviced before the interrupt. 

ST9 provides two interrupt arbitration modes: Con­
current and Nested modes. The Concurrent mode 
is the standard interrupt arbitration mode while the 
Nested mode improves the effective interrupt re­
sponse time when a nesting of the service routines 
is required according to the request priority levels. 
The control bit lAM (CICR.3) selects the Concur­
rent Arbitration mode (when reset to "0") or the 
Nested Arbitration Mode (when set to "1 "). 

4.4.1 Concurrent Mode 

This mode is selected when the lAM bit is cleared 
(reset condition). The arbitration phase, performed 
during every instruction, selects the request with 
the highest priority level. 

If the highest priority request is an interrupt request 
and its priority value is higher than the Current 
Priority Value CICR.2, 1 ,0 (R230.2, 1 ,0), the inter­
rupt request will be acknowledged at the end of the 

Figure 4-3. Example of a Sequence of Interrupt Requests with : 
- Concurrent mode 
- El set to 1 during the interrupt routine execution 

PRIORITY LEVEL 

CPL IS SET TO 7 

INTERRUPT 2 HAS PRIORITY LEVEL 2 
INTERRUPT J HAS PRIORITY LEVEL J 
INTERRUPT 4 HAS PRIORITY LEVEL 4 

INTERRUPT 5 HAS PRIORITY LEVEL 5 

CPL =7 

MAIN PROGRAM 

VR000152 

4/22 -------------~ ~~~;l'i2~~~©~ -------------
70 



current instruction. The interrupt Machine Cycle 
performs the following steps: 

- 1. Disables all the maskable interrupt requests 
by clearing CICR.IEN 

2. Pushes the PC low byte into the system stack 

3. Pushes the PC high byte into the system stack 

4. Pushes the Flag register into the system stack 

- 5. Loads the PC with the 16-bit vector stored in 
the Vector Table, pointed to by the Interrupt 
Vector Register (IVR). 

The Interrupt Service Routine must be concluded 
with the IRET instruction. The IRET instruction 
executes the following operations: 

- 1. Pops off the Flag register from the system 
Stack 

- 2. Pops off PC high byte from the system Stack 

- 3. Pops off PC low byte from the system Stack 

- 4. Enables all the un-masked Interrupts, by set-
ting the CICR.IEN bit 

The suspended program execution is thus re­
covered at the interrupted instruction. All pending 

4 - Interrupt and DMA 

interrupts existing, or having occurred during the 
interrupt service routine execution, remain pending 
until the Enable Interrupt instruction (even if it is 
executed during the interrupt service routine). 
NOTE: When Concurrent mode Is selected, the source priority level 
Is meaningful only during the arbitration phase, where It Is compared 
to all the other priority levels and the CPL, but no trace is kept of Its 
value during the Interrupt Service Routine. Therefore, If other re· 
quests are Issued, once the global CICR.IEN is enabled again, they 
will be acknowledged regardless of the Interrupt Service Routine 
priority value; if no care Is taken by the programmer, unpleasant side 
effects can take place. 
A typical case is the following· 3 pending requests with different 
priority levels (ie 2,3,4) generate requests atthe same time (because 
the associated events occurred during the same instruction). The 
three interrupt service routines set Interrupt Enable (lEN, CICR.4) by 
the El instruction at the beginning of the routine to avoid a high 
interrupt response time to requests with a priority higher than the one 
under serv1ce (usually, the higher the priority, the sooner the routine 
must be executed). Unfortunately, what will happen in this case is 
that the three interrupt servicing routines will be executed exactly in 
the opposite order of their priority. Interrupt routine level 2 will be 
acknowledged first, then, when the El instruction is executed, it will 
be interrupted by interrupt routine level 3, which itself will be 1nter· 
rupted by interrupt routine level 4. When interrupt routrne level 4 is 
completed, Interrupt routine level 3 will be recovered and f1nally, 
interrupt routine level 2. 
Therefore, It Is recommended, In concurrent mode, to avoid the 
Insertion of the Ellnstructlon In the Interrupt subroutine, which 
can trigger this LIFO (Last In, First Out) sequence of interrupt 
processing. 

Figure 4-4. Example of a Sequence of Interrupt Requests with : 
- Concurrent mode 
- El unchanged by the interrupt routines 

PRIORITY LEVEL 

INT.O 

CPL 115 

---------------- INT.2 
CPL 115 

-------------- ~~l 
CPL •!» 

INTERRUPT 0 HAS PRIORITY LEVi:L 0 

INTERRUPT 2 HAS PRIORITY LEV[L 2 
INTERRUPT 3 HAS PRIORITY LEVEL 3 
INTERRUPT 4 HAS PRIORITY LEVEL <4 

INTERRUPT 6 HAS PRIORITY LE\£1. 6 

MAIN PROGRAM -----------------------------,___="'----" 
CPL IS SET TO ~ .. 
------------------------------------------ ~ ~ 

~ " b!,.. 
!!!"' CPL •7 

MAIN 

\11000153 

5/22 
----------------------------~~~~;~~~~1~©~ ----------------------------

71 



4 - Interrupt and DMA 

4.4.2 Nested Mode 

The difference of the Nested mode to the Concur­
rent mode consists of the modification of the CPL 
value during the interrupt processing. The arbitra­
tion phase is basically identical to the concurrent 
Mode, however once the request is acknowledged, 
the current CPL value is saved in the Nested Inter­
rupt Control Register (NICR, R247 page 0) by 
setting the NICR bit corresponding to the CPL value 
(i.e. if the CPL is 3, NICR.3 bit will be set). The CPL 
value is then updated with the Priority value of the 
request just acknowledged, in this way the next 
arbitration cycle will be performed against the 
priority level of the Service Routine in progress. The 
above procedure is done only when the request is 
an Interrupt request. if it is a DMA request it is not 
necessary to modify the CPL value as the DMA 
transaction is non-interruptable. 

The Interrupt Machine Cycle will perform the follow­
ing steps: 

- Disable all the maskable interrupts by clearing 
lEN 

- Push the CPL value into the special stack NICR 
to hold the priority level of the suspended routine 

- Store in CPL the priority level of the acknow­
ledged routine, so that the next request priority 
will be compared with the one of the routine 
under service 

- Push the PC-Iow byte into the System Stack 

- Push the PC-high byte into the System Stack 

- Push the Flag Register into the System Stack 

- Load the PC with the vector pointed by IVR. 

Figure 4-5. Example of a Sequence of Interrupt Requests with : 
- Nested mode 
- El set to 1 during the interrupt routines execution 

PRIORITY LEVEL 

------------------ INT,O 

CPL • 0 

CPL IS SET TO 7 

INTERRUPT 0 HAS PRIORITY LEVEL 0 

INTERRUPT 2 HAS PRIORITY LEVEL 2 

INTERRUPT J HAS PRIORITY LEVEL .5 
INTERRUPT 4 HAS PRIORI'rf LEVEL 4 

INTERRUPT 5 HAS PRIORITY LEVEL 5 

INTERRUPT 6 HAS PRIORITY LEVEL 6 

INT 2 

CPL • 2 

'v'R000154 

6/22 
------------!!iff. ~~~©mg~~·g;~ ------------
72 



The IRET Interrupt Return instruction executes the 
following steps: 

- 1. Pop off the Flag Register from the System 
Stack 

- 2. Pop off the PC-high byte from the System 
Stack 

- 3. Pop off the PC-low byte from the System Stack 

- 4. Enable all the unmasked interrupts by setting 
the lEN bit 

- 5. Reco~er the interrupted routine priority level 
by poppmg the value from the special register 
(NICR) and by copying it into CPL. 

The suspended execution is thus recovered at the 
interrupted instruction. 

REMARKS 
1) Dynamic priority level modification: the main 
pr~gram .and routi~es can be specifically prio­
ntlzed. S1nce CPL 1s represented by 3 bits in a 
read/write register, it is possible to modify dynami­
cally the current priority value during the program 
execution. This means that a critical section can 

4 - Interrupt and DMA 

have a higher priority with respect to other interrupt 
and DMA requests. Furthermore it is possible to 
prioritize even the Main Program execution by 
modifying CPL during its execution. 

2) Maximum number of nestings: No more than 8 
rout1nes can be nested. If an interrupt routine at 
level N is being serviced, no other Interrupts lo­
cated at level N can interrupt it. This guarantees a 
maximum number of 8 nested levels including the 
Top Level Interrupt request. 

3) Priority level 7: Interrupt requests at level 7 
cannot be acknowledged as their priority cannot be 
higher than the CPL value. This can be of use in a 
fully polled interrupt environment. Only DMA trans­
action requests at this level can be acknowledged. 

A nested/concurrent mode sequence is given on 
Figure 4.7. This example clearly shows that Nested 
and Concurrent modes are defined by the user. 
Note that here the Y axis is referenced by CPL, 
instead of the source priority level, and that Inter­
rupt 1 stays pending, having a priority level lower 
than CPL. 

Figure 4-6. Example of a Sequence of Interrupt Requests with : 
- Nested mode 
- El unchanged by the interrupt routines execution 

PRIORITY LE:\IEL 

----------------------- ~LO 
CPL = 0 

---------------- ~12 
CPL • 2 

-------------- ~T3 
Cf'L = J 

MAIN PROGRAM 

CPL IS SET TO 5 

INT!RRUPT 0 HAS PRIORITY LEVEL 0 

INTERRUPT 2 HAS PRIORITY LEVEL 2 

INTERRUPT 3 HAS PRIORITY LEVEL 3 

INTERRUPT 4 HAS PRIORITY LEVEL 4 

INTERRUPT 6 HAS PRIORITY LEVEL 6 

CPL = 5 

------------------------------------------ e~ ~< 

ill" 
~ lii CPL•7 CPL = 7 

MAIN PROGRAM 

VR000155 

-------------~ ~~~;1&2JW:~~©~ _____________ 71_22 

73 



4 • Interrupt and DMA 

Figure 4-7. Example of a Nested and Concurrent Mode Sequence 

PRIORITY LEVEL 

INT2 INTJ 

l( 
2 ---------------

4 ---------------

MAIN PROGRAM 
CPL-7 

NESTED MODE 

Figure 4·8. Top Level Interrupt Structure 

INTI 

INTERRUPT 1 HAS PRIORITY LEVEL 5 
INTERRUPT 2 HAS PRIORITY LEVEL 2 
INTERRUPT J HAS PRIORITY LEVEL J 
INTERRUPT 4 HAS PRIORITY LEVEL 2 
INTERRUPT 5 HAS PRIORITY LEVEL 0 
INTERRUPT 6 HAS PRIORITY LEVEL 1 
INTERRUPT 7 HAS PRIORITY LEVEL 2 

'"i' l T'"" 
"""'P"'Ro"'G"'R""AM"'~( INT6 x INT7 l INT4 I MAIN PROGRAM ) 

CPL=4 I 
El 

._ CPL set to 4 

~lAM bit= 0 
TIME 

CONCURRENT MODE 

VAOD489 

WA TCHOOG ENABLE -----a---., 
WOEN )--------------------"'"~~~iT 

!UP 
PENDING TOP LEVEL 

r ----j_ __ j----f~INTERRUPT 
REQUEST MASK 

TLTEV 

VA00294 

8/22 ------------------------------~ ~i~©~~~~~~©~ -----------------------------
74 



4.5 EXTERNAL INTERRUPTS 
The standard ST9 core contains 8 external inter­
rupts sources grouped into four pairs. 

Table 4·2. 

Pair Sources 

A INTAO, INTA1 
B INTBO, INTB1 
c INTCO, INTC1 
D INTDO, INTD1 

Each source has a trigger control bit TEAO, .. TED1 
(R242,EITR.0, .. ,7 Page 0) to select triggering on 
the rising or falling edge of the external pin. If the 
Trigger control bit is set to "1 ", the corresponding 
pending bit IPAO, .. ,IPD1 (R243,EIPR.0, .. ,7 Page 0) 
is set on the input pin rising edge, if it is cleared, 
the pending bit is set on the falling edge of the input 
pin. Each source can be individually masked 
through the corresponding control bit \MAO, .. , IMD1 
(EIMR.7, .. ,0). See Figure 4.9. 

The priority level of the external interrupt sources 
can be programmed among the eight priority levels 
with the control register EIPLR (R245). The priority 
level of each pair is software defined using the bits 
PRL2,PRL 1. For each pair, the even channel 
(AO,BO,CO,DO) of the group has the even priority 
level and the odd channel (A 1 ,81 ,C1, 01) has the 
odd (lower) priority level. Table 4.3 shows an 
example of priority levels. 

- The source of the interrupt channel AO can be 
selected between the external pin INTO (when 
lAOS = "1 ", the reset value) or the On-chip 
Timer/Watchdog peripheral (when lAOS = "0"). 

- The source of the interrupt channel BO can be 
selected between the external pin \NT2 (when 
(SPEN,BMS)=(O,O)) or the on-chip SPI periphe­
ral. 

- The source of the interrupt channel CO can be 
selected between the external pin INT4 (when 
EEIEN = "0") and the on-chip EEPROM write 
completion interrupt (when EEIEN="1 ") for ST9 
devices with on-chip EEPROM (eg the ST9040). 

All other interrupt channels have an input pin as 
source. According to specific ST9 version, how­
ever, the input line may be multiplexed with an 
on-chip peripheral i/O or connected to an input pin 
that performs also other function (as in the case of 
the handshake feature). 

4 • Interrupt and DMA 

Table 4-3. Priority Level Examples 

FIL20 PL1D PL2C PL1C PL28 PLIB PL2A PLIA 

J1JoJoJoJ1JoJoJ1J mR 

:.:~ ::~~~~a~us:;,~EO:p:~:~~; 
INT.DI: 101=5r ~NT.A1: 011=3 

INT.CO: 000=0 INT.BO: 100=4 

INT.Cl: 001=1 INT.Bl: 101=5 

VR000151 

4.6 TOP LEVEL INTERRUPT 
The Top Level Interrupt channel can be assigned 
either to the external pin NMI or to the Timer/Watch­
dog according to the status of the control bit 
EIVR.TLIS (R246.2, Page 0). If this bit is high (the 
reset condition) the source is the external pin NMI, 
if it is low, the source is the Timer/ Watchdog End 
Of Count. When the source is the NMI external pin, 
the control bit EIVR.TL TEV (R246.3; Page 0) se­
lects between the rising (if set) or falling (if cleared) 
edge generating the interrupt request. When the 
selected event occurs, the CICR.TLIP bit (R230.6) 
is set. Depending on the mask situation, a Top 
Level Interrupt request may be generated. Two 
kinds of masks are available, a Maskable mask and 
a Non-Maskab\e mask. The first mask is the bit 
CICR.TLI (R230.5): it can be set or cleared to 
enable or disable respectively the Top Level inter­
rupt request. If it is enabled, the global Enable 
Interrupt bit CICR.IEN (R230.4) must also be en­
abled in order to allow a Top Level Request. 

The second mask NICR.TLNM (R247.7) is a set­
only mask. Once set, it enables the Top Level 
Interrupt request independent of the value of 
CICR.IEN and it cannot be cleared by program. 
Only the processor RESET cycle can clear this bit. 

The Top Level Interrupt Service Routine cannot be 
interrupted by any other interrupt request, in any 
arbitration mode, even by another Top Level Inter­
rupt request. 

The interrupt machine cycle of the Top Level Inter­
rupt does not clear the CICR.IEN bit, and the 
corresponding IRET does not set it. 

9/22 
t='!' SGS·THOMSON ------------- l!i.""'JJ. l':ii©Jl©~l~©'iiif!.:gjJiu©ii: -.-------------

75 



4 - Interrupt and DMA 

Figure 4-9. External Interrupts Control Bits and Vectors 

Watchdog/Timer lAOS TEAO 

End of count 

INT AD 

INT 0 pin IIMAO I 
request 

TEAl 

INT 1 pin INT AI 

request 

T£80 

SPI Interrupt 

INT 80 

INT 2 pin 
request 

T£81 

INT 3 pin INT 81 

request 

TECO 

INT CO 

INT 4 pin 
IIMCO I §:] 

request 
Pending bit 

TEC1 

INT 5 pin INT C1 

request 

TEDO 

INT 6 pin INT 00 

request 

TED I 

INT 7 pin INT 01 

~ ~ 
request 

Pending bit 

VR000440 

10/22 ------------~ ~~©IH~~~~~ ------------
76 



4.7 ON-CHIP PERIPHERAL INTERRUPTS 

The general structure of the peripheral interrupt 
unit is described here, however each on-chip pe­
ripheral has its own specific interrupt unit contain­
ing one or more interrupt channels, or interrupt and 
DMA channels. Please refer to the specific periph­
eral chapter for the description of its interrupt fea­
tures and control registers. 

The on-chip peripheral interrupt channels provide 
the following control bits: 

- Interrupt Pending bit (IP) 
Set by hardware when the Trigger Event occurs. 
Can be set/cleared by software to generate/can­
cel pending interrupts and give the status for 
Interrupt polling. 

- Interrupt Mask bit (IM) 
If IM = "0", no interrupt request is generated. If 
IM ="1" an interrupt request is generated when­
ever IP = "1" and CICR.IEN = "1 ". 

- Priority Level (PRL, 3 bits) 
These bits define the source priority level 
PRL=O: the highest priority 
PRL=7: the lowest priority (the interrupt cannot 
be acknowledged) 

- Interrupt Vector Register (IVR, up to 7 bits) 
The IVR points to the vector table which itself 
contains the interrupt routine start address. 

4 - Interrupt and DMA 

4.8 ST9 ON-CHIP DMA 

4.8.1 Introduction 

ST9 has on chip Direct Memory Access (DMA) 
channels to provide high-speed data transaction 
between peripherals and memory or Register File. 
Multi-channel DMA is fully supported as each pe­
ripheral can have its own DMA channel(s). Each 
DMA channel transfers data to or from contiguous 
locations of the Register File, Program Memory or 
Data Memory. The maximum number of transac­
tions that each DMA channel can perform is 222 if 
the Register File is selected, or 65536 if Program 
or Data Memory is selected. 

DMA transfer to (or from) the Register File takes 8 
CPUCLK cycles; DMA transfer to (or from) Memory 
takes 16 CPUCLK cycles. If the ST9 is in the idle 
mode (during a Wait For Interrupt instruction ex­
ecution), DMA requests are acknowledged and the 
time required for Register File transfers becomes 
10 CPUCLK cycles and for Memory 18 CPUCLK 
cycles. 

Each DMA channel has its own control registers 
located in the 1/0 page(s) related to the peripheral. 

4.8.2 DMA Transactions 

The purpose of on-chip DMA channel is to transfer 
a block of data from/to the peripheral to/from Reg­
ister File or Memory. Each DMA transfer consists 
of three operations: 

- A load from/to the peripheral data register to a 
location of Register File (or Memory) addressed 
through the DMA Address Register (or Register 
pair) 

- A post-increment of the DMA Address Register 
(or Register pair) 

- A post-decrement of the DMA transaction 
counter, which contains the number of transac­
tions that have still to be performed. 

If the DMA transaction is made between the pe­
ripheral and the Register File (figure 4.10), one 
register is required to hold the DMA Address and 
one to hold the DMA transaction counter. These 
two registers must be located in the Register File: 
the DMA Address Register in the even addressed 
register, the DMA transaction Counter in the follow­
ing register (odd address). They are pointed to by 
the DMA Transaction Counter Pointer Register 
(DCPR) located in the page registers of the periph­
eral. In order to select the DMA transaction with the 
Register File, the control bit DCPR.RM (bit 0 of 
DCPR) must be set. 

11/22 
----------------------------~ ~~~;~~~~M~©~ ----------------------------

77 



4 • Interrupt and DMA 

Figure 4-10. DMA Between Registers and Peripheral 

PERIPHERAL 
PACE 0 

REGISTER 

Df,AA 

TAELE 

1\ IOCR 

'"" OAPR \ 
OCPR 

\ DATA 

" 
~ 

PACE REGISTERS 

EF 
SYSTEM REGISTERS 

ED 
or 

! -1 
ALREADY 

TRANSFERRED 
DATA 

r- DWA tRANSACTION COUNTtR 

'-- OUA ADDRESS 

00 

REGISTER fiLE 

5 
I= 
u 

"" :1 e; 
< 
1!; 

}-

Figure 4-11. DMA Between Memory and Peripheral 

IOCR I\ LIIR 
DAPR \ OCPR 

··.DATA 

rr 

'"'=:: PAGE RWSTERS 

ED SYSTEU RWSTERS 

or 

'-------
LO Dt.IA 
HI m~~~~¥J~ON 

QUA ADDRESS 

00 
REGISTER FILE 

"" 

{ 

0100 

0000 

ALREADY 
mANSFERREO DATA 

END or BLOCK 
INTERRUPT 

SERVICE ROU TlNE 

HI ISR ADDRESS-

PROGRAM MEMORY 

OAPR • 0 

F'F'F'F' 

E~~~~R~;~K 
SERVICE ROUT1NE 

10 

" 
,---
r-

PROCRAM MEMORY 

"' rFFF 
0 
I= 

~ 
:1 e; 
< 

{ 1l 

} INTERRUPT 
VECTOR 
TABLE 

0000 

ALREADY 

mANSFERREO DATA 

DATA MEMORY 
OAPR c 1 

12/22 ----------- IDl SGS·lliOMSON 
·', • [ij]J©:M©rn~rn©vw~~JD©® 

78 

) 
VECTOR 
TABLE 

VA00292 

1 
Df,AA 
TABLE 

VA00291 



The Transaction Counter Register must be in­
itialized with the number of DMA transfers to per­
form and will be decremented after each 
transaction. The DMA Address Register must be 
initialized with the starting address of the DMA table 
in the Register File, and is increased after each 
transaction. These two registers must be located 
between addresses OOh and DFh of the Register 
File. 

If the transaction is made between the peripheral 
and Memory Space (Program or Data Memory), 
a register pair (16 bits) is required for the DMA 
Address and for the DMA transaction Counter (fig­
ure 4.11 ). Thus, two register pairs must be located 
in the Register File. The DMA Transaction Counter 
is pointed to by the DMA Transaction Counter 
Pointer Register (DCPR), the DMA Address is 
pointed to by the DMA Address Pointer Register 
(DAPR), both DCPR and DAPR are located in the 
page registers of the peripheral. When selecting 
the DMA transaction with memory, the control bit 
DCPR.RM (bit 0 of DCPR) must be cleared to "0". 

To select between Program or Data Memory, the 
control bit DAPR.DP (bit 0 of DAPR) must be 
cleared or set respectively. 

Once the DMA table is completed (the transaction 
counter reaches 0 value), an Interrupt request to 
the CPU is generated. 

The DMA transaction Counter must be initialized 
with the number of transactions to perform and will 
be decremented after each transaction. The DMA 
Address must be initialized with the starting ad­
dress of the DMA table and is increased after each 
transaction. These two register pairs must be lo­
cated betweeen addresses OOh and DFh of the 
Register File. 

Once a DMA channel is initialized, a transfer can 
start. The direction of the transfer (data from/to 
peripheral to/from memory or Register File) is auto­
matically defined by the type of peripheral involved. 

4 - Interrupt and DMA 

When the Request Pending bit is set by a hardware 
event (or by software), and the DMA Mask bit is set, 
a DMA request is generated. If the Priority Level of 
the DMA source is higher than or equal to the 
Priority Level under service (CPL) the DMA transfer 
is executed at the end of the current instruction. 
DMA transfer reads/writes data from/to the location 
pointed by the DMA Address Register, increments 
the DMA Address register and decrements the 
Transaction Counter Register. When the content of 
the Transaction Counter is decremented to zero, 
the DMA Mask bit (DM) is cleared and an interrupt 
request is generated according to the Interrupt 
Mask bit (End of Block interrupt). This End-of-Block 
interrupt request is taken into account depending 
on the PRL value. 

4.8.3 The Swap-Mode 

An extra feature of ST9 DMA channels of some 
peripherals (i.e the Multi Function TIMER) is the 
SWAP mode. This feature allows transaction from 
two DMA tables alternatively. All the DMA descrip­
tors in the Register File are thus doubled. Two DMA 
transaction counters and two DMA address 
pointers allow the definition of two fully inde­
pendent tables (they only have to belong the same 
space, Register file or Data memory or Program 
memory). The DMA transaction is programmed to 
start on one of the two tables (say table 0) and, at 
the end of block, the DMA controller automatically 
swaps to the other table (table 1) by pointing to the 
other DMA descriptors. In this case, the DMA mask 
(OM bit) control bit is not cleared, but the End Of 
Block interrupt request is generated to allow the 
optional updating of the data table (table 0). 

Until the swap mode is not disabled, the DMA 
controller will continue to swap between DMA Table 
0 and DMA Table 1. 

13/22 -------------~ ~~~@m~m~lg~~ -------------
79 



4 - Interrupt and DMA 

Figure 4·12. DMA Transaction to Memory 

CPUCLK 

P/D 

PORT 1 

PORT 0 

[ 

M2 ,~-·--.-~---I.H---I~·D::;,;~:~·.-1--~---~-:-t•l T3 "I 

, , , ! : : , 10 , , 14 1 ,.~ , 1~ , --H--t1-ti-H--r I I I 

I I 
I I 
I I 
I I 
I I 
I I I 

-u 
l ,, 
l\'-!-1-•r 
I I 
I I 
I I 
I I 
I I 
I I 

I I 

I 
I 
I 
I 
I 

I 
I 
I 
I 
I 

":0 0 

I 

, 

I 
I 
I 
I I 
I I 
I I 
I I 

~1.......!--1-l I~: 1~1 1--+--rl 7 
I I I 
I I I 
I I I 
I I I 
I I I 
I I 
~ ~~~~~ : ~,_.,_.--.._,.....,......,.....,........,, 

I I 
I I 
I I 
I I 
I I I 

~--'--'--~:::~ : : :Al~-~8: : ~ : : f1~-A:8 : 
1 1 I I I I I I I I I I I I I 1 
I I I I I I I I I I I I I I I 1 
I I I I I I I I I I I I I I I 1 
I I I I I I I I I I I I I I I 1 
I I I I I I I I I I I I I I I 1 
I I I I I I I I I I I I I I I 1 
1 1 I I I I I I I I I 1 1 1 I 1 
I I I I I I I I I I I I I I I 1 

1 DATA OUT 1 1 1 

I 
I 
I 

: zndBYTE 

I 
I 
I 
I 

REFRESH: 

VR001412 

14/22 
-------------lifi ~i~©m•~~~lj -------------
80 



4 - Interrupt and DMA 

Figure 4-13. DMA Transaction from Memory 

CPUCLK 

I I I I 
I I I I 
I I I I 
I I I I 

I 
I 
I 
I 

--vl-+-+-+~~~~~~·~ .. ~+-+-iu~ I AS I I I 
I I u 

P/5 

PORT 1 

PORT 0 

I I I 
I I I 
I I I 
I I I 
I I I 

I ~-+-~(~~~~~~~~~~~~-+~~~~~~~(~~:~~~-+-~r::-

/I 

1 

I 
I 
I 
I 

~ : : : : : 1 
I I I I I I I 
I I I I I I I 
I I I I I I I 
I I I I I I I 

:j : : : : Al5 :AB: ::::: : : ~ :AI~-~8 : : ~ : : ~1~-A~ : 
I I I I I I I I 
I I I I I I I I 
I I I I I I I I 
I I I I I I I I 
I I I I I I I I 
I I I 1 1 I I 1 1 I 1 I I I I 

~ 7-AO I R : : '-F'I :--:-· I 
I I I I I I I I I I 
I I I 

: 2nd BYTE FETCH: 2nd8YTE REFRESH: 

DISCARDED VR001413 

15/22 --------------~ ~~~;mg~~,~~ --------------
81 



4 - Interrupt and DMA 

4.9 WAIT FOR INTERRUPT INSTRUCTION 
The Wait For Interrupt instruction suspends pro­
gram execution until an interrupt request is ac­
knowledged. During this period, DMA transactions 
are executed if their priority allows it. During the 
WFI instruction, the CPUCLK is halted while INT­
CLK keeps running. Under this state, the power 
consumption of the processor is lowered by the 
CORE power consumption value. 

Figure 4-14. Wait for Interrupt Timing 

4.10 INTERRUPT AND DMA RESPONSE TIME 
Interrupt and DMA requests are sampled 6 INTCLK 
cycles before the end of the instruction. If Wait For 
Interrupt is in progress, requests are sampled every 
5 INTCLK cycles. If the interrupt request comes 
from an external pin, the programmed event has to 
be set a minimum of one CPUCLK cycle before the 
sampling time. 

WFI EXECUTION PERIOD 

INT -i-+-+-+++-+-Hr-t" H-+-+-+-+-+-+-H-+-1 8 HH-+++++-nH-++++­
sAMPLE 

iiS I 
I 
I 
I 
I 
I 

PORT ~~~~~--~--~~~-;r-------~------~~~----------~--~~~~--

PORT 0 

1 
I 
I 
I 

VR001411 

Note: The WFIIoop will be made once if the interrupt is sample with pulse A, and several additional times if the interrupt is sampled pulse B. 

16/22 -------------~ ~i~©m~m~~9~ -------------
82 



4 • Interrupt and DMA 

Figure 4·15. ST9 Interrupt Acknowledge Timing 

INTERRUPT MACHINE CYCLE 

MEMORY WRITE MEMORY WRITE 

2 I 3 I 4 I s s I 1 I e 9 I 10 I 11 

FETCH OPCODE FETOI 2nd BYTE 
DISCARDED DISCARDED 

MEMORY v.!l TE E OR RE D I M M y A MEMORY READ 

T1 T2 T3 11 T2 13 
12 I 13 I 14 15 16 17 18 19 I 20 I 21 22 I 23 I 24 25 I 26 

-
_j _j _j w 

L___j n-r-c-

_j/_PUSH HAGS READ VECTOR HICH READ VECTOO LOW FETCH OPCOOE f!TCH 2nd BYTE 

A DMA transfer with the Register file takes 8 
CPUCLK cycles, except when the Wait For Inter­
rupt is in progress (1 0 CPUCLK cycles). 

A DMA transfer with the memory takes 16 CPUCLK 
cycles except when the Wait For Interrupt is in 
progress (18 CPUCLK cycles). 

In order to guarantee the falling/rising edge detec­
tion, input signals must be kept low/high for a 
minimum of one CPUCLK cycle. 

VR001414 

An interrupt machine cycle takes 26 internal clock 
cycles (CPUCLK), with some exceptions as fol­
lows: 

- 28 internal clock cycles (CPUCLK), if a Wait For 
Interrupt is in progress 

- 32 internal clock cycles (CPUCLK), if the ac­
knowledge cycle follows a DMA transfer with 
Register File 

17/22 
--------------~ ~~~;~g~~~~ ---------------

83 



4 - Interrupt and DMA 

Figure 4-16. External Interrupt Response Time 

CURRENT INSTRUCTION EXECUTlON 
INTERRUPT 
MACHINE CYCLE 

INTCLK 

INT # PIN 

INT # ON CHIP 

INT SAMPLE 

4.11 ST91NTERRUPT REGISTERS 

CICR • R230 (OE6h) Sys. Reg.; Read/Write 
Central Interrupt Control Register 

Reset value: 1000 0111 (87h) 
7 0 

IGCENI TLIP I TLI liEN I lAM I CPL21 CPL 1 I CPLO I 

b7 = GCEN: Global Counter Enable bit. When set 
the 16 bit MultiFunction Timers are enabled (see 
Timer Control Register in MULTI FUNCTION 
TIMER chapter) 

b6 = TLIP: Top Level Interrupt Pending bit. Set by 
hardware when the Trigger Event occurs. Cleared 
by hardware when the Top Level Interrupt is 
aknowledged. 

VR001415 

b5 = TLI: Top Level Interrupt bit. If TLI ="1 ", and 
lEN is set, a Top Level Interrupt request is gene.r­
ated as TLIP is set. If TLI = "0", a request IS 

generated only if TLNM is set. 

b4 = lEN: Interrupt Enable. If lEN = "0", no mask­
able Interrupt requests are generated. This bit is 
cleared by the interrupt machine cycle and it is set 
by the I RET instruction of maskable routines. 

b3 =lAM: Interrupt Arbitration Mode. If lAM = "0", 
Concurrent Arbitration Mode is selected; If lAM = 
"1" Nested Mode is selected. 

b2-b0 = CPL2, CPL 1, CPLO: Current Priority 
Level. Defines the Current Priority Level under 
service. CPL=O is the highest priority. CPL=7 is the 
lowest priority. 

_18_1_22 ________________________ ~~~~;~~~~,~~---------------------------
84 



EITR- R242 (OF2h) Page 0; Read/Write 
External Interrupt Trigger Event Register 

Reset value: XXXX 0000 (OOh) 
7 0 

lrED11TEoolrEC1 lrEcolrEB1 lrEsolrEA1 lrEAol 

If TExy bit is set, the pending bit will be set upon 
the rising edge of the input signal. 

If TExy is cleared, the pending bit will be set upon 
the falling edge of the input signal. 

All bits are set/reset only by software. 
b7 = TED1: Trigger Event of Interrupt Channel D1 

b6 = TEDO: Trigger Event of Interrupt Channel DO 

b5 = TEC1: Trigger Event of Interrupt Channel C1 
b4 = TECO: Trigger Event of Interrupt Channel CO 

b3 = TEB1: Trigger Event of Interrupt Channel 81 

b2 = TEBO: Trigger Event of Interrupt Channel 80 
b1 = TEA1: Trigger Event of Interrupt Channel A 1 

bO = TEAO: Trigger Event of Interrupt Channel AO 

IDPR • R243 (OF3h) Page 0; Read/Write 
External Interrupt Pending Register 

Reset value: 0000 0000 (OOh) 
7 0 

IIPD1 IIPDO IIPC1 IIPCO IIPB1 IIPBO IIPA1 IIPAO I 

b7 = IPD1: Interrupt Pending bit Channel D1 

b6 = IPDO: Interrupt Pending bit Channel DO 
b5 = IPC1: Interrupt Pending bit Channel C1 

b4 = IPCO: Interrupt Pending bit Channel CO 

b3 = IPB1: Interrupt Pending bit Channel 81 
b2 = IPBO: Interrupt Pending bit Channel 80 

b1 = IPA1: Interrupt Pending bit Channel A 1 

bO = IPAO: Interrupt Pending bit Channel AO 
IP bits are hardware set upon the occurence of the 
trigger event and are reset by the interrupt acknow­
ledge machine cycle. 
Note: IP bits may be set by the programmer to implement a software 
interrupt. 

4 - Interrupt and DMA 

EIMR- R244 (OF4h) Page 0; Read/Write 
External Interrupt Mask-bit Register 

Reset value: 0000 0000 (OOh) 
7 0 

IIMD1 liM DO IIMC1 IIMCO IIMB1 liMBO IIMA1 IIMAO I 

EIMR bits are set/reset by software 

When the IM bit is set (and the global lEN is 
enabled), an interrupt request is generated if the 
corresponding IP bit is set. When IM = "0", no 
request will be generated. 

- IMxy = "1 ":an interrupt request can be acknow-
ledged (depending on lEN) 

- IMxy = "0": an interrupt request is masked. 
b7 = IMD1: Interrupt Mask of Interrupt Channel D1 

b6 = IMDO: Interrupt Mask of Interrupt Channel DO 

b5 = IMC1: Interrupt Mask of Interrupt Channel C1 
b4 = IMCO: Interrupt Mask of Interrupt Channel CO 

b3 = IMB1: Interrupt Mask of Interrupt Channel 81 

b2 = IMBO: Interrupt Mask of Interrupt Channel 80 

b1 = IMA 1: Interrupt Mask oflnterrupt Channel A 1 

bO = I MAO: Interrupt Mask of Interrupt Channel AO 

EIPLR • R245 (OF5h) Page 0; Read/Write 
External Interrupt Priority Level Register 

Reset value: 1111 1111 (FFh) 
7 0 

IPL2DIPL1DIPL2CIPL1CIPL2BIPL1BIPL2AIPL1AI 

EIPLR bits are set/reset by software 

b7-b6 = PL 1 D, PL2D: Priority level for the Group 
INTDO, INTD1 

b5-b4 = PL1C, PL2C: Priority level for the Group 
INTCO, INTCt 

b3-b2 = PL 18, PL28: Priority level for the Group 
INT80, INTB1 

b1-b0 = PL 1A, PL2A: Priority level for the Group 
INTAO, I NTA 1 

19/22 
---------------------------~~~~@~g~~M~~---------------------------

85 



4 - Interrupt and DMA 

EIVR · R246 (OF6h) Page 0; Read/Write 
External Interrupt Vector Register 

Reset value: xxxx 0110 (X6h) 
7 0 

I V7 I V6 I vs I V4 ITLTEVI TLIS I lAOS IEWENI 

b7-b4 = V7 to V4: Most significant nibble of Exter­
nal Interrupt Vector. Not initialized by reset. 

b3 = TLTEV: Top Level Trigger Event bit When set, 
the Top Level event is triggered on rising edge of 
NMI input pin. Triggering on the falling edge of the 
NMI input pin is activated when this bit is "0" (reset 
value) 

b2 = TLIS: Top Level Input Selection bit This bit 
selects the source of the Top Level Interrupt be­
tween the external NMI pin (when "1 ", the reset 
value) and the Timer/Watchdog End of Count 
(when "0"). 

b1 =lAOS: Interrupt AO Selection bit When set, the 
External Interrupt pin is selected as the External 
Interrupt Channel AD source. When reset the 
source is the Timer/Watchdog End of Count inter­
rupt. 

bO = EWEN: External Wait Enable bit When set, 
this bit enables the WAIT input pin to stretch the 
external memory access cycle. For more details of 
the WAIT mode, the reader should refer to the 
Clock and Wait chapter or External memory Inter­
face chapter. 

NICR · R247 (OF7h) Page 0; Read/Write 
Nested Interrupt Control Register 

Reset value: DODO DODO (DOh) 
7 0 

lrLNMI HLB I HLsl HL4 I HL3 I HL2 I HL 1 I HLO I 

b7 = TLNM: Top Level Not Maskable. 

If TLNM = "1 ", a top level request is generated as 
TLIP is set. Once TLNM is set, it can be cleared 
only with an hardware reset 

bx = Hlx: Hold Level x These bits are set to "1" 
when, in Nested Mode, an interrupt service routine 
at level x is interrupted from a request with higher 
priority (other than the Top Level interrupt request). 
It is cleared by the IRETexecution when the routine 
at level x is recovered. 

b6 = HLG: Hold Level6 

b5 = HLS: Hold Level 5 

b4 = HL4: Hold Level 4 

b3 = HL3: Hold Level 3 

b2 = HL2: Hold Level 2 

b1 = HL 1: Hold Level1 

bO = HLO: Hold Level 0 

20/22 
---------------------------~~~~;~2~s~~---------------------------
86 



4.12 ST9 DMA REGISTERS 
As each peripheral DMA channel has its own con­
trol registers, the following register list should be 
considered as a genera I example. The names and 
register bit allocation shown here may be different 
from those found in the peripheral chapters. 

IOCR Address set by Peripheral; Read/Write 
Generic External Peripheral Interrupt and DMA 
Control Register 

Reset value: undefined 
7 0 

b5 = IP: Interrupt Pending Set by hardware when 
the Trigger Event occurs Cleared by hardware 
when the request is acknowledged. Can be 
set/cleared by software in order to generate/cancel 
a pending request. Identical in function to IP of I CR. 

b4 =OM: DMA Mask If OM= "0" no DMA request 
is generated when the trigger event occurs. This bit 
is cleared whenever the transaction counter 
reaches zero (unless SWAP mode is active). 

b3 = IM: Interrupt Mask. If IM = "0" no interrupt 
request is generated. If IM = "1" DMA requests 
depend on OM bit value as shown below. 

