
TMS7000
Family Data

Manual

8-bit Microcomputer Family

TEXAS
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (Tl) reserves the right to make changes in the devices or the
device specifications identified in this publication without notice. Tl advises
its customers to obtain the latest version of device specifications to verify,
before placing orders, that the information being relied upon by the customer
is current.

In the absence of written agreement to the contrary, Tl assumes no liability for
Tl applications assistance, customer's product design, or infringement of pat­
ents or copyrights of third parties by or arising from use of semiconductor
devices described herein. Nor does Tl warrant or represent that any license,
either express or implied, is granted under any patent right, copyright, or other
intellectual property right of Tl covering or relating to any combination, ma­
chine, or process in which such semiconductor devices might be or are used.

Copyright© 1986, Texas Instruments Incorporated

Section

1
1.1

Introduction
How to Use this Manual

Contents

Page

1-1
1-2

2 TMS7000 Family Devices 2-1
2.1 Summary and Device Comparison 2-2
2.2 TMS70x0 and TMS70Cx0 Devices 2-4
2.2.1 TMS70x0 (NMOS) Key Features 2-4
2.2.2 TMS70Cx0 (CMOS) Key Features 2-5
2.3 TMS70x2 and TMS7742 Devices 2-8
2.3.1 TMS70x2 (NMOS) Key Features 2-8
2.3.2 TMS7742 EPROM (NMOS) Device Key Features 2-9
2.4 TMS70Cx2 and TMS77C82 Devices 2-12
2.4.1 TMS70Cx2 (CMOS) Key Features 2-12
2.4.2 TMS77C82 (CMOS) Key Features (Advance Information) 2-13
2.5 TMS7742 and SE70P162 Prototyping Devices 2-16
2.5.1 TMS7742 EPROM (NMOS) Prototyping Device Key Features 2-16
2.5.2 SE70P162 (NMOS) Piggyback Prototyping Device Key Features 2-17
2.6 SE70CP160 and SE70CP162 Prototyping Devices 2-20
2.6 .. 1 SE70CP160 (CMOS) Piggyback Prototyping Device Key Features 2-20
2.6.2 SE70CP162 (CMOS) Piggyback Prototyping Device Key Features 2-21

3
3.1
3.1.1
3.1.2
3.1 .. 3
3.1..4
3.1 .. 5
3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.3
3.3.1
3.3.2
3.3.3
3.3.4
3.4
3.4.1
3.4.2
3.5
3.5.1
3.5.2
3.6
3.6.1
3.6.2
3.6.3

TMS7000 Family Architecture
On-Chip RAM and Registers

Register File (RF)
Peripheral File (PF)
Stack Pointer (SP)
Status Register (ST)
Program Counter (PC) ...

On-Chip General Purpose 1/0 Ports
Port A
Port B
Port C
Port D

Memory Modes . .
Single-Chip Mode
Peripheral-Expansion Mode
Full-Expansion Mode
Microprocessor Mode

System Clock Options . .
System Clock Connections . .
Low-Power Mask Options for CMOS Devices

CMOS Low-Power Modes
TMS70Cx0 Low-Power Modes
TMS70Cx2 Devices

Interrupts and System Reset
Device Initialization
Interrupt Operation
Interrupt Control

3-1
3-2
3-2
3-2
3-3
3-3
3-4
3-5
3-8
3-8
3-8
3-8
3-9
3-13
3-16
3-18
3-19
3-20
3-20
3-22
3-23
3-23
3-23
3-24
3-24
3-28
3-30

iii

3.6.4
3.6.5
3.7
3.7.1

3.7.2

3.7.3
3.7.4
3.7.5
3.7.6
3.7.7
3.7.8
3.7.9
3.8
3.8.1
3.8.2
3.8.3
3.8.4
3.8.5
3.8.6
3.8.7

Multiple Interrupt Servicing
External Interrupt Servicing

Programmable Timer/Event Counters
Control Registers for Timer/Event Counters 1 and 2 (TMS70x0,
TMS70Cx0, and TMS70x2 Devices)
Control Registers for Timer/Event Counters 1 and 2 (TMS70Cx2
Devices)
Timer Start/Stop (Bit 7) and Capture Latch
Clock Source Control (Bit 6)
Idle/Timer Halt Bit (Bit 5)
Cascading Timers
Timer and Prescaler Operation
Timer Interrupts
Timer Output Function (TMS70Cx2 Devices)

Serial Port (TMS70x2 and TMS70Cx2 Devices Only)
Serial Port Registers
Clock Sources and Serial Port Modes
Multiprocessor Communication
Serial Port Initialization
Timer 3
Initialization Examples
Serial Port Interrupts

3-33
3-33
3-36

3-41

3-41
3-42
3-43
3-44
3-45
3-46
3-47
3-48
3-49
3-51
3-63
3-66
3-70
3-71
3-73
3-76

4 Electrical Specifications 4-1
4.1 TMS7000, TMS7020, and TMS7040 Specifications 4-2
4.1 .1 Application of Ceramic Resonator 4-7
4.2 TMS7002 and TMS7042 Specifications 4-8
4.2.1 Application of Ceramic Resonator 4-14
4.2.2 Serial Port Timing 4-15
4.3 TMS7742 Specifications 4-16
4.3.1 Erasure 4-21
4.3.2 Serial Port Timing 4-24
4.4 SE70P162 Specifications 4-25
4.4.1 Serial Port Timing 4-30
4.5 TMS70COOA, TMS70C20A, and TMS70C40A Specifications (Wide

Voltage) . 4-31
4.6 TMS70COOA, TMS70C20A, and TMS70C40A Specifications (5V ± 10%) 4-38
4.7 TMS70C02 and TMS70C42 Specifications (Wide Voltage) 4-45
4.7.1 Serial Port Timing 4-53
4.8 TMS70C02 and TMS70C42 Specifications (5V ±10%) 4-54
4.8.1 Serial Port Timing 4-61
4.9 TMS77C82 (Advance Information) 4-62
4.10 SE70CP160A Specifications 4-63
4.11 SE70CP162 Specifications 4-68
4.11 .1 Serial Port Timing 4-73

iv

5
5.1
5.1.1
5.1.2
5.1 .3
5.1.4
5.2
5.2.1
5.2.2
5.2.3
5.2.4
5.2.5
5.3
5.3.1
5.3.2
5.3.3
5.4
5.4.1
5.4.2
5.4.3
5.4.4
5.4.5
5.4.6
5.5
5.6
5.7
5.7.1
5.7.2
5.7.3
5.7.4
5.8
5.8.1

6
6.1
6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.2 .. 5
6.2 .. 6
6.2.7
6.2.8
6.3

The TMS7000 Assembler
Source Statement Format

Label Field
Command Field
Operand Field
Comment Field

Constants
Decimal Integer Constants
Binary Integer Constants
Hexadecimal Integer Constants
Character Constants
Assembly-Time Constants

Symbols
Predefined Symbols
Terms
Character Strings

Expressions
Arithmetic Operators in Expressions
Logical Operands in Expressions
Parentheses in Expressions
Well-Defined Expressions
Relocatable Symbols in Expressions
Externally Defined Symbols in Expressions

Assembler Directives
Symbolic Addressing Techniques
Assembler Output

Source Listing
Normal Completion Error Messages
Abnormal Completion Error Messages
Cross- Reference Listing

Object Code
Object Code Format

Assembly Language Instruction Set
Definitions
Addressing Modes

Single Register Addressing Mode
Dual Register Addressing Mode
Peripheral-File Addressing Mode
Immediate Addressing Mode
Program Counter Relative Addressing Mode
Direct Memory Addressing Mode
Register File Indirect Addressing Mode
Indexed Addressing Mode

Instruction Set Overview

5-1
5-2
5-3
5-3
5-3
5-3
5-4
5-4
5-4
5-5
5-5
5-5
5-6
5-6
5-7
5-7
5-8
5-8
5-9
5-9
5-10
5-10
5-11
5-12
5-47
5-48
5-48
5-49
5-51
5-52
5-53
5-54

6-1
6-2
6-3
6-4
6-4
6-5
6-5
6-6
6-6
6-7
6-7
6-8

v

7
7.1
7.2
7.3
7.3.1
7.3.2
7.3.3

8
8.1
8.1.1
8.1.2
8.2
8.3
8.3.1
8.3.2
8.3.3
8.3.4
8.4
8.4.1
8.4.2
8.5
8.6
8.7
8.8
8.8.1
8.8.2
8.8.3
8.8.4
8.9

Linking Program Modules
Relocation Capability
Link Editor Operation
Directives Used for Linking

I OT - Program Identifier Directive
DEF - External Definition Directive . .
REF and SREF - External Reference Directives

Macro Language
Defining Macros

Using Macro Libraries
Sample Macros

Strings, Constants, and Operators
Variables

Parameters
Macro Variable Components
Variable Qualifiers
Symbol Components

Keywords
Symbol Attribute Component Keywords
Parameter Attribute Keywords

Assigning Values to Parameters
Verbs
Model Statements
Macro Examples

Macro ID
Macro GENCMT
Macro FACT
Macro PULSE

Macro Error Messages

9 Design Aids
9.1 Microprocessor Interface Example
9.1 .1 Read Cycle Timing
9.1.2 Write Cycle Timing for Microprocessor Mode
9.2 Programming the TMS7742
9.2.1 Programming the TMS7742 Using a PROM Programmer
9.2.2 Programming the TMS7742 Using the TMS7000 Evaluation Module
9.2.3 Programming the TMS7000 using the TMS7000 XDS
9.2.4 TMS7742 Erasure
9.3 Serial Communication with the TMS7000 Family
9.3.1 Communication Formats
9.3.2 Software UART (All TMS7000 Devices)
9.3.3 Hardware UART (TMS70x2)
9.4 The Status Register
9.4. 1 Compare and Jump Instructions
9.4.2 Addition and Subtraction Instructions
9.4.3 Swap and Rotation Instructions
9.5 Stack Operations
9.6 Subroutine Instructions
9.7 Multiplication and Shifting
9.8 The Branch Instruction
9.9 Interrupts
9.10 Write-Only Registers

vi

7-1
7-2
7-3
7-5
7-5
7-5
7-6

8-1
8-2
8-2
8-4
8-6
8-7
8-7
8-8
8-9
8-10
8-11
8-11
8-12
8-13
8-15
8-25
8-26
8-26
8-27
8-28
8-28
8-29

9-1
9-2
9-4
9-4
9-7
9-8
9-9
9-10
9-14
9-15
9-15
9-16
9-23
9-29
9-29
9-31
9-31
9-32
9-33
9-35
9-36
9-37
9-39

9.11 Sample Routines
9.11.1 Clear RAM
9.11.2 RAM Self Test
9.11.3 ROM Checksum
9.11.4 Binary-to-BCD Conversion
9.11.5 BCD-to-Binary Conversion
9.11.6 BCD String Addition
9.11.7 Fast Parity
9.11.8 Overflow and Underflow
9.11 .9 Bubble Sort
9.11 .1 0 Table Search
9.11.11 16-Bit Address Stack Operations
9.11.12 16-by-16 (32-Bit) Multiplication
9.11.13 Binary Division, Example 1
9.11.14 Binary Division, Example 2
9.11.15 Binary Division, Example 3
9.11 .16 Keyboard Scan
9.11.17 8-Bit Analog-to-Digital Converter
9.111.18 Motor Speed Controller

10 Development Support
10.1 The XDS Emulator
1 0.11 .1 Software Development
10.1 .2 XDS Memory Map
10.1.3 Communication Capabilities
10.1.4 System Configurations
10.1.5 Breakpoint, Trace, and Timing Functions
10.11 .6 Physical Specifications
10.2 Evaluation Modules
10.2.1 System Configurations
10.2.2 Communications
1 0.2.3 Software Development
10.2.4 EPROM Programming Utility
10.3 Prototyping Support
10.3.1 TMS7742 Description
10.3.2 SE70P162 Description
10.3.3 SE70CP160 Description
10.3.4 SE70CP162 Description
1 o.=~.5 TMS77C82 (Advance Information)

11
11 .11
11.2
11.a

11.4
11.5
11.6
11.7

Independent Support
Allen Ashley- CP/M-Based Support Tools
Cybernetic Micro Systems - IBM-PC Crossware and TMS7000 Simulator
Software Development Systems, Inc. - UNIX™ Based Cross-Development
Tools
SEEQ - Self-Adaptive EEROM
Microcomputer Control - Multi-tasking Operating System
Hewlett-Packard - HP64000 Microcomputer Development System
EPROM Microcomputer Support

9-40
9-40
9-41
9-42
9-43
9-43
9-44
9-45
9-46
9-47
9-48
9-49
9-50
9-51
9-52
9-53
9-54
9-55
9-56

10-1
10-2
10-4
10-6
10-6
10-6
10-7
10-7
10-8
10-8
10-9
10-9
10-10
10-11
10-11
10-11
10-11
10-11
10-11

11-1
11-2
11-4

11-5
11-6
11-7
11-8
11-9

vii

12 Customer Information
12.1 Mask ROM Prototype and Production Flow
12.1.1 Reserved ROM Locations
1 2.1 .2 Manufacturing Mask Options
12.2 Mechanical Package Information
12.3 TMS7000 Family Numbering and Symbol Conventions
1 2.3.1 Device Prefix Designators
12.3.2 Device Numbering Convention
12.3.3 Device Symbols
12.4 Development Support Tools Ordering Information
12.4.1 TMS7000 Macro Assembler/Linker
12.4.2 TMS7000 XDS Emulators
12.4.3 TMS7000 Evaluation Modules

A
B
c
D
E
F
G
H

viii

TMS7000 Bus Activity Tables
TMS7500/TMS75COO Data Encryption Device
TM S70x1 Devices
Character Sets
Hexadecimal Instruction Table/Opcode Map
Instruction Opcode Set
CrossWare Installation
Glossary

12-1
12-2
12-4
12-5
12-6
12-9
12-9
12-10
12-10
12-12
12-12
12-12
12-12

A-1
B-1
C-1
D-1
E-1
F-1
G-1
H-1

Illustrations

Figure

2-1.

2-2.
2-3.
2-4.
2-5.
2-6.
2-7.
2-8.
2-9.
2-10.
3-1.
3-2.
3-3.
3-4.
3-5.
3-6.
3-7.
3-8.
3-9.
3-10.
3-11.
3-12.
3-13.
3-14.
3-15.
3-16.
3-17.
3-18.
3-19.

3-20.
3-21.

3-22.
3-23.
3-24.
3-25.
3-26.
3-27.
3-28.
3-29.
3-30.
3-31.
3-32.
3-33.
3-34.
3-35.
3-36.

Pinouts for TMS7000, TMS7020, TMS7040, TMS70COO, TMS70C20 and
TMS70C40 .. .
Prototyping Devices Available for TMS70x0 and TMS70Cx0 Devices
Pinouts for TMS7002, TMS7042, and TMS7742 EPROM Device
Prototyping Devices Available for TMS70x2 and TMS7742 Devices
Pinouts for TMS70C02 and TMS70C42 Devices
Prototyping Devices Available for TMS70Cx2 and TMS77C82 Devices
TMS7742 Pin out
SE70P162 Pinout .. .
SE70CP160 Pinout
SE70CP162 Pinout .. .
TMS7000 Family Block Diagram
Example of Stack Initialization in the Register File
Status Register (ST) .. .
Bidirectional 1/0 Logic
1/0 Ports - Single-Chip Mode
Single-Chip Mode Memory Map
1/0 Ports - Peripheral-Expansion Mode
Peripheral-Expansion Mode Memory Map
1/0 Ports - Full-Expansion Mode
Full-Expansion Mode Memory Map
Microprocessor Mode Memory Map
System Clock Connections
Sample Initialization Routine for TMS70x2 Devices
Sample Initialization Routine for TMS70Cx2 Devices
CPU Interface to Interrupt Logic
IOCNTO - 1/0 Control Register 0 (PO for All Devices)
IOCNT1 - 1/0 Control Register 1
IOCNT2 - 1/0 Control Register 2 (TMS70Cx2 Only)
8-Bit Programmable Timer/Event Counters - Timer 1 (TMS70x0, TMS70x2,
and TMS70Cx0) .. .
16-Bit Programmable Timer/Event Counters -Timer 1 (TMS70Cx2)
Timer 1 Data and Control Registers {TMS70x0, TMS70Cx0, and
TMS70x2) .. .
Timer 1 Data and Control Registers (TMS70Cx2)
8-Bit Programmable Timer/Event Counters - Timer 2 (TMS70x2)
16-Bit Programmable Timer/Event Counters -Timer 2 (TMS70Cx2)
Timer 2 Data and Control Registers {TMS70x2)
Timer 2 Data and Control Registers (TMS70Cx2)
Serial Port Functional Blocks
Serial Mode Register - SMODE
Serial Control 0 Register - SCTLO
Serial Port Status Register - SST AT
Serial Port Control 1 Register - SCTL 1
Timer 3 Data Register - T3DATA
Receive Buffer - RXBUF
Transmitter Buffer - TXBUF
Asynchronous Communication Format
lsosynchronous Communication Format

Page

2-6
2-6
2-10
2-10
2-14
2-14
2-18
2-18
2-22
2-22
3-1
3-3
3-3
3-6
3-13
3-13
3-16
3-16
3-18
3-19
3-19
3-21
3-26
3-26
3-29
3-30
3-31
3-32

3-37
3-37

3-38
3-38
3-39
3-39
3-40
3-40
3-50
3-52
3-54
3-56
3-58
3-59
3-60
3-60
3-63
3-64

ix

3-37.
3-38.
3-39.
3-40.
3-41.
3-42.
4-1.
4-2.
4-3.
4-4.
4-5.
4-6.
4-7.
4-8.
4-9.
4-10.
4-11.
4-12.
4-13.
4-14.
4-15.
4-16.
4-17.
4-18.
4-19.
4-20.
4-21.
4-22.
4-23.
4-24.
4-25.
4-26.
4-27.
4-28.
4-29.
4-30.
4-31.
4-32.
4-33.
4-34.
4-35.
4-36.
4-37.
4-38.
4-39.
4-40.
4-41.
4-42.
4-43.
4-44.
4-45.
4-46.
4-47.
4-48.
4-49.
4-50.

x

Serial 1/0 Communication Format
Double-Buffered WUT and TXSHF
Motorola Multiprocessor Communication Format
Intel Multiprocessor Communication Format
8-Bit Timer 3 (TMS70x2)
16-Bit Timer 3 (TMS70Cx2)
Output Loading Circuit for Test (TMS70x0)
Measurement Points for Switching Characteristics (TMS70x0)
Clock Timing (TMS70x0)
Recommended Clock Connections (TMS70x0)
Read and Write Cycle Timing (TMS70x0)
Ceramic Resonator Circuit (TMS70x0) '.
Output Loading Circuit for Test (TMS70x2)
Measurement Points for Switching Characteristics (TMS70x2)
Clock Timing (TMS70x2)
Recommended Clock Connections (TMS70x2)
Read and Write Cycle Timing (TMS70x2) ,
Ceramic Resonator Circuit (TMS70x2)
Output Loading Circuit for Test (TMS7742)
Measurement Points for Switching Characteristics (TMS7742)
Clock Timing (TMS7742)
Recommended Clock Connections (TMS7742)
Read and Write Cycle Timing (TMS7742)
Program Cycle Timing (TMS7742)
Read Cycle Timing (TMS7742)
Output Loading Circuit for Test (SE70P162)
Measurement Points for Switching Characteristics (SE70P162)
Clock Timing (SE70P162)
Recommended Clock Connections (SE70P162)
Read and Write Cycle Timings (SE70P162)
Clock Timing (TMS70Cx0, wide voltage)
Recommended Clock Connections (TMS70Cx0, wide voltage)
Operating Frequency Range (TMS70Cx0, wide voltage)
Typical Operating Current vs. Supply Voltage (TMS70Cx0, wide voltage)
Typical Operating Current vs. Supply Voltage (TMS70Cx0, wide voltage)
Typical Operating ICC vs. Oscillator Frequency (TMS70Cx0, wide voltage)
Typical Output Source Characteristics (TMS70Cx0, wide voltage)
Typical Output Sink Characteristics (TMS70Cx0, wide voltage)
Output Loading Circuit for Test (TMS70Cx0, 5V ±10%)
Measurement Points for Switching Characteristics (TMS70Cx0, 5V ± 10%)
Clock Timing (TMS70Cx0, 5V ± 1 0%)
Recommended Clock Connections (TMS70Cx0, 5V ± 1 0%)
Read and Write Cycle Timing (TMS70Cx0, 5V ± 10%)
Clock Timing (TMS70Cx2, wide voltage)
Recommended Clock Connections (TMS70Cx2, wide voltage)
Operating Frequency Range (TMS70Cx2, wide voltage)
Typical Operating Current vs. Supply Voltage (TMS70Cx2, wide voltage)
Typical Operating Current vs. Supply Voltage (TMS70Cx2, wide voltage)
Typical Operating ICC vs. Oscillator Frequency (TMS70Cx2, wide voltage)
Typical Output Source Characteristics (TMS70Cx2, wide voltage)
Typical Output Sink Characteristics (TMS70Cx2, wide voltage)
Output Loading Circuit for Test (TMS70Cx2, 5V ±10%)
Measurement Points for Switching Characteristics (TMS70Cx2, 5V ± 10%)
Clock Timing (TMS70Cx2, 5V ±10%)
Recommended Clock Connections (TMS70Cx2, 5V ± 10%) ;
Read and Write Cycle Timing (TMS70Cx2, 5V ± 10%)

3-65
3-67
3-68
3-69
3-71
3-71
4-3
4-3
4-4
4-4
4-6
4-7
4-9
4-9
4-10
4-10
4-13
4-14
4-17
4-17
4-18
4-18
4-21
4-23
4-23
4-26
4-26
4-27
4-27
4-29
4-33
4-34
4-35
4-35
4-36
4-36
4-37
4-37
4-39
4-39
4-41
4-41
4-44
4-49
4-49
4-50
4-50
4-51
4-51
4-52
4-52
4-55
4-55
4-57
4-57
4-60

4-51. Clock Timing (SE70CP160A)
4-52. Recommended Clock Connections (SE70CP160A)
4-53. Clock Timing (SE70CP162)
4-54. Recommended Clock Connections (SE70CP162)
5-1. Source Statement Format
5-2. Cross-Reference Listing Format
5-3. Sample Object Code .. .
6-1. Single Register Addressing Mode Object Code
6-2. Dual Register Addressing Mode Byte Requirements
6-3. Peripheral-File Addressing Mode Byte Requirements
6-4. Immediate Addressing Mode Object Code
6-5. Program Counter Relative Addressing Mode Object Code
6-6. Direct Memory Addressing Mode Object Code
6-7. Register File Indirect Addressing Mode Object Code
6-8. Indexed Addressing Mode Object Code
7-1. Sample Link Control File
9-1. TMS70x2 Microprocessor Interface Sample Circuit
9-2. PROM Programmer 40-to-24-Pin Conversion Socket
9-3. RTC/EVM7000 40-to-28-Pin Conversion Socket
9-4. Interface Circuit for Programming the TMS7742 with the TMS7000 XDS
9-5. Driver Program for Programming the TMS7742 with the TMS7000 XDS
9-6. Asynchronous Communication Format
9-7. 1/0 Interface .. .
9-8. Start Bit Detection .. .
9-9. Status Register ...•.
9-1 0. Swap and Rotation Operations
9-11. A Dispatch Table with an Interpretive Program Counter (IPC)
9-12. Example of a Subroutine Call by Means of a TRAP Instruction
10-1. Typical XDS Configuration
12-1. Prototype and Production Flow
12-2. 40-Pin Plastic Package, 100-MIL Pin Spacing (Type N Package Suffix)
12-3. 40-Pin Ceramic Package, 100-MIL Pin Spacing {Type JD Package Suffix)
12-4. 40- Pin Ceramic Piggyback Package, 100-M IL Pin Spacing (Type JD Package

Suffix) .. .
12-5. 44-Pin Plastic-Leaded Chip Carrier Package
12-6. Development Flowchart
12-7. TMS7000 Family Nomenclature
12-8. Tl Standard Symbolization
12-9. Tl Standard Symbolization with Customer Part Number
12-10. Tl Standard Symbolization for Devices without On~Chip ROM
A-1. Read and Write Timing Diagram
B-1. TMS7500 Functional Block Diagram
C-1. TMS70x1 Pinout
C-2. SE70P161 Pinout .. .

4-67
4-67
4-72
4-72
5-2
5-52
5-53
6-4
6-4
6-5
6-5
6-6
6-6
6-7
6-7
7-3
9-3
9-8
9-9
9-10
9-11
9-15
9-16
9-16
9-29
9-31
9-32
9-34
10-3
12-2
12-6
12-7

12-7
12-8
12-9
12-10
12-11
12-11
12-11
A-5
B-3
C-3
C-3

xi

Table

2-1.
2-2.
2-3.
2-4.
2-5.
2-6.
2-7.
3-1.
3-2.
3-3.
3-4.
3-5.
3-6.
3-7.
3-8.
3-9.
3-10.
3-11.
3-12.
3-13.
3-14.
3-15.
3-16.
4-1.

4-2.
4-3.

Tables

TMS7000 NMOS Family Feature Summary
TMS7000 CMOS Family Feature Summary
TMS70x0 and TMS70Cx0 Pin Descriptions
TMS70x2 and TMS7742 Pin Descriptions
TMS70Cx2 and TMS77C82 Pin Descriptions
TMS7742 and SE70P162 Pin Descriptions
SE70CP162 Pin Descriptions
TMS70x0 and TMS70Cx0 Port Configuration
TMS70x2 Port Configuration
TMS70Cx2 Port Configuration
Mode Selection Conditions (MC Pin)
TMS70x0 and TMS70Cx0 Memory Map
TMS70x2 and TMS70Cx2 Memory Map
TMS70x0 and TMS70Cx0 Peripheral Memory Map
TMS70x2 Peripheral Memory Map
TMS70Cx2 Peripheral Memory Map
Low-Power Mask Options for CMOS Devices
Low-Power Options for TMS70Cx0 Devices
Interrupt Summary
External Interrupt Operation
1/0 Control Registers
Serial Port Control Registers
Timer Values for Common Baud Rates - TMS70x2 and TMS70Cx2
Absolute Maximum Ratings over Operating Free-Air Temperature Range
(unless otherwise noted) (TMS70x0)
Recommended Operating Conditions (TMS70x0)
Electrical Characteristics over Full Range of Operating Conditions
(TMS70x0)
Recommended Crystal Operating Conditions over Full Operating Range
(TMS70x0)

Page

2-2
2-3
2-7
2-11
2-15
2-19
2-23
3-6
3-7
3-7
3-9
3-9
3-10
3-10
3-11
3-12
3-22
3-23
3-24
3-28
3-30
3-51
3-72

4-2
4-2

4-4.

4-5.

4-6.

Memory Interface Timing at 5 MHz over Full Operating Free-Air Temperature

4-3

4-4

4-5

4-8
4-8 4-7.

4-8.

4-9.

4-10.
4-11.
4-12.

4-13.
4-14.

4-15.

4-16.

xii

Range (TMS70x0)
Absolute Maximum Ratings over Operating Free-Air Temperature Range
(unless otherwise noted) (TMS70x2)
Recommended Operating Conditions (TMS70x2)
Electrical Characteristics over Full Range of Operating Conditions
(TM~S70x2)
Recommended Crystal Operating Conditions over Full Operating Range
{TMS70x2)
Memory Interface Timing (TMS70x2)
Memory Interface Timing at 8 MHz (TMS70x2)
Absolute Maximum Ratings over Operating Free-Air Temperature Range
(unless otherwise noted) (TMS7742)
Recommended Operating Conditions (TMS7742)
Electrical Characteristics over Full Range of Operating Conditions
(TMS7742)
Recommended Crystal Operating Conditions over Full Operating Range
(TMS7742)
Memory Interface Timing (TMS7742)

4-9

4-10
4-11
4-12

4-16
4-16

4-17

4-18
4-19

4-17. Memory Interface Timing at 5 MHz (TMS7742) . 4-20
4-'l 8. Switching Characteristics over Recommended Supply Voltage Range and

Operating Free-Air Temperature Range (TMS7742) 4-22
4-'l 9. Recommended Conditions for Programming, TA = 25°C (TMS7742) 4-22
4-20. Programming Characteristics, TA = 25°C (TMS7742) 4-22
4-21 . Absolute Maximum Ratings over Operating Free-Air Temperature Range

(unless otherwise noted) (SE70P162) . 4-25
4-22. Recommended Operating Conditions (SE70P162) 4-25
4-23. Electrical Characteristics over Full Range of Recommended Operating Condi-

tions (SE70P162) . 4-26
4-24. Recommended Crystal/Clockin Operating Conditions over Full Operating

Range (SE70P162) . 4-27
4-25. Memory Interface Timing (SE70P162) . 4-28
4-26. Absolute Maximum Rating over Operating Free-Air Temperature Range (un-

less otherwise noted) (TMS70Cx0, wide voltage) 4-31
4-27. Recommended Operating Conditions (TMS70Cx0, wide voltage) 4-31
4-28. Electrical Characteristics over Full Range of Operating Conditions

(TMS70Cx0, wide voltage) . 4-32
4-29. Supply Current Requirements (TMS70Cx0, wide voltage) 4-33
4-30. Recommended Crystal/Clockin Operating Conditions over Full Operating

Range (TMS70Cx0, wide voltage) . 4-34
4-31. Absolute Maximum Rating over Operating Free-Air Temperature Range (un-

less otherwise noted) (TMS70Cx0, 5V ±10%) . 4-38
4-32. Recommended Operating Conditions (TMS70Cx0, 5V ± 10%) 4-38
4-33. Electrical Characteristics over Full Range of Operating Conditions

(TMS70Cx0, 5V ± 10%) . 4-39
4-34. AC Characteristics for 1/0 Ports (TMS70Cx0, 5V ± 10%) 4-40
4-35. Supply Current Requirements (TMS70Cx0, 5V ± 10%) 4-40
4-36. Recommended Crystal/Clockin Operating Conditions over Full Operating

Range (TMS70Cx0, 5V ± 10%) . 4-41
4-37. Memory Interface Timings (TMS70Cx0, 5V ±10%) 4-42
4-38. Memory Interface Timings at 6 MHz (TMS70Cx0, 5V ± 10%) 4-43
4-39. Absolute Maximum Ratings over Operating Free-Air Temperature Range

(unless otherwise noted) (TMS70Cx2, wide voltage) 4-45
4-40. Recommended Operating Conditions (TMS70Cx2, wide voltage) 4-45
4-41. Electrical Characteristics over Full Range of Operating Conditions

(TMS70Cx2, wide voltage) . 4-46
4-42. Supply Current Requirements (TMS70Cx2, wide voltage) 4-47
4-43. Recommended Crystal/Clockin Operating Conditions over Full Operating

Range (TMS70Cx2, wide voltage) . 4-48
4-44. Absolute Maximum Ratings over Operating Free-Air Temperature Range

(unless otherwise noted) (TMS70Cx2, 5V ± 10%) 4-54
4-45. Recommended Operating Conditions (TMS70Cx2, 5V ±10%) 4-54
4-46. Electrical Characteristics over Full Range of Operating Conditions

(TMS70Cx2, 5V ± 10%) . 4-55
4-47. AC Characteristics for Input/Output Portst (TMS70Cx2, 5V ± 10%) 4-55
4-48. Supply Current Requirements (TMS70Cx2, 5V ± 10%) 4-56
4-49. Recommended Crystal/Clockin Operating Conditions over Full Operating

Range (TMS70Cx2, 5V ±10%) . 4-56
4-50. Memory Interface Timings (TMS70Cx2, 5V ±10%) 4-58
4-51. Memory Interface Timings at 6 MHz (TMS70Cx2, 5V ± 10%) 4-59
4-52. Absolute Maximum Ratings over Operating Free-Air Temperature Range

(unless otherwise noted) (TMS77C82) . 4-62
4-53. Recommended Operating Conditions (TMS77C82) 4-62
4-54. Absolute Maximum Rating over Operating Free-Air Temperature Range (un-

less otherwise noted) (SE70CP160A) . 4-63

xiii

4-55. Recommended Operating Conditions (SE70CP160A) 4-63
4-56. Electrical Characteristics over Full Range of Operating Conditions

(SE70CP160A) . 4-64
4-57. Supply Current Requirements (SE70CP160A) . 4-65
4-58. Recommended Crystal/Clockin Operating Conditions over Full Operating

Range (SE70CP160A) . 4-66
4-59. Absolute Maximum Ratings over Operating Free-Air Temperature Range

(unless otherwise noted) (SE70CP162) . 4-68
4-60. Recommended Operating Conditions (SE70CP162) 4-68
4-61. Electrical Characteristics over Full Range of Operating Conditions

(SE70CP162) . 4-69
4-62. Supply Current Requirements (SE70CP162) . 4-70
4-63. Recommended Crystal/Clockin Operating Conditions over Full Operating

Range (SE70CP162) . 4-71
5-1. Results of Operations on Absolute and Relocatable Items in Expressions 5-10
5-2. Summary of Assembler Directives . 5-13
5-3. Assembly Listing Errors . 5-49
5-4. Abnormal Completion Error Messages . 5-51
5-5. Symbol Attributes . 5-52
5-6. Tag Characters . 5-54
5-7. Object Record Format and Tags . 5-57
6-1. TMS7000 Symbol Definitions . 6-2
6-2. TMS7000 Addressing Modes . 6-3
6-3. TMS7000 Family Instruction Overview . 6-9
6-4. Compare Instruction Examples - Status Bit Values 6-27
7-1. Linker Commands Used to Link TMS7000 Program Modules 7-4
8-1. Variable Qualifiers . 8-9
8-2. Variable Qualifiers for Symbol Components . 8-10
8-3. Symbol Attribute Keywords . 8-11
8-4. Parameter Attribute Keywords . 8-12
8-5. Macro Language Verb Summary . 8-15
8-6. Macro Error Messages . 8-29
9-1. Memoty Address Decode . 9-2
9-2. Memory Interface Timing . 9-5
9-3. TMS4016-15 Timing Characteristics . 9-6
9-4. TMS2764-25 Timing Characteristics . 9-6
9-5. SN74AS373, SN74AS138, and SN74AS32 Propogation Delay Times 9-6
9-6. Mode Select Conditions for the TMS7742 . 9-7
9-7. Error Patterns for XDS . 9-14
9-8. Serial Port Control Registers . 9-23
9-9. Compare Instruction Examples: Status Bit Values 9-30
9-10. Status Bit Values for Conditional Jump Instructions 9-30
9-11. Multi-Bit Right or Left Shifts by Immediate Multiply 9-35
9-12. Write-Only Registers . 9-39
10-1. TMS7000 XDS/22 Commands . 10-4
10-2. TMS7000 EVM Commands . 10-9
12-1. Valid ROM Start Addresses . 12-5
12-2. Clock Divide Options . 12-5
12-3. Package Types . 12-6
A-1. Alphabetical Index of Instruction Groups . A-8
A-2. Instruction Acquisition Mode - Opcode Fetch . A-9
A-3. Instruction Acquisition Mode - Interrupt Handling A-10
A-4. Instruction Acquisition Mode - Reset . A-10
A-5. Double Operand Functions - Addressing Modes

(ADD,ADC,AND,BT JO,BT JZ,CMP,DAC,DSB,MOV,MPY,OR,SBB,SUB,XOR) A-11
A-6. Double Operand Functions - Functional Modes

xiv

(ADD,ADC,AND,BT JO,BT JZ,CMP,DAC,DSB,MOV,MPY,OR,SBB,SUB,XOR) A-12
A- 7. Miscellaneous Functions - Addressing Modes

(DINT,EINT,IDLE,LDSP,NOP,POP ST,PUSH ST,RETl,RETS,SETC,STSP) A-13
A-8. Miscellaneous Functions - Functional Modes

(DINT,EINT,IDLE,LDSP,NOP,POP ST,PUSH ST,RETl,RETS,SETC,STSP) A-13
A-9. Long Addressing Functions - Addressing Modes

(BR,CALL,CMPA,LDA,STA) . A-14
A-10. Long Addressing Functions - Functional Modes

(BR,CALL,CMPA,LDA,STA) . A-15
A-11. Single Operand Functions, Special ...,. Addressing Modes

(CLR,DEC,INC,INV,MOV A B,MOV A RN,MOV B
RN,SWAP,TSTA/CLRC,TSTB,XCHB) . A-15

A-12. Single Operand Functions, Special - Functional Modes
(CLR,DEC,INC,INV,MOV A B,MOV A RN,MOV B
RN,SWAP,TSTA/CLRC,TSTB,XCHB) . A-16

A-13. Single Operand Functions, Normal - Addressing Modes
(DECD,DJNZ,POP,PUSH,RL,RLC,RR,RRC) . A-16

A-14. Single Operand Functions, Normal - Functional Modes
(DECD,DJNZ,POP,PUSH,RL,RLC,RR,RRC) . A-17

A-15. Double Operand Functions, Peripheral - Addressing Modes
(ANDP,BT JOP,BT JZP,MOVP,ORP,XORP) . A-18

A-16. Double Operand Functions, Peripheral - Functional Modes
(ANDP,BT JOP,BT JZP,MOVP,ORP,XORP) . A-19

A-17. Move Double - Addressing Mode (MOVD) . A-20
A-'18. Move Double - Functional Mode (MOVD) . A-20
A-'19. Relative Jumps - Addressing and Functional Modes

(J MP,J N/JLT,JZ/J EQ,JC/J HS,J P /JGT,J PZ/JG E,JNZ/J NE,JNC,J L) A-21
A-20. Traps - Addressing and Functional Modes (Trap 0 through Trap 23) A-21
C-1. TMS70x1 and SE70P161 Pin Descriptions . C-4
D-1. ASCII Character Set . D-1
D-2. Control Characters . D-2

xv

Preface

xvi

This book replaces the following manuals:

TMS7000 Family Data Manual, SPN D001 A
TMS7000 Assembly Language Programmer's Guide, SPNU002B
TMS7000 Software Development System Installation Guide, MPB52
TMS7000 IBM CrossWare Support Reference Guide, MPB10
TMS700 VAX/VMS CrossWare Support Reference Guide, MPB53

The following table lists related publications.

TMS7000 DATA SHEETS AND DATA MANUALS LITERATURE
NUMBER

TMS7002/7042 Data Sheet SPNS007

TMS7742 Data Sheet SPNS008

TMS70C42/TMS70C02 Data Sheet SPNS009

TMS7000 USER'S GUIDES LITERATURE
NUMBER

8051 -TMS7041 System Conversion User's Guide SPNU003

TMS7500/TMS75COO Data Encryption Device User's Guide SPNU004

Link Editor User's Guide SPDU037C

TMS7000 EVM User's Guide

TMS7000 FAMILY DEVELOPMENT SYSTEM SUPPORT LITERATURE
NUMBER

X-OS/7042 User's Guide SPDU047

XDS/22 with the TMS7042 Emulator Pocket Reference SPDF010

TMS7000 FAMILY APPLICATION NOTES LITERATURE
NUMBER

TMS7000 Bus Activity Tables SPNA002

TMS7000 Keyboard Interface SPNA003

1. Introduction

The TMS7000 is a family1 ·of 8-bit single-chip microcomputers. These
microcomputers incorporate a CPU, memory (ROM, RAM, EPROM), bit 1/0,
serial communication port, timers, interrupts, and external bus interface logic,
all on a single chip. The products are available in varying complexity of
functions, process technology, performance, and packaging to meet end
equipment cost goals and application requirements.

Typical applications of TMS7000 family devices include:

AUTOMOTIVE TELECOM

Instrumentation Feature phones
Audio entertainment control Autodialers
Cruise control Answering machines
Anti-skid braking system Modem control
Climate control Digital switches
Engine control Digital subsets
Trip computer

COMPUTER INDUSTRIAL

Printers and plotters Motor control
Disk controllers Stepper motors
Tape drive control Metering and measurement
Keyboards Robotics
Touch screen and mouse

CONSUMER BUSINESS

Home security Cash registers
Cable TV systems Automatic bank tellers
Appliance control Barcode readers

The terms TMS7000 and TMS7000 family refer to all TMS7000 devices: TMS7000,
TMS7020, TMS7040, TMS7002, TMS7042, TMS70COO, TMS70C20, TMS70C40,
TMS70C02, TMS70C42, TMS7742, and all future members, unless otherwise stated.

1 -1

Introduction - How to Use this Manual

1.1 How to Use this Manual

1-2

This manual is divided into four major parts:

Hardware (Sections 2-4)
Software (Sections 5:-8)
Development Support (Sections 9-11)
Customer Information (Section 12)

The sections and their contents are summarized below.

Section 1 - Introduction

Introduces the TMS7000 family devices.
Describes the different manual sections and their contents.

Section 2 - TMS7000 Family Devices

Details each TMS7000 family category and their key features.
Summarizes the categories and compares their features.
Provides key features, pinouts, and pin descriptions for each
category of devices.

Section 3 - TMS7000 Family Architecture

Discusses operation of the microcomputers' hardware features:
Registers
1/0
Memory and memory modes
Clock options
CMOS low-power modes
Interrupts
Timer/event counters
Serial port (TMS70x2 and TMS70Cx2 devices only)

Section 4 - Electrical Specifications

Discusses for all device groups:

Absolute maximum ratings
Recommended operating characteristics
Recommended crystal/clockin operating characteristics
Memory interface timing
Read and write cycle timing
Ceramic resonator circuit application (where applicable)
Serial port timing (where applicable)

Section 5 - TMS7000 Assembler

Discusses basic assembler information, including:

Source statement format (placement of various fields in
code)
Constants, symbols, terms, and expressions

Introduction - How to Use this Manual

Discusses the various assembler directives, grouped in the fol­
lowing categories:

Directives that affect the location counter
Directives that affect assembler output
Directives that initialize constants
Directives for linking programs
Miscellaneous directives

Assembler Output

Explains source listing format and resulting object code.
Presents normal completion and abnormal completion er­
ror messages.
Shows a sample cross reference listing.
Discusses object code and the various fields in object
code format, and changing object code.

Section 6 - Assembly Language Instruction Set

Provides general instruction set information, such as symbol
definitions.
Defines eight addressing modes used by the instructions.
Summarizes the instruction set in table form.
Presents the TMS7000 assembly language instruction set in
alphabetical order.

Section 7 - Linking Program Modules

Discusses relocation capability, absolute and relocatable code.
Discusses the Link Editor and includes a sample link control file.
Reviews directives needed for linking programs.

Section 8 - Macro Language

Defines the TMS7000 Macro Assembler.
Tells how to define macros and use macro libraries.
Shows how strings, constants, and operators are used in mac­
ros.
Discusses variables, parameters, substitution, and keywords.
Presents the macro definition verbs.
Provides macro examples.

Section 9 - Design Aids

Includes several examples to help you use the TMS7000 family de­
vices:

Interfacing the TMS7000 to peripheral and memory devices
such as extra EPROM and RAM
Programming the TMS7742
Serial communication using the UART (serial port)
Instruction set application notes
Sample routines

1-3

Introduction - How to Use this Manual

1-4

Section .10 - Development Support

Discusses several products manufactured by Texas Instruments that
enhance TMS7000 family design development, including:

XDS (Extended Development Support) Emulator
EVM (evaluation module)
Prototyping devices

Section 11 - Independent Support

Discusses several products manufactured by Texas Instruments that
enhance TMS7000 family design development, including assemblers,
text editors, simulators, EEROM, and EPROM support.

Section 12 - Customer Information

Discusses quality and reliability.
Discusses prototype manufacture and production flow, includ­
ing device prefix designators - TMS, TMP, TMX, and SE.
Illustrates mechanical package information for all TMS7000 fa­
mily members
Provides ordering information for the TMS7000 microcomput­
ers and the Texas Instruments development support products.

Appendix A - TMS7000 Bus Activity Tables

Appendix B - TMS7500/TMS75COO Data Encryption Device

Append ix C - TM S70x1 Devices

Appendix D - Character Sets

Appendix E - Hexadecimal Instruction Table/Opcode Map

Appendix F - Instruction Opcode Set

Appendix G - CrossWare Installation

Appendix H - Glossary

Index

2. TIVIS7000 Family Devices

This section discusses the features of the TMS7000 family2 of microcomput­
ers. All family members are software compatible, allowing easy migration
within the TMS7000 family by maintaining a software base, development
tools, and design expertise.

The TMS7000 family devices are divided into several categories:

TMS70x0 devices include the TMS7000, TMS7020, and TMS7040

TMS70x2 devices include the TMS7002 and TMS7042

TMS70Cx0 devices include the TMS70COO, TMS70C20, and
TMS70C40

TMS70Cx2 devices include the TMS70C02 and TMS70C42

Prototyping devices include the TMS7742 (EPROM), the
TMS77C82 (see note below) the SE70P162, SE70CP160, and
SE70CP162 (piggybacks)

This section begins with a summary and comparison of the TMS7000 family
devices, and then provides key features, pinouts, and pin descriptions for the
individual categories.

Section Page
2.1 Summary and Device Comparison .. 2-2
2.2 TMS70x0 and TMS70Cx0 Devices ... 2-4
2.3 TMS70x2 and TMS7742 Devices ... 2-8
2.4 TMS70Cx2 and TMS77C82 Devices .. 2-12
2.5 TMS7742 and SE70P162 Prototyping Devices 2-16
2.6 SE70CP160 and SE70CP162 Prototyping Devices 2-20

Note:

Information regarding the TMS77C82 is classified as Advance Informa­
tion, which means that it is information on a new product in the sampling
or preproduction phase of development. Characteristic data and other
specifications are subject to change without notice.

2 Throughout this manual, the term TMS7000 or TMS7000 family refers to all members of
the group.

2-1

TMS7000 Family Devices - Summary and Device Comparison

2.1 Summary and Device Comparison

2-2

The TMS7000 family NMOS devices can be summarized as follows:

- The TMS7000 is the basic 8-bit, single-chip microcomputer, containing a
CPU, a timer, flexible 1/0, and 128 bytes of on-chip RAM, but no on-chip
ROM.

- The TMS7020 and TMS7040 have the same basic features as the TMS7000,
with the addition of 2K and 4K bytes of on-chip ROM, respectively.

- The TMS7002 (ROMless) and TMS7042 (4K bytes on-chip ROM) have the
same features as the TMS70x0 devices with the addition of a serial port
(UART), a 13-bit timer (Timer 2), a 10-bit timer (Timer 3), and 256 bytes of
on-chip RAM.

NMOS prototyping devices include the TMS7742 and the SE70P162. The
TMS7742 is an EPROM version of the TMS7042 and contains 4K bytes of
on-chip EPROM. The SE70P162 piggyback device is based on the TMS70x2
architecture and acts like a ROM-coded TMS70x2 device.

Table 2-1. TMS7000 NMOS Family Feature Summary

TMS7040
TMS7042 TMS7020 TMS7742

TMS7000 TMS7002

Maximum oscillator frequency 5 MHz 8 MHz 5MHz

Voltage 5 v ± 10% 5 v ± 10% 5 v ± 10%

Operating temperature o·c to 1o·c o·c to 1o·c o·c to 1o·c
On-chip ROM (Kbytes) 4 l 2 l 0 4 l 0 4 (EPROM)

Internal RAM (bytes) 128 256 256

Interrupt levels:
External 2 2 2
Total 4 6 6

Timers/event counters:
13-bit 1 2 2
10-bit - 1 1

1/0 lines: Bidirectional 16 22 22
Input only 8 2 2
Output only 8 8 8

Additional features - Serial Port Serial Port

Development support:
Prototyping:

EPROM TMS7742 TMS7742 -
Piggyback SE70P162 SE70P162 SE70P162

XDS Yes Yes Yes
EVM Yes Yes Yes

TMS7000 Family Devices - Summary and Device Comparison

The TMS7000 family CMOS devices can be summarized as follows:

- The CMOS TMS70Cx0 devices have the same features as the TMS70x0 de­
vices, adding low power requirements to the list of features.

- The CMOS TMS70Cx2 devices contain the same features as the TMS70x2
devic.es with the addition of programmable-sense interrupts and two 21 -bit
timers.

Prototyping devices include the SE70CP160 and SE70CP162 (piggyback)
devices, which are based on the TMS70Cxx architecture and act like
ROM-coded TMS70xx or TMS70Cxx devices.

Table 2-2. TMS7000 CMOS Family Feature Summary

TMS70C40A
TMS70C42 TMS70C20A TMS77C82t

TMS70COOA TMS70C02

Max osc freq at 5V ± 10 % 5 MHz 6 MHz 7.5 MHz

Voltage 5 v ± 10% 2.5 to 6 V 2.5 to 6 V

Operating temperature
Industrial -40°C to 85°C -40°c to 85°C -40°C to 85°C
Commercial o·c to 10°c o·c to1o·c o·c to 1o·c

On-chip ROM (Kbytes) 4 I 2 I 0 4 l 0 8 (EPROM)

Internal RAM (bytes) 128 256 256

Interrupt levels:
External 2 2 2
Total 4 6 6

Timers/event counters:
21 -bit - 2 2
13-bit 1 - -
10-bit - 1 1

1/0 lines: Bidirectional 16 24 24
Input only 8 - -
Output only 8 8 8

Additional featur-es - Serial Port Serial Port

Development support:
Prototyping:

EPROM - TMS77C82t -
Piggyback SE70CP160A SE70CP162 SE70CP162

XDS Yes Yes Yes
EVM Yes Yes Yes

t Advance information

2-3

TMS7000 Family Devices - TMS70x0 and TMS70Cx0

2.2 TMS70x0 and TMS70Cx0 Devices

2.2.1 TMS70x0 (NMOS) Key Features

2-4

TM 87040/20/00 J]f@:$.!fljjQ.j\\\ \\J\\\\\\jXN:Ol;'f:tjlj\\\}\
Maximum oscillator frequency

On-chip ROM (Kbytes)

Internal RAM (bytes)

Interrupt levels:
External
Total

Timers/event counters:
13-bit
10-bit

1/0 lines: Bidirectional
Input only
Output only

Additional features

Development support:
Prototyping:

EPROM
Piggyback

XDS
EVM

16
8
8

TMS7742
SE70P162

Yes
Yes lllllll\tll\

1

111111111
Register-to-register architecture

Memory-mapped ports for easy addressing

Eight addressing formats, including:
- Register-to-register arithmetic
- Indirect addressing
- Indexed and indirect branches and calls

- Single-instruction binary-coded decimal (BCD) add and subtract

- Two external maskable interrupts

Flexible interrupt handling:
- Priority servicing of simultaneous interrupts
- Software calls through interrupt vectors
- Precise timing of interrupts with the capture latch
- Software monitoring of interrupt status

- Supports all TMS7000 family expansion modes

N-channel silicon-gate MOS technology

- 40-pin, 600 mil, dual-inline package

TMS7000 Family Devices - TMS70x0 and TMS70Cx0

2.2.2 TMS70Cx0 (CMOS) Key Features

T~g1~g68~/ ::~1:~~1~1,~mi~: :::::::1::~1~~~•::·::::::
Max osc freq at 5 V ± 10 %
On-chip ROM (Kbytes)
Internal RAM (bytes)
Interrupt levels:

External
Total

Timers/event counters:
21-bit
13-bit
10-bit

1/0 lines: Bidirectional
Input only
Output only

Additional features

5 MHz

128

2
4

16
8
8

Development support:
Prototyping:

EPROM
Piggyback

XDS
EVM

SE70CP160
Yes
Yes llllf lll!l11111lllllll

t Advance information

- Register-to-register architecture

- Memory-mapped ports for easy addressing

- Eight addressing formats, including:
- Register-to-register arithmetic
- Indirect addressing
- Indexed and indirect branches and calls

- Single-instruction binary-coded decimal (BCD) add and subtract

- Two external maskable interrupts

- Flexible interrupt handling:
- Priority servicing of simultaneous interrupts
- Software calls through interrupt vectors
- Precise timing of interrupts with the capture latch
- Software monitoring of interrupt status

- Wide voltage operating range, frequency range:
- 2.5 V - 0.8 MHz maximum
- 6 V - 6.5 MHz maximum

- Two power-down modes:
- Wake-Up (160 µA at 1 MHz typical)
- Halt, XTAL/CLKIN=GND (10 µA typical)

- Silicon-gate CMOS technology

- 40-pin, 600 mil, dual-inline package

- 44-pin PLCC

2-5

TMS7000 Family Devices - TMS70x0 and TMS70Cx0

B7/CLKOUT
BO
B1
B2

A1

A7/EC1

INT1

XTAL 1

10 31
11
12
13
14
15
16
17
18
19
20

Vss
B6/ENABLE
84/ALATCH
83
MC
C7
C6
C5
C4
C3
C2
C1
co
DO
D1

Vee
D2
D3
D4
D5

A1
A2 9
A3 10
A4 11

A7/EC1 12
INT3 13
INT1 14

RESET 15
A6 16

f- w I
::J _J u
0 o:J f-

:JI~ ~ ::5
u a: CJ) UJ <(

UN.-or:::-L:n CJ)co~M~ z o:J o:J a:i a:i a:i > a:i a:i a:i c::::

6 5 4 3 2 1 44 43 42 41 40

o 39 Vss

38 C7
37 C6
36 C5
35 C4
34 C3
33 C2
32 C1
31 co
30 DO

NC 17 29 D1
1819202122232425262728

i.nz.-r--co CJ)i.n-.:tMN u
<(~~00 CJ)0000 u

_J f- > >
~x
N
_J

<(
f­x

A. Plastic 40-Pin DIP B. 44-Pin PLCC (CMOS only)

Figure 2-1. Pinouts for·TMS7000, TMS7020, TMS7040, TMS70COO, TMS70C20
and TMS70C40

85/R/W
87/CLKOUT

BO
B1
82
AO
A1
A2
A3
A4

A7/EC1
INT3
INT1

RESET
A6
A5

XT AL2/CLKIN
XTAL 1

D7
D6

1

I 2
3
4
5
6
7
8
9
10
11

I 12
13
14
15
16
17
18

(19

I 20

u
o Vee Vee o
o A12 PGM o
o A7 A13 o
o A6 AB o
o A5 A9 o
o A4 A11 o
o A3 G o
o A2 A10 o
o A1 E o
o AO 07 0

o DO 06 0

0 01 05 0

0 02 04 0

o Vss 03 0

SE70CP160

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

Vss:__ __
86/ENA8LE
84/ALATCH
83
MC
C7
C6
C5
C4
C3
C2
C1
co
DO
D1

Vee
D2
D3
D4
D5

TMS7742: 8-bit EPROM microcomputer which
supports prototyping development for
the TMS70x0 devices (pinout on page
2-18).

SE70P162:8-bit piggyback microcomputer which
supports prototyping development for
the TMS70x0 devices (pinout on page
2-18).

Supports the TMS70Cx0 devices

Figure 2-2. Prototyping Devices Available for TMS70x0 and TMS70Cx0 Devices

2-6

TMS7000 Family Devices - TMS70x0 and TMS70Cx0

Table 2-3. TMS70x0 and TMS70Cx0 Pin Descriptions

SIGNAL PIN 1/0 DESCRIPTION

PLCC DIP

AO LSb 7 6 I Port A. All pins may be used as high-impedance input-only
A1 8 7 I lines. Pin A7 /EC1 may also be used as the timer/event
A2: 9 8 I counter input.
A3 10 9 I
A4 11 10 I
A5 18 16 I
A6 16 15 I
A7/EC1 12 11 I

BO 3 3 0 Port B. 80-87 are general-purpose output-only pins. 84-87
81 4 4 0 become memory-expansion control signals in Peripheral-Expan
82 5 5 0 sion, Full-Expansion, and Microprocessor modes.
83 41 37 0
84/ALATCH 42 38 0 Data output/Memory interface address latch strobe
85/R~W 1 1 0 Data output/Memory read/write signal
86/E ABLE 43 39 0 Data output/Memory interface enable strobe
87/CLKOUT 2 2 0 Data output/Internal clockout

co 31 28 1/0 Port C. CO-C7 can be individually selected in software as gen-
C1 32 29 1/0 eral-purpose input or output pins in Single-Chip mode. CO-C7
C2 33 30 1/0 become the LSB address/data bus in Peripheral-Expansion,
C3 34 31 1/0 Full-Expansion, and Microprocessor modes.
C4 35 32 1/0
C5 36 33 1/0
C6 37 34 1/0
C7 38 35 1/0
DO 30 27 1/0 Port D. DO-D7 can be individually selected in software as gen-
D1 29 26 1/0 eral-purpose input or output pins in Single-Chip or Peripheral-
D2 27 24 1/0 Expansion modes. D0-07 become the MSB address/data bus
D3 26 23 1/0 in Full-Expansion and Microprocessor modes.
D4 25 22 1/0
D5 24 21 1/0
D6 22 20 1/0
D7' 21 19 1/0
INT1 14 13 I Highest priority maskable interrupt

INT3 13 12 I Lowest priority maskable interrupt

RESET 15 14 I Device reset

MC 40 36 I Mode control pin, Vee for microprocessor mode

XTAL2/CLKIN 19 17 I Crystal input for control of internal oscillator

XTAL1 20 18 0 Crystal output for control of internal oscillator

Vee 28 25 Supply voltage (positive)

Vss 44 40 Ground reference
39
23

2-7

TMS7000 Family Devices - TMS70x2 and TMS7742

2.3 TMS70x2 and TMS7742 Devices

2.3.1 TMS70x2 (NMOS) Key Features

mM:stt.R/:IOi.Qi: TMS7042/02
Maximum oscillator frequency)(JJJ:VMfi#!:f)((

Additional features {J))'{)jf!JJJ!:f:!:J Serial Port t::J!J~\iditf:fo#@H::t

- Flexible on-chip serial port
- Asynchronous, lsosynchronous, or Serial 1/0 modes
- Two multiprocessor communication formats
- Error detection flags
- Fully software programmable (bits/character, parity, and stop bits)
- Internal or external baud-rate generator
- Separate baud-rate timer useable as a third timer

- Register-to-register architecture

- Memory-mapped ports for easy addressing

- Eight addressing formats, including:
- Register-to-register arithmetic
- Indirect addressing
- Indexed and indirect branches and calls

- Single-instruction binary-coded decimal (BCD) add and subtract

- Two external maskable interrupts

- Flexible interrupt handling:
- Priority servicing of simultaneous interrupts
- Software calls through interrupt vectors
- Precise timing of interrupts with the capture latch
- Software monitoring of interrupt status

- Supports all TMS7000 family expansion modes

- N-channel silicon-gate MOS technology

- 40-pin, 600 mil, dual-inline package

2-8

TMS7000 Family Devices - TMS70x2 and TMS7742

2.3.2 TMS7742 EPROM (NMOS) Device Key Features

:1:M\l.1:t.al-.1®.: t?tM\$.1.IUli'-'f::
Maximum oscillator frequency :\t\%:\:\tl:\:MH~\t:\t\:\t\ :::::::t::::::::::~rMH#t::::::::t:
On-chip ROM (Kbytes)
Internal RAM (bytes)
Interrupt levels:

External
Total

Timers/event counters:
13-bit
10-bit

1/0 lines: Bidirectional
Input only
Output on !Y.

Additional features
Development support:

Prototyping:
EPROM
Piggyback

XDS
EVM 11•11111~1111

TMS7742
6MHz

4 (EPROM)
266

2
6

2
1

22
2
8

Serial Port

SE70P162
Yes
Yes

- EPROM programming procedure compatible with the TMS2732

- Flexible on-chip serial port:
- Asynchronous, lsosynchronous, or Serial 1/0 modes
- Two multiprocessor communication formats
- Error detection flags
- Fully software programmable (bits/character, parity, and stop bits)
- Internal or external baud-rate generator
- Separate baud-rate timer useable as a third timer

- Register-to-register architecture

- Memory-mapped ports for easy addressing

- Eight addressing formats, including:
- Register-to-register arithmetic
- Indirect addressing
- Indexed and indirect branches and calls

- Single-instruction binary-coded decimal (BCD) add and subtract

- Two external maskable interrupts

- Flexible interrupt handling:
- Priority servicing of simultaneous interrupts
- Software calls through interrupt vectors
- Precise timing of interrupts with the capture latch
- Software monitoring of interrupt status

- Fully compatible with TMS7020, TMS7040, and TMS7042

- Supports all TMS7000 family expansion modes

- N-channel silicon-gate MOS technology

- 40-pin, 600 mil, dual-inline package

2-9

TMS7000 Family Devices - TMS70x2 and TMS7742

85/R/W

87/CLKOUT

BO

81

82

AO

A1

A2

A3

A4

A7/EC1

INT3

INT1

RESET 14

A6/SCLK/EC2 15

16

XT AL2/CLKIN 17

XTAL1 18

D7 19

20

40-Pin DIP

C2

e1
co
DO

01

Vee
02
03
04
05

Figure 2-3. Pinouts for TMS7002, TMS7042, and TMS7742 EPROM Device

B5/R/W
87/CLKOUT

BO
81
82
AO
A1
A2
A3
A4

A7/EC1
INT3
INT1

RESET
A6/SCLK/EC2

A5/RXD
XT AL2/CLKIN

XTAL 1
D7
D6

7

8 33

~o@J~~
11 30
12 29
13
14

15
16
17
18
19
29

TMS1'742

MC

C5
C4
C3
C2
C1
co
DO
D1

Vee
D2
D3
D4
D5

Supports TMS70x2 devices

B5/R/W
87/CLKOUT

BO
81
82
AO
A1
A2
A3
A4

A7/EC1

INT3
INT1

RESET
A6/SCLK/EC2

A5/RXD
XT AL2/CLKIN

XTAL 1
D7
D6

1
2
3
4
5

6

7
8
9
10
11
12
13
14
15
16
17
18
19
20

D

o Vee Vee o
o A12 PGM o

o A7 A13 o

o A6 AB o

o A5 A9 o

o A4 A11 o

o A3 G 0

o A2 A10 o

o A1 E o

o AO 07 0

o DO 06 0

0 01 05 0

o D2 04 0

o Vss 03 0

SE70P162
(8 MHz)

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24

23 a
22 ~
21 ~

Vss
86/ENABLE
84/ALATCH
83/TXD
MC
C7
C6
C5
C4
C3
C2
C1
co
DO
D1

Vee
D2
D3
D4
D5

Supports TMS70x2 and TMS7742 devices

Figure 2-4. Prototyping Devices Available for TMS70x2 and TMS7742 Devices

2-10

TMS7000 Family Devices - TMS70x2 and TMS7742

Table 2-4. TMS70x2 and TMS7742 Pin Descriptions

OPERATION MODES EPROM MODE
(TMS7742 ONLY)

SIGNAL PIN 1/0 DESCRIPTION SIGNAL 1/0 DESCRIPTION

AO LSb 6 1/0 AO-A4 and A7 are general-purpose A7 I A3-A7 are
A1 7 1/0 bidirectional pins. A5 and A6 are A6 I address lines.
A2 8 1/0 input-only data pins. A5 I
A3 9 1/0 A4 I
A4 10 1/0 A3 I
A5/RXD 16 I Data input/Serial port receiver
A6/SCLK/EC2 15 1/0 Data input/Serial port clock/

Timer 2 event counter
A7/EC1 11 1/0 Data 1/0/Timer 1 event counter

BO 3 0 80-83 are outputs. 84-87 are outputs in Single-Chip
B'I 4 0 mode and memory interface pins in all other modes.
82 5 0
83/TXD 37 0 Data output/Serial port transmitter
84/ALATCH 38 0 Data output/Memory interface address latch strobe
85/R~W 1 0 Data output/Memory read/write signal
86/EABLE 39 0 Data output/Memory interface enable strobe
87/CLKOUT 2 0 Data output/Internal clockout

co 28 1/0 Port C is a bidirectional data port. In 01 1/0 01-08 are
C1 29 1/0 Microprocessor, Peripheral- Expansion, 02 1/0 bidirectional
C2 30 1/0 and Full-Expansion modes, Port C is 03 1/0 data lines.
C3 31 1/0 a multiplexed low address and data 04 1/0
C4 32 1/0 bus. 05 1/0
C5 33 1/0 06 1/0
C6 34 1/0 07 1/0
C7 35 1/0 08 1/0

DO 27 1/0 Port D is a bidirectional data port. In AS I AO-A2 and
D1 26 1/0 Microprocessor or Fu 11- Expansion A9 I A8-A11 are
D2 24 1/0 mode, it is the high address bus. A11 I address lines.
D3 23 1/0 A10 I
D4 22 1/0 'E I Chip enable
D5 21 1/0 AO I
D6 20 1/0 A1 I
D7 19 1/0 A2 I

INT1 13 I Highest priority external maskable interrupt

iNT3 12 I Lowest priority external maskable interrupt

RESET 14 I Reset GND Vss for EPROM
mode

MC 36 I Mode control pin, Vee for G/Vpp Program enable
Microprocessor mode (21 V to program,

(0 V to verify)

XTAL2/CLKIN 17 I Crystal input for control of internal GND v s9 for EPROM
oscillator mo e

XTAL1 18 0 Crystal output for control of internal
oscillator

Vee 25 Supply voltage (5 V) v cc Supply voltage
(5 V)

V_SS_ 40 Ground reference GND Ground reference

2-1,

TMS7000 Family Devices -TMS70Cx2 and TMS77C82

2.4 TMS70Cx2 and TMS77C82 Devices

2.4.1 TMS70Cx2 (CMOS) Key Features

i:::::Blillltli\i!i TMS
7oc42/co2 !i!\\j:j]~lll~l~j'j:i:j:j\

2-12

Max osc freq at 5 V ± 10 %
On-chip ROM (Kbytes)

Internal RAM (bytes)

Interrupt levels:
External
Total

Timers/event counters:
21-bit
13-bit
10-bit

1/0 lines: Bidirectional
linput only
Output only

Additional features

Development support:
Prototyping:

EPROM
Piggyback

XDS
EVM

t Advance information
lllllllfll

Flexible on-chip serial port:

2
6

2

24

8

Serial Port

TMS77C82t
SE70CP162

Yes
Yes

- Asynchronous, lsosynchronous, or Serial 1/0 modes
- Two multiprocessor communication formats
- Error detection flags

!llllllllll!lllllllllll

lllllllll1
- Fully software programmable (bits/char, parity, and stop bits)
- Internal or external baud-rate generator
- Separate baud-rate timer useable as a third timer

Memory-mapped ports for easy addressing

Eight addressing formats, including:
- Register-to-register arithmetic
- Indirect addressing
- Indexed and indirect branches and calls

- Two external maskable interrupts

Flexible interrupt handling:
- Priority servicing of simultaneous interrupts
- Software calls through interrupt vectors
- Precise timing of interrupts with the capture latch
- Software monitoring of interrupt status

- Wide voltage operating range, frequency range:
- 2.5 V - 0.8 MHz maximum
- 6 V - 7.5 MHz maximum

- Wake- Up power-down mode

- Silicon-gate CMOS technology

- 40-pin, 600 mil, dual-inline package, 44-pin PLCC

TMS7000 Family Devices - TMS70Cx2 and TMS77C82

2.4.2 TMS77C82 (CMOS} Key Features (Advance Information}

This is advance information on a new product in the sampling or preprod­
uction phase of development. Characteristic data and other specifications are
subject to change without notice.

Max osc freq at 5 V ± 10 %

On-chip ROM (Kbytes)
Internal RAM (bytes)

Interrupt levels:
External
Total

Timers/event counters:
21-bit
13-bit
10-bit

1/0 lines: Bidirectional
Input only
Output only

Additional features
Development support:

Prototyping:
EPROM
Piggyback

XDS
EVM

t Advance information
lllllllll lllllllf 111

TMS77C82t

7.5 MHz
8 (EPROM)

256

2
6

2

24

8
Serial Port

SE70CP162
Yes
Yes

EPROM programming procedure compatible with '27C64 or '27C128

Prototyping support for the TMS70C42

Flexible on-chip serial port:
- Asynchronous, lsosynchronous, or Serial 1/0 modes
- Two multiprocessor communication formats
- Error detection flags
- Fully software programmable (bits/char, parity, and stop bits)
- Internal or external baud-rate generator
- Separate baud-rate timer useable as a third timer

Memory-mapped ports for easy addressing

Eight addressing formats, including:
- Register-to-register arithmetic
- Indirect addressing
- Indexed and indirect branches and calls

- Two external maskable interrupts

Flexible interrupt handling:
- Priority servicing of simultaneous interrupts
- Software calls through interrupt vectors
- Precise timing of interrupts with the capture latch
- Software monitoring of interrupt status

- Silicon-gate CMOS technology, 40-pin, 600 mil, dual-inline package

2-13

TMS7000 Family Devices - TMS70Cx2 and TMS77C82

I-

lw ~ I- I-::> _J u
::> ::> 0 C'.l I-

85/R/W Vss 0 ~:JI~ ~ ::i ~
87/CLKOUT 86/ENA8LE

1-1-Ua:(f)L.U<l:I-
-------- ------u UN..- 0 !"'-LO(/')(!)'<!" C"l ::2:

80/T20UT 84/ALATCH z C'.l C'.l C'.l C'.l C'.l > C'.l C'.l C'.l

81/T10UT 83/TXD 6 5 4 3 2 1 4443424140
0

82 MC AO 7 39 Vss
AO 6 C7 A1 8 38 C7

A1 C6 A2 9 37 C6

A2 C5 A3 10 36 C5

A3 C4 A4/SCLK 11 35 C4

A4/SCLK 10 31 C3 A7/EC1 12 34 C3

A 7/EC1 11 C2 INT3 13 33 C2

INT3 12 C1 INT1 14 32 C1

INT1 13 co RESET 15 31 co
14 DO A6/EC2 16 30 DO

A6/EC2 15 D1 NC 17 29 D1

A5/RXD 16 Vee 18 19 20 21 22 23 24 25 26 27 28

XT AL2/CLKIN 17 D2 0 Z ..- I'-- W (/')LO'<!" C"l NU
><;;2:;i00 (f)QQOO U

XTAL1 18 D3 0:...JI- > >
D7 19 D4

L?i u x
<i: N"

D6 20 21 D5
_J

<I:
I-
><

A. 40-Pin DIP B. 44-Pin PLCC

Figure 2-6. Pinouts for TMS70C02 and TMS70C42 Devices

1 0

87/CLKOUT 2
80/T20UT 3
81 /T10UT 4

82 5
6
7
8

A7/EC1

INT1 13
14
15
16
17

XTAL 1 18
19
20

TMS77C82

Vss
86/ENA8LE
84/ALATCH
83/TXD
MC
C7
C6
C5
C4
C3
C2
C1
co
DO
D1

Vee
D2
D3
D4
D5

85/R/W
87/CLKOUT

80/T20UT
81/T10UT

82
AO
A1
A2
A3

A4/SCLK
A7/EC1

INT3
INT1

RESET
A6/EC2
A5/RXD

XT AL2/CLKIN
XTAL1

D7
D6

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

u
o Vee Vee o
o A12 PGM o
o A7 A13 o
o A6 AS o
o A5 A9 o
o A4 A11 o
o A3 G 0

o A2 A10 o
o A1 E: o
o AO 07 0

o DO 06 0

0 01 05 0

0 02 04 0

o Vss 03 0

SE70CP182

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

Vss
86/ENA8LE
84/ALATCH
83/TXD
MC
C7
C6
C5
C4
C3
C2
C1
co
DO
D1

Vee
D2
D3
D4
D5

Figure 2-8. Prototyping Devices Available for TMS70Cx2 and TMS77C82
Devices

2-14

TMS7000 Family Devices - TMS70Cx2 and TMS77C82

Table 2-5. TMS70Cx2 and TMS77C82t Pin Descriptions

OPERATION MODES EPROM MODE
(TMS77C82 ONLY)

SIGNAL PIN NO. 1/0 DESCRIPTION SIGNAL 1/0 DESCRIPTION
PLCC DIP

AO LSb 7 6 i/O AO-A7 are general-purpose A7 I A3-A7 are
A1 8 7 1/0 bidirectional pins. A6 I address lines.
A2 9 8 1/0 A5 I
A3 10 9 1/0 A4 I
A4/SCLK 11 10 1/0 Data 1/0/Serial port clock A3 I
A5/RXD 18 16 1/0 Data 1/0/Serial port receiver A12 I
A6/EC2 16 15 1/0 Data 1/0/Timer 2 event counter P<rM I
A7 /EC1 12 11 1/0 Data 1/0/Timer 1 event counter 'G I
BO/T20UT 3 3 0 80-83 are outputs. 84-87 are outputs in Single-Chip mode and memory
81 /T1 OUT 4 4 0 interface pins in all other modes. BO and 81 are outputs for Timer 2
82 5 5 0 and Timer 1.
83/TXD 41 37 0 Data output/Serial port transmitter
84/ALATCH 42 38 0 Data output/Memory interface address latch strobe
85/R£'.W 1 1 0 Data output/Memory read/write signal
86/ENABLE 43 39 0 Data output/ Memory interface enable strobe
87/CLKOUT 2 2 0 Data output/Internal clockout
co 31 28 1/0 Port C is a bidirectional data port. In 01 1/0 01-08 are
C1 32 29 1/0 Microprocessor, Peripheral- Expansion, 02 1/0 bidirectional
C2 33 30 1/0 and Full- Expansion modes, Port C is 03 1/0 data lines.
C3 34 31 1/0 a multiplexed low address and data 04 1/0
C4 35 32 1/0 bus. 05 1/0
C5 36 33 1/0 06 1/0
C6 37 34 1/0 07 1/0
C7 38 35 1/0 08 1/0
DO 30 27 1/0 Port D is a bidirectional data port. In AS I AO-A2 and
D1 29 26 1/0 Microprocessor and Full- Expansion A9 I A8-A10 are
02 27 24 1/0 modes, it is the high address bus. A11 I address lines.
D3 26 23 1/0 810 I
04 25 22 1/0 E I Chip enable
D5 24 21 1/0 AO I
D6 22 20 1/0 A1 I
D7 21 19 1/0 A2 I
001 14 13 I Highest priority maskable interrupt
INT3 13 12 I Lowest priority maskable interrupt
RESET 15 14 I Reset GND Vss for EPROM

mode
MC 40 36 I Mode control pin, Vee for v pp Program enable

Microprocessor mode (21 V to program,
(0 V to verify)

XTAL2/CLKIN 19 17 I Crystal input for control of internal GND v s9 for EPROM
oscillator mo e

XTAL1 20 18 0 Crystal output for control of internal
oscillator

Vee 28 25 Supply voltage (positive) v cc Supply voltage
(5 V)

Vss 23 40 Ground reference GND Ground reference
39
44

t Advance information

2-15

TMS7000 Family Dev~ces - TMS7742 and SE70P162 Prototyping Devices

2.5 TMS7742 and SE70P162 Prototyping Devices

2.5.1 TMS7742 EPROM (NMOS) Prototyping Device Key Features

2-16

The TMS7742 supports prototyping for the TMS7020, TMS7040, and the
TMS7042 up to a maximum operational frequency of 5 MHz.

[ii~i8=1;::~ [i:i~\ia:::i :~~1:~=~t:J: 1;:,s:f~r=

f)\~d.tt~ijriijUijMur:~~t:t:u:t:trnu:u:u:t::wxrr:wxrr::::>::xutttsW.t.iht&t:t:&Ht?fs~dah"Q."H:':rt
Development support:

Prototyping:
EPROM TMS7742 TMS7742

- EPROM programming procedure compatible with the TMS2732
- Flexible on-chip serial port:

- Asynchronous, lsosynchronous, or Serial 1/0 modes
- Two multiprocessor communication formats
- Error detection flags
- Fully software programmable

Internal or external baud-rate generator
Separate baud-rate timer useable as a third timer

- Register-to-register architecture
- Memory-mapped ports for easy addressing
- Eight addressing formats, including:

- Re~ister-to-register arithmetic
- Indirect addressing
- Indexed and indirect branches and calls

- Single-instruction binary-coded decimal (BCD) add and subtract
- Two external maskable interrupts
- Flexible interrupt handling:

- Priority servicing of simultaneous interrupts
- Software calls through interrupt vectors
- Precise timing of interrupts with the capture latch
- Software monitoring of interrupt status

- Supports all TMS7000 family expansion modes
- N-channel silicon-gate MOS technology
- 40-pin, 600 mil, dual-inline package

TMS7000 Family Devices - TMS7742 and SE70P162 Prototyping Devices

2.fi.2 SE70P162 (NMOS) Piggyback Prototyping Device Key Features

The SE70P162 supports full-frequency prototyping for the TMS7020,
TMS7040, and TMS7042.

- Uses TMS2764 or TMS27128 EPROMs in a piggyback socket

- Register-to-register architecture

- Flexible on-chip serial port:
- Asynchronous, lsosynchronous, or Serial 1/0 modes
- Two multiprocessor communication formats
- Error detection flags
- Fully software programmable

Internal or external baud-rate generator
Separate baud-rate timer useable as a third timer

- Memory-mapped ports for easy addressing

- Eight addressing formats, including:
- Re~ister-to-register arithmetic
- Indirect addressing
- Indexed and indirect branches and calls

- Single-instruction binary-coded decimal (BCD) add and subtract

- Two external maskable interrupts

- Flexible interrupt handling:
- Priority servicing of simultaneous interrupts
- Software calls through interrupt vectors
- Precise timing of interrupts with the capture latch
- Software monitoring of interrupt status

- Fully compatible with TMS7042 at 8 MHz

- 40-pin, 600 mil, dual-inline package

2-17

TMS7000 Family Devices - TMS7742 and SE70P162 Prototyping Devices

2-18

B5/R/W 1 0 40

B7/CLKOUT 2 39

BO 3 38
B1 4 37

B2 5 36

AO 6 35
A1 7

A2 8

A3

;o@]~~ A4 C3
A7/EC1 11 30 C2

INT3 12 29 C1
INT1 13 28 co

RESET 14 DO
A6/SCLK/EC2 15 D1

A5/RXD 16 25 Vee
XT AL2/CLKIN 17 D2

XTAL 1 18 D3
D7 19 22 D4
D6 29 21 D5

Ceramic 40-Pin DIP

Figure 2-7. TMS7742 Pinout

B5/R/W
87/CLKOUT

BO
B1
B2
AO
A1
A2
A3
A4

A 7/EC1
INT3
INT1

RESET
A6/SeLK/EC2

A5/RXD
XT AL2/CLKIN

XTAL1
D7
D6

I 1 u 400
I 2 390
I 3 o Vee Vee o 38 0

4 o A12 PGM o 37
I 5 o A7 A13 o 36
I 6 o A6 AS o 35

7 o A5 A9 o 34

8 o A4 A11 o 33

9 o A3 G 0 32

10 o A2 A10 o 31

11 o A1 'E o 30

12 o AO 07 0 29

13 o DO 06 0 28

14 0 01 05 0 27

15 0 02 04 0 26
16 o Vss 03 0 25

17 24 J

18 23 ~
19 22

20 21 J

Ceramic 40-Pin DIP

Vss
B6/ENABLE
B4/ALATeH
B3/TXD
MC
e7
e6
C5
e4
e3
e2
C1
co
DO
D1

Vee
D2
D3
D4
D5

Figure 2-8. SE70P162 Pinout

TMS7000 Family Devices - TMS7742 and SE70P162 Prototyping Devices

Table 2-6. TMS7742 and SE70P162 Pin Descriptions

OPERATION MODES EPROM MODE
(TMS7742 ONLY)

S:IGNAL PIN 1/0 DESCRIPTION SIGNAL 1/0 DESCRIPTION
AOL.Sb 6 1/0 AO-A4 and A7 are general-purpose A7 I A3-A7 are
A1 7 1/0 bidirectional pins. A5 and A6 are A6 I address lines.
A2 8 1/0 input-only data pins. A5 I
A3 9 1/0 A4 I
A4 10 1/0 A3 I
A5/RXD 16 I Data input/Serial port receiver
A6/SCLK/EC2 15 1/0 Data input/Serial port clock/

Timer 2 event counter
A7/EC1 11 1/0 Data 1/0/Timer 1 event counter

BO 3 0 B0-83 are outputs. B4-B7 are outputs in Single-Chip mode
81 4 0 and memory interface pins in all other modes.
82 5 0
B3/TXD 37 0 Data output/Serial port transmitter
84/ALATCH 38 0 Data output/Memory interface address latch strobe
s511~~w 1 0 Data output/Memory read/write signal
86/i: ABLE 39 0 Data output/Memory interface enable strobe
B7/GLKOUT 2 0 Data output/Internal clockout

co 28 1/0 Port C is a bidirectional data port. In 01 1/0 01-08 are
C1 29 1/0 Microprocessor, Peripheral-Expansion, 02 1/0 bidirectional
C2 30 1/0 and Full-Expansion modes, Port C is 03 1/0 data lines.
C3 31 1/0 a multiplexed low address and data 04 1/0
C4 32 1/0 bus. 05 1/0
C5 33 1/0 06 1/0
C6 34 1/0 07 1/0
C7 35 1/0 08 1/0
DO 27 1/0 Port D is a bidirectional data port. In AB I AO-A2 and
D1 26 1/0 Microprocessor and Full-Expansion A9 I A8-A11 are
D2 24 I modes, it is the high address bus. A11 I address lines.
D3 23 I A10 I
D4 22 I E I Chip enable
D5 21 I AO I
06 20 I A1 I
07 19 I A2 I
INTI 13 I Highest priority external maskable interrupt
INT:3 12 I Lowest priority external maskable interrupt

RESET 14 I Reset GND Vss for EPROM
mode

MC 36 I Mode control pin, Vee for G/Vpp Program enable
Microprocessor mode (21 V to program,

(0 V to verify)
XTAL2/CLKIN 17 I Crystal input for control of internal GND V SS for EPROM

oscillator mode
XTAL1 18 0 Crystal output for control of internal

oscillator

Vee: 25 Supply voltage (5 V) v cc Supply voltage
(5 V)

Vss 40 Ground reference GND Ground reference

2-19

TMS7000 Family Devices - SE70CP160 and SE70CP162 Prototyping Devices

2.6 SE70CP160 and SE70CP162 Prototyping Devices

2.6.1 SE70CP160 (CMOS) Piggyback Prototyping Device Key Features

The SE70CP160 supports prototyping development for the TMS70C20 and
the TMS70C40.

::J:::IllLWll:l::: :~m~~-~~~ll: ::::::lll]i~!~i~~~::::::::::

- Uses '27C64, '27C128, or compatible EPROMs in a piggyback socket
- Register-to-register architecture
- Memory-mapped ports for easy addressing
- Eight addressing formats, including:

- Register-to-register arithmetic
- Indirect addressing
- Indexed and indirect branches and calls

- Single-instruction binary-coded decimal (BCD) add and subtract
- Two external maskable interrupts
- Flexible interrupt handling:

- Priority servicing of simultaneous interrupts
Software calls through interrupt vectors

- Precise timing of interrupts with the capture latch
- Software monitoring of interrupt status

- Wide voltage operating range, frequency range:
- 2.5 V - 0.8 MHz maximum
- 6 V- 6.5 MHz maximum

- Two power-down modes:
- Wake-up (160 µA at 1 MHz typical)
- Halt (10 µA typical)

- Fully compatible with TMS70Cx0 devices
- Silicon-gate CMOS technology
- 40-pin, 600 mil, dual-inline package

2-20

TM 67000 Family Devices - SE70CP160 and SE70CP162 Prototyping Devices

2.6.2 SE70CP162 (CMOS) Piggyback Prototyping Device Key Features

The SE70CP162 supports prototyping development for the TMS70C42.

H~~lfftij§tlm£il@${;f "~~-!I!!!!~!!!!!
{Q.rM~n~:skROM4KtWtfil:tt?tr::::c:JA<$tltJlJ).j@d@fjfft]JlfQ::::ir t:r::e:X!tN'!JQM1fiUi
:rnmwiiH':lAMXtm.el:tt:::::rr::r:::nr::::rr:t:wt.a::::rr:::t::::: t::::w:m:::r:i:u.tt::::tt:>:::::::r:::=::::t::zrur:+:t:t:::r

ilftllll~1'11\ll ~1il~ll~t~ tJll~lllllll llllllllllill
111•1111tlltll~lltllllfllllll\fJill
111111~~-1111ll1! Wlf1Wtl~'lll1 lllllllli,lii l\ITlll
<:Audm&J:att.eamai.r>t>::w::::::::J::::::n:::::::r:::r:r::::e:::::::r:::::wm::::n::::m?1ijdif Piff::wn::: ::t:t:=:seHaL~o.rit>t

,;~~~~:;~~=11~~;1;;; 1111111,~~l~\11~:111111
t Advance information

- Uses '27C64, '27C128, or compatible EPROMs in a piggyback socket
- Flexible on-chip serial port:

- Asynchronous, lsosynchronous, or Serial 1/0 modes
- Two multiprocessor communication formats
- Error detection flags
- Fully software programmable (bits/character, parity, and stop bits)
- Internal or external baud-rate generator
- Separate baud-rate timer useable as a third timer

- Register-to-register architecture
- Memory-mapped ports for easy addressing
- Eight addressing formats
- Single-instruction binary-coded decimal (BCD) add and subtract
- Two external maskable interrupts
- Flexible interrupt handling:

- Priority servicing of simultaneous interrupts
- Software calls through interrupt vectors
- Precise timing of interrupts with the capture latch
- Software monitoring of interrupt status

- Wide voltage operating range, frequency range:
- 2.5 V - 0.8 MHz maximum
- 6 V - 7.5 MHz maximum

- Wake- Up power-down mode
- Fully compatible with TMS70Cx0 devices
- Silicon-gate CMOS technology
- 40-pin, 600 mil, dual-inline package

2-21

TMS7000 Family Devices - SE70CP160 and SE70CP162 Prototyping Devices

85/R/W 1 CT 40 Vss
87/CLKOUT 2 39 86/ENABLE

BO 3 o Vee Vee o 3S 84/ALATCH
81 4 o A12 PGM o 37 83
82 5 o A7 A13 o 36 MC
AO 6 o A6 AS o 35 C7
A1 7 o A5 A9 o 34 C6
A2 s o A4 A11 o 33 C5
A3 9 o A3 G o 32 C4
A4 10 o A2 A10 o 31 C3

A 7/EC1 11 o A1 E o 30 C2
INT3 12 o AO D7 o 29 C1
INT1 13 o DO D6 o 2S co

RESET 14 o D1 D5 o 27 DO
A6 15 o D2 D4 o 26 D1
A5 16 o Vss D3 o 25 Vee

XT AL2/CLKIN 17 24 D2
XTAL1 1S 23 D3

D7 19 22 D4
D6 20 21 D5

Ceramic 40-Pin DIP

Figure 2-9. SE70CP180 Pin out

85/R/W 1 D 40 Vss
87/CLKOUT 2 39 86/ENA8LE

80/T20UT 3 o Vee Vee o 3S 84/ALATCH
B1/T10UT 4 o A12 PGM o 37 83/TXD

82 5 o A7 A13 o 36 MC
AO 6 o A6 AS o 35 C7
A1 7 o A5 A9 o 34 C6
A2 s o A4 A11 o 33 C5
A3 9 o A3 G 0 32 C4

A4/SCLK 10 o A2 A10 o 31 C3
A7/EC1 11 o A1 E o 30 C2

INT3 12 o AO D7 o 29 C1
INT1 13 o DO D6 o 2S co

RESET 14 o D1 D5 o 27 DO
A6/EC2 15 o D2 D4 o 26 D1
A5/RXD 15 o v88 D3 o 25 Vee

XTAL2/CLKIN 17 24 D2
XTAL1 1S 23 D3

D7 19 22 D4
D6 20 21 D5

Ceramic 40-Pin DIP

Figure 2-10. SE70CP162 Pinout

2-22

TMS7000 Family Devices - SE70CP160 and SE70CP162 Prototyping Devices

Table 2-7. SE70CP162 Pin Descriptionst

SIGNAL PIN 1/0 DESCRIPTION

AO LSb 6 1/0 AO-A4 and A7 are general-purpose bidirectional pins.
A1 7 1/0
A2 8 1/0
A3 9 1/0
A4/SCLK 10 1/0
A5/RXD 16 1/0 Data 1/0/Serial port receiver
A6/EC2 15 1/0 Data 1/0/Serial port clock/Timer 2 event counter
A7 /EC1 11 1/0 Data 1/0/Timer 1 event counter

BO/T20UT 3 0 B0-83 are outputs. 84-87 are outputs in Single-Chip mode and
81 /T1 OUT 4 0 memory interface pins in all other modes. BO and 81 also contain
82 5 0 the timer output functions.
83/TXD 37 0 Data output/Serial port transmitter
84/ALATCH 38 0 Data output/Memory interface address latch strobe
85/R/W 1 0 Data output/Memory interface read/write signal
B6/ENABLE 39 0 Data output/ Memory interface enable strobe
87/CLKOUT 2 0 Data output/Internal clockout

co 28 1/0 Port C is a bidirectional data port. In Microprocessor, Peripheral-
C1 29 1/0 Expansion, and Full-Expansion modes, Port C is a
C2 30 1/0 multiplexed low address/data bus.
C3 31 1/0
C4 32 1/0
C5 33 1/0
ce. 34 1/0
C7 35 1/0

DO 27 1/0 Port D is a bidirectional data port. In Microprocessor and Full-
D1 26 1/0 Expansion modes, it is the high address bus.
Dr' .t.. 24 1/0
D~: 23 1/0
D4. 22 1/0
D~· ,, 21 1/0
DEi 20 1/0
D7 19 1/0

TN'f1 13 I Highest priority maskable interrupt

1Nf3 12 I Lowest priority maskable interrupt

RESET 14 I Device reset

MC 36 I Mode control pin, Vee for Microprocessor mode

XTAL2/CLKI N 17 I Crystal input for control of internal oscillator

XTAL1 18 0 Crystal output for control of internal oscillator

Vee 25 Supply voltage (5 V)

Vss 40 Ground reference

t For SE70CP160 pin descriptions, refer to the TMS70Cx0 device pin description table on
page 2-7.

2-23

TMS7000 Family Devices

2-24

3. TMS7000 Family Architecture

XTAL.

This section discusses the internal architecture of the TMS7000 family3 de­
vices. Topics in this section include:

Section Page
3.1 On-Chip RAM and Registers ... 3-2
3.2 On-Chip General Purpose 1/0 Ports ... 3-5
3.3 Memory Modes -... 3-9
3.4 System Clock Options ... 3-20
3.5 CMOS Low-Power Modes .. 3-23
3.6 Interrupts and System Reset .. 3-24
3.7 Programmable Timer/Event Counters ... 3-36
3.8 Serial Port (TMS70x2 and TMS70Cx2 Devices Only) 3-49

Figure 3-1 shows the major components of the TMS7000 family devices' in­
ternal architecture.

8-BIT
CPU

----INT4----

-----INT5---

-----1NT2----.

PERIPHERAL/MEMORY
CONTROL

ROM

INT3

PORT A

PORTB

PORT C

PORTO

_______________ J

32 VO LIN~
SERIAL POtc1

a: TIMER OUTPUT
FUNCTIONS

t Timer 3, serial port, and timer/event counter 2 available for
TMS70x2 and TMS70Cx2 devices only

Figure 3-1. TMS7000 Family Block Diagram

3 TMS7000 and TMS7000 family refer to all TMS7000 devices as described in Section 2.

3-1

TMS7000 Family Architecture

3.1 On-Chip RAM and Registers

TMS7000 family devices have a 64K-byte maximum memory address space.
On-chip and off-chip memory address space varies according to the particular
family member used and mode selected (see Section 3.3, Memory Modes).
The following sections discuss the Register File (RF), the Peripheral File (PF),
and three CPU registers: the Stack Pointer (SP), the Status Register (ST), and
the Program Counter (PC).

3.1.1 Register File (RF)

On-chip RAM is called the Register File (RF). Depending upon the device
used, the RF has either 128 or 256 bytes of memory treated as registers
RO-R127 or RO-R255. These are located in lower memory as follows:

Device
TMS70x0
TMS70Cx0
TMS70x2
TMS70Cx2

Number of
Registers

128
128
256
256

Register
Range

RO-R127
RO-R127
RO-R255
RO-R255

Memory Address
>0000 - >007F
>0000 - >007F
>0000 - >OOFF
>0000 - >OOFF

The first two registers, RO and R1, are also referred to as Register A and
Register B, respectively. Several instructions use Register A or B implicitly
as either the source or destination register. For example, the STSP instruction
stores the contents of the Stack Pointer in Register B. Other instructions may
use Registers A or B to save memory or increase execution speed. Unless
otherwise indicated, any register in the Register File can be used as a source
or destination register.

3.1.2 Peripheral File (PF)

3-2

The Peripheral File (PF) is mapped into locations >0100 to >01 FF, which
are referred to as PO-P255. These Peripheral-File locations contain the 8-bit
PF registers, used for interrupt control, parallel 1/0 ports, timer control, me­
mory-expansion control, and serial port control. All PF addresses not used
onboard the TMS7000 are mapped externally in all modes except Single-Chip.
Several instructions, called Peripheral-File instructions, communicate with the
PF registers, allowing easy use of externally-mapped peripheral devices.

Tl\llS7000 Family Architecture - On-Chip RAM and Registers

3.il .3 Stack Pointer (SP)

The Stack Pointer (SP) is an 8-bit CPU register that points to the top of the
stack. The stack is physically located in the on-chip RAM, or RF. When the
stack is used, the SP points to the last or top entry on the stack. During reset,
the SP is loaded with >01. The SP is loaded from Register 8 (R1) via the
LDSP instruction and initialized to any other value by executing a stack in­
itialization program such as the one illustrated in Figure 3-2. This feature al­
lows the stack to be located anywhere in the Register File. The SP is loaded
into Register 8 via the STSP command. The SP is automatically incremented
when data is pushed onto the stack and automatically decremented after data
is popped from the stack.

INIT MOV
LDSP

%>60,B

>0000
TOP OF STACK ON RESET - >0001

INITIAL TOP OF STACK - >0080

UPPER STACK LIMIT - >007F

INCREMENT
THEN
STORE

FETCH
THEN
DECREMENT

Figure 3-2. Example of Stack Initialization in the Register File

3.il .4 Status Register (ST)

The Status Register (ST) is an 8-bit CPU register that contains three con­
ditional status bits - carry (C), sign (N), zero (Z) - and a global interrupt en­
able bit (I). The C, N, and Z bits are used for arithmetic operations, bit
rotating, and conditional branching.

MSb7 8 6 4 3 2 1 OLSb

lclNlzl 1 I ~~eure I

Figure 3-3. Status Register (ST)

Carry (C) Bit Used as carry-in/carry-out for most rotate and arithmetic in­
structions.

Negative (N) Bit
Contains the most significant bit of the destination operand
contents after instruction execution.

Zero (Z) Bit Contains a 1 when the destination operand equals zero after
instruction execution.

3-3

TMS7000 Family Architecture - On-Chip RAM and Registers

Global Interrupt Enable (I) Bit
Enables/disables all interrupts. The EINT (Enable Interrupts)
instruction sets this bit to 1; the DINT (Disable Interrupts)
instruction clears it.

This bit must be set to a 1 for interrupts to be acknowledged.
However, the individual interrupt flag bits can be set whether
this bit is set to a 1 or a 0.

Jump-on-condition instructions are also associated with the C, N, and Z sta­
tus bits to provide conditional program-flow options.

During reset all bits in the Status Register are cleared. During other interrupts,
the Status Register is saved on the stack and can be accessed via the PUSHST
and POPST instructions.

3.1.5 Program Counter (PC)

3-4

The 16-bit Program Counter (PC) consists of two 8-bit registers in the
CPU. These registers contain the MSB and the LSB of a 16-bit address: the
Program C:ounter High (PCH) and Program Counter Low (PCL).

The PC acts as the 16-bit address pointer of the opcodes and operands in
memory of the currently executing instruction. During reset, the MSB and the
LSB of the PC are loaded into Register A and Register B, respectively.

TMS7000 Family Architecture - On-Chip General Purpose 1/0 Ports

3 .. 2 On-Chip General Purpose 1/0 Ports

TMS7000 devices have 32 1/0 pins organized as four 8-bit parallel Ports A,
B, C, and D.

Port A

Port B

Port C,
Port D

TMS70x0 and TMS70Cx0 devices - Port A is an input-only
port

TMS70x2 devices - AO-A4 and A7 are bidirectional data pins;
A5 and A6 are input-only data pins

TMS70Cx2 devices - Port A is fully bidirectional

All devices - Port B is an output-only port

All devices - both ports are bidirectional; they are also used as
the address/data bus for memory expansion

Ports A, C, and D are each controlled and accessed via individual Data-Di­
rection Registers and Data Registers in the Peripheral File. Output-only
port B has only a Data Register. The Data Register contains the value to be
input or output; the Data-Direction Register indicates whether the value is an
input or an output. 1/0 pins can be individually designated as input or output
by writing a 1 or 0 to a corresponding bit in their PF Data-Direction Register.
A 1 makes the pin an output, a 0 makes the pin an input.

Writing to the Data-Direction Register does not affect the value in the Data
Register. This allows all bidirectional pins to be used for either input or output
by only changing the Data-Direction Register.

During a hardware reset, all Data-Direction Registers are cleared, forcing all
bidirectional ports to their high-impedance input state. It is good practice to
load Ports A, C, and D Data Registers before programming any bidirectional
bits as outputs. During a hardware reset, Port B is set to all 1 s.

Caution:

When any port is configured as an output-only port, applying
an external potential to its pins may affect system reliability.
The value read at the port pins will be the same as the last value
internally written to the port. Reading the port returns the
value at the pins, which can override the data written to the
port.

Figure 3-4 (page 3-6) shows the logic for each bidirectional 1/0 line.

3-5

TMS7000 Family Architecture - On-Chip General Purpose 1/0 Ports

1/0

Port A

Port B

Port C

Port D

Total 1/0
Pins

Available

Total
Memory

Pins

3-6

VO
PIN

DATA READ

..-----------.DOR READ

---------------~a Dt--~-

.__ _______ a

OUTPUT

DDR
FLIP
FLOP

VALUE OUTPUT -----------a D1--~-

3-STATE
DRIVER

DATA
FLIP --­
FLOP

Figure 3-4. Bidirectional 1/0 Logic

DOR WRITE

DOR WRITE
STROBE

DATA WRITE

DATA WRITE
STROBE

Table 3-1. TMS70x0 and TMS70Cx0 Port Configuration

SINGLE-CHIP PERIPHERAL- FULL-EXPANSION MICROPROCESSOR
MODE EXPANSION MODE MODE MODE

8 input pins 8 input pins 8 input pins 8 input pins
A7=A7/EC1 A7=A7/EC1 A7=A7/EC1 A7=A7/EC1

4 output pins 4 output pins 4 output pins
8 output pins 4 bus control 4 bus control 4 bus control

signals signals signals

8-bit 8-bit low 8-bit low
8 1/0 pins address/data bus address/data bus address/data bus

(LSB) (LSB)

8 1/0 pins 8 1/0 pins 8-bit high address 8-bit high address
bus (MSB) bus (MSB)

8 input pins 8 input pins 8 input pins 8 input pins
8 output pins 4 output pins 4 output pins 4 output pins
16 1/0 pins 8 1/0 pins

8 address/data 16 address/data 16 address/data
None (multiplexed) 4 memory control 4 memory control

4 memory control

TMS7000 Family Architecture - On-Chip General Purpose 1/0 Ports

Table 3-2. TMS70x2 Port Configuration

SINGLE-CHIP PERIPHERAL- FULL-EXPANSION MICROPROCESSOR
1/0 MODE EXPANSION MODE MODE MODE

6 1/0 pins 6 1/0 pins 6 1/0 pins 6 1/0 pins
2 input pins 2 input pins 2 input pins 2 input pins

Port A A5=A5/RX A5=A5/RX A5=A5/RX A5=A5/RX
A6=A6/SCLK/EC2 A6=A6/SCLK/EC2 A6=A6/SCLK/EC2 A6=A6/SCLK/EC2
A7=A7/EC1 A7=A7/EC1 A7=A7/EC1 A7=A7/EC1

8 output pins 4 output pins 4 output pins 4 output pins
Port 8 83=83/TX 4 bus control 4 bus control 4 bus control

signals signals signals
B3=B3/TX B3=B3/TX B3=B3/TX

8-bit 8-bit low 8-bit low
Port C 8 1/0 pins address/data bus address/data bus address/data bus

(LSB) (LSB)

8-bit high 8-bit high
Port D 8 1/0 pins 8 1/0 pins address bus address bus

(MSB) (MSB)

Total 1/0 2 input pins 2 input pins 2 input pins 2 input pins
Pins 8 output pins 4 output pins 4 output pins 4 output pins

Available 22 1/0 pins 14 1/0 pins 6 1/0 pins 6 1/0 pins

Total 8 address/data 16 address/data 16 address/data
Memory None (multiplexed) 4 memory control 4 memory control

Pins 4 memory control

Table 3-3. TMS70Cx2 Port Configuration

SINGLE-CHIP PERIPHERAL- FULL-EXPANSION MICROPROCESSOR
1/0 MODE EXPANSION MODE MODE MODE

8 1/0 pins 8 1/0 pins 8 1/0 pins 8 1/0 pins
A4=A4/SCLK A4=A4/SCLK A4=A4/SCLK A4=A4/SCLK

Port A A5=A5/RXD A5=A5/RXD A5=A5/RXD A5=A5/RXD
A6=A6/EC2 A6=A6/EC2 A6=A6/EC2 A6=A6/EC2
A7=A7/EC1 A7=A7/EC1 A7=A7/EC1 A7=A7/EC1

8 output pins 4 output pins 4 output pins 4 output pins
Port B B3=B3/TXD 4 bus control 4 bus control 4 bus control

B1=B1/T10UT signals signals signals
BO= BO/T20UT B3=B3/TXD B3=B3/TXD B3=B3/TXD

B 1 = B 1 /T1 0 UT B1 =B1 /T1 OUT B1=B1/T10UT
BO= BO/T20UT BO= BO/T20UT BO= BO/T20UT

8-bit 8-bit low 8-bit low
Port C 8 1/0 pins address/data bus address/data bus address/data bus

(LSB) (LSB)

8-bit high 8-bit high
Port D 8 1/0 pins 8 1/0 pins address bus address bus

(MSB) (MSB)

Total 1/0 8 output pins 4 output pins 4 output pins 4 output pins
Pins 24 1/0 pins 16 1/0 pins 8 1/0 pins 8 1/0 pins

Available

Total 8 address/data 16 address/data 16 address/data
Memory None (multiplexed) 4 memory control 4 memory control

Pins 4 memory control

3-7

TMS7000 Family Arclhitecture - On-Chip General Purpose 1/0 Ports

3.2.1 Port A

On TMS70x0 and TMS70Cx0 parts, Port A is an 8-bit high-impedance in­
put-only port, providing eight general-purpose input lines. Pin A7 /EC1 may
also be used to clock the on-chip timer/event counter (see Section 3.7, Pro­
grammable Timer/Event Counters).

On TMS70x2 parts, pins AO-A4 and pin A7 /EC1 of Port A are bidirectional
1/0 lines. Pins A5 and A6 are general-purpose input-only pins that also have
other functions when using the serial port. Pin A5/RXD receives incoming
serial data and pin A6/SCLK/EC2 is the serial clock input or output. Pins
A6/SCLK/EC2 and A7 /EC1 may also be used to clock the on-chip timer/event
counters, Timer 2 and Timer 1, respectively.

On TMS70Cx2 devices, Port A is a fully-bidirectional 1/0 port. However,
pins A5/RXD and A4/SCLK serve as the serial data receive pin and serial
clock, respectively, when the serial port is used. Pins A6/EC2 and A7 /EC1
may be used to clock the on-chip timer/event counters, Timer 2 and Timer 1,
respectively. Note that SCLK has been moved to A4 on the TMS70Cx2 de­
vices from A6 on the TMS70x2 devices. This frees up EC2 to be used at the
same time as SCLK.

3.2.2 Port B

In Single-Chip mode, Port 8 is an 8-bit general-purpose output port.
Reading Port 8 returns the value written to the pins unless modified by an
external value at the pins.

In all other memory modes, Port 8 is split into two parts. The lower nibble
(pins 80-83) are general-purpose output-only pins. The most significant
nibble (pins B4-B7) contains the bus control signals: ALATCH, R/W,
ENABLE, and CLKOUT.

