The Engiﬁeering Staff of
TEXAS INSTRUMENTS INCORPORATED

Semiconductor Group

CONFIGURABLE
POWER BASIC
REFERENCE
MANUAL

i FEBRUARY 1979
MP 318

TEXAS lNSTRUM ENTS

. INCORPORATED

C3o

IMPORTANT NOTICES

Texas Instruments reserves the right to make changes at any time
to improve design and to supply the best possible product for the
spectrum of users. .

Configurable POWER BASIC (Part Number TMSW510F) is copyrighted by
- Texas Instruments Incorporated, and is sole property thereof. The
- Software may not be reproduced in any form without written
permission of Texas Instruments Incorporated. However, output
from the Configurator may be reproduced for resale exclusively by
the customer purchasing the Configurable POWER BASIC Package.

All manuals associated with Configurable POWER BASIC (MP 318) are -
printed in the United States of America and are copyrighted by Texas
Instruments Incorporated. All rights reserved. No part of these
publications may be reproduced in any manner including storage in a
retrieval system or transmittal via electroniec means, or other
reproduction in any form or by any method (electronic, mechanieal,
pPhotocopying, recording, or otherwise) without prior written
permission of Texas Instruments Incorporated.

Information contained in these publications is believed to be
accurate and reliable. However, responsibility is assumed neither
for its use nor for any infringement of patents or rights of others
that may result from their use. No license is granted by
implication or otherwise under any patent or patent right of Texas
Instruments or others. :

Copyright, Texas Instruments Incorporated, 1979

®

3N EEWw NN N -

L3

[}
L]

o
o
N —p

[}

L) o L] ©

RO DN NN

L

e

L

o
e

U =W N —

e
L]

L]
L]

) €A Lad L) L L) L

w
§

N NN N2 OO OOV T A U) -
L]

o o a o

-8
°

o
o

5 o
s o
Ut =5y 0D —

LW LWL WL WL W WW W

TABLE OF CONTENTS

SECTION I. INTRODUCTION

Generalooooooooooovtoooo'oooooo00000000000001-1
Pom BASIC Ovemewoooooooooooooo.oooooooo1“2 :
?Om BASIC FeatureSQQOQOOQooo.o.00000'000001-2
Development and Cenfiguration Cyel€...cee..l=3
Conventions Used in This Manual.....cceee..1=5

SECTION II. POWER BASIC PRIMER

Intrgduction-ooooooooaoo0000000;00.000000002-1
Loading of POWER BASIC and Configurator
PaCKaAZeS . vecarnrencrcoccccoccsssccococeaseldmd
Loading USing OCP..cccececcsccsccocese o=@
Loading Using the TXDS Control)
Pmm»-oeooooooooooeoodeeo-oeoooooaoooa"’l‘
U0 S e et tesonscooooccocasnosccscosnesossd=b
Operating System RequirementS....cccceeee..2=6
Equipment RequirementS.......ceeeveeeeeceee2=T
Recommended ProceduUre....ccccececececccccocsel=T
Debug Checklist...vecevvcn. csseecssecssenscdm8
POWER BASIC Sample Prograll......c.oeccoseoes.2=9

SECTION III. GENERAL PROGRAMMING INFORMATION

General...ceeeeeceens teecsssccssscescnces eee3=1
BASIC Language...cccesvrecosocccnsooonocnsslml
POWER BASIC Progralle.cccccececcosaccosccscss3ml
Source Statement Format..coiceereecoceccnco3=d
Line Number Field..ccoeccocornnccooceeos=d
Statement Field....ccceececrioecocnanaee3=3
Tail RemarK..ccoeeosccsecccsesonsscssesidmd
Character Set..cicceceroeeerecvecnncesel=3
Special Keyboard CharactersS...ccecececes3d=3
Edit Mode ComMmANAS.ceeeesconnssscovonnconesl=h
ConsStantS.ccieccscceceocecceccococoasceseseInbd
Hexadecimal Integer ConstantS..........3«6
Decimal Integer ConsStantS.....ceveeccecoes3=b
Decimal Real ConStantS.c.eeiececeaveces3=T
String Constants....cceovcecscocecccoce3=T
varia.blescaoo.oooooooeooo.o.ooo4406..00000003“‘8
Simple VariableS.cccccoccccePercooncoocosI=d
Numeric Array VariableS..ccececeoo. 000038
Simple String VariableS.....cceeeeeceoo3=8
String ArPay . ceieeiecerocsacecooncnncess 3=l
Variable Storage...cccccceecccccccccccesI=i0
Number Array Storage.....cccecee.. eeea3=10

e o
-3
L] *

[

L]
L]

e

L]
e
FTUSN

L
L]
-y,

L]
© =2 —540O 0000 0000 00 00 OO0 00 Oo~3
L]
00~3 OV W N —

L LW LWLD LWL LHLY LY LW W
°
- O

i

°

o . ° .o

-2 s 2O O3 OV =W N —

n> o

o o o L]

FREFREF EFREF EFFEE

L] o ° o

°
L]

°
N

L]

o o o &
°

[]
°

o
L]

OO O© OOy CvOr Or NN WU 5L N —
o

L]

(O RV IV) UIUY U1 U LR UL WAL U WUt WUt WD
o
am = W DN -

L]
L]

Strings and String Array Storage.....3-11
Variable Format and ACCUracy.ccescoees.3=12
Operators and EXpressSionS....c.ceceesececess3=14
Arithmetic OperatorScecccccceccecscoccseco =il
Arithmetic EXpressionsS....cceeeececcess3=15
Logical OperatorS..ccccccscecscscccscseI=10
Logical ExXpressionS.cecccccceccccccocse3=16
Relational OperatorSceceeccecscccccccscee3=16
Boolean Operators..ceeccoccecccssescoee3=17
Boolean and Relationsl Expressions.....3=17
Expression Evaluatiol..cecececcesecccocee3=1T
Multiple StatementS..cccescecececceosccacas3I=18
Keyboard Mode..c.eeceacveceocencceosccneees3=lB
Errors and Error Listing..cceceescecessscsse3=19

SECTION IV. BASIC COMMANDS

GeNeral.ccsceococcscscoscceascossacsosccocesliml
CONtinue CommMANA...ceeeeescencccacocoesessslal
LIST Command...coeevceeecscocooceconcosnseasldmd
LOAD Command...ccececeeesescoonennncooscssslm
NEW Command..cceececsscarcccocenccococeeosslmd
NUMBER CommAand....cceccescesooncssancesssssldub
PURGE COMMANG. e tvveeereencsonccascansneenssldad
RUN Command..vcecececeecocccassonecnceeesesdmb
SAVE Command..ceeseeccceeseceanosnsasaacessdmb
SOURCE COmmMANd. .eveescecesoecocsocncosenessldaT
STACK COMMANGA.cceceececrococsncoccannosaeocesldmd
SIZE Command...esecesoocceccesccnsaoscocnessdmd

SECTION V. BASIC STATEMENTS

Gemeral..ccieerrtccccececsooccanenecncecessSml
COMMENT or REMark Statement...cc.eceoeese..d=d
DIMension Statement...cceceeececcosccocceses5m5
Function DEFinition..cecececocsccccccsacessed=bd
Variable Assignment......cccceveeccacenseesSa?
LET Statement...cceeeeeccocccconcescocedmT
EQUATE Statement..eeeveeeeessseeceessss5=8
Control and Computed Transfer Statements...S5-9
Unconditional GOTO Statement....oeoee..5=10
Conditional IF-THEN-ELSE Statement.....S5=10
IF-THEN Statement.......cccccvveocess5=10
ELSE Statement...ccceceecesccocenccesedmil
Subroutine (GOSUB, POP, and RETURN)
StatementS.cecccececcocescsscccvesnoseed=12
ON Statement...ccveevecececcseecoccnoeaS=1T
FOR/NEXT LOOPS.ccescocococcesnsasncessedm=i8
ERROR Statement....ccevicecioeconeacess5=23

s o
o Oy O
o o

W 0~

L]

L]
°

°
°
WHN -

(]

—d ol
L]

B

L
L]

o
L]
o

®
)
w N

ot

b 2B b B el b d ad e B B b o =B o§ b —D =B 2 ~\D WW WO 00 00 00 00 00 OO Oo 00 00 OO C0 O 00 00 00 ~3J~3 =3 ~3

WU AW U I UTUTRUINIUL 350 N - O o

o
L]

o .
UV 52 S8 WN DN NN —
[] L3

e
L]

° () °

e

°
EWN -

e
L

e © e © e °
L)) e ®

e o

N} ~>

o

L]
°

o

WM -2

e

L)

o

°
L]

e L]
L] L]

e e o e o o© o o
e © e © o © o o
e o

UM &EwWw -

L)
©

WWOWOOVDOWOUWOIOUI&EFWwN —
L] °

U AU AU U AU YU I U AR U URUT AR LU UTAR AU N UTW UTUD WU NN Lt iR YU LR WU Unn e

o L]

STOP Statement..ccecscececcccoscncacses5=25
m Statement...o......oo..............5-25
BYE Statement..cccececcecccecensscoceoso5=25
Internal Input StatementS..cccceceececcocecee5=2b
DAIA Statemeptncooo'oooocoovoc0000000005‘26
READ Sutement..........0'0.‘00...000‘05.27
mon statementoeeooooooaooooooooo00005-’28
Terminal I/0 StatementScecccocccceoccoceceoed=30
INPUT Statementcooeoooooeooeeooooo000005"30
Specification on Number of Input
Characters..cccoeccocsececocecescessed=33
Invalid Input Character Processing...5-35
Input Statement Curser Control.......5-36
PRINT Sﬁtement-oooo0000000000.0'00000-5‘37
Pmt Fomttingoaooooooo01009»00000005'#1
TAB.ccccocesesscecccocoonccososcsssse =]
PRINT Statement Curser Control.......5=47
Summary - PRINT Statement Rules......5=50
DIGITS statemento-conoadooeoo.oaoeooooaS"S‘l
Output Control StatementS.....ccccecce.5=53
SPOOL Statement-coooeoo.3.000090000005“53
UNIT Statement...cccceccecececocecosss5=54
BAUD Statement..ceecoceccccacesscsocess3=55
Interrupt Processing...cceecceccccoccosccesd=dT
IMASK Statement...ceeeececcocscccaacesesd5=BT
TRAP Statement...... D L
IRIN Statement..cvcececceccesscccooesse5=59
Assembly Language ProcessorS...cceccecse 5=59
BASE Statement...... teetooececnn cecene veesoD=61
TIME Statement...cccoe.. cocececesccccsesoense 5-62
RANDOM Statement.....oeoeeeeescecccceascossd=b5
ESCAPE and NOESCape StatementS....cceceee..5=066
CALL Statement..iccesececcecncoseoccoocecssB=b]
Fille Management.ccccecocesscceccccccooccoeed=T]
Pathname SyntaX..ceceocccceccococcoccaccecesBeT]
BDEFS Statement:..ceccccscecccccsccsscoccocsde]]
BDEFR Statement..secceececeeeceeseocaceonesBuT2
BDEL Statement.ceeccceccecccococevocansoccssdmTl
BOPEN Statement..coeveeccsocecccccccococonse =Tl
BCLOSE Statement.ccccoecocecccscscconccocsed=Th
RESET Statement.ccceeceecececeensoccacenseoS=TT
COPY Statementecceccocccacecsccecoccccccocscd=Td
BINARI Data I/O Statements......o.....-v.en-5°79
BINARY 1 Statement.ccccecececocccceseseead=81
BINARY 2 Statementesecevcecoossmecoosesss5=82
BINARY 3 Statementccccecocccscoocsoocceso5=83
BINARY U4 Statement..cccecccocacoccccccose . S5=84
Example” Progral..cceccccccscccecocccececocss =80

o o

Oy ONON VO™
o

‘e e e o o
00— OVUI 35 N\) —
t

e
-n..o -t b =3O
E{ VI NPT e

OOy OOV GNOY OVON

L}

o

°
o

9
(]

NN NN DN —
e

i e)
° o
° o

Ld
°

L]
©

L]
[

—2\D 00 ~J OV 4= LD NS —a

°
o

°

WWWR NN MR

©
]

°
WY

EE O EBEEER EEW

L]
L

e i e I e B e Bt I e g

°
L)

e o o
e e o

°
L]

s e R
W~ VI EWN -

SECTION VI. CHARACTER STRINGS

GeREIAl. e ccuccneereenesonnccncocnscnnennsss bl
Character Assignment..cieeeeeeeenncncecnne bl
Character ConcatenatioNeecceeeeessscacacsesbm3
Character o = 0
Character Replacement...coceeeceoocecsanessbull
Character Insertion.cececeeiieceereccconeesb=5
Character Deletion.e.eseeececccccccoseseessb=b
Byte Replacement.o.........,...............6—6
Convert ASCII Character to Number..........G6-6
Convert Number to ASCII Character....c.....6=7
String Length FunCtioN...cieiececeenqeeess.b6=8
Character Search Function.eeecvereneneeee..6=8

Characte!‘ Match Functionooco-090000000000-06-9
ASCII Character Conversion Function........6=9

SECTION VII. POWER BASIC FUNCTIONS

Genel‘al...o...................o..o........'..7-1
Mathmatical FunCtion3|tnooooooaooooooooou.o7°1

Absolute Value Function (ABS)...... ceeees T-1
Arctangent Function (ATN)..e.eevvveeeennn.. T7=2
Sine and Cosine Functions (SIN) COS).ee...7=2
Expénential Funetion (EXP)....... Ceceeene T=2

Fractional Part Function (FRA): vveeeenes T=3
Integer Part Function (INP).....ceoweuo..7=3
- Logarithm Function (LOG) trvvnneennnnnnee 7=t
Sign Function (SGN).eieeveeeenonreeeeees.T=d
Square Root Function (SQR) tvvvreenieseanaT=5
Tangent Function (TAN)...veeivveoeeaees..T=5
String Functions...........................7~5
ASCII Character Comversion Function...... T=6
String Length Function (LEN)eoeececncneaaT=6 -
Character Match Function (MCH)...........7=6
Character Search Function (SRE) evveneneaoT=T
Miscellaneous FUNCEiONS...cuecreeensoonanss =T
CRU Single Bit Function (CRB)eveeereeeaesT=T
CRU Field Function (CRF)...eeeeeroeeooos.T=8
Key Function 6.1:0 4 B PP, 2
System Interrogation (SYS) Function......7=9
Delta Time (TIC) FUnetion.ciesiveeeennneoT=g
Memory Interrogate/Modify (MEM) .
Function.......................;}........7-11
Bit Modification (BIT) Funetion....... casT=12
Random Number (RND) Funetion..ceeeveeee. . T=12

iv

°
WL N —

°

°
L
b b

L]
-]
B

-t
[\V.

CO 00 000® @O0 OOOP OOOD
o e L

2= f=iw

L]
L]

1

®
L]

L] L]
L) L ® (-] .0
L L

) L]
o
00 LOLS WU NY =8 ob ad b ad B od wd
N °
NN EULWN —

®
L]

e o
°
°
L N ==

°
L]

3
e
L)

°
°

o °
L

°
e

L]
o
[TV)\ Ry

°

L)
°

e
°

[o.+] 0o 0o 0o ©0 0o GO 0D 00 02 OO Q0 G0 00 OO0 O OO OO0 OO 0o
N -~

N oGy O UMW MIAN S S Bl AT kS g e g e

]

®

® o, o
L]

L]
]

e
®
U 8= L N\

©
L]

o

® (]

5537 45 LWL L LoD N —
®

N o

W WOW WW WO W00 VWO

SECTION VIII. POWER BASIC CONFIGURATION PROCESS

Introduetionccecccccccccosccoasscooassceseedml
Typical Configuration CYele..ceececcecenes B8l
POWER BASIC Configuratorc.ccoccecceccncoocosed=l
POWER BASIC Application Program........83
Non=Configurable Statements and
Funetions..ccececocccococccecoconoessBu3
Special Statements and Functions.....8=4
Configurator EXecUtion..ceceeeeccenccccenssB=5
Responding to Configurator Prompts.....8-6
Pathname SyntaxX.iceceeececeoncacocose8=b
APPLICATION Srcez Prompt..cccececccccccsd=T
OBJECT FILE= Prompt.ecccccccoccccococoB=T
LINK CONTROL= Prompt.cccceccccccocsos8=8
LIST FILE= ProMmpPteecececececccccecceseBad
Special Keyboard Control KeySc.c.o...8=9
- oL igUrator ErrorS.e.ceceecocscscceec8=10
Configurator Operation..ccvececccceccsa8=10
Configurator OULPULS..cecescoceccessossB=i2
OBJECT FILE OUtDPUt..ecceeoconsoncceseB=12
LINK CONTROL 0 A - e K
LIST FILE OUtPUb. . cevccccececooccoeesB=lll
Configurator TerminatioN.cocecccccccese8=16
TX990 -Link EditOr.iieeeceeroscocoscnvevoceaBailb
Referenced Object ModuleS.......eeeeo..8=17
Link Editor Execution.ccceocescconcosoo8=1T
Link Editor OULPUL. . teecrenreecencoans s B=18
. Target (Configured) POWER BASIC
APPliCation. coeireteronencenononcecncenosssBu20
AMPL Checkout ProceduresS......cocccceco..3=20
Programming Using TXPROM
Utilitycccconcecococconcocacsscsoccenes 3l
EXampleS . cienricoroctvocacncsconancscesBulS

SECTION IX. INSTALLATION OF TARGET POWER
BASIC APPLICATION

Introductioncececeececccaceccccaccncocacesolul
General System Configuration.ceececeeecocssfut
Equipment RequirementsS....ccececceccocoeocsemed
Microcomputer Board...c.ceeeerecoecacesoGumd
Optional BoardS...cccccesocscoscecccsssIm
Power SUPPLYeeococcoconcsooeonncoosneolGmd
ChassSisS..ccecosvecococovccccconsooossssImd
Terminal and CableS.cccecccocecnonensssfm3
System SetUP.ceeccecccooacccccecconnascacosIuld
Power Suply ConnectionS........occeees..G=d
EPROM InsertiofececcecececcocascoceeeeeF=b

A it ot b b e 4 e s

bl oo

H
-
-1
i
o
.
1
i

. 0

. ——

L]

W W
B
= =
°
L~ V1)

e

L]
L]
. d
N -

L

O WW 0 (Ve XV,
L] L] L]
SARU LT RV I oy
o e]
M-

e

Appendix 4

Appendix B

. Appendix ¢

Appendix D
Appendix B

Microcomputer Board Jumper Settings....9-7
Expansion Memory Board Switch
Settmgso..’..‘.oe...0...5“00..0.000009-12

System verification ®eee0o0ocee ®000s0c0ee ® 0o 9-21
Pawer"’up/nesetoooov ®oco0e000 e ®©e o000 ®eov0e0se '9-21
Debus Checklist.’@....-..0-00.0.......00.0009-22

APPENDICES
Appendix A-1 Host POWER BASIC Interpreter

Emr MessageSIOOt.t....l.......'ﬂ...'Q..'.A-Z
Appendix p-2 POWER BASIC.Configurator
Ermr CodeS0.0"'0.0....‘.00......O'o.‘..llA.a

Appendix A-3 TX990 Operating System Error
odesoo."o@...‘....QI..0‘0.000IOOOOIO;.DOOOA~5

POWER BASIC Statement and Command
S

vi

Figure
Figure

Figure
Figure

Figure

Figure
Figure
Figure
Figure
Figure

Figure
Figure

Figure

Figure
Figure
Figure

Figure
Figure
Figure
Figure

9=1
9-2

9-3
9=
9-5
9-6
97

9-8

9=9
9-10
9=11

E-1
E-2
E-3
E-1

Table 3=1

Table 5

-1

' TabIe 52
Table 5-3
3

r

Table 8«1

Table 9=1

Table 9-2

T

LIST OF ILLUSTRATIONS

Development and Configuration Cycle....l=1
Configurable POWER BASIC on FS990/4....1=4

GOSUB Exampleoooooeeu-ooeseoooonoouooe:5-13

Application Program Configuration
PrOCesso..B'.0‘000..00....0.000.0..00.'8_2
LinkEditov Empleo.OQO00000-0‘0.0.0b008-21

Power Supply HOOKUP.cceevedcesosasssaseI=d
TM990/101M Board In TMS90/510
ChasSSiS.eocesccreccccececcccncoccscsoceFmb
TM990/ 10 1M Jumper LocationS...ceeeeess.9=8
TM990/100M Jumper Locations...cc..ceeee9=9
TM990/201 RAM Memory LocationS.........9=13
TM990/201 EPROM Memory Configurations..9-14
RAM (Only) Configuration For Model
990/206 . cccceeccocacccecccscooscnnncesed=15
Target POWER BASIC Application Memory
MapPS.tceecccecacocssoscscscacscnccsceneiI=1T
TM990/101M Board in TM990/510 Chassis..9-18
743 KSR Terminal HOOKUD...vecosooccoessI=20
Connector P2 Connected RE-232-C Device
(Model 722 ASR).vveecrenecesronacenoaesd=20
45
Configurator List File OQutput..c..coe..E=d
Link Editor List File Output...........E=5
Configurator List File OQutput..........E=12
Link Editor List File Qutput...........E=13

LIST OF TABLES

Special Function KeyeodeS....cecesssoss3=d

POWER BASIC statements.;.000000000000005‘2
Fomtting stt’ing Cmractersﬂooooocnanns-uu
Intempt LeVGl Dataoocaooooo-ooao000505-61

special' characters.......ooﬁc..0.6.00008-9
Microcomputer Family Power

consumptionaoo.csonoooo-ocaoooooooo-oo.‘09’3
m990/101M Jumper Settings..oeoocoo'ooo'g-7

Table
Table
Table
Table

Table

9-3
91
9-5

9=6

9=T7

LIST OF TABLES (continued) ==

TM990/ 100M Jumper SettingS..cceesccceos9=T
TM990/101M Board Jumper Positions......9=10
T™M990/ 100M Board Jumper
PositionS.ivecececacacrcecescccccaceoeeGmll
TM990/201 Expansion EPROM B
ConfigurationsS..ioeeeecececacasescoascocImlb
Recommended RAM Expansion
ConLigUrationS.cceceecssceccecocconssesd=1b

viidi

1.1

SECTION I
INTRODUCTION

GENERAL

POWER BASIC* is a family of software products offering a wide range of
features and capabilities. These produets are available in a variety
of forms including-ROM's, TM990 boards, and floppy diskettes, in
addition to the programming features normally found in BASIC##, POWER
BASIC offers the user features specifically designed to support
real-time industrial control applications. Two family members,
Evaluation Basic (TM990/450) and Development Basic (TM990/451 and
TM990/452) are designed to execute in a TM990/100M or TM990/101M

.mierocomputer board environment. The third member of the family is

Configurable POWER BASIC (TMSWS510F), utilizing the higher per formance
FS990 floppy disk-based system with either the 911 or 913 Video
Display Terminal for program development. Programs developed on
either Evaluation or Development BASIC are completely upward
compatable to Configurable POWER BASIC. The FS990 system provides a
convenlent, efficient environment for the preparation of algorithms,
intended for and configured into, customized POWER BASIC ROMs to be
executed in the TM990 board based application. Figure 1=1 presents
the FS990 minicomputer environment in which Configurable POWER BASIC
executes. . :

e 03 T R i T e L e L
S ‘~~"c, F i Vi —

R R i s
e oo s -\\.“_
FIGURE 1-1. DEVELOPMENT AND CONFIGURATION CYCLE "

e
4ol

bl e 02
/.:,' p.~-,,‘.& Ap/N 4 I
AV v

%

. I3
Trademark of Texas Instruments

See POWER BASIC REFERENCE MANUAL #MP308 for more information
% Trademark of Dartmouth University

' i=1

-
L]
[\M]

¥

POWER BASIC OVERVIEW

The POWER BASIC language is easy to use and understand, and
eliminates the need to use assembly language in writing an application
program. The user may enter program statements or commands required
to examine, debug, or run a program. Each statement or command is
completed with a carriage returnm which terminates and enters the line.
POWER BASIC automatically advances one line position and waits for
additional keybcard input. Once the program is finished to the user's
satisfaction, the POWER BASIC Configurator may be executed to produce
a smaller and faster ROM/RAM partitioned POWER BASIC interpreter which

‘may be stored in ROM for later insertion in the TM990 board system.

The POWER BASIC Configurator scans the user's BASIC application
progran; -"remembering® via a control file, each of the POWER BASIC
Statements and Punctions used. The user then executes the TX990 LINK
Editer, using the Conflgurator-generated Link control file to complete
the confisuration process.

POWER BASIC FEATURES .

POWER BASIC has many features that make it ideal for use in the
industrial control environment:

e U8 bit floating point aritnmetic

¢ 24 howr time of day elock-

¢ elapsed time for 1/25th of a second or greater

e asynchronous transfer to user-specified statement number on
user selected interrupts

‘o string manipulation capabilities

e 3 character variables

e sophisticated editaor

e calls to assembly language»routines.directly from POWER BASIC
e complete F3990 file management from POWER BASIC

e Configurator minimizes memory requirements of any POWER BASIC

program

.o,

.4

The benefits the user will ‘derive from Configurable ?OWER BASIC cia.n be
seen when the configuration process is complete. The resulting

run-time module is stand-alone. It is customized at the BASIC
statement and function level with the specified POWER BASIC
application program, resulting in a faster and much smalier user
application than with conventiomal BASIC interpreters. Further, this
run-time module is appropriately ROM/RAM partitioned for exectution in
a T™990/100M or TM990/101M microcomputer board system, and can be
tested thoroughly with the FS990 system through in-circuit emulation
using the AMPL¥ Microprocesscr Prototyping Lab.

DEVELOPMENT AND CONFIGURATION CYCLE

Figure t=2 depicts the steps involved in POWER BASIC progran
development during the Configuration process. Most programs can be
completely developed and debugged on the Host POWER BASIC Interpreter:
which executes on the FS990 system. Additional debugging may be
performed using- Development BASIC in a TM990 board system when
interface to the specific application is required. The Configurator
Scans the application program and "remembers" each of the statements
and functions used in it. It them 1) produces a corresponding Link
Control file to selectively include. the referenced POWER BASIC
statement and function routines, 2) produces the "ROOT module"
containing the POWER BASIC application program, and 3) produces a
listing for a hard copy of the Configuration process. The execution
of the TX990 Link Editor using the Link file generated by the
Configurator produces the. final "customized" Target POWER BASIC
Interpreter. The resultant Linked Object module may then be
programmed into EPROM's using the PROM programmer availzble on the
development system.

Note that throughout this manual the term "HOST POWER BASIC
INTERPRETER" refers to the BASIC Interpreter which executes on the
FS990 system, while "Target" POWER BASIC Interpreter refers to the
BASIC Interpreter generated by the configuration process and Linkage
Editor. Also note that some environment dependent POWER BASIC
statements and functions operate differently on the Host POWER BASIC
interpreter than on the Target POWER BASIC Interpreter. These
environmental differences are documented in the appropriate paragraphs
of_Section IIT through VII of this manual.

A full discussion of installation procedures fer the Host POWER BASIC
Interpreter can be found in Sectiomn II. Section VIII contains a
detailed deseription of the Configurator and the configuration
process. :

POWER BASIC

ENTER,
EDIT,
- " DEBUG

CONFIGURATOR

LINK
CONTROL

LINK ED!TOR

ACM/RAM
PARTITIONED
LM,

PROM PROGRAM

——— .-
———

7 TN
FIGURE 1-2. CQN?'IGURABLE POWER BASIC ON FS990/4)

Ceee— .
N

filegp G frop
o/

1-4

_—

CONVENTIONS USED IN THIS MANUAL

The folliowing conventions are used to deseribe the statements,
commands, and examples in this manual:

Numeric values for-command parameters are decimal unless otherwise
specified.

Angle brackets (€>) indicate essentia,l elements of user-supported data
in statements, commands, and examples.

10 LET <variable> = <expression> to <expression>

Braces ({}) indicate a choice between two or more possibilities
(alternative items), one of which must be included.

[<variable>)
10 ON|<expression> THEN GOSUB <statement number-list>
J . .

Brackets ([]) enclose opticmal items.’
10 [LET] A=4%ATN(1)
Items in capital letters must be entered e:éctly as shown. -

Items in lower case letters are user-supplied characters.

231

SECTION IT

LOADING AND EXECUTION OF EOST POWER BASIC INTERPRETER
AND CONFIGURATOR

INTRODUCTION

The Configurable POWER BASIC package consists of two modular software
packages shipped on two diskettes. These diskettes eontain the HOST
POWER BASIC INTERPRETER and the POWER BASIC CONFIGURATOR. The modules
contained on these diskettes differ only in the terminal used for the
System console.

The HOST POWER BASIC INTERPRETER provides 'the capability for extended
POWER BASIC program development and debug, with full floppy disk and
file support. '

The POWER BASIC CONFIGURATOR produces the link control file and root
module that are required to generate the customized POWER BASIC
interpreter. 1In addition, the startup module and a library of POWER
BASIC object modules to be used by the LINK EDITOR are included on
these diskettes. o

The two diskette disk names and the pathnames of their contents are
listed as follows: -. ‘ :

DISKETIE NAME CONTENTS

CONFIGURABLE POWER BASIC VDT911 sCBASIC/V11
:CONFIG/V11
:CBASIC/LIB
tSTARTC/0BJ

CONFIGURABLE POWER BASIC VDT913 :CBASIC/V13
' :CONFIG/V13

:CBASIC/LIB

¢STARTC/OBJ

To. load and execute either the POWER BASIC or Configurater software,
the user must provide a version of the TX990 Operating System (release
2.3 or later). The user then selects the package(s) which mateh the
device type of the system console supported by the operating system.

2.2

2.2

Either of the selected POWER BASIC or Configurator packages may then
be loaded into the dynamic task area of the user-supplied
TX990 Operating System. Note that both seftware packages cannot
concurrently reside in the dynamic task area since both packages fully
utilize the remaining task area for user progranm storage. These
packages may be installed (loaded) into the dynmamic task area and
executed under control of either 1) the Operator Communications
Package (OCP), or 2) the Terminal Executive Development System (TXDS).
The following paragraphs describe the loading procedure for each
method, the LUNO's required by each package, and the operating system
Support required in the user's TX990 Operation System.

LOADING OF POWER BASIC AND CONFIGURATOR PACKAGES

Both POWER BASIC and the Configurator may be loaded and executed using -

either the OCP module or the TXDS control program, (whichever is
supported by the user's TX990 Operating System). When using the OCP
MODULE, perfam the procedures itemized in Paragraph 2.2.17. When
using the TXDS control program, perform the procedures itemized in
Paragraph 2.2.2. o

Note that two POWER BASIC packages and two Configurator packages have
been shipped on the two diskettes. The two software packages differ
only in the device used for system console: 1) the 911 Video Display
Terminal, or 2) the 913 Video Display Terminal. The user must
select and load the software package whose console matches the system
console in the TX990 ‘Operating System being used. The two packages
are supplied on the diskettes under the pathnames presented in
Paragraph 2.1. The pathname extensions designate the system console
device type for these modules (e.g.,/V13 designates the 913 Video
Display Terminal as the console device of that module).

LOADING USING OCP
Proceed as follows:

t. Load the TX990 Operating System that meets the operating system

- requirements as presented in Paragraph 2.4 by performing the

steps in "Loading the Operating System", (Section II of the TX990
OPERATING SYSTEM PROGRAMMER'S GUIDE). -

2. Press the exclamation point (1) key. on the system console
keyboard. .

3 If OCP is included in the system, it responds with a period (.)
prompt: . i;_
: :

@

4. Place the diskette containing the selected POWER BASIC (or
Configurator) object module into the left diskette drive.

‘5. Using OCP's LP (Load Program) command, lcad the selected object
module from the diskette media into memory as follows:

R +LP,DSC:CBASIC/##%# Load from floppy diskette DSC the
object module file CBASIC/¥%%,
.Where ¥%*% is the console device
° (V11 er V13).

similarly
-LP,DSC:CONFIG/%*#*# Load from floppy diskette DSC the
object module file CONFIG/%%#,

where #%* is the console device
(Vi1 or 713).

-

6. Enter OCP's EX (Execute) command to execute the POWER BASIC (or
Configurator) object module and terminate OCP as follows:

+EX,10.TE. Executes POWER BASIC (or Configu-
rator) and terminates OCP.
T. - -Observe the following printout or display on the system console:

CONFIGURABLE POWER BASIC REV FS.n.
¥READY ‘

or similarly,
POWER BASIC CONFIGURATOR REV F.n,m
APPLICATION SRCE=

where,

. = release number
m = revision number A *

i2.2.2

80

At this point the POWER BASIC (or Configurator) package will be
executing and ready for your input.

LOADING USING THEE TXDS CONTROL PROGRAM

Proceed as follows:

1.

Load the TX990 Operating System that meets the operating system
requirements as presented in Paragraph 2.4 by performing the
steps in "Loading the Operating System" (Section IT of the TX990
OPERATING SISTEM PROGRAMMER's GUIDE). -

‘Preéss the exclamation point (!) key on the system console

keyboard.

If OCP is included in the system, it responds with a period (.)°

prompt:

If OCP is not included, proceed to step 5.

Execute the TXDS Control Program by responding to the period (.)
prompt as follows:

!
L] m,16.m.

Obserze the following printout on display presented on the system
console:

TXDS 936215 ** 010/77 2:05
PROGRAM: '

Place the diskette containing the selected POWER BASIC (or
Configurator) object module into the left diskette drive and

then enter the pathname of the POWER BASIC (or Configurator)
object module in response to the "PROGRAM:" prompt as follows:

Load and execute the object
module file CBASIC/¥*##*,
Where *¥% i3 the ‘console
device (V11 or Vi13).