OM IM 

1 0 DMA request (without interrupt at 
End of Block) 

1 1 DMA request (with interrupt at 
request End of Block) 

0 0 No request interrupt 

0 1 Interrupt request (without DMA 
associated is not used) 

b2-b0 = PRL2, PRL 1, PRLO: Priority Level Defini­
tion of the source priority level. PRL = 0 is highest 
priority. If PRL = 7, no interrupt can be acknow­
ledged, DMA request will be. 

4 - Interrupt and DMA 

DCPR Address set by Peripheral; Read/Write 
DMA Counter Pointer Register 

Reset value: undefined 
7 0 

I C7 I C6 I C5 I C4 I C3 C2 C1 RM 

b7-b1 = C7-C1: DMA Transfer Counter Register(s) 
Address 

bO = RM: Register File/Memory Selector If set. the 
DMA transactions are done with the Register File; 
if cleared, the DMA transactions are done with the 
Program or Data memory (see DAPR.DP) 

DAPR Address set by Peripheral; Read/Write 
DMA Address Pointer Register 

Reset value: undefined 
7 0 

I A? I A6 I AS I A4 I A3 I A2 I A1 I DP 

b7 -b1 = A7-A1: DMA Address Register(s) Address 

bO = DP: Data/Program Memory Selector: 
(DAPR.RM is "0") if set the DMA transactions are 
made with the Data Memory; if cleared the DMA 
transactions are made with the Program Memory. 

RM DP DMA Source/Destination 

0 0 Program Memory 

0 1 Data Memory 

1 0 Register File 

1 1 Register File 

21/22 --------------~ ~~~;mgm:~©~ --------------
87 



4 - Interrupt and DMA 

22/22 ~ SGS·THOMSON __________ _ ------------- lo.'"f/. r~1J©C/l~rno.m~'ii'C?©i'il©i!l 
88 



5.1 CLOCK 

5.1.1 Introduction 

The ST9 Clock generator module generates the 
inte_rnal clock for the ST9 core and the on-chip 
penpherals. The Clock generator can be driven by 
an external crystal circuit, connected to the OSCIN 
and OSCOUT pins, or by an external pulse gener­
ator, connected to OSCIN. 

5.1.2 Clock Management 

The oscillator circuit generates an internal clock 
signal CLOCK1 with the same period and phase as 
at the OSCIN input pin. The maximum frequency 
allowed for CLOCK1 is 24M Hz. 

The signal CLOCK1 drives a programmable divider 
by two. If the control bit MODER.DIV2 (R235.5) is 
set, the internal clock CLOCK2 is CLOCK1 divided 
by two; otherwise, if DIV2 bit is cleared, the clock 
signal CLOCK2 has the same period and phase as 
CLOCK1. CLOCK2 drives the internal clock INT· 
CLK delivered to all ST9 on-chip peripherals and 
acts as the central timebase for all timing functions 
(eg Multifunction Timer or Serial Communications 
Interface Baud Rate generator). The maximum 
frequency allowed for INTCLK is 12M Hz. 

Figure 5·1. Peripheral and Core Clocks 

CHAPTER 5 

CLOCK AND RESET 

CLOCK2 also drives a programmable prescaler 
which generates the basic time base, CPUCLK, for 
the instruction executer ofthe ST9 core. This allows 
the user to slow the program execution time to 
reduce power dissipation, and to speed up certain 
code segments for time critical routines. The inter­
nal peripherals are not affected by the CPUCLK 
prescaler. The prescaler value divides the input 
clock by the value programmed in the control bits 
MODER.PRS2, 1,0 (R235.4,3,2). If the prescaler 
value is zero, no prescale is made, thus CPUCLK 
has the same period and phase as CLOCK2 and 
IN~CL~. If the value is different from 0, the pres­
callng IS equal to the value plus one, ranging thus 
from two (PRS2, 1 ,0 = 1) to eight (PRS2, 1 ,0 = 7). 
The clock generated is shown in Figure 5.2. It must 
be noticed that the prescaling of the clock does not 
keep the duty cycle to 50%, but stretches the high 
level of the clock until completion. 

When External Memory Wait (or Bus Request or 
Wait for Interrupt) events occur, CPUCLK is 
stretched on the high level for the whole period 
required by the function. 
Note: The added wait cycles refer to the INTCLK frequency and not 
the original CPUCLK. 

Figure 5.3 shows an example of a memory access 
cycle with the CPUCLK prescaled by 2 and with 5 
added Wait states. 

MEMORY WAIT STATE 

BUS REQUEST 

CPUCLK 
(CORE CLOCK) 

'-------------{) INTCLK 
(PERIPH. CLOCK) 

VA00448 

1/6 

89 



5 - Clock and Reset 

Figure 5-2. ST9 Core Clock Prescaling 5.1.3 Clock Control Registers 

INTCLK 

PRS VALUE 

000 LflSLJLnJL.IlJl 

CPUCLK 

100 LJ u 

111 LJ 
VA00260 

The ST9 clock division by 2 and the clock prescal­
ing are controlled by the MODER register. SSP, 
USP, BRQEN and HIMP control bits are not related 
to the control of the clock. 

MODER- R235 (OEBh) Sys.Reg. Read/Write 

Mode Register 
Reset Value: 1110 0000 (OEOh) 

7 0 

I SSP I USP I DIV2 I PRS21 PRS1 I PASO IBRQENI HIMP I 

b5 = DIV2: OSCIN Divided by 2. This bit controls 
the divide by 2 circuit which operates on the OSCIN 
Clock. A logical "1" value means that the OSCIN 
clock is internally divided by 2, and a logical "0" value 
means that no division of OSCIN Clock occurs. 

b4- b2 = PRS2, PRS1, PASO: Prescaling of ST9 
Clock. These bits define the prescaler value used 
to prescale the CPUCLK from INTCLK. When 
these three bits are reset, the internal clock is not 
prescaled, and is equal to OSCIN frequency; in all 
other cases, the internal clock is prescaled by the 
value of (PRS2, 1 ,0 + 1) 

Figure 5-3. Memory Access with a Clock Prescaled by 2 and 5 Wait Cycles 

2/6 

INTCLK 

CPUCLK 

PORT1 

PORT6 __ __/ 

X PORTO--~ 

(READ)--~ 

X PORTO--~ 

(WRITE)--~ 

T1 

AO-A7 

A0-A7 

05-------__,_ 
(READ) 

T2 I TW I TW I TW I TW I TW I T3 

A0-A7 

>--------------<( D0-07 1N >-C > 
X D0-07 OUT ~ 
~---------/"-.._ 

os-----------~ 

(WRITE) 

R/W ___ ../ 
P/6 __ __/ 

VA00259 

t=:' SGS·THOMSON ------------- 1t.."Yl liii1C©OO:il[lQ©lilll©il:u©~ -------------

90 



5.1.4 Oscillator Characteristics 

The on-chip oscillator circuit (Figure. 5.4) is an 
inverting gate circuit. 
Note: Owing to the 0 factor required of the external oscillator, 
Ceramic Resonators may not provide a reliable oscillator source. 

In Halt mode, set by means of the HALT instruction, 
the parallel resistor R is disconnected and the 
oscillator is disabled, forcing the internal clock 
CLOCK1 to a high level and OSCOUT to a low 
level. 

To exit the HALT condition and restart the oscillator, 
an external RESET pulse is required of a minimum 
duration of 1 Oms (Figure. 5.6). 

It must be noted that if the Timer/Watchdog watch­
dog function is enabled, a HALT instruction will not 
disable the oscillator. This to avoid to stopping the 
watchdog if, by an error, a HALT code is executed. 
When this occurs, the ST9 CPU falls into an end­
less loop ended by the watchdog (or external) 
reset. 

5 • Clock and Reset 

Figure 5-4. ST9 Internal Oscillator Schematic 

OSCIN 

Note : 3000 < RIN < 7000 
ROUT> t.SMQ 
R>50n 

ROUT 

OSCCUT 

VA00269 

Figure 5-5. ST9 Oscillator Drive by Crystal and External Oscillator Drive 

CRYSTAL CLOCK 

EXT~RNAL C~OCK 

ST9 

OSCIN OSCOUT 
ST9 

OSCIN OSCOUT 

i I 

' Cl..CCK NC 
VA00267 INPUT 

VA00268 

Note: When the oscillator is used w1th a crystal, the associated capacitors Ct and C2 are typically 22pF for crystal ranging from BMHz to 24 
MHz. When the oscillator is driven with an external generator, the oscout pin must stay unconnected 

3/6 
----------------------------~ ~i~;~2~~~Y~ ----------------------------

91 



5 - Clock and Reset 

Figure 5·6. Oscillator Start-up Sequence 

5.2 RESET 

V CC MIN 

OSCIN 

OSCOUT 

INTCLK 

5.2.1 Introduction 

./" 
./ 

- ~ 
10 ms 

~ 

The processor Reset overrides all the other condi­
tions and forces the ST9 to the reset state. During 
reset, the processor internal registers are set to the 
reset value, as shown in figure. 5.7. 

5.2.2 Reset Generation 

The reset condition can be generated by the exter­
nal pin RESET or by the on-chip Timer/Watchdog. 

The on-chip Timer/Watchdog generates a reset 
condition if the watchdog mode is enabled 
(WCR.WDEN cleared, R252 page 0), and if the 
programmed period elapses without the specific 
code (AAh,55h) written to the appropriate register. 
The input pin RESET is not driven low by the 
on-chip reset generated by the Timer/Watchdog. 

During reset, the ITS output signal is kept low and 
the AS output is toggled with the crystal frequency 
(input at OSCIN) divided by 32. This condition is 
recognized by off-chip Z-bus peripherals as a reset 
condition. 

t 

t 

VA00295 

5.2.3 Processor Synchronization Under Reset 

During reset, a specific procedure has been im­
plemented to synchronize two or more oscillators 
in a multi-micro ST9 based system, for example a 
majority voting high reliability system. Figure. 5.8 
shows the principle schematic for the multi-micro­
processor synchronization. The master processor 
delivers the synchronous signal, output at its AS 
pin, to the R/W pin of the slave processors. The 
R/W pin is, under reset status, set to input mode 
with a weak (10kn typical) pull up resistor. The 
slave processor(s) synchronizes its internal clock 
phase with the clock received at its R/W pin. To 
guarantee the phase synchronization, the reset 
status must be at least 32x31 = 992 crystal periods. 
All the processors must have the same input clock. 

4/6 
----------------------------~ ~~~;~~~~~~~~ ----------------------------
92 



Figure 5-7. Internal Registers Reset Values 

Register System Register 
Number Reset Value 

F (SSPLR) = undefined 

E (SSPHR) =undefined 

D (USPLR) = undefined 

c (USPHR) =undefined 

B (MODER) = EOh 

A (Page Ptr) = undefined 

9 (Reg Ptr 1) = undefined 

8 (Reg Ptr 0) =undefined 

7 (FLAGR) =undefined 

6 (CICR) = 87h 

5 (PORTS) = FFh 

4 (PORT4) = FFh 

3 (PORT3) = FFh 

2 (PORT2) = FFh 

1 (PORT1) = FFh 

0 Reserved 

Figure 5-8. Synchronization Under Reset 

VR000165 

5 - Clock and Reset 

Page 0 Register 
Reset Value 

Reserved 

(SPICR) = OOh 

(SPIDR) = undefmed 

(WCR) = 7Fh 

(WDTCR) = 12h 

(WDTPR) = undefined 

(WDTLR) = undefined 

(WDTHR) =undefined 

(NICR) = OOh 

(EIVR) = x2h 

(EIPLR) = FFh 

(EIMR) = OOh 

(EIPR) = OOh 

(EITR} = OOh 

(EEPROM) = xxOO OOOOb 

Reserved 

5.2.4 Eprom Programming Pin 

The ST9 versions with on-chip EPROM memory 
require an external programming voltage Vpp to 
perform the programming procedure. The Vpp volt­
age must be applied to the "R"ES"ET pin during the 
whole programming phase. Refer to the EPROM 
Programming Board Manual for specifications. 

5/6 -------------~ ~~~©JH~~:~Y©~ -------------
93 



5 - Clock and Reset 

5.2.5 Reset Pin Timing 
The RESET pin has a Schmitt trigger input circuit 
with hysteresis. The internal reset is generated by 
the external pin synchronized with the internal 
clock. The power up reset circuit must keep the 
RESET input low for a minimum of the crystal 
startup period plus 53 crystal periods. 

Once the RESET pin reaches a logical 1, the 
processor exits from the reset status after 67 crystal 
periods (ITS is set). The processor then fetches 
from Program Memory locations 0 and 1 (power-on 
reset vector) and begins program execution from 
the address contained in the vector. If the ST9 is a 
ROM LESS version, without on-chip program mem­
ory, ports PortO, Port1 and Port6 are set to external 
memory mode (i.e Alternate Function) and the 
memory accesses are made to external Program 
memory with wait cycles insertion (see chapter 6 
External Memory Interface). 

Figure 5-10. Exit From Reset Timing 

Figure 5-9. Signal To Be Applied On Reset Pin 

INTERNAL 

RESET 

t RL = Minimum Low State 
RESET = 53 OSCIN Cycles 

VR000166 

L.1----T>53 XTLIN-----.f-----:.--T<67 XTLIN 

I 1=48 XTUN 

INTER~ 
RESET: \... --------11----....J 

---+- T<3 XTLIN 

OS ~L-----;1------~-;t-f 
I 
I 

: 7-f- 2 XTLIN : 

AS ±=tf:VJCJC!JC-",__+-; --..: 

CLK 

I I I I I 1 I 

: 11 : 12 : 13 : T1 : 12 : T3: 
I I I I I I I 

IFETCH ADDROIFETCH ADDRTI 

I I I I I I I 

: 11 : 12 : 13 : T1 : 12 : 1.3 : 
I I I I I I I 

lrncH r BYTEimcH 2"' em I 
VR001406 

616 ------------- I:fi ~~~;m~~~I!Y~, -------------
94 



CHAPTER 6 

INTERFACING EXTERNAL MEMORY 

6.1 GENERAL OVERVIEW 

The ST9 microcontroller provides an external 
memory interface with enhanced features including 
non-multiplexed bus capabilities, programmable 
memory wait cycles, bus requesVacknowledge 
cycles and shared memory bus access control. 
Data and Address are provided on Port 0, Port 1 
and, depending upon the family member, Port 6. 
Control signals are generated at the AS, lJS and 
RIW pins. The control signals P!U (to access up to 
128 kb~~CKf memory address space), WATT, 
BREO, are provided, as Alternate Functions 
of the general purpose parallel ports. 
The ST9 Memory Control Unit automatically recog­
nizes if a memory location belongs to on-chip mem­
ory. When the memory location is on-chip, it 
performs a machine cycle without lJS generation, 
and the access is performed on-chip. If the location 
does not belong to on-chip memory, an access to 
off-chip memory is performed (generating the lJS 
low pulse) through the Ports 0, 1 and 6. 

During Reset, AS and lJS are driven to perform 
external peripherals reset and to implement, in 
conjunction with the R/W pin, a multi-microproces­
sor synchronization procedure. 

6.2 CONTROL SIGNALS 

AS 
Address Strobe (Output, Active low, Tristate). The 
rising edge of AS indicates that Memory Address, 
Read/Write and Program/Data Memory signals are 
valid. 

DS 

Data Strobe (Output, Active low, Tristate). Data 
Strobe provides the memory data timing during 
external memory access cycle. When internal 
memory is accessed, lJS is kept high during the 
whole memory cycle. 

RIW 
Read/Write (Output, Active low, Tristate). The RIW 
output signal identifies the type of memory cycle: 
Read if RIW = "1", Write if RIW = "0". 

P!D 
Program/Data Memory (Alternate Function Output, 
Active low). The Pi!J output signal selects between 

Program and Data Memory. Pi!J = "1" for program 
memory, PiD = "0" for data memory. 

WAIT 

External Memory Wait (Alternate Function Input, 
Active low). The WAIT input signal indicates to the 
ST9 that the external memory requires more time 
to complete the memory access cycle. The memory 
cycle will then be stretched. 

lmEO 

Bus ~Rfost (Alternate Function Input, Active low). 
The input signal indicates to the ST9 that a 
bus request has tried or is trying to gain control of 
the memory bus. 

Figure 6-1. External Memory Read/Write 

CPU CLK 

PORTO 
(READ) 

iiS 

'"""' 

Tl 

I 
I 
I 

T2 T3 

I I 
I I 
I I 
I I 

-1--/-----ll I I 

~ rT I L------!----+----!1 I 

(~)-!----!----!-! --l~ vr 
R/W :X : : : : : '{_ 
P/0 )< : : : : : ~ 

YRD00441 

1/14 

95 



6 - Interfacing External Memory 

BACK 
Bus Acknowledge (Alternate Function Output, Ac­
tive low). The BACK output signal indicates that the 
ST9 has relinquished control of the memory bus in 
response to a bus request. 

PO 
Port 0 (Input/Output, Push-Pull/Open-Drain/Weak 
Pull-up). PortO can be configured as a bit pro­
grammable Parallel I/O port or as External Memory 
interface for multiplexed Low-Address/Data (A0-
7/D0-7). 

P1 
Port 1 (Input/Output, Push-Pull/Open-Drain/Weak 
Pull-up). Port1 can be configured as a bit pro­
grammable Parallel I/O port or as External Memory 
interface for the High-Address (AS-A 15). 

P6 (When available) 

Port 6 (Input/output, Push-Pull/Open-Drain/Weak 
Pull-up). This port, when available, can be con­
figured as bit programmable Parallel 1/0 port or as 
External Memory interface for the Low-Address 
(A0-7), allowing a non-multiplexed memory bus 
capability. 

Figure 6-2. ST9 Accessing External Program and Data Memory 

1/6 M74HC04 

AS~ l 
II 

LE 

~ 2 12 
Ao AD 0 Do Do 

AD 1 4 5 II 
AI ADI D I 0 I 

AD 2 7 6 10 
A2 AD 2 D2 02 

AD 3 8 • • AD 3 D3 D 3 A' 
AD 4IJ 74HC373 12 • .,, D, o, A 4 

AD 5!4 
's " ' As AD 5 Ds 

AD 617 
06 

16 ' Ao AD 6 D 6 
AD 718 19 5 

A' AD' 0 7 0 7 

iiE GND Vee 

1~0 t 
AD 0 

13 
As (--------., D 0 

ADI 
A. (--------., 14 D I 

1 
AD 2 

IS D 2 
ST9 A!O (--------., 

AD 3 
17 D 3 M27Cl001 

All (--------., .,, <128K x8> 
Al2 (--------., A7 Ao 18 D 4 

ADs 
19 D 5 A 13 (--------., .,, 
20 D 6 

A" (--------., 
AD7 21 

A\5 (--------., D7 

27 
As 

26 A9 

23 A,o 

cs An 

A\5 As ' A\2 

29 
AlJ 

29 Al4 

J A15 

P/ii 2 Au, 

iiS Rt\i iiE GND C'E PGH Vee 
116 M74HC04 

1 
l/4 M74HC32 

201 I~ 31+32 
v 

VR000346 

2/14 
~ SGS-1HOMSON ---------------- A""'Jl jjj~@!fi@~~~©'ITOO:Qli!J~©l§J ---------------

96 



6.3 MEMORY ACCESS CYCLE 

The access to external memory is made using the 
following signals: 

AS 
AS is active during the internal clock high-level 
phase of each T1 memory cycle. AS is released in 
high-impedance during Bus acknowledge cycle or 

Figure 6-3. Bus Request/Acknowledge Timing 

T3 TACK1 TACK M 

INTCLK 

INT BREO 

CPU CLK 

6 - Interfacing External Memory 

under processor control by setting the HIMP bit 
(MODER. G). 

Under the ST9 Reset state, the AS pin outputs the 
external clock divided by 32 (f[AS] = f[OSCIN/32]. 
This signal is used, in conjunction with US, to 
~rform an external peripheral reset (AS low and 
US low) according to the Z-bus protocol, and, in 
conjunction with RIW, to synchronize Slave proces­
sors in a multi-microcontroller system. 

TX1 TX2 T1 

I 
I I 

: I 1 I : 

: A1:5 - A~ X A1~ - AB 
PORT1 ~4~~hf'-+,----L---~( 

----.-~----.' : 
PORT6 

PORTO 
(READ) 

PORTO 
(WRITE) 

-...--...---.-' 
~+-~'f'~----~--~·K,~ 

II . : A~ - AO: X A7:- AO 
I I I I 
I I I I 
I 

07 - DO OUT 

I I I 
I I I 
I I I 

: : / II :<: : : I : 
: : : : ~: : : : : : ~r-'--: 
I I I I I I I I I I I I VR:X)J447 

3/14 -------------~ ~i~;mg:~?l1--------------
97 



6 - Interfacing External Memory 

OS 
During an External memory write cycle, the data 
output at Port 0 is valid when ITS is active. During 
a read cycle, the data at Port 0 must be valid before 
the trailing edge of ITS. ITS is released in high-im­
pedance during Bus acknowledge cycle or under 
processor control by set of HIMP bit (MODER.O). 
When the processor accesses on-chip memory, the 
ITS is held high. Under Reset status, the ITS pin is 
kept low to generate the external peripheral reset 
command. 

RIW 
When R/W = "1 ", the memory cycle is a Memory 
Read cycle; when R/W = "0", it is a Memory Write 
Cycle. RIW output signal is defined at the beginning 
of the memory c~le and is stable until the next 
Memory cycle. R/W is released in high-impedance 
during Bus acknowledge cycle or under processor 
control by setting the HIMP bit. 
Under Reset status, the pin is set as an input and 
held high with a weak internal pull-up. To syn­
chronize the processor phase with the phase of a 
Master Processor in a multi-processor application, 
the R!W pin must receive the AS signal of the 
Master. 

Pin 
When PiD = "1", the memory referenced by the 
processor is the Program Memory; when P/D = "0", 
the memory referenced is the Data Memory. The 
PiD output signal is defined at the beginning of the 
memory cycle and is stable until the next Memory 
cycle. It is enabled by software as the Alternate 
Function output of a parallel port bit (refer to specific 
ST9 version to identify the specific port and pin). 

Under Reset status, the associated bit of the port 
is set into bidirectional weak pull-up mode. To 
enable this function, the program must set the port 
bit as an Alternate Function. 

WJITr 
WATT is sampled by the ST9 (once this function is 
enabled by setting EWEN (EIVR.O R246 page 0) 
with the falling edge of the processor internal clock 
during phase T2 of every machine cycle. If the 
signal was sampled active, one more internal clock 
cycle is added to the memory cycle; on the falling 
edge of the added clock cycle, WATT is sampled 
again to continue or finish the memory cycle 
stretching (see paragraph 6.4). 

"S"REO, "BACK 
Once enabled by setting BRQEN (MODER.1 
R235), Bl1EC:l is sampled by the ST9 upon the 
falling edge of the internal clock during the phase 
T3. When the B"IT8::i signal is sampled low, the 

CPUCLK clock is stretched and the External Mem­
ory signals (AS, ITS, R/W, PO, P1 (, P6)) are re­
leased to high-impedance. The input signal B"IT8::i 
is then continuously monitored, and when it is 
sampled high the External Memory interface pins 
are driven again by the ST9 after two additional 
internal clock cycles. These cycles are used tofu lly 
drive and propagate the control and data signals 
through the external memory bus before CPUCLK 
is restarted. 
The output signal BACK is driven low during the 
whole period when the External Memory interface 
is released to high impedance. 

Under the Reset status, the bits of the 1/0 port(s) 
associated to B"IT8::i and BACK are set to Bidirec­
tional Weak pull-up mode and the enable bit 
BRQEN is cleared. To enable this function, the 
program must set the BACK port as an Alternate 
Function and enable (set to "1 ") the bit BRQEN. 

Port 0. When PortO is used as a parallel 1/0 port, it 
has the same features as a regular port (see 1/0 
port chapter). When set as an Alternate Function, 
PortO provides the Low Address bus (AO to A 7) and 
the Data bus (DO to D7) to interface to external 
memory. 

Port 1. When Port1 is used as a parallel I/O port, it 
has the same features as a regular port (see 1/0 
port chapter). When set as an Alternate Function, 
Port1 provides the High Address bus (AS to A 15 to 
interface to external memory. 

Port 6. When Port6 (if available) is used as a 
parallel 1/0 port, it has the same features as a 
regular port (see 1/0 port chapter). When set as an 
Alternate Function, Port6 provides the Low Ad­
dress bus (AO to A7) to interface to external mem­
ory with a non-multiplexed bus. 

Each memory memory cycle is composed of three 
CPUCLK phases: T1, T2, T3. During_phase T1, the 
memory address is output upon AS falling edge 
and is valid upon the rising edge of AS. Port1 and 
Port6 maintain the address stable until the next T1 
phase. 
If the Memory access cycle is a Read cycle, PortO 
pins are released to high impedance with the falling 
edge of ITS until the next AS falling edge. 
If the Memory access is a Write cycle, PortO is held 
active, the data is output during T2 and is main­
tained until the next address is output (upon the 
falling edge of AS). DS is pulled low during T2 only 
if the Memory access is an External Memory ac­
cess. If the memory cycle is a Memory Read, it is 
pulled low at the beginning of T2. If it is a Memory 
Write, ITS is kept low from the middle of T2 until the 
middle of T3. 

4/14 ----------- IDl SGS-THOMSON -----------
• J. • [1,1]0©00@~~~((;'jj'lfj@j'i0~ 

98 



6.4 STRETCHED ACCESS CYCLE 

The ST9 can interface to memory with slow access 
times by automatically inserting additional Wait 
cycles during the External Memory cycle. On-chip 
memory accesses do not require WAIT cycles and 
run at the full speed of CPUCLK. 

Three Wait cycle sources are available: 

- The input pin WAIT from external sources 

- The internal programmable Wait cycle generator 

- Internal memories with stretched access cycle 
(EEPROM) 

The input pin WAIT (when enabled) is sampled on 
the CPUCLK falling edge of phase T2. If active 

WDM2 
WPM2 

min 0 
0 
0 
0 
1 
1 
1 

max 1 

WCR R253 Page 0 Read/Write 
Wait Control Register 

Reset Value: 0111 1111 (7Fh) 

WDM1 
WPM1 

0 
0 
1 
1 
0 
0 
1 
1 

7 0 

I x I WDGEN lwoM21woM11woMolwPM21wPM11wPMol 

b7 =Reserved, reads as a "0". 

b6 = WDGEN: refer to Timer/Watchdog chapter. 

b5-b3 = WDM2-0: Data Space Wait Cycles. These 
bits contain the number of INTCLK cycles to be 
added automatically to external Data memory ac­
cesses. (WDM = 0 gives no additional wait cycles, 
WDM = 7 provides the maximum 7 INTCLK cycles 

6 - Interfacing External Memory 

(low), one INTCLK clock cycle will be added. During 
the added clock cycle, the WAIT pin is sampled 
~- CPUCLK is stretched for as long as the 
WAIT input is active. 

The internal programmable WAIT cycle generator 
allows the extension of the External Memory cycle 
automatically by the programmed number of WAIT 
cycles. Two three bit fields in the WAIT Control 
Register WCR (R252 page O) allow the stretching 
of Program and Data Memory access cycles inde­
pendently by 0 to 7 cycles. The three least signifi­
cant bits WPM2, 1,0 (WCR.5,4, 1) contain the 
number of Program memory wait cycles to be 
added, WDM2, 1 ,0 (WCR.2, 1 ,0) contain the num­
ber of Data memory wait cycles to be added. 

WDMO Nbof Clock 
WPMO Cycles Added 

0 0 - No Wait Cycle 
1 1 
0 2 
1 3 
0 4 
1 5 
0 6 
1 7 - Reset Value 

(this is the reset condition in order to allow the use 
of slow access time external memory, if faster 
memory is used, then this value may be modified 
by the User). 

b2-b0 =WPM2-0: Program Space Wait Cycles. 
These bits contain the number of I NTCLK cycles to 
be added automatically to external Program mem­
ory accesses. (WPM = 0 gives no additional wait 
cycles, WPM = 7 provides the maximum 7 INTCLK 
cycles (this is the reset condition in order to allow 
the use of slow access time external memory, if 
faster memory is used, then this value may be 
modified by the User). 

Note the number of clock cycles added refer to 
INTCLK and NOT to CPUCLK. 

5/14 
------------~ ~~@m~~~~------------

99 



6 - Interfacing External Memory 

Figure 6-4. External Memory Read/Write Sequence With External Wait 

INTCLK 

CPU CLK 

PORTl 

PORTS 

PORTO 
{READ) 

PORTO 
(WRITE) 

OS 
{READ) 

OS 
{WRITE) 

R/w 

P/0 

AO 

j( ~,_.:X • 
I 
I 
I 
I 

~:::: +::::: '(::;_ 
=x: : : : :;r: : : : : : y::_ 

VR000442 

6/14 ------------~ ~i©W.I1:~~~ ------------
100 



6 - Interfacing External Memory 

Figure 6-5. External Memory Read/Write with a Programmable Wait 

INTCLK 

CPUCLK 

PORT1 

PORT6 

PORTO 
(READ) 

PORTO 
(WRITE) 

OS 
(READ) 

ITS 
(WRITE) 

R/W 

P/5 

PROGRAMMED WAIT CYCLES 

T1 T2 TW TW 

r--'---"' I 
I 

AO~---r----r----r-H-,----,_--~ 

'---r---.J : : : : : 
I 
I 

=X A~ A~ X : : : F-
I 
I 
I 

D7 :OUT 

I I I I ::c 

I 
I 
I 
I 

' ' ' ; : : : ' ' :X ' : : : :; ' ' : ' C. 
=x:::: :~:::: L 

VR000443 

7/14 
---------------------------~~~§©~~~:~~---------------------------

101 



6 - Interfacing External Memory 

6.5 SHARED BUS 

When the ST9 runs in a multi-master bus system, 
it is necessary to release the bus control to other 
bus master(s). This operation can be performed by 
the Bus Request/Acknowledge capability sup­
ported by the ST9. 

When it is required to disable the external bus, but 
to keep the processor running in the on-chip mem­
ory, the external memory bus can be disabled by 
software programming of the HIMP (MODER.O) 
control bit._§y setting HIMP, the External Memory 
Interface (AS, ITS, R/W and PortO, Port1 and Port6 
if not configured as 1/0 lines) is set into a high 
impedance state. In this way, the external memory 
bus can be used by another resource (e.g. diag­
nostic equipment or external programming of sys­
tem memories) and the ST9 program can continue 
accessing the on-chip memory. This feature can 
also be useful for high security applications where 
the flow and addresses of the on-chip security 
algorithms must not be shown on the external 
address pins. 

The disabling of the External Memory Interface 
by setting HIMP = "1" can be interrupt driven by 
applying the "Bus Request" input signal to an 
External Interrupt pin. In this case the bus dis­
able response time will be longer than the auto­
matic system using the BtiETI request, however 
the ST9 can continue to execute the program 
written in the on-chip memory. 

6.6 PORTS PO, P1, P6 INITIALISATION AFTER 
RESET 

The Port 0, Port 1 and Port 6 initialisation after reset 
depends on the configuration of the ST9 as shown 
in Table 6.1. 

Table 6-1. 

ST9 Port 0, 1, 6 Initialization Device 

ROM, Bidirectional Weak-Pull-Up 
EPROM (PxCO,PxC1,PxC2 = 0,0,0 ; Data= 1) 

Memory Address and Data Alternate 
ROM LESS Funct1on Push-Pull 

(PxCO,PxC1,PxC2 = 1,1,0 ; Data= 1) 

If the device has on-chip Program memory (ROM 
or EPROM), the ports (or the existing parts of them) 
are set to Bidirectional Weak Pull-up Mode. 

If the device is ROMLESS or a ROM device with 
th~ ':l0Miess function enabled, the ports (or the 
ex1stmg part of them) are set to Alternate Function 
Push-Pull Mode, providing the Address and Data 
lines to interface to the external Program and Data 
Memory from Reset. 

6.7 ROMiess FUNCTION 

In order to accomodate the use of ROM based ST9 
devices in the event of a subsequent ROM code 
change, a ROMiess function may be enabled on a 
specified Port 1/0 pin by Mask Option. This function 
is activated by pulling the ROMiess select pin to 
ground with a 1 OOk resistor. This status is latched 
on the rising edge of the 'F!E5ET pin and, when low, 
the on-chip PROGRAM memory (ROM or EPROM) 
is disabled, causing all instruction fetch cycles to 
be external. On-chip Data memory (RAM or EE­
PROM) is not affected. 
If the ROMiess function is enabled by the mask 
option, and the internal program is to be used, then 
the ROMiess pin must be held to a high level (via 
a 1 OOk resistor to Voo) during the Reset cycle. After 
the Reset cycle the ROMiess pin may be pro­
grammed for any 1/0 or Alternate function. 

8/14 -------------~ ~~~.i!H~~~~?~ -------------
102 



6.8 BANKSWITCH LOGIC 

The Bankswitch (BS) logic of the ST9 family is an 
address expander allowing the ST9 extend its ad­
dressing range from 64K Program space + 64K 
Data space to up to 8 Megabytes of Program 
memory plus 8M bytes of Data memory organised 
in 32K byte segments mapped into the address 
8000h to FFFFh, and a 32K byte common segment 
in the address range OOOOh to 7FFFh. 

This expansion is achieved using the 8 bit data 
present on the 1/0 Port mapped as the Bankswitch 
port as address bits A23:A 16, and internally using 
A 15 as the control signal to control the common 
segment (segO) selection. 
An alternative use of the Bankswitch Port is to use 
the bits directly as chip selects to external memory. 
For this reason, the Bankswitch Port has the value 
FEh after the Reset State and whenever address 
bit A 15 is low (indicating the common segment), 
this allows the initialisation program and common 
subroutines to be held in the external memory 
mapped to bit 0 of the Bankswitch output port. 

The data present on the Bankswitch port (i.e. Ad­
dresses A23 to A16) changes according to the 
following conditions: 

Figure 6-6. Bankswitch Memory Maps 

FFF"Fh 

SEG. 1 
32K BYTE SEC 

8000h 
7FFFh 

SEC 0 
32K BYTE 

OOOOh 

6 - Interfacing External Memory 

- the address is in Program memory 

- the address is in Data memory 

- a DMA transaction is being made with Program 
memory 

- a DMA transaction is being made with Data mem-
ory 

- the common segment is being addressed 

The Bankswitch logic includes 4 registers whose 
contents are user definable as the segment num­
bers to be used with these memory addressing 
conditions as shown in the following table: 

- BS_PSR when A 15 = "1" and the segment is in 
Program Memory 

- BS_DSR when A15 = "1" and the segment is in 
Data Memory 

- BS_PDSR when A15 = "1" and DMA is using 
Program Memory 

- BS_DDSR when A 15 = "1 "and DMAis using Data 
Memory 

also 

- BS Port= FEh whenever A15 = "0" 

PROGRAM SPACE (EXTERNAL) 