On TMS70x2 and TMS70Cx2 devices, pin 83 is also the serial output line
(TXD) for the serial port.

3.2.3 Port C

In Single-Chip mode, Port C is an 8-bit bidirectional 1/0 port. Any of its
eight pins may be individually programmed as an input or output line.

In all other memory modes, Port C becomes a multiplexed address/data
port for the off-chip memory bus. In this case, Port C provides the least sig­
nificant byte of a 16-bit address, followed by eight bits of read or write data.
(Port D provides the most significant byte of the 16-bit address.)

3.2.4 Port D

3-8

In Single-Chip or Peripheral-Expansion mode, Port D is an 8-bit bidi­
rectional 1/0 port. Any of its eight pins may be individually programmed as
an input or output line under software control.

In Full-Expansion and Microprocessor modes, Port D becomes a multi­
plexed address/data port for the off-chip memory bus. In this case, Port D
provides the most significant byte of a 16-bit address. (Port C provides the
least significant byte of the 16-bit address.)

TMS7000 Family Architecture - Memory Modes

3.:~ Memory Modes

>0000
>007F

>0080
>OOFF

>0100
>0108

>010C

>0200

>0201

>FOOO

>FSOO

>FFFF

The TMS7000 can address up to 64K bytes. Four memory modes can be se­
lected by a combination of software and hardware: the Single-Chip, Peri­
pheral-Expansion, Full-Expansion, and Microprocessor modes.

The Mode Control (MC) input pin forces the TMS7000 into Microprocessor
mode when set to a Vee. If the MC pin is held at Vgg, the remaining memory
modes can be selected by bits 6 and 7 of the Peripheral File 1/0 Control Re­
gister (IOCNTO - PO), as shown in Table 3-4.

Table 3-4. Mode Selection Conditions (MC Pin)

MODE SELECT CONDITIONS

MODE CONTROL IOCNTO
MODE PIN (MC) BITS 7,6

Single-Chip Vss 0 0

Peripheral- Expansion Vss 0 1

Fu 11- Expansion Vss 1 0

Microprocessor Vee x x
Note: X = Don't Care

During reset the IOCNTO register is set to a 0. (Refer to Section 3.6 for a de­
tailed description of reset and the initialization procedure for the IOCNTO re­
gister.) Table 3-5 and Table 3-6 summarize the four memory modes.

Table 3-5. TMS70x0 and TMS70Cx0 Memory Map

SINGLE-CHIP
PERIPHERAL- FULL

MICROPROCESSOR EXPANSION EXPANSION

Register File Register File Register File Register File

Reserved Reserved Reserved Reserved

On-Chip 1/0 On-Chip 1/0 On-Chip 1/0 On-Chip 1/0

Peripheral Expansion Peripheral Expansion Peripheral Expansion

Not Available Not Available Memory Expansion Memory Expansion

4K ROM 4K ROM 4K ROM

2K ROM 2K ROM 2K ROM

3-9

TMS7000 Family Architecture - Memory Modes

'70x2

>0000

>OOFF

>0100

>0117

>0118

>01 FF

>0200

>EFFF

>FOOO

>FFFF

PO

P1

P2

P3

P4

P5

P6

P7

PS

P9

P10

P11

P12-

Table 3-6. TMS70x2 and TMS70Cx2 Memory Map

SINGLE-CHIP
PERIPHERAL- FULL
EXPANSION EXPANSION

Register File Register File Register File

On-Chip 1/0 On-Chip 1/0 On-Chip 1/0

Peripheral Expansion Peripheral Expansion

Not Available Not Available Not Available

4K ROM 4K ROM 4K ROM

MICRO-
PROCESSOR

Register File

On-Chip 1/0

Memory Expansion

'70Cx 2

0 >000

>OOF

>010

>012

>012

>01F

>020

>EFF

F

0

3

4

F

0

1---
F

0 >FOO

>FFF F

Table 3-7. TMS70x0 and TMS70Cx0 Peripheral Memory Map

SINGLE-CHIP J PERIPHERAL- j FULL-] MICRO-
EXPANSION EXPANSION PROCESSOR

>0100 IOCNTO 1/0 Control register

>0101 - Reserved

>0102 T1DATA Timer 1 data

>0103 T1CTL Timer 1 control

>0104 APO RT Port A data

>0105 - Reserved

>0106 BPORT Port B Data I t

>0107 - Reserved

>0108 CPO RT Port C Data

>0109 CDDR Port C Data- I
Direction Register Peripheral Expansion

>010A DPORT Port D Data J
>0108 DDDR Port D Data- Direction Register J
>010C- Not available Peripheral Expansion

P255 >01 FF]
t In expansion modes, Port B is referenced in a special manner. See the Port B discussion on page 3-17.

3-10

TMS7000 Family Architecture - Memory Modes

f
p

p

P1
p

p

p

p

p

p

p

p

p

P2
P2

10

'1

'2

'3

'4
15

'6

'7

'8

19

10

11

2-
15

16

17

18

19

20

21

22

23

4-
25

>0100

>0101

>0102

>0103

>0104

>0105

>0106

>0107

>0108

>0109

>010A

>010B

>010C-
>010F

>0110

>0111

>0112

>0113

>0114

>0115

>0116

>0117

>0118
>01 FF

Table 3-8. TMS70x2 Peripheral Memory Map

SINGLE-CHIP l PERIPHERAL- l FULL- 1 MICRO-
EXPANSION EXPANSION PROCESSOR

IOCNTO 1/0 Control register 0

- Reserved

T1DATA Timer 1 Data

T1CTL Timer 1 Control

APO RT Port A Data

ADDR Port A Data-Direction Register

BPORT Port B Data l t

- Reserved

CPO RT Port C Data

CDDR
Port C Data- Dir-1
action Register Peripheral Expansion

DPORT Port D Data]
DDDR Port D Data-Direction Register J

Not available I
IOCNT1 1/0 Control Register 1

SMODE First Write after reset - Serial Mode register

SCTLO Write - Serial Control register 0

SST AT Read - Serial port status register

T2DATA Timer 2 Data

T2CTL Timer 2 Control

T3DATA Timer 3 Data

SCTL1 Serial Control register 1

RXBUF Receiver Buffer

TXBUF Transmitter Buffer

Not available I Peripheral Expansion

t In expansion modes, Port B is referenced in a special manner. See the Port B discussion on page 3-17.

3-11

TMS7000 Family Architecture - Memory Modes

Table 3-9. TMS70Cx2 Peripheral Memory Map

SINGLE-CHIP PERIPHERAL- I FULL- 1 MICRO-
EXPANSION EXPANSION PROCESSOR

PO >0100 IOCNTO 1/0 Control register 0

P1 >0101 IOCNT2 1/0 Control register 2

P2 >0102 IOCNT1 1/0 Control register 1

P3 >0103 - Reserved

P4 >0104 APO RT Port A Data

P5 >0105 ADDR Port A Data- Direction Register

P6 >0106 BPORT Port B data t

P7 >0107 - Reserved

PS >0108 CPO RT Port C Data

Port C Data- Dir-
P9 >0109 CDDR ection Register Peripheral Expansion

PlO >010A DPORT Port D Data J
P11 >0108 DOOR Port D Data Direction Register 1
P12 >010C tn MSDATA Timer 1 MSB decrementer reload register/MSB readout latch

P13 >0100 T1 LSDATA Timer 1 LSB reload register/LSB decrementer value

P14 >010E T1 CTL1 Timer 1 control register 1 /MSB readout latch

P15 >010F T1 CTLO Timer 1 control register 0/LSB capture latch value

P16 >0110 tr2MSDATA Timer 2 MSB decrementer reload register/MSB readout latch

P17 >0111 T2LSDATA Timer 2 LSB reload register/LSB decrementer value

P18 >0112 T2CTL 1 Timer 2 control register 1 /MSB readout latch

P19 >0113 T2CTLO Timer 2 control register 0/LSB capture latch value

P20 >0114 SMODE Serial port mode control register

P21 >0115 SCTLO Serial port control register 0

P22 >0116 SST AT Serial port Status Register

P23 >0117 T3DATA Timer 3 reload register/decrementer value

P24 >0118 SCTL1 Serial port control register 1

P25 >0119 RXBUF Receiver buffer

P26 >011A TXBUF Transmitter buffer

P27- >011 B- Reserved
P35 >0123

P36- >0124- Not available Peripheral Expansion
P255 >01 FF

t In expansion modes, Port Bis referenced in a special manner. See the Port B discussion on page 3-17.

3-12

TMS7000 Family Architecture - Memory Modes

3.~1.1 Single-Chip Mode

Single-Chip mode is selected when:

MC = Vss and PF Register IOCNTO = OOXX XXXX

In Single-Chip mode, the TMS7000 family devices function as standalone
microcomputers with no off-chip memory-expansion bus. User memory con­
sists of the RAM register file and ROM. All 32 1/0 lines may be used for var­
ious purposes, such as scanning keyboards, driving displays, and controlling
other mechanisms. The four ports are configured as shown in Figure 3-5.

AO-A7 INPUT
LINES

B0-87 OUTPUT
LINES

TM670XO
CO-C7 BIDIRECTIONAL

LINES

00-07 BIDIRECTIONAL
LINES

Figure 3-5. 1/0 Ports - Single-Chip Mode

Figure 3-6 shows the Single-Chip mode memory map. The unused Peripheral
File (PF) locations and off-chip memory addresses cannot be addressed. If
you attempt to read one of these locations, an undefined value is returned.
Writing to these addresses has no effect. Peripheral-File registers PO-P11 re­
ference the 1/0 ports and other on-chip functions. Table 3-7, Table 3-8, and
Table 3-9 list the Peripheral-File registers that are available in Single-Chip
mode.

>0000

>007F
>0080

>OOFF
>0100

>010B
>010C

>FOOO

>F800

>FFFF

Register File

Reserved

On-chip 1/0

Not Available

4K ROM

2K ROM

A. TMS70x0 and TMS70Cx0
Devices

'70x2
>0000

>OOFF
>0100

>0117
>0118

>FOOO

Register File

On-chip 1/0

Not Available

4KROM

'70Cx2
>0000

>OOFF
>0100

>0123
>0124

>FOOO

>FFFF >FFFF
B. TMS70x2 and TMS70Cx2

Devices

Figure 3-6. Single-Chip Mode Memory Map

3-13

TMS7000 Family Architecture - Memory Modes

3-14

Port A is accessed via PF register P4 (APORT). When P4 is read, such as with a
MOVP (Move from PF) instruction, the value on the Port A input pins is re­
turned. The input data is read approximately two machine cycles before the
completion of the instruction.

On the TMS70x0 and TMS70Cx0 devices, bit 7 (A7) is the MSb and
bit 0 (AO) is the LSb. When the on-chip timer/event counter is placed
in the External Event-Counter mode, bit A7 /EC1 serves as the external
clock input, triggering the event counter on every positive-going transi­
tion.

On TMS70x2 parts, pins AO-A4 and pin A7 /EC1 are bidirectional 1/0
pins. Each of these pins can become either an output or an input pin
depending upon the value in the Port A Data-Direction Register (ADDR)
P5:

P5 bit = 1 Corresponding Port A pin becomes an output.
P5 bit = 0 Corresponding Port A pin becomes a high-impedance in-

put.

Figure 3-4 (page 3-6) shows a diagram of the bidirectional 1/0 logic.

Pins A5 and A6/SCLK/EC2 have multiple functions. Normally they are
both input-only pins (as on TMS70x0 parts), but A5 can also be the
serial data receiver (RXD). Pin A6/SCLK/EC2 can also be the serial
clock 1/0 pin (SCLK) for the serial port. A6 can be either the serial clock
output or it can drive the on-chip serial clock when connected to an
external clock. (See the serial port section for more information, Section
3.8). Pin A6 can also be the external clock input for Timer 2.

On TMS70Cx2 devices, all pins are bidirectional 1/0 pins. Each of
these pins can become an output or an input pin, depending upon the
value in the Port A Data-Direction Register (ADDR) P5. Pins A4/SCLK,
A5/RXD, A6/EC2, and A7 /EC1 have multiple functions. Pins A4/SCLK
and A5/RXD are the serial clock 1/0 pin and the serial data receiver pin,
respectively, when the serial port is used. Pins A6/EC2 and A7 /EC1
may be used to clock the on-chip timer/event counter, Timer 2 and Timer
1 , respectively.

Port B output pins always assert the value of the Port B Data Register, PF register
P6 (BPORT). Writing to P6 loads the Port B register, modifying the Port B
output pins. Reading from P6 provides the current value of the Port B pins.
When RESET goes active, Port B register contents are set to 1 s by the on-chip
circuitry.

Port C,
Port D (CPORT and DPORT) are bidirectional 1/0 pins. Data Registers are PS and

P10 of the Peripheral File. Each of these pins can become either an output
or an input pin depending upon the value in the port C and D Data-Direction
Register, locations P9 and P11 (CDDR and DDDR). A 1 causes an output
and a 0 causes a high-impedance input. Writing to the Data-Direction Reg­
isters does not affect the Data Registers. Writing to the Data Registers modi­
fies the programmed output pins. Reading the Data Register returns either the
current value at the pin (when the pin is an input) or the current value of the
Data Register (for pins configured as outputs). Refer to Figure 3-4 (page
3-6) for a diagram of the bidirectional 1/0 logic.

TMS7000 Family Architecture - Memory Modes

IOCNTO
APO RT
BPORT
CPO RT
CDJJR
DPORT
DDDR
* RESET
*
*
Ll
*
L2
*

Peripheral-File instructions ANDP, ORP, and XORP perform a read/modify/­
write cycle on PF registers. When applied to a port's Data Register, these in­
structions can clear, set, or complement the output pins on the port.

The following program segment illustrates the use of the 1/0 lines in the Sin­
gle-Chip mode for all family members.

EQU
EQU
EQU
EQU
EQU
EQU
EQU

MOVP

MOVP

MOVP

MOVP
MOVP
ORP
ANDP
BTJZP
MOVP
XORP
BTJOP

Note:

PO
P4
P6
P8
P9
PlO
Pll

%>3F,IOCNTO

%>02,DPORT

%>00,CPORT

%>FO,CDDR
%>0F,DDDR
%>04,DPORT
%>7F,CPORT
%>08,CPORT,Ll
%>55,BPORT
%1,BPORT
%>41,APORT,L2

I/0 control register 1
Port A data register
Port B data register
Port C data register
Port C data-direction register
Port D data register
Port D data-direction register

Set Single-Chip mode, enable all
interrupts, clear all pulse
flip-flops
Load Port D with 0000 0010
(D7-DO)
Load Port C with 0000 0000
(C7-Cl)
Config C7-C4 outputs, C3-CO inputs
Config D7-D4 inputs, D3-DO outputs
Set pin D2 to 1
Clear pin C7
Jump if C3 is 0
Set Port B to 0101 0101 (B7-BO)
Toggle bit BO
Jump if either A6 or Al is a 1

The percent sign (%) indicates the Immediate Addressing mode. The in­
struction set is described in Section 6.

3-15

TMS7000 Family Architecture - Memory Modes

3.3.2 Peripheral-Expansion Mode

Peripheral-Expansion mode is selected when:

3-16

MC = Vss and PF Register IOCNTO = 01XX XXXX

Peripheral-Expansion mode incorporates features of both the 1/0-intensive
Single-Chip mode and the memory-intensive Full-Expansion mode. Refer­
ences to Peripheral-File addresses (locations >0100 to >01 FF) not corre­
sponding to on-chip PF registers produce off-chip memory cycles. During
Peripheral-File instructions, a PF port is read, even if the value is not needed,
such as in a MOVP A, P6. If a hardware configuration makes this read unde­
sirable, use a STA (Store A) instruction with the memory-mapped address of
the PF register. The ability to reference off-chip addresses allows the
TMS7000 to be directly connected to most of the popular peripheral devices
developed for 8-bit microprocessors. The TMS7000 PF instructions reference
these off-chip peripherals just as easily as they access on-chip PF registers .

M-A.7

84-83

B4
86 TM870xx
B6
87

CO-C7

00-07 ,-

.....

::
.....
..... -..

......
-r

-r

BIDIRECTIONAL LINES

OUTPUT LINES

A.LATCH
R/W
!NA![E
CLKOUT

ADDRESS/DATA (AORO/DATO-ADR7 /DAT7)

BIDIRECTIONAL LINES

Figure 3-7. 1/0 Ports - Peripheral-Expansion Mode

>0000

>007F
>0080

>OOFF
>0100

>0108
>010C

>01 FF
>0200

>FOOO

>F800
>FFFF

Register File

Reserved

On-chip 1/0

Peripheral Expansion

Not Available

4K ROM
2K ROM

A. TMS70x0 and TMS70Cx0
Devices

'70x2 '70Cx2
>0000 >0000

Register File

>OOFF >OOFF
>0100 >0100

>0117
On-chip 1/0

>0123
>0118 >0124

>01 FF
Peripheral Expansion

>01 FF
>0200 >0200

Not Available
>FOOO >FOOO

4K ROM

>FFFF >FFFF
B. TMS70x2 and TMS70Cx2

Devices

Figure 3-8. Peripheral-Expansion Mode Memory Map

TMIS7000 Family Architecture - Memory Modes

Port A functions the same as in Single-Chip mode.

Port B is divided into two sections: pins B0-83 function as individual output pins,
the same as in Single-Chip mode; pins 84-87, however, function as external
memory bus controls:

Pin 84/ALATCH is strobed to logic 1 while Port C asserts the memory
address.
Pin 85/R/W is driven to logic 1 for a read cycle and to logic zero for a
write cycle.
Pin 86/=EN,..,...A,,....,B,....,..L""""E is asserted at logic 0 whenever an external memory cycle
is in progress.
Pin B7 /CLKOUT is an output clock intended for general memory control
timing.

Exact signal timing is described in Section 4.

References to the Port 8 Data Register, P6, are handled in a special manner.
When a value is written to P6, pins 80-83 output the new value. Pins
84-87 ignore the new value and continue to output memory bus signals. An
external memory write cycle will also write the entire 8 bits of the new value
to the external address >0106. When P6 is read, the least significant nibble
(80-83) is taken from the current value on pins 80-83. The most significant
nibble is obtained by reading the external address >0106.

Port C functions as a multiplexed address/data port for the memory-expansion bus.
In normal configurations, Port C is attached to the input of an 8-bit latch such
as an SN74LS373. The 84/ALATCH signal drives the G input of the latch,
so that the latch's Q outputs follow the D inputs while 84/ALATCH is high,
and ouputs become latched when it falls. After 84/ALATCH falls and data
(such as a memory address) is latched, Port C either becomes a high-impe­
dance input for read cycles or it asserts the output data for write cycles.

Port D functions identically to a bit-programmable, bidirectional 1/0 port, as in the
Single-Chip mode.

Notes:

1. The Port C Data-Direction Register is mapped into external memory.
The Port C input or output function can be recreated externally by
mapping a latch at location >0108.

2. Because 84/ALATCH, B5/R/W, and Port Care active for both external
and internal (ROM and RAM) memory cycles, it is recommended that
86/ENABLE be gated with the chip-select input of all external memory
devices to prevent external bus conflicts.

3-17

TMS7000 Family Architecture - Memory Modes

3.3.3 Full-Expansion Mode

3-18

Full-Expansion mode is selected when:

MC = Vss and PF Register IOCNTO = 10XX XXXX

Full-Expansion mode uses a 16-bit address to extend the memory addressing
capability of the TMS7000 to its full 64K-byte limit. External memory may be
accessed with instructions using the Direct, Register File Indirect, and Indexed
Addressing modes of the instruction set. This meets a variety of application
requirements by expanding the external program or data storage.

Full-Expansion mode 1/0 is identical to the Peripheral-Expansion mode except
that Port Dis used to output the most significant byte (MSB) of the 16-bit
address. Thus, Port D is not available as an 1/0 port. The four ports are
configured as shown in Figure 3-9. Figure 3-10 shows the 1/0 memory as­
signments for the Full-Expansion mode.

AO-A.7

80-83

B4

TMS70XX B6
88
87

CO-C7
~

00-07

-+

......
r

...... ..

/')

BIDIRECTIONAL LINES

OUTPUT LINES

A.LATCH
R/W
ENABLE
CLKOUT

ADDRESS/DATA (ADRO/DATO-ADR7 /DAT7)

ADDRESS (ADR8-ADR16)

Figure 3-9. 1/0 Ports - Full-Expansion Mode

As in the Peripheral-Expansion mode, accesses to Peripheral-File registers
(locations >0100 to >01 FF) which are not directly implemented as on-chip
registers produce off-chip memory cycles. The on-chip Peripheral-File regis­
ters are listed in Table 3-7, Table 3-8, and Table 3-9. Note that the Port D
Data Register (DPORT) and the Port D Data-Direction Register (DDDR) are
implemented as off-chip addresses in the Full-Expansion mode. The port D
input or output function can be recreated externally by mapping a latch at lo­
cation >01 OA.

TMS7000 Family Architecture - Memory Modes

>0000

>007F
>0080

>OOFF
>0100

>010B
>010C

>01 FF
>0200

>FOOO

>F800
>FFFF

Register File

Reserved

On-chip 1/0

Peripheral Expansion

Not Available

4K ROM
2K ROM

'70x2
>0000

Register File

>OOFF
>0100

>0117
On-chip 1/0

>0118

>01 FF
Peripheral Expansion

>0200
Memory_ Ex_Q_ansion

>FOOO

4K ROM

>FFFF

'70Cx2
>0000

>OOFF
>0100

>0123
>0124

>01 FF
>0200

>FOOO

>FFFF
A. TMS70x0 and TMS70Cx0

Devices
B. TMS70x2 and TMS70Cx2

Devices

Figure 3-10. Full-Expansion Mode Memory Map

3.3.4 Microprocessor Mode

Microprocessor mode is selected when:

MC =Vee and PF Register IOCNTO = XXXX XXXX

Microprocessor mode is intended for applications that do not justify the use
of on-chip ROM. The port pins are configured exactly as in Full-Expansion
mode (see Figure 3-9). Unlike Full-Expansion mode, no on-chip ROM is re­
ferenced in Microprocessor mode. All memory accesses except for internal
RAM and on-chip Peripheral-File locations are now addressed externally.

The MC pin must be held at logic 1 (Vee) to place the device in this mode.
There are no restrictions on when the value of the MC pin may change, but it
is recommended that the value be changed only when the device is in reset.
lndeterminant results can occur if the MC pin is changed while the device is
accessing memory locations whose internal/external status may change.

>0000

>007F
Register File

>0080
Reserved

>OOFF
>0100

>0108
On-chip 1/0

>010C

>FFFF
Memory Expansion

A. TMS70x0 and TMS70Cx0
Devices

'70x2
>0000

Register File

>OOFF
>0100

>0117
On-chip 1/0

>0118

'70Cx2
>0000

>OOFF
>0100

>0123
>0124

Memory Expansion
> FFFF > FFFF

B. TMS70x2 and TMS70Cx2
Devices

Figure 3-11. Microprocessor Mode Memory Map

3-19

TMS7000 Family Architecture - System Clock Options

3.4 System Clock Options

The internal state cycle period, called tc(C)' is derived from either a crystal or
an external clock source. Both N MOS and CMOS devices can use a crystal,
ceramic resonator, or another approximately 50% duty cycle clock as an ex­
ternal clock source. The CMOS devices can also use an R-C circuit with the
OSC-OFF low-power mask option (see Section 3.4.2). The internal clock
then divides the external clock source frequency by two to produce the inter­
nal state frequency. For example, a 5 MHz crystal produces an internal fre­
quency of 2.5 MHz, which drives a 400-ns machine cycle.

3.4.1 System Clock Connections

3-20

The TMS7000 devices use the following methods to implement the system
clock options:

Crystals: Crystals are connected between pins XTAL 1 and
XTAL2/CLKIN. To optimize the crystal waveform, a 15-pF ca­
pacitor should be connected between XTAL 1 and ground, and
a 30-pF capacitor should be connected between XTAL2/CLKIN
and ground. This connection is illustrated in Figure 3-12 a.

Ceramic Resonators:
Ceramic resonators are connected between pins XTAL 1 and
XTAL2/CLKIN. A resistor and two capacitors, with values de­
termined by the selected ceramic resonator, must be connected
as shown in Figure 3-1 2 b ..

External Clock Source:
As shown in Figure 3-12 c, external clock sources are con­
nected to XTAL2/CLKIN and XTAL1 is not connected.

R-C Circuits:
R-C circuits provide a simple, low-cost oscillator for applica­
tions in which frequency toleration is not a concern. R-C cir­
cuits also provide immediate start-up oscillation for the CMOS
device upon exiting the Halt OSC-OFF mode of operation (see
Section 3.4.2).

R-C circuits are connected as shown in Figure 3-12 d. The re­
commended value for the capacitor C is 4 7 pf. The value of the
resistor R required for the desired frequency must be selected
with respect to V cc, ambient temperature, and the tolerance of
the R-C components. Recommended values for the resistor in
the R-C network fall in the range of 1 K0-1 OOKO.

TMS7000 Family Architecture - System Clock Options

XTAL.1 XTAL.2/CLKIN
18 17

-a......--
16 pF+ PARALL.8...

RESONANT +SO pF

a. Crystal

NC ----'!@""' XTAL.1

CLOCK I 17 XTAL.2/CLKIN
SOURCE r---t

b. External olook eouroe

R

c

RESONATOR

CAPACITORS

b. Ceramic resonator

...---.1 ... e XTAL 1

d. R-C circuit

Figure 3-12. System Clock Connections

3-21

TMS7000 Family Architecture - System Clock Options

3.4.2 Low-Power Mask Options for CMOS Devices

3-22

The TMS7000 CMOS devices may use oscillator mask options which provide
different levels of functionality and power consumption during the Halt low­
power mode. These oscillator options are called OSC-ON and OSC-OFF.

The TMS70Cx0 devices are mask programmable with either the OSC-ON
option or the OSC-OFF mask options.

The TMS70Cx2 devices are mask programmable with the OSC-ON mask
option.

The OSC-On option will keep the on-chip oscillator active during the Halt
low-power mode. Since the oscillator is still active, typical power consump­
tion will be 80 µA/MHz for the TMS70Cx0 devices. When the device is
brought out of Halt mode, there will be no delay in restoring the full operation
since the oscillator is already running. The OSC-ON option is useful in ap­
plications where no delay in restoring full operation after Halt mode is more
important than the lower power consumption of the OSC-OFF mode.

The OSC-OFF option is useful in applications where very low power con­
sumption is requred in Halt mode. The OSC-OFF option causes the oscillator
to cease oscillation when Halt mode is entered. This offers the lowest power
consumption, typically 1 µA for the TMS70Cx0 devices. The OSC-OFF
mask-programmable option supports an R-C circuit as well as a crystal, ce­
ramic resonator, or other approximately 50% duty cycle CLKI N signal. If an
R-C network is used with this option, it will restart full oscillation immediately
upon exiting Halt mode. If a ceramic resonator or crystal is used, there will
be a period before the oscillations stabilize, causing a delay in the response to
RESET of approximately 10 milliseconds. Because of this stabilization time
requirement, an external time constant of at least 10 milliseconds is recom­
mended for RESET when using a crystal or ceramic resonator with the OSC­
OFF low-power mask option.

Table 3-10. Low-Power Mask Options for CMOS Devices

MASK HALT POWER
CLOCK SOURCE

OSCILLATOR
OPTION CONSUMPTION START UP

Ceramic resonator, crystal, or 10 millisecond

OSC-OFF Lowest external clock source delay

R-C circuit No delay

OSC-ON Low Ceramic resonator, crystal, or No delay
external clock source

Note:

OSC-ON and OSC-OFF are mask options, which means the option is
placed on a manufacturing template, or mask, that copies the actual circuit
onto the silicon device. This means the oscillator option is finalized at the
start of manufacture and cannot be changed by software or hardware.

TMS7000 Family Architecture - CMOS Low-Power Modes

3.:S CMOS Low-Power Modes
The TMS7000 CMOS microcomputers can be programmed to enter low­
power modes of operation when the IDLE instruction is executed. The
TMS70Cx0 and TMS70Cx2 devices can both enter Wake-Up (startup) low­
power mode; the TMS70Cx0 devices can also enter Halt (power-down) low­
power mode. For information concerning mask options associated with the
Halt low-power mdoe, see Section 3.4.2.

3.!i.1 TMS70Cx0 Low-Power Modes

MODE

Wake-Up

Hatt
(OSC-ON)

Hart
(OSC-OFF

The TMS70Cx0 devices support the Wake-Up and Halt low-power modes.
These modes are entered when:

1) Bit 5 of the Timer 1 control register (T1 CTL) is set (0 for Wake-Up
mode, 1 for Halt mode),
and

2) The IDLE instruction is executed.

Activating RESET or acknowledging an enabled interrupt releases the device
from either mode. Both low-power modes freeze the 1/0 ports, retaining their
conditions before the IDLE instruction was executed. Complete RAM data
retention is also maintained through both low-power modes as long as power
is applied. Table 3-11 describes the low-power options.

Table 3-11. Low-Power Options for TMS70Cx0 Devices

CPU ENTER EXIT CLOCK
STATUS TIMER 1 STATUS osc MODE MODE SOURCE

VIA VIA
Halted Active Active IDLE RESELJ.NT1, Crystal, R-C Circuit,

INT2, INT3 Ceramic Resonator,
(if enabled) External Clock

Halted Halted Active IDLE RESET,INT1, Crystal,
INT2 (if enabled) Ceramic Resonator,

External Clock
Halted Halted Halted IDLE RESET, 001, Crystal, R-C Circuit,

I NT2 (if enabled) Ceramic Resonator,
External Clock

In Wake-Up mode, the oscillator and timer logic remain active. The on-chip
timer may be used to release the device from the low-power state. The Ice
current requirements in Wake-Up mode are frequency dependent for both the
OSC-ON and the OSC-OFF options.

3.5.2 TM S70Cx2 Devices

The TMS70Cx2 devices support the Wake-Up low-power mode. This mode
is entered when the IDLE instruction is executed. An enabled interrupt must
be executed to allow the device to return to .normal operation. The TMS70Cx2
devices have the ability to disable the individual onboard timers and UART
during Wake-Up mode, further reducing total power consumption. To disable
Timer 1 during Wake-Up mode, set the T1 HALT bit (bit 5 of T1 CTLO) to 1.
To disable Timer 2 during Wake-Up mode, set the T2HALT bit (bit 5 of
T2CTLO) to 1. The UART /Timer 3 is disabled during Wake-Up mode by set­
ting the SPH bit (bit 7 of SCTLO) to 1.

3-23

TMS7000 Family Architecture - Interrupts and System Reset

3.6 Interrupts and System Reset

INTERRUPT

RESET

INT1
INT2

INT3
INT4

INT5

All TMS7000 family devices have a non-maskable system reset pin, RESET.
This signal has the highest priority in the interrupt heirarchy. RESET imme­
diately initializes the device.

The TMS70x0 and TMS70Cx0 devices have three separate, maskable inter­
rupts that are triggered from three sources. The TMS70x2 and TMS70Cx2
devices have five separate maskable interrupts that can be triggered from as
many as seven sources. Each interrupt has a specific priority level; if two or
more interrupts occur simultaneously, they are serviced according to priority -
highest first, lowest last. Table 3-12 summarizes the interrupts.

Table 3-12. Interrupt Summary

EXTERNAL/
SOURCE PRIORITY

VECTOR ADDRESS
INTERNAL MSB LSB

E RESET pin low Immediate >FFFE >FFFF
(highest priority)

E I NT1 pin activet Priority 1 >FFFC >FFFD

E/I Timer/Event counter 1 Priority 2 >FFFA >FFFB
countdown past 0

E 003 pin activet Priority 3 >FFF8 >FFF9
I RX Buffer Loaded, or TX Priority 4 >FFF6 >FFF7

Buffer Empty, or Timer
3 countdown past 0

E/I Timer/Event counter 2 Priority 5 >FFF4 >FFF5
countdown thru 0

t The external interrupts on the TMS70Cx2 devices can be programmed for level and sense detection.
Note: INT4 and INT5 apply to TMS70x2 and TMS70Cx2 devices only.

3.6.1 Device Initialization

3-24

RESET, interrupt level 0, cannot be masked. The processor recognizes a RESET
immediately, even in the middle of an instruction execution. To execute the
reset function, the RESET pin must be held low for a minimum of 1.25 x tc(C)
internal state clock periods. While the RESET pin is asserted (0):

1) The Data-Direction Registers for the 1/0 ports are cleared.

2) On N MOS devices, the output data flip-flops of Ports A, C, and D are
set to all 1 s (see Figure 3-4, page 3-6). On CMOS devices, only Port
A's output data flip-flop is set to all 1 s; Ports C and D output data flip­
flops are not altered during a RESET.

3) This places Ports C and D (and Port A on TMS70x2 and TMS70Cx2
devices) in high-impedance input mode, and Port B outputs all 1 s
(>FF), regardless of the internal machine clock state.

TfVIS7000 Family Architecture - Interrupts and System Reset

The reset function does not change the INTn flag bits in the IOCNTO register
(since all zeros are written). If any of the bits in a Peripheral File Data-Direc­
tion Register (DOR) are set to a 1, the corresponding port pin would become
an output, producing. a 1 level.. (Remember, Data- Direction Registers are set
to all Os on RESET.)

It is generally a good practice to initialize the output data flip-flop with the
desired output value (by writing to the port data value register) before writing
to the DOR flip-flop to make the corresponding pin an output. Figure 3-13
and Figure 3-14 show examples of possible initialization routines after the
assertion of RESET. Device initialization requires 17 state cycles after' RESET
goes inactive.

When RESET returns to its inactive condition (1), the following operations are
performed before the first instruction acquisition:

1) All Os are written to the Status Register. This clears the global interrupt
enable bit (I), disabling all interrupts.

2) All Os are written to the IOCNTO register. This disables INT1, INT2, and
INT3 and leaves the INTn flag bits unchanged.

3) All Os are written to the IOCNT1 register in the TMS70x2 and
TMS70Cx2 devices. This disables INT4 and INT5.

4) The PC's MSB and LSB values before RESET was asserted are stored in
RO and R1 (Registers A and 8), respectively.

5) The Stack Pointer is initialized to >01.

6) The MSB and LSB of the RESET interrupt vector are fetched from lo­
cations >FFFE and >FFFF, respectively (see Table 3-12, page 3-24),
and loaded into the Program Counter.

7) Program execution begins from the address placed in the Program
Counter.

3-25

TMS7000 Family Architecture - Interrupts and System Reset

RESET
*
*
*

*

*

*

*
*
*

RESET
*
*

*

*

*

3-26

MOVP %>2E,PO Clear INTl-, INT2, and INT3- flags,
place device in Single-Chip mode,
enable INT2

MOVP %>0F,P16 Clear INT4, INTS flags,
enable INT4 and INTS

MOVP %VALU1,P4 Load Port A Data Register
MOVP %MASK1,P5 Load Port A Data-Direction Register
MOVP %VALU2,P8 Load Port C Data Register
MOVP %MASK2,P9 Load Port C Data-Direction Register
MOVP %VALU3,P10 Load Port D Data Register
MOVP %MASK3,Pll Load Port D Data-Direction Register
MOVP %VALU4,P2 Load Timer 1 reload register
MOVP %VALU5,P3 Load Timer 1 clock source, Erescaler

reload register and start timer
MOVP %VALU6,P18 Load Timer 2 reload register
MOVP %VALU7,P19 Load Timer 2 clock source, Erescaler

reload register and start timer
MOV O,P17
MOV %>40,P17
MOVP %MASK4,P17 Initialize serial ~ort configuration
MOVP %>05,P17 Clear UR bit, enab e transmitter

and receiver
MOVP %VALU8,P20 Load Timer 3 reload register
MOVP %VALU9,P21 Initialize serial port clock source,

other control bits, and Timer 3
prescaler reload register

EINT Set global interrupt enable bit to
allow interrupts

Figure 3-13. Sample Initialization Routine for TMS70x2 Devices

MOVP

MOVP
MOVP
MOVP
MOVP
MOVP
MOVP
MOVP
MOVP
MOVP
MOVP
MOVP

MOVP
MOVP
MOVP
MOVP

MOVP
MOVP
MOVP
MOVP
EINT

%>2E,PO

%0F,P16
VALUl ,P4
MASKl ,PS
VALU2,P8
MASK2,P9
VALU3,P10
MASK3,Pll
VALU4,P12
VALU5,P13
%>40,P14
MASK4,P15

VALU6,P16
VALU7,P17
%>40,P18
MASK5,P19

MASK6,P20
MASK7,P21
MASK8,P23
MASK9,P24

Clear INTl-, INT2, and INT3- flags,
place device in Single-Chip mode, and
enable INT2
Clear and enable INT4 and INTS
Load Port A Data Register
Load Port A Data-Direction Register
Load Port C Data Register
Load Port C Data-Direction Register
Load Port D Data Register
Load Port D Data-Direction Register
Load Timer 1 MSB reload register
Load Timer 1 LSB reload register
Enable the timer output on Bl
Initialize clock start, source, halt
bit and prescaler value
Load Timer 2 MSB reload register
Load Timer 2 LSB reload register
Enable the timer output on BO
Initialize clock start, source, halt
bit and prescaler value
Initialize serial port format
Configure serial port
Load Timer 3 reload register
Configure serial port control
Set global interrupt enable bit
to allow interrupts

Figure 3-14. Sample Initialization Routine for TMS70Cx2 Devices

TMS7000 Family Architecture - Interrupts and System Reset

The Stack Pointer can also be re-initialized following reset by a executing a
program similar to the one below.

STACK MOV %VALUE,B
*
*

Load Register B with the stack
starting point in the Register
File

LDSP
*

Put this value into the Stack
Pointer register

A simple R-C circuit can provide a power-up reset, automatically resetting the
TMS7000 when power is applied. The capacitor and resistor values are se­
lected according to the clock frequency used, the minimum voltage at which
the RESET signal is at logic 1, and the ramp-up time of the power to the device.
The following formula calculates the minimum time required for an adequate
device reset:

trst = 2 [V CC (1.25t c(CJ + tpwr = R-C
V1L J

where:

trst Total time RESET pin is held at logical level 0
V cc Supply voltage
V1L Low-level input voltage
tc(C) Internal machine clock period
tpwr Ramp-up time for Vee
R Resistor value in ohms (no more than 1 megohm)
C Capacitor value in farads

3-27

TMS7000 Family Architecture - Interrupts and System Reset

3.6.2 Interrupt Operation

3-28

The TMS7000 family's interrupts can be falling-edge sensitive, falling-edge
and level sensitive, rising-edge sensitive, or rising-edge and level sensitive.
Table 3-13 illustrates the interrupt configurations supported by each
TMS7000 family device.

Table 3-13. External Interrupt Operation

TMS7000 DEVICE FALLING EDGE FALLING EDGE RISING EDGE RISING EDGE
AND INTERRUPTS AND LEVEL AND LEVEL
TMS70x0 INT1 x

INT3 x
TMS70x2 INT1 x

INT3 x
TMS7742 INT1 x

INT3 x
SE70P162 INT1 x

INT2 x
TMS70Cx0 INT1 x

INT3 x
SE70CP160 INT1 x

INT3 x
TMS70Cx2t INT1 x x x x

INT3 x x x x
SE70CP162t INT1 x x x x

INT3 x x x x
TMS77C82 INT1 x x x x

INT3 x x x x
t The TMS70Cx2 and SE70CP162 devices' external interrupts edge/level-sensitive polarity

are software programmable. This is accomplished via the 1/0 control 1 register (P1).

1) When an interrupt is first asserted, its level is gated into the Sync flip­
flop by the internal state clock, tc(C)· which has a cycle period of
2/Fosc· To detect an interrupt, the INTn signal must be active for a mi­
nimum of 1.25 x tc(C) clock periods.

2) The negative output edge of the Sync flip-flop clocks a 1 into the Pulse
flip-flop. This is the "edge" detection of the interrupt signal and is the
only time a 1 is loaded into the Pulse flip-flop. The Pulse flip-flop will
be set within 1.25 state clock cycles of the interrupt assertion. If the
signal is removed before the CPU recognizes the interrupt, its occurrence
is latched on the Pulse flip-flop output, 01.

3) Edge--sensitive interrupts detect only the Pulse flip-flop 01 output, not
the INTn level. Once an interrupt has been asserted (INTn goes low), it
becomes active if the INTn enable bit and the global interrupt enable bit
(I) register are set to one.

The "level path" logic shown in Figure 3-15 applies only to external in­
terrupts that are both edge- and level-sensitive; it is not implemented for
interrupts that are only edge-sensitive. For more information, refer to
Table 3-13.

TMS7000 Family Architecture - Interrupts and System Reset

iNTn

•

INTn
CLEAR FLAG

w R

+6V D 01

PULSE
FF

D

SYNC.
FF

t Available only for level-sensitive interrupts

INTn
ENABLE

w R

D 02

ENABLE
LATCH

GLOBAL INT ENABLE
(STATUS REGISTER)

Figure 3-15. CPU Interface to Interrupt Logic

INTn
ACK

TO
PRIORITY

LOGIC

INTn
ACTIVE

4) As shown in Figure 3-15, when the TMS7000's on-chip logic detects
an active interrupt, it sends an INTn ACTIVE signal to the CPU. When
the currently executing instruction is completed, the CPU acknowledges
the active interrupt and routes INTA back to that interrupt's INTn ACK
(interrupt acknowledge) line. If simultaneous interrupts occur, that is,
more than one interrupt is active within the same instruction boundary,
the interrupts are acknowledged by the CPU according to the priority
levels. For example, if both INT2 and INT3 occur within the same in­
struction boundary, INT2 is serviced first.

5) After the CPU acknowledges the interrupt, the INTn ACK line, as shown
in Figure 3-15, clears the corresponding Pulse flip-flop. The CPU then
pushes the Status Register contents and the Program Counter onto the
stack, and clears the Status Register, including the global interrupt ena­
ble (I) bit. The CPU reads an interrupt code from the interrupt priority
logic to determine which interrupt requires servicing. The 16-bit vector
value is read from the two vector addresses associated with the interrupt
being serviced, and is loaded into the Program Counter. The interrupt
vector value is the address of the first instruction in the interrupt service
routine. The interrupt vector addresses are shown in Table 3-12 on page
3-24. Instruction execution then proceeds at the new address value in
the Program Counter.

Nineteen internal state clock cycles [tc(C)] are required between the end of an
instruction in the interrupted program and the start of the first instruction of
the interrupt service routine. ln.terrupting out of the Idle state requires 17 state
clock cycles.

3-29

TMS7000 Family Architecture - Interrupts and System Reset

3.6.3 Interrupt Control

3-30

The 1/0 control registers, IOCNTO, IOCNT1, and IOCNT2, contain the inter­
rupt control bits. All TMS7000 family members have an IOCNTO register.
Only TMS70x2 and TMS70Cx2 devices have an IOCNT1 register, because
they have two more interrupts, INT4 and INT5; only TMS70Cx2 devices have
an IOCNT2 register because only they can change the polarity of their external
interrupts. The 1/0 control registers are mapped into PF locations as follows:

Table 3-14. 1/0 Control Registers

PERIPHERAL FILE
TMS70x0

TMS70x2 TMS70Cx2 TMS70Cx0

IOCNTO PO PO PO

IOCNT1 P16 P16 P2

IOCNT2 N/A N/A P1

0 - rnT3 inactive

1
1 - iNT3 pending

,~=
INT2 inactive
INT2 pending

0 - rnT1 inactive j 1 - INT1 pending

7 6

Memory Memory
Mode 1 Mode 0

Memory Memory
Mode 1 Mode 0

I. J
I

00 - Single Chip

01 - Peripheral
Expansion

10 - Full
Expansion

11 - Undefined

5

rnT3
Flag

TNi3
Clear

4

TNi3
Enable

TNi3
Enable

3

INT2
Flag

INT2
Clear

2

INT2
Enable

INT2
Enable

1

Tf\JT1
Flag

TNT1
Clear

0

TNT1
Enable Read

TNT1
Enable Write

L o
1

- TNT1 disabled
- INT1 enabled

.__ 0 - No effect
1 - Clear INT1 flag

.__ 0 - INT2 disabled
1 - INT2 enabled

.__ 0 - No effect
1 - Clear INT2 flag

....._ 0 - rnT3 disabled
1 - iNT3 enabled

.__ 0 - No effect
1 - Clear INT3 flag

Figure 3-16. IOCNTO - 1/0 Control Register 0 (PO for All Devices)

TMSi7000 Family Architecture - Interrupts and System Reset

7 6 5 4

0 0 0 0

x x x x

0 - INT5 inactive

11 - INT5 pending

I 0 - INT4 inactive
I 1 - INT4 pending

3 2 1 0

INT5 INT5 INT4 INT4
Flag Enable Flag Enable Read

INT5 INT5 INT4 INT4
Clear Enable Clear Enable Write

0 - INT4 disabled
- INT4 enabled Lo-~ 1

effect
1 - Clea r INT4 flag

.__ 0 - INT5 disable d
1 - INT5 enable d

.___ 0 - No effect
1 - Clear INT5 flag

Figure 3-17. IOCNT1 - 1/0 Control Register 1

In the 1/0 control registers, each interrupt is associated with a flag bit (INTn
flag) and enable bit (INTn enable). The global interrupt enable (I) bit in the
Status Register allows all interrupts to be enabled or disabled at the same time.
Three conditions must be met before the CPU will recognize an interrupt:

1) A 1 must be written to the INTn enable bit in the IOCNTO or IOCNT1
register.

2) The global interrupt enable (I) bit in the Status Register must be set to
1 by the EINT instruction.

3) The interrupt must be the highest priority interrupt asserted within an
instruction boundary.

Through software, the INTn enable bits can be read and written to:

Writing a 0 individually masks the corresponding interrupt.
Writing a 1 allows the interrupt to be recognized.

The reading of the INTn flag is handled differently (see Figure 3-15 on page
3-29):

An active signal applied to INTn is read as a 1 from one side of an OR
gate.
INTn going active latches a 1 to the other side of the OR gate which
stays latched when the signal goes inactive.

3-31

TMS7000 Family Architecture - Interrupts and System Reset

3-32

6

0

5

TNT3
Edge

4

TNT3
Polarity

3 2

0 0
TNT1
Edge

0
TNT1 Read or

Polarity Write

I- 0 - Active low/
L falling edge

1 - Active high/
rising edge

.__ 0 - Edge & level sensitive
1 - Edge sensitive only

.___ 0 - Active low/falling edge
1 - Active high/rising edge

.___ 0 - Edge & level sensitive
1 - Edge sensitive only

Figure 3-18. IOCNT2 - 1/0 Control Register 2 (TMS70Cx2 Only)

Thus, I NTn going active is returned both as a latched and an edge-sensitive
signal for the TMS70x0 and INT3 of the TMS70Cx0 devices, while the
TMS70Cx2 devices can choose sensitivity via IOCNT2. When a 1 is written
to the INTn clear bit, the Pulse flip-flop is cleared. Writing a 0 to the INTn
clear bit has no effect.

The INTn flag bit may be tested in software, regardless of whether the interrupt
is enabled or disabled. For example, the following program statement waits
for the active edge of the interrupt input on the INT1 pin by testing INT1 flag:

WAIT BTJOP %>01,PO,WAIT Wait for INTl-
* (INTl flag = 1)

This allows external interrupt pins to be polled as inputs. Interrupt input pins
have an advantage over the other general-purpose inputs if the input signal is
a short pulse. The Pulse flip-flop of the interrupt input will always capture a
pulse with a width of at least 1.25 x tc{C) cycles, allowing software to detect
that the condition occurred, even after the pulse is gone.

Caution:

Due to the read/modify/write nature of the bit manipulation
instructions (ANDP, ORP, and XORP), it is possible that the
INTn f~ag bits in the IOCNTO and IOCNT1 registers could be
unintentionally cleared. To avoid these occurrences, use the
MOVP and the STA instructions when writing data to /OCNTO
and /OCNT1.

Because the I NTn flag and I NTn clear bits are in the same bit positions, use
caution when accessing these bits. For example, you may be able to use
XORP to set INT1 enable without altering the state of the INT1 flag (XORP
%>03,PO), as long as the INT1 flag does not change state during the in­
struction execution. However, if a short I NT1 pulse sets the Pulse flip-flop
between the read and write portions of the instruction execution, a 0 would
be read from INT1 flag and a 1 would be written to INT1 clear to reclear INT1
flag. In this case, the INT1 pulse would be undetected by the processor. This

TIVIS7000 Family Architecture - Interrupts and System Reset

same instruction would also affect the INT2 flag and INT3 flag in a similar
manner as they are also located in the IOCNTO register.

Immediately following RESET, all interrupts are globally disabled because the
I bit (interrupt enable) in the Status Register is reset to 0. Also, the IOCNTO
register is cleared. This clears the INTn er.labia bits, disabling INT1, INT2, and
INT3 individually and putting the TMS7000 in Single-Chip mode. This does
not affect the INTn flag bits from their previous condition before RESET. On
the TMS70x2 device, a 0 must be written by software to the INTn enable bits
in the IOCNT1 register to ensure that INT4 and INT5 are also individually
disabled following a RESET.

3.Ei.4 Multiple Interrupt Servicing

When an interrupt is recognized, the global interrupt enable (I) Status Register
bit is automatically cleared while the interrupt is serviced. This prevents all
other interrupts from being recognized during the execution of the interrupt
service routine. Once the service routine is completed by executing the RETI
(Return from Interrupt) instruction, the old Status Register contents are
popped from the stack. This returns the I bit back to 1, allowing any pending
interrupts to be recognized.

An interrupt service routine can explicitly allow nested interrupts by executing
the EINT instruction to directly set the I bit in the Status Register to a 1, thus
permitting other interrupts to be recognized during service routine execution.
When a nested interrupt service routine completes, it returns to the previous
interrupt service routine when the RETI instruction is executed.

3.Ei.5 External Interrupt Servicing

The external interrupt interface consists of three discrete input lines that re­
quire no external synchronization: RESET, INT1, and INT3.

TMS70x0 External interrupts on the TMS70x0 devices are high-impedance
inputs that are both falling-edge and level sensitive, allowing
multiple interrupts to be wire ORed onto one external interrupt
pin.

TMS70x2,
SE70P162,
TMS7742 External interrupts on the TMS70x2 devices, the SE70P162

piggyback device, and the TMS7742 EPROM device are high­
impedance inputs that are falling-edge sensitive only.

TMS70Cx0,
SE70CP160 The external interrupt INT1 on the TMS70Cx0 and SE70CP160

devices is a high-impedance falling-edge sensitive only inter­
rupt, while INT3 is a high-impedance falling-edge and level­
sensitive interrupt.

TMS70Cx2,
SE70CP162 The external interrupts on the TMS70Cx2 and SE70CP162 de­

vices can be individually programmed as falling-edge sensitive
only, falling-edge and level sensitive, rising-edge sensitive only,
or rising-edge and level sensitive.

Certain safeguards should be observed for external interrupts that are both
edge- and level-sensitive. The logical-OR of both the Pulse flip-flop output
(01) and I NTn (inverted I NTn) affect the state of I NTn flag, and can therefore

3-33

TMS7000 Family Architecture - Interrupts and System Reset

3-34

activate the interrupt (see Figure 3-15 on page 3-29). The Pulse flip-flop is
automatically cleared when the CPU acknowledges the interrupt. However,
as long as the INTn pin is low, the interrupt will remain active even when the
Pulse flip-flop output is 0. This is how an external interrupt source is detected
as a level signal. If INTn is active longer than the shortest path through the
interrupt service routine, this same interrupt will be serviced again upon return
from the service routine if no higher priority interrupts are active. In many
applications this interrupt re-servicing is acceptable; however, in applications
where this is a potential problem, the associated INTn enable bit must be dis­
abled before exiting the interrupt service routine. Upon return from the service
routine, INTn flag must be periodically software-polled to determine when
INTn has gone inactive, and then INTn enable may be re-enabled. Note that
devices with edge-sensitive only interrupts do not require the previously
mentioned safeguards.

To prevent an interrupt signal from being detected as a level signal, the maxi­
mum pulse (time low) of the signal cannot exceed the following:

where:

N

tc(C)

(16 + N) x tc(C)

the total number of state clock cycles in the interrupt 'service routine,
up to and including the El NT or RETI instruction
the internal state clock cycle period

This ensures that the INTn flag is cleared before the first possible instruction
boundary in which the interrupt could be re-serviced. Note that this is not of
any concern for INT1 on the TMS70Cx0 devices and interrupts on the
TMS70x2 devices, since they are edge-sensitive only, not level-sensitive.

Some applications may cause an incorrect interrupt vector to be accessed
when using edge- and level-sensitive interrupts on the TMS70x0 and
TMS70Cx0 devices only. This may happen when an I NTn pulse goes inactive
on the boundary condition when interrupts are being enabled. Two events
are necessary for this to occur:

1) First, the Pulse flip-flop is cleared upon entry to the interrupt service
routine; since the INTn pin is still active, INTn flag and INT active remain
active.

2) Second, the I NTn pin goes inactive on the boundary condition when
interrupts are being enabled (RETI and EINT instructions or a write to
IOCNTO to enable interrupts).

When the I NTn pin goes inactive, I NTn flag becomes inactive and some time
later INT active becomes inactive. This results in INT active being acknowl­
edged by the CPU, but I NTn flag becomes inactive before interrupt decode
logic can determine which interrupt was pending. Note that INTn has already
been serviced, so that re-servicing of the interrupt is not required. If this
condition occurs, interrupt vector fetches from locations > FFF8 and > FFF9
(for INT3) will occur for TMS70x0 and TMS70Cx0 devices. This situtation
does not exist for edge-sensitive only interrupts (such as INT1 on the
TMS70Cx0 device and the interrupts on the TMS70x2 and TMS70Cx2 de­
vices).

TMS7000 Family Architecture - Interrupts and System Reset

In applications where the system design cannot guarantee that the duration
of the pulsed interrupt is outside this critical window, three system solutions
should be considered.

A system hardware solution uses an external D-type flip-flop or a one­
shot in the interrupt path, providing a level interrupt which the TMS7000
would externally clear as part of the service routine.

Prevent the re-servicing of the interrupt as described earlier by setting
the associated I NTn enable bit to 0 in the interrupt service routine.

If only one external interrupt has the potential to cause this boundary
condition, for TMS70x0 devices, this interrupt should be connected to
INT3 since the INT3 vector is fetched when this problem occurs. This
would result in INT3 being re-serviced. For TMS70Cx2 devices with
edge and level sensitivity enabled, a trap vector should be placed in lo­
cation > FFFO and > FFF1 which points to a RETI instruction. This will
return the program to normal program flow if this condition occurs. For
TMS70Cx0 devices, use INT1 since this interrupt is only edge sensitive
and will not exhibit the condition.

3-35

TMS7000 Family Architecture - Programmable Timer/Event Counters

3.7 Programmable Timer/Event Counters

3-36

The programmable timer/event counters are 8-bit or 16-bit counters with a
programmable, prescaled clock source. TMS70x0 and TMS70Cx0 devices
contain one timer/event counter, TMS70x2 and TMS70Cx2 devices contain
two timer/event counters and one timer. The data and control registers for
these two timer/event counters are shown in Figure 3-19 through Figure 3-25
(pages 3-37-3-40).

Timer 1 is available on all TMS7000 devices.

TMS70x0, TMS70Cx0, and TMS70x2

Timer 1 is an 8-bit timer/event counter with a 5-bit programmable
prescaler. It contains an 8-bit capture latch and is accessed through PF
registers P2 and P3.

TMS70Cx2

Timer 1 is a 16-bit timer/event counter that contains a 5-bit program­
mable prescaler and a 16-bit capture latch. It is accessed through PF
registers P1 2, P1 3, P14, and P1 5.

Timer 2 is available on the TMS70x2 and TMS70Cx2 devices.

TMS70x2

Timer 2 is an 8-bit timer/event counter with a 5-bit programmable
prescaler. It is accessed through P18 and P19 of the Peripheral File.

TMS70Cx2

Timer 2 is a 16-bit timer/event counter that contains a 5-bit program­
mable prescaler and a 16-bit capture latch. It is accessed at PF registers
P16, P17, P18, and P19.

Timeir 3 is available on the TMS70x2 and TMS70Cx2 devices and can
be used as an independent timer or as the clock source for the on-chip
serial port. Because of this function, Timer 3 is described in more detail
in Section 3.8, The Serial Port.

Note:

The contents of all registers associated with the timers are not affected by
a hardware RESET. These registers must be initialized by software.

TIMS7000 Family Architecture - Programmable Timer/Event Counters

O•
I 1 I
I I
I 6-BIT T1CNTL.7
I PRES CALER (STAR"O
I
I
1-------

UNDERFLOW

:;;;;, . ::"·~·:::::·:;:·:::-:-::·:i:·:·y:'·:::::·:'::":·:'·:· ·::·"i::·:··::"'•":'::·:':"?:::·:"t;''.'""':"'::""''':'.";''.:""-'':.:.:;::::/:t":"·:·:·y·;:::::·:.::,>
0

:':::::

I ..._ ____ __.

I RELOAD PULSE

SET INT2 FLAG, IOCNT0.3

CASCADE OUT TO TIMER 2

1

lo
I
I
I

T1CNTL.8
(SOURCE)

8-BIT
CAPTURE LATCH

A7

foao

/:\
""';:::;:"""::;:;;;:::"""::::::::::::""":';::m:~':·'' \:::;;

:·:-:::::::

INTERNAL INTERNAL
BUS BUS

f=igure 3-19. 8-Bit Programmable Timer/Event Counters - Timer 1 (TMS70x0,
TMS70x2, and TMS70Cx0)

INTERNAL
BUS

O•
I
I
I
I
I
I

,__ __,.....,......__.._ -1-----A7
1 l I o

5-BIT
PRES CALER

T1CTL0.7 I
(STAR'O I

1------
UNDERFLOW

I
I

I
I
I
I
I

8-BIT MSB
DEC REMENTER

RELOAD PULSE I
READ MSB OF_ J
DEC REMENTER

SET INT2 FLAG, IOCNT0.3

TOGGLE 81 IF TIOUT
IS SELECTED, T1CTL 1.8 • 1

CASCADE OUT TO TIMER 2

TICTL0.8
(SOURCE)

I

8-BIT MSB
CAPTURE LATCH

L_REAO MSB OF
CAPTURE LATCH

foao

INTERNAL
BUS

Fiuure 3-20. 16-Bit Programmable Timer/Event Counters - Timer 1 (TMS70Cx2)

3-37

TMS7000 Family Architecture - Programmable Timer/Event Counters

3-38

7

MSb

MSb

7

MSb

START

Timer 1 Data Register - T1 DATA

l 6 l 5 l 4 l 3 l 2 l l 0

Decrementer Value LSb

T1 Reload Register LSb

Timer 1 Control Register - T1 CTL

6 5 4 3 2 0

Capture Latch Value (CL) LSb

SOURCE IDLE Prescale Reload Register

0 for all N MOS devices
0 - Wake-Up low-power mode, TMS70Cx0
1 - Halt low-power mode, TMS70Cx0

0 - Internal clock source = fosc/16
1 - External clock source from pin A7 /EC1

0 - Stop timer and hold current count value;
TMS70Cx0 device clear INT2 flag bit to 0

1 - Reload prescaler & decrementer & begin decrementing

Read

Write

Read

Write

Figure 3-21. Timer 1 Data and Control Registers (TMS70x0,
TMS70Cx0, and TMS70x2)

T1MSDATA

7 6 5 4 3 2

T1LSDATA

0 7 6 5 4 3 2 0

MS8yte Readout Latch LS8yte Decrementer

MS8yte T1 Reload Register LS8yte T1 Reload Register

Read

Write

7 6

x T10UT

7 6

T1CTL1

5 4 3 2

MS8yte Readout Latch

x x x x
0 - Data register bit 81

0

x x
Read

Write

1 - Timer 1 out; toggles 81 when T1 decrements through 0

T1CTLO

5 4 3 2 0
LS8yte of Capture Latch Read

START SOURCE T1 HALT Prescaler Reload Register Write

0 - Timer 1 remains active during Idle
1 - Timer 1 will halt during Idle

0 - Internal clock source = fosc/4
1 - External clock source from A7/EC1

0 - Stop timer; hold current count value, and clear INT2 flag bit to 0
1 - Reload prescaler & decrementer & begin decrementing

Figure 3-22. Timer 1 Data and Control Registers (TMS70Cx2)

TMS7000 Family Architecture - Programmable Timer/Event Counters

INTERNAL
BUS

I
I
I
I
I
I

T2CNTL.7
(START) - Oil

1
1~~0 A8

--"-6--BIT-'-- T2CNTL.S I~,
PRESCALER (CASCADE) ! ... 18 080

------ T2CNTL.8 (SOURCE)
1------ ._ ___ CASCADE OUTPUT

OF TIMER 1 UNDERR.OW

I
I RB..OAO PULSE

SET INT6 FLAG, IOCNT1.3

F1igure 3-23. 8-Bit Programmable Timer/Event Counters - Timer 2 (TMS70x2)

INTERNAL
BUS

T2CTL0.7

I
I
I
I
I
I

(START) o:j
~ O A8

1·- r0o
---6--BIT--- T2CTL1.7 I~

PRESCALER (CASCADE) ! +4 foao

T2CTL0.8

1------
UNDERFlOW

I
I

I
I
I
I
I

8-BIT MSB
DEC REMENTER

RB..OAO PULSE I
READ MSB OF_ J
DEC REMENTER

SET INT& FLAG, IOCNT1.3

TOGGLE BO IF T20UT
18 88..ECTED, T2CTL 1.8 • 1

(SOURCE)
._ ___ CASCADE OUTPUT

OF TIMER 1

I

8-BIT MBB
CAPTURE LATCH

L _READ MSB OF
CAPTURE LATCH

INTERNAL
BUS

Fig1ure 3-24. 16-Bit Programmable Timer/Event Counters - Timer 2 (TMS70Cx2)

3-39

TMS7000 Family Architecture - Programmable Timer/Event Counters

3-40

7

MSb

MSb

7

MSb

START

Timer 2 Data Register - T2DATA

6 5 4 3 2 1 0
Decrementer Value LSb

T2 Reload Register LSb

Timer 2 Control Register - T2CTL

6 5 4 3 2 1 0

Capture Latch Value (CL) LSb

SOURCE Cascade Prescale Reload Register

0 - Source bit determines clock source
1 - Clock source is Timer 1 reload signal;

overrides Source bit

0 - Internal clock source = fosc/16
1 - External clock source from pin A6/EC2

_ 0 - Stop timer and hold current count value bit to 0
1 - Reload prescaler & decrementer & begin decrementing

Read

Write

Read

Write

Figure 3-25. Timer 2 Data and Control Registers (TMS70x2)

T2MSDATA

7 6 5 4 3 2

T2LSDATA

0 7 6 5 4 3 2 0
MSByte Readout Latch LSByte Decrementer

MSByte T2 Reload Register LSByte T2 Reload Register

Read

Write

T2CTL1

7 6 5 4 3 2 0

MSByte Readout Latch

Cascade T20UT x x x x x x
Read

Write

0 - Data register bit 81
1 - Timer 2 out; toggles B 1 when T1 decrements through 0

0 - Clock determined by Source bit
1 - Clock source is Timer 1 reload signal, overrides Source bit

T2CTLO

7 6 5 4 3 2 0

LSByte of Capture Latch Read

START SOURCE T2HALT Prescaler Reload Register Write

0 - Timer 2 remains active during Idle
1 - Timer 2 will halt during Idle

0 - Internal clock source = f0 sc/4
1 - External clock source from A6/EC2

0 - Stop timer; hold current count value, and clear INT5 flag bit to 0
1 - Reload prescaler & decrementer & begin decrementing

Figure 3-26. Timer 2 Data and Control Registers (TMS70Cx2)

TIVIS7000 Family Architecture - Programmable Timer/Event Counters

3.7.1 Control Registers for Timer/Event Counters 1 and 2 (TMS70x0,
TMS70Cx0, and TMS70x2 Devices)

The control bits and prescaling value of Timers 1 and 2 are determined by the
timer control registers T1 CTL (P3) and T2CTL (P19). These bits can only be
written to the control registers and cannot be read by a program. When T1 CTL
is read, the capture-latch value associated with Timer 1 is returned. T2CTL is
a write-only register and will return an irrelevant value when read. Since the
control and prescale bits are write only, the read/modify/write instructions
such as ANDP, ORP, and XORP should not be used. The following in­
structions should be used for timer control-bit manipulations.

MOVP
MOVP
MOVP

where:

%>XX
>01XX
A
B
Pn
Rn

%>XX,Pn
A,Pn
B,Pn

STA
STA
STA

%>01XX
*Rn
>OlXX(B)

Immediate 8-bit hexadecimal data value
16-bit Peripheral~ File hexadecimal address
Register A
Register B
Peripheral-File register number
General-purpose register pair number

The same instructions are required for writing to the timer data registers,
T1 DATA and T2DATA, and other write-only registers.

3.'7'.2 Control Registers for Timer/Event Counters 1 and 2 (TMS70Cx2
Devices)

The control bits and prescaling value of Timers 1 and 2 of the TMS70Cx2
devices are determined by the timer control registers T1 CTLO (P15), T1CTL1
(P14), T2CTLO (P19), and T2CTL 1 (P18). Data can only be written to these
control registers, and cannot be read back by a program. When Timer 1 con­
trol register T1 CTLO is read, the least significant (LS) byte of the capture latch
value associated with Timer 1 is returned. When T1CTL1 is read, the most
significant (MS) byte of the Timer 1 readout latch is returned. When T2CTLO
is read, the least significant (LS) byte of the Timer 2 capture latch is returned.
When T2CTL 1 is read, the most significant (MS) byte of the Timer 2 readout
latch is· returned. Since the control and prescale bits are write only, the
read/modify/write instructions such as ANDP, ORP, and XORP should not
be used. The following instructions should be used for timer control-bit ma­
nipulations.

MOVP %>XX,Pn
MOVP A,Pn
MOVP B,Pn

where:

STA
STA
STA

%>01XX
*Rn
>OlXX(B)

%XX Immediate 8-bit hexadecimal data value
>01 XX 16-bit Peripheral-File hexadecimal address
A Register A
B Register B
Pn Peripheral-File register number
Rn General-purpose register pair number

The same instructions are required for writing to the timer data registers,
T1 LSDATA, T1 MSDATA, T2LSDATA, T2MSDATA, and other write-only re­
gisters.

3-41

TMS7000 Family Architecture - Programmable Timer/Event Counters

3.7.3 Timer Start/Stop (Bit 7) and Capture Latch

Bit 7 of the timer control registers contain a start/stop bit for the timer/event
counters.

Bit 7 = 0 A start bit of 0 disables or freezes the timer chain at the current
count value.

Bit 7 = 1 A start bit of 1, regardless of whether the bit was a 0 or a 1 before,
loads the prescaler and counter decrementers with the corre­
sponding reload register values, and the timer/event counter op­
eration begins.

3.7.3.1 Timer 1 Capture Latch (TMS70x0, TMS70Cx0, and TMS70x2
Devices)

The Timer 1 8-bit capture latch can be accessed by reading the Timer 1 control
register T1 CTL (P3). T1 CTL will contain the "captured" current Timer 1 value
whenever INT3 is triggered even if INT3 is disabled. Please note that when
INT3 is used to exit a low-power mode on the TMS70Cx0 CMOS parts, the
capture latch may store an indeterminate value. This is due to the logic design
of the CMOS devices. Since the value in the ca.E!!!!re latch may not be valid
when leaving either of the low-power modes via INT3, it is recommended that
the capture latch not be used in this situation.

3.7.3.2 Timer 1 and Timer 2 Capture Latches (TMS70Cx2 Devices)

3-42

The TMS70Cx2 contains two 16-bit capture latches, one each for Timer 1 and
Timer 2. The Timer 1 16-bit capture latch can be accessed by reading the
Timer 1 control registers T1 CTLO (P15) and T1CTL1 (P14). The Timer 2
16-bit capture latch can be accessed by reading the Timer 2 control registers
T2CTLO (P19) and T2CTL 1 (P18). The ££Qture latch values for Timer 1 and
Timer 2 are loaded on the active edges of INT3 and INT1, respectively, whether
the interrupts are enabled or not. Both capture latches are disabled during the
I OLE instruction when their corresponding HALT bits are 1.

Reading the Timer 1 control register T1CTL1 or the Timer 2 control register
T2CTL will return the value of the MSB readout latch of the respective timer.
This latch is shared between MSB of the timer latch and the MSB of the
capture latch. It allows the complete 16-bit value of the timer latch or the
capture latch to be sampled at one moment. The LSB must be read first,
which causes the MSB to be simultaneously loaded into the readout latch.
This latch physically exists in only one location for each timer; however, each
latch can be read from two different locations. Timer 1 MSB readout latch can
be read from T1 MS DATA (P12) or T1CTL1 (P14). Timer 2 MSB readout
latch can be read from T2MSDAiA (P16) orT2CTL1 (P18).

Reading the LSB of the decrementer or capture latch will update the contents
of the readout latch. In order to correctly read the entire 16-bit value of the
decrementer or capture latch, the LSB must be read first, which will load the
MSB readout latch. The MSB readout latch must be read and stored before
reading the LSB of either the decrementer or capture latch. The order of 16-bit
read operations should be:

Timer 1: Decrementer: Read P13 then P12 or read P13 then P14
Capture Latch: Read P1 5 then P1 2 or read P1 5 then P1 4

Timer 2: Decrementer: Read P1 7 then P1 6 or read P1 7 then P18
Capture Latch: Read P1 9 then P1 6 or read P1 9 then P1 8

TfVIS7000 Family Architecture - Programmable Timer/Event Counters

3."7.4 Clock Source Control (Bit 6)

For the TMS70x0, TMS70Cx0, and TMS70x2 devices, bit 6 (SOURCE) of
T1 CTL and T2CTL selects the Timer 1 and Timer 2 clock sources, respectively.

For the TMS70Cx2 devices, bit 6 (SOURCE) of T1 CTLO and T2CTLO selects
the Timer 1 and Timer 2 clock sources, respectively.

Bit 6 = 0 A source bit of 0 selects the internally generated clock and places
the timer/event counter in the Realtime Clock mode using the in­
ternal clock source. Each positive transition of the timer clock
signal decrements the count chain. Realtime Clock mode allows
a program to periodically interrupt and call a service routine, such
as a display refresh, by simply setting the prescale reload register
and the timer reload register so the routine is called at the desired
frequency.

Bit 6 = 1 A source bit of 1 selects the external clock source and places the
timer/event counter in the Event-Counter mode. In this mode,
each positive transition at the Port A event counter pins decre­
ments the count chain (when the prescaler is decremented to zero,
it is reloaded with the prescaler reload register value and the
counter is decremented by one).

Summary for all TMS7000 devices:

Timer 1
Timer 2

Event Counter
Input Pin

Pin A7/EC1
Pin A6/EC2

Interrupt
Level
INT2
INT5

The Event-Counter mode allows I NT2 and I NT5 to function as positive edge­
triggered external interrupts by loading a start value of 1 into both the pres­
caler and timer reload register. A positive transition on A7 /EC1 or A6/EC2
decrements the corresponding timer through zero and generates an I NT2 or
I NT5. Event-Counter mode can also be used as an externally provided real­
time clock if an external clock is input on the 1/0 pin. The minimum clock
period on pins A7 /EC1 or A6/EC2 must not be less than fosc/16 for
TMS70x0, TMS70x2, and TMS70Cx0 devices, or fosc/4 for TMS70Cx2 de­
vices. The minimum pulse width of the external signal must not be less than
1 .25 state clock cycles [1 .25 x tc(C)] to be properly detected by the device.

3-43

TMS7000 Family Architecture - Programmable Timer/Event Counters

3.7.5 Idle/Timer Halt Bit {Bit 5)

3-44

The function of the Idle bit {bit 5) in the timer control registers varies de­
pending on the device type.

TMS70x0 and TMS70x2

Bit 5 is not used on any of the TMS7000 NMOS devices.

TMS70Cx0

Bit 5 of T1 CTL (P3) register is the IDLE bit. This bit selects either of two
low-power modes on these devices when the IDLE instruction is exe­
cuted. (See Section 3.4.2 about CMOS low-power modes.)

Bit 5 = 0 Wake-Up low-power mode
Bit 5 = 1 Halt low-power mode

TMS70Cx2

Bit 5 of the T1 CTLO (P15) and T2CTLO (P19) registers acts as a tim­
er-halt bit. This bit selects either of two timer operational modes when
the I OLE instruction is executed.

Bit 5 = 0 Wake-Up low-power mode
Bit 5 = 1 Halt timer mode

TIVIS7000 Family Architecture - Programmable Timer/Event Counters

3. 7.6 Cascading Timers

The TMS70x2 and TMS70Cx2 devices can have their timers cascaded to­
gether to form one large timer. The external clock input for Timer 2 is the Port
A pin A6/EC2. This pin can also function as the serial clock 1/0 line (SCLK)
for the serial port on the TMS70x2 devices (see Section 3.8, The Serial Port).
Several arrangements are possible with Timer 2 in relation to Timer 3 and the
serial port because of this:

Both SCLK and Timer 2 clock internal: the Timer 3 output divided by 2
is driven out of the A6/EC2 pin and Timer 2 is internally clocked by 8
x tc(C)·

SCLK internal and Timer 2 clock external: the Timer 3 output divided by
2 is driven out of the A6/EC2 pin and this pin drives the Timer 2 clock.
In this mode, Timer 3 and Timer 2 are cascaded together, with Timer 3
driving Timer 2. This is done by setting the Cascade bit to 0 and the
Timer 2 source bit to 1. Timer 2 can then be cascaded under software
control to either Timer 1 or Timer 3.

SCLK external and Timer 2 clock internal: the input signal drives the se­
rial port clock and Timer 2 is internally clocked by 8 x tc(C)·

Both SCLK and Timer 2 clock external: the input signal drives both the
serial port clock and Timer 2.

The differences between the TMS70x2 and TMS70Cx2 Cascade bits are ex­
plained below.

TMS70x2

Bit 5 of the T2CTL (P19) register in the TMS70x2 devices is the Cas­
cade bit. This bit is used in conjunction with T2CTL (P19) Source (bit
6) to determine the Timer 2 clock source.

Bit 5 = 0 A Cascade bit of 0 allows bit 6 (source) to determine the
clock source.

Bit 5 = 1 A Cascade bit of 1 selects the output generated by the Timer
1 reload pulse as the clock input to the prescaler of Timer 2.
The Cascade bit overrides the Source bit; that is, if the Cas­
cade bit is 1 , the Source bit of Timer 2 has no effect.

TMS70Cx2

Bit 7 of the T2CTL 1 (P18) register is the Cascade bit. This bit is used
in conjunction with the T2CTLO (P19) Source (bit 6) to determine the
Timer 2 clock source.

Bit 7 = 0 A Cascade bit of 0 allows bit 6 of T2CTLO to determine the
clock source.

Bit 7 = 1 A Cascade bit of 1 selects the output generated by the Timer
1 reload pulse as the clock input to the prescaler of Timer 2.
The Cascade bit overrides the Source bit; that is, if the Cas­
cade bit is 1, the Source bit of Timer 2 has no effect.

Note that on the TMS70Cx2 devices, the Timer 2 output (T20UT) can­
not be used if Timer 1 and Timer 2 are cascaded together.

3-45

TMS7000 Family Architecture - Programmable Timer/Event Counters

3.7 .7 Timer and Prescaler Operation

3-46

The timer clock, whether internal or external, is prescaled by a 5-bit modulo-N
counter. The prescaling value is determined by the least significant five bits
of the timer control register. The timers decrement and an underflow occurs
on the transition from 0 to >FF. Thus, a prescale value of > 7 will produce an
f05c/128 clock input into the timer for a TMS70x0 device with a timer clock
source of f05c/16.

TMS70x0, TMS70Cx0, and TMS70x2

Timer 1 Bits 0-4 of Timer 1 control register T1 CTL comprise the Timer
1 prescale reload register value.

Timer 2 Bits 0-4 of Timer 2 control register T2CTL comprise the Timer
2 prescale reload register value.

TMS70Cx2

Timer 1 Bits 0-4 of Timer 1 control register T1 CTLO comprise the
Timer 1 prescale reload register value.

Timer 2 Bits 0-4 of Timer 2 control register T2CTLO comprise the
Timer 2 prescale reload register value.

These steps occur during timer operation:

1) Upon starting the timer, the prescaler and timer are loaded from the
prescaler reload register and timer reload register, respectively.

2) Each pulse decrements the prescaler by one.

3) When the prescaler countdown decrements through zero, the timer is
decremented by one. After the timer is decremented,

If timer ¢ 0 Reload prescaler and go back to step 2.

If timer = 0 When both the timer and the prescaler decrement through
zero together, an interrupt occurs. An INT2 for Timer 1
(INT5 for Timer 2) is momentarily pulsed when both the
prescaler and counter decrement past the zero value to­
gether. This sets the INT2 or INT5 Pulse flip-flop, as de­
scribed in Section 3.6.2, Interrupt Operation.

4) The 5-bit prescaler and decrementer are then immediately reloaded with
the contents of the prescale reload register and the timer reload register,
and the timer will start decrementing with the new reload register values.

TMS'JOxO, TMS70Cx0, and TMS70x2

The 8-bit timer reload register is loaded through the Timer 1 data register
T1 DATA (P2) for Timer 1 and the Timer 2 data register T2DATA (P18)
for Timer 2. This value is write only. When read, T1 DATA and T2DATA
contain the current value of the 8-bit decrementer for Timer 1 and Timer
2, respectively, and not the timer reload register value. For this reason,
the read/modify/write 1/0 instructions should not be used to alter the
data value in the timer reload register. When read, the T1 CTL contains
the capture latch value for Timer 1.

TIMS7000 Family Architecture - Programmable Timer/Event Counters

TMS70Cx2

The 16-bit timer reload registers are loaded through the Timer 1 data
registers T1 LSDATA (P13) and T1 MS DATA (P12), and the Timer 2 data
registers T2LSDATA (P17) and T2MSDATA (P16). This value is write
only. When read, T1 LSDATA and T2LSDATA return the current value
of the LSB of the Timer 1 and Timer 2 decrementers, respectively, and
not the LSB timer reload register value. For this reason, the
read/modify/write 1/0 instructions should not be used to alter the data
value in the timer reload registers. T1 MSDATA and T2MSDATA will
return the value of the MSB readout latch for Timers 1 and 2, respec­
tively. To read the Timer 1 capture latch, first read T1 CTLO (P15) to
obtain the LSB, then read T1CTL1 (P14) to obtain the MSB. To read
the Timer 2 capture latch, first read T2CTLO (P19) to obtain the LSB,
then read T2CTL 1 (P18) to obtain the MSB.

3.'7.8 Timer Interrupts

When the prescaler and decrementers pass through zero together, an interrupt
flag (INTn flag) is set and the prescaler and counter decrementers are imme­
diately and automatically reloaded with the corresponding reload register val­
ues. The interrupt levels generated by the timers are INT2 for Timer 1 and
I NT5 for Timer 2. The period between successive timer interrupts may be
calculated by the following formula:

TMS70x0, TMS70Cx0, and TMS70x2

t1NT = tcLK x (PR+1) x (TR+1)

where:

t1NT = Period between timer interrupts
tcLK = Period of the timer input clock which is 16/fosc for Realtime

Clock mode or the period of the external input pin for Event­
Counter mode

PR 5-bit prescaler reload register value
TR 8-bit timer reload register value

At the falling edge of the INT3 input, the Timer 1 counter value is loaded
into the capture latch. This feature provides the capability to determine
when an external event occurred relative to the current Timer 1 decre­
menter value.

TMS70Cx2

t1NT = tcLK x (PR+1) x (TR+1)

where:

t1 NT Period between timer interrupts
tcLK Period of the timer input clock which is 4/fosc for Realtime

Clock mode or the period of the external input pin for Event­
Counter mode

PR 5-bit prescaler reload register value
TR 16-bit timer reload register (value written to the MSB and LSB

timer reload registers)

3-47

TMS7000 Family Architecture - Programmable Timer/Event Counters

On the TMS70Cx2 devices, the falling edge of the INT3 input will cause
the 16-bit decrementer value of Timer 1 to be loaded into the Timer 1
capture latch. Likewise, the falling edge of the INT1 input will cause the
16-bit decrementer value of Timer 2 to be loaded into the Timer 2 cap­
ture latch. This feature provides the capability to determine when an
external event occurred relative to the current timer/counter value.

3.7.9 Timer Output Function (TMS70Cx2 Devices)

3-48

Timer 1 and Timer 2 have a timer output function which allows the B1 and
BO outputs, respectively, to be toggled every time the timer decrements
through zero. This function is enabled by the T1 OUT and T20UT bits (bit 6)
in the timer control registers T1 CTL 1 and T2CTL 1.

When operating in the timer output mode, the BO and/or B1 output cannot
be changed by writing to the Port B Data Register. Writing to the appropriate
timer's Start bit will reload and start the timer, and will not toggle the output.
The output will toggle only when the timer decrements through zero. The
timer output feature is independent of INT2 and INT5; therefore, it will operate
with I NT2 and I NT5 enabled or disabled. Also, if the timer is active during the
I OLE instruction, the timer output feature will continue to operate.

Whenever the T20UT or T1 OUT bit is returned to 0, BO or B1 will become an
output-only pin, like B2. The vaslue in the BO or B1 data register will be the
last value output by the timer output function, to that BO or B1 will not change
as the T1 OUT or T20UT bit is returned to 0.

Whenever Port B is read, the value on the BO pin will always be returned, so
the current timer output value can be read by reading Port B.

The T1 OUT and T20UT bits are set to 0 by a reset, so the timer output func­
tion will not be enabled unless the user sets T1 OUT or T20UT to 1.

The Timer 2 output (T20UT) cannot be used if Timer 1 and Timer 2 are cas­
caded together (Cascade bit of T2CTL 1 set to 1).

TMS7000 Family Architecture - Serial Port (TMS70x2 and TMS70Cx2)

3.H Serial Port (TMS70x2 and TMS70Cx2 Devices Only)

The TMS70x2 and TMS70Cx2 devices contain a serial port, greatly enhancing
their 1/0 and communications capabilities. Including a hardware serial port
on chip saves ROM code and allows muc~ higher transmission rates than
could be achieved through software.

The full-duplex serial port consists of a receiver (RX), transmitter (TX), and a
third timer called Timer 3 (T3). The functional operation of the serial port is
configured through software initialization. A set of control words are first sent
out to the serial port to initialize the desired communications format. These
control words will determine the baud rate, character length, even/odd/off
parity, number of stop bits, and so forth.

Figure 3-27 (page 3-50) illustrates the serial port functional blocks.

The serial port provides Universal Synchronous Asynchronous Receiver/­
Transmitter (USART) communications:

Asynchronous mode, discussed in Section 3.8.2.1 (page 3-63) inter­
faces with many standard devices such as terminals and printers using
RS-232-C formats.

lsosynchronous mode, discussed in Section 3.8.2.2 (page 3-64)
permits very high transmission rates and requires a synchronizing clock
signal between the receiver and transmitter.

Serial 1/0 mode, discussed in Section 3.8.2.3 (page 3-64) can be used
to expand 1/0 lines and to communicate with peripheral devices requir­
ing a non- UART serial input such as A-to- D converters, display drivers,
and shift registers.

The serial port also has two multiprocessor protocols, compatible with the
Motorola 6801 and Intel 8051. These protocols allow efficient data transfer
between multiple processors. They are implemented using isosynchronous or
standard asynchronous formats.

3-49

TMS7000 Family Architecture - Serial Port (TMS70x2 and TMS70Cx2)

3-50

r---------------,
SM ODE

SCNTLO

SSTAT

T3DATA

SCTL1

RXBUF

TXSUF

SERIAL. PORT

TIMER3

I
I
I
I

------INT4 I
-- I

RXSHF

TXSHF

---------'- SCLK ------RXD

M-------- SCLK ------rxo
I INT4 I
L---------------~

Figure 3-27. Serial Port Functional Blocks

TMS7000 Family Architecture - Serial Port (TMS70x2 and TMS70Cx2)

3.8.1 Serial Port Registers

The serial port is controlled and accessed through registers in the Peripheral
File. These registers are listed in Table 3-15. Figure 3-27 contains a block
diagram of the serial port registers and functional blocks.

Table 3-15. Serial Port Control Registers

REGISTER
NAME TYPE FUNCTION

TMS70Cx2 TMS70x2

P20 P17 SMODE FIRST WRITE Serial Port Mode
P21 P17 SCTLO READ/WRITEt Serial Port Control 0
P22 P17 SST AT READ Serial Port Status
P23 P20 T3DATA READ/WRITE Timer 3 Data
P24 P21 SCTL1 READ/WRITE Serial Port Control 1
P25 P22 RXBUF READ Receiver Buffer
P26 P23 TXBUF WRITE Transmission Buffer

t Write only for TMS70x2 devices

The serial mode register, SM ODE, is the RX/TX control register that describes
the character format and type of communication mode (Asynchronous, lso­
synchronous, or Serial 1/0).

The serial port control 0 register, SCTLO, is the RX/TX control register used
to control the serial port functions, TX and RX enable, clearing of error flags,
and S/W enable.

The serial port Status Register, SSTAT, is the read-only serial Status Register
used to report the serial port status.

The T3DATA register is the read/write Timer 3 data register.

RXBUF is a read-only register containing data from RX. RX8UF is double­
buffered with the internal shift register (RXSHF) so that the the CPU has at
least a full frame to read the received data before RX can overwrite it with new
data.

TXBU F is a write-only register from which TX takes the data it transmits. It
is double-buffered with the TX shift register (TXSHF), so that the CPU has a
full frame to write new data before TXBUF becomes empty.

The TXD and RXD lines use 1/0 pins 83/TXD and A5/RXD, respectively. This
configuration allows the TXD and RXD pins to be used as 1/0 pins if desired.
If serial port transmission is disabled, then TXD follows 83. If reception is
disabled, then no receiver interrupts occur and A5 functions an an input pin
on TMS70x2 devices and as a general-purpose 1/0 pin on TMS70Cx2 de­
vices. The 83 1/0 pin must be set to a 1 in order to enable the TXD pin.

3-51

TMS7000 Family Architecture - Serial Port (TMS70x2 and TMS70Cx2)

3.8.1.1 Serial Mode Register (SMODE)

The SMODE register is the RX/TX control register that describes the character
format and type of communication mode (Asynchronous, lsosynchronous, or
Serial 1/0}.

7

STOP

STOP

6

CMODE

CM ODE

5

PEVEN

PEVEN

4 3

PEN CHAR1

PEN CHAR1

l

2 1 0

CHARO ASYNC MULTI Read

CHARO ASYNC MULTI Write

J
Lo - Motorola protocol

1 - Intel protocol

0 - lsosynchronous
.__ communications

1 - Asynchronous
communications

.__ Bits/Character:
00 - 5 bits/char
01 - 6 bits/char
10 - 7 bits/char
11 - 8 bits/char

.__ 0 - Parity disabled
1 - Parity enabled

'- 0 - Odd parity
1 - Even parity

'- 0 - Serial 1/0 mode
1 - Communication mode

'- 0 - One STOP bit
1 - Two STOP bits

Figure 3-28. Serial Mode Register - SMODE

TMS70x2 (Write-only register)

SMODE is accessed at Peripheral-File location P17 on the first write
after a hardware or serial port reset. SMODE must be the first register
written to in the serial port immediately following a reset. After the
SMODE register is written to, it cannot be accessed again without first
performing another reset operation. The first write operation to location
P17 immediately following a reset accesses SMODE. All subsequent
writes to P17 access the control register (SCTLO).

TMS70Cx2

SMODE is accessed anytime at Peripheral-File register P20.

Multiprocessor Mode (MULTI) Bit 0

3-52

There are two possible multiprocessor protocols, Motorola (Section 3.8.3.1)
and Intel (Section 3.8.3.2).

0 - Selects the Motorola protocol.
1 - Selects the Intel protocol.

The Motorola mode is typically used for normal communications since the In­
tel mode adds an extra bit to the frame. The Motorola mode does not add this

TMS7000 Family Architecture - Serial Port (TMS70x2 and TMS70Cx2)

extra bit and is compatible with RS-232-type communications. Multi­
processor communication is different from the other communication modes
because it uses Wake-Up and Sleep functions.

Communications Mode (ASYNC) Bit 1
This bit determines the serial port communication mode.

0 - Selects lsosynchronous mode (Section 3.8.2.2). In this mode, the bit pe­
riod is equal to the SCLK period; bits are read on a single value basis.

1 - Selects Asynchronous mode (Section 3.8.2.1). In this mode the bit period
is 8 times the SCLK period and bits are read on a two out of three majority
basis.

Number of Bits per Character (CHAR1, CHAR2) Bits 2,3
Character length is programmable to 5, 6, 7 or 8 bits. Characters less than 8
bits are right-justified in buffers RXBUF and TXBUF and padded with leading
zeros. The unused leading bits in TXBUF may be written as don't cares. The
RXBUF and TXBUF register formats are illustrated in Figure 3-33 and Figure
3-34.

Parity Enable (PEN) Bit 4
If parity is disabled (PEN set to 0), then no parity bit is generated during
transmission or expected during reception. A received parity bit is not trans­
ferred to RXBUF with the received data because it is not considered one of the
data bits when programming the character field. On the TMS70Cx2 devices,
the parity error flag may be set even though parity is disabled.

Parity Even (PEVEN) Bit 5
If PEN is set, then this bit defines odd or even parity according to an odd or
even number of 1 bits in both transmitted and received characters.

0 - Sets odd parity.
1 - Sets even parity.

Serial 1/0 or Communication Mode (CMODE) Bit 6
This bit determines whether the serial port operates in Serial 1/0 mode or one
of the communication modes.

0 - Puts the serial port in Serial 1/0 mode which allows easy 1/0 expansion
by using external shift registers.

1 - Selects communication mode. The ASYNC bit (bit 1) determines whether
the serial port is in Asynchronous or lsosynchronous mode. The MULTI
bit (bit 0) determines if the communication uses the Motorola or Intel
protocol.

Number of Stop Bits (STOP) Bit 7
This bit determines the number of stop bits sent when the serial port is in
lsosynchronous or Asynchronous mode.

0 - Selects one stop bit.
1 - Selects two stop bits. The receiver checks for one stop bit only.

3-53

TIYIS7000 Family Architecture - Serial Port (TMS70x2 and TMS70Cx2)

3.8.1.2 Serial Control Register 0 (SCTLO)

3-54

The SCTLO register is the RX/TX control register used to control the serial port
functions, TX and RX enable, clearing of error flags, and S/W reset. SCTLO
is cleared by a hardware or software reset.

7
SPH
SPH

6 5
UR 0
UR x

4 3
0 0

ER x

2
RXEN
RXEN

1 0
~CLKEN TXEN
~CL KEN TXEN l 0 ~ Tra

1 - Tra

Read
Write

nsmitter disabled
nsmitter enabled

SCLK enable (T MS70Cx2):
al-purpose 1/0 0 - A4 is gener

1 - A4 is SCLK
0 - Receiver disabled; A 5 is

general-purpose 1/0
1 - Receiver enabled; A 5 is RX input

..._ 0 - No reset flaff
1 - Reset error lag

L- 0 - Serial port enable
1 - Reset serial port

- Serial port halt (TMS70Cx2):
0 - Serial port & Timer 3 fully active during IDLE
1 - Serial port & Timer 3 fully halted during IDLE

Figure 3-29. Serial Control 0 Register - SCTLO

TMS70x2 (Write-only register)

SCTLO is a write-only register, accessed at Peripheral-File location P17
on the second and subsequent write operations after a hardware or serial
port reset. After a hardware or serial port reset, SMODE must be written
to before the SCTLO register can be accessed, since the SMODE and
SCTLO registers are accessed through the same location.

Use the following procedure if you do not know if P1 7 is SCTLO or
SMODE. Writing a 0 to P17 puts this register at SCTLO, but the first
write operation might have changed the SMODE value so it needs to be
re-initialized.

SMODE
SCTLO

EQU P17
EQU P17

* UARTRS MOVP %0,Pl7
*

P17 in an unknown state,
ensure being at SCTLO
Reset the serial port
Set SMODE to proper
values *

*
*

MOVP %>40,SCTLO
MOVP %>XX,SMODE

MOVP

TMS70Cx2

% ?XOXXXXXX, SCTLO Clear the reset bit
(?=binary)
Pl7 is now SCTLO

SCTLO is a read/write register, and can be accessed anytime at Peri­
pheral-File location P21.

TMS7000 Family Architecture - Serial Port (TMS70x2 and TMS70Cx2)

Transmit Enable (TXEN) Bit 0
Data transmission through TXD {pin 83) cannot take place unless TXEN is set
to 1.

When TXEN is reset to 0, transmission does not halt until all the data previ­
ously written to TXBUF is sent. Thereafter, 83/TXD can be used as general­
purpose output. TXEN is set to 0 by a hardware or software reset.

In lsosynchronous mode, if an internally generated SCLK is used, the SCLK
output at pin A6 {TMS70x2) or A4 (TMS70Cx2) is enabled. When the entire
frame is transmitted, TX disables SCLK and sets TXRDY and INT4 flag to a 1,
and TXEN to 0. TXEN has no direct effect on TXRDY or INT4 flag in this
mode.

Ser·ial Clock Enable (SCLKEN) Bit 1 - TMS70Cx2 devices only
This bit determines if the A4/SCLK pin will be used as general-purpose 1/0
(bit 1 = 0), or as the serial clock SCLK pin (bit 1 = 1).

Receive Enable (RXEN) Bit 2
In the communication modes (Asynchronous and lsosynchronous):

0 - Prevents received characters from being transferred into RX8UF, and no
RXRDY interrupt is generated. However, the receiver shift register
(RXSHF) continues to assemble characters. Thus, if RXEN is set during
character reception, the complete character will be transferred into
RX8UF.

1 - Enables RX (receiver) to set INT4 flag and enable RXRDY.

In Serial 1/0 mode:

0 - The UR bit sets RXEN to 0.
1 - Enables RX operation.

In lsosynchronous mode, if an internally generated SCLK is used, the SCLK
output at pin A6 (TMS70x2) or A4 (TMS70Cx2) is enabled. When the entire
frame is received, RX disables SCLK and sets RXRDY and INT4 flag to a 1, and
RXEN to 0. RXEN has no direct effect on RXRDY or INT4 flag in this mode.

Error Reset (ER) Bit 4
The error reset bit is used to reset any error flags during serial port operation.

0 - No error flags are affected.
1 - Clears all three error flags in the SSTAT register (PE, OE, FE).

Software UART Reset (UR) Bit 6
Writing a 1 to this bit puts the serial port in the reset condition, enabling the
SMODE register for initialization. SCLK (pin A6 on TMS70x2 devices, pin
A4 on TMS70Cx2 devices) is put in the high-impedance input state. The TXD
signal is held at 1 so the 83 pin may be used as a general-purpose output line.
On TMS70Cx2 devices, the A5/RXD signal becomes a general-purpose 1/0
line; on TMS70x2 devices, it becomes an input.

Until a 0 is written to UR, all affected logic is held in the reset state. UR must
be set to 0 before the CPU can write a 1 to CLK and output SCLK on Port A.
UR is set to 1 by hardware RESET. The UART reset affects only the items
above; it is not a general device reset like the RESET pin.

3-55

TMS7000 Family Architecture - Serial Port (TMS70x2 and TMS70Cx2)

Serial Port Halt Enable (SPH) Bit 7 - TMS70Cx2 devices only
This bit determines if the serial port and Timer 3 will be active or not during
an IDLE instruction.

0 - Serial port and Timer 3 will be fully active during an I OLE instruction.
1 - Serial port and Timer 3 will be halted during an I OLE instruction.

3.8.1.3 Serial Port Status Register (SSTAT)

SSTAT is the read-only serial port Status Register. Bits 0, 1, and 6 of this re­
gister are cleared by a hardware or software reset.

7 6 5 4 3 2 0
IADD BFKDT FE OE PE TXE RXRDY TXRDY Read

0 - TXBUF full
1 - TXBU F ready for

character
0 - RXBU F empty
1 - RXBU F ready with

new character

0 - Transmitter written to
1 - Transmitter empty

0 - If PEN= 1, no parity error
1 - If PEN= 1, parity error

0 - No overrun error
1 - Overrun error

0 - No framing error
1 - Framing error

0 - No break detect
1 - Break detect

Intel address bit (TMS70Cx2 devices):
0 - Last address bit received was 0, or Intel mode not selected
1 - Last address bit receives was 1
X - Don't care on TMS70x2 devices

Figure 3-30. Serial Port Status Register - SSTAT

TMS70x2

The SSTAT register is accessed anytime by reading Peripheral-File lo­
cation P17.

TMS70Cx2

The SSTAT register is accessed anytime by reading Peripheral-File lo­
cation P22.

Transmitter Ready (l'XRDY) Bit 0

3-56

The TXRDY bit is set by the transmitter to indicate that TXBUF is ready to re­
ceive another character. It is automatically reset when a character is loaded.
If the serial port interrupt (INT4) is enabled, it is issued at the same time the
TXRDY bit is set. Resetting the UART sets TXRDY to 1.

TMS7000 Family Architecture - Serial Port (TMS70x2 and TMS70Cx2)

Receiver Ready (RXRDY) Bit 1
This bit is set by the receiver to indicate that RXBUF is ready with a new
character. It is automatically reset when the character is read out. If the serial
port interrupt (INT4) is enabled, it is set at the same time that the RXRDY bit
is set. Resetting the UART sets RXRDY to 1.

Transmitter Empty (TXE) Bit 2
The TXE bit is set to 1 when the transmitter shift register (TXSHF) and TXBUF
(shown in Figure 3-34, page 3-60) are empty. It is reset to 0 when the
TXBUF is written to. Resetting the UART sets TXE to 1.

Parity Error (PE) Bit 3
PE is set when a character is received with a mismatch between the number
of 1 s and its parity bit. This bit is reset by the ER bit in SCTLO. Disabling the
parity does not disable this flag, so this flag may he set even when the parity
is disabled.

Overrun Error (OE) Bit 4
OE is set when a character is transferred into RXBUF (shown in Figure 3-34)
before the previous character has been read out. The previous character is
overwritten and lost. OE is reset by the ER bit in SCTLO.

Framing Error (FE) Bit 5
FE is set when a character is received with a 0 stop bit, meaning that syn­
chronization with the start bit has been lost and the character is incorrectly
framed. The ER bit in SCTLO resets FE.

Break Detect (BRKDT) Bit 6
The BRKDT bit shows that a break condition has occurred. BRKDT is set if
the RXD line remains continuously low for 10 bits or more, starting from the
end of a frame (stop bit). When the break ends, BRKDT is set to a 0 imme­
diately. In the Serial 1/0 mode, BRKDT remains a 0. UR (SCTLO bit 6) sets
8RKDT to 0. A break is generated by setting Port B bit 3 low. Setting 83 high
again resumes TXD operation.

The TXD and RXD lines are multiplexed on 1/0 lines 83 and A5, respectively.
This configuration allows the TXD and RXD pins to be used as 1/0 pins if
desired. If transmission is disabled, then TXD follows 83. If reception is dis­
abled, then no receiver interrupts occur and A5 is an input bit.

Intel Address Bit (IADD) Bit 7 - TMS70Cx2 devices only
This bit shows the last data bit received when using the Intel protocol.

0 - Last address bit received was 0, or Intel mode was not selected.
1 - Last address bit received was 1 .
X - Don't care on TMS70x2 devices.

3-57

TMS7000 Family Architecture - Serial Port (TMS70x2 and TMS70Cx2)

3.8.1.4 Serial Control Register 1 (SCTL 1)

The SCTL 1 register is the read/write serial control register 1. It is used to
control the Timer 3 start/stop function, the source of SCLK, multiprocessor
communication, Timer 3 interrupt, and the Timer 3 prescaler value.

7
T3RUN
T3RUN

6
CLK
CLK

5
SLEEP
SLEEP

4
WU
WU

3
T3FLG
T3FLG

2 1 0
T3ENB PRE3(1) PRE3(0) Read
T3ENB PRE3(1) PRE3(0) Write

1 T
I

2-bit prescale r reload reg. for timer

0 - Disables T3 interrupt
.__ to set INT4 flag

1 - Enables T3 interrupt
to set INT4 flag

Read: 0 - Clear T3FLG
1 - Set T3FLG

..._Write: 0 - T3FLG was software cleared
1 - Timer 3 decremented through 0

or T3FLG was software set
.._ Controls TX multiprocessor communication

.__ Controls RX multiprocessor communication
.._ 0 - External clock from SCLK pin

1 - Internal SCLK from Timer 3
'-· 0 - Stop Timer 3

1 - Start Timer 3

Figure 3-31. Serial Port Control 1 Register - SCTL 1

TMS70x2

The SCTL 1 register is accessed at Peripheral-File location P21.

TMS70Cx2

The SCTL 1 register is accessed at Peripheral-File location P24.

Timer 3 Prescale Reload Register (PRE3(1), PRE3(0)) Bits 0,1
These are the prescale bits for Timer 3. The internal clock input to Timer 3 is
either f05c/4, /8, /16, or /32, depending on how the prescale bits are set. The
Timer 3 output divided by 2 is the actual baud rate for the lsosynchronous
mode; divided by 8, it is the baud rate for for the Asynchronous mode.

Timer 3 Interrupt Enable (T3ENB) Bit 2
When T3ENB is set to 1, Timer 3 sets INT4FLG to 1 when it sets T3FLG to 1.
T3ENB is reset to 0 by a hardware reset, but not by UR (SCTLO bit 6). This
allows Timer 3 to operate independently of the serial port.

Timer 3 Interrupt Flag (T3FLG) Bit 3

3-58

The T3FLG bit is set to 1 when both the Timer 3 prescaler and Timer 3 dec­
rement through zero together. T3FLG indicates that Timer 3 caused the serial
port interrupt. T3FLG must be cleared by software in the T3 interrupt service
routine, since it is not cleared when the INT4 vector is fetched by the CPU.
T3FLG is reset to 0 by a hardware reset, but not by UR (SCTLO bit 6). This
allows Timer 3 to operate independently of the serial port.

TMS7000 Family Architecture - Serial Port (TMS70x2 and TMS70Cx2)

Wake-Up (WU) Bit 4
The WU bit controls the TX features of the multiprocessor communication
modes (see Section 3.8.2.2 and Section 3.8.2.1). Resetting th UART sets
WU to 0; it cannot be set again until UR is cleared.

Sleep (SLEEP) Bit 5
The SLEEP bit controls the RX features of the multiprocessor modes (See
Section 3.8.2.2 and Section 3.8.2.1). Resetting the UART sets SLEEP to 0.

Serial Clock Source (CLK) Bit 6
The CLK bit determines the SCLK source. Resetting the UART sets CLK to O;
it cannot be set again until UR is cleared.

0 - Selects an external SCLK, which is input on the high-impedance A6/SCLK
line on the TMS70x2 devices, and pin A4/SCLK on the TMS70Cx2 de­
vices.

1 - Selects an internal SCLK, derived from Timer 3. This signal is output on
the low impedance SCLK line.

Timer 3 Start (START) Bit 7
This bit controls the starting and stopping of Timer 3.

0 - Stops Timer 3.
1 - Loads Timer 3 with the Timer 3 data value and then starts the timer.

Writing a 1 will have no effect if Timer 3 is already active.

3.8.1.5 Timer 3 Data Register

The Timer 3 data register, T3DATA, is a read/write register used to store the
countdown value of Timer 3.

7 6 5 4 3 2 0
MSb Current Timer Value LSb Read
t---~---------~---------i ._M_S_b ______ T_im_er_R_e_lo_ad_R_e g_ist_e_r ______ L_S__.b Write

Figure 3-32. Timer 3 Data Register - T3DATA

TMS70x2

The T3DATA register is accessed at Peripheral-File location P20.

TMS70Cx2

The T3DATA register is accessed at Peripheral-File location P23.

3-59

TMS7000 Family Architecture - Serial Port (TMS70x2 and TMS70Cx2)

3.8.1 .6 Receiver Buffer

The receiver buffer, RXBUF, is a read-only register used to store the current
RX data. Writing has no direct effect on this register. Data in the RXBUF is
right justified, padded with leading Os.