PROGRAM:DSC:CBASIC/*¥#

~

1 0‘.

or similarly,

PROGRAM:DSC:CONFIG/### Load and execute the object
: module file CONFIG/##%,
where ¥%#% jg the console
deviece (V11 or V13).

Depress the carriage return key and observe that the INPUT:
prompt is printed out or displayed on the sytsem console.

NOTE '

The asterisk (*) feature can be used in lieu of
the carriage return/NEW LINE entry to by pass the
remaining prompts (Input, Output, Optioms).

Make a null entry by depressing the carriage return and observe
that the OUTPUT: prompt is printed out or displayed on the system
console. ’ - ‘

Make a null ‘entry by depfessing the carriage return and observe
that the OPTIONS: prompt is printed out or displayed on the
system console. .

Make a null entry by depressing the carriage return and the POWE?
BASIC (or Configurator) program loads from diskette and begins
execution. Observe the following printout or display om the
system console:

CONFIGURABLE POWER BASIC REV FS.n.m

SREADY

or simiiarly,

POWER BASIC CONFIGURATOR REV -C.n.m 2

APPLICATION SRCE=

where,
" 0 = the release number . . .
B = the revision number

1. At this point the POWER BASIC (or Configurator) package will be
executing and ready your input. .

-LUNO's

TX990 uses logical unit numbers (LUNOs) to represent devices ar
files. POWER BASIC perfarms I/0 to a LUNO. This is conver ted by tt
operating system to represent the physical device on file to which tt
LUNO is assigned. .

POWER BASIC uses LUNO 0 and LUNO's 20 through 24 - 7Th
Configurator uses LUNO 0 and LUNO's 21 and 22 . LUNO O is assigne
to the systenm console by the TX990 Operating System.mAl:
communications between the user and a task (i.e., POWER BASIC < th
Configurator) are performed through LUNO 0.

LONO's 21 and 22 are assigned by the Configurata to the device:
or diskette files which are to receive the root module, link contro:
file, and listing outputs. LUNO's 21 through 24 are assigned o
POWER BASIC to the devices or diskette files referenced by the user's
POWER BASIC program or during user program development.

All POWER BASIC output is initially directed to the system console
device, however the user has the option to redirect all output to any
other supported output device or diskette file by executing the SPOOL
and UNIT POWER BASIC statements.

When POWER BASIC or the Configurater are exited to return to the

‘Operating System, all files are closed.

OPERATING SYSTEM REQUIREMENTS N

utilize the TX990 ‘Operating System Provided by the user to load,
execute, and perform file and deviece I/0. Therefore certain
requirements must be Specified for the user's operating systenm.
Operating Systems which meet the requirements must: '

© be version 2.3 or.later

O provide either OCP or TXDS for program load and execution

O provide full diskette file management

o provide full task support . °

O have at least 4 file LUNO blocks Specified during system
generation

2.5

2.6

Optionally, the user's TX990 Operating System may also support a
line printer and 733 ASR terminal and cassettes. These devices are
useful with both the POWER BASIC and Configurator packages.

EQUIPMENT REQUIREMENTS

The POWER BASIC and Configurator softﬁare packages require the
following hardware components connected in the standard FS990
minicomputer configuration: .

""" @ FS990 with 24K words of RAM

e Model FD80O dual floppy disk drive
e Console terminal (911 VDT or 913 VDT)

The foliowing cptional' equipment may also be supported:
® 733 ASR cassettes and printer

e Model 810. 1ine printer

RECOMMENDED PROCEDURE

Before the TI-supplied diskettes are used, they should be copied onto
backup diskette(s) and the masters stored in a safe place. This
easures that the master diskettes are available if the backup
diskette(s) are destroyed. The diskette/disec backup and initialize
program will be used to copy the diskette as outlined below. For
details on BACKUP, refer to Section X of the Model 990 Computer
TX990 Operating System Programmer's Guide.

The recommended procedure is:

1) --Use only one béckup (or production) diskette when executing
elther the Host POWER BASIC Interpreter or the Configurater.

2) Select the configurable POWER BASIC diskette whose console
device matches the system conscle of the TX990 -Operating
System being used.

3) Copy the appropriate master diskette, "Configurable POWER
BASIC VDTS9XX" to the backup diskette.

4) Copy the TX LINK Editor (modules :TXSLNK/SYS, *:TXLOVM/SIS,

¢ TXLOVL/SYS) from TXDS LINK EDITOR DISKETTE to the backup
diskette.

control Programs to complete generation of 2 configured POWER BASTC

4pplication, The backup diskette in its final form will then contain
the following files:

:CBASIC /%% Object modules whoge eonsole device matches
:CONFIG/ 2 " "OPerating System being used. (xs is the ‘
e file exXtension v11 or V13, ™
sCONFIG/LIB "*Object Library ang STARTC modules referenced
:STARTC/0Bg by link control fije Produced by Configura-
ter, .
:TXSLNK/SYS TX2.3.2 Link Editor ang associated overlays,
*IXLOVM/SYS L ' _
$TXLOVL/SYS
NOTE -

The Link Editor Produces temporary files on the diskette
from whieh the Link Editar

ransf
Object Library module f:CONFIG/LIB), Start moduyle
(:STARTC/OBJ), and the TX Link Editor (with all overlays) to
2 separate diskette, The Link Edit may then be rerformed
using the copied diskette SPace for 213 Link Editopr
les

= Load ang €Xecute a sampie TXDS program (e.g., TXCCAT) to

2.8

matches the console device of the selected POWER BASIC and

Configuratar software packages. =

= If the modules were copied to a backup diskette, verify the
copy, and try loading and executing the master diskette
object modules.

¢ Check parameters of TX990 Operating System
= Verify that the TX990 Operating System meets all
specifications as required by the POWER BASIC or Configurator
packages as presented in Paragraph 2.4.

If the cause of failure cannot be found, remove the diskettes and call
your TI distributor. Before calling, please be reasonably sure that
the diskettes are at fault and not the TX990 Operating System or
FS990 computer. :

POWER BASIC SAMPLE PROGRAM

Once POWER BASIC has been initialized, the user may immediztely enter
the following sequence of commands and statements prevented on the
following page to verify that POWER BASIC is executing correctly.
Other sample programs which may be entered and executed are provided
throughout this manual and in Appendix C.

When POWER BASIC begins execution it displays the following banner
message. The user then enters the "SIZE" command to display the
amount of RAM area "free" for user program storage. (The amount of
free RAM given in the following examples is dependent on system
configuration and the Operating System being used).

CONFIGURABLE POWER BASIC REV FS.1.4
¥READY

SIZE

PRGM: O BYTES

VARS: 0 BYTES

FREE: 18850 BYTES

(SIZE numbers will depend on system configuration)

The following program may then be entered:

10 DIM A(4)

20 $A(0)="THE NUMBER IS"

30 INPUT "INPUT NUMBER", N

40 IF FRA(N)>0 THEN PRINT $4(0);N;::GOTO 60

50 GOSUB 100 ! EVEN OR ODD INTEGER

60 . PRINT ", ITS SQUARE IS";N#N;",6 AND ITS SQUARE ROOT IS";
70 IF N<O THEN PRINT " UNDEFINED.":: GOTO 30

80 PRINT SQR(N);".m"

90 GOTO 30

100 IF INP(N/2)*2=N THEN PRINT $A(0);" EVEN";::RETURN
110 PRINT $A(0);™ ODD";

120 RETURN

The user may then display the program size and list the program 2as
follows: .

SIZE
PRGM: 282 BYTES
VARS: U4 BYTES
FREE: 18564 BYTES
LIST -
10 DIM A(Y)
20 $A(0)="THE NUMBER IS"
30 INPUT "INPUT NUMBER", N
30 IF FRA(N)<>O0 THEN PRINT $A(0);N;:: GOTO 60
50 GOSUB 100 ! EVEN OR ODD INTEGER
60 PRINT ", ITS SQUARE IS";N*N;", AND ITS SQUARE ROOT Isv;
" 70 IF N< O THEN PRINT " UNDEFINED.":: GOTO 30
80 PRINT SQR(N);".m : -
90 GOTO 30
100 IF INP(N/2)*2=N THEN PRINT $A(0);" EVEN";::RETURN
110 PRINT $A(0);" ODD";
120 RETURN

The RUN command will execute this program. The program will request
numeric user input by prompting with the question mark as follows:

RUN
INPUT NUMBER? 17 (carriage return)
THE NUMBER IS ODD, ITS SQUARE IS 289, ITS SQUARE ROOT IS 4.1231.
INPUT NUMBER? -6 (carriage return)
THE NUMBER IS EVEN, ITS SQUARE IS 36, ITS SQUARE ROOT IS UNDEFINED.
INPUT NUMBER? 2.35 (carriage return)
THE NUMBER IS 2.35, ITS SQUARE IS 5.5225, ITS SQUARE ROOT IS 1.532971.
INPUT NUMBER? (escape key) - ‘
STOP AT 30
3 ~
The user may enter the SIZE command to display the program size and
the variable storage used by the program. ’

SIZE

PRGM: 282 BYTES
VARS: 44 BYTES
FREE: 18524 BYTES

All variables and program storage area may then be cleared as shoewn by
the following sequence: 4

'NEW .
CONFIGURAELE POWER BASIC REV FS.1.4
*READY J

SIZE

PRGM: 0 BYTES

2=10

VARS: 0 BYTES
FREE: 18850 BYTES

The user should refer to the remainder of this manual for the
detailed syntax and explanation of the POWER BASIC Language.

2=-11

[}

3.1

3.2

3.3

SECTION III
GENERAL PROGRAMMING INFORMATION

GENERAL

This section contains“ general programming information about the POWER
BASIC language. General language features such as syntax, editing
commands, and error listings will be presented.

BASIC LANGUAGE

The POWER BASIC ldnguage is composed of commands and statements.
Commands are used to ‘Iist, edit, save, load, execute, and debug the
user's BASIC programs on the Host POWER BASIC Interpreter. No
commands are supported in a Target (Configured) POWER BASIC
Interpreter. Commands begin with the command name (or the first three
letters of the command name in most cases) and are executed
immediately upon entry. Statements in POWER BASIC programs are
designed to perform a task or solve a problem. Statements begin with
a line number and may be displayed and modified by using POWER BASIC
commands. The user may abort the command or statement entered by: 1)
NOT using the carriage return key at the end of the line, but
backspacing and retyping the line; or 2) striking the ESCAPE key.

POWER BASIC PROGRAM

A POWER BASIC program consists of one or more lines, each uniquely
identified by a line number in the range 0 to 32,767, and each
econtaining at least one POWER BASIC statement of the form:

<line numbers<POWER BASIC. statement>
100 For I=1 To 10

More than one statement may appear on a single line by separating the
statements with a double colon (=:).

<line number<statement 1>« :<statement 2%s: ...
50 A=10:: B=5:: C=0

t

A POWER QASIC statement cannot be continued onto the next statement
line. All POWER BASIC statements are terminated (entered) by entry of
the carriage return key. '

POWER BASIC will generate automatic line number prompts for the user

3.0 u'. 1

.
1
» l

to. facilitate simple program statement entry. Auto-line humbering is
initiated via the NUMBER command as described in Section IV, paragraph
4.6, or by use of the line feed key to terminate statement.entry.

Auto=line numbering using the line feed key is imi'tialized : to begin at

- statement number 10 and generates an increment value of 10 between

subsequent statement numbers. i

To initiate auto-line numbering using the line feed key, the user
should either: : i

e Enter a line feed character as the first -icharacter of the line
(to which POWER BASIC responds with line number 10), or

' e Enter the first (starting) statement number and the associated
statement and terminate the line with a line feed entry.

In both cases, the use of 2 line feed entry at the end of a statement .
(rather than the more commonly used carriage return) will result in
line numbers being generated automatically in increments of 10 after
each statement is terminated (entered). After the first statement has
been entered via the line feed key, subsequent statements may be
entered via either the line feed or carriage return keys and auto-line
gumbering will continue. To terminate auto-line numbering, enter an
empty (vacuous) statement line with 2 carriage return.

POWER BASIC programs are exscuted beginning with the lowest numbered
line and proceeding with the next highest numbered line until directed
otherwise by a control statement, or until the last statement on the
last line is executed. An example of a POWER BASIC program to compute
the sum of the squares of two numbers is given below.

10 LET X=3

21 LET Y=4

33 LET Z=X*X+Y*Y
40 PRINT Z

57 STOP

The POWER BASIC line number is also used to associate program ediﬁing
activities with a particular statement line in the program:

SOURCE STATEMENT FORMAT

.

LINE NUMBER FIELD

The line number field is the first field of any program line and is a
decimal integer between 1 and 32,767, inclusive. This field, which
starts in the first print position, must not contain a.n‘y embedded

3.4.2

3.4.3

3.4.4

- 3.4.5

.
1

blanks and must be féllowied by at least cnme blank.
STATEMENT FTELD ‘

The statement field follows the line number in a program line and
contains one or ‘Vm'ore POWE$ BASIC statements separated by double colems
(::). Eaech statement is comprised of a POWER BASIC keyword followed
by a number of constants and/or variables separated by POWER BASIC
operators. All keywords must be entered in upper case.

TATL REMARK : i

- The tail remafk is separated from the statement field by an

exclamation point (!) and can be used for source statement
documentation. All characters following the exclamation point are
treated as a remark and are not executed. Note that no tail remarks
are configured into the final Target POWER BASIC Interpreter to
conserve user program storage area in the final applicatien.

CHARACTER SET

The character set for POWER BASIC is the upper and lower case alphabet
A-Z; numbers 0-9; and speecial characters !"#$S&'(Ej)*:=-é+;,.?/.
Non-printable control characters may be specified by enclosing the hex
representation of the character within angle brackets. For instance,
a form feed, (etrl)L, is specified by "<0C>"; a bell, (ctrl)G by
"<07°. The phrase "(ctrl)" indicates the key code generated when the
user holds down the control key while depressing the key corresponding
to the character immediately following.

SPECIAL KEYBOARD CHARACTERS

The Host POWER BASIC Interpreter is designed to communicate, via the
TX990 Operating System, to either of two terminal devices. The user
must select and execute the appropriate POWER BASIC module which
interfaces to the terminal device supported by the TX990 Operating
System being used. The terminal devices supported by the two POWER
BASIC modules are the 911 and 913 Video Display Terminals (VDT's). The
key codes generated by these terminals differ slightly in their
representation. Therefore, the POWER BASIC modules each contain a
translate table to convert these codes to a standard code used by the
POWER BASIC Package. Table 3«1 lists the keys of the VDT911 and
VDT913 terminal devices which correspond to the special functions used

by the POWER BASIC package. All other keys on the keyboard retain
their normal functionms. .

- The phrase "(etrl)" indicates that the user holds down the control key

while depressing the key corresponding to the character inmediately
following. For example: "(ctrl)H" means depress the "H" key while
holding down the key marked.‘; "CTRL™ or "CTL". The control (or editing)
characters are not echoed on the terminal, nor are they stored in the
input buffer. The keys FO,:F1, F2, and F3 correspond to the function
keys in the top row of the 911 or 913 Viceo Display Terminals. All
illegal characters are echoed as a bell and otherwise ignored.

3-3

TABLE 3-1. SPECIAL FUNCTION KEYCODES

AND HOME CURSOR

KEY

SPECTAL INTERML
FUNCTIONS CobE(HeX) 911 VDT 913 VDT
CARRTAGE RETURN (€CR)Y D RETURN NEW LINE
ENTER
(etri)® M
LINE FEED (LF)- A (down arrow) (down arrow)
: "(ctrl)"v J
PERCENT (%) 2s / F3
ESCAPE 1B UNLABELED RESET
: FUNCTION KEY*
BACKSPACES AND IF DEL CHAR DEL CEAR
REMOVE CHARACTER "(etrl)"
DISPLAY LINE (1m)| S 1n F1 1n FO
FOR EDITING Ln"(ctz"l)" E
BACXSPACE 8 (left arrow) (left arrow)
CURSOR "(etrl)" H
FORWARD SPACE 12 (right arrow) (right arrow)
CURSOR "(etrl)" F
DELETE n (+ F3n F2n
CHARACTERS "(erl)" D n
INSERT n 9 F2n Fin .
BLANKS "(etrl)" I n
HOME CURSOR 6 HOME HOME
CLEAR SCREEN 3 UNLABLED KEYPAD*#* CLEAR

¥ o Unlabeled function key in upper right hand cormer of keyboard

-#% - Unlabeled key located in the upper right-hand cormer of the keypad

to the left of the keyboard

3.5

EDIT MODE COMMANDS

To aid ia program writing and debugging, an advanced editor is
contained in POWER BASIC. The editor uses the speeial control
characters of Table 3=1 to perform these special editing features.
To maintain comsistenecy with Evaluation and Development POWER BASIC,
the special function control keys (eg., "(etr1)H") will be used in the
following examples; however, the additional special characters of the
911 or 913 VDT's may be used to perform these editing functionms.

Al]l characters displayed on the terminal device are entered no matter

where the cursor is located when a CARRIAGE.RETURN or LINE FEED key is
depressed.

The "(ctrl)E" feature allews editing of program lines previously
eatered into a POWER BASIC program. The form is: '

(statement number) (etrl)E
100 (etrl)E

The line will be displayed with the cursor remaining at the end of the
line. Any editing as described below may then be performed.

The following examples illustrate the character insertion and deletion
features of POWER BASIC. The cursor position is designated by an
underline (_). ' .
Entering-"10(ctr1)E" results in:

10 A(J=1)=SQR(B(1)4-B(1;2))@

Note that the second argument is missing from the first B array.
Enter nine control H's to backspace to the offending location,

10.A(J-1)=SQR(B(1)+B(1,2))
and follow with (etrl)I2. POWER BASIC will reply with
10 A(J=1)=SQR(B(1_)+B(1;2))
after which the second argument can be entered and followed by a

CARRIAGE RETURN to enter the edited line. If it is discovered later
that a2 third argument of the square root“is required, instead of

' repypins the line, enter:

10 (etr1)E

'3.060

3.6.1

3.6.2

and the computer will respond with:
10 A(J-1)=SQR (B(1,1)+B(1,2))_
Then enter one (etrl)H followed by (etr1)I7. The computer responds:
10 A(J=1)=SQR (B(1,1)+B(1,2)_)
Enter the desired characters and press the CARRIAGE RETURN or LINE
FEED key. The CARRTIAGE RETURN enters line 10 into the program and

returns to the keyboard mode, while the LINE FEED enters line 10 and
prompts with the next sequential line number (line 20). The

‘"(etrl)Dn" operator is the reverse operation of the "(ectrl)In"

opgra.tcr.- For example:
30 (etrl)E
will display statement 30, which has an error.
30 REM CALCULATE SUB TOTATALS_
Entering 4 (etrl)H's yields
30 REM CALCULATE SUB TOTATALS
Entering (etr1)D2 yields
30 REM CALCULATE SUB TOTALS
which is the desired result. Complete the editing of this line by
entering a CARRIAGE RETURN. . '
CONSTANTS

HEXADECIMAL INTEGER CONSTANTS

A hexadecimal integer constant is a2 decimal digit optionally followed
by one to four hex digits followed by the letter H with no embedded
blanks. A hex constant cannot begin with the letters A-F. In these
cases they must begin with a2 zero. If more than four digits are
given, only the right-most four digits are actually used. Valid
combinations are OH to OFFFFH.

DECTMAL . INTEGER cons'r.mrs'

A decimal integer constant is any integer between -32768 and 32767
inclusive.

3.6.3

3,624

DECIMAL REAL CONSTANTS

A decimal real constant is a numeric value with a decimal fraction.
The number can have no more than 11 significant digits in the Host
POWER BASIC and may not be larger than 10 or have a negative expcnent
less than 10. Real numbers may be expressed simply as a number
followed by a decimal fraction, or may also have a exponent assumed to

. be a multiplier of 10 to that power. (Ex. 123.4 is equivalent to

1.234E2; 0:0000123 is the same as 1.23 E-5).
STRING CONSTANTS

A string constant is a string of characters enclosed within single or
double quotes. Paired double' quotes can be used to enclose single
quotes, and the reverse is also true. (Example: 'THIS IS A STRING',
"S0'S THIS", 'Demenstrates -"quotes" within a string'. Nom-printable
characters may be included in string constants by enclosing their hex
equivalent within angle brackets. (See Character Set, Paragraph
324.1). Actually, any character, printable or non-printable, may be
included in a character constant. If you want both single and double
quotes in a constant, single quotes could be represented as " 27 " or
double quotes as ™22 ". POWER BASIC stores the constant exactly as
it appears in the code, and interprets numbers between angle brackets
cnly when printing them, or when reading them from a DATA statement
(see Paragraphs 5.7 and 5.8). Angle brackets are NOT interpreted
during assignment or comparison. Thus, the constant 'DON 27 T' will
print as DON®*T (five characters) but is kept as a st ing of eight
characters. If a program requires the compact form for comparisons
(i.e., looking for a specific combination of charcters in a2 source
string), it is necessary to read the test string from a DATA statement
or bu::.,ld it through concatenation of the individual characters.

For example:
$TST = 'DON' + %027B :: $TST = $TST + "T"

The above will place the desired five character string into the
variable $TST. The % operator enables the POWER BASIC user to insert
nonprintable ASCII character codes into string constants. The 7%
operation inserts the decimal or hexadecimal ASCII code following the
% symbol into the character string. For additional information refer
to Section 5.8.2- ‘

Numbers enclosed within angle brackets WILL be interpreted when
printed. So if it is necessary to print out the statement "A<DB" (A is
not equal to B), the angle brackets must be considered non-printable
characters and specified as "A<3C><3EdB" (only the left bracket (<) is

non-printable so that "A<3CC>B" is valid and will produce the same
results).

3.7

3.7.1

3.7.2

3.7043

.
v
'
t
{

VARIABLES

POWER BASIC supports four types of variables: simple numeric
variables, numeric array variables, simple string variables, and
string array vfariables. The two numeric variable formats are used
extensively in POWER BASIC statements and arithmetic operations, while
the two string variable formats are used extensively for
string-character manipulation and output. Note that if any POWER
BASIC numeric ;variable is referenced by a BASIC statement or-command
and the variablle has not been previocusly defined, it will result in a
"UNDEFINED VARIABLE" error. Also note that if any string variable is
referenced and has not previously been defined, the string variable
Wwill be defined as a null string. A null string ceontains no
characters except the null character (byte 0014) as the first
character of the string.

SIMPLE VARIABLES

Names for-simple numeric variables must begin with a capital letter
(A-Z) and may be followed by one or two more capital letters or a

‘number in the range 0-127. Names for variables may not be the same as

POWER BASIC key words or the beginnning of the same, i.e., SIN is not
a valid name nor-is LIS since it is the same as the first three
characters in the command LIST.

Examples:
Valid names: A, ABC, CAT, 40, A&123.

Invalid names: ABS (function name), A.B (non-alphanumeric),
A130 (number-out of range), AB1 (only 1 letter-in letter number
comb:]}.nations),mB (first character must be letter), ABCD (too
long).

NUMERIC ARRAY VARIABLES

The same rules given for formation of simple numeric variable names
also apply to numeric array variables with the additional
specification that numeric array variables must appear-in a DIM
sStatement. The DIM statement must be executed before the first
reference to the variable from a simple variable of the same name;
i.e., PRINT A and PRINT A(Q) refer to two completely separate
variables. When keying in a reference to.an array variable, either

parenthesis or square brackets may be used. (Both become square
brackets intemally and are subsequently printed as square brackets.)
SIMPLE STRING VARIABLES

Simple string vaz‘;fiables- follow the same rules given for simple numerie

variables with the added specification that the reference must be
preceded by a dollar sign ($). Internally string data is
stored left-justified and delimited by a null character (a. zero byte).
‘Characters are normally represented as 8-bit ASCII (normal 7-bit ASCII
with the 8th bit set to zero). If the 8th bit is set to one, the
interpreter will treat the character the same; however, a character
with the 8th bit om is NOT equal to the same character with the 8th
bit off! All strings are terminated by a null character. 4 simple
variable in POWER BASIC is composed of 48 bits, or 6 eight-bit bytes.
Thus, a maximum of five characters should be stored in a simple string
variable terminated by a null. Longer strings should be stored in
string arrays (dimensional string variables) as explained below. Any
Operation which attempts to place more than the maximum number of
characters in a string variable will result data immediately following
the string variable being overwritten.

3.7.4 STRING ARRAY

The same rules given for the formation of numeric array variables
apply to string array variables with the added requirement that the
name must be preceded by a dollar sign ($). The dollar sign, however,
is omitted when defining array variables with the DIM statement. If
the array is multi-dimensional, the data is stored internzally with the
right-most subscript varying most rapidly.

POWER BASIC, with U48-bit variables, stores 6 bytes maximum per array
element. This is important if you wish to store z series of names
longer than five characters in an array. For example, the array A is
dimensioned by the statement, DIM A(2,1). The names "RHINOCEROS",
"ELEPHANT", and "GIRAFFE" would be internally stored as:

$4(0,0) : RHINOC(EROS) $4(0,1) : EROS
$A(1,0) -: ELEPHA(NT) $A(1,1)-: NT
$4(2,0) : GIRAFF(E) $4(2,1) : E

The data in the second column of the array is also output when
printing $4(0,0),$4(1,0), or $A(2,0) since a string is delimited by a
null ‘character on printing. Since the string in the first column does
not contain a null, BASIC continues on to the second column or until
it finds a null. If that null is overwritten by placing something
else there, unexpected results may oceur. For example, by executing
A(0,1) = A(2,0), and then printing $A(0,0), the result would be
"REINOCGIRAFFELEPHANT".

One additional characteristie of str’ingkarray variables is that
individual bytes in the variable may be referenced by specifying the
- byte index after the subseript. The first byte of a String is
referenced by an index value of 1, and the index limit extends to tne‘g
last character of the string. A semicolon is used to delimit the:
index from the subscript in this case. Example: $4(0,0;4) is "N" ww:

3=9

3.7.5

3-7.'501

the fourth letter in RHINOS in the above example.

VARIABLE STORAGE

The following paragraphs will explain the intermal variable storage
structure used by POWER BASIC. This will be helpful when accessing
variables of BASIC from a "CALLed" assembly language subroutine.

NUMBER ARRAY STORAGE

Arrays of numbers are stored in memory by row, with each element
occupying 6 bytes. The storage of singly and doubly dimensioned
arrays are illustrated in the two diagrams below. Larger dimensioned
arrays are stored in a similar manner.

Single dimensioned array ‘A with 3 elements starting at Hex address
E800

E800
£802 4(0)
E804 .
E806 ‘

E808 A1)
E804 o
ES0C
E8CE A(2)
£810

Doubly dimensicned array B with 3 rows (first subseript) and 2 columms
(second subscript) starting at hex address F200 :

F200
F202 B(0,0)
F204
F206
F208 | B(0,1)
F204
F20C
F20E B(1,0)
F210
Fz212
F216 A
F218 ' : .
F21A B(2,0)
F2i1cC
F21E
F220 3(2,1)

As can be seen from the examples above, the address of an element in a
singly dimensioned arrmay is:

ARRAY BASE + 6 * (SUBSCRIPT)
eg. A(1) above would be:
E800 « 6 # 1 = E806

while the address of an element of a doubly dimensioned array element
is: '

ARRAY BASE + 6 * (MULTIPLER*SUBCRIPT1 + SUBSCRIPT2)

Vhere the multiplier is the maximum value of the second subsecript + 1.
For-instance, B(1,0) above would be:

F200 - 6 ® (2%#1+0) = F20C

3.7.5.2 STRINGS AND STRING ARRAY STORAGE

Strings are stored one ASCII character per byte, and are terminated
with a null byte. Recalling that POWER BASIC variables are 6 bytes in
length, the examples below show the string storsge fo rmat.

"BYE" stored in striné variable $4 at Hex address F00O 16

Fooo NBtl n y n
FOO2 ["E"| 00
FOO4 ~X X

®BASIC" stored in starting at hex address F020 16

F020 WBw | nAn
FO22 L A
Fo24 -] nc" I 00

Strings may also be stored in dimensioned string variables, in which
case each element has the same maximum length as a simple variable.
The example below illustrates the storage of a string array $A having
3 .elements and containing the string "POWER BASIC", starting at Hex
address EAQO j¢. , ' .

3-11

3.7.6

$4(0) EA00 npR T Qn |
EA02 R
EAOQ NR" -"Etl

$AC1) EAQ6 | mBw | mam
EA08 S WL
EAOA | "C"] 00

$a(2) EAGC | X | X

. EACE X 1 X
EA10 X | X

If the string of the above example were output using the "PRINT"
statement, the following strings would result.

¢

"PRINT $4(0), $A(13v will result in:
POWER BASIC BASIC

Strings may be empty or-they may have any length up to their declared
maximum. Care must be taken that strings of lengths larger than
specified maximum are not placed into simple or dimensioned string
variables, or other variables may be written over. '

VARIABLE FORMAT AND ACCURACY

Any variable may contain an ASCII character string, a number, or both.
Variable contents are completely program context dependent.
Floating-point quantities in POWER BASIC are represented in 48 bits.
The first bit in position O represents the sign of the number: 0 for
positive numbers, 1 for-negative numbers. The bits in positions 1=-T7
are the characteristic, or exponent, coded in excess-64 notation. The
remaining bits of the floating-point number; positions 8-47, contain
the mantissa or fractional pertion of the floating-point number. The
fraction is always recorded as a positive number; negative floating
point nmumbers are not represented in complement form. The binary
point of the fraction is understood to be just before bit position 8.

A floating-point number is represented by its fraction times a power
of 16, with its sign attached to the result. .The exponent indicating
the power-of 16 by which the frection is multiplied is coded in the
characteristic. The charmcteristic is 64 greater than the exponent.
Excess~64 notation permits representation of a wide range of
magnitudes, roughly from 16 =64to 16 +63 (or 10 =75 to 10*75). The

48-bit POWER BASIC Interpreter provides approximately 11 digits of
accuracy.

3=12

POWER BASIC Floating=Point Format:

S CHARACTERISTIC 10=hex digit fractien
1 7T & 47
Examples:
The pattern
0 . 1000000 10000000 00000000 00000000
<’ (S - J
sign characteristie fraction

includes a characteristic of 64 (hex 40) and therefore an expoment of
0. The fraction is (bimary) -.1000...., or 2"’1, or decimal '0-.50.
Therefore, since the sign bit of 0 denotes a positive number, the
number represented is +0.5%16 = 0.50.

The pattern
] 7000001 01010100 00000000 ~ 00000000
€71 . 54 00 00

includes a characteristic of 65 and therefore an exponent of 1'.' The
fraction is -.010101 = 2=24+2°4 +2-6, The sign bit of 1 denotes a
negative number, so the quantity represented is =(2-%2-42=6) * 1§ =

@(222%22) z w(U4+1+0.25) = =5.25.

Integer quantities in POWER BASIC are represented in 32 bits, with
zeros in bit positions 0 through 15 followed by the two's complement
16=bit integer in bit positions 16 through 31.)

POWER BASIC Integer Format:

00000000 00000000 two's complement ;nteger

POWER BASIC will store a numeric quantity as either a flocating point
or integer value, dependent upon the magnitude of the quantity. If
the number can be represented as a2 16=-bit two's complement integer,
it will be stored in integer format; otherwise it will be stored in

3.8

3.8.1

integer format; otherwise it will be stored in floating-point format.
Once a value becomes large enough and is converted into z: floating
point value, it is never converted back to integer format even if the
number decreases to the two's complement integer range.

The following example program will demonstrate the intermal integer
and floating point farmats used in POWER BASIC. The program requests
user input by prompting with a question mark(?). The user may then
enter any numeric value followed by a carriage return. The value will
be displayed as a 32-bit integer with the first 16 bits zero, Oor as a
U8-bit floating-point value.

10 | INPUT &;
20 PRINT TAB(20) y
30 FOR I=1 TO 48
40 IF I=2 THEN PRINT " ;
50 IF I=9 THEN PRINT " ;
60 PRINT #"0" BIT (4,I);
70 NEXT I
80 PRINT
90 - GOTO 10

? 1. 0 1000001 0001000000000000G00000000000000000000000
71 ' 0 0000000 0000000000000000000000010000000000000000
? 1.5) 0 1000001 0001100000000000000000000000000000000000
? 123456789012 0 1001010 0001110010111110100110010001101000010100
? (ESC) Rey -)
STOP AT 10

OPERATORS AND EXPRESSIONS

An expression is a list of variables and constants separated by
operators. There are three types of POWER BASIC operators and
eéxpressions: arithmetic, logical, and relational.

ARIIHMETIC OPERATORS
The following is a list of the valid arithmetic operators:

addition

subtraction ‘
multiplication -
division '
exponentiation

unary plus

unary minus

P ED N -+

3=14

.
R e R pp—

3.8.2

Note that POWER BASIC supports exponentiation to any filoating
quantity. Both positive and negative exponents are valid. Howe
Since POWER BASIC uses logarighms to calculate the exponentia:
only pesitive quantities may be raised to a given power. The ¢
"LOG OF NON-POSITIVE NUMBER" will result if a negative quanti:
raised to any power.

answer may differ slightly from the anticipated results du
internal floating point limitations. .

ACTUAL ' CONFIGURABLE POWER BASIC
213 = 8 2f3 = 7.9999999999 +1 = .00000000001

The approximately equal (= =) operator as presented is Section 3.
may be used to overcome these floating point limitations. Anc
result of using logarithms is that for a given exponentiation,
resultant answer may differ slightly from the antieipated results
to internal fleating point limitatiens. :

ARITHMETIC EXPRESSIONS

An arithmetie exXpression is any valid Seéquence of numbers, variab:
operatcrs, and parentheses (valid meaning that parentheses must
pProperly balanced, and no -two numbers or variables ean be ad jace
and no two binary operators can be adjacent).