FFFFh r-,:_;_GS_.;.,_E--,--S-EG-. -2-.,---~-SE-G-. -3 -,--~__,,._,lrS-E-G -2-55---ri-S-EG-2-55°1 

~~~~ ~--~--~---L___,,.-~.L_ __ i_ __ ~ 

SEG 0
32K BYTE

OOOOh L......_ _ __j

DATA SPACE (EXTERNAL)

VR001369

~ SGS·THOMSON ___________ 9_114
-------------- ._""fl WJ~©CII©~~~©'D'IB@l!:~©:!l

103

6 - Interfacing External Memory

6.8.1 Bankswitch Register Mapping
When the Bankswitch port is used as an 1/0 port,
the data and control registers are mapped as 1/0
Port 2 in the System page E (for the Data Register)
and Page 2 (for the Control Registers). Refer to
figure 6-7, for the Bankswitch Register Mapping.

When the Bankswitch function is enabled, the four
Bankswitch Registers are mapped into Page 2
(BS_PDSR and BS_DDSR) and in System Group
E (BS_PSR and BS_DSR). The mapping of the
Program and Data Memory Bankswitch Registers
into Group E optimises the software overhead dur­
ing memory segment changes, while the mapping
of the DMA Bankswitch registers in an 1/0 page
does not give a great overhead as, once initialised,
the values are used automatically.

Figure 6-7. Bankswitch Register Mapping

Bankswitch Disabled

OFFh

OFEh

OFDh

OFCh

OFBh

OFAh P2C2

OF9h P2C1

OF8h P2CO

OF7h

OF6h

OE5h OF5h

OE4h OF4h

RESERVED OE3h OF3h

P2 OE2h OF2h

OE1h OF1h

OEOh OFOh

6.8.2 Bankswitch Port Programming
The Bankswitch Port functionality can be nibble
(4bits or half a byte) programmed as Bankswitch
outputs or 1/0 by latching (in the Reset cycle) the
state of the Alternate Function pins BSH_EN1 and
BSL_EN1.

These port pins are set to INPUT CMOS status
during the Reset cycle so programming is made
through the use of external pull-up or pull-down
resistors. After the Reset cycle both port pins can
be independently reprogrammed as any other 1/0
pin.

The programming configurations 01 and 10 both
enable the lower nibble as active Bankswitch out­
puts.

Bankswitch Enabled

OFFh

OFEh

OFDh

OFCh

OFBh

OFAh RESERVED

OF9h BS_PDSR

OF8h BS_DDSR

OF7h

OF6h

OE5h OF5h

OE4h OF4h

BS_PSR OE3h OF3h

BS_DSR OE2h OF2h

OE1h OF1h

OEOh OFOh

10/14 ------------- Eii. ~~~~Itl2~&~c!» -------------
104

Table 6-1. Port 2 Nibble Programming for
Bankswitch and 1/0

BS Port Nibble BS Port
BSH_EN1 BSL_EN1 Reset

High Low Value

0 0 1/0 1/0 OFFh

0 I 1/0 BS OFEh

I 0 1/0 BS OFEh

I I BS BS OFEh

WARNING BS PSR and P2C2 share the same
physical registei; so that when the Bankswitch port
is nibble programmed, caution must be taken when
writing to this register. If the lower nibble is pro,
grammed as Bankswitch and the upper as 1/0,
programming of the Banks witch register with a byte
value can cause the erroneous reconfiguration of
the 110 nibble.

6 - Interfacing External Memory

6.8.3 Output Timing

In order to prevent potential bus conflicts on Port 0
(Address/Data multiplexed) during the address
strobe time when using the Bankswitch logic, the
timing of the Bankswitch outputs may be modified
by software. This is achieved by setting to "1" bit 1
of Register OFFh in 1/0 page 0. This causes the
Bankswitch outputs to be all high during the ad­
dress strobe period. The reset condition provides
normal timing and status. Refer to figure 6-8.

Also the timing of the Read/Write signal may be
modified as shown in figure 6-9 by setting to "1" bit
0 of Register OFFh in 1/0 page 0. This allows the
use of different types of external memories. When
this bit is "0" (the reset state) normal timing is
generated.
Note: The LST9 ST9 Incremental Linker supports the pagmg mech·
an1sm of the Banksw1tch and 1s able to allocate program and data
code 1nto specific segments if requ~red

Figure 6-8. Bankswitch Output Timing Modification

MACHINE CYCLE

T1 T2 T3

CPUCLK

PO X AO-A7 X DD-07 >C

P1 X A8-A15 >C

As \._/ ___

P2 X [BS=O] >C

P2 I \ [85=1) >C
VR001.376

50 SGS·THOMSOI\! 11/14

':'j fl. ~\Uil:iiO!@~~~©\'iiJC!liJD©!ll
105

6 - Interfacing External Memory

Figure 6-9. R/W Output Timing Modification

12/14 -------------~ ~~~~m~~~~©~ -------------
106

6.9 ST9 PIPELINE

The ST9 implements pipe-line stages on instruction
fetch and execution in order to increase the execu­
tion speed. The instruction execution is in fact
hidden by the Memory access cycles: the execution
of one instruction is overlapped with the pre-fetch
of the two successive bytes. The fetch of the first
byte (opcode) is identified by the machine cycle M1,
the fetch of the second byte by M2.

Figure 6-10. Instruction Pipe Line Stages

6 - Interfacing External Memory

The 2 bytes instructions, whose execution time is
6 CPUCLK cycles, have the instruction execution
hidden by the following instruction prefetch. For
those instructions that require an execution time
longer than the time to prefetch the following bytes,
perform memory access during their execution or
interrupt the sequential memory access, the pipe
is flushed.

T! T2 TJ T! T2 TJ T! T2 TJ T! T2 TJ T! T2 TJ T! T2 TJ

CPUCLK

"' M2

DECODE

INSTRUCTION N

INSTRUCTION N+ I

"'

ACCESS REGISTERS

AND EXE:CUTE

FETCH 1

PRE-FE:TCH

"' M2

FETCH 1 FETCH 2

ACCESS REGISTERS
DECODE AND EXECUTE

HIDDEN EXECUTION

14---INSTRUCT!ON COMPLETION --~

VR000179

13/14
-------------~ ~~~©IH~~i[~~ -------------

107

6 - Interfacing External Memory

6.10 "SPURIOUS" MEMORY ACCESSES

The ST9 in certain cases produces external mem­
ory accesses which may be regarded as "Spurious"
in their nature. While these do not affect the correct
operation of the ST9, these accesses may cause
misunderstandings when developing and debugg­
ing applications as the signals AS and ITS are
produced, and Ports 0, 1, and 6 output updated
addresses (if used to interface to external mem­
ory).

The spurious reading cycle is produced when ex­
ecuting specific instructions. This is one of 4 cases:
double reading, reading before writing, reading
when the stack is internal or prefetch reading.

- DOUBLE READING A memory location read by
the ST9 is read two times consecutively (instead
of one).

Involved instruction(s):

DIVrr, r; divide (16/8)

The first byte of the code following DJV is fetched
two times. The double reading does not occur if the
Overflow flag was set by DIV, or if Divide by zero
was trapped. The PI[) line remains high during the
cycle.

- READING BEFORE WRITING A memory loca­
tion which is to be written to by the ST9 is
previously read.

Involved instruction(s):

LD (rr) +, (r) +;load (byte) Memory, Register

The destination memory location is read before
being written. The P/[) line reflects the memory
space of the destination memory location.

- READING WHEN THE STACK IS INTERNAL If
the System and/or User Stack has been pro­
grammed to use the Register File, a memory
location of Data Space is POPed in parallel.

Involved instruction(s):

POP R ; POP (byte) from System Stack

POP (R) ;

POPU R ; POP (byte) from User Stack

POPU (R) ;

While a byte is being POPed from the Register File,
a memory location in Data Space is read in parallel
with its address given by SSPHR+SSPLR for POP
instructions and by USPHR+USPLR for POPU in­
structions. The external data is ignored.

POPW RR ; POP (word) from System Stack

POPUW RR ; POP (word) from User Stack

While the higher address byte is being popped from
the Register File, a memory location in Data Space
is read in parallel with its address given by
SSPHR+SSPLR for POPW instructions and by
USPHR+USPLR for POPUW instructions. No
spurious reading is made for the lower byte.

RET; Return from Subroutine

While the Program Counter Higher and Lower
bytes are POPed from the Register File, two mem­
ory locations are read at addresses given by
SSPHR+SSPLR.

IRET; Return from Interrupt

While the Program Counter Higher and Lower
bytes and the FLAGS are POPed from the Register
File, three memory locations are read at addresses
given by SSPHR+SSPLR. When working with In­
ternal Stacks, SSPHR and USPHR contents are
don't care from the point of view of program execu­
tion, but they must be considered RESERVED by
the User as the instructions listed in this section
perform updating of SSPHR/USPHR, together with
the spurious reading.

- PREFETCH READING Due to the ST9 Pipeline,
instructions which stop the Core or which per­
form program branches can fetch bytes of the
following program code while the pipeline is
being flushed.

Involved instruction(s):

WFI; Wait For Interrupt

reads two bytes of the following code.

HALT; Halt CALL (rr); Unconditional Call subrou­
tine

read one byte of the following code in Program
space (P/D high).

14/14 -------------~ ~~~@mg,~:1i~©~ -------------
108

CHAPTER 7

SERIAL PERIPHERAL INTERFACE

7.1 SPI FEATURES

The ST9 Serial Peripheral Interface (SPI) allows
several external peripherals to be linked through an
SPI protocol bus, as well as, with reduced software
overhead, other different protocols: S-bus, 12C-bus
and 1M-bus.

Its Main Features are:

- Full duplex 3-wire synchronous transfer

- Master operation only

- 1.5MHz max bit transfer frequency (INTCLK =
12MHz)

- 4 Programmable bit rates

- Programmable clock polarity and phase

- Busy Flag

- End of transmission interrupt

- Additional hardware to facilitate more complex
protocols

Figure 7-1. A Typical SPI Network

PORTX
PORTY

+ l
cs STB

ST93C<:6 ST6398
ST9 MCU ON SCREEN

1K EEPRGM DISPLAY

DO 01 SK SOl SCK

SOl I i i J i SOD
SCK

7.2 FUNCTIONAL DESCRIPTION

A block diagram of the Serial Peripheral Interface
(SPI) is shown in Fig 7.2.

The SPI (when enabled) receives input data from
the ST9 Core (into SPIDR) and originates the Serial
Clock (SCK) based upon dividing of the internal
processor clock (INTCLK). The data is parallel
loaded into the 8 bit shift register (from the internal
bus) during a write cycle and then shifted out
serially through the Serial Data Out pin (SDO) to
the slave device which responds by sending its
data to the master device via the SDI pin. This
implies full duplex transmission with data-out and
data-in both synchronized with the same clock
signal. Thus the transmitted byte is replaced by the
byte received, eliminating the need to separate "Tx
empty" and "Rx full" status bits.

When the shift register is loaded, data is parallel
transferred to the read buffer and data becomes
available for the ST9 during a read cycle.

7.3 SIGNAL DESCRIPTION

The SPI requires three alternate function pins on
an 1/0 port:

SCK.
SDO
SDI

Serial Clock signal
Serial Data Out
Serial Data In

An additional output bit of an 1/0 port may be used
to perform the slave chip select signal.

Serial Data Out (SDO)

The SDO pin is configured as an output for the
master device. This is obtained by programming
the corresponding 1/0 pin as an output alternate
function. Data is transferred serially from a master
to a slave on SDO, most significant bit first. This pin
is forced to the high impedance state when the SPI
is disabled and is set to "1" when arbitration is lost
(during an S-bus/12C-bus protocol trans­
mission).The master device always allows data to
be applied on the SDO line one half cycle before
the clock edge in order to latch the data for the slave
device.

1/10

109

7- Serial Peripheral Interface

Figure 7-2. SPI Block Diagram

INT2

i
!
' ' ' ' !
' ' '

SDD SDI SCK/INT2

READ BUFFER

' ' ' ' '

SERIAL PERIPHERAL INTERFACE DATA REGISTER
C SPIDR)

END OF

TRANSMISSION

Master Serial Clock (SCK)

The master device uses SCK to latch the incoming
data on the SDI line. This pin is forced to a high
impedance state when SPI is disabled (SPEN,
SPICR.7 = "0"), in order to avoid clock contention
from different masters in a multi-master system.
The master device generates SCK from INTCLK.
SCK is used to synchronize the transfer of data
both in and out of the device through its SDI and
SDO pins. The SCK type and its relationship to data
are controlled by the CPOL and CPHA bits in the
Serial Peripheral Control Register.
This input is provided with a digital filter which
cleans spikes lasting less than one INTCLK period.

DATA BUS

CLOCK
TO MSPI
CONTROL
LOGIC

VR000347

Two bits (SPR1 and SPRO) in the Serial Peripheral
Control Register, SPICR (R254) select the clock
rate. Four frequencies can be selected, two in a
high frequency range (mostly used with the SPI
protocol) and two in a medium frequency range
(mostly used for more complex protocols).

Serial Data In (SDI)

Data is transferred serially from a slave to a master
on this line, most significant bit first. In an S­
BUS/12C-bus configuration, SDI line senses the
value forced on the data line (by SDO or by another
peripheral connected to the S-bus/12C-bus envi­
ronment).

2/10
---------------------------~~~~@~~~~9~---------------------------
110

7.4 SPI REGISTERS

SPI uses two registers mapped on page 0 of the
register file:

SPIDR-R253 (FDh) Page 0 Read/Write
SPI Data Register (R253)

Reset Value: 0000 OOOOb (OOh)
7 0

b7-b0 = SPI Data Register. This register contains
the data transmitted and received by the SPI. Data
is transmitted b7 first, and receives incoming data
into bO. Transmission is started by writing to this
register.

SPICR-R254 (FEh) Page 0 Read/Write
SPI Control Register (R254)

Reset Value: 0000 OOOOb (OOh)
7 0

I SPEN I BMS I ARB I BUSY I CPOL I CPHA I SPR1 I SPRO I

b7 = SPEN: Serial Peripheral Enable. When set,
the two alternate functions SCK and SDO are
enabled. When disabled, SCK and SDO are kept
in high impedance. Furthermore, SPEN affects the
selection of the source for interrupt channel BO.
Transmission will start by simply writing the data
into the SPIDR Register (see paragraph 7.5).

b6 = BMS: S-bus!t2C-bus Mode Selector. This bit
should be set to "1" when the SPI is used in an
S-bus/12C-bus protocol. It enables S-bus/12C-bus
arbitration, clock synchronization and Start/ Stop
detection (refer to paragraph 7.6 for more details).
When this bit is reset to "0", a reinitialisation of the
SPI logic is performed allowing recovery proce­
dures after a Rx/Tx failure. BMS (and SPEN) af­
fects the selection of the source for interrupt
channel BO (see paragraph 7.5)

b5 = ARB: Arbitration flag bit. This bit is set when
the SPI, in S-bus/12C-bus mode, loses arbitration,
and is reset when an S-bus/12C-bus stop condition
is detected. ARB can be reset by software. When
ARB is set automatically, the SDO pin is set to high
value until a write instruction on SPIDR is per­
formed.

7 - Serial Peripheral Interface

b4 = BUSY: SPI Busy Flag. BUSY flag is set when
a transmission is in process. This bit allows the user
to monitor the SPI status by polling its value.

b3 = CPOL: Transmission Clock Polarity. CPOL
controls the normal or steady state value of the
clock when data is not being transferred.

As the SCK line is held in a high impedance state
when the SPI is disabled (SPEN = "0"), the SCK
pin must be connected to Vss or Vee through a
resistor according to the CPOL state. Polarity
should be selected during the reset routine accord­
ing to the value set into all peripherals and must not
be changed during program execution.

SCK
CPOL CPHA on

Fig. 7-3

0 0 (a)
0 1 (b)
1 0 (c)
1 1 (d)

b2 = CPHA: Transmission Clock Phase. CPHA
controls the relationship between the data on the
SDI and SDO pins and the clock produced at the
SCK pin. CPHA bit selects the clock edge which
captures data and allows it to change state. It has
its greatest impact on the first bit transmitted (MSB)
because it does (or does not) allow a clock transi­
tion before the first data capture edge.
Figure 7.3 shows the relationship between CPHA,
CPOL and SCK, and indicates active clock edges
and strobe times.

b1-b0 = SPR1,SPRO: SPI Rate. These two bits
select one (out of four) baud rates to be used as
SCK.

SPR1 SPRD
Clock SCK Frequency

Divider (INTCLK = 12MHz)

0 0 8 1500kHz (T = 0.67!15)
0 1 16 750kHz (T = 1.33!1S)
1 0 128 93.75kHz (T = 10.66!1S)
1 1 256 46.87kHz (T = 21.33!1s)

3/10 ------------- I..V. ~i~©m2m:~~~ -------------
111

7- Serial Peripheral Interface

Figure 7-3. SPI Data and Clock Timing

SCK

SCK

SCK

SCK

INTERNAL

READ STROBE

SDI/SDO

7.5 INTERRUPT STRUCTURE

SPI peripheral is associated with external interrupt
cha~nel ~0 (pin INT2) as described in chapter 4.5.
Mult1plex1ng between the external pin and SPI in­
ternal source is controlled by the SPEN and BMS
bits according to the following table:

SPEN BMS Interrupt Source

0 0 External channel INT2

0 j S bus/12C bus start or
stop condition

j X End of one byte
transmission

VA004.37

The two possible SPI interrupt sources are: End of
transmission (after each byte) and S-bus/12C-bus
start condition. Care should be taken when toggling
SPEN or/and BMS bits from (0,0) status, this
should be done by masking the interrupt channel
BO (reset of EIMR.IMBO, bit 2 of External Interrupt
Mask Register). Furthermore it is necessary to
clear possible spurious requests on the corre­
sponding channel by resetting the interrupt pend­
ing bit EIPR.IPBO (bit 2 of External Interrupts
Pending Register).

The INT2 input Alternate Function is always
mapped together with the SCK input Alternate
Function to allow start/stop bit detection when
using S-bus/12C-bus protocols. A delay instruction
(e.g. a NOP instruction) should be inserted between
the SPEN toggle instruction and the interrupt pend­
ing bit reset instruction.

4/10 ------------- I:ii. ~~~©!H~~~~©~ -------------
112

Figure 7-4. SPI 1/0 Pins

JNT2

ST90XX

SDI
P21
pjjj

SCK
P22
INT2

SOD
P23

7 - Serial Peripheral Interface

7.6 WORKING with DIFFERENT PROTOCOLS

The SPI peripheral offers the following facilities to
work with S-bus/12C-bus and 1M-bus protocols:

- Interrupt request on start/stop detection

- Hardware clock synchronisation

- Arbitration lost flag with an automatic set of data
line

The following paragraphs provide information to
manage these protocols.

7.6.1 12C-Bus Interface

12C-bus is a two-wire bidirectional data-bus, the two
lines being SDA (Serial DAta) and SCL (Serial
Clock). Both are open drain lines to allow arbitra­
tion. As shown in figure 7.5, data is toggled with
clock low and Start and Stop conditions are de­
tected when a high to low (start) or a low to high
(stop) transition on the SDA line occurs with the
SCL line high.

Each transmission consists of nine clock pulses
(SCL line). The first 8 pulses transmit the byte (msb
first), the ninth is used by the receiver to acknow­
ledge.

The data on the SDA line is sampled with the low
"'"'" to high transition on the SCL line.

Figure 7-5. 12C Bus Configuration

SDA

SCL

START
CONDITION

" 1 n BYTE

\AcK/
'-J
--~

CLOCK PULSE
FOR ACKNOWLEDGEMENT

DRIVEN BY SOFTWARE

I
I
I
I
I
I
I

CLOCK PULSE
FOR ACKNOWLEDGEMENT

DRIVEN BY SW

STOP
CONDITION

VRDD0188

----------- ID'J. SCiS·lHOMSON __________ 511_0
·" • li:il~©rnl©rn~rn©Wl©l!i~©i0

113

7 - Serial Peripheral Interface

SPI Working With 12C-bus

To use the SPI with the 12C-bus protocol, the SCK
line is used as SCL, the SDI and SDO lines, exter­
nally wired-OR'd, are used as SDA. All the pins
must be configured as open drain (see figure 7.5).

Table 7-1 shows the typical 12C-bus sequence
divided in 5 phases: initialize, start, transmission,
acknowledge and stop.

Software and hardware will take care of each
phase. A master to slave transmission can be
managed as example according to the following
table.

During the transmission phase, the following 12C
BUS features are also supported by hardware.

Clock Synchronization

In a multimaster 12C-bus system, when more mas­
ters generate their own clock, synchronization is
needed. The first master which releases the SCL
line stops internal counting, restarting only when
the SCL line goes high (released by all the other
masters). In this way, devices using different clock
sources and different frequencies can be inter­
faced.

Table 7-1

Phase Software

SPICR.CPOL, CPHA = 0, 0
SPICR.SPEN = 0

INITIALIZE
SPICR.BMS = 1
SCK pin set as AF o~tput
SDI pin set as input < 1
Set SCK, SDO port b1t to 1

SDO pin set as output
START Open Drain

Set SDO port bit to 0

SPICR.SPEN = 1
TRANSMISSION SDO pin as Alternate Function

cutup! load data into SPIDR

SPICR.SPEN = 0

ACKNOWLEDGE
Poll SDAiine
Set SDAiine
SPICR.SPEN = 1

STOP Set SDO port bit to 1

Figure 7-6. S-Bus/12C Bus Peripheral Compati­
bility Without S Bus Chip Select

voo

) [) 2x
2 5KO

SCK SCL
SOl

_j L
SDA

SOD SEN

ST9 MCU S-BUS
S-BUS SLAVE

PROTOCOL DEVICE

~ SCL

SDA

12 C BUS
SLAVE
DEVICE

VA00443

Hardware Notes

Set polarity and phase
SCK, SDO IN HI-Z SPI disable
SCL, SDA= 1,1 START/STOP interrupt

Enable

SDA = 0, SCL = 1 START condition
interrupt request receiver START detection

SCL=O Managed by interrupt routine
Start transmission load FFh when receiving end of
interrupt request transmission detection

SCK, SDO in HI-Z SPI disable
SCL, SDA= 1 only if transmitting

only 1f receiving
SCL=O only if transmitting

SDA= 1 STOP condition
interrupt request

6/10 ------------~ ~itm~~~~~ ------------
114

Arbitration Lost
When more masters are sending data on SDA line,
the following mechanism is performed: if the trans­
mitter sends a "1" and SDA line is forced low by
another device the ARB flag (SPICR.5) is set and
the SDO buffer is "switched off". (ARB is reset and
SDO buffer is "switched on" when SPI DR is written
to again). When BMS is set to "1" the. peripheral
clock is supplied through the INT2 lin~ by ~he
external clock line (SCL). Due to potential n01se
spikes (which must last longer than one INTCLK
period to be detected), RX or TX may gain a clock
pulse.

Figure 7-7. SPI Arbitration

ST9-1

ST9-2-SCK

SPIKE

7 - Serial Peripheral Interface

Referring to Figure 7.7, if ST~-1 ~elects. a noise
spike and gains a clock pulse, 11 w11i stop 11~ trans­
mission in advance and hold the clock line low
causing ST9-2 to be froze~ .at the 7th bit. :ro exit
and recover from this cond1t1on the BMS b1t must
be reset to "0" this will cause the reset of the SPI
logic, aborting 'the current transmission. An. End of
Transmission interrupt is generated after th1s reset
sequence.

ST9-2
INTERNAL SERIAL

CLOCK

VROOI410

7/10 ------------l..V. ~itm~~~~~ ------------
115

7 • Serial Peripheral Interface

7.6.2 S-Bus Interface

S-bus is a three-wire bidirectional data-bus, with
functional features similar to 12C-bus. Differently
from 12C-bus, the START/STOP conditions are
given by encoding the information on 3 wires in­
stead of 2, as shown in Figure 7.8. The additional
line is referred as SEN.

SPI Working With S-bus

The S-bus protocol uses the same pin configuration
as 12C-bus for generating the SCL and SDA lines.
The additional SEN line is managed through a
standard ST9 1/0 port under software control (see
Figure. 7.9).

Figure 7-9. S-Bus Configuration

-r---"voo

l 2•
2 SKO

SCK SCL
SOl

f----J
SDA

500 I SEN
PORTX

S-BUS

ST9 MCU SLAVE
S-BUS/ DEVICE
t2C BUS

PROTOCOL

- SCL

- SDA

r2c BUS
SLAVE
DEVICE

VA00444

Figure 7-8. Mixed S-bus and 12C-bus system

SCL"'TT\JJ\J.rr-..., I I '\lr\l/TTI I ,......,
I I I I \ I I I I I
I I L..J I I
I I I I I I I I

SDA I I I : __ I J I I
-:-:-------1 !~ ~ :~

I I 1___J i___J i I
I I I I I I I I

SEN I : : I __ I I : I

--:\! !,----r,-~ : li
L~ ! l !W!J

1
START

6
STOP

VA00440

Figure 7-10. ST9 and lntermetal Peripheral

-~voo

2•
2 5 KO

SCK CLOCK
SOl

__j
DATA

SOD _I I DENT
PORTX

1M-BUS

ST9 MCU SLAVE

1M-BUS
DEVICE

PROTOCOL

8/10 ------------~ ~i©m~i!~~ ------------
116

7.6.3 1M-Bus Interface

The 1M-bus has a bidirectional data line and a clock
line, and in addition it requires an I DENT line that
distinguishes an address from a data byte (Figure
7.11). Unlike the 12C-bus protocol, the 1M-bus
protocol sends the least significant bit first, this
requires a software routine which reverses the bit
order before sending, and after receiving a data
byte. Fig 7.10 shows the connections for an 1M-bus
peripheral to an ST9 SPI. The SDO and SDI pins
are connected to the bidirectional data pin of the
peripheral device. The SDO alternate function is
set in Open Drain (externai2.5K ohm pull-up resis­
tors are required}.

With this type of configuration, data is sent to the
pripheral by writing the data byte to SPIDR. To
receive data from the peripheral, the User should

Figure 7·11. IM bus TIMING

7 - Serial Peripheral Interface

write FFh into SPIDR in order to generate the shift
clock pulses. As the SDO line is set to the Open
Drain configuration, the incoming data bits that are
set to one do not affect the SDO/SDI line status
(which defaults to a high level due to the FFh in the
transmit register), while incoming bits that are set
to "0" pull the input line low.

In software it is necessary to initialise the ST9 SPI
with CPOL and CPHA set to "1 ", "1 ". By using a
general purpose 1/0 as the I DENT line and forcing
it to a logical "0" when writing to SPIDR, an address
is sent (or read). Then by setting this bit to a logical
"1" and writing to SPIDR, data is sent to the periph­
eral. When all the address and data pairs are sent
it is necessary to drive the I DENT line low and high
to create a short pulse. In this way the stop condi­
tion is generated.

IDENT l~.... ________ --.~
CLOCK LINE

DATA LINE

\11000172

9/10 -------------li1i ~i~©m2m~~~©~ -------------
117

7 - Serial Peripheral Interface

1 _o_11_o ___________ ~ ~~~©IH2rr~i~YI------------
118

8.1 INTRODUCTION

The ST9 core includes a programmable 16-bit
down counter with an 8-bit prescaler. The
Timer/Watchdog can be programmed to be used
as a Watchdog (in order to detect hardware or
software failures) or as a Timer (with Single and
Continuous counting modes).

The Timer/Watchdog functions may use inputs
from an external pin and output as an Alternate­
Function of an 1/0 Port. The Input pin can be used
1n one of the four programmable input modes:

- event counter,

- gated external input mode,

- triggerable input mode,

- retriggerable input mode.

Figure 8-1. Timer/Watchdog Block Diagram

CHAPTER 8

TIMER/WATCHDOG

The output pin can be used to generate a square
or a Pulse Width Modulated signal.

An interrupt generated by the unit (when running
as a 16-bit Timer/counter and not as Watchdog)
can be used as a Top Level Interrupt or as a source
connected to channel 0 of the external interrupt
structure.

The Timer is composed of a 16-bit down counter
with an 8-bit prescaler. The clock for the counter
can be driven either by an external clock or an
internal clock equal to INTCLK divided by 4.
When using an external 24MHz crystal (INTCLK =
12MHz), the End Of Count rate is:

5.59 sec. for Max. Count (Timer Cons!. = FFFFh,
Prescaler Cons!.= FFh)

333 nsec. for Min. Count (Timer Cons!. = OOOOh,
Prescaler Cons!. = OOh)

WDTPR WOTRH.WDTRL
8 BIT PRESCALER 16 BIT COUNTER

(READ AND v.RITE) (READ AND v.RITE)
END OF
COUNT

WDIN

~MER/WATCHDOG CLOCK

INTCLK/4 ---....-!

OUTMOD WROUT OUTEN

WOOUTQ--------------r---~--~--~-,
NMI Q-------------,

INTO Q----------,

TOP LEVEL INTERRUPT REQUEST

INTAO REQUEST VA00303

1/4

119

8 • Timer/Watchdog

8.2. SELECTION OF WATCHDOG
TIMER/COUNTER MODES

8.2.1 Timer/Counter Control

Start/Stop

ST_SP (WDTCR.7) enables down-counting. An
instruction which sets this bit will cause the Timer
to start at the beginning of the following instruction.
Resetting this bit will stop the counter.

If the counter is stopped and restarted, counting will
resume from the last value unless a new constant
has been entered in the Timer registers. A new
constant can be written with the counter running.
The new value will be loaded at the following End
Of Count (EOC).

WARNING: In order to prevent incorrect counting
of the Timer/Watchdog, the prescaler (WDTPR)
and counter (WDTRL, WDTRH) registers must be
initialised before the starting of the Timer/Watch­
dog. If this is not done, counting will start with the
reset (un-initialised) values.

Single/Continuous Mode

SINGLE MODE: At End Of Count the Timer stops,
reloads the constant, and resets the Start/Stop bit
(WDTCR.6) (user may check the current status by
reading this bit). Restarting is done by setting the
Start/Stop bit. Note that the Timer constant is re­
loaded only if it has been modified during the stop
period.

CONTINUOUS MODE: At End Of Count the
counter automatically reloads the constant and
restarts. It is stopped only if the Start/Stop bit is
reset. This Mode bit can be written with the Timer
stopped or running. It is possible to toggle the
Start/stop and start the counter with the same
instruction.

8.2.2 Timer/Counter Input Modes

Setting the Input Enable (INEN) bit enables the
input mode which is selected via the INMD1 and
INMD2 bits. When IN EN is reset to zero, the input
section is disabled and the values of INMD1 and
INMD2 are don't-care.

Event Counter Mode (INMD1 = "0", INMD2 = "0")

The Timer is driven by the signal applied to the input
pin which acts as an external clock. The unit works
therefore as an event counter. The event is a high
to low transition of the input signal.
Spacing between trailing edges should be at least
333ns (i.e. the maximum Watchdog Timer input
frequency is 3MHz with INTCLK = 12MHz).

Gated Input Mode (INMD1 = "0", INMD2 = "1")

The Timer uses the Watchdog internal clock (INT­
CLK divided by 4) and starts and stops the Timer
according to the input pin. When the status of the
Input pin is High the Timer Watchdog count oper­
ation proceeds, and when Low, counting is
stopped.

Retriggerable Input Mode
(INMD1 = "1", INMD2 = "1")

A Timer/Watchdog start is caused by:
a) a set of the Start-Stop bit, or
b) a High to Low (low trigger) transition on the input
pin.

In order to stop the Timer, it is only necessary to
reset the Start-Stop bit to zero.

Triggerable Input Mode
(INMD1 = "1", INMD2 = "0")
In this mode when the Timer is running
(TIMER/WATCHDOG internal clock), a High to Low
transition of the input pin causes the counting to
start from the initial value. When the Timer is
stopped (ST_SP bit equal to zero), a High to Low
transition of the input pin has no effect.

8.2.3 Watchdog Mode

In this mode (WDGEN = "0") the counter generates
a fixed time basis. When End Of Count is reached
the Timer generates a system Reset.

The time base is user-defined and must be written
in the Timer registers before entering Watchdog
mode. In Watchdog mode it is possible to modify
only the Prescaler Constant. This new value will be
loaded when the counter restarts.
Resetting WDGEN (bit 6 of the Wait Control Reg­
ister) causes the counter to start regardless of the
value of the Start-Stop. In order to prevent a system
reset the sequence AAh, 55h should be entered in
WDTRL (Watchdog Timer register low). Once the
writing of 55h has been performed the Timer re­
loads the constant and counting restarts from the
preset value. The minimum time between the writ­
ing of the AAh and 55h codes is zero, i.e. the writing
is sequential, and the maximum time is given by
the Watchdog timeout period.

In Watchdog-mode a HALT instruction stops the
CPU but does not stop the Watchdog Timer, which
will cause a System Reset when reaching the End
of Count. Furthermore ST_SP, S_C and input
mode selection bits are "don't-care". Hence regard­
less of their status, the counter always runs in
Continuous Mode driven by the internal clock.

The Output mode should not be enabled since that
particular mode of operation is meaningless.

2/4
------------~:fl. ~~m~~O!~~------------
120

8.2.4 Timer/Watchdog Output Modes

OUTPUT modes are selected using 2 bits of
WDTCR (R251): OUTEN (Output Enable) and
OUTMD (Output Mode).

When OUT MD= "0", the Timer outputs a signal with
a frequency equal to half the End Of Count repeti­
tion rate. With INTCLK =12M Hz, this allows gener­
ation of a square wave with a period ranging from
666ns to 11.18 seconds.

The value of the WROUT bit is transferred to the
output pin at the End Of Count and the value is held
until the next End Of Count when OUTMD = ''1".
This allows the user to generate PWM signals, by
modifying the status of WROUT between End of
Count events, based on software counters de­
cremented on the Timer/Watchdog interrupt.

OUTEN= "1" enables the output function selected
viaOUTMD

When OUTEN= "0", the output is disabled and the
output pin is held at a "1" level to allow several
alternate functions on the same pin.

8.3 TIMER/WATCHDOG INTERRUPT

When enabled, the Timer/Watchdog will issue an
interrupt request at every End Of Count.

A pair of control bits, lAOS (EIVR. 1, Interrupt AO
selection bit) and TLIS (EIVR.2, Top Level Input
Selection bit) allow the selection of 2 interrupt
sources (the Timer/Watchdog End of Count or an
external pin) in two different ways, as a top level
non maskable interrupt (Software Reset) or as a
source for channel AO of the external interrupt logic.

In the Watchdog mode the End Of Count always
causes a system reset.

Figure 8-2.

TIMER WATCHDOG
END OF COUNT

INTO

NMI

8 -Timer/Watchdog

1-----+ TOP LEVEL
INTERRUPT REQUEST

n.JS (EIVR.2)
VA00293

A block diagram of the interrupt logic is given below
(Note: software traps can be generated by setting
the interrupt pending bit):

The following table shows all the possible configu­
rations of the interrupVreset sources which involve
the Timer/Watchdog:

Control Bits Enabled Sources Watchdog

WDGEN lAOS TLIS Reset INTAO Top Level
Timer Status

0 0 0 WDG/Ext Reset SWTRAP SWTTRAP Watchdog
0 0 1 WDG/Ext Reset SWTRAP Ext Pin Watchdog
0 1 0 WDG/Ext Reset Ext Pin SWTRAP Watchdog
0 1 1 WDG/Ext Reset Ext Pin Ext Pin Watchdog

1 0 0 Ext Reset Timer Timer Timer
1 0 1 Ext Reset Timer Ext Pin Timer
1 1 0 Ext Reset Ext Pin Timer Timer
1 1 1 Ext Reset Ext Pin Ext Pin T1mer

3/4 -------------~ ~~~©m~:~~©~ -------------
121

8 - Timer/Watchdog

8.4. TIMER/WATCHDOG REGISTERS

The Timer/Watchdog has 4 registers mapped into
Goup F, Page 0 of the Register File.
WDTCR (R251): Timer/Watchdog Control Register
WDTPR (R250): Timer/Watchdog Prescaler
Register
WDTRL (R249): Timer/Watchdog Counter low
register
WDTRH (R248): Timer/Watchdog Counter high
register

Three additional control bits are mapped in the
following registers of page 0:

- watchdog mode enable, WCR.6

- top level interrupt selection, EIVR.2

- interrupt AO channel selection, EIVR.1

Note: The registers conta1nmg these b1ts also contain othertunct1ons
only the b1ts relevant to the operation of the Timer/Watchdog are
shown here.

WDTPR -(R250) is used to select the prescaling
factor from 1 (loading OOh) to 256 (loading FFh).

WDTRL -(R248), WDTRH -(R249) This 16 bit reg­
ister is used to load the 16 bit counter value. The
registers can be read or written "on the fly".

WARNING: In order to prevent incorrect counting
of the Timer/Watchdog, the prescaler (WDTPR)
and counter (WDTRL, WDTRH) registers must be
initialised before the starting of the Timer/Watch­
dog. If this is not done, counting will start with the
reset (un-initialised) values.

WDTCR- R251 (OFBh) Page 0; Read/Write
Timer/Watchdog Control Register

Reset value: 0001 001 0 (12h)
7 0

b7 = ST_SP: Start/Stop Bit. Setting this bit to a "1"
starts the counting operation (see Warning above).
When this bit is "0", the counter is stopped (reset
status)

b6 = S_C: Single/Continuous. When this bit is set,
the counter operates in Single Count Mode. Con­
tinuous Mode is set when this bit is "0"

b5-b4 = INMD1, INMD2: Input mode selection bits.

INMD1 INMD2 Input Modes

0 0 Event Counter
0 1 Gated (Reset status)
1 0 Triggerable
1 1 Retriggerable

b3 =IN EN: Input Enable. This bit enables ("1 ")and
disables ("0") the input section

b2 = OUTMD: Output Mode. When this bit is "1 ",
and the output is enabled, the value of WROUT is
transferred to the output pin on every End Of Count.
When "0", the output is toggled on every End of
Count

b1 = WROUT: WROUT bit. The status of this bit is
transferred to the Output pin when OUTMD = "1 ",
it is user definable to allow PWM output (at reset
WROUT="1")

bO = OUTEN: Output Enable bit. The output is
enabled by setting this bit to "1 ", and disabled by
resetting to "0"

WCR- R252 (OFCh) Page 0; Read/Write
Wait Control Register

Reset value: 0111 1111 (7Fh)
7 0

I X IWDGENI X I X I X I X X X

b6 = WDGEN: Watchdog Enable Bit (active low).
Resetting this bit to zero via software enters the
Watchdog mode. Once reset , it cannot be set to
"1" by the user program. At system reset, the
Watchdog mode is disabled

ElVA- R246 (OF6h) Page 0; Read/Write
External Interrupt Vector Register

Reset value: xxxx 0110 (X6h)
7 0

I X I X I X I X I X I TLIS I lAOS I X

b2 = TLIS: Top Level Input Selection bit. This bit
selects the Top Level interrupt source. When "0",
the Top Level interrupt source is the Watch­
dog/Timerend of count, when= "1", it is the external
pinNMI.

b1 = lAOS: Interrupt AO channel Selection Bit. This
bit allows the Timer/Watchdog interrupt to channel
through the external Interrupt AO source, allowing
the setting of user-defined priority levels.

WARNING: To avoid spurious interrupt requests,
an access to the lAOS bit must be made only when
the interrupt logic is disabled (i.e. after the Dl
instruction). It is also necessary to clear a possible
interrupt pending request on channel AO before
enabling this interrupt channel. A delay instruction
(e.g. a NOP instruction) must be inserted between
the reset of the interrupt pending bit and the lAOS
write instruction.

4/4 ------------- i:ii ~~©m~~~~?~~ -------------
122

CHAPTER 9

1/0 PORTS AND HANDSHAKE TRANSFERS

9.1 INTRODUCTION

The ST9 is provided with dedicated lines for
input/output. These lines, grouped into 8-bit ports,
can be independently programmed to provide par­
allel input/output with or without handshake, or to
carry in/out signals to/from the on-chip peripherals
and Core (e.g. Timers and SCI). All ports have
active pull-ups and pull-down resistors compatible