7 l 6 l 5 l 4 l 3 _l 2 l 1 l 0

MSb Receiver Data LSb

0 0 l 0 14-- 5 Data Bits -+

0 0 14-- 6 Data Bits -+

0 4-- 7 Data Bits -+

4-- 8 Data Bits -+

Figure 3-33. Receive Buffer - RXBUF

TMS70x2

The read-only RXBUF register is accessed at PF location P22.

TMS70Cx2

The read-only RXBUF register is accessed at PF location P25.

3.8.1.7 Transmitter Buffer

3-60

The transmitter buffer, TXBUF, is a write-only register used to store data bits
to be transmitted by TX. Data written to TXBUF must be right justified be­
cause the left-most bits will be ignored for characters less than eight bits long.

7 l 6 l 5 l 4 l 3 l 2 l 1 l 0

MSb Transmitter Data LS~
x x l x 14-- 5 Data Bits -+

x x 14-- 6 Data Bits -+

x 4-- 7 Data Bits -+

4-- 8 Data Bits -+

Figure 3-34. Transmitter Buffer - TXBU F

TMS70x2

The write-only TXBUF register is accessed at PF location P23.

TMS70Cx2

The write-only TXBUF register is accessed at PF location P26.

TMS7000 Family Architecture - Serial Port (TMS70x2 and TMS70Cx2)

3.8.1.8 RX Signals in Communication Modes

INT-4
R.G

RXRDY

RXD

Notes: 1) Format shown is start bit + seven data bits + stop bit.
2) SCLK is continuous, external or internal.
3) If RXEN = 0, RXSHF still receives data from RXD. However, the data is not

transferred to RXBUF and RXRDY and INT4FLG are not set.

Sequence of Events:
1) RXSHF data is transferred to RXBUF. Error status bits are set if an error is detected.
2) Software writes to I NT4CLR to clear I NT4FLG. If not, CPU clears.
3) INT4FLG on entry to level 4 interrupt routine.
4) Software reads RXBUF.

3.8,,1.9 TX Signals in Communication Modes

INT.o4_J R.G l
TXEN

8

~'~----------------~r 7

Notes: 1 Format shown is start bit + eight data bits + parity bit + two stop bits.
2) SCLK is continuous whether internal or external.

Sequence of Events:
1) Software writes to TXBUF.
2) TXBUF and WU data are transferred to TXSHF and WUT. INT4FLG and TXRDY are

set.
3) Software writes to INT4CLR to clear INT4FLG or CPU clears INT4FLG on entry to

level 4 interrupt routine.
4) Software writes to TXBUF.
5) Software writes to INT4CLR to clear INT4FLG or CPU clears INT4FLG on entry to

level 4 interrupt routine.
6) Software resets TXEN; current frame will finish and transmission will stop whether

TXBUF is full or empty.
7) TXE is set if TXBUF and TXSFT are empty.

3-61

TMS7000 Family Architecture - Serial Port (TMS70x2 and TMS70Cx2)

3.8.1.10 RX Signals in Serial 1/0 Modes
INT4
R..G -----'l---

6

RXEN l
RXHDY

RXD

SCLI<

2
Notes: 1 RXEN has no effect on INT4FLG or RXRDY in Serial 1/0 mode.

2) RXD is sampled on SCLK rise; external shift registers should be clocked on
SCLK fall.

3) The SCLK source should be internal as it is gated by internal circuitry.

Sequence of Events:
1) Software starts receiving by setting RXEN.
2) Gated SCLK starts and data is received.
3) RXEN is automatically cleared in last data bit.
4) RXSHF data is transferred to RXBUF, and RXRDY and INT4 are set.
5) Software writes to INT4CLR to clear INT4FLG; if not, CPU clears INT4FLG on entry

to level 4 interrupt routine.
6) Software reads RXBUF.

3.8.1.11 TX Signals in Serial 1/0 Modes
INT4

3-62

t=L.G

TXEN

3

·rxe '------------------------

TXRDY ~
1

SCLI<

2
.,.
4

Notes: 1 Format shown is eight data bits.
2) The SCLK source should be internal as it is gated by internal circuitry.

Sequence of Events:
1 ~ Software writes to TXBUF.
2 TXBUF data is transferred to TXSFT; INT4FLG and TXRDY are set, and SCLK starts.
3 Software resets TXEN, current frame will finish and transmission will halt whether

TXBUF is full or empty.
4) Frame ends and SCLK stops because TXEN = 0.

TMS7000 Family Architecture - Serial Port (TMS70x2 and TMS70Cx2)

3.8.2 Clock Sources and Serial Port Modes

The serial port can be driven by an internal (Timer 3) or external baud rate
generator. The serial clock source, SCLK, is determined by the SCTL 1 clock
bit (CLK) as either an input or an output. If an external clock source is se­
lected, then the A6/SCLK pin (TMS70x2 devices) or A4/SCLK pin
(TMS70Cx2 devices) is a high-impedance input. If an internal clock source
is selected, then a 50% duty cycle clock signal is output on the low-impedance
SCLK pin. The clock output frequency depends on the crystal frequency. The
current logic level of SCLK (internal or external) can be determined by reading
SCLK. RX receives data on· the rising SCLK edges and TX transmits data on
the falling SCLK edges.

RX/TX (receiver/transmitter) has three modes: two communication modes -
Asynchronous and lsosynchronous - and Serial 1/0. Serial 1/0 Mode links the
serial port to shift registers for simple 1/0 expansion. The lsosynchronous and
Asynchronous communication modes link to other synchronous and asyn­
chronous devices. These two modes also have extra features for two forms
of multiprocessor communication, Motorola and Intel. In all modes, 1/0 is
NRZ (non-return to zero) format; that is, data value 1 = high level, and data
value 0 = low level.

3.8.2.1 Asynchronous Communication Mode

In Asynchronous communication mode, the frame format consists of a start
bit, five to eight data bits, an even/odd/no parity bit, and one or two stop bits.
The bit period is eight times the SCLK. period.

Receiving a valid start bit initiates RX operation. A valid start bit consists of
a negative edge followed by three samples, two of which must be zero. If two
of the three samples are not zero, then the receiver continues to search for a
Start bit. These samples occur three, four, and five SCLK periods after the
negative edge. This sequence provides false start bit rejection and also locates
the center of bits in the frame where the bits will be read on a majority (two
out of three) basis. Figure 3-35 illustrates the asynchronous communication
format, with a start bit showing how edges are found and majority vote taken.

BCLK

TXO
RXD

FALLING
EDGE
DETECTED

l
"MAJORllY VOTE"

TAl<al

1 2 ls L ls e 7 8 1 2 3

+-- DATA BIT PERIOD --+
• 8 8CLK PERIODS

Figure 3-35. Asynchronous Communication Format

Since RX synchronizes itself to frames, the external transmitting and receiving
devices do not have to use the same SCLK; it may be generated locally. If the
internal SCLK is used it is output continuously on pin A6/SCLK (TMS70x2
devices) or A4/SCLK (TMS70Cx2 devices).

3-63

TMS7000 Family Architecture - Serial Port (TMS70x2 and TMS70Cx2}

3.8.2.2 lsosynchronous Communication Mode

3-64

lsosynchronous communication mode is a hybrid protocol, combining features
of the Asynchronous mode and the Serial 1/0 mode. The lsosynchronous
frame format is the same as the Asynchronous mode frame format, consisting
of a start bit, five to eight data bits, an even/odd/no parity bit, and one or two
stop bits. However,it uses only one serial clock (SCLK) cycle per data bit as
compared to 8 SCLKs per data bit for Asynchronous mode. This allows much
faster transmission rates than Asynchronous mode. The bit period equals the
SCLK period, as it does in Serial 1/0 mode. Bits are read on a single value
basis. Since the RX does not synchronize itself to the data bits, the transmitter
and receiver must be supplied with a common SCLK. The benefit of the lso­
synchronous mode is that the frame format can be configured like the Asyn­
chronous mode, yet the baud rate is that of the Serial 1/0 mode.

Receiving a valid start bit, which consists of a negative edge, initiates RX op­
eration. Since RX does not synchronize itself to data bits, the transmitter and
receiver must be supplied with a common SCLK. If the internal SCLK is used
it is output continuously on pin A6/SCLK/EC2 (TMS70x2 devices) or
A4/SCLK (TMS70Cx2 devices).

Figure 3-36 illustrates the lsosynchronous communication format, with a
complete frame consisting of a start bit, six data bits, even parity, and two stop
bits.

SCLK

TXD
RXD

FALLING EDGE
INDICATES START BIT

Figure 3-36. lsosynchronous Communication Format

In both the Asynchronous and lsosynchronous Communication modes, when
a frame is fully received, RXBUF is loaded from RXSHF, RXRDY. and INT4
flag are set to 1, and the error status bits are set accordingly. RXR DY is reset
to 0 when the CPU reads RXBUF.

Transmission is initiated after the CPU writes to TXBUF. This sets TXE to 0.
TXSHF is loaded from TXBUF, setting TXRDY and INT4 flag to 1. After
completing the transmission, TXSHF reloads if TXBUF is full; if not, TX idles
and TXE is 1 until TXBUF is written to. Bit 3 of Port 3 must be set to a 1 to
enable data transmission through the 83/TXD pin.

TMS7000 Family Architecture - Serial Port (TMS70x2 and TMS70Cx2)

3.8.2.3 Serial 1/0 Mode

In Serial 1/0 mode, the frame format is five to eight data bits and one stop bit,
with no corresponding clock cycle for the stop bit. An external or internal
synchronizing clock signal must be supplied from either the internal Timer 3
or an external clock. An external clock must be supplied if the external SCLK
option is used. The bit period is equal to the SCLK period. TX operation is
initiated by writing to TXBUF when TXRDY equals 1. RX operation is initiated
by writing a 1 to the RXEN bit. When the receiver has received a full frame,
the RXEN bit is automatically cleared, disabling the receiver. The transmitter
starts operating when the TX enable bit (TXEN) is set to 1. Data is written to
TXBUF when TXRDY equals 1. Unlike the receiver, the TXEN bit is not au­
tomatically cleared when the transmitter finishes a full frame.

To start the receiver and transmitter at the same time, first write the transmitter
data to TXBUF and then set both RXEN and TXEN in one instruction. Be
careful that the enable bits are not set when Timer 3 rolls over past 0. This
can be done by adjusting the timer rate before the bits are enabled and then
setting the timer to the correct rate after enabling.

Figure 3-37 illustrates the serial 1/0 format for two back-to-back frames, each
containing five data bits.

INTERNALLY
GENERATED

SCLK
TXD
RXD

SCLK ACTIVE AND DATA BEING TRANSMITIED OR RECEIVED

l l l l l l l ! l l

W2J bi b2 I pa Qi rm po p1 mnoaJ b4 so

i i i l i
SCLK a: TXD INACTIVE AND HIGH

Figure 3-37. Serial 1/0 Communication Format

An internal SCLK source will be output on pin A6/SCLK (TMS70x2 devices)
or A4/SCLK (TMS70Cx2 devices). In Serial 1/0 mode, SCLK is only active
when data is being transmitted or received; otherwise, SCLK has a value of
one.

3-65

TMS7000 Family Architecture - Serial Port (TMS70x2 and TMS70Cx2)

3.8.3 Multiprocessor Communication

3-66

When the serial port is in either the Asynchronous or lsosynchronous com­
munications mode, the multiprocessor communication formats are available.
These formats efficiently transfer information between many microcomputers
on the same serial link. Information is transferred as a block of frames from a
particular source to some destination(s). The serial port has features to iden­
tify the start of a block of data, and suppress interrupts and status information
from RX until a block start is identified.

In both multiprocessor modes the sequence is:

1) The serial port wakes up at the start of a block and reads the first frame
(containing the destination address).

2) A software routine is entered through either an interrupt or polling rou­
tine and checks the incoming data byte against its address byte stored
in memory.

3) If the block is addressed to the microcomputer the CPU reads the rest
of the block; if not, the software routine puts the serial port to sleep
again and therefore will not receive serial port interrupts until the next
block start.

On the serial link, all processors set their SLEEP bit to 1 so that they will only
be interrupted when the address bit in the data stream is a 1 . When the pro­
cessors receive the address of the current block, they compare it to their own
addresses and those processors which are addressed set their SLEEP bit to a
0, so that they will read the rest of the block.

Although RX still operates when the SLEEP bit is 1, it will not set RXRDY,
INT4 flag, or the error status bits to 1 unless the address bit in the received
frame is a 1. The RX does not alter the SLEEP bit; this must be done in soft­
ware.

To provide more flexibility, the serial port implements two multiprocessor
protocols, one supported by Motorola and the other by Intel. The Motorola
protocol is compatible with the Motorola MC6801 processor modes and the
Intel protocol is compatible with the Intel protocol for the 8051. The multi­
processor mode is software selectable via the MULTI bit in the SMODE reg­
ister (Figure 3-28). Both formats use the WU and SLEEP flags to control the
TX and RX features of these modes.

Because the Intel multiprocessor mode contains an extra address/data bit, it
is not as efficient as the Motorola mode in handling blocks containing more
than 10 bytes of data. The Intel mode is more efficient in handling many small
blocks of data because it does not have to wait between blocks of data as
does the Motorola mode.

TMS7000 Family Architecture - Serial Port (TMS70x2 and TMS70Cx2)

3.8.3.1 Motorola (MC6801) Protocol

In this protocol, blocks are separated by having a longer idle time between the
blocks than between frames in the blocks. An idle time of 10 or more bits after
a frame indicates the start of a new block.

The processor wakes up (serial port resets the SLEEP bit to 0) after the block
start signal. The processor now recognizes the next serial port interrupt. The
service routine then receives the address sent out by the transmitter and com­
pares this address to its own. If the CPU is addressed, the service routine does
not set the SLEEP bit, and receives the rest of the block. If the CPU is not
addressed, the service routine sets the SLEEP bit (in software) to a 1. This lets
the CPU continue to execute its main program without being interrupted by
the serial port. The serial port sets the SLEEP bit to 0 whenever it detects a
block start signal.

There are two ways to send a block start signal.

1) The first is to deliberately leave an idle time of 10 bits or more by delay­
ing the time between the transmission of the last frame of data in the
previous block and the address frame of the new block.

2) In the second method, the serial port implements a more efficient
method of sending a block start signal. Using the Wake-Up (WU) bit,
an idle time of exactly one frame (timed by the serial port) can be sent.
The serial communications line is therefore not idle any longer than ne­
cessary.

Associated with the WU bit is the wake-up temporary (WUT) flag. WUT is
an internal flag, double buffered with WU. When TXSHF is loaded from
TXBUF, WUT is loaded from WU, and WU is reset to 0. This arrangement is
shown in Figure 3-38.

:r: -: -------!-~-------
Figure 3-38. Double-Buffered WUT and TXSHF

3-67

TMS7000 Family Archntecture - Serial Port (TMS70x2 and TMS70Cx2}

3-68

Sending out a block start signal of exactly one frame time is accomplished as
follows:

1) Write a 1 to the WU bit.

2) Write a data word (don't care) to TXBUF.

3) When TXSHF is free again, TXBUF's contents are shifted to TXSHF, and
the WU value is shifted to WUT.

4) If WU was set to a 1, the start, data, and parity bits are suppressed and
an idle period of one frame, timed by the serial port, is transmitted.

5) The next data word, shifted out of the serial port after the block start
signal, is the second data word written to the TXBUF after writing a 1
to the WU bit.

6) The first data word written is suppressed while the block start signal is
sent out, and ignored after that.

Writing the first don't care data word to the TXBUF is necessary so the WU
bit value can be shifted to WUT. After the don't-care data word is shifted to
the TXSHF, the TXBUF (and WU if necessary) may be written to again, since
WUT and TXSHF are both double-buffered.

Although RX still operates when the SLEEP bit is 1, it will not set RXRDY,
INT4 flag, or the error status bits to 1. The RX will set the SLEEP bit to 0 if it
times an appropriate 10-bit idle time on RXD. The Motorola multiprocessor
communication format is shown in Figure 3-39.

RXDffXD LJ LJ LJtL-J CJ LJ,LJ LJt
D..E PERIODS OF 10 BITS OR MORE

RXDffXD ~ • ._....__m_,__ _ _.13Plrd
EXPANDED

MfA ISP lsrl

FIRST FRAME WJTHIN
BLOCK IS ADDRESS.
IT FOLLOWS IDLE
PERIOD OF 10 BITS
OR MORE.

FRAME WJTHIN
BLOCK

IDLE PERIOD
LESS THAN 10 BITS

b61A ISP

Figure 3-39. Motorola Multiprocessor Communication Format

TMS7000 Family Architecture - Serial Port (TMS70x2 and TMS70Cx2)

3.8.3.2 Intel (18051) Protocol

In the Intel protocol, the frame has an extra bit called an address bit just before
the parity bit. Blocks are distinguished by the first frame(s) in the block with
the address bit set to 1, and all other frames with the address bit set to 0. The
idle period timing is irrelevant.

The WU bit sets the address bit. In TX, when the TXBUF and WU are loaded
into TXSHF and WUT, WU is reset to 0 and WUT is the value of the address
bit of the current frame. Thus, to send an address, set the WU bit to a 1, and
write the appropriate address value to the TXBUF. When this address value
is transferred to TXSHF and shifted out, its address bit is sent as a 1, which
flags the other processors on the serial link to read the address. Since TXSHF
and WUT are both double-buffered, TXBUF and WU may be written to im­
mediately after TXSHF and WUT are loaded. To transmit non-address frames
in the block, the WU bit must be left at 0. On the TMS70Cx2 devices, the
received address bit is also placed in the SSTAT !ADD bit.

, C::::,l!Locl<S°[FRAMES~ ,
RXD/TXD c::J f c::Ji CJ f CJ f CJ f CJ f CJ i CJ i c::J

IDLE PERIOD OF NO SIGNIFICANCE

RXD/TXD -WI
EXPANDED

A@ ii l§P.ml __ ,.M tiwA_..._.1 o..,ISP .,.ISTlowi.--•M tiwA _ _...1 .. 0 _gs

FIRST FRAME WITHIN
BLOCK IS ADDRESS.
THE ADDR/DATA BIT
IS 1.

ADORIDATA BIT I 16 0 FOR FRAME
WITHIN BLOCK

IDLE TIME 16 OF
NO SIGNIFICANCE.

Figure 3-40. Intel Multiprocessor Communication Format

3-69

TMS7000 Family Architecture - Serial Port (TMS70x2 and TMS70Cx2)

3.8.4 Serial Port Initialization

3-70

The serial port must be initialized before it can be used; then it may be oper­
ated by simply reading and writing to Peripheral-File registers. A good pro­
gramming practice is not to assume that any registers have particular values
at power-up or reset. A program should write to every value or register that
might affect the serial port. Initialize the serial port as follows:

TMS70X2

1) Set 63 data value to 1 . This allows the TXD line to transmit.

2) Write to the SMODE register (P17). This sets the character format
and the type of communication mode.

3) Write to the SCTLO register (second write to P17) to set the UR
b(t to 0. This same write can also enable the transmitter, receiver,
or both.

4) Load the Timer 3 reload register value (P20).

5) Write to SCTL 1 (P21) to initialize Timer 3, the clock source, and
multiprocessor mode.

Once the serial port is initialized it can be operated continuously in the
selected operational mode. To send data, simply write to the transmit
buffers (P23), making sure that the transmitter is enabled (P17). Take
input data from the receive buffer (P22) with the receiver enabled (P17).
If the mode must be changed, the serial port must be reset and then re­
initialized for the desired mode. The serial port can be reset in two ways:
hardware reset (via the RESET pin) or software reset (via the UR bit in
SCTLO).

TMS70Cx2

1) Set 63 data value to 1. This allows the TXD line to transmit.

2) Write to the SMODE register (P20). This sets the character format
and the type of communication mode.

3) Write to the SCTLO register (P21) . Enable the receiver or the
transmitter or both. The UR bit must be set to 0.

4) Load the Timer 3 reload register value (P23).

5) Write to SCTL 1 register (P24) to initialize Timer 3, the clock
source, and multiprocessor mode, if desired.

Once the serial port is initialized it can be operated continuously in the
selected operational mode. To send data, simply write to the transmit
buffers (P26), making sure that the transmitter is enabled (P21). Take
input data from the receive buffer (P25) with the receiver enabled (P21).
If the mode must be changed, the serial port must be reset and then re­
initialized for the desired mode. The serial port can be reset in three
ways: hardware reset (via the RESET pin) or software reset (via the UR
bit in SCTLO), or by writing to the SMODE register.

TMS7000 Family Architecture - Serial Port (TMS70x2 and TMS70Cx2)

3.8.5 Timer 3

INTERNAL
BUS

INTERNAL
BUS

Timer 3, illustrated in Figure 3-41 and Figure 3-42, can be used as a stand­
alone timer or as the internal baud-rate generator on TMS70x2 and
TMS70Cx2 devices.

____ ...__..~-:_-:_-_:.--oe-~, ...
2-BIT

PRES CALER

I
SCTI.1.7
(T3RUN)

UNDERFLOW

I
I RELOAD PULSE

SET T3FLG, SCTI.1.3

.1-SET INTERRUPT 4 FLAG (IOCNT1.1)

SCTI.1.2 _ j 90

(T3ENB)

Figure 3-41. 8-Bit Timer 3 (TMS70x2)

:-:~~::---~-----~--· -~~ ,_
I PRi~ sc"Tit1 I (T3RUN)

I 1-------
UNDERFLOW

I I

scn.0.1_,
(SCLI<EN) I •O

I RELOAD PU

6CTI.1.8J-.-1 M (CU()

-- 10•
11-----~~ +2

SET T3FLG, SCTI.1.3

.1-SET INTERRUPT 4 FLAG (IOCNT1.1)

SCTI.1.2 _ j eo
(T3ENB)

Figure 3-42. 16-Bit Timer 3 (TMS70Cx2)

3-71

TMS7000 Family Architecture - Serial Port (TMS70x2 and TMS70Cx2)

Timer 3 is accessed through T3DATA (similar to T1 DATA and T2DATA on the
TMS70x2 devices) and SCTL 1 (shared with RX/TX functions). The clock
source for Timer 3 is internal only, and has a period of 2 x tc(C)· Timer 3 is
a free running clock and is updated with new timer reload values when the
prescaler and decrementer pass through zero together. Timer 3 is stopped and
started by bit 7 in SCTL 1.

Timer 3 consists of a 2-bit prescaler (SCTL 1 bits 1 and 0) and an 8-bit de­
crementer (register T3DATA). When they decrement through zero, both the
prescaler and the decrementer are reloaded from the 2-bit and 8-bit reload
registers, respectively.

The Timer 3 output goes to the serial port via a + 2 circuit, producing an in­
ternal equal mark-space ratio SCLK. The baud rate generated by Timer 3 is
user-programmable and is determined by the value of the 2-bit prescaler and
the 8-bit timer reload register. The equations for determining the baud rates
for both the Asynchronous and lsosynchronous modes are:

Asynchronous baud rate, TMS70x2 and TMS70Cx2 only:

32 x (PR + 1) x (TR + 1) x tc(C)

lsosynchronous and Serial 1/0 baud rate, TMS70x2 and TMS70Cx2 only:

where:
4 x (PR + 1) x (TR + 1) x tc(C)

tc(C) = 2/fosc
PR = Timer 3 prescale reload register value
TR Timer 3 reload register value

For example, to program the serial port to operate at 300 baud in Asynchro­
nous mode (with fosc= 8 MHz), the prescaler value is set to 3 and the reload
register value is set to 103 decimal, or >67. Other prescaler and timer values
for common baud rates are shown in Table 3-16.

Table 3-16. Timer Values for Common Baud Rates - TMS70x2 and TMS70Cx2

BAUD
3.579454 MHz 4.9152 MHz 7.158908 MHz 8 MHz

RATE PS,T ERROR PS,T ERROR PS,T ERROR PS,T ERROR
75 3, 186 0.2% 3, 255 .0% - - - -

110 1, 253 0.1% 3, 174 0.3% 3, 253 0.1% - -
300 0, 185 0.2% 0, 255 .0% 2, 123 .0% 3, 103 0.2%
600 0, 92 0.2% 0, 127 .0% 0, 185 0.2% 3, 51 0.2%

1200 0,46 0.8% 0, 63 .0% 0,92 0.2% 3, 25 0.2%
2400 0, 22 1.3% 0, 31 .0% 0,46 0.8% 3, 12 0.2%
4800 0, 11 3.0% 0, 15 .0% 0, 22 1.3% 1, 12 0.2%
9600 0, 5 3.0% 0, 7 .0% 0, 11 3.0% 0, 12 0.2%

19200 0, 2 3.0% 0, 3 .0% 0, 5 3.0% 0, 6 7.0%
38400 0, 1 27.0% 0, 1 .0% 0, 2 3.0% 0, 2 .0%

125000 - -- - - - - 0-0 .0%

Note: PS = prescaler; T = timer

3-72

TMS7000 Family Architecture - Serial Port (TMS70x2 and TMS70Cx2)

The Timer 3 output always sets T3FLG to 1, and sets INT4 flag to 1 if T3ENB
is a 1 when the timer and prescaler decrement through 0. This allows Timer
3 to be used as a utility timer if it is not used by the serial port. Timer 3 and
its flags are not affected by the serial port software reset, UR, allowing Timer
3 to be used independently of the serial port.

3.8.6 Initialization Examples

This section contains four examples that initialize the serial port. In each case
the data is moved to and from the buffers in the interrupt routines.

The first example shows a typical RS-232 application that connects to
a terminal.
The second demonstrate$ a system using the Serial 1/0 mode to connect
to a shift register.
The third example uses the baud-rate timer as an additional third timer
when the serial port is not used.
The last example illustrates use of the Intel mode in a multiprocessor
application.

In all examples, assume the register mnemonics have been equated (EQU)
with the corresponding Peripheral-File location.

3.8.6.1 RS-232-C Example

RS232

*
*

*
*
*
*

This example transmits and receives data from a standard RS-232-C-type
terminal at 9600 baud with a data format of 7 data bits, 2 stop bits and no
parity.

DINT
ORP
MOVP
MOVP
MOVP
MOVP

MOVP

MOVP

MOVP

EINT

%?00001000,PORTB
%?00001011,IOCNTl
%0,P17
%?00010000,SCTLO
%?11001010,SMODE

%?00010101,SCTLO

%7,T3DATA

%?01000000,SCTLl

Precaution
Enable TX pin
Enable INT4
Point to SCTLO
Reset the UART
Two stop, 7 data bits, no
parity, no extra Intel mode bit,
communications mode
Clear RESET, clear error flags,
enable TX and RX
Set baud rate to 9600
(4.9152 MHz crystal)
Internal clock, prescale=O, no.
multiprocessing, disable Timer 3
interrupt, start Timer 3

3-73

TMS7000 Family Architecture - Serial Port (TMS70x2 and TMS70Cx2)

3.8.6.2 Serial 1/0 Example

This routine sends and receives data from a shift register device at 1200 baud
with 8 data bits and no parity.

SERIAL DINT
ORP
MOVP
MOVP
MOVP
MOVP

*
*
*
*

*
*
*

MOVP

MOVP

MOVP

EINT

%?00001000,PORTB
%?00001011,IOCNTl
%0,Pl7
%?00010000,SCTLO
%?00001100,SMODE

%?00010101,SCTLO

%64,T3DATA

%?11000000,SCTLl

Precaution
Enable TX pin
Enable INT4
Point to SCTLO
Reset the UART
One stop, 8 data bits,
no parity, no extra Intel
mode bit, Serial I/O mode
Clear RESET, clear error
flags, enable TX and RX
Set baud rate to
1200 (SMHz crystal)
Internal clock, prescale=O,
no multiprocessing, disable
Timer 3 interrupt,
start Timer 3

3.8.6.3 Extra Timer with No Serial Port

TIMER3

*

*
*
*

3-74

Timer 3 can be used as an additional timer when the serial port is not needed.
INT4 occurs whenever the timer passes 0. The timer period is determined by
the value TIME and the prescale bit in SCTL 1. Disable the transmitter and
receiver to assure no interrupts come from that source. This timer works best
as a periodic interrupt, allowing a task to be performed at a fixed interval.

DINT
MOVP
MOVP
MOVP
MOVP
MOVP

MOVP
MOVP

EINT

%?00001011,IOCNTl
%0,P17
%?00010000,SCTLO
%?01000010,SMODE
%?00010000,SCTLO

%TIME,T3DATA
%?110001XX,SCTL1

Precaution
Enable INT4
Point to SCTLO
Reset the UART
Asynchronous communication mode
Clear RESET, clear error
flags, disable TX and RX
Set timer to selected rate
Internal clock, no
multiprocessing selected
prescale, enable Timer 3
interrupts, start Timer 3

TMS7000 Family Architecture - Serial Port (TMS70x2 and TMS70Cx2)

3.8.6.4 Intel Multiprocessor Example

MULTI

*
*
*
*
*
*
*
*
*

This example illustrates basic concepts of sending and receiving data in a
multiprocessor system. The processors are usually close to each other so they
can send at maximum speed without problems. The data is sent and received
during the interrupt routines.

DINT
ORP
MOVP
MOVP
MOVP
MOVP

MOVP

MOVP

MOVP

EINT

%?00001000,PO~TB
%?00001011,IOCNTl
%0,P17
%?00010000,SCTLO
%?01111111,SMODE

%?00010101,SCTLO

%0,T3DATA

%?11100000,SCTLl

Precaution
Enable TX pin (?=binary)
Enable INT4
Point to SCTLO
Reset the UART
One stop, 8 data bits,
odd parity, Intel mode bit,
communications mode
Clear RESET, clear error
flags, enable TX and RX
Set baud rate to full
speed (SMHz crystal)
Internal clock, prescale=O,
no multiprocessing, disable
Timer 3 interrupts, put
receiver to sleep,
start Timer 3

* Meanwhile, back at the interrupt routines
*
SENDIT ORP %BIT4,SCTL1
*
*
*
*
*
*
GE'I1IT
*
*

* *
*
*
*
*
*
*
*

MOVP %ADDRS,TXBUF

ANDP %#BIT4,SCTL1

MOVP %DATA,TXBUF

MOVP RXBUF,A

CMP %ADDRS,A
JNE NOT IT

ANDP %#BIT5,SCTL1

Send Wake-Up bit
(Bit4=00010000)
Send address byte
wait for the transmit
complete interrupt
Clear Wake-Up bit
(# = logical NOT)
start sending data bytes

Get address byte
(it only interrupts on an
address byte when sleeping)
Is it this processor's address?
If this is not the correct
address ignore the rest
of the following data bytes
Clear Sleep bit and wait for
additional data bytes
Some method should determine
End of Data so that the pro­
cessor can go back to sleep
Byte count in first data byte
or special end of data byte
are two methods

3-75

TMS7000 Family Architecture - Serial Port (TMS70x2 and TMS70Cx2}

3.8.7 Serial Port Interrupts

3-76

I NT 4 is dedicated to the serial port. Three sources can generate an interrupt
through INT4:

1) The transmitter (TX),
2) The receiver (RX), and
3) Timer 3 (T3}.

Setting TXEN to 1 allows data loaded into the TXBUF to be shifted into
TXSHF. The TX sets TXRDY and INT4 flag to 1 when TXSHF is loaded from
TXBUF.

In the communication modes, if RXEN is set to 1, RX sets RXRDY and INT4
flag to a 1 when RXBUF is loaded from RXSHF. If RXEN is 0, RXSHF still
receives frames and shifts them into RXBUF, but RXRDY and INT4 flag are
held to 0. If a character is in RXBUF, and RXEN is then set to a 1, RXRDY
and I NT 4 flag will be set to 1.

In Serial 1/0 mode, RXEN is set to initiate the reception of a frame. When the
last bit of the frame is received RXEN is reset to O; however, RXRDY and INT4
flag are still set to 1 when the character is shifted from RXSHF to RXBUF.
RXRDY and INT4 flag bits are not masked by RXEN.

Timer 3 sets T3FLG and INT4 flag (if T3ENB is 1) when its prescaler and timer
decrement through 0 together.

When the CPU acknowledges INT4, RXRDY, TXRDY, and T3FLG are the flags
that indicate its source. The INT4 service routine must determine which of
these sources caused INT4 in the specific application. For example, if all three
are likely sources, the INT4 service routine must check for the following pos­
sible situations:

1) RXRDY only
2) TXRDY only
3) T3 only
4) RXRDY,TXRDY,T3
5) RXRDY, TXRDY
6) RXRDY, T3
7) TXRDY, T3
8) None

The last check is necessary because RXRDY, TXRDY, or T3FLG can set INT4
flag. It is possible that one or more interrupts may occur between CPU ac­
knowledgement of INT4 and INT4 service routine testing of RXRDY, TXRDY,
and T3FLG. The CPU clears the INT4 flag bit when it acknowledges INT4.
If a second INT4 source is set in the time between this clearing and the soft­
ware testing, the second or third interrupts will be serviced by the current INT4
service routine. Thus, when INT4 is again acknowledged (INT4 flag was set
again by the second interrupt) RXRDY, TXRDY, and T3FLG will all be set to
0.

4. Electrical Specifications

This section contains electrical and timing information for each category of
TMS7000 family devices. The N MOS devices are presented first, followed by
the CMOS devices. The TMS7000 CMOS devices can operate at wide voltage
and frequency ranges; therefore, the CMOS specifications are presented using
two separate test voltage ranges.

NMOS Devices:

· Section Page
4.1 TMS7000, TMS7020, and TMS7040 Specifications 4-2
4.2 TMS7002 and TMS7042 Specifications ... 4-8
4.3 TMS7742 Specifications ... 4-16
4.4 SE70P162 Specifications .. 4-25

CMOS Devices:

Section Page
4.5 TMS70COOA, TMS70C20A, and TMS70C40A Specifications

(Wide Voltage) .. 4-31
4.6 TMS70COOA, TMS70C20A, and TMS70C40A Specifications

(5V ± 10%) · ~ .. 4-38
4.7 TMS70C02 and TMS70C42 Specifications (Wide Voltage) 4-45
4.8 TMS70C02 and TMS70C42 Specifications (5V ± 10%) 4-54
4.9 TMS77C82 (Advance Information) ... 4-62

4.10 SE70CP160A Specifications .. 4-63
4.11 SE70CP162 Specifications ... 4-68

4-1

Electrical Specifications -TMS70x0 NMOS Devices

4.1 TMS7000, TMS7020, and TMS7040 Specifications

Vee

V1H

V1L

TA

4-2

Table 4-1. Absolute Maximum Ratings over Operating Free-Air
Temperature Range (unless otherwise noted)

Supply voltage range, Veet .. -0.3 V to 7 V
Input voltage range .. -0.3 V to 7 V
Output voltage range ... -0.3 V to 7 V
Maximum buffer current ... ± 10 mA
Continuous power dissipation .. , 1 W
Storage temperature range .. ,. -55°C to 150°C

t Unless otherwise noted, all voltages are with respect to Vss·

Caution:

Stresses beyond those listed under "Absolute Maximum Rat­
ings" may cause permanent damage to the device. This is a
stress rating only and functional operation of the device at
these or any other conditions beyond those indicated in the
"Recommended Operating Conditions" section of this specifi­
cation is not implied. Exposure to absolute maximum rated
conditions for extended periods may affect device reliability.

Table 4-2. Recommended Operating Conditions

MIN NOM MAX UNIT

Supply voltage 4.5 5 5.5 v
CLKIN 2.6 v

High-level input voltage
All others 2.0 v
CLKIN 0.6 v

Low-level input voltage
All others 0.8 v

Operating free-air temperature 0 70 ·c

Electrical Specifications - TMS70x0 NMOS Devices

Table 4-3. Electrical Characteristics over Full Range of Operating Conditions

PARAMETER TEST CONDITIONS MIN TY Pt MAX UNIT

1, Input current
Port A, input-only pins v I = Vss toV cc ±2 ±10 µA

1/0 pins v1 = 0.4 v to Vee ±10 ±100 µA

c, Input capacitance 2 pF

VoH High-level output voltage loH = -400 µA 2.4 2.8 v
Vol Low-level output voltage loL = 3.2 mA 0.2 0.4 v
trl_O)_ Output rise time:t: See Figure 4-1 9 50 ns

1flOl Output fall time:t: See Figure 4-1 10 60 ns

Ice Supply current All outputs open 80 150 mA

PoJ.avl Average power dissipation All outputs open 400 825 mW

t All typical values are at Vee= 5 V, TA= 25°C.
:t: Rise and fall times are measured between the maximum low level and the minimum high level using the

, 0% and 90% points (see Figure 4-2). Measured outputs have 100-pF loads to v88.

LOAD VOLTAGE

-t6800

Vo
100 pF

Figure 4-1. Output Loading Circuit for Test

OUTPUTS

~:~ ~ -_-_-_-_-_- _-_-_-_-_-_-_-_-_-_-_- _-:-_-_-_-_-iirt, ___ VOH(MIN)

MV m
0.4V1--.-.:; ~------ VOL(MAX)

0---
Figure 4-2. Measurement Points for Switching Characteristics

4-3

Electrical Specifications - TMS70x0 NMOS Devices

Table 4-4. Recommended Crystal Operating Conditions over Full Operating
Range

PARAMETER MIN TYP MAX UNIT

f osc Crystal frequency 1.0 5.0 MHz

CLKI N duty cycle 50 %

tc_(P_l Crystal cycle time 200 1000 ns

tc_(Cl Internal state cycle time 400 2000 ns

tw_(PHJ. CLKIN pulse duration high 90 ns --
tw_(PL,l CLKI N pulse duration low 90 ns

tr CLKI N rise timet 30 ns

tf CLKI N fall timet 30 ns

td_(PH-CHl CLKIN rise to CLKOUT rise delay 125 200 ns

t Rise and fall times are measured between the maximum low level and the minimum high level.

XTAL2/CLKIN

CLKOlJT ---..if , __)
ft--tc(C) ,

, __ r

Figure 4-3. Clock Timing

(A) 1MS70x0 (B)

XTAL1 XI CLKIN
NC XTAL1

18 17 TM870x0
6 MHz

-U CLOCK XTAL2/CLKIN SOURCE

15pF+
PARAU.a.

+30pF RESONANT

Figure 4-4. Recommended Clock Connections

4-4

Electrical Specifications - TMS70x0 NMOS Devices

Table 4-5. Memory Interface Timing at 5 MHz over Full Operating Free-Air
Temperature Range

PARAMETER MIN TYP MAX UNIT

tciCl CLKOUT cycle timet 400 ns

tw_(CH_l CLKOUT high pulse duration 130 170 200 ns

t~(CL.l CLKOUT low pulse duration 150 190 240 ns

td_(CH-JL.l Delay time, CLKOUT rising to ALATCH fall 260 300 340 ns

tw_(JH_l ALATCH high pulse duration 150 190 230 ns

tsu_{HA-JL.l Setup time, high address valid before ALATCH fall 50 170 220 ns

tsu_(LA-JL.l Setup time, low address valid before ALATCH fall 50 150 220 ns

th{JL-LA_l Hold time, low address valid after ALATCH fall 30 45 80 ns

tsu(RW-JL.l Setup time, R/W valid before ALATCH fall 50 140 200 ns

th(EH-RWJ_ Hold time, R/W valid after ENAS[E rise 40 100 ns

th_(EH-HA_l Hold time, high address valid after ENABLE rise 30 40 ns

tsu(O-EHl Setup time, data output valid before ENABLE rise 230 290 ns

th(EH-Q) Hold time, data output valid after ENABLE rise 65 80 ns

td(EH-A) Delay time, ENAB[E rise to next address drive 60 85 ns

ta(EL-Dl Access time, data input valid after ENABLE fall 155 190 ns

ta(A-D) Access time, address valid to data input valid 400 470 ns

td(A-EH) Delay time, address valid to ENABLE rise 580 730 ns

th(EH-D) Hold time, data input valid after ENABLE rise 0 ns

t<!.(_CH-EIJ. Delay time, CLKOUT rise to ENABLE fall -10 15 50 ns

t tc(C) is defined to be 2/fosc and may be referred to as a machine state or simply a state.

4-5

Electrical Specifications - TMS70x0 NMOS Devices

ALATCH

HIGH ADDRESS
(DO-D7)

LOW ADDRESS/
DATA

(CO-C7)

ENABLE

R/N

4-6

~ta(A-D)-111
I
I ;to! -"'-"in
1----

-+! lt-t su(RW-JL)

~-)'

EXTERNAL WRITE : RAM READ INTERNAL READ
I
I
I
I
I

I I

'4---ti-t~u(Q-EH)

______ !

HIGH
ADDRESS

LOW
DR

Figure 4-5. Read and Write Cycle Timing

Electrical Specifications - TMS70x0 NMOS Devices

4.1.1 Application of Ceramic Resonator

The circuit shown in Figure 4-6 provides an economical alternative to quartz
crystals where frequency tolerance is not a major concern. Frequency toler­
ance over temperature is about 1 %.

TMS70XO

XTAl..1
XTAl..2

RESONATOR

CAPACITORS

Figure 4-6. Ceramic Resonator Circuit

The following manufacturers supply ceramic resonators.

Murata Corporation of America
1148 Franklin Rd. SE
Marrietta, GA 30067
(404) 952-9777
Telex - 0542329 Murata ATL

NGK Spark Plugs (USA) Inc.
20608 Madrona Ave.
Torrance, CA 90503
(213) 328-6882
Telex - 664290

Kyocera International
8611 Balboa Ave.
San Diego, CA 92123
(714) 279-8319
Telex - 697929

For 5 MHz operation
Resonator ceralock CSA5.00MT
Resistor 1 MO 10%
Capacitors (both) 30 pF

For 5 MHz operation
Resonator R5.0M
Resistor 1 MO 1.0%
Capacitors 68 pF ± 10%

4-7

Electrical Specifications - TM S70x2 NM OS Devices

4.2 TMS7002 and TMS7042 Specifications

Vee

V1H

V1L

TA

4-8

Table 4-6. Absolute Maximum Ratings over Operating Free-Air
Temperature Range (unless otherwise noted)

Supply voltage range, Veet .. -0.3 V to 7 V
Input voltages range .. -0.3 V to 7 V
Output voltages range ... -0.3 V to 7 V
Maximum buffer current · .. ± 1 O mA
Continuous power dissipation .. 1.4 W
Storage temperature range .. -55°C to 150°C

t Unless otherwise noted, all voltages are with respect to Vss·

Caution:

Stresses beyond those listed under "Absolute Maximum Rat­
ings" may cause permanent damage to the device. This is a
stress rating only and functional operation of the device at
these or any other conditions beyond those indicated in the
"Recommended Operating Conditions" section of this specifi­
cation is not implied. Exposure to absolute maximum rated
conditions for extended periods may affect device reliability.

Table 4-7. Recommended Operating Conditions

MIN NOM MAX UNIT

Supply voltage 4.5 5 5.5 v

High-level input voltage
CLKIN 2.6 v
All other inputs 2.0 v

Low-level input voltage
CLKIN 0.6 v
All other inputs 0.8 v

Operating free-air temperature 0 70 ·c

Electrical Specifications - TMS70x2 NMOS Devices

Table 4-8. Electrical Characteristics over Full Range of Operating Conditions

PARAMETER TEST CONDITIONS MIN TY Pt MAX UNIT

A5,MC,RESET, V I = V SS to V CC ±2 ±10 ,, Input current
I NT1 , I NT3, XT AL2

µA
Ports C and D

V I = 0.4 V to V CC ±10 ±100 AO-A4,A6,A7

c, Input capacitance 2 pF

VoH High-level output voltage loH = -400 µA 2.4 2.8 v
Vol. Low-level output voltage loH = 3.2 mA 0.2 0.4 v
tr(O) Output rise time+ See Figure 4-7 9 30 ns

tuo1 Output fall time+ See Figure 4-7 10 35 ns

Ice Supply current
All outputs open

160 210 mA

Po_fa\Q. Average power dissipation 800 1155 mW

t All typical values are at Vee = 5 V, TA = 25°C.
:t: Rise and fall times are measured between the maximum low level and the minimum high level using the

10% and 90% points (see Figure 4-8).

Figure 4-7. Output Loading Circuit for Test

OUTPUTS

t.: ~ -_-_-_-_:--_- _-_-_-_-_-_-_-_-_-_-_- --------_-iaJ. ___ VOH(MIN)

Figure 4-8. Measurement Points for Switching Characteristics

4-9

Electrical Specifications - TMS70x2 NMOS Devices

Table 4-9. Recommended Crystal Operating Conditions over Full Operating
Range

PARAMETER MIN TYP MAX UNIT

f osc Crystal frequency 1.0 8.0 MHz
CLKI N duty cycle 50 %

tcJ_P_l Crystal cycle time 125 1000 ns

tcJ_C_l Internal state cycle time 250 2000 ns

twJ_PH_l CLKIN pulse duration high 50 ns

twJ_PLJ CLKI N pulse duration low 50 ns

tr CLKI N rise timet 30 ns

tf CLKI N fall timet 30 ns

tdl_PH-CH_l CLKIN rise to CLKOUT rise delay 70 200 ns

t Rise and fall times are measured between the maximum low level and the minimum high level.

i.-tc(P)-tl

XTAL2/CLKIN

--i :.-tr I
114 lf'-tfl
I I

CLKOUT __,,.(\)
~tc(C)~

, __ r

Figure 4-9. Clock Timing

(A)
TMB70x2

(B)

XTAL'I XTAL.2/CLKIN
NC XTAL.1

18 17 TMB70x2
8 MHz

CLOCK XTAL.2/CLI<IN SOURCE

16pf+
PARALLEL

+30pF RESONANT

Figure 4-10. Recommended Clock Connections

4-10

Electrical Specifications -TMS70x2 NMOS Devices

Table 4-10. Memory Interface Timing

PARAMETER MIN MAX UNIT

tcJ..Cl CLKOUT cycle timet 250 2000 ns

twJ_CHl CLKOUT high pulse duration 0.5tcic_i-40 0.5t ~_Gl + 10 ns

twJ..CLl CLKOUT low pulse duration 0.5tcJ_q-40 0.5t ~C_l +15 ns

tcl_{_CH-Jll Delay time, CLKOUT rise to ALATCH fall 0.5t cj_C_l-10 0.5tcJC_l+30 ns

twl_JH_l ALATCH high pulse duration 0.25tc1c1-15 0.25t cJCl +30 ns

tsu(HA-JL) Setup time, high address valid before
ALATCH fall

0.25t c(C)-40 0.25tc(C) +45 ns

tsu(LA-JL) Setup time, low address valid before
ALATCH fall

0.25t c(C)-40 0.25tc(C) +15 ns

th(JL-LA) Hold time, low address valid after
ALATCH fall

0.25t c(C) 0.25tc(C) +45 ns

tsu(RW-JL) Setup time, R/W valid before ALATCH
fall

0.25t c(C)-35 0.25tc(C) +30 ns

th_LEH-RWl Hold time, R/W valid after ENABLE rise 0.5t cJ_q-40 ns

th(EH-HA) Hold time, high address valid after 0.5t c(C)-50 ns
ENAf3LE rise

tsu(Q-EH) Setup time, data output valid before 0.5t c(C)-45 ns
ENABLE rise

th(EH-Q) Hold time, data output valid after 0.5t c(C)-45 ns
ENA'3LE rise

td(lA-EL) Delay time, low address high impedance 0.25t c(C)-45 0.25tc(C) ns
to ENABLE fall

td(EH-A) Delay time, ENABLE rise to next address
drive

0.5t c(C)-25 ns

ta (EL-D) Access time, data input valid after 0. 75t c(c)-105 ns
ENABLE fall

ta(A-D) Access time, address valid to data input
valid

1.5t c(C)-115 ns

tdJ..A-EH_l Delay time, address valid to ENAB[E rise 1.5t cJ_q-80 1 .5tcJ..Cl +30 ns

th(EH-D) Hold time, data input valid after ENABLE
rise

0 ns

tdJEH-JH_l Delay time, ENABLE rise to ALATCH rise 0.5t cJ..Cl-25 0.5tcJ..Cl+10 ns

tc!.i.CH-Ell Delay time, CLKOUT rise to ENABLE fall -10 35 ns

t tc(C) is defined to be 2/fosc and may be referred to as a machine state or simply a state.

4-11

Electrical Specifications - TMS70x2 NMOS Devices

Table 4-11. Memory Interface Timing at 8 MHz

TEST
PARAMETER CONDITIONS MIN TYP MAX UNIT

tc(Cj CLKOUT cycle timet 250 ns

twJ_CHJ CLKOUT high pulse duration 85 110 135 ns

twJ_CIJ CLKOUT low pulse duration 85 115 140 ns

td(CH-JL) Delay time, CLKOUT rise to ALATCH 115 135 155 ns
fall

tw1JH) ALATCH high pulse duration 47 70 92 ns

tsu(HA-JL) Setup time, high address valid before 22 65 108 ns
ALATCH fall

tsu(LA-JL) Setup time, low address valid before
ALATCH fall

22 50 78 ns

th(JL-LA) Hold time, low address valid after 62 90 108 ns
ALATCH fall

tsu(RW-JL) Setup time, R/W valid before ALATCH 27 60 93 ns
fall

th_{_EH-RWl Hold time, R/W valid after ENAl§[E rise 85 120 ns

th(EH-HA) Hold time, high address valid after 75 120 ns
ENAl§[E rise

tsu(O-EH) Setup time, data output valid before 80 120 ns
ENABLE rise f = 8 MHz,

th(EH-Q) Hold time, data output valid after 50% duty cycle 80 115 ns
ENABLE rise

td(LA-EL) Delay time, low address high impedance 17 40 62 ns
to ENAl§LE fall

td(EH-A) Delay time, ENABLE rise to next addres~
drive

100 150 ns

ta(EL-D) Access time, data input valid after 82 120 ns
El\IABLE fall

ta(A-D) Access time, address valid to data input 260 300 ns
valid

td(A-EH) Delay time, address valid to ENABLE 295 350 405 ns
rise

th(EH-D) Hold time, data input valid after 0 ns
ENAB[E rise

td(EH-JH) Delay time, ENABLE rise to ALATCH 100 105 135 ns
rise

td(CH-EL) Delay time, CLKOUT rise to ENABLE -10 25 35 ns
fall

t tc(C) is defined to be 2/fosc and may be referred to as a machine state or simply a state.

4-12

Electrical Specifications - TMS70x2 NMOS Devices

ALATCH

HIGH ADDRESS
(D0-07)

ENABLE

RiW

EXTERNAL WRITE I RAM READ
I
I
I
I
I
I
I
I

Figure 4-11. Read and Write Cycle Timing

INTERNAL READ

RIGA
ADDRESS

4-13

Electrical Specifications - TMS70x2 NMOS Devices

4.2.1 Application oif Ceramic Resonator

4-14

The circuit shown in Figure 4-12 provides an economical alternative to quartz
crystals where frequency tolerance is not a major concern. Frequency toler­
ance over temperature is about 1 %.

lM870x2

XTAl..1
XTAL.2

RESONATOR

CAPACITORS

Figure 4-12. Ceramic Resonator Circuit

The following manufacturers supply ceramic resonators.

Murata Corporation of America
1148 Franklin Rd. SE
Marrietta, GA 30067
(404) 952-9777
Telex - 0542329 Murata ATL

NGK Spark Plugs (USA) Inc.
20608 Madrona Ave.
Torrance, CA 90503
(213) 328-6882
Telex - 664290

Kyocera International
8611 Balboa Ave.
San Diego, CA 92123
(714) 279-8319
Telex - 697929

For 5 MHz operation
Resonator ceralock GSA5.00MT
Resistor 1 MO 10%
Capacitors (both) 30 pF

For 5 MHz operation
Resonator R5.0M
Resistor 1 MO 10%
Capacitors 68 pF ± 10%

Electrical Specifications - TMS70x2 NMOS Devices

4.2.2 Serial Port Timing

4.2.2.1 Internal Serial Clock

CLKOUT Lf1_f1__f1_ Jl_fl-Jl
--.! 14--- td(CL-SU I

SCLK ----Ii-I ,.., l .. , --
-.! ~ td(CL-TD) I

TXD -------x _____________________ _
RXD

RXD
SAMPLE SAVED

Notes: 1) The CLKOUT signal is not available in Single-Chip mode.
2) CLKOUT = tc(C)·

PARAMETER TYP

tdJ_CL-SL) CLKOUT low to SCLK low 1 I 4 !c1_ci

td_LCL-TD_l CLKOUT low to new TXD data 1 /4 ~C_l

td_(RD-CLt RXD data valid before CLKOUT low 1 /4 t_tlC_l

td_.IB_D_l RXD data valid time 1 /2 !uc_i

4.2.2.2 External Serial Clock

CLKOUT S1=0JJ-f1~
SCLK K*-=td(SE-TD)-1 2/@i

TXD

RXD

I• td(SB-TD)---tj I

----------------X TXD td(RD-CU-til l+-

t?:eH:t€#::~
td(RD) -k--M

I I

RXD
SAMPLE SAVED

Notes: 1) The CLKOUT signal is not available in Single-Chip mode.
2) CLKOUT = tc(C)·
3) SCLK sampled; 1f SCLK = 1 then 0, fall transition found.
4) SCLK sampled; if SCLK = 0 then 1, rise transition found.

PARAMETER TYP

tdJ_R D -C L_l RXD data valid before CLKOUT low 1 /4 t cJ_C_l

tdJ_RD_l RXD data valid time 1 /2 tc_LC_l

td_(S_B-TD_l Start of SCLK sample to new TXD data 3 1 /4 t c(C_l

tdiS.E-TD_l End of SCLK sample to new TXD data 2 1 /4 t cJ_C_l

td_(_CL:..Sl Clockout low to SCLK transition t~c-1

UNIT
ns

ns

ns

ns

UNIT
ns

ns

ns

ns

ns

4-15

Electrical Specifications - TMS7742 NMOS Prototyping Device

4.3 TM 87742 Specifications

Vee

Vpp

V1H

V1L

TA

Table 4--12. Absolute Maximum Ratings over Operating Free-Air
Temperature Range (unless otherwise noted)

Supply voltage range, V cc t .. -0.3 V to 7 V
Supply voltage range, Vpp .. -0.3 V to 22 V
Input voltage range · .. -0.3 V to 7 V
Output voltage range ... -0.3 V to 7 V
Maximum buffer sink current ... ± 1 O mA
Continuous power dissipation ... 2 W
Storage temperature range .. -55°C to 150°C

t Unless otherwise noted, all voltages are with respect to V55.

Caution:

Stresses beyond those listed under "Absolute Maximum Rat­
ings" may cause permanent damage to the device. This is a
stress rating only and functional operation of the device at
these or any other conditions beyond those indicated in the
"Recommended Operating Conditions" section of this specifi­
cation is not implied. Exposure to absolute maximum rated
conditions for extended periods may affect device reliability.

Table 4-13. Recommended Operating Conditionst

MIN NOM MAX UNIT

Supply voltage 4.5 5 5.5 v
Program supply voltage+ 20.5 21 21.5 v

High-level input voltage
CLKIN 2.6 v
All other inputs 2.0 v

Low-level input voltage
CLKIN 0.6 v
All other inputs 0.8 v

Operating free-air temperature 0 70 ·c
t Ambient light may affect operational functionality and electrical characteristics. It is recommended to

use an opaque label over the window when the EPROM is not being erase.
+ Vpp is applied to the MC pin in EPROM mode only.

4-16

Electrical Specifications - TMS7742 NMOS Prototyping Device

Table 4-14. Electrical Characteristics over Full Range of Operating Conditionst

PARAMETER TEST CONDITIONS MIN TYP~ MAX UNIT

A5, MC, RESET, V I = V SS to V CC ±2 ±10

11 Input current
I NT1, 003, XT AL2

µA
Ports C and D

V I = 0.4 V to V CC ±10 ±100 AO-A4,A6,A7

c, Input capacitance 2 pF

VoH High-level output voltage loH = -400 µA 2.4 2.8 v
Vol Low-level output voltage loL = 3.2 mA 0.2 0.4 v
tr:iOl_ Output rise time§ See Figure 4-1 3 9 50 ns

tf_(_Oj_ Output fall time§ See Figure 4-13 10 60 ns

Ice Supply current All outputs open 180 250 mA

lpp Program supply current E = VIL· G = Vpp 30 mA

Po__(_avj_ Average power dissipation All outputs open 900 1375 mW

t Ambient light may affect operational functionality and electrical characteristics. It is recommended to
use an opaque label over the window when the EPROM is not being erased.

:t All typical values are at V cc = 5 V, TA = 25°C.
§ Rise and fall times are measured between the maximum low level and the minimum high level using the

10% and 90% points. Measured outputs have 100-pF loads to Vss-

Figure 4-13. Output Loading Circuit for Test

Figure 4-14. Measurement Points for Switching Characteristics

4-17

Electrical Specifications - TMS7742 NMOS Prototyping Device

Table 4-15. Recommended Crystal Operating Conditions over Full Operating
Range

PARAMETER MIN TYP MAX UNIT

f osc Crystal frequency 1 5 MHz

CLKI N duty cycle 50 %

tc_(_P~ Crystal cycle time 200 1000 ns

tc_(_CJ_ Internal state cycle time 400 2000 ns

tw_(_PH_l CLKI N pulse duration high 90 ns

tw_(_Pll CLKIN pulse duration low 90 ns

tr CLKI N rise timet 30 ns

tf CLKI N fall timet 30 ns

td_(_PH-CH_l CLKI N rise to CLKOUT rise delay 120 200 ns

t Rise and fall times are measured between the maximum low level and the minimum high level.

XTAL2/CLKIN

CLKOlff ___...(, __ t
jf---tc(C) ~

, __ r

Figure 4-15. Clock Timing

w TM87742 (B)

XTAL.1 X1 CLKIN
NC XTAL.1

18 17 ™87742
6 MHz

a CLOCK XTAL2/CLKIN SOURCE

16pF.
PARALLEL

+30pF RESONANT

Figure 4-16. Recommended Clock Connections

4-18

Electrical Specifications - TMS7742 NMOS Prototyping Device

Table 4-16. Memory Interface Timing

PARAMETER MIN MAX UNIT

t~CJ_ CLKOUT cycle timet 400 2000 ns

twJ_CHl CLKOUT high pulse duration 0.5tc_(Cl-40 0.5t ci_Cj +10 ns

tvy{CL.l CLKOUT low pulse duration o.5t~c1-4o 0.5t cj_q+15 ns

tdJ_CH-JLl Delay time, CLKOUT rise to ALATCH fall 0.5t cj_q-10 0.5tcJ_CJ_ +30 ns

twJ_JHl ALATCH high pulse duration 0.25tcJ_q-15 0.25t cl.Cl +30 ns

tsu(HA-JL) Setup time, high address valid before
ALATCH fall

0.25t c(c)-40 0.25tc(C) +45 ns

tsu(LA-JL) Setup time, low address valid before
ALATCH fall

0.25t c(C)-45 0.25tc(C)+15 ns

th(JL-LA) Hold time, low address valid after
ALATCH fall

0.25t c(C) 0.25tc(C) +45 ns

tsu(RW-JL) Setup time, R/W valid before ALATCH
fall

0.25t c(c)-35 0.25tc{C) +30 ns

thJ_EH-RW1_ Hold time, R/W valid after ENABLE rise 0.5t cJc1-40 ns

th(EH-HA) Hold time, high address valid after
ENABLE rise

0.5t c(c)-50 ns

tsu(Q-EH) Setup time, data output valid before 0.5t c(c)-45 ns
ENABLE rise

th(EH-Q) Hold time, data output valid after 0.5t c(C)-45 ns
ENABLE rise

td(LA-EL) Delay time, low address high impedance 0.25t c(C)-45 0.25tc(C) +15 ns
to ENABLE fall

td(EH-A) Delay time, ENABLE rise to next address 0.5t c(c)-25 ns
drive

ta(EL-D) Access time, data input valid after 0.75t c(C)-135 ns
ENAB[E fall

ta(A-D) Access time, address valid to data input 1.5t c(C)-'160 ns
valid

td(A-EH) Delay time, address valid to ENABLE
rise

1.5t c(C)-80 1.5tc(C) +30 ns

th(EH-D) Hold time, data input valid after ENABLE 0 ns
rise

tc!LEH-JH_l_ Delay time, E!\jAB[E rise to ALATCH rise 0.5t c_{CJ_- 70 0.5tci_C) +10 ns

tdJ_CH-EL1 Delay time, CLKOUT rise to Ef\IAB[E fall -10 35 ns

t tc(C) is defined to be 2/fosc and may may be referred to as a machine state or simply a state.

4-19

Electrical Specifications -TMS7742 NMOS Prototyping Device

Table 4-17. Memory Interface Timing at 5 MHz

TEST
PARAMETER CONDITIONS MIN TVP MAX UNIT

tG..{cJ CLKOUT cycle timet 400 ns

tw_(_CHJ CLKOUT high pulse duration 160 185 210 ns

twJCLl CLKOUT low pulse duration 160 190 215 ns

td(CH-JL) Delay time, CLKOUT rise to ALATCH
fall

190 210 230 ns

tw_{JHJ_ ALATCH high pulse duration 85 110 130 ns

tsu(HA-JL) Setup time, high address valid before
ALATCH fall

60 100 145 ns

tsu(LA-JL) Setup time, low address valid before 55 90 125 ns
ALATCH fall

th(JL-LA) Hold time, low address valid after 100 125 145 ns
ALATCH fall

tsu(RW-JL) Setup time, R/W valid before ALATCH
fall

65 95 130 ns

thJ_EH-RWl Hold time, R/W valid after ENABLE rise 160 195 ns

th(EH-HA) Hold time, high address valid after 150 195 ns
ENABLE rise

tsu(Q-EH) Setup time, data output valid before 155 185 ns
Ef\JABLE rise f = 5 MHz,

th(EH-Q} Hold time, data output valid after 50% duty cycle 155 180 ns
Ei\IABLE rise

td(LA-EL) Delay time, low address high impedance 55 85 115 ns
to Ei\IAB[E fall

td(EH-A) Delay time, ENABLE rise to next
address drive

175 205 ns

ta(EL-D) Access time, data input valid after 165 205 ns
El\IABLE fall

ta(A-D) Access time, address valid to data input 440 485 ns
valid

td(A-EH) Delay time, address valid to ENABLE 520 575 630 ns
rise

th(EH-D) Hold time, data input valid after 0 ns
El\JAB[E rise

td(EH-JH) Delay time, ENABLE rise to ALATCH 130 160 210 ns
rise

td(CH-EL) Delay time, CLKOUT rise to ENABLE
fall

-10 25 35 ns

t tc(C) is defined to be 2/f05c and may be referred to as a machine state or simply a state.

4-20

Electrical Specifications - TMS7742 NMOS Prototyping Device

ALATCH

HIGH ADDRESS
(D0-07)

LOW ADDRESS/
DATA

(CO-C7)

ENABLE

E>CTERNAL WRITE RAM READ

~ ta(A-D)-+! ~td(EH-A) L. J ta:u(O-EH)
I -+t 1+-td(LA-EL) I ~

INTERNAL READ

HIGH
ADDRESS

I _,., It- ta(EL-D)I I __,, __,,--i.'1. Iii I \).P-+------+---------
1 t I : 1.--td(A-EH)-+I

~ !4- su(RW-JL) l+f--+tt h(EH-RW)

_.__--') ! , _________ /
I

Figure 4-17. Read and Write Cycle Timing

4.3.1 Erasure

The TMS7742 is erased by exposing the chip to shortwave ultraviolet light
that has a wavelength of 253.7 nanometers (2537 angstroms). The recom­
mended minimum exposure dose (UV intensity x exposure time) is fifteen
watt-seconds per square centimeter. The lamp should be located about 2.5
centimeters (1 inch) above the chip during erasure. After erasure, all bits are
at a high level. Note that normal ambient light contains the correct wave­
length fore erasure. Therefore, when using the TMS7742, the window should
be covered with an opaque label.

4-21

Electrical Specifications - TMS7742 NMOS Prototyping Device

Table 4-18. Switching Characteristics over Recommended Supply Voltage
Range and Operating Free-Air Temperature Range

TEST
PARAMETER CONDITION St MIN

tal_Al Access time from address CL= 100 pF,

tenJ.Gl Output enable time from G 1 Series 74 TTL load,

tdisJ_Glt: Output disable time from G tr S 20 ns

tv(A) Output data valid time after change of
address, E or G, whichever occurs first

t f S 20 ns

t Timing measurement reference levels for inputs and outputs are 0.8 V and 2 V.
t: Value calculated from 0.5 V delta to measured output level.

0

MAX UNITS

1 µs

350 ns

350 ns

ns

Table 4-19. Recommended Conditions for Programming, TA= 25°C

MIN NOM MAX UNITS

twJ_El E pulse duration 9 10 11 ms

tsulAl Address setup time 2 µs

tsuJ_Dl Data setup time 2 µs

tsul_VPPl Vpp setup time 2 µs

th_(_Al Address hold time 0 µs

thJ_Dl Data hold time 2 µs

thlYPPl Vpp hold time 2 µs

trec_{.PGl Vpp recovery time 2 µs

tli_PGJ_G G rise time during programming 50 ns

tEHD Delay time, data valid after E flow 1 µs

Table 4-20. Programming Characteristics, TA = 25°C

TEST
PARAMETER CONDITION St MIN MAX UNITS

tdisJ_PRJ_ Output disable time 0 100 ns

t Timing measurement reference levels for inputs and outputs are 0.8 and 2.0 V.

4-22

Electrical Specifications - TMS7742 NMOS Prototyping Device

~ ADDRESS N x ADDRESS N+1
V1H

AO-A11

tau(A)W i+-t h(A) ---! VIL

V1HNOH
01-08

__., ~G'tci°tsu(D) I ---.! r-tdls(PR)
V1LNOL

Vpp

GNpp Ii th~~~ ~1\:1 I V1L
tsu(VPP) l~ •1 r I '!+-t

V1H
E I

II VIL
tw(E);.--.1 11

treo(PG) -.j ~

Figure 4-18. Program Cycle Timing

Glvpp

=x x"-
1 ,._ t v(A) -ti

---+1--\1.---f ten(G) rr V1H

I 1 < L J v1L !t--t a(A) ---t t dis G)n _______ x >- ~=

AO-A11

01-08

Figure 4-19. Read Cycle Timing

4-23

Electrical Specifications - TMS7742 NMOS Prototyping Device

4.3.2 Serial Port Timing

4.3.2.1 Internal Serial Clock

CLKOUT

SCLK

TXD

RXD

LQ-U£}JLJ}-fl-
I I 11

-.! ~ td(CL-TD) I --------'-'x TXD

td(RD-CU -+I lt-

--:@H:t::9:;~:~
k--M- t d(RD)
I I

RXD
SAMPLE SAVED

Notes: 1) The CLKOUT signal is not available in Single-Chip mode.
2) CLKOUT = tc(C)·

PARAMETER TYP

tdJ_CL-SL_l CLKOUT low to SCLK low 1 /4 tcJ_C_l

tdJ_CL-TQl CLKOUT low to new TXD data 1 /4 tc(C_l

tdJ_RD-CL_l RXD data valid before CLKOUT low 1 /4 t c_LC_l

tdJ_RD_l RXD data valid time 1 /2 tG..LcJ..

4.3.2.2 External Serial Clock

4-24

CLKOUT ~~
SCLK K*= td(SE-TD)-1 21 ;/>i

TXD

RXD

14 td(se-m>-----i I

------------------X TXD
t'ttttffftlllttttttltltttttlft
tlfttflftfllfltttlttltttftfltl ,
',•,•.•.·.·.•.•,•,•,•,•,•,•,•,•,\1,'.'/.'111111111+.11111

td(RD-CU -+I l+-

t?.eH:t€;~:~
td(RD) -k-ti

I I

RXD
SAMPLE SAVED

Notes: 1) The CLKOUT signal is not available in Single-Chip mode.
2) CLKOUT = tc(C)·
3) SCLK sampled; 1f SCLK = 1 then 0, fall transition found.
4) SCLK sampled; if SCLK = 0 then 1, rise transition found.

PARAMETER TYP

tdJ_R D -CL,_)_ RXD data valid before CLKOUT low 1 /4 t~c-1

tdJ_RD_l RXD data valid time 1 /2 tcJ_CJ_

tdJ_SB-TDJ_ Start of SCLK sample to new TXD data 3 1 /4 t c_(C_l

tdLSE-TDJ_ End of SCLK sample to new TXD data 2 1 /4 t c_LC_l

tdJ_CL-_fil Clockout low to SCLK transition t c_lCl

UNIT

ns

ns

ns

ns

UNIT

ns

ns

ns

ns

ns

Electrical Specifications - SE70P162 NMOS Prototyping Device

4.4 SE70P162 Specifications

Vee

V1H

VIL

TA

Table 4-21. Absolute Maximum Ratings over Operating Free-Air
Temperature Range (unless otherwise noted)

Supply voltage range, V cc t .. -0.3 V to 7 V
Input voltage range ... -0.3 V to 7 V
Output voltage range ... -.03 V to 7 V
Continuous power dissipation ... 1.4 W
Maximum buffer current ... ± 10 mA
Storage temperature range .. 0°C to 100°C

t Unless otherwise noted, all voltages are with respect to Vss·

Caution:

Stresses beyond those listed under "Absolute Maximum Rat­
ings" may cause permanent damage to the device. This is a
stress rating only and functional operation of the device at
these or any other conditions indicated in the "Recommended
Operating Conditions" section of this specification is not im­
plied. Exposure to absolute maximum rated conditions for ex­
tended periods may affect device reliability.

Table 4-22. Recommended Operating Conditions

MIN NOM MAX UNIT

Supply voltage 4.5 5 5.5 v

High-level input voltage
CLKIN 2.6 v
All others 2.3 v

Low-level input voltage
CLKIN 0.6 v
All others 0.8 v

Operating free-air temperature 0 55 oc

4-25

Electrical Specifications - SE70P162 NMOS Prototyping Device

Table 4-23. Electrical Characteristics over Full Range of Recommended
Operating Conditions

PARAMETER TEST CONDITIONS MIN TY Pt MAX UNIT

A5,MC,RESET, V I = V SS to V CC ±2 ±10
1, Input current

T'Ni'1, 003, XT AL2
µA

Ports C and D
V I = 0.4 V to V CC ±10 ±100 AfrA4,A6,A7

VoH High-level output voltage loH = -0.4 mA 2.4 v

Vol Low- level output voltage loL = 2 mA 0.4 v

tu__o1 Output rise time:!: See Figure 4-20 9 30 ns

tti.Ol Output fall time:!: See Figure 4-20 10 35 ns

Ice Average supply current§ Al I outputs open 160 210 mA

Po_(avl Average power dissipation Al I outputs open 800 1155 mW

t All typical values are at V cc = 5 V, TA = 25°C.
:I: Rise and fall times are measured between the maximum low level and the minimum high level using the

10% and 90% points (see Figure 4-21).
§ Average supply current without piggyback EPROM device installed.

Figure 4-20. Output Loading Circuit for Test

OUTPUTS

MV ~
0.4 V 1--,..-; ~------ VOL (MAX)

o ---------------------------------------

Figure 4-21. Measurement Points for Switching Characteristics

4-26

Electrical Specifications - SE70P162 NMOS Prototyping Device

Table 4-24. Recommended Crystal/Clockin Operating Conditions over Full
Operating Range

PARAMETER MIN TYP MAX UNIT

fose Crystal frequency 1.0 8.0 MHz

CLKI N duty cycle 50 %

tel.Pl Crystal cycle time 125 1000 ns

tel.Cl Internal state cycle time 250 2000 ns

tw_(PHl CLKI N pulse duration high 50 ns

twJ.PlJ. CLKIN pulse duration low 50 ns

tr CLKIN rise timet 30 ns

tf CLKIN fall timet 30 ns

td_{_PH-CHJ_ CLKI N rise to CLKOUT rise delay 125 200 ns

t Hise and fall times are measured betwen the maximum low level and the minimum high level.

k--tc(P)-tl

~~tr l
I 1---i lt"-tf I
I I

XTAL2/CLKIN

CLKOUT , __ r

Figure 4-22. Clock Timing

(A)
SE70P182

(B)

XTAL1 XTAL2/CLKIN
NC XTAL1

18 17 SE70P182
8 MHz

a CLOCK XTAL2/CLKIN SOURCE

16pF;
PARALLB.

;30pF RESONANT

Figure 4-23. Recommended Clock Connections

4-27

Electrical Specifications - SE70P162 NMOS Prototyping Device

Table 4-25. Memory Interface Timing

PARAMETER MIN MAX

tel Cl_ CLKOUT cycle timet 250 2000

tw{_CHJ CLKOUT high pulse duration 0.5tc1CJ_-40 0.5t c_(_CJ_+10

tw_(_CL) CLKOUT low pulse duration 0.5tc_J_CJ_-40 0.5t c_(_C_l +15

tdJ.CH-JLl Delay time, CLKOUT rise to ALATCH fall 0.5t clCJ_-10 0.5tc_LC_l +30

twj_JHl ALATCH high pulse duration 0.25tcl.CJ.-15 0.25t aj_C) +30

tsu(HA-JL) Setup time, high address valid before
ALATCH fall

0.25t c(C)-40 0.25tc(C) +45

tsu(LA-JL) Setup time, low address valid before
ALATCH fall

0.25t c(C)-40 0.25tc(C)+15

th(JL-LA} Hold time, low address valid after
ALATCH fall

0.25t c(C) 0.25tc(C) +45

tsu(RW-JL) Setup time, R/W valid before ALATCH 0.25t c{C)-35 0.25tc(C) +30
fall

thJ.EH-RWJ Hold time, R/W valid after ENABLE rise 0.5t clCJ_-40

th{EH-HA) Hold time, high address valid after
ENABLE rise

0.5t c(C)-50

tsu(O-EH) Setup time, data output valid before 0.5t c{C)-45
ENAl3[E rise

th(EH-0) Hold time, data output valid after 0.5t c(C)-45
ENAl3LE rise

td(LA-EL) Delay time, low address high impedance 0.25t c(C)-45 0.25tc(C)
to ENABLE fall

td(EH-A) Delay time, ENABLE rise to next address 0.5t c(C)-25
drive

ta(EL-D) Access time, data input valid after 0.75tc(C)-105
ENAl3LE fall

ta(A-D) Access time, address valid to data input
valid

1.5t c(C)-115

td_{_A-EHl Delay time, address valid to ENABLE rise 1.5t cJ_CJ_-80 1 .5tc_(_Cl +30

th(EH-D) Hold time, data input valid after ENABLE 0
rise

td_(_EH-JHJ_ Delay time, ENABLE rise to ALATCH rise 0.5t c1q-25 0.5tcJ.Cl +10

td_(_CH-El.J.. Delay time, CLKOUT rise to ENABLE fall -10 35

t tc(C} is defined to be 2/f05c and may be referred to as a machine state or simply a state.

Note: For memory interface timings at 8 MHz, see Table 4-11 on page 4-1 2.

4-28

UNIT

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

Electrical Specifications - SE70P162 NMOS Prototyping Device

ALATCH

HIGH ADDRESS
(00-07)

ENABLE I
I

EXTERNAL WRITE I RAM READ
I

I I

~t~u(Q-EH)

INTERNAL READ

HIGH
ADDRESS

-+i !f-tsu(RW-JL)
I _____ ,,,.----~ __________ !

Figure 4-24. Read and Write Cycle Timings

4-29

Electrical Specifications - SE70P162 NMOS Prototyping Device

4.4.1 Serial Port Timing

4.4.1.1 Internal Serial Clock

CLI<OUT LfUl_f1J1Jl-IL
-til '4t- td(cL-SU I

SCLI< ----111--111 I .. , --
4 ~ td(CL-TD) I

TXD ---......_.x~-----------------
RXD

RXD
SAMPLE SAVED

Notes: 1) The CLKOUT signal is not available in Single-Chip mode.
2) CLKOUT = tc(C)·

PARAMETER TYP

td_(_CL-SLJ_ CLKOUT low to SCLK low 1 /4 tc_(_CJ_

td_(_CL-TDJ CLKOUT low to new TXD data 1 /4 tc(Cl

td_(_RD-CL_}_ RXD data valid before CLKOUT low 1 /4 t c_(_Cj_

td_(_RD_l_ RXD data valid time 1 /2 tc_LC_l_

4.4.1.2 External Serial Clock

4-30

~~
K\\\~ td(SE-TD)-; 2/;//i

ClKOUT

SCLK

TXD

!· t d(SB-TD) ------i I _______________ x TXD

td(RD-CU -+I ~

RXD
........................ , .. ,
\•:.·.·.·:.•:,':.·.·.································· ~I I If If tt 11 I I It I It It t It t It tt t I
ttttllftftltttltlfffltttttttt t?:?.H:t:€;:~:~

td(RD) -k--M
I I

RXD
SAMPLE SAVED

Notes: 1) The CLKOUT signal is not available in Single-Chip mode.
2) CLKOUT = tc(C)·
3) SCLK sampled; 1f SCLK = 1 then 0, fall transition found.
4) SCLK sampled; if SCLK = 0 then 1, rise transition found.

PARAMETER TYP
RXD data valid before CLKOUT low 1 /4 t

RXD data valid time 1 /2 t

Start of SCLK sample to new TXD data 3 1 /4 t

End of SCLK sample to new TXD data 2 1 /4 t

Clockout low to SCLK transition

UNIT
ns

ns

ns

ns

UNIT

ns

ns

ns

ns

ns

Electrical Specifications -TMS70CxOA CMOS Devices (Wide Voltage)

4.5 TMS70COOA, TMS70C20A, and TMS70C40A Specifications
(Wide Voltage)

Vee

V11-1

Vn.

TA

Table 4-26. Absolute Maximum Rating over Operating Free-Air
Temperature Range (unless otherwise noted)

Supply voltage, Vcct .. -0.3 V to 7 V
All input voltages .. -0.3 V to Vee + 0.3 V
All output voltages .. -0.3 V to V cc + 0.3 V
Maximum 1/0 buffer current .. ± 10 mA
Storage temperature range .. -55°C to 150°C
Ice; lss current (maximum into pins 25 and 40) ... ±60 mA

t Unless otherwise noted, all voltages are with respect to V55.

Caution:

Stresses beyond those listed under "Absolute Maximum Rat­
ings" may cause permanent damage to the device. This is a
stress rating only and functional operation of the device at
these or any other conditions beyond those indicated in the
"Recommended Operating Condition.s" section of this specifi­
cation is not implied. Exposure to absolute-maximum-rated
conditions for extended periods may affect device reliability.

Table 4-27. Recommended Operating Conditions

MIN NOM MAX UNIT

Supply voltage 2.5 6.0 v
XTAL2 pin, 0.8V cc v
Vee= 2.5 to 6 V

High-level input voltage All other pins, 0.70V cc v
V cc= 3 to 6 V

All other pins, 0.75V cc v
Vee = 2.5 to 3 V

XTAL2 pin, 0.2V cc v
Vee = 2.5 to 6 v

Low-level input voltage
All other pins,
Vcc=2.5to6V

0.3V cc v

Commercial 0 70 ·c
Operating temperature (TMS70CxONL)
range

Industrial
(TMS70CxONA)

-40 85 ·c

4-31

Electrical Specifications - TMS70CxOA CMOS Devices (Wide Voltage)

Table 4-28. Electrical Characteristics over Full Range of Operating Conditions

PARAMETER TEST CONDITIONS MIN TY Pt MAX UNIT

11 Input leakage current VIN = V SS to V CC ±0.1 ±1 µA

c, Input capacitance 5 pF

Vee= 2.5 v, loH = -50 µA 2.25 2.4 v
VoH High-level

V cc= 4.0 V, loH = -0.4 mA 3.2 3.6 v output voltaget

V cc= 5.0 V, loH = -0.7 mA 3.9 4.5 v
Vee= 6.0 v, loH = -1.0 mA 4.6 5.4 v
Vee= 2.5 v, loL = 0.4 mA 0.2 0.35 v

VoL Low-level
V cc= 4.0 V, loL = 1.6 mA 0.4 0.8 v output voltaget

V cc= 5.0 V, loL = 2.5 mA 0.6 1.1 v
Vee= 6.0 v, loH = 3.4 mA 0.8 1.4 v
Vee= 2.5 v, VoH = 2.25 V -0.05 -0.2 mA

loH Output source
V cc= 4.0 V, VoH = 3.2 V -0.4 -1.4 mA current

V cc= 5.0 V, VoH = 3.9 V -0.7 -2.2 mA

Vee= 6.0 v, VoH = 4.6 V -1.0 -3.3 mA

Vee= 2.5 v, VoH = 0.35 V 0.4 0.9 mA
loL Output sink

V cc= 4.0 V, VoH = 0.8 V 1.6 3.5 mA current

V cc= 5.0 V, VoH = 1.1 V 2.5 5.5 mA

Vee= 6.0 V, VoH = 1.4 V 3.4 8.0 mA

t Vee= 5 v, TA= 25·c
t Output levels ensure 400 mV of noise margin over specified input levels.

4-32

Electrical Specifications - TMS70CxOA CMOS Devices (Wide Voltage)

Ice

Ice

Ice

Ice

Notes:

Table 4-29. Supply Current Requirements

PARAMETER TEST CONDITIONS MIN TVP MAX

fose = 6.0 MHz, Vee= 5 v 9.0 14.4

fose = 3.0 MHz, Vee= 5 v 4.5 7.2

Operating mode fose = 0.5 MHz, v cc= 5 v 0.8 1.2

fose = Z MHz, Vee= 5 v 1.5 2.4

fose = 0.5 MHz, Vee= 2.5 v 370 800

fose = 6.0 MHz, Vee= 5 v 960 1920

fose = 3.0 MHz, Vee= 5V 480 960

Wake- Up mode fose = 0.5 MHz, v cc= 5 v 80 160
(timer active)

f ose = Z MHz, Vee= 5 v 160 320

fose = 0.5 MHz, Vee= 2.5 v 40 80

fose = 6.0 MHz, Vee= 5 v 480 980

Halt osc-on fose = 3.0 MHz, v cc= 5 v 240 500

fose = 0.5 MHz, Vee= 5 v 45 100

fose = Z MHz Vee= 5 v See Note 2

fose = 0.5 MHz, Vee= 2.5 v 25

Halt osc-off V cc = 2.5 to 6 V 1

1. All inputs =Vee or Vss (except XTAL2). All output pins are open.
2. Maximum current = 160(Z) + 20 µA

XTAL2/CU<IN

CLKOUT

k-tc(P)-tl

~~t, I
I I 4 ff-tf I
I I

---11(\)
r---tc(C)~

Figure 4-25. Clock Timing

, ___ r

60

10

UNIT

mA

mA

mA

mA/MHz

µA

µA

µA

µA

µA/MHz

µA

µA

µA

µA

µA

µA

µA

4-33

Electrical Specifications - TMS70CxOA CMOS Devices (Wide Voltage)

TMB70CXOA

XTAL.1 XTAL2/CLI<IN
18 17

PARALLB.. 16 pF.. RESONANT • ao pF

(8)

NC _ ___.... ... XTAL 1

CLOCK
SOURCE

TMB70CxOA

XTAL2/CLI<IN

Figure 4-26. Recommended Clock Connections

Table 4-30. Recommended Crystal/Clockin Operating Conditions over Full
Operating Range

TEST
PARAMETER CONDITIONS MIN TV Pt MAX UNIT

Vee= 2.5 v 0.5 0.8 MHz

Vee= 4.0 v 0.5 4.0 MHz
f osc Crystal frequency

v cc= 5.0 v 0.5 6.0 MHz

Vee= 6.0 v 0.5 6.5 MHz

CLKI N duty cycle 45 55 %

Vee= 2.5 v 1250 2000 ns

Vee= 4.0 v 250 2000 ns
tc(P) Crystal cycle time

v cc= 5.0 v 166 2000 ns

Vee= 6.0 v 153 2000 ns

Vee= 2.5 v 2500 4000 ns

Vee= 4.0 v 500 4000 ns
tc(C) Internal state cycle time

v cc= 5.0 v 333 4000 ns

Vee= 6.o v 306 4000 ns

tw__(_PH_l CLKI N pulse duration high 70 ns

tw__(_PLJ_ CLKI N pulse duration low 70 ns

tr CLKI N rise time 30 ns

tf CLKI N fall time 30 ns

td(PL-CH) CLKIN fall to CLKOUT rise delay 110 250 ns

t V CC = 5 V, TA = 25°C

4-34

Electrical Specifications - TMS70Cx0A CMOS Devices (Wide Voltage)
7,..-~~--~~-r-~~--,~~~~~~--~~---~~-..,...-~~...-~~--.

>
~ 5~~~+-~~+-~~-+-~~-t-~~--t~~~~~~~~~:lrof-~~·-1
41>
:l

r
~ 4~~~+-~~-t-~~---t~~~ohlfl~~~~~~~~~~~~ ~~-t

~
~ 3t--~~~~~-1-~~--t,..._...~-Plr-~~f"f"'oir~~~~.....,..~ia.--....... _..+-~~-4
0
'1ii c ! 2t--~~~~~-h~""r-'._._...~...._.,_..~r-a., ~_.......,.. ~ ~~+-~~-4
>< w

10

9

8

ct 7
E

... 6
c
!!
!:i 5 u
.?
8: 4
:1

"' I 3
u

!:? 2

0
0

Vee - Supply Voltage - V

Figure 4-27. Operating Frequency Range

TA = 25°e ~
5 MHz

ALL OUTPUTS OPEN

~ ..,,,,-
~

----4 3 MHz

i...---
~

~ ---1

0.5 MHz
_A -y

2.5 3 3.5 4 4.5 5 5.5 6 6.5
Vee - Supply Voltage - V

Figure 4-28. Typical Operating Current vs. Supply Voltage

4-35

Electrical Specifications - TMS70CxOA CMOS Devices (Wide Voltage}

0.9

<t 0.8
E

0.7

I TA'= 25'oc I I ./
"----""--ALL OUTPUTS OPEN -+---t--+--+----::ll'f'~'-- \I WAKE-UP MODE-1

V IVcc = 5Vl
.L

....
c: 0.6 ~ :;

(.) 0.5
>
ii

0.4 c.
:s

(/)

I 0.3
(.)

9 0.2

Vy v--- ~HALT OSC-ON MODE-
L L,_.....-' (V cc = 5 V)

0.1

0
0 0.5 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

f05c - Frequency - MHz

Figure 4-29. Typical Power-Down Current vs. Oscillator Frequency

10

9

8
<t
E

7

....
6 c:

~ :;
5 (.)

>
ii 4 c.
:s
(/)

I 3
(.)

.Y 2

- TAl = 2i 0 c l J7
ALL OUTPUTS OPEN V Vee= 5 v

L v
F

L v
~

Vee = 4 v

~
..,

V1 /'

Y. v~
L ~ ~ Vee = 3 v

l l
~

0
0 0.5 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

fosc - Frequency - MHz

Figure 4-30. Typical Operating ICC vs. Oscillator Frequency

4-36

Electrical Specifications - TMS70CxOA CMOS Devices (Wide Voltage)

....
:I s-
:::1
0
I
::c
.9

<(
E

.... c:
~
:I

(.)

~
c:

C:i5
....
:I s-
:::1

0
I _,

.9

0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Vds - Output Buffer Voltage Drop IVcc-VoHl - V

Figure 4-31. Typical Output Source Characteristics

o~
0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Vol - Low Level Output Voltage - V

Figure 4-32. Typical Output Sink Characteristics

4-37

Electrical Specifications - TMS70CxOA CMOS Devices (5V ±10%)

4.6 TMS70COOA, TMS70C20A, and TMS70C40A Specifications
(5V ±10%)

Vee

V1H

V1L

TA

4-38

Table 4-31. Absolute Maximum Rating over Operating Free-Air
Temperature Range (unless otherwise noted)

Supply voltage, V cc t ... -0.3 V to 7 V
All input voltages .. -0.3 V to Vee + 0.3 V
All output voltages ... -0.3 V to Vee + 0.3 V
Maximum 1/0 buffer current .. ± 10 mA
Storage temperature range .. -55°C to 150°C
Ice. 155 current (maximum into pins 25 and 40) ... ±60 mA

t Unless otherwise noted, all voltages are with respect to V55.

Caution:

Stresses beyond those listed under "Absolute Maximum Rat­
ings" may cause permanent damage to the device. This is a
stress rating only and functional operation of the device at
these or any other conditions beyond those indicated in the
"Recommended Operating Conditions" section of this specifi­
cation is not implied. Exposure to absolute-maximum-rated
conditions for extended periods may affect device reliability.

Table 4-32. Recommended Operating Conditions

MIN NOM MAX UNIT

Supply voltage 4.5 5.5 v
XTAL2 pin o.sVcc v

High-level input voltage
All other pins 0.7V cc v
XTAL2 pin 0.2Vcc v

Low-level input voltage
All other pins 0.3V cc v
Commercial 0 70 ·c

Operating temperature (TMS70CxONL)
range

Industrial
(TMS70CxONA)

-40 85 ·c

Electrical Specifications - TMS70CxOA CMOS Devices (5V ±10%)

Table 4-33. Electrical Characteristics over Full Range of Operating Conditions

PARAMETER TEST CONDITIONS MIN TY Pt MAX UNIT

11 Input leakage current V1N = Vss to V cc ±0.1 ±1 µA

c, Input capacitance 5 pF

VoH High-level output
I OH= -0.3 mA Vcc·0.5 4.7 v voltage

Vol Low-level output
I Ol = 1.4 mA 0.2 0.4 v voltage

101-1 High-level output VoH=Vcc·0.5V -0.3 -1.2 mA
source current

V OH = 2.5 V min -1.0 -3.0 mA

loL Output sink Vol= 0.4 V 1.4 2.0 mA
current

t V cc = 5 V, TA = 25°C

LOAD VOLTAGE

-{

10000

Vo
100 pF

Figure 4-33. Output Loading Circuit for Test

OUTPUTS

=== ============= =====sot ___ VOH(MIN)

-------------- ----1~ -- --------------- --------- VOL(MAX)

Figure 4-34. Measurement Points for Switching Characteristics

4-39

Electrical Specifications -TMS70CxOA CMOS Devices (5V ±10%)

Table 4-34. AC Characteristics for 1/0 Ports

PARAMETER TEST CONDITIONS MIN TYP MAX UNITS

tr 1/0 port output C1oad= 15 pF,V cc = 5 V 35 60 ns
rise time

tf I I 0 port output C1oad= 15 pF,V cc = 5 V 20 50 ns
fall time

Note: Rise and fall times are measured between the maximum low level and the minimum high level using
the 1 0% and 90% points.

Table 4-35. Supply Current Requirements

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

fosc = 5.0 MHz 7.5 13.5 mA

fosc = 3.0 MHz 4.5 8.1 mA
Ice Operating mode

f osc = 1.0 MHz 1.5 2.7 mA

f05c = Z MHz 1.5 2.7 mA/MHz

fosc = 5.0 MHz 800 1750 µA

Ice Wake- Up mode fosc = 3.0 MHz 480 1050 µA
(timer active)

f osc = 1.0 MHz 160 350 µA

fosc = Z MHz 160 350 µA/MHz

f05c = 5.0 MHz 480 920 µA
Ice Halt osc-on

f osc = 3.0 MHz 240 560 µA

fosc = 1.0 MHz 80 200 µA

f05c = Z MHz See Note 2 µA

Ice Halt osc-off 1 10 µA

Notes: 1. All inputs =Vee or Vss (except XTAL2). All output pins are open.
2. Maximum current = 180(Z) + 20 µA.

4-40

Electrical Specifications - TMS70Cx0A CMOS Devices (5V ±10%)

Table 4-36. Recommended Crystal/Clockin Operating Conditions over Full
Operating Range

PARAMETER MIN TY Pt MAX UNIT

f osc Crystal frequency 0.5 5.0 MHz

CLKI N duty cycle 45 55 %

tc(P) Crystal cycle time 200 2000 ns

tc(q Internal state cycle time 400 4000 ns

twi_Pf-Q CLKIN pulse duration high 90 ns

twJ_PLl CLKIN pulse duration low 90 ns

tr CLKI N rise time 30 ns

tt CLKI N fall time 30 ns

td_{_PL-Cfil_ CLKIN fall to CLKOUT rise delay 140 250 ns

t V cc = 5 V, TA = 25°C

XTAL2/CLKIN

CU<OUT , __ r

Figure 4-35. Clock Timing

(A)
TM670CxOA

(8)

NC tB XTAl..1
XTAl..1 xt CLKIN
18 17 TM870CxOA

6 MHz

~ a CLOCK XTAl..2/CLKIN SOURCE

16pF ..
PARALLEL

..30pF RESONANT

Figure 4-36. Recommended Clock Connections

4-41

Electrical Specifications - TMS70CxOA CMOS Devices (5V ±10%)

Table 4-37. Memory Interface Timingst

PARAMETER MIN TYP MAX UNIT

tcJ_C_l CLKOUT cycle time tcJ_CJ_ ns

tw_{CH_l CLKOUT high pulse duration 0.5tcJ_q-90 0.5t cJ_Cl +90 ns

twJ_CLJ_ CLKOUT low pulse duration 0.5tc_LC_}-90 0.5t c(C} +90 ns

td(CH-JL) Delay time, CLKOUT rise to ALATCH
fall

0.75t c(C)-50 ns

twJ_JHl ALATCH active duration 0.5tc_Lq-15 ns

tsu(HA-JL) Setup time, high address valid
before ALATCH fall

0.5t c(C)-100 ns

tsu(LA-JL) Setup time, low address valid
before ALATCH fall

0.5t c(C)-100 ns

th(JL-LA) Hold time, low address hold 0.5t c(C)-60 ns
after ALATCH fall

t5 u(RW-JL) Setup time, R/W valid before
ALATCH fall

0.5t c(C)-100 ns

thJ_EH-RW_l Hold time, R/W after Ef\IABLE rise 0.25t cJ_q-60 ns

th(EH-HA) Hold time, high address valid after 0.25t c(C)-60 ns
Ef\JABLE rise

td(Q-EH) Delay time, data out valid before
ENABLE rise

0.75t c(C)-70 ns

th(EH-0) Hold time, data out valid after
ENABLE rise

0.25t c(C)-30 ns

td(EH-A) Delay time, ENABLE rise to next address 0.25t c(C)-60 ns
drive

ta(EL-D) Access time, data in after ENABLE
fall

p.75t c(C)-120 ns

ta(A-D) Access time, data in from valid 1.5t c(C)-200 ns
address

td(A-EH) Delay time, ENABLE high after valid
address

1.75t c(C)-100 ns

th(EH-D) Hold time, data input valid after 0 ns
Ef\JABLE rise

td(eH-EL) Delay time, CLKOUT rise to -10 35 ns
ENAB[E fall

t Vee = 4.5 to 5.5 v
CLKI N duty cycle = 50%

4-42

Electrical Specifications - TMS70CxOA CMOS Devices (5V ±10%)

Table 4-38. Memory Interface Timings at 5 M Hzt

PARAMETER MIN TYP MAX UNIT

tc_iq CLKOUT cycle time 400 ns

tw_iCHl CLKOUT high pulse duration 110 200 290 ns

tw_(_CLl CLKOUT low pulse duration 110 200 290 ns

td_iCH-JlJ.. Delay time, CLKOUT rise to ALATCH fall 250 300 ns

tw_(_JH.l ALATCH active duration 185 200 ns

tsuJ..HA-J 1J.. Setup time, high address valid before ALATCH fall 100 200 ns

tsu_iLA-JLJ_ Setup time, low address valid before ALATCH fall 100 200 ns

td_(JL-LA_l Delay time, low address hold after ALATCH fall 140 200 ns

td_iRW-JLl Delay time, R/W valid before ALATCH fall 100 200 ns

th_{_EH-RWl Hold time, R/W valid after ENAI§[~ rise 40 100 ns

thJEH-HA_l Hold time, high address valid after ENAl:i[E rise 40 100 ns

fsuJ..0-EHl Setup time, data out valid before ENAl3LE rise 230 300 ns

thiEH-QJ_ Hold time, data out valid after ENAl:i[E rise 70 100 ns

td_iEH-A_l Delay time, ENAl3[E rise to next address drive 40 100 ns

td_{_EL-Dl Delay time, data in after ENA~[i;: fall 180 300 ns

ta_iA-D} Access time, data in from valid address 400 600 ns

td_{_A-EHJ_ Delay time, ENAf:i[E h.igh after address valid 600 700 ns

th_{_ EH-DJ_ Hold time, data input valid after ENAl3[E rise 0 ns

td_ieH-ELl Delay time, CLKOUT rise to ENAl3LE fall -10 35 ns

t Vee == 4.5 to 5.5 v
CLKI N duty cycle = 50%

4-43

Electrical Specifications - TMS70CxOA CMOS Devices (5V ±10%)

HIGH ADDRESS
(00-07)

ENABLE

4-44

EXTERNAL WRITE RAM READ INTERNAL READ

Figure 4-37. Read and Write Cycle Timing

R1~A ADD ESS

Electrical Specifications - TMS70Cx2 CMOS Devices (Wide Voltage)

4.7 TMS70C02 and TMS70C42 Specifications (Wide Voltage)

Vee

V1H

V1L

TA

Table 4-39. Absolute Maximum Ratings over Operating Free-Air
Temperature Range (unless otherwise noted)

Supply voltage range, V cct .. -0.3 V to 7 V
Input voltage range ... -0.3 V to Vcc+0.3 V
Output voltage range .. -0.3 V to Vcc+0.3 V
Maximum 1/0 buffer current .. ± 10 mA
Storage temperature range .. -55°C to 150°C
Ice. lss (maximum into pin 25 or 40) .. ±60 mA

t Unless otherwise noted, all voltages are with respect to V55.

Caution:

Stresses beyond those listed under "Absolute Maximum Rat­
ings" may cause permanent damage to the device. This is a
stress rating only and functional operation of the device at
these or any other conditions beyond those indicated in the
"Recommended Operating Conditions" section of this specifi­
cation is not implied. Exposure to absolute maximum rated
conditions for extended periods may affect device reliability.

Table 4-40. Recommended Operating Conditions

MIN NOM MAX UNIT

Supply voltage 2.5 6.0 v
MC and XTAL2 pins, 0.8V cc v
Vee= 2.5 to 6 v

High-level input voltage
All other input pins,

0.70V cc v Vee= 3 to 6 v
All other input pins,

0.75V cc v V cc = 2.5 to 3 V

MC and XTAL2 pins, 0.2V cc v
Low-level input voltage V cc = 2.5 to 6 V

All other input pins, 0.3V cc v
Vee = 2.5 to 6 v
Commercial 0 70 oc

Operating free-air (TMS70C42NL)
temperature

Industrial
(TMS70C42NA)

-40 85 oc

4-45

Electrical Specificatnons - TMS70Cx2 CMOS Devices (Wide Voltage)

Table 4-41'. Electrical Characteristics over Full Range of Operating Conditions

PARAMETER TEST CONDITIONS MIN TV Pt MAX UNIT

1, Input current
MC pin, VIN = Vss or Vee

±0.1 ±1 µA All others, V1N = Vss to Vee

C1 Input capacitance 5 pF

Vee= 2.5 v, loH = -50 µA 2.25 2.4 v
VoH High-level

V cc= 4.0 V, loH = -0.4 mA 3.2 3.6 v output voltage:!:

V cc= 5.0 V, loH = -0.7 mA 3.9 4.5 v
Vee= 6.0 v, loH = -1.0 mA 4.6 5.4 v
Vee= 2.5 V, loL = 0.4 mA 0.2 0.35 v

Vol Low-level
V cc= 4.0 V, loL = 1.6 mA 0.4 0.8 v output voltage:!:

V cc= 5.0 V, loL = 2.5 mA 0.6 1.1 v
Vee= 6.0 v, loL = 3.4 mA 0.8 1.4 v
Vee= 2.5 V, VoH = 2.25 V -50 -200 µA

loH Output source
V cc= 4.0 V, VoH = 3.2 V -0.4 -1.4 mA current

V cc= 5.0 V, VoH = 3.9 V -0.7 -2.2 mA

Vee= 6.0 v, VoH = 4.6 V -1.0 -3.3 mA

Vee= 2.5 v. VoH = 0.35 V 0.4 0.9 mA
loL Output sink

V cc= 4.0 V, VoH = 0.8 V 1.6 3.5 mA current

V cc= 5.0 V, VoH=1.1V 2.5 5.5 mA

Vee= 6.0 v, VoH = 1.4 V 3.4 8.0 mA

t Vee= 5 V, TA= 25°C
:t: Output levels ensure 400 mV of noise margin over specified input levels.

4-46

Electrical Specifications - TMS70Cx2 CMOS Devices (Wide Voltage)

Table 4-42. Supply Current Requirements

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

f08c = 7.0 MHz, Vee= 5.0 v 17 24.5 mA

f08c = 3.0 MHz, Vee= 5.o v 7.2 10.5 mA

Ice Operating mode f osc = 0.5 MHz, Vee= 5.ov 1.2 1.8 mA

f08c = Z MHz, Vee= 5.o v 2.4 3.5 mA/MHz

f08c = 0.5 MHz, Vee= 2.5 v 0.4 1.2 mA

Ice Wake-Up mode 1 fosc = 7.0 MHz, v cc= 5.0 v 2400 5600 µA
(one timer and

f osc = 3.0 MHz, Vee= 5.0 v 1200 3300 µA UART active)

f o~c = 0.5 MHz, Vee= 5.0 v 250 800 µA

Ice Wake- Up mode 2 f05c = 7.0 MHz, v cc= 5.0 v 960 3400 µA
(one timer active,

f osc = 3.0 MHz, Vee= 5.0 V 480 2000 µA UART inactive)

f osc = 0.5 MHz, Vee= 5.0 v 140 550 µA

Ice Wake-Up mode 3
f osc = 7.0 MHz, Vee= 5.o v 1500 2400 µA

(UART active only) f osc = 3.0 MHz, Vee= 5.0 v 800 1500 µA

f 08c = 0.5 MHz, Vee= 5.o v 180 600 µA

Note: All inputs =Vee or Vss (except XTAL2). All output pins are open.

4-47

Electrical Specifications -TMS70Cx2 CMOS Devices (Wide Voltage)

Table 4-43. Recommended Crystal/Clockin Operating Conditions over Full
Operating Range

TEST
PARAMETER CONDITIONS MIN TY Pt MAX UNIT

Vee= 2.5 v 0.5 0.8 MHz

Vee= 4.0 v 0.5 5.0 MHz
fosc Crystal frequency

v cc= 5.0 v 0.5 7.0 MHz

Vee= 6.0 v 0.5 7.5 MHz

CLKI N duty cycle 45 55 %

Vee= 2.5 v 1250 2000 ns

Vee= 4.0 v 200 2000 ns
tc(P) Crystal cycle time

v cc= 5.0 v 143 2000 ns

Vee= 6.ov 133 2000 ns

Vee= 2.5 v 2500 4000 ns

Vee= 4.0 v 400 4000 ns
tc(C) Internal state cycle time

v cc= 5.0 v 286 4000 ns

Vee= 6.0 v 267 4000 ns

twJ_PHl CLKIN pulse duration high 50 ns

twJ_PL_}_ CLKIN pulse duration low 50 ns

tr CLKI N rise time 30 ns

tf CLKI N fall time 30 ns

tdJ_PL-CHl CLKIN fall to CLKOUT rise delay 110 250 ns

t Vee= 5V, TA= 25°C

4-48

Electrical Specifications - TMS70Cx2 CMOS Devices (Wide Voltage)

~tc(P)-.j

XTAL2/CLI<IN

~~tr I
I I ""'1 ,._t, I
I I

CLKOUT ---'1-r , __),
r-tc(C) ,

, __ r

Figure 4-38. Clock Timing

(A)
TM870Cx2

(8)

NC 18 XTAl.1 XTAl.1 XT.
18 TM870Cx2

CLOCK ~ XTAl.2/CLI<IN SOURCE

16 pF PARALL8.. 30 pF RESONANT

Figure 4-39. Recommended Clock Connections

4-49

Electrical Specifications -TMS70Cx2 CMOS Devices (Wide Voltage)

8

7

TA = -40°e to 85°e
N
:c

6 :E

> u
c: 5 QI
::J
C'
QI

u:
s 4

~
'i:j
VI 3 0
ca
c:
Cii ... 2 >< w

u
VI

.,9

0
2.5 3 3.5 4 4.5 5 5.5 6 6.5

Vee - Supply Voltage - V

Figure 4-40. Operating Frequency Range

18

16 ~

14
<(

TA = 25°e ~~
ALL OUTPUTS OPEN fosc = 6 MHz

~ ,____....-
E

12
... c:
~

10 :;
()

>
Q.