For exampile:
An expression may consist of a single operand:

8
SIN(4)

A sequence of operands may be combined by arithmetic operators:

Xy
A*By/Z

Any expression may be enclosed in parentheses and considered to b
basic operand:

(X+Y)/2
(A+B)*(C<D)

3.8.3

3.8.4

3.8.5

Any expression may be preceded by a plus or minus sign:
+X
=(4+B)
‘=A+((TAN(=4))*2)

LOGICAL OPERATORS

The logical operators do bit wise operations on integers. They
consist of the following: -

LNOT (umary) 1's complement of integer
LAND (binary) Bit wise AND of two integers

. 'LOR ~ (binary) Bit wise OR of two integers |
LXOR (binary) Bit wise exclusive OR

LOGICAL EXPRESSIONS

Logical expressions are similar to arithmetiec expressions. They both
consist of variables, constants, parenthesis, and operators. The
primary difference being that the operators are different for legical
expressions. The logical operators perform a bit-wise logical
operation on the operand(s).

For example, if A = OAAAAH (hex "AAAA"), and B=05555H (hex "5555") and
C = OBBEBH, (hex "BEBB"), then

LNOT (&) would' equal "5555n
A LAND B would equal 0

A LOR B would equal 'FFFF'
4 LXOR C would equal '1111!

RELATIONAL OPERATORS
The relational operators are all binary operators that operate on two

arithmetic expressions. They return values of 1 (TRUE) or O (FALSE).
Relational,operators consist of the following:

s exactly equal '
== approx equal (plus or minus .0000007)
< less than :

{= less than or equal to

> greater than .

= greater than or equal to

<> not equal : d

B PO I3

3.8.6

3.8.7

3.8.8

BOOLEAN OPERATORS

The boolean operators are designed to work on the resultant TRUE or
FALSE conditions set by the relational operators. However, they may
also operate on variables within the program, in which case a zero
value is considered False and a non-zero value variable is considered
to be True. The boolean operators return values of 1 (True) or 0
(False). - .

Boolean operators consist of the following:

NOT (UNARY) Returns a TRUE value if expression evaluates to
FALSE (non-zero); otherwise returns a FALSE value.

. AND (BINARY) Returns a TRUE value if both expressions evaluate to

TRUE (non-zero); otherwise returms a FALSE value.

OR (BINARY) Returns a TRUE value if either expression evaluates
, toe TRUE (non-zero); otherwise returns a FALSE
value.

BOOLEAN AND RELATIONAL EXPRESSIONS

Boolean and relational expressions are formed according to the
following rules: :

4 Boolean or relational expression may consist of a2 single element:

NOT(4)
X<>3. 14159

Single elements may be combined through the use of the Boolean
operatars AND and OR to form compound expressions sueh as:

4 AND B
XO0RY

Any expression may be enclosed in parentheses and regarded as an

- element:

(T OR S) AND (R OR Q)

EXPRESSION EVALUATION

" Expressions are evaluated left to right if the operators are of equal

precedence, and there are no parentheses. If there are parentheses in
the expression, the sub-expression within the innermost parentheses is
evaluated first. Not all operators have equal precedence - operands

3=-17

3.9

which are operated on by an operator of high precedence are evaluated
before operations of low precedence.

The precedence of operators is:

1. Expressiocns iﬁ parentheses
2. Exponentiation and negation

3. %/

B, +,=

5. «=,X2

6. >=,&

Te 3,5

8. ==,LXOR

9. .NOT,LNOT

--10% AND,LAND : '

11. OR,LOR

12. (=) ASSIGNMENT
MULTIPLE STATEMENTS

A double colon (::) terminates a POWER BASIC statement znd can
therefore be followed by another statsment on the same line. This
Saves memory, speeds execution and also zllows for better progran
segmentation. A common divisor program using multiple statement lines
is illustrated below:

The following examples demonstrate multiple statement lines. Note
that this is not an executable program.

10 PRINT ™ An,nm Bn m Cw nGCD®
20 READ A,B,C

30 =4:: ¥=B:: GOSUB 200

Lo X=G:: ¥=C:: GOSUB 200

50 . PRINT 4,B,C,G:: GOTO 20

60 DATA 32, 384, T2

200 Q= INP (X/¥):: R=X-Q*Y
210 IF R=0 THEN G=Y :: RETURN
220 X=Y:: ¥=R:: GOTO 200

All POWER BASIC statements may be preceded and followed by a double
colon in multiple statement lines with the exception of the NEXT,
DATA, and REM statements. The NEXT statement should not be preceded
by another statement (i.e., should be the first statement of the
line), the REM statement should not be followed by any statements on
the same line, and the DATA statement should not be proceeded or

followed by any statement on the same line.

RKEYBOARD MODE -

©

The Host POWER BASIC Interpreter executes statements in either

318

<3

3.11

"execution" mode or "keyboard" mode. 1In keyboard mode, statement
numbers are not entered, only one line is executed at a2 time, and
control is returned to the user after the statement execution. This

line may contain multiple statements properly separated by a double
colon.

The system recognizes two kinds of input: statements and commands.
(See Section U4 for Basic Commands and Section 5 for Basic Statements.)

One and only one command may be executed per line with no statements
on the line.

In execution mode; the program counter moves through the program
executing statements. Execution mode is entered by RUN, CONTINUE, or
GOTO; it returns to keybocard mode after any error, STOP, or when all
Statements have been executed, or when ESCA?E key-is hit.

The following examples illustrate on the line calculations in keyboard
mode. Note that ";" is equivalent to PRINT. The user must terminate
each entry line with a carriage return and POWER BASIC will print the
result. In the examples below all POWER BASIC responses are
underlined for elarity.

PRINT 12%12; 144 -
11/3;3A3; 0.3333333 27
JURATNT; 37701593 0
;SIN(ATN15;SQR2; 0.7071068 1.41421Y
yEXP1;COS(4*ATN1); 2.71828 =1
13%34/2343-4+2 (3+57; 252.008%
I=7:: K=2:: PRINT I+K; 3

A FOR/NEXT loop can be eXecuted in keyboard mode only if entered en
one line; however, the loop cannot be ESCaped from.

The following types can only be eXecuted in keyboard mode. They can
only be entered one command per line and cannot be entered in a
program:

CONTINUE PURGE

LIST RUN
LOAD SAVE
NEW SIZE
NUMBER SOURCE
: STACK

ERRORS AND ERROR LISTING

The first run of new program may be free of errors and give the
correct answers. But it is much more common that errdrs will be
present and will have to be corrected. Errors are of two types:

errors of form (syntax, arithmetic, structure, or grammatical errors)
which prevent the running of the program, and logical errors in the
program which cause the computer to produce either the wong answers
or no answers. .

Errors of form cause the error code and statement number in which the
error occurred to be printed and program execution stops. Logical
errors are often much harder to uncover, particularly when the program
gilves answers which seem to be nearly correct. In either case, after
the errors are discovered, they can be corrected by changing lines, by
inserting new lines, or by deleting lines from the program. A line is
changed by typing it correctly with the- same line number; a line is
inserted by typing it with a line number between those of two existing
lines; and a line is deleted by typing its line number and pressing
the carriage return key. A line can be inserted ,only if the original
line numbers are not consecutive numbers. For this reason, most
programmers will start out usirg line numbers that are multiples of
five or ten to leave space for the inevitable changes and corrections. '

Corrections can be made at any time before or after a2 run. Since the
computer sorts lines (and arranges them in order), a line may be
retyped out of sequence. Simply retype the offending line with its
original line number. If after examining a program the errors are not
obviocus and there are no grammatical errors, carefully select and
insert temporary PRINT statements to see if the meachine is computing
what you wanted.

POWER BASIC displays error messages to indicate any errors which
occur during program entry or execution.. POWER BASIC reports all
errors using basically three formats.

The first farmat displays the error message and the statement number
where the error occurred according to the following format:

BRILOCOO(##% AT YYYY
where:
XXX is the error message
YIYY is the statement number
Examples:
*2¥Sjyntax Error #** at 100
#*2Read out of data *%¥* at 180

- This error format is displayed whenever errors are encountered during
program execution, and program execution will be terminated at the
offending statement. The error format displays the statement line in -
which the error occurred. The offending statement line or other

' 3=20

- Segments of the program may then be edited to correct the reported
errcr.

The second format displays only the error message when an error
occeurs. - These type of errers are detected during keyboard mode
statement execution, during statement or command entry, or during
program LOADing from a device/file. They indicate that the most
recently entered statement or command, or the most recently LOADed
statement is in error. If the error is an error of syntax (i.e.,
something is wrong with the statement itself, typically a typing
errer, an omission, or an unrecognizable statement), the error is
first output, followed on the next line by a repeat of the preceeding
statement or command with the cursor positioned at the offending
character. If a syntax error is detected during program LOADing, the
errer is output and the offending statement is output on the next
line, but no cursor positioning is performed. LOADing then continues
with the next statement on the ‘device/file. If an error other than
syntax occurs during command or keyboard statement execution, only
the error is output. Any errors may then be corrected and the
statement or command executed again.

The third format displays errors reported by the -T}i996'0perating
System. These errors are reported to the user as hexadecimal codes in
the format of

FILE I/0 ERROR O0XXH
FILE I/0 ERROR OXXH AT YIYY

where

X is the error code
YYYY is the statement number

Examples:

File I/0 Error 027H
File I/0 Error 026H at 70

The following error codes and error messages may be issued by the
POWER BASIC package. Refer to Appendix A-3 for the error codes and
corresponding error messages reported by the TX990 Operating System.

CODE ERROR MESSAGE

SINTAX ERROR

UNMATCHED DELIMITER

INVALID LINE NUMBER

ILLEGAL VARIABLE NAME : .
TOO MANY VARIABLES

ILLEGAL CHARACTER

EXPECTING OPERATOR

ILLEGAL VARIABLE NAME

Q0 ~J O U IS W) ~2
06 80 80 g8 60 80

3-21

9
10
11

ILLEGAL FUNCTION ARGUMENT
STORAGE OVERFLOW
STACK OVERFLOW

12 = STACK UNDERFLOW
13 = NO SUCH LINE NUMEER

14 = EXPECTING STRING VARIABLE

15 = INVALID SCREEN COMMAND

16 = EXPECTING STRING VARIABLE

17 = SUBSCRIPT OUT OF RANGE

18 = TOO FEW SUBSCRIPTS

19 = TOO MANY SUBSCRIPTS

20 = EXPECTING SIMPLE VARTABLE

21 = DIGITS OUT OF RANGE

22 = EXPECTING VARIABLE

23.= READ OUT OF DATA

24 = READ TYPE DIFFERS FROM DATA TYPE
25 = SQUARE ROOT OF NEGATIVE NUMBER
26 = LOG OF NON-POSITIVE NUMBER

27 = EXPRESSION TOO COMPLEX

28 = DIVISION BY ZERO

29 = FLOATING POINT OVERFLOW

30 = FIX ERROR

31 = FOR WITHOUT NEXT

32 = NEXT WITHOUT FOR ~
33 = EXP FUNCTION HAS INVALID ARGUMENT
34 = UNNORMALIZED NUMBER

35 = PARAMETER ERROR

36 = MISSING ASSIGNMENT OPERATOR

37 = ILLEGAL DELIMITER

38 = UNDEFINED FUNCTION

39 = UNDIMENSIONED VARIAELE

40 = UNDEFINED VARTABLE

41 = INVALID END-OF-USER RAM ADDRESS
43 = INVALID BAUD RATE

The following error messages result from the POWER BASIC/TX990
‘Operating System Interface:

50 = END=QF-FILE OCCURRED
51 = TABLE AREA FULL

52 = INVALID LUNO

53 = INVALID PATENAME

54 = ZERO LENGTH RECORD
55 = INVALID FILE ACCESS
56 = POSITION ERROR

57 =

INCOMPATABLE FILE TYPE

Note: Refer to Appendix A-3 for the additional and corredponding
errcr messages reported by the TX990 -Operating System.

k.1

4.2

SECTION IV

T BASIC COMMANDS

GENERAL

POWER BASIC programs are created, executed, and debugged through
intersction with the POWER BASIC system. The system recognizes two
kinds of input: statements and commands. _POWER BASIC commands direct
and control system functioms which include initiating computer
operation, and storing and listing of programs. Commands cause
immediate computer interaction thereby allowing operator control.
Statements perform a sequentially assigned programmed task. Any

command may be entered once BASIC has been initialized. An error
message is generated when an improper-or illegal entry is attempted.

Commands are used during program development and debug. For this
reason, the Host POWER BASIC Interpreter will execute all of the
commands presented in this section. None of the POWER BASIC commands

. may be entered into any applicatien programs, and the Configurator

will not accept any of the commands of this section. Therefore the
Target POWER BASIC Interpreter and application may not contain any
POWER BASIC commands.

CONTINUE COMMAND
Form:
CONtimue

The CONTINUE command transfers control to the next statement of the
BASIC program after the occurrance of a break conditioen. (The ROUN
command always starts at the first line.) ‘

When the RUN command is entered, program execution begins at' the first
line and continues until a break condition occurs. The CONTINUE
command may be used to continue execution after a break.

The program will ‘stop (or-break) when the user-enters the ESCape key
during program execution, a STOP or END statement is encountered, or
an error occurs within the program.

4.3

b4

LIST COMMAND
Forms:
LIST ,
LIST <line number>
LIST <-line number>-
LIST «line number><~line numbers

The LIST command lists all or any portion of the current program.
Entering only the command forces the entire program to be listed. By
entering a line number or range of the line numbers, specific
portichs of the program can be listed. Neither-the starting or ending
line numbers need to be an existing line number. POWER BASIC will
begin listing at the first line number greater-than or equal to the
starting line number-and terminate listing at the last line number
less than or-equal to the ending line number. :
Example:

LIST

results in a listing of an entire pmérani, while

LIST 100
lists all the lines from ‘100. through end of program, inclusive.
LIST =35

lists all the lines fom the beginning of the program tbmﬁgh line 35,
inclusive. '

LIST 90-120 .

lists all the lines from 90 through 120, inclusive.

LOAD COMMAND

The LOAD command will read a POWER BASIC program into memory which has
been previously "SAVEd"™ onto the specified device/file.

4=2

Form:

LOAD J<{string constantd
|{string variable)

The string constant or String variable specifies the pathname of
the device/file from whiech the POWER BASIC program is to be read.
Typical pathnames used in the LOAD command would be DSC:PROG1/DEV,
DSC2:VALUE/CNT, CS1, of CS2. The actual pathnames of devices are
defined during TX990 Operating System generation. The user should
reference has particular system generation for the device names to be
used in the formation of pathnames. Refer-to Section 5, paragraph
5.15.1 of this manual for-valid device/file pathname constructs.

The LOAD command automatically opens the specified device/file,
followed by a rewind operation. It then loads the program and
performs a close operation on the device/file. ‘

As statements are read from the device/file, they are interpreted into
intemal pseudo-code and stored into the use r-program RAM area of
POWER BASIC. If any invalid statements are read during LOADing, the
corresponding error message, followed by the offending statement in
which the error occurred will be output on the terminal device.
Invalid statements typically have errors in fomm, such as syntax,
structure, orgrammatical errors. The offending statement is not
stored into the user-program RAM area of POWER BASIC, and the LOADing
procedure will continue with the next statement on the device/file.
Loading continues until the end-of-file is read on the the specified
device/file. Control then retums to the keyboard of the terminal
device.

When a POWER BASIC program is LOADed, only those statements with
statement numbers loaded from the device/file will be inserted into
the user program area. The statements already in memory having
different statement numbers will not be affected. Any statements in
memory which have the same numbers as the program on the deviece/file
will be overwitten by the loaded program.

Note that the user must insure that the file specified by the
LOAD statement does contain a POWER BASIC program whieh has
been properiy SAVEd in the file. If a file which does not
contain a POWER BASIC program is specified by the argument of
the LOAD statement (eg., a file to which BINARY data has been
written), unpredictable results may occur when this
device/file is accessed for the LOAD.

u's

.
'
'
:
{
1

Examples:

LOAD "DSC2:PROG1/SRC" ILOAD BASIC PROGRAM FROM DISKE'I"I'E FILE
LOAD "C3S1" !LOAD BASIC PROGRAM FROM CASSETTE #1
LOAD "DSC:CONTROL/PGi™ ILOAD BASIC PROGRAM FROM DISKETTE FILE

:
NEW COMMAND ‘

H
Foms:

NEW
NEW <address>

The NEW command without an address deletes the current user program =
and clears all variable space, pointers, and stacks. POWER BASIC
responds with "*READY"™ and awaits the entry of new BASIC programs. .

The programs may be retrieved later if they have been SAVED.

The form of the NEW command with an address parameter is used by the
Host POWER BASIC to limit the amount of RAM which can bBe used by the
POWER BASIC system for user program area. When POWER BASIC is
executed, it automatically sizes and clears the system RAM area
starting from the top of the POWER BASIC Interpreter and checking
sequential memory locations up through memory until a write/read
mismateh is detected. All of the detected RAM arez is then allocated
to POWER BASIC to be used for interpreter overhead and user program
area. Under some circumstances, it may not be acceptable for POWER
BASIC to use all available contiguous RAM. In some applications it
may be required to reserve a specific.block of RAM area for-use by the
application. For example, a small area of RAM is required for any
assembly language subroutines which are to be CALLed by the POWER
BASIC program. For this reason, the NEW command with the address -
parameter was introduced. The upper-bound of RAM memory is set to the
specified address, and all POWER BASIC pointers are initialized to
correspond to this new memory configuration. The Host POWER BASIC
Interpreter will not use RAM above this address. Therefore an area
of RAM can be reserved for-application use from the specified address
parameter-on up toward memory address FTFF14. POWER BASIC verifies
that the specified address is not less than the absolute minimum valid
address (that is, it will not permit .the user to "walk over" POWER
BASICY. This address denotes the end of the POWER BASIC Interpreter
and will vary between operating systems. If the specified address is
less than this value, an INVALID END-OF-USER RAM error-will result.
However, no address checking is performed to verify that the specified
address is a valid RAM address. Care must be taken when specifying
the address to make sure that RAM does acutally exist at that address
and is contiguous from low memory (0000;4) up to that address. Eratic
operation of POWER BASIC will result if an invalid RAM a;@idress is

b=4

4.6

4.7

specified. The user must also be sure that the software which uses
the free area does not overlap past the specified address into the

workspace area of POWER BASIC. In addition to setting the UPPER
memory bound, the NEW command also deletes the current user program,
and clears all variable space, pointers, and stacks.
Examples:

NEW

NEW OE800E
NUMBER COMMAND
Formmn:

NUMBER
NUMBER <start line number>
NUMBER <start line number><,increment>.

The NUMBER command enables the automatic line number prompt. This
prompt is terminated by a null line entry. The simplest form of the
command (the command word itself) assigns 100 as the starting line
number and prompts the line numbers in inerements of 10.

A different starting line number can be specified as a parameter of
the command. Thus, the command

NUMBER 1000
prompts the line numbers in increments of 10 starting at line 1000.
The command

NUMBER 25,5

prompts the line numbers in increments of 5 starting at line number

Entering a2 null line by entry of the carriage return key immediately
following the line number prompt will terminate automatic line number

prompting. ’

Automatic line numbering with fixed start and inerement values may

- also be initiated via the line-feed entry key as explained in Section

3y- paragraph 3.3.3.
PURGE COMMAND ~ .

The PURGE command allows the user to delete specified segments of the

4=5

4.8

4.9

current program.
Form:

<line number® PURGE <N1> TO <N2>
PURGE <N715 TO <N2>-

where N1 and N2 are the start and end line numbers, respectively.

-The PURGE statement is designed to delete blocks of consecutive

BASIC statements. PURGE will delete all statements from N1 to N2
inclusive. POWER BASIC will begin deleting statements at the first
statement greater than or equal to N1 and will continue to the last
statement less than or equal to N2. '

1

Examples:

LIST , :

10 REM SUBROUTINE TO PRINT I AND I*I
20 FOR I=1TO 10

30 PRINT I, I*I

40 NEXT I

50 STOP

PURGE 15 TO 45

#READY B

LIST .

10 REM SUBROUTINE TO PRINT I AND I#*I

50 STOP .
RUN COMMAND
Form:

RUN

The RUN command clears all variable space, pointers, and stacks and
directs the system to begin execution of the current BASIC program at
the lowest line number. The command

ROUN

Will “execute the user's POWER BASIC program currently in RAM.

SAVE COMMAND =~

The SAVE command will write the users POWER BASIC program currently in

i

Formn:

SAVE -<string constant> - -

<string variabled :
The string constant or string variable specifies the pathname of
the device/file to whieh the POWER BASIC program eurrently in memory
will ‘be written. Typical pathnames used in the SAVE command would be
DSC:PROCESS/CNT, DSC2:MOTOR/PRG, CS1, or CS2. The actual pathnames of
the devices are defined during TX990 Operating System generation. The
user should reference his particular system generation for the device
names to be used in the formation of pathnames. Refer to Seetion 5,
paragraph 5.15.1 for-valid device/file pathname constructs.

“The SAVE command automatically opens the specified deviece/file,

followed by the rewind operation. It then saves the program and
performs a close on the device/file.

If the program is SAVEd to a diskette file, the file must be created
by the BDEFS or BDERF statements before the SAVE command is executed.
Typically, BASIC progrems are SAVEd into sequential files, since these
files are only used by the SAVE and LOAD commands, and otherwise are
not accessed by the user. Attempts to SAVE a program to a diskette
file which does not exist will resul: in a TX990 undefined file error.

The program is output in source form, that is, in POWER BASIC
statement format; in contrast to the pseudo-code form in which it is
internally stored. Since SAVE performs in this manner, the user may
enter a SAVE "LP" command and the program will be "listed" to the line
printer-device.

Examples:

BDEFS "DSC2:PROC/SRC" IDEFINE FILE FOR SAVE (See Section 5.15.2)
SAVE "DSC2:PROC/SRC™ ISAVE POWER BASIC PROGRAM TO DISKETTE FILE

SAVE ®#CSiw ISAVE POWER BASIC PROGRAM TO CASSETTE #1
SAVE "LP® !SAVE (LIST) POWER BASIC PROGRAM TO LINE
PRINTER

" SOURCE COMMAND

Fom:
SQURCE
The SOURCE command prints the number of source bytes in the

currently loaded user's program. This indicates the number of bytes
that would be written by the SAVE command.

4.1

Example:

- SOURCE
SRCE = 243 BYTES

STACKX COMMAND
Fom:
STACK

The STACK command lists the user GOSUB stack beginning with the first
GOSUB retum statement number pushed on the stack. These numbers
indicate the retum statement number-for nested ,GOSUB's in the user's
program. This command is helpful in the debugging of an appliecation
program. ,

Example:
10 -GOSUB 100
20 A=SQR(I)
99 STOP
100 REM
110 - GOSUB 200
120 I=5
190 RETURN
200 REM
210 REM
280 sTOP
290 RETURN
RUN
STOP AT 280
STACK
#20
#120
¥READY

The STACK command will point back to a calling line that contains
multiple statements to indicate that execution will continue with the

- Statement immediately following the GOSUB. The following example

{1lustrates this.

Example:
10 -GOSUB 100
20 A=SQR(I)
99 STOP
100 REM

110 -GOSUB 200 :: J=5%5

20 I=5
190 RETURN
200 REM
210 REM
280 sTOP
290 RETURN
RUN
STOP AT 280
STACK
#20

-~ . #110
¥READY

4. 12 SIZE COMMAND
Formm:

SIZE

The SIZE command monitors mefﬂorjr usage by listing the current
program size, variable space allocated, and the free memory in bytes.

°

Example

SIZE

PRGM: 0 BYTES:
VARS: O BYTES
FREE: 18850 BYTES

o v a e

T

(7}

5.1

SECTION V
BASIC STATEMENTS

GENERAL

This section discusses the POWER BASIC program statements.
Statement formats are presented and their-uses are described.

During BASIC program execution, control may pass to any statement.

Some statements have no effect on the program when encountered and are
called nonexecutable; all ‘others are called executable.

Statements form the basis of all functional POWER BASIC programs.

-Each statement of a BASIC program may occupy only one line; however;

numerous statements may appear on each line when delimited by a pair
of eolons (::). -

BASIC statements are divided into the following categories:
e Remarks
¢ Dimension Declarations and Specifiers

Function Definition

®

Assignmeni'

¢ Control

Input/Output

Interrupt Processing

CRU Base Assignment

e Time of Day

¢ Randomize Number Seed
¢ Program Escape/Noesc
® External Sﬁbrvutine

¢ File Management

Table 5-1 briefly describes each statement.

TABLE 5=1

POWER BASIC STATEMENTS

STATEMENT

DIM

DEF

EQUATE

GOTO

8

ELSE

GOSUB
RETURN
POP

ON

FOR

| ERROR

| SToP

BIE

FUNCTION

USE

Comment Line

Size Specifier

Function Definition

Assignment

Assignment

Control

Control

Control

Control
Control

Control

Control

Control

- Control

Control
Control

Control

Contrel

" Conditionally executes statement(s)

Program documentation/explanation

Dimensions strings, vectors, and
matrices

Defines a statement function

Evaluates expressions and assigns
value :

Two symbols refer to the same
variable

Transfers unconditionalli

Conditionally executes stztement(s)
on TRUE condition

on FALSE condition
Tranafers to BASIC subroutine
Returns from BASIC subroutine

Removes top return address from
GOSUB stack

Computed GOTO or GOSUB

Defines top of loop and loop
parameters

Delineates loop scope.
Tranéfers on error condition
Stops program

Stops program

Terminates POWER BASIC and returms
to TX99Q Operating System

o}

TABLE 5-1 (cont)

BASIC PROGRAM STATEMENTS

STATEMENT - FUNCTION USES
READ Inte?nal Input Reads from intermal data block
. ¥

DATA Internal Imput Defines intermal data block

RESTOR Internal Input Resets intermal READ to first data

- : block element

INPUT I/0 Reads from terminal

PRINT 1/0 Prints on output device

TAB I/0 Formats output into columns

DIGITS I1/0 - Specifies number of significant
digits output

SPOOL I1/0 Assigns unit number to specified
file/device

UNIT I/0 Designates print output device

BAUD I/0 Designates baud rzte of I/0 device

IMASK Interrupt Processing Sets interrupt mask

TRAP Interrupt Processing Assigns interrupt level to interrupt]
subroutine

IRIN Interrupt Processing Returns from interrupt subroutine

BASE CRU base assignment Sets the CRU base address

TIME - Time of day Sets, displays, or stores the 24-
hour .time of -day clock

RANDOM Set Random seed Sets the seed of the pseudo rando
number generator ’

ESCAPE/ ~ Program escape/ Enables or disables the escape key

NOESC no esgape to imterrupt program execution

!
CALL External Subroutine Transfers to external subroutine

5.2

TABLE 5-1 (cont)

BASIC PROGRAM STATEMENTS

STATEMENT

FUNCTION

USES

BDEL
BCLOSE

RESET
copy

BDEFR
BDEFS
BOPEN

BINARY 1

BINARY 2

BINARY 3

BINARY 4

File Management
File Management

File Management
File Management

File Management.

File Management
File Management

File Management

File Management

File Management

File Management

‘Opens specified file for sequential

Deletes specified file

Closes specified file
Closes all open files
Copies one file to another

Defines a relative record disc file

Defines a sequential disec file

or relative record access’ depending
on file type :

Sets BINARY luno and specifies the
number of bytes to be read or
written for any subsequent BINARY
commands.

Writes an assigned number of bytes
from each expression to the BINARY
luno.

Enables the user to read an assigned
number of bytes into each variable
from the BINARY luno.

Allows access to a2 given byte posi-
tion within a relative record dise
file.

COMMENT OR REMARK (REM) STATEMENT

Form:

line numbes] REM text

5.3

The REM statement is used to imsert remarks (comments) in a program.
REM may contain any textual information. It has no effect when
encountered in execution; however, its line number may be used as the
argument of a GOTO or GOSUB statement. Tail remarks may also be
inserted inteo a program by separating the remark field from the
statement field by an exclamation point (!). For additional
information on tail remarks, refer to Section 3.4.3.

Examples:

10 REM THIS IS A COMMENT

.~ - 100 REM CHECX FOR X=0

¢t

Target POWER BASIC Interpreter: Note that no REM statements or-tail
remarks are Configured into the final Target POWER BASIC Interpreter
to conserve user program storage area required in the final
applieation.

: !
DIMENSION STATEMENT

Dimension declarations are used to specify the size attributes for
subscripted variables within the program.

Form: :
* [line number] DI <var(din[,din]...)> ...] '

The DIM statement dynamically allocates user varizble space for array
variables. Dimensioned (array) variables must be declared by the DIM
statement before the variables are used. Once dimensioned; attempts
to redimension an array variable to a larger array size will result in
an error message and attempts to redimension to a smaller size will be
disregarded.

Array sizes are specified by indicating the maximum subscript values
in parentheses following the array name. Subscripts of dimensioned
variables may be any numeric quantity ineluding constants, simple
variables, other dimensioned variables, or even function calls. If a
floating point value is returned for the subscript value, only the
integer partion will be used in the dimension statemement. The number
of dimensions and the dimension size for the array declaration is
limited only by the user's available memory. An error will ocecur if
the dimensioned variable requires more variable space than is
currently available in the user's partition. Dimensioned variables
always use the 0 subseript as the first element in the array.

50”

* executed only when the function is referenced.

Examples: .

10 DIM 4(10),B(10,20) -
100 DIM 41(10),B1(20,30),B15(10,10,10)
DIM CAT(C,D),DOG(SQR(N),3,F)

The first statement allows for the entry of an array of 11 elements
(0-10) into A, and of an array of 11 x 21 elements into the two
dimensional array, B. The two remaining statements dimension arrays
in a similar-manner;

String variables must be dimensioned as numeric variables, e.g., $4
must be dimensioned as A(10) not $A(10). Thereafter, the dimensioned
numeric variable may be referenced as a string variable by preceding
the variable with a dollar sign ($). The string array A dimensioned
above should be referenced as $A(0) through $A(10). :

Examples:
20 DIM CAT(10),DOG(8)

This statement defines CAT to be a one dimensional array with 11
elements and defines DOG as a one dimensional array of 9 elements.
Hereafter, these arrays may be considered as string arrays by
referencing the variables via $CAT(0) through $CAT(10) and $DOG(Q)
through $DOG(8).

Strings are stored one character per byte with a null character used
to terminate the string. Hence, simple string variables and single
array elements which are 6 bytes in length can contain up to five
characters. Dimensioned string variables can contain up to the number
of elements times 6 minus 1 characters in Configurable BASIC,

therefore, the dimensioned string variable $CAT can contain up to 65
characters. .

FUNCTION DEFINITION

The DEF statement defines a user function. The defined functions zre

Forms:

[ine number| DEF FN <letter>s <exp ression>

Qline number] DEF FN <letters (parm! yparm2 ,parm3j) = <expression>
where: |

parameters are single alphabetic letter dummy variables
expression is any valid POWER BASIC expression.

5-6

5.5

'5.5.1

The DEF statement may appear anywhere within 2 BASIC program and the
defined functions may be used in any expression. That is, once

defined, the functions may be used in the same way as the built-in
mathematical functions explained in Section 7. When the funection is
referenced, the expression is evaluated and the parameters, if any,
are replaced by the arguments givern in the reference. Within the
expression the parameters may appear only as numeric variables. The
user may define functions using up to three dummy parameters. All
(dummy) parameters may only be single character variables in the
function definition. However, when calling the function the user may
use any valid POWER BASIC variable (either-simple or-dimensioned) to
replace the dummy variables of the called funetion.

.The expression may include any combination of intrinsic functiens,

other-user-defined functions, or may involve any other-variables in
addition to the ones used in the argument of the calling function.
Parameter-names are dummy (local) variables of the defined function,
and have no meaning outside of the funetion definition. :

The use of the DEF statement is limited to those functions whose
expression may be evaluated within a single BASIC statement.

The name of the defined function must be three letteré, the first two
of which must be FN followed by a single letter; e.g., functioms FNA
through FNZ may be defined by the user. The same letter which defined

the function may also be used as a parameter of the function a2s shown
below. .

The following examples illustrate the various forms of Zhe DEF
statement. Note that this is not an executable POWER BASIC program.

20 DEF FNA(X,Y)=X/Y+5

30 DEF FNB = A/B + C=15

%0 DEF FNC(I,J) = I*K/J + FNB - FNA(Z,J)
50 DEF FND(N) = N*N/2

60 DEF FNI(I,J) = I*J/SQR(I)

VARIABLE ASSIGNMENT

LET STATEMENT

The LET statement assigns a value to a variable where the- variable is
set equal to an expression consisting of variables and/or constants
Sseparated by operators. The variable teing evaluated may appear
within the expression. The newly calculated value of the variable
replaces the old value.

In POWER BASIC the letters LET may be omitted from the statement so
only an equation appears. The LET statement may have either of the
following forms: .

line number] LET <varizble> = <expression>
ne number] <variable> = <expression>

where

variable is a string variable, numeric scalar variable, or array
element.

The assignment statement assigns an expression value to a variable.
The variable and the expression must both be either string or numeric.
The following examples illustrate the assignment statement. Note that
this is not a meaningful POWER BASIC program.

=5

B=10

LET C=A+B
10 LET Xa1
20 LET $A(2)=$C+"NOW"
30 LET Q2(L)=Q2(L+1)+3
) LET E=6
50 D=5
60 F=4/B+3
100 LET Z(I,J) = 3%*X-4#*y
120 $AB="STOP"

.5.5.2 EQUATE STATEMENT

The EQUATE statement enables a simple variable to be equated to
another simple variable o to an element within an array.