with TTL loads. In addition, pull-ups can be turned
off for open-drain operation and weak pull-ups can
be turned on to save off-chip resistive pull-ups.
Input buffers can be either TTL or CMOS com­
patible.

9.2 CONTROL REGISTERS

Each port PX (PO-P?) has three associated control
registers (PXCO, PXC1, PXC2) which define the
port lines configuration and allow dynamic change
in port configuration during program execution.
Ports and control registers are mapped into the
Register File as shown in Fig 9.1. Ports and control
registers are treated like any other general-pur­
pose register. There are no special instruction for
port manipulation, any instruction that addresses a
register can address the ports. Data can be directly
accessed in the port register, without passing
through other memory or "accumulator" locations.

Figure 9-1. Ports and Control Register Map in the Register File

OE5h

OE4h

OE3h

OE2h

OE1h

OEOh

GROUPE

PS

P4

P3

P2

P1

PO

R229

R228

R227

R226

R225

R224

OFEh

OFDh

OFCh

OFAh

OF9h

OF8h

OF6h

OF5h

OF4h

OF2h

OF1h

OFOh

PAGE2

OFFh

P3C2 R254 OFEh

P3C1 R253 OFDh

P3CO R252 OFCh

OFBh

P2C2 R250 OFAh

P2C1 R249 OF9h

P2CO R248 OF8h

P1C2 R246 OF6h

P1C1 R245 OF5h

P1CO R244 OF4h

POC2 R242 OF2h

POC1 R241 OF1h

POCO R240 OFOh

PAGE3

P7 R255

P7C2 R254

P7C1 R253

P7CO R252

P6 R251

P6C2 R250

P6C1 R249

PSCO R248

P5C2 R246

P5C1 R245

P5CO R244

P4C2 R242

P4C1 R241

P4CO R240

PAGE43

OFFh pg

OFEh P9C2

OFDh P9C1

OFCh P9CO

OFBh P8

OFAh P8C2

OF9h P8C1

OF8h PSCO

R255

R254

R253

R252

R251

R250

R249

R248

1/18

123

9 • 1/0 Ports and Handshake Transfers

During the reset state, all the Ports are set as
bidirectional/weak pull-up mode, with output data
register set to OFFh. This condition is also held after
reset (except for Ports 0, 1, 6 in romless devices,
see chapter 6) and can be redefined under soft­
ware control at any time.

9.3 PORT BIT STRUCTURE AND PROGRAMMING
By programming the control bits PXCOn and
PXC1 n (see Figure 9.2a) it is possible to configure
bit PXn as Input, Output, Bidirectional or Alternate
Function, where X is the number of the 1/0 port,
and n the bit within the port (n = 0 to 7).

By programming the control bit PXC2n it is possible
to select the input level as TIL or CMOS.

The output buffer can be programmed as Push-pull
or Open-drain. A Weak Pull-up configuration can
be used when the port bit is programmed as Bidi­
rectional. It is an Open-drain configuration with a
high pull-up resistor value (turned on by writing a
"1 "), to avoid the requirement for external resist­
ances.

Figure 9-2a. Control Bits

Bit7 Bitn

The basic structure of the bit PXn (n = 0 to 7) of a
general purpose port PX is shown in Figure 9.3.

Independently of the chosen configuration, when
the User addresses the port as an destination
register of an instruction, the port is written to and
the data is transferred from the Internal Data Bus
into the Output Master Latches. When the port is
addressed as a source register for an instruction,
the port is read and the data stored in the Input
Latch is transferred onto the Internal Data Bus.

When PXn is programmed as Input: (Fig. 9.4)

- The Output Buffer is forced tristate

- The data present on the 110 pin is sampled into
the Input Latch at the beginning of the execution
of each instruction

- The data stored in the Output Master Latch is
copied into the Output Slave Latch at the end of
the execution of each instruction. So if bit PXn is
reconfigured as Output or Bidirectional, the data
stored in the Output Slave Latch is reflected on
the 110 pin.

BitO

PCX2 PXC27 PXC2n PXC20

PXC1 PXC17

PXCO PXC07

Figure 9-2b. Port Bit Configuration Table

PXC2n
PXC1n
PXCOn

PXn Configuration

PXn Output

PXn Input

Notes:
:BIDIRECTIONAL
:INPUT
:OUTPUT

1
0
0

BID*

OD

TTL

BID"
IN"
OUT"
AF"
TRI

:OUTPUT ALTERNATE FUNCTION
:TRISTATE

0
0
0

BID*

WP

TTL

• These conf1gura~ons are shown 1n F1gure 9·4, 9-5, 9·6 and 9-7.

PXC1n

PXCOn

1
0
1

IN*

TRI

TTL

OD
WP
pp
TTL
CMOS

0 1
0 1
1 0

IN* OUT*

TRI OD

CMOS TTL

OPEN DRAIN
WEAK PULL-UP
PUSH-PULL

0
1
0

OUT*

PP

TTL

TTL STANDARD INPUT
CMOS STANDARD INPUT

PXC10

PXCOO

1 0
1 1
1 1

AF* AF*

OD pp

TTL TTL

2118 ------------ i..V. ~i§©lH~~~O!~lj ------------
124

Figure 9-3. Basic Structure of an 1/0 Port Bit

PUSH PULL
TRISTATE

OPEN DRAIN
WEAK PULL-UP

ALTERNATE
FUNCTION

(OUT)

1/0 PIN

9 - 1/0 Ports and Handshake Transfers

ALTERNATE
FUNCTION (IN)

INPUT
BIDIRECTIONAL

ALTERNATE FUNCTION

INTERNAL DATA BUS

Figure 9-4. Input Configuration

1/0 PIN

VA00224

VA00222

Figure 9-5. Output Configuration

1/0 PIN

ALTERNATE
FUNCTION

VA00225

3/18 ------------~ ~i©IHWf~~~~ ------------
125

9 - 1/0 Ports and Handshake Transfers

When PXn is programmed as Output: (Fig. 9.5)

- The Output Buffer is turned on in an Open-drain
or Push-pull configuration

- The data stored in the Output Master Latch is
copied both into the Input Latch and into the
Output Slave Latch, driving the 1/0 pin, at the end
of the execution of each instruction.

When PXn is programmed as Bidirectional: (Fig.
9.6)

- The Output Buffer is turned on in an Open-drain
or Weak Pull-up configuration

- The data present on the 1/0 pin is sampled into
the Input Latch at the beginning of the execution
of each instruction

- The data stored in the Output Master Latch is
copied into the Output Slave Latch, driving the
1/0 pin, at the end of the execution of each
instruction.

Due to the unique feature of the bidirectional mode
of reading the external pin instead of the output
latch, particular care must be taken with arith­
metic/logic and boolean instructions performed on
a bidirectional port pin.

These instructions use a read-modify-write se­
quence, and the result written in the port register
depends on the logical level present on the external
pin.

This may bring unwanted modifications to the port
output register content.

Figure 9-6. Bidirectional Configuration

1/0 PIN

VA00226

For example:
Port register content

OFh
external port value

03h

(Bits 3 and 2 are externally forced to 0)

Making a BSET instruction on bit 7 will return:

Port register content
83h

(Bit 3,2 have been cleared.)

external port value
83h

To avoid this situation, it is suggested that all the
operations on a port using at least one bit in bidi­
rectional mode, are performed on a copy of the port
register, then transferring the result with a load
instruction to the 110 port.

When PXn is programmed as Alternate Function:
(Fig. 9.7)

- The Output Buffer is turned on in an Open-drain
or Push-pull configuration

- The data present on the 1/0 pin is sampled into
the Input Latch at the beginning of the execution
of each instruction

- A signal coming from an on-chip Module is
allowed to load the Output Slave Latch driving
the 1/0 pin. Signal timing is under the Module
control. If no module is connected to PXn the 1/0
pin is driven to a high level in Push-pull configu­
ration and is driven to high impedance in open
drain configuration.

Figure 9-7. Alternate Function Configuration

ALTERN AT£
fUNCTION (OUT)

1/0 PIN

INTERNAL DATA BUS

VA00227

_41_18 ____________ [iji. ~ii©lH&~~~~~ -------------
126

9.4 ALTERNATE FUNCTION ARCHITECTURE

Each single 1/0 pin may access three different
types of ST9 internal signals:

- Data bus line (I/O)

- Alternate Function Input

- Alternate Function Output

Each pin configuration is done by software, thus
allowing the User to choose the type of signal to
access a pin. The choice of type of signal is made
with the registers PxC2, PxC1, PxCO of the 1/0 Port
x (Please refer to the previous section for more
details)

Pins Declared as an 1/0
A pin declared as an 1/0 is a pin connected to the
1/0 buffer. In such a case, this pin may either be an
Input or an Output or an 1/0 depending on the value
stored in (PxC2, PxC1, PxCO)

Pin Declared As An Alternate Function Input
One single pin may access several Alternate Func­
tion inputs. In such a case, the User has to select
by software the Alternate Function module (by
enabling it) and unselect all other Alternate Func·
lions (by disabling them).

Figure 9-8. Example of 3 Alternate Function
Inputs

r-1, ALTERNATE tUNCTION I
INPUT

MODULE 1

AlTERN ATE FUNCTION I
1/0 PIN n--~____jliNPlJT MODULE 2

Y ALTERNATE fUNCTION I
INPUT

MODULE 3

Figure 9-9. Example of 3 Alternate Function
Outputs

''ODULE 1

1/0 PIN MODULE 2

liODULE 3

9 - 1/0 Ports and Handshake Transfers

No specific configuration of the port is required to
enable the input Alternate Function, as the input
buffer is directly connected to each module using
it. As more than one module can use the same input
Alternate Function line, it is under the software
control to enable a module to use the input Alter­
nate Function.

Pin Declared As An Alternate Function Input
A single pin may be directly connected to several
Alternate Function inputs. In such a case, the User
has to select the required input mode (TTL or
CMOS levels) and to enable, by software, the
selected Alternate Function module (by enabling it)
and unselect all other Alternate Functions (by dis­
abling them).
No specific configuration of the port is required to
enable the input Alternate Function, as the input
buffer is directly connected to each module using
it. The digital 1/0 remains operational, even when
using the Alternate Function input. The exception
to this is for an 1/0 port bit connected to analog
voltages (for the Analog to Digital Converter), see
the tonowing section.

Pin Declared As An Alternate Function Output
A pin declared as an Alternate function output
corresponds to (PxC2,PxC1,PxCO) = 111 or 011.
Several Alternate Function outputs may drive a
common pin. In such a case, the Alternate Function
output signals are ANDed before driving the com·
mon pin. The User has therefore to select by soft·
ware the Alternate Function module by enabling it
and has to disable all other modules (a disabled
module outputs a "1 ").

Figure 9-10. Example of One 1/0 Pin
Configuration

1/0 PIN DMA

HANDSHAKE

CORE

VROOC171

5/18 -------------I..V. ~~tm~~~~©~ -------------
127

9 - 1/0 Ports and Handshake Transfers

General Configuration
A single pin may be used, according to different
phases of the software, as an 1/0 or connected to
an Alternate Function input or an Alternate Function
output. An example IS g1ven in figure 9.1 0

WARNING. When a common pin is declared to be
connected to an Alternate Functton input and to an
Alternate Function output, the User must be aware
of the fact that the Alternate Function output signal
always input to the Alternate Function module(s)
declared as input(s). Figure 9.10 shows an
example where the signal P!D also enters "FID5TB
andiNT3.

9.5 SPECIAL PORTS

9.5.1 Bit Structure For A/D Converter Inputs

When a port bit is used as input for an on-chip AID
Converter, its structure is modified as shown in
Figure 9.11.

The behaviour of this bit is identical to the general
purpose bit described in paragraph 9.3 except
when it is programmed as Alternate Function. In
this case, the Output Buffer is forced Tristate and
the input of the Input Buffer is disconnected from
the 1/0 pin and forced low. In this way the 1/0 pin is
free to assume any analog value without causing
power consumption in the Input Buffer. The bit
MUST be programmed to (PxC2, PxC1,
PxC0)=111) to assume this special configuration.

Figure 9-11. A/D Input Port Bit Structure

1/0 PIN

VA00219

9.6 1/0 STATUS AFTER WFI, HALT AND RESET

The status of the ST9 1/0 ports during the Wait For
Interrupt, Halt and Reset operational modes is
shown in the following table. The External Memory
Interface ports are shown separately, however, if
only the internal memory is being used and the
ports are acting as 1/0, the status is the same as
shown for the other 1/0 ports.

Mode PO P1 [P6] 1/0

High Next
No Affect (clocks

WFI output from ST9
Impedance Address running}

High Next
No Affect (clocks

HALT output from ST9
Impedance Address

stopped}

Bidirectional Weak

RESET Note 1
Pull-up except:
ROMiess = Input TTL
BS_EN = Input CMOS

Note 1: PO, P1 and P6 (when used to provide non-multiplexed low
order address) setup depends on the ROMLESS condition.

- if ROM LESS (ST9 memory is Off-chip):
PO is set to A. F Tristate
P1 ,P6 are set to A. F.
Push-pull, Output value is undefined.

- if not ROMLESS (ROM or EPROM parts)
PO, P1 and P6 are set to Bidirectional Weak
Pull-up, Output value is FFh (all pins high).

6/18
~ SliS·THOMSON -------------- !!o."'f/. i:iJO©IfJ@~~~©1rul@~O©® --------------

128

9.7 HANDSHAKE/DMA CONTROLLER

9.7.1 Introduction

This module allows the User to configure an 1/0
Port under handshake control or to support DMA
operations, driven by an on-chip 16 bit Multifunc­
tion TIMER, between Data/Program Memory or
Register File and an 1/0 port.
A block diagram of the module is shown in Figure
9.12.

The module supports data exchange with hand­
shake through port PX with 4 handshake lines
(RDSTB, RDRDY, WRSTB, WRRDY) connected
as Alternate Functions. Input, Output and Bidirec­
tional Handshake modes are available.

Input Alternate Function RTISTB and WRSTB are
always associated to external interrupt channels.
To synchronize handshake protocols generating
interrupt requests (as the following paragraph will
show) the User must program the interrupt control

9 - 1/0 Ports and Handshake Transfers

register and the vector associated to the used
line(s) (RDSTB and/or WRSTB). The active high
output lines RDRDY and WRRDY are held high
when not active in order to allow the Alternate
Function connection with other ST9 peripherals.
DMA transfers can move data from Data/Program
Memory or Register File to the port or viceversa,
using either the Multifunction Timer CAPTO or
COMPO DMA Channels. In Figure 9.12 the four
on-chip lines that connect the module to the on-chip
Multifunction Timer to support DMA transfers are
shown (DO (Data Direction), CO_SYNCHR(COm­
pare SYNCHronism), CA_SYNCHR (CApture
SYNCHronism) and On Chip Event).
To program the module the User has to write the
Handshake/DMA Control register (HDCTL) ac­
cording to the table shown in Figure 9.13. Different
handshake protocols and the Port behaviour during
DMA operations are explained in the following
paragraphs.

ST9 HANDSHAKE/DMA CONTROL REGISTER ADDRESSES

OE5h

OE4h

OE3h

OE2h

OE1h

OEOh

PAGEO

P5

P4

P3

P2

P1

PO

R229

R228

R227

R226

R225

R224

OFFh

OFEh

OFDh

OFCh

OFBh

OFAh

OF9h

OF8h

OF6h

OF5h

OF4h

OF2h

OF1h

OFOh

PAGE 2

HDCTL3 R255

P3C2 R254

P3C1 R253

P3CO R252

HDCTL2 R251

P2C2 R250

P2C1 R249

P2CO R248

P1C2 R246

P1C1 R245

P1CO R244

POC2 R242

POC1 R241

POCO R240

OFFh

OFEh

OFDh

OFCh

OFBh

OFAh

OF9h

OFBh

OF7h

OF6h

OF5h

OF4h

OF3h

OF2h

OF1h

OFOh

PAGE3

P7

P7C2

P7C1

P7CO

P6

P6C2

P6C1

P6CO

HDCTL5

P5C2

P5C1

P5CO

HDCTL4

P4C2

P4C1

P4CO

R255

R254

R253

R252

R251

R250

R249

R248

R247

R246

R245

R244

R243

R242

R241

R240

7/18 ------------- i.1i. ~i~©JH!lc~~~~~ -------------
129

9 - 1/0 Ports and Handshake Transfers

Figure 9-12. Handshake/DMA Controller Module Block Diagram

PORT PY
CONTROLLER

INTERRUPT
CONTROLLER

NORMAL

CONTROL SIGNALS

NORMAL
CONTROL SIGNALS

PORT PX

CONTROLLER

HANDSHAKE/DMA
CONTROLLE:R

HDCTL Read/Write
Handshake/DMA Control Register

Reset Value: 1111 1111 (OFFh)

7 0

b7-b5 = HS?, HS6, HS5: Handshake Mode Selec­
tion. These bits allow selection of the Handshake
direction and the number of wires used in the
handshake as shown in the following table.

b4 = DEN: DMA Enable. This bit (when reset)
enables the DMA function with handshake through

Figure 9-13. Module Configuration Table

Handshake Modes

HS Disabled
HS Output (21ines)
HS Output (1 line)
HS Input (21ines)
HS Input (1 line)
HS Bidirectional (2 lines)

TIMER

VR000180

an 1/0 Port. DMA is disabled when this bit = "1 ".

b3 = DD: DMA Data Direction. The direction of the
DMA transfers through an 1/0 Port is set by this bit.
A "1" sets DMA Input and a "0" sets DMA Output.

b2 = DST: DMA Strobe. This bit enables the use of
a Multifunction Timer On-Chip Event to trigger the
DMA transaction when set.

b1 = DCH: DMA Channel When DST is set, allow­
ing the DMA transactions to be triggered by a
Multifunction Timer, DCH selects the MFT source,
a "1" selects the COMPO source, a "0" selects the
CAPTO source.

bO = DO. This bit is fixed by hardware to a high
level.

HS7 HS6 HSS

X 1 1
1 1 0
0 1 0
1 0 1
0 0 1
X 0 0

_s1_1s ___________ ~ ~~©R&~cfi!Y~ ___________ _
130

9.7.2 Programmable Handshake Modes

9.7.2.1 INPUT HANDSHAKE

Two Input Handshake Modes are available to syn­
chronise input transitions on port bits programmed
as Input or Bidirectional. Output or Alternate Func­
tion bits are not affected.
In the timings, READ PORT is an ST9 internal
signal that transfers data from the Input Latches
onto the Data bus.

Two Lines Input Handshake

When this mode is selected WRRDY is set to
indicate that data can be loaded into the Input
Latches of the Input and Bidirectional port pins.
Data present on the pins are sampled when the
peripheral forces a low level on WRSTB.

When a rising edge on WRSTB occurs, WRRDY
goes low signifying that the Input Latch is full and
further loading must be inhibited until the ST9 reads
the port. When the port register is read, WRRDY is
set. Both low and high levels on WRSTB must last
at least one INTCLK cycle.

The User is suggested to program the External
Interrupt Channel associated with the WRSTB line
to generate an interrupt request when a rising edge
occurs. The ST9 can thus, in the course of its
interrupt service routine, read the data furnished by
the peripheral as soon as it is available.

Figure 9-14b. Two Lines Input Handshake Timing

INTCLK

WRSTB

PORT

WRRDY

READ PORT

9 - 1/0 Ports and Handshake Transfers

One Line Input Handshake

Figures 9.14c and 9.14d illustrate the timing asso­
ciated with the One Line (WRRDY) Input Hand­
shake Mode.

When this mode is selected WRRDY is set to
indicate that data can be loaded into the Input
Latches of the Input and Bidirectional port pins.

Data present on the pins is continuously sampled.
When the ST9 is reading the port WRRDY goes
low. If data is strobed into the port only when
WRRDY is high, the forced low state of WRRDY
will prevent Input Latches data from changing while
ST9 is reading the port. When the ST9 reading
cycle finishes, WRRDY is set.

Figure 9-14a. Two Lines Input Handshake

ST'::J DATA

EXTERNAL

PERIPHERAL --
\.JRSTB

\.JRRDY

VR000!73

VA000448

9/18
--------------~~~~i~2~:~~~ --------------

131

9 • 1/0 Ports and Handshake Transfers

9.7.2.2 OUTPUT HANDSHAKE

Two Output Handshake Modes are available to
synchronize output transitions on port bits pro­
grammed as Output or Bidirectional. Input or Alter­
nate Function bits are not affected.

In the timings WRITE PORT is the internal signal
that transfers data from the Internal Data Bus into
the Port Output Master Latches.

Two Lines Output Handshake

Figure 9.15b illustrates theA!;~ associated with
the Two Lines (RDRDY,) Output Hand­
shake Mode (Figure 9-15a).

When this mode is selected RDRDY is reset to
indicate that no significant data is present on the
Output and Bidirectional port pins. When the Out­
put Slave Latches are written, RDRDY is set to
indicate that data is ready for the peripheral device.
In most systems the rising edge of RDRDY can be
used as a latching signal in the peripheral device.
RDRDY will remain high until a rising edge is
received on RDSTB indicating that the peripheral
has taken the data. Both low and high level on
RDSTB must last at least one ST9 INTCLK cycle.
The User is suggested to program the External
Interrupt Channel associated with the RDSTB line
to generate an interrupt request when a rising edge
occurs. The ST9 can thus, in the course of its
interrupt service routine, furnish new data as soon
as the previous data is taken by the peripheral.

One Line Output Handshake
Figure 9.15 illustrates the timing associated with
the One Line (RDRDY) Output Handshake Mode
Figure 9-15c.

When this mode is selected RDRDY is reset to
indicate that no significant data is present on the
Output and Bidirectional port pins. When the Out­
put Slave Latches are written to, RDRDY is set to
indicate that data is ready for the peripheral device.
In most systems the rising edge of RDRDY can be
used as a latching signal in the peripheral device.
No peripheral acknowledge is waited for. While ST9
is writing into the Output Slave Latches RDRDY
goes low, RDRDY is set again when the new data
is ready on the port pins.

Figure 9·14c. One Line Input Handshake

A

ST'3 DATA

EXTERNAL
PERIPHERAL

\JRRDY

VR000174

Figure 9-15a. Two Lines Output Handshake

ST'3
DATA

EXTERNAL
PERIPHERAL

RDRDY

RDSTB

VR000175

Figure 9-15c. One Line Output Handshake

ST9
DATA

EXTERNAL
PERIPHERAL

RDRDY

VR000176

10/18 -------------:iii ~i~©IH~~il~li -------------
132

9 - 1/0 Ports and Handshake Transfers

Figure 9·14d. One Line Input Handshake Timing

INTCLK

READ PORT

PORT

WRRDY

VRIJJ0445

Figure 9-15b. Two Lines Output Handshake Timing

INTCLK

WRITE PORT

PORT NEW DATA OUT

RDRDY

VR000452

Figure 9-15d. One Line Output Handshake Timing

INTCLK

WRITE PORT

PORT

RDRDY

VROOA452

11/18
---------------~iii ~i~;m2mi,9~~ ---------------

133

9 - 1/0 Ports and Handshake Transfers

9.7.2.3 BIDIRECTIONAL HANDSHAKE

A Bidirectional Handshake Mode is available to
synchronise bidirectional transitions on Port bits
programmed as Bidirectional. When this mode is
selected, the Output Buffer configuration of Bidirec­
tional port pins programmed as Weak Pull-up
become Push-pull. Open-drain configuration is not
modified. Bits set to Input, Output or Alternate
Function are not affected.

Figure 9.16b illustrates the timing associated with
the Bidirectional Handshake Mode. This mode is a
combination of Two Lines Output Mode and Two
Lines Input Mode using all four handshake lines,
two for output (RDRDY, RUSTB) and two for input
control (WRRDY, WRSTB} In the timing INTCLK
is the ST9 internal not stretched clock, WRITE
PORT is the signal that transfers data from the
Internal Data Bus into the port Output Master Lat­
ches and READ PORT is the signal that transfers
data from the Input Latches onto the Data Bus.
When Bidirectional Handshake mode is selected
the Output Buffers of the Bidirectional port pins are
forced tristate, WRRDY is set to indicate that data
can be loaded into the Input Latches and RDRD f
is reset to indicate that no significant data is present
in the Output Slave Latches.

Input Transitions. Data present on the pins is
~_lgcj when the peripheral forces a low level on
WRSTB. When a rising edge on WRSTB occurs,
WRRDY goes low signifying that the Input Latches
are full and further loading must be inhibited until
the ST9 reads the port. When the port register is
read, WRRDY is set. Both low and high levels on
WRSTB must last at least an ST9 JNTCLK cycle.

The User is suggested to program the External
interrupt Channel associated with the WRSTB line

Figure 16-b. Bidirectional Handshake Timing

INTCLK

WRITE PORT

RDRDY

PORT

WRRDY

READ PORT

to generate an interrupt request when a rising edge
occurs.The ST9 can thus, in the course of its
interrupt service routine, read the data furnished by
the peripheral as soon as it is available.

Output Transitions. When the Output Slave Lat­
ches are written, RDRDY is set to indicate that data
is ready for the peripheral device. When RITSTB
goes low, data is allowed out onto the port pins.
When a rising edge is received on RUSTB, indicat­
ing that the peripheral has taken the data, the
Output Buffers are forced tristate and RDRDY goes
low. Both low and high level on RUSTB must last
at least an ST9 INTCLK cycle.

The User is suggested to program the External
Interrupt Channel associated to the RUSTB line to
generate an interrupt request when a rising edge
occurs; The ST9 can thus, in the course of its
interrupt' service routine, write new data into the
Output Slave Latches as soon as the previous data
is taken by the peripheral.

Figure 9-16a. Four Lines Bidirectional

RDRDY
-
RDSTB

DATA EXTERNAL

ST9 PERIPHERAL
--
\/RSTB

\JRRDY

VR000177

VR000446

_12_11_s __________ ~ SGS·THOMSON A.""fl l'lllc©rmlilrn~~©li'lfu©!f!J©~ --------------

134

APPLICATION EXAMPLE: MAPPING AN ST9
ONTO THE MEMORY BUS OF ANOTHER ST9

Fig 9.17 shows a possible application of the bidi­
rectional handshake protocol, used to connect an
ST9 to a slave of another (master) ST9.

PX of the slave ST9 is connected to the Ad­
dress/Data Memory Bus of the master ST9. A
decoder enables, with a low level, the generation
of RDSTB or WRSTB when ITS is low and the
master is reading from, or writing to, the memory.

To synchronize data transfers with the slave, the
master ST9 uses RDRDY and WRRDY as External
Interrupt Sources, programmed to generate an
interrupt request when a rising edge occurs. The
slave ST9 interrupts the master raising RDRDY
when new data is ready in the port Output Slave
Latches and raising WRRDY when the Input Lat­
ches can be filled with new data. According to the
interrupt request received, the master ST9 can
read from the slave the ready data (RDRDY inter­
rupt routine) or write into the slave other data
(WRRDY interrupt routine).

9.7.3 Programmable DMA Modes

The Module supports DMA operations controlled
by either the Timer CAPTO or COMPO DMA Chan­
nel. The User enables this function writing a "0" in
the DEN bit in the HDCTL register and selects the
Channel writing the DCH bit: "0" for CAPTO, "1" for
COMPO.

Figure 9-17. Bidirectional Application Example

:.
PX A{7: 0)/0{7: 0)

I'

I SLAVE ST9 I

9 - 1/0 Ports and Handshake Transfers

When the CAPTO Channel is chosen, the DD bit
selects the Data Direction: "0" to move data from
Data/Program Memory or Register File to the port
(DMA Output), "1" to perform the opposite transfer
(DMA Input). Signal CA_SYNCHR is sent by the
Timer to the Handshake/DMA Controller for writing
the port Output Master Latches or reading the Input
latches (depending on DD), during the DMA oper­
ations when a capture occurs on the Timer.

If the Handshake section of the module is enabled,
the data transfer from the Output Master Latches
into the Output Slave Latches (Output Strobe, for
pins programmed as Output or Bidirectional) or
from the Pins into the Input Latches (Input Strobe,
for pins programmed as Input or Bidirectional) is
controlled by the logic supporting the chosen Hand­
shake protocol.

If no Handshake is programmed the User can
choose how to drive the Output or Input Strobe by
writing the DST bit: a "0" leaves the Strobes under
the normal port control, according to the chosen
port bit configuration (see Paragraph 9.3), a "1"
selects the On Chip Event generated by the Timer
as the Output or Input Strobe.

When the COMPO Channel is selected, DMA out­
put transfers are only allowed independent of DD,
and CO_SYNCHR is used for output Master Latch.
If Handshake is disabled, DST selects how to con­
trol the Output Strobe. If enabled, the Handshake
controls the Output Strobe.

.
PO

_..Ll --v

I LATCHES r--- -
AS

I MASTER ST91 ~
-- DECODER
RDSTS

~ A(15:8) Pl

L;:,

-- R/w
1\!lSTS iiS ~

RDRDY INTI

WRRDY INT2

\-R000178

13/18 ----------------~ ~~~~~2~1~Y©~ --------------
135

9 - 1/0 Ports and Handshal{e Transfers

9.7.4 DMA Transfers Driven By Timer CAPTO
Channel With Handshake

The following descriptions are made assuming that
DMA transfers are driven by Multifunction Timer 0.
The following list shows the DMA Port capabilities
of the ST9 family:

- For the ST902X family, MFTimer On Chip Event
and DMA channels may be internally connected
(by software) to 1/0 Port 5 to provide external
DMA/Handshake transfer.

- For the ST903X and ST904X family, MFTimer 0
is internally connected to the AID converter trig­
ger. MFTimer 1 On Chip Event and DMA chan­
nels may be internally connected to 1/0 Port 5 to
provide external DMA/Handshake transfer.

- For the ST905X family, the On Chip Event of
MFTimer 0 controls DMA/Handshake transfer
with 1/0 Port 4, the On Chip Event of MFTimer 1
controls DMA/Handshake with 1/0 Port 5 and the
On Chip Event of MFTimer 3 is connected to the
internal trigger of the AID converter.

9.7.4.1 INPUT TRANSFERS WITH TWO LINE
INPUT HANDSHAKE

When

- Two Lines Input Handshake mode is selected
(HS7="1 ", HS6="0", HS5="1 ")

- the port is enabled to support DMA input trans­
fers driven by the Timer CAPTO DMA Channel
(DEN="O", DD="1 ", DCH="O")

- the Handshake WR'STB line is connected off­
chip to the Timer TOlNA line

- TOlNA DMA requests are enabled on rising
edges

- WRSTB interrupt requests are disabled data
transfers on port pins programmed as Input (or
Bidirectional) can be synchronized using the
Handshake WRSTEl line as DMA Request and
the WRRDY line as DMA Acknowledge.

WRRDY is set to indicate that data can be loaded
into the Input Latches of the Input (or Bidirectional)
port pins. Data present on the port pins is sampled
when the peripheral forces a low level on WRSTI3.
When a rising edge on WRSTB (TOlNA) occurs
WRRDY goes low, signifying that the Input Latches
are full and further loading must be inhibited until
the ST9 reads the port, and a DMA request is
issued. When the port register is read, during the
DMA transfer, WRRDY is set.

Figure 9-18. DMA with 2 Lines Input
Handshake Mode

I""'" ,11 1J EXTERNAL

LVRSTBh PE~IPHERAL

D~A REQUEST
TOlNA

DMA ACKND\JLEDGE
\-/"2RDY

VR000181

9.7.4.2 INPUT TRANSFERS WITH ONE LINE
INPUT HANDSHAKE

When

- One Line Input Handshake is selected (HS7="0",
HS6="0", HS5="1")

- the port is enabled to support DMA input oper­
ations driven by the Timer CAPTO DMA Channel
(DEN="O", DD="1", DCH="O")

- the Timer TOlNA DMA requests are enabled on
rising (or falling) edges data transfers on port
pins programmed as Input (or Bidirectional) can
be synchronized by using the Timer TOlNA line
as DMA Request, and the Handshake WRRDY
line as DMA Acknowledge.

When One Line Input Handshake is selected
WRRDY is set to indicate that data can be loaded
into the Input Latches of the Input and Bidirectional
port pins. Data present on the port pins is continu­
ously sampled. While ST9 is reading the port,
during the DMA transfer requested by a rising (or
falling) edge on the TimerTOINAiine, WRRDY goes
low. If data is strobed into the port only when
WRRDY is high, the forced low state of WRRDY
will prevent Input Latches data from changing while
ST9 is reading the port. When ST9 reading cycle
finishes, WRRDY is set.

_14_1_18 _____________ !i1i. ~~~©mg:~1~~~ _____________ _

136

Figure 9-19.DMA Input Transfer with 1 Line
Input Handshal<e

DMA REQUEST

EXTERNAL
PERIPHERAL

VR000183

9.7.4.3 OUTPUT TRANSFERS WITH TWO LINES
OUTPUT HANDSHAKE

When

- Two Lines Output Handshake is selected
(HS7="1", HS6="1", HS5="0")

- the port is enabled to support DMA output trans­
fers driven by the Timer CAPTO DMA Channel
(DEN="O", 00="0", DCH="O")

- the Handshake RlJSTB line is connected off-chip
to the Timer TOlNA line

- TOlNA DMA requests are enabled on rising
edges

- 'RITSTB interrupt requests are disabled

data transfers on port pins programmed as Output
(or Bidirectional) can be synchronized when using
the Handshake RlJSTB and RDRDY lines as DMA
Request and DMAAcknowledge.

When Two Lines Output Handshake is selected,
RDRDY is reset to indicate that no significant data
is present on the Output and Bidirectional port pins.
When the Output Slave Latches are written,
RDRDY is set to indicate that data is ready for the
peripheral device. The first data, whose usual
meaning is that ST9 is ready to provide the follow­
ing data by DMA transfers, is normally written by
the DMA initialization routine.

When a rising edge is received on RlJSTB (TOlNA).
indicating that the peripheral has taken the data,
RDRDY is reset and a DMA request is issued to get
the next data. When the ST9 Output Slave Latches
are written, during the DMA transfer, RDRDY is set
again. If the User wants to get data from ST9 as
soon as RlJSTB goes low, external latches clocked

9 - 1/0 Ports and Handshake Transfers

by RTIST8 can be added to create a pipeline stage,
that is at each RTISTB low pulse on the falling edge
the penpheral gets data transferred into the port by
the previous DMA transfer and on the rising edge
a DMA request is issued to get the next data.

Figure 9-20. DMA Output Transfer with 2 Lines
Output Handshake

DMA REQUEST

OMA ACKNO'M...EOGE
RDRDYf---....---1

EXTERNAL
PERIPHERAL

VR000182

9.7.4.4 OUTPUT TRANSFERS WITH ONE LINE
OUTPUT HANDSHAKE

When

- One Line Output Handshake is selected
(HS7="0", HS6=''1", HS5="0")

- the port is enabled to support DMA output trans­
fers driven by the Timer CAPTO DMA Channel
(DEN="O", 00="0", DCH="O")

- the Timer TOlNA DMA requests are enabled on
rising (or falling) edges

data transfers on port pins programmed as Output
or Bidirectional can be synchronized using the
Timer TOlNA line as DMA Request, and the Hand­
shake RDRDY line as DMAAcknowledge. RDRDY
is reset to indicate that no significant data is present
on the Output (or Bidirectional) port pins. When the
ST9 Output Slave Latches are written, RDRDY is
set to indicate that data are ready for the peripheral
device. The first data, whose usual meaning is that
the ST9 is ready to provide the following data by
DMA transfers, is normally written by the DMA
initialization routine. When a rising (or falling) edge
is received on TOlNA, a DMA request is issued to
get the next data. While ST9 is writing into the
Output Slave Latches, during the DMA transfer,
RDRDY goes low. RDRDY is set again when the
new data is ready on the port pins.

15/18
------------- !ffi ~~~;m~~~sR~~ -------------

137

9 - 110 Ports and Handshake Transfers

Figure 9-21. Output Transfer with 1 Line
Output Handshake

OMA REQUEST

EXTERNAL
PERIPHERAL

VROOA182

9.7.4.51NPUT/OUTPUTTRANSFERS WITH BIDI­
RECTIONAL HANDSHAKE

When

- Bidirectional Handshake is selected (HS7="X",
HS6="0", HS5="0")

- the port is enabled to support DMA transfers
driven by the Timer CAPTO DMA Channel
(DEN="O", DCH="O")

- the Handshake WRSTB and mJSTB lines are
ANDed and connected off-chip to the Timer
TOlNA line

- TOlNA DMA requests are enabled on rising
edges

- WRSTB and mJSTB interrupt requests are dis-
abled

data transfers on port pins programmed as Bidirec­
tional can be synchronized using the Handshake
WRSTB and WRRDY lines as DMA Request and
DMA Acknowledge for Dlv1~_1rl_QUt transfers
(DD="1") and the Handshake RUSTS and RDRDY
lines as DMA Request and DMA Acknowledge for
DMA Output transfers (DD="O").

Figure 9-22. Input/Output Transfers with Bidi­
rectional Handshake Configuration

l TIMER 0-~~Jf
OUTPUT QUA AO<NOW..EDCE

ROROY
EXTERNAL

RDSI8 ~ OUTPUT OMA REQUEST PERIPHERAL

MiSiB 0

INPUT DMA REQUEST

L----TQINA

~T DNA ACI(NOWLEDCE
WRRDY

'IR000185

DMA Input Transfers. When Bidirectional Hand­
shake is selected WRRDY is set to indicate that
data can be loaded into the Input Latches of the
Bidirectional port pins. Data present on the pins is
~when the peripheral forces a low level on
WRSTB. When a rising edge on WRSTB (TOlNA)
occurs WRRDY goes low, signifying that the Input
Latches are full and further loading must be in­
hibited until the ST9 reads the port, and a DMA
request is issued. When the port register is read,
during the DMA transfer, WRRDY is set.

DMA Output Transfers. When Bidirectional
Handshake is selected, RDRDY is reset to indicate
that no significant data is present on the Bidirec­
tional port pins. When the Output Slave Latches are
written, RDRDY is set to indicate that data is ready
for the peripheral device. The first data, whose
usual meaning is that ST9 is ready to provide the
following data by DMA transfers, is normally written
by the DMA initialization routine.

When RlJSTB goes low data is allowed onto the
port J)ins. When a rising edge is received on
RUSTS (TOlNA), indicating that the peripheral has
taken the data, the Output Buffers are forced tris­
tate, RDRDY is reset and a DMA request is issued
to get the next data. When the Output Slave Lat­
ches are written during the DMA transfer, RDRDY
is set again.

16/18 ~
------------ A'Y/1. ~i@W.~~~~~ ------------
138

In the output data flow there is one pipeline stage,
that is at each mJSTB low pulse on the falling edge
the peripheral gets data transferred into the port by
the previous DMA transfer and on the rising edge
issues a DMA request to get the next data.

Example. As the direction of DMA transfers is
controlled by software, the User must define a
protocol to control the sequence of input/output
data transfers.

The initialization routine defines the direction (DD)
of the first DMA transfer and the address and size
of the data buffer (Pointer and Counter associated
to the DMA Channel). In the interrupt routine called
when the DMA Transaction Counter= 0, the User
must define the new address and size of the data
buffer and can change (according to the chosen
protocol) the direction of next DMA operations.

Figure 9.23 shows how the application example of
Figure 9.17 (an ST9 connected as a slave of an­
other ST9) is modified when data transfer from/to
the slave ST9 is performed by DMA transfers.

9 - 1/0 Ports and Handshake Transfers

9.7.5 DMA Transfers Driven By Timer CompO
Channel With Handshake

9.6.5.1 OUTPUT TRANSFERS WITH ONE LINE
OUTPUT HANDSHAKE

When

- One Line Output Handshake is selected
(HS7="0", HS6="1", HS5="0")

- the port is enabled to support DMA output trans­
fers driven by the Timer COMPO DMA Channel