8 Q.
::J

U)

I
() 6

9

4

L-----1
~
~

fosc = 3 MHz

i------

,..

2
fosc = 0. 5 MHz

_l

0 Uy I
0 2.5 3 3.5 4 4.5 5 5.5 6 6.5

Vee - Supply Voltage - V

Figure 4-41. Typical Operating Current vs. Supply Voltage

4-50

Electrical Specifications - TMS70Cx2 CMOS Devices (Wide Voltage)

0.9
ct
E

..... 0.8

TA = 25°e

ALL OUTPUTS OPEN fosc = 0.5 MHz ~

v
c:
~
~

0.7 0
>

Ci.
Q.
:::i

Cl) 0.6
I
u
.!:}

0.5

0.4

0.3 ~__,._ _ ___. __ .__ _ _.____.-L.-.._-.L-_-.&.-_----1.._---J

0 2.5 3 3.5 4 4.5 5 5.5 6 6.5

1. 1

0.9

... 0.8
c:
2!
:;
() 0.7
>
Ci.
Q.
:::i

Cl)

I
0.6

0.5

0.4

Vee - Supply Voltage - v

Figure 4-42. Typical Operating ICC vs. Oscillator Frequency

TA = 2s 0 e

~ ALL OUTPUTS OPEN fosc = 0.5 MHz

v / v
/ v

L v
/

~
~ 0.3
0 2.5 3 3.5 4 4.5 5 5.5 6

Vee - Supply Voltage - V

Figure 4-43. Typical Operating Current vs. Supply Voltage

6.5

4-51

Electrical Specifications -TMS70Cx2 CMOS Devices (Wide Voltage)

<(
E

... c:
!?
:i
u
GI
(,l

:i
0

Cl) ...
:::J
.e-
:::J

0
I

::i::
9

<(
E

4-52

6

5

TA = 25°C

4

3

2

0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Vds - Output Buffer Voltage Drop (Vcc-VoHl - V

Figure 4-44. Typical Output Source Characteristics

o~
0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Vol - Low level Output Voltage - V

Figure 4-45. Typical Output Sink Characteristics

Electrical Specifications - TMS70Cx2 CMOS Devices (Wide Voltage)

4.7.1 Serial Port Timing

4.7.1.1 Internal Serial Clock
CLKOUT Lfl__fl_D Jl..Jl_n_

-+I !.--- td(CL-SU I
SCLK ----.-1 , I -, --

-ti! !4- td(CL-TD) I
TXD ___,..x TXD

td(RD-CU -+I lf-

RXD --:§H1:t,;~:~
k--*td(RD)
I I

RXD
SAMPLE SAVED

Notes: 1) The CLKOUT signal is not available in Single-Chip mode.
2) CLKOUT = tc(C)·

PARAMETER TYP

!ill,CL-..S..LJ. CLKOUT low to SCLK low 1 /4 tc_LCJ_

td_LCL-TDJ. CLKOUT low to new TXD data 1 /4 tc_LC~

td_LRD-Cl.l RXD data valid before CLKOUT low 1I4 t c;i_C_l_

td_LRD_l RXD data valid time 1 /2 tc_LC~

4.7.1.2 External Serial Clock

CLKOUT ~~
SCLK K\\W= td(SE-TD) ___,)!j/Ji

TXD

RXD

I• td(SB-TD) ~ I
_______________ :X_ !>co

td(RD-CU -til l+-

-:?.eHi:€~~:~
td(RD) -k--tl

I I

RXD
SAMPLE SAVED

Notes: 1) The CLKOUT signal is not available in Single-Chip mode.
2) CLKOUT = tc(C)·
3) SCLK sampled; 1f SCLK = 1 then 0, fall transition found.
4) SCLK sampled; if SCLK = 0 then 1, rise transition found.

PARAMETER TYP

tcti_RD-CL_l RXD data valid before CLKOUT low 1 /4 t ci_C)

~RDJ_ RXD data valid time 1 /2 !fil_CJ_

td_LSB-_I_D_l_ Start of SCLK sample to new TXD data 3 1/4 t~c~

tdiS_E-TD) End of SCLK sample to new TXD data 2 1 /4 t c_(_CJ_

tcti_ CL :.Sl Clockout low to SCLK transition t cl.Cl

UNIT
ns

ns

ns

ns

UNIT
ns

ns

ns

ns

ns

4-53

Electrical Specifications - TMS70Cx2 CMOS Devices (5V ±10%)

4.8 TMS70C02 and TMS70C42 Specifications (5V ±10%)

Vee

V1H

V1L

TA

4-54

Table 4-44. Absolute Maximum Ratings over Operating Free-Air
Temperature Range (unless otherwise noted)

Supply voltage range, Vcct .. -0.3 V to 7 V
Input voltag1~ range ... -0.3 V to Vcc+0.3 V
Output voltage range .. -0.3 V to Vcc+0.3 V
Maximum 1/0 buffer current .. ± 10 mA
Storage temperature range .. -55°C to 150°C
lee. lss (maximum into pin 25 or 40) .. ±60 mA

t Unless otherwise noted, all voltages are with respect to Vss·

Caution:

Stresses beyond those listed under "Absolute Maximum Rat­
ings" may cause permanent damage to the device. This is a
stress rating only and functional operation of the device at
these or any other conditions beyond those indicated in the
"Recommended Operating Conditions" section of this specifi­
cation is not implied. Exposure to absolute maximum rated
conditions for extended periods may affect device reliability.

Table 4-45. Recommended Operating Conditions

MIN NOM MAX UNIT

Supply voltage 4.5 5.5 v
MC and XTAL2 pins o.sVcc v

High-level input voltage
All other input pins 0.7V cc v
MC and XTAL2 pins 0.3Vcc v

Low-level input voltage
All other input pins 0.2V cc v
Commercial 0 70 oc

Operating temperature
{TMS70C42NL)

Industrial -40 85 oc
(TMS70C42NA)

Electrical Specifications - TMS70Cx2 CMOS Devices (5V ±10%)

Table 4-46. Electrical Characteristics over Full Range of Operating Conditions

PARAMETER TEST CONDITIONS MIN TY Pt MAX UNIT

11 Input leakage current
MC pin, v IN = Vss or Vee

±0.1 ±1 µA All others, V1N = Vss to Vee

C1 Input capacitance 5 pF

VoH High-level
I OH= -0.3 mA Vcc-0.5 4.7 v output voltage

Vol Low-level
I OL = 1.4 mA 0.2 0.4 v output voltage

loH High-level output VoH =Vee - 0.5 v -0.3 -1.2 mA
source current

V OH = 2.5 V min -1.0 -3.0 mA

loL Output sink VOL= 0.4 V 1.4 2.0 mA
current

Table 4-47. AC Characteristics for Input/Output Portst

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

tr1_10l_ 1/0 port output rise time C1oad = 15 pF, V cc= 5 V 35 60 ns

tt_(_IO_l 1/0 port output fall time C1oad = 15 pF, V cc = 5 V 20 50 ns

t Rise and fall times are measured between the maximum low level and the miniumum high level using
the 10% and 90% points.

LOAD VOLTAGE

-t 10000

Vo
100 pF

Figure 4-46. Output Loading Circuit for Test

OUTPUTS

---------- V. (MIN) -----eat OH

Figure 4-47. Measurement Points for Switching Characteristics

4-55

Electrical Specifications - TMS70Cx2 CMOS Devices (5V ±10%)

Table 4-48. Supply Current Requirements

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

f05c = 6.0 MHz 15 24 mA

f05c = 3.0 MHz 7.2 12 mA
Ice Supply current

f osc = 1.0 MHz 2.4 4.0 mA

f05c = Z MHz 2.4 4.0 mA/MHz

Ice Wake-Up mode 1 f05c = 6.0 MHz 2400 5400 µA
(one timer and

f osc = 3.0 MHz 1200 2900 µA UART active)

f osc = 1.0 MHz 650 1500 µA

Ice Wake-Up mode 2 fosc = 6.0 MHz 960 3200 µA
(one timer active,

f osc = 3.0 MHz 480 1800 µA UART inactive)

f osc = 1.0 MHz 350 1000 µA

Ice Wake-Up mode 3
f osc = 6.0 MHz 1500 2200 µA

(UART active only) f osc = 3.0 MHz 800 1300 µA

fosc = 1.0 MHz 400 1100 µA

Note: All inputs =Vee or Vss (except XTAL2). All output pins are open.

Table 4-49. Recommended Crystal/Clockin Operating Conditions over Full
Operating Range

PARAMETER MIN TY Pt MAX UNIT

fosc Crystal frequency 0.5 6.0 MHz

CLKI N duty cycle 45 55 %

tclPJ.. Crystal cycle time 167 2000 ns

tciq Internal state cycle time 333 4000 ns

tw__{_PHJ_ CLKIN pulse duration high 70 ns

tw__{_PLl CLKI N pulse duration low 70 ns

tr CLKI N rise time 30 ns

tf CLKI N fall time 30 ns

tdlPL-CHl CLKIN fall to CLKOUT rise delay 110 250 ns

t Vee= 5 V, TA= 25°C

4-56

Electrical Specifications - TMS70Cx2 CMOS Devices (5V ±10%)

i.-- tc(P) _.,

XTAL.2/CLKIN

-ti :.-tr I
I I 4 lf-tf I
I I

CLKOUT , __ r

Figure 4-48. Clock Timing

(A)
TM870Cx2

(8)

NC :II XTAL.1
XTAL.1 XTAL.2/CLKIN
18 17 TM870Cx2

8.0 MHz µ a CLOCK XTAL.2/CLKIN SOURCE

16 pF PARALLEL 30 pF RESONANT

Figure 4-49. Recommended Clock Connections

4-57

Electrical Specifications - TMS70Cx2 CMOS Devices (5V ±10%)

Table 4-50. Memory Interface Timingst

PARAMETER

tc1e_l CLKOUT cycle time

tw1eHl CLKOUT high pulse duration

tw1eld CLKOUT low pulse duration

td(eH-JL) Delay time, CLKOUT rise to
ALATCH fall

tw1JH1 ALATCH high pulse duration

tsu(HA-JL) Setup time, high address valid
before ALATCH fall

tsu(LA-JL) Setup time, low address valid
before ALATCH fall

td(JL-LA) Delay time, low address valid after
ALATCH fall

tsu(RW-JL) Setup time, R/W valid before
ALATCH fall

th(EH-RW) Hold time, R/W valid after
ENABLE rise

th(EH-AH) Hold time, high address valid after
El'JAB LE rise

tsu(O-EH) Setup time, data out valid before
ENABLE rise

th(EH-0) Hold time, data out valid after
ENABLE rise

td(LA-EL) Delay time, low address Hl-Z to
ENABLE fall

td(EH-A) Delay time, ENABLE rise to next
address drive

td(EL-D) Delay time, data in after
ENAe[E fall

ta(A-D) Access time, data in from valid
address

td(A- EH) Delay time, ENABLE high after
address valid

th(EH-D) Hold time, Data input valid after
El'JAl:iLE rise

td(EH-JH) Delay time, ENABLE rise to
ALATCH rise

td(eH-EL) Delay time, CLKOUT rise to
ENABLE fall

t fosc = 0.5 to 6.0 MHz
Vee = 4.5 to 5.5 v
CLKI N duty cycle = 50%

4-58

MIN TYP

333

0.5tc;__{_CJ_-90 0.5t c1e_l

0.5tc_{_q-90 0.5t c1Cl

0.5t c(C)-50 0.5tc(e)

0.25tciq-50 0.25t c1CJ_

0.25t c(C)-45 0.25tc(e)

0.25t c(C)-45 0.25tc(e)

0.5t c(C)-35 . 0.5tc(e)

0.25t c(C)-40 0.25tc(e)

0.5t c(C)-60 0.5tc(e)

0.5t c(C)-60 0.5tc(e)

0.5t c(C)-70 0.5tc(e)

0.5t c(e)-60 0.5tc(e)

0.25t c(C)-55 0.25tc(e)

0.5t c(C)-60 0.5tc(e)

0.75t c(C)-160 0.75tc(e)

1.5t c(C)-200 1.5tc(C)-100

1.5t c(C)-50 1.5tc(e)

0

0.5t c(C)-60 0.5tc(e)

30

MAX

4000

0.5tc1CJ_ +90

0.5tc_(_Cl +90

UNIT

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

Electrical Specifications - TMS70Cx2 CMOS Devices (5V ±10%)

Table 4-51. Memory Interface Timings at 6 MHzt

PARAMETER MIN TYP MAX UNIT

tc(C) CLKOUT cycle time 333 ns

tw_(_CHJ. CLKOUT high pulse duration 76 166 252 ns

tw(CL) CLKOUT low pulse duration 76 162 252 ns

td_(_CH-Jl,.1 Delay time, CLKOUT rise to ALATCH fall 116 166 ns

tw_(JHJ ALATCH active duration 33 83 ns

tsu_(_AH-Jl,.1 Setup time, high address valid before ALATCH fall 38 83 ns

tsuj_LA-Jl,.1 Setup time, low address valid before ALATCH fall 38 83 ns

td(JL-LA) Delay time, low address hold after ALATCH fall 131 166 ns

td_(_RW-Jl,.1 Delay time, R/W valid before ALATCH fall 43 83 ns

th(EH-RWl Hold time, R/W valid after ENABLE rise 106 166 ns

th_LEH-HA_l Hold time, high address valid after ENABLE rise 106 166 ns

tsu_(_Q-EH_l Setup time, data out valid before ENAS[E rise 96 166 ns

't'1.(EH-Q) Hold time, data out valid after ENABLE rise 106 166 ns

tdJ_LA- EL_l Delay time, low address Hl-Z to ENAE'.3[E fall 38 83 ns

td(EH-A) Delay time, ENABLE rise to next address drive 106 166 ns

td_(_EL-DJ. Delay time, data in after ENAB[E fall 90 250 ns

taj_A-DJ. Access time, data in from valid address 300 400 ns

td(A-EH) Delay time, ENABLE high affer address valid 450 500 ns

t.'1.(EH-D_l Hold time, data input valid after ENABLE rise 0 ns

tcJ_(EH-JH)_ Delay time, El\iABLE rise to ALATCH rise 106 166 ns

td_(_CH-EL) Delay time, CLKOUT rise to ENABLE fall 30 ns

t V cc = 4.5 to 5.5 V
CLKI N duty cycle = 50%

4-59

Electrical Specifications - TMS70Cx2 CMOS Devices (5V ±10%)

ALATCH

HIGH ADDRESS
(DO-D7)

ENABLE

4-60

EXTERNAL WRITE RAM READ INTERNAL READ

Figure 4-50. Read and Write Cycle Timing

HIGH
ADDRESS

Electrical Specifications - TMS70Cx2 CMOS Devices (5V ±10%)

4.8.1 Serial Port Timing

4.8.1.1 Internal Serial Clock

CLKOUT LSlJL.fl·Jl_fl-fl-
--.1 k- td(CL-SU I

SCLK ----i-1 ... , I ... , --
--I !4- td(CL-TO) I

T>CD ___,...x T>CD

td(RD-CU -+I 14--

RXD =--:@H:t::~;§J.-~
14'-*td(RD)
I I

RXD
SAMPLE SAVED

Notes: 1) The CLKOUT signal is not available in Single-Chip mode.
2) CLKOUT = tc(C}·

PARAMETER TYP

tc:ti_CL-:.S_L_l CLKOUT low to SCLK low 1 /4 tc_LC_l

td_CCL-TQ)_ CLKOUT low to new TXD data 1 /4 tcJ_C_l

tc:ti_RD-CU RXD data valid before CLKOUT low 1 /4 t cl_C_l

tdJRD.l RXD data valid time 1 /2 tctc_i

4.8.1.2 External Serial Clock

CLKOUT ~ruyld}
6CLK K\\\~td<se-ro>·-1 21/A

T>CD

RXD

I• td(SB-TO)---.j I _________________ x nco

td(RD-CU -.,j l+-

-:!E?H!:?.;:~:~
td(RD) -k--N

I I

RXD
SAMPLE SAVED

Notes: 1) The CLKOUT signal is not available in Single-Chip mode.
2) CLKOUT = tc(C)·
3) SCLK sampled; 1f SCLK = 1 then 0, fall transition found.
4) SCLK sampled; if SCLK = 0 then 1, rise transition found.

PARAMETER TYP

td.LR D -C lJ. RXD data valid before CLKOUT low 1/4 t_Q£C_l

td.LRD_l RXD data valid time 1 /2 tcl_C_l

td_LSB-TD_l Start of SCLK sample to new TXD data 3 1 /4 t cl_C_l

td_(.S_E- TQ)_ End of SCLK sample to new TXD data 2 1 /4 t cJ_C_l

td.LCL-:.fil Clockout low to SCLK transition t cl_C_l

UNIT

ns

ns

ns

ns

UNIT
ns

ns

ns

ns

ns

4-61

Electrical Specifications - TMS77C82 (Advance Information}

4.9 TMS77C82 (Advance Information)

Vee

V1H

VIL

TA

fosc

4-62

Table 4-52. Absolute Maximum Ratings over Operating Free-Air
Temperature Range (unless otherwise noted)

Supply voltage range, Vcct .. -0.3 V to 7 V
Input voltage range ... -0.3 V to Vcc+0.3 V
Output voltage range .. -0.3 V to Vcc+0.3 V
Maximum buffer sink current ... ± 10 mA
Storage temperature range .. -55°C to 150°C
Ice. lss (maximum into pin 25 or 40) .. ±60 mA

t Unless otherwise noted. all voltages are with respect to V55.

Caution:

This is advance information on a new product in the sampling
or preproduction phase of development. Characteristic data
and other specifications are subject to change without notice.

Table 4-53. Recommended Operating Conditions

MIN NOM MAX UNIT

Supply voltage 2.5 6.0 v
MC and XTAL2 Pins o.av cc v Vee = 2.5 to 6.0 V

High-level input voltage All other input pins
0.70V cc v Vee = 3.0 to 6.0 v

All other inputs
0.75V cc v Vee= 2.5 to 3.0 v

MC and XTAL pins
0.2V cc v Vee= 2.5 to 6.0 v

Low-level input voltage
All other inputs
Vee = 2.5 to 6.0 V 0.3V cc v
Commercial 0 70 ·c

Operating temperature
Industrial -40 85 oc

Oscillator frequency .5 7.5 MHz

Electrical Specifications - SE70CP160A CMOS Prototyping Device

4.10 SE70CP160A Specifications

Vee

V1H

V~L

TA

These specifications are for wide-voltage operation. For operation at 5 V
± 10%, see Section 4.6. Be sure to use an EPROM that uses similar supply
voltage specifications.

Table 4-54. Absolute Maximum Rating over Operating Free-Air
Temperature Range (unless otherwise noted)

Supply voltage, Vcct .. -0.3 V to 7 V
All input voltages .. -0.3 V to Vee + 0.3 V
All output voltages ... -0.3 V to V cc + 0.3 V
Maximum 1/0 buffer current .. ± 10 mA
Storage temperature range .. -55°C to 150°C
Ice. lss current (maximum into pins 25 and 40) ... ·±60 mA

t Unless otherwise noted, all voltages are with respect to Vss·

Caution:

Stresses beyond those listed under "Absolute Maximum Rat­
ings" may cause permanent damage to the device. This is a
stress rating only and functional operation of the device at
these or any other conditions beyond those indicated in the
"Recommended Operating Conditions" section of this specifi­
cation is not implied. Exposure to absolute-maximum-rated
conditions for extended periods may affect device reliability.

Table 4-55. Recommended Operating Conditions

MIN NOM MAX UNIT

Supply voltage 2.5 6.0 v
XTAL2 pin, 0.8V cc v
V cc = 2.5 to 6 V

High-level input voltage All other pins, 0.70V cc v
V cc= 3 to 6 V

All other pins, 0.75V cc v
V cc = 2.5 to 3 V

XTAL2 pin, 0.2V cc v
Vee = 2.5 to 6 v

Low-level input voltage
All other pins,
V cc = 2.5 to 6 V

0.3V cc v

Operating temperature range 0 55 oc

4-63

Electrical Specifications - SE70CP160A CMOS Prototyping Device

Table 4-56. Electrical Characteristics over Full Range of Operating Conditions

PARAMETER TEST CONDITIONS MIN TY Pt MAX UNIT

1, Input leakage current VIN = V SS to V CC ±0.1 ±1 µA

c, Input capacitance 5 pF

Vee= 2.5 v, loH = -50 µA 2.25 2.4 v
VoH High-level

V cc= 4.0 V, loH = -0.4 mA 3.2 3.6 v output voltaget

v cc= 5.0 v, loH = -0.7 mA 3.9 4.5 v

Vee= 6.o v, loH = -1.0 mA 4.6 5.4 v

Vee= 2.5 v, loL = 0.4 mA 0.2 0.35 v
VoL Low-level

V cc= 4.0 V, loL = 1.6 mA 0.4 0.8 v output voltaget

V cc= 5.0 V, loL = 2.5 mA 0.6 1.1 v

Vee= 6.0 v, loL = 3.4 mA 0.8 1.4 v

Vee= 2.5 v, VoH = 2.25 V -0.05 -0.2 mA
loH Output source

V cc= 4.0 V, VoH = 3.2 V -0.4 -1.4 mA current

V cc= 5.0 V, VoH = 3.9 V -0.7 -2.2 mA

Vee= 6.0 v, VoH = 4.6 V -1.0 -3.3 mA

Vee= 2.5 v, VoH = 0.35 V 0.4 0.9 mA
loL Output sink

V cc= 4.0 V, VoH = 0.8 V 1.6 3.5 mA current

V cc= 5.0 V, VoH = 1.1 V 2.5 5.5 mA

Vee= 6.0 v, VoH = 1.4 V 3.4 8.0 mA

t V cc = 5 V, TA = 25°C
t Output levels ensure 400 mV of noise margin over specified input levels.

4-64

Electrical Specifications - SE70CP160A CMOS Prototyping Device

Ice

Ice

Ice

Ice
fo on

Notes:

Table 4-57. Supply Current Requirements

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

f05c = 6.0 MHz, Vee= 5 v 9.0 14.4 mA

f05c = 3.0 MHz, Vee =,5 v 4.5 7.2 mA

Operating mode fosc = 0.5 MHz, v cc= 5 v 0.8 1.2 mA

f05c = Z MHz, Vee= 5 v 1.5 2.4 mA/MHz

fosc = 0.5 MHz, Vee= 2.5 v 370 800 µA

f05c = 6.0 MHz, Vee= 5 v 960 1920 µA

f05c = 3.0 MHz, Vee= 5V 480 960 µA

Wake-Up mode fosc = 0.5 MHz, v cc= 5 v 80 160 µA
(timer active)

f osc = Z MHz, Vee= 5 v 160 320 µA/MHz

fosc = 0.5 MHz, Vee= 2.5 v 40 80 µA

f05c = 6.0 MHz, Vee= 5 v 480 980 µA

Halt osc-on f05c = 3.0 MHz, v cc= 5 v 240 500 µA

f05c = 0.5 MHz, Vee= 5 v 45 100 µA

fosc = Z MHz Vee= 5 v See Note 2 µA

f05c = 0.5 MHz, Vee= 2.5 v 25 60 µA

Halt osc-off V cc = 2.5 to 6 V 1 10 µA

1. All inputs =Vee or Vss (except XTAL2). All output pins are open.
2. Maximum current = 160(Z) + 20 µA
3. Ice applies to the supply current of the SE70CP160A without an EPROM device in­

stalled.

4-65

Electrical Specifications - SE70CP160A CMOS Prototyping Device

Table 4-58. Recommended Crystal/Clockin Operating Conditions over Full
Operating Range

TEST
PARAMETER CONDITIONS MIN TY Pt MAX UNIT

Vee= 2.5 v 0.5 0.8 MHz

Vee= 4.0 v 0.5 4.0 MHz
f osc Crystal frequency v cc= 5.0 v 0.5 6.0 MHz

Vee= 6.0 v 0.5 6.5 MHz
CLKI N duty cycle 45 55 %

Vee= 2.5 v 1250 2000 ns

Vee= 4.0 v 250 2000 ns
tc(P) Crystal cycle time v cc= 5.0 v 166 2000 ns

Vee= 6.0 v 153 2000 ns

Vee= 2.5 v 2500 4000 ns

Vee =4.0 v 500 4000 ns
tc(C) Internal state cycle time v cc= 5.0 v 333 4000 ns

Vee= 6.0 v 306 4000 ns

tw(PH~ CLKI N pulse duration high 50 ns

twJ_Pll CLKIN pulse duration low 50 ns

tr CLKI N rise time 30 ns

tt CLKI N fall time 30 ns

tdLPL-CH} CLKI N fall to CLKOUT rise delay 140 250 ns

t V cc = 5 V, TA = 25°C

4-66

Electrical Specifications - SE70CP160A CMOS Prototyping Device

k-tc(P)-.i

XTAL2/CU<IN

~~tr I
I I 4 ie---t1 I
I I

CLKOUT _---'I(, __)
1 jf--tc(C) ,

, __ r

Figure 4-51. Clock Timing

8E70CP180A

XTAL1 XTAL2/CLKIN
18 17

-al--
16pF ..

PARALLEL
RESONANT 30 pF

(8)

NC --1 ll! XTAL1

SE70CP180

CLOCK I 1i XT."' "''CLKIN SOURCE r----1' ,.,._,.

Figure 4-52. Recommended Clock Connections

4-67

Electrical Specifications - SE70CP162 CMOS Prototyping Device

4.11 SE70CP162 Specifications

Vee

V1H

V1L

TA

4-68

These specifications are for wide-voltage operation. For operation at 5 V
±10%, see Section 4.8. Be sure to use an EPROM that uses similar supply
voltage specifications.

Table 4-59. Absolute Maximum Ratings over Operating Free-Air
Temperature Range (unless otherwise noted)

Supply voltage range, V cc t .. -0.3 V to 7 V
Input voltag13 range ... -0.3 V to Vcc+0.3 V
Output voltage range .. -0.3 V to V cc+0.3 V
Maximum 1/0 buffer current .. ± 10 mA
Storage temperature range .. -55°C to 150°C
Ice. lss (maximum into pin 25 or 40) .. ±60 mA

t Unless otherwise noted, all voltages are with respect to Vss·

Caution:

Stresses beyond those listed under "Absolute Maximum Rat­
ings" may cause permanent damage to the device. This is a
stress rating only and functional operation of the device at
these or any other conditions beyond those indicated in the
"Recommended Operating Conditions" section of this specifi­
cation is not implied. Exposure to absolute maximum rated
conditions for extended periods may affect device reliability.

Table 4-60. Recommended Operating Conditions

MIN NOM MAX UNIT

Supply voltage 2.5 6.0 v
MC and XTAL2 pins,
V cc = 2.5 to 6 V

0.8V cc v

High-level input voltage
All other input pins,

0.70V cc v Vee= 3 to 6 v
All other input pins,

0.75V cc v Vee = 2.5 to 3 v
MC and XT AL2 pins, 0.2V cc v
V cc = 2.5 to 6 V

Low-level input voltage
All other input pins, 0.3V cc v
V cc = 2.5 to 6 V

Operating free-air temperature 0 55 ·c

Electrical Specifications - SE70CP162 CMOS Prototyping Device

Table 4-61. Electrical Characteristics over Full Range of Operating Conditions

PARAMETER TEST CONDITIONS MIN TY Pt MAX UNIT

1, Input current
MC pin, v IN = Vss or Vee

±0.1 ±1 µA All others, V1N = Vss to Vee

c, Input capacitance 5 pF

Vee= 2.5 v, loH = -50 µA 2.25 2.4 v
VoH High-level

V cc= 4.0 V, loH = -0.4 mA 3.2 3.6 v output voltage+

V cc= 5.0 V, loH = -0.7 mA 3.9 4.5 v
Vee= 6.0 v. loH = -1.0 mA 4.6 5.4 v
Vee= 2.5 v. loL = 0.4 mA 0.2 0.35 v

Vol Low-level
V cc= 4.0 V, loL = 1.6 mA 0.4 0.8 output voltage+ v
V cc= 5.0 V, loL = 2.5 mA 0.6 1 .1 v
Vee= 6.0 v, loL = 3.4 mA 0.8 1.4 v
Vee= 2.5 v, VoH = 2.25 V -50 -200 µA

loH Output source
V cc= 4.0 V, VoH = 3.2 V -0.4 -1.4 mA current

V cc= 5.0 V, VoH = 3.9 V -0.7 -2.2 mA

Vee= 6.0 v, VoH = 4.6 V -1.0 -3.3 mA

Vee= 2.5 v, VoH = 0.35 V 0.4 0.9 mA
loL Output sink

V cc= 4.0 V, VoH = 0.8 V 1.6 3.5 mA current

V cc= 5.0 V, VoH=1.1V 2.5 5.5 mA

Vee= 6.o v, VoH = 1.4 V 3.4 8.0 rnA

t Vee= 5 V, TA= 25°C
+ Output levels ensure 400 mV of noise margin over specified input levels.

4-69

Electrical Specifications - SE70CP162 CMOS Prototyping Device

Table 4-62. Supply Current Requirements

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

f05c = 7.0 MHz, Vee = 5.0 V 17 24.5 mA

f05c = 3.0 MHz, Vee = 5.0 V 7.2 10.5 mA

Ice Operating mode f osc = 0.5 MHz, Vee = 5.0 v 1.2 1.8 mA

fosc = Z MHz, Vee= 5.o v 2.4 3.5 mA/MHz

f05c = 0.5 MHz, Vee = 2.5 V 0.4 1.2 mA

Ice Wake- Up mode 1 f05c = 7.0 MHz, V cc = 5.0 V 2400 5600 µA
Lone timer and

f osc = 3.0 MHz, Vee= 5.0 v 1200 3300 µA ART active)

f osc = 0.5 MHz, Vee = 5.0 v 250 800 µA

Ice Wake-Up mode 2 f05c = 7.0 MHz, V cc = 5.0 V 960 3400 µA
(one timer active,

f osc = 3.0 MHz, Vee = 5.0 V 480 2000 µA UART inactive)

f osc = 0.5 MHz, Vee = 5.0 v 140 550 µA

f osc = 7.0 MHz, Vee= 5.0 v 1500 2400 µA
Ice Wake-Up mode 3

f osc = 3.0 MHz, Vee = 5.0 V 800 1500 µA (UART active only)

f05c = 0.5 MHz, Vee = 5.0 V 180 600 µA

Notes: 1. All inputs =Vee or V55 (except XTAL2). All output pins are open.
2. Ice applies to the supply current of the SE70CP162 without an EPROM device installed.

4-70

Electrical Specifications - SE70CP162 CMOS Prototyping Device

Table 4-63. Recommended Crystal/Clockin Operating Conditions over Full
Operating Range

TEST
PARAMETER CONDITIONS MIN TY Pt MAX UNIT

Vee= 2.5 v 0.5 0.8 MHz

Vee= 4.0 v 0.5 5.0 MHz
f osc Crystal frequency

v cc= 5.0 v 0.5 7.0 MHz

Vee= 6.0 v 0.5 7.5 MHz
CLKI N duty cycle 45 55 %

Vee= 2.5 v 1250 2000 ns

Vee= 4.0 v 200 2000 ns
tc(P) Crystal cycle time

v cc= 5.0 v 143 2000 ns

Vee= 6.0 v 133 2000 ns

Vee= 2.5 v 2500 4000 ns

Vee= 4.0 v 400 4000 ns
tc(C) Internal state cycle time

v cc= 5.0 v 286 4000 ns

Vee= 6.0 v 267 4000 ns

twJ_PHl CLKI N pulse duration high 50 ns

twJ_PLl CLKIN pulse duration low 50 ns

tr CLKIN rise time 30 ns

tf CLKI N fall time 30 ns

td_LPL-CHJ_ CLKIN fall to CLKOUT rise delay 110 250 ns

t V cc = 5 V, TA = 25°C

4-71

Electrical Specifications - SE70CP162 CMOS Prototyping Device

XTAL2/CLKIN

CLKOUT ----11¥ \ ___)
jt----tc(C) ~

, __ r

Figure 4-53. Clock Timing

(A)
BE70CP182

(8)

XTAL.1 XTAL2/CLKIN
NC XTAl..1

18 17 8E70CP182

---E CLOCK XTAl..2/CLKIN SOURCE

PARALLB..
16pF+ RESONANT +30pF

Figure 4-54. Recommended Clock Connections

4-72

Electrical Specifications - SE70CP162 CMOS Prototyping Device

4.11.1 Serial Port Timing

4.11.1.1 Internal Serial Clock

CLKOUT LrL.fLf1. .nsi-ri
--.! 14--- td(CL-SU I

SCLK ---+-1...;,1 1 ,---
4 !4- td(CL-TD) I

TXD --------x _____________________ __
RXD

RXD
SAMPLE SAVED

Notes: 1) The CLKOUT signal is not available in Single-Chip mode.
2) CLKOUT = tc(C)-

PARAMETER TYP

tcli.CL-SLl CLKOUT low to SCLK low 1 /4 tc_(Cl_

tcli_CL-TD_l CLKOUT low to new TXD data 1 I 4 tc_LC_l

td(RD-CLJ_ RXD data valid before CLKOUT low 1 /4 t cl.C.l

tcli_RD_l RXD data valid time 1 /2 tcl.C_l

4.11 .1.2 External Serial Clock

CLKOUT ~JlJ}fW
SCLK K\\\~ td(SE~TD)-1 !r;J>i

TXD

RXD

I• td(SB-TD)------i I
_____________ __,X TXD

td(RD-CU -+I l+-

t~Hf ¥,M.:~:mmmummmm~~~
td(RD) -i.-111

I I

RXD
SAMPLE SAVED

Notes: 1) The CLKOUT signal is not available in Single-Chip mode.
2) CLKOUT = tc(C)·
3) SCLK sampled; 1f SCLK = 1 then 0, fall transition found.
4) SCLK sampled; if SCLK = 0 then 1, rise transition found.

PARAMETER TYP

td_LR D -C LJ_ RXD data valid before CLKOUT low 1 /4 t c..(_C_l

tdl.RD_l RXD data valid time 1 /2 tc_LCJ_

tctLS_B-TDJ_ Start of SCLK sample to new TXD data 3 1 /4 t cLCl

td_LSE-TD_l End of SCLK sample to new TXD data 2 1 /4 t c_LC_l

td_LCL:.fil_ Clockout low to SCLK transition t c_(_CJ_

UNIT

ns

ns

ns

ns

UNIT

ns

ns

ns

ns

ns

4-73

Electrical Specifications

4-74

8. Macro Language

The TMS7000 Macro Assembler supports a macro definition language. Macro
definitions allow you to create your own "commands." This is especially
useful when a program executes a particular task several times. A macro de­
finition contains source statements that are associated with a unique macro
name. When the macro name is used as an opcode in a program source
statement (referred to as a macro call), the macro definition's predefined
source statements are substituted for the macro call statement.

This section discusses the following topics:

Section Page
8.1 Macro Definitions and Macro Libraries .. 8-2
8.2 Strings, Constants, and Operators ... 8-6
8.3 Variables .. 8-7
8.4 Keywords .. 8-11
8.5 Assigning Values to Parameters .. 8-13
8.6 Verbs ... 8-15
8.7 Model Statements ... 8-25
8.8 Macro Examples .. 8-26
8.9 Macro Error Messages .. 8-29

8-1

Macro Language - Defining Macros

8.1 Defining Macros

A macro definition begins with a source statement like this:

<MACNAME> $MACRO [<parml>,<parm2> ...] [<comment>]

where:

<MACNAME> Names the macro; it may contain a maximum of six alpha­
numeric characters. It is placed in the source statement's
label field.

$MACRO Identifies this source statement as the first line of a macro
definition; it appears in the opcode field.

<parms> Parameters passed to the macro when called (not all macros
will have parameters); they appear in the operand field.

<comment> Optional.

There are three methods for defining macros:

1) Macros can be defined in the source file where they are used. Macros
must be defined before they are called; it is good practice to place all the
definitions at the top of the file. This provides easy reference to all the
definitions because they are in one location.

2) Macros can also be defined in external files. These files are simply text
files, like the assembler source file. Only one macro may be defined per
external file. These external macro definition files are collected to form
a macro library.

3) All macros can be placed in one file without the source program, and
then the COPY directive can be used to include the macro file in the
source program.

8.1.1 Using Macro L.ibraries

8-2

When a macro is called, the assembler searches several places for its definition.
Let's assume that the directory file 'VOLUME.DIRECTORY.MACLIB' contains
a library of macro definitions. The MLIB directive tells the assembler that a
macro library exists. The M LIB directive syntax is:

MLIB 'VOLUME.DIRECTORY.MACLIB'

The quoted string names the macro library. (This string represents a directory
name in the host operating system format.)

This library contains a definition for a macro named CPXADD. Assume that
an assembly language source program contains the following macro call:

LABEL CPXADD CX1,CX2

The assembler uses the following search order to find the macro definition:

1) The in-memory macro table is the first place searched. CPXADD
will be in the macro table if:

a) It was previously defined in the assembler source file or
b) It has already been read from a macro file.

Macro Language - Defining Macros

2) If CPXADD is not found in the macro table, the assembler searches the
normal assembler opcode/directive table. If found there, the op­
code will be assembled as a normal machine instruction.

3) If the definition is not in the opcode/directive table, the macro name
is appended to the macro library name.

If more than one MLIB directive was encountered, the assembler
searches the most recently defined library first, then the library defined
before that, and so on.

If the file is found, the macro definition is copied into the assembler's macro
file (in a compressed format), and an entry is made in the macro table for later
use.

The search order prevents a macro defined in a library from automatically re­
defining a machine instruction because the assembler searches the opcode
table before the libraries. This can be circumvented in two ways:

1) Define the macro in the source program or

2) Include another file in the macro library called an MLIST (macro list).

An MUST file is a text file that contains the names of the opcodes and cur­
rently defined macros that are redefined by macros in the library.

A typical MLIST file might be constructed as follows; note that there is only
one definition per line and each statement begins in column one.

file named <MLIB directory name>.MLIST
record 1 ADD (opcode)
record 2 LACK (opcode)
record 3 M OV (opcode)
record 4 FSUB (macro)
eof (MLIST)

The MUST is read (if provided) when the MLIB directive is processed. If a
name found there matches a currently defined opcode or a name in the macro
table, the matching entry is removed from its table. This forces a search of the
libraries, since the name will not be found elsewhere. The following message
is printed when a name is found that matches an opcode:

' **** OPCODES REDEFINED'

The message appears after the printing of the M LIB statement. A similar mes­
sage:

' **** MACROS REDEFINED'

appears when currently defined macros are redefined. If you do not want an
opcode or macro to be redefined, you must delete the appropriate records from
the M LIST file.

The name of a macro in a file should be the same as the file name, or the
macros are not used efficiently. If the file named CPXADD contains a defi­
nition line such as

CPXMUL $MACRO MR, MD

the macro CPXM UL is entered into the macro table, and the next call to
CPXADD will be undefined and re-entered into the macro table as CPXMUL.

8-3

Macro Language - Defining Macros

8.1.1.1 Using Macro Libraries on MS/PC-DOS Systems

The following program segment suggests a method for using macro libraries
on an MS/PC-DOS system.

MLIB
ADD
MOV

*
XMAC

*
NOP

*
YMA.C

*
NOP
END

IE: I
R3,R4
R6,R9

The pathname must be a drive name
Typical assembly code

First macro call

Another macro call

The assembler searches the drive specified by the MLIB directive for a file with
the same name as the macro. The macro name cannot have an extension.
Only one macro is allowed per file.

The assembler searches the current MS/PC-DOS directory structure for the
drive specified in the M LIB directive. A possible example of macro library use
is:

Store all macros on the A drive in a directory named MACROS.

Store the TMS7000 assembler on the E drive (or any drive other than
A) in a directory named PROGRAMS. The assembler program name is
XASM7.EXE.

Store the source program on the E drive in a directory named ASSEM­
BLY. The source program name is CODE.ASM. It includes this directive
statement:

MLIB 'A: I

Issue a path statement that includes the program directory:

PATH E:\;E:\MSDOS;E:\PROGRAMS

The following batch file will assemble the program:

E:
CD A:\MACROS
CD E:\ASSEMBLY
XASM7 CODE.ASM;

Insure execution from drive E:
Change A: drive's directory
Change E: drive's directory
Assemble the file CODE.ASM

8.1.2 Sample Macros

8-4

Assume that a symbol representing a memory address, ADR, is set in a source
file:
ADR EQU >FOOO

Macro Language - Defining Macros

This is a simple example of a macro definition that increments ADR:

where:

INCADR $MACRO
LDA
INC
STA
$END

@ADR
A
@ADR

Names a macro, INCADR.
Identifies the beginning of the macro definition.

INCADR
$MACRO
LDA @ADR
INC A
STA @ADR

$END

Are model statements that are substituted into the source pro­
gram when the macro is called. A model statement "models" an
assembler language statement. Such a statement is (or will form
after macro substitution) a legal language statement.
Identifies the end of the macro definition.

The macro INCADR can now be used in the source program as often as nec­
essary. Call the macro by entering· the following line into the source file:

INCADR
The macro assembler replaces this line with the macro definition:

LDA @ADR
INC A
STA @ADR

INCADR is limited because the macro can only be used with a single memory
location, ADR. The following macro uses parameters and is more flexible. It
can be used with any memory location.
INC $MACRO M

LDA @:M.S:
INC A
STA @:M.S:
$END

where:

M Is a macro parameter. It is replaced by the actual parameter when the
macro is called.

M .S Is the string component of this variable (the symbol representation of
the variable).

For example, the line:
INC Y

will be replaced by:

LDA @Y
INC A
STA @Y

but
INC DATA4

will be replaced by:
LDA
INC
STA

@DATA4
A
@DATA4

8-5

Macro Language - Strings, Constants, and Operators

8.2 Strings, Constants, and Operators

8-6

Macro language literal strings are identical to the character strings used by
TMS7000 assembly language. The strings contain one or more characters
enclosed in single quotes.

Examples of valid strings are:

'ONE'
' ' (a blank)

Macro language constants are defined in the same manner as assembly lan­
guage constants.

Examples of valid constants are:

>9F3C
$ (current PC value)

Arithmetic operators can be used in operands. Functions of +, -, * (mul­
tiply), and / (divide) can be used to generate operand values. Examples using
arithmetic operators are:

LABEL EQU $+4 (current PC value + 4)

Relational operators can also be used. Relational operators compare the
values of two variables or constants and return the answer of TRUE or FALSE.
The relational operators are:

= Equal
> Greater than
< Less than
#= Not equal

Examples using relational operators are:

$IF A.V>3

$IF B.L#=A.L

Process succeeding block if value
component of variable A is >3.
Process succeeding block if length
component of variable B is not equal
to length component of variable A.

The macro assembler also allows the use of Boolean operators, which per­
form the desired operation and return either TRUE or FALSE. The Boolean
operators are:

& AND
++ OR

NOT

An example using the Boolean operators is:

$IF --((A.V>3)&(B.L#=A.L))

Macro symbol components can be concatenated with literal strings, model
statement characters, and other macro variables. Concatenation is indicated
by writing character strings side by side with string mode references.

Macro Language - Variables

8.3 Variables

Macro definitions can include variables which are represented in the same
manner as symbols in the assembler symbol table (AST). Macro variables can
have a maximum length of two characters. Examples of valid variables are:

VA
P4
SC
F2
A

Note:

Macro variables are strictly local, available only to the macro which defines
them. Symbols in the assembler symbol table can only be accessed
through symbol components.

Macro variables can be defined in two ways:

1) As parameters defined by the $MACRO statement, and
2) In $ASG statements (see the $ASG verb).

The macro translator maintains a macro symbol table (MST) similar to the
AST. Each MST entry contains the variable/parameter and its string, value,
length, and attribute components. The macro expander module places pa­
rameters in the MST when macro calls are processed and places variables in
the MST when it processes $ASG statements.

8.3.1 Parameters

Parameters are variables that are declared in the $MACRO definition state­
ment. The parameter declaration sequence corresponds to the sequence of the
operands in the macro call statement. During macro expansion, the parame­
ters receive the values of the macro call operands. Examples of $MACRO
statements with parameters are:

LABEL

NAME

$MACRO A,B3

$MACRO O,RC,AM

8-7

Macro Language - Variables

8.3.2 Macro Variable Components

8-8

There are four types of variable/parameter components:

1)

2)

3)

4)

The string component of an MST entry contains a character string
assigned to the macro variable/parameter by the macro expander.
The value component of an MST entry contains:
a) The binary equivalent of the string component, if the string com­

ponent is an integer.
b) The value of the symbol, if the string component is a symbol in the

AST.
c) The length of the list, if the parameter is an operand list.
The length component contains the number of characters in the string
component.
The attribute component of the MST is a bit vector. The bits corre­
spond to the attributes of the variable or parameter.

The following statement defines a macro with parameters X and NUM:

ADDK $MACRO X,NUM

The following statement calls the ADDK macro:

ADDK VARl,3

The MST now contains entries for parameters X and NU M and their associated
components:

Parameter X:

String Component
Attribute Component

Length Component

Parameter NUM:

String Component
Value Component
Length Component
Attribute Component

Is the character string VAR1 .
Indicates that the parameter is supplied in a ma­
cro call (keyword $PCALL).
Is 4.

Is the character 3.
Is 3 also, expressed as a 16-bit binary number.
Is 1.
Indicates that the parameter is supplied in the
macro call (keyword $PCALL).

Each component of a macro variable can be accessed individually in either
binary or string mode:

In binary mode, the referenced macro variable component is treated as a
signed 16-bit integer. Binary mode is accessed by writing the variable
name and component. A reference to the string component of a macro
variable in binary mode is the 16-bit integer value of the ASCII repre­
sentation of the first two characters of the string. For example, the bi­
nary mode value of the string component of X, in the preceding example,
is > 5641, which is the ASCII representation for VA.

String mode access of macro variable components is signified by en­
closin~1 the variable in a pair of colon characters (:). For example,

: x:

Macro Language - Variables

Note:

Colons are always used in pairs to enclose a variable name. If a variable
component qualifier is used, the pair of colons enclose the entire qualified
name.

8.3.3 Variable Qualifiers

Table 8-1 lists the names used to indicate variable/parameter components.
The variable name is followed by a period (.) and the single letter qualifier.

Table 8-1. Variable Qualifiers

QUALIFIER MEANING

s The string component of the variable

A The attribute component of the variable

v The value component of the variable

L The length component of the variable

The following examples show qualified variables for the macro call:

ADDK VARl I 3

which was defined by the following statement:

ADDK $MACRO X,NUM

X.S Is the string component (binary mode) of variable VAR1. X.S equals
the binary equivalent for VA, or >5641. If string mode is indicated, as
in :X.S:, the string component is the character string VAR1.

X.A Is the attribute component of variable VAR1. This component is ac­
cessed by using logical operators and keywords as described in Table
8-2, Table 8-3, and Table 8-4.

X. V Is the value component of variable VAR1 .

X.L Is the length component of variable VAR1; in this case, it is equal to the
character string 4.

Unqualified variables (except those in $ASG statements) refer to the variable's
string component. These two strings are equivalent:

:CT.S: WAY Variable CT qualified; string component= WAY.

:CT: WAY Variable CT unqualified; string component= WAY.

Note:

Binary references to macro variables in model statements must be quali­
fied.

8-9

Macro Language - Variables

8.3.4 Symbol Components

8-10

Entries in the assembler symbol table have symbol components. To access
symbol components in a macro, the symbol must be assigned to the string
component of a macro variable by an $ASG statement. The additional qual­
ifiers shown in Table 8-2 are used with macro variables to access the AST
symbol's components.

Table 8-2. Variable Qualifiers for Symbol Components

QUALIFIER MEANING
SS String component of a symbol that is the string component of a variable.
SV Value component of a symbol that is the string component of a variable.
SA Attribute component of a symbol that is the string component of a vari-

able.
SL Length component of a symbol that is the string component of a variable.

The following examples show qualified variables that specify symbol compo­
nents of variable string components. Assume that the following statement
appears in the source program:

MASK EQU >FF

This statement appears in a macro definition:

$ASG Vl. S TO MASK

V1 .SS Is the string component of the symbol MASK. This is null unless a
macro instruction has caused a string to be associated with it by
using a $ASG statement.

V1 .SV Is the value component of the symbol MASK (>FF). In the string
mode, :V1 .SV: equals the character string 255.

V1 .SA Is the attribute component of the symbol MASK. This component
may be accessed by using logical operators and keywords.

V1 .SL Is the length component of the symbol MASK. If a string has been
assigned to MASK, then V1 .SL is the length of that string.

Concatenation is especially useful when a previously defined string is aug­
mented with additional characters. Assume that CT.S represents the string
ONE.

: CT. S: ' WAY' produces the string 'ONE WAY'

If CT.S represented the character string TWO, the result of the concatenation
in the example would be TWO WAY. Strings and qualified variables can be
concatenated as required. Components of variables that are represented by a
binary value (e.g., CT.V and CT.L) are converted to their ASCII decimal
equivalent before concatenation. For example:

: CT. s' WAY ' : CT. L: expands into ONE WAY 3

since the length component of the variable CT is three.

Macro Language - Keywords

8.4 Keywords

Keywords identify assembler symbol and macro parameter attribute compo­
nents. Each keyword represents a bit position in a word that contains all of
the symbol or parameter attribute components. Keywords can be used with
logical operators and attribute components to test or set a specific attribute
of a symbol or parameter. The following paragraphs describe how keywords
are used with symbols and parameters.

8.4.1 Symbol Attribute Component Keywords

Table 8-3 lists keywords that are used with a logical operator and the symbol
attribute component (.SA) to test or set the corresponding attribute compo­
nent in the AST.

Table 8-3. Symbol Attribute Keywords

KEYWORD MEANING

$REL Symbol is relocatable

$REF Symbol is an operand of an REF directive

$DEF Symbol is an operand of a DEF directive

$STA Symbol has been assigned a component string

$MAC Symbol is defined as a macro name

$UNDF Symbol is not defined

Note: Using these attributes in conditional assembly (with the
$IF verb) may lead to pass conflict errors if the symbol
is not defined before the macro is called.

Assume that the next statement is an assembler program source statement and
the second statement appears in a macro definition:

MASK EQU

$ASG

>FF

Vl. S TO MASK

The next line AN Os symbol MAS K's attribute component with a flag corre­
sponding to the keyword $STR.

Vl.SA&$STR

This expression is TRUE when MASK's contents are not null; otherwise, the
expression is FALSE.

The next example shows ORs symbol MASK's attribute component with the
flag corresponding to the keyword $REL.

Vl.SA++$REL

8-11

Macro Language - Keywords

8.4.2 Parameter Attribute Keywords

8-12

Table 8-4 lists keywords that are used with a logical operator and the macro
symbol attribute component to test or set the corresponding attribute in the
MST attribute component. Use these attribute keywords to test or set attribute
components of all variables in the MST.

Table 8-4. Parameter Attribute Keywords

IKEYWORD MEANING

$PCALL Parameter appears as a macro-instruction op-
erand

$POPL Parameter is an operand list; the value compo-
nent contains the number of operands in the list

$PSYM Parameter is a symbolic memory address t

t A symbolic memory address is recognized when the variable
is preceded by an @ character.

The following expressions use parameter attribute component keywords:

P6.A&$PCALL AND variable P6's attribute component with the flag
corresponding to keyword $PCALL. The expression is
TRUE when variable P6 is a parameter supplied in a ma­
cro call, otherwise the expression is FALSE.

RA.A++$PSYM OR variable RA's attribute component with the flag cor­
responding to keyword $PSYM.

Macro Language - Assigning Values to Parameters

8.5 Assigning Values to Parameters

Macro definitions expand macro calls (statements 'that have the macro name
as an opcode).

Macro definition syntax is:

<macro name> $MACRO [<parm>] [,<parm>] [<comment>]

Macro call syntax is:

<macro name> [<operand/list>],[<operand/list>] [<comment>]

When a macro call is processed, the macro expander associates the first pa­
rameter in the $MACRO statement with the first operand or operand list in the
macro call, the second parameter with the second operand or operand list, and
so on.

Each operand may be any assembler expression or address type, or a quote­
enclosed character string. An operand list is a group of operands enclosed in
parentheses and separated by commas (when two or more operands are in
list). An operand list is processed as a set, after the outer parentheses are re­
moved, during macro expansion. Operands (or operand lists) may be nested
in parentheses in the macro call for use within macro definitions.

The following $MACRO statement defines two parameters.

ONE $MACRO Pl,P2

The corresponding macro call

ONE PAR1,PAR2

associates PAR1 with P1 and PAR2 with P2. However, a call such as:

ONE PAR1,(PAR21,PAR22)

associates PAR1 with P1 and the list PAR21,PAR22 with P2.

Now :P2: or :P2.S: can be used as a pair of operands in a model statement.

The SPCALL attribute is set for each parameter that receives a value. When the
$MACRO statement defines more parameters than the number of operands in
the macro call, the SPCALL attribute is not set for the excess parameters. The
SPCALL attribute is also not set if an operand is "null"; i.e., the call line has
two commas adjacent or an operand list of zero operands. Expansion of the
macro can be controlled by the number of operands by using the $PCALL at­
tribute and $IF statement. For example, the following macro definition and
macro call

AMAC $MACRO Pl,P2,P3

AMAC ABl ,AB2

sets SPCALL for parameters P1 and P2 but not for P3. Similarly,

AMAC XY,,XY3

sets $PCALL for P1 and P3 but not for P2.

8-13

Macro Language - Assigning Values to Parameters

8-14

When the macro instruction has more operands than the number of parameters
in the $MACRO statement, the excess operands are combined with the oper­
and or operand list corresponding to the last parameter to form an operand list
(or a longer operand list). In the macro statements below, the operands of the
two macro calls would be assigned to the parameters in the same ways:

(1)
ONE
TWO
THREE
FIX

(2)
A
B
c
D
E
F
G
H
I
PARM

EQU
EQU
EQU
$MACRO

FIX
FIX

EQU
EQU
DATA
DATA
EQU
EQU
EQU
EQU
EQU
$MACRO

PARM

9
43
86
Pl ,P2 Define Macro FIX

ONE,TWO,THREE Call Macro FIX
ONE , (TWO , THREE) Call Macro FIX

7
15
17
63
95
47
58
101
119
Pl,P2,P3,P4,P5,P6,P7,P8,P9

@A , , B , () , C , (D) , E , (G , (H , I))

Parameter assignments:

P1 .S =A
P1 .A = $PCALL
P1 .L = 1
P1 .V = 7

P3.S = B
P3.A = $PCALL
P3.L = 1
P3.V=15

P5.S = C
P5.A = $PCALL
P5.L = 1
P5.V = 17

P7.S = E
P7 .A = $PCALL
P7.L = 1
P7.V = 95

P9.S = (no string)
P9.A = 0 (all false)
P9.L = 0
P9.V = 0

P2.S = (no string)
P2.A = (all false)
P2.L = 0
P2.V = 0

P4.S = (no string)
P4.A = $POPL
P4.L = 0
P4.V = 0

P6.S = D
P6.A = $PCALL,$POPL
P6.L = 1
P6.V = 1

P8.S = G,(H,I)
PB.A = $PCALL,$POPL
P8.L = 7
P8.V = 2

Macro Language - Verbs

8.6 Verbs

The macro language supports seven verbs that are used in macro language
statements. Table 8-4 lists the seven verbs. Any statement in a macro defi­
nition that does not contain a macro language verb in the operation field is
processed as a model statement.

Table 8-5. Macro Language Verb Summary

VERB DESCRIPTION

$MACRO Marks beginning of macro definition

$VAR Declares variables for macro definitions

$ASG Assigns values to variable components

$IF Provides conditional processing

$ELSE Begins an alternate block in a conditional
process

$ENDIF Terminates conditional processing

$END Marks the end of a macro definition

8-15

$MACRO

Syntax

Description

Example

8-16

Macro Definition Verb $MACRO

<macro name> $MACRO [<parm>] [,<parm>] [<comment>]

The $MACRO verb begins a macro definition. It must be the first state­
ment in the definition. $MACRO assigns a name to the macro and de­
clares the macro parameters.

The macro name contains one to six alphanumeric characters; the first
must be a letter. Each <parm> is a parameter for the definition as de­
scribed in Section 8.3.1. The operand field may contain as many pa­
rameters as the size of the field allows and must contain all parameters
used in the macro definition. The comment field can only be used if
there are parameters.

The macro definition is used to expand macro calls (statements that
have the macro name as an opcode). The macro name specifies the
macro definition to be used. When a macro call is processed, the macro
expander associates the first parameter in the $MACRO statement with
the first operand or operand list in the macro call, the second parameter
with the second operand or operand list, and so on.

ONE $MACRO Pl,P2

specifies two parameters. A call such as

ONE PAR1,PAR2

associates PAR1 with P1 and PAR2 with P2.

Note:

A macro definition supercedes previous macro definitions and op­
codes with the same name. Symbolic operands which appear in a
macro call are treated as symbolic operands in opcodes; if they are
not defined with the program in which they appear, they will be
listed as undefined symbols.

$VAR

Syntax

Description

Example

Declare Variables Verb $VAR

$VAR <var>[, <var>] [<comment>]

The $VAR statement declares the variables for a macro definition. $VAR
is required only if the macro definition contains one or more variables
that are not parameters. More than one $VAR statement may be in­
cluded; each $VAR statement may declare more than one variable. Each
<var> in the operand is a variable as previously described (see Section
8.3).

The $VAR statement does not assign values to any components of the
variables. $VAR statements may appear anywhere in the macro defi­
nition to which they apply, provided each variable is declared before the
first statement that uses the variable. Placing $VAR statements imme­
diately following the $MACRO statement is recommended.

$VAR A,CT,V3 Three variables for a macro

This example declares variables A, CT, and V3; A, CT, and V3 must not
have been declared as parameters.

8-17

$ASG Assign Values to Variable Components Verb $ASG

Syntax

Description

8-18

$ASG <expression/string> TO <var> [<comment>]

The $ASG statement assigns values to variable components. Variables
that are not parameters do not have values for any components until
values are assigned using $ASG statements. Variable components with
previously assigned values may be assigned new values with $ASG
statements.

The expression operand may be any expression valid to the assembler
and may contain binary mode variable references and the keywords in
Table 8-3 and Table 8-4.

Note:

The binary mode value of a string component or symbol string
component used in an expression is the binary value of the first two
characters of the string. Thus, if GP.S has the string LAST, the value
used for GP.S is an expression in the <string> hexadecimal number
>4C41 which is the ASCII representation for LA.

A string may be one or more characters enclosed in single quotes, or the
concatenation of such a literal string with the string mode value of a
qualified variable. The <var> may be either an unqualified variable or a
qualified variable.

When the operands are both unqualified variables, all components are
transferred to target variables. When the destination variable is qualified,
only the specified component receives the corresponding component
of the expression or string. An exception to this is when a string is as­
signed to the string component of a variable or symbol, the length
component of that variable or symbol is set to the number of characters
in the assigned string. If the attribute component of the destination
variable is to be changed, only those attributes which can be tested us­
ing keywords are changed. Other attributes maintained by the macro
assembler may or may not be changed as appropriate.

Note:

A qualified variable that specifies the length component is illegal as
a destination in a $ASG statement and will not set the length
component.

$ASG

Examples

Assign Values to Variable Components Verb $ASG

*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*

Assume that variables P3, V3,and CT were previously declared as pa­
rameters ($MACRO statement) or variables ($VAR statement).

*
*

Assign all the components of variable P3 to
variable V3.

$ASG P3 TO V3
*
*
*
*
*

Concatenate string 'ES' to the string com­
ponent of variable P3, and set the string
component to the result. Also, add 2 to
the value of the new length component.

$ASG :P3.S~ 'ES' TO P3.S
*
*
*
*

Set the flag in the attribute component
of variable CT to indicate the symbolic
address attribute.

$ASG A++PSYM TO CT.A

The $ASG statement may be used to modify symbol components as
shown in the following examples. Assume that P3.V = 6 and P3.S
SUB.

Assign 'TEN' as the string component of
variable G. When 'TEN' is a symbol in the
AST, this statement allows the use of in­
direct component qualifiers to modify the
components of symbol TEN.

~ASG 'TEN' TO G.S

Set the value component of the symbol in
the string component of variable G to the
value component of variable P3. In this
case, the value component of TEN is set to 6.

$ASG P3.V TO G.SV

Concatenate string 'A', the string compo­
nent of variable P3, and string 'S' and
place the result in the indirect string
component of the same symbol. Thus, the
string component of TEN is ASUBS and the
length component is 5.

$ASG 'A':P3.S: 'S' TOG.SS

Note:

Keywords in an $ASG statement must be used with a Boolean op­
erator and an attribute component of a variable in the source field.
The attribute component must come first.

8-19

$IF

Syntax

Description

Example

8-20

Begin Conditional Block Verb $IF

$IF <expression> [<comment>]

The $IF statement provides conditional processing in a macro definition.

An $IF statement is followed by a block of macro language statements
terminated by an $ELSE statement or an $ENDIF statement. When the
$ELSE statement is used, it is followed by another block of macro lan­
guage statements terminated by an $ENDIF statement. When the ex­
pression in the $IF statement has a nonzero value (or evaluated as
TRUE), the block of statements following the $IF statement is proc­
essed. When the expression in the $IF statement has a zero value (or
evaluated as FALSE), the block of statements following the $IF state­
ment is skipped. When the $ELSE statement is used and the expression
in the $IF statement has a nonzero value, the block of statements fol­
lowing the $ELSE statement and terminated by the $ENDIF statement is
skipped. Thus, the condition of the $IF statement may determine
whether or not a block of statements is processed, or which of two
blocks of statements is processed. A block may consist of zero or more
statements. The <expression> may be any expression as defined for the
$ASG statement and may include qualified variables and keywords. The
expression defines the condition for the $1 F statement.

Note:

The $1 F expression is always evaluated in binary mode. Specifically,
the relational operations {<,>,=,#=) operate only on the binary
mode values of macro variables. Boolean operators may be nested.
In addition, $1 F blocks may be nested, at most, 44 levels deep.

These examples show conditional processing in macro definitions:

$IF KY.SV

BLOCK A

$ELSE

BLOCK B .
$ENDIF

Process the statements of BLOCK
A when the indirect value com­
ponent of the variable KY con­
tains a non-zero value.
Process the statements of BLOCK
B when the component contains
zero after processing either
block of statements. Continue
processing the statement fol­
lowing the $ENDIF statement .

$IF Begin Conditional Block Verb $IF

$IF

.

-- (T .A&$PCALL) .
Process the statements of BLOCK
A when the attribute component
of parameter T indicates that

BLOCK A parameter T was not supplied in
the macro instruction. If para­
meter T was supplied, do not

$ENDIF
process the statements of BLOCK
A. Continue processing at the
statement following the $ENDIF
statements in either case.

$IF T.L=S Process the statements of BLOCK
A when the length component of
variable T is equal to 5, do not
process the statements of BLOCK

. BLOCK A A. Continue processing at the
$ENDIF statement following the $ENDIF.

8-21

$ELSE

Syntax

Description

8-22

Alternate Conditional Block Verb $ELSE

$ELSE [<comment>]

The $ELSE statement begins an alternate block to be processed if the
preceding $IF expression w.as false.

$ENDIF

Syntax

Description

Terminate Conditional Block Verb $ENDIF

$ENDIF [<comment>]

The $ENDIF statement terminates the conditional processing initiated
by an $IF statement in a macro definition.

8-23

$END

Syntax

Description

Example

8-24

End Macro Definition Verb $END

SEND [<macro name>][<comment>]

The $END statement ends a macro definition. When executed, the $END
statement terminates the processing of the macro definition. The <ma­
cro name> parameter is optional.

$END FIX Terminates the definition of macro FIX.

Macro Language - Model Statements

8. 7 Model Statements

Most macro definitions contain model statements. A model statement is,
or produces, an assembly language statement. Model statements are com­
posed of the usual assembly language statement elements and can include
qualified variable components (string mode only). The source statement
produced must be a legal assembly language statement.

The following examples show model statements:

MOV %6,R12

This model statement is itself an assembly language source statement that
contains a machine instruction.

:P7.S: MPY : P2. S: , R8 : V4. S:

This model statement begins with the string component of variable P7. Three
blanks, MPY, and three more blanks are concatenated to the string. The string
component of variable P2 is concatenated to the result, to which R8 and three
blanks are concatenated. A final concatenation places the string component
of variable V4 in the model statement. This produces an assembly language
instruction in which the label, comment and part of the operand fields are
supplied as string components.

:MS.S:

This model statement is the string component of variable MS. Preceding
statements in the macro definition must place a valid assembly language
source statement in the string component to prevent assembly errors.

Note:

Conditional assembly directives may not appear as operations in a model
statement. Comments supplied in model statements may not contain pe­
riods (.) since the macro assembler scans comments in the same way as
model statements and improper use of punctuation may cause syntax er­
rors.

8-25

Macro Language - Examples

8.8 Macro Examples

Macros may simply substitute a machine instruction for a macro instruction,
or they may include conditional processing, access the assembler symbol ta­
ble, and employ recursion. Several examples of macro definitions are de­
scribed in the following paragraphs.

8.8.1 Macro ID

ID

Example macro ID is a macro with a default value. The macro supplies two
DATA directives to the source program. It consists of nine macro language
statements, four of which are model statements.

$MACRO WS,PC
DATA :WS.S:

$IF
DATA

$ELSE

DATA

PC.A&$PCALL
:PC.S: ,15

START,15

Defines ID with parameters WS and PC
Model statement - places a DATA direc­
tive with the string of the first pa­
rameter as the operand in the source
program.
Tests for presence of parameter PC
Model statement - places a DATA direc­
tive in the source program. The first
operand is the string of the second
parameter, and the second operand is
15. This statement is processed if the
second parameter is present.
Start of alternate portion of def i­
nition.
Model statement - places a DATA direc­
tive in the source program. The first
operand is label START, and the second
operand is 15. This statement is pro­
cessed if the second parameter is
omitted.

START EQU $ Model statement - places a label START
in the source program. This statement
is processed if the second parameter
is omitted.

8-26

$ENDIF
$END

End of conditional processing.
End of macro.

The macro call syntax is:

[<LABEL>] ID <address>[,<address>) [<comment>)

The addresses may be expressions or symbols.

A sample ID call would be:

ID WORKl,BEGIN

This would be replaced with the following source code:

DATA WORKl
DATA BEGIN,15

Macro Language - Examples

If only one operand is supplied, the macro instruction could be coded as fol­
lows:

ID WORK2

This would produce the following source code:

START

DATA
DATA
EQU

WORK2
START,15
$

This form of the macro instruction imposes two restrictions on the source
program:

1) The source program may not use the label START and
2) May not call macro ID more than once.

Problems with labels supplied in macros may be prevented by reserving certain
characters for use in macro-generated labels. A macro definition may maintain
a count of the number of times it is called and use this count in each label
generated by the macro.

8.8"2 Macro GENCMT

0001
0002
0003
0004
0005
0006
0007
0008
0001
0009 0000

0002
0010
0001
0011
0001
0012 0004
0013

NO ERRORS,

This example shows how to implement both those comments which appear
in the macro definition only and those which appear in the macro expansion.
When this macro is called, the statement in line six generates a comment.

IDT 'GENCMT'
GENCMT $MACRO

$VAR V
* This is a macro definition comment *

$ASG I* I TO V.S
:V. S: This is a macro expansion comment *

$END
GENCMT

* This is a macro expansion comment *
0000 DATA 0,1
0001

GENCMT
* This is a macro expansion comment *

GENCMT
* This is a macro expansion comment *

0004 DATA 4
END

NO WARNINGS

8-27

Macro Language - Examples

8.8.3 Macro FACT

This example shows the recursive use of macros. FACT produces the assem­
bly code necessary to calculate the factorial of N, and store that value at data
memory address LOC. Macro FACT accomplishes this by calling FACT1,
which calls itself recursively.

FACT

*
FACTl

$MACRO
$IF
MOV
STA
$ELSE
MOV
STA
$ASG
FACTl
$ENDIF
$END

$MACRO
$IF
LDA
MPY
MOV
STA
$ASG
FACTl
$ENDIF
$END

N,LOC
N.V<2
%1,A
@:LOC:

%:N.V: ,A
@:LOC:
N.V-1 TO N.V
: N. V: , : LOC :

M,AREA
M.V>l
@:AREA:
%:M.V: ,A
B,A
@:AREA:
M.V-1 TO M.V
: M . V : , : AREA :

* 1% = 0% =1

* N greater than/equal 2,
* so store N at LOC
* Decrement N
* Do Factorial of N-1

* Multiply factorial so far
* by current position

* Save result
* Decrement position
* Recursively calls itself

8.8.4 Macro PULSE

8-28

This is a set of macros in which the name describes an addressing mode ex­
pected by the macro. The example assigns Register A to a port, Register B to
a port, and an immediate value to a port. These macros can be useful in pro­
gramming 1/0 routines.

PULS EA $MACRO PX
ORP A, : PX. S:
$END

*
PULSEB $MACRO PX

ORP BI : PX. s:
$END

*
PULSE I $MACRO I,PX

ORP % : I . S : , : PX. S :
$END

Macro Language - Error Messages

8.9 Macro Error Messages

Table 8-6 lists and defines the Macro error messages which may be generated.

Table 8-6. Macro Error Messages

MACRO ERROR MESSAGE DESCRIPTION

MACRO LINE TOO LONG In a macro definition, macro directive lines may only be 58
characters long, and model statements, when fully ex-
panded, may only be 60 characters long.

LONG MACRO VARIABLE QUALIFIER Macro variable qualifiers may only be one or two characters
in length.

TOO MANY MANY VARIABLES The total number of macro parameters, variables and labels
in one macro definition may not exceed 128.

INVALID MACRO QUALIFIER The only valid macro qualifiers are: S,V, L, A, SS, SV, SL
and SA.

VARIABLE ALREADY DEFINED A macro variable cannot be redefined within a macro.

IF LEVEL EXCEEDED The maximum nesting level of $1 F directives is 44.

MACRO ASSEMBLER The Macro Assembler has detected an internal PROGRAM
ERROR error. These can be caused by incorrect syntax.

8-29

Macros

8-30

9. Design Aids

This section contains sample TMS7000 applications to aid you in system de­
velopment.

Section Page
9.1 Microprocessor Interface Example ... 9-2
9.2 Programming the TMS7742 ... 9-7
9.3 Serial Communication with the TMS7000 Family 9-15
9.4 The Status Register ... 9-29
9.5 Stack Operations ... 9-32
9.6 Subroutine Instructions .. 9-33
9.7 Multiplication and Shifting .. 9-35
9.8 The Branch Instruction ... 9-36
9.9 Interrupts .. 9-37
9.10 Write-Only Registers ... 9-39
9.11 Sample Routines .. 9-40

9-1

Design Aids - Microprocessor Interface Example

9.1 Microprocessor Interface Example

9-2

Figure 9-1 illustrates a method for interfacing a TMS70x2 microcomputer to
external memory devices such as EPROM and RAM. This interface is de­
signed to operate at the TMS70x2's maximum operating frequency (8 MHz).
Any combination of ROM, RAM or other peripheral devices could be added
into the circuit and enabled by the other SEL pins, provided that their timing
requirements allow them to be interfaced to the TMS70x2.

In this circuit, the Mode Control pin (MC) is tied to Vee. placing the
TMS70x2 in Microprocessor mode. All 16 addressing bits on Ports C and D
are available in Microprocessor mode. The on-chip ROM is disabled in this
mode, and its address space is available externally. For more information on
port and mode operation see Section 3.

Note the following features in this sample circuit:

Port A and the lower nibble of Port B operate the same as in the Sin­
gle-Chip mode.

The memory control signals are brought out on the upper nibble of Port
B.

Port C becomes the multiplexed least significant 8-bit address bus
(A7-AO) and full 8-bit data bus.

Port D becomes the most significant 8-bit address bus (A15-A8).

The least significant 8 bits of the 16-bit address bus (A7-AO) are latched
into the SN74AS373 (U2) by the ALATCH signal during read/write
memory cycles.

A full address decode is accomplished with the SN74AS138 (U3). Eight
memory select lines (SEL7-SELO) are generated by U3 and are each in­
dividually activated on an SK-byte address block. Table 9-1 lists the
address range decoded by each select pin.

Table 9-1. Memory Address Decode

PIN ADDRESS RANGE

SEL7 >EOOO to >FFFF
SIT6 >eOOO to >DFFF
SIT5 >AOOO to >BFFF
SEI4 >8000 to >9FFF
SEL3 >6000 to >7FFF
SIT2 >4000 to >5FFF
SEL1 >2000 to >3FFF
SITO >0000 to >1 FFF

Design Aids - Microprocessor Interface Example

U1 U2
TM670x2 74A8373

C71--~--"~--18D 80
C8 70 70
C5 80 8Q
C4 50 SQ
C3 40 4Q
C2 30 3Q
C1 20 20
co 10 10

84/ALATCH ~ OC

74A8138
G1 Y7

Y8
071-------+------t""'---IC Y5
08 B Y4
05 A Y3
04 Y2

~ Y1
\XCJ YO

Figure 9-1. TMS70x2 Microprocessor Interface Sample Circuit

The devices used in this circuit are:

U1 TMS70X2 - 8-bit microcomputer with UART.

U2 SN74AS373 - The AS version of the 373 is used in this circuit, allowing
use of the less expensive TMS2764-25 EPROM chip (U4) instead of the
TMS2764-20 EPROM chip.

U3 SN74AS138 - Like U2, the AS version of the 138 allows use of less
expensive EPROMs.

U4 TMS2764-25 - This EPROM chip is the slowest (least expensive) de­
vice that can be used in this circuit because the timing requirement
[Ta(A-D)J for the TMS70x2 is 260 ns. The propogation delay through
U2 1s 6 ns, so only 254 ns remain for the EPROM chip to use. Therefore,
the TMS2764-25 with its 250 ns access time [T a(A)J was selected.

U5 TMS4016-15 - This is the slowest RAM chip that can be used in this
circuit because the timing requirement [Ta(EL-D)] for the TMS70x2 is
82 ns. The propogation delay through U6 is 5.8 ns, so only 76.2 ns re­
main for U5 to use. Therefore, the TMS4016-15 with its 75-ns delay
time was selected.

U6 SN74AS32 - The AS version of this chip allows use of the less expen­
sive TMS4016-15 RAM instead of the TMS4016-12 RAM.

9-3

Design Aids - Microprocessor Interface Example

9.1.1 Read Cycle Timing

The TMS70x2 requires a minimum address-to-data access time [ta(A-D)]
of 260 ns at 8 MHz. ta(A-D) for the TMS2764-25 in this circuit is:

Access time (260 ns) 2:. tph1ru2] + t a(A)[U4]
> 6 + 250

260 ns > 256 ns

ta(A-D) for the TMS4016-15 in this circuit is:

Access time (260 ns) > tRhl[U2] + t a(A)[U5]
> 6 + 150

260 ns > 1 56 ns

The TMS70x2 parameter used to calculate ta(A-D) will also be used to calcu­
late chip-select-to-data access time. ta(E) for the TMS2764-25 in this
circuit is:

Access time (260 ns)

260 ns

2:. !!Jhl[U3] + t a(E)[U4]
> 0 + 250
> 256 ns

Since the chip select to the TMS4016-12 is gated with the ENABLE signal,
use the access time Ta(EL-D) to calculate the chip-select-to-data time.
ta(S) for the TMS4016-15 in this circuit is:

Access time (82 ns) > !Plh[U6J + t a(S) [U5]
.:::. 5.8 + 75

82 ns .:::_ 80.8 ns

The TMS70x2 requires a minimum ENABLE-rise-to-data-disable time of
100 ns at 8 MHz. The minimum requirement for the TMS2764-25 in this cir­
cuit is:

Disable time (100 ns) > tdis(G) [U4]
100 ns > 85 ns

The requirement for the TMS4016-15 in this circuit is:

Disable time (100 ns) > tdis(S)[U5] + t phl[U6]
> 50 + 5.8

100 ns > 55.8 ns

9.1.2 Write Cycle Tiiming for Microprocessor Mode

9-4

The TMS70x2 requires a minimum data-output-valid time (T d(EH-A)) of
80 ns at 8 MHz.

Since S is gated to the ENABLE line, the ENABLE signal can be used calculate
the data-output requirement for the TMS4016-15.

Output valid (80 ns)

80 ns

> tRhl[U6] + t h(D) [U5]
> 5.8 + 10
> 15.8 ns

Design Aids - Microprocessor Interface Example

Table 9-2. Memory Interface Timing

PARAMETER MIN MAX UNIT

tc_LC_l CLKOUT cycle timet 250 2000 ns

tw1c111 CLKOUT high pulse duration 0.5tc1c_i-40 0.5t clC_l + 10 ns

tw_LCL_l CLKOUT low pulse duration 0.5tcJC)-40 0.5t cJ_C_l +15 ns

tdj_CH-J L_l Delay time, CLKOUT rise to ALATCH fall 0.5t cJ_C_l-10 0.5tcJ_C_l +30 ns

twJ_JH_l ALATCH high pulse duration 0.25tc_LC_l-15 0.25t c_(C_l +30 ns

tsu(HA-JL) Setup time, high address valid before 0.25t c(C)-40 0.25tc(C) +45 ns
ALATCH fall

tsu(LA-JL) Setup time, low address valid before 0.25t c(C)-40 0.25tc(C)+15 ns
ALATCH fall

th(JL-LA) Hold time, low address valid after 0.25t c(C) 0.25tc(C) +45 ns
ALATCH fall

tsu(RW-JL) Setup time, R/W valid before ALATCH 0.25t c(C)-35 0.25tc(C) +30 ns
fall

t'1.(_EH-RW_l Hold time, R/W valid after ENAl§LE rise 0.5t c_LC1_-40 ns

th(EH-HA) Hold time, high address valid after 0.5t c(C)-50 ns
ENAr:i[E rise

tsu(Q-EH) Setu~ time, data output valid before 0.5t c(C)-45 ns
ENA LE rise

ttt(EH-Q) Hold time, data output valid after 0.5t c(C)-45 ns
ENABLE rise

td(LA-EL) Delay time, low address high impedance 0.25t c(C)-45 0.25tc(C) ns
to ENABLE fall

td(EH-A) Delay time, ENABLE rise to next address 0.5t c(C)-25 ns
drive

ta(EL-D) Access time, data input valid after 0.75t c(C)-105 ns
ENABLE rise

ta(A-D) Access time, address valid to data input 1.5t c(C)-115 ns
valid

td_LA-EH_l Delay time, address valid to ENABLE rise 1.5t c_{_c_l-80 1.5tc_{_C_l_ +30 ns

th(EH-D) Hold time, data input valid after ENABLE 0 ns
rise

td_LEH-JH_l_ Delay time, ENABLE rise to ALATCH rise 0.5t c1q-25 0.5tc_{_C_l_ +10 ns

td_(_CH-EL_l Delay time, CLKOUT rise to rnAEl[E fall -10 35 ns

t tc(C) is defined to be 2/f05c and may be referred to as a machine state or simply a state.

9-5

Design Aids - Microprocessor Interface Example

Table 9-3. TMS4016-15 Timing Characteristics

PARAMETER MIN MAX UNIT

taJAl Access time from address 150 ns

ta_(_S_l Access time from chip select low 75 ns

tdis_(_S_l Output disable time after chip select high 50 ns

th_(_ Al_ Address hold time 0 ns

tsu_{_Dj_ Data setup time 60 ns

th_(_DJ_ Data hold time 10 ns

Table 9-4. TMS2764-25 Timing Characteristics

PARAMETER MIN MAX UNIT

ta_(_Aj_ Access time from address 250 ns

ta_(_ El_ Access time from E 250 ns

ten_(_G}_ Output enable time from G 100 ns

tdis_(_Gj_ Output disable from G 0 85 ns

Table 9-5. SN74AS373, SN74AS138, and SN74AS32 Propagation Delay Times

PARAMETER MIN MAX UNIT

!g_d Propagation delay, SN74AS373 6 ns

~d Propagation delay, SN74AS138 6 ns

!g_d Propagation delay, SN74AS32 5.8 ns

9-6

Design Aids - Programming the TMS7742

9.2 Programming the TMS7742

The TMS7742 is an EPROM version of the TMS7042. It can be programmed
using these devices:

Standard PROM programmer (see Section 9.2.1, page 9-7)
TMS7000 Evaluation Module (see Section 9.2.2, page 9-8)
TMS7000 XDS Emulator (see Section 9.2.3, page 9-9)

The TMS7742 can emulate the TMS7020, TMS7040, and TMS7042:

TMS7020 and TMS7040 Emulation:

The TMS7742 can emulate the TMS7020 and TMS7040 in all operating
modes. It does not d.irectly emulate edge- and level-sensitive interrupts,
but does emulate level-sensitive only interrupts.

TMS7042 Emulation:

The TMS7742 can directly emulate the TMS7042 in all operating modes
at up to 5 MHz operation.

Table 9-6 shows the pin conditions required for operating in the various
modes. Note that the RESET and XTAL2 pins must be held low to enter EP­
ROM mode.

Table 9-6. Mode Select Conditions for the TMS7742

EPROM EPROM
MODE SELECT SINGLE- PERI PH.- FULL- MICRO- PROG. VERIFY

PROCESSOR; CHIP EXPANSION EXPANSION MODE MODE

1/0. Control l Bit 7 0 0 1 x x x
register l Bit 6 0 1 0 x x x
Mode Control pin Vss Vss Vss v cc Vpp Vss

MC)

RESET pin Vee Vee Vee v cc Vss Vss
XTAL2 pin N/A N/A N/A N/A Vss Vss

Notes: 1. X = don't care
2. N/ A = not applicable

9-7

Design Aids - Programming the TMS7742

9.2.1 Programming the TMS7742 Using a PROM Programmer

9-8

A PROM programmer can be used to program the TMS7742 in a manner si­
milar to programming a TMS2732A EPROM. A 40-to-24-pin conversion
socket is required and RESET and XTAL2 must be grounded. Some PROM
programmers implement current-limiting circuitry to sense correct EPROM
placements. The TMS7742 can draw a maximum of 250 mA during pro­
gramming; if your PROM programmer produces an EPROM placement error,
you must supply an external +5 V ±10% power supply to the TMS7742.
Figure 9-2 shows the connections for the 40-to-24-pin socket.

TMS2732A SOCKET TMS2732A SOCKET

PIN

1

2

3

4

5

12

12

6
7

FUNCTION FUNCTION PIN

85/R/W 1. Vss GND 12

87/CLKOUT 2 86/ENABLE

BO 3 84/ALATCH

81 4 83/TXD

82 5 MC Gtvpp
A7 AO 6

TMS7742
35 C7 Q8

A6 A1 7 3 C6 Q7
A5 A2 8 C5 Q6
A4 A3 g@J C4 Q5

A3 A4 10 0 31 C3 Q4

A7/EC1 11 30 C2 Q3

INT3 12 29 C1 Q2

INT1 13 co Q1

GND RESET 14 DO AS

A6/SCLK/EC2 15 01 A9

A5/RXD 16 Vee Vee
GNO-- XT AL2/CLKIN 17 02 A11

XTAL1 18 03 A10

A2 07 19 04 E
A1 06 20 05 AO

Figure 9-2. PROM Programmer 40-to-24-Pin Conversion Socket

Use the following sample procedure to program the TMS7742 on a PROM
programmer:

1) Insert the TMS7742 into the conversion socket.

2) Place the conversion socket (with the TMS7742) into the 24-pin socket
on the PROM programmer.

3) Program and verify the contents of the TMS7742 in the same manner
as any standard EPROM.

20
17

16

15

14

13
11

10

9

23

22
24

21

19

18

8

Design Aids - Programming the TMS7742

9.2.2 Programming the TMS7742 Using the TMS7000 Evaluation Module

The RTC/EVM7000 (TMS7000 Evaluation Module) can be used to program
the TMS7742. A 40-to-28-pin conversion socket is required and RESET and
XTAL2 must be grounded. Figure 9-3 shows the connections for the
40-to-24-pin socket.

TMS2764

(PIN) FUNCTION

(3) A7
(4) A6 -

(5) A5
(6) A4
(7) A3

85/R/W

AO

A1

A2

A3

A4

A7/EC1

INT3

INT1
(14) GND ---- RESET

A6/SCLK/EC2

A5/RXD
(14) GND ---- XTAL2

XTAL1
(8) A2 07
(9) A1 06 -------

TMS2764

FUNCTION (PIN)

Vss ---- GND (14)

86/ENA8LE

84/ALATCH

83/TXD
MC----­

C7----­

C6----­

C5----­

C4----­

JUMPER *
08

07

06

05

04

03

02

01

-----AS

C3

c2----­
c1----­

co-----
00---

01---­

Vcc-----
02-----

03-----

04-----

A9

Vee
A11

A10

E

(19)

(18)

(17)

(16)

(15)

(13)

(12)

(11)

(25)

(24)

(28)

(23)

(21)

(20)

05 AO (10)

9- Vpp PROGRAM PIN 1
MC ---0---

PIN
36 0- ~ READ/VERIFY PIN 22

Figure 9-3. RTC/EVM7000 40-to-28-Pin Conversion Socket

Use the following procedure to program the TMS7742 on an RTC/EVM7000:

1) Verify that the TMS7742 is erased (all >FFs).

a) Set the switch between pin 36 on the TMS7742 and pin 22 on the
conversion socket (read/verify position).

b) Enter: ?VE Q FFF i <CR>

2) Program the TMS7742. Note that the program to be loaded into the
TMS7742 must reside in EVM memory beginning at address >F006 or
above.

a) Set the switch between pin 36 on the TMS7742 and pin 1 on the
conversion socket (program position).

b) Enter: ?PE Q FFF FOOO i <CR>

3) Compare the TMS7742 EPROM to EVM memory to verify that they are
identical.

a) Set the switch between pin 36 on the TMS7742 and pin 22 on the
conversion socket (read/verify position).

b} Enter: ?CE Q FFF FOOO i <CR>

9-9

Design Aids - Programming the TMS7742

9.2.3 Programming the TMS7000 using the TMS7000 XDS

The TMS7742 can be programmed using the TMS7000 XDS, the driver pro­
gram, and an interface board. Figure 9-4 shows the schematic for the inter­
face board and Figure 9-5 contains the driver program.

7000
>CD8

TARGET
CABLE

21 +IV

coa.::21::....-______ --=21""' 01 cc
C1 21 21 Q2

cz~ aoaa
ca~-------~04
C4 Q6
cs QI cs Q7 TM87742
C7 QI

~ ~G
D4 M

Dl5 "" De M
D7 A7
BO NJ
B1 A8
B2 A10
1!18 A11 R!i!'I'

VM e\ff1XTAl.2 V

NJ 22
A1--~

Kl.
/ta

Figure 9-4. Interface Circuit for Programming the TMS7742 with the TMS7000
XDS

9-10

Design Aids - Programming the TMS7742

IDT 'EPROM'
*
*
*
*
*
*

This program checks to see if the TMS7742 is blank,
then programs and verifies the EPROM byte by byte.
The program can also verify that the contents of
XDS memory are identical to the TMS7742.

***** Register File **********************************
* ADD RES
COUNT
COUNT2
*

EQU
EQU
EQU

RS
R7
R8

Current address
Number of bytes to program

***** Peripheral File ********************************
* INTROL EQU PO Interrupt control
PORTA EQU P4
PORTB EQU P6
PORTC EQU P8
PORTD EQU PlO
ADDR EQU PS
DDDR EQU Pll
CDDR EQU P9
*
***** Control Constants for Port A *******************
*
* AO = E-
* Al G-/VPP 21V
* A2 INTl- light 2
* A3 INT3- light 3
* 32VE-
ENOT EQU ?00000001 E-
VPP21 EQU ?00000010 21V to VPP/G
ERRl EQU ?00001011 Not blank error
ERR2 EQU ?00000111 Not programming correctly
ERR3 EQU ?00000011 Failed verify test
READl EQU ?00001110 Read setup
READ2 EQU ?00001111 Release read setup
*
**

>EOOO
START

%>FF,ADDR Outputs
%>FF,DDDR Outputs
%>00,CDDR Inputs

error

AORG
DINT
MOVP
MOVP
MOVP
MOVP
MOVP
BTJZP
MOVD
MOVD
CALL
CMP
JNZ
DECD
DECD
JC

%0,INTROL Full-Expansion mode, no ints

BLANK

LOOP BL

%178,P2 Timer latch
%>40,PORTA,VERIFY Verify or program?
%>FFFF,ADDRES Check memory for all blanks
%>FFF,COUNT Put in counts and pointers
@READ Read memory
%>FF,A Is it blank? (>FF =blank)
ERRORl If no, error
ADDRES Next address
COUNT
LOOPBL End of routine?

Figure 9-5. Driver Program for Programming the TMS7742 with the TMS7000
XDS

9-11

Design Aids - Programming the TMS7742

PROGRM MOVD %>FFFF,ADDRES Program EPROM
MOVD %>FFF,COUNT Put in counters

LOOP PR LDA *ADDRES Get data from XDS memory
MOV A,B
CALL @WRI'.rE Program one address
DECD ADD RES Next address
DECD COUNT
JC LOOP PR End of routine?

*
VERIFY MOVD %>FFFF,ADDRES Check memory for all blanks

MOVD %>FFF,COUNT Put in counters and pointers
LOOP VE CALL @READ Read EPROM

MOV A,E
LDA *ADDRES Get original data
CMP E,A Does EPROM compare to original?
JNZ ERROR3 If no, error
DECD ADD RES Next address
DECD COUNT
JC LOOP VE End of routine?

**
ERRORl MOVP

JMP
ERROR2 MOVP

JMP
ERROR3 MOVP
STOP2 IDLE

%ERR1,PORTA
STOP2
%ERR2,PORTA
STOP2
%ERR3,PORTA

Fail blank - light 2

Fail programming - light 3

Fail verify - lights 2 and 3

JMP STOP2
**
READ CALL
READE MOVP

MOVP
MOVP
MOVP

*
WRITE CALL

MOVP
MOV

*
PULSE MOVP

ANDP
ANDP

*
MOVP

HERE2 ETJZP
MOVP
DJNZ

*
ORP
ORP
CALL
CMP
JNE
RETS

*

@SETUP
%>00,CDDR
%READ1,PORTA
PORTC,A
%READ2,PORTA

@SETUP
E,PORTC
%3,COUNT2

Put address on bus
Port C = inputs
Turn on enable
Read data
Turn off enable

Put address on bus
Put data on bus
Initialize counter

%>FF,CDDR Port c = outputs
%#VPP21,PORTA Turn on VPP
%#ENOT,PORTA Turn on E-

%>80+31,P3 Start timer
%8,INTROL,HERE2 Wait for timer countout
%?00101010,INTROL Clear timer flag
COUNT2,HERE2 Wait a total of 55 ms

%ENOT,PORTA
%VPP21,PORTA
@READE
A,E
ERROR2

Turn off E­
Turn off VPP
Read EPROM
Compare to actual data
If not equal pulse again
then turn on light 3

Figure 9-5. Driver Program for Programming the TMS7742 with the TMS7000
XDS (Concluded)

9-12

Design Aids - Programming the TMS7742

Use the following procedure to program the TMS7742 using the TMS7000
XDS Emulator. To avoid the possiblity of leaving +21 V on Vpp, do not stop
the program until the IDLE light is on.

1) Enter: INIT (3 , 0, 0, Q)

2) Enter: ROM=EOOO

3) Set the switch on interface board to program.

4) Download object code into XDS memory (>FOOO->FFFF).

5) Download the driver program into XDS memory (this will not affect the
present program at memory locations >FOOO->FFFF).

6) Use the MR command to set the following values:

PC .::. >EOOO,
ST .::. >OO,
SP .::_ >60

7) Enter: P S=FF, P4=FF (This clears the programming voltages on the
socket.)

8) Insert the target cable into socket A.

9) Insert the TMS7742 into socket B.

10) Enter: RUN (Light 4 should go on.)

11) The program will take approximately four minutes to complete; light 1
will go on when the program is complete.

12) If an error was encountered, light 2 and/or light 3 will be lit. Examine
addresses >04 and >05 for the error location. Register A contains EP­
ROM data, and Register B contains the original data.

13) Remove the TMS7742.

If an error condition is found, then the indicator lights on the XDS front panel
will show the pattern for the error. Table 9- 7 shows the status conditions in­
dicated by the front panel lights.

9-13

Design Aids - Programming the TMS7742

Table 9-7. Error Patterns for XDS

XDS LIGHTS
STATUS

1 2

0 0

0 0

1 0

1 0

1 1

1 1

Light 1
Light 2
Light 3
Light 4

3

0

0

0

1

0

1

4

0 Program is not running

1 Program is running

1 Program is finished, no errors

1 Programming error

1 EPROM was not blank

1 Verify error

Program is in I OLE state
INT1
INT3
Processor is running

To verify the TMS7742 EPROM memory against the XDS memory, set the
switch on the interface board to verify and follow the programming procedure.
As a precaution, do not connect the + 21 . 7-V power supply.

9.2.4 TMS7742 Erasure

9-14

The TMS7742 can be erase by exposing the chip to shortwave ultraviolet light
that has a wavelength of 253.7 nanometers (2537 angstroms). The recom­
mended minimum exposure dose (UV intensity x exposure time) is 15 watt­
seconds per square centimeter. The lamp should be located about 2.5
centimeters (1 inch) above the chip during erasure. After erasure, all bits are
at a high level. Note that normal ambient light contains the correct wave­
length for erasure; therefore, when using the TMS7742 the window should
be covered with an opaque label.

Design Aids - Serial Communication with the TMS7000 Family

9.3 Serial Communication with the TMS7000 Family

This section discusses using the TMS7000 for serial communication with a
UART (Universal Asynchronous Receiver Transmitter). It describes imple­
menting the UART function in software using any TMS7000 device and with
the on-chip serial port using the TMS7042.

9.3.1 Communication Formats

The TMS7000 family handles three basic formats of serial communication -
Asynchronous, lsosynchronous and Serial 1/0. The first two require framing
bits to be added to the data, allowing the receiver to properly detect incoming
data. The last two require an addition serial clock to synchronize the data.
This UART routine uses Asyncronous communications; all the formats are
discussed in detail in Section 3.

In Asynchronous format, as shown in Figure 9-6, each character to be
transmitted is preceded by a Start framing bit and followed by a Parity bit (if
parity is enabled), then one or more Stop framing bits.

----CHARACTER BITS----
------i~ ~.,..__ ___ _

MARKING START DO 01
LSB

---• INCREASING TIME

On PARITY STOP MARKING
MSB

Figure 9-6. Asynchronous Communication Format

The Start bit is a logical 0, or space. It notifies the receiver to start assem­
bling a character and allows the receiver to synchronize itself with the trans­
mitter.

A Parity bit is an additional bit added to a character for error checking. The
Parity bit is set to 0 or 1 in order to make the number of 1 s in the character
(including the Parity bit) even or odd depending on whether even or odd
parity is selected.

The Stop bit is a logical 1 or mark. One or more Stop bits are added to the
end of the character to ensure that the Start bit of the next character will
cause a transition on the communication line.

The connections for both the software and on-chip hardware UARTs are
identical. Both use A5/RX for the incomming data and 83/TX for outgoing
data. The connections are shown in Figure 9-7. The TMS7000 outputs a
TTL-level signal which must be converted to ±12 volts for RS-232-C com­
patibility. The 75188 and 75189 devices are used for this purpose.

9-15

Design Aids - Serial Communication with the TMS7000 Family

1M67000
DEVICE

6 VOLTS

2K

--=-:1:1=2-:-V.,.-- TX OUT

Figure 9-7. 1/0 Interface

9.3.2 Software UART (All TMS7000 Devices)

9-16

This software UART routine will run on any TMS7000 family microcomputer.
It requires the use of one timer to produce a consistent baud rate without re­
quiring full use of the program's time. This UART will run mainly in the ln­
terrupt-2 routine, allowing the main program to run independently of the
UART.

The timer is configured so that the interrupts arrive every half bit. This is be­
cause the receiver section must find the start bit as soon as possible, but it
must also test the following bits at the middle of the bit. Testing at the edge
of a bit time would produce data errors. Figure 9-8 shows the start bit de­
tection.

FIND START j msT~NU
DATA I l

TEST DATA
BIT

* J,
TEST DATA

BIT

1_l _l_r
Figure 9-8. Start Bit Detection

The software, which consists of a receiver routine and a transmitter routine,
runs mainly during the lnterrupt-2 routine. Both routines maintain a progres­
sive State Counter, which will have one of the following values to indicate its
condition:

State 0 The receive portion is in this state until a low Start bit is detected.

State 1 This state begins a half bit later and tests for a valid Start bit.

State 2 and
State 3 The 8 character bits are built in states 2 and 3.

State 4 and

Design Aids - Serial Communication with the TMS7000 Family

State 5 The Parity bit is received in states 4 and 5. If the parity does not
agree with the parity of the input byte then a bit is set to indicate a
parity error.

State 6 and
State 7 These states look for the Stop bit. If the stop bit is not found, then

another bit is set to indicate a framing error. The complete character
is then placed in the RXSTOR register and a bit is set to indicate to
the main program that a character is ready to be read. The main
program must clear the parity and framing error bits.

The transmitter routine operates similarly to the receiver routine, using a sep­
arate State Counter to record its condition. The transmitter routine skips every
other interrupt because the routine can be entered every full bit instead of ev­
ery half bit, as in the receiver routine. The transmitter sends out bytes stored
in a table. This table can be in either ROM or RAM and the table ends with
a >FF to signify the end of string. Parity is calculated for both the receiver and
transmitter by exclusive ORing the data bits together to produce even parity
for the string.

9.3.2.1 Software UART Enhancements

If it is not necessary for the transmitter and receiver to run simultanously, then
several inprovements can be implemented.

The transmitter's baud rate can easily be doubled by interrupting every
full bit instead of every half bit.

The receiver can be improved by connecting the RX-in line to RX and
to an Interrupt pin (INT1 or INT3). When the Start bit is detected, the
program enters the external interrupt routine. This interrupt routine must
start the timer to count out one-half bit and also disable the interrupt.
When the half-bit interrupt occurs, the timer must be reset and restarted
to produce a full-bit interrupt; this would occur in the middle of the data
bits.

The parity can be selected by testing an even/odd bit and setting the
initial parity register (TXPAR, RXPAR) to the correct value. Currently,
the registers are cleared for every new byte, producing even parity.

An extra stop bit could be added by using a test bit and repeating States
6 and 7 if the bit is set.

Additional RS-232-C signals could be added to the program to interface
to more complex equipment.

9-17

Design Aids - Serial Communication with the TMS7000 Family

9.3.2.2 Software UART Routines

*

0002
0003
0004
ooos
0006
0007
0008
0009
OOOA
OOOB
oooc

0000
0002
0003
0004
0006
ooos

9-18

IDT I SWUART I

OPTION XREF,SYMLST
*
*
*
*
*
*
*
*

This program simultaneously transmits and
receives RS-232-C format data.
Maximum baud rate = 4800 at 8 Mhz.

Transmitt pin out = B3
Receiver pin in = AS

***** REGISTER FILE *******************************
* * UART REGISTERS
*
STATER
STATET
RXBUF
RXCNT
RXSTOR
RXPAR
TXCNT
TXTABL
TXBUF
TXPAR
BITS
*
*
*
*
*
*

*
IOCNTL
TIMERL
TIME RC
PORTA
PORTB
ADDR

EQU R2
EQU R3
EQU R4
EQU RS
EQU R6
EQU R7
EQU R8
EQU R9
EQU RlO
EQU Rll
EQU R12

The state of the current receive data
The state of the current transmit data
Build the input byte here
The number of bits left to receive
Pick up the finished input word here
Bit O=parity (7 other bits free)
The number of bits left to transmit
Address off set from String beginning
Shift the out word from here.
Bit 0 = parity (7 other bits free)
BitO= Transmit routine now or next INT
Bitl= Transmitter active now
Bit2= Receiver contains word now
Bit3= Framing error (bad stop bit)
Bit4= Finished with the string output
BitS= Parity error

PERIPHERAL FILE ******************************
PERIPHERAL PORTS AND REGISTERS
EQU PO Interrupt control
EQU P2 Timer latch value
EQU P3 Timer control
EQU P4 Port A data
EQU P6 Port B data
EQU PS Port A Data Direction register

Design Aids - Serial Communication with the TMS7000 Family

OOCF
0083

0001
0002
0004
0008
0010
0020
0040
0080

F806

F806 06
F807 S2 FD
F809 BS
F80A AB 0001
F80D CA FB
F80F S2 60
F811 OD

F812 A2 2E 00
F81S A2 00 04
F818 A2 00 OS
F81B A2 08 06
F81E A2 CF 02
F821 A2 83 03

F824 OS

F825 01
F826 EO FD

* ********. CONTROL CONSTANTS FOR PORT A ***********
*
* BAUD RATE
* CRYSTAL 300 600 1200 2400 4800
* S MHz
*
* 8 MHz
*
*
*
*
*
*
BAUDl
BAUD2
*
BITO
BI Tl
BIT2
BIT3
BIT4
BITS
BIT6
BIT7
*

Latch 129
Prescale 3
Latch 207
Prescale 3

(L+l)*(PS+l)=

EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

207
>80+3

1
2
4
8
16
32
64
128

63 129 64 32
3 0 0 0

207 207 103 Sl
1 0 0 0

CRYSTAL FREQ

(BAUDRATE * 2) * 16

Value for the timer latch
Value for the timer control
register
Various bit constants to
make code more readable

*

AORG >F806
*
START DINT Disable all interrupts

MOV %>FD,B Set index to clear out
CLR A all of RAM

CLEAR STA @l(B) Store Os into all of RAM
DJNZ B,CLEAR Loop until RAM is all Os
MOV %>60,B Set stack pointer
LDSP

* MOV %BIT1,BITS Active transmittter and
* initialize receiver

MOVP %?00101110,IOCNTL Enable Timer INT
MOVP %?00000000,PORTA Clear Port A
MOVP %?00000000,ADDR Init. AS for input
MOVP %?00001000,PORTB Initialize Port B
MOVP %BAUD1,TIMERL Put the baud rate
MOVP %BAUD2,TIMERC into the timer

* latch and timer
* control

EINT Start looking for
* interrupts
*
LOOP IDLE Wait for timer interrupt

JMP LOOP or execute main program
* here

9-19

Design Aids - Serial Communication with the TMS7000 Family

28
F828 B8
F829 C8
F82A 32 02

F82C CF

F82D AE F844

F830 77 02 OC OD

F834 75 01 OC

F837 77 01 OC 06

F83B 32 03

F83D CF
F83E AE F8A5

F841 C9
F842 B9
F843 OB

F844 EO OE
F846 EO 13

F848 EO 21

F84A EO 22
F84C EO lD
F84E EO 34
F850 EO 19
F852 EO 47

*
**
* * TIMER 1 INTERRUPT
*
INTER2 EQU

PUSH
PUSH
MOV

$
A
B
STATER,B

Start of timer interrupt
Store registers

Get current receiver
state *

*
*
*
*
*
*

*

*
*
OUT

*

RLC

CALL

B

@JUMPR(B)

Double in preparation
for jump
Go perform receiver
tasks

BTJZ %BIT1,BITS,OUTis a word being
transmitted?

XOR %BITO,BITS Do only every
other interrupt

BTJZ %BITO,BITS,OUTTransmit 1/2 the
time

MOV STATET,B Move transmit state to
index

RLC B
CALL @JUMPT(B) Go to proper state of

routine

POP B
POP A
RETI

Restore the registers
Exit the routine

* RECEIVER JUMP TABLE
*
JUMPR JMP

*

*

*
*

JMP

JMP

JMP
JMP
JMP
JMP
JMP

STATEO
STATEl

STATE2

STATE3
STATE4
STATES
STATE6
STATE7

Check for start bit
Check for half a start
bit
Bit boundry, wait for
1/2 bit
Test input for data
Parity bit boundary
Check parity bit
Stop bit boundary
Check middle of the stop
bit

F854 A6 20 04 02 STATEO BTJOP
Is the receive line low?