Form:
@.ine numberj EQUATE<simple variable>,<variable>;<simple vai'iable>,<variable>. .o

The EQUATE statement may appear anywhere within the program. The
Simple numeric variable is equated in the symbol table to the
associated numeric variable and thereafter either may be used when
referencing that variable. This is a valuable technique for-passing
parameters through variables to a2 common subroutine. The subroutine
may access its parameters from specifid simple variables (e.g., A, B,
and C), and the calling routine may assign these simple variables via
an EQUATE prior-to execution of the GOSUB statement. The user may
equate any other simple variable or array element to these simple
variables.

5.6

.

1
1
.
!
i

~

- Simple variables may also be equated to specifie bytes within a

dimensiocned variable, (e.g., EQUATE TAG, FLAG [0;3]). These bytes may
then be accessed by specific pames and functions as byte flags within
the application program. : ;

fl
i
i

In applications where memory usage is eritieal, the user";should note
that simple variables (e.g., A,$B) require less storage allocation
when referenced in a program than dimensioned variabiles (e.g.,
A(1),$8(1)). Therefore, in applications where dimensioned variables
are frequently referenced, memory area may be conserved by using the
EQUATE statement to assign dimensioned variables to simple variables.

v‘:.l:he following examples illustrate the use of the EQUATE statement. A

carriage retumn is represented by (CR), and all user responses are
underlined.

Examples:

10 DIM A(10)

20 EQUATE NAM,A(O);PHN,A(5);SSN,A(7)
30 INPUT $A(0),$A(5),$A(T)

4o PRINT $NAM, $PHN, $SSN

50 STOP

RUN -

¢ JOBN DOE (er) : 1492-1356 (cr) : 486-57-4392 (er)
JOEN DOE 492-1356 486-57-0392 —
STOP AT 40

Additional examples:

10 EQUATE I1,I(1);T23, T(2,3); F2, FLG(0;2)
20 EQUATE I1,PI;JJ,P2
30 - GOSUB 1000

1000 I7 = I1#ATN(1)
1090 RETURN.

Target POWER BASIC Interpreter: The EQUATE statement is not supported
by the POWER BASIC Configurator, therefore the EQUATE statement
should not be present in a final application program which is to be
configured into a customized (Target) POWER BASIC Interpreter.

CONTROL AND COMPUTED TRANSFER STATEMENTS

BASIC statements are executed sequentially unless altered by control

statements. Control may be accomplished by an unconditional branch,
subroutine branch, computed branch, or loop.

5.6.1 UNCONDITIONAL GOTO STATEMENT

When the computer: encounters a GOTO statement, it jumps to the program
line number specified in the statement. The program executes the
statement at the speceified line number-and continues in sequence with
the statements that follow.

Form:
fize numbesd GOTO <line numbers

The "GOTO" statement must be entered without any embedded blanks. If
the GOTO statement is not preceded by a line number; program execution
begins at the line number specified immediately after the GOTO
statement.

Examples:

GOTO 200 Begins execution at statement 200
100 GOTO 140 Transfers control to statement 140

The following program illustrates the GOTO statement:

20 INPUT A
30 -GOTO 50-
40 sTOP

50 PRINT A.
60 GOTO 40

The program execution sequence is line numbers 20, 30, 50, 60 and 40
where execution stops.

5.6.2 CONDITIONAL IF-THEN-ELSE STATEMENT .

The IF-THEN-ELSE statements provide capabiiity for conditional
execution of program statements.

5.6.2.1 IF-THEN STATEMENT

The IF statement alters sequential execution of the program depending
on the state of the specified condition.

Foms: .
@ number] IF <expression> THEN BASIC<sStatement(s)>
ne number] IF <expression> relation <expression> THEN <BASIC statement(s)>
line numbert IF <string><relation><strings THEN<BASIC statement(s)>
line number| IF <string> THEN<BASIC statement(s)>
2 numbern IF <string>celation><atrins><,exp ression>THEN<BASIC statement(s)>

The condition may be any variable, numeric expression, relational
expression, logical expression, string variable, string relational
expression, or function which can evaluate to a zero or-non=zero

value.

Two expressions or strings are compared according to the given

relation and a true or false condition results. If the second string
is followed by a comma, the expression following the comma indiecates
the number of characters to be compared. If only a single expression
or string is given, the condition is considered false if the expres-
sion is zero or the string is null; otherwise, it is considered true.

If the condition is true, the statement(s) following the THEN clause
on the same line will be executed. If the condition is false, the
statement on the line following the IF-THEN statement will be the next
statement executed. Any POWER BASIC statement or statements (including
--GOTO's and other IF-THEN statements) may immediately follow the THEN

clause. -

They cannot extend to the next statement line because

statement execution continues at the next statement line when a false
condition occurs. The IF and THEN clauses must appear on the same
statement line. :

Examples:

20
30
40
50
60
70
80

IF A=0 THEN GOTO 100

IF SQR(J) =4 THEN K=J*J/I::PRINT J,K

IF I+2 THEN PRINT I

IF $A=$B THEN PRINT $4

IF $A THEN $B=$A

IF CRU(11) THEN CRU(12)= 1::GOTO 200

IF $A=$B,3 THEN GOTO 200 (compares first three characters
of $A and $B)

5.6.2.2 ELSE STATEMENT

The ELSE statement enables conditiomal execution of POWER BASIC
statements depending upon the true or false condition of the last
executed IF statement.

Form:

[Line number] ELSE <POWER BASIC statement>

J)
"IF-THEN statements set the ELSE flag to indicate the true or false
,condition of the last executed IF-THEN statement. Subsequent ELSE

statements use the ELSE flag to determine whether the statement(s)
following the ELSE are to be executed. When the IF condition is true,
‘the THEN clause will be executed and all subsequent ELSE statements
will not be executed. When the IF condition is false, the THEN clause
will not be executed and all subsequent ELSE statements will be

9-6-3

executed. The ELSE statement must not be placed on the same statement
line as the preceding IF-THEN statement because when the IF condition
is false, no further statements on the IF-THEN line will be executed,

and execution will continue with the next statement line. The ELSE
flag remains set to the true or false condition until the next IF-THEN
statement is executed at which time the flag is cleared and set to the
new true or false condition. Several ELSE statements may appear
between each IF-THEN statement, and each of these will be executed
when they are encountered if the last executed IF-THEN statement
resulted in a false condition. If a true condition resulted, each of
these statements will be skipped. An ELSE statement always uses the
last IF statement executed as its reference regardless of where it
physically lies within the POWER BASIC Program. This enables blocks of
statements to be conditionally executed or skipped.

Example:
The following program computes the function and prints the result:

Statement of function:

for X1, f£=ABS(X),
for 1€ =X< 2, r=S&R(X),
‘for2¢ =X, f=ABS(XF-SQR(X)

Program solution:

10 IF X{1 THEN F=ABS(X)

20 ELSE IF X<2 THEN F=SQR(X)
30 .ELSE F=ABS(X)y-SQR(X)

40 PRINT X,F

SUBROUTINE (GOSUB, POP, AND RETURN) STATEMENTS

BASIC programs may contain intemal BASIC subroutines. An internal
subroutine is a sequence of BASIC statements performing a well-
defined function oroperation within the POWER BASIC program. Three
types of statements govern access to a subroutine: a GOSUB statement
for-entry into the subroutine, a POP statement for exiting nested
subroutines, and a RETURN statement for returm to the calling program.

Forms:

Qine number] GOSUB (line aumbe r)
e number] POP
(ime number] RETURN

An intermal POWER BASIC subroutine may be invoked from any point
within the program by using a GOSUB statement which specifies the
entry point of the subroutine as 2 line number:. Execution of the
GOSUB statment pushes the address of the statement immediately
following the GOSUB statement onto the GOSUB stack for retura and
passes execution to the specified line number.

A RETURN statement placed in the subroutine is an exit point from the
internal POWER BASIC subroutine. A RETURN statement should be placed
at each logieal end of all ‘subroutines. The RETURN statement causes
execution to resume at the first statement following the GOSUB
statement that transferred to the subroutine. During this transfer,
the top retumm address is removed from the GOSUB stack. All
.Subroutines should be exited only via a RETURN statement so the top
-retum address will always be removed from the GOSUB stack.
Unprediectable results oceur-if a sub routine is exited in any other
fashion. .

In Figure 5-1 GOSUB 90 involves statements on line numbers 90 (start
of subroutine), 100, and 110 (end of subroutine). If a GOSUB
statement is used, the subroutine it branches to must contain at
least one RETURN statement. The example illustrates the simplest use
of GOSUB and RETURN. The arrows indicate the flow of control in the

program.
10 X=2
l 20 GOSUB 90

30 X = X+2 _
4
‘ 90 2 = 2¥%=1 'S
100 X = X/Z
110 RETURN 1
FIGURE 5-1
GOSUB Example

5=13

Subroutimes may be nested by a subroutine containing a call to
another subroutine; the inner subroutine is called a nested
subroutine. Subroutines may be nested up to 20 levels in Configurable
POWER BASIC.

A retum address (first line number-after-the GOSUR) must be stored
for-each GOSUB statement until that statement is executed. The
program in the following example contains nested subroutines and shows
the actual execution sequence. Each GOSUB to a subroutine must be
accompanied by at least one RETURN statement per exit path. The
nested program and execution sequence of the example demonstrate entry
to and exit from a2 subroutine.

LIST: ,
10 PRINT "ROOTS OF QUADRATIC EQUATIONS"
20 PRINT |

30 REM - ENTER COEFFICIENTS A,B,C OF A*Y*X +B#*X+C
40 INPUT "COEFFICIENTS Az ";A;" B= ";B;" C= ";C
50 GOSUB 100

60 REM - RESTART OR END PROGRAM?

70 ~ INPUT "MORE DATA (1=YES, 0=NO)?-"%1;N

80 IF N¢{D THEN GOTO 20

90 STOP :

100 REM - CALCULATE S=B*B-l#p%C

110 S=BA2-4%A%C

120 REM - COMPLEX ROOTS?

130 IF S<0 THEN GOSUB 200 . !{COMPLEX ROOTS

140 ELSE GOSUB 300 !REAL ROOTS
150 PRINT !0UTPUT BLANK LINE
160 RETURN -

200 REM - CALCULATE COMPLEX ROOTS
210 Q=SQR ABS (S)

220 R1=-B/(2%A) !REAL PART

230 R2=Q/(2%4) ‘TIMAGINARY PART

240 PRINT "ROOTS (COMPLEX}: ";R1;" + OR -";R2;" I
250 RETURN .

300 REM - CALCULATE REAL ROOTS
310 IF S=0 THEN Q=0
320 ELSE Q=SQR (S)

330 R1=(=B=Q)/(2%A) IROOT 1

340 R2=(-B+Q)/(2%4) IROOT 2 .
350 PRINT "ROOTS (REAL): "™;R1;", ";R2"°
360 RETURN ’ ‘

would produce .the following results:

RUN
ROOTS OF QUADRATIC EQUATIONS

COEEFICIENTS A= 2 Bz 1 2 ‘e
ROOTS (REAL): =1, ‘0.5

MORE DATA (1=YES, 0=N0)? 1

COEFFICIENTS A= 1 B= 4 C= 6
ROOTS (COMPLEX): =2 4 OR "= 1.414214 T

MORE DATA (1=YES, 0=NO)? 0
STOP AT 90

The following example shows the'execution Sequence of the ab
example. Note that all returns are performed via RETURN statements

Execution Sequence:

10 PRINT "ROOTS OF QUADRATIC EQUATTONSM

20 PRINT |
30 REM - ENTER COEFFICIENTS 4,8,¢ oF ARY*X 4BEX.C
40 INPUT "COEFFICIENTS A= ";4:" Be ";B;" C= m;C
50 - GOSUB 100

100 REM - CALCULATE S= B#B-4#p%¢

110 S= BA2-L4#p%¢

120 REM - COMPLEY ROOTS?

130 IF S<0 THEN GOSUB 200 !COMPLEX ROOTS
140 ELSE GOSUB 300 !REAL ROOTS

300 REM - CALCULATE REAL ROOTS
310 IF S=0 THEN Q=0
320 ELSE Q=SQR(S)

330 Ri= («B=Q)/(2%4) - IROOT 1

340 R2s (=B+Q) /(2%4) IROOT 2

350 PRINT "ROOTS (REAL): "R, wex -

360 RETURN «

150 PRINT . IOUTPUT BLANK LINE
160 RETURN

60 REM - RESTART OR END PROGRAM? ‘

70 INPUT "MORE DATA (1-YES, 0=N0)7? ne1:N

80 IF N<>0 THEN GOTO 20 :

26 PRINT

30 REM - ENTER COEFFICIENTS A,B,C OF A®X*Y +B*X.cC
Lo INPUT "COEFFICIENTS A= ";A;" B= ";B;m (= ";C
50 -GosuB 100

100 REM = CALCULATE S= B¥B - U4%p%C

110 - S=BA2-U¥A%C

120 REM - COMPLEX ROOTS?

130 IF S<0 THEN GOSUB 200 !COMPLEX RCOTS

200 REM - CALCULATE COMPLEX ROOTS
210 Q= SQR ABS (S)

220 R1 = =B/(2%4) - !REAL PART

230 R2= Q/(2%a) {IMAGINARY PART

240 PRINT "ROOTS (COMPLEX): ";R1;% + OR -";R2;" I"
150 PRINT {QUTPUT BLANK LINE

160 RETURN

60 REM - RESTART OR END PROGRAM?

70 INPUT "MORE DATA (1=YES, 0=NO)? "%1;N
80 IF N<>0 THEN GOTO 20

90 STOP

A RETURN statement must not be encountered unless a GOSUB s..atement'
has been executed.

"Rememberins" all the return points by saving them on the GOSUB stack
and never removing them can exhaust the available GOSUB stack area.
The. following program, which calculates N! illustirates this problem.
Its use requ:.res. that N return points be remembered.

i0 INPUT "N= ";N
20 GOsuB 100
30 PRINT N,N1

40 stop

100 N3=N -
110 N2=0

120 Ni=1

130 GOTO 160

140 N3=N3-1

150 GOSUB 160
160 IF N3>1 THEN GOTO 140

170 N2=N2+1
180 Ni=N1#N2
190 RETURN

The POP statement removes the top most previous return address from
the GOSUB stack. It does not perform a return transfer to the calling
routines. Execution continues at the statement following the POP
statement in the intermal subroutine. The POP statement is useful for
exiting nested subroutines as the foliowing example demonstrates.

5=16

10 REM = MAIN PROGRAM
20 GOSUB 100 ! CALL GET DATA

30&....

o
L
[
L]

100 REM = | SUBROUTINE GET DATA
110 GOSUB 200 ! CALL GET NUMBER
120 © 0 0o0e0

°

m« 190 GOTO 100 ! GET NEXT DATA SEQUENCE

S 200 REM - SUBROUTINE GET NUMBER
; 210 © e o660

'; 250 REM - NUMBER- FOUND?
o 260 IF NUM THEN RETURN ! IF NUMBER - RETURN
o 270 REM - NO MORE NUMBERS

280 POP ! REMOVE MOST RECENT RETURN ADDRESS
290 RETURN :

In this example, the main program calls subroutine 100 which i
calls subroutine 200 until there is no more data. Subrouti:
exits with a RETURN when data is found and a POP then RETUR
there is no more data. Program execution then continues at line

5.6.4 oN STATEMENT
Forms:
<wariable>

GOTO
[Line number?] ON)THEN {line numberd,{line number
{exp ression GOSUB -

5=17

The ON statements select the target transfer line number of a GOTO or
a2 GOSUB from a list of statement numbers. The statement number list

contains a statement number-for-each expected value of the expression
or variable. The selection is based on the value of the expression or
variable truncated to an integer. If the expression value is 1, the
first line number in the list is selected. If the value is 2, the
second will be executed, and so forth. The GOTO or GOSUB statement
will be executed tramsferring control to that line. If the expresson’
value is less than one or greater than the number-of statement numbers
in the list, the transfer is not made and execution simply continues
with the next statement.

Examplgs :
10 ON J+1 THEN GOTO 15, 20, 35, 46, 70

When J is equal to 3, J+1 is equal to 4 and control is transferred to
. the fourth statement number (46). Similarly, J values of 0, 1, 2, and

4 result in jumps to statement numbers 15, 20, 35, and 70,

respectively. ‘

110 ON X+3 THEN GOSUB 20, 40, 80, 300
120 ON (A+5)/Z THEN GOTO 10, 30

When X is equal to =1, the second statement number (40) is executed
next. When X is.less than -2 or greater than +1, a transfer is not
made and line 120 will be the next statement executed. When (A+5)/Z
is equal to 2, the second statement number (30) is executed next and
so forth. If the expression evaluates to a non-integer-value, only
the integer-part is used to determine the appropriate branch point.

' 5.6.5 FOR/NEXT LOOPS

FOR and NEXT statements indicate the start and end of an instruection
block that is to be repeatedly executed as a set. One varizble takes
on different values within a specified range; this variable is often
used in the computation or evaluation contained in the instruction
bloeck. The FOR statement names the variable and stepping values of
that variable and also specifies its initial and final values. The
NEXT statement closes the program loop.

The FOR statement may have either of the foflowing forms:

[line numbe r} FOR <variabled>= <expressionyTO<expressiond
Q.ine numbe:j FOR - <variable>=<expression>TO<expressionySTEP<expression>

where

variable is a simple numeric scalar variable

expression is a valid POWER BASIC aumeric expression

The NEXT statement has the form:

El.ine number] NEXT °<variabie>

whe re

variable is a simple numeric variable

. The simple variable of the NEXT statement must be the same as the FOR
statement variable at the beginning of the loop.

Specification of the STEP value is optiomal and usually omitted. If
omitted, a value of +1 is used. The step value may be any constant,
variable, or-expression which evaluates to a positive or negative
value. Negative Step intervals can be used to decrease the value of
the FOR variable from one pass through the loop to the next. By using
a step value of -1, the FOR variable can be made to decrease by
integer values during successive loop interactions. '

The following example illustrates the FOR and NEXT statements.
Note that this is not 2z meaningful POWER BASIC program.

100
200
300
400
500
600
700
800

FOR X=0 TO 3 STEP D

NEXT X

FOR X4=(17+C0S(Z))/3 TO 3*SQR(10) STEP 1/4
NEXT X4

FOR X=8 TO 3 STEP -1

FOR J==3 TO 12 STEP 2

NEXT J

NEXT X

Note that the step size may be a variable (D), an expression (1/74), a
negative number-(-1), or'a positive number (2). In the example with
lines 300 and 400, successive values of XU will be .25 apart in
increasing order. In the next example, the successive values of X
will be 8, 7, 6, 5, 4, and 3. 1In the last example, on successive
iterations through the loop, J will take on values -3, =1, 1, 3, 5, 7,

9, and 11.
.

If expressions are used to Specify the initial, final or step-size
"~ values, they will be evaluated only once when the FOR loop is entered.
Changing any of the values of the FOR locp (either-the step, initial

or final values) within the FOR loop does not affect the number of
times the sequence is executed except for the control variable. The
control variable is assigned to the initizl values when the FOR
statement is entered and is incremented (if the STEP value is
positive), or-decremented (if the step value is negative) after: each
repetition of the loop sequence. The last repetition of the loop
Sequence.is when the control variable is equal to the fimal value.
When exiting the loop in this manner, the control variable is
incremented (or-decremented) one step value beyond the fimal value.

A pre-check is performed so that if the initial value is greater than
the final value in the case of positive STEP values , the loop sequence
wiil not be executed. Likewise, if the initial value is less than the
fimal value and the STEP value is negative, the 'loop sequence will not
be executed. .

The control variable may be changed within the body of the loop and.
the latest value of the variable will be used in the exit test;
however; this programming practice is not recommended.

The statement "S5Q0 FOR I=2 TO -1% without a negative step size results
in the body of the loop not being executed and execution proceeds to
the statement immediately following the corresponding NEXT statement.
The NEXT statement must be the first item in a line for this feature
to work properly.

The loop continues to be exeéuted as long as the coﬁdition:'
(step value)#*(control variable)<{(step value)*(end value)
remains true. If the conditionm:
(step value)®(start value)>(step value)*(end value)

is true when the FOR statement is first ncountered, the loop will not
be executed. '

When the loop is being executed, the control variable is first set to
the initial value and if the end criterion is not true, the loop is
executed. The control variable is then incremented by the step value
each time the NEXT statement is encountered and executed. The loop
terminates with the control variable equal to the last value used in
the loop plus the step value.

Example:
10 FOR I=1TO 4 STEP 2

®
L4

80 NEXT I

90 PRINT "I=n;I
RON

I= 5

The NEXT statement closes the FOR loop. When it is encountered the
step value is added to the control variable. If the control variable
has not gone beyond the end value, control will be retumed to the
finst statement following the FOR which opened the loop. The control
variable of the loop to be closed must be specified by the NEXT
- statement. It is possible to place the FOR and NEXT statements on the
Same statement line; however; remember-that statement lines are
.autonomous. Therefore, this type of loop structure cannot be
interrupted by using the escape key since keyboard sampling is
performed only between statement lines. ’ ' '

Also, FOR/NEXT statements on a single line or-in separate statement
lines will cause an error to result if, during the initial pre-check,
the initial value has exceeded the final value. Fo r-example,

20 FOR I=10 TO 1::NEXT I
will result in a FOR W/0 NEXT error- (ERR=31).

FOR loops may be nested; i.e., one FOR loop mzy contain znother which
may contain a third, etc. If nested, however, they should not use the
same control variable. When two loops are nested, one must be
completely contained within the other. Overlapping is not permitted.
The following structure is correct:

10 FOR I=1 TO 2
20 FOR J=1 TO 2
30 FOR K=1.TO 2

e

80 NEXT K
90 NEXT J
100 NEXT I

while the next two structures are incorrect:

10 FOR I=1 TO 2
20 FOR J=1 TO 2

°

80 NEXT I
90 - NEXT J (WRONG, loops may not overlap)

10 FOR I=1 TO 2

20 FOR I=1 TO 2

80 NEXT I
90 NEXT I (WRONG, nested loops may not have the same
control variable.)

The following program illustrates nesting:
LIST

10 REM AREA OF A TRIANGLE
20 FOR B=6 TO 9

30 FOR H=11 TO 13 STEP 0.5 IFIRST LEVEL OF NESTING
4o A=B%*H/2 ISECOND LEVEL OF NESTING
‘50 PRINT B,H,A !SECOND LEVEL OF NESTING
60 NEXT B IFIRST LEVEL OF NESTING
70 NEXT B

80 STOP

This program prints the base, height, and area of triangles with bases
67 7, 8 and 9, and heights 11, 11.5, 12, 12.5, and 13. All
combinations are printed: 20 sets of data for-the four bases and five
height values. . ‘

All values of the variable in the inner loop are cycled through while
the variable in the outer loop is set to its first value. The outer
loop variable is then set to its second value and the inner loop is
cycled through again. The program runs through each outer loop value
this way. :

Nesting of FOR/NEXT loops is permitted to a level of 10 in
Configurable BASIC.

It is legal to transfer-control from within a loop to a statement
ocutside the loop, but it is never advisable to transfer control into 2
loop from outside. The next two examples illustrate both of these
Situations. ' -
Valid transfer-out of a loop:

20 FOR I=1 TO N

30 X=X+2%T
4o IF X> 1000 THEN GOTO 100
50 NEXT I

Invalid transfer-into a loop:

20 GOTQ 50

30 FOR I=1TO N
40 X=X*24T
50 T=Y+x/2

5.6.6

60 NEXT I
. o (WRONG, 50 is inside a loop)

However; i?t is permissable to call a subroutine from within a loop and
then return from the subroutine back into the loop. The following
example illustrates repetitive calling of a subroutine from inside a
loop. -

Example:
10 FOR I=1 TO N
20 X=2%T-1
30 GOSUB 150
- 40 Z=Z+Y
50 NEXT I '

ie

150 IF X<>12 THEN GOTO 180
160 ¥=2u8

170 RETURN

180 Y¥=200+4%X

190 RETURN

ERROR STATEMENT

The ERROR statement specifies a subroutine that will be called
whenever any POWER BASIC error oceurs.

Form:

[1ine] number ERROR <line number>

The ERROR statement enables the user to trap to an internal error
processing subroutine on the occurrence of any error encountered
during program execution. When an ERROR statement has been executed
and an error occurs, intermal control passes to the specified line
number via a GOSUB statement. The statement number which contains the
error is placed on top of the GOSUB stack. If the error is
recoverable, a RETURN statement will resume execution at the statement
following the error when it has been corrected. If the errer is
unrecoverable and control will not be transferred back via a RETURN,
it is good programming practice to execute a POP statement to remove
the line number from the top of the stack. This practice avoids
unnecessary -eluttering of the stack, which may cause unpre-
dictable results. After the error trap, the system function

3=23

S¥S(1) will contain the error code number and SYS(2) will contain the
statement number in which the error occurred. The error codes and
corresponding error messages are presented in Appendix A-1. These are
necessary for-processing in the error handler subroutine.

Once an error is encountered and causes transfer-te the error handler
subroutine, the ERROR statement flag is cleared and future errors will
Bot be trapped unless an ERROR statement is again executed. When an
ERROR statement has been executed and an error oceurs, the automatic
printing of the error-code is suppressed.

The ERROR statement is particularly valuable when developing an
application program which is to be configured into a Target POWER
BASIC Interpreter-and application for execution in 2 TM990 board
system. The ERROR statement is almost required to process errors
generated during program execution, since the Target POWER BASIC
Interpreter consequently does not have inherent error reporting
capability, and all errors are consequently fatal errors, and program-
execution will stop when an error is encountered. The ERROR statement
may enable many of errors to be recoverable instead of fatal.

Example:

10 ERROR 1000 {SET ERROR ROUTINE
20 DIM E(2,2)

30 INPUT A,B,C
40 D=((A*B)+C)/B

50 E(4,B)=0

60 F=SQR(C)+LOG(A+C)

70 PRINT A;B;C;D;E(A,B);F

86 GOTO 30

1000 PRINT "ERROR =";SYS(1), "LINE= ";S¥s(2)
1010 IF S¥S(1)=28 THEN PRINT "DIVISION BY ZERO"::GOTO 1070
1020 IF SYS(1)=17 THEN PRINT "SUBSCRIPT OUT OF RANGE™: :GOTO 1070

1030 IF SYS(1)=25 THEN PRINT "SQUARE ROOT OF NEGATIVE NUMBEER::GOTO 1070
1040 IF SYS(1)=26 THEN PRINT "LOG OF NON-POSITIVE NUMBER"::GOTO 1070

1050 PRINT "FATAL ERROR"::POP

1060 STOP

1070 PRINT "INPUT VALUES AGAIN®

1080 ERROR 1000 IRESET ERROR ROUTINE FLAG
1090 POP -

1100 GOTO 30

Statement 10 designates the sub routine, starting at statement 1000, to
be the error handling subroutine. When any error oceurs, control is
transferred to statement 1000, and first the error number and line
number are displayed on the terminal device. Next the error number is
tested for various types of arithmetie errors. If the error number is

5=24

5.6.7

5.6.8

5.6.9

found, an appropriate error message is output, the ERROR flag is
reset,-and the values are asked to be input once again. If the. error
number cannot be found, the POWER BASIC program will stop.

STOP STATEMENT

The STOP statement terminates program execution at the logical end of
the program. There may be one or more STOP statements in a POWER
BASIC program. They may appear anywhere within the program.

Form: .
[line numbes] STOP

‘When the STOP statement is executed, the systexﬁ displays the line

where program execution terminated.
Example:
900 STOP

RON
STOP AT 900

END STATEMENT

The END statement marks the end of 2 program and terminates Program
exeecution.

Fom:
[(line number] END

The END. statement functions just as the STOP statement. It may appear
as any statement within the program. When executed, the systenm
displays tpe statement number where program execution terminated.

' Example:

70 END
RUN
STOP AT 70

BYE STATEMENT : S

The BYE statement, when executed, terminates POWER BASIC and retums
control to the TX990 opermting system. During this proecess all files
are closed, and all Logical Unit Numbers (LUNO's) are released.

\ 5"”25

- 5T,

5.7.1

Form:

(line number] BYE
Examples:

1000 PRINT "JOB DONE" 2
1005 BYE i

-y,

INTERNAL INPUT STATEMENTS

READ, DATA and RESTOR statements are used in the following forms:

| <numeric variable)) [<numeric variable)| -
(iime numbes] READ |(string variable) /', |{string variable)

exp ression {expressicnd
(ine number] DATA {(string variabled) , {(string variable) , ...
Kstring constant . {string constant)

? ¢ o s

(line number] RESTOR
(line number] RESTOR <line number)
(ine number] RESTOR #¢simple numeric variable

POWER BASIC permits definition of a list of data items containing both
strings and numbers within the program. Entries in this list are
definmed by DATA statements and accessed sequentially by READ
statements. The RESTOR statement is used to move to a2 specifiec point
within the list or to the beginning of the list. The RESTOR # variable
statement will rewind the specified device/file. o

DATA STATEMENT

The DATA statement contains a list of data items separated by commas.
Each item in the list is either a string constant or an expression
which evaluates to a numeric constant. String constants must be

enclosed in quotes.

. Example:

10 DATA 5, 3.14459, "DOE, JOHN™, 4*ATN(1)

A program may contain any number of DATA statements with izo§
restriction on their placement within the program; however, they a.re‘:,f‘;

5.7.2

typically placed together in a data block near the beginning or end of
the program. The data list will contain all of the data items from all

DATA statements in the same order they are written in the program.
DATA statements have no effect when encountered during execution.

READ STATEMENT

The READ statement assigns values from the intermal data list to
variables or array elements. The first READ statement executed
normally starts with the first item in the datz list. Reading of data
items continues sequentially unless 2 RESTOR statement is executed. An

.eoror (READ OUT OF DATA AT XXXX) is generated when a READ statement
requests the next value with the data block exhausted of data.

The READ statement specifies a list of variables or array elements
whose values are to be assigned from the data list as shown below:

The following examples illustrate use of the DATA and READ statements:

10 READ A,B,C,D

20 B=A*BC*D

30 PRINT A,B,C,D,H

40 READ E,F,G

50 H=E*F*G

60 PRINT E,F,G,H

70 DATA 2,3,5,7,11,13,17

80 STOP
RUN
2 3 5 7 210

11 13 7 2431

The data in this example is supplied in one DATA statement, but is
used at two different locations in the program in two READ statements.
When the program encounters the first READ statement, it searches for
the lowest-numbered DATA statement (which may occur before or after
the READ statement). The program takes numeric values from the DATA
statement in sequence associating them with READ statement variables
in sequence. In the example, A is assigned the value 2, B the value
3, C the value 5, and D the value 7. The program establishes access
to the next data value (11), so it may be assigned to the first
variable encountered in the next READ statement. Line 20 is computed,
and the newly-introduced variable H is assigned its computed wvalue.
The next READ statement at line 40 introduces three new variables. The
DATA statement continues to supply data from line 70 at the

'5-703

pre-established access point, so the new variables E, F, and G take on
the values 11, 13, and 17. A new value for H is computed in line 50.
The statement that follows prints the new values for E, F, G, and H.

The user must match numerie variables in the READ list to numeric
expressions in the data list. Similarly, the user must match string
variables in the READ list to string constants or string variables in

the data list. An error will result if this convention is not
followed. .

Example:

10 READ A,B, $CAT

20 LET C=A+B

30 PRINT 4,B,C,$CAT

40 DATA 2,3,"TEXT"

50 STOP

RUN |

2 3 5 TEXT

RESTOR STATEMENT

Thé RESTOR statemen: allows more than one READ statement to access
DATA statements. The RESTOR stzatement is used to move to a specific
point in the Internal DATA list or to the beginning of the list. A
"RESTOR #{variable»" statement is used to rewind the specified
file/device to its beginning. .

A RESTOR statement without an argument resets the pointer to the
beginning of the first DATA statement.A RESTOR with an argument resets
the pointer to the line number specified. The line number specified
must exist but need not be the line number of a DATA statement. The
next sequential DATA statement will be used.

Example:
70 RESTOR (restores to the beginning of the data list)

80 RESTOR 20 (restores to the first DATA statement at or beyond
line 20) _

The f‘ollo‘wing example program illlustrates the use of RESTOR:

10 DATA 14,16,18
20 READ I,J,K

30 PRINT I,J,K
40 RESTOR

50 READ X,Y,Z

60 PRINT X,¥,Z

7Q END

RUN

14 16 18
14 16 18

The RESTOR statement in this program resets the DATA pointer and
transfers control to the READ statement in line 50 whieh then obtains
data from line 10 (even though the READ statement in line 20 has used
the same data). If the RESTOR statement was omitted, POWER BASIC
would print an error message indiecating a lack of data for the
variables in the READ statement at 1ine 50.

If the following statement is added to the example program between
lines 40 and 50:

45 DATA 2,24,26

The statement at line 50 would still cause the values 14, 16, and 18
to be printed. The RESTOR statement at line 40 results in data being
obtained frow line 10 rather than from line 45

If a program has no DATA or READ statements, the use of the RESTOR
Statement does not affect» the program.

The "RESTOR #<variabled" statement will rewind the file assigned to
the specified variable. The variable contains the Logiczl Unit Number
(LUNO) assigned to a particular file. The variable is assigned the
LONO value when the file is opened by the BOPEN statement. The
associated file/device will be rewound to its beginning. The file
nust be opened before the rewind may be performed.