(DEN="O", DCH=''I ")

data transferred by DMA transfers on port pins
programmed as Output or Bidirectional can be
strobed using the Handshake RDRDY line.

When One Line Output Handshake is selected
RDRDY is reset to indicate that no significant data
is present on the Output and Bidirectional port pins.
When the Output Slave Latches are written
RDRDY is set. The rising edge of RDRDY can be
used as a latching signal. At every DMA transfer
triggered by the COMPO event new data is written
into the port. While data is changing on the Output
Slave Latches, RDRDY goes low. RDRDY is set
again when the new data is ready on the port pins.

Figure 9-23. Bidirectional Application Example With DMATransfer

PX A{7: 0)/0(7: 0) PO

ll. •

I LATCHES ~ -AS

I SLAVE ST9 I ~a) I I MASTER ST91

-- DECODER ~
RDSTB

H~
A(15:8) PI

TOlNA '
-- R/w
1\RSTB

'-.....j-----'- 55

RDRDY INTI

WRRDY INT2

\rROOA178

17/18
--------------~ ~~~~~~~:~©~ --------------

139

9 - 1/0 Ports and Handshake Transfers

18,_18 ___________ ~ ~i~©m~~~~~ ___________ _
140

10.1 MULTIFUNCTION TIMER ARCHITECTURE

1 0.1.1 General Description

The ST9 Multifunction Timer has 2 input pins and
2 output pins available as programmable alternate
functions on 1/0 pins.

The timer contains one 16 bit counter, with an 8 bit
prescaler, two Capture/Reload 16 bit registers
(REGOR,REG1 R) and two 16 bit output Compare
registers (CMPOR,CMP1 R).

The timer function can be selected by programming
two dedicated control registers (TCR-Timer Control
Register/TMR-Timer Mode Register). Several
functional configurations are possible,e.g.:

- 2 input captures on two different external lines
and 2 independent output compare functions

Figure 10-1. Multifunction Timer Architecture

~ 0 -
>

~ ol" ~ 6 ?;~ ~

Pn INA Pm INS

CHAPTER 10

MULTIFUNCTION TIMER

(counter in free running mode), or 1 output com­
pare on a fixed repetition rate

- 1 input capture, 1 counter reload and 2 inde­
pendent output compares

- 2 alternate autoreloads and 2 independent out­
put compares

- 2 alternate captures on the same external line
and 2 independent output compares on a fixed
repetition rate.

When two timers are present on ST9 chip, a com­
bined mode is available (see section 10.2.11).

Four internal signals are also available for timing of
on-chip functions: the On Chip Event signal can be
used to control other peripherals on the chip itself,
and 3 other signals which can be internally con­
nected to 1/0 port(s) in order to allow automatic,
timed, DMA transfers (See chapter 4).

5 5

TO THE: CPU

INTERRUPT LOOC

CAPT 1

CAPT 0 -r=o=J....
COMP 1

CPI

CPO

CUI

COUPe '':.X~=:n CUO
ovr /UNF' _ our

OCP 0

ocuo

~ 0 - ~
~ ~ !!> !!>

0 0

PmT OUTA PonT Oum
VR000449

1/22

141

10 - Multifunction Timer

1 0.1.2 Timer Input/Output Configuration

The two external inputs (TOINAITOINB) of the timer
can be individually programmed to catch a particu­
lar external configuration, i.e.:

- rising edge

- falling edge

- rising and falling edges

The configuration of each input is fixed by the Input
Control Register (ICR).

Each of the two output pins (TOOUTA!TOOUTB)
can be driven from any of three possible sources:

- Compare Register 0 logic

- Compare Register 1 logic

- Overflow/Underflow logic

Each of these three sources can cause one of the
following four effects, independently, on each of the
two outputs:

- Nop

-Set

- Reset

-Toggle

Furthermore an additional on-chip Event signal can
be generated by two of the three sources men­
tioned above, i.e. Over/Underflow event and Com­
pare 0 event. This signal can be used internally as
synchronism for another on-chip peripheral or as
strobe for an 1/0 port (see 1/0 port chapter).

1 0.1.3 lnterrupt/DMA Section

Five maskable interrupt sources referring to an End
Of Count condition, 2 input captures and 2 output
compares, can generate 3 different interrupt re­
quests (with hardware fixed priority), pointing to 3
interrupt routine vectors.

Two independent DMA channels are available for
a MFtimer and can be used for quick data flow
operations. Each DMA request (associated to a
capture on REGOR register, or a compare on
CMPOR register) has priority on the INT request
generated by the same source.

Each DMA channel can be employed in external
transfers to/from memory from/to an 1/0 port using
three internal lines (one for setting the data flow
direction, and two for the transfer synchronization).

A SWAP mode is also available to allow high speed
continuous transfers (see Interrupt and DMA chapter).

10.2 TIMER OPERATING MODE DESCRIPTION

The different operating modes of the timer can be
selected by programming the Timer Control Regis­
ter (TCR) and the Timer Mode Register (TMR).

10.2.1 One Shot Mode

When the counter generates an overflow (in up­
count mode) or an underflow (in down-count
mode), i.e. an End Of Count is reached, the counter
stops and no counter reload occurs. The counter
can be restarted only by an external or software
trigger. The One Shot Mode is entered by setting
TMR bit CO.

10.2.2 Continuous Mode

Whenever the counter reaches an End Of Count,
the counting sequence is automatically restarted
and the counter is reloaded from REGOR (or
REG1 R when selected in Biload Mode). Con­
tinuous Mode is entered by resetting TMR bit CO.

10.2.3 Trigger And Retrigger Mode

A trigger event may be generated either by soft­
ware action (setting either CPO or CP1 bit in timer
register FLAGR), or by an external source which
may be programmed to be active on the rising
edge, the falling edge or both, using the fields
AO-A1 and B0-81 in ICR.

In One Shot and Trigger Mode, every trigger event
(used as a reload and start count) arriving before
an End Of Count, is masked. In One Shot and
Retrigger Mode, every trigger (used as a reload
and start count) received while the counter is run­
ning automatically reloads the counter from
REGOR (or REG1 R when the register is selected
in Biload Mode). Trigger/Retrigger Mode is set by
the REN bit in TMR.

TOlNA input refers to REGOR and TOINB input
refers to REG1 R.

10.2.4 Gate Mode

In this mode the counting operation is performed
only when the external gate input is active (logical
state "0"). The selection of TOlNA or TOINB input
as gate input is made through INO-IN3 bits in I CR.

10.2.5 Capture Mode

REGOR and REG1 R registers may be inde­
pendently set in Capture Mode by setting RMO or
RM1 in TMR, so that a capture of the current count
value can be performed either on REGOR or

2/22
~ SGS·ntOMSON --------------._"'!I. jj]~©tm©~~m©m:exwl!~©i!i --------------

142

REG1 R, via software action (by setting CPO or CP1
in the FLAGR register) or a programmable event
on the external input pins.

WARNING: Care should be taken when two soft­
ware captures have to be performed on the same
register. In this case, at least one extra instruction
must be present between the first CPO!CP1 bit set
and the subsequent CPO/CP1 bit reset.

1 0.2.6 Up/Down Mode

The counter can count up or down depending on
the state of the UDC bit (Software Up/Down) in
TCR, or on the configuration of the external input
pins, which have priority over UDC (see Input pin
assignment ir.1 ICR). When read, the UDCS bit
always returns the counter up/down current status
(see also. the Up/Down Autodiscrimination mode in
the Input Pin Assignment Section, section 1 0.3.13).

1 0.2.7 Free Running Mode

The timer performs full range counting (in up or
down mode) without reloading from REGOR at an
End Of Count. This mode is automatically selected
either in Bicapture Mode or by setting REGOR for
capture function (Continuous Mode must also be
set). In Autoclear Mode, free running with modulo
less than 216 may be obtained (see Autoclear
Mode).

1 0.2.8 Monitor Mode

When RM1 bit in TMR is reset and the timer is not
in Bivalue Mode, then REG1 R acts as monitor,
reproducing the current U/D counter content enab­
ling the ST9 to read the counter "on the fly".

1 0.2.9 Autoclear Mode

A clear command forces the counter to the value
OOOOh or OFFFFh, when counting in up or down
count mode respectively. The counter reset may be
obtained either directly, through CCL bit in TCR, or
by entering the Autoclear Mode, through CCPO and
CCMPO fields in TCR.

10- Multifunction Timer

Every capture performed on REGOR (if CCPO =
"1 "), or every successful compare performed by
CMPOR (if CCMPO = "1 "), clears the counter and
reloads the prescaler.

The Clear On Capture mode allows the direct
measurement of delta time between successive
captures on REGOR, while the Clear On Compare
mode allows free running with modulo less than
216_

10.2.10 Bivalue Mode

Depending on the value of RMO bit in TMR, the
Biload Mode (RMO = "0") or the Bicapture Mode
(RMO = "1 ") can be selected as explained in the
following table:

Table 10-1. Bivalue Modes

TMR bits Timer

RMO RM1 BM
Operating Modes

0 X 1 B1load mode

1 X 1 Bicapture mode

A) Biload Mode

The Biload Mode is entered by selecting the Bi­
value Mode (BM = "1" in TMR) and programming
REGOR as a reload register (RMO = "0" in TMR).

At any End Of Count, the counter reloading is
performed alternately from REGOR and REG1 R, (a
low level for BM bit always sets REGOR as the
current register, so that, after a Low to High transi­
tion of BM bit, the first reload is always from
REGOR).

Every software or external trigger event on REGOR
performs a reload from REGO R resetting the Biload
cycle. In One Shot mode (reload made by a soft­
ware or external trigger), the reload is always from
REGOR.

3/22 --------------~ ~~~;mg~~2~ --------------
143

10 - Multifunction Timer

B) Bicapture Mode

The Bicapture Mode is entered selecting the Bi­
value Mode (BM = "1" in TMR) and programming
REGOR as a capture register (RMO = "1" in TMR).

Every capture event, software simulated (setting
CPO flag) or coming from TOlNA input line, captures
the current counter value alternately into REGOR
and REG1 R. A low level for BM bit always sets
REGOR as current register, so that the first capture,
after setting BM bit, is always into REGOR.

10.2.11 Parallel Mode

When there are two timers on ST9 chip, the parallel
mode is entered with ECK ="1" in TMR of Timer 1.
Timer 1 prescaler input is internally connected to
the Timer 0 prescaler output. Timer 0 prescaler
input may be connected to the system clock line or
external input pin (depending on INO-IN3 configu­
ration in ICR) if ECK = "0" (in TMR of TimerO).

By loading the Prescaler Register of Timer 1 with
the value OOh the two timers (Timer 0 and Timer 1)
are driven by the same frequency in parallel mode.

The parallel mode can also be used for other timer
pairs (Timer 2 and Timer 3), where available.

Figure 10-2. Parallel Mode Description

CPUCLK ----o

EXTERNAL ---a
CLOCK

10.2.12 Autodiscriminator Mode

VR000217

The phase difference sign of two overlapped pulses
(respectively on TxiNB and TxiNA) generates a
one step up(down) count, so that the up/down
control and the counter clock are both external. The
setting of the UDC bit in the TCR register has no
effect in this configuration.

This mode is especially useful in determining the
rotation direction.

10.3 INPUT PIN ASSIGNMENT

The two external inputs (TxiNA and TxiNB) of the
timer can be individually configured to catch a
particular external event (i.e. rising edge, falling
edge, rising and falling edges) by programming the
two relevant bits (AO, A 1 and BO, B1) for each input
in the external Input Control Register (ICR).

The 16 different functional modes of the two exter­
nal inputs can be selected by programming INO -
IN3 bits of the ICR as explained in the following
table 1 0.2.

Table 10-2. Input Pin Function

I C Reg. TxiNAinput TxiNB Input
IN3-INO bits Function Function

0000 1/0 1/0
0001 1/0 Trigger
0010 Gate 1/0
0011 Gate Trigger
0100 1/0 Ext. Clock
0101 Trigger 1/0
0110 Gate Ext. Clock
0111 Trigger Trigger
1000 Clock Up Clock Down
1001 Up/Down Ext. Clock
1010 Trigger Up Trigger Down
1011 Up/Down 1/0
1100 Autodiscr. Autodiscr.
1101 Trigger Ext. Clock
1110 Ext. Clock Trigger
1111 Trigger Gate

Some choices in the external input pin assignment
are defined in conjunction with RMO and RM1 bits
in TMR.

For input pin assignment codes using the input pins
as Trigger Inputs (except for code 1010, Trigger
Up:Trigger Down):

- a trigger signal on TxiNA input pin performs an
U/D counter load if RMO ="0", or an external
capture if RMO = "1".

- a trigger signal on TxiNB input pin always per­
forms an external capture on REG1 R. The TxiNB
input pin is disabled when the Bivalue Mode is
set.

4/22
~ SGS·THOMSON -------------- ~""!l li:IIO©oo©~'b~©'ii'rnl©i!u©® --------------

144

NOTE: For proper operation of the External Input pins, the following
must be observed:

-the minimum external clock/trigger pulse width cannot be less than
the system clock (INTCLK) period if the input pin is programmed as
rising or falling edge sensitive.
-the minimum external clock/trigger pulse width cannot be less than
the prescaler clock period (INTCLK/3) if the input pin is programmed
as rising and falling edges sensitive (valid also in Autod1scnmination
mode). -the minimum delay between two clock/trigger pulse active
edges must be greater than the prescaler clock period (INTCLK/3),
wh1le the minimum delay between two consecutive clock/trigger
pulses must be greater than the system clock (INTCLK) penod.
- the minimum gate pulse width must be at least twice the prescaler
clock period (INTCLK/3).
- in Autodiscrimination mode, the minimum delay between the input
pin A pulse edge (inside the input pin B pulse) and the edges of the
input p1n B pulse, must be at least the system clock (INTCLK) period.
- if a number N of external pulses must be counted using a Compare
Reg1ster of a Timer 1n External Clock mode, then the Compare
Register used must be loaded with the value [X +1- (N-1)], where X
1s the starting counter value and the sign is chosen depending 1f in
Up or Down count mode respectively.

Here below is a description of the sixteen external
input functional modes referring to table 10.2.

10.3.1 TxiNA = 1/0- TxiNB = 1/0
Input pins A and Bare general purpose 1/0 bits. The
counter clock is internally generated and the
up/down control may be done only by software
action through the UDC (Software Up/Down) bit in
the TCR register.

10.3.2 TxiNA = 1/0- TxiNB =Trigger

The signal applied to input pin B acts as a trigger
signal on REG1 R register. The prescaler clock is
internally generated and the up/down control may
be done only by software action through the UDC
bit in the TCR register.

10.3.3 TxiNA =Gate- TxiNB = 1/0
The signal applied to input pin A acts as a gate
signal for the internal clock (i.e. the counter runs
only when the gate signal is at a low level). The
counter clock is internally generated and the
up/down control may be done only by software
action through the UDC bit in the TCR register.

TOlNA (Gate ln::>ut)

Internal Counter Clock

A count occurs here

VR000218

10- Multifunction Timer

10.3.4 TxiNA =Gate- TxiNB =Trigger
Both input pins A and B are connected to the timer,
with the resulting effect of combining the actions
due to the above explained configurations 1 0.3.2
and 10.3.3.

10.3.5 TxiNA = 1/0- TxiNB =Ext. Clock

The signal applied to input pin B is used as the
external clock for the prescaler. The up/down con­
trol may be done only by software action through
the UDC bit in the TCR register.

10.3.6 TxiNA =Trigger- TxiNB = 1/0

The signal applied to input pin A acts as a trigger
signal on REGOR register performing the action for
which the register was programmed (i.e. a reload
or capture). The prescaler clock is internally gener­
ated and the up/down control may be done only by
software action through the UDC bit in the TCR
register.

TOlNA (Tr,gger Input)

Internal Counter Clock

A count occurs her-e(.:)

VROD0189

(')The timer is in One shot mode and REGOR 1n Reload mode

10.3.7 TxiNA =Gate- TxiNB =Ext. Clock

The signal applied to input pin B, gated by the
signal applied to input pin A, acts as external clock
for the pre scaler. The up/down control may be done
only by software action through the UDC bit in the
TCR register.

TOlNA <Gate Input)

TOINB ([xt Counter Clock)_fl_JULS1_

t t
A count occurs here

VR000190

5/22 ------------~ ~it1H2:1~~~ ------------
145

10- Multifunction Timer

1 0.3.8 TxiNA = Trigger - TxiNB = Trigger
The signal applied to input pin A (or B) acts as
trigger signal for the REGOR (or REG1 R) register
performing the action for which the register has
been programmed. The counter clock is internally
generated and the up/down control may be done
only by software action through the UDC bit in the
TCR register.

10.3.9 TxiNA =Clock Up- TxiNB =Clock Down

The pulse received on input pin A (or B) performs
a one step up (or down) count, so that the counter
clock and the up/down control are external. Setting
the UDC bit in the TCR register has no effect in this
configuration while input pin B has priority on input
pin A.

X = don't care

TOlNA <Up Count Clack) ~xx~xx~xx­
Counter Increnent

TOINB <Down Count Clock)_SLflSL

Counter DecreMent

VR000l91

10.3.10 TxiNA =Up/Down- TxiNB =Ext Clock
An High (or Low) level of the signal applied on input
pin A sets the counter in the up (or down) count
mode, while the signal applied to input pin B is used
as clock for the prescaler. Setting the UDC bit in
the TCR register has no effect in this configuration.

TOlNA CUP/00\o/N)

----,1 Down Count

Up Count ·

TOINB <Ext Counter Clock) _____jL__JLI1__

f Cou!ter !ecrel'lent

Counter IncreMent

VR000192

10.3.11 TxiNA =Trigger Up- TxiNB =Trigger
Down

Up/down control is performed through both input
pins A and B. A pulse on input pin A sets the up
count mode, while a pulse on input pin B (which

has priority on input pin A) sets the down count
mode. The counter clock is internally generated
while setting the UDC bit in the TCR register has
no effect in this configuration.

TOlNA <Tr.gge>r Up)

TOINB CTr,gger Down)

X = don't care

_n'-----.... ::x.--
-.Up Col.lnt Mode

-Down Count Mode

VR000193

10.3.12 TxiNA =Up/Down- TxiNB = 110
An High (or Low) level of the signal applied on input
pin A sets the counter in the up (or down) count
mode. The counter clock is internally generated.
Setting the UDC bit in the TCR register has no
effect in this configuration.

TOlNA (UP/DOWN>

Internal Counte>r Clock

-----,1 Down Count

Up Covnt ·

VR000194

10.3.13 Autodiscrimination Mode

The phase between two pulses (respectively on
input pin B and input pin A) generates a one step
up (or down) count, so that! he up/down control and
the counter clock are both external. Thus, if the
rising edge of TxiNB arrives when TxiNA is at level
"0" the timer is incremented (no action if the rising
edge of TxiNB is coming when TxiNA is at level "1 ").
If the falling edge of TxiNB arrives when TxiNA is
at level "0" the timer is decremented (no action if
the falling edge of TxiNB arrives when TxiNA is at
level "1").

Setting the UDC bit in the TCR register has no
effect in this configuration.

6/22 ------------lfi ~~©IH~~~4 ------------
146

UP/DO\./N ~DINA~
AUTODESCRJMINA TOR

TOINB~
I. I.
I Counter n1ecrE'nent

Counter IncreME'nt

VR000195

10.3.14 TxiNA =Trigger- TxiNB =Ext. Clock
The signal applied to input pin A acts as a trigger
signal on REGOR register performing the action for
which the register was programmed (i.e. a reload
or capture), while the signal applied to input pin B
is used as clock for the prescaler.

TOlNA <Trogger Input)

TOINB ([xt CountE'r Clock)~

A count occurs here (liE)

VROOOI96

n The timer IS In One shot mode and REGOR in reload mode

10.3.15 TxiNA =Ext. Clock- TxiNB =Trigger

The signal applied to input pin B acts as a trigger,
performing a capture on REG1 R register, while the
signal applied to the input pin A is used as clock for
the prescaler.

10.3.16 TxiNA =Trigger- TxiNB =Gate

The signal applied to input pin A acts as a trigger
signal on REGOR register performing the action for
which the register was programmed (i.e. a reload
or capture), while the signal applied to input pin B
acts as a gate signal for the internal clock (i.e. the
counter runs only when the gate signal is at a low
level).

10- Multifunction Timer

10.4 OUTPUT PIN ASSIGNMENT
Two external outputs are available for each timer
when programmed as alternate functions of the 1/0
pins.

Two registers for every timer, Output A Control
Register (OACR) and Output B Control Register
(OBCR) define the driver for the outputs and the
actions to be performed.

Each of the two output pins can be driven from any
of the three possible sources:

- Compare Register 0 event logic

- Compare Register 1 event logic

- Overflow/Underflow event logic.

Each of these three sources can cause one of the
following four effects on any of the two outputs:

- Nop

-Set

- Reset

-Toggle.

Furthermore an On Chip Event signal can be driven
by two of the three sources: the Over/Underflow
event and Compare 0 event by programming the
CEV bit of the OACR register and the OEV bit of
OBCR register respectively. This signal can be
used for another on-chip peripheral or as strobe for
an 1/0 port (see 1/0 chapter).

10.4.1 Output Waveforms

Depending on the different programmed values of
OACR and OBCR the following example wave­
forms can be generated on TxOUTA and TxOUTB
pins.

7/22 -------------~ ~~~©mg~i~~~ -------------
147

10 • Multifunction Timer

1) Configuration where TxOUTA is driven by
Over/Underflow (OUF) and Compare 0 event
(CMO), while TxOUTB is driven by the
Over/Underflow and Compare 1 event (CM1).
OACR is programmed with TxOUTA preset to
"0", OUF sets TxOUTA, CMO resets TOOUTA
and CM1 does not affect the output.
OBCR is programmed with TxOUTB preset to
"0", OUF sets TxOUTB, CM1 resets TxOUTB
while CMO does not affect the output.

OACR = [10llOOXOJ
OBCR = E1t0001Xll r---1 r-----1 _

TOOUTA _J L__J L__J
OUF COMPO OUF COl-1PO

CDMPl COMPJ

TOOUTB~
our our

VR000197

2) Configuration where TxOUTA is driven by
Over/Underflow, Compare 0 and Compare 1,
while TxOUTB is driven by both Compare 0 and
Compare 1.
OACR is programmed with TxOUTA preset to
"0". OUF toggles the Output 0 as do CMO and
CM1.
OBCR is programmed with TxOUTB preset to
"1". OUF does not affect the output while CMO
resets TxOUTB and CM1 sets it.

OACR = UDllOOXOJ
OBCR = [!JQOOIXJJ COMPJ COMPI

TOOUTA~
OUF COMPO OUF COMPO

COMPI COMPI

TOOUTB -u--u---
CO"lPO COMPO

VROOOI98

3) Configuration where TxOUTA is driven by
Over/Underflow and Compare 0, while TxOUTB
is driven by Over/Underflow and Compare 1.
OACR is programmed with TxOUTA preset to
"0". OUF sets TxOUTA while CMO resets it and
CM1 has no affect.
OBCR is programmed with TxOUTB preset to
"1 ". OU F toggles TxOUTB, CM 1 sets it and CMO
has no affect.

OACR = [101100XOJ
OBCR = [1!0001X1J

TOOUTA~
OUF COMPO OUF COMPO

CDMPJ CDMPl

TOO~
our our

VROOAJ98

4) Configuration where TxOUTA is driven by
Over/Underflow and Compare 0, while TxOUTB
is driven by Compare 0 and 1.
OACR is programmed with TxOUTA preset to
"1 ". OUF sets TxOUTA. CMO resets it and CM1
has no affect.
OBCR is programmed with TxOUTB preset to
"0". OUF has no affect, CMO sets TxOUTB and
CM1 toggles it.

OACR = ClOllOOXOJ
OBCR = [llOOOJXlJ

TODUTA~
OUF COMPO OUF COMPO

CDl-1Pl COMPl

TOOUTB~
COMPO COMPO

VR000205

8/22 ------------- t:fi. ~i~©IH~~:1~©~ -------------
148

1 0.4.2 Output Waveform Samples In Biload
Mode

TxOUTA is programmed to monitor the two time
intervals (t1 and t2) of the Biload Mode while
TxOUTB is independent from the Over/Underflow
and is driven by the different values of Compare 0
and Compare 1 .
OACR is programmed with TxOUTA preset to "0".
OUF toggles the output and CMO and CM1 do not
affect TxOUTA.
OBCR is programmed with TxOUTB preset to "0".
OUF has no effect, while CM1 resets TxOUTB and
CMO sets it.
Depending on the CM1/CMOvalues, three different
example waveforms have been drawn starting from
the above mentioned configuration of OBCR. In the
last case, with a different programmed value of
OBCR, only Compare 0 drives TxOUTB, toggling
the output.

OACR = [llllOlXOJ I t1 I t2 I

TOOUTA~
our our

r
o.> COMPO < REGO < COMPl < REG!

OBCR = [001011XOl

b> COMPO < CDMP! < REGO < REG!

TODUTB (liE)
COMPI COMPl

---.n..J"l.__
COMPO COMPO

c> REGO < COMPO < CDMPl < REG!

CDMPl

~
COMPO

OBCR = [011111XOioouTB~
COV.PO COMPO

VR000206

Note(') Depending on the CMPI RICMPOR values

10 ·Multifunction Timer

10.5 TIMER INTERRUPT STRUCTURE

Reader should refer to the Interrupt chapter of this
manual for more details of the ST9 Interrupt archi­
tecture.

The timer has 5 different Interrupt sources,
grouped into 3 independent groups, assigned to
the following Interrupt vectors:

Table 10-5. Timer Interrupt Structure

Interrupt Source Vector Address

COMPO xxxx x110 COMP1

CAPTO xxxx x100 CAPT1

Overflow/Underflow xxxx xOOO

The three least significant bits of the vector pointer
address represent the relative priority assigned to
each group, (000 value is the highest priority level)
and are fixed by hardware depending on the source
which generates the interrupt request. The 5 most
significant bits are programmed by the user in the
Interrupt Vector Register (IVR) of each Timer.

Each source can be masked by a dedicated bit in
the lnterrupt/DMA Mask Register (IDMR) of each
timer, as well as a global mask enable bit (IDMR.7),
masking all interrupts.

If an interrupt request (CMO or CPO) happens
before the corresponding pending bit is reset, an
overrun condition occurs. This condition is flagged
in two dedicated overrun bits, concerning the
CompO and CaptO sources, and placed in the Timer
Flag Register (FLAGR).

A map of the Interrupt and DMA Registers available
for every timer (the absolute address of every
register and the meaning of every bit is detailed in
the paragraph 1 0.8).

9/22 ------------ i..W. ~~1H~~9lj ------------
149

10 - Multifunction Timer

10.6 TIMER DMA STRUCTURE

Two Independent DMA channels, associated to
Compare 0 and Capture 0 sources, respectively
allow DMA transfers from Register File/Memory to
CompO Register and vice versa from CaptO Regis­
ter to Register File/Memory (also transfers in/from
Memory from/into an 1/0 port are available; see par.
1 0.9). Their priority is hardware set as following:

- Compare 0 Destination Lower Priority

- Capture 0 Source Higher Priority

The two DMA request sources are independently
maskable by two DMA Mask bits, mapped in the
Timer lnterrupVDMA Mask register (IDMR).

The two End of Block procedures, associated to
each Interrupt mask and DMA mask combination,
follow the standard architecture as shown in the
Interrupt and DMA chapter in this manual.

1 0.6.1 DMA Pointers

The 6 programmable most significant bits of the
Timer Address and Counter Pointer registers
(DAPR-DCPR) are common to both channels

MAP POINTER FOR REGISTER TO
PROG/DATA MEMORY TRANSFER

Address
Pointers

DMA
Counters

Register File

CompO 16 bit
Addr Pointer

CaptO 16 bit
Addr Pointer

CompO DMA
16 b1t Counter

CaptO DMA
16 bit Counter

yyyyyy11 (I)
yyyyyy'o(h)

yyyyyyD1 (I)
yyyyyyDO(h)

xxxxxx11 (I)
xxxxxx10(h)

xxxxxx01 (I)
XXXXXX00(h)

(CompO and CaptO sources). As a consequence,
the CompO and CaptO Address pointers are
mapped by pair in the Register File, as well as the
CompO and CaptO DMA Counter pair.

The different address specification, in order to point
either CaptO or CompO pointers, is provided by ST9
according to the channel under service (replacing
the address bit 1 with "0" for CAPTO or with "1" for
COMPO), when DO bit on DCPR register is equal
to zero (Word address in Register File). In this
condition (register with program/data memory
transfer}, the pointers will be split in two groups of
adjacent Address pointer and Counter pairs re­
spectively.

In the case of register to register transfers (selected
by programming the value "1" into bit 0 of the DCPR
register), only one pair of pointers are required and
the pointers are mapped into one group of adjacent
positions.

DAPR (the DMA/Address Pointer Register) in this
case in not used, but must be considered reserved.

MAP POINTER FOR REGISTER TO REGISTER
TRANSFER

Register F1le

8 bit Counter XXXXXX11
Compare 0

8 bit Addr Pointer XXXXXX10

8 bit Counter XXXXXX01
Capture 0

8 bit Addr Counter xxxxxxoo

10/22 -----------5i SCiS·lHOMSON __________ _
• J /1. iYJ~©iKJ©rn~~©'iMJ@il]~@@

150

1 0.6.2 Priority During The DMA Transactions

Each Timer OMA transaction is a 16 bit operation,
therefore two different bytes must be transferred
subsequently. This is accomplished by two OMA
transfers. In order to speed up each word transfer,
the second byte transfer is executed by forcing
automatically the peripheral priority to the highest
level (000) regardless to the previous set level. It
will be then restored to the original value after
executing this transfer. Furthermore, once one re­
quest is being served, its hardware priority is kept
at the highest level regardless to the other Timer
internal sources, i.e. once a CompO request is
being served, it keeps a higher priority on the CaptO
channel, even if a CaptO request occurs between
the two byte transfers.

1 0.6.3 The DMA Swap Mode

After a complete data table transfer, the transaction
counter is reset and an End Of Block condition
occurs, the block transfer is completed.

The End Of Block Interrupt routine has at this point
to reload both address and counter pointers of the
channel referred by the End Of Block interrupt
source if the application requires a continuous high
speed data flow. This procedure causes speed
limitations because of the time consumed by the
reload routine.

The SWAP feature overcomes this drawback,
allowing high speed continous transfers. Bit 2 of the
Timer Address and Counter Pointer registers
(DAPR-DCPR), toggles after any End Of Block
condition, alternately providing odd and even ad­
dress (02-07) for the couple of pointers, thus point­
ing to an updated couple, after a block has been
completely transfered. This allows the User to be
updating or reading the first block, and update the
pointer values while the second is being trans­
ferred. These two toggle bits are software writable
and readable, mapped in OCPR bit 2 for the CMO
channel, and in OAPR bit 2 for the CPO channel
(though a DMAevent on a channel, in Swap mode,
modifies a field in DAPR and DCPR common to
both channels, the OAPR/OCPR content used in
the transfer is always the one related to the correct
channel).

10- Multifunction Timer

The SWAP mode can be enabled by a control bit
placed in the Interrupt Control Register.

WARNING: this mode is always set for both chan­
nel (CMO and CPO).

10.6.4 The DMA End Of Block Interrupt Routine

This Interrupt request is generated after each block
transfer (EOB) and its priority is the same as as­
signed in the usual Interrupt request, for the two
channels. As a consequence, they will be served
only when no DMA request occurs, and will be
submitted to a possible OUF Interrupt request,
which has higher priority.

Here is a typical EOB procedure (with swap mode
enabled):

- Toggle bit test and Jump

- Pointers (odd or even depending on toggle bit
status) reload

- Reset EOB bit: this bit must be reset only after
the old couple of pointers has been restored, so
that, if a new EOB condition occurs, the next
pointers are ready to be swapped

- Verify the software protection condition

- Read the corresponding Overrun bit: this make
the user sure that NO OMA request has been lost
meantime

- Return.

WARNING: The EOB bits are read/write bits only
for testing reasons. Writing a logical "1 "by software
(when SWEN bit is set) will cause a spurious inter­
rupt request. During normal operation, these bits
have only to be reset by software.

10.6.5 DMA Software Protection
A second EOB condition may occur before the first
EOB routine is completed, this would cause a not
yet updated pointer couple to be addressed, with
consequent overwriting of memory. To prevent
these errors, a protection mechanism is provided,
such that the attempted setting of the EOB bit
before it has been reset by software will cause the
DMA mask on that channel to be reset (DMA dis­
abled), locking any further DMA operation. As
shown above, this mask bit should always be
checked in each EOB routine, to ensure all DMA
transfers are properly served.

11/22 -"='= SCS·lHOMSON -------------- .._""fl ~J1C©CJ©ffi~~©Wl©l!:~©~ --------------

151

10- Multifunction Timer

10.7 TIMER DMA EXTERNAL MODES ON 1/0
PORTS

Each Timer DMA channel can also be employed in
external transfers to/from memory from/to an 1/0
port. In this case only Byte transfers are executed
for any request. Two control bits (DCTS and DCTD)
in the lnterrupt/DMA Control Register (IOCR) set
each channel in INT/EXT (Internal = Register to
Memory/External = Memory to/from 1/0 ports)
mode.

The relevant 1/0 port must then be programmed in
DMA mode and the right direction of the port
chosen by the HDCxR register of that port (see 1/0
port chapter).

The two modes, however, are not the same for both
channels as explained in the following section.

10.7.1 CMO Channel External Mode

This mode is enabled when DCTD (DMA Compare
Transaction Destination) bit is equal to "1" in the
IOCR register.

This mode allows only Output transfers, from Reg­
ister File/memory to the 1/0 port, under a request
caused by a CMO event or a software request
(writing "1" in the CMO flag). An application for this
is a data flow under DMAto be output at fixed times.

The synchronization with the 1/0 port is accom­
plished by an internal signal, active when the data
to be transfered is present on the internal Data Bus.
If programmed, the on-chip event pulse can also
be generated and used to strobe the output data
on the selected handshake port.

In either case the DMA Output mode must be
selected in the HDCTL Register of the port (see 1/0
port chapter).

10.7.2 CPO Channel In External Mode

This mode is enabled when DCTS (DMA Capture
Transaction Source) bit is equal to "1" in the IOCR
register.

This mode allows bi-directional transfers controlled
(when the 1/0 port is programmed in DMA
Input/Output mode in the HDCTL register) by the
value of the DD bit of the HDCTL register (the DD
bit selects the DMA input or DMA Output mode).

The DMA request can be either an External CPTO
request (Timer External input A) or a software
request (by writing "1" in the CPO Flag).

This, along with a further internal synchronization
signal, generated by the Timer Unit, allows hand­
shake operations managed by the 1/0 port while
the direction of the data to read or write on the 1/0
port is fixed by the value of the DD bit in the HDCTL
register (see 1/0 port chapter).

10.7.3 DMA Channel Synchronization

A CPO DMA request can be generated also by a
CMO event, simply by setting the Timer External
Input A on rising and falling edges sensitive, con­
necting it by hardware or software (though the
IOCR register) to the Timer OUT 0, and programm­
ing the CMO action as output toggle.

This will cause a CPO request to be generated after
each CMO condition, thus synchronizing the 2 DMA
channels (see the following application example).

The DCTS bit must be set and DCTD bit must be
reset in the I DCR register. Fig 1 0.3 shows an
example of two channel synchronisation. A new
byte will be sent out through the 1/0 port at an
interval specified by the COMPO value mapped in
the look-up table.

12/22 -------------~ ~i~©IH~~,~~~ -------------
152

10- Multifunction Timer

Figure 10-3. Timer DMA Channels Synchronization

DMA
TABLE

OMA
TABLE

R.F /P.M. /O.M.

!PATTERN TABLE

'lfE:~c~g~E

1/0
ONNECTIO

(SOFTWARE

TOGGLE
OUTPUT

R.F /P.M. fO.M.

ITit.IE TABLE

r-

-

OMA TRANSFER

I INT llc OMA I

...
"'"' ou n.o-

~~

NOTE: THE 1/0 PORT
DIRECnON IS
FIXED BY THE
DO BIT IN THE
HDCTL REGISTER

ON-C HIP
EVENT

- CAPTURE 0 REGISTER

16 BIT COUNTER t--

I COMPARE 0 REGISTER

I INT llc OMA

DMA TRANSFER

IDCR.OC
IDCR.OC

TS= 1 : CAP lURE OMA IN PORT MODE
TQaO : COMPARE OMA IN NORMAL MODE

T=O : NORMAL STROBE (M2ST3) HOCTL.OS

VR000450

13/22 ------------~ ~~m~~'?4 ------------
153

10- Multifunction Timer

10.8 MULTIFUNCTION TIMER REGISTER DE­
SCRIPTION
Twenty-one control and data registers are associ­
ated to each Multifunction timer, and are located in
the Group F 1/0 pages of the ST9 Register File.

The registers of Timer 0 are located (in the case of
at least one timer on the ST9 device, otherwise
these are reserved registers) into 1/0 page 10 and
page 9 as follows:

IMDR- TIMO -15-

FLAGR- TIMO

OBCR- TIMO

OACR- TIMO

PRSR- TIMO

ICR- TIMO

TMR- TIMO

TCR -TIMO IOCR

CMP1 LR - TJMO

CMP1 HR- TIMO

CMPOLR- TIMO

CMPOHR- TIMO

REG1 LR- TIMO IOCR- TIMO

REG1 HR- TIMO IVR- TIMO

REGOLR - TIMO DAPR- TIMO

REGOHR - TIMO -00- DCPR- TIMO

Page 10 (OAh) Page 9 (09h)

The registers of Timer 1 are located (in the case of
at least two timers on the ST9 device, otherwise
are reserved registers) into 1/0 page 8 and page 9
as follows:

IMDR- TIM1 -15-

FLAGR-TIM1

OBCR- TIM1

OACR- TIM1

PRSR- TIM1

ICR-TIM1

TMR- TIM1

TCR- TIM1 IOCR

CMP1 LR- TIM1 IDCR- TIM1

CMP1 HR- TIM1 IVR-TIM1

CMPOLR- TIM1 DAPR -TIM1

CMPOHR- TIM1 DCPR- TIM1

REG1 LR- TIM1

REG1HR- TIM1

REGOLR- TIM1

REGOHR- TIM1 -00-

Page 8 (OBh) Page 9 (09h)

14/22 ------------- Eii. ~~~©m9rr~~~~~ -------------
154

The registers of Timer 2 are located (in the case of
at least three timers on the ST9 device, otherwise
are reserved registers) into 1/0 page 14 and page
13 as follows:

IMOR-TIM2 -15-

FLAGR- TIM2

OBCR-TIM2

OACR- TIM2

PRSR- TIM2

ICR- TIM2

TMR- TIM2

TCR- TIM2 IOCR