%BIT5,PORTA,ISPACE
F858 D3 02 INC
F85A OA ISPACE RETS

*
*

F85B A7 20 04 03 STATEl BTJZP
F85F DS 02 CLR

*
F861 OA RETS

9-20

STATER If so, new start bit,
go to next state,
if not, do nothing
Check for false starts

%BIT5,PORTA,ISTART
STATER Clear state if false

start

Design Aids - Serial Communication with the TMS7000 Family

F862 72 08 OS

F86S 73 FE 07
F868 D3 02
F86A OA

ISTART MOV
*
*

*

AND
INC
RETS

%8,RXCNT Number of bits to
receive
Initialize parity

%#BITO,RXPAR
STATER Go to State 2

F86B
F86B
F86B D3 02

STATE2 EQU
STATE4 EQU
STATE6 INC
*

$
$
STATER

States 2,4 and 6 are
identical in operation
Half bit, go to next
state

F86D OA
*
*

RETS

F86E A7 20 04 01 STATE3 BTJZP
F872 07 SETC
F8 7 3 DD 04 BITLOW RRC

F87S 4S 04 07
F878 D2 02

F87A DA OS 06

F87D 42 04 06
F880 72 04 02
F883 OA

*
*

*

*

OUTP3
*

XOR
DEC

DJNZ
Store
MOV
MOV
RETS

Input new bit
%BITS,PORTA,BITLOW

A 1 was found
RXBUF Build the input word

here
Build up even parity

RXBUF,RXPAR
STATER Goto half state

Is entire byte in?
RXCNT,OUTP3
byte in storage register
RXBUF,RXSTOR
%4, STATER Go to State 4

* Check for even parity (use BTJZ for
* odd parity)

F884 76 01 07 09 STATES BTJO %BITO,RXPAR,IS1
* Out if both parities O?

F888 A7 20 04 09 ISO BTJZP %BIT5,PORTA,OUTPAR
F88C 74 20 oc BADPAR OR %BITS ,BITS Bit 5= Parity error
F88F EO 04 JMP OUTPAR

* Continue if parities both =1
F891 A7 20 04 F7 ISl BTJZP %BIT5,PORTA,BADPAR
F895 D3 02 OUTPAR INC STATER Reset State Counter
F897 74 04 oc OR %BIT2,BITS Set 'Word ready' bit
F89A OA RETS

*
*

F89B A6 20 04 03 STATE7
F89F 74 08 OC
F8A2 DS 02 ISSTOP
F8A4 OA

Stop bit = l?
BTJOP %BIT5,PORTA,ISSTOP
OR %BIT3, BITS Bit 3= Framing error
CLR STATER Reset State Counter
RETS

~****

F8AS EO 08
F8A7 EO OB
F8A9 EO 15
F8AB EO 2A
F8AD EO 37

* TRANSMITTER SECTION
* * TRANSMITTER JUMP TABLE
* JUMPT JMP

JMP
JMP
JMP
JMP

STA TEA
STATEB
STATEC
STATED
STA TEE

Start outputting string
Output start bit
Output data bits
Output parity bit
Output stop bit

9-21

Design Aids - Serial Communication with the TMS7000 Family

*
F8AF D5 09 STA TEA CLR TXTABL Initialize table pointer
F8Bl 8E F8Fl CALL @FIRST Load the first byte into

* buff er
* Send out a Start bit

F8B4 A3 F7 06 STATEB ANDP %#BIT3,PORTB
F8B7 72 08 08 MOV %8,TXCNT 8 bits per character

* Initialize parity to 0
F8BA 73 FE OB AND %#BITO,TXPAR
F8BD D3 03 INC STATET Go to the next state
F8BF OA RETS

*
F8CO 45 OA OB STATEC XOR TXBUF,TXPAR Build up Parity bit

* Send a 1 or a O?
F8C3 77 01 OA 05 BTJZ %BITO,TXBUF,TRANSO
F8C7 A4 08 06 ORP %BIT3,PORTB Output a 1 bit
F8CA EO 03 JMP NXTBIT
F8CC A3 F7 06 TRAN SO ANDP %#BIT3,PORTB Output a 0 bit
F8CF DC OA NXTBIT RR TXBUF Point to the next bit
F8Dl DA 08 02 DJNZ TXCNT,OUTC Are all 8 bits done

* yet?
F8D4 D3 03 INC STATET Output stop bits next
F8D6 OA OUTC RETS

*
* Output even parity (use.BTJO for
* odd parity)

F8D7 77 01 OB 05 STATED BTJZ %BITO,TXPAR,PARTYO
F8DB A4 08 06 ORP %BIT3,PORTB Output a 1 bit
F8DE EO Q3 JMP OUTD
F8EQ A3 F7 Q6 PARTYQ ANDP %#BIT3,PORTB Output a Q bit
F8E3 D3 Q3 OUTD INC STATET Output stop bit next
F8E5 OA RETS

*
F8E6 A4 Q8 06 STA TEE ORP %BIT3,PORTB Send out a stop bit
F8E9 72 Ql 03 MOV %1,STATET Send out start bit

* next
F8EC 74 Ql QC OR %BITQ,BITS Go to TX routine every

* other interrupt
*

F8EF D3 09 INC TXTABL Point to next byte
* from table

F8Fl 32 Q9 FIRST MOV TXTABL,B Setup output table
* pointer

F8F3 .AA F9Q8 LDA @STRING(B) Get value from table
F8F6 72 Ql 03 MOV %1,STATET Output Start bit next
F8F9 2D FF CMP %>FF,A FF = end of string
F8FB E6 08 JNE NEWTX Jump if not end of

* string
F8FD 74 10 QC OR %BIT4,BITS End of text string,

* set bit
F900 73 FD oc AND %#BIT1,BITS Turn off transmitter
F903 D2 03 DEC STATET Start at beginning

* next time
F905 DO OA NEWTX MOV A,TXBUF Store new byte
F907 OA RETS

9-22

Design Aids - Serial Communication with the TMS7000 Family

**
*
* This text string could be in RAM or ROM

F908 41 42 43 44 s TEXT 'ABCDEFGHIJKLMNOPQRSTVUWXYZ1234567890'
F90C 45 46 47 48
F910 49 4A 4B 4C
F914 4D 4E 4F 50
F918 51 52 53 54
F91C 56 55 57 58
F920 59 SA 31 32
F924 33 34 35 36
F928 37 38 39 30
F92C FF BYTE >FF End of string byte

*
F92D INTERl EQU $ External interrupts

* vectors
F92D OB INTER3 RETI Not used in this program

*
FFF8 AORG >FFFE-(3*2)
FFF8 2D F828 DATA INTER3,INTER2,INTER1,START
FFFC 2D F806

END
NO ERRORS, NO WARNINGS

9.3.3 Hardware UART (TM S70x2)

The main portions of the serial port are the receiver (RX), transmitter (TX), and
timer (T3). The complete functional definition of the serial port is configured
by the user program. A set of control words must first be sent out to configure
the serial port. For more information about the serial port, see Section 3.

The serial port is controlled and accessed through registers in the Peripheral
File. The registers associated with the serial port are shown in Table 9-8.

Table 9-8. Serial Port Control Registers

REGISTER
NAME TYPE FUNCTION

TMS70Cx2 TMS70x2

P20 P17 SMODE FIRST WRITE Serial Port Mode
P21 P17 SCTLO READ/WRITEt Serial Port Control 0
P22 P17 SST AT READ Serial Port Status
P23 P20 T3DATA READ/WRITE Timer 3 Data
P24 P21 SCTL1 READ/WRITE Serial Port Control 1
P25 P22 RXBUF READ Receiver Buffer
P26 P23 TXBUF WRITE Transmission Buffer

t Write only for TMS70x2 devices

The hardware serial port program is divided into three sections:

1) The initialization section
2) The transmitter section
3) The receiver section

The transmitter and the receiver sections are in the serial-port interrupt service
routine. The main body of the program follows the initialization section and
runs between interrupts.

9-23

Design Aids - Serial Communication with the TMS7000 Family

9.3.3.1 Initialization

The program first initializes all registers, starting with the interrupt control re­
gisters IOCNTO and IOCNT1. The stack pointer is set and output ports A and
B are initialized.

Next, the serial port registers are set up. The first write operation to PF lo­
cation P17 immediately following a reset accesses the SMODE register. All
subsequent writes to P17 access the control register SCTLO. If the condition
of P17 is unknown, then writing a single 0 to P17 will cause the register to
be SCTLO. The program can then reset the serial port by writing a 1 to the
UR bit in SCTLO.

Finally, the serial port timer is started and the interrupts are enabled. The
processor then waits for the timer interrupt to service the serial port. Faster
baud rates allow less time for the main program to run, since it only runs be­
tween the interrupts.

INT4 is dedicated to the serial port. Three sources can generate an interrupt
through INT4: the transmitter (TX), the receiver (RX), and Timer 3 (T3). The
serial port can be driven by Timer 3 or external baud rate generator. The Timer
3 interrupt function is usually disabled when using the UART because the
timer will interrupt 16 times for every bit or about 160 times per byte. In this
HWUART program, the T3 interrupt is disabled and the internal Timer 3 is
chosen as the serial clock.

9.3.3.2 Transmitter

When the program enters the serial port interrupt routine, it determines if the
transmitter or receiver caused the interrupt. If the interrupt occurred because
the transmitter is empty, then the program takes the next byte in the transmitter
table and places it in the transmitter buffer. The first byte of the transmitter
data contains the total number of bytes in the string. If the index is zero, the
program places this byte count into the index register instead of transmitting
it. This is an alternate method to the software UART's example of ending the
string with a unique character.

9.3.3.3 Receiver

If the receiver causes an interrupt and no errors exist, then the program takes
the value in the receiver buffer and places it into a receiver table. After the
character is placed into the table, the character counter at the beginning of the
table is updated. The main program must take this data and reset the character
count before the RAM buffer becomes full. This is an alternate method to the
software UART's example of putting the value in a register and setting a flag
for the main program.

9.3.3.4 Error Conditions

9-24

If the program detects an error condition in the serial port Status Register, then
the program sets a bit in RAM for the main program body to detect. When the
main program detects this error bit, it looks at SSTAT to determine the cause
of the error and takes action (if necessary). The main program may cause the
byte to be retransmitted, if necessary.

Design Aids - Serial Communication with the TMS7000 Family

9.3.3.5 Baud Rates

The baud rate generated by Timer 3 is user-programmable and is determined
by the value of the 2-bit prescaler and the 8-bit timer reload register. These­
rial port discussion in Section 3 provides a table of common baud-rate values.

9.3.3.6 RS-232-C Interface

The RS-232-C interface consists of SN75188 line drivers and SN75189A line
receivers as shown Figure 9- 7. This is the same interface circuit used in the
software example. Port A5 (input) of the TMS70x2 is used for all data re­
ceptions, and Port 83 (output) is used for all data transmissions.

9.3.3.7 Hardware UART Routines

0000
0004
0005
0006
0010
0011.
0011
0011
0014
0015
0016
0017

IDT 'HWUART'
* * This program uses the onboard UART to simulta­
* neously transmit and receive characters.
* Characters for transmitting are placed starting
* at TTABLE with the first byte equal to the
* string byte count. The received bytes are
* stored in the table RTABLE with the beginning
* byte equal to the characters received.
--- Peripheral Register Definition TMS7042
*---
IOCNTO EQU PO Interrupts and mode control
PORTA EQU P4 Port A - UART input
ADDR EQU PS Port A direction
PORTE EQU P6 Port B - UART output
IOCNTl EQU P16 Interrupt 4,5 control
SMODE EQU Pl7 Serial port mode
SCTLO EQU P17 Serial port control 0
SSTAT EQU Pl7 Serial port control status
T3DATA EQU P20 Timer 3 data
SCTLl EQU P21 Serial port control 1
RXBUF EQU P22 Receiver buff er
TXBUF EQU P23 Transmitter buffer

9-25

Design Aids - Serial Communication with the TMS7000 Family

0005
0006
0007
0008

OOlE

0001
0002
0004
0008
0010
0020
0040
0080

F006
F006 06

FOO? A2 2A 00

FOOA A2 03 10

FOOD 52 60
FOOF OD
FOlO A2 FB 05

F013 A2 08 06

F016 A2 00 11

F019 A2 40 11

FOlC A2 7E 11

FOlF A2 lS 11

9-26

-·--- Register Definition
*-·---
POINTR EQU RS Pointer into receiver table
POINTT EQU R6 Number of bytes ready to send
POINTC EQU R7 Transmitter chars send so far
BITS EQU R8 Store random conditional bits
* here
RTABLE EQU 030 Beginning of receiver table
*
BITO EQU 1 Bit constants to make code more
BI Tl EQU 2 readable
BIT2 EQU 4
BIT3 EQU 8
BIT4 EQU 16
BITS EQU 32
BIT6 EQU 64
BIT7 EQU 128
*---
*

AORG
START DINT
*
*
*
*

*
*
*

*
*
*
*
*
*
*

MOVP

MOVP

MOV
LDSP
MOVP

MOVP

MOVP

MOVP

MOVP

MOVP

>F006
Disable interrupts
(precaution)

%>2A,IOCNTO Single chip, clear INT
flags
Disable Il, I2, I3

%>03,IOCNTl Clear INT4 flag and
enable INT4

%>60,B
Initialize stack pointer

%#BIT2,ADDR Set A2 = input others
are output

%BIT3,PORTB Enable TX by setting
B3 = 1

%>OO,P17 Make sure P17 points to
SCTLO

%BIT6,SCTLO Reset the UART via the
UR bit

%?01111110,SMODE
One stop bit, communi­
cations mode, even
parity, 8 bits,
Asynchronous mode,
Motorola

%>1S,SCTLO Clear the serial port
reset bit

Design Aids - Serial Communication with the TMS7000 Family

F022 A2 00 15

F025 A2 CO 15

F028 A2 67 14

F02B 05

F02C D5 07

F02:E D5 06
F030 D5 05

* Clear all error flags and enable
* the transmitter and receiver

MOVP %>00,SCTLl Make sure the start bit
* is off

MOVP %>CO,SCTL1 Use internal CLK, reset
* T3FLAG
* Disable T3 interrupt
* and set PS= 0

MOVP %103,T3DATA Set timer at 1200 baud
* (5 MHz)

EINT Enable maskable
* interrupt
SETUP CLR POINTC Clear bytes transmitted
* count

CLR POINTT Clear bytes to transmit
CLR POINTR Clear bytes received

* count
* *---
* * * Main body of program goes here
* *** Main body finds ·and corrects serial port
* error conditions by checking Bit 0 of
* 'BITS' and SSTAT.
--- INTERRUPT 4 SERVICE ROUTINE
*---

F032 A6 38 11 02INTER4 BTJOP %>38,SSTAT,ERROR

F036 EO 03
F038 74 01 08

the

F03B B8
F03C C8
F03D A7 02 11 12

F041 D3 05

F043 7D lE 05

F046 E3 OB

F048 32 05
F04A 80 16

F04C AB OOlE
F04F 62

F050 8B OOlE

* Was there an error?
SAVE IT JMP

ERROR OR %BITO,BITS Set an error bit for

*
*
SAVEIT PUSH A

PUSH B

main program to find
and continue
Save register A

BTJZP %BIT1,SSTAT,TXOUT
*
*
RXCV
*
*

*
SKIPl
*

*
*

Did receiver cause interrupt?

INC

CMP

JHS

MOV
MOVP

STA
MOV

STA

POINTR

%30,POINTR

TX OUT

POINTR,B
RXBUF,A

@RTABLE(B)
B,A

@RT ABLE

Get receiver table
ponter
Is receiver table full
yet?
get out of routine
if so
Get index value
Put received character
in Register A
Put value into table
Store the new character
count
Put count at location
0 in table and exit

9-27

Design Aids - Serial Communication with the TMS7000 Family

FOS3 A7 01 11 16TXOUT BTJZP %BITO,SSTAT,OUTI4
* Did XMIT cause interrupt?
*

FOS7 4D 06 07 XMIT CMP POINTT,POINTC
* Is the table finished?

FOSA E3 11 JHS OUTI4 Jump if finished
FOSC D3 07 INC POINTC Point to the next index
FOSE 32 07 MOV POINTC,B Get transmit table

* pointer
F060 AA F070 SKI PO LDA @TTABLE(B) Load value from TX

* table
F063 SD 00 CMP %0,B Is this the byte count?
F06S E6 04 JNE OUTPUT If not, output the byte
F067 DO 06 MOV A,POINTT If so, put into pointer
F069 EO 02 JMP OUTI4
F06B 82 17 OUTPUT MOVP A,TXBUF Put data into

* transmitter
*

F06D C9 OUTI4 POP B Restore registers
F06E B9 POP A
F06F OB RETI Return to main program

*
F070 lA TTABLE BYTE 26 Text can be either in

* ROM or RAM registers
F071 41 42 43 44 TEXT 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
F07S 4S 46 47 48
F079 49 4A 4B 4C
F07D 4D 4E 4F so
F081 Sl S2 S3 S4
FOSS SS S6 S7 S8
F089 S9 SA

*
FFF6 AORG -(4+1)*2 Set up 4 vectors

* =interrupts
FFF6 F032 F006 DATA INTER4,START,START,START,START
FFFA F006 F006
FFFE F006

END
NO ERRORS, NO WARNINGS

9-28

Design Aids - The Status Register

9.4 The Status Register
The Status Register contains four status bits that provide conditional exe­
cution for a variety of arithmetic and logical tasks. The carry (C), negative (N),
zero (Z), and interrupt enable (I) flags occupy bits 7-4 of the Status Register.
The C, N, and Z bits are affected by most instructions. The global interrupt
enable (I) bit is affected by the EINT, DINT, and POP ST instructions.

MSb7 8 6 4 3 2 1 OLSb

lcl Nl zl 1 I +~eu~e I

Figure 9-9. Status Register

Section 9.4.1 describes the way in which the compare instructions can be
used to create the necessary status conditions for either a logical-type (un­
signed) or arithmetic-type (signed) jump instruction. In Section 9.4.2 de­
scribes the effects of addition and subtraction on the Status Register for both
signed and unsigned systems. Finally, Section 9.4.3 describes how SWAP
and the rotation instructions (RR, RRC, RL, and RLC) can be used to clear,
set, shift, or test the various status bits as required.

9.4.1 Compare and Jump Instructions

The compare instructions, CMP and CMPA, affect the C, N, and Z bits in the
Status Register by subtracting a source operand (S) from a destination oper­
and (d). Destination and source may be misnomers in this case, because the
result of (d) - (s) is not stored; however, the status bits are set according to
the result of the subtraction.

C Serves as a "no-borrow" bit. If (d) is greater than or equal to (s), then
there is no borrow and C is set to 1 . C is set to 0 if (d) is less than (s).

N Is set to the same value as the MSb of the result. For 2's complement
(signed) systems, N = 1 indicates a negative number, and N = 0 indi­
cates a positive number.

Z Is set to 1 if the source is equal to the destination [(d) = (s)].

The CMP instruction uses the contents of a register (Rn) as the destination
operand, and either an immediate operand or the contents of another Rn as
the source operand. The CMPA instruction uses the contents of Register A
as the destination operand and one of the extended addressing modes (Direct,
Register File Indirect, or Indexed) generates the source operand. Table 9-9
illustrates the limits of both signed and unsigned systems by listing the status
bits affected for various source and destination operands substituted into the
(d) - (s) expression.

9-29

Design Aids - The Status Register

SOURCE

FF
00

00

81

00

80

00

7F
80

7F
7F

Table 9-9. Compare Instruction Examples: Status Bit Values

DESTINATION D-S c N z INSTRUCTIONS THAT WILL JUMP

00 01 0 0 0 JL JNC JNE JNZ JP JPZ

FF FF 1 1 0 JHS JC JNE JNZ JN

7F 7F 1 0 0 JHS JC JNE JNZ JP JPZ

00 7F 0 0 0 JL JNC JNE JNZ JP JPZ

81 81 1 1 0 JHS JC JNE JNZ JN

00 80 0 1 0 JL JNC JNE JNZ JN

80 80 1 1 0 JHS JC JNE JNZ JN

80 01 1 0 0 JHS JC JNE JNZ JP JPZ

7F FF 0 1 0 JL JNC JNE JNZ JN

7F 00 1 0 1 JHS JC JEQ JZ JPZ

00 81 0 1 0 JL JNC JNE JNZ JN

Since the compare instructions do not alter the source and destination oper­
ands, these instructions can be executed before a conditional jump instruction
to test for a particular relationship between the source and destination oper­
ands. Table 9-10 lists the necessary status bit conditions for each of the
conditional jump instructions.

Table 9-10. St:atus Bit Values for Conditional Jump Instructions

CONDITION ON STATUS BIT
MNEMONIC INSTRUCTION WHICH JUMP VALUES FOR JUMP:

IS TAKEN c N z
JC/JHS Jump If Carry/Jump If Higher (d) unsigned>= (s) 1 x x

or Same

JNC/JL Jump If No Carry/Jump If Lower (d)unsigned<(s) 0 x x
JZ/JEQ Jump If Zero/Jump If Equal (d) = (s) x x 1

JNZ/JNE Jump If Non-zero/Jump If Not (d) :F (s) x x 0
Equal

JP Jump If Positive (d) - (s) = pos # x 0 0

JN Jump If Negative (d) - (s) = neg # x 1 x
JPZ Jump If Positive or Zero (d) - (s) = pos # or 0 x 0 1

Note: X = Don't Care

9-30

Design Aids - The Status Register

9.4.2 Addition and Subtraction Instructions

The TMS7000 instruction set supports both single and multi-precision addi­
tion and subtraction for either binary or BCD; signed (2's complement) or
unsigned data.

The following example illustrates 32-bit addition with the ADD and ADC in­
structions:

ADD R30,R120
ADC R29,Rll9
ADC R28,Rll8
ADC R2.7,Rll7

Since no initial carry-in is desired, the first instruction is ADD. The ADC in­
struction is then executed three times in succession to transfer the carry
through all 32 bits.

The following example illustrates 24-bit subtraction with the SUB and SBB
instructions:

SUB R4,R127
SBB R3,R126
SBB R2,R125

Since no initial borrow-in is desired, the first instruction is SUB. The SBB
instruction is then executed twice in succession to achieve the 24-bit result.

9.4.3 Swap and Rotation Instructions

Figure 9-10 illustrates the rotation operations performed by the four rotation
instructions Rotate Right (RR), Rotate Right Through Carry (RRC), Rotate
Left (RL), and Rotate Left Through Carry (RLC), and the SWAP instruction.
SWAP executes the equivalent of four consecutive RL instructions, setting the
C bit in the Status Register equal to bit 4 of the original operand or bit 0 (LSb)
of the resu It.

0 I' I e1I eel 86184,lea102I B1 leo h d e1I eel 86184~ ea! 821 B1 leo I 'I 0
RL RR

~---' e_1_I ee_l_es_l_B4_l_ea_l_e2_l _e1_le_o_h_ c' e1 I eel esl B4 f ea I e2 I e1 leo I 0J
L__°:::_ ~ -- ~----~---------4~------------~-----'

OLD

EJ

RLC RRC
OLD OLD
MSN L N

78543210 NEW

I 1 I 1 I 1 I ~ I 0 I 0 I 0 I 0 I '3JNl>P ~

NEW NEW
MSN L N

1 e s 4 a 2 1 o
I o I o I o I o I 1 I 1 I 1 I 1 I

I

Figure 9-10. Swap and Rotation Operations

9-31

Design Aids - Stack Operations

9.5 Stack Operations

IPC

DTABLE

*

The stack is located in RAM and can be tailored to your needs. One powerful
application of the stack is the establishment of tables. For example, Figure
9-11 illustrates a dispatch table with an interpretive program counter (I PC).
An IPC is used in some high level languages, such as Pascal, to give the
proper execution sequence. The IPC can be contained in any register; it points
to an interpretive pseudo code (pcode) byte that in turn specifies one of 256
dispatch routines. The overall effect of this function is that a program can
execute one of a large number of different routines depending on a single va­
lue stored in a register. Two separate 256-byte sections are required for the
high and low address bytes of each dispatch routine. The first entry of each
section (ROVO) corresponds to pcode=O, and the second entry (ROV1) to
PCODE=1, etc.

EQU R3 Interpretive Pro~ram Counter
LDA *IPC Get the input co e, range=0-255
DECD IPC Point to the next input code
MOV A,B PCODE Index Register
LDA @DTABLE(B) Lookup Address MSB
PUSH A Put MSB on stack
LDA @DTABLE+256(B) Lookup Address LSB
PUSH A Put LSB on stack
RETS Jum~ to the Address on the stack
BYTE ROV0/256 Beginning of MSB table
BYTE ROVl/256

BYTE ROV255/256
LSB table starts here

BYTE ROVO Warning messages may appear here,
BYTE ROVl but they don't affect results .
BYTE ROV255-(ROV255/256*256) No warning message here

Figure 9-11. A Dispatch Table with an Interpretive Program Counter {IPC)

9-32

Note that the assembler expressions have 16-bit values. For those instructions
requiring an 8-bit operand, the expression is truncated to the least significant
8 bits. This may produce a warning message, but the value will be correct.
Thus, the following instructions place byte values >AA, >55, and >55 at
memory locations >8000, >8001, and >8002, respectively:

8000
8000

8002

AA55 LABEL EQU >AA55

AA55
* 55

AORG >8000
DATA LABEL 16-bit word

LSB only
LABEL-(LABEL/256*256) BYTE

The most significant byte (MSB) of an expression can be obtained by dividing
the value by 256 (28) as shown below:

8000
8000
8002

AA55 LABEL EQU >AA55

AA55
AA

AORG >8000
DATA LABEL
BYTE LABEL/256 MSB only

Design Aids - Subroutine Instructions

9.6 Subroutine Instructions

Two instructions, CALL and TRAP, can invoke subroutines. TRAP is a one
byte subroutine call. Both instructions save the current value of the Program
Counter (PC) on the stack before transferring control to the subroutine. Since
the return address is stored on the stack, subroutines can be easily nested.
The two instructions differ only in the way in which the subroutine address is
determined and in the amount of program memory required for execution.

The CALL instruction uses the Extended Addressing modes (Direct, Register
File Indirect, and Indexed) to specify the subroutine address. This permits
simple calls with a fully specified address as well as more complex calls with
a calculated address. Of the two types of instructions, the CALL instruction
requires more program memory than the TRAP instructions. For example:

CALL @BITTEST

requires three bytes of memory - one byte for the opcode and two bytes for
the subroutine address. If the subroutine is called six times, 18 bytes are ne­
cessary to implement the CALLs. The equivalent task for the TRAP instruction
requires only 8 bytes for six successive uses of the same TRAP, since only the
opcode byte is necessary after the first use. Six of these 8 bytes are the TRAP
opcodes and the other two bytes are the trap vector. The first use of the TRAP
instruction requires one opcode byte plus the two bytes of the subroutine
address which are located in the Trap Table. Each subsequent use requires
only one more byte, compared to three bytes for each CALL. All the trap
vectors are stored at the end of memory with the most significant byte of the
trap subroutine stored in the lower numbered location. The exact address
where the trap vector (which is the trap subroutine address) is stored is de­
rived from the following formula.

LSB of Address which contains the TRAP subroutine address = >FFFF - 2 x
N where N is the TRAP number.

MSB of address = LSB - 1

The TRAP instructions (TRAPs 4-23) provide the most efficient means of in­
voking subroutines. Figure 9-12 shows a subroutine call generated by a
TRAP instruction.

9-33

Design Aids - Subroutine Instructions

9-34

(Main Program)
TRAP 4

(More Main Program)

BR MAINPR

BITTEST EQU $

(Subroutine Body)
RETS

AORG >FFF6 Trap 4 vector
DATA BITTEST

Figure 9-12. Example of a Subroutine Call by Means of a TRAP
Instruction

The Return from Subroutine (RETS) instruction should be executed to pop
the PC from the stack and restore program control to the instruction imme­
diately following the CALL or TRAP instruction.

Design Aids - Multiplication and Shifting

9.7 Multiplication and Shifting

The MPV instruction performs an 8-bit by 8-bit multiply and stores the 16-bit
result in Registers A and B. The most significant byte (MSB) of the result is
in Register A, and the least significant byte (LSB) is in Register B. The MPV
instruction can also be used to perform multi-bit right or left shifts by using
an immediate operand as the multiplier. For example:

MPY %8,B

The preceding example multiplies the value of Register B by 8. After the in­
struction executes, Register B contains the previous value left-shifted three
bits (23 = 8) with no fill bits. Register A contains the previous value's most
significant three bits which produces a value equivalent to shifting the previ­
ous value right five bits (8 - 3 = 5) with no fill bits. Using this method, it is
possible to shift any 8-bit value left or right up to 8 bits. In many cases this
is faster than the rotate instructions and almost always takes less program
bytes. If the word only needs to be shifted one or two places then the rotate
instructions may take less execution time. Table 9-11 lists the number of bits
right- or left-shifted for a range of immediate multipliers.

Table 9-11. Multi-Bit Right or Left Shifts by Immediate Multiply

IMMEDIATE BITS BITS
MULTIPLIER RIGHT LEFT

SHIFTED SHIFTED

2 7 1

4 6 2

8 5 3

16 4 4

32 3 5

64 2 6

128 1 7

Multi-precision multiplications can be easily executed by breaking the multi­
plier and the multiplicand into scaled 8-bit quantities, as shown in the exam­
ples at the end of this section.

9-35

Design Aids - The Branch Instruction

9.8 The Branch Instruction

9-36

The branch instruction (BR) unconditionally transfers program control to any
desired location in the 64K byte memory space. BR supports direct, indexed,
and indirect addressing:

Direct addressing is used for simple GOTO programming.

Indexed addressing allows table branches. This indexed branch tech­
nique is similar to the Pascal CASE statement. Program control is trans­
ferred to location CASEO if the input is 0, to CASE1 if it is a 1, etc. This
transferring method can implement up to 85 different cases. In the ex­
ample below, indexed addressing is used to access a relative branch ta­
ble:

JTABLE MOVP P4,A Get data from A port
* (value < 85)

ADD A,B Add twice to triple value
ADD A,B Multiply it by 3

* (BR is 3 bytes long)
BR @CTABLE(B) Branch according to the

* A port value * 2

*
CT ABLE BR @CASEO If P4 0 do this branch

*

BR @CASEl If P4 1 do this branch
BR @CASE2 If P4 2 do this branch

The branch instruction can also be used with indirect addressing in order
to branch to a computed address. For example, suppose that a com­
puted branch address has been constructed in R19 and R20. The de­
sired program control transfer is made by:

BR *R20

Design Aids - Interrupts

9.9 Interrupts

The number of interrupts and the hardware configuration for a TMS7000 fa­
mily device are specified in Sections 2 and 3. The TMS7020, for example, has
three interrupts in addition to RESET.

RESET and the interrupts are vectored through predetermined memory lo­
cations. RESET uses the TRAP 0 vector which is stored at memory locations
> FFFE and > FFFF. The interrupts also use the TRAP vector table with INT1
using the TRAP 1 vector, etc. Thus, the TRAP 2 instruction involves the same
code as the interrupt INT2.

The interrupts differ from the TRAPs; they push the Status Register value on
the stack, clear the interrupt enable bit in the Status Register, and reset the
corresponding interrupt flag bit. Thus the El NT instruction must be used if
nested interrupts are desired. The return from interrupt (RETI) instruction re­
stores the Status Register and the Program Counter, re-enabling interrupts.

Many interrupt service routines alter the status of key registers such as Regis­
ters A and B. These routines should use the stack to restore the machine state
to the desired value. For example, the following interrupt routine performs an
1/0 driven table look-up. Registers A and B are used, but their values are
saved and restored:

INT PUSH
PUSH
MOVP
LDA
MOVP
POP
POP

*
RETI

A Store Registers A and B on stack
B
P4,B Get input from Port A
@LOOKUP(B)Do a table lookup to get new value
A,P6 Output new value on Port B
B Restore Registers A and B in the
A reverse order that they were put

on
Back to main program

All interrupts are usually disabled during an interrupt service routine. If it is
necessary for an interrupt to occur while the processor is servicing another
interrupt, then the global interrupt enable bit should be set to 1 by the inter­
rupt service routine. The number of interrupts that can be serviced at any one
time is determined by the size of the stack, which is also the internal RAM size
(the stack resides in the Register File). Since other registers and data will
most probably share the same space, the stack size is usually much less. When
nesting interrupts, great care must be taken to avoid corrupting the data in the
registers used by the most recent routine. If I NT1 interrupts an ongoing I NT1
service routine, then the registers used by the INT1 routine are used in two
different contexts. If provisions are not made for these situations, such as di­
sabling all interrupts at critical times, then data errors will occur.

Sometimes a program contains distinct portions that require different re­
sponses to the same interrupt call. Since the interrupt vector is always set in
nonchangeable ROM, another method must be used to change the vector for
each part. One method for accomplishing this is to store a second vector in a
RAM register pair and allow the first instruction in the interrupt routine exe­
cute an indirect branch on that register.

9-37

Design Aids - Interrupts

9-38

* Program to demonstrate multiple interrupt service
* routine locations.
* Main Program
*

*

*

*

MOVD %SERVIC,R127
EINT
IDLE

MOVD %SERVI2,R127

Put INTl service routine
address in register
Turn on and wait for
interrupts
Change INTl routine to
SERVI2

* First Interrupt 1 Service Routine
SERVIC PUSH A Beginning of the INTl

PUSH B service routine for
* this part of the program

*
* Second Interrupt 1 Service Routine
SERVI2 PUSH A Start of another interrupt

DEC R4 1 service routine

*
INTl BR
*
*
*
*
* Interrupt

AORG
DATA

*
DATA

*

*R127

vector table at
>FFFC
INTl

>F806

The entire INTl service
routine tranf ers control
to the address which is
in R127 and R126

end of memory

Address of Interrupt 1
service routine
Reset vector start of
program

Design Aids - Write-Only Registers

9.10 Write-Only Registers

Certain TMS70xx peripheral registers are write-only registers, which means
that the program cannot directly ascertain the contents of the register. Table
9-12 lists write-only registers.

Table 9-12. Write-Only Registers

REGISTER LOCATION FUNCTION REGISTER LOCATION FUNCTION

IOCNTO PO Current mode IOCNT1 P16 Interrupts

T1DATA P2 Timer 1 latch T1CTL P3 Timer 1 control

T2DATA P18 Timer 2 latch T2CTL P19 Timer 2 control

T3DATA P20 Timer 3 latch SCTLO P17 Serial port

SMODE P17 Serial port TXBUF P23 Transmit buffer

Problems may arise using some instructions with these write-only registers
because most have a separate read-only function at the same address. An
error may occur when you execute an instruction that reads the register, mo­
difies the value and then writes back to the register. These instructions are
ANDP, ORP, XORP. For instance, the program cannot turn on the timer by
ORing a 1 to the timer Start bit, because the instruction will read the capture
latch, set the MSb to 1, and then write this value to the timer control register.
Unfortunately, this will change the prescaler and the timer may wait forever for
a nonexistent external clock source.

The solution to this problem involves image registers which store the con­
tents of a write-only register. An image register is a RAM register set aside to
contain the value of a particular register. Whenever the write-only PF register
must be changed, the program first fetches its image register, changes it, and
then writes the image register to the peripheral register. This way, the image
register always contains the value of the peripheral register. The following
code using an image register could be used to turn on the timer start bit.

*

*

OR %>80,TlCTLI

MOV TlCTLI,A
MOVP A,TlCTL

Turn on start bit of
timer control

Move the image register
to the Peripheral File

9-39

Design Aids - Sample Routines

9.11 Sample Routines

The following section.s contain sample routines to show the various ways the
TMS7000 handles common software tasks. Actual programs usually contain
a combination of simple routines such as these along with custom routines
tailored to the applications.

9.11.1 Clear RAM

9-40

This routine clears all the internal RAM registers. It can be used at the be­
ginning of a program to initialize the RAM to a known value.

Register Function
A Holds the initialization value
B Index into the RAM

AORG >F006
*
CLEAR MOV %126,B Number of register to clear - 2

CLR A Load the initialization value of
* zero
LOOP STA @2(B) Clear the location indexed by
* B + 2

DJNZ B,LOOP Loop until all RAM is cleared

Design Aids - Sample Routines

9. 11 .2 RAM Self Test

This routine performs a simple alternating 0/1 test on the RAM. The RAM is
tested by writing a >AA, >55 pattern to the entire RAM and then checking the
RAM for this pattern. The inverted pattern is then written to RAM and re­
checked. Finally, the entire RAM is cleared. If an error is found, a bit is set
in a flag register.

Register Before
After After

No Error Error
A xx 0 ?
B xx 0 ?

Rn xx 0 ?
FLAG xx 0 Bit 0 = 1

Passing data: None
Registers affected: All
Ending data: All registers = 0

Bit 0 in FLAG = 1 if error was found

**

FILLR
*
FILLl

*

*

MOV
MOV

STA
RR
DJNZ

RR
MOV

COMPAR CMPA
JNE
RR
DJNZ

*

FILLO

*
ERROR
*
EXIT

TSTA
JN
JZ
CLR
JMP

OR

EQU

%>55,A
%>FD,B

@2(B)
A
B,FILLl

A
%>FD,B

Start RAM fill with >55
Set RAM start address - 2
(don't change register A or B)
Fill RAM with AA 55 pattern
Change from 55 to AA to 55
Fill the entire RAM with this
pattern
Change to beginning number
Refresh index

@2(B) Check for errors
ERROR Exit if the values don't match
A Change from 55 to AA to 55
B,COMPAR Check the entire RAM

FILLR
EXIT
A
FILLR

%1,FLAG

$

Is Reg A now 55, AA or 00?
=AA, change to opposite pattern
=00, finished now get out
=55, clear the RAM now
Repeat the fill and check
routine
Set bit 0 in the flag
register
Continue program here

9-41

Design Aids - Sample Routines

9.11.3 ROM Checksum

9-42

This routine checks the integrity of the ROM by performing a checksum on the
entire ROM. All ROM bytes from >FOOS to >FFFF are added together in a
16-bit word. This sum is checked against the value at the beginning of the
ROM (>F006,>F007). If the values don't match, then an error has occured
and a bit is set in a register.

Register Before
After

After Error No Error
A xx n ??
B xx n n

R2 xx CHKSUM MSB CHKSUM MSB
R3 xx CHKSUM LSB CHKSUM LSB
R4 xx >FO >FO
R5 xx >07 >07
R6 xx >FF >FF
R7 xx >FF >FF

FLAG xx Bit 1 =O Bit 1 = 1

**

*
*

AORG
DATA

ROMCHK MOVD

*
ADDLOP

*

ERROR
EXIT
*

MOVD
MOVD

LDA
ADD
ADC
DECD
DECD
JC

LDA
CMP
JNE
LDA
CMP
JEQ
OR
EQU

>F006
CHECKSUM Put correct checksum into ROM

Other initialization program
here

%>FFFF,RSStarting address (end of memory)
%>FF7,R7 Number of bytes to add+ 1
%>0,R3 Reset summing register

*RS
A,R3
%0,R2
RS
R7
ADD LOP

@>F007
A,R3
ERROR
@>F006
A,R2
EXIT
%2,FLAG
$

Get ROM byte
Add to 16-bit sum

Point to next address
Decrement byte counter
Continue until byte count goes
past 0
Compare LSB stored to LSB sum

Set error bit if different
Compare MSB stored to MSB sum

Set error bit if different
Set bit 1 in the Flag register
Continue program here

Design Aids - Sample Routines

9.11.4 Binary-to-BCD Conversion

This program converts a 16-bit binary word to a packed 6-nibble value.

Register
A

*

B
R2
R3
R4
R5

Before
xx xx
xxxx
xxxx
BINARY MSB
BINARY LSB
xx xx

AORG >F006

BN2BCD CLR
CLR
CLR
MOV

A
B
R2
%16,RS
R4 LOOP RLC

*

RLC
DAC
DAC

R3
R2,R2
B,B

After
BCD MSB
BCD
BCD LSB
ZERO
ZERO
ZERO

Prepare answer registers

Move loop count to register
Shift higher binary bit out
Carry contains higher bit

Double the number then add the
binary bit

DAC
*

A,A Binary bit (a 1 in carry on 1st
time is doubled 16 times).

DJNZ

RETS

R4,LOOP Do this 16 times, once for each
*

9.11.5 BCD-to-Binary Conversion

Register
A

*

B
R2
R3
R4
R5

Before
xx xx
xx xx
xx xx
BINARY MSB
BINARY LSB
xx xx

AORG >F006

BCD2BN MOV
AND
SWAP
CMP
JHS
MPY

A,R2
%>FO,A
A
%10,A
ERROR
%10,A

*

bit

After
BCD MSB
BCD
BCD l.SB
ZERO
ZERO
ZERO

Store word in R2
Isolate MSB
Move to LSB position
Is it a valid BCD digit?
Goto error routine if not
Multiply MSB by 10, results
at A,B in binary

%>0F,R2 Isolate LSB
%10,A Is it a valid BCD digit?

AND
CMP
JHS
ADD

ERROR
R2,B Add LSB to binary MSB to finish

* conversion
ERROR RETS

END

9-43

Design Aids - Sample Routines

9.11.6 BCD String Addition

9-44

The following subroutine uses the addition instructions to add two multi-digit
numbers together. Each of the numbers is a packed BCD string of less than
256 bytes (512 digits) stored at memory locations STR1 and STR2. This
routine adds the two strings together and places the result in STR2. The
strings must be stored with the most significant byte in the lowest numbered
register. The TMS7000 family instruction set favors storing all numbers and
addresses with the most significant byte in the lower numbered location.

Register Before After Function
A xx xx 7777 Accumulator
B xxxx 0 Length of string

R2 xx xx 7777 Temporary save register
STR1 xx xx no change BCD string
STR2 xx xx STR1+STR2 Target string, 6 bytes max

* Decimal Addition Subroutine
* Stack must have 3 available bytes.
* On output: STR2 = STRl + STR2
*
*
ADD BCD

LOOP

*

*
*

CLRC
PUSH
LDA
MOV
LDA
POP
DAC
PUSH

STA
DJNZ
POP

RETS

ST
@STRl-l(B)
A,R2
@STR2-l(B)
ST
R2,A
ST

@STR2-l(B)
B,LOOP
ST

Clear carry bit
Save status of stack
Load current byte
Save it in R2
Load next byte of STR2
Restore carry from last add
Add decimal bytes
Save the carry from this
add
Store result
Loop until done
Restore stack to starting
position
Bae~ to calling routine

Notice the use of the Indexed Addressing mode to reference the bytes of the
decimal strings. Notice also the need to push the status register between de­
cimal additions, to save the decimal carry bit. Register B is used to keep count
of the number of bytes that have been added.

Design Aids - Sample Routines

9.11.7 Fast Parity

This routine presents a quick way to determine the parity of a byte. By ex­
clusiving ORing all the bits of the byte together, a single bit will be derived
which is the even parity of the word. When exclusive ORing, an even number
of 1 s will combine to form a 0, leaving either an odd 1 or 0 bit. This routine
keeps splitting the byte in half and exclusive ORing the two halves.

Register
A
B

Carry

Before
Target
xx xx
xx xx

After
?777
nn

Parity

Function
Passing byte from program
Length of string
Status bit, result to calling
routine

**
* STEP 1 SUBROUTINE
* Byte bits 7654 3210 TO FIND
* XOR 7654 [MSN above] EVEN PARITY
*
* * STEP 2
*
*
* * STEP 3
*
*
*
*

==========
xxxx ABCD

------> AB CD
XOR AB [MS bits above]

=====
. xx ab

---> a b
XOR a

x p

[MS bit]

{answer }

*
PAlUTY MOV B,A Duplicate the target byte

SWAP A Line up the MS nibble with the LS nibble
XOR B,A Exclusive OR the nibbles to get a nibble

* answer
MOV A,B Duplicate the nibble answer
RR A Line up bits O, 1 of the answer to bits
RR A 2' 3 of the answer
XOR B,A XOR to get a new 2-bit answer
MOV A,B Duplicate this 2-bit answer
RR A Line up bit 0 with bit 1
XOR B,A XOR to get final even parity answer
RR A Rotate answer into the carry bit and bit
RETS Carry = 0 = even # of ls

* Carry = 1 = odd # of ls
* Use JC, JN or JNC JPZ in next executed
* instruction

7

9-45

Design Aids - Sample Routines

9.11.8 Overflow and Underflow

9-46

An exclusive OR of the C and N bits AN Ded with the exclusive OR of the
MSbs of the operands can be used as a check for an overflow or underflow
for subtraction in a signed system (if (C XOR N) AND (MSb1 XOR MSb2)
= 1 then out of range).

When adding two signed numbers, the test for an out-of-range condition is
similar to the subtraction method. When an exclusive OR of the C and N bits
AN Ded with the inverse of the exclusive OR of the MSbs of the two operands
equals one then an overflow or underflow has occurred (if (C XOR N) AND
(NOT(MSb1 XOR MSb2)) = 1 then out of range).

Register
A

OPRND1
OPRND2

Before
xxxx
xx xx
xx xx

After
????
OPRND1
OPRD2-0PRD1

Function

Subtraction results

* Routine to check for signed underflow or overflow
* If (C XOR N) AND (MSbl XOR MSb2) = 1 then out of range
*

MOV
XOR
SUB
JN

NOTNEG JNC
JMP

*
ISNEG JC
CXORNl TSTA
*

JPZ
*
*
*
OUTRNG
*
*
NOERR

OPRNDl ,A
OPRND2,A
OPRND1,0PRND2
ISNEG
NOERR
CXORNl

NOERR

NOERR

Get XOR of the MSbs
Subtract 2 signed numbers

N = 0
C XOR N = 1, First part of
equation is true
N=l
C XOR N = l; set flags for
MSbl XOR MSb2
If (N XOR C) AND (MSbl XOR
MSB2) = 1 then out of range.
For addition change this
instruction to JN NOERR
Out of range; underflow or
overflow

No underflow or overflow

Design Aids - Sample Routines

9.11.9 Bubble Sort

This routine will sort up to 256 bytes using the bubble sort method. Longer
tables could be sorted using the Indirect Addressing mode.

Register
A
B

R2

*
FLAG
*
SORT

LOOPl

*

LOOP2
*

AORG

EQU

CLR
MOV
LDA
CMPA
JL
INC

PUSH
LDA
STA
POP
STA
DJNZ

Function
Temporary storage register
Index into the table
Holds flag to indicate a byte swap has been made

>F006

R2

FLAG
%149,B
@TABLE(B)
@TABLE-l(B)
LOOP2
FLAG

A
@TABLE-l(B)
@TABLE(B)
A
@TABLE-l(B)
B,LOOPl

'Swap has been made' flag

Reset swap flag
150 bytes to be sorted
Look at entry in table
Look at next lower byte
If lower skip to next value
Entry is not lower, set swap
flag
Store upper byte
Take lower byte
Put where upper was
Get the old upper byte
Put where the lower byte was
Loop until all the table is
looked at

BTJO %>FF,FLAG,SORT
* If
* If

swap was made, then resweep table
no swap was made, then table is done

9-47

Design Aids - Sample Routines

9.11.10 Table Search

9-48

Table searches are efficiently performed by using the CMPA (Compare Reg­
ister A Extended) instruction. In the following example, a 150 byte table is
searched for a match with a 6-byte string:

Register
A
B

R2
TABLE
STRING

*
SEARCH
LOOPl
LOOP2
*
*

*

*
MATCH
*

Before
xxxx
xx xx
xx xx
xxxx
xx xx

After
????
????
????
no change
no change

MOV
MOV
XCHB

DEC

JZ
LDA
XCHB

CMPA
JNE

DJNZ
EQU

%150+1,R2
%6,B
R2

B

NO FIND
@TABLE-l(B)
R2

@STRING-l(B)
LOOPl

B,LOOP2
$

NOFIND EQU $

Function

Table length
Long string in table
Target string, 6 bytes max

Table length = 150 bytes
String length = 6 bytes
Swap pointers, long string
in B
Table end? If so, no match
found

Load test character
Swap pointers, string
pointer in B
Match?
If not, reset string
pointer else test
next character
Match found

No match found

The Indexed Addressing mode is used in this example and has the capability
to search a 256-byte string, if needed. Register B alternates between a pointer
into the 6-byte test string and a pointer into the longer table string.

Design Aids - Sample Routines

9.11.11 16-Bit Address Stack Operations

This routine performs 16-bit stack operations using the 1 -byte TRAP instruc­
tion for pushing and popping. It uses macros to make code more readable.
All values pass through Register A.

Function Register
A
R2
R3

Passing register for routines
Indirect pointer MSB
l'ndirect pointer LSB

* Define Macro PUSH16 as a trap instruction
*
PUSH16 $MACRO

TRAP 6
$END

*
* Define Trap 7 to be the POP16 operation
*
POP16 $MACRO

TRAP 7
$END

*
TRAP6 INC

ADC
STA
RETS

*
TRAP? LDA

DECD
RETS

*
*

R3
%0,R2
*R3

*R3
R3

PUSH16
Increment the indirect pointer
Push Register A

POP16 Pop into Register A
decrement the indirect pointer

AORG >FFFO Set up Trap and Interrupt
* vectors

*
*
*

*

*

*

DATA TRAP7,TRAP6,INT5,INT4,INT3,INT2,INT1,RESET
END

Examples of

MOVD

MOV
PUSH16

POP16
MOV

use

%>1234,R3Initialize the 16-bit stack
pointer

%DATA,A Load Register A
Use the macro to push A onto
the stack
Return a value from the stack.

A,TEMP Move the value to a temporary
register

9-49

Design Aids - Sample Routines

9.11.12 16-by-16 (32-Bit} Multiplication

*
*
*
*
*
*
*
*
*
*
*
*
XH
XL
YH
YL
RSLT3
RSLT2
RSLTl
RSLTO
*
MPY32

9-50

This example multiplies the 16-bit value in register pair R2,R3 by the value in
register pair R4,R5. The results are stored in R6, R7, RS, R9, and Registers A
and B are altered.

16-BIT MPY: XH
YH

XL
YL

X VALUE
Y VALUE

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

CLR
CLR
MPY
MOV
MOV
MPY
ADD
ADC
MPY
ADD
ADC
ADC
MPY
ADD
ADC

+

x

XHYLm
XLYHm

XHYHm XHYHl

XLYLm XLYLl
XHYLl
XLYHl

1 = LSB
m = MSB

RSLT3 RSLT2 RSLTl RSLTO

R2
R3
R4
RS
R6
R7
RB
R9

RSLT2
RSLT3
XL,YL
B,RSLTO
A,RSLTl
XH,YL
Rl,RSLTl
RO,RSLT2
XL,YH
Rl,RSLTl
RO,RSLT2
%0,RSLT3
XH,YH
Rl,RSLT2
RO,RSLT3

Higher
Lower
Higher
Lower
Msb of

operand of X
operand of X
operand of Y
operand of Y
the final result

LSB of the final result

Clear the present value

Multiply LSBs
Store LSB in result register 0
Store MSB in result register 1
Get XHYL
Add to existing result XLYL
Add carry if present
Multiply to get XLYH
Add to existing result XLYL+XHYL
Add to existing results and carry
Add if carry present
Multiply MSBs
Add once again to the result reg
Do the final add to the result reg

Design Aids - Sample Routines

9:11.13 Binary Division, Example 1

This program divides a 16-bit dividend by an 8-bit divisor giving a 8-bit quo­
tient and an 8-bit remainder. All numbers are unsigned positive numbers. The
dividend's MSB must be less than the divisor to ensure an 8-bit quotient.

Dividend: 0-7FFF
Divisor: 1-255
Quotient: 0-255

Register
A
B

R2

Before
DIVIDEND MSB
DIVIDEND LSB
DIVISOR

R3 xx xx
AORG >F006

*
BINDVD MOV
DVDLP RLC

RLC
JNC
SUB
SETC
JMP

SKIPl CMP
JNC

SUBIT SUB
*
*
*
DIVEND DJNZ

RLC

%8,R3
B
A
SKIPl
R2,A

DI VEND
R2,A
DI VEND
R2,A

R3,DVDLP
B

After
REMAINDER
QUOTIENT
DIVISOR
ZERO

Set loop counter to 8
Multiply dividend by 2

* These * steps are not needed
* if the dividend is limited
* to 15 bits
*
Is MSB of dividend > divisor

If so dividend=dividend
- divisor
C=l gets folded into next
rotate
Next bit, is the divide done.
Finish the last rotate

9-51

Design Aids - Sample Routines

9.11.14 Binary Division, ExamplE> 2

9-52

This program divides a 16-bit dividend by an 8-bit divisor, producing a 16-bit
quotient and an 8-bit remairn·:er. All numbers are unsigned positive numbers.
The dividend's MSB can be larger than divisor.

Dividend: 0-FFFF
Divisor: 0-255
Quotient: 0-255

1e re am--
Register

A
Before

B
R2
R3
R4

*

xx xx
DIVISOR
DIVIDEND MSB
DIVIDEND LSB
xx xx

AORG >F006

BINDVD MOV
CLR.

%16 ,R4.
A

DVDLP RLC
RLC
RLC
JNC
SUB
SETC
JMP

SKIPl CMP

*
*
*

JNC
SUB

DIVEND DJNZ
RLC

R3
R2
A
SKIPl
B,A

DI VEND
B,A
DI VEND
B,A

R4,DVDLP
R3

After
REMAINDER
DIVISOR
QUOTIENT MSB
QUOTIENT LSB
ZERO

Set loop counter to 16 (8+8)
Initialize result register
Multiply dividend by 2

* These * steps are not needed
* if the dividend is limited
* to 15 bits
*
Is MSB of dividend > divisor

If so dividend=dividend
- divisor
C=l gets folded into next
rotate
Next bit, is the divide done?
Finish the last rotate

Design Aids - Sample Routines

9.11.15 Binary Division, Example 3

This program divides a 16-bit dividend by an 16-bit divisor, producing a
16-bit quotient and a 16-bit remainder. All numbers are unsigned positive
numbers. The dividend's MSB can be larger than divisor.

Dividend: 0-FFFF
Divisor: 0-FFFF
Quotient: 0-FFFF

16 r16
1erm--

Register
A
B

R2
R3
R4
R5
R6

*

Before
xxxx
xx xx
DIVIDEND MSB
DIVIDEND LSB
DIVISOR MSB
DIVISOR LSB
xx xx

AORG >F006

After
REMAINDER MSB
REMAINDER LSB
QUOTIENT MSB
QUOTIENT LSB
DIVISOR MSB
DIVISOR LSB
ZERO

BINDVD MOV %24,R6

A

Set loop counter to 24
(16 + 8) *

CLR
CLR

DIVLOP RLC
RLC
RLC
RLC
JNC
SUB
SBB

* SETC
*

B
R3
R2
B
A
SKIPl
RS,B
R4,A

Initialize result register

Multiply dividend by 2

Check for possible error
condition that results
when a 1 is shif ed past
the most significant bit
Correct by subtracting out
the divisor

JMP DIVEND
* SKIPl CMP R4,A
*

Is MSB+LSB of dividend >
divisor

*

JNC DIVEND
JNE MSBNE Are MSBs equal?
CMP R5,R3 If so, compare LSBs
JNC DIVEND

MSBNE SUB
*

RS,B If borrow, dividend=divi­
dend - divisor

*
*
*

SBB

DIVEND DJNZ
RLC
RLC

R4iA C=l get folded into next
rotate
Next bit, is the divide
done?

R6,DIVLOP
R3 Finish the last rotate
R2

9-53

Design Aids - Sample Routines

9.11.16 Keyboard Scan

This routine reads a 16-key keyboard, returns the hex digit of the key, and
· debounces the key to avoid noise. A 'valid key' flag is set when a new key is
found.

t<EVBOARD:
PORTC

co
INPUT C1

9
C2 ca

TM870XO

C4 0 1 2 3
OUTPUT CS 4 6 8 7

C8 89AB
C7 CDEF

Register Before After After
No Key New Key Function

*
CDDR
PORTC
*

AORG

EQU
EQU

GETKEY MOV
CLR
MOVP

*
LOOP RLC

*

JC
ADD

MOVP
MOVP
MOVP
AND
JZ

KEYLSB DEC
RRC
JNC

*
NEWKEY CMP

JEQ
MOV

*
MOV

9-54

A xx xx 0 COLUMN Temporary
B xx xx 0 ROW Temporary

R2 xx xx 16 KEY# Temp store for Key
value

R3 OLD KEY >FF KEY# Holds Key pressed now
R4 DEBOUNCE 0 0 Debounce counter, old

R5 GENERAL
BITS

>F006

pg
PS

%8,B
R2
%>FO,CDDR

B
NO KEY
%4,R2

B,PORTC
PORTC,A
%0,PORTC
%>F,A
LOOP
R2
A
KEYL SB

R2,R3
DEBONS
R2,R3

%16,R4

key or new
?xxxxxxxO ?xxxxxxx1 One bit of register is 1

if new key

Initialize row pointer

Set Data direction register 4 output,
4 input
Select next row
Last row ? if so no key was found
Add number of keys/row to key
accumulator
Activate row
Read columns
Clear row
Isolate column data
If no keys found then check next row
Decrement column off set
Find column
If not column then, try again

Is the new key the same as the old key
If it is then debounce it
Brand new key, Move it to current key
value
Set up debounce count

Design Aids - Sample Routines

DE!BONS CMP
JL
DJNZ

*
*
GOODKY JZ
*

DEC
*

OR
NOTNEW RETS
*
NOKEY MOV
*

RETS

%2,R4
GOOD KY
R4,GETKEY

NOTNEW

R4

%1,RS

%>FF,R3

Is the debounce count 1 or 0 ?

If greater than 1 then debounce is
not finished, go read key again

If debounce count =O then key was here
last time

If it was one this is a new valid key,
make old key
Set new key flag in BIT register, the
calling routine uses this flag

No key was found, set key value to
unique value

9.11.17 8-Bit Analog-to-Digital Converter

ATOD

*
LOOP

*
A SMALL
* AB I GER

*
*
FINISH

This routine converts an analog signal to a digital value using a digital-to­
analog converter and a comparator.

AOt--~~-co_M_P_~~~-O_R<
ANALOG
INPUT

TM870x0

IF ANALOG 18 LARGER
COMPARATOR = 1

PORT C ·:·:·:·:·:·:·:·:·:·:-:·:·:·:·:·:·:·:·:·:·:"·:·:·:·:· 8-BIT 0-A

Register Before
A xx xx
B xx xx

MOV %>80,B
CLR A
MOVP %>FF,P9

OR B,A
MOVP A,P8
BTJOP %1,P4,ABIGER

XOR B,A

RRC B
JNC LOOP

RETS

After
ANALOG

VALUE
ZERO

Function
Final digital value

Trial and error test value

Starting value for binary search
Initialize value
Port C is all outputs

Set the next bit in Test value
Send it to the D-A converter
Is this value Less than the analog
value?
If Analog value is smaller, decrease
test vc;i.lue
If Bigger go to next bit in test value
If not at the end, then go test the
next bit

9-55

Design Aids - Sample Routines

9.11.18 Motor Speed Controller

PULSEl
SPEED
STEP
SPEEDl
SPEED2
BITS
INCRl
INCR2

9-56

This routine keeps the speed of a motor constant. A pulse proportional to the
speed of the motor comes from a sensor next to a slotted disk on the motor.
The motor is controlled by a variable voltage generated by a D-A converter.
Some mechanical considerations are necessary for an actual system.

™87040

SLOTTED
DISK

MOTOR

PORTC·m~ 8-BIT
0-TO-A

Register Before After Function
A DATA NO CHANGE Temporary register
PULSE1 PULSE MSB 0 Holds MSB of pulse length va-

lue
SPEED SPEED NEW SPEED Holds current Voltage value for

D-A
STEP STEP SIZE NEW SIZE How much the voltage is

changed per cycle
SPEED1 SPEED MSB NO CHANGE The desired time between the

slots as measured by the
SPEED2 SPEED LSB NO CHANGE timer (1 =MSB, 2=LSB)

AORG
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

>F006
R4 MSB of 16-bit pulse length counter

Current voltage output to motor
Change output voltage by this amount
MSB of 16-bit speed reference

RS
R6
R7
R8
R9
2
4

LSB of 16-bit speed reference
General purpose register for bits
Step size for coarse adjustment
Step size for fine adjustment

Design Aids - Sample Routines

MCNTL

*

*

MOVP
MOVP

MOVP
EINT

%>FF,P2
%>80+32,P3

%>3E,PO

Initialize the timer value
Initialize the prescaler and start
timer
Clear interrupts, enable I2, I3
The interrupts are now enabled

* Main program body here
*
INT2
*
*
*
*

BTJZP

BTJOP

JMP

OK INC
*

JNC
*
ERRORl OR
* NOERR
*
INT3

*
*
*
TES TSP
GOFAST
OUTPUT

SAME

*

RETI

MOVP
PUSH
MOV

CMP

JEQ
JL
ADD
MOV
MOVP
POP
CLR
RETI

GOSLOW SUB
JMP

*
TESTLS MOVP
*
*
*

*

INV

CMP

JEQ
MOV

JMP

%>20,PO,OK Interrupt 2 routine, check for pending
INT 3

%>80,P3,0K Check Capture Latch value for recent
change

INT3 If P3 is pending and CL just under­
flowed then INT3 came first,
go directly to INT3

PULSEl Increment the MSB counter for the
pulse length

NOERR If overflow there was an error
(Motor too slow)

%01,BITS Set an error bit for the main
routine to find

%>80+32,P3 Restart the timer at beginning
A Save register
%INCR1,STEP Coarse adjustment step size for

voltage change
SPEEDl,PULSEl

Compare desired speed to measured
speed (MSB)

TESTLS If the same then compare LSBs
GO SLOW
STEP,SPEED
SPEED,A
A,P8

Does motor need to go faster or slower
If faster, increase voltage to motor
Move new voltage value to D-A

A Restore register
PULSEl Clear MSB of pulse length

STEP,SPEED Decrease the motor voltage
OUTPUT Output voltage value

P3,A

A

SPEED2,A

SAME
%INCR2,STEP

TEST SP

Get LSB of pulse length from capture
latch
Since it counts from FF to 00, invert
value
Compare desired speed to measured
speed (LSB)
If the same do nothing
Fine adjustment step size for voltage
change
Set new speed according to LSB values

9-57

Design Aids

9-58

10. Development Support

Texas Instruments provides extensive development support for the TMS7000
family. TMS7000 software support is referred to as CrossWare, and includes
a macro assembler and a link editor. Appendix G contains instructions for in­
stalling the TMS7000 CrossWare.

The TMS7000 Assembler translates TMS7000 assembly language in­
structions and directives into object code. Sections 5 and 6 discuss the
assembler and the TMS7000 assembly language instructions.

When several components of a source program are assembled individ­
ually, the TMS7000 Link Editor links together the object code produced
by these program modules to form one complete executable program.
Section 7 discusses the link editor.

TMS7000 in-circuit development tools include:

The XDS (Extended Development System) emulator, which provides
realtime in-circuit emulation of the TMS7000 devices in all modes.

The TMS7000 Evaluation Module (EVM), a single-board development
system that emulates the TMS7000 devices in Single-Chip mode.

Several prototyping units, including the TMS7742, SE70P162,
SE70CP160, SE70CP162, and TMS77Cs200.

These tools allow a designer to evaluate the TMS7000's performance, bench­
mark time-critical code, and determine the feasibility of using a TMS7000 in
a specific application. The TMS7000 CrossWare translates programs into
modules that can be executed on the XDS emulator or EVM. This section
discusses key features of the hardware development tools; extensive XDS and
EVM documentation is available (the preface contains literature numbers).

Section Page
12.1 The XDS Emulator ... 10-2
12.2 Evaluation Modules ... 10-8
1 2.3 Prototyping Support ... 10-11

4 Advance Information

10-1

Development Support - The XDS Emulator

10.1 The XDS Emulator

The TMS7000 XDS/225 (Extended Development Support) emulator is a self­
contained system that provides full-speed in-circuit emulation. Key features
include:

Host-independent development system

Supports the TMS70x0, TMS70Cx0, TMS70x2, and TMS70Cx2 devices
in Single-Chip and Expansion modes

Realtime hardware breakpoint/trace/time capabilities

Execution of programs from target memory

Three EIA ports allow communication with peripherals

Several possible system configurations, including standalone, host­
computer, and multiprocessor configurations

The host-independent configuration shown in Figure 10-1, combined with a
complete set of development and debugging tools, allows you to select the
TMS7000 processor best suited to your application. Since the same set of
tools emulates each processor, you only need to learn the basic development
format once.

XDS cross-assemblers and host interfaces are available for the following sys­
tems:

IBM PC, Tl PC running MS/PC-DOS
DEC VAX 11 running VMS
IBM 370, 3033, 43xx running MVS or CMS
Tl DX10

XDS hardware includes a chassis, power supply, and a three-board set con­
sisting of an emulator, communications board, and a breakpoint/trace/time
board.

5 XDS is a registered trademark for Texas Instruments Incorporated. All rights are reserved.

10-2

Development Support - The XDS Emulator

PC, OR TERMINAL WITH OTHER HOST:
-VAX
- IBM
-TV990

XDS

OPTIONAL PERIPHERALS

TARGET

Figure 10-1. Typical XDS Configuration

10-3

Development Support - The XDS Emulator

10.1.1 Software Development

A

B

c
DR

I

MR

N

PC

Pnn

ROM

SP

ST

CRUN

GHALT

GRUN

RTR

RUN

SRR

SS

STOP

THALT

TRUN

BTT

DBTT

DTIME

IBTT

XTIME

Software written and developed on a host computer can be downloaded to
the XDS/22 emulator memory space via a standard RS-232 EIA link. The XDS
monitor is located in the firmware onboard the emulator. A powerful set of
commands provide complete control of the emulator functions and the target
system, enhancing development and testing of target hardware and software.
The XDS monitor commands include an assembler that permits almost any
system to be used as an intelligent terminal and prepare the source text for
assembly by the XDS emulator. Table 10-1 lists the TMS7000 XDS/22 com­
mands.

Table 10-1. TMS7000 XDS/22 Commands

REGISTER COMMANDS TRACE COMMANDS
Display or set Register 0 DT Display trace

Display or set Register 1 FT Find trace sample

Display or set carry bit IT Inspect trace

Display registers SO Rt Set opcode range

Display or set STINT bit TRt Set trace qualifiers

Modify registers TRIXt Trace on extended IAQ

Display or set negative bit TRMt Trace memory select

Display or set Program Counter UPLOAD/DOWNLOAD COMMANDS
Display or set register nn DL Download to emulator

Display or set ROM pointer IHC Initialize host control chars

Display or set Stack Pointer IPORT Initialize EIA ports

Display or set status bit UL Upload to host

RUN COMMANDS STATUS COMMANDS
Continue run OHS Display halt status

Group halt (MP mode) DPS Display processor status

Group run DTS Display trace status

Reset target and run ID Display foreground EMU banner

Start program execution INIT Initialize emulator

Software reset and run IPC Initialize peripheral control

Single-step execution RESTART Restart emulator

Stop execution (ARM mode) /n Display status of emulator n

Total halt (MP mode) #n Select emulator from chain

Total run (MP mode)

BTT COMMANDS INTERNAL COMMANDS
Set B/T /T conditions $CLK Set clock divider

Display 8/T /T parameters $INT Modify interrupt

Display time $UART Modify UART type

Initialize B/T/T

Analyze timing

t These commands are only valid when the B/T /T board is installed.

10-4

Development Support - The XDS Emulator

Table 10-1. TMS7000 XDS/22 Commands (Concluded)

BREAKPOINT COMMANDS MEMORY COMMANDS
BPt Set hardware breakpoint conditions BLK Remap memory block

BP Mt Set BP cond. on memory access OM Display program memory

CASB Clear all software breakpoints EXP Remap expansion memory

CSB Clear a software breakpoint FILL Fill memory with data

DSB Display all software breakpoints FIND Find data in memory

SIB Set internal breakpoint IM Display or set memory

SSB Set a software breakpoint MM Modify program memory

MISCELLANEOUS COMMANDS MODE COMMANDS
COPY Copy memory ARM Initialize alternate run mode

DV Display value BGND Initialize background mode

HELP Display command menu DIAG Initialize diagnostic mode

ICC Initialize cursor control DISARM Disable alternate run mode

LOAD Load command defaults from memory HOST Initialize host mode

LOG Turn logging device on or off IMO Initialize MP mode

MESG Send message (diag. mode) IMP Initialize MP mode

RCC Reset cursor controls QDIAG Quit diagnostic mode

SAVE Save command defaults into memory

SNAP Set up snapshot display

XA Execute assembler

XRA Execute reverse assembler

t These commands are only valid when the B/T /T board is installed.

The XDS timing capabilities allow you to store trace samples that contain
realtime timing stamps. Trace samples, like breakpoints, may be selectively
chosen on desired memory and 1/0 cycles, allowing such software measure­
ments as:

Program/memory activity
Module execution duration
Intermodule execution duration
Module usage

Using the hardware and software breakpoint commands and the trace func­
tion, a complete record of events can be examined. You can select a range of
memory addresses and 1/0 addresses to set valid breakpoints. The
breakpoint/trace/time (B/T /T) board allows you to set breakpoints on any
memory cycle - memory read, memory write, or instruction acquisition. For
1/0 operations, the B/T /T board can breakpoint on any 1/0 read or 1/0 write,
if the 1/0 address qualifications are met. A 204 7-sample trace buffer provides
a history of execution before or after the breakpoint. Trace samples are stored
in the trace memory and can be read back after execution has been halted.
Memory and 1/0 cycles can also be traced.

10-5

Development Support - The XDS Emulator

This cycle of using the host computer and the XDS/22 for testing provides a
quick, efficient method for target system development. After debugging is
complete, EPROMs can be programmed using the host computer's PROM
programming capabilities.

10.1.2 XDS Memory Map

The XDS memory map for the TMS7000 family is extremely flexible. The
emulator contains 64K bytes of RAM to support the entire address space of
the TMS7000 devices. This 64K-byte memory space can be used to emulate
on-chip ROM and external memory in the target application. Memory is allo­
cated in 256-byte blocks, X blocks as on-chip ROM and Y blocks as off-chip
memory, where 256(X+Y) -+ 64K bytes. Memory can be arranged in any
practical configuration desired, allowing system-level debug rather than just
software or hardware debug.

10.1.3 Communication Capabilities

The XDS unit can communicate with a host computer, terminal, PROM pro­
grammer, or printer through four EIA RS-232-C links. Communication func­
tionsinclude:

Downloading of data files from an external devices (external host,
PROM programmer, or terminal) to emulator memory.

Downloading of data to a PROM programmer or logging device.

Terminal-to-host communication via passthrough mode.

Transmission of data from emulator memory to a PROM programmer or
logging device.

Uploading of data files from the emulator to an external device (external
host, PROM programmer, or terminal).

10.1.4 System Configurations

10-6

The TMS7000 XDS/22 can operate in one of four modes:

Standalone mode is the minimum configuration, requiring only the
XDS and your terminal.

The XDS is best suited for use with a host computer and terminal in
Host-Computer mode. This allows you to write programs using a
familiar editor and then download them to the XDS. When debugging
is complete, you can upload the code and store it on the host system.

PC-Based mode is a variation of the host-computer mode - the host
system is a single-user system such as a PC. The XDS supports host
uploads/downloads over a single port, allowing a PC to function as both
a terminal and a host. This configuration requires a terminal-emulation
software package such Crosstalk XVI by Microstuf.

An increasing number of designs use multiple microprocessor systems.
In Multiprocessor mode, the XDS supports debugging of up to nine
XDS stations linked together in a daisy-chained fashion. The XDS sys­
tem is connected to the host computer via the RS-232 port of the last

Development Support - The XDS Emulator

XDS workstation. A single CRT interface can control all of the work­
stations. Each workstation may be used individually or the workstations
can be grouped or subgrouped to synchronize control over the entire
target system.

10.1.5 Breakpoint, Trace, and Timing Functions

The breakpoint/trace/time (B/T /T) board allows you to set a hardware inter­
rupt or breakpoint that halts emulator execution. Breakpoints can be set on
1/0 and/or memory operations with three simple monitor commands. You can
select a range of memory addresses and 1/0 addresses for valid breakpoints,
or select two separate memory addresses or two separate 1/0 addresses. The
B/T /T board can breakpoint on any memory cycle - read, write, or instruction
acquisition. For 1/0 operations, the B/T /T board can breakpoint on any 1/0
read or write if the 1/0 address qualifications are met.

The trace function provides a history of execution prior to the breakpoint. It
is used to analyze a set of signals based on addresses and commands. Trace
samples are stored in trace memory and can be read back after execution has
been halted. Both memory and 1/0 cycles can be traced, including memory
read, memory write, and instruction acquisitions or all memory cycles, and 1/0
read, 1/0 write, or any 1/0 cycle.

The trace memory can hold 2047 words by 48 bits of trace samples. You are
given the option of how many of these 2047 samples to take, or to keep
wrapping around in trace memory, writing over the oldest trace sample with
the newest trace sample.

The B/T /T board also contains a cable which allows easy interfacing to logic
analyzers. This interface provides may useful system signals not available
through a target connector.

10.1.6 Physical Specifications

The XDS/22 emulator is a table-top sized unit, suitable for most work sur­
faces. The XDS/22 has an air inlet on each side of the unit and an air exhaust
port on the rear of the unit. A minimum of five inches clearance must be
maintained between the XDS and neighboring equipment on the sides and
rear for proper air flow. Listed below are the dimension and clearance re­
quirements.

DIMENSIONS

Width = 17.0 Inches (43.2 CM)
Depth = 16.5 Inches (41.9 CM)

Height = 7.4 Inches (18.8 CM)
Target Cable = 18.0 Inches (46.0 CM)

CLEARANCE REQUIREMENTS

Sides: 5 Inches Minimum (15.2 CM)
Back: 5 Inches Minimum (15.2 CM)
Top : None Required

Front : None Required

10-7

Development Support - Evaluation Modules

10.2 Evaluation Modules

The TMS7000 Evaluation Module (EVM) provides hands-on hardware eval­
uation of TMS7000 devices. This single-board unit can function as limited
feature, standalone development system. Key features include:

Realtime in-circuit emulation
Text editor
Assembler
Debug monitor
Onboard EPROM programming utility
Upload/download capabilities
Single-step execution capabilities
Audio-cassette interface

The RTC/EVM7000 emulates the TMS7000 Single-Chip mode; TMS7000
expansion modes are not supported. There are two versions of the evaluation
module for the TMS7000 family:

1) RTC/EVM7000N-1 for NMOS devices
2) RTC/EVM7000C-1 for CMOS devices

The EVM is equipped with eight SK-byte sockets for the entire 64K-byte ad­
dress space of the TMS7000. 16K bytes of the EPROM are devoted to the
resident firmware. User RAM can be expanded in SK-byte increments, from
16K bytes to 32K bytes. During assembly and debug operations, the EVM
RAM can be configured to emulate all TMS7000 family members; for the em­
ulation of the 2K-ROM and 4K-ROM versions, it allows assembly of text files
directly from RAM. A wire-wrapped development area, with all required sig­
nals provided and labeled, is available for additional logic.

The EVM crystal frequency can be modified to fit the needs of the target sys­
tem.

10.2.1 System Configurations

10-8

Several system configurations are possible:

Standalone Mode - is the minimum configuration. The onboard text
editor is used for creating TMS7000 assembly language text files. The
audio cassette tape interface, which has limited directory and file search
capability, is used for mass storage.

Host-Computer Mode - provides a more productive environment.
The host is used to develop and save the text files. The files may then
be assembled using the TMS7000 CrossWare, or they can be down­
loaded to the EVM for assembly by the onboard assembler. The EVM
has two EIA RS-232 ports to support this and other possible config­
urations.

PC-Based mode is a variation of the host-computer mode which al­
lows you to use a PC as both a terminal and a host. This requires a ter­
minal-emulation package such as Microstuf's Crosstalk XVI.

Development Support - Evaluation Modules

10.2.2 Communications

The EVM firmware supports three ports for loading and dumping data (text,
object code) for storage and/or display .. Port 1 and Port 2 conform to EIA
RS-232-C standards and support baud rates ranging from 110 to 9600 BPI.
Port 3 is the audio tape interface.

10.2.3 Software Development

The EVM firmware resides in 16K bytes of EPROM and is divided into three
functional areas:

Debug monitor and EPROM programmer
Assembler
Text editor

The text editor is line oriented and provides basic character editing capabilities.
Files can also be created using a host computer and downloaded to the EVM.
CrossWare or the resident EVM assembler can be used to produce object code.
Table 10-2 lists the TMS7000 EVM debug monitor commands.

Table 10-2. TMS7000 EVM Commands

MODIFY/DISPLAY REGISTER COMMANDS GENERAL UTILITIES

CP Clear processor status AR Signed hexadecimal arithmetic

DP Display processor status CL Display /modify cursor-left

MA Display/modify Register A cu Display/modify cursor-up

MB Display/modify Register B DC Display hex-byte conversion

MM Display/modify memory DV Display/modify device type

MP Display/modify Peripheral File HC Hex- Decimal word conversion

MR Display/modify Register File. HE Help

HS Display/modify software handshake MS/PC/ Display/modify PC, ST, and SP
SR/SP

MEMORY LOAD/DUMP COMMANDS
GENERAL MEMORY/REGISTER
MANIPULATION COMMANDS

D<' ,, Display/save machine state OM Display memory

LM Load memory, 7000 format FB Find byte in memory

LS Load machine state FM Fill memory

LT Load memory, Tektronix format FR Fill Register File

SM Save memory, 7000 format 10 Display 1/0 status

St Save memory, Tektronix format MV Move memory

EIA SUPPORT COMMAND NP Fill Memory with NOPs

BH Display/modify baud rate AUDIO TAPE COMMANDS

TEXT EDITOR SUPPORT COMMAND DR Audio tape directory

XE Execute text editor MO Enable cassette motor

10-9

Development Support - Evaluation Modules

Table 10-2. TMS7000 EVM Commands (Concluded)

ASSEMBLER SUPPORT COMMANDS EPROM PROGRAMMER COMMANDS
AT Display assembler label table CE Compare EPROM

XA Execute assembler PE Program EPROM

XL Execute line-by-line assembler RE Read EPROM

XP Execute patch assembler VE Verify EPROM

PROGRAM SUPPORT COMMANDS
BT Set breakpoints on trap LA Show address of line

81 Set breakpoint 1 LL List line(s) from editor

B2 Set breakpoint 2 LN Show line at address

CB Clear breakpoints L1 Set breakpoint 1 by line number

CT Clear breakpoint on trap L2 Set breakpoint 2 by line number

C1 Clear breakpoint 1 RT Reset target processor

C2 Clear breakpoint 2 RU Execute program without breakpoints

DB Display breakpoints SS Single-step program

DT Display breakpoint on trap TC Configure single-step trace

EF Execute program with fixed display TR Display line trace

ET Execute program with bpts/trace TS Single-step program with trace

EX Execute program with breakpoints TO Load Program Counter with

FS Single-step with fixed display
Trap 0 vector

10.2.4 EPROM Programming ·Utility

10-10

The EVM is equipped to program TMS2764, TMS27C64, TMS27128, and
TMS27C128 EPROMs and the TMS7742 EPROM microcomputer. The ability
to program EPROMs greatly reduces evaluation and development time. These
devices use a 28-pin programming socket.

Development Support - Prototyping Support

10.3 Prototyping Support
The SE70P162, SE70CP160, SE70CP162, TMS7742, and the TMS77C826
are protyping components that Texas instruments offers to support form-fac­
tor emulation of a TMS7000 target processor. The SE devices are also referred
to as piggybacks.

10.3.1 TMS7742 Description

The TMS7742 is an on-chip EPROM version of the 8-bit TMS7042 micro­
computer. The TMS7742 can be used to emulate the TMS7020, TMS7040,
and the TMS7042 microcomputers.

10,.3.1.1 TMS7020 and TMS7040 Emulation

The TMS7742 can emulate the TMS7020/40 in all operating modes. If op­
erated in a memory-expansion mode, the enhanced timing interface signals
of the TMS7742 will seem transparent to any memory-expansion interface
logic required for the TMS7020/40. The only feature of the TMS7020/40 that
the TMS7742 cannot directly emulate is the edge- and level-sensitive inter­
rupts. If level-sensitive interrupts are desired, external circuitry is required to
allow the TMS7742 to sense level interrupts. If level-sensitive interrupts are
not desired, the TMS7742 can emulate the TMS7020/40 with no alterations
to the system hardware or software.

10 .. 3.1.2 TMS7042 Emulation

The TMS7742 can directly emulate the TMS7042 up to 5 MHz without any
hardware or software modifications. Above 5 MHz (5 MHz to 8 MHz), the
SE70P162 provides direct emulation.

10.3.2 SE70P162 Description

The SE70P162 is the piggyback-EPROM prototyping device for the TMS7000
NMOS family of microcomputers. The SE70P162 can be used to emulate the
TMS7020, TMS7040, and the TMS7042 microcomputers, with the same lim­
itations as the TMS7742. However, the SE70P162 can operate at a maximum
frequency of 8 MHz, enabling it to emulate the TMS7042 over the full oper­
ating range of the device.

10.3.3 SE70CP160 Description

The SE70CP160 is a CMOS piggyback-EPROM prototyping device. It emu­
lates the TMS70C20 and TMS70C40 microcomputers.

10.3.4 SE70CP162 Description

The SE70CP162 is a CMOS piggyback-EPROM prototyping device. It emu­
lates the TMS70C42.

10.3.5 TMS77C82 (Advance Information)

The TMS77C826 is an SK on-chip EPROM version of the 8-bit TMS70C42
microcomputer. The TMS77C82 supports prototyping for the TMS70C42.

s Advance Information

10-11

Development Support

10-12

11. Independent Support

The TMS7000 family of single-chip microcomputers is supported by product
offerings from a number of independent vendors. These support products take
many forms, including cross-assemblers that run on small systems, second
sources for the TMS7000 components, and PROM programming manufac­
turers that support TMS7000 EPROM programming.

This section discusses a number of tools that enhance the support provided
by Texas Instruments. This does not constitute product endorsement by Texas
Instruments; it is merely an attempt to aid product awareness. The products
listed here are representative of independent vendor supplied products. This
information is not intended to be an all-inclusive list.

Section Page
11.1 Allen Ashley - CP/M-Based Support Tools 11-2
11 .2 Cybernetic Micro Systems - IBM- PC Crossware and

TMS7000 Simulator .. 11 -4
11.3 Software Development Systems, Inc. - UNIX™ Based

Cross-Development Tools .. 11 -5
11.4 SEEQ - Self-Adaptive EEROM .. 11 -6
11.5 Microcomputer Control - Multi-tasking Operating System 11 -7
11.6 Hewlett-Packard - HP64000 Microcomputer

Development System .. 11 -8
11.7 EPROM Microcomputer Support .. 11 -9

11 -1

Independent Support - Allen Ashley

11.1 Allen Ashley - CP/M-Based Support Tools

Allen Ashley supports cross-assemblers for the TMS7000 family which allow
any CP/M7 system to serve as a development station for single-chip micro­
computers and microprocessors.

The SYSTEM-TMS7 is a total software package, complete with documenta­
tion and utilities, for developing TMS7000 code on a CP/M-based small mi­
croprocessor system. The following computers are supported:

IBM PC
Morrow Micro Decision
TRS-80 (TRSDOS) Mod Ill
Osborne I
Kaypro II
North Star - CP/M
Micropolis Mod II
Xerox 820
Standard 8" CP/M format (SSSD)

With minor exceptions, the SYSTEM-TMS7 assembler features instruction
mnemonics and syntax as defined by Texas Instruments. The SYSTEM-TMS7
includes the ASMB interactive assembler/editor, the MAKRO macro assem­
bler, the EDIT text editor, a cross reference generator, and offloading facilities.

The ASM B editor/assembler is intended for the creation, modification and test
of program modules. ASMB includes a simple assembler, a line editor, and the
facilities for saving and retrieving files from disk. Source code for ASMB is
maintained in memory to eliminate the requirement for a separate edit cycle.
The source language is assembled into object code directly into RAM for im­
mediate testing. Program errors can be caught, repaired and re-assembled in
seconds with ASMB. Validated program modules developed with ASMB can
be saved on disk for input to the more powerful MAKRO disk assembler.

The MAKRO assembler includes full macro and conditional assembly features,
as well as the ability to link a series of source files together during a single
assembly. MAKRO reads the source code from disk and writes object code
back to disk; all available memory is free for symbol tables and macro expan­
sion. MAKRO is the vehicle by which the modules developed under ASMB
can be collected together into a single program. MAKRO treats the disk as
an extension of memory, and source files exceeding available memory size can
be assembled.

7 CP/M is a registered trademark for Digital Research, Incorporated. All rights are reserved.

11-2

Independent Support - Allen Ashley

EDIT is a full-spectrum, string-oriented text editor which includes all the fea­
tures required to create or modify source programs for the MAKRO assembler.
Source programs on an input disk file are paged into a dynamic memory buf­
fer, modified and written out to the output disk file. Commands include block
move or delete, string search or change, and disk file merge. A single com­
mand reformats the line-oriented source file created under ASMB to the free­
form source input of MAKRO.

Programs created with the development systems must be offloaded to the
target processor. Facilities are provided to implement the offload as a direct
transfer from memory, via a byte stream over a CPU port, or via COM or HEX
files. An off loader for HEX files is provided. Direct support for off loading to
the XDS line of Tl support tools is included.

For more information, contact:

Allen Ashley, Inc.
395 Sierra Madre Villa
Pasadena, Ca. 91107

(818) 793-5748

11-3

Independent Support - Cybernetic Micro Systems

11.2 Cybernetic Micro Systems - IBM-PC Crossware and
TMS7000 Simulator

11-4

IBM-PC Crossware

Cybernetic Micro Systems' combination cross-assembler and EPROM
programming board enables designers to develop assembly language
programs for the Tl TMS7000 family on an IBM PC. The CYS-7000
cross·-assembler supports all of the TMS7000 family assembly language
mnemonics, but eliminates support for macroroutines and relocatable
object code.

The software assembles instructions at a rate of 450 lines per minute.
For EPROM programming needs, Cybernetic Micro Systems' CYP-27XX
EPROM programming board can be connected to the PC's serial port
and is able to program most 16- to 256-kbit EPROMs and 16-kbit
EEPROMs.

The entire development package consists of one diskette and program­
ming board. The software runs on an IBM PC under PC-DOS 2.0.
Source programs can be generated by any standard PC editor. Versions
of this cross-assembler are also available from Cybernetic Micro Systems
for the Tl Professional Computer.

TMS7000 Simulator

The Cybernetic Micro Systems Sim7000 Simulator executes code for the
TMS7000 family microcomputer on the IBM-PC type personal com­
puter. The simulator allows TMS7000 programs to be debugged before
execution on an emulator or piggyback chip. Sim7000 can simulate all
the hardware functions of the TMS7000 family, including the serial port
devices. The Sim7000 provides numerous features that assist the de­
signer in debugging TMS7000 code, including symbolic execution, traps
and breakpoints, access to memory spaces, and flow graph generation.
This package is designed to work with the Cybernetic CYS-7000 cross
assembler described above.

The Sim7000 offers a display which is separated into various windows
for easy viewing. These window provide the following information:

Code window Shows lines for the source code

Register window Display current state of the device

Memory window Displays a portion of differents memory spaces.

Stack window Lists the contents of the Stack

Flow window The control flow with various options is shown.

Help window Describes a command

Command window Shows the current command with prompting

For more information, contact:

Cybernetic Micro Systems
P.O. Box 3000
San Gregorio, CA 94074

(415) 726-3000

Independent Support - Software Development Systems, Inc.

11.3 Software Development Systems, Inc. - UNIX™ Based
Cross-Development Tools

Uniware™s is an independent software package that supports any
UNIX™-based host processor, with a cross-assembler available to support any
of the Tl TMS7000 devices as a target microprocessor. Uniware's software
support includes a macro preprocessor that performs macro, textual variable
substitutions and looping constructs on TMS7000 assembly language code.
A link editor assigns load addresses to object modules, conditionally links in
library modules and resolves symbolic references between modules. An ex­
tensive collection of utilities that include listing generators, object code format
translators, and down loaders are also available.

Host processors supported by Uniware include:

AT&T 3B
Apollo
DEC VAX (all)
Heurikon
Hewlett- Packard 9000
Masscomp
NCR Tower
Plexus
Suxi Microsystems
Sequent
Zilog System 8000
Gould Power Systems
Pyramid
IBM PC/AT under Xenix
IBM PC/AT and compatibles under DOS

For more information, contact:

Software Development Systems, Inc.
Uniware Cross-Development Tools
3110 Woodcreek Drive
Downers Grove, IL 60515

(312) 971 -8170

a UNIWARE is a trademark of Nuvatec, Inc. UNIX is a trademark of AT&T.

11-5

Independent Support - SEEQ

11.4 SEEQ - Self-Adaptive EEROM

The SEEQ9 72710 is a full-function single-chip microcomputer, fabricated in
N-channel silicon-gate technology, which contains a 1 K-by-8 5V nonvolatile
electrically-erasable (EEROM) program memory. The program memory can
be erased and programmed via the processor itself during normal program
execution or can be programmed under control as if it were a standard 5V
EEROM memory component. The EEROM can easily be expanded off-chip
using the processor's Full-Expansion mode. External EEROM can be pro­
grammed with the same instruction used to alter on-chip EEROM.

A security lock mechanism is implemented in EEROM memory which allows
your program to inhibit external access to its proprietary program code. Once
activated, this lock can be reset only by an external EEROM block-clear oper­
ation, which erases the entire program memory contents.

As with other SEEO EE ROM devices, the 72710 has DiTraces and Silicon
Signatures features to facilitate production testing tracking. Each device is
encoded with detailed processing and testing results which are stored in a
special EEROM memory as it passes through the manufacturing cycle. Also
stored is an unalterable identification code which contains information such
as mask revision and EEROM programming parameters.

An EEROM member of the TMS7000 family is desirable because a single-chip
microcomputer with non-volatile program memory that can be altered under
process control allows the design of low cost products with many new fea­
tures:

Self adaptive code for machines that learn as they perform their tasks.
In-circuit reprogrammability to eliminate product disassembly for firm­
ware updates.
Remote reprogrammability to eliminate service calls for firmware up­
dates.
Internally stored product history including factory test results, product
configuration, revision level, and service records.
Stored initialization parameters to eliminate front panel switches and
automatically configure product for one or many users.
Product usage and error logging to simplify maintenance and pinpoint
product failure modes.
Code and data security to protect proprietary programs and confidential
data.

For more information, contact:

SEEO Technology Incorporated
1849 Fortune Drive
San Jose, California 95131

(408) 942-1990

s SEEO, DiTrace, and Silicon Signature are registered trademarks for SEEO Technology
Incorporated. All rights are reserved.

11-6

Independent Support - Microcomputer Control

11.5 Microcomputer Control - Multi-tasking Operating System

Microcomputer Control provides operating system support for all TMS7000
devices.

MICRO/OS provides a standard integrated software environment for man­
aging tasks, time, and interrupts. Software design engineers are relieved of
many time-consuming and error-prone activities involved in developing a re­
liable and flexible realtime control system. Control functions such as keypad
scanning and display driving can be developed as independent tasks. Each
task can be assigned its own priority and execution schedule. Built-in inter­
rupt management allows tasks to be assigned to any interrupt source; pre­
emption and context switching to the assigned task are performed
automatically. No additional program code is required.

Task management is based on application-task priorities and the readiness
state of tasks. At any given moment, the highest priority "ready task" is given
full control of hardware resources. Hardware interrupts, time delays, and other
tasks can make a task ready.

Time management allows independent parallel time delays to be active for
each application task. Time delays are used to implement periodic functions
such as keypad scanning and display updates. All time delays are based upon
a user-specified System Time Unit. Built-in management of an on-chip timer
removes an additional hardware or software requirements.

Interrupt management, an error-prone area in any control system, is re­
duced to its basic essential, the assignment of a task to a specific hardware
interrupt. Built-in interrupt handling automatically reaides the assigned task,
and blocks lower priority interrupts until the task is completed.

For more information, contact:

Microcomputer Control
P.O. Box 275
Hopewell, New Jersey 08525

(609) 466-1751

11-7

Independent Support - Hewlett-Packard

11.6 Hewlett-Packard - HP64000 Microcomputer Development

11-8

System

The Hewlett-Packard HP64000 microcomputer development system is a real­
time user-definable system which can be configured to support the TMS7000
family of microcomputers.

This user-definable system consists of the following devices which can be
configured specifically for the TMS7000 family devices:

HP642745 - User-definable emulator

HP648515 - User-definable assembler/linker

H P64856AF - User-definable inverse assembler

HP64851 B - User-definable interface

For more information, call the nearest Hewlett-Packard sales office listed in
the telephone white pages. Ask for the Electronic Instrument department.
You may also write to:

Hewlett-Packard
P.O. Box 617
Colorado Springs, Colorado 80901

In Colorado, call 590-3340 (collect)
Nationwide, call 1 -800-44 7 -3282

Independent Support - EPROM Microcomputer Support

11.7 EPROM Microcomputer Support

The following third-party companies support programming of TMS7000
EPROM microcomputers.

Data 1/0 Corporation

10525 Willows Road N.E.
P.O. Box 97046
Redmond, Washington 98073-9746

(206) 881 -6444

PRO MAC

Adams MacDonald Enterprises, Inc.
2999 Monterey/Salinas Highway
Monterey, California 93940

(408) 373-3607

Products include the PROMAC 2, PROMAC 15, and PROMAC 16.

Advanced Microcomputer Systems, Inc.

2780 S.W. 14th Street
Pomano Beach, Florida 33069

(305) 975-9515

Products include the AMS2000 (IBM-PC compatible PC board) and the
PROM 2000-8 (Personality box for the TMS7742).

Logical Devices, Inc.

1321-E N.W. 65th Place
Fort Lauderdale, Florida 33309

(305) 974-0967

Products include the PROMPRO-XP with PM77 Adaptor and the
PROMPR0-8x with PM77 Adaptor.

11-9

Independent Support

11-10

12. Customer Information

Topics covered in this section include:

Section Page
12.1 Mask ROM Prototype and Production Flow 12-2
12.2 Mechanical Package Information .. 12-6
12.3 TMS7000 Family Numbering and Symbol Conventions 12-9
12.4 Development Support Tools Ordering Information 12-12

12-1

Customer Information - Mask ROM Prototype and Production Flow

12.1 Mask ROM Prototype and Production Flow

12-2

The TMS7000 family of masked-ROM microcomputers are semi-custom de­
vices. The ROM is tailored to the customer's application requirements. The
semi-custom nature of these devices requires a standard, defined interface
between the customer and the factory in the production of TMS7000 devices
with on-chip ROM. Figure 12-1 shows this standard prototype/production
flow for customer ROM receipt.

Tl PERFORMS
ROM RECEIPT

CUSTOMER RB.EASE
TO PRODUCTION

11 SHIPS
PRODUCTION DEVICES

Figure 12-1. Prototype and Production Flow

1) Customer Required Information

For Tl to accept the receipt of a customer ROM algorithm, each of the
following three items must be received by the Tl factory:

Customer Information - Mask ROM Prototype and Production Flow

a) The customer completes and submits a New Code Release Form
(NCRF - available from Tl Field Sales Office) describing the cus­
tom features of the device (e.g., customer information, prototype
and production quantities and dates, any exceptions to standard
electrical specifications, customer part numbers and symbolization,
package type, etc.).

b) If non-standard specifications are requested on the NCRF then the
customer submits a copy of the specification for the microcom­
puter in their system, including the functional description and
electrical specification (including absolute maximum ratings, re­
commended operating conditions, and timing values).

c) When the customer has completed code development and after
verification of this code with the development system, the standard
TMS7000 tagged object code is submitted to the Tl factory on an
acceptable media for processing. These include:

EPROM devices (currently supported: Tl2516, IN2716,
TMS2732, TMS2764, and TMS27128)
MS-DOS formatted disk compatible with IBM or Tl PC
Electronic ROM transfer: PC-to-PC via Xmodem protocol or
Microstuf's Crosstalk XVI protocol
Bulk Data Transfer from a Texas Instruments Regional Tech­
nology Center (RTC) to the Tl Wilcrest facility to the DX990.
Double-sided, double density floppy disks formatted by the
TMAM9000 AMPLUS operating system.

The completed NCRF, customer specification (if required), and ROM
code should be given to the Field Sales Office or sent to:

Texas Instruments Microcomputer Division
P.O. Box 1443, MS 6435
9901 S. Wilcrest
Houston, TX 77099
ATTN: TMS7000 Marketing Manager - ROM Receipt

2) Tl Performs ROM Receipt

Code review and ROM receipt is performed on the customer's code and
a unique manufacturing ROM code number is assigned to the custom­
er's algorithm. All future correspondence should indicate this number.
The ROM receipt procedure reads the ROM code information, processes
it, reproduces the customer's ROM object code on the same media on
which it was received, and returns the processed and the original code
to the customer for verification of correct ROM receipt.

3) Customer ROM Receipt Approval

The customer then verifies that the ROM code received and processed
by Tl is correct and that no information was misinterpreted in the trans­
fer. The customer must then return written confirmation of correct ROM
receipt verification or re-submit the code for processing. This written
confirmation of verification constitutes the contractual agreement for
creation of the custom mask and manufacture of ROM verification pro­
totype units.

12-3

Customer Information - Mask ROM Prototype and Production Flow

4) Tl Orders Masks, Manufacturing, and Ships 25 Prototypes

Tl generates the prototype photomasks, processes, manufactures, and
tests 25 microcomputer prototypes containing the customer's ROM
pattern for shipment to the customer for ROM code verification. These
microcomputer devices have been made using the custom mask but are
for the purposes of ROM verification only. For expediency, the proto­
type devices are tested only at room temperature (25°C). Texas In­
struments recommends that prototype devices not be used in
production systems. Prototype devices are symbolized with a P pre­
ceding the manufacturing ROM code number (eg., PC13827N) to dif­
ferentiate them from production devices.

5) Customer Prototype Approval

The customer verifies the operation of these prototypes in the system
and responds with written customer prototype approval or disapproval.
This written customer prototype approval constitutes the contractual
agreement to initiate volume microcomputer production using the veri­
fied prototype ROM code.

6) Customer Release to Production

With customer algorithm approval, the ROM code is released to pro­
duction and Tl will begin shipment of production devices according to
customer's final specification and order requirements.

Two lead times are quoted in reference to the preceding flow:

Prototype lead time - elapsed time from the receipt of written ROM re­
ceipt verification to the delivery of 25 prototype devices.

Production lead time - elapsed time from the receipt of written customer
prototype approval to delivery of production devices.

For the latest TMS7000 family lead times, contact the nearest Tl field sales
office.

12.1.1 Reserved ROM Locations

12-4

All TMS7000 family devices with on-chip mask ROM reserve the first six bytes
of the ROM space for Tl use and therefore should not be used in the cus­
tomer's software algorithm. For applications targeted for on-chip mask ROM
production, the customer must remember to reserve this space during the de­
velopment stage when using the XDS emulator, the EVM board, the
TMS7742, piggyback emulators (SE70P162, SE70CP160, SE70CP162), or a
TMS7000 family member without on-chip ROM. Table 12-1 lists the valid
ROM starting addresses for the mask-ROM devices.

Customer Information - Mask ROM Prototype and Production Flow

Table 12-1. Valid ROM Start Addresses

MEMBER ROM VALID START
SPACE ADDRESS

TMS7020, 70C20 2K bytes >F806

TMS7040, TMS7042 4K bytes >F006
TMS70C40, TMS70C42

12.1.2 Manufacturing Mask Options

The TMS7000 family supports two mask-programmed options, the oscillator
input option (CMOS only) and the clock divide-by option (TMS7020 and
TMS7040 only). These options are selected at the time of mask manufacture
and therefore cannot be changed by software or hardware once the device has
been manufactured. Selection of these mask options are designated by the
customer in the New Code Release Form (NCRF) when ordering TMS7000
family members win on-chip mask ROM. TMS7000 family members without
on-chip mask ROM have this designation as part of their standard part number
symbolization.

The oscillator input option defines the type of external clock source connected
to the oscillator inputs. The crystal input option identifies that the external
clock source will be either a crystal, ceramic resonator, or another approxi­
mately 50% duty cycle external clock. The R-C input option identifies that an
external R-C network will be connected to the oscillator terminals. The R-C
option provides a simple and economical oscillator for uses where frequency
tolerance is not a concern, and significantly reduces the low-power mode
current requirements for all CMOS devices. The R-C option is supported only
on the CMOS devices (TMS70COO, TMS70C20, TMS70C40, TMS70C02,
and TMS70C42). All NMOS processors have the crystal option defined as the
only form of oscillator option.

The clock divide-by option defines the internal oscillator divide-by for con­
verting the external oscillator frequency, fosc' to the internal machine cycle
frequency. The +2 clock option defines that the internal machine cycle will
be external oscillator frequency divided by two (for example, an 5 MHz ex­
ternal crystal would generate an internal machine cycle of 2.5 MHz). The +4
clock option defines that the internal machine cycle frequency will be the ex­
ternal oscillator frequency divided by four (for example, a 10 MHz external
crystal would generate an internal machine frequency of 2.5 MHz). Table
12-2 defines the clock divide-by option supported by each family member.

T'able 12-2. Clock Divide Options

CLOCK FAMILY MEMBERS
DIVIDE-BY

+2 NMOS TMS7000, TMS7020, TMS7040, TMS7002, TMS7042,
TMS7742, SE70P162

CMOS TMS70COO, TMS70C20, TMS70C40, TMS70C02,
TMS70C42,SE70CP160,SE70CP162

+4 NMOS TMS7000, TMS7020, TMS7040

12-5

Customer Information - Mechanical Package Information

12.2 Mechanical Package Information
The TMS7000 microcomputer family devices are packaged in four package
types according to the type of material and outline used for the package:
plastic dual-inline package (DIP), plastic leaded chip carrier (PLCC), ceramic
sidebraze package, and ceramic sidebraze piggyback package. Package types
are designated in the device symbolization by the suffix on the customer's
ROM code number for devices manufactured with customer ROM code (eg.,
C12799N) and by the suffix of the standard device number for devices with­
out on-chip ROM. Table 12-3 indicates the package type, suffix indicator,
and family members supported on that package type.

Table 12-3. Package Types

PACKAGE TYPE SUFFIX FAMILY MEMBERS
INDICATOR

40-pin plastic DIP N NMOS TMS7000, TMS7020, TMS7040
(100-mil pin spacing) TMS7002, TMS7042

CMOS TMS70COO, TMS70C20, TMS70C40
TMS70C02, TMS70C42

40-pin ceramic sidebraze JD NMOS TMS7742
(100-mil pin s_Q_acinJl) JD CMOS TMS77C82t
40-pin ceramic pi~gyback JD NMOS SE70P162
(100-mil _Q_in spacing) JD CMOS SE70CP160, SE70CP162
44-pin PLCC FN CMOS TMS70COO, TMS70C20, TMS70C40
(50-mil pin spacin_g_) TMS70C02, TMS70C42

t Advance Information

EITHER -c--~.,__
INDEX

1 2 3 4 5 6 7 8 9 1 0 11 1 2 1 3 14 1 5 16 1 7 18 19 20

<i. 15,24 ± 0.254 ct.

I, (0.600t0.010)J ~i 10° REF TYP
0.508 (0.020) \ (OPTIONAL) ! = ~ MON~~5,08(0.2001

1
o's - SEATING PLANE ~~ MAX

_ T 3,17 (0.125)

90 0,457 ± 0,076 MIN ,g:~~~:g:g~~i\\ (0.018±0.003) -1!-" t-)l j ~j 0,838 (0.033) MIN

PIN SPACING 2,54 (0.100) T.P. 2.41 (0.095)

(See Note A) 1,52 (0.060) NOM 1,40 (0.055)

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

NOTE A: Each pin centerline is located within 0, 254 (0.010) of its true longitudinal position.