When the device specified is the 733ASR cassette unit, the RESTOR
statement rewinds the cassette tape to the clear arez at the beginning
of the tape and then moves the tape in the forward direction to the
begining of tape marker, illuminating the READY indicator on the
T33ASR. When the specified device is the line printer, the RESTOR
statement performs a form feed operation. Performing a RESTOR on 2
diskette file stimulates the rewinding of the diskette file, causing
the next read or write operation performed on the file to access the
first record in the file. After a sequential file has been opened and
record written to it, the file cannot be rewound until the file is
closed via the BCLOSE or RESET statement. When the file is a relative
record file, the relative record positien is set to zeroc. The RESTOR
operation is ignored by all other devices.

Example:
10 " REM

°

5=29

5.

8

8.1

40 BOPEN "CsS1", I ! OPEN CASSETTE AND ASSIGN LUNO
50 BOPEN "DSC:PROG/DEV",J ! OPEN DISKETTE FILE AND ASSIGN LUNO

°

110 " RESTOR #1 ! REWIND CASSETTE FILE

® o

170 RESTOR #J ! REWIND DISKEITE FILE

Target POWER BASIC Interpreter: The form "RESTOR #<{variable) " is not
supported by the POWER BASIC Configurator, therefore the "RESTOR #
gariablé):" statement should not be presented in a final application

which is to be configured into a customized (Target) POWER BASIC
Interpreter.

TERMINAL I/0 STATEMENTS

Terminal I/0 Statements consist of an INPUT statement to zllow
keyboard input from a terminal and a PRINT statement which prints
values of expressions in an output list on the output device.

INPUT STATEMENT

The INPUT statement is used for keyboard input from an interactive
terminal into variables of the BASIC program.

Form:
(ine number] INPUT <{variable) {}(variable) { }

The INPUT statement performs as a READ statement with the exception
that it accesses the numeric constants and strings from the external
keyboard instead of from internal DATA statements. It provides all
translation from character data to the intermal formats of the POWER
BASIC system and thus assigns input values to the variables or array
elements specified in the input 1list. All characters are echoed as
they are entered. The INPUT statement is extremely versatile and
provides a means to 1) input numbers only, 2) input character strings,

-3) detect control characters, 4) prompt with character strings, 5)
specify maximum number of input characters, 6) specify exact number of
input characters, T) suppress carriage return/line feed, and 8)
suppress prompting.

5-30

Input variables may be entered in a list separated by carriage
returns. Numeric data may be represented as decimal integers,

floating point, exponential, or hexadecimal values. There should be
no embedded spaces within numeric values and all spaces preceding or
following numeric data are ignored. For string data input, the string
consists of all characters after the prompting character-and up to but
not inecluding the end of the input (carriage retum). The string
includes all entered blanks and quotes.

The INPUT statement prompts the user with a question mark (?) for
numeric only inputs and a2 colon (:) for character inputs. If an
incorrect key is entered during input, and the teminating carriage
‘retum has not yet been entered, the RUBOUT or DEL CHAR key may be
'used to appropriately backspace the cursor-and delete the offending
character(s). The correct response may then be entered. If an
illegal numeric input is entered (with a carriage retum) in response
to the question mark prompt, the computer will respond with a double
question mark (??) and wait for correct imput. The computer will
continue to prompt until the user-has entered all data requested.

In the following examples, a car;'iage retum is represented by
(CR), and all user responses are underlined. :

Examples:

" 40 INPUT X -
50 INPUT $A, $B
60 INPUT $Y,Z
70 PRINT X, $A, $B, $Y,Z
80 sTOP

RUN

2256 (er)

tCAT (er) :DOG (er)

sEL (er) 2804 (cr) 2280 (cr)

258 CAT DOG HI 80

STOP AT 80

In the program statement 40 outputs a question mark waiting for
numeric input. The user entered the number "256" followed by a
carriage retum which terminated the INPUT statement of line 40. The
variable X is assigned the value of "256." Next it prompts with a
colon awaiting character string input. The user enters "CAT" followed
by a carriage return. The computer immediately prompts with a celon
awaiting the next string input. The user enters "DOG" and a carriage
retum which terminates this input line. The computer then prompts
with a colen and the user inputs "HI®™ and a carriage retum. Next, the
computer prompts with a question mark and the user incorrectly enters
"80A", an illegal numeric value. Therefo re, the computer responds

with a double question fnar'k and awaits correct input. The user enters
"80" followed by a carriage return which terminates the INPUT
statement. Statement 70 is then executed and cutputs the values read
into the variables..

An INPUT staﬁeinent caﬁ be combined with a PRINT statement to prompt
user response as follows:

i
20 PRINT "YOUR VALUES OF X, Y, AND Z ARE";
30 INPUT X, %, Z |
B0 sTop |

RON
I0UR VALUES OF X, Y, AND Z ARE? 50 (er) ?60 (o) 270 (er)

STOP AT 40

Since user prompting for data input is required in most applications,
the INPUT statement has been designed to permit string constants to be
embedded in the INPUT statement for direct prompting output. The
string constants must be enclosed by quotation marks. There may be any
number of string constants within the INPUT statement separated from
input variables and other string constants by commas or semicolons.

The above example may be perfomed as follows:

20 INPUT "YOUR VALUE OF X IS", X, " I", ¥, " 2", Z
30 STOP - .

RUN
I0UR VALUE OF X IS? 1 (er) Y7 2 (er) 22 3 (ep)

STOP AT 30
Similarly for string input:

10 DIM N(5)

20 INPUT "WHAT IS YOUR NAME™, $N(O)
30 PRINT "YOUR NAME IS ";$N(0)

40 GoTO 20

RUN

WHAT IS YOUR NAME: JOEN (cr)
YOUR NAME IS JOHN
WHAT IS YOUR NAME:

- A semicolon may be used to perform input formatting., If a semicolon
is placed at the end qf‘an INPUT statement line, the carriage

retum/line feed is supp ressed after processing the INPUT statement as
the example below illustra{?ces:

5=32

5.8.1.1

10 INPUT "INPUT Xv, X;

20 PRINT " X SQUARED="; X#X

30 INPUT "INPUT ¥*, Y

50 PRINT "Y CUBED="; ysysy
50 STOP

RUN
INPUT X212 (er) X SQUARED= 144

INPUT Y73 (cr)
Y CUBED: 27

STOP AT 50

In line 10 the semicolon is present at the end of the INPUT st:
therefore, the carriage retum/line feed is suppressed after e
the constant 12 so that "X SQUARED= 144n can be output on t

line. In 1line 30 a2 semicolon is not present so the ca
retum/line feed is performed.

When the Semicolon is placed before an assignment variable
INPUT list, the autcmatic prompting of a question mark or o
Suppressed. The user'may then perform his own Prompting in the
BASIC Program by using PRINT statements or Placing character ¢

Example:

5 DIM N(3) .
10 INPUT "WEAT IS YOUR EMPLOYEE NUMBER?", $N(O)

20 INPUT "WHAT IS YOUR EMPLOYEE NUMBER?"; $N(0)
30 SsTOP

RUN

WHAT IS YOUR EMPLOYEE NUMBER?: 1234 (er)
WHAT IS YOUR EMPLOYEE NUMBER? 12 (cr)

STOP AT 30

In line 10, the INPUT Statement prompted with a ecolon (:). In L
0o prompt was issued., -

SPECIFICATION ON NUMBER OF INPUT CHARACTERS

The user may limit the number-of characters which can be entered
the keybeard for both numeric and String variable assignments by
the # or'% operators in the INPUT statement. Use of the # ope
will Specify the maximum number of characters which can be en
from the keyboardT Use of the ¢ operator will specify the .

number of characters which niust be entered. The scope of both the
and % operators extend through the entire INPUT line.

Forms:
(iine number] INPUT # <{expression) O {variable C} cee
Gine number] INPUT % (expressiond C) {ariable C} coe

When using the # operator, the user may enter any number of characters
less than the specified maximum by ending the input sequence with a
carriage return. The user cannot enter more than the specified
maximum number. When the maximum number of characters have been
entered POWER BASIC stops accepting keyboard input, assigns the value
Just entered, and automatically continues to the next sequential

- statement or INPUT statement parameter. ' ' o

Use of the % operator requires that an exact number of characters be
entered. POWER BASIC waits for the exact number of specified
characters to be entered and then continues to the next sequential
statement or INPUT statement parameter; no carriage return (er) is
required at the end of user INPUT. If the user attempts to enter less
- than the specified number of characters by ending the input sequence
with a carriage return, POWER BASIC will ignore the carriage return
and continue to wait until the number of characters specified have
been entered.

Examples: .
10 REM THE MAXIMUM NUMBER WHICH CAN BE ENTERED IS 999
20 INPUT #3, A, B
30 STOP '

RON
7512 2900

STOP AT 30

10 * PRINT "ENTER PHONE NUMBER (XX - X =-XXX) we
20 INPUT %3;4,"=";B,"=",24:C

30 $A1=4::3B1=B::$C1=C

40 PRINT "YOUR PHONE NUMBER IS™;$A1;"=";$B1;"=";3C1
50 STOP

RON

ENTER PHONE NUMBER (XXX-XXX-XXXX) 123-456-1234
TOUR PHONE NUMBER IS 123-456-1234

STOP AT 50

5.8.1.2

In the first example the user may enter any numbers which do not
require more than three keystrokes. The range would be limited to =99
to 999. In the second example the user is requested to enter his
telephone number in the format XXX-XXX-XXXX. The % symbols require
the user to enter exactly the required amount of numbers. The user
enters 123. The computer places the number in variable A and outputs
a "-", The user enters 456, and the computer places the number in
variable B and ocutputs a "-". The user enters 1234 to complete the
sequence. Statement 30 converts the numeric inputs into strings and
places them into $A1, $B1, and $C1. Statement 40 then prints the
user's phone number using these string variables of the INPUT list.

INVALID INPUT CHARACTER PROCESSING

The user may detect any invalid input or control characters which are
entered during both numeric and string variable assignment by using
the question mark (?) operator in the input list.

Form: .
)) '
[line numbexj INPUT 7 dine numben{;} ¢rariabley {,} Ceen

The "?" operator specifies the line number to which control is
-transferred via an interral GOSUB statement if a control character or
iavalid input 4is encountered during input. The scope of the "?"
operator extends through the current INPUT statement only. Execution
of the next INPUT statement without the "7n operator resets the
invalid input function. The SYS(0) functiom will return the control
character encountered. SYS(0) will be equal to =1 if there was an
invalid input. Otherwise, SYS(0) will equal the decimal equivalent of
the control character. This feature is useful for transferring
control to internal subroutines by using the INPUT statement.
Executing a RETURN statement in the subroutine will result in a return
to the statement immediately following the INPUT statement. For
example; a (control) H can be used to transfer to a routine which
outputs a HELP message sequence for the user who requires additionzl
information for the input of data. :

Example:

10 " PRINT “INPUT VALUE ";
20 INPUT ?100,N
30 ' PRINT "NUMBER IS";N, "IT's SQUARE ROOT IS " SQR(N)

Ld

90 GOTO 10
100 ' IF SYS(0)=-1 THEN PRINT::PRINT "NUMERIC INPUT ONLY"::RETURN
110 'REM IF (CNTL) H GOTO HELP ROUTINE

5.8.1.3

120 IF SYS(Q)=8 THEN GOSUB 200::RETURN

130 REM IF (CTRL) G GOTO BACKSPACE TO PREVIOUS INPUT ROUTINE
140 IF SYS(O):TTHEN GOSUB 300::POP::GOTO 10

180 POP

190 RETURN

200 REM HELP ROUTINE

210 PRINT

220 PRINT

230 PRINT "USER INPUT ASSISTANCE"

[N
.- °
.

290 RETURN

Statement 20 specifies line number 100 as the entry point to the-
invalid input processing routine. When as invalid input occurs (in
this case either a control character or noan-numeric character),

eontrol 1s transferred to statement 100. It is. first tested for

invalid (non-numeric) input. If this is found to be true, it outputs

the message and returns. If it is not an invalid character input, it
is then tested for a Control H (08) or HELP input character. If a
control H was input, the GOSUB routine.may display a help mernu to
inform the user of all valid inputs and their functiecns. If not a
control B character, then SYS(0) can be further tested for other
special function control characters as defined by the user, such as
back up to previous input, erase current input, or stop progranm
execution. ’

INPUT STATEMENT CURSOR CONTROL

The user may perform screen positioning to any location of the 911VDT
or 913VDT terminals before performing the specified numeriec or
String variable input assignment by using the € operator in the input
list. The @ operator is supported only by the Host POWER BASIC
Interpreter on the FS990 computer.

Forms:

?

]
[line number] INPUT @Q(<expl>, <exp2>) {;}<variable>{;} coes
.] ?
[ine number] INPUT 6<3$VAR> {,} <variable>{;}. ..

Cursor control via the & operator may appear numerous times and a% any
position within the INPUT list. It appreopriately positions the cursor

5=-36

5.8.2

before performing the INPUT variable assignment. The INPUT and PRINT

" statements both suppoert an identical set of cursor positioning

commands. For a complete explanation of the cursor positioning
capabilities of POWER BASIC, refer to paragraph 5.8.2.3, PRINT
STATEMENT CURSOR CONTROL.

Examples:

10 INPUT €(0,203;I,68(5,50),J,K
20 INPUT Q"CSD‘IOR" $A
30 INPUT €"C",AT, 9(10 10%;B1

Target POWER BASIC Interpreter: INPUT Statement Cursor Control is not
supperted by the POWER BASIC Configurator, therefore cursor control
should not be present in a final application program to be configured
into a customized (Target) POWER BASIC Interpreter.

PRINT STATEMENT

The PRINT statement causes the values of all expressions in the list
to be printed on the output terminal. Commas and semicolons are used
to separate expressions and provide for print formatt ing.

PRINT
(line number]{ } {expressiond { } &xp ress...,org {}

The expression list may contain any numeric variable, numeric
expression, string variable, string constant, or any ASCII code which
is to be output to the terminal device.

Form:

String constants may be printed directly by inserting them in the
PRINT statement expression list. String variables are printed by
having the variable name preceded with the dollar sign designator.
The following example illustrates the output of string constants and
string variables.

100 DIM N(10)

110 $N(0)= "POWER BASIC."

120 PRINT "THE NAME OF THE LANGUAGE IS ";
130 PRINT $N(O)

140 STOP

RUN

THE NAME OF THE LANGUAGE IS POWER BASIC.

STOP AT 140

The PRINT statement may be used to directly output ASCII codes to the
terminal device. The hexadecimal ASCII code must be enclosed in angle.
brackets, (e.g., <0A)) and may be placed anywhere with string --
constants or-predefined string variables appearing within the PRINT
statement expression list. Only the low order-seven bits of the
hexadecimal code will be output to the device.

Example:

10 PRINT "GO TO THE NEXT LINE <{0A)><OD)> AND CONTINUE PRINTING!"
would generate :

GOTO THE NEXT LINE

AND CONTINUE PRINTING

In a similar-manner, any ASCII character can be placed into a string
variable with the use of the replacement (%) operator. The % operator
places the single byte value of the succeeding expressionm into the -
specified character string. The expression represents the decimal or
hexadecimal ASCII representation of the byte value to be placed in the
string (e.g., $4=%0AHZO0DHZOH). String variable assignment using byte
value insertion should always be termminated with a null (zero byte)
insertion (e.g., %0AH%041HZ0H). While actual character insertion into
an existing string would typically not be terminated with a null
insertion (e.g.,. $A(0;:U4)=%45,%41). ASCII codes may be concatented to
character strings, however character strings may not be concatenated
to ASCII codes in character assignments. For example, $A=3B + "YES" +
%10%13 is a valid character assignment, while $A=$B + %10%13 + "NO" is
an illegal character assignment. These string variazbles can then be
output with the PRINT sStatement. The following example progranm
illustmtes this procedure.

Example:

List
10 DIM A(10) : ,

20 $B=%10%13%0 !(10=LINE FEED, 13=CARRIAGE RETURN)

30 $A(0)="GO TO THE NEXT LINE"+B+"AND CONTINUE PRINTING!"
30 PRINT $4(0)

50 STOP

would generate,

GO TO THE NEXT LINE
AND CONTINUE PRINTING!

To facilitate rapid statement eatry in the edit mode, a semicolon (;)
may be used in place of the word "PRINT"™ in any PRINT statement. Upon
statement entry, the semicolon is intemazlly translated to the "PRINT"
. code. Thereafter, listing of the statement will result in output of

the word "PRINT." For example"

10 PRINT I,J

20 ;X,Y,Z

30 ; 'THE SEMICOLON WILL LIST AS "PRINT"®
LIST

10 PRINT I,J
20 PRINT X,Y,2Z
30 PRINT 'THE SEMICOLON WILL LIST AS "PRINT"!

In its simplest form, the expressions in the output list are separated
by - commas. In this form, an output line is divided into five
15-characterprint fields starting in columas 1, 16, 31, ete. A comma
following an expression in a list is a signal to advance to the next
field. Expressions separated by commas are output one expression per
print field. This emables output lines to be formatted into five left
Justified columns within the field. Expressions may occupy more than
ocne field, inm whieh case the comma following the expression in the
PRINT list advances the print output to the next blank field. Note
that when more than five expressioms are included in the output list
separated by commas, the terminal device after the fifth character
will ‘automatically generate a carriage return/line feed when its
buffer is full to obtain the correct five column output. Printing
will ‘continue in as many lines as are required to complete the output
list. When the entire output list has been printed, a2 carriage
retum/line feed is automatically inserted after the last pr':.nt itexm.
Subsequent printing begins on the next line. For example, the
following statements: ‘

10 X=7

20 $NAM = TPADL™

30 PRINT X, X+2, X+U

40 PRINT "GEORGE™, ™HARRY"™, $NAM

would generate the output shown below

T 9 1
GEORGE HARRY PAUL

The automatic carriage return/line feed at the end of a PRINT
statement may be suppressed by placing a comma at the end of tae
output list. Subsequent printing will begin in the next field of the
same line. For-example:

10 X=7

20 . $NAM="PAUL®

30 PRINT X, X+2, X+4,

40 PRINT "GEORGE", "HARRY", $NAM

would generate

7 9 11 GEORGE HARRY
PAUL -

Note that the terminals automatically generate a carriage return and
line feed as occurs in the following example:

10 FOR I=1 TO 14

20 PRINT I,
30 NEXT I
4o sTOP
RUN
i 2 3 4 5
6 7 8 9 10
11 12 13 14 :
STOP AT 40 '

More compact printing can be achieved by using semicolons rather than
commas as expression separators. When followed by a semicolon numbers
in the output 1list will print in as many characters as required to
print the numbers of the expression plus one blank space added on the
left. However, strings in the output list will print in exactly the
end of an output list, the last item will print in a short field as
Just described and subsequent printing will begin immediately after
that field. For example: '

10 S1=99

20 S2=87

30 S3=92

40 PRINT "SCORES AND NAME:";S1;S2;
50 PRINT S3; " JOE DOE"™

would generate

SCORES AND NAME: 95 87 92 JOE DOE

5.8-2-1

Another example:

10 FOR I=1 TO 14
20 PRINT I;
30 NEXT I
bo sTOP
RUN
12345678910 11 12 13 14

STOP AT 40

‘Note that both semicolons and commas may be used to separate

expressions in any PRINT statement and that, the print position of the
next expression will depend on the separator (semicolon or-comma) used
to delimit the expressions. The following example illustrates the use
of both delimiters in a single PRINT statement.

10 H=98
20 L=60
30 4=T79
40 PRINT "HIGH= ";H,"LOW= ";L,"AVERAGE= ";4

would generate
HIGH= 98 LOW= 60 AVERAGE= 79
A PRINT statement without an expression list is a valid statement.

Execution of this statement results in the output of one blank line as
the example below illustrates.

10 PRINT "THERE SHOULD BE TWO BLANK LINES BETWEEN HERE AND"
20 PRINT

30 PRINT

40 PRINT "HERE!"

would generate

THERE' SHOULD BE TWO BLANK LINES BETWEEN HERE AND
HERE!

PRINT FORMATTING

The PRINT statement may be used to specify the exact print fomat for
the output of numeric expressions. The pound siza (#) within a PRINT
statement followed by a hexadecimal formatting character or a decimal
formatting string provides this capability.

Forms:

* [line number] PRINT.<(H ¢expd (,)
(line number] PRINT <#) <expd CD cos
[ice number] PRINT @3y <expd (3)....
iine number] PRINT <(#>(string constantd {expression) C}
[iine' number] PRINT {#){string variable) (exp ression){;)

The fomatting function may appear-anywhere within the parameter-list
of the PRINT statement. The parzmeters within the PRINT statement are
separated by commas or-semicolons as explained in the PRINT statement
(paragraph 5.8.2). A separator appearing at the end of the parameter
list will force subsequent printing to continue on the ‘same line just
as in the PRINT statement.

A format designator (#) followed by a semicolon, comma, or space is
used to output hexadecimal values in either byte, word, or free
format, respectively. These format specifiers convert to hexadecimal
the numeric constant, variable or expression immediately following the
specifier: The scope of the hexadecimal format specifier is for the
first constant, variable, or expression oanly and not for the entire
line as in the case of print fomatting using a string imaze.
Subsequent values will be printed in free format decimal
representation.

The "#;" specifier-converts the value and outputs the hexadecimal
result as a single byte with no preceding oar tmiling blanks or zeros
and without the "H" character: Only the least significant byte will
be output for values which require more than one byte for their
hexadecimal representation.

The "#," specifier-converts the value and cutputs the hexadecimal
result as a full word (two bytes) with no preceding ar trailing blanks
or zeros and without the "H" character. The least significant two
bytes will be ocutput for values requiring more than one word for their
hexadecimal representation.

The "#" specifier by itself converts the value and outputs the result
in hexadecimal free farmat representation. 'The hexadecimal result
occupies as many digit positions as required to print the number. It
is preceded with a zero (0) and followed by the "H" character.

The following examples illustrate hexadecimal output formatting. The
user will terminate the entry line with a carriage return. POWER
BASIC outputs are designated by underlinming.

PRINT #;13" ®;4,1;" "; #1 01 0001 O1H 4
PRINT #;31;% ";#,31;" "; #31;% 7337 iF 001F OIFE 31
LET A=106 - = =
PRINT #;4;" ";#,A;" ™;#A;" ";A 6A 006A O6AH 106

Numeric decimal formatting is designated within a PRINT statement
parameter list by a print format specifier (#) followed by z format
constant o string variable. The format string may be either-a string
constant enclosed in quotes which directly contains the formatting
string, or-a string variable which has previously been assigned the
fomatting string. .

The format string indicates the final printed image of how the numeric
expressions specified within the PRINT statement paremeter list are to
be output. Fields are reserved for printing numeric data by formming
output images of the printed results. Special characters are used
within the format string to indicate these results.

Several formatting strings may be interspersed within a single PRINT
Statement parameter list. Numeric output values use the last defined
print format in that statement line for their output. =xit from a
PRINT statement line resets the formatting flag with subsequent
numeric values printed in free format. That is, the range of print
formatting is limited to the print statement line in which it is
located. Subsequent PRINT statements each require their own print
format specifier-(#) and string.

Text to be output may be interspersed within the formatting string sc
long as it contains none of the special characters used for
print formatting. '

The speczial: characters used in the formatting string are shown in
Table 5=2. .

When using print formatting, floating point numeric values are rounded
to the number-of decimal places specified by the format string. A
fomatting error-occurs if a numeric value is incomsistent with the
specified formatting string or if the integer portion of =z value
requires more digits than specified by the fomat string. This is
indicated to the user by filling the entire output field with
asterisks (®). :

The following paragraphs and examples explain the use of formatting
characters. In these examples single quotes(') are embedded within
the format field so the actual printed results can be shown more
clearly.

_TABLE 5-2

FORMATTING STRING CHARACTERS

CHARACTER FUNCTION EXAMPLE
. Decimal point specifier PRINT #%999.99"25.32; ¥25.32
A Iranslates to decimal peint PRINT #"999 00"1000; ¥10.00
9 Suppressed if before signi- PRINT #"99,999.99"100;¥¥¥100.00
ficant digit
9 Digit holder PRINT #79999"123; ¥123
0 Digit holder or forces zero PRINT #%9999.999™.234;$6¥0.234
$ Digit holder & filcats $ PRINT #"$$$.99"8; ¥4$8.00
S Digit holder & floats sign PRINT #"SSS.99" -§; ¥-6.00
E Sign holder after decimal PRINT #"990.99E"-150.75; 150.75
¢ Digit holder before decimal PRINT #"<(< .00>" 500;500.00
& floats on negative : :
pumber
> Appears after decimal if PRINT #"<L.0 " -50;<50.00)
negative :

In practice these quotes typically would not be used. The user may
Xecute these examples from the keyboard by entering the example
through the final semicolon (;), inclusive, and then terminating the
entry line with-a carriage return.

underlined.

All POWER BASIC outputs are

POWER BASIC will respond with the formatted results output between the

quotes.

The "9" and "O" formatting characters are used as digit holders. The
period (.) character specifies the decimal point position .on output.

PRINT #7199f" 5;151

PRINT #"'999.00!"25.32;' 25.32"
PRINT #7199.0'" 15,575;115.6°
PRINT #"199.0'" 101-.25; ¥¥¥¥%s

The " " formatting character also forces a zero if a non-significant
digit is output at that position.

PRINT #7'999,00*m28;' 28.00'

PRINT #"'990.00'",153;' 0.15'

PRINT #"'990.000'".75;' 0.750'
© PRINT #"799Q.000°'" 1047, 23; #¥#unssnss

PRINT 4#"'000-00-000'" 3021; '000=03-021°

5=44

The "A" formatting character translates to a decimal point upon output
wherever it is located in the format field. For example, this is
useful when performing monetary calculations in pennies and then
translating the results to dollars and cents on output.

PRINT #"'999~00'"200;* 2.00!
PRINT #71999~00'"2532;' 25.32'
PRINT #"'999A00°"12000;'120.00°"

The comma (,) formatting character inserts a comma in the output

numeric value; however, it is suppressed if there are no significant

digits to the left of its position in the output value. Typiecally, it

%.souged tc)i separate groups of three decmal digits, (e.g., 1,000 and
00,000

PRINT #"'99,990.00'"3529.87; ' 3,529.87
PRINT #"'99,990.00'" 903; ' ~g0%.007 —
PRINT #7'99,990.00°"10.2333:7 . 10,23'
PRINT #"'99,990.00'" 100256, 72; FAREREFEF¥2

The dollar ($) sign formatting character is used to output the doliar
sign with the numeric output value. It is a digit holder and also
"floats" to the position immediately to the left of the most
significant digit of the output value.

PRINT #"'$$3.00'1"25,.32;1$25.32"
PRINT #"1338$.00'".50;' $. 50"
PRINT #"'3.00°"100;'100.00"
PRINT #7"'$$$. 009n1000m*
PRINT #"'$,$$$.00'm1,52; ! $1.52°

PRINT #7'$$,$88.00'" 9535 739, 535 00!

The "S"™ formatting character is used to output a2 signed numeric value.
A minus sign (=) is output for a negative number and blank for a
positive number. The "S"™ character is a digit holder and "floats" the
sign of the numeric value to the position immediately to the left of
the most significant digit of the output value. '

PRINT #%'SSSC.00'" 208.79; ' 208.79°
PRINT #"*'SSS0.00'"™ -20.79; ' =-20.79'

If the user attempts to output a negative number without using the "S©
formatting character; the number will be output as a positive number.
The "E" formatting character is used to output a signed numeric value
with the sign appearing to the right of the decimal point. It
functions only as a sign holder and is not a digit holder.

PRINT #"'990.00E'" 32.253; ' 32.25 '
PRINT #"'990.00E'"-32.253; 7 _32.25-"
PRINT #"'990.00E'™ -.50; ' 0.50=-'

The "¢™ and ")" formatting characters are used in another foram of
outputting negative numbers. They ¢typically are used together-in the
formatting string. The "{" character is a digit holder and appears
before the decimal point. The "\" character appears after-the decimal
point and is only a sign holder. On the output of a negative number
both the "(" and ")" characters are output with the string. The "¢
character will float on a negative number to the position immediately
to the left of the most signficant digit of the output value. The ™"
character will appear at its position to the right of the decimal
point on a negative number. When outputting a positive number,
neither the "™ nor ")"-character will be output in the string. -

PRINT #"'¢ ({00 1250; ' 1,250.00 °
PRINT #"'C {{{¢.00p!" =1250; ' <1,250.00>!
PRINT #7<L00p'" ;205 * .20 !
PRINT #"'C<<.00)'"-0.2; T__ 200"

The following sample program further illustrates the results of print
formatting. When this program is executed the user is requested to
enter a numeric value and formatting string. POWER BASIC then
outputs the number using the user supplied print formatting string.

100 DIM F(5)
110 INPUT "INPUT NUMBER"N" FORMAT"$F(0)
120 PRINT "*"#$F(Q);Nm'"-

- 130 GOTO 110

RUN
INPUT NUMBER? 1 FORMAT: 999,990.99

' 1.00°

INPUT NUMBER? 123456 FORMAT: 999,990.99
1123, 456.00"

INPUT NUMBER? 529728761 FORMAT: 000-00-0000
1529-72-8761"

INPUT NUMBER? 2335.34 FORMAT: 83,383$,5$8.99E
' $2,335.34

INPUT NUMBER? -234.56 FORMAT: SSSSS.99

! w23Lk.56¢

" INPUT NUMBER? -2335.34 FORMAT: $$3,3$3$,$38.99E
' $2"335°3u“' *

INPUT NUMBER? 1234556 FORMAT: 999,999
212211 X]

INPUT NUMBER? 123 FORMAT: {{< £ Q9D

vo. 123,00

INPUT NUMBER? -1234 FORMAT: .9

<1 334 0o - <KX Q9D

5=46

5.8.2.2

5.8.2.3

TAB _
Qutput fomatting can alsg be controlled by use of the TAB function.
Form: | ‘
i

TAB ({expression))

The expression in the T‘QB function specifies the horizontal column
position where the print item following the TAB will begin printing.

‘The TAB function may contain any expression as its argument. The

expression is evaluated and its integer portion used. If the result

.18 -greater than the line size, the specified print item will be

printed on the next output line. If the column specified by the
integer part of the expression has already been passed in the current
print line, the TAB function will be ignored and the print item will
be output at the current position in the print line. The TAB function
may be used to format output into columns on the output deviece.

Examples:

10 PRINT "BIG"; TAB(207;"SPACE®
will generate

BIG ’ SPACE
while:

10 PRINT TAB(20j; "SPACE";TAB(1};"BIG®
will generate |

SPACEBIG

In the first example, the string "BIG" is output starting in column
1. The TAB function advances the printer to column 20 and outputs the
string "SPACE". Ih the second example, the TAB Function advances the
printer to column 20 and outputs the string "SPACE". The TAB (1)
attempts to retum the printer tec column 1 in the print line. Since
that column position has already been passed, the string "BIG" is
output immediately following "SPACE™ (the current position. on the
print line). , o

PRINT STATEMENT CURSOR CONTROL

In conjunction with the PRINT statement, the user may position the
eursor to any location onithe video display terminal log device.
_ i

Cursor control is performed on the Host POWER BASIC Interpreter with
the use of the 8 operater. Note that cursor positioning is supported
only by the Host POWER BASIC Interpreter and not by the Target POWER
BASIC Interpreter. Therefore cursor positioning should not be
included in a final application program which is to be configured into
a customized (Target) POWER BASIC Interpreter for execution in a TM990
board system.

Forms:

ROU (O() ’ ?
[line number] PRINT @(<expl>,<exp2d) {,} <variable>{;} {,}
. (iine pumber] PRINT 6<$vars> : cvariabled {:} {:}

Cursor control via the € operator may appear numerous times and at any

position within the PRINT statement. It appropriately positions the.

cursor before performing the output of any succeeding varizbles,
expressions, o« string constants.

By using the "é(<expiy,dexp2y)" form, the cursor can be positiocned to
any location on the 911 or 913 VDT terminals as specified by expl and
exp2. <Exp1) specifies the ROW position, while &xp2> specifies the

COLUMN position where the cursor is to be positioned. The 9171 video-

display terminal has 24 rows of 80 characters (ie., 24 ROWs znd 8
columns), while the 913 video display terminal has only 12 rows of 80
characters (ie., 12 ROWs and 80 COLUMNs). The COLUMN values expected
by POWER BASIC range from O to 79, while the ROW values range from 0
to 11 and 0 to 23. The expressions are evaluated and their integer
partions are used. The user should limit the range of <expld> and
<exp2> to the values given above.

Examples:

10 DIM STR(10)

20 INPUT @nC";"INPUT Y-POSITION ";Y

30 INPUT "INPUT X-POSITION ";X

40 INPUT "INPUT STRING ";$STR(0)

50 PRINT évCn";6(Y,X);$STR(0)

60° INPUT €(0,0);"TYPE C/R WHEN READY TO CONTINUE "4
70 GOTO 20

80 sTOP

This example will request user input of the X and ¥ positions, and the
character string to be output. The user enters these values, and then
the Host POWER BASIC Interpreter will appropriately position the

cursor and output the character string. It then retums the cursor to
the upper left hand cormer and waits for the user to enter a carriage
retum to continue for the next position parameters and character
string.

10 $STRsn"#n

20 INPUT €%C";"HOW MANY ROWS ON YOUR TERMINAL, 12 or 247 ";ROW;E"C"

30 ROW=ROW=-1

40 FOR I=1 TO 200

50 PRINT 6{ROW*RND, (80-LEN($STR))®RND);$STR

60 NEXT I

70 Ti=TIC(0)
_..80 IF TIC(Ti)XS5 THEN GOTO 80
‘ 90 PRINT érC" ')

100 GOTO 40 '

110 STOP

This program outputs an asterisk (*) to two hundred random locatioms
on the screen of the 911 or 913 VDT's, waits for 5 seconds, and then
clears the screen and repeats the sequence.