CMP1 LR- TIM2

CMP1 HR- TIM2

CMPOLR- TIM2

CMPOHR- TIM2

REG1 LR - TIM2 IOCR -TIM2

REG1 HR- TIM2 IVR- TIM2

REGOLR - TIM2 OAPR- TIM2

REGOHR- TIM2 -00- OCPR- TIM2

Page 14 (OEh) Page 13 (OOh)

In the following pages there is a detailed descrip­
tion of every register with the meaning and the
function of every bit. The register is referred without
the absolute address which is depending on the

10.8.1 Register 0 (REGOR) Registers

This couple of registers (REGOLR and REGOHR)
is used to capture values from the U/D counter or
to load preset values into the U/D counter.

REGOHR R240 (FOh) Read/Write
Capture Load Register 0 (High)

Reset value: undefined

7 0

I R151 R141 R13 I R121 R11 I R10 I R9 RB

10- Multifunction Timer

The registers of Timer 3 are located (in the case of
four timers on the ST9 device, otherwise are
reserved registers) into 1/0 page 12 and page 13
as follows:

IMOR- TIM3 -15-

FLAGR- TIM3

OBCR -TIM3

OACR -TIM3

PRSR- TIM3

ICR- TIM3

TMR- TIM3

TCR- TIM3 IOCR

CMP1 LR- TIM3 IOCR- TIM3

CMP1 HR- TIM3 IVR- TIM3

CMPOLR- TIM3 OAPR- TIM3

CMPOHR - TIM3 OCPR- TIM3

REG1 LR- TIM3

REG1HR- TIM3

REGOLR - TIM3

REGOHR- TIM3 -00-

Page 12 (OCh) Page 13 (OOh)

number of the timer used (of course the configura­
tion and the functions of the internal bits of i.e.
TCR- TIMO are the same ofTCR- TIM1 and so on.

REGOLR R241 (F1h) Read/Write
Capture Load Register 0 (Low)

Reset value: undefined

7

R7 R6 R5 R4 R3 R2 R1

0

RO

15/22 -------------- Eii ~~~;mgm~~~~A --------------
155

10- Multifunction Timer

1 0.8.2 Register 1 (REG1 R) Registers

This pair of registers (REG1 LR and REG1 HR) is
used (as REGOR) to capture values from the U/D
counter or to load preset values into the U/D
counter.

REG1LR R243 (F3h) Read/Write
Capture Load Register 1 (Low)

Reset value: undefined
7 0

I R7 I R6 I R5 I R4 I R3 R2 R1 RO

REG1 HR R242 (F2h) Read/Write
Capture Load Register 1 (High)

Reset value: undefined
7 0

I R151 R141 R13 I R121 R11 I R10 I R9 RB

10.8.3 Compare 0 (CMPOR) Registers

This pair of Registers (CMPOLand CMPOH) is used
to store 16 bit values to be compared to the U/D
counter content.

CMPOLR R245 (F5h) Read/Write
Compare 0 Register (Low)

Reset value: undefined
7 0

I R7 I R6 I R5 I R4 I R3 R2 R1 RO

CMPOHR R244 (F4h) Read/Write
Compare 0 Register (High)

Reset value: undefined
7 0

I R151 R141 R13 I R121 R11 I R10 I R9 RB

1 0.8.4 Compare 1 (CMP1 R) Registers

This pair of Registers (CMP1 Land CMP1 H) is used
(as CMPOR) to store 16 bit values to be compared
to the U/D counter content.

CMP1 LR R247 (F7h) Read/Write
Compare 1 Register (Low)

Reset value: undefined
7 0

I R7 I R6 R5 R4 R3 R2 R1 RO

CMP1 HR .R246 (F6h) Read/Write
Compare 1 Register (High)

Reset value: undefined
7 0

I R151 R141 R131 R121 R11 I R10 I R9 RS

10.8.5 Timer Control Register (TCR)

This register is used to control the status of the
timer.

TCR R248 (F8h) Read/Write Timer
Control Register

Reset value: 0000 Oxxxb
7 0

I CEN lccPolccMPol CCL I uoc luocsl oFo I cs

b7 = CEN: Counter Enable. This bit is ANDed with
the Global Counter Enable bit (GCEN bit on R230
- Central Interrupt Control Register; the GCEN bit
is set after the Reset cycle). Setting the CEN bit
starts the counter and prescaler (without reload).
When this bit is reset, the counter and prescaler
stop.
b6 = CCPO: Clear on Capture. When this bit is set,
a clear of the counter and a reload of the prescaler
are performed on REGOR or REG1 R capture. No
effect when this bit is reset.
b5 = CCMPO: Clear on Compare. When this bit is
set, a clear of the counter and a reload of the
prescaler are performed on CMPOR compare. No
effect when this bit is reset.
b4 = CCL: Counter clear. When this bit is set, the
counter is cleared without generation of interrupt
request. No effect when this bit is reset.
b3 = UDC: Software Up/Down. When the direction
of the counter is not fixed by TOlNA and/or TOINB
(see par. 1 0.3) it can be software controlled by the
UDC bit. Setting the UDC bit selects the Up mode
counting. Resetting this bit the Down counting is
performed.
b2 = UDCS: Up/Down Count status. This bit is read
only and monitors the direction of the counter.
Reading "1" means that the counter is using the Up
mode counting. Reading "0" means that the Down
mode counting is in use.
b1 = OFO: OVF/UNF state. This bit is read only and
is set if an Overflow or an Underflow occurs during
a Capture on Register 0.
bO = CS: Counter Status. This bit is read only and
monitors the status of the counter. Reading "1"
means that the counter is running. Reading "0"
indicates that the counter is halted.

16/22 ------------- I..W. ~i~©1HW11l~~~ -------------
156

1 0.8.6 Timer Mode Register (TMR)

This register is used to select the operating mode
of the timer.

TMR R249 (F9h) Read/Write
Timer Mode Register

Reset value: 0000 OOOOb (DOh)
7 0

I OE1 I OED I BM I RM1 I RMO I ECK I REN I co

b? = OE1: Output 1 Enable. Setting this bit enables
the Output 1 (TxOUTB) of the relevant timer. When
this bit is reset, the TxOUTB is disabled and forced
to the logic state "1". The relevant 1/0 bit must also
be set to Alternate Function.

b6 =OED: Output 0 Enable. Setting this bit enables
the Output 0 (TxOUTA) of the relevant timer. When
this bit is reset, the TxOUTA is disabled and forced
to the logic state "1". The relevant 1/0 bit must also
be set to Alternate Function.

b5 = BM: Bivalue Mode. This bit enables the Bi­
value mode when is set. When the bit is reset, the
Bivalue mode is disabled. After that, depending on
the value of RMO bit (TMR - bit 3), the Biload or
Bicapture mode is selected (see par. 1 0.4.1 0).

b4 = RM1: REG1 R mode. When this bit is set, the
REG1 R can be used to capture the value of the
counter. When the bit is reset, the REG1 R monitors
the value of the counter. The selection performed
by this bit has no effect when the Bivalue Mode is
enabled.

b3 = RMO: REGOR mode. When this bit is reset,
the REGOR can be used to capture the value of the
counter (also the Bicapture mode can be selected
if the BM bit is equal to 1). When the bit is reset,
the REGOR can be used to load the new value of
the counter (also the Biload mode can be selected
if the BM bit is equal to "1 ").

b2 = ECK: Timer clocking mode. This bit selects
the clock source which drives the prescaler. When
the ECK bit is reset, either the Internal or External
clock is used depending on INO- IN3 configuration
in I CR. When ECK bit is set, different functions are
performed depending on the number of the rele­
vant timer. For odd timers (Timer 1, Timer 3 and so
on) setting the ECK bit enables the Parallel mode
(see par. 10.4.11) where the prescaler of the odd
timer is driven by the prescaler output of the even
timer.

b1 = REN: Retrigger mode. When this bit is reset,
the Retriggerable mode is enabled. When the bit is
set, this operating mode is disabled.

10- Multifunction Timer

bO = CO: Continous/One shot mode. When this bit
is reset, the Continuous mode is selected (with
autoreload on condition). The bit must be set to
select the one shot mode. The following table
summarizes the different operating modes de­
pending on the values of RMO, RM1 and BM bits.

Table 10-3. Timer Operating Modes

TMR Bits
Timer Operating Modes

RMO RM1 BM

0 X 1 Biload mode

1 X 1 Bicapture mode

0 0 0
Load from REGOR and
Monitor on REG 1 R

0 1 0 Load from REGOR and
Capture on REG1 R

1 0 0 Capture on REGOR and
Monitor on REG1 R

1 1 0 Capture on REGOR and
REG1R

10.8.7 External Input Control Register(ICR)

By this register it is possible to program the function
and the operation to be performed on TxiNA and
TxiNB inputs.

ICR R250 (FAh) read/write
External Input Control Register

Reset value: 0000 xxxxb (OXh)
7 0

IN3 IN2 IN1 INO AO A1 BO B1

b7-b4 = IN3,1N2,1N1,1NO: Input pin assignment.
The different functions of TxiNA and TxiNB inputs
of every timer can be selected by INO - IN3 bits as
explained below.

b3-b2 = AO, A1: TxiNA event programming. The
following TxiNA configurations can be selected
according to the values of AD and A1 bits:

AD A1 TxiNA Configuration

0 0 No operation
0 1 Falling edge sensitive
1 0 Rising edge sensitive
1 1 R1s1ng and falling edges

17/22 ------------~ ~~@m~:i!~~ ------------
157

10- Multifunction Timer

I GReg. TxiNAinput TxiN8 Input
IN3-INO bits Function Function

0000 110 110
0001 110 Trigger
0010 Gate 1/0
0011 Gate Trigger
0100 1/0 Ext. Clock
0101 Trigger 1/0
0110 Gate Ext. Clock
0111 Trigger Trigger
1000 Clock Up Clock Down
1001 Up/Down Ext. Clock
1010 Trigger Up Trigger Down
1011 Up/Down 1/0
1100 Autodiscr. Autodiscr.
1101 Trigger Ext. Clock
1110 Ext. Clock Trigger
1111 Tngger Gate

b1-b0 = 80, 81: Tx/NB event programming. The
following TxiNB configurations can be selected
according to the values of BO and B1 bits:

80 81 TxiN8 Configuration

0 0 No operat1on
0 1 Falling edge sensitive
1 0 Rising edge sensitive
1 1 Rising and falling edges

1 0.8.8 Prescaler Register (PRSR)

This register holds the preset value for the 8-bit
prescaler. The PRSR content may be modified at
any time, but it will be loaded into the prescaler at
the following prescaler underflow, or as a conse­
quence of a counter reload (either by software or
upon external request). On an external RESET
condition, the prescaler is automatically loaded
with the DOh value, so that the prescaler divides by
1 and the maximum counter clock is generated
(OSCIN frequency divided by 6 when MODER.5 =
DIV2 bit is set).

PRSR R251 (FBh) read/write
Prescaler Register

Reset value: 0000 OOOOb (OOh)
7

I P7 I P6 I P5 I P4 I P3 I P2 P1

0

PO

The binary value stored (by programmer) in the
PRSR register is equal to (divider value- 1]. For
example, loading PRSR with 24 makes the pres­
caler divide by 25.

10.8.9 Output A Control Register (OACR)

This register selects the sources that can perform
actions on TxOUTA pin.

TxOUTA can be driven from any of three possible
sources:

- OVF/UNF being an Overflow or Underflow event
on the U/D counter,

- COMPO being a successful compare event on
CMPOR register, and

- COMP1 being a successful compare event on
CMP1R.

By programming bits BO and 81 of the relevant
source can cause one of the following four effects
on TxOUTA (which can be previously preset):

80 81 Event

0 0 Set
0 1 Toggle
1 0 Reset
1 1 Nap

Note: In any case of contemporary events the action Will be taken
Which results from 'ANDmg' the B1-BO fields. Through this reg1ster
the actiOn of COMPO on the on·ch1p event can be also selected.

OACR R252 (FCh) Read/Write
Output A Control Register

Reset value: xxxx xxOxb
7 0

I 80 I 81 I 80 I 81 I 80 81 I CEV I OP

< COMPO > < COMP1 > < OVF/UNF >

b7-b6 = 80, 81: Control bits of COMPO. Control
bits for event driven by COMPO.

18/22 ------------;;.::;;. ~~©1!1~~~~~ ------------
158

b5-b4 = 80, 81: Control bits of COMP1. Control
bits for event driven by COMP1.

b3-b2 = 80, 81: Control bits of OVF!UNF. Control
bits for event driven by OVF/UNF.

b1 = CEV: On-Chip Event on CMPOR. When this
bit is set, a successful compare on CMPOR acti­
vates the on-chip event signal (a single pulse is
generated). No action when this bit is reset.
bO = OP: Control bit of TxOUTA preset. The value
of this bit is the preset value of TxOUTA output pin.
Reading this bit returns the current state of the
TxOUTA output pin (i.e. useful when this output is
selected in toggle mode).

1 0.8.1 0 Output 8 Control Register (08CR)

This register selects the sources that can perform
actions on TxOUTB output pin. TxOUTB can be
driven from any of three possible sources:

- OVF/UNF being an Overflow or Underflow event
on the U/D counter,

- COMPO being a successful compare event on
CMPOR register, and

- COMP1 being a successful compare event on
CMP1R.

By programming bits BO and 81 of the relevant
source can cause one of the following four effects
on TxOUTB (which can be previously preset):

BO 81 Event

0 0 Set
0 1 Toggle
1 0 Reset
1 1 Nap

Note: In any case of contemporary events the actton wtll be taken
wh1ch results from 'AND1ng' the 81-80 f1elds Through th1s reg1ster
the action of Overflow/Underflow on the on-chip event can be also
selected

08CR R253 (FD h) Read/Write
Output B Control Register

Reset value: xxxx xxOx b
7 0

I 80 I 81 I 80 I 81 I 80 81 I OEV I OP

< COMPO > < COMP1 > < OVF/UNF >

b7-b6= 80,81: controlbitsofCOMPO. Control bits
for event driven by COMPO.

b5-b4 = 80, 81: control bits of COMP1. Control bits
for event driven by COMP1.

b3-b2 = 80, 81: control bits of OVF!UNF. Control
bits for event driven by OVF/UNF.

10- Multifunction Timer

b1 = OEV: On-Chip Event on OVF!UNF. When this
bit is set, a successful Overflow/Underflow acti­
vates the on-chip event signal (a single pulse is
generated). No action when this bit is reset.

bO = OP: control bit of TxOUTB preset. The value
of this bit is the preset value of TxOUTB output pin.
Reading this bit, it returns the current state of the
TxOUTB output pin (i.e. useful when this output is
selected in toggle mode).

10.8.11 Flag Register (FLAGR)

This register contains the flags of the successful
captures or comparisons together with the Over­
flow/Underflow and overrunning indications. Also
the mode of the Interrupt on capture can be se­
lected. By writing into the capture flags it is possible
to generate software captures. It is necessary to
clear the capture flag before subsequent sofware
captures can be generated. By reading this regis­
ter, user can know which source has generated an
interrupt (several sources may share the same
interrupt vector).

FLAGR R254 (FEh) Read/Write
Flags Register

Reset value: 0000 OOOOb (OOh)
7 0

I CPO I co1 I CMo I CM1 I ouF locPolocMol Ao

b7 =CPO: Flag on Capture 0. This bit is set after a
capture on REGOR register. Writing "1" acts as a
software load/capture from/on REGOR.

b6 = CP1: Flag on Capture 1. This bit is set after a
capture on REG1 R register. Writing "1" acts as a
software capture on REG I R, except when in Bi­
capture mode.

b5 = CMO: Flag on Compare 0. This bit is set after
a successful compare on CMPOR register.

b4 = CM1: Flag on Compare 1. This bit is set after
a successful compare on CMP1 R register.

b3 = OUF: Flag on Overflow/Underflow. This bit is
set after a counter Over/Underflow condition.

b2 = OCPO: Flag of overrun on Capture 0. This bit
is set when more than one INT/DMArequestoccurs
before having reset the event flag CPO or whenever
a capture is software simulated.

b1 = OCMO: Flag of overrun on Compare 0. This
bit is set when more than one INT/DMA request
occurs before having reset the event flag CMO.

bO = AO: Capture Interrupt Function. When this bit
is set the Interrupt is generated by an AND function
of REGOR/REG1 R captures while when the AO bit
is reset, the Interrupt is generated by an OR func­
tion of REGOR/REG1 R captures.

19/22
~ SGS-1HOMSON -------------- A..""'fl u:JJD©IJil@ffi~rn(i;WJ@I!JD©$ --------------

159

10 - Multifunction Timer

10.8.12 lnterrupt/OMA Mask Register (IOMR)

This register contains the Global Timer Interrupt
enable bit and the INT/DMA enable bits of the
following events:

- Capture on REGOR (CPO field),

- Capture on REG1 R (CP11 bit - only Interrupt
mask),

- Compare on CMPOR (CMO field),

- Compare on CMP1 R (CM11 bit- only Interrupt
mask), and

- Overflow/Underflow (OUI bit - only Interrupt
mask).

IOMR R255 (FF h) Read/Write
lnterrupt/DMA Mask Register

Reset value: 0000 OOOOb (OOh)
7 0

I GTIEN I CPOD I CPO I I CP11 I CMOD I CMOI I CM11 I OUI

CPO > < CP1 >< CMO ><CM1 >

b7 = GTIEN: Global Timer Interrupt Enable. When
this bit is set, all the Interrupts (of the enabled
sources) of the timer are enabled. When the bit is
reset, all the Interrupts of timer are disabled.

b6 = CPOO: Capture 0 DMA Mask. Capture on
REGOR DMA is enabled when CPOD = "1."

b5 = CPOI: Capture 0 Interrupt Mask. Capture on
REGOR interrupt is enabled when CPO I = "1 ".

b4 = CP11: Capture 1 Interrupt Mask. Capture on
REG1 R interrupt is enabled when CP11 = "1 ".

b3 = CMOO: Compare 0 DMA Mask. Compare on
CMPOR DMA is enabled when CMOD = "1 ".

b3 = CMOI: Compare 0 Interrupt Mask. Compare
on CMPOR interrupt is enabled when CMOI = "1 ".

b1 = CM11: Compare 1 Interrupt Mask. Compare
on CMP1 R interrupt is enabled when CM11 = "1 ".

bO = OUI: Overflow/Under11ow Interrupt Mask.
Overflow/Underflow condition interrupt is enabled
when OUI = "1".

10.8.13 OMA Counter Pointer Register (OCPR)

This register is not used only as DMA Counter
pointer but also to define the DMA area and the
DMAsource.

OCPR R240 or 244 (FOh or F4h) Read/Write
DMA Counter Pointer Register

Reset value: undefined
7

I D7 I D6 I D5 I D4 I D3 02 I ~~c~ I ~~~ I

b7-b2 = 07, ,02: MSB of DMA counter register
address. Those bits contain the most significant
bits of the DMA counter register address and are
user programmable. Though user programmable,
the D2 bit may be hardware toggled if the Swap
mode is set for the Timer DMA section related to
Compare 0 channel.

b1 = OMA-SRCE: DMA source selection (hardware
programmed). This bit is hardware fixed by the
Timer DMA logic and is set if the DMA destination
is a Compare on CMPOR register and reset if the
DMA source is a Capture on REGOR register.

bO = REG-MEM: DMAarea selection. When this bit
is set, it selects the Source/Destination of the DMA
area from/into Register File while when it is reset,
the Source/Destination of the DMA area is from/to
the External Program or Data Memory (according
with the value of DO bit in DAPR).

20/22
~'='= SGS-lliOMSON -------------- A"'f/. [/;J]~©JJ@~~Ili©lilYJ©IilO~ --------------

160

10.8.14 DMA Address Pointer Register (DAPR}

This register is not used only as DMA Address
pointer but also to define the DMA area and the
DMAsource.

DAPR R241 or 245 (F1 h or F5h) Read/Write
DMA Address Pointer Register

Resetv~ue:undefined

7

lwlool~l~loo ~1=1~1
b7-b2 = 07, , 02: MSB of DMA Address register
location. Those bits contain the most significant bits
of the DMA Address register location and are user
programmable. Through user programmable, the
bit D2 may be hardware toggled if the Swap mode
is set for the Timer DMA section related to Capture
0 channel.

b1 = DMA-SRCE: DMA source selection (hardware
programmed). This bit is hardware fixed by the
Timer DMA logic and is set if the DMA destination
is a Compare on CMPOR register and reset if the
DMA source is a Capture on REGOR register.

bO = PRGIDAT: DMA memory selection. When this
bit is set it selects the Source/Destination of the
DMA area from/into Data Memory while when it is
reset the Source/Destination of the DMA area is
from/into the External Program Memory (according
with the value of DO bit in DCPR).

DCPR.O DAPR.O DMA Source/Destination

0 0 Program memory
0 1 Data memory
1 0 Register file
1 1 Register f1le

10- Multifunction Timer

10.8.15 Interrupt Vector Register (IVR}

This register is used as a vector pointing to the
16-bit interrupt vectors in the program memory
which contain the starting addresses of the three
interrupt subroutines managed by every timer.

Only one Interrupt Vector Register is available for
every timer and is able to manage the three inter­
rupt groups because the 3 less significant bits are
fixed by hardware depending on the group which
generated the interrupt request.

In order to understand which request generated the
interrupt inside the same group, the FLAGR regis­
ter can be used to check the relevant flag of the
interrupt source.

IVR R242 or 246 (F2h or F6h) Read/Write
Interrupt Vector Register

Reset value: undefined
7 0

I V4 I V3 I V2 I V1 I vo I W1 I WO DO

b7-b3 = V4 to VO: MSB of the Vector address.
These bits are user programmable and contain the
five most significant bits of the Timer interrupt
vector addresses in the program memory. In any
case, an 8-bit address can be used to indicate the
Timer interrupt vector locations because they are
within the first 256 locations of the program mem­
ory (see Interrupt and DMA chapter).

b2-b1 = W1 and WO: Vector Address bits. These
bits are equivalent to bit 1 and bit 2 of the Timer
interrupt vector addresses in the program memory.
They are fixed by hardware depending on the
group of sources which generated the interrupt
request as follows:

bO = DO. This bit is fixed by hardware. It always
returns the value "0" if read.

W1 wo Interrupt Source

0 0 Overflow/Underflow even interrupts
0 1 Not ava1lable
1 0 Capture event interrupts
1 1 Compare event Interrupts

21/22 -------------~ ~~~;U\~~9~ -------------
161

10 - Multifunction Timer

10.8.16 lnterrupt/DMA Control Register (IDCR)

This register is used to control the Interrupt and
DMA priority level, the DMA transfer source and
destination and the Swap mode. This register con­
tains also the two End Of Block bits.

IOCR R243 or 247 (F3h or F7h) Read/Write
lnterrupt/DMA Control Register

Reset value: 1100 0111 b (C7h)
7 0

I CPE I CME locrslocmlswENI PL21 PL1 I PLo I

b7 = CPE: Capture 0 EOB. This bit is set by
hardware when the End Of Block condition is
reached during a Capture 0 DMAoperation with the
Swap mode enabled. When the Swap mode is
disabled (SWEN bit = "0") the CPE bit is forced by
hardware to "1".

b6 = CME: Compare 0 EOB. This bit is set by
hardware when the End Of Block condition is
reached during a Compare 0 DMA operation with
the Swap mode enabled. When the Swap mode is
disabled (SWEN bit= "0") the CME bit is forced by
hardware to "1 ".

b5 = DCTS: DMA Capture Transfer Source. This
bit selects the source of the DMA operation related
to the channel associated to the Capture 0. When
the DCTS bit is reset the selected source is the
REGOR register. When the DCTS bit is set the ST9
port is selected as DMA transfer source (with this
DMA channel the ST9 port can also be destination
depending on the value of the DO bit in the HDCTL
register of the port - see 1/0 port chapter 9).

b4 = DCTD: DMA Compare Transfer Destination.
This bit selects the destination of the DMA oper­
ation related to the channel associated to the Com­
pare 0. When this bit is reset, the selected
destination is the CMPOR register. When the bit is
set, the ST9 port is selected as DMA transfer
destination.

b3 = SWEN: Swap function Enable. When this bit
is set, the Swap function is enabled for the two DMA
channels. Resetting the SWEN bit disables the
Swap mode.

b2-b0 = PL2 to PLO: lnterrupt/DMA priority level.
With these three bits it is possible to select the
Interrupt and DMApriority level of every single timer
within eight different levels (see lnterrupt!DMA
chapter).

10.8.171/0 Connection Register (IOCR)

This register allows user to select (or not) an on­
chip connection between input A and output A of
one same timer.

IOCR R248 (F8h) Read/Write
1/0 Connection Register

Reset value: 1111 11 OOb (OFCh)
7

b7-b2 =not used.

0

b1 = SC1: Select Connection Odd. SC1 selects if
connection between TxOUTA and TxiNA for ODD
timers (Timers 1 , 3) is made on-chip or externally
(physically on pins)

SC1 = "0": TxOUTA and TxiNA unconnected

SC1 = "1 ": TxOUTAand TxiNAconnected internally

bO = SCO: Select Connection Even. SCO selects if
connection between TxOUTAand TxiNA for EVEN
timers (Timers 0, 2) is made on-chip or externally
(physically on pins)

SCO=O: TxOUTA and TxiNA unconnected

SC0=1: TxOUTA and TxiNA connected internally

22/22 ----------- ID'l SGS·lHOMSON -----------.1, • [ll]C©DB©~~~il':WI©Ii:IIO~

162

CHAPTER 11

ANALOG TO DIGITAL CONVERTER

11.1 MAIN FEATURES AND FUNCTIONAL
DESCRIPTION

11.1.1 Features

The ST9 AID Converter Unit is an 8 channel Analog
to Digital converter, with 8 bit± 1/2 LSB maximum
DNL error, and a channel conversion time of 11 flS
at INTCLK = 12MHz (including sample and hold
time).

The converter uses a fully differential analog input
configuration for the best noise immunity and pre­
~ision perfo_rmance, along with tw~ sepa_rate supply
lines, allowmg the best supply no1se rejection and
possible analog supplies lower than the Digital Vee.
In fact, the converted digital value, is referred to the
Analog Vee (AVec) as the full scale value, so that
using, for example a value of 4 Volt for this supply,
all conversions will accordingly refer to this 4 Volt
full scale value (AVss = Vss).

Figure 11·1. AID Block Diagram

A internal, fast Sample and Hold cell, with a sample
time of 3flS at INTCLK=12MHz, allows quick samp­
ling of signal for the minimum warping effect and
Integral conversion error.

Up to 8 multiplexed Analog Inputs are available. A
group of signals can be converted sequentially by
simply programming the starting address of the first
analog channel to be converted and using the
AUTOSCAN feature.

Two Analog Watchdogs are provided, on analog
input channels 6 and 7, allowing a continuous
hardware monitoring of these two inputs. An alarm
Interrupt request will be generated whenever the
converted value of either of these two analog inputs
exceed one of the two programmed threshold
values (Upper and Lower) for each channel. The
comparison result is stored in a dedicated register.

Single, continuous, or externally triggered conver­
sion modes are available, internal clock sample
synchronization is also available through the 'On

H INTERRUPT UNIT
INT. vtCTOR POINTER

INT. CONTROL REGISTER

INTERNAL

TRIGGER

EXTERNAL
TRIGGER

o--

o--

-
CONTROL

LOGIC

CONTROL REGISTER H

l l
COMPARE RESULT REGISTER

THRESHOLD REGISTER 7U
COf.4PARE LOGIC THRESHOLD REGISTER 7L

THRESHOLD REGISTER 6U
THRESHOLD REGISTER 6l

I
DATA REGISTER 7 CONVERSION -I--<>
DATA REGISTER 6 RESULT

DATA REGISTER 5
!--<'

DATA REGISTER 4
ANALOG I--<>

OAT A REGISTER J I MUX ~
DATA REGISTER 2

~ DATA REGISTER , 1 SUCCESS!\£ APPROXIMATION 1
DATA REGISTER 0 A/D CON~RTER _,.,

I l T I
AUTOSCAN LOGIC

AJN 7
AlN 6
AJN 5
AJN 4
AJN J
AJN 2
AJN 1

AJN 0

VA0022J

1/8

163

11 - A/D Converter

chip Event" synchronization logic of a Multifunction
Timer Unit,

A Power-Down programmable bit allows to set the
AID converter to a minimum consumption idle
status.

The ST9 AID Interrupt Unit provides two maskable
channels (Analog Watchdog and End of Conver­
sion) with hardware fixed priority, and up to 7
programmable priority levels.

WARNING: NO INPUT PIN DECLARATION

The 1/0 Port pins connected to the AID must be
configured as an AID input by declaring it as an
Alternate Function to prevent possible high power
dissipation within the input buffer. The Alternate
Function of ports connected to the AID converter
are modified as shown in figure 11-2.
An 1/0 Port PX (associated with the AID converter)
pin is configured as an A/D input for: (PXC2, PXC1,
PXCO) = (1, 1, 1).

Figure 11-2. AID Input Configuration Status

1/0 PIN

INTERNAL DATA BUS

VA00219

11.2 A/D OPERATION

11.2.1 Operational Modes

Two main operational modes are available: Con­
tinuous Mode and Single Mode. To enter one of
these modes it is necessary to program the CONT
bit of the Control Logic Register, the Continuous
Mode is selected when CONT = "1 ",while CONT =
"0" enables the Single Mode.

Both modes operate in the AUTOSCAN configura­
tion, allowing a sequential conversion flow of the
input channels. It is possible to choose by software
the number of analog inputs to be converted by
writing into the Control Register (SC2, SC1, SCO
bits) the number of the first channel to be con­
verted. Subsequentially, after each conversion is
completed, the channel number is automatically
incremented, up to channel?. For example, if (SC2,
SC1, SCO) = 011, the conversion flow runs from
channel 3 up to channel 7. If (SC2, SC1, SCO) =
111, only channel 7 is converted.

When the ST bit of the Control Logic Register is
written to "1 ", the analog inputs are sequentially
converted (from the first selected channel up to
channel?) and the results are stored in the relevant
Data Registers.

In Single Mode (CONT = "0"), the ST bit is reset by
hardware at the end of conversion of channel 7, an
End of Conversion (ECV) interrupt request is is­
sued, and the AID waits for a new start event.

In Continuous Mode (CONT = "1 "), a continuous
conversion flow is entered by the start event. After
the conversion of channel 7 ends, the conversion
of channel 's' starts (where 's' is specified in the
(SC2, SC1, SCO) bits), this will continue until the
ST bit is reset by software. In all cases, an ECV
interrupt is issued each time the channel 7 conver­
sion ends.

When channel 'i' is converted ('s' < 'i' < 7), the Data
Register is reloaded with the new conversion result
and the previous value is lost. The ECV interrupt
routine can be used to save the current values before
a new conversion sequence (so as to create signal
sample tables within Register File or Memory).

11.2.2 Synchronisation

Conversion start synchronisation for all modes may
be internal or external. The external (ADTRG, as
Alternate Function of an 1/0 port) or the internal
(INTRG, produced by an on-chip peripheral) can
be used to synchronise the converion start with a
trigger pulse. Both external and internal events can
be seperately masked by the programming of the
EXTG/INTG bits of the Control Logic Register. The
events are internally OR'ed, thus avoiding potential
hardware conflicts, however the correct procedure
is to always enable only one alternate synchroni­
sation input at any time.

The effect of the alternate synchronisation is to set
the ST bit by hardware. This bit is reset, only in
Single Mode, at the end of each group of conver­
sions. In Continuous Mode all trigger pulses, fol­
lowing the first, are ignored.

2/8 -------------lffi. ~~~;m~::B~ -------------
164

Figure 11-3. AID Trigger Sources

EXT. TRIGGER ------3~
ENABLE

A/0 TRIGGER o----1

INT. TRIGGER
ENABLE

ON-CHIP EVENT

The two synchronisation sources must have a clock
cycle minimum length of 83ns (at INTCLK =
12M Hz), and a period greater (in Single Mode) than
the total time of a group of conversions (11.5Jls x
the number of channels scanned (at INTCLK =
12MHz)). If a trigger occurs when the ST bit is still
"1" and conversion is still in progress, it is ignored.

11.2.3 Analog Watchdog
Two internal Analog Watchdogs are available,
allowing great flexibility in automatic threshold
monitoring in those applications experiencing a
maximum range of fluctuations. Analog channels 6
and 7 define a voltage window for the allowed
values of the converted analog input. The range of
values of the external voltage applied to input 6 and
7 are accepted as normal whenever below the
Upper threshold and above or equal to the Lower
threshold.

Analog Voltage
upper threshold -t------

Normal area Window
Guarded

Lower Threshold -+------

11 -AID Converter

START GROUP
OF CONVERSIONS

CONTINUOUS OR

SINGLE MODE

VA00416

When the external voltage is greater or equal to the
upper, or is less than the lower programmed volt­
age limits, a maskable interrupt request (see AWD
and AWOl in the Interrupt Control Register) is
generated and the Compare Results Register is
updated to inform which threshold (Upper or
Lower) of which channel (6 or 7) has been ex­
ceeded. The 4 threshold voltages are user pro­
grammable in 4 dedicated registers (8 up to B) of
the AID register page, storing their 8 bit binary
code. Only the 4 MSB of the Compare Results
Register are used (the 4 LSB always return "1" if
read), each bit for each threshold possible overflow
or underflow status.

After an hardware reset, these bit values are "0".
During the normal AiD operation, the CRR bits are
set to "1" to flag an over-range and must be reset
by the User in the watchdog interrupt routine, im­
mediately before the IRET instruction, in order to
allow further input monitoring.

11.2.4 Powerdown Mode

Before enabling any AJD conversion, it is manda­
tory to setthe POW bit ofthe Control Logic Register
to "1" at least 60J.LS before the first conversion start.
This is in order to correctly bias the analog section
oft he converter, if this is not done, then functionality
of the converter will be locked.

Setting POW to "0" is useful when the AID is not
required in order to reduce the total power consump­
tion. This is the reset configuration, and is also
entered automatically when the ST9 is in Halt Mode
(following the execution of the HALT instruction).

3/8 ------------i..W. ~~m~~~ ------------
165

..... I""' Cl) co
Cl)

~
~UI

if;~
~~
~a:
©UI
ii'lc
ff\lz

l11xW1 Don';:a:J

I olxl ol xi Don-;~

I 0 I X 11 X I Don'l core I

COMPARE RESULT REGISTER

CHANNEL 7
conversion result

FFtFF
FE FE
FD FO

01
00

01 00

L

__r

COMPARE RESULT REGISTER

CHANNEL 7 UPPER THRESHOLD

CHANNEL 6 UPPER THRESHOLD

CHANNEL 7 LOWER THRESHOLD

CHANNEL 6 LOWER THRESHOLD

A/D REGISTERS PAGE (63 or 62)

!!
cc
c:: • ..

~ CD

CHANNEL 6 I l:t c
conversion result C')

li
0

FFt FF I
::I
<

FE FEI CD
rD FO ::t. cc CD

~
.,

c;
:::1"
a.
0
cc
'11

I X 11 I X I 0 I Don'l care I I~
6'
:I
!!!.

l I I I If

}I X I 0 I xi 0 I Don'l care I

}I X I 0 I Xi 1 I Don'l core I
01 ±01
00 00

COMPARE RESULT REGISTER

11 - A/D Converter

Figure 11-5. Analog Watchdog Used in Motor Speed Control

SPEED
(CONVERSION

RESULT)

INTERNAL
TRIGGER

11.3 REGISTERS

11.3.1. Register Mapping

Up to two identieal AID converters can be im­
plemented on the ST9 microcontroller. Each AID
peripheral has 16 registers, mapped in a ST9 reg­
ister file page, addressed at page 63 (& 62 for the
second AID peripheral).

11.3.2 Interrupt Vector Register (IVR)

IVR R255 (FF.h) Read/Write
Interrupt Vector Register

Reset Value: xxxx xx1 0 (x2h)
7 0

I V7 I V6 I V5 I V4 I V3 I V2 W1 DO

b7-b2 = V7-V2: AID Interrupt Vector. This vector
should be programmed by the User to point to the
first memory location in the Interrupt Vector table
containing the starting addresses of the AID inter­
rupt service routines.

(CHANNEL 7) 5/H TACHO ---w-
AND
A/0

UPPER THRESHOLD

LOv.ER THRESHOLD

5

VA00250

1111 IVR : Interrupt Vector Register

1110 ICR : Interrupt Control Register

1101 CLR : Control Logic Register

1100 CRR : Compare Result Register

1011 Channel 7 Upper Threshold

1010 Channel 6 Upper Threshold

1001 Channel 7 Lower Threshold

1000 Channel 6 Lower Threshold

0111 Channel 7 Data Register

0110 Channel 6 Data Register

0101 Channel 5 Data Reg1ster

0100 Channel 4 Data Register

0011 Channel3 Data Register

0010 Channel 2 Data Register

0001 Channel1 Data Register

0000 Channel 0 Data Register

Page 63 (or 62)

5/8 ------------t..v. ~~mgm:~q~ ------------
167

11 - A/D Converter

b1 = W1: Word Select. This bit is set by hardware,
according to the AID interrupt source. It is set to "0"
if the source is the Analog Watchdog, pointing to
the lower word of the AID interrupt service block
(defined by V7-V2). It is set to "1" if the source is
the End of Conversion interrupt, thus pointing to the
upper ~ord.

ANALOG
WATCHOG
REQUEST

END OF
CONV.
REQUEST

7 ° Lower

I X I X I X I X I X I X I 0 I 0 IA:~~~s

When 2 requests occur simultaneously the Analog
watchdog request has priority over the End of
Conversion request which is held pending, to be
served after the current routine.

bO = DO: This bit is fixed by hardware. It always
returns the value "0" if read.

11.3.3 Interrupt Control Register (ICR}

This register contains the three priority level bits,
the two sources flags, and their bit mask:

ICR R254 (FEh) Read/Write
Interrupt Control Register

Reset Value: 0000 1111 (OFh)
7 0

I ECV I AWD I ECI I AWDII X I PL2 I PL 1 I PLO I
b7 = ECV: End of Conversion. ECV is automatically
set by hardware after a group of conversions is
completed.

b6 = AWD: Analog Watchdog. AWD is automat­
ically hardware set whenever any of the two
guarded analog inputs goes out of bounds. The
threshold values are stored in registers F8h and
FAh for channelS, and in registers F9h and FBh for
channel 7 respectively. The Compare Result Reg­
ister (CRR) keeps track of the analog inputs ex­
ceeding the thresholds.

AWD and ECV must be reset by the user, before
returning from the Interrupt service routine. Setting
either of them by software will cause a software
interrupt request to be generated.

b5 = ECI: End of Conversion Interrupt Enable This
bit masks the End of Conversion interrupt request.
A logical level "1" enables the request, a logical
level "0" masks the request.

b4 = AWOl: Analog Watchdog Interrupt Enable.
This bit masks the Analog Watchdog interrupt re­
quest.
A logical level "1" enables the request, a logical
level "0" masks the request.

b3 = 03: Undefined

b2-b0 = PL2, PL 1, PLO: AID Interrupt Priority Level.
With these three bits it is possible to select the
Interrupt priority level of the AID Converter.

11.3.4 Control Logic Register {CLR}

This register manages the AID logic operations.
Writing into this register will cause the current
conversion to be aborted and the autoscan logic to
be re-initialized to the starting configuration. CLR
is programmable as following:

CLR R253 (FDh) Read/Write
Control Logic Register

Reset Value: 0000 DODO (DOh)
7 0

I sc2l sc1 I sco I EXTG IINTG I POW lcoNTI sT
b7-b5 = SC2, SC1, SCO: Start Conversion Ad­
dress. These 3 bits define the starting analog input
in Autoscan mode. The first channel addressed by
SC2-SCD is converted, then the address is in­
cremented for the successive conversion, until
channel? (111) is converted. The (SC2, SC1, SCO)
bits define the group of channels to be scanned.
When setting SC2=1 SC1 =1 SC0=1 only channel
7 is converted.

b4 = EXTG: External Trigger. When set to a logical
"1 ", this bit allows to start a group of conversion
synchronized on the following edge of the external
signal applied on pin ADTRG (when enabled for
Alternate Function) ..

b3 = INTG: Internal Trigger. When set to a logical
level "1", this bit enables the start of a group of