Figure 12-2. 40-Pin Plastic Package, 100-MIL Pin Spacing (N Package Suffix)
12-6

Customer Information - Mechanical Package Information

c-------51,31 (2.0201 MAX------j

•ND<XD0'~:::~::r:JS:::::::i+·D"o0
15,24+0,25 1 2 3 4 5 6 7 8 91011121314151617181920

(0.600 + 0.0101

G. G. I I.. ·1 1 o.5o8 ,0.0201 ~4.70 (0.1851

ITT-~i:~~G j_-~ ~ MAX

Jl so• 1.21 ± o.508 ~~h jt 1.21 ± 0.2~ 3,81 ± o.762
(0.050 ± 0.0201 (0.050 ± 0.01 OJ (0.150 ± 0.0301

0,25 10.0101 0.457 ± 0,076
NOM 2,54 10.1001 T.P. (0.018 ± 0.0031

PIN SPACING
(SEE NOTE Al

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES.

NOTE A: Each pin centerline is located within 0,254 (0.010) of its true longitudinal position.

Figure 12-3. 40-Pin Ceramic Package, 100-Mll Pin Spacing (Type JD Package
Suffix)

I
20.3±0,26

10.800±0.0101

1.27 (0.0501
ANOM

---------61,3112.0201MAX--------

10,1610.4001
NOM

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES.

NOTE A: Each pin centerline is located within 0,254 (0.010) of its true longitudinal position.

Figure 12-4. 40-Pin Ceramic Piggyback Package, 100-MIL Pin Spacing (Type JD
Package Suffix)

12-7

Customer Information - Mechanical Package Information

12-8

-------- 17,65 (0.695) --------
17.40 (0.685)

r
,. ________ 16,66 (0.656) -------9'1"1

16.51 (0.650) - . --------r-

---..---

29 17

30

31

32

33

34

36

37

38

39
INDEX
DOT

16,66 (0.656)
16.51 (0.650)

17,65 (0.695)
17.40 (0.685)

j 4,57 (0.1801 -------

~
- 4,19 (0.165) 3 4 5

~
6

- = _______ ,,_ 3,05 (0.1201 ----
2.29 (0.0901

1,219 (0.0481
1,067 (0.042) 0,51 (0.0201

MIN

16,00 (0.630)
14,99 (0.590)

ALL DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALL V IN INCHES

Figure 12-5. 44-Pin Plastic-Leaded Chip Carrier Package

Customer Information - Numbering and Symbol Conventions

12.3 TMS7000 Family Numbering and Symbol Conventions

12.3.1 Device Prefix Designators

To provide expeditious system evaluations by customers during the product
development cycle, Texas Instruments assigns a prefi>e designator with four
options: TMS, TMP, TMX, and SE.

TMX, TMP, and TMS are representative of the evolutionary stages of product
development from engineering prototypes through fully qualified production
devices. FiQure 12-6 depicts this evolutionary development flowchart. Pro­
duction devices shipped by Texas Instruments have the TMS designator sig­
nifying that they have demonstrated the high standards of Texas Instruments
quality and reliability.

Experimental devices that am not represent­
ative of the final device's electrical speci­
fications and has not completed reliability
verification.

Final silicon die that conforms to the device's
electrical specifications but has not completed
quality and reliablity verification.

Fully qualified production devices.

Figure 12-6. Development Flowchart

TMX devices are shipped against the following disclaimer:

~
1 l Experimental product and its reliability has not bee~n characterized.

Product is sold "as is".
Product is not warranted to be exemplary of final production version if
or when released by Texas Instruments.

TMP devices are shipped against the following disclaimi9r:

1) Customer understands that the product purchase•d hereunder has not
been fully characterized and the expectation of reliability cannot be de­
fined; therefore, Texas Instruments standard warrainty refers only to the
device's specifications.

2) No warranty of merchantability or fitness is expressed or implied.

TMS devices have been fully characterized and the quality and reliability of the
device has been fully demonstrated. Texas Instruments' standard warranty
applies.

The SE prefix designation is given to the system evaluator devices used for
prototyping purposes. This designation applies only to the piggyback proto­
type members of the TMS7000 family (the NMOS SE70P162 and the CMOS
SE70CP160 and SE70CP162 devices). SE devices are shipped against the
following disclaimer:

System evaluators and development tools are for us,e only in a proto­
type environment and their reliability has not been characterized.

12-9

Customer Information - Numbering and Symbol Conventions

12.3.2 Device Numbering Convention

TM8

Figure 12-7 illustrates the numbering and symbol nomenclature for the
TMS7000 family.

PREFIX (TMS - STANDARD PREFIX FOR FULL Y-QUALFIED DEVICES)

7

FAMILY (7-TM87000 8-BIT MICROCOMPUTER FAMIL \1

ROM TYPE: 0 - ROM/ROML.ESS

0

7 - EPROM

Ir
TECHNOLOGY1 BLANK - NMOS

C - CMOS
P - NMOS PIGGYBACK
CP - CMOS PIGGYBACK

I
ROM ON CHIP: 0 - ROMLE86

2- 2K
4 - 41<

C 2 0 N L

L L TEMPERATURE RANGE: H - 0°c TO ss·c
L - o·c TO 1o•c
A - -40°C TO +86°C

PACKAGE TYPE: N - PLASTIC
JD - CERAMIC, SIDE-BRAZED
FN - PLASTIC-LEADED CHIP CARRIER

ADDED FUNCTIONS: 0 - STANDARD
1 - SERIAL PORT, 128-BYTE RAM
2 - SERIAL PORT, 268-BYTE RAM

Figure 12-7. TMS7000 Family Nomenclature

12.3.3 Device Symbols

The TMS7000 family members can be divided into two categories for de­
scription of symbols, with the distinction being made on the presence (or ab­
sence) of on-chip ROM.

12.3.3.1 TMS7000 Family Members with On-Chip ROM

12-10

TMS7000 family members with on-chip ROM are semicustom devices where
the ROM is mask programmed according to the customer's requirements.
These devices follow the prototyping and production flow outlined in Section
12.3. Since they are semicustom devices, they receive a unique identification.

There are two types of symbolization for TMS7000 family members with on­
chip ROM:

1) Tl standard symbolization and
2) Tl standard symbolization with customer part number.

Customer Information - Numbering and Symbol Conventions

LINE 1:
(a).,,

(b)C12S.SN (o)DBUA8327
KEY:

LINE 2: (d)01981TI

LINE 3: (e) 2-4866

(f)01983TI

(g) PHILLIPINES

(a)TEXAS INSTRUMENTS TRADEMARK
(b)CUSTOMER'S ROM CODE a: PACKAGE TYPE
(o)TRACKING MARK a: DATE CODE
(d)TI MICROCODE COPYRIGHT
(e)LOT CODE

LINE 1:
(a).,,

LINE2:

LINES: (e)01981TI

LINE 4-: (g)2'4866

(f) COPYRIGHT OF ROM CODE
(g) ASSEMBLY SITE

Figure 12-8. Tl Standard Symbolization

KEY:
(b) 12a.58789012 lalTEXAS INSTRUMENTS TRADEMARK

b CUSTOMER PART NUMBER
(o)C12S.SN (d) DBUA8327 (o)CUSTOMER'S ROM CODE a: PACKAGE TYPE

(f)01983TI
(d)TRACKING MARK a: DATE CODE
(e) Tl MICROCODE COPYRIGHT
(f) COPYRIGHT OF ROM CODE

(h) PHILLIPINES (gJLOT CODE
(h ASSEMBLY SITE

Figure 12-9. Tl Standard Symbolization with Customer Part Number

12.3.3.2 TMS7000 Family Members without On-Chip ROM

TMS7000 family members without on-chip ROM are standard device types,
and therefore have a standard identification. Examples of TMS7000 family
members without on-chip ROM include:

TMS7000NL-2
TMS7000N L-4

LINE 1:
(a).,,

LINE 2: (d)01981TI

LINE 3: (e) 2-4866

(b)TMS70C02NA

(o) DBUA8327

(f) PHILLIPINES

KEY:

TMS7002NL
TMS70C02NA

(a) TEXAS INSTRUMENTS TRADEMARK
(b) STANDARD DEVICE NUMBER
(o~ TRACKING MARK a: DATE CODE

id Tl MICROCODE COPYRIGHT
e LOT CODE
f) ASSEMBLY SITE

Figure 12-10. Tl Standard Symbolization for Devices without On-Chip ROM

12-11

Customer Information - Development Support Tools

12.4 Development Support Tools Ordering Information

12.4.1 TMS7000 Macro Assembler/Linker

PART NUMBER
TM DS7040810-02
TM DS7040123-06
TM DS70401 23-08
TMDS7040123-10
TMDS7040123-22
TM DS704021 0-08
TMDS7040310-08
TM DS7040320-08

DESCRIPTION
Tl/IBM PC
Tl 990
Tl 990
Tl 990
Tl 990
DEC VAX
IBM Mainframe
I BM Mainframe

OPERATING
SYSTEM

PC/MS-DOS
DX10
DX10
DX10
DX10
VMS
MVS
CMS

12.4.2 TMS7000 XDS Emulators

PART NUMBER
TM DS706221 0

XDS MODEL#
Model 22

TMDS7062210 XDS Upgrade Kit:
PART NUMBER
TMDS7068210

12.4.3 TMS7000 Evaluation Modules

12-12

PART NUMBER
RTC/EVM7000N-1
RTC/ EVM7000C-1

DEVICES SUPPORTED
TMS7020, TMS7040
TMS70C20, TMS70C40, TMS70C42

MEDIUM
5 1 /4" floppy
T50 hard disk
1600 BPI mag tape
DS10 hard disk
CD1400 hard disk
1600 BPI mag tape
1600 BPI mag tape
1600 BPI mag tape

5. The TMS7000 Assembler

TMS7000 Assemblylanguage instructions are mnemonic operation codes (or
mnemonics) that correspond directly to binary machine instructions. An as­
sembly language program (source program) must be converted to a machine
language program (object program) by a process called assembling before a
computer can execute it. Assembling converts the mnemonics to binary values
and associates those values with binary addresses, creating machine language
instructions. Assembler directives, discussed in Section 5.5, control this
process, place data in the object program, and assign values to the symbols
used in the object program.

TMS7000 assembly language is processed by a two-pass Macro Assembler
that executes on a host computer. During the first pass the assembler:

1) Maintains the Location Counter,
2) Builds a symbol table, and
3) Produces a copy of the source code.

During the second pass the assembler:

1) Reads the copy of the source code and
2) Assembles the object code using the opcodes and symbol table

produced during the first pass.

This section discusses the following topics:

Section Page
5.1 Source Statement Format ... 5-2
5.2 Constants .. 5-4
5.3 Symbols .. 5-6
5.4 Expressions ... 5-8
5.5 Assembler Directives ... 5-12
5.6 Symbolic Addressing Techniques ... 5-47
5.7 Assembler Output .. 5-48
5.8 Object Code ... 5-53

5-1

The TMS7000 Assembler - Source Statement Format

5.1 Source Statement Format

An assembly language source program consists of source statements that may
contain assembler directives, machine instructions, pseudo-instructions, or
comments. Source statements may contain four ordered fields - label, com­
mand, operand, and comment. Source statements that have an asterisk (*) in
the first character position are comments and do not affect the assembly.

The syntax for source statements other than comment lines is:

[<label>] <mnemonic> [<operand>] [<comment>]

where:

The label and comments fields are optional.
One or more blank spaces must separate each field.
A statement must start with either a label or a blank space.

Note that square brackets ([and]) indicate an optional entry.

Figure 5-1 illustrates one method of entering source statements. Labels begin
in column 1, opcodes in column 8, operands in column 14, and comments in
column 26. The assembler prodl!ces the three left hand numbers. The first is
the statement number, the second shows the program address, and the third
shows the data value.

EXAMPLE TMS7000 FAMILY MACRO ASSEMBLER

PAGE 0001

5-2

0001
0002
0003
0005
0005
0006
0007

0008

0000
0001
0002
0003
0004

cs
80
04
67
FC

--------------------------------- * EXAMPLE OF SOURCE PROGRAM INPUT *

IDT
CLR

LABELl MOVP

BTJZ

'EXAMPLE'
B
P4,A

%01,A,LABELl

0009 END
NO ERRORS, NO WARNINGS

Figure 5-1. Source Statement Format

The TMS7000 Assembler - Source Statement Format

5.1 .1 Label Field

The label field is optional for machine instructions and for many assembler
directives. If it is not used, the first character position must contain a blank.
The label begins in the first character position of the source statement and
extends to the first blank. It contains a symbol of up to 6 alphanumeric char­
acters; the first character must be a letter.

A source statement that contains only a label field is a valid statement. It as­
signs the current value of the location counter to the label, which is equivalent
to the following directive statement:

<label> EQU $

5.1.2 Command Field

The command field begins after the blank that terminates the label field. It is
terminated by one or more blanks and may not extend past the right margin.
If the label is omitted, the command can start in the second character position.
The command field can contain one of the following opcodes:

Machine-instruction mnemonic
User-defined instruction
Assembler directive

5.1.3 Operand Field

The operand field begins following the blank that ends the command field. It
may not extend past the right margin of the source record. The operand field
may contain one or more constants or expressions (described in Section 5.2
and Section 5.4) separated by commas. It is terminated by one or more
blanks.

5.1.4 Comment Field

The comment field begins after the blank that terminates the operand field (or
the blank that terminates the command field, if there are no operands). The
comment field can extend to the end of the source record, if required, and can
contain any ASCII character including blanks. The comment field contents
(up to the end of the input record) are listed in the assembly source listing but
do not affect the assembly.

5-3

The TM 87000 Assembler - Constants

5.2 Constants

The assembler recognizes five types of constants, each internally maintained
as a 16-bit quantity:

Decimal integer constants

Binary integer constants

Hexadecimal integer constants

Character constants

Assembly-time constants

5.2.1 Decimal Integer Constants

Decimal integer constants are written as strings of decimal digits, ranging from
-32,768 to +65,535. Positive decimal integer constants in the range 32,768
to 65,535 are considered negative when interpreted by functions needing 2's
complement values.

These are valid decimal constants:

1000
-32768
25
65535

Constant equal to 1000 or >3E8
Constant equal to -32768 or >8000
Constant equal to 25 or > 19
Constant equal to 65535 to > FFFF

5.2.2 Binary Integer Constants

5-4

Binary integer constants are written as strings of up to 16 binary digits (0/1)
preceded by a question mark (?). If less than 16 digits are specified, the as­
sembler right justifies the bits.

These are valid binary constants:

?00010011 Constant equal to 19 or > 1 3
?0111111111111111 Constant equal to 32767 or >7FFF
?11110 Constant equal to 30 or >001 E

The TM S7000 Assembler - Constants

5.2.3 Hexadecimal Integer Constants

Hexadecimal integer constants are written as strings of up to four hexadecimal
digits preceded by a greater than sign (>). Hexadecimal digits include the
decimal values 'O' through '9' and the letters 'A' through 'F'.

These are valid hexadecimal constants:

>78
>F
>37AC

5.2.4 Character Constants

Constant equal to .120
Constant equal to 1 5
Constant equal to 14252

Character constants are written as strings of one or two alphabetic characters
enclosed in single quotes. Two consecutive single quotes are required to re­
present a single quote in a character constant. The characters are represented
internally as 8-bit ASCII characters. A character constant consisting of only
two single quotes (no letter) is valid and is assigned the value >0000.

These are valid character constants:

'AB'
'C'
'N'

'"D'

Represented internally as >4142
Represented internally as >43 or >0043
Represented internally as >4E or >004E
Represented internally as >2744

5.2.5 Assembly-Time Constants

Assembly-time constants are symbols assigned values by an EOU directive
(see the EOU directive). The symbol value is determined at assembly time. It
is considered to be absolute or relocatable according to the relocatability of
the expression, not according to the relocatability of the Location Counter
value. Absolute value symbols may be assigned values with expressions using
any 0f the above constant types.

5-5

The TMS7000 Assembler - Symbols

5.3 Symbols

Symbols are used in the label field and the operand field. A symbol is a string
of alphanumeric characters (A-Z, 0-9, and$). The first character in a symbol
must be A-Z or $. No character may be blank. When more than six characters
are used in a symbol, the assembler prints all the characters, but only recog­
nizes the first six characters during processing (the assembler also prints a
symbol truncation warning). Therefore, the first six characters of a symbol
should be unique. User-defined symbols are valid only during the assembly
in which they are defined.

Symbols used in the label field become symbolic addresses. They are associ­
ated with locations in the program and must not be used in the label field of
other statements. Mnemonic opcodes and assembler directive names may be
used as valid user-defined symbols in the label field.

Symbols used in the operand field must be defined in the assembly, usually
by appearing in the label field of a statement or in the operand field of a REF
or SREF directive.

These are examples of valid symbols:

START
ADD
OPERATION

Each of these symbols will be assigned the value of the location where it ap­
pears in the label field. Note that the symbol OPERATION will be truncated
to OPERAT.

5.3.1 Predefined Symbols

5-6

The dollar sign ($), register (Rn), and port (Pn) symbols are predefined. The
dollar sign represents the current value of the location counter. Register and
port symbols are in the form Rn and Pn, respectively, where n is a constant in
the range 0-255. All registers and peripheral file addresses should be defined
before they are used in instructions.

These are examples of valid predefined symbols:

$

RO
P22

The current location
Register 0
Peripheral Register 22

The symbol ST (Status Register) is reserved and may not be re-defined.

The TMS7000 Assembler - Symbols

5.3.2 Terms

Terms are used in the operand field of machine instructions and assembler
directives. A term may be a binary, character, decimal or hexadecimal con­
stant, an absolute assembly-time constant or a label having an absolute value.

5.3.3 Character Strings

Several assembler directives require character strings as operands. A character
string is a string of characters enclosed in single quotes. Single quotes within
a character string are represented by two consecutive single quotes. The
maximum length of a string is defined for each directive that requires a char­
acter string. The characters are represented internally as 8-bit ASCII charac­
ters.

These are valid character strings:

'SAMPLE PROGRAM' Defines a 14-character string, SAMPLE PRO­
GRAM

'PLAN "C"' Defines an 8-character string, PLAN 'C'

'OPERATOR MESSAGE: PRESS START SWITCH'
Defines a 37-character string, OPERATOR MES­
SAGE: PRESS START SWITCH

5-7

The TM S7000 Assembler - Expressions

5.4 Expressions

Expressions are used in the operand fields of assembler directives and machine
instructions. An expression is a constant or symbol, a series of constants or
symbols, or a series of constants and symbols separated by arithmetic opera­
tors. Each constant or symbol may be preceded by a unary minus sign (-), a
unary plus sign (+), or the unary invert symbol (#). The# symbol causes the
value of the logical complement of the following constant or symbol to be
used. An expression may not contain embedded blanks. Symbols defined as
external references may be operands of arithmetic instructions within certain
limits, as described in Section 5.4.1.

5.4.1 Arithmetic Operators in Expressions

5-8

The arithmetic operators used in expressions are:

+

*

I

Addition
Subtraction
Multiplication
Signed division
Logical not (inversion)

When the assembler evaluates an expression, it first negates symbols or con­
stants preceded by a minus (-) sign and then performs arithmetic operations
from left to right. The assembler does not assign precedence to any operation
other than unary plus or unary minus. All operations are integer operations;
any fractions produced by division are truncated.

For example, the expression 4+5*2 is evaluated as 18, not 14. The express;on
7+1 /2 is evaluated as 4; the expression 1 /2+7 is evaluated as 7 (note trun­
cation).

The assembler checks for overflow conditions when arithmetic operations are
performed. It issues a warning message when an overflow occurs or when
the sign of the result is not as expected in respect to the operands and the
operation performed. Examples where a "VALUE TRUNCATED" message is
given are:

-2*>4000 >FFFE+2 -1*>8001

>8000*2 ->8000-1 -2*>8000

When the immediate value is greater than > 7F and you precede the value with
%#, signifying immediate and unary negation operations, the assembler cor­
rectly calculates the value but issues an error message. Ignore the EX­
PRESSION OUT OF BOUNDS error message. (Note that this problem has
been fixed in version 2.3 of the assembler.) The following example illustrates
this condition.

The TM 87000 Assembler - Expressions

TEST TMS7000 MACRO ASSEMBER

*
PAGE 0001

0001
0002
0003
0004

* DX-10 X-SUPPORT TEST SOFTWARE

0005 FOOO
0006 FOOO

FOOl
0007 F002
0008 F003
0009 F004

FOOS
0010 F006

F007
0011 FOOS

F009

52
10
OD
01
28
BF
28
80
28
7F

*
IDT
AORG
MOV

LDSP
IDLE
ADD

ADD

ADD

'TEST'
>FOOO
%>10,B

%#>40,A

%#>7F,A

%#>80,A

********EXPRESSION OUT OF BOUNDS
0012 END
0001 ERROR, 0000 WARNINGS, LAST ERROR AT 0011

5.4.2 Logical Operands in Expressions

If a pound sign (#) precedes a number or an expression it is complemented.
All other arithmetic operations have precedence over the logical not (#) op­
eration, except where modified by parentheses.

5.4.3 Parentheses in Expressions

Use parentheses to alter the order of expression evaluation. Parenthetical ex­
pressions can be nested up to eight levels. The portion of an expression
within the innermost parentheses is evaluated first, then the next innermost
pair is evaluated, etc. When all parenthetical phrases have been evaluated, the
expression is evaluated from left to right. Evaluation of parenthetical phrases
at the same nesting level may be considered to be simultaneous.

This expression is evaluated as follows:

LAB1 +((4+3)*7)

1) Add 4 to 3
2) Multiply 7 by 7
3) Add the value of LAB1 to 49

5-9

The TMS7000 Assembler - Expressions

5.4.4 Well-Defined Expressions

Some assembler directives require well-defined expressions in operand fields.
Well-defined expressions contain only symbols or assembly-time constants
that are defined before they are encountered in the expression. The evaluation
of a well-defined expression must be absolute. A well-defined expression
must not contain a character constant.

5.4.5 Relocatable Symbols in Expressions

An expression that contains a relocatable symbol or relocatable constant im­
mediately following a multiplication or division operator is illegal. When the
result of evaluating an expression up to a multiplication or division operator
is relocatable, the expression is illegal.

If the current value of an expression is relocatable with respect to one relo­
catable section, a symbol of another section may not be included until the
value of the expression becomes absolute. Some examples of relocatable
symbols used in expressions are:

BLUE+1
GREEN-4
2*16+RED

440/2-RED

The sum of the value of symbol BLUE plus one.
The result of subtracting four from the value of symbol GREEN.
The sum of the value of symbol RED plus the product of two
and 16.
The result of dividing 440 by two and subtracting the value of
symbol RED from the quotient. RED must be absolute.

Table 5-1 defines the relocatability of the result for each type of operator.

Table 5-1. Results of Operations on Absolute and Relocatable Items in
Expressions

A B A+B A-B AxB A/B
ABS ABS ABS ABS ABS ABS(B<>O)
ABS RELOC RELOC illegal t illegal
RELOC ABS RELOC RELOC :t: §

RELOC RELOC illegal
,,.

illegal illegal

t Illegal unless A equals zero or one. If A is one, the result is relocatable. If A is zero, the result is an
absolute zero.

:t: 1 llegal unless B equals zero or one. If B is one, the result is relocatable. If B is zero, the result is an
absolute zero.

§ Illegal unless B equals one. If B equals one, the result is relocatable.
ff Illegal unless A and Bare in the same relocatable segment. If A and Bare in the same section, the result

is absolute.

5-10

The TMS7000 Assembler - Expressions

5.4.6 Externally Defined Symbols in Expressions

Externally defined symbols (defined in REF and SREF directives) are allowed
in expressions under the following conditions:

1) Only one externally referenced symbol may be used in an expression.

2) The character preceding the referenced symbol must be a plus sign, a
blank, or a comma (the @ sign is not considered). The portion of the
expression preceding the symbol, if any, must be added to the symbol.

3) The portion of the expression following the referenced symbol must not
include multiplication, division, or logical operations on the symbol (as
for a relocatable symbol described in Section 5.4.5).

4) The remainder of the expression following the referenced symbol must
be absolute.

The assembler limits the total number of external referenced symbols to 255
per module. Modules using more than 255 external symbols must be broken
into smaller modules for assembly and linked using the link editor.

5-11

The TMS7000 Assembler - Assembler Directives

5.5 Assembler Directives

5-12

Assembler directives control the assembly process. This section discusses the
various categories of directives supported by the TMS7000 Assembler and
defines the directives in alphabetical order.

Directives that Affect the Location Counter

As the assembler reads program source statements it increments its Location
Counter. The Location Counter contents correspond to the memory locations
assigned to the resulting object code. Twelve directives, listed in Table 5-2
on page 5-13, affect the Location Counter. BES and BSS advance the Lo­
cation Counter to provide a block of program memory for the object code.
The EVEN directive. ensures an even address word boundary. The remaining
nine directives initialize the Location Counter and define its value as relocata­
ble, absolute, or dummy.

Directives in this category include:

- AORG
BES
BSS

CEND
CSEG
DENO

DORG
DSEG
EVEN

Directives that Affect Assembler Output

PEND
PSEG
RORG

Directives that affect assembler output are mainly used to improve program
useability. The IDT directive supplies a program identifier; the five other di­
rectives affoct the source listing.

IDT
LIST
OPTION

PAGE
- TITL

UNL

Directives that Initialize Constants

These directives assign values to successive bytes or words of the object code
(BYTE, DATA), place text characters in object code for display purposes
(TEXT), or initialize constants to be used during the assembly (EQU).

BYTE
DATA

EOU
- TEXT

Directives for Linking Programs

The Link Editor resolves externally referenced symbols and definitions. These
directives help the Link Editor by identifying symbols and definitions that may
be used or defined by another program module. This allows separate program
modules to be assembled separately and integrated into an executable pro­
gram.

DEF
LOAD

REF
SREF

Miscellaneous Directives

This category includes those assembler directives not applicable to the other
categories:

COPY
END
MLIB

The TMS7000 Assembler - Assembler Directives

Table 5-2. Summary of Assembler Directives

DIRECTIVES THAT AFFECT THE LOCATION COUNTER

MNEMONIC DIRECTIVE SYNTAX

AORG Absolute origin [<label>] AORG [<wd-exp> [<comment>]]

BES Block ending with symbol [<label>] BES <wd-exp> [<comment>]

BSS Block starting with symbol [<label>] BSS <wd-exp> [<comment>]

CEND Common segment end [<label>] CEND [<comment>]

CSEG Common segment [<label>] CSEG ['<string>' [<comment>]]

DENO Data segment end [<label>] DENO [<comment>]

DORG Dummy origin [<label>] DORG [<exp> [<comment>]]

DSEG Data segment [<label>] DSEG [<comment>]

EVEN Even boundary [<label>] EVEN [<comment>]

PEND Program segment end [<label>] PEND [<comment>]

PSEG Program segment [<label>] PSEG [<comment>]

RORG Relocatable origin [<label>] RORG [<exp> [<comment>]]

DIRECTIVES THAT AFFECT ASSEMBLER OUTPUT

MNEMONIC DIRECTIVE SYNTAX

IDT Program identifier [<label>] IDT '<string>' [<comment>]

LIST Restart source listing [<label>] LIST [<comment>]

OPTION Output options [<label>] OPTION <option list> [<comment>]

PAGE Page eject [<label>] PAGE [<comment>]

TITL Page title [<label>] TITL '<string>' [<comment>]

UNL Stop source listing [<label>] UNL [<comment>]

DIRECTIVES THAT INITIALIZE CONSTANTS

MNEMONIC DIRECTIVE SYNTAX

BYTE Initialize byte [<label>] BYTE <exp> L <exp>] [<comment>]

DATA Initialize word [<label>] DATA <exp>[,<exp>] [<comment>]

EOU Define assembly-time [<label>] EOU <exp> [<comment>]
constant

TEXT Initialize text [<label>] TEXT [-]'<string>' [<comment>]

DIRECTIVES FOR LINKING PROGRAMS

MNEMONIC DIRECTIVE SYNTAX

DEF External definition [<label>] DEF <symbol>[, <symbol>] [<comment>]

LOAD Force load [<label>] LOAD <symbol>[, <symbol>] [<comment>]

REF External reference [<label>] REF <symbol> L <symbol>] [<comment>]

SREF Secondary external [<label>] SREF <symbol> L <symbol>] [<comment>]
reference

MISCELLANEOUS DIRECTIVES

MNEMONIC DIRECTIVE SYNTAX

COPY Copy source file [<label>] COPY <filename> [<comment>]

END Program end [<label>] END [<symbol> [<comment>]]

MLIB Define macro library [<label>] MLIB '<pathname>' [<comment>]

5-13

AORG

Syntax

Fields

Description

Example 1

Example 2

5-14

Absolute Origin Directive AORG

[<label>] AORG [<wd-exp> [<comment>]]

Label Optional; if used, the label is assigned the same value that
AORG places in the Location Counter.

Operand Optional; if used, the operand field must contain a well-
defined expression (<wd-exp>).

Comment Optional; may only be used with the operand field.

AORG loads the Location Counter with the first address of a segment
of absolute code. This address is usually specified by the operand. If
no operand is used, the value in the Location Counter equals the length
of all preceding absolute code. When no AORG directive is entered, the
object program does not include absolute addresses.

AORG >lOOO+X

Symbol X must be absolute and previously defined. If X has a value of
6, the Location Counter is set to >1006. If a label had been included,
it would have been assigned the value >1006.

Avoid using AORG in object modules which will be linked. Linking a
module that contains an AORG directive may produce an Illegal imme­
diate tag encountered error at link time. Use the PSEG, CSEG, and
DSEG directives instead to identify the locations in the source code.
Use the PROGRAM, COMMON, and DATA commands in the link con­
trol file to define the locations.

The link control file will look similar to this example:

TASK
PROGRAM
DATA
COMMON
INCLUDE
INCLUDE
END

MYPROG
>F006
>FFDO

FILEl
FILE2

Program starting point (PSEG)
Trap and vector table stg pt (DSEG)
Additional starting location (CSEG)

This example will work if the program contains no more than three
AORGs.

BES

Syntax

Fields

Description

Example

Block Ending with Symbol Directive BES

BES <wd-exp> [<comment>] [<label>]

Label Optional; if used, the label is assigned the value of the lo­
cation following the block.

Operand Contains a well-defined expression that represents the
number of bytes to be added to the Location Counter.

Comment Optional

BES increments the Location Counter by the operand value.

BUFF2 BES >10

A 16-byte buffer is reserved. If the Location Counter had contained
>100 when the directive was processed, BUFF2 would have been as­
signed the value > 11 0.

5-15

BSS

Syntax

Fields

Description

Example

5-16

Block Starting with Symbol Directive BSS

[<label>] BSS <wd-exp> [<comment>]

Label Optional; if used, a label is assigned the value of the lo­
cation of the first byte in the block.

Operand Contains a well-defined expression that represents the
number of bytes to be added to the Location Counter.

Comment Optional

BSS increments the Location Counter by the operand value.

Avoid using the BSS directive for detining register names. Using BSS
in this manner may produce a Pass 1 I Pass2 operand conflict error at as­
sembly time. Use the EQU directive for defining register names.

BUFFl BSS 80 Card input buff er

An 80-byte buffer is reserved starting at location BUFF1.

BYTE

Syntax

Fields

Description

Example

Initialize Byte Directive BYTE

[<label>] BYTE <exp>[,<exp>] [<comment>]

Label Optional; if used, the label is assigned the location where
the assembler places the first byte.

Operand Contains one or more expressions separated by commas.
These expressions cannot contain external references. The
assembler evaluates each expression and places the value
in a byte as an 8-bit number. If truncation is required, the
assembler prints a truncation warning message and puts
the 8 LSbs of the value in the byte.

Comment Optional

BYTE places one or more values in one or more successive bytes of
memory.

KONS BYTE >F+l,-1,'D'-'=' ,0,'AB'-'AA'

This example initializes five bytes, starting with a byte at location KONS.
The contents of the resulting bytes are 00010000, 11111111,
00000111, 00000000, and 00000001.

5-17

CEND

Syntax

Fields

Description

5-18

Common Segment End Directive CEND

[<label>] CEND [<comment>]

label Optional; if used, the label is assigned the value of the
Location Counter before modification.

Operand Not used

Comment Optional

CEN D terminates the definition of a block of common-relocatable code
by placing a value in the Location Counter and defining succeeding lo­
cations as program-relocatable. The Location Counter is set to one of
the following values:

The maximum value the Location Counter has ever attained by
assembling any preceding block of program-relocatable code.

Zero, if no program-relocatable code was previously assembled.

If encountered in data- or program-relocatable code, this directive
functions as a DEN D or PEND. CEN D is invalid when used in absolute
code.

COPY

Syntax

Fields

Description

Example

Copy Source File Directive COPY

[<label>] COPY <filename> [<comment>]

Optional Label

Operand Names a file that source statements are read from. The file
name may be:

- An access name recognized by the operating system
- A synonym form of an access name

Comment Optional

COPY changes the source input for the assembler. A COPY directive
may be placed in a file being copied. Nested copying of files can be
performed by placing a COPY directive in a file being copied. The as­
sembler limits such nesting to eight levels; the host operating system
may place additional restrictions on nesting capabilities.

COPY SF ILE

This example causes the assembler to take its source statements from a
file SFILE. At the end-of-file for SFILE, the assembler resumes proc­
essing source statements from the file or device previous to the COPY
directive.

5-19

CSEG

Syntax

Fields

Description

5-20

Common Segment Directive CSEG

CSEG ['<string>'[,<exp>] [<comment>]] [<label>]

Label Optional; if used, the label is assigned the value placed in
the Location Counter.

Operand Optional (see preceding Description).

Comment Optional; may only be used with the operand field.

CSEG begins or continues a common-relocatable segment (relocatable
with respect to a common segment) at the address in the Location
Counter. If the operand is not used, the CSEG directive defines the be­
ginning of (or continuation of) the blank common segment of the pro­
gram.

When used, the operand field contains a character string of up to six
characters enclosed in quotes. (The assembler truncates strings that are
longer than six characters and prints a truncation error message.) If this
string did not previously appear as the operand of a CSEG directive, the
assembler:

1) Associates a new relocation section number with the operand,
2) Sets the Location Counter to zero, and
3) Defines succeeding locations as relocatable with respect to the

new relocatable section.

If the operand string was previously used in a CSEG, the succeeding
code represents a continuation of the particular common segment as­
sociated with the operand. The Location Counter is restored to the
maximum value attained during the previous assembly of any portion of
that particular common segment. The second operand, <exp>, specifies
the memory alignment for the beginning of the Section.

Common-relocatable code is normally terminated by a CEND directive,
but can also be terminated by the PSEG, DSEG, AORG, and END di­
rectives. The CEND and PSEG directives define succeeding locations
as program-relocatable. The DSEG and AORG directives terminate the
common segment by beginning a data or an absolute segment. The
END directive terminates the common segment and the program.

The CSEG directive permits construction and definition of independ­
ently relocatable segments of data that several programs can access or
reference at execution time. Information placed in the object code by
the assembler permits the link editor to relocate all common segments
independently and make appropriate adjustments to all addresses that
reference locations within common segments. Locations within a com­
mon segment may be referenced by several different programs if each
program contains a CSEG directive with the same operand or no oper­
and.

CSEG

Example

Common Segment Directive

COMlA CSEG 'ONE'

.
<Common-relocatable section, type 'ONE'>

COM2A

CEND

CSEG

.
'TWO'

<Common-relocatable section, type 'TWO'>

COM2B

COMlC

CEND

CSEG 'ONE'

<Common-relocatable section, type 'ONE'>

COMlB CEND

CSEG

COMlL
COM2L

DATA COMlB-COMlA LENGTH OF SEGMENT 'ONE'
DATA COM2B-COM2A LENGTH OF SEGMENT 'TWO'

The three blocks of code between the CSEG and GENO directives are
common-relocatable.

The first and third blocks are relocatable with respect to one common
relocation type; the second is relocatable with respect to another. The
first and third blocks comprise the common segment 'ONE'; the value
of the symbol COM1 Lis the length in bytes of this segment.

The symbol COM2A is the symbolic address of the first word of the first
word of common segment 'TWO'; COM2B is the common-relocatable
(type 'TWO') byte address of the location following the segment. (Note
that the symbols COM2B and COM1 C are of different relocation types
and possibly different values.) The value of the symbol COM2L is the
length in bytes of common segment 'TWO'.

5-21

DATA

Syntax

Fields

Description

Example 1

Example 2

TEST

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010

0011

0012
0013
0014
0015
0016
0017
0018
0019
0020

0021

0000

0000
0002
0004
0006
0008
OOOA
oooc
OOOE
0010
0012
0014

0014
0014
0016
0018
OOlA
OOlC

Initialize Word Directive DATA

[<label>]

Label

DATA <exp>[,<exp>] [<comment>]

Optional; if used, the label is assigned the location where
the assembler places the first word.

Operand Contains one or more expressions separated by commas.
The assembler evaluates each expression and places the
value in a word as a 16-bit number. Words are stored
most significant byte first, i.e., at the lower address.

Comment Optional

DATA places one or more values in one or more successive 2-byte
words of memory.

KONSl DATA 3200,l+'AB' ,-'AF',>F4AO,'A'

This example initializes five words, starting with a word at location
KONS1. The contents of the resulting words are >OC80, >4143,
>BEBA, >F4AO, and >0041.

In a DATA directive statement with an operand of multiple fields, the
assembled value of the location counter symbol ($) will not be cor­
rectly calculated if the $ is not in the first field {i.e., a correct value will
be calculated for$ if it is in the first field of the DATA statement.) The
following example shows both cases. This example is for assembler re­
vision 2.1.

7000 FAMILY MACRO ASSEMBLER DX2.1
7/25/84

83.074 15:23:38

PAGE 0001

0009
0008
0004'
0006'
0008
0009
OOOF'
0008
0008
0015'

0009
0008
0014'
0008
OOlD'

* This is an example which produces *
* correct values ror $. *

IDT
DATA
DATA
DATA
DATA

DATA

DATA
DATA

'TEST $'
9
8
$
$,8,9

$+3,7+1

7+1
$+3

CORRECT VALUE FOR $$
CORRECT VALUE FOR

CORRECT VALUE FOR $

CORRECT VALUE FOR $

* This is an example which produces *
* incorrect values for $ *

DATA 9,8,$ INCORRECT VALUE FOR $

DATA 7+1,$+3 INCORRECT VALUE FOR $

0022 END
NO ERRORS, NO WARNINGS

5-22

DEF

Syntax

Fields

Description

Example

External Definition Directive DEF

[<label>] DEF <symbol>[,<symbol>] [<comment>]

Label Optional; if used, the label assumes the current value of
the Location Counter.

Operand Contains one or more symbols, separated by commas, to
be defined in the program being assembled.

Comment Optional

DEF makes one or more symbols available to other programs for refer­
ence. All symbols used in the DEF statement must be defined in the
same module.

DEF ENTER,ANS

This example causes the assembler to include symbols ENTER and ANS
in the object code; these symbols are available to other programs.

5-23

DENO

Syntax

Fields

Description

5-24

Data Segment End Directive DENO

[<data>] DENO [<comment>]

Label Optional; if used, the label is assigned the value of the
Location Counter before modification.

Opernnd Not used

Comment Optional

DENO terminates a block of data-relocatable code and defines suc­
ceeding locations as program-relocatable. One of two values is placed
in the Location Counter:

1) The maximum value attained by the Location Counter as a result
of assembling the preceding block of program-relocatable code

2) Zero, if no program-relocatable code was previously assembled

If encountered in common-relocatable or program-relocatable code,
DENO functions as a CEND or PEND, and the assembler issues a
warning message. Like CEND and PEND, DENO is invalid in absolute
code.

DORG

Syntax

Fields

Descriptio.n

Example 1

Example 2

Dummy Origin Directive DORG

[<label>] DORG [<exp> [<comment>]]

Label

Operand

Optional; when used, the label is assigned the same value
that is placed in the Location Counter.

Optional; when used, it contains an expression <exp> that
can be either absolute or relocatable. Any symbol in the
expression must have been previously defined.

When the operand field is absolute, the Location Counter
is assigned the absolute value. When the operand is relo­
catable, the Location Counter is assigned the relocatable
value and the same relocation type as the operand. When
this occurs, space is reserved in the section that has that
relocation type.

Comment Optional

DORG loads the Location Counter with the beginning address of a
dummy block or section. This address is specified by the operand. The
assembler does not generate code for a dummy section, but operates
normally in all other respects. The symbols that describe the dummy
section layout are available when the remainder of the program is as­
sembled.

DORG 0

The assembler assigns values relative to the start of the dummy section
to the labels within the dummy section. This example is appropriate for
defining a data structure. The executable portion of the module (fol­
lowing the RORG directive) should use the labels of the dummy section
as relative addresses. In this manner, the data is available to the proce­
dure regardless of the memory area into which the data is loaded.

RORG 0

(code as desired)

DORG $

(data segment)

END

This is appropriate for the executable portion (procedure division) of a
procedure that is common to more than one task. The code corre­
sponding to the dummy section must be assembled in another program
module. In this manner, separate data portions (dummy sections) are
available to the procedure portion.

The DORG directive may also be used with data-relocatable or com­
mon-relocatable operands to specify dummy data or common segments.

5-25

DORG

Example 3

5-26

LABl

MASK

Dummy Origin Directive DORG

CSEG 'COMl'

DORG $

DATA $

DATA >FOOO

CEND

"$" has a common-relocatable
value

In this example, no object code is generated to initialize the common
segment COM1, but space is reserved and all common-relocatable la­
bels describing the structure of the common block (including LAB1 and
MASK) are available for use throughout the program.

DSEG

Syntax

Fields

Description

Example

Data Segment Directive DSEG

[<label>] DSEG [<comment>]

Label Optional; if used, the label is assigned the data-relocatable
value placed in the Location Counter.

Operand Not used

Comment Optional

DSEG begins a block of data-relocatable code at the address in the Lo­
cation Counter. Data-relocatable blocks comprise the data segment of
a program. The data segment can be relocated independently of the
program segment at link-edit time. This separates modifiable data from
executable code.

A data-relocatable block is normally terminated by a DEN D directive. It
can also be terminated by a PSEG, CSEG, AORG, or END directive. The
PSEG and DEN D directives identify succeeding locations as program­
relocatable. The CSEG and AORG directives terminate the data segment
by beginning a common or an absolute segment, respectively. The END
directive terminates the data segment and the program.

The Location Counter is initially set to zero.

RAM DSEG Start of data area

.
<Data-relocatable code>

ERAM DEND

LRAM EQU ERAM-RAM

The block of code between the DSEG and DENO directives is data­
relocatable. RAM is the symbolic address of the first word of this block;
ERAM is the data-relocatable byte address of the location following the
code block. The value of the symbol LRAM is the length in bytes of the
block.

5-27

END

Syntax

Fields

Description

Example

5-28

Program End Directive END

[<label>] END [<symbol> [<comment>]]

Label Optional; if used, the label assumes the current value of
the Location Counter.

Operand Optional; when used, the operand contains a program­
relocatable or absolute symbol that specifies the program
entry-point. If the operand is not used, no entry point is
placed in the object code.

Comment Optional; may only be used with the operand field.

END terminates the assembly. It should be the last source state­
ment of a program. Any source statements following the END di­
rective are considered part of the next assembly.

END START

This example terminates program assembly. The assembler also places
the value of ST ART in the object code as an entry point.

EQU

Syntax

Fields

Description

Example 1

Example 2

Define Assembly-Time Constant Directive EQU

<label> EQU <exp> [<comment>]

Label A symbol that will be assigned the operand's value.

Operand An expression whose value is assigned to the label.

Comment Optional

EQU assigns a value to a symbol.

Note:

<exp> may not contain a REF'd symbol or forward references.

SUM EQU RS

This example assigns an absolute value to the symbol SUM, making
SUM available to use as a register address. A register should always be
defined before it is used.

TIME EQU HOURS

This example assigns the value of the previously defined symbol
HOURS to the symbol TIME. When HOURS appears in the label field
of a machine instruction in a relocatable block of the program, the value
is a relocatable value. The two symbols may be used interchangeably.
Symbols in the operand field must be previously defined.

5-29

EVEN

Syntax

Fields

Description

Example

5-30

Even Boundary Directive EVEN

[<label>] EVEN [<comment>]

Label Optional; if used, the label is assigned the value in the
Location Counter after the directive is processed.

Operand Not used

Comment Optional

EVEN places the Location Counter on the next word boundary (even
byte address). When the Location Counter is already on an even
boundary, the Location Counter is not altered.·

WRFl EVEN

Assures that the Location Counter contains an even boundary address
and assigns the Location Counter address to label WRF1.

IDT

Syntax

Fields

Description

Example

Program Identifier Directive IDT

[<label>] IDT '<string>' [<comment>]

Label Optional; if used, the label is assigned the current value
of the Location Counter.

Operand Contains the module name <string>, a character string of
up to eight characters enclosed in single quotes. The as­
sembler truncates strings that are longer than eight char­
acters and prints a truncation error message.

Comment Optional

I OT assigns a name to the object module produced.

IDT 'CONVERT'

This example assigns the name CONVERT to the module being assem­
bled. The module name is printed in the source listing as the operand
of the I OT directive and appears in the page heading of the source list­
ing. The module name is also placed in the object code and is used by
the link editor for automatic entry-point resolution. A routine whose
entry point is to be automatically resolved by the link editor must be
declared as the 'string' on the IDT statement for that module. The entry
point must also be REF'd in this case.

Note:

Although the Assembler accepts lowercase letters and special char­
acters within the quotes, ROM loaders (for example) will not.
Therefore, only uppercase letters and numerals are recommended.

5-31

LIST

Syntax

Fields

Description

5-32

Restart Source Listing Directive LIST

[<label>] LIST [<comment>]

Label Optional; if used, the label assumes the current value of
the Location Counter.

Operand Not used

Comment Optional; if used, the assembler does not print the com­
ment.

LIST restores printing of the source listing after it was cancelled by a
UNL directive. This directive is not printed in the source listing, but the
line counter increments.

LOAD

Syntax

Fields

Description

Example

Force Load Directive LOAD

[<label>] LOAD <symbol>[,<symbol>] [<comment>]

Optional Label

Operand Contains one or more symbols, separated by commas, to
be used in the operand field of a subsequent source
statement.

Comment Optional

The LOAD directive is like a REF, but the symbol does not need to be
used in the module containing the LOAD. The symbol used in the
LOAD must be defined ih some other module. LOADs are used with
SREFs. If one-to-one matching of LOAD and DEF symbols does not
occur, then unresolved references will occur during link editing.

MODULE A1 MODULE A2. MODULE A3

LOAD C, D LOAD C LOAD E, F

l
-

•
MODULE B +

SREF C, D, E, F
DATAC
DATA D
DATAE
DATA F

l l 1
DEF C DEF D DEF E DEF F

MODULE C MODULE D MODULE E MODULE F

Module A1 uses a branch table in module B to obtain one module
C, D, E, or F.
Module A1 knows which of module C, D, E, and Fit requires.
Module B has an SREF for C, D, E, and F.
Module C has a DEF for C.
Module D has a DEF for D.
Module E has a DEF for E.
Module F has a DEF for F.
Module A1 has a LOAD for the modules C and D it needs.
Module A2 has a LOAD for the module C it needs.
Module A3 has a LOAD for the modules E and F it needs.

5-33

LOAD

5-34

Force Load Directive LOAD

The LOAD and SREF directives permit module B to be written to handle
a highly involved case and still be linked together without unnecessary
modules since A1 only has LOAD directives for the modules it needs.

When a link edit is performed, automatic symbol resolutions will pull in
the modules appearing in the LOAD directives.

If the link control file included A1 and A2, modules C and D would be
pulled in while modules E and F would not be pulled in. If the link
control file included A3, modules E and F would be pulled in while
modules C and D would not be pulled in. If the link control file included
A2, module C would be pulled in while modules D, E, and F would not
be pulled in.

MLIB

Syntax

Fields

Description

Example 1

Example 2

Define Macro Library Directive MLIB

[<label>] MLIB '<pathname>' [<comment>]

Label Optional; if used, the label assumes the current value of
the Location Counter.

Operand Contains the pathname, a character string of up to 48
characters enclosed ih single quotes. Longer strings pro­
duce truncation error messages.

Comment Optional

The M LIB directive provides the assembler with the name of a library
containing macro definitions. The operand is a directory pathname
(constructed according to the host operating system conventions) en­
closed in single quotes (see IDT and TITL directives). This directive is
defined only for hosts that support libraries on hard disks.

Note:

Neither the assembler nor its runtime support have access to the
operating system's synonym table, and so cannot expand path­
names. The use of synonyms prevents finding any macros in that
library.

MLIB 'MYVOLUME.MACDIR.CMPXMACS.NEWMACS'
MLIB 'USER32.BIGPROJ.MYTASK.MACROS'

This example causes the macro function, when the program finds a
macro call SUBMAC (not previously defined), to search first for a file
named USER32.BIGPROJ.MYTASK.MACROS.SUBMAC, and then if
that file isn't found, to search for a file named MYVOLUME. MACDIR. -
CMPXMACS . NEWMACS . SUBMAC I in that order.

On a VAX/VMS system, a pathname would be specified as follows:

MLIB 'DRCO: [MOORE.ASM32] I

The following program segment illustrates macro library use for an
MS/PC-DOS system.

MLIB 'E:' Pathname must be a drive name
Typical assembly code

XMAC First macro call

YMAC Another macro call

END

The assembler will search the drive specified by the MLIB directive for
a file with the same name as the macro. The macro name cannot have
an extension. Only one macro is allowed per file.

5-35

OPTION

Syntax

Fields

Description

5-36

Output Options Directive OPTION

OPTION <option-list>

Label Not used

Operand <option-list> (see preceding Description)

Comment Not used

OPTION selects several options for the assembler listing output. The
<option-list> operand is a list of keywords separated by commas. Each
keyword selects one of the following listing features:

BUNLST:
DUNLST:
TUNLST:
FUNLST:
XREI=:
NO UST:
SVMLST:

Limit the listing of BYTE directives to one line
Limit the listing of DATA directives to one line
Limit the listing of TEXT directives to one line
Turn off all unlist options
Produce a symbol cross-reference listing
Inhibit all listing output (this overrides the LIST directive)
Produce a symbol listing in the object file, no symbols are
put in the listing file

PAGE

Syntax

Fields

Description

Example

Eject Page Directive PAGE

[<page>] PAGE [<comment>]

Label Optional; if used, the label assumes the current value of
the Location Counter.

Operand Not used

Comment Optional; if used, the assembler does not print the com­
ment.

PAGE prints the source program listing on a new page. The PAGE di­
rective is not printed in the source listing, but the line counter incre­
ments.

PAGE

The assembler begins a new page of the source listing. The next source
statement is the first statement listed on the new page. Using the PAGE
directive to separate source listing into logical divisions improves pro­
gram documentation.

5-37

PEND

Syntax

Fields

)escription

5-38

Program Segment End Directive PEND

[<label>] PEND [<comment>]

Label Optional; if used, the label is assigned the value of the
Location Counter before modification.

Operand Not used

Comment Optional

The PEND directive is the program-segment counterpart of the DENO
and CEN D directives. It begins a section of program-relocatable code
at the address in the Location Counter. The value placed in the Location
Counter is the maximum value it attained by assembling all preceding
program-relocatable code. It is invalid when used in absolute code.

PSEG

Syntax

Fields

Description

SEQUENCE l

DSEG

.

Program Segment Directive PSEG

[<label>] PSEG [<comment>]

Label Optional; if used, the label is assigned the value placed in
the Location Counter.

Operand Optional

Comment Optional

PSEG begins a program-relocatable segment at the address in the Lo­
cation Counter. The Location Counter is set to one of the following
values:

The maximum value the Location Counter has attained by assem­
bling any preceding block of program-relocatable code.

Zero, if no program-relocatable code was previously assembled.

The PSEG directive is the program-segment counterpart of the DSEG
and CSEG directives. Together, the three directives provide a consistent
method of defining the various types of relocatable segments. The fol­
lowing sequences of directives are functionally equivalent.

SEQUENCE ~

DSEG

<Data-relocatable code> <Data-relocatable code>

DEND
CSEG

.
<Common-relocatable code>

CEND
PSEG

<Program-relocatable code>

PEND

END

.
CSEG

.
<Common-relocatable code>

PSEG

.
<Program-relocatable code>

END

5-39

REF

Syntax

Fields

Description

Example

5-40

External Reference Directive REF

[<label>] REF <symbol>[,<symbol>] [<comment>]

Label

Operand

Optional; if used, the label assumes the current value of
the Location Counter.

Contains one or more symbols, separated by commas, to
be used in the operand field of a subsequent source
statement.

Comment Optional

REF provides access to one or more symbols defined in other programs.
If a symbol is listed in the REF statement, then a corresponding symbol
must also be present in a DEF statement in another source module. If
the symbol is not defined in another module, then an error occurs at link
edit time. The system generates a summary list of all unresolved refer­
ences.

REF ARG1,ARG2

This example causes the assembler to include symbols ARG1 and ARG2
in the object code so that the corresponding addresses may be obtained
from other programs.

RORG

Syntax

Fields

Description

Example 1

Relocatable Origin Directive RORG

[<label>] RORG [<exp> [<comment>]]

Label Optional; if used, the label is assigned the same value that
is placed in the Location Counter.

Operand Optional; when used, the operand must be a relocatable
expression (<exp>). It can only contain previously de­
fined symbols.

Comment Optional; may only be used with the operand field.

RORG places a value in the Location Counter. If encountered in abso­
lute code, RORG also defines succeeding locations as program­
relocatable. The operand usually specifies the value placed in the
Location Counter. If the operand is not used, the Location Counter is
replaced by:

The current maximum length of the program segment of the pro­
gram, if RORG appears in absolute or program-relocatable code.
The maximum length of the data segment if RORG appears in
data-relocatable code.
The maximum length of the common segment if RORG appears in
common -relocatable code.

The length of the program-, data-, or common-relocatable segment, at
any time during assembly, is determined by either of the following:

1) The maximum value the Location Counter has ever attained as a
result of the assembly of any preceding block of relocatable code.

2) Zero, if no relocatable code has been previously assembled.

Since the Location Counter begins at zero, the length of a segment and
the next available address within that segment are identical.

If RORG appears in absolute code, a relocatable operand must be pro­
gram-relocatable. In relocatable code, the operand's relocation type
(data, common, or program) must match that of the current location
counter.

In absolute code RORG places the operand value in the Location
Counter and changes the Location Counter's relocation type to pro­
gram-relocatable. In relocatable code RORG places the operand value
in the Location Counter but does not change the Location Counter's
relocation type.

RORG $-10 Overlay ten bytes

The $ symbol contains the value of the current location. This example
sets the Location Counter to the current location less ten bytes. The
instructions and directives following the RORG directive replace the ten
previously assembled words of relocatable code, permitting correction
of the program without removing source records. If a label had been
included, the label would have been assigned the value placed in the
Location Counter.

5-41

RORG

Example 2

5-42

Relocatable Origin Directive RORG

SEG2 RORG

The Location Counter contents depend upon preceding source state­
ments. Assume that after defining data for a program that occupies >44
bytes, an AORG directive initiates an absolute block of code. The ab­
solute block is followed by the RORG directive from the preceding ex­
ample. This places >0044 in the Location Counter and defines the
Location Counter as relocatable. Symbol SEG2 is a relocatable value,
>0044. The RORG directive from the above example would have no
effect except at the end of an absolute block or a dummy block.

SREF

Syntax

Fields

Description

Example

Secondary External Reference Directive SREF

[<label>] SREF <symbol>[,<symbol>] [<comment>]

Label Optional; if used, the label assumes the current value of
the Location Counter.

Operand Contains one or more symbols, separated by commas, to
be used in the operand field of a subsequent source
statement.

Comment Optional

SREF provides access to one or more symbols defined in other pro­
grams. Unlike REF, SREF does not require a symbol to have a corre­
sponding symbol listed in a DEF statement of another source module.
The SREF'd symbol will be an unresolved reference but no error mes­
sage will be produced.

SREF ARG1,ARG2

This example causes the link editor to include symbols ARG1 and ARG2
in the object code so that the corresponding addresses may be obtained
from other programs.

5-43

TEXT

Syntax

Fields

Description

Example 1

Example 2

5-44

Initialize Text Directive TEXT

[<label>] TEXT [-]'<string>' [<comment>]

Labei Optional; if used, the label is assigned the location where
the assembler places the first character.

Operand Contains a character string of up to 52 characters enclosed
in single quotes; it may be preceded by a unary minus
sign.

Comment Optional

TEXT places one or more characters in successive bytes of memory. The
assembler negates the last character of the string when the string is
preceded by a minus (-) sign (unary minus).

MSGl TEXT 'EXAMPLE' Message heading

This example places the 8-bit ASCII representations of the characters in
successive bytes. When the Location Counter is on an even address, the
result is >4558, >4140, >504C, and >45xx. >xx, the contents of the
rightmost byte of the fourth word, are determined by the next source
statement. The label MSG1 is assigned the value of the first byte ad­
dress, containing >45.

MSG2 TEXT -'NUMBER'

When the Location Counter is on an even address, the result is >4E55,
>4042, and >45AE. The label MSG2 is assigned the value of the byte
address in which >4E is placed.

TITL

Syntax

Fields

Description

Example

Page Title Directive TITL

[<label>] TITL '<string>' [<comment>]

Label Optional; if used, the label assumes the current value of
the Location Counter.

Operand Contains the title (<string>), a character string of up to
50 characters enclosed in single quotes. The assembler
truncates a string longer than 50 characters and prints a
truncation error message.

Comment Optional; the assembler does not print the comment but
does increment the line counter.

TITL supplies a title to be printed in the heading of each page of the
source listing. The title is printed on the next page after TITL is proc­
essed, and on subsequent pages until another TITL directive is proc­
essed. The TITL directive must be the first source statement submitted
to the assembler if a title heading is desired on the listing's first page.
This directive is not printed in the source listing.

TITL '**REPORT GENERATOR**'

This example prints the title **REPORT GENERATOR** in the page
headings of the source listing.

5-45

UNL

Syntax

Fields

Description

5-46

Stop Source Listing Directive UNL

[<label>] UNL [<comment>]

Label Optional; if used, the label assumes the value of the Lo­
cation Counter.

Operand Not used

Comment Optional; if used, the assembler does not print the com­
ment.

UNL halts the source listing output until a LIST directive is processed.
It is not printed in the source listing, but the source line counter is in­
cremented. This directive is frequently used in MACRO definitions to
inhibit the listing of the macro expansion. It is useful for reducing as­
sembly time and the size of the source listing.

The TMS7000 Assembler - Symbolic Addressing Techniques

5.6 Symbolic Addressing Techniques

The assembler processes symbolic memory addresses for addressing registers.

The following example illustrates this type of coding:

SUM EQU R33 Assign SUM for
register 33

QUAN EQU R34 Assign QUAN for
register 34

ADD QUAN,SUM Add QUAN to SUM
* Store in SUM

The two initial EQU directives assign meaningful labels to be used as register
addresses in the subroutine.

5-47

The TMS7000 Assembler - Assembler Output

5.7 Assembler Output

This section discusses assembler output, including source listings, error mes­
sages, a cross reference listing, and object code.

5.7.1 Source Listing

5-48

A source listing shows source statements and the object code they produce.

Each page of the source listing has a title line at the top. Any title supplied
by a TITL directive is printed on this line. A page number is printed to the right
of the title. A blank line follows the title line; subsequent lines contain the
assembled source statements. Each assembled source statement contains a
source statement number, a program counter value, the object code assem­
bled, and the source statement as entered. If a source statement produces
more than one byte of object code, the assembler prints the program counter
value and object code on a separate line for each additional byte. Each added
line is printed following the source statement line .

1

0018 Fl56 42
F157 OA
Fl58 05

.2.

MOV RlO,RS

The source statement number, 0018 in the example, is a 4-digit decimal
number. Source records are numbered in the order in which they are entered
including those source records that are not printed in the listing (TITL, LIST,
UNL, and PAGE directives are not listed; source records between a UNL di­
rective and a LIST directive are not listed). The difference between two con­
secutive source record numbers indicates if a source record was entered but
not listed.

The next field on a line of the listing contains the program counter value
(hexadecimal). In the example, F156 is the program counter value. Not all
directives affect the program counter; the field is blank for those directives that
do not affect it (the IDT, REF, DEF, EQU, SREF, and END directives leave th.e
program counter field blank).

The third field normally contains a single blank. However, the assembler
places a dash in this field when warning errors are detected.

The fourth field contains the hexadecimal representation of the object code,
420A05 in the preceding example. Note that the assembler produces a line
containing the program counter value and the assembled object code for each
byte of object code. All machine instructions and the BYTE, DATA, and TEXT
directives use this field for object code. The EQU directive places the value
corresponding to the label in the object code field.

The fifth field contains the characters of the source statement as they were
scanned by the assembler. Spacing in this field is determined by the spacing
in the source statement. The four source statement fields will be aligned in the
listing only when they are aligned in the source statements or when tab char­
acters are used.

The TMS7000 Assembler - Assembler Output

5.7 .2 Normal Completion Error Messages

The assembler issues two types of error messages: normal completion mes­
sages and abnormal completion messages (Section 5.7.3). When the assem­
bler completes an assembly, it indicates any errors it encounters in the
assembly listing. The assembler indicates errors following the source line in
which they occur. At the end of a module (IDT-END pair), the corresponding
messages are printed.

Table 5-3 lists error, warning, and information messages.

Table 5-3. Assembly Listing Errors

NONFATAL ERRORS

MESSAGE EXPLANATION/RESPONSE

WARNING - 'CEND' ASSUMED This is a warning that the following two state-
WARNING - 'DENO' ASSUMED ments will produce:
WARNING - 'PEND' ASSUMED CSEG 'DATA'
WARNING - 'DSEG' ASSUMED DSEG
WARNING - SYMBOL TRUNCATED The maximum length for a symbol is six characters.

WARNING - STRING TRUNCATED Check the syntax for the directive in question to
determine the maximum length for the string.

WARNING - TRAILING OPERAND(S)

WARNING - BYTE VALUE TRUNCATED A value that is to be used as a byte value was lar-
ger than can be loaded into a byte.

**LAST WARNING

FATAL ERRORS

MESSAGE EXPLANATION/RESPONSE

ABSOLUTE VALUE REQUIRED
DISPLACEMENT TOO BIG An instruction with an operand with a fixed upper

limit was encountered that overflowed this limit.

INVALID EXPRESSION This may indicate invalid use of a relocatable
symbol in arithmetic.

EXPRESSION OUT OF BOUNDS There is a range limit for the value being used that
was exceeded.

DUPLICATE DEFINITION The symbol appears as an operand of a REF state-
ment, as well as in the label field of the source,
OR, the symbol appears more than once in the la-
bel field of the source.

INVALID RELOCATION TYPE The type of variable isn't relocatable.

INVALID OPCODE The second field of the source record contained
an entry that is not a defined instruction, directive,
pseudo-op, DXOP, DFOP, or macro name.

INVALID OPTION The option given in the OPTION directive are in-
valid.

INVALID REGISTER VALUE The given register value is too large or too small.

5-49

The TMS7000 Assembler - Assembler Output

Table 5-3. Assembly Listing Errors (Concluded)

FATAL ERRORS (CONTINUED)

MESSAGE EXPLANATION/RESPONSE

INVALID SYMBOL The symbol being used has invalid characters in it.

VALUE TRUNCATED The value used was too big for the field, so it has
been truncated.

SYMBOL USED IN BOTH REF AND DEF Symbol cannot be both referenced and defined in
the same module.

COPY FILE OPEN ERROR File does not exist or is already being used.

EXPRESSION SYNTAX ERROR Unbalanced parentheses OR invalid operations on
relocatable symbols.

INVALID ABSOLUTE CODE DIRECTIVE The directive PEND, DENO and CEND have no
meaning in absolute code.

LABEL REQUIRED BLANK MISSING A blank is needed but one was not found. (Usu-
ally the blank is required in column 1.)

COMMA MISSING Expected a comma but did not find one. Usually
means that more operands were expected.

COPY FILENAME MISSING
INDIRECT(") MISSING The indirect addressing (") was needed.

SYMBOL REQUIRED
OPERAND MISSING There was no operand field.

REGISTER REQUIRED A register should be used rather than a label or an
absolute number.

CLOSE(') MISSING
STRING REQUIRED TEXT directive used with no text following.

PASS1 /PASS2 OPERAND CONFLICT The symbols in the symbol table did not have the
same value in PASS1 and PASS2. Registers and
peripheral files should be defined before they are
used in an instruction. This error is also produced
when the BSS directive is used to define a register
name; use EQU instead.

SYNTAX ERROR

UNDEFINED SYMBOL The symbol being used has not been REF'ed or it
has been DEF'ed but not used.

DIVIDE BY ZERO
ILLEGAL SHIFT COUNT The shift count being asked for is not valid.
CANNOT INDEX BY REGISTER ZERO

INFORMATION MESSAGES

MESSAGE EXPLANATION/RESPONSE

OPCODES REDEFINED As a result of an MLIB directive, one or more as-
sembler opcodes has been redefined by a MACRO
within a MACRO directory. You should take action
if this is not intended.

MACROS REDEFINED As a result of an MLIB directive, one or more cur-
rently defined macros has been redefined by a
MACRO (of the same name) with a MACRO di-
rectory. You should take action if this is not in-
tended.

5-50

The TMS7000 Assembler - Assembler Output

5.7.3 Abnormal Completion Error Messages

Most abnormal completion error messages are issued by the operating system
under which the assembly runs (messages in this category include those
concerned with file 1/0 errors). Refer to the applicable operating system ref­
erence manual for detailed information. Table 5-4 lists the abnormal error
messages.

Table 5-4. Abnormal Completion Error Messages

UNEXPECTED END OF PARSE

ERROR MAPPING PARSE - ASSEMBLER BUG

INVALID OPERATION ENCOUNTERED

NO OPCODE

INVALID LISTING ERROR ENCOUNTERED

SYMBOL TABLE ERROR

INVALID LIB COMMAND ID

UNKNOWN ERROR PASSED, CODE= XXXX

5-51

The TM 87000 Assembler - Assembler Output

5.7.4 Cross-Reference Listing

5-52

The assembler prints an optional cross-reference listing following the source
listing, as specified by the assembler OPTION directive. The format of the
listing is shown in Figure 5-2.

LABEL VALUE DEFN REFERENCES
----- ----- ----------
ADDT 01A8 0325 0314

ADSR D OlAO 0316 0342 0343 0348 0349

GT 0006 0997

OBTCHN R 0088

SQUIB U 0127 0233

Figure 5-2. Cross-Reference Listing Format

As Figure 5-2 shows,

The assembler prints each symbol defined or referenced in the assembly
in the label column. If a single character follows the symbol, it repres­
ents the symbol attribute. These symbol-attribute characters and their
meanings are listed in Table 5-5.

The second (value) column contains a four-digit hexadecimal number,
the value assigned to the symbol. The number of the statement that
defines the symbol appears in

the third (definition) column. This column is left blank for undefined
symbols.

The fourth (reference) column lists the source statement numbers that
reference the symbol. A blank in this column indicates that the symbol
was never used.

Table 5-5. Symbol Attributes

CHARACTER MEANING

R External reference (REF)

D External definition (DEF)

u Undefined

M Macro name

s Secondary reference (SREF)

L Force load (LOAD)

The TM S7000 Assembler - Object Code

5.8 Object Code
The assembler produces object code that may be linked to other code modules
or programs, and loaded directly into the computer. Object code consists of
records containing up to 71 ASCII characters. You can correct record data
manually for simple temporary changes for debugging. This prevents a
lengthy re-assembly but it causes problems if you don't update the source.
Figure 5-3 shows an example of object code.

SAMPLE 1 - ACTUAL CODE OUTPUT

KOOOOTESTPROG9F006B327BBB5ABB0002BCAFBB5246BODA2BOOOOBA242B02A27Fll3F
B2003BA2FFB09A2BFFOBBA222BOAA2B4408B5208BD502BA2FOBOBCFBE32EB78047FOF6F
B0292BOA80B0AA2BOOOAB230FBE2EFBD202BBDE7BFB4DB0203BE206B4202B03727Fl27F
B1004B7D02B04E7B03DAB04DOBE205BD204B7401B050AB72FFB030A9F862*0B7FlDSF
9FFF4BF862BF862BF862BF862BF862BF0067F7A4F

TESTPROG 11/28/84 15:59: 3 ASMMLP 2.1 83.074

SAMPLE 2 - EXPANDED CODE WITH KEYS (REFERENCE ONLY)

KOOOOTESTPROG9F006B327BBB5ABB0002BCAFBB5246BODA2B0000BA242B02A27Fll3F
1 2 3 4 ·5 6 7 a 9 io
*88BF800B71EFBF788BF822B71EF*88BF848B71EF*88BF871B71EFBF788BF89781111F
11 ' 12 13
BFFACB9C019FFFEBF8C47FAD1F

14 15
TESTPROG 11/28/84 15:59: 3 ASMMLP 2.1 83.074

16

1) K - Begins each program
2) 0000 - Bytes of relocable code, always 0 for final linked code
3) TESTPROG - Name from the I OT statement of the program
4) 9 - Address follows
5) F006- Beginning address
6) B - 16-bit word follows
7) 327B - 16-bit word •. MSB first
8) . 7 - Checksum follows .
9) F113 - Checksum (2's complement of the sum of all ASCII characters prior to and including

the 7 tag)
10) F- End of line
11) * - 8-bit byte to follow
12) 8 - Ignore checksum - useful when object code patching
13) 1111 - Any 4 numbers can follow an 8 tag
14) 9 - Address follows
15) FFFE - Address of vector area
16) : - Last line of object module

Note: Table 5-6 provides an explanation of the tag characters.

Figure 5-3. Sample Object Code

5-53

The TMS7000 Assembler - Object Code

5.8.1 Object Code Format

TAG

Formatted object code contains records made up of fields sandwiched be­
tween tag characters. The specific tag character, defined by the assembler or
linker, specifies the function of the fields with which it is associated. A tag
character occupies the first position on each line of object code and identifies
the fields it precedes to the loader. Table 5-6 details the various tag characters
and their associated fields. Table 5-7 lists field and tag character information.

Table 5-6. Tag Characters

CHARACTER DESCRIPTION

5-54

K Placed at the beginning of each program; followed by two fields.

Fields
- Field one contains the number of bytes of program relocatable code.
- Field two contains the program identifier assigned to the program by an IDT directive.

When no IDT directive is entered, field two is blank.

The linker uses the program identifier to identify the program, and the number of bytes
of program-relocatable code to determine the load bias for the next module or program.

M Used when data or common segments are defined in the program; followed by three
fields.

Fields
- Field one contains the length, in bytes, of data- or common-relocatable code.
- Field two contains the data or common segment identifier, and field three contains a

"common number." The identifier is a six-character field containing the name $DATA
(padded on the right by one blank) for data segments and $BLANK for blank common
segments. If a named common segment appears in the program, an M tag will appear
in the object code with an identifier field corresponding to the operand in the defining
CSEG directive(s).

- Field three consists of a four-character hexadecimal number defining a unique com­
mon number to be used by other tags that reference or initialize data of that particular
segment. For data segments, this common number is always zero. For common
segments (including blank common), the common numbers are assigned in increas­
ing order, beginning at one and ending with the number of different common seg­
ments. The maximum number of common segments that a program may contain is
127.

1 ,2 Used with entry addresses.

Fields
- The associated field is used by the linker to determine the entry point in which exe­

cution starts when linking is complete.

Tag character 1 is used when the entry address is absolute; tag character 2 when the
address is relocatable. The field lists the address in hexadecimal form.

3,4,X Tag characters 3, 4, and X are used for external references. Tag character 3 is used when
the last appearance of the externally referenced symbol is in program-relocatable code;
tag character 4 when it is in absolute code; and the X tag when it is in data- or com­
mon-relocatable code. Tag characters 3 and 4 are associated with two fields. Tag
character X may identify one additional field.

Fields
- Field one contains the location of the last appearance of the symbol.
- Field two contains the symbol itself.
- Field three is only used to supply the common number for the X tag.

The TM 87000 Assembler - Object Code

TAG
CHARACTER

E

@

5,.6, w

7

9, AS, P

*, B, C, T, N

G, H, J

Table 5-6. Tag Characters (Continued)

DESCRIPTION

Used for external references. An E tag is used when a nonzero quantity is to be added
to a reference.

Fields
- Field 1 identifies the reference by occurrence in the object code (0, 1, 2, ...). In other

words, the value in field one is an index into references identified by 3, 4, V, X, Y and
Z tags in the object code. The list is maintained by order of occurrence (i.e., the first
entry in the list is the symbol located in field two of the first 3, 4, V, X, Y, or Z tag).

- Field 2 contains the value to be added to the reference after the reference is resolved.

Used for external references of an 8-bit value. It serves the same purpose for 8-bit va­
lues that the E-tag serves for 16-bit values.

Used for external definitions. Tag character 5 is used when the location is program­
relocatable. Tag character 6 is used when the location is absolute. Tag character W is
used when the location is data- or common-relocatable. The fields are used by the
linker to provide the desired linking to the external definition.

Fields
- Field one contains the location of the last appearance of the symbol.
- Field two contains the symbol of the external definition.
- Field three of tag character W contains the common number.

Precedes the checksum, and is placed at the end of the set of fields in the record. The
checksum is an error detection word and is formed as the record is being written. It is
the two's complement of the sum of the 8-bit ASCII values of the characters of the re­
cord from the first tag of the record through the checksum tag, 7.

Used with load addresses, required for data words that are to be placed at other than
the next immediate memory addresses. Tag character 9 is used when the load address
is absolute. Tag character A is used when the load address is program-relocatable. Tag
character S is used when the load address is data-relocatable. Tag character P is used
when the load address is common-relocatable.

Fields
- Field one contains the load address.
- Field two is only present for tag character P and contains the common number.

Used with data words. Tag characters * and B are used when the data is absolute (i.e.,
an instruction word or a word that contains text characters or absolute constants). Tag
* is used for absolute byte data (8 bits) and B is used for absolute word data (16 bits).
Tag character C is used for a word that contains a program-relocatable address. Tag
character T is used for a word that contains a data-relocatable address. Tag character
N is used for a word that contains a common-relocatable address.
Fields
- Field one contains the data word. The linker places the data word in the memory

location specified in the preceding load address field or in the memory location that
follows the preceding data word.

- Field two is only used with N and contains the common number.

Used when the symbol table option is specified. Tag character G is used when the lo­
cation or value of the symbol is program-relocatable, tag character H is used when the
location or value of the symbol is absolute, and tag character J is used when the lo­
cation or value of the symbol is data- or common-relocatable.

Fields
- Field one contains the location or value of the symbol.
- Field two contains the symbol to which the location is assigned.
- Field three is used with tag character J only and contains the common number.

5-55

The TMS7000 Assembler - Object Code

Table 5-6. Tag Characters (Concluded)

TAG
CHARACTER DESCRIPTION

5-56

U Generated by the LOAD directive. The symbol specified is treated as if it were the value
specified in an INCLUDE command to the linker.
Fields
- Field one contains zeros.
- Field two contains the symbol for which the loader will search for a definition.

V, Y, Z Used for secondary external references. Tag character V is used when the last appear­
ance of the externally referenced symbol is in program-relocatable code; tag character
Y when it is in absolute code; and the Z tag when it is in data- or common-relocatable
code. Tag characters V and Y are associated with two fields. Tag character Z may
identify one additional field.

Fields
- Field one contains the location of the last appearance of the symbol.
- Field two contains the symbol itself.
- Field three is only used to supply the common number for the Z tag.

8 Also associated with the checksum field, but used when the checksum field is to be
ignored.

D Specifies a load bias. Its lone associated field contains the absolute address that will
be used by a loader fo relocate object code. The Link Editor does not accept the D tag.

F Placed at the end of the record. It may be followed by blanks.

The end of each record is identified by the tag character 7 followed by the
checksum field and the tag character F (this data is described above). The
assembler fills the rest of the record with blanks and a sequence number and
begins a new record with the appropriate tag character.

The last record of an object module has a colon (:) in the first character posi­
tion of the record, followed by blanks or time and date identifying data.

Table 5-7 defines the object record format and tags.

The TMS7000 Assembler - Object Code

Table 5-7. Object Record Format and Tags

TAG 1ST FIELD 2ND FIELD 3RD FIELD
MODULE DEFINITION

K PSEG Length Pro~am ID (8)
M DSEG Length $DA A 0000
M Blank Common Length $BLANK Common#
M CSEG Le~th Common Name J.61 Common#

ENTRY POINT DEFINITION
1 Absolute Address
2 P-R Address

LOAD ADDRESS
9 ABSOLUTE ADDRESS
A P-R Address
s D-R Address
p C-R Address Common or CBSEG #

DATA
* Absolute 8-bit Value (2)
B Absolute 16-bit Value
c P-R Address
T D-R Address
N C-R Address Common or CBSEG #

EXTERNAL DEFINITIONS
6 Absolute Value symboly~ 5 P-R Address Symbol 6
w D-R/C-R Address Symbol 6 Common#

EXTERNAL REFERENCES
3 P-R Address of Chain Symbol!~ 4 Absolute Address of Chain Symbol 6
x D-R/C-R Address of Chain S mbol 6 Common*

! Symbol Index Number Absolu1e
1

ffset
Mask_.{_2_1 S__y_mbol Index Number Offset 2

SYMBOL DEFINITIONS
G P-R Address SymbolI6a H Absolute Value Symbol 6
J D-R/C-R Address Symbol 6 Common#

FORCE EXTERNAL LINK
u 0000 Symbol lfli:

SECONDARY EXTERNAL REFERENCE
v P-R Address of Chain Entry Symboll1l y Absolute Address of Chain Symbol 6
z D-R/C-R Address of Chain Symbol 6 Common#

CHECK SUM
7 Value

IGNORE CHECK SUM
8 An__y_ Value

LOAD BIAS
D Absolute Address

END OF RECORD
F

END OF OBJECT MODULE

Notes: 1. All field widths are four characters unless otherwise specified by numbers in parenthesis.
2. If the first tag is 01 (hex), the file is in compressed object format.
3. P-R Program segment relative (address)

D-R Data segment relative (address)
C-R Common segment relative (address)

5-57

The TM 87000 Assemlbler - Object Code

5.8.1.1 External References in Object Code

The Link Editor allows the use of external references in the object code. (See
Section 7.)

5.8.1.2 Changing Object Code

5-58

In most cases, changing the object code is not the recommended way to cor­
rect errors in a program. All changes or corrections to a program should be
made in the source code, then the program should be re-assembled. Failure
to follow this procedure can make subsequent program correction or mainte­
nance impossible. The information in the following paragraphs is intended for
those rare instances when re-assembly is not possible. Any changes made
directly to the object code should be thoroughly documented so that the
programmers who come later can see what the program actually does, not
what the source code says that it does.

To correct the object code without re-assembling a program, change the ob­
ject code by changing or adding one or more records. One additional tag
character is recognized by the loader to permit specifying an abolute address
that will be used to relocate object code. The additional tag character, D, may
be used in object records changed or added manually.

Tag character D is followed by a load bias (offset) value. The loader uses this
value instead of the load bias computed by the loader itself. The loader adds
the load bias to all relocatable entry addresses, external references, external
definitions, load addresses, and data. The effect of the D tag character is to
specify that area of memory into which the loader loads the program. The tag
character D and the associated field must be placed ahead of the object code
generated by the assembler.

Correcting the object code may require only changing a character or a word
in an object code record. You may duplicate the record up to the character
or word in error, replace the incorrect data with the correc~ data, and duplicate
the remainder of the record up to the seven tag character. The changes will
cause a checksum error when the checksum is verified as the record is loaded,
so you must:

Change the 7 tag character to an 8 tag character, in which case the
checksum value is ignored,
or
Recalculate the checksum.

When more extensive changes are required, you may write an additional object
code record or records. Begin each record with a tag character 9, A, S, or P,
followed by an absolute load address or a relocatable load address. This may
be an address into which an existing object code record places a different va­
lue. The new value on the new record will override the other value when the
new record follows the other record in the loading sequence. Follow the load
address with a tag character *, B, C, T, or N and an absolute data word or a
relocatable data word. Additional data words preceded by appropriate tag
characters may follow. When additional data is to be placed at a nonsequen­
tial address, write another load address tag character followed by the load
address and data words preceded by tag characters. When the record is full,
or all changes have been written, write tag character F to end the record.

The TMS7000 Assembler - Object Code

When additional relocatable memory locations are loaded as a result of
changes, you must change field one of tag character K, which contains the
number of bytes of relocatable code. For example, if the object field written
by the assembler contained 1 000 hex bytes of relocatable code and you have
added eight bytes in a new object record, additional memory locations will be
loaded. You must find the K tag character in the object code file and change
the value following the tag character from 1000 to 1008; you must also
change the tag character 7 to 8 in that record, or recalculate the checksum.

When added records place corrected data in locations previously loaded, the
added records must follow the incorrect records. The loader processes the
records as they are read from the object file, and the last record that affects a
given memory location determines the contents of that location at execution
time.

The object code records that contain the external definition fields, the external
reference fields, the entry address field, and the final program start field must
follow all other object records. An additional field or record may be added to
include reference to a program identifier. The tag character is 4, and the hex­
adecimal field contains zeros. The second field contains the first six characters
of the IDT character string. External definitions may be added using tag
character 5 or 6 followed by the relocatable or absolute address, respectively.
The second field contains the defined symbol, filled to the right with blanks
when the symbol contains less than six characters.

Note:

Both object code to be linked and object code to be downloaded can be
changed without re-assembling the program. The link editor, though, will
not accept tag character D in changed or added object records.

5-59

The TMS7000 Assembler

5-60

6. Assembly Language Instruction Set

The TMS7000 instruction set contains 61 instructions that control input,
output, data manipulation, data comparison, and program flow. The instruc­
tion set can be divided into eight functional categories:

Arithmetic Instructions
Branch and Jump Instructions
Compare Instructions
Control Instructions
Load and Move Instructions
Logical Instructions
Shift Instructions
1/0 Instructions

Note:

TMS70x2 and TMS70Cx2 devices have 256 bytes of on-chip RAM;
their register locations range from RO-R255. TMS70x0 and TMS70Cx0
devices have 128 bytes of on-chip RAM; their register locations range
from RO-R127.

Topics in this section include:

Section Page
6.1 Definitions .. 6-2
6.2 Addressing Modes ... 6-3
6.3 Instruction Set Overview .. 6-8

6-1

Assembly Language Instruction Set - Definitions

6.1 Definitions

Table 6-1 lists and defines the symbols used in the instruction set.

Table 6-1. TMS7000 Symbol Definitions

SYMBOL DEFINITION SYMBOL DEFINITION

A Register A or RO in Register File B Register B or R1 in Register File

Rn Register n of Register File Pn Port n of Peripheral File (0 :S n :S 255)

s Source operand d Destination operand

Rs Source register in Register File Ps Source register in Peripheral File
(0 :S s :S 255)

Rd Destination register in Register File Pd Destination in Peripheral File
(0 :S d :S 255)

Rp Register pair iop Immediate operand

ST Status Register SP Stack Pointer

PC Program Counter pen Location of the next instruction

$ Current value of Program Counter b Bit number, as in b7 (0 :S b :S 7)

offset Relative Address (offset = ta - pen) ta Target Address {ta = offset + pen)

@ Indicates an address or label % Indicates immediate operand

* Indicates Indirect Register File l<XADDR~ Indicates an extended address
Addressing mode operand

7 Binary number > Hexadecimal number

MSB Most significant byte LSB Least significant byte

MSb Most significant bit LSb Least significant bit

end Condition {) Contents of
~ Is assigned to +- Becomes equal to

[] Indicates an optional entry. < > Indicates something that must be typed
The brackets themselves are not in. For example, <offset> indicates that
entered. an offset must be entered. The brackets

themselves are not entered.

6-2

Assembly Language Instruction Set - Addressing Modes

6.2 Addressing Modes

TMS7000 Assembly Language supports eight addressing modes, listed in
Table 6-2. Addressing modes that use 16-bit operands are sometimes referred
to as extended addressing modes.

Table 6-2. TMS7000 Addressing Modes

ADDRESSING MODE EXAMPLE

Single Register LABEL DEC B
INC R45
CLR R23

Dual Register LABEL MOV B,A
ADD A,R17
CMP R32,R73

Peripheral File LABEL XORP A,P17
MOVP P42,B

Immediate LABEL AND %>C5,R55
ANDP %VALUE,P32
BTJO %>D6,R80,LABEL

Program Counter Relative LABELl JMP LABEL
DJNZ A,LABEL
BTJO %>16,R12,LABEL
BTJOP B,P7,LABEL

Direct Memory LABEL LDA @>F3D4
CMPA @LABEL

Register File Indirect LABEL STA *R43

Indexed LABEL2 BR @LABEL(B)

6-3

Assembly Language Instruction Set - Addressing Modes

6.2.1 Single Register Addressing Mode

Single Register Addressing mode instructions use a single regi·ster that con­
tains an 8-bit operand. The register can be specified as Rn, where n is the
Register File number in the range 0-127 or 0-255, depending upon the
amount of on-chip RAM available.

A and B can denote RO and R1, respectively. Single Register Addressing
mode instructions that use registers A and B are also called implied operand
instructions.

Single Register Addressing mode instructions that specify Rn are called single
operand instructions. Figure 6-1 illustrates the object code generated by a
single operand instruction for the the following cases:

Case 1:

Case 2:

<inst> A
<inst> B
<inst> Rn

CABE 1

(PC)~
CASE 2

(PC)~

(PC+1)~

Figure 6-1. Single Register Addressing Mode Object Code

6.2.2 Dual Register Addressing Mode

6-4

SOURCE

Dual Register Addressing mode instructions use a source and a destination
register that contain 8-bit operands. Assembly language syntax specifies the
source register before the destination register. Figure 6-2 illustrates the byte
requirements for all dual addressing instructions including the unique re­
quirements of the Move instructions using this addressing mode.

A

B

iop

Rs

DESTINATION
A B Rd

2

1

2

2

1

2

2

2

Bytes Needed for
Move Instructions

2

2

3

3

SOURCE A

B

iop

Rs

DESTINATION
A B Rd

2

1

2

2

2 3

2 3

2 3

2 3

Bytes Needed for all
Other Instructions

Figure 6-2. Dual Register Addressing Mode Byte Requirements

Assembly Language Instruction Set - Addressing Modes

6.2.3 Peripheral-File Addressing Mode

Peripheral-File Addressing mode instructions perform 1/0 tasks. Each PF re­
gister is an 8-bit port that can be referred to as Pn.

Four instructions use Peripheral-File Addressing mode:

MOVP,
ANDP,
ORP, and
XORP.

These instructions may use Register A or B as the source register and Pn as
the destination register. MOVP may also be executed using Pn as the source
register and A or B as the destination register. (BT JOP and BT JZP are also
Peripheral-File instructions but they have a different format.) Figure 6-3 il­
lustrates the byte requirements of the instructions using the Peripheral-File
Addressing mode.

DESTINATION DESTINATION
A B Pd Pd

SOURCE A

I I I

2

I

SOURCE Arn
B 2 B 3

iop 3 iop 4

Ps 2 2

Bytes Needed for Bytes Needed for all
ANDP, ORP, and MOVP BTJOP and BTJZP

Instructions Instructions

Figure 6-3. Peripheral-File Addressing Mode Byte Requirements

6.2.4 Immediate Addressing Mode

Immediate Addressing mode instructions use an immediate 8-bit operand. The
immediate operand can be a constant value or a label preceded by a percent
sign (%). The MOVD instruction uses 16-bit immediate operands in two
special formats. Figure 6-4 illustrates the simplest case of an instruction using
this mode.

(PC)~

(PC+1)~

• • •
Figure 6-4. Immediate Addressing Mode Object Code

6-5

Assembly Language Instruction Set - Addressing Modes

6.2.5 Program Counter Relative Addressing Mode

All Jump instructions use Program Counter Relative Addressing mode. The
assembly language source statement for a jump instruction always includes a
target address (ta). The microcomputer uses the target address to calculate
an offset as follows: offset = ta - pen, where pen is the location of the next
instruction and -128 s ra s 127. Figure 6-5 illustrates object code generated
by a Jump instruction.

(PC)~
•
•
N

B v
T
E
8

•

IOP

D

8

•
(PC+n)~

Figure 6-5. Program Counter Relative Addressing Mode Object
Code

6.2.6 Direct Memory Addressing Mode

6-6

Direct Addressing mode instructions use a 16-bit address that contains the
operand. The 16-bit address is preceded by an @sign and can be written as
a constant value or as a label. Figure 6-6 shows how the object code pro­
duced by an instruction using the Direct Memory Addressing mode generates
a 16-bit e'ffective address.

(PC)~

(PC+ 1)--M ADDR MSB

(PC+ 2)--M ADDR LSB

Figure 6-6. Direct Memory Addressing Mode Object Code

Assembly language Instruction Set - Addressing Modes

6.2.1 Register File Indirect Addressing Mode

Register File Indirect Addressing mode instructions use the contents of a reg­
ister pair as a 16-bit effective address. The indirect Register File address is
written as a register number (Rn) preceded by an asterisk (*), i.e.: *Rn. The
LSB of the address is contained in Rn, and the MSB of the address is con­
tained in the previous register (Rn-1). Figure 6-7 shows how the object code
produced by an instruction using Register File Indirect Addressing mode
generates a 16-bit effective address.

(PC)~ Rn-2 ...-----1
Rn-1

(PC + 1) -.i ___ R_n _ _:-------,---+ Rn ,__ __,.

Rn+1

16-BIT
EFFECTIVE
ADDRESS

Figure 6-7. Register File Indirect Addressing Mode Object Code

6.2.8 Indexed Addressing Mode

Indexed Addressing mode instructions generate a 16-bit address by adding
the contents of the B Register to a 16-bit direct memory address. The as­
sembly language statement for the Indexed Addressing mode contains the di­
rect memory address written as a 16-bit constant value or a label, preceded
by an @sign and followed by a B in parentheses: @LABEL(B). The addition
automatically transfers any carries into the MSB. Figure 6-8 illustrates how
the object code produced by an instruction using the Indexed Addressing
mode generates a 16-bit effective address. Do not confuse this mode with the
MOVD (Move Double) instruction's addressing mode.

(PC)~ INDEX

~M ~ MmR Mm ~i--------------«
(PC+2) --+I ADDR LSB ~

Figure 6-8. Indexed Addressing Mode Object Code

18-BIT
EFFECTIVE
ADDRESS

6-7

Assembly Language Instruction Set - Overview

6.3 Instruction Set Overview

6-8

Table 6-3 lists all instruction formats, opcodes, byte lengths, cycles/instruc­
tion, operand types, status bits affected, and an operational description.

The TMS7000 Assembly Language instructions are presented in alphabetical
order following the instruction overview table. All instructions may have op­
tional labels preceding the mnemonic and comments following the operands.
Labels, mnemonics, operands, and comments must be separated by at least
one space:

START MOVP %>00,PO Initialize to single chip

The byte count for each instruction may be determined from its instruction
type and its operands.

Assembly Language Instruction Set - Overview

Table 6-3. TMS7000 Family Instruction Overview

MNEMONIC PPCODll BYT~ CYCLES
Tl'!tC\ c

ADC B.A 69 1 5 R
Rs.A 19 2 8
Rs,B 39 2 8
Rs, Rd 49 3 10
%iop,A 29 2 7
%iop,B 59 2 7
%iop,Rd 79 3 9

ADD B,A 68 1 5 R
Rs,A 18 2 8
Rs,B 38 2 8
Rs, Rd 48 3 10
%iop,A 28 2 7
%iop,B 58 2 7
%iop,Rd 78 3 9

AND B,A 63 1 5 0
Rs,A 13 2 8
Rs,B 33 2 8
Rs, Rd 43 3 10
%iop,A 23 2 7
%iop,B 53 2 7
%iop,Rd 73 3 9

ANDP A,Pd 83 2 10 0
B,Pd 93 2 9
%iop,Pd A3 3 11

~1) 0
TJO B,A,Ofst 66 2 7 (9)

Rn,A,Ofst 16 3 10 (12)
Rn,B,Ofst 36 3 10 (12)
Rn,Rd,Ofst 46 4 12 (14)
%iop,A,Ofst 26 3 9 (11)
%iop,B,Ofst 56 3 9 (11)
%iop,Rn,Ofst 76 4 11 (13)

~1) 0
T JOP A,Pn,Ofst 86 3 11 (13)

B,Pn,Ofst 96 3 10 (12)
%> iop, Pn, Of st A6 4 12 (14)

~1) 0
TJZ B,A,Ofst 67 2 7 (9)

Rn',A,Ofst 17 3 10 (12)
Rn,B,Ofst 37 3 10 (12)
Rn,Rf,Ofst 47 4 12 (14)
%>iop,A,Ofst 27 3 9 (11)
%>iop,B,Ofst 57 3 9 (11)
%>iop,Rn,Of~ 77 4 11 (13)

Note: Add two to cycle count if branch is taken.

Legend:
0 Status Bit set always to 0.
1 Status Bit set always to 1.

STATUS OPERATION DESCRIPTION
N z I

R R x (s) + (d) + (C) --. (d)
Add the source, destination, and carry bit
together. Store at the destination address.

R R x (s) + (d) (d)
Add the source and destination operands at
the destination address.

R R x (s) .AND. (d) --. (d)
AND the source and destination operands
together and store at the destination
address.

R R x (s) .AND. (Pn) --. (Pn)
AND the source and destination operands
together, and store at the destination
address.

R R x
If (s) .AND. (d) ¢ 0,
then (PC) + offset (PC)
If the AND of the source and destination
operands ¢ 0, the PC will be modified to
include the offset.

R R x
If (s) .AND. (Pn) ¢ 0,
then (PC) + (offset) (PC)
If the AND of the source and destination
operands ¢ 0, the PC will be modified to
include the offset.

R R x
If (s) .AND. NOT(d) ¢ 0,
then (PC) + (offset) (PC)
If the AND of the source and NOT(destina-
tion operands ¢ 0, the PC will be modi-
fied to include the offset.

R Status Bit set to a 1 or a 0 depending on results of operation.
x Status Bit not affected.
b Bit () affected.
Ofst Offset

6-9

Assembly Language Instruction Set - Overview

Table 6-3. TMS7000 Family Instruction Overview (Continued)

MNEMONIC PPCODE BYTES CYCLES STATUS
~ C N

(1) 0 R
BT.JZP A.Pn,Ofst 87 3 11 (13)

B,Pn,Ofst 97 3 10 (12)
%>iop,Pn,Ofst A7 4 12 (14)

BR @Label SC 3 10 x x
@Label(B) AC 3 12
*Rn 9C 2 9

CALL @Label SE 3 14 x x
@Label(B) AE 3 16
*Rn 9E 2 13

CLR A B5 1 5 0 0
B C5 1 5
Rd 05 2 7

CLRC BO 1 6 0 R

CMP B,A 60 1 5 R R
Rn,A 10 2 s
Rn,B 30 2 s
Rn, Rn 40 3 10
%iop,A 20 2 7
%iop,B 50 2 7
%iop,Rn 70 3 9

CMPA @Label SD 3 12 R R
@Label(B) AD 3 14
*Rn 90 2 11

DAC B,A 6E 1 7 R R
Rs, A 1E 2 10
Rs,B 3E 2 10
Rs, Rd 4E 3 12
%>iop,A 2E 2 9
%>iop,B 5E 2 9
%>iop,Rd 7E 3 11

DEC A B2 1 5 R R
B C2 1 5
Rd 02 2 7

DECO A BB 1 9 R R
B CB 1 9
Rp DB 2 11

DINT 06 1 5 0 0

Note: Add two to cycle count if branch is taken.

Legend:
0 Status Bit set always to 0.
1 Status Bit set always to 1.

z
R

x

x

1

R

R

R

R

R

R

0

OPERATION DESCRIPTION
I

x
If (s) .AND. NOT(Pn) :¢ 0,
then (PC) + offset -+ (PC)
If the AND of the source and NOT(desti-
nation) operands :¢ 0, the PC will be mo-
dified to include the offset.

x (d) -+ (PC)
The PC will be replaced with the contents
of the destination operand.

x (SP) + 1 -+ (SP)
(PC MSB) -+ (Stack)
(SP) + 1 -+ (SP)
(PC LSB) -+ (Stack)
Operand Address -+ (PC)

x 0-+ (d)
Clear the destination operand.

x 0 -+ (C)
Clears the carry bit.

x (d) - (s) computed
Set flags on the result of the source
operand subtracted from the destination
operand.

x (A) - (s) computed
Set flags on result of the source operand
subtracted from A.

x (s) + (d) + (C) -+ (d) (BCD)
The source, destination, and the carry bit
are added, and the BCD sum is stored at the!
destination address.

x (d) - 1 -+ (d)
Decrement destination operand by 1.

x (rp) - 1 -+ (rp)
Decrement register pair by 1.
C = 0 on 0 - FFFF transition.

0 0 -+ (global interrupt enable bit)
Clear the I bit.

R Status Bit set to a 1 or a 0 depending on results of operation.
x Status Bit not affected.
b Bit () affected.
Ofst Offset

6-10

Assembly Language Instruction Set - Overview

Table 6-3. TMS7000 Family Instruction Overview (Continued)

MNEMONIC BYTES CYCLES STATUS pPCOD~
TcJ_C_l C N z I

(1) x
DJNZ A,Ofst BA 2 7 (9)

B,Ofst CA 2 7 (9)
Rd,Ofst DA 3 9 (11)

DSB B,A 6F 1 7 R
Rs.A 1F 2 10
Rs,B 3F 2 10
Rs, Rd 4F 3 12
%>iop,A 2F 2 9
%>iop,B 5F 2 9
%>iop,Rd 7F 3 11

EINT 05 1 5 1

IDlE 01 1 6 x

INC A B3 1 5 R
B C3 1 5
Rd 03 2 7

INV A B4 1 5 0
B C4 1 5
Rd 04 2 7

JMP Of st EO 2 7 x

(1} x
JC Of st E3 2 5 (7)
JEQ Of st E2 2 5 (7)
JGE Of st E5 2 5 (7)
JGT Of st E4 2 5 (7)
JHS Of st E3 2 5 (7)
JL Of st E7 2 5 (7)
JNC Of st E7 2 5 (7)
JNE Of st E6 2 5 (7)
JNZ Of st E6 2 5 (7)
JP Of st E4 2 5 (7)
JPZ Of st E5 2 5 (7)
JZ Of st E2 2 5 (7)

LOA @Label 8A 3 11 0
@Label(B) AA 3 13
*Rn 9A 2 10

Note: Add two to cycle count if branch is taken.

Legend:
0 Status Bit set always to 0.
1 Status Bit set always to 1 .

x x x

R R x

1 1 1

x x x

R R x

R R x

x x x

x x x

R R x

OPERATION DESCRIPTION

(d) - 1 -+ (d);
If (d) :;t: 0, (PC) + (offset) -+ (PC)

(d) - (s) - 1 + (C) -+ (d) (BCD)
The source operand is subtracted from the
destination; this sum is then reduced by 1
and the carry bit is then added to it. The
result is stored as a BCD number.

1 -+ (global interrupt enable bit)
Set the I bit.

(PC) -+ (PC) until interrupt
(PC) + 1 -+ (PC) after return from interrupt
Stops µC execution until an interrupt.

(d) + 1 -+ (d)
Increase the destination operand by 1.

NOT(d) -+ (d)
1 's complement the destination operand.

(PC) + (offset) -+ (PC)
The PC is modified by an offset to create a
new PC value.

If conditions are met,
then (PC) + offset-+ (PC)
If the needed conditions are met, the PC
is modified by the offset to form a new
PC value.

(s) -+ (A)
Move the source operand to A.

R Status Bit set to a 1 or a 0 depending on results of operation.
x Status Bit not affected.
b Bit () affected.
Ofst Offset

6-11

Assembly Language Instruction Set - Overview

Table 6-3. TMS7000 Family Instruction Overview (Continued)

MNEMONIC pPCODE BYTEsj CYCLES
T.J<.1Cl c

LDSP OD 1 5 x

MOV A,B co' 1 6 0
A.Rd DO 2 8
B,A 62 1 5
B,Rd D1 2 7
Rs.A 12 2 8
Rs,B 32 2 8
Rs, Rd 42 3 10
%>iop,A 22 2 7
%>iop,B 52 2 7
%>iop,Rd 72 3 9

MOVD %>iop,Rp 88 4 15 0
%>iop(B),Rp A8 4 17
Rp,Rp 98 3 14

MOVP A,Pd 82 2 10 0
B,Pd 92 2 9
%>iop,Pd A2 3 11
Ps,A 80 2 9
Ps,B 91 2 8

MPY B,A 6C 1 44 0
Rs.A 1C 2 47
Rs,B 3C 2 47
Rn, Rn 4C 3 49
%>iop,A 2C 2 46
%>iop,B 5C 2 46
%>iop,Rn 7C 3 48

NOP 00 1 5 x

OR B,A 64 1 5 0
Rs,A 14 2 8
Rs,B 34 2 8
Rs, Rd 44 3 10
%>iop,A 24 2 7
%>iop,B 54 2 7
%>iop,Rd 74 3 9

ORP A,Pd 84 2 10 0
B,Pd 94 2 9
%>iop,Pd A4 3 11

POP A 89 1 6 0
B C9 1 6
Rd D9 2 8

Note: Add two to cycle count if branch is taken.

Legend:
0 Status Bit set always to 0.
1 Status Bit set always to 1.

STATUS OPERATION DESCRIPTION
N z I

x x x (B) -+ (SP)
Load SP with Register B's contents.

R R x (s) -+ (d)
Replace the destination operand with the
source operand.

R R x (rp) -+ (rp)
Copy the source register pair to the
destination register pair.

R R x (s) -+ (d)
Copy the source operand into the destina-
tion operand.

R R x (s) x (d) -+ (A,B)
Multiply the source and destination oper-
ands, store the result in Registers A
(MSB) and B (LSB).

x x x (PC) + 1 -+ (PC)
Add 1 to the PC.

R R x (s) .OR. (d) -+ (d)
Logically OR the source and destination
operands, and store the results at the desti-
nation address.

R R x (s) .OR. (d) -+ (d)
Logically OR the source and destination
operands, and store the results at the des-
tination address.

R R x (Stack Top)-+ (d)
(SP) -1 -+ (SP)
Copy the last byte on the stack into the
destination address.

R Status Bit set to a 1 or a 0 depending on results of operation.
x Status Bit not affected.
b Bit () affected.

6-12

Assembly Language Instruction Set - Overview

Table 6-3. TMS7000 Family Instruction Overview (Continued)

MNEMONIC pPCODE BYTES CYCLES STATUS OPERATION DESCRIPTION
Tc_LC_l C N z I

POP ST 08 1 6 0 R R x (Stack Toi:t) (Status Register)
(SP} - 1 -+ (SP}
Replace the Status Register with the last
byte of the stack.

PUSH A B8 1 6 0 R R x (s} -+ (Stack)
B ca 1 6 (SP) + 1 -+ (SP)
Rs D8 2 8 Copy the operand onto the stack.

PUSH ST OE 1 6 0 R R x (Status Register) -+ (Stack}
(SP} + 1 -+ (SP}
Copy the Status Register onto the stack.

RETI OB 1 9 Loaded
from the

stack

RETS OA 1 7 x x x

RL A BE 1 5 b7 R R
B CE 1 5
Rd DE 2 7

RLC A BF 1 5 b7 R R
B CF 1 5
Rd DF 2 7

RR A BC 1 5 bO R R
B cc 1 5
Rd DC 2 7

RRC A BD 1 5 bO R R
B CD 1 5
Rd DD 2 7

SBB B.A 68 1 5 R R R
Rs,A 18 2 8
Rs,B 38 2 8
Rs, Rd 48 3 10
%>iop,A 28 2 7
%>iop,B 58 2 7
%>iop,Rd 78 3 9

SETC 07 1 5 1 0 1

Note: Add two to cycle count if branch is taken.

Legend:
0 Status Bit set always to 0.
1 Status Bit set always to 1.