By using the-"@¢$vary® form, the user can specify several additional
screen cursor positioning commands (eg.,HOME, CLEAR, and BEGINNING).
They also permit VDT independent cursor positioning by moving the
cursor to the RIGHT, LEFT, or DOWN. The ($vard may be either a string
constant or string variable specifying the sequence of cursor control
commands. The special character codes used in the &vard are as
follows: ’ .

CODE ACTION

Move cursor to beginning of line

Clear screen and move curser to HOME position
Move cursor down

Move cursor to HOME position

Move cursor to left

Move curscr to right

Wi o O W

Any of these codes may be preceeded by positive integer representing
the number of times the following code is to be repeated when the
$var is output.

Examples:

10 DIM SCR(5)

20 $SER(0)="CSD10R"

30 PRINT @4SCR(09;"S DOWN AND 10 TO TEE RIGHT"

40 PRINT @"HSD20R1OL";"5 DOWN AND 10 TO THE RIGHT"

50 PRINT €"C";8(5,109;"5 DOWN AND 10 TO THE RIGHT"
60 STOP

5.8.2.4

The three PRINT statements of this example will produce the same
results, in that the cursor will be positioned at the 5th row, and 10

ecolumn before the string is ocutput. Statements 30 and 50 will
however, clear the sereen before the cursor is positioned.

Target POWER BASIC Interpreter: PRINT statement cursor control is not
supperted by the POWER BASIC Configurator. Therefore, cursor control
should not be presented in the final application to be configured into
a customized (Target) POWER BASIC Interpreter.

SUMMARY - PRINT STATEMENT RULES

The PRINT statement may contain the following elements; any number of
times and in any sequence within the expression list. The only
restriction is that no two expressions (exp) may appear together
without a separator between them. Valid separators are a comma (,), a
semicolon(;), or a pound sign (#). An expression is defined as any
arithmetic combination of numeric constants, variables, or functions.
For example, PRINT 3+5 2*SQR(4), is an illegal statement.

{exp> May not appear together without a separator
{vary between them.
gsvary
" string "
TAB A
y ‘ Separators
y ’
#

Most users insert redundant semicolons (;) and parenthesis within the
expression -list of PRINT statements to facilitate readability and
clarity. Bowever, the experienced user may eliminate many of these
redundant characters to save memorv area and increase the speed of
interpreter execution.

The following examples show the typical format of a PRINT statment:

100 PRINT "A=";A;"B=";B

110 PRINT A;TAB(10);"HI";#"999. 99" A;TAB(25);B
120 PRINT 25; $B,"STHING“°B

130 PRINT $A;$B

140 PRINT B;$4;C

These statements could Se altered to:
100 PRINT "ASUATB="B

110 PRINT A TAB 10 "HI"#7"999.99"4 TAB 25 B
120 PRINT 25 $B "STRING" B

"j

5.8.3

130 PRINT $A $B
180 PRINT B $4;C

The following examples illustrate invalid PRINT statement expression
lists:

100 PRINT A B 25

110 PRINT 250 SQR(A)

120 PRINT $A B 15

130 PRINT 5*SQR(A) A*B/C

These statements must be written as:

100 PRINT A;B;25 , '
110 PRINT 250; SQR(A)

120 PRINT $A:;B;15

130 PRINT S*SQR(A) A%B/C

These techniques should only be used in programs which will never be

read by other than expert POWER BASIC programmers. Saving space and
time at the expense of program clarity may cost more in the long run
than you are willing to pay.

DIGITS STATEMENT

The DIGITS statement specifies the number of significant digits to be
printed in format free output.

Forms:

(iine number] DIGITS (expression)

The expression may be any numeric constant, variable, or expression
which is evaluated and its integer portion used. The range is from 1
to 11 for the expression of the DIGITS statement. If the expression
is outside these limits, a DIGITS OUT OF RANGE error will result.
From the DIGITS statement on in the program, all format free printing
will display a maximum of the specified number of decimal digits until
another DIGITS statement or SAVE statement is executed. When saving a
prograr, POWER BASIC first internally executes a DIGIT 8 statement anc
then proceeds with saving the program. Therefore, in programs which
are to be SAVEd, a1l constants declared in the program should have
more than 8 significant decimal digits.

Examples:
DIGITS 3 (In keyboard mode)
PRINT U4%ATN(1); 3.14 (In keyboard mode)

10 DIGITS 8

20 PRINT U4*ATN(1)
30 DIGITS 11

4O PRINT 4%ATN(1)
50 STOP

RON

3.1415926
3. 1415926595

STOP AT 50

When .using format free output the following rules for printing numbers
will assist the user in interpreting the printed results.

1. If the result is an integer number with an absolute value less
than 10~A(DIGITS-1), POWER BASIC will output the number in decimal
format preceded by a minus sign if negative or a blank if positive.
(i.e., if DIGITS = 7 then x 10°.)

2. If the result is a floating point number with an absolute value
less ‘than 10~(DIGITS~1) but greater than 10 -(DIGITS-i), POWER BASIC
will output the number in decimal format prededed by 2 minus sign if
negative or a blank if positive (i.e., 4if DIGITS = T then 10-6)lx(
>10). 1r the number of significant digits is more than what is
specified by the digits statement, the number will be rounded to the

specified number of digits before ocutput. Zeros trailing the decimal
point are suppressed.

3. If the number is an integer or a floating point number with an
absolute value greater ‘than 10DIGITS-1) or less than 10~-(DIGITS-1),
the number is rounded to the number of digits set by .the DIGITS
statement (if required), and is printed in exponential format. POWER
BASIC prints exponential results as:

(a) a blank

(b) a minus sign if negative

(¢) the first digit of the number

(d) the deecimal point

(e) the remaining digits

(f) the letter "E" (bindicat:Lng exponent)

(g) 2 minus sign if the exponent is negative

(h) the exponent value printed as two digits

5=52

5.8.4

5.8.4.1

Examples: (Using DIGITS 7 for output)

PRINT 123; 123
PRINT -54.5U46; =54.5U6
PRINT -.0000000123; 1.23E-8

PRINT 32437580259 3.243758E10 . ' a

Target POWER BASIC Interpreter: The DIGITS statement is not supported'
by the POWER BASIC Configurator, therefore the DIGITS statement shou.ld
not be present in any final application progrzm to be configured into
a2 customized (Target) POWER BASIC Interpreger.

OUTPUT CONTROL STATEMENTS

The UNIT and SPOOL statements are used to direct output to~ the various
devices on the system. 4 .

SPOQL STATEMENT

The SPOOL statement is used to indicate the secondary output device
contralled by the UNIT statement.

FORM:

(1ine number] SPOOL <expy TO ¢numeric variabled>

The SPOOL statement in combination with the UNIT statement directs
output to one or more specified devices cn the system. The expresison
is evaluated and the result is the unit number to which spooling is
assigned. The numeric variable designates the secondary deviece %o
which output will be sent. The numeric variable contains the logiecal
unit number (LUNO) returned by a BOPEN statement, and represents the
TX990 pathname of the output device/file. Spooling is typically

performed to the line printer, a diskette file, and the 733 ASR
Printer. .

The current version of the Host POWER BASIC Interpreter supports
output spooling to only one secondary device at a time. This implies
that the valid unit numbers of the UNIT statement are 0,1,2,3.
Unit O stops all terminal output, Unit 1 is assigned to the 911 VDT or
913 VDT terminal deviee, Unit 2 is the spooling unit number, and Unit
3 directs output to both Units 1 and 2. Therefore, the expression of
the SPOOL statement must always evaluate to 2 to be a valid spooling
unit number. For examples of the SPOOL statement see the UNIT
statement below, Paragraph 5.8.4-.2.

'Iarget POWER BASIC Interpreter: The SPOOL statement is not supported
by the POWER BASIC configurator, therefore the SPOOL statement should
not be present in any final application program which is to be
configured intec a customized (Target) POWER BASIC Interpreter.

1

{
!

5.8.4.2 UNIT STATEMENT

The UNIT statement designates the device or devices to which all
subsequent output will be sent. All output will be directed to the
device(s) selected, imecluding LIST output, BASIC command/statement
output, and zll program generated output. The devices/files will
remain selected for output until a subsequent UNIT statement is
encountered.

Forms:
(iine number] UNIT <expressions

The UNIT statement is one of the POWER BASIC statements which produces
similar results, but functions differently on the Host POWER BASIC
Interpreter than on the Target POWER BASIC Interpreter. These

differences will be presented below in their respective sections. .

Host POWER BASIC Interpreter:

The expression may be any numeric constant, variable, or expression
which is evaluated and its integer pertion is used. The valid range
of UNIT numbers area 0,1,2, and 3. A UNIT value of O will stop 21l
output to any devices, a UNIT value of 1 will direct all output to the
terminal device, an UNIT value of 2 directs all output to the
device/file designated by the SPOOL statement, and a UNIT value of 3
directs all output to both the terminal device and the device/file
designated by the SPOOL statement.

Examples:

10 BOPEN "LP",LP

20 SPOOL 2 TO LP

30 UNIT 3

40 REM ALL SUBSEQUENT OUTPUT WILL BE DIRECTED TO BOTH THE
50- REM TERMINAL DEVICE AND THE LINE PRINTER.

This example would direct any subsequent output to both the terminal
device and the.line printer, until another UNIT statemnet is
encountered. ’

BOPEN "DSC2:PROB/QUT™,0UT
SPOOL 2 TO OUT ‘
UNIT 2

ROUN

This example would direct all output of the POWER BASIC program
executed by the RUN command to the diskette file named:PROG/OUT. All
program inputs would still be from the log device, but no printing
would occur on the log device until execution of a UNIT 1 or UNIT 3

5=54

5.8.5

statement.
Target POWER BASIC Interpreter:

The expression may be any numerie constant, variable, or expression
which is evaluated and its integer portion is used. The valid range
of UNIT numbers are 0,1,2,and 3. The UNIT statement is used in a
Target POWER BASIC application which requires ocutput to both ports of
a2 TM990/101M microcomputer board. The UNIT statement can direct
output to either or both of the serial interfaces present on the
TM990/10tM. (Note that the TM990/100M microcomputer board has only one
serial I/0 port, and therefore the UNIT statement will only affect the

:output to port 4 of this board.)

The UNIT number assignments are as follows:

UNIT SERTAL I/0 PORT
0 NEITHER PORT A NOR B
1 ONLY PORT A (CRU = 008075)
2 ONLY PORT B (CRU = 0180,)-
3 BOTE PORTS A AND B

Note that the baud rate of Port B must be set by executing the "BAUD
1,X" statement as described in paragraph 5.8.5 below before Por:t B
shculd be referenced in a UNIT statement (eg., UNIT 2 or UNIT 3).

Examples:

10 BAUD 1,4
20 UNIT 3
30 PRINT 4%ATN(1)

In this example 21l subsequent output will be directed to both ports &
and B of the TM990/101M microcomputer board. '

The UNIT statement may be used to momentarily stop output to the
primary terminal device. This would be useful to disable echoing of
characters on an INPUT statement as follows:

50 UNIT o IDISABLE BOTH PORTS A AND B .
60 INPUT ;$CHR(O) -!INPUT VALUES FROM TERMINAL WITHOUT ECHO
70 UNIT 1 1ENABLE PORT A

BAUD STATEMENT

The BAUD statement is used to set the baud rate of the serial 1/0
pert(s) of the Target TM990 system via program statement control.

Forms:
. (line number] BAUD <expressiom 1>, <expression 2>

The BAUD statement sets the baud rate of the serial I/0 port(s) of
only the Target TM990 system. It does not affect POWER BASIC program
execution on the Host POWER BASIC Interpreter. The BAUD statement,
when encountered on the Host POWER BASIC Interpreter, will be checked
only for syntax, and will otherwise be skipped, and the next statement
will be executed. The BAUD statement is used in application programs
to be configured into a customized BASIC Interpreter to appropriately
initialize the BAUD rates of the serial I/0 port(s) of the TM990
boards when powered up and RESET.

The BAUD statement, when encountered on the Target POWER BASIC
Interpreter will perform as fallows.

The BAUD statement will initialize the TMS9902 Asynchronous
Communications Controller of either port A or B as specified by -
expression 1, to the baud rate specified by expression 2.

Expression -1 will be evaluated and its integer portion will be used.
A zero value for expression 1 will select port & (CRU address of >80)
of the TM990/100M or TM990/101M microcomputer board, while 2 non
zero value will select port B (CRU address of>ﬁ80) of the
TM990/ 101M m;crocomputer board.

Expression 2 will be evaluated and its integer portion will be used.
The table below presents the valid range for expression 2 and the
corresponding baud rates.

Expression Baud

Value Rate
0] 19,200
i 9600
2 4800
3 2400
i3 1200
5 300
6 110
Example;:

i0 BAUD ©
20 BAUD 1

Host POWER BASIC Interpreter: The BAUD statement is only checked for
syntax when executed on the Host POWER BASIC Interpreter, and is
otherwise skipped and the next statement is executed.

WM

5.9

5.9.1

INTERRUPT PROCESSING

Three statements are supplied for interrupt processing using a BASIC
language subroutine. These statements have the following form:

ﬁme numbex:-} IMASK <{expressiony
[line number] TRAP d{expressiom TO <line numberd
(Line number] IRIN

The IMASK statement allows the user to control the interrupt mask of
the processcar. The TRAP statement associates an interrupt level with
the statement number entry point for the interrupt processor
subroutine written in BASIC. The user will return from this
subroutine with the IRIN statement.

The interrupt processing statements are used only in the Target POWER
BASIC Interpreter. They are non-operations (NOPs) in the Host POWER
BASIC Interpreter since the TX990 Operating System and the FS990
system use many of the interrupt vectors for its interrupt driven
device interfaces. The interrupt processing statements IMASK and TRAP
are checked for syntax when encountered in a2 program, however they are
otherwise skipped, and the next statement is executed. The IRIN
statement, on the otherhand, performs as a2 RETURN statement, that is,
it removes the top item off the GOSUB stack, and retursn to the point
in the BASIC program from where it was called. This is useful in
testing BASIC Interrupt processing routines by selectively executing a
GOSUB to the entry point of the interrupt handling routine, and then
returning using the IRTN statement as would be done in the final
application.

The following sections explain how the interrupting processing
statemetns function in the Target POWER BASIC Interrupt and applica-
tion.

IMASK STATEMENT

The IMASK statement is used te control the interrupt mask of the
TMS9900 mieroprocessor. The TMS 6900 microprocessor employs 16
interrupt levels with the highest priority level being 0, and the
lowest 15. Level 0 is reserved for the RESET function; all other
levels may be used for external devices. The external levels may also
be shared by several device interrupts, depending on systenm
requirements. Since the reset sequence at power-up sets the interrupt
mask to zero, the appropriate interrupt mask must be set before any
intempts will be acknowledged.

Not,e that if the eurrent level is less than 3, setting of the system
time by using the TIME statement will result in the interrupt mask
being set to level 3. Likewise, if the real time clock is being used
(located at interrupt level 3), and if the mask is subsequently set to

5=57

5.9.2

less than 3, the clock interrupts will no -longer be acknowledged and
real time will be destroyed. :

All interrupts before they reach the TMS9900 CPU are first masked by
the TMS9901 Programmable Systems Interface. To prevent unwanted
interrupts from being acknowledged, the user must appropriately set
the interrupt mask of the TMS9901 to select all interrupt levels which
are to be processed. This is performed via the CRU interface using
the BASE, CRB, and CRF POWER BASIC statements. 4

Examples:
10 IMASK 15 | SET MASK TO 15
20- - IMASK OEE ! SET MASK TO 14
30 =0AH ! SET A TO 10
40 IMASKA ! SET MASK TO VALUE OF A

Host POWER BASIC Interpreter: The IMASK statement is only checked for -

syntax when executed on the Host POWER BASIC Interpreter, and is
otherwise skipped and the next statement is executed.

TRAP STATEMENT

The TRAP statement is used to define the entry point of the interrupt

.Subroutine for a given interrupt level. The level "expression" may be

any valid POWER- BASIC expression whose integer portion is used and
whose value is masked to the least significant 4 bits. The "line
number® specifies the entry point for the interrupt servicing routine.

The TMS9900 Microprocessor continuously compares the incoming
interrupt code with the interrupt mask as set by the IMASK statement.
When the level of the pending interrupt is less than or equal to the
current mask level (a higher or equal priority interrupt), the
processor recognizes the interrupt. Note that interrupts are
acknowledged immediately and the mask value is appropriately set, but
that the BASIC interrupt processor will only be entered following

~completion of the currently executing statement. A statement is

terminated by either an end of line or by the double colon (::)
statement separator.

After an interrupt ocecurs, the interrupt mask is set sueh that the
current interrupt level is disabled and only higher priocrity levels
are enabled (the mask value set to one less than the level of the
interrupt being serviced). Should a higher priority interrupt oeccur

while servicing an interrupt, the interrupt processor will complete

the current statement and then transfer to service the higher priocrity

- level interrupt. Upon completion of higher level processing, an IRTN

statement is used to terminate the higher level interrupt servicing
routine, restore the previous service routine parameters to the
processcr, and return control to the previous service routine at the

5-58

RV

ST SR

5.9.3

5.9.4

point which- the higher priority interrupt occurred to complete
processing of the lower-priority interrupt. Should a lower level
interrupt occur, it will remain pending until the interrupt mask is
raised to allow the interrupt.

Note that interrupt levels 0 (RESET) and 3 (clock) are reserved and
should not be serviced by the TRAP statement.

Examples:

10 TRAP 5 TO 500 ! ASSIGN LEVEL 5 TO LINE 500
20 TRAP OEH TO 100 ! ASSIGN LEVEL 14 TO LINE 100

.30 A=200 ! SET LINE
" 40 B=OCH SET LEVEL |
50 TRAP B TO A ! ASSIGN LEVEL 12 TO LINE 200

Host POWER BASIC Interpreter: The TRAP statement is only checked for
syntax when executed on the Host POWER BASIC Interpreter, and is
otherwise skipped and the next statement is executed.

IRTN STATEMENT

The IRTN statement is used to return from an interrupt servicing
processear. IRTN is the last statement and terminates the interrupt
servicing proecessor. It will restore the progrzm environment existing
when the interrupt was taken, and will return control to the previous
routine at the point at which the interrupt occurred.

Examples:
190 IRTN ! RETURN FROM INTERRUPT LEVEL PROCESSING

Host POWER BASIC Interrupt: The IRTN statement when executed on the
Host POWER BASIC Interpreter performs like the RETURN statement, and
removes the top item off of the GOSUB stack and returns to the
position in the BASIC program from where it was called.

ASSEMBLY LANGUAGE PROCESSORS

There are times when it maybe necessary or advisable for the interrupt
processor to be written in assembly language. This may be
acecomplished in two ways when using the Target POWER BASIC
Interpreter. The first is to use the TRAP statement and the CALL
statement to access the assembly language routine. The second is to
modify the interrupt transfer vectors for the desired interrupt level
so that an interrupt will transfer to the assembly language routine
dlrectly,

Low=order memory, addressed as 0 through 3F, is reserved for the
transfer vecters used by the interrupts. When an interrupt request at

an enabled level occurs, the contents of the transfer vector
corresponding to the level are used to enter the subroutine to serve
the interrupt.

The reserved memory locations are shown in the Interrupt Level Data
table (Table 5.3). Two memory words are reserved for each interrupt
level. The first of the two words for a given level contains an
address that is placed in the WP when the interrupt is requested and
enabled. The second contains the entry point of the interrupt
subroutine for that level; its contents are placed in the PC.

To install an assembly language interrupt processor into the Target
POWER BASIC Interpreter, the user must modify the object module
produced by the TXDS Link editor before programming this object module
~into EPROM. The transfer vector for the desired interrupt level must
be modified to reflect the new workspace pointer-and the new eatry
point for the interupt level must be modified to reflect the new
workspace pointer-and the new entry point for the interrupt handling
routine. The object module produced by the TXDS Link Editor has its
origin at hex address 0000 16 stherefore the transfer vector locations
are appropriately offset from the beginning of the object module (ie.,
offsets Oléthmush 3F 16 are the transfer vectors). The EPROM set may
then be programmed with this modified object module containing the
desired interrupt transfer vector. -

All ‘assembly language interrupt processors must supply their own
workspaces, therefore RAM must be z2llocated for this purpose. During
power up reset, POWER BASIC will automatically size all available ’
contiguous RAM from hex FFFE 16 or down for its own use. Consequently,
the user must supply a non-contiguous RAM area for the workspaces in
the Target POWER BASIC system.

Note that interrupts serviced by assembly language processors are
handled transparent to POWER BASIC; that is, a) the transfer to the
interrupt service routine is external to the POWER BASIC processor
(POWER BASIC has no knowledge an extemal interrupt has occurred), and
B) the transfer is made immediately upon receiving the interrupt
(current BASIC statement execution is not completed before
transferring). For these reasons all assembly language -interrupts
must have a higher priority than those handled by POWER BASIC; it is
acceptable for-an assembly language processor-to interrupt a POWER
BASIC interrupt processor but the reverse should never be allowed to
occur;

Since assembly language interrupts are processed immediately and the
POWER BASIC environment prior to the interrupt is not saved, it is not
advisable to use the Floating Point XOPS of POWER BASIC in the
assembly language processor.

5=-60

TABLE 5-3

INTERRUPT LEVEL DATA

: Interrupt Mask
Vector Location Values to Enable
Interrupt | (Memory -Address Device Respective Interrupts
Level In Hex) Assignment (ST12 thru ST15)
(Highest
priority) 0 00 Reset 0 through F#*
1 04 Extermal device 1 through F
2 08 External device 2 through F
) 3 oc Clock 3 through F
4 10 External device 4 through F
o~ 5 14 External device 5 through F
, 6 18 External device 6 through F
7 iC External device 7 through F
8 20 External device 8 through F
9 U External device S through F
10 28 Extemrmal device " A through F
11 4o External device B through F
12] . 30 Extermal device - C thmough F
13 34 External device D through F
14 38 Extemal device Eand ¥
(Lowest)
Priority) 15 3C External device F only
*Level 0 can not be disabled.
™ 5.10 BASE STATEMENT
The BASE statement sets the CRU base address for subsequent CRU
operations. ’
Form:

Eline‘numbea BASE . {expressiord .

The BASE Statement evaluates the expression and sets the CRU base
address to the result for use by teh CRB and CRF functions. The CRB
function addresses bits within +127 and '-128 of the evaluazted base
address. - The CRF function transfers bits using the evaluated base
address as the starting CRU address. ,

5-61

5.11

The CRU provides a maximum of 4096 input and output lines that may
be individually selected by a 12-bit address. The 12-bit address used

by the CRU instructions is actually located in bits 3 through 14 of
a workspace register. The evaluated expression of the BASE
statement is loaded into the entire 16-bits of this workspace
register. Therefore, the BASE expression should evaluate to twice the
actual (physical) ‘CRU base address desired since only bits 3 throgh 14
are used. The least significant bit of the BASE expression value is
ignored for CRU operations. Therefore, all expressions should
evaluate to an even number. The range of valid expressions is from

.0 to 8190 (hexadecimal 1FFE).

Examples:
10 BASE 64
20 CRF(0)==1
30 BASE 100

40 CRB(=1)=0
Statement 10 sets the CRU BASE address to 64 (physical address of 32),
and statement 20 outputs a 16-bit -1 value. Statement 30 sets the CRU

BASE address to 100 (physical address of 50, and statement 40 sets the
CRU bit displaced <1 from the base (physical address of U49) to zero.

TIME STATEMENT

The TIME statement is used to display, store, or set the 24 hour time
of day clock.

Forms:

(line number] TIME

[Line number] TIME (string variable

fiine number] TIME (exp),<Exp),<expd.
The time of day may be directly displayed at any point within the
program. It may also be displayed from the keyboard when in idle mcde
by using the first formm of the TIME statement. The time of day will
be displayed in the following format:

‘HH:MM:SS ‘
Examples:

TIME 9:31:23 (in keyboard mode)
10 TIME 11,4%,0

°

100 TIME
110 STOP

RUN
11:04:37

STOP AT 110

The second form of the TIME statement enables the current time of day
to'be stored in a string variable. This is useful for recording

. occurrence time of significant events in a user's appliqation

p rogram.

Example:

10 DIM T(3)
20 TIME 11,4,0

100 TIME $T(0)
120 PRINT $T(0)
130 STOP

RUN
11:04:37
STOP AT 130

The TIME statement is one of the POWER BASIC statements which
functions sligntly different on the Host POWER BASIC Interpreter than
on the Target POWER BASIC Interpreter. The difference between the two
systems in the operation of the TIME statement lies solely in the
Setting of the time. These differences will be presented in the
appropriate paragraphs below. .

Host POWER BASIC Interpreter:

Setting of the time via the "TIME (exp), exp)-, €Xp)" statement is not
supported on the Host POWER BASIC Interpreter. Instead the user will
set the time by using the INITIALIZE DATE AND TIME (ID) command of the
SYSUTL program module. The user must set the time and date (if TIME
is desired during BASIC program developemnt) before executing the Host
POWER BASIC Interpreter.

To set the time, the user must load SYSUTL using either OCP or the
TXDS Control Program by performing the steps in ®Diskette OCP System
Utility (SYSUTL) Program" (Section VIII of the TX990 OPERATING SYSTEM

| ! |
PROGRAMMER'S GUIDE). In response to the "OP:" prompt, the user will
enter the ID comand. The syntax of the command is as follows:

ID, (yea @-,(}ngnth§ ,(&éy} ,<hou r%'}, {minute)..

The year-operand is the fow-digit| decimal number of the years 1976
through 1999, and the month operand is the decimal number of the month
1 through 12. The day operand is 2 ome- or two-digit decimal number,
1 through 31, and the _hour'opegand is a2 one~ or two-digit decimal
number, 0 through 23. The minute is the decimal number-of the minute
0 through 59. The second is set to zero when the command is entered.

.

Example: .
op: ID,1978,11,15,15,28.
15:28:00 NOV 15, ‘1978

Note that the "TIME <{exp), <exp),{exp)" statement will be accepted by
the Host POWER BASIC Interpreter and will be checked only for
statement syntax. Execution will continue with the next POWER BASIC
statement. Therefore the user may insert the appropriate "TIME {exp),
&xp ,{exp>" statement into the application program, it will have no
effect in Host POWER BASIC Interpreter execution, and it will be
appropriately configured into the Tarzet POWER BASIC Interpreter. The
user will enter the "TIMB <{exp) ,(exD),.{aXD>" statement into the appli-
cation program according to the explanation below on the Target POWER
BASIC Interpreter.

Target POWER BASIC Interpreter:
The "TIME <exp>,<exp>,<expd"’ statement is used to start and set the
time of day clock of the Target POWER BASIC Interpreter on the TM990
board system. the form of the expressions is as follows:

TIME HE,MM,SS
where

H = hours, M = minutes, S = seconds
The clock of the Target POWER BASIC Interpreter is set up as a 24=hour
¢clock with times ranging from 00:00:00 to 23:49:59. Initialization of
the clock is vaiid at any point wihtin the zpplication program. Its
value may be reinitalized at any point.
Examples:

10 TIME 9,0,0
10 TIME 12,30,0

5-64

5.12

To directly set the time within a configured application program as
illustrated in the above examples, requires that the POWER BASIC
System to be initialized at the exact time specified within the
program in order fa the TIME statement to be accurate. The typical
method of setting the time in a configured application program of the
Target POWER BASIC Interpreter is illustrated in the following
progmn.

Example:

10 PRINT "INITIALIZE TIME-OF-DAY CLOCK™
. .20 INPUT "HOURS = ";HRS, "MINUTES = ";MIN,"SECONDS = ";SEC
" 30 TIME BRS,MIN,SEC ' '

RANDOM STATEMENT

The RANDOM statement randomizes the seed for the pseudo-random number-
generater. '

Foms:
line number] RANDOM < expression) -

The RANDOM statement is used in conjunetion with the RND funection.
The RND function returns the next number in the random number
sequence. It retums this value when requested and replaces it with
the next random number: The RANDOM statement is used to change the
random number seed and therefore the sequence of pseudo-random
numbers.

The random seed is set to a constant value when POWER BASIC is first
initialized so that the RND variable will always retum the same
Sequence of numbers to facilitate program debugging. After the
debugging phase, the RANDOM statement may be used to alter this
sequence.

The RANDOM statement is used to set the seed to a specific or
arbitrary value. The expression is evaluated and the result used as

the seed of the random number- generator. The expression may be any -

valid POWER BASIC expression. The evaluated expression must be within
the limits of -32768 and 32767 or a FIX:ERROR will result. The
sequence of numbers generated by a specific seed value will always be
the same. This is useful for debugging and testing an application
program with a predetermined seed value. Arbitrary seed values may be
generated by the user by using combinations of variables and functiens
(including the RND function) within the expression.

5.13

Examples:

10 RANDOM 220
20 RANDOM 1000%*RND
30 RANDOM RND*MEM(X)

ESCAPE AND NOESCAPE STATEMENTS

The ESCAPE and NOESC statements provide the eapability to enable or
disable the escape key to interrupt program execution on the Host
POWER BASIC Interpreter. These statements are not supported by the
Target -POWER BASIC Interpreter and therefore function as 2 STOP
statement if encountered within a application program executing on the
Target BASIC Interpreter. '

(line number] ESCAPE

[1ine number] NOESC

The ESCAPE statement enables the terminal device escape (or break) key
to interrupt program execution. The escape key is normally enabled in
POWER BASIC unless an NOESC statement has been executed. When the
escape key is struck, the program terminates upon completion of the
current statement line. Keyboard sampling during the RUN mode is
performed only between statement lines. Caution should be observed
when certain statement constructions are used. For example, the FOR
and NEXT statements should not appear in the same statement line,
because a statement line is autonomous. Opce the FOR/NEXT line begins
execution, it cannot be interrupted by using the escape
key. . It can be interrupted only if the end condition of the FOR/NEXT

loop is met, or if the user reinitializes the system via the reset
swtich on the CPU board.

The NOESC statement disables the terminal device escape (or break) key
from interrupting program execution. : ’

The ESCAPE statement (default condition) is used during program
development and debug. The NOESC statement is used for time eritical

application programs or in an environment where it is not desirzble
for the user to interact with POWER BASIC in a non-program controlled
mode.

Examples:

10 ESCAPE
10 NOESC

s.o '“-l

Target POWER BASIC Interpreter: The ESCAPE and NOESC statements are
not supported by the POWER BASIC Configurator, therefore these
statements should not be present in a final application program which
is to be configured into a customized (Target) POWER BASIC
Interpreter. The statements will function as a STOP statement if
encountered in a Target application program.

CALL STATEMENT

The CALL statement allows the user access to assembly language
subroutines. The user may pass up to 4 patameters to the subroutine
although none are required.

Ferms:

[line numbez‘fj CALL <string constantd,Kaddress><,vari>(, var2>(, var3d, vark>

where:

String constant is the entry point of the assembly language
subroutine .

address is the hexadecimal or decimal address of ﬁhe assembly
language subroutine

vari, var2, var3, and varl are the parameters of the subroutine

The string constant is the entry point of the assembly language
subroutine being called (used by the POWER BASIC Configurator and the
Target POWER BASIC Interpreter). The address is the decimal or
hexadecimal address where the asembly language subroutine resides
(used by the Host POWER BASIC Interpreter). Both the string constant
and the address parameters must be entered to execute the CALL

statement, although only one is used by each of the two POWER BASIC
Interpreters. :

Parameters are passed to the assembly language subroutine via the
variables ¢varl» through <vard>. Up to four parameters may be passed
between the POWER BASIC program and the subroutine, although
none are required. Parameters may be passed by either value (ie., the
integer value of the variable in the POWER BASIC program) or by
address (ie., the address where the variable is stored in POWER
BASIC). A variable is passed by value when the variable itself is
entered as a parameter (eg., ABC, VAR, DON, etc.), and the address of
the variable is passed when the variable is enclosed in parenthesis
(eg., (ABC), (VAR), (DON), ete.). If the parameter is passed as 2
value, it will be converted into a 16-bit two's coamplement integer. If
passed by address, the 16-bit address of the location in memory where
the variable is stored intermal to POWER BASIC will be passed, and no
variable conversion will be performed. Parameter passing by address

enables the user to access both floating point znd dimensioned or
array variables from the assembly language subroutine, knowing that
each variable or array-.element is 6 bytes in length. The user should
refer to Section 3, paragraph 3.7.6 for detailed information on the
internal integer and floating point variable formats used in POWER
BASIC. v

The CALL statement intermally performs a "BL" assembly instruction to
access the users assembly language subroutine. The parameters of the
CALL statement are passed in Registers U4, 5, 6, and 7 of the POWER
BASIC workspace priar to execution of the "BL " instruction. The user
may then directly access these parameters from his assembly language
subroutine. The return address is contained in R11 of the POWER BASIC

workspace. ,

Sinece a "BL" instruction is used, the assembly language subroutine may
use only registers 4, 5, 6, and 7 of the POWER BASIC workspace. If
other registers than these are modified within the assembly language °
program, values expected by POWER BASIC will be destroyed, and
unpredictable results may occur when returning from ‘the assembly
language routine. Therefore it is suggested, that the assembly
language routines supply their own workspaces, Typically, this is
done by performing the following sequence immediately upon entering
the assembly language subroutine:

’ -

* ENTRY POINT TO THE ASSEMELY LANGUAGE SUBROUTINE
® .