conversion, synchronized with an internal signal
(On chip Event signal) from another peripheral (e.g.
a Multifunction Timer Unit).

Both External and Internal Trigger inputs are inter­
nally OR'ed, thus avoiding Hardware conflicts,
however the correct procedure is to enable only
one alternate synchronization input at time.

b2 =POW: Power Up/Power Down A logical "1"
enables the A/D logic and analog circuitry.
A logical "0" disables all power consuming logic,
thus allowing a low power idle status.

b1 = CONT: Continuous/Single. When this bit is set
to "1" (Continuous Mode), the first group of conver­
sions are started either by software (setting to
"1 "the ST bit) or by hardware (on an Internal or

6/8
------------- Eji. ~~~©ltl~~~~~ -------------
168

external trigger, depending on the INTG and EXTG
bits status), and a continuous conversion flow is
then processed.

When this bit is set to "0" (single mode), only a
single group of conversions (1 up to 8) are started
whenever any External (or Internal) trigger occurs,
or the ST bit is set to "1" by software.

The effect of the alternate synchronization is to
hardware set the START/STOP bit which is hard­
ware reset when in SINGLE mode, at the end of
each group of conversions.

Requirements:

The External Synchronisation Input must receive a
pulse (low level) wider than an INTCLK period
(83ns) minimum and for both External and On chip
Event synchronisation, a period greater than the
time required for a group of conversion (number of
channels times* 11J.!S).

bO = ST: Start/Stop A logical "1" level enables the
starting of a group of conversions; a logical level
"0" stops the conversion. When the AID is running
in the Single Mode, this bit is hardware reset at the
end of a group of conversions.

11.3.5 Compare Result Register (CRR)

The result of comparison between the current value
of data registers 6 and 7 and the threshold registers
is stored in this 4 bit register.

CRR R252 (FCh) Read/Write
Compare Result Register

Reset Value: 0000 1111 (OFh)
7

I C7U I C6U I C7L I C6L I X I X

0

X X

b 7 = C7U: Compare Reg 7 Upper threshold Set to
"1" when converted data is greater than or equal to
the threshold value. Not affected otherwise

b6 = C6U: Compare Reg 6 Upper threshold Set to
"1" when converted data is greater than or equal to
the threshold value. Not affected otherwise

b5 = C7L: Compare Reg 7 Lower threshold Set to
"1" when converted data is less than the threshold
value. Not affected otherwise.

b4 = C6L: Compare Reg 6 Lower threshold Set to
"1" when converted data is less than the threshold
value. Not affected otherwise.

These bits should be Software reset at the end of
the 'Out of Bounds' Interrupt routine.

b3-b0 = undefined, return "1" when read.
Note: any Software request reset in the lCR, w1ll cause also these
bits to be hardware forced to zero, to prevent possible overwriting, if
an Interrupt request occurs between their Software reset and the
Interrupt Request Software reset The correct procedure IS to reset,
before ex1t1ng the Interrupt routine, only the requests flags.

11 -AID Converter

11.3.6 Upper Threshold Registers (UTiR)

The 2 upper threshold registers are used to store
the 2 user programmable upper threshold voltages
(i.e. their 8 bit binary code) to be compared with the
present channel 6 or 7 conversion result. They fix
the upper voltage window limit.

UT7R R251 (FBh) Read/Write
Channel 7 Upper Threshold Register

Reset Value: Undefined
7 0

IUT7.71 UT7.61UT7.51 UT7.41UT7.31 UT7.21UT7.11 UT?.ol

b7-b0 = UT7.7-UT7.0: Channell Upper Threshold

UT6R R250 (FAh) Read/Write
Channel 6 Upper Threshold Register

Reset Value: Undefined
7 0

I UT6.71 UT6.61 UT6.51 UT6.41 UT6.31 UT6.21UT6.11 UT6.0 I

b7 -bO = UT6.7 -UT6.0 : Channel6 Upper Threshold

11.3.7 Lower Threshold Registers (LTiR)

The 2 lower threshold registers are used to store
the 2 user programmable lower threshold voltages
(i.e. their 8 bit binary code) to be compared with the
present channel 6 or 7 conversion result. They fix
the lower voltage window limit.

LT7R R249 (F9h) Read/Write
Channel 7 Lower Threshold Register

Reset Value: Undefined
7 0

I LT7.71 LT7.6 I LT7.5 I LT7.4 I LT7.3 I LT7.2 I LT7.1 I LT7.0 I

b7-b0 = LT7.7-LT7.0: Channel7 Lower Threshold

LT6R R248 (F8h) Read/Write
Channel 6 Lower Threshold Register

Reset Value: Undefined
7 0

I LT6.7 I LT6.6 I LT6.5 I LT6.41 LT6.3 I LT6.2 I LT6.1 I LT6.0 I
b7-b0 = LT6.7-LT6.0: Channel6 Lower Threshold

718 -------------l:.fi. ~~m~~~~ -------------
169

11 - A/D Converter

11.3.8 Data Registers (DiR)

The result of the conversions of the 8 available
channels are loaded in the 8 DiR (channeiO~DOR
.... channei7~D7R); every Data Register is re­
loaded with a new value at the end of the conver­
sion of the correspondent analog input.

D7R R247 (F?h) Read/Write
Channel 7 Data Register

Reset Value: Undefined
7 0

1 07.71 07.61 07.51 07.41 07.31 07.21 07.1 1 07.0 1

b7-b0 = 07.7-07.0 :Channel? Data

D6R R246 (F6h) Read/Write
Channel 6 Data Register

Reset Value: Undefined
7 0

I o6.71 o6.61 o6.51 o6.41 o6.31 o6.21 o6.1 I o6.o I
b7-b0 = 06.7-06.0: ChannelS Data

05R R245 (F5h) Read/Write
Channel 5 Data Register

Reset Value: Undefined
7 0

I o5.71 o5.61 o5.51 o5.41 o5.31 o5.21 o5.1 I o5.o I
b7-b0 = 05.7-05.0: ChannelS Data

D4R R244 (F4h) Read/Write
Channel 4 Data Register

Reset Value: Undefined
7 0

1 04.71 04.61 04.51 04.41 04.31 04.21 04.1 1 04.0 1

b?-bO = 04.7-04.0 : Channel4 Data

D3R R243 (F3h) Read/Write
Channel 3 Data Register

Reset Value: Undefined
7 0

1 03.71 03.61 03.51 03.41 03.31 03.21 03.1 1 03.0 1

b?-bO = 03.7-03.0: Channel 3 Data

D2R R242 (F2h) Read/Write
Channel 2 Data Register

Reset Value: Undefined
7 0

1 02.71 02.61 02.51 02.41 02.31 02.21 02.1 1 02.0 1

b7-b0 = 02.7-02.0: Channel 2 Data

01 R R241 (F1 h) Read/Write
Channel 1 Data Register

Reset Value: Undefined
7 0

1 01.71 01.61 01.51 01.41 01.31 01.21 01.1 1 01.0 1

b7-b0 = 01.7-01.0: Channel1 Data

DOR R240 (FOh) Read/Write
Channel 0 Data Register

Reset Value: Undefined
7 0

I oo.71 oo.61 oo.sl oo.41 oo.sl oo.2l oo.1 I oo.o I
b7-b0 = 00.7-00.0 :Channel 0 Data

8/8 ------------£iii ~i~©m~~~~a ------------
170

CHAPTER12

SERIAL COMMUNICATION INTERFACE

12.1 SCI FEATURES

The ST9 Serial Communications Interface (SCI)
has the following features:

- Full duplex character-oriented asynchronous
operation

- Synchronous serial port expansion capability

- Transmit, recieve, line status, and device ad-
dress interrupt generation

- Integral baud rate generator capable of dividing
the input clock by any value from 2 to 216-1 (16
bit word) and generating the internal 16X clock
for asynchronous operation or 1 X clock for syn­
chronous operation

- Fully programmable serial-interface charac­
teristics:
- 5, 6, 7, or 8 bit word length
- Even, odd, or no parity generation and detection
- 1, 1-1/2, 2, 2-1/2 stop bit generation
- False start bit detection
- Complete status reporting capabilities
- Line break generation and detection

- Programmable address indication bit (wake-up
bit) and User invisible compare logic to support
network communication of multiple microcom­
puters. Optional character search function.

- Internal diagnostic capabilities:
- Localloopback for communications link fault

isolation
- Auto-echo for communications link fault isolation

- Separation interrupt/DMA channels for both
transmit and receive

12.2 FUNCTIONAL DESCRIPTION

12.2.1 Serial Frame Format

Every character sent (or received) by the SCI has
the following format:

I START ILsB oa1a Mssl PARITY FooRESS/9THI STOP sns I

This format is used by the SCI for the 3 modes:

- Asynchronous

- Synchronous

- Serial expansion mode

START: the start bit indicates the beginning of a
data frame in the asynchronous mode. START bit
is detected as a high to low transition

DATA: the DATA word is programmable to be 5 to
8 bits long for both synchronous and asynchronous
modes

PARITY: The Parity Bit is optional, and can be used
with any length of word. It is used for error checking
and resets in a resultant state (odd or even) de­
pending on number of "1 "sin DATA.

ADDRESS/9TH: The Address/9th Bit is optional. It
can be used with any word format. It is used in both
synchronous or asynchronous mode to indicate
that the data is an address (bit = "1 "). The AD­
DRESS/9TH bit is useful when several microcon­
trollers are exchanging data on the same serial
bus. Individual microcontrollers can stay idle on the
serial bus, waiting for a transmitted address. When
a microcontroller recognizes its own address, it can
begin Data Reception, likewise, on the transmit
side, the microcontroller can transmit another ad­
dress to begin communication with a different
microcontroller.

The ADDRESS/9TH bit can be used as an addi­
tional data bit or to mark control words (9th bit).

STOP: Indicates the end of a data frame for both
asynchronous and synchronous modes. The stop
bit is programmed to be 1, 1.5, 2, or 2.5 bits long.
It returns the SCI to the quiescent marking state
(i.e., a constant high-state condition which lasts
until a new start bit indicates an incoming word).

12.2.2 Architecture

12.2.2.1 EXTERNAL PINS

SOUT: Serial Data Output. This signal is the serial
data output from the SCI transmitter

SIN: Serial Data Input. This signal is the serial data
input to the SCI receiver

1/12

171

12- Serial Communication Interface

TXCLK: External Transmitter Clock Input. This
pin inputs the clock driving the SCI transmitter;
TXCLK frequency is greater than or equal to 16
times the transmitter data rate (depending on the
selection of X16 or X1 clock operating mode).
TXCLK pin is optional.

RXCLK: External Receiver Clock Input. This
input can be the clock sent to the SCI receiver.
INTCLK is normally the SCI baud rate generator
clock, but this input RXCLK can also be the clock
source for the SCI baud rate generator. A 50/50
duty cycle is not required for this input. However,
the shorter pulse must last more than two INTCLK
periods. RXCLK pin is optional.

CLKOUT: Clock Output. This pin outputs either
the data clock from the transmitter to an external
shift register in the serial expansion mode or the
clock output from the Baud rate generator. In serial
expansion mode it will clock only the data portion
of the frame. The data is valid on the rising edge of
the clock. The CLKOUT idle state is low.

Figure 12-1. SCI Block Diagram

OMA

CONTROLLER

ST9 CORE BUS

SOUT TXCLK/CLKOUT

12.2.2.2 FUNCTIONAL ARCHITECTURE

Reader should refer to figure 12.1 when reading
the following information.

Transmitter Shift Register. The Transmitter Shift
Register converts parallel data (coming from
TRANSMIT BUFFER REGISTER) into serial for­
mat for transmission

Transmitter Buffer Register. The Transmitter
Buffer Register is loaded by the ST9 when a data
has to be transmitted. The SCI will transfer the data
into the Shift Register as it becomes available. At
the transfer, the transmitter buffer register interrupt
will be updated.
If the selected word format is less than 8 bits, the
unused most significant bits are "don't care".

Receiver Shift Register. The Receiver Shift Reg­
ister converts incoming serial data into parallel data
for reception

DMA

CONTROLLER

RXCLK SIN

VA00169

_21_12 __________ ~ SGS-1HOMSON •'Yl lilJQ©OO@~Il.il!~@lllQ©§ --------------
172

Receiver Buffer Register. The Receiver Buffer
Register stores the data portion of the received
word. The data will be transferred from the "RE­
CEIVER SHIFT REGISTER" into this register at the
end of the word. All Receiver interrupt conditions
will be updated at the time of transfer. If the selected
character format is less than 8 bits, unused most
significant bits will have the value "1 ".

Frame Control And Status. This block contains
the character configuration, that means it defines
the Data length, the stop bits, the source for the
transmitter/receiver clock.

Clock And Baud Rate Generator. The Baud Rate
Generator contains a programmable divide by "N"
counter which can be used to generate the clocks
for the transmitter and/or receiver. The minimum
baud rate is 2 and the maximum is 216-1. The baud
rate generator can use INTCLK or the Receiver
clock input RXCLK.
Data is latched upon the rising edge of the clock.
Address/Data Compare Register. With the 9th bit
address mode, the received address will be com­
pared to the value of this register. If true, the
Receive Address Pending bit is set and all received
data will be transferred to the RECEIVER BUFFER
REGISTER.
DMA Controller. This contains the Transaction
Counters and Source Addresses for Transmission
and Reception, the interrupt vectors, the interrupt
masks and the interrupts status and priority.

Table 12-1. SCI Timings

INTCLK Frequency

RXCLK Frequency

RXCLK Pulse

TXCLK Frequency

TXCLK Pulse

Data set-up time before rising edge of RXCLK

Data hold time (after falling edge of TXCLK)

12 - Serial Communication Interface

Remark: If properly initialized, the DMA controller
starts a data transfer after and only if the running
program has loaded the Transmitter Buffer Regis­
ter with a value. In order to execute properly a DMA
transmission, the End Of Block interrupt routine
must include the following actions:

- Load the Transmitter Buffer Register (TXBR)
with the first byte to transmit.

- Restore the DMA counter (TDCPR)

- Restore the DMA pointer (TDAPR)

- Reset the transmitter end of block bit TXEOB
(IMR.5)

- Reset the transmitter holding empty bit TXHEM
(ISR.1)

-Enable DMA

12.2.2.3 CLOCKS AND SERIAL TRANSMISSION
RATES

The maximum data transfer rate is in synchronous
mode (1x mode):

- Maximum bit rate = INTCLK/8 = 12MHz/8 = 1.5
Mbit/s

- Maximum byte rate= 1.5 Mbit/1 0 = 150 kbytes/s

(one byte = 8 bits of data+ 1 stop bit+ 1 start bit=
10 bits)

Min. Max. Conditions

0 12M Hz

0 INTCLK/8 1x mode

0 INTCLK/4 16x mode

0 INTCLK/2 16x mode internal clock

4XTINTCLK 1x mode

2XTINTCLK 16x mode

INTCLK/8 1x mode

INTCLK/4 16x mode

INTCLK/2 16x mode internal clock

4XTINTCLK 1x mode

2XTINTCLK 16x mode

TINTCLKI2

5XT!NTCLKI2 1x mode

3/12 ------------ FY. ~~m~~~~~ ------------
173

12 - Serial Communication Interface

12.2.3 SCI Modes: asynchronous, syn­
chronous, serial expansion mode

SCI can run in three modes:

- Asynchronous mode

- Synchronous mode

- Serial expansion mode

Each of these three modes output data with the
same serial frame format (as described in 12.2.1).
The differences are coming from the clock rate (x1 ,
x16) and the sampling clock (for the serial expan­
sion mode).

ASYNCHRONOUS MODE

In this mode, data and clock can be asynchronous
(usually emitter and receiver have their own clock
to sample received data), each data is sampled 16
times per clock period.

SYNCHRONOUS MODE

In this mode, data and clock are synchronous, each
data is sampled once per clock period.

SERIAL EXPANSION MODE

This mode is used to access an external syn­
chronous peripheral.

The transmitter will provide the clock waveform
only during the transmitted data through CLKOUT
pin. The data is latched on the rising edge of this
clock.

Whenever the SCI has to receive data in the serial
port expansion mode, this clock waveform must be
supplied synchronously with the data to the ST9.
The SCI will latch the incoming data on the rising
edge of the receiver 1/0 expansion clock. The clock
is supplied on RXCLK pin.

SAMPLING TIMES IN ASYNCHRONOUS MODE

SDIN

SOINCK

RCVCK

J 1 4 5 : 6 : 7
I I I

RXD

RXCK

ASYNCHRONOUS MODE

1/0

CLOCK

VA00271

SYNCHRONOUS MODE

1/0 IL-1..1 .._I..J..I __ D_A_TA __ .._I .1..1...1.1 -'~"-'~~"'-~T_,YB"-'1~_,1
t

START BIT

CLOCK _nnnn_
VA00272

SERIAL EXPANSION MODE

1/0 Ill DATA Ill
CLOCK _____llf JlL

VA00273

10 11 : 12 13 : 14 15
I I

VR001409

4/12
---------------------------~ ~~~;~2~~~~~~ ---------------------------
174

12.3 CONTROL REGISTERS

The SCI is controlled by the following registers

Address Register

0000 (Oh)
Receiver DMA Transaction
Counter Pointer Register

0001 (1h)
Receiver DMA Source Address
Pointer Register

0010 (2h)
Transmitter DMA Transaction
Counter Pointer Register

0011 (3h)
Transmitter DMA Destination
Address Pointer Register

0100 (4h) Interrupt Vector Register

0101 (Sh) Address Compare Register

0110 (6h) Interrupt Mask Register

0111 (7h) Interrupt Status Register

Receive Buffer Register same
1000 (Sh) Address as Transmitter Buffer

Register (Read Only)

Transm1tter Buffer Register same
1000 (Sh) Address as Rece1ve Buffer

Register (Write only)

1001 (9h) Interrupt/OM A Priority Register

1010 (Ah) Character Configuration Register

1011 (Bh) Clock Configuration Register

1100 (Ch) Baud Rate Generator Register

1101 (Dh)

The relative pages of the SCI into a ST9 are:

- SCI number 1: page 24 (18h)

- SCI number 2: page 25 (19h)

- SCI number 3: page 26 (1Ah)

- SCI number 4: page 27 (1 Bh)

12 - Serial Communication Interface

RDCPR R240 (FOh) Read/Write
Receiver DMA Transaction Counter Pointer Register

Reset value: undefined
7

I RC7 I RC6 I RC5 I RC4 I RC3 RC2 RC1 I RR/M I
b7-b1 = RC7-RC1: Receive DMA Counter Pointer.
RDCPR contains the address of the pointer (in the
Register File) of the DMA receiver transaction
counter.

bO = RR/M: Receiver Register File/Memory Selec­
tor. If this bit= "1" the Register File will be selected
as Destination, if this bit = "0" the Memory space
will be selected.

RDAPR R241 (F1 h) Read/Write
Receiver DMA Source Address Pointer

Reset value: undefined
7 0

I RA7 I RA6 I RA5 I RA4 I RA3 RA2 RAt I RD/P I
b7-b1 = RA7-RA1: Receive DMA Address Pointer.
RDAPR contains the address of the pointer (in the
Register File) of the receiver DMA data source.

bO = RD/P: Receive DMA Data/Program Memory
Selector. If memory (RR/M = "0") has been selected
for DMA transfers, when this bit= "1" receiver DMA
transfers will go to Data Memory. If this bit = "0"
receiver DMA transfers will go to Program Memory.

TDCPR R242 (F2h) Read/Write
Transmitter DMA Transaction Counter Pointer

Reset value: undefined
7 0

I TC7 I TC6 I TC5 I TC4 I TC3 TC2 TC1 I TRIM I
b7-b1 = TC7-TC1: Transmitter DMA Counter
Pointer. TDCPR contains the address of the pointer
(in the Register File) of the DMA transmitter trans­
action counter.

bO =TRIM: Transmitter Register File/Memory Se­
lector. If this bit = "1" the Register File will be
selected as Source, if this bit = "0" the Memory
space will be selected.

5/12
------------- £:fi ~i~©!Hi~l!!Y~ -------------

175

12 - Serial Communication Interface

TDAPR R243 (F3h) Read/Write
Transmitter DMA Destination Address Pointer Register

Reset value: undefined
7 0

1~1~1~1~1~ ~ wl~l

b7 -b1 = TA7-TA1: Transmitter DMA Address
Pointer. TDAPR contains the address of the pointer
(in the Register File) of the transmitter DMA data
source.

bO = TD/P: Transmitter DMA Data/Program Mem­
ory Selector. If memory (TRIM = "0") has been
selected for DMA transfers, when this bit = "1"
transmitter DMA transfers come from Data Mem­
ory. If this bit = "0" transmitter DMA transfers come
from Program Memory

IVR R244 (F4h) Read/Write and Read only
Interrupt Vector Register

Reset value: undefined
7

I V7 I V6 I V5 I V4 I V3 I EV2 I EV1 I 0 I
b7-b3 = V7-V3: SCI Interrupt Vector Base Address.
User programmable interrupt vector bits for trans­
mitter and receiver

b2-b1 = EV2-EV1: Encoded Interrupt Source
(Read only). EV2 and EV1 are set by hardware
according to the interrupt source.

bO = DO: This bit is fixed by hardware. It always
returns the value "0" when read.

EV2 EV1 Encoded Status Information

0 0 Receiver error

0 1 Break detect or address word
match

1 0 Receiver data ready/receiver End
of Block

1 1
Transmitter buffer or shift register
empty/transmitter End of Block

ACR R245 (F5h)) Read/Write
Address/Data Compare Register

Reset value: undefined
7 0

I AC7 I AC6 I AC5 I AC4 I AC3 I AC2 I ACt ACO

b7-b0 = AC7-ACO: Address/Compare Character.
With either 9th bit address mode, address after
break mode, or character search, the received
address will be compared to the value stored in this
register. When a valid address matches this regis­
ter content, the Receive Address Pending bit is set.
After the RXAP bit is set in an addressed mode all
received data words will be transferred to the Re­
ceiver Buffer Register.

IMR R246 (F6h) Read/Write
Interrupt Mask Register

Reset value: OxxO OOOOb
7 0

I HSN IRXEOBITXEOBI RXE I RXA I RXB I RXDl I TXDl I

b7 = HSN: Holding or shift register empty interrupt.
This bit selects the source of interrupi/DMA as the
transmitter register empty event. If this bit is set to
"1", a holding register empty will generate a trans­
mitter register empty interrupt.
If this bit has a "0" value, a shift register empty will
generate a transmitter register empty interrupt.

b6 = RXEOB: Received End of Block. This bit is set
after a receiver DMA cycle to mark the end of a
block of data. The last DMA data word will cause a
DMA cycle followed by a receiver data ready inter­
rupt. This sequence will signal to the ST9 core to
reinitialize the receiver DMAblock counter. RXEOB
should be reset by software in order to avoid un­
desired interrupt routines, especially in initialisation
routine (after reset) and after entering the End Of
Block interrupt routine.
Writing "0" in this bit will cancel the interrupt re­
quest.
NOTE: RXEOB can only be written with a ··o·· (RXEOB ~set only by
the ST9 core)

6/12
t== SGS·THOMSON --------------,l liiJU~@~~~Ii:TI'OO@!t'!U©\J --------------

176

b5 = TXEOB: Transmitter End of Block. This bit is
set in a transmitter DMA cycle to mark the end of a
block of data. The last DMA data word will cause a
DMA cycle followed by a transmitter interrupt. This
sequence will signal to the ST9 core to reinitialize
the transmitter DMA block counter. TXEOB should
be reset by software in order to avoid undesired
interrupt routines, especially in initialisation rou­
tine(after reset) and after entering the End Of Block
interrrupt routine.
Writing "0" in this bit will cancel the interrupt re­
quest.
NOTE: TXEOB can only be written With a 0 (TXEOB IS set only by
the ST9 core)

b4 = RXE: Receiver Error Mask. When this bit is
set to "0", the receiver error bits: Overrun Error
(OE), Parity Error (PE), and Framing Error (FE),
cannot generate an interrupt.

b3 = RXA: Receiver Address Mask. When this bit
is set to "0", the Receiver Address Pending (RXAP)
bit cannot generate an interrupt.

b2 = RXB: Receiver Break Mask. When this bit is
set to "0", the Receiver Break Pending (RBP) bit
cannot generate an interrupt.

b1 = RXDI: Receiver Data Interrupt Mask. When
this bit is set to "0". the Receiver Data Pending
(RDP) bit and the Receiver End of Block (RXEOB)
bit cannot generate an interrupt. RXDI has no effect
on DMA transfers.

bO = TXDI: Transmitter Data Interrupt Mask. When
this bit is set to "0", neither the Transmitter Holding
or Shift Register Empty (TXHEM) bit or the Trans­
mitter End of Block (TXEOB) bit can generate an
interrupt. TXDI has no effect on DMA transfers.

ISR R247 (F7h) Read/Write
Interrupt Status Register

Reset value: xxxx xxxb (XXh)
7 0

I OE I FE I PE I RXAP I RXBP I RXDP ITxHEMITxsEMI

b7 = OE: Overrun Error Pending. This bit is set to
a logic "1" if the data in the Receiver Buffer Register
was not read by the CPU before the next character
was transferred into the Receiver Buffer Register
(the previous data is lost). It is cleared by writing a
zero into OE.

b6 = FE: Framing Error Pending bit. This bit is set
to a logic "1" if the received data word did not have
a valid stop bit. It is cleared by writing a zero to the
bit. In the case where a framing error occurs when
the SCI is programmed in an address mode, and
is monitoring for an address, this interrupt is as-

12 - Serial Communication Interface

serted and the corrupted data element is trans­
ferred to the Receiver Buffer Register.

b5 = PE: Parity Error Pending. This bit is set to a
logic "1" if the received word did not have the
correct even or odd parity bit. It is cleared by writing
a zero into PE.

b4 = RXAP: Receiver Address Pending. RXAP is
set to "1" after an interrupt acknowledged in the
address mode. The source of this interrupt is given
by the couple of bits (AMEN, AM) as detailed in the
"lnterrupt/DMA Priority Register" description.
RXAP is cleared by software.

b3 = RXBP: Receiver Break Pending bit. This bit is
set to a logic "1" if the received data input is held
low for the full word transmission time (start bit, data
bits, parity bit, stop bit). It is cleared by writing a
zero into RXBP.

b2 = RXDP: Receiver Data Pending bit. This bit is
set to a logic "1" when data is loaded into the
Receiver Holding Register. It is cleared by writing
a zero into RXDP.

b1 = TXHEM: Transmitter buffer register Empty.
This bit is set to a logic "1" if the Holding Register
is empty. It is cleared by writing a zero into TXHEM.

bO = TXSEM: Transmitter Shift Register Empty.
This bit is set to a logic "1" if the Shift Register has
completed the transmission of the available data.
It is cleared by writing a "0" into TXSEM.
NOTE:

The Interrupt Status Reg1ster b1ts can be reset by wntlng a
··o·· but 1t 1s not poss1ble to wnte a ··1·· mto any bit 1n th1s
register. It IS mandatory to clear the mterrupt source by
wntmg a ··o·· 1n the pend1ng b1t when executing the
Interrupt serv1ce rout1ne.
When serv1c1ng an mterrupt rout1ne, the User should reset
ONLY the pending bit relat1ve to the serviced interrupt
routine (and not reset the other pending b1ts)

RXBR R248 (F8h) Read only
Receive Buffer Register

Reset value: undefined
7 0

I RD7 I RD6 I RD5 I RD4 I RD3 RD2 RD1 I ROO I

b7-b0 = RD7-RDO: Received Data. This register
stores the data portion of the received word. The
data will be transferred from the Receiver Shift
Register into the Receiver Buffer Register at the
end of the word. All receiver interrupt conditions will
be updated at the time of transfer. If the selected
character format is less than 8 bits, unused most
significant bits will forced to "1 ".

7/12 ------------- £.1i ~~~©IH~~~~~ -------------
177

12 - Serial Communication Interface

TXBR R248 (FSh) Write only
Transmitter Buffer Register

Reset value: undefined
7 0

I TD7 I TD6 I TDS I TD4 I TD3 TD2 TD1 TDO

b7-b0 = TD7-TDO: Transmit Data. The ST9 core
will load the data for transmission into this register.
The SCI will transfer the data from the buffer into
the Shift Register when available. At the transfer,
the Transmitter Buffer Register interrupt will be
updated. If the selected word format is less than 8
bits, the unused most significant bits are not signi­
ficant.

IDPR R249 (F9h) Read/Write
lnterrupt/DMA Priority Register

Reset value: undefined
7 0

I AMEN I SB I SA I RXD I TXD I PRL21 PRL1 I PRLO I
b7 =AMEN: Address Mode Enable. This bit, with
AM, decodes the desired addressing/ninth data
bit/character match operation.

In an addressed mode the SCI will monitor the input

AMEN AM

0 0
Address interrupt if ninth data
bit= 1

0 1 Address interrupt if character match

1 0
Address mterrupt 1f character
match and nmth data bit = 1

Address interrupt if character
1 1 match with word immediately

following break

serial data until its address is detected.

Upon reception of address, the RXAP bit (in the
Interrupt Status Register) is set and an interrupt
cycle can begin. The address character will not be
transferred into the Receiver Buffer Register but,
all data following the matched SCI address and
preceeding the next address word will be trans­
ferred to the Receiver Buffer Register and the
proper interrupts updated. If the address does not
match, all data following this unmatched address
will not be transferred to the Receiver Buffer Reg­
ister.

In any of the cases the RXAP bit must be reset by
software before the next word is transferred into the
Buffer Register.

b6 = SB: Set Break. If this bit is set, a break will be
transmitted following the transmission of all data in
the Transmitter Shift Register and the Buffer Reg­
ister. The break will be a "0" value on the transmitter
data output for at least one complete word format.
If software does not reset SB before the minimum
break length has finished, the break condition will
continue until software resets SB. The SCI termi­
nates the break condition with a "1" on the trans­
mitter data output for one transmission clock
period.

b5 = SA: Set Address. If an address/9th data bit
mode is selected, SA value will be loaded for
transmission. Setting this bit indicates an address
word. SA will be cleared by hardware after it is
loaded into the Shift Register. Proper procedure
would be, when the Transmitter Buffer Register is
empty, to load the value of SA and then load the
data into the Transmitter Buffer Register.

b4 = RXD: Receiver DMA Mask. If this bit is "0", no
receiver DMA request will be generated, and the
RXDP bit in the Interrupt Status Register can re­
quest an interrupt. If RXD is set to "1", the RXDP
bit can request a DMA transfer. This bit is reset by
hardware when the transaction counter value de­
crements to zero. At that time a receiver "end of
block" interrupt can occur.

b3 = TXD: Transmitter DMA Mask. If this bit is "0"
no transmitter DMA request will be generated and
the TXHEM (or TXSEM) bit in the Interrupt Status
Register can request an interrupt. If TXD is set, the
TXHEM (or TXSEM) bit can request a DMA trans­
fer. This bit is reset by hardware when the transac­
tion counter value decrements to zero. At that time
a transmitter End Of Block interrupt can occur.

b2-b0 = PRL2, PRL2, PRLO: SCI lnterrupt!DMA
Priority bits. The priority for the SCI is encoded with
(PRL2,PRL 1,PRLO). A priority value of "0" has the
highest priority, a value of "7" has no priority.

When user has defined a priority level for the SCI,
priorities inside the SCI are hardware defined.
These SCI internal priorities are:

receiver DMA request

transmitter DMA request

receiver interrupt

transmitter interrupt

higher priority

lower priority

8/12
~ SGS-»>OMSON -------------- Jt..""fl li!ll~l!':rnJm~©'ii'rnl©ill~~ --------------

178

CHCR R250 (FAh) Read/Write
Character Configuration Register

Reset value: undefined
7

I AM I EP I PEN I AB SB2 SB1 I WL1 I WLO I

b7 = AM: Address Mode. decodes the desired
addressing/ninth data bit/character match oper­
ation in conjunction with AMEN (bit 7 of INT/DMA
priority register). There are four basic operating
modes:

b6 = EP: Even Parity. When parity is enabled, this

AMEN AM

0 0 Address interrupt if 9th data bit= 1

0 1 Address interrupt if character match

1 0
Address interrupt if character
match and 9th data bit= 1

Address interrupt if character
1 1 match with word immediately

follow1ng break

bit selects between even or odd parity. If this bit is
equal to 0, odd parity will be selected. If this bit is
equal to 1, even parity will be selected.

b5 =PEN: Parity Enable. When this bit is equal to
1, a parity bit is generated (transmit data) or
checked (received data) between the last word bit
and the stop bits. If the address/9th bit is enabled,
the parity bit will precede the address/9th bit
(The parity bit is used to produce an even or odd

number of 1 's when the parity bit and all data bits
are summed. The 9th bit is never included in the
parity calculation).

b4 = AB: Address/9th Bit. If this bit equals "1" the
transmit and receive character format will include
a bit between the parity bit and the first stop bit. This
bit can be used to address the SCI or as a ninth
data bit.

b3-b2 = SBx: Stop Bits. This bit field specifies the
number of stop bits to be included in the data format

SB2 SB1
Number of stop bits

in 16X mode in 1X mode

0 0 1 1
0 1 1.5 2
1 0 2 2
1 1 2.5 3

12 - Serial Communication Interface

b1-b0 = WL 1, WLO: These two bits specify the
number of data bits in each transmitted or received
character. The following table shows the coding of
WL.

WL1 WLO Data Length

0 0 5 bits
0 1 6 bits
1 0 7 bits
1 1 8 bits

When AMEN= "0" and AM= "1 ",a useful character
search function is performed. This allows the SCI
to generate an interrupt whenever a specific char­
acter is encountered (e.g. Carriage Return). Figure
12.2 shows the use of the SCI addressing modes.

CCR R251 (FBh) Read/Write
Clock Configuration Register

Reset value: 0000 0000 (OOh)
7 0

lxTcLKI ocLK I xRx I xsRG I co I AEN I LBEN lsTPENI

b7 = XTCLK:

b6 = OCLK: These two bits select the source for
the transmitter clock. The following table shows the
coding of XTCLK and OCLK.

XTCLK OCLK Pin Function

0 0 Pin is used as a general I/O

0 1 Pin = TXCLK (used as an Input)

1 0
Pin= CLKOUT (outputs the
Baud Rate Generator clock)

1 1 Pin= CLKOUT (outputs the
serial exp. mode clock)

b5 = XRX: External Receiver Clock Source. If this
bit is "1", the receiver will use the external receiver
clock pin for its clock source. The external clock
must be equal to 16 times the data rate or equal to
the data rate depending on the bit CD.

b4 = XBRG: Baud Rate Generator Clock Source.
If this bit is "1 ",the baud rate generator will use the
external receiver clock pin for its clock source. If
this bit is "0", the baud rate generator will use the
ST9 system clock (INTCLK).

9/12
-------------~iii. ~~~@lt\~:9J1-------------

179

12- Serial Communication Interface

b3 = CD: Clock Divisor. If CD = "1 ", both the
receiver and the transmitter will be in 1 X clock
mode. In 1 X clock mode, the transmitter will trans­
mit data at one data bit per clock period. If this bit
is "0", both the receiver and the transmitter will be
in 16X mode. In 16X mode each data bit period will
be 16 clock periods long.

The CD vaiue will determine the syn­
chronous/asynchronous SCI configuration mode.

b2 = AEN: Auto Echo Enable. If AEN = "1", the SCI
is in auto echo mode. In this mode the SCI trans­
mitter is disconnected from the transmitter data-out
pin (SOUT). The transmitter data-out pin (SOUT)
is driven directly by the receiver data-in pin (SIN).
The receiver remains connected to the receiver
data-in pin (SIN) and is operational, unless loop­
back mode is also selected.

b1 = LBEN: Loopback Enable. If this bit is set to
"1 ",the loopback mode is enabled. In this mode the
transmitter output is set to "1 ",the receiver input is

Figure 12-2. SCI Addressing Modes

ADDRESS AFTER BREAK CONDITION

DATA BREAK

disconnected, and the output of the Transmitter
Shift Register is looped back into the Receiver Shift
Register input. All interrupt sources for both the
transmitter and the receiver are operational.

bO = STPEN: Stick Parity Enable. If this bit is set to
"1", the transmitter and the receiver will use the
opposite parity type selected by the even parity bit
(EP).

EP SPEN
Parity

(transmitter & receiver)

0 (odd) 0 Odd

1 (even) 0 Even

0 (odd) 1 Even

1 (even) 1 Odd

ADDRESS DATA

NO MATCH

BREAK ADDRESS DATA DATA DATA BREAK
INTERRUPT INTERRUPT INTERRUPT INTERRUPT INTERRUPT INTERRUPT

ADDRESS WORD MARKED BY D9=1

DATA ADDRESS ADDRESS DATA

MATCH NO MATCH

ADDRESS DATA DATA DATA
INTERRUPT INTERRUPT INTERRUPT INTERRUPT

CHARACTER SEARCH MODE

DATA DATA MATCH DATA DATA DATA

DATA DATA CHAR DATA DATA DATA
INTERRUPT INTERRUPT M~TCH INTERRUPT INTERRUPT INTERRUPT

INTERRUPT

09 ACTING AS DATA CONTROL WITH SEPARATE INTERRUPT

DATA DATA D9=1 DATA DATA DATA

DATA DATA 09=1 DATA DATA DATA
INTERRUPT INTERRUPT INTERRUPT INTERRUPT INTERRUPT INTERRUPT

VA00270

10/12 ------------- I..W. ~~~~mg~:~~l1-------------
180

12 - Serial Communication Interface

Figure 12-3. SCI Functional Scheme

OCLK

D = MULTIPLEXER 0 = EXTERNAL PIN

Figure 12-4a. Auto Echo Configuration

VR00021D

~000209

Figure 12-4b. Loop Back Configuration

LOGICAL 1-Q

sour

0
SIN

VR000211

Figure 12-4c. Auto Echo and Loop Back
Configuration

~T
SIN

VR000212

11/12 !W. ~~~;m~~jj~~ -------------
181

12 ·Serial Communication Interface

BRGHR R252 (FCh) Read/Write
Baud Rate Generator Register, High byte.

Reset value: undefined
15 8

I BG151 BG141 BG131 BG121 BG11 I BG10 I BG9 BGB

BRGLR R253 (FDh) Read/Write
Baud Rate Generator Register, Low byte.

Reset value: undefined
7 0

BG7 BG6 BG5 BG4 BG3 BG2 BG1 BGO

b15-BO: The Baud Rate generator contains a pro­
grammable divide by "N" counter which can be
used to generate the clocks for the transmitter
and/or receiver. This counter divides the clock input
by the value in the Baud Rate Generator Register.
The minimum baud rate divisor is 2 and the maxi­
mum divisor is 216-1. After initialization of the baud
rate generator, the divisor value is immediately
loaded into the counter. This prevents potentially
long random counts on the initial load.

Baud Rate generator frequency = Input Clock fre­
quency/Divisor

The baud rate generator clock provides a 16X or
1 X clock for the receiver and the transmitter. An
additional divide by 16 may be appropriate to com­
pute the SCI data rate if in this normal operating
mode.

The Baud Rate generator can use INTCLK clock
for the input clock source. An alternate source is
the receiver clock input pin.

The output of the baud generator has an exact 50%
duty cycle. The output can provide either the 16X
clock for asynchronous operation or a 1 X clock for
synchronous and serial port expansion modes.

NOTES:
1) Wntlng to a Baud Rate Generator Reg1ster 1mmed1ately disables
and resets both the SCI baud rate generator, the transmitter and
rece1ver c~rcu1try. After wntlng to the rema1mng Baud Rate Generator
Reg1ster, the transmitter and rece1ver c~rcu1ts are enabled. The Baud
Rate generator w111 load the new value and start counting.
To 1n1t1ahze the SCI, user should f1rst m1t1al1ze one Baud Rate
Generator DIVISOr Register. Th1s Will reset all SCI CirCUitry. lmt1ahze