Stack -+ (PC} LSByte
(SP} - 1 -+ (SP}
Stack -+ (PC) MSByte
(SP} - 1 -+ (SP}
Stack -+ Status Register
(SP} - 1 -+ (SP}

x (Stack) -+ (PC LSB)
(SP} - 1 -+ (SP}
(Stack} -+ (PC MSB}
(SP} - 1 -+ (SP}

x Bit(n} -+ Bit(n + 1}
Bit(7} -+ Bit(O} and Carry

x Bit(n} -+ Bit(n + 1)
Carry -+ Bit(O}
Bit(7) -+ Carry

x Bit(n + 1) -+ Bit(n)
Bit(O) -+ Bit(7} and Carry

x Bit(n + 1} -+ Bit(n}
Carry -+ Bit(7)
Bit(O} -+ Carry

x (d) - (s) - 1 + (C) -+ (d)
Destination minus source minus 1 plus
carry; stored at the destination address.

x 1 -+ (C)
Set the carry bit.

R Status Bit set to a 1 or a 0 depending on results of operation.
x Status Bit not affected.
b Bit () affected.

6-13

Assembly Language ~nstruction Set - Overview

Table 6-3. TMS7000 Family Instruction Overview (Concluded)

MNEMONIC PPCOD~ BYTE~ CYCLES
TcJCJ_ c

STA @Label SB 3 11 0
@Label(B) AB 3 13
*Rd 9B 2 10

STSP 09 1 6 x

SUB B,A 6A 1 5 R
Rs,A 1A 2 8
Rs,B 3A 2 8
Rs, Rd 4A 3 10
%>iop,A 2A 2 7
%>iop,B 5A 2 7
%>iop,Rd 7A 3 9

SWAP A B7 1 8 R
B C7 1 8
Rn 07 2 10

TRAP 0-23 E8-FF 1 14 x

TSTA BO 1 6 0

TSTB C1 1 6 0

XCHB A B6 1 6 0
Rn 06 2 8

XOR B,A 65 1 5 0
Rs,A 15 2 8
Rs,B 35 2 8
Rs, Rd 45 3 10
%>iop,A 25 2 7
%>iop,B 55 2 7
%>iop,Rd 75 3 9

XORP A,Pd 85 2 10 0
B,Pd 95 2 9
%>iop,Pd A5 3 11

Note: Add two to cycle count if branch is taken.

Legend:
0 Status Bit set always to 0.
1 Status Bit set always to 1.

STATUS OPERATION DESCRIPTION
N z I

R R x (A) -+ (d).
Store A at the destination.

x x x (SP) -+ (B)
Copy the SP into Register B.

R R x (d) - (s) -+ (d)
Store the destination operand minus the
source operand into the destination.

R R x d(Hn,Ln) -+ d(Ln,Hn)
Swap the operand's hi and lo nibbles.

x x x (SP) + 1 -+ (SP)
(PC MSB) -+ (Stack)
(SP) + 1 -+ (SP)
(PC LSB) -+ (Stack)
(Entry Vector)-+ (PC)

R R x 0 -+ (C)
Set carry bit; set sign and zero flags on the
value of Register A.

R R x 0 -+ (C)
Set carry bit; set sign and zero flags on the
value in Register B.

R R x (B) +--+ (d)
Swap the contents of Register B with (d).

R R x (s) .XOR. (d) -+ (d)
Logically exclusive OR the source and
destination operands, store at the
destination address.

R R x (s) .XOR. (Pn) -+ (Pn)
Logically exclusive OR the source and
destination operands, store at the
destination.

R Status Bit set to a 1 or a 0 depending on results of operation.
x Status Bit not affected.
b Bit () affected.

6-14

ADC

Syntax

Execution

Status Bits
Affected

Description

Examples

Add with Carry ADC

[<label>] ADC <s>,<Rd>

(s) + (Rd) + (C) -+ (Rd)

c
z
N

Set to 1 on carry-out of (s) + (Rd) + (C)
Set on result
Set on result

ADC adds the contents of the source, the contents of the destination
register, and the carry bit. It stores the result in the destination register.

Adding a 0 to the destination register is equivalent to a conditional in­
crement (increment on carry).

ADC can implement multi-precision addition of signed or unsigned in­
tegers. For example, the 16-bit integer in register pair (R2,R3) may be
added to the 16-bit integer in (A,B) as follows:

ADD R3,B Low order bytes added
ADC R2,A High order bytes added

LABELl
*
*
*
*

*
*
*
*

*
*
*

ADC

ADC

ADC

R66,Rll7 Adds the contents of
register 66, register
117, and the carry bit,
and stores the sum in
register 117

B,A Adds the contents of
Register B, Register A,
and the carry bit, and
stores the sum in
Register A

%>3C,R29 Adds >3C, contents of
register 29, and the
carry bit, and stores
the sum in register 29

6-15

ADD

Syntax

Execution

Status Bits
Affected

Description

Examples

6-16

Add ADD

[<label>] ADD <s>,<Rd>

(s) + (Rd) -+ (Rd)

c
z
N

Set to 1 on carry-out of (s) + (Rd)
Set on result
Set on result

ADD adds two bytes and stores the result in the destination register. It
can be used for signed 2's complement or unsigned addition.

LABEL
*
*

*
*

*
*

ADD A,B

ADD R7,A

Adds the contents of
Registers A and B, stores
the results in B

Adds the contents of R7
and A, and stores the
results in A

ADD %TOTAL,R13 Adds the contents of
TOTAL to R13 and stores
the result in R13

AND

Syntax

Execution

Status Bits
Affected

Description

am pies

Logical AND AND

[<label>] AND <s>,<Rd>

(s) .AND. (Rd) -+ (Rd)

c
N
z

+- 0
Set on result
Set on result

AND logically AN Os the two 8-bit operands. Each bit in the first oper­
and is AN Ded with the corresponding bit in the second operand. This
is useful for clearing and resetting bits. If you need to clear a bit in the
destination operand, then put a 0 in the corresponding source bit. A 1
in a source bit will not change the corresponding destination bit.

This is the truth table for the AND instruction:

Source Destination AND
Bit Bit Result

0 0 0

0 1 0

1 0 0

1 1 1

LABEL AND %>1,R12 Clear all bits in Rl2 except
Bit 0, which will remain
unchanged

AND R7 ,A AND the contents of R7 to A
* and store the contents in A

AND B,A AND the contents of B to A
* and store the contents in A

6-17

ANDP

Syntax

Execution

Status Bits
Affected

Description

Examples

6-18

AND Peripheral Register ANDP

[<label>] ANDP <s>,<Pd>

(s) .AND. (Pd) -+ (Pd)

c
N
z

+- 0
Set on result
Set on result

ANDP clears one or more bits in a Peripheral-File register. It can reset
an individual output line to zero when the source is an immediate oper­
and serving as a mask field. Since the peripheral register is read before
it is AN Ded, it may not work with some peripheral locations which have
a different function when reading than when writing. The only valid
source operands are A, B, and %>iop.

LABEL ANDP %>DF,P6 Clear bit 5 of Port B (P6)

ANDP '%>FE, P9 Clear Bit 0 of Port c Data
Direction Register
(CDDR - P9)

ANDP A,P33 AND the contents of A and
P33 and store in P33

BR

Syntax

Execution

Status Bits
Affected

Description

Examples

Branch

[<label>] BR <XADDR>

(XADDR) ._. (PC)

None

BR

BR branches to any location in the the 64K memory space, including
the on-chip RAM. BR supports three extended addressing modes:

Direct
Indirect
Indexed

The powerful concept of computed GOTOs is supported by the BR *Rn
instruction. An indexed branch instruction of the form BR @TABLE (B)
is an extremely efficient way to execute one of several actions on the
basis of a control input. This is similar to the Pascal CASE statement.
For example, suppose Register B contains a control value. The program
can branch to label ACTIONO if B=O, ACTION1 if B==1, etc, for up to
128 different actions. This technique may also be used to transfer con­
trol on character inputs, error codes, etc.

LABELl BR @THERE Direct addressing

BR @TABLE(B) Indexed addressing

BR *Rl4 Indirect addressing

LABEL2 EQU $ Start execution here
MOV R3,B Move control input to B
RL B Multiply by 2 to get

* table off set
BR @TABLE(B) Branch to correct J<cnd>

statement

DISPATCH EQU $ Dispatch table
JMP ACT I ONO
JMP ACTIONl

JMP ACTIONn
ACT I ONO EQU $
* <Code for action O>
ACTIONl EQU $
* <Code for action 1>

ACTIONn EQU $
* <Code for action n>

6-19

BTJO

Syntax

Execution

Status Bits
Affected

Description

Examples

6-20

Bit Test and Jump If One BTJO

[<label>] BTJO <s>,<Rn>,<offset>

If (s [Bit x]) .AND. (Rn [Bit x]) .P 0, then (PC) + (offset) -+(PC)

c
N
z

..... 0
Set on (s) .AND. (Rn)
Set on (s) .AND. (Rn)

BT JO tests for at least one bit position that contains a corresponding 1
in each operand. The source operand can be used as a bit mask to test
for one or more 1 bits in the specified register. The operands are not
changed by this instruction. If a corresponding 1 bit is found, the pro­
gram branches to the offset.

LABEL BTJO %>14,R4,ISSET Jump to IS SET if R4
* (bit 2) or R4 (bit
* 4) is a 1

BTJO %>1,A,LOOP Jump to LOOP if bit
* 0 of Register A is
* a 1

BTJO R37,Rl13,START Jump to START if any
* 1 bit of R113 corre-
* sponds to a 1 bit
* in R37

~

BTJOP

Syntax

Execution

Status Bits
Affected

Description

Examples

Bit Test and Jump If One - Peripheral

[<label>] BTJOP <s>,<Pn>,<offset>

If (s [Bit x]) .AND. (Pn [Bit x]) ¢ 0, then (PC) + (offset) -+(PC)

c
N
z

~o

Set on (s) .AND. (Pn)
Set on (s) .AND. (Pn)

BT JOP tests for at least one bit position that contains a corresponding
1 in each operand. The source operand can be used as a bit mask to test
for at least one 1 bit in the Peripheral-File register.

LABEL BTJOP %>81,P4,THERE Jump to THERE if
* bit 0 or bit 7 of
* Port A contain
* a 1

BTJOP %>FF,Pl0,STORE Test all bits of
* Port D Data (PlO);
* jump to STORE if
* any of the bits
* are ls

BTJOP B,PSO,AGAIN Jump to AGAIN if
* any 1 bit of PSO
* corresponds to any
* 1 bit of the B
* Register

6-21

BTJZ

Syntax

Execution

Status Bits
Affected

Description

Examples

6-22

Bit Test and Jump If Zero BTJZ

[<label>] BTJZ <s>,<Rn>,<offset>

If (s [Bit x]) .AND. NOT(Rn [Bit x]) :F 0, then (PC) + (offset) -+(PC)

c
N
z

+- 0
Set on (s) .AND. (NOT Rn)
Set on (s) .AND. (NOT Rn)

BT JZ tests for at least one bit position which has a 1 in the source and
a 0 in the destination. The source operand can be used as a bit mask
to test for zero bits in the specified register. The operands are un­
changed by this instruction. The jump is calculated starting from the
opcode of the instruction just after the BT JZ.

LABEL BTJZ A,R23,ZERO If any 1 bits in A
* correspond to 0 bits
* in R23 then jump to
* ZERO to 0 bits in R23
* then jump to ZERO

BTJZ %>FF,A,NEXT If A contains any 0
* bits, jump to NEXT

BTJZ R7,R15,0UT If any 0 bits in R15
* correspond to 1 bits
* in R7, jump to OUT

DIJ£~

Syntax

Execution

Status Bits
Affected

Description

Examples

Bit Test and Jump if Zero - Peripheral BTJZP

[<label>] BT JZP <s>,<Pn>,<offset>

If (s [Bit x]) .AND. NOT(Pn [Bit x]) :# 0, then (PC) + (offset)-+ (PC)

c
N
z

+- 0
Set on (s) .AND. (NOT Pn)
Set on (s) .AND. (NOT Pn)

BT JZP tests for at least one bit position which has a 1 in the source and
an O in the Peripheral-File register. The source operand can be used as
a bit mask to test for zero bits in the Peripheral-File register. The oper­
ands are unchanged by this instruction. The jump is calculated starting
from the opcode of the instruction just after the BT JZP.

LABEL BTJZP %>21,P4,THERE Jump to THERE if P4
* (bit 0) or P4 (bit
* 5) is o

BTJZP %>FF,P28,STORE Jump to STORE if P28
* contains any Os

BTJZP B,P37,NEXT Jump to NEXT if P37
* contains any 0 bits
* corresponding to 1
* bits in Register B

6-23

CALL

Syntax

Execution

Status Bits
Affected

Description

Examples

6-24

Call

[<label>] CALL ~XADDR>

(SP) + 1 -+ (SP)
(PC MSB} -+ (stack)
(SP) + 1 -+ (SP)
(PC LSB) -+ (stack)
(XADDR) -+ (PC}

None

CALL invokes a subroutine and pushes the PC contents on the stack.
The operand indicates the starting address of the subroutine. Use the
PUSH and POP instructions to save, pass, or restore Status or register
values. The extended addressing modes of the CALL instruction allow
powerful transfer of control functions.

LABEL CALL @LABEL4 Direct addressing

CALL @LABELS(B) Indexed addressing

CALL *R12 Indirect addressing

ClR

Syntax

Execution

Status Bits
Affected

Description

Examples

Clear

[<label>] CLR <Rd>

0 _. (Rd)

c
N
z

.... 0

.... 0
+- 1

CLR

CLR clears or initializes any file register including Registers A and B.

LABEL CLR B

CLR A

CLR R105

Clear Register B

Clear Register A

Clear register 105

6-25

CLRC

Syntax

Execution

Status Bits
Affected

Description

Example

6-26

Clear the Carry Bit

[<label>] CLRC

Set status bits

c
N
z

+- 0
Set on value of Register A
Set on value of Register A

CLRC

CLRC clears the carry flag. This may be required before an arithmetic
or rotate instruction. The logical and move instructions typically clear
the carry bit. The CLRC opcode is equivalent to the TSTA opcode.

LABEL CLRC Clear the carry bit

CMP

Syntax

Execution

Status Bits
Affected

Description

Examples

Compare CMP

[<label>] CMP <s>,<Rn>

(Rn) - (s) computed but not stored

c
N
z

1 if (Rn) > (s)
Sign of result
1 if (Rn) = (s)

CMP compares the destination operand to the source operand and sets
the status bits. The CMP instruction is usually used in conjunction with
a Jump instruction; Table 6-4 shows which Jump instructions can be
used on status conditions set by CMP execution.

Table 6-4. Compare Instruction Examples - Status Bit Values

(S) {Rn) {Rn)-(S) c N z INSTRUCTIONS THAT WILL JUMP

FF 00 01 0 0 0 JL JNC JNE JNZ JP JPZ
00 FF FF 1 1 0 JHS JC JNE JNZ JN
00 7F 7F 1 0 0 JHS JC JNE JNZ JN JPZ
81 00 7F 0 0 0 JL JNC JNE JNZ JN JPZ
00 81 81 1 1 0 JHS JC JNE JNZ JN
80 00 80 0 1 0 JL JNC JNE JNZ JN
00 80 80 1 1 0 JHS JC JNE JNZ JN
7F 80 01 1 0 0 JHS JC JNE JNZ JN JPZ
80 7F FF 0 1 0 JL JNC JNE JNZ JN
7F 7F 00 1 0 1 JHC JC JEQ JZ JPZ
7F 00 81 0 1 0 JL JNC JNE JNZ JN

LABEL CMP R13,R89 Set status bits on
* result of R89 minus R13

CMP B,R39 Set status bits on result
* of R39 minus (B)

CMP %>03,A Set status bits on result
* of (A) minus >03

6-27

CMPA

Syntax

Execution

Status Bits
Affected

Description

Examples

6-28

Compare Accumulator Extended

[<label>] CMPA <XADDR>

(A) - (XADDR) computed but not stored

c
N
z

1 if (A) logically > (XADDR)
1 if (A) arithmetically < (XADDR)
1 if (A) = (XADDR)

CMPA

CMPA compares a long-addressed operand to the A register via direct,
indirect, or indexed addressing modes. It is especially useful in table
lookup programs that store the table either in extended memory or in
program ROM. The status bits are set exactly as if Register A were the
destination and the addressed byte the source.

LA:SEL CMPA @TABLE2 Direct addressing

CMPA @TABLE(B) Indexed addressing

CMPA *Rl23 Indirect addressing

DAC

Syntax

Ex1ecution

Status Bits
Affected

Description

Examples

Decimal Add with Carry DAC

[<label>] DAC <s>,<Rd>

(s) + (Rd) + (C) -+ (Rd), Produces a decimal result

c
N
z

·1 if value of (s) + (Rd) + C ~ 100
Set on result
Set on resu It

DAC adds bytes in binary-coded decimal (BCD) form. Each byte is as­
sumed to contain two BCD digits. DAC is not defined for non-BCD
operands. DAC with an immediate operand of zero value is equivalent
to a conditional increment of the destination operand (increment desti­
nation on carry). The DAC instruction automatically performs a decimal
adjust on the binary sum of (s) + (Rd) + C. The carry bit is added to
facilitate adding multi-byte BCD strings, and so the carry bit must be
cleared before execution of the first DAC instruction.

LABEL DAC %>24,A Add the packed BCD value 24,
* and the carry bit to the
* Register A carry bit to
* Register A

DAC R55,R7 Add the BCD value of RSS,
* and the carry bit to the
* BCD value of R7

DAC B,A Add the carry bit to the
* BCD value in Register B
* to Register A

6-29

DEC

Syntax

Execution

Status Bits
Affected

Description

Examples

6-30

Decrement DEC

[<label>] DEC <Rd>

(d) - 1 -+ (Rd)

c
N
z

0 if {Rd) decrements from >00 to >FF; 1 otherwise
Set on resu It
Set on resu It

DEC subtracts 1 from any addressable operand. It is useful in counting
and addressing byte arrays.

LABEL DEC R102 Decrement R102 by 1

DEC A

DEC B
*

Decrement Register A by 1

Subtract 1 from the contents of
Register B

DECO

Syntax

Execution

Status Bits
Affected

Description

Example

Decrement Double

[<label>] DECO <Rp>

(Rp) - 1 ... (Rp)

DECO

c

N
z

0 if most significant byte decrements from >00 to >FF; other­
wise, C = 1
Set on most significant byte of result
Set on most significant byte of result

DECO decrements 16-bit indirect addresses stored in the Register File.
Tables longer than 256 bytes may be scanned using this instruction.

The JZ (Jump on Zero) command is often used in conjunction with the
DECO command. Note that JZ jumps when the MSB equals zero - not
just when both bytes equal zero.

LABEL
*

DECD R51 Decrement (R50,R51) register
pair, R51=LSB

6-31

DINT

Syntax

Execution

Status Bits
Affected

Description

Example

6-32

Disable Interrupts

[<label>] DINT

0 -+ (Global interrupt enable status bit)

I <I- 0
c <- 0
N <I- 0
z •I-- 0

DINT

DINT simultaneously disables all interrupts. Since the interrupt enable
flag is stored in the Status Register, the POP ST or RETI instructions
may re-enable interrupts even though a DINT instruction has been exe­
cuted. During the interrupt service, the interrupt enable bit is automat­
ically cleared after the old Status Register value has been pushed onto
the stack.

LABEL DINT Disable global interrupt enable bit

DJNZ

Syntax

Execution

Status Bits
Affected

Description

Examples

Decrement Register and Jump If Not Zero

[<label>] DJNZ <Rd>,<offset>

(Rd) - 1 -+ (d)
If (Rd) ¢ 0, then (PC) + (offset) -+ (PC)

None

DJNZ

DJNZ is used for looping control. It combines the DEC and the JNZ
instructions, providing a faster and more compact instruction. DJNZ
does not change the status bits.

LABEL DJNZ RlS,THERE Decrement RlS. If R15 ¢

* O, jump to THERE

DJNZ A,AGAIN Decrement A; if A ¢ 0,
* jump to AGAIN

DJNZ B,BACK Decrement B; if B ¢ 0,
* jump to BACK

6-33

DSB

Syntax

Execution

Status Bits
Affected

Description

Examples

6-34

Decimal Subtract with Borrow

[<label>] DSB <s>,<Rd>

(Rd) - (s) - 1 + (C) __. (Rd) (decimal result)

c
N
z

1 no borrow required, 0 if borrow required
Set on resu It
Set on result

DSB

DSB performs multiprecision decimal BCD subtraction. A DSB in­
struction with an immediate operand of zero value is equivalent to a
conditional decrement of the destination operand. The carry bit func­
tions as a borrow bit, so if no borrow in is required, the carry bit should
be set to 1. This can be accomplished by executing the SETC instruc­
tion.

LABEL DSB Rl5,R76 R76 minus Rl5 minus 1 plus
* the carry bit is stored
* in R76

DSB A,B Register B minus Register
* A minus 1 plus the carry
* bit is stored in
* Register B

DSB B,R7 R7 minus Register B minus
* 1 plus the carry bit
* stored in R7

EINT

Syntax

Execution

Status Bits
Affected

Description

Example

Enable Interrupts

[<label>] EINT

1 __., (Global interrupt enable bit)

I .__ 1
c .__ 1
N .__ 1
z 4- 1

EINT

EINT simultaneously enables all interrupts. Since the interrupt enable
flag is stored in the Status Register, the POP ST or RETI instructions
may disable interrupts even though an El NT instruction has been exe­
cuted. During the interrupt service, the interrupt enable bit is automat­
ically cleared after the old Status Register value has been pushed onto
the stack. Thus, the El NT instruction must be included inside the inter­
rupt service routine to permit nested or multilevel interrupts.

LABEL EINT All interrupts are enabled.

6-36

IDLE

Syntax

Execution

Status Bits
Affected

Description

Example

6-36

Idle Until Interrupt IDLE

[<label>] IDLE

(PC) -+ (PC) until interrupt
(PC) + 1 -+ (PC) after return from interrupt

None

For NMOS devices, IDLE suspends program operation until either an
interrupt or reset occurs. It is the programmer's responsibility to assure
that the interrupt enable status bit (and individual interrupt enable bits
in thei 1/0 control register) are set before executing the I OLE instruction.
Upon return from an interrupt, control passes to the instruction follow­
ing the IDLE instruction.

For CMOS devices, the IDLE instruction causes the device to enter one
of two low-power modes, which use a fraction of the normal operating
power. In Wake-Up mode, the on-chip oscillator remains active, and
activating the timer interrupt or the external interrupts (RESET, iNT1,
or IN'f3) releases the device from the low-power mode. In Halt mode,
usin" the osc-off clock option, the oscillator and timers are disabled; the
device can only be released from Halt mode by an external interrupt or
RESET Using the osc-on clock option in Halt mode, the oscillator con­
tinues to operate and only the timers are disabled; the device can only
be released from Halt mode by an external interrupt or RESET.

For more information about low-power modes, see Section 3.5.

LABEL IDLE

INC

Syntax

Execution

Status Bits
Affected

Description

Examples

Increment INC

[<label>] INC <Rd>

(Rd) + 1 __. (Rd)

c
N
z

1 if (Rd) incremented from >FF to >00; 0 otherwise
Set on result
Set on result

INC increments the value of any register. It is useful for incrementing
counters into tables.

LABEL INC A

INC B

INC R43

Increment Register A by 1

Register B is increased by 1

Register 43 is increased by 1

6-37

INV

Syntax

Execution

Status Bits
Affected

Description

Examples

6-38

Invert

[<label>] INV <Rd>

NOT(Rd) _. (Rd)

c
N
z

+- 0
Set on result
Set on resu It

INV

INV performs a logical or 1 s complement of the operand. A 2's com­
plement of the operand can be made by following the INV instruction
with an increment (INC). A 1 s complement reverses the value of every
bit in the destination.

LABEL
*

INV A

INV B

INV R82

Invert Register A (Os become
ls, ls become Os)

Invert Register B

Invert register 82

JMP

Syntax

Execution

Status Bits
Affected

Description

Example

Jump Unconditional JMP

[<label>] JMP <offset>

(PC) + (offset) -+ (PC)
(The PC contains the address of the instruction immediately following
the jump.)

None

JMP jumps unconditionally to the address specified in the operand. The
second byte of the JMP instruction contains the 8-bit relative address
of the operand. The operand address must therefore be within -128 to
+127 bytes of the location of the instruction following the JMP in­
struction. The assembler will indicate an error if the target address is
beyond -128 to +127 bytes from the next instruction. For a longer jump
the BR (branch) instruction can be used.

LABEL JMP THERE
*

Load the PC with the address
of 'rHERE

6-39

J<cnd>

Syntax

Execution

Status Bits
Affected

Description

Examples

6-40

Jump on Condition J<cnd>

[<label>] J <end> <offset>
(The PC contains the address of the instruction immediately following
the jump.)

If tested condition is true, (PC) + (offset) -+ (PC)

None

Conditional Jump Instructions

INSTRUCTION MNEMONIC c N z
Jump if Carry JC 1 x x
Jump if Equal JEQ x x 1
Jump if Higher or Same JHS 1 x x
Jump if Lower JL 0 x x
Jump if Negative JN x 1 x
Jump if No Carry JNC 0 x x
Jump if Not Equal JNE x x 0
Jump if Non-zero JNZ x x 0
Jump if Positive JP x 0 0
Jump if Positive or Zero JPZ x 0 1
Jump if Zero JZ x x 1

Use the J <end> instructions after a CMP instruction to branch ac­
cording to the relative values of the operands tested. After MOV,
MOVP, LOA, or STA operations, a JZ or JNZ may be used to test if the
value moved was equal to zero. JN and J PZ may be used in this case
to test the sign bit of the value moved.

LABEL JNC TABLE If the carry bit is clear,
* jump to TABLE

JP HERE If the negative and zero flags
* are clear, jump to HERE

JZ NEXT If the zero flag is set, jump
* to NEXT

LOA

Syntax

Execution

Status Bits
Affected

Description

Examples

Load Register A LOA

[<label>] LOA <XADDR>

(XADDR) -+ (A)

c
N
z

+- 0
Set on value loaded
Set on value loaded

LOA reads values stored anywhere in the full 64K-byte memory space.
LOA uses three extended addressing modes:

Direct Addressing mode provides an efficient means of directly
accessing a variable in memory.

Indexed addressing gives an efficient table look-up capability for
most applications.

Indirect addressing allows the use of very large look-up tables and
the use of multiple memory pointers since any pair of registers can
be used as the pointer.

LABEL LDA @LABEL4 Direct addresing

LDA @LABELS(B) Indexed addressing

LDA *R13 Indirect addressing

6-41

LDSP

Syntax

Execution

Status Bits
Affected

Description

Example

6-42

Load Stack Pointer

[<label>] LDSP

(B) -+ (SP)

None

LDSP

LDSP copies the contents of Register B to the Stack Pointer register.
Use LDSP to initialize the Stack Pointer.

LABEL LDSP
*

Copy Register B to the
Stack Pointer

MOV

Syntax

Execution

Status Bits
Affected

Description

Examples

Move

[<label>] MOV <s>,<Rd>

(s) (Rd)

c
N
z

+- 0
Set on value loaded
Set on value loaded

MOV

MOV transfers values within the register space. Immediate values may
be loaded directly into the registers. A MOV that uses Register A or 8
as an operand produces shorter and quicker moves.

LABEL MOV A,B Move the contents of Register
* A to Register B

MOV R32,R105 Move the contents of register
* 32 to register 105

MOV %>10,R3 Move >10 to register 3

6-43

MOVD

Syntax

Execution

Status Bits
Affected

Description

Examples

6-44

Move Double

[<label>] MOVD <s>,<Rp>

(s) -+ (Rp)

c
N
z

+- 0
Set on MSb moved
Set on MSb moved

MOVD

MOVD moves a two-byte value to the register pair indicated by the
destination register number. (Note that Rp should be greater than 0 or
the IVISb may be lost.) The destination points to the LSB of the desti­
nation register pair. The source may be a 16-bit constant, another reg­
ister pair, or an indexed address. For the latter case, the source must
be of the form "%ADDR(B)" where ADDR is a 16-bit constant or ad­
dress. This 16-bit value is added (via 16-bit addition) to the contents
of the B register, and the result placed in the destination register pair.
This stores an indexed address into a register pair, for use later in indirect
addressing mode. This is not to be confused with the extended ad­
dressing instruction @LABEL(B).

LABEL MOVD %>1234,R3 Load register pair R2,R3
* with >1234

MOVD R5,R3 Copy R4,R5 to R2,R3;
* R5,R3 = LSB

MOVD %TAB (B) ,R3 Load register pair R2,R3
* with the effective
* address of TAB + B

MOVP

Syntax

Execution

Status Bits
Affected

Description

Examples

Move to/from Peripheral Register MOVP

[<label>] MOVP <s>,<Pd>
or
[<label>] MOVP <Ps>,<d>

(s) __. (Pd)
or
(Ps) __. (d)

c
N
z

+- 0
Set on value moved
Set on value moved

MOVP transfers values to and from the Peripheral File. This may be
used to input or output 8-bit quantities on the 1/0 ports. The Peripheral
File also contains control registers for the interrupt lines, the 1/0 ports,
and the timer controls. The operands supported by this instruction are
A, B and %> iop.

During Peripheral-File instructions, a Peripheral-File port is always read
before a write. The read can include output operations such as MOVP
A, P6. If this read is undesirable because of hardware configuration,
use a STA (Store A) instruction with the memory-mapped address of
the peripheral register.

LABEL MOVP A,P6 Move the contents of
* Register A to Port B

RD PORT MOVP P4,B Move Port A data into
* Register B

LO ADD MOVP %>12,P27 Move the hex value 12 into
Register 27

6-45

MPV

Syntax

Execution

Status Bits
Affected

Description

Examples

6-46

Multiply

[<label>] MPY <s>,<Rn>

(s) x (Rn) -+ (A,B) Result always stored in A,B

c
N
z

+- 0
Set on MSb of results (Register A)
Set on MSb of results (Register A)

MPV

MPY performs an 8-bit multiply for a general source and destination
operand. The 16-bit result is placed in the A, B register pair with the
most significant byte in A. Multiplying by a power of two is a conven­
ient means of performing double-byte shifts. If a double byte shift is
three places or less, then it may be faster to use RLC or RRC instead of
multiply. If a single byte needs shifting then it is almost always faster
to use RLC or RRC.

LABEL MPY R3 ,A Multiply (R3) with (A) ' store
* result in A, B register pair

MPY %>32,B Multiply >32 with (B) , store
* in register pair A, B

MPY R12,R7 Multiply (R12) with (R7) and
* store in A, B register pair

NOP

Syntax

Execution

Status Bits
Affected

Description

Example

No Operation

[<label>] NOP

(PC) + 1 -+ (PC)

None

NOP

NOP is useful as a pad instruction during program development, to
"patch out" unwanted or erroneous instructions or to leave room for
code changes during development. It is also useful in software timing
loops. ·

LABEL NOP

6-47

OR

Syntax

Execution

Status Bits
Affected

Description

Examples

6-48

Logical OR OR

[<label>] OR <s>,<Rd>

(s) .OR. (Rd) -+ (Rd)

c
N
z

+- 0
Set on result
Set on resu It

OR logically ORs the two operands. Each bit of the 8-bit result follows
the truth table below. The OR operation is used to set bits in a register.
If a register needs a 1 in the destination then a 1 is placed in the corre­
sponding bit location in the source operand.

This is the truth table for the OR instruction:

Source Destination OR
Bit Bit Result

0 0 0

0 1 1

1 0 1

1 1 1

LABEL OR A,Rl2 OR the A Register with R12,
* store in R12

OR %>0F,A Set lower nibble of A to ls,
* leave upper nibble unchanged

OR R8,B OR (R8) with (B) ' store in B

ORP

Syntax

Execution

Status Bits
Affected

Description

Examples

OR Peripheral Register ORP

[<label>] ORP <s>,<Pd>

(s) .OR. (Pd) -+ (Pd}

c
N
z

+- 0
Set on resu It
Set on result

ORP logically ORs the source operand with a Peripheral-File location,
and write the result back to the Peripheral File. This may be used to set
an individual 1/0 bit of a peripheral register. Since the peripheral register
is read before it is ORed, it may not work with some peripheral locations
which have a different function when reading than when writing.

LABEL

*

*

ORP %>08,PO Clear interrupt 2

ORP A,P39

ORP B,P90

OR (A) with (P39), store
in P39

OR (B) with (P90), store
in P90

6-49

POP

Syntax

Execution

Status Bits
Affected

Description

Examples

6-50

POP from Stack

[<label>] POP <Rd>

(Stack top) -+ (Rd)
(SP) - 1 -+ (SP)
(Move value then decrement SP)

c
N
z

+- 0
Set on value POPed
Set on value POPed

POP

POP pulls a value from the top of the stack. The data stack can be used
to save or pass values, especially during subroutines and interrupt ser­
vice routines.

The Status Register may be replaced with the contents on the stack by
the statement POP ST. This one-byte instruction is usually executed
in conjunction with a previously performed PUSH ST instruction.

LABEL

*

POP R32 Load R32 with top of stack

POP ST Load Status Register with
top of stack

PUSH

Syntax

Execution

Status Bits
Affected

Description

Examples

Push On Stack

[<label>] PUSH <Rs>

(SP) + 1 -+ (SP)
(Rs) -+ (top of stack)
(Increment SP then move value)

c
N
z

+- 0
Set on value PUSHed
Set on value PUSHed

PUSH

PUSH places a value on the top of the stack. The data stack is used to
save or pass values, especially during subroutines and interrupt service
routines.

The Status Register may be pushed on the stack with the statement
LABEL PUSH ST. This one'.""byte instruction is usually executed in
conjunction with a subsequently performed POP ST instruction. The
Status Register is unaffected.

LABEL PUSH A Move (A) to top of stack

PUSH ST Move status to top of stack

6-51

RETI

Syntax

Execution

Status Bits
Affected

Description

Example

6-52

Return from Interrupt

[<label>] RETI

(Stack) -+ (PC LSB)
(SP) - 1 -+ (SP)
(Stack) -+ (PC MSB)
(SP) - 1 -+ (SP)
(Stack) -+ (ST)
(SP) - 1 -+ (SP)

Status Register is loaded from the stack

RETI

RETI is typically the last instruction in an interrupt service routine. RETI
restores the Status Register to its state immediately before the interrupt
occurred and branches back to the program at the instruction boundary
where the interrupt occurred. Registers A and B, if used, must be re­
stored to ori~inal values before the RETI instruction.

LABEL RETI Restore to program control

RETS

Syntax

Execution

Status Bits
Affected

Description

Example

Return from Subroutine

[<label>] RETS

(Stack) -+ (PC LSB)
(SP) - 1 -+ (SP)
(Stack) -+ (PC MSB)
(SP) - 1 -+ (SP)

None

RETS

RETS is typically the last instruction in a subroutine. RETS branches to
the location immediately following the subroutine call instruction. In
the called subroutine there must be an equal number of POPs and
PUSHes so that the stack is pointing to the return address and not some
other data.

LABEL RETS Return to program control

6-53

RL

Syntax

Execution

Status Bits
Affected

Description

Examples

6-54

Rotate Left

[<label>] RL <Rd>

Bit(n) -+ Bit(n +1)
Bit(7) -+ Bit(O) and carry

c
N
z

Set to bit 7 of the original operand
Set on resu It
Set on resu It

RL

RL circularly shifts the destination contents one bit to the left. The MSb
is shifted into the LSb; the carry bit is also set to the original MSb value.

For example, if Register B contains the value >93, then RL changes the
contents of B to > 27 and sets the carry bit.

LABEL RL Rl02

RL A

RL B

RLC

Syntax

Execution

Status Bits
Affected

Description

Examples

Rotate Left Through Carry

[<label>] RLC <Rd>

Bit(n) -+ Bit(n+1)
Carry -+ Bit(O)
Bit(7) -+ Carry

c
N
z

Set to bit 7 of the original operand
Set on resu It
Set on resu It

RLC

RLC circularly shifts the destination contents one bit to the left and
through the carry. The original carry bit contents shift into the LSb, and
the original MSb shifts into the carry bit.

MSb LSb

~---•-_l1~l_e_ls_l_4_l_a_f 2~l_1_f_o'J

For example, if Register B contains the value >93: and the carry bit is a
zero, then the RLC instruction changes the operand value to >26 and
the carry to one.

Rotating left effectively multiplies the value by 2. Using multiple rotates,
any power of 2 (2, 4, 8, 16, ...) can be achieved. This type of multiply
is usually faster than the MPY (multiply) instruction. This instruction
is also useful in rotates where a value is contained in more than one byte
such as an address or in multiplying a large multibyte number by 2. Care
must be taken to assure that the carry is at the proper value. The SETC
or CLRC instructions may be use to setup the correct value.

LABEL RLC R72

RLC A

RLC B

6-55

RR

Syntax

Execution

Status Bits
Affected

Description

Example

6-56

Rotate Right

[<label>] RR <Rd>

Bit(n +1) __. Bit(n)
Bit(O) __. Bit (7) and carry

c
N
z

Set to bit 0 of the original value
Set on resu It
Set on result

RR

RR circularly shifts the destination contents one bit to the right. The
LSb is shifted into the MSb, and the carry bit is also set to the original
LSb value.

MSb LSb

For example, if Register B contains the value >93, then the "RR B" in­
struction changes the contents of B to > C9 and sets the carry status bit.

LABEL RR A

RRC

Syntax

Execution

Status Bits
Affected

Description

Example

Rotate Right Through Carry

[<label>] ARC <Rd>

Bit(n + 1) -+ Bit(n)
Carry -+ Bit(7)
Bit(O) -+ Carry

c
N
z

Set to bit 0 of the original value
Set on resu It
Set on result

RRC

RRC circularly shifts the destination contents one bit to the right
through the carry. The carry bit contents shift into the MSb, and the
LSb is shifted into the carry bit.

MSb LSb

For example, if Register B contains the value >93 and the carry bit is
zero, then RRC changes the operand value to >49 and sets the carry bit.

When the carry is 0 this instruction effectively divides the value by two.
A value of >80 becomes >40. By using this instruction once more, the
value can be divided by any power of two. Care must be taken to assure
the correct value in the carry bit.

LABEL RRC R32

6-57

SBB

Syntax

Execution

Status Bits
Affected

Description

Examples

6-58

Subtract with Borrow

[<label>] SBB <s>,<Rd>

(Rd) - (s) - 1 + (C) -+ (Rd)

c
N
z

Set to 1 if no borrow; 0 otherwise
Set on result
Set on result

SBB

SBB performs multiprecision 2's complement subtraction. An SBB in­
struction with an immediate operand of zero value is equivalent to a
conditional decrement of the destination operand. If (s) =0 and (C) =O
then (Rd) is decremented, otherwise it is unchanged. A borrow occurs
if the result is negative. In this case, the carry bit is set to 0. The carry
bit can be thought of as the "no-borrow" bit.

LABEL SBB %>23,B Subtract (B) from >23, sub-
* tract 1, add the carry bit;
* store in Register B

SBB B,A (B) minus (A) minus 1 plus
* the carry bit is stored
* in Register A

SBB %>33,R6 Subtract (R6) from >33, sub-
* tract the inverse of the
* carry bit

.S.ETC

Syntax

Execution

Status Bits
Affected

Description

Example

[<label>] SETC

1 -+ (C)

c
N
z

..... 1

..... 0

..... 1

Set Carry SETC

SETC sets the carry flag (if required) before an arithmetic or rotate in­
struction.

LABEL SETC

6-59

STA

Syntax

Execution

Status Bits
Affected

Description

Examples

6-60

Store Register A STA

[<label>] STA <XADDR>

(A) -+ (XADDR)

c
N
z

+- 0
Set on value loaded
Set on value loaded

STA stores values anywhere in the 64K-byte memory address space.
ST A uses three extended addressing modes:

Direct Addressing provides an efficient means of directly accessing
a variable in memory. ·
Indexed Addressing provides efficient table look-up.
Indirect Addressing allows the use of very large look-up tables and
the use of multiple memory pointers since any pair of registers can
be used as the pointer.

LABEL STA @VALUE Direct addressing

STA @TABLE(B) Indexed addressing

STA *R13 Indirect addressing

STSP

Syntax

Execution

Status Bits
Affected

Description

Example

Store Stack Pointer

[<label>] STSP

(SP) -+ (B)

None

STSP

STSP copies the SP to Register B. This instruction can be used to test
the stack size. The indexed addressing mode may be used to reference
operands on the stack. For example, STSP; then LDA @>0000 (B)
will put the present value on top of the stack into Register A

LABEL STSP Copy the SP to Register B

6-61

SUB

Syntax

Execution

Status Bits
Affected

Description

Examples

6-62

Subtract

[<label>] SUB <s>,<Rd>

(Rd) - (s) -+ (Rd)

c
N
z

Set to 1 if result..:::. 0, otherwise set to 0
Set on resu It
Set on result

SUB

SUB performs 2's complement subtraction. The carry bit is set to 0 if a
borrow is required. The carry bit could be renamed a "no-borrow" bit
in this case.

LABEL SUB Rl9,B (B) minus (Rl9) is
* stored in Rl9

SUB %>76,A >76 minus (A) is stored
* in A

SUB R4,R9 (R4) minus (R9) stored
* in R9

SWAP

Syntax

Execution

Status Bits
Affected

Description

Examples

Swap Nibbles

[<label>] SWAP <Rn>

Bits (7,6,5,4, I 3,2,1,0) -I' Bits (3,2,1,0, I 7,6,5,4)

c
N
z

Set to bit 0 of the result or bit 4 of the original
Set on results
Set on resu Its

SWAP

SWAP exchanges the first four bits with the second four bits. This in­
struction is equivalent to four consecutive RL (rotate left) instructions.
It manipulates four bit operands, especially useful for packed BCD op­
erations.

LABEL SWAP R45

SWAP A

SWAP B

Switch Lo and Hi nibbles of R45

Switch Lo and Hi nibbles of A

Switch Lo and Hi nibbles of B

6-63

TRAP

Syntax

Execution

Status Bits
Affected

Description

Example

6-64

Trap to Subroutine

[<label>] TRAP <n> where n = 0-23

(SP) + 1
(PC MSB)
(SP) + 1
(PC LSB)
(Entry vector)

None

-+ (SP)
-+ (stack)
-+ (SP)
-+ (stack)
-+ (PC)

TRAP

Trap is a one-byte subroutine call. The operand <n> is a trap number
which identifies a location in the trap vector table, addresses > FFDO to
> FFFF in memory. The contents of the two-byte vector location form
a 16-bit trap vector to which a subroutine call is performed. TRAP is
an efficient way to invoke a subroutine. The highest block of memory
is the trap vector table, and can contain up to 23 subroutine addresses.
The subroutine addresses are stored like all other addresses in memory,
with the least significant byte in the higher-addressed location, as
shown below.

>FFDO

>FFD1

>FFEO

>FFE1

>FFFA

>FFFB

>FFFC

>FFFD

>FFFE

>FFFF

TRAP VECTOR TABLE

Trap 23 address

Trap 23 address

Trap 15 address

Trap 1 5 address

Trap 2 address

Trap 2 address

Trap 1 address

Trap 1 address

Trap 0 address

Trap 0 address

MSB

LSB

MSB

LSB

MSB

LSB

MSB

LSB

MSB

LSB

Note that TRAPs 0, 1, 2, and 3 correspond to the hardware-invoked
interrupts 0, 1, 2, and 3, respectively. The hardware-invoked interrupts,
however, push the Program Counter and the Status Register before
branching to the interrupt routine, while the TRAP instruction pushes
only the Program Counter. TRAP 0 will branch to the same code exe­
cuted for a system reset but will not set or clear all the registers like the
hardware RESET.

LABEL TRAP 15

TSTA

Syntax

Execution

Status Bits
Affected

Description

Example

Test Register A

[<label>] TSTA

C,N,Z bits set

c
N
z

+- 0
Set on value in Register: A
Set on value in Register A

TSTA

TSTA sets the status bits according to the value in Register A. This in­
struction is. equivalent to the CLRC (Clear Carry) instruction.

LABEL TSTA Test Register A

6-65

TSTB

Syntax

Execution

Status Bits
Affected

Description

Example

6-66

Test Register B

[<label>] TSTB

C,N,Z bits set

c
N
z

+- 0
Set on value in Register B
Set on value in Register B

TSTB

TSTB sets the status bits according to the value in Register B. It may
be used to clear the carry bit. This instruction is equivalent to the XCHB
B (exchange B with B) instruction.

LABEL TSTB Test Register B

XCHB

Syntax

Execution

Status Bits
Affected

Description

Examples

Exchange with Register B

[<label>] XCHB <Rn>

(B) +-~ (Rn)

c
N
z

+- 0
Set on original contents of B
Set on original contents of B

XCHB

XCH B exchanges a register with Register B without going through an
intermediate location. The XCH B instruction with the B Register as the
operand is equivalent to the TSTB instruction.

LABEL
*

XCHB A

XCHB R3

Exchange Register B with
Register A

Exchange Register B with R3

6-67

XOR

Syntax

Execution

Status Bits
Affected

Description

Examples

6-68

Exclusive OR XOR

[<label>] XOR <s>,<Rd>

(s) .XOR. (Rd) ,... (Rd)

c
N
z

+- 0
Set on resu It
Set on result

XOR performs a bit-wise exclusive OR operation on the operands. The
XOR instruction can be used to complement bits in the destination op­
erand. Each bit of the 8-bit result follows the truth table below. This
operation can also toggle a bit in a register. If the bit value in the des­
tination needs to be the opposite from what it currently is, then the
source should contain a 1 in that bit location.

This is the truth table for the XOR instruction:

LABEL
*

*

Source
Bit

0

0

1

1

XOR R98,R125

XOR %>1,R20

XOR B,A

Destination XOR
Bit Result

0 0

1 1

0 1

1 0

XOR (R98) with (R125),
store in R125

Toggle bit 0 in R20

XOR (B) with (A), store
in A

XORP

Syntax

Execution

Status Bits
Affected

Description

Examples

Exclusive OR Peripheral Register XORP

[<label>] XORP <s>,<Pd>

(s) .XOR. (Pd) -+ (Pd)

c
N
z

+- 0
Set on result
Set on resu It

XORP performs a bit-wise exclusive OR operation on the operands. The
XORP instruction can be used to complement bits in the destination PF
register. Since the peripheral register is read before it is XORed, it may
not work with some peripheral locations which have a different function
when reading than when writing.

LABEL XORP %>01,P9 Invert bit 0 of P9 (Port c
* DDR); this inverts the
* direction of the pin

XORP %>AA,P29 Toggle odd bits of P29

XORP B,P99 XOR (B) with (P99) , store
* in P99

6-69

Assembly Language Instruction Set

6-70

7. Linking Program Modules

The TMS7000 Assembler creates both absolute and relocatable object code
that can be linked to form executable programs from separately assembled
modules. An entire program need not be assembled at one time. A long
program can be divided into separately assembled modules, avoiding a long
assembly and reducing the symbol table size. Caution must be observed when
assembling a long program with excessive labels; this may cause an assembler
error from symbol table overflow. Modules that are common to several pro­
grams can be assembled once and accessed when needed. These separate­
ly-generated modules can be linked together by the Link Editor, forming a
single linked object module that is stored in a library and/or loaded as re­
quired.

The Link Editor User's Guide (literature number SPNU037) contains a
complete description of the Link Editor, related files, linker commands, linking
examples, and error messages. This section provides all the information that
most TMS7000 users need to link program modules.

Section Page
7.1 Relocation Capability .. 7-2
7 .2 Link Editor Operation .. 7-3
7.3 Directives Used for Linking .. 7-5

7-1

Linking Program Modules - Relocation Capability

7 .1 Relocation Ca pa bi I ity

7-2

Absolute code is appropriate for code that must be placed in dedicated areas
of memory. It must always be loaded into the same memory area.

Relocatable code includes information that allows a loader to place the code
in any available memory area, allowing the most efficient use of available me­
mory.

Object code generated by an assembler contains machine language in­
structions, addresses, and data. The code may include absolute segments,
program-relocatable segments, data-relocatable segments, and numer­
ous common-relocatable segments. In assembly language source pro­
grams, symbolic references to locations within a relocatable segment are called
relocatable addresses. These addresses are represented in the object code as
displacements from the beginning of a specified segment. A program­
relocatable address, for example, is a displacement into the program segment.
At load time, all program-relocatable addresses are adjusted by a value equal
to the load address. Data-relocatable addresses are represented by a dis­
placement into the data segment. There may be several types of common­
relocatable addresses in the same program, since distinct common segments
may be relocated independently of each other.

Expressions may contain more than one symbol that is not previously defined.
Expressions on either side of a multiplication or division symbol must be ab­
solute; if they are relocatable, the expression is illegal. An expression in which
the number of relocatable symobls or constants added to the expression ex­
ceeds the number of relocatable symbols or constants subtracted from the
expression by more than one is illegal. That is, if:

NA = Number of relocatable values added, and
NS = Number of relocatable values subtracted

Then, if NA - NS =

0
1
Neither

The expression is absolute
The expression is relocatable
The expression is illegal

An expression containing relocatable symbols or constants of several different
relocation types is absolute if it is absolute with respect to all relocation types.
If it is relocatable with respect to one relocation type and absolute with respect
to all other relocation types, it is relocatable.

Examples of valid expressions include:

BLUE+1

GREEN-4

2*16+REI)

440/2-RED

The value of symbol BLUE + 1

The value of symbol GREEN - 4

2 times 16 plus the value of symbol RED

440 divided by two less the value of symbol RED. Red must
be absolute.

Linking Program Modules - Link Editor Operation

Decimal, hexadecimal, and character constants are absolute. Assembly-time
constants defined by absolute expressions are absolute, and assembly-time
constants defined by relocatable expressions are relocatable.

Any symbol that appears in the label field of a source statement (other than
an EOU directive) is absolute when the statement is in an absolute block of
the program. Any symbol that appears in the label field of a source statement
(other than an EQU directive) is relocatable when the statement is in a re­
locatable block of the program. The type of the label or an EQU directive is
the type of an expression in an operand field.

7.2 Link Editor Operation

The Link Editor combines separate modules to produce a single linked output
module. It resolves externally referenced symbols and definitions created by
the REF and DEF directives. Without this function, all modules would have
to be compiled or assembled at once. The Link Editor builds a list of symbols
from the REF tags in the object modules that are to be included in the linking
process. The Link Editor then resolves the references by matching DEF tag
symbols with the REF tags and inserting the correct values for these symbols
in the linked object code.

A link control file, which must be created before the assembly, controls the
Link Editor operation. The link control file contains a set of link control com­
mands (control stream) that direct the Link Editor in combining various object
modules. Figure 7-1 shows a sample link control file. Table 7-1 summarizes
the linker commands most often used to link TMS7000 program modules.

The link control commands define which modules are to be linked and how
they are to be linked. The Link Editor automatically resolves the REF and DEF
tag symbols between object modules specified in the INCLUDE commands.
The Link Editor links the object modules in the order specified by the link
control commands. Thus, the structure of the control stream determines the
structure of the linked object module.

TASK PROGNAME Defines name (8 letters maximum)
INCLUDE MYPRGRAM.MPO Pathnames of object files,

compatible
INCLUDE OTHERPGM.MPO with user's computer system
END Last statement of link module

Figure 7-1. Sample Link Control File

7-3

Linking Program Modules - Link Editor Operation

Table 7-1. Linker Commands Used to Link TMS7000 Program Modules

COMMAND

COMMON

DATA

END

INCLUDE

PROGRAM

TASK

7-4

SYNTAX AND DESCRIPTION

Syntax: COMM.ON {<base>[,<name>] [,<name>] .. }

Defines the starting address for the specified common segment (CSEG). Commons that
are loaded at the specified address must be specifically identified within this command.
COMMON is only valid when used with PROGRAM.

<base> is the starting location of the common segment. It can be a decimal or a hexa-
decimal number. <name> is the name of the common segment.

Syntax DATA <base>

Defines the absolute starting address for the data segment (DSEG) in the linked output.
DATA is only valid when used with PROGRAM.

<base> is the starting location of the data segment.

Syntax: END

Indicates the end of the link control stream. This command is required in every link control
file.

Syntax:
INCLUDE {<acnm>[,<acnm>] ... ,(<name>) [, (<name>)] ... }

Defines one or more modules to be included in the linking process. This is a required
command. More than one INCLUDE statement may be used.

<acnm> is the access name of a file containing the object module(s) to be inluded in the
linking process, and (<name>) is a member in a library.

Syntax: PROGRAM <base>

Defines the absolute starting address for the program segment (PSEG) in the linked
output.

<base> is the starting location of the program segment.

Syntax: TASK [<name>]

Defines the name of the task; this becomes the IDT name, placed on the last record of the
object module.

<name> is the task module identifier, and can have up to eight characters. If omitted, the
IDT name of the first included module is used as the task name.

Avoid using AORG in object modules which will be linked. Linking a module
that contains an AORG directive may produce an Illegal immediate tag en­
countered error at link time. Use the PSEG, CSEG, and DSEG directives in­
stead to identify the locations in the source code. Use the PROGRAM,
COMMON, and DATA commands in the link control file to define the lo­
cations.

The link control file will look similar to this example:

TASK
PROGRAM
DATA
COMMON
INCLUDE
INCLUDE
END

MYPROG
>F006
>FFDO

FILEl
FILE2

Program starting point (PSEG)
Trap and vector table stg pt (DSEG)
Additional starting location (CSEG)

Linking Program Modules - Directives Used for Linking

7.3 Directives Used for Linking

The assembler includes four directives used for linking program modules:

IDT Names the program module.
REF Names symbols used in the current module but defined in another

module.
SREF Names symbols used in the current module that may not be defined in

another module.
DEF Names symbols defined in the current module that can also be used by

other modules.

For more information about directives, see Section 6, Assembler Directives.

7.3.1 IDT - Program Identifier Directive

The IDT directive assigns a name to the program module. Its syntax is:

[label] IDT <string>

where [label] is optional, and <string> contains the module name.

If a module will be linked, it must include an IDT directive. Each module name
is limited to eight characters and must be unique.

7.3.2 DEF - External Definition Directive

Symbols defined in a program module and required by other program modules
must be defined by the DEF directive. The following example shows a pro­
gram named ROUTINES that DEFs a routine named SUBR1. The label
SUBR1 must be defined in the program.

Example 7-1. File A

IDT
DEF

'ROUTINES'
SUBR1,SUBR2

SUBRl EQU $

RETS
SUBR2 EQU $

RETS
END

Subroutines #1 and #2 entry
points

Subroutine #1 starts here

Subroutine #2 starts here

When the program in Example 7-1 is linked with the program in Example 7-2,
the references are automatically resolved.

7-5

Linking Program Modules - Directives Used for Linking

7.3.3 REF and SREF - External Reference Directives

If a module uses a symbol that is defined in a different module, it must be ex­
ternally referenced by the REF or the SREF directive. The following example
shows a program, MAIN, which REFs a subroutine named SUBR1. (SUBR1
is not defined in File B.)

Example 7-2. File B

IDT
REF

'MAIN'
SUBRl Subroutine #1 entry point

CALL @SUBRl Execute subroutine #1 now

END

7-6

A. TMS7000 Bus Activity Tables

This section describes the internal and external bus activity during each in­
struction execution and hardware operation (for example, interrupts). The
external bus activity is the information seen on the expansion bus. The in­
ternal bus refers to the address and data buses that are part of the TMS7000
internal architecture. The information on the address and data buses, as well
as the control pins, can be monitored externally when the device operates in
any mode but Single-Chip. The internal and external buses' activity is docu­
mented on a cycle-by-cycle basis. The information in this section is useful to:

Understand the external expansion bus for the purpose of designing an
interface
Calculate instruction execution times
Gain a better understanding of microcomputer operation

The information on the bus activity tables is the same for NMOS and CMOS
devices except for the IDLE instruction. This difference is noted in Table A-8.

Topics covered in this appendix include:

Section Page
A.1 TMS7000 Operating Modes .. A-2
A.2 TMS7000 Addressing Modes .. A-2
A.3 Instruction Execution .. A-3

Table A-1 contains an alphabetical listing of the TMS7000 instructions and
indexes into the appropriate bus activity tables.

A-1

Appendix A-TMS7000 Bus Activity Tables

A.1 TMS7000 Operating Modes

The TMS7000 is a microcoded microcomputer with four operating modes:

In the Single-Chip mode, there are four 8-bit 1/0 ports (Ports A, B,
C, and D) that provide 32 general purpose 1/0 lines.

In Peripheral-Expansion mode, one 8-bit port (Port C) becomes a
multiplexed address and data bus and four output lines (the four most
signigicant bits of Port B) become the bus control signals. This is called
the external expansion bus. The 8-bit address/data bus allows the
TMS7000 to access up to 256 bytes of externally memory-mapped pe­
ripherals (excluding the dedicated on-chip Peripheral-File locations).

Full-Expansion mode is similar to Peripheral-Expansion mode, except
that another Port D becomes the MSB of a 16-bit address (Port C sup­
plies the LSB). This means that the TMS7000 can access up to 64K
bytes externally minus the number of bytes of on-chip ROM.

Microprocessor mode is the same as Full-Expansion mode, except
that the on-chip ROM (if any) is ignored and the entire 64K bytes are
mapped off chip.

A.2 TMS7000 Addressing Modes

A-2

Because the TMS7000 implements a microcoded architecture, the microcode
that fetches the instructions and their operands can be shared by many in­
structions. The instruction can be grouped according to the types of operands
the instructions require and how the instructions are fetched. Each instruction
group is based on one of the addressing modes supported by the TMS7000:

Double Operand Functions (DOPFUN)

ADD, ADC, AND, BTJO, BTJZ, CMP, DAC, DSB, MOV, MPV, OR, SBB,
SUB, XOR

These instructions require two operands for execution.

Miscellaneous Functions (MISCFUN)

DINT, EINT, IDLE, LDSP, NOP, POP ST, PUSH ST, RETI, RETS, SETC,
STSP

These instructions need no operands because the instruction function is
implied in the opcode.

Long Addressing Functions (LAFUN)

BR, CALL, CMPA, LOA, STA

These instructions require a 16-bit address which is used to address the
entire 64K-byte address range of the TMS7000.

Appendix A - TMS7000 Bus Activity Tables

Single Operand Functions - Special (SOPFUNS)

CLR, DEC, INC, INV, MOV A B, MOV A RN, MOV B RN, SWAP,
TSTA/CLRC,TSTB,XCHB

These instructions need one operand for execution.

Single Operand Functions - Normal (SOPFUNN)

DECO, DJNZ,POP, PUSH,RL,RLC,RR,RRC

These instructions need one operand for execution. Two groups of sin­
gle operand instructions are needed because of the way CPU control is
implemented and the number of supported single operand instructions.

Double Operand Functions - Peripheral (DOPFUNP)

ANDP, BTJOP, BTJZP, MOVP, ORP, and XORP.

These instructions require two operands and interact with the TMS7000
peripheral file registers.

Move Double (MOVD)

MOVD

Moves a register pair to a register pair and is the only instruction in this
group.

Relative Jumps (RJMP)

JMP, JN/JLT, JZ/JEQ, JC/JHS, JP/JGT, JPZ/JGE, JNZ/JNE, JNC,
JL

These conditional and unconditional jumps alter program flow by adding
or subtracting an 8-bit value with the program counter.

Traps (TRAP)

Trap 0 through Trap 23.

These instructions are used to perform subroutine calls.

A.3 Instruction Execution

There are three phases of instruction execution:

1) Opcode fetch (instruction acquisition mode)
2) Operand addressing (addressing mode)
3) Functional operation on the operands (functional mode)

A-3

Appendix A - TMS7000 Bus Activity Tables

A-4

The Bus Activity Tables, which list the number of cycles executed in each
phase, are grouped according to these three phases:

The instruction acquisition sequence is common to all instructions,
so they are presented separately:

Table
A-2
A-3
A-4

Page
Instruction Acquisition Mode - Operation Code Fetch A-9
Instruction Acquisition Mode - Interrupt Handling A-10
Instruction Acquisition Mode - Reset .. A-10

To determine the number of addressing mode and functional mode
cycles, locate the instruction's functional group (Table A-1) and refer­
ence the appropriate table. Table A-1 lists the TMS7000 instructions in
alphabetical order with the corresponding addressing mode.

Table
A-5
A-6
A-7
A-8
A-9

A-10
A-11
A-12
A-13
A-14
A-15
A-16
A-17
A-18
A-19
A-20

Page
Double Operand Functions - Addressing Modes A-11
Double Operand Functions - Functional Modes A-12
Miscellaneous Functions - Addressing Modes A-13
Miscellaneous Functions - Functional Modes A-13
Long Addressing Functions - Addressing Modes A-14
Long Addressing Functions - Functional Modes A-15
Single Operand Functions, Special - Addressing Modes A-15
Single Operand Functions, Special - Functional Modes A-16
Single Operand Functions, Normal - Addressing Modes A-16
Single Operand Functions, Normal - Functional Modes A-17
Double Operand Functions, Peripheral - Addressing Modes .. A-18
Double Operand Functions, Peripheral - Functional Modes ... A-19
Move Double - Addressing Modes .. A-20
Move Double - Functional Modes ... A-20
Relative Jumps - Addressing and Functional Modes A-21
Traps - Addressing and Functional Modes A-21

Add all these cycles together to obtain the bus activity present during that in­
struction's execution.

Each table indicates whether a read or a write is performed during that cycle.
The R/W signal is high for reads and low (logic zero) for writes. The memory
control signals, ALATCH and ENABLE, are asserted during both reads and
writes. Note that the ENABLE signal is asserted only during external reads and
writes.

Accesses other than internal RAM are long memory cycle (two-cycle) ac­
cesses. The timing of these accesses for NMOS and CMOS devices is speci­
fied in the Memory Interface Timing specifications in Section 4. These long
memory cycle accesses have been indicated by their grouping within the ta­
bles (two-cycle accesses are not separated by a horizpntal line). For these
cycle pairs, the first cycle uses the C and D ports for the address bus (C only
for Peripheral-Expansion mode). In the second cycle, Port C becomes a data
bus. Figure A-1 illustrates the read/write information. This timing diagram is
the same for NMOS and CMOS devices, but the interface timing specifications
are different.

Although short memory cycles (RAM cycles) influence the external bus ac­
tivity, no valid information is seen and the timing cannot be specified.

Appendix A - TMS7000 Bus Activity Tables

The following terms are used throughout this appendix:

LSB least significant byte of a 16-bit value
MSB most significant byte of a 16-bit value
Rs (Rn source) the first operand listed
Rd (Rn destination) the second operand listed. The resulting value is

stored at the Rd address.

CLKOUT(87)

ALATCH (84)

HI ADDR (DO-D7)

LO ADDR (CO-C7)

ENABLE (86)

RD/WR (85)

EXTERNAL
READ

E>CTERNAL
WRITE

RAM
READ

INTERNAL
READ

1 - 1- _HI ACOR 1 HI ACOR : 1 HI ~ 1 HI ACOR

: :::;il~th(JL-AL) : I

I I I :

I 11 I t (EH) I I
: I It ~I+- h -D : I I .
l H ~{AL-JL) ! 1 I ! I I th(EH-0)

:~1~1 ®f\111 Wf)l-@--
j4- d(A-D) ...i I I 1 I I :
I I : Ifft- td(EH-AF) I : I• ..i td(EL-D) I !

· I I I 1• ~I td(O-EH)
~ ~-Jd{AF-EU I I 1---------

,_l I \ ! t ! \ I t
l :dtd(RW-JL>Fl ,,._th(EH-RW) l I : _J I ~ t d(A-EH) !-+I
I I I
I I I

: : I
I I I

I

Figure A-1. Read and Write Timing Diagram

A-5

Appendix A - TMS7000 Bus Activity Tables

A.3.1 An Example Using the Bus Activity Tables

Example A-1 illustrates the execution steps produced by the instruction

ADD RS, R6.

To construct the cycles required to execute the instruction, begin with the
opcode fetch as shown in Example A-1. These three cycles:

1) Fetch the instruction opcode,
2) Increment the program counter, and
3) Prefetch register B.

Example A-1. Execution Steps for ADD (Instruction Acquisition)

ADDRESSING MODE CYCLE ADDRESS BUS DATA BUS R/W

All Instructions 1 Opcode address Irrelevant data R
2 Opcode address Instruction opcode R

3 Register B address Register B contents R
t

t The first two cycles fetch the ADD instruction's opcode and increment the program counter. The third
state prefetches register B to speed up instructions that reference register B.

Note: This information is from Table A-2.

Example A-2. Execution Steps for ADD (Addressing Modes)

ADDRESSING MODE CYCLE ADDRESS BUS DATA BUS R/W

Rn, Rn 1 Opcode address + 1 Irrelevant data R
2 Opcode address + 1 Rs address R

3 Rs address Rs data R

4 Opcode address + 2 Irrelevant data R
5 Opcode address + 2 Rd address R

6 Rd address Operand data R

Note: The addressing mode is entered next and is found in Table A-5.

A-6

The ADD instruction is a double operand function, requiring two operands.
Double operand functions are described in Table A-5 and Table A-6. Cycles
1 and 2 of this mode read the R5 operand address. Cycle 3 reads the register
contents.

Note:

The internal register read (or write) is a one cycle operation. All other
reads/writes are two cycles long, requiring that the address bus be held
stable for two complete machine cycles.

Each machine cycle corresponds to one clock period of the CLKOUT signal
(pin 2), starting with the rising edge of this signal. Cycles 4 and 5 read the

Appendix A - TMS7000 Bus Activity Tables

Rd address, (R6) where the resultant value is placed. Cycle 6 reads the con­
tents of register R6. Now, both operands are inside the CPU and the indicated
function can be performed as shown Example A-3 for functional modes (ex­
cerpted from Table A-6).

Example A-3. Execution Steps for ADD (Functional Modes)

E·~'N_S_T_R __ u_c_T_IO_N __ --l~c_v __ c_LE __ -t-__ A_D_D __ R_Es_s __ s~u_s __ ---t-_____ D_A_T_A __ B_u_s ____ -t-_R~/=ViJ----f
ADD Register address . Register data W

Once both operands are inside the CPU, only one cycle is needed to perform
the add operation. The result is written back to register R6 during this cycle.
A total of 10 cycles is required to perform an ADD RS, R6.

A-7

Appendix A - TMS7000 Bus Activity Tables

Table A-1. Alphabetical Index of Instruction Groups

INSTRUCTION ADDRESS TABLE FUNCTION
MODE NUMBER

ADC DOPF UN Table A-5 Add with carry

ADD DOPFUN Table A-5 Add

AND DOPFUN Table A-5 And

ANDP DOPFUNP Table A-15 And value with peripheral port

BTJO DOPF UN Table A-5 Test bit and jump if one

BTJOP DOPFUNP Table A-15 Test peripheral bit and jump if one

BTJZ DOPF UN Table A-5 Test bit and jump if zero

BTJZP DOPFUNP Table A-15 Test peripheral bit and jump if zero

BR LAFUN Table A-9 Long branch

CALL LAFUN Table A-9 Subroutine call

CLR SOPFUNS Table A-11 Clear

CLRC SOPFUNS Table A-11 Clear status carry bit

CMP DOPFUN Table A-5 Compare value

CMPA LAFUN Table A-9 Compare value with Register A

DAC DOPFUN Table A-5 Decimal add with carry

DEC SOPFUNS Table A-11 Decrement value

DECO SOPFUNN Table A-13 Decrement double register pair

DINT MISCFUN Table A-7 Disable interrupts

DJNZ SOPFUNN Table A-13 Decrement and jump if not zero

DSB DOPF UN Table A-5 Decimal subtract

EINT MISCFUN Table A-7 Enable interrupts

IDLE MISCFUN Table A-7 Idle (PC is held unchanged)

INC SOPFUNS Table A-11 Increment

INV SOPFUNS Table A-11 Invert

JMP REL JUMPS Table A-19 Unconditional relative jump

J<cnd> REL JUMPS Table A-19 Conditional relative jumps (JN/JLT,
JZ/JEQ, JL, JC/JHS, JP/JGT,
JPZ/JGE, JNZ/JNE, JNC)

LOA LAFUN Table A-9 Load Register A from long address

LDSP MICSFUN Table A- 7 Load Stack Pointer

MOV DO FUN Table A-5 Move a data value

MOV SOP FUNS Table A-11 Move with implied operand

MOVD MOVD Table A-17 Move a 16-bit value to register pair

MOVP DOPFUNP Table A-15 Move a data value to/from port

MPV DOPFUN Table A-5 Multiply two 8-bit values

NOP MISCFUN Table A-7 No operation

A-8

Appendix A - TMS7000 Bus Activity Tables

Table A-1. Alphabetical Index of Instruction Groups (Concluded)

INSTRUCTION ADDRESS TABLE FUNCTION
MODE NUMBER

OR DOPFUN Table A-5 OR two values together

ORP DOPFUNP Table A-15 OR port value with another value

POP SOPFUNN Table A-13 POP a value off the stack

PO PST MISCFUN Table A-7 POP stack value into Status Register

PUSH SOPFUNN Table A-13 PUSH a value onto the stack

PUSH ST MISCFUN Table A-7 PUSH Status Register onto stack

RETI MISCFUN Table A-7 Return from interrupt

RETS MISCFUN Table A-7 Return from subroutine

RL SOPFUNN Table A-13 Rotate left

RLC SOPFUNN Table A-13 Rotate left through carry bit

RR SOPFUNN Table A-13 Rotate right

RRC SOPFUNN Table A-13 Rotate right through carry bit

SBB DOPFUN Table A-5 Subtract with borrow

SETC MISCFUN Table A-7 Set carry bit

STA LAFUN Table A-9 Store Register A to long address

STSP MISCFUN Table A-7 Store Stack Pointer to Register B

SUB DOPFUN Table A-5 Subtract

SWAP SOPFUNS Table A-11 Swap nibbles of an 8-bit value

TSTA SOP FUNS Table A-11 Test Register A and set status

TSTB SOPFUNS Table A-11 Test Register B and set status

TRAP n TRAP Table A-20 Trap to subroutine

XCHB SOPFUNS Table A-11 Exchange value with Register B

XOR DOPFUN Table A-5 Exclusive OR

XORP DOPFUNP Table A-15 Exclusive OR with peripheral port

Table A-2. Instruction Acquisition Mode - Opcode Fetch

DRESSING MODE CYCLE ADDRESS BUS DATA BUS R/W

All Instructions 1t Opcode address
2 Opcode address

3+ Register B address

t Go to interrupt code listed for cycle .3 if an interrupt is pending.
+ Go to addressing modes (Table A-5 through Table A-20).

Irrelevant data
Instruction opcode

Register B contents

Notes: 1 . This mode is executed for all instructions to fetch the instruction's opcode.

R
R

R

2. Register B is prefetched to speed up the execution of instructions that reference register B.
3. The Program Counter is incremented during cycles 1 and 2 of this mode.
4. An interrupt check is performed during cycle 2. If an interrupt is detected, cycle 3 is not

executed. Control is passed immediately to the interrupt handling code shown next.

A-9

Appendix A - TMS7000 Bus Activity Tables

Table A-3. Instruction Acquisition Mode - Interrupt Handling

FUNCTION CYCLE ADDRESS BUS DATA BUS R/W

Interrupts 1t Irrelevant data Irrelevant data -
2 Irrelevant data Irrelevant data -
3 Irrelevant data Irrelevant data -
4 Irrelevant data Irrelevant data -
5 SP register Status register w
6 Irrelevant data Irrelevant data -

(Reset entry) 7 Irrelevant data Irrelevant data -
8 Irrelevant data Irrelevant data -
9 Address > FFOO + vector Irrelevant data R

10 Address > FFOO + vector LS B I NT vector R

11 Address > FFOO + vector lrrevelent data R
12 Address >FFOO +vector MSB INT vector R

13 SP contents PCH contents w
14 Irrelevant data Irrelevant data -
15 SP + 1 contents PCL contents w
16 Irrelevant data Irrelevant data -
17 Irrelevant data Irrelevant data -

t Jump to cycle number 5 if opcode was IDLE (>01). If it was an IDLE instruction, do not decrement
PC because desired return is past the I OLE instruction.

Notes: 1. The Program Counter is decremented during cycles number 3 and 4. This is done because
the instruction that the PC had pointed at has not been executed.

2. The Status Register is saved on the stack during Cycle 5. The Program Counter is saved
during cycles 13 and 1 5.

3. The vector is selected by hardware depending upon which interrupt was asserted.

Table A-4. Instruction Acquisition Mode - Reset

FUNCTION CYCLE ADDRESS BUS DATA BUS R/W

Reset 1 Irrelevant data Irrelevant data R

2 Irrelevant data Zeroes -
3t Address >01 00 Zeroes w
4 Address >0100 Zeroes w

t Jump to interrupt cycle 7 (see Reset Entry).
Notes: 1. A read operation is done the first cycle even though the address and data buses contain ir-

A-10

relevant data. This read is done to protect memory in case a long write was in progress when
the Reset action occurred.

2. The write to address >0100 is done to disable all interrupts.
3. The Stack Pointer is initialized to >01.
4. The Program Counter is stored in the register pairs A and B.
5. The RESET function is initiated when the RESET line of the TMS7000 device is held at a

logic zero level for at least five clock cycles. When an active signal is detected on RESET,
the sequence shown above is entered immediately after the current machine cycle is done.

Appendix A - TMS7000 Bus Activity Tables

Table A-5. Double Operand Functions - Addressing Modes
(ADD,ADC,AN D,BT JO.BT JZ,CM P,DAC,DSB,MOV,M PV,OR,SBB,SU B,XOR)

FUNCTIONt CYCLE ADDRESS BUS DATA BUS R/W

Rn, A 1 Opcode address + 1 Irrelevant data R
2 Opcode address + 1 Rn address R

3 Rn address Rn data R

4 Register A address Register A data R

%n,A 1 Opcode address + 1 Irrelevant data R
2 Opcode address + 1 Immediate value (%n) R

3 Register A address Register A data R

Rn, B 1 Opcode address + 1 Irrelevant data R
2 Opcode address + 1 Rn address R

3 Rn address Rn data R

4 Register B address Operand data R

Rn, Rn 1 Opcode address + 1 Irrelevant data R
2 Opcode address + 1 Rs address R

3 Rs address Rs data R

4 Opcode address + 2 Irrelevant data R
5 Opcode address + 2 Rd address R

6 Rd address Rd data R

%n, B 1 Opcode address + 1 Irrelevant data R
2 Opcode address + 1 Immediate data R

3 Register B address Register B data R

B, A 1 Register A address Register A data R

%n, Rn 1 Opcode address + 1 Irrelevant data R
2 Opcode address + 1 Immediate data R

3 Opcode address + 2 Irrelevant data R
4 Opcode address + 2 Rn address R

5 Rn address Rn data R

t See functional modes in Table A-6.

A-11

Appendix A - TMS7000 Bus Activity Tables

Table A-6. Double Operand Functions - Functional Modes
(ADD,ADC,AN D,BT JO,BT JZ,CM P,DAC,DSB,MOV,M PY,OR,SBB,SU B,XOR)

INSTRUCTIONSt CYCLE ADDRESS BUS DATA BUS R/W

MOV 1 Register address Register data w
AND 1 Register address Register data w
OR 1 Register address Register data w
XOR 1 Register address Register data w
ADD 1 Register address Register data w
ADC 1 Register address Register data w
SUB 1 Register address Register data w
SBB 1 Register address Register data w
CMP 1 Irrelevant data Irrelevant data -
DAC 1 Register address Register data w

2 Register address Register data R
3 Register address Register data w
t

DSB 1 Register address Register data w
2 Register address Register data R

3 Register address Register data w
MPY (Note 1) 1 Register B address Register B data w

2 Irrelevant data Irrelevant data -
3 Irrelevant data Irrelevant data -
4 Register B address Register B data R

5 Register B address Register B data w
9 iterations 6 Irrelevant data Irrelevant data -

7 Irrelevant data Irrelevant data -
8 Register A address MSB mult. product w
9 Irrelevant data Irrelevant data -

BTJO,BTJZ (Note 2) 1 Irrelevant data Irrelevant data -
2 Opcode address + 1 Irrelevant data R

3 Opcode address + 1 Jump PC offset R

4 Opcode address + 1 Jump PC offset R

5 Irrelevant data Irrelevant data -
6 Irrelevant data Irrelevant data -
7 Irrelevant data Irrelevant data -

t Jump to instruction acquisition sequence.
Notes: 1. MPY - This microcode iterates to perform the multiply. The functional portion of the MPY

instruction requires 40 states for execution.
2. BT JO, BT JOP - Not all states are executed. Either state 2 or state 3 is executed, but not both.

The same applies to states 6 and 7.

A-12

Appendix A - TMS7000 Bus Activity Tables

Table A-7. Miscellaneous Functions - Addressing Modes
(DINT,EINT,IDLE,LDSP,NOP,POP ST.PUSH ST,RETl,RETS,SETC,STSP)

ADDRESSING MODE CVCLEt ADDRESS BUS DATA BUS R/W
SP contents Stack value R

t See functional modes in Table A-8.

Table A-8. Miscellaneous Functions - Functional Modes
(DINT,EINT,IDLE,LDSP,NOP,POP ST.PUSH ST,RETl,RETS,SETC,STSP)

ADDRESSING MODE CYCLE ADDRESS BUS DATA BUS R/W

EINT 1 Irrelevant data Irrelevant data -
DINT 1 Irrelevant data Irrelevant data -
SETC 1 Irrelevant data Irrelevant data -

t

POP ST 1 SP contents Stack data R

2 Irrelevant data Irrelevant data -
t

STSP 1 Irrelevant data Irrelevant data -
2
t

Register B address SP contents w
RETS 1 Irrelevant data Irrelevant data -

2 Register address Register data R

3 Irrelevant data Irrelevant data -
t

RETI 1 Irrelevant data Irrelevant data -
2 Register address Register data R

3 Irrelevant data Irrelevant data -
4 SP contents Register data R

5 Irrelevant data Irrelevant data -
t

LDSP 1 Irrelevant data Irrelevant data -
t

PUSH ST 1 Irrelevant data Irrelevant data -
2 SP contents Status register w
t

IDLE 1 Irrelevant data Irrelevant data -
2 Irrelevant data Irrelevant data -
t

t Jump to instruction acquisition sequence.
Notes: 1. NOP does not have an execution state. From the addressing mode control is passed back

to the instruction acquisition microcode.
2. The bus activity shown for the IDLE instruction corresponds to the NMOS parts only. For

these parts, the microcode loops by jumping back to its own instruction acquisition. For the
CMOS parts, an IDLE corresponds to a microcode halt. Because of this, it may take up to
6 cycles longer to interrupt out of an NMOS idle.

A-13

Appendix A - TMS7000 Bus Activity Tables

Table A-9. long Addressing Functions - Addressing Modes
(BR,CALL,CM PA,LDA,STA)

ADDRESSING MODE CYCLE ADDRESS BUS DATA BUS

@n 1 Opcode address + 1 Irrelevant data
2 Opcode address + 1 MSB of long address

3 Opcode address + 2 Irrelevant data
4 Opcode address + 2 LS B of long address

5 Irrelevant data Irrelevant data
t

*Rn 1 Opcode address + 1 Irrelevant data
2 Opcode address + 1 Rn address

3 Rn address LS B of long address

4 Rn - 1 address MSB of long address
t

@n(B) 1 Irrelevant data Irrelevant data

2 Opcode address + 1 Irrelevant data
3 Opcode address + 1 MSB of long address

4 Opcode address + 2 Irrelevant data
5 Opcode address + 2 LSB of long address

6 Irrelevant data Irrelevant data

7 Irrelevant data Irrelevant data
t

t See functional modes in Table A-10.

A-14

R/W

R
R

R
R

-

R
R

R

R

-
R
R

R
R

-
-

Appendix A - TMS7000 Bus Activity Tables

Table A-10. Long Addressing Functions - Functional Modes
(BR,CALL,CM PA,LDA,STA)

ADDRESSING MODE CYCLE ADDRESS BUS DATA BUS R/W

LOA 1 Operand address Irrelevant data
2 Operand address Operand data

3 Register A address Operand data
t

STA 1 Register A address Register A contents

2 Operand address Register A contents
3 Operand address Register A contents
t

BR 1 Irrelevant data Irrelevant data

2 Irrelevant data Irrelevant data
t

CMPA 1 Operand address Irrelevant data
2 Operand address Operand data

3 Register A address Register A contents

4 Irrelevant data Irrelevant data
t

CALL 1 Irrelevant data Irrelevant data

2 SP contents PCH contents

3 Irrelevant data Irrelevant data

4 SP+ 1 PCL

5 Irrelevant data Irrelevant data

6 Irrelevant data Irrelevant data
t

t Jump to instruction acquisition sequence.

Table A-11. Single Operand Functions, Special - Addressing Modes
(CLR,DEC,INC,INV,MOV A B,MOV A RN,MOV B

RN,SWAP,TSTA/CLRC,TSTB,XCHB)

R
R

w

R

w
w

-
-

R
R

R

-

-
w
-
w
-
-

ADDRESSING MODE CYCLE ADDRESS BUS DATA BUS R/W

A 1 Register A address Register A contents R
t

B 1 Register B address Register B contents R
t

Rn 1 Opcode address + 1 Irrelevant data R
2 Opcode address + 1 Rn address R

3 Rn address Rn data R
t

t See functional modes in Table A-12.

A-15

Appendix A - TMS7000 Bus Activity Tables

Table A-12. Single Operand Functions, Special - Functional Modes
(CLR,DEC,INC,INV,MOV A B,MOV A RN,MOV B

RN,SWAP,TSTA/CLRC,TSTB,XCHB)

ADDRESSING MODE CYCLE ADDRESS BUS DATA BUS R/W
DEC 1 Register address Register data

INC 1 Register address Register data

INV 1 Register address Register data

CLR 1 Register address Register data
t

XCHB 1 Register B address Register data

2
t

Register address Register data

SWAP 1 Irrelevant data Irrelevant data

2 Irrelevant data Irrelevant data

3 Irrelevant data Irrelevant data

4
t

Register address Register data

MOV A.B 1 Register A address Register A data

2
t

Register B address Register A data

MOVA.Rn 1 Register A address Register A data

2 Register address Register A data
t

MOV B,Rn 1 Register address Register B data
t

TSTA/CLRC 1 Register A address Register A data

2 Register address Register data
t

TSTB 1 Register B address Register data
t

t Jump to instruction acquisition sequence.

Table A-13. Single Operand Functions, Normal - Addressing Modes
(DECD,DJNZ,POP,PUSH,RL,RLC,RR,RRC)

w
w
w
w
w
w
-
-
-
w

R

w

R

w

w
R

w

w

ADDRESSING MODE CYCLE ADDRESS BUS DATA BUS R/W

A 1
t

Register A address Register A data R

B 1 Register B address Register B data R
t

Rn 1 Opcode address + 1 Irrelevant data R
2 Opcode address + 1 Rn address R

3 Rn address Rn data R
t

t See functional modes in Table A-14.

A-16

Appendix A -TMS7000 Bus Activity Tables

Table A-14. Single Operand Functions, Normal - Functional Modes
(DECD,DJNZ,POP,PUSH,RL,RLC,RR,RRC)

INSTRUCTION CYCLE ADDRESS BUS DATA BUS R/W

PUSH 1 Irrelevant data

2 SP contents
t

POP 1 SP contents

2 Register data
t

RR 1 Register data

ARC 1 Register data

RL 1 Register data

RLC 1
t

Register data

DECO 1 Register data

2 Irrelevant data

3 Irrelevant data

4 Register address

5 Register address
t

DJNZ 1 Register address

2 Opcode address + 1
+
3 Opcode address + 1
t

4 Opcode address + 1

5 Irrelevant data
§

6 Irrelevant data
t

7 Irrelevant data
t

t Jump to instruction acquisition sequence.
+ If result is not = 0, jump to state 4.
§ If jump PC offset is positive, jump to state 7.

Irrelevant data -
Register data w

Register data R

Register data w

Register data w
Register data w
Register data w
Register data w
Register data w
Irrelevant data -
Irrelevant data -
Register data R

Register data w

Register data-1 w
Irrelevant data R

Jump PC offset R

Jump PC offset R

Irrelevant data -

Irrelevant data -

Irrelevant data -

A-17

Appendix A - TMS7000 Bus Activity Tables

Table A-15. Double Operand Functions, Peripheral - Addressing Modes
(ANDP,BT JOP,BT JZP,MOVP,ORP,XORP)

ADDRESSING MODE CYCLE ADDRESS BUS DATA BUS

A Pn 1 Register A address Register A data

2 Opcode address + 1 Irrelevant data
3 Opcode address + 1 Pn address

4 Pn address Irrelevant data
5 Pn address Pn data
t

B, Pn 1 Opcode address + 1 Irrelevant data
2 Opcode address + 1 Pn address

3 Pn address Irrelevant data
4 Pn address Pn data
t

%n, Pn 1 Opcode address + 1 Irrelevant data
2 Opcode address + 1 %n -immediate data

3 Opcode address + 2 Irrelevant data
4 Opcode address + 2 Pn address

5 Pn address Irrelevant data
6 Pn address Pn data
t

Pn, A 1 Register A address Register A data

2 Opcode address + 1 Irrelevant data
3 Opcode address + 1 Pn address

4 Pn address Irrelevant data
5 Pn address Pn data
t

Pn, B 1 Opcode address + 1 Irrelevant data
2 Opcode address + 1 Pn address

3 Pn address Irrelevant data
4 Pn address Pn data
t

t See functional modes in Table A-16.
Notes: 1. Addressing modes "A Pn" and "Pn, A" fetch their operands the same way.

2. Addressing modes "B, Pn" and "Pn, B" fetch their operands the same way.

A-18

R/W

R

R
R

R
R

R
R

R
R

R
R

R
R

R
R

R

R
R

R
R

R
R

R
R

Appendix A - TMS7000 Bus Activity Tables

Table A-16. Double Operand Functions, Peripheral - Functional Modes
(ANDP,BT JOP,BT JZP,MOVP,ORP,XORP)

INSTRUCTION CYCLE ADDRESS BUS DATA BUS R/W

MOVP X, Pn 1 Pn address

2 Pn address
t

MOVP Pn, A 1 Register A address

MOVP Pn, B 1 Register B address
t

ANDP 1 Pn address

2 Pn address
t

ORP 1 Pn address

2 Pn address
t

XORP 1 Pn address

2 Pn address
t

BTJOP 1 Irrelevant data

2 Opcode address + 1
+
3 Opcode address + 1
t

4 Opcode address + 1

5 Irrelevant data
§

6 Irrelevant data
t

7 Irrelevant data
t

BTJZP 1 Irrelevant data

2 Opcode address + 1
~

3 Opcode address + 1
t

4 Opcode address + 1

5 Irrelevant data
§

6 Irrelevant data
t

7 Irrelevant data
t

t Jump to instruction acquisition sequence.
+ If bit tested is equal to a 1, jump to state 4.
§ If jump PC offset is positive, jump to state 7.
~ If bit tested is equal to a 0, jump to state 4.

Peripheral register data

Peripheral register data

Register data

Register data

Peripheral register data

Peripheral register data

Peripheral register data

Peripheral register data

Peripheral register data

Peripheral register data

Irrelevant data

Irrelevant data

Jump PC offset

Jump PC offset

Irrelevant data

Irrelevant data

Irrelevant data

Irrelevant data

Irrelevant data

Jump PC offset

Jump PC offset

Irrelevant data

Irrelevant data

Irrelevant data

Notes: 1. MOVP X, Pn - X is either register A or B, or an 8-bit immediate value %n.

w
w

w
w

w
w

w
w

w
w

-
R

R

R

-

-

-

-
R

R

R

-

-

-

A-19

Appendix A - TMS7000 Bus Activity Tables

Table A-17. Move Double - Addressing Mode (MOVD)

INSTRUCTION CYCLE ADDRESS BUS DATA BUS R/W
%n, Rn 1 Opcode address + 1 Irrelevant data R

2 Opcode address + 1 MSB of immediate data R

3 Opcode address + 2 Irrelevant data R
4 Opcode address + 2 LSB of immediate data R

5 Irrelevant data Irrelevant data -
t

Rn, Rn 1 Opcode address + 1 Irrelevant data R
2 Opcode address + 1 Rn source address R

3 Rn source address Rn data - LSB R

4 Rn - 1 source addr. Rn - 1 data - MSB R
t

%n(B), Rn 1 Irrelevant data Irrelevant data -
2 Opcode address + 1 Irrelevant data R
3 Opcode address + 1 MSB of immediate data R

4 Opcode address + 2 Irrelevant data R
5 Opcode address + 2 LSB of immediate data R

6 Irrelevant data Irrelevant data -
7 Irrelevant data Irrelevant data -
t

t See functional mode in Table A-18.

Table A-18. Move Double - Functional Mode (MOVD)

INSTRUCTION CYCLE ADDRESS BUS DATA BUS R/W

MOVD 1 Irrelevant data Irrelevant data -
2 Opcode address + 2/3 Irrelevant data R
3 Opcode address + 2/3 Destination Rn address R

4 Irrelevant data Irrelevant data -
5 Dest. Rn address LSB register data w
6 Irrelevant data Irrelevant data -
7 Dest. Rn-1 address MSB register data w
t

t Jump to instruction acquisition sequence.
Notes: 1. MOVD - States 2 and 3 will be Opcode address + 2 for the "%n, Rn" and the "Rn, Rn" ad-

A-20

dressing modes. States 2 and 3 will be Opcode address + 3 for the "%n(B), Rn" addressing
mode.

Appendix A - TMS7000 Bus Activity Tables

Table A-19. Relative Jumps - Addressing and Functional Modes
(JM P,JN/JL T,JZ/J EQ,JC/J HS,J P /JGT,J PZ/JG E,JNZ/J N E,JNC,J L)

BELATIVE JUMPS CYCLE ADDRESS BUS

1 Opcode address + 1
:t:

2 Opcode address + 1
t

3 Opcode address + 1

4 Irrelevant data
§

5 Irrelevant data
t

6 Irrelevant data
t

t Jump to instruction acquisition sequence.
+ If jump condition is true, jump to state 3.
§ If jump offset is positive go to state 6.

DATA BUS

Irrelevant data

Jump PC offset

Jump PC offset

Irrelevant data

Irrelevant data

Irrelevant data

R/W

R

R

R

-

-

-

Notes: 1. Cycle 1 tests the jump condition. If the jump is true, go to state 3, else execute state 2 and
return to the instruction acquisition sequence.

2. Cycle 4 tests whether the jump offset is positive or negative. If the jump offset is positive,
go to state 6.

Table A-20. Traps - Addressing and Functional Modes (Trap 0 through Trap 23)

TRAPS CYCLE ADDRESS BUS DATA BUS R/W

Trap 0-7 (Group A) 1 Irrelevant data Irrelevant data -
Trap 8-15 (Group B) 1 Irrelevant data Irrelevant data -

Trap 16-23 (Group C) 1 Irrelevant data Irrelevant data -
2 Irrelevant data Irrelevant data -
3 Address > FFOO+Opcode Irrelevant data R
4 Address > FFOO +Opcode LS B trap vector R

5 Address >FFOO+Opcode-1 Irrelevant data R
6 Address >FFOO+Opcode-1 MSB trap vector R

7 SP contents PCH contents w
8 Irrelevant data Irrelevant data -
9 SP + 1 contents PCL contents w
10 Irrelevant data Irrelevant data -
11 Irrelevant data Irrelevant data -
t

t Jump to instruction acquisition sequence.

A-21

Appendix A

A-22

B. TMS7500/TMS75COO Data Encryption Device

The TMS7500 and TMS75COO Data Encryption Devices (DED)10 are periph­
eral devices designed to perform the National Bureau of Standards (NBS)
Data Encryption Standard (DES) algorithm as specified in the Federal Infor­
mation Processing Standard (FIPS) Publication 46. The TMS7500 and the
TMS75COO can be designed into computer systems requiring the use of the
Data Encryption Standard. The TMS7500 and TMS75COO are firmware pro­
ducts derived from two Texas Instruments 8-bit single-chip microcomputers,
the TMS7020 and TMS70C20. Because of the similarities between the
TMS7020 and TMS70C20, the TMS7500 and TMS75COO are pin-to-pin and
functionally identical in operation. The only difference is that the TMS7500
is built using N MOS technology, while the TMS75COO is built using CMOS
technology. Because the TMS7500 and TMS75COO are each based on 8-bit
single-chip microcomputers that are in high volume production, they can be
a very cost-effective solution for low-cost data encryption requirements.

The TMS7500 and TMS75COO devices are available from Texas Instruments
in a standard 600-mil, 40-pin plastic package with 100-mil pin-to-pin spac­
ings. The TMS7500 requires a single 5-volt power supply and all 1/0 pins are
TTL compatible. The TMS75COO requires a single 3-volt to 5.5-volt power
supply and features a low current requirement of 5.5 mA typical.

For the sake of simplicity, this appendix will use the term TMS7500 to refer
to both the TMS7500 and TMS75COO devices unless otherwise stated.

Topics covered in this appendix include:

Section Page
B.1 Key Features ... B-2
B.2 Typical Applications ··'···················· B-2
B.3 Functional Block Diagram .. B-3

10 The products covered by this document (TMS7500 and TMS75COO) are within the
group of electronic products that are wholly or partly of U.S. origin or technology, the
export of which is subject to export license control by the U.S. Government. Therefore,
prior to exportation, you are obligated to obtain the required export license from the U.S.
Department of State (refer to Title 22, Code of Federal Regulations).

B-1

Appendix B -TMS7500/TMS75COO Data Encryption Devic£

B .1 Key Features

A number of key features, most of which are user programmable, enable the
TMS7500 to enhance the flexibility of any system using data encryption. The
device can store two keys at a time and operate in two of the standard data
encryption modes. Some of the key features are highlighted below:

Validated by the National Bureau of Standards (NBS)
Can store both a Master and an Active 64-bit key
Active key can be encrypted or decrypted by master key internally
Electronic Codebook (ECB) or Cipher Feedback (CFB) internal modes
of operation
Dual 8-bit data bus operation possible, one for plain data and one for
ciphered data
Command register programmable from data bus or from external pins on
chip
Status is displayed on external pins and can be read from the data bus
On-chip oscillator uses crystal or ceramic resonator
Maximum data rate of 3200 bits per second at 5 MHz for ECB and 400
bits per second for 8-bit CFB with the TMS7500
Maximum data rate of 2304 bits per second at 3.6 MHz for ECB and 288
bits per second for 8-bit CFB with the TMS75COO
Single power source requirement (5 V nominal)
TMS75COO offers a low power supply current requirement of 5.5 mA
typical

8.2 Typical Applications

B-2

The TMS7500 is particularly well suited for any system requiring a low-cost,
medium-speed data encryption device. It is easily interfaced into the system
and is capable of maintaining the data rates required by most modems and
terminals without sacrificing system performance. Typical applications in­
clude:

Computer to terminal communication links
Home banking communication links
Teller machines for banks
Portable terminals
Point-of-sale terminals
Personnel data handling
Small business systems
Trade market software protection

Appendix B - TMS7500/TMS75COO Data Encryption Device

8.3 Functional Block Diagram

The functional block diagram of the TMS7500 Data Encryption Device (OED)
in Figure B-1 illustrates the firmware architecture organized around the regis­
ters, buffers, and 1/0 buses, which are all linked together through data selec­
tors. All of the necessary data path sequences through these selectors are
determined by a 5-bit command register and eight external control/handshake
pins. The device status is stored in the Status Register and is also available
on the status output pins. The 64-bit key values and encryption data are
passed along the 8-bit main data bus and cipher data bus.

COMMAND
INPUT
PINS

STATUS
OUTPUT

PINS

5

8-4-BIT ACTIVE
KEY REGISTER

84-BIT MASTER
KEY REGISTER

CONTROL AND
HANDSHAKE PINS ,--___,,......._ .. MAIN DATA BUS

..--...,.....-CIPHER DATA BUS

INPUT DATA

TO DATA SELECTORS 8

CIPHERED

KEY TA 84

KEY

DES
ALGORITHM

DATA 84

KEY DATA,__-+~~~--'

Figure B-1. TMS7500 Functional Block Diagram

B-3

Appendix B -TMS7500/TMS75COO Data Encryption Device

8.4 Reference Documents

B-4

The following document is available from your Texas Instruments distributor
or a Texas Instruments Regional Technology Center. It contains a complete
functional description, interface timing specifications, and hardware/software
interface examples for the TMS7500 and TMS75COO data encryption devices.

TMS7500/TMS75COO User's Guide (literature number SPNU004)

The following list contains related documents on the Data Encryption Stand­
ard issued by the U.S. Government. These are available from the National
Technical Information Service, U.S. Department of Commerce, 5285 Port
Royal Road, Springfield, VA 22161 .

FIPS PUB 46, Specifications for the Data Encryption Standard

FIPS PUB 74, Guidelines for Implementing and Using the NBS Data
Encryption Standard

FIPS PUB 81, DES Modes of Operation

FED STD-1026, Telecommunications, Interoperability Requirements for
Use of the Data Encryption Standard in the Physical Layer of Data
Communications

FED STD-1027, General Security Requirements for Equipment Using the
Data Encryption Standard

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-29, NO.
6, June 1981, Integrating the Data Encryption Standard into Computer
Networks, by Miles E. Smid

The following documents are available from the Superintendent of Docu­
ments, U.S. Government Printing Office, Washington, D.C. 20234.

NBS Special Publication 500-2, Validating the Correctness of Hardware
Implementations of the NBS Data Encryption Standard

NBS Special Publication 500-27, Computer Security and the Data En­
cryption Standard

NBS Special Publication 500-54, A Key Notarization System for the
Data Encryption Standard

NBS Special Publication 500-61, Maintenance Testing for the Data En­
cryption Standard

C. TMS70x1 Devices

The TMS70x1 devices include the TMS7001, TMS7041, and the SE70P161.
These devices contain the same features as the TMS70x0 devices, and en­
hance communication ability with the addition of a serial 1/0 port. The
TMS7041 has 4K bytes of on-chip ROM; the TMS7001 has no on-chip ROM.

Each TMS70x1 member has 128 bytes of on-chip RAM, and has the capability
(through memory-expansion modes) to access up to 64K bytes of address
space.

The SE70P161 is a prototyping component for the TMS7001. It is pin-com­
patible with the TMS7041, and uses the same instruction set. The SE70P161
is commonly referred to as a piggyback device because it's packaging allows
a standard TMS2764 or TMS27128 EPROM device to be plugged into the
top. This two-chip unit acts as a form-fit and function emulator for the
TMS7041 microcontroller.

The TMS70x1 devices are not recommended for new designs. For designs
that require an on-chip UART, we recommend using the enhanced features
and performance of the TMS70x2, TMS70Cx2, or the TMS7742-EPROM de­
vices.

Topics covered in this appendix include:

Section Page
C.1 Key Features ... C-2
C.2 TMS70x1 Pinouts and Pin Descriptions .. C-3
C.3 TMS70x1 Architecture .. C-5
C.4 Standard Instruction Set/Development Support C-6
C.5 Electrical Specifications .. C-6

C-1

Appendix C - TMS70x1 Devices

C.1 Key Features

C-2

Family member with 4K bytes of on-chip ROM as well as a ROMless
version

128-byte on-chip RAM Register File

Flexible on-chip serial port:

Asynchronous, lsosynchronous, and Serial 1/0 modes
Two multiprocessor communication formats
Fully software programmable
Internal or external baud-rate generator
Separate baud-rate timer, useable as a third timer

32 TTL-compatible 1/0 pins:

22 bidirectional pins
8 output pins
2 high-inpedance input pins

Full-feature data/program stack

Memory-mapped ports for easy addressing

256-byte Peripheral File

Memory expansion capability

64K-byte address space

8-bit instruction word

Eight powerful addressing formats, including:

Register-to-register arithmetic
Indirect addressing on any register pair
Indexed and indirect branches and calls

2's complement arithmetic

Single-instruction binary-coded decimal {BCD) add and subtract

Two external, maskable interrupts

Flexible interrupt handling

Priority servicing of simultaneous interrupts
Software execution of hardware interrupts
Precise timing of interrupts with the capture latch
Software monitoring of interrupt status

NMOS, 5V ± 10% power supply

40-pin, 600-mil, dual-inline package, 100-mil, pin-to-pin spacing
packages

Appendix C - TMS70x1 Devices

c.;2 TMS70x1 Pinouts and Pin Descriptions

85/R/W
87/CLKOUT 2

BO 3
81
82 5
AO
A1 7
A2
A3 9
A4 10

A 7/EC1 11
INT3 12
INT1 13

14
A6/SCLK/EC2 15

A5/RXD 16
XT AL2/CLKIN 17

XTAL 1 18
D7 19
D6 20

Figure C-1.

85/R/W
87/CLKOUT

80
81
82
AO
A1
A2
A3
A4

A7/EC1

INT3

RESET
A6/SCLK/EC2

A5/RXD
XT AL2/CLKIN

XTAL1
D7
D6

1

2
3
4

5
6
7
8
9
10
11

12
13
14
15
16
17
18
19
20

o Vee
o A12
o A7
o A6
o A5
o A4
o A3
o A2
o A1

o AO
o DO
0 01
0 02

o Vss

Vss
86/ENABLE
84/ALATCH
83/TXD
MC
C7
C6
C5
C4

31 C3
C2
C1
co
DO
D1

Vee
D2
D3
D4

21 D5

TMS70x1 Pinout

u
Vee o
PGM o
A13 o

A8 o
A9 o

A11 o
G 0

A10 o
'E o

07 0

06 0

05 0

04 0

03 0

40
39
38
37
36

35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

Vss
86/ENABLE
84/ALATCH
83/TXD
MC
C7
C6
C5
C4
C3
C2
C1
co
DO
D1

Vee
D2
D3
D4
D5

Figure C-2. SE70P161 Pinout

C-3

Appendix C -TMS70x1 Devices

Table C-1. TMS70x1 and SE70P161 Pin Descriptions

SIGNAL PIN 1/0 DESCRIPTION
AO LSb 6 1/0 Port A. Pins AO-A4 and A7 are general-purpose bidirectional
A1 7 1/0 pins. Pin A7 /EC1 may also be used to clock the on-chip Timer 1
A2 8 1/0 event counter. Pin A5/RXO is used as the UART receiver. Pin
A3 9 1/0 A6/SCLK/EC2 is the serial clock 1/0 pin and Timer 2 event counter
A4 10 1/0
A5/RXD 16 I
A6/SCLK/EC2 15 1/0
A7 /EC1 11 1/0

BO 3 0 Port B. 80-87 are general-purpose output-only pins. 84-87
81 4 0 become memory expansion control signals in Peripheral-Expansion,
82 5 0 Full- Expansion, and Microprocessor modes. Pin 83 is used as the
83/TXD 37 0 UART transmitter.
84/ALATCH 38 0
85/R/W 1 0
86/ENABLE 39 0
87/CLKOUT 2 0
co 28 1/0 Port C. CO-C7 can be individually selected in software as
C1 29 1/0 general-purpose input or output pins in Single-Chip mode. CO-C7
C2 30 1/0 become the LSB address/data bus in Peripheral-Expansion, Full-
C3 31 1/0 Expansion, and Microprocessor modes.
C4 32 1/0
C5 33 1/0
C6 34 1/0
C7 35 1/0

DO 27 1/0 Port 0. 00-07 can be individually selected in software as
01 26 1/0 general-purpose input or output pins in Single-Chip or Peripheral-
02 24 1/0 Expansion modes. 00-07 become the MSB address/data bus in Full-
03 23 1/0 Expansion and Microprocessor modes.
04 22 1/0
05 21 1/0
06 20 1/0
07 19 1/0

INT1 13 I Highest-priority maskable interrupt

INT3 12 I Lowest-priority maskable interrupt

RESET 14 I Reset

MC 36 I Mode control pin, Vee for Microprocessor mode

XTAL2/CLKIN 17 I Crystal input for control. of internal oscillator

XTAL1 18 0 Crystal output for control of internal oscillator

Vee 25 Supply voltage (positive)

Vss 40 Ground reference

C-4

Appendix C - TMS70x1 Devices

C.3 TMS70x1 Architecture

The following sections describe the featuers and functions of the TMS70x1
microcomputers. The TMS70x1 devices are not recommended for new de­
signs. For designs that require an on-chip UART, we recommend using the
enhanced features and performance of the TMS70x2, TMS70Cx2, or the
TMS7742-EPROM devices.