SUBR1 EQU $§
BLWP 6SUBR1Z GET OWN WORKSPACE
B #R11 RETURN TO POWER BASIC

¥

* TRANSFER VECTOR.
#

SUBR1Z EQU §
DATA WRPTR WORKSPACE POINTER
DATA START PROGRAM COUNTER

* START OF ASSEMBLY LANGUAGE SUBROUTINE
#

START EQU $

L 3

RTWP . RETURN FROM ASSEMELY SUBROUTINE

The CALL statement is one of the statements having the same form, but
~its function is slightly different on the Host POWER BASIC

5-68

Interpreter, than in an application program configured into the Target
POWER BASIC Interpreter. The address parameter is used by the Host
POWER BASIC Interpreter to access an assembly language routine which
bas been loaded into a specified memory location, while the string
constant parameter is used by the POWER BASIC Configurator and TX990
Link Editer to appropriately link the assembly language subroutine
into the customized Target POWER BASIC Interpreter. The differences
in the use of the CALL statement between these two POWER BASIC
Interpreters will be presented below.

-Host POWER BASIC Interpreter:

To access an assembly language subroutineé from the Host POWER BASIC
Interpreter, the user must load the object program from either
cassette or a diskette file. To load an objeect module using POWER
BASIC, the user must load and execute the POWER BASIC -Object Loader.
This program is presented in the POWER BASIC Object Loader Application
Note available from your distributor. This BASIC program will
appropriately load an object file from either cassette or diskette
beginning at the specified load point entered by the user.

When the Host POWER BASIC Interpreter is initially executed, it
automatically sizes the contiguocus RAM area from the top of
Interpreter up tc memory address hex F800 and allecates 211 available
RAM area to the-BASIC Interpreter for variable znd 2ASIC progranm
storage. However, a small area of RAM must be available for the
object program and its associated workspace. To provide this area,
the user must execute the "NEW address " command immediately after
executing the POWER BASIC Interpreter before loading any POWER BASIC
programs. The address will specify the upper memory limit to be
used by the POWER BASIC Interpreter. The user may then load the
object program into RAM at an address above this limit. The user m2y
then execute a CALL statement to this address to execute his assembly

language subroutine.
Target POWER BASIC Interpreter:

Any assembly language subroutines CALLed by a BASIC application
program (which is to be configured into a Target POWER BASIC
Interpreter) will be included into the final Target BASIC Interpreter
by the configuration process. When the POWER BASIC Configurator
encounters a CALL statement during its scan of the application
program, it will interpret the string comstant as the FILE NAME and
ENTRY POINT of the object module being reterenced, and will issue an
"INCLUDE" statement fer that object module in the Link Control File
which it produces. The string constant may consist of up to six
alphanumeric characters, the first of which must be alphabetiec. This
name must correspond to both the ENTRY POINT and FILE NAME of the
object module being referenced for correct inclusion by the

5=69

0.5 % R e

Configurator and Link Editor. The Format of the INCLUDE statement
will be as follows for each object module CALLed by the BASIC
application program: . '

INCLUDE DSC2:IXXXX/0BJ
where:
LXXXX is the string constant used in the CALL statement

The TX990 Link Editer will then appropriately include the specified
object modules from diskette, and the assembly language subroutines
will be linked with the final Target POWER BASIC Interpreter object
module. - . :

Note that the user must have the object module located on
the diskette under the specified file name (with the “/OBJ"
extension), and this diskette MUST be located in disk drive
2 of the FS990 system before Link Editor is called into
execution.

The user must separate his workspace and data areas from the body of
all assembly language subroutines since all assembly language
subroutines will be included in the final Target POWER BASIC
Interpreter, and this final object module will be placed in ROM for
execution in a ‘TM990 board system. Therefore, a2 small amount of RAM
area will need to be zllodated for the workspaces and data areas in
the final TM990 target system. The Target POWER BASIC Interpreter
during Power-up RESET will size for all available RAM area in the
TM990 board system, starting from memory address hex FFFFmﬁown. All
available contiguous RAM area will then be assigned t& the BASIC
Interpreter for variable storage. Therefore the user must supply a
non-contiguous block of RAM in the TM990 board system for use by the
assembly language subroutines.

Examples:

200 CALL "CONVERT",OBBOOH,VAL,UPB,LWP.
200 CALL "INOUT™,0C800H,ST,(VAR), (NAM)

The first example will branch and link (BL) to the subroutine
"CONVERT"™ at location hex B800 with the 16<bit two's complement values
of the variables VAL, UPB, and LWB passed in registers 4, 5, and 6.
If executed on the Host POWER BASIC Interpetér, the assembly language
subroutine must be loaded so that its entry point is at hex address
B800 16 Lf configured, the corresponding object module should be
located in the file "DSC2:CONVERT/OBJ" to be correctly included by the
Link Editor. The second example will branch and link to the
subroutine "INOUT" at location hex C80016'. The 16-bit two's
complement value of ST will be passed in Register 4, while the memory
address of the location of the variables VAR and NAM will be passed in

5-70

5.15

5.15.1

5. 15'.2

registers 5 and 6, respectively.

FILE MANAGEMENT

The Host POWER BASIC Interpreter provides a convenient method of
performing file I/0 to the devices and diskette files of the TX990
Operating system via its file management package. The Host POWER
BASIC Interpeter supports a minimal but sufficient set of file
primitives to SAVE and LOAD BASIC programs, and read and wite binary
data. The SAVE and LOAD Commands were discussed in Section 4, while
the remainder of the file primitives will be discussed below.

1

PATHENAME SYNTAX

Most all POWER BASIC file control statements use a pathname to
indicate a device/file referenced by that statement. A1l TX990
pathnames used by POWER BASIC adhere to the following rules:

© All device pathnames consist of a2 one- to four- character
device name assigned to that device during system generation.
Typical device pathnames are DSC, DSC2, LP, CS1, and CS2. The
user must reference his system generztion for the device names
used in his particular TX990 Operating System.

- 0 All diskette file pathnames consist of cne to seven characters
separated from the device name by a colon (:). The first
character must be alphabetic (L-Z); the rest may bde
alphanumeric. The file name is followed by an extension to
the file name, which is one to three characters sepzrzted from
the file name by a slash(/). The first charzeter mus: be
alphabetic; the rest must be alphanumeric. The file name and
extension are specified when the file is created by the BDEFS
or BDEFR POWER BASIC statements. Typical valid diske:tte file
names are DSC2:LOAD/ONE, DSC:PROGRAM/T1A, and :TEMPER/D11.
Invalid diskette file names would be DSC:TEMPERATURE/SNC ==
too many characters, DSC2:FANON/920 -- first character of
extension must be alphabetic, and DSC:MOTOR/STEP -- extension
too long. :

The POWER BASIC/TX990 interface checks the syntax of 21l file and
device pathnames when the BASIC statements are entered. If the

 pathname syntax is not legal, an INVALID PATHNAME error will result.

BDEFS STATEMENT

The BDEFS statement will define a sequential diskette file on the
specified device and with the specified file name and extension. The

5=71

5. 15-. 3

‘BDEFS file primitive is a POWER BASIC statement; however, it is

typically only executed in the keyboard mode (without a statement
number), and is not entered into a BASIC pregram since each execution
of the program would attempt to redefine the file. Attempts to define
a file which already exists will result in a TX990 error.

Ferm:

BDEFS [{string constantd
{string variable>/,

The <string constantd or <{string variabled> specifies the pathname of
the diskette file to be defined.

The file is placed in the diskette file director&, but the file is not

“"known" by POWER BASIC until the file is opened by the BOPEN

statement.

The logical records in a sequential file must be zccessed in a
sequential manner (ie., record 1 must be processed before record 2,
ete). When a sequential file is closed (viaz the BCLOSE statement
following an access), the position of the last access to the file is
saved. When the file is open again (via the BOPEN statement), the
next I/0 operation accesses the next logical record in the file,
instead of the first record of the file. To zccess the first record
of the file, the user must execute the RZISTOR #<vars statement to
rewind the file to its beginning.

Sequential files in POWER BASIC are exclusively opened for read only
o write only operations. The access type is specified by the first
read or write to that device/file, and thereafter the file is defined
as either a read only or write only LUNO. The user cannot write to a
file and then attempt to read values from the file without first
closing the file after the write via the BCLOSE statement, and vice
versa. Attempts to read a sequential file opened for write or to
write a sequentizl file opened for read will result in a2 INVALID FILE
ACCESS error message. Also note that the last write operation to a
sequential file defines the current end of file.

Examples:
BDEFS "DSC2:RELAY/SEQ"
BDEFS "DSC:MOTOR/CNT"
BDEFS "DSC:VALUE/OPN™
BDEFR STATEMENT

The BDEFR statement will define a Telative record (random access)
diskette file on the specified device and with the specified file name
and extension. The BDEFR file primitive is a POWER BASIC statement;
however, it is typically only executed in the keyboard moede (without a

5-72

Statement number) and is not entered into a BASIC program since each
execution of the program will attempt to redefine the file. Atteapts

to define a file which already exists will result in a TX990 error.
Form:

BDEFR({string ‘constant)
¢{string variable)

The' {string constant) or (string variable> Specifies the pathname of
the diskette file to be defined.

The file is placed in the diskette file directory; however, the file
‘is not -"known" to POWER BASIC until the file is opened by the. BOPEN
statement. :

Relative record files are supported only on diskette. The beginning
of a relative record file is specified by logical record 0; the end of
the relative record file is specified by the hizhest numbered logical
record written to the file. When relative record files are opened,
they may be accessed for both read and write operations. That is, the
user may read a record and then immediately write a2 record without
performing a close operation between them.

Wnen a relative .record file is opened via the BOPEN statement, the
file is positioned to its beginning (logical record number of 0). The
relative record file may then be written or read in 2 sequential
manner until the highest record number is reached. After z read or
write operation, the logical record number is appropriately
incremented by the number- of bytes read or written. The user may also
access any record at ‘random within the file by using the BINARY &
statement. The user- Wwill specify the record length, logical record
number, and byte displacement within the record when entering the
BINARY 4 statement. The flle will then be positiacned to that
particular record and byte within the file. The next read or write
may then access this "randop" position within the file. -Subsequent
accesses may be either random or sequential. When only BINARY 1,
BINARY 2, or BINARY 3 statements are éxecuted, the next record in the
Sequence 1s accessed. When another BINARY 4 statement is executed
with a positien value out of sequence, the access is at "randozm",

Examples:

BDEFR "DSC2:GATE/REL" ”
BDEFR "DSC:SWITCH/ACT" '
BDEFR "DSC:TIME/MON"™

5.0 15‘01;

5. 15.. 5

BDEL STATEMENT

The BDEL statement will delete the specified sequential or relative
record file from the specified diskette. The BDEL file primitive is a
POWER BASIC statement; however; it: is typically only executed in the
keyboard mode (without a statement number), and is not entered into a
BASIC program since each execution of the program will attempt to
delete the specified file. Attempts to delete a file which does not
exist will result inra TX990 error: '

Form:

EDEL string constantd|. . .
y{string variable)(.

The ¢string constantd or <’str‘ing variable> specifies the pathname of
the diskette file to be deleted.

The BDEL statement deletes the file name from the diskette file
directory, and subsequent references to this file name will result in
a undefined file name error. The specified file must be closed before
deletion. Attempts to delete a file which is opened will result in a
TX990 error. :

Examples:

BDEL "DSC:MOTOR/CNT"
BDEL "DSC2:GATE/REL"

BOPEN STATEMENT

The BOPEN statement will open the specified deviece/file for sequential
or relative record access depending upon the device/file type. Most
devices (such as the 733 ASR/KSR keyboard/Printer; line printer, and
733 ASR Cassette Unit) may only be opened for sequential access, while
diskette files will be opened according to the file type as defined by
the BDEFS or BDEFR statements. Note that if a diskette file is
specified as the pathname of the BOPEN statement, the file must have
previously been defined by the BDEFS on BDEFR statements. -

‘The BOPEN statement will place the specified file name in the

operating system and in the POWER BASIC file directory. Until an open
operation is executed, devices/files a2re not located and file
management operations to manipulate them cannot be initiated or
Performed. The BOPEN statement causes the device/file to be assizgned
solely to the calling program until a BCLOSE statemern:t is executed on
the device/file. That is, no other BASIC program may access the
device/file until it is properly closed.

5=74

Form:

<string constant>
[Line number] BOPEN (<string variabled), <numeric variable>

The <&string constantd> or Cstring variabled specifies the pathpame of
the device/file to be opened. A logiecal unit number (LUNO) is
assigned to the device/file name when it is placed into the POWER
BASIC directory. This LUNO is then returned to the user in the
€nume ric variabled. The numeric variable (LUNO) is used in all
future file management cpermations when referencing the the device/file
(e.g., the COPY <numeric variabled> TO <numeric variabled and BCLOSE
<umeric variabled).

The file is opened for either read and/or write. A relative record
file will be open for-both read and write; that is the file may be
both written to and read from without cleosing the file between
operations. However, a sequential file will be opened exclusively for
read only or-forwrite only depending on the type of the first access
to the file after it is opened.

Note that user may only have up to 4 device/file LUNO's opened at one
time. If more than 4 devices/files are attempted to be opened, a2
TABLE AREA FULL error will result.

The BOPEN statement performs only an open cperztion. Tha:t is, it does
not rewind the deviece/file to its beginning before retuming to the
user.)

A relative record file is still positioned to the first logical record
of the file.

A sequential diskette file, when closed following an access, saves the
position of the last access to the file. When the file is opened
again, the next I/0 transfer accesses the next logical record in the
file instead of the first logical record of the file. To access the
- first logical record after a BOPEN operation, the user must execute a
rewind operation (via the RESTOR #<vard statement). Typieally, when
entering values into a new file, or reading or overwriting an
existing file, the user executes a RESTOR statement immediately after
opening the file and before performing any I/0 operations to that
‘diskette file so that subsequent accesses will begin with the first
record of the file. ‘

If the specified device/file is the 733 ASR cassette unit, the user
will need to perform a RESTOR operation on the cassette device if the
first record of the tape is to be read from or written to.

The BOPEN statement is typically used in both the keybocard mode
(without a2 statement number) and in POWER BASIC programs. In the

5.15.6

keyboard mode it is typically used to open the devices/files used by
the COPY statement; while in a progr‘am, it opens the devices/files
used in BINARY statements.

Examples:

BOPEN "DSC2:FILE1/SRC",FIL
RESTOR #FIL
BOPEN "LP",LP
COPY FILE TO LP

50 DIM A(S)

60 $A(0)="DSC:FAN/TST"

70, BOPEN $A(0),FAN

80" 'RESTOR #FAN

90 BOPEN "CS1%,CSO

100 BINARY 1,FAN,80;3,VAL(0)

BCLOSE STATEMENT

The BCLOSE statement will ‘close the specified device/file. The BCLOSE
statement removes the device/file from the POWER BASIC directory,
releases the assigned logical unit number (LUNO), and releases the I/0
device and the file on the medium of the I/0 device from the POWER_
BASIC Interpreter.

Form:
[line number] BCLOSE <numeric variables

The npumeric variable specifies the logiczl unit number (LUNO) that
was assigned to it by the corresponding BOPEN statement.

The BCLOSE statement will perform a straight close operation if the
specified file was opened and read from, but not written to. The
close operatiocn is as explained above. .

The BCLOSE statement will perform a close with end-of-file (EOF)
operation if the file was opened and written to. It will perform a
close operation as previously described above, followed by a write EOF
operation. When the device specified is the keyboard/printer, the
printer performs three line feed operations. When the device
specified is the 911 or 913 VDT, only the close operation is
Performed. When the device specified is thes line printer, the printer
performs a form-feed operation. When the device/file specified is a
Sequential diskette or cassette file, the EOF sequence is output at
the current position of the file. When the device/file is z relative

record diskette file, the EOF sequence is output after the last record
of the file.

5-76

-~

—— - A - -‘% -~ s

The BCLOSE statement is typically executed in both the keyi
“and in POWER BASIC programs. In the keyboard mode it is -
used to close the devices/files used in a CoOPY statement; %

program, it is used to close the devices/files used by tt
statement.

Examples:

BOPEN "DSC:MOTOR/SRCH sMOT
RESTOR #MOT
BOPEN mCs1v,cso
RESTOR #CS0O
COFY MOT TO €SO
BCLOSE MoT '
BCLOSE: cs0
10 BOPEN "DSC2:DATA/BIN",DAT
20 RESTOR #DAT
30 BINARY 1,DAT,80; 3,VAL(0)
40 BCLOSE par
70 BOPEN "LP",I
90 BCLOSE I

5.15.7 RESET STATEMENT

The RESET statement will close ALL open devices/file:
device/file names wi 1l be removed from the POWER BASIC directo

logical unit numbers (LUNO's) will be released, and the device

will be released from the POWER BASIC Interpreter. The
statement has no pParameters. '

Form:

(iire number] Resgr

ight close operation
read from, and not w

The RESET statement will perro'm a elo

operation to all devices/files which were o
to the BCLOSE statement for-
opemtion. A

Se with end-of-fil.
Pen and written to.
an explanation on the close wi

Examples:

BOPEN "DSC2:VALUE/ FIN™,SRC
RESTOR #SRC

BOPEN "DSC:VALUE/FIN",DST

RESTOR #DST

COPY SRC TO DST

RESET
10 BOPEN "DSC2:PARM/REL",PAR
20 RESTOR #PAR '
30 BINARY 1,PAR,1652,NUM(0)
60 BOPEN "LP",J
90 RESET

5.15.8 COPY STATEMENT

The COPY statement allows the user to copy one file on a specified
device to another device/file. The COPY statement is useful for
backing-up, expanding, printing, or concatenating cassette or diskette
files.

Fom:
(line number] COPY ¢numeric variable.1d> TO <numeric variable 2>

The file specified by <numeric variable 1> is copied into the file
specified by <numeric variable 2>. The <numeric variabla> specifies
the logical unit number (LUNO) that was assigned to a particular
device/file by the corresponding BOPEN stztement. This format
requires that both files must be defined and opened prior to execution
of the copy statement.

When copying files, both devices/files must be of the same file type,
tht is, both sequential or-both relative record. If a sequential file
is attempted to be copied to a relative record file, orvisa versa, an
INCOMPATABLE FILE TYPE error will result.

Examples:
BOPEN "DSC2:PROCESS/SR1",S1
RESTOR #S1
BOPEN "DSC2:PROCESS/SR2%,S2
RESTOR #S2
BOPEN "DSC2:PROCESS/SRC™,SRC
RESTOR #SRC
COPY S1 TO SRC ICOPY PART 1
ggg! S2 TO SRC |APPEND PART 2 - SAVE PROGRAM IN SRC
ET

BOPEN "DSC2:PROCESS/SRC",SRC

. RESTOR #SRC
BOPEN~"DSC:PROCESS/BCK",BCK
RESTOR #BCK
COPY SRC TO BCK !BACKUP PROGRAM
RESET

5.1509

10 BOPEN "DSC2:SAMPLES/TST", SMP

§ 70 ' RESTOR #SMP !REWIND SAMPLE FILE 70 B
: 80 BOPEN "LPWw,Lp
! 90 COPY SMP TO Lp !PRINT SAMPLE FILE TO LP
: 100 RESET

110 sTOP

The COPpY statement may also be used to expand sequent:
files as follows:

BDEFS DSC2: PROCESS/TMP
10 REM - EXPAND THE DISKETTE FILE DSC2:PROCESS/TST
20 BOPEN mpsc2: PROCESS/TST", TST
30 RESTOR # TST
40 BOPEN "DSC2: PROCESS/TMP", TMP
50 RESTOR # T™MP
60 COPY TST TO T™MP
70 BCLOSE TST
80 REM - ADD NEW RECORDS TO FILE DSC2: PROCESS/TMP
90 BINARY 1, T™P, 80; 2, VAL (0)

®
©
°
L
L
°

BINARY DATA 1/0 STATEMENTS

The BINARY I/0 statements permit reading and witing of b
values from the Specified device/file. The user may read by
from the device/file into sSuccessive variables, or may -
values from Suecessive variables eéxpressions to the s
device/file. The byte values are read or written as 8-
values with no conversion. This enables storing and aceessi:
values on the Specified device/file.

fMZ&m%(mWMF fised 128

There are four forms of the BINARY statement. They are used to
specify the number-of bytes to be transferred (BINARY 1), write an
assigned number of bytes from each succeeding expression to specified
device/file (BINARY 2), read an assigned number of bytes from
specified device/file into each succeeding variable (BINARY 3), or
specify the position within a relative record file (BINARY 4).

The general form of the BINARY statement is as follows:
(line number] BINARY <exp>,{arg>,<argd,<{arg>

where

' &exp> specifies the type of BINARY operaticn to be performed
<argd> are the arguments of the partiecular BINARY operation

The four forms of the BINARY statement will be explained in detail in
the following sections. :

Several BINARY statements may be concatenated into a single BINARY
statement on one line by separating all succeeding BINARY statement
{expressionsy and <{argumentsd from the preceeding BINARY statement
with a semicolon (;). Note that the "BINARY" statement name will
appear only as the first statement of the line, and will not appear
before subsequent BINARY statement <{expressionsd and <argumentsd.

Example:

10 BOPEN "DSC:FILE/SRC",FIL
20 RESTOR #FIL

30 BINARY 1,FIL,6

40 BINARY 2,4,B

50 BINARY 3,VAL,VAR

could be concatenated into a2 single statement as

10 BOPEN "DSC:FILE/SRC",FIL
- 20 RESTOR #FIL :
30 BINARY 1,FIL,6;2,4,B;3,VAL,VAR

Concatenation of BINARY statements is required when more or less than
.€ bytes are to be read or writtem from the device/file. This is
required since execution of the "BINARY" phrase (of any subsequent
BINARY 2, 3, or-i4 statements) resets the nurher of bytes to be read or-
written to 6, the typical default byte length since all POWER BASIC
variables and array elements are 6 bytes in length.

5.15.9.1

Example:

10 BOPEN "DSC2:FILE1/SRC",FIL
20 RESTOR #FIL

30 BINARY 1,FIL,80

40 BINARY 3,REC(0)

50 BINARY 2,00T(0)

ISET # OF BYTES TO 80
|#%2YTLL READ ONLY 6 BYT
I*%*YILL WRITE ONLY 6 BY

the correct form would be

10 BOPEN "DSC2:FILE1/SRC",FIL
20 RESTOR #FIL

30 BINARY 1,FIL,80;3,REC(0%;2,0UT(0) -IWILL CORRECTLY READ &

BINARY 1 STATEMENT

The BINARY 1 statement Specifies the logical unit number- (I
the number of bytes per-device/file access to read from or wr:
that LUNO for all subsequent BINARY statements.

Form:

(1ine numbes] BINARY 1, <numeric variabley, <exps

The <numeric variable> Specifies the logical unit number (LUNGC
device/file to which all subsequent BINARY operations a:
performed. The LUNO is the number which is a2ssigned to the s:
variable when the device/file is opened with the BOPEN s

- After-executing the BOPEN statement, the specified variable (e

represents the device/file pathname, and this variable is use
BINARY statement. The BINARY 1 statement assigns the BINARY L
use by all subsequent BINARY statements.

The Cexpy specifies the number-of bytes to be read from or wri
the BINARY LUNO for-each subsequent access by the BINARY 2 or:
statements. Note that the scope of the <exps is only for the

BINARY statement. Execution of the next BINARY statement wi:
the number of bytes to 6. Therefore in applications where
less than 6 bytes are to be read or'written for-each aceess, t

must concatenate the BINARY 2 or BINARY 3 statements to the 3
statement via the semicolon (;) separator.

Example:

10 DIM a(10)
20 BOPEN "DSC:MOTOR/CNT" ,MTR
30. RESTOR #MTIR

30 BINARY 1,MIR,66;2,A(0) !WRITES 66 BYTES TO FI

5=81

5.15.902

while,

10 DIM A(10)

20 BOPEN "DSC:MOTOR/CNT",MTR

30 RESTOR #MTR

40 BINARY 1,MTR,66 :: BINARY 2,A4(0) -!ONLY WRITES 6 BYTES TO FILE

Example:

10 BOPEN "DSC2:TEMPER/SMP",TEM
20 RESTOR #TEM

30 BINARY 1,TEM,6 ISPECIFY FILE FOR 6 BYTES/ACCESS

40 BINARY 3,IM1,TM2,TM3,TMU IREAD FOUR 6-BYTE DATA VALUES

.

BINARY 2 STATEMENT

The BINARY 2 statement writes an assigned number of bytes from each

succeeding expression to the BINARY LUNO. The BINARY LUNO and number

of bytes are assigned by the BINARY 1 statement.

Form:
(line number] BINARY 2, <expd> [,exp]
i

The {exp> of th,e BINARY 2 statement specifies the expression cor
variable values to be written to the BINARY LUNO.

The BINARY LUNC is assigned by the most recently executed BINARY 1
statement. The number-of bytes to be written is also assigned by the
BINARY 1 statement if the BINARY 2 statement is concatenated with the
BINARY 1 statement via the semicolon separator (eg., BINARY
1,FIL,20;2,VL1(0),L2(0) will write 20 bytes from each of the variables
VL1(0) and L2(0)). If the BINARY 2 statement is a separate statement
entry, the number-of bytes to be written is reset to 6 (eg., BINARY
2,VL1,VL2 will write 6 bytes from the variables VL1 and VL2).

Example: '

10 DIM A(10)
20 BOPEN "DSC:STRING/CHR",CHR
30 RESTOR #CHR
- 30 $A(0)="STORE THIS CHARACTER STRING INTO FILE"
40 BINARY 1,CHR,66;2,A(0) 10UTPUT STRING

This example will store the character string $A(0) into the file
"DSC:STRING/CHR". Note that string variables are placed in the BINARY
statements as numeric variables, not string variables. This is
because all variables are sutput directly without regard to either
nume ric or-ASCII content.

. .5"‘ 75.0 90 3

Example:

10 BOPEN "DSC2:DATA/SQR", SQR
20 RESTOR #SGQR

30 BINARY 1,SQR,6

40 BINARY 2,I,I%*I,SQR(I)

50 NEXT I

This example will output the values I, I*I, and SQR(I) tc
"DSC2:DATA/SQR" far the values of I ranging from 1 through 1¢

BINARY 3 STATEMENT

The BINARY 3 statement reads from the BINARY LUNO an assign
of bytes into each of the succeeding variables. The BINARY

number of bytes are assigned by the BINARY 1 statement.
Form:
[line number] BINARY 3, <variabled <,variable>

The <variable® of the BINARY 3 statement specifies the vari;
receive the values read form the BINARY LUNO. They may t
simple or dimensioned numeric variables, ,

The BINARY LUNO is .assigned by the most recently executed

Statement. The number of bytes to be read is also assignec
BINARY 1 statement if the BINARY 3 statement is concatenated

BINARY 1 statement via the semicolon separator (eg.,

T,FIL,40;3,VAL(Q) will read 40 bytes into the variable VAL(
the BINARY 2 statement is 2 separate statement eniry, the nu
bytes to be read is reset to 6 (eg., BINARY 3 VL1,VL2 wil
bytes into each of the variables VL1 and VL2).)

Exampies: .

10 DIM CHR(4),SET(4)

20 BOPEN "DSC2:CHAR/SET",FL1 !0PEN TAE SEQUENTIAL FILE
30 RESTOR #FL1

40 $CHR(0)="ABCDEPGEIJKLMNOPQRSTUVWXYZ"

50 BINARY 1,FL1,30;2,CHR(0) IWRITE 30 BYTE VALUES FROM
60 BCLOSE FL1 !CLOSE FILE TO WRITE EOF
70 BOPEN "DSC2:CHAR/SET",FL2 IOPEN FiLE

80 RESTOR #FL2 '

90 BINARY 1,FL2,30; 3,SET(0) !READ 30 BYTES VALUES INTO
100 "PRINT $SET(0) '

110 " RESET

120 STOP

5.15.9.4

Statement 50 of this program writes the character set in $CHR(O) to
the file "DSC2:CHAR/SET". Note that the string variable ($CHR) is
Specified as a numeric variable (CHR) when referenced in the BINARY
statement. It writes 30 characters, inecluding 26 characters of the
character -set plus the temminating null. Since this is a sequentizal
file, and it has been written to, the file must be closed before it
can be read from. Statement 60 perfoms the close operation, while
Statement 70 opens the file so the data values may be read. Statement
90 reads the 30 characters saved in the file into the numeriec variable
SET(0). Again a numeric variable is specified in the BINARY statement
instead of a string variable. Statement 100 then prints this
character set as a string, $SET(0). -

BINARY 4 STATEMENT

The BINARY 4 statement allows the user-to access a given byte position .

within a relative record diskette file. A file is defined to be

random access by the BDEFR statement when the file is created. The
BINARY LUNO is assigned by the BINARY 1 statement. The number of
bytes specified in the BINARY 1 statement has no effect on the BINARY

4 statement. '
Form: |
[(ice numbérﬂ BINARY 4 ,<exp1d>,<exp2d,<exp3>
where
| <expl1> specifies the record length

<exp2> specifies the record number:
<exp3 specifies the byte displacement within the record

The BINARY LUNO is assigned by the most recently executed BINARY 1
statement. ‘ '

The record length specified by <expi> is the byte length as determined
by the user. A record may consist of a single variable or collection
of variables as required by the application.

~ The record number specified by {exp2> indicates the record

displacement within the file. The valid range for-{exp2) is from 0
through the last record of the file. Record number 0 is the first
record of the file.

" The byte displacement specified by <exp3pindicates the byte position

within the record specified by exp2 . The valid range for<exp3> is
from 0 through the record length specified by (expid>. A byte
displacement of 0 indicates the first byte of the record. .

.
1
t

ihe specified final position within a relative record file ca
determined by: : :

POSITION = ¢RECORD LENGTH * RECORD NUM.BER) + BYTE DISPLACEME}

The BINARY 4 statement can be entered as a single Statement, or may

concatenated with other BINARY statements using the semico
Separater. 1

1

The relative record file may be positioned past the end of file
then written into via the BINARY 2 command. - This will appropriat
éxpand the relative record file and the last record written w
immediately preceed the current end of file. All records between -
previous end-of-file and the current end-of-file, even if not wit
into via the BINARY 2 statement, will be included in the f£i]
Attempts to position past the end of file on a relative record £
and then read values by the BINARY 3 statement will result in an TX
érror. Attempts to position a sequential file via the BINARY
statement will result in a POSITION ERROR message.

Examples:

BDEFR "DSC2:FILE1/REL" !ENTERED IN KEYBOARD MODE

10 BOPEN "DSC2:FILE1/REL",FIL

20 RESTOR #FIL

30 FOR I=1 TO 100

40 BINARY 1,FIL,6;2,I,SQR(I),I*I,T 3
50 NEXT I -

60 INPUT "RECORD NUMBER ";NUM

70 BINARY 4,24,NUM,0;3,I,SQI,II,ITT
80 PRINT I,SQT,II,III

90 INPUT "ANOTHER RECORD? (Y or N)"; &M
100 IF $M = "Y" THEN GOTO 60

110 BCLOSE FIL

120 STOP

This example defines a relative record file "DSC2:FILE1/REL", and the
writes the values of I,SQR(I), I*I, and I 3 for I=1 to 100 into tt
file, outputting 6 bytes for each value written. It then asks tt
user for-a partiecular record number within this file, and the
appropriately positions within the file and outputs the curren
record. Note that length specified in the BINARY 4 statement wa
taken to be u4#%g or-24, since this partitioned the file such that eac
record appropriately contained the values of I, SQR(I), I*I, and I 3
Alsc note that the byte displacement was taken to be 0 sinmce th
values of interest started with the first byte of the records.

5.15.9.5 EXAMPLE PROGRAM

The following example program illustrates the use of the BINARY
statements in an account ledger entry and display application.

BDEFS "DSC2:ACCOUNT/LDG" !ENTERED IN KEYBOARD MODE

10
20
25
30
40
49
50

R

60
70
80
90

100

110

119

120

121

130

140

150

160

170

180

185

189

190

191

200

210

220

230

240

249

250

251

260

270

279

280

281

290

300
310

DIM DAT(1),NAM(3) :
BOPEN "DSC2:ACCOUNT/LDG",LDG
RESTOR #LDG
PRINT @nC"; "ACCOUNT LEDGER DATA ENTRYI"
= 500 ISET CREDIT LIMIT TO BE $ 500
REM
REM - INPUT VALUES AND PERFORM CALCULATIONS
REM ,
INPUT "INPUT DATE (MN/DY/YR) ",$DAT(0)
INPUT "INPUT NAME ", $NAM(O)
IF $NAM(0)="9999" THEN GOTO 120 . .
INPUT "PREVIOUS BALANCE = ";PRV;" NEW AMOUNT = ";AMT

BAL=PRV+AMT !BALANCE = PREVIOUS BAL + NEW AMOUNT
CRL=LIM=-BAL !CREDIT LIMIT = LIMIT - BALANCE

REM

REM - QUTPUT DATA, NAME, PRV, AMT, BAL, AND CRL TO BINARY FILE
REM

BINARY 1,LDG,12;2,DAT(Q)::BINARY 1,LDG,24;2,NAM(0)
BINARY -2,PRV,AMT,BAL,CRL
IF $NAM(0)="9999" THEN GOTO 170
PRINT :: PRINT "MORE?(ENTER 9999 FOR NAME IF DONE) ":: GOTO 70
BCLOSE LDG ICLOSE FILE WHEN THEROUGH WRITING
BOPEN "DSC2:ACCOUNT/LDG",LDG !OPEN FILE TO BE READ
RESTOR #LDG
REM
REM OUTPUT HEADER ON PRINT DEVICE OR AT TOP OF SCREEN
REM
PRINT @"C"::PRINT
PRINT TAB(36);"PREVIOUS";TAB(46);"PURCHASE";
PRINT TAB(58);"™ NEW "; TAB(69); "UNUSED"®
PRINT "DATE": TAB(12)°"NAME“'TAB(36)'"BALANCE"'TAB(U7) ; "AMOUNT";
;RINT TAB(SB)°"BALANCE"°TAB(69);“CHEDIT"
EM
REM = INPUT BINARY VALUES FROM FILE
REM
BINARY 1,LDG,12;3,DAT(0) :: BINARY 1,LDG,2u;3,NAM(0)
BINARY 3,PRV,AMT,BAL,CRL : .
REM
REM - QUTPUT DATA VALUES
REM
IF $NAM(0)="9999" THEN GOTO 330
PRINT $DAT(0);TAB(12);$NAM(0);TAB(36);
PRINT #"$,$33.99E" ;PRV; TAB(46) ; AMT; TAB(57) ;BAL; TAB(67);CRL

A}

320 GOTO 250
330 BCLOSE LDG
340 sTOP

This program requests the user to enter the date, name:
balance, and new Purchase amount. It then stores these v:
the bimary file "DsczzACCOUNT(LDG". It continues to ac
inputs, until the user enters a "9g99gm in response to the "
prompt; the program then writes a terminator-to the file
the device/file. This is required before this file can be
since the file was defined to be a Sequential file. Next t

Execution of the previous prégxa.m would produce the followin
All user-responses are underlined.