all other SCI reg1sters for the desired operatmg mode. To enable the
SCI, Initialize the rema1mng Baud Rate Generator Reg1ster

2) For synchronous rece1ve operat1on, the data and rece1ve clock
must not have s1gn1f1cantskew between clock and data. The rece1ved
data and clock are Internally synchronized to INTCLK clock
For synchronous transmit operat1on, a general purpose 1/0 port p1n
must be programmed to output the CLKOUT s1gnal from the baud
rate generator. If the SCI IS prov1ded With an external transmiSSIOn
clock source, there will be skew eqwvalent to two INTCLK periods
between clock and data
The synchronous data Will be transmitted on the fall of the transmit
clock. The synchronous received data will be latched into the SCI on
the nsing edge of the provided receive clock

12/12 -------------~ ~~©mgm:~~~ -------------
182

13.1 INTRODUCTION

Within the standard ST9 addressing space (64K
bytes of Program memory plus 64K bytes of Data
memory) 4 types of memory can be included on the
same device.

- ROM up to 32K (in blocks of 4K bytes)

- EPROM up to 32K (in blocks of 4K bytes)

- RAM up to 2K (in blocks of 256 bytes)

- EEPROM up to 1 K (in blocks of 256 bytes)

ST9 microcontrollers with program memory on­
chip require non-volatile memory from OOOOh (the
Reset vector). If this memory is not present, the
ST9 is defined as ROMLESS, that is, the Reset
vector is automatically fetched from external mem­
ory (see Chapter 6).

On-chip memory access times are not affected by
Hardware or Software Wait states. Access is per­
formed at the maximum speed (3 CPUCLK cycles)
unless otherwise stated.

When on-chip and off-chip memories are mapped
at the same address in the same address map, the
internal memory takes priority and the external ITS
is not generated.

13.2 EPROM

On-chip EPROM memory, once programmed, is
functionally equivalent to ROM memory. It is rec­
ommended to cover the EPROM window with an
opaque label when the device is in operation. This
protects RAM and other on-chip logic from mal­
functions.

13.2.1 EPROM Programming Board

EPROM programming is made by the ST9 Pro­
gramming board. When programming has been
completed successfully, the ST9 is ready to be
used as ROM device.

13.2.2 EPROM Erasure

The recommended EPROM erasure procedure is
exposure to short wave ultraviolet light which has
a wavelength 2537 A. The integrated dose for
erasure should be a minimum of 15 joules/cm2.

CHAPTER~3

ON-CHIP MEMORY

The erasure time with this dosage is approximately
20 minutes using an ultraviolet lamp with
12000 11W/cm2 power rating.

The ST9 should be placed within 1 inch of the lamp
tube during the erasure.

13.3 EEPROM DESCRIPTION

The EEPROM memory can be mapped in data
space, or in memory space, or both. When mapped
in program memory, the EEPROM generates one
internal WAIT cycle in Read mode. Operations on
EEPROM are controlled by programming the
EECR register mapped in the Register File (page
0).

13.3.1 EEPROM Control Register

EECR R241 (F1 h) Page 0 Read/Write (except
EEBUSY: read only) EEPROM Control Register

Reset value : 0000 OOOOb (DOh)

bit 7 = 87: This bit is forced to "0" after reset and
MUST not be modified by the user.

bit6 =VERIFY: Set Verify mode. Verify (active high)
is used to activate the verify mode.

The verify mode provides a guarentee of good
retention of the programmed bit. When active, the
reading voltage on the cell gate is decreased from
1.2V to O.OV, decreasing the current from the pro­
grammed cell by 20%. If the cell is well pro­
grammed (to "1 "),a "1" will still be read, otherwise
a "0" will be read.
NOTE : The venfy mode must not be used dunng an erasmg or a
programmrng cycle).

bit 5 = EESTBY: EEPROM Stand-By. STBY = "1"
switches off all power consumption sources inside
the EEPROM. Any attempt to access the EEPROM
when STBY = "1" will produce unpredictable errors.
NOTE: After EESTBY rs reset. the user must wait 6 CPUCLK cycles
(e.g 1 NOP mstructron) before selectrng the EEPROM

1/6

183

13- On-Chip Memory

bit 4 = EEIEN: EEPROM Interrupt Enable. INTEN
= "1" disables the external interrupt source and
enables the EEPROM to send its interrupt request
to the central interrupt unit at the end of each write
procedure.

bit 3 = PLLST: Parallel Write Start. Setting PLLST
to "1" starts the parallel writing procedure. It can be
set only if PLLEN is already set. PLLST is internally
reset at the end of the programming sequence.

bit 2 = PLLEN: Parallel write Enable. Setting
PLLEN to "1" enables the parallel writing mode
which allows the user to write up to 16 bytes at the
same time. PLLEN is internally reset at the end of
the programming sequence.

bit 1 = EEBUSY: BUSY. When this read only bit is
high, an EEPROM write operation is in progress
and any attempt to access the EEPROM 1s aborted.

bit 0 = EEWEN: EEPROM Write Enable. Setting
this bit allows programming of the EEPROM, when
low a writing attempt has no effect.

13.3.2 EEPROM Programming Time

No timing routine is required to control the pro­
gramming time as dedicated circuitry takes care of
the EEPROM programming time (The typical pro­
gramming time is 6 ms).

13.3.3 EEPROM Interrupt Management

At the end of each write procedure the EEPROM
sends an interrupt request (if EEIEN bit is set). The
EEPROM shares its interrupt channel with the ex­
ternal interrupt source INT 4, from which the priority
level is derived.

Care must be taken when EEIEN is reset. The
associated external interrupt channel must be dis­
abled (by reseting bit 4 of EIMR, R244) along with
reseting the interrupt pending bit (bit 4 of EIPR,
R243). A delay instruction (at least 1 NOP instruc­
tion) must be inserted between these two oper­
ations

13.3.4 EEPROM Programming Procedure

The programming of an byte of EEPROM memory
is equivalent to writing a byte into a RAM location
after verifying that EEBUSY bit is low. Instructions
operating on word data (16 bits) will not access the
EEPROM.

13.3.5 EEPROM Programming Voltage

No external Vpp voltage is required, an internal18
Volt charge-pump gives the required energy by a
dedicated oscillator pumping at a typical frequency
of 5 MHz, regardless of the external clock.
NOTE: After a programming procedure, the user must wmt 6
CPUCLK cycles (1 NOP mstruct1on) after the EEBUSY b1t IS reset
In most apphcat1ons, th1s NOP mstruct1on can be saved when the
t1me necessary to test EECR and branch to the next Instruction is
longer than 6 CPUCLK cycles

13.3.6 PARALLEL Programming Procedure

Parallel programming is a feature of the EEPROM
macrocell. One up to sixteen bytes of a same row
can be programmed at once (same row = ad­
dresses to be programmed only differ by their bits
AO, A1, A2 and A3).

The software procedure is:

- set PLLEN, access the EEPROM by writing at
the desired locations, providing that each ad­
dress location is on the same row (i.e the dis­
tance between their addresses is of 128 bytes).
While PLLST = "0", the programming procedure
will not start and data is loaded in the latches.

- the programing procedure is performed by set­
ting PLLST. Both PLLEN and PLLST are inter­
nally reset at the end of the programming
session.

Example:

If the 512 bytes of EEPROM is mapped from OOOOh
to 01 FFh in Data Space, it will be composed of 4
modules of 128 bytes each, allowing up to 4 bytes
to be programmed in parallel.

Programming in parallel all the row of location 0012
will program, after setting PLLEN:

-Address 0012- Address 0092- Address 0112-
Address 0192

NOTE: User should take care when us1ng PLLEN b1t, and avOid the
following sequence·

-Set PLLEN
- Load latches
- Reset PLLEN (without mod1fymg PLLST)

Such a sequence will lose the data loaded in the
latches.

_21_6 ______________ ~ ~~~.;!H2g}~,~~~ ---------------
184

13- On-Chip Memory

Figure 13-1. EEPROM Parallel Programming Rows

A 8 C ADDRESS

0 3 5 8 10 11 12 13 14 15

::: :~1 t--t-t--t--t--1---t----\--1 I -t---+--1-+-t-----+--+----1 --t-+------11 1:::: ~ ::::
I I
I I
I I
I I
I I
I I
I I
I I

ROW 1

::=:111==111 ===::=Ill ==II ==II I:_,:
ROW 2

ROW 0

13.4 MEMORY PROTECTION

13.4.1 Introduction

The ST9 family allows protection of its on-chip
memory to provide the security required by many
applications. The on-chip memory can be protected
on Read and/or Write access by Hardware (as
defined by the device specification).

The protection mechanism inhibits access to the
on-chip memories in these two cases:

- When an access is attempted during the execu­
tion of an instruction fetch from an off-chip mem­
ory.

- When an access is attempted under a DMA
transfer.

If the access is made under the two above condi­
tions, the read operation will always return FFh, a
write operation will have no affect on the memory
content.

VR001355

The protection mechanism for ROM devices is
activated under customer request at the mask pro­
gramming level. EPROM versions allow the activa­
tion of the memory protection after loading the
EPROM content.

WARNING: If protection is enabled, the following
must be taken into consideration:

- No DMA will be allowed to/from the memory if
protected, even if the DMA transfer is internal to
the device.

- Care must be taken when using the protected
memory as the SYSTEM STACK:

A RET (or IRET) instruction from a subroutine
resident in an off-chip memory will fail when ac­
cessing the (protected) stack to restore the pro­
gram counter.

Also, if an Interrupt occurs when the instruction
executed has been fetched from off-chip, the PUSH
operation of the Program Counter will fail when
accessing the protected stack.

3/6

--------------------------~~~. ~~i@~R~8c~?~~--------------------------
185

13 - On-Chip Memory

13.4.2 Security Register

When available, ST9 Security Register provides
the access control to the internal memory from
external sources by both external program and
DMA by a series of User programmable fuses.
These fuses allow the level of security to be defined
by the user at each stage of the product develop­
ment (e.g. installation of factory codes and sub­
sequently end customer personal codes).
The fuses themselves are one time programmable
based on EEPROM technology, thus they require
the ST9 to have existing EEPROM or an external
voltage supply in order to generate the programm­
ing voltage.

Each memory element on-chip (ROM, RAM, EE­
PROM) has an independent protection enable se­
lectable for each level.

Figure 13-2. Security Mask Options

NO
PROTECTION

{DEFAULT)

ROM RAM

~ = METAL MASK OPTION TO ENABLE PROTECTION

The protection enable options are selectable by
metal mask during manufacture and are activated
by the programming of fuses present in the Security
Register mapped at register R255 of 110 page 59
decimal (3Bh). These fuses are based on EE­
PROM technology and require a high voltage to
program the fuse. In the ST9040, this is supplied
by the charge pump present in the EEPROM mem­
ory, so that the EEPROM must be in an active state
(STBY low), before security fuse programming is
activated. Please check with SGS-THOMSON for
the reference pin of the external voltage of other
devices with the Security Register.
The Security fuses are TESTLOCK (TLCK) and
HARDWARE LOCK (HLCK). These are both one­
time programmable, once these are programmed
THE PROTECTION CANNOT BE DISABLED, so
care must be made in the use of this feature.

F'USE: FUSE

EEPROM

ETERNAL
FETCH OR
DMA
EXECUTION
DISABLE

VR001357

4/6

---------------------------~~~~;~2~~~~~---------------------------
186

Figure 13-3. Security Fuses

DATA BUS

~'.RITE

ENABLE PROG F2

13.4.3 Testlock

The TESTLOCK protection level may be pro­
grammed by SGS-THOMSON during the manufac­
turing cycle, if requested, or may be programm~d
by the user before the release of the end equip­
ment. If programmed by SGS-THOMSON, the user
must include in the masked ROM the routines to
program RAM and EEPROM. The R~set vector
must also be provided. There IS no possibility to test
the ST9, or to use external memory to program

13- On-Chip Memory

FUSE I

TESTLOCK

SELECT FUSE 2 TEST

TEST FUSE 2

HARDWARE LOCK

SOFTWARE LOCK PROTEN

VR001428

RAM and EEPROM, once this bit is programmed.
The TLCK bit may also be programmed by the user
after the internal read/write memory has been pro­
grammed. Consult SGS-THOMSON for further in­
formation.

The TESTLOCK level of protection allows the basic
protection of the user-designated on-chip memory
e.g. the ROM contents, while, optionally, allowing
the further programming of the on-chip RAM and
EEPROM memory from external programs.

5/6
-------------~.,~. ~i~~m~~:~~©~!_:__ __________ _

187

13- On-Chip Memory

13.4.4 Hardware Lock

The HARDWARE lock protection level is provided
to give a final high security protection after the
programming of the internal memory (e.g. access
codes, serial numbers or PIN codes). If the on-chip
memory has been mask selected for protection by
this level, then the programming of the HLCK bit
will give the full protection.

WARNING: THIS IS TOTAL PROTECTION, there
is no method to access or test on-chip memory from
any external source once this level is programmed.

A third fuse is present in parallel with HLCK, and is
used by SGS-THOMSON as part of the final device
check to test the security functions.

When the Testlock and Hardware lock bits are
virgin, the value read from the bits are the value
previously written, allowing verification of the oper­
ation of the protection mechanism. The fuses are
programmed by setting the appropriate Write Fuse
bit (WF1 for TLCK and WF2 for HLCK) with the
programming voltage applied. For the ST9040 this
is achieved by making a dummy read from the
EEPROM memory (STBY must be active). This
triggers the charge pump to generate the high
voltage necessary to program the fuse.
The Write Fuse bits must be held to a "1" state for
the whole of the programming cycle, the end of
programming may be monitored on the TLCK or
HLCK bit.

13.4.5 Software Lock

A third level of security may be achieved by the
latching of a third bit, SLCK which provides an
additional level of security in parallel with the Hard­
ware lock. This is provided in the case of a failure,
by externally induced means, of the OTP hardware
locks.

It should also be noted that the ST9 on-chip pro­
grammable memories (RAM and EEPROM) are
mapped into Data Space, preventing the operation
of "Trojan Horse" programs (external programs
loaded into internal memory to bypass the read out
protection), and thatthe High Impedance mode can
be activated to prevent the external address lines
of the ST9 from echoing the addresses used by the
internal security program.

SEC R255 (FFh) Page 59 Read/Write
SECURITY Control Register

Reset value : OxxO O*O*b
7 0

lsLcKI I - I TF2 I WF2 I HLCK I WFI tick

• depends on the state of the fuses

bit 7 = SLCK: Software Lock The reset value of this
bit is "0". Writing a "1" to this bit will set the Protec­
tion Enable and will lock the "1" bit.

bit 6 =not used.

bit 5 =not used.

bit 4 = TF2: Test Fuse 2. This bit must be main­
tained at a "0" level

bit 3 = WF2: Write Fuse 2. Writing a "1" in this bit
will blow Fuse 2 when the high voltage Vpp rises
(when writing to on-chip EEPROM memory or ris­
ing an external Vpp supply voltage).
This bit must remain at "1 "for the whole programm­
ing of the Fuse. The end of the programming can
be monitored with bit 2. Care must be taken before
writing this bit to "1" because the programming of
this bit is irreversible.

bit 2 = HLCK: Hardware Lock. When Fuse 2 is
virgin, the value read in this bit is the value pre­
viously written.
When Fuse 2 is programmed, this bit is forced to
"1", thus the method of verifying that Fuse 2 is
programmed is to write a "0" in this bit and to read
back a "1". When Fuse 2 is programmed, the
Hardware Lock is forced to "1".
When Fuse 2 is virgin, the accessibility of the
on-chip memories can be tested by writing this bit.

bit 1 = WF1: Write Fuse 1. Writing a "1" in this bit
will blow Fuse 1 when the high voltage Vpp rises
(when writing to on-chip EEPROM memory or ris­
ing an external Vpp supply voltage).
This bit must remain at "1" for the whole programm­
ing of the Fuse. The end of the programming can
be monitored with bit 0. Care must be taken before
writing this bit to "1" because the programming of
this bit is irreversible.

bit 0 = TLCK: Testlock. When Fuse 1 is virgin, the
value read in this bit is the value previously written.
When Fuse 1 is programmed, this bit is forced to
"1 ", thus the method of verifying that Fuse 1 is
programmed is to write a "0" in this bit and to read
back a "1 ". Testlock controls the accessibility of the
on-chip memories
When Fuse 1 is virgin, the accessibility of the
on-chip memories can be tested by programming
this bit.

6/6 ------------ i..1i. ~~~©mg::~~~~------------
188

CHAPTER 14

ELECTRICAL CHARACTERISTICS

Table 14-1. DC Electrical Characteristics
(Voo = 5V ± 10% TA = - 40'C to + 85'C, unless otherwise specified)

Value
Symbol Parameter Test Conditions Unit

Min. Typ. Max.

VIHCK Clock Input High Level External Clock 0.7 Voo Voo + 0.3 v
VILCK Clock Input Low Level External Clock -0.3 0.3 Voo v

TTL 2.0 Voo + 0.3 v
V1H Input High Level

VDD + CMOS 0.7 Voo 0.3 v

TTL -0.3 0.8 v
V1L Input Low Level

CMOS -0.3 0.3 Voo v
VIHRS Reset Input High Level 0.7 Voo Voo + 0.3 v
VILAS Reset Input Low Level -0.3 0.3 Voo v
VHYRS Reset Input Hysteresis 0.3 1.5 v
VoH Output High Level Push Pull, lload =- O.BmA Voo -0.8 v

VoL Output Low Level Push Pull or Open Drain,
0.4 v lload =- 1.6mA

lwpu Weak Pull-up Current Bidirectional Weak Pull-up, -80 -200 -420 J.IA VoL= OV

IAPU
Active Pull-up Current, V1N < 0.8V -80 -200 -420

J.IA for INTO and INT7 only

ILKIO 1/0 Pm Input Leakage Input/Tri-State, OV < V1N < Voo -10 +10 J.IA

ILKRS Reset Pm Input Leakage OV < V1N < Voo -30 + 30 J.IA

ILKAD AID Pin Input Leakage Alternate Function, -3 +3 J.IA Open Drain, OV < V1N < Voo

ILKAP Active Pull-up Input Leakage ov < VIN < O.BV -10 + 10 J.IA

ILKOS OSCIN Pin Input Leakage OV < V1N < Voo -10 +10 J.IA

1/20

189

14 - Electrical Characteristics

Table 14-1. DC Electrical Characteristics (Continued)

Value
Symbol Parameter Test Conditions Unit

Min. Typ. Max.

24MHz, Note 1 32 70 mA
loo Run Mode Current

4MHz, Note 1 6 12 mA

Run Mode Current 24MHz, Note 1 19 40 mA
loP2 Prescale by 2

4MHz, Note 1 4 8 mA

24MHz, Note 1 9 18 mA
lWFI WFI Mode Current

4MHz, Note 1 2.5 5 mA

I HALT HALT Mode Current 24MHz, Note 1 100 J.lA

Note.
1. All I/O Ports are conf1gured 1n Bid1rect1onal Weak Pull-up Mode With no DC load, External Clock pin (OSCIN) is dnven by square

wave external clock No peripheral working. External interiace not active (Internal Program Execution).

Figure 14-1. DC Test Conditions

TTL INPUT
FORCING CONDITION

CMOS INPUT
FORCING CONDITION

PUSH-PULL OUTPUT
TEST CONDITION

WEAK PULL-UP OUTPUT
TEST CONDITION

2.4V ----v--
0.45V~

a.avDD~

0.2vDD

"t" SOURCE CURRENT = -0.8mA

"0" SINK CURRENT = 1.5mA

"1" SOURCE CURRENT = 0

"o" SINK CURRENT = 1.5mA

VA00117

_21_2o __________ ID'l SGS-THOMSON __________ _
·', , ifl~tr::lll©rn~~©WJ@i!l~~

190

14 - Electrical Characteristics

Table 14-2. Clock Timing Table
(Voo = 5V ± 10% TA =- 40"C to+ 85"C, unless otherwise specified)

Value
No Symbol Parameter Unit Note

Min. Max.

41.5 ns 1
1 TpC OSCIN Clock Penod

83 ns 2

2 TrC, TIC OSCIN Rise and Fall1ime 12 ns

25 12 ns 1
3 TwCL, TwCH OSCIN Low and High Width

38 ns 2

Notes:
1. Clock d1v1ded by 2 internally (MODER.DIV2=t)
2. Clock not d1v1ded by 2 internally (MODER.DIV2=0)

Figure 14-2. Clock Timing

OSCIN

3

VA00116

3/20 ------------- I:fi ~~~;mi'!~~:J -------------
191

14 - Electrical Characteristics

Table 14-3. External Bus Timing Table
(Voo = 5V ± 10% TA =- 40'C to+ 85'C, Cload = 50pF, CPUCLK = 12MHz, unless otherwise specified)

Value (Note)
No Symbol Parameter

OSCIN Not Divided
Unit

OSCIN Divided Min. Max.
By2 By2

1 TsA(AS)
Address Set-up Time

TpC (2P+1) -22 TWCH+PTpC-18 20 ns before AS 1'

2 ThAS (A)
Address Hold Time after

TpC-17 TwCL-13 25 ns ASI

3 TdAS (DR) AS 1' to Data Available (read) TpC(4P+2W+4)-52 TpC (2P+W+2) -51 115 ns

4 TwAS AS Low Pulse Width TpC (2P+ 1) -7 TwCH+PTpC -3 35 ns-

5 TdAz (DS) Address Float to DS t 0 0 0 ns

6 TwDSR DS Low Pulse Width (read) TpC(4P+2W+3)-20 TwCH+TpC (2P+W+1) 105 ns -16

7 TwDSW DS Low Pulse Width (write) TpC (2P+2W+2) -13 TpC (P+W+1)-13 70 ns

8 TdDSR (DR) DS 1- to Data Valid Delay TpC (4P+2W-3) -50 TwCH+ TpC(2P+W+ 1)- 75 ns
(read) 46

9 ThDR (DS) Data to DS 1' Hold Time (read) 0 0 0 ns

10 TdDS (A) DS 1' to Address Active Delay TpC-7 TwCL-3 35 ns

11 TdDS (AS) DS 1' to AS t Delay TpC-18 TwCL-14 24 ns

12 TsR/W (AS) R/W Set-up T1me before
ASI

TpC (2P+ 1) -22 TwCH+PTpC-18 20 ns

13 TdDSR (RIW) DS 1' to R/W and Address
Not Valid Delay

TpC-9 TwCL-5 33 ns

14 TdDW Wnte Data Valid to DS 1- TpC (2P+1) -32 TwCH+PTpC -28 10 ns (DSW) Delay (write)

15 ThDS (DW)
Data Hold T1me after DS 1'

TpC-9 TwCL-5 33 ns (write)

16 TdA(DR)
Address Valid to Data Valid

TpC(6P+2W+5)-68 TwCH+ TpC (3P+W+2) 140 Delay (read) -64 ns

17 TdAs (DS) AS 1' to DS t Delay TpC-18 TwCL-14 24 ns

Note: The value left hand two columns show the formula used to calculate the ttmrng mmrmum or maxrmum from the oscrllator clock penod,
prescale value and number of wart cycles mserted
The value nght hand two columns show the ttmtng mint mum and maxtmum for an external clock at 24 MHz dtvided by 2, prescaler value of
zero and zero watt status

Legend:
P =Clock Prescaltng Value
W ~ Wa1t Cycles

TpC ~ OSCIN Penod
TwCH ~ H1gh Level OSCIN half penod
TwCL ~Low Level OSCIN half penod

4/20
~------------fiji ~~~©111~~~~;;~ -------------
192

14 - Electrical Characteristics

Figure 14-3. External Bus Timing

T1 T2 T3

CPUCLK

R/W

13

PORTl
P/0

PORTO
(READ)

A5

05
(READ)

PORTO
D7-DO OUT

(WRITE)

DS

(WRITE)

VA00447

____________ !ffi. ~~~;m~&?,~gz;~ ____________ 51_20

193

14 - Electrical Characteristics

Table 14-4. External Wait Timing Table (Voo = 5V ± 10% TA =- 40°C to+ 85°C, Cload = 50pF,
INTCLK = 12MHz, Push-pull output configuration, unless otherwise specified)

Value (Note)

N' Symbol Parameter
OSCIN Divided OSCIN Not

By2 Divided By 2
Min. Max.

1 TdAS (WAIT) AS I to WAIT -1, Delay 2(P+ 1)TpC -29 (P+ 1)TpC -29 40

2 TdAS (WAIT) AS I to WAIT I Mmimum Delay 2(P+W+ 1)TpC -4 (P+W+1)TpC-4 80

3 TdAS (WAIT)
AS I to WAIT I Maximum

2(P+W+ 1)TpC -29 (P+W+ 1)TpC -29 83W+40
Delay

Unit

ns

ns

ns

Note: The value left hand two columns show the formula used to calculate the trmmg mrnrmum or maxrmum from the oscillator clock period,
prescale value and number of wait cycles inserted
The value nght hand two columns show the t1m1ng m1nimum and max1mum for an external clock at 24MHz d1v1ded by 2, pre scale value of zero
and zero wart status

Figure 14-4. External Wait Timing

I Tl I T2 I TwW I T3 I

CPUCLK

AS

OS

WAIT

VA00115

r== SGS·'i'HOMSON ---------------- 1:::.)'/J. l!l~~~@~~~~'ITOO@i:IJ~©;l ----------------
6/20

194

14 - Electrical Characteristics

Table 14-5. Bankswitch, AC-Timing Table

Value
N' Symbol Parameter Unit Note

Min. Max.

1 TdBAS Bank switch from AS High to low transition 45 ns 1

2 TdBLH Bank switch rising edge from AS High to Low transition 40 ns 2

3 TwBSW Bank switch -FFh- pulse width CPUCLK ns 1

Notes .
1 Page 0 R255 BS~O
2 PageO R255 BS~1

Figure 14-5. Bankswitch, AC-Timing

CPUCLK

PO ______ _.JX AO-A7 X~ _______ o_o-_o7 ______ ~~

P1 X A8-A15 ~
------~~----------------~A___

AS

BS [ss~o]

BS c__ ___ [_ss_~_•l ___ ~/ FFh

VR001407

7/20
-------------~iii. ~i~©m~~i!~li -------------

195

14 - Electrical Characteristics

Table 14·6. Bankswitch RIW Modified from OS Delay

Value
N" Symbol Parameter Unit

Min. Max.

1 TdRMD RIW modified from DS delay 35 ns

Figure 14·6. Bankswitch R/W Modified from DS Delay

CPUCLK

PO ------~X A0-A7 X~ _____ oo_-o_7 ____ ~X~--------

Pl A8-A15

OS

---~l-__
Modif•ed R/W

VR001408

8/20
~ SGS·ntOMSOI\l -------------- A"Yl li§J~©OO©~~§©'ii1ll@INJ~©@ --------------

196

14 - Electrical Characteristics

Table 14-7. Bus Request/Acknowledge Timing Table (Voo = 5V ± 10% TA =- 40"C to+ 85"C,
Cload = 50pF, INTCLK = 12MHz, Push-pull output configuration, unless otherwise specified)

Value (Note)
No Symbol Parameter

OSCIN Divided OSCIN Not Divided
By2 By2

Min. Max.

BREO l to BUSACK l
TpC+8 TwCL+12 50

1 TdBR (BACK)
TpC(6P+2W+7)+65 TpC(3P+W+3)+TwCL+65 360

2 TdBR (BACK) BREQ 1' to BUSACK 1' 3TpC+60 TpC+ TwCL+60 185

3 TdBACK (BREL) BUSACK l to Bus 20 20 20 Release

4 TdBACK (BACT)
BUSACK 1' to Bus

20 20 20 Active

Unit

ns

ns

ns

ns

ns

Note: The value left hand two columns show the formula used to calculate the t1mmg mm1mum or max1mum from the oscillator clock penod,
pre scale value and number of wa1t cycles mserted
The value nght hand two columns show the tim1ng mtntmum and maxtmum for an external clock at 24M Hz dtv1ded by 2, pre scale value of zero
and zero wa1t status

Figure 14-7. Bus Request/Acknowledge Timing

I I I T1 T2

INTCLK ___jl_____JL_j

CPUCLK ____}______}

8USREQ

~ ~ <

BUSACK

l ME MINT

VA00114

Note: ME MINT= group of memory Interface Signals: AS, DS, RNJ, POD-PO?, P10-P17.

9/20 -------------l..!i. ~i~©ID~~'j~lj -------------
197

14 - Electrical Characteristics

Table 14-8. Handshake Timing Table (Voo = 5V ± 10% TA =- 40"C to+ 85"C, Cload = 50pF,
INTCLK = 12MHz, Push-pull output configuration, unless otherwise specified)

Value (Note)

No Symbol Parameter OSCIN Divided OSCIN Not Divided Min.
By2 By2

Min. Max. Min. Max.

RDRDY, WRRDY Pulse 2TpC Tp
1 TwRDY Width in One Line (P+W+1)-18 (P+W+1)- 65

Handshake 18

2 TwSTB RDSTB, WRSTB Pulse 2TpC+12 TpC+12 95
W1dth

3 TdST (ROY)
RDSTB, or WRSTB I

TpC+45
(TpC-TwCL)

to RDRDY or WRRDY l +45

4 TsPD (RDY)
Port Data to RDRDY I (2P+2W+1) TwCH+(W+P

16 Set-up 1ime TpC-25 TpC-25

Port Data to WRRDY l
5 TsPD (RDY) Set-up Time in One Line 43 43 43

Handshake

Port Data to WRRDY l
6 ThPD (ROY)

Hold
0 0 0 T1me in One Lme

Handshake

7 TsPD (STB)
Port Data to WRSTB I

10 10 10
Set-up 1ime

8 ThPD (STB)
Port Data to WRSTB I

25 25 25 Hold Time

RDSTBD I to Port Data
9 TdSTB (PD) Delay Time in Bidirectional 35 35

Handshake

TdSTB RDSTB I to Port High·Z
10 (PHZ) Delay Time in Bidirectional 25 25

Handshake

Max. Unit

ns

ns

87 ns

ns

ns

ns

ns

ns

35 ns

25 ns

Note: The value left hand two columns show the formula used to calculate the timing minimum or maximum from the osc1llator clock penod,
prescale value and number of wait cycles Inserted
The value nght hand two columns show the t~m~ng mm1mum and max1mum for an external clock at 24 MHz d1v1ded by 2, prescaler value of
zero and zero walt status.

Legend:
P = Clock Prescahng Value (R235 4,3,2)
W = Programmable Wait Cycles (R252.2 1 0/5,4,3) + External Wait Cycles

_10_12_0 __________ r== SGS-THOMSON A""'fl ru~ca;oo:1lm~~a;llW©l£~©§ ----------------
198

Figure 14-8. Handshake Timing

READY

STROBE

OUTPUT

HANDSHAKE

ONE LINE

INPUT
HANDSHAKE

TWO LINES

INPUT

HANDSHAKE

BIDIRECTIONAL

HANDSHAKE

~

4

~

9

4

14 - Electrical Characteristics

1/

3

r
C:~

~

~
l>

VAOOt 13

_____________ ~ ~~~;mg:sg~ ____________ 1_11_20

199

14 - Electrical Characteristics

Table 14-9. External Interrupt Timing Table (Voo = SV ± 10% TA =- 40"C to + as·c,
Cload = 50pF, INTCLK = 12MHz, Push-pull output configuration, unless otherwise specified)

Value (Note)

No Symbol Parameter OSCIN
OSCIN Unit

Not
Divided Divided Min. Max.

By2 Min.
By2 Min.

1 TwLR Low Level Minimum Pulse Width in Rising Edge Mode 2TpC+12 TpC+12 95 ns

2 TwHR High Level Minimum Pulse Width in Rising Edge Mode 2TpC+12 TpC+12 95 ns

3 TwHF High Level Minimum Pulse Width in Falling Edge Mode 2TpC+12 TpC+12 95 ns

4 TwLF Low Level Minimum Pulse Width in Falling Edge Mode 2TpC+12 TpC+12 95 ns

Note: The value left hand two columns show the formula used to calculate the t1m1ng m1n1mum or max1mum from the oscillator clock penod,
prescale value and number of wa1t cycles mserted.
The value nght hand two columns show the t1m1ng m1mmum and max1mum for an external clock at 24M Hz d1v1ded by 2, prescale value of zero
and zero wa1t status

Figure 14-9. External Interrupt Timing

RISING EDGE DETECTION FALLING EDGE DETECTION

INTn

n=0-7
VA00112

12/20 -------------I..V. ~i~~mgm~~~n -------------
200

14 - Electrical Characteristics

Table 14-10. Timer/Watchdog Timing Table (Voo = 5V ± 10% TA = · 40"C to+ as·c, Cload = 50pF,
INTCLK = 12MHz, Output alternate function set as Push-pull)

Value
No Symbol Parameter Unit

Min. Max.

1 TwWDOL WDOUT Low Pulse Width 620 ns

2 TwWDOH WDOUT High Pulse Width 620 ns

3 TwWDIL WDIN Low Pulse Width 350 ns

4 TwWDIH WDIN High Pulse Width 350 ns

Figure 14-10. Timer/Watchdog Timing

WOOUT ~--· -)-' -\~

WOIN ~-J~v-· -\'-----
VA00110

t== SGS-THOMSON -------------- ~""fl II!ID©:&Iiil~~~©'iTill@i!:D©;;: --------------
13/20

201

14 - Electrical Characteristics

Table 14-11. SPI Timing Table (Voo = 5V ± 10% TA =- 40"C to+ 85"C, Cload = 50pF, INTCLK =12M Hz,
Output alternate function set as Push-pull)

Value
No Symbol Parameter Unit

Min. Max.

1 TsDI Input Data Set-up Time 100 ns

2 ThDI (1) Input Data Hold Time 1/2 TpC+100 ns

3 TdOV SCK to Output Data Valid 100 ns

4 ThDO Output Data Hold Time -20 ns

5 TwSKL SCK Low Pulse Width 300 ns

6 TwSKH SCK High Pulse W1dth 300 ns

Note: 1 TpC 1s the Clock period.

Figure 14-11. SPI Timing

SCK

SDO

SDI

VA00t09

14/20
~ SGS·1HOMSON -------------- t:.."'fff. l%iJU©IJ@~!.i>©'ii'OO@I')]U©@ --------------

202

14 - Electrical Characteristics

Table 14-12. A/D External Trigger Timing

OSCIN OSCIN
Value(3)

N' Symbol Parameter Divided by 2 (2) Not Divided by 2 (2) Unit

Min. Max. Min. Max. Min. Max.

1 TWLOW External trigger 2 xTpc Tpc 83 ns pulse width

2 TWHIGH
External trigger

2xTpc Tpc 83 - ns pulse distance

External trigger
3 TWEXT active edges 276n x Tpc 138n x Tpc n x 11.5 - J.IS

distance (1)

ADTRG falling
4 Tdsm edge and first Tpc 3 xTpc .5 xTpc 1.5 X Tpc 41.5 125 ns

conversion start

Notes:
1. n = number of autoscanned channels (1 < n < 8)
2 Vanable clock (Tpc = OSCIN clock penod)
3. CPUCLK = 12MHz

Figure 14-12. AID External Trigger Timing

ADTRG /

1 2

3

/
T (start conversion bit)

/
s

• j---L-.

VR001401

15/20
------------@ ~i~~m¥:1~~~------------

203

14 - Electrical Characteristics

Table 14-13. A/D Internal Trigger Timing

OSCIN

N'

1

2

3

4

Notes:
1.
2.
3.

Symbol Parameter Divided by 2 (2)

Min.

TWHIGH
Internal trigger

Tpc
pulse width

Twww
Internal trigger

6 xTpc pulse distance

Internal trigger
TWEXT active edges 276n x Tpc

distance (1)

Internal delay
between INTRG

Twsm rising edge and Tpc
first conversion
start

n = number of autoscanned channels (1 < n < 8)
Variable clock (Tpc ~ OSCIN clock penod)
CPUCLK ~ 12MHz

Max.

3 xTpc

Figure 14-13. AID Internal Trigger Timing

INTRG

2

J

ST (start conversion bit)

4

OSCIN
Value (3)

Not Divided by 2 (2) Unit

Min. Max. Min. Max.

.5 X Tpc 41.5 ns

3 x Tpc 250 - ns

138n x Tpc n x 11.5 f.!S

.5 X Tpc 1.5 X Tpc 41.5 125 ns

-
I

/_

/
/

~

VROA1401

16/20 -------------~ ~~~©m~:)[~~ -------------
204

14 - Electrical Characteristics

Table 14-14. A/D Channel Enable Timing

OSCIN OSCIN
Value (3)

N" Symbol Parameter Divided by 2 (2) Not Divided by 2 (2) Unit

Min. Max. Min. Max. Min. Max.

1 TWEXT
CEn Pulse width

276n x Tpc 138n xTpc n x 11.5 (1) - J.!S

Notes:
1. n = number of autoscanned channels (1 < n < 8)
2. Vanable clock (Tpc = OSCIN clock penod)
3. CPUCLK = 12MHz

Figure 14-14. AID Channel Enable Timing

(Periph.clock)

CEn+l

';!<001402

17/20 -------------~ ~i~©IH2v~~j!~ij -------------
205

14- Electrical Characteristics

Table 14-15. A/D Analog Specifications

Parameter Typical (1) Minimum

Analog Input Range
Avec 3

Conversion time 11.5

Sample time 3

Power-up time 60

Resolution 8 8

Monotonicity GUARANTEED

No missing codes GUARANTEED

Zero input reading 00

Full scale reading

Offset error .5

Gain error .5

Dill. Non Linearity ±.3 ±.2

Int. Non Linearity

Absolute Accuracy

S/N 45

Avec! Avss Resistance 13.5 16

Input Resistance 12 8

Hold Capacitance

Input Leakage

Notes:
1
2.

The values are expected at 25 degree Centigrade w1th Avec= 5V
"LSBs", as used here, has a value of Avcc/256

3 @24M Hz external clock
4. Including sample t1me

Maximum

Avec
Vee

FF

1

1

±.5

1

1

49

11

15

30

3

5.
6

It must be mtended as the mternal senes resistance before the sampl1ng capac1tor
Th1s IS a typ1cal expected value, but not a tested production parameter.

Units (2) Notes

v

v

flS (3, 4)

flS (2)

flS

bits

Hex

Hex

LSBs (6)

LSBs (6)

LSBs (6)

LSBs (6)

LSBs (6)

dB

Kohm

Kohm (5)

pF

!.!A

If V(1) 1s the value of the 1-th transition level (0 < 1 < 255), the performance of the NO converter has been valued as follows
OFFSET ERROR= dev1at1on between the actual V(O) and the ideal V(O) (=1/2 LSB)
GAIN ERROR= dev1at1on between the actual V(255) and the 1deal V(255) (=AVCC-3/2 LSB)
DNL ERROR= max {[V(1)- V(I-1)]/LSB -1}
INL ERROR= max {[V(1) - V(O)]/LSB- 1}
ABS. ACCURACY= overall max conversion error
S/N rat1o has been valued by sampling a sinusoidal input waveform and then calculating 1ts Fast Founer Transform.

18/20
---------------------------~~i~@~~~~~~---------------------------
206

Table 14-16. Multifunction Timer Unit External Timing

OSCIN
Divided

N" Symbol Parameter by 2

(3)

1 Twc1W External clock/trigger pulse width 2n x Tpc

2 Twcro External clock/trigger pulse distance 2n x Tpc

3 TWAED Distance between two active edges 6 x Tpc

4 TWGW Gate pulse w1dth 12 X Tpc

5 TWLBA
Distance between TINS pulse edge and

2 x Tpc
the following TINA pulse edge

6 TWLAB
Distance between TINA pulse edge and

0
the following TINS pulse edge

7 TWAD Distance between two TxiNA pulses 0

8 Twowo Minimum output pulse width/distance 6 x Tpc

Notes:
1. n ~ 1 1f the input is rising OR fall1ng edge sens1t1ve

n ~ 3 if the 1nput 1s nsing AND falling edge sensitive
2. In Autodiscrimination mode
3. Variable clock (Tpc ~ OSCIN penod)
4. INTCLK ~ 12 MHz

Figure 14-15. Multifunction Timer Unit External Timing

TINA

TlNB

GATE

TINA

TINS

TOUTO

TOUT!

14 - Electrical Characteristics

OSCIN Value (4)
Not

Divided Unit Note
by 2 Min. Max.

(3)

n x Tpc n x 83 - ns 1

n x Tpc n x 83 ns 1

3 x Tpc 249 - ns

6 xTpc 498 - ns

Tpc 83 ns 2

0 ns 2

0 - ns 2

3 xTpc 249 ns

19/20 r== SGS-lHOMSON --------------- ~""fl llll~@[Rl©;~~l':(i;WJIQ:"'-"0~ ---------------

207

14 • Electrical Characteristics

Table 14-17. SCI Timing Table (Voo = 5V ± 10% TA =- 40"C to+ 85"C, Cload = 50pF, INTCLK = 12MHz,
Output alternate function set as Push-pull)

Value
No Symbol Parameter Condition Unit

Min. Max.

1 x mode FcK/8 Hz
FRxCKIN Frequency of RxCKIN

16 x mode FcKi4 Hz

1 x mode 4 TcK s
TWRxCKIN RxCKIN shortest pulse

16 x mode 2TcK s

1 x mode FcK/8 Hz
FrxCKIN Frequency ofTxCKIN

16 x mode FcK/4 Hz

1 x mode 4 TcK s
TwrxCKIN TxCKIN shortest pulse

16 x mode 2TcK s

1 Tsos
DS (Data Stable) before rising 1 x mode reception with Tpc/2 ns edge of RxCKIN RxCKIN

2 Tdo1 TxCKIN to Data out delay Time 1 x mode transmission with 2.5 TPc ns
external clock C load <100pF

3 Tdo2 CLKOUT to Data out delay Time 1 x mode transmission with 350 ns
CLKOUT

Note: FcK= 1ffcK

FIG 1: RECEPllON 1\HH EXTERNAL CLOCK IX MODE FlG 2: TRANSMISSION WITH EXTERNAL CLOCK IX MODE

RXCKIN TXCKIN -
DATA IN DATA OUT

2

FIG 3: TRANSMISSION WITH CLKOUT IX MODE

CLKOUT

DATA OUT --I'"'""'- ,.---------

3
VR001437

20/20 ------------1..1i. ~i©IHWII~~~ ------------
208

SALES OFFICES

EUROPE

DENMARK

2730 HERLEV
Herlev Torv, 4
Tel (45-42) 94 85 33
Telex 35411
Telefax (45-42) 948694

FINLAND

LOHJA SF-08150
Kaqalankatu, 2
Tel (358-12)15511
Telefax (358-12) 155 66

FRANCE

94253 GENTILLY Cedex
7- avenue Gall1en1- BP 93
Tel (33-1) 47 40 75 75
Telex 632570 STMHQ
Telefax (33-1) 47 40 79 10

67000 STRASBOURG
20, Place des Hailes
Tel (33) 88 75 50 66
Telefax (33) 88 22 29 32

GERMANY

6000 FRANKFURT
G uti eutstrasse 322
Tel (49-69) 237492-3
Telex 176997 689
Telefax (49-69) 231957
Teletex 6997689=STVBP

8011 GRASBRUNN
Breton1scher R1ng 4
Neukeferloh Technopark
Tel (49-89) 46006-0
Telex 528211
Telefax (49-89) 4605454
Teletex 897107=STDISTR

3000 HANNOVER 51
Roten burger Strasse 28A
Tel (49-511) 615960
Telex 175118418
Teletex 5118418 CSFBEH
Telefax (49-511) 6151243

5202 HENNEF
Reuther Strasse 1 A-C
Tel (49-2242) 6088

(49-2242) 4019/4010
Telefax (49-2242) 84181

8500 NURNBERG 20
Erlenstegenstrasse, 72
Tel (49-911) 59893-0
Telex 626243
Telefax (49-911) 5980701

7000 STUTIGART 31
M1ttlerer Pfad 2-4
Tel (49-711) 13968-0
Telex 721718
Telefax (49-711) 8661427

ITALY

20090 ASS AGO (MI)
V le Mllanof1m- Strada 4- Palazzo N4/A
Tel (39-2) 89213 1 (10 l1nee)
Telex 330131 -330141 SGSAGR
Telefax· (39-2) 8250449

40033 CASALECCHIO Dl RENO (BO)
V1a R Fuc1n1, 12
Tel (39-51) 591914
Telex 512442
Telefax (39-51) 591305

00161 ROMA
V1a A Torlon1a, 15
Tel (39-6) 8443341
Telex 620653 SGSATE I
Telefax (39-6) 8444474

NETHERLANDS

5652 AR EINDHOVEN
Meerenakkerweg 1
Tel (31-40) 550015
Telex 51186
Telefax (31-40) 528835

SPAIN

08021 BARCELONA
Calle Platon, 6 41h Floor, 5th Door
Tel (34-3) 4143300-4143361
Telefax. (34-3) 2021461

28027 MADRID
Calle Albacete, 5
Tel (34-1) 4051615
Telex 46033 TCCEE
Telefax (34-1) 4031134

SWEDEN

S-16421 KISTA
Borgarf1ordsgatan, 13- Box 1094
Tel (46-8) 7939220
Telex 12078 THSWS
Telefax (46-8) 7504950

SWITZERLAND

1218 GRAND-SACONNEX (GENEVA)
Chem1n Franco1s-Lehmann, 18/A
Tel (41-22) 7986462
Telex 415493 STM CH
Telefax (41-22) 7984869

UNITED KINGDOM and EIRE

MARLOW, BUCKS
Planar House, Parkway
Globe Park
Tel (44-628) 890800
Telex 847458
Telefax (44-628) 890391