C.:i.1 On-Chip RAM and Registers

The TMS70x1 devices contain the same on-chip registers as the TMS70x2
devices, with the exception of on-chip RAM. The TMS70x1 devices have 128
bytes of on-chip RAM, a 256-byte Peripheral File, a Stack Pointer (SP), a
Status Register (ST), and a 16-bit Program Counter (PC).

C.3.2 On-Chip General-Purpose 1/0 Ports

The TMS70x1 devices have 32 1/0 pins organizes as four 8-bit parallel ports,
A, B, C, and D. These ports are memory mapped identically and accessed via
the same control registers as on the TMS70x2 devices (see Section 3.2).

C.3.3 Memory Modes

The TMS70x1 devices can address up to 64K bytes of ROM and RAM. Four
memory modes can be selected by a combination of software and hardware:
Single-Chip, Peripheral Expansion, Full Expansion, and Microprocessor
modes. These modes are identical to the other TMS7000 family memory
modes (see Section 3.3).

C.3.4 1/0 Control Registers

The TMS70x1 devices contain identical 1/0 control registers in the same me­
mory-mapped locations that are on the TMS70x2 devices. The only difference
is that bit 7 of serial control register 1 (SCTL 1) is a don't care for the
TMS70x1 devices, whereas on the TMS70x2 devices, this bit is the Timer 3
start/stop bit. (See Section 3 for more information.)

C.3 .. 5 Interrupts

The TMS70x1 devices contain the same interrupt sources that are on the
TMS70x2 devices. However, the external interrupts on the TMS70x1 devices
are edge and level active rather than edge-only as on the TMS70x2 devices.

C.3.6 Clock Options
Clock options for the TMS70x1 are +2 and +4 of the oscillator frequency.
(See Section 3.4 for more information.)

C-5

Appendix C - TMS70x1 Devices

C.3.7 Programmable Timer/Event Counters

The TMS70x1 devices contain the same three timer/event counters found in
the TMS70x2 devices. These timers function the same on each device with
the exception of the start/stop function of Timer 3. The TMS70x1 devices do
not have a start/stop function for Timer 3. (See Section 3.6 for more infor­
mation.)

C.3.8 Serial Port

The TMS70x1 devices' serial port uses the same control registers and operates
identically to the serial port of the TMS70x2 devices, with the exception of the
asynchronous mode baud rate. The TMS70x1 operates half as fast in the
asynchronous mode as do the TMS70x2 devices. This is because the
TMS70x2 devices require 8 SCLK pulses to send a bit of data, while the
TMS70x1 devices require 16 SCLK pulses. (See Section 3.8 for more infor­
mation.)

These are the baud-rate equations for TMS70x1 devices using Asynchronous
or lsosynchronous communcations.

Asynchronous baud rate

1

64 x (PR + 1) x (TR + 1) x tc(C)

lsosynchronous baud rate

1

4 x (PR+ 1) x (TR+ 1) x tc(C)

C.4 Standard Instruction Set/Development Support

The TMS70x1 devices use the same instruction set as all other TMS7000 fa­
mily devices. Also, the TMS70x1 uses identical development tools such as the
XDS, EVM, assemblers, and linkers, as do the other TMS7000 devices.

C.5 Electrical Specifications

C-6

The electrical specifications and memory interface timings of the TMS70x1
devices are identical to those of the TMS70x0 devices (see Section 4 for
electrical specifications and memory interface timings).

D. Character Sets

The TMS7000 Assembler recognizes the ASCII character set listed in Table
D-1. Table D-2 lists characters that the assembler does not recognize, but
may be recognized and acted upon by other programs. The device service
routine for the card reader accepts and stores into the calling program's buffer
all the characters listed.

-1

-2

-3

-4

-5

-6

-7

-8

-9

-A

-B

-C

-D

-E

SI

-F F

Table D-1. ASCII Character Set

I ? 0 0

31 47 63 79 95
DEL

(Hi h
ni&le)

D-1

Appendix D - Character Sets

Table D-2. Control Characters

HEX DECIMAL
CHARACTER VALUE VALUE

00 0 NUL
01 1 SOH
02 2 STX
03 3 ETX
04 4 EOT
05 5 ENO
06 6 ACK
07 7 BEL
08 8 BS
09 9 HT
OA 10 LF
OB 11 VT
oc 12 FF
OD 13 CR
OE 14 so
OF 15 SI
10 16 OLE
11 17 CD1
12 18 CD2
13 19 CD3
14 20 CD4
15 21 NAK
16 22 SYN
17 23 ETB
18 24 CAN
19 25 EM
1A 26 SUB
1B 27 ESC
1C 28 FS
1D 29 GS
1 E 30 RS
1F 31 us
7F 127 DEL

D-2

E. Hexadecimal Instruction Table/Opcode Map
0000 0001 0010 0011 0100 1010 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

HIG H

LOW
000 0

000

001

001

010

010

0
·1
1

0
2

'I
3

0
4

1
5

011 ()
6

011 1
7

100 0
8

100 1
9

101 0
A

101 1
B

110 0
c

110 1
D

111 0
E

111 1
F

0 1 2 3

NOP

IDLE

MOV MOV MOV
Rn.A %n,A Rn,B
AND AND AND
Rn.A %n,A Rn,B
OR OR OR

Rn,A %n,A Rn,B
EINT XOR XOR XOR

Rn,A %n,A Rn,B
DINT BTJO BTJO BTJO

Rn.A %n,A Rn,B
SETC BTJZ BTJZ BTJZ

Rn.A %n.A Rn,B
POP ADD ADD ADD
ST Rn.A %n,A Rn,B

STSP ADC ADC ADC
Rn.A %n,A Rn,B

RETS SUB SUB SUB
Rn,A %n,A Rn,B

RETI SBB SBB SBB
Rn,A %n,A Rn,B
MPV MPV MPV
Rn.A %n.A Rn,B

LDSP CMP CMP CMP
Rn.A %n,A Rn,B

PUSH DAC DAC DAC
ST Rn,A %n,A Rn,B

DSB DSB DSB
Rn,A %n,A Rn,B

A - Register A
B - Register A
Rn - ReQiSter File register
Pn Peripheral File register
%n - Immediate Addressing
@n - Direct Addressing
*Rn - Indirect Addressing

4 5 6 7

MOV MOV MOV MOV
Rn, Rn %n,B B,A %n,Pn
AND AND AND AND
Rn,Rn %n,B B,A %n,Pn

OR OR OR OR
Rn, Rn %n,B B,A %n,R
XOR XOR XOR XOR

Rn, Rn %n,B B,A %n,R
BTJO BTJO BTJO BTJO
Rn, Rn %n,B B,A %n,R
BTJZ BTJZ BTJZ BTJZ
Rn, Rn %n,B B,A %n,R
ADD ADD ADD ADD
Rn, Rn %n,B B,A %n,R

ADC ADC ADC ADC
Rn, Rn, %n,B B,A %n,R
SUB SUB SUB SUB

Rn, Rn %n,B B,A %n,R
SBB SBB SBB SBB

Rn, Rn %n,B B,A %n,R
MPV MPV MPV MPV
Rn.Rn %n,B B,A %n,R
CMP CMP CMP CMP
Rn,Rn %n,B B,A %n,R
DAC DAC DAC DAC

Rn, Rn %n,B B,A %n,R
DSB DSB DSB DSB

Rn, Rn %n,B B,A %n,R

8 9 A B c D E F

MOVP TSTA/ MOV MOV JMP TRAP
Pn,A CLRC A,B A,Rn 15

MOVP TSTB MOV JN/ TRAP
Pn,B B,Rn JLT 14

MOVP MOVP MOVP DEC DEC DEC JZ/ TRAP
A,Pn B,Pn %n,Pn A B Rn JEQ 13

ANDP ANDP ANDP INC INC INC JC/ TRAP
A,Pn B,Pn %n,Pn A B Rn JHS 12
ORP ORP ORP INV INV INV JP/ TRAP
A,Pn B,Pn %n,Pn A B Rn JGT 11
XORP XORP XORP CLR CLR CLR JPZ/ TRAP
A,Pn B,Pn %n,Pn A B Rn JGE 10

BTJOP BTJOP BTJOP XCHB XCHB XCHB JNZ/ TRAP
A,Pn B,Pn %n,Pn A B Rn JNE 9

BTJZP BTJZP BTJZP SWAP SWAP SWAP JNC/ TRAP
A,Pn B,Pn %n,Pn A B Rn JL 8

MOVD MOVD MOVD PUSH PUSH PUSH TRAP TRAP
%n,Rn Rn, Rn %n(B),

Rn
A B Rn 23 7

POP POP POP TRAP TRAP
A B Rn 22 6

LOA LOA LOA DJNZ DJNZ DJNZ TRAP TRAP
@n *Rn @n(B) A B Rn 21 5
STA STA STA DECO DECO DECO TRAP TRAP
@n *Rn @n(B) A B Rn 20 4
BR BR BR RR RR RR TRAP TRAP
@n *Rn @n(B) A B Rn 19 3

CMPA CMPA CMPA RRC RRC RRC TRAP TRAP
@n *Rn @n(B) A B Rn 18 2

CALL CALL C~(L~) RL RL RL TRAP TRAP
@n *Rn @n B A B Rn 17 1

RLC RLC RLC TRAP TRAP
A B Rn 16 0

E-1

Appendix E

E-2

F. Instruction Opcode Set

ADC
ADD
AND

ANDP
BTJO

BTJOP
BTJZ

BTJZP
BR

CALL
CLR

CLRC
CMP

CMPA
DAC
DEC

DECO
DINT

DJNZ
DSB
EINT
IDLE
INC
INV

JMP
JC/JHS
JN/JLT
JNC/JL

JNZ/JNE
JP/JGT

JPZ/JGE
JZ/JEQ

LOA
LDSP

SINGLE
OPERAND
A B Rn

B5 C5 05

B2 C2 D2
BB CB DB

BA CA DA

B3 C3 03
B4 C4 04

t Direct
+ Indirect
§ Indexed

A.B

1T Condition Bits
» Interrupt Enable

B,A

69
6S
63

66

67

60

6E

6F

DUAL OPERAND
Rn, %n, Rn, %n, Rn, %n.
A A B B Rn Rn
19 29 39 59 49 79
1S 28 3S 5S 4S 7S
13 23 33 53 43 73

16 26 36 56 46 76

17 27 37 57 47 77

1D 20 3D 50 40 70

1E 2E 3E 5E 4E 7E

1F 2F 3F 5F 4F 7F

0th ~TATU~
PERIPHERAL EXTENDED -er WORD

A. B, A. Pn, B, Pn, %n, t + § 1T))

Rn Rn Pn A Pn B Pn
x
x
x

S3 93 A3 x
x

S6 96 A6 x
x

S7 97 A7 x --SC 9C AC
SE 9E AE

x
BO x

x
SD 90 AD

x
x
x

06 x x
x
x

05 x x
01 x

x
x

EO
E3
E1
E7
E6
E4
E5
E2

SA 9A AA x
OD

F-1

Appendix F - Instruction Opcode Set

F-2

MOV
MOVD
MOVP

MPY
NOP

OR
ORP
POP

PUSH
RETI

RETS
RL

RLC
RR

RRC
SBB

SETC
STA

STSP
SUB

SWAP
TSTA
TSTB
TRAP

XCHB
XOR

XORP

SINGLE
OPERAND
A B Rn A.B

co

89 C9 09
88 ca 08

BE CE DE
BF CF OF
BC cc DC
BD CD DD

B7 C7 07

B6 06

t Direct
:J: Indirect
§ Indexed
,,. Condition Bits
» Interrupt Enable

B,A Rn,
A

62 12

6C 1C

64 14

6B 1B

6A 1A

65 15

DUAL OPERAND
%n, Rn, %n, Rn, %n,
A B B Rn Rn
22 32 52 42 72

2C 3C 5C 4C 7C

24 34 54 44 74

2B 3B 5B 4B 7B

2A 3A 5A 4A 7A

25 35 55 45 75

Ot~ ~TATU~
PERIPHERAL EXTENDED -er WORD

A. B, A, Pn, B, Pn, %n, t :i: § ,,.))

Rn Rn Pn A Pn B Pn
DO 01 x

88 98 AS x
82 80 92 91 A2 x

x
00

x
34 94 A4 x

08 x
OE x
OB
OA

x
x
x
x
x

07 x
SB 9B AB x

09 x
x
x

80 x
C1 x
E3- x
EF

x
x

35 95 A5 x

G. CrossWare Installation

This section contains step-by-step instructions for installing, verifying, and
relinking the TMS7000 Family Macro Assembler and Link Editor. This
CrossWare can be installed on five operating systems:

Digital Equipment Corporation VAX-1111

VMS operating system - page G-2

Tl/IBM Pc12

MS-DQS13 (Tl PC) and PC-DOS (IBM PC) operating systems - page
G-8

IBM Mainframes12

MVS operating system - page G-14
CMS operating system - page G-26

Tl 99014

DX1 0 operating system - page G-31

These style and symbol conventions are used throughout this section:

The symbol <CR> indicates that a carriage return should be entered;
<enter> indicates that the enter key should be pressed.

Angle brackets {< and >) indicates a word which must be typed out; for
example, <directory> indicates that you should type a directory name.
The brackets themselves are not entered.

Screen displays are shown in a special font.

Portions of a display that are user responses are underscored.

Texas Instruments suggests that you conform to these procedures as closely
as possible during the initial installation, allowing you to verify the installation
with a minimum of trouble.

11 VAX-11 and VMS are trademarks of Digital Equipment Corporation.

12 MVS, CMS, and PC-DOS are trademarks of International Business Machines.

13 MS is a trademark of Microsoft Corporation.

14 Tl 990 and DX10 are trademarks of Texas Instruments, Inc.

G-1

Appendix G - CrossWare Installation

G.1 VAX/VMS CrossWare Installation

The TMS7000 CrossWare tape was created with the VMS BACKUP utility.
The package is contained in two directories, shipped in two save sets.

G.1.1 Restore Procedures

G-2

In the following examples, M FAO represents the tape drive name and DUA2
represents the hard disk drive name. Actual tape and disk drive names may
differ.

Mount the Tape

Place the tape on a tape drive. Mount it by entering:

ALLOC MFAO: <CR>
MOUNT MFAO:/OVER=ID/FOR/DEN=1600 <CR>

If the mount is successful, the screen displays:

ASM7 MOUNTED ON MFAO

Restore the Macro Assembler

Use the BACKUP utility to read the ASM7 save set from the tape:

BACKUP/LOG MFAO:ASM7 DUA2: [<directory>]*.* <CR>

The CrossWare package can reside in either your directory or a system direc­
tory. The following examples copy the package into your directory, copying
the ASM7 directory structure on the tape into [<directory>] on disk DUA2.

A README file explaining the Macro Assembler validation procedure is con­
tained in this directory:

[<directory>.ASM7]README.DAT

If you do not want to install the Link Editor, skip the next step and unload the
tape.

Restore the Link Editor

Use the BACKUP utility to copy the LINKER save set from the tape:

BACKUP/LOG MFAO:LINKER.BCK DUA2: [<directory>]*.* <CR>

The string ' ... ' within the brackets is for a directory name, required for the
system to construct subdirectories.

The LINKER.BCK directory structure on the tape is copied into [<directory>]
on disk DUA2.

A README file explaining the Link Editor validation procedure is contained
in this directory:

[<directory>.LINKER]README.DAT

Appendix G - CrossWare Installation

Dismount the Tape

Dismount the tape by entering:

DISMOUNT MFAO: <CR>

Remove the tape from the drive. Deallocate the tape drive by entering:

DEALLOCATE MFAO: <CR>

G.1.2 Installing Command Files

Two command procedures have been provided to ensure correct system-de­
pendent parse features. If your VAX/VMS system runs under Version 2.5, use
the PARSE.C25 command procedure by renaming it PARSE.COM. If your
system runs under Version 3.0, use the default PARSE.COM.

Set the default directory to the directory the Assembler and Linker have been
restored to. Edit the Assembler and Linker command files, replacing existing
pathnames with the pathnames that the Assembler and Linker have been re­
stored to.

Edit the file: [<directory>. ASM7] XASM. COM

Substitute the appropriate file pathnames in three places:

Two calls to the PARSE command, which appear within the first 20 lines as:

$ @[MOORE.ASM7]PARSE 'Pl'

Change them to:

$ @DUA2: [<directory>.ASM7]PARSE 'Pl'

One RUN statement, which appears near the bottom of the file as:

$ RUN[MOORE.ASM7]ASM7000

Change it to:

$ RUN DUA2: [<directory>.ASM7]ASM7000

Edit the file: [<directory>. LINKER] LINKER. COM

Substitute the appropriate file pathnames in three places:

Two calls to PARSE, marked in the file by a preceding line '****** The
actual command appears similar to the PARSE commands in the assembler
command file. Change them to:

$ @DUA2:[<directory>.LINKER]PARSE 'Pl' ...

One RUN statement near the end of the file. Change it to:

$ RUN DUA2: [<directory>.LINKER]LINKER

G-3

Appendix G - CrossWare Installation

G.1.3 Providing Transparent Access

It is not feasible to set the default directory (SET DEF) each time the Assem­
bler or Link Editor is executed. Use the following procedure to provide trans­
parent access for all users. Once the directories are on disk, make the
following assignments into the LOGIN.COM file:

$ X7 :== @DUA2: [<directory>.ASM7]XASM.COM
$ XLINK :== @DUA2: [<directory>.LINKER]LINKER.COM

This defines the X7 and XLINK commands, which execute the Macro Assem­
bler and Link Editor. Execute the Macro Assembler by entering X7 at the ter­
minal in System Mode. Similarly, execute the Link Editor by entering XLIN K.

G.1.4 Verifying Installation

G-4

This verification procedure is not designed to perform an exhaustive test, it
simply verifies that the installation procedures were executed correctly. It also
provides familiarity with the basic operation and data flow of this package.

1) Create a test directory. Copy the TEST.ASM, TEST1 .ASM, TEST2.ASM, and
TEST1 .CON files from [.ASM7] and [.LINKER] into the directory by entering
these commands:

$ CREATE/DIR [<userid>.TEST] <CR>
$ SET DEF [<userid>.TEST] <CR>
$ COPY [<directory>.ASM7]TEST.ASM ~ <CR>
$ COPY [<directory>.LINKER]TESTl.ASM ~* <CR>
$ COPY [<directory>.LINKER)TEST2.ASM _* <CR>
$ COPY [<directory>.LINKER]TESTl.CON <CR>

2) In System Mode, enter: X7 <CR>

For the first input parameter, enter TEST.ASM, TESTl.ASM, and
TEST2. ASM, respectively, for the three assembler runs (ASM is the default
extension). The command procedure parses the pathname and generates de­
faults for the output listing and object files. Take the defaults by pressing the
carriage return, or specify alternate file pathnames following the prompts:

$ X7 TEST <CR>
Object file (TEST.MPO): <CR>
Listing file (TEST.LIS): <CR>
Messages (-TTA3:): <CR>

$ X7 TESTl
Object file (TESTl.MPO): <CR>
Listing file (TESTl.LIS): <CR>
Messages (-TTA3:): <CR>

$ X7 TEST2
Object file (TEST2.MPO): <CR>
Listing file (TEST2.LIS): <CR>
Messages (-TTA3:): <CR>

This creates the TEST.MPO, TEST.LIS, TEST1 .MPO, TEST1 .LIS, TEST2.MPO
and TEST2.LIS files in the directory [<userid>.TEST].

Appendix G - CrossWare Installation

3) In System Mode, enter: XLINK <CR>

As the first input parameter, enter: TEST 1. CON

For the second and third parameters, the command procedure parses the
pathname and generates defaults for the output, load, and map files. This
procedure links the object files for TEST1 and TEST2 into a single executable
object file in TEST1 .LOD (CON is the default for the first parameter):

$ XLINK TESTl <CR>
Linked object file (TESTl.LOD): <CR>
Map file (TESTl.MAP): <CR>

This creates the files TEST1 .LOD and TEST1 .MAP. These files should agree
with the precompiled versions in the product directories for the Macro As­
sembler and Link Editor.

G.1.6 Relinking the Macro Assembler and Link Editor

There should be no reason to relink the Macro Assembler or Link Editor, but
command files have been provided to allow for this contingency.

To relink the Macro Assembler, edit the LINKASM.COM procedure file to put
the correct pathname for the runtime library in the logical assignment state­
ment. In System Mode, execute LINKASM.COM to relink the ASM7.EXE file:

$ SET DEF [<directory>.ASM71 <CR>
$ @LINKASM <CR>

Similarly, to relink the Link Editor, edit the LINKLINK.COM procedure file to
put the correct pathname for the runtime library in the logical assignment
statement. In System Mode, execute LINKLINK.COM to relink the LINK­
ER.EXE file:

$ SET DEF [<directory>.LINKER] <CR>
$ @LINKLINK <CR>

G-5

Appendix G - CrossWare Installation

G.1.6 Product Directories

G-6

The following listing contains the product directories found in the CrossWare
package. These two directories contain a total of 28 files.

SET DEF [<directory>] <CR>
DIR <CR>

Directory [<directory>]
ASM7.DIR;l LINKER.DIR;l
Total: 2 files

DIR [<default directory>.ASM71 <CR>

Directory [<directory>.ASM7]
ASM.OBJ;l ASM7000.EXE;l LINKASM.COM;l PARSE.C25;1
PARSE.COM;l README.LIS;l ASMRTS.OLB;l TEST.ASM;l
TEST.LIS;l TEST.MPO;l XASM.COM;l
Total: 11 files

DIR [<default directory>.LINKER] <CR>

Directory [<directory>-LINKER.]
LINKER.COM;l LINKER.EXE;l LINKER.OBJ;l
LINK.COM;l
PARSE.C25;1 PARSE.COM;l
TESTl.ASM;l TESTl.CON;l
TESTl.MAP;l TESTl.MPO;l
TEST2.MPO;l
Total: 17 files

README.LIS;l
TESTl. LIS; 1
TEST2.ASM;l

LINK­

LINKRTS. OLB; 1
TESTl.LOD;l
TEST2.LIS;l

Appendix G - CrossWare Installation

G.1.7 Using the MLIB Directive

The directory pathname under VAX/VMS can be less than or equal to nine
characters. However, the MLIB directive issues an Invalid Macro Library
Pathname error message when the directory pathname is more than eight
characters. The following code segment shows the correct response when
using eight characters for the macro directory pathname.

NO$IDT TMS7000 ASSEMBLER VAX/VMS 2.1 83.088 14:30:25 8/1/84
PAGE 0001

0001 *
0002 * 7000 Format 1 test procedure
0003 * This is a test file with pathname eight
0004 * characters long
0005 0000 MLIB 'DUAl: [MD0273.ABCDEFGH] I

0006 *
0007 0000 PSEG
0008 *
0009 Xl B ,'A
0001 *
0002 0000 69 ADC B,A
0010 Xl R2,A
0001 * "a" = 9
0002 0001 19 ADC R2,A

0002 02
0011 Xl R2,B
0001 * "a" = 9
0002 0003 39 ADC R2,B

0004 02
0012 Xl %01,A
0001 * "a" = 9
0002 0005 29 ADC %01,A

0006 01
NO ERRORS, NO WARNINGS

G-7

Appendix G - CrossWare Installation

G.2 Tl and IBM PC MS/PC-DOS CrossWare Installation

The TMS7000 CrossWare package is shipped on a double-sided, dual-density
diskette. The Macro Assembler and Link Editor execute in batch mode on
MS-DOS (Tl PC) and PC-DOS (IBM PC) systems. At least256K bytes of
memory space must be available.

Instructions are included for both hard disk systems and dual floppy drive
systems. The examples use these symbols for drive names:

A: Floppy disk drive for hard disk systems or source drive for dual floppy
drive systems.

B: Destination or system disk drive for dual floppy drive systems.
E: Winchester (hard disk) for hard disk systems.

G.2.1 Diskette Files

The diskette contains the following files:

Executable Modules:

LINKER.EXE
XASM7.EXE

Executes the Link Editor
Executes the Macro Assembler

Macro Assembler Test Files:

TEST1 .ASM
TEST1 .LST
TEST1 .MPO
TEST2.ASM
TEST2.LST
TEST2.MPO

Source file for Assembler test program #1
Correct output listing file for Assembler test program #1
Correct output object file for Assembler test program #1
Source file for Assembler test program #2
Correct output listing file for Assembler test program #2
Correct output object file for Assembler test program #2

Link Editor Test Files:

TEST.CTL
TEST.MAP
TEST.LOO

Linker test program (link control file)
Correct output listing file for the Linker test program
Correct output object file for the Linker test program

G.2.2 Restoring the Macro Assembler and Link Editor

G-8

These instructions are for both hard disk systems and dual floppy drive sys­
tems. On a dual floppy drive system, the MS/PC-DOS system diskette should
be in drive B.

1) Make a backup diskette of the product diskette.

On PC-DOS systems, place a blank diskette in drive A. Enter:

FORMAT A: <CR>

DISKCOPY A: A: <CR>

Follow the prompts, removing and inserting the source and destination
diskettes as directed.

Appendix G - CrossWare Installation

On MS-DOS systems, insert the source (product) diskette in drive A.
Enter:

DISKCOPY A: A:/F/V <CR>

The /F switch tells MS-DOS to format the new (destination) diskette
before copying begins. The /V switch tells MS-DOS to verify that the
source and destination diskettes are identical after the diskcopy is com­
plete. When MS-DOS first prompts for the destination diskette, remove
the source diskette and insert a blank diskette. Follow the prompts, re­
moving and inserting the source and destination diskettes as directed.

When MS/PC-DOS prompts:

COPY ANOTHER (Y/N)?

respond with ,N.

2) Copy the Macro Assembler onto the hard disk or the system disk:

On hard disk systems, enter:

COPY A:XASM7.EXE E:*.*/V <CR>

On dual floppy drive systems, enter:

COPY A:XASM7.EXE B:*.*/V <CR>

3) Copy the Link Editor onto the hard disk or the system disk:

On hard disk systems, enter:

COPY A:LINKER.EXE E:*.*/V <CR>

On dual floppy drive systems, enter:

COPY A:LINKER.EXE B:*.*/V <CR>

G.2.3 Executing the Macro Assembler

To execute the Macro Assembler enter: XASM7

The command line parser prompts for the source, listing, and object file names:

Source File

Listing File
Object File

Enter the source file name (if the source file does not have
an extension, then type the file name with an explicit'.').
Enter the output listing file name.
Enter the output object file name.

MS/PC-DOS creates defaults for the listing and object files and/or their ex­
tensions. The default extensions are:

Source file - .ASM
Listing file - .LST
Object file - .MPO

A source file name can be followed by a semicolon, either on the command
line or in response to a prompt; this causes the Macro Assembler to generate
the default files without displaying further prompts.

G-9

Appendix G - CrossWare Installation

Examples:

XASM7 <filename>.SRC;
Uses <filename> with extension SRC.
Generates defaults for the listing file <filename.LST> and object file
<filename>.MPO.

XASM7 <filename>;
Uses <filename> with default extension ASM.
Generates defaults for the listing and object files as indicated above.

XASM7 <filename>,<newname>;
Uses <filename> with default extension ASM.
Generates listing file <newname>.LST and object file <newname>.MPO.

XASM7 <filename>,<newname>
Uses <filename> with default extension ASM.
Generates listing file <newname>.LST and prompts for object file name.

G.2.4 Executing the Link Editor

G-10

To execute the Linker enter: LINKER

The command line parser will prompt for the control, linkmap, and load file
names.

Control File

Map File
load File

Enter the control file name with extension (if the control
file does not have an extension, type the file name with
an explicit'.').
Enter the linkmap file name with extension.
Enter the load module file name with extension.

MS/PC-DOS generates defaults for the linkmap and load files and/or their
extensions. The default extensions are:

Control file - .CTL
Linkmap file - .MAP
Load file - .LOO

A source file name can be followed by a semicolon, either on the command
line or in response to a prompt; this causes the Macro Assembler to generate
·.he default files without displaying further prompts.

Examples:

LINKER <filename>.SRC;
Uses <filename> with extension SRC.
Generates defaults for the linkmap and load files as indicated above.

LINKER <filename>;
Uses <filename> with default extension CTL.
Generates defaults for the linkmap and load files as indicated above.

LINKER <filename>,<newname>;
Uses <filename> with default extension CTL.
Generates linkmap file <newname> .MAP and load file <new­
name> .LOD.

LINKER <filename>,<newname>
Uses <filename> with default extension CTL.
Generates linkmap file <newname>.MAP and prompts for the load file
name.

Appendix G - CrossWare Installation

G.2.6 Testing the Macro Assembler

Hard Disk Systems:

1) Copy the TEST1 .ASM and TEST2.ASM files from the backup diskette onto the
hard disk using the MS/PC-DOS COPY utility:

COPY A:*.ASM E:*.*/V <CR>

2) Execute the Macro Assembler using TEST1 .ASM and TEST2.ASM as source
files. In response to the system prompt, enter:

XASM7 TESTl;

The Assembler generates the default object file TEST1 .MPO and default listing
file TEST1 .LST.

3) Compare the listing and object files just created to those on backup diskettes.
Only lines which contains the date and time the files were created should be
different.

On MS-DOS systems, use the FILCOM utility:

FILCOM TESTl.MPO A:TESTl.MPO <CR>
FILCOM TESTl.LST A:TESTl.LST <CR>
FILCOM TEST2.MPO A:TEST2.MPO <CR>
FILCOM TEST2.LST A:TEST2.LST <CR>

MS/DOS will display the lines that are different.

On PC-DOS systems, use the TYPE utility to print the contents of each
file on the screen and visually check for differences:

TYPE TESTl.MPO <CR>
TYPE A:TESTl.MPO <CR>

TYPE TESTl.LST <CR>
TYPE A:TESTl.LST <CR>

TYPE TEST2.MPO <CR>
TYPE A:TEST2.MPO <CR>

TYPE TEST2.LST <CR>
TYPE A:TEST2.LSif<CR>

G-11

Appendix G - CrossWare Installation

Floppy Drive Systems:

1) Insert the backup diskette into the default floppy drive.

2) Execute the Macro Assembler using TEST1 .ASM and TEST2.ASM as source
files. It is important to use a different name for the object and listing files,
otherwise the Assembler will write over these files on the backup diskette, and
there will be no correct files to compare the created files to. In response to
the system prompt, enter:

XASM7 TESTl,MYTESTl;

The Assembler generates object file MYTEST1 .MPO and listing file
MYTEST1 .LST.

3) Compare the listing and object files just created to those on backup diskettes.
Only lines which contains the date and time the files were created should be
different.

On MS-DOS systems, use the FILCOM utility:

FILCOM TESTl.MPO MYTESTl.MPO <CR>
FILCOM TESTl.LST MYTESTl.LST <CR>
FILCOM TEST2.MPO MYTEST2.MPO <CR>
FILCOM TEST2.LST MYTEST2.LST <CR>

MS/DOS will display the lines that are different.

On PC-DOS systems, use the TYPE utility to print the contents of each
file on the screen and visually check for differences:

TYPE TESTl.MPO <CR>
TYPE MYTESTl.MPO <CR>

TYPE TESTl.LST <CR>
TYPE MYTESTl.LST <CR>

TYPE TEST2.MPO <CR>
TYPE MYTEST2.MPO <CR>

TYPE TEST2.LST <CR>
TYPE MYTEST2.LST<CR°>

G.2.6 Testing the Link Editor

Hard Disk Systems:

G-12

1) Copy the TEST.CTL, TEST1 .MPO, and TEST2.MPO files from the backup
diskette onto the hard disk using the MS/PC-DOS COPY utility:

COPY A:TEST.CTL E:*.*/V <CR>
COPY A:TEST*.MPO E:*.*/V <CR>

2) Execute the Link Editor using TEST.CTL as the control file. In response to the
system prompt, enter:

LINK.ER TEST;

Appendix G - CrossWare Installation

The Linker generates the default linkmap file TEST.MAP and default load file
TEST.LOO.

3) Compare the listing and object files just created to those on backup diskettes.
Only lines which contains the date and time the files were created should be
different.

On MS-DOS systems, use the FILCOM utility:

FILCOM TEST.MAP A:TEST.MAP <CR>
FILCOM TEST.LOD A:TEST.LOD <CR>

MS/DOS will display the lines that are different.

On PC-DOS systems, use the TYPE utility to print the contents of each
file on the screen and visually check for differences:

TYPE TEST.MAP <CR>
TYPE A:TEST.MAP <CR>

TYPE TEST.LOD <CR>
TYPE A:TEST.LOD <CR>

Floppy Drive Systems:

1) Insert the backup diskette into the default floppy drive.

2) Execute the Link Editor using TEST.CTL as the control file. It is important to
use a different name for the map and load files, otherwise the Linker will write
over these files on the backup diskette, and there will be no correct files to
compare the created files to. In response to the system prompt, enter:

LINKER TEST,MYTEST;

The Linker generates linkmap file MYTEST.MAP and load file MYTEST.LOD.

On MS-DOS systems, use the FILCOM utility:

FILCOM TEST.MAP MYTEST.MAP <CR>
FILCOM TEST.LOD MYTEST.LOD <CR>

MS/DOS will display the lines that are different.

On PC-DOS systems, use the TYPE utility to print the contents of each
file on the screen and visually check for differences:

TYPE TEST.MAP <CR>
TYPE MYTEST.MAP <CR>

TYPE TEST.LOD <CR>
TYPE MYTEST.LOD <CR>

G-13

Appendix G - CrossWare Installation

G.3 IBM/MVS CrossWare Installation

This section explains how to install the TMS7000 CrossWare package on an
IBM/MVS system.

G .3.1 Tape Transfer to Datasets

Section G.3.1.1 describes the files that are shipped on the product tape. They
are grouped according to file type, i.e., all JCL files are in a dataset, all load
modules are in a dataset, and all object modules are in a dataset. Section
G.3.1.2 provides instructions for creating the partitioned datasets that will
contain these files. Section G.3.1.3 contains the JCL needed to restore these
files into the partitioned datasets on the virtual machine.

To submit a file, enter edit mode using the desired file, and type SUBMIT on
the command line. This submits the file as a _batch job.

G.3.1.1 Module Descriptions

G-14

The following lists describe the files provided on the tape, grouped according
to modules:

CNTL - Control Files (JCL)

ASSEMBLE
LINKASM
LINKER
LINKLINK
RAN DIN IT

Invokes the assembler test program
Relinks the TMS7000 family Assembler
Invokes the Link Editor test program
Relinks the TMS7000 family Link Editor
Invokes a utility that initializes random files (for the As­
sembler)

LOAD - Load Modules

ASM7000
LINKER
RAN DIN IT

The Assembler load module
The Link Editor load module
Random file initialization utility load module

TEXT - Object Modules

ASM7000
LINKER
TEST1
TEST2

Assembler objeGt file
Link Editor object file
Benchmark test Assembler object code
Assembler test object code

RUNTIME - Runtime Support Modules

Contains the object modules for the Tl Pascal runtime support needed to re­
link the Assembler and the Linker. They are not listed here, since there are
about 240 members in this set.

TEST - Source Modules

TEST1
TEST2

Test program used for Assembler and Link Editor
Test program used for Assembler and Link Editor

Appendix G - CrossWare Installation

G .3.1.2 Creating the Datasets
Use the MVS dataset utility to create partitioned datasets with the following
names and characteristics. (A different library name may be used to replace
LIBNAME.) .

- Create dataset LIBNAME.ASM7000.CNTL (library of JCL files)

Device Type 3350
Organization PO
Record Format F B
Record Length 80
Block Size 3200
1 st Extent Tracks 1 0
Secondary Tracks 0
Directory Blocks 10

- Create dataset LIBNAME.ASM7000.LOAD (library of load modules)

Device Type 3350
Organization PO
Record Format U
Record Length 80
Block Size 13030
1 st Extent Tracks 3
Secondary Tracks 0
Directory Blocks 30

- Create dataset LIBNAME.ASM7000.TEST (library of source code test
programs)

Device Type 3350
Organization PO
Record Format FB
Record Length 80
Block Size 2960
1st Extent Tracks 1
Secondary Tracks 0
Directory Blocks 20

- Create dataset LIBNAME.ASM7000.TEXT (library of object modules)

Device Type 3350
Organization PO
Record Format FB
Record Length 80
Block Size 2960
1st Extent Tracks 1
Secondary Tracks 0
Directory Blocks 10 ·

- Create dataset LIBNAME.ASM7000.RUNTIME (library of runtime support
object modules)

Device Type 3350
Organization PO
Record Format U
Record Length 80
Block Size 10030
1 st Extent Tracks 1
Secondary Tracks 0
Directory Blocks 50

G-15

Appendix G - CrossWare Installation

G.3.1.3 Restoring the Tapb

Use an editor to create a sequential file called TR ESTO RE which contains the
JCL shown below. This JCL restores the tape. Insert the name of the tape
(written on the tape label) in <TAPE NAME>. If a different library name
was used for LI BNAM E, insert it as the partitioned dataset name wherever the
JCL uses LIBNAME. The member names provided should remain the same
for the sake of clarity.

//RESTOR JOB <job card>
//TAPEDMP PROC DSNX='DUMMY' ,LNO=l,FB=U,BSZ=3200
//STEPl EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=%
//INPDS DD DSNAME=&DSNX,DISP=OLD
//BACKUP DD DSNAME=<TAPE NAME>,UNIT=TAPE,DISP=OLD,
II LABEL=(&LNO,NL),
II DCB=(RECFM=&FB,LRECL=80,BLKSIZE=&BSZ,DEN=3),
II VOL=(,RETAIN)
//SYSUTl DD UNIT=SPACE,DISP=(NEW,DELETE) ,SPACE=(B0,(60,45))
//SYSUT2 DD UNIT=SPACE,DISP=(NEW,DELETE),SPACE=(B0,(60,45))
II PEND
//DOITl EXEC TAPEDMP, DSNX='LIBNAME.ASM7000.CNTL' ,LNO=l,FB=FB,
II BSZ=3200
//SYSIN DD *
II COPY OUTDD=INPDS,INDD=BACKUP
//DOIT2 EXEC TAPEDMP, DSNX='LIBNAME.ASM7000.LOAD' ,LN0=2,FB=FB,
II BSZ=3200
//SYSIN DD *
/I COPY OUTDD=INPDS,INDD=BACKUP
//DOIT3 EXEC TAPEDMP, DSNX='LIBNAME.ASM7000.TEXT' ,LN0=3,FB=FB,
II BSZ=3200
llSYSIN DD *
II COPY OUTDD=INPDS,INDD=BACKUP
/IDOIT4 Ex~c

II
//SYSIN
II
//DOIT5

II
l/SYSIN
II
II

G-16

DSNX='LIBNAME.ASM7000.RUNTIME' ,LN0=4,FB=FB,
BSZ=3200

DD *
COPY OU'rDD=INPDS, INDD=BACKUP

EXEC
DSNX='LIBNAME.ASM7000.RUNTIME' ,LN0=4,FB=FB,

BSZ=3200
DD *

COPY OUTDD=INPDS,INDD=BACKUP

TAPEDMP,

TAPEDMP,

Appendix G - CrossWare Installation

G.3.2 Installing the Assembler and Link Editor

The JCL in Section G.3.1.3 installs the following software components:

Assembler Load Modules

LIBNAME. ASM7000. LOAD (ASM7000) Contains the complete load module
for the Macro Assembler. It may be executed as is, or used to relink the As­
sembler (see Section G.3.3).

LIBNAME. ASM7000. LOAD (RANDINIT) The JCL uses this load module to
initialize random files used by the Macro Assembler.

Assembler Object Modules

LIBNAME.ASM7000.TEXT(ASM7000)
LIBNAME. ASM7000. RUNTIME This load module and this dataset relink the
Assembler.

Assembler Control Files

LIBNAME. ASM7000. CNTL (ASSEMBLE) Executes the Macro Assembler.
(See verification procedures, Section G.3.4.)

LIBNAME.ASM7000.CNTL(LINKASM) Relinks the Macro Assembler.

Link Editor Load Modules

LIBNAME. ASM7000. LOAD (LINKER) Load module for the Link Editor. No
other load modules are necessary for Link Editor execution.

Link Editor Object Modules

LIBNAME.ASM7000.TEXT(LINKER)
LIBNAME. ASM7000. RUNTIME This file and this dataset relink the Link Ed­
itor.

Link Editor Control Files

LIBNAME. ASM7000. CNTL (LINKER) Executes the Link Editor. (See ver­
ification procedure, Section G.3.4.)

LIBNAME. ASM7000. CNTL (LINKLINK) Rel inks the Link Editor.

G-17

Appendix G - CrossWare Installation

G.3.3 Relinking the Assembler and Link Editor

Assemblell'

G-18

Execute the following steps to relink the Assembler.

1) Edit the control file LIBNAME.ASM7000.CNTL(LINKASM).

2) Change LIB NAME to the correct partitioned dataset name where appropriate.
In the data definition card below, insert the name of the dataset for the output
load module. (It may be easier to use the load module library created above
for verification.) Replace the load module name in the NAME card with the
desired member name. The (R) specifies to replace an earlier version of the
load module.

//SYSLMOD DD DISP=OLD,DSN=LIBNAME.ASM7000.LOAD

.
NAME ASM7000(R)

3) Save the edited file and submit the JCL to the system. A condition code of
zero indicates a successful link. Be sure to use the correct load module in the
verification procedures in Section G.3.4.

Link Editor

The Link Editor load module may be executed as is. If the Link Editor is to
be relinked on the new system, execute the following procedure:

1) Edit the control file LIBNAME.ASM7000.CNTL(LINKLINK).

2) Change LI BNAM E to the correct partitioned dataset name where appropriate.
In the data definition card below, insert the name of the dataset for the output
load module. Replace the load module name in the NAME card with the
member name desired. The (R) specifies to replace an earlier version of the
load module.

//SYSLMOD DD DISP=OLD,DSN=LIBRARY.ASM7000.LOAD

NAME LINKER(R)

3) Save the edited file and submit the JCL file to the system. A condition code
of zero indicates a successful link. Use this load module in the Link Editor for
verification procedures in Section G.3.4.

Appendix G - CrossWare Installation

G.3.4 Verifying Installation

These verification procedures are not designed to perform an exhaustive test.
They simply verify that the installation procedures were executed correctly.
They also provide familiarity with the package's basic operation and data flow.

Software Components Used for Assembler Verification

Control Files

LIBNAME. ASM7000. CNTL (ASSEMBLE) Contains the JCL to execute the
Assembler installation verification.

load Modules

LIBNAME. ASM7000. LOAD (RANDINIT) Initializes the random files (direct
access files) used by the Macro Assembler. If random file initialization is
performed automatically on an open to a random file, this step is not neces­
sary, and may be deleted from the JCL. If, however, the random file initializa­
tion is not performed automatically, the random files must be explicitly
initialized as direct access files.

LIBNAME .ASM7000. LOAD (ASM7000) Contains the load module for the
Assembler. If the Assembler has been relinked, use the new load module name
for verification.

Test Programs

LIBNAME.ASM7000.TEST(TEST1)
LIBNAME. ASM7000. TEST (TEST2) Contain the test program module.
These tests consist of assembly language programs containing directives,
macro definitions, macro calls, and assembly instructions for each opcode.

Software Components Used for Link Editor Verification

Control File

LIBNAME. ASM7000. CNTL (LINKER) Contains the JCL to execute the
Link Editor installation verification.

load Module

LIBNAME. ASM7000. LOAD (LINKER) Contains the TMS7000 Link Editor.
If the Link Editor was relinked on this system, use the new load module name.

Test Programs

LIBNAME.ASM7000.TEST This dataset contains two object modules,
TEST1 and TEST2. This test links these modules together.

G-19

Appendix G - CrossWare Installation

Assembler Verification Procedure

This procedure assembles a test program that contains all instruction opcodes,
basic directives, macro definitions, and macro calls.

1) If the Assembler has been relinked, edit the file:
LIB NAME.AS M7000. CNTL(ASS EM B LE).
Substitute the correct load module and dataset names in the following JCL
card:

//ASSEM PROC ASM=ASM7000,STACK=lOK,HEAP=lOOK

.
//STEPLIB DD DISP=SHR,LIBNAME.ASM7000.LOAD

2) Allocate an object output dataset called LIBNAME.ASM7000.0BJECT and
specify it in the following DD card:

//ASMGO.OBJECT DD DSN=LIBNAME.ASM7000.0BJECT(TEST1),DISP=OLD

3) Save the file and submit the JCL to the system. A condition code of 0 indi­
cates a successful assembly. There should be no error messages from the re­
sults of this assembly and the file LIBNAME.ASM7000.TEXT(TEST1).

The same procedure can be followed for source file TEST2 by simply replacing
member name TEST1 with TEST2 in the ASMGO.OBJECT and ASMG-
0.SYSIN DD cards.

link Editor Verification Procedure

This test may be performed with the test object modules provided on the tape,
or it may be used in tandem with the Assembler test by using the object mo­
dules produced from testing the Assembler. Substitute the appropriate dataset
and member names for the test modules desired.

1) If the Link Editor has been relinked, edit the JCL file, changing these JCL
cards to the new load module dataset name:

//LINKER PROC LKED=LINKER,STACK=20K,HEAP=400K,TMPSIZE=l,

.
//STEPLIB DD DSN=LIBNAME.ASM7000.LOAD,DISP=SHR

2) Create an output load module dataset called LIBNAME.ASM7000.LOAD3
and place the name in the following DD card:

//TESTIT EXEC LINK-

G-20

ER.OBJLIB='LIBNAME.ASM7000.LOAD3' ,OBJMEM='LOAD3'

The next DD card in the JCL for executing the Link Editor (see Section G.3.6)
is:

MYOBJXXX DD DSN=LIBNAME.ASM7000.TEXT,DISP=OLD

The MYOBJXXX DD card specifies the object input modules. If you want to
test other object modules, substitute LIBNAME.ASM7000.0BJECT for the

Appendix G - CrossWare Installation

dataset name and TEST1 and TEST2 for the member names in the INCLUDE
statements in the J CL.

3) Save the edited file and submit the JCL to the system. A cor.idition code of
0 indicates a successful link. The load object code will be in the file LIB­
NAME.ASM7000.LOAD3(LOAD3).

G.3.5 JCL for Executing the Assembler

This JCL is contained in the file LIBNAME.ASM7000.CNTL(ASSEMBLE).

//ASSEM JOB 'NAME
//*MAIN ORG=OOOOO

000 000 0000000-00

//ASSEM PROC ASM=ASM7000,STACK=lOK,HEAP=lOOK

000102 0512P C'

II OBJLIB='&&OBJLIB' ,OBJMEM=ASM7000
//***
//*
II*
II*

TMS7000 MACRO ASSEMBLER VERSION 2.1

//***
//ASMGO EXEC PGM=&ASM,PAR='&STACK,&HEAP'
//* PROGRAM FILE
//STEPLIB DD DISP=SHR,DSN=LIBNAME.ASM7000.LOAD
//* SOURCE FILE
//INPUT DD DDNAME=SYSIN
//* INPUT FILE
//OBJECT DD DSN=&OBJLIB(&OBJMEM),
II DISP=(NEW,KEEP)
II UNIT=SPACE,SPACE=(CYL,(3,1,10)),
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=2960)
//* OUTPUT FILE
//OUTPUT DD SYSOUT=A
//* TEMPORARY FILE
//TEMPFILE DD DISP=(NEW,DELETE),
II UNIT=SPACE,SPACE=(CYL,l),
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=2960)
//NEWLIB DD UNIT=SPACE,SPACE=(TRK,l) ,DISP=(NEW,PASS),
II DCB=(DSORG=DA)
II PEND
//*FORMAT PR,DDNAME=OBJECT,CONTROL=SINGLE
// EXEC ASSEM
//ASMGO.OBJECT
II
//ASMGO.OUTPUT
//ASMGO.SYSIN
II

DD DSN=LIBNAME.ASM7000.TEXT(TEST1),
DISP=OLD
DD SYSOUT=A,DCB=RECFM=FBA
DD DSN=LIBNAME.ASM7000.TEST(TEST1) ,DISP=SHR

G-21

Appendix G - CrossWare Installation

G.3.6 JCL for Executing the Link Editor

This JCL is contained in the file LIBNAME.ASM7000.CNTL(LINKER).

//LINKER JOB 'NAME 000 000 0000000-00 000102 0512P C',
//*MAIN ORG=OOOOO
//LINKER PROC LKED=LINKER,STACK=20K,HEAP=lOOK,TMPSIZE=l
II OBJLIB='TEMPLIB' ,OBJMEM=TEMPNAME
//LINK EXEC PGM=&LKED,PARM=(&STACK,&HEAP)
//STEPLIB DD DSN=LIBNAME.ASM7000.LOAD,DISP=SHR
//OUTPUT DD SYSOUT=A
//INPUT DD DDNAME=SYSIN
//TEMPFILE DD DISP=NEW,UNIT=SPACE,SPACE=(CYL,&TMPSIZE),
II DCB=DSORG=DA
//OBJECT DD DISP=SHR,DSN=&OBJLIB(&OBJMEM)
II PEND
//TESTIT EXECLINKER,OBJLIB='LIBNAME.ASM7000.LOAD' ,OBJMEM='LOAD3'
//MYOBJXXX DD DSN=LIBNAME.ASM7000.TEXT,DISP=OLD
//SYSIN DD *

TASK JUNK
DATA 0
COMMON 128
PROGRAM 256
INCLUDE MYOBJXXX(TESTl)
INCLUDE MYOBJXXX(TEST2)
END

/*

G.3.7 JCL for Relinking the Assembler

This JCL is contained in the file LIBNAME.ASM7000.CNTL(LINKASM).

//LINKA JOB 'NAME 000 000 0000000-00 000102 0512P
c If

//*MAIN ORG=OOOOO
II EXEC PGM=IEWL,PARM='MAP,LIST,LET,CALL,SIXE=(118K,24K) I

//SYSLIB DD DISP=SHR,DSN=LIBNAME.ASM7000.RUNTIME
//SYSLIN DD DISP=SHR,DSN=LIBNAME.ASM7000.TEXT(ASM7000)
II DD DDNAME=SYSIN
//SYSPRINTDD SYSOUT=A
//SYSUTl DD UNIT=SPACE,SPACE=(CYL,(1,1))
//SYSLMOD DD DISP=OLD,DSN=LIBNAME.ASM7000.LOAD
//SYSIN DD *

ENTRY P$MAIN
INCLUDE SYSLIB(STACLIKE)
INCLUDE SYSLIB(ASMTEXT)
INCLUDE SYSLIB(PUTREC)
INCLUDE SYSLIB(MAIN)
NAME ASM7000(R)

II

G-22

Appendix G - CrossWare Installation

G.3.8 JCL for Relinking the Link Editor

This JCL is contained in the file LIBNAME.ASM7000.CNTL(LINKLINK).

//LINKA JOB 'NAME 000 000 0000000-00 000102 0512P C',
//*MAIN ORG=OOOOO
II EXEC PGM=IEWL,PARM='MAP,LIST,LET,CALL,SIXE=(ll8K,24K) I

//SYSLIB DD DISP=SHR,DSN=LIBNAME.ASM7000.RUNTIME
//SYSLIN DD DISP=SHR,DSN=LIBNAME.ASM7000.TEXT(LINKER)
// DD DDNAME=SYSIN
//SYSPRINT DD SYSOUT=A
//SYSUTl DD UNIT=SPACE,SPACE=(CYL,(1,1))
//SYSLMOD DD DISP=OLD,DSN=LIBNAME.ASM7000.LOAD
//SYSIN DD *

ENTRY P$MAIN
INCLUDE SYSLIB(STACLIKE)
INCLUDE SYSLIB(PUTREC)
INCLUDE SYSLIB(ASCII$)
INCLUDE SYSLIB(MAIN)
NAME LINKER(R)

II

G.~J.9 JCL for Random File Initialization

This JCL is contained in the file LIBNAME.ASM7000.CNTL(RANDINIT).

//LINKA JOB 'NAME 000 000 0000000-00 000102 0512P C',
//*MAIN ORG=OOOOO
II EXEC PGM=RANDINIT
//STEPLIB DD DISP=SHR,DSN=LIBNAME.ASM7000.LOAD
//OUTPUT DD SYSOUT=A
//FILEl DD DSN=LIBNAME.ASM7000.FILE,DISP=OLD,DCB=DSORG=DA
//INPUT DD *
DDNAME=FILE1,LENTH=80,NUMBER=l00
II

G-23

Appendix G - CrossWare Installation

G.3.10 Using the COPY Directive

In Assembler Text:

G-24

The COPY statement syntax is:

[<label> l COPY <filename> [<comment>]

where:

[<label>] is an optional label beginning in column 1.

<filename> has been defined on a DD card in the JCL. Filenames may
be members of partitioned datasets or sequential files.
Names may be delimited by parentheses, blanks, or peri­
ods.

[<comment>] is an optional comment.

IDT 'TEST'
* r.opy STATEMENT TEST PROGRAM

COPY DATASET(MEMBER)
COPY SEQUEN
END

In the JCL:

.
//DATASET
//SEQUEN

DD DSN=LIBNAME.DATA.LIBRARY
DD DSN=LIBNAME.DATA.LIBRARY(FILEl)

This example copies the file named MEMBER from the dataset LIB­
NAME.DATA.LIBRARY and the sequential file FILE1 from the same dataset.

Appendix G - CrossWare Installation

G.3.11 Using the MLIB Directive

In Assembler Text:

The M LIB statement syntax is:

[<label>] MLIB '<pathname>'

where:

[<comment>]

[<label>] is an optional label beginning in column 1.

<pathname> is a quote enclosed filename, previously defined on a DD
card in the JCL. The filename must be a partitioned data­
set. Only one name may be specified for each MLIB di­
rective.

[<comment>] is an optional comment.

IDT 'TEST'
* MLIB STATEMENT TEST PROGRAM
A BSS 2
B DATA >1000

MLIB 'DATASET'
MACl A,B
END

In the JCL:

.
//DATASET DD DSN=LIBNAME.DATA.LIBRARY

In this example, the M LIB statement causes the Assembler to search for the
member MAC1 in the dataset LIBNAME.DATA.UaRARY (since it is not a
valid opcode or an internally defined macro). The Assembler first searches for
a special member of the dataset named M LIST to determine if it should replace
any opcodes. MUST contains a list of all macros defined as members of the
dataset. ·

G-25

Appendix G - CrossWare Installation

G.4 IBM/CMS CrossWare Installation

This section contains directions for installing the TMS7000 Macro Assembler
and Link Editor on an IBM/CMS system. The CrossWare tape was created
with the CMS TAPE DUMP command.

G.4.1 Tape Files

The product tape contains the following files:

ASM7000
ASM7000
ASM7000
ASMDEFX
LINKER
LINKER
LINK7000
LINKDEFX
RELOAD
TEST
TEST
TEST
TEST1
TEST1
TEST1
TEST
TEST
TEST
TIPL
ASCII$
RUNTIME
STACLIKE

MODULE
OBJECT
EXEC
EXEC
MODULE
OBJECT
EXEC
EXEC
EXEC
ASM7000
LIST7000
OBJ7000
ASM7000
LIST7000
OBJ7000
LINKCTL
OUTPUT
OBJECT
EXEC
TEXT
TXTLIB
TXTLIB

Assembler executable module
Assembler object file
Exec to invoke the assembler
Exec to set up assembler filedefs
Linker executable module
Linker object file
Exec to invoke the linker
Exec to set up linker filedefs
Exec to re-generate executable modules
Sample assembler source
Sample assembler output listing
Sample assembler output object
Sample assembler source
Sample assembler output listing
Sample assembler output object
Sample link control file
Sample linker map listing
Sample linker output object
Exec needed to generate load modules
IBM object file needed to re-link
IBM object library for re-link
IBM object library for re-link

G.4.2 Restoring the Macro Assembler and Link Editor

G-26

1) Mount the tape.

Set up a virtual tape drive with a density of 6250 BPI. The tape drive must
be attached to the userid that is restoring the tape. CMS usually reserves vir­
tual addresses 181 through 184 for tape devices. If, for example, a user id is
attached to a tape drive at virtual address 181, CMS will display the following
message on that userid's terminal:

TAPE 181 ATTACHED

Appendix G - CrossWare Installation

2) Use the TAPE SCAN command to display a list of the files on the tape:

TAPE SCAN <enter>

This list should be the same as the list in Section G.4.1, followed by the
message:

END-OF-FILE OR END-OF-TAPE

Rewind the tape before reading the files from it

TAPE REW <enter>

3) Use the TAPE LOAD command to read in the files on the tape.

Caution:

Files loaded from tape replace files with the same filename, fi­
letype, and filemode.

The command syntax is:

TAPE LOAD <filename> <f iletype> <f ilemode>

Two methods are recommended for using this command:

Read one file at a time by specifying the individual filename, filetype, and
filemode. This example loads file ASM7000 MODULE onto minidisk F.

TAPE LOAD ASM7000 MODULE ~ <enter>

Read all the files at once (placing them on the same minidisk). This
example loads all the files on the tape to minidisk A.

TAPE LOAD ~ ~ ~ <enter>

Rewind the tape after loading the files.

G.4.3 Executing the Macro Assembler

To execute the TMS7000 Macro Assembler, enter:

ASM7000 <filename> <f ilemode>

<filename> is the name of the source file; it must have a filetype of
ASM7000. The <filemode> is optional. If no filemode is specified, CMS will
search all accessible disks and uses the first occurrence of <filename>
ASM7000. If a filemode is specified, the Macro Assembler uses the file
<filename> ASM7000 <f ilemode> as input.

The Macro Assembler creates three output files and places them on the A disk;
it is the user's responsibility to assure there is enough available disk space.
The Macro Assembler output files are:

<filename>
<filename>
<filename>

LIST7000 A Listing file
OBJ7000 A Object file
MESSAGE A Run-time support message file

G-27

Appendix G - CrossWare Installation

G .4.4 Executing the Link Editor

To execute the TMS7000 Link Editor, enter:

LINK7000 <filename> <filemode>

<filename> is the name of the source file; it must have a filetype of
LINKCTL. The <filemode> is optional. If no filemode is specified, CMS will
search all accessible disks and uses the first occurrence of <filename>
LINKCTL. If a filemode is specified, the Link Editor uses the file <f ilen­
ame> LINKCTL <f ilemode> as input.

The Link Editor creates three output files and places them on the A disk; it is
the user's responsibility to assure there is enough available disk space. The
Link Editor output files are:

<filename>
<filename>
<filename>

OBJECT
OUTPUT
MESSAGE

A Output object module
A Linker map listing
A Run-time support message file

G .4.5 Testing the Macro Assembler

G-28

This test procedure verifies that the Macro Assembler has been installed cor­
rectly. These examples use files TEST ASM7000 and TEST1 ASM7000 as
source files, and create the LIST7000, OBJ7000, and MESSAGE output files
described in Section G.4.3. The examples assume that the files were loaded
from the tape onto the A disk.

1) Copy the correct versions of the output files onto another disk (the Macro
Assembler will write over these files on the A disk; copying them to another
disk saves them for comparison). This example copies the files onto the B
disk; if the B disk is not available, use the next available read/write disk.

COPYFILE TEST LIST7000 a = = li <enter>
COPYFILE TEST OBJ7000 a = = li <enter>
COPYFILE TESTl LIST7000 a = = li <enter>
COPYFILE TESTl OBJ7000 a = = li <enter>

2) Execute the Macro Assembler:

ASM7000 TEST <enter>
===> TMS 7000 Macro Assembler Started
===>Assembly for ' TEST' complete, RC= (0).
R;

ASM7000 TESTl <enter>
===> TMS 7000 Macro Assembler Started
===>Assembly for ' TESTl ' complete , RC (0).
R;

A revision code of 0 indicates a successful assembly.

Appendix G - CrossWare Installation

3) Compare the output files created by the Macro Assembler to the output files
that were shipped on the tape:

COMPARE TEST LIST7000 8 TEST LIST7000 ~ <enter>
COMPARE TEST OBJ7000 8 TEST OBJ7000 ~ <enter>
COMPARE TESTl LIST7000 8 TESTl LIST7000 ~ <enter>
COMPARE TESTl OBJ7000 8 TESTl OBJ7000 ~ <enter>

In each comparison, only lines containing times or dates should differ. For
example,

COMPARE TEST LIST7000 8 TEST LIST7000 ~ <enter> .
COMPARING TEST LIST7000 A WITH TEST LIST7000 B
TEST LIST7000 A <line with time and/or date>
TEST LIST7000 B <same line with different time and/or date>
R;

G .4.6 Testing the Link Editor

This test procedure verifies that the Link Editor has been installed correctly.
These examples use the file TEST LINKCTL as a source file, and create the
OUTPUT, OBJECT, and MESSAGE output files described in Section G.4.4.
The examples assume that the files were loaded from the tape onto the A disk.

1) Copy the correct versions of the output files onto another disk (the Link Editor
will write over these files; copying them to another disk saves them for com­
parison). This example copies the files onto the B disk; if the B disk is not
available, use the next available read/write disk.

COPYFILE TEST OUTPUT
COPYFILE TEST OBJECT

2) Execute the Link Editor:

LINK7000 TEST <enter>

8
8

= -
= -

= -
= -
~
~

<enter>
<enter>

.... 370 X 7000 CROSS LINK EDITOR V3.2 STARTED
===>RC=,(0).
R;

A revision code of 0 indicates a successful link.

3) Compare the output files created by the Link Editor to the output files that
were shipped on the tape:

COMPARE TEST OUTPUT 8 TEST OUTPUT ~ <enter>
COMPARE TEST OBJECT 8 TEST OBJECT ~ <enter>

In each comparison, only lines containing times or dates should differ. For
example,

COMPARE TEST OUTPUT 8 TEST OUTPUT ~ <enter> .
COMPARING TEST OUTPUT A WITH TEST OUTPUT B
TEST OUTPUT A <line with time and/or date>
TEST OUTPUT B <same line with different time and/or date>
R;

G-29

Appendix G - CrossWare Installation

G.4.7 Macro Assembler and Link Editor Regeneration

If the ASM7000 or LIN K7000 execs are accidentally destroyed, they can be
regenerated from the object files (ASM7000 OBJECT and LINKER OBJECT)
by executing the RELOAD exec. RELOAD calls the TIPL exec to include the
proper run-time files.

G.4.8 Using the MLIB Directive

The CMS implementation of the MLIB directive requires that macro libraries
are logically grouped by filetype. For example, the macro definition files might
be:

MACl
MAC2
MAC3

MACRO A
MACRO A
MACRO A

In the assembler source file, the MLIB directive would look like this:

MLIB
or
MLIB
or
MLIB

'MACRO'

'MACRO A'

'MACRO *'
In the first MLIB example, the filemode is not given. CMS will search all mi­
nidisks in Search Order. In the second example, the filemode specifies the A
disk, so only the A disk will be searched for macros. If this method is used,
all macros called by the source file must be located on the A disk (or, if an­
other disk is specified, on that disk). The third example is the same as the first
example.

G.4.9 Using the COPY Directive

G-30

The CMS implementation of the COPY directive requires that the file(s) to be
copied into the source file must have the same filetype as the source file.
Otherwise, the copied file will not be copied into during assembly time, and
no assembler error or warning will be issued. However, the copied file does
not have to be in the same minidisk as the source file. In the assembler source
file, the COPY directive syntax is:

COPY SUBl

Appendix G - CrossWare Installation

G.5 Tl 990/DX10 CrossWare Installation

TMS7000 CrossWare for Tl 990/DX10 is available on several types of media,
including magnetic tape and hard discs. The magnetic tapes were created
with the backup directory command (BD). The hard discs were created with
the copy directory command (CD).

The CrossWare contains the TMS7000 Macro Assembler, Link Editor a utility
to convert absolute TMS7000 object modules to a form acceptable to the
standard PROM utility, and the PROM utility. (Absolute TMS7000 object
modules can be generated by either the Assembler, using the AORG directive,
or by the Linker, using the PROGRAM <absolute value> directive.)

The DVS7000 directory, contained on mag tape or hard disk, contains the
following files:

PROCS
PROGRAM
README
ASM
CONVRT

LINK
M$LC
PROM
QUIT

G.5.1 Macro Assembler and Link Editor Installation

1) If your CrossWare package is contained on magnetic tape, you must transfer
it to a hard disc before you can use it. Mount the tape and enter the following:

RD <CR>

RESTORE DIRECTORY
SEQUENTIAL ACCESS NAME:

DIRECTORY PATHNAME:
LISTING ACCESS NAME:

OPTIONS:

MTOl
:<dI'rectory>.DVS7000
<directory>.LST7000
ADD

This places the files on the tape into the directory <directory> .DVS7000. To
create a hard disc copy, execute a Copy Directory command:

CD <CR>

The resulting directory is named DVS7000.

2) The directory DVS7000 may be used by:

a) Copying it to the system disc,
b) Changing the directory name with the Modify File command (MFN), or
c) Leaving it on the hard disc.

3) At this point, you should read the instructions in <directory>.DVS7000.­
README.

G-31

Appendix G - CrossWare Installation

G.5.2 Executing the Macro Assembler

To execute the TMS7000 Macro Assembler, enter: ASM. The following
prompts will appear:

ASSEMBLE 7000 SOURCE MODULE
SOURCE FILE: <access name>
OBJECT FILE: <access name>

LISTING FILE: <access name>
FOREGROUND/BACKGROUND: f.

The Macro Assembler creates defaults for the listing and object files and/or
their extensions. The default extensions are:

Source file - .ASM
Listing file - .LST
Object file - .MPO

G.5.3 Executing the Link Editor

To execute the TMS7000 Link Editor, enter: LINK. The following prompts
will appear:

LINK EDIT OBJECT MODULES
CONTROL FILE:

LINKED OBJECT FILE:
LINK LISTING FILE:

FOREGROUND/BACKGROUND:

<access name>
<access name>
<access name>
f.

The Link Editor creates defaults for the listing and object files and/or their
extensions. The default extensions are:

Control file - .CTL
Linkmap file - .MAP
Load file - .LOO

G.5.4 Using the DX Conversion Utility

To invoke the DX conversion utility, type: CONVRT. The following prompts
will appear:

7000 TO 9900 FORMAT CONVERSION UTILITY REV 1.0
INPUT FILE: <access name>

OUTPUT FILE: <access name>

G.5.5 Using the DX PROM Utility

G-32

To invoke the DX PROM utility, type: PROM. The following prompts will ap­
pear:

PROM PROGRAMMING UTILITY
CRU ADDRESS: <valid CRU address>

INITIAL PROM TYPE: <valid PROM/EPROM type>
990/12 CRU?: NO

H. Glossary

ADDR: Port A Data-Direction Register

ALU: Arithmetic Logic Unit

APORT: Port A Data Register

assembler: Any program that converts mnemonic and symbolic machine
code into machine language

ASYNC: Communications Mode, bit 1 in the serial mode register (SMODE)

Asynchronous Communication mode: A mode used by the serial port
to communicate with peripheral devices. Requires framing bits but does not
require a synchronizing clock.

BPORT: Port B Data Register

BRKDT: Break Detect, bit 6 in the serial port Status Register (SSTAT)

C bit: Carry bit in the Status Register

COOR: Port C Data-Direction Register

CHAR1, CHAR2: Number of Bits per Character, bits 2 and 3 in the serial
mode register (SMODE)

CLK: Serial Clock Source, bit 6 in serial control register 1 (SCTL 1)

CPORT: Port C Data Register

CRC: Customer Response Center

CrossWare: Texas Instruments macro assemblers and linkers

ODOR: Port D Data-Direction Register

DOR: Data Direction Register

Direct Memory Addressing mode: Uses a 16-bit address that contains
an operand

DIP: Dual-inline package

directive: A mnemonic instruction to the assembler, executed during as­
sembly

DPORT: Port D Data Register

Dual Register Addressing mode: Uses a source and a destination registP-r
as 8-bit operands

EC1: Timer 1 event counter

EC2: Timer 2 event counter

ER: Error Reset, bit 4 of serial control register 0 (SCTLO).

H-1

Appendix H

H-2

EVM: Evaluation module

expression: A sequence of symbols, contants, and operators, to which a
numerical value can be assigned during assembly

Extended Addressing mode: An addressing mode which uses a 16-bit
address

FE: Framing Error, bit 6 of the serial port status register (SSTAT)

FFE: form factor emulator; an EPROM or piggyback device which to emu­
lates or replaces a masked-ROM device

Fosc: External oscillator frequency

Full-Expansion mode: A TMS7000 operating mode which extends ad­
dressing capability to the full 64K-byte limit

Halt mode: A low-power mode entered by the CMOS devices in which the
on-chip timer logic is disabled

I bit: Global interrupt enable bit (in the Status Register)

Immediate Addressing mode: Uses an immediate 8-bit address

Indexed Addressing mode: Generates a 16-bit address by adding the
contents of register B to a 16-bit direct memory address

IOCNTO: 1/0 control register 0

IOCNT1: 1/0 control register 1

IOCNT2: 1/0 control register 2

lsosynchronous Communication mode: A hybrid communications pro­
tocol which combines features of Asynchronous and Serial 1/0 communi­
cations; uses framing bits and a serial clock

link control file: Contains commands which control the link process

linker: Collects and interconnects relocatable elements to produce an abso­
lute element

mask option: A device option, such as a clock option, which is placed on
a manufacturing template, or mask, copying the actual circuit onto the silicon
device; cannot be changed by software.

MC pin: Mode Control pin. When this pin is set to 1 (5 V), the Micro­
processor mode of device operation is entered

Microprocessor mode: A mode of operation intended for applications
which do not justify the use of on-chip ROM. All memory accesses except for
internal RAM and on-chip Peripheral File locations are addressed externally.

MULTI: Multiprocessor mode, bit 0 of the serial mode register (SMODE)

N bit: Sign bit in the status register

NCRF: New Code Release Form

OE: Overrun Error, bit 4 in the serial port status register (SSTAT)

Appendix H

PC: Program Counter

PE: Parity Error, bit 3 in the serial port status register (SSTAT)

PEN: Parity Enable, bit 4 in the serial mode register (SMODE)

Peripheral-Expansion mode: An operating mode which allows use of
on-chip ROM and also allows addressing off-chip locations (peripheral de­
vices)

Peripheral File Addressing mode: Refers to instructions which perform
1/0 tasks; either the source or the destination is a peripheral file register

Peripheral File instructions: MOVP, ANDP, ORP, XORP, BTJOP, and
BTJZP

PEVEN: Parity Even, bit 5 of the serial mode register (SMODE)

PF: Peripheral File

piggyback: A device used as a form-factor emulator for masked-ROM de­
vices

PLA: Programmed Logic Array

PLCC: Plastic-leaded chip carrier

Program Counter Relative Addressing mode: Used by all jump in­
structions; adds an offset to the PC value to form the address

RF: Register File

RTC: Regional Technology Center

RXBUF: Receiver Buffer

RXD: Receive Data, line A5

RXEN: Receiver Enable, bit 2 in serial control register 0 (SCTLO).

RXRDY: Receiver Ready, bit 1 in the serial status register (SSTAT).

RXSH F: RX Shift register

SCAT: Strip Chip Architecture Technology

SCLK: serial clock source, pin A6

SCTLO: Serial port control register 0

SCTL 1: Serial port control register 1

Serial 1/0 Mode: A serial-port communication mode which uses an ex­
ternal clock to synchronize the receiver and the transmitter; Stop bits are also
used

Single Register Addressing mode: Uses a single register that contains
an 8-bit operand

Single-Chip mode: An operation mode in which the device functions as a
standalone microcomputer with no off-chip memory expansion bus

H-3

Appendix H

H-4

SIO: Serial 1/0 or Communications mode, bit 6, serial mode register
(SMODE)

SLEEP: Sleep, bit 5, serial control register 1 (SCTL 1)

SMODE: Serial port mode register

SP: Stack Pointer

SSTAT: Serial port status register

ST: Status Register

START: Timer 3 start, bit 7, serial control register 1 (SCTL 1)

STOP: Stop, bit 7, serial mode register (SMODE)

TM P: Prefix for devices that conform to the final electrical specifications but
have not completed quality and reliability verification

TMS: Device prefix for fully qualified production devices

TMX: Device prefix for experimental devices that are not representative of
the device's final electrical specifications

TXBU F: Transmitter Buffer, write-only PF register P23

TXD: Transmission data, u~es line B3

TXEN: Transmit Enable, bit 0, serial control register 0 (SCTLO)

TXRDY: Transmitter Ready, bit 0, serial port Status Register (SSTAT)

TXSH F: transmitter shift register

T1 CTL: Timer 1 control register

T1 CTLO: Timer 1 control register 0/LSB capture reload register value

T1CTL1: Timer 1 control register 1 /MSB readout reload register

T1 DATA: Timer 1 data register

T1 LSDATA: Timer 1 LSB decrementer latch/LSB decrementer value

T1 MSDATA: Timer 1 MSB decrementer latch/MSB readout latch

T1 0 UT: Timer 1 output

T2CTL: Timer 2 control register

T2CTLO: Timer 2 control register 0/LSB capture latch value

T2CTL 1: Timer 2 control register 1 /MSB readout reload register

T2DATA: Timer 2 data register

T20UT: Timer 2 output

T2LSDATA: Timer 2 LSB decrementer latch/LSB decrementer value

T2MSDATA: Timer 2 MSB decrementer latch/MSB readout latch

Appendix H

T3DATA: Timer 3 data register

T3EN B: Timer 3 Enable, bit 2, serial control register 1 (SCTL 1)

T3FLG: Timer 3 Flag, bit 3, serial control register 1 (SCTL 1)

UR: Software UART reset, bit 6, serial control register 0 (SCTLO)

Wake-Up mode: A low-power mode entered by the CMOS devices in
which the oscillator and timer logic remain active

WU bit: Wake-Up, bit 4, serial control register 1 (SCTL 1)

WUT: Wake-Up temporary flag

XDS: Extended Development Support

Z bit: zero bit, Status Register

H-5

Appendix H

H-6

Index

A

absolute code 5-14, 7-2
Absolute Origin Directive

AORG 5-14
ADC

Add with Carry Instruction 6-9,
6-15, 9-31

ADD
Add Instruction 6-9, 6-16, 9-31

addition instructions 6-15, 6-16, 6-29,
6-37, 9-31, 9-44

ADDR 3-14
address space 3-2
address/data bus 3-5, 3-8, 3-17
addressing modes 6-3

Direct Memory 6-6
Dual Register 6-4
Immediate 6-5
Indexed 6-7
Peripheral File 6-5
Program Counter Relative 6-6
Register File Indirect 6-7
Single Register 6-4

ALATCH 3-8, 3-17
AND

Logical AND Instruction 6-9, 6-17
ANDP 3-60

AND Peripheral Register 3-15
AND Peripheral Register

Instruction 3-60, 6-9, 6-18
AORG

Absolute Origin Directive 5-14
APORT 3-13
architecture

See Section 3
arithmetic operators 5-8, 8-6
$ASG

Assign Values to Variable Components
Verb 8-7, 8-18

assembler 5-1-5-59, 7-1
assembler cross-reference listing 5-52
assembler output 5-48

assembler source listing 5-48
assembler symbol table 8-7
assembly language 5-1, 6-1-6-69
assembly process 5-1
assembly-time constants 5-5
AST 8-7
ASYNC bit 3-53
Asynchronous Communication

mode 3-49, 3-53, 3-63, 9-15
attribute component (of a variable) 8-8
A6/SCLK/EC2 3-8, 3-43, 3-45
A7/EC1 3-8,3-14, 3-43

B

BES
Block Ending with Symbol

Directive 5-15 ·
bidirectional 1/0 logic 3-6
binary integers 5-4
binary mode (macro variables) 8-8
Block Ending with Symbol Directive

BES 5-15
Block Starting with Symbol Directive

BSS 5-16
Boolean operators 8-6
SPORT 3-14
BR

Branch Instruction 6-10, 6-19, 9-36
breakpoint/trace/time board 10-7
BRKDT bit 3-57
BSS

Block Starting with Symbol
Directive 5-16

BTJO
Bit Test and Jump If One

Instruction 6-9, 6-20
BTJOP

Bit Test and Jump If One - Peripheral
Instruction 6-9, 6-21

BTJZ

/ndex-1

Index

Bit Test and Jump If Zero
Instruction 6-9, 6-22

BTJZP
Bit Test and Jump If Zero - Peripheral

Instruction 6-10, 6-23
bus activity tables A-1
bus control signals 3-8, 3-17

ALATCH 3-8
CLKOUT 3-8
ENABLE- 3-8
R/W- 3-8

BYTE 5-48
Initialize Byte Directive 5-17

B3/TXD 3-8

c
C (carry) bit 3-3, 6-26, 6-59, 9-29
CALL

Call Instruction 6-10, 6-24, 9-33
capture latch 3-42
cascade bit 3-45
CDDR 3-14
CEND

Common Segment End
Directive 5-18

ceramic resonator 4-7, 4-14
character constants 5-5
character sets

See Appendix D
character strings 5- 7
CHAR1, CHAR2 bits 3-53
CLK bit 3-55, 3-59
CLKIN 12-5
CLKOUT 3-8, 3-17
clock options 3-20-3-23, 12-5

+2 option 12-5
+4 option 12-5
crystal oscillator 3-22
R-C oscillator 3-22

clock source 3-63
CLR

Clear Instruction 6-10, 6-25
CLRC

Clear the Carry Bit Instruction 6-10,
6-26

CMODE bit 3-53
CMOS devices 3-42

lndex-2

See also Section 2 and Section 4
clock options 3-22

CMP
Compare Instruction 6-10, 6-27,

9-29
CMPA

Compare Accumulator Extended In-
struction 6-10, 6-28, 9-29

command field 5-2, 5-3
comment field 5-2, 5-3
Common Segment Directive

CSEG 5-20
Common Segment End Directive

CEND 5-18
common-relocatable code 5-20, 7-2
communication mode 3-55
Communication modes 3-49

Asynchronous 3-49, 3-53, 3-63,
9-15 .

lsosynchronous 3-49, 3-53, 3-64,
9-15

Serial 1/0 9-15
compare instructions 6-27, 6-28
conditional jumps 6-40
conditional processing 8-20, 8-22, 8-23
constants 5-4, 5-8, 8-6

assembly-time 5-5
characters 5-5
hexadecimal integers 5-5

COPY
Copy Source File Directive 5-19

Copy Source File Directive
COPY 5-19

counter 3- 72
CPORT 3-14
cross-assembler 10-2
Cross Ware

ordering information 12-12
CrossWare installation G-1

IBM/CMS G-26
IBM/MVS G-14
list of supported operating

systems G-1
MS/PC-DOS G-8
Tl 990/DX10 G-31
VAX/VMS G-2

crystal clock source 3-20
crystal oscillator clock option 3-22, 12-5
CSEG

Common Segment Directive 5-20

Index

D

DAC
Decimal Add with Carry

Instruction 6-10, 6-29
DATA 5-48

Initialize Word Directive 5-22
Data Register 3-14
Data Segment Directive

DSEG 5-27
Data Segment End Directive

DENO 5-24
Data-Direction Register 3-14
data-relocatable code 5-27, 7-2
DDDR 3-14, 3-18
DEC

Decrement Instruction 6-10, 6-30
DECO

Decrement Double Instruction 6-10,
6-31

decimal integer contants 5-4
decimal integers 5-4
DEF 5-48, 7-5

External Definition Directive 5-23
$DEF keyword 8-11
Define Assembly-Time Constant Directive

EQU 5-29
Define Macro Library Directive

MLIB 5-35
defining symbols 7-5
DENO

Data Segment End Directive 5-24
development support 10-1-10-11

ordering information 12-12
device initialization 3-24
DINT

Disable Interrupts Instruction 6-10,
6-32

Direct Memory Addressing mode 6-6,
9-33

directives 5-12
for linking programs 5-12

DEF 5-23
LOAD 5-33
REF 5-40
SREF 5-43

miscellaneous 5-12
COPY 5-19
END 5-28
MLIB 5-35

that affect assembler output 5-1 2
IDT 5-31
LIST 5-32
OPTION 5-36

PAGE 5-37
TITL 5-45
UNL 5-46

that affect the location counter 5-12
AORG 5-14
BES 5-15
BSS 5-16
CEND 5-18
CSEG 5-20
DENO 5-24
DORG 5-25
DSEG 5-27
EVEN 5-30
PEND 5-38
PSEG 5-39
RORG 5-41

that initialize constants 5-12
BYTE 5-17
DATA 5-22
EQU 5-29
TEXT 5-44

divide-by-2 clock option 3-20, 12-5
divide-by-4 clock option 3-20, 12-5
division instructions 9-51, 9-52, 9-53
DJNZ

Decrement Register and Jump If Not
Zero Instruction 6-33

Decrement Relative and Jump If Not
Zero Instruction 6-11

dollar sign ($) 5-6
DORG

Dummy Origin Directive 5-25
DPORT 3-18
DSB

Decimal Subtract with Borrow Instruc­
tion 6-11, 6-34

DSEG
Data Segment Directive 5-27

Dual Register Addressing mode 6-4
Dummy Origin Directive

DORG 5-25
dummy section 5-25

E

EINT
Enable Interrupts Instruction 3-33,

6-11, 6-35
Eject Page Directive

PAGE 5-37
$ELSE

See also $IF

lndex-3

Index

Alternate Conditional Block
Verb 8-22

emulation 10-2
ENABLE- 3-8, 3-17
END 5-48, 8-5

End Macro Definition Verb 8-24
Program End Directive 5-28

END linker command 7-4
$ENDIF

See also $IF
Terminate Conditional Block

Verb 8-23
EPROM devices 2-9, 2-16, 2-17, 2-20,

2-21
EOU 5-48

Define Assembly-Time Constant Di­
rective 5-29

ER bit 3-55
error messages

assembler 5-49, 5-51
macros 8-29

evaluation modules 10-8-10-10
evaluation of arithmetic expressions 5-9
EVEN

Even Boundary Directive 5-30
Even Boundary Directive

EVEN 5-30
event counter 3-36
EVM 10-8-10-10

ordering information 12-12
expressions 5-8

arithmetic evaluation 5-9
using arithmetic operators 5-8
using externally defined

symbols 5-11
using logical operands 5-9
using parentheses 5-9
using relocatable symbols 5-10
well-defined 5-10

Extended addressing modes 6-3
Direct 9-33
Indexed 9-33
Register File Indirect 9-33

Extended Development Support
(XDS) 10-2-10-7

external clock 3-14, 12-5
external clock source 3-20, 3-22
External Definition Directive

DEF 5-23
External Event-Counter mode 3-14
external interrupts 3-33, 3-34
External Reference Directive

REF 5-40
external references 5-58
externally defined symbols 5-11

lndex-4

F

FE bit 3-57
Force Load Directive

LOAD 5-33
FORMAT linker command 7-4
frame bit 3-63
Full-Expansion mode 3-18

memory map 3-19

G

global interrupt enable bit 3-3

H

Halt mode 3-23
hardware UART 3-49-3-76, 9-23
hexadecimal integer constants 5-5
host interface 10-2

I (global interrupt enable} bit 3-3, 3-33,
9-29

1/0 control registers 3-30
1/0 ports 3-5-3-7

Full-Expansion mode 3-18
Peripheral- Expansion mode 3-16
Single-Chip mode 3-13

IADD 3-57
IBM/CMS G-26
IBM/MVS G-14
IDLE 3-23

Idle Until Interrupt Instruction 3-23,
6-11, 6-36

IDT 5-48, 7-5

$IF
Program Identifier Directive 5-31

Begin Conditional Block Verb 8-6,
8-20

Immediate Addressing mode 3-15, 6-5
INC

Increment Instruction 6-11, 6-37

Index

INCLUDE linker command 7-4
Indexed Addressing mode 6-7, 9-33
Initialize Byte Directive

BYTE 5-17
Initialize Text Directive

TEXT 5-44
Initialize Word Directive

DATA 5-22
instruction timing A-1
Intel protocol 3-69
Intel 8051 3-49
interrupts 3-24-3-35, 9-37

CPU interface to interrupt logic 3-29
DINT instruction 6-32
edge-sensitive 3-28
El NT instruction 6-35
external 3-33, 3-34
level 0 3-24
level-sensitive 3-28
logic for maskable interrupts 3-28
multiple 3-33
priority 3-24
RETI instruction 6-52
timer interrupts 3-47

I NTn ACK 3-29
INTn ACTIVE 3-29
INTn clear bit 3-32
INTn enable bit 3-31
INTn flag bit 3-31, 3-47
INT4 3-56
IN\/

Invert Instruction 6-11, 6-38
IOCNTO register 3-9, 3-13, 3-16, 3-18,

3-·19, 3-30
IOCNT1 register 3-30, 3-31
IOCNT2 register 3-30, 3-32
IPC 9-32
lsosynchronous Communication

mode 3-49, 3-53, 3-64, 9-15

J

J<cnd>
Jump on Condition Instruction 6-40

JC 6-11
JEQ 6-11
JGE 6-11
JGT 6-11
JHS 6-11
JL 6-11
JMP

Jump Unconditional
Instruction 6-11, 6-39

JNC 6-11
JNE 6-11
JNZ 6-11
JP 6-11
JPZ 6-11
jump instructions 6-20, 6-21, 6-22,

6-23,6-33, 6-39, 6-40, 9-29
JZ 6-11

K

keywords 8-11, 8-12
parameter attribute components 8-12

$PCALL 8-12
$POPL 8-12
$PSYM 8-12

symbol attribute components 8-11
$DEF 8-11
$MAC 8-11
$REF 8-11
$REL 8-11
$STR 8-11
$UNDF 8-11

L

label field 5-2, 5-3, 5-6
LOA

Load Register A Instruction 6-11,
6-41

LDSP
Load Stack Pointer Instruction 6-12,

6-42
length component (of a variable) 8-8
link control file 7-3
Link Editor 7-1 -7-6
linker commands 7-3
linking directives 7-5

DEF 5-23, 7-5
IDT 5-31, 7-5
REF 5-40, 7-5
SREF 5-43, 7-5

linking program modules 7-1
LIST 5-48

Restart Source Listing Directive 5-32
LOAD

Force Load Directive 5-33
Location Counter 5-3
logical AND 8-6
logical NOT 8-6

lndex-5

Index

logical operands 5-9
logical OR 8-6
low-power modes 3-23, 3-42

Halt 3-23

M

Halt mode 3-23
Wake-Up 3-23
Wake-Up mode 3-23

$MAC keyword 8-11
MACLIB files 8-2
$MACRO

Macro Definition Verb 8-2, 8-5, 8-7,
8-16

macro assembler 5-1
macro libraries 8- 2
macro symbol table 8-7
macros 8-1

assembler symbol table 8-7
assigning parameter values 8-13,

8-16
calls 8-1
conditional processing 8-20, 8-22,

8-23
constants 8-6
declaring variables 8-17
definition 8-2, 8-16
error messages 8-29
keywords 8-11
MACLIB files 8-2
macro libraries 8-2
MLIB directive 8-2
MUST files 8-3
MST 8-8
search order 8-2
strings 8-6
substitution 8-1
symbol components 8-10
symbols 8-7
variable components 8-8
variables 8-7

binary mode access 8-8
definition 8-7
macro symbol table 8-7
parameters 8-7
string mode access 8-8
unqualified variables 8-9
variable qualifiers 8-9

verbs 8-15
mask options 3-20, 12-5
MC pin 3-9, 3-13, 3-16, 3-18, 3-19

lndex-6

mechanical data 12-6
memory modes 3-9-3-19

Full-Expansion 3-18
Microprocessor 3-1 9
Microprocessor mode 9-2
Peripheral-Expansion 3-16
Single-Chip 3-13

Microprocessor mode 3-19
interface example 9-2
memory map 3-19

MLIB 8-2
Define Macro Library Directive 5-35

MUST files 8-3
mnemonics 5-1
Mode Control (MC) pin 3-9
model statements 8-25
Motorola protocol 3-67
Motorola 6801 3-49
MOV

Move Instruction 6-12, 6-43
MOVD

Move Double Instruction 6-12, 6-44
move instructions 6-43, 6-44, 6-45
MOVP 3-13

Move to/from Peripheral Register In­
struction 3-16, 6-12, 6-45

MPY
Multiply Instruction 6-12, 6-46,

9-35
MS/PC-DOS G-8
MST 8-7, 8-8
MULTI bit 3-52
multiple interrupts 3-33
multiplication instructions 6-46, 9-35,

9-50
multiprocessing 10-6
multiprocessor communication

modes 3-66
Intel protocol 3-69
Motorola protocol 3-67

multiprocessor protocols 3-49, 3-52
Intel 8051 3-49
Motorola 6801 3-49

N

N (sign) bit 3-3, 9-29
naming a program module 7-5
NMOS devices

See Section 2 and Section 4
NOP

No Operation Instruction 6-12, 6-47

Index

0

object code 5-48, 5-53, 5-58
object program 5-1
object record format 5-57
OE bit 3-57
offset calculation 6-6
on-chip RAM 3-2
on-chip timer/event counter 3-8
operand field 5-2, 5-3, 5-6, 5-8
operators 8-6
OPTION

Output Options Directive 5-36
OR

Logical OR Instruction 6-12, 6-48
ORP

OR Peripheral Register 3-15
OR Peripheral Register

Instruction 3-60, 6-12, 6-49
oscillator options 3-22, 12-5
output data flip-flops 3-24
Output Options Directive

OPTION 5-36

p

packaging 12-6
PAGE 5-48

Eject Page Directive 5-37
Page Title Directive

TITL 5-45
parameter attribute component

keywords 8-12
parameters 8-1 3

as macro variables 8-7
parentheses 5-9
parity enable 3-53
PC 3-4
SPCALL keyword 8-12
PCH (Program Counter High) 3-4
PCL (Program Counter Low) 3-4
PE bit 3-57
PEN bit 3-53
PEND

Program Segment End
Directive 5-38

Peripheral File 3-2
Peripheral-Expansion mode 3-16

memory map 3-16
Peripheral-File Addressing mode 6-5
Peripheral-File instructions 3-2, 3-15,
3-16,6-18,6-21,6-23,6-45,6-49,6-69,
9-39

PEVEN bit 3-53
PF 3-2
piggyback devices 2-17-2-23, 10-11
POP

POP from Stack Instruction 6-12,
6-13, 6-50

$POPL keyword 8-12
Port A 3-5, 3-8, 3-13, 3-17
Port B 3-5, 3-8, 3-14, 3-17
Port C 3-5, 3-8, 3-14, 3-17
Port D 3-5, 3-8, 3-14, 3-17
port symbols 5-6
power-down mode 3-23
power-up reset 3-27
predefinded symbols 5-6
prescaler 3-46, 3-72
PRE3(1), PRE3(0) bits 3-58
Program Counter 3-4
Program Counter Relative Adressing

mode 6-6
Program End Directive

END 5-28
Program Identifier Directive

IDT 5-31
Program Segment Directive

PSEG 5-39
Program Segment End Directive

PEND 5-38
programmable timer/event

counters 3-36-3-48
program-relocatable code 5-41, 7-2
prototyping 12-2
prototyping devices 2-16, 2-17, 2-20,

2-21, 10-11
PSEG

Program Segment Directive 5-39
$PSYM keyword 8-12
Pulse flip-flop 3-28, 3-31
PUSH

Push on Stack Instruction 6-13,
6-51

P10 3-14
P17 3-54
P4 3-13
P5 3-14
P6 3-14
PB 3-14

Index-7

Index

R

R/W- 3-8, 3-17
RAM 3-2
R-C oscillator clock option 3-22, 12-5
Realtime Clock mode 3-43
receiver 3-49
receiver buffer 3-60
REF 5-48, 7-5, 7-6

External Reference Directive 5-40
$REF keyword 8-11
referencing externally defined

symbols 5-40, 5-43, 7-6
Register A 3-2, 6-41, 6-60, 6-65
Register B 3-2, 3-3, 6-66, 6-67
Register File 3-2
Register File Indirect Addressing

mode 6-7, 9-33
register symbols 5-6
registers 3-2-3-4

write-only 9-39
$REL keyword 8-11
relational operators 8-6
relocatable code 7 -2
Relocatable Origin Directive

RORG 5-41
relocatable symbols 5-10
relocation types 5-41

common-relocatable 5-20, 5-27,
5-41

data-relocatable 5-20, 5-27, 5-41
program-relocatable 5-20, 5-27,

5-41
reset 3-3, 3-23, 3-24, 9-37
Restart Source Listing Directive

LIST 5-32
RETI

Return from Interrupt
Instruction 3-33, 6-13, 6-52

RETS
Return from Subroutine

Instruction 6-13, 6-53, 9-34
RF 3-2
RL

RLC

Rotate Left Instruction 6-1 3, 6-54,
9-31

Rotate Left Through Carry
Instruction 6-13, 6-55, 9-31

RORG
Relocatable Origin Directive 5-41

rotate instructions 6-54, 6-55, 6-56,
6-57, 9-31

RR

lndex-8

Rotate Right Instruction 6-13, 6-56,
9-31

RRC
Rotate Right Through Carry

Instruction 6-13, 6-57, 9-31
RX 3-49, 3-60
RXBUF 3-53
RXBUF register 3-51, 3-60
RXD bit 3-14, 3-51
RXEN 3-55
RXRDY 3-60
RXRDY bit 3-57
RXSHF register 3-51
RO 3-2
R1 3-2

s
SBB

Subtract with Borrow
Instruction 6-13, 6-58, 9-31

SCLK 3-14, 3-45, 3-55, 3-59
SCLKEN bit 3-55
SCTLO 3-54
SCTLO register 3-51, 3-54

ER 3-55
PRE3(1), PRE3(0) 3-58
RXEN 3-55
SCLKEN 3-55
SPH 3-55
TXEN 3-55
UR 3-55

SCTL 1 register 3-58
CLK 3-59
SLEEP 3-59
START 3-59
T3ENB 3-58
T3FLG 3-58
WU 3-59

search order (macros) 8-2
Secondary External Reference Directive

SREF 5-43
Serial 1/0 mode 3-49, 3-55, 3-65, 9-15
serial port 3-49-3-76, 9-23

Asynchronous Communication
mode 3-49

Communication modes 3-52
hardware UART example 9-1 5
initialization 3-70
interrupts 3- 76

INT4 3-76
lsosynchronous Communication

mode 3-49

Index

multiprocessor protocols 3-49, 3-52
registers 3-51

RXBUF 3-51, 3-60
SCTLO 3-51
SCTL1 3-58
SMODE 3-51, 3-52
SSTAT 3-51,3-56
TXBUF 3-51, 3-60
T3DATA 3-51, 3-59

Serial 1/0 3-49
Serial 1/0 mode 3-49
software UART example 9-1 5
timing 4-15, 4-24, 4-30, 4-53, 4-61,

4-73
serial port communication modes 3-63
SETC

Set Carry Instruction 6-13, 6-59
SE70CP160 4-63, 4-67, 10-11

key features 2-20
pin descriptions 2-23
pinouts 2-22

SE70CP160 devices
external interrupts 3-33

SE70CP162 4-68, 4-73, 10-11
key features 2-21
pin descriptions 2-23
pinouts 2-22

SE70CP162 devices
external interrupts 3-33

SE70P162 4-25, 4-30, 10-11
key features 2-1 7
pin descriptions 2-19
pinouts 2-18

SE70P162 devices
external interrupts 3-33

shifting 9-35
sign bit 3-3
Single Register Addressing mode 6-4
Single-Chip mode 3-2, 3-8, 3-13

memory map 3-13
SLEEP bit 3-59, 3-66
SMODE 3-54
SMODE register 3-51, 3-52

ASYNC 3-53
CHAR1 I CHAR2 3-53
CMODE 3-53
MULTI 3-52
PEN 3-53
PEVEN 3-53
STOP 3-53

software UART 9-16
SOURCE 3-43
source program 5-1
source statement format 5-2, 5-48
SP 3-3

SPH bit 3-55
SREF 5-48, 7-5, 7-6

Secondary External Reference
Directive 5-43

SSTAT register 3-51, 3-56
BRKDT 3-57
FE 3-57
!ADD 3-57
OE 3-57
PE 3-57
RXRDY 3-57
TXE 3-57
TXRDY 3-56

ST 3-3
STA

Store Register A Instruction 6-14,
6-60

stack 3-3, 9-32
stack operations 3-3, 6-50, 6-51, 6-61,

9-32, 9-49
initialization 3-3

Stack Pointer 3-3, 6-42, 6-61
initialization after reset 3-27

START bit 3-59, 3-63
Status Register 3-3, 9-29

carry bit 3-3
global interrupt enable bit 3-3
sign bit 3-3
zero bit 3-3

STOP bit 3-53, 3-63
Stop Source Listing Directive

UNL 5-46
SSTR keyword 8-11
string component (of a variable) 8-8
string mode (macro variables) 8-8
strings 5-5, 8-6

single quotes 5-5
STSP

Store Stack Pointer Instruction 6-14,
6-61

SUB
Subtrnct Instruction 6-14, 6-62,

9-31
subroutine instructions 6-24, 6-53, 6-64,

9-33
subtraction instructions 6-30, 6-31,

6-34,6-58,6-62, 9-31
SWAP

Swap Nibbles Instruction 6-14,
6-63, 9-31

symbol attribute component
keywords 8-1 I

symbol components (of a macro
variable) 8-10

symbolic addressing 5-47

lndex-9

Index

symbols 5-5, 5-6, 5-8
character string 5- 7
externally defined 5-11
predefined 5-6
relocatable 5-1 O
terms 5- 7

Sync flip-flop 3-28

T

tag characters 5-54-5-57
TASK linker command 7-4
terms (as symbols) 5-7
TEXT 5-48

Initialize Text Directive 5-44
Tl 990/DX10 G-31
timer clock 3-46
timer interrupts 3-4 7
timer output function 3-48
Timer 1 3-8, 3-36, 3-37
Timer 1 capture latch 3-42
Timer 1 data and control registers 3-38
Timer 2 3-8, 3-14, 3-36, 3-39
Timer 2 data and control registers 3-40
Timer 3 3-36, 3-49, 3-51, 3-59, 3- 71
TITL 5-48

Page Title Directive 5-45
TMS70Cx0 devices 4-31, 4-44

clock options 3-22
external interrupts 3-33
interrupts 3-24
key features 2-5
memory map 3-9
pin descriptions 2-7
pinouts 2-6
port configuration 3-6
timer operation 3-46

TMS70Cx2 devices 4-45, 4-61
clock options 3-23
external interrupts 3-33
initialization routine 3-26
interrupts 3-24
key f ea tu res 2-1 2
memory map 3-10
peripheral memory map 3-12
pin descriptions 2-15
pinouts 2-14
Port A 3-8
port configuration 3-7
timer operation 3-4 7
timer output function 3-48

TMS70x0 devices 4-2, 4-7
external interrupts 3-33

lndex-10

interrupts 3-24
key f ea tu res 2 -4
memory map 3-9
pin descriptions 2-7
pinouts 2-6
port configuration 3-6
timer operation 3-46

TMS70x1 devices C-1-C-6
TMS70x2 devices 4-8, 4-15, 9-23

external interrupts 3-33
initialization routine 3-26
interrupts 3-24
key features 2-8
memory map 3-1 O
peripheral memory map 3-11
pin descriptions 2-11
pinouts 2-10
Port A 3-8
port configuration 3- 7
timer operation 3-46

TMS7000 family devices summary 2-1
TMS77C82 4-62

key features 2-1 3
pin descriptions 2-15
pinouts 2-14

TMS7742 4-16, 4-24, 10-11
external interrupts 3-33
key features 2-9, 2-16
pin descriptions 2-11
pinouts 2-10

TM70Cx0 devices
peripheral memory map 3-1 O

TM70x0 devices
peripheral memory map 3-1 O

transmitter 3-49
transmitter buffer 3-60
TRAP

Trap to Subroutine Instruction 6-14,
6-64, 9-33

TSTA
Test Register A Instruction 6-14,

6-65
TSTB

Test Register B Instruction 6-14,
6-66

TX 3-49, 3-60
TXBUF 3-53
TXBUF register 3-51, 3-60
TXD bit 3-51
TXE bit 3-57
TXEN bit 3-55
TXRDY bit 3-56
TXSHF register 3-51
T1 CTL 3-23, 3-41, 3-46
T1 DATA 3-41, 3-46

Index

T2CTL 3-41,3-46
T2DATA 3-41, 3-46
T3 3-49
T3DATA register 3-51, 3-59, 3-72
T3ENB bit 3-58
T3FLG bit 3-58

u
UART 3-49-3-76, 9-16
$UNDF keyword 8-11
UNL 5-48

Stop Source Listing Directive 5-46
unqualified variables (in macros) 8-9
UR bit 3-55
USART 3-49

v
value component (of a variable) 8-8
$VAR

Declare Variables Verb 8-17
variable components

attribute 8-8
length 8-8
string 8-8
value 8-8

variable qualifiers 8-9
variables 8-7
VAX/VMS G-2
verbs 8-15

$ASG 8-18
$ELSE 8-22
$END 8-24
$ENDIF 8-23

w

$IF 8-20
$MACRO 8-16
$VAR 8-17

Wake-Up mode 3-23
well-defined expressions 5-10
write-only registers 9-39
WU bit 3-59, 3-67
WUT flag 3-67

x
XCHB

XDS

Exchange with Register B
Instruction 6-14, 6-67

ordering information 12-12
XDS emulator 10-2-10-7
XOR

Exclusive Or Instruction 6-14, 6-68
XORP 3-60

Exclusive OR Peripheral Register In­
struction 3-60, 6-14, 6-69

XOR Peripheral Register 3-15
XTAL 1 3-20, 12-5
XTAL2 12-5
XTAL2/CLKIN 3-20

z
Z (zero) bit 3-3, 9-29

lndex-11

Index

lndex-12

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	01-01
	01-02
	01-03
	01-04
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	03-34
	03-35
	03-36
	03-37
	03-38
	03-39
	03-40
	03-41
	03-42
	03-43
	03-44
	03-45
	03-46
	03-47
	03-48
	03-49
	03-50
	03-51
	03-52
	03-53
	03-54
	03-55
	03-56
	03-57
	03-58
	03-59
	03-60
	03-61
	03-62
	03-63
	03-64
	03-65
	03-66
	03-67
	03-68
	03-69
	03-70
	03-71
	03-72
	03-73
	03-74
	03-75
	03-76
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	04-36
	04-37
	04-38
	04-39
	04-40
	04-41
	04-42
	04-43
	04-44
	04-45
	04-46
	04-47
	04-48
	04-49
	04-50
	04-51
	04-52
	04-53
	04-54
	04-55
	04-56
	04-57
	04-58
	04-59
	04-60
	04-61
	04-62
	04-63
	04-64
	04-65
	04-66
	04-67
	04-68
	04-69
	04-70
	04-71
	04-72
	04-73
	04-74
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	08-27
	08-28
	08-29
	08-30
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	09-27
	09-28
	09-29
	09-30
	09-31
	09-32
	09-33
	09-34
	09-35
	09-36
	09-37
	09-38
	09-39
	09-40
	09-41
	09-42
	09-43
	09-44
	09-45
	09-46
	09-47
	09-48
	09-49
	09-50
	09-51
	09-52
	09-53
	09-54
	09-55
	09-56
	09-57
	09-58
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43
	5-44
	5-45
	5-46
	5-47
	5-48
	5-49
	5-50
	5-51
	5-52
	5-53
	5-54
	5-55
	5-56
	5-57
	5-58
	5-59
	5-60
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	6-39
	6-40
	6-41
	6-42
	6-43
	6-44
	6-45
	6-46
	6-47
	6-48
	6-49
	6-50
	6-51
	6-52
	6-53
	6-54
	6-55
	6-56
	6-57
	6-58
	6-59
	6-60
	6-61
	6-62
	6-63
	6-64
	6-65
	6-66
	6-67
	6-68
	6-69
	6-70
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	B-01
	B-02
	B-03
	B-04
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	D-01
	D-02
	E-01
	E-02
	F-01
	F-02
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	G-07
	G-08
	G-09
	G-10
	G-11
	G-12
	G-13
	G-14
	G-15
	G-16
	G-17
	G-18
	G-19
	G-20
	G-21
	G-22
	G-23
	G-24
	G-25
	G-26
	G-27
	G-28
	G-29
	G-30
	G-31
	G-32
	H-01
	H-02
	H-03
	H-04
	H-05
	H-06
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-09
	Index-10
	Index-11
	Index-12