ﬁggoum LEDGER DATA ENTRY

INPUT DATE (MN/DY/YR) : 11/10/78
Pagiggsngﬁaﬁc%gﬁ NEW AMOUNT = 125
MORE? (ENTER 9999 FOR NAME IF DONE)
FAETIO0S S S Toe e woor « 250

MORE? (ENTER 9999 FOR NAME IF DONE)
INPUT NAME : 9999

PREVIOUS PURCHASE NEW UNT
DATE NAME BALANCE AMOUNT BALANCE CRE
11/10/78 JOEN DOE $ 100.00 $ 125.00 $ 225.00 § 27

11/10/78 JANE SMITH $ 400.00 $ 250.00 $ 650.00 § 15

STOP AT 340

-
-
- . '
: . . ‘
) B
. .
: ' -
" . '
. . » . : ¢
. >
. t : . ’ ‘
. .
o
. o : .
1. ’
T e e o g g e e e
N L v
34 tre . - 4 . . | .
H A . H . 5
. J :
. . . . B , . s
| : . N oo : . 4
! ‘ :

6.1

6.2

SECTION VI
CHARACTER STRINGS

GENERAL

ASCII character strings are stored in the same variables as are other
POWER BASIC variables. Variables are designated as containing
character strings by program content or semantics. Any variable or
array may contain ASCII characters and, in fact, may be filled with
ASCII characters and numbers at the same time. String variables are
designated by preceding the varizble name with a2 dollar sign.
Otherwise, the variable is treated as a number. ASCII characters are
stored in contiguous memory locations with a null character
terminating the string. You must ensure (with a DIM statement) that
enough memory for a string variable has been set aside to store all
the characters or other contiguous variables may be destroyed. The
following formula indicates the number of ASCII charzcters you may
store in any variable or array:

Configurable POWER BASIC .
Number of characters =z 6 x (number of variable elements) - 1

Examples:
I1 6x1=1=25
A(10) 6 x 11 -1 = 65

N(10,5) 6 x (11 x 6) = 1 = 395

CHARACTER ASSIGNMENT

When a string assignment is made the actual characters are moved to
the new variable.

Form:
$ VAR = {$VAR)
$ VAR = "{character string)"

Characters'ére transferred one by one until a null byte is found.
Examples:

10 $I1="YES"™
20 $J0=3J1
30 -$N(h;0) = "CHARACTER STRING™

A character string is referred to as {$VAR) and implies either a
literal string or a dollar sign preceding a variable. $VAR) implies a

character string only of the form dollar sign preceding a variable
ASCII comparisons of the following form are valid:

IF <{$VAR> RELATTION <$VAR) THEN <{BASIC STATEMENT)
Examples:

100 IF $I1="Y" THEN GOTO 500
110 IF $N(I,0) =$N(J,0) THEN GOSUB 600

An ASCII variable may appear in a READ statement if the correspon
DATA statement entry is also an ASCII variable or an ASCII str:

When data types do not mateh you receive an error at the line nw
of the READ statement. ‘ '

Example:

10 READ $N(0),4,B,$2(0)
20 STOP
30 DATA "STRING DATA™, 12345,4%10,$N(0)

In this example, $N(O) receives the character String "STRING DAT
the variable 3 receives the number 12345, and B the number 1234
Finally, the ASCII variable $2(0) receives the same string as $N(0Q)

A dimensioned string variable can have a byte index into the charac
string by f‘ollowing' the subseripts with a Semicolon and the b:
displacement. The range of the index is from 1 through the last b
of the ASCII string. $A(0;1) is equivalent to $4(0).

Example:

10 DIM 4(10)

20 $A(O):"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
30 PRINT $A(0)

40 PRINT $4(0;51)

50 PRINT $4(0;10)

60 sTOP

“RON
ABCDEF GHI JKLMNOPQRSTUVWXYZ
ABCDEFGHI JKLMNOPQRSTUVWXYZ
JRLMNOPQRSTUVWXYZ

STOP AT 60

o

6.3

Example:

10 DIM A(10),B(10)

20 $A(0)="ABCDEFGHTIJKLMNOPQRSTUVWXIZ"
30 $B(0)=$4(0;10)

bo $a(0;2)=4$B(0;2)

50 PRINT $4(0), $B(0)

60 STOP

RON
AKLMNOPQRSTUVWXYZ JKLMNOPQRSTUVWXYZ -

STOP AT 60

CHARACTER CONCAIENATION
Strings are concatenated by usiné the."+“ operator.
Form:

$<VARD = {$VAR) + ($VAR)«+. ...

Concatenation operations mz2y be chainéd together and the final string
will automatically be terminated with a null by POWER BASIC.

Example:

10 DIM A(1Q)

20 $A(0)=mABCDE"

30 3$A(0)=$A(0)+"FG"+"HIJK"
40 PRINT $4(0)

50 STOP

RUN
ABCDEFGHIJK

STOP AT 50
The following example results in a phenomenon called "CHOQ-CHOO". It
is caused because a null cannot be found. :

10 $4(0)="ABCD"+$4(0)

POWER BASIC will ‘detect this situation and terminate the string
assignment by inserting a null when a previously stored value is
again being selected for storage. . ¢

o

6.3

-d,

6.5

CHARACTER PICK

Characters can be picked from one variable into another by using the
assignment operater.

Form:
$<VAR) = {$VaR) , <{EXFD

The expression is evaluated and the resulting number specifies the
number of bytes to be assigned. The string is then terminated with a
null byte after the last character of the "picked" string.

‘Eiémple:
10 DIM A(10),B(10) : .
20 $A(0)="ABCDEFGHIJKLMNOPQRSTUVWXYZ"
30 $B(0)=$A(0;4),6 '
40 $B(0:5)=$4(0),1
50 PRINT $B(0)
60 STOP
RUN
DEFGA
STOP AT 60
CHARACTER REPLACEMENT

Character replacement is very similiar to character pick with the
exception that a null is not placed at the end of the string.

Form:
$<VAR>= {$VAR) ;<EXP)
Example:

10 DIM A(10),B(10)

20 $A4(0)="ABCDEFGHIJKLMNOPQRSTUVWXIZ"

30 $B(0)=$A(0;4),6 ! PICK 6 CHARACTERS
40 $B(0;5)=$A(0);1 - ! REPLACE 1 CHARACTER
50 PRINT $B(0)

60 STOP

RUN -
DEFGAT : Tl

STOP AT 60

6.6

6.7

CHARACTER INSERTION

Characters can be inserted into a string variable by using the
slash (/) operater.

Form:
$ <VAR> =/ {$VAR)

The string is inserted without a null.

- Example:

.10, DIM A(10)

20 $A(0)="ABCDEFG" :

30 $a(0;4)=/m.. . " .
40 PRINT $4(0) '

50 STOP

RUN
ABC...DEFG

STOP AT 50

CHARACTER DELETION

Characters are deleted from a string variable by using the same divide
operator fallowed by an expression. ’

Form:
$VARY = / {EXP)
The evaluated expression indicates %he number of charécters to be
deleted.
Example:

10 DIM A(10)

20 $A(0)="ABCDEFGHIJKLMNOPQRSTUVWXYZ™
30 $4(0;5)= /10

40 PRINT $A(0)

50 STOP

RON - |
ABCDOPQRSTUVWXYZ

STCOP AT 50

6.8

6.9

BYTE REPLACEMENT

Individual bytes may be altered by—using the numeric equivalent of an
ASCII character along with the "%" oper@torfz‘

Form: —
$<VARD = WEXP) ...

Byte replacements may be ehained together. The byte value may be
specified as either a hexadecimal or decimal value. The evaluated
expression specifies the byte code to be placed in the string
variable. A null terminating byte is not placed at the end of the
string. In some applications, the user should manually place the
terminating null byte on the end of string, as in the following
example.

Example:

10 DIM A(10)

20 $A(0)=%41%42%00
30 PRINT $A(0)

40 sTOP

RUN
AB

STOP AT 40
CONVERT ASCII CHARACTER TO NUMBER

A character string may be converted to a number by using the
assignment operator along with an error variable.

Form:
CVAR) = {$VARD , (VAR

The delimiting character is placed in the first byte of the error
variable. Hence, the conversion routine was successful in converting
the whole string if a null was the resulting delimiter.

Example:

10 $NUM=" 12DE"]
20 Ns"1234".E ~

" 30 Ni=$NUM,E1

40 PRINT N,$E

50 PRINT N1,$E1

60 STOP

6.10

RUN ; !
1234 ? :
12)

STOP AT 50 .

Note that the first numeric characteristring was successfully
converted with no invalid characters encountered. However, the second
numeric character string converted only the string "12", and placed
the non-numeric "D" character into the variable E1.

1

CONVERT NUMBER TO ASCII CHARACTER

A number can be converted to a string simply by 2ssigning the number

te a string variable.

Form:

$ {vard = (exp)
The string will properly be terminated with a2 null.
Example:

10 DIM A(10),B(10)

20 $A(0)=U*ATN(1)

30 $B(0)= SQR(2)

40 PRINT $4(0), $B(0)

50 STOP :

RUN
3.141592 1.414213

STOP AT 50

Formatted conversions can also be made by preceding the expression
with the formatting operator "#" and a string. The form is:

$VARY = # {$VARY , <EXP)

The formatting rules are the same as those given under print .

 formatting. (See paragraph 5.8.2.1.)

Example:

10 DIM A(10),B(10)

20 $A4(0)=#"999,990.99",1234 .
30 "$B(0)=#n<{ LK. 00D, -1234
40 PRINT '$4(0),$B(0) _ ' .
50 STOP i

2 A

RUN
1,234.00 {1,234.00)

STOP AT 50

6=7

6.11

STRING LENGTH FUNCTION
The length of a string variable is returned byAusing the LEN function.
Form:
LEN (C$VARD)
A zero is returned if the string is the null string.

Example:

710 DIM 4A(10),B(10)

20 $A(0)=mn

30 $B(0)="ABCDEFGUIJKLMNOPQRSTUMVWYZ"
40 PRINT LEN($A(0)),LEN($B(0)) -

50 STOP

RUN
o 26

STOP AT 50

CHARACTER SEARCH FUNCTION
To search for a given str’ing‘, use the SRH function.
Form:-

SRE (C$VAR), C$VARD)

The function returns the character position indicating where the
first string is located in the second string. If the search is
unsuccessful, a zero is returned. .

Example:

10 DIM A4(10),B(10)

20 $A(0)="ABCDEFGHIJKLMNOPQRSTUVWXYZ"

30 $B(0)="ZY¥XWVUTSRQPONMLKJIHGFEDCBA"

40 S1=SRH("EFG™,$4(0)) , L
50 S2=SRE("EFG",$B(0)) -
60 PRINT S1,S2

70 STOP

RUN .
5 0

STOP AT 70
20 $SET(0)="ABCDEFGHIJKLMNOPQRSTUVWXYZ"™

6=8

6.13

6.14

STOP AT 70
Example:

10 DIM SET(5)
20 4$SET(0)="ABCDEFGHIJKLMNOPQRSTUVWXYZ"30 PRINT
30 PRINT
40 POS=SRH($CHR,$SET(0))
50 POS=SRH($CHR, $SET(0))
60 IF POS=0 THEN GOTO 30
70 ELSE $CHA=$SET (0;POS),1
80 PRINT "POSITION = ";POS,"CHARACTER= ";$CHA
90 GOTO 30

,100- “STOP

RUN
INPUT CHARACTER Z
POSITION=26 CHARACTER=Z

INPUT CHARACTER 4
INPUT CHARACTER

CHARACTER MATCHE FUNCTION
When looking for character agreement, the MCH function can be used to
return the number of characters which are the same for two strings.
Form: ' .

MCE (<$VARD, <$VARD)
A zero is returned if a match is not found.

Example:

10 DIM A(10) | .

20 $A(0)="ABCDEFGHIJKLMNOPQRSTUVWXYZ"

30 PRINT MCH("ABCDXIZ",$A(0)),MCH("BCGE",$A(0;2))
0 STOP

RUN
4 2

STOP AT 40

ASCII CHARACTER CONVERSION FUNCTION

The ASC function returns the ASCII decimal numeric value of the first
character of the specified string variable.

Form:
Asc($§YAR>)

The ASC funection is the inverse of the byte replacement operator (%),
ioeog $A = %ASC($A)6 .

The following example takes the upper case string in the variabile
$A(0) and converts it to the lower case string in the variable $B(0)
using the ASC fumction to obtain the decimal ASCII code for the
charaeter conversions.

Note that the VDT913 video display terminal does not support lower
case characters, therefore this example will not function correctly
when executed on the Host POWER BASIC using the VDT913 as the terminal -
device. .

Example:

10 DIM A(10),B(10)

20 INPUT "INPUT STRING", $A(0)

30 FOR I=1 TO LEN ($4(0))

40 $C=$A(0;I),1

50 IF $C=" " THEN 4B(0;I)=n

60 ELSE $B(0;I)=%(ASC($C)+020H)%0
70 NEXT I

80 PRINT $4(0)

90 PRINT $B(0)

100 STOP

RON *
INPUT STRING: UPPER CASE TO LOWER CASE
UPPER CASE TO LOWER CASE

upper case to lower case

INPUT STRING:

6=-10

.:,.‘o

702

7.2.1

- SECTION VII
POWER BASIC FUNCTIONS
GENERAL

POWER BASIC includes several predefined mathematical, string, and
miscellaneous functions. The Host POWER BASIC Interpreter supports
all the functions presented below, while the Target or "Configured"
POWER BASIC Interpreter supports all of the functions with the
exception of FRA, SGN, and TAN. These -functions may be used in an
application on the Eost POWER BASIC Interpreter; however, they may not
be configured into a Target POWER BASIC Interpreter and application.

4 function is called by using the following form in any statement
where a variable may be used: ,

function name ({argument))

where

function name is a three-letter name
argument may be an expression or variable.

The specified function of the argument replaces the function name in
the statement in which it is used. Functions may be used instead of,
or in combination with, variables in almost all POWER BASIC
statements such as: assignment, PRINT, IF, FOR, ON, DEF, etec.

MATHEMATICAL FUNCTIONS

Paragraphs (7.2.1 through 7.2.10) deseribe the mathematical functions
and their associated forms provided by POWER BASIC. v

ABSOLUTE VALUE FUNCTION (4BS)

The absolute value funmction (ABS) obtains the absolute value of a
positive or negative number. The argument entered following the
function name is the variable name or numeric value for which the
absolute value is required. The function returns 2 non-negative
argument unaltered and returns the ‘absolute value of a negative
argument.

Example:

10 INPUT X
- 20 PRINT SQR(ABS(X)) :)
30 STOP

7.2.2

7.2.3

7T.2.4

ARCTANGENT FUNCTION (ATN)

The argument entered followimg the function name is the ratio
representing a tangeat function. The function returns the corre-
sponding angle in radians. Multiply the number of radians by
180/3.14159265 (PL1) to obtainm the angle in degrees.

Example:

10 INPUT X
20 D = ATN(X)®*(180/3.14159265)
30 PRINT D 4

- 40 STOP

Executing the above example produces: .

? 5.92U6
80.419473

' SINE AND COSINE FUNCTIONS (SIN)(COS)

The argument entered following the function name represents an angle
in radians. When the angle is measured in degrees, multiply the
pumber of degrees by 3.14159265 (Pi) /180 to obtain the angle in
radians. The function determines the quadrant corresponding to the
argument and returns the fumetion value.

Example:

10 INPUT N
20 PRINT SIN(N);COS(N);
30 STOP

Executing the above example produces:

? 1.25
0.94898462 0.31532236

EXPONENTIAL FUNCTION (EXP)

The argument entered following the function name is an exponent of e

(the base of natural logarithms). The function returms the value of e
raised to the power specified in the argument. :

Example:

10 INPUT E . . C e
20 PRINT EXP(E) S
30 STOP

7.2.5

7.2.6

.
'
' .
f
H
i

Executing the above example produces:

? 25
7200485900

K
f

!
FRACTIONAL PART FUNCTION (FRA)

The fractiomal part function (FRA) returns the signed fractional
partion of the argument. Effectively, FRA(X)=X-(INP(X)). '

Example;

10 INPUT E
20 PRINT FRA(E)
30 STOP

Executing the above example produces:

? 3.1415926
- 14159260

Target POWER BASIC Interpreter: The FRA function is not supported by
the POWER BASIC Configurator. Therefore, the FRA function should not
be present in a-final appliecation which is to be configured into a
customized (Target) POWER BASIC Interpreter.

INTEGER PART FUNCTION (INP)

The integer part function (INP) returns the signed integer portion of
the argument. The INP function is useful in modular arithmetie and
for correcting errors resulting from truncation or rounding of
functions. The argument entered following the funetion name is the
value for which the integer portion is required. '

0. A=3 2
20 PRINT "A = ";A, "INP(A)= ", INP(A),

30 PRINT "INP(A+1E=07)= ";INP(A+1E-07)
40 sTOP

Executing the previous example procedues:
A=9 INP(4A) = 8 INP(A+1E=07) = G-
STOP AT 4aQ.

S e

7.2.7

7.2.8

LOGARITHM FUNCTION (LOG)

. The argument entered following the function name is the value for

which the matural logarithm (base e) is required. The funetion
returns the natural logarithm of the argument. Attempts to find the
logarithm of a2 non-positiveé argument will result in an error. (LOG OF
NON-POSITIVE NUMBER).

Example:

10 INPUT L
20 PRINT LOG(L)
30 STOP

Exeeuting the above example produc33°

7 5280
8.5716814

SIGN FUNCTION (SGN)

The sign function (SGN) tests the sign of a value. The argument
entered following the function name is the value to be tested. The
function returns +1 when the argument is a positive number, or -1 when
the argument is a negative number. The function returns zeroc when the
argument is zero.

Example:

10 INPUT A

20 IF SGN(A) O THEN GOTO 50

30 PRINT LOG(A)

40 GOTO 10

50 PRINT "LOG VALUE UNAVAILABLE"®
60 STOP

WExecuting the above examples produces:

? 10
2.3025851
?7=-20

LOG VALUE UNAVAILABLE ' : -

STOP AT 60

Target POWER BASIC Interpreter: The SGN function is not supported by

. - the . POWER BASIC Configurater. Therefore the SGN function® should not. -
- be present in a final appliecatien program which is td be configured

into a customized (Target) POWER BASIC Interpreter.

7-209

7.2.10

7.3

SQUARE ROOT FUNCTION (SQR)

The square root function (SQR) returns the square root value of the
sSpecified argument. The argument entered following the function name
may be positive or zero. The function returns the square root of the
argument. An error message (SQUARE ROOT OF NEGATIVE NUMBER) is
produced if the argument is negative.

Example:

10 INPUT K
20 PRINT SQR(K)
30 STOP

Executing the above example produces:

? 2
1.4142136

TANGENT FUNCTION (TAN)

The argument entered following the tangent function (TAN): represents
an angle in radians. When the angle is measured in degrees, multiply
the number of degrees by 3.14159265(P1i)/180 to obtain the angle in
radians. The function determines the quadrant corresponding to the
argument and returns the tangent.

Example:

10 INPUT M
20 PRINT TAN(M)
30 STOP

.. Executing the above example produces:

7 0.137
0.13786360

Target POWER BASIC Interpreter: -The TAN function is not supported by
the POWER BASIC Configuratar. Therefore the TAN function should not
be present in a final application which is to be configured inte a
customized (Target) POWER BASIC Interpreter.

STRING FUNCTIONS ‘ =

The string functions deseribed in Paragraphs 7.3.1 through 7.3.4 may
be employed in POWER BASIC programming.

7=5

T.3.1

7'302

7.3.3

ASCII CHARACTER CONVERSION FUNCTION

The ASCII character conversion function (ASC) returns the decimal
ASCII numeric value of the first character of the specified string.
For additional details, refer to Section 6, Paragraph 6.14.

Example:s

10 =R®B"
20 B=asc($a]
30 $C=%B+020H
40 Dp=asc(sc
, 50 PRINT $4,B,$C,D

60 STOP

RN

B 66 : b 98
STOP AT 60

STRING LENGTE FUNCTION (LEN)

The string length function (LEN) returns the number of non=-null
characters starting at the evaluated variable address. The argument
of the LEN function must be specified as 2 string by either the § or
"string constant" operators. For additional details, refer to Section
6, paragraph 6.11. :

Example:

10 $I="ABRC™

20 J=LEN(4I)

30 K=LEN("ABCDEFGHIJKLMNOP")
40 PRINT J,K

50 STOP

Executing the above example produces:
3 16

CHARACTER MATCH FUNCTION (MCH)

The character match function (MCH) returns the number of characters to
which the two strings agree. A value of zero indicates no match. For
additional details, refer to Section 6, paragraph 6.13.

°

Example:

10 $C="ABCD"

20 M=MCH("AB", $C)
30 PRINT M

4o sTOP

Executing the above example produces:

2 (RESULT)

7.3.4 CHBARACTER SEARCH FUNCTION (SRH)

The character search function (SRH) returns the character position of -
string 1 in string 2. A character position of zero indicates zan
unsuccessful search. For additional details, refer to Section &, .
Paragraph 6.12.

Example:

10 $C = "ABCD"

20 S= SRH ("BC",$C)
30 PRINT S

40 STOP

Executing the above example provides:

2 (RESULT)

7.4 MISCELLANEOUS FUNCTIONS

The miscellaneous functions described in paragraphs 7.4.1 through
7.4.8 are supported by POWER BASIC. -

7.4.1 CRU SINGLE BIT FUNCTION (CRB)

A CRU bit, addressed relative to a base displacement, is either read
or stored according to program context. The displacement ranges from
=128 to +127. (Refer to Section 5, paragraph 5.10 for details on the
BASE statement.) The function returms a 1 if the CRU bit is set, and
a 0 if not set. Likewise, the selected CHU bit is set to 1 if the
assigned value is non-zerc and to 0 if the assigned value is zero. For
examples

7=7

70&02

T.4.3

CRB(10)=0
will ‘eclear the tenth bit relative to the base, while

CRB(11)=1 or CRB(11)=345
will ‘set the eleventh bit on. Also,

IF CRB(5) THEN J=4
will set J=U4 if the fifth bit is 1.
CRU FIELD FUNCTION (CRF)
The speéir‘ied number of bits are t.ransfer:;ed to or read from the CRU
starting at the address set by the BASE statement. (Refer to Section
5, paragraph 5.10 for details on the BASE statement.) The specified
number of bits ranges from 0 to 15. If zero, all 16 bits will be
transferred. For example:

CRF(0) = =1

transfers 16 bits (hex ' FFF') to the CRU address specified by the

BASE statement. While,

VAL=CRF(8)

reads 8 bits from the CRU base address and stores the result in VAL.

KEY FUNCTION (NKY)

The key function (NKY) conditionally samples the keyboard in run time
mode. When the argument is zero the decimal value of the last key
struck is returned and the key register is reset. A value of zero is
returned if none of the keys were struck. If the argument is
non-zero, the argument is compared with the last key struck. If they
are the same, a value of 1 is returned and the key register is reset.
Otherwise, a value of 0 is returned. For example,

I = NKY(0)

returns the last key struck, or a 0 if none of the keys were struck;

whille

IF NKY(O41H) THEN PRINT "a"

. Prints "A" if the last key entered was "AY. The argument value may be
- expressed as either a decimal or hexadecimal numeric constant or

variable.

7-8

T.4.4

7.4.5

SYSTEM INTERROGATION (SYS) FUNTION

The system interrogation function (SYS) égtains system parzameters
generated during program execution. For example,

A = 3¥S(0)

returns the control character entered during either numeric or string
variable assignment when using the question mark (?) operator of the
INPUT statement. {Refer to the INPUT statement, Section 5, paragraph
50 89 1 o2 °) . :

. A= SYS(1)

returns the ERROR code number when an error is encountered and is used
with the ERROR statement of Section 5, paragraph 5.6.6.

A = SYS(2)

returns the statement number in which the error occurred and is used
with the ERROR statement of Section 5, paragraph 5.6.6. .

DELTA TIME (TIC) FUNCTION

The delta time (TIC) funection samples a real time clock and returns
the current TIC value minus the expression value. For example:

T = TIC(O)
obtains current time, and
D = TIC(T)

calculates elapsed time since the time stored in the variéble T (i.e.,
TIC (T) = TIC (0) - T.

The TIC function is one of the system dependent POWER BASIC features
which operates differently on the Host POWER BASIC Interpreter on the
FS990 system than on the Target POWER BASIC Interpreter on the TM990
board based system. This implies that an application program using
the TIC function will operate differently when executed on the FS990
system than in the "Configured" POWER BASIC Interpreter and applica-
tion which is to reside on the TM990 board system. The user must be
aware of the differences when developing a program on the Host POWER
BASIC Interpreter and appropriately compensate for them before
executing the -Configuration process. That is, the user must modify the
use of the TIC function in the application program to work correctly
with the Target POWER BASIC Interpreter before performing the

Configuration process. The differences between the systems are
presented below.

Host POWER BASIC Interpreter:

The TIC function of the Host POWER BASIC Interpreter utilizes the Date
and Time Superviser Call of the TX990 Operating System to obtain the
eurrent time of day and then calculates the current time value minus
the expression value. The time value returned by the Supervisor Call
has a maximum resolution of one second. Also note that the FS990
system clock is always running (ie., it does not require the "TIME O®
statement to start the clock).

The following example program will cutput a2 bell (ASCII code "07") on
the terminal device once every five-seconds.

LIST :

10 REM THE CLOCKX DOES NOT NEED TO

11 REM BE STARTED USING THE BOST POWER BASIC INTERPRETER
20 $B=%07%00 {ASCII CODE FOR BELL

30 A=TIC(0)

40 IF TIC(A) <5 THEN GOTO 40

"50 PRINT $B; C

60 GOTO 30 - i

Target POWER BASIC Interpreter:

The TIC function used in the customized (Target) POWER BASIC
Interpreter utilizes the real time clock of the TMS9901 Programmable
Systems Interface on the TM990/100M or TM990/101M microcomputer board.
The TMS9S01 is programmed to generate an interrupt (or TIC) every 40
milliseconds (1/25th of a second) with a system clock rate of 3 MHz.
This results in a2 maximum resolution of 40 milliseconds in the final
application. Note that TMS9901 clock must be started by the user
through execution of the "TIME 0" statement or by setting the clock

via the "TIME <Cexp),<expy,exp>" statement for the TIC function to
return meaningful values. .

The following example program when "Configured" in a POWER BASIC
application will output a bell (ASCII code -"07") on the terminal
device once every five seconds.

LIST

16 TIME O ! THIS WILL START THE CLOCK

20 $B=%07%00 ! ASCII CODE FOR BELL

30 A=TIC(O)

Lo IF TIC(A) <S5%25 THEN GOTO 40

50 .PRINT $B: <
60 GOTO 30 : T

T.4.6

MEMORY INTERROGATE/MODIFY (MEM) FUNCTION

The memory interrogate/modify (MEM) function reads or modifies a
memory location (byte) as specified by the argument. This argument

may be expressed as either a decimal or hexadecimal numeric constant
or variable. For example:

M = MEM(OFFOOQH)
reads the byte ﬁ'dm location hex "FFOO", while

MEM(OFFOQH) =
stores—a -decimal 15 (hex "F") at location hex "FFOO"

The following example POWER BASIC program will dump a specified arez
of memory in 16-byte fields, with the ASCII byte equivalents displayed
to the right. .

LIST
100 PRINT 6"C";:: PRINT :: PRINT " MEMORY DUMP PROGRAM"
110 PRINT
120 INPUT "MEMORY START ADDRESS = ";ST
130 INPUT " MEMORY END ADDRESS = ";END
140 PRINT
150 PRINT "DUMP OF MEMORY FROM ";#,ST;" TO ";#,END
" 160 PRINT

165 ST=2*INP(ST/2)

170 FOR I=ST TO END STEP 16

180 PRINT #,I;" = ";

190 FOR J=I TO I+14 STEP 2

200 PRINT #;MEM(J);#;MEM(J+1);" ";

210 NEXT J

220 FOR J=I TO I+14 STEP 2

225 PRINT " ";

230 IF MEM(J)<020H LOR MEM(J)SOTEH THEN $CHR=".":: GOTO 250
240 $CHR=MEM(J)

250 PRINT $CEHR;

260 IF MEM(J+1)<020H LOR MEM(J+1)>OTEH THEN $CHR=".":: GOTO 280
270 $CHR=%MEM(J+1)

280 PRINT $CHR;

290 NEXT J

300 PRINT

310 NEXT I

320 PRINT :: PRINT

330 STOP <

RON

.'\

s
i

MEMORY DUMP PROGRAM

MEMORY SﬁART ADDRESS = 02000H

MEMDRXEEND ADDRESS

02060

~ DUMP OF MEMORY FROM 2000 TO 2060

2032 C020 44BC C080 0222
C010 16F9 9828 0009 4518
4958 €280 10CB 0200 7000
2FC1 COC2 05C3 C103 COD4
C513 16F9 C484 COE2 0002
06SF 1005 104B CG50 €800
48FC 10F9 UEYF 5420 5255

BIT MODIFICATION (BIT) FUNCTION

.
I ¢ © o o o
o o

»n v

e o _ o

° o [} L] 'Y

[X 5 e

N o

D.
o

°oe
©e
LX)

LI

NO

The bit modification (BIT) function reads or modifies azny bit

non-zero, and to zero if the assigned value is zero.
prints "ON"™ if bit 1 of variable A is on; while

turns "on® the'sécond bit of variable A.

IF BIT(A,1) THEN PRINT "ON"

BIT (A,2)=1 or BIT (4,2)=750

The function returns a 1 if the bit is set and
Likewise, the selected bit is set to 1 if the assigned value is

a0

e Eo
o Po

within
if not

For example:

Refer to Section 3, paragraph 3.7.7 for an application of the BIT

2000 = 0202 44DC 0640
2010 = 0024 06A0 2032
2020 = 1A04 COOA 0640
2030 = 108B 0201 0900
2040 = 1309 80C8 16FB
2050 = 16F5 04D2 045B
2060 = Y48EC 10AF 0200
- STOP AT 330
T.4.7
a variable.
set.,
funetion.
7.4.8

RANDOM NUMEER (RND) FUNCTION

The random number function (RND) is used to generate a psuedo randem

number between 0 and 1.

]

i
o
U

For example:

7=12

PRINT RND

would return a random number like

.2113190

Refer to the RANDOM statement paragraph 5.12
infermation.

7=13

for additional

s

8‘.1

8.2

8.3

SECTION VITI
- POWER BASIC CONFIGURATION PROCESS

INTRODUCTION

The user will utilize the enhanced statements, commands, and functions

of the Host POWER BASIC Interpreter when developing application
programs which are designed for- exeecutionm in a2 final or- "Target"
M990 board enviromment. Once the user is .reasonably confident that
the program developed on the Eost POWER BASIC Interpreter will perform
the intended TM990 applieation, the user will SAVE the program in a
diskette file, and then perform the Configuration process. This
process will produce an "application program ecustomized™ POWER BASIC
run-time module. The configuration process comsists of first
executing the POWER BASIC Configurater, followed by execution of the
TX990 Link Editor: This process results in a faster and much smaller-
implementation of the POWER BASIC Interpreter linked with the original
application program. The resultant run-time module is appropriztely
ROM/RAM partitioned for execution in a TM990/100M or TM990/101M
ricrocomputer board system, and is appropriately termed the Target
POWER BASIC application. o

TYPICAL CONFIGURATION CYCLE

The POWER BASIC user should develop application progrems using the
techniques, statements, commands, and functions azs described in
Sections 3 through 7 of this manual. When final development znd
testing are as complete as possible without actuzl interface to the
final target application, the user will perform the configuratien
process as outlined below. The Configurator reads the specified POWER
BASIC application program, produces the Link Control file, root
module, and listing outputs. The TX990 Link Editor then uses this Link
Control File and root module to produce the final linked object module
(Target POWER BASIC appliceation). The Linked Objeect module will then
typically be tested in the actual target application through use of
the AMPL system. If the program functions correctly, this object
module will then be programmed into EPROM's and mounted in the target
TM990 system. The overall configuration eycle is shown in Figure 8.1
on the following page.

POWER BASIC CONFIGURATOR

The POWER BASIC Configurator enables ‘the user to generate an

" application customized POWER BASIC run-time module. This run-time

module contains both the customized POWER BASIC